DSDA
|iS
tl fr
United States
Department of
Agriculture
- .--\ -' h-"v % ~ •' . -.
Northeast Watershed
;C'ertteK • , ,. ,.., .
University Park PA 16802
United States
Environmental Protection
Agency
Office of Environmental
Processes and Effects Research
Washington DC 20460 ..
EPA-600/7-84-033
March 1984
Research and Development
Water Movement and
Quality on Stripmined
Lands:
A Compilation of
Computer Programs -
.,.--M«i*'!
••••'>?»,;•
ency
R&D Program
Report: -
^
-*-*;^
E^^i^aBi^^«^fc^y4ia^«ii«d£aai2«
-------
WATER MOVEMENT AND Q
COMPILATION
B. E. Weinri
U.S. Departm
Northeast Wa
University P
EP
ON STRIPMINED LANDS:
OF COMPUTER PROGRAMS
h and A. S. Rogowski
nt of Agriculture, ARS
ershed Research Center
rk, Pennsylvania 16802
-IAG-D5-E763
PB ject Officer
Office of Ene
Washi
inton W. Hall
gy, Minerals and Industry
gton, D.C. 20250
Office of Research and Development
U.S. Environmental Protection Agency
Washi
ngton, D.C. 20250
U.S. Environmental Protection Agency
Eegion 5, Library (5PL-16)
230 S. Dearborn Street, Boom 1670
Chicago, "IL 60604
-------
DISCLAIMER
This report has been reviewed by the Office of Energy, Minesoils and
Industry, U.S. Environmental Protection Agency, and approved for
publication. Approval does not signify that the contents necessarily re-
flect the views and policies of the U.S. Environmental Protection Agency,
nor does mention of trade names or commercial products constitute endorse-
ment or recommendation for use.
ii
-------
FOREWORD
The Federal Water Pollution Control Act Amendments of 1972, in part,
stress the control of nonpoint source pollution. Sections 102 (C-l), 208
(b-2,F) and 304(e) authorize basin scale development of water quality
control plans and provide for area-wide waste treatment management. The
act and the amendments include, when warranted, waters from agriculturally
and silviculturally related nonpoint sources, and requires the issuance of
guidelines for both identifying and evaluating the nature and extent of
nonpoint source pollutants and the methods to control these sources.
Research program at the Northeast Watershed Research Center contributes to
the aforementioned goals. The major objectives of the Center are to:
• Study the major hydrologic and water-quality associated problems
of the Northeastern U.S. and
• Develop hydrologic and water quality simulation capability useful
for land-use planning. Initial emphasis is on the hydrologically
most severe land uses of the Northeast.
Within the context of the Center's objectives, stripmining for coal
ranks as a major and hydrologically severe land use. In addition, once
the site is reclaimed and the conditions of the mining permit are met,
stripmined areas revert legally from point to nonpoint sources. As a
result, the hydrologic, physical, and chemical behavior of the reclaimed
1X1
-------
land needs to be understood directly and in terms of control practices before
the goals of Sections 102, 208 and 304 can be fully met.
Signed:
PC
l/VUi
Harry B. Pionke
Director
Northeast Watershed
Research Center
iv
-------
CONCLUSIONS
This publication is a collection of the computer programs written,
adapted and/or developed during the Northeast Watershed Research Center's
strip mine hydrology research project. Although, in our study, we dealt
with mined and reclaimed lands, the programs can be applied to any general
hydrological situation. One can find here programs applicable to all the
major components of the watershed rainfall-runoff-drainage process.
Also included in this compilation are programs handling erosion.
1EPA-IAG-D5-E763
-------
CONTENTS
Foreword iii
Conclusions v
1. Introduction 1
Classification by hydrological component 1
Classification by mathematical technique 4
Arrangement 6
2. Standardization Program. .... 8
3. Surface Water and Density Program 22
4. Green and Corey Model. 29
5. Mein and Larson Infiltration Model 40
6. Mein Numerical Model 99
7. Illinois Aquifer Simulation Model 217
8. Ritchie Evapotranspiration (ET) Model 271
9. Rarie Erosion Model 298
10. Soil Loss Equation 331
11. Morth Oxygen Diffusion Model 339
12. Semivariogram Calculation Program 355
13. Surface II Contouring System 428
References 433
vi
-------
SECTION 1
INTRODUCTION
The programs may be grouped either of two ways. They can be classified
according to the part of the hydrological process with which they deal, or
they may be grouped according to the mathematical or computational
techniques they employ.
CLASSIFICATION BY HYDROLOGICAL COMPONENT
The names of the programs are given in Figure 1 which also shows the
cross section of a watershed. Using this figure to guide us, we can classify
the programs into the respective watershed components with which they deal.
Some programs, of course, will fall into more than one part of the watershed
rainfall-runoff-drainage process, because they deal with more than one
component. We, however, will classify them here into the part in which their
most important application is. We classify the programs into three parts:
those dealing with runoff, those dealing with the unsaturated flow and those
dealing with the saturated flow.
The runoff programs apply to precipitation which does not infiltrate into
the soil. Programs which are primarily concerned with these components are the
Mein and Larson Infiltration Model, the Rarie Erosion Program and the Soil Loss
Equation, although the latter two deal with erosion which actually is one effect
of runoff. The Mein and Larson Model also yields some information on the
unsaturated flow.
-------
Me1ni and Larson
of infiltration
Rarli Erosion Mode]
Semivariogram Calculation
and
Surface II Contouring
System Krlging Module
Water-
Table
Ritchie Evapotrans-
piration Model
Standardization
Soil Loss Equation
Meln Numerical
Solution and
Model of Diff-
usion Equation
Surface Water
and Density
.Water
Table
Oxygen Diffusion Model
Green and Corey Model
Illinois State Water Survey
Aquifer Simulation Model
FIGURE 1
-------
The unsaturated flow part of the watershed includes infiltration, water
content and redistribution in the top layers of the soil as well as recharge
into groundwater. The Standardization, and Surface Water and Density programs
and the Green and Corey and the Mein Numerical models all directly or indirectly
deal with one or more of these components. Some merely calculate information
for input into another as the Green and Corey Model which computes water
retention curves for input into the Mein Numerical Model. Some models overlap
with the other categories. For instance, the Mein Numerical Model can also
furnish information on runoff and the height of the water table.
In addition to the above there are also programs in the unsaturated flow
section which compute evapotranspiration and chart oxygen flow in the top
layers of the soil. Thus, included in the unsaturated grouping are the
Ritchie Evapotranspiration (ET) Model and the Morth Oxygen Diffusion Model.
