&EHV
United States
Environmental Protection
Agency
Industrial Environmental Research
Laboratory
Research Triangle Park NC 27711
EPA-600/7-80-062
March 1980
Review of Concurrent
Mass Emission and
Opacity Measurements
for Coal-burning
Utility and
Industrial Boilers
Interagency
Energy/Environment
R&D Program Report
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
aories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the INTERAGENCY ENERGY-ENV.RONMENT
RESEARCH AND DEVELOPMENT series. Reports in this series result from the
effort funded under the 17-agency Federal Energy/Environment Research and
Development Program. These studies relate to EPA's mission to protect the public
SanTwelfare from adverse effects of pol.utants associated w.th energy sys-
tems The goal of the Program is to assure the rapid development of domesttc
en™gy supplies in an environmentally-compatible manner by providing the nec-
essarv environmental data and control technology. Investigates include analy-
Ss oTthe tSnTport of energy-related pollutants and their health and ecologica,
effects- assessments of, and development of, control technologies for energy
systems; and integrated assessments of a wide range of energy-related env.ron-
mental issues.
EPA REVIEW NOTICE
This report has been reviewed by the participating Federal Agencies,
for publication. Approval does not signify that the contents necessarily r
the views and policies of the Government, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/7-80-062
March 1980
Review of Concurrent Mass
Emission and Opacity
Measurements for Coal-burning
Utility and Industrial Boilers
by
R.J. Brennan, Richard Dennis,
and D.R. Roeck
GCA Technology Division
Burlington Road
Bedford, Massachusetts 01730
Contract No. 68-02-2607
Task No. 19
Program Element No. INE830
EPA Project Officer: James H. Turner
Industrial Environmental Research Laboratory
Office of Environmental Engineering and Technology
Research Triangle Park, NC 27711
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460
I1 • h
-------
DISCLAIMER
This Final Report was furnished to the U.S. Environmental Protection
Agency by GCA Corporation, GCA/Technology Division, Burlington Road, Bedford,
Massachusetts 01730, in fulfillment of Contract No. 68-02-2607, Technical
Directive No. 19, Assignment Change No. 3. The opinions, findings, and
conclusions expressed are those of the authors and not necessarily those of
the Environmental Protection Agency. Mention of company or product names is
not to be considered as an endorsement by the Environmental Protection Agency,
!,),$, Environments! ^
ii
-------
ABSTRACT
Concurrent particulate emissions and opacity measurements based upon
visual observations and/or in-stack transmissometry are reported for more
than 400 compliance, acceptance, or experimental tests on coal-fired utility
and industrial boilers. The sampling, which includes a capacity range of a
few to several hundred megawatts and typical firing methods (pulverized,
Stoker and cyclone) in most cases reflects flyash control by electrostatic
precipitation although filters or mechanical collectors were used at a few
installations. All opacity measurements were standardized to their equivalent
values for a 4 meter (13.0 ft) diameter stack before comparisons were made
with their corresponding particulate emissions, the latter expressed as actual
grams per cubic meter. No discernible correlations applicable to all sources
were observed although some modest but apparently significant correlations
were noted on an individual source basis. Thus, any useful and definitive
relationships between particulate mass emission rates and their corresponding
opacity levels appear to be site specific. Furthermore, correlations with
transmiseometer measurements were far stronger than those derived from visual
estimates of opacity. The report findings are considered sufficiently en-
couraging to warrant further analyses of the existing and new data to deter-
mine how effective a monitoring tool in-stack transmissometer measurements
might be with skillful application.
iii
-------
CONTENTS
Figures . . ............... • ........... .... vi
Tables .............. . .................. lx
Acknowledgment ............................. x
1. Summary and Recommendations . f- ................... 1
2. Introduction ........................... 2
Current status, NSPS for particulate mass emissions and
opacity .......................... 2
Program objective .... .................. 2
Background data ..... ......... • ........ 3
3. Basic Opacity Relationships . . .................. 8
4. Discussion of Results ..... .................. 13
Introduction ................ • • ....... 13
Data sources ......................... 13
Mass emissions versus opacity measurements ........... 13
References
Appendices
A. Data Tabulations for all Mass Emission and Opacity Measurements . . ^6
B. Method for Computing Standardized Opacity ........... • • 85
C. Confidence Limits for Predicted Individual y Values ........ 87
-------
FIGURES
Number
1 Flue gas in-stack optical density versus outlet particulate
concentration for a large coal-fired utility boiler ..... 4
2 Flue gas in-stack optical density versus outlet particulate
concentration and firing rate for a small hand-fired
boiler ............................ 4
3 Flue gas light absorption versus particulate concentration for
an experimental stoker-fired furnace with a 0.15 m (6 in.)
diameter stack ........................ ^
4 Particulate emission rate versus in-stack opacity for three
coal-fired utility boilers and equivalent stack diameter of
4.6 m (15 ft) ........................ 5
5 Predicted opacity versus coal flyash outlet loading from
electrostatic precipitators for several particle size
distributions . . ...................... 7
6 Particle extinction efficiencies for spherical particles as a
function of a for m= 1.33, m = 1.5, and m = 2 - li (which
approximates the value for coal) ............... 10
7 Effect of coal sulfur content on mass emissions from an ESP
controlled boiler 12
8 Particulate mass concentration versus estimated opacity by
transmissometer and visual methods for various coal firing
methods and types of particulate control, 0 to 45 percent
opacity .......... ..... ............ 16
9 Particulate mass concentration versus estimated opacity by
transmissometer and visual methods for various coal firing
methods and types of particulate control, 45 to 80 percent
opacity ....... •••..' .................
vi
-------
FIGURES (continued)
Number • Page
10 Particulate mass concentration versus standardized opacity
baaed upon in-stack transmissometer measurements on Boilers
No. 1 and No. 2, Public Service Co. of New Hampshire 18
11 Particulate mass concentration - standardized opacity (in-stack
and visual) TVA coal-fired utility boilers with ESP control
and pulverized coal firing . 21
12 Particulate mass concentration versus measured and standardized
opacities for coal-fired utility and industrial boilers.
State of South Carolina 22
13 Particulate mass concentration versus standardized opacity for
coal-fired utility boilers employing in-stack transmisso-
meters. Georgia Power Co. boilers with ESP particulate
controls 25
14 Particulate mass concentration versus standardized opacity for
Georgia Power, Branch Units 1 and 2, opposite-fired boilers,
incomplete energizing 26
.15 Particulate mass concentration versus standardized opacity for
Georgia Power, Branch Units 3 and 4, oppositely-fired boilers
complete energizing 27
16 Particulate mass concentration versus standardized opacity for
Georgia Power, Hammond Units 1, 2 and 3, front-fired boilers,
incomplete energizing 28
17 Particulate mass concentration versus standardized opacity for
Georgia Power, Hammond Unit 4, opposite-fired boiler,
incomplete energizing 29
18 Particulate mass concentration versus standardized opacity for
Georgia Power, Mitchell Units 1 and 2, front-fired and Unit 3
opposite-fired boilers, incomplete energizing 30
19 Particulate mass concentration versus standardized opacity for
Georgia Power, Arkwright Units 1 through 4, tangentially-fired
boilers, incomplete energizing 31
20 Particulate mass loading versus standardized opacity for Georgia
Power, McDonough Units 1 and 2, tangentially-fired boilers,
incomplete energizing 32
vii
-------
FIGURES (continued)
Number
21 Particulate mass concentration versus standardized opacity for
Georgia Power, Wansley Unit 1, tangentlally-f ired boiler,
incomplete energizing .....................
22 Particulate mass concentration versus standardized opacity for
Georgia Power, Wansley Unit 2, tangentially-fired boiler, ^
incomplete energizing .....................
23 Particulate mass concentration versus standardized opacity for
Georgia Power, Yates Units 1, 2 and 3, tangentially-fired _
boilers, incomplete energizing ..... • • .........
24 Particulate mass concentration versus standardized opacity for
Georgia Power, Yates Units 4 and 5, tangentially-fired boilers, ^
incomplete energizing .....................
25 Particulate mass concentration versus standardized opacity for
Georgia Power, Yates Unit 6, tangentially-fired boiler, ^
incomplete energizing ...... ...... .........
26 Partic'ulate mass concentration versus standardized opacity for
Georgia Power, Yates Unit 7, tangentially-fired boiler,
incomplete energizing .....................
27 Particulate mass concentration versus standardized opacity for
Georgia Power, Bowen Unit 1, tangentially-fired boiler, nearly
complete energizing . ..................
28 Particulate mass concentration versus standardized opacity for
Georgia Power, Bowen Unit 2, tangentially-fired boiler,
complete energizing
29 Particulate mass concentration versus standardized opacity for
Georgia Power, Bowen Unit 3, tangentially-fired boiler,
incomplete energizing
30 Particulate mass concentration versus standardized opacity for
Georgia Power, Bowen Unit 4, tangentially-fired boiler,
incomplete energizing ....
viil
-------
TABLES
Number Page
1 Clear Stack Criteria. Emission Levels Producing Clear, or
Nearly Clear Plumes (Excepting Condensed Moisture) 3
2 Measured K Values for Process Aerosol Emissions 11
3 Federal, State, and County Agencies Supplying Simultaneous
Mass Emission and Opacity Data 14
4 Summary of Characterizing Opacity Parameters for Mass Emission
vs. Opacity Relationships, Georgia Power Co. Pulverized
Coal Boilers 43
ix
-------
ACKNOWLEDGMENT
The authors wish to express their appreciation to Dr. James H. Turner,
EPA Project Officer, for the technical guidance provided throughout the program
and to the many State and Regional EPA personnel who made their opacity files
accessible.
We also wish to acknowledge the assistance of the following GCA personnel;
Mr. Michael Jasinski who helped compile and proof the tabular material and Ms.
Deborah Stott, Judith Wooding and Ann Marie Tirone who prepared the final
graphs and tables.
xi
-------
SECTION 1
SUMMARY AND RECOMMENDATIONS
Particulate emission data based upon more than 400 compliance, acceptance
or experimental stack samples and concurrent visibility data based upon in-stack
transmissometer measurements and/or visual opacity estimates for the flue gas
plumes were collected from Federal, State, and Local pollution control agencies.
These data were collated and analyzed to determine the degree of correlation
between particulate emissions expressed either as mass concentration (g/m3) or
the emission rate per unit heating value of the fired fuel (ng/J) and flue gas
opacity. The outstack (visual) opacity observations were standardized to their
equivalent values for a 4 meter (~13 ft) diameter stack by means of Bougeur's
Law1 (see Section 3).
Standardized opacities were then plotted as a function of particulate
mass emission rates ng/J (lb/106 Btu), or particulate mass concentrations as
grams per actual cubic meter (g/am3) or grains per actual cubic foot (gr/aft3).
No discernible correlations applicable to all sources were observed although
some modest but apparently significant correlations were noted on an individual
source basis. Thus, any useful and definitive relationships between particu-
late mass emission rates and their corresponding opacity levels appear to be
site specific. Furthermore, correlations with transmissometer measurements
were far stronger than those derived from visual estimates of opacity. Although
the regression lines developed from in-stack opacity estimates could not be
used for accurate prediction of mass emission (+20 percent accuracy at best
for a 95 percent confidence interval) it appeared that with an improved and
more detailed description of all system operating parameters, considerable
data refinement might be obtainable.
The findings presented in this report are considered sufficiently en-
couraging to warrant further analyses of the existing and new data to deter-
mine how effective a monitoring tool in-stack transmissometer measurements
might be with skillful application.
It is expected that further review of data collected over a period of
years will not. have the value of recently performed tests where the sources
can be contacted easily for additional information. Thus, it is also recom-
mended that concurrent opacity measurements by both visual and stack trans-
missometer techniques be performed if possible when compliance tests are
conducted. At these times, it is essential that boiler control device and
fuel parameters be clearly defined so that variables impacting upon opacity and
mass emission can be correlated to the maximum extent.
-------
SECTION 2
INTRODUCTION
CURRENT STATUS, NSPS FOR PARTICULATE MASS EMISSIONS AND OPACITY
Particulate emissions from fossil fuel-fired boilers are presently
regulated by two standards, the first describing an allowable emission rate
based upon the boiler heat input; i.e., ng/J or lb/106 Btu and the second, the
light obscuring properties of the exiting flue gas as estimated by visual
observations and defined in terms of plume opacity. Prior to promulgation of
the Method 9 technique for determining plume opacity, early regulations simply
prohibited "dense black smoke" while later Ringelman and more recent opacity
regulations placed quantitative limits on the percent of incident light that
any colored exhaust plume could obscure.
While a source must comply with both the mass emission and opacity sections
of the current legislation, it is recognized that compliance with mass standards
does not necessarily assure compliance with opacity standards. Official recog-
nition of this fact is exemplified by EPA's recent ruling exempting Southwestern
Public Service (SPS) Company's Harrington Station Unit No. 1 from the present
NSPS opacity standard of 20 percent. The SPS electrostatic precipitator and
marble bed scrubber control system were able to meet all emission criteria
including the NSPS particulate mass emission standard yet could not, without
extensive retrofit at a significantly increased cost, meet the 20 percent
opacity limit. Thus, while the mass emission standard remained unchanged,
the general operating opacity limit was raised by EPA from 20 to 35 percent .
The above NSPS modification is based on regulations cited under 40 CFR
60.11(e) that allow any source that complies with all applicable standards
except for opacity to request a source specific opacity limit.
PROGRAM OBJECTIVE
The development of a reliable, albeit empirical, correlation between
plume opacity by either in-stack transmissometer measurement or by visual
observations of the plume and particulate mass emissions would greatly assist
those agencies responsible for enforcement of emissions regulations. The
basic objective of the present study is to establish whether useful correla-
tions have been demonstrated (or might be) and which measured parameters best
describe any such mass emission-opacity relationships.
-------
BACKGROUND DATA
Several empirical and theoretical correlations between stack transmis-
sotneter tests and/or visual opacity measurements and mass emissions criteria
have been proposed for specific sources. Schneider3 demonstrated a consistent
relationship between in-stack flue gas optical density measurements and effluent
particulate concentration for a coal-fired utility boiler (Figure 1), while
Hurley and Bailey1* (Figure 2) and Stoecker5 (Figure 3) reported similar corre-
lations for small, hand-fired coal boilers. Reisman et al.6 investigated, the
relationship between in-stack particulate opacity as computed from transmis-
sotneter measurements and mass concentration for six industrial sources that
included a large oil-fired utility boiler. Schiff7 (Figure 4) also noted
a good correlation between particulate emission rate and in-stack opacity for
three large coal-fired units. The Industrial Gas Cleaning Institute. (IGCI) has
estimated the maximum outlet particulate concentration for various processes
for which there are no discernible visual indications of particle presence.
The flue gas parameters are based on actual operating conditions reported by
a comprehensive sampling of member companies. The results of this survey
are presented in Table 1.
TABLE 1. CLEAR STACK CRITERIA. EMISSION LEVELS PRODUCING
CLEAR, OR NEARLY CLEAR PLUMES (EXCEPTING
CONDENSED MOISTURE)*
Utility or
industrial ,
boiler
ESP and fabric filter Wet scrubber
outlet concentration outlet concentration
g/m3 at °C g/m3 at 21°C, 101 kPa
(gr/ft3 at °F) (gr/ft3) at 70°F, 14.7 Psig
Coal
Pulverized
Cyclone Boiler
Stoker-fired
Oil
0.046 at 127-160
(0.020 at 260-320)
0.023 at 127-160
(0.010 at 260-320)
0.114 at 177-232
(0.050 at 350-450)
0.007 at 149-204
(0.003 at 300-400)
0.066-0.071
(0.029-0.031)
0.032-0.037
(0.014-0.016)
0.183-0.206
(0.080-0.090)
0.0108-0.0121
(0.0047-0.0053)
*From the Industrial Gas Cleaning Institute, Inc., Alexandria, VA
The basic physical laws governing plume opacity are well-documented in
the literature. The theoretical computation of aerosol optical properties
is usually based on Maxwell's8 classical relationships defining the inter-
actions between electromagnetic radiation (visible spectrum in the present
case) and suspended particulates and the solution of these equations as
proposed by von Mie.9 The theoretical treatment for the special case of
particles smaller than the wavelength of the incident light is described by the
Rayleigh approach.10
-------
0.10
0.20
0.30
gr/oft3
Figure 1.
Figure 2.
Flue gas in-stack optical density versus outlet particulate
concentration for a large coal-fired utility boiler.3
OPTICAL DENSITY/m PATH LENGTH
123^5
Z.5
-0 4 8 IZ "6
OPTICAL DENSlTY/fl PATH LENGTH
Flue gas in-stack optical density versus outlet particulate
concentration and firing rate for a small hand-fired boiler.
O >900°F STACK TEMP. >482°C
700-900°F 37I-482°C
D 500-700°F 3I6-37I°C
»<500°F
"0 ZO 40 60
PERCENT LIGHT ABSORPTION
Figure 3. Flue gas light absorption versus particulate concentration
for an experimental stoker-fired furnace with a 0.15 m
(6 in.) diameter stack.5
-------
0.50-
EQUATION FOR
LINEAR REGRESSION LINE
Ib/IO6 Btu = 0.007 (OPACITY, %)
ng/j = (1.6 x IO-5)(OPACITY,%)
r = 0.97
50
60
OPACITY, PERCENT
Figure 4.
Particulate emission rate versus in-stack opacity for three
coal-fired utility boilers and equivalent stack diameter of
4.6 m (15 ft).7 (Electrostatic precipitator effluents.)
-------
Ensor and Pilat (1971)u developed a computer program utilizing the Mle
concepts from which the light attenuating properties of a stack plume con-
taining a broad particle size spectrum could be calculated. Using a method
similar to that reported by Ensor and Pilat, Severson et al. in a recent EPRI
study12 have calculated the theoretical opacities for several outlet particle
size distributions and loadings for correlation with the corresponding mass
emission rates,12 Figure 5. Halow and Zeek13 utilized particle optical pro-
perties and Mie theory in their computer based system to correlate the color
contrast between the plume and ambient background with the observed opacity.
They have also investigated the effect of viewer orientation or perspective
with respect to sun location and observer angle.
Wier et al.14 pointed out several factors that can affect plume appearance
and hence its opacity as determined by visual emissions estimates. A partial
listing of external factors influencing an observer's judgment include:
• Color contrast ratio between the plume and ambient background,
• Stack (plume) diameter,
• Position of the sun and observer relative to the stack,
• Elevation of the observer relative to the top of the stack.
These have been discussed by Fennelly and Lilienfeld15 in the "Opacity
Handbook," an EPA sponsored document describing the history and present status
of opacity legislation and visible emission observation procedures.
The methodology employed by environmental agencies to assess plume opacity
by visual observation does not make any quantitative allowance for the several
external factors that may influence the observer's description of plume
appearance. However, the official methodology does acknowledge their impact
on a qualitative basis. In fact, EPA Method 916 is based on estimating pro-
cedures by which the observed plume opacity (or more correctly, appearance)
tends to be less than the true opacity as determined by in-stack
tratismissometry.
-------
100
50
- 20
o
<
Q.
O
O
UJ
I-
O
O
UJ
10
PARTICULATE
2 5
EMISSION LIMIT, ng/j
10 20 50
100
T
T
T
T
T
(EPA AND
NEW MEXICO LIMIT
CLEAR I _
Mb/l06Btu =
0.31 gr/acf (AVERAGE
_L
J_
0.005 0.01 0.02 0.05 O.I 0.2
PARTICULATE EMISSION LIMIT, lb/106 Btu
Figure 5. Predicted opacity versus coal flyash outlet loading from
electrostatic precipitators for several particle size
distributions. 12
-------
SECTION 3
BASIC OPACITY RELATIONSHIPS
The fundamental relationship between plume opacity and the characterizing
aerosol properties responsible for the observed opacity condition is described
by Bougeur's Law,18 viz.
Opacity =1-1/1 = 1 - T = 1 - exp(-bL) (1)
where:
I/I « the ratio of the amount of light transmitted through
0 the plume to the amount of light incident upon the
plume
T = I/I0 = transmittance = 1 - opacity
b = extinction coefficient for the aerosol (m l)
L = depth of plume or length of obscuring light path as
defined approximately by stack exit diameter (m).
The extinction coefficient, b, may be expressed by the following
relationship:
b = Sp W (2)
where:
Sp = specific projected particle extinction area, m2/g (ft2/gr)
W = particulate mass concentration, g/m (gr/ft )
Although the term W is readily measured, the quantity b in Equation 2 can
be defined only through the solution of the classical electro-optical equa-
tions by complex computer techniques. For example, b is calculated from the
relationship:
-------
/*r2
b - IT / QE (a,m)r2 n(r) dr (3)
1C i
a = size parameter, 2irr/X
r = particle radius
X = wavelength of light
m = refractive index of particle relative to air
n(r) = size frequency distribution, number of particles
of radius r per volume of aerosol per Ar
Qg(a,m) = particle light extinction efficiency factor, the
total light flux scattered and absorbed by a
particle divided by the light flux incident on
the particle.
For highly specialized circumstances where laboratory studies permit
rigorous control of particle composition with respect to shape, surface, and
refractive index and the intensity and wavelength of the incident light
are precisely defined, the validity of Equation 3 may be successfully demon-
strated. Conversely, the fact that the composition spectrum of real life
aerosols is virtually unknown except for crude estimates of particle dimensions
suggests that any detailed theoretical approach is not always justified.
A major obstacle to any simplified solution to Equation 3 is the
oscillating, nonunique feature of the particle light extinction factor QE(a,m)
with respect to a for those particle dimensions and incident light wavelengths
almost always associated with significant light obscuration by smoke plumes.
The fact that the oscillations in Qg are significantly damped when light
absorbing particles such as carbon consititute a significant fraction of the
aerosol further complicates the prediction of plume opacity when the refractive
index varies. The effect of variations in both particle radius and refractive
index are shown in Figure 6. For many common flyash constituents, QE can vary
from 2 to 4 for the light obscuring particle sizes encountered in combustion
effluents. As particle diameter and a become very large, Qjr will approach a
theoretical limiting value of 2.0. Insofar as the number of critical variables
are concerned, the computation of particle mass concentration, W, appears to
be a relatively simple matter, i.e.,
4 r
-r- irpl
J
where :
,
W = -r- irpl r n(r)dr
discrete particle density and the terms r and n(r) are defined
as in Equation 3. The size frequency distribution n(r) is
usually expressed as:
-------
0
0.35
PARTICLE DlAM.(ftm) FOR X = O.SS^tm
0.70 1.05 1.40 1.75 2.10 2.45
2.80
3.15
Figure 6. Particle extinction efficiencies for spherical particles as a function of
a for m= 1.33, m= 1.5, and m = 2 - li (which approximates the value for
coal).
3.50
-------
n(r) = N f(r)
where:
f(r) = particle number fraction frequency, the fraction of all
particles having a radius of r, and
N = total particle number concentration.
The ratio of the particulate mass concentration, W, to the extinction
coefficient, b, in conjunction with particle density, p, is described by Ensor
and Pilat19 as the "specific particulate volume extinction coefficient," K.
K = W/bp (5)
By rearranging and solving for b, Bougeur's Law can also be expressed
as:
I/I0 = exp (-WL/Kp) (6)
Hence, with the terms L, K, W, and p defined, a less complex relationship
evolves for predicting the mass concentration, W, associated with a plume
opacity, 1- I/I0, i.e.,
W = -Kpln(I/I0)/L (7)
Measured K values for several process aerosols have been compiled by
Ensor and Pilat19 from several information sources. Excerpts from the above
source are presented in Table 2.
TABLE 2. MEASURED K VALUES FOR PROCESS AEROSOL EMISSIONS19
Average
Source . 3/
K, cm^/m
Orchard heater (black smoke) 0.025
Coal power plant (flyash) 0.64
Coal stoker (black smoke)* 0.084
Coal stoker (black smoke)* 0.11
Oil power plant (black smoke) 0.059
White smoke generator
W - 0.22 g/m3 0.46
W - 0.47 g/m3 0.30
W = 1.00 g/m3 ft. 20
Kraft mill recovery furnace 0.6
Veneer dryer 0.36
*Two separate sources
11
-------
In those cases where K has been measured directly, the several variables
affecting K as shown in Equation 3 (r, a, X, m) need not be considered insofar
as their quantitative contributions are concerned. Equation 7 then becomes a
more useful tool for correlating the mass concentration and light obscuring
properties of a smoke plume.
