&EHV
         United States
         Environmental Protection
         Agency
          Industrial Environmental Research
          Laboratory
          Research Triangle Park NC 27711
EPA-600/7-80-062
March 1980
Review of Concurrent
Mass Emission and
Opacity Measurements
for Coal-burning
Utility and
Industrial Boilers

Interagency
Energy/Environment
R&D  Program Report

-------
                 RESEARCH REPORTING SERIES


Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
aories were established to facilitate further development and  application of en-
vironmental technology.  Elimination  of  traditional grouping was consciously
planned to foster technology transfer and a maximum interface in  related fields.
The nine series are:

    1. Environmental Health Effects Research

    2. Environmental Protection Technology

    3. Ecological Research

    4. Environmental Monitoring

    5. Socioeconomic Environmental Studies

    6. Scientific and Technical Assessment Reports (STAR)

    7. Interagency Energy-Environment Research and Development

    8. "Special" Reports

    9. Miscellaneous Reports

 This report has been assigned to the INTERAGENCY ENERGY-ENV.RONMENT
 RESEARCH  AND DEVELOPMENT  series. Reports in this series  result from the
 effort funded under the 17-agency  Federal Energy/Environment Research and
 Development Program. These studies relate to EPA's mission to protect the public
 SanTwelfare from adverse effects of pol.utants associated w.th energy sys-
 tems  The goal of the Program is to assure the rapid development of domesttc
 en™gy supplies in an environmentally-compatible manner by providing the nec-
 essarv environmental data  and control technology. Investigates include analy-
 Ss oTthe tSnTport of energy-related  pollutants and their health and ecologica,
 effects- assessments of, and  development of, control technologies for energy
 systems; and integrated assessments of a wide range of energy-related env.ron-
  mental  issues.



                          EPA  REVIEW NOTICE
  This report has been reviewed by the participating Federal Agencies,
  for publication. Approval does not signify that the contents necessarily r
  the views and policies of the Government, nor does mention of trade names or
  commercial products constitute endorsement or recommendation for use.

  This document is available to the public through the National Technical Informa-
  tion Service, Springfield, Virginia 22161.

-------
                                   EPA-600/7-80-062

                                          March 1980
   Review of Concurrent Mass
       Emission and  Opacity
Measurements  for Coal-burning
   Utility and Industrial  Boilers
                      by

              R.J. Brennan, Richard Dennis,
                  and D.R. Roeck

               GCA Technology Division
                  Burlington Road
              Bedford, Massachusetts 01730
               Contract No. 68-02-2607
                   Task No. 19
              Program Element No. INE830
            EPA Project Officer: James H. Turner

         Industrial Environmental Research Laboratory
       Office of Environmental Engineering and Technology
            Research Triangle Park, NC 27711
                  Prepared for

         U.S. ENVIRONMENTAL PROTECTION AGENCY
           Office of Research and Development
               Washington, DC 20460
            I1            •  h

-------
                                  DISCLAIMER
     This Final Report was furnished to the U.S.  Environmental Protection
Agency by GCA Corporation, GCA/Technology Division, Burlington Road,  Bedford,
Massachusetts 01730, in fulfillment of Contract No. 68-02-2607, Technical
Directive No. 19, Assignment Change No. 3.  The opinions, findings, and
conclusions expressed are those of the authors and not necessarily those of
the Environmental Protection Agency.  Mention of company or product names is
not to be considered as an endorsement by the Environmental Protection Agency,
                      !,),$, Environments! ^

                                       ii

-------
                                  ABSTRACT


     Concurrent particulate emissions and opacity measurements based upon
visual observations and/or in-stack transmissometry are reported for more
than 400 compliance, acceptance, or experimental tests on coal-fired utility
and industrial boilers.  The sampling, which includes a capacity range of a
few to several hundred megawatts and typical firing methods (pulverized,
Stoker and cyclone) in most cases reflects flyash control by electrostatic
precipitation although filters or mechanical collectors were used at a few
installations.  All opacity measurements were standardized to their equivalent
values for a 4 meter (13.0 ft) diameter stack before comparisons were made
with their corresponding particulate emissions, the latter expressed as actual
grams per cubic meter.  No discernible correlations applicable to all sources
were observed although some modest but apparently significant correlations
were noted on an individual source basis.  Thus, any useful and definitive
relationships between particulate mass emission rates and their corresponding
opacity levels appear to be site specific.  Furthermore, correlations with
transmiseometer measurements were far stronger than those derived from visual
estimates of opacity.  The report findings are considered sufficiently en-
couraging to warrant further analyses of the existing and new data to deter-
mine how effective a monitoring tool in-stack transmissometer measurements
might be with skillful application.
                                     iii

-------
                                   CONTENTS
Figures .  .  ............... •  ........... ....  vi
Tables  .............. . ..................  lx
Acknowledgment  .............................   x

  1.  Summary and Recommendations  . f- ...................   1
  2.  Introduction  ...........................   2
           Current status, NSPS for particulate mass emissions and
             opacity  ..........................   2
           Program objective  .... ..................   2
           Background data  ..... ......... •  ........   3
  3.  Basic Opacity Relationships  . . ..................   8
  4.  Discussion of Results ..... ..................  13
           Introduction ................ •  •  .......  13
           Data sources .........................  13
           Mass emissions versus opacity measurements  ...........  13
References
Appendices
  A.  Data Tabulations for all Mass Emission and Opacity Measurements  .  .  ^6
  B.  Method for Computing Standardized Opacity  ...........  •  •  85
  C.  Confidence Limits for Predicted Individual y Values  ........  87

-------
                                    FIGURES
Number

  1    Flue gas in-stack optical density versus outlet particulate
         concentration for a large coal-fired utility boiler  .....    4

  2    Flue gas in-stack optical density versus outlet particulate
         concentration and firing rate for a small hand-fired
         boiler ............................    4

  3    Flue gas light absorption versus particulate concentration for
         an experimental stoker-fired furnace with a 0.15 m  (6 in.)
         diameter stack  ........................    ^
  4    Particulate emission rate versus in-stack opacity for three
          coal-fired utility boilers and equivalent stack diameter of
          4.6 m  (15 ft)   ........................     5

  5    Predicted  opacity versus coal  flyash  outlet loading  from
          electrostatic  precipitators  for  several particle size
          distributions   .  .  ......................     7

  6    Particle extinction efficiencies for  spherical particles  as  a
          function of  a  for m=  1.33,  m =  1.5,  and m  = 2  -  li  (which
          approximates the  value  for  coal)  ...............    10

  7    Effect  of  coal sulfur  content  on mass emissions from an ESP
          controlled boiler                                                12

  8    Particulate mass concentration versus estimated opacity by
          transmissometer and visual  methods  for various  coal  firing
          methods  and  types of particulate control, 0 to  45  percent
          opacity   .......... ..... ............    16

   9    Particulate mass concentration versus estimated opacity by
          transmissometer and visual  methods  for various coal  firing
          methods  and  types of particulate control,  45 to 80 percent
          opacity   .......  •••..' .................
                                       vi

-------
                               FIGURES (continued)


Number                                             •                      Page

  10   Particulate mass concentration versus standardized opacity
         baaed upon in-stack transmissometer measurements on Boilers
         No. 1 and No. 2, Public Service Co. of New Hampshire 	    18

  11   Particulate mass concentration - standardized opacity (in-stack
         and visual) TVA coal-fired utility boilers with ESP control
         and pulverized coal firing	.    21

  12   Particulate mass concentration versus measured and standardized
         opacities for coal-fired utility and industrial boilers.
         State of South Carolina	    22

  13   Particulate mass concentration versus standardized opacity for
         coal-fired utility boilers employing in-stack transmisso-
         meters.  Georgia Power Co. boilers with ESP particulate
         controls	    25

  14   Particulate mass concentration versus standardized opacity for
         Georgia Power, Branch Units 1 and 2, opposite-fired boilers,
         incomplete energizing  	 	    26

  .15   Particulate mass concentration versus standardized opacity for
         Georgia Power, Branch Units 3 and 4, oppositely-fired boilers
         complete energizing  	    27

  16   Particulate mass concentration versus standardized opacity for
         Georgia Power, Hammond Units 1, 2 and 3, front-fired boilers,
         incomplete energizing  	    28

  17   Particulate mass concentration versus standardized opacity for
         Georgia Power, Hammond Unit 4, opposite-fired boiler,
         incomplete energizing  	 	    29

  18   Particulate mass concentration versus standardized opacity for
         Georgia Power, Mitchell Units 1 and 2, front-fired and Unit 3
         opposite-fired boilers, incomplete energizing  	    30

  19   Particulate mass concentration versus standardized opacity for
         Georgia Power, Arkwright Units 1 through 4,  tangentially-fired
         boilers, incomplete energizing	    31

  20   Particulate mass loading versus standardized opacity for Georgia
         Power, McDonough Units 1 and 2, tangentially-fired boilers,
         incomplete energizing  	    32
                                     vii

-------
                              FIGURES (continued)
Number
  21   Particulate mass concentration versus standardized opacity for
         Georgia Power, Wansley Unit 1, tangentlally-f ired boiler,
         incomplete energizing .....................

  22   Particulate mass concentration versus standardized opacity for
         Georgia Power, Wansley Unit 2, tangentially-fired boiler,        ^
         incomplete energizing .....................
   23   Particulate mass concentration versus standardized opacity for
          Georgia Power, Yates Units 1, 2 and 3, tangentially-fired         _
          boilers, incomplete energizing  .....  •  •  .........

   24   Particulate mass concentration versus standardized opacity for
          Georgia Power, Yates Units 4 and  5, tangentially-fired boilers,   ^
          incomplete  energizing  .....................

   25   Particulate mass concentration versus standardized opacity for
          Georgia Power, Yates Unit 6,  tangentially-fired boiler,           ^
          incomplete  energizing  ...... ......  .........
   26   Partic'ulate mass concentration versus standardized opacity for
          Georgia Power, Yates Unit 7, tangentially-fired boiler,
          incomplete energizing .....................

   27   Particulate mass concentration versus standardized opacity for
          Georgia Power, Bowen Unit 1, tangentially-fired boiler, nearly
          complete energizing . ..................

   28   Particulate mass concentration versus standardized opacity for
          Georgia Power, Bowen Unit 2, tangentially-fired boiler,
          complete energizing

   29   Particulate mass concentration versus standardized opacity for
          Georgia Power, Bowen Unit 3, tangentially-fired boiler,
          incomplete  energizing

    30   Particulate mass concentration versus standardized opacity for
          Georgia  Power, Bowen Unit 4, tangentially-fired boiler,
          incomplete  energizing  ....
                                        viil

-------
                                    TABLES
Number                                                                   Page

   1   Clear Stack Criteria.  Emission Levels Producing Clear, or
         Nearly Clear Plumes (Excepting Condensed Moisture)  	   3

   2   Measured K Values for Process Aerosol Emissions 	  11

   3   Federal, State, and County Agencies Supplying Simultaneous
         Mass Emission and Opacity Data	14

   4   Summary of Characterizing Opacity Parameters for Mass Emission
         vs. Opacity Relationships, Georgia Power Co. Pulverized
         Coal Boilers	43
                                      ix

-------
                               ACKNOWLEDGMENT
     The authors wish to express their appreciation to Dr. James H. Turner,
EPA Project Officer, for the technical guidance provided throughout the program
and to the many State and Regional EPA personnel who made their opacity files
accessible.

     We also wish to acknowledge the assistance of the following GCA personnel;
Mr. Michael Jasinski who helped compile and proof the tabular material and Ms.
Deborah Stott, Judith Wooding and Ann Marie Tirone who prepared the final
graphs and tables.
                                     xi

-------
                                   SECTION 1

                          SUMMARY AND RECOMMENDATIONS
     Particulate emission data based upon more than 400 compliance, acceptance
or experimental stack samples and concurrent visibility data based upon in-stack
transmissometer measurements and/or visual opacity estimates for the flue gas
plumes were collected from Federal, State, and Local pollution control agencies.
These data were collated and analyzed to determine the degree of correlation
between particulate emissions expressed either as mass concentration (g/m3) or
the emission rate per unit heating value of the fired fuel (ng/J) and flue gas
opacity.  The outstack (visual) opacity observations were standardized to their
equivalent values for a 4 meter (~13 ft) diameter stack by means of Bougeur's
Law1 (see Section 3).

     Standardized opacities were then plotted as a function of particulate
mass emission rates ng/J (lb/106 Btu), or particulate mass concentrations as
grams per actual cubic meter (g/am3) or grains per actual cubic foot (gr/aft3).
No discernible correlations applicable to all sources were observed although
some modest but apparently significant correlations were noted on an individual
source basis.  Thus, any useful and definitive relationships between particu-
late mass emission rates and their corresponding opacity levels appear to be
site specific.  Furthermore, correlations with transmissometer measurements
were far stronger than those derived from visual estimates of opacity.  Although
the regression lines developed from in-stack opacity estimates could not be
used for accurate prediction of mass emission (+20 percent accuracy at best
for a 95 percent confidence interval) it appeared that with an improved and
more detailed description of all system operating parameters, considerable
data refinement might be obtainable.

     The findings presented in this report are considered sufficiently en-
couraging to warrant further analyses of the existing and new data to deter-
mine how effective a monitoring tool in-stack transmissometer measurements
might be with skillful application.

     It is expected that further review of data collected over a period of
years will not. have the value of recently performed tests where the sources
can be contacted easily for additional information.  Thus, it is also recom-
mended that concurrent opacity measurements by both visual and stack trans-
missometer techniques be performed if possible when compliance tests are
conducted.  At these times, it is essential that boiler control device and
fuel parameters be clearly defined so that variables impacting upon opacity and
mass emission can be correlated to the maximum extent.

-------
                                   SECTION 2

                                 INTRODUCTION


CURRENT STATUS, NSPS FOR PARTICULATE MASS EMISSIONS AND OPACITY

     Particulate emissions from fossil fuel-fired boilers are presently
regulated by two standards, the first describing an allowable emission rate
based upon the boiler heat input; i.e., ng/J or lb/106 Btu and the second, the
light obscuring properties of the exiting flue gas as estimated by visual
observations and defined in terms of plume opacity.  Prior to promulgation of
the Method 9 technique for determining plume opacity, early regulations simply
prohibited "dense black smoke" while later Ringelman and more recent opacity
regulations placed quantitative limits on the percent of incident light that
any colored exhaust plume could obscure.

     While a source must comply with both the mass emission and opacity sections
of the current legislation, it is recognized that compliance with mass standards
does not necessarily assure compliance with opacity standards.  Official recog-
nition of this fact is exemplified by EPA's recent ruling exempting Southwestern
Public Service  (SPS) Company's Harrington Station Unit No. 1 from the present
NSPS opacity standard of 20 percent.  The SPS electrostatic precipitator and
marble bed scrubber control system were able to meet all emission criteria
including the  NSPS particulate mass emission standard yet could not, without
extensive retrofit at a significantly increased cost, meet the 20 percent
opacity  limit.  Thus, while the mass emission standard remained unchanged,
the  general operating opacity limit was raised by EPA from 20  to 35 percent  .

     The above NSPS modification  is based on regulations cited under 40 CFR
60.11(e) that  allow any source that complies with all applicable standards
except  for opacity  to request a  source  specific opacity  limit.

PROGRAM  OBJECTIVE

     The development  of a  reliable, albeit  empirical, correlation between
plume  opacity  by either in-stack transmissometer measurement  or by visual
observations  of  the plume  and particulate mass  emissions would greatly  assist
 those  agencies responsible for enforcement  of  emissions  regulations.   The
basic  objective of  the  present study  is to  establish whether  useful  correla-
 tions  have  been demonstrated  (or might be)  and  which measured parameters  best
describe any  such  mass  emission-opacity relationships.

-------
BACKGROUND DATA

     Several empirical and theoretical correlations between stack transmis-
sotneter tests and/or visual opacity measurements and mass emissions criteria
have been proposed for specific sources.  Schneider3 demonstrated a consistent
relationship between in-stack flue gas optical density measurements and effluent
particulate concentration for a coal-fired utility boiler (Figure 1), while
Hurley and Bailey1* (Figure 2) and Stoecker5 (Figure 3) reported similar corre-
lations for small, hand-fired coal boilers.  Reisman et al.6 investigated, the
relationship between in-stack particulate opacity as computed from transmis-
sotneter measurements and mass concentration for six industrial sources that
included a large oil-fired utility boiler.  Schiff7 (Figure 4) also noted
a good correlation between particulate emission rate and in-stack opacity for
three large coal-fired units.  The Industrial Gas Cleaning Institute. (IGCI) has
estimated the maximum outlet particulate concentration for various processes
for which there are no discernible visual indications of particle presence.
The flue gas parameters are based on actual operating conditions reported by
a comprehensive sampling of member companies.  The results of this survey
are presented in Table 1.

        TABLE 1.  CLEAR STACK CRITERIA.  EMISSION LEVELS PRODUCING
                  CLEAR, OR NEARLY CLEAR PLUMES (EXCEPTING
                  CONDENSED MOISTURE)*
Utility or
industrial ,
boiler
ESP and fabric filter Wet scrubber
outlet concentration outlet concentration
g/m3 at °C g/m3 at 21°C, 101 kPa
(gr/ft3 at °F) (gr/ft3) at 70°F, 14.7 Psig
    Coal

      Pulverized


      Cyclone Boiler


      Stoker-fired


    Oil
 0.046 at 127-160
(0.020 at 260-320)

 0.023 at 127-160
(0.010 at 260-320)

 0.114 at 177-232
(0.050 at 350-450)

 0.007 at 149-204
(0.003 at 300-400)
 0.066-0.071
(0.029-0.031)

 0.032-0.037
(0.014-0.016)

 0.183-0.206
(0.080-0.090)

 0.0108-0.0121
(0.0047-0.0053)
    *From the Industrial Gas Cleaning Institute, Inc., Alexandria, VA
     The basic physical laws governing plume opacity are well-documented in
the literature.  The theoretical computation of aerosol optical properties
is usually based on Maxwell's8 classical relationships defining the inter-
actions between electromagnetic radiation (visible spectrum in the present
case) and suspended particulates and the solution of these equations as
proposed by von Mie.9  The theoretical treatment for the special case of
particles smaller than the wavelength of the incident light is described by the
Rayleigh approach.10

-------
                            0.10
                                     0.20
                                            0.30
                                  gr/oft3
Figure 1.
 Figure 2.
Flue gas in-stack optical density versus  outlet particulate
concentration  for a large coal-fired utility boiler.3
                     OPTICAL  DENSITY/m  PATH LENGTH
                           123^5
                                                  Z.5
                     -0      4       8       IZ      "6

                      OPTICAL DENSlTY/fl PATH LENGTH
 Flue gas in-stack optical  density versus outlet particulate
 concentration and firing rate for a small hand-fired  boiler.
                         O >900°F STACK TEMP.  >482°C
                          700-900°F         37I-482°C
                         D 500-700°F         3I6-37I°C
                         »<500°F
                      "0     ZO     40     60

                         PERCENT LIGHT ABSORPTION
 Figure  3.   Flue gas light absorption versus particulate concentration
             for an experimental stoker-fired furnace with a 0.15 m
             (6 in.)  diameter stack.5

-------
0.50-
                                                    EQUATION  FOR
                                                 LINEAR REGRESSION  LINE
                                             Ib/IO6 Btu = 0.007  (OPACITY, %)
                                             ng/j = (1.6 x IO-5)(OPACITY,%)
                                                    r = 0.97
                                                                  50
                                                              60
                               OPACITY, PERCENT
      Figure 4.
Particulate emission rate versus in-stack opacity for three
coal-fired utility boilers and equivalent stack diameter of
4.6 m (15 ft).7  (Electrostatic precipitator effluents.)

-------
     Ensor and Pilat (1971)u  developed a computer program utilizing the Mle
concepts from which the light  attenuating properties of a stack plume con-
taining a broad particle size  spectrum could be calculated.  Using a method
similar to that reported by Ensor and Pilat, Severson et al. in a recent EPRI
study12 have calculated the theoretical opacities for several outlet particle
size distributions and loadings for correlation with the corresponding mass
emission rates,12 Figure 5.   Halow and Zeek13 utilized particle optical pro-
perties and Mie theory in their computer based system to correlate the color
contrast between the plume and ambient background with the observed opacity.
They have also investigated the effect of viewer orientation or perspective
with respect to sun location and observer angle.

    Wier et al.14 pointed out several factors that can affect plume appearance
and hence its opacity as determined by visual emissions estimates.  A partial
listing of external factors influencing an observer's judgment include:

     •    Color contrast ratio between the plume and ambient background,

     •    Stack (plume) diameter,
     •    Position of the sun and observer relative to the  stack,

     •    Elevation of  the observer relative  to  the top of  the stack.

     These have been  discussed by Fennelly and Lilienfeld15 in the  "Opacity
Handbook," an  EPA  sponsored document  describing  the history and present  status
of  opacity legislation  and visible emission  observation procedures.

     The  methodology  employed by environmental agencies  to assess plume  opacity
by  visual observation does not make  any  quantitative  allowance for  the  several
external  factors  that may  influence  the  observer's  description of plume
appearance.   However, the  official methodology  does acknowledge  their impact
on  a qualitative  basis.   In fact, EPA Method 916 is based on estimating  pro-
cedures by which  the  observed  plume  opacity (or  more  correctly,  appearance)
 tends  to  be  less  than the  true  opacity as determined  by  in-stack
 tratismissometry.

-------
     100
      50
    - 20
   o
   <
   Q.
   O

   O
   UJ
   I-
   O

   O
   UJ
10
                 PARTICULATE

             2         5
                        EMISSION  LIMIT, ng/j

                        10      20        50
                         100
             T
                T
T
                                T
                  T
     (EPA  AND
       NEW  MEXICO LIMIT
                                       CLEAR   I     _
                                             Mb/l06Btu =

                                             0.31 gr/acf (AVERAGE
                                                _L
                                                 J_
             0.005    0.01    0.02       0.05     O.I     0.2

             PARTICULATE  EMISSION  LIMIT,  lb/106 Btu
Figure 5.  Predicted opacity versus coal  flyash outlet loading from
          electrostatic precipitators  for several particle size
          distributions. 12

-------
                                   SECTION 3

                           BASIC OPACITY RELATIONSHIPS
     The fundamental relationship between plume opacity and the characterizing
aerosol properties responsible for the observed opacity condition is described
by Bougeur's Law,18 viz.

                  Opacity =1-1/1  = 1 - T = 1 - exp(-bL)                (1)

where:

     I/I  « the ratio of the amount of light transmitted through
        0   the plume to the amount of light incident upon the
            plume

        T = I/I0 = transmittance = 1 - opacity

        b = extinction  coefficient for the aerosol (m  l)

        L = depth of plume or length of  obscuring light path as
            defined approximately by stack exit diameter  (m).

     The extinction coefficient, b, may  be expressed by the  following
 relationship:

                                   b = Sp W                                (2)

 where:

      Sp =  specific  projected particle  extinction  area, m2/g  (ft2/gr)

       W =  particulate  mass  concentration,  g/m  (gr/ft  )

      Although the term W is  readily  measured,  the quantity b in Equation 2 can
 be defined only through the  solution of  the  classical  electro-optical equa-
 tions by complex computer techniques.   For example,  b  is  calculated from the
 relationship:

-------
                      /*r2
                b - IT /     QE (a,m)r2 n(r) dr                              (3)
                      1C i

                a = size parameter, 2irr/X

                r = particle radius

                X = wavelength of light

                m = refractive index of particle relative to air

             n(r) = size frequency distribution, number of particles
                    of radius r per volume of aerosol per Ar

          Qg(a,m) = particle light extinction efficiency factor, the
                    total light flux scattered and absorbed by a
                    particle divided by the light flux incident on
                    the particle.

     For highly specialized circumstances where laboratory studies permit
rigorous control of particle composition with respect to shape, surface, and
refractive index and the intensity and wavelength of the incident light
are precisely defined, the validity of Equation 3 may be successfully demon-
strated.  Conversely, the fact that the composition spectrum of real life
aerosols is virtually unknown except for crude estimates of particle dimensions
suggests that any detailed theoretical approach is not always justified.

     A major obstacle to any simplified solution to Equation 3 is the
oscillating, nonunique feature of the particle light extinction factor QE(a,m)
with respect to a for those particle dimensions and incident light wavelengths
almost always associated with significant light obscuration by smoke plumes.
The fact that the oscillations in Qg are significantly damped when light
absorbing particles such as carbon consititute a significant fraction of the
aerosol further complicates the prediction of plume opacity when the refractive
index varies.  The effect of variations in both particle radius and refractive
index are shown in Figure 6.  For many common flyash constituents, QE can vary
from 2 to 4 for the light obscuring particle sizes encountered in combustion
effluents.  As particle diameter and a become very large, Qjr will approach a
theoretical limiting value of 2.0.  Insofar as the number of critical variables
are concerned, the computation of particle mass concentration, W, appears  to
be a relatively simple matter, i.e.,
4    r
-r- irpl
    J
where :
                                          ,
                           W = -r- irpl     r  n(r)dr
         discrete particle density and the terms r and n(r) are defined
         as in Equation 3.  The size frequency distribution n(r) is
         usually expressed as:

-------
 0
0.35
    PARTICLE DlAM.(ftm) FOR X = O.SS^tm

0.70    1.05      1.40      1.75     2.10     2.45
                                                                        2.80
                                                                        3.15
Figure 6.  Particle extinction efficiencies for spherical particles as  a function of
           a for m= 1.33,  m= 1.5,  and m = 2 - li (which approximates  the value for
           coal).
3.50

-------
                                 n(r) = N f(r)
where:
     f(r) = particle number fraction frequency, the fraction of all
            particles having a radius of r, and
        N = total particle number concentration.
The ratio of the particulate mass concentration, W, to the extinction
coefficient, b, in conjunction with particle density, p, is described by Ensor
and Pilat19 as the "specific particulate volume extinction coefficient," K.
                                   K = W/bp                                (5)
     By rearranging and solving for b, Bougeur's Law can also be expressed
as:
                            I/I0 = exp (-WL/Kp)                            (6)
Hence, with the terms L, K, W, and p defined, a less complex relationship
evolves for predicting the mass concentration, W, associated with a plume
opacity, 1- I/I0, i.e.,
                             W = -Kpln(I/I0)/L                             (7)
     Measured K values for several process aerosols have been compiled by
Ensor and Pilat19 from several information sources.  Excerpts from the above
source are presented in Table 2.
       TABLE 2.  MEASURED K VALUES FOR PROCESS AEROSOL EMISSIONS19
                                                   Average
                         Source                     .   3/
                                                  K, cm^/m
             Orchard heater (black smoke)           0.025
             Coal power plant (flyash)              0.64
             Coal stoker (black smoke)*             0.084
             Coal stoker (black smoke)*             0.11
             Oil power plant (black smoke)          0.059
             White smoke generator
               W - 0.22 g/m3                        0.46
               W - 0.47 g/m3                        0.30
               W = 1.00 g/m3                        ft. 20
             Kraft mill recovery furnace            0.6
             Veneer dryer                           0.36
      *Two separate sources
                                      11

-------
     In those cases where K has been measured directly, the several variables
affecting K as shown in Equation 3 (r, a, X, m) need not be considered insofar
as their quantitative contributions are concerned.  Equation 7 then becomes a
more useful tool for correlating the mass concentration and light obscuring
properties of a smoke plume.

