United States Office of Water EPA 822-R-98-001
Environmental Protection 4304 August 1998
Agency
«EPA An Investigation of Alternative
Means for Demonstrating
Compliance with The Part 503 Total
Hydrocarbon Operational
Standards
-------
-------
AN INVESTIGATION OF ALTERNATIVE MEANS
FOR DEMONSTRATING COMPLIANCE WITH
THE PART 503 TOTAL HYDROCARBON
OPERATIONAL STANDARDS
EPA Contract No. 68D20162
Work Assignment No. 4-06
Prepared for:
U.S. Environmental Protection Agency
Health and Ecological Criteria Division (4304)
401 M Street, S.W.
Washington, D.C., 20406
March 1997
S406.005/rpts
Submitted by:
PACIFIC ENVIRONMENTAL SERVICES, INC.
560 Herndon Parkway, Suite 200
Herndon,VA 20170
(703) 471-8383 FAX (703) 481-8296
-------
-------
TABLE OF CONTENTS
SECTION 1 INTRODUCTION .'.'.' 1-1
Background ............. . ... . . . ... . i_i
L Purpose '. .. ... . . . .....,.........; 1-2
'"
SECTION 2 INCINERATOR DESCRIPTIONS 7 .2-1
Current Furnace Technology ....................... 2-1
SECTION 3 DEFINITIONS OF "WELL-OPERATED" 3-1
Intent of Definitions ..'. . 3-1
SECTION 4 DESCRIPTION OF THE SAMPLING PROGRAM ......... 4-1
Investigation of Relationship between THC and CO . .... ...... 4-3
Observed Total Hydrocarbon/Carbon Monoxide Relationships . / 4-7
Emission Rates of Chlorinated Dioxins and Furans . 4-13
Summary: Test Plans for Sewage Sludge Incinerators ...... 4-13
SECTION 5 SOURCES OF DATA USED FOR THIS EVALUATION 5-1
Introduction. 5-1
Arlington (Virginia) Water Pollution Control Plant ......... 5-1
Cleveland (Ohio) Southerly Wastewater Treatment Center ... . 5-3
Huntington (W. Virginia) Regional Wastewater Treatment
Center 5-8
Hopewell (Virginia) Regional Wastewater Treatment Facility . 5-13
Water Environment Research Foundation Report . . . 5-15
Members of the Association of Municipal Sewerage
Authorities '.• „ ; 5^21
Association of Environmental^Authorities (New Jersey
Operators) '. . . ............. ; 5-23
Hampton Roads Sanitary District,. .......... . . ...... 5-23
Previous (1991) EPA Study ". 5-24
Vancouver, Washington Tests 5-26
n
-------
TABLE OF CONTENTS-continued
SECTION 6 DISCUSSION OF RESULTS ..... . ______ ....... ...... 6-1
Observed Total Hydrocarbon Concentrations ............. 6-1
Observed Carbon Monoxide/Total Hydrocarbons
Relationships .... ...................... ...... 6-31
Observed Effect of Scrubber on Concentration of Total
Hydrocarbons .... ............ . ............. 6-51
Observed Emissions of Chlorinated Dibenzo-Diozins and
Dibenzo-Furans .......... ........ ........... 6-53
SECTION 7 CONCLUSIONS
Carbon Monoxide Total :Hydrocarbons Relationship ........ 7-1
Observed Exit Gas THC Concentrations ...... . ......... 7-2
Chlorinated Dioxins and Furans .................. ... 7-4
Combustion Temperature and Exit Gas THC Concentrations . . . 7-4
APPENDIX A ARLINGTON CONTINUOUS MONITOR DATA
APPENDIX B CLEVELAND CONTINUOUS MONITOR DATA
APPENDIX C HUNTINGTON CONTINUOUS MONITOR DATA
APPENDIX D HOPEWELL CONTINUOUS MONITOR DATA
m
-------
LIST OF FIGURES
- . Page
2.1 Schematic Diagram of a Typical Multiple Hearth Furnace ......... 2-3
2.2 Schematic Diagram of a Typical Fluidized Bed Inchierator ........ 2-6
2.3 Schematic Diagram of a Typical Radiant Electric Furnace ......... 2-9
4,1 • Calculate a for THC, Vancouver ................. .'.'.' ...... 4-9
4.2 Calculate a for CO, Vancouver ................ .... ..... 4-10
4.3 THC vs. CO, Vancouver Run #6 .................. .....
6.1 Effect of Inlet Concentration on the Values of the Parameter a ..... ,6-5
6.2 Effect of Inlet Concentration on the Values of the Parameters A
andCi ... . . . ........ ...... -.' . . . •; .'. .............. 6-7
6.3 Sequence of Inlet THC Concentrations for the Hours of Operation
(Hopewell) ........... ..... ...... . ....... . ... ... . . . 6-12
6.4 Predicted Compared to Measured Exit Gas THC Concentrations
(Hopewell) . . .. ....... ..... ..... . . . . . ... . . . . . . . . . . 6-13
6.5 Predicted Compared to Measured Exit Gas THC Concentration,
Points 350 - 400 (Hopewell) .................. ...... . 6-16
6.6 Comparison of Observed vs. Predicted Log-Normal Distributions
of the THC Concentrations (St. Paul), 1995 Data ...... . . . . . . 6-19
6.7 Calculation of the Parameters of the First Order Rate Equation
from THC Inlet and Outlet Data (Hopewell) ............... 6-23
6.8 Exit Gas THC Concentration vs. Final Combustion .Zone temperature,
Test Number 5 (July 15, 1993) (Vancouver) ............... 6-24
6.9 Exit Gas THC Concentration vs. Final Combustion Zone Temperature,
July through September 1991 (Lorton) .... ...... ....... . . 6-25
6. 10 ln(Total Hydrocarbons) vs. Z Score, Data for September and Data for
Entire Year 1995 (St. Paul) ......... ......... ........ 6-27
6.11 Comparison of the Log-Normal Frequency Distributions for 1991
And 1995 (Arlington) .................. ..... ....... 6-30
6.12 Total Hydrocarbons vs. Carbon Monoxide, 1995 (Arlington) ...... 6-32
6.13 Total Hydrocarbons vs. Carbon Monoxide, 1995 (Cleveland) ..... 6-33
6.14 Total Hydrocarbons vs. Carbon Monoxide, 1995 (Huntington) ..... 6-34
6.15 Total Hydrocarbons vs. Carbon Monoxide, All Plants .......... 6-36
6.16 ln(THC) vs. ln(CO), 1995 (Arlington) ....... ____ ..... ____ 6-38
6.17 InCTHC) vs. ln(CO), 1995 (Cleveland) ...... ____ ..... _____ .... 6-39
6.18 ;ln(THC) vs. ln(CO), 1995 (Huntington) . ...... . . . . ..... ,\ . . 6-40
6.19 Total Hydrocarbons vs. Z SCORE, Incinerator #5, 1995 (St. Paul) . . 6-41
6.20 ln(Total Hydrocarbons) vs. ln(CO), Inchierator #5, 1995 (St. Paul) . . 6-42
6.21 ln(CO/THC) vs. Z SCORE, Furnace Outlet, 1995 (Hopewell) ..... 6-43
•-•'•• ' ' • iv
-------
LIST OF FIGURES-continued
6.22 CO/THC vs. Z SCORE, 1995 (Cleveland) 6-46
6.23 ln(CO/THC) vs. Z SCORE, 1995 (Cleveland) 6-47
6.24 ln(CO/THC) vs. Z SCORE, Individual Plants . . 6-48
6.25 ln(CO/THC) vs. Z SCORE, All Plants 6-49
6.26 InCTHCoOT/THCjN) vs. Z SCORE, 1995 (Arlington) 6-55
6.27 InCTHCoOT/THCiN) vs. Z SCORE, 1995 (Cleveland) 6-56
6.28 InCTHCoTjT/THGiN) vs. Z SCORE, 1995 (Hopewell) 6-57
6.29 InCTHCoOT/THCiN) vs. Z SCORE, 1995 (Huntington) . 6-58
6.30 InCTHCoTjr/THCjN) vs. Z SCORE, Pooled Data from All Plants .... 6-59
-------
LIST OF TABLES
Table ,
3.1 Hearth Temperatures ..'..' . . 3-4
3.2 Multiple Hearth Furnaces .... ... . . . 3.5
,3.3 Operating Parameter Summary, Fluidized Bed Incinerators . . ... ... 3-6
4.1 Water Environment Research Foundation Report, Kinetic Evaluation . . 4-8
4.2 Test Plan, MHF Furnace (secondary combustion chamber) ....... 4-15
4.3 MHF Furnaces (On-Hearth afterburner) .... . 4-16
4.4 MHF Furnaces (no afterburner) 4-17
4.5 Test Plan, FBI Furnace ;............................. 4-18
5.1 THC, CO, CO2, and O2 Concentrations - Furnace Outlet (Arlington) . . 5-4
5.2 THC, CO, CO2, and O2 Concentrations - Scrubber Outlet (Arlington) . 5-5
5.3 Sewage Sludge Parameters (Arlington) 5-5
5.4 ^ THC, CO, CO2, and O2 Concentrations - Furnace Outlet (Cleveland) . 5-8
5.5 THC, CO, CO2, and O2 Concentrations - Scrubber Outlet (Cleveland) . 5-9
5.6 Sewage Sludge Parameters (Cleveland) . 5-10
5.7 THC, CO, CO2, and O2 Concentrations - Furnace Outlet
(Huntington) ........................ . . ......... 5-11
5.8 THC, CO, CO2, and O2 Concentrations - Scrubber Outlet
(Hunthigton) 5-12
5.9 Sewage Sludge Parameters (Huntington) ;.......... 5-12
5.10 THC, CO, CO2, and O2 Concentrations - Furnace Outlet
(Hopewell) .............. 5-16
5.11 THC, CO, CO2, and O2 Concentrations - Afterburner Outlet
(Hopewell) 5-17
5.12 Sewage Sludge Parameters (Hopewell) 5-17
5.13 Operatuig Conditions at Site 1 . . . . 5-18
5.14 Operating Conditions at Site 2 5-19
5.15 Operating Conditions at Site 3 .... .':. 5-20
5.16 WERF Test Site Facility Descriptions . .'. . . .... . ....... . . . 5-21
5.17 Summary of Operating Conditions at Two (of 6) St. Paul, Minn,
Sewage Sludge Incinerators ...:....... 5-22
6.1 Calculation of C0 from Qand Parameters of the Kinetic Rate Model . . 6-4
6.2 Values for the Parameters of the Model Calculated Based on Various
Assumed Values for the THC Concentration at the Inlet to the Final
Combustion Zone ... . 6-8
VI
-------
LIST OF TABLES-continued
6.3 Results of Using Kinetic Parameters Developed for One Inlet THC
Concentration to Predict Exit Gas THC Concentrations at Other
Inlet THC Concentrations 6-9
6.4 Selected Results from the Hopewell Testing 6-10
6.5 Values of the Parameters for the First Order Kinetic Model ....... 6-11
6.6 Summary of the Parameters of the Kinetic Model for All Data
Available 7 6-17
6.7 Results of the Use of the Kinetic Model to Predict THC Concentra-
tion in the Exit Gas from Sewage Sludge Incinerators 6-18
6.8 Calculated Parameters of the Kinetic Model and Predicted THC
Concentrations, St. Paul, Incinerator #9, 1995 6-20
6.9 Summary of Calculation of the First Order Rate Constant, Hopewell . 6-21
6.10 Summary of Statistics of Log-Normal THC Distributions 6-29
6.11 Statistics for the THC/CO Correlation ....... 6-35
6.12 Comparison of CO/THC Ratios for Various Sewage Sludge
Incinerators . . . . . 6-44
6.13 Selection of Confidence Level and CO Concentration from Log-
Normal Distributions Based on Log-Normal Distribution of
Entire Set 6-50
6.14 Plot Statistics and Threshold CO Concentrations for Data Sets ..... 6-52
6.15 Summary of Plot Data Statistics for THCour/THCn, vs. Z SCORE
Plots '......',...; 6-54
6.16 Description of the Sewage Sludge Incinerators Tested for CDF
Emissions 6-54
6.17 Analytical Results, Arlington Wastewater Treatment Plant 6-61
6.18 Analytical Results, Cleveland Wastewater Treatment Center 6-62
6.19 Analytical Results, Huntington Wastewater Treatment Plant 6-63
6.20 Concentration of Dioxins and Furans, Arlington Wastewater
Treatment Plant Incinerator . 6-64
6.21 Concentration of Dioxins and Furans, Cleveland Wastewater
Treatment Plant 6-65
6.22 Concentration of Dioxins/Furans, Huntington Wastewater
Treatment Plant 6-66
6.23 Concentrations of Dioxins and Furans 6-67
7.1 Summary of Total Hydrocarbon Concentrations Measured at
Incinerators Listed -. 7.3
7.2 Summary of Dioxin and Furan Concentrations 7.4
vn
-------
SECTION 1
INTRODUCTION
BACKGROUND
On February 19, 1993, the United States Environmental Protection Agency
(EPA) published the Standards for the Use or Disposal of Sewage Sludge (40 CFR Part
503) in the Federal Register. This regulation contains the requirements that must be
met when sewage sludge is applied to the land; placed onto a surface disposal site;
placed into a municipal solid waste landfill unit; or fired in a sewage sludge incinera-
tor. , _•-'' . • ' ' . - ••.•'...''-
One of the Part 503 requirements for incineration of sewage sludge is that the
monthly average concentration of total hydrocarbons (THC) in the exit gas from a
sewage sludge incinerator stack shall not exceed 100 parts per million,(ppm) when
corrected to zero percent moisture and to seven percent oxygen, m addition, Part 503
requires the use of a continuous emission monitor (CEM) to continuously record the
concentration of THC in the stack exit gas.
The requirement to install a CEM for THC was the subject of a petition by the
State of New Jersey and by several publicly owned treatment works (POTWs) in the
State of New Jersey. The petitioners argued that the Part 503 requirement to install,
calibrate, and operate a CEM for THC should be changed. The State of New Jersey
currently requires that the concentration of carbon monoxide (CO) in the exit gas from
a sewage sludge incinerator not exceed 100 ppm when corrected to zero percent
moisture and to seven percent oxygen... The State also requires that the CO concentra-
tion in the exit gas be monitored continuously using a CEM.
The petitioners argued, based on^information they have gathered, that when the
CO concentration in the exit gas is 100 ppm or less, the THC concentration in the exit
gas also is 100 ppm or less. For this reason, there is no need to monitor both CO and
THC continuously. The petitioners wanted to monitor the exit gas continuously for
only CO.
EPA concluded, after reviewing the information submitted by the petitioners,
that if CO is monitored continuously in the exit gas, and that if the monthly average
exit gas concentration is 100 ppm, or less, that the monthly average THC concentration
hi the exit gas should be 100 ppm, or less. For this reason, continuous monitoring of
the exit gas for THC is not necessary to demonstrate compliance with the 100 ppm
THC operational standard in Part 503. On February 25, 1994, EPA amended the Part
'.•"-•'• ' , • 1-1 . . '.''•.•
-------
503 regulation to allow the incinerator exit gas to be monitored continuously for CO in
lieu of monitoring the exit gas continuously for THC (59 FR 9095, February 25,
1994). Note that this amendment did not change the 100 ppm operational standard for
THC in Part 503 (see 503.44).
In the February 25, 1994, Part 503 amendment, EPA committed to study
further the relationship between CO and THC in the stack exit gas from sewage sludge
incinerators. At the completion of the study, the Agency will decide whether another
amendment is nebded concerning monitoring of CO to demonstrate compliance with the
THC operational standard. This report presents the results of a study of the relation-
ship between CO and THC in the exit gases from sewage sludge incinerators.
Subsequent to publication of the Part 503 regulation, EPA decided to investigate
whether there should be a different THC operational standard for each type of sewage
sludge incinerator. This study included collection of THC concentration data in the exit
gas from different types of sewage sludge incinerators. These data are presented in this
report.
Currently, EPA is reassessing the impacts of polychlorinated dibenzo-dioxins
and -furans (dioxin/furan) that may be emitted from many combustion processes,
including sewage sludge incinerators. This study presents the data on the concentra-
tions of dioxin/furan in the exit gas from sewage sludge incinerators that were collected
during this effort.
Many persons have proposed that the temperature of the exit gas from sewage
sludge incinerators can be used as a surrogate for measurement of total hydrocarbons.
The temperature of the exit gas is a routinely measured process parameter. If a reliable
relationship between exit gas temperature and exit gas THC concentration can be
found, then the cost of monitoring could be reduced by elimination of the need for a
THC monitor. EPA agreed to study possible relationships between temperature and
THC concentration. Some of the data necessary to pursue this objective were collected
during the testing done for this study, other data were provided by several organiza-
tions.
PURPOSE
The purposes of this study were:
(1) To determine if there is a relationship between the concentrations of carbon
monoxide (CO) and uriburned organic matter (THC) hi the exit gas from
sewage sludge incinerators.
(2) To measure the concentration of THC .in the exit gas from "well operated"
sewage sludge incinerators.
j '••'•' '
1-2
-------
(3) To measure the concentrations of polychlorinated dibenzodioxins (PCDD)
and polychlorinated dibenzorurans (PCDF) in the exit gas from sewage sludge
incinerators. '
(4) To study the relationship between incinerator operating conditions (including
final hearth temperature) and exit gas THC concentration.
1-3
-------
-------
SECTION 2
INCINERATOR DESCRIPTIONS
There are three types of sewage sludge incinerators in use in this country at this
time. These are: .
• Fluidized Bed Incinerator (FBI)
• Multiple Hearth Furnace (MHF)
• Radiant Electric Incinerator (REI)
Only the first two types are common. Statistics developed during the initial development
of Part 503 Regulations indicated that there were approximately 49 FBI and 156 MHF hi
use at that time. Only three of the radiant electric incinerators were constructed, only two
of those three were hi operation in 1996.
CURRENT FURNACE TECHNOLOGY
There are approximately 207 sewage sludge incinerators hi the United States,
located at an estimated 150 publicly owned treatment works (POTWs). The furnace
technologies currently used in those incinerators are listed below. -
156 multiple-hearth furnaces (75 percent of the incinerators firing sewage sludge)
49 fluidized-bed furnaces (24 percent of the incinerators firing sewage sludge)
2 electric infrared furnaces (1 percent of the incinerators firing sewage sludge)
Although three-quarters of the operating sewage sludge incinerators are multiple-hearths,
newly installed sewage sludge incinerators are expected to be divided evenly between the
fluidized-bed and multiple-hearth furnaces.
The water content of the sewage sludge is a main factor controlling incinerator
combustion efficiency. All sewage sludge incinerators, regardless of design, are affected
by the water content of the sewage sludge. Treatment works remove enough water from
the sewage sludge to bring its solids content to at least 25 to 35 percent to increase the
efficiency of combustion. Dewatering is done mechanically by filtration or centrifuga-
tion systems. Many treatment works also add a chemical conditioner to the sewage
sludge to enhance dewatering. Ferric chloride and lime have been used most often hi the
2-1
-------
past to condition sewage sludge, but organic polymers are better conditioning agents in
many cases and their use is increasing.
Dewatering increases the heating value of the sewage sludge, which decreases the
need for auxiliary fuel (or electric power in the case of electric infrared furnaces) and
reduces operating costs. Theoretically, combustion can become self-sustaining (or
"autogenous") so that no auxiliary fuel is needed. This can occur when the solids content
of the sewage sludge is above 30 percent and the volatile solids fraction is at least 60 to
65 percent of the total solids. In practice, however, few MHFs operate autogenously.
Most of these units require auxiliary fuel. Autogenous combustion can be reached at a
lower solids content in modern fluidized-bed incinerators.
Multiple-Hearth Furnaces
Multiple-hearth furnaces (MHFs) were initially designed nearly a century ago for
baking mineral ores in the metal extraction industry. Since the 1930s, an air cooled
variant of the original Herreshoff design has been used to combust sewage sludge.
Design Characteristics
MHFs are cylindrical and oriented vertically. Those used to foe sewage sludge
range in size from an outer diameter of approximately 6 feet with a total effective hearth
area of 85 square feet (ft2) for 6-hearth furnaces to 22 feet in diameter with hearth areas of
over 3000 ft2 for 12-hearth furnaces. Hearth loading rates range from 7 to 15 Ib/hr of wet
sewage sludge per ft2 of total hearth (all hearths) area. This amount corresponds to
furnace capacities of 0.3 tons/hr up to 22 tons/hr of wet sewage sludge.
Figure 2.1 illustrates the design of a typical MHF. The outer shell is constructed
of steel and surrounds a series of horizontal refractory hearths. A hollow cast-iron
rotating shaft runs through the center of the hearths. The rabble arms are attached to the
central shaft and extend above the hearths. A fan located at the base of the shaft intro-
duces cool air into the shaft and rabble arms to keep the metal from deforming under the
high temperatures.
Attached to the rabble arms are angled plows less than 3 feet in length that rake
. the sewage sludge in a spiral motion. The plows alternate the radial direction of sewage
sludge movement between hearths. The plows in one hearth are angled to move the
material from the outside in — these are called "in-hearths". The plows on the next hearth
are then angled to move it from the inside out -these are called "out—hearths. Fuel
burners that provide auxiliary heat are located in the side walls of the hearths.
Operating Conditions
In MHFs, de-watered sewage sludge (17 to 28 percent solids) is fed into the
periphery of the top hearth. As they rotate, the rabble arms rake the sewage sludge
2-2
-------
SLUDGE CAKE,
SCREENINGS,,
AND GRIT-
SCUM
COOLING AIR
DISCHARGE "
i
7^"'-^^-^*^
AUXILIARY/
AIRPORTS
RABBLE ARM
2 OR 4 PER
HEARTH
CLINKER
BREAKER
BURNERS
SUPPLEMENTAL
FUEL
COMBUSTION AIR
SHAFT COOLING
AIR RETURN
SOLIDS FLOW
DROP HOLES
Figure 2.1 Schematic Diagram of a Typical Multiple Hearth Furnace
' . ' 2-3
-------
towards the center shaft and break up the sewage sludge so that a larger surface area of
the solids comes in contact with heat and oxygen. The dried sewage sludge then drops
through holes (drop holes) located near the edge of the shaft onto the second hearth,
where it is raked in the opposite direction. This process is repeated in all subsequent
hearths as the sewage sludge is dried and burned. The remaining dry ash is discharged
through a hole at the periphery of the bottom hearth, where it is collected for disposal.
Ambient air is blown through the central shaft at its base and rises into the rabble
arms, cooling the shaft and the rabble arms. A portion, or all, of this air is then recircu-
lated from the top of the shaft back into the bottom hearth as preheated combustion air.
Air that is not recirculated is discharged through the top of the shaft into the stack,
downstream of any air pollution control device (APCD). Additional ambient air is
injected directly into one of the middle hearths. The combustion air flows upward
through the drop holes in the hearths, counter-current to the flow of the sewage sludge
solids.
The overall sewage sludge incineration process occurs within three basic zones in
an MHF. The upper hearth and part of the second hearth constitute the drying zone,
where most of the moisture (and some of the more volatile organic compounds) in the
sewage sludge is evaporated. The furnace gas temperature above the drying sewage
sludge is from 600°F to 1,200°F. Combustion of volatile organic material occurs on the
next two hearths, where the temperature is increased to about 1,500 °F to 1,700°F. The
combustion of carbon should occur on the next 1 to 1.5 hearths. A fourth zone, compris-
ing the lower-most hearth(s), is the ash cooling zone. No combustion occurs in this zone.
The ash is cooled as its heat is transferred to the incoming combustion air.
The theoretical amount of oxygen required for complete combustion is known as
the stoichiometric oxygen. Specific stoichiometric oxygen requirements are determined
by the nature and quantity of the combustible material to be burned. Combustion oxygen
usually is obtained from atmospheric air. The additional oxygen (or air) available for
combustion over and above stoichiometric amount is called excess air. Adding excess air
enhances contact between the fuel and oxygen in the furnace and compensates for normal
variations in both the organic characteristics of the sewage sludge and the feed rate at
which the sewage sludge enters the incinerator. The 1& MHFs for which data were
collected during this study show an average of approximately 180 percent excess air.
This means that the units were using 2.8 times the amount of air that was needed to
oxidize the organic matter in the sewage sludge and in the fossil fuel.
When the amount of oxygen (or air) is less than the stoichiometric amount, it is
called starved air, or substoichiometric air. Under starved-air conditions, incomplete
combustion occurs, which results in the production of carbon monoxide (CO) and
products of incomplete combustion (PICs). The formation of these combustion products
is characterized by the release of smoky emissions containing unburned hydrocarbons
and volatile organic material. Too much excess air results hi lower combustion tempera-
2-4
-------
tures, consumption of more auxiliary .fuel, more entrainment of particles, and lower
combustion efficiency.
The rate at which the sewage sludge is fed into the MHF and the sewage sludge
• moisture content also can affect the performance of multiple-hearth sewage sludge
incinerators. A sharp increase hi the feed rate generally causes the middle combustion
zone to drop to lower hearths, a change that can lead to a decrease in temperature within
the combustion zone and high auxiliary fuel usage. A sharp increase in moisture content
can lead to reduced hearth temperatures., while material that is too dry may cause
excessively high temperatures. ' ;
One problem resulting from excessively high temperatures in the combustion zone
is the formation of clinker, or clumps of ash, that can break teeth and rabble arms and
increase maintenance requirements. Organic polymer conditioners contribute less to
clinker formation than do ferric chloride and lime conditioners.
Fluidized-Bed Incinerators
Air and sewage sludge are introduced at different locations near the base of a bed
of sand in fluidized-bed incinerators. The mixture of air, sewage sludge, and sand acts as
a fluid hi the furnace. Fluidizing the sewage sludge has a number of advantages that help.
to improve the combustion atmosphere within the incinerator. First, the turbulence in the
bed facilitates the transfer of heat from the hot sand particles to the sewage sludge.
Second, the greatly increased surface area and turbulence that are contributed by the sand
particles improves the mixing of the sewage sludge and the combustion air. Third, the
sand provides a large thermal inertia that rninimizes the effects of sewage sludge feed rate
and moisture content fluctuations.
Fluidized-bed incineration has been applied to a wide range of industrial processes
since its initial development hi the oil-refining industry. Coal drying and calcining
operations in the phosphate industry are two other examples of industrial applications of
fluidized bed technology. The first FBI designed specifically for burning sewage sludge
was installed in 1961 in Lynwood, Washington.
Design Characteristics
Figure 2.2 depicts a cross section of a typical FBI. Like multiple-hearth furnaces,
FBIs are cylindrical and vertically oriented. The outer shell is constructed of steel and is
lined with a refractory material. Tuyere nozzles, which blast air into the furnace, are
located at the base of the furnace within a refractory-lined arch.
There are two general FBI configurations, each based on the method used to inject
the fluidizhig air into the furnace. In the hot-wind box design (shown in Figure 2.2), air
is first passed through a heat exchanger, where heat is recovered from the hot
2-5
-------
EXHAUST AND ASH
THERMOCOUPLE ct
SLUDGE
INLET
FLUID1ZING
AIR INLET
SAND
FEED
PRESSURETAP
SIGHT
GLASS
BURNER
TUYERES
FUEL GUN
PRESSURE TAP
STARTUP
J PREHEAT
BURNER
FOR HOT
WINDBOX
Figure 2.2 Schematic Diagram of a Typical Fluidized Bed Incinerator
2-6
-------
flue gases. Alternatively, in the "cold-wind box" design, ambient temperature air is -
injected.directly into the furnace.
The diameter of FBI units is comparable to that of MHFs, ranging from 6 to 25 -
feet. FBIs have sewage sludge loading rates ranging from 30 to 60 Ib/hr of wet sewage
sludge per ft2 of bed and burning capacity ranging from 0.5 to 15 tons/hr of wet sewage
sludge.
Operating Conditions
De-watered sewage sludge (17% to 28% solids) is fed into a bed of hot sand in the
lower portion of the furnace. The sand and incoming sewage sludge are simultaneously
fluidized by air injected through the Tuyere nozzles at pressure ranging from 3 to 5
pounds per square inch (lb/in2). Temperatures of 1,250°F to 1,600°F are maintained in
me bed. Gas residence times in the freeboard range from 2 to 5 seconds. As the sewage
sludge is fired, fine ash particles and minor amounts of sand are carried out through the
top of the furnace, where they are captured by an inertial separator and a wet scrubbing
system. The larger sand particles that are collected by the inertial separator system are
returned to the bed.
The overall combustion process in an FBI occurs in two zones. The first zone is
within the fluidized bed itself. Here, water evaporation and pyrolysis of organic materials
occur almost simultaneously, as the temperature of the sewage sludge is rapidly in-
creased. The free board area (see Figure 2.2) is similar to a secondary combustion
chamber, in which the remaining free carbon and combustible gases are burned.
The most noticeable impact of the improved combustion provided by an FBI, as
compared to the multiple hearth furnace is the decrease in the amount of excess air
required for complete combustion of the sewage sludge. FBIs can achieve complete
combustion of sewage sludge with 40 to 60 percent excess air. This is 1.4 to 1,6 times
the amount of air required to effect complete combustion of all of the sewage sludge
organic material and the fossil fuel. The MHF studied used, on average, 2.8 times the
amount of air required. FBI units use 50 percent to 60 percent of the air that an MHF
uses to burn the same sewage sludge. The reduced air flow reduces the auxiliary fuel
requirements of FBIs compared to MHFs.
The most critical operating variable of FBI units is the rate at which the sewage
sludge is fed to the incinerator. The optimal rate of heat transfer achievable for a given
amount of sand is reached when the sewage sludge feed rate is equal to the burning
capacity of the sand bed. If the burning capacity is exceeded because of a sewage sludge
feed rate that is too high, combustion will not be complete. A rapid increase hi either the
rate of feed of sewage sludge to the furnace or the moisture content of the sewage sludge
will cause the sewage sludge to coagulate into heavy masses. Coagulation eliminates the
fluidized nature of the bed and halts combustion. It is important to ensure that an
2-7
-------
adequate residence time of sewage sludge solids in the bed is maintained so that the
sewage sludge burns completely.
Because of excellent mixing characteristics, as well as short sewage sludge
residence times, fluidized-bed furnaces are less vulnerable than are MHFs to fluctuations
in the sewage sludge feed rate and the total moisture content Moreover, any disruption
of combustion happens almost immediately in FBls and, therefore, can be more easily
detected and corrected by the furnace operators.
Electric Infrared Furnaces
The electric furnace uses infrared radiation as a partial heat source. The radiant
electric heat dries the sewage sludge and initiates combustion. Once ignition occurs the
heat released by the burning sewage sludge solids provides most of the energy necessary
to dry and burn the sewage sludge. This represents a relatively new technological
approach to sewage sludge incineration. The first such unit was put into operation hi
Richardson, Texas, in 1975, Two others were put into service in Wrangell and Peters-
burg, Alaska. The unit mat was installed in Petersburg has since been decommissioned
and shipped to "Wrangell for use as spare parts.
Design Characteristics
Electric furnaces, unlike the other two types of furnace designs, are oriented
horizontally. They consist of insulated enclosures through which sewage sludge is
transported on a continuous, woven, wire-mesh conveyor belt (see Figure 2.3). The belt
is made of steel alloy and can withstand the temperature encountered in the furnaces. The
refractory lining in the furnace is composed of ceramic felt, not brick. The refractory has
a low heat capacity, so it does not take a lot of heat energy to heat the refractory. Further,
the woven refractory is not subject to fracture by thermal expansion. Because of these
attributes radiant electric furnaces can be started from a cold condition and shut down
relatively quickly. .
Operating Conditions
De-watered sewage sludge (17% to 28% solids) is first fed into a holding tank,
then into the incinerator through a feed hopper and dropped onto the conveyor belt. Here,
it is leveled by an internal roller into a layer approximately one inch thick, spanning the
width of the belt The sewage sludge layer then moves under infrared heating elements,
which sustain the drying and combustion processes. The resulting ash is, discharged from
the end of the furnace into the ash-handling system.
Combustion air (often preheated by an external, recuperative-exit heat exchanger)
is introduced at the hot, solids discharge end of the belt. The air also picks up heat from
the hot burning sewage sludge as the sewage sludge and air travel counter-current to one
another.
2-8
-------
Because the primary heat-transfer mechanism used in the infrared furnace is.
radiant transfer, satisfactory combustion rates can be achieved without rabbling or
BELT
DRIVE
SLUDGE FEED
RADIANT
INFRARED WOVEN WIRE
ROLLER HEATING CONTINUOUS BELT
LEVELER ELEMENTS (TYP) '
COOLING I COOLING '
-AIR ' AIR
r-RABBUNG,
'. DEVICE f
T
i
0 S
-a-
—7T-
COMBUSTION
AIR
Figure 2.3 Schematic Diagram of a Typical Radiant Electric Furnace
plowing the sewage sludge layer. Because there is no mechanical agitation of the sewage
sludge solids or ash, radiant electric incinerators produce less fly ash than do MHFs and
FBIs.
Complete combustion can be achieved in the electric infrared furnace with excess
air levels as low as 10 to 20 percent. This process efficiency is attributed to several
factors. First, the furnace is designed so that uncontrolled sources of excess air are
eliminated. Second, the flow of combustion air is regulated closely and directed down
the channel formed inside the primary combustion chamber between the belt and the
heating elements overhead. Third, the addition of supplemental heat does not require
auxiliary fuel burners that generate any gaseous by-products. The products of combustion
and excess air from these burners dilute the sewage sludge combustion products in MHF
and FBI. This ability to operate at low excess air levels contributes to a reduction in the
size, complexity, and energy requirements of the exit gas scrubbing equipment Yet,
because electric energy costs from 2 to 3 times as much as other energy sources (e.g.,
natural gas), the total energy cost of the electric furnace is likely to be higher than the
total energy cost for other types of furnaces.
The electric furnace is divided into several temperature control zones. These
zones are maintained at predetermined temperatures with set points. The input power to
the infrared heating elements is then adjusted upward or downward, accordingly. Control
temperatures range from 1,400°F in the drying zones to 1700°F in the combustion zones.
A feedback-loop process also controls the flow of air for sewage sludge com-
bustion. The controller continuously senses the residual oxygen content in the exit
stream and compares it with a set point value and adjusts the air flow rate to maintain the
oxygen at the set point. In the event that a high-energy sewage sludge is being processed,
2-9
-------
the controller adds additional excess air to limit exit temperature. The throughput of the
system can be controlled by adjusting the speed of the internal conveyor belt. This
allows the electric furnace to accommodate different sewage sludge feeds (i.e., sewage
sludge with different moisture contents or volatile solid contents). The operator accom-
plishes this adjustment, which also adjusts sewage sludge retention tune, from the control
panel. .
To date, infrared furnaces have been used in smaller applications, for which
greater operating flexibility of this type of furnace provides an advantage over tradition-
ally larger multiple-hearth and fluidized-bed furnaces. Because of its ceramic-fiber
blanket insulation system, the infrared furnace is well suited for intermittent operation.
This insulation system is not subject to thermal fracturing and does not require the slow
warm-up and cool-down cycles required by solid refractory materials. Start-up times of 1
to 1-1 Va hours are normal, and shutdown is accomplished by pressing a single, stop
button.
2-10
-------
SECTIONS
DEFINITIONS OF "WELL-OPERATED"
This section contains definitions of "well-operated" sewage sludge incinerators,
.in terms of operating parameters that are easily observable and easily measurable. Insight
from experts in the design and operation of sewage sludge incinerators about the items
that they would consider to be important in the design and operation of sewage sludge
incinerators was used to develop the definitions. The purpose of these definitions is to
provide guidance in the selection of sewage sludge incinerators to be sampled. This
eliminates unwanted influence on the study's conclusions by poorly operated sewage
sludge incinerators. The definitions are not intended to be operating manuals. They
merely provide a relatively simple means to identify sewage sludge incinerators that are
operated up to their potential.
INTENT OF DEFINITIONS
The object of this study was to monitor the emissions from sewage sludge
, incinerators. This was done by sampling and analysis of the exit gases from well-
operated sewage sludge incinerators. This section discusses the definitions of well-
operated sewage sludge incinerators and the intended use of those definitions "
Definitions of "well-operated" sewage sludge incinerators were needed to ensure
that the sewage sludge incinerators that were sampled were operated to their potential.
The basis for development of technology-based requirements is the assessment of the
capability of existing technology. Once this determination is made the regulations merely
specify that everyone meet the requirement attainable by existing technology The
conclusions would have been biased if the sampled population included units that were
not operated in accord with good operating practice and the specifications of then-
manufacturers. It was beyond the scope of this project to perform an engineering
evaluation of each sewage sludge incinerator in the sampling program. Easily observed
operating parameters that could be used to show good operating practice were sought.
These parameters were used to develop definitions of'Veil-operated" sewage sludge
incinerators. ,
Please note, these definitions describe smooth (steady state) and productive
(sewage sludge combustion rates at or near design capacity) operation of sewage sludge
incinerators. They do not describe operational techniques that reduce emissions of air
pollutants. .
3-1
-------
The definitions that follow describe generic operating conditions. These condi-
tions can be achieved in different ways for particular incinerators. There can be many
reasons why a particular treatment works operates its sewage sludge incinerator in
variance with these relatively simple guidelines. There may be special requirements of
the particular sewage sludge, or peculiarities in the operation of a particular sewage
sludge incinerator that dictate alternative conditions. It was beyond the scope of this
project to investigate individual circumstances that lead to unusual operating conditions.
The fact of operation outside the following, simple and broad definitions infers that the
operation was not typical and representative of commonly encountered conditions.
Although such sewage sludge incinerators may be effective hi particular circumstances,
they were considered to be outside the envelope of typical conditions and were not
selected for sampling as part of this study.
Multiple Hearth Furnaces
Optimum operation of a MHF consists of maintaining the active volatiles
combustion zone in a specific area of the furnace on a consistent basis. Combustion of
volatiles begins when the solids content of the sewage sludge increases to approximately
50%. This usually occurs toward the top of the furnace. Furthermore, the onset of active
combustion should start near the outer edge of an in-hearth, but not directly under the
drop-holes of the out-hearth above. The solids on an in-hearth are migrating toward the
shaft. Active combustion should be complete by the time the solids reach the center of
the out-hearth just below. This burning pattern provides the maximum turbulence,
uniform draft conditions, maximum oxygen availability and minimum heat loss. This
mode of operation also exposes all gases released from the lower hearths to the active
flame. Destruction of organic materials is most efficient in an active flame zone.
Conditions that increase the feed rate of heat to the MHF such as: an increase in
the rate of feed of a dry sewage sludge; a decreased moisture content of the sewage
sludge; or a rapid increase hi the heat content of the sewage sludge can cause the zone of
active combustion to move upward in the furnace. This condition, called a "flare-up" or
a "burn-out," is characterized by the active combustion occupying the outer edge of an
in-hearth. When the fire is directly under the drop-holes, burning becomes erratic,
unsteady and smoky due to the restriction of the combustion space, increased heat losses
to the surroundings, and a lack of air. The most critical parameters to the operation of a
MHF are the consistency of the rate of feed, the percentage moisture and the heating
value of the sewage sludge. These parameters, combined with the location of the active
combustion zone, constitute a well-operated MHF. A well-operated MHF should have no
more than one burn-out per week.
Each furnace operates with its own temperature profile. Sewage sludge moisture
content, heat content, feed rate, and the design of the furnace all affect the temperature
profile within the furnace. These variations make it difficult to include hearth tempera-
-tures in the definitions of a well-operated MHF. It is possible, however, to provide some
3-2
-------
guidance about the temperatures in the various hearths of the furnace. The temperatures
in the various hearths also indicate the location of the active combustion zone.
The ideal temperature of the drying hearth depends on whether the furnace is
equipped with a secondary combustion chamber or Zero Hearth afterburner. In the
absence of either of these devices the gas phase of the drying zone must be kept relatively
hot (1,000°F to 1,400°F) to burn the volatile organic material that evaporates with the
moisture. The presence of a backnip combustion chamber allows the the drying zone
temperature to be reduced to 600°F to 1,000°F, because the evaporated volatiles are
destroyed in the back-up combustion chamber. A back-up combustion chamber may be
either an on-hearth afterburner (On-HRTH) or a detached afterburner. On-hearth
afterburners are sometimes added above the sewage sludge feed hearth and are called
zero-hearth afterburners. They are sometimes located on the first or second hearth. In all
cases they are located above the hearth onto which the sewage sludge is fed. The term
On-Hearth is used to .cover all options. A detached afterburner is a device that is added to
the system downstream and distinct from the MHF and is called a secondary combustion
chamber (SCC) in this document. ,
The sewage sludge drying zone is the feed hearth and sometimes the hearth
immediately below it. The gas phase temperature in this zone will be between 6QO°F
andl,400°F. -
The gas phase temperature in the zone where the volatile organic constituents of
the sewage sludge are combusted (called the volatiles burning zone) should be between
1,400 °F and 1,700°F. Higher temperatures in this zone usually equate to more
efficient combustion.
The carbon burning zone is the zone immediately below the volatiles burning
zone. The critical temperature in the carbon burning zone is the temperature of the
solids on the hearth. Formation of clinker (slag) begins if the temperature of the solids
approaches 2,000 °F. Approximately 300 F° of temperature difference between the gas
and solid phases is necessary to allow effective heat transfer from the burning solids to
the gas. The gas phase temperature should not be more than 1,700°F
The lower hearths are the ash cooling zone. Heat from the ash is transferred to
the in-coming combustion air and the ash is cooled for disposal. The temperature in
the ash cooling zone is normally between 400°F and 600 °F.
These temperature guidelines are summarized hi Table 3.1.
3-3
-------
TABLE 3.1
HEARTH TEMPERATURES
Hearth Function
On-Hearth Afterburner
Sewage Sludge Drying
Volatiles Burning
Carbon Burning
Ash Cooling
FTpflrth Teroperatiirp C°in
1,000-1,700
600 - 1,400
1,400 - 1,700
1,200-1,400
400 - 600
The concentration of oxygen in the furnace exit gas should not be less than 8
percent (dry basis). Less oxygen in the furnace may cause inefficient combustion of
the sewage sludge. This oxygen concentration corresponds to 60% excess air. The
concentration of oxygen in the stack exit gas usually does not accurately represent the
concentration of oxygen in the furnace exit gas. This is because there often are points
of significant air in-leakage between the furnace exit and the inlet to the stack. Also,
most MHFs use only part of the shaft cooling air as preheated combustion air. The
residual shaft cooling air is usually re-injected into the stack gas downstream of the
scrubber as a means of reducing the plume of condensed water. This too is a source of
dilution of the furnace exit gas. Thus, the percentage oxygen hi the stack gas is much
higher than the percentage oxygen hi the furnace exit gas.
Maintenance of a consistent rate of feed of heat hi the form of sewage sludge
into the MHF is critical to maintenance of stable combustion conditions. The rate of
net heat fed in the sewage sludge is dependent on the percent solids in the sewage
sludge and the heating value of those solids. The rate of feed of sewage sludge at any
particular time should be no more than 5 percent different (higher or lower) from the
long term average feed rate, assuming that the moisture and heat content of the sewage
sludge solids are constant. If the feed rate of an autogenous sewage sludge increases,
then the furnace will overheat and the location of the fire will move upward in the
furnace. The result will be poor combustion. If the sewage sludge will not support
combustion, an increase in the feed rate may exceed the capacity of the auxiliary fuel
burners to make up the heat deficit, causing the fire to move downward hi the furnace,
which also causes poor combustion.
Increases or decreases hi the moisture content or the heating value of the sewage
sludge solids have the same effects as changes hi the rate of sewage sludge feed. Thus,
upset conditions in the sewage sludge dewatering equipment or changes hi the nature of
the wastewater being treated can change the moisture content of the sewage sludge and
thereby change the rate of feed of heat to the furnace even though the pounds per hour
of wet sewage sludge being fed remains constant. For these reasons it is not possible
to specify, with precision, the desired rate of sewage sludge feed to a MHF.
3-4
-------
Table 3.2 provides some values for several parameters. There must be balance
among them. For example, a sewage sludge that has a heat content near the top of the
range will burn well even if its moisture content is high. The values given in the table
are typical values. A MHF that combusts a sewage sludge that is outside of the ranges
of values given was considered to be atypical for the purposes of this study.
TABLE 3.2
MULTIPLE HEARTH FURNACES
Parameter
Sewage sludge percentage solids (% )
Sewage sludge heating value (Btu/lb) •
Sewage sludge feed rate (Ib/ft2/hr)
Furnace exit gas oxygen (%)
Value
17%— 28%
8,000-12,000
5-12
8-12
Fluidized Bed Incinerators
The fluidized bed incinerator is a single concurrent device in which the sewage
sludge burns in a hot fluidized sand bed. Fluidized bed incinerators are much easier to
control than are MHFs. They are far less sensitive to fluctuations hi sewage sludge
characteristics and feed rates because of the huge thermal inertia provided by the sand
bed. The mass of sand hi the bed is approximately 20 times the mass of wet sewage
sludge that is fed to the unit in an hour. The large reservoir of heat held by the sand
dampens variations in the feed material providing stability to the process.
The temperature of the bed should be between 1,250°F and 1,600°F. The-
temperature of the gas in the freeboard should be 100 F°to 200 F° higher than the bed
temperature. ,
The concentration of oxygen in the incinerator exit gas should be between 6%
and 8% (dry basis).
Values for the pertinent operating parameters are summarized in Table 3.3.
3-5
-------
TABLE 3.3
OPERATING PARAMETER SUMMARY
FLUIDIZED BED INCINERATORS
Operating Parameter
Sewage sludge percentage solids (%)
Sewage sludge heat value (Btu/lb)
Sewage sludge feed rate (Ib/ft2/hr)
Furnace exit gas oxygen (%)
Fluidized bed temperature (°F)
Freeboard gas temperature (°F)
Value
17% -28%
8,000 - 12,000
30 - 60
6-8
1,250 - 1,600
1,400 - 1,750
3-6
-------
SECTION 4
DESCRIPTION OF THE SAMPLING PROGRAM
One of the purposes of the study was to design and conduct a field testing
program to measure the emissions from "well-operated" sewage sludge incinerators.
Before proceeding with the design of the testing program, it was necessary to analyze
data from previously conducted tests to discern which correlations and which models
might be supported by kinetic theory. The object of this effort was to obtain informa-
tion to guide the selection of the types of tests and numbers of tests to perform. One
study(!>, supported by the Water Environment Research Foundation, was extremely
useful in this regard. These researchers developed and tested a first order kinetic
model with the reaction rate constant defined by an abbreviated Arrhenius equation.
The researchers tested three MHFs, so they were unable to sample both the inlet and
the outlet of the combustion zone. There is no practicable way to sample the gases
between hearths in a MHF. They were able to demonstrate that the equation does
describe the combustion of THC. Tests of the model, using data generated at other
sewage sludge incinerators, indicated that the model was probably widely applicable.
Thus, it was decided to use this model as the basis for the experimental design of this
study.
The proposal to test the kinetic model during the field tests was made because,
if the model could be validated, there would be a means to extend the test results to
other sewage sludge incinerators. This decision also led to further categorization of the
population of sewage sludge incinerators. This categorization was necessary because in
only one configuration - a sewage sludge incinerator with a secondary combustion
chamber - would it be possible to measure both inlet and outlet THC concentrations.
Sewage sludge incinerators were divided into the following categories:
(1) Multiple Hearth Furnace - No Afterburner (MHF) . . . .,
(2) Multiple Hearth Furnace - On-Hearth Afterburner (MHF/OH)
/
(3) Multiple Hearth Furnace - Secondary Combustion Chamber (MHF/SCC)
(4) Fluidized Bed Incinerator (FBI) ' . •. '
(5) Fluidized Bed Incinerator — Secondary Combustion Chamber (FBI/SCC)
(6) Radiant Electric Incinerator (REI)
4-1
-------
We believed that once we determined the basic rate equation parameters, we
would be able to calculate rate equation parameters for all sewage sludge incinerators.
We expected that the chemical composition of the THC generated by sewage sludge
incinerators would not vary greatly and that the reaction rate parameters would span a
small range. This would make it possible to investigate site-specific correlations
between final hearth temperature (or afterburner temperature) and the concentration of
THC in the incinerator exhaust gas.
We also intended to develop correlations between operating conditions and the
concentration of THC in the furnace exit gas. THC/CO correlations and correlations
between THC and final combustion stage temperature had been studied in the past and
appeared to hold the most promise for development into useful tools. Thus, the plan
developed was to measure the exit gas temperatures and concentrations of THC and CO
in the exhaust gas from "well-operated" sewage sludge incinerators. We anticipated
that use of these parameters would make it possible to develop site-specific correlations
between both furnace exit gas CO concentration and final combustion zone temperature
and the concentration of THC in the furnace exit gas.
The sampling and analysis portion of this program had four primary objectives.
These were:
(1) To determine the concentration of THC hi the exit gas from "well-oper-
ated" sewage sludge incinerators.
(2) To determine if a reliable relationship exists between final hearth tempera-
ture and exit gas THC concentrations and to develop a means of using final
combustion stage gas temperature as a surrogate for THC concentration.
(3) To determine the relationship between the concentrations of carbon monox-
ide (CO) and unburned organic matter (THC) in the exit gas from sewage
sludge incinerators, and to determine if the kinetic model would support the
measurement of CO as a surrogate for measurement of THC.
(4) To determine the concentrations of polychlorinated dibenzodioxins (PCDD)
and polychlorinated dibenzofurans (PCDF) hi the exit gas from sewage sludge
incinerators.
The appropriate sampling and analysis response to the objectives is relatively
straightforward. One selects a sample of sewage sludge incinerators and measures the
concentrations of the two pollutants and the final hearth temperatures. We selected
sewage sludge incinerators that we knew to be well operated, that were of the types for
which we had little data, and that were amenable to the testing. We selected EPA
Method 25A for measurement of THC, EPA Method 10 for measurement of CO, EPA
Method 3A for measurement of oxygen and carbon dioxide, EPA Method 4 for
measurement of the moisture content of the gases being sampled, and EPA Method 2
4-2
-------
for measurement of gas flow rates. EPA Method 23, which was developed specifically
for measurement of PCDD and PCDF emissions from combustion sources was selected
for measurement of the PCDD and PCDF concentrations. Section 5 of this report
contains a discussion of the incinerators selected for sampling.
Other data were collected during the sampling of each sewage sludge incinera-
tor. The field test team obtained recordings of the temperatures of each hearth, the
feed rate of sewage sludge, and the moisture content of the sewage sludge during the
sampling periods. The plant operators also provided composite samples of the sewage
sludge that was burned on each test day. The test contractor submitted these samples
to an independent laboratory for determination of the moisture content and heat value
of the sewage sludge. '
INVESTIGATION OF RELATIONSHIP BETWEEN THC AND CO '
The development of relationships between exit gas CO and THC concentrations
deserves additional discussion. The model tested here is the first order decay reaction
model, commonly encountered in chemical reactions, The premise of this model is that
the fraction of the THC and CO that is burned hi a given time period is constant for
any given temperature. That is, the rate of destruction of both of these two pollutants
can be expressed in the terms, percent per second. Further, the rate is dependent on
the temperature, and the rate can be calculated for any measured temperature.
f - ; , , ' _ , •
This model can only be strictly applied if the concentrations of other reactants
(in this case, oxygen) are high relative to THC and CO and are therefore essentially
unchanged during the reaction. If the concentration of oxygen changes significantly
during the combustion of THC and CO, then a different rate model (a second order
model) would be more appropriate. The concentration of oxygen (O^ in the combus-
tion zone of sewage sludge incinerators and in the secondary combustion chambers of
sewage sludge incinerators is typically between 8% and 14% (i.e., between 80,000 and
140,000 ppm). The concentrations of THC in the furnace exit gas of multiple hearth
sewage sludge incinerators is typically on the order of several hundred to 2,000 ppm.
Carbon monoxide concentrations are typically between several hundred ppm and 5,000
ppm. Even if both THC and CO are present at their highest observed concentrations,
only 10% to 20% of the O^ available would be consumed by complete combustion of
the THC and CO. The ratio of O2 to the sum of THC and CO is sufficiently high to
support a first order reaction rate model.
The first order reaction rate model states that the ratio of the inlet concentration
to the outlet concentration of a reactant is proportional to an exponential function of the
reaction rate constant and the tune allowed for the reaction to occur. That is:
(Eq.4.1)
4-3 ... . . .
-------
Where:
Q = inlet concentration of the reactant (ppm)
C0 = outlet concentration of the reactant (ppm)
t = time (sec)
k = reaction rate constant (sec"1)
Note that if the concentration (of THC or CO) at the inlet and the concentration
at the outlet of the final combustion stage (On-hearth or SCC) and the retention time in
the final combustion stage are all known, then the value of k can be calculated by re-
arranging Equation 4.1. Equation 4.2 can be used to calculate values of the reaction
rate<
C
-k = [ln(-l)J/t (Eq.4.2)
J *-" *
constant, k, for short, discrete time periods. The values oft, the retention time in the
final combustion chamber can be calculated by measuring the exit gas flow rate in the
stack and then back-calculating the flow rate in the final combustion chamber based on
measurements of the temperature, and the oxygen and moisture concentrations at both
locations. This technique can be applied only where it is possible to sample the THC
and CO concentrations at both the inlet and the outlet of the final combustion stage.
Because it is not possible to take a sample of the gas entering the On-Hearth stage of a
MHF, we sought to find a MHF equipped with a secondary combustion chamber (SCC)
where inlet and outlet measurements would be possible.
The reaction rate constant (K) is an exponential function of temperature.
k =B*exp(-a/T) (Eq4.3)
where
T = absolute temperature (°R)
a and B = constants
Taking the natural logarithm of both sides of Equation 4.3 yields:
ln(k) = ln(B) + (-a/T) (Eq.4.4)
4-4
-------
A plot of the logarithm of the values of & calculated by Equation 4.2 versus the
reciprocal of temperature (1/T) has a slope equal to the parameter a and an intercept
equal to the logarithm of the parameter B.
This same approach can be used for cases where it is not possible to measure
the concentration of CO and THC at the inlet to the final combustion stage, only if the
concentration of THC or CO at the inlet to the final combustion stage is constant.
Combining equations 4.1 and 4.3:
(-^-)=exp(-Bt*exp(-a/T)) (Eq.4.5)
" • ^^ s -.'-•_'•
We now take the natural logarithm of both sides of the Equation 4.5 to obtain:
; Co " • ' '
!*(—*•) = ~Bt *exp(-a/T) (Eq.4.6)
For simplicity we define:
A = Bt (Eq.4.7)
Combining Equations 4.6 and 4.7 we obtain
= -A*exp(-a/T) (Eq.4.8)
'
The constant Cf is physically equal to the concentration of THC (or CO) in the
inlet to the final combustion stage. If the sewage sludge incinerator were operating at
steady state with a constant inlet concentration, then it would be possible to calculate
that concentration using the model. In the case where the sewage sludge incinerator is
not operating with a constant inlet concentration, the value Cf becomes a parameter in
the equation of the model. If the inlet concentration to the final combustion zone is
4-5
-------
We now take the natural logarithm of Equation 4.8 to obtain:
t
c
' "•• = in(-A) + (-a/I)
Hie slope of a plot of the ln(ln(C0)) versus the reciprocal of the absolute
temperature (1/T) will have a slope equal to the parameter a.
We now re-arrange Equation 4.8 to yield:
•] . '
.) - A*exp(-afT) (Bq.4.u»'
Therefore, the slope of a plot of ln(C0) versus exp(-a/T) should be linear and
have a slope equal to the parameter A. The intercept of this plot should be equal to the
natural logarithm of the constant Q.
Note that the values of the two parameters a and A that are derived as described
above are functions of the concentration at the inlet to the final combustion zone. If the
concentration at the inlet changes, then the values of these two parameters change.
This point is discussed in greater detail, and examples of the changes are given hi
Section 6, pages 6.6 through 6.11.
/' • .
Therefore, if the first order rate equation is appropriate, there should be a set of
constants (a, A and Q for each of the two pollutants (THC and CO) that describes
then: combustion hi a furnace. Carbon monoxide is a discrete chemical. The values of
the two constants (a and A) for CO should be the same (assuming adequate turbulence)
in every sewage sludge incinerator.
Throughout the preceding, THC has been assumed to be a chemical entity.
THC is actually a mixture of products of evaporation and pyrolysis of sewage sludge.
We anticipated that the THC evolved during the evaporation and pyrolysis of sewage
sludge would be similar at all locations and tunes. The bulk of the organic composition
of sewage sludge is composed of cellulose fiber and the residue of the microbes that
perform the digestion of the organic material in sewage. It seemed not too optimistic
to assume that if the starting materials and the processes are similar, then the products
of the evaporation and pyrolysis would be similar.
Thus, we proposed to test the validity of the model by calculating the values of
the three parameters for CO at as many locations as we could obtain data. We also
proposed to evaluate the values of the three parameters for THC at the same locations.
A finding that the model works for CO would validate the model. A finding that the
4-6
-------
Thus, we proposed to test the validity of the model by calculating the values of
the three parameters for CO at as many locations as, we could obtain data. We also
proposed to evaluate the values of the three parameters for-THGat the same locations.
A finding that the model works for CO would validate the model. A finding that the
model also works for THC would validate our. assumption that the composition of THC
evolved during the evaporation and pyrolysis of the sewage sludge does not vary
widely.
OBSERVED TOTAL HYDROCARBON/CARBON MONOXIDE RELATION-
SHIPS
The data hi Table 4.1, from the previously mentioned study by the Water
Environment Research Foundation (WERF)(1), provided some support for this ap-
proach. Sites 1, 2, and 3 were sampled during the WERF study. WERF obtained the
remaining data from the literature. All of the furnaces tested were MHF. One site
(Site 2) was equipped with a secondary combustion chamber (SCC) but no sampling
was done at the inlet of the SCC. The values of the constant a in Eq. 4.3 were found
by plotting the ln(ln) of C0 against 1/T (Eq. 4.9). The slope of this line is equal to a,
A plot of ln(C0) versus exp(-c/T) has a slope equal to the constant A and ah intercept
equal to the natural logarithm of the Met concentration (Q. The calculated values of
kt in Table 4.1 were found by calculating value of the logarithm of CJCt. By Equation
4.1, the natural logarithm of the ratio of C/Q is equal to the product of the parameters
k and t. The values of kt calculated are approximate for the average temperature in the
final combustion zone during the testing. They are comparable from site to site
because the average, final combustion zone temperature did not vary widely from site
to site.
, The variation hi the value of the product, kt, from site to site is small, approxi-
mately a factor of 2.5. Part of the variation may be due to variation hi the retention
time of the furnace exit gases in the final combustion zone of the various sewage sludge
incinerators. The values of kt calculated were consistent enough to provide encourage-
ment that a universal value for the parameter k might be found, and that this could be
used to correlate the temperature in the final combustion zone to the exit gas concentra-
tion of THC.
Figures 4.1 and 4.2 demonstrate application of the technique to other data.
They are plotted from data collected by Lewis, Boe and Boyer(2) at a MHF in Vancou-
ver, Washington. The value of the slopes of these two curves is equal to the value of
the parameter a.
The question of correlation between THC and CO hi the exit gas from sewage
sludge incinerators is complex., A successful correlation would be more believable if it
included a description of a plausible causal relationship. Serendipitous correlations
occur, but unless there is some basis in theory why the correlation should occur, they
4-7 . '
-------
TABLE 4.1
WATER ENVIRONMENT RESEARCH FOUNDATION REPORT(1)
KINETIC EVALUATION
Model Tested
c
(—r)=exp(-v4 *exp(-a/r»
Site
1
2
3
AMSAW
Detroit
St. Paul
1989
St. Paul
1991
Average
THCfo
(Qppm)®
Calculated
11,900
1,600
340
590
1,970
270
1,780
A
(Calculated)
157
49
24
40
59
98
287
Average
THCout
(Q3
341
158
80
60
140
30
190
a
(sec'1)
4,948
4,052
2,961
4,013
4,225
5,753
7,062
Estimated
Values
ofkt
(sec~**sec)
3.55
2
1.45
2.29
2.64
2.2
2.24
After-
burner
Type
none '
sec
On-HRTH
Various
none
On-HRTH
On-HRTH
(1) Note: These data include results from several sewage sludge incinerators.
(2) Concentration of total hydrocarbons in the gas entering the combustion chamber.
(3) Concentration of total hydrocarbons in the gas leaving the combustion chamber.
are unreliable for prediction. In the case considered here, a correlation between THC
and CO concentrations in the exit gas of the SCC of a sewage sludge incinerator would
be supported by the kinetic relationships described above, if there were a correlation
between the concentrations of THC and CO hi the inlet to the SCC.
The theory would hold that the relationship between reductions in THC and CO
concentrations in a SCC could be calculated for any combustion temperature. It may
be possible to measure THC, CO and afterburner temperature for a representative
4-8
-------
1.7
1.6 --
1.5 -
5
o
O
I ,
J3
"c
1.4 --
1.3
1.2 -
In(ln(THC)) =4922.2*(1/T) - 1.9822
R* =0.8022
a =4922
1.1
O.OQ064 0.00066 0.00068 0.00070
I/TEMPERATURE
Figure 4.1 Calculate a for THC, Vancouver \
4-9 :
0.00072 0.00074
-------
2.1
O
O, 2.0
c
1.9
* t -\ * * *
A -
• V* M *** *
* X ** **** *
• * x * *••• *« •
.^^^*
J <
.»*» •
ln{ln{CO))»1429.1/T+1.0187
R2=0.5817
a = 1429
6.4E-04 6.6E-04 6.8E-04 7.0E-04
1HBWPERATURE
7.2E-04
7.4E-04
Figure 4.2 Calculate a for CO, Vancouver
4-10
-------
160
140--
120--
100--
a.
si
o
I 80
8
o 60--
40--
20-
•f
1000 2000 3000
Carbon Monoxide (ppm)
4000
5000
Figure 4.3 THC vs CO, Vancouver Run # 6
4-11
-------
length of time and use these data to back-calculate the values of A arid a for equation
4.8. The values of the parameters A and a would be combined with estimates of the
retention time of the gases in the combustion zone and used hi Eq. 4.3 and Eq. 4.8 to
calculate the ratio of THC to CO for any given combustion zone temperature. This
calculation could be used, together with the results of the continuous CO monitor, to
assure compliance with the,THC limit. This could work even if the values of A and a
varied among sewage sludge incinerators as long as they were relatively constant for
each sewage sludge incinerator.
The data from Run Number 6 at Vancouver® (Figure 4.3) are representative of
the type of correlation between CO and THC that have been reported. Other plots
from other sewage sludge incinerators are similar.
Note, however, that the relationship described above is useful only if there is a
stable, predictive relationship between the concentration of THC and CO hi the inlet to
the combustion zone. There is no reason to believe that this is so. In fact, there is
reason to believe that there is no predictive relationship between THC and CO con-
centrations at the inlet to the On-Hearth or secondary combustion chamber of sewage
sludge incinerators. Consider a MHF. Wet sewage sludge is fed to the second to top
hearth (or the top hearth), where heating begins. THC generation begins as the sewage
sludge dries. The more volatile of the THC components evaporate. Further, THC
generation results from partial combustion of other organic components as the drying
mass reaches temperatures between 800 and 1,000 °F. Carbon monoxide does not
exist in the wet sewage sludge so none of its generation is attributable to evaporation.
CO generation is solely attributable to pyrolysis of the organic matter in the sewage
sludge. The predictive relationship may still be found if the contribution of THC from
evaporation is small relative to the total THC.
The argument presented in the preceding paragraph applies to emissions from
FBI furnaces as well. In the case of FBI, the wet mixture is injected into a bed of hot
well-mixed sand. Drying, evaporation, pyrolysis and combustion all begin more
quickly. The shorter period of time required for heating to combustion temperatures
may result in a closer correlation between the THC and CO concentrations hi the gas
entering the freeboard zone. ,
Most wastewater treatment plants that operate sewage sludge incinerators use
final plant effluent as the scrubber liquid. This practice raised the question of the effect
of exposing the furnace or afterburner exit gases to the final plant effluent on THC
concentration. The effect of this practice could either increase or decrease the concen-
tration of THC hi the exit gas. Water soluble organic compounds in the furnace exit
gases could be removed by the scrubber, or slightly soluble organic compounds in the
final effluent might be stripped from the water by exposure to the hot furnace exit
gases. In the first case, the scrubber would assist hi meeting the 100 ppm THC limit.
la the second case, the scrubber would add THC to the exit gases. We needed to know
4-12
-------
whether the location of the continuous monitor would have any effect on the reported
THC concentrations. ,
EMISSION RATES OF CHLORINATED DIOXINS AND FURANS
EPA continues to study the emissions and health effects of chlorinated dioxins
and furans from combustion sources. This work began during the EPA assessment of
dioxin/furan emissions from the combustion of hazardous wastes, but has been
expanded to include emissions from all combustion sources. This project included
measurement of the concentrations of these classes of compounds in the exit gases from
sewage sludge incinerators. The object of these measurements was to characterize the
emissions of dioxins and furans from sewage sludge incinerators. No risk assessment
of the impacts of these emissions was attempted during this program. We chose EPA
Method 23 for collection of the samples for dioxin and furan analysis. This is the
method chosen for collection and analysis for these compounds by EPA/Office of Solid
Waste and nearly all state and local agencies for analysis of these compounds.