It must be recognized, however, that the K values cited in Table 2 apply
only to the specific aerosols for which they were measured. Because variability
in flyash physical and chemical properties is the rule rather than the excep-
tion, it should not be assumed that they apply automatically to any similar
combustion source(s). Variability may arise due to basic differences in fuel
composition, method of fuel preparation, firing method, completeness of combus-
tion, or furnace design features.
Another difficulty is that even when theoretical solutions to light
attenuation equations are sought through computer technology, the particle
size parameters are usually described by logarithmic-normal distributions.
Unfortunately, the latter approach although convenient for data processing
may actually lead to incorrect prediction of the "whole cloud optical
properties. Furthermore, the best available instrumentation for size measure-
ments combined with the statistical and logistical problem of securing •
representative data, make it extremely difficult to obtain accurate sizing (and
derived optical) data.
For this reason, one should never assume, without verification, that the
size properties of the uncontrolled aerosol describe the effluent from a parti-
culate control device.^,21 In the special case of certain fabric filters,
e.g., woven, surface treated glass, it has been noted that minimal changes
in size distribution parameters may occur when the majority of the penetrating
dust particles result from temporary or permanent leak points in the inter
??
system."
It is also necessary to consider the possibility of alterations in
particle size properties between the point of measurement in a stack and the
region immediately outside the stack from which visual opacity estimates
are made. Since semiquantitative relationships between sulfur content and
ESP collection efficiency.have been demonstrated,23 Figure 7, it is suggested
that coal sulfur content should also be considered in relating optical
properties to flyash mass concentration.
OUTLET CONCENTRATION,
Figure 7. Effect of coal sulfur content
on mass emissions from an ESP
controlled boiler.23
12
-------
SECTION 4
DISCUSSION OF RESULTS
INTRODUCTION
The results of more than 400 mass emission tests on coal- and oil-fired
boilers for which simultaneous visual estimates of plume opacity and/or in-stack
transmissometer measurements were available have been collected and analyzed.
The analytical effort was centered on the coal-fired systems due to the scar-
city of simultaneous mass and optical measurements for oil-fired boilers, ihe
"as received" opacity data reflected several measuring techniques such as EPA
Method 9, the Ringelman method, rough personalized estimates, in-stack trans-
missometry and various combinations of the above. The actual format for the
original data varied considerably from agency to agency. Thus, particulate
emission rates were reported on a mass per unit energy basis (as-fired) lb/10
Btu or ng/J, and/or on a particulate mass concentration basis, gr/ft or g/m .
DATA SOURCES
A list of the contributing agencies and the types of data submitted
appear in Table 3. In Tables A-l through A-4, Appendix A, both mass emissions
and opacity data are presented for numerous coal burning sources. Opacity data
range from Method 9 estimates of plume appearance by trained observers (although
test conditions sometimes represented less refined versions of the former
approach) to in-stack transmissometer measurements with both optical techniques
performed in some cases. The results of several carefully controlled in-stack
transmissometer measurements are compared to mass emission rates in Table A-4,
Appendix A. The above transmissometers were certified as meeting the perfor-
mance specifications outlined in 40 CFR 60, Appendix B, of the Federal Register.
MASS EMISSIONS VERSUS OPACITY MEASUREMENTS
V and S tate Sources
Concurrent mass emission and opacity tests representing both visual and
in-stack opacity estimates are shown in Table A-l for a miscellaneous collec-
tion of coal-fired boilers. The above measurements reflect several variations
in boiler capacity, firing methods, and particulate control methods. The latter
include ESP, fabric filter and cyclonic devices, as well as some systems
without emission controls.
13
-------
TABLE 3. FEDERAL, STATE, AND COUNTY AGENCIES SUPPLYING SIMULTANEOUS
MASS EMISSION AND OPACITY DATA
Contributing
organization
U.S. EPA Region I
U.S. EPA Region IV
U.S. EPA Region V
State of Arkansas
State of Georgia
State of Indiana
State of Nebraska
State of New York
State of North Dakota
State of South Carolina
Hillsborough County, Florida
Particulate
emission
g/m3
C*
C
I
I
C
C
-
C
I
-
C
mass
rate
ng/J
C
C
C
C
C
C
C
C
C
C
C
Stan-
dardized
opacity
C
C
C
C
C
C
C
C
C
C
C
Method 9
opacity
It
I
C
C
-
C
C
C
C
C
C
In-stack
transmissometer
I
C
-
-
C
-
-
-
-
-
-
*Data complete
tLimited data available
-------
For purposes of Identifying possible correlations between opacity (by
Method 9 or in-stack transmissometry) and mass emissions it was decided that
expressing mass emissions in terms of the actual particulate mass concentration,
g/am3 or gr/aft3 at the flue gas stack temperature was the preferred approach.
This follows from the fact that both descriptors, opacity (surface area) and
concentration (mass), are referred to identical gas volumes. Additionally,
although mass emission rates on an energy input basis, ng/J or lb/10° Btu, are
directly proportional to mass concentrations, g/m3 or gr/ft3, with a constant
excess air rate, there are some situations, particularly during boiler turn-
down, where the excess air might be increased appreciably. Thus, with
no change in mass emissions per unit energy input, a significant decrease in
opacity might be observed.
Data from Table A-l have been graphed in Figures 8 and 9 so that the rele-
vant test conditions for each set of data points are indicated. Visual
opacity estimates by EPA Method 9, for example are coded with the symbol V9,
whereas other visual procedures differing from Method 9 are labeled as VE.
A "T" designates an in-stack transmissometer measurement and geometric codings
describe the type and/or absence of particulate control devices. To make a
clearer presentation, the high level, >45 percent opacity values have been
graphed separately, Figure 9. Although' opacities relating to cyclone-controlled
systems predominate in the high range, it should be noted that three boilers
in this group showed relatively low values for both mass emissions (0.1 to
0.2 g/am3) and opacity (10 percent).
The discouraging aspect of the data point arrays on Figures 8 and 9 is
the lack of correlation between mass concentration and opacity. Although
one should expect to see at least more precision with stack transmissometer
measurements, it appears that little distinction can be made between the
results for the visual and in-stack opacity estimates. It is also shown,
Figure 10, that the standardization of the in-stack transmissometer results
to a 4 tn diameter equivalent stack does not show any better mass emission-
opacity correlation than that indicated in Figure 8. The poor correlations
noted between mass emissions and the PSCNH* in-stack opacities may have resulted
from instrument problems. Generally, because a stack transmissometer is
influenced by fewer uncontrollable variables, one expects to see a consistent
relationship between mass concentration and in-stack opacity provided that
boiler load levels and fuel composition remain constant. On the other hand,
plume opacities are much more difficult to define due to the numerous external
complicating factors discussed in Section 3. Thus, estimation of flue gas
opacities by well-trained observers is still more a subjective art than an
objective science. It must also be noted that some> of the visual evaluations
used in this study were made under viewing conditions much less favorable
than those considered acceptable for enforcement purposes. For example,
Viewing a white plume during an increasingly heavy snowstorm would be unaccep-
table for assessing a source's compliance status. Similarly, to perform
visible emission observations while the sun is in front of the observer is an
improper procedure. However, where visual observations are performed only to
determine fluctuations in boiler operation during a specific stack test and
with no intent to use these data for compliance purposes, several variations,
*Public Service Company, New Hampshire
15
-------
91
TO
§ PARTICULATE MASS CONCENTRATION
oo AT STACK CONDITIONS, g/om3
Q
p o p P
"d CB T) f"0 i i •
CD 3 fu O
f"( fV h^
ft rt
H- o
3 3" CO
rt O cn
(^ p-
O CD O
H"1 O
- H, 3
o S S m w
0 * § c/>
rt < rt H
O B> H —
-P- H- rt > P»
Ul O H- **j °
co _
13 cn 3 m
fD O
H 0
Ml CO O
OP- —
13 hj fD H
(B H. CO _^
0_ 3 rt , w
rt* y ^D
^ a P m
* f rt 35
Zf O- ^
o ni
a. o z
CD 'tJ H tn
to 01
tu n
3 H-
CL rt
rt
T3 ^
fD ^
CD rt O
i-t
o fu
i-h 3
cn
3
H-
cn
CD ..
o fi
*< P< U 1 ' ^
10 m "fi O10
1 < < < H
}(cT o •• » .!!
85) o o z
™ 5 * > > H _
^^ ^ < " 52 *>
O* O JT H -) °
10 < O -< •< *
ID
^ CD CD H
rf O 5 >
^ a J < 5 z
O w m ^
m ° < C I -
_ " o r o <£ *~
m ^^
O tn U) »
H — i Cj
— """•
* y *^
^%^j T3
o o S
°< H
to
°H
o . J
D > x O o
o
O ^*
< O
(0 -t
o
o
z
z o TJ m _,
i p ^ ^ o
m o m •"
- v
m 3*
O ^
"^ —— —4
LJ * * T
10 o
o
• i
1 1 1 1 -1
3
1C
O
O
DO
0)
o m
D x;
O _,*.
^»
m
o
H
SJ
Z
£/)
o £
'S 5
z
o
m
o
fD
rt
fD
H
-------
OBSERVED TRANSMITTANCE
1.6
(0
E
o 1.4
o>
CO*
Z
O
o
z
0
o
CO
h-
0 0,8
H
K
CONCEN
o
O>
CO
CO
•g 0.4
UJ
s~
_J
§ 0.2
f™"
OC
0
60 50 40 30 20
III 1
- AT
V9A
V9A
~~ T: IN-STACK TRANSMISSOMETER
V9= OPACITY BY METHOD 9
SYMBOL CONTROL METHOD
O ESP
~~ A CYCLONE
D NONE
V9 V9
—
"A
_
°T °T o'
1 1 1 1 1 1 1 1
40 50 60 70 8(
ESTIMATED OPACITY, PERCENT
Figure 9. Partlculate mass concentration versus estimated opacity by
transmissometer and visual methods for various coal firing
methods and types of particulate control, 45 to 80 percent
opacity.
17
-------
81
PARTICULATE MASS CONCENTRATION
AT STACK CONDITIONS, g/om3
p-
OQ
fD
M
O
O rt T)
O H ft)
. (13 l-j
3 rt
o en P'
t-h B O
P- C
Z en M
fD en ft)
s; o rt
3 ft>
ft) rt 3
3 ro CB
ti i-i en
en en
y s
P- fD O
i-l ft) O
fD en 3
• C n
H fD
ffi 3
s 3
rt rt
en p-
0 §
3
<
W fD
O i-(
P- cn
PJ C
fD en
i-t
cn cn
rt
2 fti
0 3
ft)
Pa
ft) P-
3 N
P- fD
P-
O O
• 13
ft)
K> O
rt
i-d ><;
C
a- a-
p- en
0 fD
p-
cn
fD C
< o
P- 3
n
fD p.
3
• cn
r"f
p
o
o o p P
o K> *• <" *
o
^
o
s
— 1
Z
o
o
M
3 s
0
TJ
o
H
-<
TJ
m
^o
Ss
cn
0
1 1
_
~ O
•H
OH ' "
5»H
°H
o
H
°H
OH
-
0^
"1
3
3
>
O
CD
O
Zv
Z
o
s*
o
N
5 3
o
X
Z
C/)
c
H
_4
Z
0 0
in W
o
p
in
O
-------
modifications or short cuts are perfectly reasonable. Thus, whereas several
tests performed on one boiler may be internally consistent, they will probably
provide no useful correlations when compared with opacity tests on different
boilers. The above factor may partially account for the broad spread in data
points shown in Figures 8, 9, and 10.
Additional factors influencing the quality of visual opacity measurements
are:
• Visual observations are often conducted for a period of time
that is less than the time interval required for compliance
mass concentration measurements.
• Visual opacity estimates may be biased based on a prior
knowledge of statuatory opacity standards.
• Visual evaluation of plume opacity may be performed during
periods when the opacity and particulate emission rate vary
significantly from the mean values representing the total
sampling period.
• Visual opacity estimates by trained observers are often
less accurate than measurements made by in-stack transmis-
someters meeting EPA performance specifications.
The concept of expressing particulate emission rates on the basis of
fuel firing rate (Btu/hr) puts all potential emitters on the same basis. With
the above approach, deliberate use of high excess air rates cannot be used to
conceal poor performance on the part of a control device. However, because
of variations in operating protocol (base load or peaking units) or methods
of firing, there will be many situations where the actual outlet concentration
in g/am3 can easily vary by a factor of two for the same boiler firing rate
or power output. Thus, as stated previously, unless a given set of boilers
have utilized identical fuels, firing methods and excess air rates, any corre-
lations between mass emission rates and particulate emissions expressed as
either ng/J or lb/106 Btu are expected to be of limited value.
Opacity must also be based on the same viewing depth if observations from
stacks of differing diameters are to be compared. Thus, when sufficient
data were available, measured opacity values were standardized to their
equivalents had the given particulate-laden stream been discharged from a
4 meter (~ 13 ft) diameter stack. A brief description of the procedure used
to calculate standardized opacity is presented in Appendix B.
EPA Region IV — TVA, Georgia, and South Carolina
In Table A-2, visual and in-stack opacity estimates are compared for several
TVA boilers located in EPA Region IV. All in-stack transmissometer values
were obtained with Lear Siegler instrumentation that has been certified as
meeting the Federal performance specifications outlined in 40 CFR 60,
Appendix B. TVA mass emissions were based upon EPA Method 5 compliance testing.
19
-------
The sole purpose of the TVA stack testing, and also that described in Table A-3
for several utility and industrial boilers in South Carolina, was to ascertain
boiler compliance status with respect to particulate emission standards.
Stack tests described in Table A-4 for the Georgia Power facilities, however,
were conducted to determine source compliance with particulate emission stan-
dards as well as to establish the correlation between particulate emission
rate (as pounds per million Btu) and flue gas opacity via stack transmisso-
tneter. Various opacity levels were produced by experimental variation of ESP
energizing levels for a broad range of boiler firing rates. Thus, the state
of Georgia assigned an "opacity index value" to each source. The opacity index
value is defined as that value of the flue gas opacity above which the particu-
late emission rate will exceed the applicable particulate emission standard.^
At the present time, the above concept is exemplified by the "site specific
variance for a difficult effluent that permits a plume opacity higher than
the present NSPS of 20 percent provided that the mass emission criterion is
satisfied. All testing in the Georgia program was by EPA Method 17.
TVA Data— _, .
Following standardization of opacity measurements, the mass emission versus
opacity statistics for TVA coal-fired utility boilers were plotted as shown
In Figure 11. With the exception of three boilers in this group for which
cyclone collectors preceded the electrostatic precipitators, all TVA boilers
used ESP systems for particulate control. Despite the crowding of data points
it was decided to plot all TVA data on one graph so that the effects, if any,
of (a) the method of opacity determination, visual estimate by trained observer
versus certified in-stack transmissometer data; (b) the firing method,
pulverized coal or cyclonic injection; and (c) the use of mechanical collectors
in series with electrostatic precipitators could be compared.
Inspection of Figure 11 shows the dispersion patterns for opacity estimates
by both trained observers and in-stack transmissometry to be equally broad
and of little value for predictive purposes. Additionally, the data for
pulverized-fired and cyclone boilers show similar dispersions. Very limited
information for ESP controlled systems with augmentation by mechanical collec-
tors suggest that outlet mass concentrations, per se, exert a negligible effect
on plume opacities. The absence of any significant correlations, Figure 11,
demonstrates conclusively that use of opacity measurements to predict mass
emissions should not be attempted until more sophisticated analytical pro-
cedures are developed.
State of South Carolina—
Despite the fact that comparative opacity and mass emission data were
available for several industrial and utility boilers located in South Carolina,
descriptive information relating to many plant design and operating parameters
were missing. Therefore, no effort was made to analyze these data beyond the
plots shown in Figure 12 in which the "as received" and standardized opacity
measurements have been separated. Generally, the data set shows the same weak
correlations exhibited for other visual estimates presented in this report.
Failure to demonstrate any strong correlation is again attributed to the
inherent limitations of visual opacity estimates plus the fact that plant size,
quality of maintenance, coal firing method, particulate control method and.
coal properties are not taken into account.
20
-------
to
It
6
o
tn
z
O
z
o
o
OT
\-
z
o
H
<
o
z
o
o
V)
o
>-
ct
<
a.
1.0
0.8 i
0.6
O
0.4
0.2
,-, A*"
x X XO
#&
£<&**>
'O
O X.
0.80
O
O
J
cr or
xc
o
;cxcxc
X
X
O.70
T
0.6O
I
0,50
O- CERTIFIED IN-STACK TRANSMISSOMETER
X - TRAINED VISUAL EMISSION OBSERVERS
M- MECHANICAL COLLECTER AND
ELECTROSTATIC PRECIPITATOR
C - CYCLONE BOILER
M _
O O
I
10
20 30 40
STANDARDIZED OPACITY, PERCENT
50
Figure 11.
Particulate mass concentration - standardized opacity (in-stack and visual) —
TVA coal-fired utility boilers with ESP control and pulverized coal firing.
-------
N3
1.4
en
z
o
J-
o
I LZ
0
o
or
a
z I.O
t-
X
a
1- 0.8
<
sli
s *
^ o*
I- 0.6
z
UJ
SYMBOL
— OPA(
0 4m
"" X OPA(
"" 0 O
X
X
0
X X
O x
X X x
X
oo X x x
O
Z
O
o
CO
CO
111
o
H
-------
State of Georgia — Georgia Power Co.—
Figure 13 depicts the relationship between particulate mass concentration
and standardized opacity for all Georgia Power sources shown in Table A-4. As
with the TVA sources cited earlier, (Table A-2) there is no definitive relation-
ship between particulate concentration and opacity that applies to the complete
data set. For example, by exclusion of the extreme opacity values corresponding
to a mass concentration of 0.29^ g/am3, a simple visual estimate of the point
spread suggests a standardized opacity range of roughly 14 to 33 percent.
Similarly, a measured opacity estimate of 20 percent appears to bracket a mass
concentration range of about 0.1 to 0.35 g/am . Although the predictive
capabilities in either case are well within an order of magnitude, any working
relationship developed from the Figure 13 data set has no value for enforcement
purposes and very limited applications for diagnostic situations. Consequently,
the following analyses were performed to determine if more definitive mass
concentration-opacity relationships might be obtained if the Georgia Power
Company data were examined on a site-specific basis.
Figures 14 through 30 show particulate mass concentration versus stan-
dardized opacity for several of the Georgia Power sources listed in Table A-4.
The emissions refer to single or multiple boiler operation depending upon the
number of boilers whose effluents discharge through a common stack. Figures 14
through 18 show the relationship between mass emissions and opacity for
pulverized coal boilers with opposite or front firing. Figures 19 through 30
provide similar information for pulverized coal boilers with tangential firing.
Linear regression lines and the correlation coefficients, r, were also computed
by the method of least squares for the curves of Figures 19 through 30. These
equations are given in the form
C (g/am3) = A In T + B
s
where C is the particulate concentration at actual stack conditions, Ts is the
standardized transmittance, and A and B are constants. Characterizing opacity
parameters (opacity index) for the curves shown in Figures 14 through 30,
Table 4, include the plume opacity corresponding to the average mass concen-
tration, for each boiler, equivalent to an emission rate of 43 ng/J (0.1 lb/
106 Btu) and the 95 percent confidence limits for certain mass emissions at a
plume opacity of 20 percent. A modified extinction parameter has also been
computed for each curve whose function is to describe the relative obscuration
characteristics (and particle size properties) for the aerosols departing each
control device.
Opacity ranges—Standardized opacity levels corresponding approximately
to the former NSPS of 43 ng/J (about 0.06 to 0.08 g/am3) indicate that all ,
boilers represented in Table 4 produced effluents satisfying the EPA opacity
criterion of 20 percent.
Since the reported values are referred to the same mass loading, one may
infer that the higher opacities relate to those effluents containing the larger
fraction of fine, light-obscuring particles. Conversely, the lower opacities
are associated with those aerosols containing fewer fine particles. The size
properties of the particulate emissions, in the simplest analysis, depend upon
23
-------
the size of the uncontrolled aerosol and the efficiency with which the electro-
static precipitator removes the various size fractions. In practice, however,
it is recognized that re-entrainment during plate rapping and by-pass leakage
through unelectrified areas may appreciably alter the theoretical size prop-
erties. Furthermore, in the case of electrostatic precipitators, absolute
opacity values can also be expected to vary with the inlet concentration to the
ESP since, for fixed aerosol properties, the efficiency is nearly constant when
the loading range is not excessive.
Prediction capability of opacity measurements—In the absence of more
details, it is difficult to estimate which of the two information bits making
up each data pair; i.e., the mass concentration or the in-stack opacity estimate,
is the more reliable. However, if the time averaging of recorded opacity values
is performed correctly, it is believed that the accuracy of opacity readings
for a well-maintained in-stack transmissometer will exceed that of Method 5
particulate measurements. The considerable point scatter displayed by the
Georgia Power data is attributed in part to the unavoidable combination of
effluents from more than one boiler when the load levels were varied and to the
intentional variation of precipitator operation to determine the impact on
system performance.
Estimates of the 95 percent confidence intervals for predicted mass con-
centrations centering about the 20 percent opacity level indicate that the
ratios of envelope limits range from 1.2 to 3.0. The procedures used to esti-
mate confidence intervals are indicated in Appendix C. Although this level of
accuracy is not satisfactory for any rigid monitoring application, it may be
useful for troubleshooting purposes.
Modified extinction parameter—The slopes of the curves showing the mass
emission versus opacity relationships in Figures 14 through 30 provide an
indirect measure of particle size properties with an increasing slope signifying
a reduction in the concentration of fine, light obscuring particles. However,
a more definitive way to interpret these curves is to compute a modified extinc-
tion parameter, Km, whose magnitude is directly related to the total surface
area per unit mass of particulate material. Here Km is the product of (Sp)(L)
where Sp represents the specific projected particle extinction area, m /g,
and L the length of the obscuring light path in meters as used in Equations 1
and 2, Section III. Given similar Km or Sp values with other viewing factors
the same, one should expect to observe equal opacity levels. It should also
be noted that it is not necessary that characterizing mean or median particle
diameters nor distribution parameters such as the geometric standard deviation
be identical to furnish similar specific surface values.
Despite the fact that several degrees of electrical energizing are cited
in Table A-5, it is not possible to relate these variations in any detailed
manner to plume opacity properties without more information. However, it was
possible to compare performance for certain boilers where the average energizing
levels could be described as either incomplete or nearly complete. Thus, when
optimum electrification is reported, the 1^ values diminish as shown by com-
paring the curves of Figures 14 and 15 and Figures 27 through 30. It is in-
ferred here that the ESP capability to remove fine, light-obscuring particles
is the greatest with maximum precipitator energization.
24
-------
PARTICIPATE MASS CONCENTRATION AT STACK CONDITIONS, 5/om3
•* ~c
OQ O
C
(D
!_,.
Lo Ol
a4 e ^
O rt fa
H- H- <-t =
M M rt °
n> H- H-
i-i rt O
CO •
H1 rt C O
co i-( co ^
• Co T
3 co ."*
CO rt r,
3 fa n
CO CU «
CO CO 5
0 »-! =.
3 pj
(T> H-
rt N
fl> fD
i-t D. *
CO O
• o
CO
o n
(D H-
O rt
OQ
H- Mi
Co O
o n
S3 o
fD Co
*"1 H-1
1
O Ml
0 £' 01
' n °
D.
O O O O
9 N £. 0> 00
^
***>B
M
^••; .
• ^i^,*,,.
••• •• *
• • • •
•• •• o eee
* *• •• oo
9 00 0 90000 00 *"
00 AA 0 00 00 ®
^A^
0 000
0 000 0 09
0 0 00 0 ®
• •••^» «^» •
A CkAA
00 00 99 99
A
0 ••• • • *
• **••••
• •••• •
0Att0AA ft 10
• •
A A tt -
•- w ~
A A 9 A A 0 9^ ^
9 9 9 9
9 99
.
e *
A • 9
• • •
A A *"
• A
V
«
A —
"
^ • • •
0
V
0
• ' ' - -
1 L 1 1 1 1 1—
b
o
o
io
o
8
o
§
o
^J
o
o
O)
o
9
Ul
o
u>
N
3D
(A
i
Z
O
rn
-------
NJ
STANDARDIZED TRANSKHTTANCE
O.8O 0.7O O.60
0.5O
ac
<
Q.
10
20 30 40
STANDARDIZED OPACITY, PERCENT
Figure 14.