     It must be recognized, however, that the K values cited in Table 2 apply
only to the specific aerosols for which they were measured.  Because variability
in flyash physical and chemical properties is the rule rather than the excep-
tion, it should not be assumed that they apply automatically to any similar
combustion source(s).  Variability may arise due  to basic differences in  fuel
composition, method of fuel preparation, firing method, completeness of combus-
tion, or furnace design  features.

     Another difficulty  is  that even when theoretical  solutions to light
attenuation equations are sought  through computer technology, the particle
size parameters are usually described by logarithmic-normal distributions.
Unfortunately,  the  latter approach  although  convenient for data processing
may actually  lead  to  incorrect prediction of the  "whole cloud  optical
properties.   Furthermore,  the  best  available instrumentation  for  size measure-
ments combined  with the  statistical and  logistical  problem of securing      •
representative  data,  make  it extremely difficult  to obtain accurate  sizing  (and
derived optical)  data.

      For this reason, one  should  never  assume, without verification,  that the
 size properties of the uncontrolled aerosol describe the  effluent from a parti-
 culate control device.^,21  In the special case of certain  fabric filters,
 e.g.,  woven,  surface treated glass, it  has  been noted that minimal changes
 in size distribution parameters may occur when the majority  of  the penetrating
 dust particles result from temporary or permanent leak points in the inter
        ??
 system."

      It is also necessary to consider the possibility of alterations in
 particle size properties between the point of measurement in a stack and the
 region immediately outside the stack from which visual opacity estimates
 are made.  Since semiquantitative relationships between sulfur content and
 ESP collection efficiency.have been demonstrated,23 Figure 7, it is suggested
 that coal sulfur content should  also be considered in relating optical
 properties to  flyash mass concentration.
                            OUTLET CONCENTRATION,
                  Figure 7.   Effect of coal sulfur content
                             on mass emissions from an ESP
                             controlled boiler.23
                                        12

-------
                                   SECTION 4

                             DISCUSSION OF RESULTS
INTRODUCTION
     The results of more than 400 mass emission tests on coal- and oil-fired
boilers for which simultaneous visual estimates of plume opacity and/or in-stack
transmissometer measurements were available have been collected and analyzed.
The analytical effort was centered on the coal-fired systems due to the scar-
city of simultaneous mass and optical measurements for oil-fired boilers,  ihe
"as received" opacity data reflected several measuring techniques such as EPA
Method 9, the Ringelman method, rough personalized estimates, in-stack trans-
missometry and various combinations of the above.   The actual format for the
original data varied considerably from agency to agency.  Thus, particulate
emission rates were reported on a mass per unit energy basis  (as-fired) lb/10
Btu or ng/J, and/or on a particulate mass concentration basis, gr/ft  or g/m .

DATA SOURCES

     A list of the contributing agencies and the types of data submitted
appear in Table  3.  In Tables A-l through A-4, Appendix A, both mass emissions
and opacity data are presented for numerous coal burning sources.  Opacity data
range from Method  9 estimates of plume appearance by trained  observers  (although
test conditions  sometimes represented less refined versions of the former
approach)  to in-stack transmissometer measurements with both  optical techniques
performed  in some  cases.  The  results of  several  carefully  controlled  in-stack
transmissometer  measurements are compared  to mass emission  rates  in Table A-4,
Appendix A.  The above  transmissometers were certified as meeting the  perfor-
mance specifications outlined  in 40  CFR 60, Appendix B, of  the Federal Register.

MASS EMISSIONS VERSUS OPACITY  MEASUREMENTS

                   V  and S tate  Sources
      Concurrent mass  emission and opacity tests representing both visual and
 in-stack opacity estimates are shown in Table A-l for a miscellaneous collec-
 tion of coal-fired boilers.   The above measurements reflect several variations
 in boiler capacity, firing methods,  and particulate control methods.  The latter
 include ESP, fabric filter and cyclonic devices, as well as some systems
 without emission controls.
                                       13

-------
          TABLE  3.  FEDERAL, STATE, AND COUNTY AGENCIES  SUPPLYING  SIMULTANEOUS
                   MASS EMISSION AND OPACITY DATA
Contributing
organization
U.S. EPA Region I
U.S. EPA Region IV
U.S. EPA Region V
State of Arkansas
State of Georgia
State of Indiana
State of Nebraska
State of New York
State of North Dakota
State of South Carolina
Hillsborough County, Florida
Particulate
emission
g/m3
C*
C
I
I
C
C
-
C
I
-
C
mass
rate
ng/J
C
C
C
C
C
C
C
C
C
C
C
Stan-
dardized
opacity
C
C
C
C
C
C
C
C
C
C
C
Method 9
opacity
It
I
C
C
-
C
C
C
C
C
C
In-stack
transmissometer
I
C
-
-
C
-
-
-
-
-
-
*Data complete
tLimited data available

-------
     For purposes of Identifying possible correlations between opacity (by
Method 9 or in-stack transmissometry) and mass emissions it was decided that
expressing mass emissions in terms of the actual particulate mass concentration,
g/am3 or gr/aft3 at the flue gas stack temperature was the preferred approach.
This follows from the fact that both descriptors, opacity (surface area) and
concentration (mass), are referred to identical gas volumes.  Additionally,
although mass emission rates on an energy input basis, ng/J or lb/10° Btu, are
directly proportional to mass concentrations, g/m3 or gr/ft3, with a constant
excess air rate, there are some situations, particularly during boiler turn-
down, where the excess air might be increased appreciably.  Thus, with
no change in mass emissions per unit energy input, a significant decrease in
opacity might be observed.

     Data from Table A-l have been graphed in Figures 8 and 9 so that the rele-
vant test conditions for each set of data points are indicated.  Visual
opacity estimates by EPA Method 9, for example are coded with the symbol V9,
whereas other visual procedures differing from Method 9 are labeled as VE.
A "T" designates an in-stack transmissometer measurement and geometric codings
describe the type and/or absence of particulate control devices.  To make a
clearer presentation, the high level, >45 percent opacity values have been
graphed separately, Figure 9.  Although' opacities relating to cyclone-controlled
systems predominate in the high range, it should be noted that three boilers
in this group showed relatively low values for both mass emissions (0.1 to
0.2 g/am3) and opacity (10 percent).

     The discouraging aspect of the data point arrays on Figures 8 and 9 is
the lack of correlation between mass concentration and opacity.  Although
one should expect to see at least more precision with stack transmissometer
measurements, it appears that little distinction can be made between the
results for the visual and in-stack opacity estimates.  It is also shown,
Figure 10, that the standardization of the in-stack transmissometer results
to a 4 tn diameter equivalent stack does not show any better mass emission-
opacity correlation than that indicated in Figure 8.  The poor correlations
noted between mass emissions and the PSCNH* in-stack opacities may have resulted
from instrument problems.  Generally, because a stack transmissometer is
influenced by fewer uncontrollable variables, one expects to see a consistent
relationship between mass concentration and in-stack opacity provided that
boiler load levels and fuel composition remain constant.  On the other hand,
plume opacities are much more difficult to define due to the numerous external
complicating factors discussed in Section 3.  Thus, estimation of flue gas
opacities by well-trained observers is still more a subjective art than an
objective science.  It must also be noted that some> of the visual evaluations
used in this study were made under viewing conditions much less favorable
than those considered acceptable for enforcement purposes.  For example,
Viewing a white plume during an increasingly heavy snowstorm would be unaccep-
table for assessing a source's compliance status.  Similarly, to perform
visible emission observations while the sun is in front of the observer is an
improper procedure.  However, where visual observations are performed only to
determine fluctuations in boiler operation during a specific stack test and
with no intent to use these data for compliance purposes, several variations,
*Public Service Company, New Hampshire

                                      15

-------
91
TO
§ PARTICULATE MASS CONCENTRATION
oo AT STACK CONDITIONS, g/om3
Q
p o p P
"d CB T) f"0 i 	 i •
CD 3 fu O
f"( fV h^
ft rt
H-  o
3 3" CO
rt O cn
(^ p-
O CD O
H"1 O
- H, 3
o S S m w
0 * § c/>
rt < rt H
O B> H —
-P- H- rt > P»
Ul O H- **j °
co _
13 cn 3 m
fD O
H 0 
Ml CO O
OP- —
13 hj fD H
(B H. CO _^
0_ 3 rt , w
rt* y ^D
^ a P m
* f rt 35
Zf O- ^
o ni
a. o z
CD 'tJ H tn
to 01
tu n
3 H-
CL rt
rt
T3 ^
fD ^
CD rt O
i-t
o fu
i-h 3
cn
3
H-
cn
CD ..
o fi
*< P< U 1 ' ^
10 m "fi O10

1 < < < H

}(cT o •• » .!!
85) o o z

™ 5 * > > H _
^^ ^ < " 52 *>
O* O JT H -) °
10 < O -< •< *
ID
^ CD CD H

rf O 5 >
^ a J < 5 z
O w m ^
m ° < C I -

_ " o r o <£ *~
m ^^
O tn U) »
H — i Cj
— """•
* y *^
^%^j T3

o o S
°< H
to
°H
o . J
D > x O o
o
O ^*
< O
(0 -t
o
o
z
z o TJ m _,
i p ^ ^ o
m o m •"
- v
m 3*
O ^
"^ —— —4
LJ * * T
10 o
o

• i
1 1 1 1 -1 	









3
1C
O





O
DO
0)
o m
D x;
O _,*.
^»
m
o


H
SJ
Z
£/)
o £
'S 5
z
o
m








o









fD
rt
fD
H

-------
                     OBSERVED  TRANSMITTANCE
1.6

(0
E
o 1.4
o>
CO*
Z
O
o
z
0
o
CO
h-
0 0,8
H
K
CONCEN
o
O>
CO
CO
•g 0.4
UJ
s~
_J
§ 0.2
f™"
OC
0
60 50 40 30 20
III 1
- AT
V9A
V9A
~~ T: IN-STACK TRANSMISSOMETER
V9= OPACITY BY METHOD 9
SYMBOL CONTROL METHOD
O ESP
~~ A CYCLONE
D NONE
V9 V9

—
"A
_
°T °T o'
1 1 1 1 1 1 1 1
40 50 60 70 8(
                      ESTIMATED  OPACITY, PERCENT
Figure 9.  Partlculate mass concentration versus estimated opacity by
          transmissometer and visual methods for various coal firing
          methods and types of particulate control, 45 to 80 percent
          opacity.

                                17

-------
           81
PARTICULATE  MASS CONCENTRATION
 AT  STACK CONDITIONS, g/om3
p-
OQ
fD
M
O
O rt T)
O H ft)
. (13 l-j
3 rt
o en P'
t-h B O
P- C
Z en M
fD en ft)
s; o rt
3 ft>
ft) rt 3
3 ro CB
ti i-i en
en en
y s
P- fD O
i-l ft) O
fD en 3
• C n
H fD
ffi 3
s 3
rt rt
en p-
0 §
3
<
W fD
O i-(
P- cn
PJ C
fD en
i-t
cn cn
rt
2 fti
0 3
ft)

Pa
ft) P-
3 N
P- fD
P-
O O
• 13
ft)
K> O
rt
i-d ><;
C
a- a-
p- en
0 fD
p-
cn
fD C
< o
P- 3
n
fD p.
3
• cn
r"f
p
o
o o p P
o K> *• <" *
o



^
o









s
— 1
Z
o
o

M
3 s

0
TJ

o

H
-<


TJ
m
^o
Ss











cn
0








1 1



_










~ O
•H




OH ' "

5»H



°H

o
H


°H




OH






-




0^
"1





3
3
>








O
CD
O
Zv
Z
o
s*
o
N
5 3
o

X

Z
C/)
c
H
_4

Z
0 0
in W
o










p
in
O









-------
modifications or short cuts are perfectly reasonable.  Thus, whereas several
tests performed on one boiler may be internally consistent, they will probably
provide no useful correlations when compared with opacity tests on different
boilers.  The above factor may partially account for the broad spread in data
points shown in Figures 8, 9, and 10.

     Additional factors influencing the quality of visual opacity measurements
are:

     •    Visual observations are often conducted for a period of time
          that is less than the time interval required for compliance
          mass concentration measurements.

     •    Visual opacity estimates may be biased based on a prior
          knowledge of statuatory opacity standards.

     •    Visual evaluation of plume opacity may be performed during
          periods when the opacity and particulate emission rate vary
          significantly from the mean values representing the total
          sampling period.

     •    Visual opacity estimates by trained observers are often
          less accurate than measurements made by in-stack transmis-
          someters meeting EPA performance specifications.

     The concept of expressing particulate emission rates on the basis of
fuel firing rate (Btu/hr) puts all potential emitters on the same basis.  With
the above approach, deliberate use of high excess air rates cannot be used to
conceal poor performance on the part of a control device.  However, because
of variations in operating protocol (base load or peaking units)  or methods
of firing, there will be many situations where the actual outlet concentration
in g/am3 can easily vary by a factor of two for the same boiler firing rate
or power output.  Thus, as stated previously, unless a given set of boilers
have utilized identical fuels, firing methods and excess air rates, any corre-
lations between mass emission rates and particulate emissions expressed as
either ng/J or lb/106 Btu are expected to be of limited value.

     Opacity must also be based on the same viewing depth if observations from
stacks of differing diameters are to be compared.  Thus, when sufficient
data were available, measured opacity values were standardized to their
equivalents had the given particulate-laden stream been discharged from a
4 meter (~ 13 ft)  diameter stack.  A brief description of the procedure used
to calculate standardized opacity is presented in Appendix B.

EPA Region IV — TVA, Georgia, and South Carolina

     In Table A-2, visual and in-stack opacity estimates are compared for several
TVA boilers located in EPA Region IV.  All in-stack transmissometer values
were obtained with Lear Siegler instrumentation that has been certified as
meeting the Federal performance specifications outlined in 40 CFR 60,
Appendix B.   TVA mass emissions were based upon EPA Method 5 compliance testing.
                                       19

-------
The sole purpose of the TVA stack testing, and also that described in Table A-3
for several utility and industrial boilers in South Carolina, was to ascertain
boiler compliance status with respect to particulate emission standards.
Stack tests described in Table A-4 for the Georgia Power facilities, however,
were conducted to determine source compliance with particulate emission stan-
dards as well as to establish the correlation between particulate emission
rate (as pounds per million Btu) and flue gas opacity via stack transmisso-
tneter.  Various opacity levels were produced by experimental variation of ESP
energizing levels for a broad range of boiler firing rates.  Thus, the state
of Georgia assigned an "opacity index value" to each source.  The opacity index
value is defined as that value of the flue gas opacity above which the particu-
late emission rate will exceed the applicable particulate emission standard.^
At the present time, the above concept is exemplified by the "site specific
variance for a difficult effluent that permits a plume opacity higher than
the present NSPS of 20 percent provided that the mass emission criterion is
satisfied.  All testing in the Georgia program was by EPA Method 17.

TVA Data—                                                         _,   .
      Following standardization of opacity measurements,  the mass emission versus
opacity  statistics  for TVA coal-fired utility boilers were plotted as shown
In Figure  11.  With the exception of  three boilers in this group for which
cyclone  collectors  preceded  the  electrostatic precipitators, all TVA boilers
used  ESP systems  for particulate control.  Despite the  crowding  of data points
it was  decided  to  plot  all TVA  data  on  one graph  so  that the effects,  if any,
of  (a)  the method  of opacity determination,  visual estimate  by trained  observer
versus  certified  in-stack  transmissometer data;  (b)  the firing method,
 pulverized coal or cyclonic  injection;  and  (c)  the use  of mechanical  collectors
 in series with electrostatic precipitators  could  be  compared.

      Inspection of Figure  11 shows  the  dispersion patterns for opacity estimates
 by both trained observers  and in-stack  transmissometry  to be equally broad
 and of little value for predictive purposes.  Additionally,  the  data for
 pulverized-fired and cyclone boilers show similar dispersions.   Very limited
 information for ESP controlled systems  with augmentation by mechanical collec-
 tors suggest that outlet mass concentrations, per se,  exert a negligible effect
 on plume opacities.  The absence of any significant correlations,  Figure 11,
 demonstrates conclusively that use of opacity measurements to predict mass
 emissions should not be attempted until more sophisticated analytical pro-
 cedures are developed.

 State of South Carolina—
      Despite the fact that comparative opacity and mass emission data were
 available for several industrial and utility boilers located in South Carolina,
 descriptive information relating to many plant design and operating parameters
 were missing.  Therefore, no effort was made to analyze these data beyond the
 plots shown in Figure 12 in which the "as received" and standardized opacity
 measurements have  been separated.  Generally, the data  set shows the same weak
 correlations exhibited for  other visual  estimates presented in this report.
 Failure to demonstrate any  strong correlation is again  attributed to the
 inherent  limitations of visual  opacity estimates plus  the fact that plant size,
 quality of maintenance, coal firing method, particulate control method  and.
 coal properties are not taken  into  account.


                                        20

-------
to
           It
            6
            o
            tn
            z
            O
            z
            o
o


OT

\-



z
o

H
<
            o
            z
            o
            o
            V)
            o

            >-
            ct
            <
            a.
                  1.0
    0.8 i
                0.6
                              O
                0.4
                0.2
 ,-, A*"
 x X   XO
 #&
£<&**>
                         'O
                                  O  X.
                               0.80
                     O


                     O
                                   J
                                   cr   or
                        xc
                           o
                     ;cxcxc
                                     X

                                     X
                                     O.70
                                               T
0.6O


 I
0,50
                                                 O- CERTIFIED IN-STACK TRANSMISSOMETER


                                                 X - TRAINED VISUAL EMISSION OBSERVERS


                                                 M- MECHANICAL  COLLECTER AND
                                                     ELECTROSTATIC  PRECIPITATOR


                                                 C - CYCLONE  BOILER
                                             M  _
                                            O   O
                                                            I
                              10
                                20             30                40


                                STANDARDIZED  OPACITY,  PERCENT
                                                                             50
            Figure 11.
            Particulate mass  concentration - standardized opacity (in-stack and visual)  —

            TVA coal-fired  utility boilers with ESP control and pulverized coal firing.

-------
N3
1.4
en
z
o
J-
o
I LZ
0
o
or
a
z I.O
t-
X
a
1- 0.8
<
sli
s *
^ o*
I- 0.6
z
UJ
SYMBOL
— OPA(
0 4m
"" X OPA(
"" 0 O

X
X
0
X X
O x
X X x
X
oo X x x
          O
          Z
          O
          o

          CO
          CO
          111
          o
          H
          
-------
State of Georgia — Georgia Power Co.—
     Figure 13 depicts the relationship between particulate mass concentration
and standardized opacity for all Georgia Power sources shown in Table A-4.  As
with the TVA sources cited earlier, (Table A-2) there is no definitive relation-
ship between particulate concentration and opacity that applies to the complete
data set.  For example, by exclusion of the extreme opacity values corresponding
to a mass concentration of 0.29^ g/am3, a simple visual estimate of the point
spread suggests a standardized opacity range of roughly 14 to 33 percent.
Similarly, a measured opacity estimate of 20 percent appears to bracket a mass
concentration range of about 0.1 to 0.35 g/am .  Although the predictive
capabilities in either case are well within an order of magnitude, any working
relationship developed from the Figure 13 data set has no value for enforcement
purposes and very limited applications for diagnostic situations.  Consequently,
the following analyses were performed to determine if more definitive mass
concentration-opacity relationships might be obtained if the Georgia Power
Company data were examined on a site-specific basis.

     Figures 14 through 30 show particulate mass concentration versus stan-
dardized opacity for several of the Georgia Power sources listed in Table A-4.
The emissions refer to single or multiple boiler operation depending upon the
number of boilers whose effluents discharge through a common stack.  Figures 14
through 18 show the relationship between mass emissions and opacity for
pulverized coal boilers with opposite or front firing.  Figures 19 through 30
provide similar information for pulverized coal boilers with tangential firing.
Linear regression lines and the correlation coefficients, r, were also computed
by the method of least squares for the curves of Figures 19 through 30.  These
equations are given in the form

                           C (g/am3) = A In T  + B
                                             s

where C is the particulate concentration at actual stack conditions, Ts is the
standardized transmittance, and A and B are constants.  Characterizing opacity
parameters (opacity index) for the curves shown in Figures 14 through 30,
Table 4, include the plume opacity corresponding to the average mass concen-
tration, for each boiler, equivalent to an emission rate of 43 ng/J (0.1 lb/
106 Btu) and the 95 percent confidence limits for certain mass emissions at a
plume opacity of 20 percent.  A modified extinction parameter has also been
computed for each curve whose function is to describe the relative obscuration
characteristics (and particle size properties) for the aerosols departing each
control device.

    Opacity ranges—Standardized opacity levels corresponding approximately
to the former NSPS of 43 ng/J (about 0.06 to 0.08 g/am3) indicate that all     ,
boilers represented in Table 4 produced effluents satisfying the EPA opacity
criterion of 20 percent.

    Since the reported values are referred to the same mass loading, one may
infer that the higher opacities relate to those effluents containing the larger
fraction of fine, light-obscuring particles.  Conversely, the lower opacities
are associated with those aerosols containing fewer fine particles.  The size
properties of the particulate emissions, in the simplest analysis, depend upon


                                      23

-------
the size of the uncontrolled aerosol and the efficiency with which the electro-
static precipitator removes the various size fractions.  In practice, however,
it is recognized that re-entrainment during plate rapping and by-pass leakage
through unelectrified areas may appreciably alter the theoretical size prop-
erties.  Furthermore, in the case of electrostatic precipitators, absolute
opacity values can also be expected to vary with the inlet concentration to the
ESP since, for fixed aerosol properties, the efficiency is nearly constant when
the loading range is not excessive.

     Prediction capability of opacity measurements—In the absence of more
details, it is difficult to estimate which of the two information bits making
up each data pair; i.e., the mass concentration or the in-stack opacity estimate,
is the more reliable.  However, if the time averaging of recorded opacity values
is performed correctly, it is believed that the accuracy of opacity readings
for a well-maintained in-stack transmissometer will exceed that of Method 5
particulate measurements.  The considerable point scatter displayed by the
Georgia Power data is attributed in part to the unavoidable combination of
effluents  from more  than one boiler when the load levels were varied and to the
intentional variation of precipitator operation to determine the  impact on
system performance.

     Estimates of  the 95 percent confidence intervals  for predicted mass con-
centrations centering about the 20 percent opacity level indicate that the
ratios of  envelope limits  range from 1.2 to 3.0.  The  procedures  used to esti-
mate confidence  intervals  are  indicated in Appendix C.  Although  this level of
accuracy  is not  satisfactory for any rigid monitoring  application, it may be
useful  for troubleshooting purposes.

     Modified  extinction parameter—The slopes  of the  curves showing  the mass
emission  versus  opacity relationships  in Figures  14 through  30  provide an
indirect  measure of  particle size  properties with an increasing slope signifying
a reduction in the concentration of fine,  light obscuring  particles.  However,
a more definitive way  to  interpret these curves is  to  compute  a modified  extinc-
 tion parameter,  Km,  whose  magnitude is directly related to  the  total  surface
area per  unit  mass of  particulate  material.  Here Km is the  product  of  (Sp)(L)
where Sp  represents  the specific projected particle  extinction area,  m  /g,
 and L the length of  the obscuring  light path  in meters as  used in Equations 1
 and 2, Section III.   Given similar Km or  Sp values  with other  viewing factors
 the same, one should expect to observe equal opacity  levels.   It should  also
 be noted  that it is not necessary  that characterizing  mean or  median particle
 diameters nor distribution parameters such as the geometric standard deviation
 be identical to furnish similar specific surface values.

      Despite the fact that several degrees of electrical energizing are cited
 in Table A-5, it is not possible to relate these variations in any detailed
 manner to plume opacity properties without more information.  However,  it was
 possible  to compare performance for certain boilers where the average energizing
 levels could be described as either incomplete or nearly complete.  Thus, when
 optimum electrification is reported,  the 1^ values diminish as shown by com-
 paring the curves of Figures 14 and 15 and Figures 27 through 30.  It is in-
 ferred here that the ESP  capability to remove fine, light-obscuring particles
 is the greatest with maximum precipitator energization.

                                      24

-------
PARTICIPATE  MASS CONCENTRATION  AT  STACK  CONDITIONS, 5/om3
•* ~c
OQ O
C
(D
!_,.
Lo Ol
a4 e ^
O rt fa
H- H- <-t =
M M rt °
n> H- H-
i-i rt O
CO •
H1 rt C O
co i-( co ^
• Co T
3 co ."*
CO rt r,
3 fa n
CO CU «
CO CO 5
0 »-! =.
3 pj
(T> H-
rt N
fl> fD
i-t D. *
CO O
• o
CO
o n
(D H-
O rt
OQ
H- Mi
Co O
o n
S3 o
fD Co
*"1 H-1
1
O Ml
0 £' 01
' n °
D.

