United States                EPA-600/7-82-0376
               Environmental Protection
               Agency                   May 1982
r/EPA        Research and
               Development
               VERIFICATION AND TRANSFER OF
               THERMAL POLLUTDN MODEL
               Volume V.  Verification of
               One-dimensional Numerical Model
               Prepared  for
               Office of Water and Waste Management
               EPA Regions 1-10
               Prepared  by
               Industrial Environmental Research
               Laboratory
               Research Triangle Park NC 27711

-------
                  RESEARCH REPORTING SERIES


 Research reports of the Office of Research and Development, U.S. Environmental
 Protection Agency, have been grouped into nine series. These nine broad cate-
 gories were established to facilitate further development and application of en-
 vironmental technology. Elimination of traditional  grouping was consciously
 planned to foster technology transfer and a maximum interface in related fields.
 The nine series are:

    1. Environmental Health Effects Research

    2. Environmental Protection Technology

    3. Ecological Research

    4. Environmental Monitoring

    5. Socioeconomic Environmental Studies

    6. Scientific and Technical Assessment Reports  (STAR)

    7. Interagency Energy-Environment Research and Development

    8. "Special" Reports

    9. Miscellaneous Reports

This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH AND  DEVELOPMENT series. Reports in this series result from the
effort funded under the 17-agency  Federal Energy/Environment Research and
Development Program. These studies relate to EPA's mission to protect the public
health and welfare from adverse effects of pollutants associated with energy sys-
tems. The goal of the Program is to assure the rapid development of domestic
energy supplies in an environmentally-compatible manner by providing the nec-
essary environmental data and control technology. Investigations include analy-
ses of the transport of energy-related pollutants and their health and ecological
effects; assessments  of, and development of, control technologies for  energy
systems;  and integrated assessments of a wide range of energy-related environ-
mental issues.
                       EPA REVIEW NOTICE


This report has been reviewed by the participating Federal Agencies, and approved
for publication. Approval does not signify that the contents necessarily reflect
the views and policies of the Government, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.

This document is available to the public through the National Technical Informa-
tion Service, Springfield. Virginia 22161.

-------
              VERIFICATION AND TRANSFER
              OF THERMAL POLLUTION MODEL
      VOLUME V:  VERIFICATION OF ONE-DIMENSIONAL
            NUMERICAL MODEL AT  LAKE KEOWEE
                          By

           Samuel S. Lee, Subrata Sengupta
               and Emmanuel V. Nwadike
         Department of Mechanical Engineering
                 University of Miami
             Coral Gables, Florida  33124
          NASA Contract No. NAS 10-9410

        NASA Project Manager:  Roy A. Bland

  National Aeronautics and Space Administration
               Kennedy Space Center
       Kennedy Space Center, Florida  32899
     EPA Interagency Agreement No. 78-DX-0166
         Program Element No. EHE 624A

      EPA Project Officer:  Theodore G. Brna

   Industrial Environmental Research Laboratory
Office of Environmental Engineering and Technology
  Research Triangle Park, North Carolina  27711
                  Prepared for:

      U.  S. Environmental  Protection Agency
        Office of Research and Development
            Washington, D. C.  20460

-------
                              PREFACE
     This final report is the summary of a two-year effort portraying
the development, calibration and verification of a one-dimensional variable
cross-sectional area  numerical model.  This is one of the publications
of the thermal pollution group at the University of Miami.

     This effort covers the applications  of this  model  to Cayuga Lake
in New York and Lake Keowee in South  Carolina.  The conclusions and
derivations are accompanied by  an abundance of figures and  tables.
These figures and tables are presented  in such a way as  to make it
possible  for use in calibrating or verifying other one-dimensional models.

     This work was  conducted under funding from National Aeronautics
and Space Administration  (NASA),  Kenedy Space Center and the Environ-
mental Protection Agency  (EPA).
                                     u

-------
                              ABSTRACT
     A one-dimensional model  for studying the thermal dynamics of cool-
ing lakes  has  been developed and verified.  The model  is essentially a
set of partial  differential  equations which are solved by finite difference
methods.  The model includes the effects of variation of cross-sectional
area with  depth, surface  heating due to solar radiation  absorbed at the
upper layer and internal  heating due to the transmission of solar  radia-
tion to the sub-surface layers.  The exchange of mechanical energy be-
tween the lake and the atmosphere is included through  the  coupling of
thermal  diffusivity and wind speed.  The effects of discharge and  intake
by  power  plants are also  included.

     The  numerical model was calibrated by applying it  to Cayuga  Lake.
The performance was very good.  The model  was then verified through
a long  term simulation using Lake Keowee data base.  The comparison
between measured and predicted vertical temperature  profiles for the
nine years is  good.   The physical  limnology of Lake Keowee is presented
through a set of graphical representations of the measured  data base.
                                     MI

-------
                             CONTENTS
Foreword   	
Preface  	    ii
Abstract  	    Hi
Figures  	    iv
Tables	    xi
Symbols   	   xii
Acknowledgments   	   xiii

     1.  I ntroduction  	    1
     2.  Conclusions	    3
     3.  Recommendations  	    4
     4.  The Mathematical Model   	    5
              Description  	    5
              Boundary conditions   	    8
              Numerical method   	    9
     5.  Model Calibration   	    12
              Cayuga Lake application   	    12
              Input quantities	    12
              Results  	    15
     6.  Model Verification  	    24
              Lake Keowee application  	    24
              I nput quantities   	    24
              Results  	    25

References   	    57
Appendices	    59

     A.  Derivation of the Mathematical Model  	    60
     B.  Measured Temperature Profiles Plots  (1971-1978),
         Stations  500 through  506   	    68
     C.  Averaged Temperature Profiles, Stations  500 through  506  .   125
                                     iv

-------
                              FIGURES


Number

   1    Vertical temperature profiles, Cayuga Lake  	   17

   2    Vertical temperature profiles, Cayuga Lake  	   18

   3    Vertical temperature profiles, Cayuga Lake  	   19

   4    Stratification cycle cylindrical domain, Cayuga Lake	   20

   5    Stratification cycle paraboloid domain, Cayuga Lake  	   21

   6    Variation of eddy diffusivity with depth cylindrical
       domain, Cayuga Lake  	   22

   7    Variation of eddy diffusivity with depth paraboloid
       domain, Cayuga Lake  	   23

   8    Map of Lake Keowee  	   3l*

   9    Temperature profiles,  Lake Keowee,  1971  	   35

  10    Temperature profiles,  Lake Keowee,  1972	   36

  11    Temperature profiles.  Lake Keowee,  1973  	   37

  12    Temperature profiles,  Lake Keowee,  1974  	   38

  13    Temperature profiles,  Lake Keowee,  1975  	   39

  14    Temperature profiles,  Lake Keowee,  1976  	   40

  15    Temperature profiles,  Lake Keowee,  1977  	   41

  16    Temperature profiles.  Lake Keowee,  1978  	   42

  17    Temperature profiles,  Lake Keowee,  1979  	   43

  18    Lake Keowee discharge vs no discharge,  1971  	   44

  19    Lake Keowee discharge vs no discharge,  1972	   45

-------
                               FIGURES


Number

  20   Lake Keowee discharge vs no discharge, 1973  ............    16

  21   Lake Keowee discharge vs no discharge, 1 971  ............    17

  22   Lake Keowee discharge vs no discharge, 1 975  ............    18

  23   Lake Keowee discharge vs no discharge, 1976  ............    19

  21   Lake Keowee discharge vs no discharge, 1 977  ............    50

  25   Lake Keowee discharge vs no discharge, 1978  ............    51

  26   Lake Keowee discharge vs no discharge, 1 979  ............    52

  27   Variation of eddy diffusivity with depth  .................    53

  28   Monthly variation of the  depth  of the thermocline  ........    51

  29   Temporal variation of the surface exchange coefficient  ....    55

  30   Stratification cycle,  Lake Keowee   . .......................    56
          t
  B-1  Lake Keowee measured temperature profiles, 1971,
       Station 500  ..............................................    69

  B-2  Lake Keowee measured temperature profiles, 1972,
       Station 500  ..............................................    70

  B-3  Lake Keowee measured temperature profiles, 1973,
       Station 500  ..............................................    71

  B-1  Lake Keowee measured temperature profiles, 1971,
       Station 500  ..............................................    72

  B-5  Lake Keowee measured temperature profiles, 1975,
       Station 500  ..............................................    73

  B-6  Lake Keowee measured temperature profiles, 1976,
       Station 500  .......... . ...................................    7I*
  B-7  Lake Keowee measured temperature profiles, 1977,
       Station  500   ..............................................    75

  B-8  Lake Keowee measured temperature profiles, 1978,
       Station  500   ..............................................    76
                                     vi

-------
                              FIGURES


Number                                                         Pa9e

  B-9  Lake Keowee measured temperature profiles,  1971,
       Station 501  	    77

 B-10  Lake Keowee measured temperature profiles,  1972,
       Station 501  	    78

 B-11  Lake Keowee measured temperature profiles,  1973,
       Station 501  	    79
 B-12  Lake Keowee measured temperature profiles,  1974,
       Station 501  ...............................................    80

 B-13  Lake Keowee measured temperature profiles,  1975,
       Station 501  ...............................................    81

 B-1U  Lake Keowee measured temperature profiles,  1976,
       Station 501  ...............................................    82

 B-15  Lake Keowee measured temperature profiles,  1977,
       Station 501  ...............................................    83

 B-16  Lake Keowee measured temperature profiles,  1978,
       Station 501  ...............................................    84
 B-17  Lake Keowee measured temperature profiles, 1971,
       Station 502  ...............................................   85

 B-18  Lake Keowee measured temperature profiles, 1972,
       Station 502  ...............................................   86

 B-19  Lake Keowee measured temperature profiles, 1973,
       Station 502  ...............................................   87

 B-20  Lake Keowee measured temperature profiles, 1974,
       Station 502  ...............................................   88

 B-21  Lake Keowee measured temperature profiles, 1975,
       Station 502  ...............................................   89

 B-22  Lake Keowee measured temperature profiles, 1976,
       Station 502  ...............................................   90

 B-23  Lake Keowee measured temperature profiles, 1977,
       Station 502  ...............................................   91

 B-24  Lake Keowee measured temperature profiles, 1978,
       Station 502  ...............................................   92
                                     vii

-------
                              FIGURES
Number                                                         Page

 B-25  Lake Keowee measured  temperature profiles,  1971,
       Station 503 	    93

 B-26  Lake Keowee measured  temperature profiles,  1972,
       Station 503 	    94

 B-27  Lake Keowee measured  temperature profiles,  1973,
       Station 503 	    95

 B-28  Lake Keowee measured  temperature profiles,  1974,
       Station 503 	    96

 8-29  Lake Keowee measured  temperature profiles,  1975,
       Station 503 	    97

 B-30  Lake Keowee measured  temperature profiles,  1976,
       Station 503 	    98

 B-31  Lake Keowee measured  temperature profiles,  1977,
       Station 503 	    99

 B-32  Lake Keowee measured  temperature profiles,  1978,
       Station 503 		    to°

 B-33  Lake Keowee measured  temperature profiles,  1971,
       Station 504 	    101

 B-34  Lake Keowee measured  temperature profiles,  1972,
       Station 504 	    102

 B-35  Lake Keowee measured  temperature profiles,  1973,
       Station 504 	    1Q3

 B-36  Lake Keowee measured  temperature profiles,  1974,
       Station 504 	    104

 B-37  Lake Keowee measured  temperature profiles,  1975,
       Station 504 	    105

 B-38  Lake Keowee measured  temperature profiles,  1976,
       Station 504	    106

 B-39  Lake Keowee measured  temperature profiles,  1977,
       Station 504 	    1°7

 B-40  Lake Keowee measured  temperature profiles,  1978,
       Station 504 	    108
                                     viii

-------
                              FIGURES
Number
 B-U1  Lake Keowee measured temperature profiles,  1971,
       Station 505 	   109
 B-42  Lake Keowee measured temperature profiles,  1972,
       Station 505 ..............................................   11°

 B-43  Lake Keowee measured temperature profiles,  1973,
       Station 505 ..............................................   in

 B-4U  Lake Keowee measured temperature profiles,  1974,
       Station 505 ..............................................   112

 B-45  Lake Keowee measured temperature profiles,  1975,
       Station 505 ..............................................   113

 B-46  Lake Keowee measured temperature profiles,  1976,
       Station 505 ..............................................   11H
 B-47  Lake Keowee measured temperature profiles, 1977,
       Station 505  ..............................................    115

 B-48  Lake Keowee measured temperature profiles, 1978,
       Station 505  ..............................................    116

 B-49  Lake Keowee measured temperature profiles, 1971,
       Station 506  ..............................................    117

 B-50  Lake Keowee measured temperature profiles, 1972,
       Station 506  ..............................................    118

 B-51  Lake Keowee measured temperature profiles, 1973,
       Station 506  ..............................................    119

 B-52  Lake Keowee measured temperature profiles, 1974,
       Station 506  ..............................................    1 20

 B-53  Lake Keowee measured temperature profiles, 1975,
       Station 506  ..............................................    121

 B-54  Lake Keowee measured temperature profiles, 1976,
       Station 506  ..............................................    122

 B-55  Lake Keowee measured temperature profiles, 1977,
       Station 506  ..............................................    123

 B-56  Lake Keowee measured temperature profiles, 1978,
       Station 506  ..............................................    m
                                       rx

-------
                              FIGURES


Number

  C-1   Lake Keowee averaged measured temperature profiles.
       Stations 501-506,  1971   	   126

  C-2   Lake Keowee averaged measured temperature profiles,
       Stations 501-506,  1972   	   127

  C-3   Lake Keowee averaged measured temperature profiles,
       Stations 501-506,  1973   	   128

  C-4   Lake Keowee averaged measured temperature profiles,
       Stations 501-506,  1974   	   129

  C-5   Lake Keowee averaged measured temperature profiles,
       Stations 501-506,  1975   	   130

  C-6   Lake Keowee averaged measured temperature profiles,
       Stations 501-506,  1976   	   131

  C-7   Lake Keowee averaged measured temperature profiles,
       Stations 501-506,  1977   	   132

  C-8   Lake Keowee averaged measured temperature profiles,
       Stations 501-506,  1978   	   133

-------
                              TABLES


Number

   1    Oconee Nuclear Station  Condenser Cooling Water
       Flowrate (m3 /min)  	    27

   2    Oconee Nuclear Station  Condenser Temperature Rise,
       AT(°C)  	    28

   3    Monthly Average Fiowrates (m3 /sec) - Lake Keowee
       Hydro Station  	    29

   H    Lake Jocassee Hydro  Flows (cfs)   	    30

   5    Lake Keowee, Wind Speed (cm /sec)	    31

   6    Lake Keowee Gross Solar Radiation (Langleys)  	    32

   7    Lake Keowee Dewpoint Temperature  (°C)  	    33
                                     XI

-------
                              SYMBOLS
h
A(z)

Kz)

Q(z)
P
V
KzZ
Kz
 zo
W*=

a
  Vertical coordinate measured
  upward from the deepest
  point of the  lake.  As a sub-
  script it marks the vertical
  component of a vector.
  Depth of  the lake
  Horizontal cross-sectional
  area at height  Z
  Bottom-surface source of
  mass  per  unit area
  Bottom-surface source of
  heat per  unit area

  Temperature
  Density of water
  Vertical velocity
  Eddy diffusivity
  Eddy diffusivity  under
  neutral condition
(T ,  )   Friction velocity
  empirical  constant
  Richardson number
  Surface temperature
  Bottom  surface heat flux
                                     ct
                                     Hfr)
                                     B
                                     n
                                     6
A
I3
IA
dz
 Volumetric coefficient of
 expansion of water
 Surface  shear  stress
 Heat  capacity
 Heat  source/unit volume
 Average value of W*
 Half the annual variation of W*
C_, C3, Cr  C5  Phase angles
 Solar radiation incident on
 the water surface
 Average value of <}>
 Half the annual variation of $
 Extinction  coefficient
 Absorption coefficient
 Volumetric discharge
 Condenser temperature change
 Discharge temperature
 Surface  heat flux
 Surface  heat exchange coefficient
 Equilibrium temperature
 Average value of TE
 Half the annual variation of TE
 Lake  surface  radius
 Area  variation with  depth
                                     xii

-------
                        ACKNOWLEDGMENTS
     This work was supported by a contract from the National Aero-
nautics and Space  Administration  (NASA-KSC) and the Environmental
Protection Agency  (EPA-RTP).

     The authors express their sincere gratitude for the technical and
managerial support of Mr. Roy A.  Bland,  the NASA-KSC project manager
of the contract,  and the NASA-KSC remote sensing group.  Special
thanks are also due to Dr. Theodore G. Brna,  the EPA-RTP project
manager, for his guidance and support of the experiments, and to Mr.
S. B. Hager, Chief Engineer,  Civil-Environmental Division,  and Mr.
William J.  McCabe,  Assistant Design Engineer, both from the Duke Power
Company, Charlotte, North Carolina, and  their  data collection group for
data acquisition.  The  support of Mr. Charles H.  Kaplan of EPA was
extremely helpful in the planning and reviewing of this  project.
                                    xiii

-------
                              SECTION  1

                            INTRODUCTION
     Deep bodies of water provide a convenient source of condenser
cooling water supply to electric  generating  power plants.  One of the
problems  associated with this, that has gained increasing  importance  in
recent years is the thermal  pollution caused by the discharge of waste heat
from these power plants.  The degradation  of  the quality  of these waters
usually occurs through  the direct influence of the increased temperature
on aquatic life or through the lowering of the  amount of dissolved oxygen
and other biochemical effects.

     In temperate regions most deep bodies of water develop a thermo-
cline during their annual heating cycle.   A warmer epilimnion at the  top
is isolated from a cooler hypolimnion below  by  severe stable gradients
(thermocUne).   Convective transport and heat  addition caused  by power
plant discharge result in disturbances in the thermocline.

     The  formation time, phasing, depth and severity of the thermocline
are crucial factors  affecting the bio-chemical processes in  an aquatic
ecosystem.  The nutrient levels, species spectra and  physical character-
istics are quite different in  the  two distinct domains below and above the
thermocline.   This  stratification  is believed  to  be caused by nonlinear
interaction between  the  wind-generated turbulence and stable buoyancy
gradients.  While being heated from above,  a basin forms  stable  strati-
fication thereby inhibiting wind-generated turbulence.  During  early
spring, most temperate  lakes exhibit a nearly homothermal temperature
distribution with a  temperature of about 4°C (which  is the temperature
of maximum density for  water) extending all the way to the bottom.   As
the air above the lake  begins to warm, the  lake receives  heat, at an
increasingly  rapid rate.  During the early part of the warming season,
the lake continues  to remain  nearly homothermal,  since the heat that  is
received at the surface  layers is transported to the deeper  layers by
wind-induced currents  and turbulence.  As the rate of heating of the
lake continues to increase,  the rate at which heat is received at  the
surface layers soon exceeds the rate of heat removal to the deeper lay-
ers, and  the temperature of the surface layers  begins  to  increase.
During this period  the temperature decreases monotonically with increas-
ing depth.  As heating  continues, a point of inflexion  develops in the
temperature profile separating an upper  well-mixed layer from a lower
well-mixed layer.  The region around the point of inflexion  is a region
of intense stable temperature gradient  and consequently,  low turbulence
levels.  Turbulent  diffusion through this region is minimal.   Further

-------
heating merely increases the temperature of the well-mixed upper  layer.

     As cooling begins,  the wind mixing is augmented  by convective
mixing caused  by  static  instability and the thermocline (the region con-
taining  the point of inflexion)  recedes into the deeper  layers of the lake.
The epilimnion  cools until the lake reaches its minimum heat content and
near homothermal  conditions result.

     This report describes  the  application  of a one-dimensional model in
predicting the  above phenomena.   This model was calibrated  using data
from Cayuga Lake and the  calibrated model was applied to  Lake Keowee.
The  purpose of the effort is to develop a predictive  ability for long-term
thermal behavior of cooling lakes.

-------
                              SECTION  2

                            CONCLUSIONS
     A one-dimensional model which includes area  change with depth,
vertical convection,  varying diffusivity,  thermal discharges, and  internal
absorption of  radiation has been developed.  The  model  was calibrated
using Cayuga  Lake data base and verified  with Lake Keowee data base.

     The  application to Cayuga Lake indicates excellent  performance.
A comparison  of cylindrical and paraboloid  approximations for the lake
indicate significant differences in thermocline depth, eddy-diffusivity,
and temperatures at mid-depths.  This shows that effects of area change
with depth are not negligible.  The insignificant  surface temperature
difference is attributable to the fact that equal surface  areas were used
in both simulations.   However,  these effects will  be more pronounced
in real basins where decrease in area with depth  is more severe than
the linear variation  for the paraboloid case.

     The  long term  (nine-year) simulations of temperature profiles,
formation  and decay of the thermocline for Lake Keowee compare  fairly
well with  measured data.  For these simulations,  the model did not need
recalibration.   While the influence of discharge and ambient conditions
were satisfactorily modeled, the calculated  and measured profiles  had
much  larger differences for Lake  Keowee than for the one-year simulation
in Cayuga Lake.   Two reasons are believed to cause this relatively great-
er inaccuracy.  The first  is the complicated  discharge patterns in Lake
Keowee caused by power plant, hydro  and pumped storage operation
compared  to ambient simulation  for Cayuga Lake.  The second cause is
that for Cayuga Lake; the assumption of horizontal  mixing  is more mean-
ingful  since it is a single  basin domain,  while Lake Keowee is a double
basin domain connected  by a canal.  The model,  however, can be adapted
for application to two  connected basins.

-------
                             SECTION 3

                         RECOMMENDATIONS
     The main disadvantage of a one-dimensional thermal model lies in
the fact that resolution is sacrificed for computational speed.   Three di-
mensional  models are bulky and time consuming but have much better
resolution, however, when long term  simulations are necessary,  a  one-
dimensional model is recommended.

     The model described here can be modified to include the single
effects of the various  quantities  involved in the surface heat transfer
phenomenon rather  than using the  equilibrium temperature concept.
This is particularly recommended for the user who is interested in
modeling  the long term effects of one  (for example, evaporation)  of
the quantities involved in the surface  heat  transfer processes.

     Furthermore, the model can be easily adapted to handle connected
multiple domains.  This recommendation  is discussed in the text.

-------
                             SECTION  4

                     THE MATHEMATICAL MODEL
DESCRIPTION

     The one-dimensional variable cross-sectional area model used for
this  study  is described in this section.   The detailed derivation of the
governing equations is described in Appendix A, while the boundary
conditions and the important terms occurring in the governing equations
are discussed here.

     This model  which assumes lateral uniformity was developed to pre-
dict  the vertical temperature profiles for  complete annual cycles in a lake.
The  model  includes the effects of variation of the horizontal cross-section-
al  area with depth.  Surface heating due to solar radiation absorbed at
the surface layer and the internal heating due to the transmission of the
unabsorbed solar radiation to the deeper  layers of the  lake are taken
into  account.  The exchange of mechanical energy  between the lake and
the atmosphere is  accounted  for through  the friction velocity and the
thermal  diffusivity, since these quantities can  be related to wind  speed.
Finally, the effects of power plant discharge and intake are considered.

     The full three-dimensional equations of mass and heat balance are:

                                 = -7"-p"v                        (4.1)
                              O L
and
                 IT  (PC  T) = V- PC  K- 7T - V- PC TV + H          (4.  2)
                  dip         p            p

Applying the divergence theorem, and then differentiating  and integrat-
ing,  a set  of one-dimensional equations are obtained:


                      Aujf^f^zjpv^iA-                 <«-a
and
A(z)  ^ (pCpT) =  j[pCpA(z)Kz    ]  -   -^pCfiA(z)TVz)  +QA' + A(z)H (z)

                                                                 (4.4)
where,

z is the  vertical coordinate, measured  upward  from the deepest point of

-------
  of the  lake.  As  a  subscript it  marks the vertical component of a
  vector.

A(z) is the horizontal cross-section of the lake  at height z.

p is the  density.

t is  the  time.

V  is the vertical velocity of flow.

C   is the heat capacity.
 P
T is the  temperature .

K  is the vertical component of 'K',  the heat diffusivity tensor (including
   turbulent diffusivity) .

H(z) is the source of heat per  unit volume.
A • •
A 1S  35'

I  is the bottom- surf ace source of mass per unit area.

Q is the bottom-surface source of heat per unit area.

