United States EPA-600/7-82-037b
Environmental Protection
Agency May 1982
vvEPA Research and
Development
VERIFICATION AND TRANSFER OF
THERMAL POLLUTDN MODEL
Volume IL User's Manual for
Three-dimensional Free-surface Model
Prepared for
Office of Water and Waste Management
EPA Regions 1-10
Prepared by
Industrial Environmental Research
Laboratory
Research Triangle Park NC 27711
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH AND DEVELOPMENT series. Reports in this series result from the
effort funded under the 17-agency Federal Energy/Environment Research and
Development Program. These studies relate to EPA's mission to protect the public
health and welfare from adverse effects of pollutants associated with energy sys-
tems. The goal of the Program is to assure the rapid development of domestic
energy supplies in an environmentally-compatible manner by providing the nec-
essary environmental data and control technology. Investigations include analy-
ses of the transport of energy-related pollutants and their health and ecological
effects; assessments of, and development of, control technologies for energy
systems; and integrated assessments of a wide range of energy-related environ-
mental issues.
EPA REVIEW NOTICE
This report has been reviewed by the participating Federal Agencies, and approved
for publication. Approval does not signify that the contents necessarily reflect
the views and policies of the Government, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/7-82-037b
May 1982
VERIFICATION AND TRANSFER
OF THERMAL POLLUTION MODEL
VOLUME II: USER'S MANUAL FOR THREE-DIMENSIONAL
FREE-SURFACE MODEL
Samuel S. Lee, Subrata Sengupta,
S. Y. Tuann and C. R. Lee
Department of Mechanical Engineering
University of Miami
Coral Gables, Florida 33124
NASA Contract No. NAS 10-9410
NASA Project Manager: Roy A. Bland
National Aeronautics and Space Administration
Kennedy Space Center
Kennedy Space Center, Florida 32899
EPA Interagency Agreement No. 78-DX-0166
EPA Project Officer: Theodore G. Brna
Industrial Environmental Research Laboratory
Office of Environmental Engineering and Technology
Research Triangle Park, North Carolina 27711
Prepared for:
U. S. Environmental Protection Agency
Office of Research and Development
Washington, D. C. 20460
-------
PREFACE
This volume presents the description and program documentation of
the three-dimensional, free-surface mathematical mode! for thermal pollu-
tion analysis and prediction for shallow water bodies, for example, lakes
and coastal waters. The program was developed by the Thermal Pollution
Group at the University of Miami, and was successfully verified through
application to several sites. This success was made possible by funding
and technical assistance provided by the National Aeronautics and Space
Administration (NASA) and the Environmental Protection Agency (EPA).
The model is time dependent, and the leap-frog and DuFort-Frankel
schemes are adopted for solving the predictive equations based on the
conservation principles of mass, momentum and energy. The model has
been developed with minimal physical and site restrictive assumptions, and
its algorithm has sufficient generality to allow for different boundary con-
ditions specified at open boundaries. The program shows both the tem-
poral and spatial variations of the surface water height. It computes
three-dimensional velocity and temperature fields. The model can serve
as an effective means for hydrothermal analysis and prediction. Plotting
programs employed for representing the numerous results are also in-
cluded.
The volume is intended as a user's manual and, as such, presents
specific instructions regarding data preparation for program execution.
To illustrate further, an example case is included here with its input
data, hard copy printout and plots. The complete listing of the program
and its accessories is also included.
ii
-------
ABSTRACT
A mathematical model that can be used for the analysis of thermal
discharge from power plants into tidal estuaries and coastal waters is
described. This transient, free-surface, three-dimensional model can
be applied to predict the water temperature as a function of time and
position in a specified region.
In situations of practical relevance, the specified coastal or off-
shore region will be a water body of irregular bottom topography with
possible islands or keys. The user specified the boundary and boundary
conditions, as well as the water depth distribution. Semi-diurnal tide is
considered in the model. Hourly weather data is needed for wind stress
calculation and heat exchange between water and the atmosphere. The
ambient temperature is assumed of a sinusoidal form of 24-hour period.
The ambient turbulence is included by an eddy viscosity and diffusivity
formulation. The appropriate values are to be calibrated against mea-
sured currents.
Hi
-------
CONTENTS
Preface [[[ .1!
Abstract ... [[[ '"
Figures [[[ v
Tables ........................ . ................................. vi
Symbols [[[ ^11
Acknowledgments ................................................ v'"
1 . Introduction ............................................ 1
2. Recommendations .................................... ... **
3. Program Description and Flow Chart for Main Program
(ANCMN) .............................................. 5
Description of program algorithm ................... 5
Flow chart ........................................ 7
Subroutine descriptions ........................... 11
4. List of Program Symbols of Main Program ............... 18
Description of main variables .......... . ........... 18
Marker matrices ...... . ............. . .............. 21
Depth matrix and its derivatives ........... « ...... 25
Dimensions of subscripted quantities .............. 25
Other program symbols ............................ 26
5. Preparation of Simulation Run .......................... 30
6. Input Data ............................................. 34
7. Plotting Program ... ..................................... 38
Description and flow chart for plotting program ... 38
Subroutines ....................................... 39
Input data ........................................ *3
References
Appendices
A. Example Case .......................................... *7
I ntroduction ...................................... **7
Problem statement ................................. *9
Calculation of parameters and input data .......... 51
Execution deck .................................... 56
Sample output ... .................................. 62
-------
FIGURES
Number Page
1 Flow chart for calculating program ANCMN and its
subroutines 8
2 Relative position and designation of the variables 19
3 Space-staggered grid system - plan 20
4 MAR (i, j) matrix 22
5 MEX (i, j) matrix 22
6 MEY (i, ]) matrix 23
7 MX (i, j) and MY (i, j) matrices 24
8 Flow chart for plotting program PLOTMN and- its
subroutines 40
9 Anclote Anchorage location in the state of Florida 48
10 Grid work for the Anclote Anchorage 50
11 Semidiurnal tide for June 19-20, 1978 at south end of
Anclote Key 54
12 Surface velocity, Anclote Anchorage by modeling 71
13 UW velocity, Anclote Anchorage by modeling 72
14 VW velocity, Anclote Anchorage by modeling 73
15 Surface temperature, Anclote Anchorage by modeling 74
-------
TABLES
Number Page
1 Governing Equations 5
2 Subroutines of ANCMN 9
3 Symbols Used in the Program 21
4 Size of the Matrices 25
5 Input Data for ANCMN 34
6 Subroutines of PLOTMN «
7 Input Data for PLOTMN M
vi
-------
SYMBOLS
V
!h
B
9
h
H
H«
I
J
K
K.
L
P
t
Vertical_eddy viscosity,
cm2 sec
HorizontaJ eddy diffusivity,
•> ~ i
T
T
cm* sec
Vertical_eddy diffusivity,
cm2 sec ,
Coriolis factor, sec
Relative humidity in fraction
of unit
Acceleration of gravity,
cm sec
Local water depth with re-
spect to mean sea level, cm
Total water depth, cm
Gross solar radiation,
BTU ft"2 day"1
Node index in the direction
of the x-axis
Node index in the direction
of the y-axis
Node index in the direction
of the z-axis
Surface heat exchange co-
efficient, BTU ft'1* day"1
deg F~'
Reference length, cm-
Pressure, dynes cm"
Time, sec
ave
u
w
Water temperature, deg C
Air temperature, deg F
Average of air and dewpoint
temperatures, deg F
Dewpoint temperature, deg F
Equilibrium temperature,
deg F
Ambient surface tempera-
ture, deg F
Component of water velocity
along x-axis, cm sec
Wind speed, mph
Component of water velocity
along the y-axis, cm sec"
Component of water velocity
along the z-axis, cm sec"
Displacement of the free
surface with respect to the
mean water level , cm _ _
Water density, gm cm
Nondimensional vertical
fluid velocity
Nondimensional vertical
coordinate
VII
-------
ACKNOWLEDGMENTS
This work was supported by a contract from the National Aeronautics
and Space Administration (NASA-KSC) and the Environmental Protection
Agency (EPA-RTP).
The authors express their sincere gratitude for the technical and
managerial support of Mr. Roy A. Bland, the NASA-KSC project manager
of this contract, and the NASA-KSC remote sensing group. Special thanks
are also due to Dr. Theodore G. Brna, the EPA-RTP project manager, for
his guidance and support of the experiments, and to Mr. Albert W. Mor-
neauit from Florida Power Company (FPC), Tarpon Springs, and his data
collection group for data acquisition. The support of Mr. Charles H.
Kaplan of EPA was extremely helpful in the planning and reviewing of
this project.
viii
-------
SECTION 1
INTRODUCTION
The analysis of thermal discharges is important in order to minimize
the environmental impact and to manage efficiently and safely the waste
heat problems. The study of technological solutions to the problems of
heated water disposal involves complicated relationships, such as the
location, geometry and types of the discharge outlet, the flow condition
and temperature of the receiving water body, the meteorological conditions
of the site, the waste heat output of the power plant, etc. A thorough
understanding of the thermal effects and physical processes of heated
water dispersion to the environment is an essential part of serving the
rapidly growing demand for electrical energy, while reducing the possible
impact on the receiving ecosystem.
The thermal effluent from a power plant will have variable conse-
quences on the aquatic life of a receiving water body and the adjacent
environment depending on the temperature rise. Therefore, the prime
objective of the heated water discharge system is to bring the discharged
water into thermal equilibrium with the surrounding water by bringing
thermal outfall to the mainstream of the water body, whereby the mixing
and convective processes will increase the surface heat transfer to the
atmosphere. Thus, the temperature rise within the tolerance of natural
environmental conditions is very important on the disposal system de-
sign and the standards for regulating thermal effluent.
Under limited circumstances, in-situ measurements can serve for
diagnostic and monitoring purposes for meeting the need of analyzing
thermal impact on receiving water body. However, to provide a priori
information about the nature and extent of thermal impact for site selec-
tion and discharge system design, numerical modeling for simulating hy-
drothermal behavior of the water body is imperative.
During the past years, many numerical models have been developed
for hydrothermal studies. Dunn et al. (1975) gave a presentation of
different models developed up to then. They applied those models to
the Point Beach Nuclear Power Plant and compared the performance of
various models in predicting a standard data base. A general conclusion
that can be made from their analysis is that though some models may
perform well under certain conditions, a generalized model which accounts
for wind, current, tide, bottom topography and diverse meteorological
conditions is yet to be developed.
-------
Since 1974 the Thermal Pollution Group at the University of Miami
has endeavored to develop a mathematical package for hydrothermal studies.
The primary motivation behind the effort was to develop a series of models
which make minimal site restrictive assumptions enabling application to
diverse basin and discharge configurations. Two separate formulations
were made, one with the rigid-lid approximation and the other with the
free-surface included. The details of the package and formulation are
presented in a number of reports by Lee et al. (1978).
The present report concerns the UM's free-surface model and its
application to the Anclote Anchorage in Florida for waste heat discharge
from a power plant. The features of the model are: a) three-dimensional,
b) nonlinear, c) time-dependent, d) irregular topography, e) driving
forces including wind, tide, heat and mass flux, f) graphical represen-
tation of results of velocity and temperature fields, g) prediction of
temporal and spatial variation of water surface.
The descriptions of the main program and its subroutines, main
algorithm and flow chart, program symbols, input data and logic para-
meters, as well as the description of associated plotting programs, are
contained herein for the ready access of the computer program package
to the user. A preliminary review on existing three-dimensional free-
surface models, basic concepts of the present model, assumptions, ap-
proximations, governing equations, initial and boundary conditions,
finite difference implementation and numerical solution methods is pre-
sented in Lee et al. (1979) and Carter (1977).
The report also contains a plotting program which is used to analyze
the results of the main calculation. A subroutine to compare the calcu-
lated temperature field with that obtained by IR scanning is presented in
the program. Note that the IR temperature is interpreted by hand from
the mosaic film and then read in for isotherm plotting and comparison.
The model has been tested for its adaptability. That is, the model
allows for program modifications so that different initial and boundary
conditions could be considered. The main program has several flag
statements which make different usage of same program possible. Any
program modification for the purpose of model transition should be made
with care, and the new program should be validated by sample runs to
assure that the effect of the modification is as desired. The same is
also applicable to the plotting program.
The program therefore contains two parts. Part 1 is primary and
performs calculations; Part 2 is secondary and is for analyzing and plot-
ting the results of Part 1. ANCMN is the driving program of Part 1.
The input contains parameters, geometrical and initial data, or tape which
stores intermediate results; output contains printout of results at preset
time intervals, in both hard copy and tape form. The hard copy printout
provides the base for analysis, upon which decisions and choice of the
plots needed for further analysis and detailed comparison with measured
-------
results can be made. PLOTMN is the driving program of Part 2. The
tape output from Part 1 is the main input. In addition, control cards
assigning choice of plot, plot size, simulation hour and measured result
for comparison are also required. Output is in printout and plot tape.
The latter is used for plotting by CALCOMP plotter.
-------
SECTION 2
RECOMMENDATIONS
The mode! can be enlarged to handle any passive constituent, dis-
solved or suspended, possessing arbitrary decay characteristics. The
formulation of the constituent transport is based on the convection-
diffusion equation, which is analogous to the thermal transport equation
in the present model. The enlarged model would then be an ideal tool
to study the ecological response of aquatic biota to the thermal effluents
of the power plant.
The model can be modified to include bouyancy effects caused by
fresh water/salt water sensing by including a salinity-dispersion equa-
tion. This equation will be of similar form to the energy equation.
The code is written for a constant grid size. Modifications can be
made to incorporate a coarse grid for the complete field in comparison
with a fine grid near the discharge location. This will allow a more
accurate prediction of plume behavior in the near field. A penalty in
computational cost will be incurred.
-------
SECTION 3
PROGRAM DESCRIPTION AND FLOW CHART FOR MAIN PROGRAM (ANCMN)
DESCRIPTION OF PROGRAM ALGORITHM
The governing partial differential equations are given in Table 1;
the symbols and definitions are referenced in Nomenclature. The problem
is set up as an initial-boundary value problem, so values of dependent
variables are assumed known initially and prescribed on boundaries.
Values at successive time steps are obtained by using a true explicit
scheme. The leap-frog finite difference format is used to calculate sur-
face elevation n and two horizontal velocity components, u and v, at
time n+1, where n is the present time step. The variables at times n-1
and n are all known. The sequence in which calculations are performed
is as follows:
1. Integrate the surface elevation equation using central-time central-
space (CTCS) differencing. That rs, n , n" and un, vn and h.
Note that h is independent of time while the present water depth H
= h+n is needed in tfyts calculation. In the subroutine BETA, not
only n but also Q (i, j, k), the modified vertical velocity in
transform (a) plane, is accomplished immediately after the n compu-
tation .
2. The next task in the sequence is to calculate the nonlinear inertia
terms that appear in the horizontal momentum equations. Here, two
subroutines are involved: BNRT1A is
TABLE 1. Governing Equations
Continuity Equation*:
3Hu
**• -rr- = 0
ox. ay ct a 3t
u Momentum Equation:
, 3 u 3 n
+ a) — — - fvH
p 3x
-------
v Momentum Equation:
= .H |p „ (a|H +|a, H-Av|iv_
p 3y 3 * 3y 3y' H 3 a2
Energy Equation:
3HT . 3HuT , 3HvT . u 3 flv . M . , 3T 3 n
TT TIT" + "FT" + M~+u + cr)TTJt
* This equation is vertically integrated to yield a) prognostic equation
for y, and b) synoptic equation for ft; they are
ro f9Hu +
x 3 y
0 _ a 3ji 1 f0
" ~ H 3t H aj
The latter, upon transformation, yields the actual vertical velocity
w =
for interior points, while ABNR3 is for open boundary points. Note,
for the Anclote Anchorage sample problem, the open boundaries are
at j = 1 and j = 14, and the imposing tides are applied at points
immediately outside these open boundaries. Therefore, program
modification is needed if different open boundary conditions are
employed .
3. Following the inertia terms computations, which may be skipped if
the Rossby Number is very close to zero, new values of u and v
at n+1 are computed for all points in the grid. Again, the leap-
frog and central-space scheme is used, but DuFort-Frankel differ-
encing is applied to the vertical momentum diffusion terms. Two
subroutines are called here, BVEL for interior points and ASAF3
for open boundary points. Since velocity at all points is calculated
without distinction, a subroutine GIVENU is needed to specify the
given discharge or flowrate at particular points, that is, to replace
-------
calculated velocities at those points with known values.
Steps 1, 2 and 3 are calculations for surface elevation, modified
vertical velocity and horizontal velocity components; they constitute the
V-calculation. Whether the V-calcuIation is -to be carried out or not
depends on flagged statement KVEL = 1 or 0. The next group of calcu-
lations is for thermal transport, or T-calculation, and it involves the
energy equation only. Similarly, this group is to be flagged by state-
ment whether KTEMP is unity or zero.
1. The convective term in the energy equation is calculated next, using
either a given velocity field, in the case of KVEL = 0, or the pre-
sently known velocity field at n+1, in the case of KVEL = 1. The
subroutine for this purpose is CONV.
5. The energy equation itself is then integrated over time to obtain T
at n+1. The forward-time, central-space (FTCS) and DuFort-Frankel
differencing for the vertical diffusion term are used in the calcula-
tion. The subroutine involved is TCOMPT. Since temperatures at
all points are computed without distinction as to whether the points
are with given temperatures or not, subroutine GIVENT is needed to
respecify the temperature at the given points.
Clearly, Steps 4 and 5 make up the T-calculation. In either of V-
or T-calculations, vertical velocity w is involved. Instead of w, the
rate of change of surface elevation, -r-n / is used for convection in ver-
tical direction.
6. The actual vertical velocity, w, is computed when It is .needed for
printout. The subroutine is WCAL, and instead of un and vn
which are defined at half J and half I respectively, the interpreted
velocities at center of grid cell are used in this calculation. Since
a space-staggered scheme is used, the water level and vertical velo-
city are described at the center of grid cell, while the horizontal
velocities are described at the edges of cells.
7. The real time (or simulation time) is checked and Steps 1 through 6
are repeated; that is, the above procedure is repeated for n+2 using
values at n+1 and n.
Reference to the flow chart presented in Figure 1 will clarify the
description of program algorithm.
FLOW CHART
Figure 1 shows the main flow chart of the three-dimensional, free-
surface program applied to the Anclote Anchorage. In the flow chart,
the subroutines and their functions are described briefly. Table 2 lists
the subroutines called in the main-program, ANCMN.
-------
Read Data Card (17)
Yes
First Run? (LN = 1 ?)
, No
BAYBOT
BAYINI
Preliminary Data
Initialization
READT - Read Tape for
Data of Previous Run
Card to Reaffirm DT,
EST & Tide Conditions
Hourly Climatical Data
BETA
BNRTIA
ABNR3
BVELS
ASAF3
GIVENU
Compute ETA (n) and OM
Compute RX, RY at Interior Point
Compute RX, RY at Boundary Point
Use RX, RY & Others to do U, V
Do the Same for Boundary Point
Specify U, V at Discharge Point
CONV - Compute Convection Terms for T
TCOMPT - Continue to Compute T
GIVENT - Specify T at Discharge Point
WCAL - Convert OM (n) to W
ANCPR - Continue Printout at Chosen Points
No
Enter a New Hour?
Yes
TPRLOK - Prints Out Hourly Results
STORET - Store Results & Data in Tape
No
Time Up? (End of NCY?)
Yes
Put Another EOF on Tape
Figure 1. Flow chart for calculating program ANCMN and its subroutines
-------
TABLE 2. Subroutines Required in Main Calculating Program ANCMN
No.
Name
Description
Remark
BAYBOT
BAYINI
READY
1RREAD
EQTEMP
BETA
BNRTIA
ABNR3
10
11
BVELS
ASAF3
GIVENU
Reads in bay bottom sounding
(H) and various grid book-
keeping matrices, calculates
depth matrices accordingly.
Initializes the dependent
variables such as U, V, W, T,
ETA, RX, RY also set 10s to
values outside the calculation
region.
Reads in stored data from
tape for continuing run.
If required, it reads in IR
data as initial temperature;
thus it replaces T input
from READT.
Calculates the equilibrium
temperature over that hour.
Calculates surface elevation
ETA and vertical velocity
OM
Calculates inertia terms of
momentum eq. for boundary
pts.
Calculates inertia terms of
momentum eq. for boundary
pts. on north and south
exit of the anchorage.
Calculates velocity at in-
terior pts. - main part of
velocity calculation.
Calculates velocity at boun-
dary pts. along north and
south boundaries.
Specifies velocity at control
pts., such as discharge, in
take and river head.
Skip if LM=1, depends
on problem and grid
work, data file AMATN
preferred.
Also depends on probelm
and run conditions. RX
RY are inertia terms.
Skip if LN=1.
No need if T-calcuIation
began with ambient
temperature.
Number of hour is NCY.
Mandatory in
V-calculation.
Skip if ROSSBY = 0.
Skip if ROSSBY = 0.
-------
TABLE 2. Subroutines Required in Main Calculating Program ANCMN
(Continued)
No.
Name
Description
Remark
12
13
14
15
16
CONV
TCOMPT
GIVENT
WCAL
ANCPR
17
TPRLOK
18
STORET
19
ZZ1
20
21
AMATN
C2007
Calculates convective terms of
energy equilibrium.
Calculates temperature.
Specifies temperature at dis-
charge outlet.
Converts the OM (n) vertical
velocity to physical vertical
velocity W.
Prints surface elevation,
velocity (mag. with dir.) and
temperature at 4 chosen loca-
tions after completion of
marching of DT, i.e. printout
after each time step.
Prints out the velocity field,
water depth, surface elevation
and temperature field after
one hour of simulation time.
After TPRLOK for printout,
the same data and relevant
parameters are stored onto
tape, either for later plotting
or for continued calculation.
A subroutine called by ANCPR
and TPRLOK; it is for finding
velocity dir. based on U and
V components.
Is a data file containing all
grid matrices and bottom depth
matrix to be read in BAYBOT.
Climatical data used in the
run; the data is on hourly
basis.
Depends on run condi-
tion.
Locations are to be
chosen by user.
Skip if KSTORE = 0.
Same data could be in
card form, inserted
after TIN IT card.
Could also be in card
form.
10
-------
SUBROUTINE DESCRIPTIONS
This section describes the subroutines used in ANCMN, in order of
their appearance.
BAYBOT
It reads the marker matrix MAR; the elevation matrix ELEV which is
changed to depth matrix H by adding a constant STAGE; then four more
marker matrices, MEX, MEY, MX and MY. it interpolates H according
to marker MEX, MX and MY to find additional depth matrices, called HB,
HU and HV, respectively.
BAYINI
It initializes most of the variable matrices. Since the initial condi-
tion for velocity is a quiescent condition, U1, U2, U3, VI, V2, V3, RX,
RY, ETA1, ETA, ETAS, UB, VB, OM, W and TC are set to zero. The
quiet bay is assumed to have a constant temperature TINIT to begin with,
so Tl, T2, T3 and TB are set to TINIT.
READT
This subroutine reads in input parameters, physical quantities
and intermediate results stored on tape.
IRREAD
It reads in in-situ measured or IR scanned temperature as an alter-
native initial condition to temperature calculation. This temperature is
interpolated by hand and stored in the form of matrix Tl.
EQTEMP
It calculates the equilibrium temperature T and surface heat ex-
change coefficient K of a natural water surface^ The procedures for
these calculations are as follows:
1. T , = T - (14.55 + 0.114 T ) (1-f) - [(2.5 + 0.007 T ) (1-f)]3
Q 3 Q a
where T . = dewpoint temperature in °F
T =• air temperature in °F
f = relative humidity in fraction of unit
2. 3 = 0.255 - 0.0085 T + 0.000204
where T = i(T + T .) , and 6 is an intermediate step
T = ambient surface temperature in °F
3. f(u) = 70 + 0.7 u2, and u is wind speed in mph
11
-------
4. K = 15.7 + (g * 0.26) f(u)
5
where K = surface heat exchange coefficient in BTUy(ft2 day °F)
5 H
5- Te = Td+r
where T = equilibrium temperature in °F
He = gross solar radiation in BTU/(ft2 day)
Note: The T , f, u, H and T are climatological data; however, care
must be taken3 for the hourly da^ta TAIR, HUMID, WIND, SRAD and TSURF
are in metric units. Therefore, in the above calculations, the basic data
must first be transformed into English units, then the final results, T and
K , must again be transformed back to metric units. T (TEQ) and K
are used in subroutine CONV for T-calculation.
BETA
Computes nn+ (ETAS) and fln (OM) by using central differencing
from the continuity equation. The vertical integration is done using
Simpson's rule. The following symbols are used:
DR = depth at half-integer j point on right edge, i + 1, of the cell.
DL = depth at half-integer j point on left edge, i, of the cell.
D2 = depth at half-integer i point on upper edge, j + 1, of the cell.
Dl = depth at half-integer i point on lower edge, j, of the cell.
DHUX =
DHVY =
AH - total depth at the center of the cell, a half-grid point.
BNRTIA
It computes the sums of the nonlinear inertia terms, RX and RY,
in the x and y momentum equation at each interior point of the domain.
Note that RX (i, j, k) = RY (i, j, k) =0 for k = KN. The following
symbols are used, in their order of appearance:
AH = depth either at u-point or at v-point
DHUUX = DHUVX =
o X
12
-------
DHUVY = . DHVVY =
D2 = depth at forward half-grid point in either x or y direction.
D1 = depth at backward half-grid point in either x or y direction.
UBAR2 = average u at forward half-grid point.
UBAR1 - average u at backward half-grid point.
VBAR2 = average v at forward half-grid point.
VBAR1 = average v at backward half-grid point.
E2 = averaged n at (i, j + 1) or (i + 1, j)
E1 = averaged n at (i, j)
D2 = depth at (i, j + 1) or (i + 1, j)
D1 = depth at (i, j)
DUOMS = |^S- DVOMS = %&-
3 a 3a
DUS « |H. DVS = f*
oO do
3Huu 3Huv u 3ufl ,, , 3u 3 TI
_ .__ + ___ + H j^- + n + a) — aTT
RY - 4. 3Hvv u 3vn M , 3v 9
RY - ~ + " ~ ( CT)
ABNR3
It computes RX and RY for points on boundary. The tide heights
at half-grid points outside the north and south boundary are computed
first. Since the open boundary is in x-direction, that is, only the v-
point appears, RX = 0 and RY is given by
- 9Huv + 9Hvv + u 3ufl M , 3v 3 n
~ 3 x + 3~T" + H 3T~ + (1 + a) FaTT
In the computation, it is assumed:
D2 = depth at half-grid point just outside the boundary
= HV (i, JN) + North Tide Height, if D2 is HB (i, JN)
= HV (i, 1} + South Tide Height, if D2 is HB (i, 0)
VBAR2 = v at half-grid point just outside the boundary
= V2 (i, JN, K) if it is north boundary
= V2 (i, 1, k) if it is south boundary
13
-------
BVELS
It calculates u""*"1 (U3) and vn+1 (V3) at interior points by central
time differencing and DuFort-Frankel scheme. Note that the horizontal
diffusion of momentum is neglected in the model.
The equations for u and v are
- fv - a IJL + ^ 32" . i Rv
~fv g ^ + 73 FT HRX
n a
HTT—-*•-»#•+ Jp IT-BRY
n a
where RX and RY are the nonlinear inertia terms.
The following symbols are introduced for briefness.
A2 = Coriolis term
«? *i^^ ^y o\/
OJ\ Ci i
A5 = i RX or 1 RY
A6 = the rest of vertical diffusion term.
ASAF3
This calculates vn+1 (V3) at the v-points on the south (j = 1)
and north (j =JN) boundaries. It is similar to ABNR3. The tide heights
at imaginary half-grid points just outside the south and north boundary
are computed first. The term j^ is calculated at v-point at both j = 1
and JN, with tide height at outsfde half-grid point and n at inside half-
grid point. Since the u velocity on these boundaries are assumed zero,
the Coriolis force term B2 is set to zero. Symbols B4, B5 and B6 stand
for pressure, convection and diffusion terms respectively.
GIVENU
It specifies velocities at cooling system outlet and intake. These
velocities are determined from power plant flowrate. The river flowrate
is also simulated by imposing velocities at river entry point.
CONV
It computes the sum of the convective terms in the energy equation
at each point. Note that T is designated at half-grid points/ The follow-
ing symbols are used in this subroutine:
AH = depth at point (i, j) where TC (i, j, k) is to be calculated,
U
-------
DR = depth at forward u-point
DL = depth at backward u-point
D2 = depth at forward v-point
Dl = depth at backward v-point
3T
DTZ (i, j) = temperature slope -r- at the surface
UR = forward u but at T-Ievel
UL = backward u but at T-!eveI
DHUTX = |~y!
VR = forward v but at T-level
VL = backward v but at T- level
DHVTY = |^I
3 y
The convection term TC is written for
_r _ 3HuT . 3HvT . „ 3flT , M , , 3T 3 n
TC - TT~ + TT~ + H ?T~ + (1 + a) ~c ft
TCOMPT
This subroutine computes temperature T (T3) for each point in
the domain. The equation is
1 3 HT _ fy 3 'T . _ .3 'T . 32T, 1 __
Hat ~ " + Bl" + "J~ TC
where TC is the convection term obtained from subroutine CONV. The
boundary condition on solid boundary is adiabatic, but on open boundary,
T is assumed known. There are three different formulas for computing
the f'^j although the same DuFort-Frankel format is used throughout.
This is because the surface temperature slope is DTZ (i, j) and the bottom
is adiabatic. The symbols here are
D2TX=JLL-
3x 3y^
G1VENT
It specifies the temperature of cooling system discharge water and
river delivery.
15
-------
WCAL
This subroutine calculates vertical velocity w (i, j, k) from modified
vertical velocity JJ (i, j, k) by using cr-transformation formula. The fol-
lowing symbols are used:
DEX = JL DEY = JL
DAHX = ~ DAHY = ~
3x 3y
ANCPR
It prints continuous records of elevation, velocity and temperature
at certain particular points.
All data are printed on a single line, with the first item on the
line being the total simulation time TTOT in sec. Items for each point
are: surface elevation, resultant velocity, direction in which the velocity
vector points (deg positive clockwise from North), and temperature, in
that order.