SUMMARY: TEST PLANS FOR SEWAGE SLUDGE INCINERATORS
The considerations discussed above dictated that sampling be done for THC,
and CO at three locations within a sewage sludge incinerator system. These locations
are: the exit gases from the furnace; the exit gases from the afterburner and the exit
gases from the scrubber. There is just one type of sewage sludge incinerator that is
amenable to sampling at all of these locations — a MHF with a separate secondary
combustion chamber (SCC). There is no practicable way to obtain a sample from the
region between the On-Hearth and the first hearth of a conventional MHF. Nor, is
there a way to sample between the bed and the freeboard of an FBI. There are
relatively few FBI with SCC. For these reasons we decided to collect the kinetic rate
equation data at a MHF that is equipped with a SCC.
*
. The consortium of New Jersey WWTP operators that was referred to earlier
sponsored tests at two different sewage sludge incinerators. One of these tests was
done at an FBI and the other was at a MHF/SCC device. We visited the MHF/SCC
site during those tests and found those tests complied with the test protocol that we
proposed for that type of furnace. The tests that the consortium sponsored at the
sewage sludge incinerator were somewhat more limited than we had proposed but
seemed to satisfy most of our requirements. We decided to use the New Jersey data to
satisfy a portion of our needs and to concentrate most of the project effort on collection
of data from other units. With all of the above in mind, we proposed to sample at:
One MHF with a secondary combustion chamber
; One MHF with a On-Hearth afterburner
4-13
-------
One MHF with no afterburner
One FBI
Completion of sampling at the units listed above gave us one set of data with
which to validate the kinetic model (the MHF/SCC unit). It also gave us sufficient data
at other types of units to determine whether the kinetic model can be applied to
emissions test data from such units. The specific monitoring proposed for the various
types of units is outlined in Tables 4.2 through 4.5 These tables provide only the
salient attributes of the proposed testing at each of the various sewage sludge incinera-
tors. Complete sampling, analysis and quality assurance plans are presented in the Site
Specific Test Plans that were developed for each of the sewage sludge incinerators.
4-14
-------
TABLE 4:2
TEST PLAN
MHF FURNACE (secondary combustion chamber)
Monitor 5 days, 24 hours/day, furnace exit, SCC exit and Stack Exit
Temperature Regimen for Tests
Day
1
2
3
4
5
SCC Temperature (°F)
1,600° F
1.400° F
1.200° F
1,000° F
800° F
Monitored Parameters
Location
Furnace
SCC exit
Stack Exit
Scrubber
Measured
Sewage sludge heat value
Carbon dioxide
Temperature
CO
THC
Oxveen
Moisture
Flow rate
Temperature
CO
THC
Oxygen
Moisture
Flow rate
Carbon dioxide
Temperature
CO
THC
Oxveen
Moisture
Flow rate
Carbon dioxide
Provided bv Plant
Hearth temperatures
Fuel flow rate
Sewage sludge moisture
Fuel heat value
Sewaee sludge feed rate
• • . • ' . . .
Temperature
Fuel heat value
Fuel flow rate
-
Water flow rate
4-15
-------
TABLE 4.3
MHF FURNACES (On-Hearth afterburner)
Monitor continuously for 5 days, 24 hours per day, Stack Exit only
Temperature Regimen for Tests
Day
1
2
3
4
5
On-Hearth Temperature
Normal
Normal
1,600°F
1,200° F
800° F
Monitored Parameters
Location
Furnace
Stack Exit
Scrubber
Measured
Sewage sludge heat value
Temperature
CO
THC
Oxygen
, Moisture
Flow rate
Carbon dioxide
Provided by Plant
Hearth temperatures
Fuel flow
Fuel heat value
Sewage sludge feed rate
Sewage sludge moisture
.
Water flow rate
4-16
-------
TABLE 4.4
MHF FURNACES (no afterburner)
Monitor continuously for 5 days, 24 hours per day, Stack Exit only
Temperature Regimen for Tests
Day
1
2
3
4
5
On-Hearth Temperature
N/A
N/A
N/A
N/A ,
N/A
Monitored Parameters
Location
Furnace
Stack Exit
•
Scrubber
Measured
Sewage sludge heat value
'
Temperature
CO
THC
Oxygen
Moisture
Carbon dioxide
Provided by Plant
Hearth temperatures
Fuel flow
Fuel heat value
Sewage sludge feed rate
Sewage sludge moisture
Water flow rate
4-17
-------
TABLE 4.5
TEST PLAN
FBI FURNACE
Monitor five days, 24 hours/day, Furnace Exit and Stack Exit
i
Temperature Regimen for Tests
Day
1
2
3
4
5
Freeboard Temperature
Normal
Normal
1,600° F
1,200° F
800° F
Monitored Parameters
Location
Furnace
Stack Exit
i
Scrubber
Measured
Sewage sludge heat value
Sewage sludge moisture
Temperature
CO
THC
Oxygen
Moisture
Carbon dioxide
Dioxins/Furans
Flow rate
Provided by Plant
Freeboard temperature
Bed temperature
Fuel flow
Fuel heat value
Sewage sludge feed rate
Water flow rate
4-18
-------
SECTIONS
SOURCES OF DATA USED FOR THIS EVALUATION
INTRODUCTION
This section provides data about the general operation of each sewage sludge
incinerator during the period of time that the data were collected. Complete
information, is not available in some cases. Some data were obtained by plant operators
for other purposes and may not contain all of the information that was collected during
the te$ts conducted during this investigation. Other data were obtained from literature
which did not report all of the information that we would have liked. These data were
used for specific purposes for which they were adequate. For example, the continuous
monitoring data that were provided by the cities of St. Paul and Cleveland, were used
to develop statistical models. It was not necessary to know the temperature of the final
combustion zone for this purpose, it was enough to know that the temperature was
always within the range of operation of the incinerator. Section 6 of this report
contains a more complete description of the information that was collected during this
investigation. The data are reported in the context of the objectives of the
investigation.
ARLINGTON (VIRGINIA) WATER POLLUTION CONTROL PLANT
Publicly Owned Treatment Works (POTW) Description
The Arlington, (Virginia) Water Pollution Control Plant is & POTW that
processes an average of 30 million gallons per day (mgd) of wastewater. The sewage
sludge incinerator operates 24 hours per day, 53A days per week. The influent to the
wastewater treatment facility contains predominantly domestic sewage (98 percent).
The POTW serves a population of approximately 150,000.
Incoming wastewater is screened at four facilities at the plant and degritted at
two locations. Screenings and grit are hauled directly to a landfill. The primary
treatment consists of four side by side rectangular tanks that receive the degritted and
screened wastewater. A chain and flight collector mechanism moves the settled
material (primary sewage sludge) to the influent end of the tank and the floating
material (grease) to the effluent end of the tank. The primary sewage sludge is pumped
to a gravity thickener; the grease is hauled directly to a landfill.
5-1
-------
The secondary treatment system consists of three side by side four-pass aeration
basins configured to operate in either a step feed or conventional plug flow mode.
Diffused air is used. Six circular clarifiers follow this treatment. The waste sewage
sludge from this process is concentrated hi a dissolved air flotation thickener. Only the
three most recent clarifiers have scum removal mechanisms. The secondary scum is
pumped to the primary clarifiers. Advanced treatment includes phosphorous removal.
Sewage sludge generated by this process goes to the primary clarifiers.
All sewage sludge is de-watered prior to incineration to reduce the water
content of the sewage sludge cake to between 70 to 75 percent by weight. De-watering
is a critical step in the process of sewage sludge incineration, because it reduces the
thermal demand on the incinerators. A gravity'thickener is used to increase the
percentage of solids in the primary sewage sludge. A flotation thickener processes the
secondary sewage sludge. The combined thickened sewage sludge from those
thickeners is then pumped into a storage tank. Lime slurry and ferric chloride solution
are used to condition the sewage sludge drawn from the storage tank. Four recessed
plate filter presses are available to de-water the conditioned sewage sludge.
f , .
The recessed plate filter presses drop sewage sludge into a bunker where the
sewage sludge is removed by drag conveyors and deposited onto a belt conveyor
system and transported to the furnace.
• i • " . , ,
Incinerator and Air Pollution ..Control System
Site THC-1 has two identical 22 ft, 3 in. Nichols eight-hearth, MHFs. Only
one of the furnaces is operated at a time. Many MHFs use recycled shaft cooling air to
reduce auxiliary fuel consumption. However, Site THC-1 does not use recycled shaft
cooling air due to problems associated with the original design. Air for combustion is
admitted through atmospheric ports located hi Hearth No. 7 and Hearth No. 8. The
position of the atmospheric port dampers is controlled with manual loading stations
located in the control room. The auxiliary fuel system is oil fired and two burners are
located on each of Hearth Nos. 2, 4, 5, and 7.
The air pollution control system consists of an adjustable throat venturi scrubber
followed by a two plate, impingement tray scrubber. The tray scrubber flue gas exit
temperature is nominally 100 °F. The position of the venturi adjustable throat is
controlled with a manual loading station located in the control room.
Process Description and Operation
The existing Arlington County WPCP has the capacity to treat approximately 30
million gallons per day of wastewater and a'maximum of 45 dry tons per day of sewage
sludge. The sewage sludge de-watering facility at the plant consists of four fixed-
chamber plate and frame filter presses. The de-watered sewage sludge cake from the
filter presses is fed to the perimeter of the top hearth of one of the multiple hearth
' • .' 5-2
-------
incinerators for processing. There are eight hearths per incinerator. The de-watered
cake is raked from the perimeter of the top hearth toward the center shaft where it
drops through holes in the center of the hearth. On the next hearth, the sewage sludge
is raked hi the opposite direction. This same process is repeated hi all subsequent
hearths as the sewage sludge dries and then burns. The dry ash is discharged from the
bottom of the incinerator and is stored on-site prior to landfill disposal.
The sewage sludge is the primary fuel for the incinerator. Number 2 fuel oil is
used as an auxiliary fuel: The emissions from the incinerator are controlled by a wet
scrubber.
Summary of Results
• / ' •.''''- ' .
Incinerator Unit No. 2 was tested. Continuous monitoring of THC, CO, CO2,
and O2 was conducted at two sampling locations from July 21 through July 26, 1995.
Three sample runs for dioxin/furan emissions were conducted at the outlet location on
July 22 and 23. .
Table 5.1 summarizes the concentrations of THC, CO, CO2 and O2 measured at
the furnace outlet location over the course of the sampling program. Each run
corresponds to a 12-hour sampling period, beginning with July 21, midnight to noon
(Run No. 1-1) and ending with July 26,, midnight to noon (1-11). Each reported value
represents the average concentration measured during the monitoring period. Table 5.2
reports equivalent data for measurements at the scrubber outlet location.
Table 5.3 presents the percent total solids (EPA Method 160.3) and the gross
calorific value of the sewage sludge as delivered to the sewage sludge incinerator
(ASTM D-240). The samples analyzed were provided by plant personnel. The
samples were composited over 24-hour periods. None of the gross calorific values
were above the limit of detection of D-240.
CLEVELAND (OHIO) SOUTHERLY WASTEWATER TREATMENT CENTER
POTW Description
The incinerator installation at the Southerly WWT Center is comprised of four
separate, independently operating MHFs. The major items of equipment for each unit
are:
• Multiple hearth incinerator
• Combustion air blowers -
• Cooling air blower
. • Forced draft fan
• Auxiliary burner system
• Waste heat boiler
•- "5-3 ' . - ' ;• .'
-------
TABLES.!
THC, CO, CO2, AND O2 CONCENTRATIONS - FURNACE OUTLET
Arlington, Virginia WWTP, June 1995
Run
No.
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
Date
7/21
7/21
7/22
7/22
7/23
7/23
7/24
7/24
7/25
7/25
7/26
Sewage
Sludge
Feed
Rate
ton/hr
7.15
7.15
7.60
7.84
7.80
7.86
7.87
7.59
__
__
—
Total
Hydro-
carbons
ppm1
80
46
45
63
66
25
30
29
45
31
59
Carbon
Monoxide
ppm1
675
926
1,000
1,079
1,706
778
1,267
601
1,205
806
1.192 -
Carbon
Dioxide
percent1
8.9
8.6
8.4
9.7
9.8
9.9
10.6
6.8
9.6
9.2
10.0
Oxygen
percent1
10.2
10.5
10.7
9.3
9.2
8.9
8.2
12.3
9.4
9.6
9.0
'Concentrations are on a dry basis; THC concentrations based on propane calibration standards. All concentrations are
averages of 5-minute average data.
• Gas scrubber system
• Ash handling system.
After sewage sludge is de-watered on the vacuum filters, the filter cake is con-
veyed to one of the four multiple hearth incinerators. In the incinerators, the filter
cake is dried and combusted. The end products are sterile, inert ash, and exhaust gas.
The ash is slurried to the ash lagoons prior to final disposal in a landfill. The flue gas
exhaust air pollution control system consists of a venturi scrubber and impingement wet
scrubber for each incinerator. The captured fly ash is mixed with the incinerator and
waste heat boiler ash, discharged to the ash sumps, slurried and pumped to the ash
lagoons.
5-4
-------
TABLE 5.2
THC, CO, CO2, AND O2 CONCENTRATIONS - SCRUBBER OUTLET
Arlington, Virginia WWTP, June 1995
Run
No.
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
Date
7/21
7/21
7/22
7/22
7/23
7/23
7/24
7/24
7/25
7/25
7/26
Sewage
Sludge
Feed
Rate
ton/hr
7.15
7.15
7.60
7.84
7.80
7.86
7,87 -
7.59
.__
.
—
Total
Hydro-
carbons
ppm1
24
29
27
38 ,
59
22
39
24
37
23
36
Carbon
Monoxide
ppm1
387
535
607
663
911
462
721
467
694
494
726
Carbon
Dioxide
percent1
5.4
5.4
6.0
6.1
6.1
6.1
6.1
4.8
5.8
5.9
Oxygen
percent1
14.6
14.5
13.9
13.8
13.7
13.8
13.8
15.3
14.2
14.0
14 1
'Concentrations are on a dry basis; THC concentrations based on,propane Calibration standards. .All
concentrations are averages of 5-minute average data.
TABLE 5.3
SEWAGE SLUDGE PARAMETERS
Arlington, Virginia WWTP, June 1995
Date
7/23/95
7/24/95
. 7/25/95
Total Suspended Solids (%)
30.0
28.1
26.5
Gross Calorific Value (BTU/lb)
16701
17801
18901
1
Limit of detection of ASTM D-240
5-5
-------
Filter cake from the vacuum filters is fed into the top of each incinerator
through a sewage sludge discharge chute. The filter cake moves through the
incinerator. Rabble arms, which are attached to the center shaft and extend to the outer
incinerator wall, rotate slowly. Teeth which are attached to the arms move sewage
sludge from the center to the outside of the incinerator on the odd numbered hearths
(out hearths) and from the outside to the center on even numbered hearths (in hearths).
Each odd numbered hearth has drop holes at the outside wall of the incinerator and the
even numbered hearths have a drop hole at the center, shaft.
The holding tune in the incinerators is sufficiently long to evaporate the
moisture hi the filter cake and to oxidize the organic matter by combustion. The
operating temperature is high enough to achieve sterilization of the remaining ash and
destruction of odors in the exhaust gases.
/ ..
As the filter cake moves downward from hearth to hearth, it is dried, com-
busted, and the resultant ash cooled before dropping into the ash hopper. Air for
combustion, which is supplied by the forced draft fan, enters Hearth Nos. 6 and 8.
The combustion air is therefore preheated when it reaches the combustion zone. The
air is heated to 1,400 - 1,600°F as it passes through the combustion zone. As this air
moves through the upper hearths, it helps dry incoming filter cake. The air exits the
furnace at the top at a temperature of 800 to 1,200°F. Combustion air is also added at
each burner.
In conveying the gases from the outlet of each multiple hearth incinerator to the
scrubbers, a waste heat boiler reduces the gas temperature and reclaims energy at the
same time. The wet scrubbers employ a venturi-slot section and impingement trays to
capture the particles in the gas and sluice them to the ash disposal of the incinerator.
The cleaned gas leaves the scrubbers through a mist eliminator to provide droplet-free
discharge of gas which is released to the atmosphere through the stack.
Incinerator and Air Pollution Control System
The existing Southerly WWT Center has the capacity to treat approximately 100
million gallons per day of wastewater and a maximum of 150 dry tons per day of
sewage sludge. De-watered sewage sludge cake from the vacuum filters is fed to the
perimeter of the top hearth of the multiple hearth incinerators for processing. There
are nine hearths per incinerator. The de-watered cake is raked from the perimeter of
the top hearth toward the center shaft where it drops through holes hi the center of the
hearth. On the next hearth, the sewage sludge is raked hi the opposite direction. This
same process is repeated hi all subsequent hearths as the sewage sludge dries and then
burns. The dry ash is discharged from the bottom of the incinerator and is stored on-
site prior to landfill disposal. The sewage sludge is used as the primary fuel for the
incinerator. Natural gas is used as an auxiliary fuel. The emissions from the
incinerator are controlled with a wet scrubber.
5-6
-------
The Southerly WWT Center has four identical nine-hearth MHFs. Only three
of the furnaces, are operated at a time. The MHFs use recycled shaft cooling air to
reduce auxiliary fuel consumption. Air for combustion is admitted through
atmospheric ports located in Hearth No. 7 and No. 9. The position of the atmospheric
port dampers is controlled with manual loading stations located in the control room.
The auxiliary fuel system is natural gas fired and two burners are located on each of
Hearth Nos. 1, 3, 5, 7, and 9.
Hearth No. 1, also known as the "zero hearth," is used as control for VOC
emissions. A natural gas burner is used in the zero hearth to maintain a temperature of
approximately 1,600°F. The air pollution control system consists of an adjustable
throat venturi scrubber followed by a packed bed scrubber. The scrubber flue gas exit
temperature is nominally 100°F. The position of the venturi adjustable throat is
controlled with a manual loading station located in the control room.
Summary of Results
The No. 4 Sewage Sludge Incinerator was the unit tested. Continuous
monitoring of THC, CO, CO2, and O2 was conducted at two sampling locations from
July 31 through August 4, 1995. Three sample runs for dioxin/furan emissions were
conducted at the outlet location on August 1 and 2. ,
The average stack gas velocity was 50.2 feet per second (fps) during the
sampling program. Volumetric flow rates averaged 21,309 actual cubic feet per minute
(acfm) or 17,136 dry standard cubic feet per minute (dscfm). Stack gas temperature
averaged 153°F, with a moisture content of 5.3 percent. Composition of the stack gas
averaged 3.8 percent carbon dioxide (COj) and 15.9 percent oxygen (OJ. Stack gas
conditions were consistent throughout the sampiing program.
Table 5.3 summarizes the concentrations of THC, CO, CO2, and O2 measured at
the furnace outlet location over the course of the sampling program. Each run
corresponds to a five to 13-hour duration, beginning on July 31 at 1800 hours and
ending on August 4 at 0800 hours. Each reported value represents the average
concentration measured during the monitoring period. Table 5.4 reports equivalent
data for measurements at the scrubber outlet location.
Table 5.6 presents the percentage of total solids (as measured by EPA Method
160.3) and the gross calorific value of the sewage sludge as delivered to the sewage
sludge incinerator (as determined by ASTM D-240). The samples analyzed were
provided by plant operating personnel. The samples were composited over 24-hour
periods.
5-7
-------
TABLE 5.4
THC, CO, CO2, AND O2 CONCENTRATIONS - FURNACE OUTLET
Cleveland (Southerly), Ohio WWTC, June 1995
Run
No.
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
Date
7/31
7/31
8/1
8/2
8/2
8/3
8/3
8/4
Sewage
Sludge
Feed
Rate
ton/hr
5.1
4.2
5.3 , '
7.5
7.1
6.9
7.1
8.1
Total
Hydro-
carbons
ppm1
0.9
3.7
0.6
0.8
1.2
6.6
2.8
2.2
Carbon
Monoxide
ppm1
7.8
3.7
6.2
4.3
5.2
446
5.0
18.3
Carbon
Dioxide
percent1
4.8
5.1
5.5
5.4
5.4
5.6
5.1
4.6
Oxygen
percent1
14.2
13.9
13.5
13.5
13.9
13.6
13.8
14.5
'Concentrations are on a dry basis; THC concentrations based on propane calibration standards. AH concentrations
arc averages of 5-minute average data.
HUNTINGTON (WEST VIRGINIA) REGIONAL WASTEWATER
TREATMENT FACILITY
PQTW Description
The original wastewater treatment facilities at the site began operating hi 1964
and provided primary treatment of wastewater received from the City of Huntington
and immediate area. In 1984, hi response to orders issued by the Ohio River Valley
Sanitation Commission, the United States Environmental Protection Agency and the
West Virginia Department of Natural Resources, the existing treatment processes at the
facilities were upgraded from primary to secondary treatment levels.
An average daily flow volume of approximately 13 million gallons is received at
the treatment plant and is subject to a treatment process consisting of screening, grit
collection, pre-aeration, primary sedimentation, stabilization utilizing the activated
5-8
-------
sewage sludge process, secondary clarification and chlorination prior to discharge into
the Ohio River. .
TABLE 5.5
THC, CO, CO2, AND O2 CONCENTRATIONS - SCRUBBER OUTLET
... Cleveland (Southerly), Ohio WWTC, June 1995
Run
No.
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
Date
7/31 '
7/31
8/1
8/2
8/2
8/3
8/3
8/4
Sewage
Sludge
Feed
Rate
ton/hr
5.1
4.2
5.3
7.5
7.1
6.9
7.1
8.1
Total
Hydro-
carbons
ppm1
1.8
2.6
2;3
2.4
2.0
4.6
2.9
0.6
Carbon
Monoxide
ppm1
4.6
2.0
5.4
3.0
2.3.
322
2.1
11 3
Carbon
Dioxide
percent1
3.6
3.8
3.7
3.8
3.8
3.9
3.7
3 4
Oxygen
percent1
16.1
15.9
15.7
15.7
15.8
15.7
15.7
16 3
'Concentrations are on a dry basis; THC concentrations based on propane calibration standards. All concentrations
are averages of 5-minute average data. . !. .
Incinerator Operating Description
The sewage sludge de-watering and disposal facilities hi Huntington utilize
continuous belt filter presses to dewater the sewage sludge from the wastewater
treatment processes to 22 percent solids. The filter cake is then mixed with coal and
fed into a fluidized bed incinerator where it is burned at a maximum temperature of
1,600°F.
In general, de-watered sewage sludge and coal are injected into the reactor and
combustion air flows upward and fluidizes the mixture of hot sand, sewage sludge, and
coal. Supplemental heat needed to ensure complete combustion of the organic portions
of the sewage sludge is provided by firing either oil or natural gas hi burners that are
installed in the fluidized bed. The reactor is a single chamber unit where both moisture
evaporation and combustion occur at approximately 1,550 °F in either the dense or
5-9
-------
dilute phases of the sand bed. All the combustion gases pass through the combustion
zone with residence time of several seconds.
TABLE 5.6
SEWAGE SLUDGE PARAMETERS
Cleveland (Southerly), Ohio WWTC, June 1995
Run
Number
1-1
1-2
1-3
1-4
1-5
1-6
1-7
r-8
Date
7/31
7/31
8/1
8/2
8/2
8/3
8/3
8/4
Total Suspended Solids
(%)
41.0
40.8
41.7
42.2
44.2
42.2
42.3
42.6
Gross Calorific Value
(BTU/lb)
6,290
6,820
6,140
7,560
5,850
7,520
6,370
7 520
The reactor flue gases exit the reactor and are directed through a heat ex-
changer. The heat recovered from the flue gases is used to preheat the fluidizing air.
Flue gases exit the heat exchanger at approximately 1,000°F and enter the air pollution
control system.
The air pollution control system cleans and cools the hot exhaust gases exiting
the heat exchanger. The air pollution control system consists of two sections, each of
which serves a specific purpose. The first section is a venturi scrubber where
particulate matter in the exhaust gases are removed and the exhaust gas temperature is
reduced to approximately 185 °F.
The quenched gas changes direction and flows upward through a flooded tray
cooling tower. The gas flows upward through two cooling trays -and a mist eliminator
prior to its emission through a stack at a temperature of approximately 120°F.
Scrubbing water from the venturi section is separated in the lower conical part
of the cooling tower and is pumped to an ash lagoon. The scrubbing water from the
cooling tower is discharged into the headwdrks of the treatment plant with the
wastewater received at the plant.
5-10
-------
Summary of Results
Testing was conducted at the sewage sludge incinerator operated by the
Huntington Sanitary Board, Huntington, West Virginia. Continuous monitoring of
THC, CO, CO2, and O2 was conducted at two sampling locations from August 15
through August 18, 1995. Three sample runs for dioxin/furan emissions were
conducted at the stack location on August 15 and 16.
The average stack gas velocity was 50.51 feet per second (fps) during the
sampling program. Volumetric flow rates averaged 9,521 actual cubic feet per minute
(acfin) or 7,938 dry standard cubic feet per minute (dscfm). Stack gas temperature
averaged 111°F, with a moisture content of 9.1 percent. Composition of the stack gas
averaged 7.8 percent carbon dioxide (COa) and 1 1 .4 percent oxygen
Table 5.7 summarizes the concentrations of THC, CO, CO2, and O2 measured
at the furnace outlet location over the course of the sampling program. Each run
corresponds to a period of continuous sampling (four to ten hours in duration)
conducted between August 15 and 18, 1995. Each reported value represents the
average concentration measured during the monitoring period. Table 5.8.reports
equivalent data for measurements at the scrubber outlet location.
TABLES.?
THC, CO, CO2, AND O2 CONCENTRATIONS - FURNACE OUTLET
Huntington, West Virginia RWWTF, August 1995
Run
No.
1-1
1-2
1-3
1-4
1-5
1-6
Date
8/15
8/16
8/17
8/17
8/18
8/18
Sewage
Sludge
Feed
Rate
ton/hr
NA
NA .
NA
-NA
NA
NA
Total
Hydro-
carbons
ppm1
3.7
4.5
6.3
5.6
1.8
5.1
Carbon
Monoxide
ppm1
56.3
35.8
125
155
4.7
92
Carbon
Dioxide
percent1
8.1
7.5
7.1
9.5
6.7
7 5
Oxygen
percent1
10.8
11.8
12.3
9.3
12.1
11 5
'Concentrations are on a dry basis; THC concentrations based on propane calibration standards. All concentrations
are averages of 5-minute average data.
NA - Data not available
5-11.
-------
TABLE 5.8
THC, CO, CO2, AND O2 CONCENTRATIONS - SCRUBBER OUTLET
Huntington, West Virginia RWWTF, August 1995
Run
No.
1-1
1-2
1-3
1-4
1-5
1-6
Date
8/15
8/16
8/17
8/17
8/18
8/18
Sewage
Sludge
Feed
Rate
ton/hr
NA
NA
NA
NA
NA
NA
Total
Hydro-
carbons
ppm1
4.9
5.3
5.9
4.6
2.0
3.8
Carbon
Monoxide
ppm1
50.2
36.1
109
130
2.1
80
Carbon
Dioxide
percent1
8.2
7.6
7.2
9.6
7.0
7.1
Oxygen
percent1'
10.9
11.9
12.4
9.6
12.4
11.1
'Concentrations are on a dry basis; THC concentrations based on propane calibration standards. All concentrations
are averages of 5-minute average data.
NA - Data not available
Table 5.9 presents the percentage of total solids (as measured by EPA Method
160.3) and the gross calorific value of the sewage sludge as delivered to the sewage
sludge incinerator (as determined by ASTM D-240). The samples analyzed were
provided by plant operating personnel. The samples were composited over 24-hour
periods.
TABLE 5.9
SEWAGE SLUDGE PARAMETERS
Huntington, West Virginia RWWTF, August 1995
Date
8/16/95
8/17/95
8/18/95
Total Suspended Solids (%)
19.4
17.9
19.4
Gross Calorific Value (BTU/lb)
3,500
< 1,000
3,500
5-12
-------
HOPEWELL (VIRGINIA) REGIONAL WASTEWATER TREATMENT
FACILITY
Incinerator and Air Pollution Control System
The incinerator installation at the Hopewell WWT POTW is comprised of one
separate, independently operating MHF. The major items of equipment for this unit
are:
• Multiple hearth incinerator
• Combustion air blowers
• Cooling air blower
• Forced draft fan ,
• Afterburner system
• Waste heat boiler
• Gas scrubber system
• . Ash handling system ,
After sewage sludge is de-watered on the vacuum filters, the filter cake is
conveyed to the multiple hearth incinerator. In the incinerator the filter cake is dried
and combusted. The end products are sterile, inert ash and exhaust gas. The flue gas
exhaust system consists of a venturi scrubber and a water after-cooler for the
incinerator to remove particles (fly ash). The captured fly ash is mixed with the
incinerator ash and waste heat boiler ash, discharged to the ash sumps, and trucked to
the ash landfills.
Filter cake from the vacuum filters is fed into the top of the incinerator through
a sewage sludge discharge chute. The filter cake moves through the incinerator.
Rabble arms, which are attached to the center shaft and extend to the outer incinerator >
wall, rotate slowly. Teeth which are attached to the arms move sewage sludge from
the outside to the center of the incinerator on the odd numbered hearths (hi hearths) and
from the center to the outside on even numbered hearths (out hearths). Each odd
numbered hearth has drop holes at the center shaft of the incinerator and the even
numbered hearths have a drop hole at the outside'wall.
The holding time in the incinerators is sufficiently long to evaporate the
moisture in the filter cake and to oxidize the organic matter by combustion. The
operating temperature is high enough to achieve sterilization of the remaining ash and
destruction of odors in the exhaust gases.
As the filter cake moves downward from hearth to hearth, it is dried, com-
busted, and the resultant ash cooled before dropping into the ash hopper. Air for
combustion, which is supplied by the forced draft fan enters Hearth Nos. 3, 4, 6,
and 7. The combustion air is therefore preheated when it reaches the combustion zone.
The air is heated to 1,400 - 1,600°F as it passes through the combustion zone. As this
5-13 ' '
-------
air moves through the upper hearths, it helps dry incoming filter cake. The air exits
the furnace at the top at a temperature of 800 to 1,200°F. The gas stream then passes
through an afterburner at a temperature of 1,400 - 1,600°F to ensure complete
combustion.
In convey ing the gases from the outlet of the afterburner to the scrubbers, a
waste heat boiler reduces the gas temperature and reclaims energy at the same time.
The wet scrubbers employ a venturi-siot section and impingement trays to capture the
particles in the gas and sluice them to the ash disposal of the incinerator. The cleaned
gas leaves the scrubbers and is released to the atmosphere through the stack.
The existing Hopewell WWT facility has the capacity to treat approximately 50
million gallons of waste water per day. De-watered sewage sludge cake from the
vacuum filters is fed to the perimeter of the top hearth of the incinerator for processing.
There are eight hearths hi the incinerator. The de-watered cake is raked from the
perimeter of the top hearth toward the center shaft where it drops through holes in the
center of the hearth. On the next hearth, the sewage sludge is raked hi the opposite '
direction. This same process is repeated hi all subsequent hearths as the sewage sludge
dries and then burns. The dry ash is discharged from the bottom of the incinerator and
is stored on-site prior to landfill disposal. The sewage sludge is used as the primary
fuel for the incinerator. Natural gas is used as an auxiliary fuel. The emissions from
the incinerator are controlled with a wet scrubber.
The MHF uses recycled shaft cooling air to reduce auxiliary fuel consumption.
Air for combustion is admitted through atmospheric ports located hi Hearth No. 3 and
No. 5. The position of the atmospheric port dampers is controlled with manual loading
stations located in the control room. The auxiliary fuel system is natural gas fired and
burners are located on each of Hearth Nos. 3, 4, 6, and 7.
The afterburner is used as control for VOC emissions with a natural gas burner
to maintain a temperature of approximately 1,600°F. The air pollution control system
Consists of an adjustable throat venturi scrubber followed by a water after-cooler. The
scrubber flue gas exit temperature is nominally 100 °F. The position of the venturi
adjustable throat is controlled with a manual loading station located in the control
room.
Summary of Results
Testing was conducted at the sewage sludge incinerator operated at the Hope-
well, Virginia regional WWT facility. Continuous monitoring of THC, CO, CO2, and
O2 was conducted at two sampling locations from December 5 through December 7,
1995.
The average stack gas velocity was 52.3 feet per second (fps) during the
sampling program. Volumetric flow rates averaged 22,200 actual cubic feet per minute
5-14
-------
(acftn) or 16,100 dry standard cubic feet per minute (dscfm). Stack gas temperature
averaged 170°F, with a moisture content of 4.3 percent. Composition of the stack gas
averaged 4.7 percent carbon dioxide (CO2) and 15.1 percent oxygen (O2). Stack gas,
conditions were consistent .throughout the sampling program. These averages may not
be representative of normal operating conditions at this sewage sludge incinerator. The
primary object of the tests at Hopewell was to gather data relating the concentrations of
CO and THC at the inlet to the afterburner to their concentrations at the outlet at
various afterburner temperatures. The operators were very responsive to requests of
the test team to change operating conditions so that we could gather data at a variety of
conditions. These changes precluded normal operations a large percentage of the time
during the tests.
Table 5.10 summarizes the concentrations of THC, CO, CO2 and O2 measured
at the furnace outlet location over the course of the sampling program. Each run
corresponds to a period of continuous sampling (one to ten hours in duration)
conducted between December 4 and 7, 1995. Each reported value represents the
average concentration measured during the monitoring period. Table 5.11 reports
equivalent data for measurements at the afterburner outlet location.
' Table 5.12 presents the percentage of total solids (as measured by EPA Method
160.3) and the gross calorific value of the sewage sludge as delivered to the sewage
sludge incinerator (as determined by ASTM D-240). The sample analyzed was
provided by plant operating personnel. The sample was composited over the entire test
period.
WATER ENVIRONMENT RESEARCH FOUNDATION REPORT
The Water Environment Research Foundation (WERF) commissioned a study of
the emissions of organic compounds from sewage sludge incinerators to increase
understanding of those emissions. Richard Kuchenrither, Eugene W. Waltz, Phil
Martin, and Albert J. Verdouw were the Principal Investigators of the study. Their
report (Project '91-ISP-D. Evaluate and Quantify Sludge Incinerator Hydrocarbon
Emissions was published by the WERF hi 1993. That study is called the WERF
Report in this document.
5-15
-------
TABLE 5.10
THC, CO, CO2, AND O2 CONCENTRATIONS - FURNACE OUTLET
Hopewell, Virginia RWWTF, December 1995
Run
No.
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
Date
12/5
12/5
12/5
12/6
12/6
12/6
12/6
12/7
Sewage
Sludge
Feed
Rate
ton/hr
9.6
11.2
11.5
10.0
11.2
11.5
13.9
12.2.
Total
Hydro-
carbons
ppm1
130
476
262
48
317
310
174
109
Carbon
Monoxide
ppm1
1,818
3,006
1,775
2,031
4,066
372
3,178
2.865
Carbon
Dioxide
percent1
7.6
13.4
10.4
9.0
7.1
4.6
10.4
7.5
Oxygen
percent1
12.0
4.6
8.1
10.0
11.5
14.7
7.9
11.1
'Concentrations are on a dry basis; THC concentrations based on propane calibration standards. AH concentrations
are averages of 5-minute average data.
1 ' ' '• '
The investigators did a thorough review of the literature and private sources and
identified 96 separate tests of sewage sludge incinerators that had been performed for
various purposes. These various tests identified 326 different organic compounds hi
the exit gas from sewage sludge incinerators. The data that the investigators
accumulated were not reported, and were not available for this investigation.
WERF commissioned the investigators to make measurements of total
hydrocarbons, carbon monoxide, oxygen, and other pertinent exit gas parameters at 3
sewage sludge incinerators. The purpose of these tests was to provide information
about several relationships found during previous tests among THC, emissions of toxic
compounds and sewage sludge incinerator operations. The data that were collected
were appended to the report and were analyzed by the investigators during this effort.
Each test was approximately 11 hours in duration. The locations of the sites tested
were not revealed in the report. The facility descriptions for each site given in the
following paragraphs were taken directly from the WERF Report. v
5-16
-------
TABLE 5.11
THC, CO, C02, AND O2 CONCENTRATIONS - AFTERBURNER OUTLET
Hopewell, Virginia RWWTF, December 1995
Run
No.
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
Date
12/5
12/5
12/5
12/6
12/6
12/6
12/6
Ull
Sewage
Sludge
Feed
Rate
ton/hr
9.6
11.2
11.5
10.0
11.2
11.5
13.9 {
12.2
Total
Hydro-
carbons
ppm1
26
22
21
7
123
21
36
32
Carbon
Monoxide
ppm1
1,327
1,489
1,043
297
2,450
1,620
1,826
1.606
Carbon
Dioxide
percent1
7.3
12.6
9.6
5.7
7.0
5.2
9.3
Oxygen
12.1
5.4
8.8
13.8
11.7
13.9
9.4
'Concentrations are on a dry basis; THC concentrations based on propane calibration standards. All concentrations
are averages of 5-minute average data.
TABLE 5.12
SEWAGE SLUDGE PARAMETERS
Hopewell, Virginia RWWTF, December 1995
Date
Total Suspended Solids (%)
Gross Calorific Value (BTU/lb)
12/4/95 -12/7/95
33.4
4000
WERF Site 1
"Site 1 represents a common MH furnace configuration with no afterburning
chamber and a high energy venturi/impingement tray scrubber system. The plant
provides primary and secondary wastewater treatment for a residential, commercial and
light industrial service district. The furnace system is relatively new and processes
5-17
-------
digested sewage sludge cake." The furnace operating parameters are summarized in
Table 5.13.
TABLE 5.13
1 ' .. ' i1
OPERATING CONDITIONS AT SITE 1
Operating Variable
Sewage Sludge Feed Rate (dry
tons/hour)
Sewage Sludge Cake Solids (%)
Sewage Sludge Cake Volatiles
Fuel Use (1,000 ftVdry ton)
Average Top Hearth or
Afterburner Temp. (°F)
Furnace Exhaust Oxygen (% wet)
Stack Gas Oxygen (% dry)
Venturi + Scrubber Differential
(inches of water)
Run#l
1.2
19.4
48.6
8.8
1,078
9.3
8.1
26.8
Run #2
1.2
23.0
48.3
8.8
1,076
9.3
7.7
26.9
Run #3
1.2
22.2
48.7
6.1
913
10.7
10.0
26.8
Run #4
1.2
21.1
48.8
6.1
917
10.5
10.0
26.9
The percentage oxygen data appear anomalous. It is usual for the percentage of
oxygen in the stack gas, on a dry basis, to be higher than the wet basis percentage
oxygen hi the furnace exhaust. Removing water vapor from the furnace exhaust gases
would increase the percentage of oxygen in the remaining gas. Leaks in duct systems
and the addition of shaft cooling air also tend to increase the percentage of oxygen in
the stack gases over that measured in the furnace exhaust.
WERFSite2
"Site 2 has a large furnace (MHF) equipped with a detached afterburning
chamber followed by a waste heat boiler and a high energy venturi/impingement tray
scrubber. The afterburner chamber is internally 9 feet hi diameter and about 18.5 feet
long with an approximate volume of 1,172 cubic feet. The furnace was originally con-
structed in 1968 and upgraded hi 1983 to add the afterburner chamber, venturi/
impingement tray scrubber, and an automated operating control system. The plant
service district is residential, commercial and industrial." The furnace operating
parameters are summarized hi Table 5.14.
5-18
-------
TABLE 5.14
OPERATING CONDITIONS AT SITE 2
Operating Variable
Sewage Sludge Feed Rate (dry
tons/hour)
Sewage Sludge Cake Solids (%)
Sewage Sludge Cake Volatiles
Fuel Use (1,000 ft3/dry ton)
Average Top Hearth or
Afterburner Temp. (°F)
Furnace Exhaust Oxygen (% wet)
Stack Gas Oxygen (% dry)
Venturi + Scrubber Differential
(inches of water)
Run#l
1.8
23.1
70.5
6.5
1,275
9.9
7.5
38.1
Run #2
1.9
22.5
71.0
5.8
1,103
10.1
8.0
37.6
Run #3
1.9
23.8
71.0
2.7
1,009
10.7
8.2
37.4
Run #4
2.0
24.6
71.5
0.75
832
11.7
8.5
37.6
The percentage oxygen data appear anomalous. It is unusual for the percentage
of oxygen in the stack gas, on a dry basis to be lower than the wet basis percentage
.oxygen hi the furnace exhaust. Removing water vapor from the furnace exhaust gases
would increase the percentage of oxygen in the remaining gas. Leaks hi duct systems
and the addition of shaft cooling air also tend to increase the percentage of oxygen hi
the stack gases over that measured hi the furnace exhaust.
WERFSiteS
"Site 3 was designed and built as a 10 hearth furnace with a large additional
"zero" hearth as the afterburner chamber. The zero hearth chamber has an internal
height of 12 feet with an approximate volume of 3,725 cubic feet which is over three
tunes the size of the chamber volume of Site 2. The exhaust gas is routed through the
outer drop holes opposite the exhaust breeching and back across the hearth. The outer
drop holes on the exhaust breeching side of the top hearth are closed. The sewage
sludge cake is fed into the furnace through the side of the "second" hearth. The waste
heat boiler system is preceded by dry cyclones for large particulate removal. The wet
scrubber system includes a low energy, fixed venturi section followed by a series of
vertically mounted impingement trays with high pressure water sprays." The furnace
operating parameters are summarized hi Table 5.15.
5-19
-------
The percentage oxygen data at Site 3 are more typical of sewage sludge inciner-
ators. The concentration in the stack gas is considerably higher than the percentage of
oxygen in the furnace exhaust. Addition of dilution air to, and removal of water vapor
from, the furnace exhaust gas should increase the percentage of oxygen.
TABLE 5.15
OPERATING CONDITIONS AT SITE 3
Operating Variable
Sewage Sludge Feed Rate (dry
tons/hour)
Sewage Sludge Cake Solids (%)
Sewage Sludge Cake Volatiles
Fuel Use (1,000 fWdry ton)
Average Top Hearth or
Afterburner Temp. (°F)
Furnace Exhaust Oxygen (% wet)
Stack Gas Oxygen (% dry)
Venturi + Scrubber Differential
(inches of water)
Run#l
1.6
21.7
72.3
10.7
1,310
5.9
17.4
11.2
Run #2
1.6
21.0
73.7
6.5
1,089
5.1
15.9
11.5
Run #3
1.6
22,5
70.7
3.5
981
6.9
16.3
10.5
Run #4
1.5
23.4
69.0
0.3
650
9.3
15.3
10.8
The WERF Report states that "Each site was tested under routine operating
conditions in the "as found" operating mode." The only sewage sludge incinerator
operational difficulty noted during the tests was uneven sewage sludge cake distribution
on the top hearth and hi the burning zone of the sewage sludge incinerator at Site 1.
The authors of the WERF Report observed that the uneven cake distribution "resulted
in a very uneven burning pattern in the combustion zone which would increase THC
emission levels."
Table 5.16 describes the physical characteristics of each of the sewage sludge
incinerators. The table was extracted from the WERF Report.
5-20
-------
TABLE 5.16
WERE TEST SITE FACILITY DESCRIPTIONS
Parameter
Furnace
Size
Afterburner
Configura-
tion
Scrubber
Equipment
De-watering
Equipment
Sewage
Sludge
Condition-
ing
Sewage
Sludge Type
Auxiliary
Fuel
Operational
Handicaps
Site 1
6-Hearth
None
High energy Venturi
+ impingement tray
Centrifuge
Polymer
Primary +
secondary /digested
Natural gas
Uneven cake distri-
bution in top hearths
and burn zone
Site 2
11-Hearth
Detached
High energy Venturi
+ impingement tray
Belt Press
Polymer
Primary -f secondary
Natural gas
None
Site3
10+ '0 'Hearth
'0' Hearth
Dry cyclone + low
energy fixed Venturi
+ high pressure
water impingement
tray
Centrifuge
Polymer
Primary + secondary
Natural gas
None
MEMBERS OF THE ASSOCIATION OF MUNICIPAL SEWERAGE
AUTHORITIES
Two members of the Association of Municipal Sewerage Authorities. (AMSA),
the Northeast Ohio Regional Sewer District (Cleveland), and the Metropolitan Council
(St. Paul, Minnesota) supplied data for the statistical analysis of long-term trends hi
THC concentrations hi the exit gas from sewage sludge incinerators.
5-21
The Northeast Ohio Regional Sewer District supplied one year of tempera-
ture/THC data for each of 4 multiple hearth sewage (MHF) sludge incinerators and for
one fluidized bed incinerator that burns only oil and grease. The Metropolitan Council
supplied one year of similar data for each of 6 MHF sewage sludge incinerators.
Some data from other test reports were included with the Cleveland and St. Paul
data. The data that were supplied for the St. Paul sewage sludge incinerators are
presented in Table 5.17. The primary purpose of obtaining the long-term data was to
evaluate the feasibility of using a statistical approach to analysis of long-term THC
data. The data supplied for the Cleveland sewage sludge incinerators contained only
THC concentrations, oxygen concentrations, and final combustion stage temperature.
The primary reason for requesting the long-term data was to develop the log-normal
distributions of THC concentrations and to evaluate the potential for using relatively
short test periods (nominally one-month) to predict the maximum value of the monthly
THC concentration in the exit gas from the sewage sludge incinerators. The results of
the statistical analysis are discussed in Section 6 of this report.
TABLE 5.17
SUMMARY OF OPERATING CONDITIONS
AT TWO (OF 6) ST. PAUL, MINNESOTA
SEWAGE SLUDGE INCINERATORS
Operating Variable
Sewage Sludge Feed Rate
(dry tons/hour)
Sewage Sludge Cake Solids
<%)
Sewage Sludge Cake
Volatiles
Fuel Use- (1,000 fWdry ton)
Average Top Hearth or
Afterburner Temp. (°F)
Furnace Exhaust Oxygen
(% wet)
Stack Gas Oxygen (% dry)
Venturi + Scrubber Differ-
ential (niches of water)
Incinerator # 5
2.5
30.9
76.3
Incinerator # 9
2.3
31.5
75.5
Data Not Supplied
1262
1259
Data Not Supplied
12.1
13.1
Data Not Supplied
5-22
AMSA also supplied a copy of the summary report of the sampling and analysis
for dioxins and furans that AMSA submitted to EPA early in 1995. The dioxin/furan
data contained in the report are included in Section 6 (Observed Emissions of Chlori-
nated Dibenzo-Dioxins and Dibenzo-Furans) of this report. The authors of this report
did not review the data in the report or assess the quality or accuracy of those data.
The data are included with the dioxin/furan data collected during this effort for
purposes of comparison.
ASSOCIATION OF ENVIRONMENTAL AUTHORITIES (NEW JERSEY WWTP
OPERATORS)
The Association of Environmental Authorities (a consortium of New Jersey
Wastewater Treatment Plant Operators) commissioned sampling and analysis at two
sewage sludge incinerators in New Jersey. One of these tests was at the fluid bed
sewage sludge incinerator at the Gloucester County Wastewater Treatment Plant. The
second test was at the MHF at the Stony Brook Regional Sewerage Authority Plant.
The authors of this report reviewed the test plan that the consultants to the Association
of Environmental Authorities prepared prior to the beginning of testing, and visited the
Stony Brook Facility during the testing. The test designs were similar to those
developed for the tests done during this program. The Association of Environmental
Authorities did not supply the test data hi electronic format. The quantity of the data
precluded manual manipulation, so those data could riot be analyzed during this
investigation.
HAMPTON ROADS SANITARY DISTRICT
Mr. Andy Nelson, Plant Manager, Hampton Roads Sanitation District (HRSD),
provided data that were collected during a baseline study of emissions at the Hampton
Roads Sanitary District plant in Willliamsburg, Virginia. HRSD performed similar
sampling at three other sewage sludge incinerators during the spring of 1993, as part of
an evaluation of their existing operations and to provide information needed to plan
improvements in the combustion efficiency of their sewage sludge incinerators.
The data consisted of one-minute average values of total hydrocarbons, oxygen,
carbon dioxide, and carbon monoxide. The data did not include the temperature of the
final combustion zone, so the data could not be used to evaluate the kinetic model. The
data did include simultaneous measurements of both CO and THC so they were useful
in development of the statistical THC/CO model. The tests were designed to evaluate
baseline operating conditions at the sewage sludge incinerator, so no adjustments were
made to the routine operating conditions prior to the beginning of sampling. HRSD did
not provide operating data, e.g., sewage sludge feed rates, percentage moisture, and
percentage volatile solids.
5-23
-------
DEECO Inc. performed the testing. Their evaluation of the results includes the
assessment: ,
"Average hydrocarbon levels for baseline conditions are typically under
the 100 ppm level after correction to seven percent oxygen. However,
there are several spikes in hydrocarbons which greatly exceed 100 ppm
with and without correction to seven percent oxygen. Further, overnight
operating conditions were often in excess of the 100 ppm limit before
, and after oxygen correction."
PREVIOUS (1991) EPA STUDY
In February 1989, the U.S. Environmental Protection Agency (EPA) drafted
sewage sludge regulations under section 405 of the Clean Water Act, proposing to
require continuous emission monitoring of total hydrocarbons (THC). The Risk
Reduction Engineering Laboratory (REEL) contracted Pacific Environmental Services,
Inc. (PES) to evaluate the ability of continuous analyzers to operate reliably in the
sewage sludge incinerator exhaust stack environment for extended periods of time.
PES selected two sewage sludge incinerators for the evaluation. PES installed CO, O2,
and THC monitors in the exhaust stacks of two multiple hearth furnace (MHF) sewage
sludge incinerators. MHF were selected because they are, by far the most common
type of sewage sludge incinerator, because EPA believed that they presented the most
severe test of reliability to continuous monitors, and because EPA believed that MHFs
typically have higher concentrations of both CO and THC. The two sewage sludge
incinerators selected for sampling during this project were located hi Lorton, Virginia
and Arlington, Virginia.
Pace Environmental Products, of Horsham, Pennsylvania provided the THC
analyzers. Both analyzers were manufactured by J.U.M. Engineering Ges. m.b.H.
Both were heated flame ionization detectors. The Milton Roy Corp. of Orange,
California provided the Fuji Electric CO analyzers. Both were nondispersive infrared
analyzers. PES rented Servomex paramagnetic analyzers for the project.
The samples to be analyzed for O2 and CO were filtered at the stack, trans-
ported through heated Teflon* sample line to the refrigeration condenser. Unfiltered
sample gas was delivered to the THC analyzers through heated Teflon* sample lines.
Arlington, Virginia
Data collection began at Arlington, Virginia on June 8, 1991 and was completed
on September 9, 1991. The Arlington facility processed approximately 30 million
gallons per day of wastewater; 98 percent of the wastewater was from domestic sources
from a population of approximately 150,000 persons. The plant provided primary and
secondary (activated sewage sludge) treatment. The primary and secondary sewage
5-24
-------
sludges were combined, treated with lime and ferric chloride and de-watered by
recessed plate filter presses. The moisture content of the sewage sludge fired in the
sewage sludge incinerator was reduced to 70 to 75 percent.
The two sewage sludge incinerators were 22'3", Nichols eight-hearth MHFs.
Only one furnace operated at a time. The air pollution control system consisted of an
adjustable throat venturi scrubber followed by a two plate, impingement tray scrubber.
The exit gas temperature from the impingement tray scrubber is nominally 100 °F. The
sewage sludge feed to the incinerator was erratic during these tests because of variabil-
ity in the operation of the sewage sludge feed system. There was no means to meter
the rate of sewage sludge feed .other than the speed of the conveyor belt that delivered
the sewage sludge to the sewage sludge incinerators.
The purpose of this study was to evaluate the reliability of the THC analyzers.
No changes in the normal operations of the sewage sludge incinerators were made.
Because this was a study of the reliability of instrumentation and not a study of the
parameters that affect the concentrations of THC and CO in the exit gas from sewage
sludge incinerators, the rates of sewage sludge feed, the temperatures of the various
hearths, the percentage moisture hi the sewage sludge, the percentage of volatile solids,
and the heating value of the sewage sludge were not recorded. The test team did
record the concentrations of oxygen, CO, and THC, as well as the temperature of the
final combustion stage of the sewage sludge incinerators.
Valid THC data are available for 1,579 of the 1,681 hours that the sewage
sludge incinerators operated during the three-month period. This is enough data
collected over a long enough period of time that the data can be considered representa-
tive of the long-term operation of the sewage sludge incinerators.
Lorton, Virginia
The wastewater treatment plant at Lorton, Virginia treated approximately 40
million gallons per day of primarily domestic wastewater from a population of
approximately 400,000 persons. The plant provided primary and secondary (activated.
sewage sludge) treatment. The plant also provided tertiary treatment consisting of
ferric chloride addition for phosphorus removal, chlorination and dechlorination and
dual- and mono-media filtration. Sewage sludge de-watering was accomplished by a
combination of vacuum filters, belt presses and membrane filter presses.
The wastewater treatment plant at Lorton has two identical MHFs. The two
sewage sludge incinerators were 22' 3", Nichols eight-hearth MHFs. Only one furnace
operated at a tune. The sewage sludge incinerators are equipped with detached,
secondary combustion chambers that were designed to attain a 0.5 second retention
tune. Additional air pollution control equipment consists of a variable throat venturi
scrubber and a two-plate impingement tray scrubber.
5-25
-------
The purpose of this study was to evaluate the reliability of the THC analyzers.
No changes in the normal operations of the sewage sludge incinerators were made.
Because this was a study of the reliability of instrumentation and not a study of the
parameters that affect the concentrations of THC and CO in the exit gas from sewage
sludge incinerators, the rates of sewage sludge feed, the temperatures of the various
hearths, the percentage moisture hi the sewage sludge, the percentage of volatile solids,
and the heating value of the sewage sludge were not recorded. The test team did
record the concentrations of oxygen, CO, and THC, as well as the temperature of the
final combustion stage of the sewage sludge incinerators.
Valid THC data are available for 1,355 of the 1,508 hours that the sewage
sludge incinerators operated during the three-month period. This is enough data
collected over a long enough period of tune that the data can be considered representa-
tive of the long-term operation of the sewage sludge incinerators.
VANCOUVER, WASHINGTON TESTS
The data for the Vancouver, Washington tests were collected during July 1993.
These data were the subject of a paper presented to the 67th Annual Conference &
Exposition of the Water Environment Federation (Measure Twice, Cut Once: A Case
History on Upgrading an Operating, 20 Year Old, Multiple Hearth Furnace for the
503s. P.M. Lewis, O. Boe, and T. Boyer; #AC945402). The authors of the paper
provided the complete data set for the purposes of this project.
The Vancouver, Washington plant provides primary, and secondary (activated
sewage sludge) treatment to wastewater that is generated by a population of approxi-
mately 84,000 persons. The sewage sludge produced by the plant is primarily from the
domestic wastewater and the residuals from the activated sewage sludge process,
though the plant does receive approximately 3 million gallons per year of septage.
The sewage sludge incinerator is an 18'3", seven-hearth, Skinner MHF that was
originally manufactured by The Mine and Smelter Company. The original design was
for 10,500 wet pounds of sewage sludge per hour with a maximum of 7,900 pounds
per hour of water. Higher capacity burners were added in 1986 to increase the
capacity to 13,000 pounds per hour of wet sewage sludge with a moisture content of
75%. Sewage sludge feed rates during the 6 tests was from 9,000 to 11,000 wet
pounds per hour. The percentage moisture in the sewage sludge during the tests was
from 21 % to 23%. The percentage of volatile solids was not reported. The air
pollution control equipment consists of a venturi scrubber system having a pressure
drop of 30" w.c.
The purpose of the tests was to evaluate the parameters that affect the concen-
trations of CO and THC in the exit gas from the furnace. The duration of each test
5-26
-------
. was approximately 4 hours. The duration of the test program was approximately one
week. The duration of the test program, its intended purpose (a parametric study) and
the duration of the individual tests all make the results applicable to a short time
period. The data were useful for the purpose of evaluating the kinetic model, but do
not provide information about long-term emissions from sewage sludge incinerators.
5-27
-------
-------
SECTION 6
DISCUSSION OF RESULTS
OBSERVED TOTAL HYDROCARBON CONCENTRATIONS
Section 4 described the intended theoretical approach to analysis of the THC
data that were gathered during this effort. The kinetic theory of first order reactions
was discussed and the implications for sewage sludge incinerators were described. This
section presents the results of the analysis of the gathered data. The objective of this
investigation is to find a relationship between the temperature of the final combustion
zone and the concentration of THC in the exit gas that will enable the substitution of
temperature monitoring for THC monitoring. The first order kinetic equation is the
most likely of any conceivable analytical relationship to produce a reliable link between
final combustion zone temperature and exit gas THC concentration. Temperature
monitoring cannot be a reliable surrogate for THC monitoring unless there is a known
relationship between the two parameters. The relationship would be most satisfying if
it were analytical, i.e. , based on known kinetic theory. Later sections consider the
development of empirical (i.e., statistical relationships).
Kinetic Rate Calculations '-.-.-
In Section 4, we described the kinetic theory of first order reaction kinetics,
discussed its applicability to sewage sludge incinerators, and described how we could
back-calculate the concentration of THC (or CO) from the final combustion zone
temperature. Equation 4.1:
C0 ±C£Xp(-kt) (Bq.4.1)
describes the relationship between the concentration of THC at the outlet of the final
combustion zone and the concentration of THC at the inlet to the final combustion
.zone. If measurements of both the Met and outlet concentrations are made then the
value of the parameter k can be calculated directly from equation 4.2:
-k =[ln(-^)]/t (Eq.4.2)
. . • • *-si
6-1
-------
To make this calculation, we must know the retention time of the gases in the
final combustion zone. The volume of the final combustion zone is fixed so the
retention time of the gases in the final combustion zone depends on the flow rate of air,
its moisture content and the temperature in the final combustion zone. Over periods of
many days, the values of these parameters may vary widely. Over short tune periods
(e.g., 4 hours) these parameters remain constant enough to allow computation of k.
The value of k calculated at any given temperature is unique to the compound being
studied. In Section 4, we speculated that the composition of the VOC gases entering
the final combustion zone of a sewage sludge incinerator is surely consistent over
relatively short tune periods. We speculated that the composition of these gases is
probably consistent among different sewage sludge incinerators. We also speculated
that the concentrations of the constituents of the gases are also constant for short tune
periods.
The temperature of the final combustion zone not only affects the value of the
retention time, t, it affects the value of the parameter k. Equation 4.3 describes the
dependence of the reaction rate constant k on the temperature at which the reaction
occurs.
k =B*exp(-a/T) -(Eq.4.3)
The values of the first order reaction rate parameters B and a are fixed for every
chemical compound in a given reaction. The values of a can be found by plotting the
natural logarithm of k against the reciprocal of temperature. The slope of this line is
equal to a, its intercept is equal to the natural logarithm of B, By combining Equations
4.1 and 4.3 we obtained:
= exp(-Bt*exp(-afF)) (Eq. 4.5)
Section 4 also describes means to calculate the values of 5 and a using measure-
ments of only the exit gas concentration of THC. Equations 4.7, and 4.9:
' A=Bt (Eq.4.7)
C ' • ' ~ '
ln(—) = -A*exp(-a/I) (Eq. 4.9)
combine to become Equation 4.5.
6-2
-------
Therefore, we should be able to calculate the values for all parameters of the
first order reaction rate equation for combustion of the THC in the exit gas from
sewage sludge incinerators by either method if we have values for the gas flow rate; the
temperature in the final combustion zone, the volume of the final combustion zone and
the inlet and outlet THC concentrations. Most of the data that are available provide
only part of these data. For most plants, we have only the exit gas THC concentration,
and the temperature of the final combustion zone. The data collected during this
project include the gas flow rates at all four sites, the volume of the final combustion
zone at two sites, and the concentration of THC at the inlet to the final combustion
zone at one site.
~> : ; , ' .f ;
The following example has been derived to demonstrate the importance of
knowing that the concentration of THC at the inlet to the final combustion zone
remains constant. Values of the reaction rate constant, k, have been calculated by
Equation 4.3 using values of a and B that are similar to those calculated for the Hope-
well, Virginia tests. The concentration of THC at the inlet to the final combustion
zone at Hopewell were measured, so that the values of these parameters could be
estimated. A retention tune of 1.5 seconds was selected to be representative of
afterburners. A series of inlet concentrations was assumed, and then the concentration
of THC in the outlet of the final combustion zone was calculated by Equation 4.1. The
results of these calculations are shown in Table 6.1. Note that the fraction of THC
remaining hi the exit gas of the final combustion zone at any given temperature is the
same for all Met THG concentrations. Once the values of the parameters that define
the reaction rate constant, k, are determined, the fractional reduction hi THC concen-
tration hi the final combustion zone becomes a constant for any given temperature.
Table 6.1 contains exit gas THC concentrations that are calculatedjby the first
order reaction rate equation using the values of the first order rate equation parameters
that are specified. We now can use these calculated exit gas THC concentrations in the
modified first order kinetic rate equation, Equation 4.9, to calculate the values of the
parameters C,, a, and A. Figure 6.1 displays the plots of ln(ln(THC0)) vs the reciprocal
of temperature (1/T), from which the value of the parameter a, is derived for the
assumed inlet THC concentrations. \
6-3
-------
TABLE 6.1
CALCULATION OF C0 FROM Cr AND
PARAMETERS OF THE KINETIC RATE MODEL
Assume: B = 42 sec'1, a = 4916 °R, t - 1.5 sec
Inlet THC
Concentra-
tion.
C{ (ppm)
350
350
350
350
350
750
750
750
750
750
1,250
1,250
1,250
1,250
1,250
2,000
2,000
2,000
2,000
2,000
Tempera-
ture
(°R)
1,300
1,400
1,500
1,600
1,700
1,300
1,400
1,500
1,600
1,700
1,300
1,400
1,500
1,600
1,700
1,300
1,400
1,500
1,600
1,700
Reaction Rate
Constant
(k = S*exp(-a/T))
1.0
1.3
1.6
1.9
2.3
1.0
1.3
1.6
1.9
2.3
1.0
1.3
1.6
1.9
2.3
1.0
1.3
1.6
1.9
2.3
Outlet THC
Concentration
(ppm)
(C0 = Cf*exp(-fc))
83.3
53.4
32.5
18.9
10.6
178.5
114.3
69.6
40.6
22.8
297.5
190.6
116.0
67.6
37.9
475.9
304.9
185.7
108.2
60.7
Ratio
(Co/Q)
23.8%
15.3%
. 9.3%
5.4%
3.0%
23.8%
15.2%
9.3%
5.4%
3.0%
23.8%
15.2%
9.3%
5.4%
3.0%
23.8%
15.2%
9.3%
5.4%
3.0%
6-4
-------
1.9
1.7
1.5
1.3 -
1.1
0.9
0.7
0.5
G = 2000
y=2589.5x - 0.1206
R*=0.9476
Ci = 1250
y=2879x-0.4149
1^ = 0.9435
y = 3280.4x-0.8063
Ff=0.9375°
Ci = 350
y=4158.1x-1.6134
RS0.9234
0.0004 0.00045 0.0005 0.00055 0.0006 0.00065 0.0007 0.00075 0.0008
I/Temperature (°R)
Figure 6.1 Effect of Inlet Concentration on the Values of the Parameter a (Use
Data from Table 6.1)
6-5
-------
The slopes of the lines of best fit in. Figure 6.1 are equal to the parameter a.
Figure 6.2 displays the plot of ln(THC0) against exp(-a/7) from which the values of the
parameters A and Ci are derived. The values of these derived parameters, a, A, and
Ci, are displayed hi Table 6.2. Figures 6.1 and 6.2 display 4 of the 6 cases for which
calculations were made. Note that the values of the parameters a, A, and C0 depend on
the THC concentration at the inlet to the final combustion zone. .
The fourth column of Table 6.3 displays the THC exit gas concentrations that
the model predicts for various temperatures using the values of the parameters from the
case where Q was 350 ppm. The values in the third column of Table 6.3 are taken
from the fourth column of Table 6.1. These are the final combustion zone outlet THC
concentrations that were derived from the first order kinetic rate model. In Table 6.1
we used the kinetic rate model with typical values for the parameters (a, B, and t) to
calculate the concentration of THC hi the exit gas of the final combustion zone of a
sewage sludge incinerator. Figures 6.1 and 6.2 display the procedure that would be
used to calculate the values of the parameters of the empirical model (a, A,t and C£). In
Table 6.2, we use the empirical model to calculate the concentrations of THC in the
exit gas of the final combustion zone at the same temperatures that were used in Table
6.1. Note that the empirical model does not make accurate predictions unless the
concentration of THC hi the inlet to the final combustion zone is 350 ppm. The
empirical model over-predicts the outlet concentrations for case where the inlet
concentration was less than 350 ppm. The empirical model under-predicts the outlet
concentrations for case where the inlet concentration was more than 350 ppm. This
presents a regulatory difficulty. A facility that relied on the parameters that were
developed at one Met concentration could be unaware that they were operating in
excess of the 100 ppm limit.