     The  following variables occur in the governing equations and are
defined thus:

Density, p, is assumed to vary with temperature in the following form:

          p = 1.02943 + (-2.0 x 10~5)T + (-4.8 x 10~6)T2 gm Ice   (1.5)

Equation  (4.5) and the discussion of the constants were given  by Sengupta
and Lick  (1974).

Eddy  diffusivity,  K , is a function of both  thermal  and current structure
of a lake.  The form used here was deduced by Rossby and Montgomery
(1935).
                          Kz = KZQ(1 + a,!*.}'                     (4.6)
where,
K    is the eddy diffusivity under neutral conditions.

Sundaram et al.  (1969) gave  an  empirical form for the yearly  variation

of Kzo'

              K   = 0.21 + 0.052 sindjpt + 2.61) cm1 /sec2         (4.7)
               ZO

-------
A sinusoidal variation of  K   with  a  mean 0.21 cm1 /sec and amplitude of
0.052 cm27sec is assumed  in°Equation (4.7).

     The  semi-empirical constant a- = 0. 1 is  estimated in this  study by
comparing the values used by Sundaram et al. (1969) and the original
value used by Monin and Obukhov (1954).

     The  third variable appearing  in Equation (1.6)  is R.,  the Richardson
number.  This is defined  as:
                             R  =J                               (4.8)
                             Ki     W*2    8z                       V   '
where,
a  is the volumetric coefficient of expansion of water.
av
   is defined as:
          av = 0.0 + 1.538 x 10 5{T-4) +  (-2.037 x 10 7)(T-4)2    (4.9)

The constants  in the above  equation were  taken from  Sundaram et  al.
 (1970).  a  can also be estimated  from Equation (4.5); however, the
use of Equation (4.9) leads  to a higher accuracy.

g  is the acceleration due to gravity.

w* is the friction velocity calculated from  known conditions above the
    lake.

     The heat  source,  H, is that  part of the solar radiation transmitted
exponentially through the depth of the lake.   The relation  used  in this
study  has been used by Dake and Harleman (1969)  and by  Mitry and
Ozisik (1976) :
                   H(z) = n(1-{3)A(z)  *  EXP(-n(z-h))            (4.10)
                                       o
where,
 g  = fraction of the solar radiation absorbed  at the surface, (0.5).

 n  = extinction coefficient,  (0.75 cm   ).

 h  = depth of the  lake,  (m).

 A   = net  solar radiation reaching the water surface, (cal/cm2/day).

      Equations  (4.3) and  (4.4) are parabolic and mathematically  repre-
 sent  a diffusion process.   The solution of these equations requires  one
 initial condition and  two boundary conditions.

-------
Initial Conditions

     The temperature of the lake at spring homothermy is  taken  as the
initial temperature.

Boundary Conditions

Surface:

                   q   =  pC K  |^ |   .   = K  (T_ - T  )            (4.11)
                   Ms      p z 3z | z=h     s  E    s

where,

TE  = equilibrium temperature,  (°C).

T   = surface temperature,  (°C).

K   = surface heat exchange coefficient,  (cal/cm2-s)

TE  Evaluation

     Brady  et al. (1969)  showed  empirically  that  fluctuations  in the
equilibrium  temperature may be conveniently  estimated using the approxi-
mate relationship:
                                = Td + Hs/Ks                    (4.12)
where,
T .  is the dewpoint temperature, estimated from known conditions above
    the  lake.

H   is the gross rate  of short wave solar radiation.

Since the dewpoint temperature tends to remain relatively  constant through
a single day, Equation (4.12)  indicates that the main  source of hourly
fluctuations in T_ is the solar radiation component.   This generally
reaches a maximum at solar noon,  unless variable  cloudiness interferes.
At  nighttime, T- approaches  the dewpoint temperature, which acts  like
a relatively invariant datum  for periods of 24 hours or less.  On an
annual  basis, however, both T . and H  are generally much greater in
summer than in winter.   The dominant Contribution  to  the amplitude of
seasonal fluctuation  in  Tp is the dewpoint  temperature.

K   Evaluation

     The form used by Edinger and Geyer (1967)  was  also used in  this
study:

                 K  = 4. 5 + 0.05 T  + Bf(w) + 0. 47f (w)           (4.13)
                  s               s

-------
     3 is found by applying standard curve-fitting  techniques  to pub-
lished  data pertaining to saturated  vapor pressures at various  tempera-
tures; a convenient representation  given  by Edinger and Geyer (1967)
is:

               3 = 0.35 + 0.0157  + 0.0012T  2 (mmHg/°C)      (4.U)
                                 m           m
                                   T  +  T
                             T  = -S—	9.                      (IMS)
                               m      2
The evaporative wind speed function f(w)  used  is also similar to that  of
Edinger  and  Geyer (1967).

                    f(w) = 9. 2  + 0.46W2  (W  ~2mmH  -1)            (4.16)
                                          m     g

where  W is the wind  speed (m/s)

Bottom:

     The second boundary condition is at the bottom surface of the lake
which  is assumed  to  be  perfectly insulated.
Numerical Method

     Numerical integration of the governing equations require that these
equations be replaced by finite difference equations.

     In this study,  the  following notations are used  in the finite differ-
encing of the  basic  equations:

Az      The thickness of a slice (the basin  is divided into equal  number
        of slices).   This is used as  depth increment.

At      The time increment chosen at the n   integration  step.

n, n-1  The present and last time at which  computations  were performed.

j        The space subscript.  This  is  used as

                      T."  = T(jAz,  tn)  = T(z,  t)

        where z is  the vertical coordinate.

     Equation  (H.H)  can  now  be  written in difference form as:

        T ^ —  T ^~^
        _]	   1    _ e   '  > ^~ I    '    r /  A ix  . -i- •» n~ 1

-------
    I

   ±
                                           r  AW \n~

                                         "  (pAVz}|-i
where,
                j.
                I P  J
                JP
                         H
                          "'1

(pAKAT)"",1 = pAK
     z    j  z
                           t.HT
                            n I    j
                                  "'1
                                                    - T"~11
                                                       j  i
K     = K  [1  + a,(-
 z.+-     zo      1   w
                                         (a ).z. -
                                           v j j 3z
                 (av). =


                             A    -
                             A
Terms like AT.., and AT.  , can be defined as
              J+l        J-i
                                      10

-------
                          AT.  .  = TV  - T.
                          AT.  ,  = T. - T. ,
                             J-i     J     J-1


The  sequence in  which calculations are performed is as follows:

     The dependent variables, T,  K  ,  w*, a , p, T_,  and K  , are
initialized.   The  area of each slice is calculated.   The title of5the  pre-
sent year is  printed.  The values  of the variables,  K  ,  w*, a , p, T£,
and  K  , are  then calculated.  The temperatures of thl  slices are finally
calculated.  If the temperature  profile  is unstable, mixing of the unstable
portion of the profile is undertaken.

     During the  next time step, the  temperatures are updated, and the
dependent variables are calculated again.

     The values  of the temperature,  T, eddy diffusivity, K ,  number of
days and the  surface heat transfer coefficient, K ,  are printed every
time  step, every  day or normally at  the end of each month.  At the end
of the  present year,  the new-year title is printed and computations con-
tinue as  listed above.   A detailed  description of  the programs and flow
chart has been published in a user's manual. Lee and Sengupta  (1980).
                                      11

-------
                             SECTION 5

                        MODEL  CALIBRATION
     The model described in the  previous section was applied  to Cayuga
Lake, New York.  The main reason was to calibrate the model.  Cayuga
Lake was  chosen  for this calibration because of the vast amount of nu-
merical work done on this lake.  These include Sundaram and Rehm (1971),
Sundaram et al. (1971),  Sundaram and Rehm  (1972), and Mitry and Ozisik
(1976).   The model was  also verified  using  Lake Keowee data  base; this
is  described  in the next chapter.

CAYUCA LAKE APPLICATION

     Cayuga Lake is one of the finger lakes in west central New  York.
It  is the longest, about  40  miles  (64  km),  of the group, and the second
largest, about  66 square miles (171 sq.  km), with steep banks cut by
inflowing  streams.  It averages 2 miles (3 km) wide about 500 ft  (150
meters)  deep, with a surface elevation of 381 ft (115 meters).  Tang-
hannock  Creek and its  210-foot (64-meter) cataracts flow into the lake.
The lake is drained  to the north by the Seneca  River,  which  joins the
Oswego  River and flows  into Lake Ontario.   Cayuga Lake is connected
by canal with Seneca Lake on the west and Erie Canal  on the north.
The city of Ithaca lies at the southern end of the lake.

INPUT QUANTITIES

     In  the numerical integration of the governing equations for  Cayuga
Lake, the following ralations were used.  The numerical values were
taken from Sundaram et al.  (1971)  and Mitry and Ozisik (1976).

     Density, p, varied  as  in Equation (4.5), Section  4,  of this  report.

     Eddy djffusivity varied as in Equations  (4.6) and  (4.7) with
a. =0.1  and the Richardson number  as given in Equation (4.8).

     The  volumetric coefficient of expansion of water,  a , used is  shown
in Equation (4.9).

     A sinusoidal relation was assumed for  the variation of the friction
velocity,  w*, with time; normally, w* is defined as
                             w*  =-/(TS/P)                        (5.1)
                                      12

-------
     The form used  is
                     w* = A1 + B1 sin(|g|+ C^                  (5.2)
where,
     A- = Average value of w*,  (3.048 cm /sec).

     B. = Half the annual  variation of w*,  (0.762 cm /sec).

     C. = Phase angle, (2. 61) (chosen in such a way that at time t = 0,
          w*  = initial  value of the friction  velocity).

     The heat  source,,H,  is taken to vary as in  Equation  (4.10), with
3 = 0. 5, n = 0.75 cm   and h =  70.0 m  ( = 200 ft).
The  net solar radiation, 4> , reaching the water surface is taken


                                       +C)                 (5.3)
from Mitry and Ozisik (1976):  °
where,
     A  = Average value of  A  ,  (6.14 x  10   cal/cm2s).

     B» = Half the annual variation of A  ,  (3. 52 x  10   cal/cm2s).

     C_ = Phase angle,  (0.049) (chosen in the same way as C.).

     The heat flux, Q, in Equation (4.4) is defined as
                         Q  = (pC ATQ  )/(A(z))                   (5.4)
                                 "    P
where,
     Q   = Volumetric discharge from the power plant.  In this study
      P   Q   = 1.508 x 108 cm3/sec; this value is chosen to  correspond
          to the pumpina velocity used by Sundaram et al.  (1971), (1/4
          ft /day).

     AT  =  10°C = Assumed temperature change through the condensers
                  of the power plant.

     The pumping velocity V  is defined as


                                                                 <5-5'

The  pumping velocity  term  effects are  felt  between the intake and the
level at which the heated effluent becomes  neutrally buoyant  (effective
discharge level).
                                       13

-------
                                       _
     K  = Assumed constant  at  5.65 x  10   cal/cm2-s.
                                                                _»
     For a postulated  3500 MW plant for Cayuga Lake,  a 8. 79 x 10
cal/cm2s of waste  heat will have to be  rejected.

     Surface area  of Cayuga Lake is  66 sq.  miles (171  sq. km).

     The intake to the power plant is fixed  at  38.1 m  (=  125 ft) from
the surface  of the lake.

     Initial temperature is taken  as the temperature of  the lake  at spring
homothermy (usually coincides with the minimum surface temperature
attained by  the  lake).  For Cayuga Lake, this  occurs  around March,
and the temperature assumed is T  = 2. 9°C.

     Finally, a sinusoidal variation is assumed for the  variation of the
equilibrium temperature with time.

                      TEE =A3 + B3sin(t + C)                (5.6)
where,

     A  = Average value of TE/  (11°C).

     B  = Half the annual  variation of T£, (16°C).

     C  = Phase angle, chosen in the same way  as C^ or C .

     The justification for using Equation (5.6) is described in Appendix
D of this  report.

     Two  topographies are studied in the application  of this mode! to
Cayuga Lake; these are  a  right circular  cylinder and a circular para-
boloid  approximations for the lake.

Cylindrical Topography

     The area  (radius, B  = 7. 38 x  10  cm).,pf the lake is assumed con-
stant throughout the depth.  Term A1 or -5 — = 0; see Equations (4.3)
and  (4.4).

Circular Paraboloid Topography

     The  lakeJs  assumed to be a circular paraboloid  with surface radius,
B =  7. 38 x  10  cm.   The area at  any depth, z (measured from  the deep-
est point of the lake) is given by:
                               A' =~                        (5.7)

     Thus,  A1 is a constant:
                                      14

-------
                                                                  (5.8)

RESULTS

     Computations for a yearly cycle for Cayuga Lake are presented.
The  verification data base consists of vertical temperature profiles com-
piled by Henson et al.  (1961).  The comparison of simulated and observed
vertical temperature profiles are shown in  Figures  1,  2 and  3.   Each
figure shows five  profiles representing  observed (M), discharge  (cylin-
drical domain - CD); discharge (parabolic  domain - PD); no-discharge
(cylindrical domain - CN);  and no-discharge (parabolic domain  - PN).

     The  no-discharge  simulations  are  in good agreement with  the data
(the data was for  no-discharge conditions).

     The  parabolic case has somewhat better agreement since it represents,
qualitatively, the  decrease  in area with depth.  However, the  closeness
of the simulated results for the two cases  is surprising.  Most  lakes  have
the rate of decrease in area with depth greater than a paraboloid,  which
has a linear decrease.  Thus, when realistic area changes are  used,  a
greater difference between  cylindrical and  paraboloid cases can  be ex-
pected .

     The  effect of discharge is significant  only  in  the top layers till  July.
This is because the heated discharge  rises to the surface during the first
half  of  the year.  For  the  later months, the discharge temperature is
lower than the surface  temperature causing the  discharge to reach  static
equilibrium somewhere below the surface.   Thus,  significant thermal
effects  of discharge are seen at mid-depths till  December.  The tempera-
tures are higher at  these depths  for the paraboloid topography.  In
general, a temperature difference of the order of 3°C over the no-dis-
charge  case, can be seen.   At the end of  the annual  cycle,  a residual
temperature increase of 1.75°C is detectable.

     In the above paragraph,  the discharge from  the  power  plant is
treated as a plane source which is injected into the domain at  a level
where the discharge temperature equals the temperature of that level.
This level  could be called the effective  discharge  level.   The effects  of
the pumping velocity term, therefore,  can  only  be felt from  the intake
level to the effective discharge level.   A temperature  rise of 10°C through
the condensers was  assumed.  This temperature difference justifies the
use of density as  a  function of temperature.

     Figures 4 and 5 show  the annual  stratification cycle.  From these
figures it is evident that the surface  temperature difference between  the
four  cases is less  than  2°C over the annual cycle.   However, at mid-
depths  the paraboloid discharge case shows a 5°C  difference compared
to the no-discharge case; for  the cylindrical discharge case  this difference
is 3°C.   Generally,  the highest surface temperatures are reached after
150 days, while  the highest equilibrium temperature occurs after 120  days.
                                     15

-------
Thus,  there  is approximately a 30 day lag in the surface temperature
response.  The maximum  temperatures at  mid-depth occur after  240 days
for the no-discharge case;  for the discharge case,  the corresponding time
is  210  days.   No significant phase lag between cylindrical and paraboloid
cases are observed.

     Figures 6 and  7 show  the eddy diffusivity variation with depth
(time in  days used as parameter) for the  cylindrical and paraboloid
cases respectively.  It is observed  that thermal discharge causes in-
crease in eddy diffusivity in  the epilimnion owing to increased mixing.
No significant changes are  seen  in the hypolimnion.  There is a temporal
increase in the differences  between the discharge and no-discharge cases.
These  observations  are true for  both domains.   However,  the diffusivity
values are larger  for the paraboloid cases.  Also, at any given  time,
the paraboloid  case  shows deeper thermoclines.

-------
        M
    61
    OJ
Depth
 (m)
61 r
Depth
 (m)
                                         PN PD
            PD
               (March)
              J  12  16  20
              Temp.°C
               (May)
      0   4   8  12  16  20
               Temp.  C
                             Depth
                              (m)
                                     61
                             Depth
                              (m)
                                           (April)
                                   048  12Ib20
                                            Temp.°C
                                              CN
                                            (June)
                                           8   12o 16  20
                                           Temp.  C
       (PN=Paraboloid, No-Discharge;  CN=Cylindrical
       No-Discharge; PD=Paraboloid"+  Discharge;
       (^Cylindrical + Discharge; M=Measured)
     Figure 1.  Vertical  temperature profiles, Cayuqa Lake
                 (from  0  to 90 days)
                            17

-------
   61
Depth
 (m)
    61
Depth
 (m)
                  CN
              (July)
     048
   12  16  20
Temp..°C
             PN
          CN
                                61 r
               Depth
                (m)
               Depth
                (m)
                                            PN
                              (August)
048
                                           12  16  20
                                         Temp.  C
                                           (October)
     0   H   8  12  16  20  24     048  12  16  20
              Temp.°C                    Temp.°C

      (P₯=Paraboloid, No-Discharge;  CN=Cylindrical
      No-Discharge;  PD=Paraboloid +  Discharge;
      CD=Cyl£ndrical + Discharge;. M=Measured)
   Figure 2.   Vertical temperature profiles,  Cayuga  Lake
              (from 120 to  210 days)
                         18

-------
     61.
Depth
 (m).
    61
Depth
 (m)
                                         CN
                                          \
                                        PN-- •

             A
                                                 'PD  (December)
      o   4   8  12  16  20
              Temp.i °C
     0   1   8  12  16  20
        PN  ,PD
6l

Depth
(m)

c
•
>
k
•
. CN
X
HI 61
In M'


Depth
(m)
1 (January)


^
*™ ' ft
i-
k
•
V




1
'^TN

(February)

T 8 12 16 20 0 l) 8 12 16 20
Temp . °C Temp . °C
      (PN=Paraboloid, No-Discharge; CN=Cylindrical
      No-Discharge; PD=Paraboloid + Discharge;
      CD=Cylindrical + Discharge; M=Measured)
       Figure 3.   Vertical temperature profiles,  Cayuga  Lake
                  (from 240 to  330  days)
                             19

-------
    28


    25




    20




    15




    10-
,TE
                                     TE
        M
        CN
        CD
Equilibrium temperature

SURFACE TEMPERATURES

Measured
Cylindrical, no discharge
Cylindrical + discharge

MIDLAYER TEMPERATURES_
        MM    Measured
        CNM   No discharge
        COM   Discharge
   -5 u
Figure  4.   Stratification cycle cylindrical  domain, Cayuga Lake
                             20

-------
                    ,TE
28


25



20




15



10
 -5
                                     TE
M
PN
PD
Equilibrium temperature

SURFACE TEMPERATURES

Measured
No discharge
Discharge

MIDLAYER TEMPERATURES
MM    Measured
PNM   No discharge
PDM   Discharge
       30    60   90   120 150  180 210  240 S70 300  330/360
                         Days
Figure  5.   Stratification cycle parabolic domain, Cayuga  Lake
                               21

-------
                                                  No Discharge
                                                  With Discharge
   cm2/sec
30


27

24

21

18


15

12

 9


 6

 3
                                                  300  days
                                                          240 days
                                                         90 days
                0    6   12  18  24  30  36  42   48   56  60

                              Depth(Meters)
Figure 6.  Variation of eddy diffusivity with depth cylindrical  domain,
           Cayuga  Lake
                                22

-------
                                           No Discharge
                                 	 With Discharge
cm2/sec
36
33
30
27
24
21
18
15
12
 9
 6
 3
                                                   300 days
                                                      240 days
                                                     90 days
                6  12  18   24   30  36  42  48  56  60
                        DepthCmeters)
  Figure 7.  Variation of eddy  diffusivity with depth paraboloid domain
             Cayuga  Lake
                                  23

-------
                             SECTION  6

                        MODEL VERIFICATION
     The model calibrated in the  last section was applied to Lake Keowee.
There were  two objectives.  The  first was to simulate the stratification
behavior of  Lake  Keowee for the  period 1971 to 1979,  the entire existence
of this river-dammed  lake, which started  receiving power plant heated
discharges  in  1973.  The  second  objective was to test the accuracy of
this  model for a situation  where horizontal uniformity  (see Appendix A)
of temperature was somewhat suspected since there are two basins con-
nected by a canal.

LAKE KEOWEE APPLICATION

     Lake Keowee is located 40 km  west of Greenville, South  Carolina.
It is the source of cooling water  for Oconee Nuclear Power Station  (ONS).
It was formed from 1968 through  1971  by damming Little and  Keowee
Rivers.   A connecting canal  (maximum depth  30.5 m)  joins the  two main
arms of the lake.   Flow out of the  lake, except for negligible leakage
through Little River dam,  is through the Keowee Hydro Station.  Lake
Keowee  also exchanges water with Lake Jocassee-pumped storage station.
The  three-unit steam  electric ONS with a net capacity of 2580 Mwe
started  operating in July  1973.  ONS operated at annual  gross  thermal
capacity factors (CTCF) of 11, 28, 69 and  59% in  the  years  1973 through
1976, respectively. Duke  Power Company  (1976).  From  1977  through
1979 the CTCF varied from 65  to 75 , Duke Power Company  (1979).

INPUT QUANTITIES

     Since  long term  effects are the important factors in this sutdy, the
input data  to  the one-dimensional model were mainly monthly  averages
supplied by Duke Power Company (1976 and 1979).  These are:

1.  Maximum depth of Lake Keowee = 45 m ( = 150 ft).

2.  Initial temperature  (minimum  surface temperature of Lake Keowee)
    = 7.5°C.

3.  ONS condenser cooling water flowrate,  Q , Table 1.
                                           P
4.  Temperature  rise in condenser  cooling water.  Table 2.

5.  Outflow through  Keowee Hydro Station, Table 3.

-------
6.   Flow through Jocassee-pumpted  storage station. Table 4.

7.   Wind speed. Table 5 (0.2 meters from surface).

8.   Solar radiation  reaching the water surface, $ , Table 6.

9.   Dewpoint temperature,  Table 7.

RESULTS

     Computations were carried out  for nine years, 1971 through 1979,
using the above monthly-averaged data.  The measured temperature
profiles referred  to in this discussion are horizontal-averaged data col-
lected  from  seven different  locations in Lake  Keowee, as shown in Figure
8.   This is  in approximate agreement with the lateral uniformity assumed
in  the  formulation of  this and other one-dimensional models.

     Computed  (with  discharge) and measured temperature profiles for
1971 to 1979 are presented together whenever possible, Figures 9 through
17.  A second set of  figures,  18 to  26,  for the nine simulated years show
the computed temperature profiles (with and without discharge).   Other
figures presented include:   a typical variation of eddy  diffusivity with
depth  (time in days as parameter),  Figure 27; and a  typical temporal
variation of the depth of the thermocline. Figure 28.   Finally,  the
variation of the surface  heat exchange coefficient with time  in years
(Figure 29), and the  stratification cycle  for Lake Keowee (1971-1979),
Figure 30,  are  presented.   All the above figures are computer drawn.

     For 1971,  the  year  the lake came into existence, Figure 9 shows
the computed temperature profiles (solid  lines) and the measured tem-
perature profiles  (broken lines).  The surface temperature  comparisons
between the measured and  computed are excellent except for the  start
of the  heating season when the computed temperatures  seem to lag the
measured.   The maximum lag occurs in April  and reduces with the
heating season  and  completely  disappears in October when cooling is in
full swing.  The  hypolimnetic temperatures show good agreement  with
measured data.  The  mid-layer temperatures compare perfectly for  the
first half of the year.  From August to November,  the  trend changes
and the computed profiles lead the measured.  However, the modeling
of the  formation,  maintenance and decay  of the thermocline, is good.
This can be seen by  comparing the  shapes of the measured  and computed
temperature profiles.   The comparison improves with increasing years,
Figures 10 to 17, and generally follows the same trend  as outlined  above.
The comparison of measured and computed temperature  profiles cannot
be expected to  be more precise for  the following reason.  The measured
values  were taken on some specific  day  (different  for some  months)
during the month while the computed results  show the temperature pro-
files at the  end of  the month.

     To estimate  the  impact of ONS  operations on the thermal  dynamics
                                     25

-------
of Lake Keowee,  a  set of simulations (with and without discharge)  are
presented.  These  are summarized in  Figures  18 to 26.  Two years are
selected for detailed discussion,  1975  and 1978.  The earlier year.
Figure 22, was a year of very high ONS annual gross thermal capacity
factor and the later year. Figure 25,  is  representative of the situation
towards the end  of computations.  In  Figure 22, although the discharge
surfaced only during the early and later months of the year, the effect
of discharge (broken lines) is clearly evident  during most of the months
at the  subsurface layers  (especially below the thermcline).   Figure 25
shows the same situation  for  1978.  This time, however, the discharge
surfaced from January through May and  then  from October  through
December, at  total  of three months more  than  in 1975.  The hypolimnetic
temperatures were  also higher.   Finally,  by the end of computations,
1979, there was a residual temperature difference of almost 3°C  due to
discharge.  ONS started  operations in July  1973, and  accordingly, the
first three years. Figures 18 to  20, show no differences between dis-
charge and no-discharge  simulations.