O O O O
9 N £. 0> 00
^
***>B
M
^••; .
• ^i^,*,,.
••• •• *
• • • •
•• •• o eee
* *• •• oo
9 00 0 90000 00 *"
00 AA 0 00 00 ®
^A^
0 000
0 000 0 09
0 0 00 0 ®
• •••^» «^» •
A CkAA
00 00 99 99
A
0 ••• • • *
• **••••
• •••• •
0Att0AA ft 10
• •
A A tt -
•- w ~
A A 9 A A 0 9^ ^

9 9 9 9

9 99


.
e *
A • 9

• • •

A A *"




• A
V
«
A —
"
^ • • •


0
V
0

• ' ' - -

	 1 	 L 	 1 	 1 	 1 	 1 	 1— 	
b
o

o
io
o
8








o
§







o
^J
o












o
O)
o














9
Ul
o

                                                                   u>
                                                                   N
                                                                   3D


                                                                   (A

                                                                   i
                                                                   Z
                                                                   O
                                                                   rn

-------
NJ
                                         STANDARDIZED  TRANSKHTTANCE


                                        O.8O            0.7O              O.60
                                                                                 0.5O
ac
<
Q.
                 10
                                         20             30               40


                                       STANDARDIZED  OPACITY,  PERCENT
          Figure  14.
          Participate mass  concentration versus standardized opacity for Georgia Power, Branch

          Units 1 and 2,  opposite-fired boilers, incomplete energizing.

-------
                             LZ
PARTICULATE  MASS CONCENTRATION  AT STACK  CONDITIONS, fl/om

-------
        PARTICULATE  MASS   CONCENTRATION  AT  STACK  CONDITIONS,  g/am;
   OQ
   C
O H-
3 n
CL C
   t-1
a 03
3 rt
H- n>
rt
CD g

I-1 en
-  CD

K> O
   O
pi 3
3 O
a. n>
   3
 t-ti  rt
 *  H-
 O  O
 3  3
 rt
 I   <
 i-h  (D
 H-  1-1
 l-<  CD
 Ct>  C
 a.  CD
 o  rt
 H.  ID
 M  3
 ft)  Cu
 i-t  tu
 CD  h(
-   O.
    H-
 H-  N
 3  (D
 O  D-

 i  O
T>  -a
 t-1  W
 (D  O
 rt  H-
 (D  rt
    •-d
 (D
 3  i-h
 (B  O
 i-t  H
00
 H-  cn
 N  n>
 H-  o
 3  H
OQ  OQ
 •   H-
    SO
                            O
                            K>
          p
          OB
N
m
o
>
o
TJ
m
o
m
                                                                            D  t>0

                                                                            -I  H H
                                                                            rn  m m
                                                                            co  to cn
                                                                            -4-1-1

                                                                            o  o o
-«  "* 10
 PO H ^

 M  O °

P  Jo 3
CO  03 J^1
->!  W
O     "
                                                                            -n  TI  -n
                                                                            O  o  o
                                                                            33  30  33

                                                                            CM  ff>  -J
                                                                             i   I  i
                                                                            ^J  ->J  -J
                                                                            03  OB  00
       I

      O

      -J
      Ul
      o
       I
      p
      o
                                                                                                 p
                                                                                                 (O
                                                                                                 o
p
bo
O
                  z
                  o
     o
     N
     m
o   o
                                                                                                       z
                                                                                                       (A
                                                                                                       2
                                                                                                  p
                                                                                                  in
                                                                                                  o
                                                                                                       O
                                                                                                          p
                                                                                                          'u
                                                                                                          o

-------
                                            6Z
   H-
  00
   e
   i-i
   (D
sc nj
[U  p
3  H
3  rt
O  H-
3  O
CL C
3  rt
H- fD
rt
   B
£> CD

   CO
o
T3  O
13  O
O  3
cn  o
H- n>

fD  rt
 I  H
Ifi (U
H- rt
i-(  H-
(D  O
Cu 3

CT1 ^
M CO
m  C
   co
H- rt
3  fu
O  3
O  D-
3  CQ
m  H-
rt  N
ID  ro
   Pu
CD
3  O
n>  T)
)-(  ft)
tro  o
H. H.
N  rt
H-^

00  Hi
•  o
   1-1
   fD
   O
  00
   H-
PARTICULATE  MASS  CONCENTRATION  AT  STACK   CONDITIONS,  g/am3
                       p
                       ro
                                                                 p
                                                                 at
P
a»
       N
       m
       o
       >
       o
T)
m
3)
o
m
z
          en
          O
                                                                            9*

                                                                               (X
                                                                        V)
                                                                         I
                                                                        p
                                                                        b
                                                                        CD
                                                                        r\>
                                         O
                                                                             10
                                                                             O
                                                                                    p
                                                                                    OS
                                                                                    o
                                                                             p
                                                                             
-------
                                              oe
  H-
  (K
i   PARTICIPATE   MASS  CONCENTRATION  AT STACK  CONDITIONS,  Q/om3
  00
H. ex
rt P)
   i-t
W Cu
»  H-
   N
O ft)
•o a,
T)
O O
CO T3
p. pj
rt O
fD H-
 I rt
 H l-h
 ft) O
 Cu H

 cr o
 O ft)
 H- O
 M H
 ft) OP
 M H-
 CO pi
   O

   fD
   i-t
                               O
                               ro
                                                                    p
                                                                    (71
H-
3
O
O
g
T)
1— '
ft)
rt
fD

fD
3
ft)
i-t
00
N
H-
3
OQ
•














pg
H'
rt
n
cr
tD

^-*

f~]
3
H-
rt
CO

I-1
P>
3


NJ

hti
hf
O
3
rt
1
hti
H-
I-t
fD
D.
P>
3
a-

*T3
P>
i-t
rt
H*
O
C

p>
rt
fD

3
PJ
CO
CO
o
o

o
fD
rt
n
P)
rt
H-
0
3

z
o
^
yj
0
N
m
0

o
*T3
>
o

     T3
     m
     3)
     o
     m
     z
                                                                               -i  ->  O
                                                                                r\>    —
                                                                               .   tO 3
                                                                               f> -* 
                                                                                  \
                                                                               O
                                                                                                Z
                                                                                                O
                                                                                              N
                                                                                              m
                                                                                              o
                                                                                                2)
p
ff>
o
o
m
                                                                                          o
                                                                                          'u
                                                                                          o

-------
PARTICULATE  MASS  CONCENTRATION  AT STACK  CONDITIONS,  
-------
UJ
ro
*     1.0

 5  0.8
         en
         z
         o
         o


         §  0.6
         o

         I-
         cn

         H
         <


         o  0.4
         Z
         tu
         o
O
o

en
en
         UJ
            0.2
                  o
         (C
         <
         0.
                         0.90
                               STANDARDIZED  TRANSMITTANCE


                              0.80           0.70               0.60
                                                 '
                                                  °-0221
                   r  = 0.94!


                   r2 = 0.886


                   O TEST DATA  FOR  6-78

                   A TEST DATA  FOR  4-79
                                                                T
                                                        I
                           10
                                                                 T
                               20             30                40

                             STANDARDIZED  OPACITY,  PERCENT
0.50
 50
         Figure  20.   Particulate mass loading versus standardized opacity for Georgia Power,

                      McDonough Units 1 and 2, tangentially-fired boilers, incomplete energizing.

-------
                                  ee
PARTICULATE  MASS  CONCENTRATION  AT  STACK  CONDITIONS, q/om;
                                                      p
                                                      in
p
a>
                                                              -i -•  O
                                                              IN)   ,~

                                                              I, " *
                                                             .1" o ^

                                                              P io°
                                                              to tn 3
                                                              O ro  w

                                                                  ~
                                                                   l
                                                                   VI
                                                                    I
                                                                   p

                                                                   b

                                                                   0)
                                                                        p
                                                                        lo
                                                                        o
                                                                        p
                                                                        '&
                                                                        o
                                                                        p
                                                                        '-J
                                                                        o
                                                                        p
                                                                        o>
                                                                        o
      (A

      >
      z
      o
      N
      m
      o
                                                                            z
                                                                            w
                                                                            z
                                                                            z
                                                                            o
                                                                        o
                                                                        Ul
                                                                        o

-------
PARTICULATE  MASS  CONCENTRATION  AT  STACK  CONDITIONS,  g/om3
                                                            p
                                                            cn
                                                           T
                 o
                 CD
                                                            rn m rn
                                                            c/> w t/>
                                                            -< -t H
O
>
                                                                 O
                                                                 J>
-n -n -n
O O O
7} "30 "X

cn (A CO
 i  I  I
-g -J --J
ID CO OB
                                                                     ->  i O
                                                                     r\)    ^~
         p
         If)
                                                                           I
                                                                           p
                                                                           In
                                                                           1C
                                                                           cr>
                                                                           u>
                                                                           I
                                                                           O
                                                                           b
                                                                           o
                                                                                 p
                                                                                 cn
                                                                                 O
                        (A

                        >
                        Z
                        O
                        o
                        N
                        m
                        a
                                                                                     Z
                                                                                     (A
                        Z
                        O
                        m
                                                                                 o
                                                                                 01
                                                                                 o

-------
   H-
  OP

   i-t
   fD

   l-o
   u>
pi  cu
rt  ^i
(D  rt
CO  H-
   O
C  C
3  M


CO  fD
   CO
rO CO

CU  O
3  O
0. 3
   o
UJ (D
-  3
   rt
rt f(
p  Cu
3  rt
OP  H-
fD  O
3  3
rt
H- 
r-1 H
H CO

t  cn

H- CO
>-{ rt
(C CU
/^. y
   ex
O* [U
O i-l
H» P-
M H-
fD N
 N (D
CO Pu

   O
 H-T)
 3 CO
 O O
 O H-
 S rt
 (D i-h
 rt O
 fD i-t

 fD O
 3 (D
 fD O
 l-t OP
OP H-
 H- Cu
 N
 H- T)
 3 Q
OP <
 •  fD
        PARTICIPATE   MASS   CONCENTRATION  AT  STACK   CONDITIONS,  g/om'

              o                   o                   o                   p                   p
            w  -
        a
N
m
o

o
2  S
o
         •o
         rn

         o
         m
         z
                                   T
                                     T
T
T
T
                   O
                                                                           Qxt>O

                                                                           rn rn m m


                                                                           o o o o
                                                                  o o o o
                                                                  TO 33 3D 3D

                                                                  cn 01 OJ ro
                                                                   i  i   i  i

                                                                             p  2°
                                                                             fn  — ^
             VI
             O
                                                                                            *
                                                                                                  o
                                                                                                  eo
                                                                                                  0
                                                                                                  p

                                                                                                  o
                                                                                                  p
                                                                                                  in
                                                                                                  o
                                                N
                                                m
                                                o
                                                                                                       z
                                                                                                       w
                                                                                              z
                                                                                              o
                                                                                              m
                                                                                          o
                                                                                          'w
                                                                                          o

-------
    PARTICULATE  MASS  CONCENTRATION  AT  STACK  CONDITIONS, g/om3
OP
c
l-l
(D

NJ
•3 o
ro
1 1
p
'+
1 1
p
on
1 I
0
CB

oO


-i -t
m rn
t/> en
-( H

O O

-t H
J> >

Ti ~n
o o
                                                                -j -g
                                                                <£ CD
                                                                      -•  ->  o
                                                                      rv>
                                                                        !£ 3
                                                                           O

                                                                           Ul
                                                                                p
                                                                                ^
                                                                                o
                                                                                 p
                                                                                 
-------
PARTICIPATE MASS CONCENTRATION AT  STACK CONDITIONS,
                                                                 >
                                                                 z
                                                                 o

                                                                 3}
                                                                 O

                                                                 N
                                                                 m
                                                                 o
                                                                 z
                                                                 (A
                                                                 H
                                                                 H
                                                                 >
                                                                 z
                                                                 o
                                                                 m

-------
       PARTICULATE  MASS  CONCENTRATION  AT  STACK  CONDITIONS, fl/am'
   H-
  OQ
ro  rt
en  H-
   o
a c
3  I-1
H. fu
rt rt
   ro
~~l
**   =3
   (U
rt 01
(U  CO
3
  O
3  3
rt O
I-1 rt
   ro
 a" n
 o en
 H- C
 I—1 CO
 m
 f-l en
»  rt
   tu
 H- 3
 3 cu
 O (u
 O ^
 S CL
ro
rt
ro

ro
3
ro
i-f
   N
   ro
   a.
 N
 H- iti
 3 O
 OQ N

   O
   ro
   o
   K
   OQ
   T)
   O

   ro
                              p
                              ro
                                                    O
                                                    en
                                                                         p
                                                                         00
              O
                O
                o
                                                                          u>
                                                                          (A
                                                                          
       Z
       O
       >
       •33
       o
I  rt   N
i-h H-   m
H- O   ™
^ 3   O
       o
       "D
ro
O
             I
       o
       m

       o
       m
       2:
                                                                               p
                                                                               00
                                                                                O
                                                                                b
                                                                                o
                                                                                en
L
          o
                                                                                     p
                                                                                     io
                                                                                     O
                                                                        P
                                                                        OB
                                                                        O
                                                                        p

                                                                        o
                                                                                      p
                                                                                      in
                                                                                      o
                                                                                         (A
                                                                                         Z
                                                                                         a
                                                                                         N
                                                                                         m
                                                                                         o
                                                                                         (A
                                                                               o
                                                                               m
                                                                        o
                                                                        «i
                                                                        o

-------
       PARTICULATE  MASS  CONCENTRATION  AT  STACK  CONDITIONS,  g/arrr
   H-
  m
   to
   -J
W ^0
o  P>
e i-t
(B  rt
3  H-
   n
c! C
3  I-4
H- fB
rt CO
(U CO
3
OQ O
(D O
3 3
rt O
H- (D
(U 3
K-1 rt
t-1 it
V! p3
 I rt
i-h H-
H. O
H 3
(D
a. <
   to
a- H
o en
H- C
M CO
CD
i-f CO
»  rt
   ("
3 3
(D O-
   N
 O tt>
 O D-

 "3 O
 (D
 3
 (I» Ml
 i-f O
 OQ 1
 H-
 N O
 H- (D
 3 O
 OQ i-(
 •  OQ
   H-
   (U
   §
   (D
     O
O
ro
p

in
30
O

N
m
o
>
o
 T3
 m
 31
 o
 m
 z
                                                                          O
                                                                                 i
                                                                                 t\>
                                                   p
                                                   ro
                                                   O
                                                   O<
                                                   O
                                                                               o
                                                                               '-J
                                                                               o
                                                                                   X
                                                                                   o
                        N
                        m
                        a
                                                                                p
                                                                                o
                                                                                o
                                                             Z
                                                             O
                                                             m
                                                                                o
                                                                                'yi
                                                                                o

-------
       PARTICIPATE  MASS  CONCENTRATION   AT  STACK  CONDITIONS,  g/onr
   •D
   H-
   00

   i-t
   fD

   fO
   00
W
O
   H-
   O
   c.
a
H-
rt CO
(B CO
3
00 O
(t> O
3 3
rt O
H- (D
[U 3
 I  rt
 t-h H-
 H- O
 H 3
 (t>
 O- <
   fD
 cr ^
 o co
 H- e
 M CO
 n>
 i-! CO
 3  3
 (B  a.
 cu  (a
    N
 O  IT)
 O  CU
 ro  cu
 rt  o
 (D  H-
    rt
 n> ^<
 3
 (B  1-h
 i-t  O
 00  rj
 H-
 N  O
 H-  (T)
 3  O
 00  -i-l
 •  00
    H-
                         p
                         Ki
o
en
p
OB
CO
o
O

N
m
o
 >
 o
 T3
 m
 x
 o
 m
 z
                                                                      00
                                                                                         O
                                                                              p£
                                                                              % 3
     O O
     33 3D

     LM CD
      i  i
     -J ->l
     (X) CD
                                                                                 00
                                                                                          I
                 -J
                 VO
            yi
            O
                           N
                           m
                           o
                                                                                            J»
                                                                                            z
                                                                                        p
                                                                                        m
                                                                                        o
                           o
                           m
                                                                                        o
                                                                                        CM
                                                                                        o

-------
        PARTICIPATE  MASS  CONCENTRATION  AT  STACK   CONDITIONS,  q/am;
  oo
   e
   l-i
   ro
O  cu
s:  n
(D  ft
0  H-
   o
d  c
3  M
rt CO
(u CO
3
TO O
(D O
3 3
rt O
H- fD
03 3
(—' rt

vj 03
 I rt
l-h H-
H- O
^i j«i
fD
a <
   (D
O"* ^
o co
H- e
M CO
fD
1-1 CO
»  rt
   03
H- 3
3 P-
O Oi
O i"l
9 a.
T3 H-
H" N
fD fD
rt CL
fD
   O
fD "0
3 0>
ro n
i-l H-
00
N
M. Ml
3 O
oo '-t
•
   o
   fD
   O
   t-i
   TO
   3
   fD
   H
O
fvj
O

O)
                                                                                                   O

                                                                                                   OR
        VI
        o
        N
        m
        o
        >
        o
        T3
        m
        •jo
        o
        m
        z
            en
            O
                             O
                                            O x >
                                            m m m
                                            CO (/) C/>
                                            H -H H

                                            o o o

                                            H -t H
                                            -n TI -n
                                            o o o
                                                                                OJ  -C> CM
                                                                                 I  I   I
                                                                                -g  •>! -^
                                                                                IO  08 00
                                                           o
                                                           p
                                                           b
                                                           o
                                                                 O


                                                                 O
                                                                                                     p
                                                                                                     o»
                                                                                                     o
                                                                 p
                                                                 '>!
                                                                 O
                                                                                                     O
                                                                                                     in
                                                                                                     o
                            X»
                            X
                            o
                            >
                            130
                            O

                            N
                            m
                            o
                                                                                                          z
                                                                                                          (A
                                                                      Z
                                                                      o
                                                                      m
                                                                  o
                                                                  Ul
                                                                  o

-------
         PARTICULATE  MASS  CONCENTRATION  AT  STACK  CONDITIONS,
   H-
   TO
   C
   ft
   m

   UJ
   o
   O
   c
rt CD
PJ CO
3
OQ O
fD O
3 3
rt O
H- fD
(U 3
M rt
M i-(
•xj pj
 I rt
l-h H-
H- O
H 3
(D
O. 
   o
ro -a
3 (B
fD n
i-l H-
CW rt
H. ^
N
H- l-h
3 O
00 1-1
•
   O
   fD
   O
   i-t
   00
   H-
   C"

   '•tf
   o
Z
O
N
m
o
Z
o
m

-------
                TABLE 4.  SUMMARY OF CHARACTERIZING OPACITY PARAMETERS FOR MASS  EMISSION VS.
                          OPACITY RELATIONSHIPS, GEORGIA POWER CO. PULVERIZED  COAL BOILERS
U>
/ \ Figure
BoHer(s) ^
Opposite or Front-fired
Branch Units 1 and 2
Branch Units 3 and 4
Hammond Units 1, 2 and 3
Hammond Unit 4
Mitchell Units 1, 2 and 3
Tangentially-fired
Arkwright Units 1-4
McDonough Units 1 and 2
Wansley Unit 1
Wans ley Unit 2
Yates Units 1, 2 and 3
Yates Units 4 and 5
Yates Unit 6
Yates Unit 7
Bowen Unit 1
Bowen Unit 2
Bowen Unit 3
Bowen Unit 4

14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
Estimated* , . Modifiedt
Mass emission range „„*..!,,„ ,--,•„„
°?a«£y (95% confidence limit) "^^
index at 20% opacity g/am* ?««««
percent Km

9.5 0.15 - 0.24
13.0
10.0 0.12 - 0.19
12.5
3.5

8.0 0.21 - 0.38
7.5 0.16 - 0.23
11.5 0.06 - 0.18
14.5 0.06 - 0.16
11.5
19 . 5
9.5 0.00-0.16
10.0 0.18 - 0.26
11.0
11.5
6.5
7.0

-l-5f
-0.60§
-1.4
-0.88
-0.80

-1.1
-1.4
-1.8
-2.0
-1.8
-0.90
-0.90
-1.1
-0.40§
-0.50§
-0.70f
-0.80f
               *Estimated opacity  standardized to a 4.0 m (~ 13 ft) stack diameter and
                adjusted to  the average mass  emission for each boiler corresponding to
                43 ng/J (0.1 lb/106 Btu)
               tlL^ = (S )(L)  from  Equations  1 and 2.
               fIncomplete energizing.
               §Nearly complete energizing.

-------
                                 REFERENCES


1.  Ensor, D.S., and Pilat, M.J., "Calculation of Smoke Plume Opacity from
    Particulate Air Pollutant Properties."  J. Air Pollut Control Assoc.
    21, No. 8, 496:501, 1971.

2.  Federal Register, Vol. 44, No. 127, 37960-37961, June 29, 1979.

3.  Schneider, W.A., "Opacity monitoring of stack emissions:  A design
    tool with promising results."  The 1974 Electric Utility Generation
    Planbook.  McGraw-Hill, NY, 1974.

4.  Hurley, T.F., and Bailey, D.L.R, "The Correlation of Optical Density
    with  the Concentration and Composition of the Smoke Emitted from a
    Lancashire Boiler."  J.  Inst. Fuel 31., 534, 1958.

5.  Stoecker, W.F.,  "Smoke-Density Measurement."  Mechanical Engineering,
    _72, 793, 1953.

6.  Reisman, E.,  et  al., In-Stack Transmissometer Measurement of Particulate
    Opacity and Mass Concentration,  Philco-Ford Corporation, EPA-650/2-74-120,
    1974.

7.  Schiff, H.  Unpublished  memorandum to Metropolitan Edison Company,
    10 February 1977.

8.  van de Hulst, B.C.,  Light Scattering by  Small Particles, John  Wiley &
    Sons, Inc.  New York,  1957.

9.  Mie,  G.  von,  "Beitrate zur Optik Truber  Medien;  Speciall Kolloidaler
    Metallosungen," Ann.  Phys.  (Leipzig)  25,  377,  1908.

10.  Rayleigh,  J., "On  the Electromagnetic  Theory  of  Light." Phil. Mag.,
     12., 81,  1881.

11.   Ensor &  Pilat,  op.  cit.

12.   Severson,  S.D., et al.,  Economic Evaluation of Fabric Filtration Versus
     Electrostatic Precipitation for Ultrahigh Particulate Collection
     Efficiency, EPRI FP-775, 1978.
                                      44

-------
13.   Halow,  J.S.,  and Zeek,  S.J.,  "Predicting Ringelman Number and Optical
     Characteristics of Plumes."  J.  Air Pollut.  Control Assoc., 23, No. 8,676,
     1973.

14.   Weir,  A.  Jr., et al.,  "Factors Influencing Plume Opacity," Environ Sci
     and Tech, 10, No. 6,  1976.

15.   Fennelly, P.P., and Lilienfeld,  P., OPACITY HANDBOOK, internal report
     to U.S. EPA,  Contract Number 68-01-4143, Technical Service Area 2,
     Task Order Number 13 (Oct 1978)

16.   40 CFR 60, Appendix A,  Method 9

17.   Hood,  K.T., A.L. Coron, H.S.  Ogelsby, R.O. Blosser, "Measuring Plume
     Opacity," TAPPI, £0,  141, 1977.

18.   Ensor & Pilat, op. cit.

19.   Ibid.

20.   McCain, D., J.P. Gooch, W.B.  Smith, "Results of Field Measurements of
     Industrial Particulate Source and Electrostatic Precipitator Performance"
     J. Air Pollut. Control Assoc., 25, No. 2, 117, 1975.

21.   Severson, Stephen D., op. cit.

22.   Dennis, R. et al., Filtration Model for Coal Flyash with Glass Fabrics.
     GCA/Technology Division, Bedford, Massachusetts, EPA-600/7-77-084,
     1977.