Participate mass concentration versus standardized opacity for Georgia Power, Branch
Units 1 and 2, opposite-fired boilers, incomplete energizing.
-------
LZ
PARTICULATE MASS CONCENTRATION AT STACK CONDITIONS, fl/om
-------
PARTICULATE MASS CONCENTRATION AT STACK CONDITIONS, g/am;
OQ
C
O H-
3 n
CL C
t-1
a 03
3 rt
H- n>
rt
CD g
I-1 en
- CD
K> O
O
pi 3
3 O
a. n>
3
t-ti rt
* H-
O O
3 3
rt
I <
i-h (D
H- 1-1
l-< CD
Ct> C
a. CD
o rt
H. ID
M 3
ft) Cu
i-t tu
CD h(
- O.
H-
H- N
3 (D
O D-
i O
T> -a
t-1 W
(D O
rt H-
(D rt
•-d
(D
3 i-h
(B O
i-t H
00
H- cn
N n>
H- o
3 H
OQ OQ
• H-
SO
O
K>
p
OB
N
m
o
>
o
TJ
m
o
m
D t>0
-I H H
rn m m
co to cn
-4-1-1
o o o
-« "* 10
PO H ^
M O °
P Jo 3
CO 03 J^1
->! W
O "
-n TI -n
O o o
33 30 33
CM ff> -J
i I i
^J ->J -J
03 OB 00
I
O
-J
Ul
o
I
p
o
p
(O
o
p
bo
O
z
o
o
N
m
o o
z
(A
2
p
in
o
O
p
'u
o
-------
6Z
H-
00
e
i-i
(D
sc nj
[U p
3 H
3 rt
O H-
3 O
CL C
3 rt
H- fD
rt
B
£> CD
CO
o
T3 O
13 O
O 3
cn o
H- n>
fD rt
I H
Ifi (U
H- rt
i-( H-
(D O
Cu 3
CT1 ^
M CO
m C
co
H- rt
3 fu
O 3
O D-
3 CQ
m H-
rt N
ID ro
Pu
CD
3 O
n> T)
)-( ft)
tro o
H. H.
N rt
H-^
00 Hi
• o
1-1
fD
O
00
H-
PARTICULATE MASS CONCENTRATION AT STACK CONDITIONS, g/am3
p
ro
p
at
P
a»
N
m
o
>
o
T)
m
3)
o
m
z
en
O
9*
(X
V)
I
p
b
CD
r\>
O
10
O
p
OS
o
p
-------
oe
H-
(K
i PARTICIPATE MASS CONCENTRATION AT STACK CONDITIONS, Q/om3
00
H. ex
rt P)
i-t
W Cu
» H-
N
O ft)
•o a,
T)
O O
CO T3
p. pj
rt O
fD H-
I rt
H l-h
ft) O
Cu H
cr o
O ft)
H- O
M H
ft) OP
M H-
CO pi
O
fD
i-t
O
ro
p
(71
H-
3
O
O
g
T)
1— '
ft)
rt
fD
fD
3
ft)
i-t
00
N
H-
3
OQ
•
pg
H'
rt
n
cr
tD
^-*
f~]
3
H-
rt
CO
I-1
P>
3
NJ
hti
hf
O
3
rt
1
hti
H-
I-t
fD
D.
P>
3
a-
*T3
P>
i-t
rt
H*
O
C
p>
rt
fD
3
PJ
CO
CO
o
o
o
fD
rt
n
P)
rt
H-
0
3
z
o
^
yj
0
N
m
0
o
*T3
>
o
T3
m
3)
o
m
z
-i -> O
r\> —
. tO 3
f> -*
\
O
Z
O
N
m
o
2)
p
ff>
o
o
m
o
'u
o
-------
PARTICULATE MASS CONCENTRATION AT STACK CONDITIONS,
-------
UJ
ro
* 1.0
5 0.8
en
z
o
o
§ 0.6
o
I-
cn
H
<
o 0.4
Z
tu
o
O
o
en
en
UJ
0.2
o
(C
<
0.
0.90
STANDARDIZED TRANSMITTANCE
0.80 0.70 0.60
'
°-0221
r = 0.94!
r2 = 0.886
O TEST DATA FOR 6-78
A TEST DATA FOR 4-79
T
I
10
T
20 30 40
STANDARDIZED OPACITY, PERCENT
0.50
50
Figure 20. Particulate mass loading versus standardized opacity for Georgia Power,
McDonough Units 1 and 2, tangentially-fired boilers, incomplete energizing.
-------
ee
PARTICULATE MASS CONCENTRATION AT STACK CONDITIONS, q/om;
p
in
p
a>
-i -• O
IN) ,~
I, " *
.1" o ^
P io°
to tn 3
O ro w
~
l
VI
I
p
b
0)
p
lo
o
p
'&
o
p
'-J
o
p
o>
o
(A
>
z
o
N
m
o
z
w
z
z
o
o
Ul
o
-------
PARTICULATE MASS CONCENTRATION AT STACK CONDITIONS, g/om3
p
cn
T
o
CD
rn m rn
c/> w t/>
-< -t H
O
>
O
J>
-n -n -n
O O O
7} "30 "X
cn (A CO
i I I
-g -J --J
ID CO OB
-> i O
r\) ^~
p
If)
I
p
In
1C
cr>
u>
I
O
b
o
p
cn
O
(A
>
Z
O
o
N
m
a
Z
(A
Z
O
m
o
01
o
-------
H-
OP
i-t
fD
l-o
u>
pi cu
rt ^i
(D rt
CO H-
O
C C
3 M
CO fD
CO
rO CO
CU O
3 O
0. 3
o
UJ (D
- 3
rt
rt f(
p Cu
3 rt
OP H-
fD O
3 3
rt
H-
r-1 H
H CO
t cn
H- CO
>-{ rt
(C CU
/^. y
ex
O* [U
O i-l
H» P-
M H-
fD N
N (D
CO Pu
O
H-T)
3 CO
O O
O H-
S rt
(D i-h
rt O
fD i-t
fD O
3 (D
fD O
l-t OP
OP H-
H- Cu
N
H- T)
3 Q
OP <
• fD
PARTICIPATE MASS CONCENTRATION AT STACK CONDITIONS, g/om'
o o o p p
w -
a
N
m
o
o
2 S
o
•o
rn
o
m
z
T
T
T
T
T
O
Qxt>O
rn rn m m
o o o o
o o o o
TO 33 3D 3D
cn 01 OJ ro
i i i i
p 2°
fn — ^
VI
O
*
o
eo
0
p
o
p
in
o
N
m
o
z
w
z
o
m
o
'w
o
-------
PARTICULATE MASS CONCENTRATION AT STACK CONDITIONS, g/om3
OP
c
l-l
(D
NJ
•3 o
ro
1 1
p
'+
1 1
p
on
1 I
0
CB
oO
-i -t
m rn
t/> en
-( H
O O
-t H
J> >
Ti ~n
o o
-j -g
<£ CD
-• -> o
rv>
!£ 3
O
Ul
p
^
o
p
-------
PARTICIPATE MASS CONCENTRATION AT STACK CONDITIONS,
>
z
o
3}
O
N
m
o
z
(A
H
H
>
z
o
m
-------
PARTICULATE MASS CONCENTRATION AT STACK CONDITIONS, fl/am'
H-
OQ
ro rt
en H-
o
a c
3 I-1
H. fu
rt rt
ro
~~l
** =3
(U
rt 01
(U CO
3
O
3 3
rt O
I-1 rt
ro
a" n
o en
H- C
I—1 CO
m
f-l en
» rt
tu
H- 3
3 cu
O (u
O ^
S CL
ro
rt
ro
ro
3
ro
i-f
N
ro
a.
N
H- iti
3 O
OQ N
O
ro
o
K
OQ
T)
O
ro
p
ro
O
en
p
00
O
O
o
u>
(A
Z
O
>
•33
o
I rt N
i-h H- m
H- O ™
^ 3 O
o
"D
ro
O
I
o
m
o
m
2:
p
00
O
b
o
en
L
o
p
io
O
P
OB
O
p
o
p
in
o
(A
Z
a
N
m
o
(A
o
m
o
«i
o
-------
PARTICULATE MASS CONCENTRATION AT STACK CONDITIONS, g/arrr
H-
m
to
-J
W ^0
o P>
e i-t
(B rt
3 H-
n
c! C
3 I-4
H- fB
rt CO
(U CO
3
OQ O
(D O
3 3
rt O
H- (D
(U 3
K-1 rt
t-1 it
V! p3
I rt
i-h H-
H. O
H 3
(D
a. <
to
a- H
o en
H- C
M CO
CD
i-f CO
» rt
("
3 3
(D O-
N
O tt>
O D-
"3 O
(D
3
(I» Ml
i-f O
OQ 1
H-
N O
H- (D
3 O
OQ i-(
• OQ
H-
(U
§
(D
O
O
ro
p
in
30
O
N
m
o
>
o
T3
m
31
o
m
z
O
i
t\>
p
ro
O
O<
O
o
'-J
o
X
o
N
m
a
p
o
o
Z
O
m
o
'yi
o
-------
PARTICIPATE MASS CONCENTRATION AT STACK CONDITIONS, g/onr
•D
H-
00
i-t
fD
fO
00
W
O
H-
O
c.
a
H-
rt CO
(B CO
3
00 O
(t> O
3 3
rt O
H- (D
[U 3
I rt
t-h H-
H- O
H 3
(t>
O- <
fD
cr ^
o co
H- e
M CO
n>
i-! CO
3 3
(B a.
cu (a
N
O IT)
O CU
ro cu
rt o
(D H-
rt
n> ^<
3
(B 1-h
i-t O
00 rj
H-
N O
H- (T)
3 O
00 -i-l
• 00
H-
p
Ki
o
en
p
OB
CO
o
O
N
m
o
>
o
T3
m
x
o
m
z
00
O
p£
% 3
O O
33 3D
LM CD
i i
-J ->l
(X) CD
00
I
-J
VO
yi
O
N
m
o
J»
z
p
m
o
o
m
o
CM
o
-------
PARTICIPATE MASS CONCENTRATION AT STACK CONDITIONS, q/am;
oo
e
l-i
ro
O cu
s: n
(D ft
0 H-
o
d c
3 M
rt CO
(u CO
3
TO O
(D O
3 3
rt O
H- fD
03 3
(—' rt
vj 03
I rt
l-h H-
H- O
^i j«i
fD
a <
(D
O"* ^
o co
H- e
M CO
fD
1-1 CO
» rt
03
H- 3
3 P-
O Oi
O i"l
9 a.
T3 H-
H" N
fD fD
rt CL
fD
O
fD "0
3 0>
ro n
i-l H-
00
N
M. Ml
3 O
oo '-t
•
o
fD
O
t-i
TO
3
fD
H
O
fvj
O
O)
O
OR
VI
o
N
m
o
>
o
T3
m
•jo
o
m
z
en
O
O
O x >
m m m
CO (/) C/>
H -H H
o o o
H -t H
-n TI -n
o o o
OJ -C> CM
I I I
-g •>! -^
IO 08 00
o
p
b
o
O
O
p
o»
o
p
'>!
O
O
in
o
X»
X
o
>
130
O
N
m
o
z
(A
Z
o
m
o
Ul
o
-------
PARTICULATE MASS CONCENTRATION AT STACK CONDITIONS,
H-
TO
C
ft
m
UJ
o
O
c
rt CD
PJ CO
3
OQ O
fD O
3 3
rt O
H- fD
(U 3
M rt
M i-(
•xj pj
I rt
l-h H-
H- O
H 3
(D
O.
o
ro -a
3 (B
fD n
i-l H-
CW rt
H. ^
N
H- l-h
3 O
00 1-1
•
O
fD
O
i-t
00
H-
C"
'•tf
o
Z
O
N
m
o
Z
o
m
-------
TABLE 4. SUMMARY OF CHARACTERIZING OPACITY PARAMETERS FOR MASS EMISSION VS.
OPACITY RELATIONSHIPS, GEORGIA POWER CO. PULVERIZED COAL BOILERS
U>
/ \ Figure
BoHer(s) ^
Opposite or Front-fired
Branch Units 1 and 2
Branch Units 3 and 4
Hammond Units 1, 2 and 3
Hammond Unit 4
Mitchell Units 1, 2 and 3
Tangentially-fired
Arkwright Units 1-4
McDonough Units 1 and 2
Wansley Unit 1
Wans ley Unit 2
Yates Units 1, 2 and 3
Yates Units 4 and 5
Yates Unit 6
Yates Unit 7
Bowen Unit 1
Bowen Unit 2
Bowen Unit 3
Bowen Unit 4
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Estimated* , . Modifiedt
Mass emission range „„*..!,,„ ,--,•„„
°?a«£y (95% confidence limit) "^^
index at 20% opacity g/am* ?««««
percent Km
9.5 0.15 - 0.24
13.0
10.0 0.12 - 0.19
12.5
3.5
8.0 0.21 - 0.38
7.5 0.16 - 0.23
11.5 0.06 - 0.18
14.5 0.06 - 0.16
11.5
19 . 5
9.5 0.00-0.16
10.0 0.18 - 0.26
11.0
11.5
6.5
7.0
-l-5f
-0.60§
-1.4
-0.88
-0.80
-1.1
-1.4
-1.8
-2.0
-1.8
-0.90
-0.90
-1.1
-0.40§
-0.50§
-0.70f
-0.80f
*Estimated opacity standardized to a 4.0 m (~ 13 ft) stack diameter and
adjusted to the average mass emission for each boiler corresponding to
43 ng/J (0.1 lb/106 Btu)
tlL^ = (S )(L) from Equations 1 and 2.
fIncomplete energizing.
§Nearly complete energizing.
-------
REFERENCES
1. Ensor, D.S., and Pilat, M.J., "Calculation of Smoke Plume Opacity from
Particulate Air Pollutant Properties." J. Air Pollut Control Assoc.
21, No. 8, 496:501, 1971.
2. Federal Register, Vol. 44, No. 127, 37960-37961, June 29, 1979.
3. Schneider, W.A., "Opacity monitoring of stack emissions: A design
tool with promising results." The 1974 Electric Utility Generation
Planbook. McGraw-Hill, NY, 1974.
4. Hurley, T.F., and Bailey, D.L.R, "The Correlation of Optical Density
with the Concentration and Composition of the Smoke Emitted from a
Lancashire Boiler." J. Inst. Fuel 31., 534, 1958.
5. Stoecker, W.F., "Smoke-Density Measurement." Mechanical Engineering,
_72, 793, 1953.
6. Reisman, E., et al., In-Stack Transmissometer Measurement of Particulate
Opacity and Mass Concentration, Philco-Ford Corporation, EPA-650/2-74-120,
1974.
7. Schiff, H. Unpublished memorandum to Metropolitan Edison Company,
10 February 1977.
8. van de Hulst, B.C., Light Scattering by Small Particles, John Wiley &
Sons, Inc. New York, 1957.
9. Mie, G. von, "Beitrate zur Optik Truber Medien; Speciall Kolloidaler
Metallosungen," Ann. Phys. (Leipzig) 25, 377, 1908.
10. Rayleigh, J., "On the Electromagnetic Theory of Light." Phil. Mag.,
12., 81, 1881.
11. Ensor & Pilat, op. cit.
12. Severson, S.D., et al., Economic Evaluation of Fabric Filtration Versus
Electrostatic Precipitation for Ultrahigh Particulate Collection
Efficiency, EPRI FP-775, 1978.
44
-------
13. Halow, J.S., and Zeek, S.J., "Predicting Ringelman Number and Optical
Characteristics of Plumes." J. Air Pollut. Control Assoc., 23, No. 8,676,
1973.
14. Weir, A. Jr., et al., "Factors Influencing Plume Opacity," Environ Sci
and Tech, 10, No. 6, 1976.
15. Fennelly, P.P., and Lilienfeld, P., OPACITY HANDBOOK, internal report
to U.S. EPA, Contract Number 68-01-4143, Technical Service Area 2,
Task Order Number 13 (Oct 1978)
16. 40 CFR 60, Appendix A, Method 9
17. Hood, K.T., A.L. Coron, H.S. Ogelsby, R.O. Blosser, "Measuring Plume
Opacity," TAPPI, £0, 141, 1977.
18. Ensor & Pilat, op. cit.
19. Ibid.
20. McCain, D., J.P. Gooch, W.B. Smith, "Results of Field Measurements of
Industrial Particulate Source and Electrostatic Precipitator Performance"
J. Air Pollut. Control Assoc., 25, No. 2, 117, 1975.
21. Severson, Stephen D., op. cit.
22. Dennis, R. et al., Filtration Model for Coal Flyash with Glass Fabrics.
GCA/Technology Division, Bedford, Massachusetts, EPA-600/7-77-084,
1977.
23. Schneider, W.A., op. cit.
24. Colton, T., "Statistics in Medicine" Chapter 6, Regression and
Correlation, 189-214, Little, Brown and Company, Boston 1974.
45
-------
APPENDIX A
DATA TABULATIONS FOR ALL MASS EMISSION
AND OPACITY MEASUREMENTS
46
-------
TABLE A-l. CONCURRENT MASS EMISSIONS AND
WITHOUT PARTICULATE CONTROL.
OPACITY ESTIMATES FOR COAL-FIRED BOILERS WITH AND
DATA FOR EPA REGIONAL AND STATE SOURCES.
Soils
test
av.d
Boiler type
r naiae, and design ^
number, caaacitv3 s/^"
date _~M.-a ' a»-.mir.
Exhaus t Load
temperature during test
°C M«"e
(OF) (10- Stu/hr)T
Farticulace loading
at stack conditions
ng/J
(lb/105 Btu)
g/am-
tgr/acf)
Qpscityc
1
Stack „ . Fuel Fuel
Standardized . , . ,„
diameter . ^ weight weight
opacltva -^ ,
m 7 ^
(ft) m sulfur ash
Fuel heat
content
kJ/fcg
(Btu/li)
EPA- Reg ion I
PSC NH
Test 11
Test 12
Test 3
Test 4
Test 5
PSC NH
Test 1
Test 2
PSC NH
Ti-.st 1
Test 4
Test 5
Test 6
Test 7
Test 8
Test 9
Test 10
PSC SH
Test 3
Test 4
SOU le
(4-7 7) f
(4-77) f
(7-77)
(7-77)
(7-77)
12,023
(424,574)
11,372
(401,591)
Cvclone boiler ,„
120 Mf, flyash (4^'^
reinjection " '~
11,646
(411,268)
10,869
(383,850)
BOW 2
(8-77)gy 33,362
I ,. , , ., (1,178,151)
\ Cyclone boiler ' '
(8-77)8i 347 MW (3015) 33,554
) (1,184,943)
BOW 1
(4-77)'^
(4-77)g
(4-77)s
(4-77)8
(4-77) g
(4-77)g
(4-77) f
(4-77) f
11,612
(410,058)
11,520
(406,833)
11,589
(409,252)
11,143
Cyclone boiler (393,527)
•120 Mi, flyash
rejection (40o;785)
11,223
(396,349)
11,235
(396,349
10,732
/ (379,012)
BOW 2
(8-77)gJ 33,036
A Cyclone botle, <1."6,666)
(8-77)rl 347 MJ (3015) 32,718
' (1,155,430)
' 151
(303)
153
(308)
154
(310)
154
(309)
153
(308)
166
(330)
166
(331)
153
(308)
155
(311)
154
(310)
152
(305)
148
(298)
146
(295)
154
(310)
162
(324)
163
(325)
161
(322)
_
(1124)
_
(1118)
(1138)
-
(1140)
_
(1060)
(3201)
—
(3196)
_
(1140)
_
(1120)
_
(1119)
__
(1137)
(1058)
_
(922)
_
(1117)
_
(1125)
_
(3204)
—
(3174)
274
(0.637)
133
(0.309)
114
(0.265)
119
(0.277)
148
(0.344)
59
(0.137)
58
(0.136)
841
(1.95)
107
(0.249)
265
(0.617)
203
(0.472)
313
(0.729)
210
(0.488)
140
(0.327)
162
(0.378)
57
(0.132)
51
(0.118)
0.45O-E
(0.197)
0.230-E
(0.100)
0.194-E
(0.085)
0.204-E
(0.089)
0.254-E
(0.111)
0.101-E
(0.044)
0.098-E
(0.043)
1.45-E
(0.634)
0.183-E
(0.080)
0.450-E
(0.197)
0.364-E
(0.159)
0.513-E
(0.224)
0.303-E
(0.132)
0.245-E
(0.107)
0.299-E
(0.131)
0.099-E
(0.043)
0.087-E
(0.038)
20
30
2^
?4
28
60
41
41
15
22
26
12
25
34
17
50
66
(VE)
(ra)
(TR)
(TR)
(TR)
(TR)
(TR)
(TR)
(TR)
(TR)
(TR)
(VE)
(VE)
(TR)
(VE)
(TR)
(TR)
2.82
(9.25)
2.82
(9.25)
2.82
(9.25)
2.82
(9.25)
2.82
(9.25)
4.85
(15.9)
4.85
(15.9)
2.82
(9.25)
2.82
(9.25)
2.82
(9.25)
2.82
(9.25)
2.82
(9.25)
2.82
(9.25)
2.82
(9.25)
2.82
(9.25)
4.85
(15.9)
4.85
(15.9)
27 ' 2.59 6.96
40 2.59 6.96
32 3.00 7.30
32 3.00 7.30
37 3.00 7.30
53 3.9 9.44
35 3.9 9.44
53 2.86 7.08
21 2.85 7.07
30 2.85 7.07
35 2.72 7.06
17 2.72 7.06
34 2.72 7.06
45 2.59 6.96
23 2.59 6.96
44 3.9 9.44
59 3.9 9.44
32,264
(13,871)
32,264
(13,871)
32,890
(14,054)
32,890
(14,054)
32,890
(14,054)
31,920
(13,723)
31,920
(13,723)
32,773
(14,090)
32,210
(13,848)
32,210
(13,848)
32,673
(14,047)
32,673
(14,047)
32,673
(14,047)
32,264
(13,871)
32,264
(13,871)
. 31,920
(13,723)
31,920
(13,723)
(continued)
-------
TABLE A-l (continued)
Boiler na^ie,
test rubber,
and dace
NORTH DAKOTA
MINNKOTA PCWER
COOP. (9-75)
SQUAS£ BCTTE
YOUNG 2 (6-78)
HESKETT - UNIT 1
Tesc 6 (12-75)
HESKETT - UNIT 2
(12-75)
LELAND OLDS
UNIT 1 (5-75)
-t-
oo
LELAND OLDS
UNIT 2 (12-76)
MDU-BEULAH UNITS
3,4,5 (4-76)
MDU-BEULAH
UNIT 1 (10-71)
BASIN ELEC.
VELVA 2
Test 3 (8-78)
BASIN ELEC.
VELVA 2
Test 4 (8-78)
UPA-STANTON
(6-76)
Seller type F,.^ Exhaust
and design _te cemperatur.
capacitya _ 3 . ^ 0^
(10' Btii/hr)-r '--'--V-
Lignite'
utilitv 31,000 154
boiler 235 MW (1,100,000) (310)
Lignite
utilitv 53,500 78
boiler" 440 MW (1,890,000) (172)
Lignite
utility 5,312 174
boiler 25 MW (187,600) (345)
Lignite
utility 10,200 154
boiler' 66 MW (360,000) (309)
Lignite fired — —
boiler 216 MW - -
Lignite fired 62,300 204
boiler 440 MW (2,200,000) (399)
Lignite — —
boiler - -
Lignite fired — —
boiler
Lignite
utility 4,069 206
boiler 21 MW
Lignite
utility 3,859 192
boiler 21 MW (136,290) (377)
Lignite
utility - -
boiler 172 MW - -
Particuiate loading"
L0 at stack conditions ,-_,.,-»;,c
e durinE test Opacity
wy ~~ ' ~ °
U0= Btu/hr)T {lb7|gi stu) (g^f)
3 0.0039-E 7 (VE)
(2425) (0.007) (0.0017)
442 14 0.0:3-E&S 19 (VE)
(5048) (0.033) (0.010)
- 8 0.0087-E 5 (VE)
(340) (0.019) (0.0038)
7 0.0087-E
(751) (0.016) (0.0038)
3-7 (VE)
(2236) (0.008)
- 9 0.0127-E 15 (VE)
(4752) (0.022) (0.0056)
72-5 (VE)
(159) (0.168)
710 - 35 (VE)
(63) (1.65)
18.4 10 0.014-E 7 (VE)
(325) (0.024) (0.0062)
17.7 7 0.0092-E 6 (VE)
(294) (0.016) (0.0040)
43 - 10 (VE)
(1237) (0.101)
Stack .. . Fuel Fuel Fuel heat
01 ^ Opacity" , , kj 'k«
(fc) ' sulfur ash (Btu/lb)
5.79 5
(19)-
7.62 W
(25)
2.13 9
3.66 5
(12)
6.71 9
(22)
2.29 9
(7.5)
1.52 68
(5)
1.83 15
(6)
1.83 13
(6)
4.57 9
(15)
-
-
15,991
(6,875)
16,080
(6,913)
-
-
- -
- - -
- -
_
(continued)
-------
TABLE A-l (continued)
\D
Boiler name,
test number,
and date
CATERPILLAR
TRACTOR
QECATUR (4-77)
PACIFIC PWR & LT
CESTRALIA 1
(7-77)
ADOLPH COORS CO.