TPRLOK
This subroutine performs the major printing tasks. The following
variables are printed hourly, or controlled by printout interval TPRT:
AYR = resultant velocity, cm/sec
ANG = direction in which the velocity points
W = vertical velocity, cm/sec
ETA = surface elevation, cm
T2 = temperature, deg C
After TPRLOK is executed, the main program ANCMN prints out the total
depth, H = h + n, at each point. Thus, the hourly printout of the rele-
vant variables is completed. In this subroutine, there are two flags,
KUV and KPROF. If both are zero, it skips the printing of velocity
components u and v either presented in layers (k = 1, KZ) or in cross
section along x-direction (j =1, JM). These two flags are flipped only
by interchanging the statements in the subroutine.
STORET
It records all the relevant data and results of the preceding simula-
tion hour. STORET puts one EOF on tape after each block, while the
main program ANCMN puts another EOF after the last block of data is
recorded.
16
-------
ZZ1
This subroutine finds the direction of the resultant horizontal velo-
city.
17
-------
SECTION 4
LIST OF PROGRAM SYMBOLS OF MAIN PROGRAM
This section presents the program symbols and their definition in
alphabetical order. In many cases, the symbols are described with the
aid of diagram to show the definition.
DESCRIPTION OF MAIN VARIABLES
The relative position and designation of variables are shown in
Figure 2. The water depth, h, is described in integer values of i and
j; the u-component is described at half-integer value of j and integer
values of i and k; the v-component at half-integer value of i and integer
values of j and k; the w-component at integer value of k and half-
integer values of i and j; the surface elevation, n, is described at half-
integer values of i and j; and the temperature, T, is described at half-
integer values of i, j and k. The modified vertical velocity, fl, is de-
scribed at the same place as w-component. Figure 3 shows the space-
staggered grid system in horizontal.projection.
Table 3 lists all the symbols used for dependent variables appearing
in the program. Since three levels of time step are used, same variable
at different level is assigned with different symbols. The rule for
symbolizing the dependent variables is: for variable F(iAx, jAy, kA a,
nAt), Fl(i, j, k) is used to denote the value of variable at n-1; F2(i,
j, k) is the present value; while F3(i, j, k) is the value at n+1 thus to
be computed; and FB(i, j, k) is the interpreted value of F2(i, j, k) at
a set of grid points differing from where it is designated.
18
T
-------
Figure 2. Relative position and designation of the variables
19
-------
all points on
these columns
have same
subscripts
I
I all points in this
square have same
subscript i,j
all points on
these rows have
same subscript j
water level (71)
z velocity (w)
depth (h)
x velocity (u)
y velocity (v)
x(i)
Figure 3. Space-staggered grid system - pfan
20
-------
TABLE 3. Symbols used in the program
Symbols
Argument
Description
U1, U2, U3, UB
V1, VI, V3, VB
T1, T2, T3, TB
ETA1, ETA2, ETAS
TIDE1N, TIDE2N, T1DE3N
TIDE1S, TIDE2S, TIDE3S
DTZ
RX; RY; TC
W; OM
WAT
(i, j, k)
(i, j, k)
(i, j, k)
(i, j)
0)
(i)
0, j)
(i, j, k)
(i, j, k)
(i, j)
u-component
v-component
Temperature T
Surface Elevation r\
Tide Outside North
Boundary
Tide Outside South
Boundary
Heat Exchange at Water
Surface
Convection Terms in u;
v; T equation
w-component; Non-dimen-
sional Q
Total Water Depth or
h + n
Note: In the program ANCMN, ETA2 is labeled as ETA and ETX; the
former is used for calculation while the latter for printout.
MARKER MATRICES
The following integer-valued matrices are introduced to describe the
grid system and to distinguish boundary from interior.
MAR (i, j)
MAR (i, j) identifies nodes in the full-grid system, i.e.
MAR =0, (i, j) outside of boundary, hence no calculation
MAR =1, (i, j) inside or on a boundary, as shown in Figure 4.
21
-------
',
" '
10 '.
'
10 ;
i '
1
I
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
/ r s s / / sr /
1
1
1
1
i ;
> — -1
o
1
y(j)
i i
i
0
xCi)
Figure 4. MAR (i, j) matrix
MEX (i, j)
MEX (i, |) provides marker to the half-grid system with reference
to the y-direction boundaries, i.e.
MEX =0, (i, j) outside of y-boundary, or exterior
MEX = 1, (i, j) just inside an east boundary
MEX = 2, (i, j) just inside a west boundary
MEX = 3, (i, j) nowhere near to y-boundary, or interior, as shown
in Figure 5.
/
' /
^
/
s
i
3
3
3
2
I
I
r
• i
i
' i
?
S f / ^ J f > f *'
\
Figure 5. MEX (i, j) matrix
22
-------
MEY (i, j}
MEY (i, j) provides marker to the half-grid system with reference
to the x-direction boundaries, as shown in Figure 6.
MEY =0, (i, j) outside of x-boundary, or exterior
MEY =1, (i, j) just inside a south boundary
MEY = 2, (i, j) just inside a north boundary
MEY = 3, (k, j) nowhere near to x-boundary, or interior
2
3
3
1
0
S t S S f / { f/.
2
3
1
i
i
i
0
\
/
; o
2
i
f S
-»» X
Figure 6. MEY (i, j) matrix
MX (i, j)
MX (i, j) provides marker to u-points, as shown in Figure 6.
MX =0, (i, j) outside of y-boundary, or exterior
MX = \, (i, j) on east boundary
MX =2, (i, j) on west boundary
MX = 3, (i, j) nowhere near to y-boundary
23
-------
MY (i, j)
MY (i, j) provides marker to v-points, as also shown in Figure 6.
MY =0, (i, j) outside of x-boundary, or exterior
MY = 1, (i, j) on south boundary
MY = 2, (i, j) on north boundary
MY = 3, (i, j) nowhere near to x-boundary
^
/,
/
/
/
/
/
/
/
/
«•
^
/
M
C
1
1
f
j s y
]
>»t\
-1
- 1
.
Y
1
/
! /
/
rx^/
3
"",
2
. *
j
L
1
1
^""n
r
i
1
i
c
\
r
" 3
i
-3
1
/
^
B
}
!
!
L
-3
f
f
f~2 ~
?
f
f
r-*,,i ,
-3
I
i
1-0
1
-3
i x
i /
-o -»
l x
j _^;
-3
- 1
-3
- 3 M
'/v/v /'
Figure 7. MX (i, j) and MY (i, j) matrices
2U
-------
DEPTH MATRIX AND ITS DERIVATIVE
The bathymetry of the area of interest is given by the matrix ELEV
(i, j) designated at full-grid points. The values in feet are positive for
lake or inland waters as elevation above MSL. However, for coastal
water, the depths are read from the survey chart and are designated by
positive values. For certain periods of the year, the water level may
differ from MSL; a stage (STAGE!) is added to the ELEV (i, j) to obtain
the actual depth matrix H (i, j). Note that the values of H (i, j) are in
cm. To facilitate the calculation, the matrices HB (i, j), HU (i, j) and
HV (i, j) are derived from H (i, j), and are for depths at half-grid
points, u-points and v-points, respectively. Thus, the following real-
valued matrices are introduced.
ELEV (i, j) elevations of the bottom with respect to MSL
HB (i, j) depth at half-grid points, in accordance with MEX/MEY
HU (i, j) depth at u-points, in accordance with MX
HV (5, j) depth at v-points, in accordance with MY
SIZE OF THE MATRICES, OR DIMENSIONS OF SUBSCRIPTED QUANTITIES
Let the grid work consist of IN x JN x KN nodes, i.e. IN nodes in
x(i) direction, JN nodes in y(j) direction, and KN levels in a(k) direction.
Then there are IM = IN - 1 half-grid points in x-direction, JM = JN - 1
half-grid points in y-direction, and KZ = KN - 1 layers in a- direction.
The values IN, JN, KN, IM and JM are the parameters to be specified
at the beginning of the program and are determined by the grid used.
Therefore, the dimensions of the matrices are given in terms of these
parameters. Table 4 shows the size of the matrices already defined.
TABLE 4. Size of the Matrices
Symbol
Ul, U2, U3
VI, V2, V3
Tl, T2, T3, TC, TB
UB, VB
W, OM
Least Size
(IN, JM, KN)
(IM, JN, KN)
(IM, JM, KZ)
(IM, JM, KZ)
(IM, JM, KN)
Given Size
(IN, JN, KN)
(IN, JN, KN)
(IM, JM, KN)
(IM, JM, KN)
(IM, JM, KN)
25
-------
TABLE 4. Size of the Matrices
(Continued)
Symbol
RX, RY
ETA1, ETA, ETX, ETAS
WAT, DTZ
ELEV, H
HB
HU
HV
TIDE1N ... TIDE3S
AYR, ANG
MAR
MEX, MEY
MX
MY
Least Size
(IM, JM, KZ)
(IM, JM)
(IM, JM)
(IN, JN)
(IM, JM)
(IN, JM)
(IM, JN)
(IM)
(JM)
(IN, JN)
(IM, JM)
(IN, JM)
(IM, JN)
Given Size
(IN, JN, KN)
(IM, JM)
(IM, JM)
(IN, JN)
(IM, JM)
(IN, JN)
(IN, JN)
(IM)
(JM)
(IN, JN)
(IM, JM)
(IN, JN)
(IN, JN)
AYR and ANG are used to facilitate printout of velocity and angle re-
spectively.
OTHER SYMBOLS OCCURRING IN PROGRAM ANCMN
ALREF: Reference horizontal length L in cm.
AY: Vertical eddy viscosity, estimated by means of
A = 0.0018 H , H in cm, A in cm2 sec .
v ' v
BH: Horizontal eddy diffusivity, estimated by means of
-1
Bh = 0.0018 L , L in cm, BH in cm2 sec .
BY: Vertical eddy diffusivity, estimated by the same formula as
26
-------
thus turbulent Prandtl No. is one.
DHR: Time increment in hour as simulation continues.
DTX: As a check on when to printout.
DS: Increment in cr-direction, in fraction of unit.
DT: Time step in second.
DX: Increment in x-direction, in cm.
DY: Increment in y-direction, in cm.
DUMS: 2DS.
DUMX: 2DX.
DUMY: 2DY.
EST: Eastern standard time in the day of simulation.
FCOR: Coriolis factor = 2Wg sin (latitude), sec'1.
W = earth's angular rate of rotation.
G: Earth's gravitation = 980 cm sec .
I: Index for x-axis.
ICO: Flag. Set as 1 initially; it changes to 0 when the calculation be-
comes unstable.
IM: Maximum number of half-grid point in x-direction.
IN: Maximum number of full-grid point in x-direction.
J: Index for y-axis.
JCTR: Index for simulation hour.
JM: Maximum number of half-grid point in y-direction.
JN: Maximum number of full-grid point in x-direction.
K: Index for craxis.
KN: Maximum number of full-grid point in o-direction.
KZ: Maximum number of half-grid point in a-directton.
27
-------
KSTORE: Flag. Set as 1 to store hourly result on tape.
Set as 0 if no store is needed.
KVEL: Flag. Set as 1 If velocities are to be calculated, otherwise set
as 0.
KTEMP: Flag. Set as 1 if temperature is to be calculated, otherwise
set as 0.
LN: Set as 1 for 1st run of present case; set as n for subsequent n
run.
MBLOK: Data block number which is to compare with data block NBLOK
which is to be read in. Used only when LN > 1.
NBLOK: Index for data block.
NCASE: Case number.
NCY: Number of hours to be simulated in this run.
QQ: 37.3, used for changing from deg to rad.
ROSSBY: Rossby number.
RR: Water density, = 1.
RWEX: Number of hours between ciimatological input data, = 1.
TABN: Ambient water temperature outside of north entrance.
TABS: Ambient water temperature outside of south entrance.
THETA: Angle between north and y-axis, clockwise positive.
TINIT: Water temperature at initial instant before the waste heat dis-
charge start.
TPRT: Time between printouts, in sec.
TTOT: Total simulation time, in sec.
TZ: Record of time for hourly printout.
TZERO: EST hour at the beginning of present simulation run.
The following symbols are used to specify tidal condition.
AMPLIT : Tide amplitude, in cm.
28
-------
DPHASE: Phase lag per Ax, in hour.
PERIOD: Tide period, in hour.
PHASE: Phase difference between tides at north and south entrance.
STAGE: Difference in cm between daily mean level and short-term
(weekly) average sea level.
STAGE!: Difference in cm between short-term (weekly) average sea
level and long term average level (MSL).
TSHIFT: Time shift for adjusting tide with EST, in hour.
The following symbols are used to specify the hourly climatological
conditions.
TAIR: Ambient air temperature, deg C.
HUMID: Relative humidity, fraction.
WIND: Wind speed, cm sec .
WDIR: Direction from which wind is coming, deg measured clockwise
from North.
SRAD: Gross solar radiation, in BTU/(ft2 day).
TSURF: Surface water temperature, deg C.
The following symbols are related to climatoiogical data and appear
in the calculation of wind stress, equilibrium ambient temperature and
heat exchange at surface.
EPSLON: Direction to which wind blows, in rad.
WPR: Wind speed in m sec'1.
CTEN: Empirical constant appears in wind stress formula.
TAU: Wind stress T.
TAUX: x-component of wind stress T .
J\
TAUY: y-component of wind stress T .
TDEW: Dewpoint temperature, deg C.
TEQ: Equilibrium temperature, deg C.
SK: Surface heat exchange coefficient in cal/(cm2 sec °C).
29
-------
SECTION 5
PREPARATION OF SIMULATION RUN
This section describes the preparation work needed for ANCMN run.
The flow chart and the associated subroutines in Figure 1 and Table 2
are referred to in the following description.
1. Specify number of full-grid points, IN, JN, KN and number of half-
grid points, IM, JM, in PARAMETER statement. Although the domain
of solution under consideration is usually smaller than the rectangular
space of IN x JN x KN, the marker matrices will assure that the grid
points outside of domain skip the calculation. To have a clear print-
out, the variables at off domain point have been set to 10 . This
value is beyond the capacity of the computer printout in printing real
numbers (F format) so that stars will be printed and show the off
domain area.
2. Specify run number by input data LN, card #2:
For LN = 1, i.e. first run, data file or card deck of AMATN
is needed.
For LN > 1, i.e. subsequent run, tape with previous result
is needed.
Specify flag for storage by KSTORE, card #3:
For KSTORE = 0, desire no storage.
For KSTORE = 1, tape must be provided for storing results.
Specify flag for velocity calculation by KVEL, card 14:
For KVEL = 0, no V-calcuIation, thus thermal dispersion only.
For KVEL = 1, do V-calcuIatSon, thus circulation included.
Specify flag for temperature calculation by KTEMP, card #5:
For KTEMP = 0, no T-calculation, thus only a hydrodynamic
model.
For KTEMP = 1, do T-calculation, a complete hydrothermal model.
30
-------
Specify data block number MBLOK, to make sure the data read in
from tape is correct, card #6.
Specify number of hours to be simulated in this run by NCY, card #7.
Specify the time between successive printouts by TPRT, card #8.
Specify grid size by input data DX, DY, DS, card #9.
Specify time step DT and tide data STAGE, AMPLIT, PHASE, DPHASE,
PERIOD, TSHIFT by input data, card #10.
Specify Coriolis factor FCOR and stage STAGE1 by data, card #11.
Specify the angle between North and the y-axis of grid system by
THETA, card #12.
Specify reference length ALREF and Rossby No. ROSSBY, card #13.
Specify number of hours between weather observations RWEX, card #11.
Specify TZERO, the Eastern Standard Time when the simulation starts,
card #15.
Specify water density, vertical eddy viscosity, vertical eddy and
horizontal eddy diffusivity, RR, AV, BV, BH, card #16.
Specify initial temperature TIN IT, a constant for whole domain, card #17.
3. In general, the first run of present case has:
LN = 1, KSTORE = 1, KVEL = 1, KTEMP = 1, MBLOK = 0.
Then the subroutines BAYBOT and BAYINI are used to initialize
the calculation. This includes reading matrices, MAR, ELEV, MEX,
MEY, MX, MY, by BAYBOT from data file AMATN. The same sub-
routine calculates the derivative height matrices, HB, HU and HV.
The initialization of various variable matrices is done in subroutine
BAYINI and in the main program itself.
4. In general, the continued n run has the same NCASE with:
LN = n, KSTORE = 1, KVEL = 1, KTEMP = 1.
MBLOK = index number of the data block which is to be read in; the
calculation will continue thereafter. In fact, the data being read con-
tains all the information needed to continue the run. However, to
allow for the freedom of matching tide of different amplitude, period
and phase shift, an additional card (#18) specifyinq NBLOK, TTOT,
DT, EST, AMPLIT, PHASE, DPHASE, PERIOD and "TSHIFT is needed.
31
-------
The data may be same as those contained in the tape or different
from them so that the calculation goes on to follow another tide
format. In accordance with this change of tide, the NBLOK, TTOT,
DT, EST may be reset.
5. The main loop in the main program ANCMN !s the hourly simulation
loop, which is started with hourly climatoiogicai data card containing
TAIR, HUMID, WIND, WDIR, SRAD and TSURF. The wind stress
and equilibrium temperature are then computed and held thereafter
as constants throughout that hour.
The main part of the hourly loop is an internal loop for At increment,
In which the main calculation is done in the order of (n, &), (u, v),
T, W, then a printout of elevation, surface velocity and surface
temperature at certain chosen half-grid points.
6. The V-calcuIation controlled by flag KVEL consists of subroutines
BETA, BNRTIA, ABNR3, BVEL, ASAF3 and GIVENU. BETA computes
TI and ft. BNRTIA and ABNR3 compute the convection terms, RX and
RY, for the momentum equations; this computation is decided by
whether ROSSBY is zero or not. The (u, v) calculations are done by
BVELS and ASAF3. The given velocities at control points are re-
specified by GIVENU. The BNRTIA and BVELS are for interior
points while ABNR3 and ASAF3 perform the same purpose except for
normal velocity points along open boundaries, where the water eleva-
tion is specified as a function of time.
The T-calcuiation controlled by flag KTEMP consists of CONV, TCOMPT
and GIVENT. CONV computes the convective term TC, then TCOMPT
computes T, and GIVENT respecifies T at discharge points.
After the completion of marching forward to (n+l)At, the variables are
relabeled and UB and VB are computed as the horizontal components
of velocity at centers of (1, J) blocks. Finally, before the printout
of newly obtained variables at fixed locations to serve as flow develop-
ment at fixed point, the surface velocity and temperature at a critical
point are compared with preset values to see whether an instability
has developed. If instability does occur, the program terminates after
producing a hard copy of the latest result.
7. The subroutine ANCPR produces step-by-step records of surface
elevation, surface velocity and surface temperature at certain chosen
points. These points are selected because of the variables that are
believed to undergo the most change, as they are close to open
boundaries, river exit and discharge outlet.
The hourly loop included subroutines SOTRET and TPRLOK too; the
former stores the hourly results as well as all pertinent data onto
tape for later uses, and the latter produces a printout of resultant
horizontal velocities, vertical velocities, temperatures at four levels
32
-------
and elevation of free surface. In addition, the main program ANCMN
itself does the calculation and printout of total water depth, H = h +
n, before starting next hourly loop.
8. ANCMN performs the hourly loop NCY a number of times.
Therefore, NCY number of climato log Seal data cards are needed to
provide the necessary data.
33
-------
SECTION 6
INPUT DATA
The input cards for running ANCMN are given in Table 5 below.
Note that the data symbols have already been defined in the previous
section; however, the following remarks should be considered.
* Free format is used for ail data input.
* Distinction must be made for integer and real number.
* The order of these cards must be followed.
TABLE 5. Input Data for ANCMN
Input
#1
#2
#3
#4
#5
#6
Card
Content
1
1
1
1
1
1
Symbol
NCASE
LN
KSTORE
KVEL
KTEMP
MBLOK
Definition /Value
= Case No.
= 1, if it is first run then data file
or card deck AMATN is needed in
#18
= n, if it is n run
= 0 no store, then there are no
continued runs
= 1 store intermediate results on tape
for plotting or next run
= 0 no V-calculation, i.e. dispersion
of T by given (u, v) field
= 1 do V-calculation, so momentum
is under dispersion
= 0 no T-calculation, i.e. hydrody-
namic only
= 1 i.e. hydrothermal model
= No. of latest hour of last run
-------
TABLE 5. Input Data for ANCMN
(Continued)
Input
#7
#8
#9
#10
#11
#12
#13
Card
Content
1
1
3
7
2
1
2
Symbol
NCY
TPRT
DX
DY
DS
DT
STAGE
AMPL1T
PHASE
DPHASE
PERIOD
TSHIFT
FCOR
STAGE1
THETA
ALREF
Definition /Value
= Number of hours intended for
simulation in this run
= 3600 seconds, hourly loop
= x-direction grid size in cm
= y-direction grid size in cm
= a-direction grid size in nondimen-
sional unit
= T;me,ffi(^,seAcY)folIOWS
J 29hmax
~ Average level of tide-MWL, in cm
= Amplitude of tide, in cm
= Phase lag of the north tide behind
the south tide, in hr
= Phase lag in east-west direction,
in hour per Ax
= Period of tide at entrances, in hr
= Time shift (in hr) for tide to agree
with EST time
= Corjolis factor = 2W sin(Iat), in
sec e
= MWL-MSL (datum for sounding) ,
if MWL * MSL, in cm
= Clockwise angle from North to the
y-axis of grid work, in deg
= Horizontal reference length, in cm
35
-------
TABLE 5. Input Data for ANCMN
(Continued)
Input
Card
Content
Symbol
Definition /Value
#14
#15
#16
#17
#18
#19
ROSSBY
1
4
RWEX
TZERO
RR
AV
BV
BH
TINIT
= Rossby No. which controls whether
advection is needed to account for
in the equations of motion, zero or
nonzero
= Number of hours between climatical
data, generally it agrees with hour-
ly loop
= EST when the simulation run starts
= Density of water = 1.0
= 0.002 (AHREF)4/3, AHREF = refer-
ence depth in cm
= Same value as A
= 0.002 (ALREF)4/3
= Initial temperature, a constant for
the whole domain
A deck of cards or data file, called AMATN, to specify
matrices MAR, ELEV, MEX, MEY, MX and MY. It is re-
quired only if LN =1.
NBLOK
TOTT
DT
EST
AMPLIT
PHASE
DPHASE
PERIOD
= To reset data block number
= To reset total time in sec if
necessary
= To reset time step AT if necessary
= To reset EST
= If tide changes
- New phase lag
= New phase lag per AX
= If tide has different period
36
-------
TABLE 5. Input Data for ANCMN
(Continued)
Input
Card
Content
Symbol
Definition /Value
TSHIFT
= Time shift of the new tide
#20
A deck of NCY cards, each card contains six hourly
weather data:
TA1R
HUMID
WIND
WDIR
SRAD
TSURF
- Air temperature, deg C
= Relative humidity in fraction of unit
= Surface wind speed, cm/sec
- Wind direction, from which direc-
tion wind is blowing
= Gross solar radiation, BTU/Cft2 day)
= Ambient surface water temperature,
deg C
37
-------
SECTION 7
PLOTTING PROGRAM
This section presents the descriptions of main plotting program
PLOTMN and its subroutines. As mentioned earlier, the plotting and
analyzing of the results constitute Part 2 of the three-dimensional, free-
surface model. Here, the tape containing the hourly results of simulation
is the main input. The control data cards help the user to choose the hour,
the plot and the comparison. The output is in a plot tape which is used
by a CALCOMP plotter to generate plots.
DESCRIPTION AND FLOW CHART OF PLOTMN
The purpose of PLOTMN is to read in the measured and for calcu-
lated temperature fields and to plot the isotherms. In addition, the cal-
culated velocity field is plotted in crplanes (craxis), in certain x-cross
sections (y-axis) and in y-cross sections (x-axis), and the surface
elevation field is plotted in contour plots.
Since the main input is the data block from Part 1, the symbols
and their dimensions agree with those that appear in ANCMN. In order
to store the IR scanned surface temperature at four tidal stages for later
comparison with calculated results, a TIR (IM, JM, 4) matrix is added.
It is to be noted that temperature fields are interpolated at half-grid
points from the mosaic IR images by hand. Several data cards contain-
ing the quantities to be used in plot caption are read in as well as con-
trol cards which assign the data block to be used (NPLOUT) and the plot
to be done (IPLOT). A flag NSTAND is to assign which measured tem-
perature field is to be compared with the calculated. The algorithm for
PLOTMN is simple and straightforward since no complicated calculation
is involved. The only calculation is to compute average deviation of
calculated temperature field from measured temperature field at the same
tide stage. The average deviation is given by
.Z. (TB(i, j, 1) - TIRfi, j))2
X2 = LJ . ;
Z (i, j)
• *
M
where TB is the calculated temperature while TIR is the measured tem-
perature by infrared, and .£.(i, j) is the number of surface half-grid
points in the domain. ''
38
-------
The isotherms of TIR and TB are the plots of main concern, as one
is to be compared with the other in order to assess the accuracy of the
model in predicting the hydrothermal dispersion of waste heat. Occasion-
ally, the water surface contour, the surface current and the velocity
profile are also of interest, as they depict the circulation set up by the
tide and the wind in conformity with the configuration and bathymetry
of the waters. The surface elevation contour is done by the subroutine
ECHKON which is also used for plotting isotherms, but care must be
taken to assign the contour values, since the surface elevation changes
with tide; thus, the hard copy printout of surface elevation ETA must
be consulted in order to choose the right contour values. The surface
current is done by PLOTUV, while the velocity profiles in ](y)-cross
sections and i(x)-cross sections are plotted by PLOTUW and PLOTVW,
respectively. It is noted that the velocity scale for horizontal components
is different from that for vertical component. The ratio is to remain the
same as the ratio of horizontal to vertical length scale. Therefore, the
velocity profiles are exaggerated in vertical direction; however, since
the horizontal velocities of the top level (a = 0) are plotted right on the
water surface, they show free-surface profiles too. Note that the j-sec-
tions and i-sections are fixed by given I- J- values. They are chosen
by the user's concern about the effect of plan-form configuration and
bathymetry on currents.
The flow chart for the main program PLOTMN is presented in Figure
4, and the subroutines are listed in Table 4 for quick reference. It is
to be noted that several CALCOMP subroutines are also listed.
SUBROUTINES
ECHKON
This subroutine calls subroutines CONL1N and ENDER. This program
was developed by the National Hurricane center for map contouring using
CALCOMP or MILCO-type plotter. ECHKON is the entry point for the
package. It scans the rectangular gridded scalar field, such as surface
temperature or surface elevation, to determine where to start a new con-
tour. Each contour is done in a loop. Inside the loop the subroutine
CONLIN is called to do the interpolation and drawing, and ENDER is
called by CONLIN to label each contour of the same contour value. The
exit of contour loop in ECHKON is made when the final contour value
increased by increment has reached the specified maximum. Here,
ECHKON is used for contouring TlR(i, j, N = 1, 4), TB(i, i, 1) and
ETAfi, j).
PLOTUV
It computes the horizontal resultant velocity from components u and
v at each level. In general, there are four levels corresponding to k = 1
to 4. However, for the present problem, only the surface current is of
interest; therefore, KPLOT is set to 1.
39
-------
Read IPLOIR, IPLOCM, NIR, KPLOT, NCY
Read Contour Values for TIR and Caption Data
Read Control Vectors 1PLOT, NPLOUT, NSTAND
Read Contour Values for ETA and Plot Size XL (in)
IPLOIR = 0
N1R Loops
Yes
No
ECHKON: Plot Isotherm for Measured Temperature at Each Stage
IPLOCM = 0
NCY Loops
Yes
READT: Read in Data Block from Tape
Check Whether NPLOUT = 0 and NSTAND = 0
No
Point by Point Comparison of Computed T with Measured T
IPLOTH) = 1
Yes
No ,:
IPLOT(2) = 1
No
IPLOT(3) = 1
No
IPLOTC4) = 1
No
IPLOT(5) = 1
No
* PLOTUV: Do UV Plot
* PLOTUW: Do UW Plot
J
PLOTVW: Do VW Plot
ECHKON: Do r\ Contours
T
ECHKON : Do T Contours
Figure 8. Flow chart for plotting program PLOTMN and its subroutines
-------
TABLE 6. Subroutines Required in Main Plotting Program PLOTMN
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
U
15
16
Name
FACTOR
PLOTS
PLOT
ECHKON
READT
PLOTUV
PLOTUW
PLOTVW
CAPTN 1
CAPTN2
CAPTN 3
CAPTN 4
CAPTN 5
CAPTN 6
CAPTN 7
CAPTN 8
Description
Are CALCOMP Subroutines
Subroutine for plotting isotherms
and contour of surface elevation;
also draws the domain
Same as READT in ANCMN, for
read in- stored data from tape
Plot U, V on different layer, to
select the layer one can choose
KPLOT value; normally it is the
surface layer
Plot U, W on chosen J sections
west-east across the bay
Plot V, W on chosen 1 sections
south-north across the bay
Write common heading on each
diagram
Write title for UV Plot
Write title for IR-T isotherms
Write deviation of calculated
temperature from IR-T
Write tidal stage on the
diagram
Write title for UW plot
Write title for VW plot
Write title for surface eleva-
tion contours
Remark
In UCS * ACALCOMP
of UNIVAC 1100
Calls subroutines ENDER,
CONLIN, OUTLIN
Calls subroutine OUTLIN
J section once chosen
is fixed
I section once chosen
is fixed
-------
TABLE 6. Subroutines Required in Main Plotting Program PLOTMN
(Continued)
No.
17
18
19
20
21
22
23
24
25
Name
CAPTN9
ENDER
CON LIN
OUTLIN
FIT
VECT
AROHD
NUMBER
SYMBOL
Description
Write title for calculated surface
isotherm
Write contour value to label
contour
Called upon to draw individual
contour
Called upon to draw outline of
the computational domain
Fit a parabola to three point
used in PLOTUV to interpolate
water depth
Calculates the velocity and
calls AROHD to draw the vector
Are CALCOMP subroutines,
called upon in various sub-
routines used in PLOTMN
Remark
Subroutine of
Subroutine of
Subroutine of
and PLOTUV
Subroutine of
Subroutine of
In library file
ACALCOMP of
1100
CONLIN
ECHKON
ECHKON
PLOTUV
PLOTUV
UCS *
UNIVAC
-------
PLOTUW
It computes the resultant velocity based on components u and w.