     Figure 27 shows the variation of the eddy diffusivity with depth
for 1975,  one of the nine years simulated.   In this figure,  the  maximum
diffusivity always occurs  at the  surface  for every month.   The non-
stratified  months show a  constant diffustvity while the  stratified months
show very high mixing in the epilimnion  and very low mixing in the
hypolimnion.

     Figure 28 shows the temporal variation of the depth of the thermo-
cline for  1975.  This figure is in agreement with one of the generally
accepted theories of the formation, maintenance and  decay of the thermo-
cline.

     Finally, a summary of the stratification cycle for Lake Keowee for
the nine years simulated  is presented in  Figure 30,  and the variation of
the surface exchange coefficient  for the  same  period is shown  in Figures
29 and  30.  The maximum surface temperatures occur  around 240 days,
and  the minimum surface  temperatures around 60 days for each year.
The  equilibrium temperature of the lake  is superimposed.  The  maximum
equilibrium temperatures  occur around 210 days.   The  surface temperature
therefore  lags  the equilibrium temperature by 30 days.  Two curves are
shown  for the  mid-layer temperatures to  highlight the effect of ONS
operations.  The temporal increase of this effect can be seen clearly.
The  maximum  difference occurs during the last quarter of each year.
The  variation of the surface  heat exchange  coefficient, as expected,
follows  the same trend as the variation of the surface temperatures.
                                      26

-------
TABLE 1.  Oconee Nuclear Station Condenser Cooling Water Flowrate  (m3/min)
Month
January
February
March
April
May
June
July
August
September
October
November
December
1973
	
	
	
	
	
	
1890.2
1910.3
2099. 5
2232.5
2170.7
3284. 6
1974
3069. 3
3069. 4
2976. 9
2807.3
2164.6
4171.8
5334.6
4727. 1
5961.4
4953. 4
4202.1
5225.6
1975
4612.4
3694. 9
5456. 8
5570.8
6494. 3
6574. 2
7104.2
751Q. 1
7201.6
6993.4
7467. 1
6850. 9
1976
6069. 3
4440.2
4874.3
4272.1
3970.7
51 97. 6
5830.0
7248. 3
6785. 4
5637. 8
5809.2
491 4. 8
1977
5045. 8
4985.2
5113.5
601 3. 6
6302.4
4385.3
5038. 6
5708.9
6964.0
6754.7
4697. 6
5854.6
1978
6176.7
6444. 6
5195.7
4811.8
4984. 2
5659.9
7058.8
7914.9
6557. 3
7407. 4
6065.1
6503.5
1979
7207.7
7319.9
741 9. 5
7275.8
4189.1
5381.2
4753. 3
	
	
	
	
	
                                  27

-------
TABLE 2.   Oconee  Nuclear Station Condenser Temperature Rise, AT(°C)
Month
January
February
March
April
May
June
July
August
September
October
November
December
1973
	
	
	
	
	
	
5.3
4.6
5.3
7.3
7.7
4.1
1974
4.2
7.4
8.4
8.0
2.7
6.0
5.0
4.8
5.8
3.5
7.9
5.9
1975
6.3
4.8
8.2
8.3
8.8
8.8
8.3
7.8
7.4
7.7
8.5
9.4
1976
10.6
7.3
7.1
5.1
5.8
9.3
7.4
8.5
8.0
7.8
6.7
8.4
1977
12.5
11.4
10.4
11.4
9.4
8.4
7.4
5.0
5.0
3.8
6.2
7.9
1978
9.0
11.0
13.2
9.7
10.1
8.1
7.9
7.5
7.6
6.2
8.4
7.2
1979
10.3
10.4
9.6
9.9
8.2
7.1
5.0
	
	
	
	
	
                                 28

-------
TABLE 3.   Monthly Average Flowrates (m3/sec) - Lake Keowee Hydro Station
Month
January
February
March
April
May
June
July
August
September
October
November
December
. Annual Average
1971
	
	
	
	
	
	
	
	
22.6
14.9
18.5
8.8
16.2*
1972
17.5
32.9
9.0
3.0
21.2
22.9
14.3
15.8
20.2
6.1
30.8
17.3
17.6
1973
22.2
17.2
33.6
30.1
31.6
55.7
9.7
16.1
18.4
3.3
5.6
19.3
21.9
1974
71.2
118.1
20.7
16.7
35.9
11.8
43.1
28.8
17.0
5.1
23.0
12.4
33.7
1975
27.0
50.8
82.7
42.5
63.8
16.1
20.3
39.9
35.1
49.8
47.2
44.1
43.3 .
1976
39.5
36.2
42.4
40.7
53.3
53.2
33.2
10.8
16.0
39.2
27.2
30.1
35.2
1977
35.5
33.6
25.4
50.5
21.6
27.5
20.1
55.2
16.5
7.5
22.5
20.5
27.2
1978
30.1
22.6
25.7
18.7
52.3
43.1
12.2
28.7
33.1
25.2
13.4
13.4
32.1
   Average of September through  December.
                                  29

-------
TABLE  4.  Lake Jocassee Hydro  Flows  (cfs)
Month
January
February
March
April
May
June
July
August
September
October
November
December
1973
—
—
	
	
	
	
	
	
	
	
	
	
1974
	
	
	
	
	
	
	
	
	
	

	
1975
	
	
	
	
	
	
	
-163
554
765
615
301
1976
505
509
562
-79
555
1032
112
-747
39
304
-251
-915
1977
-608
206
1181
1046
27
489
-831
-460
101
152
448
461
1978
187
54
516
370
1762.2
180.2
	
	
	
	
	
	
1979
	
	
	
	
	
	
	
	
	
	
	
	
                     30

-------
TABLE 5.  Lake Keowee, Wind Speed (cm/sec)
Month
January
February
March
April
May
June
July
August
September
October
November
December
1971
6.69
9.3
9.2
8.72
7.5
5.65
6.48
5.75
5.77
7.02
7.53
8.3
1972
6.69
9.26
9.20
8.7
7.53
7.95
6.64
6.07
5.47
7.17
7.13
6.8
1973
7.22
7.3
7.1
8.44
6.83
3.04
5.32
5.1
6.8
7.1
8.14
5.6
1974
5.8
5.8
7.7
8.7
6.8
6.96
5.2
5.87
6.74
5.7
7.2
6.9
1975
6.3
7.6
9.6
7.6
4.8
5.82
5.1
5.4
7.3
7.7
6.9
7.2
1976
7.4
8.5
7.9
7.6
7.3
6.4
5.9
6.7
7.13
7.21
7.27
8.2
1977
8.04
8.4
7.7
7.6
6.2
6.7
5.8
5.4
5.3
7.2
7.5
7.2
1978
7.9
6.8
7.6
7.6
6.7
4.7
5.7
5.1
5.7
6.6
5.8
7.3
1979
8.6
7.2
7.9
7.6
6.7
4.8
	
	
	
	
	
	
                      31

-------
TABLE 6.  Lake Keowee  Gross  Solar Radiation  (Langleys)
Month
January
February
March
April
May
June
July
August
September
October
November
December
1971
167,0
264.4
264.4
457.0
480.5
478.0
409.0
428.2
329.0
261.3
247.7
147.7
1972
176.0
257.6
352.5
448.0
433.6
564.3
493.8
453.5
386.3
298.1
220. 9
148.0
1973
162.7
279.5
348.5
449.3
449.5
507.7
496.9
391.6
338.4
341.7
247.6
154.0
1974
191.4
226.9
326.1
397.7
436.0
559.3
459.5
480.0
339.2
302.5
231.1
181.9
1975
191.4
226.9
326.1
397.7
436.0
559.3
459.5
480.0
339.2
302.5
231.1
181.9
1976
209.8
310.9
338.6
496.9
448.4
480.2
288.3
480.4
345.1
287.5
237.5
195.0
1977
205.5
317.6
328.5
427.3
473.0
543.3
551. 8
423.9
350.7
286.6
196.2
178.2
1978
227.0
308.0
408.0
429.0
513.0
598.0
568.0
461.0
385.0
369.0
232.0
191.0
1979
208.0
251.0
373.0
479.0
513.0
	
	
	
	
	
	
	
                          32

-------
TABLE 7.  Lake Keowee Dewpoint Temperature (°C)
Month
January
February
March
April
May
June
July
August
September
October
November
December
1971
3.0
0.9
6.3
7.5
17.2
18.8
20.0
19.44
18. 33
13.88
2.88
5.5
1972
1.67
-2.22
1.11
6.6
11.11
13.13
18.77
22.22
18.8
11.5
5.9
4.0
1973
1.0
-1.0
10.0
7.7
14.3
20.25
22.2
21.7
20.8
13.5
7.2
3.2
: 1974
8.2
0.0
6.3
10.7
17.2
17.8
21.0
21.0
17.5
10.2
6.0
3.8
1975
3.0
3.5
2.2
7.2
17.5
19.0
21.3
21.0
16.2
12.4
7.9
2.0
1976
-1.0
3.2
3.9
11.2
14.0
18.3
19.8
18.0
15.4
8.2
1.0
-1.5
1977
-6.6
-2.78
6.0
10.2
15.4
18.0
20.2
20.7
18.7
9.2
7.0
0. 4
1978
-2.8
-5.0
1.2
9.6
14.0
19.4
20.8
20.8
15.5
9.3
9.0
0.4
1979
-3.33
0.0
5.0
9.2
14.0
19.4
20.7
21.0
15.7
10.0
10.3
0.9
                      33

-------
to
                                             N
Lake
Jocassee
                                                    OCONEE COUNTY
                                 Little'
                               River Dam
                                                                                  OCONEE
                                                                                  NUCLEAR STN.
                                                                                  DISCHARGE
                                            Figure 8.  Map of Lake Keowee

-------
                     o
                      a
o
O-
o

i
-
o
o_
.-«
JRN. lZ
~r~ CD
r**"~ ,
'"O.QQ 20.00 LU^
TEMP.tCJ a

j
1
i
i
/ °
,-tO
a.
FEB. t
xg
.00 20.00 uJ^
TEMP.(C5 a


i
T-.O
•
Q.
MflRCH |Z
"[' * C3
' *
.00 20.00 uj^
TEMP.(C) a
l^

•
/
RPRIL
.00 20-00
TEMP.(C)
OJ
Ul
                      u_
                                 MRY
__    10     20.00
a    TEMP-(C)
                                                          O
                                                            -
      20.QQ
TEMP.(CJ
                                               JULY
                                                          a
30     20.00
 TEMP.tU
                                                                            a
                                           RUG
    30     2Q.QQ
     TEMP-(C)
                      Q
u] U.OO    20.00
a    TEMP-tC!
      20.00
TEMP.(C)
                                                                               -
                                                                     NOV.
                                                          a
DO     20.00
 TEMP.(C)
                                                                 DEC
_    0    20.00
a    TEMP.(C)
                          Fiqure 9.  Measured  (broken lines) and predicted temperature profiles,
                                   Lake  Keowee,  1971

-------
UJ
01
o
— o
_
[Z
xg
a
0
a_
H-
Lu
a
a
o_
*— <
u_
a




o
o_
^_
JRN. [Z
xg
> °
^0
i "1
,_,
FEB. £
^g
• o
/ •. — ' TS
XX °-
//^ *~4
f JULY tZ
xg
U
/J^/
( RUG.
	 	 -
.00 20. 00 Sj^-OO 20.00 Sj^'.OO 20-00 t^j^'.OQ 20-00
TEMP.fC) o TEMP.fC) a TEMP.fC) a TEMP.fC)

]' So
^ -f 7§
X^X o.
!/ SEPT. [Z
j ^Q
{^ OCT. tZ
• o
! T~1°
i "i-
/ '-•
!/ NQV. tZ
1 »-°
DEC.
'.00 20.00 SlJ^.OO 20.00 m^'-OO 20.00 uj^'-OO 20.00
TEMP.fC) a TEMP.fC) a TEMP.fC) a TEMP.fC)
                          Figure 10.  Measured  (broken  lines) and predicted temperature profiles,
                                      Lake Keowee,  1972

-------
oo
                   o
                              JRN.
LU U.OO     20.00
a    TEMP.(C)
                   a
                              MRY
                        O     z.OO
                   a    TEMP.fC
                                    o
                                      Q_
      FEB.
a

o
                                        OO     20.00
                                         TEHP.(C)
      JUNE
a

a
O     20-00
TEMP.(C)
                              SEPT.
                                                        o_
                    ,/
                                                                        0
                                                                           -
                             MRRCH
                 OO    20.00
                  TEMP.(C)
                                                                RPRIL
                                       QO     20.00
                                        TEhP.(C)
                                                                          o.
                             JULY
                  a
                                        OQ     20.00
                                        TEMP.(C)
                                                                RUG
                                        O     20-00
                                    a   TEMP.(C)

                                                                           -
                        NOV.
                                               DEC
                   _  i.OO     20.00    JlJTJ.OO     Zb.OO    S^-00     Z'0.00   £jt).00    ZO.OO
                   a   TEMP.(C)     a   TEMP.(C)     a   TEMP.(C)     a   TEMP.(C)
                      Figure  11.  Measured  (broken lines) and predicted temperature orofiles.
                                 Lake Keowee,  1973

-------
U)
CO
o
o_
t—
li-
a
o
o.
«— j
t—
u_
a
0
a.
^—
u_
Q-Q-,
LU U
a
1
I
1
1
a
< — iO
•
o_
JRN. tl

1
o
a
0_
•-H
FEB. t
,
i
/
I t %— «O
O-
T-4
MRRCH tZ


/
RPRIL
.00 20.00 Sj^'-oo zb.oo CJ^-OQ 20.00 S^'.oo 20.00
TEMP.(C) a TEMp.fC) a TEMP.fC) a TEMP.(C)
>' So
/ "o
1
MRY t
*^™ C3
r~* ^
^ 20
/^ "I-
/ _
1
4 JUNE tZ
' *
/2o
*0
«-"
1
'f JULY |Z
•T" CD
" •
yi
/
/
f RUG.
.00 20-00 Sj^'-OO 20-00 Sj^-OO 20.00 fjj°o'-00 20.00
TEMP.fCJ a TEMP.(C) a TEMP.(C) a TEMP-tCJ
;2o
"1

"/SEPT. {Z
£°
i/ "b
/ ^S
' ^
)
'1 »-
M °CT ' ^0
I i CD
/ °°
"2-
• f-\
,' NOV. tZ
/ *-,
' n *

I


DEC.

.00 20.00 Sj^'.oo 20.00 ^^'.oo 20.00 CJ°Q'.OO 20.00
TEMP.fC) a TEhP.(CJ a TEMP-ICJ a TEMP.(C)
                         Figure 12.  Measured  (broken lines) and predicted temperature profiles.
                                     Lake Keowee,  1971

-------
o
— 'O
*
— "
t—
~T" ^"**
' •


I
j
/
1





o ' TEMP.
•— «o
o.
"•
u_
p __"
Q
•-"O
•
2-
JRN. t
.



\
O • r->

^ .
2~
FEB. t
/ Z-HQ
" .
i °-
MRRCH t




.
/
f

RPRI
20.00 uj^'-OO 20.00 {^^.00 20-00 Sj^-OO 20-00
(CJ a TEMP.(C) a TEMP. CJ a TEMP.(C)
y "?§
(f 2-

1




SD^.OQ
a TEMP.
o
a.
^-^
i
r^
U_
^°
•

f

->
MRY t
i— *?
]/ So
-** H
X^ Q.
/ f __.

1

' t
f JUNE tZ
_ _....... 	 ^ •
,/ o
y/ ^o
S* '
/ j *
/•'" JULY tl
( ^
1 xg
' •





/

f/
r'

-flUO.

2b.OO Sj^.OO 20.00 i^.OO 20.00 Sj^-OO 20-00
fCJ o TEMP.fCJ a TEMP.fCJ a TEMP.(CJ
1 / V§
1 ' '
// ~~
-SEPT. t
;5o
/ 2g
' ^~
^•d'cT. tz
< >— •
Xo
/ >^o
1 ^^
^ijov. t
x§








/
(
DEC.

^•°?PMP f°'?° uj'V.OO 20.00 £3^.00 20-00 Sj^-OO 20.00
a TEMP.(C) a TEMP.(C) a TEMP.(C) a TEMP.fCJ
Figure 13.  Measured (broken lines) and predicted temperature profiles.
           Lake Keowee, 1975

-------
o
•
0-
*-4
f— *
h-
U—

/
j
1
!




o
Q-
' — »
JRN. £
xg
y Q '
'I
I ""*
!'~<
FEB. t
1
f'
i
|
!
1 °a
O-
*""\
MRRCH t
xg
/
£
\
s

RPRI

m^'.QQ 20.00 [Jj^'.OQ 20.00 uj^'.QQ 20-00 UJ^'-OO 20-00
o TEMP.fCJ a TEMP.fCJ a TEMP.fCJ a TEMP.fCJ
o
*— «o
*
0-
"""*
T*
H-
v-
Xg
j
/
/

i
•





^ O I _s O I/O . t

0-

"" ""•
MRY £

™'~ ~ •
/ C" fr
*2-

_
* ""*
/ JUNE E
/ ^-
i •"" •
/ v§
X 2-

r —
/
i
1
* • •
JULY E
^^
• e
/
//
//'
P
<\ RUG -
/

Sj^'.QO 20.00 QJ^'.QO 20-00 uj^'.QO 20-00 Sj^'.QO 20-00
a TEMP.
o
o_

U-
*"^ •



c'

CJ a TEMP.fC} a TEMP.fCJ a TEMP.fCJ
I/ 5s
i ^
/ >
f '
\ 	 t-0.
/ So
' «
,' 0-
1 -•
1 l_^

' .





O
o.

/NOV. E
H^

i
*



1


DEC.

m u.uu     tu.uu   uj u"J"     20.00    ujTl.OO     20.00   uj^J.OO     20-00
o    TEMP.fC)     a   TEMP.fC)     a   TEMP.fC)     a   TEMP.fC)
    Figure 14.  Measured (broken lines) and predicted temperature profiles.
               Lake Keowee, 1976

-------
o
T-«O
Q_

Lu

jE§






f 2o
Q_

JRN. tZ
,_
^0
/
/
1
1
1
t

f- ~g
0_
*"
" FEB. £
k^
Xo
r •
'
1
1
/
1
1
1
1

/ So
o.
^t
MRRCH |Z
^_
^o
I/-'
/'

/
1


RPRIL


uj^Q-OO    20.00
a    TEMP.fCJ
                  _  1.00     20.00
                  a    TEMP.fCJ
                  1.00     20.00
                   TEMP.fCJ
                  _   .00     20.00
                  a    TEMP.fCJ
  a.
       f
           MRY
Uj^'-OO    20.00
a    TEMP.fCJ
                  o

                             JUNE
                  a
.00  '   20-00
 TEMP.fCJ
_  LOO    20.00
a    TEMP.fCJ
   .00    20.00
a    TEMP.fCJ
o
—•a
XO
uj"t)'-OQ    20-00
a    TEMP.fCJ
                  a
.00     20-00
 TEMP.fCJ
a
*
a.

o



r
1 ~g
o_
/'NOV. tz
w_/
1.

DEC.

   1.00    20.00
a    TEMP.fC)
   1.00     20.00
     TEMP.fCJ
    Figure 15.  Measured  (broken lines) and predicted temperature profiles,
              Lake  Keowee,  1977

-------
4=
10
o
.— O
•
*"""*
1—
u_
"T™ ^D
* •








fc'tf.oo
a TEMP.
"o
T-.0
.
C3_
_,

1 —
u_
h«4
XO
1-°
s


.
1
1


/





Cj^.oo
a TEMP.
a
* •
•-*
*""*
t—
u_
xg
f\ -^





1




o
,7a
Q.
v^
" '
JRN. tZ

• .
» o

t
j FEB. |Z
/ nr f-~n
'" "~~ «
/
)
1
1
1
1
1
{
1
/
f







20.00 Sj^'.OO 20.00 uj^.OO
fC

/,



) a TEMP.fCJ a TEMP.
o  ^D
/ ^-iO
"1
/ -"*

'NOV. {z
x°
— r— — — • •-• .. —




i


t
j
f
1
1
DEC.


uj u.uu     20-00
a    TEMP.fCJ
i.oo
                                                   20.00
.00
20.00
                                        a    TEMP.fCJ     a   TEMP.fCJ
ujTJ.OO     20.00
a    TEMP.fCJ
                          Figure 16.  Measured (broken lines) and predicted  temperature profiles.
                                     Lake Keowee, 1978

-------
OJ
o
<— > o-
EH *-«
fe
ffi
H
P-i
M 0-
O








t"H
JAN.
)
20
o

























o -
i-H
FEB.



r-i .
















) 20 o




o -
t— i
MARCH







r"i
1
/

APRIL




20 0 20
TEMP.(C) TEMP.(C) TEMP.
ess.
S o '*

rc
H
ft,
w
p °c

/











TEMP.
0
PO-
1
P-.




0
TEMP.
/
/


0 -

MAY



26
(C)

J


J— ,







0








/
/




)
X
O "
t-l
JUNE

















20 0
TEMP/

0
1 SEPT .

20
(C)





	 O '1
0






/

(G) TEMP

o
rH 1
OCT.










/
/
t



(C) TEMP(C>
\
S '
»H
JULY




/
/
[ AUG.
I


20 0 20
. (C) TEMP.(C)




20 0
TEMP.(G) TEMP

o-
NOV.
O-.

•
DEC.

20 0 20
. (C) TEMP.(C)
                            Figure 17.   Predicted discharge temperature profiles. Lake Keowee, 1979

-------
o
— o
o.
1—
U_
I — r
a


o
— -O
o.
JRN. £
jEo


o
Q.
FEB. {Z
.00 20.00 Itj^.QO 20.00 [h1^
TEMP.(C) a TEMP.tCJ a


CZl
—.0
MRRCH £
•00 20.00 fh^
TEMP.(C) a
/
I RPRIL
i
•00 20.00
TEMP.f CJ
o
u_
a
o
u_
           MRY
    OO    20-00
     TEMP.(C)
           SEPT
Uj B.OO    20-00
a    TEMP.fCJ
                  o
                  ^-.Q
                  *o
                    O_
                  X°
                  u_Q
ii^'.OO    20.00
a    TEMP.(C)
                             OCT.
                     1-00     20.00
                       TEMP.(C)
      20.00
TEMP.(CJ
                                    O
                                               NOV.
                                    a
                    1-00     20.00
                      TEMP.tCJ
                                                      a
                                                      o
                                                      —.o
                                                      *0
      20.00
TEhP.(CJ
                                                                 DEC.
                                                      a
                1.00     20.00
                  TENP.CCJ
  Figure 18.  Predicted nb-discharqe temperature profiles, Lake Keowee, 1971

-------
o
*— «o
o_

1—
U_
X°
H-O
UjT)
a






o
•— 'O
--"
JRN. t
^y~ CD
• ' *
.00 20.00 [^^
TEMP.(C) a






o
"*°
— "
FEB. t
area
t-Q.
.00 zb.oo uj*^
TEHP-(C) a






CD

O.
MRRCH £
:ra
H-°
•oo zb.oo Sj^
TEMP.CC) a
I
I




\
RPRIL


.00 20-00
TEMP.(C)
Ul
                     o.
                              MRY
                   UJ
                   a
   I.DO    20-00
     TEMP.tC )
                                                       .0
           JUNE
i^-oo
a
          zb.OQ
     TEMP.(C)
       JULY
OO    20.00
 TEMP.(C)
                                                                                    RUG.
m^.OO    20-00
a    TEMP.(C)
                   o
                   — o
CD
                              SEPT
£^).00     20.00
a    TEMP.tCJ
           OCT
                                         OO     20.00
                                          TEMP.(C)
                  a
                                    o
                                                                           O
                                                                           a
                                                                           o.
       NOV
00    20-00
 TEMP.fCJ
                                                                                    DEC
     O    20-00
a    TEMP.fCJ
                       Figure 19.  Predicted  no-discharge temperature profiles. Lake Keowee, 1972

-------
o
—•a
o_
J-
LL_
y«s 	 "*





O
,— 0
2-
JRN. t
^ °





o
~a
o.
FEB. t
f o
1 O
1 "ZTa



/ 2-
MRRCH tZ
^0
1
1
/


RPR1L

C]T).00    20-00
a    TEMP.CC)
                   __ 1.00     20.00
                   °   TEMP.CC)
                                                    a
                  1.00     20.00
                    TEMP.CC)
   1.00     20-00
a    TEMP.CC)
a>
                o
                —a
                 o_
                           MRY
                UJ
                a
   i.OO    20.00
     TEMP.CCJ
                                  —a
                                  «°
                                    -

                              JUNE
                     1.00     20-00
                       TEMP.CC)
                                                JULY
                JtptJ.OO     20.00
                a   TEMP.CC)
_  1.00    20.00
a    TEMP.CC)
                o
                — >o
                  0
                                   Q
                                   o

                                   O.
                           SEPT
Uj^-OO     20-00
a    TEMP.CC)
                             OCT
                                  a
1.00     20.00
  TEMP.CC)
                                    o
                                    T—O
                                                NOV
                                                    a
                                        .00     20-00
                                         TEMP.CC)
                                                                        O.
                                             DEC
_  1.00     20.00
a    TEMP.CCJ
               Fiqure 20.   Predicted  discharge (borken lines)  and  no-discharae temoerature orofiles.
                           Lake Keowee, 1973

-------
Q
-— O
a_
h-
U_
i— °
UJ "
a
o
•T-.O
O_
I—
UJ U
a
Q
Q_
(—
u_
xg
a. 4:
UJ "



O
; -~o
o.
JRW. t
^?