Finally, we come to saturated flow. In this part we are concerned with
the rise and fall of the water table, the effects of mine drainage on
aquifers, and the discharge of acid groundwater into streams. The Illinois
Aquifer Simulation Model deals with the hydrogeological aspects of saturated
flow. A companion volume.to this one has an acid drainage model which deals
2
with chemical aspects of saturated flow.
The three parts—runoff, unsaturated flow and saturated flow—are all
interrelated and can be interfaced with each other. The programs discussed
are compatible with all programs which apply to different parts of the cross
section in Figure 1. Thus, the Mein Numerical Model is used to compute
2
D. B. Jaynes, A. S. Rogowski, and H. B. Pionke. 1983. Atmosphere and
Temperature Within a Reclaimed Coal Strip Mine and a Numerical Simulation
of Acid Mine Drainage from Strip Mined Lands, EPA-600/7-84-032.
-------
recharge from the unsaturated zone into the water table and, in turn,
provides input into the Illinois Aquifer Simulation Model. Although we may
think that this is unrealistic, since the Mein Program is one-dimensional while
the Illinois Program is two-dimensional, the final group of programs resolves
the question.
The final two programs cannot be classified under any of the above three
categories. This is because they are statistical programs which are inherently
related to none of the three and which perform statistical analyses on any of
the watershed components regardless of the part of cross section they are in.
These are the Surface II Contouring System and the Plea Semivar Program. The
Surface II Contouring System is used for example to form a two-dimensional grid
of recharge values from several runs of the Mein Numerical Model at different
nodes, this provides the necessary two-dimensional recharge information for
input into the Illinois Aquifer Simulation Model.
CLASSIFICATION BY MATHEMATICAL TECHNIQUE
Classification by mathematical technique may aid the reader in understand-
ing how to apply the programs. Some programs merely handle data or display
what has been measured. Other programs have predictive capabilities. In
here as before we will again have three categories: Data Handling programs,
Simulation programs, and Statistical programs.
The Data Handling programs primarily display the watershed data—water
content, density and porosity—based on a measurement technique. The two
programs used here are the Standardization and Surface Water and Density
programs. Their output is used as input into the Simulation and Statistical
programs.
-------
The Simulation programs take input data and predict watershed variables
at a time or place where no data exist. These are deterministic models that
come from derivations based on generalized conditions. They can be further
subdivided into two categories: Ordinary and Advanced. Each of the Advanced
Simulation models involve a partial differential equation, while the Ordinary
Simulation models involve less complicated mathematics. Nevertheless, several
of the Ordinary Simulation models contain derivations which include Calculus.
The Ordinary Simulation models are the Mein and Larson Infiltration Model,
the Rarie Eros ion Model, the Soil Loss Equation, and the Green and Corey Model.
The Advanced Simulation models are the Mein Numerical Model, the Morth Oxygen
Diffusion Model, the Ritchie ET Model, the Illinois Aquifer Simulation Model and
the Morth Acid Drainage Model.
The final group, as before, are the Statistical programs; the Surface II
Contouring System, and the Plea Semivar Program. Surface II Contouring System
includes a technique called Universal Kriging, based on the theory of
regionalized variables. These programs will provide data correlations between
points and highly accurate interpolations and contours. Kriging is far superior
to any weighted least squares methods. The program can handle any arbitrary
arrangement of data: the data need not be arranged on a grid. We can apply
the Statistical programs to the output of the other programs of this package
as well as to measured data.
The programs in this publication cover a wide range of options both
physically and mathematically, and can model all the major components of the
watershed. Furthermore, use is made of an extensive array of mathematical
techniques to assure that accurate results will be reported.
-------
AKJRANGEMENT
There are twelve programs In this compilation. All but one of them are
written fully in FORTRAN. (The Surface II Contouring System is written about
95% in FORTRAN.) The programs are arranged in order according to the hydrological
component which they handle. The runoff programs come first followed by the
unsaturated flow programs and the saturated flow programs. The statistical
programs are placed last.
Each program writeup consists of four parts. First there is a short
introductory statement about the program. This introductory statement usually
includes information about the part of the watershed the program handles, its
relationship to the other programs, the mathematical techniques it employs and
the major inputs and outputs of the program.
The next two parts of each writeup contain the actual sample run of the
program where the first segment is a source listing of the program. This
source listing, at times, includes extensive documentation. The other segment
of the computer run is a simple output for the program.
The fourth part of each writeup gives the data format. The variable
names are used explicitly as they occur in the programs themselves, i.e.—the
FORTRAN variable names. The names are explained in the comment statements of
the respective programs.
The one exception to this arrangement is the writeup for the Surface II
Contouring System. No source listing is included of this program because it
is a proprietary program. For the same reasons only a small part of the output
of Surface II is included in this publication. On the other hand, contour plots
of the output of Surface II have been included. The data format for Surface II
has not been included because it is adequately covered in the commercially
available Surface II user's manual.
-------
Except for Surface II, all of the programs are available from the Northeast
Watershed Research Center. We must warn, however, that, in many cases, it might
not be possible for a prospective user to pick up one of these programs and
immediately apply it to his problem. The users need first to become suffi-
ciently familiar with the program through experimentation with it to realize
its strength, limitation, and applicability to his own situation. Therefore,
we suggest that the user must have at least some degree of knowledge of the
mathematical and physical prinicples on which these programs are based.
A few of the programs are not as well documented as we would like.
Some, although they work, do not exemply efficient programming. Other
programs, especially the early ones we developed, reflect our initial lack
of experience. Most of the programs were adapted and/or modified from other
sources. These often were poorly documented and, in some cases, inefficient.
In spite of these shortcomings we feel that the mathematical and physical
principles used are important enough to warrant the inclusion of these
programs here.
-------
SECTION 2
STANDARDIZATION PROGRAM
The Standardization Program is a data handling program in that its main
function is to display hydrological values as measured. Its purpose is not
to perform computations on those values. One merely has data collecting
devices at the proper points in the soil and this program will determine and
output the quantities according to the measurements. The program pertains
to the unsaturated region of the soil because that is where data collecting
methods for those programs are most applicable.
This does not mean that no mathematical techniques are employed in this
program. The program assumes the use of nuclear methods to collect data.
For instance, to compute water content, a neutron back scatter method is
assumed. Thus, there are equations in the program which relate the nuclear
data to water content. Furthermore, it is always good to perform measure-
ments more than once for verification purposes. Therefore, there is a
statistical section in the program which computes averages, standard devia-
tion and coefficient of variation for the different measurements.
Knowledge of the outputs of this program is important in its own right.