Relationship Between THC Concentration and Final Combustion Temperature
The preceding example demonstrated the constraints on the use of the kinetic
model to predict the concentration of THC hi the exit gas of an sewage sludge incinera-
tor in the absence of knowledge of the concentration of THC in the gas entering the
final combustion zone. We now consider the results when the actual data from sewage
sludge incinerators are analyzed. We begin with the data that were collected at
Hopewell, Virginia. Table 6.4 contains a few, selected THC data that were collected
during the testing at Hopewell, Only data from December 6, and December 7, 1995
are displayed, but the statistics at the bottom of the page are for the entire data set.
The values shown for the first order rate constant, k, were calculated by Equation 4.2.
The retention times were calculated from flow rate measurements taken in the exhaust
stack and the volumes of the final combustion zones. The stack gas flow rates were
corrected to the conditions of the afterburner by making temperature, moisture, and
oxygen corrections. The values calculated for the constant k are relatively consistent,
more consistent than either the THC concentration at the inlet or the THC concentration
in the exit gas from the afterburner. Note that the THC concentration at the inlet to the
final combustion zone varies widely, from a minimum of 36 ppm to a maximum of
6-6
-------
0
Ci = 750
y =-32.7961+7.8759
R2= 0.9976
Ci=3SO
-45.705x + 6.3169
R2 = 0.9995
Ci = 2000
y = -26.477s + 9.8643
* = 0.995
0.00
0.05
0.20
0.25
0.10 0.15
EXP(-a/T)
Figure 6.2 Effect of Inlet Concentration on the Values of the Parameters A and C{
.6-7
-------
TABLE 6.2
VALUES FOR THE PARAMETERS OF THE MODEL CALCULATED
BASE!) ON VARIOUS ASSUMED VALUES FOR THE THC CONCEN-
TRATION AT THE INLET TO THE FINAL COMBUSTION ZONE
Assumed THC Inlet
Concentration
100
350
500
750
1,250
2,000
Values of the Parameters for the Kinetic Model
Calculated in Figures 6.1 and 6.2
a
7,891
4,158
3,693
3,280
2,879
2,590
A
260.3
45.71
38.08
32.80
28.77
26.48
c,
38.7
554
1,151
2,633
7,429
19,230
1,614 ppm. This wide a variation in the Met THC concentration should lessen the
accuracy of the predictions of the exit gas concentration of THC. Figure 6.3 displays
the temporal variation of afterburner inlet THC concentration. The THC data were
divided into intervals for analysis. The intervals were selected to group the data
according to the THC concentration at the inlet to the SCC. The intervals were:
Interval
Number
1
' 2
3
4
5
Data Points
Included
1 - 102
103 - 228
229-331
332 - 438
All Data
The values of the parameters of the first order rate equation were calculated for
the data within each interval. The results of these computations appear hi Table 6.5.
The values of the parameters vary widely among groups. Figure 6.4 displays the
measured exit gas concentrations hi the same sequential order as in Figure 6.3. Figure
6.4 also displays the results of prediction of the concentrations at the various tunes
using the values of the parameters calculated using all of the data points. This
6-8
-------
TABLE 6.3
RESULTS OF USING KINETIC PARAMETERS DEVELOPED FOR ONE
INLET THC CONCENTRATION TO PREDICT EXIT GAS THC
CONCENTRATIONS AT OTHER INLET THC CONCENTRATIONS
Assumed THC
Concentration
in Final
Combustion
Zone Inlet
(ppm)
100
100
100
350
350
350
.500
500
500
750
750
750
, 1,250
1,250
1,250
2,000
2,000
2,000
Assumed
Temper-
ature of
Final Com-
bustion Zone
(°R)
Actual THC
Concentra-
tion in Exit
Gas from
Table 6.1
(ppm)
1,300 | 24
1,500
1,700
1,300
1,500
1,700
1,300
1,500
1,700
1,300
1,500
1,700
1,300
1,500
1,700
1,300
1,500 ,
1,700
9
3
83
32
11
119
46
15
179
70
23
298
116
38
476
186
61
Predicted
THC
Concentra-
tion in Exit
Gas (ppm)
86
32
11
86
32.
11
86
32
11
86
32
11
86
32
11
t
86
32
11
Error
(ppm)
Error
(%)
62 | 260
22
8
2
-r
0
-33
-15
-5
-93
-38
-12
-212
-84
-27
-390
-154
-50
242
248
3
-2
-!'• '
-28
-32
-28
-52
-54
-54
-71
-73
-72
-82
-83
-83
6-9
-------
TABLE 6.4 SELECTED RESULTS FROM THE HOPEWELL TESTING
Date
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Deo-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Deo-95
7-Dec-95
7-Dec-95
7-Deo-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Deo95
7-Dec~95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
7-Dec-95
Tims
520
525
530
535
5:40
5:45
550
555
600
605
6:10
6:15
620
625
630
635
6:40
645
650
655
7200
7205
7:10
7:15
720
725
730
735
7:40
7:45
1HC (ppm @ 7 % O2, Dry)
Afterburner
Met
(ppm)
222
224
201
187
203
189
185
171
157
166
163
161
165
140
174
141
157
142
151
141
142
147
157
146
168
181
203
224
259
309
Afterburner
Exit Gas
(ppm)
54
47
39
32
30
33
28
24
20
19
18
18
19
18
20
20
20
20
19
20
19
24
23
27
37
40
. 57
64
93
112
Retention
Time
(sec)
1.3
12
1.2
12
1.2
12
2.0
2.0
2.0
2.1
2.0
2.0
2.0
2.1
2.1
2.1
2.1
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
1.9
1.9
1.9
Reaction
Rate
Constant
-------
calculation reveals that the model does a poor job of predicting the relatively high exit
gas THC concentrations that occurred throughout the test period. This is of most
concern for the data points between 350 and 400 (displayed in Figure 6.5). The
measured exit gas THC concentrations averaged 79 ppm, and have a maximum of 153
ppm. The predicted exit gas THC concentrations averaged 41 ppm and have a maxi-
mum of 66 ppm. The model under-predicts most of the values. The under-prediction
is even more severe around sequence number 250, where the maximum measured exit
gas THC concentration is 1,646 ppm. The maximum predicted for this 5-minute
average concentration is only 438 ppm. It is true that an under-prediction of 50 percent
over a single 5-minute period would have no effect on a compliance determination.
However, analysis of the data collected at Hopewell, Virginia demonstrates that the
under-prediction was systematic and was caused by the inability of the kinetic model to
make accurate predictions when the THC concentration at the inlet to the final combus-
tion zone changed. Because any correlation between temperature and exit gas THC
concentration, by definition, is based on a first order kinetic model, such correlations
cannot succeed unless the THC concentration at the inlet to the final combustion zone is
known, or can be maintained constant in a relatively narrow range. Analysis of the
data from other sources confirm these conclusions. Results of analyses, presented in
the following paragraphs, demonstrate little correlation between exit gas THC concen-
tration and final combustion zone temperature.
TABLE 6.5
VALUES OF THE PARAMETERS FOR THE
FIRST ORDER KINETIC MODEL
Interval
1-102
103 - 228
229-331
332 - 438
All Data
Values of the Kinetic Parameters Calculated for Each Interval
a
4,801
5,794
3,830
4,794
4,964
A
88.5
124 .
78.3
85.7
129
q
685
192
15,466
1,274
2,458
6-11
-------
1600
1400 --
1200 --
•=• iooo - .
1
£ 800 +
o
O
600 --
400 --
200 - -
• ':. '•
& A
«
0 50 100 150 200 250 300 350
Five Minute Average THC Concentrations for All Hours of Sewage
Sludge Incinerator Operation
Figure 6.3 Sequence of Inlet THC Concentrations for the Hours of Operation
(Hopewell)
6-12
-------
ASeriesl Measured THC in Exit Gas
oSeries2 Predicted THC in Exit Gas
2000
1800 --
1600--
1400:-
S 1200
I
1 1000
800--
600--
400--
200--
0
0 50 100 150 200 250 300 350 400 .450
Sequence Number of THC Measurement
Figure 6*4 Predicted Compared to Measured Exit Gas THC Concentrations
(Hopewell)
A
A
A
A
6-13
-------
The calculation procedures for estimating the values of the parameters for the
kinetic model, k, A, and Q were performed on all of the plant data available to the
authors. The results of these calculations, Table 6.6, demonstrate that there is little
consistency among different sewage sludge incinerators. The values of all three para-
meters vary widely. Further there appears to be little consistency from one time to the
next at the same sewage sludge incinerator. Compare the results for the Arlington
incinerator from 1991 to those from 1995. The three sets of parameters calculated for
the Vancouver sewage sludge incinerators also vary. Those data were collected during
testing to evaluate how certain prescribed changes hi operating conditions might change
the performance of the unit and the THC concentration in the exit gas. The fact that
these operating condition changes were made intentionally in no way diminishes the
observation that changes hi operating conditions alter the relationship between final
combustion zone temperature and the THC concentration in the exit gas. We saw in
Table 6.5 (the Hopewell, Virginia results) that changes to operating conditions that
occur naturally and inadvertently during the course of normal operations change the
relationship between temperature in the final combustion zone and the THC concen-
tration in the exit gas. We now observe that the changes hi this relationship that occur
when operating parameters are purposefully altered are no more dramatic than the
changes that occur inadvertently over a period of a few days.
These operating condition changes can consist of the percent moisture hi the
sewage sludge being fed to the sewage sludge incinerators, the percent volatile solids,
the heating value of the volatile solids, the temperature of the hearths below the final
combustion zone, the speed of rotation of the shaft, the location of the volatiles burning
hearth, the position of the fire on the volatiles burning hearth, and other unlisted and
unknown variables. . •
The results shown in Table 6.7 demonstrate the use of the parameters of the
kinetic model to predict the THC concentration in the exit gas. All data from each data
set were used to compute the values of the three parameters. These parameters were
then used to calculate the predicted THC concentrations at the minimum, maximum and
the geometric mean final combustion zone temperatures. In general, the model did a
reasonable job of predicting the THC concentration in the exit gas at the average
temperature, though there was a significant under-prediction at four plants. The model
does a better job of estimating the THC concentration in the exit gas at the maximum
temperature. The prediction was significantly less than the measured concentration hi
only one case. The model seriously under-predicted the maximum concentration hi
nearly all cases. The most serious of these under-predictions occur hi the cases where
the data were collected over longer time periods. The data from St. Paul for 1995
(both units 5 and 9) were collected over 12 month periods. The data collection
durations for both Lorton and Arlington in 1991 were approximately three months.
The best predictions occur when the data are collected over short tune periods. For .
example, the Vancouver data were collected over test periods of from 8 to 12 hours.
The three WERF tests were of approximately the same duration as the Vancouver tests
but the results are not as good. It appears that the longer the time available for process
6-14
-------
conditions to change, the more such changes occur with the result that the predictive
accuracy of the model suffers.
Figure 6.6 graphically displays the weakness of the kinetic model. Two log-
normal distributions are shown. One is the distribution of all exit gas THC concentra-
tions observed at the number 9 sewage sludge incinerator operated by the St. Paul,
Minnesota, Metropolitan Council during 1995. The second represents the results of
prediction of the exit gas concentrations for the year using the parameters of the kinetic
model that were developed using the exit gas data and the final combustion zone
temperatures recorded for the month of May 1995. We used one month of
monitoring data for predictive purposes to imitate the potential use of the kinetic model
for demonstrating compliance with the exit gas THC concentration limit. A practical
use of the procedure would be to monitor for a period of time that is representative of
the long term operation of the sewage sludge incinerator, use those data to develop the
parameters of the kinetic model, and use the final combustion zone temperatures to
predict exit gas THC concentrations. Figure 6.6 represents the results of such a
computation. The THC monitor reported valid values of the THC concen- tration for
553 of the 730, (about 75 %) of the hours in the month. This percentage of data
recovery provides an accurate representation of the behavior of the sewage sludge
incinerator. The model under-predicts 43 percent of the exit gas THC concentrations
and over-predicts 57 of them. The under-predictions are all at the upper end of the
distribution (the highest values are under-predicted). The model over-predicts the
lower exit gas THC concentrations, which are of less interest. This model behavior is
typical of all of such comparisons that we have prepared, and it mitigates the value of
this approach to assure that the THC concentration is less than 100 ppm.
The calculated values of the parameters of the kinetic model for the eight
months for which there were enough data to allow calculation of the parameters are
presented in Table 6.8. Note that the values for the parameter A calculated for the
months of August and September were negative, resulting in the model predicting the
minimum THC concentration to be higher than the maximum THC concentration.! This
means that the model predicts, for these two months, that higher THC concentrations
accrue at higher final combustion zone temperatures. This resulted because there was
considerable scatter in the data. The correlation coefficients (r2) were poor for all 12
months - their values were between 0.02 and 0.32. The slopes of the lines of best fit
for this parameter for these two months were negative.
The right-hand portion of Table 6.8 contains the maximum, average, and
minimum values of the THC concentration that is predicted if the, values for the
parameters calculated for that particular month are used. v The model does a relatively
poor job of predicting the maximum THC concentration. This appears to be a well
operated sewage sludge incinerator. Evidence of the careful operation consists of the
observations that over 99 percent of the observed THC concentrations are less
than 15 ppm, that the maximum observed 1-hour concentration was only 123 ppm, and
that the average final combustion zone temperature was over 1,250°F. In spite of
..''•- 6-15
-------
200
150"
g
a 100
I
o
O
U
B3
H
50--
Measured THC
in Exit Gas
Predicted THC
in Exit Gas
340 350 360 370 380 390
Sequence Number of THC Measurement
400
410
figure 6.5 Predicted Compared to Measured Exit Gas THC Concentration, Points
350 - 400 (HopeweU)
6-16
-------
TABLE 6.6
SUMMARY OF THE PARAMETERS OF THE
KINETIC MODEL FOR ALL DATA AVAILABLE
Location
WERF11
WERF21
WERF31
AMSA1
Detroit1
StPaulSQ1
StPaulQl1
St Paul #9 1995 3
St Paul #5 1995 3
Arlineton 91
Lorton 91
Arlineton 95
Cleveland
luntineton
•fonewell
2
Vancouver 1
Vancouver 5
Vancouver 6
Gin
14623
1374
382
590
1970
• 272
1777
22.2
6.2
1403
1595
1797
60.9
25540
2458
2613
648
3498
a
4929
3805
2855
4013
4225
5753
7062
6662
6510
373
717
2394
5796
232
4964
5898
12371
4922
A
159
43
23
40
59
98
287
74
9.41
3.8
6.5
22
'52
10
129
197
9771
120
Temtierature ( °R>
'Gfeo. Mean
1407
1434
1437
1428
1515
1616
1571
1718
1721
1366
1284
1317
1900
1345
1451
1510
1542
1460
Maximum
1464
1760
1797
1860
1710
1810
1860
1897
2045
1862
1644
1623
1904
1419
1733
1598
1641
1541
Minimum
1345
1210
1048
1160
1360
1460
1360
1409
1445
1016
1110
1128
1510
1103
1233
1412
1438
1368
Data from Water Environment Research Foundation Report
Data from Lewis, Boe, and Boyer
3 Data supplied by the St Paul Metropolitan Council.
careful operation, the relationship between exit gas THC concentration and final
combustion zone temperature was not consistent enough to support accurate application
of the kinetic model. This must mean that factors that are beyond the scope of the first
order kinetic model affect the exit gas THC concentration.
6-17
-------
TABLE 6.7
RESULTS OF THE USE OF THE KINETIC MODEL TO
PREDICT THC CONCENTRATION IN THE EXIT GAS
FROM SEWAGE SLUDGE INCINERATORS
Location
WERF11
WERF21
WERE31
AMSA1
Dettoft1
St Paul 89'
StPavaPl1
St Paul #9 1995 4
St Paul #5 1996 4
Arlington 91
Lorton91
Arfington95
Cbveland
Huntington
HopeweE
Vancouver I2
Vancouver S2
Vancouver &
Vancouver 5 3
I/Temperature (°R*104)
Avg.
7.106
6.975
6.957
7.001
6.602
6.189
6366
5.821
5.810
7323
7.789
7.594
5263
7.437
6.891
6.624
6.483
6.849
6.483
Mm.
6.832
5.683
5.566
5378
5.849
5.526
5378
5.272
4.890
5372
6.084
6.160
5253
7.045
5.770
6259
6.095
6.491
6.095
Max
7.437
8267
9.546
8.624
7355
6.851
7355
7.095
6.920
9.846
9.012
8.862
6.624
9.064
8.108
7.084
6.956
7312
6.956
THC in Exit Gas (ppm @ 7% , Dry)
Geo.Mean
Pied.
122
67
16
53
52
17
72
5
5
81
39
52
5
6
36
50
26
57
25
Meas.
341
56
25
60
140
30
190
6
10
122
78
60
6.5
7
47
55
32
61
32
Adminutn.
Pied.
61
10-
3
6
13
5
3
2
4
65
24
12
5
6
2
19
4
26
9
Meas.
151
3
9
DNA*
DNA
DNA
DNA
1
1
4
7
2
2.0
, 1
25
20
4
24
4
Maximum
Pied.
250
216
85
168
141
41
361
11.5
5.6
104
53
131
20
8
245
128
108
133
71
Meas.
926
228
273
DNA
DNA
DNA
DNA
123
139
122
537
310
6.5
40
1357
107
113
129
113
1 Data fiom Water Eaviroment Research Foundation Report.
2 Data fiomLewis, Boe, and Boyer
3 Vancouver Run 5 results predicted using kinetic parameters fiom Run 6
4 Data supplied by the St. PaulMetropolitanCounciL
6-18
-------
o
1
0)
u
o
o
o
S 24-
E
*j
•e
R>
D)
O
2
1
1
-1
Natural Logarithm of
Observed THC Concentrations
y = -0.4963x + 1.5552
R2- 0.9737
Natural Logarithm of
Predicted THC Concentrations
Using Kinetic Parameters for May 1995
y =-0.1127x +1.6423
R2 = 0.9453
-4 -3 -2 -10 1 2 3 4
Z Score '
Figure 6.6 Comparison of Observed vs. Predicted Log-Normal Distributions of the THC
Concentrations (St. Paul) 1995 Data
6-19
-------
TABLE 6.8
CALCULATED PARAMETERS OF THE KINETIC
MODEL AND PREDICTED THC CONCENTRATIONS,
ST. PAUL, INCINERATOR #9,1995
Month
Feb
Mar
Apr
May
M
Aug
Sep
Dec
All Data
Parameters of the Kinetic Model
a
'5098
6310
4277
7510
13489
3276
2904
11554
6662
A
29
78
19
132
177
-47
-59
109
75
In(C,-)
3.0
3.9
3.4
3.3
3.7
1.0
0.7
25
3.1
Ci
205
48.1
28.7
27.6
393
2.8
2.1
123
22.2
Observed Concentrations
Predicted TBC Concentrations (C0)
Maximum
9
20
11
15
39
275
3789
12
11
123
Geo.Mean
5
7
6
5
37
2964
109723
11
5
6
Minimum
3
3
4
2
34
11598
710977
10
2
1
The testing at Hopewell, Virginia included sampling to determine the THC
concentrations both before and after the secondary combustion chamber (SCC). The
reason for determining the THC concentration at both locations was to enable cal-
culation of the value for the reaction rate constant, fc directly from the concentration
and temperature data. The volume of the SCC was determined to be 1357 cubic feet
from the blue prints of the device that were provided by the operators. The flow rate
of stack exit gas was measured by pitot tube traverses, that were done by EPA Method
2. • These traverses were done periodically throughout the testing program. Moisture at
the three sampling locations was measured by EPA Method 4. The Method 4 samples
were collected nearly continuously throughout the testing program. The volumetric
flow rate of gas entering and leaving the SCC was calculated by adjusting the stack exit
gas flow rates to the temperature, moisture concentration, and oxygen concentration of
the gas entering the SCC. The average volumetric flow rate was used to calculate
retention time. The SCC was equipped with natural gas burners which added to the
flow of gas entering the SCC. The average SCC exit gas flow rate exceeded the SCC
inlet gas flow rate by approximately 8 percent.
1 , ' , i1 ''',". 'ii ,, , , ' ' ' •
The concentration data were all adjusted to 7% oxygen and 0% moisture prior
to making the calculations of the parameters of the kinetic' model. These normali-
zations of the data to common conditions were necessary to eliminate the effects of
flow rate added to the sewage sludge incinerator exit gas by downstream burners and
by in-leakage. These normalizations were performed on all data analyzed for this
report. Unfortunately, the SCC at Hopewell, Virginia appeared to be a source of both
CO and THC. The SCC outlet concentration of CO exceeded the inlet concentration
16 % of the time. The outlet concentration of THC exceeded the inlet concentration
less, 8% of the time, but enough to conclude that the burners in the SCC were contrib-
6-20
-------
uting both CO and THC to the SCC exit gas. We do not know how much of these
pollutants originated in the SCC at any given tune. These data do not fit the first order
rate equation well.1 This was unfortunate because it attenuated the value of calculating
the parameters of the first order rate equation.
Because the SCC burners contributed THC to the SCC exit gas, the values of k
were calculated on two subsets of the THC data. The first subset of data consisted of
all of the 5-minute tune periods for which inlet and outlet THC concentrations, flow
rate values, oxygen concentrations, moisture concentrations and SCC temperature
values were all available. The second subset consisted of those 5-minute periods hi the
first subset for which the SCC inlet THC concentration exceeded the SCC outlet
concentration by 5 tunes. The results of these two calculations of k, shown hi Table
6.9, yielded similar results. The average value, the maximum and minimum values,
and the standard deviations are all similar. Of course, these averages are calculated
over the temperature ranges displayed. We have shown that the value of k is a function
oftemperature as is described by Equation 4.3. The calculation of the parameters of
Equation 4.3 is shown graphically hi Figure 6.7 for both data sets. Because the data
for the case where Q > 5*C0, is a subset of the set called "All Data", the points for
this subset overlay those for the entire data set. These points are designated by circles
with lines through them. The values for the parameters of Equation 4.3, B and a found
from Figure 6.7 are quite different for the two data sets. Using only those data points
with large differences between the inlet and outlet THC concentrations probably
mitigates the effect of the contribution of the SCC to the THC concentration. The
parameters derived from this edited data set are probably more realistic than those
derived from the entire data set.
TABLE 6.9
SUMMARY OF CALCULATION OF THE
FIRST ORDER RATE CONSTANT
Data from Hopewell
Statistic
Average
Std. Dev.
ReLStd.
Dev.
Maximum
Minimum
Inlet THC > 5x Outlet THC
Retention
Time
(sec)
2.57
0.93
36.0
5.96
1.39
Temperature
(°R)
1,471
66.1
4.5
1,356
1,631
k
0.97
0.40
38.6
2.49
0.4
Entire Data Set (All Data)
Retention
Time
(sec)
2.48
0.8
32.3
5.96
1.39
Temperature
(°R)
1,446
63.8
4.4
1,297
1,631
k
0.73
0.39
48.4
2.49
0.12
6-21
-------
There are now two estimates for each of the parameters of the first order
reaction model. One estimate was developed from the inlet and outlet THC sampling
that was possible at Hopewell, Virginia. The second estimate was derived from the
analysis of the outlet THC concentrations only, a technique that would be necessary at
most sewage sludge incinerators that have no means of obtaining a sample of the gas
entering the final combustion zone. These estimates are summarized below. The
parameter A is equal to B times the retention time ?; in this case, t is assumed to be the
average retention tune during these tests, or 2.57 seconds. The estimates are similar
but not identical. The use of this version of the first order reaction rate model provides
no better estimate of the exit gas THC concentration than the one previously consid-
ered. There is still no means to know or predict the concentration of THC at the inlet
of the final combustion zone. Lacking this information, these models cannot provide
the assured estimates of the exit gas THC concentration that is needed for regulatory
purposes.
Source of Estimate
From Inlet and Outlet Sampling
From Outlet-Only Sampling
Parameter
a
6,648
4,964
B
89.9
50.2
A
231
129
On many occasions, we have seen plots of exit gas THC concentration plotted
against the temperature of the final combustion zone. These plots usually are submitted
in support of monitoring of final combustion zone temperature as a surrogate for ,
monitoring of exit gas THC concentration. It appears that it is possible to generate
curves that demonstrate excellent correlation between final combustion zone tempera-
ture and exit gas THC concentration under controlled conditions, for short periods of
time. Figure 6.8 is an example of such a plot. This plot was prepared, by the authors,
from data that were sent to us by the persons who performed the testing at the Vancou-
ver, Washington, wastewater treatment plant sewage sludge incinerator. These
particular data were collected from 08:30 am through 12:30 pm on July 15, 1993.
The plot presents a satisfying correlation. When such correlations are attempted
over longer periods of time, during routine operations, the correlations are less
remarkable. Figure 6.9 is a plot of exit gas THC concentration vs final combustion
zone temperature at the Lower Potomac Wastewater Treatment Plant, in Fairfax
County, Virginia. These data were collected over a three-month period, beginning in
July 1993. Figure 6.9 is more representative of the time periods over which such
correlations must be reliable for temperature monitoring to be a surrogate for THC
monitoring. The existing regulation requires that the monthly average be demonstrated
to be less than 100 ppm. The reason that these plots break down over the longer time
periods is the same reason that the first order kinetic model breaks down over longer
time periods. That is, the concentration of THC at the inlet to the final combustion
' 6-22
-------
1.0 T
0.5 -
o
o
-0.5
o
o
1-1.0
OS
CO
o
10
5 -1.5
•B
-2.0 --
C,>5xC0
y =-665.1 x +4.499
R2 = 0.353
All Data
= -8624x
R2= 0.331
o
-2.5
0.00060
0.00065 0.00070
1/Temperature f R)
0.00075
0,00080
Figure 6.7 Calculation of the Parameters of the First Order Rate Equation from
THC Inlet and Outlet Data (Hopewell)
6-23
-------
160
140
120
1
**
s
u
El
U
w
H
100
80 -
40
20
900
4-
950 1000 1050 1100 1150
Temperature of Final Combustion Zone ( *F)
1200
Figure 6.8 Exit Gas THC Concentration vs. Final Combustion Zone Temperature,
Test Number 5 (July 15,1993) (Vancouver)
6-24
-------
I
o
••§
8
o
O
O
100 --
600
700 800 900 1000 1100
Temperature of Final Combustion Zone (°F)
1200
Figure 6.9 Exit Gas THC Concentration vs. Final Combustion Zone Temperature,
July through September 1991 (Lorton)
6-25
-------
zone does not remain constant over extended time periods. If the THC concentration at
the inlet to the final combustion zone were constant, then the THC/temperature
correlations would be reliable, and the correlation would be described by the first order
rate equation.
Statistical Summaries of Total Hydrocarbon Concentration Data
We have noted elsewhere in this report that the concentrations of both THC and
CO are log-normally distributed. That is, a plot of the natural logarithm of the concen-
tration of these gases against the number of standard deviations that the value is
removed from the geometric mean of the data, is linear. We considered the possibility
that, if the distribution was consistent, it might provide a means to use a relatively
short-term test period to provide assurance of continuing operation within the limit of
100 ppm of THC in the sewage sludge incinerator exit gas. The testing conducted
during this program was of relatively short duration - approximately one week per
plant. Data accumulated over a one year period at 12 sewage sludge incinerators
operated by the City of St. Paul, Minnesota were provided by the Metropolitan Council
of that city. The Northeast Ohio Sewer District (Cleveland) provided similar data,
covering a 7-month period for 5 sewage sludge incinerators. The data from the number
5 sewage sludge incinerator in St. Paul (Figure 6.10) are representative of the type of
log-normal distributions that resulted. Not all of the distributions were as linear as the
example, but the correlation coefficients (r2) for all were greater than 0.80, indicating
excellent linearity.
During discussions with members of the affected community, it was decided to
test the practicability of performing sampling and analysis for a one month period and
using the log-normal statistics for those data to compute the expected maximum
monthly average concentration. To do this the statistics of the annual log-normal
distribution were calculated for these data sets. Then the same statistics were calcu- '
lated for each of the 1-month subsets that comprised the set of annual data. The
statistics from each monthly analysis were used to compute the concentration that
corresponded to the worst expected monthly average exit gas THC concentration. The
expectation-was that the slopes and intercepts of the lines of best fit for the monthly
data sets would be similar to each other and to the slope and intercept of the annual
data set. This calculation procedure imitates sampling and analysis of the exit gas THC
concentration at a sewage sludge incinerator for one month and using those data to
compute the worst expected monthly average concentration. The type of analysis
described above has been used by the EPA Office of Air Quality Standards and
Planning to extrapolate the worst expected 24-hour average concentration of particulate
matter from data that are collected every sixth day.
The geometric mean of a set of data has a cumulative frequency of 0.5. The
Z SCORE at a cumulative frequency of 0.5 is 0. In a set of 100 normally distributed
data points, the sixteenth highest will have a frequency of 0.84 and will be located
6-26
-------
6.0
5.0
4.0
CO
O
8 3.0
3
8
< 2.0 -
1.0
0.0
-1.0
o All Data for Year
o September Data
-. Linear (All Data for Year)
• Linear (September Data)
September Data
= -0.7754x+2.1688
R2 = 0.9769
Ail Data for Year
y--0.801x+2.0172
R2* 0.9986
•4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0
ZSCORE
Figure 6.10 In (Total Hydrocarbons) vs. Z Score, Data for September and Data for
Entire Year 1995 (St. Paul)
6-27
-------
approximately 1 standard deviation from the mean. We have chosen to refer to the
number of standard deviations from the mean as 'Z SCORE', as is common and
simpler. That means that the Z SCORE of the geometric mean is 0. The Z SCORE of
the sixteenth highest will be 1 if the data are ranked in increasing order, or it will be -1
if the data are ranked from highest to lowest. We have adopted the latter convention,
all data are ranked from highest to lowest so that the highest concentrations have
negative Z SCOREs.
The lowest hourly average value in the month having the highest monthly
geometric mean concentration will have a frequency of V12 (0.083) and a Z SCORE of
-1.38. This value will not be equal to the monthly average of the month with the
highest concentration, nor is the monthly average equal to the maximum hourly
concentration. The geometric mean concentration of the month having the highest
average exit gas THC concentration will be the middle ranked hourly concentration
during that month. That is, the hourly average concentration that has a frequency of
1/24 (0.0417) will be equal to the geometric mean of the month with the highest exit gas
THC concentration. The Z SCORE of a frequency of 0.0417 is -1.732. The proce-
dure then, is to calculate the slopes and intercepts of the lines of best fit for the hourly
data for eacli month and then to calculate the yalue of the concentration that has a Z
SCORE of-1.732. The results of these computations are shown in Table 6.10 for two
of the St. Paul, Minnesota sewage sludge incinerators. Note that the predicted THC
concentrations aU exceed the observed maximum monthly exit gas THC concentration
except for the prediction using the statistics of the January 1995 data at incinerator # 5.
The over-predictions are moderate - up to approximately a factor of 3, which would be
acceptable in most instances.
The log-normal distribution describes the population of concentrations of THC
in the exit gas from sewage sludge incinerators. Continuous monitoring data collected
over a twelve month period includes all of the normal, random variations in operating
conditions, sewage sludge feed rates, sewage sludge solids content and auxiliary fuel
use that occurred during the year that was monitored. Further, one month of THC
monitoring apparently contains the same distribution of the same variations in the same
parameters and results in a log-normal distribution that has the same slope and intercept
as the full year of monitoring data. This means that continuous monitoring for a one-
month period can predict the distribution of THC concentrations for a one-year period,
and that the maximum monthly average concentration expected (at a given confidence
level) can be predicted by analysis of the data collected over a one-month period. This
assumes that there are no significant changes in the operating conditions of the sewage
sludge incinerator. The changes that occurred at Arlington between the collection of
the two sampling occasions eloquently demonstrate the changes that can occur. The
results of the changes are discussed La the following paragraph.
The differences among the statistics of the log-normal plots (monthly and
annual) are not large, but they appear to be significant. They are significant because
they imply that the slope and intercept of these distributions are sensitive to changes hi
6-28
-------
sewage sludge character and sewage sludge incinerator operating conditions Figure
6.11 provides additional evidence that this is true. The figure contains two log-normal
distributions for data collected at the Arlington County sewage sludge incinerator. One
set of data was collected in 1991, the other was collected during this project (1995).
TABLE 6.10
SUMMARY OF STATISTICS OF LOG-NORMAL THC DISTRIBUTIONS
Month
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
ALL
St. Paul Sewage Sludge Incinerator #5
Slope
-0.85
-0.85.
-0.72
-0.68
•i
^0.70
-0.84
-0.60
4).78
-0.97
-0.68
-0.68
-0.80
Intercept
1.69
1.96
1.96
1.81
Corr.
Coeff.
(r2)
0.96
0.98
0.97
0.96
Predicted
Max.
Month
(ppm)
23.8
31.1
24.7
19.9
Insufficient Data for Analysis
2.17
2.16
1.60
2.17
1.96
2.27
2.11
2.02
0.97
0.99
1.00
0.98
0.97
0.98
0.99
1.00
29.3
37.2
14:0
33.5
38.1
31.5
26.7
30.2
St. Paul Sewage Sludge Incinerator #9
Slope
-0.16
-0.35
-0.54
-0.44
-0.40
-0.59
-0.49
-0.40
-0.43
-0.53
-0.42
-0.55
Intercept
1.11
1.48
1.88
1.72
1.57 .
1.36
1.33
1.56
1.41
1.58
Gorr.
Coeff.
(r2)
0.83
0.99
0.93
0.99
0.96
0.92
0.99
1.00
0.95
0.97
Predicted
Max.
. Month
(ppm)
4.0
8.1
16.7
11.9
9.6
10.9
8.9
9.5
8.6
12.2
Insufficient Data for Analysis
1.09
1.48
0.89
0.96
.6.1
11.3
Max; Observed Monthly Average 12.2 6.4
The operators of the plant made significant improvements to the sewage sludge
feed system during the time between the collection of the two sets of data. The
improvements to the sewage sludge feed system made the rate of delivery more
consistent, the large changes in sewage sludge feed rate over short periods of tune were
eliminated. These imprpveme'nts had a significant effect on the slope of the line of best
fit of the log-normal distribution. Other factors that have been mentioned earlier
(sewage sludge heat value, the position of the volatiles burning zone in the MHF,
sewage sludge solids content, sewage sludge volatile solids content, auxiliary fuel firing
.6-29
-------
8
.2 c
«5 O
I
5--
O
I
8
o
i
I 3
I
O
2
2
1 -
Arlington 1995
y=-0.615x+3.91
R2* 0.986
Arlington 1991
y=-0.85x+4.394
R2* 0.979
-2
-1
0
Z Score
Figure 6.11 Comparison of the Lo^-Normal Frequency Distributions for 1991 and
1995 (Arlington)
6-30
-------
rates, and possibly others) surely have effects on the slope and intercept of the line as
well. -
The observations that are discussed above mean that significant changes in the
construction or operation of the sewage sludge incinerator will have significant effects
on the distribution of THC concentrations. Thus, monitoring and specification of the
limits of the various parameters must be included hi order to assure confidence in the
predictions based on one month of exit gas THC monitoring. These parameters will
have to be monitored. We have no information about the amounts by which the
various parameters vary during normal operations of sewage sludge incinerators.
Information on normal variations must be gathered before this technique can be
incorporated into a permitting system.
OBSERVED CARBON MONOXIDE/TOTAL HYDROCARBONS
RELATIONSHIPS
Operators of sewage sludge incinerators have requested development of a
correlatipn between concentrations of carbon monoxide (CO) and total hydrocarbons
(THC) in sewage sludge incinerators exit gas. This was one of the issues raised by the
consortium of New Jersey sewage sludge incinerators operators, and one that USEPA
agreed to pursue.
The first attempts to develop such a correlation were to plot the concentrations
of THC against concentrations of simultaneously measured CO. Figures^ 6.12 through
6.14 are typical of such plots. The correlation between THC and CO observed for the
data collected at Arlington, and Huntington demonstrate very little correlation between
THC and CO. The data from Cleveland demonstrate a very good correlation, but this
result appears to be atypical of the data that have been obtained and analyzed during
this program. The best correlations occur for tests that were done over short time
periods under highly controlled conditions. The Vancouver and WERF tests are
examples. The correlations found during longer tests, i.e., Arlington, 1991, and
Lorton tend to be poor. The underlying assumption — that there is a predictive
relationship between CO and THC — is not met.
Figure 6.15 represents all of the data from ah1 of the sources. The correlation
between the two parameters does not offer a means to develop a relationship that can be
used to support the monitoring of CO as a surrogate for THC. Table 6.11 contains the
statistics of the correlations between CO and THC for all plant data. Two of the plants
(Cleveland and WERF 1) demonstrated very good correlation between THC and CO.
If the correlations were as good for the other plants as they are for these two, it might
be possible to develop site specific models that relate THC to CO. The wide variation
in the correlation parameters (slope and intercept) and the poor correlation between CO
6-31
-------
350
300-
250-
I
§ 200
3
I
150
100
50
y=0.0343x+17.663
R?=0,4476
1000
5000
2000 3000 4000
CARBON MONOXIDE (ppm)
Figure 6.12 Total Hydrocarbons vs. Carbon Monoxide, 1995 (Arlington)
6-32
6000
-------
120
100-
•f
O
80-
Q.
a.
o
CO
cc
< 60
O
oc
0
40--
20-
o
y =0.0091x 44.6517
R2 =03123
<*>
-H
2000 4000 6000
CARBON MONOXIDE (ppm)
8000
10000
Figure 6,13 Total Hydrocarbons vs. Carbon Monoxide, 1995 (Cleveland)
6-33
-------
90
80 -
Q.
^tt
CO
O
CD
CC
<
O
O
CC
Q
O
70 --
60
50 --
40 --
30 --
20 --
10 --
o o
y =0.098x +7.9794
R2 =0.5254
0 100 200 300
CARBON MONOXIDE (ppm)
Figure 6.14 Total Hydrocarbons vs Carbon Monoxide 1995 (Huntington)
6-34
400
-------
TABLE 6.11
STATISTICS FOR THE THC/CO CORRELATION
Plant Location
Arlington (1991)
Arlington (1995)
Cleveland
Hopewell
Huntington
Lorton
Vancouver
WERF 1
WERF2
WERF 3
Williamsburg
All Plants
Furnace Type
MHF
MHF
MHF/OH
MHF/SCC
FBI
MHF
MHF
MHF
MHF/SCC
MHF/OH
MHF
N.A.
Statistics of CO/THC Correlations
Slope
0.114
0.034
0.009
0.039
0.098
0.055
0.327
0.170
0.079
0.834
0.013"
0.063
Intercept
-50.67
, 17.66
4.65
15.45
7.98
-16.06
-4.62
-120.56
-75.34
-28.25
59.26
16.64
Correlation
Coefficient
(R2)
0.295
0.448
0.912
0.348
0.525
0.505
0.789
0.974
0.756
0.541
0.015
0,176
MHF Multiple Hearth Furnace with no afterburner
MHF/OH Multiple Hearth Furnace with on-hearth afterburner
MHF/SCC Multiple Hearth Furnace with secondary combustion chamber
FBI Fluidized Bed Incinerator with no afterburner
6-35
-------
' 3500 T-
3COO--
2500--
2000 --
O
03
O
O
cc
O
O
15004-
1000-- o
o
0
O
O
y =0.0627x +16.642
R2 =0.1763
0 ,
0 2000 4000 6000 8000
CARBON MONOXIDE (ppm)
Figure 6.15 Total Hydrocarbons vs. Carbon Monoxide, All Plants
6-36
10000
-------
and THC when all of the data from all of the plants are combined (All Plants) demon-
strate that this correlation cannot provide an industry-wide relationship between THC
and CO.
We believe that the reason that this is true is that the THC and CO that are in
the exit gas of MHF sewage sludge incinerators is formed by different mechanisms in
different parts of MHF sewage sludge incinerators. It is likely that the primary
mechanism of formation of THC is by evaporation and partial oxidation of volatile
organic compounds while the sewage sludge resides on the sewage sludge drying
hearths. Secondary release of THC probably occurs during combustion of the sewage
sludge on the volatiles burning hearths. The formation of CO probably occurs
primarily by pyrolysis of residual organic matter during the latter stages of the volatiles
burning and in the carbon burning zone of the MHF. Further, it is unlikely that fluid
bed sewage sludge incinerators form THC and CO in a manner that is similar to their
formation in MHF. The data for the long term tests imply that correlations between
THC and CO found at a particular plant, during a relatively short-term test may not be
applicable for long time periods. This implies that test data collected over a period that
is 8 to 24 hours hi duration, under controlled conditions, probably will not be represen-
tative of operation over an extended period of time.
* '
Logarithmic plots, i.e., ln(THC) vs. ln(CO) offer no better results. Figures
6.16 through 6.18 are log plots of THC vs. CO for the same three plants. In all cases
the correlation coefficients (R2) are worse than for the corresponding THC vs. CO
plots. In both cases, the assumptions underlying the estimation of R2 are not met.
We previously attempted to develop a correlation between the two parameters
that was based upon the first order rate equation. This attempt failed, apparently
because the concentration of CO and THC in the inlet gas to the final stage of combus-
tion varies widely and rapidly. These observations do not mean that there is no useable
relationship between CO and THC that can be used to support the use of CO monitor-
ing as a surrogate for THC monitoring.
Analysis of the observed total hydrocarbon and carbon monoxide concentrations
revealed that both are log-normally distributed. That is, a cumulative plot of the
logarithm of tie pollutant concentration against the number of standard deviations from
the mean (Z SCORE) is linear. A cumulative plot of the concentration of the pollutant
against Z SCORE is less linear. The log-normal nature of these distributions is
demonstrated by Figures 6.19 through 6.21. The first of these figures is a cumulative
normal distribution of the hydrocarbon data collected on Incinerator No. 5 at the St.
Paul, Minnesota, Metro Plant during 1995. The data consist of approximately 5500
hourly average THC concentrations, corrected to 7% O2, dry gas. The second figure
(Figure 6.20) is a log-normal distribution of the same data. The correlation is much
better for the log-normal than for the normal distribution. Figure 6.21 is the log-
normal distribution of the CO data that were collected during this program at the inlet
6-37
-------
5--
4--
O
i3
c
2--
1 --
o
o
y = 0.6746x-0.805
R2=0.2701
6 78
In(CO)
Figure 6.16 ln(THQ vs. ln(CO), 1995 (Arlington)
6-38
10
-------
o
5.00
4.50..
4.00-.
3.50-.
aco..
250..
200-.
1,50.
1.00.
0.50-
0.00
o
o
o
o
o
o
y =0.1913x +1.1019
R2 =0.3214
o
0
QOO 1.00 200 aoo 4.00 5.00 aoo 7.oo aoo aco 10.00
In(CO)
Figure 6.17 ln(THC) vs. ln(CO), 1995 (Cleveland)
6-39
-------
3
2--
^ '^
I
0--
-1
y=0.3687x+0.0487
1^ = 0.4719
00 ,'
o o
,
o » o o o
«* ^ 0
X.-'.
0123
In(CO)
Figure 6.18 ln(THC) vs. ln(CO), 1995 (Huntington)
6-40
-------
14O
120-
100-
.804-
Q,
oa
cc
2
o
cc
Q
O
60-
40--
20--
-20--
-40
o
o
-t-
y =-7.737x +9X1367
R2 =0.7078
4-
-4 -3 -2 -1 0 1 2 3
ZSCORE
Figure 6.19 Total Hydrocarbons vs. Z SCORE, Incinerator #5,1995 (St. Paul)
6-41
-------
6.0
5.0--
40-
CO
.§
g 3.0-
g
< 2.0
I
1.0
0.0 -
-1.0
y=-0.801x+2.0172
R*= 0.9986
-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0
ZSCORE
Figure 6.20 ln(Total Hydrocarbons) vs. In(CO), Incinerator #5 (St. Paul)
6-42
-------
8
7--
6-
5-
~ 4
O
o
O
2 34-
1 -
0-
-1
y =>0.9977x +28353
R2 =05927
-2 -1 0 1
ZSCORE
Figure 6.21 In(CO/THC) vs. Z SCORE, Furnace Outlet, 1995 (HopeweU)
6-43
4
-------
TABLE 6.12
COMPARISON OF CO/THC RATIOS FOR
VARIOUS SEWAGE SLUDGE INCINERATORS
Plant Location
Arlington (1991)
Arlington (1995)
Cleveland
Hopewell
Huntrngton
Lorton
Vancouver
WERF1
WERF2
WERF3
Williamsburg
Furnace Type
MHF
MHF
MHF/OH
MHF/SCC
FBI
MHF
MHF
MHF
MHF/SCC
MHF/OH
MHF
Ratio of carbon monoxide to total hydrocarbons
(CO/THC)
Geometric
Mean
22
28
17
49
25
27
47
9
33
28
15
Maxi-
mum
238
1215
177
•217
85
268
207
11
91
60
315
Mini-
mum
2
3
2
1
2
2
14
6
10
3
2
Coefficient
of Variance
14
54
29
41
14
15 '
57
1
20
16
13
MHF Multiple Hearth Furnace with no afterburner
MHF/OH Multiple Hearth Furnace with on-hearth afterburner
MHF/SCC Multiple Hearth Furnace with secondary combustion chamber
FBI Fluidized Bed Incinerator with no afterburner
to the afterburner at Hopewell, Virginia. These three figures are representative of the
many that were constructed for the 12 different sets of plant data that were available
during this program. The results for all plants are similar, sewage sludge incinerators
exit gas concentrations are log-normally distributed. The value of these log-normal
distributions was explored in the section entitled, Observed Total Hydrocarbon Con-
centrations.
6-44
-------
Because the CO and THC concentrations are log-normally distributed we next
investigated the distribution of the ratio of the carbon monoxide concentration divided
by the total hydrocarbon concentration (CO/THC). The correlation between CO and
THC did not appear to be a reliable predictor of the THC concentration. However, if a
linear frequency distribution could be found for the CO/THC ratio, then perhaps it
could be used to estimate a CO concentration below which the THC could be assumed
to be less than 100 ppm. The results of the calculation of the statistics of the CO/THC
ratios for the various plants (Table 6.12) provides some assurance that this approach
might be useful. The average values of the CO/THC ratios were relatively consistent
for all of the plants for which we had data. Further, the relative standard deviations
(or coefficients of variance) appear to be related to the average CO/THC ratio. These
facts imply that the CO/THC ratio also is distributed log-normally, as is expected of a
proportional parameter.
Note, that with the exception of the WERF 1 plant, the geometric mean values
and coefficients of variance of the CO/THC ratios for the various plants are similar.
Even the FBI and the MHF/SCC data fall within the range of the others. The data
from the WERF 1 plant appear to differ from the others. This is an artifact of the
testing conditions. The duration of this test was approximately 11 hours. For the first
four hours, the temperatures on the top three hearths remained relatively constant at
1,000°F, 1,460°F, and 1,360°F respectively for hearths 1, 2, and 3. After 4 hours
and 15 minutes, the temperatures of these hearths dropped by 100°F, 130°F, and
170°F respectively. The temperatures remained constant for the remainder of the test.
Thus, the test consisted of only two different temperatures in the gas phase in the zone
where THC and CO are being burned.
Figures 6.22 and 6.23 are the cumulative normal and cumulative log-normal
distributions, respectively, for the CO/THC ratios observed during the tests hi Cleve-
land. The log-normal distribution is obviously superior for this particular data set.
Admittedly, this data set shows one of the more remarkable differences between the
two distributions. The data for some plants, Huntington, for example, show slightly
better correlation for the cumulative normal distribution than for the cumulative log-
normal distribution. On balance, the log plots show superior correlation. For this
reason, and because the log-normal distribution is theoretically correct for proportional
data, the log normal distribution was used for this analysis.
Figure 6.24 displays the lines of best fit for the cumulative log-normal distribu-
tions for each of the 11 plants for which we have both CO and THC data. Except for
the WERF 1 plant, that was discussed above, all the lines lie within a fairly discrete
bundle. Thus we can conclude that the cumulative log-normal distributions of
CO/THC ratios are similar among plants,.and that this model has potential for provid-
,ing confidence in a CO concentration below which the THC concentration will be less
than 100 ppm. All data from all plants was combined into a single data base to prepare
the distribution shown in Figure 6.25. This plot includes the WERF 1 data, even
though they do not appear to be consistent with the other data. The correlation is
6-45
-------
200
150-
100-
O
I
o
o
50--
0--
-50
o
00
o
o
y =>14.751x +9.8866
R2 =0.4261
00 O
-4 -3 -2 -1 0 1
ZSCORE
Figure 6.22 CO/THC vs. Z SCORE, 1995 (Cleveland)
6-46
-------
o
I .2
O
1 --
-1
-2
-1
CO>10ppm
y=-1.1198x+2.0756
R2 = 0.9465
'O O O O
0 1
ZSCORE
Figure 6.23 ln(CO/THC) vs. Z SCORE, 1995 (Cleveland)
6-47
-------
7-
5--
O
§3
o
1 -.
-1..
-3
ARL91 WERF 3
R2 =0.936 R2 =0.898
WERF1
R2 =0.925
VNCVR
R2 =0.975
R2=C
-2
0
ZSCORE
6
Figure 6.24 ln(CO/THC) vs. Z SCORE, Individual Plants
6-48
-------
o
f-
o
o
8
7 --
6-
5-
4—
3-
2 --
1 --
0--
-1 --
-2
x
y =-O9B2x +2S8
R2 =0.880
-4 -3 -2
-1 0 1
ZSCORE
Figure 6.25 ln(CO/THC) vs. Z SCORE, All Plants
6-49
-------
excellent. The plotted distribution can be used to determine the threshold concentration
of CO, below which the THC concentration can be expected to be 100 ppm or less.
The process of determining the CO concentration at which the THC concentra-
tion can be estimated to be below 100 ppm at a given level of confidence is demon-
strated in Table 6.13. The data used hi the table are the combined data base that
consists of all CO and THC data from the 11 plants from which we have data.
TABLE 6.13
SELECTION OF CONFIDENCE LEVEL AND CO CONCENTRATION
FROM LOG-NORMAL DISTRIBUTIONS BASED ON LOG-
NORMAL DISTRIBUTION OF ENTIRE DATA SET
Percent of
Values
Greater Than
(Confidence)
0.1
1.0
5.0
10
90
95
99
99.9
Z SCORE
-3.09
-2.33
-1.64
-1.28
1.28
1.64
2.33
3.09
LN(CO/THC)
5.82
5.10
4.45
4.10
1.66
1.31
0.67
-0.06
CO/THC
Ratio at
Given
Confidence
338.3
163.5
85.4
60.4
5.26
3.72
1.95
0.94
Maximum CO
to Assure that
THC < 100
ppm
33,830
16,350
8,540
6,040
526
372
195
94
From Figure 6.25, we note that:
ln(CO/THC) =2.88 -0.952 *ZSCORE
Where: Z = Z SCORE (or the number of standard deviations from the mean)
Thus at Z SCORE = 2.33 -
ln(CO/THC) =0.667
6-50
-------
Then:
CO/THC =exp(0.667)
And:
CO/THC =1.95
Because we are looking for the CO concentration at which the THC concentra-
tion is equal to or less than 100 ppm:
CO=THC*1.95=195ppm
This technique has been used to calculate the 90%, 95 % and 99% confidence
level concentrations of CO at which THC can be estimated to be 100 ppm or less for
each of the 11 plants, and for the combined data base. The results of these calculations
are displayed in Table 6.14, along with the slope, intercept, and correlation coefficient
of the lines of best fit of each data set. The data from Cleveland show lower CO/THC
ratios than typical plants, while the data from Vancouver show higher CO/THC ratios.
On the whole the correlations are good. The correlation for the combined data set
("All Data") demonstrate excellent correlation. This frequency distribution may be
used to assign a maximum average CO concentration that provides assurance that the
THC concentration is 100 ppm or less.
OBSERVED EFFECT OF SCRUBBER ON CONCENTRATION OF TOTAL
HYDROCARBONS
During this program, the authors used a great deal of data provided by other
researchers. These other researchers chose to measure the concentration of THC and
CO in the exit gases of the sewage sludge incinerators that they sampled. This choice
is not unexpected, because the existing regulation applies to the concentration of THC
hi the exit gases. During this program, the test team measured concentrations in the
breeching between the furnace and in the exhaust stack. The evaluation of the kinetic
model required the measurement of THC and CO concentrations in the breeching, prior
to any possible influence from the scrubber. Comparison of the results to the exhaust
gas regulation requires that concentrations be measured in the exit gases. It is possible
that some operators may choose to locate the sample probe for their continuous
emission monitoring systems (CEMS) in the breeching rather than in the stack. If this
is to happen, they must know the effect of wet scrubbers on the concentration of THC.
6-51
-------
TABLE 6.14
PLOT STATISTICS AND THRESHOLD CO
CONCENTRATIONS FOR DATA SETS
Plant Location
Arlington
(1991)
Arlington
(1995)
Cleveland
Hopewell
Huntington
Lorton
Vancouver
WERF1
WERF2
WERF3
Williamsburg
All Data .
Statistics for Line of Best Fit
Slope
-0.622
-0.525
-1.198
-0.998
-0.699
-0.398
-0.459
-0.160
-0.540
-0.707
-0.956
-0.952
Inter-
cept
2.937
3.079
2.076
2.835
2.989
3.214
3.795
2.134
3.291
3.038
2.363
2.881
Correlation
Coefficient
0.936
0.907
0.947
0.893
0.936
0.906
0.975
0.925
0.953
0.898
0.859
0.880
CO to Assure 100
ppm THC with
Designated Confidence
99%
444
641
59
167
391
985
1528
582
764
404
115
195
95%
678
917
126
330
630
1292
2090
649
1100
653
330
372
90%
850
1,110
190
474
812
1,493
2,470
688
1,340
844
465
526
There are two possible effects that the scrubber might have on the THC
concentration in the furnace exit gas. THC concentration may be decreased, or it may
be increased by passage through the scrubber. A decrease in THC concentration is
easily understood, it could be the result of removal of the relatively water-soluble
components of the furnace exit gases. These soluble components consist of the organic
alcohols, ketones, acids, and aldehydes produced by inefficient combustion. An
increase hi the THC concentration could be the result of stripping of organic com-
pounds from the scrubber water. Most sewage treatment plants use final effluent to
scrub the exit gases from .the sewage sludge incinerator. This water may contain
6-52
-------
organic compounds that could be stripped during passage through the scrubber. It is
true that this water has undergone extensive aeration during the secondary treatment
stage and that during this treatment most of the volatile and slightly soluble organic
constituents have been removed. The next stage in the wastewater treatment process is
removal of the solids from the wastewater by settling hi quiescent tanks for anywhere
from 16 to 24 hours. This step would seem to present the opportunity for formation of
additional organic compounds through partial biological oxidation of the solids content
of the water. This possibility seemed less probable, but was deemed worthy of
investigation.
Table 6.15 contains a statistical summary of the data. The average value, the
maximum value, the minimum value, and the standard deviation and the relative
standard deviation are given for each of the 4 plants sampled during this program.
Also given are the arithmetic average of the ratio of THC^/THCm and the average of
the natural logarithms of these individual ratios.
THC concentration data first were adjusted to standard conditions (7% O2, Dry)
and then log normal distribution plots of the ratio THC^/THC^ were prepared. Figures
6.26 through 6.29, which are the log-normal plots for the individual plants, demon-
strate that this approach has merit. The correlation coefficients for all of the plots are
excellent. Figure 6.30 is a similar plot for the pooled data from all four of the plants
that were sampled during this program. The correlation for this plot is very good. The
analysis presented in Table 6.15 is also encouraging. The intercept of the line of best
fit for a log-normal distribution at the point where Z SCORE is equal to zero. The
frequency at Z SCORE = 0 is 50%, which is the mean value of the parameter on the y
axis. In this case, the y-axis parameter is the natural logarithm of the ratio TRC^f
THCfc. The results of the analysis demonstrate that, for three of the plants sampled, the
scrubber removes from 10 to 25 percent of the THC in the gas entering the scrubber.
The scrubber at the Arlington plant appears to have increased the THC concentration"
by approximately 3 percent.
The conclusion of this analysis is that, on the average, the wet scrubbers re-
moved 10 percent of the THC in the gases entering the scrubber.
OBSERVED EMISSIONS OF CHLORINATED DIBENZO-DIOXINS AND
DffiENZO-FURANS
The U.S. Environmental Protection Agency (EPA) continues to evaluate both
the health effects and the emissions of chlorinated dibenzo-dioxins and dibenzo-furans
(CDF) hi conjunction with the ongoing "Dioxin Reassessment" program. The manag-
ers of that program asked the EPA Office of Water to add CDF sampling and analysis
to the sampling and analysis that was proposed for this program. CDF emissions were
6-53
-------
measured in the exit gases from the scrubbers at three of the four plants tested. The
plants sampled are described briefly hi Table 6.16.
TABLE 6.15
SUMMARY OF PLOT DATA STATISTICS
FOR THCotrr/THCjN V.S. Z SCORE PLOTS
Plant
Arlington
(1995)
Cleveland
Hopewell
Hunting-
ton
All Four
(pooled)
Statistics of THC^/THC^ vs. Z SCORE Plots
Slope
0.12
0.28
-0.66
-0.29
-0.50
Intercept
0.03
-0.17
-0.32
-0.29
-0.10
Correl.
Coef.
(r2)
0.97
0.97
0.85
0.97
0.84
Estimate of
Fraction of
THC
Remaining
{exp (Intercept)}
1.03
0.85
0.73
0.75
0.90
TABLE 6.16
.•;',', " ' •:; I .
DESCRIPTION OF THE SEWAGE SLUDGE
INCINERATORS TESTED FOR CDF EMISSIONS
Plant Name
Arlington (1995)
Cleveland
Huntington
Furnace Type
Multiple Hearth
Multiple Hearth
Fluid Bed
Afterburner Type
None
On-Hearth
None
Scrubber Type
Venturi.
Venturi
Venturi.
6-54
-------
O
1
o
o
§
1.0
0.8
0.6
0.4-
0.2-
0.0
-0.2--
-0.4
-0.6
-0.8
-1.0
o o
_, -I-
y=-0.120x+0.030
#=0.974
O O O
-4-
-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0
ZSCORE
Figure 6.26 ln(THC01It/THCin) vs. Z SCORE. Arlington, Virginia, 1995
\ 6-55
-------
y=M).28Qx-0.168
R2 =0.974
-0.2- -
-0.4-
-0.6--
-0.8--
-3.0
Figure 6.27 lnCrHCont/THCin) vs. Z SCORE. Cleveland, Ohio, 1995
6-56
-------
3.0
2.0 -
^ 1.0
-5 0.0-
o
h-
o
£ -1.0
-2.0 -
-3.0--
-4.0
•4.0
= -0.662x-0.320
1?=: 0.847
°0
o
-3.0 -2.0
-1.0
0.0
ZSCORE
1.0
2.0
3.0
Figure 6.28 In( THCout/THCin) vs. Z SCORE. Hopewell, Virginia, 1995
6-57
4.0
-------
1.0
0.5--
0.0-
o
O
•0.5--
-1.0-
-1,5..
-2.0
H
-------
31-
2 -
£ jt
o 1
o
O
t 04-
-1..
-2
o
o
o
o
4-
y=-0.502x-0.102
R2 =0.845
V
00.
•4 -3-2 -10 1 2 3
ZSCORE
Figure 6.30 ln(THCout/THCiB) vs. Z SCORE. Pooled Data from All Plants
' 6-59
-------
All sampling and analysis for CDF was done by EPA Method 23. The results
(in Tables 6.17 through 6.19) are the results of the CDF analyses done during this
project. They are expressed as total nanograms of each substance per sample. Tables
6.20 through 6.23 are the same results expressed in nanograms per dry standard cubic
meter (std. cond. @ 68°F) of exit gas. The next to last column in Tables 6.20 through
6.23 contains the average results of the three runs with non-detected (ND) taken to be
zero (0). The last column hi each of these tables contains the average of the three
results with ND taken to be equal to the limit of detection of the analysis.
Table 6.24 contains a summary of the CDF data collected by these investiga-
tors, and data that were provided to EPA by the Association of Municipal Sewage
Authorities (AMSA) hi January 1995 and updated in May 1995. The results for the
data collected during this project are expressed as a range. The lower of the two values
is the average result with ND taken as zero (6); the higher result is the average with
ND taken to be the limit of detection during the analysis. The table also contains the
concentration limits that EPA recently (March 1996) proposed for hazardous waste
combustbrs, and concentration limits that EPA suggested (July 1996) for medical waste
incinerators. .
6-60
-------
TABLE6.17
ANALYTICAL RESULrTS
ARLINGTON WASIEWATER TREATMENT PLAINT
(Anatyneal results in nanograms per sample train )
ANALYTE
1
RUNMJMBER
2
3
TRIP
BLANK
MELD
BLANK
KesuJte ot isomer specific analyses
2,3,7,8 TCDF
2,3,7,8 TCDD
1,2,3,7,8 PBCDF
2,3,4,7,8 PECDF
1,2,3,7,8 PBCDD
2,3,4,7,8 PECDD
1,2,3,4,7,8 HXCDF
1,2,3,6,7,8 HXCDF
1,2,3,7,8,9 HXCDF
2,3,4,6,7,8 HXCDF
1,2,3,4,7,8 HXCDD
1,2,3,6,7,8 HXCDD
1,2,3,7,8,9 HXCDD
1,2,3,4,6,7,8 HPCDF
1,2,3,4,7,8,9 HPCDF
1,2,3,4,6,7,8 HPCDD
OCDF
OCDD
2,3,7,8 TCDD Tox. Eq. ~~
Surrogate Recovery (%)
19.4
2.3
2.9
10.3
1.4
IMD
2.3
1.4
M>
3.1
0.2
0.6
0.4
ND
0.7
1.0
22.
2.4
11.0
157
7.1
2.4
1^
6.0
1.4
ND
1.6
1.0
ND
2.0
0.2
0.6
0.4
ND
0.3
0.5
0.4
0.5
7.5
022
6.9
2.0
1.9
5.8
1.3
ND
1.5
ND
ND
2.4
ND
• ND
0.4
ND
0.4
0.5
0.4
0.6
6.8
172
Results of total congener analyses
ICDF
ICDD
PECDF
PECDD
HXCDF
HXCDD
HPCDF
HPCDD
PCDF
PCDD
Total Dioxins (ng)
rotal Mirans (ng)
TOTAL CDF (ng)
145.9
147.9
64.6
11.9
20.7
3.9
1.5
2.0
2.2
2.4
168.1
235.0
403.0
117.0
143.0
47.9
14.7
15.5
4.6
0.9
1.3
0.4
0.5
164.1
181.7
345.8
99.7
112.9
46.7
12.6
15.5
4.2
1.2
1.1
0.4
0.6
131.2
163.5
294.7
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0
—
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0
0.0
0.0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0
108
-
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0
0.0
0.0
6-61
-------
TABLE6.18
ANALYTICAL RESULTS
CLEVELAND SOUTHERLY WASTEWATER TREATMENT CENTER
(Analytical results in nanograms per sample train)
ANALVTK
RUNNUMKEK.
1
2
3
TRIP
BLANK
BLANK
Results of isomer specific analyses
2,3,7,8 TCDF
2,3,7,8 TCDD
1^3,7,8 PECDF
2,3,4,7,8 PECDF
143,7,8 PECDD
23,4,7,8 PECDD
143,4,7,8 HXCDF
143,6,7,8 HXCDF
143,7,8,9 HXCDF
23,4,6,7,8 HXCDF
1,23,4,7,8 HXCDD
14,3,6,7,8 HXCDD
14,3,7,8,9 HXCDD
1,23,4,6,7,8 HPCDF
143,4,7,8,9 HPCDF
14,3,4,6,7,8 HPCDD
OCDF
OCDD
2,3,7,8 TCDD Tax. Eq.