(6-77)
EPA-Regiop V
OHIO EDISON
SAMMS-STACK 1
(4-78)
OHIO EDISON
SAMMIS-STACK 2
(4-78)
KAISER ALUM.
(3-78)1
CENTRAL OHIO
PSYCH. HOSP.
Test 1 (9-78)
ARKANSAS
POTLATCH CORP.
Test 1
Test 2
Test 3
NEBRASKA
WRIGHT PWR STA
UNIT 8 (10-77)
3ciier type
and design
capacity3
(10- 3tu/hr)_
Coal-f ired
steaa boiler
Coal-fired
utility
boiler 680 MK
Corner-fired
coal boiler
2 front fired
pulv. coal
185 MW each
2 front fired
pulv. coal
185 MK each
2 coal-fired
boilers,
common stack
60,000 Ib/hr
steam, chain
grate stoker
Flow Exhaust Load
a^/ain "% . We
= 900 163
•=32,000) (326)
_
5,100 179
(180,000) (355) . (418)
_
_
2,061 221
(72,775) (429) (128)
_
2,915 210
(102,930) (410)
4,179 • 210
(147,564) (410)
4,182 210
(147,700) (410) -
_
Particulate loading
at stack conditions Opacl^=
y
0.064-F 0 (VE)
(0.028)
- - 10 (VE)
14 est. 0.02-F 0 (VE)
(0.032) (est. =0.01)
2,073
(4.82)
1,479 - 98 (VE)
(3.44)
247 0.289-S 18 (VE)
(0.576) (0.126)
- 4 (VE)
22 0.044 11 (VE)
(0.05) (0.0193)
22 0.048 6 (VE)
(0.05) (0.0211)
9 0.017 6 (VE)
(0.02) (0.0075)
44 - 26 (VE)
(0.1014)
diameter Stan
-------
TABLE A-l (continued)
Boiler type Flov Exb.aust
Boiler name, and design rate temperature
test number, capacity" __3 ;-_.;r Of~
and date _ Mfe (i>cfm) ''°F)
WRIGHT PWS STA
UNIT 8 (1Q-7T) — ~
(10—77) —
(10-77) ~ —
(10-77)
(10-77)
(10-77)
(10-77)
(10-77) 91 MW (800)
~ ~~
KRAMER POKER STA - -
UNITS 1 & 2 - -
FLORIDA
TAMPA ELEC.
Gannon 5 Pulv. coal;
Test 2 (7-78) opp. 240 MW 13,600 162
(2386) (481,000) (323)
BIG BEND
UNIT 2 Pulv. coal;
Test 2 (10-78) opp. 350 MW 34,800 140
(3070) (1,230,000) (284)
INDIANA
WASH PWR & LT
Boiler 1
lest I (4-75)J Chain grate 1,130 311
(120) (39.900) (592)
Boiler 2 ,
Test 1 (6-75) I 1,260 179
/ (44,700) (355)
o / Chain grate
Boiler 2 ( .
Test 3 (6-75)k> ' ' 2) 1,390 205
(49,200) (401)
Particulate loading*1
Loaci at stack conditions
durine test
. ,«? L e ,~ •. ng/J g/anj
- 26 —
(0.0596)
- 72 -
(Q.1664)
- 47 -
(0.1085)
— 54 —
(0.125)
56 -
(0.130)
.83
(0.193)
- 80 -
(0.185)
187
26 -
(0.060) -
240 5 0.0158-E
(2386) (0.012) (0.0069)
350 77 0.119-E
(3070) (0.18) (0.052)
- 452 0.520-N
(74.3) (1.05) (0.227)
- 813 0.259-N
(23.0) (1.89) (0.113)
374 0.200-N
(42.6) (0.87) (0.088)
Opacity0
'
15 iVE)
20 (VE)
22 (VE)
31 (VE)
23 (VE)
31 (VE)
19 (VE)
32 (VE)
5 (VE)
0 (VE)
11 (VE)
47 (VE)
16 (VE)
42 (VE)
SCack Standardized
diameter a?acltyd
- 1 *
4 • n
(95
2.74 27
(9)
2.74 31
(9)
2.74 42
(9)
2.74 31
(9)
2.74 41
(9)
2.74 27
(9)
2.74 44
2.57 8
(8.42)
4.45 0
(14.6)
7.32 6
(25)
3.66 50
(12.0)
3.66 17
(12.0)
3.66 45
(12.0)
?uel Fuel Fuel heat
weight weight content
% % kj/kg
sulfur ash (Btu/lb)
Same as previous test
Same as previous test
Same as previous test
Same as previous test
Same as previous test
Same as previous test
0.42 - 6.6 - 27,200-
0.47 14 28,000
(11,700-
12,400)
0.73 3.33 29,960
(12,881)
1.1 11 27,600
(11,900)
3.0 11 27,500
(11,800)
-
_
-
(continued)
-------
TABLE A-l (continued)
Boiler type
Boiler name, and design
test number, capacity3
and date ?$J
(10= Btti/hr)T
OLIN at Covington
Boiler 2
Test 1 (10-75) Spreader
stoker (KlOO)
CMC at Anderson
Boiler 2 Coal-fired
Test 1 (6-76) steam boiler
«slOO)
CSAKFOSDSVILLE
ELEC. Boiler 5
Test 1 (11-75) X
—
Test 2 (11-75)1
—
Test 3 (ll-75)k
-
Boiler 6
Test 1 (ll-75)k
—
Test 2 (ll-75)k
Test 3 (ll-75)k
NEW YORK STATE
ANACONDA BRASS Coal-fired
Buffalo (2-77)m underfeed
retort (24)
CITY OF
BUFFALO; Publ.
School ( — ) Manual stoker
(1.5)
CARBORUNDUM
Niagara Falls
(6-77) n Spreader
stoker (85)
MIDDLETOWN
STATE HOSPITAL
Test 2 (2-73) Coal-fired
steam boiler
Flow
rate
am- ./rain
(acfm)
740
(26,000)
1,270
(45,000)
2,030
(71,600)
2,040
(72,200)
2,050
(72,400)
1,910
(67,300)
1,910
(67,500)
1,950
(68,800)
600
(21,000)
110
(3,800)
760
(27,000)
—
—
Exhaust
temperature
°C
169
(336)
204
(400)
196
(384)
194
(381)
196
(385)
211
(411)
214
(418)
216
(421)
102
(215)
-
—
—
—
193
(380)
Load
during tes t
(10s Btu/hr)T
-
(57)
—
(94)
_
(86)
_
(95)
_
(125)
_
(170)
(170)
(190)
—
(25)
-
(1.5)
—
(82)
_
(57)
Parttculate loading
at stack conditions -_ . c
Opacity'-
ng/J g/am-3
(lb/106 Stu) (gr/acf)
619
(1.44)
190
(0.44)
1152
(2.68)
1109
(2.58)
1015
(2.36)
175
(0.407)
299
(0.695)
204
(0.474)
215
(0.5)
542
(1.26)
200
(0.46)
131
(0.42)
0.847 58 (VE)
(0.370)
0.264-C 27 (VE)
(0.115)
1.26-C 49 (VE)
(0.550)
1.47-C 52 (VE)
(0.642)
1.35-C 53 (VE)
(0.588)
0.281-C 66 (VE)
(0.123)
0.477-C 72 (VE)
(0.209)
0.344-C 70 (VE)
(0.151)
0.16-C 10 (M9)
(0.07)
0.13-N 33 (VE)
(0.06)
0.38 6 (VE)
(0.17)
~20 (VE)
Stack Standardised Fuel ^ F'jel hef
diameter . f wexgnt weight content
a opacity11 7° %0 fcj/kg
(ft) Z sulfur ash (Btu/lb)
2.13 80
(7.0)
1.65 53
(5.42)
2.03 73
(6.67)
2.03 76
(6.67)
2.03 77
(6.67)
2.67 80
(8.75)
2.67 85
(8.75)
2.67 84
(8.75)
2.4 16
(7.8)
0.78x0.94 87
(2.6x3.1)
3.15 8
(10.3)
3.35 ~23
(11.0)
- - -
—
— — —
—
3.69 10.8 30,290
(13,022)
3.41 11.7 29,800
(12,811)
3.82 12.4 29,680
(12,759)
3.05 • 11.4 29,720
(12,778)
3.39 11.1 29,920
(12,862)
3.42 12.1 29,510
(12,688)
— — —
—
3.3 - 30,630
(13,167)
— — —
—
2.69 7.9 31,615
(13,592)
(continued)
-------
TABLE A-l (continued)
Seller type
Boiler name, and design
test ausbsr, capacity3
and date M&L
HO'- 3tu/"hr),
MDDLETOWN
STATE HOSPITAL
Test 3 (2-73) I
f Coal-fired
,_ -~*( steam boiler
Test 4 (2-;3;)
UNION CARBIDE
Niagara Falls
Test 1 (11-77) ,
Test 2 (11-77)' C^n baklng
1 furn. 4
Test 3 (11-77)1
PRESTOLITE CO.
Niagara Falls
(jl Test 1 (11-77),
to I
Test 2 (ll-77)> B&W east coal
( boiler (24)
Test 3 (11-77);
GOWANDA PSYCH.
CENTER
Helmuth, NY
Test 1 (8-76)°'
Test 2 (8-76)p Underfeed
stoker
Test 3 (8-76)q
ae = electrical, T = thermal
bControl by ESP (E) , filter (F) ,
cyclone (C) , none (N), or
scrubber (S)
VE = Visual observation
TR = In-stack transmissometer
M9 = Method 9
Flow
rate
(acfn)
-
-
640
(22,660)
655
(23,128)
656
(23,179)
429
(15,160)
438
(15,470)
424
(14,980)
646
(22,800)
799
(28,210)
701
(24,760)
Exhaust Load
temperature during test
°C MWe
(69)
(64)
52
(126)
57
(135)
-
286
(546) (17)
291 -
(555) (18)
281
(537) (23)
168
(334) (17)
162 -
(324) (15)
154 -
(309) (18)
Standardized to 4.0 m (~ 13.0 ft)
6PSC NH
of New
= Public Service Company
Hampshire
No additive
^fith additive
PartlCTilate loading
at stack conditions opaciCyc
ng/'J
(lb/10° Btu)
172
(0.40)
176
(0.41)
—
—
-
151
(0.350)
134
(0.311)
145
(0.336)
147
(0.342)
271
(0.631)
151
(0.352)
"Soot blowing
/ 3 h
g/an
(gr/acf)
~20 (VE)
- -20 (VE)
0.040 10 (VE)
(0.017)
0.013 0 (VE)
(0.006)
0.035 0 (VE)
(0.015)
0.108-C 10 (VE)
(0.047)
0.095-C 10 (VE)
(0.042)
0.137-C 10 (VE)
(0.059)
0.0673 0 (VE)
(0.0294)
0.0920 2 (VE)
(0.0402)
0.0686 0 (VE)
(0.0300)
Particle size data available
-'White plume,
30 min of 96
'VE 30 min of
test
white sky VE
min test
96 min stack
Stack standardised FBel F"el
(ft) sulfur ash
3.35 23 2.69 7.9
(11.0)
3.35 23 2.69 7.9
(11.0)
1.52 24 -
(4.98)
1.52 0 ' - -
(4.98)
1.52 0 - -
(4.98)
0.95 36 - -
(3.12)
0.95 36 - -
(3.12)
0.95 36 - -
(3.12)
2.78x2.73 0 - -
(9.12x8.96)
2.78x2.73 3 - -
(9.12x8.96)
2.78x2.73 0 -
(9.12 x 8.96)
TE 30 min of 96 stack test
mSoot blowing nonconcurrent VE
nAverage opacity and emission rates
°VE for 15 min
PVE for 34 rain
qVE for 10 min
Fuel heat
content
kJ/fcg
(Btu/lb)
31,635
(13,592)
31,615
(13,592)
-
-
-
-
—
—
30,505
(13,149)
30,515
(13,149)
30,505
(13,149)
-------
TABLE A-2. CONCURRENT MASS EMISSION AND OPACITY TESTS FOR EPA REGION IV, COAL-FIRED
BOILERS WITH ELECTROSTATIC PRECIPITATORS. TVA SYSTEM.
u>
Boiler typ-e _. Wjrha. '
Boiler n^e, and design ^ temperature
Cest number, capaci-tv11 ? , , Or,
• J 3jn~ /TH-IO. • C
and data 6 ^-nr^ (acfm) (°T)
' T
TVA-ALLEN
Test 1
Test 2
TVA-ALLEN
Test 1
Test 2
Test 3
TVA-ALLEN
Test 1
Test 2
Test 3
1 \
(7-78)°
(7-78)e
2
(7-78)
(7-78)
25,440
(898,500)
25,000
(882,900)
28,710
(1,013,800)
29,490
.... _ , (1.041.300)
. H&w Lvcione ' '
(7-78)
3
(7-78)
(7-78)
(7-78)
280 MW (2931) 28,590
(1,009,800)
27,400
(968,000)
26,950
(951,900)
27.640
' (976,200)
144
(292)
144
(292)
148
(299)
148
(298)
146
(295)
145
(293)
144
(291)
144
(291)
Load
during test
(10s Btu/hr)T
_
(2428)
_
(2439)
278
(2460)
279
(2469)
275
(2463)
(2364)
_
(2419)
_
(2389)
Particulate loading
at stack conditions
ng/J
(lb/10s Btu)
9
(0.020)
9
(0.021)
20
(0.046)
22
(0.050)
21
(0.048)
31
(0.072)
27
(0.063)
37
(0.085)
g/am3
(gr/acf)
0.0146
(0.0064)
0.0156
(0.0068)
0.0300
(0.0131)
0.0318
(0.0139)
0.0311
(0.0136)
0.0471
(0.0206)
0.0426
(0.0186)
0.0556
(9.0243)
Opacity*1
5
<6
11
11
11
13
13
12
12
12
11
(VE)
(VE)
(TR)
(TR)
(TR)
(TR)
(VE)
(TR)
(VE)
(TR)
(VE)
•Stack _ , ,. . Fuel Fuel Fuel heat
disaster Staadar4l;?ei weijht weight content
opacity £ % kJ/Vg
(ft) * sulfur a.ih (Btu/lb)
3.9O
(12.8)
3.90
(12.8)
3.90
(12.8)
3.90
(12.8)
3.90
(12.8)
3.90
(12.8)
3.90
(12.8)
3.90
(12.8)
5
6
11
11
. 11
13
13
12
12
12
11
3.0 12.1 27,524
(11,833)
3.0 12.1 27,524
(11,833)
2.8 12.1 26,737
(11,495)
2.8 12.1 26,737
(11,495)
2.8 12.1 26,737
(11,495)
3.1 12.1 27,956
(12,019)
3.1 12.1 27,956
(12,019)
3.1 12.1 27,956
(12,019)*
TVA COLBERT 1
Test 1
Test 2
Test 3
(9-78) \ 24,750
(9-78)
(9-78)
TVA-COLBERT 2
Test 1
Test 2
Test 3
(9-78)
(9-78)
(9-78)
(874,200)
24,400
(862,000)
24,410
(862,200)
Pulverized, dry
bottom 223 MW
19,910
(708,700)
20,900
(744,000)
19.880
(702,100)
188
(371)
196 -
(385)
187
(368)
167
(332)
167
(333)
168
(334)
182
(1357)
182
(1580)
180
(1586)
180
(1792)
180
(1700)
180
(1745)
51
(0.118)
41
(0.096)
35
(0.081)
35
(0.080)
30
(0.069)
25
(0.058)
0.0487
(0.0213)
0.046
(0.0200)
0.0398
(0.0174)
0.0542
(0.0237)
0.0423
(0.0185)
0.0384
(0.0168)
9
7
9
9
9
7
5
7
12
8
(TR)
(VE)
(TR)
(VE)
(TR)
(TR)
(VE)
(TR)
(VE)
(TR)
5.03
(16.5)
5.03
(16.5)
. 5.03
(16.5)
5.03
(16.5)
5.03
(16.5)
5.03
(16.5)
7
6
7
7
7
6
4
6
10
6
3.9 14.3 26,650
(11,460)
3.7 12.9 27,590
(11,860)
2.4 15.5 ' 26,998
(11,607)
3.8 14.5 27,417
(11,787)
3.9 13.5 27,975
(12,027)
3.8 13.5 27,200
(11,694)
(continued)
-------
TABLE A-2 (continued)
Seller type _., Exhaust
toiler aaae, and design ^ • t ratlire
test nomcer, 'capacity am^'mia °C
(KP Stu/hr)T ' ^
TVA-CCL3E5T 3
Test 1 (9-78) ',
Test 2 (9-78)
Test 3 (9-73)
TV A- COLBERT 4
Test 1 (11-78)
Test 2 (11-78)
Test 3 (11-78)
22,310
(787,920)
22,470
(793,600)
24,660
(870,700)
Pulverized, dry
bottom 223 MW
20,530
(724,900)
20,450
(722,300)
20,090
(709,400)
TVA-WIDOWS CREEK
Boiler 7
Test 1 (2-79)
Test 3 (3-79)
Test 4 (3-79)
Test 1 (10-78)
Test 2 (10-78)
Test 3 (10-78)
49,740
(1,756,700)
50,980
(1,800,400)
C.E. 46,490
pulverized, (1,641,700)
dry bottom ,- ,.„
500 MW (1, 751^900)
49,590
(1,751,400)
50,060
(1,768,000)
TVA-CUMBERLAND
Boiler 1
Test 1 (10-78)
Test 2 (10-78)
Boiler 2
Test 4 (4-79)
135,500
(4,786,000)
RR.U 131,600
, . , (4,648,000)
pulverized '
1300 MW
88,120
(3,155,100)
(350)
182
(360)
180
(356)
167
(332)
166
(331)
165
(329)
144
(292)
148
(298)
144
(292)
154
(310)
153
(307)
154
(310)
149
(300)
148
(298)
141
(285)
Load
during test
(10* 3tu/hr)T
(1993)
(2175)
(2085)
(200)
(1806)
200
(1775)
200
(1800)
( 5000)
( 4900)
( 4700)
(4460)
(4490)
(4430)
1300
(10,975)
1300
(11,045)
700
—
Particulate leading
at stack conditions
ng/J
(lb/10s Btu)
38
(0.089)
34
(0.079)
28
(0.065)
79
(0.183)
55
(0.128)
67
(0.155)
217
(0.63)
340
(0.79)
348
(0.81)
133
(0.262)
111
(0.258)
127
(0.296)
95
(0.23)
84
(0.20)
-
—
g/am3
(gr/acf)
0.0604
(0.0264)
0.0577
(0.0252)
0.0426
(0.0186)
0.122
(0.0532)
0.0840
(0.0367)
0.105
(0.0459)
0.475
(0.2076)
0.576
(0.2517)
0.614
(0.2683)
0.178
(0.0778)
0.177
(0.0772)
0.198
(0.0867)
0.140f
(0.061)
0.124£
(0.054)
0.0169f
(0.0069)
Opacityb
6
5
6
6
6"
5
9
12
10
9
17
7
66
38
34
29
34
30
27
31
22
8
(TR)
(VE)
(TR)
(VE)
(TR)
(VE)
(TR)
(TO)
(TR)
(TO)
(TR)
(TO)
(TO)
(TO)
(TR)
(TO)
(TO)
(TO)
(TO)
(VE)
(VE)
(TR)
Stack;
m
(ft)
5.03
(16.5)
5.03
(16.5)
5.03
(16.5)
5.03
(16.5)
5.03
(16.5)
5.03
(16.5)
6.34
(20.8)
6.34
(20.8)
6.34
(20.8)
6.34
(20.8)
6.34
(20.8)
6.34
(20.8)
9.45
(31.0)
9.45
(31.0)
9.45
(31.0)
ooacit-T^
*
5
5
5
5
4
10
8
14
6
49
26
23
19
23
20
18
15
10
3
Fael Fuel
veignt weight
i Z
sulfur sulfur
3.7 13.8
3.9 13.9
3.5 14.6
2.08 17.7
1.98 18.3
2.36 17.0
2.1 13.9
2.8 14.2
3.0 14.6
3.7 14.7
3.8 15.3
3.8 14.4
3.6 15.4
3.5 14.6
-
Fuel neat
content
kJ/kg
(Br.li/ 11)
Ul!724>
27 , 189
(11,689)
27,55-
(11,846)
26,582
(11,428)
26,454
(11,373)
27,219
(11,702)
27,640
(11,883)
26,970
(11,594)
27,500
(11,822)
26,368
(11,336)
25,998
(11,177)
25,364
(11,084)
25,050
(10,770)
25,240
(10,850)
-
(continued)
-------
TABLE A-2 (continued)
Boiler type
Seller nam£, and design
test nuaiier, capacit-.-a
and date XK
. (10£ Btu/hr),
Flow
rate
am'/niin
Cacfm)
Exfcaust
temperature
°C
(°T>
Load
during test
MW
(10s Btu/hr7T
Particulate loading
at stack conditions
Opacity
og/J g/aatj
(lb/106 Btu) (gr/acf)
Stack
diameter
3L
(ft)
_ .... Fuel Fuel Fiwl h*at
Stamiardized weight weight content
opac^yC SS» %«" u/^
sulfur ash (Stu/lb)
TVA-CCMBERLAND '
5oiler
Test 5
lest 6
2
(4-79)
(4-79)
B&W
pulverized
1300 MI
39 , 340
(3,155,100)
88,850
(3,137,700)
14.1
(285)
142
(288)
700
—
700
-
—
—
0.0158f
(0.0069)
O.Q158f
(0.0069)
8 (TR)
8 (TR)
9.45
(31.0)
.9.45
(31.0)
3
3
_
— — —
—
TVA-JOHNSONVILLE
Boilers
Test i
Test 2
Test 3
9 i 10
(10-78)
(10-78)
(10-78)
Pulv. coal;
front fired
135 MW each
30,950
(1,092,900)
30,000
(1,059,400)
30,680
(1,083,400)
158
(316)
153
(307)
156
(313)
143/133
(2480)
135/135
(2430)
145/140
(2560)
85
(0.20) .
50
(0.12)
47
(0.11)
0.120f
(0.0526)
0.0712
(0.0311)
0.0684
(0.0299)
38 (TR)
50 (VE)
32 (TR)
42 (VE)
30 (TR)
4.27
(14.0)
4.27
(14.0)
4.27
(14.0)
36
48
30
40
28
3.3 15.3 25,980
(tl,170)
3.3 16.0
(10,790)
3.8 16.4 25,610
(11,010)
TVA-PARADISE
Boiler
Ul Test 1
Ln
Test 2
Test 3
Boiler
Test 1
Test 2
Test 3
1
(10-78) \
(10-78)
(10-78)
2
(10-78)8
(10-78)
Cyclone
\boiler
700 tW
(10-78)/
54,050
(1,908,600)
54,330
(1,918,800)
54,290
(1,917,300)
61,990
(2,189,100)
60,630
(2,141,200)
59,730
(2,109,200)
144
(291)
144
(292)
144
(292)
141
(286)
138
(281)
141
(286)
610
-
602
-
600
—
650
(7150)
650 .