;
i

o
Q_
FEB. t
^°
1


:


.00 20.00 Sj^.OO 20.00 u^'.QO
TEMP.(C) o TEMP.(C) a TEMP
J -s


MOV •"
nn f t,_

/
1

/ ~Q
S V°
ofc
f*
JUNE t
*— •

>


.00 20-00 Cj^'-OO 20-00 ui'V.OO
TEMP-(C) a TEMP.(C) a TEMP
a
/ ~~
/SEPT. t
1 ^ l~°


/
a
o.
OCT. t^


1
'.00 20-00 u^^'-OO 20.00 u^^'-OO
o
* •
MRRCH £

;


RPRIL
i
20.00 {ti^.OQ 20.00
• (C) a TEMP.(C)
/ a
J """o
/^ 2-
JULY t

//
r RUG.
20. 00 aJ^'-OO 20. 00
•tCJ a TEMP.(CJ
i 0
I *~lQ
2-
i NOV. t
1 •— •
1 ,., 	 „ .„.,„ ' ' *



i
i

DEC.
20-00 uj^-OO 20.00
Fiqure 21.   Predicted discharge (broken  lines)  and no-discharge temperature profiles.
            Lake Keowee,  197U

-------
4=
09
o
.. — |Q
K o
Q-
U_
i — «•









Q
•— 'O
X 0
O-
JRN. t
[rf.OO 20
a TEMP.CC
So '

* °
o_


" x
t—
U.
x°
. 	 o
*










i





O
« — »o
no
o_
FEB. tZ
O
»-«o
•
o_
MRRCH t








RPRIL
.00 [I^b'.oo 20.00 ^^'.oo 20.00 SJ^'-OQ 20.00
) a TEMP.(C) a TEMP.(C) a TEMP . ( O
2a ' ° . / Q i

* °
o.


^"^
! MRY tl
i _^
i
i
i-
Sj'V.OO 20
a TEhP.(C
o
V-.Q
*°
5-
^— ^
L_
r
u_
X<=>
h- .


J.
f f
/ 1
-pQ
i Q
' .
/ 
f— °
, 	 , Q
X °
O-
/
/ '-•
/ ,
/ OCT. t
/ ^0

H-°
•»— «o
* °
0.
*-•


/NOV. t
/ xo
j_ . •— ^








j
i
i
i
i
i
, DEC.
\
i
.00 SJ^-QO 20.00 SJ^'.QO 20.00 SJ^'-OQ 20.00
J a TEMP.(C) a TEMP.CCJ a TEMP.tO
                       Fiqure 22.  Predicted discharge (borken  lines)  and no-discharae temperature orofiles.
                                  Lake Keowee, 1975

-------
o
— 'O
,0
o_
^_,
U_
Xg
LU "
a
o
.— 'O
•
1—
U_
jEo
a
o
--a
*
(—
U_
a





o
' .— 0
O-
,_
JRN. tZ
i— Q
0
0.
^— .
FEB. [Z
£°
O
a_
^_,
MRRCH tZ
^°
/!
/'



i
RPRIL

.00 20-00 Sj^'.OO 20-00 Sj^'-QO 20.00 Sj^'.OO 20.00
TEMP.(C) a TEMP. CO a TEMP.(C) a TEMP.(C)
/o
7°


MRY |Z
^°
/I CD
| —0
/f *°-
/ JUNE |Z
1 1 '""" •
i O
x^ 0.
/ JULY {Z
| 	 Q
^f
f\ RUG.


.00 20-00 Sj^'.OO 20-00 uJ^'-OO 20.00 uj^'.OQ 20-00
TEMP-CCJ a TEMP.(CJ a TEMP-CCJ a TEMP-(CJ
o
•— 
-------
o
•~o
M
Q_
£
JE§
UJ U






0
,~,O
*
o.
JRN. JZ
xg
.00 20.00 m^






I o
1 ~g
IK
o_
FEB. £
|ES
.00 20.00 m^






• o
.— 0
M
O.
MRRCH [Z
^§
.00 20.00 fh*^
ti
I
/'
/:


I
RPRIL

.00 20.00
a TEMP.tCJ a TEMP.fCJ a TEMP. CO a TEMP.(C)
ut
o
uj a.oo     20.00
a    TEMP.CO
                                                 JUNE
_  i.ao     20.00
a    TEMP.CO
                                                        o
                                                        ••—"O
                                                        *9

                                                 JULY
1-00     20.00
  TEMP.(C)
                                                        o
                                                        »—o
                                                                             O-
                                                 RUG
 OjTl.OO     20.00
 a   TEtlP.(C)
                    o
                    a
                    Q-
                   U-
Uj U-00     20.00
a _ JLFMP . ( O
                                     0
                              SEPT.
                              QCT
UTo'-oa     20.00
a    TEMP.(C)
                                     o
                                     7§
                                       o_
                              NOV.
                                                                 _1_
                                                        a
1.00     20.00
  TEMP.JQ1	
                                                                            Q_
                            DEC
 iZJTJ.OO     20-00
^Q	TEMP. (O
                   Figure 24.   Predicted discharge  (broken  lines) and no-discharge temperature profiles.
                               Lake Keowee,  1977

-------
o
.— . o
*o
o.
h-
u_
t— °




o
— 0
*
2-
JRN. tZ
-L ^T '-




o
o.
FEB. tZ
i
1 ^~" ,




i O
; -g
o.
MRRCH tZ
J- 	 t~°




M
/'
RPRIL

uj J.OO      20.00
a    TEMP.(C)
   .00      20.00
     TEMP.(C)
                                     a
    00     20.00
     TEMP.(CJ
                                                        a
  .00     20.00
   TEMP.(C)
o
           MRY
Sj^-OO
a
0
           20.00
     TEMP.(C)
  o.
Li-
                                       a.
                                                        O
                                                 JULY
_   .00     20.00
a    TEMP.(C)
uj U.OO     20.00
a    TEMP.(C)
                                                 RUO
                    ••o

                    o.
            SEPT
    oo — t-oo
                      <00
                             /OCT
           20.00
   i-oa
                                                        a
                                                        Q
  .00  •
   TEMP
                                                         Q_
                              NOV
 20.00
.CO
                              DEC
%-ee-
Figure  25.  Predicted discharge  (broken lines) and no-discharqe temperature profiles.
           Lake Keowee, 1978

-------
U1
o
-— • o
»
o.
f—
^
UJ U
a
o
o_
H-
U_
a_a-
UJ U
a
o
— 'O
H-
U_
^


a_
JRN. t
Q
«— .Q
FEB. t
, 0
•^-.Q
0,
MRRCH tZ
ii
\ i
/ ' '
RPRIL
.00 20.00 S^-OO 20.00 ^j^-OO 20.00 m^.QO 20 00
TEMP.(C) a TEMP. CO a TEtlP.(C) a TEMP.(C1
/ °
J ~0
/ "=•

i 	
MR Y u_
/ "^
j ^— ' SEPT. |Z

f=°
O
a.
/\
//OCT. £
/ ' _
1 ! ^°
Q
•-.o
o_
/NOV. t
/ —

I
i
DEC.

.00 20.00 Sj^-OO 20.00 Cj^'-OO 20.00 m^-OO 20-00
TEMP (CJ P TEMP-CCJ a TFMP . ( H ) a TEMP.(C)
                      Figure 26.   Predicted discharge  (broken lines) and no-discharge temperature  profiles.
                                  Lake Keowee,  1979

-------
                30
60       90
DEPTH (FT)
120
150
Figure 27.  Variation of eddy diffusivity with depth. Lake Keowee,  1975
                              53

-------
E^
fc
   o
   o
    •
   o
   m
   •H
   in
    *
   CO
   01
<*
•*
 •
r-
O
H  CN
A  r-
8
in
00
ffi  <^
tl  CN
    •
fe  •?!•
O  vO

W
E-i  O
en  co
w .  •
Q  (*'
   "*
   CO
   "t
    *
   1-1
   (N
      JAN FEE MAR  APR MAY JXJN JUL AUG SEP OCT NOV DEC

                            1975.~  ,  .
    Figure 28.   Monthly variation of the depth of the thermocline.
                Lake  Keowee,  1975

-------
en
on
                  O
                  O
                  CO
                  O
                  00
                Q
                  o
                  m
                  o
0      365      730    1095
                                                    1460    1825

                                                    TIME  IN DAYS
2190     2550    2920    3285
                  Figure 29.  Temporal  variation of the surface exchange coefficient, Lake Keowee,  1971-1979

-------
                                  9S
                                          TEMPERATURES  (C)

                                              14       21         28
Tl

(Q
C.

a>
 u>
 C/i
 r*

 CU
s
r*
o'

o

a"


Z
 1
 tD
 (D
 VJ

  I
 Hd

 iO

 (O
            03 cn
            n o
            o H
            # H-
   f
f H-
H- 3
3 fl>
fD 0)
CO


9?
H- I
(0 &
O H-
y ui
0) O
0)
 I 1
3

QJ
            (D
            l-i
n>

I
(D
H
OJ
ft
C
n
(D
CO
                                                                   35

-------
                            REFERENCES
Dake, J. M. K and D. R. F. Harelman.  Thermal Stratification in  Lakes:
     Anaytical and Laboratory Studies.  Water Resources Research, Vol.
     5,  No.  2.   pp 484-495.  April 1969.

Duke Power Company.   Unpublished Materials.   1971-1979.

Dutton, J. A. and R. A.  Bryson.  1962.   Heat  Flux in Lake Mendota
     Limnol Ocenanog. 7,  80.

Edinger, J.  E.  and J. C. Geyer.   Heat Exchange in the Environment.
     Sanitary Eng.  and Water Resources Report. 1967.

Henson,  E. B.,  Bradshaw, A. S.  and  D.  C. Chandler.  The Physical
     Limnology  of Cayuga Lake,  New York.  Memoir 378, 1961.  Agri-
     cultural Research Station, Cornell  University,  Ithaca, New York.

Kraus, E. B. and  J.  S. Turner.  A One-dimensional Model for the
     Seasonal Thermocline II.  The General Theory and Its Consequences.
     Tellus, Vo. 19, No.  1.  pp  98-105. 1967.

Lerman  A. and M. Stiller.   1969.  Vertical Eddy Diffusivity in Lake
     Tiberias.  Verh. International Verein. Limnol.  17, 323.

Monin, A. S. and  A.  M. Obukhov.  Basic  Regularity in Turbulent
     Mixing in the Surface Layer of the Atmosphere.   USSR Acad.  Sci.
     Works of Geophys. Met., No.  24, 163.  1954.

Mitry, A. M. and M.  N. Ozisik.  A One-dimensional Mode!  for  Seasonal
     Variation of Temperature Distribution  in Stratified Lakes.   Inter-
     national J.  Heat  Mass Transfer, Vol.  19.  pp  201-205.   1976.

Oconee  Nuclear Station  Environmental Summary Report.  Duke  Power
     Company,  1971-1976, Vol. 1.  November  1977.

Rossby,  C.  C.  and B.  R.  Montgomery.  The  Layer of Frictional Influ-
     ence in Wind  Ocean Currents.  Papers in Physical Oceanography,
     Vol. 3,  No. 3.   p  101.   1935.

Sengupta, S., Lee, S.  S.  and E.  Nwadike.  A One-dimensional Variable
     Cross-section Model for the  Seasonal Thermocline.  Proceedings of
     the 2nd Conference on Waste Heat Management and Utilization.
     p IX-A-3.  1978.
                                    57

-------
Sengupta, S. and W.  Lick.  A Numerical Model for Wind-driven Circula-
     tion and Heat Transfer in Lakes and Ponds.   FTAS/TR-74-98.

Sundaram, T.  R.,  Easterbrook, C.  C.,  Piech,  K.  R.  and G. Rudinger.
     An Investigation of the Physical Effects of Thermal Discharges into
     Cayuga Lake.  Report VT-2616-0-2.  Cornell Aeronautical Labora-
     tory, Buffalo,  New York.  November 1969.

Sundaram, T.  R. and R. G. Rehm.  Formulation and Maintenance of
     Thermoclines in Stratified Lakes Including the Effects of Power Plant
     Discharge.  AIAA Paper No. 70-238.  1970.

Sundaram, T.  R.,  Rehm, R. G.,  Rudinger, G. and G. E.  Merritt.  A
     Study of Some Problems on the Physical Aspects  of Thermal Pollu-
     tion.  VT-2790-1-1.   Cornell Aeronautical Laboratory, Buffalo, New
     York.  1971.

Sundaram, T.  R. and R. G. Rehm.  Formation and Maintenance of
     Thermoclines in Temperate Lakes.  AIAA  Journal, Vol. 9,  No.  7.
     pp 1322-1329.   1971.

Sundaram, T.  R. and R. G. Rehm.  Effects of Thermal Discharges  on
     the Stratification Cycles of Lakes.   AIAA Journal, Vol. 10, No. 2.
     pp 201H210.   1972.

Sweers, H. E.   1969.  Two Methods of Describing  the "Average" Vertical
     Temperature Distribution of a  Lake.  J.  Fish. Res.  Bd., Canada
     25.  1911.
                                     58

-------
APPENDICES
        59

-------
                            APPENDIX A

             DERIVATION  OF THE MATHEMATICAL MODEL


DERIVATION OF THE VARIABLE CROSS-SECTIONAL AREA MODEL

     Assuming lateral uniformity  (horizontally uniform lake) ,  the  isotherms
coincide with the isopycnals.  The equations for such a model are obtained
from the basic balance equations  of mass  and heat:

                                       pv                        (A.I)
                ^(pC T) = 7 •  pCpK •  7  • pCpTV + H             (A. 2)


where,

p = density.

t = time.

V = velocity of flow.

C   =  heat capacity.
 P
T = temperature.

K = heat diffusivity  tensor  (including turbulent  diffusivity) .

H = source  of heat per unit volume.

     Most models have started with the above equations and neglected
all the terms involving the two horizontal  components  (or  dimensions).
The neglect of the horizontal divergence in such simple models is  not
always justified.   There are at least  two reasons for the existence of
horizontal divergence in real lakes.

1.   The variation  of horizontal cross-sectional  area of the lake with depth.

2.   The existence of sources of heat and  matter efflux on the bottom of
    the lake at depths above the deepest  point.
                                     60

-------
     The  need to include these in the diffusion equations of lakes was
already felt; Lerman and Stiller (1969), Dutton and Bryson (1962) and
Tzur (1973).  Only Tzur (1973) formulated corrected diffusion equations.

     Another complication in applying a 1-D model to a lake is caused by
seiches and internal waves.  When these are  present,  the height of an
isopycnal  loses its meaning.  According to Sweers (1968), averaging
simultaneous temperature profiles at different points of a  lake or taking
profiles during a short interval of time  in one or more points can lead
to distortion of the shape of the thermocline.  He recommends averaging
the depths of isotherms  instead.  In a lake of constant depth this is
probably the best available approximation but fails for a lake of varying
depth.

     The  effects of area change with depth are included by the following
treatments of Equations  (A.1)  and  (A. 2).   Integrating Equation (A.1)
over the volume of water below height h measured from the deepest point
in the lake  yields
                              dv = / v •  pVdv
                          V        V

Using Gauss theorem on the right hand side yields
                                 = -p/fi  • VdS                   (A. 3)
                          Vou       S

where  S  is a surface completely surrounding  the volume V, hence

                             dS = dC + dA

where  C  is the surface area  of the part of the bottom of the lake that
is bounded by  the contour at height z.  As a subscript, z marks the
vertical component of a vector.

     Using dV  = Adz in Equation  (A. 3)  yields

                    h
                    4| Adz =-p/n • VdC  - p/n •  VdA
                    o  l        C            A

i.e.

                       h          h
                       /ff Adz = -/PVndC  -  PVzA(h)
                      o          o

Integrating Equation (A. 2) over the volume of water below height h
measured from  the deepest point  in the lake yeilds
                                    61

-------
                          K-VT)dV - ./VpC TVdV + / HdV
                                     V     P       V
Applying the  divergence theorem to the first two terms on the right
yields
          8
     /A(z)— pC Tdz = /fl. (PC K-7T)dS - /(fi-pC  TV)dS
     O         K             K                 P

                      h
                    + / A(z)H(z}dz
                      o r


Using dS = dA + dC yields


     h

     o A(z)lrpCDTd2  =  /(PCDK< ^T) dA + / (pC R. VT) dC
               I-      o    H             O    P

                      h       _       h
                    -  / (pC  TV) dA - / (PC TV)  dC
                      o    P   z     o    p    n
                      h
                    + / A(z)H(z)dz
                      o
i.e.


     h   3                              h
     /A(z)—PCpTdz  = pCpA(h)[K-vTJz + / ^C


                                   h
                    - pC  AfhJTV  - / p C T V
                       D      7      f f* f*  r\
                       H          Q  c c c  n


                     h
                    -f- / A(z)H(z)dz                             (A 5)
                     o
where,

z = the vertical coordinate measured upward from the deepest point of
    the lake.   As a subscript,  it marks the vertical component of a vector.

C = the surface area  of the part of the bottom of the lake that  is bounded
    by the contour at height z.
                                   62

-------
n = subscript that marks the component of a vector that is perpendicular
    to the lake-bottom positive  upwards.

A(z) = the horizontal cross-section of the lake at height z.

     As all the properties of the lake are constant  over the  horizontal
isopycnals, the integration over the isopycnals becomes simple multipli-
cation by their areas.

     Differentiating Equations (A. 4} and (A. 5) with respect  to  the height,
a set of  1-D  equations are obtained from Equation  (A. ft) :
                         A3 0     Q  A \ /       t/3V*
                         at  = "TzApVz *  pcVnTT
                                             (A. 6)
The  last term in  the above equation is the mass addition term  (source
term) from Equation (A. 5):
                                                    + AH
                                             (A. 7)
In the above equation,

     p C  (K • VT)   =  Conduction
      c c         n
     'cCcTcVn
= Convection
                                        Heat addition terms
Because  the horizontal gradients vanish, Equation (A. 7) can be simplified
further by noting that
                                                                  (A. 8)
Following a  similar treatment used  by Y. Tzur (1973), the slope of the
bottom of lakes  is usually  small; it rarely exceeds a gradient of 0.1,
Assuming this and considering an elemental area  shown below,
                         dZ
                                      dCU
                                      63

-------
tan 8 = 2.   =  gradient of the lake bottom
                        Cos 6 = Cosltan"1 S,-]                   (A. 9)
also


                              Cos 9 = i~                       (A. 10)



From  Equation  (A. 9) and (A. 10)



                              = Costtan"1  i~]                  (A. 11)
                              = Cos [arctan  (gradient)]



                              = TI  s average of Cos arctan

                               gradient of the bottom surface

                               at that depth.
From  Equation  (A. 11)



                               dA  =  ndC



or


                               dA     dC
                              dC  _ 1 dA

                              dz    n dz



Since Cos arctan (0.1)  = 0.995,  n  =  - =  1.


Alternatively, n can be  incorporated  into the surface sources (equation

(A. 7)).


     The 1-D equations  can now be written in more concise and conveni-

ent forms:
                                         + IA1                  (A. 12)
                           a (.    at.     £.


and




A—fpC T)  =|-JpC AK ~) - |-(pC  ATV ) + QA«  + AH          (A.13)
  dt    p      d Z   p   ZdZ    dZ   p    Z



where,



A^^
                                      64

-------
1  = bottom-surface  source of mass  per  unit area.

Q  = bottom-surface source of heat  per  unit area.

Boundary Contitions

Surface:

Equilibrium Temperature Concept

     The bulk temperature of a vertically-mixed body  of water under
natural  conditions,  Tn, tends to increase or  decrease  with time, accord-
ing to whether the sum, 2H,  of its heat inputs  (net solar and atmospheric
radiation, thermal discharge and heat outputs;  back-radiation, evaporation,
and condensation) is  positive or negative:


                                          h                      (A. 14)


Following a similar  procedure used by  Edinger and Geyer  (1 967), Equa-
tion  (A. 14) can  be transformed (without linearizing the temperature
dependence of the  components of IH) to yield

                        dT
where,

K  = surface exchange coefficient that depends on the water temperature
 s   and wind speed

T_ = equilibrium temperature,  defined as the hypothetical water surface
     temperature at which  the net rate of  surface heat exchange would
     be zero.

Equation (A. 15) expresses  this definition of T£  for the particular case
of a vertically-mixed water  body ^n = 0 wnen T  = T j.  Edinger and
Geyer  (1967) show that the two parameters are intrinsically coupled
together via water temperature and meteorological conditions.   For this
reason iterative techniques  are often  used when applying Equation (A. 15)
in  a predictive role and because  the rate of convergence  is extremely
rapid.   The first  step often yields satisfactory results.

     Brady et al.  (1969)  have  shown  empirically that fluctuations in  the
equilibrium temperature may be conveniently estimated using the approxi-
mate relationship:

                           Tc =  T . + H /K                      (A. 16)
                                     65

-------
where,

T . = dewpoint  temperature.

H  = gross rate of shortwave solar radiation.

     Since the  dewpoint temperature  tends  to remain relatively constant
through a single day, Equation (A. 16} indicates that  the main  source of
hourly fluctuations in T£ is  the solar radiation components.  This gene-
rally reaches a maximum at solar noon, unless variable cloudiness inter-
feres.  At nighttime T_ approaches the dewpoint temperature which acts
like a relatively invariant datum for periods of 24 hours or less.  On
an annual basis,  however, both T . H  are  generally much  greater in
summer than in winter.  The dominant contribution to the  amplitude of
seasonal  fluctuation in T_  is the dewpoint temperature.

Exchange Coefficient  Evaluation

     The  same  form used by Edinger et al.  (1967) was used:
                 KS = 4. 5 + 0.05 TS + 8f(w)  + 0.47 f(w)          (A. 17)
where.
T  = surface temperature.

8 is  found by applying standard curve-fitting techniques to published
  data pertaining to saturated vapor pressures at various temperatures;
  a convenient representation given by Edinger  and Geyer  (1967) is

                8  = 0.35  +  0.015 T   +0.0012T   2(mmHg/C)      (A.18)
                                 m           m

where,
                                   T  + T^
     The  evaporative windspeed  function f(w) used is also similar to that
of Edinger and Geyer (1967):

                    f(w)  =9.2 + 0.46 W2(Wnf 2mmHg~1)           (A. 20)

where,

W  = wind  speed (m/S).

The first  boundary  condition is at the surface and can now be stated as:
                    ". = >CpKr-i2=h  • KS
-------
Bottom:

     The second  boundary condition  is at the bottom of the lake which is
assumed to be perfectly insulated


                              fT|z=0 = °                        (A'22'

and the initial condition is the temperature of the lake  at spring homo-
thermy.

