EPA
TVA
United States
Environmental Protection
Agency
Industrial Environmental Research
Laboratory
Research Triangle Park NC 27711
EPA-600/7-81-106b
July 1981
Tennessee Valley
Authority
Office of Power
Energy Demonstrations
and Technology
Chattanooga TN 37401
TVA/OP/EDT-81/47b
Testing and Analysis of a
Wet-Dry Crossflow
Cooling Tower
Volume II: Appendices
Interagency
Energy/Environment
R&D Program Report
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH AND DEVELOPMENT series. Reports in this series result from the
effort funded under the 17-agency Federal Energy/Environment Research and
Development Program These studies relate to EPA's mission to protect the public
health and welfare from adverse effects of pollutants associated with energy sys-
tems. The goal of the Program is to assure the rapid development of domestic
energy supplies in an environmentally-compatible manner by providing the nec-
essary environmental data and control technology. Investigations include analy-
ses of the transport of energy-related pollutants and their health and ecological
effects; assessments of, and development of, control technologies for energy
systems; and integrated assessments of a wide range of energy-related environ-
mental issues.
EPA REVIEW NOTICE
This report has been reviewed by the participating Federal Agencies, and approved
for publication. Approval does not signify that the contents necessarily reflect
the views and policies of the Government, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
TESTING AND ANALYSIS OF A
WET-DRY CROSSFLOW COOLING TOWER,
VOLUME II: APPENDICES
by
D. L. Ayers, M. R. Hogan, A. E. Hribar, R. A. Lucheta
Westinghouse Electric Corporation
Research & Development Center
1310 Buelah Road
Pittsburgh PA 15235
TVA Contract No. TV46267
TVA Project Director: Hollis B. Flora II
Tennessee Valley Authority
Division of Energy Demonstrations and Technology
Chattanooga, Tennessee 37401
EPA Interagency Agreement No. D8-E721-BE
Program Element No. INE624A
EPA Project Officer: Theodore G. Brna
Industrial Environmental Research Laboratory
Office of Environmental Engineering and Technology
Research Triangle Park, NC 27711
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460
Action Agency
U.S. BnviroTCcan-caA ^^£ "~° ^
Bsgion <•>! '"~j;*'"",r eets Boom 1670
r-i7,fi, P. j'f'J,
TT, 60504
. ^ <,'. ' ( v,
(C-Ow '-•'
-------
DISCLAIMER
This report was prepared as an account of work sponsored by the United
States Government. Neither the United States nor the Tennessee Valley
Authority, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus, pro-
duct, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, mark, manufacturer, or other-
wise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or
any agency thereof.
ii
-------
TABLE OF CONTENTS
VOLUME I
Page
Abstract iii
List of Illustrations ix
List of Tables xiii
1.0 INTRODUCTION 1
2.0 CONCLUSIONS 6
2.1 Thermal and Flow Tests 6
2.2 Acoustics Tests > 9
2.3 Plume Tests. 10
3.0 RECOMMENDATIONS ..... 11
3.1 Thermal and Flow Tests 11
3.2 Plume Tests 12
4.0 THERMAL PERFORMANCE TESTS 13
4.1 Thermal and Flow Instrumentation 15
4.1.1 Instrument Calibration Procedures 22
4.2 Data Acquisition and Transfer 23
4.3 Thermal and Flow Data Reduction 31
4.3.1 Tower Heat and Mass Transfer 31
4.3.1.1 Wet Fill Heat and Mass Transfer Coef-
ficients 38
4.3.1.1.1 Computation of Ka 38
4.3.1.1.2 Calculation of Grid Size. . 45
4.3.1.2 Heat Exchanger Heat Transfer Analysis. 47
4.3.1.3 Heat Exchanger Air-Side Heat Transfer
Coefficient Computation 53
4.3.1.4 Airflow Rate Analysis and Computation. 54
4.3.1.5 Water Flow RAte Analysis and Compu-
tation 60
4.3.2 Data Reduction Computer Code 67
4.3.2.1 Data Reduction Main Program Functions. 67
(Continued) U.fj- > -i^v.-ntsl r-Tt-iotlra *••"--
I.-',' - - - / ',':'.?'.' "' J ' •"• i
<- - - "••.-.->u'- -;?"v ;j"t«» -tojui J.UVU
C-iiCJ iO IL
-------
Table of Contents (cont'd) Page
4.4 Analysis of Thermal and Flow Data. 69
4.4.1 Correlation Forms ..... 69
4.4.2 Statistical Analysis of Data 75
4.4.3 Linear Regression .......... 77
4.5 Results of Correlations 80
4.5.1 Mass Transfer Coefficient Ka 80
4.5.2 Rate of Water Loss Due to Evaporation (AL/L). . 87
4.5.3 Dry Heat Exchanger Air-Side Convective Heat
Transfer Coefficient H ...... 91
4.5.4 Fan Efficiency , 95
4.6 Nomenclature ........ 109
4.7 References 116
5.0 ACOUSTICS TESTS 117
5.1 Description of Acoustic Instrumentation. . . 117
5.1.1 Data Acquisition Equipment 117
5.1.2 Data Analysis Equipment . 123
5.2 Acoustic Data Acquisition Techniques ......... 123
5.3 Acoustic Data Reduction Techniques . 127
5.4 Analysis of Data 127
5.4.1 Experimental Design , 129
5.4.2 Observed Noise Levels ..... , 131
5.4.3 Statistical Model 131
5.4.4 Examination of Model Fit 135
5.5 Noise Prediction Computer Code . , ..... 139
5.5.1 Program Code Modifications. 139
5.5.1.1 Atmospheric Absorption ........ 141
5.5.2 Program Code Operation. , 144
5.6 Discussion of Results 146
5.6.1 Experimental Data ...... 146
5.6.2 Regression Analysis .............. 147
5.6.3 Noise Prediction Code . 148
5.6.3.1 Ground Absorption. .... . 148
5.6.3.2 Wind and Temperature Fluctuations. . . 150
(Continued)
iv
-------
Table of Contents (cont ?d) Page
5.7 Acknowledgements , 150
5.8 Acoustics References .' 150
5.9 Acoustics Nomenclature ... ........ 151
6.0 PLUME TESTS 153
6.1 Plume Instrumentation 153
6.2 Plume Data Acquisition Technique at the Cliffside Site 159
6.2.1 Data Handling at Westinghouse Fluid Systems
Laboratory. ........ ..... 161
6.2.2 Data Handling at Westinghouse R&D Center. . . . 161
6.3 Plume Modeling 164
6.4 Analysis of Plume Data 165
6.5 Discussion of Results 166
6.5.1 Validation of the Rubin Model ......... 166
6.5.2 Compilation of Plume Data ...... 167
6.5.3 Possible Further Studies 167
6.6 References . . 167
7.0 ACKNOWLEDGEMENTS 169
VOLUME II
List of Illustrations vii
List of Tables xi
APPENDICES 1
A. Description of Tower Test Facility 1
A.I Introduction 1
A.2 Tower Construction 1
A.3 Water System 11
A.4 Air Supply H
A. 5 Controls 13
B. Cooling Tower Startup, Operating and Shutdown Pro-
cedures 15
(Continued)
v
-------
Table of Contents (cont'd) Page
B.I Startup Procedures 15
B.2 Shutdown Procedure 18
B.3 Operation Procedure 19
C. Data Reduction Program 23
D. Data Correlation Computer Codes 117
D.I Input Data Files 117
D.2 Ka Correlation Code 119
D.3 Water Loss Correlation Code 122
D.4 Heat Exchanger Air-Side Heat Transfer Coefficient
Correlation Code 123
D.5 Fan Efficiency Correlation Code 124
E. Cooling Tower and Background Noise Data 179
F. Noise Prediction Computer Model Documentation 185
F.I Program Structure , 185
F.2 Summary of Programs 185
F.3 Input Data Format 189
F.4 Sample Output Listings 191
G. Noise Prediction Computer Code 195
H. Basic Plume and Cooling Tower Data. . 207
I. Rubin's Program and Input Data 251
J. Comparison of Computed and Observed Plume Parameters. . 265
vi
-------
LIST OF ILLUSTRATIONS
VOLUME I
Figure No. Title Page
1.0-1 Side View of Tower Showing Location of Dew Cells, 2
Thermocouples, and Velocity Probes
1.0-2 Schematic of One-Half the Cooling Tower Cell, Showing 4
Water Flow Control and Measurement System
4.1.1 Mercury Manometer Used to Calibrate the Ellison Annubar 14
Water Flow Meter
4.1.2 Ellison Annubar Water Flow Meter in its Insulated and 14
Heated Housing
4.1-3 Photograph of the Kiel Probe Rake at the Fan Stack 16
Inlet
4.1-4 Photograph of the Wafer Switch Control for Kiel Probe 16
Pressures (See Figure 4.1-6 for Schematic)
4.1—5 Electromanometer Used for Pressure Measurement 18
4.1-6 Schematic Diagram of the Fan Stack Air Velocity Measur- 19
ing System's Probe/Wafer Switch/Purge Air/Pressure
Transducer System
4.1-7 Fluke Model 2240B Digital Data Acquisition System 18
4.3-1 Wet Fill Heat and Mass Transfer Control Volume 30
4.3-2 An Illustration of the Two—Dimensional Representation 40
of the Wet Fill and its Grid Structure
4.3-3 Typical Wet Fill Grid and Nomenclature Employed in 42
Defining the Temperature of the Grid i,j
4.3-4 Error in Mass Transfer Coefficient as a Function of 48
Computation Time and the Experimental Multiplication
Factor
4.3-5 Tower Heat Exchanger Tube and Fin Geometry, and Nomen- 49
clature Employed in the Heat Transfer Analysis
4.3-6 Stack Velocity as a Function of Distance Across the 56
Stack at the Velocity Pressure Probe Station
4.3-7 Fan-Stack Model and Nomenclature Employed for the 58.
Calculation of Air Flow Rate from the Fan Curve
(Continued)
vii
-------
List of Illustrations (cont'd)
Figure No. Title Page
4.3-8 Schematic of Dry Heat Exchanger Hydraulic System with 62
the Manometer Employed to Measure the Frictional Pres-
sure Drop
4.3-9 Dry Heat Exchanger Water Flow Rate Calibration. The 64
Pressure Drop-Water Density Ratio is Shown as a Func-
tion of Water Flow Rate. Also Indicated is the Least
Squares Curve Used to Represent the Calibration in the
Data Reduction
4.3-10 Heat Exchanger Pressure Transducer Voltage as a Func- 66
tion of Dry Heat Exchanger Water Flow Rate. Also
Shown is the Second Order Least Squares Polynomial
used to Represent the Calibration in the Data Reduc-
tion Program
4.5.4-1 Airflow System Efficiency as a Function of Airflow 94
Rate
4.5.4-2 Airflow System Efficiency as a Function of Airflow 96
Rate for a Rotational Speed of 60 RPM
4.5.4-3 Airflow System Efficiency as a Function of Airflow 98
Rate for a Rotational Speed of 90 RPM
4.5.4-4 Airflow System Efficiency as a Function of Airflow 99
Rate for a Rotational Speed of 101 RPM
4.5.4-5 Airflow System Efficiency as a Function of Airflow 100
Rate for a Rotational Speed of 113 RPM
4.5.4-6 Airflow System Efficiency as a Function of Airflow 101
Rate for a Rotational Speed of 119 RPM
4.5.4-7 (a) Fan Pressure Rise and System Characteristic as 102
a Function of Volumetric Flow Rate, Each Fan Curve
Represents a Unique Pitch (A).
(b) Fan Efficiency for Three Blade Angles as a Func- 102
tion of Volumetric Flow Rate. Also Shown is Antici-
pated Fan Efficiency Behavior While Coupled to the
System Characteristic Shown in Figure 6-7a.
4.5.4-8 Airflow System Efficiency as a Function of Airflow 104
Rate for an 8-Degree Blade Pitch
4,5.4-9 Airflow System Efficiency as a Function of Airflow 105
Rate for a 10-Degree Blade Pitch
4.5.4-10 Airflow System Efficiency as a Function of Airflow 106
Rate for a 12-Degree Blade Pitch
(Continued)
viii
-------
List of Illustrations (cont'd)
Figure No. Title
4.5.4-11 Airflow System Efficiency as a Function of Airflow
Rate for a 14-Degree Blade Pitch
4.5.4-12 Airflow System Efficiency as a Function of Airflow
Rate for a 16-Degree Blade Pitch
4.5.4-13 Airflow System Efficiency and Approximating Straight
Line as a Function of Volumetric Flow Rate
5.1-1 Data Acquisition Equipment
5.1-2 Frequency Response Calibration of the B&K 4.45 Micro-
phone. Upper Curve - Free—Field Normal Incidence
Response; Lower Curve — Pressure Response
5.1-3 Free-Field Corrections for the B&K 4145 Microphone
with Protective Grid as a Function of Incidence Angle
5.1-4 Free-Field Response Corrections for the B&K 4145
Microphone When Used with the B&K UA 0207 Windscreen
5.1-5 Measured Frequency Response at 15 ips of the Stella-
vox SP-7 Recording Channels
5.1-6 Data Reduction Equipment
5.2-1 Ground Level Measurement Locations
5.5-1 Source-Receiver Geometry
6.1-1 (a) Tethersonde Instrument Package
(b) Tethersonde Balloon in Flight
6.1-2 Sample Theodolite Data
107
108
110
118
120
121
122
119
124
126
141
154
154
158
VOLUME II
A-l
A-2
A-3
A-4
A-5
A-6
Aerial View of the Cliffside Experimental Cooling 2
Tower
Photograph of the Cliffside Tower Showing the Control 2
House
Schematic of Hot Water Supply and Cold Water Return 3
Systems for the Tower Test Facility
View of Tower Showing Precast Side Wall Construction 4
View of Dry Heat Exchangers on the Tower Inlet Face 4
Photograph of the Wet Fill Elements in Their Wire Mesh 6
Spacer Grid
(Continued)
ix
-------
List of Illustrations (cont'd)
Figure No. Title Page
A-7 View of Inlet Fill Elements Being Installed 7
A-8 View of the Rear of the Fill Section Showing the Drift 8
Eliminator Assembly
A-9 Distribution Nozzles in the Hot Water Basin at the Top 8
of the Tower
A-10 Fan Deck and a Portion of the Fan Stack 9
A-ll View of the Hot Water Distribution Header at the Top 9
of the Tower
A-12 Tower Hot Water Supply Piping 10
A-13 Tower Hot Water Circulating Pump 10
A-14 Tower Hot Water Supply Pump with Bypass Line 12
A-15 Tower Air Circulating Fan 12
A-16 View into the Bottom of Fan Stack, Showing the Fan 14
Drive Assembly
A-17 Motor Controls for the Fan Drive System 14
F-l Flow Diagram for Main Program TOWER 184
F-2 Flow Diagram for Subroutine ABSORB 186
F-3 Flow Diagram for Subroutine GRND 187
F-4 Flow Diagram for Subroutine SOURCE 188
F-5 Flow Diagram for Subroutine TITLE 188
1-1 Format of Data Prepared for Rubin's Program 250
-------
LIST OF TABLES
VOLUME I
Table No. TitLe
4.1-1 Locations of Thermocouples, Dewcells and Thermo-
meters
4.2-1 Sample of Raw Tower Data from a Dry Heat Exchanger
Test,
4.2-2 Delineation of Input Paper Tape Data by Channel for
Thermal and Flow Data
4.4-1 Thermal and Flow Test Grid
4.5.1-1 Mass Transfer Coefficient Correlation Data
4.5.2-1 Water Loss Correlation Data
4.5.2-2 Comparison of All Wet and Winter Wet Correlations of
Water Loss AL/L
4.5.3-1 Dry Heat Exchanger Heat Transfer Coefficient Cor-
relation Data
5.1-1 Measurement Equipment Models
5.1-2 Data Reduction Equipment Models
5.4-1 Independent Variables and Corrected Noise Levels
5.4-2 Fitted Coefficients for Surviving Model Terms
5.4-3 Comparison of Measured (Y) and Predicted (Y) Noise
Levels* with Standard Error (S)
5.4-4 Estimates of Standard Deviation
6.2.1-1 Sample Data, as Received
20
24
28
70
82
88
90
92
118
124
128
132
134
140
162
VOLUME II
C-l
C-2
C-3
Sample Input Listing for Nonplume Tests 26
Delineation of Input Paper Tape Data by Channel 28
Tower Diffuser Throat Static and Velocity Pressure 30
Data
(Continued)
XI
-------
List of Tables (contM)
Table No. Title Page
C-4 Listing of the Tower Data Reduction Computer Code 30
C-5 Sample Output Listing 110
D-l Examples of Punched Card Output from the Data Reduc- 126
tion Program (Appendix C) Used as Input to Cor-
relation Programs
D-2 Listing of the Mass Transfer Coefficient Correlation 127
Computer Code
D-3 Sample Output from the Mass Transfer Coefficient Cor- 136
relation Code
D-4 Listing of the Water Loss Correlation Computer Code 141
D-5 Sample Output fromthe Water Loss Correlation Code 152
D-6 Listing of the Colburn j Factor Correlation Computer 157
Code
D-7 Sample Output from the Colburn j Factor Correlation 161
Code.
D-8 Listing of the Fan System Efficiency Correlation 167
Computer Code
D-9 Sample Output from the Fan System Efficiency Cor- 169
relation Code
E-l Measured Octave Band Noise Levels, dB* 180
E-2 Measured Overall Noise Levels, dB* 183
F-l Sample Output from Program Tower 190
H-l Sample of Raw Data File for Plume Tests 208
1-1 The Rubin Plume Prediction Computer Code 252
J-l Comparison of Predicted and Observed Plume Character- 264
istics
xii
-------
APPENDIX A
DESCRIPTION OF TOWER TEST FACILITY
A.I INTRODUCTION
The cooling tower test facility is located at the Cliffside Generating
Station of the Duke Power Company system in the Piedmont region
of southwest North Carolina, on the northwest side of the main plant,
adjacent to the Broad River. It consists of a single cell, mechanical
draft, crossflow tower and associated water circulating, electrical,
air control and instrumentation systems. The overall facility is shown
in Figures A-l and A-2.
Within the Cliffside station, the test tower is situated on a loop off
the main hot water header connecting the high pressure condenser of
Duke Power Co. unit 5 turbine to their cooling tower "A", in such a
manner that a portion of the hot water enroute to their cooling tower
system may be diverted through the test tower for test purposes and then
discharged to the cold water basin of tower "A", as shown schematically
in Figure A-3.
A.2 TOWER CONSTRUCTION
The cold water basin and sump at the bottom of the tower are constructed
of poured-in-place reinforced concrete. The side wall structure is of
precast, reinforced concrete, installed atop the cold water basin which
also serves as the foundation, as shown in Figure A-4. The tower is
fitted with a dry heat exchanger system on the two inlet faces of the
cell. Each of the two sets of exchangers consists of four units 40
feet long by 10 feet wide, shown in Figure A-5. Each exchanger unit
-------
Dwg. 7697A80
Figure A-l. Aerial View of the Cliffside Ex-
perimental Cooling Tower.
Figure A-2. Photograph of the Cliffside Tower
Showing the Control House.
-------
Dwg. 7697A81
Tower Test Facility
Cold
Return
O
O
O
O
O
O
Tower "A"
Hot Supply
Water
High Pressure
Condenser
Figure A-3. Schematic of Hot Water Supply and Cold Water
Return Systems for the Tower Test Facility.
-------
Dwg. 7697A82
n x^
Figure A-4. View of Tower Showing Precast
Side Wall Construction.
Figure A-5. View of Dry Heat Exchangers on
the Tower Inlet Face,
-------
contains 186 tubes of 90-10 Cu/Ni, 1.0 inches od with 0,035-inch-thick
walls and finned with 0.018-inch-thick by 0.625-inch-high aluminum,
wound on the tubes at 11 turns per inch. The tubes are rolled into
their tube sheets on a 2.5-inch triangular pitch, with four tube rows.
The inlet face area of the dry heat exchanger system is 3200 ft2, 1600
ft2 on each side of the tower. Located behind the dry heat exchangers
are louvers which prevented water in the wet fill volume from spilling
out of the front of the tower.
The fill volume, located behind the louvers, is 40 feet high by 18 feet
deep by 40 feet wide, on each side of the cell. Fill elements are in-
verted V, perforated segments of fire-retardant PVC, supported by a grid
of 0.10-inch-diameter, polyvinyl-coated, galvanized wire. The fill ele-
ments are installed with 8-inch vertical and 8-inch lateral pitches in
an equally staggered array. Figure A-6 is a photograph of the fill ele-
ments in their wire spacer mesh. Figure A-7 shows the fill elements
being installed. Located behind the fill volume are arc-shaped PVC drift
eliminators, shown in Figure A-8. At the top of the tower, the two (one
for each section of fill volume) hot water basins are of reinforced con-
crete situated on either side of the fan stack. The bottom of each basin
contains 3.5-inch-diameter holes on 24-inch centers, in which PVC nozzles
are installed to distribute hot water over the top of the fill, as shown
in Figure A-9.
The fan deck is of reinforced concrete and is situated between the hot
basins. It supports the 32-foot-diameter fiberglass fan stack and
houses the fan. The fan deck and stack are shown in Figure A-10.
Figure A-ll shows one of the two 24-inch-diameter hot water distribution
headers supported above the hot water basin. In the background is the
Cliffside tower "A". Each header is equipped with two air-operated
valves with which the flow into each basin is controlled. Each header
also contains two manually operated valves used to isolate the dry heat
exchangers when all-wet operation is desired. Each header is vented to
atmosphere through a short stack, as shown in Figure A-ll,
-------
Dwg. 7697A83
^^x^-^^^xy^T^^^^»gHiMMaaa»i
nrnnMiM»» r~*~***—^—^..^u.^
*
^fe
Figure A-6. Photograph of the Wet Fill Elements in Their Wire Mesh Spacer Grid.
-------
n>
(D
3
to
03
So
en
-------
Dwg. 7697A85
00
Figure A-8. View of the Rear of the Fill Section
Showing the Drift Eliminator Assembly.
Figure A-9. Distribution Nozzles in
the Hot Water Basin at the
Top of the Tower.
-------
Dwg. 7697A86
VD
Figure A-10. Fan Deck and a Portion of the Fan
Stack.
Figure A-ll. View of the Hot Water Distribu-
tion Header at the Top of the Tower.
-------
OT
to
c
ro
o
if
-x
o
rt-
GO
•
Id
TJ
-J.
c
J
CO
o
CD
O
rf-
QJ
rt-
ro
-s
o
c
rf-
^i.
3
to
-------
A.3 WATER SYSTEM
The hot water supply for the tower test facility is from the Cliffside
plant's main hot water header, the connection being shown in Figure
A-12. This figure shows a manually operated 24-inch-diameter gate valve
used to isolate the test facility from the remainder of the plant. Hot
water line size is stepped up to 36-inch diameter downstream from this
valve and reduces again to 24-inch diameter at the hot water supply
pump, shown in Figures A-13 and A-14. The 36-inch-diameter header is
equipped with an Ellison Annubar flowmeter.
The pump is a 24-inch, type 24MN mixed flow pump powered by a 300 hp,
4160 VAC, 592 rpm motor. The pump is equipped with a vent and drain.
A 24-inch air-operated control valve at the pump discharge controls the
total flow of hot water to the tower. At the discharge of this valve
the supply header is again stepped to 36-inch diameter as it runs to
the base of the tower. Here the header tees into a horizontal 24-inch-
diameter line which in turn elbows into two vertical risers, one for
each side of the cell. The risers finally elbow into horizontal supply
headers above each hot water basin at the top of the tower.
A.4 AIR SUPPLY
Air is drawn through each side of the tower cell by a Hudson Products
Company 32-foot-diameter axial fan, model number T-32B-14, located in
the fan stack at the top of the tower. This fan, shown in Figure A-15,
is fitted with an epoxy-coated steel hub and 14 reinforced fiberglass
blades whose pitch may be adjusted manually. The fan is powered through
a 13.93:1 geared speed reducer by a 350 hp, 4160 VAC, 1800 rpm motor
with wound rotor. Fan speeds of 64, 95, 101, 114, 120 and 127 rpm are
available through motor controls. Figure A-16 shows the fan drive
system.
11
-------
Dwg. 7697A88
N>
Figure A-14. Tower Hot Water Supply Pump with By- Figure A-15. Tower Air Circulating Fan.
pass Line.
-------
A.5 CONTROLS
Controls for the tower test facility are located in a control house
best seen in Figure A-2. Within this 12 feet by 24 feet structure is
a Westinghouse power center, rated at 4160 VAC, which includes a main
breaker, pump motor starter, fan motor starter and resistor bank, fan
speed control switch and relays and some DC controls (Figure A-17).
The resistor bank for the fan motor is fan cooled. Source of AC and
DC power is the Duke plant.
Safety switches located in the water supply and discharge headers are
interconnected with the pump motor controls, so that the pump cannot be
operated, or will trip off, without sufficient supply water or high
pressure on the discharge header. Control air monitoring switches pre-
vent startup of the pump without sufficient control air pressure avail-
able. A float switch above the cold water sump trips off the pump motor
if the water in the sump exceeds a predetermined level, to avoid flooding
of the area in the event of line stoppage or incorrect valving on the
discharge to the "A" tower basin. Vibration safety switches are located
on the fan motor and speed reducer and an oil pressure safety switch
monitors the speed reducer oil oressure.
Four air control stations are located in the control house. One station
determines the amount of pressure from the control air supply from Duke's
air system. The second station controls the position of the pump dis-
charge valve opening and thus the amount of flow to the test tower. The
remaining two control stations govern the air pressure to the two air-
operated valves in the distribution headers above the hot water basins,
thus controlling the flow into each hot water basin.
13
-------
Dwg. 7697A89
Figure A-16.
View Into the Bottom of Fan Stack,
Showing the Fan Drive Assembly.
Figure A-17.
Motor Controls for the Fan Drive
System.
-------
APPENDIX B
COOLING TOWER STARTUP, OPERATING
AND SHUTDOWN PROCEDURES
This appendix covers the procedures followed by test site personnel in
starting up, operating and shutting down the cooling tower test facility.
It is included here in the event that future needs might require that
the facility be run again as a test apparatus.
B.I STARTUP PROCEDURE
I. Call Duke Power Company control room and get their operator's
okay to start water fill.
II. Visually inspect inside tower to be secure and free of ice,
also inlet louvers behind heat exchangers.
III. Check water system valving as follows:
1. 36-inch butterfly valve at Marley basin: OPEN
2. Pump discharge drain valve: CLOSE
3. Pump discharge vent valve: OPEN
4. Pump casing drain valve: CLOSE
5. Pump casing vent valve: OPEN
6. Pump suction drain valve: CLOSE
7. Pump suction vent valve: OPEN
8. 4-inch pump bypass valve: OPEN
IV. Check air control valving as follows:
1. Check air supply pressure, set to 24 psig.
2. Check and set pump discharge valve, manual control station
pressure to 18 psig.
3. Check visually to see that pump discharge valve is fully
closed.
4. Set east and west control valves to one-half open, by
setting manual control valve pressures.
15
-------
V. Check manual control valving as follows:
1. For 100 percent wet operation:
a. The four 12-inch valves on top of tower - CLOSED
2. For 100 percent dry operation:
a. The four 12-inch valves on top of tower - OPEN FULL
b. The four 12-inch valves at bottom of heat exchanger -
OPEN FULL
c. Adjust bottom valves after flow is established through
heat exchangers, to maintain heat exchanger full, as
indicated by water being visible in tubing at top of
heat exchanger.
3. For wet/dry operation, determine settings from proper
wet/dry percentage sheets, after establishing desired
total flow for tower.
VI. Set up remaining valving as follows:
1. Open 4-inch bypass valve around 24-inch supply valve.
2. Open 24-inch supply valve.
3. Close pump suction vent valve when air-free water flows.
4. Close pump casing vent valve.
5. Close pump discharge vent valve.
6. Close 4-inch bypass valve around pump.
Water system is now charged.
VII. Pump startup:
1. Set pump discharge valve control air to 16 psig.
2. Close the 120 V, DC control switch.
3. Check that green control circuit light on pump starter
is ON.
4. Check that green control circuit light on fan starter
is ON.
5. Depress PB-1 reset button on pump starter.
6. Check that green run light stays ON,
7. Check main breaker in ON position.
8. Check that approximately 4160 V, A-C are indicated on
each phase, per voltmeter.
9. Remove padlock from pump starter lockout.
10. Place pump lockout in ON position.
11. Start pump by depressing START button.
12. Check that red light on panel comes ON.
13. Check that green start light goes OFF.
14. Open pump control valve by setting its manual control
station pressure to 10 psig, no lower, to start flow
through pump and stop cavitation.
15. Gradually adjust manual control station pressure to obtain
the desired flow to the tower for the next test by monitor-
ing the manometer.
16
-------
16. Bleed the electronic flow meter and reset "zero" by open-
ing flow meter manifold bypass valves, monitoring channel
119 on the Fluke and adjusting the "zero screw" at the flow
meter as required, close bypass valves.
17. Make final, fine adjustment of pressure at manual control
station to obtain desired flow, as indicated by average
readout of channel 119 on the Fluke, and determined by
the tower flow chart curve.
18. Measure water depth in each basin, top of tower and adjust
"east-west" basin levels as required, by adjusting pres-
sures at the "east-west" manual control stations.
19. The operator at top of tower will now make visual inspect-
ion of fan blades and hub to assure no ice, or foreign
materials on rotating parts.
VIII. Fan Startup:
Caution; The fan is not to be started up unless it
has been one hour minimum since it was
shut down.
1. Start switchgear ventilator fan on high position.
2. Check that fan speed selector is in 50 percent position.
3. Double-check that green control circuit light is ON.
4. Check that VS-1 amber light is OFF.
5. Check that VS-2 amber light is OFF.
6. Remove padlock from fan starter lockout.
7. Place lockout in the ON position.
8. Press START button.
9. Check that red run light comes ON.
10. Check that green start light goes OFF.
11. Set fan to desired speed by stepping speed selector
through speed ranges at one-minute intervals.
IX. Setting up Fluke data logger:
1. Energizing:
a. Check that power switch key is in the POWER ON position.
b. Check that the STOP/RESET button is depressed.
2. Date and time entry:
a. Check date and time by depressing DATE/TIME key on
display control; if correct, check and enter day of
year by depressing DAYS on time entry, indicating
correct three-digit day on data entry keyboard;
depressing ENTER/STEP.
b. Obtain the correct time by phone. Depress HR/MIN/SEC
on time entry, indicate the correct military time
using two digits for each hour, minute, second, de-
press ENTER/STEP.
17
-------
3. Fixed data: Enter fixed data consisting of a five-digit
test I.D. number from the test grid sheet and the single-
digit run number denoting run number 1,2,3,4, or 5 of the
given test, totaling six digits. This is done by depres-
sing FIXED DATA on scan format, indicating the correct six-
digit number on data entry keyboard and depressing ENTER/
STEP.
4. Channel Selection:
a. Depress FIRST CHANNEL on scan format; indicate de-
sired channel on data entry keyboard and depress
ENTER/STEP.
b. Depress LAST CHANNEL on scan format; indicate de-
sired channel on data entry keyboard and depress
ENTER/STEP.
c. A channel desired for monitoring is selected by de-
pressing MONITOR CHANNEL on scan format, indicating
the desired channel with data entry keyboard and de-
pressing ENTER/STEP.
d. Interval of time channel is to be monitored may be
set by depressing INTERVAL/HR MIN SEC on scan format,
indicating desired interval [two digits for each hr
min sec (00.00.10 for 10 seconds)] on data entry key-
board and depressing ENTER/STEP.
X. Actuating the acoustical coupler:
1. Check that the switch on the terminal end is in the TEL
position.
2. Turn switch on the opposite end ON; red light will glow.
XI. Actuating teletype:*
1. Turn switch to LINE position.
2. Depress, tape ON button.
3. Run out about 2 feet of lead tape by depressing SHIFT,
CONTROL, REPT., @ simultaneously.
B.2 SHUTDOWN PROCEDURE
Fan Shutdown:
1. Push STOP button.
2. Check red run light for OFF.
3. Check green light for ON.
*For taping test runs only. Other modes outlined later.
18
-------
4. Place fan starter lockout in OFF position.
5. Replace padlock.
6. Turn 120 V, D-C control circuit OFF, only if pump is not
running.
7. Allow ventilator fan to run for 5 minutes after main fan
shutdown, then turn OFF.
II. Pump shutdown:
1. Depress STOP button.
2. Check that red run light goes OFF.
3. Check that green start light stays ON.
4. CLOSE 24-inch supply valve.
5. OPEN pump discharge drain valve.
6. OPEN pump discharge vent valve.
7. OPEN pump casing drain valve.
8. OPEN pump casing vent valve.
9. OPEN pump suction drain valve.
10. OPEN pump suction vent valve.
11. OPEN 4-inch pump bypass valve.
12. Move lockout on pump starter to OFF.
13. Replace padlock in lockout.
14. Place 120 V D-C control switch in OFF position, unless
fan is running.
III. Securing site at end of each shift:
1. Check flow meter house door CLOSED.
2. CLOSE control house doors securely.
3. Check all fence gates CLOSED.
4. Check utility building door LOCKED.
5. Check acoustic coupler OFF.
6. Check teletype OFF.
*7. Check Fluke power ON.
*8. Check electronic manometer for ON.
*9. Check time base counter for ON.
*10. Check wattmeter for ON.
B.3 OPERATION PROCEDURE
I. First test of day only; electronic flow meter:
1. With tower in approximate desired mode of operation set
up Fluke to monitor channel 119.
2. Zero the electronic flow meter. (One operator at the Fluke,
one at the flow meter, each with walkie-talkie)
*Except over off weekends or holidays, turn these instruments off.
19
-------
a. OPEN equilizing valves on both flow meter manifolds.
b. Bleed air from both flow meter bodies.
c. With operator at Fluke monitoring values over walkie-
talkie, operator at flow meter zeros the flow meter
by turning the adjusting screw C.W. to increase, C.C.W.
to decrease until zero is established by operator at
Fluke.
d. With zero satisfied, CLOSE equalizing valves.
e. CLOSE and LATCH flow meter house door.
II. As part of each test; electronic manometer: with Scanivalves
in 0-0 position as indicated by the panel lights, the electronic
manometer dial set to the proper scale and sensor, the Fluke
set to monitor channel 000, zero the electronic manometer, as
follows: zero manometer as indicated on Fluke channel 000,
using screwdriver in sensor adjusting screw, C.W. to increase,
C.C.W. to decrease, on sensor no. 2.
III. Begin test by; Fluke, acoustic coupler and teletype:
1. Double-check date and time.
2. Double-check fixed data.
3. Enter 000 in first channel.
4. Enter 000 in last channel.
5. Set interval for 10 seconds.
6. Double-check acoustic coupler for proper switching.
7. Double-check teletype for line position.
8. Double-check teletype for tape on, lead on tape, date and
test no. on tape lead.
9. Depress ALL DATA on the external enable panel.
IV. Make test run by; all stations:
1. Depress interval on Fluke scan control. Teletype will
operate through 10 second cycle, then stop.
2. Immediately depress the pair of Scanivalve control buttons
on control panel co advance Scanivalve indicating lights
from 0-0 to 1-1.
3. Continue this sequence until the jsecond set of 8-8 indi-
cating lights are lit.
4. When teletype stops after recording data on second 8-8
position, depress STOP/RESET on Fluke.
5. Turn electronic manometer dial to ZERO.
6. Advance Scanivalve indicating lights to 8-8, then 0-0,
7. Depress FIRST CHANNEL on Fluke scan format.
8. Indicate channel 10 on data entry keyboard.
9. Depress ENTER/STEP.
10. Depress LAST CHANNEL on scan format.
11. Indicate channel 118 on data entry keyboard.
20
-------
12. Depress ENTER/STEP.
13. Depress SINGLE on scan control. Teletype will operate and
record data for channels 10 through 118 on paper and tape,
then stop.
14. Check that monitor channel is 118, if not indicate on data
entry keyboard.
15. Depress ENTER/STEP.
16. Depress MONITOR on scan control and allow teletype to
record five lines of channel 118 data.
17. Depress STOP/RESET on Fluke.
18. Immediately depress MONITOR on scan format.
19. Indicate channel 119 on data entry keyboard.
20. Depress ENTER/STEP.
21. Depress MONITOR on scan control and allow teletype to
record five lines of channel 119 data.
22. Depress STOP/RESET button on Fluke.
V. Manual monitored data; test trailer and control house.
Meanwhile a second operator records manually-monitored data:
1. In control house, hand record for channels 120 through 130
as per data form.
2. In control yard, hand record for channels 131 through 133.
3. In test trailer, hand record for channels 134 through 137.
4. When step IV-22 above is completed, one operator manually
types the data on the teletype, indicating the channel
number, space, data, double-space; channel number, space,
data, double-space, etc.
Note: When an error is made, count the number of spaces
involved in the error, then depress the percent key
one time for each space counted, then type in the
data correctly. On all entries consisting only of
full unit values, end the figures with a decimal
point as: (100.).
5. With manual data typed in complete, type CR,LF.
This completes data logging for one standard run. Each
test will consist of five runs, except plume tests, which
consist of three runs.
6. Initiate next run or next test.
21
-------
APPENDIX C
DATA REDUCTION PROGRAM
The purpose of this appendix is to present the data reduction program
which reads the paper tape from the cooling tower data acquisition
system, decodes and converts the information to pressure, temperature,
flow rate, etc. and then calculates the tower mass transfer coefficient,
air-side heat transfer coefficient, fan efficiency, etc. Table C-l
presents a sample input listing for nonplume tests.
It is evident from the table that the data exists in several formats.
The initial data, columnar in format, is the velocity pressure valve
output and is recorded automatically by machine during a scan. Channels
10-114 (the first two or three digit number in an entry) are fill, air,
and dewcell temperatures. Multiple readings of channel 118, the dry
heat exchanger pressure transducer, insured a good average measurement.
The same argument applies to the Annubar pressure transducer output,
channel 119. Channels 120-137 were the only manual entries.
If the test was to acquire plume data, then additional information would
follow channel 137. Table C-2 presents a concise decoding of the infor-
mation on each data tape by channel. Table C-3 should be referred to
for information regarding the first data entries.
The data reduction program listing is presented in Table C-4. With the
numerous comment cards and Section 4.3 the reader should be able to
follow the program and its logic. It is pertinent to note that the
program is organized in a hierarchy of subroutines, each one having a
very specific function. As a result, the main program is little more
23
-------
than a series of call statements and the necessary logic for routing
the data to the appropriate subprograms.
Table C-5 is a listing of the output from a WET/DRY run. Most of the
output should be self-explanatory with only a few exceptions. Output
which is presented as an array (e.g., Tower Inlet Air States) is
arranged so that the spatial orientation between the printed output and
the tower location is maintained. Consider, for instance, the 'Tower
Inlet Air States' array. Reading from left to right corresponds to
scanning the tower from left to right, with respect to an observer
moving with the air stream. Reading from top to bottom of a column of
array elements corresponds to scanning the tower from top to bottom.
In addition, the tower inlet, wet fill inlet, and wet fill outlet arrays
also correspond spatially, i.e., left to right in any of the three
arrays corresponds to the same movement in the tower.
The tower inlet velocity array is set to zero in the read subroutine
(to avoid undefined variables in the common block) since the probes are
never used. The space was provided, however, in the event that they
were ever utilized.