(6450)
643
(6700)
_
-
_
-
—
—
305
(0.71)
236
(0.55)
142
(0.33)
0.124
(0.0542)
0.118
(0.0517)
0.159
(0.0695)
0.619
(0.2707)
0-.443
(0.1936)
0.280
(0.1222)
15 (TR)
17 (TR)
26 (VE)
17 (TR)
35 (TR)
34 (VE)
18 (TR)
27 (TR)
51 (VE)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
8
9
14
9
20
19
10
15
30
3.7 13.7 25,519
(10,971)
3.5 12.9 25,926
(11,146)
3.5 12.9 25,926
(11,146)
4.3 16.0 24,607
(10,579)
3.9 13.4 25,551
(10,985)
3.9 13.4 25,551
(10,985)
TVA-WATTS BAR
Units A
Test 1
Test 2
Test 3
& B
(10-78U
I Pulv. coal;
(10-78) \ "et S dry
/ bottom
1 60 MW each
(10-78)/
15,130
(534,400)
17,180
(606,800)
19,960
(563,500)
173
(343)
174
(346)
169
(336)
58/58
(1190)
58/58
(1210)
58/58
(1310)
95
(0.22)
82
(0.19)
64
(0.15)
0.130
(0.0570)
0.100
(0.0439)
0.0931
(0.0407)
18 (TR)
4 (VE)
20 (TR)
3 (VE)
20 (TR)
3 (VE)
4.88
(16.0)
4.88
(16.0)
4.88
(16.0)
15
3
17
2
17
2
2.2 14.8 28,170
(12,110)
2.4 19.0 26,400
(11,350)
2.5 16.2 27,700
(11,910)
(continued)
-------
TABLE A-2 (continued)
Ul
Boiler type Flow
3oiler name, and -design rate
test number, capacity3 anVmn
TVA-WAT
Units A
Test 4
Unit C
Test 1
Test 2
Test 3
TS BAR
& B
(10-78)h
(10-78)
(10-78)
(10-78)
17
(613
Pulv. coal;
wet & dry 8
bottom (286
60 >&' each g
(344
8
(291
,080
,300)
,100
,100)
,760
,800)
,250
,200)
Exhaust
teaiperature
°C
172
(341)
163
(326)
162
(323)
158
(316)
Load
during test
(10' Btu/hr)T
58/58
(1190)
56
(580)
54
(600)
. 56
(660)
Particulate loading
at stack conditiaas
0-pacitV3
ng/J g/am-
(Ib/lQ6 Btu) (gr/acf)
52
(0.12)
69
(0.16)
95
(0.22)
60
(0.14)
0.0611
(0.0267)
0.0863
(0.0377)
0.100
(0.0438)
0.0854
(0.0373)
19
24
21
5
22
5
22
(TR)
(VE)
(TR)
(VE)
(TR)
(VE)
(TR)
^ Stack stmdardizt
a^ame opacityc
tH o
Cft> * .
4.88
(16.0)
4.88
(16.0)
4.88
(16.0)
4.88
(16.0)
16
20
18
IS
4
18
Fuel Fuel Fuel heat
veight veight coctent
% " IcJ/kg
sulfur ash (3tu/lb)
2.5 15.7 27,470
(11,810)
2.8 17.1 27,470
(11,810)
2.1 15.3 28,450
(12,230)
2.4 12.6 29,350
(12,620)
*E - electrical, T = thermal
VE = visual emissions
TR = In-stack transmissometer
Standardized to 4.0 n (~ 13.0 ft)
VE for only 6 Bin
*VE for 12 Bin
fSystems with ESP and mechanical collector (cyclone)
*9E and trans, froia previous day
ksoot blowing during VE
-------
TABLE A-3. CONCURRENT
COAL-FIRED
MASS EMISSIONS AND VISUAL OPACITY ESTIMATES FOR UTILITY AND
BOILERS FROM SOUTH CAROLINA, INCOMPLETE DATA
So i le r aame ,
rest number.
DUKE POWER
LEE I
Test 1 (8-74)
lest 2 (8-74)
Test 3 (8-74)
Test 1 (5-77)
LEE 3
Test 3 (5-77)
SONOCO
UNIT 4
Test 1 (4-77)"
Test 2 (4-77)
Test 3 (4-77),
Jt'^^ 7* ' Flow Exhaust Load
am. uesLgr. -3.12 temperature during test
capacitv^ ^ , . Q
. ajn ~' / uiiG C ?iw~
_ _ —
(969)
_ _ _
(961)
_ _ _
(987)
_ _ _
(942)
_ _ _
(1642)
!- .
(358)
Coal
_ _
(375)
Particulace loading at
dry standard conditions
ng/J
T (lb/10= Stu)
52
(0.1215)
34
(0.0780)
73
(0.0848)
42
(0.098)
51
(0.118)
202
(0.47)
163
(0.38)
198
(0.46)
Opacity
g/dsa:
(gr.'dsft5)
0.
(0.
0.
(0.
0.
(0.
0.
(0.
0.
171
0746)
108
0472)
194
0848)
121
053)
147
10
10
11
9
18
(0.064)
0
517
31
Stack , ._ f. , Fuel Fuel Fuel heat
diameter bcana
-------
TABLE A-3 (continued)
Boiler type ?1 ^ SAaust Load
Boiler name, and design rat(, tCTperature during test
test number, capacity3 amVinic °C MKe
and date 5«e (acf1 (OT) (105Btu/hr)T
(10- Btu/ar>T 1
Test 2 (7-77)) .
| Puxv. coao., _ _ (1088)
Test 3 (7-77)
tang, fired,
147 MJ (1113) - -
- (1095)
USQtHART 1
Test 1 (9-75)
Test 2 (9-75)
Test 3 (9-75)
Test 1 (9-77)
Test 2 (9-77)
— — —
(736)
_
(764)
Pulv. coal;
tang. (763) — — —
- 1764)
_ _ —
(775)
_ _ —
(773)
Ul
OO URQUHART 2
Test 1 (7-77) )p, , . ~ - -
( u v" ":oa"'. — — (762)
Test 2 ( - )
tang, fired,
75 !*/ (763) -
(768)
URQUHART 3
Test 1 (9-75)
Test 3 (9-75)
Test 1 (?/78)
Test 2 (?/78)
_ _ —
- - (980)
Pulv. coal; -* — ~
tang, fired, - - (994)
100 MW (1040) _ _
- (957)
_ _ _
(958)
WATEREE 1
Test 1 (1-77)
Test 2 (1-77)
Pulv. coal; — — ~~
opposed fired — — (3414)
386 MJ (3450) _ _
(3490)
Particulate loading at
dry standard conditions
ng/J
(lb/105 Btu)
129
(0.30)
163
(0.38)
232
(0.54)
206
(0.48)
189
(0.44)
108
(0.25)
194
(0.45)
129
(0.30)
90
(0.21)
176
(0.41)
103
(0.24)
91
(0.211)
68
(0.158)
142
(0.33)
189
(0.44)
gy'dsm-
(gr./dsft3)
0.327
(0.1429)
0.400
(0.1749)
0.565
(0.247)
0.522
(0.228)
0.506
(0.221)
0.255
(0.116)
0.463
(0.2024)
0.336
(0.147)
0.217
(0.095)
0.391
(0.171)
0.233
(0.102)
0.194
(0.085)
0.146
(0.064)
0.409
(0.179)
0.568
(0.248)
Opacity
15
11
17
36
32
30
35
31
29
21
35
7
9
20
17
Stack c
diameter
(ft)
5.2.-
(17.3)
5.27
(17.3)
4.27
(14-0)
4.27
(14.0)
4.27
(14.0)
4.27
(14.0)
4.27
(14.0)
4.27
(14.0)
4.27
(14.0)
4.72
(15.5)
4.72
(15.5)
4.72
(15.5)
4.72
(15.5)
5.79
(19.0)
5.79
(19.0)
"£?£T
12
8
16
34
30
28
33
29
27
18
31
6
8
14
12
Fuel Fuel Fuel heat
weight weight content
% Z fcj/kg
sulfur ash (Stu/lb)
_ —
~
- - -
- -
—
— ~ ~"
- - -
_
- - -
—
~ ~ ~
_ _
- -
- -
—
- - -
- - -
~
- -
(continued)
-------
TABLE A-3 (continued)
Boiler type Flow Exhaust Lead
Boiler name, and design rat£ cemperature during test
CeaLadatr' "P^"^ amVmin °C „ «We
WATE5EE 1
Test 3 (1-77) > -
WATEREE 2
Test 1 (7-77)
Test 2 (7-77)
Test 3 (7-77)
(3547)
_ —
(4064)
—
(3031)
_ _ _
(3133)
Pulv. coal;
S.C. PUB. SERV. > opposed fired
JEFFRIES 3
Test 1 (5-78)
JEFFRIES 4
Ul Test 1 (5-78)
VO
Test 2 (5-78)
Test 3 (5-78)
386 MW (3450)
_ — —
(861)
_ _ —
- - (1410)
_ _ _
- - (1290)
_ _ _-
' - - (1260)
WINYAH 1
Test 1 (2-76) -
- - (2649)
Test 2 (2-76) - - -
(2659)
CONE MILLS
UNIT 2
Test 2 (11-75) - -
(73)
Test 3 (11-75) - - -
(73)
UNIT 2
Test 1 (3-77) - -
- -
Partic-jlate leading at Stack
dry standard conditions Q^.^ diameter S
ng/J
T (lb/106 Btu)
168
(0.39)
503
(1.17)
378
(0.88)
378
(0.88)
348
(0.81)
271
(0.63)
275
(0.64)
400
(0.93)
22
(0.05)
30
(0.07)
598
(1.39)
568
(1.32)
155
(0.36)
3 * m
(gr/dsft3)
-------
TABLE A-3 (continued)
Boiler type v^ Exhaust
Boiler aam?, and design ^ caBoeracure
test rrojnDer, capacitv3 •, • "or
._. ft" / iiUL1; <-
and date MW , . , . to-?}
ran 2
Test 2 (3-77)
Test 3 (3-77) - -
UNIT 3
Average (3-73) ~~ ~
Test 1 (11-75)
Test 2 (11-75)
Test 3 (11-75)
GRACE BLEACHERY
UNIT 1
Average (7-75) - -
UNIT 2
Average (7-75) - -
UNIT 3
Average (7-75) - -
UNIT 4
Average (7-75) ~ ~~
UNIT 1
Average (2-77) - -
UNIT 2
••
Average (1-77) ~ —
Particulate loading at stack
dry standard conditions ... if AT^m^r^r- '
durirte test upacity diameter
(10- Btu/hr)t (lb/10i Btu)
146
(80) (0.34)
- 146
(79) (0.34)
326
(86) (0.757)
482
(62) (1.12)
- 666
(62) (1.55)
- 516
(62) (1.20)
26
(180) (0.06)
34
(172) (0.08)
- 17
(179) (0.04)
- 22
(186) (0.05)
- 43
(142) (0.10)
- 77
(142) (0.18)
^d^) "
0.258 11 -
(0.113)
0.263 10 -
(0.115) -
0.691 85 -
(0.302)
0.712 16 -
(0.311)
0.932 17 -
(0.407) -
0.957 18 -
(0.331)
0.0776 0 -
(0.0339) -
0.0902 0 -
(0.0394) -
0.0345 0 -
(0.0151)
0.0496 0 -
(0.0217) -
0.0904 -
(0.0395) -
0.168 0 -
(0.0735)
. ,. , Fuel Fuel Fuel heat
standardized w ^ t ^^
opacity^ , „ kj/k£
'" sulfur asa (Etu/.lb)
— — ~ ~~
— — — —
— _ — —
— — — —
— — — —
- — - -
-
-
-
-
-
-
(continued)
-------
TABLE A-3 (continued)
Soiler type fix Exhaust
3o Her -name, and design rate temDerature
test number, capacity* amVttLn " °C
1
UNIT 3
Average
KENDALL
UNIT 1
Test 2
Test 3
lest 1
Test 2
lest 3
UNIT 2
Test 1
Test 2
Test 3
Test 1
Test 2
KLOPMAN
UNIT 1
Test 1
Test 2
UNIT '2
Test 1
(11-77)
(5-74)
(5-74)
(7-76)
(7-76)
(7-76)
(5-74)
(5-74)
(5-74)
(7-76) - -
(7-76)
(5-76)
(5-76)
(5-76)
Load
•during teat
. M»e
(170)
(48)
(53)
(70)
(69)
(75)
(74)
(56)
(76)
(70)
(62)
(177)
(176)
.(184)
Particulste loading at Stack
dry standard conditions ^^1^ dimeter '
ng/J
(lb/10e Btu)
69
(0.16)
133
(0.31)
133
(0.31)
280
(0.65)
284
(0.66)
297
(0.69)
120
(0.28)
159
(0.37)
116
(0.27)
275
(0.64)
284
(0.66)
116
(0.27)
125
(0.29)
133
(0.31)
(gr/dsft3)
0.131 0
(0.0574)
0.239 64 -
(0.1045) -
0.248 55 -
(0.1084)
0.536 40 -
(0.2340) -
0.513 32
(0.224)
0.513 32 -
(0.224)
0.275 39
(0.1203)
0.286 31
(0.1248) -
0.288 25
(0.1258)
0.476 38 -
(0.208)
0.428 37 -
(0.187)
0.348 32 -
(0.1520)
0 . 327 30 -
(0.143)
0 . 350 18 -
(0.153)
Fuel Fuel Fuel heat
Standardized TOl^E weight content
opacity0 j j fcj/*kg
sulfur ash (Stu/lb)
-
-
-
=
=
'
-.
-
-
-
-
-
-
-
(continued)
-------
TABLE A-3 (continued)
N3
Boiler type FUjw Exhaust Load
Boiler name, and design rate temperature during test
test nufflber, capacity anVniirt °C ^K
UNIT 2
Test 2
Test 3
MASETTA
Test 1
Test 2
Test 2
REEVES
UNIT 1
Test 1
Test 3
Test 1
Test 2
Test 3
UNIT 2
Test 1
Test 2
Test 3
Test 1
Test 2
Test 3
(5-76)
(5-76)
MILLS
(6-74)
(6-74)
(6-74)
BROS.
(9-75)
(9-75)
(9-77)
(9-77)
(9-77)
(1975)
(1975)
(1975)
(1977)
(1977)
(1977)
_ -
(181)
_ _
(171)
_ — —
(8.4)
(8.2)
_ _ —
(8.3)
_ _ —
(44)
_ — —
(40)
_ — —
(35)
_ — —
(32)
_ _ _
(29)
_ — —
(70)
_ _ —
(57)
— — —
(51)
— — —
(42)
_ — —
(38)
_ _ —
(37)
Particulate
dry standard
Eg/J
(lfa/106 Btu)
129
(0.30)
133
(0.31)
1449
(3.37)
1462
(3.40)
972
(2.26)
194
(0.45)
236
(0.55)
155
(0.36)
181
(0.42)
224
(0.52)
168
(0.39)
116
(0.27)
138
(0.32)
189
(0.44)
138
(0.32)
120
(0.28)
loading at Stack
conditions ^^^ dlameter :
,7. a
g/dsm / p t\
(gr/dsft3)
0.327 24
(0.143)
0.318 15
(0.139) -
0.780 62 -
(0.3407) -
0.786 47
(0.3433)
0.550 69 -
(0.2401) -
0.169 20
(0.074) -
0.194 20
(0.087)
0.116
(0.051) -
0.122 10 -
(0.053)
0 . 119 10 -
(0.052)
0.204 27
(0.089) -
0.130 11 -
(0.057) -
0.146 14 -
(0.064) -
0.167 12 -
(0.073)
0.122 7 -
(0.053)
0.101 8 -
(0.044)
, Fuel fuel fuel heat
Standardized f t ^tent
opacity0 ^ 7 kJ'Tca
'• sulfur ash (Btu/lb)
— — —
- _ - -
— — — —
-
- - - -
- _ — -
— — — —
_ _ _ -
- — — ~
- - - -
- — — ~
- - -
— — — —
— — — —
- - -
- _ _ -
(continued)
-------
TABLE A-3 (continued)
Seller type „ Exhaust
Boiler name, and design ra^ temperatur
test number, capacity* mVmin °C
and date !Ke f fm) (oy)
(10" Btu/ar)
RIEGEL
DSIT 7
Test 1 (9-77) - ' -
SONOCO
DSIT 3
Test 4 (1976)
J.P. STEVENS
CLEMSON 5
Test 1 (1975)
Test 3 (1975)
UNIROYAL
Test 2 (8-75)
Test 1 (8-75)
Subscripts: E - electrical; T - thermal.
bStandardlzed to 4.0 a (~ 13.0 ft) diameter stack.
Participate loading at Stack
dry standard conditions -„.,._ jj-.-cfeT- '
e duriast test Opacity diameter
(105 Btu/hr)T flb^gi Bcu)
39
(133) (O.Q9)
- 13
(135) (0.03)
236
(113) (0.55)
150
(142) (0.35)
181
(14) (0.42)
236
(16) (0.55)
. ; I m
g/am- _ (ft)
(gr/dsft3)
0.069 16
(0.0302) -
0.0252 0
(0.011) -
0.599 25 -
(0.262)
0.485 23 -
(0.212)
0.133 24
(0.058) -
0.222 17 -
(0.097) -
Fuel Fuel Fuel heat
Standardized veig^ waight content
opacity0 % % kj/1[g
" sulfur ash (Btu/lb)
~
~
.
~
-
-
-------
TABLE A-4. CONCURRENT MASS EMISSIONS AND IN-STACK TRANSMISSQMETER MEASUREMENTS FOR SEVERAL
COAL-FIRED BOILERS, DIFFERENT FIRING METHODS, AND EXPERIMENTAL VARIATIONS IN
ESP OPERATION. STATE OF GEORGIA, GEORGIA POWER
Bci
A8KWR
lesc
lest
Test
Test
Test
Test
Test
Test
Test
Test
lest
Soiier cv^e
• C ±:~°M
ler naae, and design
c number, capacity3 _ ^ ~.
nd daca - ^X . ""(act-in)
v. 10° Btu/r'.r.'T
IGHT 1-4
1 (6-78 A . 22,4^0
\ (792,462)
2 (6-78)
3 (6-78)
4 (6-73)
5 (6-78)
22,200
(784,064)
19,200
(678,066)
22,100
(730,034)
19,740
_ . . (697.173)
\ Pulv. coal;
6 (6-78) >tang. fired, 19,460
40 MW each (687,314)
7 (6-78)
8 (6-78)
9 (6-78)
10 (6-78)
23,160
(817,916)
22,970
(811,045)
22,970
(811,291)
23,430
(827,470)
11 (6-78) / 23,770
(839,472)
Exhaus t
temperature
(°F)
179
(355)
178
(352)
(351)
178
(353)
168
(334)
170
(338)
178
(352)
179
(355)
184
(363)
181
(358)
182
(360)
Load
during test
(10° Btu.'hr),.