Surrogate Recovery (%)
0.0204
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0
127.0
0.045
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0
146.0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0
•162.0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0
113
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0
118
Results of total congener analyses
TCDF
TCDD
PECDF
PECDD
HXCDF
HXCDD
HPCDF
HPCDD
PCDF
PCDD
Total Dkrans(ng)
Total Furans(ng)
TOTAL CDF (ng)
026
0.1
0.0
ND
ND
ND
ND
ND
ND
ND
0.1
0.3
0.4
0.65
0.5
0.5
ND
0.3
ND
ND
ND
ND
ND
0.5
1.5
1.9
0.12
0.4
ND
ND
ND
ND
ND
ND
ND
ND
0.4
0.1
0.5
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0
0
0.0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0
0
0.0
6-62
-------
TABLE6.19
ANALYTICAL RESULTS
BUNnNGTOM WASTEWATER TREATMENT PLANT
(Analytical results in nanograms per sample train)
ANALVrK
RUNNUMBER
1
2
3
TRIP
BLANK
H H.I .11
BLANK
Results of Borrer specific analyses
2,3,7,8 TCDF
2,3,7,8 TCDD
12,3,7,8 PBCDF
2,3,4,7,8 PECDF
1,2,3,7,8 PECDD
2,3,4,7,8 PECDD
12,3,4,7,8 HXCDF
12,3,6,7,8 HXCDF
12,3,7,8,9 HXCDF
2,3,4,6,7,8 HXCDF
1^,3,4,7,8 HXCDD
12,3,6,7,8 HXCDD
12,3,7,8,9 HXCDD
12,3,4,6,7,8 HPCDF
12,3,4,7,8,9 HPCDF
12,3,4,6,7,8 HPCDD
OCDF
OCDD
23,7,8 TCDD Tox. Eq.
Surrogate Recovery (%)
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0
128.0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND ;
ND
ND
ND
ND
ND
0,0
116.0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0
111.0
Results of total congener analyses
TCDF
TCDD
PECDF
PECDD
HXCDF
HXCDD
HPCDF
HPCDD
PCDF
PCDD
Total Dmms (ng)
Total Furans (ng)
TOTAL CDF (Dg)
0.04-1
5.7
0.0
ND
ND
ND
ND
ND
ND
ND
5.7
0.06
5.7
0.043
5.4
ND
ND
0.3
ND
ND
ND
ND
ND
0.5
0.0
0.5
0.082
5.4
ND
ND
ND
ND
ND
ND
ND
ND
5.4
0.1
5.4
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0
110
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
. ND
ND
0
113
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0
0.0
0.0
ND
ND
ND
ND
ND
ND
ND
ND .
ND
ND
0.0
0.0
0.0
6-63
-------
TABLE 6.20
CONCTNTRATION OF DIOXINS AND FURANS
ARLINGTON WASTEWA1ER TREATMENT PLANT INCINERATOR
(All concentrations in nanograms of TEQ per cubic meter)
ANALYl'E
RUN NUMBER
1
2
3
AVE1
ND=0
klAGE
ND=MDL
Isomer specific concentrations
2,3,7,8 TCDF
2,3,7,8 TCDD
1,2,3,7,8 EBCDF
2,3,4,7,8 HBCDF
1,2,3,7,8 EECDD
2,3,4,7,8 PBCDD
1,2,3,4,7,8 HXCDF
1,23,6,7,8 HXCDF
1,2,3,7,8,9 HXCDF
2,3,4,6,7,8 HXCDF
1,2,3,4,7,8 HXCDD
1,2,3,6,7,8 HXCDD
1,23,7,8,9 HXCDD
1,2,3,4,6,7,* HPCDF
1,23,4,7,8,9 HPCDF
1,23,4,6,7,8 HPCDD
OCDF
OCDD
2,3,7,8 TCDD Tox.Eq.
Surrogate Recovery (%)
4.07
0.49
0.61
2.16
0.30
ND
0.48
0.29
ND
0.65
0.03
0.13
0.09
ND
0.15
0.20
0.47
0.51
10.61
127.0
1.56
0.51
0.41
1.32
0.31
ND
0.34
0.22
ND
0.45
0.04
0.13
0.09
ND
0.07
0.12
0.10
0.12
5.79
146.0
1.52
0.45
0.41
1.28
0.29
ND
0.33
ND
ND
0.53
ND
ND
0.08
ND
0.09
0.10
0.09
0.13
5.31
162.0
0.24
0.48
0.02
0.79
0.15
0.00
0.04
0.02
0.00
0.05
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
1.82
113
0.24
0.48
0.02
0.79
0.15
0.00
0.04
0.02
0.00
0.05
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
1.83
118
Total congeno: concentrations
TCDF
TCDD
FECDF
PBCDD
HXCDF
HXCDD
HPCDF
H3PCDD
OCDF
OCDD
Total Dioxins (ng)
Total Furans(ng)
AV^AAAU "L-^R **. \f*^lf
30.7
31.1
13.6
2.5
4.4
0.8
0.3
0.4
0.5
0.5
35.3
49.4
84.7
25.6
31.3
10.5
3.2
3.4
1.0
0.2
0.3
0.1
0.1
35.9
39.8
75.7
22.0
25.0
10.3
2.8
3.4
0.9
0.3
0.2
0.1
0.1
29.0
36.1
65.2
26.1
29.1
11.5
2.8
3.7
0.9
0.3
0.3
0.2
0.3
0.0
0.0
0.0
26.1
29.1
11.5
2.8
3.7
0.9
0.3
0.3
02
0.3
0.0
0.0
0.0
6-64
-------
TABLE 6.23
CONCENTRATIONS OF DIOXINS AND FURANS(1>
(All concentrations in nanograms per cubic meter )
PLANT
Proposed Medical ^
Feb. 19
New
itxistmg
2,3,7,8 TCDD
Tpx.Eq.
(ng/irf)
TOTAL
CONGENERS
(ng/m?)
tVaste Incinerator Rule
£5 Proposal
1.9
1.9
80
80
July 1996 EPA "inclinations"
New-Large and Medium
Small
Existing- Large
Medium
Small
0.6
2.3
2.3
2.3
7
25
125
125
125
7
Proposed Hazardous Waste Combustor Rule
March 1"996 Proposal
New and Existing
Data Collected
Cleveland Southerly
untington
Arlington
0.2
None
During This Project
0.0004 < TEQ < 0.04
0.0 < TEQ < 0.04
1.82 Average of results from 10 incinerators
6-67
-------
-------
TABLE6.21
CONCENTRATION OF DIOXINS AND FORANS
CLEVELAND SOUTHERLY WAS1EWA1ER TREATMENT PLANT
(All concentrations in pcograms of TEQper cubic meter)
ANALYrE
1
RUN NUMBER
2
3
AVE
ND=0
RAGE
ND=MDL
isorner specie concentrations
2,3,7,8 TCDF
2,3,7,8 TCDD
1,2,3,7,8 PECDF
2,3,4,7,8 PECDF
1,2,3,7,8 PECDD
2,3,4,7,8 PECDD
1,2,3,4,7,8 HXCDF
1,2,3,6,7,8 HXCDF
1,2,3,7,8,9 HXCDF
2,3,4,6,7,8 HXCDF
1,2,3,4,7,8 HXCDD
1,2,3,6,7,8 HXCDD
1,2,3,7,8,9 HXCDD
1,2,3,4,6,7,8 HPCDF
1,2,3,4,7,8,9 HPCDF
1,2,3,4,6,7,8 HPCDD
OCDF
OCDD
2,3,7,8 TCDD Tax. Bq.
Surrogate Recovery (%)
TCDF
TCDD
PECDF
PECDD
HXCDF
HXCDD
HPCDF
HPCDD
OCDF
OCDD
Total Dioxins fog)
Total Furans(ng)
TOTAL, CDF (tag)
4.23
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
423
127.0
8.36
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
8.36
146.0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.00
162.0
0.42
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.42
113
0.55
3.96
0.99
9.91
9.91
0.99
1.98
1.98
1.98
1.98
1.98
1.98
1.98
0.20
0.20
0.20
O.O4
O.O4
40.85
118
Total cxmgener concentrations
53.9 "
26.9
3.3
ND
ND
ND
ND
ND
ND
ND
26.9
57.2
84.2
120.8
87.3
103.3
ND
48.3
ND
ND
ND
ND
ND
87.3
221.1
308.4
24.2
70.5
ND
ND
ND
ND
ND
ND
ND
ND
70.5
24.2
94.6
66.3
61.6
34.5
0.0
16.1
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
66.3
61.6
41.3
19,8
29.7
19.8
19.8
19.8
39.6
39.6
0.0
0.0
0.0
6-65
-------
TABLE 6.22
CXJNGE3VTRATION OF DIOXINS AND FCJRANS
HUNTINGJjON WASTEWATER TREATMENT PLANT
(All concentrations in nanograms of TEQ per cubic metei)
ArNAJLYTJE
KUIN NUMBER
1
2
3
AVE3
ND=0
?AGE
ND=MDL
Isomsr specific concentrations
2,3,7,8 TCDF
2,3,7,8 TCDD
1,23,7,8 HBCDF
23,4,7,8 HECDF
1,23,7,8 EBCDD
23,4,7,8 FECDD
1,23,4,7,8 HXCDF
1,2,3,6,7,8 HXCDF
1,23,7,8,9 HXCDF
23,4,6,7,8 HXCDF
1,23,4,7,8 HXCDD
1,2,3,6,7,8 HXCDD
1,23,7,8,9 HXCDD
1,23,4,6,7,8 HPCDF
1,23,4,7,8,9 HPCDF
1,23,4,6,7,8 HPCDD
OCDF
OCDD
23,7,8 TCDD Tox.Eq.
Surrogate Recoveiy(%)
TCDF
TCDD
BECDF
HECDD
HXCDF
HXCDD
HPCDF
HPCDD
OCDF
OCDD
Total Dkmns (ng)
Total Rirans(ng)
TOTAL CDF
-------
SECTION?
CONCLUSIONS
This conclusions section will consider the results of the analysis of the work that
was done in pursuit of accomplishing each of the purposes that were stated in Section
1. During the course of this work, several other observations or conclusions were
made by the investigators. These conclusions will be presented as part of the discus-
sion of the conclusions about the purposes.
CARBON MONOXIDE TOTAL HYDROCARBONS RELATIONSHIP
One purpose was to determine if there is a relationship between the concentra-
tions of CO and THC hi the exit gas from sewage sludge incinerators that will support
the use of CO monitoring as a surrogate for THC monitoring. The relationship
between CO and THC was investigated through least squares fits of CO and THC
concentration data, and through statistical analyses of the distribution of CQ/THC
ratios. Also, a first order kinetic model was used to determine whether a relationship
between CO and THC exists. The conclusions of this study are:
1) CO concentrations cannot be used to predict THC concentrations in
the exit gas over long periods of time. Although predictive relationships
between CO and THC appear to occur over title duration of short (4 hrs.
to 8 hrs.) tests, those relationships are not stable over longer periods of
time.
2) Other sewage sludge incinerator operating parameters (e.g., feed rate,
moisture content of the sewage sludge, and heat value of the sewage
sludge) affect the concentration of both THC and CO in the exit gas.
3) If CO concentrations are to be used to ensure compliance with the
Part 503 THC operational standards, the incinerator operating parame-
ters that affect both the THC and CO concentrations in the exit gas must
be identified and monitored along with the CO concentration. Values
for the operating parameters must be developed over a period of at least
one month of operation of the incinerator. The variation of operating
parameter values during one month of normal operation appear to
represent the variation over a year of operation.
7-1
-------
4) The ratios of exit gas concentration CO divided by THC concentration
are log-normally distributed. The correlation of the log-normal distribu-
tion for the pooled CO/THC ratio data from all plants was not as good
as the correlations for Individual plants. This implies that equip-ment
and operational differences affect the distribution of CO/THC ratios and
that plant specific distributions are superior to the industry-wide distribu-
tion.
5) The distribution for the exit gas CO/THC ratio is different for each
sewage sludge incinerator. The statistics of the distribution of the
CO/THC ratio for a month are similar to the statistics of the CO/THC
ratio for a year.
" •-.$ ' ' '" , .''.' •: : • '. ' ', " • •.'3.'.'"_ .-,•"• ;"' ' ' .' .' •
6) The measured exit gas concentrations of CO and THC for one month
of sewage sludge incinerator operation can be used to estimate the
probability distribution for the annual CO/THC ratio. This probability
distribution can be used to calculate a 5-mimite CO exit gas concentra-
tion such that the 5-minute average THC exit gas concentration does not
exceed 100 ppm 99 percent of the time. Given that the 5-minute average
THC concentration is less than 100 ppm, the monthly average THC
concentration will be less than 100 ppm.
7) The first order kinetic model can not be used to predict the concentra-
tion of either CO or THC hi the exit gas from a sewage sludge incinera-
tor. Nor, can it be used to predict a relationship between CO and THC
in the exit gas from a sewage sludge incinerator.
OBSERVED EXIT GAS THC CONCENTRATIONS
Another purpose of this study was to measure the concentration of THC in the
exit gas from well operated sewage sludge incinerators. Tests were conducted at four
sewage sludge incinerators during this study. The average value of the THC concentra-
tions observed during those tests at the sewage sludge incinerators tested are listed
Table 7.1. These tests were of short duration, from 3 to 5 days in length. No special
preparations were undertaken by the operators of any of the sewage sludge incinerators
prior to the tests. These average values demonstrate the capability of the equipment
over short periods of tune, but do not address the THC operational standard, which is a
monthly average. The data from Hopewell are hot representative of the normal opera-
tion of that sewage sludge incinerator because, at the request of the test team, the
operators made adjustments to the operation that increased the THC emissions from the
sewage sludge incinerator. Data accumulated from other sources show that typical
THC concentrations in the exit gas from sewage sludge incinerators are less than 100
ppm(@795 'Qa,'Dry).
7-2
-------
TABLE 7.1
SUMMARY OF TOTAL HYDROCARBON CONCENTRATIONS
MEASURED AT INCINERATORS LISTED
Plant Location
Arlington, Va.
Cleveland
(Southerly), Oh.
Huntington,
WV
Hopewell, Va.
Plant Description
MHF no
Afterburner
MHF on Hearth
Afterburner
Fluid Bed
MHF Secondary
Combustion
Chamber
Average THC
Concentration
(ppm @7% O2, Dry)
63.2
8.6
7.8
44.0
Additional observations about the concentration of THC in the exit gas from
sewage sludge incinerators were made. These are described below.
1) The THC concentrations in the exit gas from sewage sludge incinerators are
log-normally distributed.
2) The distribution of THC concentrations in the exit gas from sewage sludge
incinerators for individual months were found to be similar to the annual
distributions.
3) A test consisting of continuous monitoring of THC and operating parameters
for a period of one month could be used to predict the maximum expected 30-
day average THC concentration. The process is similar to that described for the
CO/THC ratio distributions.
4) Before the values of other parameters, along with the frequency distribution
of THC exit gas concentrations can be used to demonstrate compliance with the
Part 503 operational standard, additional data analysis is needed to determine
which sewage sludge incinerator operating parameters affect the exit gas THC
concentration and must be recorded during a one-month test and controlled
during subsequent operations.
7-3
-------
5) Additional data analysis is needed to determine the allowable limits of
variation of the important operating parameters that will allow flexibility for the
sewage sludge incinerator operator and assure compliance with the Part 503
operational standard.
CHLORINATED DIOXINS AND FURANS
i , ' ,* " ^ ' ' I,.
, ', i ', . "' I,", " ' t f '" , , • ' i ,
The third purpose of the investigation was to measure the concentrations of
chlorinated dioxins and furans (CDF) in the exit gas from sewage sludge incinerators.
Tests for CDF were done at three of the four sewage sludge incinerators. The test data
(summarized in Table 7.2) showed the concentrations of 2,3,7,8 TCDD toxic equiva-
lent at two of the three sites to be less than the concentrations that EPA proposed (61-
,", illh ' ', ' •• , ''!,.« ,,, , " • ,„. "li ".,, i I X' '"'" '"' ' "' "' ' 1|"'1111'1 " '"' '""•'• ' ' *^ • \
FR-17357, April 19, 1996) for hazardous waste incinerators. Only the concentrations
measured at Arlington incinerator, which has no afterburner, were of the same order of
magnitude as the proposed hazardous waste incinerator rules. The exit gas concentra-
tion of CDF at the other two sewage sludge incinerators was far less than the proposed
exit gas concentration proposed for hazardous waste combustors.
TABLE 7.2
SUMMARY OF DIOXIN AND FURAN CONCENTRATIONS
Plant Location
Arlington
Cleveland Southerly
Huntington
Proposed Haz. Waste Rule
2,3,7,8 TCDD Toxic
Equivalent
(ng/m3)
<1.83
<0.04
<0.04
0.2
COMBUSTION TEMPERATURE AND EXIT GAS THC CONCENTRATION
The fourth purpose of this investigation was to study the relationship between
final combustion zone temperature (and other operating parameters) and the concentra-
tion of THC in the exit gas. The conclusions of the investigation are:
7-4
-------
1) There is a relationship between the decrease in THC Concentration in
the final combustion zone and the temperature of the final combustion
zone. That relationship is described by the first order kinetic model.
2) Use of the first order kinetic model to predict the THC in the exit gas
from the temperature of the final combustion zone is appropriate when
the concentration of THC in the gas entering the final combustion zone
is constant. These predictions usually work well for short (4 to 8 hours)
time periods.
3) The concentration of THC in the gas entering the final combustion
zone is not constant over long time periods.
4) At a given temperature and oxygen content in the final combustion
zone, the fractional destruction of THC in the final Combustion zone is
constant. .
5) Changes in sewage sludge incinerator operation or construction (e.g.,
sewage sludge feed rate, sewage sludge dewatering) affect the concentra-
tion of THC in the gas entering the final combustion zone.
6) The kinetic model correlation overpredicts the exit gas THC concen-
tration when the concentration of THC entering the final combustion
zone is lower than it was when the correlation parameters were defined.
7) The kinetic model correlation underpredicts the exit gas THC concen-
tration when the concentration of THC entering the final combustion
zone is higher than it was when the correlation parameters were defined.
8) The temperature of the final combustion zone cannot be used to
predict the concentration of THC hi the sewage sludge incinerator exit
gas unless the concentration of THC in the gas entering the final com-
bustion zone is known at all tunes.
7-5
-------
-------
APPENDIX A
ARLINGTON CONTINUOUS MONITOR DATA
-------
-------
Arlington Virginia "'
Continuous Monitor Data
July 1995
DATE
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/951
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95 .
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
TIME
9:55
10:00
10:05
10:10
10:15
10:20
10:25
10:30
10:35
10:40
10:45
10:50
10:55
11:00
11:05
11:10
11:15
11:20
11:25
11:30
11:35
11:40
11:45
11:50
11:55
12:00
12:05
12:10
12:15
12:20
12:25
12:30
12:35
12:40
12:45
12:50
12:55
13:00
13:05
13:10
13:15
13:20
13:25
13:30
13:35
13:40
13:45
13:50
13:55
14:00
14:05
14:10
14:15
14:20
14:25
14:30
CO2
Scrubber
Inlet
C02
(%)
6.7
7.1
7.6 .
8.6
9.5
9.2
9.0
9.5
9.2
9.6
10.0
9.7
9.3
9.2
8.8
8.4
8.2
8.3
8.5
8.9
9.0
8.7
8.7
8.5
7.9
8.0
7.8
• 7.4
7.4
7.2
7.9
7.9
7.6
8.2
7.8
8.2
8.1
7.2
7.1
9.6
9.8
9.6
10.8
11.3
11.2
Scrubber
Outlet
CO2{%)
(%)
5.9
5.6
5.5
5.5
. 4.6
3.6
3.9
4.2
4.4
5.0
5.4
5.4
5.5
5.7
' 5.9
6.1
6.3
6.1
5.9
5.7
5.6
5.4
5.2
5.3
5.4
5.4
5:6
< 5.7
5.5
5.5
•5.4
,5.1
5.1
5.1
4.8
4.6
4.4
4.8
4.8
4.6
4.8
4.7
5.0
5.0
4.6
4.5
5.1
5.4
5.7
6.5
7.2
7.2
O2
Scrubber
Inlet
02
(%)
12.7
12.2
11.6
10.2
9.3
9.7
10.0
9.4
9.8
9.3
8.9
9.3
9.7
9.9
10.2
10.8
11.1
10.9
10.6
10.6
10.1
10.1
10.4
10.5
10.6
11.5
11.4
11.7
12.1
12.0
12.2
11.3
11.3
11.6
10.8
11.2
10.7
10.7
11.8
11.6
8.2
7.9
8.2
6.9
6.6
7.0
Scrubber
Outlet
02
(%)
14.1
14.3
14.4
14.5
15.5
16.6
16.2
15.8
15.5
14.8
14.4
14.3
14.3
14.0
14.0
13.7
13.5
13.7
13.9
14.0
14.2
14.4
14.7
14.6
14.4
14.5
14.1
14.1
14.3
14.3
14.4
14.8
14.8
14.9
15.2
15.3
15.5
15.0
15.1
15.3
15.0
15.0
14.8
14.6
14.9
15.0
14.2
. 13.8
13.4
12.4.
11.8
12.0
Temperature
Scrubber
Inlet
"F
97
176
827
824 ,
820
825
834
843
842
847
856
863
872
868
859
854
847
834
821
819
825
822
834
' 844
850
856
859
840
834
830
820
829
823
831
827
818
810
802
794
783
769
762
755
761
776
810
836
842 ,
Scrubber
Outlet
°F
84
84
81
53
476
167
170
163
164
169
170
170
173
174
171
170
170
169
170
170
170
169
169
168
166
165
166
166
166
167
167
166
166
165
164
164
164
163
166
166
168
168
169 '
172
169
168
167
163
165
176
176
172
172
170
168
THC
Scrubber
Inlet
THC
(ppm)
29.2
53.0
89.1
66.2
53.7
50.4
45.1
54.1
53.4
46.2
. 43.7
45.1
40.7
42.1
38.4
38.4
45.2
46.3
45.4
38.9
48.4
68.5 .
54.0
50.3
46.1
39.2
55.7
56.2
55.0
58.0
49.7
53.1
45.6
39.1
48.0
46.1
48.3
50.6
57.2
64.3
65.0
195.1
196.1
134.3
146.0
140.0
90.5
Scrubber
Outlet
THC
(ppm)
,
12.3
13.3
14.5
11.3
15.9
21.5
23.6
25.0
25.0
23.6
26.0
24.0
26.2
27.1
23.7
21.7
19.4
17.6
17.1
17.2
17.1
17.7
18.5
19.2
19.8
21.2
21.1
19.3
18.3
16.9
16.9
20.8
21.7
20.5
20.2
16.5
17.3
16.0
16.7
17.8
19.2
20.7
23.7
33.0
33.8
36.0
207.6
177.3
156.8
133.8
117.5
78.5
CO
Scrubber
Inlet
CO
(ppm)
1071
888
.763
697
749
,673
664
750 .
749
795
797
694
613
557
499
478
476
502
598
623
611
597
582
562
527
478
448
446
476
480
459
443
411
421
491
699
1230
1513
1759
4200
4425
4051
4050
3284
2342
Scrubber
Outlet
.CO
(ppm)
715
632
521
450
405
431
404
409
465
480
506
508
445
400
361
324
310
309
326
344
379
399
391
385
375
362
342
311
292
291
298
300
282
270
251
249
298
426
940
941
1084 ,
2229
2356
2401
2458
2120
1515
Moisture
Scrubber
Inlet
H2O
(%)
_
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0'.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
Scrubber
Outlet
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
O.I
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
. 0.1
0.1
0.1,
0.1
0.1
0.1
O.I
0.1
0.1
0.1
1 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7(21195
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
TIME
14:35
14:40
14:45
14:50
14:55
15:00
15:05
15:10
15:15
15:20
15:25
15:30
15:35
15:40
15:45
15:50
15:55
16:00
16:05
16:10
16:15
16:20
16:25
16:30
16:35
16:40
16:45
16:50
16:55
17:00
17:05
17:10
17:15
1720
1725
17:30
17:35
17:40
17:45
17:50
17:55
18:00
18:05
18:10
18:15
18:20
18:25
18:30
18:35
18:40
18:45
18:50
18:55
19:00
19:05
19:10
C02
Scrubber
Inlet
COz
(%)
10.8
10.3
9.5
9.2
8.5
8.5
8.7
8.8
9.2
9.5
9.7
10.8
9.6
7.3
7.3
6.7
6.7
7.2
7.7
7.6
8.1
7.8
7.1
6.7
5.7
5.8
6.5
6.6
7.7
7.9
8.0
8.0
7.7
7.1
7.0
8.0
8.3
8.1
8.8
9.8
10.6
10.7
11.2
11.4
11.1
10.8
9.7
9.2
8.5
Scrubber
Outlet
C02<%)
(»)
7.1
6.7
6.3
6.1
5.6
5.5
5.7
5.7
5.7
6.1
6.2
6.5
5.9
4.2
4.2
3.8
3.9
4.2
4.4
4.4
4.8
4.5
4.2
4.0
3.4
3.5
3.8
3.9
4.5
4.6
4.6
4.7
4.4
4.2
4.1
4.6
4.9
5.0
5.4
5.9
6.3
6.4
6.6
6.8
6.7
6.4
5.9
5.6
5.3
O2
Scrubber
Inlet
Oz
(%)
7.7
8.5
9.3
9.7
10.5
10.5
10.3
10.3
9.9
9.5
9.4
8.2
9.6
12.4
12.3
12.8
12.6
12.0
11.5
11.6
11.3
11.6
12.3
12.8
13.9
13.5
12.8
12.8
11.2
11.1
11.1
11.0
11.5
12.0
12.0
10.6
10.2
10.5
9.7
8.7
7.9
8.0
7.5 '
7.4
7.8
8.2
9.3
9.7
10.5
Scrubber
Outlet
02
(%)
12.3
12.9
13.3
13.6
14.1
14.1
13.9
13.9
14.1
13.7
13.7
13.3
14.0
15.9
15.9
16.2
16.0
15.7
15.4
15.5
15.0
15.4
15.8
16.0
16.6
16.5
16.1
16.0
15.5
15.4
15.3
15.3
15.5
15.8
15.8
15.1
14.8
14.7
14.2
13.7
13.3
13.3
13.1
13.0
13.2
13.4
14.0
14.3
14.7
Temperature
Scrubber
Inlet
°F
854
848
840
837
833
833
843
854
857
881
887
923
938
889
882
871
869
872
885
887
911
921
917
917
892
893
901
902
894
888
878
874
875
873
869
872
837
669
868
858
839
828
841
841
836
840
846
856
850
855
860
867
877
865
861
840
Scrubber
Outlet
"F
167
165
165
164
164
164
164
165
167
167
167
169
168
169
170
169
171
171
172
171
171
171
170
170
170
170
171
171-
222
171
171
171
170
172
172
171
169
169
169
168
167
167
170
168
164
165
165
165
163
162
160
163
163
163
164
164
THC
Scrubber
Inlet
THC
(ppm)
54.1
52.6
46.7
53.2
58.0
55.9
52.2
51.5
51.7
42.7
49.1
53.4
55.7
45.1
44.8
48.7
45.7
44.8
37.3
39.8
28.2
38.4
46.9
45.4
47.2
48.2
40.1
39.1
43.2
32.6
30.9
28.5
32.9
43.2
38.2
36.9
48.0
42.5
39.2
44.5
46.3
57.9
52.5
41.6
36.5
33.5
30.7
34.2
Scrubber
Outlet
THC
(ppm)
34.1
29.3
29.1
30.0
30.5
30.0
28.4
26.0
25.3
21.3
24.2
25.2
22.1
16.3
14.9
18.4
16.2
15.1
14.3
14.6
12.9
13.0
13.3
13.5
15.6
14.3
12.5
11.7
13.6
13.8
13.5
14.5
15.9
18.6
23.7
19.9
22.1
27.0
27.8
30.7
36.7
39.8
43.6
44.2
25.1
20.3
18.7
15.7
16.1
CO
Scrubber
Inlet
CO
(ppm)
1014
629
511
521
487
559
621
672
776
820
890
1092
668
557
763
781
755
787
734
710
623
559
400
566
631
600
596
692
702
705
678
625
557
460
472
550
752
1029
1397
1503
1755
1736
1185
963
695
505
466
Scrubber
Outlet
CO
(ppm)
681
418
334
341
315
359
401
430
477
505
542
637
407
340
462
477
443
459
428
419
406
397
351
239
348
387
358
360
418
408
414
417
400
368
328
271
278
341
465
620
826
889
1028
1034
727
587
427
313
288
Moisture
Scrubber
Inlet
H20
(%)
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3,
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
Scrubber
Outlet
H20
w
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
.0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
o.r
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
2 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
, 7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
7/21/95
TIME
19:15
19:20
19:25
19:30
19:35
19:40
19:45
19:50
19:55
20:00
20:05
20:10
20:15
20:20
20:25
20:30
20:35
20:40
20:45
20:50
20:55
21:00
21:05
21:10
21:15
21:20.
21:25
21:30
21:35
21:40
21:45
21:50
21:55
22:00
22:05
22:10
22:15
22:20
22:25
22:30
22:35
22:40
22:45
22:50
22:55
23:00
23:05
23:10
23:15
23:20
23:25
23:30
23:35
23:40
23:45
23:50
CO2
Scrubber
Inlet
COz
(%>
8.4
8.3
8.4
9.0
8.9
8.5
8.6
9.0
9.5
10.3
9.2
7.0
6.1
7.4
7.8
7.6
8.2
9.0
9.8
10.1
11.1
10.1
7.6
7.4
7.2
8.4
9.4
9.9
9.1
8.9
9.2
8.7
8.2
8.2
8.6
6.3
11.5
10.9
9.8
8.8
8.3
8.2
8.2
8.6
9.5
Scrubber
Outlet
C02 (%)
(%)
5.2
5.1
5.2
5.5
5.5
5.3
5.3
, 5.5
5.7
6.3
5.6
4.5
4.0
4.4
4.6
4.7
5.1
5.5
5.9
6.1
6.7
6.0
4.6
4.3
4.5
5.1
5.6
5.9
5,5
5.4
5.5
5.2
5.0
5.0
5.2
3.9
5.8
5.4
5.2
5.1
5.1
5.3
O2
Scrubber
Inlet
Oz
(%)
10.7
10.8
10.6
9.9
10.1
10.6
10.4
9.9
9.5
8.6
10.2
12.5
13.3
11.7
11.3
11.6
10.7
9.8
9.1
8.8
7.7
9.1
11.8
12.0
11.8
10.5
9.4
8.9
10.0
10.2
9.9
10.6
11.0
11.0
10.6
13.1
7.3
8.0
9.4
10.4
11.0
11.1
11.1
10.6
Scrubber
Outlet
02
(%)
14.7
14.8
14.7
14.3
14.4
14.7
14.6
14.3
14.1
13.6
14.5
15.6
16.1
15.6
15.3
15.2
14.8
14.4
14.0
13.8 t
13.2
14.1
15.5
15.8
15.5
14.7
14.2
13.9
14.5
14.6
14.4
14.8
15.1
15.1
14.8
.16.4
, .
14.1
14.5
14.8.
14.9
14.9
14.6
Temperature
Scrubber
Inlet
°F
834
832
852
873
881
884
892
905
918
935
929
886
865
871
881
886
894
906
918
913
939
931
878
847
847
859
873
884
869
864
876
867
873
876
897
847
827
808
788
764
786
818
822
788
812
774
831
830
819
797
781
771
767
773
Scrubber
Outlet
°F
163
164
163
164
164
164
164
164
164
164
162
158
157
164
165
161
163
165
165'
164
162
162
161
164
163
165
167
167
165
164
164
164
164
163
164
163
165
165
160
161
167
167
166
168
171
170
164
165
163
162
161
161
162
THC
Scrubber
Inlet
THG
(ppm)
32.9
30.0
32.9
29.3
24.1
24.8
26.6
23.4
24.1
25.6
27.6
33.5
40.5
35.1
30.4
35.3
31.5
29.8
28.8
31.3
35.7
37.8
36.2
34.8
32.6
29.0
26.3
23.1
25.9
28.6
25.1
26.6
28.9
26.0
25.2
31.5
1
53.9
28.6
25.2
20.0
24.0
23.1
27.2
27.0
25.9
Scrubber
Outlet
THC
(ppm)
18.3
16.7
17.3
16.0
14.9
13.5
13.1
12.7
12.0
13.8
12.8
17.2
18.7
13.8
14.6
16.9
16.8
16.6
16.6
19.1
25.2
21.9
16.6
16.1
14.8
12.6
11.5
10.6
11.2
10.9
10.5
11.4
12.0
12.6
10.0
13.1
17.2
17.8
17.2
18.2
17.7
16.8
CO
Scrubber
Inlet
CO
(ppm)
421
401
494
476
448
, 446
469
528
597
686
549
532
. 548
483
484 •
473
. 506
556
642
849
1043
832
572
635
506
491
501
518
567
582
565
583
586
551
516
744
1251
930
604
515
491
488
530
601
Scrubber
Outlet
CO
(ppm)
267
252
304
295
280
280
293
329
371
412
353
345
361
293
291
301
314
343
395
503
612
505
355
374
313
301
305
312
340
352
342
358
365
370
327
470
1
343
314
301
300
324
365
Moisture
Scrubber
Inlet
H20
(%)
0.3
0.3
0.3
0.3
0.3
0.3 -
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
Scrubber
Outlet
H20
W.-
o.i
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.
0.
0.
0.
0.
0.
0.
0.
0.1
0.1
0.1
0.1
0.1
3 of 26
-------
V •• ' •
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/21/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7122195
7/22/95
7/22/95
TIME
23:55
0:00
0:05
0:10
0:15
0:20
0:25
0:30
0:35
0:40
0:45
0:50
0:55
1:00
1:05
:10
:15
:20
:25
•JO
:35
:40
:45
1:50
1:55
2:00
2:05
2:10
2:15
230
225
2:30
2:35
2:40
2:45
2:50
2:55
3:00
3:05
3:10
3:15
330
335
330
335
3:40
3:45
3:50
3:55
4:00
4.-05
4:10
4:15
430
4:25
4:30
CO2
Scrubber
Inlet
COz
«
11.0
9.8
7.7
6.3
6.7
7.4
8.2
9.1
9.8
10.2
10.9
11.4
10.3
6.7
5.9
6.5
6.3
6.8
6.6
7.3
8.1
7.6
7.2
7.1
7.2
6.9
6.0
6.2
6.8
8.0
9.4
10.5
11.1
11.5
12.3
13.2
14.0
12.9
8.2
6.2
5.1
5.6
5.4
5.2
6.4
6.9
7.7
8.2
7.7
7.3
7.8
9.0
9.3
7.7
7.5
Scrubber
Outlet
C02(%)
(%)
5.8
6.6
5.9
4.8
4.1
4.3
4.7
5.1
5.5
6.0
6.1
6.5
6.9
6.3
4.3
3.9
4.2
4.1
4.4
43.
4.6
5.1
4.8
4.5
4.5
4.6
4.4
4.0
4.0
4.3
5.0
5.8
6.3
6.8
7.2
8.0
8.4
8.9
8.2
5.3
4.0
3.4
3.8
3.7
3.5
4.2
4.5
5.1
5.4
5.1
4.8
5.1
5.9
6.1
5.1
4.9
O2
Scrubber
Inlet
02
w
9.5
7.8
9.5
11.8
13.3
12.7
11.7
10.8
9.7
9.0
8.8
8.0
7.4
8.9
13.0
13.6
13.0
13.4
12.5
12.8
12.1
11.1
11.8
12.3
12.3
12.2
12.6
13.5
13.1
12.2
10.7
9.0
7.9
7.0
6.5
6.0
5.4
4.5
6.0
11.6
13.7
14.8
14.1
14.4
14.5
12.9
12.2
11.2
10.8
11.3
11.8
11.1
9.6
9.5
11.3
11.4
Scrubber
Outlet
02
(%)
14.0
13.2
14.0
15.2
16.0
15.7
15.2
14.7
14.2
13.8
13.7
13.3
12.9
13.6
15.9
16.2
15.8
16.1
15.5
15.7
15.3
14.9
15.2
15.4
15.4
15.4
15.6
16.1
15.9
15.5
14.6
13.7
13.2
12.6
12.1
11.2
10.9
10.4
11.4
14.8
16.2
17.0
16.5
16.6
16.7
15.7
15.2
14.6
14.3
14.6
14.9
14.5
13.6
13.5
14.7
14.8
Temperature
Scrubber
Inlet
"F
795
836
839
803
759
766
780
789
801
816
821
845
896
914
846
810
810
794
809
801
805
828
822
811
806
805
783
751
745
747
752
763
764
774
799
845
883
928
959
901
837
786
789
775
760
783
784
796
806
807
797
806
832
847
818
808
Scrubber
Outlet
°F
162
161
161
158
156
158
162
164
166
167
166
165
165
164
160
158
158
158
160
161
161
162
161
160
160
160
159
158
160
161
162
164
163
161
160
157
154
148
151
157
155
153
153
152
153
156
155
156
157
157
157
157
159
159
158
158
THC
Scrubber
Met
THC
(ppm)
23.5
28.1
20.8
22.3
26.3
23.7
20.5
19.0
18.4
17.7
20.8
21.2
25.4
24.4
28.1
30.5
28.5
30.7
24.5
25.0
23.5
21.1
21.8
20.3
22.6
21.6
25.2
30.6
29.2
28.0
27.0
22.8
35.5
46.5
41.4
34.4-
38.5
80.8
69.4
30.0
37.6
47.0
48.7
53.5
56.3
45.5
39.8
31.2
26.6
24.7
24.7
20.3
18.7
14.8
16.2
18.3
Scrubber
Outlet
THC
(ppm)
15.7
24.0
16.0
14.7
16.7
14.1
12.2
12.6
12.6
12.9
15.2
21.8
21.7
15.0
15.1
17.1
15.8
19.2
13.7
15.6
16.1
13.4
14.5
15.9
17.1
16.5
20.2
24.3
23.3
21.6
22.9
26.6
36.7
47.6
48.5
41.5
46.7
92.7
68.8
15.7
23.8
34.5
34.0
38.8
42.5
32.1
30.6
24.2
19.9
19.0
19.3
17.6
14.6
11.9
13.7
13.8
CO
Scrubber
Inlet
CO
(ppm)
720
991
650
572
620
539
491
511
556
630
848
1038
975
759
622
775
775
624
555
671
657
518
508
581
617
577
500
451
432
539
685
958
1524
2049
2218
2118
2558
3122
2371
587
716
910
846
812
871
939
1046
791
592
586
872
937
774
495
493
464
Scrubber
Outlet
CO
(ppm)
429
585
416
373
402
345
306
315
337
379
500
610
603
465
433
545
536
428
362
428
419
327
323
368
390
363
316
289
278
335
423
589
911
1238
1366
1391
1647
1826
1341
410
503
617
576
564
597
607
682
523
390
383
564
614
509
321
319
302
Moisture
Scrubber
Inlet
H20
(%)
Scrubber
Outlet
H20
(%)
4 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
TIME
' 4:35
4:40
4:45
4:50
4:55
5:00
5:05
5:10
5:15
5:20
5:25
5:30
5:35
5:40
5:45
5:50
5:55
6:00
6:05
6:10
6:15
6:20
625
6:30
6:35
6:40
6:45
6:50
6:55
7:00
7:05
7:10
7:15
7:20
7:25
7:30
, 7:35
7:40
7:45
7:50
7:55
8:00
8:05
8:10
8:15
8:20
8:25
8:30
8:35
8:40
8:45
,8:50
8:55
9:00
9:05
9:10
CO2
Inlet
C02
(%)
8.2
8.9
9.6
2.0
2.7
3.1
2.5
.3.8
4.9
4.7
4.4
5.0
5.4
5.6
6.1
5.6
4.8
6.9
7.4
7.4
8.0
8.1
8.4 .
9.1
8.7
10.2
9.9
10.1
8.8
8.4
8.9
9.4
10.0
11.1
12.1
12.3
10.9
9.8
8.5
8.0
,9.0
9.5
10.0
10.8
10.6
8.9
8.0
8.2
9.1
9.9
10.7
11.4
12.1
13.0
10.4
8.6
Outlet
COj (%)
(%)
5.2
5.6
6.0
6.2
5.9
6.1
6.4
6:8
7.0
6.8
6.7
6.8
6.9
7.0
7.2
6.4
5.5
5.5
5.9
6.6
7.1
7.6
8.0
8.3
8.2
7.8
7.4
7.3
7.0
6.7
6.6
6.7
6.8
7.4
7.8
7.7
6.8
6.2
5.3
5.1
5.8
6.1
6.5
6.9
6.7
5.7
5.1
5.2
5.8
6.3
6.8
7.3
7.6
8.1
6.8
5.7
O2
Inlet
02
(%)
10.5
9.7
9.0
18.1
17.3
16.9
17.6
16.1
14.8
15.0
> 15.3
14.7
14.3
14.0
13.4
14.0
14.8
12.3
11.8
11.8
11.3
11.1
10.8
9.9
10.5
8.9
9.2
9.0
10.5
11.0
10.4
9.9
8.6
7.9
6.7
6.5
8.3,
9.5
11.0
11.5
10.2
9.7
9.1
8.2
8.5
10.3
11.4
11.1
9.9
9.0
8.1
7.1
6.3
5.4
8.7
10.8
Scrubber
Outlet
02
(%)
14.4
13.9
13.5
13.4
13.8
13.6
13.2
12.8
' 12.6
12.8
13.0
12.9
12.8
12.6
12.4
13.3
14.2
14.2
13.6
12.9
12.4
11.8
11.3
11.0
11.2
11.7
12.2
12.3
12.7
13.0
13.1
13.1
12.9
12.2
11.8
11.9
13.0
13.7
14.7
14.9
14.0
13.7
'13.3
12.8
13.0
14.1
14.8
14.6
13.9
13.3
12.8
^ 12.2
11.8
11.2
13.0
14.2
Temperature
Scrubber
Inlet
"F
810
818
826
828
826
828
835
848
856
870
878
886
896
908
920
901
870
859
854
858
869
880
889
890
883
919
913
907
890
876
869
870
873
892
925
942
938
916
881
856
872
880
896
914 '
915
878
837
817
810
813
810
817
817
837
858
833
Scrubber
Outlet
"F
161
163
164
165
165
165
165
166
,166
164
163
163
163
163
163 i
163
,162
162
163
164
165
165
161
155
155
163
163
164
164
163
163
163
163
163
162
162
164
163
162
162
163
163
163
163
163
163
163
163
163
163
159
154
149
158
162
161
THC
Scrubber
Inlet
THC
(ppm)
17.1
14.5
10,5
11.3
7.5
14.7
17.2
15.6
11.2
11.9
12.9
12.6
13.3
15.3
14.8
15.8
17.4
, 4.1
9.0
16.5
18.7
26.0
36.7
59.6
80.0
10.7
10.7
6.2
19.0
20.5
19.1
18.5
18.3
21.8
10.8
31.2
19.9
19.6
21.8
23.4
20.6
19.9
11.2
18.3
25.0
19.0
20.3
23.6
23.7
19.9
39.2
54.7
79.7
Scrubber
Outlet
THC
(ppm)
12.8
12.3
12.1
12:4
12.7
13.3
14.1
15.3
16.1
12.1
11.3
11.8
12.2
13.7
14.7
14.2
14.8
16.3
17.5
19.4
21.7
32.6
51.4
92.4
99.9
30.7
18.1
19.4
17.2
15.9
18.1
16.6
18.7
23.2
' 32.4
37.0
15.9
15.0
16.5
17.5
17.1
17.1
17.8
21.6
22.7
15.5
18.7
21.1
24.7
31.0
59.5
90.6
121.9
302.2
17.0
21.2
CO
Scrubber
Inlet
CO
(ppm)
438
437
448
482
490
536
663
828
984
713
574
598
637
713
809
706
640
623
656
776
1022
1549
2376
3800.
3962 •
1687
933
965
848
711
707
761
884
1241
1519
1749
757
644
652
686
663
726
796
924 -
979
702
657
672
778
1042
1884
2744
3902
4867
1850
914
Scrubber
Outlet
CO
(ppm)
276
273.
271
288
290
325
402
505
593
442
369
384
408
457
516
448
415
418
437
500
648
968
.1450
1901
1899
1058
620
640
546
462
464
496
573
788
947
1073
488
421
428
451
427
466
513
587
626
450
426
437
504 .
673
1204
1720
1960
1955
1011
631
Scrubber
Inlet
H20
(%)
Scrubber
H20
(%)
i
-
5 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7122195
7/2285
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
702195
7/22/95
702195
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7122195
7/22/95
7/22/95
7/22/95
7/22/95
702195
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
702195
7122195
7/22/95
7/22/95
7/22/95
7/22/95
7122195
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
TIME
9:15
9:20
9:25
9:30
9:35
9:40
9:45
9:50
9:55
10:00
10:05
10:10
10:15
1020
1035
10:30
10:35
10:40
10:45
10:50
10:55
11:00
11:05
11:10
11:15
11:20
11:25
11:30
11:35
11:40
11:45
11:50
11:55
12:00
12:05
12:10
12:15
12:20
12:25
12:30
12:35
12:40
12:45
12:50
12:55
13:00
13:05
13:10
13:15
13:20
13:25
13:30
13:35
13:40
13:45
13:50
CO2
Scrubber
Met
COz
(%)
10.8
10.5
10.5
10.2
9.7
9.3
9.4
9.7
9.9
10.2
10.3
9.4
8.3
8.9
8.8
9.1
9.7
10.5
11.2
11.0
11.2
11.6
11.1
10.5
9.7
9.3
9.3
9.0
9.5
10.4
9.0
8.9
8.6
8.6
10.1
9.8
8.7
8.5
8.7
8.7
8.2
8.3
10.0
10.1
10.9
11.1
10.2
9.6
9.3
Scrubber
Outlet
C
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
TIME
-
13:55
14:00
14:05
14:10
14:15
14:20
14:25
14:30
14:35
14:40
14:45
14:50
14:55
15:00
15:05
15:10
15:15
15:20
15:25
15:30
15:35
15:40
15:45
15:50
15:55
16:00
16:05
16:10
16:15
16:20
16:25
16:30
16:35
16:40
16:45
16:50
16:55
17:00
17:05
17:10
17:15
17:20
17:25
17:30
17:35
17:40
17:45
17:50
17:55
18:00
18:05
18:10
18:15
18:20
18:25
18:30
CO2 ,
Scrubber
Inlet
C02
(%)
8.9
8.8
10.0
9.9
9.6
9.4
9.4
9.8
10.4
11.2
10.0
8.8
8.3
8.3
8.9
8.7
8.1
7.8
7.9
8.4
8.9
9.6
9.6
7.4
6.5
7.S
8.2
9.0
9.8
10.2
9.3
10.3
11.2
10.5
10.1
10.1
10.2
10.2
10.0
9.8
9.7
10.3
11.1
11.5
12.4
11.8
9.6
7.7
6.5
6.3
6.2
7.5
8.4
9.2
9.0
8.3
Scrubber
Outlet '
C02(f.)
(%)
5.6
5.5
6.3
6.3
6.2
6.2
6.2
6.4
6.9
7.4
6.7
5.9
5.6
5.6
5.8
5.7
5.3
5.1
5.2
5.4
5.7
6.2
6.1
4.8
4.2
4.5
4.9
5.3
5.8
6.1
5.8
6.4
6.9
6.6
6.3
6.3
6.4
6.4
6.3
6.2
6.1
6.5
6.9
7.1
7.6
7.2
6.0
4.9
4.3
4.1
4.1
4.6
5.1
5.5
5.4
4.9
O2
Scrubber
Inlet
Oz
(%)
10.2
10.2
8.7
8.7
9.0
9.2,
9.3
9.0
8.3
7.7
9.2
10.5
10.8
10.8
10.2
10.5
11.2
11.6
11.4
10.7
10.2
9.3
9.4
12.0
12.8
11.6
10.7
9.8
8.9
8.5
9.4
8.2
7.5
8.5
8.7
8.8
8.6
8.6
8.9
9.1
9.3
8.5
7.6
7.2
6.1
6.9
9.3
11.5
12.9
13.2
13.3
11.7
10.6
9.7
9.9
10.8
Scrubber
Outlet
Oz
(%)
= 14.3
14.4
13.3
13.2
13.3
13.4
13.5
13.3
12.8
12.3
13.2
?14.0
14.3
14.3
14.0
14.2
14.7
14.9
14.8
14.4
14.1
13.6
13.7
15.2
15.9
15.4
14.9
14.4
14.0
13.6
13.9
13.2
12.7
13.3
13.4
13.4
13.4
13.3
13.5
13.6
13.7
13.3
12.8
12.6
12.0
12.5
13.8
15.0
15.8
16.0
16.0
15.4
14.8
14.3
14.5
15.0
Temperature
Scrubber
Inlet
"F
781
769
791
793
785
776
778
789
817
850
862
850
851
854
847
840
829
818
819
829
845
868
885
850
799
793
790
786
784
797
796
811
832
835
836
839
842
843
838
840
840
852
877
903
939
957
948
916
879
853
823
- 828
841
851
845
822
Scrubber
Outlet
«F
164
164
164
164
164
163
162
163
163
162
163
161
161
162
162
163
163
162
162
162
164
169
168
167
168
173 ,
174
175
176
176
173
173
174
174
174
174
173
174
174
174
174
173
173
173
167
169
172
168
167
166
165
171
172
172
173
172
THC
Scrubber
Inlet
THC
(ppm)
40.9
49.8
51.6
36.5
45.2
46.1
36.9
41.8
40.1
35.6
29.5
34.4
34.7
32.9
33.3
-34.3
35.0
37.3
38.6
37.0
36.4
38.0
39.3
32.5
40.5
37.7
35.5
34.0
45.6
41.9
41.2
39.0
34.5
31.6
28.8
. 28.9
27.6
26.8
27.4
27.9
30.8
31.3
34.0
26.5
56.4
65.7
33.9
32.9 .
39.0
41.4
44.0
, 41.3
35.8
34.5
33.7 -
33.3,
Scrubber
Outlet
THC
(ppm)
33.1
39.9
44.9
44.4
. 41.1
43.1
40.0
37,8
35.7
30.1
18.0
19.3
18.2
16.6
17.6
17.3
17.8
19.7
19.1
20.5
20.7
22.0
25.9
18.2
23.4
20.5
21.1
24.2
32.8
33.6
29.3
35.2
35.4
21.9
19.2
18.8
17.9
17.7
18.3
19.0
20.1
20.4
23.4
27.2
57.7
53.4
16.1
13.5
16.7
17.9
21.2
16.8
14.7
15.4
15.4
17.2
CO
Scrubber
Inlet
CO
(ppm)
960
1328
1319
1353
1203
1248
1170
. 1121
1168 '
1267
685
654
616
555
571
535
502
490
528
594
691
842
970
600
548
514
476
521
807
1054
881
1150
1304
783
668
641
624
622
589
561
636
845
1088
1308
2010
1667
821
620
665
649
636
681
712
754
647
558
Scrubber
Outlet
CO
(ppm)
.600.
814
854
878
795
818
777
735
768
847 ,
456
436
412
367
371
343
323
317
343
382
443'
533
601
392
348
306
284
311
485
644
553
721
820
501
425
410
394
395
373
355
401
535
672
787
1192
1010
532
429
459
434
421
416
426
443
381
329
Moisture
Scrubber
Inlet
HZ0
(%)
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4 ;
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0:4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
Scrubber
Outlet
H20
(%)
. 0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0,1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
7 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/22/95
7/22/95
7/22195
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
TIME
18:35
18:40
18:45
18:50
18:55
19:00
19:05
19:10
19:15
19:20
19:25
19:30
19:35
19:40
19:45
19:50
19:55
20:00
20:05
20:10
20:15
20:20
20:25
20:30
20:35
20:40
20:45
20:50
20:55
21:00
21:05
21:10
21:15
2120
21:25
21:30
21-35
21:40
21:45
21:50
21:55
22:00
22:05
22:10
22:15
22:20
22:25
22:30
22:35
22:40
22:45
22:50
22:55
23:00
23:05
23:10
CO2
Scrubber
Inlet
COj
(%)
7.9
8.2
9.0
10.0
9.8
9.6
10.0
10.9
12.0
11.9
11.5
11.1
10.7
10.1
9.8
10.3
10.4
10.5
10.7
10.9
10.6
10.2
9.3
8.6
8.7
9.6
9.3
9.1
9.1
9.2
8.7
8.2
8.2
8.8
9.9
10.6
11.1
11.7
11.9
11.4
11.3
11.2
11.9
10.0
Scrubber
Outlet
C0j(%)
«
4.8
4.9
5.4
5.8
6.0
6.0
6.3
6.8
7.4
7.4
7.2
7.0
6.7
6.4
6.2
6.4
6.5
6.6
6.7
6.8
6.6
6.4
5.9
5.5
5.6
6.1
5.9
5.8
5.8
5.8
5.6
5.3
5.3
5.7
6.2
6.6
6.9
7.3
7.4
7.2
7.1
7.0
7.1
7.5
7.8
7.4
6.3
O2
Scrubber
Inlet
02
(%)
11.1
10.7
9.8
8.8
9.0
9.1
8.6
7.6
6.5
6.8
7.3
7.6
8.1
8.7
9.0
8.5
8.4
8.3
8.1
8.0
8.3
8.7
9.8
10.5
10.4
9.5
9.7
9.9
9.8
9.8
10.4
10.9
10.9
10.1
8.9
8.0
7.5
6.8
6.6
7.2
7.4
7.5
7.0
9.1
Scrubber
Outlet
02
(%)
15.2
14.9
14.4
13.9
13.7
13.6
13.3
12.7
12.2
12.3
12.6
12.7
13.0
13.4
13.6
13.3
13.3
13.2
13.1
13.0
13.1
13.4
13.9
14.4
14.3
13.7
13.9
14.0
14.0
14.0
14.2
14.6
14.5
14.1
13.5
13.1
12.8
12.4
12.2
12.5
12.6
12.7
12.6
12.2
11.8
12.3
13.6
Temperature
Scrubber
Inlet
"F
804
795
790
789
795
793
800
810
819
839
847
850
845
835
825
827
834
839
850
863
870
875
865
853
849
863
860
860
858
858
849
830
817
812
815
820
827
830
842
848
852
854
858
860
857
848
848
850
852
872
889
910
981
969
Scrubber
Outlet
°F
172
173
173
173
171
168
168
163
149
163
170
170
170
170
169
172
172
171
171
171
170
170
167
166
165
166
166
165
165
164
164
164
163
163
164
164
162
152
145
160
163
163
172
163
163
160
168
158
158
161
156
142
149
157
THC '
Scrubber
Inlet
THC
(ppm)
35.2
25.8
42.5
48.5
30.1
51.6
49.2
58.2
105.0
62.3
39.3
33.1
30.7
27.7
32.1
33.3
33.2
29.3
28.3
26.3
27.4
25.9
25.3
26.2
27.2
25.4
26.1
25.5
23.9
28.4
28.3
33.0
28.1
37.4
39.2
39.0
48.4
75.5
37.7
49.7
33.2
21.3
30.9
40.0
19.6
Scrubber
Outlet
THC
(ppm)
19.0
22.5
27.1
37.2
37.3
39.9
46.2
67.1
120.1
66.5
34.3 •
27.9
22.5
22.2
24.2
27.1
27.8
26.5
26.4
23.9
19.2
15.7
14.8
15.5
15.0
14.9
15.9
16.7
17.2
17.7
18.9
21.8
25.2
29.6
33.7
40.2
% 53.6
86.9
107.3
50.6
36.4
74.3
64.6
46.3
74.2
93.3
67.0
42.5
CO
Scrubber
Inlet
CO
(ppm)
491
483
559
922
1056
1148
1478
1974
3090
2221
1271
1021
751
626
646
778
792
881
934
979
838
716
582
520
475
483
502
518
552
531 .
493
484
531
682
900
1313
1705
2589
2982
1852
1448
1254
1425
769
Scrubber
Outlet
CO
(ppm)
292
289
337
560
656
730
934
1247
1910
1395
808
660
489
405
418
502
509
563
595
620
533
454
375
337
308
308
317
329
351
340
315
311
342
439
576
820
1073
1617
1863
1198
929
804
764
781
660
1045
1347
983
497
Moisture
Scrubber
Inlet
H20
(%)
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
Scrubber
Outlet
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1.
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
8 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995,
DATE
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/22/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
TIME
23:15
23:20
23:25
23:30
23:35
23:40
23:45
23:50
23:55
0:00
0:05
0:10
0:15
0:20
0:25
0:30
0:35
0:40
0:45
0:50
0:55
1:00
1:05
1:10
1:15
1:20
1:25
1:30
1:35
1:40
1:45
1:50
1:55
2:00
2:05
2:10
2:15
2:20
2:25
2:30
2:35
2:40
2:45
2:50
2:55
3:00
3:05
3:10
3:15
3:20
3:25
3:30
3:35
3:40
3:45
3:50
CO2
Inlet
C02
(%)
8.1
7.1
6.8
6:9
7.7
7.2
6.6
6.8
7.5
8.4
9.7
11.1
11.9
12.5
13.0
13.2
12.6
11.2
10.3
10.2
9.6
9.6
10.3
11.4
10.9
10.8
11.5
11.6
11.3
9.9
8.9
8.7
9.3
10.1
9.8
8.6
8.2
8.9
9.8
10.7
11.5
12.1
12.3
12.4
12.2
11.9
11.5
11.2
10.8
10.4
10.3
10.3
10.4
10.3
11.0,
11.0
Outlet
C02(%)
(%)
5.2
4.6
4.4
4.5
5.0
4.6
4.3
4.5
4.9
5.4
6.0
6.6
6.9
7.2
7.5 .
7.6
7.4
6.7
6.1
6.1
5.8
5.8
6.2
6.8
6.5
6.4
6.8
6.9
6.7
5.9
5.4
5.2
5.5
5.9
5.8
5.2
5.0
5.3
5.8
6.2
6.6
6.9
6.9
7.1
7.3
7.1
7.0
6.8
6.5
6.3
6.3
6.4
6.6
6.6
7.1
7.1
O2
Inlet
02
(%)
11.2
12.5
12.7
12.6
11.7
12.3
12.9
12.6
11.8
10.7
9.2
7.6
6.8
6.1
5.6
5.6
6.2
7.5
8.7
8.9
9.6
9.4
8.7
7.4
8.1
8.0
7.2
7.1
7.5
9.1
10.1
10.4
9.7
8.8
9.2
10.4
10.8
10.0
8.9
8.0
6.9
6.4
6.1
6.0
6.3
6.8
7.1
7.3
7.8
8.1
8.2
8.2
8.1
8.5
7.8
8.2
Outlet
02
(%)
14.7
15.4
15.6
15.5
15.0
15.3
15.7
15.5
15.0
14.4
13.7
13.1
12.7
12.3
12.0
11.'9
12.3
13.0
13.6
13.7
14.1
14.0
13.6
12.9
13.3
13.3
12.8
12.8
13.0
13.9
14.4
14.6
14.3
13.8
14.0
14.7
14.8
14.4
13.9
13.4
12.9
12.6
12.5
12.3
12.2
12.4
12.6
12.7
12.9
13.2
13.2
13.0
12.8
13.0
12.5
12.7
Temperature
Scrubber
Inlet
°F
940
908
892
882
880
. 855
• 828
811
807
809
811
817
818
828
845
879
898
892
869
855
837
828
834
857
874
888
909
924
934
925
909
900
902
913
907
881
856
847
845
843
836
832
824
827
848
844
841
834
826
816
809
811
822
818
838
854
Scrubber
Outlet
«F
158
157
157
158
158
158
158
159
160
160
160
152
143
141
140
141
150
. 164
165
164
163
162
161
157
162
163
163
163
164
166
165
166
165
166
164
165
165
166
167
168
158
150
149
148
146
146
146 ,
146
149
151
149
153
156
150
150
156 '
THC
Scrubber
Inlet
THC
(ppm)
21.0
22.7
25.6
25.7
26.7
27.9
29.9
32.8
32.1
31.6
37.7
76.3
118.1
125.2
126.4
121.6
78.0
28.6
22.7
25.1
26.3
33.8
40.0
43.6
27.5
22.5
23.1
20.3
22.4
16.0
14.8
15.8
17.5
22.1
22.1
19.4
19.4
20.8
23.4
32.3
81.2
112.8
125.2
128.4
121.5
117.4
98.2
92.1
61.9
30.3
1.5
1.6
-1.6
22.7 -
11.6
18.4
Scrubber
Outlet
THC
29.6
27.2
24.8
23.4
26.3
29.9
30.3
30.3
30.0
32.5
48.8
98.2
135.8
138.5
138.5
135.2
94.9
32.2
24.9
28.0
31.6
37.6
44.5
53.2
30.9
23.7
25.6
24.5
22.9
14.9
14.6
14.2
17.0
21.2
22.7
17.4
18.8
19.7
22.8
36.6
98.1
133.7
138.1
138.1
135.8
131.3
132.1
132.7
119.8
113.6
120:3
95.7
74.5
87.3
78.5 .
43.6
CO
Scrubber
Inlet
CO
616
649
680
695
650
609
571
520
506
• 533 -
989
2288
3828
4955
4986
4507
2964
1156
700
706
632
784
1087
1677
1238
1137
1427
1455 -
1228
818
689
667
795
1045
1055
688
572
553
639
1071
2500
3778
4801
4800
3649
3663
3598
3467
2948
2752
3031
2433
2105
2738
3013
1835
Scrubber
Outlet
CO
414
436
454
465
427
394
370
337
328
340
610
1380
1924
1959
1959
1959
1667
690
427
444
393
482
668
1018
722
656
812
834
707
482
412
397
463
594
604
406
340
326
377
618
1414
1937
1958
1958
1957
1955
1943
1942
1748
1639
1802
1518
1350
1675
1801
1131
Scrubber
Inlet
H,O
(%)
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
,0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4 .
0.4
0.4
Scrubber
H2O
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.
0.
0.
0.
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.
0.
0.
0.
0.
0.
0.
0.
0.
9 of 26
-------
i1''[';!; Mil- r if1;,
. Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
TIME
3:55
4:00
4:05
4:10
4:15
4:20
4:25
4:30
4:35
4:40
4:45
4:50
4:55
5:00
5:05
5:10
5:15
5:20
5:25
5:30
5:35
5:40
5:45
5:50
5:55
6:00
6:05
6:10
6:15
620
625
6:30
6:35
6:40
6:45
6:50
6:55
7:00
7:05
7:10
7:15
720
7:25
7:30
7:35
7:40
7:45
7:50
7:55
8:00
8:05
8:10
8:15
8:20
825
8:30
CO2
Scrubber
Inlet
COj
(%)
9.9
8.9
8.7
10.1
8.7
7.0
5.8
5.5
7.5
9.1
9.7
9.8
8.6
8.3
10.2
10.6
11.0
11.4
11.9
12.4
12.5
12.1
10.8
9.9
8.7
8.1
9.1
10.1
11.6
12.5
13.6
13.8
15.2
9.4
4.9
2.2
2.0
1.9
1.9
1.8
5.8
7.6
8.0
7.8
6.9
6.6
7.5
8.6
10.0
10.7
10.4
10.6
10.7
10.7
10.9
10.8
Scrubber
Outlet
C0j(%)
(55)
6.4
5.8
5.7
6.5
5.6
4.5
3.9
3.7
4.7
5.5
5.8
5.9
5.2
4.8
5.8
6.1
6.4
6.8
7.1
7.4
7.5
7.3
6.5
5.9
5.4
4.9
5.4
6.1
7.2
7.8
8.8
8.2
9.6
6.1
4.6
4.1
3.4
3.2
3.5
3.5
4.0
4.5
4.8
4.7
4.2
4.0
4.5
5.2
5.9
6.3
6.3
6.3
6.9
7.0
7.1
7.1
O2
Scrubber
Inlet
02
(%)
9.5
10.4
10.5
9.1
10.7
12.8
14.0
14.4
11.9
10.1
9.3
9.2
10.6
10.9
8.4
8.0
7.5
6.9
6.5
5.9
5.8
6.2
7.5
8.4
9.7
10.4
9.0
7.5
5.8
5.1
4.9
5.0
3.6
10.1
15.1
18.0
18.2
18.4
18.3
18.3
13.5
11.5
11.1
11.4
12.4
12.7
11.5
10.1
8.6
7.6
8.0
7.8
7.8
8.0
7.9
8.0
Scrubber
Outlet
02
(%)
13.5
14.1
14.2
13.3
14.3
15.6
16.4
16.7
15.3
14.3
13.9
13.9
14.6
15.1
13.8
13.5
13.1
12.6
12.2
11.9
11.7
11.9
12.8
13.5
14.0
14.6
13.8
12.8
11.6
11.0
10.2
11.3
9.7
13.9
15.4
16.0
16.9
17.1
16.8
16.7
15.9
15.3
15.1
15.2
15.8
15.9
15.3
14.5
13.7
13.1
13.2
13.1
12.5
12.5
12.5
12.6
Temperature
Scrubber
Inlet
°F
856
857
858
888
886
851
814
794
806
848
870
882
860
828
843
847
842
840
835
827
824
813
789
780
768
752
778
797
823
829
931
933
1058
1025
949
933
894
878
876
869
874
885
887
878
846
820
814
817
820
819
819
821
845
854
863
869
Scrubber
Outlet
°F
159
159
158
159
158
157
155
154
158
162
163
164
163
166
170
171
170
166
158
153
152
152
153
159
163
165
164
160
151
147
148
147
146
160
161
161
161
162
163
164
166
166
165
165
165
166
167
168
168
165
162
159
160
161
163
165
THC
Scrubber
Inlet
THC
(ppm)
20.3
22.1
20.6
25.3
8.8
19.7
28.7
31.3
30.6
20.7
17.5
14.9
13.8
19.7
21.1
11.3
24.3
43.2
77.6
113.5
87.2
82.7
113.5
55.7
30.3
57.8
47.5
56.7
105.2
117.6
107.7
105.5
102.1
31.9
30.6
17.9
23.4
21.5
19.7
19.2
27.0
28.2
22.5
21.6
22.8
23.8
24.2
22.9
28.8
46.9
54.3
74.7
28.6
30.2
28.1
21.2
Scrubber
Outlet
THC
(Ppm)
23.8
22.1
22.8
21.1
20.0
24.9
27.6
29.4
24.4
18.1
17.5
17.1
18.9
20.7
20.1
22.2
32.8
57.3
101.7
137.3
138.6
138.7
135.4
104.9
64.2
37.2
56.7
82.1
123.3
138.4
109.9
121.8
110.2
15.1
15.1
14.9
18.4
15.8
13.9
17.9
14.8
14.7
16.2
15.1
17.1
19.1
19.5
21.3
31.7
47.8
62.6
92.5
64.0
42.8
31.2
23.3
CO
Scrubber
Inlet
CO
(ppm)
878
780
771
1006
675
681
• 732
769
744
798
864
822
696
641
790
828
1069
1704
2698
4408
4969
4969
4489
3059
1957
1612
1849
2635
4303
4984
4247
4347
3906
463
494
458
472
552
656
889
859
786
741
710
637
541
491
542
971
2010
2171
2530
2292
1573
1197
900
Scrubber
Outlet
CO
(ppm)
• 575
521
507
633
447
454
496
519
472
485
522
493
419
372
444
479
622
1026
1619
1959
1960
1960
1960
.1757
1221
975
1083
1545
1928
1959
1854
1829
1756
301
303
282
288
330
399
564
519
473
469
429
382
323
291
319
569
1156
1286
1396
1355
1012
776
590
Moisture
Scrubber
Inlet
H20
(%)
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4-
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
O4 1
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
Scrubber
Outlet
H2O
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0,1
0.1
0.1
0.1
0.1
0.1
- 0.1
0.1
0.1
0.1
0.1
0.1
0.1
.0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
10 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
TIME
8:35
8:40
8:45
S:50
8:55
9:00
9:05
9:10
9:15
9:20
9:25
9:30
9:35
9:40
9:45
9:50
9:55
10:00
10:05
10:10
10:15
10:20
10:25
10:30
10:35
10:40
10:45
10:50
10:55
11:00
11:05
11:10
11:15
11:20
11:25
11:30
11:35
11:40
11:45
11:50
11:55
12:00
12:05
12:10
12:15
12:20
12:25
12:30
12:35
12:40
12:45
12:50
12:55
13:00
13:05
13:10
CO2
Inlet
CO2
(%)
10.7
10.3
9.6
9.7
9.7
9.8
9.8
9.5
9.7
10.5
10.0
10.0
10.5
10.9
10.9
11.0
10.4
11.3
11.0
10.5
10.0
9.4
9.6
9.8
10.1
10.0
10.0
9.4
9.3
9.7
9.5
9.4
9.3
9.3
10.1
10.8
10.4
10.1
10.2
9.5
Outlet
C02 (%).