As mentioned, the vertical and horizontal components cannot be made to
the same scale; therefore, the velocity profiles are distorted. The j-cross
sections on which the velocity is computed and plotted are preassigned in
the subroutine itself. For the present problem, plots are drawn for j =
4, 8, 12. All three plots are done on the same sheet.
PLOTVW
It computes the resultant velocity based on components v and w,
and plots the velocity vectors on the vertical cross section along y-
direction. The i values are likewise preassigned in the subroutine.
Here plots are drawn for i = 4, 8, 12 and are on one sheet.
INPUT DATA
Table 7 lists the data to for PLOTMN. Free format is used generally.
The total input consists of data cards and data files, but in the list,
the input data have been numbered in the order of their appearance,
regardless of whether card form or file form is used.
43
-------
TABLE 7. Input Data for PLOTMN
Input
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
Card
Content
5
N1R
NIR
NIR
NIR
NIR
NIR
NIR
NIR
NIR
1
5
Symbol
IPLOIR
IPLOCM
NIR
KPLOT
NCY
TL(I)
TH(I)
TI(1)
TAI(I)
QUD
Q2(i)
Q3(I)
Q4(I)
Q5(I)
Q6
IPLOT(l)
; Definition/Value
= 0, if no isotherm of IR obtained tempera-
ture is desired
= 1, otherwise
= 0, if no isotherm of computed temperature
is to be plotted
= 1, otherwise
= Number of IR obtained temperature fields
= Number of the o-leve! to be plotted
= Number of simulation hours
= Array of min. contour values for TIR
= Array of max. contour values for TIR
= Array of increment values for TIR con-
touring
= Array of ambient temperature, assigned
to out-domain points
= Array of EST time, for caption
= Array of wind speed values, for caption
on TIR plot
= Array of wind direction values, for cap-
tion on TIR Plot
= Array of air temperature for caption on
TIR plot
= Array of discharge temperature for cap-
tion on TIR plot
= Discharge flow rate, for caption in general
= Array of integers to assign the plot desired
44
-------
TABLE 7. Input Data for PLOTMN
(Continued)
Input
#13
#14
#15
#16
#17
#18
#19
#20
#21
Card
Content
NCY
NCY
NIR
NIR
NIR
1
2
Data File
Data File
Symbol
NPLOUT(I)
NSTAND(l)
ETAL(I)
ETAH(I)
ETAINT(I)
XL
DX, DY
1, J
TIR(I,J,N)
Definition /Value
= Array of integers to assign the hour de-
sired to be plotted
= Array of intergers to assign the TIRto
be compared with
= Array of min. contour values for ETA
= Array of max. contour values for ETA
= Array of increment values for ETA
contouring
= Plot size in x-direction (in)
= Spacing in x- and y-direction (cm)
= The (i, j) value of boundary nodes, used
for drawing domain's boundary
= To read in the IR measured temperature
fields of different tidal stage, files like
HDATA, EDATA, LDATA, FDATA
45
-------
REFERENCES
Carter, C. V. The Hydrothermal Characteristics of Shallow Lakes. Ph.D.
Thesis, Department of Mechanical Engineering, University of Miami,
Coral Cables, Florida. December 1977.
Dunn, W. E., Policastro, A. J. and R. A. Paddock. Surface Thermal
Plumes: Evaluation of Mathematical Models for the Near and Com-
plete Field. Part One and Two. Energy and Environmental Sys-
tems Division, Great Lakes Project, Argonne National Lab., May
1975.
Lee, S. S. and S. Sengupta. Three-dimensional Thermal Pollution Models
Volume I = Review. Department of Mechanical Engineering, SEA,
University of Miami, Coral Cables, Florida, 1978.
Tuann, S. Y., Lee, S. S., Sengupta, S. and C. R. Lee. Application
of Three-dimensional, Free-surface Model to Shallow Tidal Waters.
Proceedings of the Third International Symposium on Computer
Methods for Partial Differential Equations, Bethlehem. June 1979.
-------
APPENDIX A
EXAMPLE CASE
INTRODUCTION
The present model has been successfully applied to thermal disper-
sion study at Anclote Anchorage. The Anchorage is located on Florida's
Gulf coast and north of St. Petersburg (Figure 9). It is a relatively
shallow passage between the mainland and the Anclote Key. A series of
barrier islands separates the anchorage from the Gulf of Mexico. Through
natural channels to the north and south of the Keys, the Anchorage has
an unrestricted exchange of water with the Gulf.
The Anclote power plant operated by the Florida Power Corporation
has two 515 MW, oil-fired, electrical generating units. Once-through
cooling water is drawn from the Anclote River through a man-made canal.
The six pumps delivering a total of 1,990,000 gpm (125.6 m3 /sec) are
designed to raise the water temperature 2. 8°C above the ambient. The
heated water is discharged back into the Anchorage through the dis-
charge canal with a dredged submarine extension. The designed total
flowrate is approximately 53 times the long-term average flowrate of the
Anclote River. At present, only Unit 1 is operative while Unit 2 is
still pending permission. That is, the present flowrate is 62.8 m3/sec
(995,000 gpm).
The principal driving mechanism for current circulation is tidal
flux at the north and south entrances of the Anchorage. The tide is
predominantly semidiurnal with mean range of 2 feet. Earlier measure-
ments of temperature and salinity indicated the currents flow in and out
through both entrances; however, the exchange appears to be stronger
in the south than in the north, or the currents generally flow north
during flood tide and south during ebb tide. Moreover, the wind plays
an important part too. The surface current direction depends on wind
blowing at wind speeds exceeding 15 mph.
The model as applied to the Anclote Anchorage shows its capacity
of considering the effects of geometry and bathymetry, spatio-temporal
variation of the free surface, various boundary conditions, including
tides of different phase and range, surface heat transfer based on equi-
librium temperature concept, and changing meteorological conditions. In
addition, turbulence has been considered by using the eddy transport
concept, and the effects of baroclinicity have been included. Again, the
user should refer to Tuann et al. (1979) for the general review, mathe-
47
-------
Jacksonville
Daytona Beach
Anclote
Anchorage
Anclote R.
Tarpon Springs
Tampa
Melbourne
GULF OF MEXICO
.JWest
Palm
Beach
/
Lauderdale *1
•| Miami
Figure 9. Anclote Anchorage location in the state of Florida
-------
matical formulation, finite difference implementation and numerical method
of solution.
The finite difference grid work is three dimensional and is designed
to cover the area of interest. The grid size Ax x Ay x Aais that the
least number of vertical layers is four. That is, a Mayer, 5-level,
vertical partition is a reasonable choice for the present generation of
computer. The grid work is allowed to orient away from north-south,
east-west system, but in general, the x-axis of the grid system aligns
with west-east, and y-axis with south-north. Thus, the subscript i
increases eastward, while j increases northward. The z-axis is chosen
upward from mean water surface, while the subscript k increases down-
ward from the water surface. That is, the k = 1 level is the free
surface which is continuously changing, while k = 5 is always the bottom.
For the study of Anclote Anchorage, the grid is 16 x 14 x 5 with
five levels, each with 224 nodes for a total of 1120 nodes. The grid size
used isAx=Ay = 417m. Depths off the natural coastal line are read
from the Coast and Geodetic Survey chart. The maximum depth is 4
m at the south end of Anclote Key. It was found that gravity waves
were the dominating consideration with regard to the maximum allowable
time step At. A 15 second magnitude of At was found to work well for
the present grid system.
Numerical results were obtained with the University of Miami Com-
puting Center UNIVAC 1100 computer. The time histories of the three
velocity components, (u, v, w), the surface elevation, n/ and the tem-
perature, T, for a 24-hour simulation period were obtained with about 90
minutes of computer time in most cases. This is a time ratio of about
16:1 (the ratio of real time to computer time).
PROBLEM STATEMENT
Florida Power Corporation has a fossil fuel power plant situated at
Tarpon Springs on the Anclote Anchorage. The discharge rate is 62.8
m3/sec of water at temperatures, in general, 2. 8°C above the ambient
water. On June 19-20, 1978, a team carried out an in-situ data acquisi-
tion mission to gather field data on temperature and current. At the
same time, four flights by NASA/KSC were undertaken to obtain tempera-
ture by remote sensing method. These four flights were intended to cover
four different tidal stages in the Anchorage. The remotely sensed data
were processed into digicolor film. The in-situ measurement of surface
water temperature at the time when the airborne IR data was undertaken
provides a reference for IR temperature. With this reference, the iso-
therms were drawn from the digicolor film. The in-situ current measure-
ment data were used in plotting current of different depth. The ground
measured temperatures were used to draw surface and subsurface iso-
therms.
Once the model has been verified for its versatility and its capacity,
49
-------
U1
o
II
1O
\
Figure 10. Grid work for the Anclote Anchorage
10 i
-------
and in particular, to the prediction of hydrothermal development in well-
mixed shallow coastal waters, the model was run with actual tidal and
meteorological data as input, but the initial temperature condition either
could be that of uniform state, that is to assume the power plant start
impulsively, or could be that of an IR temperature field, that is using
IR data as the initial temperature field. The demonstrative runs were
carried out to simulate the hydrothermal situation for several days. The
predicted current fields are verified against the in-situ measured currents,
and the predicted isotherms are verified against the IR-obtained surface
isotherms and the in-situ measured subsurface isotherms.
CALCULATION OF PARAMETERS AND INPUT DATA
In this section, the specification grid system, reference and physi-
cal parameters, tidal and meteorological data, discharge and intake velo-
cities, ambient and discharge temperatures will be presented. The actual
calculation of some input data quantities is carried out in detail for the
purpose of demonstration.
Grid System
The map indicating the exact locations of power plant, intake and
discharge outlets, and the sounding of the Anchorage was used to deter-
mine the size of the domain, the grid system to cover it, and the arrange-
ment of intake and discharge points in the system. So, a domain of
about 6 km x 5 km covering most of the Anchorage was used. A grid
system of 16 x 14 was selected in the horizontal plane. The size of the
grid cell is Ax = Ay = 416.7 m; this size and the grid orientation has
made the intake and discharge outlets to the open water fall in with
nodes respectively, and the intake and discharge channels have 45° and
315° orientation respectively. The depth was specified according to
sounding chart. There are five nodes in the vertical direction. This
gave a total of 16 x 14 x 5 nodes. The coordinate system and grid
work are shown in Figure 10. The MAR matrix, bottom elevation matrix
and four additional marker matrices are stored in data file AMATN.
Reference Quantities
L: Reference length = ALREF = Maximum Length = 6 km
BH: Horizontal eddy diffusivity = 0.002L4/3 =
0.002 x (600,OOQ)4/ = 100,000 cm2/sec
BV: Vertical eddy diffusivity = 0.002H4/3 (H = maximum depth) =
0.002 x (360)H/J = 6 cm2 sec
For shallow well-mixed tidal water about three times the calculated
value was found suitable. Here, we use BV = AV = 20 cm2/sec, i.e.
Turbulent Prandtl No. = 1
51
-------
RR: Density of water = 1.0
THETA: 0, since the grid system orients along North-South
RWEX: 1.0
ROSSBY: 0.0, that is, based on test run, it was shown that the nonlinear
inertia terms can be safely neglected to save computation
TIN1T: Initial uniform temperature or reference temperature = 20 deg C
Calculation of Time Step, DT
In order to determine the time step, DT, the stability criterion has
to be followed, which is done as follows.
DT <
DX
41760
= 50 sec
'J 2gH " j 2x^9 80X360
About 1/3 of this value is reasonably safe to use. Here we use DT = 15 sec.
Calculation of Intake and Discharge Velocities
1. Flowrate = 995,000 gpm (from power plant physical data)
= 62. 8 m3/sec
o
= 62. 8 x 10 cm3/sec
2. Both intake and discharge canals are at 45° from N, therefore
31.4 x 10 cm3/sec is crossing the Ax and Ay at the point of
intake and discharge.
3. The average depth at intake and discharge is approximately 4' or
122 cm, and the width is Ax = Ay = 41760 cm, so the cross-sectional
area is 41760 x 122 cm2.
4. The average velocity is:
ave ave
31.4x10
41760x122
5. The velocity profiles are assumed as shown.
= 6.163 cm/sec
1
2
3
4
5
7.0 cm/sec
52
-------
6. To allow for canal storage during tide change we assume the intake
and discharge velocities to be sinusoidal, i.e.
Intake: V3(14, 4, k) = 7 - 3 x cos[y|~(EST - 7.625)]
U3(15, 3, k) = V3(14, 4, k) for k = 1, 2, 3, 4
Discharge: V3(14, 8, k) = 7 - 3 x cos[~%EST - 7.5)]
I ^« J
U3(15, 8, k) = -V3(14, 8, k) for k = 1, 2, 3, 4
where 7. 625 and 7. 5 are taken to be the phase shift which takes
into account the time to travel from the south end of Anclote Key
to the concerned point.
Calculation of Tide on June 20, 1978
Simulated diurnai tide is shown in Figure 11, where
1. Period = 12. 5 hr
2. Stage = short term average sea level - MSL = 48 cm
3. Amplitude = f short term average tide range = 65 cm
4. Time shift = 7.125 hr
i.e. at 7.125 a.m., June 19, 1978, the tide at the south end of
Anclote Key was zero.
5. W - E lapse = 0.014 hr/DX
Wave propagation speed C = J2gh = J2x 980x360 = 850 cm /sec
(H = 360 cm is the maximum depth of the Anchorage.)
The time needed to travel one grid distance is
DX 41760
C 850
= 50 sec = 0.014 hr.
We use 0.014 hr per DX for phase shift in W - E direction and the
imposing tide at the south entrance is
n = 48 + 65 sinfr—rfEST - 7.125 - 0.014(1 - 1)]
5 I £*• D
I - grid no. in W - E direction.
6. S - N lapse = 0.15 hr.
Distance from south entrance to north entrance is about 543,000 cm,
53
-------
U1
•Tide at south end of Anclote Key
Simulated tide for calculation n= 48 + 65 x sin
Average Level
Figure 11. Semidiurnal tide for June 19-20, 1978 at south end of Anclote Key
-------
Time for wave to travel this distance is 300° = 0.18 hr. We take
0.15 hr as phase difference between the south and the north boun-
daries; there, the imposing tide at the north entrance is
r, = 48 + 65 sin[T|^r(EST - 7.125 - 0.15 - 0.014(1 - 1)]
n I &• o
Calculation of Anclote River Flowrate and Temperature
1. The distance traveled from South Anclote Key to Tarpon Springs is
20 DX. We estimate a time lapse of 0.5 hr to account for the re-
tardation due to buffering effect of river storage and Anclote River's
natural outflow.
2. The average current is estimated to be 20 cm/sec, therefore, we take
U3(16, 1, k) =20 costJrVEST - 7.625)]
I Z* D
V3(15, 1, k) = -20 cos[y~(EST - 7.625)]
for k = 1, 2, 3, 4.
3. The surface elevation at Tarpon Springs is to be calculated.
4. To be in accordance with given velocities at Tarpon Springs, the
temperature there is also assigned and its value has a 24 hr period
instead of 12.5 hr. This temperature is
T3(15, 1, k) =26.9 + 0.5 sin[-~(EST - 12)]
where the 12 hr shift is to make the peak temperature occur at 1800.
Thus, the water in and out at Tarpon Springs has a temperature
ranging from 26. 4 (before dawn) to 27.4 (late afternoon).
Discharge Temperature and Gulf Water Temperature
1. On June 19-20, 1978, the recorded discharge temperature at daytime
is in the range of 29.3-30.3. To account for the further drop of
discharge temperature due to cooler ambient temperature at nighttime,
we assume a sinusoidal variation of discharge temperature with diurnal
period.
2. Discharge temperature is estimated
T3(14, 8, k) =29.4-1-0.4 sin[|j(EST - 12)]
therefore, the highest discharge temperature of 30. 3°C occurs at
55
-------
6 p.m. and the lowest (29. 3°C) at 6 a.m.
3. The Gulf water outside the Anciote Anchorage as well as the atmos-
phere is sink to the heat disposal from the power plant; therefore,
the boundary condition on temperature at the north and south en-
trance is not considered as adiabatic as in normal case of far-field
thermal pollution problem. Instead, we specify the outside-anchorage
ambient temperatures. Again, they are 24 hr periodic and their
values should be in accordance with the measured temperature in the
same neighborhood. Here in compliance with measured data, we use
Tgb = 27.0 + 0.2 sin[||(EST - 12)]
for both ambient temperature outside the south and the north boun-
daries.
EXECUTION DECKS FOR CALCULATION AND PLOTTING RUNS
i
The following execution decks are for use in UNIVAC 1100 computer
at the University of Miami. These may have to be modified if a different
computer is used. The programs and subroutines used in these runs are
all compiled and stored in the file.
Calculation Run
First Run—
1. 0 ASG, A FILENAME.
The file 'FILENAME1 is assigned for the run.
2. 0 ASG, T 8., 16N, TAPENAME1
A tape file names '81 is being assigned. The tape is 9-track, and
the reel number is TAPENAME1.1 ~
3. 0 PRT, S FILENAME.ANCMN
The main program 'ANCMN1 is printed.
4. 0 PACK FILENAME.
'FILENAME' is packed together, eliminating the space left by deleted
elements, and thus, condensing the file.
5. 0 PREP FILENAME.
Prepare an entry point table for the 'FILENAME.'
6. 0 MAP, S
Combines relocatable elements to form an executable absolute element.
7. IN FILENAME.ANCMN
8. LIB FILENAME.
56
-------
9. END
10. 9 XQT
11. 3
Case number (NCASE).
12. 1
First run (LN).
13. 1
Store the calculation results on to tape 'TAPENAME11 (KSTORE).
14. 1
Calculate velocities (KVEL).
15. 1
Calculate temperatures (KTEMP).
16. 0
Specify numbers of the latest hour of the last run (MBLOCK).
17. 13
Number of hours to be simulated (NCY).
18. 3600.
Print the results at each 3600 seconds (TPRT).
19. 41760., 41760., 0.25
Grid sizes in x-, y- and cr-direction (DX, DY, DS).
20. 15.0, 0., 60., 0.08, 0.005, 12.5, 7.125
Specify time step, the difference of average tidal level and mean
water level, amplitude of tide, north-south phase lag, east-west
phase lag per DX, period of tide, and time shift (DT, STAGE,
AMPLIT, PHASE, DPHASE, PERIOD, TSHIFT).
21. 0.66E-4, 48.8
Coriolis factor and the difference of mean water level and mean sea
level (FCOR, STAGED.
22. 0.
The y-axis coincides with North (THETA).
23. 8.E5, 0.
Horizontal reference length and Rossby number (ALREF, ROSSBY).
24. 1.
Number of hours between climatic data (RWEX).
57
-------
25. 7.
Simulation run starts at EST 0700 (TZERO).
26. 1.026, 20., 20., 50000.
Specify water density, vertical eddy viscosity, vertical eddy diffu-
sivity, horizontal eddy diffusivity (RR, AV, BV, BH).
27. 27.0
Initial water temperature (TINT).
28. 0 ADD FILENAME. AMATN
Input data file 'AMATN1 for specifying grid matrices and initial
water depth.
29. @ ADD FILENAME.FDATA
Input data file 'FDATA' for initializing temperature distribution.
30. @ ADD FILENAME.C2007
Input data file 'C20071 of climatic data.
31. @ FIN
Terminate this calculation run.
Sebsequent Run—
1. @ ASC, A FILENAME.
2. @ ASC, T 7., 16N, TAPENAME1
A tape File named '7' is being assigned; the reel number is 'TAPE-
NAME!.' This tape was used in the first run for storing the hourly
calculation results for 13 hours in 13 blocks.
3. @ MOVE 7., 12
Move TAPENAME1 to the 13th block which is the last hour result of
the first run and is going to be used as input data for this subse-
quent run.
H. @ ASC, T 8., 16N, TAPENAME2
A new tape named 'TAPENAME21 is assigned to store the calculation
results of this run.
5-13. Same as the cards 3-11 of the first run.
14. 2
Continuing run (LN).
15-17. Same as the cards 13-15 of the first run.
18. 13
The last hour of the First run is 13.
19-29. Same as the cards 17-27 of the first run.
58
-------
30. Same as the card 20 of the first run. If new tidal data is needed,
this card has to be changed.
31. 9 ADD FILENAME.FDATA
If different I'R temperature distribution is needed, FDATA has to
be changed.
32. @ ADD FILENAME.C2007
The data file C2007 has to be changed since the weather condition
will be different from the first run.
33. ©FIN
Plotting Run
1. 9 ASG, A FILENAME.
2. 9 ASG, T 7., 16N, TAPENAME1
A tape file named '71 is being assigned. 'TAPENAME1' stored the
results of the calculation run.
3. @ ASG, T 11., 16, TAPENAME2
A tape file named 'IT is being assigned. The tape is 7-track, and
the reel number is TAPENAME2.1 This is used for plotting tape.
4. 9 PRT, S FILENAME.PLOTMN
5. 9 PACK FILENAME.
6. 9 PREP FILENAME.
7. 9 MAP, S
8. IN FILENAME.PLOTMN
9. LIB FILENAME.
10. LIB UCS*ACALCOMP.
Call 'CALCOMP1 plotter library.
11. END
12. @ XQT
13. 1, 1, 1, 1, 6
Plot IR isotherms and computed isotherms; only one IR temperature
field is to be plotted. Plot isotherms on the surface level only,
and run for 6 simulation hours (IPLOIR, IPLOCM, NIR, KPLOT
NCY).
14. 27.5
59
-------
Minimum contour value for IR plot (TL).
15. 30.0
Maximum contour value for IR Plot (TH).
16. 0.75
Increment of contour value for IR plot (TI).
17. 27.0
Ambient temperature (TA1).
18. 13.
EST for caption (Q1).
19. 358.0
Wind speed in cm /sec for caption (Q2).
20. 110.
Wind direction for caption (Q3).
21. 29. 4
Air temperature for caption (Q4).
22. 29.5
Discharge temperature for caption (Q5).
23. 62.7
Discharge flowrate in cm3/sec for caption (Q6).
2*. 1, 1, 1, 0, 1
Plot UV, UW, VW velocities and isotherms (IPLOT).
25. 0, 0, 0, 0, 0, 1
Plot the results at the 6th hour (NPLOUT).
26. 0, 0, 0, 0, 1, 1
Compare the deviation of computed temperature from IR tempterature
(NSTAND).
27. 0.0
Minimum contour value for surface height (ETAL).
28. 0.0
Maximum contour value for surface height (ETAH).
29. 0.0
Increment of contour value for surface height (ETAINT).
30. 6.
6" plot size in x-direction (XL).
60
-------
31. 42000., 42000.
Grid size (cm) in x- and y-direction (DX, DY).
32. 9 ADD FILENAME.APER1
Specify boundary nodes for plotting the boundary.
33. @ ADD FILENAME. ED AT A
Input data file 'EDATA;1 specify IR temperature distribution at
ebb tidal stage.
34. @ FIN
Terminate this plotting run.
The input data file AMATN, FDATA, C2007, APER1 and EDATA
are listed in the Appendix B. If these data are not stored in the
'FILENAME,1 card decks have to be substituted.
61
-------
GDOD *as a* IB 20 20 SB x as o- CD ao CD a? 02 X CD a? a* ffl 20 a& CD
oooanoc ooc
o
o
C
a>
N)
to
»«J
00
-------
>lP»»J.
r*NSr*NNNNr*<\i*i<^^
;X«S£i*«i«M^
C5——""-"«"'""""rf>^f^'>*Mi>j'v'p>"N'W"'rlmmMK"n""*"*1* »»»»»» »»» »»»»»»»»» »uitr
.... . ... .•......•««•••«»««•«•«••»§«••••««•««••«••••«•«•«•
xx« a CB****^ **««*»*««*««««»««*'«*««« ««**a*«cr*«* OP ~-»»—• o^a-^xOira-1"^ — e^w-aa**"'^^ oa w^ui"^— r
0-5. OO- O CCCCOOOC CCC OOOC O OCC OQOO C COS OCd C3O COOOCC C
.••..••,.•.•••«»••••••••••••«••••••••••••••*•••••••••«•••••••••
*^*c «fc" «o^ ^^-^h"^^ ^•^•'i*^»^fi*^^«^-^"^r»rfcPta^i/iuTJiinm jo^^o*-avOf»^f-^»~-f~f»f»'"f"«iB
P^*«c35fc «^*oirt* ^*^ *»O ^^"awi »***CM.^n^fl0^ot/t 9 r>j ^c^ O5^>cm
'"mi*irMrMf«Mrjr<4txirgM(M««"-«-<-"»"-«1—CDCceDaaoc ^^o-^
— wwr^«WMi^l«ii^i»>i^ir' ww»ivi»imKi»ii«»"^«-iKim~ir«nrjPg/v(vj(\j
*^ • . ««•»•»•»•••., •••••••••••••••«ti»»« •••••••••••••••
f*1i^p**^«».»i*.w»f*. p*.f».»«* i*. *«.*.^» ffcfc.fc.fc.fc.fc.fc.fc*^'*- rfcffc,fc.^ffc,ffc>ffc r-ffc ^ fc-fc»^»*» ^^fc.^. fc.fc-fc.fc.pfc^rfcffc^^**^-
P P. fMrs.fviCr l^^-^.f^^lr^lSf^^^'^J^Jrw^wrg^Jpv^<^l<^l^rJ^J^l^^lrvrJ^^g^l^.^'^Jp•J^J^JruP•lP«r^l(^J^vJ^
* ->«.»!«« 0'Ciroa».->-"«-f«.'ryj>u-irkr jiv--"m jio*)^ -0.0 »o jj^^o^
Nrvfv.'-.r r--«p rv^»J(vrjrvipj^ptir.cvirjrjrjf
o - •• »* »cC""""p>'(N''r1'*l'1i»
•••«••«•••«••«••••••••
i^i<^.p. p. ^4^^p.p»•^•^fc1•""l ">«fc-fc-i>n«-%«n
*><1'J —a o- o
•••••••••••••••• «•• ••«••••«•••
Mf«1"IOKIfn«<(KIW»-l«'n«Ofc1
SSS 52. S.--Z. ,.-»•--.-.-.— •«-•«.-•-" — -»•—-•-«•«-•••-••-•-•-•••--•
(Mwim -i-i»»^i/ii/» vn^ jjOfc.fc-f»«rito'i!--o>oaac3™
fcfc*fc. 0 TO QCSC ?'9>C^CC~''VH w^V^ «.*«.«..••..•»«.•••••*•••«•
••••••••••••••••*•• fc.fc.fc, fc.fc.fc.fc.fc.fc.fc.fc.p.fc.fc.fc.fc.ffc.ffcffcfc.fc.ffcfc- oaocao «l
*•*•«•••»•««»««••««• ^^p«a oaa na csn oo- o-CT«
"lf*1 *^r4rj*NPj (N/si rg rjr^^ * ^..*»* M , • i ' ^,^,^1 frtnorfc^ »n*"W fc> ^> fc^(*T|*^ W •• I*" ••- rff *"!
63
-------
as ones ccc5 aocOeQcoeCcDaDco C W. C ^ Ou7 C3 u^ — *•" C
64
-------
««t a> ce as «o«
•««»
aaooc oc oaoao aanooaaaaco
rjTv. rvj rvirv.(Nj
65
-------
i'Z
'£!£
Z'S
•bOl
•I0£
£'i
•ZOE
9'8
•ODE
i'6
•962
S'OI
I'ZI
8^9Z
b'ZI
•ZZi
E'OS
•9E£
6*1 E
•Bbt
1*81
*****
f£
•wuf
z-s
•86Z
'662
9*i
•DUE
b'B
Z'6
i-Stz
•£67
8*11
•b6Z
B- bl
b*6t
*9ZE
B*SZ
*bb£
b'UZ
*iS£
O'£l
*******
0*1
*60i
•86Z
8-i
9*8
U*6
9'6
*i?6c
b'OI
M'^V'
*SU
8*£ I
*££«.
/. 'bl
•8St
I'll
•££
6'6
**'/ B
****** ********5'9
**************•£(,
********* *****h*Z
•iZE 'IZf M£k.
O'E
•ZIE
8-S
•£0t
I'i
' ICE
Z°8
•I OE
9'6
•00£
B'OI
*S6Z
9'I I
•9CZ
£'£ I
b*ei
•S9Z
O'SE
•ZZI
D'bS
*9£E
Z'bt
•8bt
b*M
1 *t
*iO£
e's
b'Jt
*66Z
5*8
•OOt
r *6
•B6Z
Z*OI
*S6Z
ZMI
•Z6Z
O'EI
*£6Z
Z*9l
*6
****** ********i*9
************** '£8
*** ******** #««S'Z
•9£E
•hit
• 16Z
S'b
•96Z
•9BZ
b'6
B'B6
•SIE
0*8
O'l
•9
7'9
I's
* L 6
9' b
•iB
'SEE
t'E
•E IE
B;S
9*6
*16Z
9-01
•98Z
S'OI
b'DI^
S'QI
•982
S'OI
•S6Z
8-6
•blE
6*9
•9££
ft
•E
9'S
6b
S'b
•96
E'Z
b' (
•ozt
s*a
•bOt
Z' II
6'6
6'6
•bit
I'OI
•UiZ
ft,
•lit
I '«
L * S
*6iZ
9'Z
•9EI
E '
MZ1
•9bl
S'Z
************* »»*»**»*»*»* ***»»**»*»«»«»*«*'(iUf "jir
»**»»*»,»»»#»»*»*»***»**«*«**** *****«*«***S'S ft' i rS3&*
* J I J »****»******»*****»******»***(il *(bl * Zt 1
0*^1 **«» <*«*» »»»***«*»*»»»»* ****i • J I I'SI 9'1; ;S3rtA
'1()Z '9fZ «»» + »**»***»»*• Z U{ *i£i *»**«»»***»»»*
Z'»i h'b
•08Z '68Z
n * ; E'S
*/iZ *bBZ
i *H 0'9
•biZ 'OVZ
c'M.I S'/.
B'OI 9' 6
•f.bt 'V.EZ
b' h 9* It
*Ht? 'tec
9*4 H " 0 I
•IZZ 'bUZ
t ' !i b ' 0
' 118 I ' b8l
b • li 9 ' «
"•SI '£91
6't Z'9
•Cat '61 I
li ' i 0 ' i.'