40; 23;- 40;
40 (1787)
40; 23; 40;
40 (1909)
io'(1708)
40; 23; 40;
40 (1711)
30; 29; 30
30 (1379)
30; 29; 30;
30 (1436)
40; 31; 40
40 (1719)
50; 31; 40
40 (1848)
40; 31; 40;
40 (1719)
41; 30; 40
40 (1881)
40; 30; 40;
40 (1862)
Particulate
at stack CO
ng/J
(Ib 10" Btu)
113
(0.262)
109
(0.254)
139
(0.324)
152
(0.354)
83
(0.192)
79
(0.184)
24
(0.056)
26
(0.060)
25
(0.059)
415
(0.965)
269
(0.625)
loading
nd it ions
5 • ani •
(gr/acf)
0.158
(0.0689)
0.165
(0.0722)
0.244
(0.106)
0.207
(0.0905)
0.101
(0.0442)
0.102
(0.0447)
0.0313
(0.0137)
0.0365
(0.0159)
0.0332
(0.0145)
0.585
(0.256)
0.369
(0.161)
Opacity
19
1 7
36
32
34
20
14
15
15
63
24
Stack
diameter
(ft)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
6.10
(20.0)
Standardized
opacity6
13
15
18
22
24
14
9
10
10
48
14
sulfur
1.79
1.38
1.16
1.27
1.54
1.68
2.07
1.82
1.77
1.24
1.29
Fuel
weight
asn
16.1
13.9
14.0
13.6
14.3
13.9
14.9
14.2
12.5
13.0
13.9
Fuel -.eat
content
kj ' k^
(Stu/Lbi
27,012
(11,613)
27,921
(12,004)
28,017
(12,045)
28,200
(12,124)
27,856
(11,976)
27,224
(11,704)
27,752
(11,931)
27,984
(12,031)
28,580
(12.287)
28,352
(12,189)
28,568
(12,282)
BRANCH 1&2
Test
Test
Test
Test
Test
Test
1 (2-79)
2 (2-79)
3 (2-79)
4 (2-79)
5 (2-79)
6 (2-79)
42,840
(1,512,848)
42,550
(1,502,794)
Pulv. coal; 36,450
opp. fired, (1,287,174)
250, 319 MW 36>.80
(1,291,966)
38,180)
(1,348,188)
38,130
(1,346,521)
114
(238)
116
(240)
116
(240)
110
(230)
111
(231)
110
(230)
260; 270
(4450)
260; 270
(4380)
150; 270
(3460)
130; 287
(3300)
155; 287
(3490)
158; 287
(3430)
12
(0.0289)
14
(0.0330)
164
(0.3809)
84
(0.195)
142
(0.3307)
125
(0.2905)
0.023
(0.0099)
0.0256
(0.0112)
0.273
(0.1194)
0.133
(0.0580)
0.228
(0.0995)
0.197
(0.0861)
10
11
36
30
35
33
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6
7
24
20
24
22
0.96
0.95
1.09
1.37
1.31
0.91
10.3
9.6
9.8
12.2
11.3
8.6
28,590
(12,290)
28,966)
(12,453)
28,938
(12,441)
27,247
(11,714)
27,833
(11,966)
28,791
(12,378)
(continued)
-------
TABLE A-4 (continued)
Ln
feiler type
Boiler name, arid design
test number, capacitya aQ]
and date >&*e (
(10- Btu/hr)^
3RASCH 142
Test 7 (2-79)
Test 8 (2-79)
Test 9 (2-79)
Test 10 (2-79)
Test 11 (2-79)
Flow
acft)
41,400
(1,462,060)
41,390
i (1,461,599)
Pulv. coal;
opn. fired, 44,150
250. 319 MW (1,559,096)
44,620
(1,575,604)
43,970
(1,552,833)
BRANCH 344
Test 1 (5-78) \
(2
Test 2 (5-78)
Test 3 (5-78)
Test 4 (5-78)
lest 6 (5-78)
(2
(2
(1
(2
\ rulv. coal;
Test 7 (5-78) } opp. fired,
/ 481, 490 MW (2
Test 8 (5-78)
Test 9 (5-78)
Test 10 (5-78)
Test 11 (5-78)
(2
(1
(1
(1
Test 12 (5-78) /
(1
67,190
,372,700)
67,820
,394,900)
61,770
,181,400)
48,840
,724,800)
74,770
,640,500)
75,670
,672,400)
75,390
,662,300)
56,400
,991,600)
55,280
,952,200)
44,700
,578,700)
45,380
,637,743)
Fjcfaaust
°C
114
(238)
na
(245)
119
(246)
127
(261)
131
(267)
127
(261)
127
(260)
122
(251)
113
(235)
123
(253)
127
(260)
127
(261)
119
(246)
121
(250)
116
(240)
116
(241)
Load
(106 Ku/hr)-
122; 287
(3720)
220; 275
(3760)
260; 287
(4080)
260; 287
(4040)
260; 287
(3970)
437; 382
(7160)
435; 382
(7230)
395; 357
(6730)
320; 180
(4900)
440; 430
(7300)
440; 430
(7170)
440; 430
(7290)
430; 203
(6290)
430; 203
(6190)
249; 225
(4640)
249; 225 -
(4830)
?articulate loading
at stack conditions
tig/ J
(lb/10= Btu)
49
(0.1142)
75
(0.1747)
75
(0.1738)
114
(0.2649)
134
(0.3121)
133
(0.3101)
158
(0.3673)
91
(0.2120)
34
(0.0795)
282
(0.6548)
262
(0.6094)
335
(0.7789)
133
(0.3092)
110
(0.2547)
38
(0.0891)
64
(0.1488)
g/am-"
(gr/acf)
;>.0773
(0.0338)
0.120
(0.0524)
0.121
(0.0529)
0.181
(0.0790)
0.213
(0.929)
0.250
(0.1091)
0.296
(0.1294)
0.175
(0.0763)
0.0602
(0.0263)
0.483
(0.2111)
0.437
(0.1909)
0.569
(0.2488)
0.261
(0.1140)
0.216
(0.0942)
0.0698
(0.0305)
0.117
(0.0512)
Dpacity
20
19
25
44
45
44
47
39
23
59
56
64
35
32
30
40
dieter S7t^r -& «SL
m » X /n
(ft) " sulfur ash
5.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
13
12
16
30
31
23
25
20
11
33
31
37
18
16
15
21
1.01 9.9
2.06 10.2
1.19 10.6
1.21 11.7
1.40 10.4
-1.5 -14
-1.5 -14
-1.5 -14
-1.5 -14
-1.5 -14
-1.5 -14
-1.5 -14
-1.5 -14
-1.5 -14
-1.5 -14
-1.5 -14
Fuel heat
content
kJ/kg
i.Stu/lb)
23,798
(12,381)
28,368
(12,411)
28,619
(12,304)
27,928
(12,007)
28,470
(12,240)
-29,800
(-12,800)
-29,800
(-12,800)
-29,800
(-12,800)
-29,800
(-12,800)
-29,800
(-12,800)
-29,800
(~12,800)
-29,800
(-12,800)
-29,800
(-12,800)
-29,800
(-12,800)
-29,800
(-12,800)
-29,800
(-12,800)
(continued)
-------
TABLE A-4 (continued)
o\
Sciler type
Boiler name, and design
test number, capacity5
and date MWe
aaANCa -
Zest 1'
Test 2'
Test 3'
Test 4'
Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
Test 8
Test 9
Test 10
Test 11
Test 12
Test 13
ii
(5-79! \
\ (2'
(5-79)
(5-79)
(5-79)
(5-79)
(5-79)
(5-79)
(5-79)
(2,
(-,
(1,
(1,
(1,
(1,
\ Pulv. coal; (2>
(5-79) )opp. fired,
/ 481, 490 MW (2,
(5-79)c
(5-79)c
(5-79)c
(5-79)°
(5-79)c
(5-79)c
(5-79)c
(2,
(2,
(2,
(2,
(2,
(2,
(2,
(5-79)c /
(2,
Flow
73,000
755,849)
78,330
766 ,041)
73,880
785,461)
50,860
796,244)
54,150
912,284)
54,380
920,284)
48,800
723,327)
60,500
136,445)
65,140
300,403)
80,330
836,856)
81,280
870,356)
81,870
891,103)
76,260
693,170)
74,800
641,680)
61,100
157,698)
62,140
194,389)
67,560
385,980)
Exhaust Load
temperature during cesc
°C MW
(°F) (10s Btu/hr)*
122
(251)
124
(256)
126
(258)
113
(235)
116
(240)
116
(239)
111
(231)
120
(248)
124
(255)
121
(250)
127
(261)
131
(268)
127
(261)
127
• (260)
110
(230)
114
(237)
116
(240)
460; 400
(7650)
460; 400
(7800)
460; 40C
(7850)
390; 185
(5200)
300; 165
(4700)
355; 165
(4780)
230; 165
(4430)
430; 220
(5580)
430; 220
(6210)
445; 442
(7750)
445; 442
(7730)
445; 438
(7430)
435; 382
(6850)
430; 370
(6680)
370; 282
(5750)
380; 285
(5820)
447; 290
(6490)
Parciculate loading
at stack conditions
(lb,'10° Btu)
795
(1.8*92)
651
(1.514)
551
a. 281)
44
(0.1014)
71
(0.1661)
72
(0.1686)
31
(0.0716)
96
(0.2242)
118
(0.2741)
217
(0.5055)
185
(0.4304)
221
(0.5128)
127
(0.2957)
112
(0.2605)
30
(0.0687)
47
(0.1099)
80
(0.1859)
(gr/acfi
1.37
(0.599)
1.14
(0.498)
0.963
(0.421)
0.0783
(0.0342)
0.109
(0.0475)
0.112
(0.0438)
0.0490
(0.0214)
0.156
(0.0682)
0.197
(0.0862)
0.368
(0.1608)
0.309
(0.1349)
0.351
(0.1533)
0.200
(0.0876)
0.176
(0.0767)
0.0487
(0.0213)
0.0778
(1.0340)
0.135
(0.0589)
Opacity
86
81
80
16
32
27
18
36
38
63
56
55
43
39
19
21
28
Stac* f. j ,- , Fuel Fuel Fuel nea
Standardized , L
diameter . h weight weight content
opacity0 , . if-.'v,
31 j, /a -a it™' Sg
(ft) '" sulEur ash fBtu'lb)
8.8-;
(29.0)
8.84
(29.0)
8.84
(29.0)
S.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
59
53
52
13
16
13
9
18
19
36
31
30
22
20
9
10
14
- -
~
- -
~
- - -
~
_
~
_
~
-
~
_ _ -
~
-
~
- - -
_
—
- -
- -
~
- -
—
- -
_
- -
~
- - -
(continued)
-------
TABLE A-4 (continued)
3oiler type
Boiler name, and design *
test auab-er, - capacitv3 ^a €
and date ~ MWe " aa - / tain
(10= BtS/ar)T Ucfm)
Exhaust Load
temperature during test
°C MW
(°F) (Id5 Btu/hrj-r
Partieulate loading
at stack conditions
(lb/106 Btu)
g/am3
(gr/acf)
Opacity
Stack Fuel Fuel Fuel heat
diameter ^"^b "eight weight content
m ^ * % IcJ/kg
(ft) '* sulfur ash (Btu/lb)
BSASCH 344
Test
Test
Test
Test
Test
Test
lest
Test
Test
Test
Test
Test
Test
Test
Test
1*
15
16
17
18
19
20
21
22
23
24
25
26
27
28
(5-79)11 71
(5-79)d
(5-79)d
(5-79)d
(5-79)d
(5-79)d
(5-79)d
(2,520
85
(3,019
91
(3,222
63
. (2,252
, \ i'ulv. coal;
(5-79)a )opp. fired, 92
481; 490 MW (3,281
(5-79)e
(5-79)e
(5-79)e
(5-79)e
(5-79)e
(5-79)e
98
(3,484
101
(3,566
102
(3,576
89
(3,171
90
(3,201
103
(3,644
(5-79)e/ 99
(3,508
,370
,133)
_
-
,490
,043)
,260
,713)
,800
,942)
,940
,984)
,670
,508)
,000
,694)
,300
,865)
,800
,223)
,650
,297)
,200
,641)
,350
,519)
119
(247)
-
_
_
—
122
(251)
122
(251)
104
(220)
107
(225)
120
(248)
118
(245)
121
(250)
110
(230)
112
(233)
116
(240)
117
(242)
405; 290'
(6770)
432; 435
-
432; 435
—
432; 435
430; 385
(7610)
430; 385
(8310)
400; 380
(8650)
400; 390
(8920)
431; 437
(10,820)
432; 442
(10,760)
432; 442
(10,880)
390; -
(10,200)
400; -
(10,300)
432; -
(10,780)
431; 442
(10,500)
72
(0.1664)
125
(0.2902)
95
(0.2201)
97 '
(0.2248)
76
(0.1758)
84
(0.1947)
45
(0.1051)
33
(0.0771)
53
(0.1225)
61
(0.1418)
71
(0.1645)
47
(0.1082)
31
(0.0732)
111
(0.2592)
112
(0.2613)
0.119
(0.0520)
_
-
_
—
_
0.118
(0.0517)
0.134
(0.0584)
0.0773
(0.0338)
0.0558
(0.0244)
0.101
(0.0443)
0.114
(0.0498)
0.133
(0.0583)
0.0927
(0.0405)
0.0627
(0.0274)
0.204
(0.0892)
0.208
(0.0911)
30
40
36
40
27
27
20
20
30
34
33
18
16
44
45
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
8.84
(29.0)
7 c
-L J
—
20 - - -
—
18 - -
— — —
20 - -
-
13 - -
—
13 - ' -
—
10 -
—
10 - -
~
15 - -
—
17 - - -
—
17 -
-
9 -
-
0
-
23 - - -
—
24 - -
—
(continued)
-------
TABLE A-4 (continued)
00
Boiler
SAMMOXD
Test 2
T,3r -,
Test ~
Test 5
Test 6
Test 7
Test 8
Test 1
Test 2
Test 3
Test 1
Test 2
Test 3
HAMMOND
Test 1
Test 2
Test 3
Soiler type ri^r-
name, and design "
(10° Bcu/hrl-r .a_.ni.
(3-73) ^
\
(3-73)
(3-78)
(3-78)
(3-78)
(3-78)
„
•
_
-
-
_
-
_
_
3 pulv.
(3-78) \ coal;
\ front —
(3-78)
(6-78)
(6-78)
(6-78)
(7-78)
(7-78)
/ fired,
100 MW
each
33,780
(1,193,046)
33,940
(1,198,709)
34,950
(1,234,273)
34,140
(1,205,755)
34,020
(1,201,394)
(7-78) ' 34,540
(1,219,640)
4
(10-78) \ 55,310
1 Pulv. (1,953,333)
(10-78) > coal; opp. 56,270
I fired, 500 (1,987,043)
1 MW
(10-78) / 57,600
(2,034,007)
Exhaus t
temDerat-
i, OF)
-
_
-
_
-
_
-
_
-
_
_
-
-
141
(285)
142
(287)
143
(289)
_
-
_
—
_
-
158
(316)
160
(320)
159
(318)
Load
-e during test
95; 50; 50
95; 50; 50
-
95; 51; 50
-
95; 50; 50
-
106; 70; 90
-
106; 72; 90
„
106; 102; 101
106; 103; 100
300 total
(3140)
301 total
(3130)
301 total
(3190)
301 total
(3180)
301 total
(3140)
304 total
(3170)
467
(4998)
467
(5120)
469
(5270)
Particulate loading
at stack conditions
(lb/10* Btu)
46
' 0 . 1068 )
38
(0.0893)
239
(0.5560)
162
(0.3770)
85
(0.1987)
90
(0.2092)
146
(0.3400)
133
(0.3098)
166
(0.385)
163
(0.378)
164
(0.382)
61
(0.141)
69
(0.161)
77
(0.179)
76
(0.177)
77
(0.178)
97
(0.226)
igr/act)
0.068~
(n iQQ'i
0.0583
(0.0257)
0.382
(0.1671)
0.257
(0.1123)
0 . 138
(0.0605)
0.146
(0.0639)
0.233
(0.1018)
0.212
(0.0928)
0.270
(0.1180)
0.263
(0.1150)
0.263
(0.1151)
0.0993
(0.0434)
0.112
(0.0491)
0.124
(0.0543)
0.121
(0.053)
0.122
(0.0535)
0.156
(0.0682)
Opacity
^
17
54
48
27
29
41
39
47
45
46
21
20
25
28
29
30
Stack _ .... Fuel
, . Standardized . .
diameter ._ -h weisnt
opacity^ ^
l.ft) ° sulfur
6. 55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.55
(21.5)
6.71
' (22.0)
6.71
(22.0)
6.71
(22.0)
11
11
38
33
17
19
28
27
32
31
31
13
13
16
18
18
19
1.3-
1.5
1 . 3-
1.5
1.3-
1.5
1.3-
1.5
1.3-
1.5
1.3-
1.5
1.3-
1.5
1.3-
1.5
—
-
-
1.09
1.22
1.12
-
-
-
Fuel Fuel heat
weight content
» kJ.-'kg
ash (Btu/lb)
11 -15 2b,700
(11,500)
11 -15 26,700
(11,500)
11 -15 26,700
(11,500)
11 -15 26,700
(11,500)
11 -15 26,700
(11,500)
11 -15 26,700
(11,500)
11 -15 26,700
(11,500)
11 -15 26,700
(11,500)
— —
~
-
—
_
—
9.5 29,159
(12,536)
9.3 29,342
(12,615)
9.3 29,068
(12,497)
_
—
- -
-
~
(continued)
-------
TABLE A-4 (continued)
Boiler "type . _,, ^ .
Boiler name, and design ^ cemperaLre
test number, capacity3 M3/mln oc
and date MW (0 }
(10- 3tu/nr)T
Test 4
Test 5
Test 6
Test 7
lest 8
Test 9
4
(10-78) 59.850
(10-78)
(10-78)
(10-73)
(10-78)
(10-78)
(2,113,748)
58,630
(2,070,332)
Pulv. coal; 30,720
opp. fired, (1,'085,014)
500 ^ 31 400
(1,144,'389)
45,370
(1,602,298)
46.360
(1,637«,345)
157
(314)
156
(312)
128
(262)
131
(267)
147
(296)
148
(298)
Load
during test
MSie
(10° Btu/hr)T
468
(5650)
470
(5500)
217
(2960)
219
(3050)
349
(4290)
350
(4380)
Particulate loading
at stack conditions opacitv
ng/J
(lb/10s Btu)
122
(0.284)
133
(0.310)
14
(0.033)
9
(0.021)
218
(0.508)
199
(0.463)
g/atn'
(gr/acf)
0.203
(0.0886)
0.220
(0.096)
0.024
(0.0105)
0.0150
(0.0065)
0.363
(0.159)
0.331
(0.145)
f
36
36
12
12
46
44
Stack „ . ,, . Fuel Fuel Fuel heat
diameter SCf^^b «ight «*#« CCT^enC
ffl ^ A-
-------
TABLE A-4 (continued)
Soiler
teat c
Seller type s-1 ^w
aasie, and design ra'e
uaiber. capacity3 aa'-'mia
iate <•-,- i^f •- \ facfm)
MITCHELL i,-,-)
Test 3 (6-79) \ 22,950
\ (810,470)
Test 4
Test 5
Test 6
Test 7
Test 8
Test 9
Test 10
o Iest n
(6-79)
(.6-79)
(6-79)
(6-79)
(6-79)
(6-79)
(6-79)
(6-79)
23,030
(815,038)
22,870
(807,564)
3 Dulv. coal; 22,810
Unit 142 front (805,696)
fired; Unit 3 7, 46Q
opp fired, (7931032)
22.5; 22. 3;
125 MS,' 23,085
(815,245)
22,640
(799,468)
' 22,670
(800,506)
22,350
(789,295)
Exhaust Load
temperature during test
°C _ ffl!e
I.°F) iLO5 Btu/hr)T
153
(307)
149
(300)
150
(302)
152
(305)
152
(306)
144
(292)
146
(295)
147
(297)
147
(296)
20; 22; 163
(2040 total)
21; 21; 164
(1960 total)
21; 21; 164
(2020 total)
21; 21; 165
(1750 total)
21; 21; 165
(2040 total)
22; 22; 167
(1890 total)
22; 22; 165
(1940 total)
22; 22; 165
(1920 total)
22; 22; 164
(1900 total)
Particulate loading
at stack conditions
ag/J
(lb/10= 3tu)
107
(0.248)
153
(0.356)
169
(0.393)
192
(0.447)
231
(0.538)
350
(0.813)
344
(0.799)
334
(0.77?;
469
(1.09)
(gr.'acf)
0.166
(0.0727)
0.229
(0.100)
0.229
(0.100)
0.260
(0.113)
0.369
(0.161)
0.505
(0.221)
0.517
(0.226)
0.496
(0.217)
0.702
(0.307)
Opacity
20
25
23
31
33
42
44
47
61
.Scac£ Standardize
diameter Icvb
31 X
(ft)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0)
6.40
(21.0) '
6.40
(21.0)
6.40
(21.0)
13
16
15
21
22
29
30
33
44
Fuel Feui Fuel heat
weight weight content
sulfur ash i.Bcu/lb)
1.09 9.7 29
(12
1.21 11.1 28
(12
1.25 10.9 29
(12
1.31 14.0 28
(12
1.28 14.1 28
(12
1.36 14.* 27
(12
1.32 12.5 29
(12
,908
,358)
,980
,459)
,363
,624)
,161
,107)
,330
,180)
,968
,024)
,030
,480)
1.34 13.8 28,356
(12,191)
1.20 10.5 29
(12
.584
,719)
McDONOUGH 16,2
Test 1
Test 2
lest 3
Test 4
Test 5
Test 6
Test 7
(6-78) \ 59.710
(6-78)
(6-78)
(6-78)
(6-78)
(6-78)
(6-78)
(2,109,000)
52,990
(1,871,000)
52,820
2 pulv. coal; (1,865,000)
tang, fired;
245 W each (1)82o;ooo)
51,180
(1,807,000)
50,9^0
(1,799,000)
52,750
(1,863,000)
149
(301)
152
(305)
152
(305)
149
(300)
153
(308)
155
(311)
159
(318)
490
(5195 total)
490
(4785 total)
490
(4815 total)
' 490
(4635 total)
490
(4730)
490
(4810)
490
(4940)
22
(0.050)
11
(0.025)
23
(0.054)
52
(0.122)
94
(0.218)
90
(0.210)
64
(0.148)
0.0329
(0.0144)
0.0171
(0.0075)
0.0372
(0.0163)
0.0829
(0.0362)
0.192
(0.0666)
0.189
(0.0655)
0.132
(0.0458)
7
6
6
27
36
41
33
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
4
3
3
15
14
23
18
- -
- -
— —
- -
-
—
—
—
-
—
-
-
(continued)
-------
TABLE A-4 (continued)
Boiler
test a
and
3oiler type
name, and design
oniber, capacity
date MWe
Flow
rate
am ' / sin
(acf:a)
Exhaust Load
temperature during test
°C _ >8
(4-79) \ tang, fired;
/ 245 MW each (i,
(4-79)
(4-79)
(4-79)
(4-79)
(4-79)
(4-79)
(1,
(1,
(1,
(1,
(1,
(1,
,. .-,
(1,
39,110
381,000)
39,240
386,000)
36,910
302,000)
36,870
302,000)
50,160
771,000)
49,240
739,000)
48,440
711,000)
41,640
470,000)
41,120
452,000)
41,350
460,000)
42,140
488,000)
48,580
716,000)
48,930
728,000)
48,020
696,000)
47,400
674,000)
1*7
(-96)
147
(297)
148
(298)
148
(298)
149
(300)
149
(301)
149
(301)
136
(277)
138
(280)
140
(284)
139
(282)
141
(286)
141
(285)
138
(280)
136
(277)
350
(3490)
350
(1490)
300
(3100)
300
(3100)
245; 245
(4990)
245; 243
(4680)
240; 244
(4720)
175; 175
(3570)
175; 175
(2830)
175; 175
(2960)
175; 175
(2740)
245; 245
(3600)
245; 245
(4430
245; 245
(4260)
245; 245
(4150)
37
(0.076)
20
(0.046)
70
(0.196)
34
(0.196)
24
(0.055)
30
(0.069)
25
(0.059)
17
(0.040)
16
(0.037)
71
(0.164)
103
(0.239)
131
(0.304)
111
(0.259)
176
(0.410)
148
(0.344)
0.0645
(0.0224)
0.390
(0.0135)
0.132
(0.0544)
0.157
(0.0544)
0.0522
(0.0181)
0.0623
(0.0216)
0.0548
(0.0190)
0.0326
(0.0113)
0.0245
(0.0085)
0.112
(0.0388)
0.148-
(0.0514)
0.215
(0.0744)
0.223
(0.0775)
0.275
(0.120)
0.227
(0.0994)
6
5
26
23
5
5
5
4
4
29
31
43
46
44
46
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)
7.92
(26.0)-
7.92
(26.0)
3
3
14
15
3
3
3
2
2
16
17
25
27
25
27
-
~
- - -
- - -
~
-
1.91 10.2 27,298
(11,738)
1.97 10.0 27,207
(11,697)
1.87 10.4 27,026
(11,619)
1.78 10.2 27,472
(11,811)
1.82 10.3 27,514
(11,829)
1.84 11.2 27,235
(11,709)
1.99 11.3 27,100
(11,651)
1.80 10.2 27,654
(11,889)
1.74 10.7 27,724
(11,919)
1.76 10.4 27,828
(11,964)
1.85 10.3 27,677
(11,899)
(continued)
-------
TABLE A-4 (continued)
Boiler
test n
and
* ASS LEY
Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
Test 8
WAN'SLEY
Test 1
Test 2
Test 3
lest 4
Test 5
Test 6
Test 7
Boiler type
name , and design
umber, canacitv1
date " S.e a
U0= Btu/hr)T
!
(3-78) \
(8-78)
(.3-78)
(3-78)
(3
(3
(3
p;!1 v- ,-ral :
tans, fired; (3
(3-78)
(8-78)
(8-78)
(8-78)
833 >W
(2
(2
(2
(2
2
(8-78)
(8-78)
(8-78)
(8-78)
(8-78)
(8-78)
(8-78)
(2
(2
Pulv. coal; (2
tang, fired;
860 W (3
(1
(1
(1
Flow Exhaus t
rate tetnperature
,acfsi) (''?')
89,680
.167,000)
87,820
,101,000)
37,190
,079,000)
86,910
,069,000)
58,820
,113,000)
59,860
,114,000)
58,440
,064,000)
58,670
,072,000)
82,270
,905,000)
82,470
,913,000)
82,780
,923,000)
85,380
,105,000)
52,160
,842,000)
51,530
,820,000)
50,540
,785,000)
157
(315)
157
(315)
159
(319)
159
(319)
148
(299)
149
(300)
149
(300)
149
(300)
150
(302)
151
(304)
151
(303)
151
(303)
132
(269)
129
(264)
128
(263)
Load
during test
(10* Stu/hr)T
380
(8550)
880
(8170)
880
(8130)
830
. (8220)
660
(5550)
600
(5570)
600
(5570)
600
(5450)
890
(7730)
890
(7970)
890
(8090)
(7980)
(4760)
(4980)
600
(5020)
Particulate loading
at stack conditions OpacU.,
n z ' J
(Lb/10e Btu!