                              T. ... .  = T                        (A. 23)
                                initial     o
                                      67

-------
           APPENDIX  B

MEASURED TEMPERATURE PROFILES
        (Individual Stations)
                 68

-------
en
10
o
.-.Q
h-
U_
1— ^
a
o
0.
j—
u_
P
O
O.
JRN . £
£°
/
i
j FEB.
*

• 00 20-00 [i^-OO 20-00,
TEMP.(C) o TEMP.fC)
/ CD
*o.
i
! MRY t
DCg
J
(
i
! JUNE
\
-00 20- OU ^j^b'-OO 20-00
ItMP.tC) a TEMP.fC)
V|
So
Q_
U-
^'s? J ~*
<• ' °-
! SEPT. H
,i
t'
{
1
! OCT.
00 20 .OU Cj^' CJO 20.00
TEHP.fC) o TEMP-fCj
0
—0
V—
u_
a:g
a
Q
r-o
o_
H-
U_
s*
MRRCH

•00 20.00
TEMP.(L)
s
t
i
\ JULY

•00 20.00
TEMP.fC)

0
O.
H-
U-
j
i
>
! MOV .
•UO 20.00
lEMP.f C)
0
•-O
O-
u_
^^
a
0
•r-O
Q.
arg
a
-^
f
| RPR1L

.00 20.00
TEMP.fCJ
;
i
} RUG .
t

.00 20-00
lEMP.fC J

Q
.-•a
^ »
Q_
H-
U_
1
i
1
! DEC -
.00 20-00
1Ef1P.(C)
                        Figure B-1.   Lake Keowee measured temperature profiles, 1971 - Station  500

-------
o
•*—• o
W 3
O.
*"""
	 *
t—
li-
Hg
UJ^
o
/ r-0

1 °n
( "~*
i • — *
! JRN . {Z
£°
• UO 2U.UO m^
1 a

1 y a
1 •
t °-
i —
1 . ~-.
i FEB. t
ig
• 00 20.00 S",^
I °
.' —0
, *=>
* *
/ *^"

i MRRCH tZ
• »
.00 2U.GO u"!1^

•*'
.»•
/
i

! RPR1L

.00 20.00
o TtMP.'U o TEMP.fC) o 1EMP-(CJ o TEMP.fC)
0
__a_9 — ».
HO
3-
.-,

£
£f
ii^
0
	 « .
• x^
.- "" o.
: •— >
1 | 	

JE'§
-OU 2U-GU Sj^J
• O
I
..- "^ 1»°
/' Q-
/ .— "

'. JUNE tZ
^1
•GU 20-00 u.^
* V J
,v «~
." •"" V^
^•'' Q-
<' *^
i — >
1 i 	
! JULY t
•E§
-00 2U.OU ui*^

(
^""*
s
i

\ RUG.

.OU 20-00
o TEMp-fC i a lEMP.fC) 5 TEMP-CC* o 1EMP.(C)
CD
— CJ
M 0
r>_
~~
- — *
i—
u_
o
.^- w °
o.
/ -^
J -~^
I SEPT. t
! ^a
.' M ^J
o.
^-
• — -»
! OCT. t
23
i M -J
i a-
? *~
i — >
! NOV. t





DEC.
_           I-00
a    lEMP.'C)
                a
2U.OU    ^"Ij.OO     20-00
        o   1EMP . f C )
__          20-00
o    lEMP.fC)
Figure B-2.  Lake Keowee measured temperature profiles, 1972 - Station 500

-------
0
1 - — 1
!*•— ^J
kg O
. *
\ 'T>_
! "
i JRN. iz
£=?
i
i
! FEB .

'-00 20-00 Sj^.OO 20-00
lEMP.'U o TEMP.rCJ
2o
.'" * a.
I .-%
! MRY tZ
,-rg
. •*
.•*
r
i JUNE

'.00 2U-00 ^j^'.UO 20-00
1EMP-(C} o 1EMP.CL)
o
SEPT. |Z
i— °
/
/''OCT.

'.00 20.00 ujHj'-OO 2U-OU
ItMP.ftJ a lEMP.(C)
O
7§
Q_
k-
u.
a
— -Q
O.
.— .
»-
u_
a
o
— 'Q
fcO
Q.
H-
U_
nro
j
i
i
/•
i
i MRRCH

-00 20-00
lEMP.ICi
^.j
/'
/
/ JULY

.00 20-00
1 EMP . ' C )
I
i
I
f^ NOV.

-UU 20.00
TEMP.'C)
?s -J
"2- /
[Z i RPR l
|Eo
^''b.oo 20.00
a TEMP.(C)
o
a.
r-»
tZ RUG.
£°
Uj^'.QQ 20.00
o 1 EMP . (C )
0
»-Q
*
a.
t DEC.
£°
Uj^b'-OO 20-00
o TEhP.(C)
Figure B-3.   Lake Keowee measured temperature profiles,  1973- Station  500

-------
N)
o
— -o
0.
._
1—
U-
, 	 •
-f-* Q
h-°,
uj u
0
o
,— CJ
Q,
t—
U_

"E0
|-°.
UJ "
O
O
— .Q
C3.
_*

"
1 	
^o
uj^
a


- 1
! JflN.



.00 20-00
TEMP.(C)
}
/-''
i
1 MflY
!


.00 20.00
1EMP.(O
i
1
j
f
i
/
x'SEPT.

.00 20.00
1EMP.(C)
o
— o
t
Q.
.— .
u_
w-'
.•n<=>
»-»
UJ*"
a
o
— o
O.
k—
u_

3;Q
h-6?
UJ "
O
Q

Q-
v«l

""^
1 —
^0
UjTJ
O
O
•
o.
.— ,
FEB. |Z
i —•
J ~r~ Q
i— ^
• 00 20-00 uj^
TEMP.fCi o
/ °
f ™ *
/'
;
/ JUNE C
i
XI-3
*— °
.00 ' 20-00 Sj^
TEMP «( C J ta
i Q
1 •— 10
! Q-
1 w-«

/ '"^
J 1
,-eci. t
^0
.00 20.00 Sj0^
TEMP .( C > a
1 i
j

MRRCH



.00 20.00
TEMP-(C>

i
(
f
/ JULY
!


.00 20.00
1 EMP , t C I

1


1

NO V •

.00 20.00
1EMP.(C)
0
--•Q
w O
*
o.
._,
H-
k_.
*pQ
1—9
UJ^
a
o
y§
a.
•«•
I—
u_

xg
j 	 Q
UJ^
0
o
.-•a
#
a.
«^

'~*
r—
u_
^E§
UJ U
o
rf^


RPR1L.



.00 20 .00
1EMP.CC)

/
/
^'fiUG.
I


.00 20. 00
TEMP. CO






DEC.

•00 20.00
TEMP . ( C )
                          Figure B-t.  Lake  Keowee measured temperature profiles, 1974 - Station 500

-------
-J
CO
0
— o
o.
t—
U-
Q-ci~
UJ U
O
O
— O
•
Q.
h-
U_
UJ U
a
o
_CJ
Q_
H-
U_
£§
O
.— o
JRN. £
£g
.00 20.00 licb
TEMP.(C) a
. o
/""' "I
MRY tZ
.00 20-00 Sj^
1 EMP . ( C) a
( 2o
y ' "^
-S'EPT. t
S§
i •
i 2-
i .—^
1 FEB. t
Xo
-00 20.00 [ti^
TEMP.(C) o
I ^-«C1
/ "i-
•' JUNE [Z
.00 20.00 Sj^
1EMP.(C) a
/ 23
! 2-
-"-Q
o
»
2-
, •-*
1 .«»
MRRCJH t
^§
.00 20-00 ttj^'
TEMP.(C) a
.! v§
2-
-''JULY Iz
.00 20-00 uj^b
TEMP.fCJ a
i •-•
ilQV. tZ

/
•
RPRII

.00 20.00
lEMP.(C)
;
RUG .
.00 20.00
lEMP.(Ci
' DEC.

                _ i. 00     20-00
                a   TEMP.fCi
__   .00     20-00
o    TEMP.(C)
_  .00     20-00
a    1EMP.(CJ
TEMP.'. CJ
                    Figure B-5.   Lake  Keowee measured temperature  profiles, 1975 - Station 500

-------
CD
— . O
H-
U_
Xg
a
,— Q
ca-
ll.
o
Q
V—. O
o_
f T
H-
u_
O
f °
1 —g
I _%"-
' JRN. tZ
x°
.00 20-00 u}^
1EMP.CC) o
/ o
/ 7§
/ --
t .— »
•' MflY t
.00 20.00 uj^t
1 EMP . ( C ) a
1 2Q
J ' ~*
SEPT- t
.00 2U-OU Sj^l
lEMP.(C) a
/ a
1 •
/ Q"
' FEB. t
X°
-00 20-00 0}%
lEMP.(C) a
X-/ — 'Q
/ a.
' JUNE t
.00 20-00 Sj^
1 EMP . ( C ) o
So
7o
Q_
•"^
-CH- 1 . u_
• 00 20-00 Sj^
1EMP.(C) o
I
1
1
\ MRRCH

.00 20.00
1EMP.(C)
y
/
JULY
.00 20-00
TEMP.rCi


NOV.
-00 20. OU
1 EMP . r C )
0
— Q
*
H-
U_
Sf
3%
O
—•3
i—
u_
^
o
*
Cl.
*— •%
H-
U_
O
/
1
/'
f
1
RPR 1

.00 20.00
/
t
s
'" RUG .
.00 20.00
!EMP.(Ci
j
t
i
8
f

I DEC.
•00 20. UU
1 EttP . 1 1 i
Figure B-6.  Lake Keowee measured temperature profiles,  1977 - Station 500

-------
Ul
o
-—a
•
o.
H-
U_
• «
a
o
-—0
Q.
r—
u_
13
O
— Q
Q.
1—
U_
1 °
I "™~^ O
1 M ^—^
I 2-
i ^— »
JRN. t
fE§
.00 20-00 2]%'
TEMP.(C) a
/ 0
/" 2'
.* "*""*
/: MRY |Z
• 00 20»OU j|j i3
TEMP.(C) <=>
1 So
1 * .
/ °"
./ '-
o
•
FEB. t
• " ~~* *
.00 20.00 Sj^
TEMP.(C) Q
i O
/ Q-
^X JUNE t
.00 20- UO UJ^
lEMP-(C) a
1 ?S
1 2-
j
/ ' 2o
* •
/ °-
' MRRCH £
*— *
^EO
.00 20-00 LU^'
TEMP.fCJ a
/ o
^•^ --^Q
rf* M C3
x ^ *
/ o-
JULY t
.00 20-00 u]^
1EMP.CC) a
1 7o
i "2-
' NOV . t
i— "^
s
t
1 RPRll

.00 20.00
TEMP,(C)
/
/
/
-x RUG .
'.00 20.00
TEMP.(C)
i
' DEC.
                 a   TEMP.(C)    a   1EMP.(C)     a    lEMP.(C)     a   TEMP.(C)
                   Fiqure B-7.  Lake Keowee measured temperature profiles, 1977 - Station 500

-------
en
o
Q.
^—
u.
0_ci
UJ U
o
CD
a.
h-
u_
0
"^o
a.
H-
U_
a
0
— O
»
0-
1 •—"
JRN . t
i °
/ *"Q
i "2-
' FEB. t
1
! MRRCH
.00 20.00 u3%'.00 20-00 Jh^'.OO 20-00
TEMP.(C) o 1EMP.(C) o TEhP-(C)
! °
^ * .
/ . — ^
MRY SZ
^y °o
w ^
/ o_
,-''
JUNE [I
/
•" JULY
• OU 2U.OU uJ^V.OU 2b.OO uj^b'.OO 20.00
1EMP.(C) o TEMP.(C) a lEMP.(C)
1 ~°
-o
.! o.
-^ SEP1 . u_
1 "S§
0.
-trf' T ^~"

'NOV.
• OU 20-00 uJ^'-OO 20-00 uj^'-OO 20-00
TEHP.tCi o TEMP.'C) & TEhP.fC)
o
— o
»
o.
H-
u_
o
o
^-•Q
a.
1-
U.
»-.Q
O.
1—
U_
i RPR!
'00 20.00
1 EMP . { C i
/
-''RUG.
.00 20.00
TEMP. CO
|
i
•
1 DEC.
.00 20.00
1EMP.(Ci
                          Fiqure B-8.   Lake Keowee measured temperature profiles,  1978 - Station 500

-------
O
.— O
a
O.
t—
LL
LU^
a
a
—a
o.
1—
Li-
PE §
Q-C3
LU U
a
o
— -Q
U_
x°
LU^
a
1 °
1 — 0
o.
JRN . £
.00 20.00 LU^
TEMP.(C) a
a
^ . — >Q
' O.
MRY t
i
jE§
.00 20.00 LU^
TEMP-(C) a
• °
__, — Q
/ — "
1 SEPT. tZ
j 	 O
.00 20-00 LU*^
lEMP.(C) a
( °§
! "o-
! FEB. t
*_^
.00 20.00 LU^
TEMP.(C) a
^> 2o
r" "=-
| *~*
( JUNE t
i
^E§
.00 20-00 Sj*^
TEMP.(C) a
a
i —a
.x *=?
f 0.
i OCT. {z
j 	 O
.00 20.00 LU^
TEMP-(C) a
/

MRRCH
.00 20.00
TEMP.(C)
•J
^
\
i
! JULY

'.00 20.00
TEMP.(C)
i
/
! NOV.

.00 20.00
lEMP.(C)
o
*
o.
U.
LU «
a
o
•r— 0
a.
U_
S°
LU^
a
o
0.
H-
U_
^°
a
^J
/
,
t
.00
TEMP.

f
i

.00
TEMP.
f
i
i
i

.00
TEMP.


RPR1L
20.00
(C)
_j
RUG.

20.00
(C)
DEC.

20.00
(C)
Figure B-9.  Lake Keowee measured temperature profiles, 1971 - Station 501

-------
co
o
— o
Q.
fr-
LL.
^o
Q
O
— 'O
2 o.
1—
X§
a
a
o.
fr-
U_
xg

0

JflN.

.00 20-00
TEMP.fC)
Mflf

-00 20.00
TEMP.fC)
i
^
/^
i
! SEPT.


TEMP.fC)
o
Q.
f~t
fr-
u_
£S
a
"a
fr-
it.
x»
a
Q
-—0
O-
fr-
u.
Fg

Q
f
i
i
FEB.

.00 20-00
TEMP.fC)
;J
— r
/
i
I JUNE
(
.00 20-00
TEMP.fC)
j
f'
( OCT.

1
.00 20.00
TEMP.fC)
0
0.
fr-
it-

a
o.
u_
s§
a
o
a.
U_
^1

a
i
MRRCH

1 i1
.00 20-00
TEMP.fC)
i
I JULY

.00 20-00
TEMP.fC)


f NQV .

l
•00 20-00
TEMP.fC)
o
Q.
fr-
it-
1'""""" «
a
o
VQ
a.
*— »
1—
U_
fr^°
0_C^
Uj u
a
Q
Q.
U-
^§

a
•*•
/•
! RPR 1

.00 20-00
TEMP.fC)
^
s
\ nuo .

.00 20.00
TEMP.fC)


DEC.


.00 20-00
TEMP.fC)
                           Figure B-10.  Lake Keowee measured temperature profiles, 1972 - Station  501

-------
CO
0
. — .Q
• ,
Q_

J-
O.c>
UJ U
a
0
— Q
*=?
Q.
_d
^-»
H-
U_

„ __
H-=?
UJ U
a
Q
— -o
Q.
K—
U.
^.
uj^i
a
i
1
1
1
1
9
1 JRN .
.00 20.00
1EMP.(C)
»
^/
/•-
/
/
/
! MflY



.00 20.00
TEhP.rC)



SEPT.

.00 20-00
TEMP.(C)
o
— .0
* i
Q.

h-
u_
UJ^
a
Q
— .0
K Q
Q.
^^
*— \
I—
u_

"T* *"»
h-°
UJ^
Q
0
7§
2-
u_
xg
LU^
a
i




FEB.
.00 20.00
TEMP.(C)
t
— '
s
//'
y
/
/ JUNE



-00 20.00
TEMP.(C)
i
1

-X OCT.

•00 20-00
lEMP.(C)
o
— -a
w ^
o_
*
H-
U.
UJ^I
a
Q
*— a
M a
o.
-—
^M^
H-
li.

*~^
jEo
^%
a
o
7|
o.
I—
U_
g§
>jj U


1
1
/
/
! MRRCH
.00 20-00
TEMP.(C)

_+•)
,""*
/
j
f
I JULY
r
\
t
.00 20.00
lEMP.(C)


i
<-' NOV.

•00 20-00
TEMP.(C)
o

H
0.
•"*
j—
u_
Q-cL
UJ «
a
o
^—Q
W Q
O.
«»•
_
^—
u_

t__.
*y cj
' ~™~ •
g-CQ
a
o
*
Q-
t—
U.
^g
UJ U
o
^
t
t
1
1
! flPRIL
.00 20.00
TEMP.(C)

./
^
/
J
f
/ RUG .



.00 20.00
TEMP.(C)



DEC.
-»
.00 20.00
TEMP. 1C)
                     Figure B-11.   Lake Keowee  measured temperature profiles, 1973 - Station 501

-------
00
o
0
7°
a.
H-
XO
1 — .
UJ*^
/ °
/ — O
1 2-
I .—.
f JRN. £
xo
i — ,
.00 20.00 uj°0
/ °
I ~*o.
1 •
O-
FEB. t
i •— '
! x°
1 — .
• 00 20.00 Efb
i °
I -o
/ * .
i ~-
\ MRRCH t
^o
**~ *
-00 20-00 th*^
M
/
/ RPR1
!

•00 20.00
o TEMP.fC) a TEMP.rC) ° TEMP-(C) a TEMP.(C)
Q
— O

o_
^-,
t—
U.

X°
I—5?
0-^
O
y-- — 
-------
CO
o
— a
* *•?
Q.
\-
u_
^0
1 °
I ^-*O
1 M °
j 2"
j JRN. H
fE§



i
! FEB.

Uj^.QO 20.00 uj^'-OO 20.00
a lEMP-(C) a TEMP.(C)
O , 0 ,
— Q
CO ^-*-
.£* — .
— -»
h-

W— '
:CO
I-6?
i'"' M ,
/ Q_
y IM*
f *~~*
\ HRY t

i k^^
T"O
H-1?
rj
jf
f
/
1 JUNE
1

i

uj^-OO 20.00 u^^'-OO 20.00
a TEMP.(C) a 1EMP.(C)
O i O /
— 'O
Mo
Q-
h-
U_
xo
h~c?-
1 * .
i
/ 2"
^ ' •
^0
H-°

i
i
--tiCT.


o
— o
«°
Q_
H-
U.
^Eo
• O
/ —-a
1 *
i -2"
'' MRRCH t
^0
§
/
/
f
/
j RPR1

txl u-00 20-00 i^jTJ.QO 20*00
a TEMP-(C) a TEMP.(C)
O i CD .
^-O
a.

.— •
i(_

- -
T~Q
I—5?
J _-Q
/ c1-
y — •

S JULY t

f -
3TO
I—6?
j


./•





LU^-OO 20*00 nj^.QO 20*00
a TEMP.(C) a TEMP.(C)
Q O
^
Q.
t—
u_

H-0?
7§
Q-
t „„
r' ' It
\— *•?


1 DEC.
i

                                 20-00    ^j^-OO     20-00    Hj'tJ-QO     20*00    ^jTl.OO     20*00
                           1EMP.ro     a    TEMP.(C)     a    TEMP-(C)     a    TEMP.(C)
                        Fiqure B-13.  Lake Keowee measured temperature profiles,  1975 - Station  501

-------
00
N)
o
*— • O
*°
O-
i—
u_
o-4
UJ «
a
o
»— o
*
u_
xg
UJ U
a
o
7=?
t—
U-
UJ «
a
, 0
J —a
! "o.
i JRN . t
1 v_
^°
.00 20-00 {h^
TEMP.(C) a
/ °
.' ^-O
*2-
/ MflY t
.00 20-00 Sj^
TEMP.(C) a
Q
7§
I o_
f «,
,,"SEPT. t
X =
.00 20.00 Sj^
TEMP.rC) a
/ 7§
' 2-
FEB. t
xo
t-1?
.00 20 .00 ^3%
TEMP.(C) a
•*"' a
*!
/ JUNE £
£°
• 00 ' 20.00 £]%
TEMP.fCi a
Q
o.
^BtT. t
xg
.00 20-00 S]^
fEMP.fC' a
J ?
! MflRCH t
^0
.00 20.00 uj*^
1EMP.(C) a
1 ^-"r^
** "^ T*T
/ ™ »
0-
/ — *
X JULY [Z
/ ^
i^°
.00 20-00 Sj*^
TEMP-(C) a
j ^-^O
1 *
NOV. £
-"-a
.00 20-00 Sj°0
TEMP.(C) a
/
1 RPR1

.00 20.00
TEMP.(C)
y
/
rx RUG.
.00 20.00
TEMP.fCJ

DEC.

.00 20.00
TEMP.(CJ
                       Figure  B-H.   Lake Keowee measured  temperature profiles,  1976 - Station  501

-------
00
U)
o
— o
o.
li-
O
— o
a.
' JRN - tZ
1 °
/ "a
/ C1-
I_
, FEB. t
.
y
1
i
\ HflRCH
uj^'-OO 20.00 uj'V.OQ 20.00 uj^'-OO 20-00
a TEMP.(C) a TEMP-(C) a TEMP.(C)
O s Q / Q /
— 'O
g 0
Q.
, — ,
I—
u_
J —a
y *°
/" Q-
/ ^.^
/' MRY t
/ — • C3
s ^gQ
t a.
s ^__,
x/r JUNE £
'!"* C3
• •
^J
r
S
f
1
J
/' JULY
[^^'.OO 20-00 Sj^'-UO ' 20-00 {^^'.OO 20-00
a TEflP.(C) a 1EMP.(C) a TEhP.(C)
O / O i Q i

5-

' ^
H-
ti

X°
j 	 C3
J ^
; — •

X "^^
y < 	
*_x
^J— Q
t— °
i
i "1
i ,_,

--^dcT. IT
__,
x°
^-^
!
i
i

1 N0V .
/-*


o
— o
0.
J—
U-
* •
^<
f
J
{ flPRI
I
2]%. 00 20-00
a TEMP.(C)
o ^/
— 'O
*°
o.
^«»
V—
U.
r
/

f
i
ui^'-QO 20-00
a TEhP.(C)
a
— o
a_
" L

H-
li

X°
H-1?




DEC.
I


                 _          20-00
                 a    lEMP.(C)
__         20-00
a    TEMP.(C)
_         20.00
a    TEMP.(C)
          20-00
a    TEMP.(C)
                   Figure B-15.   Lake Keowee measured temperature  profiles, 1977 - Station 501

-------
00
0
— -o
o.
U_
UJ U
a
o
0-
u_
''-o
a
o
*=?
O.
J—
U_
J— °
1
~~
a.
JRN. t
xg
.00 20-00 Sj^
TEMP.fC) a
j --
-------
00
U1
o
*— Q
M O
a.
t—
u_
,_-ir
1°
l~°.
UJ u
o
'-a
•
o.
JRN. tZ
w—
Ig
• *
.00 20.00 Sj*^
(' 2o
/ *Q
' 2-
FEB. |Z
i
x°
• »
.00 20.00 fh^'
/ °0
^°
o.
' MRRCH t
^^
T-O
i-°
.00 20.00 Sj0^
S
r
\
RPR I
i


.00 20.00
a TEMP.fC) a TEMP.fC) a TEMP-(C) a TEMP-fC)
0
•— Q
M °
Q.
— "
H—
U-
— -
^EO
UJ*^
o

xX * °
2-
1
i ^:

• >_
i^°
.00 20.00 Sj*^
0
•^ »- •
/ r""
! JUNE £
i
jfES
.00 20.00 fh*^
0
> •— 'O
/- ^ »a
/ °-
( —"*
!. 	
JULY tZ
t ^_^
jEo
.00 20.00 fh*^)

J
r^
i

RUG.


.00 20.00
o TEMP.(C) a TEMP.fC) o TEMP.fC) a TEMP.(C)
o

~* ^,
! NOV. IZ



!
/
! DEC.
                      uj U.OO     20-00    iZiTl.OO     20.00    ^TJ.OO     20.00    ^Tl.OO     20.00
                      a    TEMP.fC)     o    TEMP.fC)     a    TEMP.fC)     a   TEMP-(C)
                      Figure 17.  Measured temperature profiles.  Lake Keowee, Station 502,  1971

-------
oo
at
o
o.
V-
u_
0-.ci~i
UJ U
0
CD
a Q.
o — i
t—
U_
^g
UJ U
a
o
— .Q
*o
0-
H-
U_
; o
i -~g
j *o.
1 -~
1 JRN. £
'.00 20-00 {Jj^
TEMP.fC) a
;' °
S 7§
m-ifl*"
! MRY £
^0
.00 20.00 [u^
TEMP.(C) a
o
^- -1' 7§
o.
! SEPT. £
0
"1
FEB. t
.00 20.00 ^"^b
TEMP.(C) o
i ~Q
f --O
/" o_
/ "~
1 j~^t
! JUNE £
^§
.00 20.00 uh1^
TEMP.(C) a
i °
/' "S.
y *~*
/ OCT. £
20
/ '}-
\ MRRCH £
.00 20.00 uj*^
TEMP.fCJ a
. o
^ ^ ^-o
"2-
f JULY £
J§
.00 20.00 Sj1^
TEMP.fC) a
I °Q
j — 'Q
I ' J*
I NOV. £
;
i RPRIL
.00 20.00
TEMP.fC)
i
/•• "
/
! RUG .