23.   Schneider, W.A., op.  cit.

24.   Colton, T., "Statistics in Medicine" Chapter 6, Regression and
     Correlation, 189-214, Little, Brown and Company, Boston 1974.
                                      45

-------
              APPENDIX A

DATA TABULATIONS FOR ALL MASS EMISSION
       AND OPACITY MEASUREMENTS
                   46

-------
TABLE A-l.  CONCURRENT MASS EMISSIONS AND
            WITHOUT PARTICULATE CONTROL.
OPACITY ESTIMATES FOR COAL-FIRED BOILERS WITH AND
DATA FOR EPA REGIONAL AND STATE SOURCES.
Soils
test
av.d
Boiler type
r naiae, and design ^
number, caaacitv3 s/^"
date _~M.-a ' a»-.mir.
Exhaus t Load
temperature during test
°C M«"e
(OF) (10- Stu/hr)T
Farticulace loading
at stack conditions
ng/J
(lb/105 Btu)
g/am-
tgr/acf)
Qpscityc
1
Stack „ . Fuel Fuel
Standardized . , . ,„
diameter . ^ weight weight
opacltva -^ ,
m 7 ^
(ft) m sulfur ash
Fuel heat
content
kJ/fcg
(Btu/li)
EPA- Reg ion I
PSC NH
Test 11

Test 12

Test 3
Test 4

Test 5

PSC NH
Test 1

Test 2

PSC NH
Ti-.st 1

Test 4

Test 5

Test 6

Test 7
Test 8

Test 9

Test 10

PSC SH
Test 3

Test 4

SOU le
(4-7 7) f

(4-77) f

(7-77)
(7-77)

(7-77)

12,023
(424,574)
11,372
(401,591)
Cvclone boiler ,„
120 Mf, flyash (4^'^
reinjection " '~
11,646
(411,268)
10,869
(383,850)
BOW 2
(8-77)gy 33,362
I ,. , , ., (1,178,151)
\ Cyclone boiler ' '
(8-77)8i 347 MW (3015) 33,554
) (1,184,943)
BOW 1
(4-77)'^

(4-77)g

(4-77)s

(4-77)8

(4-77) g
(4-77)g

(4-77) f

(4-77) f
11,612
(410,058)
11,520
(406,833)
11,589
(409,252)
11,143
Cyclone boiler (393,527)
•120 Mi, flyash
rejection (40o;785)
11,223
(396,349)
11,235
(396,349
10,732
/ (379,012)
BOW 2
(8-77)gJ 33,036
A Cyclone botle, <1."6,666)
(8-77)rl 347 MJ (3015) 32,718
' (1,155,430)

' 151
(303)
153
(308)
154
(310)
154
(309)
153
(308)

166
(330)
166
(331)

153
(308)
155
(311)
154
(310)
152
(305)
148
(298)
146
(295)
154
(310)
162
(324)

163
(325)
161
(322)

_
(1124)
_
(1118)
(1138)
-
(1140)
_
(1060)

	
(3201)
—
(3196)

_
(1140)
_
(1120)
_
(1119)
__
(1137)
(1058)
_
(922)
_
(1117)
_
(1125)

_
(3204)
—
(3174)

274
(0.637)
133
(0.309)
114
(0.265)
119
(0.277)
148
(0.344)

59
(0.137)
58
(0.136)

841
(1.95)
107
(0.249)
265
(0.617)
203
(0.472)
313
(0.729)
210
(0.488)
140
(0.327)
162
(0.378)

57
(0.132)
51
(0.118)

0.45O-E
(0.197)
0.230-E
(0.100)
0.194-E
(0.085)
0.204-E
(0.089)
0.254-E
(0.111)

0.101-E
(0.044)
0.098-E
(0.043)

1.45-E
(0.634)
0.183-E
(0.080)
0.450-E
(0.197)
0.364-E
(0.159)
0.513-E
(0.224)
0.303-E
(0.132)
0.245-E
(0.107)
0.299-E
(0.131)

0.099-E
(0.043)
0.087-E
(0.038)

20

30

2^
?4

28


60

41


41

15

22

26

12
25

34

17


50

66


(VE)

(ra)

(TR)
(TR)

(TR)


(TR)

(TR)


(TR)

(TR)

(TR)

(TR)

(VE)
(VE)

(TR)

(VE)


(TR)

(TR)


2.82
(9.25)
2.82
(9.25)
2.82
(9.25)
2.82
(9.25)
2.82
(9.25)

4.85
(15.9)
4.85
(15.9)

2.82
(9.25)
2.82
(9.25)
2.82
(9.25)
2.82
(9.25)
2.82
(9.25)
2.82
(9.25)
2.82
(9.25)
2.82
(9.25)

4.85
(15.9)
4.85
(15.9)

27 ' 2.59 6.96

40 2.59 6.96

32 3.00 7.30
32 3.00 7.30

37 3.00 7.30


53 3.9 9.44

35 3.9 9.44


53 2.86 7.08

21 2.85 7.07

30 2.85 7.07

35 2.72 7.06

17 2.72 7.06
34 2.72 7.06

45 2.59 6.96

23 2.59 6.96


44 3.9 9.44

59 3.9 9.44


32,264
(13,871)
32,264
(13,871)
32,890
(14,054)
32,890
(14,054)
32,890
(14,054)

31,920
(13,723)
31,920
(13,723)

32,773
(14,090)
32,210
(13,848)
32,210
(13,848)
32,673
(14,047)
32,673
(14,047)
32,673
(14,047)
32,264
(13,871)
32,264
(13,871)

. 31,920
(13,723)
31,920
(13,723)
                                           (continued)

-------
TABLE A-l (continued)
Boiler na^ie,
test rubber,
and dace
NORTH DAKOTA
MINNKOTA PCWER
COOP. (9-75)
SQUAS£ BCTTE
YOUNG 2 (6-78)
HESKETT - UNIT 1
Tesc 6 (12-75)
HESKETT - UNIT 2
(12-75)
LELAND OLDS
UNIT 1 (5-75)
-t-
oo
LELAND OLDS
UNIT 2 (12-76)
MDU-BEULAH UNITS
3,4,5 (4-76)
MDU-BEULAH
UNIT 1 (10-71)
BASIN ELEC.
VELVA 2
Test 3 (8-78)
BASIN ELEC.
VELVA 2
Test 4 (8-78)
UPA-STANTON
(6-76)
Seller type F,.^ Exhaust
and design _te cemperatur.
capacitya _ 3 . ^ 0^
(10' Btii/hr)-r '--'--V-

Lignite'
utilitv 31,000 154
boiler 235 MW (1,100,000) (310)
Lignite
utilitv 53,500 78
boiler" 440 MW (1,890,000) (172)
Lignite
utility 5,312 174
boiler 25 MW (187,600) (345)
Lignite
utility 10,200 154
boiler' 66 MW (360,000) (309)
Lignite fired — —
boiler 216 MW - -
Lignite fired 62,300 204
boiler 440 MW (2,200,000) (399)
Lignite — —
boiler - -
Lignite fired — —
boiler

Lignite
utility 4,069 206
boiler 21 MW

Lignite
utility 3,859 192
boiler 21 MW (136,290) (377)
Lignite
utility - -
boiler 172 MW - -
Particuiate loading"
L0 at stack conditions ,-_,.,-»;,c
e durinE test Opacity
wy ~~ 	 ' ~ °
U0= Btu/hr)T {lb7|gi stu) (g^f)

3 0.0039-E 7 (VE)
(2425) (0.007) (0.0017)
442 14 0.0:3-E&S 19 (VE)
(5048) (0.033) (0.010)
- 8 0.0087-E 5 (VE)
(340) (0.019) (0.0038)
7 0.0087-E
(751) (0.016) (0.0038)
3-7 (VE)
(2236) (0.008)
- 9 0.0127-E 15 (VE)
(4752) (0.022) (0.0056)
72-5 (VE)
(159) (0.168)
710 - 35 (VE)
(63) (1.65)

18.4 10 0.014-E 7 (VE)
(325) (0.024) (0.0062)

17.7 7 0.0092-E 6 (VE)
(294) (0.016) (0.0040)
43 - 10 (VE)
(1237) (0.101)
Stack .. . Fuel Fuel Fuel heat
01 ^ Opacity" , , kj 'k«
(fc) ' sulfur ash (Btu/lb)

5.79 5
(19)-
7.62 W
(25)
2.13 9

3.66 5
(12)
6.71 9
(22)
2.29 9
(7.5)
1.52 68
(5)

1.83 15
(6)

1.83 13
(6)
4.57 9
(15)

-
-
15,991
(6,875)

16,080
(6,913)
-
-
- -

- - -

- -
_
(continued)

-------
                                                      TABLE A-l  (continued)
\D
Boiler name,
test number,
and date
CATERPILLAR
TRACTOR
QECATUR (4-77)
PACIFIC PWR & LT
CESTRALIA 1
(7-77)
ADOLPH COORS CO.
(6-77)
EPA-Regiop V
OHIO EDISON
SAMMS-STACK 1
(4-78)
OHIO EDISON
SAMMIS-STACK 2
(4-78)
KAISER ALUM.
(3-78)1
CENTRAL OHIO
PSYCH. HOSP.
Test 1 (9-78)
ARKANSAS
POTLATCH CORP.
Test 1
Test 2
Test 3
NEBRASKA
WRIGHT PWR STA
UNIT 8 (10-77)
3ciier type
and design
capacity3
(10- 3tu/hr)_
Coal-f ired
steaa boiler
Coal-fired
utility
boiler 680 MK
Corner-fired
coal boiler
2 front fired
pulv. coal
185 MW each
2 front fired
pulv. coal
185 MK each
2 coal-fired
boilers,
common stack
60,000 Ib/hr
steam, chain
grate stoker





Flow Exhaust Load
a^/ain "% . We
= 900 163
•=32,000) (326)
_
5,100 179
(180,000) (355) . (418)
_
_
2,061 221
(72,775) (429) (128)
_

2,915 210
(102,930) (410)
4,179 • 210
(147,564) (410)
4,182 210
(147,700) (410) -
_
Particulate loading
at stack conditions Opacl^=
y
0.064-F 0 (VE)
(0.028)
- - 10 (VE)
14 est. 0.02-F 0 (VE)
(0.032) (est. =0.01)
2,073
(4.82)
1,479 - 98 (VE)
(3.44)
247 0.289-S 18 (VE)
(0.576) (0.126)
- 4 (VE)

22 0.044 11 (VE)
(0.05) (0.0193)
22 0.048 6 (VE)
(0.05) (0.0211)
9 0.017 6 (VE)
(0.02) (0.0075)
44 - 26 (VE)
(0.1014)
diameter Stan
-------
TABLE A-l  (continued)
Boiler type Flov Exb.aust
Boiler name, and design rate temperature
test number, capacity" __3 ;-_.;r Of~
and date _ Mfe (i>cfm) ''°F)
WRIGHT PWS STA
UNIT 8 (1Q-7T) — ~


(10—77) —

(10-77) ~ —

(10-77)

(10-77)
(10-77)
(10-77)
(10-77) 91 MW (800)
~ ~~

KRAMER POKER STA - -
UNITS 1 & 2 - -
FLORIDA
TAMPA ELEC.
Gannon 5 Pulv. coal;
Test 2 (7-78) opp. 240 MW 13,600 162
(2386) (481,000) (323)
BIG BEND
UNIT 2 Pulv. coal;
Test 2 (10-78) opp. 350 MW 34,800 140
(3070) (1,230,000) (284)
INDIANA
WASH PWR & LT
Boiler 1
lest I (4-75)J Chain grate 1,130 311
(120) (39.900) (592)
Boiler 2 ,
Test 1 (6-75) I 1,260 179
/ (44,700) (355)
o / Chain grate
Boiler 2 ( .
Test 3 (6-75)k> ' ' 2) 1,390 205
(49,200) (401)
Particulate loading*1
Loaci at stack conditions
durine test
. ,«? L e ,~ •. ng/J g/anj
- 26 —

(0.0596)
- 72 -

(Q.1664)
- 47 -
(0.1085)
— 54 —
(0.125)
56 -
(0.130)
.83
(0.193)
- 80 -
(0.185)
187


26 -
(0.060) -


240 5 0.0158-E
(2386) (0.012) (0.0069)

350 77 0.119-E
(3070) (0.18) (0.052)



- 452 0.520-N
(74.3) (1.05) (0.227)
- 813 0.259-N
(23.0) (1.89) (0.113)
374 0.200-N
(42.6) (0.87) (0.088)
Opacity0
'
15 iVE)


20 (VE)


22 (VE)

31 (VE)

23 (VE)
31 (VE)
19 (VE)
32 (VE)


5 (VE)


0 (VE)

11 (VE)



47 (VE)
16 (VE)
42 (VE)
SCack Standardized
diameter a?acltyd
- 1 *
4 • n

(95
2.74 27

(9)
2.74 31
(9)
2.74 42
(9)
2.74 31
(9)
2.74 41
(9)
2.74 27
(9)
2.74 44


2.57 8
(8.42)


4.45 0
(14.6)

7.32 6
(25)



3.66 50
(12.0)
3.66 17
(12.0)
3.66 45
(12.0)
?uel Fuel Fuel heat
weight weight content
% % kj/kg
sulfur ash (Btu/lb)
Same as previous test


Same as previous test


Same as previous test

Same as previous test

Same as previous test
Same as previous test

0.42 - 6.6 - 27,200-
0.47 14 28,000
(11,700-
12,400)
0.73 3.33 29,960
(12,881)


1.1 11 27,600
(11,900)

3.0 11 27,500
(11,800)



-
_
-
    (continued)

-------
TABLE A-l  (continued)
Boiler type
Boiler name, and design
test number, capacity3
and date ?$J
(10= Btti/hr)T
OLIN at Covington
Boiler 2
Test 1 (10-75) Spreader
stoker (KlOO)
CMC at Anderson
Boiler 2 Coal-fired
Test 1 (6-76) steam boiler
«slOO)
CSAKFOSDSVILLE
ELEC. Boiler 5
Test 1 (11-75) X
—
Test 2 (11-75)1
—
Test 3 (ll-75)k
-
Boiler 6
Test 1 (ll-75)k
—
Test 2 (ll-75)k

Test 3 (ll-75)k

NEW YORK STATE
ANACONDA BRASS Coal-fired
Buffalo (2-77)m underfeed
retort (24)
CITY OF
BUFFALO; Publ.
School ( — ) Manual stoker
(1.5)
CARBORUNDUM
Niagara Falls
(6-77) n Spreader
stoker (85)
MIDDLETOWN
STATE HOSPITAL
Test 2 (2-73) Coal-fired
steam boiler
Flow
rate
am- ./rain
(acfm)


740
(26,000)


1,270
(45,000)


2,030
(71,600)
2,040
(72,200)
2,050
(72,400)

1,910
(67,300)
1,910
(67,500)
1,950
(68,800)


600
(21,000)


110
(3,800)


760
(27,000)


—
—
Exhaust
temperature
°C


169
(336)


204
(400)


196
(384)
194
(381)
196
(385)

211
(411)
214
(418)
216
(421)


102
(215)


-
—


—
—


193
(380)
Load
during tes t
(10s Btu/hr)T


-
(57)


—
(94)


_
(86)
_
(95)
_
(125)

_
(170)
	
(170)
	
(190)


—
(25)


-
(1.5)


—
(82)


_
(57)
Parttculate loading
at stack conditions -_ . c
Opacity'-
ng/J g/am-3
(lb/106 Stu) (gr/acf)


619
(1.44)


190
(0.44)


1152
(2.68)
1109
(2.58)
1015
(2.36)

175
(0.407)
299
(0.695)
204
(0.474)


215
(0.5)


542
(1.26)


200
(0.46)


131
(0.42)


0.847 58 (VE)
(0.370)


0.264-C 27 (VE)
(0.115)


1.26-C 49 (VE)
(0.550)
1.47-C 52 (VE)
(0.642)
1.35-C 53 (VE)
(0.588)

0.281-C 66 (VE)
(0.123)
0.477-C 72 (VE)
(0.209)
0.344-C 70 (VE)
(0.151)


0.16-C 10 (M9)
(0.07)


0.13-N 33 (VE)
(0.06)


0.38 6 (VE)
(0.17)


~20 (VE)

Stack Standardised Fuel ^ F'jel hef
diameter . f wexgnt weight content
a opacity11 7° %0 fcj/kg
(ft) Z sulfur ash (Btu/lb)


2.13 80
(7.0)


1.65 53
(5.42)


2.03 73
(6.67)
2.03 76
(6.67)
2.03 77
(6.67)

2.67 80
(8.75)
2.67 85
(8.75)
2.67 84
(8.75)


2.4 16
(7.8)


0.78x0.94 87
(2.6x3.1)


3.15 8
(10.3)


3.35 ~23
(11.0)


- - -
—


— — —
—


3.69 10.8 30,290
(13,022)
3.41 11.7 29,800
(12,811)
3.82 12.4 29,680
(12,759)

3.05 • 11.4 29,720
(12,778)
3.39 11.1 29,920
(12,862)
3.42 12.1 29,510
(12,688)


— — —
—


3.3 - 30,630
(13,167)


— — —
—


2.69 7.9 31,615
(13,592)
    (continued)

-------
TABLE A-l (continued)
Seller type
Boiler name, and design
test ausbsr, capacity3
and date M&L
HO'- 3tu/"hr),
MDDLETOWN
STATE HOSPITAL
Test 3 (2-73) I
f Coal-fired
,_ -~*( steam boiler
Test 4 (2-;3;)
UNION CARBIDE
Niagara Falls
Test 1 (11-77) ,
Test 2 (11-77)' C^n baklng
1 furn. 4
Test 3 (11-77)1
PRESTOLITE CO.
Niagara Falls
(jl Test 1 (11-77),
to I
Test 2 (ll-77)> B&W east coal
( boiler (24)
Test 3 (11-77);

GOWANDA PSYCH.
CENTER
Helmuth, NY
Test 1 (8-76)°'
Test 2 (8-76)p Underfeed
stoker
Test 3 (8-76)q
ae = electrical, T = thermal
bControl by ESP (E) , filter (F) ,
cyclone (C) , none (N), or
scrubber (S)

VE = Visual observation
TR = In-stack transmissometer
M9 = Method 9

Flow
rate
(acfn)


-

-


640
(22,660)
655
(23,128)

656
(23,179)


429
(15,160)
438
(15,470)
424
(14,980)



646
(22,800)
799
(28,210)
701
(24,760)
Exhaust Load
temperature during test
°C MWe



(69)

(64)


52
(126)
57
(135)

-


286
(546) (17)
291 -
(555) (18)
281
(537) (23)



168
(334) (17)
162 -
(324) (15)
154 -
(309) (18)
Standardized to 4.0 m (~ 13.0 ft)
6PSC NH
of New
= Public Service Company
Hampshire
No additive
^fith additive




PartlCTilate loading
at stack conditions opaciCyc

ng/'J
(lb/10° Btu)


172
(0.40)
176
(0.41)


—
—

-


151
(0.350)
134
(0.311)
145
(0.336)



147
(0.342)
271
(0.631)
151
(0.352)
"Soot blowing
/ 3 h
g/an
(gr/acf)


~20 (VE)
- -20 (VE)



0.040 10 (VE)
(0.017)
0.013 0 (VE)
(0.006)

0.035 0 (VE)
(0.015)


0.108-C 10 (VE)
(0.047)
0.095-C 10 (VE)
(0.042)
0.137-C 10 (VE)
(0.059)



0.0673 0 (VE)
(0.0294)
0.0920 2 (VE)
(0.0402)
0.0686 0 (VE)
(0.0300)

Particle size data available
-'White plume,
30 min of 96
'VE 30 min of
test

white sky VE
min test
96 min stack


Stack standardised FBel F"el
(ft) sulfur ash


3.35 23 2.69 7.9
(11.0)
3.35 23 2.69 7.9
(11.0)


1.52 24 -
(4.98)
1.52 0 ' - -
(4.98)

1.52 0 - -
(4.98)


0.95 36 - -
(3.12)
0.95 36 - -
(3.12)
0.95 36 - -
(3.12)



2.78x2.73 0 - -
(9.12x8.96)
2.78x2.73 3 - -
(9.12x8.96)
2.78x2.73 0 -
(9.12 x 8.96)
TE 30 min of 96 stack test
mSoot blowing nonconcurrent VE
nAverage opacity and emission rates
°VE for 15 min
PVE for 34 rain

qVE for 10 min
Fuel heat
content
kJ/fcg
(Btu/lb)


31,635
(13,592)
31,615
(13,592)


-
-

-


-
—

—




30,505
(13,149)
30,515
(13,149)
30,505
(13,149)








-------
           TABLE A-2.  CONCURRENT MASS  EMISSION AND OPACITY TESTS  FOR EPA REGION IV, COAL-FIRED
                       BOILERS WITH  ELECTROSTATIC PRECIPITATORS.   TVA SYSTEM.
u>
Boiler typ-e _. Wjrha. '
Boiler n^e, and design ^ temperature
Cest number, capaci-tv11 ? , , Or,
• J 3jn~ /TH-IO. • C
and data 6 ^-nr^ (acfm) (°T)
' T
TVA-ALLEN
Test 1

Test 2

TVA-ALLEN
Test 1

Test 2


Test 3

TVA-ALLEN
Test 1

Test 2

Test 3

1 \
(7-78)°

(7-78)e

2
(7-78)

(7-78)

25,440
(898,500)
25,000
(882,900)

28,710
(1,013,800)
29,490
.... _ , (1.041.300)
. H&w Lvcione ' '
(7-78)

3
(7-78)

(7-78)

(7-78)
280 MW (2931) 28,590
(1,009,800)

27,400
(968,000)
26,950
(951,900)
27.640
' (976,200)

144
(292)
144
(292)

148
(299)
148
(298)

146
(295)

145
(293)
144
(291)
144
(291)
Load
during test
(10s Btu/hr)T

_
(2428)
_
(2439)

278
(2460)
279
(2469)

275
(2463)

	
(2364)
_
(2419)
_
(2389)
Particulate loading
at stack conditions
ng/J
(lb/10s Btu)

9
(0.020)
9
(0.021)

20
(0.046)
22
(0.050)

21
(0.048)

31
(0.072)
27
(0.063)
37
(0.085)
g/am3
(gr/acf)

0.0146
(0.0064)
0.0156
(0.0068)

0.0300
(0.0131)
0.0318
(0.0139)

0.0311
(0.0136)

0.0471
(0.0206)
0.0426
(0.0186)
0.0556
(9.0243)
Opacity*1

5

<6


11

11


11


13
13
12
12
12
11

(VE)

(VE)


(TR)

(TR)


(TR)


(TR)
(VE)
(TR)
(VE)
(TR)
(VE)
•Stack _ , ,. . Fuel Fuel Fuel heat
disaster Staadar4l;?ei weijht weight content
opacity £ % kJ/Vg
(ft) * sulfur a.ih (Btu/lb)

3.9O
(12.8)
3.90
(12.8)

3.90
(12.8)
3.90
(12.8)

3.90
(12.8)

3.90
(12.8)
3.90
(12.8)
3.90
(12.8)

5

6


11

11


. 11


13
13
12
12
12
11

3.0 12.1 27,524
(11,833)
3.0 12.1 27,524
(11,833)

2.8 12.1 26,737
(11,495)
2.8 12.1 26,737
(11,495)

2.8 12.1 26,737
(11,495)

3.1 12.1 27,956
(12,019)
3.1 12.1 27,956
(12,019)
3.1 12.1 27,956
(12,019)*
TVA COLBERT 1
Test 1

Test 2

Test 3


(9-78) \ 24,750

(9-78)

(9-78)


TVA-COLBERT 2
Test 1

Test 2

Test 3

(9-78)

(9-78)

(9-78)
(874,200)
24,400
(862,000)
24,410
(862,200)
Pulverized, dry
bottom 223 MW
19,910
(708,700)
20,900
(744,000)
19.880
(702,100)
188
(371)
196 -
(385)
187
(368)


167
(332)
167
(333)
168
(334)
182
(1357)
182
(1580)
180
(1586)


180
(1792)
180
(1700)
180
(1745)
51
(0.118)
41
(0.096)
35
(0.081)


35
(0.080)
30
(0.069)
25
(0.058)
0.0487
(0.0213)
0.046
(0.0200)
0.0398
(0.0174)


0.0542
(0.0237)
0.0423
(0.0185)
0.0384
(0.0168)
9
7
9
9
9



7
5
7
12
8

(TR)
(VE)
(TR)
(VE)
(TR)



(TR)
(VE)
(TR)
(VE)
(TR)

5.03
(16.5)
5.03
(16.5)
. 5.03
(16.5)


5.03
(16.5)
5.03
(16.5)
5.03
(16.5)
7
6
7
7
7



6
4
6
10
6

3.9 14.3 26,650
(11,460)
3.7 12.9 27,590
(11,860)
2.4 15.5 ' 26,998
(11,607)


3.8 14.5 27,417
(11,787)
3.9 13.5 27,975
(12,027)
3.8 13.5 27,200
(11,694)
                                                      (continued)

-------
TABLE A-2  (continued)
Seller type _., Exhaust
toiler aaae, and design ^ • t ratlire
test nomcer, 'capacity am^'mia °C
(KP Stu/hr)T ' ^
TVA-CCL3E5T 3
Test 1 (9-78) ',
Test 2 (9-78)
Test 3 (9-73)

TV A- COLBERT 4
Test 1 (11-78)
Test 2 (11-78)
Test 3 (11-78)
22,310
(787,920)
22,470
(793,600)
24,660
(870,700)
Pulverized, dry
bottom 223 MW
20,530
(724,900)
20,450
(722,300)
20,090
(709,400)
TVA-WIDOWS CREEK
Boiler 7
Test 1 (2-79)
Test 3 (3-79)
Test 4 (3-79)
Test 1 (10-78)
Test 2 (10-78)
Test 3 (10-78)
49,740
(1,756,700)
50,980
(1,800,400)
C.E. 46,490
pulverized, (1,641,700)
dry bottom ,- ,.„
500 MW (1, 751^900)
49,590
(1,751,400)
50,060
(1,768,000)
TVA-CUMBERLAND
Boiler 1
Test 1 (10-78)
Test 2 (10-78)

Boiler 2
Test 4 (4-79)
135,500
(4,786,000)
RR.U 131,600
, . , (4,648,000)
pulverized '
1300 MW

88,120
(3,155,100)

(350)
182
(360)
180
(356)


167
(332)
166
(331)
165
(329)


144
(292)
148
(298)
144
(292)
154
(310)
153
(307)
154
(310)


149
(300)
148
(298)


141
(285)
Load
during test
(10* 3tu/hr)T

(1993)
(2175)
(2085)


(200)
(1806)
200
(1775)
200
(1800)


( 5000)
( 4900)
( 4700)
(4460)
(4490)
(4430)


1300
(10,975)
1300
(11,045)


700
—
Particulate leading
at stack conditions
ng/J
(lb/10s Btu)

38
(0.089)
34
(0.079)
28
(0.065)


79
(0.183)
55
(0.128)
67
(0.155)


217
(0.63)
340
(0.79)
348
(0.81)
133
(0.262)
111
(0.258)
127
(0.296)


95
(0.23)
84
(0.20)


-
—
g/am3
(gr/acf)

0.0604
(0.0264)
0.0577
(0.0252)
0.0426
(0.0186)


0.122
(0.0532)
0.0840
(0.0367)
0.105
(0.0459)


0.475
(0.2076)
0.576
(0.2517)
0.614
(0.2683)
0.178
(0.0778)
0.177
(0.0772)
0.198
(0.0867)


0.140f
(0.061)
0.124£
(0.054)


0.0169f
(0.0069)
Opacityb

6
5
6
6
6"
5


9
12
10
9
17
7


66
38
34
29
34
30
27


31
22


8


(TR)
(VE)
(TR)
(VE)
(TR)
(VE)


(TR)
(TO)
(TR)
(TO)
(TR)
(TO)


(TO)
(TO)
(TR)
(TO)
(TO)
(TO)
(TO)


(VE)
(VE)


(TR)

Stack;
m
(ft)

5.03
(16.5)
5.03
(16.5)
5.03
(16.5)


5.03
(16.5)
5.03
(16.5)
5.03
(16.5)


6.34
(20.8)
6.34
(20.8)
6.34
(20.8)
6.34
(20.8)
6.34
(20.8)
6.34
(20.8)


9.45
(31.0)
9.45
(31.0)


9.45
(31.0)
ooacit-T^
*

5
5
5
5
4


10
8
14
6


49
26
23
19
23
20
18


15
10


3

Fael Fuel
veignt weight
i Z
sulfur sulfur

3.7 13.8
3.9 13.9
3.5 14.6


2.08 17.7
1.98 18.3
2.36 17.0


2.1 13.9
2.8 14.2
3.0 14.6
3.7 14.7
3.8 15.3
3.8 14.4


3.6 15.4
3.5 14.6


-

Fuel neat
content
kJ/kg
(Br.li/ 11)