What is more important for this manual of programs, however, is that the
Standardization Program provides initial data for the Mein Numerical Model
which is the key unsaturated model. The Mein Numerical Model requires the
initial moisture profile of the soil as input. The Standardization Program
provides this. It can also be used to provide data for input into the
-------
Semivariogram Programs and Surface II. In such cases, however, the program
and its complimentary data collection procedures would have to be done in
many places along a line or over a horizontal or vertical two-dimensional
surface. At any rate, the key function of the Standardization Program is
to provide input for other programs.
INPUT: For Each Depth:
STD - Standard count for water
CPM - Counts per minute for water
STDD - Standard count for density
OUTPUT: For Each Depth:
Water content
Wet and dry bulk density
Total pore space
Basic statistics
-------
ANDABDIZATICB. PBOGBAM
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123*
0.1 //HNIXXXXX JOB (BEW01)
0.2 /*JOBPARM I«
0.3 //EXEC FWCLG,PABM=NOSOUBCE
0.4 /*JOBPAB?! FOLLSKIPS
0 . 5 //S IS IN DD *
1. //* 4******************************************************************C
2. //*
3. //* COMPUTES PBOGRAM FOB CALCULATION 0* SOIL HATEB COHTENT BULK C
4. //* DENSITY STOTAL POBE SPACE BY NOCLEAB BSTHODS. C
5. //* C
6. //* *******************************************************************c
7. C
8. C
9. C
10. C MODIFIED BY: BfilAN E. HEINBICH
11. C OSDA-SEA-AB
12. C NOfiTHEAST IATIBSBED BESEABCH CENTEB
13. C 110 BESEABCH BD. A
14. C UNI7SBSITY PARK, PA. 16802
15. C
16. C
17. C THE PBOGBAM USES CONSTANTS "A" AND "B" FHOH BAWITZ STANDABISATION,
18. C THE COBVE FOB "ALL" SOILS ,AND TROXLEB CALIB. FOB DENSITY .
19. C
20. C NO =SITE FILE NO.
21. C HSOIL =SOIL NO.
22. C ID ATE *DATE
23. C IDEPTH =DEPTH, (CM)
24. C ISTDSSTD =STANDABD COONT
25. C ICPH&CPH =COONT(CPW)
26. C ADD "D" AT END FOR DENSITY INPUT .
27. C BATES =IATEE CONTENT BY VOLUME ,(IE CS**3/CM**3)
28. C BD =B3LK DENSITY (WET) , (G/CM**3)
29. C DEN =BOLK DENSITY (DBY), (G/CH**3)
30. C THETA2 =TOTAL POEE SPACE.
31. DISENSION NO (320) ,IDATE (320) ,CB (320), CBE (320) f i ATEB (320) ,
32. 1BD(320) ,DEN(320) ,THETA2(320) ,S(320) ,DEPTH(320)
33. DIflENSION BATBES (320, 35) ,DENS (320 ,35) ,THETAS (320, 35)
14. CHARACTER*5 MSOIL(320) , NO
35. PEAL ISTD(32C) ,I3TDD(320) ,ICPB(320) ,ICPWD (323) ,IDSPTH(320)
36. DO 1000 1=1,99
37 . ISTDD (I) =0.0
33. ICPMD(I) =0.0
39. BD(I) = 0.0
40. DEN(I) « 0,0
41. THETA2(I) * 0.0
42. B (I) =0.0
43. 1000 CONTINUE
44. J=0
45. C
46. C
'47. 22 BEAD(5,13)K
48. 13 FOBSAT(I3)
49. J=J*1
50. DO 7 1=1, K
10
-------
STANDARDIZATION. PROGRAM
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
8r
u .
81.
82.
83.
84.
85.
86.
87.
88 .
89.
90.
91 .
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
1C2.
103.
1C4.
105.
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
HA TEH (I) =0.0
BEAD (5, 6) SO(I) ,SSOIL(I) , ID ATE (I) , IDEPTH (I) -ISTD (I)
6 FOBHAT(A5,A5,I6,F4.0, 2F5.0)
CB(I)=ICPH(I)/ISTD(I)
IF (IDEPTH (I)) 9, 8, 9
8 CONTINUE
COBPUTE SDBFACE WATEE CONTENT
A* 1.2418
B=-0.6755
IATEB (I)=A*CB(1)+B
IF (WATER (I) .LT.0.0)
GO TO 7
S CONTINUE
A=0.4440
B=-0.0937
WATEB(I)=A*CB (I)+B
IF (IATEK (I).LT.O.O) BATES (I) =0.0
DEPTH (I)=IDEPTH(I)
IDEPTH(I) =IDEPTH(I)*2 .54
7 CONTINUE
iBITE(6,1)
1 FOBSAT(1H1,«
1ACE .