.00 20.00
TEMP.fC)
DEC.
                         LU  u-00     20.00
                         a    TEMP.fC)
LU u.uu     20.00
a    TEMP.fC)
u.TO-00     20-00
o    TEMP.fC)
ujtJ-OO     20-00
a    TEMP.fC)
                          Fiqure B-18.   Lake Keowee measured temperature profiles,  1972 - Station  502

-------
CO
0
— -o
o.
i
1
U,
' 20

i "1
i ^

1 JRN . £
I
1
1
1
i FEB.
uj^-OO 20.00 itj'V.OO 20.00
a TEMP.(C) a TEMP.(C)
o
•
Q.
"""*
y— ^
u_
J§
°Q
^ )0
/ o.
/ *~*
1 ^~"»
! MRY ^
^0
t
/•*
/
/
*
1 JUNE
'
u^.OO 20-00 [ii'V.OO 20.00
a TEMP.(C) o TEMP .(C)
o o ,
— 'Q
Q.
^
H-
U_
• —
^°
7§
a.
^
SEPT. £
*— r
1 	 ,
1

^ J
S OCT.


Ljj^.QO 20-00 ^j^'.OO 20.00
a TEMP.(C) o TEhP.(C)
o
r— o
o.
'-*
1 —
u_
/
i
(
I
! MRRCH
SJ^.QO 20.00
a TEMP.(C)
o
M
Q-
*— •
^ri-^
u_
^§
^
t
t
i
i

1 JULY
i
i
(^""b-OQ 20.00
a TEMP.(C)
O i

a.
^
l—
u_
,_,
a:g
1
1
i
^ NOV.
i

uj^-OO 20-00
a TEMP.(C)
0
•—•a
a.
•^»
H-
U_
.
f
\
\
! RPR1L
itj^-OO 20.00
a TEHP.(C)
o
—•a
M ^
«
o.
*-«
_,..
H-
U-
• ~~" »





RUG.

LU^-OO 20.00
a TEMP.(C)
o
•—•a
o.
x-,"4
U.

^a



DEC.


uj^'.OO 20.00
a TEMP.(C)
                      Figure B-19.  Lake Keowee measured temperature profiles, 1973 - Station 502

-------
CO
00
0
0
o.
» .
1 —
r °
1 — Q
I •
1 Q-
1 r-T
\ JRN . £
I


FEB.
Cj^-OO 20.00 {h'V.OO 20.00
o TEflP.rC) o TEflP.(C)
o
~£o
o.

U-
XQ
' •
y CD
/ ^°
/ 2-
/ ^^

fifty £
^g
y
f
)
i
JUNE

lij^'-OQ 20.00 [^j'V.OO 20 .00
a TEMP.(C) a TEMP . ( C )
Q , O ,
— Q
0-
1-
1 	
u_
|E§
-g
i ^ .
/ °-
v^ —•
'SEPT. lz
£°
i
1
/
OCT •

Sj^-OO 20-00 Sj^'.OO 20-00
a TEMP.(C) a TEMP.(C)
o
o.
~~"
1 —
u_
"T"~ Ci
* " *
'/ °
/ —0
i •
/ 0.
i r*
MRRCH {z
/
j
{)
RPR I
uj^-OO 20-00 uj^'.QQ 20. 00
o TEMP.(C) a TEHP.(C)
2o '"" °- '
mo
Q.

1—
u.
^g
/ M°
/ ^"

JULY t
gg
/
/

RUG.

Sj^'-OO 20.00 Sj^'.OO 20-00
a TEflP.fC) a TEMP.(C)
o o

o.
"•
1 —
u_
xg
^g
Q.
— "
NQV- £
^g



DEC.

S^^'-OO 20-00 Si^'.OO 20.00
o TEMP.(CI a TEMP.(C)
                  Figure B-2Q.  Lake Keowee measured temperature profiles, 1974 - Station 502

-------
CO
CO
Q
.— Q
O_
I—
LL,
a. 4.
UJ U
o
o
—.a
,,0
o.
H-
U-.
Q-4l
UJ u
a
o
—. Q
»—
u_
^
Q
Vo
0.
JRN. [Z
xg
* •
.00 20-00 Sj1^
TEMP.(C) a
2-
MRY |Z
~i" CD
• "* •
.00 20.00 Sj^
TEMP.(C) o
f °g
! "^
S'EPT. tZ
?°
o
— 0
.0
Q.
FEB. tZ
£§.
.00 20.00 Sj*^
TEMP.rCJ o
/ ^"
JUNE tZ
xg
.00 20.00 Sj^
TEMP-(C) a
i •
1 -2
OCT. tZ
xg
• »
I ^
MRRCH tZ
-co
^ *
.00 20.00 Sj1^
TEMP.(C) a
/; 7§
y >
^^JULY [Z
I"™" ^
.00 20-00 Sj*^
TEMP.(C) a
/ °§
1 >
NOV . tZ
i — .
j
RPR1

.00 20.00
TEMP.(C)
J
HUG.

.00 20.00
TEMP.(C)
DEC.

   i.OO     20-00
a    TEMP-(C)
_  1.00     20-00
a    TEMP.(C)
1.00    20.00
  TEMP.(C)
                                                                           .00     20.00
                                                                            TEMP.(C)
                 Figure B-21.  Lake Keowee measured temperature profiles, 1975 -  Station 502

-------
CO
o
J
.-.o
o.
^—
u_
a
O
--•0
Q-
h-
U_
Sj*^
a
0
— O
O.
•—
u_
s§
1 "1-
JRN. £
.00 20.00 tu*^
TEhP.(C) a
y*-**Q
M O
0
/ Q-
MRY |Z
• "" »
.00 20-00 [Jj^
TEMP.(C) a
o
-— o
Q.
J *~*
SEPT. t
£?
y 7§
FEB. {Z
r— ,
. 00 20 . 00 Sj*^
TEMP.(C) a
a
/ *~"o
/ *
, ^— *
JUNE |Z
™ *
.00 20.00 Sj^
TEMP.(C) a
o
o.
'-»
OCT. H
^§
1 ^0
/ "1
/ •-*
MRRCH t
rr ttH
• •
.00 20.00 ^4%
TEMP.tC) a
y — -0
/ mo
' JULY tZ
^Q
.00 20.00 uj*^
TEMP.(C) a
o
'—O
.0
o.
'-
NOV. (I
xo
/
RPR1L
.00 20.00
TEMP.(C)
RUG.

.00 20.00
TEhP.(C)



DEC.

                    uj U.OO     20.00
                    a    TEMP.(C)
_  l-OO     20-00
o    TEMP.(C)
__  1.00    20.00
a    TEMP.(C)  .
   1.00     20.00
a    TEHP.(C)
                     Figure B-22.  Lake Keowee measured temperature profiles, 1976 -  Station 502

-------
o
,-0
Q_
t—
U_
0
o
— tQ
o.
1—
u_
mg
UJ "
O
0
— «o
Q.
• — •
1 —
n ,-.
O
•
JRN. £
'.00 20-00 m*^
TEMP.(C) o
/ 20
MflY £
^°
.00 20.00 m*^
7EMP.(C) a
/ "28
* •
/ 0.
X "^™*
SEPT. £
' »
	 1 	 n — -
1 °
• #
FEB. £
.00 zb.oo P^b
TEMP.rC) a
/ * *
/ *-*
** s~~*
JUNE £
^g
.00 20.00 m0^
TEMP.(C) a
2g
•
Q_
^^
Q'CT . £
* *
> o
y •
/ O-
/ «-•
f ^™>
MflRCH £
.00 20.00 £3%
TEMP.fC) a
i O
/" "1
/ ««•
JULY £
^§
.00 20.00 {JV^
TEMP.(C) a
o
^-•Q
O.
,-.
NOV. H
s
1
RPRIL
.00 20.00
TEMP.(C)
/'
s
" RUG.

.00 20.00
TEMP.fC)


•*
DEC.
a    TEMP.(C)
_  l.OO     20-00
a    TEMP.(C)
1.00     20.00
  TEMP-(C)
   1.00    20.00
c3    TEMP.fC)
 Figure B-23.  Lake Keowee measured temperature profiles,  1977 - Station 502

-------
10
K>
Q
—•a
Q-
~*

1 —
U_
. a
Q
—a
Q.
^~^
I —
u_
xa
i — .
UJ^
O
— -O
0-

J~*
JRN. £
.00 20-00 Sj*^
TEMP.fC) a
Ja
.-•a
S <3-
l» '"*
1 1
MRY IZ
xa
t—^
.00 20.00 ujCb
J 0
/ rto
/ •
i
f^~

rz
FEB. ^
~j~ ci
* *
.00 20*00 uj*^
TEMP.(C) a
Q
y*" "^o
/ •
/ 2~
^* •*""*
JUNE [Z
XQ
, t—.
.00 20-00 PJ%
/ a
/ "o
i * .
/ 2-

' *"*
MRRCH lZ
TP* C3
' •
.00 20.00 uj°b
TEMP.fC ) a
j 0
y *-•§
y "^
r^ rz
JULY tZ
x«=>
1 — *•?
.00 20-00 nj1^
s"
1
/
(
RPR!
.00 20.00
TEMP.fC)
,
f
/
^
RUG.


.00 20-00
a TEMP.(C) a TEMP.fC) a TEMP-fC) a TEMP.fC)
Q
— .Q
Q.
1 —
U_
H^°
0
'—a
J 2-
/•"* rz
SEPT. £
^^
Q
"~*o
o_
OCT. |H
^°
/ OQ

( 3-
NOV. tZ
' •



DEC.

                       _         20.00    ^J^-OO     20-00   ^ptl.OO     ZO.QO    {U*D".00     20-00
                       a   1EMP.(C)     a    TEMP.fC)     a   TEMP.(C)     a    TEMP.(C)
                        Figure B-21.   Lake Keowee measured temperature profiles,  1978 - Station  502

-------
to
o
— o

o.
,_,
h-
O
Q
— O
co Q.
en .
, — .
h-
u.
a
o
^^a O
w O
Q-
*-*
H-
U_
a





JRN.
.00 20.00
TEMP.(C)
t
^x.-'
f


MRY
.00 20-00
TEMP.(C)
i
*
^. -^
X
(
\ SEPT.
.00 20-00
1EMP-(CJ
o

M 0
0.
^-,
l-
U_
Q
Q
— Q
a.
— .
^^
I—
' *
a
o
«— • Q
W ^
*
Q.
•— •
i—
u_
a

/
I
i
i
! FEB.
	 1 	
.00 20.00
TEMP.(C)
.•
, 	 • "^"
/

/
/ JUNE
.00 ' 20.00
TEMP-(C)
i
j
_y.
/^
{
|
! QCT .
	 1 	
.00 20. 00
TEMP-(C)
o
•r— Q
K1^
Q.
-.""
I—
U-
* "* »
Q
O
— -a
Q.
~*
^~^
I—
U_
a
Q
*— «O
M ^
Q.
"~*
H-
U_
Q-Q
UJ "
a
i *-^
( ' To
«o
1 2-
{, 	
MRRCH [Z
.00 20.00 u]^
TEHP.(C) a
^D
^^ *""§
2-
/ —
! —
JULY t
'-00 20.00 uj^
TEMP-(C) a
^3
i *~*S
1 )•
2-
/
/ .-^
/ NQV . tZ
• #
.00 20-00 Iti^
TEMP-(C) a
x
^^
f


RPR1L
.00 20. 00
TEHP.CC)
j

t
I
|
RUG.
'.00 20.00
TEHP.(C)
.




1 DEC -
1.00 20.00
TEMP.(C)
                         Figure B-25.   Lake Keowee measured temperature profiles,  1971  - Station 503

-------
0
—a
•=?
h-
£§
UJ U
0
CD
— o
Q-
t
Xg
U_cL
UJ "
a
a
0-
i—
u.
j 	 O
O-nTl
a
2o
a.
! JRN . t
xg
-oo 20.00 uj^b
1EMP.(C) a
o
— «o
m B
Q-
MRY t
xg
-00 20.00 u1]^
TEMP.(C) a
Q
^ -1' 7§
/-X o-
1 SEPT. t
£§
.00 20.00 i^
TEMP-(C) a
i
!
\
FEB.

.00 20.00
TEMP.(C)
i
i
i
! JUNE

.00 20,. 00
TEMP.(C)
i
/
/
I OCT .

.00 20. 00
TEMP.(C)
Q
f
o.
t—
U_
£o
UJ^
a
o
a.
I—
U_
"'"a
uj0^
a
o
— Q
Q.
I—
u_
x§
t-=?
a_cj.i
a
i
\ MRRCH

.00 20.00
TEMP.(C)
,^J
i
1 JULY

.00 20-00
TEMP.fCJ
j
i
i
I NGV .

.00 20- 00
TEMP.fC)
o
— -a
»=?
o.
H-
U.
£g
UJ U
a
. a
o.
U_
£§
LU U
a
o
.—a
o.
U_
^g
UJ u
O
/'
1
1 RPR1L

.00 20.00
TEMP.(C)
y
/ RUG .

.00 20.00
TEMP.(C)


DEC.

.00 20.00
TEMP.(C)
Figure B-26.  Lake Keowee measured temperature profiles,  1972 - Station 503

-------
UI
0
— O
M ^
0-
h-
U.
ji§
LU u
Q
Q
v—O
Q_
.-•
, — i
h-
U_
ICO
LU^
a
o
— o
Q.
^~"

J—
LU
:ra
. 	 a
a-4i
Uj ^
a
i



! JRK.

.00 20- 00
TEMP.(C)
(
r'
1
1
1
1
{ MflY

.00 20-00
TEHP.ru





SEPT.


.00 20.00
TEMP.(C)
o
.— CI
w o
a.
l—
3=0
LU "
a
O
7§
Q.
— •
*— +
H-
u_
^§
PJ*^
a
o
—a
Q-
^^"^

J—
U.
3T=>
i-*?
m^
a




FEB.

.00 20-00
TEMP.(C)
f
^** ^
y

i
JUNE

.00 20-00
TEMP.(C)
f

s
y
^
> OCT.


.00 20-00
TEMP.(C)
o
—•a
jg O
Q-
J-
u_
^§
UJ^
a
o
—a
*a
0.
.^
^^
U.
£§
Q-CL
O
0
^-.Q
Q.
^_i~"

Lu
3TO
I— °
a-ctT
ui tJ
a
1
i
i

'
i
HRRCH

.00 20.00
TEMP.(C)
t
^*~- —
/
X
f
1 JULY

'-00 20.00
TEflP.rU

/
I
y
x
NOV.


'-00 20-00
TEMP.(C)
o
^-•0
M °.
0.
»—
U.
3Tg
a_cL
LU U
a
o
»- «Q
a.

*~»
H-
U_
310
LU U
a
o
yg
Q.
^_,

I—
u_
•_«*

I—CJ
LU U
a
/
/
^
/
S RPR1L

.00 20.00
TEMP.(C)





RUG.

'.00 20-00
TEhP.fU





DEC.


.00 20.00
TEhP.(C)
                        Figure B-27.  Lake Keowee measured temperature profiles, 1973 - Station 503

-------
CT>
CD
— Q
O.
y 	 ^
H-
U.
'r— °
.
I
1
1
JRN.

£3^0.00 20.00
a TEMP.(C)
~b
—g

0.
•— *
J—
U_
ji§
/"'
/
^
^
1
MRY

^j^.OO 20-00
o TEMP.(C)
a i
— Q
Q-
<-
u_
Jo
/
y
f-
1 SEPT.

(^^tl-OQ 20.00
a TEMP.(C)
o
~— Q
*
O.
^-«
U_
^E§
/ °
—•a
»
O.
rf— *
1 FEB. t
Jo
.
/
/
I
MRRCH

iijcll.OO 20.00 uj^'-OO 20-00
a TEMP.(C) a TEMP-(C)
o o


O-
^"^
V—
u.
^§
/ — Q

/^ Q-
X *""*
f -JUNE {Z
1 j_ O
,x

/'
*
JULY

£3^.00 20.00 Sj^'-OQ 20.00
a TEflP.(C) a 1EHP,(C)
o / o

2-
—
i—
u.
^9
/ v«?
/ °"
j -"
'OCT. t
j 	 a
/
>
/
' NOV.

i^b.oo 20.00 Sj^u-oo 20.00
a lEMP.fCi a 1EHP.(CJ
Q
T- 0
o.
l^^
h-
r~* ,
.
/
/
^
RPR1

Uj^'.OO 20-00
a TEHP.(C)
o


a.
^-*
u_
^-o
/

/
^ **^
r RUG.

U^^.OO 20-00
a TEMP.(C)
o •
— o
o.
,—
^—
U-
J§
/

/
DEC.

U/^'-OQ 20-00
o TEMP.(C)
                      Figure B-28.  Lake Keowee measured temperature profiles, 1974 - Station  503

-------
Q
~"°
2-
u.
' JT~" »
/ o
/ ,-.0
/ 2-
1 -
JRN . t
1 °a

j "I-
I | 	
FEB. t
* •
.
/
i
i
MRRCH
Uj^'-OO 20.00 uj^'-OO 20*00 Sj^'-OO 20-00
Q TEMP.(C) Q TEMP.(C) a TEMP.(C)
O , O i O i •
-•— a
*a
o.
*•*
H-
Lu
XQ
j 	 O
rJ - — a
/' *°
/ <=>-
y — •
f
HRY t
X<=>
J— °
fJ —a
f '
/- a-
^ i^4
' -JUNE t
XO
•— °
/
J
j
j
s
'' JULY


S^-oo 20.00 ai^'.oo ' 20.00 UJ^'-DO 20.00
Q TEHP.(C) a TEHP.fC) a TEMP-(C)
o
*— o
*=?
2"
•-•
u_
Jo
f' — "Q ^ ~ ''

/ O_
-* i
SEPT- t
iE§
/
' O-
1
t -^
OCT. t
^Q
/

/
'NOV.

•jj^'.OO 20-00 i^'.QQ 20.00 Jj^'-OO 20-00
a TEMP.fC: a TEMP-fC' a TEMP . ( C )
Q
— O
o.
«~-^
U.
•
/
|
RPR1
Si'^.oo zb.fto
a TEMP.CC)'
O i
— o
*°
o.
^4
1—
u_
aco
j— °




f


Uj^-OO 20 -Op1
Q TEMP.rO
"o j
"»°
o.
t
r*™
u.
f°
1

/
DEC.

Lu^'.QO 20-00
a TEMP.(C)
Figure B-29.  Lake Keowee measured temperature profiles,  1975 - Station 503

-------
CO
o

O-
—
1 —
u_
xg
1 — ,
/

/
{
JRN .


Uj^-OO 20-00
a TEMP.(C)
— t
— o
C3_
-^
' '
t —
u_
*— °
/
f
/
/
MRY
S^.OQ 20.00
a lEMP.(C)
o
— o
O-
f—
u_
F:§
j
f/
SEPT.

^j^'-OO 20-00
o TEMP.fC)
o

0.
•— •
LL.
XO
1 — .
/
s
\
1
FEB.


LC|Cb.OO 2Q.OO
Q TEMP-(C)
Q s
It1^
o.
-'
""*
1 —
U_
/
/•
y
,'
JUNE
Sj^.OO 2O.OO
a TEMP.(C)
o /
— -o
t
o_
U_
j 	 O
/
/
dci.

UJ^'-OO 20.00
a TEMP.(C)
o

»
Q.
•^
U.
Ig
r~~ r
j

/
i
MRRCH


LU^-OO 20-00
a TEMP.(C)
0 j
**°
0.
~-°
*~*
r—
U_
• """ »
/

/
i
JULY
Uj^.OO 20-00
a TEMP.(C)
O i
•^-o
O-
u.
^0
j

NOV.

Uj^-OO 20*00
a 1EMP.IO
0

o.
i
r—
U.
^0
t"~ ,
i

/
,'
RPR I


Uj^.OO 20.00
a TEHP.(C)
0 f
~*Q.
o.
-*
1"*
u_
J
s
/
,s
RUG.
ui^.OO 20.00
a TEMP.(C)
O i /
— Q
O.
t—
u_
t-6?
J
(
DEC.

(^""b-OO 20-00
a TEMP.(C)
                     Figure B-30.  Lake  Keowee measured temperature profiles, 1976 - Station 503

-------
CO
o
--•o
o.
u_
o
•
o.
t—
u_
r—Q
o.
I—
U-
•J
/ o
/ —0
1 "i-
f rr
JRN. £
(
FEB.
.00 20.00 S^'.QO 20.00
TEMP.fC) a TEMP.(C)
/o
«- 'O
•
/ Q_
^ MflY tZ
/
JUNE
• 00 20.00 uj^'.OO 20.00
TEMP.fCJ a TEMP.(C)
;Q
^— O
/ 2"
U^
^°
{
1
OCT.

.00 20.00 Sj^.OO 20.00
TEMP (C3 o TEMP.(C)
o
*-* *O
i—
u_
*~~ *
a
o
^-iO
•
a.
t—
U.
a
o
.
o.
I—
U_
"""o
• *
a
,/
MRRCH
.00 20.00
TEMP.(C)
JULY
.00 20.00
TEMP.(C)
/
i
NOV.

-00 20.00
TEMP.(C)
o
o.
*-*
1—
U_
' ~ *
a
a
•
a.
H-
U_
O
O
Q.
\—
u.
a
*
' RPRI
.00 20.00
TEMP.(C)
/
/
.00 20.00
TEMP.(C)
/
f
' DEC.

.00 20.00
TEMP.(C)
                      Figure B-31.  Lake Keov/ee measured temperature profiles,  1977 - Station 503

-------
o
o
o
— o
•
Q.
H-
U_
fEo
i
I
' JRN.

.00 20.00
a TEMP.fC)
o
— '0
Q.
H-
U_
jES
\
s
I
MRY

.00 20.00
a TEMP.fC)
0
*
2-
i—
jES
(
/
SEPT.

.00 20.00
c TEMP.fCJ
O
*
ex
t-
u.
xg
,
\
' FEB.

.00 20.00
a TEMP.fC)
o
0.
H-
U.
^0
y
JUNE

.00 20.00
a TEMP.fC)
o
•
O-
f-
u.
xg
/
j
'OCT.

.00 20. 00
a lEMP.(C)
O
o.
t—
U.
Xo
VI
MflRCH

i
.00 20.00
a TEMP.fC)
o
•-"•D
Q_
u_
-co
/
JULY

.00 20.00
a TEMP.fC)
Q
.-•a
Q_
1—
U.
Xo
r
/
NOV.

.00 20-00
a TEMP.fCJ
Q
-—o
*
o.
U_
^
,
fiPRl

i
.00 20.00
a TEMP.fC)
a
^-o
.
0-
»~
LU
Xg
;
RUG.

.00 20.00
a TEMP.fC)
a
*— *o
o.
u_
^°
/
J
DEC.
-
.00 20.00
o TEMP.fC)
                         Figure B-32.   Lake Keowee measured temperature profiles, 1978 - Station 503

-------
o
— o
Q-
~^
1 	
1
Lu
^°
LU U
Q
O
• — o
jg O
Q-
— «
t __
!"•"
Lu
t 	 ^

^°
Uj'^
°
O
— -0
w .
o_
	 ,
I—
Lu
_

I"* o
t— ^
UJ^
O
1
1
i



JRN.

•00 20.00
TEMP.(C)
f
^* "^
f
i
i
i
i
t
\ MRY
1
i

.00 20.00
TEMP.(C)

J
*•— "
/
I
! SEPT.
1
i


.00 20-00
lEMP.fU
o
• — -o
Q_
*~*
• *
Lu
^-Q
Lu u
a
0
— o
tf O
Q.
^-^
t
Lu
f 	 r

Xg
Q-cvT
LU U
O
O
—-a
M ,
Q-
t 	 ,
1—
U_
f

"T~ O
j 	 CD
LU"


r
i
*
i
i FEB.
i

-00 20.00
TEMP.(C)
s
	 ^. ~^
s^~
1
\
\
\ JUNE
i

,
-00 20.00
TEMP.(C)
,
^
s
,°
/
/
{ OCT.
1
i


•00 20.00
TEMP.(C)
o
•r— 0
*
0-
"-•
^^
1 —
Lu
*"""" *
Lu u
a
Q
^—o
)g O
o.
^-«

U-


jEo
LU "
a
o
— -n
H a
0.
^%*"
I—
Lu


3~O
i— ^
LU "
a
y
{
1

1
1
1

.00
1EMP



/






• 00
TEMP
i
i
i
i
/
\
i
i


• 00
TEMP





MRRCH

20-00
.(C)
^
^•^
^-



JULY



20-00
.(C)





NOV.