Ul!724>
27 , 189
(11,689)
27,55-
(11,846)


26,582
(11,428)
26,454
(11,373)
27,219
(11,702)


27,640
(11,883)
26,970
(11,594)
27,500
(11,822)
26,368
(11,336)
25,998
(11,177)
25,364
(11,084)


25,050
(10,770)
25,240
(10,850)


-

           (continued)

-------
TABLE  A-2 (continued)
Boiler type
Seller nam£, and design
test nuaiier, capacit-.-a
and date XK
. (10£ Btu/hr),
Flow
rate
am'/niin
Cacfm)
Exfcaust
temperature
°C
(°T>
Load
during test
MW
(10s Btu/hr7T
Particulate loading
at stack conditions
Opacity
og/J g/aatj
(lb/106 Btu) (gr/acf)
Stack
diameter
3L
(ft)
_ .... Fuel Fuel Fiwl h*at
Stamiardized weight weight content
opac^yC SS» %«" u/^
sulfur ash (Stu/lb)
TVA-CCMBERLAND '
5oiler
Test 5

lest 6

2
(4-79)

(4-79)
B&W
pulverized
1300 MI


39 , 340
(3,155,100)
88,850
(3,137,700)

14.1
(285)
142
(288)

700
—
700


-
—
—


0.0158f
(0.0069)
O.Q158f
(0.0069)

8 (TR)

8 (TR)


9.45
(31.0)
.9.45
(31.0)

3

3


_

— — —
—
TVA-JOHNSONVILLE
Boilers
Test i

Test 2

Test 3

9 i 10
(10-78)

(10-78)

(10-78)

Pulv. coal;
front fired
135 MW each



30,950
(1,092,900)
30,000
(1,059,400)
30,680
(1,083,400)

158
(316)
153
(307)
156
(313)

143/133
(2480)
135/135
(2430)
145/140
(2560)

85
(0.20) .
50
(0.12)
47
(0.11)

0.120f
(0.0526)
0.0712
(0.0311)
0.0684
(0.0299)

38 (TR)
50 (VE)
32 (TR)
42 (VE)
30 (TR)


4.27
(14.0)
4.27
(14.0)
4.27
(14.0)

36
48
30
40
28


3.3 15.3 25,980
(tl,170)
3.3 16.0
(10,790)
3.8 16.4 25,610
(11,010)
TVA-PARADISE
Boiler
Ul Test 1
Ln
Test 2

Test 3


Boiler
Test 1

Test 2

Test 3

1
(10-78) \

(10-78)

(10-78)


2
(10-78)8

(10-78)





Cyclone
\boiler
700 tW




(10-78)/


54,050
(1,908,600)
54,330
(1,918,800)
54,290
(1,917,300)


61,990
(2,189,100)
60,630
(2,141,200)
59,730
(2,109,200)

144
(291)
144
(292)
144
(292)


141
(286)
138
(281)
141
(286)

610
-
602
-
600
—


650
(7150)
650 .
(6450)
643
(6700)

_
-
_
-
—
—


305
(0.71)
236
(0.55)
142
(0.33)

0.124
(0.0542)
0.118
(0.0517)
0.159
(0.0695)


0.619
(0.2707)
0-.443
(0.1936)
0.280
(0.1222)

15 (TR)

17 (TR)
26 (VE)
17 (TR)



35 (TR)
34 (VE)
18 (TR)

27 (TR)
51 (VE)

7.92
(26.0)
7.92
(26.0)
7.92
(26.0)


7.92
(26.0)
7.92
(26.0)
7.92
(26.0)

8

9
14
9



20
19
10

15
30

3.7 13.7 25,519
(10,971)
3.5 12.9 25,926
(11,146)
3.5 12.9 25,926
(11,146)


4.3 16.0 24,607
(10,579)
3.9 13.4 25,551
(10,985)
3.9 13.4 25,551
(10,985)
TVA-WATTS BAR
Units A
Test 1

Test 2

Test 3

& B
(10-78U
I Pulv. coal;
(10-78) \ "et S dry
/ bottom
1 60 MW each
(10-78)/


15,130
(534,400)
17,180
(606,800)
19,960
(563,500)

173
(343)
174
(346)
169
(336)

58/58
(1190)
58/58
(1210)
58/58
(1310)

95
(0.22)
82
(0.19)
64
(0.15)

0.130
(0.0570)
0.100
(0.0439)
0.0931
(0.0407)

18 (TR)
4 (VE)
20 (TR)
3 (VE)
20 (TR)
3 (VE)

4.88
(16.0)
4.88
(16.0)
4.88
(16.0)

15
3
17
2
17
2

2.2 14.8 28,170
(12,110)
2.4 19.0 26,400
(11,350)
2.5 16.2 27,700
(11,910)
          (continued)

-------
                                                                TABLE  A-2  (continued)
Ul
Boiler type Flow
3oiler name, and -design rate
test number, capacity3 anVmn
TVA-WAT
Units A
Test 4
Unit C
Test 1
Test 2
Test 3
TS BAR
& B
(10-78)h
(10-78)
(10-78)
(10-78)

17
(613
Pulv. coal;
wet & dry 8
bottom (286
60 >&' each g
(344
8
(291


,080
,300)
,100
,100)
,760
,800)
,250
,200)
Exhaust
teaiperature
°C


172
(341)
163
(326)
162
(323)
158
(316)
Load
during test
(10' Btu/hr)T


58/58
(1190)
56
(580)
54
(600)
. 56
(660)
Particulate loading
at stack conditiaas
0-pacitV3
ng/J g/am-
(Ib/lQ6 Btu) (gr/acf)


52
(0.12)
69
(0.16)
95
(0.22)
60
(0.14)


0.0611
(0.0267)
0.0863
(0.0377)
0.100
(0.0438)
0.0854
(0.0373)


19
24
21
5
22
5
22


(TR)
(VE)
(TR)
(VE)
(TR)
(VE)
(TR)
^ Stack stmdardizt
a^ame opacityc
tH o
Cft> * .


4.88
(16.0)
4.88
(16.0)
4.88
(16.0)
4.88
(16.0)


16
20
18
IS
4
18
Fuel Fuel Fuel heat
veight veight coctent
% " IcJ/kg
sulfur ash (3tu/lb)


2.5 15.7 27,470
(11,810)
2.8 17.1 27,470
(11,810)
2.1 15.3 28,450
(12,230)
2.4 12.6 29,350
(12,620)
*E - electrical, T =  thermal

 VE = visual emissions
 TR = In-stack transmissometer

Standardized to 4.0  n (~ 13.0 ft)

 VE for only 6 Bin

*VE for 12 Bin

fSystems with ESP and mechanical collector (cyclone)

*9E and trans, froia previous day

ksoot blowing during  VE

-------
TABLE A-3.  CONCURRENT
            COAL-FIRED
MASS EMISSIONS AND VISUAL OPACITY ESTIMATES FOR UTILITY AND
BOILERS FROM SOUTH CAROLINA, INCOMPLETE DATA
So i le r aame ,
rest number.
DUKE POWER
LEE I
Test 1 (8-74)

lest 2 (8-74)

Test 3 (8-74)

Test 1 (5-77)

LEE 3
Test 3 (5-77)

SONOCO
UNIT 4
Test 1 (4-77)"


Test 2 (4-77)

Test 3 (4-77),

Jt'^^ 7* ' Flow Exhaust Load
am. uesLgr. -3.12 temperature during test
capacitv^ ^ , . Q
. ajn ~' / uiiG C ?iw~


_ _ —
(969)
_ _ _
(961)
_ _ _
(987)
_ _ _
(942)

_ _ _
(1642)


!- .
(358)
Coal


_ _
(375)
Particulace loading at
dry standard conditions
ng/J
T (lb/10= Stu)


52
(0.1215)
34
(0.0780)
73
(0.0848)
42
(0.098)

51
(0.118)


202
(0.47)

163
(0.38)
198
(0.46)
Opacity
g/dsa:
(gr.'dsft5)


0.
(0.
0.
(0.
0.
(0.
0.
(0.

0.


171
0746)
108
0472)
194
0848)
121
053)

147


10

10

11

9


18
(0.064)


0


517


31
Stack , ._ f. , Fuel Fuel Fuel heat
diameter bcana
-------
TABLE A-3  (continued)
Boiler type ?1 ^ SAaust Load
Boiler name, and design rat(, tCTperature during test
test number, capacity3 amVinic °C MKe
and date 5«e (acf1 (OT) (105Btu/hr)T
(10- Btu/ar>T 1
Test 2 (7-77)) .
| Puxv. coao., _ _ (1088)

Test 3 (7-77)
tang, fired,
147 MJ (1113) - -
- (1095)
USQtHART 1
Test 1 (9-75)

Test 2 (9-75)


Test 3 (9-75)

Test 1 (9-77)

Test 2 (9-77)

— — —
(736)
_ 	 	
(764)
Pulv. coal;
tang. (763) — — —
- 1764)
_ _ —
(775)
_ _ —
(773)
Ul
OO URQUHART 2
Test 1 (7-77) )p, , . ~ - -
( u v" ":oa"'. — — (762)

Test 2 ( - )
tang, fired,
75 !*/ (763) -
(768)
URQUHART 3
Test 1 (9-75)

Test 3 (9-75)

Test 1 (?/78)

Test 2 (?/78)
_ _ —
- - (980)
Pulv. coal; -* — ~
tang, fired, - - (994)
100 MW (1040) _ _
- (957)
_ _ _
(958)
WATEREE 1
Test 1 (1-77)

Test 2 (1-77)
Pulv. coal; — — ~~
opposed fired — — (3414)
386 MJ (3450) _ _
(3490)
Particulate loading at
dry standard conditions
ng/J
(lb/105 Btu)
129
(0.30)

163
(0.38)

232
(0.54)
206
(0.48)

189
(0.44)
108
(0.25)
194
(0.45)


129
(0.30)

90
(0.21)

176
(0.41)
103
(0.24)
91
(0.211)
68
(0.158)

142
(0.33)
189
(0.44)
gy'dsm-
(gr./dsft3)
0.327
(0.1429)

0.400
(0.1749)

0.565
(0.247)
0.522
(0.228)

0.506
(0.221)
0.255
(0.116)
0.463
(0.2024)


0.336
(0.147)

0.217
(0.095)

0.391
(0.171)
0.233
(0.102)
0.194
(0.085)
0.146
(0.064)

0.409
(0.179)
0.568
(0.248)
Opacity
15


11


17

36


32

30

35



31


29


21

35

7

9


20

17

Stack c
diameter
(ft)
5.2.-
(17.3)

5.27
(17.3)

4.27
(14-0)
4.27
(14.0)

4.27
(14.0)
4.27
(14.0)
4.27
(14.0)


4.27
(14.0)

4.27
(14.0)

4.72
(15.5)
4.72
(15.5)
4.72
(15.5)
4.72
(15.5)

5.79
(19.0)
5.79
(19.0)
"£?£T
12


8


16

34


30

28

33



29


27


18

31

6

8


14

12

Fuel Fuel Fuel heat
weight weight content
% Z fcj/kg
sulfur ash (Stu/lb)
_ 	 —
~




- - -

- -
—

— ~ ~"

- - -

_



- - -
—

~ ~ ~


_ _

- -

- -
—
- - -


- - -
~
- -

          (continued)

-------
TABLE A-3 (continued)
Boiler type Flow Exhaust Lead
Boiler name, and design rat£ cemperature during test
CeaLadatr' "P^"^ amVmin °C „ «We
WATE5EE 1
Test 3 (1-77) > -

WATEREE 2
Test 1 (7-77)

Test 2 (7-77)

Test 3 (7-77)


(3547)

_ 	 —
(4064)
	 	 —
(3031)
_ _ _
(3133)
Pulv. coal;
S.C. PUB. SERV. > opposed fired
JEFFRIES 3
Test 1 (5-78)

JEFFRIES 4
Ul Test 1 (5-78)
VO
Test 2 (5-78)

Test 3 (5-78)
386 MW (3450)
_ — —
(861)

_ _ —
- - (1410)
_ _ _
- - (1290)
_ _ _-
' - - (1260)
WINYAH 1
Test 1 (2-76) -
- - (2649)
Test 2 (2-76) - - -
(2659)
CONE MILLS
UNIT 2
Test 2 (11-75) - -
(73)
Test 3 (11-75) - - -
(73)
UNIT 2
Test 1 (3-77) - -
- -
Partic-jlate leading at Stack
dry standard conditions Q^.^ diameter S
ng/J
T (lb/106 Btu)

168
(0.39)

503
(1.17)
378
(0.88)
378
(0.88)



348
(0.81)

271
(0.63)
275
(0.64)
400
(0.93)

22
(0.05)
30
(0.07)


598
(1.39)
568
(1.32)

155
(0.36)
3 * m
(gr/dsft3) 
-------
TABLE  A-3 (continued)
Boiler type v^ Exhaust
Boiler aam?, and design ^ caBoeracure
test rrojnDer, capacitv3 •, • "or
._. ft" / iiUL1; <-
and date MW , . , . to-?}
ran 2
Test 2 (3-77)

Test 3 (3-77) - -

UNIT 3
Average (3-73) ~~ ~

Test 1 (11-75)

Test 2 (11-75)

Test 3 (11-75)

GRACE BLEACHERY
UNIT 1
Average (7-75) - -
UNIT 2
Average (7-75) - -
UNIT 3
Average (7-75) - -
UNIT 4
Average (7-75) ~ ~~
UNIT 1
Average (2-77) - -
UNIT 2
••
Average (1-77) ~ —
Particulate loading at stack
dry standard conditions ... if AT^m^r^r- '
durirte test upacity diameter
(10- Btu/hr)t (lb/10i Btu)

146
(80) (0.34)
- 146
(79) (0.34)

326
(86) (0.757)
482
(62) (1.12)
- 666
(62) (1.55)
- 516
(62) (1.20)


26
(180) (0.06)

34
(172) (0.08)

- 17
(179) (0.04)

- 22
(186) (0.05)

- 43
(142) (0.10)

- 77
(142) (0.18)
^d^) " 

0.258 11 -
(0.113)
0.263 10 -
(0.115) -

0.691 85 -
(0.302)
0.712 16 -
(0.311)
0.932 17 -
(0.407) -
0.957 18 -
(0.331)


0.0776 0 -
(0.0339) -

0.0902 0 -
(0.0394) -

0.0345 0 -
(0.0151)

0.0496 0 -
(0.0217) -

0.0904 -
(0.0395) -

0.168 0 -
(0.0735)
. ,. , Fuel Fuel Fuel heat
standardized w ^ t ^^
opacity^ , „ kj/k£
'" sulfur asa (Etu/.lb)

— — ~ ~~

— — — —


— _ — —

— — — —

— — — —

- — - -



-

-

-

-

-

-
            (continued)

-------
TABLE A-3  (continued)
Soiler type fix Exhaust
3o Her -name, and design rate temDerature
test number, capacity* amVttLn " °C
1
UNIT 3
Average
KENDALL
UNIT 1
Test 2
Test 3
lest 1
Test 2
lest 3
UNIT 2
Test 1
Test 2
Test 3
Test 1
Test 2
KLOPMAN
UNIT 1
Test 1
Test 2
UNIT '2
Test 1

(11-77)

(5-74)
(5-74)
(7-76)
(7-76)
(7-76)

(5-74)
(5-74)
(5-74)
(7-76) - -
(7-76)

(5-76)
(5-76)

(5-76)
Load
•during teat
. M»e

(170)

(48)
(53)
(70)
(69)
(75)

(74)
(56)
(76)
(70)
(62)

(177)
(176)

.(184)
Particulste loading at Stack
dry standard conditions ^^1^ dimeter '
ng/J
(lb/10e Btu)

69
(0.16)

133
(0.31)
133
(0.31)
280
(0.65)
284
(0.66)
297
(0.69)

120
(0.28)
159
(0.37)
116
(0.27)
275
(0.64)
284
(0.66)

116
(0.27)
125
(0.29)

133
(0.31)
(gr/dsft3)

0.131 0
(0.0574)

0.239 64 -
(0.1045) -
0.248 55 -
(0.1084)
0.536 40 -
(0.2340) -
0.513 32
(0.224)
0.513 32 -
(0.224)

0.275 39
(0.1203)
0.286 31
(0.1248) -
0.288 25
(0.1258)
0.476 38 -
(0.208)
0.428 37 -
(0.187)

0.348 32 -
(0.1520)
0 . 327 30 -
(0.143)

0 . 350 18 -
(0.153)
Fuel Fuel Fuel heat
Standardized TOl^E weight content
opacity0 j j fcj/*kg
sulfur ash (Stu/lb)

-

-
-
=
=
'

-.
-
-
-
-

-
-

-
           (continued)

-------
                                                TABLE  A-3  (continued)
N3
Boiler type FUjw Exhaust Load
Boiler name, and design rate temperature during test
test nufflber, capacity anVniirt °C ^K
UNIT 2
Test 2

Test 3

MASETTA
Test 1

Test 2
Test 2

REEVES
UNIT 1
Test 1

Test 3

Test 1

Test 2

Test 3

UNIT 2
Test 1

Test 2

Test 3

Test 1

Test 2

Test 3


(5-76)

(5-76)

MILLS
(6-74)

(6-74)
(6-74)

BROS.

(9-75)

(9-75)

(9-77)

(9-77)

(9-77)


(1975)

(1975)

(1975)

(1977)

(1977)

(1977)


_ -
(181)
_ _
(171)

_ — —
(8.4)
(8.2)
_ _ —
(8.3)


_ _ —
(44)
_ — —
(40)
_ — —
(35)
_ — —
(32)
_ _ _
(29)

_ — —
(70)
_ _ —
(57)
— — —
(51)
— — —
(42)
_ — —
(38)
_ _ —
(37)
Particulate
dry standard
Eg/J
(lfa/106 Btu)

129
(0.30)
133
(0.31)

1449
(3.37)
1462
(3.40)
972
(2.26)


194
(0.45)
236
(0.55)
155
(0.36)
181
(0.42)
224
(0.52)

168
(0.39)
116
(0.27)
138
(0.32)
189
(0.44)
138
(0.32)
120
(0.28)
loading at Stack
conditions ^^^ dlameter :
,7. a
g/dsm / p t\
(gr/dsft3)

0.327 24
(0.143)
0.318 15
(0.139) -

0.780 62 -
(0.3407) -
0.786 47
(0.3433)
0.550 69 -
(0.2401) -


0.169 20
(0.074) -
0.194 20
(0.087)
0.116
(0.051) -
0.122 10 -
(0.053)
0 . 119 10 -
(0.052)

0.204 27
(0.089) -
0.130 11 -
(0.057) -
0.146 14 -
(0.064) -
0.167 12 -
(0.073)
0.122 7 -
(0.053)
0.101 8 -
(0.044)
, Fuel fuel fuel heat
Standardized f t ^tent
opacity0 ^ 7 kJ'Tca
'• sulfur ash (Btu/lb)

— — —

- _ - -


— — — —

-
- - - -



- _ — -

— — — —

_ _ _ -

- — — ~

- - - -


- — — ~

- - -

— — — —

— — — —

- - -

- _ _ -

                                                           (continued)

-------
TABLE A-3 (continued)
Seller type „ Exhaust
Boiler name, and design ra^ temperatur
test number, capacity* mVmin °C
and date !Ke f fm) (oy)
(10" Btu/ar)
RIEGEL
DSIT 7
Test 1 (9-77) - ' -
SONOCO
DSIT 3
Test 4 (1976)
J.P. STEVENS
CLEMSON 5
Test 1 (1975)
Test 3 (1975)
UNIROYAL
Test 2 (8-75)
Test 1 (8-75)
Subscripts: E - electrical; T - thermal.
bStandardlzed to 4.0 a (~ 13.0 ft) diameter stack.
Participate loading at Stack
dry standard conditions -„.,._ jj-.-cfeT- '
e duriast test Opacity diameter
(105 Btu/hr)T flb^gi Bcu)


39
(133) (O.Q9)


- 13
(135) (0.03)


236
(113) (0.55)
150
(142) (0.35)

181
(14) (0.42)
236
(16) (0.55)


. ; I m
g/am- _ (ft)
(gr/dsft3)


0.069 16
(0.0302) -


0.0252 0
(0.011) -


0.599 25 -
(0.262)
0.485 23 -
(0.212)

0.133 24
(0.058) -
0.222 17 -
(0.097) -


Fuel Fuel Fuel heat
Standardized veig^ waight content
opacity0 % % kj/1[g
" sulfur ash (Btu/lb)


~


~


.
~

-
-



-------
TABLE A-4.  CONCURRENT MASS EMISSIONS AND  IN-STACK TRANSMISSQMETER MEASUREMENTS FOR SEVERAL
            COAL-FIRED BOILERS, DIFFERENT  FIRING METHODS,  AND EXPERIMENTAL VARIATIONS IN
            ESP OPERATION.  STATE OF GEORGIA,  GEORGIA POWER
Bci
A8KWR
lesc
lest
Test
Test
Test
Test
Test
Test
Test
Test
lest
Soiier cv^e
• C ±:~°M
ler naae, and design
c number, capacity3 _ ^ ~.
nd daca - ^X . ""(act-in)
v. 10° Btu/r'.r.'T
IGHT 1-4
1 (6-78 A . 22,4^0
\ (792,462)
2 (6-78)
3 (6-78)
4 (6-73)
5 (6-78)
22,200
(784,064)
19,200
(678,066)
22,100
(730,034)
19,740
_ . . (697.173)
\ Pulv. coal;
6 (6-78) >tang. fired, 19,460
40 MW each (687,314)
7 (6-78)
8 (6-78)
9 (6-78)
10 (6-78)
23,160
(817,916)
22,970
(811,045)
22,970
(811,291)
23,430
(827,470)
11 (6-78) / 23,770
(839,472)
Exhaus t
temperature
(°F)

179
(355)
178
(352)
(351)
178
(353)
168
(334)
170
(338)
178
(352)
179
(355)
184
(363)
181
(358)
182
(360)
Load
during test
(10° Btu.'hr),.

40; 23;- 40;
40 (1787)
40; 23; 40;
40 (1909)
io'(1708)
40; 23; 40;
40 (1711)
30; 29; 30
30 (1379)
30; 29; 30;
30 (1436)
40; 31; 40
40 (1719)
50; 31; 40
40 (1848)
40; 31; 40;
40 (1719)
41; 30; 40
40 (1881)
40; 30; 40;
40 (1862)
Particulate
at stack CO
ng/J
(Ib 10" Btu)

113
(0.262)
109
(0.254)
139
(0.324)
152
(0.354)
83
(0.192)
79
(0.184)
24
(0.056)
26
(0.060)
25
(0.059)
415
(0.965)
269
(0.625)
loading
nd it ions
5 • ani •
(gr/acf)

0.158
(0.0689)
0.165
(0.0722)
0.244
(0.106)
0.207
(0.0905)
0.101
(0.0442)
0.102
(0.0447)
0.0313
(0.0137)
0.0365
(0.0159)
0.0332
(0.0145)
0.585
(0.256)
0.369
(0.161)
Opacity

19
1 7
36
32
34
20
14
15
15
63
24
Stack
diameter
(ft)

6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
Standardized
opacity6

13
15
18
22
24
14
9
10
10
48
14
sulfur

1.79
1.38
1.16
1.27
1.54
1.68
2.07
1.82
1.77
1.24
1.29
Fuel
weight
asn

16.1
13.9
14.0
13.6
14.3
13.9
14.9
14.2
12.5
13.0
13.9
Fuel -.eat
content
kj ' k^
(Stu/Lbi

27,012
(11,613)
27,921
(12,004)
28,017
(12,045)
28,200
(12,124)
27,856
(11,976)
27,224
(11,704)
27,752
(11,931)
27,984
(12,031)
28,580
(12.287)
28,352
(12,189)
28,568
(12,282)
BRANCH 1&2
Test
Test
Test
Test
Test
Test
1 (2-79)
2 (2-79)
3 (2-79)
4 (2-79)
5 (2-79)
6 (2-79)
42,840
(1,512,848)
42,550
(1,502,794)
Pulv. coal; 36,450
opp. fired, (1,287,174)
250, 319 MW 36>.80
(1,291,966)
38,180)
(1,348,188)
38,130
(1,346,521)
114
(238)
116
(240)
116
(240)
110
(230)
111
(231)
110
(230)
260; 270
(4450)
260; 270
(4380)
150; 270
(3460)
130; 287
(3300)
155; 287
(3490)
158; 287
(3430)
12
(0.0289)
14
(0.0330)
164
(0.3809)
84
(0.195)
142
(0.3307)
125
(0.2905)
0.023
(0.0099)
0.0256
(0.0112)
0.273
(0.1194)
0.133
(0.0580)
0.228
(0.0995)
0.197
(0.0861)
10
11
36
30
35
33
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6
7
24
20
24
22
0.96
0.95
1.09
1.37
1.31
0.91
10.3
9.6
9.8
12.2
11.3
8.6
28,590
(12,290)
28,966)
(12,453)
28,938
(12,441)
27,247
(11,714)
27,833
(11,966)
28,791
(12,378)
                                            (continued)

-------
                                                TABLE A-4  (continued)
Ln
feiler type
Boiler name, arid design
test number, capacitya aQ]
and date >&*e (
(10- Btu/hr)^
3RASCH 142
Test 7 (2-79)
Test 8 (2-79)

Test 9 (2-79)
Test 10 (2-79)
Test 11 (2-79)
Flow
acft)

41,400
(1,462,060)

41,390
i (1,461,599)
Pulv. coal;
opn. fired, 44,150
250. 319 MW (1,559,096)
44,620
(1,575,604)
43,970
(1,552,833)
BRANCH 344
Test 1 (5-78) \
(2
Test 2 (5-78)
Test 3 (5-78)
Test 4 (5-78)
lest 6 (5-78)
(2
(2
(1
(2
\ rulv. coal;
Test 7 (5-78) } opp. fired,
/ 481, 490 MW (2
Test 8 (5-78)
Test 9 (5-78)
Test 10 (5-78)
Test 11 (5-78)
(2
(1
(1
(1
Test 12 (5-78) /
(1