(%)
7.0
6.7
6.3
6.5
6.7
5.9
5.9
6.0
5.9
5.8
5.9
6.4
6.4
6.4
6.6
6.8
7.0
7.1
6.8
7.5
7.2
6.9
6.6
6.2
6.1
6.2
6.3
6.3
6.3
6.2
6.0
6.0
5.8
5.8
5.9
5.8
5.7
5.7
5.7
5.6
5.7
6.0
6.4
6.2
6.2
6.3
6.2
O2
Scrubber
Inlet
02
(%)
8.1
8.7
9.5
9.2
9.2
9.0
9.1
9.4
9.0
8.0
8.7
8.6
8.1
7.5
7.7
7.7
8.5
7.4
7.8
8.4
9.0
9.6
9.5
9.1
8.9
9.0
9.0
9.5
9.7
9.2
9.4
9.6
9.5
9.5
8.5
7.7
8.3
8.6
8.6
9.3
Scrubber
Outlet
02
(%)
12.6
13.0
.13.5
13.2
13.1
13.8
13.8
13.8
13.8
14.0
13.8
13.2
13.2
13.2
13.0
12.7
12.5
12.5
12.9
12.2
12.4
12.8
13.1
.13.6
13.7
13.6
13.4
13.5
13.5
13.6
13.8
13.8
14.0
14.0
13.9
14.0
14.1
14.1
14.0
14.0
13.9
13.6
13.2
13.5
13.5
13.4
13.4
Temperature
Scrubber
Inlet
°F
875
877
873
873
873
874
864
866
856
859
864
870
876
876
874
876
874
' 871
858
852
853
850
837
840
847
855
863
863
885
893
896
895
884
873
870
876
881
888
894
894
895
895
889
891
891
889
890
886
880
-180
675
873
866
870
,873
868
Scrubber
Outlet
°F
165
166
165
167
170
171
168
171
169
171
171
171
169
170
171
172
172
171
171
171
171
168
166
168
167
171
169
174
175
175
174
173
174
175
177
177
176
177
177
177
176
177
176
179
178
178
179
179
179
180
180
181
181
179
179
176
THC
Scrubber
Inlet
THC
(ppm)
19.8
15.2
15.2
11.6
21.1
••
29.0
28.9
32.3
25.7
21.6
22.5
22:5
Scrubber
Outlet
THC
(ppm)
19.5
15.6
14.6
15.4
22.0
16.1
15.9
16.0
16.6
17.9
27.7
41.2
47.7
59.2
52:2
58.3
30.1
28.4
20.0
16.6
15.6
16.4
18.6
19.3
20.1
18.6
18.0
16.4
15.4
15.2
15.0
16.3
15.6
15.5
1
15.1
14.9
15.6
. 17.0
24.2
22.6
19.7
19.5
19.5
CO
Scrubber
Inlet
CO
(ppm)
712
589
509
594
612
628
618
611
710
1055
994
1242
1656
2034
2052
2261
1187
1213
817
623
523
478
534
612
729
732
752
585
541
615
614
603
566
519
657
911
869
741
764
780
Scrubber
Outlet
CO
(ppm)
471
384
331
323
459
355'
365
374
368
, 365
425
638
628
787
1024
1231
1283
1386
750
792
531
405
339
307
332
378
457
455
469
433
390
366
330
328
364
366
357
333
305
308
331
370
527
515
• 450
469
494
Scrubber
Inlet
H20
(%)
0.4
0.4
0.4
0.4
0.4
0.4
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
Scrubber
Outlet
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
11 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23795
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
TIME
13:15
13:20
13:25
13:30
13:35
13:40
13:45
13:50
13:55
14:00
14:05
14:10
14:15
14:20
14:25
14:30
14:35
14:40
14:45
14:50
14:55
15:00
15:05
15:10
15:15
15:20
15:25
15:30
1535
15:40
15:45
15:50
15:55
16:00
16:05
16:10
16:15
1620
1625
16:30
1635
16:40
16:45
16:50
16:55
17:00
17:05
17:10
17:15
17:20
17:25
1730
17:35
17:40
17:45
17:50
CO2
Scrubber
Inlet
COz
<*)
10.3
11.1
10.3
10.2
10.2
9.6
9.4
9.7
9.5
9.7
9.7
10.9
9.3
9.6
9.7
10.0
10.2
10.7
9.6
9.6
9.5
9.5
9.3
9.4
10.0
10.8
11.2
10.8
10.5
11.2
11.2
11.6
11.4
11.1
10.9
10.6
10.9
10.3
9.9
9.8
9.6
9.0
8.6
8.5
8.2
8.7
8.9
7.9
7.9
8.0
8.2
8.4
8.8
8.1
9.3
10.0
Scrubber
Outlet
C02(%)
<*)
6.6
7.0
6.6
6.2
6.3
6.0
5.9
6.1
5.8
5.9
5.7
6.3
5.5
5.7
5.7
5.8
6.0
6.1
5.7
5.7
5.6
5.7
5.5
5.6
5.9
6.3
6.5
6.3
6.1
6.6
6.6
6.9
6.8
6.6
6.5
6.3
6.4
6.0
5,9
5.8
5.7
5.4
5.3
5.2
5.1
5.3
5.3
4.6
4.5
4.6
4.8
4.9
5.1
4.9
5.6
5.8
O2
Scrubber
Inlet
02
(%)
8.3
7.5
8.5
8.7
8.5
9.2
9.4
9.1
9.5
9.3
9.2
7.7
9.6
9.1
9.1
8.8
8.4,
7.9
9.2
9.2
9.3
9.3
9.5
9.3
8.6
7.7
7.3
7.7
8.1
7.1
7.1
6.8
7.2
7.6
7.7
8.1
7.8
8.6
8.9
9.1
9.3
10.0
10.5
10.5
10.9
10.2
10.2
11.1
11.0
11.0
10.7
10.4
10.1
11.0
9.4
8.7
Scrubber
Outlet
Oz
(%)
13.0
12.6
13.2
13.5 .
13.3
13.7
13.8
13.6
14.0
13.9
14.0
13.5
14.3
14.1
14.0
13.9
13.7
13.6
14.0
14.0
14.1
14.1
14.2
14.1
13.8
13.3
13.1
13.3
13.5
13.0
12.9
12.8
12.9
13.2
13.2
13.4
13.2
13.8
13.9
13.9
14.1
14.5
14.6
14.7
14.8
14.5
14.6
15.3
15.3
15.3
15.1
15.0
14.7
14.9
14.1
13.8
Temperature
Scrubber
Inlet
°F
874
888
883
868
870
856
849
856
848
843
848
859
856
856
862
863
868
871
867
864
862
859
852
849
, 854
862
869
867
859
874
879
877
878
883
885
887
890
885
882
888
884
880
874
879
874
893
906
885
872
864
859
854
855
848
875
889
Scrubber
Outlet
»F
176
177
176
177
178
177
176
176
178
179
179
181
180
179
179
179
180
182
179
179
179
179
179
180
180
180
181
181
179
182
181
177
179
181
182
182
181
181
180
ISO
180
180
179
178
178
178
179
180
181
182
182
183
184
180
181
182
THC
Scrubber
Inlet
THC
(ppm)
23.3
23.5
17.2
9.7
16.4
18.8
18.7
19.1
21.1
24.9
21.9
28.4
15.6
16.3
11.9
15.6
13.0
18.8
13.3
13.1
13.8
12.9
14.3
17.0
17.7
25.4
24.5
19.1
42.9
24.6
30.9
46.8
40.4
28.0
28.4
19.5
24.7
17.7
19.9
16.1
16.2
16.9
18.3
13.9
16.1
15.4
14.3
12.4
12.6
12.2
11.8
13.2
12.6
17.6
18.2
12.8
Scrubber
Outlet
THC
(ppm)
23.2
21.5
16.4
20.2
18.2
18.5
19.5
19.5
22.1
24.4
21.2
30.7
17.2
16.2
15.1
15.8
14.9
19.3
13.8
13.7
13.6
13.9
13.8
16.0
19.4
26.1
29.8
22.9
40.2
29.7
34.1
53.4
45.1
30.0
28.6
22.0
26.2
21.3
18.9
17.1
17.8
17.3
16.2
14.1
15.0
14.8
14.5
12.5
12.2
11.7
11.9
12.9
13.4
15.8
17.2
14.9
CO
Scrubber
Inlet
CO
(ppm)
935
956
654
642
609
505
494
489
531
633
584
1151
524
547
540
566
587
869
516
515
508
519
509
570
731
1064
1250
993
1046
1318
1415
2173
1801
1249
1184
895
1092
825
703
573
570
527
499
489
539
604
612
618
656
576
522
504
518
495
562
568
Scrubber
Outlet
CO
(ppm)
591
594
409
389
383
307
296
298
317
380
338
630
298
311
306
321
331
474 •
295
296
293
299
292
332
420
613
708
570
585
767
824
1243
1028
720
676
516
621
482
403
326
326
300
287
-282
323
355
356
348
357
315
286
277
283
285
326
330
Moisture
Scrubber
Inlet
H20
(%)
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2 .
Scrubber
Outlet
H20
(%)
12 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
•DATE
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
TIME
17:55
18:00
18:05
18:10
18:15
18:20
18:25
18:30
18:35
18:40
18:45
18:50
18:55
19:00
19:05
19:10
19:15
19:20
19:25
19:30
19:35
19:40
19:45
19:50
19:55
20:00
20:05
20:10
20:15
20:20
20:25
20:30
20:35
20:40
20:45
20:50
20:55
21:00
21:05
21:10
21:15
21:20
21:25
21:30
21:35
21:40
21:45
21:50
21:55
22:00
22:05
22:10
22:15
22:20
22:25
22:30
CO2
Inlet
CO,
(%)
9.5
9.3
8.9
8.9
9.5
10.3
10.9
10.7
9.9
9.7
10.3
10.9
11.8
10.5
10.2
9.8
9.9
9.6
9.5
9.5
9.4
9.5
10.2
11.2
9.1
7.1
6.3
10.0
10.3
10.6
10.9
11.2
11.6
11.6
11.5
11.0
9.4
8.9
9.2
10.0
10.5
10.3
10.4
Outlet
C02(%)
(%)
5.5
5.3
5.3
5.6
6.1
6.3
6.2
5.8
5.7
6.1
6.4
6.7
6.2
6.1
5.8
5.9
5.8
5.7
5.7
5.7
5.7
6.0
6.6
5.4
4.4
4-0
5.6
5.6
5.7
6.0
6.2
6.3
6.5
6.7
6.7
6.7
6.4
5.5
5.3
5.4
5.8
6.1
5.9
6.0
O2
Inlet
02
(%)
9.3
9.6
9.9
9.9
9.2
8.3
7.7
8.0
9.0
9.2
8.4 '
7.7
6.8
8.2
8.6
9.1
9.0
9.3
9.4
9.5
9.5
9.4
8.6
7.5
10.0
12.3
8.8
8.4
8.1
7.8
7.4
6.9
6.9
6.9
7.8
9.4
9.9
9.6
8.8
8.4
8.6
8.4
Outlet
02
(%)
14.2
14.3
14.5
14.4
14.1
. 13.6
13.3
13.5
14.0
14.1
13.6
13.3
12.9
13.5
13.7
14.0
13.8
14.0
14.1
14.1
14.1
14.1
13.7
13.1
14.5
15.6
14.1
14.2
14.0
13.8
13.6
13.5
13.3
13.0
13.0
13.1
13.4
14.4,
14.6
14.4
14.0
13.7
13.9
13.8
Scrubber
Inlet
"F
878
868
862
858
863
874
885
884
869
864
876
885
886
885
881
876
879
877
876
875
880
885
904
938
941
892
863
862
863
847
845 i
851
858
865
874
881
875
873
872
867
870.
870
872
877
886
894
897
891
• 867
852
845
844
849
849
855
Scrubber
Outlet
"F
182
: 181
181
181
181
182
183
182
- 181
182
182
183
181
183
182
181 ,
181
181
181
180
181
181
181
178
179
177
177
182
183
177
176
180
182
181
180
180
180
181
181
182
181
180
179
179
180
180
178
178
179
179
180
180
179
THC
Scrubber
Inlet
THC
(ppm)
15.3
16.1
15.2
16.3
16.7
15.8
17.2
16.0
13.0
17.1
15.0
16.1
41.4
17.2
14.3
14.1
10.6
11.5
11.7
11.1
11.7
11.3
11.7
35.3
15.2
13.6
11.3
16.6
20.9
23.7
•29.2
29.1
25.7
14.0
4.8
4.5
13.8
16.1
17.5
18.4
15.4
16.6
16.1
15.6
14.1
16.6
15.1
5.2
8.2
10.8
8.4
1.2
10.1
Scrubber
Outlet
THC
17.4
16.8
16.7
17.6
18.6
20.1
20.7
19.8
18.3
17.3
17.3
20.4
46.9
21.0
, 18.3
16.0
14.0
13.5
12.8
13.4
13.1
12.6
13.9
44.5
21.5
19.2
18.2
19.4
24.4
30.3
31.7
34.8
38.2
34.9
20.3
15.9
16.3
18.8
20.9
25.5
24.8
24.6
CO
Scrubber
Inlet
CO
638
583
541
579
660
788
892
857
679
658
776
991
1894
974
794
608
539
517
502
506
512
590
708
1706
604
542
595
686
940
1283
1333
1633
1699
1516
974
477
369
438
613
828
797
858
Scrubber
CO
369
330
305
327
380
452
511
496
392
378
447
559
1056
572
466
354
311
299
289
289
292
338
403
950
367
344
357
357
346
408
555
755
786
950
985
886
589
286
220
264
368
498
479
519
Scrubber
Inlet
H2O
(%)
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0,2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
Scrubber
H2O
(%)
13 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
1(23195
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
7/23/95
1123195
7/23/95
7/23/95
7/23/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
704195
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
TIME
22:35
22:40
22:45
22:50
22 £5
23:00
23:05
23:10
23:15
23:20
23:25
23:30
23:35
23:40
23:45
23:50
23:55
0.-00
ChOS
0:10
0:15
020
0:25
030
035
0:40
0:45
0:50
0:55
1:00
1:05
1:10
1:15
1:20
1:25
1:30
1:35
1:40
1:45
1:50
1:55
2:00
2KB
2:10
2:15
2:20
2:25
2-30
2:35
2:40
2:45
2:50
2:55
3:00
3:05
3:10
C02
Scrubber
Inlet
COj
(%)
10.6
10.9
10.8
11.1
11.3
11.2
10.7
10.2
10.0
9.9
10.0
10.4
10.4
9.2
8.7
8.7
9.3
10.2
10.9
11.6
12.3
12.7
12.7
12.5
12.1
12.0
11.7
11.3
11.0
10.8
10.8
11.5
11.7
11.9
12.9
13.8
9.9
6.9
5.0
6.7
7.5
8.5
9.8
10.7
11.3
11.4
U.I
10.3
10.0
9.8
9.9
10.7
11.7
12.3
Scrubber
Outlet
COzW
(%)
6.2
6.3
6.2
6.5
6.5
6.4
6.2
5.9
5.7
5.7
5.7
6.0
6.0
5.4
5.1
5.1
5.4
5.9
6.2
6.7
7.1
7.2
7.2
7.0
6.9
6.8
6.7
6.4
6.3
6.1
6.1
6.6
6.7
6.7
7.2
7.9
5.7
4.0
2.9
4.0
4.5
5.1
5.7
6.3
6.6
6.7
6.5
6.0
5.9
5.8
5.8
6.2
6.8
7.0
7.9
8.8
02
Scrubber
Inlet
02
(%)
8.1
7.9
7.9
7.4
7.3
7.5
8.2
8.8
9.0
9.1
8.9
8.4
8.4
9.7
10.0
10.0
9.3
8.5
7.8
6.8
6.1
5.8
5.7
6.0
6.4
6.5
6.9
7.3
7.8
8.0
8.1
7.1
6.9
6.7
5.5
4.5
9.3
12.7
14.7
12.6
11.4
10.2
8.9
7.9
7.1
7.0
7.4
8.5
8.9
9.1
9.0
8.0
6.7
6.2
Scrubber
Outlet
Oz
(%)
13.6
13.5
13.5
13.3
13.2
13.4
13.7
14.0
14.1
14.2
14.2
13.8
13.9
14.5
14.7
14.7
14.4
13.9
13.5
13.1
12.6
12.5
12.5
12.7
12.9
13.0
13.1
13.4
13.6
13.7
13.8
13.3
13.2
13.1
12.5
11.5
14.3
16.3
17.5
16.1
15.4
14.7
14.1
13.5
13.1
13.0
13.3
13.8
13.9
14.1
14.0
13.5
12.9
12.7
11.5
10.6
Temperature
Scrubber
Inlet
°F
866
877
882
894
900
906
901
897
892
894
896
907
910
890
875
864
862
863
868
873
880
884
895
892
897
892
892
880
874
865
859
870
886
904
930
1000
978
891
823
837
857
874
886
907
921
932
921
904
893
886
880
897
919
929
970
1045
Scrubber
Outlet
°F
180
180
180
180
180
180
179
179
179
179
179
179
180
179
179 .
179
180
180
181
179
169
164
166
168
176
177
181
181
181
181
181
178
178
178
167
169
181
177
177
177
178
179
180
181
181
181
181
180
179
179
180
181
182
174
162
163
THC
Scrubber
Inlet
THC
(ppm)
13.5
8.6
9.4
8.4
10.5
10.7
17.3
39.2
73.7
90.1
76.3
81.6
37.8
57.5
29.7
17.6
21.2
20.7
26.5
42.0
34.1
45.4
77.6
84.6
6.0
11.1
23.4
17.5
13.0
11.9
11.2
7.3
4.3
6.4
11.5
13.8
13.0
14.2
14.1
16.9
17.2
8.5
Scrubber
Outlet
THC
(ppm)
23.4
21.8
20.0
20.1
24.1
21.7
18.2
13.3
14.0
13.2
14.4
15.6
18.5
14.9
13.1
14.0
15.2
19.0
24.9
50.0
93.7
117.5
110.3
106.0
67.9
69.2
43.9
38.0
29.1
30.6
31.2
61.0
57.5
55.6
106.1
105.8
12.7
16.5
22.6
17.3
13.9
13.6
14.4
15.3
17.3
16.5
20.1
18.3
19.2
18.1
18.6
26.0
35.5
75.1
134.3
137.6
CO
Scrubber
Inlet
CO
(ppm)
927
1016
936
998
1288
1168
955
671
690
672
779
861
940
672
529
506
537
679
991
1802
2980
3770
3533
3325
2356
2329
1616
1328
990
1003
1037
1851
2188
2320
3855
3762
631
843
770
495
407
454
587
709
906
923
1128
852
•747
634
653
930
1675
2948
Scrubber
Outlet
CO
(ppm)
552
592
543
581
746
689
561
398
404
395
451
500
536
389
308
295
311
398
575
1026
4670
1918
1894
1836
1393
1337
951
778
597
591
604
1086
1275
1291
1912
1780
409
511
457
291
243
272
348
429
539
552
653 ,
508
455
381
390
551
978
1632
1982
1983
Moisture
Scrubber
Inlet
H2O
(%)
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
Scrubber
Outlet
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
14 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7124/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95 '
7/24/95
7724/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
TIME
3:15
3:20
3:25
3:30
3:35
3:40
3:45
3:50
3:55
4:00
4:05
4:10
4:15
4:20
4:25
4:30
4:35
4:40
4:45
.4:50
4:55
5:00
5:05
5:10
5:15
5:20
555
5:30
5:35
5:40
5:45
5:50
5:55
{6:00
6:05
6:10
6:15
6:20
6:25
6:30
6:35
6:40
6:45
6:50
6:55
7:00
7:05
7:10
,7:15
7:20
7:25
7:30
7:35
7:40
7:45
7:50
CO2
Inlet
COz
(%)
Outlet
C02 (%)
(%)
6.3
4.2
3.3
3.4
4.0
4.7
4.4
5.0
5.5
6.3
6.5
6.8
7.6
7.3
5.7
3.8
3.2
3.2
3.4
4.0
4.8
5.3
5.8
6.2
6.6
6.7
6.9
7.2
7.3
7.2
7.1
7.1
7.3
7.1
7.3
7.4
7.3
6.9
6.1
5.5
5.2
5.1
5.3
5.7
6.2
6.9
7.3
5.9
4.5
4.4
4.4
4.4
4.7
5.0
- 5.3
5.1
O2
Scrubber
Inlet
02
(%)
Scrubber
Outlet
02
(%)
13.8
16.1
17.1
16.6
15.9
15.1
15.5
14.9
14.3
13.4
13.3
13.1
12.0
12.5
14.2
16.4
16.9
17.1
16.8
16.1
15.1
14.5
13.8
13.5
13.2
12.9
12.7
12.4
12.2
12.4
12.4
12.5
12.4
12.7
12.5
12.4
12.4
12.9
13.8
14.4
14.7
14.8
14.6
14.1
13.6
12.8
12.5 ,
14.2
15.8
15.8
15.7
15.6
15.4
15.1
14.7
14.8
, Temperature
Scrubber
Inlet
"F
1068
944
881
857
846
851
830
821
841
872
914
946
998
1025
1016
949
'902
871
852
848
863
871
881
894
884
877 '
877
878
867
875
907
919
930
929
946
966
980
981
958
930
919
911
909
920
940,,
977
1015
992-
947
921
910
906
908
913
926 .
935
Scrubber
Outlet
"F
180
173
170
182
185
184
179
181
181
178 '
181
181
175
179
178
176
177
177
178
179
180
181
182
182
184
177
174
170
166
170
180
181
180
180
179
177
179
181
179
178
177
177
178
179
180
181
175
181
178
178
178
178
179
179
180
178
THC
Scrubber
Inlet
THC
(ppm)
Scrubber
Outlet
THC
(ppm)
27.6
17.0
22.9
19.2
16.3'
. 16.0
18.3
22.1
26.3
53.8
25.3
17.4
52.0
31.1
8.1
9.5
14.8
18.7
18.5
16.7
14.5
15.1
15.8
17.4
54.5
90.7
102.9
116.0
138:0
117.4
38.4
35.6
37.0
31.3
39.8
58.5
45.6
22.6
12.1
9.8
9.2
10.1
10.8
11.2
11.6
16.9
70.4
13.5
12.2
14.6
14.2
13.8
15.0
15.0
15.3
13.8
CO
Scrubber
Inlet
CO
(ppm)
Scrubber
Outlet
CO
682
255
411
415
312
258
250
328
530
1200
908
805
1289
1151
209
283
493
480
419
346
295
326
381
455
1156
1495
1746
1857
1983
1802
1044
977
1148
928
1076
1338
1180
725
383
263 -
217
218
248
303
381
549
1288
437
422
474
403
412
431
448
446
452
Scrubber
Inlet
H20
(%)
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2 .
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0,2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
Scrubber
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.
0.
0.
0.
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
15 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24195
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
TIME
7:55
8:00
8:05
8:10
8:15
8:20
8:25
8:30
8:35
8:40
8:45
&50
8:55
9HJO
9-.05
9:10
9:15
9:20
9-.2S
9:30
9:35
9:40
9:45
9:50
9:55
10:00
10:05
10:10
10:15
10:20
10:25
10:30
10-35
10:40
10:45
10-.SO
10:55
11:00
11:05
11:10
11:15
11:20
11:25
11:30
11:35
11:40
11:45
1USO
11:55
12:00
12:05
12:10
12:15
12:20
12:25
12:30
CO2
Scrubber
Inlet
COz
(%)
Scrubber
Outlet
C02(%)
(*>
4.7
4.8
4.6
4.8
5.3
5.8
6.1
6.3
6.7
7.0
7.1
7.0
6.8
6.7
6.5
6.3
6.2
6.0
6.2
6.3
6.3
6.8
7.0
6.1
4.7
4.5
3.4
3.8
4.5
5.0
5.1
5.6
6.0
6.8
4.6
3.5
5.6
5.1
4.4
4.0
4.0
4.3
4.4
4.5
4.4
4.5
O2
Scrubber
Inlet
02
(%)
Scrubber
Outlet
02
(%)
15.3
15.3
15.4
15.2
14.6
14.0
13.7
13.5
13.1
12.8
12.7
12.9
13.0
13.2
13.5
13.6
13.8
14.0
13.7
13.7
13.7
13.1
12.9
14.0
15.5
15.7
16.8
16.3
15.4
14.9
14.3
14.2
13.7
13.0
15.5
16.8
14.4
15.0
15.8
16.3
16.1
15.8
15.6
15.6
15.6
15.5
Temperature
Scrubber
Inlet
°F
925
884
857
846
842
843
850
854
871
882
898
916
948
972
970
933
923
905
905
911
927
943
985
1007
924
847
824
800
789
784
787
788
794
823
868
842
787
832
843
831
810
807
808
812
815
819
826
Scrubber
Outlet
"F
176
179
179
180
180
180
177
175
161
159
174
175
180
182
182
181
181
180
181
180
180
180
181
180
178
177
176
176
175
177
177
179 •
178
176
178
182
180
181
181
176
171
163
167
165
175
171
175
172
170
169
169
170
170
170
169
169
THC
Scrubber
Inlet
THC
(ppm)
-
25.7
22.8
Scrubber
Outlet
THC
(ppm)
13.0
16.4
16.9
17.8
21.4
36.0
55.1
66.1
125.3
138.3
71.3
70.1
47.6
33.9
26.9
24.3
21.7
23.1
24.2
21.7
18.2
27.1
31.6
24.4
13.5
14.6
31.3
33.0
45.2
73.5
98.4
132.1
111.9
111.0
31.7
34.2
19.8
16.2
16.6
18.7,
21.1
18.2
17.7
17.8
17.7
16.8
CO
Scrubber
Inlet
CO
(ppm)
638
Scrubber
Outlet
CO
(ppm)
408
427
363
337
396
662
1057
1209
1947
1983
1475
1494
1155
887
682
595
498
507
584
634
575
880
945
580
408
393
124
8
346
681
1284
1654
1967
1790
1868
862
831
424
346
350
430
504
443
401
393
403
388
Moisture
Scrubber
Inlet
H20
(%)
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
, 0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
Scrubber
Outlet
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
16 of 26
-------
Arlington Virginia
Continuous Monitor Data '
July 1995
DATE
7/24/95
7/24195
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95-
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
TIME
12:35
12:40
12:45
12:50
12:55
13:00
13:05
13UO
13:15
13:20
13:25
13:30
13:35
13:40
13:45
13:50
13:55
14:00
14:05
14:10
14:15
14:20
14:25
14=30
14:35
14:40
14:45
14:50
14-35
15:00
15:05
15:10
15:15
15:20
15:25
15:30
15:35
15:40
15:45
15:50
15:55
16:00
16:05
16:10
16:15
16:20
16:25
16:30
16:35
16:40
16:45
16:50
16:55
17:00
17:05
17:10
CO2
Scrubber
Inlet
C02
(%)
7.1
7.3
7.5
7.6
7.6
7.3
7.1
7.3-
7.5
7.8
7.8
6.9
6.4
8.1
7.2.
7.5
7.9
8.2
7.8
8.0
8.9
10.6
11.1
10.5
11.4
10.1
6.0
5.5
4.9
4.8
5.2
5.9
6.4
6.1
6.7
5.9
5.5
5.2
4.9
5.8
5.8
5.3
5.9
6.3
6.5
6.4
6.1
6.1
6.5
6.8
Scrubber
Outlet
C02(%)
(%)
4.4
4.3
4.'6
4.7
4.7
4.8
4.6
4.4
4.5
4.6
4.8
4.8
4.2
3.7
4.4
4.1
4.2
4.4
4.7
4.8
5.0
5.5
6.6
6.8
6.4
6.9
6.1
3.7
3.4
3.0
2.9
3.0
3.2
3.5
3.4
3.6
3.9
4.1
4.4
'5.2
4.9
3.8
3.7
3.6
3.3
3.8
4.0
3.8
4.1
4.4
4.5
4.4
4.3
43
4.5
4.8
, O2
Scrubber
Inlet
02
«
11.9
11.7
11.6
11.7
12.0
12.2
12.0
.11.8
11.4
11.3
12,5 -
13.0
10.8
11.8
11.4
10.9
10.4
10.7
10.4
9.4
7.3
7.1
8.2
7.0
8.9
13.7
14.2
14.9
14.9
14.3
13.5
12.8
13.0
13.2
13.7
14.0
14.4
14.5
13.4
13.5
14.1
13.4
13.0
12.8
13.0
13.3
13.2-
12.7
12.3
Scrubber
Outlet
02
(%)
15.7
15.7
15.4
15.3
15.3
15.3
15.4
15.7
15.6
15.5
15.3
15.2
15.9
16.5
15.6
15.9
15.7
15.4
15.1
14.9
14.6
13.9
12.8
12.8
13.4
12.8
13.8 .
16.7
17.0
17.3
17.4
17.3
17.0
16.6
16.7
16.5
16.1
16.0
15.6
14.7
15.3
16.4
16.4
16.6
16.8
16.2
16.0
16.3
15.8
15.6
15.4
15.5
15.7
15.6
15.3
15.0
Temperature
Scrubber
Inlet
°F
831
831
839
848
853
854
. 853
843
847 .
855
866
873
851
798
785
789
779
771
791
. 805
822
853
903
930
960
1024
1052
945
913
890
874
861
855
853
842
837
842
843
860
894
901
872
874 ,
870
854
858
860
853
860
867
869
865
856
848
845
. 846
Scrubber
Outlet
op
170
169
170
169
168
167
168
170
169
169
169
169
168
171
176
175
175
175 .
175
172
172
173
175
173
173
173
170
167
167
168
169
174
178
179
177
177
177
177
177
177
175
174
175
175
176
180
178
175
176
176
175
175
175
176
177
177
THC
Scrubber
Inlet
THC
(ppm)
17.0
16.2
13.9
16.0
14.9
16.7
16.4
19.2
20.8
21.1
18.5
18.6
20.0
33.5
36.3
34.8
49.2
50.1
49.5
39.7
35.6
28.5
27.6
36.7
16.5
13.0
9.2
13.8
15.5
16.5
18.4
20.0
20.6
18.3
17.4
16.3
19.7
18.4
16.1
29.4
95.6
108.4
44.1
26.2
22.3
19.7
19.0
19.1
18.2
16.9
15.7
16.7
16.7
17.9
18.1
18.2
Scrubber
Outlet
THC
(ppm)
16.6
17.1
15.6
14.1
23.8
86.5
72.2
22.8
17.7
18.0
16.9
15.9
18.4
25.5
26.8
26.9
39.0
40.7
44.8
36.2
33.5
30.5
28.6
35.4
18.6
14.5
11.0
14.5
14.6
14.4
15.2
16.5
16.1
14.6
15.1
1611
15.3
15.7
14.2
11.4
9.4
12.2
14.3
15.1
15.6
14.3
14.7
16.5
15.9
15.3
15.5
15.9 '
16.9
18.2
19.0
19.8
CO
Scrubber
Met
CO
(ppm)
662
686
605
.569
514
503
530
601
637
706
723
628
562
517
457
599
1188
' 1659
1708
1640
1698'
1639
1491
1785
1067
680
349
466
532
644
714
864
859
636
583
510
519
663
484
453
532
572
522
544
517
474
468
466
446
437
. 413
381
363
364
389
Scrubber
Outlet
CO
(ppm)
404
419
382
344
312
. 308
326
368
389
430
441
380
342
299
241
325
638
889
942
971
1021
994
918
1090 '
645
414
207
277
313
387
442
521
479
346
320
299
281
356
433
415
282
346
391
362
365
333
314
319
317
305
300
285
264
250
250
271
Moisture
Scrubber
Inlet
H20
(%)
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0:3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
Scrubber
Outlet
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1 .
0.1
0.1
0.1
0.1
0.1
0.
0.
0.
0.
0.
0.
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
- o.i
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1 .
0.1
0.1
0.1
0.1
0.1
0.1
17 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7124195
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
TIME
17:15
17:20
17:25
17:30
1735
17:40
17:45
17:50
17:55
18:00
18:05
18:10
18:15
18:20
18:25
18:30
18:35
18:40
18:45
18:50
18:55
19:00
19:05
19:10
19:15
19:20
1935
19:30
19:35
19:40
19:45
19:50
19:55
20:00
20:05
20:10
20:15
20:20
2025
20:30
2035
20:40
20:45
20:50
20:55
21 K»
21:05
21:10
21:15
21:20
21:25
21:30
21:35
21:40
21:45
21:50
CO2
Scrubber
Inlet
COj
(96)
7.3
7.4
7.1
7.4
7.3
7.1
7.3
7.3
7.7
7.5
7.0
6.5
6.7
7.0
6.9
6.5
6.7
7.1
6.8
5.7
5.8
5.7
5.7
6.1
5.9
5.3
5.0
5.4
5.7
5.4
5.0
4.9
6.2
6.4
6.6
6.6
6.8
6.6
6.6
6.9
7.0
6.3
6.2
6.2
6.2
6.6
6.8
6.2
5.7
5.6
5.3
5.2
5.6
6.2
6.3
4.3
Scrubber
Outlet
COjW
(«)
5.1
5.2
5.0
5.2
5.2
5.1
5.2
5.3
5.6
5.5
5.4
5.1
5.1
5.2
5.1
4.8
5.0
5.2
5.1
4.3
4.4
4.3
4.3
4.5
4.5
4.2
4.1
4.3
4.6
4.4
4.1
4.0
4.8
5.1
5.4
5.4
5.6
5.5
5.6
5.8
5.9
5.3
5.3
5.3
5.4
5.6
5.9
5.4
4.9
4.9
4.6
4.6
4.9
5.4
5.5
3.9
02
Scrubber
Inlet
Oz
(%)
11.8
11.7
12.1
11.7
12.0
12.2
12.0
11.9
11.5
11.7
12.3
13.0
12.8
12.3
12.5
13.0
12.6
12.2
12.6
13.8
13.6
13.7
13.7
13.2
13.5
14.2
14.5
14.0
13.7
14.0
14.6
14.6
13.0
12.8
12.6
12.6
12.4
12.7
12.8
12.6
12.4
13.2
13.3
13.3
13.2
12.8
12.6
13.4
14.1
14.1
14.4
14.4
14.0
13.4
13.5
15.8
Scrubber
Outlet
02
(%)
14.7
14.5
14.8
14.6
14.7
14.8
14.7
14.6
14.1
14.2
14.3
14.8
14.8
14.6
14.8
15.0
14.8
14.5
14.8
15.6
15.5
15.6
15.5
15.3
15.3
15.7
15.9
15.5
15.3
15.5
15.9
15.9
14.9
14.6
14.3
14.2
14.0
14.2
14.1
14.0
13.8
14.4
14.5
14.5
14.4
14.1
13.9
14.6
15.1
15.2
15.4
15.4
15.0
14.5
14.5
16.4
Temperature
Scrubber
Inlet
°F
847
845
841
844
838
833
838
847
874
885
904
902
906
906
904
906
916
933
942
926
921
917
914
914
913
901
891
894
896
882
861
846
845
847
847
844
850
853
861
872
884
886
892
899
910
926
942
939
924
920
915
915
930 .
959
988
947
Scrubber
Outlet
"F
178
178
179
179
179
178
177
176
177
176
174
171
170
169
169
169
168
169
169
169
169
170
171
176
176
173
173
174
174
174
174
175
180
181
180
178
178
179
178
178
178
178
178
178
178
178
178
177
176
175
175
175
177
178
177
174
THC
Scrubber
Inlet
THC
(ppm)
19.4
20.4
21.3
20.8
22.2
21.9
18.8
16.6
13.9
11.6
9.3
8.5
8.9
9.3
10.4
9.9
10.9
10.7
9.5
10.6
9.9
10.7
10.0
9.9
10.2
9.7
10.4
10.8
9.5
10.8
12.0
13.4
19.2
22.7
24.8
26.4
31.0
22.5
22.1
20.6
19.7
14.7
12.3
10.4
9.8
9.4
9.0
8.4
7.9
8.8
9.7
10.0
10.8
10.3
8.5
8.0
Scrubber
Outlet
THC
(ppm)
20.9
21.7
21.3
21.2
23.2
20.8
19.2
17.5
15.3
13.1
10.5
9.7
9.6
10.3
10.6
11.0
11.2
11.1
10.5
11.2
11.2
10.9
9.2
10.4
10.3
11.0
12.1
11.7
11.5
12.2
13.9
16.8
19.6
23.8
29.7
30.9
36.1
26.2
25.8
24.3
22.1
17.7
14.8
12.5
12.0
11.1
11.4
9.9
10.0
10.8
10.9
11.7
11.7
11.4
9.4
9.0
CO
Scrubber
Inlet
CO
(ppm)
439
493
511
585
626
583 ,
559
544
515
479
420
370
377
416 •
439
447
456
486
463
487
475
468
446
473
444
414
415
416
390
343
302
293
383
555
784
839
962
701
666
647
647
512
468
450
434
434
465
370
348
365
370
394
424
429
356
405
Scrubber
Outlet
CO
(ppm)
306
347
358
410
446
415
398
388
380
358
326
294
292
313
330
338
349
372
358
379
367
359
346
353
344
333
337
334
316
278
245
236
296
443
647
704
808
594
578
566
565
444
406
391
376
380
400
320
306
320
325
349
377
395
328
388
Moisture
Scrubber
Inlet
H20
(%)
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
Scrubber
Outlet
H2O
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0:1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
18 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
• 7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
' 7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/24/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25795
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
TIME
21:55
22:00
22:05
22:10
22:15
22:20
22:25
22:30
22:35
22:40
22:45
22:50
22:55
23:00
23:05
23:10
23:15
23:20
23:25
23:30
23:35
23:40
23:45
23:50
23:55
0:00
0:05
0:10
0:15
0:20
0:25
0:30
0:35
0:40
0:45
0:50
0:55
1:00
1:05
1:10
1:15
1:20
1:25
1:30
1:35
1:40
1:45
1:50
1:55
2:00
2:05
2:10
2:15
2:20
2:25
2:30
CO2
Scrubber
Inlet
C02
(%)
3.9
3.7
4.3
4.9
5.5
7.0
7.3
7.7
8.0
8.3
8.5
9.1
9.9
10.4
10.9
11.4
10.9
10.5
10.1
9.8 •
10.5
10.5
10.5
10.4
10.1
9.7
8.8
8.5
8.6
8.5
9.1
9.2
8.5
8.5
8.6
8.5
8.7
8.4
8.7
9.2
8.6
8.4
9.0
8.6
10.3
10.5
Scrubber
Outlet
C02(%)
(%)
3.6
3.4
. 3.7
4.3
4.9
5.2
4.1
4.2
4.3
4.6
4.8
4.9
5.1
5.4
5.8
6.1
6.4
6.6
6.4
6.1,
5.9
5.7
6.1
6.2
6.3
6.2
6.0
5.7
5.2
5.0
5.2
5.1
5.3
5.3
5.1
5.0
5.1
5.0
5.1
4.9
5.0
5.3
5.0
5.0
5.2
5.1
5.8
6.0
O2
Scrubber
Inlet
Oa
(%)
15.9
16.1
15.3
14.7
14.1
12.1
11.8
11.3
10.9
10.5
10.0
9.4
8.6
7.9
7.4
6.9
7.7
8.2
8.7
9.1
8.3
8.4
8.5
8.7
9.0
9.5
10.4
10:6
10.4
10.6
10.0
9.9
10.7
10.7
10.5
10.6
10.3
10.7
10.1
9.5
10.3
10.2
9.4
9.9
8.1
8.0
Scrubber
Outlet
02
«
16.6 ,
16.8
16.4
15.7
15.0
14.7
15.6
15.5
15.4
15.2
15.0
14.7
14.5
14.1
13.7
13.3 .
13.0
12.8
13.2
13.5
13.8
14.0
13.6
13.5
• 13.5
13.6
13.8
14.1
14.7
14.8
14.7
14.8
14.6
14.5
14.9
14.9
14.8
14.8
14.8
15.0
14.7
14.4
14.7
14.7
14.2
14.4
13.7^
13.5
Temperature
Scrubber
Inlet
"F
916
889
880
888
905
927
940
953
963 -
954
935
916
. 886
872
820
805
795
786
780
780
778
. 782
791
798
807
810
804
797
793
793
805
829
842
850
853
848
846
849
847
846
846
847
846
846
845
835
825
824
828
813
802
799
789
772
782
Scrubber
Outlet
°F
173
- 174
179
181
181
178
177
174
169
169
174
174
175
176
176
175
175
175
173
174
170
168
165
163
174
175
174
174
172
173
173
172
' 171
171
170
170
170
170
171
171
170
170
170
170
171
172
172
172
171
171
171
171
163
166
THC
Scrubber
inlet
•rac
(ppm)
10.7
11.2
11.3
11.0
9.2
40.3,
42.0
37.8
49.4
50.9
66.3
63.2
78.0
85.2
106.8
114.7
63.3
45.0
43.1
42.8
60.9
51.3
29.5
23.3
19.8
17.1
16.7
16.3
16.3
17.1
18.4
18.0
19.6
19.7
19.1
19.7
20.9
22.1
22.8
22.0
29.0
33.1
40.6
40.3
103.7
91.5
Scrubber
Outlet
THC
(ppm)
11.7
12.2
11.2
10.5
9.6
8.8
20.0
22.4
30.8
35.0
40.9
45.8
58.0
55.6
71.4
83.2
99.0
110.9
58.7
39.9
37.5
36.4
54.6
42.1
27.3
21.4
17.2
14.5
14.3
14.1
14.2
14.9
16.1
16.8
17.6
17.9
18.0
18.0
19.0
20.4
20,4
19.8
26.0
27.9
32.6
33.6
92.3
79.7
CO
Scrubber
Inlet
CO
(ppm)
484
415
442
423
400
675 .
718
904
1363
1796
2212
2307
2711
2938
3045
3265
.1998
1434
1362
1306
1852
1515
896
733
636
594
569
530
520
497
504
520
520
546
580
526
491
460
504
534
695
1145
1753
1654
3150
2957
Scrubber
Outlet
CO
(ppm)
453
376
374
365
356
326
381
373
417
522
781
1034
1270
1327
1569
1715
1786
1879
1190
848
802
758
1078
903
545
442
375
343
329
306
301
288
287
295
300
313
333
302
278
261
288
306'
398 .
648
992
947
1693
1663
Scrubber
Inlet
H2O
(%)
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3 '
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
Scrubber
Outlet
H20
(%)
0.1 ,
0.1
0.
0.
0.
0.
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1 '
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
-0.1
0.1
, 0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
O.I
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
19 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/25/95
7/25WS
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7125195
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
TIME
2:35
2:40
2:45
2:50
2:55
3:00
3:05
3:10
3:15
3:20
3:25
3:30
335
3:40
3:45
3:50
3:55
4:00
4:05
4:10
4:15
4:20
4:25
4:30
4:35
4:40
4:45
4:50
4:55
5:00
5:05
5:10
5:15
5:20
5:25
5:30
5:35
5:40
5:45
5:50
5:55
6:00
6:05
6:10
6:15
6:20
6:25
6:30
6:35
6:40
6:45
6:50
6:55
7:00
7:05
7:10
CO2
Scrubber
Inlet
COz
(%)
10.9
11.9
9.7
10.2
10.5
10.0
10.4
10.3
9.9
10.0
10.3
10.8
11.2
10.7
10.1
10.2
10.3
10.0
9.4
9.2
9.0
8.8
8.9
9.2
9.0
8.3
7.8
7.8
8.4
8.6
8.7
8.7
10.0
10.6
11.5
10.8
10.5
10.8
10.2
9.5
10.1
10.1
9.7
11.5
12.0
10.6
9.8
9.6
10.2
10.0
9.4
9.1
8.5
7.9
7.8
7.7
Scrubber
Outlet
C0j(%)
(%)
6.4
6.9
5.8
6.0
6.3
6.0
6.2
6.1
5.9
5.9
6.0
6.4
6.6
6.3
6.0
6.0
6.0
5.8
5.4
5.3
5.2
5.1
5.2
5.3
5.2
4.8
4.5
4.5
4.8
5.0
5.2
5.2
5.7
6.3
6.9
6.6
6.4
6.5
6.0
5.6
6.0
6.0
5.7
6.6
7.0
6.5
6.0
5.8
5.9
5.8
5.4
5.2
4.9
4.7
4.6
4.6
O2
Scrubber
Inlet
Oz
(%)
7.3
6.6
9.4
8.7
8.1
8.8
8.3
8.5
9.1
8.8
8.5
8.0
7.7
8.4
8.9
8.7
8.6
9.1
9.7
9.8
10.1
10.4
10.1
9.8
10.0
10.8
11.3
11.2
10.4
10.1
9.9
9.8
8.3
7.6
6.8
7.8
8.1
7.9
8.6
9.2
8.6
8.7
9.1
7.1
6.9
8.4
9.3
9.5
8.8
9.0
9.7
10.0
10.8
11.5
11.6
11.7
Scrubber
Outlet
02
(%)
13.0
12.6
14.1
13.7
13.2
13.6
13.4
13.6
13.8
13.8
13.6
13.3
13.1
13.5
13.8
13.8
13.7
14.0
14.4
14.5
14.7
14.8
14.7
14.5
14.6
15.0
15.4
15.3
14.9
14.6
14.4
14.4
13.7
13.1
12.4
12.9
13.1
13.1
13.7
14.0
13.6
13.7
13.9
13.0
12.6
13.2
13.8
14.0
13.8
14.0
14.5
14.6
15.0
15.3
15.4
15.4
Temperature
Scrubber
Inlet
°F
794
807
805
817
844
847
846
843
836
840
846
855
868
881
885
894
902
901
890
881
875
874
873
876
871
852
829
814
815
814
804
806
816
827
846
856
852
849
832
820
821
822
814
812
845
879
884
885
888
887
875
868
862
854
847
840
Scrubber
Outlet
°F
162
154
172
172
173
171
172
172
171
171
171
171
171
171
170
170
170
171
171
171
171
170
170
171
172
172
171
171
172
173
170
172
173
168
163
174
173
173
173
173
173
173
171
155
163
174
172
170
172
172
171
172
171
170
170
170
THC
Scrubber
Inlet
THC
(ppm)
106.1
133.8
54.7
42.3
27.8
22.8
24.6
26.0
26.1
30.1
32.5
35.9
31.6
21.7
18.3
17.4
16.5
14.2
14.9
15.9
15.9
16.1
16.3
16.2
15.9
16.1
19.3
22.3
33.4
42.2
65.0
51.4
53.1
72.3
91.0
33.1
26.3
31.6
31.9
32.7
41.4
39.1
54.7
134.7
98.1
24.9
18.8
16.9
15.4
14.6
12.9
13.5
14.0
16.0
16.4
17.4
Scrubber
Outlet
THC
(ppm)
100.4
135.6
42.5
35.4
22.7
19.4
22.1
22.5
23.0
25.3
27.0
30.8
28.1
19.0
16.6
15.4
14.7
13.7
13.7
14.1
14.1
13.5
13.8
13.8
13.5
14.1
16.4
18.7
28.3
37.2
54.0
40.9
43.1
64.8
89.3
30.6
23.9
28.9
27.9
29.4
35.7
36.6
50.8
136.5
92.4
20.1
16.5
14.7
13.9
12.7
11.6
11.7
12.4
13.5
14.5
14.9
CO
Scrubber
Inlet
CO
(ppm)
3121
4786
1734
923
986
703
915
920
839
972
1103
1255
1172
914
812
809
815
710
664
685
673
666
729
734
643
514
448
426
726
1213'
2071
1889
2175
2993
3400
1519
949
1124
1053
979
1229
1239
1503
3403
3402
831
693
671
739
657
623
609
600
624
651
615
Scrubber
Outlet
CO
(ppm)
1686
1985
1026
549
608
426
558
565
513
585
658
752
694
533
473
465
464
406
377
384
380
376
407
412
361
289
251
238
413
705 '
1188
1093
1214
1733
1854
973
589
695
637
571
727
734
853
1835
1641
519
419
404
435
383
353
345
345
365
387
364
Moisture
Scrubber
Inlet
H20
(%)
0.3
0.3
0.3
0.3
0.3
0.3
0.3 ..
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
, 0.3
0.3
0.3
0.3
0.3
0.3
0.3
Scrubber
Outlet
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
O.I
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
20 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
,7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
TIME
7:15
7:20
7:25
7:30
7:35
7:40
7:45
7:50
7:55
8:00
8:05
8:10
8:15
8:20
8:25
8:30
8:35
8:40
8:45
8:50
8:55
9:00
9:05
9:10
9:15
9:20
9:25
9:30
9:35
9:40
9:45
9:50
9:55
10:00
10:05
10:10
10:15
10:20
10:25
10:30
10:35
10:40
10:45
10:50
10:55
11:00
11:05
11:10
11:15
11:20
11:25
'11:30
11:35
11:40
11:45
11:50
CO2
Inlet
COa
«
7.6
7.3
7.6
8.4
8.4
8.6
8.9
9.1
9.3
9.7
10.1
10.6
10.9
11.0
9.7
9.6
9.2
9.0
8.1
8.2
8.4
9.6
10.0
9.0
8.0
7.8
8.0
8.2
8.3
8.6
9.6
10.1
10.1
9.8
9.5
9.9
9.5
9.2
8.9
8.7
8.9
8.5 .
8.2
8.0
9.0
9.7
9.0
Outlet
C02<%)
(%)
4.5
4.3
4.6
5.1
5.2
5.2
5.4
5.5
5.7
6.0
6.4
6.6
6.7
6.9
6.2
6.3
6.1
5.9
. 6.1
4.81
5.0
5.1,
5.3
5.4
5.7
6.2
6.6
6.6
6.4
6.3
6.5
6.2
6.1
5.9
5.8
5.9
5.6
5.4
5.3
5.6
5.9
.5.5
O2
Scrubber
Inlet
02
(%)
11.8
12.2
11.6
10.6
10.6
10.4
9.9
9.6
9.4
8.9
8.4
7.9
7.5
7.4
9.0
9.2
9.7
9.8
10.9
10.7
10.4
9.0
8.5
9.7
10.9
11.0
10.7
10.5
10.4
10.0
8.9
8.2
8.3
8.7
9.0
8.6
9.2
9.4
9.8
9.9
9.8
10.4
10.8
11.0
9.9
9.1
9.9
Scrubber
Outlet
02
(%)
15.5
15.7
15.3
14.6
14.6
14.5
14.3
14.1
13.9
13.4
13.1
12.9
12.7
12.6
13.3
13.3
13.5
13.6
13.4
14.9
14.6
14.4
14.2
14.1
13.8
13.3
12.8
12.8
13.0
13.2
13.0
13.3
13.4
13.7
13.8
13.7
14.1
14.3
14.5
14.2
13.8
14.3
Temperature
Scrubber
Inlet
°F
832
' 817
816
828
823
817
814
813
820
845
856
859
867
874
865
862 .
854
853
861 ,
891
910
916
931 •
944
966
977
968
945
937
942
966
983
964
936
921
912
904
895
889
896
911
910
912
912
914
907
908
907
905
903
883
877
874
872
882
876
Scrubber
Outlet
»F
171
170
170
171
172
171
171
171
170
172
172
171
175
174
171
169
169
170
172
173
170
169
169
168
172
172
173 •
172
' 172
172
174
175
174
173
172
172
172
172
172
172
172
172
171
170
173
175
174
THC
Scrubber
Inlet
THC
(ppm)
18.7
21.3
23.1
24.5
26.5
37.1
52.9
58.0
61.0
39.6
35.0
51.2
33.2
27.3
21.7
21.3
23.3
25.6
19.7
20.7
20.1
18.5
16.7
14.7
15.0
16.3
17.0
17.1
19.4
21.0
22.4
20.7
19.1
14.9
11.8
11.6
11.3
10.8
12.3
13.2
14.2
17.4
17.4
18.1
18.3
16.2
16.2
Scrubber
Outlet
THC
(ppm)
15.9
18.0
19.8
20.7
24.5
32.0
42.1
48.3
54.2
36.3
31.9
48.4
30.3
26.7
22.9
22.7
24.3
25.6
26.4
16.3
15.6
16.0
17.1
18.6
19.9
21.1
19.8
18.7
15.3
13.3
12.8
13.3
13.0
14.2
15.0
15.7
16.7
17.2
18.0
17.9
16.1
16.4
CO
Scrubber
Inlet .
CO
(ppm)
567
535
539
544
628
851
1374
1702
1826
1271
1192
1682
1231
1064
726
718
803
928
599
668
738
722
691
672
732
745
725
701
709
756
859
984
1018
832
611
529
514
483
541
620
629
668
643
661
674
651
550
Scrubber
Outlet
CO
(ppm)
332
315
320
325
379
512
810
1009
1096
787
742
1044
766
670
467
465
517
589
630
465
473
459
452
459
490
546
623
653
538
395
338
329
310
350
403
408
435 .
417
429
413
385 ,
328
Moisture
Scrubber
Inlet
H20
(%)
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0,3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
Scrubber
H2O
(%)
0.1
0.1
0.1
0.1
0.1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0. ,
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.
0.
0.
0.
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
21 of 26
-------
IB"!"! 1'i-a i 'I "i
! (>"!!' i. Hill1', '"tir"""! Hi
Arlington Virginia
Continuous Monitor Data
July IMS
DATE
7/25/95
7/25/95
7/25/95
7/25/95
7125195
705/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7125195
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
TIME
11:55
12:00
12:05
12:10
12:15
12:20
1225
12:30
12:35
12:40
12:45
12:50
12:55
13:00
13:05
13:10
13:15
13:20
13:25
13:30
13:35
13:40
13:45
13:50
13:55
14:00
14:05
14:10
14:15
14:20
1435
14:30
14:35
14:40
14:45
14:50
1435
15:00
15:05
15:10
15:15
15:20
1535
1530
1535
15:40
15:45
1530
1535
16:00
16:05
16:10
16:15
1630
16:25
1630
CO2
Scrubber
Inlet
COz
(%)
8.3
8.0
8.0
8.0
8.4
8.4
7.9
7.7
8.4
8.1
85
10.5
9.1
75
9.1
9.3
9.5
8.7
8.6
8.3
8.0
7.5
8.1
7.8
7.8
7.8
8.1
8.5
8.5
9.5
9.5
9.8
10.1
95
9.8
9.8
10.2
10.3
10.9
10.4
9.9
9.7
9.5
9.4
9.5
9.3
8.9
8.5
8.6
Scrubber
Outlet
COzW
(%)
5.1
4.9
4.9
5.0
5.2
5.4
5.2
5.1
5.6
5.3
5.3
6.8
5.8
4.8
6.0
6.1
6.2
5.7
5.7
5.5
5.2
4.9
5.3
5.2
5.1
5.2
5.3
5.6
5.8
6.0
5.9
4.5
4.1
4.4
4.4
5.3
5.3
5.7
5.8
6.1
5.6
5.9
5.9
6.2
6.4
6.7
6.4
6.1
6.0
5.9
5.9
5.9
5.8
5.6
5.4
5.5
O2
Scrubber
Inlet
Oj
(%)
10.7-
11.1
11.0
10.8
10.2
10.2
10.8
11.0
9.9
10.3
10.0
7.3
9.3
11.4
9.1
9.0
9.0
10.0
10.1
10.5
11.0
11.6
10.7
11.0
11.0
11.0
10.5
10.1
10.1
9.0
9.0
8.5
8.1
9.2
8.5
8.4
7.9
7.9
7.3
7.9
8.5
8.8
9.0
9.0
9.0
9.2
9.7
10.1
10.0
Scrubber
Outlet
02
(%)
14.8
15.0
14.9
14.8
14.4
14.1
14.3
14.4
13.8
14.1
13.9
12.2
13.6
14.7
13.3
13.2
13.2
13.9
13.9
14.1
14.5
14.8
14.3
14.4
14.5
14.4
14.2
13.9
13.7
13.5
13.7
15.4
15.9
15.4
15.4
14.3
14.3
13.9
13.7
13.3
13.8
13.5
13.4
13.1
13.0
12.6
13.0
13.3
13.5
13.6
13.6
13.6
13.7
14.0
14.2
14.1
Temperature
Scrubber
Inlet
°F
861
844
847
852
857
862
856
. 847
855
838
831
860
849
809
851
872
878
863
862
861
851
841
866
868
869
870
877
888
897
908
903
859
834
854
863
152
839
851
847
850
844
842
843
851
861
876
882
883
886
887
890
894
893
889
883
888 .
Scrubber
Outlet
"F
174
174
174
174
174
172
171
171
172
172
173
175
174
172
173
173
172
170
169
169
169
168
170
170
170
170
170
171
170
170
169
168
167
168
174
175
175
177
180
180
177
179
179
180
179
179
178
177
177
177
177
177
176
176
175
176
rac
Scrubber
Inlet
THC
(ppm)
17.4
20.8,
21.7
22.0
23.4
22.5
23.9
26.4
28.9
35.7
38.0
88.5
91.5
50.0
37.2
27.3
22.5
15.3
14.5
15.5
19.3
18.2
16.4
13.4
15.0
13.7
13.2
9.6
10.5
6.9
6.6
7.0
9.5
21.1
26.3
16.3
24.0
28.7
31.0
35.0
31.7
37.5
40.8
44.2
40.4
38.0
27.6
21.1
18.1
16.3
15.4
13.5
13.4
13.5
13.9
14.6
Scrubber
Outlet
THC
(ppm)
17.9
19.4
20.1
20.7
21.0
21.6
22.4
25.3
26.6
32.4
34.8
78.6
81.6
43.5
33.4
25.9
22.4
16.5
16.1
18.0
21.3
22.3
18.5
18.6
19.4
19.3
18.2
16.9
15.7
14.9-
15.2
18.7
22.4
20.9
15.9
17.8
18.9
20.8
24.7
28.9
25.7
31.0
33.0
36.4
32.4
32.9
22.7
17.7
15.4
14.4
13.5
12.5
12.7
13.0
13.2
14.0
CO
Scrubber
Inlet
CO
(ppm)
' 507
479
473
565
649
729
869
1137
1186
1438
1576
2540
2840
1844
1490
1338
1101
619
503
475
495
531
457
453
521
594
624
622
619
596
588
635
533
576
725
1010
880
1198
1350
1585
1383
1419
999
749
666
632
603
547
520
498
474
516
Scrubber
Outlet
CO
(ppm)
'301
282
279
337
389
458
562
731
759
914
998
1625
1797
1216
954
852
700
406
323
304
316
342
293
290
334
382
402
398
395
378
371
412
401
357
291
331
320
339
424
603
534
711
801
953
847
875
618
462
410
387
369
334
319
305
289
317
Moisture
Scrubber
Inlet
H20
(%) ,
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
Scrubber
Outlet
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
•0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
22 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
.7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
TIME
16:35
16:40
16:45
16:50
16:55
17:00
17:05
17:10
17:15
17:20
17:25
17:30
17:35
17:40
17:45
17:50
17:55
18:00
18:05
18:10
18:15
18:20
18:25
18:30
18:35
18:40
18:45
18:50
18:55
19:00
19:05
19:10
19:15
19:20
19:25
19:30
19:35
19:40
19:45
19:50
19:55
20:00
20:05
20:10
20:15
20:20
20:25
20:30
20:35
20:40
20:45
20:50
20:55
21:00
21:05
21:10
CO2
Inlet
CO,
(%)
8.5
9.0
9.9
10.7
9.1
7.6
8.1
7.9
8.3
8.7
9.4
10.0
10.4
10.3
9.9
9.9
9.4
9.4
9.5
9.7
10.4
10.7
11.0
11.7
10.5
9.8
9.9
10.8
12.7
10.7
7.5
7.3
7.2
7.5
7.5
8.1
8.7
10.2
11.2
10.9
Outlet
C02 (%)
(%)
5.4
5.6
6.2
6.7
5.7
4.8
4.9
4.8
5.0
. 5.2
5.5 •
5.9
6.1
6.1
5.8
5.8
5.7
5.7
5.7
5.9
6.3
6.4
6.6
7.1
6.6
6.2
6.2
6.9
7.8
6.8
4.7
4.4
4.3
4.6
4,7
5.0
5.4
6.2
6.8
6.6
5.6
4.8
4.7
4.6
5.0
5,3 .
5.7
6.2
6.4
6.0
5.7
5.9
6.2
O2
Inlet
02
(%)
10.1
9.6
8.5
7.7
9.8
11.5
10.8
10.9
10.3
9.8
9.1
8.5
8.1
8.1
8.6
8.4 '
9.0
9.0
8.9
8.6
7.8
7.6
7.1
6.4
8.1
8.9
8.8
7.6
5.5
8.3
12.0
12.0
11.9
11.3
11.4
10.6
9.9
8.3
7.2
7.8
Scrubber
Outlet
Oj
(%)
14.1
13.9
13.3
12.8
14.0
15.0
14.8
14.9
14.7
14.4
14.0
13.6
13.4
13.4
13.7
13.7
13.7
13.8
13.7
13.6
13.1
13.0
12.8
12.2
13.0
13.5
13.4
12.6
11.6
12.8
15.4
15.5
15.5
15.1
15.0
14.6
14.1
13.3
12.7
13.1
14.1
15.0
15.1
15.1
14.6
14.2
13.8
13.3
13.1
13.5
13.8
13.6
13.2
Temperature
Scrubber
Inlet ,
°F
888
894
913
938
922
895
891
880
871
870
877
883.
890
891
884
877
870
863
859
853
855
861
870
886
889
892
904
942 ,
981
1006
906
880
870
870
868
869
879
899
921
929
908
882
875 ,,
865
866
870
879
890
895
888
874
868
866
863
868
874
Scrubber
Outlet
°F
176
176
176
177
175
174
177
178
. 179
180
181
182
182
182
181
182
180
180
180
180
181
182
183
183
179
178
178
179
180
174
173
176
178.