92
(0.214)
119
(0.277)
113
(0.262)
111
(0.258)
13
(0.030)
8
(0.019)
28
(0.065)
73
(0.170)
19
(0.045)
28
(0.064)
170
(0.396)
150
(0.348)
89
(0.207)
84
(0.196)
63
(0.147)
(g
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
s/am*
r/acf)
.15-*
.067*)
.195
.0851)
.185
.0807)
.184
.0806)
.0211
.0092)
.0134
.0058)
.047
.020)
.119
.052)
.032
.014)
.047
.020)
.292
.128)
.246
.107)
.143
.062)
.143
.063)
.110
.048)
43
40
52
46
10
10
20
29
10
10
69
66
27
37
24
Stack ,_ ,.-. Fuel Faei ruel.aeat
Standardized . , . ,
diameter . [5 weignt veight concent
(ft) * sulfur ash (Bcu/lb)
~. 62
(25. C)
7. 62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
26 - -
24 - - -
~
32 — — ~~
~
28 -
~
5 — — —
~
5 — — —
~
11 -
~
16 -
5 -
~
5 - - -
~
46 — ~
~
43 -
—
15 - - -
—
22 - - -
—
15 -
(continued)
-------
TABLE A-4 (continued)
u>
Boiler type
Boiler name, and design
test number, capacity5
and date MW"e
(10- Btu/hr)f
Test 3
WANS LEY
Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
Test 8
Test 9
Test 10
Test 11
YATES 1
Test 1
Test 2
Test 3
Test 4
(9-,,
ie>2
(5-79)
(5-79)
(5-79)
(5-79)
(5-79)
(5-79)
(5-79)
(5-79)
(5-79)
(5-79)
(6-79)
Flow
rate
(acfoi}
50,370
797,000)
79,370
(2,803,000)
(2
(2
Pulv. coal; ^
tang, fired;
(2
(2
(3
(2
(2
(2
' (.2
,2,3
(12-77) s
1 (1
(12-77) 1 3 pulv. coal;
\ tang, fired; (]
(12-77) ( 10° «" each
1
1 (1
I
(12-77)-'
(1
79,130
,794,000)
80,270
,835,000)
68,940
.435,000)
69,500
,454,000)
83,000
,931,000)
85,290
,012,000)
84,280
,976,000)
79,720
,815,000)
79,170
,796,000)
81,220
,868,000)
33,910
,197,000)
35,810
,264,000)
35,410
,251,000)
36,030
,272,000)
Sjchaus t
S)
127
(261)
146
(295)
146
(294)
149
(300)
142
(287)
136
(276)
157
(314)
154
(310)
157
(315)
157
(315)
157
(315)
157
(315)
133
(271)
137
(278)
137
(279)
138
(280)
Lead
UO6 Btu/hr)T
600
(5010)
865
869
873
756
-
758'
-
862
869
868
873
-
870
868
-
95; 105; 105
(2680)
95; 105; 105
(2960)
95; 105; 105
(2750)
95; 105; 105
(2950)
Particulate loading
at stack conditions Q
ag/J
(lb/106 Btu)
(0.167)
22
(0.05)
17
(0.04)
17
(0.04)
13
(0.03)
13
(0.03)
219
(0.51)
82
(0.19)
52
(0.12)
64
(0.15)
30
(0.07)
26
(0.06)
76
(0.177)
7
(0.180)
207
(0.481)
159
(0.370)
(gr/acf)
0.124
(0.054)
0.0304
(0.0133)
0.0286
(0.0125)
0.0359
(0.0157)
0.0190
(0.0083)
0.0217
(0.0095)
0.306
(0.1337)
0.116
(0.0508)
0.073
(0.0320)
0.090
(0.0394)
0.041
.,(0.0177)
0.040
(0.0176)
0.106
(0.0462)
0.112
(0.0491)
0.282
(0.123)
0.229
(0.100)
sacitv
32
15
13
11
11
9
53
39
33
28
20
20
15
17
34
30
Stack
(ft)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
Fuel Fuel Fuel heat
tandardtzed ^ h(. coatenl.
opacity^ i J kJ/kg
sulfur ash (Btu/lb)
18
8
7
6
6
5
40
23
19
16
11
11
12
14
28
25
-
1.90 8.9 26,000
(11,180)
2.03 9.0 26,200
(11,265)
2.07 8.8 26,212
(11,269)
2.06 8.9 26,177
(11,254)'
2.14 8.7 26,900
(11,565) •
1.81 9.7 25,575
(10,995)
1.72 9.6 24,401
(10,913)
1.70 9.8 24,614
(11,008)
2.03 9.2 25,238
(11,287)
1.97 8.9 25,372
(11,347)
1.90 8.9 25,213
(11,276)
- - -
~
- - -
- — -
-
(continued)
-------
TABLE A-4 (continued)
3o lie
test
and
YATES
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
,
5
6
7
8
9
10
I
2
3
1
1
3
4
5
6
1
.i~* .' * Flov
r name, ani design
^' ~ r^^--.' asi'/niin
date >&ie , ,- ,
. . - - ., ,, (ac toi>
'. iu- Btu/r.r!T
, ,
(12-77)\ 23,290
\
(12-77)
(12-77)
(12-77)
(12-77)
(12-77)
(3-78)
(822,500)
23,450
(828,000)
23,380
(825,500)
23,540
(831,300)
29,170
(1,030,000)
26,110
(1,028,000)
35,610
(1,258,000)
(3-78) 3 puiv. coal; 35,980
\ tang, fired; (1,271,000)
(3-73) 100 MW each ^^
(5-79)
(5-79)
(5-79)
(5-79)
(5-79)
(5-79)
(1,270,000) '
37,200
(1,314,000)
37,160
(1,312,000)
33,060
(1,168,000)
33,870
(1,196,000)
33,370
(1,178,000)
27,750
(979,900)
(5-79) ' 27,700
(978,100)
Exhaus t
temperature
126
(258)
124
(256)
125
(257)
126
(258)
136
(276)
136
(276)
133
(272)
134
(273)
134
(273)
141
(285)
144
(291)
145
(293)
144 '
(292)
141
(286)
138
(281)
137
(278)
Load
during test
(10° Btu/hr)r
95; 50; 50
(1790)
95; 50; 50
(1900)
95; 50; 50
(1990) -
95; 50; 50
(2000)
50; 90; 90
(2570)
50; 90; 90
(2450)
87; 97; 96
(3260)
88; 96; 94
(3270)
89; 97; 94
(3320)
90; 103; 100
(3190)
90; 103; 101
(3150)
83; 80; 84
(2740)
82; 79; 82
(2720)
59; 60; 65
(2060)
61; 59; 65
(2080)
87; 87; 80
(2800)
Particuiate loading
at stack conditions
ng/J
Ub.'iO5 Btu)
37
(0.086)
23
(0.054)
181
(0.421)
136
(0.316)
45
(0.105)
55
(0.127)
60
(0.140)
75
(0.174)
67
(0.156)
284
(0.66)
202
(0.47)
99
(0.23)
108
(0.25)
116
(0.27)
64
(0.15)
60
(0.14)
(gr/acf)
0.050
(0.022)
0.033
(0.014)
0.270
(0.118)
0.203
(0.089)
0.070
(0.031)
0.081
(0.035)
0.0970
(0.0424)
0.182
(0.0794)
0.109
(0.0477)
0.394
(0.172)
0.280
(0.122)
0.140
(0.061)
0.138
(0.060)
0.156
(0.068)
0.0897
(0.0392)
0.080
(0.0351)
Opacity
3
2
43
33
18
20
17
20
22
53
47
33
34
24
22
37
Stack
diameter
31
(ft)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
^
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
Standardized . .
opacitvb "ej*hC
sulfur
3
2 —
36
27 —
15
16
14 -
16
18
45 1.18
40 1.18
27 1.18
28 1.19
20 1.14
18 ' 1.14
31 1.17
Fuel Fuel heat
weight content
7." kJ.kg
ash (3tu/ib)
_ _
-
— —
-
— —
-
_ _
-
_ _
-
_ __
_
— —
-
- -
—
_ —
-
9.2 29,461
(12,666)
8.6 29,068
(12,497)
8.7 29,552
(12,705)
8.8 29,263
(12,581)
8.6 29,363
(12,624
8.5 29,691
(12,765)
8.6 29,645
(12,745)
(continued)
-------
TABLE A-4 (continued)
Soiler
test a
and
YATE5 1,
Test 3
Test 9
lest 10
Test 1
Test 2
lest 3
Test 4
Test 5
(jl Test 6
Test 7
Test 8
Test 9
Test W
Test 11
Boiler type
name, and aesign
jmber, capacity ^
,_3
15-79) >
(5-79)
(5-79)
(6-79)
/
(1.
(1,
3 oulv. coal; d'
tang, fired;
100 MW each M
(6-79) 1
1 (1'
(6-79) I
1 U,
I
Flow Exhaust Load
rate temperature during test
nVmir. °C . MWe
(acfm) ("F) (10° Btu/mr)T
37,960
341,000)
37,740
333,000)
38,470
358,000)
32,810
159,000)
33,2*0
174,000)
33,910
198.000)
(6-79 )/ 33,540
(1.184.000)
(6-79) >
(6-79)
(6-79)
(6-79)
(6-79)
(6-79)
(6-79) 1
33,900
(1,197,000)
34,100
(1.204.000)
2 pulv. coal; (1
• tang, fired;
100 MW each
(1
(1
(1
33,760
192,000)
33,890
,197,000)
34,110
,205,000)
33,330
,212,000)
34,430
,216,000)
145
(293)
(292)
148
(298)
141
(286)
144
(292)
144
(291)
142
(288)
136
(276)
138
(208)
141
(286)
142
(288)
138
(281)
141
(285)
138
(280)
110; 105; 95
(3200)
99: 105; 95
(3200)
95; 105; 96
(3180)
91; 103; 97
(2830)
91; 103; 97
(3200)
90; 104; 96
(2850)
90; 104; 96
(2980)
(2970)
(2770)
(3000)
(2760)
(3020)
(2960)
(2990)
Particulate loading
at =taci<. condition^ ,-,„„,,- r ^
ng/ J
(lb.' 10'' Btu)
322
(0.75)
301
(0.70)
314
(0.73)
50
(0.117)
80
(0.187)
57
(0.133)
94
(0.218)
43
(0.101)
47
(0.110)
75
(0.174)
74
(0.171)
117
(0.271)
132
(0.306)
366
(0.852)
4/arn3
Ur/acf)
0.42;
(0.187)
0.403
(0.176)
0.415
(0.181)
0.076
(0.0332)
0.136
(0.059)
0.085
(0.037)
0.146.
(0.064)
0.067
(0.029)
0.067
(0.029)
0.117
(0.051)
0.105
(0.046)
0.181
(0.079)
0.199
(0.087)
0.559
(0.244)
:>-*
54
56
18
20
20
24
16
16
27
23
34
54
34
Sfck s
31
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
5.00
(16.4)
YATES 445
Test 1
Test 2
(3-78)
(3-78)
2 Pulv. coal;
125 MW each
(915' 500)
25,780
(910,400)
140
(284)
141
(285)
125; 127
(2260
125; 126
(2350)
108
(0.250)
100
(0.233)
0.165
(0.072)
0.160
(0.070)
41
40
4.42
(14.5)
4.42
(14.5)
^aadardi.ec
%
46
48
15
16
16
20
13
13
22
19
28
46
28
38
37
Fuel Feul Fuel heat
% % kJ/tcg
sulfur ash (3tu/lb)
1 61 8.7 ?9,587
(12,720)
1 14 8.6 29,575
(12,715)
1.16 8.7 29,349
(12,518)
2.31 9.5 26,870
(11,552)
2.43 9.0 26,882
(11,557)
(11,493)
7.33 9.0 26,656
(11,460)
t 46 9.0 26,821
(11,531)
2.35 9.2 26,700
(11,479)
2.55 9.0 26,756
(11,503)
2.33 8.9 26,972
(11,596)
2.35 9.6 26,996
(11,606)
2 27 9.2 27,005
(11,610)
2 31 9.0 26,986
(11,602)
-
(continued)
-------
TABLE A-4 (continued)
Suiter type C1 ^.
Boiler naioe, and desi^n
cest rr-ciber, caracit;.-1 an-./^Tn
and date MWe ^ .^-*
llO- 3tu,'hr)T
YATES
lesc
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
4.*5
3 i.3-78) , -5,290
4 (3-78)
5 (3-78)
6 O-73)
7 (3-78)
8 (3-78)
9 (3-78)
(393,200)
25,140
(886,000)
19,080
(673,700)
19,120
(675,300)
17,730
(626,000)
13,710
(660,600)
21,160
(747,200)
10 (3-78) 2 pulv. coal;- 20,800
\ tang, fired; (734,600)
1 (4-79) 125 "" each 29,560
2 (4-79)
3 (4-79)
4 (4-79)
5 (4-79)
6 (4-79)
7 (4-79)
(1,044,000)
29,200
(1,031,000)
29,570
(1,044,000)
28,940
(1,022,000)
28,750
(1,015,000)
29,330
(1,036,000)
29,740
(1,050,000)
8 (4-79) ' 24,780
(875,100)
Exhaust
temperature
136
(2771
133
(250)
129
(265)
128
(262)
126
(259)
126
(258)
128
(262)
124
(256)
146
(295)
148
(298)
149
(300)
146
(295)
147
(297)
147
(297)
148
(298)
140
(284)
Load
during test
(10= Btu/hrij
(2460)
(2430)
(1540)
(1510) .
(1570)
(1810)
100; 100
(1820)
132; 129
(1810)
132; 132
(2130)
132; 130
(1950)
129; 128
(2130)
126; 130
(2190)
128; 126
(2420)
130; 125
(2360)
10; 103
(1710)
Parciculate loading
at stack conditions
ng/J
(lb/10" 3tu)
148
(0.345)
120
(0.280)
52
(0.120)
,9
(0.114)
317
(0.738)
154
(0.358)
65
(0.152)
54
(0.126)
103
(0.24)
103
(0.24)
86
(0.20)
194
(0.45)
202
(0.47)
172
(0.40)
181
(0.42)
60
(0.14)
.2 /am5
I'gr ' acif ;
0 . 254
(0.111)
0.204
.'0.089)
0.073
(0.032)
0.068
(0.030)
0.495
(0.216)
0.226
(0.099)
0.0986
(0.043)
0.083
(0.036)
0.167
(0.0731)
0.170
. (0.0744)
0.144
(0.0629)
0.279
(0.122)
0.277
(0.121)
0.252
(0.110)
0.270
(0.118)
0.0888
(0.0388)
Opacity
54
50
17
25
61
46
27
25
30
30
29
52
52
40
41
25
Stack
diameter
n
(ft)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
-*-. 42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
4.42
(14.5)
, Fuel Fuel
standardised ^ ve,eh|.
opacity0 ' „'" a"
sulfur ash
50 - -
47 -
25 - -
23 -
57 - -
43 - -
25 - - .
23 - -
38 1.74 13.5
28 1.86 14.4
27 1.85 13.8
49 1.68 13.2
49 1.60 12.4
37 1.49 11.9
38 1.65 13.1
23 2.16 15.2
Fuel heat
content
kJ/kz
-
~
-
—
-
~
-
~
-
~
-
~
-
~
-
27,742
(11,497)
26,689
(11,474)
26,663
(11,463)
26,679
(11,470)
27,275
(11,726)
27,265
(11,722)
26,696
(11,477)
25,509
(10,967)
(continued)
-------
TABLE A-4 (continued)
Boiler
test ~
and
Seller type F^^.
nazie, and design _ ~
usber, capa*.lt"
(4-79) \ tana, fired; 15,290
1 125 MW each (539,900)
(4-79)) 15,300
(540,300)
(6-78) \ 33,930
(1,198,000)
(6-78)
(6-78)
(6-78)
(6-78)
(6-78)
(6-78)
(6-78)
(6-78)
(6-79)
(6-79)
33,130
(1,170,000)
33,180
(1,172,000)
15,620
(551,600)
15,990
(564,600)
Pulv. coal; 31,590
-. tang, fired; (1,116,000)
350 MW 31)?20
(1,120,000)
32,700
(1,155,000)
33,520
(1,184,000)
-
-
(6-79) ' 34,490
(1,218,000)
139
(233)
124
(255)
124
(255)
138
(281)
138
(280)
138
(281)
112
(233)
112
(234)
123
(254)
130
(266)
133
(272)
137
(278)
-
-
184
(363)
105; 101
(1710)
56 ; 55
(1030)
56; 55
(1050)
355
(3670)
345
(3580)
346
(2570)
177
(1770)
178
(1820)
337
(3670)
337
(3610)
342
(3680)
344
(3750)
354
356
360
60
(0.14)
22
(0.05)
22
(0.05)
15
(0.035)
12
(0.029)
13
(0.031)
42
(0.098)
34
(0.079)
104
(0.242)
53
(0.123)
258
(0.601)
212
(0.493)
9
(0.02)
4
(0.01)
13
(0.03)
0.0922 25
(0.0403)
0.0268 16
(0.0117)
0.0247 15
(0.0108)
0.029 3.4
(0.013)
0.024 3.4
(0.010)
0.025 3.4
(0.011)
0.084 11
(0.037)
0.068 10
(0.030)
0.213 22
(0.093)
0.106 15
(0.046)
0.511 46
(0.223)
0.417 38
(0.182)
0.0185 1
(0.0081)
0.0110 2
(0.0048)
0.0220 4
(0.0096)
4.42 23
(14.5)
4.42 15
(14.5)
4.42 14
(14.5)
4.98 3
(16.3)
4.98 3
(16.3)
4.98 3
(16.3)
4.98 9
(16.3)
4.98 8
(16.3)
4.98 18
(16.3)
4.98 12
(16.3)
4.98 39
(16.3)
4.98 32
(16.3)
4.98 1
(16.3)
4.98 2
(16.3)
4.98 3
(16.3)
2.90 15.6 25,i79
(10,954)
1.81 14.7 25,923
11,145)
1 84 13.7 26,800
(11,522)
-
- — • —
-
-
-
-
— ~~ ~
-
— — ~
1.79 12.7 27,114
(11,657)
1.77 12.7 27,158
(11,676)
1.87 12.8 26,840
(11,539)
(continued)
-------
TABLE A-4 (continued)
c=sc n
and
YAIES 6
Test -*
Test 5
Test 6
Test 7
Test 3
Test 9
Test 10
Test 11
YATES 7
Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
3oiler type , ^
name , and des ign ^
umber. capacity'3 3/ *-
date _ XWe . acf")
i 10- Stu/hr;-]-
f6-79) \ 34,510
!l,219,000)
(6-79)
(6-79)
(6-79)
(6-79)
(6-79)
(6-79)
34,970
(1,235,000)
32 , 000
(1,130,000)
Pulv. coal; 32,320
tang, fired; (1,159,000)
350 MW 32 > 040
(1,131,000)
31,170
(1,001,000)
30,850
(1,090,000)
(6-79) / 31,340
(1,107,000)
(6-78) 33,840
(6-78)
(6-78)
(6-78)
(6-78)
(6-78)
(6-78)
(1,195,000)
33,750
(1,192,000)
33,870
Pulv. coal; (1,196,000)
tang, fired; 32,620
350 MW (1,152,000)
32,720
(1,155,000)
32,700
(1,155,000)
32,640
(1,153,000)
Exhaust
rv;
185
(365)
182
(360)
161
(322)
162
(323)
160
(320)
163
(325)
165
(329)
166
(331)
139
(283)
139
(283)
139
(283)
128
(262)
129
(264)
128
(263)
129
(264)
Load
(1C?5 Stu/'hrix
363
-
355
360
361
364
—
345
(3290)
341
(3410)
339
(3410)
337
(3480)
333
(3480)
334
(3500)
332
(3490)
Particulate loading
at stack; conditions
jib/ 10* Btu)
7 3
(0.17)
(0.05)
95
(0.22)
116
(0.27)
168
(0.39)
138
(0.32)
228
(0.53)
185
(0.43)
12
(0.029)
14
(0.032)
12
(0.028)
43
(0.099)
33
(0.077)
150
(0.349)
102
(0.238)
_ ^
g ' am '
(gr/acf )
0.124
(0.0542)
0.0366
(0.0160)
0.166
(0.0727)
0.209
(0.0914)
0.298
(0.1302)
0.242
(0.1057)
0.658
(0.2874)
0.343
(0.1498)
0.0213
(0.0093)
0.0245
(0.0107)
0.0213
(0.0093)
0.080
(0.035)
0.062
(0.027)
0.282
(0.123)
0.193
(0.084)
pacity
14
12
23
24
31
31
43
44
2.6
2.6
2.5
10
7
31
26
Stacfc standardize
diameter opacltvb
•<->} %
i.98
(16.3)
4.98
(16.3;
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
4.98
(16.3)
11
10
19
20
.10
26
36
47
2
2
2
8
6
26
21
Fuel Fuel Fuel heat
•d
weight weight content
if I kJ/kg
sulfur ash i.Btu/lb)
1.95 12.5 26
(11
2.04 12.5 26
(11
2.31 11.5 26
(11
2.20 11.5 26
(11
2,00 11.0 26
(11
1.73 10.0 27
(12
1.64 9.1 28
(12
1.65 11.0 27
(11
— —
- -
-
— —
"
- -
— —
991
, 604)
,893
,562)
,844
,541)
,582
,471)
,984
,601)
,993
,035)
,428
,222)
,782
,944)
—
—
—
—
-
—
—
(continued)
-------
TABLE A-4 (continued)
Seller typ« __, ,-, ,
Boiler name, and design ^™ temperature
test numser, caoacitv^ -> : . or
,_, " aor'/oLin t.
and dace M»e ' - " ) (°F>
YATES 7
lest 8
Test 9
Test 10
Test 11
BOWES 1
Test 2
Test 3
Test 6
Test 7
Test 8
Test 9
Test 10
Test 11
Test 12
Test 13
BOWEN 2
Test 1
Test 2
Test 4
Test 5
Test 7
(5-78)'
(6-78)
(6-7S)
(6-78)
25,620
(904,800)
Pulv. coal; 26,270
tang, fired; (927,600)
350 * 26,060
(920,400)
26.320
(929,600)
(2-78) N
(2-78)
(2-78)
(3-78)
(3-78)
(3-78)
(3-78)
(3-78)
(3-78)
(3-78) ,
59,980
(2,118,016)
49,120
(1,734,666)
46,140
(1,629,312)
53,820
(1,900,654)
Pulv. coal; 44,100
> tang, fired, (1,557,378)
700 MW (6500) 38>420
(1,356^652)
33,110
(1,169,128)
34,030
(1,201,817)
30,870
(1,090,242)
30,510
(1,077,514)
(8-78)
(8-78)
(8-78)
(8-78)
(8-78)
73,690
(2,602,191)
74,550
(2,632,784)
Pulv. coal; 67)?90
*™S- "red (2,393,910)
700 W (6500)
70,600
(2,493,434)
73,600
(2,599,371)
117
(243)
120
(248)
119
(247)
121
(249)
135
(275)
128
(263)
128
(263)
128
(263)
128
(262)
124
(255)
120
(248)
120
(248)
115
(239)
113
(236)
154
(310)
158
(317)
152
(305)
154
(310)
157
(315)
Load
during test
(10* Btu/hr)T
255
(2660)
254
(2690)
254
(2660)
257
(2720)
610
(6050)
520
(5020)
472
(5390)
539
(5390)
441
(4400)
411
(3930)
344
(3250)
347
(3360)
263
(2920)
265
(2900)
700
(6710)
700
(7130)
650
(6400)
650
(6700)
690
(6750)
Particuiace loading
at stack conditions Opaclt.?
ng/J
(lb/10b Btu)
6
(0.013)
6
(0.013)
22
(0.052)
21
(0.048)
299
(0.696)
215
(0.501)
296
(1.533)
659
(1.533)
228
(0.531)
188
(0.438)
85
(0.197)
93
(0.216)
43
(0.101)
38
(0.088)
107
(0.248)
86
(0.20)
54
(0.125)
76
(0.176)
81
(0.189)
sr/am3
(gr/acf)
0
(0
0
(0
0
(0
0
(0
0.
CO.
0
(0
0
(0
.0102
.0045)
.0101
.0044)
.040
.018)
.037
.016)
530
2318)
387
1691)
527
2301)
1.16
(0.5069)
0.401
(0.1751)
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
0
(0
339
1482)
146
0639)
161
0705)
0723
0316)
0632
.0276)
.171
.0746)
.145
.0632)
.089
.0390)
.126
.0551)
.131
.0572)
"
0.7
0.7
5
4
47
37
46
59
38
35
20
21
17
16
26
25
22
27
28
Stack Standardized
diameter . b
opacitv
31 7
(ft)
4.98 0.6
(16.3)
4.98 0.6
(16.3)
4.98 4
(16.3)
4.98 3
(16.3)
7.62 28
(25.0)
7.62 22
(25.0)
7.62 28
(25.0)
7.62 37
(25.0)
7.62 22
(25.0)
7.62 20
(25.0)
7.62 11
(25.0)
7.62 12
(25.0)
7.62 9
(25.0)
7.62 9
(25.0)
7.62 15
(25.0)
7.62 14
(25.0)
7.62 12
(25.0)
7.62 15
(25.0)
7.62 16
(25.0)
Fuel Fuel fuel heat
veignc weight concent
% % kJ/kg
sulfur ash (Bcu'lb)
- -
- -
— —
- -
1.55 12.5 30
(12
1.55 ' 12.5 30
(12
1.55 12.5 30
(12
1.55 12.5 30
(12
1.55 12.5 30
(12
1.55 12.5 30
(12
1.55 12.5 30
(12
1.55 12.5 30
(12
1.55 12.5 30
(12
—
—
—
—
,000
,900)
,000
,900)
,000
,900)
,000
,900)
,000
,900)
,000
,900)
,000
,900)
,000
,900)
,000
,900)
1.55 12.5 30,000
(12,900)
— —
- -
- -
- -
—
—
_
(continued)
-------
TABLE A-4 (continued)
Boiler type
Seller name, and design
test number, capacity3
BOWEN 2
Test 8
Test 10
Test 11
Test 1
Test 2
Test 3
Test 6
Test 7
oo
O Test 8
Test 9
Test 10
Test 11
BOWEN 3
Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
(8-78) \
(8-78)
(8-78)
(3-79)
(3-79)
(3-79)
(2
(2
(2
(2
(2
Pnlxr . onal •
\ tang, fired, (2
(3-79)
(3-79)
(3-79)
(3-79)
(3-79)
(3-79),
700 MW (6500)
(2
(1
(1
(1
(1
(1
(3-78)
(3-78)
(3-78)
(4-78)
(4-78)
(4-78)
(2
(2
Pulv. coal;
tang, fired, (2
880 m (8200)
(2
(2
(2
Flow Exhaust
rate temperature
74,200
,620,113)
57,200
,019,778)
56,720
,003,203)
72,070
,544,957)
69,300
,447,061)
67,000
,469,364)
57,410
,027,421)
56,030
,978,520)
48,700
,719,480)
48,060
,698,091)
42,510
,502,074)
40 , 750
,439,854)
81,610
,883,912)
81,710
,887,439)
84,030
,967,624)
57,160
,018,728)
58,810
,076,776)
57,660
,036,347)
158
(317)
152
(306)
152
(305)
143
(290)
142
(287)
141
(285)
132
(270)
129
(264)
124
(256)
122
(252)
122
(252)
119
(246)
148
(299)
151
(304)
149
301
129
(264)
130
(266)
128
(262)
Load
during test
(10s Bt5/Tir)T
700
(696O)
535
(5600)
535
(5500)
695
(7137)
696
(7090)
685
(7055)
563
(5507)
562
(5552)
487
(4752)
485
(4886)
418
(4418)
418
(4192)
800
(7652)
800
(7880)
840
(8620)
600
(5724)
600
(5724)
600
(5896)
Particulate lending
at scacfc conditions _
ng/J
{lb/106 ECu/
207
(0.481)
26
(0.060)
19
(0.045)
568
(1.321)
482
(1.122)
432
(1.005)
114
(0.265)
125
(0.291)
60
(0.140)
63
(0.147)
35
(0.081)
35
(0.082)
12
(0.027)
19
(0.044)
182
(0.423)
9
(0.022)
13
(0.031)
133
(0.310)
g/am3
Cgr/acf)
0.341
(0.149)
0.0444
(0.0194)
0.0329
(0.0144)
0.979
(0.4279)
0.842
(0.3681)
0.759
(0.3317)
0.190
(0.0830)
0.216
(0.0943)
0.102
(0.0444)
0.112
(0.0488)
0.0632
(0.0276)
0.0634
(0.0277)
0.0191
(0.00836)
0.0320
(0.0140)
0.327
(0.143)
0.0167
(0.00728)
0.0228
(0.00997)
0.240
(0.105)
I
41
20
18
57
54
50
27
28
16
17
14
13
4
4
41
3
3
29
diameter ^tv^ weight veignt content
Cft) % sulfur ash (Btu/lb)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
31
11
10
36
33
31
15
16
9
9
8
7
2
2
24
2
2
16
- - .