9; 1
9M
I'b
•69Z
6'b
t * 9
•6U
I' 11
" to t
z-ii
•661
V It
• b8 I
6' I I
•'.,91
C'6
* lj 1 I
b' li
******»*<•************* 00 I
***************** v**el* £
9' I
£'(.
•101
9'£I
•9BZ
Z'ZI
•8iZ
6'01
•nz
0' II
£*1I
*U2
8*01
1*6
•9iZ
9*9
•I8Z
b'£
•b£Z
Z-
• zz i
b'Z
*08Z *SiZ *********************
b'Z 6'i **»*»*»*»»»»»»»*»» **» r SJ^A
E'S 8'P /'b " 9'b £'9 rS3«A
'/bZ '/ b? 'SEZ '61Z *OIZ
0-9 £'01 9'W D'i ft IS33A
•ZbZ '7b? '9VZ 'IZZ ' 1 7 <:
S'9 O'Zt i'cl Z'6 l'» :S3Ji«
•bbt MbZ -SEZ '1ZZ *£ZZ
8'9 S'O I i'f I
•ilc *9|? 'UZZ
£ 'Ut i'UI i ' bt
•l,CZ '9e.t 'cOc
6'bl S'5 1 I ' pt
•ZOZ *96t "96t
I'Vl fit Z'Ot
"Z&1 *S6l *161
9'i 1 t "JZ t,' ZZ
"tl\ "061 "iBt
O'll A'll Z'b?
*ktl *6St *S8i
i'i bV 9'01
•Ztl '101 *»**
b'i. b'Z *****
********************
•lit ***************************** 6
9*i'l »*****«**»**»****** *********h* hi
' UZ '/./Z
**«.**
**«#**»**«ZU£ '9££
i'tt i ' Z *********»»» »*P * b W"Z
•88Z *98Z
C • ». 6 * b
•ll«Z '6BZ
L'V 6*S
•/iZ *SBZ
I ' (• L ' 9
•StZ '08Z
EMI E'B
*U9Z *SSZ
6-H S'OI
•liZ *SEZ
bTI 9-ZI
•tbZ 'EZZ
b'B i*H
•iZZ 'tCZ
Z'9 O'Ot
•b6t 'iBI
9' b 0'6
•1191 '991
6-1 b* 9
9' t I
•btZ
O'bt
' HOC
0 * U?
•H6t
I * Z c
*B6 I
9' bZ
•761
9'^Z
/ *t I
6'M
Elt -53 />
•IZE
t'9 rS3«A
**************
**************=S3dA
'b9Z *1BZ 'SiZ ****+**»+***»»*******
8*1.
I'b
•LLZ
9' b
" Oi Z
S'S
•zsz
b'i
6' II
•oiz
Z'bl
•icz
b' bl
• 931
/'bl
Z'OI
•tbl 'ZSI *lbt '911
S'Z b*2 O'Z S'b
********************** 001
******* **>.***
EI8DSO'
Oif6Ef-
I :» *SUIO ONJ
MOlb I ;e«N 3S»3 '00912 =1011 *3d»l NO 03QH033M »J«Q
SO'/Z bO'iZ 89*SZ tb'6Z Oo'Et r AO» 1 • Xf»»l • S»I * NVl • 031 « «1» 1 ' 1 S 3
-------
»*
**
»*
»«"'i*i m O **
** »»
** * »
«***
»»»*o
*»•» « in »•"(•
»»* »
»» » *
fO f,am
•e
PI *1 ("I «M (M rg tv. 0* (M
ylNOP^^PtNlu^cD*
•* r r* & &
pg ptl 1*1 0» 1*1 1*1
Q *M-fl^f*^009»f*"*
a 9
» *
**
*»
» »
« «
* »
I .» » » *
Ul * » » «
J* ** • *»
» * » * **
«o N aj wi
a «^ < — «** o*-a »^
rg******
*»»»»»
**»
"
M f- (v i/i o-" »• c
— O (•. S> C
« » * » »
« » » » »
» » » » *
* » » » >
* » » » »
» » * > »
« * * * »
«»*»>«
a:
K
a
z
u
a
f U »
ir»^a>°c H M
•S1 W^Vlv^wl
UJ UJ 'd UJ UJ UJ U' W
ac:c:Q:ctttcrtt
>>>=«»3.»»
a n: 3
_i
5
** a u~«c^dO^D — P-J
f^Jui-or^ar^fD — fNi^i-Tui
II M II ll
M Ii n n II Ii n II II li
3
vl
ii m
M II II II II II II II M II II II II M II
67
-------
89
- 8
o
n
illlllilllllllllllllllllllllM •-« HIlllilltllllllMlllliliMIII •* II II II It II 11 IIII II II IIII n,i n M iiiiiilliliilllllllllllllllMi
* • m « » m ** *,-n«« .
Illlll * ^ I *tll|lll|l * in t**!!!!!!!!^!* 4/1 ll**lt|lllt|llir
II
.
ooouooooco
OOO»— mt^C1-^-**.*
— ^Ln^iy rji-— tt-w
1 1 1 1 1 1
.
n DO
.i OJM
N. r>iri
i/>
*r3r>pia 3nnr>r3n*
*aoooGoaooc*
» o o OM '•" * » -o "v *
*«w * N}isiDin»* o***
» *
« I i i i I i i «
DO
n
I
s» i/» O1 * * rv)»*i
m **
r-i I I ** I I I I i
rs n.^~"3 -1-333
o *«oaaooooa£0j; n od.JGocJDoc.3OO3;
i i
rn
r>
CO
oo
o~
0 —
OC.COBCCi&C- C,*
.30030-13:300*
4OOU&OOUOUO*
1 1
03
03
*a»^J^•CM^
O£ *£—— ^O--J—* CTLP*
* * *
*ii* i i I I I 11*
c.o *«ouoc.ot;oo-o»
ua « «cc:sco coc GO*
• *
» 1 I* 1 t 1 1 1 1 1 II
OO
DO
OOOOOOOac, 0*
oooooooooo*
•• *- a J «4 kfl UN 1^1 j: IP *
«oo
• oo *oooooao ooo*
« * I I I I I I I I I
*Oo3OOOOij3OCjCa
*D_3JOOOO OOCCiOQ
*Oo3OOI\>r.J
1 1 1 1 1 1 1 1
1
III
III
* »c_>oooooc3oc.oo
* *=j333oo3333aa
* »O33O«-r-j».aO...MO
* »o* 3~-rfn-w>— N1-WJ.B
• *
I I I I I I I I I I I I I
3 OOOCO3OOO33O
*QO* OOOOOOOOao t
»OO* OOOOOOOOQO *
* »
• * 1 1 1
1 1 1 1
I I I I I I I I I I I I
coao oaoooopa
3— OO M c --M W-C* —
I I I I I I I I I I I t
ac oo OGOCJD ooo
« *N»MfsjrvN>£.evMN«»-f _1.NJ
* »crc ~
* * *
* * *
* • »
* *
« * »MNiU> —-*•= I*
* * »
- - 3
* S"-
* LCI*
i I i i
i i i
»
i i i »
• » *
* *
« *
* *
* »"
* *
1*1 Illl Il
o 3*c< aa i3o 330 os*
o ^«c oooo oooou*
1 1 1
1 1 1 I 1 I I
ccj casaoou JOQ
* I I I I I I I I I I I I
*••••••»••»••
» 33 'S ;l3 3 3 £~ 3C^ O j
t <_cj 3i.j oc.c_i_ L.-C;
* Js r- £f «
1 1 1 1 1 Illl
• DO 0 3SO C3 "3C OC
* 33 "3 333 0333
• *oaoooooooaoo*
• *UO~—"""-"-OOON» — »
i i i i i i i I i i *
C3 JOB*
c.oooDooooaoo #
» * C—MI\)NjN>IJ.._ — wNJ *
* * uio-o>frtfG&<3iMf.fa' t
* «
* i i i i i i 1 i i i i i *
* *O3OOOOOO3OSO*
* 1 1 1 1 1 1 I I 1 1 I 1
ncooaaoaaaaa*
f ff C ££f £ g £ £ f +
p— «--.«-<—••«. o •. a o *
•
i i i i i i i i i i i i *
* —aoooooocaoao*
* 3JI—3'>-J*
i i i i i i i i
O.v<— *
*
1 1 1 *
•••^oooooaaooaoa*
»•- S t«* lMNiNB-O»NIWNM #
» Ln ^MbMUJM*^ ^^-tftO O ^^ •*
1 1 1 1 1 1 1 1 1 III*
*o oooco ooooooc «
*o aaoaooooooac*
* 0*0% £>mjiNj ^«M«^O d*»
1 1 1 1 1 1 1 1 1 1 1 1 1 1
c.3coo3oc ooorio *
3 33O33OO aoaaa *
£ £££ £ £££ ££C C £ t
1 1 1 1 1 1 1 *
3 33 CJB3 33 3 3 33 3 C*
aocopoooocaao c*
IV) J
ODOCOoODOOOOOa*
•— tsjw *i^f\j^-i-'
oocooooooooocc
oaoo- *
ooocc*
C 3 -303033330333 «
ccacacaoaaacoo«
£ £ £££ £££e£js£C^m
Illlll II
I I I t I I t I
onooDooBooaoraoo
uaaaoaaooooaaoa
3—r^rv OCJOOC-—3—CO
ooaoooooaaaooao
oaaaaoaaoaoaooo
t i I I I ii i i 'i I I i i i
C3OCODOOCODOQCC3
3O D3 3 33333 333 S3
I I I I I I I
00 oQocaooooaooo
03333=300333000
i i i
III I I i t i i
i t t
I I I I I I I I | | I t I I I
I I I I I I I I I I I I I I |
oooocoaooooooDO
33 —_-i3O3Qa3—fj —a
* I I I
O3O OOO3OO Q33OOO
oooooooooooooao
a— r
CO3ao3O33OO3C 33
C 03 OOOCO 0000000
I I I
0000=13Daaooao **
OO3OO33O3OC33 * *
«- **
* *
I I I I I I I I II «.*
•••••t*«»««« 4^4
3333333003333*«
«*
«*
I I I I I
| I »*
oaaosoooooooaoa
OOOOOCOOOOClOOOc
ooocoooooaooo* #
0000000303000* «
i i i i t i i i
i i i i **
I I I I I I I
* *
I »*
*
33 3 D3 OOOOOO33* *
OOD=03003005U» *
a—vt*vj».— ~^o»wo* »
oooooo ooaoaac* *
3OOO33DO3OOOO* *
to * *
I I • »
OOO3O OOO O COCO »«
OO3OO OC3O 3OOO • *
I I I I I I I I I
I I I I I I I I I
I
**
33OOO3Oa3OO33»
0030300000033**
''J* •
l— *»
*»
**
*»
«««(in *«
-------
»»o> _ — ocooo>ocisj»i^irKio'
....... •».•••»••••••«»
p»fM,r»r»o p«p»P»f»r*^-*p*r>'p»'f**P»^p*^
N(SKSj(SI(SJ(MfJ-c uio> o
-N^ aaw.(SiO"O c3O***^*i*aQO^»*coOp>'ff1'*1
a o •» ""a a » o -•»oo •*
«SlfSlfy IT OB » "i^ -o M e »
» rs'M(sirsi(si(sjM isjiM(si(sipj * *
(si (SUN isi rx ra (si fsi isj fg (s» (si »
*
(SI (MM 1% ISI PDIS4 (SlISHSl CM IM •
isi rjrj(si pg (SUM iv j MIS. fsi (SKSI fSi IN (SKS1 IM
wfcc o- cc«o « «. « a
(S((M * (SJ(M(MIM(SI(Sl(SI*JUJUJUJUJUJW.|JUJ LJUJUJUI UiWUJ WUJUj UJ UJui'iJ
_ ».v»»-»->-»«wt-^»-^i——>-—tt t-i->—«-*.!-•-"-•-»- ^•-••„_ 0<_fc;>.^w,^.^.fc«.»«._fc.».«.0.^- -.i-».t->-i—»•«-—-.. >»«.^«.
e. a. n.
X. I T
III! II II II II Mil II II III! H I'll (jjll II H II It II II II II H M "«< n II UJII III! II II III! II II II II PI II H II UJ II Mil M II II II III! II II 11 II II II
69
-------
* *«flO*(M Q rj coulter-a-cc
n^MOl*- »m3-»C
» h- P-P- » r> -o
* o. Js) pg (M fM
-------
SAMPLE PLOTTING
TIHEUUNE 20, 1978):
HIND SPEEDCCM/SEC):
HIND OIRECTIQNCDEG/NJ:
RIR TEMPERRTUREtDEG-C)*
DISCHRRGE TEMPCDEG-C):
D1SCH FLOWRRTECCUM/SEC):
LENGTH SCRL£UCri= X CflJj
VELOCITY SCRLE(CM/SEC):
13.0
358.0
110.
29.4
29.5
62.7
41339.
52.49
rr^:
*///'••••
* / / / / ' * ' * •
I I ///'''••
EBB TIDE
«.. V
f
\
Figure 12. Surface velocity, Anciote Anchorage by modeling
71
-------
TIHEUUNE 20. 1978Js
HIND SPEEO(CM/SECJi
WIND DIRECTIQN(DEG/NJ:
RIR TEMPERRTUREtDEG-CJs
OISCHRRGE TEMP(DEO-C):
DISCH FLGHRRTECCUM/SEC)s
LENGTH SCRLE(1C«= X CM):
VELOCITY SCHLECCM/SEC):
13.0
358.0
no.
29.4
29.5
62.7
41339.
52.49
J= 12
J= 8
J= 4
EBB TIDE
Figure 13. UW velocity, Anclote Anchorage by modeling
72
-------
TIME(JUNE 20. 1978J*
HINO SPEEDtCM/SECJ:
HIND DIRECTION;DEO/N)i
RIR TEMPERflTURECDEO-C)»
DISCHRRGE TEMPCDEG-UJ
OISCH FLGHRRTECCUM/SEC):
LENGTH SCRLEriCM= X CMJ:
VELOCITY SCRLE(CM/SECJ:
13.0
358 .0
110.
29.4
29.5
62.7
41339
52.49
1= 12
1= 8
1= 4
EBB TIDE
Figure 14. VW velocity, Anclote Anchorage by modeling
73
-------
TIHEUUNE 20. 1978 Js
HIND SPEEDtCM/SEC)»
MIND OIRECTIQNCDEG/N):
RIR TEMPERflTURE(DEO-C)t
DISCHARGE TEMPCDEG-O*
DISCH FLQWRRTECCUM/SEC)*
LENGTH SCflLE(lCM= X CM):
VELOCITY SCflLE(CM/SECJs
13.0
358-0
110.
29.4
29.5
62.7
41339
52.49
DEVIRTIQN FROM IR TEMP
EBB TIDE
0.410
Figure 15. Surface temperature, Anclote Anchoraqe by modeling
-------
APPENDIX B
FORTRAN SOURCE PROGRAM LISTING
LIST OF SUBROUTINES OF THE MODEL
Calculating Part
1. Main Program
ANCMN
2. Subroutines Called (in order)
BAYBOT: Reads grid matrices and bottom topography
BAYINI: Specifies initial conditions
READT: Reads data from tape for continuing run
IRREAD: Reads 1R data as initial temperature distribution
EQTEMP: Calculates equilibrium temperature
BETA: Calculates surface elevation and vertical velocity in
xya coordinates
BNRTIA: Calculates inertia terms in momentum eq. at interior points
ABNR3: Calculates inertia terms in momentum eq. on the north and
south boundaries
BVELS: Calculates interior velocities
ASAF3: Calculates north and south boundary velocities
GIVENU: Specifies velocities at discharge point and river mouth
CONV: Calculates convective terms in energy eq.
TCOMPT : Calculates interior temperatures
GIVENT: Specifies temperature at discharge point
75
-------
WCAL: Converts vertical velocity in xya coordinates into xyz
coordinates
ANCPR: Prints surface height, velocity and temperature at four
locations at each time step
TPRLOK: Main printing program
STORET: Stores calculating results onto the tape
ZZl: Finds the current direction
3. Data Files
AMATN: Specifies marker matrices and elevations
APER1: Specifies outline of interest area
C2007: Climates data on June 20, 1978, start at 0700
HDATA: High tide data from IR
ED AT A: Ebb tide data from IR
LDATA: Low tide data from IR
FDATA: Flood tide data from IR
Plotting Part
1. Main Program
PLOTMN
2. Subroutines Called (in order)
PLOTUV: Plots U, V velocities on different levels
PLOTUW: Plots U, W velocities at different j sections
PLOTVW: Plots V, W velocities at different 5 sections
ECHKON: Plots surface isotherms and surface height
ENDER: Subroutine in ECHKON, for labeling
CONLIN: Subroutine in ECHKON, for contouring
CAPTN1: Writes captions on the plot
CAPTN2: Writes captions on the plot
76
-------
CAPTN3: Writes captions on the plot
CAPTN4: Writes captions on the plot
CAPTN5: Writes captions on the plot
CAPTN6: Writes captions on the plot
CAPTN7: Writes captions on the plot
CAPTN8: Writes captions on the plot
CAPTN9: Writes captions on the plot
FIT: Fits a paraboiar to three points
VECT: Establishes the components of a vector
OUTLIN: Draws the outline of interest area
* The plotting subroutines PLOTS, PLOT, AROHD, NUMBER, SYMBOL
are existing in UNIVAC 1100, University of Miami, CALCOMP file.
77
-------
SUBROUTINE LISTINGS
*FLOW( 1J.ANCMN FOR CREATED ON 1H DEC 79 AT 10:11:39
I £*****»«»* »«i>«»»»**»-a**»,Vl(IN,JN,KN»,
0 CV2lI*,JN,KfJ),V3,H ,HB { I « , JM ) ,ELE V t IN.JN),
II CUe(If,Jf,KN),V6(I«,J«,KN) ,HU ,MEX (IM,JM»,
12 CMEYt I",JM)
13 OI."EKSION Tl»TM,JM,KNJ,T2ei«,JM,KN),T3(IM,.JM,XN),TC(IM,JMtKNI
11 OIMESSION AVR( J«) , ANG< JM1 ,OTZ(IM,JM}, TEMM, jMtKN)
IS OIMEOS10N ETXI IK,JM>,TIOE3Nf IM),T1CE2NUMI .TIDE1NUM)
16 OIMEKSION UATJI*,JM},TIOE3Sf lM),TID£2S(IMI,TIOElS
13 C
19 C**1**CASE MO UNDERTAKING, FOR LABELLING PURPOSE
20 READ 2, NCASE
21 C
li C*»2**LM=1 FIPST RUM OF PRESENT CASE; M SU8SEQUEWT RUN
2T READ 2, LN
21 C
25 C**3**KSTOKE=Q NO STOPEtTEST RUNJ, =1 STORE ON TAPE
Z-b READ 2, KSTORE
27 C
2? C**i?**KVEL:0 MO V-CALCULATION, =1 00 V-CALCULA TION
2" READ 2, KVEL
3C C
31 C**5**KTEHF=0 NO T-CALCULATI ON , -1 00 T -CALCULATION
32 READ 2, KTE^P
33 C
3D C**6**TO ASSURE MBLOK CONTINUE, THUS «S COUNTER OF SIMULATION HOUR
31- READ 2, MBLOK
3* C
37 C**7**THIS RUN WILL 00 NCY*TPRT/3iOO HOURS OF SIMULATION
3? READ 2, NCY
39 C
HO C**6**FOR 1-OURLY CYCLE TPRT = 36QO; OTHERWISE CLIfDATA DO LIKEWISE
41 READ 2, TPRT
12 C
1,3 C**9**DX.D1 GRIT S17E IN CM; OS SPACING IN SE.6MA DIRECT ION I . 25 1
IK READ 2, OX.OY.CS
x** C
Uf- C**lu**Tll'ESTEc,MWL-TrHPOOAL KWl , «Kf>L I T , M-S PHASE DIFFERENCE,
17 c**10**e-V PHASfc. DIFF PER OX, TIDEPERTOO, TIDE SHIFT IN HOUR
1? READ 2, OT, STAGE, AMPLIT, PHASE, DPHASE , PERIOD TTSHIF T
i»c C
5C C«*ll**FCOFrCORIOI IS F A CTOR , TEMPORAL MUL-ANNUAL MULIREF. FOR SOUNDING!
51 READ 2, FCOR.STAGE1
5? C
53 C**12**THE TA=ANGLf PETUEEN NORTH rNO OF HOURS BETWEEN WEATHFR OBS tRVA T IONS ( IN GENERAL HOURLY)
kr READ 2, R»EX
61 C
63 C**15**TZECO=EST. OF THE DAY HHEN THE SIMULATION RUM STARTS
6' READ 2, TZCPO
6" C
6= C**16»*OENSITY,VERT EDDY VI S COS IT Y , VEPT t HORI EDDY OIFFUSIVITY
66 READ ?, Rfi,AV,8V,9H
67 C
fee C*»17**IM TIAL TEMP FOR TKE »HOLE. COMPUTATIONAL DOMAIN
t0 SEAO 2, TI-JIT
7-3 C
71 WRITnt.,321 ^CASE
7? WRITE (6, 3) LN
7? IFIK STORE. EO.OJ V-R I TF { fc , 1 30 )
7" IF IK STORE .GT.CH W<» ITE < fc , 1 1 1 >
7= 13C FORM M ( IX, 'DATA NOT RECORHt" ON TAPE*)
76 131 FORM tti IX, 'DATA RCCCSPID ON TAPCM
77 WRITE»6,m NCY
7R WfiITE(6,5) OX,OY,nS,DT
78
-------
79 HRITE(6,2'M STAGE ,A"PL IT , PHASE ,PPHASE .PERIOD , TSHI FT
£C WRITE«6,7J FCOR
81 WRITEtfa.lCU) THETA
S2 WR1TF.J6.151 ALPEF
8T IS FORM*Tt 1X,'ALR£F=',F12.C, ' CM')
ga URITE(6,72J TZERO
6"! WRITE<6,73) RR,AV,BV,BH
66 WRITE<6,8C6) RWFX
87 806 FORMATUX,*RWEX = » .F10.2J
*t WRlT£<6,3Sq) TINIT
S3 381 FORM*T( IX, 'TINIT=* ,F10 .2 >
9P 72 FORMAT! IX, *TZERO=' , Fid. 21
91 73 FORMATUXr'RRr*,Fia.2,' AV=',F10.2,' BV=*,F10.2,' BH=*,F10.2>
92 G = 98C.
93 00=51.3
9u xz=Kft-i
95 IGOri
9* THET*=THETA/CQ
97 DUMX:2.*DX
98 DUHY:2.»OY
9<3 DUMS:2.*OS
IFCLN.GE.2J GO TO 1
EST=17ERO
1C2 TAUX:0.
1C? TAUY:0.
ICf TTOTrO.
105 NBLOKZQ
1 C6 CALL !)AYBOTriN,JN,KN,IHf JM , U 1 ,U2,U 3, V 1 , V2, V ?,H ,OH ,£TA 1 f CTA ,ETA 3,
107 rRX,Rl,HX,MY,M*R,H,HB,ELEV,UB,VB,HU,HW,MEX,MEY,
1G^ COUMX ,DUMY,DU«S,OX ,OY,DS,OT,FCOR , TA UX , T AUY ,G ,NCAS£ ,N8LOK,TTOT,
1C9 CSTAGE1)
110 C
111 C**18*«A DECK OF AMATN CARDS OR FILE AMATN IS NEEDED H£RE,(ONLY IF LN=1>*«*
113 CALL BAYIN'ItlN,JN,KNtlHfJM,Ul,U2,U3,Vl,V3,V3,VfOHf€TAlfET*,ETA3»
1 14 CRX,RH,MX,MY,KARtH,HP,ELEV,UB,Vb,HU,HV,MEX,MFY ,
1 15 CDUMX ,OU«Y,OUK$,OX,OY,OS,OT,FCOR,TAUX,TAUY,C»,NCAS£,l
c*******«M «IN LOOP IN HOURCY-STEP, WITH HOUKLY CLIK&TICAL DATA
1 14.0 Cn<«*o**B»«t <4*n->»«jina»4i>*a*»»**oi>»i»*»i«***'»*4jj»*»4»*«
II" DO 1 CO JCTRrl.NCY
1ST C
151 C*»2C*«A DECK OF MCY CLIf.ATICAL DATA CARDS FOLLOWS
IS"5 C»*20**EACl- CARl/ RECORDS AIP TEMP , HUMID I TY , WSPEEO , WO IR , SORAO , SURFACE TEMP
IS? READ 2, TAIR, HUMID , WIND, UOIRfSRADfTSUHF
1 Sf C
lSr «RITE(6,328» TAIR , HUMID, WIND ,VOIR , SRAD.T SURF
156 328 FOR)»/T( IX, • TA IR , HUH ID , WI ND , WO IR ,SR AO , T SURF • ,6F 10. 2 J
157 CB=2.
79
-------
D » *•* *
Ul *"> CD CD
M «* O O
U. »- » »
»-* UJ h- *-
o * o o
^ UJ «3t H1 *• h- » *— •*- *•* »O CC. **
O. *- » UJ »-V) » h- » U» V> an »-vi
31 o •• sew *sc ui x »:« » ui » * »uj
— UJ QC « O *>"0 »• O *>-OZ » SC >-»£•'
V™ »•- O ^ »J»"*UJ«J *•• «•! •"'UJ.J*^' K> V)U) V>CjK>
oc » t- cc**ica ** a> *i3cr, ui *~ »«: x »»-
CT ^ * Ul ,«*»- *Z ^2f-»2O* tf» » 3> *
XX*« •• X CDtO XHfl * * Q3. >-M *•
o LJ a tn * «to »-• ru o •• *
z oc x « * * »>x * * > * » >x »»- » ••«« a_»- »
ui 3 H- rjxy- » »>-z *-x>* »• *>- •• fy x*- zsujfsi
•"^0^13 £5* I UJ O *2»
> > *t *-« * 13 * "*"** *
o u. ^ » »«~«co »»-( »-* :> » *^oo * CD > »>~ o *** >
^t O I- *XX>3XM- >XK t>3X*-t •« h-Ul M>J »
GC * Ul M *:J * »^> »• •• »3 •• *3»- r^ O *• v) -'1
a. • w * «/> • • »*- isnjacrjuicco*'
2i H« o rvifM fMO *> O ID *-Of-*3C IS >O D ^O UJX
** -J 3t * (/I *•*»-< > * *~* *O *CDO»— O »• ^O * * 13 » "*— ** x**-*-*1 r-l—t
-• sr o. *"*>! 3»a: »*- »ii— «---«~7>aa: *>QUJO x: >a x *o *o~} *x ->H-T *M *^
« • *ll*XXQ «OOO •-* »XO»-HUIQ3Li:Qf»UI 31 UlO SlXOUtUJ*-* *O »X t-«VM »- 3
r^MO2Qf»>—1-< # H> »—««-* vO XO*-~ * * ^M *• •• •'G. »-<»••• !-«*••» *-fX » X *• "UJ * *
in S-2Tui£ritx. 3C»o*o »-H* ^co-*^^*^**- »aj3^ •>->- vi »•"*: o t-*a c. £ z c —
X, UJ*t»-»-*223 » UJf^OJ O »O)OXXO-£XOMUI X XO ZXO^UIX I- >--L ^ -X *,-.^— o —. ~-x
* O4—**»-^J » * OD*"- 3C * 2XX *XXQ-< »-XX «XXO ZuJ • *te »~3 •• •*-O. ~0 CC " T » ^»— CL *• «tfh-«*»-«"73c'^f'"tfSJf'1 *~-*~3 * X f*'*"ri3
h^o«u4fn»-*oft. # o Oor C3** * »-*o *• xo i*Jt/io o wen *~ f •**-• * **-uj>'- *** * ^o~ > > •.».<-» ••»—- N- **
Q <««H> v9itJ*W)OC "f OX O*+ O »X**~*3C *-^'CC *-O *C I/13C* f^lCC^O****!: UJ *^S» O-t~Z #^*iuitlU*^*-**-*HnJlH •-»—< T «-* 11 11 11
3 X,_J *(J3*»#UJ * *— vOO V»OO Ut «t *>-*— »>-Q: »>-»--*X _J ••>- U. »>-*~*XUI • > ** S. »-IL| II M II •-* M M M It — *- ** *• IK) »M^-*N,«—
y >~»2r HH 21 ^-*— r*» uicx. »?f-*fr~*rt TJ(V ui tr ••*/) m ••cj'*'^- owtf- Jeer *o *c.»"Q vit— o y uj (j* *~ *-i3 ^? oc~ »«-« *"—«'-'fM~3*o TT™ *r^^ x 3* ~3 ~>~3
131 —Dl M X>-.JIia
Q.O.U.U.U. O**«X U. «tff!U,*lX^D'«t^"Z)tMiXO«*xr» «Sf— 3 *-»S;«—OO O*~*fvJ *-*f\iO OOO U O *-* f*JO
- «X OO OICS1^. OUIO *—«tOO *-« OZJt—OXOO OOUIUltiJOO O33 > >O OOQ *-^Q^— *~ 13
ouo uo oo oo o
* j o 05 o ua
*
oo o o ooo
» ir»\or^ a.'tr o»-»M^' rru^-o^ ft'f l_>•-«rJ^- ar u- »c f
JUJUlJlJt-Jtj*Mm-»*-^»-*-M«-» »«»-«^< CJTN)(VJ IN fxi
f-J fNJf^fM f^f>lfN* fMCMIV l\lrvf^ t^CMrj CJ f^fMCMfMC'JTJ rjCNJ f JOJTM
-------
237 VB(I ,J.K ) = (V2(I,J,Kl«V2tllJ«l,KI)/2.
23F 201 CONTINUE
23? 203 CONTINUE
21C C
2H1 DTXrlPRT-T?