WBITE(6,2)
2 FOBMAT(1HO, '
1R STDD
ICPM(I)
VOLUSETBIC iATIB CONTENT ,DENSITY AND TOTAL POBE
SOIL
BD
DATE
DEN
(G/Cfl**3) (BY
NO
CPSD
IBITE(6,222)
222 F08SAT(1H ,»
10L)
KONT=1
DO 13 1=1, K
8EAD( 5,11)ISTDD (I) ,ICPHD(I)
11 FOHMAT(20X,2F5.0)
CBB(I)=ICP«D II) /I STDD (I)
BD (I) =2. 2277-1. 0873* ALOG (CEB (I) )
DEN(I)=BD (I) -WATER (I)
THSTA2{I) =1.0- (DEN (I) /2.65)
P. (I) = 100. 0*W ATEB (I) /THETA2 (I)
2000 CONTINUE
I? (KO NT -50) 80, 80, 90
90 CONTINUE
» BITS (6, 203)
200 FOBMAT(1H1,» NO
1E STDD CPMD
WHITE (6, 9 22)
922 FOSMAT{1HO,«
10L)
KONT= 1
80 CONTINUE
DEPTH STDH
TPS fSATUBATION
(Cfl)
VOL)
CPHM WAI
DEPTH »)
(BY
(IN) ',//)
SOIL
ED
DATS
DEN
DEPTH STDM
TPS %SATUBATION
(G/01**3) (BY
(CM)
VOL)
CPHW WAT
DEPTH »)
(BY
NO{I) , HSOIL(I) ,IDATE(I) ,IDEPTH (I) .ISTD (I) ,ICPH(I) ,W
_. ._. _. DEPTH(I)
HBITE (6,111)
1TER (I) , ISTDD (I) ,ICPMD(I) ,BD(I) ,DEN (I)',THET A2 (I) ,R (I), ,
111 FOBMAT(1H ,2X,A5,2X,A5,2X,I6,2X,F5. 1,2 (2X,F7. 1) ,2X, F6. 4, 2 (21,
1 ,2(2X,F4. 2) 2X,F6.4,53C,F6.2,5X,F5.1)
KONT=KONT+1
RATERS (I,J)=W ATER(I)
DSNS(I,J) =DEN (I)
11
-------
TANDABDIZATION.PEOGBAM
1234567
123456789012345678901234567890123456789012345678901234567890123456789012:
106. THETAS(I,J)=THETA2(I)
107. 10 CONTINUE
108. RE1D(5,20)INEV
109. 20 FOBMAT(I2)
110. IF(INES-99) 21,22,21
111. 21 CONTINUE
112. IF (J. BQ. 1) GO TO 25
113. WHITE (6,300)
114. 300 FOBHAT('1','AVERAGES',/)
115. WBITS(6,305)
116. 305 FOBHAT('0',39X,'DENSITY')
117. WHITE (6,310)
118. 310 FOBflAT(» *, 'DEPTH IATEE TPS» ,8X,'A VEB STD DV COEF VAB')
119. iBITE(6,315)
120. 315 FOBMATC ^'(CH) (BY VOL) (BY VOL)« ,9X, • (G/CC) • ,61, • (PEB CENT) «)
121. 25 CONTINUE
122. DO 35 1=1,K
123. CV=0.0
124. SIGMA =0.0
125. IF (J.EQ. 1) GO TO 33
126. SUHW=0.0
127. SUHD = 0.0
128. SUMT=G.O
129. DO 30 JJ=1,J
130. SU«H=SUMW+WATEBS(I,JJ)
131. SUHD=SUMD+DENS(I,JJ)
132. SUMT=SUMT+THETAS(I,JJ)
133. 30 CONTINUE
134. WATER(I)=SUflW/J
135. DEN(I)=SUaD/J
136. THETA2(I)=SUHT/J
137. C
138. C
139. C CALUCULATION OF STANDABD DEVIATION AND COEFFICIENT OF VARIATION FOB
140. C DENSITY. SEE PAGE 38 OF SNEDECOB FOE TABLE.
141. C
142. IF (J. EQ. 3) DHAX = AaAl1(DENS(I, 1) ,DENS (1,2) ,DENS (I ,3) )
143. IF (J.EQ.3) DHIN=ANIR1(DENS(I, 1),DENS(I,2) ,DENS(I,3))
144. IF (J.EQ.4) DHAX=AMAX1(DENS(I, 1) , DENS (1,2) ,DENS(I,3) ,DENSff,4))
145. IF (J.EQ.4) DflIN=AMINl (DENS(I,1),DENS (1,2) ,DENS (1,3) ,DENS (1,4))
146. IF (J.EQ. 5) DMAX= ASM 1 (BENS (I, 1), DENS (1,2) , DENS (1,3) , DENS (1,4) ,
147. 1 DENS (1,5))
148. IF (J.EQ.5) DBIN=AMIN1 (DENS (1,1),DENS (1,2),DENS (1,3) , DSNS (1,4),
149. 1 DENS (1,5))
150. IF (J.EQ.6) DHAX=AHAX1 (DENS (1,1), DENS (1,2) , DENS (1,3) , DENS (1,4),
151. 1 DENS (1,5) ,DENS (1,6))
152. IF (J.EQ. 6) DMIN=A«!IH1(DENS{I,1), DENS(I,2) ,DENS(I,3) ,D3NS (1,4),
153. 1 DENS (1,5) ,DENS(I,6))
154. IF (J.EQ.8) DHAX=ASAX1(DBNS(I, 1) , DENS (I, 2) ,DENS (I ,3) ,DENS(I,4) ,
155. 1 DRNS (I,5),DENS(I,6) ,DSNS(I,7) ,DENS(I,8))
156, IF {J.EQ.8) D«IN=A«IN1 (DENS (1,1),DENS (1,2) ,DENS (I, 3) , DENS (1,4) ,
157. 1 DENS (I,5),DENS(I,6), DENS(I,7) ,DENS(I,8))
158. IF (J.EQ.14) DMAX=AMAX1 (DENS (1,1) ,DENS (1,2) ,DENS (I, 3),DENS (I, 4),
159. 1 DENS (I, 5), DENS (I, 6), DENS (I ,7 ) , DENS (I ,8) , DENS (I,9), DENS (I, 10) ,
160. 2 DSNS (1,11),DENS (I,12),DENS (I,13),DENS (1,14))
12
-------
STAND ARDIZ ATI 0 8. PR0GB IM
1234561
123456789012345678901234567890123456789012345678901234567890123456789C
161. IP (J.EQ. 14) DMIN=1MIN1 (DEHS(I, 1) ,DENS(I,2) ,DESS(I,3) ,DENS (1,4) <
162. 1 DENS (I,5),DENS(I,6),DENS(It7),DENS(I,8) ,DBNS (1,9),DENS (I, 10),
163. 2 DENS (I, 11) , DENS (1,12), DENS (1,13),DENS (I, 14))
164. IF (J.EQ.19) DHAX=AHAX1 (DEHS(I, 1) ,DENS(I,2) ,DEHS(I,3) ,DENS(I,4) ,
165. 1 DEMS (1,5) ,DENS(I,6),DENS(I,7),DENS(I,8) ,DEHS{I,9) ,DENS (1,10) ,
166. 2 DENS (1,11) , DENS (1,12 ),DENS (1,13) ,DENS (I,14),DENS (I, 15) , DINS (I, 1
167. 3 ,DEHS (I, 17) ,DENS (1,18) , DENS (I, 19))
168. IF (J.EQ.19) DflIN=AHINl(DENS(I, 1) ,DENS(I,2) ,DEHS(I,3) ,DENS(I,4) ,
169. 1 DENS (1,5) ,DESS(I,6) ,DENS(I,7) ,DESS(I,8) ,DENS (1,9) , DENS (1,10) ,
170. 2 DENS (1,11) , DENS (I, 12), DENS (1,13) ,DENS (I, 14),DENS (I, 15) , DENS (I, 1
171. 3 , DENS (I, 17), DENS (1,18) , DENS (I. 19))
172. IF (J.EQ.20) DMAX^AHAXI (DENS (1,1) ,DENS (1,2) ,DEHS (I, 3) , DENS (1,4),