Under the 'Wet Tower Heat and Mass Transfer Results' is a value titled
'Percent Difference Between Stack and Tower Face Velocity'. This was
intended to be a check between the air flow rate as calculated by the
stack and heat exchanger face velocity pressure probes. Since the face
probes remained unused, the percent difference is 100.0 Under the same
wet tower results section there is a 'Percent Difference in Flow Rate
as Perceived by the Manometer and Transducer' heading which, in this
case, indicates a 100.0 percent value. This simply means that either
the Annubar manometer, or the pressure transducer reading was not avail-
able for that test. The program automatically uses whichever is avail-
able and sets the difference to 100 percent.
-------
Under 'Dry Tower Heat Transfer Results' is another heading of 'Percent
Difference in Flow Rate as Perceived by the Manometer and Transducer'.
The large reading indicates that either the dry heat exchanger manometer
or pressure transducer reading was not available for that test (in this
case it was the transducer).
25
-------
TABLE 0-1
SAMPLE INPUT LISTIN3 FOR NONPLUME TESTS
421242
0 + 0.000 V
421242
0 + 1.427 V
421242
0 + 1.370 V
151:08:55:06
421242
0 •» 5.248 V
I5i:08:5£:i6
421242
0 + 1.558 V
I5i:oa:s*:26
421242
0 * 1.139 V
421242
0 * 1.276
421242
0 * 1.428
421242
0 •» 1.441
isi:o8:se:o6
421242
0 * 1.585
I5i:o8:s€:i6
421242
0 * 1.028
421242
10 * 83.5
14 * €8.9
18 * 101.2
22 BT
26 * £8.8
(Continued)
V
V
V
V
V
F 11 + 140.9 F
F 15 + 68.5 F
F 19 + 140.1 F
F 23 + 141.4 F
F 27 + 69.0 F
12 * 138.4 F 13 * 136.6 F
16 * 142.0 F 17 + 141.4 F
20 + 141.2 F 21 + 129.5 F
24 + 141.0 F 25 + 68*9 F
28 + £8.9 F 29-» £8.6 F
26
-------
Table c~I (cont'd)
30
34
38
42
46
50
54
58
62
66
70
74
78
82
86
90
94
98
102
106
110
114
118
151:
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
-
:ot
£8.8 F
67.0 F
150.1 F
150.1 F
€0.5 F
£5.6 F
57.8 F
7C.O F
€9.7 F
85.0 F
59.2 F
52.1 F
53.3 F
57.1 F
54. £ F
172.3 F
50.5 F
58.4 F
67.0 F
136.1 F
142. E F
68.5 F
0.05KV
$:59:42
31
35
39
43
47
51
55
59
63
67
71
75
79
83
87
91
95
99
103
107
111
115
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
68.9 F
192.1 F
176.4 F
184.8 F
96.5 F
98.4 F
99.9 F
70.7 F
95.4 F
91.8 F
99,6 F
77.5 F
88.5 F
92.9 F
101.3 F
178.6 F
92.9 F
65.7 F
67.1 F
138.6 F
139.1 F
68.8 F
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96
100
104
108
112
116
* 69.0 F
+ 178.7 F
+ 184,9 F
+ 179.8 F
+ 99.7 F
+ 98.0 F
* 100.3 F
+ 98.6 F
+ 96.1 F
+ 93.2 F
* 85.3 F
+ 91.1 F
+ 100.0 F
+ 99.5 F
* 189.2 F
8T F
+ 89.4 F
+ 67.0 F
+ 67.0 F
+ 94.2 F
* 72.4 F
+ 72.6 F
33
37
41
45
49
53
57
61
65
69
73
77
81
85
89
93
97
101
105
109
113
117
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
67
185
153
91
ICO
100
86
83
81
95
89
98
59
58
176
193
.5 F
.1 F
.1 F
.2 F
.5 F
.4 F
.6 F
.2 F
.3 F
.2 F
,7 F
.4 F
.3 F
.5 F
.8 F
.5 F
•» 56.1 F
4
4
4
4
67
67
98
72
ei
.4 F
.3 F
.5 F
.1 F
F
421242
118
118
118
118
118
151:
-
-
-
-
—
:o«
O.Q6KV
0.06KV
Q.05KV
G.05PV
0.0£*V
J:e4:28
118
118
118
118
118
-
-
-
-
—
0.05MV
0.06MV
0.06MV
0.06HV
0.05HV
118
118
118
118
118
- 0.06PV
- 0.06PV
- Q.06FY
- 0.061'V
- Q.Q5PV
118
118
118
118
118
-
-
0.
0.
05MV
05FV
- O.Q6FV
-
—
0.
0.
06PV
05HV
421242
119
119
119
119
119
4
4
4
4
4
81.29PV
84.07MV
83.5QMV
85.91MV
83.44HV
119
119
119
119
119
4
4
4
4
4
80.35HV
84.01NV
81.74HV
84.39MV
83.46HV
119
119
119
119
119
+ 81.17KV
+ 83.70FV
+ 83.5C*y
+ 81.34FV
* 81.99PY
119
119
119
119
119
4
4
4
4
4
€3.
£3.
84.
76.
75.
26HV
41KV
Q9KV
73PV
87KW
120 4050.
126 35.0
132 00.0
121 45.5
127 12.8
133 00. 0
122 45 .5 123 45 .5 124 35,5 125 35.5
128 10.0 129 70.0 130 2.95 131 00.9
134 127. 135 12. 136 .260 137 30.09
151:09:05:58
27
-------
TABLE C-2
DELINEATION OF INPUT PAPER TAPE DATA BY CHANNEL
Channel Description
0 11 repetitions of time, run ID, and transducer output (refer
to Table C-4). The first grouping contains the transducer's
zero, Group 2 and 3 are velocity pressures, 4 is a static
pressure, and the remaining are velocity pressures.
10 Tower basin cold water return temperature
11-13 Heat exchanger air inlet dewcell temperature
14-15 Heat exchanger inlet air temperature
16-17 Heat exchanger inlet air dewcell temperature
18 Tower hot water inlet temperature
19-21 Heat exchanger inlet air dewcell temperature
22 Not used
23-24 Heat exchanger inlet air dewcell temperature
25-32 Heat exchanger inlet air temperature
33-34 Heat exchanger outlet water temperature
35-44 Wet fill outlet air dewcell temperature
45-57 Fill water temperature
58-59 Ambient air temperature
60-76 Fill water temperature
77-86 Wet fill outlet air temperature
88 Not used
(Continued)
28
-------
Table C-2 (cont'd)
Channel Description
89-93 Stack exit air dewcell temperature
94-98 Stack exit air temperature
99-105 Fill inlet air temperature
106-107 Ambient air dewcell temperature
108-109 Fill water temperature
110-117 Not used
118 Dry heat exchanger pressure drop transducer
119 Annubar element transducer
120 Tower voltage (v)
122-126 Tower pump amperage (a)
127 Annubar manometer column rise above datum (in)
128 Annubar manometer column fall below datum (in)
129 Annubar manometer ambient temperature (°F)
130 Manometer fluid specific gravity
131 Dry heat exchanger manometer column fall below datum (in)
132 Dry heat exchanger manometer column rise above datum (in)
133 Dry heat exchanger manometer temperature (°F)
134 Fan rotational speed (RPM)
135 Fan pitch (degrees)
136 Fan power (reading x 700 - kw)
137 Barometric pressure (in Hg)
29
-------
TABLE C-3
TOWER DIFFUSER THROAT STATIC
AND VELOCITY PRESSURE DATA
151:08:45:25 —-
421241
0 * 0.001 V
151:08:45:35'
421241
0 * 1.247 V
151:08:^5:45
421241
0 + 1.340 V
151:08:45:55"
421241
0 + 5.316 V
151:68:46:05
421241
0 * 1.597 V
isi:o8:46:is
421241
0 «• 1.075 V
151108:46:25
421241 -»—
0 * 1.376 V
151:08:46:25
421241
0 + 1.400 V
151:08:46:45
421241
0 + 1.443 V
151:08:46:55
421241
0 * 1.667 V
isi:os:47:05
421241
0 * 0.892 V
day, hour, minute, second
run ID
transducer zero
velocity pressure
static pressure
day, hour, minute, second
run ID
velocity pressure transducer
output
velocity
pressure
30
-------
TABLE C-4
LISTING OF TOWER DATA REDUCTION COMPUTER CODE
PROGRAM TVATOW (INPUT,OUTPUT,PUNCH,TAPE5=INPUT,TAPE6=OUTPUT,TAPE7= AC 10
1 PUNCH) AC 20
DIMENSION IELEV(8,5), DBP(8,5), WBDP<8,5), AVELP(8,5), NCT2(5) AC 30
DIMENSION VISIO(5) AC 40
DIMENSION A(ll), B(5), TOLTWO(2), AHTX(21), BHTXC5), TOLWBC2) AC 50
DIMENSION Tt)LTOW(2)f IPUNCH(7,5), AFAN(5) AC 60
COMMON /DATIN/ TIDP(10),TIAT(10),WTL1(12),WTL2(4),WTL3(12)fWTL4(4) AC 70
1 ,TODP( 10) ,T()AT( 10) ,SEDP(5) ,SET(5) , ADPT(2) ,AT(2) ,XOWT(2) ,DBT,CWRT,H AC 80
2WIT,FIDBT(7),VHTX,PERFF,TV,PA(3),FA(3)',HI,XLOW,AMB,SPGR,XLOWDR,HID AC 90
3RY,AMBDRY,RPM,FANANG,FANPWR,BAR(),VPHTX(9),CAL1,VPSTK(10),CAL2,ICOD AC 100
4E(6),IDATE AC 110
COMMON /DAT2/ IELEV,DBP,WBDP,AVELP,VISI(),NCT2 AC 120
DATA AHTX/I.O,.93,2.25,1.072,2.5,.018,11.0,4.0,184.0,.72167,40.1,2 AC 130
16.0,118.0,5667.25,7*0.O/ AC 140
DATA IPUNCH/I,1,2,1,1,1,1,3,2,3,3,2,2,3,6,3,6,6,3,3,6,6,6,6,6,4,5, AC 150
16,6,6,6,6,6,6,67 AC 160
DATA AFAN/16.0,.7924,36.4167,32.0,.34/ AC 170
DATA SHEIG/63.5/ AC 180
IPUN=1 AC 190
C AC 200
C IF AIR MASS FLOWRATE IS TO BE DETERMINED BY A WATER ENERGY AC 210
C BALANCE, THEN SET IMASS=1, IF NOT THEN IMASS=0 AC 220
C AC 230
IMASS=0 AC 240
C AC 250
C SET ALL PHYSICAL CONSTANTS AC 260
C FAN DIAMETER (FT) AC 270
(Continued)
-------
Table C-4 (contM)
FBDIA=32.0 AC 290
C AC 300
C EFFECTIVE FILL HEIGHT (FT) FOR AIR LOADING CALCULATION AC 310
C AC 320
HIGHG=39.5 AC 330
C AC 340
C EFFECTIVE FILL WIDTH(FT) FOR AIR LOADING CALCULATION AC 350
C AC 360
WIDTHG=41.167 AC 370
C AC 380
C EFFECTIVE FILL DEPTH (FT) FOR WATER LOADING CALCULATION AC 390
C AC 400
DEPL=10.0 AC 410
C AC 420
C INTEGRATION HEIGHT(FT) AC 430
C AC 440
XIHIGH=39.667 AC 450
C AC 460
C INTEGRATION DEPTH(FT) AC 470
C AC 480
XIDEP=IO.O AC 490
C AC 500
C ABSOLUTE (DEG.F) AND RELATIVE ERROR DESIRED IN CALCULATION OF AC 510
C A MULTIPLIER USED TO DETERMINE THE NUMBER OF VERTICAL TOWER AC 520
C INCREMENTS AC 530
C AC 540
XMFY=1.0 AC 550
PROGRAM TVATOW(INPUT,OUTPUT,PUNCH,TAPE5=INPUT,TAPE6=OUTPUT,
C AC 560
C TOWER EXIT WATER TEMPERATURE AC 570
C AC 580
TOLTOW(I)=.01 AC 590
TOLT(W(2) = .OOOI AC 600
(Continued)
-------
Table C-4 (cont'd)
OJ
CO
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
NUMBER OF STACK VELOCITY PRESSURE MEASUREMENTS
NSTKO=10
NUMBER OF HEAT EXCHANGER FACE VELOCITY PRESSURE
MEASUREMENTS
NHTX=9
FACE AREA OF HEAT EXCHANGER
HTXARA=1726.11
STACK CROSS-SECTIONAL AREA AT LOCATION OF VELOCITY PRESSURE
ASTACK=1003.825
SET ANY PROGRAM CONTROL CONSTANTS
IS STACK STATIC PRESSURE AVAILABLE? YES=1
ISTATP=I
IF IT IS AVAILABLE WHAT IS ITS LOCATION IN VPSTK(N)?
NSTATP=3
WILL STATIC PRESSURE AND FAN CURVE BE USED TO CALCULATE AIR
FLOHRATE? YES=1, N0=0
IFAN=0
TRANSDUCER OR MANOMETER FOR TOWER WATER FLOWRATE?
ITRANI=0 — MANOMETER
ITRANI = 1 —TRANSDUCER
AC 610
AC 620
AC 630
AC 640
AC 650
AC 660
AC 670
AC 680
AC 690
AC 700
AC 710
AC 720
AC 730
AC 740
PROBES AC 750
AC 760
AC 770
AC 780
AC 790
AC 800
AC 8 JO
AC 820
AC 830
AC 840
AC 850
AC 860
AC 870
AC 880
AC 890
AC 900
AC 910
AC 920
AC 930
AC 940
AC 950
AC 960
(Continued)
-------
Table C-4 (cont'd)
ITRANI=0 AC 970
C AC 980
C TRANSDUCER OR MANOMETER FOR DRY TOWER WATER FLOWRATE? AC 990
C ITRAND=0—MANOMETER AC 1000
C ITRAND=1—TRANSDUCER AC 1010
C AC 1020
ITRAND=0 AC 1030
C AC 1040
C VZERO«TRANSDUCER OUTPUT AT ZERO PRESSURE DIFFERENCE AC 1050
C AC 1060
VZERO=.0008 AC 1070
C AC 1080
C WETBULB TEMERATURE CONVERGENCE TOLERANCES (DEG.F, ND) AC 1090
C AC 1100
TOLWB(1)=*.OI AC 1110
TOLW8(2)=.0001 AC 1120
C AC 1130
C CONVERSION FOR FANPOHER AS GIVEN ON TAPE TO FT-LBF/SEC AC 1140
C AC 1150
FANCON=7 00.0* 7.3 76E+2 AC 1160
PI=3.141592654 AC 1170
INX=1 AC 1180
109 CALL REDUC (INX,IFLAG,IPUN) AC 1190
CALL CODE (ICODE.IDATE.IPUN) AC 1200
C AC 1210
C SET ANY OTHER CONSTANTS AC 1220
C AC 1230
BARPSI=8ARO*4.912E-1 AC 1240
NSTK=NSTKO AC 1250
ITRAN=ITRANI AC 1260
C AC 1270
C CONVERT DEWCELL TEMPERATURES TO DEWPOINT AC 1280
C AC 1290
CALL DEWCON (TIDP,10) AC 1300
CALL DEWCON (TODP.IO) AC 1310
(Continued)
-------
Table C-4 (cont'd)
CO
Ui
C
c
C
c
c
c
c
c
c
c
c
c
CALL DEWCON (ADPT,2)
CALL DEWCON (SEDP.5)
WRTTF frf.TPQ) rATfT)
W* * fi_rrw *r* *-»" 1 V^ V^i 1 \ J. \I—f I J* • £» /
CALL DEWCON (SEDP.5)
WRITE (6,329) (AT(I),ADPT(I),1=1,2),BARO
WRITE (6,339) =0.0
AS A
DIFFERENCE
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
(Continued)
-------
Table C-4 (cont'd)
GPMDRY=DRYFLO AC 1660
GPMWET=GPMWAT AC 1670
WETFLOaWATFLO AC 1680
GO TO 149 AC 1690
129 CONTINUE AC 1700
C AC 1710
C TOWER OPERATION JS WET AND DRY AC 1720
C CALCULATE WATER PROPERTIES AT DISTRIBUTION BASIN TEMPERATURE AC 1730
C AC 1740
CALL WATPRO (DBT,XMUW,XKWtCPWtPRWtRHOW2> AC 1750
CALL WATPRO (HWITfGfG,G,GtRHODRY) AC 1760
IF (VHTX.GT.500.0) VHTX=1.0E-10 AC 1770
GPMDRY=WATDIST(HIDRYfXLOWDR,SPGRtAMBDRY,AHTX(11);HWITfITRAND,VHTX/ AC 1780
11000.OtVZERO,P£RDRY) AC 1790
DRYFLO=GPMDRY*RHODRY*60.0/7.48 AC 1800
WETFLO=WATFLO-DRYFLO AC 1810
GPMWET*WETFLQ*7.48/(60.0*RHOW2> AC 1820
GO TO 149 AC 1830
139 CONTINUE AC 1840
C AC 1850
C TOWER OPERATION IS ALL DRY AC 1860
C AC 1870
WETFLO=0.0 AC 1880
GPMWET«WETFL() AC 1890
GPMDRY=GPMWAT AC 1900
DRYFLO=WATFLO AC 1910
149 CONTINUE AC 1920
C AC 1930
C CALCULATE AVERAGE TOWER STATE PROPERTIES AC 1940
C AVERAGE TOWER INLET DEWPOINT AC 1950
C AC I960
AVTIDP=AVG(TIDP,10) AC 1970
C AC 1980
C AVERAGE TOWER INLET DRY BULB AC 1990
C AC 2000
(Continued)
-------
OJ
Table C-4 (cont'd)
AVTIAT=AVG(TIATf10)
AVERAGE TOWER INLET SPECIFIC HUMIDITY
AviIW»SATHUM(AVTIDPtBARPSI)
AVERAGE TOWER INLET SPECIFIC ENTHALPY
AVTIH=AIRH(AVTIW,BARPSI,AVTIAT)
AVERAGE TOWER INLET WET BULB TEMPERATURE
AVTIWB=TWB(AVTIAT,BARPSItAVTIWfTOLWB)
AVERAGE TOWEROUTLET DEWPOINT
AVTODP=AVG(TODP,10)
AVERAGE TOWER OUTLET TEMPERATURE
AVTOAT=AVG (TO AT," 10)
AVERAGE TOWER OUTLET SPECIFIC HUMIDITY
AVTOW=SATHUM(AVTODP,BARPSI)
AVERAGE TOWER OUTLET SPECIFIC ENTHALPY
AVTOH=AIRH(AVTOW,BARPSI,AVTOAT)
AVERAGE TOWER OUTLET WET BULB TEMPERATURE
ATOWB«TWB(AVTOAT,BARPSI,AVTOW,TOLWB)
AVERAGE STACK DEWPOINT
(Continued)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
AC 2010
AC 2020
AC 2030
AC 2040
AC 2050
AC 2060
AC 2070
AC 2080
AC 2090
AC 2100
AC 2110
AC 2120
AC 2130
AC 2140
AC 2150
AC 2160
AC 2170
AC 2180
AC 2190
AC 2200
AC 2210
AC 2220
AC 2230
AC 2240
AC 2250
AC 2260
AC 2270
AC 2280
AC 2290
AC 2300
AC 2310
AC 2320
AC 2330
AC 2340
AC 2350
-------
Table C-4 (cont'd)
C
u>
oo
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
AVSEDP=AVG(SEDP,5)
AVERAGE STACK TEMPERATURE
AVSET=AVG(SETt5)
AVERAGE STACK SPECIFIC HUMIDITY
AVSEW-SATHUM
AVERAGE STACK SPECIFIC ENTHALPY
AVSEH=AIRH(AVSEW,BARPSI,AVSET)
AVERAGE STACK WET BULB TEMPERATURE
AVSEWB=TWBCAVSETfBARPSIfAVSEW,TOLWB)
AVERAGE STACK RELATIVE HUMIDITY(PERCENT)
SERH=RELHUM(AVSEW,BARPSI,AVSET)
IF (SERH.GT.100.0) SERH=100.0
AVERAGE FILL INLET TEMPERATURE
AVFIDBT=AVG(FIDBT,7)
AVERAGE FILL INLET SPECIFIC ENTHALPY
AVFIH=AIRHCAVTIW,BARPSI,AVFID8T)
AVERAGE FILL INLET WETBULB TEMPERATURE
AVFIWB=TWB(AVFIDBT,BARPSI,AVTIH,TQLHB>
(Continued)
AC 2360
AC 2370
AC 2380
AC 2390
AC 2400
AC 2410
AC 2420
AC 2430
AC 2440
AC 2450
AC 2460
AC 2470
AC 2480
AC 2490
AC 2500
AC 2510
AC 2520
AC 2530
AC 2540
AC 2550
AC 2560
AC 2570
AC 2580
AC 2590
AC 2600
AC 2610
AC 2620
AC 2630
AC 2640
AC 2650
AC 2660
AC 2670
AC 2680
AC 2690
AC 2700
-------
Table C-4 (cont'd)
C
C
C
co
vo
AVERAGE FILL INLET SPECIFIC HUMIDITY
AVFlVfaAVTIW
AVERAGE AMBIENT DEWPOINT
AVADPT=AVG(ADPTf2)
AVERAGE AMBIENT TEMPERATURE
AVAT=AVG(AT,2)
AVERAGE AMBIENT SPECIFIC HUMIDITY
AVAW=SATHUM(AVADPT,BARPSI>
AVERAGE AMBIENT SPECIFIC ENTHALPY
AVAH=AIRH(AVAW«BARPS11AVAT)
AVERAGE AMBIENT WET BULB TEMPERATURE
AVAWB*TWBCAVAT,BARPSI,AVAW.TOLWB)
AVERAGE HEAT EXCHANGER WATER OUTLET TEMPERATURE
AVXOWT=AVO(XOWTt2)
FILL AVERAGE OUTLET WATER TEMPERATURE
FAVOWT*AVG(WTL4,4)
FILL-LEVEL I AVERAGE WATER TEMPERATURE
(Continued)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
AC 2710
AC 2720
AC 2730
AC 2740
AC 2750
AC 2760
AC 2770
AC 2780
AC 2790
AC 2800
AC 2810
AC 2820
AC 2830
AC 2840
AC 2850
AC 2860
AC 2870
AC 2880
AC 2890
AC 2900
AC 2910
AC 2920
AC 2930
AC 2940
AC 2950
AC 2960
AC 2970
AC 2980
AC 2990
AC 3000
AC 3010
AC 3020
AC 3030
AC 3040
-------
Table C-4 (cont'd)
C
C
C
C
C
C
C
C
C
C
C
C
C
FL1WT=AVG(WTL1,12)
CALCULATE VELOCITIES FROM VELOCITY PRESSURE
REARRANGE THE STACK VELOCITY PRESSURE ARRAY SINCE ONE OF ITS
MEMBERS IS ACTUALLY A STATIC PRESSURE AND CONVERT TO INCHES
OF WATER
J=1
IEND=NSTK
SSP=0.0
DO 159 1=1 , IEND
ARG=VPSTK(I)+CAL2
VPSTKCI)=COMVERT(ARG,2)
VPSTK(J)=VPSTK(I)
IF (I.NE.NSTATP.OR.ISTATP.NE.l) GO TO 159
SSP=VPSTK(I)
J=J-1
HSTK=NSTK-1
159 J=J-H
CONVERT THE TOWER FACE VELOCITY PRESSURE MEASUREMENTS TO INCHES
OF WATER PRESSURE
DO 169 1=1fNMTX
ARG=VPHTX(I)+CAL1
169 VPHTX(I)=COMVERT(ARG,1)
CALCULATE STACK AND TOWER FACE VELOCITIES
CALL VEL (VPSTK,NSTK,AVSEDP,BAfiPSI,AVSET)
CALL VEL (VPHTXtNHTXfAVTIW,3ARPSI,AVTIAT)
C
C CALCULATE TOWER DRY AIR MASS FLOWRATE FROM THE STACK VELOCITY
(Continued)
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
-------
f X
o
o
3
rt
H-
g
*>^S
o
^, to
~m
^ n
Jf "^
ro o
s
TJ
*
^^
b
+
^>
to
m
35
***s
\
*-%
U)
o
o
o
*
o
sf-
yo
5
*-s
>
KH
X!
>
<
to
rn
rn
3g
*
531
<^
to
m
H
•*
to
?*
X*
-o
01
i— i
\^
TJ
t— i
>
TJ
OOO
DO
>0
G
G>
HH
G
HS
/• /A
WJ
to
>
•<
m
X)
o
m
to
H
0
*^
m
x
t—i
H
>
(— i
?o
rn
r-
o
o
I-H
H
•^N
**>
Tl
H
\
to
rn
o
*~>
Tl
O
XI
-Q
r-
G
rn
o
-j
OHO
a: TI T]
H II II,
1—1 O is
'^4 .s rn
G T) H
rn * Ti
rvs r"'
( w t
• C
0 *
XJ
H
i— <
jj»
a
CO
H
1
O
"0
^g
H
*^^
^5*
TI
5>
•<
<»>
-iH
H
«-'
X
'^
is*
^
f~\
^_^
iS
I
>
<
TJ
1— H
3
^u^
OO
»
PP
S 22
v> •>
HH
P3 33
*— * „— x
O T)
CO >
H <
- O
O 2H
> H
X)-»
ca o
• >
a xi
> CO
XI •*
03 O
* I3>
O XI
-0 ca
^2 *
H O
t— ( "O
*• ' ^E
O H
> O
XJ»
ca a
* 5>
O X)
> O3
X)*
CO 03
^^ 5>
X)
U3
'— '
OOO
rn c
HO
mi-.
3D O
i— < m
* i * t
mi-3
j
arn
X)
co tn
H
> X
t— i
3S W
^J»
m >
X) C/)
H
mi
•z
m I-H
:o TJ
a
p~
t— «
D3 X3
>»
r- s
^* 5>
S tO
O to
n:
Tl
I""1
i
X)
5>
H
ru
t — §
C/)
H
•kW
03
rn
o ooo
»^o p
TI r-
^11 O
*""* *~i dl
>tn "is»
* i K*-*
CO 'X *~"3
f n h i m
W J 1 *J i*i
'SO O
m m
* f— i
1 P
v»x
a xi
c> *~^
H >
O «-«
XI
—
-j s;
vO ^
to
T)
£
•>^>
i£
XI
t5*
H
rn
*™~* :!», JXj
XI TJn
m n H
x/ H m
^^j . — ^
^"^ V^
r1 o
X 4=»
< o\
H
» <
*r3»t ^.u]
to c
H>
XH
»
toH
H O
^j> *S
o co
- >
"X5 t— ]
p^ o
HC
XXI
21 >»
ZE *<
H H
X O
"!c^*
H >»
x<
X) C
>> IU
1«
>
•<^
CO
rn
H
•*
OT
>3.
X!
T)
to
1— t
">•
<;
H
>
H
>:
XI
1— 1
H
m
a
•£»•
Ul
<
T)
C
D3
«
S*
<
TJ
E
00
>
<
H
O
X)
•«
>»
<
TJ
35
*
>>
<
TJ
I-H
HC
wt£*> _^-» 4c:Mt
3E 3i ^»
X) X) X)
I-H 1— t hH
HH H
rn m m
ooo.
_£_ .^ .j^
-?» to ro
tO"« ~
to < <
Xi X) Xi
a> ac
HH
?*3 X
hH 1— 1
V-" -*~>
* *
H- i f— 1
11 II
•• i*
"2 2
oo ac
H H
V«/ N^
OO OOO O
O OH> TJ
r o a
O OH TJ
G C O t-i
t~T'> c r
I*" 5> i— i -g; [TJ
H H X? TJ
m m m js>
O C3 X> X)
m
CD CO <-i
^*^ *^^ 0*) *™~i
HHH ""
rn mmp:
to H"o H
H o m
o mo S
x »rn H
^* T] H HH
m >• z
> o crn
G TJ
X) < TJ 3g
m rn rrji-n
i&»» i *->J * '" |
m o m IK
'z 02:
H ^OH
OT H rn c
• 1— H S
rnHm
to 3; x)
rn
C^T!
TJ> O
TI (j~i m
rnto
X! <
to Tjrn
I— p1
Tl O O
X3SO
O X) >— »
•^ 1^ 1 — ]
t—^t—l
H rn m
1 to
H to
s~\
H
m
H
E-
a"
(t>
o
i
x™\
o
o
0
rt
&
oooooooooooooooooooooooooooooooooo
U)GJ(>J(>JtoCjj(^tOCj(jO(^tAjt>JUjU>tO(^UJ^
^^^CNOvO\cxCNChO\c>c^osoiuiuiaiuiuiaiaii^oi4^4^4^^^^-
r>j^o<>oo^CNUi^UiN;~o<)CD^cx^-Ntoro--o<)Oo^i<>ui4i.(jj[\>--o>o
oooooooooooooooooooooooooooooooooo
-------
oooooooooooooooooooooooooooooooooo
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
4-1
C
O
u
o
(U
rH
cd
H
OWRATECCFS) FOR PLIME DATA OUTPUT
~J
Lt,
LU
5£
ID
_l
f*^
>
CC
H-4
— J
«at;
o
O
O
rj-
N
rg
•K
•fc
*•»,
00
*C
LU
"*I
*
1—4
0,
UJ
CO
II
LU
;>
<
O
LU
>
cs
3
0
^
<
LU
SK
*~>
*— '
CC
Lt,
UJ
H
<
cc
s
*"••*
•WJ*
J
LU
OS
h-4
/<
IR LU
~ «aj
O *£ LU
o •— o
o
WRATE FROM FAN CURVE WILL
OCITY TRAVERSE
c J
h-l LU
LU >
cc 2:
i-i <
^
n CC
LU
LU rn
LU f— '
CO <
CC
f 1 /"\
LU
O 3
LU
X LU
O CQ
OO O
9
SEWfAVSET,BARSPI)/(1.0+AVSEW)
CO >
— <
*— '
c cc
f-lh-4
<
c c
o x
cc
~ ^
— o
LU O
"Z. <)
* • -K
<<
LULU
>-« O
— II
LU
LUS
O
O
o
H4
r~*
O
r*.
<3
LU
»
^-*
0 —
rvj LU
NLUO
EZO
f j . _.a, | .
Hf . ^^»
r~** ^^
E CLU
O
CO
'""*•*
•^•N
O
1
1—4
3C
* O
o s
O X >-»
2: 0 Q
i— i >— 4 <;
Q X C
J Lu cc
s tu
cc 0 H
1-4 II <
< O SC
ooo oo
.0)*( 1I88.0*XL**.599*G**.438/DBT**2.04)*(AI
ARPSI,DBT)-AIRH(AVFIW,BARPSI,AVFIDBT))/(XL*
^ O 03
_J ro •>
G. 1 -^
LU X 1-1
Q O CO
* >-* 0.
O X cc
X M <
Hx CQ
O v-' *
j . i* r | ^^
3J >-> OQ <~\
*-* Lu Q *~*
"V. 55 *— E— 4
C X 55 S
H^HLU
IULU < 1
S «-«COh<
II II ^ CO
>— J >•• X D
x s: cc >-
O
XIDEP*FLOAT(NY)/((AVTOH-AVFIH)*G*(XIHIGH-30
4c
f_i
X
*
x^
H
s
u
LU
1
[— i
CD
Q
<_•
X
1—4
1— 1
[1
x
2:
TtWETFLO,GPMWET,PERDIF,XL,CHF,GtAIRERtNYfNX
0 199
S H
v-»
> c
<: o
LU
*•_) x-s
H a, oo
m LU •
QQ 0
• LU
~ O •
CO h< —
**f Q *••'
"^ UJ
i^j M '••S
^^ ^ Vi^
o o
<% f— 4 (3 •—
•~* 1— 4 1— »
o cc x LU
• «E •»— •
^^
(I)
0
•R
d
o
o
42
-------
Table C-4 (cont'd)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A(1)=DBT
A(2)=AVFIH
A(3)=AVFIDBT
A(4)=MX
A(5)=NY
A(6)=G
A(7)=XL
A(8)=XIDEP
A(9)=XIHIGH
A(10)=BARPSI
A(J1)=FAVOWT
CALCULATE TOWER NTU AND OUTLET AIR STATES
XNTU=TOWNTU (A, B, TOLTOW)
CALCULATED AVERAGE TOWER OUTLET AIR TEMPERATURE
CTOAT=BU>
CALCULATED TOWER OUTLET AIR WET BULB TEMPERATURE
CTOW8=B(2>
CALCULATED TOWER OUTLET AIR SPECIFIC ENTHALPY
CTOH=B(3)
CALCULATED TOWER MASS TRANSFER COEFFICIENT
XKA=B(4)
CALCULATED TOWER OUTLET AIR SPECIFIC HUMIDITY
(Continued)
AC 4070
AC 4080
AC 4090
AC 4100
AC 4110
AC 4120
AC 4130
AC 4140
AC 4150
AC 4160
AC 4170
AC 4180
AC 4190
AC 4200
AC 4210
AC 4220
AC 4230
AC 4240
AC 4250
AC 4260
AC 4270
AC 4280
AC 4290
AC 4300
AC 4310
AC 4320
AC 4330
AC 4340
AC 4350
AC 4360
AC-4370
AC 4380
AC 4390
AC 4400
-------
£ ooo ooo ooo ooo ooo ooo ooo ooo P?
1 g
= f
2. O C O O S S ISO O^OSOCOOSOO **
o>t-*s>mrrix)H>r~'>r~'>H>>>H
m
m
n
2-
m
rn
5>
CO
o
2?
m
m
>»
CO
S-*
N
S
m
>
CO
*•"
*
*•-•
*
O
T]
m
33
m
2:
o
m
t— t
55
3
rn
5>
CO
G
S3
m
a
ZS
C3
O
£j>
r~*
o
G
r-
H
m
a
>•
m
m
>>
CO
n
O
s
T]
X"
^v
O
H
Vgf
1
<
T]
i—t
as
X-*
£
G
r-
H
m
a
35
m
H
m
2;
rn
S3
O
»"
CO
m
a
o
25
m H
co m
II 25
o rn
3 S3
T] Q
*!* "^
^-»
> m
< X
H 0
O HE
ac >
i 2:
> o
< m
Tl
I-H 00
re >
^ CO
m
o
2
>»
^— t
3D
CO
H
5>
H
m
CO
H— 1 v«/
HC
m "o
n
<>co
4 ^M>
-N *H
*^J {•
> CO
H>
<• S3
OT3
H CO
x~s [ |
U3 -^
^)Ov
Hro
O "™*
c o
XI 00
* +
oo
HH
o o
™S 3»
4 S-»
O ^— '
H
r*
o
G
r-
H
rn
C3
m
35
0
i— i
SJ
H
Tl
II
§
C
CO
N"
O
o
*
0
2E
m
H
T]
r*
^
G
r-
H
m
Tl
i— i
r1
r*
y
5>
H
m
S3
j—<
C^
a
j>
CO
!**•
•o
rn
S3
O
rn
i—^
CO
a
n
/•"N
J3>
<
rf
T
3>
<
H
i— <
32
s?
O
O
O
B
G
r
H
m
T)
»-H
P
s
>>
H
m
S3
r-
o
CO
CO
Jj>
CO
J>
ID
m
o
m
H
r
CO
n
o
T!
«-»
^>
CO
m
T
<;
H
2S
>«x
^
G
r-
m
3g
Jj»
H
rn
S3
£
CO
CO
H
a:
S3
c;
O
a:
t-j
2,
rn
H
2£
rn
S3
f^ o § R
™ (. j -S O
c G ii a
CO t"1 CO rt
!!>'>•
0 H 01 £
35 m «-'
Tl
X- 3-
> H
< IT)
^ ^
zs r~*
1 O
> CO
< CO
H
i-i CO
*£i *"^
m
Jj>
T3
O
S3
H
i— i
O
•z.
m
2;
m
X)
a
*•<
m
X
o
a
rn
S3
CO
H
Jj>
H
m
CO
H
rn
S3
H
m
T)
c
S3
T)
r1
S3
H
rn
oooooooooooooooooooooooooooooooooo
oooooooooo
OOOOOOOOOOOOOO
8*0
o
oooooooo
-------
Table C-4 (contM)
JS
Ui
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ENERGY EXCHANGE BASED ON FfATER STATES
E£WS=WETFLO*(HF(DBT)-HF(FAVOWT))
WET ENERGY CONSERVATION ERROR IN PERCENT
WECE«*1 00.0/EEWS
WRITE (6,499) XKA.XNTU.WATLOS
WRITE (6,509) STLOS.WLOSDA.WLWF
WRITE (6,519) WEEAS,DAEE,EEWS,WECE
199 CONTINUE
IF (ICODE(1).EQ.!.OR.ICODE(I).EQ.4.0R.ICODE(1).EQ.7) GOTO 209
IF (GPMDRY.LT. 1000.0) GO TO 209
SET UP ARRAYS FOR DRY TOWER CALCULATIONS
AHTX (15) =CMF* ( 1 . 0+AVSEW)
AHTX(J6)=DRYFLO
AT TTV ( 1 "7 \ A WT"T AT
AlllTtl i / )— AViiAI
AHTX(I8)=AVFID8T
AHTX(J9)=HWIT
AHTX(20)=AVXOWT
AHTX(2t)=8ARPSI
PERFORM DRY TOWER CALCULATIONS
CALL HTX (AHTX,BHTX)
CALCULATE HEAT EXCHANGER ENERGY EXCHANGE BASED ON AIR STATE
HTXEE=CMF*(AVFIH-AVTIH)
CALCULATE ENERGY EXCHANGE BASED ON WATER STATE
AC 4750
AC 4760
AC 4770
AC 4780
AC 4790
AC 4800
AC 4810
AC 4820
AC 4830
AC 4840
AC 4850
AC 4860
AC 4870
AC 4880
AC 4890
AC 4900
AC 4910
AC 4920
AC 4930
AP AQAf}
AC 4950
AC 4960
AC 4970
AC 4980
AC 4990
AC 5000
AC 5010
AC 5020
AC 5030
AC 5040
AC 5050
AC 5060
AC 5070
AC 5080
(Continued)
-------
Table C-4 (cont'd)
HTXEW=DRYFLO*(HWIT-AVXOWT)
EHTX=((HTXEE-HTXEW)/HTXEW)* 100.0
AIRSIDE FILM COEFFICIENT
HA=BHTX(1)
AIRSIDE REYNOLDS NUMBER
RE=BHTX(2)
AIR SIDE STANTON NUMBER
ST=BHTX(3)
J FACTOR
XJ=BHTX(4>
AIRSIDE NUSSELT NUMBER
ASNU-BHTX(5)
WRITE (6,529) AVTIAT.AVTIWB,AVTIDP,AVTIW,AVTIH
WRITE (6,469) AVFIDBT,AVFIWB,AVTIDP,AVFIW.AVFIH
WRITE (6,539) HWIT,AVXOWT,DRYFLOfGPMDRY,PERDRY,CMF,AIRER
WRITE (6,549) RE,HA,ASNU,ST,XJ
WRITE (6,559) HTXEE,HTXEWtEHTX
209 CONTINUE
IF (GPMDRY.GT.1000.0) GO TO 219
EHTX=0.0
DRYFLO=EHTX
XJ=DRYFLO
ASNU=XJ
(Continued)
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
5090
5100
5J10
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5370
5380
5390
5400
5410
5420
-------
Table C-4 (cont'd)
HA=ASNU AC 5430
RE=HA AC 5440
219 CONTINUE AC 5450
C AC 5460
C CALCULATE TOTAL HEAT TRANSFER(BTU/HR) FROM WATER IN TOWER AC 5470
C FOR PLUME DATA OUTPUT AC 5480
C AC 5490
THTFWa2.0*(HTXEW+EEWS) AC 5500
C AC 5510
C CALCULATION FAN-STACK-MOTOR EFFICIENCY AC 5520
C AC 5530
ETAFAN*TMF*SSP*5.204/<3600.0*ftHOAIR(AVSEW,AVSETfBARPSI )*FANPWR*FAN AC 5540
ICON) AC 5550
SRHO=RHOAIR(AVSEWfAVSET,BARPSI) AC 5560
C AC 5570
C FAN FLOW RATE IN CFM AC 5580
C AC 5590
Q=TMF*(1.0+AVSEW)/(60.0*SRHO) AC 5600
C AC 5610
C HEAD COEFFICIENT
-------
Table C-4 (cont'd)
00
HP=*FANPWR*FANCON/550.0 AC 5770
WRITE (6,569) TVfFA,HP,RPM,FANANG,SSP,QtETAFAM,SCI,PHI,SCIND,PHIND AC 5780
IF (ISTATP.EQ.1) WRITE (6,639) OFAN AC 5790
IF (IPUN.EQ.O) GO TO 319 AC 5800
I=ICODE(1) AC 5810
WRITE (7,579) AC 5820
DC) 309 J=f,5 AC 5830
MM=IP(JNCH(I,J) AC 5840
GO TO (229,239,249,259,299,309), MM AC 5850
229 WRITE (7,589) ICODE,IDATE,XL,G,WETFLO,CMF,XKA,XNTU,AVFIDBT,AVTO AC 5860
1 AT,AVTIDP,AVTODP,DBT,FAVOWT,CWRT,WLWFtWECE AC 5870
GO TO 309 AC 5880
239 WRITE (7,599) ICODE,IDATE,RE,HA,ASNU,XJ,CMF,AVTIAT,AVTIDP,AVFID AC 5890
I BT,HWIT,AVXOWT,DRYFLO,EHTX AC 5900
GO TO 309 AC 5910
249 WRITE (7,609) ICODE,IDATE,SSP,Q,RPM,FANANG,HP,PHI,SCI,PHIND,SCI AC 5920
1 ND.ETAFAN AC 5930
GO TO 309 AC 5940
259 IEND=NCT2(INX) AC 5950
DO 279 I=1,IEND AC 5960
IF (IELEV(I,INX),NE.200) GO TO 269 AC 5970
Z0=30.0 AC 5980
DBPL=DBP(I,INX) AC 5990
K8DPP=WBDP(I,INX) AC 6000
AVELPP=AVELP(I,INX) AC 6010
269 CONTINUE AC 6020
IF (IELEV(ItIMX).NE.20l) GO TO 279 AC 6030
Z0=75.0 AC 6040
D8PL=DSP(I,INX) AC 6050
WBDPP=WBDP(I,INX) AC 6060
AVELPP=AVELP(I,INX) AC 6070
GO TO 289 AC 6080
279 CONTINUE AC 6090
289 WBDPP=(D8PL-WBDPP)*(9.0/5.0)+32.0 AC 6100
(Continued)
-------
Table C-4 (cont'd)
299
309
319
DBPL=DBPL*(9.0/5.0)+32.0
RH=RELHUM(SPHUM(DBPL,WBDPP,BARPSI),BARPSI,D8PL)
AVELPP=AVELPP*3.28 ?