212 CALL UCAL«IN,JN,KN,IM, JH,U1,U2,U3,V1 ,V2,V3,W,OMfETAl,ETA,ETA3,.
211 CRX,RY,MX,MY,HAR,H,HB,ELEV,UB,va,HU,HV,f!EX,MCY,
211 CDUHX ,CUMY,OUHS,DX,DYtOS,DT,FCOR,TAUX,TAUY,GfNCASE,N8LOK,TTOT>
215 IFS,PX,Oir,OS,OT,FCOR,TAUXtTAUY,G,NCASE,N8tOK,TTOT,
2S« CKVEL ,KTEVP,AVR,ANG»THETA)
255 GO TC 1COC
256 361 CONTINUE
257 lFtT2.LT.TPRT> GO TO 702
258 c**********************************
259 600 CONTINUE
26" WRITE(6,607) EST , T AIR ,TEQ ,TABN , TABS ,TAUX ,TAUY
261 6Q7 FORMAT
26? 00 313 I=ltIH
263 DO 3«3 J=lfJM
261 IF(MEX(I,J).EO.OJ GO TO 313
265 DO 311 K=1.KH
266 IFfK.ES.H TS(ItJ,K) = T2fI,J,KJ +
267 IF(R.EQ.KK) TB (I , J , K J = T2 II , J. K- 1>
26? IFH K.NS.U.ANO.IK.NE.KN )) T8«I,J
2£ 311 CONTINUE
271 313 CONTINUE
271 IFCK JTORE.EO.O J GO TO 132
27? CALL STORETIIN, JN,KN,IM,JM,U1 ,U2,V1,V2,W,ETA1 ,Tl,T2fTB »
273 CETA, *X,«Y,MAR,H,H3,Ue,VB,HU,HV,fEX,MEY,NCA GO TO 131
29= END FILE 6
2<,f, WRITE(6,308 )
27 3C8 FORM tT( IX, 'DOUBLE EOF PLACED ON TAPE')
Zt*. 1*1 CONTINUE
21° 2 FOHM*T( )
3CO 3 FORM *T ( IX , «LNr« f 16)
3C1 1 FORM«T{ IX, 'MCY=' ,110)
3C? 5 F3RW
;C" 7 FORM»T( IX, 'FCORr' ,ElS. 7," PEP SECM
3C^ 32 FORf*;T(lX, t>JCA5E = I,If I .
3C6 33 FCR"iT(lX, 'START ST £S Tr • ,F 6 . 2 , ' CASE fJO.r',11,' HBLOKr«,lm
3C7 31 FCRl- JT1 IX, 'STAGE, AMP, M-S PHASE, E-W PH ASE ,PE R , TSHI FT ' ,6F7. 3 )
3C? 7Q3 FORi* JTJ IX, 'COMPUTATIONS BEING STOPPED BECAUSE OF INSTABILITY')
31r 1011 FORM {TI IX , 'THET4' ,F10. 1, * HEG'1
311 10CP STOP
31? END
81
-------
*FLOU< U.SAY6QT FOR CREATED ON « PEC 79 AT 09:4-Xf«Y,HARfH,H8,ELEVfUB,VB,HU,HV,HtX,MEYf
i CDUHX ,OUMY,OUMS,nx»OY,DS,DT,FCOR ,TAUX , TAUY ,G ,NC ASi ,N8LOK , TTOT ,
7 CSTAGE)
3 OIMCkSION U1(IN,JN,KN> ,U2d»l, JN,KN),U.3(IN»JM,KN>f VldN,JS,KN»,
<> CV2(I*,JN,KN> ,V3ClN,JN,KN) ,WdN,JM,KN) ,OM I IM . J« ,X N > ,ET A H I". , JM J ,
JQ CETA(l«,JM),FT«3d1<,JH),RX{I>l,JNtKN),RY(IN,Jfl,KNlfMXdN,JN>,
H CM Y(I N.vIN) .CAR (JK, JN),H»IN,JN) ,HP(IM,JM),ELEV(IN,JN),
12 CUB (I ^, JM ,KN >,VB(I«,JM,KN> ,HU(IN,JN ) ,H V t IN , JN) ,KEX ,J=1 ,JNJ
:u l,PITE(b,3C) I, (FLEVrl, JJ ,J
2? 37 CONTINUE
26 00 ICO 1 = 1, IN
Z~> DC 1 CT J=1,JN
2a IF
29 52 FCR" JTi IX , •'•EX MATRTX'J
to DC s: 1=1
Ml RCA.O 2, <^EX(I , JJ ,jri , J
«2 WRITE(6,60) I, (MEX{'I,J )
M' 53 CONTINUE
ft WRIT E(£>T5tt>
qs si FORH;T( ix , «MEY MATRIX*)
Mft DO 55 I=ltlf
i*7 READ 2, (KEY(I.J) ,J =
u? WRITE(6,60) I, tM£
4<) 55 CONTIVUC
5C WSITE(fc.l >
51 1 F ORM «T ( IX, 'VX MAT"IX«J
5? 00 8 ;6 1 = 1, IN
5T READ 2, (CX (I, J) , J=1,JK»
5<» ^PITE{6,6C) I, IKX d,J) ,J=.l, JM)
5? 826 CONT INUE
56. WRITE J6 ,3 J
57 3 F QKK *T ( IX, 'f Y KATRIX'I
5° 00 "*C2 1 = 1, IM
= " RE40 ', (HY« I, J) , J = l, JM
b^ WPITf(6,62) I, (MY d ,J) ,J=1, JN)
tl 4C2 COMT l';UE
62 DO 1C1 1=1 ,IM
6T DO 1C1 J=1,JP
6U IFCMEXC I ,JJ .EO.C) GO TO 101
6= H8(I,J) = (Hd,J)+Hd + l,J)»H(
fc6 1CJ1 CONTINUE
6' DO 1C2 1 = 1,1 H
65 00 1C2 J=1,JM
6" IF«f XI ,J > .EC.O) GO TO 102
7" HUd ,J) = IHCI ,J)+Hd ,J« 1) 1/2.
7! i02 CONT ]NUC
7? 001C3I=l,If
7T 00 1 C3 J^l tJN
7 'i iF .EO.OJ r,c TO IQJ
71! HVI I ,J) =(Hd,J) *Hd + l, J) 1/2.
76 1G3 CONTINUE
77 u KITE (6 ,109 )
7? 1C9 F CRM 'T ( 1 X, 'MB MATRIX')
82
-------
79 DO 1 JO 1 = 1
8C 110 USITEI6,3C)
31 URITE16.111J
82 111 FOBH*T(lX,'HU MATBIXM
83 00 1 12 1=1, IN
80 112 WRITEI6,3C) I, (HU (1 ,J J ,J=1 , JM )
35 WRITCC6.113I
E6 113 FORfmlX,*HV MATRIX')
87 00 1 IM 1 = 1 ,1H
88 lit URITE(6,30> I , t HV 1 1 ,J > , J= 1 , JN )
89 2 FORf*T ( }
9f 3C FQRMiTt 1X,'I = ' ,It ,15F8 .11
91 31 FO«fiT< JX, •WATE'? DEPTHS, CM'/)
9? 10 FORM«T(lX,'rr',TH,15E3.2)
93 HI FCRf *T« IX, 'ROTTOH SLOPES, CH/.CMVI
91 51 FORMiTUX, *MAR MATRIX1/}
95 60 FCRMfT(lX,*I = *,m,iaX,15I<»)
96 61 FORHAT{1X.»ST«GE=',F10.2»
97 250 FORM4T ( "1M
9
-------
31
32
T T
37
70
39
1C
"1
12
<4'
qu
<*«;
UP
(40
sr
51
5?
53
57
50
OIME^SION Ul(IN,JN,KN>,U2tIM,JN,KNJ,U3(IN,JN,KN)fVUlN,JN,KN),
CV2IIN,JN,KN),V3HH,JNfKN),«(lM,JM,KNJ ,OM ( I M , JH ,K N ) ,fTA 1 ( IM , JMI ,
CETA( I",JM),ETA3JlM,JH),RXUN,JN,KNJ,RY{INfJM,KN)MXCIMJN»
CETA(
rMYIINtJM,M«R(IN
(If,
JN>,HUN,J«M ,H6 t IM , JM) ,EU£ V I IN , JN )
CMEYf ]M.JM),TPfIK
DIMEKSION TltIMf
*FtOW{ 1 I .BAYINI FOP CREATED ON « DEC 79 AT 09:<«5:2<»
1 £#****#*»******» ***<$*****#****** ****#*$ 9*4 $****J*********##** ,T2 «!•• , JM ,KN ) ,T 31 IH , JK, KN» , TCf I« , JM , KN )
ICC
1=1,IN
J=ltJN
K = 1,KN
,K =0.
= 3.
= 0.
V1CI ,J,K =C«
V2II,J,K =C.
V3«I ,J,K -C.
RX(I ,J,K =0.
RY(I ,J,K =0.
CONT INUE
DO 2CO 1=1,I«
DO 2CO J=1,JM
CTA1fI,JI=Q.
ETAJ 1,J)=0.
ETA3 =C.
van ,J,K 1=0.
U2«I ,J,K
U3(I ,J,K
,J,K)=3.
Tltl.J.KJ —•
T2(I ,4,K)
T3(I ,J,KJ
TC(I ,J,K I=Q.
TRtI ,J,K1 = TIN1T
CONTINUE
iaa CONTINUE
5CG
<»CU
DO tea 1=1,IM
DC ICC J=1,JH
I F {f E X I I , J ) . fit
E TA1 (I,JJ = ABJ
EIA( I,J)rA3J
ETA3 (I,J ) = APJ
DO SCO K=1,KN
T9(I ,J,K JZA3J
U(I,>,K1=< ~ '
CONTINUE
CONTINUE
REfUFN
END
.0) GO TO <*C1O
84
-------
»FLOW(1
1
2
3
4
c
6
7
p.
9
10
II
1?
11
1»
IS
It
17
1?
1°
2C
23
21
<*
Zfr
27
2"
2"
T H
31
32
33
).RtAOT FOR CREATED ON 7 OFC 79 AT 10:08:01
C********* *************************************** ******************* ****
C READS lt> HOURLY PESULT STORED IN TAPE FOR CONTINUE RUN OP PLOTTING
£*******»* <* ************* *****************v4**4*************************
SUBRCUTIHE PEAC.TUN,JN,KN,IM,JH,U1FU2,V1,V:,W,ETA1,T1,T2,TB,
CETAjfY.MY.MaR^.H^.DB.VB.HU.HV.MEX.PEY.NCASEfNeLOKtT
CTIOE IN, TIDC2N.TIDE3V.T IDE IS ,TIDE2S , TIOE3S , STAGE, E ST.
CAMPL 1T,PHASE.DPHASE,PERIOO»
DIMENSION Ul (IH.JN.KN) ,U2 C IN , JN .KN ) ,V1< IN. JN,KNI . V2 « I M , JN ,KN J
CU{IM,JH,KN),ETAl(I'«,JMjr£TA(if»,JMJ .Jx (IN , JN J , M Y I I N, JN > J»Al5 tlN
CH«IN,JN),HP(IM,JM>,UBf IH,JM,KN» ,«B (IM,JH,KN I,
MVtIN,JHJ,HEXtj
,,,,,,t,
f IK, JM,KN> , T IDE IN C I* I , T IDl !2N I IM J , T IDE 311 (IM )
fIH,J%KN),T10£lSCI»)tTIDE2S(IM),TIDt3SaH>
l» N8LOK
U1(I,J,K> , K = l ,KN ) , J=l , JN » ,1 = 1 , IN J ,
fl = l,I
,H = l,KNIf J = l,JN»,l:l,IN),
,K=lfKN),jri,JNJ,I=l,IN),
=l,JNI,I=l,IN)l
1,JN),I=1,IN),
l,JN),I=lfIN),
1,JN) ,1 = 1, IN I ,
l, J,M1 ,1-1, 1NJ ,
,JN),I=l,INJ
.
CJ (H13 (I,J), J=l, JP) ,1 = 1, IM1
39
M?
Ml
12
M?
<•«
i»e
<»6
M?
<«?
H9
5C
51
5?
5-5
5«
55
C(TIDF.1NII ,1 = 1, IK
ciriDE2N
W3ITE»6,2»
FCRMiTJIX,*NO EOF
£. rvwrr^iiiAf
N8LOK=-1CO
GO TC 1000
SOC CONTl'^UE
WRITE(6,112) TTOT.NCASE.rJBLOK
112 FORMfTCIX,'DATA READ FROM T«PE, TTOT = *,F10.0 ,
f.' CASE N8R = ',I5,' BLOK NBR=',I5)
1C30 RETUPN
END
85
-------
*FUOV( D.IRRESO SY^ CREATED ON 6 DEC 79 AT 09j<«7:52
1
? C IN THE CASE OF STARTING FROM GIVEN T-FItLD, READS IN THE IR-TE"P
3 C**ft***4ttft4tt**ft**ft*4**««***«*«**»**a**********«************************
1 SUBROUTINE IfiPE*0 U^,JM,KNt T1,T?)
S OIHEHSION Tl CIH,J1,KN1 ,T2tIM,JM.KNI
k c*****DATA READ FPOM ONE OF THE IF ,H ,E,«. JOA T A BY
7 00 5JO J=1,JM
3 550 READ 2, ( T1(I,J,U,1=1,IM)
9 2 FORMJT( )
in DO 5ES J=I,JM
11 00 555 Irl.IH
12 00 553 K=2,KN
17 553 TUI ,J,K ) = T1 (I ,J, 1J
i<» OQ 5!1 K = 1,KN
IS 354 T2«I ,J,K) = T1(I,J,1J
1* 555 CONTINUE
17 RETURN
18 END
86
-------
*FLOwm.£QTEHP SYf CPEATFD ON 12 DEC 79 ST 20:36:54
2 C COMPUTES EQUILIBRIUM T AND SURFACE HEAT EXCHANGE COEFFICIENT SK
J C********«4******tt********************ft********************************
« SUBROUTINE EQTEPPCTAIR.HUHIQ.UIMO.wOia.SRAO.TSURF.TOEU.SX.TEO)
= TAIR ] = TAIR*9./5.*32.
6 TSURF1=TSURF*9./S.«T2.
? HIND 1=UINO/H'».7
,» SRAO ]=SPAO*mtO.
9 TDEWl = (lH.55*.im*TAIRlJ*(l.-HU»'IO)
10 TDEW < = ({2.5 + .CQ7*TAIRl)*(l.-HUMIDJ J**3
1» TDEW:TAIR1-TDEW1-TOFU2
17 TFIfrtTSUSF l»THE«)/2.
13 BfTAr.2S5-.OC85*TFILM+.C00201*TFILM**2
in FCNUi7d.».7*ulN01**2
]= SK=l£.7*fBETA».26l*FCNU
16 TEQ=1DEM+SRA01/SK
17 SK=S«*.00000564
IP TEO= (TEO-32.)*S./9.
1" RETUFN
2C END
87
-------
"5
6
7
P.
Q
1C
11
12
1*
1<»
15
16
17
n
19
2C
21
22
23
2"
25
26
27
23
2
32
31
3?
33
3a
35
36
37
3°
31?
1C
m
t?
46
1J.BETA FOR CHEATED ON 1 DEC 79 AT f9:«»6:li
C COMPUTES ETA AND OMEGA OF ADVANCE TIME, USES SIHPSON'S RUtE FOP INTO
SUBROUTINE BETA(IVfJNfKN,JM.JM,U2,V2,OM,ETAl,ETA,ETA3,
CH8,Hl,HV,MFX,»EY,CB,OX,DY,OS,OT)
DIME^SIO^, U2IlNfJN.KNJ,V2(IN,JN.KN I ,OM UH,JM,KNI .ETAIIIH.JK).
CETAJ IH,JHJ,ETA3»IM,JMI ,HBtIMtJMl,HUIII»f JN 1 , HV { IN, JN » , HEX ( IM, JH I ,
CMtT( I*^fJPl
DIKEfcSION PCS)
S25= *«25
SSD=-.SO
S7S=-.75
8=2.
A8C=C5*OT
KZ=K^1
DO 9CO 1=1,If
00 9CO J=1,JH
IFIHEXd.JI .EO.OJ GO TO 900
DR=Hl(I»l,J)+(ETA«I»l,J)»ETA(I,JI)/?.
IF(M.EX4I,JJ.EC.21 DP=HU(1 + 1,J)»ETA (1,J J
OL=HUI,J) + (eTA-»ETA(I,j)!/2.
20C
100
DO ICO K=1,KZ
OHUX:(OR*U2( I«1,J,KJ-OU*U2(I,J,KJ)/DX
DHVY:(02*W2(I,J*1,K)-01*V2II,J,K11/DY
F CK) :DHUX-»CHVY
(l ) + d.*F (2J»2.*F
DET= •13S*SU?>
ETA3fT,J}=ETAUI,JJ«A8C*OET
AH5=He< I ,J J+ETA3(I,J3
IF(A hJ.GT.C. 1 SO TO 200
ETA3II,J)r{iC.»*( -6 » ) -HB ( I , J)
OETr«ETA3{I,JI-ETAHl, JM/ABC
CONTINUE
=Hf
-------
*FLOW(l>.eNRTIA FOP CREATED ON « DEC 79 AT 09:48:40
1 c»******»* **»******************************' „_, ,,
2 C COMPUTES NONLINEAR TER»S RX/RY AT INTERIOR HALF-GRID U-/V- POINTS
I r ****************************** ********* ***********************«*****•-
14 SUBROUTINE PNRTTA fl*l, JN,KN , IM ,JM,U 1 ,U2 ,U3 , V 1 , V2, V 3,W,OM,£T Al ,
•5 CETA.£TA3,RX,RY,MX,HY,MAR,H,HB,El.EV,U8,tf8,HU,HV,MEX,HEYf
6 COU«X,OUMY,OU?S DX OYJOS.DT FCOR,TAUX,TAUY,G,NCAS£,N3LOK,TTOT,CB1
7 DIMENSION U KIN, JN,KNJ,U2t IV, JN,KNJ,U3( IN, JN, KM, VltIN.JN.KNI .
• CV2irK,JN,KNJ,V3h«IjN,KN»,«fIM,JMtKN) ,OH(IM,J",KNI.ETAlf JM.JMl,
'
12
n KZ=K»-I
It ABC=CB*OT
16 C***»*CCMPt?ES*RX6AT INTERIOR u-POINTS*****
17 00 ICO I=2fIH
1° IF(MX(l,J)lNE'.3> GO TO 103
2? AM=HL(I,JJ*(ETA{I,J)+ETA(I-l,J>l/2.
22 DET=KTA2a!j!-ETAl(I,J)*ETA3(I-l,J»-ETAltl-l,JI»/ABC/2
2T oo i ia K=I,KZ
i
25 D1=HE{I-1,J>«ETAJI-1,J)
'7 UeAR:rCU2(I,JtK)«H2U-lfJtK»/2.
2P OHUU»=«02*(UfiAR?»*2l-01*CU8ARl**2) )/DX
IFtl* Y1I.J) «EO.D SO TO 10M
- E2z(ETA(I-,J*n+eT»(I,J*l)*ETA(I-lfJJ*ETAa,JM/1.
31 El = (£TA(I,JMETA(I,J-lJ*ETAII-l,J-lJ*ETA(I-l,J))/'».
3? D2=H (I ,J + l)+£2
23 D1=H(I,J1*?1 .
31 D1 = APAX1 (01 t I« »
25 02 = Af^Xl fOZ.l. )
3ft UPAR;rro;*U9AR2*VBAR2/OY
4" 106 CONTINUE
I? i^lffrilK^.^OM^l'.J.K-l.^OHir-UJ
5? Ai=o;«i,j'K*n»(OMfr,j,K-»n*cmi-ifj
5' OUC."C=< A 3-« 1 J/CUMS
SM OUS=(UZ(I,J
55 GO TC 108
eo OUQK 'r { 3.*43-<» .*A2**1 J /OU"S
6" OLS: n.*U2a,J.l>"'».»02«I,J,2»«U2tl,J,31)/DUKS
61 108 S IG^ -OS*FLP« T(K -1 >
62 RXtl ,J,H J=OHUUX+OHUVY^AH*OUOMS»«I.*SISI*OUS*OET
6T 110 CCMT IN'Ut
65 C *°* *°»r*N*Ca a**********************
6fc C*«*»»CC«PLTES RY AT INTERIOR V-PO INT S**»**
67 00 2CP I:l,TM
ba DO 2CH J=2»Jf
(,"• IF (M Y( I ,J ) .HE .3 J GO 10 2dC
7T AH=HV(J,J)»lETAfI,JJ*ETA«ItJ-H'/2.
72 0£T= (ET«3(l"jl-ETAUI,Jl»ETA3(I,J-l>-ET«l(I,J-m/ABC/2
7^ 00 2 13 K=l ,K Z
7« ,02rHE( I ,JI *ETA 1 1, J I
75 01=HMI,J-1 )*FTA( I, J-l >
7«>
77
7"
89
-------
7° IFIMMI, Jl .co.II GO TO 2d<»
57 01=H(T,JI+E1
P« Dl=AfAXlf01,l.l
§5
I?
P
51 GO TC 206
9? 20t CONTINUE
If Ei^JAjIt^lTO^l.JJ'ETAa + UJ-IMETAfl.J-l )!/<».
OHUV):D2*UBAR2*V8AR2/DX
206 CONTINUE
IFfK.ITO.il GC TO ?C7
lcc!
}" D«S:(V2
-------
»FLOW<1J.ABNR3 FCR CREATED ON 6 OFC 79 AT 10:20:22
1 C******»4* 44******************************X
? C AT VELOCITY POINTS ON THE OPEN BOUNDARIES, COMPUTES RX ON Y-
7 C BOUNDARY, COMPUTE RY ON X-BOUNOARY: RX t RY ARE NONLINEAR TERMS.
" C TIDE HEIGHT JUST OUTSIDE THE OPEN BOUNDARY HOST ?E GIVEN
5 C****»**»*<***********»«****************************»***|« **************
6 SUBROUTINE ABNR3< IN ,JN ,KN,1^,JM,U1,U2,U3,V1,V2,V3,W,OM,ETA1,ESTt
7 CETA,ETA3,RX,PY,MX,MY,MAR,H,HB,ELEV,UB,VB,HU,HV,MEX,MeY,
S CDUMX ,DUMY,DUMSIOX ,OY,DS,0T,FCOR,TAUX,fAUY,G,NCASE,N8LOK,TTOT,CB,
° CT10E IS,TIDE2S,TIDE35,TinElN,TIDE2N,TID£3N,STAGE,
1C CAHPl IT,PHASE,PPHAS£,PERIOD,TSHIFT)
11 rOIMOSIQN..UJ(I>^N,KNI,y2(IN,JN,.K!^h,U3iINJJN,KN>,yinNtJN,KN>;
la CMYII ^,JN1 ^ARtlNtJNIiHlINiJMitHSUMijMlteLEVCINtJNIt
15 CUB(If,JH,KN),VB«I'4,JMrKN>,HU(IN,JNl,HVIIN,JNJ,MEX»IK,JM),
16 CMEYflM.JM),
17 CTIDE INtIM»,TIOE2N, TIDE 3SCIHJ
1° C,SOM(5»
20 K2=K^-l
21 A3C=CB*OT
2? ACE= 10.**(-6)
2^ 0011 I = 7, 15
2t» TIDE 'N{I)=STAGE«AMPLIT*SIN(6.2S3/P£RIOO*» C EST- TSHIFT) -PHASE
21 C-OPH/SE«(I-1)))
2* 11 CONTINUE
27 DO 12 1=2,11
2" TIDE 2SII )rSTAGE*AMPLIT*SIN<6.283/PERIQO*«EST-TSHlFT»
2° C-CPH4SE*fI-l) 1J
If 12 CONTINUE
31 C«****CCMP».T£S RY CN NORTH BOUNDARY OF THE ANCHORAGE*****
3' DO ICO 1=3,15
31 AHZHXd, J) + (TIOE2N(I1*ETA)/ABC
«r AHi = mi,jj»Tiof2NtT.j
41 SOH(Hl=tSIG/AHl)*D£T1
M? SCO CONTI'JUE
M3 DO 2 10 K=l ,K2
MU 02=HV(I, Jl •» TIDE2N tl )
HT 01=HHI ,J-1 »«ETA(T,J-1 -
47
V3AR ] = (V2{I,J,K) + V2fI,J-l,K JJ/2.
DHVVYr(02*«veAR2**2l-01*(VB«Rl**2JJ/OY
i*1? DHUV>=O.
5" IFtK .EO.l J GO TO 207
«! A3=V2fl,J,K-l)»»SOM»K-lJ+OMrOHUVX*OH VVY J AH*OV OMS*< 1 . «SIG J *0 V S
i" 21C CONTINUE
t*! 10u CONTINUE
ifc C*****COMPITES RY ON SOUTH BOUNDARY OF THE ANCHORAGE*****
67 J=l
6? DC 3 fP ir?, 11
i° AH = H\,
7" OiTI:(T10£3S(I)-TIDElS«I))/»BC
lf. AHlTtvc I,JMTICE2S(I>
7f> SOMI K) = ( SIG/iHll*OETl
77 60C CONTINUE
T>. 00 3 11 K = l ,K2
91
-------
7" C2=HVtI,J»+TIDE2S(I>
sn D 1=HF(I,JJ+ETA
81 VHAR»V2tI,J»l,KM/2.
3? DHVVirioi*(V8ARl*»2l-Oi*tVB«R2**2M/DY
a« CHUV»=C.
a* 1F(K ..TQ.ll GO TO TO?
36 A3 = V2!I,J,K-n* = CHUVX+QHVVY*AH*OVOMS*»l««SIGl*OVS*OET
9 31U CONTINUE
ICO 3CC CONTINUE
101 RETUSN
102 END
92
-------
*FLOU<1 J.BVELS FOR CPEATED ON H DEC 79 A7 09:51:16
j £**»***»** 4 ************ *************** *********************************
2 C COfPUTEJ U3/V3 AT 1NTE°IOR HALF-GRID U-/V- POINTS
tt * SUBPCUTINE 9vrLSARriN,JN>,HIINtJNi,HB(IHf JMI ,eLEV(tNtJN)»
17 CU3(I^»JMtKN|,VB(I^,JMtKN) ,HIM If, ,JN J ,H V (IN ,JN I ,MEX (IH, JM 1 ,
\u KZ=Kf-l
ABC=CB*OT
16 ACE=
17 C*****COKPIT£S U3 AT INTERIOR U-POINTS*****
1" DO ICO 1=2, IM
lJ/
If U2tl ,JtKl = Al*(Gl*UHI,4,K)*S2*Aec*tA2-A'»-AS»A6»
37 GO TC 101
3S 102 CONT IMUE
Ab=2.*AV*(U2 .ME. 3) 150 TO 20C
m> AH=H V«I tJI«<£TA(I,J)+ETA(I,J-l»)/2.
146 AHrA HX1 (AH, ACE J
er AHl=l-V*<£T«lU,J»«ETAlU,J-lM/2.
51 AH3Z*-V(I,JI + tET»3(I,UJ*ETA3tItJ-l)>/2.
53 C1 = AH/AH3
£3 .G2iA^/AH3
511 DEFr «%C*4V/« OS»*2 J/«H3/AH
5= A 1 = 1 ./(I .*DEF»
56 OEYr IcTAd ,J J-ETA<1 ,J-U J/OY
57 StrGOtY
CP DO 2C! K=l ,K?
6r B5=RXI,J,K I /Ah
i 1 IF
bti GO TC 201
ke 202 CONT IMUE
) /2 . *AH» T»UY*TS / AV ) / t AH*DS I *»2
67 V3II ,J,K ):41*JGI*V1 (1, J.,K )«ri2*APC*(P2-Bii-B5+86)l
6" 201 CONTT'IUE
6-J 2CC CONT IMJE
71 RETUFN
72 E\'0
93
-------
*Ft_OW( D.ASAF3 FOR CREATED ON 12 PEC 79 AT 13r<47:21
1 C ********* ********************* ******* ************* ********************
2 C COMPUTES TIDE HEIGHT AT POINTS JUST OUTSIDE OF OPEN BOUNDARIES, THEN
? c COMPUTE; THE NORMAL VELOCITIES AT BOUNDARY POINTS.
u C**********************************************************************
•5 SUBROUTINE ASAF3tIN,JN ,KN,1*,JH,U1,U2,U3,V1,V?,V3,V,OM,ETA 1,
6 CETA, fTA3,RX,RY,MX,PY,MAR,H,H9,ELEV,Ub ,ve,HU,HV,M.EX,*£Y ,CB,
7 CDUMX ,DUMY,0UHS,OX,CY,DS,QT,FCCR,TAUX,rAUY,G,NCASE,NBLOK,TTOT,
• CTIDE IS,TIDE2S,TIDE3S,EST,STAGE,AV,
9 CTIOE lN,TIDF2N,TIO£3N,AMPLIT,PHAS£,GPHASE,PERrOO,TSHTFTJ
If OIH^SION Ul(IN,JN,KNJ,U2»I»l,JN,KN»,U3CIN.JM,KNI,VlfIN.JN,KN).
1' CETA( 1M, Jli) .ETAld'^JKI rRX(IN,JN,Kt* ) ,H Y (IN, JK,K N i , MX f IN , JN J \
13 CMYtl*,JNJ,M4R(IM,JN),HtIN,JNJ,HP{IK,JH),ELEV(IN,JNJ,
16 CTIOE 1N(IM),TIDE2N(IM),TIDE3NCIH),
17 CTIDE JSeiM),TIOE2SU«n,TIOE3S(!M!
1° KZ=K^-l
19 ABCrCB*OT
2? DO 1 1 Ir3,15
21 TIDE 3M(I>=STA(5E+AMPLIT*SIN(6.287/PCRIOO*((EST-TSHIFT)-PHASE
2? C-DPHAS£*(I-1I) J
23 U CONT IMUE
2'' DC 12 1=2,11
25 TIDE 2StI)=STAGE+AfPLIT*SINC6.283/PERIOD*t tEST-TSHIFT)
26 C-DPHASE*«I-1 I!)
27 12 CONTINUE
28 C**»**CCMP ITES V ON NORTH BOUNDARY*****
29 J=iu
30 DO 3CO 1=3,15
31 AHl = HV(I,J) + (TIPElNfI)ȣTAHI,J-l))/2.
32 AH=HUI,J)»«TIOE2NtII+ETA{I,J-l))/2.
33 AH=A fAXl (AH, 10. **(•«] >
3" AH3:^V(ItJ)*{TIDE3N(I}«ETA3fI,J-lJ)/2.
35 G1 = AH/6H3
36 G2=Ah/AH3
27 DEY= ITIOE2N{I)-€TA(!,J-1) J/DY
3"! DEF: «eC*AV/(OS**2)/AH3/AH
3° Al = l ./I l.»OEFl
11 DO 3C1 K=1,KZ
t2 S2=n.