173. 1 DENS (I,5), DEHS (I, 6), DENS (1,7) , DENS (I, 8) ,DENS (1,9) ,DENS (I , 10) ,
174. 2 DENS (1,11) , DENS (I, 12) ,DENS (I, 13) , DINS (I, 14) , DENS (I, 15) ,DENS(I,1
175. 3 ,DENS(I,17),DENS(I,18) ,DESS (1,19 ),DENS (1,20) )
176. IF (J.EQ. 23) DHIN=AHIN1 (DENS(I, 1) , DINS (I, 2) ,DENS(I, 3) ,DENS(I ,4) ,
177. 1 DEHS (I,5),DENS(I,6) ,DENS(I,7) , DENS (I, 8) ,CENS(I,9) ,DENS(I,10) ,
173. 2 DENS (1,11) ,DENS (1,12) ,DENS (1,13) ,DENS (I, 14), DENS (1,15) , DENS (I, 1
179. 3 ,DENS (I, 17) , DENS (1,18) , DENS (I, 19),DENS (1,20))
1RO. IF (J.EQ.23) DaAX=AHAXl(DESS(I, 1) ,DENS(I,2) ,DEHS(I,3) ,DENS(I,4) ,
181. 1 DENS (I, 5) ,DENS (I, 6), DENS (I ,7), DENS (I,8), DENS (1,9) , DENS (I, 10) ,
182. 2 DENS (1,11) , DENS (I, 12) , DENS (I, 13) , DENS (I, 14) ,DENS (I, 15) ,DENS(I,1i
183. 3 ,DESS(I,17) ,DENS (1,18) ,DENS(I,19) ,EENS(I,20) ,DENS(I,21) f DENS(I,;
184. 4 ),DENS(I,23))
185. IF (J.EQ. 23) DMIN*AMIN1 (DENS(I, 1) ,DENS (1,2) ,DENS(I,3) ,DENS (1,4) ,
186. 1 DENS (1,5), DENS (1,6), DENS (1,7) ,DENS (1,8), DENS (1,9) , DENS (I, 10) ,
187. 2 DENS (1,11) ,DENS(I, 12),DENS (I, 1 3) ,DENS (I, 14) ,DENS (I,15) ,DENS(I, It
188. 3 ,DENS (I, 17), DENS (I, 18) , DENS (I, 19) , DENS (I, 20) ,DENS(I,21) ,DENS (I,:
189. 4 ),DENS (1,23))
190. BAMGE=DMAX-DHIN
191. IF (J.EQ. 3) SIGHA=0.591*HANGE
192. IF (J.EQ. 4) SIGMA =0.4 86 *BANGE
193. IF (J.EQ.5) SIGHA=0.430*BANGE
194. IF (J.EQ. 6) SIGHA=0.395*BANGS
195. IF (J.EQ. 8) SIGHA=0.351 *EASGE
196. IF (J.EQ. 14) SIGf!A=0. 294*RANGE
197. IF (J.EQ.19) SIGHA^O. 272*EANGE
198. IF (J.EQ.20) SI3MA=0.268*BANGE
199. IF (J.EQ, 23) SIGMA=0. 26 1 *EANGS
200. CV=1QO.O* (SIGMA/DEN (I))
201. C
202. C
203. C PRINTED OOTPOT.
204. C
205. WHITE (6,323) IDEPTH (I) ,W ATEB (I) ,THETA2 (I) ,DSN (I) , SIGMA,C?
206. 320 FORHATC ' ,F5. 1 ,2X,F6 .4 ,4X,F6. 4,7X,F4. 2, 4X,F5.3, 41, F6.3)
207. C
C
C PUNCHED OOTPUT FOP. CALCOHP PLOTTEB PBOGBAfi.
210. C
211. 33 CONTINUE
212. DEPTHB= IDEPTH (I) *0. 01
213. WHITE (7,330) DEPTHM,THETA2 (I) ,DBN (I) ,SIGMA
214. 330 FOBMAT(F11. 2, F6. 3, 2F6 .2)
215. 35 CONTINUE
13
-------
ANDABDIZATIOS.PBOGBAH
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123'
216. STOP
217. END
218. /*
219. //DA1A.FT07F001 DD UNIT=BAT,FILES=$H*
22C . //DATA. IHPOT DD *
14
-------
** *•
a. •-
"* ooooeoocooocooooocooooooeoooooooo
*"**** •****»«*»«»»»»«»«»«»»f.*«BO
<--'
03
P
s.
S3
OOGOe>O>O05'. SOOTOOMPMOOO — oJ-
ea
a—
osseeooeocooooeoceoooesseoecsooooeoe
•" oooosjcooooooo'-'oocoeoooooowoeooooo
000000000000900000000000000000000
oosoooooaaossooeooooooooooooooeeo
o
^
.
« '-O w • ~ '^ >C ^c -.ff 'J ^ .5 \C 'S vfi •« ^ >i 5 ^ >£ J v
r>»^«!S'««ri»"JINf«rMf
-------
VOL'IHBTRTC HATER COMf-TIT .DEHSITlf AUD TC1AI POKE SPACE .
NO
2
2
2
2
2
2
2
2
I
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
SOU.
DA 1'R
U 26 7 1>
1)2670
112676
'12676
02676
02676
32676
32676
02676
02676
(12676
32676
42676
'32676
32676
H2676
82676
32676
d2676
92676
02676
(326/6
H2676
42676
U2676
02676
42676
(12676
132676
02676
H2676
•32676
1)2676
DEPTH
(Cfl)
15.2
30.0
45.7
61.0
76.2
9 1.4
106.7
121.9
137.2
152.4
167.6
112.9
199.1
213.4
220.6
243.8
259.1
274. 3
209.6
304.8
320.0
335.3
350.5
365. 0
301.0
396. 2
411.5
426.7
•142.0
457. 2
47J.4
487.7
502. 9
S1DH
41385.0
41305.0
41365.0
41385.0
41385.0
41365.0
41365.0
4 1365.0
41365.0
413B5.0
41365.0
41385.0
41365.0
413(5.0
41385.0
413(5.0
413f5.0
41385.0
41305.0
4 1385. 0
41305.0
41385.0
41365.0
41365.0
413(5.0
41385.0
'11365.0
41365.0
41365.0
413G5.0
41365.0
41385.0
41385.0
crr.u
22693.0
22912.0
22015.0
24133.0
23941.0
22959.0
19670.0
21202.0
20256.0
20440.0
22443.0
22 120.0
22204.0
21342.0
21260.0
22009.0
21603.0
19564.0
19169.0
22501.0
25937.0
25936.0
26107.0
25098.0
24142.0
25394.0
24679.0
26835.0
2U690.0
27359.0
27047.0
20319.0
23324.0
HATER
(D* VOL)
0.1498
0. 1521
0.1425
0.1652
0.1632
0.1526
0.1173
0.1346
0.1236
0.1256
0.1471
0.1436
0.1445
0.1353
0.1345
0. 1424
0.1389
0.1162
0.1120
0.1477
0.1046
0.1846
0.1072
0.1756
0.1653
0.1707
0.1711
0.1942
0.2141
0. 1S90
0.1965
0.2101
0.1565
STDD
9691.0
9091.0
9«<»1.0
9691.0
9091.0
9691.0
9091.0
9691.0
9691.0
9691.0
9891.0
9691.0
9fl91.0
5691.0
9891.0
9691.0
9091.0
9691.0
9091.0
9891.0
9891.0
9891.0
9091.0
9691.0
9891.0
9091.0
9091.0
9E91.0
98
-------
VOtllNBfHlC WATER CONTENT .DENSITY AND TCTAl fCPK SPACE .