WRITE (7,619) ICODE,AFAN(3),SHEIG,AVS£T,SEV,SERH,AYF,THTFW,DBPL
,RH,AVELPP,Z(),VISIO(INX)
GO TO 309
WRITE (6,629)
CONTINUE
INX=INX-H
IF (INX.GT.IFLAG)
WHITE (6,579)
WRITE (7,579)
GO TO 109
STOP
329 FORMAT
1W.1X,
(46X, 13HAMBIENT AIR STATES, /37X, 23HTEMPERATURE(DEG. F)/DE
3HPOINT(DEG. F) ,//39X,F5. 1 , 1H/,F5. I , 1QX,F5. 1 , 1H/.F5.1//
VO
2/44X, 26HBAROMETRIC PRESSURECIN 1IG) ,/52X,F5.2///)
339 FORMAT (44X, 22HTOI1ER INLET AIR STATES ,/37X, 20HTEMPERATURE(DEG. F
I)/, 17HDEWPOINTCDDEG. F) ,//49X,F5. 1 , 1H/,F5. 1 /, (28X,F5. 1 , 1H/,F5
2.1 ,10X,F5.1, 1H/,F5.l,10X,F5.1t 1H/.F5.I))
349 FORMAT (///36X, 38HWET FILL INLET AIR TEMPERATURE(DEG. F),//49X,F5
1.1/,(23X,F5.1,15X,F5.1 ,15X,F5.1))
359 FORMAT (///41X, 26HWET FILL OUTLET AIR STATES, /37X, 1 1 HTEMPERATURE
1, 26H(DEG. F)/DEW POINT(DEG. F) ,//49X,F5. 1 , JH/,F5. I/, (28X, F5. 1 ,
2 IH/,F5.1,10X,F5.1, 1H/.F5. 1 , 10X.F5. 1 , IH/.F5.1))
369 FORMAT (///47X, 1 6HSTACK AIR STATES, /37X, 1 9HTEMPERATURE(DEG. F),
1I6H/DEWPINT(DEG. F) ,//7X,5(F5. 1 , IH/.F5. 1 , 10X ))
379 FORMAT (1H1,42X, 26HWATER TEMPERATURES (DEC. F),/5X, 15HHOT WATER I
INLET, 2X, 18HDISTRI3UTIOM BASIN, 2X, 21HHEAT EXCHANGER OUTLET, 2X, 4
2HHEAT,1X, 16HEXCHANGER OUTLET, 2 X, 1 7HCOLD WATER RETURN, //7X,2X,F5.
31,14X,F5.1,17X,F5.1,17X,F5.I,16X,F5.1///)
339 FORMAT (36X, 42HFILL WATER TEMPERATURE DISTRIBUTION(DEG.F) ,/27X, 5
14H (LEFT-TO-RIGHT IS EQUIVALENT TO FRONT-TO-REAR IN FILL), //SIX, 7
2HLEVEL I,/51X,F5.1/36X,3(F5.1,10X)/30X,4(F5.1,10X)/36X.3(F5.U10X)
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
6110
6120
6130
6140
6150
6160
6170
6180
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
6300
6310
6320
6330
6340
6350
6360
6370
6380
6390
6400
6410
6420
6430
6440
(Continued)
-------
Table C-4 (cont'd)
Ul
o
3,/5lX,F5;i//) AC 6450
399 FORMAT (50X, 8HLEVEL II,/30X,4(F5.I,IOX)) AC 6460
409 FORMAT (//49X, 9HLEVEL III,/5IX,F5.1/36X,3(F5.1,10X)/30X,4(F5.1,1 AC 6470
10X)/36X,3(F5.1,10X),/51X,F5.1//) AC 6480
419 FORMAT (50X, 8HLEVEL IV,/30X,4(F5.I,IOX)) AC 6490
429 FORMAT (///40X, 30HTOWER INLET VELOCITIES(FT/SEC),//,(39X,3(F4.1,J AC 6500
IOX) )) AC 6510
439 FORMAT (///41X, 28HSTACK AIR VELOCITIES(FT/SEC),//,<39X,3(F4.1,JOX AC 6520
I))) AC 6530
449 FORMAT (///29X, 49HSTACK STATIC PRESSURE BELOW ATMOSPHERIC PRESSUR AC 6540
IE , 3HWAS,IX,E10.3,IX, 5HIN W3,///) AC 6550
459 FORMAT (1H1,20X,20( IH-), 32HWET TOWER HEAT AND MASS TRANSFER,IX, AC 6560
1 7HRESULTS,20( !H-)//1X, 36HAVERAGE AIR INLET TEMPERATURE(DEG.F) AC 6570
2, 59H/WET BULB(DEG.F)/DEHP()INT(DEG.F)/SPECIFIC HUM I DITY( LBM/LBM), AC 6580
318H/ENTHALPY(BTU/LBM),//24X,F5.1,15X,F5.I,IOX,F5.1,J3X,F6.5,14X,F5 AC 6590
4. I///) AC 6600
469 FORMAT (IX, 5IHAVERAGE AIR OUTLET TEMPERATURE(DEG.F)/WET BULB(DEG. AC 6610
I,1X, 54HF)/DEWP()INT( DEC. F)/SPECIFIC HUMIDITY (LBM/LBM)/ENTHALPY, 9 AC 6620
2H(BTU/LBM),//25X,F5.1,15X.F5.I,12X,F5.1,I3X,F6.5,14X,F5.I///) AC 6630
479 FORMAT (IX, 44HCALCULATED AIR OUTLET TEMPERATURE(DEG.F)/WET,IX, 54 AC 6640
1HBULB(DEG.F)/DEWPOINT(DEG.F)/SPECIFIC HUMIDITY(LBM/LBM), I8H/ENTHA AC 6650
2LPY(BTU/LBM),//17X,F5.1,28X,F5.I,9X,F5.1,14X,F6.5,19X,F5.1///) AC 6660
489 FORMAT (18X, 30HWATER INLET TEMPERATURE(DEG.F),IOX, J2HWATER OUTLE AC 6670
IT,IX, 18HTEMPERATURE(DEG.F),//30X,F5.I,36X,F5.I///6X, 5HWATER,1X, AC 6680
2 22HFLOWRATE(LBM/HR)/(GPM),IOX, 30HPERCENT DIFFERENCE IN FLOWRATE, AC 6690
310X, 27HWATER LOADING(LBM/HR-FT-FT),/52X, 15HAS PERCEIVED BY,/46X, AC 6700
4 28HTHE MANOMETER AND TRANSDUCER,//5X,E10.3, 1H/,E10.3,26X,F6.1,3 AC 6710
50X,E10.3///2X, 24HDRY AIR FLOW? ATE(LBM/HR),IOX, It HAIR LOADING, 14 AC 6720
6H(LBM/HR-FT-FT),10X, 32HPERCENT DIFFERENCE BETWEEN STACK,/75X, 14H AC 6730
7AND TOWER FACE,IX, 8HFLOWRATE,//nX,EI0.3,22X,E10.3,32X,F6.I///2X AC 6740
8, 6HNUMBER.1X, 27HOF VERTICAL TOWER DIVISIONS,3X, 26HNUMBER OF HO AC 6750
9RIZONTAL TOWER,IX, 9HDIVISIONS.3X, lOHHEIGHT(FT),3X, 9HWIDTH(FT) AC 6760
(Continued)
-------
o
o
3
g
8.
Ul
NJ —
•nxo "n
c- x o
rn- x>
.SI—
>o —
H« A H
COD:
co a: x>
XTJ «£
rn co
-- X!
O "O *-
• m
Co X) *-»
• oo
rn*o
H to 3:
x/ oo ->.
— oro
romo
x
<-
m *•-
xixm co
o x
-c* » a
— rn
rn mo
X • XX!
o — m
•-) co i-i
CO TJ Co
m-
ui xico
x 01
ox
H CO
m m
COK)
* <
— 2;
2£ O 4s> G
oxacr*
rn- co c
TlH CO
co
>•
CO coH
m- G
a — ssta
m
X!
O- G-
x
O
• mx
— CO
*
co rn
ro X)
xrn
rn •-«
en TJ to
DCTJ-
i— < ro
> oro
HI '-'X
m m-
X) 22 TJ
— >TJ
co 2:01
X
— m
— co
G
rarer;
{-"•OH
>G CO
> urn
HX UI
omu
— tv
tJO X
-
I-1
(I)
o
o
§
ft
mco
n:
ooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooooo
-------
Table C-4 (cont'd)
Ui
3SSURE RISEdN WG),5X, I3HFLOWRATECCFM),5X, 26HCOMBINED STATIC EFFI
4CIENCY,//12X,F5.1,9X,F4.1,13X,F6.3,9X,E10.I,20X,F5.3///f18X, 34HHE
5AD COEFFICIENT(IN WG/RPM-2-FT-2),I OX f 30HFLOW COEFFICIENT(CFM/RPM-
6FT-3),//30X,E10.3,33XtE10.3///20Xt 3IHHEAD COEFFICIENT(DIMENSIONLE
7SS), IOX, 4HFLOW,IX, 26HCOEFFICIENT(DIMENSIC)NLESS) ,//3 1X.EI0.3.33X
8,E10.3///)
579 FORMAT (JHJ)
(6I1,1X,I3,,IX,6E1J.4,/,7E11
<6II,IXfI3,lX,6El!.4,/,7EII
(61JfIX,I3,6E11.4,/f7El1.4)
(7( 10HPLUME DATA)/,IX,6I1/,5FIO.I,2E10.4/4F10.1,E10.3)
(1Xf40( 1H-), 29HACOUSTIC FORMATS ARE REQUIRED,40( 1H-),/
589
599
609
619
629
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
I/)
639 FORMAT
,4,/,7EJ1.4)
,4)
FORMATS ARE REQUIRED,40(
(42X, 28HAIR FLOW FROM FAN CURVE(CFM),/51X,E10.3///)
END
SUBROUTINE HTX (A,B)
SUBROUTINE HTX (A,B)
C
C THIS SUBROUTINE IS DESIGNED FOR AN EQUAL NUMBER OF TUBES
C PER ROW. IF THIS DOES NOT OCCUR IT IS NECESSARY TO ADD
C THE EXTRA TUBES. THIS IS DOME BY SPECIFYING ANTR.
C INPUT:
C A(1)=DO=TUBE ODCIN)
C A(2)=DI=TUBE ID (IN)
C A(3)=DC)F=FIN OD (IN)
C A(4)=DC=C()LLAR OD (IN)
C A(5)=PT=TUBE TRANSVERSE PITCH (IN)
C A(6)=T=FIN THICKNESS (IN)
C A(7)=XNF=NUMBER OF FINS PER INCH (I/IN)
C A(8)=XNR=NUMBER OF TUBE ROWS
C A(9)=XNTPR=NUMBER OF TUBES PER ROW
C A(IO)=XLF=CHARACTERISTIC AIR FLOW LENGTH(FT)
(Continued)
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
AC
7100
7! 10
7120
7130
7140
7150
7160
7170
7180
7190
7200
7210
7220
7230
7240
7250
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
-------
Table C-4 (cont'd)
C THROUGH HEAT EXCHANGER (FT) A 170
C A( JI >=OCLT=TUBE LENGTH (FT) A J80
C A(12)=XKT=TUBE THERMAL CONDUCTIVITY (BTU/HR-FT**2-DEG F) A 190
C A(J3)=XKF=FIN THERMAL CONDUCTIVITY (BTU/HR-FT-DEG F) A 200
C A(14)=HC=FIN-TO-TUBE CONTACT RESISTANCE(8TU/HR-FT**2-DEG. F) A 210
C A(15)=XMA=AIR MASS FLOHRATE (LBM/HR) A 220
C A(16)=XMW=WATER MASS FLOWRATE (LBM/HR) A 230
C A(17)=TAI=AVERAGE AIR INLET TEMPERATURE (DEG F) A 240
C A(18)=TAO=AVERAGE AIR OUTLET TEMPERATURE (DEG F) A 250
C AU9)=TWI=WATER INLET TEMPERATURE (DEG F> A 260
C A(20)=TW()=WATER OUTLET TEMPERATURE (DEG F) A 270
C A(21)=PBARO=BAROMETRIC PRESSURE (PSIA) A 280
C OUTPUTS A 290
C B(i)=HA=AIR SIDE HEAT TRANSFER COEFFICIENT (BTU/HR-FT**2-DEG F) A 300
C B(2)=RE=AIR SIDE REYNOLDS NUMBER A 310
C B(3)=ST=AIR SIDE STANTON NUMBER A 320
C B(4)=STANTON NUMBER=PRANDTL NUMBER TO 2/3 PRODUCT A 330
C B(5)=AIR SIDE NUSSELT NUMBER A 340
C A 350
DIMENSION A(21), B(5) A 360
DO-A(1) A 370
DI=A(2) A 380
DOF=A(3) A 390
DC=A(4) A 400
PT=A(5) A 410
T=A(6) A 420
XNF=A(7) A 430
XNR=A(8) A 440
XNTPR=A(9) A 450
XLF=A(10) A 460
XLT=A(11) A 470
XKT=A(12) A 480
XKF=A(13) A 490
HC=A(I4) A 500
(Continued)
-------
Table C-4 (cont*d)
XMA=A(15> A 510
XMW=A(16> A 520
TAI=A(17) A 530
TAO=AU8) A 540
TWI=A(19) A 550
TWO=A(20) A 560
C A 570
C EXTRA TUBES ABOVE THAT CALCULATED USING AN EQUAL NUMBER OF A 580
C TUBES/ROW A 590
C A 600
ANTR=8.0 A 610
PBARO=A(2!) A 620
PI=3.14 A 630
T()L= i . OE-8 A 640
C A 650
C TOTAL OUTSIDE TUBE AREA A 660
C A 670
ATS=PI*DC/12.Q*
-------
Ul
Table C-4 (cont'd)
CALL AIRPRO (T()A,XMU,XK,CP,PR)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SPECIFIC HEAT OF WATER AT INLET AND OUTLET
TEMPERATURE
CALL WATPRO (TWI,GARB,GARB,CPHI,GARB,BARG)
CALL WATPRO (TWO,GARB,GARB,CPWO,GARB,GARB)
TOTAL HEAT TRANSFERRED
Q=XMW*(CPWI*TWI-CPWO*TWO>
AVERAGE AIR TEMPERATURE
TOA=(TAI+TAC»/2.0
AVERAGE WATER TEMPERATURE
TIA=(TWI+TWQ>/2.0
ASSUME A WALL TEMPERATURE
TW«(TOA+TWI)/2.0
ASSUME AN OUTSIDE AIR FILM COEFFICIENT
HA=?5.0
FIN PARAMETERS
W=(DOF-DC)/(2.0*12.0)
XE=DOF/2.0
XB=DC/2.0
DO 109 1=1,3
UB=W*SQRT(24.0*HA/(XKF*T))/(XE/XB-1.Q)
UE=UB*
-------
Table C-4 (cont'd)
CALL BESLI {UE,TOL,EAO,EII> A 12 JO
CALL BESLK A 1240
BETA=EII/EK1 A 1250
C A 1260
C FIN EFFICIENCY A 1270
C A 1280
ETA=(2.0/(US*( 1 .0-/<2.Q A 1500
1 *PI*XKT*XLT*(XNTPR*XNR+ANTR)) + UO/(HC*PI*
-------
o
§ OOf
H-
g
J-i
m
STANTON-PRANDTL-NUMBER
id)
H
C
fu
X
Co
1
"O
/•">
35
rn
33
T3
33
C
C
o
H
»>
"5 OO O O Of
HYDRAULIC DIAMETER
DH=4.0*AC*XLF/(ATS+AFS
REYNOLDS NUMBER
RE=G*DH/XMU
.»»»»
^ ooo c
AC=((PT-DC)/12.0)*(XNT!
G=XMA/AC
STANTON NUMBER
ST=HA/(G*CP)
33
4-
-fi
4
0
S^
3(»
X
t-
H
sf
~
»
0
X
•z
tl
*
H
^*
.»»>»
^ 0<
s
1— 1
z
»— 1
G
s
"n
33
ra
T)
2
33
m
• »
-) c
— o
O X3
TW= ( TOA*R H-TI A*RO ) / ( RO
CALL AIRPRO (TOAtXMU,Xi
* 33
OH-I
*o *^
«
"O
33
X.X
•»>
")0 f
RECALCULATE WALL TEMPE
33
H
C
33
m
• > >
^ ooo c
R0= 1 . O/ ( HA* ( ATS+ETA
1 NTR ) ) +ALOG ( DC/DO ) / (
2 /(2.0*PI*XKT*XLT*(X
INNER RESISTANCE
RI=1.0/(H*AITS)
"Z t\J Jf
H» >
"T3 O *TJ
33 H- CO
Jfr 13 *—
X 11 >•*
Z * 4-
33 X —
*T* rS *
> -no
ss * x
HX~
asr-ac
"^ Sf >f
^. ^)
X *-<
Z H-
H ^
*u o
33 C
* N
X —
33 *
4- O
2: *
HX
33 r*
> X
OH
O "D
-"•» 33
S|
C33
|mi^ JL
*»NX ^J>
")Or
CALCULATE OUTER RESIST
z
o
m
.»
5?
0"
(D
O
o
o
8O
O
OOOOOOOOOOOOOOOOO
— oO
OOO
OOO OOOOOOOOOO
O
o
-------
Table C-4 (cont'd)
00
c
c
c
c
c
c
c
c
c
c
STPR23=ST*PR**.666667
NUSSELT NUMBER
XNU=HA*DH/XK
OUTPUT ARRAY
B(1)=HA
B(2)=RE
B(3)=ST
B(4)=STPR23
B(5)=XNU
RETURN
END
FUNCTION HV(T)
HV CALCULATES THE SATURATED WATER VAPOR ENTHALPY (BTU/LBM)
GIVEN THE SATURATION TEMPERATURE (DEG'.F)
DIMENSION HVTABC54), TEMTABC54)
DATA HVTAB/1061.8,1066.2,1070.6,1074.9,1075.8,1076.7,1077.6,1078.4
1,1079.3,1080.2,1081.0,1081.9,1082.8,1083.7,1084.5,1085.4,1086.3,10
287.1,1088.0,1088.9,1089.7,1090.6,1091.5,1092.3,1093.2,1094.1,1094.
39,1095.8,1096.6,1097.5,1098.4,1099.2,1100.1,1100.9,1101.8,1102.6,1
4103.5,1104.4, 1105.2,1106.1,1106.9,1107.8,1108.6,1109.5,1110.3,1111
5.1, 1112.0, 1112.8,1113.7,1114.5,1115.3,1116.2,1117.0,1117.9/
DATA TEMTAB/0.0,10.0,20.0,30.0,32.,34.,36.,38.,40.,42.,44.,46.,48.
1,50.,52.,54.,56.,58.,60.,62.,64.,66. ,68.,70.,72.,74.,76.,78.,80.,8
22.,84.,86., 88.,90.,92.,94.,96.,98.,100.,102.,104.,106.,108.,110.,1
312.,114.,116.,118.,120.,122.,124.,126.,128.,130./
HV=SINTRP(TEMTAB,HVTAB.T.54)
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
10
20
30
40
50
60
70
80
90
100
no
120
130
140
150
160
170
(Continued)
-------
Table C-4 (cont'd)
HHTURN 8 180
C B 190
END B 200
FUNCTION HF(T) C 10
C C 20
C HF CALCULATES THE SATURATED LIQUID WATER ENTHALPY (BTU/LBM) C 30
C GIVEN THE SATURATION TEMPERATURE (DEG.F). IF THE TEMPERATURE C 40
C IS BELOW 32 DEG.F THE VALUES FOR ICE WILL BE USED. C 50
C GIVEN THE SATURATION TEMPERATURE (DEG.F). IF THE TEMPERATURE C 60
C IS BELOW 32 DEG.F THE VALUES FOR ICE WILL BE USED. C 70
C C 80
DIMENSION HFTABC50), TEMTABC50), HITAB(5), TITAB(5) C 90
DATA HFTAB/0.,2.02,4.03,6.04,8.05,10.05,12.06,14.06,16.07,18.07,20 C 100
1.07,22.07,24.06,26.06,28.06,30.05,32.05,34.05,36.04,38.04,40.04,42 C 110
2.03,44.03,46.02,48.02,50.01,52.01,54.£0,56.00,57.99,59.99,61.98,63 C 120
3.98,65.97,67.97,69.96,71.96,73.95,75.95,77.94,79.94,81.93,83.93,85 C 130
4.92,87.92,89.92,91.91,93.91,95.91,97.907 C 140
DATA TEMTAB/32.0,34.0,36.0,38.0,40.0,42.0,44.0,46.0,48.0,50.0,52.0 C 150
1,54.0,56.0,58.0,60.0,62.0,64.0, 66.J0,68.0,70.0,72.0,74.0,76.0,78.0, C 160
280.0,82.0,84.0,86.0,88.0,90.0,92.0,94.0,96.0,98.0,100.0,102.0,104. C 170
30,106.0,108.0,110.0,112.0,114.0,116.0,118.0,120.0,122.0,124.0,126. C ISO
40,128.0,130.07 C 190
DATA HITAB/H58.93,-!54.17,-149.31,-144.35,-143.357 C 200
DATA TITAB/0.0,10.0,20.0,30.0,32.07 C 210
IF (T.LT.32.0) GO TO 109 C 220
HF=SINTRP(TEMTAB,HFTAB,T,50) C 230
RETURN C 240
109 HF=SINTRP(TITAB,HITAB,T,5) C 250
RETURN C 260
C C 270
END C 280
(Continued)
-------
Table C-4 (cont'd)
FUNCTION AVG D 110
GO TO 119 D 120
109 DIV=DIV-1.0 D 130
119 CONTINUE D 140
AVG=AVG/DIV D 150
RETURN D 160
C D 170
END D 180
o FUNCTION PV(T) E 10
C £20
C WHERE T IS THE TEMPERATURE IN DEG.F AND PV THE E 30
C CORRESPONDING SATURATION PRESSURE (PSIA) E 40
C REFERENCE - ASHRAE HANDBOOK OF FUNDAMENTALS, 1977 E 50
C E 60
DIMENSION F<8) E 70
DATA F/-741.9242,-29.721,-11.55286,-.8685635,.1094098,.439993,.252 E 80
10658,.052186847 E 90
THETA=273.16/(((T-32.0)*5.0/9.0H273.16) E 100
IF (THETA.GT.10.) THETA=10.0 E 110
IF (THETA.XE.0.0) THETA=10.0 E 120
IF (T.GE.32.0) GO TO 109 E 130
XLOGPV=-9.096936*(THETA-1.0)-3.56654*ALOG10CTHETA)*.876817*(1.0-1. E 140
10/THETA)-2.2195983 E 150
PV=(10.0**XLOGPV)*14.696 E 160
RETURN E 170
109 IF (T.GE.212.0) GO TO 119 E 180
(Continued)
-------
Table C-4 (contfd)
XLOGPV= 10.79586*(1 ,0-THETA)+5.02808*ALOG10(THETA)+1,50474E-4*( J .0- E 190
HO.O**(-8.29692*(1.0/THETA-1.Q)))+.42873E-3*(10.0**(4.76955*(1.0-T E 200
2HETA))-l.O)-2.2195933 E 210
PV=14.696*OO.O**XLOGPV) E 220
RETURN E 230
119 IF (T.GT.705.0) WRITE (6,139) E 240
TC=273.16/THETA-273.16 E 250
SUM=F(J) E 260
DC) 129 1=2,8 E 270
129 SUM=SUM+F(I)*(.65-TC)**(!-!) E 280
XLOGE=.01*(374.136-TC)*SUM/THETA E 290
PV=(217.99*EXP(XLOGE>)*14.696 E 300
RETURN E 310
C E 320
139 FORMAT (1X,17H FUNCTION PV ,/,I5HTEMPERATURE WAS,IX,41HOUT OF E 330
1RANGE. PV WAS EXTRAPOLATED BEYOND,IX,23H705.0 DEG.F! BE AWARE!) E 340
C E 350
END E 360
FUNCTION SATHUM(T,PT) F 10
C F 20
C SATHUM CALCULATES THE SATURATED SPECIFIC HUMIDITY F 30
C (LBM WATER/LBM DRY AIR) GIVEN THE SATURATION TEMPERATURE F 40
C T(DEG.F) AND THE AMBIENT PRESSURE (PSIA) F 50
C F 60
PVWSAT=PV(T) F 70
SATHUM=.62198*PVWSAT/(PT-PVWSAT) F 80
RETURN F 90
C F 1,00
END F 110
FUNCTION WETBLB(A,WB,UNNEC) G 10
C G 20
C FUNCTION WETBLB IS USED BY ROOT TO CALCULATE THE WET BULB G 30
C (DEG.F) GIVEN THE DRY BULB (DEG.F), AND THE SPECIFIC HUMIDITY G 40
C (LBM WATER/LBM DRY AIR) G 50
C A(1)=DRY BULB (DEG.F) G 60
(Continued)
-------
Table C-4 (cont'd)
C A(2)=SPECIFIC HUMIDITY (LBM WATER/LBM DRY AIR) G 70
C A(3)=STATIC PRESSURE (PSIA) G 80
C WB=CURRENT ESTIMATE OF WET BULB TEMPERATURE G 90
C UNNEC-AN UNUSED ARRAY G 100
C WETBLB- WET BULB TEMPERATURE BASED ON INPUT OF A AND WB G NO"
C G 120
DIMENSION A(3), UNNECU) G 130
TDB=A(I) G 140
W=A(2) G 150
PT=A(3) G 160
WETBLB=(W*(HV(TDB)H-iF(WB))-SATHUM(WB,PT)*(HV(WB)-HF(WB)) + .24*TDB)/ G 170
1.24 G 180
RETURN G 190
C G 200
END G 210
FUNCTION THB(TDB,PT,OMEGA,TOL) H 10
C H 20
C FUNCTION TWB CALCULATES THE WET BULB TEMPERATURE GIVEN THE DRY H 30
C BULB, STATIC PRESSURE, SPECIFIC HUMIDITY, AND CONVERGENCE H 40
C TOLERANCES H 50
C TDB=DRY BULB (DEG.F) H 60
C PT=STATIC PRESSURE
-------
Table C-4 (cont'd)
CALL ROOT (WETBLB,A,TRYWB,TOL,TWB,AUXOUT,ISOLN) H 200
IF (ISOLN.EQ.O) WRITE (6,119) TWB H 210
RETURN H 220
C H 230
C SINCE THE SPECIFIC HUMIDITY IS GREATER THAN THE SATURATED H 240
C VALUE CORRESPONDING TO THE DRY BULB TEMPERATURE, THE WET H 250
C BULB TEMPERATURE IS ASSUMED TO BE THE DEWPOINT OF THE H 260
C AIRSATE CORRESPONDING TO THE GIVEN DRY BULB AND ITS H 270
C SATURATED SPECIFIC HUMIDITY H 280
C H 290
109 TWB=TSATV(HUMSAT*PT/(.62198+HUMSAT» H 300
RETURN H 310
C H 320
119 FORMAT (1X,50H FUNCTION TWB /ROOT DID NOT ATTAIN CONVERGENCE, 1 H 330
IX.6HON THE,/1X,44HWET 3ULB TEMPERATURE! THE VALUE RETURNED IS,F15 H 340
2.47) H 350
£ C H 360
END H 370
FUNCTION WATOUT(A,ESTNTU) I 10
C I 20
C FUNCTION CALCULATES THE AVERAGE WATER OUTLET TEMPERATURE FROM I 30
C THE TOWER. I 40
C A
-------
Table C-4 (cont'd)
C A(!3)=AVERAGE DRY BULB OUTLET TEMPERATURE (DEG.F) I 170
C A(14)=AVERAGE AIR OUTLET WET BULB ( DEC F ) I 180
C A(I5)=AVERAGE AIR OUTLET ENTHALPY(BTU/LBM DRY AIR) I 190
C A I 280
G=A(6) I 290
XL=A<7) I 300
SUM=0.0 I 310
II»A(5)tl.QE-IO I 320
JJ=A(4)-H.OE-10 I 330
DO 109 1=1,11 I 340
HA(I)=A<2) I 350
109 TA(I)=A(3) I 360
DTW=3.0 I 370
TOLU)=A(1I) I 380
TOL(2)=A<12) I 390
DO 169 J=IfJJ I 400
TWAT=A<1) I 410
DO 159 1=1,11 I 420
ISOL=0 I 430
119 TWAVG=TWAT-DTW/2.0 I 440
DH=DTW*XL*DX/(DZ*G) I 450
HAVG=HA(I)+DH/2.0 J 460
WSAT=SATHUM(TWAVG,AUO)) I 470
HASAT=AIRH(NSAT,A(10)tTWAVG) I 480
DTWCAL=TRANU*(HASAT-HAVG) I 490
IF (ABS(DTWCAL-DTW).LE.TOLC1).OR.ABS((DTWCAL-DTW)/DTW).LE.TO I 500
1 L(2)) GO TO 149 I 5JO
(Continued)
-------
Table C-4 (contfd)
ISOL«1SC)L+I j
IF (ISOL.GT.1) GO TO 129 I
DTWM1=DTW J
DTW=DTWCAL *
GO TO 139 I 560
J29 FRACT«(DTWCAL-DTWCAL2)/(DTW-DTWMI) I 570
Q=FRACT/(FRACT-1.0) I 580
DTWM1=DTW I 59°
DTV?=Q*UTW+(1.0-Q)*DTWCAL I 600
139 DTWCAL2=DTWCAL I 610
GO TO 119 I 620
149 TWAT=TWAT-DTWCAL I 630
DTW=DTWCAL I 640
TA(I)=TA(I)+DH*(TWAVG-TA(I))/(HASAT-HA(I)) I 650
159 HA(I)-HA<1>+DH I 660
169 SUM=SUM-«-TWAT I 670
.TWO-SUM/A C4) I 680
SUM1=0.0 I 690
SUM2=0.0 I 700
DO 179 1=1,11 I 710
SUM1=SUM1+TAU) I 720
179 SUM2=SUM2+HA(I) I 730
TAO=SUM1/A(5) I 740
HAO=SUM2/A(5) I 750
CALL AIRPRO (TA()tG,G,CP,G) I 760
W=
-------
Table C-4 (cont'd)
C I 870
199 FORMAT (1X,38H NUMBER OF TOWER DIVISIONS TOO LARGE,IX,33HFOR PRE I 880
JSENT DIMENSION IN WATOUT-—,/) I 890
C I 900
END I 910
FUNCTION TOHNTU(A,B,TOL> J 10
C J 20
C FUNCTION CALCULATES THE AVERAGE TOWER NTU. J 30
C INPUT* J 40
C A(I)=AVERAGE WATER INLET TEMPERATURE (DEG.F) J 50
C A(2)'AVERAGE AIR INLET ENTHALPY (BTU/LBM DRY AIR) J 60
C A(3)=AVERAGE AIR INLET DRY BULB TEMPERATURE (DEG.F) J 70
C A(4)=NUMBER OF AIR STREAMWISE TOWER DIVISIONS J 80
C A(5)=NUMBER OF AIR SPANWISE TOWER DIVISIONS J 90
C A(6)=AIR LOADING (LBM/HR-FT**2) J 100
C AC7) sWATER LOADING (LBM/HR-FT**2) J 110
C A(8)=STREAMWIS£ TOWER INTEGRATION LENGTH (FT) J 120
C A(9)«SPANWISE TOWER INTEGRATION LENGTH (FT) J 130
C A(10)=STATIC PRESSURE (PSIA) J 140
C A(11)=AVERAGE WATER OUTLET TEMPERATURE (DEG.F) J 150
C OUTPUT: J 160
C B(1)=AVERAGE AIR OUTLET DRY BULB TEMPERATURE (DEG.F) J 170
C B(2)=AVERAGE WET BULB OUTLET TEMPERATURE (DEG.F) J 180
C B(3)=AVERAGE AIR OUTLET ENTHALPY (BTU/LBM DRY AIR) J 190
C B(4)=TOWER MASS TRANSFER COEFFICIENT (LBM/HR-FT**3) J 200
C B(5)=AVERAGE AIR OUTLET SPECIFIC HUMIDITY(LBM WATER/LBM DRY AIR) J 210
C J 220
DIMENSION AUI), B<5), PARMC16), TOL(2) J 230
EXTERNAL WATOUT J 240
DH=(A(1)-A(II))*A(7)/A(6)*A(8)/A(9) J 250
HAVG=A(2)+DH/2.0 J 260
TWAVG=(A(I)+A(II))/2.0 J 270
HASAT*AIRH(SATHUM(TWAVG,A(IO)),A(10),TWAVG) J 280
TRANU=(AU)-A( 1I))/(HASAT-HAVG) J 290
DO 109 1=1,10 J 300
(Continued)
-------
Table C-4 (cont'd)
J09 PARM(I)=A(I) J 310
C J 320
C WATER OUTLET TEMPERATURE MUST BE MORE ACCURATE BY A FACTOR J 330
C OF TEN AS COMPARED TO THE NTU ITERATION CONVERGENCE ERROR J 340
C J 350
PARM(11)=TOL(1)/10.Q J 360
PARM(12)=TOL(2>/10.0 J 370
CALL TOWSOLV (WATOUT,PARM,TRANU,TRANU,A(11),TOWNTU,TOL,IEXT,10) J 380
B(I)=PARM(13) J 390
B(2)=PARM(14) J 400
B(3)=PARM(!5) J 410
B(4)=TOWNTU*A(7)/A(9) J 420
B(5)=PARM(I6) J 430
IF (IEXT.EQ.O) GO TO 119 J 440
RETURN J 450
119 WRITE (6,129) J 460
3 CALL EXIT J 470
C J 480
129 FORMAT (1X,35H SECANN DID NOT RETURN A SOLUTION, IX, 14H TO TOWNT J 490
1U ,/) J 500
C J 510
END J 520
SUBROUTINE TOWSOLV (FUNCT,AUXVAR,TRY1,TRY2,VAR,ANS,TOL,ISOLN.ITMAX K 10
I} K 20
K 30
C TOWSOLV IS SECANN RENAMED TO AVOID IMPROPERLY NESTED CALLS OF THE K 40
C SAME SUBPROGRAM. K 5Q
£ JS?S(rH 5ILL SOLVE FOR ANS GIVEN ™E DESIRED FUNCTION VALUE VAR, K 60
£ ™,??NCTION FUNCT AND THE N AUXILIARY VARIABLES WHICH ARE KNOWN. K 70
C TOL(l)-ABSOLUTE ERROR. TOL<2)-RELATIVE ERROR. K 80
!T QO
DIMENSION AUXVAR(l), TOL(1) J inn
ISOLN=1 % in
X1-TRY1 ^ j^g
(Continued)
-------
Table C-4 (cont'd)
X2=TRY2 K 130
ICOUNT=0 K 140
DENOM=VAR-H.OE-JO K 150
Y1=VAR-FUNCT(AUXVAR,X1> K 160
IF (X2.EQ.X1) X2=1.03*X1 K 170
109 Y2=VAR-FUNCT(AUXVAR,X2) K 180
IF (ABS(Y2/DENOM).LE.TOL(2).OR.ABS(Y2).LE.TOL(1)) GOTO 119 K 190
SLOPE=(Y2-Y1)/(X2-X1) K 200
B=Y2-SLOPE*X2 K 210
X3=-B/SLOPE K 220
IF (X3.GT.JO.O) X3=.5*(10.0-X2)+X2 K 230
X1=X2 K 240
X2=X3 K 250
Y1=Y2 K 260
ICOUNT=ICOUNT-H K 270
IF (ICOUNT.GT.ITMAX) GO TO 129 K 280
o, GO TO 109 K 290
00 119 ANS=X2 K 300
RETURN K 310
129 ISOLN=0 K 320
RETURN K 330
C K 340
END K 350
FUNCTION R(PARM,TRYR,AUXOUT) L 10
C L 20
C FUNCTION CALCULATES R TO BE USED BY ROOT AND CORF IN DETERMINING L 30
C THE LMTD CROSSFLOH CORRECTION FACTOR. SEE BOWMAN,MUELLER, AND L 40
C NAGLE, 'MEAN TEMPERATURE DIFFERENCE IN DESIGN' TRANS. OF THE ASME. L 50
C L 60
DIMENSION FACTC20), PARM(2), AUXOUK1) L 70
DATA FACT/1.0,2.0,6.0,24,0,120.0,720.0,5040.0,40320.0,362880.0,362 L 80
18800.0,39916800.0,479001 600.0,6227020800.0,87! 78291200.0,1.3076743 L 90
268E-H2,2.0922789888£-H3I3.55687428096E-H4,6,402373705728E-H5,1.216 L 300
345 100408832E-H 7.2.43290200817664E+18/ L 130
(Continued)
-------
Table C-4 (cont'd)
P=PARM(1) L 120
Q=PARM(2) L J30
R=0.0 L 140
DO 159 J=0,IO L 150
DO 149 1=0,10 L 160
X=I L 170
Y=J L 180
ISAVE=(I+J)/2 L 190
SIGN*-1.0 L 200
IF (ABS(FLOAT
-------
Table C-4 (cont'd)
CONTINUE L 480
MTTKUIC r *nn
149 CONTINUE
159 CONTINUE
IF (ABS(TERM/R).GT..OOD WRITE (6,169) L 500
RETURN L 510
C L 520
169 FORMAT (//,1X,36H CONVERGENCE IN INFINITE SERIES IN,1X,30H SUBPR L 530
10GRAM R WAS NOT REALIZED,/,IX,9HEXECUTION,IX,33H WAS NOT TERMINATE L 540
2D BUT BE AWARE!,//) L 550
C L 560
END L 570
SUBROUTINE WATPRO (T,XMU,XK,CPtPR,RHO) M 10
C M
C WATPRO CALCULATES SEVERAL WATER PROPERTIES OF INTEREST GIVEN THE M
C TEMPERATURE (DEG.F) M
C T=TEMPERATURE (DEC. F) M
C XMU=VISCOSITY (LBM/FT-HR) M
C XK=THERMAL CONDUCTIVITY (BTU/HR-FT**2-DEG.F) M
C
C
C
C
(Continued)
EMPERATURE (DEG.F)
=TEMPERATURE (DEC. F)
MU= VISCOSITY (LBM/FT-HR)
K=THERMAL CONDUCTIVITY (BTU/HR-FT**2
P=SPECIFIC HEAT ( 8TU/LBM-DEG . F )
R=PRANDTL NUMBER
XK=THERMAL CONDUCTIVITY (BTU
CP=SPECIFIC HEAT ( 8TU/LBM-DE
PR=PRANDTL NUMBER
RHC)=MASS DENSITY (LBM/FT**3)
17,60.13/
DATA XMUTAB/4.33,3.75,2.71,2.08,1
DATA XKTAB/.327,.332,.344,.355,.3
DATA PRTAB/13.37,11.35,7.88,5.85,
XM U=SINTR P(TEMTAB,XMUTAB, T, 10)