<»3 BS=R Yf I ,J,K I /AH
"•" IFjK .EQ.l ) GO TC 3C2
,J.K + ll-VUI,J,K)+V2fI.J,K-lM/**2
50 V:iI,J,K)=Al*(Gl*Vl(I,J,K)+G2*APC*(82-B'»-R5*B6])
51 301 CONTINUE
5? iOC CONTINUE
«? C** ***UPCA 1ES TIDE HEIGHT*****
51 DC 1: 1=3, 2C
55 TIDE !1( I J = TIDE2M(I >
56 13 TIDE 2N(I ) = TIOE3N(T)
r? c**«**COMPlT£S V ON SOUTH BOUNDARY*****
5 S J = 1
S"5 DO ICC 1:2,11
6" AHl=hV(I,J»«ITlDElSfI)+ETAl(lfj)»/2.
6! At-=M\i(I,Jl-»(TTOE2S(n-i'CTA(ITJt>/2.
6? AH=ACJX1 tAM,10.**{-6) i
fc? AH2=r-
6" 61 = «H
66 OEY= «ETAf I ,J)-TTOE2SII J J/DV
67 DEF:i^C*AV/f 0$**2I/«H3/AH
f A 1=1 ./ t 1 .
7T 00 «C1 K=l ,K2
71 B2 = C.
7? B5:R *( I , J,K J/AH
7T IF (K .EQ. 1 ) r,Q TO 10?
7U B6=AV*/2.*AH*TAUY*nS/AV>/*»2
-------
7" V3«I ,J,K>=Al*+02*A9C*tP2-B«l-«5+B6n
CONTINUE
SI ICQ CONTINUE
fi? C*****UPOA 1ES TIDE HEIGHT*****
8? DO 1« 1=2,11
9<» TIDE 1S(I »=Tinr2SU J
as in Tio£asm-noe3s
-------
*FLOU
2
6
7
8
9
10
11
15
16
17
(li.GIVENU SYf CREATED ON m SCP 7° AT 17:M7:<»3
C*****SP£C 1FY VELOCITY AT D ISCHARRE t INT AKF. , AND PIVER HEAD*********
SU8f?CUTlNE GIVENU(IN,JN,KN,IHtJM,Ul,U2 ,U3,Vl,V2,W3,Tl,T2,T3,
CESTJ
OIMe^SION «1{IN,JN,KN),V2(IN,JN,KN),V4{IN,JN,KN),
n HI I",J.«,KM>,TZ(IM,JM,KN> ,T3< IM,JM,KN»
CtUK IN, JN.KN) tU2(IN,JN,KNI,U3(IFltjr. ,KN)
DO
C3 K —1 K Z
'"- =-10.«COS(6.2832/25.0*(EST-5.OJ)
U3H t,l,K
V3(l 1»«tK
U2ti;,3,K
100
=10.*COSt6.2t32/25.0*«EST-5.CII
=5.-2.*COSJ6.2a32/12.5*(CST-7.62SIJ
:5.-2.»COS(6.2332/12.S*(EST-7.625J)
=5.-2.*COSl6.2332/12.5*«tST-7.5))
CONTINUE
RETUFN
END
96
-------
*FLOWIU.CONV FOR CREATED ON It DEC 79 AT 10:13:57
2 C COfPUTES TC-THE CONVECTIVE TERMS OF T-EQN, AT T-POINTS.
3 c********* *************************************************
0 SUEPCUT1NE CONV(IN,JN,KNtIM,JM,OX,OY,QS,DT,OUf«X,OUMY,OUPS,
5 CSK,RR,BV,U2fU8,V2tVB,T2,IC,HB,hU,HV,OM,ETAl,ETAt£TA3,Ce,MEX,
6 CMEY,U?DT2,TEO)
I?
9
I, JHI,MEYf IM,JMI,OTZUM,JMI
DIMENSION U2(IN.JN,KN),V2(IN,JNfKN1,UB(IM,J»,KNJ,VB(II,JM,KN),
CT2tIC,JM,K«ll ,HBtIH,JMJ ,HU(IN,JN) ,HV « I U, JN 5 , Of «1H , JM,KN ) ,
CETAl(IH,JM|f£TAtIu,JM),ETA3(IH,JMI,TC(IM,JH,KN>,ttClMtJM,KNl
DIM»:>SION H£X(IM,JMI.MEYIIM,JM|,OT2JIH,JMI
11
12
13 HK = S f /(RR»«*V J
11 00 1 CO 1 = 1 ,IM
15 00 ICC J=1,JH
16 IF(M-EX(I ,J).E0.01 GO TO 100
17 AHZHeU.JJ+ETA II, JJ
18 DET= (ETA3tI,J)-ET»lfl ,JJ)/ASC
1 OR=Hl*ETA{IfJ})/2.
2C IF(^EX(I,J1 .E0.21 OP=HU(I + 1,J I+ETA (I ,J»
21 OL = H(.(I,J! + (ETA(I-l,Ji«eTA(IfJ»/2.
22 IF(HEX(frJJ ,E0.1 1 DL=HU:(OR*UP*TR-QL*UL*ILJ/OX
36 VRr«»2tI,J*l»K)*V2(IfJ+l,K»l»/2.
2' VL=( V?(I,J,K J+V2I I,J,K*1) J/2.
3° TR=T;«I.J,K»
3" IFiMfYJl ,JI.HE.2J TRrf T2(I,J,K )*T2(I, J+l.K M/2
40 Tl=T2(I,J,KJ
14 ! IF(MEY«I,J>.NE.l 1 TL-(T2CI,JtKI-*T2(It J-l
M? OHVT'»:(02»VP*TR-D1*V,L*TL)/OY
t^ IFtK.NE.ll TR=(T2lIfJ,H)*T2«I.J»K-l) 1/2.
46 IFCK.EO.l) TRrT2(T,J,K )«(OS/2. J*OTI( I ,J1
M7 IF(K.NE.K2> TLi(T2IIi JfK >+T2CItJfK+llJ/2
48 IF
-------
is
17
13
ii
26
26
27
2"
2"
7"
31
22
33
3«
te;
35
37
50
1 1
<*2
<*«•
16
47
*FLOWU>.TCOPPT FOR CREATED cv i APR eo AT m:29:3a
| C COHPUTF.J T3 BY CTCS+OUFORT-FRAMKEL SCHEKE*TO*INTEGRA TE***EON'
<« St'BRCUTIIMf^TCOKPT (IN, JN1KN, TM..1".
6
7
S
9
11
12
i:
K Z — K ^ ™*
ABC=CT
DQ ICC 1=1, If
DO ICO J=1,JP
IFlffvH fj J.EC.2) GO TO 100
AH=HEn,JJ»ET*(I,J)
AH1=I-B(I,J)+ETA1 tl,j)
AH3 = ^t^lI,J)+ETA3(T^J^
AACrgV/AH/ «DS**2)
ACC=EH*AH
D£F=3./fl.+AeC*BV/AH3/AH/.£0.1 >02TYr(T2II,J«ltK>+TABS-2.*T2f I,J,K)J/
IF(Ya,j).E0.2)02TY=(T2(I,J-l,KHTA3h.-2.*T2(i;jtK)I/
IF(K
J GO TO 51
,,ft,,-
BARrc-TC(I,J,K}+AaC*BARl+ACC*(D2TX»02TYJ
T3(I,J,K):CEF*(AH*T2{I,J,K)»A8C*BAR2I/AH3
GC TC 200
CONTINUE
BARl:T2U,J,K + l)-TlfIfj,K)/?.«oS*OTZ(I,JJ
BaR2:-TC(i,J,K}»AAC*BARl + ACC* J02TX «02 TY )
7 3(1 ,J,K )=OEG*(*H*T2(I ,J,K)«A8C*BA|52)/AH3
GO TC 200
CONTINUE
8ARl:-Tl{I,J,K]/2.+T2f ITJ,K-1I
BAR2:-TCII,J,K)+AAC*BAR1+ACC*(02TX«D2TYI
T3(I,J,K):OEG*(AH*T2(I,J,K)+ABC*BAR2)/AH3
CONTINUE
CONTINUE
SETUPS
END
98
-------
*FLOW(ll.C-IV£NT SYP CREATED ON 6 DEC 79 AT 10:22:11
c*****SF|CIfY TEMPER ATU«»E AT DISCHARGE AND RIVER HEAD*****************
SL'BPCIITINE GIVEN! t IN, JH,KN, IH , J" ,U 1,U2 ,U3 , V 1 , V 2, V 3,Tl , T2t T3,
5 O^ME^SION VI (IN.JN.KN) ,V2»IN, JK,K^4),« 3(IN,JN,KN»,
5 CT1U I'.J'-.KN) .T2tI",JH,KN) ,T3«IM,JH,KN \
* CtUK lN,JI*,KNjtU2lIN,JN,KNI,U3flM,JNTKNl
7 00 2CO K=1,KN
l' 200
11 RETURN
1? END
99
-------
1" 00 9CO 1=1,IM
15 00 9CC J=1,JH
16 IFfMEXII,J) .EO.OJ GO TO 9CQ
17 DET:»ETA3(I,J)-ETAl(ItJH/2./OT
IS AH=H8fI,J>*ETA(T,J)
1" IFtHEXlI ,JJ.EQ.31 GO TO 15
2C IMME*«I,4> .EC.1> GO TO 1
21 IF(H£X(I,J).EG.?I GO TO 2
2? 15 CONTINUE
23 OEX= lETAU«l,J)-ETAfI-l,JM/OUMX
21 DAHXrtHB(I+l,JJ*ETA(I»I,J)-H8(I-l,JJ-ETACI-1,J)I/DUMX
25 50 TC 3
26 1 DEX= IETA (1 + 1 ,J»-ETAH,JI I/OX
27 E2=(ETAII«l,JJ+ET4tt.JI»/2.
21? DAHX:(HU-ETA(I-l.J})/DX
3? E2 = E1A/2.
3* DAHX rcHUJI ,J)+E2-HU«I-if J J-FH/DX
35. GO TC 3
36 3 CCNTl'JUE
37 IF-£TAtI,J-l! )/OUHY
<«? OAHY KH8 (I ,J*1 I«£TAM tJ-»ll-HB H OEYr (ETA (I ,J + l 1-ETAd, J) )/DY
46 E2 = t ETA( I, J+ 1)+ET«( I, J »/2.
46 E1=EUII,J+11-1.5*(ETA(I,J*1J-ETA(I,J1)
<»7 OAHY r(HV ( I , J«l !+E2-HV<
IS GO TC 6
49 5 OEYr (ETA(I.JJ-ETAfI.J-1))/QY
5C Et-tI*11tJ-l)*J.5*(ETA{I , J)•"
51 El = t ETA(I,J-l»*ETA
-------
*FLOWU>.ANCPR FOB CREATED ON 3 DEC 79 AT 20:i6:<46
i c ********* *************«**********»****#«*#«********•*******«**********
2 C PRINTS ETA, RESULTANT VELOCITY, AND T »T «« FIXFO LOCATIONS CnuTINU-
3 C OUSLV, THUS SHOWS THE FLOW AND TEKPERATUKE DEVELOPMENT AT THESE PTS.
U C«*******« J
? U=UB(6,1,1J
o V = USI6,1,1)
10 X 1 = SCPTIU*"»2«V**2 J
11 CALL 2Z1(U,V,ZED»
12 ZlrQ*«TH+ZEO J
1? IFtZl.LT.O.I n=21«360.
11 Sl = £(6,l)
15 TH1=T2(6,1,1 1
16 U-UBU2,<»T1>
17 VrVSI^,"*,!!
18 X2=SCRT(U**2*V**2I
1° CALL 221tU,V,2EDJ
2C ?2=0»(TH+ZED)
21 IF(?<.LT.C.I 72=22*360.
22 S2=E(12,'H
2? TM2-T2(12,1TH
2» U=U8 (3,12,!)
25 V = V6 (fl.12, 1 J
26 X3 = SC"T
-------
*FLOWfl).TPRLOK POP CHEATED ON 1 DEC 79 AT Ur31:18
2 (;**«**«*** ******** ******************** *********************************
2 C PRINTS CUT HOURLY RESULTS OF HORIZONTAL RESULTANT VEU, W-VEL, AND T
3 t AT «» LEVELS, *ND THE SURFACE ELEVATION ETA
5 SUBPCUTINE TPRLOK (I*',JN,KN,IM,JMtUl,U2,U3,Vl,V2,V3,W,OM,ETAl,
6 CETA,£TA3,RX,RY,«X ,KY ,M AR ,M ,H8 ,EL£ V ,U8 , VB , HU ,HV ,MeX,NE Y ,T2,
? CDUKX ,DU1Y,OUPS,[?X,aY,DS,DT,rcCR,TAUX,f AUY,G,NCAS£,N6LOK, TTOT,
fl CKtfEL ,KTEMP,VR,ANG»THETA»
9 0 IME hSION Ul(IN..lN,KMtU2fIN,JN,KN»,U3,
11 CETAI IH,JMI ,ET«Z(I«'tJM) ,RX tIN, JN.KN ) ,R Y (IN ,JN,KN> ,MX(IN,JNI ,
I? rMYm,JNl,«»P«IN,JNI,HtIN,J»M,H9tlP,.JM),ELEVtIN,JN»,
IT CU?(I >,J*,HN) ,V6Uf»,JM,KNJ ,HUtIN»JN J,HV ,J=1,JM)
5? 1 CONTINUE
53 VRITF(6,505>
51 DO 6 1= 1,1-
55 6 WrtITf(6,5CSI I,(ETA(I,J) ,J=l,JM)
56 IF(KFSOF.£0.0> GO TO ICO
57 WR1TE(6,5C8I
5" CO 1C J=l , JM
59 WRITE»6,6C?I J
k" CO 1C K=l,Kr
tt ViRITE(6,5C7) K,«US(I,J,K I ,I = ltlH;
62 10 CONTINUE
65 URITEI&.5Q91
61 00 2C 1=1,1"
65 UR1TE(6,6C1I I
66 00 2C K=l,KZ
67 W«ITE(6r5a7) K , (VR
-------
7° 552 FORHfTt lX,*I = ',Ii», • TEMP:* , 1MF7 .2// )
S? 551 FORH*T(lX,»I=«tlU,« TEHP=*,I5F7.21
81 31 CONTINUE
S2 S9 CONTINUE
? 500 FCRM*TUX,'U,V VELOCITIES, CM/SfC, K=»,I«/I
8" 5C1 FCRf
91 508 FCRK*TI1X, 'VERTICAL PROFILES OF U VELOCITIES')
92 509 FORM*T<1X, -VERTICAL PROFILES OF V VELOCITIES')
9J fcCC FORMJTt •!')
91 601 FORH*T{lHO,»Tr',I!t//)
95 6C9 FORMfTflHC, ' J-*,IH//l
96 700 FORM/TUX, 'RESULTANT VELOCITIES AND OIRS, K = ',I<»/)
97 701 FCRM*T( 1X,'I = ',II»,' VRES = ',15F7.1 )
9P 702 FORMiT(lX,12X,15F7.0/l
9° RETURN
100 END
103
-------
3!
7 J
33
3"
3"
39
10
11
1?
13
11
1C
16
17
5C
*PLO«C1 ).STORET FOR CREATED OK' H DEC 79 AT 11:22:36
1
?
3
i
5
6
a
Q
1C
U
12
13
11
IS
16
17
1"
!«•
2C
21
22
23
2"
25
26
27
2°
C STORES I-OURLY RESULT ONTO TAPE FOR LA
C***************************************
SUBROUTINE STOfiET(IN,JN.KN,IM,JM,U
CETA, *X,MY,yAR,H,H?,t'e , VP,HUf HV.MEX
CTIOE IN,TIDE2N,TICK 3N,TIDE IS,TIOE2S
CA*Pl. n,PHASE,nPHA§E,P£RIOO)
DIMENSION Ul IIN.JN.KNJ ,U2(IN,JN,KN
Cw fI" ,JM,KNI,ETA1cIM,JM J,ETA(IM,JM »
CH UN ,JNI ,HS ( If , JM ) ,UB ( IK, JP. ,KN) ,VB
CKUl^.JN),HV«IN,JN),MEXIIH,JH),fEY
DIME^SI0^4 Tl (IK,JM,KN) , TIDE IN (I" I ,
0 IfENS I ON T2(IM,JM,KN),TIOElS{IMlt
N3LOKrNBLOK+l
WRITE 13) N8LOK
WRITE (8J (( (Ul (I , J,K) ,K = 1,KN),J=1,
*******************
IER RUN OR PLOTTING
:**********************
1,U2,V1,V?,W,ET»1,T1,T
,HE Y,NCASr,N'BLOK,TTOT,
,TIDE3S,STAGE,E.ST,
,T2,TP,
QT ,
I,Vl(IN,J*l,KNt,V2IIN,JN,KN),
,KX ( IN , JN >,MY , TIOE3S(If 1
CI((VKI,J,K),Krl,KN),J = l,JN),I = l,IM,
Cl t III Uri,J,K) ,K = 1,KN),J=1,JH1,I=1,IMI ,
fJ=lfJM1,1=1.IfJ
(VE(I,J,K)fK=l,KN),J=l,JM),!=!,IK)
(THI,J,K),K=1,KN),JS1,JK1,1=1,IK)
(T2(1,J,K),K:i,KN),J = l,JM),!=!,If!
{TE(I,J,K)fK=l,KN),j:l,JM),I=l,IM)
Cl
Cl
ri
C(
ci
ci
Cl
Cl
ct
Cl (HE _. . .
C{TIDE1NII) ,1 = 1,IH
HI, Jl ,J = 1 , JM
XI ,U) ,J = I ,JN
,JJ ,J = 1,JH
,1=1,11),
,1 = 1, 1M),
CITIDF3N(I),I=1,IH
CITIDEISCI) ,r=l,IM
C«TIOE2SIIJ,I=1,I
CtTIDE3SfI),I=I,I
WRITE (8) TTOT,NC*SC,DT, STAGE, £S T , AMPLIT .PHASE ,OPHASE ,
CPERI CD
END FILE 8
URITE(6,1121 TTOTfNCAS£,NBLOK
FCRM iTt 1 X, 'DATA RECORDED ON TAP^, T TOT= • , F10 .0 ,
C* CASE *BP=*,IS,* 6LOK NBRi',15)
RETUfN
END
104
-------
•FLOWC11.ZZ1 FOR CHEATED ON <» DEC 79 AT 11:39:05
1 C*****0£TERMIN£S THE ANGLF OF RESULTANT VELOCITY ******
2 SUBROUTINE ZZ1 (U t V,?ED )
3 IF(«FS(V).LT.. 00011 GO TO 10
5 GO TC 1QG
6 10 CONTINUE
7 IFtU.GT.O.) ZFO=1.571
a IFtU.tE.O.I ZEO-^.713
0 IOC RETURN
10 END
105
-------
*FtOUf ll.AKATN SY* CREATED ON 25 SPR 79 AT
1 3,0,0*1*1. 1,1, 0,0,1, 1,1,0, U
2 1,1,1,1,1, ,1,1,1,1,1,1,0,0
0
r
I
o
1C
11
1?
1 3
it
17
1 F
la
2C
21
22
23
2'f
25
26
27
2?
2°
3C
Ij
33
31
3-5
35
37
3"
39
<4f
Ml
12
i* 3
Utt
M?
If-
17
C4 ft
lit.
5C
51
5'
53
to
55
s ^
57
5S
c c
61
61
62
61
6?
66
67
6<=
6"
7C
71
7?
7?
7"
71
7f
77
7*
1,1
1,1
1,1
1,1
1,1
1,1
0.0
l.C
12.
3.0
10.
,1,1,1, ,1,1,1,1,1,1,1,1
,1,1,1, ,1,1, 1,1, .1,1, 1,1
, 0.0, 0.C, 0.0, 0.0,0.0,0. 0,Q.0, 0
,1.0, l.C, 1.0, 1.0, 1.0, 1.0, 1.0,1
, 11., 8. C, 8. 0,3. 0,3. 0,5. 0,5. 0,3
, 8. C, 9. C, 10. ,13., 6. 0,3. 0,8. 0,o
,S.O,8.C,a.G, 10., 9.0,9. 0,9.0, 8
9. 0,9. 0, 8. C, 8. 0,9. 0,8. 0,9. 0,8. 0,8
7. 0, 7. U, 7. C. 7. 0,7. 0,6. 0,3. 0,8. 0.9
5.0
3.0
2.C
2.0
1.0
u .Li
l.C
l.'c
0,0
1,1
3,3
3,3
3,3
3,3
3,3
3,3
3,3
3,3
2,2
O.Q
0,0
1,1
2.2
0,0
1 ,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3
C,L
C v L
1,3
c',i
1,1
3,3
3,3
3,3
3,3
3,3
3,3
3,3
3,3
3,3
2,2
0,0
1 ,1
3,3
2,2
, 5.0, 5. C, 5. 0,3. 0,3. 0,5. 0,9. 0,8
, 1. 0, 3. C, 5. 0,2. 0,2. 0,2. 0,7. 0,8
, 3. 0 , 2. C, 1.0, 1.0, 2. 0,1. 0,6.0, a
,2.0, l.C, 1.0, 1.0, 3. 0,2. 0,5. 0,7
, 1.0, l.C, 3. 0,1. 0,2.0,2. 0,2. 0,6
, C. C, 3. C, 3. 0,3. 0,1. 0,1. 0,2. 0,3
, 3. 0, 3. C, 3. 0,3. 0,0. 0,1. 0,2. 0,6
,3.0,3.C,5.0,C.C,O.C,C.O,b.O,2
, 2.0,1. C, 0.0, C.C,0. U, 0.0, U. 0,1
,0,1,1, !,C, 0,0, 1,1, 0,0
,1,3,3,2,1,1,1,3,3,0,0
,3,3,3,2,3,3,3,3,3,1,1
,3,3,3,2,3,3,3,3,3,3,3
,3,3,3,2,3,3,3,3,3,3,3
,3,3,3,2,3,3,3,3,3,3,3
,3,3,3, 2,3,3,3,3,3,3,3
,3,3,3,2,3,3,3,3,3,3,3
,3,3,3, 2,3,3,3,3,3,3,3
,3, 3, 3, 2, 3,3,3,3,313,3
,2,3,3,2,3,3,3,3,3,3,3
,0,3,2,2,3,3,3,3,3,3,3
,1,2,0,C,2,3,3,3,3,3,3
,2,0,0,C,0,2,3,3,3,3,3
,C,0,C, C, 3,0, 2 , Z, 2, 2, 2
,0,1 ,3, Z, 0,0,0,1,2,0,0
, 3,3,3, 2,3,3,3,3,2,0,0
,3,3,3,2,3,3,3,3,3,3,2
,3,3,3, 2,3,3,3,3,3,3.2
,3,3,3, 2,3,3,3,2,3,3,2
,3,3,3, 2,3,3,3,3,3,3,2
,3.3,3, 2,3,3,3,3,3,3,2
,3,3,3,2,3,3,3,3,3,3,2
,3,3,3, 3,3,3,3,3,3,3,2
,3,3,3, 2,3,3,3,3,3,3,2
,3,3,3,2,3,3,3,3,3,3,2
,0,1,3,2,3,3,3,3,3,3,2
,1,2,C,C,1,3,3,3,3,3,2
,2,0,0,C, 3,1,1,3,3,3, 2
,G,C,.C,C,0,0,1,3,3,3,2
,0,1,1,1,0,0,0,1,1,0,0
,1,3,3, 2,1,1,1,3,3,0,0
,3,3,3, 2,3,5,3,3,3,1,1
,3,3,3, ,3,3,3,3,3,3,3
,3,3,3, ,3,3,3,3,3,3,3
,3,3,3, ,3,3,3,3,3,3,3
,3,3,3, ,3,3,3,3,3,3,3
,3,3,3, ,3,3,3,3,3,3,3
,3,3,3, ,3,3,3,3,3,3,3
,3,3,2, ,3,3,3,3,3,3,3
,3,3,3, ,3, ,3,3,3,3,3
,2.3,3, ,3, ,3,3,3,3,3
,1,3,2,2,3, ,3,3,3,3,3
,5,2,0,Cf2, ,7,3,3,3,3
,2,0,C,C,0, ,3,3,3,3,3
>G,Q,0« C,C,0,2,2,2,2,2
.0
.0
10
,1
,1
.0,2
.0
.0
.0
.0
.0
.0
•2
. c
.0
.c
.0
.0
.0
,3
,6
;I
,8
.a
,8
,7
,7
,6
,3
:?
:28:15
.0, 1
.0,1
.0,2
.0,3
.0,1
.0,6
.0,7
.0,7
.0,7
.0,7
.0,7
.0,7
.0,5
.0,3
.0,3
.0,2
.0
.0
.0
.0
.0
iH
.0
.0
.0
.0
,1
,1
,2
,1
,6
',7
,7
,7
,7
.7
.0,6
.0
• w
:0°
,5
,1
•!!
«<.
.0,0
.0,0
.0,2
.0,5
.0,7
.0,8
.0,6
.0,7
.0,7
.0,7
.0,7
.0,7
.0,5
.0,1
• 0,1
.0,2
.0
.C
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.c
.0
.0
,0
,0
,1
,7
,3
,9
,9
'a
,8
,8
,7
,6
,5
*3
,2
.C
.0
.0
.0
.0
.u
.0
.0
.0
.0
.0
.0
.0
.0
.0
.u
106
-------
er
ai
a:
sr.
8*
as
36
87
8*
e<5
90
91
92
93
c
1
1
1
1
1
1
1
1
1
1
a
a
i
i
.a
,3
.3
, 3
,3
,3
,3
.3
.3
,3
ll
,0
,0
,3
,3
,Q,
,3,
,3,
,3,
.3,
,3-,
,3,
,3,
,3.
.3.
,3,
,3,
,1,
,3,
,2,
1
3
^
3
3
3
3
3
3
3
3
1
3
2
a
,3,
,3,
,3,
.3.
,3,
» 3 1
,3,
,3,
.3,
.3,
.3,:
,3, .
,2, (
,3, C
,C.f
!.2,
,3,
,3,
,3,
,3,
,3,
,3,
,3,
,3,
,3,
!,3;
',3,
',1,
,3,
,0.
3 ,
3 1
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
1,
0,
C,
3,
3;
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
li
1,
W f
3l
3,
3,
3,
3,
3,
3,
3^
3,
3,
3.
3,2
3,2
3,3
3,3
3,3
3,3
3,3
3,3
3,3
3,3
3^3
3,3
3,3
3,3
3,3
*
t
t
f
f
f
?
»
f
f
t
f
*
*
a,c
G,Q
3,2
3,2
3,2
3,2
3,2
3,2
3,2
3,2
3,2
3,2
3,2
3,2
3,2
107
-------
SOI
IT is
*i'Z 01
h' T bZ
L' \ 62
L'Z LZ
DI'Z 92
DIM SZ
3I*T tiZ
zi'i: £Z
tit'C ZZ
UI49T 12
6*91 G2
6'SI 61
8'ST 61
8'«Jt H
i'liT 91
i'£I ST
S'£I «il
s ui n
h'bl Z\
h'SI II
C*St CI
£ * 91 6
i'9i e
I'ftt ^
£'ftl 9
£'£! S
h'tl *i
h'ZI £
I'f I Z
T*Z I
IV £i Trr 61 NO Q3iV3a3 WAS Id3dV (I »
-------
*FI_OWf 1I.C20C7 SYH CREATED ON 20 JUN 80 AT 11:13:26
r 25.0,.82,3!7.6,90.0,."5,26.6
? 26.1,.76,357.6,90.0,.20, 26.7
7 27.2f.71,«H1.7,110.,.30,26.8
» 2S.8,.7C,581.1,110.,.3U,26.Q
c 23.fl,.66,117.0,110.,.MO,27.0
6 29.<»,.62,3*7.6,110.,.40,27.Q
7 30.0,.59,357.6,90.0,.60,27.0
P id.6, .Sfl,<» C2 .2 ,90.0, .50 ,27.0
«» 3C.6,.57,MC2.3,110.,.55,27.0
10 30.0,.57,UC2.3,100.,.40,27.1
11 30.0,.56,«C2.3,ICQ.,.30,27.2
IT 29.1,.55,312.-),110.,.20,27.1
13 28.8,.53,312.9,90.0,.15,27.0
1" 28.C,.50,223.5,90.0,.05,27.0
1C 27.2,.19,2:3.5,90.0,.00,27.0
16 26.8,.M8,2<3.5, 90.0, .00,27.0
109
-------
no
-------
t*FLQW{ 1 I ,£u ATa SYM C«EA ICO 0,4 IP JAN 80 *T 33:2C:£C
T -.._.-
2
T ;'7.C,27.ut27.G,i7.Q,27.C,27.U,27.rr,27.3f27.C.,27.U,27.0,i7.n,27.0127.aT£7.a
2 r 7. C, 2 7. u, 27. C, i7, 3, 2 7. C, r 7. 0,27. 0,27.3,27.1' ,27.0,27.3,17.0,2 7, 0,27.0,27. Q
3 27.C,27.U,27.0,27.0,27.r,27.a,2^.0,27.0,27.1,27.1,27.],27.C,27.C,27.2,27.C
n 2i.C,27.C,27.C,i:7.C,27.C,27.C,27.C,27.1;,t:7,i:,27.«,27.5t27.fc,27.5t27.a,27,a
5 i7.C,27.u,27.C,27.C,27.a,27.a,27.a,27.0,i7,2,C7.9,28.3,27.9,27.C,27.C,27.C
t 27.C,27.u,27.Dti.7.3,27.T,27.0,27.Q,27.C,27.1,27,6,28.7,2e.7,27.C,27.C,27.C
7 i7.u,r7.C,27.C,27.C,27.Qt?7.0,27.C,27.J,27,],27.7,,?6.7,2t.9,29.n,2y.i,29.6
«.7.C,27.1;f27.C,27.Q,27.a,27.U,27.C',27.af.i7,i(t27.it26.t,2S!.l,29.3,29.fc,2<».fr
;7.C,27.uv27.C,27.3,27.C,r7.0,27.C,27.a,<;7.<,27.^,28.S,2S.2,29.'<>29.a,2S.7
1C 27.C, 27.U,27.C,27.0,11.T,27.C,27.7,27.0,27.L,27.2,27.6,23.7,28.8,28.7,27.7
11 27.L,27.U,27.C,i7.C,27.C,27.0,27.0,27.0,27.U,27.0,27.3,27.8,28.3,27.7,27.7
12 27.0,27.u,27.0,27,3,27.C,?7.0,27.0,27.a,i7.u,27.ef27.C,27.'*,27,u,27.3,27.0
13 27. L', 27. 0, 27. C, 27. J,27. C,27.0,27.0,27.0,27, C, 27. C, 27.0,27. 0,27.2,27.0,27.0
in
-------
Ill
.