NO
1
3
3
1
3
3
3
J
3
3
3
3
3
1
3
3
3
1
3
3
3
3
3
3
)
3
3
3
3
3
3
3
DATE
1 26 7 <>
CU676
'12676
a 26 7 1.
82676
12676
02676
II 26 76
J 2.676
32676
82676
H267(>
02676
42676
t)267(»
<\it>lb
.32676
a 2676
>)2676
112676
82676
J2676
«»2t,76
H2t>7ti
#2676
(12676
.12676
82676
J2676
(12676
32676
'12676
d2676
DRPTH
(C1)
IS. 2
10.5
45.7
6 1.0
7fi.2
91.4
106.7
12 1.9
137.2
152. '•
167.6
192.9
19fl. 1
213. 4
228.6
2U3.8
259.1
274.3
289.6
304. 8
320.0
335.3
350.5
365.8
301.0
396. 2
411.5
426.7
442.0
457.2
472.4
487.7
502.9
S1DU
42132.0
42932.0
42')32.0
'12932.0
42932.0
42932.0
42932.0
42932.0
42932.0
'42932.0
42932.0
42932.0
42932.0
42932.0
42932.0
42932.0
42932.0
42932.0
42932.0
42932.0
42932.0
42932.0
42932.0
42932.0
42932.0
42932.0
42932.0
42932.0
42912.0
42^32.0
42932.0
42932.0
42932.0
CEKU
1J601.0
23066.0
24942.0
26753.0
25552.0
26076.0
26664.0
260J5.0
26043.0
25815.0
27494.0
24839.0
23498.0
25002.0
24499.0
23986.0
26210.0
24495.0
25621.0
27370.0
25841.0
27158.0
27990.0
27383.0
28016.0
28993.0
27920.0
2911U.O
27807.0
27147.0
25493.0
26244.0
25447,0
VATEB
(BY VOI.)
O.OS07
0. 1531
0.1642
0.1E30
0.1706
0.1760
0.1821
0.1756
0.1756
0.1733
0.1906
0.1632
0.1493
0.1649
0,1597
0.1544
0.1774
0. 1596
0.1713
0.1894
0.1735
0.1672
0.1959
0,1895
0.1960
0.2061
0.1950
0.2074
0.1939
0. 1671
0.1699
0.1777
0.1695
SI'flD
SO 91.0
9091.0
9891.0
9E9I.O
9091.0
9691.0
989 1.0
9691.0
9091.0
9691.0
9fl91.0
9691. 0
91191.0
9091.0
9091.0
5891.0
9891.0
9B91.0
9091.0
S691.0
9891.0
9891.0
9891.0
9891.0
9891.0
9891.0
9891.0
SB91.0
9891.0
9691.0
9891.0
SG91.0
9891.0
CPHD
14419.
21445.
20528.
20143.
22395.
24714.
23885.
23927.
24968.
26970.
24889.
24871.
24718.
25C70.
24256.
24577.
23911.
23846.
23323.
23869.
24113.
23411.
23623.
23€39.
23752.
24727.
24792.
24190.
24245.
24206.
24099,
24319.
24179.
DD DEN
{0/CM**3)
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.82
.39
.43
.45
.34
.23
.27
.27
.22
.14 C
.22
.23
.23
.22
.25
,24
.27
.27
.29
.27
.26
.29
.28
.28
.28
.23
.23
.26
.25
.25
.26
.25
0 1.26
.72
.23
.27
.27
. 17
.06
.09
.09
.05
.96
.03
.06
.08
.05
.09
.08
.09
.11
.12
.08
.09
. 10
.09
.09
.08
.03
.03
.OS
.06
.07
.09
.07
.09
TPS
(UK VO
0.3512
0.5347
0.5209
0.5202
0.5500
0.6015
0.5U98
O.SBfll
0.6056
0.6363
0.6099
0.5993
0.5915
0.6032
0.5877
0.5911
0.5BB5
0.5807
0.5760
0.5923
0.5905
0.5B35
0.5905
0.58JW
0.5928
0.6131
0.6100
0.6046
0.6004
0.5912
0.5889
0.5955
0.5901
*SATIIPAiroii
2H.09
2«.b4
11.53
J5. «7
30.51
25.26
30.07
2<». 85
29.00
27.23
31.26
27.23
25.24
27.33
27.17
26. 12
30. 14
27.19
29.74
11.97
29.39
32.08
33.17
32.21
33.07
33.62
31.9U
31. .11
32.29
31.32
211.66
29.81
DEPTH
6.0
12.0
18.0
2
-------
AVERAGES
DENSITY
00
DEPTH
(CM)
15. 2
30.5
15.7
61. 0
76.2
91.it
106.7
121.9
13;. 2
152. '1
167.6
1U2. 9
108. 1
213. '1
220.6
2'IJ. 0
250. t
271. 3
289.6
JO a. d
120.0
315. 1
350.5
365.8
1(11.0
396. 2
411.5
126.7
112.0
157.2
172.1
1«7. 7
502.9
U \'f KO
(BY VOL>
0. 1119
0. 1690
0. 1600
0. IlitU
0. 1507
0. 15 'HI
0. 1151
0. 15rtO
0. 145i»
0. 1111
0. 1621
0. 1501
0. 1536
0. 1503
0. 119(1
0. 1162
0. 1191
0. 1311
0. lilt
0. 15ft2
0.1593
0. 1600
0. |,iS2
0. 1711
0. 1719
0. 17flr>
0. IDOO
0. 1921
0. 1990
0. 197*
o. mi>
0. ?011
0. 1903
TP.S AVER
STD 0V
(JY VOL) (fi/CC)
0.1370
0.5135
0.5215
0.5196
J.5725
0.6090
0.5907
0.5)16
0.59.33
0.6162
0.6077
0.6101
O.i.1i)5
0.5'ii
DATE: 01/22/10 IPBST:
ust'ii: uriNiiicii DIUAN e
DBSTINATIOII: AA
03-21. I) il,\:if'-2. T5(J 3/0/3033
ACTUAL
IJ.'IFT
•nil (iJEC): 50 NET CPU (SRC):
HHC, INCIIID1NO 2.0 RfC UYSTitt TIHK:
HilTFP: 3'4fl CAnr>£ t'UNCI'^C;
BKCOiiDS: isoo ic'iAi iiFCcncs:
S.07/SHC
$.15/100
CA'lCS THAU:
3 )3
Jin a t.12/100 = *
***** 1OTAL COST = *
0.15
0.00
0.3t.