YJfsSTHTPPfTFMTAR.YirrAR.T- IfH
XMU=SINTRP(TEMTA
XK=SINTRP(TEMTAB
.j\
-------
n
§
g
m
O
PARM(2)=Q
CALL ROOT
C()RF=RACT/
RETURN
33 "^
O 33
TJ*
"O
33
3S
W
m
H
r-
«•
3D
S3*
0
H
5>
G
X
O
9
"•
1— 1
CO
o
r1
2
*^
— o
\O X3
RCF=(P-Q)/
GO TO 119
RCF=(TWO-T
CONTINUE
PARMU)=P
> >
I . I"*
x 8
H ""*
»— i *
1 O
> O
**•' ^v.
_
*
o
1
"O
*•"'
ooooooooo o
>*H IQ o m CU C*
T1 II II X > M
-»H Hm > m
CD O "-iX HCO
to i i > SM
1 I-H O 33 •
O +*• « OH
r-HH ~~
H 3E 2; • fo
• 1— I >— < O *-*
— II &»
• HH —
O > > XT3
m HH l-H JJfc
1 '""^ ^"^ 33
5 5
v- fU
o *
o
^>
H c
c x
o
^ *— "
0 H
'O *^
—
"^
HHHHOO T|
» 3£ as C 33 G
C M O •-* 33 C "Z,
II II II II "Tl CO O
» > > co H
««O I-H
m m m m >• TI o
33 33 33 33 h- r1 3S
» »h c
oo o oco s o
m m m m c
--. ^s 33m 33
Hr"Hr-Hmo
t"1 m p1 m O >*
m H m H >• H r**
H H z CO o
> SO* G
>M 25 > r*
•-H 33 > H 33 >
33 H mo H
Hm 33O m
H rn 33 H co
ma H
3K T3 H m O H
"o rn m s > £c
m 33 s; "of-1 m
33 > xi m r1
>Hm 33co o
He 33 > o
G 33> H33 33
33fTJH C» 33
m G 33 m
•~> 33 m o
•~* cm H
cm ~ i-«
mo -> a c
o« am 2*
• Timo
TJ v^ O « H
*^ • Tl O
TI -^
*—» t—J
a:
rn
r*
a
H
a
a
G
m
H
o
END
FUNCTION C
a
|RF(TWI
H
H
1—4
«
H
O
^
CP=SINTRP(
PR=SINTRP(
RHO-SINTRP
RETURN
^s H H
H m m
ms s;
SHH
> CD CO
CD1* *
« T3O
33 33 T3
XHH
H CO CO
ro ^HH
. i |tni..f| ^^^
•• O O
o
Table
o
i-
^*\
o
0
0
rt
&
s-x
^M N^ • «^ • I WS» I >* —— ^^.j* ^^ X^ —^»f >^» >p< • «^* W I >*»
oooooooooooooooo
— O
oo
-
ooooooooo
U» N) IX) M IX) N
8>O 00 ^JO U
o o o o c
-------
Table C-4 (cont'd)
SUBROUTINE ROOT (FUNCT,PARM,TRYX,TOL,ANS,AUXOUT,ISOLN) 0 10
C 0 20
C ROOT SOLVES FOR THE ROOT OF X-F(PARM,X,AUXOUT=0. 0 30
C FUNCT=FUNCTION F 0 40
C PARM=ANY PARAMETERS NEEDED TO EVALUATE F 0 50
C TRYX=ESTIMATE OF X 0 60
C TOL(1)=ABSOLUTE CONVERGENCE ERROR IM X 0 70
C TOL(2)=RELATIVE CONVERGENCE ERROR IN X 0 80
C ROOT IS DETERMINED WHEN TOLO OR TOL(2) IS SATUSFIED. 0 90
C FUNCTION MUST BE SET UP LIKE FUNCT(PARMfX,AUXU) 0 100
C AUXOUT=AUXILIARY OUTPUT FROM FUMCT 0 110
C 0120
DIMENSION PARM(l), TC)L<2>, AUXOUT(l), Y<15), X(15)f FUNCJ5) 0 130
COMMON /PCONTRL/ ITPRIHT 0 140
SMALL=1.0E-10 0 150
MAX*15 0 160
ISOLN=0 0 170
IMIN=0 0 180
IMAX=IMIN 0 190
YPLUS=1.0E+30 0 200
YMINUS=-YPLUS 0 210
IF (TRYX.EQ.0.0) TRYX=1.0E-6 0 220
XI=TRYX 0 230
X2=1.15*X1 0 240
ICOUNT=I 0 250
Yl=Xt-FUNCT
-------
°oopooooooo ooooooooo ooooooooooooo
^SD;SS2i2"rv|ro'^"inx5 r~-cooo — — '
te:
55
D
u,
X
tf
S
•S
O
>-
I
X
\
• * ui
ino.
00
N
a
s
o x'
ro •(-
(M
x
a
x
o
t—(
X
I
<™N
<—*
O
00
o —
in NO *
I *~" v^
X X
O VV '"» s^
H n H n
CM rv
O H
*
- n /•••*
v^
+ O
UJ
X
11
o o
•— ^ X SE
w^ j.^
oxox
w • uj • •
h •(-•
x
ac
a.
•*
-!
fS
«*-/
X
<
o
U4
H
O
»
H
CS
Q. O
m
CC »-•
o,
o
o §
U
73
-------
Table C-4 (contfd)
179 FORMAT (1X.15HMAX ITERATIONS=,I3,3HTOL,/,1X,2EII.4,/,1X,7HPARM(1), 0, 690
1/,1X,E11.4,//1X,10H ROOT ,/!X,5HERROR,5X,8HARGUMENT,2X,14HFUNC 0 700
2TION VALUE,/,1X,(3E1I.4» 0 710
189 FORMAT (1X,40H ROOT /ERROR/ARGUMENT/FUNCTION VALUE,3E10.3) 0 720
C 0 730
END 0 740
SUBROUTINE SECANM (FUNCT,AUXVAR,TRY1,TRY2,VAR,ANS,TOL,ISOLN,ITMAX) P 10
C P 20
C SECANN WILL SOLVE FOR ANS GIVEN THE DESIRED FUNCTION VALUE VAR, P 30
C THE FUNCTION FUNCT AND THE N AUXILIARY VARIABLES WHICH ARE KNOWN. P 40
C TOL.-OR.ABS(Y2).LE.TOLC1» GOTO 119 P 160
SLOPE=(Y2-Y1)/CX2-X1> P 170
B=Y2-SLOPE*X2 P 180
X3=-B/SLOPE P 190
XI =0(2 P 200
X2=X3 P 210
Y1=Y2 P 220
ICOUNT=ICOUNT-H P 230
IF (ICOUNT.GT.ITMAX) GO TO 129 P 240
GO TO 109 P 250
119 ANS=X2 P 260
(Continued)
-------
Table C-4 (cont'd)
RETURN p 270
129 ISOLN=0 p 280
RETURN p 290
C P 300
END p 3JO
FUNCTION RHOAIRCOMEGA,TDB,P) 0 10
C Q 20
C RHOAIR WILL CALCULATE THE MOIST AIR DENSITY GIVEN THE SPECIFIC Q 30
C HUMIDITY (LBM WATER/LBM DRY AIR), DRY BULB TEMPERATURE (DEG.F), Q 40
C AND STATIC PRESSURE (PSIA). Q 50
C Q 60
R=1545.0/(144.0*28.9) Q 70
RHO=P/(R*(460.0+TDB)) Q 80
RH()AIR=RHO*(J.O+OMEGA) Q 90
^ RETURN Q JOO
C Q 110
END 0 !20
FUNCTION W8DEW(TDB,PT,DE?*PT,TOL) R JO
C R 20
C FUNCTION WBDEW CALCULATES THE WET BULB TEMPERATURE (DEG.F) R 30
C GIVEN THE DRY BULB TEMPERATURE (DEG.F), DEWPOINT (DEG.F), STATIC R 40
C PRESSURE (PSIA) AND TWO TOLERANCES. R 50
C R 60
DIMENSION TOL(2) R 70
W=SATHUM(DEWPT,PT) R 80
WBDEW=TWB(TDB,PT,W,TOL) R 90
RETURN R t00
c R J10
END R 120
(Continued)
-------
Table C-4 (cont'd)
FUNCTION TOFLOCVSTACK,NSTACK,ASTACK,VHTX,NHTX,AHTX,TSTACK,PT,THTX, S 10
IPERDIF) S 20
C S 30
C TOFLO CALCULATES THE TOTAL DRY AIR FLOW THROUGH THE TOWER. NOTE S 40
C THAT FOR THE CELL FLOW RATE THE TOTAL FLOW MUST BE DIVIDED BY TWO. S 50
C VSTACK=ARRAY OF STACK VELOCITIES, WITH NSTACK ELEMENTS. S 60
C ASTACK=STACK AREA NORMAL TO AIR FLOW. S 70
C VHTX=ARRAY OF HEAT EXCHANGER FACE VELOCITIES WITH NHTX ELEMENTS. S 80
C AHTX=HEAT EXCHANGER FACE AREA. S 90
C WSTACK,WHTX«STACtC AND HEAT EXCHANGER SPECIFIC HUMIDITY. S 100
C TSTACK,THTX=STACK AND HEAT EXCHANGER INLET AIR TEMPERATURE. S HO
C PERDIF=PERCENT DIFFERENCE BETWEEN MASS FLOW RATES AS MEASURED S 120
C AT STACK AMD HEAT EXCHANGER FACE. S 130
C S 140
DIMENSION VSTACK(NSTACK), VHTX(NHTX) S 150
SUM=0.0 S 160
J=0 5 170
DO 119 1=1,NSTACK S 180
IF (VSTACK(I).LE.O.O) GO TO 109 S 190
SUM=SUM+VSTACK(I) S 200
J=J+] S 210
109 CONTINUE S 220
119 CONTINUE S 230
IF (J.LT.1) J=l S 240
VSAV-SUM/FLOATCJ) S 250
SUM=0.0 S 260
J=0 S 270
DO 139 1=1,NHTX S 280
IF (VHTX(I).LE.O.O) GO TO 129 S 290
SUW=SUM+VHTX(I) S 300
J=J+1 S 310
129 CONTINUE S 320
(Continued)
-------
Table C-4 (cont'd)
139 CONTINUE S 330
IF (J.LT.1) J=l S 340
VHTXAV=SUM/FLOAT(J) S 350
T=TSTACK+460.0 S 360
DENDRY=PT/CC 1545.0/<29.0*144.0»*T) S 370
TOFLO=ASTACK*DENDRY*VSAV*360Q.Q S 380
DENDRY=DENDRY*(T/(460.0+THTX)) S 390
HTXFLO=DENDRY*AHTX*VHTXAV*3600.0*2.0 S 400
P£RDIF=(HTXFLO-TOFLO)*100.0/TOFLO S 4JO
RETURN S 420
C S 430
END S 440
SUBROUTINE VEL T 130
DO 109 1=1,N T 140
109 VP
-------
Table C-4 (contfd)
C U 50
IF (V.P.LT.0.0) VP=0.0 U 60
C U 70
C ITYPE=1 IF VELOCITY PRESSURE IS FROM HEAT EXCHANGER FAN. U 80
C ITYPE=2 IF VELOCITY PRESSURE IS FROM STACK. U 90
C U 100
00 TO (109,119), ITYPE U HO
J09 CONTINUE U 120
C U 130
C HEAT EXCHANGER FAN U 140
C U 150
CONVERT=(VP*.01/760.Q)*33.9*12.0 U 160
RETURN U 170
119 CONTINUE U 180
C U 190
C STACK U 200
C U 210
CONVERT=(VP*.1/760.0)*33.9* 12.0 U 220
RETURN U 230
C U 240
END U 250
SUBROUTINE DEWCON (DP,N) V 10
C V 20
C SUBROUTINE WILL CONVERT THE ARRAY DP(I), WITH N ELEMENTS, FROM V 30
C A DEWCELL TEMPERATURE TO THE CORRESPONDING DEWPOINT TEMPERATURE. V 40
C NOTE THAT ARRAY DP IS DESTROYED AND REDEFINED. V 50
c V 60
DIMENSION DP(N), DCTAB(24), DPTAB(24) V 70
DATA I FIRST/0/ v 80
DATA DPTAB/1.7,8.3,15.0,21.7,28.3,35.5,43.2,50.5,57.4,64.2,71.0,77 V 90
1.8,84.3,90.4,96.2,103.0,110.6,1 18.5,126.6,134.5,142.2,149.8,157.4, V 100
2165.I/ V »»0
IF (IFIRST.NE.O) GO TO 119 V 120
DCTAB(1)=50.0 v 13°
(Continued)
-------
Table C-4 (cont'd)
DO 109 1=2,24 V 140
109 DCTAB(I)=DCTAB(I-1)-HO.O V 150
IFIRST=1 V 160
119 CONTINUE V 170
DO 129 1=1,N V 180
IF (DP(I).GE.997.0) GO TO 129 V 190
IF (DP(I).GT.280.0.OR.DP(I).LT.50.0) GO TO 139 V 200
DP(I)=SINTRP(DCTAB,DPTAB,DP(I),24) V 210
129 CONTINUE V 220
RETURN V 230
139 WRITE (6,149) V 240
CALL EXIT V 250
C V 260
149 FORMAT (XIX,41H DEWCELL TEMPERATURE IS OUT OF RANGE OF,1X,20HSUB V 270
1 ROUTINE DEWCON ,) V 280
C V 290
END V 300
FUNCTION WATDIST(HI,XLO,SG,T,HTXL,TFLUID,ITRAND,VHTX,VZEROtPERDIF) W 10
C W 20
C FUNCTION CALCULATES THE WATER FLOW TO THE DRY PORTION OF W 30
c THE TOWER: THE FUNCTION USES A LEAST w 40
C SQUARES POLYNOMIAL APPROXIMATION. W 50
C T=MANOMETER AMBIENT TEMPERATURE(DEG F) W 60
C TFLUID=METERED FLUID TEMPERATURE(DEG. F) W 70
C ITRAND=1 IF WANT TRANSDUCER FLOWRATE TO BE USED. W 80
C ITRAND=0 IF WANT MANOMETER FLOWRATE TO BE USED W 90
C VHTX=TRANSDUCER VOLTAGE(MY). W 100
C VZERO=TRANSDUCER VOLTAGE AT ZERO PRESSURE DIFFERENCE(MV). W 110
C PERDIF=DIFFERENCE IN PERCENT BETWEEN MANOMETER W 120
C AND TRANSDUCER FLOWRATE W 130
C W 140
DIMENSION HRHCX12), QTAB(12), TTAB(3), SPTAB(3), A(3), B(3) W 150
DATA TTAB/110.0,70.0,40.07 W 160
DATA SPTAB/2.911,2.96,2.9965/ W 170
DATA HRHO/I.40386,1.154789,.826735..7160475,.690416,.490664,.40184 W 180
(Continued)
-------
Table C-4 (cont'd)
1,.342447,.'272879,. l" 93039,.*!57909,0.6/ M 190
DATA QTAB/12000.0,10800.0,9000.0,8400.0,8100.0,6300.0,6000.0,5400. W 200
10,4500.0,4200.0,3000.0,0.07 W 210
DATA A/6.5291E+2,3.8J54E+8,-3.0978E-H2/ W 220
DATA B/1.0934E+3,1.3l39E+4,-3.9565E+3/ N 230
NUMPTS=12 w 240
IF £ABS(SG-2.95).GT.UOE-3) GO TO J19 W 250
SPGR=SINTRPCTTAB,SPTAB,T,3) W 260
RHOSTD=62.42 W 270
CALL WATPRO (T,G,G,G,G,RHO) ft 280
CALL WATPRO W 330
H=H1+H2 W 340
HIhTTER=H/RHOF W 350
oo GPM=B(1)+BC2)*HINTER+B(3)*HINTER**2 W 360
WATDIST«GPM ft 370
VZ=(VHTX-VZERO)/RH()F W 380
GPMt=A(l)+A(2)*VZ-»-A(3)*VZ**2 W 390
IF (ABS(HI+XL()).LE. 1 .OE-3.0R. ITRAND.EQ.l ) WATDIST=GPM1 W 400
IF CABS(HI+XLO).LE.1.0E-3) GO TO 109 W 410
PERDIF=(GPM-GPM1)*100.0/GPM W 420
RETURN W 430
109 CONTINUE W 440
PERDIF= 100.0 IK 450
RETURN H 460
119 WRITE (6,129) w 470
CALL EXIT W 480
RETURN w 490
C W 500
129 FORMAT (1X,40(1H-)f35HSOMEONE CHANGED THE MANOMETER FLUID,IX,51HSP W 510
1ECIFIC GRAVITY USED TO MEASURE DRY TOWER FLOWRATE) W 520
C W 530
END W 540
(Continued)
-------
Table C-4 (cont'd)
FUNCTION ANUBAR(PERFF,HI,XLO,SPGR,TI,TMETER,PERDIF,ITRAN) X 10
C X 20
C ANUBAR CALCULATES THE WATER FLOW RATE IN GPM GIVEN! X 30
C PERFF-PERCENT OF FULL FLOW AS INDICATED BY A PRESSURE TRANSDUCER- X 40
C THIS IS USED AS A CHECK ON THE MANOMETER. X 50
C HI-HIGH PRESSURE MANOMETER READING (IN). X 60
C XLO-LOH PRESSURE MANOMETER HEADING (IN) X 70
C SPGR-SPECIFIC GRAVITY OF MANOMETER FLUID RELATIVE TO X 80
C WATER AT 4 DEG C. X 90
C TI-INSTRUMENT TEMPERATURE(DEG. F) X 100
C TMETER-METERED FLUID TMEPERATURE(DEG, F) X I 10
C ITRAN-IF=I THEN TRANSDUCER FLOWRATE IS PASSED ON AS FLOWRATE. X 120
C IF=0 THEN MANOMETER FLOWRATE IS PASSED ON X 130
C OUTPUT: X 140
C PERDIF-THE PERCENT DIFFERENCE IN FLOW RATE AS INDICATED BY THE X 150
C PRESSURE TRANSDUCER AND THE MANOMETER. X 160
C , X 170
DIMENSION SPTAB(3), TTAB(3) X 180
DATA SPTAB/2.911,2.96,2.9965/ X 190
DATA TTAB/110.0,70.0,40.07 X 200
IF (ABS(SPGR-2.95).GT.l.OE-3) GO TO 109 X 210
FULLSC=25468.0 X 220
RHOSTD=62.42 X 230
S=.7364 X 240
XN=29.84 X 250
02=862.95 X 260
GL«1.0 X 270
CAUL WATPRO (90.0,GARB,BARB,GARB,GARB,RHONOR) X 280
CALL WATPRO (TMETER,GARB,GARB,GARB,GARB,RHO) X 290
SPGRW*RHO/RHQSTD X 300
HN=(62.42/1728.0)*(SINTRP(TTAB,SPTAB,TI,3)-SPGRW)*(HI+XLO) X 310
SPGRW=RH()/62.383 X 320
ANUBAR=S*XN*D2*SQRT(SPGRW*HN)/(GL*2.0) X 330
(Continued)
-------
Table C-4 (cont'd)
TRANS»FULLSC*SQRT(RHO/RHONOR)*SQRT(PERFF/100.0)72.0 X 340
PERDIF=(TRANS-ANUBAR)*100.0/ANUSAR X 350
IF (ANUBAR.LE.1.0) PERDIF=!00.0 X 360
IF (ITRAN.EQ.I.OR.ABS(HI+XLO).LE.l.OE-3) ANUBAR=TRANS X 370
RETURN X 380
109 WRITE (6,119) X 390
CALL EXIT X 400
C X 410
119 FORMAT (1X,40(1H-),34HSOMEONE CHANGED THE FLUID SPECIFIC,/!X,45HGR X 420
1AVITY USED TO MEASURE TOWER WATER FLOHRATE,40C1H-)> X 430
C X 440
END X 450
FUNCTION AIRH(W,PT,T) Y 10
C Y 20
C AIRH CALCULATES THE MOIST AIR SPECIFIC ENTHALPY (BTU/LBM DRY Y 30
C AIR) GIVEN THE SPECIFIC HUMIDITY W (DIMENSIONLESS), MIXTURE Y 40
C STATIC PRESSURE PT(PSIA), AND TEMPERATURE T(DEG.F) Y 50
C Y 60
COMMON /PCONTRL/ ITPRINT Y 70
PV=W*PT/(.622+N) Y 80
HV=ENTHLP(PVfT) Y 90
CALL AIRPRO (T,GfG,CP,G) Y 100
AIRH=CP*T+W*HV Y 110
IF (ITPRINT.NE.l) RETURN Y 120
WRITE (6,109) W,PT,T,AIRH Y 130
RETURN Y 140
C Y 150
109 FORMAT (IX,23H AIRH INPUT-W/PT/T,4F11.4/1X,11HOUTPUT-AIRH,3E1 Y 160
11.4) Y 170
C Y 180
END Y 190
(Continued)
-------
Table C-4 (cont'd)
CO
U)
109
119
129
139
149
159
169
179
SUBROUTINE CODE (ICODE,IDATE,IPUN)
DIMENSION ICODE(6), TESTC9), SEAS(4)
DATA TEST/3HWET,7HWET/DRY,3HDRY,9HFILL TEST,8HFAN TEST,10HPLUME TE
1ST,8HACOUSTIC,10HA!R TRAVEL,4HTEST/
DATA SEAS/6HWINTER,6HSPRING,6HSUMMER,4HFALL/
WRITE (6,289)
WRITE (6,189)
WRITE (6,299) IDATE
MM=ICODE(1)
GO TO (109~, 119,129,139,149,159, 169), MM
WRITE (6,199) TEST(1),TEST(4)
GO TO 179
WRITE (6,209) TEST(2),TEST(4>
GO TO 179
WRITE (6,219) TEST(3),TEST(4)
GO TO 179
WRITE (6,229) TEST(5)
GO TO 179
WRITE (6,239) TEST(6)
GO TO 179
WRITE (6,249) TEST(7),TEST(9)
GO TO 179
WRITE (6,259) TEST(8),TEST(9)
CONTINUE
J=ICODE(2)
WRITE (6,269) SEAS(J)
WRITE (6,279) (ICODE(I),1=3,6)
RETURN
189
COOLING TOWER TEST RESULTS
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
10
20
30
40
50
60
70
80
90
100
no
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
(Continued)
-------
Table C-4 (cont'd)
229 FORMAT (IX,40X,A8) Z 350
239 FORMAT UX,40X,A10) Z 360
249 FORMAT (IX,40X,A8,IX,A4) Z 370
259 FORMAT (1X,40X,A10,1X,A4) Z 380
269 FORMAT (1X,40X,A6) Z 390
279 FORMAT (1X,40X,I7HTEST BLOCK NUMBER,1X,I2/IX,40X,IIHTEST NUMBER,IX Z 400
1,2I1/1X,40X,6HNUMBER,!Xt12,1X,6HREPEAT,////) Z 410
289 FORMAT MH1) Z 420
299 FORMAT (IX,40X,4HDATE,IX,13) Z 430
C Z 440
END Z 450
FUNCTION DEWINT(GARB,T) AA 10
C AA 20
C DEWINT IS AN INTERMEDIATE SUBPROGRAM WHICH ALLOWS FUNCTION T AA 30
C TO USE SUBROUTINE SECANN BY FORMATING THE FUNCTION STATEMENT AA 40
C CORRECTLY AA 50
oo C AA 60
** DIMENSION GARB(l) AA 70
DEWINT=PV(T) AA 80
RETURN AA 90
C AA 100
END AA 110
FUNCTION TSATV(PV) AB 10
C AB 20
C T CALCULATES THE DEWPOINT (OR SATURATION TEMPERATURE) OF AN AB 30
C AIR-WATER VAPOR MIXTURE GIVEN THE PARTIAL PRESSURE OF THE. AB 40
C WATER VAPOR AB 50
C AB 60
DIMENSION TOL(2), AUXVAR(l) AB 70
EXTERNAL DEWINT AB 80
TOL(1)=.00005 AB 90
TOL(2)=.0005 AB 100
rr=i5 AB no
CALL SECANN (DEWINT,AUXVAR,40.0,110.0,PV,TSATV,TOL,I,IT) AB 120
(Continued)
-------
Table C-4 (cont'd)
IF (I.EQ.O> GO TO 109 AB 130
RETURN A8 ,40
109 WRITE (6,119} AB !5o
C AB 160
J19 FORMAT (1X,10(lH-)f34HNO SOLUTION RETURNED TO FUNCTION T,IO(1H-),/ AB 170
1,lX,3HPV»,E!0.3//> AB 180
° cwn AB 19°
END A8 200
FUNCTION SPHUM(T,TWBfPT) AC 10
C AC 20
C SPHUM CALCULATES THE SPECIFIC HUMIDITY GIVEN* AC 30
C T-DRY BULB TEMPERATURE(DEG. F) AC 40
C TWB-WET BULB TEMPERATURE(DEG. F) AC 50
C PT-ATMOSPHERIC PRESSURE(PSIA) AC 60
C AC 70
CALL AIRPRO «T+TWB)/2.0,GfG,CPtG> AC 80
QXTWB AC 90
IF (Q.GT.T) QXT AC 100
SPHUM=(CP*(Q-T)+SATHUM(T,PT)*(HV(Q)-HF(Q)))/(HV(T)-HF(Q» AC 110
RETURN AC 120
C AC 130
END AC 140
FUNCTION RELHUM(OMEGA,PT,T) AD 10
C AD 20
C RELHUM CALCULATES THE RELATIVE HUMIDITY FROM THE SPECIFIC AD 30
C HUMIDITY(LBM H20/LBM DRY AIR).MIXTURE PRESSURE(PSIA), AD 40
C AND DRYBULB(DEG. F) AD 50
C AD 60
PG=OMEGA*PT/(.62198-K)MEGA> AD 70
PVAP=PV(T) AD 80
RELHUM=PG*100.0/PVAP AD 90
RETURN AD 100
C AD 110
END AD 120
(Continued)
-------
Table C-4 (cont'd)
SUBROUTINE REDUC (NX,I FLAG,IPUN) AE 10
DIMENSION INPUT(129,5), P2(10,5), A(28), B(8), MONTH(12)f NMO(12> AE 20
DIMENSION IDENTU18), XU18), XCAL2(5), INPAR(6,5), PLUM(52) AE 30
COMMON 7DAT27 ELEV(8,5),DBP(8,5),WBDP(8,5),AVELP(8,5),VISIOC5),NCT AE 40
12(5) AE 50
COMMON 7DATIN7 X,VPHTX(9),CAL1,VPSTK(10),CAL2,NPAR(6),NRUN AE 60
DATA (IDENT(I),1=1,118)716,12,21,24,17,20,23,13,19,11,30,26,29,32, AE 70
125,28,31,14,27,15,45,76,47,48,49,69,70,71,54,55,56,53,57,108,109,6 AE 80
20,46,50,51 ,52,61,62,63,64,72,73,74,75,65,66,67,68,38,42,41,35,43,4 AE 90
30,37,44,39,36,80,84,81,77,85,82,78,86,83,79,90,91,89,92,93,94,95,9 AE 100
46,97,98,106,107,58,59,33,34,87,10,18,99,100,101,102,103,104,105,11 AE 110
58,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134, AE 120
6135,136,1377 AE 130
DATA (MONTH(I),1=1,12)731,28,31,30,31,30,31,31,30,31,30,317 AE 140
DATA (NMO(I),I=1,12)/3HJAN,3HFEB,3HMAR,3HAPR,3HMAY,3HJUN,3HJUL,3HA AE 150
1UG,3HSEP,3H()CT,3HNOV,3HDEC7 AE 160
S REAL INPUT AE 170
INTEGER Tt,T2,T3,ELEV AE 180
DATA BT,OL/1HB,1H07 AE 190
IBL=0 AE 200
IF (NX.GT.1) GO TO 329 AE 210
IFLAG=0 AE 220
READ (5,399) AE 230
DO 309 J=1 ,5 AE 240
READ (5,399) INRUN.T1,T2,T3 AE 250
IF (J.EQ.l) NRUN=INRUN AE 260
IF (EOF(5)) 379,109 AE 270
109 IF (J.GT.1) GO TO 139 AE 280
IDATE=NRUN AE 290
IF (IDATE.GT.365) GO TO 129 AE 300
DO 119 1=1,12 AE 310
KK=I AE 320
IF (IDATE.LE.MONTH(D) GO TO 139 AE 330
119 IDATE=IDATE-MONTH(I) AE 340
(Continued)
-------
Table C-4 (cont'd)
129 WRITE (6,499) AE 350
139 READ (5,479) (INPAR(I,J),1 = 1,6) AE 360
WRITE (6,489) (INPAR(I,J),1=!,6),MMO(KK),IDATE AE 370
IF (IPUN.EQ.1) WRITE (7,489) (INPAR( I, J), 1=1 ,6) ,NM(H i(K), IDATE AE 380
READ (5,419) XCAL2(J) AE 390
DO 159 1=1,10 AE 400
DO 149 N=l,2 AE 410
149 READ (5,399) AE 420
159 READ (5,419) P2(I,J) Ac 430
DO 169 N=1,2 AE 440
169 READ (5,399) AE 450
13=1 AE 460
IE=4 AE 470
DO 199 1=1,27 AE 480
READ (5,429) A AE 490
DO 189 12=1,28 AE 500
IF (A(I2).NE.BT) GO TO 179 AE 510
23 A(I2) = 1K9 AE 520
A(I2+I)=1H9 AE 530
A(I2+2)=1H9 AE 540
GO TO 189 AE 550
179 IF (A(I2).NE.OL) GO TO 189 AE 560
A(I2)=!H9 AE 570
A(I2-H) = 1H9 AS 580
A(I2+2)=1HB AE 590
139 CONTINUE AE 600
ENCODE (60,429,3) A AE 610
DECODE (60,439,8) (INPUTC13,J),13=18,IE) AE 620
IB=IE+1 AE 630
199 IE=IE+4 AE 640
DO 229 IX=1,2 AE 650
DO 209 1=1,3 AE 660
209 READ (5,399) AE 670
SUM=0.0 AE 680
DO 219 1=1,5 AE 690
(Continued)
-------
88
o
0
pt
ft
£
e
n>
Cu
C
CO HH :£ 33 IV>
c Ti3Drn co
— ~Hd ^
H 1-1 m c_
CG^cn II
— . * » Ul *
.f rrjui-ii. 4*.
O3 O CO O
~* L> 5 *"*
*_ >
-s ^ir*
3O* , O3
•""< CO •"•
H— *
m* o
o-
~- C3
-si O*
* * rn
uirn*
u>- TI
VD m*
-"• O
o*
>"* ac
— a:*
COtJ
"o
o
Tn
TI
o
a:
•o
CH s ni2
<->•-) < II
•— « rn ••> cs
G«OH
3 Os H H-
m u^t-.
o ro~
• O II
— *-* >— i
>- o
3E O
S3 a:
H
rn
f~\
•^i
*
un
ro
O
1— 1
q
1-3
0
l\>
Ul
fu
N)
M
— '
O
co to en I-H
o
as sss; > H cn 2:
/ i f\ \ —^. —... h~** it hit • ^
W |\j •-* y-s *-^» ^ || t-^ h—j
ii it H *-* rn o o M
o oo o o~
* • • - 3C TI Ul
m
o
CO CO
t"1 00 i
22
C_G
^m
co
G
s:
Ul
O hJ
IVJ
o
as
C/3
G
a
it
co
G
X
4
"O
G
3K
NJ B
UlO
\O *
c_
X
II
T3X)
»-H
£rn
mm c
> >
Tm
o
>
X
•, *
OCo
Ul Ul
* •» f-«
UiCo II
o o —
o o*
I . f
*vm
>o
KJ«
^ Ul
>
Sr
^ 3D
IV) «—
m
* I-H II
Ul II —
00—«
vo* Ul
^ Ul IV)
ru ^
"O
g
G 2
HO
--G
O 25
IV) C *-• CO
Co H X G
O ^ IV> X
l-< II || 33
t-nx^ co m
II !V) X G >
— » 4 S O
— *~- O X —-
•• II CO — Ul
-. 00 4 »
C
m o •
• ii
Ul Ul
o
Co
o
CO 3S
O
X 4*.
IV> Co
S^ s^
Co
4 X
X —
X
IV)
X
CO
<*
X
mmmmmmmmmmmmmmmmmmmmmmmmrnmrnmrnmrn rn m m m
4*.Co!\J— OOOO-xlOvUI-^CoK}—O OCO--4O.U14^CO(V)-- OOOO-^JOUl-I^Coro—>
oooooooooooooooooooooooooooooooooo
-------
Table C-4 (cont'd)
IF (J.GT.1)
RETURN
GO TO 319
vo
o
399
409
419
429
439
449
459
469
479
489
499
509
519
529
539
549
FORMAT (13,3(IX,12))
FORMAT (2X,I3,3X,6I1)
FORMAT (4X.F7.3)
FORMAT (4(4X,7A1,4X))
FORMAT <4(4X,F7.2,4X))
FORMAT (1X,SEI0.2)
FORMAT (//)
FORMAT (8E10.2)
FORMAT (2X,6II)
FORMAT (2X,8H? RUNID ,611,3X,A3,IH ,I2,6H,
FORMAT <2X,20HTHE DATE IS IN ERROR)
FORMAT (4X,F8.2,3(7X,F8.2))
FORMAT (13)
FORMAT (IX,13)
FORMAT (9F8.3)
FORMAT (9F7.2)
1973)
END
REAL
FUNCTION ENTHLP(P,T)
C*****THIS SUBPROGRAM WILL CALCULATE THE ENTHALPY OF
SUPERHEATED STEAM
COMMON /CONTROL/
HI = 1100.0
IMAX=10
Al=-1.0659659E+4
A2=2.01I0905E+1
A3=-1.250954£-2
A4=2.3274992E-6
A5=4.981582
A6=-7.7618225E-6
IPSMAL,ITPRINT
AE
AE
AE
AE
AE
AE
AE
AE
AE
AE
AE
AE
AE
AE
AE
AE
AE
AE
AE
AE
AE
AF
AF
AF
AF
AF
AF
AF
AF
AF
AF
AF
AF
AF
AF
1400
1410
1420
1430
M40
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
3580
1590
1600
10
20
30
40
50
60
70
80
90
100
110
120
330
140
(Continued)
-------
Table C-4 (cont'd)
A7=2.4391612E-10 AF 150
A8=-9.'8J47341E-3 AF 160
A9=6.582489E-6 AF J70
A10=-1.4747938E-9 AF 180
YI=T-A1-A2*H1-A3*H1 **2-A4*Hl**3-A5*P-A6*P**2-A7*P**3-P*(A8*HH-A9*H AF 1 90
1!**2+A10*HI**3) AF 200
H2=.99*H1 AF 210
ICC)UNT=0 AF 220
109 HSQ=H2**2 AF 230
HCUB=H2*HSQ AF 240
PSQ=P**2 AF 250
PCUB=PSQ*P AF 260
Y2=T-AI -A2*H2-A3*HSQ-A4*HCUB-A5*P-A6*PSQ-A7*PCUB-P*(A8*H2+A9*HSQ+A AF 270
J10*HCUB) AF 280
IF (A8S(Y2).LT..05) GO TO 119 AF 290
ICOUNT=ICC)UNT+1 AF 300
IF (ICOUNT.GT.IMAX) GO TO 129 AF 310
SL()PE=(Y2-Y1)/(H2-H1) AF 320
B=Y2-SLOPE*H2 AF 330
H3=-B/SLC)PE AF 340
Y1=Y2 AF 350
Y2=Y3 AF 360
H1=H2 AF 370
H2=H3 AF 380
GO TO 109 AF 390
119 ENTHLP=H2 AF 400
IF (ITPRINT.EQ.l) PRINT 139, P,T,ENTHLP AF 410
RETURN AF 420
129 PRINT 149 AF 430
CALL EXIT AF 440
C AF 450
139 FORMAT (1X,2HP=,F7.3,2X,2HT=,F5.1,2Xf2HH=,F7.2,21HFROM FUNCTION—5 AF 460
1NTHLP) AF 470
149 FORMAT (1X,26HTOO MANY ITERATIONS—ENTHP,///) AF 480
C AF 490
END AF 500
(Continued)
-------
n
S
ft
1
(D
^•^
;0*OID'— *i~<5O33»— i ti n ,-, < .