67,190
,372,700)
67,820
,394,900)
61,770
,181,400)
48,840
,724,800)
74,770
,640,500)
75,670
,672,400)
75,390
,662,300)
56,400
,991,600)
55,280
,952,200)
44,700
,578,700)
45,380
,637,743)
Fjcfaaust
°C

114
(238)
na
(245)
119
(246)
127
(261)
131
(267)

127
(261)
127
(260)
122
(251)
113
(235)
123
(253)
127
(260)
127
(261)
119
(246)
121
(250)
116
(240)
116
(241)
Load
(106 Ku/hr)-

122; 287
(3720)
220; 275
(3760)
260; 287
(4080)
260; 287
(4040)
260; 287
(3970)

437; 382
(7160)
435; 382
(7230)
395; 357
(6730)
320; 180
(4900)
440; 430
(7300)
440; 430
(7170)
440; 430
(7290)
430; 203
(6290)
430; 203
(6190)
249; 225
(4640)
249; 225 -
(4830)
?articulate loading
at stack conditions
tig/ J
(lb/10= Btu)

49
(0.1142)
75
(0.1747)
75
(0.1738)
114
(0.2649)
134
(0.3121)

133
(0.3101)
158
(0.3673)
91
(0.2120)
34
(0.0795)
282
(0.6548)
262
(0.6094)
335
(0.7789)
133
(0.3092)
110
(0.2547)
38
(0.0891)
64
(0.1488)
g/am-"
(gr/acf)

;>.0773
(0.0338)
0.120
(0.0524)
0.121
(0.0529)
0.181
(0.0790)
0.213
(0.929)

0.250
(0.1091)
0.296
(0.1294)
0.175
(0.0763)
0.0602
(0.0263)
0.483
(0.2111)
0.437
(0.1909)
0.569
(0.2488)
0.261
(0.1140)
0.216
(0.0942)
0.0698
(0.0305)
0.117
(0.0512)
Dpacity

20
19

25
44
45

44
47
39
23
59
56
64
35
32
30
40
dieter S7t^r -& «SL
m » X /n
(ft) " sulfur ash

5.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)

8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)

13
12

16
30
31

23
25
20
11
33
31
37
18
16
15
21

1.01 9.9
2.06 10.2

1.19 10.6
1.21 11.7
1.40 10.4

-1.5 -14
-1.5 -14
-1.5 -14
-1.5 -14
-1.5 -14
-1.5 -14
-1.5 -14
-1.5 -14
-1.5 -14
-1.5 -14
-1.5 -14
Fuel heat
content
kJ/kg
i.Stu/lb)

23,798
(12,381)
28,368
(12,411)
28,619
(12,304)
27,928
(12,007)
28,470
(12,240)

-29,800
(-12,800)
-29,800
(-12,800)
-29,800
(-12,800)
-29,800
(-12,800)
-29,800
(-12,800)
-29,800
(~12,800)
-29,800
(-12,800)
-29,800
(-12,800)
-29,800
(-12,800)
-29,800
(-12,800)
-29,800
(-12,800)
                                                            (continued)

-------
                                                TABLE A-4 (continued)
o\
Sciler type
Boiler name, and design
test number, capacity5
and date MWe
aaANCa -
Zest 1'

Test 2'

Test 3'

Test 4'

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

Test 7

Test 8

Test 9

Test 10

Test 11

Test 12

Test 13

ii
(5-79! \
\ (2'
(5-79)

(5-79)

(5-79)

(5-79)

(5-79)

(5-79)

(5-79)

(2,

(-,

(1,

(1,

(1,

(1,

\ Pulv. coal; (2>
(5-79) )opp. fired,
/ 481, 490 MW (2,
(5-79)c

(5-79)c

(5-79)c

(5-79)°

(5-79)c

(5-79)c

(5-79)c


(2,

(2,

(2,

(2,

(2,

(2,

(2,
(5-79)c /
(2,
Flow

73,000
755,849)
78,330
766 ,041)
73,880
785,461)
50,860
796,244)
54,150
912,284)
54,380
920,284)
48,800
723,327)
60,500
136,445)
65,140
300,403)
80,330
836,856)
81,280
870,356)
81,870
891,103)
76,260
693,170)
74,800
641,680)
61,100
157,698)
62,140
194,389)
67,560
385,980)
Exhaust Load
temperature during cesc
°C MW
(°F) (10s Btu/hr)*

122
(251)
124
(256)
126
(258)
113
(235)
116
(240)
116
(239)
111
(231)
120
(248)
124
(255)
121
(250)
127
(261)
131
(268)
127
(261)
127
• (260)
110
(230)
114
(237)
116
(240)

460; 400
(7650)
460; 400
(7800)
460; 40C
(7850)
390; 185
(5200)
300; 165
(4700)
355; 165
(4780)
230; 165
(4430)
430; 220
(5580)
430; 220
(6210)
445; 442
(7750)
445; 442
(7730)
445; 438
(7430)
435; 382
(6850)
430; 370
(6680)
370; 282
(5750)
380; 285
(5820)
447; 290
(6490)
Parciculate loading
at stack conditions
(lb,'10° Btu)

795
(1.8*92)
651
(1.514)
551
a. 281)
44
(0.1014)
71
(0.1661)
72
(0.1686)
31
(0.0716)
96
(0.2242)
118
(0.2741)
217
(0.5055)
185
(0.4304)
221
(0.5128)
127
(0.2957)
112
(0.2605)
30
(0.0687)
47
(0.1099)
80
(0.1859)
(gr/acfi

1.37
(0.599)
1.14
(0.498)
0.963
(0.421)
0.0783
(0.0342)
0.109
(0.0475)
0.112
(0.0438)
0.0490
(0.0214)
0.156
(0.0682)
0.197
(0.0862)
0.368
(0.1608)
0.309
(0.1349)
0.351
(0.1533)
0.200
(0.0876)
0.176
(0.0767)
0.0487
(0.0213)
0.0778
(1.0340)
0.135
(0.0589)
Opacity

86

81

80

16

32

27

18

36

38

63

56

55

43

39

19

21

28

Stac* f. j ,- , Fuel Fuel Fuel nea
Standardized , L
diameter . h weight weight content
opacity0 , . if-.'v,
31 j, /a -a it™' Sg
(ft) '" sulEur ash fBtu'lb)

8.8-;
(29.0)
8.84
(29.0)
8.84
(29.0)
S.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)

59

53

52

13

16

13

9

18

19

36

31

30

22

20

9

10

14


- -
~
- -
~
- - -
~
_
~
_
~
-
~
_ _ -
~
-
~
- - -

_
—
- -

- -
~
- -
—
- -

_

- -
~
- - -

                                                           (continued)

-------
TABLE A-4  (continued)
3oiler type
Boiler name, and design *
test auab-er, - capacitv3 ^a €
and date ~ MWe " aa - / tain
(10= BtS/ar)T Ucfm)
Exhaust Load
temperature during test
°C MW
(°F) (Id5 Btu/hrj-r
Partieulate loading
at stack conditions
(lb/106 Btu)
g/am3
(gr/acf)
Opacity
Stack Fuel Fuel Fuel heat
diameter ^"^b "eight weight content
m ^ * % IcJ/kg
(ft) '* sulfur ash (Btu/lb)
BSASCH 344
Test

Test

Test

Test

Test

Test

lest


Test

Test

Test

Test

Test

Test

Test

Test

1*

15

16

17

18

19

20


21

22

23

24

25

26

27

28

(5-79)11 71

(5-79)d

(5-79)d

(5-79)d

(5-79)d

(5-79)d

(5-79)d

(2,520






85
(3,019
91
(3,222
63
. (2,252
, \ i'ulv. coal;
(5-79)a )opp. fired, 92
481; 490 MW (3,281
(5-79)e

(5-79)e

(5-79)e

(5-79)e

(5-79)e

(5-79)e

98
(3,484
101
(3,566
102
(3,576
89
(3,171
90
(3,201
103
(3,644
(5-79)e/ 99
(3,508
,370
,133)




_
-
,490
,043)
,260
,713)
,800
,942)

,940
,984)
,670
,508)
,000
,694)
,300
,865)
,800
,223)
,650
,297)
,200
,641)
,350
,519)
119
(247)
	
-
_

_
—
122
(251)
122
(251)
104
(220)

107
(225)
120
(248)
118
(245)
121
(250)
110
(230)
112
(233)
116
(240)
117
(242)
405; 290'
(6770)
432; 435
-
432; 435
—
432; 435

430; 385
(7610)
430; 385
(8310)
400; 380
(8650)

400; 390
(8920)
431; 437
(10,820)
432; 442
(10,760)
432; 442
(10,880)
390; -
(10,200)
400; -
(10,300)
432; -
(10,780)
431; 442
(10,500)
72
(0.1664)
125
(0.2902)
95
(0.2201)
97 '
(0.2248)
76
(0.1758)
84
(0.1947)
45
(0.1051)

33
(0.0771)
53
(0.1225)
61
(0.1418)
71
(0.1645)
47
(0.1082)
31
(0.0732)
111
(0.2592)
112
(0.2613)
0.119
(0.0520)
_
-
_
—
_

0.118
(0.0517)
0.134
(0.0584)
0.0773
(0.0338)

0.0558
(0.0244)
0.101
(0.0443)
0.114
(0.0498)
0.133
(0.0583)
0.0927
(0.0405)
0.0627
(0.0274)
0.204
(0.0892)
0.208
(0.0911)
30

40

36

40

27

27

20


20

30

34

33

18

16

44

45

8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)

8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
7 c
-L J 	
—
20 - - -
—
18 - -
— — —
20 - -
-
13 - -
—
13 - ' -
—
10 -
—

10 - -
~
15 - -
—
17 - - -
—
17 -
-
9 -
-
0 	 	 	
-
23 - - -
—
24 - -
—
            (continued)

-------
                                               TABLE A-4 (continued)
00
Boiler
SAMMOXD


Test 2

T,3r -,

Test ~

Test 5

Test 6


Test 7
Test 8

Test 1

Test 2

Test 3

Test 1

Test 2

Test 3

HAMMOND
Test 1

Test 2

Test 3

Soiler type ri^r-
name, and design "
(10° Bcu/hrl-r .a_.ni.

(3-73) ^
\
(3-73)

(3-78)

(3-78)

(3-78)

(3-78)


„
•
_
-

-
_
-
_
_
3 pulv.
(3-78) \ coal;
\ front —
(3-78)

(6-78)

(6-78)

(6-78)

(7-78)

(7-78)

/ fired,
100 MW
each
33,780
(1,193,046)
33,940
(1,198,709)
34,950
(1,234,273)
34,140
(1,205,755)
34,020
(1,201,394)
(7-78) ' 34,540
(1,219,640)
4
(10-78) \ 55,310
1 Pulv. (1,953,333)
(10-78) > coal; opp. 56,270
I fired, 500 (1,987,043)
1 MW
(10-78) / 57,600
(2,034,007)
Exhaus t
temDerat-
i, OF)

-

_
-
_
-
_
-
_
-
_
_

-
-

141
(285)
142
(287)
143
(289)
_
-
_
—
_
-

158
(316)
160
(320)
159
(318)
Load
-e during test

95; 50; 50

95; 50; 50
-
95; 51; 50
-
95; 50; 50
-
106; 70; 90
-
106; 72; 90
„

106; 102; 101
106; 103; 100

300 total
(3140)
301 total
(3130)
301 total
(3190)
301 total
(3180)
301 total
(3140)
304 total
(3170)

467
(4998)
467
(5120)
469
(5270)
Particulate loading
at stack conditions
(lb/10* Btu)

46
' 0 . 1068 )

38
(0.0893)
239
(0.5560)
162
(0.3770)
85
(0.1987)
90
(0.2092)

146
(0.3400)
133
(0.3098)

166
(0.385)
163
(0.378)
164
(0.382)
61
(0.141)
69
(0.161)
77
(0.179)

76
(0.177)
77
(0.178)
97
(0.226)
igr/act)

0.068~
(n iQQ'i

0.0583
(0.0257)
0.382
(0.1671)
0.257
(0.1123)
0 . 138
(0.0605)
0.146
(0.0639)

0.233
(0.1018)
0.212
(0.0928)

0.270
(0.1180)
0.263
(0.1150)
0.263
(0.1151)
0.0993
(0.0434)
0.112
(0.0491)
0.124
(0.0543)

0.121
(0.053)
0.122
(0.0535)
0.156
(0.0682)
Opacity

^

17

54

48

27

29


41
39

47

45

46

21

20

25


28

29

30

Stack _ .... Fuel
, . Standardized . .
diameter ._ -h weisnt
opacity^ ^
l.ft) ° sulfur

6. 55
(21.5)

6.55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.55
(21.5)

6.55
(21.5)
6.55
(21.5)

6.55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.55
(21.5)

6.71
' (22.0)
6.71
(22.0)
6.71
(22.0)

11

11

38

33

17

19


28
27

32

31

31

13

13

16


18

18

19


1.3-
1.5

1 . 3-
1.5
1.3-
1.5
1.3-
1.5
1.3-
1.5
1.3-
1.5

1.3-
1.5
1.3-
1.5

—

-

-

1.09

1.22

1.12


-

-

-

Fuel Fuel heat
weight content
» kJ.-'kg
ash (Btu/lb)

11 -15 2b,700
(11,500)

11 -15 26,700
(11,500)
11 -15 26,700
(11,500)
11 -15 26,700
(11,500)
11 -15 26,700
(11,500)
11 -15 26,700
(11,500)

11 -15 26,700
(11,500)
11 -15 26,700
(11,500)

— —
~
-
—
_
—
9.5 29,159
(12,536)
9.3 29,342
(12,615)
9.3 29,068
(12,497)

_
—
- -

-
~
                                                            (continued)

-------
TABLE A-4  (continued)
Boiler "type . _,, ^ .
Boiler name, and design ^ cemperaLre
test number, capacity3 M3/mln oc
and date MW (0 }
(10- 3tu/nr)T
Test 4

Test 5

Test 6

Test 7

lest 8

Test 9

4
(10-78) 59.850

(10-78)

(10-78)

(10-73)

(10-78)

(10-78)
(2,113,748)
58,630
(2,070,332)
Pulv. coal; 30,720
opp. fired, (1,'085,014)
500 ^ 31 400
(1,144,'389)
45,370
(1,602,298)
46.360
(1,637«,345)
157
(314)
156
(312)
128
(262)
131
(267)
147
(296)
148
(298)
Load
during test
MSie
(10° Btu/hr)T
468
(5650)
470
(5500)
217
(2960)
219
(3050)
349
(4290)
350
(4380)
Particulate loading
at stack conditions opacitv
ng/J
(lb/10s Btu)
122
(0.284)
133
(0.310)
14
(0.033)
9
(0.021)
218
(0.508)
199
(0.463)
g/atn'
(gr/acf)
0.203
(0.0886)
0.220
(0.096)
0.024
(0.0105)
0.0150
(0.0065)
0.363
(0.159)
0.331
(0.145)
f
36

36

12

12

46

44

Stack „ . ,, . Fuel Fuel Fuel heat
diameter SCf^^b «ight «*#« CCT^enC
ffl ^ A- 
-------
TABLE A-4  (continued)
Soiler
teat c

Seller type s-1 ^w
aasie, and design ra'e
uaiber. capacity3 aa'-'mia
iate <•-,- i^f •- \ facfm)

MITCHELL i,-,-)
Test 3 (6-79) \ 22,950
\ (810,470)
Test 4
Test 5
Test 6
Test 7
Test 8
Test 9
Test 10
o Iest n
(6-79)
(.6-79)
(6-79)
(6-79)
(6-79)
(6-79)
(6-79)
(6-79)
23,030
(815,038)
22,870
(807,564)
3 Dulv. coal; 22,810
Unit 142 front (805,696)
fired; Unit 3 7, 46Q
opp fired, (7931032)
22.5; 22. 3;
125 MS,' 23,085
(815,245)
22,640
(799,468)
' 22,670
(800,506)
22,350
(789,295)
Exhaust Load
temperature during test
°C _ ffl!e
I.°F) iLO5 Btu/hr)T

153
(307)
149
(300)
150
(302)
152
(305)
152
(306)
144
(292)
146
(295)
147
(297)
147
(296)

20; 22; 163
(2040 total)
21; 21; 164
(1960 total)
21; 21; 164
(2020 total)
21; 21; 165
(1750 total)
21; 21; 165
(2040 total)
22; 22; 167
(1890 total)
22; 22; 165
(1940 total)
22; 22; 165
(1920 total)
22; 22; 164
(1900 total)
Particulate loading
at stack conditions
ag/J
(lb/10= 3tu)

107
(0.248)
153
(0.356)
169
(0.393)
192
(0.447)
231
(0.538)
350
(0.813)
344
(0.799)
334
(0.77?;
469
(1.09)
(gr.'acf)

0.166
(0.0727)
0.229
(0.100)
0.229
(0.100)
0.260
(0.113)
0.369
(0.161)
0.505
(0.221)
0.517
(0.226)
0.496
(0.217)
0.702
(0.307)
Opacity

20
25
23
31
33
42
44
47
61
.Scac£ Standardize
diameter Icvb
31 X
(ft)

6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0) '
6.40
(21.0)
6.40
(21.0)

13
16
15
21
22
29
30
33
44
Fuel Feui Fuel heat
weight weight content
sulfur ash i.Bcu/lb)

1.09 9.7 29
(12
1.21 11.1 28
(12
1.25 10.9 29
(12
1.31 14.0 28
(12
1.28 14.1 28
(12
1.36 14.* 27
(12
1.32 12.5 29
(12

,908
,358)
,980
,459)
,363
,624)
,161
,107)
,330
,180)
,968
,024)
,030
,480)
1.34 13.8 28,356
(12,191)
1.20 10.5 29
(12
.584
,719)
McDONOUGH 16,2
Test 1

Test 2

lest 3

Test 4
Test 5

Test 6
Test 7

(6-78) \ 59.710

(6-78)

(6-78)

(6-78)
(6-78)

(6-78)
(6-78)
(2,109,000)
52,990
(1,871,000)
52,820
2 pulv. coal; (1,865,000)
tang, fired;
245 W each (1)82o;ooo)
51,180
(1,807,000)
50,9^0
(1,799,000)
52,750
(1,863,000)
149
(301)
152
(305)
152
(305)
149
(300)
153
(308)
155
(311)
159
(318)
490
(5195 total)
490
(4785 total)
490
(4815 total)
' 490
(4635 total)
490
(4730)
490
(4810)
490
(4940)
22
(0.050)
11
(0.025)
23
(0.054)
52
(0.122)
94
(0.218)
90
(0.210)
64
(0.148)
0.0329
(0.0144)
0.0171
(0.0075)
0.0372
(0.0163)
0.0829
(0.0362)
0.192
(0.0666)
0.189
(0.0655)
0.132
(0.0458)
7

6

6

27
36

41
33

7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
4

3

3

15
14

23
18

- -

- -

— —


- -


-

—

—

—

-
—

-
-

            (continued)

-------
TABLE A-4  (continued)
Boiler
test a
and
3oiler type
name, and design
oniber, capacity
date MWe
Flow
rate
am ' / sin
(acf:a)
Exhaust Load
temperature during test
°C _ >8
(4-79) \ tang, fired;
/ 245 MW each (i,
(4-79)

(4-79)

(4-79)

(4-79)

(4-79)

(4-79)


(1,

(1,

(1,

(1,

(1,

(1,
,. .-,
(1,
39,110
381,000)
39,240
386,000)
36,910
302,000)
36,870
302,000)
50,160
771,000)
49,240
739,000)
48,440
711,000)
41,640
470,000)
41,120
452,000)
41,350
460,000)
42,140
488,000)
48,580
716,000)
48,930
728,000)
48,020
696,000)
47,400
674,000)
1*7
(-96)
147
(297)
148
(298)
148
(298)
149
(300)
149
(301)
149
(301)
136
(277)
138
(280)
140
(284)
139
(282)
141
(286)
141
(285)
138
(280)
136
(277)
350
(3490)
350
(1490)
300
(3100)
300
(3100)
245; 245
(4990)
245; 243
(4680)
240; 244
(4720)
175; 175
(3570)
175; 175
(2830)
175; 175
(2960)
175; 175
(2740)
245; 245
(3600)
245; 245
(4430
245; 245
(4260)
245; 245
(4150)
37
(0.076)
20
(0.046)
70
(0.196)
34
(0.196)
24
(0.055)
30
(0.069)
25
(0.059)
17
(0.040)
16
(0.037)
71
(0.164)
103
(0.239)
131
(0.304)
111
(0.259)
176
(0.410)
148
(0.344)
0.0645
(0.0224)
0.390
(0.0135)
0.132
(0.0544)
0.157
(0.0544)
0.0522
(0.0181)
0.0623
(0.0216)
0.0548
(0.0190)
0.0326
(0.0113)
0.0245
(0.0085)
0.112
(0.0388)
0.148-
(0.0514)
0.215
(0.0744)
0.223
(0.0775)
0.275
(0.120)
0.227
(0.0994)
6

5

26

23

5

5

5

4

4

29

31

43

46

44

46

7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)-
7.92
(26.0)
3

3

14

15

3

3

3

2

2

16

17

25

27

25

27

-
~
- - -

- - -
~
-

1.91 10.2 27,298
(11,738)
1.97 10.0 27,207
(11,697)
1.87 10.4 27,026
(11,619)
1.78 10.2 27,472
(11,811)
1.82 10.3 27,514
(11,829)
1.84 11.2 27,235
(11,709)
1.99 11.3 27,100
(11,651)
1.80 10.2 27,654
(11,889)
1.74 10.7 27,724
(11,919)
1.76 10.4 27,828
(11,964)
1.85 10.3 27,677
(11,899)
             (continued)

-------
TABLE A-4  (continued)
Boiler
test n
and
* ASS LEY
Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

Test 7

Test 8

WAN'SLEY
Test 1

Test 2

Test 3

lest 4

Test 5

Test 6

Test 7

Boiler type
name , and design
umber, canacitv1
date " S.e a
U0= Btu/hr)T
!
(3-78) \

(8-78)

(.3-78)

(3-78)
(3

(3

(3
p;!1 v- ,-ral :
tans, fired; (3
(3-78)

(8-78)

(8-78)

(8-78)
833 >W
(2

(2

(2

(2
2
(8-78)

(8-78)

(8-78)

(8-78)

(8-78)

(8-78)

(8-78)
(2

(2

Pulv. coal; (2
tang, fired;
860 W (3

(1

(1

(1
Flow Exhaus t
rate tetnperature
,acfsi) (''?')

89,680
.167,000)
87,820
,101,000)
37,190
,079,000)
86,910
,069,000)
58,820
,113,000)
59,860
,114,000)
58,440
,064,000)
58,670
,072,000)

82,270
,905,000)
82,470
,913,000)
82,780
,923,000)
85,380
,105,000)
52,160
,842,000)
51,530
,820,000)
50,540
,785,000)

157
(315)
157
(315)
159
(319)
159
(319)
148
(299)
149
(300)
149
(300)
149
(300)

150
(302)
151
(304)
151
(303)
151
(303)
132
(269)
129
(264)
128
(263)
Load
during test
(10* Stu/hr)T

380
(8550)
880
(8170)
880
(8130)
830
. (8220)
660
(5550)
600
(5570)
600
(5570)
600
(5450)

890
(7730)
890
(7970)
890
(8090)

(7980)

(4760)

(4980)
600
(5020)
Particulate loading
at stack conditions OpacU.,
n z ' J
(Lb/10e Btu!