0.71
JOB NANF HV 1 10H12
-------
STANDARDIZATION
Cols. ( 1-5
1st
Card
Next
31
Cards
Next
33
Cards
68th
Card
69th
Ca rd
K
|>
3
6-10
11-15
16-20 | 21-25
26-30 | 31-35 | 36-40 | 41-45 | 46-50 j 51-55 | 56-60 | 61-65 j 66-70 j 71-75 | 76-80 |
N O
1
1
1
1
HS O I I.
I D A T E
0
0
0
0
a
8
a
e
2
2
2
2
6
6
6
6
7
7
7
7
6
6
6
6
1 DEPTH
1
1
i
9
9
6
2
2
8
I N
9
9
1
1
•
1
1
0
0
0
0
a
a
8
8
2
2
2
2
6
6
6
6
7
7
7
7
6
6
6
6
I
I
1
9
9
6
2
2
8
I S T D
4
4
4
4
I
1
1
1
5
5
5
5
9
9
9
9
4
4
4
4
1 S T 0 0
9
9
9
9
6
6
6
6
8
8
8
e
2
2
•
2
2
1C P M
1
2
2
3
7
7
9
1
7
6
8
7
8
7
1
2
9
6
4
3
I C P H D
2
2
1
1
1
1
6
6
0
6
4
7
7
3
3
4
3
1
3
4
E H
9|9|9J9|9!9|9f9|9H9
K
hi 3
N
0
2
9
9
*HsH4'|sM«14»
9
9
9
9
H»l»l»N4H4HH444»W^HN»H^H«l«l'l^«l»l»l«|8|»H9|«l'|s|«|8|s|»H8|«l»l»l*N
H
S
O
I L
I
I DA T K
•M4*h
J1
WEPT
I
" 1
•1*
I
1
S
3
T 1)1 1C
•H4*
P
9
1
-------
STANDARDIZATION (CUNT)
Cols.
Next
33
CarJa
Nex C
33
Carda
136th
Card
137th
Card
Next
33
Cards
1-5
I N
9)9
2
*
*
2
2
2
2
.
2
2
6-10
11-15
0
0
0
0
0
0
0
B
8
8
8
8
t
t
2
2
2
b
t
6
2
2
2
2
5
5
5
5
7
7
7
7
7
7
7
16-20
6
6
6
6
6
6
6
1
1
1
9
9
2
•
•
•
2
8
1
1
1
9
9
6
2
.
'2
t
21-25
4
4
4
1
1
I
1
S
9
9
9
9
3
3
3
T
a
8
8
8
a
8
8
D
9
9
9
9
5
5
5
D
1
1
1
1
26-30
2
2
2
I
1
2
2
2
2
8
3
C
7
1
4
3
'.
3
3
P
2
2
2
i
1
1
2
H
9
5
0
3
2
9
4
D
1
7
1
9
31-35 36-40 J 41-45 j 46-50 J 51-55 J 56-60 61-65 J 66-70 j 71-75 J 76-80 J
C W
9N9|yM9M
-------
STANDARDIZATION (CONT)
1-5
i ^
:
j
*
3
3
6-10
|
11-15
16-20
UljH
0[a|2yjJ6L
*
0
0
0
fl
8
B
8
2-
2
2
2
5
5
5
5
7
1
7
7
6
6
6
6
11'
l|9|8
1
1
1
9
9
t
'i
2
8
21-25
It
4|2|9
9
9
9
9
B
8
B
8
;
9
9
9
9
2
2
1
1
]
1
26-30
2
2
1
2
2
2
11t
sl«l«h
4
1
4
4
4
4
3
1
1
4
1
7
9
5
9
9
31-35 | 36-40 41-45 {46-50 | 51-55 | 56-60 | 61-65 | 66-70 71-75 | 76-80 I
E W
Cola.
Next
33
Cards
Last
Card
-------
SECTION 3
SURFACE WATER AND DENSITY PROGRAM
The Surface Water and Density Program is similar to the Standardization
Program and, therefore, is a data handling program. The introductory state-
ment for this program is similar to that used for the Standardization
Program.
The Surface Water and Density Program computes the same hydrological
values as the Standardization Program, but only at the surface. Different
types of nuclear methods are needed on the surface resulting in different
equations relating the nuclear data to the needed hydrological data.
This difference has the effect of causing the program to be unuseful
for input into the Mein Numerical Model. Instead, its input can be used in
the Mein and Larson Infiltration Model.
Beyond these differences, though, the writeup for the Standardization
Program applies and the user is referred back to it.
INPUT: For Each Position:
STD - Standard count for water
CPM - Counts per minute for water
STDD - Standard count for density
CPMD - Counts per minute for density
OUTPUT: For Each Position:
Water content
Wet and dry bulk density
Total pore space
22
-------
SURFACE. HATER.AND. DENSITY.PROGRAM
1234561
123456789012345678901234567890123456789012345678901234567890123456789C
0.1
0.2
0.3
0.4
0.5
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
2°.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40,
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
A
/*
/>
/'
/,
C
C'
C
C
C
C
C
C
C
C
C
C
C
C:
C
C
C
C
C
C
C
C
C
C
C
C
C
//HN 1XXXXX JOB
/*JCEPARH I=MCNUCSUR
EXEC FMCLG
/*JQBPARH FDLLSKIPS
//SYSIN DD *
C
£*********************************************************************
COMPUTER PROGRAM FOR CALCULATION OF SOU BATZR COST INT BY
NEUTRON BACK SCATTER METHOD
USING
SURFACE IELLO«
PROBE
AND FOR
CALCULATION OF SOIL BULK DENSITY
BI
GASH A MET BOO
C*********************************************************************
NO
«SOIL
IDATE
IDEPTH
ISTDSSTD
ICPH&CPM
DEN
FILE
NO.
NO.