20-00
.(C)
o
*— 'CD
»
Q.
•^
t
1 — •
Lu
S§
o-ci;
LU u
o
o
-—0
M ^
a.
«-^
»
r—
Lu


^0
UJ^
a
0
,— a
M
O.
.•— »
H-
Lu


XO
«-=?
UJ^
a
,
/./--"
i
i
I
! RPRIL

.00 20.00
TEMP.fC)
#
^^
r--
/ .


nuo.



.00 20.00
TEMP.(C)
t
i
i
i
i
1
{ DEC .
i
i


.00 20-00
TEMP.(C)
Figure B-33.   Lake Koewee measured temperature profiles,  1971 - Station 501

-------
o
NJ
o

t
Q.
H-
U-

T~O
j Q

LU "
Q
O
— o
M ^
O.
	 	 fc
1—

^0
ll | U
O
C-J
—•0
a.
	 	 fc
^-

JE§
UJ «^
a
,
i
i
i
i




.00
TEMP



/
i
i
i
i

.00
TEMP


f
/
i
i
i
-00
TEMP



JRN.




20.00
.(C)
t
_j
r~


MRY


20.00
.(C)
,
J
^

SEPT.


2U.OO
.(C)
0
7o
o.
1—
U_

xg

t~~" m
a-Q.
UJ u
a
o
— 'Q
M
0.
,—.
1—
u_

x°
LU "
a
a
~~"a
•*
o.
^,
1—
<— '
^§
UJ U
a
,
i
I
i
i
! FEB.
i




.00 20.00
TEMP.(C)
i
i
i
i
^~
^ ^
! JUNE
t
t

.00 20. 00
TEMP.rO
(
i
j
i
i OCT.
|

.00 20.00
TEMP.(C)
o
-— *o
o.
t-
U_

^p^o
t 	 C3
* •
UJ*^
Q
Q
— "O
w
a.
. — .
U_

£*.
UJ0^
Q
0
— o
0-
^-,
U_
*— -
£g
a-4,
UJ U
a
, i
/
/
i
\ MRRCH
1
i



.00 20-00
TEMP.(C)
,
__,— •
^*
s
f
I JULY
i

-00 20. 00
TEMP.(C)
(



{ NQV .
*

.00 20.00
TEMP.(C)
Q
— O
a.
U_

3£d
« _ c^
«~~" ,
LU "
a
Q
— .0
Ml
Q.
*-«

u_

£
-------
o
U)
o
— o
*
0-
U_
Jo
UJ^
o
O
— - O
O.
1—
H^
UJ U
a
o
— Q
2-
i—
U.
^°
i °
1 — o
*
Q_
JRN. £
Jo
• 00 20-00 Sj^
TEMP.fC) a
/ °
! MRY t
i
^°
• 00 20-00 u]^
TEMP-fC) a
o
—«o
a.
SEPT- tZ
Jo
. o
a.
FEB. t
i
*y" J3
**—" »
-00 20.00 Sj^
TEMP.fC) a
- - -' "°g
S M ^
/• °-
i JUNE t
i , *— ••
Jo
.00 20-00 Sj0!)
TEMP.fC) a
o
^ »
o.
OCT. t
•""" •
i ' °
j •— *Q
( J*"
! MRRCH t
i
•"•Q
• ~™ •
.00 20-00 uj4^
TEMP.fC) a
» o
_y-^ —Q
"I
/ JULY tZ
! — '
Jo
.00 20-00 LU^
TEMP.fC) a
/ °
/ —• o
1 2-
^y NOV. £
^°
(
I RPR1L

.00 20-00
TEMP.fC)

RUG.

.00 20.00
TEMP.fC)


DEC-

                       LU  u.uu     20-00
                       a    TEMP.fC)
iIjT}.00     20.00
a    TEMP.fC)
iH'U.oo    20.00
a    TEMP.fC)
.00     20-00
 TEMP.fC)
                        Figure B-35.   Lake Keowee measured temperature profiles,  1973 - Station  501

-------
0
— 0
o.
. 	 k
t-
U-
. — -
xg
1 °
J »— Q
1 #
1 °-
1 ^
! JRN. t
i ^-
Jo
y

!
i
j FEB.
1
t
Uj^.OO 20-00 ui'V.OO 20.00
o TEMP.(C) a TEMP.(C)
0 j 0
— o
x *?
= 2-
. — >
Lu
s — -Q
/ * ^
/' O-
1 — •
^ - — *
f NRY t
/

f
t
( JUNE
<
i
Sj^-oo 20.00 SJ^D'-OO 20.00
o TEMP.(C) a TEMP.(C)
o / o ,

7§
O-
"""*
u_
£°.
/ '—O
/ K5"?
/ 0-
' "^
f' SEPT. £
£°
/
/
j
/
^^QCT.
'•"---— — — ' "••• 	 •i.f—.. . — I-.-...
o
7§
Q.
__%"-
1—
u_
fc^.
^EO
i O
/ _0
t o.
j ^-."*
j MRRCH t
1 •—*•
£g
.
/
/
/
RPRl
i

Uj^-OO 20.00 (jj^.OO 20.00
a TEMP.(C) a TEMP.(C)
Q ^0
^-o
l*1"?
Q.
>-%
u_
— Q
/ H°
2-
/ ^_
T JULY t
/

/
^
/''RUG.
i
ixj^-QO 20-00 Lu^J-OO 20*00
a TEMP.CC) a TEMP.(C)
o • o
.— o
*'•?
Q.
— •
h-
u_
Ja
/ ^-o

/ °-
/
{" NOV. {z
jEo

,J
/
/
j DEC .

_          20-00   u]T).00     20-00    tu"tJ-00     20-00    ^J^-OO     20-00
a    TEMP.(C)     a   TEMP.(C)     a    TEMP.(C)     a   TEMP.fCJ
 Figure B-36.   Lake Keowee measured temperature profiles,  1971 - Station  504

-------
o
in
Q
— Q
J—
u.
o
o
— 'O
•
i —
u_
UJ^
a
o
— a
* 0
Q.
V-
u_
n -~"
J — -O
' *0
1 | 	
*J if III • f i
**l~ f~>
• 00 20-00 Sj%
TEMP.fC) o
yf""^
• *CZ^
M s^
** C^
> — *"
/ "^~*
• 00 20.00 S]^
TEMP.fC) o
"2-
y ,_,
/ °0
j *0
o.
FEB. £
i™""" ^
-00 20. 00 m^
TEMP.fC) a
r~* Q~
( JUNE t
• 00 20.00 Sj^J
TEMP.fC) a
/ "2-
/ v— ^
f .-^
J So
*
a.
MRRCH t
• 00 20.00 {h^
TEMP.(C) o
/ ?°
/' ^2-
/-^ JULY t
1 ^^
< »— ^
xg
-00 20-00 uj*^
TEMP.fC) a
J So
f *2-
/ £
J
1 RPR1L
.00 20.00
TEMP.fC)
/
.00 20.00
TEMP.fC)
DEC.
                         _  1-00     20-00
                         a    TEMP.fC)
   -00     20-00
a    1EttP.CC)
•00     20-00
 TEMP.fC)
_  1.00    20.00
a    TEMP.fC)
                          Figure B-37.  Lake Keowee measured temperature profiles,  1975 - Station 501

-------
o
at
o
— d
#
O.
h-
U_
xo
\ — .
, o
f — 'O
I 1^"
! JRN. t
xg
" " »
.
J
1
1 FEB.
I


Uj'^b'-OO 20.00 uj^'-OO 20. 00
o TEMP.tO a TEMP. tC)
CD
— Q
O.
*•*•"*
\—
U.
£0
/ °
/ 0.
/ MRY tZ
^Q
/
j
/ JUNE
i
Sj^'-oo 20. QQ Sj'V.oo 20.00
a TEMP.tO a TEMP.(C)
a , a ,
,— O
If °
o.
.— . .
H-
b_

Xg

1 ^-O
J *°
/" 2-

x^^EPT. {7
f
t «^
x°
i—*?
(j
/
/
i
^ rfCT .
/


Sj^'-OO 20-00 uj^'-OO 20-00
a TEMP. (C) a TEMP.(C)
o
_o
»
U.
xg
\ — ,
.
J
'
\ MRRCH
i


UJ^'.OQ 20.00
a TEMP.(C)
o
— Q
O.
U.
t''*"" f
/'
/
/ JULY

ui^-OQ 20.00
a TEMP.(C)
Q ,
— O
*=?
Q-
— .
u.

XQ
>—
/
/
i
i
j N8V.
r


Sj^-OO 20.00
a TEMP. tC)
Q
%—a
o.
1—
U.
"""o
i — w
,
1
/
j RPR!


£^.00 20.00
a TEMP.(C)
Q
*
O.
t
^Eo
J
/
XRUG.

ai^.OO 20-00
a TEMP.(C)
20 '

•>
o.
^-.
t—
u_

xg
>— »
*
i
I
i
1 DEC.
!


UI^'.QO 20 .00
a TEMP.(C)
                Figure B-38.  Lake Keowee measured temperature profiles, 1976 - Station 501

-------
Q
— 0
•
H-
U_
0
— -o
i-L,
a
o
-— o
O-
t—
i Q
J — o
/ *Q.
t ~-
l JRN . t
•
• £Lr-»
.00 20.00 tuT)
TEMP.(C) a
/ 7§
/^* Q-
' ^-^
/ MflY t
• 00 20-00 u^0^!
TEMP.(C) o
/ °
f —a
/ o.
/ _
•^^iFPT ' —
i .
J °
/• .—o
' Q.
FEB. t
i i—.
• 00 20-00 u]*^
TEMP.(C) a
/ 2a
/x o.
/' JUNE t
.00 20.00 m*^
TEMP.(C) a
/ °
/ •r— O
! *°-
-"
,^-f}rT *—
/ Ul- ' ' U_
, O
j —a
/' ^2-
1 MRRCH t
f *_^
• •
• 00 20-00 uj*^
TEMP-(C) a
x>- o
/J Q-
/ JULY t
.00 20-00 Sj^
TEMP.(C) a
J Q
1 1 1"
, i
/ BPR1
.00 20.00
TEMP.(C)
^*
/
T^BUG.
.00 20-00
TEHP.(C)
I
j DEC.
_         20-00   ujT.OQ     20-00    ui"t).QO     20-00    ujT-00     20.00
a    TEMP.(C)     a   TEMP.(C)     a   TEMP.(C)     a   TEMP.(C)
 Figure B-39.   Lake Keowee measured temperature profiles,  1977 - Station  504

-------
o
00
o
— O
0.
1—
U_

jEo
^ o
f "^
I — -"
! JRN . t
1 _
Xo
/ 2g
X »
f ^"
I FEB. {Z
1 ^_.
£§
/
1
1 MRRCH
1

Sj^-OO 20-00 [ij'V.OO 20.00 uVV-OO 20.00
a TEMP.rC) a TEMP.(C) a TEMP.(C)
Q i O ,. 0

; o.
* -""*
J—
J ^g
xx O-
[ MRY t
i—*"?
/ ^*0
/••^ o.
/
{ JUNE tZ

/'
( JULY
Uj^'.OO 20-00 [Jj^'-OO 20-OO uj^'-OQ 20-00
a TEMP.CO a TEMP-(C) a TEhP.(C)
a
—a
*
Q.
h-
ll

^^
Jo
/ 2o
> * .
/* °-
^"SEPT. t
< uu.
' ^-^
5=
, o
/ —g
/ * .
/ °-
/
/^""OCT. t

' «**-•
^«
f
>L




CD
—•a
a.
.^
H-
U_

^Q
„>>
/
RPR1
1

Ix/^l.OQ 20-00
a TEMP.(C)
Q /
-— o
«
a.
I—
U_
/
*/
^ RUG.
Uj^'.OO 20.00
a TEMP.(C)
V§
o.
Q_

«..'
^Q
f'
i
/
/ DEC.
r
i

                   _         20.00    £]TT.OO     20-00
                   Q   TEMP.(C)     o   TEMP.(C)
_  1-00    20.00
a    lEMP.(C)
_          20-00
a    TEMP.(C)
                    Figure B-40.  Lake Keowee  measured temperature profiles, 1978 - Station  501

-------
o
10
a
— o
a
o_
t—
U_
a
Q
.-.Q
a.
U_
Xg
a
o
—.0
a.
i —
U_
Xo
f °Q
*
Q_
JRN. £
~c ^-"^
• •
* TEMP.(C) a
o
. -^ —.Q
,X *°
/ 2"
I MHY [I
• ~ •
.00 20.00 uj0^
TEMP.(C) a
/ o
^/ '-Q
.^^ .
/ Q-
'' ~
! SEPT. ^
^°
/ °
a.
, FEB. £
.00 20.00 Sj^'
TEMP.(C) a
-^' O
-^- **" »— 4Q
/'' "i-
! "
! JUNE H
i~™" ^
.00 ' 20 .00 uj*"^
TEMP.(C) a
o
^y ^-.a
/ "1-
» '—
1 OCT. H
^§
r ' °
J »-iO
/ "=-
1 MflRCH H
• '"" •
.00 20.00 uJ*^
TEMP.(C) a
>•' °
"1
! JULY H
^E§
.00 20.00 uj*^
TEMP.(C) a
I So
J "o.
! NOV. C
S°
^s
(
\ flPRll
.00 20. 00
TEMP.(C)
y
f RUG.

.00 20.00
TEMP.(C)
i
1 DEC .
-•
                      _         20.00
                      a    TEMP.(C)
_          20.00   HJ^'-OO     20.00    iipb.oo     20.00
a    TEMP.(C)    a   TEMP.(C)     a   TEMP.(C)
                       Figure B-11.  Lake Keowee measured temperature profiles,  1971 - Station 505

-------
o
VQ
o.
»—
u_
xg
>o
—0
O-
H-
u_
xg
o
r— o
o.
1 —
u_
JES
Q
•— «o
Q-
i JRN . £
i
£°
.00 20.00 Sj^
TEMP.fC) a
i O
^ a
/ °-
f ^
/ MRY £
*S
.00 20.00 Sj0^
TEMP.fC) a
/ /— »
j» y O
/ °-
/ "~"
/ SEPT . £
xg
* »
o
—o
I M <**J
*
o.
FEB. t
i^
-------
Q
0.
l —
u_
O
0
.— .0
0.
t~
U_
^E§
fb^
a
a
— Q
o.
i—
u_
. 0
1 — o
i "1
JRN . £
.00 20.00 uj*^
TEMP.(C) a
/ o
"i-
/ *->
MRY H
i^
MRRCH tZ
*"^f^
• •
.00 20.00 i^'
TEHP-(C) a
s O
/ °-
/ ~~
! JULY t
I .,
1 _
H-*?
.00 20.00 uJ6^
TEMP.(C) a
. o
} °-
T NQV . H
/
RPRU
.00 20.00
TEMP.(C)
RUG.

.00 20.00
TEMP.(C)


DEC.
           ZO-00    f!]*T).00     20.00   J^j^.OO     20-00    [^"tJ.OO    20.00
a    TEhP.(C)     a   TEhP.(C)     a   TEMP.fCJ     a    TEMP.(C)
Figure B-43.  Lake Keowee measured  temperature profiles, 1973 - Station 505

-------
o
o.
LU
x°
*— °
1 °
1 2-
JRN. JZ
XQ
I— *•?

FEB.


Lnj^.OO 20*00 uj^-OO 20.00
a TEMP.(C) a TEMP.(C)
O j CD ,

•
Q_


H-
U_
3CO
r-' ^40
wQ
/ 2-
/
/ '^
[ MRY H
^o

/

/

/ JUNE
,
Lui^.OO 20.00 uj'^b.QQ 20-00
a TEMP.(C) a TEMP-(C)
o , o /
—-•o
Q-
f—»
h~
*~Q.
f ^.0
/ °-
^ s—"1
(' SEPT. tZ
»-*?
/
/
J
r" OCT.

o
—.0
»
a.
v-4
1—
XQ
1-*?
j
' MRRCH


Si^.OO 20.00
o TEMP.(C)
Q x-
^-
-------
Q
— iQ
Q.
t—
Lu
a
Q
, — iQ
Q.
K-
U-
a
o
— -0
o_
h-
u.
rco
/ °
1 'I
JBN. £
-T-Q
.00 20.00 Cj^
TEMP.(C) a
/" °
/ 2-
f MRY tZ
• 00 20.00 m^
TEMP.(C) a
/ o
I ~-"Q
f 2-
^^EPT. H
r"~* ^
0
—•a
o_
FEB. {Z
. Q
* *
.00 20.00 Sj^
TEMP.(C) a
i °
J —a
/ 0.
/ ^_^
/ JUNE ^
•*"" •
.00 20.00 Sj^
TEMP.(C) a
/Q
••—a
' O-
.dd. J^
=§
1 °
1 "*
1 MRRCH |Z
r~~ A
.00 20.00 ui*^'
TEMP.(C) a
/ °
/ 2-
/
/ JULY |Z
• 00 20.00 uj*"^
TEhP.(C) a
1 °
(• >
/NOV . tZ
•"" •
1
[
1 RPR1

.00 20.00
TEhP.(C)
1
^/
y R
.00 20.00
TEMP.(C)
f
\
\ DEC.
/
          20.00
a    TEMP.(C)
_          20.00
a    TEMP.(C)
_         20.00   ujTJ.QO     20.00
a    TEflP.(C)     a   TEhP.(C)
 Figure B-45.  Lake Keowee measured  temperature profiles, 1975 - Station  505

-------
Q
— -Q
•
O-
1 —
u_
Q
— «o
Q-
H-
U_
a
Q
M°
Q-
H-
U_
/ 20
/ 3-
JRN. £
r~"~ ^
.00 20.00 S]0^)
TEhP.(C) a
/ -8
J * »
/ 2-
/ MRY H
ng
• 00 20-00 uj"^
TEMP.(C) a
/ Q
/ ^«°
/ Q*
^XEPT. £
• o
1 W-^O
f "^
1 FEB. H
.00 20.00 uj*^
TEMP.(CJ a
,' 0
,/ ^Q
1 Q-
( JUNE £
^E§
.00 20.00 Sj*^
TEhP-(C) a
/ o
/ 7°
/ 2-
/ '~*
1 So
/ 'I-
1 MRRCH {Z
.00 20.00 uj*"^
TEMP.(C) a
,* o
T M ^^
*
/ Q-
/ JULY £
jis
.00 20.00 2]*^
TEMP.(C) a
p
^0
a.
/NOV. £
[ RPR1
.00 20.00
TEMP.(C)
/
/
/ RUD .

.00 20.00
TEMP.(C)
.
I
1 DEC .
_          20.00    u]T).00     20.00   IliTJ.OO     20-00    [IjD.OO     20-00
a    TEhP.rC)     a    TEMP.(C)     a   TEflP.(C)     a    TEhP-(C)
 Figure B-46.  Lake Keowee measured temperature profiles,  1976 - Station 505

-------
en
Q
.-•O

O.
h-
U_
£
-------
en
CD
— o
0.
u_
O
Q
•— «o
•
Q.
H-
a
CD
*
O-
i —
u_
a
/ 20
Q-
JRN. £
^E§
.00 20-00 u-i*"^
TEHP.(C) a
I 2o
X'' Q.
/ _~
/ MflY tZ
.00 20.00 uj""^
TEMP.(C) a
/ So
J M °
^SEPT. t^
.00 20.00 ^^b
TEMP.(C) a
i °
/ r—Q
/ °"
j FEB. |Z
JQ
.00 20.00 LU"^
TEMP-(C) a
, 0
/•* r-iQ
«<3
/''^ Q-
/' JUNE |Z
.00 20.00 LU*"^
TEMP.(C) a
/ o
/ —Q
1 "=-
r^QCT. H
• 00 20. 00 uj*^
TEMP.tCJ a
; °
/ -§
f -2"
I MRRCH tZ
i ^^
•""" •
.00 20-00 uj^
TEMP.(C) a
/' °
/ 0-
X —
f ' JULY |Z
.00 20.00 uj*^
TEMP.(C) a
y o
/ °~
''"'NQV « l~"
'.00 20.00 uj*^
TEMP.(C) a
/
/
RPRIL

.00 20.00
TEMP.(C)
(^ RUG.
.00 20.00
TEMP. CO
1
/ DEC.
.00 20.00
TEMP.(C)
                      Figure B-18.  Lake Keowee measured temperature profiles, 1978 - Station  505

-------
o
— >o
.0
Q.
U.
UJ*^
C3
O
o.
u_
o
a
•—0
a_
H-
u_
h^§
d-OT
a
Q
— O
•
Q.
JRN. £
^§
.00 zb.oo Sj^
TEhP.(C) a
/ Q
^, •*' — -o
I ""
MRY tZ
.00 20.00 Cj^
TEMP.(C) a
i O
*°-
! SEPT. [Z
pEo
.00 20.00 EJ^
TEMP-(C) a
/ ^1
/ ~*
! FEB. tZ
Tp" C3
i 	 Q
.00 zb.oo S]*^
TEMP-(C) a
- ^ V§
/ _-"
* JUNE |Z
.00 ' zb.oo Sj^
TEMP.(C) a
• ^,-3
y
/ *^
OCT. £
^ES
.00 20.00 Cj*^
TEMP.(C) a
1
•1
/ MRRCH IZ
xg
* *
.00 zb.oo uj1^'
TEMP.(C) a
-'' "?s
_2-
! JULY tZ
.00 zb.oo ui*^
TEMP.(C) a
f So
"o.
'' NOV . IZ
^0
.00 20.00 tJ]*^
TEMP-fCJ a

RPR I

.00 20. 00
TEMP.(C)
/
f^
! RUG.
.00 20.00
TEMP-(C)
i
»
1 DEC.

.00 20.00
TEttP.(C)
Figure B-19.  Lake Keowee measured temperature profiles,  1971  - Station 506

-------
CO
Q
— o
0.
H-
U_
Q
O
'— 0
o.
h-
u_
a
Q
.-.Q
a.
l —
a
1 °
i ~g
i "2.
• -*
JRN. £
1 °
1 "~*S
!*
O.
FEB. [Z
' •
MflRCH
.00 20.00 Sj^.OO 20.00 uj'V.OO 20.00
TEMP.(C) o TEMP.(C) a TEMP.(C)
o
^-•o
Q-
MHY t:
>' °
x'' o-
/
( JUNE £
^J
/
! JULY
-00 20-00 Sj^'.OQ i 20.00 Sj^'.OO 20.00
TEMP.(C) a TEMP.(C) a TEMP.(C)
• Q
J -0
X * *?
/ °-
/ SEPT. t
• '"" •
! OQ
i
/ Q-
1 OCT. £
' *
1
1
j
1
1 NOV.

.00 20-00 ^J^'-OO 20.00 [Jj'V.OO 20.00
TEMP.(C) o TEMP.(C) a TEMP.(C)
a
^-o
«°
a.
H-
U.
'"""" t
a
o
o.
»—
u.
a
a
»-.o
o.
u_
Xg
*™ •
X
' TEMP.

X
* TEMP.



-
' TEMP.
y
RPRI
20.00
(C)

RUG.
20.00
(C)


DEC.

20.00
1C)
                   Figure B-50.   Lake Keowee measured temperature profiles, 1972 -  Station 506

-------
l_l
" '5?
.
Q,
~~*
t—
u_
x°
*~ •-
1 °
j •— • Q
, * *"?
f °-
1 ™
! f~^
JRN. tZ
XQ
I—1?