92
(0.214)
119
(0.277)
113
(0.262)
111
(0.258)
13
(0.030)
8
(0.019)
28
(0.065)
73
(0.170)

19
(0.045)
28
(0.064)
170
(0.396)
150
(0.348)
89
(0.207)
84
(0.196)
63
(0.147)
(g

0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0

0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
s/am*
r/acf)

.15-*
.067*)
.195
.0851)
.185
.0807)
.184
.0806)
.0211
.0092)
.0134
.0058)
.047
.020)
.119
.052)

.032
.014)
.047
.020)
.292
.128)
.246
.107)
.143
.062)
.143
.063)
.110
.048)


43

40

52

46

10

10

20

29


10

10

69

66

27

37

24

Stack ,_ ,.-. Fuel Faei ruel.aeat
Standardized . , . ,
diameter . [5 weignt veight concent
(ft) * sulfur ash (Bcu/lb)

~. 62
(25. C)
7. 62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)

7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)

26 - -

24 - - -
~
32 — — ~~
~
28 -
~
5 — — —
~
5 — — —
~
11 -
~
16 -


5 -
~
5 - - -
~
46 — ~
~
43 -
—
15 - - -
—
22 - - -
—
15 -

            (continued)

-------
                                                TABLE A-4  (continued)
u>
Boiler type
Boiler name, and design
test number, capacity5
and date MW"e
(10- Btu/hr)f
Test 3
WANS LEY
Test 1
Test 2
Test 3
Test 4

Test 5

Test 6
Test 7
Test 8
Test 9

Test 10
Test 11

YATES 1
Test 1

Test 2

Test 3

Test 4

(9-,,
ie>2
(5-79)
(5-79)
(5-79)
(5-79)

(5-79)

(5-79)
(5-79)
(5-79)
(5-79)

(5-79)
(6-79)

Flow
rate
(acfoi}
50,370
797,000)

79,370
(2,803,000)
(2
(2

Pulv. coal; ^
tang, fired;
(2
(2
(3
(2

(2
(2

' (.2
,2,3
(12-77) s
1 (1
(12-77) 1 3 pulv. coal;
\ tang, fired; (]
(12-77) ( 10° «" each
1
1 (1
I
(12-77)-'
(1
79,130
,794,000)
80,270
,835,000)
68,940
.435,000)
69,500
,454,000)
83,000
,931,000)
85,290
,012,000)
84,280
,976,000)
79,720
,815,000)
79,170
,796,000)
81,220
,868,000)

33,910
,197,000)
35,810
,264,000)
35,410
,251,000)
36,030
,272,000)
Sjchaus t
S)
127
(261)

146
(295)
146
(294)
149
(300)
142
(287)
136
(276)
157
(314)
154
(310)
157
(315)
157
(315)
157
(315)
157
(315)

133
(271)
137
(278)
137
(279)
138
(280)
Lead
UO6 Btu/hr)T
600
(5010)

865
869
873
756
-
758'
-
862
869
868
873
-
870
868
-

95; 105; 105
(2680)
95; 105; 105
(2960)
95; 105; 105
(2750)
95; 105; 105
(2950)
Particulate loading
at stack conditions Q
ag/J
(lb/106 Btu)
(0.167)

22
(0.05)
17
(0.04)
17
(0.04)
13
(0.03)
13
(0.03)
219
(0.51)
82
(0.19)
52
(0.12)
64
(0.15)
30
(0.07)
26
(0.06)

76
(0.177)
7
(0.180)
207
(0.481)
159
(0.370)
(gr/acf)
0.124
(0.054)

0.0304
(0.0133)
0.0286
(0.0125)
0.0359
(0.0157)
0.0190
(0.0083)
0.0217
(0.0095)
0.306
(0.1337)
0.116
(0.0508)
0.073
(0.0320)
0.090
(0.0394)
0.041
.,(0.0177)
0.040
(0.0176)

0.106
(0.0462)
0.112
(0.0491)
0.282
(0.123)
0.229
(0.100)
sacitv
32

15
13
11
11

9

53
39
33
28

20
20


15

17

34

30

Stack
(ft)
7.62
(25.0)

7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)

5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
Fuel Fuel Fuel heat
tandardtzed ^ h(. coatenl.
opacity^ i J kJ/kg
sulfur ash (Btu/lb)
18

8
7
6
6

5

40
23
19
16

11
11


12

14

28

25

-

1.90 8.9 26,000
(11,180)
2.03 9.0 26,200
(11,265)
2.07 8.8 26,212
(11,269)
2.06 8.9 26,177
(11,254)'
2.14 8.7 26,900
(11,565) •
1.81 9.7 25,575
(10,995)
1.72 9.6 24,401
(10,913)
1.70 9.8 24,614
(11,008)
2.03 9.2 25,238
(11,287)
1.97 8.9 25,372
(11,347)
1.90 8.9 25,213
(11,276)

- - -
~
- - -

- — -

-

                                                             (continued)

-------
TABLE A-4  (continued)
3o lie
test
and
YATES
Test

Test

Test

Test

Test

Test


Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

,
5

6

7

8

9

10


I

2

3

1

1

3

4

5

6

1

.i~* .' * Flov
r name, ani design
^' ~ r^^--.' asi'/niin
date >&ie , ,- ,
. . - - ., ,, (ac toi>
'. iu- Btu/r.r!T
, ,
(12-77)\ 23,290
\
(12-77)

(12-77)

(12-77)

(12-77)

(12-77)


(3-78)

(822,500)
23,450
(828,000)
23,380
(825,500)
23,540
(831,300)
29,170
(1,030,000)
26,110
(1,028,000)

35,610
(1,258,000)
(3-78) 3 puiv. coal; 35,980
\ tang, fired; (1,271,000)
(3-73) 100 MW each ^^

(5-79)

(5-79)

(5-79)

(5-79)

(5-79)

(5-79)
(1,270,000) '
37,200
(1,314,000)
37,160
(1,312,000)
33,060
(1,168,000)
33,870
(1,196,000)
33,370
(1,178,000)
27,750
(979,900)
(5-79) ' 27,700
(978,100)
Exhaus t
temperature

126
(258)
124
(256)
125
(257)
126
(258)
136
(276)
136
(276)

133
(272)
134
(273)
134
(273)
141
(285)
144
(291)
145
(293)
144 '
(292)
141
(286)
138
(281)
137
(278)
Load
during test
(10° Btu/hr)r

95; 50; 50
(1790)
95; 50; 50
(1900)
95; 50; 50
(1990) -
95; 50; 50
(2000)
50; 90; 90
(2570)
50; 90; 90
(2450)

87; 97; 96
(3260)
88; 96; 94
(3270)
89; 97; 94
(3320)
90; 103; 100
(3190)
90; 103; 101
(3150)
83; 80; 84
(2740)
82; 79; 82
(2720)
59; 60; 65
(2060)
61; 59; 65
(2080)
87; 87; 80
(2800)
Particuiate loading
at stack conditions
ng/J
Ub.'iO5 Btu)

37
(0.086)
23
(0.054)
181
(0.421)
136
(0.316)
45
(0.105)
55
(0.127)

60
(0.140)
75
(0.174)
67
(0.156)
284
(0.66)
202
(0.47)
99
(0.23)
108
(0.25)
116
(0.27)
64
(0.15)
60
(0.14)
(gr/acf)

0.050
(0.022)
0.033
(0.014)
0.270
(0.118)
0.203
(0.089)
0.070
(0.031)
0.081
(0.035)

0.0970
(0.0424)
0.182
(0.0794)
0.109
(0.0477)
0.394
(0.172)
0.280
(0.122)
0.140
(0.061)
0.138
(0.060)
0.156
(0.068)
0.0897
(0.0392)
0.080
(0.0351)
Opacity

3

2

43

33

18

20


17

20

22

53

47

33

34

24

22

37

Stack
diameter
31
(ft)

5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
^
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
Standardized . .
opacitvb "ej*hC
sulfur

3

2 —

36

27 —

15

16


14 -

16

18

45 1.18

40 1.18

27 1.18

28 1.19

20 1.14

18 ' 1.14

31 1.17

Fuel Fuel heat
weight content
7." kJ.kg
ash (3tu/ib)

_ _
-
— —
-
— —
-
_ _
-
_ _
-
_ __
_

— —
-
- -
—
_ —
-
9.2 29,461
(12,666)
8.6 29,068
(12,497)
8.7 29,552
(12,705)
8.8 29,263
(12,581)
8.6 29,363
(12,624
8.5 29,691
(12,765)
8.6 29,645
(12,745)
           (continued)

-------
TABLE A-4  (continued)

Soiler
test a
and
YATE5 1,
Test 3
Test 9
lest 10
Test 1
Test 2
lest 3
Test 4
Test 5
(jl Test 6
Test 7
Test 8
Test 9
Test W
Test 11
Boiler type
name, and aesign
jmber, capacity ^
,_3
15-79) >
(5-79)
(5-79)
(6-79)
/
(1.
(1,
3 oulv. coal; d'
tang, fired;
100 MW each M
(6-79) 1
1 (1'
(6-79) I
1 U,
I
Flow Exhaust Load
rate temperature during test
nVmir. °C . MWe
(acfm) ("F) (10° Btu/mr)T

37,960
341,000)
37,740
333,000)
38,470
358,000)
32,810
159,000)
33,2*0
174,000)
33,910
198.000)
(6-79 )/ 33,540
(1.184.000)
(6-79) >
(6-79)
(6-79)
(6-79)
(6-79)
(6-79)
(6-79) 1
33,900
(1,197,000)
34,100
(1.204.000)
2 pulv. coal; (1
• tang, fired;
100 MW each
(1
(1
(1
33,760
192,000)
33,890
,197,000)
34,110
,205,000)
33,330
,212,000)
34,430
,216,000)

145
(293)
(292)
148
(298)
141
(286)
144
(292)
144
(291)
142
(288)
136
(276)
138
(208)
141
(286)
142
(288)
138
(281)
141
(285)
138
(280)

110; 105; 95
(3200)
99: 105; 95
(3200)
95; 105; 96
(3180)
91; 103; 97
(2830)
91; 103; 97
(3200)
90; 104; 96
(2850)
90; 104; 96
(2980)
(2970)
(2770)
(3000)
(2760)
(3020)
(2960)
(2990)
Particulate loading
at =taci<. condition^ ,-,„„,,- r ^
ng/ J
(lb.' 10'' Btu)

322
(0.75)
301
(0.70)
314
(0.73)
50
(0.117)
80
(0.187)
57
(0.133)
94
(0.218)
43
(0.101)
47
(0.110)
75
(0.174)
74
(0.171)
117
(0.271)
132
(0.306)
366
(0.852)
4/arn3
Ur/acf)

0.42;
(0.187)
0.403
(0.176)
0.415
(0.181)
0.076
(0.0332)
0.136
(0.059)
0.085
(0.037)
0.146.
(0.064)
0.067
(0.029)
0.067
(0.029)
0.117
(0.051)
0.105
(0.046)
0.181
(0.079)
0.199
(0.087)
0.559
(0.244)

:>-*
54
56
18
20
20
24
16
16
27
23
34
54
34
Sfck s
31

(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
YATES 445
Test 1
Test 2
(3-78)
(3-78)
2 Pulv. coal;
125 MW each
(915' 500)
25,780
(910,400)
140
(284)
141
(285)
125; 127
(2260
125; 126
(2350)
108
(0.250)
100
(0.233)
0.165
(0.072)
0.160
(0.070)
41
40
4.42
(14.5)
4.42
(14.5)
^aadardi.ec
%


46
48
15
16
16
20
13
13
22
19
28
46
28

38
37
Fuel Feul Fuel heat
% % kJ/tcg
sulfur ash (3tu/lb)
1 61 8.7 ?9,587
(12,720)
1 14 8.6 29,575
(12,715)
1.16 8.7 29,349
(12,518)
2.31 9.5 26,870
(11,552)
2.43 9.0 26,882
(11,557)
(11,493)
7.33 9.0 26,656
(11,460)
t 46 9.0 26,821
(11,531)
2.35 9.2 26,700
(11,479)
2.55 9.0 26,756
(11,503)
2.33 8.9 26,972
(11,596)
2.35 9.6 26,996
(11,606)
2 27 9.2 27,005
(11,610)
2 31 9.0 26,986
(11,602)

-

            (continued)

-------
TABLE A-4  (continued)
Suiter type C1 ^.
Boiler naioe, and desi^n
cest rr-ciber, caracit;.-1 an-./^Tn
and date MWe ^ .^-*
llO- 3tu,'hr)T
YATES
lesc

Test

Test

Test

Test

Test

Test

Test
Test

Test

Test

Test

Test

Test

Test

Test

4.*5
3 i.3-78) , -5,290

4 (3-78)

5 (3-78)

6 O-73)

7 (3-78)

8 (3-78)

9 (3-78)

(393,200)
25,140
(886,000)
19,080
(673,700)
19,120
(675,300)
17,730
(626,000)
13,710
(660,600)
21,160
(747,200)
10 (3-78) 2 pulv. coal;- 20,800
\ tang, fired; (734,600)
1 (4-79) 125 "" each 29,560

2 (4-79)

3 (4-79)

4 (4-79)

5 (4-79)

6 (4-79)

7 (4-79)

(1,044,000)
29,200
(1,031,000)
29,570
(1,044,000)
28,940
(1,022,000)
28,750
(1,015,000)
29,330
(1,036,000)
29,740
(1,050,000)
8 (4-79) ' 24,780
(875,100)
Exhaust
temperature

136
(2771
133
(250)
129
(265)
128
(262)
126
(259)
126
(258)
128
(262)
124
(256)
146
(295)
148
(298)
149
(300)
146
(295)
147
(297)
147
(297)
148
(298)
140
(284)
Load
during test
(10= Btu/hrij


(2460)

(2430)

(1540)

(1510) .

(1570)



(1810)
100; 100
(1820)
132; 129
(1810)
132; 132
(2130)
132; 130
(1950)
129; 128
(2130)
126; 130
(2190)
128; 126
(2420)
130; 125
(2360)
10; 103
(1710)
Parciculate loading
at stack conditions
ng/J
(lb/10" 3tu)

148
(0.345)
120
(0.280)
52
(0.120)
,9
(0.114)
317
(0.738)
154
(0.358)
65
(0.152)
54
(0.126)
103
(0.24)
103
(0.24)
86
(0.20)
194
(0.45)
202
(0.47)
172
(0.40)
181
(0.42)
60
(0.14)
.2 /am5
I'gr ' acif ;

0 . 254
(0.111)
0.204
.'0.089)
0.073
(0.032)
0.068
(0.030)
0.495
(0.216)
0.226
(0.099)
0.0986
(0.043)
0.083
(0.036)
0.167
(0.0731)
0.170
. (0.0744)
0.144
(0.0629)
0.279
(0.122)
0.277
(0.121)
0.252
(0.110)
0.270
(0.118)
0.0888
(0.0388)
Opacity

54

50

17

25

61

46

27

25
30

30

29

52

52

40

41

25

Stack
diameter
n
(ft)

4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
-*-. 42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
, Fuel Fuel
standardised ^ ve,eh|.
opacity0 ' „'" a"
sulfur ash

50 - -

47 -

25 - -

23 -

57 - -

43 - -

25 - - .

23 - -
38 1.74 13.5

28 1.86 14.4

27 1.85 13.8

49 1.68 13.2

49 1.60 12.4

37 1.49 11.9

38 1.65 13.1

23 2.16 15.2

Fuel heat
content
kJ/kz

-
~
-
—
-
~
-
~
-
~
-
~
-
~
-
27,742
(11,497)
26,689
(11,474)
26,663
(11,463)
26,679
(11,470)
27,275
(11,726)
27,265
(11,722)
26,696
(11,477)
25,509
(10,967)
           (continued)

-------
TABLE A-4  (continued)
Boiler
test ~
and
Seller type F^^.
nazie, and design _ ~
usber, capa*.lt"
(4-79) \ tana, fired; 15,290
1 125 MW each (539,900)
(4-79)) 15,300
(540,300)

(6-78) \ 33,930
(1,198,000)
(6-78)

(6-78)
(6-78)
(6-78)
(6-78)
(6-78)

(6-78)
(6-78)

(6-79)
(6-79)
33,130
(1,170,000)
33,180
(1,172,000)
15,620
(551,600)
15,990
(564,600)
Pulv. coal; 31,590
-. tang, fired; (1,116,000)
350 MW 31)?20
(1,120,000)
32,700
(1,155,000)
33,520
(1,184,000)
-
-
(6-79) ' 34,490
(1,218,000)
139
(233)
124
(255)
124
(255)

138
(281)
138
(280)
138
(281)
112
(233)
112
(234)
123
(254)
130
(266)
133
(272)
137
(278)
-
-
184
(363)
105; 101
(1710)
56 ; 55
(1030)
56; 55
(1050)

355
(3670)
345
(3580)
346
(2570)
177
(1770)
178
(1820)
337
(3670)
337
(3610)
342
(3680)
344
(3750)
354
356
360
60
(0.14)
22
(0.05)
22
(0.05)

15
(0.035)
12
(0.029)
13
(0.031)
42
(0.098)
34
(0.079)
104
(0.242)
53
(0.123)
258
(0.601)
212
(0.493)
9
(0.02)
4
(0.01)
13
(0.03)
0.0922 25
(0.0403)
0.0268 16
(0.0117)
0.0247 15
(0.0108)

0.029 3.4
(0.013)
0.024 3.4
(0.010)
0.025 3.4
(0.011)
0.084 11
(0.037)
0.068 10
(0.030)
0.213 22
(0.093)
0.106 15
(0.046)
0.511 46
(0.223)
0.417 38
(0.182)
0.0185 1
(0.0081)
0.0110 2
(0.0048)
0.0220 4
(0.0096)
4.42 23
(14.5)
4.42 15
(14.5)
4.42 14
(14.5)

4.98 3
(16.3)
4.98 3
(16.3)
4.98 3
(16.3)
4.98 9
(16.3)
4.98 8
(16.3)
4.98 18
(16.3)
4.98 12
(16.3)
4.98 39
(16.3)
4.98 32
(16.3)
4.98 1
(16.3)
4.98 2
(16.3)
4.98 3
(16.3)
2.90 15.6 25,i79
(10,954)
1.81 14.7 25,923
11,145)
1 84 13.7 26,800
(11,522)

-
- — • —

-
-
-
-
— ~~ ~

-
— — ~

1.79 12.7 27,114
(11,657)
1.77 12.7 27,158
(11,676)
1.87 12.8 26,840
(11,539)
            (continued)

-------
TABLE A-4  (continued)
c=sc n
and
YAIES 6
Test -*

Test 5
Test 6
Test 7
Test 3
Test 9
Test 10
Test 11
YATES 7
Test 1

Test 2

Test 3

Test 4

Test 5
Test 6

Test 7

3oiler type , ^
name , and des ign ^
umber. capacity'3 3/ *-
date _ XWe . acf")
i 10- Stu/hr;-]-

f6-79) \ 34,510
!l,219,000)
(6-79)
(6-79)
(6-79)
(6-79)
(6-79)
(6-79)
34,970
(1,235,000)
32 , 000
(1,130,000)
Pulv. coal; 32,320
tang, fired; (1,159,000)
350 MW 32 > 040
(1,131,000)
31,170
(1,001,000)
30,850
(1,090,000)
(6-79) / 31,340
(1,107,000)

(6-78) 33,840

(6-78)

(6-78)

(6-78)

(6-78)
(6-78)

(6-78)
(1,195,000)
33,750
(1,192,000)
33,870
Pulv. coal; (1,196,000)
tang, fired; 32,620
350 MW (1,152,000)
32,720
(1,155,000)
32,700
(1,155,000)
32,640
(1,153,000)
Exhaust
rv;

185
(365)
182
(360)
161
(322)
162
(323)
160
(320)
163
(325)
165
(329)
166
(331)

139
(283)
139
(283)
139
(283)
128
(262)
129
(264)
128
(263)
129
(264)
Load
(1C?5 Stu/'hrix

363
-
355
360
361
364


—

345
(3290)
341
(3410)
339
(3410)
337
(3480)
333
(3480)
334
(3500)
332
(3490)
Particulate loading
at stack; conditions
jib/ 10* Btu)

7 3
(0.17)
(0.05)
95
(0.22)
116
(0.27)
168
(0.39)
138
(0.32)
228
(0.53)
185
(0.43)

12
(0.029)
14
(0.032)
12
(0.028)
43
(0.099)
33
(0.077)
150
(0.349)
102
(0.238)
_ 	 ^
g ' am '
(gr/acf )

0.124
(0.0542)
0.0366
(0.0160)
0.166
(0.0727)
0.209
(0.0914)
0.298
(0.1302)
0.242
(0.1057)
0.658
(0.2874)
0.343
(0.1498)

0.0213
(0.0093)
0.0245
(0.0107)
0.0213
(0.0093)
0.080
(0.035)
0.062
(0.027)
0.282
(0.123)
0.193
(0.084)
pacity

14

12
23
24
31
31
43
44

2.6

2.6

2.5

10

7
31

26

Stacfc standardize
diameter opacltvb
•<->} %

i.98
(16.3)
4.98
(16.3;
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)

4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)

11

10
19
20
.10
26
36
47

2

2

2

8

6
26

21

Fuel Fuel Fuel heat
•d
weight weight content
if I kJ/kg
sulfur ash i.Btu/lb)

1.95 12.5 26
(11
2.04 12.5 26
(11
2.31 11.5 26
(11
2.20 11.5 26
(11
2,00 11.0 26
(11
1.73 10.0 27
(12
1.64 9.1 28
(12
1.65 11.0 27
(11

— —

- -

-

— —

"
- -

— —


991
, 604)
,893
,562)
,844
,541)
,582
,471)
,984
,601)
,993
,035)
,428
,222)
,782
,944)

—

—

—

—

-
—

—

            (continued)

-------
TABLE A-4  (continued)
Seller typ« __, ,-, ,
Boiler name, and design ^™ temperature
test numser, caoacitv^ -> : . or
,_, " aor'/oLin t.
and dace M»e ' - " ) (°F>
YATES 7
lest 8

Test 9

Test 10

Test 11

BOWES 1
Test 2
Test 3
Test 6
Test 7
Test 8
Test 9
Test 10
Test 11
Test 12
Test 13
BOWEN 2
Test 1

Test 2

Test 4


Test 5

Test 7


(5-78)'

(6-78)

(6-7S)

(6-78)
25,620
(904,800)
Pulv. coal; 26,270
tang, fired; (927,600)
350 * 26,060
(920,400)
26.320
(929,600)

(2-78) N
(2-78)
(2-78)
(3-78)
(3-78)
(3-78)
(3-78)
(3-78)
(3-78)
(3-78) ,
59,980
(2,118,016)
49,120
(1,734,666)
46,140
(1,629,312)
53,820
(1,900,654)
Pulv. coal; 44,100
> tang, fired, (1,557,378)
700 MW (6500) 38>420
(1,356^652)
33,110
(1,169,128)
34,030
(1,201,817)
30,870
(1,090,242)
30,510
(1,077,514)

(8-78)

(8-78)

(8-78)


(8-78)

(8-78)

73,690
(2,602,191)
74,550
(2,632,784)
Pulv. coal; 67)?90
*™S- "red (2,393,910)
700 W (6500)
70,600
(2,493,434)
73,600
(2,599,371)

117
(243)
120
(248)
119
(247)
121
(249)

135
(275)
128
(263)
128
(263)
128
(263)
128
(262)
124
(255)
120
(248)
120
(248)
115
(239)
113
(236)

154
(310)
158
(317)
152
(305)

154
(310)
157
(315)
Load
during test
(10* Btu/hr)T

255
(2660)
254
(2690)
254
(2660)
257
(2720)

610
(6050)
520
(5020)
472
(5390)
539
(5390)
441
(4400)
411
(3930)
344
(3250)
347
(3360)
263
(2920)
265
(2900)

700
(6710)
700
(7130)
650
(6400)

650
(6700)
690
(6750)
Particuiace loading
at stack conditions Opaclt.?
ng/J
(lb/10b Btu)

6
(0.013)
6
(0.013)
22
(0.052)
21
(0.048)

299
(0.696)
215
(0.501)
296
(1.533)
659
(1.533)
228
(0.531)
188
(0.438)
85
(0.197)
93
(0.216)
43
(0.101)
38
(0.088)

107
(0.248)
86
(0.20)
54
(0.125)

76
(0.176)
81
(0.189)
sr/am3
(gr/acf)

0
(0
0
(0
0
(0
0
(0

0.
CO.
0
(0
0
(0

.0102
.0045)
.0101
.0044)
.040
.018)
.037
.016)

530
2318)
387
1691)
527
2301)
1.16
(0.5069)
0.401
(0.1751)
0
(0
0
(0
0
(0
0
(0
0
(0

0
(0
0
(0
0
(0

0
(0
0
(0
339
1482)
146
0639)
161
0705)
0723
0316)
0632
.0276)

.171
.0746)
.145
.0632)
.089
.0390)

.126
.0551)
.131
.0572)
"

0.7

0.7

5

4


47
37
46
59
38
35
20
21
17
16

26

25

22


27

28

Stack Standardized
diameter . b
opacitv
31 7
(ft)

4.98 0.6
(16.3)
4.98 0.6
(16.3)
4.98 4
(16.3)
4.98 3
(16.3)

7.62 28
(25.0)
7.62 22
(25.0)
7.62 28
(25.0)
7.62 37
(25.0)
7.62 22
(25.0)
7.62 20
(25.0)
7.62 11
(25.0)
7.62 12
(25.0)
7.62 9
(25.0)
7.62 9
(25.0)

7.62 15
(25.0)
7.62 14
(25.0)
7.62 12
(25.0)

7.62 15
(25.0)
7.62 16
(25.0)
Fuel Fuel fuel heat
veignc weight concent
% % kJ/kg
sulfur ash (Bcu'lb)

- -

- -

— —

- -


1.55 12.5 30
(12
1.55 ' 12.5 30
(12
1.55 12.5 30
(12
1.55 12.5 30
(12
1.55 12.5 30
(12
1.55 12.5 30
(12
1.55 12.5 30
(12
1.55 12.5 30
(12
1.55 12.5 30
(12

—

—

—

—


,000
,900)
,000
,900)
,000
,900)
,000
,900)
,000
,900)
,000
,900)
,000
,900)
,000
,900)
,000
,900)
1.55 12.5 30,000
(12,900)

— —

- -

- -




- -


	

—

—




_

           (continued)

-------
TABLE A-4  (continued)
Boiler type
Seller name, and design
test number, capacity3
BOWEN 2
Test 8

Test 10

Test 11

Test 1

Test 2

Test 3

Test 6

Test 7

oo
O Test 8

Test 9

Test 10

Test 11

BOWEN 3
Test 1

Test 2

Test 3

Test 4

Test 5

Test 6


(8-78) \

(8-78)

(8-78)

(3-79)

(3-79)

(3-79)
(2

(2

(2

(2

(2
Pnlxr . onal •
\ tang, fired, (2
(3-79)

(3-79)


(3-79)

(3-79)

(3-79)

(3-79),
700 MW (6500)
(2

(1


(1

(1

(1

(1

(3-78)

(3-78)

(3-78)

(4-78)

(4-78)

(4-78)
(2

(2
Pulv. coal;
tang, fired, (2
880 m (8200)
(2

(2

(2
Flow Exhaust
rate temperature

74,200
,620,113)
57,200
,019,778)
56,720
,003,203)
72,070
,544,957)
69,300
,447,061)
67,000
,469,364)
57,410
,027,421)
56,030
,978,520)

48,700
,719,480)
48,060
,698,091)
42,510
,502,074)
40 , 750
,439,854)

81,610
,883,912)
81,710
,887,439)
84,030
,967,624)
57,160
,018,728)
58,810
,076,776)
57,660
,036,347)

158
(317)
152
(306)
152
(305)
143
(290)
142
(287)
141
(285)
132
(270)
129
(264)

124
(256)
122
(252)
122
(252)
119
(246)

148
(299)
151
(304)
149
301
129
(264)
130
(266)
128
(262)
Load
during test
(10s Bt5/Tir)T

700
(696O)
535
(5600)
535
(5500)
695
(7137)
696
(7090)
685
(7055)
563
(5507)
562
(5552)

487
(4752)
485
(4886)
418
(4418)
418
(4192)

800
(7652)
800
(7880)
840
(8620)
600
(5724)
600
(5724)
600
(5896)
Particulate lending
at scacfc conditions _
ng/J
{lb/106 ECu/

207
(0.481)
26
(0.060)
19
(0.045)
568
(1.321)
482
(1.122)
432
(1.005)
114
(0.265)
125
(0.291)

60
(0.140)
63
(0.147)
35
(0.081)
35
(0.082)

12
(0.027)
19
(0.044)
182
(0.423)
9
(0.022)
13
(0.031)
133
(0.310)
g/am3
Cgr/acf)

0.341
(0.149)
0.0444
(0.0194)
0.0329
(0.0144)
0.979
(0.4279)
0.842
(0.3681)
0.759
(0.3317)
0.190
(0.0830)
0.216
(0.0943)