S3 — O • • Co— < # O
m • . oo» »,»<
oo i •»• oo r*N
H- K3 SO N S H 4*-
<~* tn m ^ -^ • »
ro — o oa oo — o
* * ! • Ul
O OO •
5$. 5$. }$• O
"13 <£<•*-*
| v^ v^
— o
• -. c
o
*** i—4
$
ro —
~ <>
•o
*
00
.
o
*
<-•
•w
i— i t-t XI DO 50 CO
— o m m m G
u n — o > co
S3 XI II II r* 33
m m o— c
— O« • HH G
UiO O H
sf * »-»
^^ *"•* *«4
— m
CO
m
CO
t™*
n
*•%
<<
H
O
r
>— i
0
^
t— (
~
o
m x> T3 o x x c o o a a c
C *H II II II G *H ^~i *~i H "H 3^
Gcococoii >>-»>m
,3CJ HH >-H HH {/) JJ2i
2; 2: z: 2: 1-1 H H H H H co
*"~^ t~ 3 H ^!J ^f* Jt" I3> ^ ^* ••"*
33 33 ro H CO CO CO CO CO O
"O"X3"O33'H'1OOXX*2
«-s*-»*-%"O|T]33'T3J?';;SS
> »HN. . « \>
co co co> o -J ro o • co
HHHco* — js» — OX
rofrirnHooo-* coios
^1 3^ 3i* m * •* • • *-* *O G
* •* * BX 01 • f\j** r^> ^%
i_j (_j »— j< o ~J -t^- • * 00
>»H» —- O •• ^
"ooxca*-* f\J4^4^
XITJi^sX"** 4i>.OJl\J>H
HHHGOO»» » CO
•* ** * '* * Q^ fsj (2!) * 5^
00 00 03 H O« ^ — OPS
X^ %«^ N— •«. 4 • — * O1 ^h ^X
CO — O* -J U1CO
O ^O IV) • •» •
• * -ft» O •
O» — — OH
* o* o> •$»• >•
!NJ XD • , -«4 CO CO
O Co W* -t^ O
O» •£» • * T3
• * fsj O « ^
o o* — oca
•• 'O • CO U1 ^^
|\j-« (\j — — ••»
Ul • ^* VQ
O O Co • ,* H
• 00* O • >
O O • , — O CO
•• * (\i X5 U1 *T3
co • -ts» ro -f^ ?o
O CN Ui* "-J <^>
O 03 N • * 00
« _ Q « *^
ON Is-) O*
* o ui
-^ Co *w H
8** l>> ^>
• » CO
• O • H
o NJ om
ooo
"O S
33 H
*~» m
"O X)
X3fT]
1^* k^^
S s
HG
zro
'S N
cox
m 33
3D 1
«— "TJ
'H
*]> v-»
33*
mx
DD
G rn
2| JO
01
H rn
t— * fr-4
O 1
^c o
rn
c o
•n
t— j v^
•—>•• ,
c
mo
OTJ
"HOT
• f^
CO
3S
1
O
m
o
*
Tl
*
O
CO
G
CO
30
«"**
S^
G
H
•— i
23
m
>
t— 1
so
50
o
H
X
3S
G
<«
X
p^4
«
O
"0
"X3
*-O
^^
H
tu
cr
0)
o
!^
y-N
O
O
(-f
&"
^-^
N CN 03
0:2:0 ooo ooo oooo ooo oooo
oooooooooooooooooooooooooooooooooo
-------
Table C-4 (contM)
IO=IO+REO AH 170
IF (REO/IO;GT.TC)L) GO TO 109 AH 180
P=1.0 AH 190
109 P=P+1 AH 200
RE1=-RE1*(4.0-(2.0*P-1.0)**2)/
-------
Table C-4 (cont'd)
ED1=3.0/(8.0*V) AI 130
KO=I.O-EDO AI 140
K1=I.O+ED1 AI 150
P=1.0 AI 160
109 P=P+1 AI 170
EDO=-((2.0*P-1.0>**2/(8.0*V*P))*EDO AI 180
KO=KO-EDO AI 190
IF (ABS(EDO/KO).GT.TOL.AND.P.LT.2.0*V) GO TO 109 AI 200
P=1.0 AI 210
119 P=P+1.!0 AI 220
ED1=ED1*(4.0-(2.0*P-J.O)**2)/(8.0*P*V) AI 230
K1=K1+ED1 AI 240
IF (ABS{ED1/K1).GT.TOL.AND.P.GT.2.0*V) GO TO 119 AI 250
EDO=EXPC~V)*SQRT(3.14J5926/<2.0*V)) AI 260
KO=KO*EDO AI 270
K1=K1*EDO AI 280
RETURN AI 290
129 P=P+1.:0 AI 300
EDO=(V*V/4.0)*EDO/(P*P> AI 310
REO=REO+2.0/P AI 320
KO=KO+EDO*REO AI 330
IF (ABS(EDO*REO/KO).GT.TOL) GO TO 129 AI 340
K1=K1+RE!*ED1 AI 350
P=0.0 AI 360
139 P=P-H.O AI 370
EDJ=V*V*ED1/(P*4.0*(P-H.O)> AI 380
RE1=RE1-H.O/P-H.O/(P-H.Q) AI 390
K1=KH-ED1*RE1 AI 400
IF (ABS(RE1*ED1/K1).GT.TOL) GOTO 139 AI 410
RETURN AI 420
C AI 430
END AI 440
(Continued)
-------
Table C-4 (cont'd)
REAL FUNCTION SINTRP(XT,YTf'XfN) AJ 10
DIMENSION YT(N), XT(N) AJ 20
HM1=N-1 AJ 30
K=2 AJ 40
IF (XT(2).GT.X) GO TO 139 AJ 50
K=NM1 AJ 60
IF (XT(K).LE.X) GO TO 139 AJ 70
L=2 AJ 80
109 I=K-L AJ 90
IF (I.LE.1) GO TO 139 AJ 100
J=(K+L)/2 AJ 110
IF (XT(J)-X) 119,129,129 AJ 120
119 L=J AJ 130
GO TO 109 AJ 140
129 K=J AJ 150
GO TO 109 AJ 160
139 CONTINUE AJ 170
Y1=YT(K-1) AJ 180
Y2=YT(K) AJ 190
Y3=YT(K+1) AJ 200
X1=XT(K-1) AJ 210
X2=XT(K) AJ 220
X3=XT(K-H) AJ 230
Z1=X-X1 AJ 240
Z2=X2-X AJ 250
Z3=X3-X1 AJ 260
SINTRP=Y1+(1.+Z2/Z3)*Z1*(Y2-Y1)/(X2-X1)-(Y3-Y2)/ AK 10
c AK 20
C AFFFEC = FAN FLOW RATE (CFM) AK 30
C Ad) = DIFFUSER INCLUDED ANGLE (DEG) AK 40
(Continued)
-------
Table C-4 (cont'd)
C A(2) = DIFFUSER INLET-TO-OUTLET AREA RATIO AK 50
C A(3) = DIFFUSER EXIT DIAMETER (FT) AK 60
C A(4) = FAN DIAMETER (FT) AK 70
C A(5) = HUB-TO-TIP RATIO AK 80
C FANANG = FAN BLADE PITCH (DEC) AK 90
C RPM = FAN RPM AK 100
C BARPSI = BAROMETRIC PRESSURE (PSI) AK 110
C T = DIFFUSER AIR TEMPERATURE (DEG.F) AK 120
C W = DIFFUSER AIR SPECIFIC HUMIDITY (LBM/H20/LBM DRY AIR) AK 130
C SSP = FAN INLET STATIC GAUGE PRESSURE (IN H20) AK 140
C QTRY = ESTIMATE OF FAN FLOW RATE (CFM) AK 150
C ANY DESIRED OUTPUT FROM FUNCTION FFR CAN BE TRANSMITTED VIA AK 160
C ARRAY AUXOUT AK 170
C AK 180
EXTERNAL FFR AK 190
DIMENSION TOL(2), Ad), AUXOUT( I), B( II) AK 200
TOL(f)=5.0E3 AK 210
TOL(2)=.005 AK 220
DO 109 1=1,5 AK 230
109 B(I)=A(I) AK 240
B(6)=FANANG AK 250
B(7)=RP?^ AK 260
B<8)=BARPSI AK 270
B(9)=T AK 280
B(IO)«W AK 290
B(11)=SSP AK 300
CALL ROOT (FFRfB,QTRY,TOL,AFFFC-,AUXOUTfICHECK) AK 310
IF (ICHECK.EQ.O) GO TO 119 AK 320
RETURN AK 330
119 WRITE (6,129) (A( I) ,1 = 1,5) ,FANANG,RPM,BARPSI,T,^, SSP,T()L,QTRY AK 340
CALL EXIT AK 350
C AK 360
129 FORMAT (//1X,30(IH-),37HEXIT FROM AFFFC DUE TO HO CONVERGENCE,IX,7 AK 370
1HIN ROOT,30(lH-),/lX,8HARRAY A ,/lX,5E10.3/!X,7HFANANG=,E10.3,2X,4 AK 380
2HRPM=,£l0.3,2X,7HBARPSI=,E10.3f2X,2HT=tEi0.3,2X,2HW=,El0.3,2X,4HSS AK 390
3P=tE10.3/lXtnHT()L(l)/TOL2,2X,E10.3f 1H/,E10.3/IX,6H QTRY=,E10.3) AK 400
(Continued)
-------
Table C-4 (cont'd)
C AK 410
END AK 420
FUNCTION FFR(A,Q,AUXOUT) AL 10
C AL 20
C FUNCTION FFR CALCULATES THE STACK AIR FLOW RATE AL 30
C (CFM) GIVEN THE PARAMETER ARRAY A AND Q. ANY DESIRED OUTPUT AL 40
C MAY BE TRANSMITTED VIA AUXOUT AL 50
C A(l) - DIFFUSER INCLUDED ANGLE (DEC) AL 60
C A(2) - DIFFUSER INLET TO OUTLET AREA RATIO AL 70
C AC3) - DIFFUSER EXIT DIAMETER (FT) AL 80
C A(4) - FAN DIAMETER (FT) AL 90
C A(5) - HUB-TO-TIP RATIO AL 100
C A(6) - FAN ABSOLUTE PITCH (DEG) AL 110
C A(7) - FAN RPM AL 120
C A(8) - BAROMETRIC PRESSURE (PSIA) AL 130
C A(9) - DIFFUSER TEMPERATURE (DEG.F) AL 140
C AUO) - DIFFUSER SPECIFIC HUMIDITY (LBM H20/LBM DRY AIR) AL 150
C AU1) - STATIC GAUGE PRESSURE AT FAN INLET (IN H20) AL 160
C AL 170
DIMENSION A<11), B(2) AL 180
PI=3.141593 AL 190
DIAEX=A(3) AL 200
RPM=A(7) AL 210
HUBTIP=A(5) AL 220
DIA=A(4) AL 230
DIFANG=AU) AL 240
ARATIO=A(2) AL 250
PITCH=A(6) AL 260
BAR()=A(8) AL 270
W=A(10) AL 280
T=A(9) AL 290
B(1)=PITCH AL 300
B(2)=A(7) AL 310
RHO=RHOAIR(W,T,BARO) AL 320
CALL AIRPRO
-------
oooooooooooooooooooooooooooooooooo
^ in o f"- co o o — CM ro •*}- LO \o r-- oo o o •— CM ro *=?• tn MD i-~ co o o •— CM <~o ^ in o r-
ro co ro co ro ro %«- -^ ^5- rt ^ ^r ^ vi- «^- KJ- i_n m m un in i-D in 1.0 !nm>o>oo'ooovO'O
/— N
T3
4J
C
O
U
v^
-3-
u
(U
1 — 1
,0
cS
H
**™s
r>
**c
x
*
<
1—4
O
*'
1—4
S;
x
0
0
*
o
*
J3
X
CC
*
o
•c^-
II
LU
CC
Cu
O
o
H
a.
t— 4
UI
CO
en
o
CM
LU
CO
t— 4
ce
U4
3;
00
CO
CC
ex
o
H
CO
LU
H
-J
O
O
oo
o
'U
10
H
U.
^
H
i — i
0
tJU
.-4
CC
i— <
00
~ UJ
l ( (
*-» <£,
v^ i_J
< r~>
II 0
CS i_J
0, <
CO O
0 OO
H- 1
p
c?
ex
f— 1
H
CO
?
»•
JS!
CX
cr
•>
D*
ex
CO
^4
1— t
"•7"
CO
II
H
LU
T*
H
O
id
o
h— 4
u-
u.
UJ
o
en
00
^— ^
v— •
f-1
V.4
O
H
CO
UJ
[— 1
—l
~
O
O
oo
*D I A/2.0
t~*\
o
•
CM
x
.*"••*
f\J
1
ex
t— 4
f-
co
"+
o
—
v^
V-'
H
a:
o
CO
II
CC
o
o
LLJ
CO
H
U-
H
O
Q
Hi
>
,..,, i
O
O
o o
^-,
o D:
. c x
•\j- 1— 1 f- 1
X [— < •
o
in t-«
* o
"~~ i'
CM ^
1 sv
x^ $
*v* ^*^
LU O
h-H "NJ*
Q V
\. O*J
~* -5<
•Ji Ov| ^
. -?< ~ o c\S
ic • CM -k
CM M CM • -K
•K E— ' oo tn •*>
4« <^s !-H\ X X
J K — 2: C --> CM UJ
« — < 3 o f <
•-< 1 v- tx. cr • •« CM 1-1
X O < Cu ^-- •— U 4«Cl
»— ^- Tj~ m \]- i — i COX>^
r>- Q -j< ir. in "-< O * co H 1
~~ *. * ^ ^, s * ~ o > o
CM X < 2* S U. + Q (X 5r, '-
OT -}< >— i «C -^s D- •=£! •}< •^LU^-'
XinxLuu,'^*— im^Q •}<
O ••o^Q.CXOOCj »X4tCC
X ii > i! n m ^ u n m co
rc c -K i-< UJ •< x co
-------
Table C-4 (cont'd)
PAR=.5*DEN*VAXIAL**2 AL 680
AAR=PAR*(1.0-ARATIO**2) AL 690
PCOR=.5*(RHO/32.m*CQ/60.0)**2/((PI*DIA**2/4.Q)**2)*
-------
Table C-4 (cont'd)
FUNCTION VSWIRL(SPR,RPM,HUBTIP,RHO,DIA) AN 10
C Ais{ 20
C FUNCTION VSWIRL CALCULATES THE SWIRL VELOCITY (FPS) EXITING THE AN 30
C FAN GIVENs AN 40
C SPR - STATIC PRESSURE RISE (IN H20) AN 50
C RPM - FAN REVOLUTIONS PER MINUTE (RPM) AN 60
C HUBTIP - FAN HUB-TIP RATIO AN 70
C RHO - MOIST AIR DENSITY (LBM/FT**3) AN 80
C DIA - FAN DIAMETER (FT) AN 90
C AN 100
P=SPR*5.204 AN ,lo
DENSIT=RHO/32.17 AN j2o
W=2.0*3.!4159*RPM/60.0 AN 130
R=SQRT((1.0+HUBTIP**2)/2.0)*DIA/2.0 AN J40
VSWIR1>P/CDENSIT*W*R) AN J50
H, RETURN AM J<50
o c AN 170
END AN i80
FUNCTION FANFLO(A,SPR) AC) 10
C AO 20
C FANFLO CALCULATES AIR FLOW RATE (CFM) GIVEN THE STATIC PRESSURE AO 30
C RISE AO 40
C ACROSS THE FAN (IN. H20). REFER TO HUDSON PRODUCTS CORPORATION AO 50
C FAN PERFORMANCE CURVES, DATA SHEET T-323-14 AC) 60
C A(1)=FAN ABSOLUTE PITCH (DEG). AC) 70
C A(2)=FAN RPM AC) 80
C PRISE - FAN STATIC PRESSURE RISE (IN. H20) AC) 90
C AO 100
DIMENSION 02(5), 06(13), QTEN(15), Q14<12), 018(14), Q22(7), P2(5) AO 110
1, P6U3), PTENU5), PI4U2), PI8U4), P22(7>, VPTABU4), QVP(14), AO 120
2AU) AC) 130
C AO 140
C FILL FAN CURVE ARRAYS AC) 150
C AO 160
(Continued)
-------
ZOT
•o H
§ °°° £
3 O'OvO>O\nv*'oO
m I
& TITI TJ > 1-1 t-i 1-1 M M i-t o 1-4 xi OXJ O XJ CXI OXJ C7 X>
v-' r~*r*r* z "nTI-mrm-noTJi\> c— c— cH co civ> /-N
ooc o 2: HH ro en *» m >-> ^ o
ColVJ— I"" <^'->'->^v»-j33'^XlO — '-•XJO— -"^XIO — SJ'TSO— »-«XIO—• »-» °
it n u hi >>>>>>^co>-'-!^iicoo»-«iicooiiiic/)'Ou 'I
Mi-tn M OOOOOOCIIIICO>-i IIC/)t-i ||COI~< ^C/)M X»CO»-« XI &.
HHR mmrnmrnm roznii— SHII— znVxiSMV^SHlT'^ ^
333330 O • •. • •',•-»,. N>H33 — COH33— 4^H33—HH33—»-i(-J33—"~<
x> x) xi m t~* t~* t~* t"1 r* O '^ 33 x>* ^^^j"ry» --N33XJ* rn PD xi« ^joxi* *-•
^^.^s ^>_JH-JHHH >-»xi'-*s:«-HXi'>s»-i'xi'-»2:2xJ'^z:ixi^'2;'
N> — — O3 — — — O K) I\j IO(V)MIO--'CO|O — -t>.»-«OHm xioo x> 4^ xii-J xjxi
*•*• O OOOCCO H* H« H- H tn H O\
XJXJX3 33 CCC C >• X) > XI >X> > SI >i-v
33 33 SO tn HH CO IVj CO— DO— DO* CD 1-1
HH M i-< rn HHHccH * to * - oa • jv « xj » «—
COCOCOCOCCO O O'^ O*-* O-^ Ot-? O*
mmtn —— *H-I -f-, .^ «fn • 52
*** IvjfO —• 00 -J — — •>-• — «-• — >-• fc-52 —O\
2: ss; a; — o >o o ^o-~J -f^* •*«.* -P>.* > ^ .&. ^
N) 03 4* ft) ^ — ^— ^^ *"*
^ H
m
2!
..
oooccoocoocccoccoccoooccocccoccococ
coa»cx)Coc»coco^^^^^^^^^^CNO*o«ovOCNO*cxovChUiuiuiuiLniJiij)oi
O*Jl*kCoKJ — OOOO-JOUI-f^CoPO— O'OOO-^OVJ'-i^CuCO — OV300-JCXai4!>.COI\J
00000000000000000000000000000000000
-------
Table C-4 (cont*d)
ANG1«14.0
ANG2=18.0
ANG3=22.0
GO TO 229
179 WRITE (6,239) ANGLE
CALL EXIT
189 CONTINUE
C
C
C
C
C
C
C
C
C
ANGLE GE 2.0 BUT LT 6.0
FLOi=SINT8P(P2,Q2,PRISE,N2)
FL02=SINTRP(P6,06,PRISE,N6)
FL03=SINTRP(PTEN,QTEN, PRISE,MTEN)
ANG1=2.0
ANG2=6.0
ANG3=10.0
GO TO 229
199 CONTINUE
ANGLE IS GE 6.0 BUT LT 10.0
FL01=SINTRP(P2,02,PRISE,N2)
FL02=SINTRP(P6,06,PRISE,N6)
FL03=SINTRP(PTEN,QTEN,PRISE,NTEN)
ANG1=2.0
ANG2=6.0
ANG3=10.0
GO TO 229
209 CONTINUE
ANGLE IS GE 10.0 BUT LT 14.0
FLO1=SINTRP(P6,Q6,PRISE,N6)
FL02=SINTRP(PTEN,QTEN,PRISE,NTEN)
FL03=SINTRP(P14,014,PRISE,Nl4)
AO
AO
AC)
AO
AO
AO
AO
AO
AO
AC)
AO
AO
AO
AC)
AO
AO
AO
AO
AC)
AC)
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
(Continued)
-------
Table C-4 (cont'd)
C
C
C
ANG1=6.0
ANG2=JO.O
ANG3=14.0
GO TO 229
219 CONTINUE
ANGLE IS GE 14.0 BUT LT 18.0
FLO I=SINTRP(PTEN.QTEN,PRISE,NTEN)
FL02=SINTRP(P14rQ14,PRISE,N14)
FL03=SINTRP(P18,018,PRISE,N18)
ANG1=10.0
ANG2=14.0
ANG3=18.0
229 CONTINUE
C
C
C
C
DETERMINE COEFFICIENTS FOR SECOND ORDER CURVE FIT OF TYPE
Y=A+SX-K>X**2
YI=FLOJ
Y2=FL02
Y3=FL03
X1=ANGJ
X2=ANG2
X3=ANG3
C=((Xl-X2)*-(Yi-Y2)*CX2-X3)>/(CXt-X2)*)
B=(Y1-Y2-C*(X1**2-X2**2»/(X1-X2)
AA=Y!-B*X1-C*X1**2
FANFLO=(AA+B*ANGLE+C*ANGLE**2)*RPM/119.t>
RETURN
239 FORMAT /lX,40(1H-),26H EXIT FROM FUNCTION FANFLO?40(1H-),/lX37(1
AO
AC)
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AO
AC)
AO
AC)
AO
AO
AO
AO
AO
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
J510
1520
1530
1540
(Continued)
-------
Table C-4 (cont'd)
o
Ul
c
c
c
c
c
c
1H-),32HFAN ANGLE TOO LARGE OR TOO SMALL, 37 ( 1H-) ,/54X,6H ANG£=.£10.
23)
END
FUNCTION FANP(PITCH,Q,FISP,RPM)
FANP CALCULATES THE FAN STATIC PRESSURE RISE (IN.H20)
PITCH - FAN BLADE ABSOLUTE PITCH (DEG)
Q - FAN FLOW RATE (CFM)
FISP - FAN INLET STATIC PRESSURE
DIMENSION AC2), TOLC2)
EXTERNAL FANFLO
SP=ABS(FISP)
TOL(1)=1.0E3
TOL(2)=.Q01
A( I )=PITCH
A(2)=RPM
CALL SECANN ( FANFLO , A , SP , . 95*SP , Q f FANP ,TOL f I CHECK ,15)
IF (ICHECK.EQ.O) GO TO 109
RETURN
109 WRITE (6,119) PITCH, Q,FI6P
CALL EXIT
J19 FORMAT /!X,40C1H-),22HNO CONVERGENCE IN FANP,40( IH-) ,/, IX, JOX,7H
1 PITCH=,E10.3,2HQ=,E10.3,26HFAN INLET STATIC PRESSURE=,E10.3)
END
AO
AC)
AC)
AO
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
AP
1550
1560
1570
1580
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
(Continued)
-------
4 (cont'd)
FUNCTION PFORGKANGLE,RPM.Q)
DIMENSION Q2(5),' Q6C13), QTEN( 1
, P6(13), PTEN(15), PJ4(I2), Pt
Table C-4 (cont'd)
AQ
(12), 018(14), Q22(7), P2(5) AQ
P22(7), VPTAB(14), QVP(14) AQ
E6/ AO
AO
AO
, 1.26E6,1.29E6 AQ
AQ
DATA P22/I.37,1.42,1.40,J.36,1.28,1.2
DATA VPTAB/0.0,.1,.16,.2,:24,.28,.32,
DATA QVP/0,0,1.OE6,1.I9E6,1.33E6,1.45
l6,1.95E6,2.05E6,2.l2E6,2.t9E6f2.27E6/
DATA IFIRST/0/
DATA IFIRST/0/
QA=Q*119.0/RPM
N2=5
i* i w — « ~r
N22=7
IF (IFIRST.NE.O)
DO 109 1=1.N2
(IFIRST.NE.O) GO TO 169
109 1=1,N2
(I)=P2(I)-SINTRP(QVP,VPTA8,Q2(
UW
109 P2
(Continued)
-------
Table C-4 (cont'd)
DO 119 1=1,N6 AQ 360
119 P6(I)=P6(I)-SINTRP(QVP,VPTAB,Q6(I),I4) AQ 370
DO 129 1=1,NTEN AQ 380
129 PTEN(I)=PTEN(I)-SINTRP(QVP,VPTAB,QTEN(I)t14) AQ 390
DO 139 1=1,N14 AQ 400
139 P14(I)=P14(I)-SINTRP(QVP,PVTAB,Q14(I),14) AQ 410
DO 149 1=1,N18 AQ 420
149 PJ8(I)=P18(I)~SINTRP(QVP,PVTAB,QI8(I),14) AQ 430
DO 159 1=1,N22 AQ 440
159 P22U)=P22CI>-SINTRP AQ 450
IFIRST=1 AQ 460
169 PA2=SINTRP(Q2,P2,QA,N2) AQ 470
PA6=SINTRP(Q6,P6fQA,N6) AQ 480
PATEN=SINTRP(QTEN,PTEN,QA,NTEN) AQ 490
PA14=SINTRP(Q14,P14,QA,N14> AQ 500
PA18=SINTRP(Q18,P18,QA,N18) AQ 510
PA22=SINTRP(Q22,P22,QA,N22) AQ 520
IF (ANGLE.GT.22.0) GO TO 179 AQ 530
IF (ANGLE.LT.2.0) GO TO 179 AQ 540
IF (AMniFrTT.6.0) GO TO 189 AQ 550
IF (ANGLE.LT.10.0) GO TO 199 AQ 560
IF (ANGLE.LT.14.0) GO TO 209 AQ 570
IF (ANGLE.LT.18.0) GO TO 219 AQ 580
PA1=PAI4 AQ 590
PA2=PA18 AQ 600
PA3=PA22 AQ 610
ANG1=14.0 AQ 620
ANG2=18.0 AQ 630
ANG3=22.0 AQ 640
GO TO 229 AQ 650
179 WRITE (6,239) ANGLE AQ 660
CAUL EXIT AQ 670
189 PA1=PA2 AQ 680
PA2=PA6 AQ 690
(Continued)
-------
Table C-4 (cont'd)
PA3=PATEN ™
ANG 1-2.0 ™
ANG2=6.0 ™
ANG3=10.0 ?X
GO TO 229 ™
199 PA1=PA2 ^
PA2=PA6 *Q
PA3-PATEN ^Q 780
AMG1=2.0 JQ 790
ANG2=6.0 .n <3QQ
ANG3=10.0 ^Q 810
GO TO 229 JQ HIU
209 PA1=PA6 ^Q 830
AQ 845
AMP n AQ 350
ANG1=6.0 ,n A,n
S ANG2=10.0 AQ 860
§ ANG3=14.0 AQ 870
GO TO 229 AQ
AU
,
4
4 AH Qin
PA3=PA18 AQ 910
AMG1-IO.O AQ 920
ANG2=!4.0 AQ 930
ANG3=18.0 AQ 940
229Y!=PA!
Y2=PA2 AQ
Y^=PA3 AQ 97°
X1=ANG. JO 980
X2=AN02 A° .*£.
X3=ANG3 AQ « OOO
C=((Xl~X2)*(Y2-Y3)-CYI-Y2)*CX2-X3))/((X1-X2)*(X2«r2~X3**2)-(X2-X3) AQ, 1010
1*CX1**2-X2**2» AQ j°|0
B=CY!-Y2-C*
-------
Table C-4 (cont'd)
PFORQ*(AA+B*ANQLE*C*ANGLE**2)*(RPM/119.0)**2 AQ 1050
RETURN AQ 1060
C AQ 1070
239 FORMAT (IX, 51H FAN PITCH LESS THAN OR GREATER THAN FAN CURVE AQ J080
I) AQ 1090
C AQ 1100
END AQ 1110
-------
TABLE C-5
SAMPLE OUTPUT LISTING
•TVA COOLING TOWER TEST RESULTS-
DATE 17
WLT/URT FILL TEST
WINTER
TEST BLOCK NIMBER 2~
TEST NUMBER 12
NUPBLR 1 RtFtAT
AMBIENT AIR STATES
TEMPCRATUREtOEG. f)/pD£H FflfMUDEG. F»
36.&/ 31.8 37.If 32*0
BAROMETRIC PRESSUREUN HG»
25.92
TOWER INLET AIR STATES
TEHPERATUREtOEG. F)/DEWPOINTCDDE6. F>
37.7^ M.7
36.6/ 33.7 J/.S/ 35.4 36.3/ 35.1
37.5/ 35.2 36. If 35.7 37.1/ 33.5
36.3/ 33."4 3fa.S/ 37.4 37.7/ 34.4
(Continued)
-------
Table C-5 (cont'd)
-FAN-STACK RESULTS-
FAN VOLTAGE(V)
CURRENT(A»
POWER
2.628E-08
4.275E-01
HEAD CoEFFiCleMT
-------
Table c-5 (cont'd)
DRY TOHER HEAT TRANSFER RESULTS-
AVERACE MR INLET TEHPE RATURE(OEG.F>/XET BUtBt PEG. Ft /DEUPOINTtOEG .F >/SPEC IFIC HUHIDIT T( LBM/LBH)/ENTHALPYC8TU/LBH >
37.0 36.1 34.B .00423 13,5
AVERAGE AIR OUTLET TEMPERATURE (PEG. FKHET BULB(DE6. F)/DEHPOINT(QEG.FI/SPECIFIC HUMIDITY
HATER OUTLET TEMPERATURE (PEG .F >
88.4
73. B
MAltK H,OHKATttLB*l/HK I/ tGKH »
PE.RCENT OIFFERENCE IN FLOURATE
AS PERCEIVED BY
THE MANOMETER AMD TRANSDUCER
2.234E*06/ 4.482E»03
206.5
UJ
AIR FUO«RATE(LBM/HR)
PERCEnT DIFFERENCE BETWEEN STACK
AND TOUER FACE FLOURATE
4.723E+0&
-100*0
»tR-SfU? REYNOLDS NUM6T3
COEFFICIENT
NUSSELt AlUNBER
STANtON NUMBER
j FACTOR
1.845^*03
Ten
.010
ENERGY EXCHANGE BASED
ON AIR STATES
ENERGY EXCHANGE BASED
ON WATER STATES
ENERGY CONSERVATION ERROR
3.514E+07
3.261E+07
7.8
ENER6Y EXCHANGE BASED
C-"lflTE1} ENERGY
BAS£0 _ ENERGY COMSERVATION
AIR STATES
-_- -
AIR ENERGY EXCHANGE
ON MATER STATES
ERROR (PERCENT)
(Continued)
-------
Table C-5 (cont'd)
MET TOUER HEAT ANO MSS TRANSFER RESULTS-
AVERAGE AIR INLtT TEMPERATUREtOEG.FI/WET BULBtDEG.F )/OEUPOIIWDEG.F I/SPEC IFIC HUMIDITY*LBM/LBM I /ENTHALPYCBTU/LBW>
67.9 51.3 34.8 .00423 20.9
AVERAGE AIR OUTLFT TEMPERATURE«DES.F>/WET BULBCCEG. FI/DEWPCINT(DEG.F>/SPECIFIC HUHIOITT(LBH/LBH>/ENTHALPY(BTU/LBS I
70.0 69^4 69.1 .01527 33 . 5
WATER INLET TEMPERATURE
67.7 65.6
WATER rLOMRATE/DEWPOINTtPEG.Ft/SPECIFIC HUHIOITY IN FILL
143.9 1.826 52130.3
(Continued)
-------
Table C-5 (cont'd)
UATER LOSSCLBM/HRI IN TOUER FILL UATER LOSS A3 FILL WATER LOSS AS
A PERCENT OF AIR ~ A PCRCENT OF HATER
FLOURATE FLOURATE
1.1
MATER TENPERATUREStOES. Fl
HOI TSTER INLET UISTKT8UTION ¥ASIN HEAT EXCHAN6ER OUTLET HEAT EXCHANGER OUTLET COLD UATER RETURN
(Continued)
88.» 8777 73.8 73.8 70.7
FILL UATER T£MPER«TURE DISTRIBUTION(DEC.F)
(LEFT-TO-RIGHT IS EQUIVALEHT TO FRONT-TC-REAR IN FILL)
LEVEL I
7C.O
77.8 71.3 7*.2
LEtfEt III
5E.3
57.8 69.5 70.7
61.968.9 73.1 73.2
62.8 64.7 66.1
61.2
LEVEL IV
59.1 64.5 69.0 70.0
P 79717573 79.5 80.5
ui 79.8 83. * 83.0
82.7
LEVEL II
SITUS 7?78 78.2 78.3
-------
APPENDIX D
DATA CORRELATION COMPUTER CODES
In Appendix C the computer code that was used to reduce raw tower ther-
mal and flow test data (program ADVTOW) was described. The output data
produced by ADVTOW were then subjected to analysis (correlation) as
described in Sections 4.4 and 4.5. This appendix is an explanation of
the correlation computer codes.
D.I INPUT DATA FILES
In Appendix C the printed output from the data reduction code was
shown. Table D-l shows examples of the punched reduced data output
from ADVTOW. When all data reduction was completed, the data from all
similar tests (WET, WET/DRY, etc.) were merged to form input files for
the correlation programs.
The following is an explanation of the data, line by line, from each
example data file:
I. WET tests:
a. Line 1:
1. Six-digit run identifier
2. Day of test run
3. Water loading L (Ibm/hr-ft2)
4. Air loading G (lbm/hr-ft2)
5. Water flow to fill (Ibm/hr)
6. Airflow through fill (Ibm/hr)
7. Mass transfer coefficient (lbm/hr-ft3)
8. Number of transfer units (NTU)
b. Line 2:
1. Average fill inlet air dry bulb temperature (°F)
2. Average fill outlet air dry bulb temperature (°F)
3. Average fill inlet dewpoint temperature (°F)
4. Average fill outlet dewpoint temperature (°F)
117
-------
5. Inlet water temperature (°F)
6. Average exit water temperature (°F)
7. Tower basin return line temperature (°F)
Line 3:
1. Water loss as a percent of inlet flow rate (%)
2. Energy balance error (%)
Line 4:
1. Run identifier (repeated)
2. Day of run (repeated)
3. Fan inlet pressure (below atm) (in Wg)
4. Airflow rate through fan (ft3/min)
5. Fan speed (rpm)
6. Fan angle of attack (degrees)
7. Fan input power (hp)
8. Fan flow coefficient (cfm/rpm-ft3)
Line 5:
1. Fan head coefficient (inches H 0/rpm2-ft2)
2. Dimensionless fan flow coefficxent
3. Dimensionless fan head coefficient
4. Fan-stack-drive overall efficiency (%)
II. WET/DRY tests:
a. Line 1 same as line 1 above.
b. Line 2 same as line 2 above.
c. Line 3 same as line 3 above.
d . Line 4 :
1.
2.
3.
4.
5.
6.
7.
8.
Run identifier (repeated)
Day of run (repeated)
Reynolds number of air in heat exchanger
(d imens ionl ess)
Air-side heat transfer coefficient (Btu/hr-f t2-°F)
Air-side Nusselt number (dimensionless)
Colburn j factor (dimensionless)
Airflow rate through fill (Ibm/hr)
Average tower air inlet dry bulb temperature (°F)
Line 5 :
1. Average tower air inlet dewpoint temperature (°F)
2. Heat exchanger average outlet dry bulb temperature (°F)
3. Heat exchanger water inlet temperature (°F)
4. Average heat exchanger outlet water temperature (°F)
5. Water flow rate through exchanger (Ibm/hr)
6. Energy balance error between air and water in exchanger
f . Line 6 same as line 4 in WET tests
g. Line 7 same as line 5 in WET tests
III. DRY tests:
a. Line 1 same as line 4 in WET/DRY tests
b. Line 2 same as line 5 in WET/DRY tests
118
-------
c. Line 3 same as line 4 in WET tests
d. Line 4 same as line 5 in WET tests
IV. FAN tests:
These data are arranged the same as WET tests. Only the
leading digit 4 in the run identifier shows this to be a
fan test.
V. SHORT tests:
These data are arranged the same as WET tests. Only the
leading digit 7 in the run identifier shows this to be a
SHORT fill test.
D.2 Ka CORRELATION CODE
Table D-2 is a listing of the Ka correlation code. Within the code cer-
tain statement blocks have been defined. The following are explanations
for these blocks.
A. Read Fixed Data. At the start of each run, some fixed
data are read. These data are:
NOSE; A variable that indicates the number of blocks of
data to be used in the correlation, out of the total data
input file. For example, if we wish to correlate only
winter WET data and the winter WET data (index llxxxx)
are runs 1 through 125 and runs 227 through 266 out of
runs 1 through 539, then NOSE=2. That is, the data to be
correlated lie in two blocks in the entire WET data file.
NOT; A parameter that indicates which method of temper-
ature dependency will be used in the Ka correlation. The
following values apply:
NOT=1. No temperature effect.
2. Inlet water temperature.
3. Outlet water tempeature.
4. Average water temperature,
5. Inlet air dry bulb temperature.
6. Outlet air dry bulb temperature.
7. Average air dry bulb temperature.
8. Average fluid temperature.
JSINB; After the correlation is obtained, histograms of
the parameter $^ = Ka^/Ka^ and deviations a^ are prepared .
The variable JSINB is the width of each interval in the
histogram.
119
-------
RANGE; This variable is the total span of the histogram.
If, for example, RANGE=3 and JSINB=30, there would be 30
intervals of width 0.1 in the histogram.
NERR; A parameter indicating whether any culling of data
is to be performed. NERR=0 indicates no culling. NERR^O
indicates some data are to be culled.
ERRMAX; When data are to be culled, the maximum or mini-
mum value of the culled parameter is ERRMAX, For example,
if we wish to consider correlation of all data for L <
10,000, then ERRMAX=10,000. See block G below for details.
NOS(I): The number of the first data set in the Ith
block to be used in the correlation.
NOE(I); The number of the last data set in the Ith block
to be used in the correlation.
As an example of the relationship between NOSE, NOS, and
NOE, if we wishj as in the example above, to correlate only
winter data and these data occur in two blocks of the en-
tire WET data file, runs 1 through 125 and runs 227 through
266, then:
NOSE=2
NOS(1)=1
NOS(2)=227
NOE(1)=125
NOE(2)=266
B. Read Data Sets. Data sets are read one at a time. The
first card is read and values of L, G, Ka and NTU and test
day are put into matrices. Note that the run identifier
is read as six individual digits. This is so the first
digit, test type, may be examined to insure that, for ex-
ample, no DRY data are read when we want to correlate Ka
from the WET data file. Block C, where the second card
is read, is explained below. The third card is read to
obtain energy balance error. Finally, the program skips
irrelevant cards so that the first card in the next data
set is "up front" when the program returns to read the
next data set.
C. This block of statements reads and interprets the second
card in a data set. Depending on the value of NOT, the
appropriate fluid temperature is put into the matrix TEMP.
D. If we wish to correlate Ka with no temperature dependency,
then TEMP(I)=1, which forces exponent c in the Ka correla-
tion to be 0.
120
-------
E. This block controls the printing of the top of the output
listing, which changes depending upon which temperature is
used in the Ka correlation.
F, In this block a complete input data file is reduced to the
data file to be correlated, depending on NOSE, NOS and NOE
(see above). Also, where logarithms of parameters are
needed (Ka, L, G and T), they are computed here.
G. This is the culling block. The logic is set up here to
examine the value of L against ERRMAX. If XLUSE(I) >
ERRMAX, that particular data set is bypassed.
H. Summing variables for the least squares analysis are
zeroed.
I. Sums for the least squares analysis are computed.
J. Correlation coefficients are computed,
K. The coefficient of multiple determination is computed.
L. Matrices for least squares are established and the system
of equations is solved by the canned routine LINEQ1, which
solves NEQ simultaneous equations.
M. The parameters C0, a, b and c are obtained from the 'out-
put of LINEQ1.
N. For each data set, the value of Ka^, i.e., the value from
the correlation, is obtained. The values of
-------
L = Water loading.
G = Air loading.
T = Temperature in correlation.
KAD = Ka from tower test.
KAC = Ka from correlation.
NTUD = NTU from tower test.
NTUC = NTU from correlation.
ERR = Error of energy balance.
SIGMA = Number of standard deivations.
DEV = |j
and a. histograms and finally the correlation coefficients C , a, b,
and c.