£2'«!>i2'S'iZ49'lZ43'i249>i24»'i?'Ct/Z'Q*l?4Df2.Z';;>i?.*e*/:>431iZ4D'£Z''!*i.: [I
i24D'l24:]pi'In*/;:*0>i' Qt
;:'rpi.:'40'i24Cpi2'V"' 6
-
.
iiSS9*Ft iV 6i Atf.i al NO Q31¥^3 W< S 71V 0V ( I > a-ll J*
-------
113
-------
r-«a.*ar
«> *
o» • •
O-»Z«in •"
z —
O* O* :£ -I
z # » •—
att>-i«a- <-
« u. « M£tM«-M3-- «.
txa.~-.oooo
o — —
O t/>z
—* •— « O O tt t,T^--^*«^
O *OO »T>- o OOO C3
O » CE» V-Ori-i—
"•* >- *- ^- Q t~~ C. -ft
1 —MUJbJUJUKOQO OOOODOOOOOOOOOO&O^ OZZ
»-a: — riM a—
Z
z» z« aM
£. « M« O
<» (MM
O* !.»
3
o
-------
7<> 3 CONTINUE
80 IFdFLOIR.EO.O) GO TO 7
8! 00 1C Nrl.NIR
82 P1 = 01(M>
87 P2=CJ(NJ
att P3=C2
87 ZLIT:TL
9? 0011 J=1,J"
93 0011 1=1,1*
91 11 E TAC J,J»=TIR(I ,J,N>
9S CALL 5CHKON«ETA,I«,dM, 1,1*, 1,JM, 1.8, 5.6, .Ot.SAHCON, TINT,
96 CRGRIC,IM,JMt2HT,Z8IG,C.,a.,0.,C.,C;,0,.C7,l.,NPLT,IN,JNfKN,
97 CNCN,CX,DYfXSCALE,YSCAL£,COSFfSINFrXX,YY)
9« CALL CAPTN1 IFC»EX
1«1 5 CONTINUE
1«2 KC=1«INT .
1H3 C*****PLOT? RF.SULTAMT VEL OF TJ ">[. V ON NEARLY HORIZONTAL SIGKA PLANE
100 IFU FLOTC1 ) .iO.fl) GO TO 1GQ1
la«. CXX,YY,AKN,PCL?J?PRH,ARKIN,ARMAX ,CO SF JsiNF , K 0 JHB.UOUMI ,
1U7 CUCUf,XL,UM4X,OX,DY,MMAX,WPLT,KPLOT,
IIP CX SCt tc. ,YSC«L£,Z?CALf,USCALE..VSCAL£,USCALE, STARE, ETAJ
11^ CiLL CAPTMfTl ,P2,P3,PM,P5,Q6,XSC,USC)
15C CALL CAPTH5(N.MlDEW)
151 CALL CAPT?i?»N»
15? CALL PLCT tO.,0.,3>
i='3 CALL PLOT i ia. .0.,-31
icu c*****PLOT< RESULTANT Vc-l CF U ?C W CM £ -« VERTICAL SECTIONS
155 10C1 IF (I FLOT(; ) .EO.OI r,0 To 100-
15ft CALL PLOTlJ'J(If.',JN,KV, I f , J" ,MF ,-,K2 ,DX ,OY,DS,
157 CPLOTt-T,HMAX,UMAX,WF'AX,KEX ,HU , AR"I N , AHMAX , XL ,COSF , SINF , HR ,M AP ,
115
-------
ISP
15"
160
16!
CNPLT ,XSC ALE, YSC ALE, ZSC ALE, USC ALE, V SCALE, WSC ALE, STAGE, ETA, MX »
CALL CAPTNUPl,P2,P?,P«»,P5,Ob,XSC,USC)
CALL CAPTN5fN,MIOEW)
CALL CAPTN6IN)
CALL PLOTCO. ,o. ,3)
16?
16".
CALL PLOT(10.,D.,-3)
C*****PLQTJ RESULTANT VEL OF
1002
V £ W ON N-S VERTICAL SECTIONS
17!
172
17?
176
177
17P
179
ISC
131
It?
183
ISt
18=
186
1?7
191
19?
195
998
197
19?
199
2DH
2C!
2C2
2C3
2C»
205
2C6
2C7
20?
2C°
21C
211
212
591
9"2
10QO
1«
101
IFUFLOT<3».£O.CJ GO TO 1303
CALL PLOTVV(IN.JN,KK,IH,JM,V8,U,KZ,DX ,DY,OS ,
CALL CAPTNS
CALL CAPTN71N1
CALL PLOTID. ,0.,3 >
CALL PLOT<10.,C.,-3)
2LIT:ET»L(NGJ
ZFIG^ETAHt NG)
SAMCCNrZLIT
CONTOU(? VALUES MUST 9E SIVEN INOIV
CALL ECHKCN
CALL
CALL
CALL
CALL
CAPTNM(SUM)
CAPTN9(N)
PLOT (C. ,0.,3 J
CALL PLOTf 10.,C.,-3I
FORM /T( IX, 15F8.21
FORM4T(F8.2, • DEVIATION
CONTINUE
CALL PLOT(C.,0. ,999)
STOP
END
y.B.T. IR TEMP AT', 15," IS (OEG-C 1 * ,F1 2.5 1
116
-------
»n.OW( 1 I.PLOTUV FO F CREATED 0*1 7 DEC 79 AT 1C:C5:19
2 C TO PLOT RESULTANT OF U t V ON SIGMA PLANE K=KPLOT
7 £444444444 4444 44*444444444444444**444444444444444444<
1 S'UBRCI.'TIME PLOTUVfl'l, JN,KN,IK,JM,U6,Vb,MEX,PEY,NCNf XX, YY.AKN,
e COELZ ,ZPPR,ARMIN,ARMAX,COSFfSINF,KC,HB,UDUM1,UDUM,XL,UMAX,OX,OY,
k CHMAX ,NPLT,KPLOT,
7 ' CXSCAlE,YSC*LE,ZSC4LF.,USCALE,VSCALE .KSCALE .STAGE.E.T A}
f DIMENSIOfJ UP(IM,JM,KN) ,V8(IH. JM,KN1.MEX(IM,JM> ,MEYtIH,JHl ,
9 CXXfNtN) , YYCNCN1 ,HPtIHf JM I ,£TA (I*«,JKJ
IP URITF(6,32)
11 22 FORM«TIIX,'UV PLOTS')
1? A l = CX*XSCALE/2.
13 M=KPLOT
11 IFCM .GT.1J GO TO 20
15 DEPTI-=0.
16 00 3C 1=1,IM
17 00 3C J=1,JK
I" IF(MExtI,J) .EQ.O) GO TO 30
1" AI=FIOAT(I-1)*OX*XSCALC
2T AJ=FLOAT(J-lI*GY*YSCALE
21 AAl=/T*UB(I,JtMJ*USCALE
2? AAJ=AJ+V3(I,J,H»*VSCALE
2? CALL VECT(AI,AAI,AJfAAJ,ARHINfARMAX,COSF,SINF I
21 3C CONT 1NUE
25 GO TC 8
27 20 CONTINUE
2a OEPTh:OELZ*FLOAT(H-l)
2" DO M r 1=1,1"
2C DO. 1 C J = 1,JM
21 IFCM EXII ,JJ .EC.CJ GO TO MO
3? AH=HEfI ,J)+ETA II, J)
3? IF(DEPTH.GE.AH1 GO TO HC
31 DQZ=»H/AKN
3^ L 1=1
65 CALL "LOT! Al ,A 1 ,-3 )
66 NPLTrtJPLT* 1
67 •3lTE«>.iaJ NPLT.OEPTH
6= 19 FOR" £T( IX, 'PLOT N<>R = ',I6f' COMPLETED. DE PTH=« , F 10. 0 , • C»*)
6C 13 CCNT ]NUt
7n 5CG CONTINUE '.
71 2 FORM«T( )
72 RETUPN
7T END'
117
-------
*FLOU<1 J.PLOTUW FOR CREATED ON 19 DEC 79 AT 1?:12:<46
1 C ******************************************** ************ **************
? C PLOTS RESULTANT OF U t W ON SELECTED E-W CROSS SECTIONS
7 C ****** ************ ****************«***4«**************** **************
» SUBROUTINE PLOTUW(IN,jM,KK,TM,.JM,Ue.U,KZ,nx,OY.OS,
c CPLOTt-T,HMAX,UMAX,U«*X,HEX,HU,AR»'lN,ARMAX,XL,CO$F,SlNF,HP.,MAP,
6 CNPLT ,XSCALE,YSCALE,7SCALE,USCALE,VSCALE,USCALF,STAGE,ETAfPX)
7
DIME JSION U8 IF(HEX(I,JJ.EC.O} GO TC 70S
2? AI=FLOAT fl-l )*CX*XSCALE
21 AH=H£U,JI+ETA<1,JI
2? DC 7CS K=1,KZ
23 AK=(JTAGE«ETA(I,J>-FLOATCK-1J*DS*AHJ*2SCALE
2« AAI=*I+UB(I,J,K>«USCALL
2*5 AAK=AK + W tl ,J,K J*WSC3LE
26 YW=. J*SQPT { «AAI-AI I »*2« C A AK -AK ) **2 J
27 YUrA>AXl tA3HIN,AMINl (YW, ARHAX > J
2? CALL «ROHO(AI,AK,AAI,AAK ,YU,a.O,12>
2" 7C6 CONTINUE
2C 705 CONTINUE
31 C*****03AWS BOUNDARY OR BOTTOM OF THE CROSS SECTION
32 CALL PLOT<-A1,C.,-3J
2? NN=0
3" DO 7 10 1=1, IN
3^ IF(K>(I, J) .CO.G) SO TO 710
36 ^^^=N^ + l
27 IF(N».GT.l > CO TO 711
3S AlrFlOAT ( 1-1 J*OX*XSCALE
39 AK=( $TAGE»ETAJ I,J) )*ZSCALE
t" CALL PLOT(AI,AK,3 J
M AK = -2SCALE*«HUU,JJ-STAGE1
12 CALL PLOTUI.AK ,2)
f? GC TC 712
<*<* 711 CONTINUE
4? A IrFLOAT tl-! )*OX*XSCAL£
46 AKZ-iSCALEitHUd .Jl-STAGEJ
»7 CALL PLOTCAI.AK ,2)
«' IC=I
1° AID=*I
5n 712 CONTINUE
SI 713 CONTINUE
S' IF( I.LT.IN> GC TQ 707
ST AKr (STAGE+a.OI*ZSCALE
S«t GO 10 7G£
55 707 AK= (STAGE*ETA II ,JM»ZSCAL£
56 7C3 CALL PLO T t A ID , AK ,2 )
57 WPITEI6.77JJ
5P 77 FCSM «T< IX, • J=* ,m J
59 FJ=FIOAT(J)
6T CALL SYMBOL(S.i,-n.7,. l,2HJ=,G. ,2)
6! CALL MU«"3E5I5.7,-D.7, . 1,FJ,P.,-1>
fc? CALL PLOTt Al,C.,-3)
67 13CC CCNf 1NUE
6" C4LL PLCT(0.,-<4.5,-3) '
S? NPLT :.'JPLT*1
6* URITE(6,I6I NPLT
67 13 FCRM*T(1X,»PLOT N8fi',I1,' COMPLETED*)
6° RETURN
6? END
118
-------
*FLOW« U.PLOTVW FOF CREATED ON 19 DEC 79 AT 12J1G:<»1
J C PLOTS RESULTANT OF V £ U ON SELECTED N-S CROSS SECTIONS
.7 C ********* *************************************************************
t SUBPCUTINt PLOTVW (INtJM,KN,IM,JM,V6,y,Kr,DX,DY,OSt
* CPLOTJ-T,HHAXtUMAX,UHAX,MEX,HV,AHMIN,ARMAXtXL,COSF,SINF,HP,MAPf
fr CNPLT,XSCALE,YSCALE».'SCALE,USCALEtVSCALE,USCALf,S J AGEt E TA , M Y I
7 DIMENSION MAR(IN,JNJ,H3•IM,JfI,FfA(IM,JK»,HY(IN,JN)
9 DIMENSION VS**2«IAAK-AK)**2>
27 YVrAfAXlfASKIN,AMINHYH,ARMAXJ}
2" CALL ARCHD(AJ,AK,4AJ.AAK,YU.Q.Q.IZ)
2" 803 CONTINUE
3D 802 CONTINUE
3! C*****ORAWS BOUNDARY OR BOTTOM OF THE CROSS SECTION
32 CALL PLOT(-A1,Q.,-31
3T NN=C
31 DO 8 10 J = 1,JN
3r IF(MY(I,JJ.EQ.OJ GO TO 810
37 IFtNk.GT.ll GO TO 811
3s AJ=FIOAI(J-1)*CY*Y
-------
*Fl.OWC ll.OUTLIN FOC CSEATFD ON 10 DEC 7-3 *T 11:23:23
1 c** ******* <«a* ****************************************,*****************
? C DRAWS OITLINE/SOUNOARY OF THE INTEREST AKEA
^ C ********* ****** a******************************************************
" SUBIUUTINE OUTLINtlK, JN,KN,NCN,DX,DY,XSCAtE ,YSCALEtCOSF,
*> CSINF.XX.YY)
6 DIH^SION XX{NCN1,YYCNCNJ
7 001! NC=1 ,NCN
<• A=XX (NC)*OX*XSCALE
t B=YY INC)*OY*YSCAU€
1C KV=2
11 IFJNC.EO.l I
1H 15 CiLL PtOTtX, Y,KV)
15 • RETURN
16 END
120
-------
**-LOWyUcU(S5ARtNuiNttDcD«
12 C ANY FECTANGULAR GRIOCEO SCALAR FIELD CAN BE CONTOURED ON HUGO
|,? C 0"? CJLCOPP TYPE PLOTTER BY SETTING UP PROPER CALLING ARGUMENTS AND
1|! C PPOCEDURES AS INDICATED BELOW AND THEN CALLING ECHKON.
1* C ------ CALLING STATEMENT IS AS FOLLOWS ------
\l C CALL ECHKO'JCHH,IN1,TN2,NEX1,NEX2,N£Y1,NEY2,HI,WIO,PLTINC,SAMCON,
\l i ij^i^xL^E0^^^
22 C --- DESCRIPTION OF CALLING ARGUMENTS ---
|2 C HH IS ARRAY CONTAINING GRID DATA TO BE CONTOURED. ITS DIMENSIONS
H C APE INI AND IN2. DIMENSION1 HHC I Nl , 1N23 . POINT 1,1 IS LOWER LEFT
^-™51^ IN X «"ECTIO«'*NO IN2 I
C IN2 IS
CX INCREASES FROM WEST TO EAST AMD Y INCREASES FROM SOUTH TO NORTH3
2; C NEX1, NCX2, NEY1, AND NEY2 DETERMINE THE PCPTION OF HH GRID TO
\\ C M. ."H^'TFSJ 4N2 NEX2 A°E THE fIRSTCLEFTMOST3 AND LAS TCRIGHTMOST]
|f c SIlir?S B! SIE«!EDcTllg!MS?0sg!TT!«aR§rTllS «SS2P85ET833 ANO LASTCTO
-2 C FOR FULL GBin---
~* C NEXi > 1
|| C NEX2 > INI
37 c wen > !
3^ C NEY2 5 IN2
f? C HI IS HEIGHT IN INCHES OF CONTOUR MAP BETWEEN LIMITS NEY1 ANO NEY2
*i c wio is WIDTH IN INCHES OF CONTOUR MAP BETVTEEN LIMITS NEXI AND NEX2
MI C PLT^C IS STPAIRHT LiNE PLOT INCREMENT IN INCHES TO BE USED
11 2 C ALONG CONTOUR. GOOD VALUE IS .CM, BUT CAM t>£ VARIED UP 0» DOWN.
1, c SI"f? LARGER VALUES CAUSE ff>0&9AH T0 RUN A LITTLE FASTER, IDEAL VALUE
I* c is LARGEST THAT WILL STILL GIVE SMOOTH LOOKING CURVES.
H <• CO SOME EXPERIMENTING WITH TT. START WITH .03 OR .0$ ANO INCREASE.
*° C SAMCCN IS ANY SAMPLE CONTOUR VALUE. IT IS USEP AS t STARTING POINT
|j C FCR COUNTING UP AND DOWN TO GET OTHER CONTOUR VALUES.
|< C CCNIM IS CONTOUR INTERVAL TO BE USED.
12 C RGRIt IS AN TMTEGER«2 STORAGE APRAV USED INTERNALLY IN PROGPAM
|f C 00 PJEED NOT 3t IMTIALI7EO. IT IS INCLUDED AS ARGUMENT IN ORDER -
l| C J?cJ5rEr?PM.NJAG- OF V*RIABLE DIMENSIONS. DECLARE AS INTEGER*2
' ' *- otrUKcCALLING«
fi C INK f-UST pr /IT LFAST AS IAPGE AS NEY2-^'EY1<1
°'^ C CTHUS RGRID MUST BE AS LARGE AS PORTION OF DATA ARRAY HH BEING USEDT
o ^ C »
.6" c ZLIT ^NO ZBIG ARE LOWER" AND UPPFS CONTOUR CHECK LIMITS. NO CONTOUR
65 C MrIiLi^-?F,,05AUS0S£t°V V5LUF OF ^LIT OR A90VE VAL|JE OF 2BIG.
£* C CUStFUL TO PREVENT DRAWING FOR ANY COHPLETELY WILD DATA]
I* c ANO^IH, ASOUTH, AEAST, AND "WEST CAN BE USED TO ELIMINATE ANY
|° C NlfbER OF INCHES FROf ANY SIDE OF FINAL DRAWING.
ll £ r« fULL DRAWING WITH HEIGHT > HI ANO WIDTH ) Win,
J| C TNITIALI7t ALL "I OF ABOVE *RGL"ENTS TO ZERO.
Z2 £ FCR EACH OF THE ABOVE WITH POSITIVE VALUE, THIS MANY INCHES
ll C VTLL 3P ELIMINATCO ON SIDE TO WHICH II JPPLItS.
4° C THIS ALLOWS US TO FIT ANY RECTANGULAR GPIO TO ANY MERCATOR
I' OR OTHER MAP LIMITS WITHOUT ACTUALLY ADJUSTING THE GRID.
121
-------
7" C NCASI-H AND NOASHU CONTROL TYPE OF CON TOURS rSOLIO OR DASHED LINES]
80 C IF EITHER OR BOTH ARE ZERO OR LESS, CONTOURS ARE SOtIO LINES.
31 C
8? C IF PITH APE POSITIVE, CONTOURS WILL BE DASHED AS FOLLOUS—--
ST. C
8" C PEN DOWN SECTION LENGTH > N0«SHD*PLTINC CPLTINC IS INCREMENT LENGTH.'
PS C PEN UP SECTION LENGTH > NDASHU*PLTINC
86 C CTHUS LENGTH OF DASHES AWO SKIPS IS FULLY VARIABLE!
87 C
2? C XIASEL CONTROLS LABELING OF CONTOURS. LINES ARE LABELED
8" C ONLY IF XLAREL GREATER TH«N ZERO. VALUE OF XLABEL
9r C IS HEIGHT IN INCHES OF L»BEL NUMBERS. LINES ARE LABELED
91 C WITH NEAREST WHCLE NUMBER VALUt OF CONTOUR. IF SPECIAL
92 C LABELING TO INCLUDE ONLY PART OF NUMSE? OR TO INCLUDE
"3 C DECIMALS IS DESIRED, SUBROUTINE ENOEP MUST 8E CHANGED.
90 C
?•? C SCOOTH IS 4 CONTROL FOR VARYING CONTOUR SMOOTHING.
96 C INITIALIZE SMOOTH TO SOME VALUE BETWEEN 0.25 AND 7.5
97 C CANY VALUE OUTSIDE THIS RANGE IS SET INTERNALLY TO 1.03
9R C LARGER VALUES GIVE SUOOTMER CHART WITH LESS DETAIL, WHILE
9" C SMALLER VALUES GIVE LESS SMOOTHING AND MORE DETAIL.
1C" C OORMAL VALUE FOP HOST RUNS SHUD BE ABOUT 1.S3
1C1 C A^YTHI^G LESS THAN ABOUT Q.fn CR LARGER THAN ABOUT 3. IS
13,7 C PROBABLY NO GQOO. BEGIN WITH 1.5 AND EX°EPIM£NT UP OR DOWN
1C? C TC OETEP"IN£ MOST DESIRABLE VALUE FOR YOUR NEEDS.
1C" C CmPUT GRID DATA VALUES ARE NOT ALTERED IK THIS SMOOTHING]
1C5 C
ic* c IFECCY is PLOT TAPE RECO°D COUNTER. INITIALIZE TO NUMBER
107 C OF PLOT RECORDS WRITTEN BEFORE FIRST CALL TO CONTOUR SUBROUTINE.
1C" C
1C9 C ALL OF THE ABOVE ARGUMENTS EXCEPT ARRAY RtRIO MUST BE DEFINED.
110 C ARGUMENTS ARE NOT ALTERED WITHIN PROGRAM, AND RETURN INTACT.
Ill C
112 C PLOTTER BUFFER SPACE MUST BE SET UP AND C»LL TO PLOTS
m C MADE B£pORE FIRST CALL TC THIS SUBROUTINE.
115 C PLOT TAPE MUST BE CLOSED OUT AFTER FI'-'AL CALL.
116 C
117 C /NY ^4U^•SER OF SUCCESSIVE CALLS CAN BE MADE TO CONTOUR
11" C SUBROUTINE fCHKON. EACH MAP BECOMES A SEPARATE PLOT RECORD.
11? C NO INTERNAL MAP SPACING IS °ROVID£0, WITH PEN RETURNING TO
12C C ORIGINAL ORIGI'ICLOWER LEFT CORNER] AT COMPLETION OF KAP.
121 C C THU < IT IS SIMPLE TO PUT MORE THAN ONE SET OF CONTOURS ON SAME MAP3
12? C AfY SPECIAL "ARKfNDS OR LAPELS THAT ARP. PESIRED MUST BE DOME
12? C rtJTSIDE THIS SUBROUTINE. THIS SUbSOUTINF DRAWS CONTOURS ONLY
121 C WITH INCOMING ORIGIN BEI'iG LOWER LEFT COPNF.R OF CONTOUR CHART.
12^ C
12<, C
i27 C ' '
1 2" C
1 2" SUSR CUTIN'E ECHKON fHH, IM ,IN7,NEXl,NCX2fNEYl,NFY2,HI,W10,PLTIMC,
13D ?SAMCCM,CONINT,RSRin,JN3,IN«»,ZLIT,ZeiG,ANORTH,ASOUTH,AEAST,AWESTf
131 JNCASI-l.fJOASHU.XLASEL.'MOOTH.IRECCY.IN.JNtKN,
13? CNCN,CX,OY,XSCALE,YSCALE,COSF ,S1NF , XX , YY >
123 C
Ija c SEE ABOVE COMMENTS FOR DESCRIPTION AND USE OF ABOVE ARGUMENTS
1 3S C
126 CTMMCN X:TRCON/SMHI.SMWlrX,Y,XGRIO,YGRID,CUTOF,SCHI,SCWI,TMAX,XPP,
127 2YPP,CGIG,U,V,f!Xl!X ,JDOO,NUVX ,MUVY,YCPTH,SOUTH,eAST,W£ST,CLIT,CBIG,
13" 3LCLX,LCLY,INCRCS,OI"C,CLOSIT,PVAL,PVOL,NEKTER,HINU«,NMXltNKYl,
13° IN-XINN-YII.MOSINC.VALLIN.HINC.MAXCRO,WHAT,LDASH I,LOASH2.0ASHEPt
!•»? 5DCLAfS,OUTS
IM CCMMC'J /Q£NOEC/HIXE'.1,WCOE,HOGH,XXLAST,YYLAST
in? LCGIC&L DASHER .DOLABS., OUTS
l
-------
j!o m2FCR"/T(/!5x^7CH?HT 2BIG ANORTH ASCUTH AEAST 4UEST MOASHO NDASHU X
16C >LA6£l SMOOTH IRECCY,//,2X, 2F12. 3, MF10. 1,216, 2F10. 3,16, /»
161 MAXCFO=0
162 WHATs-99.
its CQNi!>c::coNiNT
16« IFtC CNINC.»!E.a.)GO TO 3
Ifel 2 FCRjjT{/^2X,3HMAP,l3,lMH 2ERO INTERVAL)
167 GO TC 120
Ifa? 3 1REC J=IPECCY«1
2?
17T LDAS»-2=NOASHU
17' IF(LCASH2.GT.6.ANO.LDASHl.GT.a)OASHER=.TRUE.
173 HINU*=XLABE:L
171 OCLAES=. FALSE.
17"! IFIHINUM.GT.C. )OOL«PS = .TRUE.
176 IF«CCNINC.LT.O.)CONINC=-CONINC
177 PVCL :.005*CONIf«C
17s MOSI^C=a
171? V »LL ]N=-98989fi .9
16C NUVX :NEX2-NEX1«I
}" jnNLVxIIf!3!Ko.MUVX.LE.IN3.ANn.NUVY.GT.3.ANO.NUVY.l.E.IN«»)60 TO 8
If WRIT£f6,7)N'CXl,fJEX2,NUVXfM£Yl,NFY2,NU«Y ,T,n,,nY itini
IgU 7 FOR" tT«/,iax,23HBAO ARRAY LIMITS. SKIP . / 10X ,31 ID/ XDX, 3 110 I
1SC GOTC120
Igf, C SKIP IF NUVX OR NUVY LESS THAU 1
1=7 8 YOrtTI-THl-ANORTH
£AST:'4IC-AEAST
19? WEST=AW£ST
191 IF(UEST.LT.O. JWFST=r.
19? IF(E AST.GT .Win JEASTrwIO
IS' IFtSCUTH.LT.G. JSOUTHrQ.
15U IF«YCRIH.GT.HI)YORTH=HI
196 UCOE rtAST-WEST
197 HOGHrYCRTH-SQUTH
15" XXL4ITC99.
150 YYLAST=99.
2CP QINC:PLTINC
201 CUT :Q1N'C/1.99
2 C8IG:QIMC/2.
T TMAX :t ,C*< YOPTH-SOt'TH + t AST-WEST)
« XCRI C^'.ID/FUOATfKUVX-l)
C" YGRIC=HI/FLOAT«NUVY-1)
C6 HINC:XGf?IO
2C7 IFT(XGRID*XGeiO*YGRIO*YGPID) + .Gl
21' CLOS 1T = .Q«»
21-5 C CLOS IT IS VALUE FOR CLOSED CONTOUR CH£CK
21 =
216 NMX1 l=f.
217 HPYl irtJHYl-1
221 C NEXT OFTFPKtNE MAX.AND MIN VALUES IN SCALAR FIELD
rHH(NEXl,NEYl J
i t, I £.-lN-£., »A
22" DO 31 I=N£Xl,NtX?
00 3 C J=KEYl,NtY2
IF(MKI, J) .''T.rXAXl/MAXrMHII ,J)
IF CHU 1 , J> -L T.i^IM)ZKIH = HHlT , Jl
22s 3G CONTINUE
22° IF IZMX.GT .20IG)Z"AXrZEIG
231 C M?XT*DETfpHlME BOTTOM STARTING VALUE FOR CONTOUR LOO"
2J! 32 IF(PVAL.GT.?MIfJ)GO TO Jn
23« GO TC 32
236 3<» IF(P \AL-CCNINC.LT.2'«r.M JGO TO 35
123
-------
237 PVAL=PVAL-CONINC
GO TC 31
21C 35 XPPrC.
211 YPP=C.
212 NlrNlVX-1
213 N2=KLVY-1
211 C
215 C CONTCUR LOOP STARTS BELOW AT STATEMENT 36
216 C THIS LOOP DETERMINES fcHERE TO START A NEW CONTOUR, THE" CALLS
I?* g ALL^MuRl £«ETETD'.nRAW EACH CONTOUR- CXIT IS MADE UHEN
? (1 Q /•
25? C THERE ARE 2 SCAMS FOR EACH CONTOUR VALUE. FIRST kITH VAPIABLE OUTS AS
251 C FALJE SELECTS ONLY CONTOURS ENTERING GRID FROH OUTSIDE EDGES.
2|2 C SECOND SCAN yiTH OUTS TPUE SELECTS REGAINING INNE" CONTOURS.
2|- C STARTING POINT CLOSEST TO PLOT PEN POSITION IS SELECTED IN EACH CASE.
255 C
256. 36 IF(PliAL.GE.2MAX JGO TO 110
257 OUTS:.FALSE.
25* DO 31 1=1,Ml
259 0037 J=1,N2
26C 37 RGRICd ,J)=0
2S1 38 OZT9S9999.