0.102
(0.0444)
0.112
(0.0488)
0.0632
(0.0276)
0.0634
(0.0277)

0.0191
(0.00836)
0.0320
(0.0140)
0.327
(0.143)
0.0167
(0.00728)
0.0228
(0.00997)
0.240
(0.105)
I

41

20

18

57

54

50

27

28


16

17

14

13


4

4

41

3

3

29

diameter ^tv^ weight veignt content
Cft) % sulfur ash (Btu/lb)

7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)

7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)

7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)

31

11

10

36

33

31

15

16


9

9

8

7


2

2

24

2

2

16


- - .
—
_ _

_ _
—
1.46 11.8 28,080
(12,073)
1.52 11.8 28,250
(12,146)
1.34 11.4 28,660
(12,323)
1.36 11.2 28,660
(12,323)
1.40 11.6 28,510
(12,257)

1.44 11.9 28,340
(12,186)
1.42 11.5 28,530
(12,264)
1.40 11.8 28,310
(12,171)
1.47 12.2 28,100
(12,079)

- - -
—
_ _ _
—
_ -
—
_ _ _
—
_
—
_
~
          (continued)

-------
TABLE A-4  (continued)
Boiler type
Boiler name, and design FIov
test number, capacity3 rate
and date " w ^ 'Ilin
(10' Bt5/hr)T Caefa>
3OVEJI 3
Test 8

Test 9

Test 10

Test 1
Test 2
Test 3
Test 4

Test 5
00 Test 6
Test 7
Test 8
Test 9
Test 10
Test 11
BOWEN 4
Test 1

Test 2

Test 3

Test 4

(4-7a) ^ 5gi020

(4-78)

(4-78)

(3-79)
(3-79)
(3-79)
(3-79)

(3-79)
(3-79)
(3-79)
(3-79)
(3-79)
(3-79)
(2,049,133)
57,235
(2,021,237)
48,470
(1,711,766)
86,710
(3,062,148)
86,760
(3,064,030)
87,000
(3,072,342)
Pulv. coal; 86,590
tang, fired, (3,057,829)
880 I« 86,880
(82,000) (3,068,106)
87,670
(3,095,995)
87,400
(3,086,534)
66,340
(2,342,792)
66,680
(2,354,680)
66,150
(2,336,155)
<3-79) / 65;770
(2,322,601)

(4-78)

(4-78)

(4-78)

(4-78)
82,870
(2,926,387)
Pulv. coal; „ 83'°°°
tang, fired, «.»31,324>
800 »J (8200) 0.0283
(2,943,651)
83,070
(2,933,635)
Exh-aust Lo&d
temperature daring test
°C MHj,
"(°F) (10s Btu/br).
128
(262)
121
(249)
122
(251)
140
(284)
141
(286)
142
(288)
141
(285)
141
(285)
138
(281)
138
(281)
122
(252)
122
(252)
122
C252)
122
(252)

149
(301)
150
(302)
149
(300)
148
(299)
600
(6317)
500
(5038)
500
(5040)
346
846
846
842
—
845
844
841
660
661
658
660

800
(7777)
800
(7914)
800
(7682)
800
(7778)
Participate loading
at stack conditions
og/J
(Ib/lO6 Btu)
217
(0.505)
11
(0.025)
8
(0.019)
126
(0.293)
83
(0.192)
77
(0.178)
186
(0.432)
186
(0.433)
338
(0.787)
270
(0.629)
37
(0.086)
33
(0.077)
83
(0.193)
99
(0.231)

47
(0.109)
40
(0.094)
310
(0.721)
257

(gr/acf)
0.416
(0.182)
0.0160'
(0.007)
0.0149
(0.00653)
0.214
(0.0934)
0.143
(0.0625)
0.132
(0.0576)
0.317
(0.1386)
0.313
(0.1367)
0.576
(0.2517)
0.465
(0.2031)
0.0627
(0.0274)
0.0568
(0.0248)
0.142
(0.0620)
0.168
(0.0735)

0.0869
(0.038)
0.0677
(0.0296)
0.501
(0.219)
0.423
(0.185)
Dpacity
42

3

2

13
13
12
37

36
46
42
10
10
25
24

17

16

41

50

, StaCk Standardized Fuel Fuel Fuei he«
diameter vaa.^L'cJ3 weig&t weight content
31 . ' I % kj/kg
(ft) sulfur ash (Btu/lb)
7.62 25
(25.0)
7.62 2
(25.0)
7.62 1
(25.0)
7.62 7
(25.0)
7.62 7
(25.0)
7.62 6
<25.0)
7.62 22
(25.0)
7.62 21
(25.0)
7.62 28
(25.0)
7.62 25
(25.0)
7.62 5
(25.0)
7.62 5
(25.0)
7.62 14
(25.0)
7.62 13
(25.0)

7.62 9
(25.0)
7.62 9
(25.0)
7.62 24
(25.0)
7.62 31
(25.0)

_

	

_
2.09 11.0 27,000
(11,603)
2.24 11.0 27,230
(11,708)
2.00 12.0 27,230
(11,714)
2.05 11.3 27,360
(11,763)
2.24 10.6 27,330
(11,750)
2.23 10.6 27,120
(11,661)
2.22 10.9 27,380
(11,773)
2.34 10.5 27,140
(11,667)
2.33 10.2 27,370
(11,765)
2.42 9.9 27,070
(11,637)
2.21 10.4 27,080
(11,642)




_



. —
          (continued)

-------
                                                  TABLE A-4  (continued)



Boiler type flax Exhaust
Boiler nane, and design rate teniperature
test number, capacity3 am3 /mitt °C
(106 Btu/hr)T
30WEN 4
Test 5
Test 6
Test 7
Test 8
Test 9
Test 10
Test 1
Test 2
oo
N3 Test 3
Test 4
Test 5
Test 6
Test 7
Test 8
Test 9
Test 10
Test 11
(4-78) >
(4-78)
(4-78)
(4-78)
(4-78)
(4-78)
(4-79)
(4-79)
(4-79)
(4-79)
(4-79)
(4-79)
(4-79)
(4-79)
(4-79)
(4-79)
(4-79)
61,410
(2,168,532)
6,230
(220,124)
62,040
(2,190,769)
62,170
(2,195,367)
51,510
(1,818,948)
49,560
(1,750,248)
88,300
(3,118,404)
88,400
(3 121,845)
Pulv. coal;
tang, fired, 88,010
880 1*7 (8200) (3,107,997)
81,860
(2,890,769)
82,770
(2,922,887)
8,700
(3,073,734)
86,320
(3,048,470)
65,980
(2,329,937)
66,530
(2,349,639)
66,750
(2,357,119)
65,800
127
(261)
127
(260)
128
(262)
127
(261)
127
(260)
126
(258)
149
(301)
150
(303)
152
(306)
148
(298)
146
(295)
154
(310)
156
(312)
146
(294)
148
(299)
148
(299)
148

during test
(105 Btu/hr)T
600
(5866)
600
(5938)
600
(5847)
600
(6008)
500
(4986)
500
(4824)
877
(8014)
875
(7942)
878
(7974)
830
(7682)
830
(7599)
813
(8149)
822
(7984)
642
(6344)
641
(6246)
640
(6321)
641
(6153)


Partiemlate loading
at stack conditions ..
(lii/lO-6 Stu)
37
(0.087)
43
(0.099)
162
(0.376)
174
(0.405)
26
(0.060)
30
(0.069)
22
(0.051)
28
(0.065)
40
(0.093)
71
(0.164)
95
(0.220)
202
(0.474)
197
(0.458)
20
(0.047)
0.468
(0.033)
206
(0.480)
193
(0.449)
g/am3
(gr/aef)
0.0629
(0.0275)
0.0714
(0.0312)
0.413
(0.1804)
0.295
(0.129)
0.0439
(0.0192)
0.0508
(0.0222)
0.0350
(0.0153)
0.0437
(0.0191)
0.0634
(0.0277)
0.116
(0.050S)
0.152
(0.0665)
0.335
(0.1463)
0.320
(0.1397)
0.0343
(0.0150)
0.0231
(0.0101)
0.343
(0.1499)
0.317
(0.1384)
Ipacity
I
17
17
33
34
13
13
8
8
9
24
23
46
43
5
4
50
43

E
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)

Z
10
9
19
20

7
4
4
5
13
13
28
26
3
2
31
26

Fuel
sulfur
-


2.34
2.31
2.43
2.31
2.31
2.30
2.22
2.26
1.97
2.08
1.47

Fuel
%
ash
-


10.4
10.7
10.5
10.9
10.7
11.1
11.2
10.8
11.0
10.8
10.0

(Btu/lb)
-
-
-
26 , 540
(11,460)
26,520
(11,452)
26,670
(11,516)
26,590
(11,483)
26,420
(11,406)
27,170
(11,732)
2,698
(11,650)
27,130
(11,714)
27,650
(11,938)
27,410
(11,836)
25,250
(10,904)
Subscripts:  E - electrical; T = thermal.
bStandardized to 4.0 m (~ 13.0 ft)  diameter stack.
°Flue  gas conditioning, Unit 4
 Flue gas conditioning,  Unit 3
£Flue gas conditioning,  Unit 3&4

-------
                                                                      TABLE  A-4   (continued)
oo
               Seller name,
               test Quaker,
                and date
             AKKWSKHT 1-4
             Test 1   (6-78)
                      (6-78)
                      (6-78)
                      (6-78)
                      (6-78)
                      (6-78)
                      (6-78)
                      (6-78)
                      (6-78)
  Test 2
  Test 3
  Test 4
  Test 5
  Test 6
  Test 7
  Test 8
  Test 9
  Test 10   (6-78)
  Test 11   (6-78
  BRANCH 142
  Test  1    (2-79)
  Test  2    (2-79)
 Test  3    (2-79)
 Test  4    (2-79)

 Test S    (2-79)

 Test 6    (2-79)

 Test 7   (2-79)

 Test 8   (2-79)

 Test 9   (2-79)

 Test 10  (2-79)

 Test 11   (2-79)

BRANCH 3&4
Test  1
     through
Test 26  (5-79)
                         Electrification details
                                     Boiler name,
                                     test ntffij&er,
                                      and date
                                                                            Electrification details
  24  of  48 ESP sections energized
  24  of  48 ESP sections energized
  32  of  48 ESP sections energized
  32  of  48 ESP sections energized
  39  of  48 ESP sections energized
  39  of  48 ESP sections energized
  All ESP sections energized
 All ESP sections energized
 All ESP sections energized
 16 of 48 ESP sections energized
 16 of 48 ESP sections energized

 34 of 34 ESP sections energized
 34 of 34 ESP sections energized
 33 of 34 ESP sections energized
 33 of 34 sections  on  3 arcing or
 low power
 32 of 34 sections  on  3 arcing or
 low  power
 33 of 34 sections  on  3 arcing or
 low  power
 32 of  34 sections  on  2 arcing or
- low  power
 33 of  34 sections on  1 at low
 power
 33 of 34 sections on 1 at low
power
21 of 34 full power, 11 reduced
2 off
22 of 34 full power, 11 low
power, 1 off
                             All ESP sections in operation
 i Test 27  (5-79)
 [Test 28  (5-79)
 i
 ; HAMMOND 1,  2,  3
 'Test 1   (7-78)
           (7-78)
           (7-78)
           (6-78)
           (6-78)
           (6-78)
           (3-78)
           (3-78)
 Test 2
!Test 3
! Test 1
: Test 2
j Test 3
'•. Test 1
; Test 2
! Test 3
                                                                         (3-78)
 Test 4   (3-78)

 Test 5   (3-78)
 Test 6   (3-78)
 Test 7   (3-78)
 Test 8   (3-78)
 HAMM3ND 4
 Test 1  (10-78)
 Test 2  (10-78)
 Test 3  (10-78)
 Test 4  (10-78)
 Test 5  (10-78)
 Test 6   (10-78)
 Test 7   (10-78)
 Test 8   (10-78)
 Test 9   (10-78)
 MITCHELL 1,2,3
 Test 1   (6-78)
Test 2   (6-78)
Test 3   (6-78)
  ESP energy levels decreased
  ESP energy levels decreased

  2 sections out on Unit 1
  2 sections out on Unit 1
  2 sections out on Unit 1
  All ESP sections  in operation
  All ESP sections  in operation
  All ESP sections  in operation
  1 ESP  section  out  of service
  1 ESP  section  not  in operation
  1 section  out;  inlet and center
  of 2 &  3 out
  1 section  out;  inlet and center
  of  2 &  3 out
  1  section  out
  1  section  out
  1 section  out
  1 section  out

 All ESP sections in operation
 All ESP sections in operation
 All ESP sections in operation
 23 of 32 sections  reduced pover
 28 of 32 sections  reduced power
 All ESP sections in operation
 All ESP sections in operation
 22 sections out of  32 inoperative
 22 sections out of  32 inoperative

All  ESP  sections energized
All  ESP  sections energized
All  ESP  sections energized
   (continued)
                                                         Boiler name,
                                                         test ouaafaer,
                                                          and date
                                                                                                                                 Electrification details
                                                                                                          Test 4   (6-78)
                                                                                                                            Sections G,H,J,K outlets of Obit 3
                                                                                                                            out
                                                      Test  5    (5-78)   Sections G.H.J.K of Unit  3 out
 Test  6    (6-78)
      and
 Test  7   (6-78)
 Test  8   (6-78)
 Test  9   (6-78)
    through
 Test  3   (6-79)
 Test  4   (6-79)
    through
 Test  11  (6-79)
McDONOUGH 1&2
Test  1   (6-78)
Test  2   (6-78)
Test 3   (6-78)
Test 4   (6-78)
                                                                                                                    Test 5
                                                                                                                    Test 6
                                                                                                                    Test 7
                                                                                                                    Test 8
                                                                                                                    Test 9
                                                               (6-78)
                                                               (6-78)
                                                               (6-78)
                                                               (6-78)
                                                               (6-78)
                                                     Test 10  (6-78)
                                                     Test 11  (6-78)
                                                     Test 1   (4-79)
                                                         through
                                                     Test 5   (4-79)
                                                     Test 6   (4-79)
                                                         through
                                                     Test 11  (4-79)
                                                     KANSLEY 1
                                                     Test 1   (8-78)
                                                     Test 2   (8-78)
                                                     Test 3   (8-78)
  Sections  C,H,J,K of  Unit  I and
  outlet  of 1&2  sections  oat
  All ESP sections out

  All ESP sections energized

  No data
 All ESP sections energized
 All ESP sections energized
 All ESP sections energized
 24 of 64 sections energized
-(as Test 7)
 20 of 64 ESP sections energized
 20 of 64 ESP sections energized
 24 of 64 ESP sections energized
 All ESP sections energized
 All ESP sections energized
 24 of 64 ESP sections energized
 24 of 64 ESP sections energized

 All  ESP  sections  in operation

 58 of 64 ESP sections  in operation
                                                                                                        All sections reduced power
                                                                                                        30 of 32 sections reduced, 2 out
                                                                                                        28 of 32 sections reduced, 4 out

-------
oo
             Soiler naae,
             test rtuoiber,
              and date
           HASSLET 1
           Test 4
           Test 5
           Test 6
           Test 7
           Test 8
              Electrification details
(3-73)   26 of 32 sections reduced, 6 out
(8-78)   All ESP sections in service
(8-78)  .All ESP sections in service
(8-78)   28 of 32 sections in operation
(8-78)   28 of 32 sections in operation
WANSLEY 2
Test 1   (8-78)
Test 2   (8-78)
Test 3   (8-78)

Test 4   (8-78)

Test 5   (8-78)

Test 6   (9-78)

Test  7    (9-78)

 Test  8   (9-78)

 Test  1   (5-79)
 Test  2   (5-79)
 Test  3   (5-79)
     through
 Test 8   (5-79)
 YATES 1,2,3
 Test 1  (12-77)
 Test 2  (12-77)
 Test 3  (12-77)

 Test 4  (12-77)

 Test 5  (12-77)
 Test 6  (12-77)
         30 of 32 sections  in operation
         30 of 32 sections  in operation
         30 of 32 sections  at reduced
         power,  2 out
         30 of 32 sections  at reduced
         power,  2 out
         22 of 32 sections  in operation,
         10 out
         22 of  32 sections  reduced power
          10 out
          22 sections reduced power; 10
          sections  out
          22  sections reduced power; 10
          sections out
          8 ESP fields not operational
          2 ESP fields not operational

          All sections in operation
                               All ESP sections in operation
                               All ESP sections in operation
                               4 ESP sections out; 2 sections
                               reduced power
                               4 ESP sections out; 2 sections
                               reduced power
                               All ESP sections in operation
                               All ESP sections in operation


Is
— r
6 out
_e
:e |
ation
3tion ;


at ion !
|
at ion '.
ced ;

ced ;

ation,
power,

; 10
; 10

?nal
snal

i


ation
ation

ctions

ctions

ation
ation
TABLE A-4 (continued)
	 I"'
Boiler aaae, ;
test somber. Electrification details |
and date
	 — 	 • 	 	 	 — "
Test 7 (12-77) 14 ESP sections out of senri.ce
Test 8 (12-77) 14 ESP sections out of service
Test 9 (12-77) 2 ESP sections out of senrf.ee
Test 10 (12-77) 2 ESP sections out of service
Test 1 (3-7.8) i
through All ESP sections in service
Test 5 (6-79) !

YATES 4&5
Test 1 (3-78) All ESP sections energized ;
Test 2 (3-78) All ESP sections energized
Test 3 (3-78) 2 of 3 ESP sections energized
Test 4 (3-78) 2 of 3 ESP sections energized
Test 5 (3-78) All ESP sections energized ',
Test 6 (3-78) All ESP sections energized j
Test 7 (3-78) => l'-5 of 3 ESP sections energized
Test 8 (3-78) ~ 1% of 3 ESP sections energized i
Test 9 (3-78)
through All ESP sections energized
Test 4 (3-79)
Test 4 (4-79) All ESP sections at 40 percent
power
Test 5 (4-79) All ESP sections at 40 percent
power
Test 6 (4-79) All ESP sections at 50 percent ,
power :
Test 7 (4-79) All ESP sections at 55 percent
• power
Test 8 (4-79)
through All ESP sections in operation
Test 11 (4-79)

YATES 6
Test 1 (6-78)
through All ESP sections in operation
Test 3 (6-78)

	 _


Boiler naffle,
test number, Electrification details
and date
rest 4 (6-78
through 10 ESP sections not energized
Test 7 (6-78)
Test a (6-78) 14 ESP sections not energized
Test 9 (6-78) 14 ESP sections not energized
Test 1 (6-79) All ESP sections in operation
Test 2 (6-79) 2 ESP sections not in operation
Test 3 (6-79) 2 ESP sections not in operation

Test 4 (6-79) 11 ESp sections not in operation
Test 5 (6-79) 10 ESP sections not in operation
Test 6 (6-79) 13 ESP sections not in operation
Test 7 (6-79) 13 ESP sections not in operation
Test 8 (6-79) 13 ESP sections not in operation
Test 9 (6-79) 15 ESP sections not in operation
Test 10 (6-79) 14 ESP sections not in operation
Test 11 (6-79) 14 ESP sections not in operation
YATES 7
Test 1 (6-78) 1 ESP section not energized
Test 2 (6-78) 1 ESP section not energized
Test 3 (6-78) 1 ESP section not energized
Test 4 (6-78) 12 ESP sections not energized
Test 5 (6-78) 12 ESP sections not energized
Test 6 (6-78) 16 ESP sections not energized
Test 7 (6-78) 16 ESP sections not energized
Test 8 (6-78) 1 ESP section not energized
Test 9 (6-78) 1 ESP section not energized
Test 10 (6-78) 12 ESP sections not energized
Test 11 (6-78) 12 ESP sections not energized





„„__====_——==——-=-==—=-———•

-------
                                     APPENDIX B


                     METHOD FOR COMPUTING  STANDARDIZED OPACITY
                             I/IQ - T =  exp(-bL)                            (1)

       1/10
          T - transmittance:  T =  1  -  Opacity


          b - extinction coefficient of  a volume of aerosol (m-l)
 Solving for  b,  Equation 1 may be rewritten:
 coefficient of b, a change i   the  PLt^ leng^T "SJ61 Wlth «  «tlnctlon
 a change in the value of the tranam±f?«n^    i, 'u     necessarily  result in


                              ''"
            -P t-t,                 	"~""*i1^^- such that ths ratio of
           or tne transmittance  to  thp  n^t-h iar»r>+-u •
                                 ^"-'  i-m^  pciL.ii xmigen IS



                         -b = ln Tl = 1"  T2 = ln_Tn

                               Ll       L2       L,
length'! rTeSptively   t.1188  ^  transm^^nce and path

viewed through a neJ'path  iSgth of C^J                ^ aer°S01 3S




                             Ts  = exp N In T\                          (3)
                                      85

-------
                op-it, esttes th. actual
         .                                                      -
meter measurement was also assumed to equal stack       ^ standardlzed

                                       'c- 13.0
                                          86

-------
                                   APPENDIX C

              CONFIDENCE  LIMITS  FOR PREDICTED INDIVIDUAL y VALUES  .


      The  following  procedures were used  to compute  the 95 percent confidence
 limits  for  any  predicted value  of  the mass emission (g/am3)  in  terms  of  the
 opacity value indicated  by  the  linear regression  line.   The  general expression
 for  y*  is

                                                                         (1)
                         +
 If jit  is assumed  that  the number of data pairs, n,  is  large  and  that  the
 (x-x)2 value  for  the point of  interest  is  small compared  to  the  term   £] (x-x)2
 Equation C-l  reduces to the  form

                             y*±V2, 0.05 Sy'X
 Since Sy.x can be expressed  as


                               Sy.x = Sy /1-r2

 and Sy, the sample standard  deviation for  the y values can be computed as
                                           n-1
the parameters derived during the development of the regression line  (y-y~) , Sy
and r are available for rough estimates of confidence limits.  In computing
the "t" value, 2 degrees of freedom are lost through the use of the mean
values and the standard deviations.  The "t" function represents the area
described by 0.025 of either tail of the t distribution.  The statistical
development used here is based upon procedures reported by Collins.24
                                      87

-------
                               TECHNICAL REPORT DATA
                         (Please read Instructions on the reverse before completing)
 REPORT NO.
 SPA-600/7-80-062
                                                     3. RECIPIENT'S ACCESSION NO.
 TITLE ANDSUBTITLE
Review of Concurrent Mass Emission and Opacity
 Measurements for Coal-burning Utility and Industrial
 B_oJlg£g_
                                5. REPORT DATE
                                 March 1980
                                6. PERFORMING ORGANIZATION CODE
 AUTHOR(S)

R. J. Brennan, Richard Dennis, and D. R. Roeck
                                8. PERFORMING ORGANIZATION REPORT

                                 GCA-TR-80-3-G
 PERFORMING ORGANIZATION NAME AND ADDRESS
 rCA Technology Division
Burlington Road
Bedford,  Massachusetts 01730
                                 10. PROGRAM ELEMENT NO.
                                 INE830
                                 11. CONTRACT/GRANT NO.

                                 68-02-2607, Task 19
 2. SPONSORING AGENCY NAME AND ADDRESS
 EPA, Office of Research and Development
 Industrial Environmental Research Laboratory
 Research Triangle Park, NC 27711
                                                     13. TYPE OF REPORT AND PERIOD COVERED
                                 13. TYPE OF REPORT AND
                                 Final; 8/79-2/80
                                 14. SPONSORING AGENCY CODE
                                  EPA/600/13
 e. SUPPLEMENTARY NOTES IERL-RTP project officer is James H. Turner, Mail Drop 61,
919/541-2925.
 6. ABSTRACT r^g report gives results of concurrent particulate emissions and opacity
 measurements based on visual observations and/or in-stack transmissometry for
 more than 400 compliance, acceptance, or experimental tests on coal-fired utility
 and industrial boilers.  The sampling, which includes a capacity range of a few to
 several hundred megawatts and typical firing methods (pulverized, stoker, and  cy-
 clone), in  most cases reflects flyash control by electrostatic precipitation, although
 liters or mechanical collectors were used at a few installations. All opacity  mea-
 surements were standardized to their equivalent values for a 4 m  (13.0 ft) diameter
 stack before being compared with their corresponding particulate emissions,  the
 Latter expressed as actual grams  per cubic meter.  No discernible correlations  appli-
 cable to all sources were observed,  although some modest (but apparently signifi-
 cant) correlations were noted on an individual source basis. Thus, any useful and
 definitive relationships between particulate mass emission rates and their corres-
 ponding opacity levels appear to be site specific. Furthermore, correlations with
 transmissometer measurements were  far stronger than those derived from visual
 estimates  of opacity. Report findings were sufficiently encouraging to warrant fur-
 thur analyses relating to in-stack transmissometer measurements.	
 7.
                             KEY WORDS AND DOCUMENT ANALYSIS
                 DESCRIPTORS
                                          b.lDENTIFIERS/OPEN ENDED TERMS
 Pollution
 Coal
 Combustion
 Measurements
 Opacity
 Emission
Dust
Aerosols
Boilers
Transmissometers
                                                                  c. COS AT I Field/Group
Pollution Control
Stationary Sources
Mass Emissions
Particulate
Particulate Mass Emis-
 sions
13B
2 ID
2 IB
14B
11G
07D
13A
 18. DISTRIBUTION STATEMENT

  Release to Public
                      19. SECURITY CLASS (ThisReport)
                      Unclassified
                            99
                      20. SECURITY CLASS (This page)
                      Unclassified
                                              22. PRICE
 EPA form 2230-1 (S-73)
                                         88

-------
U.S. ENVIRONMENTAL PROTECTION AGENCY
    Office of Research and Development
  Center for Environmental Research Information
          Cincinnati, Ohio 45268

          OFFICIAL BUSINESS
   PENALTY FOR PRIVATE USE. S3OO
  AN EQUAL OPPORTUNITY EMPLOYER
       POSTAGE AND FEES PAID

US ENVIRONMENTAL PROTECTION AGENCY

              EPA-335
                                      If your address is incorrect, please change on the above label
                                      tear off; and return to the above address.
                                      If you do not desire to continue receiving these technical
                                      reports. CHECK HERE D, tear off label, and return it to the
                                      above address.
                                     Publication No. EPA-600/7-80-062

-------