D.3 WATER LOSS CORRELATION CODE
Table D-4 is a listing of the water loss (AL/L) correlation code. This
code is quite similar to the Ka correlation code explained above. As
in that code, statements are blocked in the listing and perform the
following functions:
A. See block A in Section D.2.
B. The same as block B in Section D.2, except that AL/L is
read from the third data card as the dependent parameter
XMATAB(I), rather than Ka from the first card.
C. Similar to block C in Section D.2 except that humidity
differences are computed and put in TEMP(I) rather than
temperatures, as was the case in Section D.2.
D. Same as block E in Section D.2.
E. Same as block F in Section D.2.
F. Same as block G in Section D.2.
G. Same as block H in Section D.2.
H. Same as block I in Section D.2.
I. Same as block J in Section D.2.
122
-------
J. Same as block K in Section D.2,
K, Same as block L in Section D.2.
L. Same as block M in Section D.2.
M. Same as block N in Section D.2,
N. Same as block 0 in Section D.2,
0. Same as block P in Section D.2.
P. Same as block Q in Section D.2.
Q. Same as block R in Section D.2.
At the end of the code are two functions. The first one, WATSAP, com-
putes saturation pressure of water as a function of temperature. This
function is called in the second function, SATHUM, which computes ab-
solute air humidity w as a function of air saturation temperature and
air pressure.
An example of the output from the water loss correlation code is pre-
sented in Table D-5. Here again, the format is about the same as for
the Ka correlation code. The only changes are three column headings.
Here MAD is the percent water loss as determined from tower test data
and MAC is the same parameter from the water loss correlation. In Table
D-5, Tis the humidity difference indicated in the table title block.
D.4. HEAT EXCHANGER AIR-SIDE HEAT TRANSFER COEFFICIENT CORRELATION CODE
Table D-6 is the code written to correlate Colburn j factor with air
Reynolds number, as discussed in Section 4.0, The indicated statement
blocks perform the following functions:
A. Read Input Data File. In this block, data sets are read
one at a time. Only WET/DRY data (2xxxxx tests, 7 cards,
required data on cards 4 and 5) and DRY data (3xxxxx tests,
5 cards, required data on the first card) are used with
this program. After reading the proper data card values
123
-------
of Colburn j factor (XJ), Reynolds number (RE), test date
(JDAT) and test identifier (IDNO) are placed in their
matrices.
B. Least Squares Summations. The summations Zj and ZRe are
formed.
C. Correlation Parameters. The parameters C and n in the
correlation
J = C2 R (D-l)
are determined.
D. Correlation Coefficient. The correlation coefficient be-
tween j and Re is determined.
E. Mean of j*/ji Determined. The parameter ^" = (£j*/j)/n is
determined.
F. gtandard Estimate of Error. The standard error of estimate
and individual values of deviation are determined.
G. Error of Each Data Set. The error of estimate of each
point, deviation divided by standard error of estimate,
is computed for each data set.
H* Printing. Correlation results are printed.
I. First Histogram. The histogram of <|>. is formed.
J. jSecond Histogram. The histogram of a. is formed.
Table D-7 is a sample output from the code to correlate j with Re. The
column headings are self-explanatory.
D.5. FAN EFFICIENCY CORRELATION CODE
Table D-8 is the computer code used to linearly correlate fan-stack-
gear box-motor overall efficiency with airflow rate. The functions of
the indicated statement blocks are as follows:
124
-------
A. Read Input Data File. Since the desired fan data are on
the fourth card in a given data set, this block reads one
card, to see if all data have been read, skips two cards
and reads the fan data. When the final data set has been
read, the program proceeds to block B.
B. Least Squares. The program then calls a canned least
squares routine to find the correlation coefficients GS
and C. .
C. The Correlation Coefficient. The correlation coefficient
between fan system efficiency and air volume flow rate is
determined .
D. $1 and ^jT Calculations. The program next computes the mean
ratio of <(>-£ = if/li f°r the fan efficiency data file.
E. Standard Error of Estimate. Next the program determine
the deviation Vi - ? f or each data set and computes the
standard error of estimate.
F. Print . In the final statement block the results of the
correlation are printed.
Table D-9 is a sample listing of the output from the fan efficiency
correlation program.
125
-------
931
H» IV) *- -^ tO
• M • • l->
ON o ro ^ o
CO 4> »-* * >
ro to -s * to
Ul -4 04
ni'Ol P"1 Pt O4
e e o o e
03 O M
'tO
+ • to OD *
O'vO 0^ 00 49
C3 v£ ON vO Ol
ON PI o a cn
PI I PI PI n
I o + + +
O M O O O
10 I-* I— Ol
04'
OJ
•t* •
en 04
o m
m +
I a
a
Ol
oi m
m +
I a
o 10
ro
e
o
o
m
*
at
o
to
o
m
+
o
(O
10
•
00
vO
n
o
Ul *
cn en
oo cn
a> to
n n
+ +
o o
H» 01
-J to
• •
vo \o
-*• 0*
o 0^
f* 0^
rn n
+ o
ON
Ul N)
O CD
m n
+ +
O O
03
m m
4 I
O O
• ro • ro
-j »-• en f-«
ro os ro oo
-j en; oo en
-•4 oo
m ro:n-, ro
i to 4 ro
CD 0^ CD O^
CO t-
*• • v£ h-»
* 00 ft *
vfl en. oo o
*j w 0> *
a en' as ro
00 m' ON O
rn i PI rn
104 +
O H» O O
ro H- (jt
• ro * •
to vD O M
ro VD en oc
en "^4 o& *«j
cr> PI c-3 oo
PI PI
4 4
PI
4
I o
o ON' o o
oi • *-• \c
• ro * *
o -»^i o *—»
Q*\ *^^ ro QN
H> O 03 O
OJ m o -w
m 4 r'n rr)
1044
o ro o o
i-4 ro o
i~»
• en \i)
ro • *
O >JD vi)
o ch M
o o en
PI vc •<>
rn
i
o
i
0 4
*
co
ro ro
* *
oo
o
en oo e-«
ro
m
4
o
PI PI
4 4
fVJ O O
G4
ro
OJ
ro
I
o
Oo
ro
m
4
O
•
-J
03
Ul
PI
I
o
00
ro
M
o
en
ro
ui
o\
-0
cr*
m
1
0
ro , ro
i-* M oi «J »-»
• |_>«:ft |_.
ro o -^ oo o
ON Ul "^ OO UI
M3 to Ol -4> fO
Ul CO Oi
rn pi PI
4 H* 4i + h-
o ui aj o ui
»-» o »-*
I
00 <«4 -^ 05 00
•4* en ui ^-^ *^
O4 O4 ^^ ^^ ^O
n pi PI PI PI
4 4 •«••*• 4
o o o a o
»-> w O H-1 W
* • vu ro
• vO • •
ro —i CD VJD
o ru en »->
OJ -J O -fc
>-i m o x
PI 4 n PI
I O 4 4
O CTv C3 C3
*• • CD ro
• o • «
o. o o »-•
co PI o -^
PI 4 m PI
(044
O M O O
ro • •
o cn en
o ro *
o ->j en
r>i cr> ui
4 PI m
O 4 I
MOO
ON ru
e-i • •
CO Ol *
-JO*
ON oo en
n M M
4 PI rn
044
l-> O O
f- ON
OO
VJO
PI
I
o
ft
o
o
o
m
4
o
t- ro
ro -w
ON e»J
vri ed
en cn
PI PI
4 4
O o
»— cw
crs j-i
en
o
cc
4
O
vO
rn
4
O
^
Cx 4:
O Ul
O H-
n pi
4 4
O O
en f
CD «^
e^ ^
en -^
o co
rn m
4 4
O O
H« fO
en ~g
o .^
o -j
rn PI
4 4
o o
(-» o
^
ui
at o
ro
n
r^
I
W
co
6
n
-------
TABLE D-2
LISTING OF THE MASS TRANSFER COEFFICIENT CORRELATION COMPUTER CODE
PROGRAM KAPRO ,NDATA(750),AM(4,4),BM(4)tXLUSE(750),
•K3USE(750> ,XKAUSE(750) ,TEMP(750) ,XKALOG(750),GLOG<750),
*XLLOG(750),TEMLOG(750),ANS(4),INO(750),NOS(40),NOE(40),
+RAT(750),DEV(750>,SIGMA<750>,BOT<50>,TOP<50),NIN<50>,
+TEMUSE<750)fERRTAB(750>,NDAYTB<750>,NDAY(750>,ERR<750>,
+COMPKA(750),COMNTU(750)
WRITE(6,500)
WRITE(6,380)
READ(5,550) NOSE,NOT,JSINB,RANGE,NERR,ERRMAX
DO 100 1=1,NOSE,I
100 READ(5,590) NOS(I>.NOE(I)
I • I
10 READ(5,20) IA,IB,IC,ID,IE,IF,IDAT,XA,XB,XC,XD,XE,XF
20 FORMAT(6I1,JX,I3,lX,6Ell.4)
IF(EOF»5)13 15
15 XLTAB(I) = XA
GTAB(I) = XB
XKATAB(I) * XE
TABNTU(I) - XF
NDAYTBd) = I DAT
READ(5,24) XA,XB,XC,XD,XE,XFfXG
24 FORMAT(7EIt.4)
IF(NOT.EQ.I) GO TO 40
IF(NOT-3)31,32,33
31 TEMP(I) » XE
GO TO 40
32 TEMP(I) = XF
GO TO 40
(Continued)
-------
Table D-2 (cont'd)
H
N>
oo
33
34
35
36
37
38
39
40
25
IF(NOT-5>34,35,36
TEMP(I) * (XE+XF>/2.
GO TO 40
TEMP(I) « XA
GO TO 40
IFCNOT-7) 37,38, 39
TEMP(I) • XB
GO TO 40
TEMPd)
GO TO 40
TEMP(I)
IRUN(I)
I = I+J
READ(5,25)XA,XB
(XA+XB>/2.
(XA*XB*XE-«-XF)/4,
IA*100000-HB*IOOOO+IC*1000+ID*100+IE*10+IF
41
(Continued)
ERRTAB(I) « XB
IFCIA.EQ.7) GO TO
IF(IA-2)4I,42,43
41 READ(5,21)
21 FORMAT(/)
GO TO 44
42 READ(5,22)
22 FORMAT(///)
GO TO 44
43 WRITEC6.23)
23 FORMAT(10X,37HABORT
GO TO 370
44 CONTINUE
GO TO 10
NOP = 1-1
IF(NOT.NE.I) GO TO 110
DO 120 1=1,NOP
120 TEMPd) « I.
WRITE(6,390)
GO TO 121
IF(NOT-3)111,112,113
CORRELATION. BAD CARD SEQUENCE.,//)
-------
Table D-2 (cont'd)
Ill WRITE(6,400)
GO TO 121
112 WRITE(6,401)
GO TO 121
113 IF(NOT-5)114,115,116
114 WRITE(6,402)
GO TO 121
115 WRITE(6,403)
GO TO 121
116 IF(NOT-7)117,118,119
117 WRITE(6,404)
GO TO 121
118 WRITE(6,405)
GO TO 121
119 WRITE(6,406)
121 N=0
DO 130 1=1,NOSE,1
MS « NOS(I)
ME » NOE(I)
DO 140 J»MS,ME
140 INO(N) « J
130 CONTINUE
NSUM * N
DO 150 I»1,NSUM
J - INOU)
NDATA(I) = IHUN(J)
NDAY(I) • NDAYTB(J)
ERR(I) » ERRTAB(J)
SA - XLTAB(J)
SB - GTAB(J)
SC - TEMP(J)
XLUSE(I) = SA
XNTU(I) « TABNTU(J)
XLLOG(I) * ALOG(SA)
GUSE(I) = SB
(Continued)
-------
Table D-2 (cont'd)
IF(NOT.'NE.I) GO TO 597
597
R24 = 0.
R34 » 0.
CONTINUE
R23P4 = (R23-R24*R34)/(SQRT«1-R24**2)*(1-R34**2))>
RI2P4 » (R12-R14*R24)/(SQRT«1-R14**2)*(1-R24**2))>
R13P4 * *
R12P34 » (RI2P4-R13P4*R23P4)/(SQRT«1-R13P4**2)*<1-R23P4**2)>)
RHS » (1-RI4**2)*(1-R13P4**2)*(1-R12P34**2)
R1P234 - I -RHS
599
WRITE(6f599)R12,R13fRI4
FORMAT(///,28X,36HCORRELATION COEFFICIENT* KA WITH L *,F7.4f/,
+28X,36HCORRELATION COEFFICIENT* KA WITH G =fF7.4f/f
*28X,36HCORRELATION COEFFICIENT* KA WITH T =,F7.4)
WRITE(6,598)RIP234,NSUM
598 FORMAT(27X,39HCOEFFICIENT OF MULTIPLE DETERMINATION =,F7.4,/f
±41Xtl3HSAMPLE SIZE =,I5f///)
AM(J,I)=NSUM
AM(!,2)=SW
AM(I,3)«5X
AM(1,4)=SZ
AM(2,U=SW
AM(2,2)=SWTWO
AM(2,3)*SWX
AM(2,4)=SWZ
AM(3,1)«SX
AM(3,2)*SWX
AM(3f3)=SXTWO
AM(3,4)=SXZ
AM<4,I)=SZ
AM(4,2)=SWZ
AM(4,3)*SXZ
AM(4,4)=SZTWO
BM(U=SY
BM(2)*SWY
(Continued)
-------
Table D-2 (cont'd)
BM(3)=SXY
BM(4)«SZY
M
OJ
Ul
(Continued)
IF (NOT.EQ.1) NEQ=3
CALL LINEQ1 (AM,BJ*,ANS,4,NEQ, 1 ,NONO)
IF (NONO.EQ.O) GO TO 350
WRITE (6,530) NONO
GO TO 370
350 TEM*ANS(1)
ANS(I) - EXP(TEM)
COEFF m ANS(I)
A « ANS(2)
B = ANS(3)
C * ANS(4)
IF(NOT.EQ.l) C * 0.
SUM « 0.
WRITE (6,480)
WRITE (6,460)
DO 360 I=I,NSUM,1
XL=XLUSE(I)
G=GUSE(I)
T=TEMUSE(I)
COMPKA(I) - COEFF*(XL**A)*(G**B)*(T**C)
COHNTU(I) = COMPKA(I)*39.667/XL
RAT(I) « XKAUSE(I)/COMPKA(I)
360 SUM « SUM + RAT(I)
XBAR = SUM/NSUM
SUM = 0.
DO 361 I=J,NSUM
DEV(I) = ABS(RATd)-XBAR)
36J SUM « SUM + DEV(I)**2
STODEV * SQRT(SUMXNSUM)
DO 362 I=I,NSUM
_362SIGMA(I) » DEV(I)/STDDEV
DO 363 I«1VNSUM
XL « XLUSE(I)
-------
Table D-2 (cont'd)
u>
(Continued)
363
364
369
G « GUSE(I)
T * TEMUSE(I)
XKAP = COMPKAd)
XNTUP = COMNTU(I)
WRITE(6,470)I,INO(I)fNDATA(I),NDAY(I)tXL,G,T,
+XKAUSE(I),XKAP,RAT(I),XNTU(I),XNTUPtERR{I),
+SIGMACI),DEV(I)
WRITE(6,600) STDDEV,XBAR
"DELJ = RANGE/JSINB
J=I,JSINB
» DELJ*.AND.TEST.:LT.TOP(J)) GO TO 378
GO TO 379
378 NIN(JS) » NIN(JS) * I
-------
Table D-2 (cont'd)
379 CONTINUE
376 CONTINUE
DO 381 J=1,JSINB
381 WRITE(6,630)J,BOT(J),TOP(J),NIN{J)
"TO FORMAT(3X,JHI,3X,2HNO,4X,3HRUN,3X,3HDAY,4X,IHL,6X,1HG,5X,1HT,6X,
+3HKAD,4X,3HKAC,4X,3HRAT,3X,4HNTUD,3X,4HNTUC,3X,3HERR,3X,5HSIGMA,3X,
+3HDEV)
470 FORMAT(lX,I4,1X,I4,iX,I6,2X,I3,2X,F6.0,1X,F5.0,lX,F6.2,JX,F6.l,1X,
+F6.1,IX,F6.3,IX,F6.3,1X,F6.3,IX,F6.1,1X,F6.3,1X,F6.3)
600 FORMAT(///,34X,9HSTDDEV « ,F6.3,4X,9HAVGRAT « ,F6.3)
620 FORMAT(///,37X,26HHISTOGRAM OF KA RATIO DATA,//,39X,1HJ,4X,
+3HBOT,5X,3HTOP,6X,IHN,/)
630 FORMAT(37X,I4,2X,F6.3,2X,F6.3,2X,I4)
WRITEC6,490) ANS(I),ANS(2),ANS(3),C
370 STOP
C
380 FORMAT(///,32X,37HC()RRELATION OF TVA COOLING TOWER DATA,//,38X,
+25HMASS TRANSFER COEFFICIENT,///,37X,27HKA = D*(L**A)*(G**B)*
-------
ro
P
w
p
o
U
S5
O
H
H
<
o
o
H
O
M
Pn
PM
§
U
Pi
w
Pn
w
H H
c/>
W
I
Pn
H
&
PM
H
8
w
J
w
t? ''.-jfj ?., r" ': f^.' 'K '' !!"; :- ^"" • "',..''' :""' ' :"' ; ^""
o * —i in » CM a- ••« -^ <-•-< o «M .-< 03 oo i>- o» N.KI vo » •• in ef» M
'"i ' " r"" ' l' ' •' r- "r- '• '»'•'•••••••' •*, • * */• ••••••••;•.»•.••»
^ .. ' fc... -,.- i-rr ,- |, o * •
*'-* • • • • • • •*•<*** « » • * •'• • *
OQOQOpOOOOOOOOOOODQOOOOOOOOO
. »-•*** *c* • * • » • * •'« •*«**« • • ••• « • * *
o.:', cc •"« • • *i» • » ••»••• *•* •••*•••••• ••» • »
: ^....^a
• • * •"» •••»•• •'« • '* • • * * ••« • • « •
It <£
SI ™^ r -.?£ ~ - : •* .> ~ - —, —..
i*LU.'u.jn.^ 0 i--4?;'•JCt'St H |8 Si-feriSs H*s."" $<* '&*' ft! '; • '•'-," •"
"^M-tt-u-Oz:, • !"-•• f 3?! >;* til. ?-; -fw as p? f, % ,- Jv.1 < ^-*i! - *?} ~>
' UuliJC-< ;;•: > vj ooooooooobooooooooocioooooooc:
•K. '
o-
. _j;, ,% OOOOOOOOOOOOODOOOOOOOOOOOOOO
KooOr^ i*""" '£;, *'-'* C^ f,"7 ^ 1*^ ^^ • ?.^ i^"\ ' i*f <&' l^:. '^;^ .*|-f '™^' -^ ~ f*" V-*
•'•. Ki. I'-' f" *,'" •'» •* •?•'••"• •'* •'* •'•• * » •'» » • «'i • •• •'* •"*
: KKKU.
4 OOOM
'• • ^ *•* «'« •
' I 1; P ;. if-! i I »-ir*i«»«»«»««w»«m««««»«««.««*wh
i C E?K jf ¥-- , t . '
Z .«,-«,*.-< OJ {MOJ CM fl fO '
30OOOOOOOOOOO OOOOOOOOOOOOCX-t-H^
f
•M
| *'' X 'Vp ^ P-
r,%" ,LL/ |'> ' <"'"C ' ' F' - -»^f-tr^*^t-• i.;; - :- , , ^:- • ^ ^:-
N ''' tf" ^* ' '[" - z
'- KJ : :-,'; f ^ v-, r-* , -
^f1" •- ^'; & • S '' *"<
! O
'
136
-------
>• r;.-- •» *~. #-'• f* K-ft f:v § ~
" -I "
a
o
y
CO
(1)
iH
•3
H
o»OTO»'or\lo»-iooa>."» to «•»*•««
* • « • * * • • •• » * • »
*.- i
OOOOODOOOOOOOOOOO ,•-
• •••••*•• •»• • » »j^l •;••' '
»••«••••• •,» • * •;» »'»
3OOOOOOO
.*_?£
« »•• • * •-*••« »^» » *
0000000000000000000000
OOOOOOOOOOOOOOOODOOOOO
oooooooooooooooooooooo
:, OOOOOOOOOOOOOOOOOOOO
F.* ta
i S J -
"" , ' " ^* % m- "', - *^'! - V', - tf > ,(V p*-^ ""'' ,if| j* ^^ ^r,' '&
««>• £s !••"'§? ?"- % :-,-,^ '''•' t- ^" *•' ^ •«* '/<--'fc
•8
I
4J
C3
O
O
139
-------
OVT
,000000000000 ooo aaooaooaoaoooo
aooooaoooooooaaooaoaaooaoo
l: atacBwJ trtut •» c*ru >-• a >£ « «< m cfl « uiu i-i a 4 mooooocioooooooooooooocoooooo
H
0*
M
(t>
A,
ri-
al
«- s
«rt
-H
O
CD >-.
T in
-------
TABLE D-4
LISTING OF THE WATER LOSS CORRELATION COMPUTER CODE
PROGRAM MASPRO
DIMENSION IRUN
.Mn*T» titir\\ tit/
;mr \ i j\ii , /imruuvAj v i J\jt , v*i.i/v/* i j^i i ^
LNS(4),INO(750),NOS(40),NOE(40),
750),BOT{50),TOP{50),NINC50),
NDAYTB ( 750), NDAY (750), E RR (750),
WRITE(6,500)
, WRITE(6,380)
READ(5,550) NOSE,NOT,JSINB,RANGE,NERR.ERRMAX
A DO 100 I»1,NOSE,1
100 READ(5,590) NQS(I),NQE
I « 1
10 READ(5,20) IA,IB,IC,ID,IE,IF,IDAT,XA,XB,XC,XD,XE,
20 FORMAT(6II,1X,I3,1X,6E11.4)
IF(EOF,5)13,15
15 XLTAB(I) • XA
(TTAFUTl ss YR
(Continued)
GTAB(I) » XB
NDAYTB(I) - IDAT
READ(5,24) XA,XB,XC,XD,XE,XF,
24 FORMAT(7EI1.4)
IF(NOT-2)30,31,32
30 TEMP(I) = I.
GO TO 40
31 WFWI - SATHUM(XE,14.696)
WFWO - SATHUM(XF,I4.696)
WFAI = SATHUM(XC,14.696)
WFAO = SATHUM(XD,14.696)
XLMWD « ((WFWI-WFAO)-(WFWO-WFAI))/ALOG((WFWI-HFAO)/(WFWO-WFAI))
-------
Table D-4 (cont'd)
8
TEMP(I) « XLMWD
GO TO 40
32 IF(NOT-4>33,34,35
33 T! = XE
T2 * XC
GO TO 39
34 Tl » XF
T2 * XD
GO TO 39
35 IF(NOT-6)36,37,38
36 T1 » XE
T2 » XD
GO TO 39
37 T1 - XF
T2 * XC
GO TO 39
38 Tl - (XE+XF)/2.
T2 «
TEMP(I) » ABS(WI-W2)
40 READ(5,25)XA,XB
25 FORMATC2EI1.4)
EfiRTAB(I) » XB
XMATAB(I) * XA
IRUN(I) » IA*I00000+18*10000+IO1 000+ID*100+IE*IO+IF
I « I + I
IF(IA.EQ.7) GO TO 41
IF(IA-2)4I,42,43
41 READ(5,21)
21 FORMAT(/)
GO TO 10
42 READ(5,22)
22 FORMATC///)
GO TO 10
43 WRITE(6,23)
(Continued)
-------
Table D-A (cont'd)
tjO
23 FORMAT(1 OX,36HABORT CORRLATION. BAD CARD SEQUENCE..//)
GO TO 370
13 NOP * I-|
IF
GO TO 70
51 WRITE(6,6l)
61 FORMAT(31X,38HCORRELATION BASED ON LOG MEAN HUMIDITY,/,
+32X,36HDIFFERENCE BETWEEN WATER AND AIR DEW,/,
+41X,18HPOINT TEMPERATURES,//)
GO TO 70
52 IF(NOT-4)53,54,55
53 WRITE<6,63)
63 FORMAT(30X,40HCORRELATION BASED ON HUMIDITY DIFFERENCE,/,
+31X,38HBETWEEN ENTERING WATER TEMPERATURE AND,/,
+33X,34HENTERING AIR DEW POINT TEMPERATURE,//)
GO TO 70
54 WRITE(6,64)
64 FORMAT(30X,40HCORRELATION BASED ON HUMIDITY DIFFERENCE,/,
+31X,37HBETWEEN LEAVING WATER TEMPERATURE AND,/,
+33X.33HLEAVING AIR DEW POINT TEMPERATURE,//)
GO TO 70
55 IF(NOT-6)56,57,58
56 WRITE(6,66)
66 FORMAT(30X,40HCORRELATION BASED ON HUMIDITY DIFFERENCE,/,
+3iX,38HBETWEEN ENTERING WATER TEMPERATURE AND,/,
+33X,33HLEAVING AIR DEW POINT TEMPERATURE,//)
GO TO 70
57 WRITE(6,67)
67 FORMAT(30X,40HCORRELATION BASED ON HUMIDITY DIFFERENCE,/,
+31X,37HBETWEEN LEAVING WATER TEMPERATURE AND,/,
+33X,34HENTERING AIR DEW POINT TEMPERATURE,//)
GO TO 70
58 WRITE<6,68)
68 FORMAT(30X.40HCORRELATION BASED ON HUMIDITY DIFFERENCE,/,
(Continued)
-------
Table D-4 (cont'd)
L+31X,37HBETWEEN AVERAGE
+33X,33HAVERAGE AIR DEW
CONTINUE
121 N=0
DO 130 1*1,NOSE,I
MS - NOS(I)
ME = NOE(I)
DO 140 J=MS,ME
N = N+1
440 imt4« « J
130 CONTINUE
NSUM = N
DO 150 1=1,NSUM
J = INO(I)
NDATA(I) = IRUN(J)
NDAY(I) » NDAYTB(J)
ERR(I) = ERRTAB(J)
SA = XLTAB(J)
SB = GTAB(J)
SC = TEMP(J)
XLUSE(I) = SA
XLLOG(I) = ALOG(SA)
GUSE(I) = SB
GLOG(I) = ALOG(SB)
TEMLOG(I) = ALOG(SC)
TEMUSE(I) = SC
SD = XMATAB(J)
XMAUSE(I) = SD
150 XMALOG(I) = ALOG(SD)
IF(NERR.EQ.O) GO TO
WATER
POINT
TEMPERATURE AND,/,
TEMPERATURE,//)
180
DO 170 1=1,NSUM
ERROR = XLUSE(I)
ERROR * ABS(ERROR)
IF(ERROR.GT.ERRMAX)
J = J+l
GO TO 160
(Continued)
-------
Table D-4 (cont'd)
+2SX,36HCORRELATION COEFFICIENTt KA WITH G »fF7.4,/f
+28X,36HCORRELATION COEFFICIENT* KA WITH T =,F7.4)
WRITE(6f598)RiP234,NSUM
598 FORMAT(27X,39HCOEFFICIENT OF MULTIPLE DETERMINATION
+41X,13HSAMPLE SIZE «,I5,///>
AM( 1,1)=NSUM
AM(1,2)=SW
AMM,3)aSX
AM
-------
Table D-4 (cont'd)
M
360
oo
361
362
363
IFtNOT.EQ.l) C « 0.
SUM - 0.
WRITE (6,480)
WRITE (6,460)
DO 360 I=1,NSUM,I
XL=XLUSE(I)
G=GUSE(I)
T=TEMUSE(I)
COMPMA(I) = COEFF*(XL**A)*(G**B)*(T**C)
RAT(I) = XMAUSEU)/COMPMAU)
SUM = SUM + RAT(I)
XBAR - SUM/NSUM
SUM = 0.
DO 361 I=1,NSUM
DEV(I) * ABS(RATd)-XBAR)
SUM - SUM + DEV(I)**2
STDDEV = SQRT(SUMXNSUM)
DC) 362 I=1,NSUM
SIGMA(I) * DEV(I)/STDDEV
DO 363 I=1,NSUM
XL = XLUSE(I)
G = GUSE(I)
T = TEMUSE(I)
XMAP - COMPMA(I)
WRITE(6,470)I,IN{)(I),NDATA(I),NDAY(I),XL,G,T,
+XMAUSE(I),XMAP,RAT(I),ERRU),SIGMA(I),DEV(I)
WRITE(6,600) STDDEV,XBAR
364
369
DELJ
DO 364
BOT
-------
Table D-4 (cont'd)
DO 366 J»1,JSINB
JS = J
366 IFCTEST.GE.BOTCJ).AND.TEST.LT.TOP(J)) GO TO 371
371 NINCJS) = NINCJS)*!
367 CONTINUE
WRITEC6,620)
DO 368 J=1,JSINB
368 WRITEC6,630)JfBOTCJ),TOPCJ)tNINCJ)
HRITEC6,670)
670 FORMATC/////,39X.23HHISTOGRAM OF SIGMA DATA,//,39X,IHJ.4X,
+3HBOT,5X,3HTOP,6X,1HN,/)
DO 375 J=*ltJSINB
375 NINCJ) = o
DO 376 I=I,NSUM
TEST » SIGMACI)
DO 377 Ja!,JSINB
JS • J
377 IFCTEST.GE.BOTCJ).AND.TEST.LT.TOPCJ)) GO TO 378
GO TO 379
378 NINCJS) = NINCJS) + 1
379 CONTINUE
376 CONTINUE
DO 381 J=I,JSINB
381 WRITEC6,630)J,BOTCJ),TOPCJ),NINCJ)
~?3D FORMATC3X,1HIt3Xf2HNO,4X,3HRUN,3X,3HDAYf4X,1HLf6X,JHGf5XtlHTf6X,
*3HMADt4Xf3HMACf4X,3HRAT,3Xf3HEftRf3Xt5HSIGISfAf3X,
+3HDEV)
470 FORMATClX,l4tlXfI4,IX,I6,2XfI3f2X,F6.0,JXfF5.0,lX,F6.5ftX,F6.4,JXf
*F6.4t1X,F6.3t1X,F6.I,1X,F6.3«1X.F6.3)
600 FORMATC///,34X,9HSTDDEV = ,F6.3,4X,9HAVGRAT = ,F6.3)
620 FORMATC///,37Xf28HHISTOGRAM OF MASS RATIO DATA,//,39X,1HJ.4X.
+3HBOT,5X,3HTOPf6X,IHN,/)
630 FORMATC37X,I4f2X,F6.3f2XfF6.3f2XfI4)
WRITE C6.490) ANSC1).ANSC2),ANSC3).C
370 STOP
C
(Continued)
-------
Table D-4 (cont'd)
380 FORMAT(///,32X,37HCORRELATION OF TVA COOLING TOWER DATA,//,
+41X,18HPERCENT WATER LOSS,///,
+35X,29HPERCENT LOSS = KA*
-------
Table D-4 (cont'd)
SUM=F(1>
DO 3 1*2,8
3 SUM«SUM+FCI)*(.65-TC)**(I-I)
XLOOE-.-01 *(374.136-TC) *SUM/THETA
WATSAP=(2I7.99*EXP(XLOGE))*I4.696
RETURN
100 FORMATC1X* FUNCTION WATSAP */*TEMPERATURE WAS*
IIX*OUT OF RANGE. WATSAP WAS EXTRAPOLATED BEYOND*
21X*705.0 DEG.F! BE AWARE!*)
END
FUNCTION SATHUM(TfPT)
C SATHUM CALCULATES THE SATURATED SPECIFIC HUMIDITY
C (LBM WATER/LBM DRY AIR) GIVEN THE SATURATION TEMPERATURE
C T(DEG.F) AND THE AMBIENT PRESSURE (PSIA)
PVWSAT*WATSAP(T)
SATHUM*.62198*PVWSAT/(PT-PVHSAT)
RETURN
i- END
M #EOR
•M-+
-------
w
p
o
o
H
H
P
W
W
H
3
C/3
OS
W
o
to *
O "•"
O ' -^
o
o
u
O CJ
a: -i
w
a. >-
u.
-U!
a:
K
O
O
;:,< t '• p* -;,1 p, >; fo'j I W • • 4 f » » ** «j,f *WI ».-.* ».'* * * •J.'P »j » «>• « »
,1—3
on
aroc
M
Z Q.
ozz:
-J.4
OCi
o
152
-------
Ul
TABLE D-6
LISTING OF THE COLBURN j FACTOR CORRELATION COMPUTER CODE
PROGRAM DRYCOR
-------
Table D-6 (cont'd)
12
m
oo
IDNO(I>=100000*IA+10000*IB+1000*IC+100*ID+10*IE+IF
13
GO TO 10
READ<5,22)
RE(I)=XA
XJ(I)=XD
JDAT(I)=IDAT
IDNOC I ) = 1 00000*1 A+1 0000*1 B+1000*IC+IOO*ID+10*IE+IF
1=1+1
GO TO 10
N=I-I
Z=0.
Z2=0.
ZJ=0.
J=0.
J2=0.
DO 3 1=1 ,N
SCI)*ALOG(RE(I)>
T(I)=ALOG(XJ(I))
Z=Z+S(I)
Z2=Z2+S(I)**2
ZJ=ZJ+S(I)*T(I)
42 » J2+TCI)**2
J=J+T(I)
XN=FLOAT(N)
D(l)=XN*Z2-Z*Z
D(2)=J*Z2-Z*ZJ
D(3)=XN*ZJ-J*Z
TEMP=D(2)/D(J)
A=EXP(TEMP)
B=D(3)/D(1)
FA » ZJ*N-Z*J
FB - Z2*N - Z**2
FC * J2*N - J**2
CORCOJR « FA/(SQRT(FB*FC)>
(Continued)
-------
H
Ln
vo
Table D-6 (cont'd)
« I WRITE(6,599)CORCOJR
I 599 FORMAT{///,28X,36HCORRELATION COEFFICIENT* J WITH RE =,F7.4,///)
WRITE(6,300)
300 FORMAT(/,I2X,3HRUN,2X,4HIDNO,2X,4HDATE,2X,8HREYN NUM,3X,6HJ DATA,
+4X.6HJ C()RR,4X,5HRATlO,3X,5HERRORt3Xf5HSIGMA,4X,3HDEV,/)
SUM * 0.
DO 100 I=sJ,N
YJ
-------
Table D-6 (cont'd)
107 HIN(LS) » NIN(LS) + 1
108 CONTINUE
WRITE(6,302)
3O2 FORMAT(/////,38X,26HHISTOGRAM OF J FACTOR DATA,//,39X,1HL,4X,
+3HBOT,5X,3HTOP,6X,1HN,/)
DO 109 1*1,50
. 109 HRITE(6,303)L,BOT(L),TOP(L),NIN(L)
303 FORMAT<37XVI4V2X,F6.3V2XVF6.3,2X,I4>
DO 110 L«lt50
HO NIN(t) » 0
WRITE(6,305)
305 FORMAT(/////,39X,23F«ISTOGRAM OF SIGMA DATA,//,39X, 1HL,4X,
+3HBOT,5X,3HTOP,6X,!HN,/)
DO 114 1=1,N
TEST - SIGMA(I)
DO 111 L=J,50
LS = L
111 IF(TEST.GE*BOT(L).AND.TEST.LT.TOP(D) GO TO 112
GO TO 113
112 NIN(LS) = NIN(LS) * 1
J13 CONTINUE
114 CONTINUE
DO 115 L=l,50
115 WRITE(6,303) L,BOT(L),TOP(L),NIN(L)
WRITE(6,200)A,B
200 FORMAT(//////,5X,'THE CORRELATION IS*',5X,'J=',F6.4,' RE**',F6.4)
14 STOP
END
#EOR
-------
w
§
u
E3
o
H
51
o
u
g
H
U
£
7 "••
g
W £>
I §
E-( O
Pi
h
PM
g
O
w
hJ
en
Steo:'
oo-
orr
r
to
id
*
OOOOC3
O OO OO OC3 OO OOOO OOOO OO O
o^S0?*0
' • "
1C".
O3OOOOOOOOOOOOOOOOOOOOOOOOOOOCTOOOOOOO
'•» <|» »-* »i» • * »g* «;* »f* "ft •» »~9 «U -».» *{(••••;*•• »'•» » *
ft U !.• B 5: » E'- h K I l-i S s; I' ' . fc
i
ooooooooooooooooooooooooooooooooooooo
cjoiooooooooooocaooocioooooooooiooooooaiaoa
. * *flt *•" t* •• * *® »'.* 'i-1?; *;'» • J| ';* *|* *.'* ** *! * * * • * *:-f * •
a)
3
•H
161
-------
£91
n
o
O
rt
r
H
fu
a*
H
n>
o
i • ' i '
"3 5,S . -, '\ '''I /'<
**£
•",
• :'^ .'; •-.' ;"
-'jj
o
o
3
aoooooooQoaoooaoaooaooooooaaooacooooaooociooooaooaaooooooooaoo
ooooooooooaoaoaoooaooaoooooaooaoooooooeaoooaQooaoocooooocticcioQ
•
*'* *
.