:
1 FEB.


uj^.OO 20.00 [J^'.OO 20.00
a TEMP.fCJ a TEMP.(C)
o ' a
— -O
Q.

i -i
u_
Jo
i' •" g
/ CJ*
^ _
/ '~<
MRY ^
i^§
— "
/
*
!
JUNE
i
uj^.QO 20.00 [ti^.QO 20.00
a TEMP.(C) a TEMP.(C)
0 0
— o
Ma
Q.
li-
^Q
— -o
o.
SEPT. H
xg
j

i^ QCT .
1

nj^-OO 20.00 [ti^'.OO 20.00
a TEHP.(C) a TEMP.(C)
o
—. Q
)H C3
O.
^^
J—
u_
-"-Q

i °
^^ —.0

/ o.
/ )
MRRCH tH
xo
»-°
/
/

;

RPR I


Uj^-OO 20.00 ujCb.OO 20.00
a TEMP.(C) a TEMP.(C)
o ^ o

•
a.
WP«
"-
1—
**~" •
r"^ ~g
"o.
*^ u *
i *~*
\ JULY H
• """ *




RUG.

uj^'-OO 20.00 Sj^'.OO 20.00
a TEMP.(C) a TEMP.(C)
O i CD

0.
u_
*n"~ »
1 ^°
J ~'
1 1 •
^g


DEC.

uj^'-OO 20.00 Sj^'.OO 20.00
a TEMP.(C) a TEMP.(C)
Figure B-51.   Lake Koewee measured temperature profiles,  1973 - Station 506

-------
o
—- .0
a
Q.

(—
U_
• •
1
1
l
1

a ' TEMP.
o
—•0
o.
-~>
u_
Xg
*
(
J
/
1

Sj^.OO
a TEMP.
o
*— *O
»
0.

I—
U_
xo




i—

SJ^.QO
a TEMP.



JflN.
20.00
(C)
J
/"


MRY

20.00
(C)

I
/
/
-J
SEPT.

20-00
(C)
o
— 0
O-
^-.
t—
U-
I
|
/
FEB.
uj^.OQ ZQ.QQ
a TEMP.(C)
Q >
^-Q
O.
'—'
H-
U_
^Q
/
i
f
(' JUNE

uj^.OO i 20.00
a TEMP.(C)
o /

,,0
2w

H-
U_
^°
i
/
/'

r' OCT.

Sj^.OO 20-00
a TEMP.(C)
a
--O
0-

H-
U_
' /
.*
/
! MRRCH
^j^'.OO 20.00
a TEMP.fCJ
O v
*"*§
o_
r*
\—
u.
^o
^
/
s"*
( JULY

uj^.OO 20.00
a TEMP-(C)
o ,
—.0

Q.

U.
Xg
/

/

rv NOV.

Uj^'.OO 20-00
a TEMP.(C)
o
^-.Q
,0
O.

1—
u_
• ~~" •
y


RPR1
uj^'.OO 20.00
a TEMP.(C)
o ,

o.
'-^
H-
U_
^0
/
/
s
f RUG .

Uj^'.OO 20.00
a TEMP.(C)
O i
»— .O
a
0-

1—
u_
^EO

1

1
(' DEC .

ijj^.QO 20.00
a TEMP.(C)
Figure B-52.  Lake Keowee measured temperature profiles,  1974 - Station 506

-------
K)
o
O-
t—
u_
°-°h
UJ U
a
o
— 'O
0-
u_
a
o
—••O
Q,
t—
li.
O
^ •
JRN. £
3:0
o
0-
FEB. £
£§
' J
f
MRRCH

.00 20.00 uj^.OO 20.00 {Jj'V.OO 20-00
TEMP.fC) a TEMP.fC) ° TEMP.(C)
/ o
f' ^-O
/ •
/ Q.
' MRY H
i °
y ^-Q
"2-
/ JUNE |Z
xg
/
'^JULY
.00 20.00 Sj^.OO ' 2b.OO Sj^'.OO 20.00
TEMP.fC) a TEMP.fC) a TEMP-(C)
i O
/ o_
i —
SEPT. £
/ °
/ 7°
' 0.
OCT. £
I
/'
/4QV.
o
»— «o
^ •
0.
1—
u_
o
o
•
o.
t—
u_
a
o
.-•o
•
Q-
h-
U_
I
[
RPRI

.00 20.00
TEMP.(C)
1
s
f
XRUG .
.00 20.00
TEMP.fC)
J
1 DEC.
                            20.00   t^Tl.00     20-00    nj^J-QO     20.00   ^tJ.OO     20-00
                 a   fEMP.fC)    a   TEMP.fC)     a    TEMP.(C)     a   TEMP.(C)
                  Figure B-53.   Lake Keowee measured temperature profiles, 1975 - Station 506

-------
ro
NJ
Q
— «o
*
0-
t—
U-
^-Q
a
a
•— -a
0-
i—
U-
, 	 o
o
0
—«o
o.
1 —
u_
*?
1 °
1 ~—Q
/ Q"
/ JRN. tZ
£g
.00 20-00 Sj*^
TEhP.(C) o
• o
/ >
•' MRY t
^E§
.00 20-00 Sj0^
TEMP-(C) a
i °
/ T—O
/ O-
/ -"
/^EPT. tZ
^^
1 °
1 ^Q
/ wo
f >
FEB. H
xg
• 00 20.00 ui^
TEMP.(C) a
o
f' ^-
/ JUNE £
fEo
.00 20.00 Sj^
TEMP.(C) a
/ °
/ ~~
,dci . {z
x§
. 0
1 V-.Q
/ O-
MRRCH tZ
J§
.00 20.00 uj^
TEMP.(C) a
,J °
/ ^ *
/ o.
/ ~~
/ JULY {Z
I1 «
.00 20.00 Sj*^
TEMP-(C) a
0
^ •
0.
NOV. tZ
S°
RPRI

.00 20.00
TEMP.(C)
f
/RUG.

.00 20.00
TEMP.(C)


DEC.

                       __         20.00
                       a   TEMP.(C)
          20.00
a    TEMP.(C)
          20.00
c5    TEMP.fC)
_         20.00
a    TEhP.(C)
                        Figure B-51.  Lake Koewee measured temperature profiles, 1976 -  Station 506

-------
N)
OJ
o
.— 0
o.
u_
UJ^
a
o
.-•o
Q.
f *
t—
u_
a
Q
— iQ
2-
\—
u_
D_4;
UJ U
a
o
'-•O
a,
JRN. tZ
*Tr~ CJ
* •
.00 20.00 ^\
TEMP.(C) a
/ ~°§
f ^ •
"IT" Ci
.00 20.00 u^b
TEMP.(C) a
/ 7S
/ 2-
,-stPT. tZ
.00 20.00 Sj*^
TEMP.(C) a
i °Q
/^ •
' FEB. £
.00 20-00 S]*^'
TEMP.(C) a
/ "2§
Q.
/ rf
^ JUNE tZ
xg
.00 20.00 Sj*^
TEMP-(C) a
o
Q.
/''OCT. tz
*™~ •
/ o
f
I Cj
I
""
MRRCH |Z
.00 20.00 tiJ^
TEhP.(C) a
/"' °o
^2-
rx JULY £
^°
'.00 20.00 i*^
TEMP.(C) a
o
Vo
o.
N0V. |Z
y —
y _^
/
I RPRII
.00 20.00
TEMP.(C)
j
/
f4lUG.

.00 20.00
TEMP.(CJ


DEC.
.00 20-00 u^Sl.OO 20.00 Sj^'.OO 20.00
TEMP-(C) o TEMP.(C) a TEMP.(C)
                       Figure B-55.  Lake  Keowee measured temperature profiles,  1977 - Station 506

-------
NJ
4=
o
, — -o
Q.
1 —
U.
^o
o
— 0
.
O-
u_
xg
a-*
f
I JUNE

.00 20.00
TEMP.(C)
)
T"QCT.

.00 20. 00
TEMP.(C)
o
»-o
O-
n
•y* C3
* •
a
a
a.
*.-*
»—
u.
x§
a
o
•
Q.
1—
U.
^°
a
j
f
I MRRCH
1

.00 20.00
TEMP.(C)
s
s
( JULY

.00 20.00
TEHP.(C)
/
'NOV.

.00 20.00
TEMP.(C)
o
^°
o.
1 —
u_
^Q
Q
a
Q.
»—
U-
*' ' *
Q
O
a.
h—
U_
Xg
r™* M
a
/
/
I RPR1
1
.00 20.00
TEMP.(C)
**
'" RUG.

.00 20.00
TEMP.(C)
\
' DEC.

.00 20.00
TEMP.(C)
                          Figure B-56.  Lake Keowee  measured temperature profiles, 1978 - Station  506

-------
           APPENDIX C

MEASURED TEMPERATURE PROFILES
(Average of Stations 500 Through  506)
                   125

-------
N>
«-J
•
Q.
1—
u_
LU^
a
o
»-«o
9
Q_
•-*
xg
LU "
a
O
•— «O
*
O_
t—
U_
*~ •


"o
2-
JRN. Li
-"-o


/ a
*
Q.
FEB. |Z

i
!
»
o.
MRRCH t
/•"y
RPR I
*
.00 20.00 tuj'V.OO 20.00 [h'V.OO 20-00 {Jj^'.OQ 20.00
TEMP.IC) a TEMP.fC) a TEMP . ( C ) a TEMP-tC)


< o
*« '-•O
"1
I -•
MRV -
Is
->' °

^^- *^
^2-
JUNE {Z


* o
^-/ »-.o
1-
1 *~*
j JULY {Z
y
**
t
\ RUG.
.00 20-00 S^^'.OO 20.00 m^'.OO 20.00 uj^'.OO 20.00
TEMP.(C) a TEMP.(C) a TEMP-(C) a TEMP. 1C)


^ -^ 7°
2-
SEPT- t
^°

"1
•' ^
OCT. t
£^


| *
/ ~~
I NOV. t
! £0
1" *
*
/
1
j DEC.

                U^°Q.OQ     20-00
                a    TEMP.fC)
   .00     20.00   ml).00     20-00    Ujt-OQ     20.00
a    TEMP.fC)     a   TEMP-(C)     a    TEMP.fC)
               Figure C-1.  Lake Keowee averaged measured  temperature profiles. Stations 501-506,  1971

-------
M
-J
CD
M CD
•
a.
1 	
1
U.
*""*
*~~ •
j
i
i
I
| JRN .


uj^.OO 20-00
o TEMP.(C)
S ;
7°
O-
u_
• — »
xa
I-1?
j
,'
\ MRY
i

tu^-oo zb.oo
a TEMP.fC)
Q ,
•
Q.
-^
H-
U.

Xg
r~" ^
^ -1
>
/
} SEPT.
i

tU^-DO 20.00
o
• — *o
0.
'~>
1 —
u_
*_*
^°
!
1


FEB.


Uj^-OO 20.00
a TEMP.(CJ
So
7§

i— »
»—
u_
*—*
xg
/
/
/
/ JUNE
i

i^.OO 20.00
a TEHP.rCJ
Q .
^"o
Q_
— «
t—
u_

' •
/
y
/
( OCT.


Uj^.OO 20.00
CD
•"Q
Q.
'~>
ul
*—. »
xg
* *
o
/ 1«0
2-
^~*
MRRCH H
«— *
xg
j__ ^
t
,'
(
I
i RPR I
f
I

Uj^.OO 20. 00 u/^.OO 20.00
a TEMP.(C) a TEMP.(C)
O « Q ;
v— «Q
Q.
*-*
H-
U_

^o
* •
^^- ~~ -r-*Q
*o.
/ "*
/ JULY t

• •
^ ^
,'
1 RUG .
f

Uj^'.OO 20.00 uj^'.QO 20.00
a TEMP. rC ) a TEMP.fC)
0 j 0
T->Q
Q
— l"
H-
U.

"T~ CJ
' •
1 »°

' 2-
j NQV . t

x«=>



DEC.


iiiCb.OO 20.00 ii|C:b.OO 20*00
                       TEMP.fC)     a   TEMP.fC)    a   TEMP.(C)     a    TEMP.(C)
                Figure C-2.  Lake Keowee averaged measured temperature profiles.  Stations  501-506,  1972

-------
KJ
CO
o
,-iQ
O-
t—
u_
d
j
! JRN.

.00 20.00
TEMP.(C)
o •
*1.
I—
u.
a
o
»— 0
•
Q_
«— 4
H-
U.
~1"~ C3
*""" • _
a
/"
j MRY
.00 20.00
TEhP.(C)

SEPT.
.00 20-00
TEMP.(C)
o
.— -o
0.
1—
U.
XQ
a
o
! Q-
•-I
• FEB. t
^ES
/ So
"1
j MRRCH t
x:g
r~~ „
/
/
i
| RPR I

• 00 20.00 uj'V.OO 20.00 tU^'-OO 20-00
TEMP.(C) a TEHP.fC) o TEMP.(C)
CD * i » ^ Ci ..
«°
Q.
H-
U_
Xg
»-*?
a
«
Q.
«-4
Xg
a
*
/ JUNE t
' XO
l_— ^
"1
/ JULY |Z
I -r-r-k
/'
/ RUG.
.00 20. 00 nj^-QO 20.00 uj^.OO 20.00
TEhP.rCJ a TEMP.rCJ a TEhP.(C)
/o
.-•o
«*?
7 Q-
»-4
/^ OCT . t
j S-
/ NOV. t
i >-»

DEC.
.00 20*00 iJjCb.OO 20.00 uj^-OO 20.00
TEMP.fCJ a TEHP.fC) a TEMP.(C)
                    Figure C-3.  Lake Keowee averaged measured  temperature profiles, Stations 501-506,  1973

-------
NJ
ID
o
^-.o
*
Q-
,_,
f—
U-
« — f
[ t^J
• •
/•


1
1
i JRN.
i

Sj^.oo zb.oo
a TEMP.(C)
O y
•— «a
O-

H-
U_

/'
/
/ MRY
uj^.OO 20.00
a TEMP. 1C)
o ,
T-.Q
W ^^
*

I —
u.
jEo
t\ —~~
/
/
/
^
( SEPT •


o
--"O
*
0.
^^^
1—
U-
* — r
•'"o
,




FEB.


uj^-oo zb.oo
a TEMP.(C)
^> /

*
Q.
•-4

H-
U_
/


i JUNE
uj^.OO 20.00
a TEMP.rCJ
"^ i
*-«o
Q_

H-
U-
Jo
' •
^* 	 —
r
•
/
/
r'

"~ " "— ' ,-^.1.1.1.1— ,.•..— —-......
o
~->a
9
O.
*"*
H-
U.
*— *
*"l°" •
i O
1 »-«o
J •
1 / °-
1 *-l
1 MRRCH tZ
1 *— »
^0
.
\
j
I
1
{ RPRI

i
Uj1"^ -00 20-00 iii^'OO 20-00
a TEMP.(C) a TEMP.(C)
~Ct s ~C3 i

•
o.

H-
U_
* rr »

/ CS-

/' JULY H
*~-/—»
/
/

/' RUG .
Ixj^.OO 20.00 iij^.OO 20-00
a TEMP.ICJ a TEMP.(C)
^3 i "o
T-«O
9
Q_
*~^
H-
U-
EEo
i — •
/ -r-lQ
/ ?
1
,' NOV. £
1 	 O
1 — •



I DEC.
i


                  a   TEMP.(C)
UJ
a
TEMP.(C)
a   TEhP.fCJ
Uj U.UU    ZU-UI
o    TEMP.(C)
                Fiqure C-4.   Lake Keowee measured temperature profiles, Stations 501-506, 197f

-------
Q
*
o.
1—
U_
»— *
I ~"" *
i a
|o_
v^
JRN. t
Q
* »
a.
FEB. £
*— *
• •

•

, o
»
ex
MHRCH |I
J
1
I RPR I
Uj^'.OO 20-00 uj^'.QO 20. 00 uj'V.OO 20-00 [Jj^'.QO ZO.QO
° TEMP.rC) a TEMP.tCJ a TEMP.fC) a TEMP.(C)
Q y O | O
*-*o
Q-
*-4


1—
u_
HQ
h~* ,
x *- /

/ °*-
/ . *•*


/ JULY u.
^o
l 	 o
/
/


r


zb • 00 uj^'. 00 20-00
a TEMP.fC) a TEMP.fC) a TEMP.fC) a TEMP.fC)
o
* — »o
•
Q.
1—
U_
H-0?
/ So
/ *1
/ rt
s '"•
/•''SEPT > |j_
*T™ i^
1 • r~ -~ •• 'i1 "— '• f\ ._ —
/ So
, *2-
^-QCT. t
• ~ •



i O
/ *
/ o.
1 *-4
' •
/
DEC.

  „         20.00
  a   TEMP.fC)
      zo.oo   [D^.oo    20.00   mTi.oo     zd.oo
TEMP.fC)    a   TEMP.fC)     a   TEMP.fC)
Fiqure C-5.  Lake Keowee measured temperature profiles. Stations 501-506, 1975

-------
o
*
Q-
1—
U_
£°
/
i
j

uj^-OO
a TEMP.
0
•

•-. *


i —
u.
• •

f
i

i
(
a ' TEMP.
o
*
o.
^->
I—
u_
•Co
' •



f

iii U * 00
a TEMP.


JRN.

20. 00
(C)
1





MRY
20.00
fCJ

(
/
1
sCC D T
C* L. 1 1 *

20.00
fCJ
0
•
Q.
1—
u_
jEia
1 °
io.
^_^"*
FEB. H
* •
j

j MRRCH

Sj^.OO 20.00 m^'-OO 20.00
a TEMP.rC) a TEMP.fC)
O s O /
^^Q X 	 V

O-
*•••


t—
u_
/ yS
2-

/ _*"'
/ *^
^ JUNE £
f
i
f
/

/ JULY
uj^'.OO 20.00 uj^.OO 20.00
a TEMP.fCJ a TEMP-fCJ
o » a
*
Q_
^,
1—
U_
XO
• •
/ ^0
| M ^
/ °-
j •»•
^BCT. t
pES



ft NOV .

Uj^'.QO 20.00 uj^'-OO 20.00
a TEMP.fC) f=> TEMP.fC)
o
a.
«*«
1—
lu
^E§
/
/
j RPR I

Uj^'.OO 20-00
a TEMP.fC)
0 f
***&
0.

-------
U)
NJ
o
°T§
9
o_
H-
U.
X ^
,_a
/ °
/ "iiO
>
JRN . £
XQ
. C^
rmit *
I
t
(
FEB.
*

Sj^-OO 20.00 tu^'-OO ZO.QO
o TEMP.fCJ a TEMP.fCJ
o / o ,
—•O
,0

*~~rv
1—
ta_
•_
Xo
/ »— 
I— °
1 »
'
/ O-
/ *"*
/ ""^
Xo
. 	 Q
• •
'
{
1
1
1



uj^-OO 20.00 uj^'-OO 20.00
a TEMP.fCJ a TEMP.fCJ
O
""*o
o_
H-
U-
-r-Q
•-«?
i
/
i
j MRRCH
*

Uj^'-OO 20.00
a TEMP.fCJ
0
• Ci
*o
O.
•-^
1—
li
v_^
' •

,*X
/
f
/ JULY
/

lLjCb.OO 20-00
a TEMP.fCJ
0
7§
o.
*-•
u_
-J-Q
•^Q
fr~~ •
1
I
j
/'NOV.
«


uj^'.OO 20.00
o TEMP.fCJ
0
•T-.O
•
O-
^^
t—
a.
XO
i— .
x
/
/
/ RPR I


Sj^'.OO 20-00
a TEMP.fCJ
0
^^^^^^^
M°
•
O.
*— *
H-
LL.
V j*
r™* *

,
/
y*
X pUD.
/
r

Uj^.OO 20-00
a TEMP.fCJ
O i

o.
~f
«— *
t—
u_
1~O
~^o
^•"* ,



« DEC.



aj^l'.OO 20-00
a TEMP.fCJ
                   Figure C-7.  Lake  Keowee measured  temperature profiles.  Stations 501-506,  1977

-------
OJ
o
.—.o
• .
OH

t—
u_
jig
o
-r—Q
•
O-

JRN. |Z
* *
/ ° *
/ *"§
/ •
/ Q.
1 -•
I >-%
j FEB. £
' ^g

/
i
i
j MflRCH
i
U/^.QO 20.00 {ti^'.QO 20-00 m^.OO 20.00
a TEMP.fCJ a TEMP.fCJ a TEMP.fCJ
20 I o o


•
•— *

L—
p.
*^*" C3
* *
| T— «C1

V *
^ O-
/ "^
/ ^^
J . 	
/ MRY t
y «-~*O

/ a* ^
f Q.
/ ^,'*
/
/ JUNE 1Z
1 — Q
^

/
,*
s

f' JUL r
Uj^-OO 20.00 {ti^'.OO 20.00 Sj^.OO 20.00
a TEMP.fCJ a TEMP.fCJ a TEMP.fCJ
o / "b , Q
r- 'Q
•
O.
»—
u_
xg
' '"g
' •
y 0.
..""SEPT. E
•'-g
• •
1 »->Q
I a°
* —
t O.
*** f^ r* *f ^™*
X w O I . It
f !t
^g
/
f
§
r "'NQV .

aj^.OO 20-00 uj^'.OO 2b.OO uj^-QO 20-00
a TEMP.fCJ a TEMP.fCJ a TEMP.fCJ
O j
,-«o
* *^
a.
«*<«
u_
«-«<
i
tf
,*

{ RPRI

uj^.QO 20-00
a TEMP.fCJ
o


« 4,
O.
*"""

U_
/
i
/
/
*

/'"RUO.
uj^.OQ 20.00
a TEMP.fCJ
o .
.-•0

o.
h-
XO
r~*^ •
f
j

/ DEC.

uj^'.OO 20.00
a TEMP.fCJ
                 Figure C-8.   Lake Keowee  measured temperature profiles. Stations  501-506, 1978

-------
                             TECHNICAL REPORT DATA
                       (Please read Jauruciiuns on the reverse before completing)
 REPORT NO. ,
 EPA-600/7-82-037e
                        2.
                                                 3. RECIPIENT'S ACCESSION-NO,
4 TITLE AND SUBTITLE
               Verification and Transfer of
 Thermal Pollution  Model;  Volume V. Verifica-
 tion of One-dimensional Numerical Model
             6 REPORT DATE
             May 1982
             6. PERFORMING ORGANIZATION CODE
        s.s.Lee,  S.Sengupta, and E.V.Nwadike
                                                 8 PERFORMING ORGANIZATION REPORT NO.
 PERFORMING ORGANIZATION NAME AND ADDRESS
 The University  of  Miami
 Department of Mechanical  Engineering
 P.O. Box 248294
 Coral Gables, Florida  33124  	
                                                 10 PRC.GRAM ELEMENT NO.
             11 CONTRACT/GRANT NO
              EPA IAG-78-DX-0166*
12 SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
             13. TYPE OF REPORT AND PERIOD COVERED
              Final: 3/78-9/80	
             14 SPONSORING AGENCY CODE
              EPA/600/13
 s SUPPLEMENTARY NOTES  IERL-RTP project officer  is  Theodore G.Brna, Mail  Drop
 61, 919/541-2633.  (*) IAG with NASA, Kennedy Space Center, FL 32899,
 subcontracted  to U. of Miami under NASA  Contract NAS 10-9410.
 s ABSTRACT The  six-volume report: describes  the theory Of a three-dimen-
 sional  (3-D)  mathematical thermal discharge  model and a related  one-
 dimensional  (1-D)  model, includes model verification at two  sites,  and
 provides a separate user's manual for  each model. The 3-D model  has two
 forms:  free  surface and rigid lid. The former,  verified at Anclote  An-
 chorage (FL),  allows a free air/water  interface and is suited  for signi
 ficant  surface wave heights compared to   mean water depth; e.g., estu-
 aries and  coastal  regions. The latter, verified at Lake Keowee (SC), is
 suited  for small surface wave heights  compared to depth (e.g., natural
 or man-made  inland lakes) because surface elevation has been removed as
 a parameter.  These models allow computation  of time-dependent  velocity
 and temperature fields for given initial  conditions and time-varying
 boundary conditions. The free-surface  model  also provides surface
 height  variations  with time. The 1-D model  is considerably more  econo-
 mical to run but does not provide the  detailed prediction of thermal
 plume behavior of  the 3-D models. The  1-D model assumes horizontal
 homogeneity,  but includes area-change  and several surface-mechanism
 effects.                                   _	  	
17.
                          KEY WORDS AND DOCUMENT ANALYSIS
               DESCRIPTORS
                                      b IDENTlFlERS'OPEN ENDED TERMS
                          COSATI 1 it-td Croup
 Pollution
 Thermal  Diffusivity
 Mathematical Models
  Estuaries
 Lakes
 Plumes
   Pollution Control
   Stationary Sources
13B
20M
12A
08H,08J

 21B
13 DISTRIBUTION STATEMENT
 Release to Public
  19 SECURITY CLASS tThtsRtponi
   Unclassified
                                                             21 NO OF PAGES
                                                                147
  2O SECURITY CLASS (Thtipagt/
   Unclassified
                         12 PRICE
£PA Form 2230 ! (»-73)
134

-------