178
177
178
178
179
180
180
178
177
177
178
179
179
180
180
181
180
,180
180
181
180
180
182 '
THC
Scrubber
Inlet
THC
.(ppm)
16.1
15.6
13.9
12.4
11.3
13.4
13.5
15.1
15.8
16.3
16.8
17.4
17.2
16.9
16.9
19.2
19.3
20.0
23.1
27.8
38.1
. 40.9
46.0
61.6
28.0
22.2
23.6
26.1
43.6
32.1
16.6
16.9
16.5
15.3
17.5
15.8
16.3
14.7
15.2
14.3
Scrubber
Outlet
THC
(ppm)
15.0
14.4
13.0
11.6
11.7
12.7
12.1
12.8
13.1
13.4
13.9
14.7
14.6
14.2
14.4
16.2
16.8
17.2
19.9
24.1
32.6
34.8
39.7
54.7
25.1
19.9
20.6
22.3
35.1
25.7
14.3
15.6
16.5
15.4
17.1
17.6
16.7
15.7
16.4
16.7
13.1
13.7
• 13.5
14.7
14.7
15.0
15.6
16.1
15.9
15.6
18.4
22.3
29.5
CO
Scrubber
Inlet
CO
(ppm)
590
663
693
673
572
585
582
549
540
548
593
648
665
636
609
632
613
576
624
807
1252
1421
1650
2293
1175
911
1134
1705
1865
1121
703
751
575
488
523
604
704
817
1070
976
707
604
525
505
508
579
680
757
764
643
613
721
Scrubber
Outlet
CO
365
409
428
409
350
362
345
322
313
316
340
376
384
-371
353
367
366
342
372
481
741
844
971
1395
743
568
697
1065
1091
696
454
456
342
288
316
360
429
493
622
577
415
354
307
296
298
340
405
453
455
381
361
436
619
Scrubber
Inlet
H20
(%)
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
. 0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0:3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
Scrubber
H2O
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0. ,
0.
0.
0.1
0.1
0.1
23 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 199S
DATE
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/25/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7126195
7/26/95
7/26/95
7/26/95
7126195
7/26/95
7/26/95
7/26/95
7/26/95
7126195
7126195
TIME
21:15
21:20
21:25
2130
21-35
21:40
21:45
21:50
21:55
22:00
22:05
22:10
22:15
22:20
22:25
22:30
22:35
22:40
22:45
2230
2235
23:00
23:05
23:10
23:15
2330
23:25
23:30
23:35
23:40
23:45
2330
23:55
0:00
0:05
0:10
0:15
0-20
0:25
0;30
035
0:40
0:45
030
035
1:00
1:05
1:10
1:15
120
135
1:30
1:35
1:40
1:45
130
CO2
Scrubber
Inlet
COz
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
, 7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
TIMi
1:55
2:00
2:05
2:10
2:15
2:20
2:25
2:30
2:35
2:40
2:45
2:50
2:55
3:00
3:10
3:15
3:20
3:25'
3:30
3:35
3:40
3:50
4:00
4:05
4:10
4:15
4:20
4:25
4:30
4:35
4:40
4:45
4:50
4:55
5:00
5:05
5:10
5:15
5:20
5:25
5:30
5:35
5:40
5:45
5:50
6:00
6:05
6:10
6:15
6:20
6:25
6:30
CO2
Inlet
COz
(»)
14.8
7.1
7.1
5.5
4.7
5.0
6.1
7.1
8.0
8.5
10.3
11.0
10.6
9.6
10.4
11.7
Outlet
CO2(%
(%)
9.0
4.4
4.3
3.3
2.8
2.9
3.6
4.0
4.6
4.9
5.8
6.2
6.0
5.7
6.0
6.2
7.0
6.3
4.8
5.0
4.9
47
s!6
5.3
5.6
6.0
5.2
5.3
6.1
7.1
7.5
4.1
5.0
4.9
5,3
5.6
5.6,
4.9
49
£4
6 1
5.5
5.3
4.7
5.1
5.7
5.9
62
ill
7.5
8.0
7.2
5.2
3.8
4.0
O'
Inlet
02
w
3.6
12.7
12.7
14.3
15.2
14.6
13.3
12.3
11.1
10.4
8.3
7.5
8.1
9.3
8.9
8.4
6.8
Outlet
02
(%)
10.4
15.9
16.0
17.1
17.6
17.4
16.6
16.1
15.4
15.1
13.9
• 13.6
13.8
14.2
13.9
13.6
12.6
13.5
15.3
15.0
15.0
152
14.9
14.5
14.1
13.7
14.8
14.6
13.7
125
12.0
16.2
15.2
15.2
144
14.6
14.2
14.2
15.1
15 1
13.3
13 7
14.3
14.6
15.3
14.7
14.0
13.8
H d
ns
12.0
11.4
12.5
15.0
16.4
16.2
Inlet
"F
1164
1095
994
926
870
845
847
850
863
874
891
902
911
910
922
939
969
976
915
898
887
S71
860
857
858
861
837
826
835
862
924
868
837
837
Q«
864
877
885
868
c« ,
895
QIC
907
896
868
852
857
861
885
909
952-
981
919
845
803
Outlet
°F
173
173
175
176
178
179
181
181
181
181
183
184
184
180
180
180
180
179
178
180
180
180
180
180
180
179
179
180
172
178
178
177
176
177
177
176
178
177
176
176
176
178
178
179
180
178
178
177
175
175
"Inlet
THC
(PPm)
213.5.
30.6
34.4
37.9
41.9
41.1
41.8
39.4
' 30.8
299
32.7
I 52.3
41.3
19.2
19.4
16.9
62.9
116.4
16.5
22.7
21.8
21.9
21.7
20.8
26.1
25.8
31.5
91.3
230.2
22.3
26.9
21.2
18.5
14.7
122
12.4
12.2
27.3
10.9
12.6
13.8
17.0
19.5
19.5
22.9
32.7
74.7
114.9
54.7
10.9
19.4
31.5
Scrubbe
THC
(ppm)"
184.7
9.8
12.7
18.2
22.4
24.4
25.6
24.8
21.8
19.6
24.0
42.2
31.6
. 14.9
15.4
16.2
56.1
88.3
14.3
17.3
17.6
17.4
18.3
19.1
20.4
23.4
24.0
33.5
83.2.
223.9
21.4
22.5
20.2
17.6
14.4 1
13.2
12.2
13.1
15.2
23.3
12.8
11.6
12.8
14.7
16.5
18.5
19.4
21.4
34.5
77.8
124.1
41.1
12.5
.21.2
26.0
Scrubbe
CO
(ppm)
3332
441
778
1115
1226
1382
1292
1108
1003
897
1368
2016
1698
837
814
782
1536
2189
870
1006
981
784
749
710
754
960
985
1373
3266
4840
4230
1006
1140
» 877
933
830
834,
789
703
783
1368
871
711
729
681
690
810
841
988
1521
3035
3833
1723
552
947
831
Scrubbe
CO
(ppm)
2551
270
467
681
709
806
756
635
575
505
737
1072
923
478
476
476
890
1321
537
569
550
449
426
409
445
573
576
780
1844
3180
3224
588 .
625
498
529
483
484
448
408
446
743
493
416
419
393
389
457
492
588
901
1789 ,
2296
999
333
550
484
Mo
Scrubbe
Inlet
H20
(%)
0.3
0.3
0.3
0.3
0.3
0.3
0.3'
0.3
0.3
0 3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
Scrubber
Outlet
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0 i
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0 1
0.1
0 1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0 1
'0 1
0.1
0.1
0.1
0.1
0 1
0 1
0 1
0.1
0 1
0.1
0.1
0 1
0 1
0.1
0.1
0 1
0 1
0.1
25 of 26
-------
Arlington Virginia
Continuous Monitor Data
July 1995
DATE
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
7/26/95
TIME
6:35
6:40
6:45
6:50
6:55
7:00
7:05
7:10
7:15
7:20
7:25
7:30
7:35
7:40
7:45
7:50
7:55
CO2
Inlet
COz
(%)
Outlet
C02(%)
(S)
4.7
5.1
4.6
4.0
3.8
3.3
3.3
5.2
8.2
8.7
O2 '
Inlet
02
(%)
Scrubber
Outlet
02 -
(%)
15.3
14.7
15.3
15.9
15.9
16.6
16.5
14.1
10.4
10.4
Scrubber
Inlet
°F
811
809
799
771
762
757
757
823
967
1093
1093
966
890
878
893
910
929
Scrubber
Outlet
°F
176
177
177
179
179
175
174
175
169
172
166
167
171
170
172
176
177
THC
Scrubber
Inlet
THC
(ppm)
60.0
34.9
32.2
31.2
• 36.3
41.4
56.3
68.0
180.5
90.1
Scrubber
Outlet
THC
(ppm)
53.1
34.5
28.0
31.7
34.4
42.4
48.8
66.2
188.4
CO
Scrubber
Inlet
CO
1335
938
842
1000
827
1084
1536
2271
4683
Scrubber
Outlet
CO
781
560
501
583
491
674
971
1441
3970
Scrubber
Inlet
H20
(%)
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
Scrubber
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0,1
0.1
0.1
0.1
0.1
26 of 26
-------
APPENDIX B
CLEVELAND CONTINUOUS MONITOR DATA
-------
:•.:: "I
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7131/95
7/31/95
7/31/95
7/31/95
TIME
17:00
17:05
17:10
17:15
17:20
17:25
17:30
17:35
17:40
17:45
17:50
17:55
18:00
18:05
18:10
18:15
18:20
18:25
18:30
18:35
18:40
18:45
18:50
18:55
19:00
19:05
19:10
19:15
19:20
19:25
19:30
19:35
19:40
19:45
19:50
19:55
20:00
20:05
20:10
20:15
20:20
20:25
20:30
20:35
20:40
20:45
20:50
20:55
21:00
21:05
21:10
21:15
21:20
21:25
21:30
21:35
C02
Scrubber
Inlet
C02
(*)
4.7
5.0
5.1
5.1
,5.3
5.7
6.5
5.3
5.2
5.1
5.4 .
5.1
5.1
4.8
4.8
4.6
4.7
4.8
5.0
5.1
5.2 ,
5.3
5.2 .
5.1
5.1
5.4
5.3
5.1
5.2
5.3
5.3
5.0
5.1
5.1
5.2
5.2
5.1
5.2
5.2
5.2
5.2
5.2
5.2
5.2
Scrubber
Outlet
C02
(%)
3.8
3.8
3.8
3.9
4.2
4.7
3.9
3.9
3.8
4.0
•3.8
3.8
3.5
3.6
3.5
3.5
3.6
3.7
3.8
3.9
3.9
3.9
3.8
3.8
410
3.9
3,8
3.8
3.9
3.9
3.7
3.8
. 3.8
3.8
3.9
3.8
3.8
3.8
3.9
3.9
3.9
3.9
3.9
02
Scrubber
Inlet
02
(%)
X
14.2
14.0
13.8
13.9
13.6
13.1
12.2
13.7
13.8
13.8
13.5
13.9
13.9
14.3
. 14.2
14.4
14.4
14.2
14.0
13.9
13.6
13.6
13.7
13.8
N13.9
13.4
13.6
13.8
13.8
13.5
13.6
13.9
13.9
13.8
13.7
13.7
13.8
13.8
13.8
13.7
13.7
13.7
13.8
13.8
Scrubber
Outlet
02
(*)•
15.7
-
15.8
15.7
15.8
15.6
15.3
14.6
15.7
15.7
15.8
15.5
15.9.
15.8
16.1
16.1
16.2
16.2
16.0
15.9
15.8
15.7
15.7
15.7
15.8
15.8
15.5
15.6
15.8
15.8
15.6
15.6
15.9
15.8
15.8
15.7
15.7
15.8
15.8
15.8
15.7
15.7
15.7
15.8
15,8
Temperature
Scrubber
Inlet
°F
592
591
591
590
591
593
591
591
588
592
592
593
593
593
593
592
592
593
596
597
597
597
597
595
595
594
594
595
594
593
593
593
593
593
594
594
594
595
596
595
594
595
595
595
595
595
596
595
594.
594 _
594
595
596
596
596
596
Scrubber
Outlet
«f
172
173
265
174
177
174
172
174
172
174
174
175
175
174
172
172
173
175
174
175
175
173
173
172
172
172
174
174
174
173
173
172
172
173
174
175
175
173
172
173
173
173
174
174
175
174
173
172
172
173
THC
Scrubber
Inlet
THC
(ppm)
5.9
4.7
3.5
2.7
2.7
2.1
1.7
1.5
1.2
1.1
0.9
0.8
0.8
0.7
0.8
0.8
0.7
0.7
0.6
0.4
0.3
0.2
0.1
0.1
0.0
-0.3
-0.5
-0.6
-0.5
-0.6
-0.8
•0.9
-1.0
-1.0
-1.1
-1.2
-1.2
-1.2
-1.4
-1.6
-1.6
-1.8
-1.7
-1.8
Scrubber
Outlet
THC
(ppm)
-0.4
-0.4
0.1
0.8
1.6
1.7
1.4
1.2
1.1
1.1
1.1
1.0
1.1
1.1
1.3
1.4
1.2
1.2
.4
.5
.• .7
.7
.5
1.6
1.9
1.8
1.9
2.1
2.0
2.1
2.1
2.2
2.0
2.4
2.3
2.1
1.8
2.2
2.0
2.0
2.2
CO
Scrubber
Inlet
CO
(ppm)
-
5.2
5.2
4.6
3.5
1.9
2.0
2.2
2.5
2.0
2.2.
2.2
3.0
3.3
4.1
5.3
5.8
5.5
4.9
4.4
3.8
3.9
3.9
4.3
3.4
2.7
3.0
3.1
3.0
2.4
2.9
3.6
3.3
3.2
3.2
3.1
3.1
3.0
2.9
2.8
2.8
3.0
2.7
Scrubber
Outlet
CO
(ppm)
2.7
2.9
2.4
1.8
0.8
0.7
0.5
0.5
0.4
0.6
0.3
0.8
0.9
1.4
2.3
2.7
2.1
1.9
1.5
1.1
- 1.1
1.1
1.3
0.8
0.4
0.6
0.6
0.6
0.1
0.7
1.0
0.8
0.7
0.6
0.7
0.7
0.5
0-5
0.4
0.4
0.5
0.6
Moisture
Scrubber
Inlet
H20
(%)
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
Outlet
H20
(%)
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
I of 19
-------
" r
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
7/31/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
TIME
21:40
21:45
21:50
21:55
22:00
22:05
22:10
22:15
22:20
22:25
22:30
22:35
22:40
22:45
22:50
22:55
23:00
23:05
23:10
23:15
23:20
23:25
23:30
23:35
23:40
23:45
23:50
23:55
0:00
0:05
0:10
0:15
020
0:25
0:30
0:35
0:40
0:45
0:50
0:55
1:00
1:05
1:10
1:15
1:20
125
1:30
1:35
1:40
1:45
1:50
1:55
2:00
2:05
2:10
2:15
C02
Scrubber
Inlet
C02
(56)
5.1
5.2
5.2
4.9
4.7
4.6
4.7
4.9
4.9
5.1
5.2
5.3
5.4
5.3
5.3
5.2
5.2
5.2
5.4
5.3
5.0
5.2
5.1
4.0
3.6
3.3
3.2
3.1
3.0
3.0
3.2
3.6
4.0
4.4
4.5
4.8
4.8
4.8
4.9
5.0
4.8
4.9
4.5
4.6
4.5
4.6
4.5
4.4
4.5
4.6
4.5
4.5
4.5
Scrubber
Outlet
CO2
(55)
3.8
3.8
3.8
3.7
3.5
3.5
3.6
3.7
3.7
3.8
3.8
3.9
4.0
3.9
4.0
3.9
3.8
3.8
3.8
3.9
3.8
3.0
2.7
2.5
2.4
2.3
2.3
2.3
2.5
2.7
3.0
3.3
3.4
3.6
3.6
3.7
3.7
3.7
3.6
3.7
3.4
3.4
3.4
3.5
3.4
3.3
3.4
3.5
3.4
3.4
3.4
02
Scrubber
Inlet
02
(%)
13.9
13.8
13.8
14.2
14.5
14.6
14.5
14.2
14.1
14.0
13.8
13.7
13.6
13.7
13.7
13.8
13.8
13.8
13.6
13.7
14.1
13.8
14.0
15.4
15.8
16.2
16.4
16.5
16.6
16.5
16.3
15.8
15.2
14.8
14.6
14.3
14.2
14.2
14.2
14.0
14.2
14.1
14.6
14.5
14.6
14.5
14.6
14.7
14.6
14.5
14.6
14.6
14.5
Scrubber
Outlet
02
(%)
15.9
15.8
15.8
16.0
16.3
16.3
16.2
16.0
16.0
16.0
15.9
15.8
15.7
15.8
15.7
15.8
15.9
15.9
15.9
15.8
15.9
16.9
17.2
17.5
17.6
17.7
17.8
17.7
17.5
17.2
16.8
16.4
16.3
16.1
16.1
16.0
16.0
15.9
16.1
16.0
16.3
16.3
16.3
16.3
16.3
16.4
16.3
16.3
16.4
16.4
16.3
Temperature
Scrubber
Inlet
°F
595
595
595
599
599
598
596
594
592
589
589
589
591
591
591
592
591
590
591
592
592
586
590
592
591
592
591
589
587
585
583
580
577
575
576
577
579
581
582
583
584
584
585
585
586
586
586
586
586
586
586
586
586
586
586
586
Scrubber
Outlet
°F
175
175
175
174
171
171
171
172
173
173
173
172
171
171
170
170
172
173
172
174
174
172
172
171
171
171
170
169
169
168
167
167
168
166
166
165
163
163
, 162
162
162
163
163
162
162
163
163
164
164
164
165
164
163
164
164
163
THC
Scrubber
Inlet
THC
(ppm)
-1.9
-1.9
-0.9
-1.6
-1.7
-1.8
-2.0
-2.1
-2.1
-2.4
-2.6
-2.7
-2.8
-2.8
-2.9
-3.0
-3.1
-2.9
-3.2
-3.3
2.3
1.9
1.6
1.5
1.6
1.6
1.5
1.5
1.7
1.8
1.8
1.8
1.6
1.5
1.5
1.4
1.3
1.1
1.0
0.9
0.8
0.7
0.7
0.7
0.7
0.6
0.6
0.6
0.5
0.5
0.5
0.5
0.5
Scrubber
Outlet
THC
(ppm)
2.0
2.5
2.2
2.0
2.3
2.2
2.1
2.0
1.8
1.7
1.4
1.4
1.0
1.0
0.8
1.8
1.8
1.6
1.5
1.6
1.4
1.6
1.8
1.8
-1.9
1.9
2.2
2.2
2.2
2.1
2.0
1.9
1.9
1.8
1.7
1.6
1.6
1.5
1.5
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.4
CO
Scrubber
Inlet
CO
(ppm)
3.1
3.0
3.6
4.4
6.2
8.7
10.2
8.4
7.4
6.1
5.3
4.8
4.1
3.5
3.3
3.1
3.4
3.6
2.8
2.6
3.3
1.9
1.2
2.1
3.9
7.0
11.3
17.9
35.8
68.0
80.3
66.5
54.2
35.4
29.2
18.6
13.9
10.9
8.7
6.4
5.3
4.4
5.4
5.5
6.2
5.8
5.3
6.2
7.1
6.2
6.8
6.9
6.4
Scrubber
Outlet
CO
(ppm)
0.7
0.8
1.1
1.5
2.7
4.3
5.3
4.2
3.7
3.0
2.6
2.2
1.6
1.4
1.2
1.8
2.1
2.0
2.0
1.0
0.5
1.2
2.4
4.7
6.9
11.4
23.2
45.2
53.7
44.3
35.9
23.1
18.7
11.8
8.9
7.1
5.4
4.0
3.4
2.8
3.2
3.4
3.9
3.4
3.2
3.8
4.5
3.9
4.3
4.3
3.9
Moisture
Scrubber
Inlet
H2O
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
Outlet
H2O
W
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.-o
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
,0.05
0.05
0.05
0.05
0.05
,, Mli „ , ,, , , y, ,11' ' ' • / , ,,n -, , - • ' ' „, „
2 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
1 8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
TIME
2:20
2:25
2:30
2:35
2:40
2:45
2:50
2:55
3:00
3:05
3:10
3:15
3:20
3:25
3:30
3:35
3:40
3:45
3:50
3:55
4:00
4:05
4:10
4:15
4:20
4:25
4:30
4:35
4:40
4:45
4:50
4:55
5:00
5:05
5:10
5:15
5:20
5:25
5:30
5:35
5:40
5:45
5:50
5:55
6:00
6:05
6:10
6:15
6:20
6:25
6:30
6:35
6:40
6:45
6:50
6:55
CO2
Scrubber
Inlet
C02
(%)
4.5
4.5
4.5
4.5
4.6
4.5
4.6
4.5
4.4
4.7
4.7
4.8
4.6
4.4
4.5
4.5
4.5
4.7
4.7
4.5
4.6
4.5
4.5
4.4
4.4
4.4
4.4
4.4
4.6
4.6
4.5
4.5
4.5
4.5
4.6
4.5
4.6
4.6
4.5
4.4
4.5 ,
4.6
4.6
4.6
4.5
4.4
4.5
4.4
4.5
4.4
4.4
4.5
4.5
4.4
4.4
4.6
Scrubber
Outlet
C02
(%)
, 3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.3
3.5
3.5
3.6
3.5
3.3
3.4
3.4
3.4
3.5
3.5
3.4
3.5
3.4
3.4
3.3
3.3
3.3
3.3
3.3
3.4
3.5
3.4
3.4
3.4
3.4
3.4
3.4
3.5 .
3.5
3.4
3.3
3.4
3.5
3.5
3.4
3.4
3.3 ,
3.4
3.3
3.4
3.3
3.3
3.4
3.4
3.3
3.3
3.4
02
Scrubber
Inlet
P2
(%)
14.6
14.6
14.6
14.6
14.5
14.5
14.5
14.6
14.7
14.4
14.4
14.3
14.5
14.7
14.6
14.6
14.6
14.4
14.4
14.6
14.4
14.5
14.6
14.7
14.7
14.6
14.7
14.7
14.5
14.4
14.5
14.5
14.5
14.5
14.5
14.6
14.4
14.4
14.6
14.7
14.6
14.4
14.5
14.5
14.6
14.7
14.6.
14.7
14.5
14.7
14.7
14.6
14.6
14.7
14.7
14.5
Scrubber
Outlet
02
(%)
16.3
16.3
16.4
16.3
16.3
16.3
16.3
16.3
16.4
16.2
16.2
16.1
16.3
16.4
16.3
16.4
16.3
16.2
16.2
16.4
16.2
16.3
16.4
16.4
16.4
16.4
16.4
16.4
16.3
16.2
16.3
16.3
16.3
16.3
16.3
16.3
16.2
16.2
16.3
16.4
16.4
16.2
16.3
16.3
16.3
16.4
16.3
16.4
16.3
16.4
16.4
16.3
16.4
16.4
16.4
16.3
Temperature
Scrubber
inlet
°F
586
586
586
586
586
586
586
586
586
586
586,
586
587
586
586
586
586
586
587
586
586
587
586
586
586
586
585
585
585
586
586
586
585
586
585
585
586
586
586
586
586
586
585
586
586
585
585
585
. 585
585
585
584
584
584
584
584
Scrubber
Outlet
°F
164
163
165
164
164
164
163
163
164
164
164
164
164
163
164
164
164
163
164
165
164
164
163
163
163
164
164
164
164
163
163
163
162
163
163
163
163
163
163
163
164
163
164
164
163
164
163
163
163
163
163
163
163
163
162
164
THC
Scrubber
Inlet
THC
(ppm)
0.4
0.4
0.4
0.4
0.3
0.3
0.3
0.3
0.4
0.3
0.2
0.3
0.3
0.4
0.3
0.2
0.2
0.1
0.1
0.1
0.0
0.0
0.1
0.1
0.1
0.1
0.1
0.0
0.0
-O.I
0.0
0.0
0.0
-0.1
-0.1
0.0
-0.1
-0.2
0.0
0.0
0.0
-0.1
-0.2
-0.2
-0.2
-0.2
-0.1
-0.2
-0.1
-0.2
-0.1
-0.1
-0.1
, -0.1
0.0
-0.1
Scrubber
Outlet
THC
(ppm)
1.4
1.4
1.4
1.4
1.5
1.5'
1.4
1.5
1.6
1.5
1.6
1.6
1.6
1.6
1.7
1.7
1.7
1.7
1.9
2.0
1.8
2.0
2.1
2.2
2.3
2.3
2.3
2.6
2.5
2.5
2.3
2.3
2.4
2.3
2.4
2.2
2.2
2.2
2.2
2.3
2.3
2.2
2.2
2.5
2.2
2.4
2.3
2.2
2.2
2.3
2.2
2.3
2.4
2.4
2.4
2.4
CO
Scrubber
Inlet
CO
(ppm)
6.7
6.6
7.4
6.8
6.9
6.8
6.2
6.7
8.2
7.2
6.5
5.3
4.7
6.6 ,
6.7
6.4
7.2
6.1
4.7
5.8
4.9
5.3
5.9
6.6
7.1
7.3
7.9
8.6
8.1
.6.6
6.9
6.9
7.1
6.9
6.9
7.2
6.8
6.0
6.3
7.2
7.4
6.4
6.2
6.0
6.0
7.1
7.5
8.0
7.7
7.5
9.0
8.6
10.7
13.4
18.1
18.4
Scrubber
Outlet
CO
(ppm)
4.2 •
4.1
4.5
4.3 ,
4.2
4.1
3.8
4.2
5.0
4.4
3.9
3.2
2.9
4.2
4.3
4.0
4.6
4.0 ,
3.0
3.7
3.2
3.4
3.7
4.1
4.5
4.5
4.9
5.4
5.0
4.0
4.2
4.2
4.4
4.2
4.0
4.2
4.2
3.6
4.0
4.4
4.7
4.1
4.0
3.7
3.8
4.4
4.6
5.1
4.7
4.6
5.5
5.4
6.7
8.5
11.6
11.7
Moisture
Scrubber
Inlet
H20
(%)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
Outlet
H2O
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05 -
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
3 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/1/95
8/1/95
8/1A95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1795
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
TJME
7:00
7:05
7:10
7:15
7:20
7:25
7:30
7:35
7:40
7:45
7:50
7:55
8:00
8:05
8:10
8:15
8:20
8:25
8:30
8:35
8:40
8:45
8:50
8:55
9:00
9:05
9:10
9:15
9:20
9:25
9:30
9:35
9:40
9:45
9:50
9:55
10:00,
10:05
10:10
10:15
1020
10:25
10:30
10:35
10:40
10:45
10:50
10:55
11:00
11:05
11:10
11:15
11:20
11:25
11:30
11:35
COz
Scrubber
Inlet
C02
(%)
4.7
4.9
4.7
5.4
5.5
5.7
5.7
5.7
5.5
5.5
5.5
5.3
5.1
5.2
5.2
5.2
5.3
5.2
5.4'
5.3
5.2
5.2
5.4
5.2
5.2
5.3
5.2
5.2
5.3
5.1
5.2
5.2
5.3
5.3
5.4
5.4
5.3
5.2
5.3
5.5
5.4
Scrubber
Outlet
C02
<*)
3.6
3.7
3.6
4.0
4.1
4.2
4.2
4.2
4.1
4.1
4.1
3.9
3.8
3.8
3.9
3.9
3.9
3.9
4.0
4.0
4.0
4.0
3.8
3.8
3.8
3.8
3.8
3.9
3.8
3.8
3.9
3.8
3.8
3.8
3.7
3.7
3.7
3.9
3.8
3.9
3.9
3.8
3.8
3.9
4.0
3.9
02
Scrubber
Inlet
02
(%)
14.3
14.2
14.4
13.5
13.3
13.1
13.1
13.1
13.3
13.3
13.3
13.6
13.9
13.8
13.8
13.7
13.6
13.7
13.4
13.6
13.8
13.9
13.7
13.9
13.9
13.7
13.9
13.8
13.8
14.0
13.9
13.9
13.7
13.7
13.6
13.7
13.7
13.8
13.7
13.5
13.6
Scrubber
Outlet
02
(%)
16.2
16.0
16.1
15.6
15.4
15.3
15.3
15.3
15.4
15.5
15.5
15.7
15.8
15.8
15.8
15.7
15.7
15.7
15.6
15.6
15.7
15.6
15.8
15.8
15.9
15.9
15.9
15.7
15.9
15.9
15.8
15.8
15.8
15.8
16.0
15.9
15.9
15.7
15.8
15.7
15.7
15.8
15.8
15.7
15.6
15.7
Temperature
Scrubber
Inlet
op
584
563
567
560
560
561
562
562
563
563
562
561
561
561
562
562
562
562
563
563
564
562
564
564
563
563
560
555
556
563
561
564
564
564
564
564
564
565
565
564
564
564
565
565
565
565
565
565
565
565
566
566
541
567
567
568
Scrubber
Outlet
°F
163
165
162
164
163
164
164
164
164
164
166
166
166
166
167
167
167
167
168
168
167
168
168
169
168
168
169
168
169
169
169
169
169
169
166
167
170
170
170
170
169
169
169
169
170
170
170
170
170
170
170
170
170
169
169
170
THC
Scrubber
Inlet
THC
(ppm)
0.0
0.2
0.1
-0.1
-0.3
-0.4
0.4
-0.2
-0.3
-0.4
-0.5
-0.4
-0.3
-0.3
-0.4
-0.4
-0.5
-0.4
-0.5
-0.5
-0.4
4.2
4.0
3.8
3.7
3.6
3.5
3.5
3.4
3.4
3.3
3.3
3.3
3.3
3.5
3.5
3.4
3.6
3.5
3.3
3.3
Scrubber
Outlet
THC
(ppm)
2.3
2.6
2.2
2.1
2.0
?.o
2.4
2.6
2.2
2.2
2.1
2.2
2.3
2.1
2.1
2.0
2.0
2.1
2.0
2.1
2.1
2.2
2.3
2.5
2.7
2.8
2.8
2.8
2.7
2.5
2.3
2.1
2.1
2.1
2.1
2.0
2.0
2.0
2.0
2.0
2.0
1.9
1.8
1.9
CO
Scrubber
Inlet
CO
(ppm)
18.7
16.9
24.6
10.2
6.7
4.1
3.1
2.0
1.8
1.7
1.3
1.5
2.4
2.8
2.6
3.1
2.6
3.3
2.5
2.3
2.5
I.I
2.5
3.0
3.4
5.0
4.3
4.6
4.8
4.8
4.4
4.7
4.5
5.0
5.7
5.6
5.6
5.6
5.3
5.0
5.0
5.0
5.3
4.4
3.8
Scrubber
Outlet
CO
(ppm)
12.0
10.9
16.2
5.9
3.7
2.1
1.6
0.9
0.8
0.7
0.5
0.6
1.2
1.4
1.3
1.6.
1.2
1.7
1.2
1.1
1.1
0.8
1.1
1.4
1.5
2.1
1.4
0.8
0.9
0.9
-0.3
4.3
3.5
3.7
3.7
3.4
3.3
3.4
3.2
3.6
4.1
3.9
3.8
3.8
3.5
3.3
3.2
3.3
3.5
2.8
2.6
Moisture
Scrubber
Inlet
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
O.I
O.I
0.1
0.1
0.1
0.1
0.1
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
Outlet
H2O
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
4 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
. 8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
. 8/1/95
TIME
11:40
11:45
11:50
11:55
12:00
12:05
12:10
12:15
12:20
12:25
12:30
12:35
12:40
12:45
12:50
12:55
13:00
13:05
13:10
13:15
13:20
13:25
13:30
13:35
13:40
13:45
13:50
13:55
14:00
14:05
14:10
14:15
14:20
14:25
14:30
14:35
14:40
14:45
14:50
14:55
15:00
15:05
15:10
15:15
15:20
15:25.
15:30
15:35
15:40
15:45
15:50
15:55
16:00
16:05
16:10
16:15
C02
Scrubber
Inlet
C02
(%)
5.2
5.2
5.2
5.3
5.3
5.2
5:1
, 5.2
5.1
5.3
5.2
5.3
5.3
5.1
5.2
5.1
5.2
5.2
5.2
5.4
5,3
5.3
5.1
5.2
5.2
5.2
5.2
5.1
5.3-
5.1
5.2
5.2
5.3
5.3
5.2
5.3
5.2
5.3
5.3
5.1
5.4
5.1
5.3
5.2
5.1
5.2
5.1
5.1
5.2
5.3
5.3
5.2
5.2
5.1
5.2
5.3
Scrubber
Outlet
C02
(%)
3.8
3.8
3.8
3.8
3.8
3.8
3.7
3.7
3.7
3.9
3.8
3.8
3.9
3.7
3.8
3.7
3.8
3.8
3.8
3.9
3.9
3.9
3.7
3.8
3.8
3.7
3.8
3.7
3.8
3.7
3.8
3.8
3.8
3.9
•3.8
3.8
3.8
3.8
3.8
3.7
3.9
3.7
3.8
3.8
3.7
3.8
3.7
3.7
3.8
3.8
3.8
3.8
3.8
3.7
3.7
3.8
02
Scrubber
Inlet
02
(%)
13.8
13.9
13.8
13.8
13.8
13.8
14.0
13.9
14.0
13.7
13.9
13.8
13.7
14.0
13.9
14.0
13.9
13.8
13.8
13.6
13.6
13.7
13.9
13.9
13.8
13.9
13.8
14.0
13.8
13.9
13.8
13.8
13.7
13.6
13.8
13.7
13.8
13.6
13.7
. 13.9
13.6
13.9
13.7
13.8
14.0
13.8
13.9
13.9
13.8
13.7 -
13.7
13.8
13.7
13.8
13.8
13.6
Scrubber
Outlet
02
(%)
15.9
15.9
15.8
15.8
15.8
15.8
15.9
15.9
15.9
15.7
15.8
15.8
15.7
15.9
15.9
15.9
15.9
15.8
15.9
15.7
15.7
15.8
15.9
15.9
15.8
15.9
15.8
15.9
15.8
15.9
15.9
15.8
15.8
15.7
15.9
15.8
15.8
15.7
15.8
15.9
15.7
15.9
15.8
15.8
15.9
15.8
15.9
15.9
15.8
15.8
15.8
15.9
15:8
15.9
15.8
15.8
Temperature
Scrubber
Inlet
-?
568
568
568
568
568
569
569
569
569
569
569
568
569
569
569
569
569
569
569
569
569
570
570
570
570
570
570
570
570
570
570
570
570
571
571
570
571
571
572
571
571
571
571
571
571
571
571
571
571
571
571
571
571
571
571
572
Scrubber
Outlet
°F
170
170
171
172
172
171
171
172
170
170
169
170
171
170
172
172
172
173
173
173
' 173
173
171
172
172
173
174
174
174
174
173
174
173
173
175
174
174
175
174
173
174
174
175
174
174
173
174
173
174
174
174
174
174
174
' 173
175
THC
Scrubber
Inlet
THC.
(ppm)
3.3
3.3
3.4
3.5
3.6
3.5
3.6
4.5
3.9
3.7
3.7
3.8
3.6
3.6
3.6
3.5
3.5
3.5
3.5
3.6
3.6
3.6
3.6
3.5
3.5
3.6
3.6
3.5
3.9
3.8
3.6
3.6
3.7
3.6
3.6
3.5
3.6
3.6
3.6
3.6
3.6
3.7
3.6
3.6
3.6
3.7
3.7
3.7
4.1
4.1
4.1
4.0
4.0
4.0
4.0
4.1
Scrubber
Outlet
THC
(ppm)
2.0
2.1
2.2
2.2
2.3
2.2
2.4
2.5
2.5
2.4
2.4
2.4
2.3
2.2
2.2
2.2
2.3
2.4
2.5
2.5
2.5
2.6
2.6
2.6
2.6
2.7
2.7
2.7
2.7
2.7
2.7
2.8
2.8
2.6
2.6
2.6
2.7
2.7
2.7
2.7
2.7
2.8
2.8
2.7
2.6
2.6
2.6
2.6
2.7
2.9
3.1
3.1
3.2
2.9
3.0
3.0
CO
Scrubber
Inlet
CO
(ppm)
4.2
4.6
4.7
4.5
4.6
4.2
5.0
5.4
5.8
5.0
4.9
4.9
4.2
4.9
5.0
4.7
5.1
5.0
4.7
4.3
3.9
3.3
3.9
4.4
4.1
4.0
3.9
4.1
4.0
3.9
3.9
4.0
3.9
3.3
3.4
- 3.2
3.1
2.9.
3.0
3.8
2.8
2.8
3.0
2.8
3.3
3.1
3.0
3.3
3.4
- 2.9
2.7
2.9
2.6
2.7
3.3
2.6
Scrubber
Outlet
CO
(ppm)
2.6
2.8
3.0
2.8
2.8
2;5
3.0
3.3
3.5
3.1
2.8
2.8
2.3
2.8
2.8
2.9
2.9
2.8
2.6
2.4
2.1
1.9
2.2
2.4
2.0
2.2
2.2
2.4
2.1
2.0
2.1
2.1
2.0
1.6
1.6
1.5
1.5
1.3
1.3
1.9
1.3
1.6
1.4
1.2
1.6
1.5
1.5
1.6
1.6
1.3
1.1
1.3
1.2
1.2
1.5
1.2
Moisture
Scrubber
Inlet
. H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
Outlet
H20
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05 .
5 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95'
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
TIME
1620
16:25
1630
1635
16:40
16:45
16:50
16:55
17:00
17:05
17:10
17:15
17:20
17:25
1730
1735
17:40
17:45
17:50
17:55
18:00
18:05
18:10
18:15
1820
18:25
1830
1835
18:40
18:45
18:50
18:55
19:00
19:05
19:10
19:15
1930
1925
19:30
19:35
19:40
19:45
19:50
19:55
20:00
20:05
20:10
20:15
20:20
2025
20:30
20:35
20:40
20:45
20-.50
20:55
C02
Scrubber
Inlet
CO2
(%)
5.2
5.1
5.3
5.4
5.1
5.1
5.2
5.0
5.1
5.3
5.2
52.
5.2
5.3
5.3
5.1
53.
5.3
5.9
5.3
4.5
4.0
3.4
3.7
3.8
4.1
4.3
5.4
5.3
4.8
4.2
3.9
4.0
4.1
4.2
4.3
4.5
4.8
5.3
5.7
6.7
8.4
9.2
Scrubber
Outlet
COz
(%)
3.7
3.7
3.8
3.9
3.7
3.7
3.8
3.6
3.7
3.8
3.8
3.8
3.8
3.8
3.8
3.7
3.7
3.8
4.2
3.8
3.2
2.8
2.4
2.5
2.5
2.8
3.0
3.3
2.6
2.5
2.6
2.7
2.8
2.9
3.0
3.3
3.6
3.9
4.5
5.6
6.2
02
Scrubber
Inlet
02
(%)
13.8
13.9
13.6
13.5
13.9
13.9
13.7
13.9
13.9
13.6
13.7
13.7
13.7
13.6
13.7
13.9
13.7
13.6
12.9
13.6
14.6
15.4
16.0
15.5
15.3
14.9
14.7
13.4
13.6
14.3
15.1
15.4
15.3
15.2
15.0
14.8
14.6
14.1
13.5
12.9
11.7
9.6
9.0
Scrubber
Outlet
02
(%)
15.9
15.9
15.8
15.7
15.9
15.9
15.8
16.0
15.9
15.8
15.8
15.8
15.8
15.7
15.8
15.9
15.8
15.7
15.2
15.7
16.5
17.0
17.5
17.3
17.2
16.9
16.7
16.4
17.0
17.1
17.0
16.9
16.8
16.7
16.5
16.2
15.8
15.4
14.5
13.0
12.5
Temperature
Scrubber
Inlet
°F.
572
571
571
572
572
572
572
572
572
572
572
572
572
572
572
572
,_ 572
573
573
573
571
571
563
555
555
558
562
562
562
565
566
568
569
571
569
572
575
576
575
573
571
570
568
567
568
565
561
562
564
567
571
587
Scrubber
Outlet
°F
176
177
177
177
175
176
176
176
173
173
174
174
175
174
173
173
173
174
174
174
175
173
178
185
185
183
179
179
178
178
178
179
180
180
182
182
178
173
174
173
171
171
171
170
170
170
170
170
171
170
THC
Scrubber
Inlet
THC
(ppm)
4.0
4.1
4.2
4.1
4.1
4.0
4.0
4.0
3.9
3.9
4.0
4.0
3.9
3.9
3.9
3.9
3.9
4.0
3.8
3.8
3.8
3.7
3.9
4.0
4.0
4.0
4.0
4.0
1.6
1.3
1.3
1.6
1.5
1.5
1.5
1.7
1.7
1.7
1.6
1.4
1.2
0.9
0.6
0.4
Scrubber
Outlet
THC
(ppm)
3.0
3.1
3.2
3.1
3.0
3.0
3.0
3.0
3.0
3.1
3.2
3.2
3.3
3.2
3.2
3.1
3.1
3.0
3.0
2.9
2.8
2.7
2.7
2.8
3.0
3.1
3.1
3.1
1.6
1.4
1.5
1.6
1.6
1.6
1.6
1.6
1.4
1.3
1.0
0.7
0.7
CO
Scrubber
Inlet
CO
(ppm)
2.6
2.7
2.5
1.7
2.1
2.5
2.2
2.6
2.6
2.2
2.1
2.3
2.2
2.2
1.6
2.0
1.9
2.1
0.7
0.2
0.3
0.1
3.0
3.8
5.8
7.7
8.4
0.8
0.8
2.3
9.6
20.0
28.0
33.6
37.7
41.9
42.0
34.5
21.1
16.4
7.9
3.6
6.2
Scrubber
Outlet
CO
(ppm)
1 1.2
1.4
1.2
0.6
0.8
1.3
0.9
1.2
1.2
0.9
1.0
0.8
0.9
0.8
0.5
0.8
0.6
0.6
0.1
-0.1
0.0
-0.1
1.2
1.5
2.7
3.7
4.2
3.5
10.4
14.0
19.0
22.6
25.3
28.5
28.7
23.8
15.5
12.6
7.2
4.3
5.7
Moisture
Scrubber
Inlet
H2O
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.01
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
Scrubber
Outlet
H20
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
- 0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
6 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95 1
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95
8/1/95.
8/1/95
8/1/95
8/1/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
872/95
TIME
21:00
21:05
21:10
21:15
21:20
21:25
21:30
21:35
21:40
21:45
21:50
21:55
22:00
22:05
22:10
22:15
22:20
22:25
22:30
22:35
22:40
22:45
22:50
22:55
23:00
23:05
23:10
23:15
2320
23:25
23:30
23:35
23:40
23:45
23:50
2355
0:00
0:05
0:10
0:15
0:20
025
0:30
0:35
0:40
0:45
0:50
0:55
1:00
1:05
1:10
1:15
1:20
1:25
1:30
1:35
C02
Inlet
C02
(%)
6.7
6.4
6.2
6.0
5.8
5.6
5.5
5.6
5.6
5.5
5.6
5.8
5.7
5.7
5.8
5.7
5.6
5.8
5.8
5.5
5.5
5.6
5.5
5.5
5.5
5.7
5.6
. 5.5
5.6
5.6
5.4
5.5
5.5
5.6
5.7
5.6
5.8
5.8
5.9
5.8
5.9
5.8
5.7
5.6
5.1
5.0
5.1
5.2
5.1
5.1
5.0
5.1
5.2
5.3
5.3
Outlet
COi
(%)
5.1
. 4.5
4.3
4.2
4.0
3.9
3.8
3.7
3.8 .
3.8
3.7
3.8
3.9
3.8
3.9
3.9
3.8
3.8
3.9
3.9
3.7
3.7
3.8
3.7
3,7
3.7
3.9
3.8
3.7
3.7
3.8
3.7
3.7
3.8
3.8
3.8
3.8
3.9
3.9
4.0
3.9
4.0
4.0
3.8
3.8
3.5
3.4
3.5
3.5
3.5
3.4
3.4
3.5
3.5
3.6
3.6
02
Inlet
02
(%)
11.4
12.1
12.5
' 12.7
12.9
13.1
13.4
13.4
13.3
13.3
13.5
. 13.3
13.1
13.2
13.1
13.0
13.2
13.3
13.0
13.1
13.5
13.4
13.3
13.5
13.4
13.4
13.2
13.3
13.5
13.4
13.3,
13.5
13.5
13.4
13.3
13.2
13.2
13.1
13.0
12.9
13.1
13.0
13.0
13.2
13.4
14.1
14.2
14.1
14.0
14.1
14.1
14.2
14:1
14.0
13.9
13.9
Outlet
02
(%)
14.0
14.6
15.0
15.2
15.4
15.5
15.7
15.7
15.7
15.7
15.8
15.6
15.5
15.6
15.5
15.5
15.6
15.6
15.5
15.5
15.8
15.7
15.6
15.8
15.8
15.7
15.6
15.6
15.8
15.8
15.7
15.8
15.8
15.7
15.7
15.6
15.6
15.5
15.5
15.4
15.5
15.4
15.5
15.6
15.7
16.2
16.3
16.2
16.1
16.2
16.2 .
16.3
16.2
16.1
16.1
16.0
Temperature
Scrubber
Inlet
°p
596
588
582
579
579
578
578
577
577
577
577
577
577
577
577
577
577
577
577
577
576
576-
576
575
575
575
575
575
575
574
575
574
574
574
574,
574
574
574
574
575
575
576
577
576
576
574
572
570
570
568
567
567
566
565
565
565
Scrubber
Outlet
°F
169
169
172
173
170
168
168
170
171
172
173
173
173
173
173
173
173
173
175
175
173
174
174
174
175
175
175
175
175
176
176
175
176
176
175
176
176
176
176
176
176
175
175
175
175
175
175
175
175
174
174
174
174
173
173
173
THC
Scrubber
Inlet
THC
(ppm)
0.2
0.1
0.0
-0.1
-0.3
-0.2
-0.2
-0.3
-0.3
-0.4
-0.4
-0.3
.O.4
-0.5
-0.5
-0.5
-0.4
-0.4
-0.6
-0.6
-0.6
•Q.6
-0.7
-0.6
-0.5
-0.5
-0.3
-0.4
-0.5
-0.5
-0.7
-0.6
-0.7
-0.5
-0.3
-0.2
-0.3
-0.3
-0.5
-0.5
-0.5
-0.5
-0.6
-0.7
-0.6
-0.5
-0.3
-0.2
0.0
0.0
0.1
0.1
0.2
0.3
0.7
0.5
Scrubber
Outlet
THC
(ppm)
0.6
0.4
0.2
0.0
0.6
0.3
-0.1
-0.2
-0.2
-0.1
-0.1
0.0
0.7
0.4
0.6
0.6
0.5
0.4
0.3
0.3
0.8
0.7
0.8
1.3
1.3
1.3
1.5
1.3
1.3
1.1
1.1
1.0
1.1
1.0
0.9
0.8
0.9
0.9
0.9
1.1
1.1
1.1
1.5
1.4
1.7
2.0
1.9
1.9
1.8
1.9
2.0
2.0
1.9
2.5
2.0
2.0
CO
Scrubber
Inlet
CO
(ppm)
5.5
0.6
0.5
0.5
0.7
0.8
1.1
1.2
1.3
1.5
1.6
1.5
1.4
1.6
1.4
1.1
1.3
1.5
1.4 ,
1.3
1.6
• 1.7
1.8
2.2
2.5
2.3
1.9
1.6
1.9
• 2.1
1.9
2.1
2.3
2.3
2.1
2.1
2.0
.9
.7
.4
, .2
.1
.9
.0
.0
5.2
8.4
10.0
9.3
11.6
13.2
14.0
14.4
14.6
14.3
12.0
Scrubber
Outlet
CO
(ppm)
5.7
2.3
2.2
2.1
2.3
2.3
2.4
2.6
2.7
2.8
2.9
2.9
2.8
2.9
2.8
2.7
2.5
2.6
2.6
2.6
2.6
2.8
2.8
3.1
3.1
3.1
2.9
2.9
2.9
2.8
2.7
2.7
2.8
2.6
2.5
2.5
2.6
2.4
2.2
2.0
2.0
2.1
2.2
2.2
2.2
4.5
6.8
7.7
7.3
8.4
9.7
10.0
10.5
10.7
10.3
9.1
Moisture
Scrubber
'Inlet
H20 „
(%)
0.1
0.1
0.1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14-
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
Scrubber
Outlet
H2O
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
7 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
' 8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
80/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
TIME
1:40
1:45
1:50
1-35
2:00
2:05
2:10
2:15
2:20
2:25
2:30
2:35
2:40
2:45
2-30
2:55
3:00
3:05
3:10
3:15
3:20
3:25
3:30
3:35
3:40
3:45
3:50
3:55
4:00
4:05
4:10
4:15
4:20
425
4:30
4:35
4:40
4:45
4:50
4:55
5:00
5:05
5:10
5:15
5:20
5:25
5:30
5:35
5:40
5:45
5:50
5:55
6:00
6:05
6:10
6:15
C02
Scrubber
Inlet
C02
(%)
5.0
5.2
5.3
5.2
5.2
5.4
5.6
5.7
6.0
6.1
5.7
5.9
5.9
6.0
5.5
5.5
5.6
5.7
5.9
5.8
5.6
5.5
5.6
5.5
5.4
5.3
5.4
5.5
5.8
5.7
5.6
5.6
5.7
5.7
5.6
5.5
5.5
5.4
5.6
5.5
5.6
5.4
5.5
5.6
5.8
6.0
5.9
6.2
5.9
5.8
5.7
5.5
5.7
5.9
5.8
5.7
Scrubber
Outlet
C02
(%)
3.4
3.5
3.6
3.5
3.6
3.7
3.8
3.9
4.1
4.2
3.9
4.0
4.0
4.1
3.8
3.8
3.8
3.9
4.0
4.0
3.8
3.7
3.8
3.8
3.7
3.6
3.7
3.8
4.0
3.9
3.9
3.8
3.9
3.9
3.8
3.8
3.7
3.7
3.8
3.8
3.8
3.7
3.7
3.8
4.0
4.1
4.0
4.2
4.0
4.0
3.9
3.8
3.9
4.0
4.0
3.9
02
Scrubber
Inlet
02
(%)
14.2
14.1
13.9
14.0
14.0
13.8
13.5
13.3
12.9
12.8
13.3
13.1
13.1
12.9
13.5
13.6
13.4
13.2
13.0
13.1
13.4
13.6
13.4
13.5
13.7
13.8
13.6
13.5
13.1
13.3
13.4
13.4
13.3
13.2
13.5
13.6
13.6
13.7
13.5
13.5
13.4
13.6
13.6
13.4
13.1
12.9
13.0
12.7
13.0
13.2
13.4
13.5
13.2
13.0
13.1
13.3
Scrubber
Outlet
02
(%)
16.3
16.2
16.0
16.1
16.1
15.9
15.7
15.6
15.3
15.2
15.7
15.5
15.5
15.4
15.8
15.8
15.7
15.6
15.4
15.5
15.7
15.9
15.7
15.8
15.9
16.0
15.9
15.8
15.5
15.6
15.7
15.7
15.6
15.6
15.8
15.8
15.9
16.0
15.7
15.8
15.7
15.9
15.8
15.7
15.5
15.4
15.4
15.3
15.5
15.6
15.7
15.8
15.6
15.5
15.5
15.6
Temperature
Scrubber
Inlet
"F
564
564
563
563
563
563
563
563
564
565
565
565
566
567
567
566
566
566 •
566
567
567
566
566
566
566
565
565
565
565
565
565
565
566
566
566
566
566
565
565
565
565
565
565
565
566
569
571
571
570
570
570
570
570
570
571
571
Scrubber
Outlet
"F
173
173
173
173
173
172
172
172
173
173
174
174
174
175
175
174
175
176
174
175
175
176
176
176
176
175
176
176
175
176
176
176
175
176
175
176
176
176
175
176
177
175
177
176
177
177
176
178
177
177
176
177
178
177
176
176
THC
Scrubber
Inlet
THC
(ppm)
0.6
0.9
0.7
0.3
0.4
0.2
0.1
0.3
-0.1
0.1
-0.1
0.0
0.1
-0.2
-0.1
0.0
-0.2
0.0
-0.2
-0.2
-0.2
-0.4
-0.5
-0.4
-0.3
-0.2
-0.3
-0.3
-0.5
-0.1
-0.3
-0.2
-0.4
-0.6
-0.6
-0.4
-0.4
•0.2
-0.4
-0.5
-0.6
-0.5
-0.4
-0.4
-0.5
-0.5
-0.6
-0.8
-0.8
-0.9
-0.9
-0.8
-0.7
-0.8
-0.9
-0.9
Scrubber
Outlet
THC
(ppm)
2.3
2.5
2.5
2.4
2.6
2.8
2.9
3.0
3.2
3.1
3.2
3.2
3.1
3.2
3.3
3.2
3.4
3.5
3.5
3.4
3.5
• 3.6
3.6
3.9
4.0
4.2
4.2
4.4
4.2
4.1
4.2
4.2
4.2
4.1
4.2
4.1
4.3
4.3
4.2
4.2
4.2
4.1
4.1
3.9
3.9
3.4
3.2
2.9
2.7
2.6
2.6
2.4
2.5
2.3
2.2
2.1
CO
Scrubber
Inlet
CO
(ppm)
15.3
16.6
15.1
15.1
14.1
14.5
13.0
10.7
8.4
5.2
6.1
4.8
4.3
3.6
3.8
4.7
4.9
4.6
3.8
2.9
3.3
4.3
4.2 -
4.4
4.5
5.7
5.6
6.3
' 5.0
4.1
3.8
4.6
4.3
3.6
3.9
4.3
4.6
5.1
4.9
5.5
4.9
5.7
7.4
5.7
5.9
4.9
4.4
3.4
3.2
3.1
3.3
3.8
3.8
3.2
3.1
3.2
Scrubber
Outlet
CO
(ppm)
11.3
12.1
11.1
10.9
10.1
10.5
9.3
8.0
6.6
4.4
4.8
4.0
3.7
3.1
3.5
4.1
4.1
4.1
3.4
2.9
3.1
3.8
3.8
4.0
3.8
4.6
4.8
5.2
4.4
3.9
3.7
4.1
3.9
3.2
3.6
3.7
3.9
4.5
4.3
4.5
4.1
4.5
5.7
4.7
4.8
4.1
3.8
3.1
3.0
2.8
3.1
3.3
3.4
2.9
3.0
3.0
Moisture
Scrubber
Inlet
H20
<%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
o.i
0.1
0.1
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14 ,
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
Scrubber
Outlet
H20
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
• 0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
8 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/2/95
8/2/95,.
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
TIME
6:20
6:25
6:30
6:35
6:40
6:45
6:50
6:55
7:00
7:05
7:10
7:15
7:20
7:25
7:30
7:35,
7:40
7:45
7:50
7:55
8:00
8:05
8:10
8:15
8:20
8:25
8:30
8:35
8;40
8:45
8:50
8:55
9:00
9:05
9:10
9:15
9:20
9:25
9:30
9:35
9:40
9:45
9:50
9:55
10:00
10:05
10:10
10:15
10:20
10:25
10:30
10:35
10:40
10:45
10:50
10:55
CO2
Inlet
C02
(%)
5.6
5.5
5.5
5.8
5.6
. 5.7
6.1
, 5.7
5.5
5.6
5.7
5.7
5.6
4.8
4.9
5.2
5.5
> 5.7
5.5
5.1
4.7
3.8
3.4
3.4
3.5
3.7
3.9
5.0
5.1
4.9
4.9
5.0
5.0
5.0
5.0
4.9
5.0
4.9
4.9
4.9
4.9
4.9
4.9
5.1
5.3
5.3
Outlet
C02
(%)
3.8
3.8
3.8
4.0
- 3.8
3.9
4.1
3.8
3.8
3.8
3.9
3.9
3.8
3.3
3.3
3.5
3.7
3.1
3.7
3.5
3.2
2.5
2.3
2.2
2.3
2.5
2.6
2.8
3.1
3.2
3.4
3.5
3.6
3.6
3.6
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.3
3.3
3.5
3.6
, 3.6
02
Inlet
02
(%)
13.4
13.6
13.5
13.2
13.5
13.3
12.8
13.3
13.6
13.4
13.3
13.3
13.4
14.5
14.2
13.8
13.3
13.1
13.4
13.9
14.4
15.7
16.1
16.1
15.9
15.6
15.4
;
13.9
14.0
14.1
14.1
14.0
14.0
14.0
14.1-
14.2
14.1
14.1
14.1
14.1
14.1
14.2
14.2
13.9
13.7
13.6
Scrubber
Outlet
02
(%)
15.7
15.8
15.8
15.6
15.8
15.6
15.3
15.7
15.8
15.7
15.7
15.7
15.7
16.5
16.3
16.0
15.7
16.7
15.8
16.1
16.5
17.3
17.7
17.7
17.5
17.3
17.2
16.9
16.5
16.3
16.0
16.0
15.9
15.9
15.9
15.9
16.1
16.2
16.2
16.2
16.2
16.2
16.2
16.2
16.2
16.3
16.3
16.1
15.9
15.9
Temperature
Scrubber
Met
°F
571
571
571
571
571
572
573
573
572
573
573
573
573
573
574
575
577
579
579
579
579
578
576
574
573
573
572
570
572
573
573
574
574
575
575
578,
579
578
579
579
579
579
579
579
578
579
579
579
579
579
579
578
578
578
579
579
Scrubber
Outlet
°F
176
. 177
176
177
177
177
178
178
177"
177
177
177
177
177
177
178
178
177
178
178
176
174
175
175
174
173
171
168
- 168
167
167
167
168
167
168,
168
168
167
166
165
168
168
169
168
168
167
167
170
170
170
171
171
170
170
171
170
THC
Scrubber
Inlet
THC
(ppm)
-1.0
-0.9
-1.0
-1.0
-1.0
-1.0
-1.1
-0.8
-0.8
-0.7
-0.8
-1.0
-1.2
-1.0
-0.9
-1.0
-1.1
-1.2
-0.9
-I.I
-1.2
-1.1
-0.8
-0.8
-0.8
-0.7
-0.8
-0.7
-0.4
0.0
0.0
2.6
2.6
2.4
2.3
2.2
2.2
2.1
2.1
2.0
2.0
2.1
2.0
2.0
2.0
2.1
2.1
2.1
2.0
Scrubber
Outlet
THC
(ppm)
2;2
2.2
2.2
2.1
2.1
2.1
2.0
2.0
2.0
2.1
2.1
2.2
2.3
2.4
2.7 -
2.9
2.9
1.9
4.3
5.1
4.1
4.0
4.3
4.6
4.9
4.9
4.3
4.2
3.8
3.5
3.2
3.4
3.3
3.3
2.5
2.5
2.5
2.4
2.4
2.5
2.4
2.3
CO
Scrubber
Inlet
CO
(ppm)
3.2
3.7
4.1
3.2
4.1
3.7
2.7
3.0
3.5
3.2
3.2
2.5
2.8
5.5
4.1
2.5'
1.9
1.7
1.7
1.3
. 1.1
2.0
6.6
10.7
12.6
15.0
19.7
15.1
14.8
10.8
8.5
2.1
2.5
2.7
3.1
2.9
2.7
2.9
2.9
3.0
2.8
3.0
3.0
3.0
3.1
3.4
5.0
4.0
3.0
2.9
Scrubber
Outlet
CO
(ppm)
2.9
3.2
3.5
2.9
3.4
3.4
2.6
2.9
3.3
3.0
3.1
2.6
2.8
4.3
3.8
3.2
2.8
2.6
2.4
2.4
2.5
2.9
5.9
8.5
9.9
11.4
14.4
15.2
11.5
8.7
7.3
6.4
5.3
4.6
4.1
0.9
0.9
0.7
0.8
0.9
0.9
1.0
0.8
0.7
0.6
0.6
0.8
0.9
0.6
0.7
0.6
Scrubber
Inlet
H20
(%)
0.
0.
0.
0.
0.
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
Scrubber
Outlet
H20
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
9 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
TIME
11:00
11:05
11:10
11:15
11:20
11:25
11:30
11:35
11:40
11:45
11:50
11:55
12:00
12:05
12:10
12:15
12:20
12:25
12:30
12:35
12:40
12:45
12:50
12:55
13:00
13:05
13:10
13:15
13:20
13:25
13:30
13:35
13:40
13:45
13:50
13-55
14:00
14:05
14:10
14:15
14:20
14:25
14:30
1435
14:40
14:45
14:50
1455
15:00
15:05
15:10
15:15
1520
1535
15:30
15 -35
CO2
Scrubber
Inlet
COz
(%)
5.4
5.2
5.2
5.1
5.1
5.1
5.0
4.9
5.0
4.9
4.9
4.9
5.0
5.1
5.2
5.2
5.4
5.1
5.3
5.5
5.4
5.4
5.3
5.4
5.4
5.3
5.1
5.2
4.9
5.2
5.5
5.4
5.6
5.7
5.8
5.6
5.6
5.9
5.9
5.7
5.6
5.5
5.6
5.8
5.7
5.8
5.7
5.6
5.6
crabber
Outlet
COz
(%)
3.7
3.5
3.6
3.5
3.5
3.5
3.5
3.4
3.4
3.4
3.4
3.4
3.4
3.5
3.5
3.6
3.7
3.5
3.6
3.8
3.7
3.7
3.7
3.7
3.7
3.7
3.5
3.6
3.4
3.5
3.8
3.7
3.8
4.0
4.0 •
3.8
3.8
4.1
4.0
3.9
3.8
3.8
3.9
4.0
3.9
4.0
4.1
4.1
4.1
O2
crubber
Inlet
02
(%)
13.6
13.8
13.8
13.9
13.9
13.9
14.0
14.1
14.1
14.2
14.1
14.1
14.1
13.8
13.8
13.8
13.5
13.9
13.7
13.4
13.5
13.5
13.6
13.6
13.5
13.6
13.9
13.9
14.1
13.8
13.5
13.5
13.3
13.1
13.0
13.3
13.3
12.9
12.9
13.1
13.3
13.4
13.2
13.0
13.1
12.9
13.1
13.2
13.2
cmbber
Outlet
02-
(%)
15.9
16.0
15.9
16.0
16.0
16.0
16.1
16.2
16.2
16.2
16.2
16.2
16.2
16.0
16.0
16.0
15.8
16.0
15.9
15.7
15.8
15.8
15.9
15.8
15.8
15.9
16.1
16.0
16.2
16.0
15.7
15.8
15.6
15.5
15.4
15.7
15.7
15.4
15.4
15.6
15.7
15.7
15.6
15.5
15.5
15.4
15.5
15.5
15.5
crabber
Inlet
°F
580
580
580
580
580
580
580
580
580
580
580
580
579
580
581
581
582
582
582
582
582
583
583
583
583
583
583
582
582
582
582
583
583
584
584
583
582
584
585
585
585
585
585
585
585
586
586
585
580
584
583
582
581
582
582
583
crabber
Outlet
°F
169
169
168
169
169
168
168
168
,168
167
169
170
170
170
170
170
171
169
171
172
172
172
172
171
172
172
171
172
174
174
173
173
173
172
174
175
175
174
174
174
175
173
175
177
177
177
177
176
177
176
176
176
176
180
179
178
THC
crabber
Inlet
THC
(ppm)
2.0
2.0
2.1
2.1
2.1
2.2
2.1
2.1
2.1
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.3
2.4
2.3
2.5
2.4
2.4
2.4
2.4
2.3
2.3
2.4
2.4
2.6
2.5
2.5
2.4
2.4
2.4
2.3
2.4
2.4
2.4
2.4
2.5
2.4
2.4
2.4
2.4
2.4
1.9
1.8
1.6
crabber
Outlet
THC
(ppm)
2.4
2.7
2.5
2.6
2.5
2.3
2.3
2.4
2.2
2.2
2.2
2.1
2.0
2.0
2.3
2,5
2.4
2.3
2.4
2.2
2.2
2.0
2.1
2.2
2.2
2.0
2.0
2.0
2.1
2.2
2.1
2.1
2.3
2.3
2.4
2.2
2.0
1.9
1.8
1.8
1.8
1.9
2.1
CO
crabber
Inlet
CO
(ppm)
2.2
2.4
2.4
2.2
2.2
2.0
1.9
2.1
2.1
2.5
2.6
2.7
2.6
2.0
1.3
1.6
1.3
1.6
1.8
1.2
1.2
1.2
1.4
1.6
1.5
1.3
1.8
2.1
2.4
2.2
2.0
2.0
1.5
1.1
1.2
1.2
1.3
0.8
1.1
1.1
1.2
1.2
1.2
1.1
0.9
1.6
1.5
1.6
crabber
Outlet
CO
(ppm)
0.5
0.5
0.5
0.3
0.3
0.3
0.4
0.3
0.2
0.3
0.1
0.2
0.3
0.2
0.2
0.2
0.2
0.2
0.2
0.1
0.0
0.5
0.5
0.5
0.4
0.5
0.5
0.5
0.4
0.4
0.5
0.5
0.3
0.5
0.4
0.3
0.3
0.4
0.4
0.5
0.5
0.6
0.6
0.7
0.4
0.4
0.5
0.5
0.4
0.6
0.4
Met
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
Outlet
H2O
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
, 0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
O.OS
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
.0.05
0.05
0.05
0.05
0.05
10 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95 .