• • »"• • • »^« «.• s*« * • fa ^ « ui ****•< *******
aooooaocjoooooocooooQcooooooaoooQooooaa
a^
a9o^va*H>^
^^K'i^
-.S •»
* t \
"j
'ify
t. •' ^
1 <~si
-;. »i
-j iy :•
/JM!vl;
• -3 '-I "
;
: "';' 11
•^ i> •• '
**,
''-\
-------
0
§
ft
I
t
OOOC3OOOOOOOO OOOOOOCDOOOOOOOOO
TO *-*«D ^caa -w ff* tr. i
OOOOOOOOOOOOOOOOOCJOOOOOOOOO^
oooooooooooooooooooooocaooojoo ~
I
I' w I
ooooooooooooooiooo
jDOO OOOJOOOOC3OO OOOO
O CD ifl CH OS OJ Of IS3H»
'. ;• - i i I ••
• • V* • •* » * * • ¥'» »•»'••
OOOOOOOOOOOOOOOCD
I - f i-.- |i:~. I;
Wt, ','•' p», i »•,, 'a,
ip "'•" fi <• • B
OOOOOOOOOOV30DOOOO
OC»OC3OO OC3OO
•* §'*
!,' OOIK**trf
"* «*«*«•« «, *
O
o
rt
••
fx
h • il f I" •". E r. ;
-------
CJ
O
O
osasooooooooooooootaooo
oooe>oootooooooooooooooooc3oooooo
ooooooooooooooooooooooooaooooo
OOOC3000000CJOOOOOOOOOOO
?£3ooooooc>oQoooooo coo
-* wo
-------
99T
H
(to
cr
," » *!• *
aaoocsaoQaaoooocOGQOcx
• oaoooaoooqsaooaoaoooo
O
o
3
> aesaooooooaaoooaooooo
-------
TABLE D-8
LISTING OF THE FAN SYSTEM EFFICIENCY CORRELATION COMPUTER CODE
109
119
PROGRAM FANCOR (TOWFAN .OUTPUT, TAPE5=TOWF AN, TAPE6=OUTPUT)
PROGRAM FANCOR ( TOWFAN , OUTPUT, TAPE5=TOWF AN, TAPE6=OUTPUT)
DIMENSION Q(600), ETA(600), COEF(IO), ETASTAR(600) , DEVC600), RATI
10(600), IDATE(600), ICODE(6)
1=1
ITPRINT=1
N()RDER=J
READ (5,189)
IF (EOF(5))
READ (5,189)
READ (5,189)
READ (5, 199) ICODE, IDATE( I ) ,RPM,FANANG,HP,SSP,QJ ,DPFQ,Q( I ) ,ETAMEAS
1,ETA(I),ETAFQ
NUMPTS=I
B
129
I GARB
29,119
GO TO 109
CONTINUE
CALL LSTSQ (NUMPTS,NORDER,Q,ETA,COEF)
NSTOP=NORDER+1
WRITE (6,209) (COEF( J) , J=J ,NSTOP)
XIYI=0.0
YI=0.0
XI=YI
XI2=0.0
YI2=0.0
DO 139 1=1 ,NUMPTS
XIYI=XIYI-KKI)*ETA(I)
XI=XH-Q(I)
(Continued)
-------
Table D-8 (cont'd)
00
39
149
'76
J89
199
209
219
229
239
249
159
YI=YI+ETA(I)
XI2=XI2+Q(I)**2
YI2=YI2+ETA(I)**2
RXY=(NUMPTS*XIYI-X!*YI)/(SQRT(MUMPTS*XI2-XI**2)^SQRT(NUMPTS*YI2-YI
l**2))
WRITE (6,219) RXY
Y3AR=0.0
DO 149 1=1,NUMPTS
ETASTAR (I) =COEF (1 ) +Q (I) *CC)EF (2)
RATI()(I)=ETA(I)/eTASTAR(I)
YBAR=YBAR+RATIO(I)
Y8AR=YBAR/NUMPTS
WRITE (6,249) YEAR
DEVSUM=0.0
DO 159 1=1,NUMPTS
UEV (I) =ABS (RATI (XI) -YEAR)
DEVSUM=DEVSUM+DEV(I)**2
SIGMA=SQRT(DEVSUM/FLOAT(NUMPTS))
IF (ITPRINT.NS.1) GO TO 179
DO 169 1=1,NUMPTS
WRITE (6,229) IDATEd ) ,Q(I) f RATICXI) ,DEV( I)
WRITE (6,239) SIGMA
STOP
FORMAT
FORMAT
FORMAT
FORMAT
*C L
(IX,16)
(61 I,lX,I3,1X,6EI!.4/7Elt.4)
(IX, 26HLEAST SQUARES COEFFICIEfTTS./IX,
OE10.3)
(IX, 23HCORRELATION COEFFICIENT,/I X,1OE10.3///)
E A N* 01/08/8C
PROGRAM FANCOR(TOWFAN,OUTPUT,TAPE5=TOWFAM,TAPE6=()UTPUT)
FORMAT (1X,I3,3X,EJ0.3,3X,E10.3,3X,EJ0.3)
FORMAT (IX, 19HSTANDAHD DEVIATION=,E10.3)
FORMAT (IX, 5HYBAR=,2X,E10.3)
END
-------
OOOOOOOOOOOOOOO000000OOOOOOOOOO00000000OOOO00000000OOOOOOOOOO
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ( I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
UUfl^UJLUUJUJUJUUUWUJUJUUJUUJ&UUUJUUJUUUUJ^
'<^K)^r^^o^-o^o^^oc^
I + + + + +III + III III + +I++II + I I
I I I I I I I I I I I I I I + I I I + I I I I I I I I + I I I I I
MUUUbjUUJUUiWUJUUfUUUJtijUJUJLUU,!
]T< O 03 m (MO in vfi r~ C4 (^ v£> CM
' cr e^-to^ oo a> en to oo r-i^icr'
c
o
0
4 +.+ 4. 4. +. + + *
Q
(1)
I
ttf
H
o
o
-------
o
vo
' §
-HOC3C3OCDOOOOOOOOC3
»-*
o
2
II
tn ON ON o oo .0^ OMJI »-» » w er« H- uios
n PI n m r*i n r*i n m f*i r*t n n rn n
i +++ + +> + +++ + + + +
oooooo.ooaoooooo
• i-'oooooooooooooo
.
I i i I i i i i l i i I l l
.00000000000000
-------
APPENDIX E
COOLING TOWER AND BACKGROUND NOISE DATA
The data from the real time analyzer are listed in Tables E-l and E-2.
The data are presented in order for the octave bands from 63 Hz to 8
kHz and for the linear and A-weighted overall levels. The first 31 rows
of numbers in each column are the measured noise levels for the 31 tests
described in Section 5.4 and noted in Table 5.4-1. Rows 32-41 are the
measured background noise levels measured at different times during the
data acquisition period.
179
-------
Dwg. 7697A90
( Start J
Enter Temp and
Rel Hum
Enter Tower
Dimensions
Receiver Position
Enter Tower
Operating Conditions
Calculate
Dimensionless
Variables, x,-x,
1 u
Calculate Face
and Fan Source
Levels
A-Weighc From
Statistical Models
Subroutine
SOURCE
Calculate Lp Fans
and Face at Distance
Calculate
Atmospheric
Absorption
Set Distance
From Tower
Calculate Ground
Absorption @ Dist
Add Corrections
and Sum
Subroutine
ABSORB
Subroutine
GEND
Subroutine
TITLE
Figure F-l. Flow Diagram for Main Program TOWER.
184
-------
APPENDIX F
NOISE PREDICTION COMPUTER MODEL DOCUMENTATION
This appendix explains the use of the Fortran IV program TOWER for pre-
dicting the noise levels of the TVA wet/dry cooling tower. The program
and subroutine source codes are presented in Appendix G.
F.I PROGRAM STRUCTURE
A flow diagram of TOWER is presented in Figure F-l. The program solicits
input data, in the format described below, including (1) the ambient air
temperature and relative humidity, (2) the cooling tower size, (3) the
cooling tower operating conditions and (4) the receiver height and dis-
tance from the cooling tower. Flow diagrams of the four subroutines,
ABSORB, GRND, SOURCE and TITLE, are shown in Figures F-2 through F-5.
These program segments are all described below.
F.2 SUMMARY OF PROGRAMS
The software consists of a main calling program, TOWER, and four sub-
routines. The subroutines are used to perform either repetitive or
utility tasks. The following is an alphabetical listing of all the pro-
grams listed in Appendix G along with descriptions of their functions.
Program Name Description
ABSORB Computes excess atmospheric attenuation per
unit distance for any temperature, relative
humidity and frequency (octave bands). Uses
procedure contained in Reference 3, Section
5.0 of this report.
185
-------
Dwg. 7697A91
Increment
Index
Enter
Calculate Absolute
Humidity
Calculate Absolute Humidity
for Max. Molecular Absorption
Calculate Max. Molecular
Absorption Coefficient
Determine Normalized Molecular
Absorption Coefficient
Calculate Molecular
Absorption
Coefficient,
I.
Calculate Classical
Absorption
Coefficient, aciass
Add to Get Total Absorption
Coefficient
a = a , + a ,
mol class
No
All
Octave
Bands
Done
Yes
Print Octave Band
Absorption, dB/ft
Return
Figure F-2. Flow Diagram for Subroutine ABSORB.
186
-------
Dwg. 7697A92
Enter
Calculate Surface
Impedance Ratio, Z^/
Calculate Wave Number, k
and Source Distance, w
Calculate Plane Wave
Reflection Coefficient, RP
Calculate Boundary Loss
Factor From Entire
Expression
Yes
Calculate Boundary Loss
Factor From Simplified
Series, F(w)
Calculate Image Source
Strength, Q
Calculate Octave
Band Attenuation
Increment
Index
Yes
Print Octave Band
Absorption Coefficient,dB
Figure F-3. Flow Diagram for Subroutine GRND.
187
-------
Dwg. 7697A93
Calculate Octave Band
Noise Levels at 6' From
Louvered Tower Face
I
Calculate Octave Band
Noise Levels At
Fan Stack Discharge
Print Calculated
Source Noise Levels
Figure F-4. Flow Diagram for Subroutine SOURCE,
Write Noise
Level Heading
Write Tower
Operating Conditions
Write Atmospheric
Conditions
Return
Figure F-5. Flow Diagram for Subroutine TITLE,
188
-------
Program Name Description
GRND Computes excess ground attenuation as a function
of source and receiver heights, frequency
(octave bands) and distance from the tower over
flat ground. Based on procedures contained in
References 4, 5, 6, and 8 listed in Section 5.0.
SOURCE Computes the octave band, linear and A-weighted
source sound levels at the fan stack discharge
and near the louvered face for any fan speed,
total water flow rate, dry flow percentage and
blade pitch. Based on results of the regression
analysis in Section 5.4.
TITLE Utility program which outputs table headings
and relevant program input parameters.
TOWER Main calling program which solicits data input,
calculates tower noise levels and converts data
for atmospheric and ground attenuation.
F.3 INPUT DATA FORMAT
All variable input data are transmitted to the program TOWER via Fortran
read statements. Two input data cards are required. Their format is
as follows.
Card #1
Column No.
Variable
Format
1
TH
F10.1
11
TW
F10.1
21
FS
F10.1
31
BP
F10.1
41
WR
F10.1
51
DF
F10.1
TH = Tower height, ft
TW = Tower width, ft
FS = Fan speed, %
BP = Blade pitch, degrees
WR = Total water flow rate, gpm
DF = Dry flow percentage, %
189
-------
061
ooot
W9*
0001,
C9I* ACn*
ogoz oooi
ZM *<;3T3N3
400*
nns
100*
SIT
000*
c»
IM33M34 0' -UIOIHAH 3M1»U» ONK J S33H930 Si >4N31 HOJ
JJ 00(11 »3i SO HI S1H3I3UJ303 NOIidMOS" 3 I H3H,i50UlT DBIff 3A»130
9.101
(,•04
N[1
4'9»
kT9
onoD
no
g:?!
oooi,
NI si:
ood?
ZH45
Z"5t
8Mfl
'•'!
SZt
M/,
9f
it
or
ooot
OOOI,
?:tf
I1-!?
OOOI
?•*!•
nnoi
4-ft
f*°t
0*U
»*Zh
IMC
l*tf
«•£<:
e;c<;
!:«
00*; 05Z 5ZI r
ZM *S3l3NinA3M4 H31N33 ON»B 3AH30
9-1,5
»•/•!
4-S9
0-49
O'S/
•S£
•ti
0*04
4'9B
IJLN13D
OM
t i * « o s s » o » n o • »
1 ? I 0 N H1I01 •) • I
0'Hi4
O'OOOOJ •lHJ9>«n1J H3l»« •
0*0000?
o*nni
'tl
•ot
1,4
I 0 0
0 3 1 3 I 0 3 »
•0004
•0091,
•001,1
•onni
•OP4
•COS
• on/
•nn9
•nnq
•nni,
•nnc
•or?
•oni
H3K01
MM
HH
- - - - HU
Dtl
HBXMXSH
«»
KM
HUH MB HUH
MM
HH
KM
UN
NX
N»H
331313111333
333331113333
if
33
13113JM
33133333
3
333333333333
• «
«•«
• •
• T
«H
• t
ft
• 4
• •
• H9:
!••» >«
• I ••
• 1
• I
»•
00000000
0000000010
00 00
00 00
00 00
00 10
00 00
00 00
00 00
0000009000
00000000
11
11
{{
11
11
11
11
•HHHiiffli
in
-------
Card #2
Column No. 1 11
Variable TEMP RELHUM
Format F10.1 F10.1
TEMP = Ambient air temperature, °F
EELHUM = Ambient air relative humidity, %
All necessary data conversions are performed internally in the program
code. Consistent output data will always be generated as long as the
input data is provided in the units specified above.
The program automatically calculates the receiver sound levels at dis-
tances of 100 to 5000 ft from the cooling tower. Increments of 100
ft are used from 100 to 1000 ft; increments of 400 ft are used from
there to 5000 ft. The size of the increments can be changed by changing
the values of DING in lines 67 and 139 in program TOWER. (See Appendix G
for listings.) The number of distances at which the receiver noise level
is calculated is controlled by the integer variable IRPT. It is currently
set to 20; it can be changed on line 64 of TOWER if desired. If values
of IRPT > 20 are desired, it will be necessary to increase the value of
the subscripted values of many of the dimensioned variables (lines 21-23
in TOWER).
Most of the key names used in TOWER and its subroutines are identified
in comment statements near the beginning of each section of code. Where
appropriate, the units of the quantity are also identified.
F.4 SAMPLE OUTPUT LISTINGS
A new sample copy of the output generated by TOWER is presented in
Table F-l. The table is somewhat self-explanatory, but it will be
briefly reviewed.
191
-------
The first section of the output gives the predicted values of the
octave band, linear and A-weighted noise levels at the receiver as a
function of distance from the cooling tower, including the effects of
ground attenuation. The program then prints the cooling tower source
noise levels which were calculated from the fitted equations described
in Section 6.0 for the particular tower operating condition selected.
The program then prints out the calculated octave band atmospheric
absorption coefficients in dB/ft for the input atmospheric conditions.
The next section of the output again prints octave band, linear and
A-weighted noise levels as a function of receiver location, but this
time without the ground absorption factors included. The third section
of the output tabulates the octave band ground attenuation factors as a
function of distance for the noise radiated from the fan stack and from
the louvered face of the tower.
193
-------
APPENDIX G
NOISE PREDICTION COMPUTER CODE
195
-------
MAIN PROGRAM 'TOWER1
vo
i:
3*
*»*
b*
6*
7*
8*
9*
10*
11*
12*
13*
1H*
15*
16*
17*
18*
19*
20*
21*
22*
23*
21*
25*
26*
27*
28*
29*
30*
31*
32*
33*
34*
35*
36*
37*
38*
39*
HI*
12*
*»3*
C
c
C
c
c
c
c
c
c
*******«*****'
*********•«**»*•*******<
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
10
c
c
c
20
PROGRAM PREDICTS THE SOUND PRESSURE LEVEL VS DISTANCE FROM
THE LOOVERED FACE OF THE TVA COOLING TOttER FOR SPECIFIED
TOli»tR OPERATING CONDITIONS
CALLS; SOURCE,ABSORB,GRND.TITLE
*******»*»»*«*****«**«**•****«*»*««*«»*•******«***«**«»*»*««*****»
i
vj
IRPT
D1NC
DST I I
< J
GAF( J
S( I ,J
SVHl ,J)
ALPHA!J
FSTD
RECEIVER POSITION INDEX
OCTAVE BAND INDEX
SPEED OF SOUND IN AIR, M/SEC
NO OF DISTANCES WHERE NOISE LEVELS ARE CALCULATED
INCREMENTAL DISTANCE FOR NOISE LEVEL CALCULATIONS
DISTANCE FROH TOWER, FT
DISTANCE FROH TOMER, H
&KOUND ABSQPKTION - FROM TONER FACE, DB
GROUND ABSORPTION - FROM FAN STACK, OB
RECEIVER NOISE LEVEL */0 GND ABSORPTION. DB
RECEIVER NOISE LEVEL WITH GND ABSORPTION, DB
ATMOSPHERIC ABSORPTION, DB
FAN STACK DIAMETER AT DISCHARGE, FT
DIMENSION SL<20,8),SF(2U,&>,ALPHA(&),SLINUO),SAftT(2u),oSTUo>
DIMENSION S(20,8),GAT(2o,&),GAF(20,8)iTSL(8),TSF(8)tAMfT(8),{FRi(8J
DIMENSION SLUM 20. 8) ,SFW(2(J,6) . SW ( 20 , 8 ) , SL 1 NM * (j ) ,SAMTW(20)
DIMENSION AFCl <8) ,AFC2(8) , D I S ( 20 ) ,6T ( b ) , 6F ( 8 )
DATA IFRQ/63,12S,2SO,&00, 1 000 . 2000 . «*QOO ,8DL&/
DATA AFCl/tt ,&t ,7t,8,,l9.,10t,10,,IO./
DATA AFC2/ b.,7., 9 . , 1 1 . , H* 1 5 . /
DATA AV» T/-26. , -l6t, -9. , -3. .0. , It, 1..-1./
SIGMA & 2UO.D
READ COOLING TOWER SlZE(FT) AND OPERATING CONDITIONS
&tlQ) TH. TM, FS, SP, ftR, DF
FORMAT«6F1D.1J
READ TthPEMTUKE AND RELATIVE HUMIDITY
READ(5,2QJ TEMP, RELHUM
*»&*
TH » Th*0.30«*8
TW «=
-------
47*
H8*
bO*
51*
b2*
53*
b5*
b6*
57*
58*
b9*
60*
61*
62*
63*
64*
65*
66*
67*
68*
69*
70*
71*
72*
73*
74*
7S*
76*
77*
78*
79*
80*
81*
82*
83*
84*
8S*
86*
87*
88*
89*
90*
91*
92*
93*
94*
95*
96*
97*
iflJL
C
C
C
C
C
C
25
C
C
C
101
CALCULATE DI HENS I UNLESS VA*. AND MISC. FACTORS
Xl * (FS-75. )*Q,Q4
X2 * (WK-18000.)»O.OOD2b
X3 « (OF-60»)*0.05
Xt = BP*0.&
CZ * SQRT(.li4*32*2»S3.3*(TCMP+46Qt})*0«3(l46
CALCULATE TOWER SOURCE LEVELS & CORRECTIONS
CALL SOURCt(Xl•X2.A3,XH,TSL,TSF)
Si * 0.
S2 * 0.
00 2b J » 1.8
SI « Sj+10t**CTSLCJ)*0,U
S2 « S2*1U.*»(TSF(J)*0.1 )
CONTINUE
SLL > 10.»ALOG10(S1 )
SLF = 1D.»ALOG1CMS2>
CALL ABSORB(TEHP.RELHUM,ALPHA)
IRPT • 20
DST(J) • 100.0
OIS(I) * OSTC1)*Q.3&18
OINC = 100*0
CALCULATE NOISE LEVELS AT DISTANCES
Pi
MS
HR
HF
FSTD
FST m
DO 11
Al
A2
SPHRL
RECD
§2
3*ltl5926S
20**0«30/PI
B 10.*ALOG10( AR&)
DIS( I )**2
IHIIIEE
D+tHS-HR>
D+
-------
99* THETA« ATAN< -AFC2 ( J )
12b* IF(DIFF .GT. HSD.O) SF(IiJ) * SF ( I , J ) -AFC 1 ( J )
126* SLftU.J) « SL(l.J) + GAT(I»J)
127* SFW(J,J) « SFU.o) + GAF(liO)
128* C
12V* C CALCULATE OVERALL NOISE LEVELS
130* C
131* xl * 10.**C$LU ,J)*0. 1 )
132» X2 = 1D.**(SK( 1 ,J)*0, 1 )
133* Yl = 10.**(SLtt( I . J)*0t 1)
13H* Y2 = Jn,**(SFMl . JI*U. 1 I
13&* IF(SLU.J) »LE« 0.) XI * it
136* IF(5F«I.JJ .LE«0.) X2 = 1.
137* IF(SLdtJ) «IE« 0. .AND. SF(I.J) ,LE- 0.) (,0 TO 38
138* S(ItJ) s 10**ALoelU(Xl + X2)
139* SO TO 3V
ItO* 3B SU » J) * i!«
1H1* 39 «KITE(6.MU) I t J , TSL < J ) • TSK U ) • TRM1 , TRM2 , SPhKL. • i»PHRf »6*T (I . J ) .faAF < I
142* 1 .J) .SL{ 1 ,J) ,SF( I ,J) iS( 1 . J)
H3* HO FORMAT( U,2I5,2F8.2,E1 1 .2.E11 .2,7F8.2>
IMP = S« 1 . I )
1HS* SUML * SUHL+1Q»**(S( I , J) »D« 1 )
1^6* ACOR a ( S( 1 i JJ+AftTl J) )*0» 1
1^7* X3 = lu.*«ACOR
1H6* 1F(ACOR ,Lt, 0.) X3 * Q.
1H9* SOMA = SUHA * X3
150* IF(SLW«I»J> »LE. 0.) Yl » i.
-------
zoz
"sj 1MT
nnnrt onn n nnonnon onn nnnn
§
I
• as »> c r> N N iv< IM CP > r» s ••? a »• zr im> o n n SB o HI-.D 1/1 j-j
r» so o z 2 *- •- >oom*- 3:2*- c:
n 3 n-nor ai
»•—«-:£ o GSP-*-« <•> n~'— X3u* >TT3i-rn ^e>"»i * a? :*•»••»;» fno •so
• cifi c « « — c -»ioi!iii*-» rr- z z s TJ^SD 3oe o a
n n n + • t~ •«*•«—• i~j>jx -
r» *-u>o *• r>« •— o > • "i ;* — i c i
V n • -»»£! II IO«-n**
J-~—rn oin o»-»-i
— i CD c "c (r x t» — fC"3C"c# ore o- ^IP tr
* O- W-flM
•- tr
«-» on u> • 3>- — a~r\ r>r>or> no -no 2
c tn *-• -KT as ^ooooccn n*>c o
M-H -IX s> —3 • OB row- — 0333333--^ xnz: —
«— criiro c (•— aso* ^ T<:** v -o ires • c"CTJT3"D~cT3»» nn m o 33
" --~~"-
«-»— 3 O3 is! ~-^:— . r" v
vj m «. oj i o
O -»1 3(J «-O 33 M
~ o
. C T> CnTfT"** C"«— — fi—
y o
C-IZ
or"
M
OJ>U) O
» W5 y,
OS Hi •-
O > N.
O Z 7?
c n N'
• n
-------
*»8» C
*»9* C CALCULATE SURFACE REFLECTION COEFFICIENT,RP
&0* C
51* SA s SlN(lHETA)
52* CA * COS(ThETA)
53* RA s 1,0-lKRAT* CA)**2
54* Hti m ZRAT*C SQRT(RA)
55* RP s C*R2*2.0/( { 1 .0-RP)* CA)**2
63* W»WJ*W2
64* if 10
93* C
94* 7 N2=l
9b* Nl=l
96* TRM = CMPLX( 1 , ,U. )
97* SUM= CMPLXtO.0,0.0)
98* DO & 1=1,NMAX
99* EM * 2.»FLOAT(I),1 .
-------
i MN>MIM-*.*.•-*• »-•-»-«-*-OOGOQOOCDO
•O^OOS-JO- lP-*wlV«-O»Oa> -JO-tr J= U>M«
•-in
BOZ
c-H>in> — n
— »?<: H
MO
> 3>o ooe> r»
•" 303E-HMP Jtfc*fii*»-*3:r* w«*soat't o
n H a a n
*>;o as nz — ^a::
>*• si ro TJ i -*~ H •
*-» «n
>« •- MC — 3« 3EfsJ IM
5=
czx e
c
m
— *
!#» "H )*»»•*CBj^ I/)
j» »-n N——-~i» c
" £31 30
— c — 50 r>
OU1-I3
• —33*
O30
*-— s>
»->30
ox
* *
T9O
»»
O>
in
rn
•H
>>
1*1
z
c
— c
z
o
«o
o
z
-------
(A • •
H-U. *UI
z o f^sr
ui • •
*-«5/» *v5T>» /
Ul— «O »t »(M * O| *•
Z— f*.iv5T» O • •
• • » • O * N
— O •<*> • O Q. t
09 »^n «^ GO s£ &
O £ < • . • • XO * I-
irt 3 £( CJ^"f> * 33 0* *
< U. -I
Ul *C * *^*1 ^O CO •* C^ f^ ^4 ^ ^4
• O^^^^^O ^0 O*M*'^
— • * -ui «O3 a «o x>«'Ot>>r'J «O9*f*l • O fl ««c
< a.uica *.<«•••*_!*• a • •* xx.^
3* (/t QC (S ^ Off X i/t *^^{A O * ^ O C3 ^* '•^ ^
ft- O UICIL. *OC>OO ft- + O —• ** *
-4 XQUI — 3-jo • • »ooo s: •* —m •- -« -.-.—
< I— ZOC iiJX«X "—* o^th-NO UJ — -• • • x—«,>i -•
t— (Q ~>O O O — OO O ~>
« t —» US f| -«-* CM XXX —
«• ac c»* ~ -• CNUM-«+—XXN; _i
x zu»z »-•—.«-• «4- • oo iv 3 ui— ~» ~ » — t +«-"-»s^-«a3 a
J < Ul *^<«C3 • » »l-"-«O a X £C • " "• O .-,«««»•«• + < < * jc
Ul tOU9*-> -~ 3E _J • -» *^»Z *lfl 4) —I U.O X (M i O^ ' •-•— •>»Ulul *-*X XX ft.
QC U^U CB^JOtfl *CO * U1O • £&( ^w^^ST ^« U/UJ U/^J>«JI *^ «^ **• *•* _|
* * •«
X "• £U1 -CK • *
t— U>UiO U."~—C
— O H-vJ -COCO • • * »l
»J —O3 • tM
QC £A Z *CX ^4 * *t/t^MUlin^ *C <*l^ 4UIX Ul * CC
O Ul 22C7 *^" 3C C3O ^ 4^ 129* ^ *** *Q Or *^ •
(/I ^ Ul*^ t& *«^ X ** ^ ^4 tfl O *"* * "f" C3 ^ ® * U» CO * ift
CD ^ 2)*^ fy o 0
t t *-___,
III ^^- -. —
•~-~ I UluJ IU Ul
_!-»_» J
O "7~> "J I f -»£O3»iH at ft.
— — •-»-*->- l-
R a u -j
*«• U **
• -xoaujui • • ->«•»*• t-
£*fe f*f J^ 0^. « A <^ ^w QJ J^J Qf* !>•• «irt ^3 tt
»»•*— !K
• a-Z—U. II H H EOXXV- UX H GOZ H •
Q <•-•
X 0- l-h-»- «
U. O U.O O U.
» CS-I »^U «•"•»•- XX XXX X<
OOOO * « •-«OQ«-«-flD <
— ("*«•>._>
oo 2 S °°
* COO- —• -»
u
w
o
* ** *********»Z<
o
*
205
-------
ALPCLA(J) » 10.*«(2«05»ALOGIQ(FREe( J)/1UO£J.
NJ
O
50* ALPHA(J) s ALPCtA(J) + ALPMQL(J)
51* ISO CONTINUE
52* RETURN
53* END
SUBROUTINE 'TITLE'
1* SUBROUTINE T I TLE < FS ,BP , VOR , DF ,TEMP .RELHUM ,L )
2* WRIT£<6,1>
3* I FORHAT(lHl)
H* WRIT£(6,2)
5* 2 FORMAT(29Xi*P REDICTEO COOLING TOWER NOIS
6* . IE. L C V E L S*)
V* . !F
-------
APPENDIX H
BASIC PLUME AND COOLING TOWER DATA
As discussed in the body of the report, this appendix contains a tabu-
lation of the data as received from the Fluid Systems Laboratory (FSL).
Table H-l gives a sample of the data as received, with a legend giving
the meteorological, cooling tower, or plume parameter represented in
each position.
It should be noted that the data recorded by the Tethersonde is in
metric (SI) units, while the data required as input by Rubin's program
are to be in English units. The appropriate conversions were performed
at the Fluid Systems Laboratory, as part of the data preparation.
207
-------
o
o
3
rt
H-
g
(D
J-3
CO
a-
0>
Cti
eta -P. —i
ro ro po ro
ro ro tsa ««
co 13- a- cn cn r~> -ft- r* -p« •#» i- - co co ro ro tss isa cc-
13- cn c*)
"353 "S3 t5a
_» _- ,„* ,._ „,* i..— ez r-o tsa -.4 cn
»' n Cn •—-4 —-4 O"- —-4 3*" f""'« tSa -i"' -—4
cn ct- tsa CT- esa P-..I v~i tst tsa tss esi
-o -o
-—I
ro co co
-P. -IB»
—O "—-4
tsa tsa
o- cn cn o-
p-.;i o— >-•-«- ess
«a tEi "Sa "sa
I—- i—fc IMA _*. !-_<. !_,*. tS3 -43 I—*• I~O O—
o- cn -p. cn 13- cn co cn tss •—4 -o
*a .4=. cn cn ss co co tsa isa es> ess
PO po po ro
on- co co cn
•sa ~o -o ro
i—* cn -~.! esa
isa isa "S3 "Sa
—4 —4
_ CO i— -O
cn 13- ~~4 c.n
cn co -f» —4
SSa i-~5
—o cn
"SI "S:i
-p. J=. -p. JB,
JB. ja, J=» J^t.
*»*.*« ja.
"S3 tKa "Sa isa
CO CO CO CO
CO CO CO CO
cn .fa, cn cn
x» co i» PO ro
-45. CO
—J CO
tsa "Sa
-o cn *. co
c.j -p. .p» cn
cn no co co
>aa "sa isi tsa tsa
cn cn cn cn
cn en cn cn
co co co co
•*» «^n cn o-
--i >sa 13- co
tsa "*"^" i2aa tsa
cn cn cn cn
—i —4 CT- CT-
tS3 "S3 "3S3 >S>.
...^i. i—i. i— !—t. »_*. s—[ 5^, (--.;( fj£ ft-*
cn o- o- cr^ --4 co p-:* •*=* tsa -pa
-p» cn
O- -C"
cn cn cn cn
—O —O —O —C'
CT- i^"- o- "in cn o-
co .4=1. cn ~o -o isa
-o co
ro ro
-—4 CO "--•• -J^i
~O -O —J -O
"S3 "S3 "S3 053
13- .4=u cn o-
cn -o -o -o
ja, u^, f_ i;o
tS3 "S3 tS3 'S3
cn cn ty~ co
cn o-- --4 co
O- O~ --1 CO
-p.
ro
"Sa
cn cn 13- ci- -—i -—4
cn -P» po o- isa ssa
cn cn cn cn
co
cn cn -r. cn
"S3 »_n -P» ro
tsa tsa tsa "sa
co co 133 o- o- o- 13-- cn -p" -PN -p. cn c.n cn c.n r-> co
o-
co
tsa
ro -e- js,
tss --4 o- -
1-53 1S3 t!»a tS3
-—-4 co 03 i— ro co
co -e» o- •—
ro cn cn —4
-5>3 t?a tS3 tsa
-O CO t-O O-
ly^H -—4 _P» -P.
isa tsa tsa "S3
"3Sajs.cn oa
-o cn co -p.
-J i-"- o- —4
-0 CO
>3t3 "S3
"S3 "S3
ro ro •—• r-:i
o;i co -o ro
*• co -IB-
CO co co co
-P» CO CO I--
"S3 ro
tsa "sa
i-.:i r-> .*• -o
.e. --4 _•;, cn
—i cn cn CT- cn
-p- ro r-J' co
co co ~o -43
tS3 tsa "353 1333
CT- cn
"55.1 ja-
isa tsa
PO -O —O -Q
"33a >—• 0:1 cn
tsa is.- tea ass
—4 o- -*=. ro
c,n i-* --4 co
tsa tsa -S3 t«,a
cn -o -P"
CO I3»a -C»
ijsa tsa tsa
.?- I—
esa "sa
1353 "S3
t33 -O
tss cn
tsa tsa
CO CO
r-> ro
o- —I
co o- -p. —4
O— -—4 -O —-4
tsa "S3 tsa tsa
CO CO CO CO
"— i— co ro
co cn tffia *--•
i—- cn —4 co
"asa 5sa fea tE3
ja. i ixi
CO CO P-.J •—
ro co tsi --4
«-i— —o -O -^3
co tsa po i-«-
"sa "sa "iia isa
CM CO CO CO
cn *. cn c/i
Jn« -o •—J p-s
p-:« PO co PO
tsi» '2S:i isti -S3
CO CO CO: CO
>—- PO P.> PO
cn cn p..> co
i— CO »—••
T- CO CO
rsa isa osa
p-;;" co Co PO
-C" isa i- •• co
CO CO
13- CO i-—
-—.i cn -p" cn cn 'Sa "sa tjss
<— CO O3 CO CO tSa t5» tSJ
cn -P» tsa -J
-P- CO
"S3 :25S
•»j co cn c.-» r-.s «:c
CO
PO
,!J I— O- CJ1
t53 'S3 I3?:t 'S3
r--> o> "3Sa cri co
eo ro —4 co •*•»
-3jia tsa tsa tsa isa
O- CO
csa "353
"S3 "S3
-------
co co e-j esa co
cr- co •— • e-j e--.i
co co co co co
t=r- co •«*• cr- -jn
esa era esa —• e-J
i— -o r— r—• i-—
CO CO CO CO CO
ess esa
da ess
I---, -^r
esa csji csa
ess csa csa
-43 CO I—•
ess ess ess esa esa ess esa ess esa ess ess ess -43 «xi a- ,-i ess
esa ess ess ess esa ess ess esa ess ess ess ess r-- r~. cr- cr- co
«ss 05 co "*• in in co co ej- co •*• -.Q e-j e-j e~j c-j c-j
CSS esa CSS 35!
era es> esa esa
CO o~ in o-
ess csa esa OB
CSSi CSa CSa C5a
C"J O- I—- _
CS3 ess
esa —•
C-J CO
e-J —« co
O- C-J -43
c-J co e-J
csa r.sst csa
co r—. csa
-43 e-J c-j
ess
(XI
r—
~-i •>»• CO
10 w in
co co co
in co I— in
co I-— in •*•
i"~. o- esa -43
"*• CO CO "*
co co co co
CS3 CSS CSS esa
esa in e-J e-j
esa Cr- CO ess
r-~ i~i e-J co
«sr- in m in
co co co co
45EI CSl !35l CSEi
co «=r >si I—
•* -a co co
co
eo
C-~J
CO ~o •«• in
-o oo in co
Qia co r~~ 03
CO 1>J <~J C-J
co -~o c-j
in -=i- r—-
o-
m
co u-> r— co
«*••»• in «*-
co co co co
i>j o- nsa -o
in co in in
in in in in
r^. iro co
ts» co o-
r~~ -o -o
i — r*-
e-j •>— <
r-- r~-
csa tffl ta «sa
co tsa -e> -o
«-i r~. «=r co
r-*. co -^^ o^ co -•—*
-JO ~O tBl CO OJ O-
c-j cvi co e>j isj <-j
co c-? co co co co
~o esa
c-J c-J
~O ~O -4S CO
c-j c-J i:-J co
in in in in in m
esa esa
' I-— «*•
C-J «KT
I
co •*• o- -^o -J3 co
cas co 03 c-j c-j •»—»
r—• -o ~o r~- i r—•
•33 in I— -43
I—- C-J -43 -43
esa ess ess esaesacsaesa esa csa csa esa ,-1 ,-1 m CO cr- —-i
03 r— •*• csa co O3 -43 co co «*• cr- ~o r- cr- 133 r- ci-
-43 co r-- co 133 csa i—* cr- u™.' csa cr- e-J c-j e-J e-J c-J e-J
CO tS —i CO
in ess «=r in
co co co co co co
in in ~a in
in in in in in in
e-J -o u"3 cr- «si- «f ess ess
--i 03 co e-J e-j i~< co r—
r-—- -43 -43 r—- r-— r—- co r—.
co in in i->
tsa —i r—. co
tsa cs raa ra»
o-- ffy c-j -^--t
ran cr- isa r—
ta esi >S! ea
co r— ~o -o
•aa o- o- co
co t» csi esa
r— -o r-~ co
co r— o- m
o- r— i—- c-j -43 co
in r—. co cr- i~- o~
C-J r.-J c-J c~J Cvj i>j
tsa -o os in
CO O-- CC1 !25l
CM
•*
S» -J3
raa o~ tss co
CO CIO CO CO
est esa cst csa
"Sl- -43 O- CO
«=t- «3|- CO in
csa u"5 co
co co r-~
co 13:1 oj co
co «--> «*• co
o^ c^ i-"O co
CO 03 133 CO
in in in in in in
in «*• •* «*•
co 03 co co
C5» l^Si l^Si CSi *J"5 §^O •'SS ^*- Cr- CO
raacoco-si-coincococr-r— cr-
i—i i:-j co •«*• r-* <•*•* c-J <-J c-J c-j i:--j
•=•- in •«*••*
co co co co
cs< «sa caa csa
«=r <~J «Sa —•
CO CO O~ CO
•*•*•«*• in
co co co co
~£l 1-1 «1- CO
CO cr- o- CO
CO CO CO CO CO CO —i
«*• —' in in in in ir> in
CO
e-J I—- CO csa co -**—i C5—
—i cr- 03 e-j e-J 1—1
ce: r-- -43 -43 r-— r-- r--.
co co
cr- ess ess co
':sf- Cr- —1
iro o- M~>
esa esa esa
in co o-
esa cr- ess -o
co co —* o-
esa esa esa esa S3 r-
r--. —t co **• •«*•
-o ea *f co on (-J
0-5 in co o-j co
CO I--- Cr- O3 CO
e-J «*J e-J c-^i c-J
essi Esa esi C5i
c-j — -at- «=t- =sr e-J co
csa esa ess '-Si
co co r-- in
r-j 1—1 co esa
esa esi es» ess
c-j ess c-J o~
•*t- 1-4 co co
esa tsa ess essa co in c-J co -st- cr- c-»l
o- -si- in c-J i—i «»• co r—- o- co 133
c-J co «!*• in csa e-J c-j e-j e-j e-j e-J
ess csa csa csa
c-J co in esa
c-J e-J e-j co
ess esa esa ess
O~ -43 CO CO
-43 O~ CO CO
csa esa esa ess
in -43 co co
1-1 1-4 CO —H
CO 07 CO CO CO CO
in in in in
-43 ~o »o -o
--i in in in in in in
in
-£> -O -43 -43
-43 -43 -43 --O
r-- r— r—. r—•
? ri
w ctz
C •"
O
o
,0
n)
H
-43 r-— 1—1 r-- -—i esa
—i Cr- 133 —i C-J C-J
i—- -43 -43 r-- r—- r--
e!»! esa C3& *.2>t
co in -43 co
CO CE5 C-J "st-
csa csa esa esa
r-- cr- ess e-j
r--. o-- c-J -#•
csa csa csa esa
co cr- —i e-j
c-j -a- r-. o~
esa es> esa ess
ess c-j co in
ess e-J •»• -o
csa esa ess ess *—•i co csa co t"- e-J o-
m -43 Crt O- jSE ""S" O3 I-— Cr- Cl— !"--.
•=r -43 t» esa —i <;••! c-J e-J o-j e-j c-J
esa esa csa csa
Lf~.> r—•• co tffii
«~* t:--.i 1.0 co
CSS C5i *^t ig£t
-jD CO O*- *-«
-d3 co wa co
•ro co c~o iro isa ir> -o
<35S I4~J U"^
C-J
~J3 —'~*
C--J
r--. r—- co co i^j c^ c^ o* o- co •••-« *~»
I.TI U"> u"« (•"• nss to irt« (j"> ir.« fffiKi -o -.o
•:-4 i>J
— . ,.-. *ar «»• «- -a- u-j
--O --O esa -43 -43 -O -43
..o to IT:" U""^ u~» to «s& to u~» u~j to *-* r--- h-- r--^ r^-
-------
Dwg. 7697A94
INSIDE
DIAMETER
OF STACK
AT EXIT (FT)
STACK
EXIT DRY
BULB TEMP (DEC F)
HEIGHT
TO TOP
OF STACK
(FT)
63.5
82,9
AMBIENT
DRY BULB
TEMPERATURE
(DEC F)
STACK
EXIT
VELOCITY
(FT/SEC)
STACK
EXIT
RELATIVE
HUMIDITY
AIR VOLUME
FLOW RATE
(CU FT/SEC)
AMBIENT
RELATIVE HUMIDITY
WIND
VELOCITY
AT
REFERENCE
HEIGHT
(MPH)
TOTAL HEAT
REJECTION
(BTU/HR)
AVERAGE
VISIOMETER
OUTPUT (VOLTS)
REFERENCE
HEIGHT (FT)
Figure 1-1. Format of Data Prepared for Rubin's Program.