2t2 DO ICO 1 = 1, Ml
2fcT DO ICO J=1,N2
261 IF«OITS)GO TO 6?0
265 IF
27C DO ICO K=l,1
27* IF(A5S=PVAL-PVOL
27° <»CO CONT INUE ,
2Sr IF(OITSIGO TO 250
2S1 • NENN:I
2?? IF(I.EO.l.AVO.HEN(1».GT.PVAL.ANO.HENC2).LT.PVAL1GO TO 6T1
2?1 IF(I I?0 .Nl .AND.HEN{3J .GT.PVAL.AND.hEN{i»J .LT.PVADGO TO 601
235 NENNri
2E6 IF(J .TO.LAND.HENfD.GT.PVAL. AND.HEN( 1) .LT.PVADGO TO 601
2£7 NENN:J
2?? IFI J .EO.N2. AND. HEN(2J.GT.PVAL.A»IO.HEN(3) .LT.PVADGO TO 601
28' GO T C 6Q2
25" 25C DO 1 10 Krj , 11
29? I2:K«1
29? IFIK .EC.1J12 = 1
29'« IFCHEMtl 1 > .GT.PVAL.AND.H£N'30 TO 610
299 11=RC"IO(I,J»/10
320 I2=RC°ID(I,JI-10*I1 * .
3C1 IFU 1.EO.NENH.OR.I2.EO .NENNJGO TO ICC
3C7 610 GO TC«3n,3l2,3l1 ,316) .NENiN
3CT 602 IFCRCPIO(I,J).EC.0)PGRID(I,J)=1
3C1 GO TC ICO
3Cr 310 Y = YG K10* (FLOAT (J-l I «(PVAL-HEN ( 1U/(HENt 2J-HEN ( 1J J J
3Cf> x :XGCIU*FLOAT 11-1)
3C7 GOTC4S
3C" 312 XrxGKT0*tFLCAT U-l J « J P VAL-HEN ( 2 ) }/ t HE N t 3 )-HEN I 2 11)
3C9 Y=YGPTD*FLOf.TCJ)
31" GO -TC 15
311 311 Y=Y6FTC»/(H£N<3J-HENC 111 J
31? X=XG SIC1 -»FLOA T (I )
311 GO TC 15
311 316 XrXGSIU* CfLOAT (T.-1 IMP VAL-HEMt 1 I >/IHENIU)-HENt 1) J »
315 Y=YGSIO*FLOATCJ-l)
-------
316 <»5 0 = IX -XPP j*(X-XPP)+tY-YPP»*«Y-YPP)
317 IFID.GE.OZJGO TO 100
31« 02=0
.
323 LCLXrl
321 LCLYU
322 XTTrx
327 YTTrY
32« IDC CONTINUE
32e IF(07. GE. 999990. IGO TO 105
326 IF(PC!?lD{LCLX,LCLYJ.EO.O>RGRIDaCLX,LCLY>=l
327 XZXT1
329 C
33: W5ITEI6,101IPVAL.OOLABS,OUTS
33? C IQ1 ORH*EXTXCALL*luBROUTIN£ CONLIN TO ACTUALLY DRAW CONTOUR WITH VALUE PVAL
331 CALL CONLINCHH.INl ,IN2,RGRin»IN3,IN1>
235 C
336 C NOW GO BACK TO INNER LOOP TO SEE IF THERE ARE OTHER PVAL CONTOURS
337 C To EE DRAWN.
33? C
339 GC TC 33
3in 105 IFCOITSIGO TO 612
31! OUTS:.TRUE.
312 60 TC 33
31"* 612 PVAL :P«AL*CONINC
3H c INCREMENT CONTOUR AND GO TO TOP OF LOOP FO" NEXT CONTOUR
315 GC TC 36
316 11C CALL PLOTtQ.,0.,-3)
317 C
31" C NOV TO DRAW THE OUTLINE OF INTEREST APEA PY CALLING OUTLIN
319 C
351 Al=DX4XSCALE/2.
351 CALL PLOTI-ni,-Ai ,-3>
35? CALL OUTLlNfIN,JN,KV,NCN,DX,DY,XSCALE,YSCAL£,
25? CCOSF ,SIUF,*X ,YY)
351 CALL PLOT!*1,A1,-3J
356 I3ECCY=!R£CCY+1
357 W?ITgf6,ll5)IMAP,IReCltIRECCY
3SR 115 FCR^JTI/ , 10X , 11HCONTOUR HAP,I3,2«»H BEGINS UTTH PLOT RECORD ,13, 1 1H
359 2AND ENDS WITH. I?)
36C WB1TFC6, 116IKOSIM C , VALL IN ,MA XCRP, WH* T
361 116 FORH«T(12X,21 HMOST LINE INCSEKENTS ,I5,12H O'J CONTOUR ,F1C.2,/,12X
36? Z,12Hr-OST SaUAP£StT1,12H ON CONTOUR ,F10.2,/J
363 120 RF.TUBN
361
125
-------
>FLOV( i). CONLIN en CREATED ON 27 AUG 79 «T sujssae
1 '• SUBROUTINE CONLIN (HH.IM ,IN2,PGOIO, IN j. INI )
2 COMHCN /STRCON/SMHI,SM*-I»X,Y,xGRID,YCRID,CU70F,SOHI,SOWI,TH«X,
3 2YPP, CG IG,U , V, NX UX.JTOO, NU VX ,NUVY,Y OR TH, SOUTH, EAST ,UEST ,CLIT,CBIG
M 3LCLX ,LCLY,INCROS,OINC, CLOSIT.PViL, PVOL,NENTER,HINUH,NHX1 ,NPYJ,
5 »N>«XlI,f.fmi,MOSINC«VALLIN,HINC,MAXCRQ,WHAT,LDASHl ,LDASH2 .DASHER,
5 5DOLA?S,OUTS
7 OIMEHSION HHtIM,TN2) ,CIDE«1,2» .XXPLO T « 27S »2J ,HAX ( 4 1 ,LEXE( « ) ,
? 2CORO C<4Ca,2>,HIPPSmOOl
•> INTEGER RGRioiiN3,iNS, DASHER, CLOS, OUTS, OASHIX
12 C THIS SUBROUTINE IS CALLED TO DRAW EACH INDIVIDUAL CONTOUR
1° C IF DOLA9S ENTERS AS TRUE, LABEL CONTOURS WITH HEIGHT HINUM
15 0*SH JXiOASHER
16 LABL JTr9
17 IF(OCLABS)LABLITzO
18 INCS:. FALSE.
I1? YM»X:-9.
2? X^AXr-9.
21 N£NST=NENTE&
22 IOPLCT=2
2? NHARCTLDASH1
2<» NSOF1=LDASH2
25 NUGGra
24 XX=X
27 YY=Y
28 XHIGrXX
2" YSIG:YY
3C LZX=ICLX
21 L?Y=LCLY
33 'XG=0.
3" YO=C.
35 TCT=C.
3fi HYPTCTrQ.
27 NCQPC=C
3P CLOSt. FALSE.
3"» GO TC MOO
«C C
II C END SfTUP. BEGIN LOOP THAT PICKS EXACT STRSIGHT LINE SEGMENTED TRAVERSE
«2 C
M3 250 IFINCORO.LT.MOQ1GO TO 252
"»a USITEffe, 251 JK'COPD.PVAL
1? 251 FORK «Tt/ ,2X,IS,1MH =HYPE
5« CORD XPIG:XIf>0
75
7 'i <)00
F«Q >I .LT.7. )OX t=T.
77 IF(0>!.CT.XGRID>OXi:XRf,ID
JO OYl=>ieiG-YGI?IO*FLOAT(L2Y-l>
126
-------
1C6
1C?
79 IFCOM.LT.O. >OY1=0.
£C IFCOH.GT.YGRIO)OY1=YGRIO
81 I=L2X+NMX11
32 J=LZY»NMY11
83 C
fid C START EXIT POINT LOOP
85 C
86 HAX( H=HHt I,J)
87 HAX( ZJlHHC I.J+1 J
88 HAX« :)=HHII+1,J*1)
89 HAX( «lI=HHei + l,J»
9* oa in n=i»i
91 IFCA EStHAXtm-PVALI.GE.PVOLlGO TC HOI '
92 IF JMm II) .GE.PVADHAX .GT.PVALIGO TO 120
G3 TC 135
120 NUMOlT=,MimOUT*l
1C* 1F{NI»OUT.E0.1 INN1=III
1C9 IF(NlfOUT.E0.2 JNN2=III
in GO TCf'»22,'»2l,H26,128> ,111
111 122 OY2= MPVAL -HAX (1 M / fH AX t 2 » -MAX ( 1 H )*YGRIO
112 OX2=C.
113 GO TC 13D
111 (I21 0X2= UPVAL-HAXI2JI/fHAX(3 )-HAX{2> > )*XGRID
II1; OY2=fGRIO
116 GO TC 130
117 If26 OY2= HPVAL-HAX tl) »/ CHAX C 3 > -HAX 11 » J»*YGRIO
118 OX2=XGRIO
119 GO TC 13G
120 128 0X2= HPVAL-HAXim/tHAXID-HAXm ) )*XGRID
121 OY2=C.
122 13C CIOE GO TO 132
12"7 NEXE1=NN1
12* GO TC 115
Ii9 132 IF(Nl»OUT.EQ.2JGO TO 138
130 131 WRIT£tfaT136 JL2X ,L?Y,NUMOUT,PVAL,XB IG ,YBIG
131 136 FORM JT t/,2X, 10HNO WAY OUT , 5X , 31 1 0 » 3F1 u. 2 , / )
U2 GO TC SCO
131 C BEGIN SECTION THAT DETERMINES PROPER PATH THRU GRID SQUARE
12r C CONTAINING HYPERBOLIC CONFIGURATION. C2 ENTRY AND 2 EXIT SIOES3
136 C
127 138 IFtPEPtOtL?X,L2YI .GT.l JGO TO 112
13° X10=CIDE (MM ,1 1-0X1
13° Y1D=CIOE(N>.'1,2»-OY1
ItO D fiA=JQRT (XID*XIO+YID*YID)
111 X IO=CIDEINN2,1 >-OXl
IM? YIOrCIOE (MN2,2)-OY1 ' .
113 c?3= ;QRT (xin*xir«YiD*Yio)
11" IM06? .LT.OAA)GO TO 11C
115 139 OX2=CTOE INN1 ,1 )
]M* OY2 = C!OE (Nf = 1
157 IF(I l.GT.G.»Nn.I2.GT.O.ANC.Il.NE.I2.ANO.NENTER.GT.C)GO TO 117
127
-------
oonoon
CD --J
u
ui
at
o-un
-MOTi-« & 1.00 :a -n-<-< xm.-n iiomm n -nomm n TJJ o
nil ZI/I-.TOZZ x>M—tit/>w ?•;•:-< z;*X—
-TJ>-<
o n
X-^
"0 TJ •— x at/i rn moo *-» ^333 *-o
mm «i)O£icicioa TJ oo • o
inn* XJJJTO — — OJD
Icn— x OO'« «-« fna
•« —X ^ — ~ • « •
'O-*-» X
H1O3OO « •• w MM x»
"I » fU— • 3S
OTJ l,<
<~jo
i/l 1*1/1 ft
CT>
o
r-r :/»
i~ -< o
•. O —
Kl
CO
zoo
flu u
M- 10 x »-n
rn —4 «HO« oz —40 »s
"»* Or-TPIK-ltlJll-^
-i oo xii •
m i/* in i/> —< -< x < 11
wn
I--Z
z^
^}
O -<
c
39 «•
«r z
1-4 O
O7.OI-*
wo»z
o« -to
o m
r-r-MZ
» ofiioa
x n-i
>• » i-jci -iao»« + * ••-»
M^^n-^s ir"»
>—* rn t» cn^'
zx z-4
P1»-« O*
C1 OO
O 0-4 C
« z-* a +
i-imz* •<
•-znx-<
I/I
»-»("
2-0
31
•DO
DI-
>-*Z
ZO
• z
MO
0-(-4
or-p-<
ci i
• xm. o » M
M« X O — f O
*~ ff-c: KI
o-
M-
C-4
X
H«
O
z
O
M
M
Z
o
-------
237 H=Q.
23? DO 7f3 I=1,NCORD
229 jrNCC^D-I+1
210 IFCH'MIPPSCJJ.GE.HAVOGO TO 755
2M1 H=H«HPPS ( JJ
2«2 XP=XE-CORO( J,l)
2«3 753 Ye=YF-CORDIJ,2)
2t« GO TC 757
215 755 X = (H/>SC-H)/HIPPJ(J)
216 X8=XP-X*COROIJ,1I
217 Y9=Y?-X*CORO
251 IF(HYP£.LT..C001 JGO TO 7 17
252 SINB *C=YYSC/HYPE
253 CCSB S ArS IN I A }
256 CA=CCS(A)
257 SENTrSINBAC*CA-»COS3AC*SA
25" C£NT:COSSAC*CA-SIN3AC*SA
25" E\TI P=ATAN2(SENT,C£NT)
260 SSEN1=SENT
261 CCENTrCENT
262 C
26^ C ENTER IAIN CURVILINEAR INTERPOLATE AND PLOT LOOP
26« C
265 00 8 C? LUPEzl.NRIMC
26«. IFIL IPE."JE .NPTNC JGO TO 762
267 IF(CLOS)GO TO 760
26° SOUTrSANG
269 CCUT^CAKG
27C 60 TC 200
271 760 SOUT^SSENT
27? CCUTZCCEVT
273 GO TC 200
27« 762 XINO:XX
27^ YINOrYY
276 ZANC :HANC*FLOAT(LUPE+1)
27? 00 76M Irl.MCORO
273 IF{H
•>0: IFlXENO.LT.WEST.OP.XENO.GT.rAST.OR.YENO.LT.SOUTH.OR.YENO.GT.YnRTH)
3CT ?GO TC 793
3C1 IF(I^CS)GO TO MI46
|Cr INCSr.TSUC.
3C.S CALL PLOT(XBEG-WEST,YB£G-SCUTH,3)
3S7 i»i»6 IzIPE"
30P
3C°
3C° C CALL PLaT(yENO-UEST, VEND-SOUTH, I)
3 1C NUGG rr.'UGG* 1
311 TOT=10T+HYP
31? GO TC 79'J
313 C
31" C . BEGI> SNAKE INTERPOLATION FOR
129
-------
Z2
UJO
a
o
t-
o
UJ
2
Z
o
>~
a
bJU
i/tui
a:
U.M
oo
tnQ
a z
zu»
UJ UJ Z
•M.JUJ Ul
»- 10 _i
•tZZO UJ
UJ«S.Z Z
i
UJUJ 13
a
o aa >-
C£t-t— in
h- O
t~» U. U.U. b>
x oo o
OUJUJ u)
t-zoo o
zozz z
uj
z
CLVII/I i/i
oc
U1UJUJW UJ
a
Wuiz3 z
XxUJO «t
UJMUU o
J
OulOO O
z
i-- UJO «I
3
tt
>
t-
o
a
Z
VI
uj
J
o
a
O-.
ui
H-
z
t- i/> vi «»«^i/> «/»>*"
O
ID
O
ZH-
wo
•-«<
o*«
ZZ
«<«
U.
>•
ocac
»-o
I U.
I
it—
ZZ
out
*-*SC.
t-O
ou
uj«/>
UJ
o:
• u
ju.z
JCM
«<
ZMrO:
">*-> iu
«*x
O_Jl-
O M
>- v>
O *•-« •
_ii-vii>-
0.1-10:0
x ujj
X>-aCL
3 x
>-ouix
z
ui
s.
O
U
10
z
o
UJ
>
a
3
o
O »tt V)O
Zf>j-i>- -u.
o
•
a
>• • s o
»uao •
CJU.UDH-X
uio> 3»-
OU
^:-£
Mi-t
zz
oo
_u
u-u.
ui>-3ujin ^
w -xoujauj
o:
o
a
a
zz««*«zz«t
rt«l-lDl3HMt-
«JO«ZZ«JC'«I
in
rvj »r:z
I «Q-»-<«-«
u o>-vivt
»- «^ III-——
M a rj»«')S"
_i " a— "-i xmuaoo
ID>-XO »M "1-iZZ
l->X« » H-I»-l-Ml-i
-<
o
«uj
Z tt
«/>O
uo
i— coo lovii— ,
xj^ujwsz
O »i-ivOUTUJ
o
o
X 3 M —OOX
fMitoui » zz •
»U.U)Cr I- UlUi-iMtUJ
- ZJT-J
ui
a
3
o
>-""
-iuj
OZ
w>->
-J
ac
O-J
Ul
ooi
UK
X-l
(/!
-
i
ID
I u
>J
o.-»
o<
oo
o
-jt»
O.U)
c
O
«o
o
*-
O
o:
O
>- •
• I
a t-
O 3
• o
X v>
uj
ro
x
o
x
—
a
u
•
i-
15
aa.
xx
XX
i i
OO
ZZ
3 "-"
2—1-3700 zi-t-a.
103 OUJ
ujo . .
— 3O3U) jvif-l-
*- ••-a • I I >-•>—
— re 0.0. -J
a.a o
«cc
oia
UJ >•
a. s
ox
:r 3
«s X
o
_j
a.
UJUJ — IC13OO —
i/ioiizzwoii ii tizao-ina u— ii — z mi
Illl— <>-IHII ll»MX>->-l>->-rM>--*U,«MU.»-!X>"
o
m
sr
x — MOC a: 20.0.—
UJ U.CCUU.O OMXXU-
Z MJIU.MU. l3ZXX>-«
II M »»U
ait'^oz
ti'l*IIIH3
-D »
3
» X xx«-n^"ll II II H
>x x— — o — o.ax>- — — to— -i
II II 11(4.11.2 U-0.tt3-)U-U--«U- -«'
a
^
-J
in
in
in
-<
-O
ecc- o-'C-'-'a" Jit^f ft: «-«r i M 3- ir .c r- u_a r -•
«o^r^r-i^'^r- i~-r-r-r^ r-coo?tp«;ci-vJa>tc RJTOC*^
-------
39? IFOT.CLOS.OR..N'OT.OCLABS.OR.YMAX.LT..01 JCO TO 501
44! XPPr X"AX»W£ST
44? YPPr V'AX + SCUTH
443 CSLL ENDER(XKiX, YMAY,PVAL,2I
444 501 IFt. NOT.CLOS.AND.LABLI T.EO.l JCALL ENOER f XUX ,YUY ,P V AL t 1 1
445 IFINISG.LE .^OSIMC JGO TO 502
44f MOSINC=NUGG
447 V4LL1W=PVAL
44" 502 RETUPN
449 END
131
-------
*FLOW( 1 I.ENDEP ELT CREATED ON 8 MY 79 AT 10:17:51
1 StSRCUTINE ENDER«X,Y,PVAL,ICQ)
"• CCMPCN /CENOEQ/HONUf ,UC.OE ,HOGH,*LAS ,YLAS
? DIMENSION 013)
« C
e C TUS SU8POUTINE IS CALLED TO LABEL CONTOURS
7 OM = SC!M :48S (Y-HORHI
11 012) :43S (X-WOOE)
17 K=l
I" or
15 00 1C 1=1.3
16 IFtD «I).6£.Of )GO TO 10
17 DM=0 + X CALL PLCT{X,Y,3)
37 XLASiX
^ Y^Y
39 25 RfTUFN
M" 10Q X AO=-.75*HCNU«
MI IF(PVAL.GE.9.5.0R.PVAL.L£.t-.5))XADrXAO-MOM(f
"»3 IFCPVAL.GE.999.5.0R.PVAL.LE. t -99.5 ) ) X AO=X AO-HONUM
MU IFII ,EC.2>XAO=.S*XAO
«5 GO TC 20
t6 END
132
-------
*FLOW(U.FIT ?Q1 CPEATED ON 1 DEC 79 AT 10:02s3<»
1 C •**********:»»**:»»****«*****:* ****************************** **************
t C FITS A FARAQOUA TO THREE POINTS, USED IN MAKING PLOT.
M SUBSCUTINE FIT{21,Z2,Z3,El,.T2,E?,A,e,C!
? 0:|Zl**2>*«?2-Z3J-2!*<22»*2-Z3**2>«23*tZ2**2)-72*(Z3**2)
6 A = (El*(Z2-Z3l-Zl*(E2-E3)«E2'»Z3-'-3*Z2)/D
7 B = ( t Z1*«2J*(E2-F.3>-E1*(Z2**?-Z3**2)+E3*«Z2**2)-E2*»?3**2» )/0
" C:((7t**2l*(Z2*E3-Z3*E2)-Zl*(E3*(22**2l-C2*(Z3**2IJ-»El*JZ3*C22**2)
" C-22* «?3»*2UJ/0
in ff£TU(=N
11 END
133
-------
*FLOWf D.VtCT FOR CPEATEO ON 14 DEC 7S AT lltS^Si?
1 C*****TO OPAW VELOCITY VECTOR BY CALLING CALCOMP SUBROUTINE
2 SUBROUTINE VECTJAT, SAI ,AJ,AAJtAf>MIH,Af?MAX,COSFiSINFI
^ Y«=. Z
5 BIrA I*COSr -«AJ*SINF
6 8J=
0 BBJ=-AAI*SINF»AAJ*COSF
-5 CALL IROHOCBI.BJ.gBI.BBJtYk^C., 12)
10 RETUFN
11 END
134
-------
D.CAPTN1 ELI CREATED ON in SEP 79 »T 10:2S:2M
1 SIJBRCUTIME CAPTV1 (Pl,P2,P3,Pt,P5,Pb,Q7,08)
? C******HRI1E COMMON' HEADING FOR EACH "LOT WHETHER TEMP OR VELOCITY******
? C*****C (MONTH DAY, YEAR)} NEEDS RESET*****
0 CALL SYMPOLC0.8,6.7CI,0.10,25HTI»E (JUNE 20, 1978»: ,0.0,251
e CALL NUMBERfM.C,&.7r,0.10,P!,G.n,+l>
* CALL SYneoL<0.8,6.5P,0.10,25HWI»)D SPEED (CM/SEC I s ,0.0,25)
7 CALL NUMBERS.o,6.sc.o.10,P2,n.o,*i)
9 CALL SYMeoL(C.8,6.30,0.10,25HUI»fO OIRECTIONfOE6/N): ,0.0,25)
0 CALL NUM8ERCH.O,6.3'Jta.ia,P?,a.n,.»G)
10 CALL SY."BOLt3.S,6.10,0.la,2<;HAIP TEHpEBATUREfOEG-C) : ,0.0,25)
1? CALL SYHSOLtoTeJs^9d!criol2^HDis2HARGE TEMProGG-CIs ,0.0,25)
13 CALL MUMPERS.0,5.90,0.10,P5,0.0,»l)
If CALL SYM80L(Q.6,5.70,0.1C.a^HDISCH FLOWRATE (CUM/SEC)J ,O.C,25I
IS CALL NUMBERS.0,5.70,0.10»P6,0.0,»1)
16 CALL SYM80Lf0.6,5.50,a.lO,2^HLEMGTH SCALEUCMr X CM): ,0.0,25)
17 CALL NU*BER«<».0,5.50,a.ia,Q7,O.C,-»OJ
1" CALL SY«t80L(0.8,5.30,0.10,25HVELOClTY SCALE (CM/SEC)S ,0.0,25)
1' CALL HUMBERIf.C,5.3C',0.10,C8,0.0,«2J
2C RETUPN
el END
135
-------
*FUO««11.CAPTM2 SYf CREATfD ON II SEP 79 AT 2Z:29j52
t SUBROUTINE CAPTN2(N)
•> C*****UBITE PLOT TITLE ON BOTTOM OF DIAGRAM FOR CALCULATED UV****
3 CALL SY»«eOL( l.C,-1.8, .:
-------
*fLOWtl J.CAPU'3 SYf CREATE6 OW n SEP 79 AT 22:31:55
1 SU8RCU7INE CAPTN3(NI
?. C****BRITE PLOT TITLE ON BOTTOM OF DIAGRAM AND PLOCK IT****
3 CALL SYHBOLf1.0,-2.Qt.11.29HFIG TEMPEPATURC F"OM
<4 CALL PLOT«-l.Q,-2.5,3)
S CALL PLOT«-1.0f»7.5,21
ft CALL PLOT(+6.5,+7.5f2J
7 CALL PLOT«*6.5,-2.5f2>
a CALL PLOT(-1.0,-2.5,2»
9 RETURN
10 END
Ifi,0.0,Z9J
137
-------
*FLOUt1J.CAPTNU src CREATED ON 11 SEP 7? *T 22:36:39
1 SLBRCUTINE. CAPTNMSUM)
2 C**** WRITE DEVIATION VALUEfFROM IR> ON ISOTHERM PtOT *******
•» CALL SYMBOL C0.8,-a.5,.13t23HD£VIATION FROM IR TEHP:,0.,23l
» CALL MUMBEt?m.Ct-0.'5,.10f SUMtO. ,»3)
s RETURN
6 END
138
-------
*FLOU(1 J.CAPTNS SY* CREATED ON 11 SEP 79 AT 22:39rH9
1 SU8RCUTINE CAPTNS(N,MIDEW)
2 C*****WRITE TIDAL STAGE AT THAT TIME*****
3 DIKENSJON MIDEW<<»»
S CALL SYHBOLf0.8t-.7fa. 1D,IBCO,0.,<«)
6 C«LL SYMBOLtl.3t-.7fC. 10,i»HTIOE,0. ,t
7 RETURN
8 END
139
-------
*FLOHI1I.CAPT16 SYP CREATED ON tl SEP 79 *T 22s
« CALL SYMBOLf 1.0,-.?.?,. 11,29HANCLOTE ANCHORAGE BY MODEL ING » .0,29 I
5 CALL PLOT«-l.G,-2.5,3»
6 CALL PLOT(-1.Q,»7.5,^J
7 CALL PLOT(»6.5,»7.5,2)
9 CALL PLOTl*6.S,-2.5,2>
o CALL PLOT«-l.C,-2.5.2)
1C RETURN
11 END
-------
*FLOW{ 11.CAPTM7 SYf CREATED ON 11 SEP 79 AT 22:«(3:36
1 SUBROUTINE, CAPTNTfN!
2 C*****wRIT£ PLOT TITLE ON BOTTOM OF DIAGRAM FOR CALCULATED VU****
3 CALL SYMBOLf l.C.-U",. 1M ,:9HFIG V» VELOCI TY , .0 , 19 I
* CALL SYMBOL< 1.0,-2.?,. 1<< , 29HANCLQT E ANCHORAGE BY MODELING , .0,29 )
5 C4LL PLOTC-1,0,-2.5,3»
6 CALL PLOTI-1.0,»7.5,^J
7 CJLL PLOT{*6.5,*7.5,2»
B CALL PLOT(*6.5,-2.5»2)
9 CALL PLOT{-l.Q,-2.5,2i
10 RETURN
11 ENO
-------
*FLOW< 1) ,CAPT«8 SY" CREATED ON 11 SEP 79 »T 22s«»5:H3
1 SUBROUTINE CAPTN8CNI
2 C*****W=?ITE PLOT TITLE ON BOTTOM OF DIAGRAM FOR CALCULATED ELEVATION****
3 CALL SYM80LU.C.-1.S,.1'»,25HFI& SURFACE ELEVA T10N, .0,25 J
1 CALL SYfSOL(l.a,-2'.2t.m,29HANCLOTE ANCHORAGE BY MODEL ING , .0129 )
5 CALL PLOT(-1.0,-2.5,3l
6 CALL PLOT{-1.0,«7.5,21
7 CALL PLOT{*6.5,»7.5,2J
f CALL PLOT(*6.5,-2.S,*>
i? i^
11 ENO
142
-------
*FLOWt 11.CAPTN9 SYt> CREATED ON II SEP 7<5 AT 22:S2:
2 C*****WR1TE PLOT TITLE ON BOTTOM OF DIAGRAM FCR CALCULATED TEMPERATURr****
* CALL SYVBCLn.C,-l.P,.l<»,27HriG SURFACE TEMPERA TU9E , .0,27 J
t CALL SYMBOL! l.C,-2.2,.1M.29HANCLOTE ANCHORAGE BY MODEL ING,. C,29 |
5 CALL PLOT{-1.0,-2.5,3)
6 CALL PLOTt-l.Q,«7.S,2I
7 CALL PLOT!»6.5,+7.5,2)
a CALL PLOT{«6.5,-2.5,2>
" CALL OLOTl-1.0,-2.S,2>
10 RETUFN
11 END
-------
TECHNICAL REPORT DATA
(Fleast read Inunctions on the reverse before completing)
REPORT NO.
EPA-600/7-82-037b
2.
3. RECIPIENT'S ACCESSION NO.
T,TLEANDSUBT,TLE Verification and Transfer of
Thermal Pollution Model; Volume II. User's
Manual for Three-dimensional Free-surface Mode
5 REPORT DATE
May 1982
6. PERFORMING ORGANIZATION CODE
1
AUTMOR s.S.Lee, S.Sengupta, S.Y.Tuann, and
C.R.Lee
B. PERFORMING ORGANIZATION REPORT NO.
PERFORMING OROANIZATION NAME AND ADDRESS
The University of Miami
Department of Mechanical Engineering
P.O. Box 248294
Coral Gables, Florida 33124
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
EPA IAG-78-DX-0166*
3 SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Fina 1 ? 3/78-9/80 .
14. SPONSORING AGENCY CODE
EPA/600/13
5. SUPPLEMENTARY
NOTES IERL-RTP project officer is Theodore G.Brna, Mail Drop
61, 919/541-2683. (*) IAG with NASA, Kennedy Space Center, FL 32899,
subcontracted to U. of Miami under NASA Contract NAS 10-9410.
16.ABSTRACT The six-volume report: describes the theory ot a tnree-dimen-
sional (3-D) mathematical thermal discharge model and a related one-
dimensional (1-D) model, includes model verification at two sites, and
provides a separate user's manual for each model. The 3-D model has two
forms: free surface and rigid lid. The former, verified at Anclote An-
chorage (FL), allows a free air/water interface and is suited for signi
ficant surface wave heights compared to mean water depth? e.g., estu-
aries and coastal regions. The latter, verified at Lake Keowee (SC), is
suited for small surface wave heights compared to depth (e.g., natural
or man-made inland lakes) because surface elevation has been removed as
a parameter. These models allow computation of time-dependent velocity
and temperature fields for given initial conditions and time-varying
boundary conditions. The free-surface model also provides surface
height variations with time. The 1-D model is considerably more econo-
mical to run but does not provide the detailed prediction of thermal
plume behavior of the 3-D models. The 1-D model assumes horizontal
homogeneity, but includes area-change and several surface-mechanism
effects.
17. KEY WORDS AND DOCUMENT ANALYSIS
a DESCRIPTORS
Pollution
Thermal Diffusivity
Mathematical Models
Estuaries
Lakes
Plumes
13. DISTRIBUTION STATEMENT
Release to Public
b. IDENTIFIERS/OPEN ENDED TERMS
Pollution Control
Stationary Sources
19. SECURITY CLASS (This Report)
Unclassified
20. SECURITY CLASS (Thiipoft/
Unclassified
c. COS ATI Field/Croup
13B
20M
12A
08H,08J
21B
21. NO. OF PAGES
152
22. PRICE
f PA Form 2220-1 (••73)
144
------- |