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
TIME
15:40
15:45
15:50
15:55
16:00
16:05
16:10
16:15
16:20
16:25
16:30
16:35
16:40
16:45
16:50
16:55-
17:00
17:05
17:10
17:15
17:20
17:25
17:30
17:35
17:40
17:45
17:50
17:55
18:00
18:05
18:10
18:15
18:20
18:25
18:30
18:35 ,
18:40
18:45
18:50
18:55
19:00
19:05
19:10
19:15
19:20
19:25
19:30
19:35
19:40
19:45
19:50
19:55
20:00
20:05
20:10
20:15
C02
Inlet
C02
(%)
5.4
5.7
5.5
5.6
5.6
5.5
5.4
5.6
5.6
5.4
5.6
5.9
5.9
5.9
6.1
6.2
5.6
5.5
5.5
5.5
5.6
5.5
5.8
6.4
6.1
5.6
5.6
5.8
5.3
5.1
5.0'
5.2
5.5
5.7
5.4
5.5
5.5
5.7
5.4
5.5
5.8
5.6
5.6
5.8
5.7
5.5
5.6
5.6
5.6
5.6
5.6
5.7
5.6
5.6
5.6
5.5
Outlet
C02
(%)
4.0
4.2
4.1
4.1
4.1
4.0
4.0
4.1 .
4.1
3.9
4.1
4.3
4.3
4.3
4.4
4.5
4.1
4.0
4.0
4.0
4.1
4.0
4.2
4.6
4.4
4.1
4.1
4.3
3.9
3.8
3.6
3.8
4.1
4.2
4.0
4.0
4.1
4.2
3.9
4.0
4.3
4.2
4.1
4.2
4.2
4.1
4.1
4.1
4.1
4.1
4.1
4.2
4.1
4.1
4.1
4.0
02
Inlet
02
(%)
13.4
13.0
13.3
13.2
13,2
13.4
13.4
13.2
13.2
13.5
13.2
12.8
12.8
12.9
12.6
12.5
. 13.2
13.4
13.4
13.4
13.2
13.3
13.0
12.2
12.6
13.3
13.3
13.1
13.7
13.9
14.1
13.7
13.3
13.2
13.5
13.4
13.4
13.2
13.6
13.4
13.0
13.3
13.3
13.1
13.2
13.4
13.3
13.3
13.3
13.3
13.3
13.2
13.3
13.3
13.3
13.4
Oudet
02
(%)
15.6
15.3
15.5
15.5
15.5
15.6
15.6
15.5
15.5
15.7
15.5
15.2
15.2
15.2
ilS.l
15.0
, 15.5
15.6
15.6
15.6
15.5
15.6
15.3
14.8
15.0
15.5
15.5
15.3
15.7
15.9
16.0
15.8
15.5
15.4
15.6
15.5
15.5
15.4
15.7
15.6
15.3 ,
15.4
15.4
15.3
15.4
15.5
15.5 .
15.5
15.5
15.5
15.5
15.4
15.4
15.4
15.4
15.6
Inlet
"F
583
583
583
583
583
583
583
583
583
583
583
584
584
584
586
586
586
586
587
587 ,
587
587
587
588
591
593
593
593
593
591
591
589
590
591
591
590
590
591
591
591
592
592
592
592
593
593
593
593
593
593
592
593
593
593
593
593
Scrubbe
Outlet
"F
178
177
176
178
177
177
176
176
176
176
176
176
178
176
177
177
178
178
177
178
177
179
179
178
177
175
175
176
175
175
175
176
175
176
175
175
174
175
175
175
175
174
175
175
175
174
175
175
175
175
174
175
175
174
175
176
THC
Scrubbe
inlet
THC
(ppm)
1.5
1.4
1.5
1.4
1.4
1.5
1.5
1.4
1.4
1.6
1.6
1.7
1-7
1.7
1.6
1.6
1.6
1.5
1.6
1,7
.1.9
1.8
1.6
1.4
1.4
1.5
1.6
1.5
1.6
1.6
1.7
1.7
1.7
1.7
1.7
1.6
1.6
1.6
' 1.7
1.7
1.6
1.7
1.7
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.9
1.9
2.0
2.1
2.0
1.8
Scrubbe
Outlet
THC
(ppm)
2.0
.9
.7
.7
.8
.7
.7
.8
.9
2.0
2.1
2.1
2.3
2.4
2.5
2.0
2.1
2.3
2.4
2.3
2.1
2.0
1.9
2.1
2.1
2.1
2.0
2.0
2.2
3.2
2.9
3.0
2.7
2.5
2.3
2.6
2.4
2.7
2.6
2.7
3.0
3.2
3.2
3.1
3.4
3.3
3.4
3.5
3.5
3.6
3.8
3.6
3.6
3.4
CO
Scrubbe
Inlet
CO
(ppm)
1.8
1.8
1.7
1.8
1.6
1.8
1.8
1.9
1.8
2 2
2.1
1.7
1.7
1.6
1.5
1.2
1.3
1.4
1.5
1.6
1.4
1.5
1.3
1.1
0.8
1.2
1.1
1.0
1.1
1.7
2.2
2.1
1.7
1.4
1.6
1.7
1.7
1.5
1.9
1.9
1.6
1.7
1.7
1.6
1.5
1.6
1.5
1.7
1.6
1.6
1.7
1.5
i:4
•1.1
1.1
1.2
Scrubbe
Outlet
CO
(ppm)
0.4
0.3
0.3
0.2
0.3
0.3
0.3
0.4
0.2
0:2
0.3
0.0
-0.2
-0.2
-0.3
-0.5
-0.4
-0.4
-0.4
-0.3
-0.5
-0.4
-0.5
-0.7
-0.9
-0.8
-0.8
-0.8
-0.9
-0.5
-0.2
-0.3
-0.6
-0.8
-0.7
-0.5
-0.3
-0.5
-0.3
-0.3
-0.5
-0.3
-0.2
-0.3
-0.4
-0.2
-0.4
-0.4
>0.4
-0.4
-0.3
-0.4
-0.4
-0.5
-0.4
-0.5 ,
Scrubbe
Inlet
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
0.14
Scrubber
Outlet
H2O
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0-05
0.05
0.05
0.05
0.05
0.05
0.05.
0.05
0.05
0.05
11 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
sons
8/2/95
S/2/95
80/95
80/95
8/2/95
80/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
8/2/95
SO/95
8/2/95
8/2/95
SO/95
SO/95
8O/95
8/2/95
SO/95
SO/95
80/95
S/2/95
SO/95
SO/95
80/95
80/95
80/95
SO/95
80/95
SO/95
SO/95
SO/95
80/95
SO/95
SO/95
SO/95
8O/95
80/95
SO/95
8Q/95
SO/95
80/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
TIME
20:20
20:25
20:30
20:35
20:40
20:45
20:50
20:55
21:00
21:05
21:10
21:15
21:20
21:25
21:30
21:35
21:40
21:45
21:50
21:55
22:00
22:05
22:10
22:15
22:20
22:25
22:30
22:35
22:40
22:45
22:50
22:55
23:00
23:05
23:10
23:15
23:20
2335
23:30
23:35
23:40
23:45
23:50
23:55
0:00
0:05
0:10
0:15
0:20
0:25
0:30
035
0:40
0:45
0:50
0:55
CO2
Scrubber
Met
C02
(%)
5.1
5.2
5.3
5.4
5.5
5.4
5.4
5.5
5.6
5.7
5.5
5.5
5.5
5.9
6.0
5.8
5.7
5.7
5.5
5.5
5.4
5.3
5.3
5.5
5.7
5.5
5.3
5.5
5.4
5.7
5.8
5.7
5.6
5.7
5.4
5.5
5.7
5.9
5.8
5.6
5.6
5.7
5.4
5.3
Scrubber
Outlet
C02
(%)
3.8
3.8
3.9
4.0
4.0
3.9
4.0
4.0
4.2
4.2
4.1
4.1
4.1
3.9
3.9
4.0
4.2
4.3
4.2
4.1
4.1
4.0
3.9
3.9
3.8
3.8
3.9
4.1
3.9
3.8
4.0
3.9
4.1
4.1
4.1
4.0
4.1
3.9
4.0
4.1
4.2
4.1
4.0
4.0
4.1
3.9
3.8
02
Scrubber
Inlet
02
(%}
13.9
13.8
13.7
13.5
13.4
13.6
13.5
13.5
13.2
13.2
13.4
13.4
13.4
12.9
12.9
13.1
13.3
13.2
13.4
13.5
13.6
13.7
13.8
13.5
13.2
13.5
13.7
13.4
13.6
13.3
13.1
13.2
13.4
13.3
13.6
13.5
13.3
13.0
13.1
13.4
13.3
13.2
13.6
13.7
Scrubber
Outlet
02
(%)
15.9
15.8
15.7
15.6
15.6
15.7
15.6
15.6
15.4
15.4
15.5
15.5
15.5
15.6,
15.7
15.5
15.2
15.2
15.3
15.4
15.4
15.5
15.6
15.7
15.7
15.8
15.6
15.4
15.6
15.7
15.6
15.7
15.4
15.3
15.4
15.5
15.5
15.7
15.6
15.5
15.3
15.4.
15.6
15.5
15.4
15.7
15.8
Temperature
Scrubber
Inlet
°F
592
592
591
592
592
592
592
591
592
592
592
592
592
590
592
592
591
592
592
591
592
592
593
594
594
593
593
593
593
593
593
592
592
592
592
592
592
592
592
592
592
592
592
592
592
592
593
593
593
592
593
592
592
Scrubber
Outlet
"F
175
174
174
174
174
175
173
173
174
173
174
174
174
174
172
173
175
175
175
174
174
174
175
173
173
174
173
173
172
172
, 173
171
172
171
172
171
171
171
172
172 >
171
173
172
172
172
172
171
171
171
172
171
172
172
170
THC
Scrubber
Inlet
THC
(ppm)
1.8
1.7
1.7
1.7
1.6
1.6
1.6
1.6
1.5
1.5
1.5
1.5
1.4
,
2.5
2.6
2.6
2.7
2.8
2.8
3.0
3.0
3.0
3.0
2.9
2.9
2.9
2.9
2.9
2.8
2.7
2.6
2.6
2.7
2.7
2.8
2.7
6.4
4.7
3.5
3.0
2.7
2.6
2.6
2.6
Scrubber
Outlet
THC
(ppm)
3.1
3.1
3.1
3.1
3.1
3.2
3.2
3.3
3.4
3.4
3.3
3.4
2.2
2.2
2.2
2.1
1.9
1.8
1.7
1.4
1.4
1.3
1.1
1.1
1.4
1.2
0.9
1.0
0.9
0.8
0.8
0.7
0.7
0.8
0.7
0.8
0.8
0.8
0.9
0.9
0.8
0.9
0.8
0.8
0.7
0.7
CO
Scrubber
Inlet
CO
(ppm)
1.6
2.0
2.1
1.9
1.5
1.6
1.7
1.8
1.7
1.1
1.1
1.2
1.0
0.7
0.9
0.8
0.5
0.6
0.7
0.8
0.8
1.3
0.8
1.1
1.0
0.7
0.8
1.0
1.1
1.2
0.9
0.7
0.7
0.8
0.7
1.1
1.1
0.9
0.6
0.5
0.6
0.6
0.5
0.6
0.9
Scrubber
Outlet
CO
(ppm)
-0.5
-0.1
-0.2
-0.2
-0.4
-0.5
-0.4
-0.2
-0.3
-0.6
-0.5
-0.5
-0.4
-0.3
0.0
-0.3
-0.5
-0.4
-0.5
-0.4
-0.5
-0.3
-0.4
-0.1
-0.3
0.1
0.1
-0.3
-0.4
-0.3
-0.3
0.1
-0.1
-0.4
-0.5
-0.5
-0.6
-0.3
-0.2
-0.5
-0.6
-0.6
-0.6
-0.7
-0.7
-0.7
-0.5
Moisture
Scrubber
Inlet
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
Outlet
H2O
»
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
12 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
• 8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
1:00
1:05
1:10
1:15
1:20
1:25
1:30
1:35
1:40
1:45
1:50
1:55
2:00
2:05
2:10
2:15
2:20
2:25
2:30
2:35
2:40
2:45
2:50.
2:55
3:00
3:05
3:10
3:15
3:20
3:25
3:30
3:35
3:40
3:45
3:50
3:55
4:00
4:05
4:10
4:15
4:20
4:25
4:30
4:35
4:40
4:45
4:50
4:55
5:00
5:05
5:10
5:15
5:20
5:25
5:30
5:35
c
Inlet
C02
(%)
5.3
5.1
4.8
5.3
5.7
5.8
5.4
5.4
5.4
5.1
5.1
5.1
5.2
5.1
5.2
5.1
5.1
5.3
5.1
5.1
5.3
5.2
5.3
5.3
5.0
5.1
5.2
4.9
5.0
5.1
5.3
5.1
5.2
5.1
5.2
5.1
5.0-
5.1
5.1
5.3
5.0
5.0
4.9
5.0
4.9
5.1
5.0
4.9
5.0
5.0
4.9
4.7
4.7
5.0
4.9
5.1
. Outlet
C02
(%)
3.8
3.7
3.4
3.8
4.1
4.2
3.9
3.8
3.8
3.6
3.6
, 3.7
3.7
3.7
3.7
3.7
3.7
3.8
3.7
3.7
3.8
3.7
3.9
3.8
3.6
3.7
3.7
3.5
3.6
3.7
3.8
3.6
3.8
3.6
3.7
3.6
3.6
3.7
3.7
3.8
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.5
3.6
3.6
3.5
3.4
3.4
3.6
3.5
3.7
02
Inlet
02
(%)
13.8
13.9
14.3
13.7
13.1
13.1
13.6
13.7
13.7
14.2
14.1
14.1
14.0
14.2
14.0
14.1
14.1
13.9
14.1
14.1
13.9
14.0
13.8
13.9
14.3
14.1
14.0
14.4
14.2
14.1
13.9
14.2
14.0
14.2
14. r
. 14.2
14.3
14.1
14.1
13.9
.14.3
14.3
14.3
14.2
14.3
14.2
14.3
14.3
14.3
14.3
14.4
14.6
14.6
14.3
14.4
14.1
Outlet
02
(%)
15.8
15.9
16.2
15.8
15.4
15.3
15.7
15.7
15.8
16.1
16.1
16.0
16.0
16.1
16.0
16.0
16.0
15.9
16.0
16.0
15.9
16;0
15.8
15.9
16.1
16.0
16.0
16.2
16.1
16.0
15.8
16.1
15.9
16.1
16.0
16.1
16.2
16.0
16.0
15.9
16.2
16.1
16.2
16.1
16.2
16.1
16.2
16.2
16.2
16.2
16.2
16.4
16.3
16.1
16.3
16,0
Inlet
°F
592
591
590
589
590
591
591
591
591
587
585
584
583
583
583
583
582
582
582
582
582
582
582
582
582
582
582
581
581
581
581
581
581
581
581
581
580
580
580
580
580
580
580
580
580
579
580
579
579
579
579
579
578
578
578
578
Outlet
"F
171
170
170
171
170
170
169
170
170
170
169
169
169
169
170
170
168
169
168
168
169
170
169
168
168
168
168
168
169
169
168
168
167
168
167
167
167
167
168
168
168
167
167
166
167
168
168
167
167
167
166
167
167
167
167
166
T THC
Inlet
THC
(ppm)
2.6
2.5
2.6
2.5
2.4
2.3
2.3
2.3
2.4
2.5
2.5
2.5
2.4
2.5
2.4
2.4
2.4
2.4
2.4
2.4
2.3
2.6
2.4
2.4
2.4
2.3 .
2.3
2.4
2.3
2.4
2.3
2.4
2.3
2.4
2.3
2.4
2.4
2.3
2.4
2.3
2.3
2.3
2.3
2.4
2.5
2.3
2.3
2.4
2.2
2.2
2.2
2.2
2.4
2.2
2.4
2.3
Scrubbe
Outlet
THC
(ppm)
0.7
0.8
0.7
0.7
0.6
0.6
0.5
0.6
0.6
0.7
0.7
0.7
0.6
0.7
0.6
0.6
0.6
0.5
0.5
0.6
0.6
0.7
0.6
0.5
0.6
0.6
0.6
0.7
0.7
0.6
0.7
0.7
0.7
0.7
0.7
0.6
0.6
0.6
0.7.
0.6
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.8
0.8
0.8
0.9
0.8
0.9
0.9
0.9
CO
Scrubbe
Inlet
CO
0.8
1.7
2.6
2.2
1.2
0.9
1.0
1.4
1.8
4.7
6.5
7.1
7.2
8.1
7.8
8.7
9.2
8.2
8.4
8.8
9.0
8.7
7.6
6.8
8.9
9.5
8.0
11.0
11.7
10.9
9.0
10.4
9.8
10.2
10.4
10.7
11.7
11.7
12.0
10.5
11.7
12.7
12.5
13.2
14.0
12.8
12.6
13.3
13.2
13.4
14.5 .
17.2
18.6
16.8
18.9
16.1
Scrubbe
Outlet
CO
(ppm)
-0.4
0.1
0.8
0.5
-0.2
-0.4
-0.1
0.1
0.2
2.3
3.1
3.8
3.7
4.4
4.3
4.9
5.3
4.4
4.6
4.7
4.8
4.5
3.8
3.2
4.7
5.0
4.0
6.0
6.5
6.1
4,9
5.9
5.5
5.6
5.7
5.9
6.7
6.5
6.8
5.9
6.6
7.4
7.4
7.7
8.3
7.4
7.3
7.9
7.8
8.1
8.8
10.3
11.6
10.2
11.6
9.7
Scrubbe
Inlet
H20
(%)
0.1
0.1
0.1
0.1
0.1 -
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
OV13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
H20
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
13 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
S/3/9S
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
SOWS
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
80/95
TIME
5:40
5:45
5:50
5:55
6KX)
6:05
6:10
6:15
620
625
630
635
6:40
6:45
6:50
6:55
7:00
7.-05
7:10
7:15
720
7:25
7:30
735
7:40
7:45
7:50
7:55
8:00
8:05
8:10
8:15
8:20
825
8:30
835
8:40
8:45
8:50
8:55
9:00
9.-05
9:10
9:15
920
925
930
935
9:40
9:45
9:50
9:55
10:00
10:05
10:10
10:15
CO2
Scrubber
Inlet
C02
(.%)
5.0
5.0
4.9
4.9
4.9
4.8
4.7
4.9
4.9
4.9
4.9
4.9
5.1
5.3
5.5
5.5
5.5
5.4
5.2
S3
5.0
5.2
5.9
6.5
6.8
6.8
7.0
6.9
6.9
6.8
7.1
7.0
7.0
7.0
7.1
6.9
6.9
6.5
6.1
6.1
5.9
5.8
5.5
5.3
5.3
5.2
5.2
4.8
4.5
4.5
Scrubber
Outlet
CO2
(96)
3.6
3.6
3.5
3.5
3.5
3.5
3.4
3.5
3.5
3.5
3.5
3.5
3.7
3.7
3.9
3.9
3.9
3.8
3.7
3.7
3.5
3.6
4.1
4.5
4.7
4.7
4.8
4.8
4.7
4.7
4.9
4.8
4.8
4.8
4.9
4.8
4.8
4.5
4.3
4.2
4.1
4.1
3.9
3.7
3.7
3.7
3.7
3.4
3.2
3.1
O2
Scrubber
Inlet
02
(%)
14.2
14.3
14.4
14.4
14.5
14.5
14.6
14.3
14.4
14.4
14.4
14.4
14.1
13.7
13.4
13.5
13.4
13.6
13:8
13.8
14.1
14.1
13.2
12.5
12.0
12.2
11.9
12.0
12.1
12.2
11.8
11.9
11.9
11.9
11.8
12.0
12.1
12.7
13.2
13.2
13.5
13.6
13.9
14.2
14.2
14.3
14.3
15.0
15.3
15.3
Scrubber
Outlet
02
(%)
16.1
16.2
16.2
16.2
16.3
16.3
16.4
16.2
16.3
16.3
16.3
16.2
16.0
15.8
15.6
15.6
15.6
15.7
15.8
15.8
16.1
16.1
15.4
14.9
14.6
14.7
14.5
14.6
14.7
14.7
14.5
14.6
14.6
14.6
14.5
14.6
14.7
15.1
15.4
15.5
15.6
15.7
15.9
16.1
16.1
16.2
16.2
16.6
16.9
16.9
Temperature
Scrubber
Inlet
°F
578
578
578
578
578
577
577
577
577
577
577
577
578
578
575
573
574
577
577
577
581
585
587
587
587
587
584
578
576
576
577
577
577
578
578
578
579
580
581
581
582
582
582
581
580
579
578
578
577
575
574
573
572
570
567
565
Scrubber
Outlet
."F
167
166
165
166
166
165
167
167
167
166
166
165
165
166
164
165
166
161
164
166
167
166
166
165
166
167
167
169
169
168
169
168
170
170
170
171
172
173
173
174
175
175
175
175
173
175
174
174
173
173
173
174
174
173
172
173
THC
Scrubber
Inlet
THC
(ppm)
2.3
2.3
2.3
2.3
2.3
2.3
2.4
2.3
2.4
2.2
2.3
2.4
2.3
3.3
2.8
2.7
2.7
2.7
2.7
2.9
3.3
3.1
2.9
2.5
2.7
2.4
2.3
2.3
2.2
2.1
2.1
2.1
2.1
2.2
2.1
2.2
2.3
2.4
2.5
2.6
2.5
2.7
2.8
3.0
3.0
3.0
3.5
3.7
4.0
Scrubber
Outlet
THC
(ppm)
0.9
1.0
0.9
1.0
1.0
0.9
1.0
1.0
1.0
1.4
0.7
0.8
1.0
1.9
2.3
2.3
2.0
2.0
1.8
1.7
1.7
1.7
1.7
1.6
1.6
1.6
1.7
1.8
1.8
1.9
1.7
1.8
1.9
1.7
1.9
1.9
2.1
2.0
2.0
2.1
2.4
2.3
CO
Scrubber
Inlet
CO
(ppm)
15.4
16.3
15.9
17.1
17.8
19.8
21.6
18.6
19.4
19.6
21.1
20.7
18.1
6.1
4.1
3.8
3.4
3.4
4.2
5.2
16.8
41.0
31.1
20.7
14.0
12.6
11.6
10.2
7.8
7.9
6.9
6.0
5.5
6.0
5.1
4.2
5.8
5.6
6.5
7.1
9.1
9.9
12.6
18.9
22.2
30.1
31.3
58.8
120.7
185.6
Scrubber
Outlet
CO
(ppm)
9.1
9.7
9.4
10.3
10.8
12.2
13.7
11.5
11.8
12.1
13.3
13.2
11.2
22.6
26.3
19.8
12.3
7.4
6.3
5.5
4.4
2.9
2.9
2.3
1.7
1.3
1.6
1.0
0.4
1.3
1.2
2,0
2.3
3.7
4.0
5.9
10.1
12.3
17.7
18.6
37.4
97.8
126.5
Moisture
Scrubber
Inlet
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
Outlet
H20
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
14 of 19
-------
' Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
TIME
10:20
10:25
10:30
10:35
10:40
10:45
10:50
10:55
11:00
11:05
11:10
11:15
11:20
11:25
11:30
11:35
11:40
11:45
11:50
11:55
12:00
12:05
12:10
12:15
12:20
12:25
12:30
12:35
12:40
12:45
12:50
12:55
13:00
13:05
13:10
13:15
13:20
13:25
13:30
13:35 '
13:40
13:45
13:50
13:55
14:00
14:05
. 14:10
14:15
14:20
14:25
14:30
14:35
.14:40
14:45
14:50
14:55
CO2
Scrubber
Wet
C02
(%)
4.5
>4.8
4.8
4.8
4.9
5.0
5.3 ..
5.4
5.3
5.2
4.8
4.4
4.1
3.7
3.9
3.6
3.5
3.6
3.7
3.8
3.8
3.8
3.9
4.3
5.2
6.2
7.5
9.4
10.5
9.6
8.4
7.2
6.3
5.8
5.4
5.7
6.0
6.4
6.3
5.9
5.2
4.7
Scrubber
Outlet
C02
(%)
3.2
3.4
3.4
3.4
3.5
3.5
3.7
3.8
3.7
3.6
3.4
3.1
2.8
2.5
2.5
2.4
2.3
2.4
2.4
2.5
2.5
2.5
2.6
2.8
3.6
4.2
5.1
6.3
7.4
6.9
6.1
5.1
4.5
4.2
4.0
4.2
4.0
4.5
4.6
4.3
3.8
3.4
02
Scrubber
Inlet
Scrubber
Outlet
CO
(ppm)
159.0
143.8
143.8
167.6
176.0
200.5
152.2
112.9
118.3
133.3
193.3
325.1
542.5
683.0
675.5
1100.4
1191.2
1255.6
1314.7
1413.8
1467.8
1610.8
1683.8
1659.1
1609.1
1176.9
873.4
1100.4
936.5
218.2
36.5
28.2
14.2
17.6
28.6
12.8
6.4
1.2
0.5
0.3
0.4
1.8
0.6
0.5
Moisture
Scrubber
Inlet
H20
(%)
0.1 .
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13 .
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
Outlet
H2O
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
15 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
6/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
TIME
15:00
15:05
15:10
15:15
15:20
15:25
L 15:30
15:35
15:40
15:45
15:50
15:55
16:00
16:05
16:10
16:15
16:20
16:25
16:30
16:35
16:40
16:45
16:50.
16:55
17:00
17:05
17:10
17:15
17:20
1735
1730
17:35
17:40
17:45
17:50
17:55
18:00
18:05
18:10
18:15
18:20
1825
1830
18:35
18:40
18:45
18:50
18:55
19:00
19:05
19:10
19:15
19:20
1925
19:30
1935
C02
Scrubber
Inlet
CO,
(%)
4.8
4.7
4.4
4.2
4.3
4.6
5.4
5.8
5.8
5.8
5.7
5.5
5.4
5.3
5.3
5.1
5.2
5.1
5.1
5.1
5.0
5.1
5.1
5.1
5.3
5.5
5.2
5.2
5.0
4.9
5.0
5.0
5.0
4.9
4.9
4.9
4.9
5.1
5.2
5.2
5.1
4.9
4.9
4.9
4.9
4.9
5.1
5.3
Scrubber
Outlet
C02
(%)
3.9
3.8
3.7
3.5
3.4
3.1
2.9
3.0
3.3
3.8
4.1
4.1
4.1
4.0
3.9
3.9
3.8
3.7
3.6
3.7
3.6
3.6
3.6
3.5
3.6
3.6
3.6
3.7
3.9
3.7
3.7
3.5
3.5
3.6
3.6
3.6
3.5
3.5
3.5
3.5
3.6
3.7
3.7
3.6
3.5
3.5
3.5
3.5
3.5
3.7
3.8
02
Scrubber
Inlet
02
(%)
14.3
14.4
14.8
15.1
14.9
14.5
13.5
13.0
12.9
12.9
13.1
13.3
13.5
13.6
13.7
13.8
13.7
13.8
13.8
13.9
14.0
13.9
13.8
13.8
13.6
13.4
13.7
13.8
14.0
14.1
14.0
13.9
14.0
14.0
14.1
14.1
14.1
13.9
13.8
13.8
. 13.9
14.1
14.1
14.1
14.2
14.1
13.8
13.4
Scrubber
Outlet
02
(%)
15.6
15.7
15.8
16.0
16.1
16.4
16.6
16.5
16.2
15.5
15.1
15.1
15.1
15.3
15.4
15.5
15.6
15.6
15.8
15.7
15.8
15.8
15.8
15.9
15.8
15.8
15.7
15.6
15.5
15.7
15.7
15.9
16.0
15.8
15.8
15.8
15.9
15.9
15.9
15.9
15.8
15.7
15.7
15.8
16.0
15.9
15.9
16.0
16.0
15.7
15.5
Temperature
Scrubber
Inlet
°F
592
591
592
593
593
594
595
594
593
593
592
590
590
588
587
588
590
591
592
593
594
594
593
593
594
593
593
593
593
593
592
592
592
593
595
595
595
594
595
594
595
594
594
594
594
594
594
594
595
595
594
594
593
593
594
594
Scrubber
Outlet
°F
171
172
171
173
172
173
173
172
171
171
172
172
171
170
171
170
170
170
170
170
170
170
171
172
170
172
172
171
172
172
172
171
171
171
171
171
171
171
171
170
170
170
170
170
170
170
169
170
169
170
169
169
171
170
169
170
THC
Scrubber
Inlet
THC
(ppm)
3.6
3.7
3.4
3.3
3.2
3.1 »
3.1
3.0
3.1
3.1
3.1
3.1
3.1
3.1
3.0
3.0
3.1
3.1
3.1
3.1
3.1
2.9
2.9
2.9
3.0
3.0
3.0
3.0
3.0
3.1
3.0
3.1
3.1
3.0
3.0
2.9
2.9
2.9
2.9
3.0
3.0
3.0
2.9
2.9
Scrubber
Outlet
THC
(ppm)
2.5
2.4
2.1
2.0
1.9
1.7
1.6
1.7
1.7
1.7
1.6
1.6
1.6
1.6
1.6
1.7
1.8
1.8
1.7
1.7
1.7
1.7
1.7
1.8
1.8
1.9
1.9
1.9
1.8
1.8
1.7
1.9
1.9
1.8
1.8
1.8
1.9
2.0
2.2
2.3
2.4
2.5
2.6
2.6
CO
Scrubber
Inlet
CO
(ppm)
1
5.7
9.9
15.0
16.0
15.8
14.5
9.0
5.3
3.5
2.9
2.7
2.3
2.3
2.6
2.8
3.3
3.0
3.3
3.1
3.6
4.2
4.2
4.6
4.6
3.8
2.8
3.2
3.3
4.0
4.5
4.5
4.8
4.7
5.1
5.7
6.3
6.8
5.7
4.8
4.2
4.7
4.7
4.9
5.6
5.8
6.1
5.2
4.3
Scrubber
Outlet
CO
(ppm)
0.6
0.7
1.0
0.9
0.7
1.6
2.1
2.0
1.7
5.6
9.3
10.2
9.9
9.1
5.4
2.9
1.9
1.4
1.2
1.0
1.0
1.1
1.1
1.5
1.2
1.4
1.5
1.9
2.3
2.3
2.5
2.6
2.0
1.3
1.7
1.7
2.1
2.5
2.7
2.5
2.3
2.8
3.3
3.7
4.0
3.3
2.7
2.1
2.6
2.5
2.8
3.1
3.2
3.5
2.9
2.2
Moisture
Scrubber
Inlet
H2O
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.
0.
0.
0.
0.
0.
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
Outlet
H2O
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0,05
0.05
0.05
0.05
0.05
0.05
0.05
16 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/3/95
8/3/95.
8/3/95
8/3/95
8/3/95-
8/3/95
8/3/95
8/3/95
. 8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
• 8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/3/95
8/4/95
8/4/95
8/4/95
8/4/95
TIME
19:40
19:45
19:50
19:55
20:00
20:05
20:10
20:15
20:20
20:25
20:30
20:35
20:40
20:45
20:50
20:55
21:00
21:05
21:10
21:15
21:20
21:25
21:30
21:35
21:40
21:45
21:50
21:55
22:00
22:05
22:10
22:15
22:20
22:25
22:30
22:35
22:40
22:45
22:50
22:55
23:00
23:05
23:10
23:15
23:20
23:25
23:30
23:35
23:40
23:45
23:50
23:55
0:00
0:05
0:10
0:15
CO2
Met
C02
(%)
5.3
5.3
5.4
• 5.3
5.3
5.2
5.2
5.2
5.2
5.1
5.2
5.4
5.2
5.1
5.3
5.2
5.2
5.1
5.2
5.2
5.1
5.1
5.3
5.1
5.2
5.3
5.2
5.1
5.1
5.1
5.2
5.1
5.2
5.2
5.2
4.8
4.8
4.8
4.8
4.9
4.8
4.8
4.8
4.7
4.8
4.7
4.6
4.5 .
4.5
Outlet
C02
(%)
3.8
, 3.8
3.8
3.8
3.8
3.7
3.7
3.7
3.7
3.7
3.7
3.8
3.7
3.7
3.8
3.7
3.7-
3.7
3.7
3.7
3.6
3.7
3.8
3.7
3.7
3.8
3.7
3.7
3.7
3.7
3.7
.3.7
3.7
3.5
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.5
3.6
3.5
3.5
3.4
3.4
02
Inlet
02
(%)
13.5
13.6
13.4
13.5
13.4
13.7
13.6
13.6
13.7
13.7
13.6
13.4
13.7
13.7
13.6
13.6
13.7
13.7
13.7
13.6
13.8
13.7
13.5
13.7
13.7
13.6
13.6
13.7
13.8
13.7
13.7
13.7
13.6
13.6
13.7
14.2
14.2
14.2
14.2
14.1
14.1
14.2
14.3.
14.3
14.3
14.4
14.5
14.6
14.6
Outlet
02
(%)
15.5
15.6
15.4
15.5
15.5
15.6
15.6
. 15.6
15,6
15.7
15.6
15.5
15.7
15.7
15.6
15.6
15.6
15.7
15.7
15.7
15.8
15.7
15.6
15.7
.15.7
15.6
15.6
15.7
15.8
15.7
15.7
15.7
15.6
15.7
15.7
16.1
16.1
16.1
16.1
16.0
16.1
16.1
16.1
16.2
16.2
16.2
16.3
16.4
16.4
Temperature
Scrubber
Met
°F
595
595
596
596
596
596
597
'597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
597
595
595
598
602
602
600
598
598
599
598
598
598
598
598
597
597
596
596
595
595
594
Scrubber
Outlet
°F
170
170
170
171
171
171
171
173
172
172
173
173
172
172
172
173
173
173
172
174
173
174
174
173
173 .
174
174
173
173
173
173
173
172
174
173
172
172
173
172
172
172
172
172
171
169
170
169
170
170
169
169
169
168
168
168
167
THC
Scrubber
Met
THC
(ppm)
2.9
2.8
2.8
2.8
2.8
2.8
2.8
2.7
2.7
2.7
2.6
2.6
2.5-
2.5
2.4
2.4
2.4
2.5
2.5
2.4
2.4
2.5
2.5
2.5
2.5
2.4
2.4
2.4
2.4
2.4
2.3
2.3
2.3
2.3
2.2
3.2
3.1
2.9
2.7
2.7
2.7
2.7
2.7
2.8
2.8
2.8
2.8
Scrubber
Outlet
THC
(ppm)
2.6
2.7
2.8
2.9
2.9
2.9
3.0
2.9
3.0
3.0
3.1
. 3.2 ~
3.0
3.2
3.6
3.7
4.4
4.7
5.0
•- 5.2
5.3
5.6
5.4
5.5
5.6
5.5
5.5
5.4
5.6
5.7
5.4
5.3
5.0
4.6
4.2
3.0
3.1
2.6
2.3
2.1
2.1
2.0
1.8
1.6
1.3
1.4
1.2
1.1
1.1
CO
Scrubber
Met
CO
(ppm)
3.6
3.5
3.0
2.7-
2.6
2.8
2.9
2.7
2.9
3.1
3.1
6.1
6.2
6.5
7.1
6.6
6.6
7.1
8.2
9.7
9.4
11.7
12.5
12.0
17.1
Scrubber
Outlet
CO
(ppm)
.6'
.5
.2
.0
.0
0.9
1.1
0.9
1.2
1.2
1.5
1.0
1.3 "
1.3
1.1
0.9
.0
.2
.3
19
.0
.3
.1
.2
.4
.0
^~ .9
.0
.6
.6
.3
.2
.2
.1
3.
3.8
3.6
4.2
3.6
3.5
3.8
4.7
5.8
5.3
7.0
7.6
7.0
10.5
Moisture
Scrubber
Inlet
H20
(%)
0.1
0.1
,0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.13
0.13
0.13
0.13
•0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
Outlet
H2O
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05-
0.05
0.05
0.05-
0.05
0.05
0.05
0.05 -
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
17 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
TIME
0:20
0:25
0:30
035
0:40
0:45
0:50
0:55
1:00
1:05
1:10
1:15
100
1:25
1:30
135
1:40
1:45
1-30
1:55
2:00
2:05
2:10
2:15
220
225
230
235
2:40
2:45
2:50
2:55
3:00
3.-05
3:10
3:15
320
325
330
'335
3:40
3:45
3:50
3:55
4:00
4:05
4:10
4:15
420
425
430
435
4:40
4:45
4:50
4:55
C02
Scrubber
Inlet
C02
(%)
4.4
4.4
4.7
5.0
4.9
4.8
4.6
4.7
4.7
4.6
4.6
4.6
4.6
4.5
4.6
4.7
4.6
4.6
4.6
4.5
4.5
4.5
4.4
4.5
4.3
4.2
4.3
4.4
4.8
4.8
4.8
4.9
4.7
4.6
4.5
4.4
4.5
4.5
4.5
4.4
4.5
4.4
4.4
4.4
4.4
4.3
4.5
4.5
4.4
4.4
4.3
4.4
4.4
4.3
4.3
4.3
Scrubber
Outlet
C02
(%)
3.3
3.2
3.5
3.7
3.7
3.6
3.5
3.6
3.5
3.5
3.4
3.5
3.4
3.4
3.5
3.5
3.5
3.5
3.4
3.4
3.4
3.3
3.3
3.3
3.2
3.1
3.2
3.3
3.6
3.6
3.6
3.7
3.5
3.5
3.4
3.3
3.4
3.4
3.4
3.3
3.4
3.3
3.3
3.3
3.3
3.2
3.4
3.4
3.3
3.3
3.2
3.3
3.3
3.2
3.2
3.2
02
Scrubber
Inlet
02
(%)
14.8
14.8
14.4
14.0
14.1
14.3
14.5
14.3
14.4
14.4
14.5
14.4
14.5
14.6
14.4
14.4
14.5
14.4
14.5
14.6
14.7
14.7
14.8
14.7
14.9
15.1
15.0
14.8
14.2
14.2
14.2
14.1
14.4
14.5
14.6
14.8
14.7
14.6
14.6
14.7
14.6
14.7
14.8
14.7
14.8
14.9
14.7
14.7
14.7
14.8
14.9
14.7
14.7
14.9
14.9
14.9
Scrubber
Outlet
02
(%)
16.5
16.5
16.2
15.9
16.0
16.1
16.3
16.1
16.2
16.2
16.3
16.2
16.3
16.4
16.2
16.2
16.3
16.2
16.3
16.4
16.4
16.4
16.5
16.4
16.6
16.7
16.6
16.5
16.1
16.0
16.1
16.0
16.2
16.3
16.4
16.5
16.4
16.4
16.4
16.4
16.4
16.4
16.5
16.4
16.5
16.5
16.4
16.4
16.4
16.5
16.5
16.4
16.4
16.6
16.6
16.6
Temperature
Scrubber
Inlet
°F
594
593
594
594
595
595
594
595
595
594
594
594
594
593
593
593
593
593
593
592
592
592
592
591
590
589
588
589
590
590
591
591
592
590
591
590
590
590
590
590
590
589
589
589
589
588
589
588
588
589
588
588
588
588
588
587
Scrubber
Outlet
°F
168
167
167
166
166
166
165
166
166
166
166
166
166
166
166
166
166
165
165
165
165
166
166
165
164
165
165
165
164
163
164
162
163
163
163
164
164
163
163
163
163
163
163
162
162
163
163
163
162
163
162
163
162
163
163
163
THC
Scrubber
Inlet
THC
(ppm)
3.0
3.1
3.0
2.9
2.9
2.9
2.9
3.0
3.1
3.0
3.0
2.9
2.9
3.0
2.9
2.9
2.8
2.9
2.9
2.9
2.9
2.9
2.9
3.0
3.0
3.1
3.2
3.2
2.8
2.8
2.7
2.5
2.4
12.0
6.3
3.7
2.6
2.1
1.9
1.8
1.7
1.5
1.5
1.5
1.4
1.5
1.3
1.3
1.3
1.2
1.3
1.3
1.2
1.3
1.4
1.4
Scrubber
Outlet
THC
(ppm)
1.3
.3
.3
.2
.3
.2
.1
1.1
1.1
1.2 '
1.2
1.0
.2
.2
.2
.2
.2
.3
1.2
1.0
1.1
0.9
0.8
0.8
0.9
0.8
0.9
0.8
0.4
0.5
0.4
0.2
0.2
0.2
0.1
0.2
0.2
0.1
0.1
0.0
-0.2
0.0
0.0
0.0
0.1
0.1
0.2
0.1
0.1
0.1
0.1
0.2
0.0
0.1
0.1
0.2
CO
Scrubber
Inlet
CO
(ppm)
18.6
18.2
15.9
12.5
11.6
11.8
13.1
12.6
13.2
12.8
14.6
15.2
15.8
18.1
15.6
14.3
15.5
14.8
15.5
15.6
19.9
23.1
25.6
25.2
26.9
42.0
44.3
37.3
23.2
20.7
18.6
16.1
17.1
17.2
19.6
23.8
23.9
23.6
23.1
23.9
22.6
25.2
26.2
26.7
27.3
32.8
27.3
25.9
28.1
26.3
28.1
27.9
25.2
29.7
33.2
33.8
Scrubber
Outlet
CO
(ppm)
11.5
11.2
9.9
7.6
7.1
7.1
8.1
7.5
7.9
7.5
8.6
9.0
9.5
11.0
9.2
8.3
9.1
8.6
9.1
9.2
12.3
14.5
16.2
15.9
17.2
27.9
29.7
24.6
14.9
13.0
11.7
9.9
10.7
10.7
12.4
15.3
15.4
15.3
14.7
15.5
.14.6
16.3
17.0
17.4
17.8
21.5
17.7
16.7
18.2
17.0
18.2
18.0
16.0
19.3
21.6
22.1
Moisture
Scrubber
Inlet
H2O
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
Outlet
H2O
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
18 of 19
-------
Cleveland (Southerly) Ohio
Continuous Monitor Data
August, 1995
DATE
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4795
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
8/4/95
1 8/4/95 1
TIME
5:00
5:05
5:10
5:15
5:20
5:25
5:30
5:35
5:40
5:45
5:50
5:55
6:00
6:05
6:10
6:15
6:20
6:25
6:30
6:35
6:40
6:45
6:50
6:55
7:00
7:05
7:10
7:15
720
7:25
7:30
7:35
7:40
7:45
7:50
7:55
8:00
8:05
8:10
8:15
8:20
8:25
C02
Inlet
CO2
(%)
4.3
4.4
4.3
4.4
4.4
4.5
4.5
4.6
4.6
4.7
4.7
4.6
4.7.
4.8
4.9
5.0
4.9
4.8
4.7
4.7
4-6
4.5
4.6
4.6
4.6
4.6
4.5
45
4.6
4.6
4.5
4.5
4.5
4.5
Outlet
C02
(%)
3.2
3.3
3.2
3.2
3.3
3.3
3.4
3.4
3.4
O '
3.5
3.4
3.5
3.6
3.7
3.7
3.6
3.6
3,5
3.5
3.4
3.4
3.4
•3.4 '
1 3~4~
3.4
3.3
3.3
3.4
3.4
3.3
3.4
3.3
3.3
3.5
3.7
3.7
02
Inlet.
02
(%)
14.9
14.8
14.9
14.8
14.7
14.6
14.5
14.4
14.5
14.3
14.3
14.4
14.2
14.1
13.9
13.8
14.0 .
14.1
14.2
14.2
14.5
14.5
14.4
14.4
14.4
14.4
14.6
14.5
14.3
14.4
14.5
14.4
14.5
14.5
Outlet
02
(%)
16.6
16.5
16.6
16.5
16.4
16.4
16.3
16.3
163*
16.2
16.2
16.2
16.1
16.0
15.9
15.8
16.0
16.1
16.1
16.1
16.3
16.3
16.3
16.3
16.2
16.3
16.4
16.4
16.2
16.3
16.4
- 16.3
16.4
16.4
16.1
15.9
15.8
Inlet
°F
587
587
587
587
586
583
583
584
584
585
585
586
586
586
587
588
588
589
589
589
589
589
588
588
588
588
588
588
588
588
589
588
588
587 .
582
580
578
577
579
580
581
581
Outlet
"F
163
162
162
162
162
163
163
163
163
163
163
163
164
163
164
164
165
165
164
164
164
165
165
166
165
165
165
166
165
165
164
164
165
165
167
168
168
167
169
171
THC
Scrubbe
Inlet
THC
(ppm)
1.3
1.4
1.5
1.5
1.5
1.4
1.4
1.2
1.4
1.3
1.3
1.2
1.3
1.2
1.1
1.1
1.0
1.1
1.2
1.1
1.1
1.1
1.1
1.0
1.0
1.0
1.1
1.1
1.0
1.0
0.9
0.9
0.9
0.9
0.8
0.6
Scrubbe
Outlet
THC
Q.2
0.0
0.0
-0.1
0.0
-0.1
-0.2
-0.2
0.0
0.1
-0.1
0.1
0.2
0.0
0.1
0.1
0.3
0.0
0.2
0.2
0.2
0.0
0.0
0.1
0.4
0.1
0.2
0.2
0.3
0.0
0.0
0.2
0.2
0.0
0.1
0.1
0.3
CO
Scrubbe
Inlet
CO
35.7
32.9
33.3
34.0
30.9
25.8
24.0
20.2
21.2
20.0
15.8
15.8
14.0
13.0
11.0
8.4
8.3
7.4
7.8
8.1
9.0
9.6
10.2
10.1
9.3
9.8
11.5
12.6
9.8
9.7
11.0
10.3
11.2
13.3
Scrubbe
Outlet
'CO
(ppm)
23.5
21.3
21.5
21.9
20.0
15.9
14.9
12.1
12.8
12.2
9.3
9.4
8.3
7.5
6.3
4.3
4.3
3.7
3.9
4.0
4.4
4.9
5.2
5.3
4.9
5.2
6.5
7.1
5.3
5.1
6.0
5.3
5.9
7.4
5.8
3.5
2.5
2.3
Scrubbe
H20
(%)
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.13
Scrubber
H20
(%)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
19 of 19
-------
• il, •!' , :' "N
-------
APPENDIX C
HUNTINGTON CONTINUOUS MONITOR DATA
-------
-------
Huntington, West Virginia
Continuous Monitor Data
August 1995
Date
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95.
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
, 8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
11:30
11:35
11:40
11:45
11:50
11:55
12:00
12:05
12:10
12:15
12:20
12:25
12:30
12:35
12:40
12:45
12:50
12:55
13:00
13:05
13:10
13:15
13:20
13:25
13:30
13:35
13:40
13:45
13:50
13:55
14:00
14:05
14:10
14:15
14:20
14:25
14:30
14:35
14:40
14:45
14:50
14:55
15:00
15:05
15:10
15:15
15:20
15:25
15:30
15:35
15:40
15:45
15:50
15:55
16:00
16:05.
C02
Inlet
C02
(%)
9.4
9.1
8.4
9.5
9.5
9.7 .
9.1
9.2
8.0
8.9
8.3
7.0
7.6
7.7
7.2
6.8
6.0
5.9
5.9
5.1
5.2
6.2
7.0
7.5
7.6
7.5
7.4
9.0
8.5
8.3
9.0
8.9
9.2
8.6
8.5
7.8
7.5
6.9
6.7
6.7
7.2
8.2
8.2
8.4
8.9
8.6
7.8
8.1
8.0
7.5
7.2
7.1
7.2
7.6
7.8
Outlet
C02
(%)
9.7
9.2
8.5
9.6
9.6
9.8
9.3
9.3
• 8.0
9.0
8.3
7.1
7.6
7.8
7.3
.7.0
6.2
6.2
6.1
5.3
5.4
6.4
7.3
7.5
7.7
7.6
7.5
9.1
8.6
8.4
9,1
9.0
9.2
8.7
8.5
7.9
7.6
7.1
6.9
6.9
7.4
8.3
8.2
8.5
9.0
8.6
7.9
8.2
8.0
7.5
7.3
7.3
7.3
7.7
7.8
02
Inlet
02
(%)
8.8
9.5
10.5
9.2
9.2
9.0
9.7
9.7
11.3
10.0
10.8
12.5
11.7
11.5
12.1
12.5
13.5
13.5
13.5
14.5
14.4
13.1
12.1
11.7
11.5
11.7
11.8
9.6
10.3
10.6
9.7
9.9
9.6
10.2
10.5
11.2
11.6
12.2
12.4
12.4
11.8
10.6
10.7
10.4
9.8
10.3
11.3
10.8
11.0
11.6
12.0
12.0
11.9
11.4
11.2
Outlet
02
(%)
8.9
9.7
10.6
9.3
9.4
9.2
9.9
9.8
11.4
10.1
11.0
12.6
11.9
11.7
12.2
12.7
13.6
13.7
13.7
14.7
14.6
13.3
12.2
11.8
11.7
11.8
11.9
9.9
10.5
10.7
9.9
10.1
9.8
10.4
10.6
11.4
11.7
12.3
12.5
12.5
11.9
10.8
10.9
10.6
9.9
10.5
11.4
11.0
U.I
11.8
12.2
12.1
12.0
11.6
11.4.
Temperature
Scrubber
Inlet
°F
734
785
796
814
.823
832
834
849
847
856
861
853
853
858
860
859
850
846
843
836
829
834
844
862
867
871
872
851
827
854
869
882
892
903
910
919
924
927
927
924
920
918
922
924
923
927
932
923
919
921
917
913
910 .
911
911
915
Scrubber
Outlet
"F
105
108
106
107
107
107
105
107
106
110
109
105
107
108
107
106
105
104
104
102
102
105
108
109
109
107
106
98
98
110
109
112
114
116
116
116
116
116
115
114
L_H*
114
116
115
115
116
117
115
116
115
114
114
114
114
115
115
THC
Scrubber
Inlet
THC
(ppm)
9.4
8.3
6.8
5.5
4.6
3.9
3.2
3.0
2.7
2.8
2.3
1.9
1.9
2.0
2.1
2.1
2.1
2.2
2.4
2.3
2.5
2.8
3.1
3.2
2.9
2.7
2.5
2.3
2.9
3.0
2.6
2.3
2.0
1.9
1.9
1.9
2.1
2.3
2.7
3.2
3.9
4.2
4.3
4.1
4.1
4.2
4.2
4.2
4.2
4.0
4.1
4.3
4.4
4.7
4.8
4.8
Scrubber
Outlet
THC
(ppm)
4.8
5.3
4.7
4.1
3.7
3.3
3.0
3.0
2.9
2.9
2.7
2.6
2.6
2.7
2.9
2.8
2.8
3.0
3.0
3.0
3.1
3.3
3.6
3.7
3.8
3.6
3.6
3.8
4.5
4.2
3.7
3.5
3.3
3.3
3.2
3.2
3.2
3.4
3.6
4.0
4.4
4.6
4.6
4.6
4.6
4.7
4.8
4.8
5.0
5.1
5.1
5.1
5.3
5.5
5.6
5.8
CO
Scrubber
Inlet
CO
(ppm)
54
98
104
127
128
122
111
105
91
88
78
64
61
58
53
49
43
41
41
38
37
42
46
54
54
55
52
37
28
51
59
60
57
51
45
41
37
33
31
30
31
39
52
61
64
71
75
70.
66
63
59
55
53
55
58
62
Scrubber
Outlet
CO
52
95
101
123
123
117
105
99
85
81
70
57
55
52
47
43
37
35
-35
33
31
37
41
48
48
49
46
31
23
46
53
54
50
44
38
34
30
26
24
23
25
33
46
54
58
65
69
64
61
57
53
50
48
49
53
57
Moisture
Scrubber
Inlet
H20
(%)
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
Scrubber
Outlet
H2O
(%)
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
Page 1 of 9
-------
Huntington, West Virginia
Continuous Monitor Data
August 1995
Dale
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/IS/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/15/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
Time
16:10
16:15
16:20
16:25
16:30
16:35
16:40
16:45
16:50
16:55
17:00
17:05
17:10
17:15
17:20
17:25
17:30
17:35
17:40
17:45
17:50
17:55
18:00
18:05
18:10
18:15
18:20
18:25
7:50
7:55
8:00
8:05
8:10
8:15
8:20
8:25
8:30
8:35
8:40
8:45
8:50
8:55
9:00
9:05
9:10
9:15
9:20
9:25
9:30
9:35
9:40
9:45
9:50
9:55
10:00
10:05
COz
Scrubber
Inlet
C02
(%)
7.3
7.5
9.1
8.5
8.4
8.0
7.9
7.9
7.6
9.3
8.9
9.0
8.6
8.8
8.7
8.5
9.0
8.5
8.6
8.5
8.3
8.3
8.3
8.1
7.0
7.5
8.3
8.5
7.8
7.6
8.7
8.6
8.0
8.2
8.4
7.9
6.9
7.6
6.9
6.8
6.6
7.3
7.1
6.9
6.8
Scrubber
Outlet
COj
(%)
7.4
7.6
9.2
8.5
8.4
8.0
7.9
8.0
7.7
9.4
8.9
9.1
8.7
8.9
8.8
8.6
9.1
8.5
8.7
8.6
8.4
8.3
8.3
8.1
8.1
7.6
8.1
8.7
9.0
8.3
8.2
9.3
9.1
8.4
8.6
8.7
8.3
7.3
8.0
7.3
7.2
6.9
7.6
7.4
7.2
7.2
02
Scrubber
Inlet
02
(%)
11.8
11.5
9.4
10.4
10.5
11.0
11.1
11.0
11.4
9.3
9.9
9.7
10.2
9.9
10.0
10.3
9.6
10.3
10.1
10.2
10.5
10.5
10.6
10.8
12.4
11.8
11.0
10.8
11.6
11.8
10.4
10.5
11.4
11.1
10.9
11.6
12.7
11.9
12.6
12.6
12.9
12.0
12.3
12.6
12.7
Scrubber
Outlet
02
(%)
12.0
11.7
9.6
10.5
10.7
11.2
11.3
11.2
11.6
9.4
10.1
9.8
10.3
10.1
10.2
10.4
9.8
10.5
10.3
10.4
10.7
10.7
10.7
11.0
11.4
11.9
11.6
10.7
10.4
11.4
11.6
10.0
10.3
11.2
11.0
10.8
11.4
12.6
11.7
12.5
12.5
12.9
11.9
12.2
12.5
12.6
Temperature
Scrubber
Inlet
°F
913
911
928
931
929
923
918
917
915
926
935
940
939
940
941
941
948
948
947
949
948
950
949
947
921
888
539
654
704
721
740
756
764
765
783
796
801
809
818
821
816
825
829
833
835
843
855
860
865
Scrubber
Outlet
°F
114
114
119
116
115
114
114
114
113
118
116
117
116
117
117
117
118
117
117
117
116
118
118
118
106
100
104
106
104
104
105
105
104
96
110
107
105
106
107
105
105
108
107
106
108
109
107
105
108
107
107
107
110
111
110
112
THC
Scrubber
Inlet
THC
(ppm)
4.8
5.0
5.0
5.0
4.8
4.7
4.5
4.6
4.3
4.4
4.1
4.0
4.0
3.8
3.8
3.7
3.7
3.7
3.8
3.9
3.9
3.8
4.0
4.0
3.4
7.7
5.7
4.1
2.7
1.8
2.0
1.0
0.2
0.0
-0.2
0.8
0.9
1.5
1.6
2.1
2.0
2.3
2.4
2.7
3.4
Scrubber
Outlet
THC
(ppm)
5.8
5.9
6.1
6.0
6.0
5.9
6.0
5.9
5.6
5.7
5.7
5.6
5.7
5.6
5.5
5.5
5.5
5.7
5.7
5.7
5.5
5.5
5.6
5.7
5.7
8.3
6.5
5.0
4.3
3.9
3.1
2.6
2.8
2.4
2.0
2.0
1.6
1.4
1.4
1.6
1.7
1.9
1.8
1.9
2.2
2.4
3.0
CO
Scrubber
Inlet
CO
(ppm)
63
64
76
78
77
73
70
68
63
68
73
69
65
63
62
59
56
53
52
51
51
49
51
52
48
59
64
72
78
73
64
57
59
55
46
43
40
34
27
27
23
21
19
20
21
22
24
Scrubber
Outlet
CO
(ppm)
58
59
71
73
72
68
64
62
57
62
67
63
59
56
56
52
50
47
46
45
45
43
45
46
59
65
72
79
74
64
57
60
55
46
44
41
34
27
27
23
22
20
20
21
23
24
Moisture
Scrubber
Inlet
H2O
(%)
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
Scrubber
Outlet
H20
(%)
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
Page 2 of9
-------
Huntington, West Virginia
Continuous Monitor Data
August 1995
Date
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
Time
10:10
10:15
10:20
10:25
10:30
10:35
10:40
10:45
10:50
10:55
11:00
11:05
11:10
11:15
11:20
11:25
11:30
11:35
11:40
11:45
11:50
11:55
12:00
12:05
12:10
12:15
12:20
-12:25
12:30
12:35
12:40
12:45
" 12:50
12:55
13:00
13:05
13:10
13:15
13:20
13:25
13:30
13:35
13:40
13:45
13:50
13:55
14:00
14:05
14:10
14:15
14:20
14:25
14:30
14:35
14:40
14:45
C02
Scrubber
Inlet
CO2
(%)
6.1
5.5
5.7
6.3
7.1
7,6
8.3
8.7
8.7
8.6
8.7
9.0
9.0
8.4
8.6
8.6
8.2
7.8
7.8
7.8
7.5
7.7
7.5
7.8
7.9
7.6
7.7
7.4
7.7
7.5
7.3
7.1
7.5
7.6
7.5
7.4
7.6
7.2
6.6
6.4
7.3
7.7
7.1
6.4
6.2
6.2
6.8
6.7
8.3
8.0
7.7
7.6
8.0
7.9
6.5
6.0
Scrubber
Outlet
C02
(%)
6.4
5.7
6.0
6.6
7.4 ,
8.0
8.5
9.0
9.0
8.7
9.0
9.2
9.2
8.5
8:8
8.7
8.3
8.0
7.9
8.0
7.6
7.9
7.6
7.9
8.0
7.7
7.9
7.5
7.9
7.5
7.4
7.2
7.6
7.6
7.6
7.4
7.7
7.3
6.6
6.5
7.4
7.7
7.2
6.5
6.3
6.3
6.9
6.9
8.3
8.0
7.7,
7.6
8.0
7.9
6.5
6.0
02
Scrubber
Inlet
.02
(%)
13.5
14.3
14.0
13.3
12.3
11.7
10.9
10.4
10.5
10.7
10.5
10.1
10.2
11.0
10.7
10.7
11.1
11.6
11.6
11.5
11.9
11.6
11.8
11.5
11.4
11.7
11.6
12.0
11.6
11.9
12.1
12.4
11.8
11.8
11.8
12.0
11.7
12.2
13.0
13.2
12.1
11.6
12.4
13.1
13.4
13.5
12.7
12.8
10.8
11.3
11.6
11.8
11.2
11.3
13.0
13.6
Scrubber
Outlet
02
(%)
13.4
14.3
14.0
13.2
12.2
11.6
10.8
10.3
10.3
10.7
10.4
10.0
10.0
11.0
10.6
10.7
11.2
11.7
11.6
11.5
11.9
11.7
11.9
11.6
11.4
11.7
11.6
12.0
11.6
12.0
12.1
12.4
11.9
11.8
11.9
12.1
11.7
12.2
13.0
13.2
12.1
11.6
12.4
13.1
13.6
13.6
12.7
12.8
10.9
11.4
11.7
11.8
11.3
11.4
13.0
13.7
Temperature
Scrubber
Inlet .
"F
865
855
845
848
853
858
865
868
872
873
875
882
887
882
882
887
887
885
885
886
888
889
892
897
901
901
900
897
896
898
897
896
897
897
898
898
901
905
895
885
884
896
894
884
872
865
.868
869
885
896
903
906
914
922
914
899
Scrubber
Outlet
°F
110
108
108
110
111
112
112
112
112
112
112
113
113
110
111
111
110
108
108
110
110
110
110
112
113
112
112
111
112
111
111
110
112
111
111
110
112
112
108
107
110
112
110
107
105
105
107
107
112
113
113
114
115
116
111
108
THC
Scrubber
Inlet
THC
(ppm)
4.0
4.6
4.9
5.6
5.6
5.4
5.4
4.7
4.4
4.0
3.7
3.6
3.3
2.7
2.8
2.8
2.8
2.8
2.9
3.7
3.8
3.3
3.2
3.3
3.5
3.4
3.5
3.5
3.7
3.5
3.5
3.5
3.6
3.6
3.6
3.7
3.7
3.7
3.8
3.9
4.0
3.8
3,8
3.7
3.6
3.4
3.4
3.5
3.5
3.2
3.5
3.6
3.6
3.7
3.8
4.0
Scrubber
Outlet
THC
(ppm)
3.6
4.1
4.3
4.8
5.0
5.0
4.9
4.5
4.2
3.9
3.7
3.6
3.4
3.1
3.0
3.0
3.0
3.0
3.2
3.3
3.4 .
3.3
3.4
• 3.4
3.6
3.7
3.8
3.8
3.9
4.0
4.0
4.0
4.0
4.0
4.0
4.1
4.2
4.3
4.3
4.3
4.5
4.5
4.6
4.5
4.4
4.3
4.4
4.5
4.5
4.5
4.6
4.8
4.9
4.8
4.9
5.1
CO
Scrubber
Inlet
CO
(ppm)
26
28
32
39
47
54
62
68
65
61
59
58
54
50
46
42
38
35
33
31
29
29
26
27
27
26
27
27
28
26
25
25
26
27
26
26
26
24
24
24
26
27
25
24
23
20
22
21
25
23
21
20
20
19
18
17
Scrubber
Outlet
CO
(ppm)
27
28 ,
32
39
48
- 54
63
68
65
61
60
58
54
50
46
42
38
35
34
31
29
29
27
27
27
26
27
27
28
26
25
25
26
27
27
26
27
25
24
24
26
28
26
25
23
21 -
22
21
25
23
21
20
20
19
18
17
Moisture
Scrubber
Inlet
H20
(%)
0.37,
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0,37
0.37
0.37
0.37
Scrubber
Outlet
H20
(%)
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0,09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
. 0.09
0.09
0.09
Page 3 of9
-------
Huntington, West Virginia
Continuous Monitor Data
August 1995
Dite
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/16/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
Time
14:50
14:55
15:00
15:05
15:10
15:15
15:20
15:25
15:30
15:35
15:40
15:45
15:50
15:55
16:00
16:05
16:10
16:15
16:20
16:25
16:30
16:35
16:40
16:45
16:50
16:55
17:00
17:05
17:10
17:15
17:20
17:25
17:30
17:35
17:40
17:45
17:50
17:55
18:00
18:05
18:10
18:15
18:20
18:25
18:30
7:55
8:00
8:05
8:10
8:15
8:20
8:25
8:30
8:35
8:40
8:45
C02
Scrubber
Wet
CO2
<%)
8.0
7.4
7.6
7.4
7.0
7.2
7.6
7.8
8.2
8.2
7.2
6.7
8.3
8.1
7.2
7.2
6.9
7.7
7.8
7.4
7.6
7.1
6.8
6.8
6.7
6.1
6.3
6.7
8.4
8.1
8.9
8.8
9.3
9.3
9.3
9.8
9.4
9.3
9.4
9.3
9.2
9.1
9.4
9.5
9.2
8.0
6.5
Scrubber
Outlet
C02
(%)
8.1
7.4
7.6
7.4
7.0
7.2
7.6
7.7
8.2
8.2
7.2
6.8
8.3
8.1
7.2
7.2
6.9
7.6
7.7
7.4
7.5
7.1
6.8
6.8
6.8
6.1
6.3
6.8
8.3
8.0
8.7
8.7
9.2
9.3
9.3
9.7
9.2
9.2
9.3
9.2
9.1
9.O
9.3
9.4
9.5
8.1
6.7
02
Scrubber
Inlet
02
(%)
11.1
11.9
11.6
12.0
12.4
12.2
11.6
11.5
11.0
11.0
12.3
12.9
10.9
11.1
12.2
12.3
12.7
11.7
11.5
12.0
11.8
12.4
12.7
12.8
12.8
13.6
13.3
12.8
10.7
11.2
10.1
10.2
9.6
9.6
9.6
8.9
9.6
9.7
9.5
9.6
9.7
9.9
9.6
9.4
9.5
11.2
13.1
Scrubber
Outlet
02
(%)
11.2
11.9
11.7
12.0
12.5
12.2
11.6
11.5
11.0
11.0
12.3
12.9
10.9
11.2
12.3
12.3
12.7
11.7
11.5
12.0
11.8
12.4
12.7
12.8
12.8
13.7
13.4
12.8
10.8
11.2
10.1
10.2
9.6
9.6
9.6
9.0
9.6
9.7
9.5
9.6
9.7
9.9
9.5
9.4
9.4
11.3
13.2
Temperature
Scrubber
Inlet
°F
908
922
928
932
927
924
926
924
925
927
916
892
893
907
901
891
883
886
895
895
895
890
887
877
872
863
860
862
877
893
907
918
930
937
942
950
954
949
948
951
949
949
950
952
927
420
418
416
415
414
420
549
644
713
724
Scrubber
Outlet
°F
115
116
117
117
116
117
117
116
117
117
113
109
114
115
112
111
110
113
114
113
114
112
111
109
109
107
108
109
115
114
117
117
119
120
120
121
120
120
120
120
119
119
120
120
107
106
105
105
106
105
104
104
94
107
108
103
THC
Scrubber
Inlet
THC
(ppm)
4.2
4.6
4.8
5.2
5.7
6.2
6.4
6.5
6.7
6.8
6.7
6.7
7.1
6.5
6.5
6.6
6.5
6.7
6.1
6.0
6.4
6.3
6.3
6.5
6.4
5.9
5.9
5.9
6.2
5.5
5.6
5.2
5.3
5.6
5.7
5.7
6.0
6.1
5.9
5.8
5.8
5.8
5.7
5.2
4.3
8.5
8.3
6.2
Scrubber
Outlet
THC
(ppm)
5.4
5.8
6.1
6.5
6.9
7.5
7.9
8.2
8.5
8.7
8.5
8.2
8.6
8.6
8.6
8.3
8.0
8.3
8.1
8.1
8.4
8.4
8.4
8.1
8.0
7.7
7.7
, 7.7
7.9
7.9
7.8
7.4
7.4
7.6
7.6
7.9
8.2
8.1
8.0
7.9
8.1
8.1
8.0
7.9
0.8
4.4
5.0
3.5
CO
Scrubber
Inlet
CO
(ppm)
19
21
23
26
27
30
36
43
49
52
53
54
58
55
53
55
52
51
47
45
47
46
45
46
44
39
38
38
43
41
42
40
42
44
46
49
52
51
49
48
46
44
42
39
102
112
99
Scrubber
Outlet
CO
(ppm)
20
21
23
26
28
31
36
43
49
52
54
54
58
55
53
55
52
51
47
46
47
46
45
46
45
39
38
38
43
42
42
40
42
44
46
49
52
52
49
49
46
44
42
40
114
112 .