—
_ _
_ _
—
1.46 11.8 28,080
(12,073)
1.52 11.8 28,250
(12,146)
1.34 11.4 28,660
(12,323)
1.36 11.2 28,660
(12,323)
1.40 11.6 28,510
(12,257)
1.44 11.9 28,340
(12,186)
1.42 11.5 28,530
(12,264)
1.40 11.8 28,310
(12,171)
1.47 12.2 28,100
(12,079)
- - -
—
_ _ _
—
_ -
—
_ _ _
—
_
—
_
~
(continued)
-------
TABLE A-4 (continued)
Boiler type
Boiler name, and design FIov
test number, capacity3 rate
and date " w ^ 'Ilin
(10' Bt5/hr)T Caefa>
3OVEJI 3
Test 8
Test 9
Test 10
Test 1
Test 2
Test 3
Test 4
Test 5
00 Test 6
Test 7
Test 8
Test 9
Test 10
Test 11
BOWEN 4
Test 1
Test 2
Test 3
Test 4
(4-7a) ^ 5gi020
(4-78)
(4-78)
(3-79)
(3-79)
(3-79)
(3-79)
(3-79)
(3-79)
(3-79)
(3-79)
(3-79)
(3-79)
(2,049,133)
57,235
(2,021,237)
48,470
(1,711,766)
86,710
(3,062,148)
86,760
(3,064,030)
87,000
(3,072,342)
Pulv. coal; 86,590
tang, fired, (3,057,829)
880 I« 86,880
(82,000) (3,068,106)
87,670
(3,095,995)
87,400
(3,086,534)
66,340
(2,342,792)
66,680
(2,354,680)
66,150
(2,336,155)
<3-79) / 65;770
(2,322,601)
(4-78)
(4-78)
(4-78)
(4-78)
82,870
(2,926,387)
Pulv. coal; „ 83'°°°
tang, fired, «.»31,324>
800 »J (8200) 0.0283
(2,943,651)
83,070
(2,933,635)
Exh-aust Lo&d
temperature daring test
°C MHj,
"(°F) (10s Btu/br).
128
(262)
121
(249)
122
(251)
140
(284)
141
(286)
142
(288)
141
(285)
141
(285)
138
(281)
138
(281)
122
(252)
122
(252)
122
C252)
122
(252)
149
(301)
150
(302)
149
(300)
148
(299)
600
(6317)
500
(5038)
500
(5040)
346
846
846
842
—
845
844
841
660
661
658
660
800
(7777)
800
(7914)
800
(7682)
800
(7778)
Participate loading
at stack conditions
og/J
(Ib/lO6 Btu)
217
(0.505)
11
(0.025)
8
(0.019)
126
(0.293)
83
(0.192)
77
(0.178)
186
(0.432)
186
(0.433)
338
(0.787)
270
(0.629)
37
(0.086)
33
(0.077)
83
(0.193)
99
(0.231)
47
(0.109)
40
(0.094)
310
(0.721)
257
(gr/acf)
0.416
(0.182)
0.0160'
(0.007)
0.0149
(0.00653)
0.214
(0.0934)
0.143
(0.0625)
0.132
(0.0576)
0.317
(0.1386)
0.313
(0.1367)
0.576
(0.2517)
0.465
(0.2031)
0.0627
(0.0274)
0.0568
(0.0248)
0.142
(0.0620)
0.168
(0.0735)
0.0869
(0.038)
0.0677
(0.0296)
0.501
(0.219)
0.423
(0.185)
Dpacity
42
3
2
13
13
12
37
36
46
42
10
10
25
24
17
16
41
50
, StaCk Standardized Fuel Fuel Fuei he«
diameter vaa.^L'cJ3 weig&t weight content
31 . ' I % kj/kg
(ft) sulfur ash (Btu/lb)
7.62 25
(25.0)
7.62 2
(25.0)
7.62 1
(25.0)
7.62 7
(25.0)
7.62 7
(25.0)
7.62 6
<25.0)
7.62 22
(25.0)
7.62 21
(25.0)
7.62 28
(25.0)
7.62 25
(25.0)
7.62 5
(25.0)
7.62 5
(25.0)
7.62 14
(25.0)
7.62 13
(25.0)
7.62 9
(25.0)
7.62 9
(25.0)
7.62 24
(25.0)
7.62 31
(25.0)
_
_
2.09 11.0 27,000
(11,603)
2.24 11.0 27,230
(11,708)
2.00 12.0 27,230
(11,714)
2.05 11.3 27,360
(11,763)
2.24 10.6 27,330
(11,750)
2.23 10.6 27,120
(11,661)
2.22 10.9 27,380
(11,773)
2.34 10.5 27,140
(11,667)
2.33 10.2 27,370
(11,765)
2.42 9.9 27,070
(11,637)
2.21 10.4 27,080
(11,642)
_
. —
(continued)
-------
TABLE A-4 (continued)
Boiler type flax Exhaust
Boiler nane, and design rate teniperature
test number, capacity3 am3 /mitt °C
(106 Btu/hr)T
30WEN 4
Test 5
Test 6
Test 7
Test 8
Test 9
Test 10
Test 1
Test 2
oo
N3 Test 3
Test 4
Test 5
Test 6
Test 7
Test 8
Test 9
Test 10
Test 11
(4-78) >
(4-78)
(4-78)
(4-78)
(4-78)
(4-78)
(4-79)
(4-79)
(4-79)
(4-79)
(4-79)
(4-79)
(4-79)
(4-79)
(4-79)
(4-79)
(4-79)
61,410
(2,168,532)
6,230
(220,124)
62,040
(2,190,769)
62,170
(2,195,367)
51,510
(1,818,948)
49,560
(1,750,248)
88,300
(3,118,404)
88,400
(3 121,845)
Pulv. coal;
tang, fired, 88,010
880 1*7 (8200) (3,107,997)
81,860
(2,890,769)
82,770
(2,922,887)
8,700
(3,073,734)
86,320
(3,048,470)
65,980
(2,329,937)
66,530
(2,349,639)
66,750
(2,357,119)
65,800
127
(261)
127
(260)
128
(262)
127
(261)
127
(260)
126
(258)
149
(301)
150
(303)
152
(306)
148
(298)
146
(295)
154
(310)
156
(312)
146
(294)
148
(299)
148
(299)
148
during test
(105 Btu/hr)T
600
(5866)
600
(5938)
600
(5847)
600
(6008)
500
(4986)
500
(4824)
877
(8014)
875
(7942)
878
(7974)
830
(7682)
830
(7599)
813
(8149)
822
(7984)
642
(6344)
641
(6246)
640
(6321)
641
(6153)
Partiemlate loading
at stack conditions ..
(lii/lO-6 Stu)
37
(0.087)
43
(0.099)
162
(0.376)
174
(0.405)
26
(0.060)
30
(0.069)
22
(0.051)
28
(0.065)
40
(0.093)
71
(0.164)
95
(0.220)
202
(0.474)
197
(0.458)
20
(0.047)
0.468
(0.033)
206
(0.480)
193
(0.449)
g/am3
(gr/aef)
0.0629
(0.0275)
0.0714
(0.0312)
0.413
(0.1804)
0.295
(0.129)
0.0439
(0.0192)
0.0508
(0.0222)
0.0350
(0.0153)
0.0437
(0.0191)
0.0634
(0.0277)
0.116
(0.050S)
0.152
(0.0665)
0.335
(0.1463)
0.320
(0.1397)
0.0343
(0.0150)
0.0231
(0.0101)
0.343
(0.1499)
0.317
(0.1384)
Ipacity
I
17
17
33
34
13
13
8
8
9
24
23
46
43
5
4
50
43
E
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
7.62
(25.0)
Z
10
9
19
20
7
4
4
5
13
13
28
26
3
2
31
26
Fuel
sulfur
-
2.34
2.31
2.43
2.31
2.31
2.30
2.22
2.26
1.97
2.08
1.47
Fuel
%
ash
-
10.4
10.7
10.5
10.9
10.7
11.1
11.2
10.8
11.0
10.8
10.0
(Btu/lb)
-
-
-
26 , 540
(11,460)
26,520
(11,452)
26,670
(11,516)
26,590
(11,483)
26,420
(11,406)
27,170
(11,732)
2,698
(11,650)
27,130
(11,714)
27,650
(11,938)
27,410
(11,836)
25,250
(10,904)
Subscripts: E - electrical; T = thermal.
bStandardized to 4.0 m (~ 13.0 ft) diameter stack.
°Flue gas conditioning, Unit 4
Flue gas conditioning, Unit 3
£Flue gas conditioning, Unit 3&4
-------
TABLE A-4 (continued)
oo
Seller name,
test Quaker,
and date
AKKWSKHT 1-4
Test 1 (6-78)
(6-78)
(6-78)
(6-78)
(6-78)
(6-78)
(6-78)
(6-78)
(6-78)
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
Test 8
Test 9
Test 10 (6-78)
Test 11 (6-78
BRANCH 142
Test 1 (2-79)
Test 2 (2-79)
Test 3 (2-79)
Test 4 (2-79)
Test S (2-79)
Test 6 (2-79)
Test 7 (2-79)
Test 8 (2-79)
Test 9 (2-79)
Test 10 (2-79)
Test 11 (2-79)
BRANCH 3&4
Test 1
through
Test 26 (5-79)
Electrification details
Boiler name,
test ntffij&er,
and date
Electrification details
24 of 48 ESP sections energized
24 of 48 ESP sections energized
32 of 48 ESP sections energized
32 of 48 ESP sections energized
39 of 48 ESP sections energized
39 of 48 ESP sections energized
All ESP sections energized
All ESP sections energized
All ESP sections energized
16 of 48 ESP sections energized
16 of 48 ESP sections energized
34 of 34 ESP sections energized
34 of 34 ESP sections energized
33 of 34 ESP sections energized
33 of 34 sections on 3 arcing or
low power
32 of 34 sections on 3 arcing or
low power
33 of 34 sections on 3 arcing or
low power
32 of 34 sections on 2 arcing or
- low power
33 of 34 sections on 1 at low
power
33 of 34 sections on 1 at low
power
21 of 34 full power, 11 reduced
2 off
22 of 34 full power, 11 low
power, 1 off
All ESP sections in operation
i Test 27 (5-79)
[Test 28 (5-79)
i
; HAMMOND 1, 2, 3
'Test 1 (7-78)
(7-78)
(7-78)
(6-78)
(6-78)
(6-78)
(3-78)
(3-78)
Test 2
!Test 3
! Test 1
: Test 2
j Test 3
'•. Test 1
; Test 2
! Test 3
(3-78)
Test 4 (3-78)
Test 5 (3-78)
Test 6 (3-78)
Test 7 (3-78)
Test 8 (3-78)
HAMM3ND 4
Test 1 (10-78)
Test 2 (10-78)
Test 3 (10-78)
Test 4 (10-78)
Test 5 (10-78)
Test 6 (10-78)
Test 7 (10-78)
Test 8 (10-78)
Test 9 (10-78)
MITCHELL 1,2,3
Test 1 (6-78)
Test 2 (6-78)
Test 3 (6-78)
ESP energy levels decreased
ESP energy levels decreased
2 sections out on Unit 1
2 sections out on Unit 1
2 sections out on Unit 1
All ESP sections in operation
All ESP sections in operation
All ESP sections in operation
1 ESP section out of service
1 ESP section not in operation
1 section out; inlet and center
of 2 & 3 out
1 section out; inlet and center
of 2 & 3 out
1 section out
1 section out
1 section out
1 section out
All ESP sections in operation
All ESP sections in operation
All ESP sections in operation
23 of 32 sections reduced pover
28 of 32 sections reduced power
All ESP sections in operation
All ESP sections in operation
22 sections out of 32 inoperative
22 sections out of 32 inoperative
All ESP sections energized
All ESP sections energized
All ESP sections energized
(continued)
Boiler name,
test ouaafaer,
and date
Electrification details
Test 4 (6-78)
Sections G,H,J,K outlets of Obit 3
out
Test 5 (5-78) Sections G.H.J.K of Unit 3 out
Test 6 (6-78)
and
Test 7 (6-78)
Test 8 (6-78)
Test 9 (6-78)
through
Test 3 (6-79)
Test 4 (6-79)
through
Test 11 (6-79)
McDONOUGH 1&2
Test 1 (6-78)
Test 2 (6-78)
Test 3 (6-78)
Test 4 (6-78)
Test 5
Test 6
Test 7
Test 8
Test 9
(6-78)
(6-78)
(6-78)
(6-78)
(6-78)
Test 10 (6-78)
Test 11 (6-78)
Test 1 (4-79)
through
Test 5 (4-79)
Test 6 (4-79)
through
Test 11 (4-79)
KANSLEY 1
Test 1 (8-78)
Test 2 (8-78)
Test 3 (8-78)
Sections C,H,J,K of Unit I and
outlet of 1&2 sections oat
All ESP sections out
All ESP sections energized
No data
All ESP sections energized
All ESP sections energized
All ESP sections energized
24 of 64 sections energized
-(as Test 7)
20 of 64 ESP sections energized
20 of 64 ESP sections energized
24 of 64 ESP sections energized
All ESP sections energized
All ESP sections energized
24 of 64 ESP sections energized
24 of 64 ESP sections energized
All ESP sections in operation
58 of 64 ESP sections in operation
All sections reduced power
30 of 32 sections reduced, 2 out
28 of 32 sections reduced, 4 out
-------
oo
Soiler naae,
test rtuoiber,
and date
HASSLET 1
Test 4
Test 5
Test 6
Test 7
Test 8
Electrification details
(3-73) 26 of 32 sections reduced, 6 out
(8-78) All ESP sections in service
(8-78) .All ESP sections in service
(8-78) 28 of 32 sections in operation
(8-78) 28 of 32 sections in operation
WANSLEY 2
Test 1 (8-78)
Test 2 (8-78)
Test 3 (8-78)
Test 4 (8-78)
Test 5 (8-78)
Test 6 (9-78)
Test 7 (9-78)
Test 8 (9-78)
Test 1 (5-79)
Test 2 (5-79)
Test 3 (5-79)
through
Test 8 (5-79)
YATES 1,2,3
Test 1 (12-77)
Test 2 (12-77)
Test 3 (12-77)
Test 4 (12-77)
Test 5 (12-77)
Test 6 (12-77)
30 of 32 sections in operation
30 of 32 sections in operation
30 of 32 sections at reduced
power, 2 out
30 of 32 sections at reduced
power, 2 out
22 of 32 sections in operation,
10 out
22 of 32 sections reduced power
10 out
22 sections reduced power; 10
sections out
22 sections reduced power; 10
sections out
8 ESP fields not operational
2 ESP fields not operational
All sections in operation
All ESP sections in operation
All ESP sections in operation
4 ESP sections out; 2 sections
reduced power
4 ESP sections out; 2 sections
reduced power
All ESP sections in operation
All ESP sections in operation
Is
— r
6 out
_e
:e |
ation
3tion ;
at ion !
|
at ion '.
ced ;
ced ;
ation,
power,
; 10
; 10
?nal
snal
i
ation
ation
ctions
ctions
ation
ation
TABLE A-4 (continued)
I"'
Boiler aaae, ;
test somber. Electrification details |
and date
— • — "
Test 7 (12-77) 14 ESP sections out of senri.ce
Test 8 (12-77) 14 ESP sections out of service
Test 9 (12-77) 2 ESP sections out of senrf.ee
Test 10 (12-77) 2 ESP sections out of service
Test 1 (3-7.8) i
through All ESP sections in service
Test 5 (6-79) !
YATES 4&5
Test 1 (3-78) All ESP sections energized ;
Test 2 (3-78) All ESP sections energized
Test 3 (3-78) 2 of 3 ESP sections energized
Test 4 (3-78) 2 of 3 ESP sections energized
Test 5 (3-78) All ESP sections energized ',
Test 6 (3-78) All ESP sections energized j
Test 7 (3-78) => l'-5 of 3 ESP sections energized
Test 8 (3-78) ~ 1% of 3 ESP sections energized i
Test 9 (3-78)
through All ESP sections energized
Test 4 (3-79)
Test 4 (4-79) All ESP sections at 40 percent
power
Test 5 (4-79) All ESP sections at 40 percent
power
Test 6 (4-79) All ESP sections at 50 percent ,
power :
Test 7 (4-79) All ESP sections at 55 percent
• power
Test 8 (4-79)
through All ESP sections in operation
Test 11 (4-79)
YATES 6
Test 1 (6-78)
through All ESP sections in operation
Test 3 (6-78)
_
Boiler naffle,
test number, Electrification details
and date
rest 4 (6-78
through 10 ESP sections not energized
Test 7 (6-78)
Test a (6-78) 14 ESP sections not energized
Test 9 (6-78) 14 ESP sections not energized
Test 1 (6-79) All ESP sections in operation
Test 2 (6-79) 2 ESP sections not in operation
Test 3 (6-79) 2 ESP sections not in operation
Test 4 (6-79) 11 ESp sections not in operation
Test 5 (6-79) 10 ESP sections not in operation
Test 6 (6-79) 13 ESP sections not in operation
Test 7 (6-79) 13 ESP sections not in operation
Test 8 (6-79) 13 ESP sections not in operation
Test 9 (6-79) 15 ESP sections not in operation
Test 10 (6-79) 14 ESP sections not in operation
Test 11 (6-79) 14 ESP sections not in operation
YATES 7
Test 1 (6-78) 1 ESP section not energized
Test 2 (6-78) 1 ESP section not energized
Test 3 (6-78) 1 ESP section not energized
Test 4 (6-78) 12 ESP sections not energized
Test 5 (6-78) 12 ESP sections not energized
Test 6 (6-78) 16 ESP sections not energized
Test 7 (6-78) 16 ESP sections not energized
Test 8 (6-78) 1 ESP section not energized
Test 9 (6-78) 1 ESP section not energized
Test 10 (6-78) 12 ESP sections not energized
Test 11 (6-78) 12 ESP sections not energized
„„__====_——==——-=-==—=-———•
-------
APPENDIX B
METHOD FOR COMPUTING STANDARDIZED OPACITY
I/IQ - T = exp(-bL) (1)
1/10
T - transmittance: T = 1 - Opacity
b - extinction coefficient of a volume of aerosol (m-l)
Solving for b, Equation 1 may be rewritten:
coefficient of b, a change i the PLt^ leng^T "SJ61 Wlth « «tlnctlon
a change in the value of the tranam±f?«n^ i, 'u necessarily result in
''"
-P t-t, "~""*i1^^- such that ths ratio of
or tne transmittance to thp n^t-h iar»r>+-u •
^"-' i-m^ pciL.ii xmigen IS
-b = ln Tl = 1" T2 = ln_Tn
Ll L2 L,
length'! rTeSptively t.1188 ^ transm^^nce and path
viewed through a neJ'path iSgth of C^J ^ aer°S01 3S
Ts = exp N In T\ (3)
85
-------
op-it, esttes th. actual
. -
meter measurement was also assumed to equal stack ^ standardlzed
'c- 13.0
86
-------
APPENDIX C
CONFIDENCE LIMITS FOR PREDICTED INDIVIDUAL y VALUES .
The following procedures were used to compute the 95 percent confidence
limits for any predicted value of the mass emission (g/am3) in terms of the
opacity value indicated by the linear regression line. The general expression
for y* is
(1)
+
If jit is assumed that the number of data pairs, n, is large and that the
(x-x)2 value for the point of interest is small compared to the term £] (x-x)2
Equation C-l reduces to the form
y*±V2, 0.05 Sy'X
Since Sy.x can be expressed as
Sy.x = Sy /1-r2
and Sy, the sample standard deviation for the y values can be computed as
n-1
the parameters derived during the development of the regression line (y-y~) , Sy
and r are available for rough estimates of confidence limits. In computing
the "t" value, 2 degrees of freedom are lost through the use of the mean
values and the standard deviations. The "t" function represents the area
described by 0.025 of either tail of the t distribution. The statistical
development used here is based upon procedures reported by Collins.24
87
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
REPORT NO.
SPA-600/7-80-062
3. RECIPIENT'S ACCESSION NO.
TITLE ANDSUBTITLE
Review of Concurrent Mass Emission and Opacity
Measurements for Coal-burning Utility and Industrial
B_oJlg£g_
5. REPORT DATE
March 1980
6. PERFORMING ORGANIZATION CODE
AUTHOR(S)
R. J. Brennan, Richard Dennis, and D. R. Roeck
8. PERFORMING ORGANIZATION REPORT
GCA-TR-80-3-G
PERFORMING ORGANIZATION NAME AND ADDRESS
rCA Technology Division
Burlington Road
Bedford, Massachusetts 01730
10. PROGRAM ELEMENT NO.
INE830
11. CONTRACT/GRANT NO.
68-02-2607, Task 19
2. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
13. TYPE OF REPORT AND
Final; 8/79-2/80
14. SPONSORING AGENCY CODE
EPA/600/13
e. SUPPLEMENTARY NOTES IERL-RTP project officer is James H. Turner, Mail Drop 61,
919/541-2925.
6. ABSTRACT r^g report gives results of concurrent particulate emissions and opacity
measurements based on visual observations and/or in-stack transmissometry for
more than 400 compliance, acceptance, or experimental tests on coal-fired utility
and industrial boilers. The sampling, which includes a capacity range of a few to
several hundred megawatts and typical firing methods (pulverized, stoker, and cy-
clone), in most cases reflects flyash control by electrostatic precipitation, although
liters or mechanical collectors were used at a few installations. All opacity mea-
surements were standardized to their equivalent values for a 4 m (13.0 ft) diameter
stack before being compared with their corresponding particulate emissions, the
Latter expressed as actual grams per cubic meter. No discernible correlations appli-
cable to all sources were observed, although some modest (but apparently signifi-
cant) correlations were noted on an individual source basis. Thus, any useful and
definitive relationships between particulate mass emission rates and their corres-
ponding opacity levels appear to be site specific. Furthermore, correlations with
transmissometer measurements were far stronger than those derived from visual
estimates of opacity. Report findings were sufficiently encouraging to warrant fur-
thur analyses relating to in-stack transmissometer measurements.
7.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
Pollution
Coal
Combustion
Measurements
Opacity
Emission
Dust
Aerosols
Boilers
Transmissometers
c. COS AT I Field/Group
Pollution Control
Stationary Sources
Mass Emissions
Particulate
Particulate Mass Emis-
sions
13B
2 ID
2 IB
14B
11G
07D
13A
18. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS (ThisReport)
Unclassified
99
20. SECURITY CLASS (This page)
Unclassified
22. PRICE
EPA form 2230-1 (S-73)
88
-------
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Center for Environmental Research Information
Cincinnati, Ohio 45268
OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE. S3OO
AN EQUAL OPPORTUNITY EMPLOYER
POSTAGE AND FEES PAID
US ENVIRONMENTAL PROTECTION AGENCY
EPA-335
If your address is incorrect, please change on the above label
tear off; and return to the above address.
If you do not desire to continue receiving these technical
reports. CHECK HERE D, tear off label, and return it to the
above address.
Publication No. EPA-600/7-80-062
------- |