250
-------
APPENDIX I
RUBIN'S PROGRAM AND INPUT DATA
The data for Rubin's program were extracted, sorted by test number, and
assembled as an input file. A sample of the input data is given in
Figure 1-1.
Rubin's program was slightly modified to print out the test number and
date for each test, and to calculate the visibility from the Visiometer
data. However, no modifications were made, in any way, to the portions
in which plume height and length were calculated, Rubin's program is
listed in Table 1-1, along with the plume input data file.
251
-------
TABLE 1-1
THE RUBIN PLUME PREDICTION COMPUTER CODE
C
C
C PLUHE
C PROGRAH TO CALCULATE VISIBLE PLUME CHARACTERISTICS
C ****»********»»*§***»*«********»********»*********#***********#»**
C
C «** NOMENCLATURE «**
A
C CLVIS = CALIBRATION VOLTAGE OF VISIQHETER (VOLTS)
C CVIST = FACTORY CALIBRATION OF VISIOHETER (VOLTS)
C BEGSA7=DEGREE OF SATURATION OF AHBIENT AIR (PERCENT)
C D2=INSIDE DIAMETER OF STACK AT EXIT (FT)
C F=BUOYANCY FLUX PARAMETER (FT«4/SEC«*3)
C GRAVITATIONAL ACCELERATION (32,2 FT/SEC**2)
C GRADT = VERTIAL TENP GRADIENT (BEG F/FT)
C EFFLUX=AIR VOLUHE FLOH RATE (CU FT/SEC)
.; Hi=ANBIENT AIR ENTHALPY (BTU/LB DRY AIR)
C HA=HGLECULAR HEIGHT CF DRY AIR
C Hy=MOLECULAR yEIGHT OF HATER VAPOR
C NA1=HOLES OF DRT AIR IN AHBIENT AIR (LB HOLE/CU FT)
C NAS!=HOLES OF DRY AIR IN SAT AIR AT BRY BULB TEHP (LB MOLE/CU FT)
C NAS2=HOLES OF DR? AIR IN EFFLUEST AIR ILB HOLE/CU FT)
C NHi=HQLES OF yATER VAPOR IN AHEIENT AIR (LB HOLE/CU FT)
C K«Sl=WOLES OF WATER VAP IN SAT AIR AT DRY BULB TERP (LB HOLE/CU FT
C MNS2=MOLEj OF HATER VAPOR IN EFFLUENT AIR (LB HOLE/CU FT)
C DRIP= DISTANCE OF POINT SOURCE UPWIND OF COOLING TOWER AXIS (FT!
C PLUP= TOTAL LISGTH OF PLUHE DOHNHIND FROH COOLING TQHER AXIS (FT)
C PV^AHBIENT ATHOSPHERIC PRISSURE (ATH1
C Q=HATER VAPOR RELEASE RATE (LB/HR)
C R=GAS CONSTANT-(0,7302 ATH CU FT/LB HOLE DEG RANKINE)
C RAi=AHBIENT DENSITY OF DRY AIR
-------
Table 1-1 (cont'd)
C THR = TOTAL HEAT REJECTION OF TOyER (BTiJ/HRJ
C TOTP=TOTAL LENGTH OF PLUHE DOUNHIN& FROH POINT SOURCE (FT)
C TOUT=STACK EXIT DRY BULB TEMPERATURE (BEG F)
C TVIS=SAT TEHP CORRESPONDING TO HINIHUH PLUHE VISIBILITY (BEG F)
C UH=HIND SPEED AT TOP OF TOHER (hPH)
C UO=UIND SPEED AT REFERENCE HEIGHT ZOirSPW
C VISIB = VISIBILITY CALCULATED FROM PLUHE THEORY (FEET)
C VISOB = VISIBILITY FROH VISIOHETER DATA
C VOUT--Em VELOCITY (FT/SEC)
C VVISO = VISIOHETER OUTPUT (VOLTS)
C Hi=AHBlENT HUHIBITY RATIO (LB H20/LB DRY AIR)
C HCONT=HAX. LIQUID yATER CONTENT OF VISIBLE PLUME (GRARS/CU HETER)
C HS1=SAT HUHIOIT? RATIO AT AHBIEST TEHP (LB HATER/LB DRY AIR!
C HS2= HUHIBITY RATIO AT EFFLUENT TEHP (LB HATER/LB BRY AIR)
C HSZSAT=SAT HUHIBITY RATIO AT EFFLUENT TERP (LB yATER/LB PRY AIR)
C HS3=SAT HUHIBITY RATIO AT REEVAPORATION ATEHP (LB yATER/LB BRY AIR)
C HSC=SAT HUMIDITY RATIO AT CONDENSATION TEHP (Li HATER/LB DRY AIR)
C XHHS1=HOLE FRACTION OF HATER VAPOR IN SAT AIR AT AHBIENT TEHP
C ZH=HEIGHT TO TOP OF STACK (FT)
C ZO=REFERENCE HEIGHT FOR KIND SPEED (FT)
C
C **** INPUT PARAMETERS **#*
C
C D2f FEET
C ZHS FEET
C TDBi BEG F
C RHi PERCEMT
C HO? HPH
C ZOr FEET
C VOUTf FT/SEC
C TOUTi BEG F
C RH2. PERCENT
C EFFLUXf CU FT/SEC
C THR» BTU/HR
C VVISO, VOLTS
C
C «*i**t*»#*#tt**#*«*****»**t*ti *******t*#**t*****t****t#*******ii *
C
REAL HAiHUiNASliNHSiiNAlrNHirNASZiNHSZ
i CONTINUE
1003 FORHAT {7ZH»123W4789»tZ3456789*l23456789§1234567890123456789«i23*
456789012345678901 )
READ (5.1003)
FORHAT (1H1!
HRITE (6ilH4)
yRITE (6,1003)
FORHAT (5Fl§.3i2EHU)
READ(5»1000) BZiZHiTOUTiVOUTiRH2rEFFLUX?THR
IF (B2.EQJ.) GO TO I
1002 FORHAT (4F10.3» E10.6!
READ (5.1002! TDB. RHi UOr ZOf VVISO
(Continued)
253
-------
Table 1-1 (cont'd)
99 FORMAT (1H-)
MRITE(6i99)
880 FORMAT (lH-i24Xf 'A CODE FOR CALCULATING COOLING TOMER VISIBLE'.
+ ' PLUME '.
+'CHARACTERISTICS'//17X'CALCULATIONS ARE BASED ON AN ATMOSPHERIC PR
+ESSURE OF 29.921 INCHES OF MERCURY '///MX' INPUT DATA'///45X'HETE
+QROLOGICAL INPUT'//5X 'AMBIENT DRY BULB TEMPERATURE ='iF8.3if DEC.
+ F.'/5X' AMBIENT RELATIVE HUMIDITY ='»F8.3,' PERCENT' /5X
+ 'HIND SPEED ='iF8.3>' MPH AT REFERENCE HEIGHT'/
+5X' REFERENCE HEIGHT FOR HIND SPEED ='iF8.3i' FEET ABOVE GROUND'/
+//45X'COQLING TOMER INPUT '/5Xi 'HEIGHT OF COOLING TOMER ='iF8.3»
+' FT'/5Xr'INSIDE STACK DIA. AT EXIT =' »F8.3.! FT '/5J!.' TOTAL HEAT
+ TRANSFER RATE FRQH MATER TO AIR ='iE11.3»' BTU/HR'/5Ki
+ 'AIR VOLUME FLOM RATE s'iE13.4f' CU FT/SEC'.
+/5«f' EFFLUENT EXIT VELOCITY ='iFl».3i' FT/SEC'/SXi 'EFFLUENT AIR TE
+HPERATURE ='iF8.3i' DEC F'/5X. 'EFFLUENT RELATIVE HUMIDITY =',F6.2
+i' PERCENT')
1005 FORMAT (5X.'VISIOHETER OUTPUT = '.F8.4,' VOLTS' )
MRITE(6.800! TDB f RH i UO iZO.ZH.D2fTHRf EFFLUX. VOUTi TOUT »RH2
MRITE (&>1005! VVISO
MRITE(6il003)
PI=3.14159
PV=i.«
R=0.7302
RH=RH/100.0
Tl=TDB+459.i7
G=32.2
CLVIS s 0.11
CVIST =1.1
C
C
C CALCULATES AMBIENT AIR THERHODYNAMIC PROPERTIES
C
C
MS1=RATIO(TDB)
NAS1MPV/(R*T1))/(1.0+MS1*HA/HW)
NMSl=M51*NASl«i1A/NM
XNMS1=NMS1/(NASHNMS1)
DEGSAT=!1.0-XNWSl)*RH/(1.0-RHtXNH31)*100.
MUMSUDEGSAT/100.0
NA1=(PV/(R*T1))/(1.0+M1*MA/HH)
NM1:M1*NA1*MA/HM
RAUNAUMA
H1=TDB*(I.Z4MI1*M44)+1W1.MI1
MRITE(6.99)
_MRITE(4il0J41
(Continued)
254
-------
Table 1-1 (cont'd)
HRITE(6ilfl§3)
yRITE(6i850i DEGSATiHliRAliRHliROliHl
m FORMAT (SIX'GUTPUT DATA'///45FA«BIENT AIR CONDIT!QNf//5Xi
+' AMBIENT DEGREE OF SATURATION =ffF3.3.' PERCENT' /SX'AHBIEIIT HUNID
+ITY RATIO s',F12.9i' LB, MATER PER LB, OR? AIR' /SX'AHBIENT DENSIT
+Y OF DRY AIR --?,F12.9»' LB. DRY AIR PER CU. FT.! /SX'AHBIENT DENSI
+TT OF WATER VAPOR ='iF12.9i' LB. WATER PER CU. FT.' /SX'AMBIENT DE
+NSITT OF HOIST AIR ='«F12.9i' LB. PER CU. FT.' /5K! AMBIENT AIR ENT
+HALPY ='iF9.5if BTU. PER LB. DRY AIR')
C
C H»mm«mm«««*»m»W«mHW*««4H»**««*H«**#f
C COOLING TOMER EFFLUENT PROPERTIES
C *****************************************************************
C
HSZSAT'RATIQ (TOUT)
yS2=RH2*HSZSAT/!00.
T2=TOUT+459.67
NAS2= (PV/ (R*T2) ! / (1 .*+MS2iHA/MU
I«IS2=»SZ*NAS2*«A/«H
RHS2=NUS£«IW
Q=(RMS2-RMl)*EFFLUIt36M.§
HRITE(6i852) MS2iRHS2iQ
852 FORMAT {lH-i44X»'TOHER EFFLUENT CONT IT ION' //5X,' EFFLUENT HUMIDITY
+RATIO ='fF12.9i'LB yATER/LB DRY AIR' /5X> 'EFFLUENT DENSITY OF MATER
+ VAPOR s'fF12.9f'LB HATER/CU FT'/5)(f!iiATER VAPOR RELEASE =',E12.4»
+' LB MATER PER HOUR')
C
C **************•**#**********#**************************************
C CALCULATES THERRODYNAHIC PROPERTIES AT PLUME CONDENSATION
C
C
IF (RH2.EQ.100J GO TO 35
TCOND=TOUT
5 TCOND = TCOND-0.1
«SCA=HS2-(TOUT-TCOWH*(MS2-Hi}/(TOUT-TDB)
WSCB=RATIO (TCOND!
IF (TDB.GE.TCOND5 GO TO 10
IF (MSCB-MSCAJ 10i»i5
IF (TDB.GE.TCOND) GO TO 10
NSCA=yS2-(TOUT-TCOND)«(WS2-yn/(TQUT-TDB)
WSCB=RATIO(TCOND)
IF (MSCB-HSCA) 10.10.15
15 IF (TCOND .GT. TOUT! TCOND = TOUT
ySC=RATIO(TCOND5
T3=TCOND+460.
RHC3= («SC*Hy) / ( (HU/m+HSC) *RtT3!
WRITE (&.30) TCONDiHSCiRyCS
30 FORHAT!///36XJCONDENSATION CONDITIONS OF FOG PLUHE'//5X» TEHPERATU
+RE OF CONDENSATION ='.F8.3i' DEG F!/5X'HUHIDITY RATIO AT CONDENSAT
+ION ='iF12.9if LB HATER PER LB DRY AIR' /SX'DENSITY OF WATER VAPOR
+ AT CONDENSATION ='.F12.9.' LB «ATER PER CU FT')
(Continued)
255
-------
Table 1-1 (cont'd)
GO TO 45
35 HSC=RATIQ(TQUT)
TCOND = TOOT
4S FORHAT (//5FCOOLING TOWER EXHAUST IS SATURATED1)
45 CONTINUE
C
C CALCULATES THEREBY NAM 1C PROPERTIES OF THE PLUNE AT RESTORATION
p
TEVAP=TDB
11 TEVAP=TEVAP+(.l
yS3A=yS2-(TOUT-TEVAP)*(yS2-y i)/(TOUT-TDB)
WS3B--RATIQ (TEVAP)
IF (TEVAP .GE. TOUT! GO TO 12
IF (yS3A-yS3B) 11 ill,12
12 TEVAP=TEVAP-B.8«1
IF (TEVAP ,GE. TOUT) GO TO 12
HS3A=BS2-(TOUT-TEVAP)*(HS2-H1)/(TOUT-TDB)
HS3B=RATIO(TEVAP)
IF (US3A-HS3B) 13il3il2
13 IF (TEVAP .LT. TDB! TEVAP = TDE
IF (TEVAP-TCQND) 14il7il7
17 yRITE (6.29)
29 FORHAT (/// 15X ' NO VISIBLE PLUME PREDICTED BY PLUNE MODEL')
WRITE (6,10065 VISOP
GO TO 27
14 «S3=RATIO(TEVAP)
T3=TEVAP+459.67
RWS3=(«S3*««5/(iH«/RA+yS3)*R*T3)
HRITE(A»853) TEVAP,US3iRUS3
853 FORHAT (///36SE!REEVAPORATION CONDITIONS OF FOG PLUHE'//5X' TEHPERA
i»
IE!
+ WATER VAPOR AT REEVAPORATION ='fF12.9»f LB, WATER PER CU. FT.!)
C
C
C CALCULATES PLUME VISIBILITY
C
C
VISOP = (CLVIS/CVIST}*(39J/VVISO)*(3.2308!
FORMAT (6X1'VISIBILITY FROfi VISIOWETER = '»F10,4,' FEET' )
yRITE (6.1006) VISOP
HRITE(6»1M3)
TVIS=TEVAP
110 TVIS=TVIS+.l
HS3S=RATIO(TVIS)
HSAT=TVIS*!0.240+yS3S*0.444)+1061.* WS3S
(Continued)
256
-------
Table 1-1 (cont'd)
CONlMTQUT-TEVAP)/(yS2-yS35
CQN2=(2389.6+TEVAP)/CQN1 + 0,5405 - HS3
CQN3=(.54g5*TEVAP-2.252*HSAT)/CGNl - 0.54f5«US3
yS3H=((CQN2**2.-4.0*CGN3)#*0.5-CON2)/2,0
DELHB=HS3H-yS3S
IF (DELWB.LEJ.) GO TO 121
IF (DELWA-BELHB) 112,112.114
112 BELyA=DELHE
GO TO 110
114 DELWA^DEUB
117 TVIS:TVIS-.0001
yS3S=RATIO(TVIS)
HSftT = TVIS*(0.240 + yS3S*0.444) + 1061.0*yS3S
CQN1=(TOUT-TEVAP)/(«S2-HS3)
CON2=(2389.6+TEVAP)/CON1 * 0.5405 - yS3
CON3M.5405*TEVAP-2.252*HSAT!/CON1 - 0.5405»yS3
yS3H=((CON2**2.-4J*CON3)**0.5-CON2}/2.0
IF (BELWA/BEUB) 116,118.118
116 BELyA=BEiyB
GO TO 117
120 yRITE(6.854)
854 FORMAT (///5K,f NO VISIBLE PIMM
GO TO 135
118 RyUEL=(DELIIB«HM)/((HH/HA+DELUB)*R*(TVIS*46§.}
yCONT=RHBEL*1.6E4
VISIB=S177,24/yCONT«,69)/4.5
yRITE(6flS03)
URITE (6,849)
849 FORHAT i Ui3Hr' PLUHE DATA'/)
yRITE<4.855) TVIS,WCONT,VISIB
855 FORHAT//5Xif TEMP AT MAK OPACITY ='.F10.2.f BEG F'/5X»
1! LIQUID HATER CONTENT =',F10,5.' CRAMS/CUBIC METER'/,5SU
V VISIBILITY =!»F7J,f FT'/)
135 CONTINUE
IF (iR^SS-Ryi) .LE. 0J5 GO TO 27
IF !UO .LE. 0J) GO TO 27
C
C
C CALCULATES PLUHE RISE
C
C
UH -- UO*(ZH/20)**0.5
MRITE(Ai856) UH
856 FORHAT(///i5Xi' HIND SPEED AT TOP OF STACK --f,F8,2,' HPH'///5Xi
+' VERTICAL TEMPERATURE GRADIENT (BEG F/FT)!.5X,'PLUPiE RISE (FT)'
+/)
F=G*VOUT* (B2/2. ) **2 .* !TOUT-TBE) / (TOUT+460. )
GRABT=-.i04
(Continued)
257
-------
Table 1-1 (cont'd)
DO 25 1=1.5
IF (UH.LE.5.1) GO TO 1?.
RI$E=2.9t{F/UIH»1.467*S»«(i./3.)
GO TO £3
RISE=5.*F«.25/S»*.375
yRITE(6.?57i GRADTiRISE
GRADT=5RADT+.0«2
25 COHTIHUE
C
C ************************************«************#***«**********
C CALCULATES PiUHE LEHGTH DURISS STABLE CONDITIONS
C ****#*«*»**** **§*«**#** w**"t ***********************************
P0«=.71
TOTP=3.28l*«0*.3f4?**2./f528g.*2.«PI*UH»SItA«SIGE*COK*DE>!H2.))
«*{l./(2.*PO^)l
COHI=-;RllS2-RHr,
QF.IP=3.28U(Q*.38««2./(5288.*2.*P:*UH*SIGA»SICE*CON»DEtl«Z.))
FLUP=TaTP-ORIP
IF(PLUP.LE.0.)
IF (K.GT.8) GO TO
PRINT 99
358 ?ORHAT{2«j' VISIBLE PLUME LENGTH (FT) '///I
«RiTE(i..S59} PLOP
859 FORHATiS*.' STABLE CONDITIONS: '.F8.8.F14J)
C
C ***************************-******************************«***+***
C CALCULATES PLOHE LENGTH BORING USSTAELE CONDITION?
C ******************************************************************
C
IA UNJQ*fZH/ZO)**0.25
8IGA=(i23.«/(UH*§.447l4))+4.75)/((ZH*i.3«8/l§0.f:««.25)
SIGE=i,7*S3GA
GO TO 50
60 CONTINUE
yRITE(A,860) PUJP
(Continued)
258
-------
Table 1-1 (cont'd)
868 FGR«AT(5X»' UNSTABLE CONDITIGNS=',F6J)
27 CONTINUE
GO TO i
2 CONTINUE
STOP
END
4 RATIO=Ci*CZ«T+C3*Ti«2+C4iTH3+C5fT«4+C6*T«5+C7*T**6
RETURN
END
FUNCTION RATIO (T)
C
C A POLYNOMIAL THAT DETERHINES THE HUHIDITT RATIO OF SATURATED AIR
C .AS ft FUNCTION OF TEMPERATURE (FOR TEMPERATURES OF I TO 12^ DEC Fh
C BASED ON TABLES OF THERHODYNARIC PROPERTIES OF HOIST AIR AS DETER-
c MINED BY GOFF AND CRATCH (ASHVE TRANS.. VOL. sii i945i p. 1251
C
.C .
C
..... IF (T.GT.-2J) GO TO 5
Cl s 7.88344E-4
..C2= 4.2135E-5
C3 = 1.24636E-6
_____ C4 = 5J4627E-8
C5 = 2.74396E-9
C6 = 9.31737E-11
C7 = 1.275&1E-12
. .. GO TO 4
5 IF (T ,GT. 26.0) GO TO 1
. .. Ci=7.87148906E-4
C2=4.I5298677E-5
______ . C3=8.65835077£-7
C4=3.52082886E-8
_ . C5=-1.29388122E-9
C6=4.55353567E-li
.. .. C7=-5.023«817E-13
GO TO 4
1. . IF. (T ,GT. 42.0) GO TO 2
Cl=-3.11191Z94E-2
C2=8.60158427E-3
C3=-8.48560098E-4
C4=4.i8583192E-5
C5=-t.WZiW13E-6
C6=1.49087715E-8
C7=-8.15425514E-il
. GO TO 4
2 IF (T .GT. 70.0) GO TO 3
Cl=-7.5l979670E-2
(Continued)
259
-------
C-4
C-J
O~
CO
CO
csa
-l~
UJ
CO
i—
"Si
txt
to
~o
LU
O3
CO
CE: csi -I-
~
•+• OS.
LU UJ
cr- >— CO >~
cr- aa
-oo
to
-
co
csa s— co
. ca '
•^-< co r~-
co
esa ea c?
co —•
O
V0
CM
r—•
o~
oo
o-
CO
co r~ • co
CO
r--
co
r--.
Cr-
co
o- -J! £i
co co co
-Jr-^r— -iNir---cocor— .
• cr- " « Cr- • - Cr-
co
r-.-
O-
C--I
e-j
UJ I UJ
UJ
4
az
co
i>-i
ce
co
<^-l
cc:
=»
cc:
10
c-J
« i^a
CO i — •
«»• ^
=>
or.
»j co
CO --O
iSJ
C-J
c-J10^
- ca -
csa i—i -43
UT" sz: co
—I
ce
co co
-O CO
CO
r—
•j*- csa •*• c-j •*- co "^ csa «ai-
ca.-ca- -ca- -ea-.ca"
i—i -43 CO i—I -43 CO »—i -43 r-- »—•« -43 CSa i—i -43
= 03 03 3= CO CO -Z. CO -a- •&. CO U-> 3C CO
ce:
ce:
ce
Ctf
H
4-1
g
U
-------
Table 1-1 (cont'd)
49J 97.0 2.5
: RUNID 511082 APR 4i 1978
36.4 63.5 76.1
58.1 96.3 4.4
: RUNID 511083 APR 4» 1978
36.4 63.5 75.9
51.0 99.1 2.3
: RUNID 511121 APR 4> 1978
36.4 63.5 68.5
52.5 100.0 2.7
: RUNID 511122 APR 4? 1978
36.4 63.5 68.2
53.5 99.6 3.9
: RUNID 511123 APR 4i 1978
36.4 63.5 68.8
128.4 79.0 12.7
: RUNID 511131 HAT 11 » 1978
36.4 63.5 75.1
46.3 95.2 5.1
: RUNID 511132 HAT Hi 1978
36.4 63.5 79.2
47J 95.1 3.3
: RUNID 511133 MAT 11 i 1978
36.4 63.5 81.4
47.9 94.3 4.6
: RUNID 511141 NAT Hi 1978
36.4 63.5 81.4
53.2 39.4 4.2
: RUNID 511142 HAY Hi 1978
36.4 63.5 82.6
56.2 88.0 4.4
: RUNID 511143 HAT 11 1 1978
36.4 63.5 83.4
58.4 88.6 2.3
: RUNID 511181 HAT IZi 1978
36.4 63.5 68.1
50.6 98.9 5.5
: RUNID 511182 HAT 12. 1978
36.4 63.5 70.2
. 52.2 97.6 3.5
: RUNID 511183 HAT 12, 1978
36.4 63.5 71.2
52.9 97.1 3.4
: RUNID 511201 HAT 17i 1978
36.4 63.5 74.3
45.8 98.0 4.1
: RUNID 511202 HAT 17. 1978
._ 36.4 63.5 75.3
45.9 98.2 4.3
(Continued)
75.0
DAT
13.2
75.0
DAT
13.2
30.0
DAT
19.2
75J
DAT
19.4
75J
DAT
19.8
75.0
DAT
9.4
75.0
DAT
9.3
75.0
DAT
9.4
30J
DAT
12.9
75.0
DAT
13.3
75.0
DAT
13.6
. 30.0
DAT
20.2
75.0
DAT
19.7
75.0
DAT
19.9
30.0
DAT
13.5
75.0-
DAT
13.5.
75.0
3.909E-01
OF TEAR 094
1H.I1.37WE+H9.8Z8ZE+B7
1.637E-01
OF TEAR 094
100.01.3790E+049.3996E+07
1.570E-01
OF TEAR 394
100J1.9979E+049.6281E+07
9.327E-02
OF TEAR 094
100J2J172E+048.8680E+07
6.762E-02
OF TEAR 094
100.02.0578E+048.9879E+07
6.421E-02
OF TEAR 131
92,59J681E*035.2596E+07
5.831E+00
OF TEAR 131
93J9.7276E+035.9493E+07
5.8§8E+00
OF TEAR 131
91.79,7871E+036.4608Et07
5.490E+00
OF TEAR 131
87.61.3395E+047.9467E+07
4.852E+00
OF TEAR 131
87.§1.388»E+«47.9M5E+i7
4.849E+00
OF TEAR 131
86.81.4214E+047.6955E+07
4.348E+00
OF TEAR 132
92.82.1026E+047.7374E+07
4.603E*00
OF TEAR 132
91.02J565E+048.5675E+07
4.W9E+M
OF TEAR 132
91.42.0767E+048.9647E+07
3.252E+00
OF TEAR 137
90.21.4077E+047.1948E+07
5.556E+00
OF TEAR 137
89.5L4106E+047.9971E+07
5.044E+00
261
-------
Table 1-1 (cont'd)
. : RUSIB 511203 HA! 17. 1978
36.4 e-3.5 77.6
48.5 97.0 2.3
: RUNID 511241 HAT 17, 1978
36,4 63.5 74.1
52.2 94.8 1.7
: RUSIB 511242 HAY 17, 1978
36.4 63.5 75.6
.. ._ . 55.1 93.0 1.9
: RUNID 511243 HA? 17, 1978
36,4 63.5 76,5
56.6 92.5 1,9
. : RUNLD 511251 MAR 30, 1978
36.4 63.5 78.6
53. 4 . 74.9 3,0
s RUNID 511252 HAR 30, 1978
36,4 63.5 79.0
55.1 71.6 4.4
„ :. RUNID 511253 HAR 30, 1978
36.4 63.5 80.5
56.1 70.9 5J
: RUNID 511272 HAR 18, 1978
36.4 63.5 65.2
36.5 72.0 .0
: RUNID 511273 MAR 18, 1978
36.4 63.5 65.9
37.2 71.4 .1
: RUNID 511301 HAR 18, 1978
36.4 63.5 64.6
37,2 71.3 11.1
'• RUNID 511311 APR 25, 1978
36.4 63.5 91.2
57.2 97.2 10.1
: RUNID 511312 APR 25, 1978
36.4 63.5 91.2
" ~57.y 97.2 7.2
: RUNID 511313 APR 25, 1978
36.4 63.5 91.2
57.9 96.5 7.9
: RUNID 511321 APR 25, 1978
36.4 63.5 88.1
57.8 96.9 12.6
: RUNID 511322 APR 25, 1978
36.4 63.5 87.5
57.3 96.6 11.8
! RUNID 511323 APR 25, 1978
36.4 63.5 87.1
57.7 96.5 6.4
DAY OF YEAR 137
13.6 87.21. 4115E+048.0266E+07
30.0 4.814E+00
DAY OF YEAR 137
19.7 85.32.0490E+04L0319E+I8
75J 1.773E+M
DAY OF YEAR 137
19.7 35.02J537E+04L0136E+08
75.0 1.412E+W
DAY OF YEAR 137
19.9 84.4ZJ682E+041.0213E+g8
30.0 1.216E+00
DAY OF YEAR 089
7.9 96.38.2146E+033.2486E+07
75.0 7.313E-01
DAY OF YEAR 089
7.8 95.68, 1432E+033.2253E+07
75.0 6.852E-02
DAY OF YEAR 089
7.7 94.3S.0142E+033.9168E+07
30.0 4.048E-01
DAY OF YEAR 077
32.1 10g.03.3471E+041.6SllE+08
75.0 1.433E+M
DAY OF YEAR 077
31.8 100.03.3151E+041.7233E+08
30.0 1.231E+00
DAY OF YEAR 077
31.7 100.03.2975E+041.6934E+08
75.0 1.Z17E+M
DAY OF YEAR 115
3.5 100.08.8596E+035.2071E+07
75.0 4.402E+00
DAY OF YEAR 115
8.7 99.99.1053E+035.3502E+07
75.0 4.001E+00
DAY OF YEAR 115
8.5 100.08.3647E+035.9054E+07
30.0 9.834E-01
DAY OF YEAR 115
12.2 99.31. 2685E+048.8306E+07
75.0 5.497E+00
DAY OF YEAR 115
12.2 99.31. 2673E+048.5993E+07
75.0 4.027E+00
DAY OF YEAR 115
12.1 100.01. 2606E+048.9300E+07
30.0 4.323E+00
(Continued)
262
-------
rO
.4=*
CO
CO
-o
CO
Cvi
CO
CO
•Si
Iffij
en
CO
m
*1S'j
CO Z&Z
CI1- i-~i
^1. l~~*
r.5
*£•
CO
CO
CO
en rsc
~*c
CO
•-•J
CO «-•*
O1--* *»--~4
CO
CO C3
...0 Eie
crj
••n
tf\
co •—•»•
i--* CO
- CO
-0
o-
eri
en
m
-i
«—*•
Jl*
•-•4
rrt
•-Sa
O?
.*» CO
-Q C»-
•--J ".pa.
-JO c^-
cr- co
CO i^rt
~-4
cn --4
r--» co
cn -j»
tffii .4=-
•3-
-•-O
m -o
"t* '"°
QU^ i— -*.
B
CO
rn
.is-..
£._*.
0»~
O--
rn
i-jg-j
CO
1™
1— "1
en
!t*
CO
S
j fc
CO
•"Tr
--4
CO
cn-i
crj'
rn
^~*.
CO
CC'
— 1
O.t
-o
CO
-— •
to
CO
cn
tsa
r-j ;»
CI— *— *
> CO
ea-
rn
csa
-I---.
'i.'i
O-
rn
i-sa
CO
c.n
CO
o~
~O
cn
-~4
o~
r->
csa
isa
r->
*
Ci-
rri
•>•
•aa
cr-
.*-«.
9":
cn
CO
to
i-ga
IX"
--4
-o
-o
H
-a
•-4
rn
— i
--O
--4
rn
ITS!
--4
s
L-J
cn
!•»•
'-f*
CO
i
1__fc
IX'
•-•"
--4
CO
C3
— s
c^
1T1
i=o
•«*
CO
cn
CO
-J3
Cl-
CV-
r~.J
•-—4
--4
cn
•Si
cn
— 4
•*••
rn
"S3
CO
Cr-
•4="
rv-
CO
cn
CO
j.^.
CO
I--J
-Ci
"-C*
M
C..1
-.4
O--
m
--j
— •*
CO
i™t"i
"S3
—4
£3
CJ1
.*=-
g
t .
CO
*~r
—j
CO
C-3
-«
'—J
~n
m
i— *•
no
CO
lU-l
to
-o
—.4
to
-fo.
IS,'.'!
cn
KSa
O--
csa
CO
rn
-i-
5.33
»"•;••
C-,> 'S-'-' C"'-
Cr- I— i t-S3
4-» ^^
cn
Ij»
_r^
O- -..4
CO CO
cn -ac '^n
( r
C"i
or"* *"* •"-"•-
.4B> I—- 1X1
<• . •» -ii ^»
CO
t— tO
r-~5 C3 ssa
CO •-••. o-ia
c«* '-•-
"n -^
.-< o-~
rn r—
•^o a> rn
- tsa
"—4 i-"- t*sa
>-* CO
" CO
CO
CO
rn
-i-
*:»
CO
r-..,
cn
c*-
rn
•r
• — 4
CO
0--
.4B»
o-
O.3
cn
CO
-o
esi
-.0
-.J
CO
CO
-o
V
--~j
m
-r
.fl*
-•=•
r.-.
cn
rn
-i-
isa
--4
•33
ZX
I- •*
c.n
!js!
CO
CO
a>
r-j
CO
•"*
— i
'X*
CJ
~«
C"2»
-n
m
i_~i.
CO
ivi o.j S2: cn
-O"^! '13— V—4 CO
—4 *•• CO
4>l
C>.1'
-.4 Or- -J
tO CO -—4
co cn a.--, isa
I---?
CO
i-* CO
&o oo »—• cn
-O 12-Ll --4 ~O
.-0
•~4 -..4
isa ci- -t isa
CO C3 •--••
co r->
r---> — < to
co rn •-!••••
m -o :>•••• rn
i i— •• --ar-i ^~
«i3 •• esa
CO
~o
m
to
I--J
ft
m
isa
--4
CO
+.«
ll--
CO
cn
CO
ro
"Ka
-i»
r--5
Sia
—4
H
c n
C.J
n i
Ct--
">a
c----
n i
•^Si
— 4
s
en
'i>
to
~a
h,-i
cc»
—4
CO
cs
-<
,— ,
••n
rn
!_«•
CO
cn
CO
o-
~0
«•>-
•--•-I
CO
cn
i-Sa
.f»
CO
Q-ja
rn
•f-
^S3
^
co -*rf---!- e1*
Cr* •"•* C-^
i?:» "--4
cn
-4S-
)"*••• ->C'
CO CO
cn :3£ --4
i— «.
CO
—•4
J° S :*"
i^hl — "4 O'-
or.
co t-,-1 ch
-J •-* t-SJ
»-"' cn
— < O--
m co
ri ;o j
i .i^s ^— s*5a
CO
cJi
i- >••
m
533
f;»
Vi-
~-"l
rn
••f-
-ii
•x>
CO ';'i:L
o-- i— «
-r-a
£i!
^H
!"-.*>
i"t—
to
cn -a:
i— »
CO
— j
.-o •-—
---4 "-4
CO
co >:-.-i
-j — =
cr^i
-n
i * 'i
;f-; gj
ro «.-••
i— CO
CO
Co
m
ess
•"'•
^53
rn
'•• .t
CO
|::2
O.i
—4
-O
o-
l~—
I—
CC'
Sia
"•sa
•~~
CO
CO
m
-*-
5354
CO
C'--
•p"
o~
c..:<
CJ1
CO
— J
1— *
-jr>
CO
i,ji
C*"
•
C--
o-
•*?
m
H-
*•
-t'
— J
rn
-i-
-"4
.
as *-•"
i— j ~0
-—4
cn
to
'—•4
•-.•i
*~rfj
33 >-•••
f-^i
—4
1- V
--4 IV'
CCi
-~J
trj >^n
— « ssa
»--• O"'
••TJ ..
rn -TJ
:4> rn
•yri i
Ci'J
I-— (--^
— -4
;
t,:> .,i?r cri
-I--* CO
!£!
CO
ei-- -o
CO .-Jl
CJ1 X* ~-J
~.°
r---
~~i
•^c»
O'- I — •- O—
i-- —.4 CO
O3
-•*-• C.--1 'Sa
r-.j S esa
co cn
CO
™-C CO
rn rn
•"••t! io -i-
•33
c-.'< j— •- **sa
-^."i i — ••
--4
c.n
CO
cn
• — j
m
CO
•-i
-"•-4
rn
'iif'-
-•-4
"XI
co sa;
cn~. .--- .
.&u '
cn
!•"•"
Cf---
>-—
CO --4
00
•M e;:>
CO -«
Ct'i
-T-'l
I"T1
~4 3J
"•'".I f—*
C'(
o.y
CO
m
fc_,
r--.;i
rn
-!•
>&!
CO
:;
•:n oj as; cjri co sar
cn " >, n
CO Ct "•
CC" C-
-ft Cf- -«J ri-
0- to -—4 C'.-i
i—*- c.n j1*" r— •• c/i Tir"-*
-D •xi
r--> i--.-.
CJI CJ1
>— CO >• • CO
ES-, f-3 •-» ~p» r--> "~
- i -,ri *--4 -fi- -.0 --J
CO CO
cn -o gj cn -xt »g
i23a Co ~~= «Sti i™- ---i:
.*:» r™i i, H ir>
m "T"l it "TT
*•-•» •— iS C*'*' — *K
c.n i "*• i "—j r*n
1" i 'i --i' i ~j :•• m --O "3>
-1- CO 1-43 -^ --4 30
<35a *,-».'' < "* 'Sift -4"< *•••*
• i^,n H i^n
-o cn
l~pl |H|'1
4-;» .-I--..
(•--•- i — •-
r-- 1 co
CC • CO
C-" *• .'••!
rn *'"i
•t^ ^t;-
o~.' o.;»
H
So
cr
(D
H
1
o
0
^
' -"
ex.
-------
APPENDIX J
COMPARISON OF COMPUTED AND OBSERVED PLUME PARAMETERS
This appendix contains a tabulation of computed and observed plume
parameters, tabulated by test number and data. Vertical temperature
gradients and cloud cover are also tabulated.
265
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1 REPORT NO. 2.
EPA- 600/7- 81- 106b
4. TITLE AND SUBTITLE Testing and Analysis of a Wet/Dry
V-/1UO&11UW VxUvJlJ.llg lUWcL , V UlUIIlC IX. rV.ppCllU.Ll/CO
7. AUTHOR(S)
D. L.Ayers, M.R. Hogan, A.E.Hribar, and
R.A. Luceta
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Westinghouse Electric Corporation
1310 Beulah Road
Pittsburgh, Pennsylvania 15235
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
3. RECIPIENT'S ACCESSION- NO.
5. REPORT DATE
July 1981
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
TVA/OP/EDT - 81/47b
10. PROGRAM ELEMENT NO.
1NE624A
mNY)c&mm-BE
13. TYPE OF REPORT AND PERIOD COVERED
Task Final: 7/77-5/81
14. SPONSORING AGENCY CODE
EPA/600/13
15. SUPPLEMENTARY NOTES JERL-RTP project officer is Theodore G. Brna; TVA project di-
rector is H.B. Flora, II (Div. of Energy Demonstrations and Technology, Chatta-
nooea. TN 37401).
16. ABSTRACT The repOrt discusses the test program and performance analysis of a single-
cell mechanical-draft wet/dry cooling tower in Cliffside, NC. Objectives of the pro-
gram were to obtain performance data and results on mass transfer, heat transfer,
fluid flow, plume formation, and acoustic characteristics for comparison with mo-
dels/theories. Correlations are presented for the wet-fill mass transfer coefficient,
wet-fill water loss, Colburn j-factor for the finned tubes, and fan efficiency in terms
of one or more of the following: water loading in the tubes, air loading over the fins,
log mean humidity difference, outlet water temperature, Reynolds number, and air-
flow rate. Acoustic data were fitted to a series of curves for each of the eight octave
bands. Attempts to model plume data failed. The report also describes the test
facility, test procedures, instrumentation, data acquisition, and data reduction.
17. KEY WORDS AND DOCUMENT ANALYSIS
a. DESCRIPTORS
Pollution Fluid Flow
Cooling Towers
Tests Plumes
Analyzing Acoustics
Mass Transfer
Heat Transfer
13. DISTRIBUTION STATEMENT
Release to Public
b.lDENTIFIERS/OPEN ENDED TERMS
Pollution Control
Stationary Sources
19. SECURITY CLASS (This Report)
Unclassified
20. SECURITY CLASS (This page)
Unclassified
c. COS ATI Field/Group
13B 20D
13A,07A,13I
14B 21B
20A
14G
20M
21. NO. OF PAGES
212 282
22. PRICE
EPA Form 2220-1 (9-73)
270