98
Moisture
Scrubber
Inlet
H2O
(%)
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.37
0.28
0.28
0.28
Scrubber
Outlet
H20
(%)
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.09 ,
0.09
0.09
0.09
0.09
0.09
0.09
0.09
0.06
0.06
0.06
Page 4 of 9
-------
Huntington, West Virginia
Continuous Monitor Data
August 1995
Date
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
SH7I95
8/17/95
,8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
Time
8:50
8:55
9:00
9:05
9:10
9:15
9:20
9:25
9:30
9:35
9:40
9:45
9:50
9:55
10:00
10:05
10:10
10:15
10:20
10:25
10:30
10:35
10:40
10:45
10:50
10:55
11:00
11:05
11:10
11:15
11:20
11:25
1.1:30
11:35
11:40
11:45
11:50
11:55
12:00
12:05
12:10
12:15
12:20
12:25
12:30
12:35
12:40
12:45
12:50
12:55
13:00
13:05
13:10
13:15
13:20
13:25
C02
Scrubber
Met,
C02
(%)
6.1
6.1
6.0
5.9
6.4
7,0
6.1
7.2
7.8
7.7
7.0
6.3
7.0
7.6
7.7
6.9
6.8
6.8
7.3
7.6
7.2
8.4
8.0
7.3
7.4
7.0
6.5
7.0
6.7
6.9
7.2
7.9
7.7
7.6
5.8
5.8
6.6
8.2
7.5
7.8
7.7
7.5
7.6
7.8
7.5
7.9
7.5
7.5
5.8
5.7
4.9
5.9
5.5
Scrubber
Outlet
C02
(%)
6.4
6.3
6.2
6.1
6.6
7.2
6;3
7.4
8.0
\ 7.9
7.1
6.5
7.2
7.7
7.9
6.9
6.8
6.8
7.4
7.6
7.2
8.3
8.0
7.3
,7.4
7.0
6.6
7.0
6.7
7.0
7.2
7.9
7.6
7.6
5.8
5.9
6.7
8.1
7.4
7.7
7.6
7.5
7.5
7.7
7.4
7.7
7.4
7.4
5.8
5.7
6.2
5.6
02
Scrubber
Inlet
02 ,
(%)
13.5
13.6
13.7
13.8
13.2
12.4
13.6
12.2
11.5
11.6
12.6
13.3
12.6
11.9
11.6
12.8
12.8
12.8
12.2
11.8
12.3
10.9
11.4
12.2
12.1
12.6
13.2
12.6
12.9
12.6
12.3
11.4
11.7
11.8
14.1
14.0
13.0
11.1
12.1
11.6
11.7
12.0
11.9
11.5
12.0
11.5
11.9
12.0
14.0
15.0
13.8
14.3
Scrubber
Outlet
02
(%)
13.7
13.7
13.8
13.9
13.3
12.5
13.6
12.3
11.6
11.7
12.7
13.4
12.6
12.0
11.7
12.8
12.8
12.8
12.1
11.8
12.3
10.9
11.4
12.2
12.2
12.7
13.2
12.6
12.9
12.6
12.3
11.4
11.7
11.8
14.1
14.0
13.0
11.1
12.0
11.6
11.8
12.0
11.9
11.6
12.0
11.6
12.0
12.1
14.0
14.8
1 14.1
14.5
Temperature
Scrubber
Inlet
"F
727
736
741.
747
757
772
770
781
796
803
803
793
794
806
812
815
814
812
818
827
825
834
842
836
833
829
821
823
' 825
825
831
842
855
850
832
819
817
835
839 ,
844
851
851
853
861
862
863
863
860
842
827
815
806
801
798
805
806
Scrubber
Outlet
°F
102
102
103
102
104
106
104
107
109
108
106
104
106
107
108
106
105
105
107
108
106
110
110
107
106
106
104
106
105
105
107
110
109
108
102
102
104
109
107
109
109
109
109
111
110
111
110
109
104
103
101
99
101
101
104
103
THC
Scrubber
Inlet
THC
(ppm)
5.8
5.8
5.5
5.4
6.3
6.2
6.2
6.9
6.8
6.8
5.8
6-0
6.5
5.8"
6.6
6.6
6.5
7.1
7.7
7.7
7.1
7.8
6.8
6.2
5.9
5.8
5.2
5.8
5.6
6.3
6.0
7.2
6.0
6.8
4.2
5.0
6.2
7.0
5.6
6.3
6.0
6.1
6.4
6.6
6.4
6.7
6.5
6.5
4.3
4.6
4.0
Scrubber
Outlet
THC
(ppm)
3.5
3.8
3.8
4.1
4.8
5.1
5.1
5.7
6.0
5.8
5.2
4.7
5.4
5.3
5.9
5.8
5.9
6.2
7.2
7.2
6.7
7.0
6.8
5.9
5.9
5.7
5.3
5.8
5.8
6.1
6.3
7.0
6.9
6.8
4.9
5.2
6.0
7.1
6.6
6.9
6.8
6.9
7.0
7.1
7.0 >
7.1
7.2
7.0
5.5
2.3
. 2.5
3.3
2.7
CO
Scrubber
Inlet
CO
(ppm)
85
80
76
73
77
89
80
96
110
114
108
99
106
116
120
113
112
117
127
136
135
153
148
138
137
128
116
118
113
116
120
119
132
135
114
108
119
141
134
137
136
132
130
129
129'
135
135
139
119
75
85
81
Scrubber
Outlet
CO
(ppm)
83
79
74
.71
76
87
77.
93
106
108
102
93
100
108
111
102
102
106
115
124
121
138
130
121
120
112
100
103
98
102
105
103
110
114
94
93
107
126
116
119
115
111
109
107
105
113
112
117
98
77
71
Moisture
Scrubber
Inlet
H2O
(%)
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
Scrubber
Outlet
H2O
(%)
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
Page 5 of9
-------
Huntington, West Virginia
Continuous Monitor Data
August 1995
Date
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8117/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
Time
13:30
13:35
13:40
13:45
13:50
13:55
14:00
14:05
14:10
14:15
1420
1455
14:30
14:35
14:40
14:45
14:50
14:55
15:00
15:05
15:10
15:15
15:20
15:25
15:30
15:35
15:40
15:45
15:50
15:55
16:00
16:05
16:10
16:15
1650
1655
16:30
16:35
16:40
16:45
16:50
16:55
17:00
17:05
17:10
17:15
1750
1755
17:30
17:35
17:40
17:45
17:50
17:55
18:00
18:05
CO2
Scrubber
Inlet
C02
(%)
7.0
7.2
6.7
6.1
5.0
6.1
7.6
7.6
7.1
8.4
8.2
8.5
8.5
8.2
7.7
9.3
8.9
8.9
8.4
7.2
6.7
6.6
7.3
7.9
9.0
9.0
8.8
9.0
8.7
9.0
9.0
9.1
9.2
8.4
10.0
9.4
9.4
9.4
9.5
9.7
10.0
10.1
9.7
10.0
9.9
10.0
9.9
10.7
10.5
10.3
10.7
10.4
9.9
7.9
8.5
8.7
Scrubber
Outlet
COj
(*)
7.0
7.2
6.6
6.1
5.1
6.2
7.5
7.5
7.0
8.2
8.0
8.3
8.3
8.0
7.5
9.1
8.6
8.6
8.2
7.1
6.7
6.6
7.2
7.7
8.8
8.8
8.6
8.8
8.4
8.8
8.8
8.9
9.0
8.2
9.8
9.2
9.2
9.2
9.3
9.5
9.8
9.8
9.6
9.8
9.7
9.8
9.7
10.5
10.3
10.2
10.5
10.2
9.6
7.7
8.3
8.5
02
Scrubber
Inlet
02
(%)
12.5
12.3
12.9
13.5
14.8
13.5
11.7
11.8
12.4
10.9
11.1
10.7
10.7
11.1
11.8
9.7
10.2
10.2
10.8
12.3
12.9
13.0
12.2
11.4
10.0
10.0
10.3
10.0
10.4
10.0
10.0
9.8
9.7
10.8
8.8
9.4
9.5
9.5
9.3
9.1
8.7
8.6
9.0
8.7
8.9
8.7
8.9
7.8
8.1
8.2
7.8
8.2
8.9
11.5
10.7
10.4
Scrubber
Outlet
02
(%)
12.7
12.4
13.1
13.8
15.1
13.7
11.9
11.9
12.6
11.0
11.3
10.8
10.9
11.3
11.9
9.8
10.4
10.4
11.0
12.5
13.1
13.2
12.4
11.7
10.2
10.2
10.4
10.2
10.6
10.2
10.2
10.0
9.9
11.0
8.9
9.6
9.6
9.7
9.5
9.3
8.9
8.8
9.2
8.9
9.1
8.8
9.1
8.0
8.2
8.4
8.0
8.4
9.1
11.7
10.9
10.6
Temperature
Scrubber
Inlet
°F
818
834
841
839
829
830
845
856
854
867
875
881
886
884
874
884
894
900
898
883
863
852
851
858
874
893
899
905
908
913
916
918
917
908
917
924
,924
926
927
932
939
942
942
944
943
945
946
954
957
957
960
959
952
927
911
909
Scrubber
Outlet
"F
107
109
108
107
105
108
111
112
110
115
115
116
116
114
111
115
116
116
114
110
107
108
109
111
116
116
115
116
116
117
117
117
116
113
118
117
117
118
118
119
119
119
119
119
118
119
118
121
120
120
121
119
117
110
111
113
THC
Scrubber
Inlet
THC
(ppm)
8.9
8.7
7.6
6.1
7.1
6.2
6.7
6.7
6.6
6.2
7.7
7.0
7.0
6.8
5.5
5.0 .
5.5
6.1
6.5
6.6
5.9
6.9
6.4
6.7
6.6
6.7
6.3
6.3
6.2
7.0
5.9
6.4
6.4
6.4
6.3
6.5
6.3
6.4
6.3
5.8
6.3
6.4
6.6
5.8
6.8
5.8
5.8
5.4
4.4
5.0
5.2
Scrubber
Outlet
THC
(ppm)
'3.9
4.6
4.3
4.2
3.7
5.0
5.9
6.1
5.6
6.6
6.3
6.6
6.6
6.3
5.6
6.5
6.6
6.8
6.4
5.4
4.6
4.4
4.7
4.9
5.5
5.4
5.9
5.9
5.9
6.3
6.2
6.3
6.0
6.1
6.7
6.4
6.4
6.4
6.5
6.7
7.0
7.0
7.1
7.3
7.0
7.1
7.4
7.7
7.6
7.4
7.3
7.2
6.7
5.8
5.9
6.0
CO
Scrubber
Inlet
CO ,
(ppm)
96
102
95
85
73
88
116
121
124
143
150
163
171
173
168
182
175
175
176
161
147
135
139
148
147
153
150
153
152
153
156
163
173
160
167
182
171
166
166
168
176
181
183
187
186
185
188
191
206
200
201
201
195
178
167
146
Scrubber
Outlet
CO
(ppm)
86
89
86
78
66
79
104
107
108
126
130
140
146
146
142
158
146
143
143
130
124
115
121
129
127
126
121
122
119
120
123
130
141
130
139
148
138
134
134
136
142
147
147
152
152
152
154
158
171
167
167
165
158
144
142
123
Moisture
Scrubber
Inlet
H20
(%)
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
Scrubber
Outlet
H20
(%)
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
Page 6 of 9
-------
Huntiagton, West Virginia
Continuous Monitor Data
August 1995
Date
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
'8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/17/95
8/18/95
8/18/95
Time
18:10
18:15
18:20
18:25
18:30
18:35
18:40
18:45
18:50
18:55
19:00
19:05
19:10
19:15
19:20
19:25
19:30
19:35
19:40
19:45
19:50
19:55
20:00
20:05
20:10
20:15
20:20
20:25
20:30
20:35
• 20:40
20:45
20:50
20:55
21:00
21:05
21:10
21:15
21:20
21:25
21:30
21:35
21:40
21:45
21:50
21:55
22:00
22:05
22:10
22:15
22:20
22:25
22:30
22:35
8:00
8:05,
CO2
Scrubber
Inlet
CO2
(%)
10.5
10.9
9.5
9.3
9.2
8.3
9.0
10.2
9.4
8.8
8.5
8.3
8.5
8.0
8.7
8.7
7.7
7.4
9.6
9.4
9.0
9.5
9.5
9.5
10.3
10.3
10.3
10.3
10.3
10.2
10.1
9.9
9.8
9.4
9.9
10.0
9.7
10.0
9.4
8.4
8.5
9.2
9.4
10.0
10.1
10.6
10.4
Scrubber
Outlet
CO2
(%)
10.4
10.6
9.4
8.0
9.3
10.5
9.7
9.0
8.7
8.4
8.6
. 8.2
8.9
8.9
7.8
7.6
9.9
9.7
9.2
9.8
9.8
9.8
10.7
10.6
10.6
10.6
10.7
10.5
10.5
10.3
10.2
9.8
10.2
10.4
10.0
10.4
9.6
•8.5
8.7
9.4
9.8
10.3
02 .
Scrubber
Inlet
02
(%)
8.0
7.6
9.3
9.4
9.6
10.9
9.9
8.5
9.4
10.3
10.6
10.9
10.6
11.2
10.3
1,0.3
11.6
12.0
9.2
9.4
10.0
9.3
9.3
9.3
8.2
8.4
8.4
8.4
8.3
8.5
8.6
8.8
8.9 .
9.4
8.9
8.8
9.1
8.7
9.5
10.7
10.5
9.7
9.4
8.8
8.7
8.0
8.3
Scrubber
Outlet
02
(%)
8.1
7.8
9.5
11.7
10.1
8.7
9.6
10.5
10.8
11.1
10.8
11.4
10.5
10.5
11.9
12.2
9.3
9.6
10.2
9.5
9.4
9.4
8.4
8.6
8.5
816
8.5
8.7
8.8
9.0
9.1
9.6
9.0
8.9
9.3
8.9
9.7
11.0
10.7
9.9'
9.6
9.0
Temperature
Scrubber
Inlet
°F
926
950
951
950
946
952
957
946
942
940
930
926
940
942
934
927
922
920
916
918
921
916
904
923
937
939
940
943
943
951
956
959
959
960
960
957
956
954
950
949
949
949
951
950
948
944
943
943
945
947
950
953
954
954
,535
534
Scrubber
Outlet
"F
119
122
118
118
117
120
121
116
117
117
113
116
119
117
114
113
113
114
114
115
116
113
113
120
120
118
; 119
119
119
121
121
121
121
122
121
120
120
120
118
119
119
118
119
118
118
118
119
118
119
118
119
118
117
117
96
98
THC
Scrubber
Inlet
THC
(ppm)
5.7
4.8
4.6
5.1
5.2
5.1
5.5
5.2
4.9
4,5
5.1
4.8
5.2
5.0
5.1
5.6
5.3
5.6
6.7
6.3
6.5
6.3
6.2
6.1
6.1
6.5
6.4
6.5
6.2
5.9
5.6
6.0
5.8
5.7
5.3
5.5
5.6
5.4
. 4.7
5.9
6.5
6.6
5.6
5.0
5.1
4.5
4.1
5.2
0.9
0.4
Scrubber
Outlet
THC
(ppm)
6.6
6.7
6.5
5.0
4.3
4.2
.3.5
4.0
4.1
3.8,.
3.7
3.7
3.2
3.4
3.1
3.2
3.0
2.9
3.0
4.1
4.1
3.9
4.2
3.9
4.0
4.1
4.2
4.4
4.3
4.0
3.6
3.7
3.6
3.7
3.5
3.3
3.5
3.3
2.8
2.6
3.8
4.2
3.8
3.2
3.0
2.6
2.3
2.1
CO
Scrubber
Inlet
CO
(ppm)
150
164
166
142
143
140
135
155
149
142
129
122
117
109
115
113
109
102
114
131
138
145
152
149
. 165
172
174
177
179
176
173
170
161
152
154
155
155
153
140
112
107
123
136
150
158
165
163
Scrubber
Outlet
CO
(ppm)
127
133
128
114
116
134
125
118
107
101
97
90
97
95
90
85
99
110
116
124
129
126.
143
146
148
149
151
148
146
143
135
126
131
132
131
128
114
88
87
105
118
131
Moisture
Scrubber
Inlet
H20
(%)
0.34 .
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
0.34
Scrubber
Outlet
H2O
(%)
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06.
0.06
0.06
0.06
0.06
0.06
0.06
0.06 .
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06 ;
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
Page 7 of 9
-------
Huntington, West Virginia
Continuous Monitor Data
August 1995
Date
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
Time
8:10
8:15
8:20
8:25
8:30
8:35
8:40
8:45
8:50
8:55
9:00
9:05
9:10
9:15
9:20
9:25
9:30
9:35
9:40
9:45
9:50
9:55
10:00
10:05
10:10
10:15
10:20
10:25
10:30
10:35
10:40
10:45
10:50
10:55
11:00
11:05
11:10
11:15
11:20
11:25
11:30
11:35
11:40
11:45
11:50
11:55
12:00
12:05
12:10
12:15
12:20
12:25
12:30
12:35
12:40
12:45
COj
Scrubber
Met
C02
<*)
6.6
8.7
8.8
8.3
7.2
5.2
7.7
8.2
7.2
8.0
6.3
6.3
6.0
5.6
6.8
6.1
6.1
6.3
6.2
6.3
6.4
6.3
6.5
6.3
6.4
6.4
6.4
6.4
6.5
6.6
6.5
6.5
6.6
6.4
6.4
6.5
6.4
6.1
6.3
8.0
5.6
Scrubber
Outlet
COj
(%)
13.4
9.0
9.3
8.7
7.4
5.5
8.1
8.5
7.5
8.4
6.7
6.7
6.4
6.0
7.2
6.5
6.5
6.6
6.6
6.8
6.8
6.7
6.8
6.7
6.8
6.8
6.8
6.8
6.9
7.0
6.9
6.9
6.9
6.8
6.8
6.9
6.8
6.5
6.7
6.9
7.1
5.4
02
Scrubber
Inlet
02
(%)
12.8
10.2
9.5
10.1
11.6
14.3
10.8
10.2
11.5
10.5
12.5
12.6
12.9
13.4
12.0
12.8
12.8
12.7
12.8
12.6
12.5
12.6
12.4
12.6
12.5
12.4
12.4
12.4
12.3
12.2
12.4
12.3
12.3
12.4
12.5
12.4
12.5
12.8
12.6
13.1
13.6
Scrubber
Outlet
02
(%)
5.5
10.4
9.6
10.3
11.9
14.5
11.0
10.3
11.7
10.7
12.8
12.9
13.2
13.6
12.2
13.1
13.1
13.0
13.1
12.8
12.7
12.9
12.7
12.8
12.8
12.7
12.7
12.7
12.6
12.5
12.6
12.6
12.5
12.7
12.8
12.6
12.8
13.1
12.8
12.5
10.8
12.9
Temperature
Scrubber
Inlet
°F
531
529
527
525
530
603
634
660
675
. 708
790
813
830
839
833
837
854
853
878
878
865
858
848
858
861
859
863
868
872
876
878
881
880
881
883
885
888
890
896
899
900
903
902
901
901
901
897
894
899
910
912
919
905
877
859
865
Scrubber
Outlet
Op
100
103
103
103
102
89
88
88
87
98
101
105
106
105
104
105
107
103
110
108
108
107
106
110
108
108
109
109
110
110
110
111
110
111
111
111
111
112
112
113
113
113
113
113
113
113
112
113
113
114
114
116
110
105
109
110
THC
Scrubber
Inlet
THC
(ppm)
0.1
0.1
0.4
0.4
0.0
0.5
0.2
-0.6
-1.0
8.6
18.1
2.3
1.4
1.9
5.6
0.9
0.5
0.2
0.6
1.1
1.5
1.4
1.5
1.4
1.5
1.5
1.4
1.2
1.2
1.2
1.2
1.3
1.4
1.1
1.0
1.0
0.9
0.9
0.9
1.1
1.2
1.3
1.3
1.3
1.4
1.7
1.8
2.0
8.3
5.3,
Scrubber
Outlet
THC
(ppm)
1.6
1.6
1.9
1.9
2.2
2.0
2.0
2.1
2.2
1.9
1.9
1.9
1.8
1.9
1.9
1.8
1.8
1.8
1.7
1.8
1.9
2.0
2.2
2.2
2.2
2.3
2.4
2.6
2.7
2.8
1.6
1.6
1.5
2.6
CO
Scrubber
Inlet
CO
(ppm)
7
6
5
11
4
8
5
4
4
14
3 •
4
4
2
3
3
2
2
2
2
3
3
7
3
4 •
6
6
4
4
5
5
Scrubber
Outlet
CO
(ppm)
3
3
2
2
2
2
3
2
2
2
1
2
1
1
1
1
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
22
8
Moisture
Scrubber
Inlet
H2O
(%)
0.27
0.27
0.27
0.27
0.27
. 0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
Scrubber
Outlet
H2O
(%)
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
Page 8 of9
-------
Huntingdon, West Virginia
Continuous Monitor Data
Augustl99S
Date
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
. 8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
8/18/95
12:50
12:55
13:00
13:05
13:10
13:15
13:20
13:25
13:30
13:35
13:40
13:45
13:50
13:55
14:00
14:05
14:10
14:15
14:20
14:25
14:30
14:35
14:40
14:45
14:50
14:55
15:00
15:05
15:10
15:15
15:20
15:25
15:30
15:35
15:40
15:45
15:50
15:55
16:00
16:05
16:10
16:15
16:20
16:25
16:30
16:35
16:40
16:45
16:50
16:55
17:00
17:05
C02
Inlet
C02
(%)
4.8
3.7
6.0
6.1
5.1
4.2
5.9
7.1
7.7
10.0
11.2
9.2
8.4
5.6
3.3
5.5
7.6
7.2
6.9
6.9
7.0
6.9
6.9
6.4
7.2
7.0
9.0
8.8
9.4
7.3
6.7
6,8
7.6
7.9
8.4
8.7
8.8
7.9
7.2
6.7
6.7
7.1
Outlet,
CO2
(%)
4.6
3.5
5.8
5.9
4.9
4.1
5.7
6.8
7.3
9.5
10.4
8.6
7.7
5.2
3.2
5.3
7.1
6.8
6.6 .
6.5
6.6
6.6
6.5
6.0
6.8
6.6
8.4
8.3
8.7
6.8
6.3
6.4
7.1
7.4
. 7.7
8.1
8.2
7.4
6.8
6.4
6.3
6.8
7.5
02
Inlet
02
(%)
14.6
16.1
13.1
12.9
14.3
15.5
13.6
12.2
11.5
8.6
6.9
9.6
10.4
13.7
16.3
13.6
10.9
11.5
11.8
11.9
11.8
11.8
11.9
12.5
11.5
12.3
10.0
10.3
9.5
12.1
12.7
12.6
11.6
11.4
10.8
10.5
10.3
11.4
12.2
12.7
12.7
12.2
Outlet
02
(%)
14.0
15.6
12.5
12.4
13.8
15.0
13.0
11.7
11.0
8.3
6.7
9.2
10.0
13.3
15.8
13.0
10.5
11.1
11.4
11.5
11.3
11.4
11.5
12.0
11.1
11.8
9.6
9.8
9.2
11.7
12.2
12.1
11.2
10.9
10.4
10.1
9.9
11.0
11.8
12.2
12.2
11.8
10.7
Inlet
"F
851
846
861
868
872
861
862
875
885
909
945
952
943
905
842
825
862
896
899
898
902
906
908
905
906
905
900
899
926
922
913
905
905
904
907
905
912
913
911
907
903
899
900
904
895
881
874
870
865
858
860
857
Scrubber
Outlet
"F
105
108 •
113
112
113
112
114
115
116
- 122
124
124
121
109
99
106
114
119
119
119
119
119
118
117
118
118
117
109
120
117
117
115
117
117
117
117
118
118
117
117
116
116
116
116
110
108
111
111
110
109
THC
Scrubbe
'•inlet
THC
(ppm)
4.3
9.6
6.6
5.2
9.2
15.4
16.0
14.2
12.3
9.1
4.0
6.3
4.9
3.5
1.4
1.9
1.7 •
3.6
2.4
2.2
2.2
2.0
1.9
2.7
2.8
6.1
5.0
4.4
5.1
5.9
7.1
6.8
6.6
6.2
5.9
5.2
4.8
5.2
6.0
6.6
7.4
7.1
Scrubbe
Outlet
THC
(ppm)
2.5
6.5
4.6
3.4
6.6
11.6
11.3
10.5
9.4
8.0
3.1
5.5
3.7
2.5 -
0.6
0.7
0.8
2.4
.5
.3
.3
.2
.2
.8
2.0
4.4
3.6
2.9
4.1
4.6
5.5
5.4
5.1
4.6
4.4
3.8
3.5
3.8
. 4.4
4.9
5.6
5.4
CO
Scrubber
Inlet
CO
(ppm)
8
11
17
36
74
135
181
218
166
166
105
75
54
20
11
17
13
11
11
9
9
9
20
73
107
135
139
112
95
99
119
134
144
152
146
126
107
98
98
111
Scrubbe
Outlet
CO
(ppm)
7
14
12
8
15
34
72
132
175'
209
152
143
85
58
44
13
5
9
5
4
3
3
2
3
14
67
100
110
126
96
80
86
105
121
129
136
129
106
88
81
82
96
118
Scrubbe
Inlet
H2O
(%)
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0:25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
Scrubber
Outlet
H20
(%)
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
. 0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
Page 9 of 9
-------
iHlii,
,,,'SI
-------
APPENDIX D
HOPEWELL CONTINUOUS MONITOR DATA
-------
-------
SJS
did
S S
ii
d d
S
S
s
s
sis
old
i
d
rj S
o
.8 s
§
s
s
U 3
81
S
s
8
8
OS
r-4
CS
S3
s
(N
o3
£3
a
T?
T?
S
a
S3 §4
S
§
8
i
3
8
8
vS
S
S
S
vS
s
vS
is
3
s
Si
w
§
s
s
i
B
.
i
I
«o O
cs
£2
S
8
B|
co o
a
i
00 —4
Tt
8"S
ov
cs
-------
o-g
*ff 2
X 55
! i
! I
I I
O OIO
o
.Sjo
8
8i
^D
BQ O
I • I
i I i
I
VD VO VO
SIS
en [en
O|O
S
3
vS
81
w >5
SB
"t
s
o a
s
o
s
cn
0 ,«.
o
£8
CM
s
o
15
2
g
S
£5
s
S
si
Sv
s
s
s
"
vg
'
cS
I
-., *^s»
SE
o
CM
8
Q
U O
S
2
2
55
S
2
-------
1
s
•s
g
i
e
o
JD
«3
fl
s
2
1
a
o
R
i
cu
«
61
g
4>
s
Q
Q> 4-4
.D
SI
II
§3
O
CO
CJ »»
Kg
o a
&S
JO Q>
J °
81
CO <§
H3
£ s
J5 s
1! =
S 0
CO
Hi
•J a
"3 O
R|
CO S
0-8
a«S «
°~s
£ ?>
o
§•*
K "
8t
<-> _g
8'I
8l
o •§•
iS Jj
U-g-
tS^g
o "S"
a a
E- *
>
£•
£•
«*• CS"
oE
Sg
PIS'
£5 _
"-'G'
o-
^~
tf*
8
o*^*
§
o
S
en
O
s
o
fc
cs
en
§
cn
os
s
cn
Tt-
co
S
S
s
s
in
en
•— 1
ON
•*
cn
•<3-
CO
in
o
eo
\o
R
i— (
§
?5
1
o
S
en
O
s
o
m
«?,
?!
S
»— t
5
eo
CO
Si
os
en
en
£
SO
S!
i
i
N
cn
»-l
in
•*
in
en
so
•*
en
es
V)
CN
1— 1
S
SI
i
o
s
en
O
s
o
2;
*— t
i
OO
oo
»— (
s
i
•*
en
*— i
^— <
«o
*H
•*
O
\d
ON
c-i
CO
s
*— 1
a
s'
o\
s
o
s
en
O
vo
CN
O
en
v-1
Tl
vH
r-
l-H
0\
oo
1— t
T-l
r~
*-t
§
vo
oo
V}
s
g
vo
en
VJ
«•>
VO
••a-
00
in
vo
e>>
•*
S
»-«
a
S
OV
s
o
vS
en
o
^
o
T-4
oo
1
1
>n
e^i
•— i
>n
o\
S
s
t*"
s
§
t—
en
v—4
OO
»n
o
<0
in
Ti-
eN
O
§
s
s
o\
s
0
s
en
0
s
o
&
(S
«•>
i
es
o
09
CO
00
§
§
i
1
VO
2
vq
»n
m
•*
oo
in
vo
e>>
n;
$
s
s
OS
S
o
•"*
s
o
VO
n
en
K-H
>n
o
•*
o\
in
o
en
oo
8
5
in
r->
1
o
S
en
O
s
o
s
s
en
T—t
en
>n*
\o
vo
s
m
s
CO
s
en
S
•*
en
^H
CO
•*
r-
cn
O
vo
en
en
in
in
§
S
§
O
Tf
VO
en
O
S
O
vo
»-t
«-*
o
v«4
en
•*
•>#
vo
en
eN
vo
en
S
?
S
o\
s
o
S
en
0
vo
CM
o
s
•f
§
s
en
en
VO
VO
es
in
?5
8
o
S
en
O
§
o
•O>
r~
*—i
*— *
en
eN
i
en
r-t
SO
£
g
s
i
•<*•
en
CN
vo
oo
•*
o
VO
en
ri
•*
S
S
s
OS
S
o
s
T— «
«-H
t^
^H
Tl-
2
C4
»— i
»n
3
^
vo
»— (
i
en
en
*— i
O
VO
in
re
cs
vd
in
n
?!
rH
T-H
1
g
o
en
*-(
*-H
VO
£
}S
f-
t-H
i
en
3
VD
OS
eh
OS
vo
en
.^
VD
o
in
£
VI
s
«-
c4
vo
s
o
vo
VO
«*
OS
vo
oo
vo
}S
s
1
C">
o
9
*^
o
0
o
•-<
CD
_
V
in
m
£
»o
?5
S
1— 1
Ss
oo
r-t
OO
g
o
S
vo
cS
ts
CJ
p:
I
§
o
o
o
(S
o
»-<
9
*-H
e?
^<
V
R
&
S
JS
^H
^-(
»ft
•-H
00
»n
en
r-
oo
r^
8"
P:
S'
i
t~
oo
in
^
VO
•— 1
*-4
o\
TJ-
en
s
s
s
cS
in
Ss
CO
in
S
•*
^
S
se
S
*-4
S
CM
t-
en
£2
OS
eN
ci
en
oo
O
Ss
?»
g
g
O
*-^
i
*-t
»-4
1
8
S
S
OS
^4
O
e»
t—
*— i
en
d
i— (
*— i
t-»
CN
en
t__t
ON
»n
s
S
in
vo
vo
T-^
o
o
*— 1
oo
in
S
§
g
en
G
in
es
*^
oo
2;
VD
e-S
*^
in
*~*
S
S
in
e
a
o"
O
*— i
^^
?1
P
*-«
S
f?
en
S
vo
cs
^^
en
M
vo
«
o
<-H
eM
JQ
»o
o\
»n
!
i
S
8
O
o
•— (
s
is
VO
s
OS
S;
•»
-
c4
*— 1
o
in
e-i
OS
rt
V
S
S
*n
en
vo
2
0
I—
OS
s
s
s
in
R;
I-
r-
~*
in
VD
vo
o\
in
e-5
«•
•*
in
in
en
S
s
in
8
cn
0
p~
P5
S
S
S
»
in
r-t
in
CO
vo
«
in
e><
oo
en
oo
VO
s
s
s
-
en
§
a
o
es
S
CO
in
S
M
S
1
m
p^
«
in
•n
^
•*
e>i
o
oo
CM
s?
Ss
in
M
S
en
en
i
o
oo
•*
en
»t-
B
i-H
§
TJ-
S
VO
£
0
o
OS
o»
«»4
en
CM
c-5
m
VO
•s
s
v>
S5
00
OO
T— t
i—4
v— 1
en
0
cs
s
»-4
s
g
VO
f-
*— 1
o
o
in
en
•—I
en
ri
*-<
9"
o
VO
•R
S
S
OS
VO
OS
T-f
OS
*""«
oo
e^
O
ON
»-<
E5
»
i
en
oo
rf
S
0
o
o
2;
•*
0
«— t
9"
vo
in
S
3
S
Si
i
^
gi
vo
*H
§
®
OS
&
S
«-H
*— 1
CN
oo
•*
1— 1
cn
2;
m
OS
in
cn
m
»
«
Ss
S
1
cs
u
*~4
g
§
S
oo
*-H
TJ-
s
s-
?
T>
nn
OS
vo
in
vo
-*
Tf
SO
en
0
in
o
K
S?
in
Si
i
S
r~
i—i
1
S
9"
M
i— *
cn
$
S
*^
!°
g
o"
i— t
rn
cn
cn
0
o
•»
cn
vo
in
«
S!
in
o
cn
-------
nf'ii I'1: ' ' J'i1 , ,
1 |n is :',' Si. h "liii! •• i:"',"?1!"1'1'
.'"•!', rM a1' I!I,,,1,,, '' :' :|1'i
•1
00
8
d
§
o
d
o
o
s
s
ss
oooo
oo
I '•
9,z
oooo
S
RS
« «
s
S
S
S
S
S
Sg
S
O
s
s
o
o
o
a
O
ve
«-M
«4-l
O
Tf
ID
-------
Moisture
•S
X
1
§
,0
a
i
•1
1
g^
1
u
tti
(5s
g
8
o>
H
i
Q
O' .4^
J3 U
11
00
U S
o 3
<" o
CJ S
«3
9> 4-1
** «J
•O 73
0 2
^a
81
c/a A
o .wj
A
8 1
••8.1
o'a
o a
Bt
f a
Si
P^
ye1
a §.
, p-
&,
fr.
gS"
g fcs
SS1
£
6~
^68
8~
§-.
s?
g~
o'S'
o5i
i
o
VO
s
O
O
o
1— 1
8
*— 1
*-4
O
VO
en
TI-
CS
00
p-
In
es
§
i
r—
p-
o
T*
T3-
1— 1
VO
VO
CO
a
cs'
s
CS
§
0
VO
s
o
o
o
«-H
§
B
VO
p-
o\
ON
fc
-
g
1
r-«
VO
o
•*
T3-
CO
to
VO
oo
to
es
CM
S
CN
en
s
0
VO
s
o
0
o
1
i
1
o\
r*
0\
ft
r*
00
s
S3
o
t—
to
o
••a-
•rt-
OO
10
VO
QO
O
cn
cs'
s
CM
en
s
o
§
0
o
0
s
Cs
s
3
to
CM
t~-
in
^-1
VO
§
1
VO
en
o
•*
*
•
oo
to
0\
oo
>o
en
w
s
CS
en
s
0
c>
o
o
oo
s
R
VO
B
VO
o
10
CM
o
>o
•*
o
VO
0\
oo
§
w
s.
?1
CM
§
o
VO
s
C5
o
0
i
CS
en
"O
10
CM
1— 1
*3-
CM
CM
oo
o
15
i
1O
"O
1— 1
o
o
O
0\
s
o
1
CM
i
o
o
o
o
S3
oo
o\
S
s
o
\0
CM
t-
vo
ON
VO
1
i
en
o\
o
o
t-
1O
VO
^
0\
s
o
0
en
oo
S
§
"*
vo
en
ON
CM
ON
ON
VO
§
|
v-«
10
10
ON
ON
0
VO
Tf
ON
to
i— 1
O
SB
vo
CM
en
S
o
S
c>
o
o
i
S
ON
•—I
ON
O
vo
i
en
S
o
d
o
o
1— 1
p.
s
00
to
oo
to
to
vo
CM
1_4
to
1— 1
p-
5
ON
IO
'S
o
to
o
ON
O
IO
ON
VO
c-
ON
o
en
O
5
VO
CM
i
0
vo
s
o
o
o
g
s
09
«— 1
00
vo
10
vo
oo
CM
®
a
o\
i
o\
to
li
01
ON
v-H
to
ON
VO
IO
ON
S
o
to
CM
i
o
vo
s
o
O
p
8
S
10
vo
s
CM
•O
CM
CM
cn
en
S
10
ON
o\
vo
S
o\
vo
u
^4
ON
o
10
OO
VO
t-
ON
§
O
«o
CM
i
d
d.
o
p
oo
vS
s
rr
VO
s
CM
IO
en
•d-
ON
rM
S
ON
SN
g
ON
VO
v—<
(f\
_
to
oo
vp
c-
ON
5
o
s
vo
CM
§
d
d
o
d
I
§
i
i— t
to
0
•*
Tf
IO
s
^H
s
I
ON
VO
o
ON
O
to
oo
vo
s
ON
ON
8
o
s
NO
CM
i
P
VO
s
d
o
cn
O
S
vo
2
•*
1
d
10
t—
CM
•sf
O
S
|
oo
s
ON
VD
«— t
S3
g
>o
VO
cn
0
>o
O
IO
00
oo
s
CM
1
CS
en
S
o
i
0
0
en
CD
O
oo
00
8
s
IM
p-
VO
p-
ON
«-H
:*
5S
cn
n?
ON
S
Tf
vo
en
0
VO
o
10
oo
00
s
CM
i
CM
i
d
i
c>
en
e»
i
R
o\
IM
rs
vo
ON
ON
Tt-
op
00
£
a
T*
m
•— *
o
p~
to
o
ON
o
CM
§
VO
CS
i
d
VD
s
o
cn
O
s
§
i
IM
^*
VO
ON
P-
p-
p
oo
s
a
m
CM
o
o
p-
en
to
o
ON
to
CM
to
CM
-------
I
o
i
i
*~
,w
u
1
i
SB1
1
.»
|
r?
O
8
|
t-
a"
g _
p 1
W °
j "3
oo o
0 3
& s
1 -I
5 3
1°
o|
Hi
oj r-
| a
o v^
' \ *>
^n/ «™
w o
O «
1O »-«
ll
tH °
o S
gl
w *-
*u «>
•g 3
8 °
O **
C/3 f^
81
I »
i5
0 Jf
^a
8 s
SI
og
»0
0
«-
O S
CJ ft
«
8l
^
8 §•
ot
HS
o-g
H^
o-g1
$&
P-
*
-«.
S *&
SS"
SS
o
•-'S'
M ^-*
o£
s
o
so
s
o
o
o
OS
s
OS
oo
IO
t
Os
en
o
10
oo
so
s
OS
en
in
*
OS
eN
IO
OS
S
CS
so
CN"
s
o
vo
o
o
o
s
-
co1
OS
*-<
so
oo
OS
vo
9
00
so
1
1
in
in
o
o
1— 1
10
o
OS
!Q
CN
S
c3
enl
S
o
vo
o
o
o
5
g
&
o
vo
•a-
t—
_
5?
»
1
1
in
%— i
o
o
in
in
o
OS
0
CN
in
Si
VO
e-5
i!
o
VO
o
o
o
p
g
(
vo
Ss
o
vo
in
es
en
en
S
s
i
in
vo
O
vo
o
vo
oo
3
es
vo
e>3
S
o
vo
o
o
o
is
n
oo
OS
•*
vo
OS
»— 1
en
S
B
1
1
in
m
o
SO
o
SO
vo
00
O
«o
cs
i
es
S
o
1
o
o
o
D
So
&
§
r-
vo
in
"*
in
S
VO
OS
8
1
m
in
Cs
o
m
c-.
in
oo
8
es
in
es
S
0
VO
o
o
o
»
no
2
§
OS
VO
-
^
VO
1-4
oo
vo
vo
oo
Ot
1
in
in
*
in
o
•n
en
•n
SO
00
s
en
vo
CN
S
0
vo
<=>
o
0
1
IS
8
_,
c-
VO
r-
SO
§
vS
o\
oo
s
vo
in
vo
O
^.
o
in
vo
oo
s
en
in
OS
so
es
S
o
so
o
o
o
s
§
en
r*i
CN
r-
oo
«— I
^.
s
vo
OO
OS
I
SO
m
oo
SO
o
in
oo
m
•n
oo
o
en
in
OS
SO
es
S
o
i
vb
O
o
o
s
en
en
oo
**"
VO
"*
^
s
3
X)
s
i
i —
in
-«
vo
O
^
in
m
in
oo
in
en
in
OS
so
es
i
o
*
o
o
o
s
s
vo
m
oo
*•
OS
en
•n
so
so
g
1
f-
•n
vo
OS
o
n-
^H
m
en
oo
0
en
in
N
§
o
rf
O
0
o
i
a
en
*n
oo
M-
^4
S
sS
1
S
r~
m
so
r-
o
en
«n
^
oo
in
en
S
so
es
S
o
SO
Si
o
o
o
1
VO
M
n
O
<*
*
*—4
cn
s
B
1
o
r~
m
i-
OS
o
en
O
m
'
cs
oo
z
en
§
cs1
§
o
*
o
«i
o
n
3
oo
g
•<*
Os
O
»— 1
^.
55
so
i
i
oo
in
so
oo
o
en
.,
in
en
00
in
en
en
in
oi
S
o
il
o
o
o
oo
S
§
te
OS
OS
00
0
OS
8?
sS
g
i
r-
m
OS
o
en
p^
m
cs
oo
,
S
cs
s
o
§
o
0
o
so
g
o
ri
j|
-^
OS
^H
OS
m
IS
vo
vo
Os
1
^
in
en
t-
o
en
in
^.
oo
in
S
es
S
o
rf
O
O
O
en
oo
o
S
S
o
t^
en
S
s
ao
i
VO
in
t-
00
O
o
in
e^
oo
S
1
CN
S
O
so
o
o
0
1
§
^
cs
OS
in
^.
55
S
OO
Ss
§
SO
m
to
r~
»— 4
10
^
oo
IO
IO
s
is
cs^
s
o
so
o
o
o
o
o
o
§
•0
OS
IO
OS
s
s
oo
1
so
•o
10
CD
^^
10
en
00
8
IO
es
§
e>
SO
0.
o
o
i
a
s
rsl
CN
Os
m
t—
00
in
S
oo
s
o
0
SO
m
so
SO
o
^H
m
^
oo
s
1
es
S
o
so
p
o
o
i
15
s
OS
00
^.
r-
5!
S
oo
o
o
VO
in
vo
VO
O
t
m
^.
oo
o
1
cs
S
o.
%
0
o
o
1—4
o
s
rsl
^.
00
m
o
55
S
s
o
m
in
en
Tf
o
in
en
m
m
oo
in
1
cs
s
o
if
o
o
o
n
••*
oo
2;
rs
O
00
en
oo
a
S
I
i
^
m
*
en
O
vo
en
in
vo
oo
s
1
cs
s
o
" I
1
VO
o
o
o
F-4
s
§
^
r~
VO
m
en
in
8
i
1
^
in
en
en
o
VO
Tf
m
VO
oo
s
OS
VO
cs
li
o
1
o
o
o
s
i
§
en
"
m
"*
es
?
!S
&
1
en
in
en
o
«— 4
VO
t—
oo
%
in
cs
S
o
vo
o
o
o
0
m
a
a
0
^
c»
cs
„
°
S
g
§
en
in
CN
cs
0
cs
vo
^
oo
s
§
cs
.'
i
o
SO
o
o
o
s
o
m
in
1
Os
SO
OS
SO
oo
"9-
IO
so
g
i
en
in
CS
o
0
t
SO
00
oo
§
m
cs
A
i
o
rf
O
O
o
'•n
i— i
in
S
_
t""
PM
oo
°
sS
g
SO
s
en
in
en
0
rt
so
OS
00
£
vS
cs
3
o
*
o
o
o
n
o
N
o
vo
o
vo
*
8
oo
s
1
en
in
cs
OS
OS
t_l
SO
o
OS
%
m
CN
s
o
rf
O
0
o
ffl
1
g
^
vo
SO
cs
?
sS
OS
i
en
m
«s
O
cs
SO
o
OS
In
"*
1
cs
s1
o
rf
O
O
O
i
i
SO
vo
oo
oo
5
s
OS
s
1
en
m'
es
OS
OS
es
so
o
o\
s
in
1
cs
S
o
rf
O
O
O
g
m
g,
cs
SO
IO
en
5
g
Os
i
en
IO
cs
oo
OS
es
so
o
OS
3
m
m
cs
S
o
SO
o
o
o
§s
1
^
cs
vo
o
oo
3
s
i
1
es
m
-
vo
OS
OO
en
so
es
OS
o
m
S
VO
C"l
s
o
vo
o
o
o
x>
:n
S
^.
vo
CS
o
m
S
SO
i
cs
in
en
oo
Os
oo
rt
so
o
OS
V
in
10
cs
«>H
0-.
o
vo
1
-------
c
V.
°c
•s
'g
bon Mom
0
1-
t°
S
1
0
„
-fvl
p
B
W
u ^
Bl
0 „
CO
1 Q>
^0
OS
CO *S
3 .3
1°
Bi
o s
L^ S
9.J
o b
sag
3a
8|
si
of
%^
II
a I
H S
II
*•..
•
f-
SS"
£i
S S"
o g;.
15. —
y '
CJ
5
s
s
ov
Ov
s
n
i
en
£
VO
P
Ov
8
*o
vo
^
o
vb
in
06
vb
S
S
§
d
vo
a
d
o
en
d
c*
8
oc
es
en
oc
o
en
5?
vo
OV
§
in
^
*
Ov
in
in
CO
vb
&
S
i
d
VO
Si
d
o
en
d
So
00
VO
s
m"
oo
oo
vb
§
en
S
d
d
c
o
oc
R
OV
M
--
00
s
s
^.
ov
q
m
-
"
vo
in
oo
00
'6
1
§
d
d
2
en
d
S?
oo
oc
vo
OV
(N
es
vo
1
a
„.
Ov
§
in
n
"
vo
vo
in
09
OO
vb
1
i
d
VO
d
o
en
d
en
CO
en
in
oc
INI
J
^
0
O
ti
s
^
ov
s
m
m
-
VO
en
in
CO
8
1
en
S
d
V£
C
C
c
oc
§
en
m
5
Ov
es
S
«
ov
s
m
in
-
S
m
in
CO
2
S
•5
i
d
d
c
o
i
oo
en
52
r*l
Ov
vo
—<
S
s
o
ov
S|
in
m
vo
ex
tri
vo
oo
o
§
s
1
d
VO
c
c
er
d
OV
S
ov
CO
Ov
0
s
«
o
Ov
a
in
m
3
en
m
pi
in
t-;
oo*
m
Jv
•-I
i
d
VO
d
o
en
d
oo
^H
g
IS
P
^
O
p
06
m
a
o
Ov
S
in
M
2i
rt
VO
Tj-
in
vq
oo
S
1
N
en
-S
d
vo
d
o
I— <
en
00
§
p
es
c-l
o
•n
d
VO
«
bv
«
m
3
0
VO
en
in
OV
00
n
S
•5
i
o
1
c
c
er
d
i
9
en
CM
ov
vb
vo
eN
S
£
vo
ov
s
in
^
S
cs
VO
in
Ov
CO
I
n
^-i
i
d
VO
d
o
T-<
en
d
oo
ft
vo
vb
CO
VO
es
oX
X
*~*
r-i
S
vr>
Ov
r-
en
in
Ov
§
1
§
d
vo
d
d
o
E
•n
cs
(M
in
CO
VO
*— 1
o\
g
in
n
S
en
Ov
Ov
in
Ov
o
1
§
d
VO
d
o
en
d
trH
S
«?
VO
ov
00
en
en
TV
5S
S
£>
3
""*
o
2;
CO
1— t
in
vq
in
o
d
?
I
en
S
d
i
o
c
er
d
en
er
S
^
CO
OV
s
to
en
O
en
*"*
in
•n
oo
^.
m
o
vb
en
d
8
§
S
i
d
d
o
en
d
1
i
Pi
VO
eN
c-5
CO
«
s
^-)
I(,
en
f-
m
in
vb
00
d
1
m
*— «
i
d
vo
d
c
en
d
OV
VO
en
"
,q
in
o\
p
en
5S
je
8
"*
lr
r>
f~
vo
m
o
vb
CO
d
8
CO
s
i
d
d
c
e«i
d
S
a
CO
^
vo
»n
rn
i*>
s
o
cS
en
oo
in
in
vb
d
oo
S
1
i
d
d
o
en
d
S
«
I—
Tf
^
eR
VD
S
tS
r-
JJ
"-1
j
en
oo
en
in
vb
d
o
CO
•n
§
d
VO
S
d
o
d
i
9
en
>n
es
s
„
f^
0
en
in
eN
o
s
ov
OV
TJ-
in
in
ov
in
CO
s
-------
S
;ls
j i
EG
s s
to .5
HiZ
o!o
s
0
3
a
I
8
s
oS
§
es
3
N
VO
s
s;
S
g
-
S
S!
S
8
CO
8s.
o
8
CJ S
o •!
co S
I
CJ
8"*
i
o
s
?5
-------
CJ
8
« s
O o
2? 2
X en
2.5
S-s
*B *"
I
I
g
s
o!
oo
CM
O
OV
CM
O
35
cs
3
0 »
U
55
S
i
VO
1—4
CM
OX
$
VO
s
8
3
I
S
i
i
CO
g
I
T?
CO
s
s
m
8
8
5
a
s
8
8
S
S
0 3
co <§
o
II
^£
o S
O 3
co §
O 3
co >2
%S
8'
o
1-;
in
T?
5
cs
co
eS
O
T?
ig
OX
K
Tf
in
CM
o
s
T?
CM_
I
fe
•n
oo
T?
S3
Tf
ft
So
58
Tf
s.
t>;
VC5'
T?
Tf
O
VO
§
CO
T?
SB
S
ox
s
I
I
8
§
CO
d
S
CO
o
u
ts'
s
s
ox
cf
Si,!
^ !
•n
§
I
•n
§
1
i
I
in
§
a
o
Ov
a
-------
§5
CO
O £
O S
(n &
U 3
to >§
81
s
RS
8|
to S
Bl
-------
CJ 2
81
co n
U
-
as
0
8
8
U!
C?
s
o
sB;
) CM
>|o
§
8;
CM
§
O
I
§
I
8
00
8
g
55
53
i
cn
O
s
s
?
OS
CM
8s
&
O
oo
3
vS
g
S
II
u
as _
H &
vo
d
in
in
to
-
ft
S
CJ S
CJ "5
co >=;
*l
o
cj 3
U »
8
i
u
es
S
S
S
Si
0<
S
en
S
S
S
S
CM
S
S
I
3
S
3
S
§
Sg
S
en
en
cn.
en
vo
in
vo
cn
co
-------
vii j :••„"„ '". "si'S"!
o S
85
81
C/3 £
S
$3
S
8
o o
8
o o
en
2
8
a
&
cs
S
&
es
o
s
a
1 :! •
81
f> <§
o s
u •§
co •=
a»
o s
IS
81
¥
J;
O
U
o
o
52
s
S
£?£
o
S
vo
S
S
9
S
S
CS
CS
in
vo
?
S
S
«-
cS
8
I
S
X
o
en
IN
a
55
s
VO
«
-------
£
•8
c
c
c
o
JS
«
1
D
I
p
0
s
6"
r*
o
U
|
S
i
Q
.n •;
«-°
81
81
CO A
[3 c
co
§1
J ^
~-»
en
8
o
ov
cs
o
o
S
:n
§
oo
es
cs
•*
S
— 1
S
i
en
q
oo
10
vd
oo
VD
^.
o
00
o
cs
"l
n
5
en
8
o
es
o
en
<_>
cs
en
IO
cs
en
cs
5
q
3
5
S
§
en
oo
c-'
cs
vd
ov
vd
Ov
2
q
jn
fn
cf
i— i
en
8
o
g
0
en
O
ov
S
g
1
oo
2
VO
•0
g
s
§
0
en
00
es
vd
Ov
vd
Ov
o
0
o
en
en
1
en
8
o
5;
cs
o
en
U
1
g
1—4
3
-1
s
f-;
CS
g
S
§
O
en
00
cs
vd
q
o
~
o
IO
en
en
o
5
N
en
8
o
g
o
en
O
!8
Ov
«
1
O
V
c
~
en
r;
B
o
vo
rs
CS
£
cs
^.
~
en
?
en
IO
Ov
s
-5
£
O
ov
cs
o
o
o
i
i
vc
ov
d
S
r^
VO
ov
s
2
s
es
rs
vo
vd
cs
£
ov
-
00
Uj>
en
1
en
8
o
&
o
o
o
3
IO
1
q
q
oo
*
o
5
g
oo
oo
en
vd
ov
o
1—4
CS
0
en
^
t-H
S
cv
i
m
cs
en
-
oo
t-
ct
en
0
ov
o
OV
IO
00
1—4
en
o
_
2
o
n
m
S
§
1—4
!
oo
oo
ov
cs
cs
oo
en
?
IO
r-4
CS
§
g
2
en
VD
en
oo
-
IO
5
oo
en
R
0
3V
£
s
i
1
»
cp
ON
OO
O
0
r^
o
9"
0
o
o
9
i-H
V
IP
1
•H i
§
8
en
m
oo
oo
IO
oo
-51-
o
1
g
s
8
«
9
o
o
o
0
«
v
o
^
3\
£
'-*
OO
NO
OC
o
oo
oc
i
oo
oo
i
en
i
S2
g
en
—
o
o
0
0
o
9
^
•n
o
i
2
vo
t-
i
vo
V)
2
•o
SJ
S
vo
cs
1.
15
s
2
0
ov
Ov
ov
Ov
cs
cs
vo
en
R
rS
IO
5
S
t-
oo
•a-
c
es
1
ov
OV
ov
vo
9
f;
%
en
oo
vo
es
O
o
•o
en
Ov
IO
rv
%
§
S
S
1
o
vd
in
es
S
o
~
S
ov
vo
o
C>j
in
00
oo
o
o
I
V
i
1
Ov
s
p.
s
S
rs
S
Ov
q
;1
en
en
oo
ri
a
5
^H
ef
vo
4
cs
ov
oo
rs
y
s
F
rs
rl
^
vo
d
OV
*""
9
rS
j\
5
f-4
o\
B
8
i
*
oo
VO
f^
gi
00
2
q
en
O
r4
5
VD
IO
1
^
^-C
g
o
S
o
in
vo
S
C-;
en
1—4
OV
»
0
•n
vo
oo
o
cs
vo
en
rs
es
vd
cs
=>
g
^
-5
—4
es
S
O
cs
OO
o
o
oo
es
O
m
1—4
i
I
VC
es
IO
S
p
s
§'
•<*
1—4
q
en
en
o
•°"
en
vo
8
"-
S
O
s
o
g
es
0
1
1
O)
en
vo
a"
od
es
^
g
OO
oo
S
en
en
in
es
vo
9
^
N
i— r
S
o
S
o
g
0
1—4
10
1
1
vd
cs
Ov
d
en
^
S
S
o>
1
f;
rt
5
rn
S
o
vo
s
s
o
o
cs
oo
0
o
oo
cs
o
Tf
T-t
1— 1
&
s
IO
en
O
s
S
en
U>
OO
2
P:
cs
;
00
en
p
o
en
1
Ov
•<#
en
oo
in
m
1
2
S
o
00
o
g
o
8
es
1
en
en
Ov
en
en
es
es
uv
i
°i
en
rf
00
en
oo
"O
0
s
^
cs
s
0
es
00
O
g
«N
O
O
oo
00
If
g
o
VD
en
cs
I-
5
-
•n
Ov
S5
Ov
»M
CS
oo
5
in
00
in
8
r*>
cs
^H
eN
e^
O
CN
O
g
o
^
8
en
CN
s
en
en
10
r-
cn
IO
rs
&
JH
O
1—4
OV
0
00
ov
rn
>o
en
in
O
vo
o
1
r*
o
es
0
oc
O
0
vn
sr
es
CN
1
IO
n
en
vo
en
m
cs
00
ov
»•
o
p-
p-'
en
CS
vq
en
IO
rsi
VD
IO
<*•
s
£
M
g
o
es
o
d
3
S
cs
OV
3O
CM
a
IO
IO
s
-4
S
OV
§
VO
1—4
vq
cs
vq
en
IO
rn
VD
0
10
g
5
I-H
P!
O
a
o
o
o
X
c*"
en
t-;
cs
s
0
3
dv
fe
u>
IO
iy
IO
t>-
en
oo
in
VD
IO
IO
i
^i
es
en
o
cs
0
o
oo
es
cs
1
es
en
00
^
5s
^
S
OV
vo
U1
m
vo
0
oo
en
ov
iri
in
vd
__
S
S
c*-
o
cs
d
0
Ov
S?
i
CN
CN
1
:n
S
dv
S
^.
vo
l-H
OV
rs
vo
oo
en
VD
VD
IO
q
1
N
F— i
P
o
d
cs
d
g
o
en
g
1
es
S"
cs
Ov
M
n
X
dv
00
_
VO
rs
5
*~4
^-C
S
g
?5
1—4
CS
en
o
o
CS'
o
o
oe
d
ov
o:
oc
tx
ts
^
s
2
n
Ov
3
1-H
OO
>o
t-:
*"*
en
CSl
•^
IT>
cH'
g
2
-------
!1!1;,,:,! iiii'J'iiSi ii!!1,!,1,;"1!,,
§i
olo
o o
I
o o
9
S
8
s o
g
S3
S3
g
aa
00
g g
CS CM
CS
O
O
OO
CS
u
V-
S
CO
8
o
U g:
S
g
$
"I
co A
of
0
a
S
S
5
o •§•
g^
eM
S
CM
a?
S
8
U -3
CO •—«
y^
fC Q,
H £>
S
S
CM-
a
a
3
S
s
vS
S
S
S
S
i
81
tO Q
S
es'
es
81
to £<
S
*
CM
H
u
S
S
§
•*
S
in
S3
§
S
§
-------
i:
1
fl>
•g
X
1
g
•Q
5
1
a
1
a
o
ft
«
o
R .S
£ S
P
bo
ta
O JS
CO Q
0 S
& £
11
&°
o 5
84!
8 s
*n c
o -g
a? a
33 oo
£§
O T
,
P5 S"
O 5^.
fcS
~S"
8~
6?
i*
6"^
8 b
§
d
g
<*-H
o
g
CS
0
s
cs
g
in
&
a
cs
vi
1—4
oo
NO
as
«o
en
s
s
«s
s
o
g
d
o
oo
S
d
g
o
o
oo
cs
d
«-H
£5
a
1
•*
«
S
o
g
R
S
S
«— 1
ve
o
a
o\
•*
oo
o\
^
1
CM
S
d
g
d
CN
o
!S
0\
S?
cs
1
o
r~
t-^
en
a
P
i
1
o
N
•*
ON
o
<0
OO
VI
ON
?
I
i
d
CS
oc
o
d
o\
S
S
s
en
CS
ON
00
Tf
wi
i— i
g
r^
i
s
0\
00
o\
J^
09
_H
O
o\
_,
o
«
s
3
cs
s
d
S
c!
i?
cs
o
en
P
i
s
s
t-
t-
cs
en
r~
S
p
i
i
0\
•>a-
ON
00
o
o
£
2
S
o
cs
oo
d
1
d
%
NO
S
00
en
cr
cs
en
t-
en
cs'
r-
S
NO
f
k
i
r^
>r>
ON
•*
CO
en
u->
cs
ON
NO
o
X
s
N
cs
s
o
g
d
d
en
en
t~
§
ee
S
&
i— «
S
0\
o
>
^H-
m
oo
06
ON
ON
O
en
S
5
g
o
g
d.
g
«N
O
OO
S
S
CJN
*— 1
en
oo
vo
CS
00
Tl-
{5
&
»— (
s
o
en
3N
O
v>
NO
CO
ON
«
1
S
O
"*.
g
o
d
g
r~
NO
«— 1
o
1
«-H
OO
NO
cs'
in
«
NO
y\
i
O
^
ON
_
HN
O
TT
m
ON
5
CS
s
o
cs
oo
o
o
s
t~
i
s
cs
*-(
oo
r-
cs
in
!S
}2
&
1
o
L»
*-i
ON
rt
m
NO
OO
nr>
?.
S
5
CS
8
d
g
T-l
O
o
oo
CS
o
1-4
p:
oo
a
1
ON
t-
in
T-)
en
5?
J2
&
S
o
3
o
ON
_
>n
vo
06
ON
rr>
°
5
2
g
d
So
*-4
O
g
cs
C3
g
$
S
cs
ON
r~
m
rs
•-K
So
}S
s-
VO
vo
o
O
jy
5
O
ON
O
en
NO.
P
&
NO
'§
0
l!
o
*— i
ON
«— 1
o\
v»4
g
d
g
C5
O
oo
cs
d
1
B
8
en
cs
•*
e>\
cs
en
>n
CO
1-4
r~-
&
$?
en
i— <
O
o
oo
•*
ON
r-"
<->
3
§
§
8
C3
g
«— 4
O
g
cs
O
in
SN
CS
cs
'"'
en
§
0
o
00
<-)
o
s
5-
s
m
en
3
P^
•*
S
»n
s
|
cs
8
o
cs
oc
d
CN
C3
S
g
en
^
1
in
en
ON
en
?f?
g
§
t^
r*j
en
•*
^a-
o
§
s
§
cs
8
o
g
d
o
oo
cs
o
m
oo
cs
§
1
S
cs
en
m
*- 1
CO
n\
vfl
&
ON
S
oo
N
in
»M
en
•*
00
NC>
$
§
5
g
d
g
i— t
d
o
oo
CS
d
•*
2
g
s
a
r~
oo
1—4
en
r-'
(—1
S
s
s
g
o
£J
o
N
cs
••a-
NO-
NO
o
en
§
g
8
d
cs
oo
d
d
1
S
OO
^"*
VG
O
cn
•*
S
vo
o\
0s,
s
s
S
Tf
N
^H
M-
en
vo
«n
en
a
5
g
d
CS
CO
d
n
.
9
§
5
'£
cs
t~
n
en
«^H
r?
m
ON
NO
ON
rs
?!
%
CO
1
»n
^
oo
so
cn
n
.
18
r-
!
cs
T)-
$
cs
vo
in
m
•*
oc
3
in
•tf
l-H
vo
ON
§'
•«*
!R
NO'
i
d
o
o
o
d
S
oo
§
2
1
1-
t/1
g
R
s
^H
no
O
o\
o
NO
en
S
cs
1
s
in
cs
00
cn
-
-------
"apt!
iti-it
.
.O 4)
11
CO
B
0
B
co >5
rj
S «
O ^3
p 3
5 o
CO
€
-
EC o
g
II
S
8
8*5
S
S
S
§
CO
0\
3
S
8
8
S
g
o
VO
-------
|