=SITE
= SOIL
= DATE
=DEPTH,
-------
IBFACE. WATEB. AND. DENSITY. PBOGBAH
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
51. CPH=ICPS
52. CH=CPfl/STD
53. WATEE = (CP-0.164159)/2.193512
54. BEAD{5,6) NO,HSOIL, IDATE,IDIPTH,ISTDD,ICPHD,ITEN, IEND
55. STD=ISTDD
56. CPH=ICPSD
57. CB=CPH/STD
58. IF(IDEPTH) 9,8,9
59. 8 CONTINUE
60. C COHPOT3 SDBFACE BULK DENSITY .
61 . DBH=(ALOG(5. 39322/(CB+1. 14552) ) )/0. 343619
62. GO TO 10
63. 9 CONTINUE
64. C COMPUTE DEPTH BULK DENSITY .
65. IF(IDEPTH-6) 16,15, 16
66. 15 DEN=(ALOG(18. 29636/(CB+Q.36507) ))/. 999048
67. GO TO 10
68. 16 CONTINUE
69. IF (IDEPTH-12) 17,18,17
70. 18 DEN= (ALOG(17. 52322/(CB +.00339) ))/1.970807
71 . 17 CONTINUE
72. 10 CONTINUE
73. DEN=DEN-IATEB
74. IF (DEN.LE.0.5) DEN=0
75. THETA2= 1.0- (DEN/2. 65)
76. R = 100.Q*SATER/THETA2
77. DEPTH=IDEPTH/2.54
78. WRITE (6,111) NO, MSOIL,IDATE, IDEPTH,ISTD,ICPH,IATEB,
79. 1 ISTDD,ICPflD,DEN,THETA2,B,DEPTH,ITEB
80. 111 FORMAT(1H , 2X, AS, A5, 4X, 16, 2X, 15,2 (2X,I7) ,2X,F6.4, 2(21,17)
81. 1,8X,F4. 2,2X,F6.4,5X,F6.2,5X,F5. 1,5X,I5)
82. KONT=KONT+1
83. J=J+1
84. SATEBS(J)=»ATEB
85. DENS(J)=DEN
86. THETAS(J)=THETA2
87, GO TO 13
88. 12 CONTINUE
89. WRITE (6, 303)
90. 300 FORMATC 1' ,'AVEBAGSS' ,/)
91. WRITE (6,305)
92. 305 FORMAT (»C »,39X,» DENSITY')
93. WBITB(6,310)
94. 310 FORM&TC ',« «ATEB IPS' ,8X,»AVER STD DV COEF VAR1 )
95. HBITE(6,315)
96. 315 FORMAT (• ',' (BY VOL) (BY VOL) ' , 9X, • (G/CC) • ,6X, • (PER CENT)'
97. 2 ,//)
98. C7=0.0
99. SIGHA =0.0
100. SUMM=0.0
101. SUHD=0.0
1C2. SUMT=0.0
103. DMAX=DENS(1)
104. DMIN=DENS(1)
105. DO 33 JJ=1,J
24
-------
SaBFACE.WATEB.ASD.DENSITI.PBOGBAM
1 2 3 4 5 67
12345678901234567890123456789012345678901234567890123456789012345678901
106. SHMi=SOHH+WATEBS(JJ)
107. SffHD=SOi!D+DENS(JJ)
108. SUHT=SUHT+THETAS(JJ)
109. IF (DHAX. LT. DENS (JJ) ) DHAX*DE«S (JJ)
110. IF (DHIN.GT.DENS(JJ)) DHIN=DEliS (JJ)
111. 30 CONTIHOE
112. WATER=SOH1/J
113. DEN=SUMD/J
114. THETA2-SOHT/J
1t5. C
116. C
117. C CAI.OCOLATI08 OF STANDABD DEVIATION AND COEFFICIENT OF VABIATION FOB
118. C DENSITY. SEE PAGE 38 OF SSEDECOB FOB TABIE.
119. C
120. fiAHGE=DBAX-DHIN
121. IF (J. EQ. 27) SIGMA=Q.252*BASGE
122. IF (J.EQ.04) SIGHA = 0.486*BANGE
123. IF (J.EQ.23) SISHA=0. 261 *BANGE
124. IF (J.EQ. 24) SIGSA=Q. 259*BANGE
125. IF (J.EQ.25) SIGMA=0. 257*fiANGE
t26. IF (J.EQ.31) SI3HA = 0.244*BANGE
127. IF (J. SQ. 38) SIGMA=0. 234*BANGI
128. C?=100. 0*(SIG«A/DEN)
129. C
130. C
131. C PUNTED OOTPOT.
132. C
133. SBITE(6,323) iATBB,TH£TA2, BES,SIGHA,CY
134. 320 FOP.H^T(« ' ,7X,F6. 4,4X ,F6 ,4 ,7X,F4. 2,UX,F5.3,4X,F6. 3)
135. GO TO 21
136. 888 STOP
137. END
138. /* THIS IS A SLASH AST2BISK CABD
139. //DATA.INPUT DD *
25
-------
VOUMETIIIC HATER CONTENT .DENSITY AND TOTAL FORE SPACE .
NO
02-15
04-15
06-15
00-15
10-15
12-15
14-15
02-35
0'l-35
06-35
08-35
10-35
12-35
14-35
02-55
04-55
06-55
08-55
10-55
12-55
14-55
02-75
04-75
06-75
08-75
10-75
12-75
14-75
02-95
04-95
06-95
08-95
10-95
12-95
14-95
02-115
04-115
06-115
SOIL
DATE
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
31777
I) KPT II
STDU
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1110
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1t14
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1114
1H
709
712
818
708
752
743
708
782
688
744
711
851
802
609
797
759
741
740
893
782
796
804
758
742
697
751
817
650
558
715
703
547
559
794
751
640
607
657
HATED
(DI VOL)
0.2153
0.2165
0.2599
0.2149
0.2329
0.2292
0.2149
0.2452
0.2067
0.2296
0.2161
0.2734
0.2534
0.1744
0.2513
0.2358
0.2284
0.2313
0.2906
0.2452
0.2509
0.2542
0.2354
0.2288
0.2104
0.2325
0.2595
0.1912
0. 1535
0.2178
0.2129
0. 1490
0.1539
0.2501
0.2325
0.1871
0.1736
0. 1940
STDO
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
251
2,51
251
251
251
251
251
251
251
251
251
251
CPHD
618
504
615
557
489
500
510
459
611
555
540
657
514
515
502
513
619
591
453
495
482
515
499
506
541
615
515
646
618
459
610
509
494
598
511
502
454
650
DEN
(G/CC)
0.95
1.35
0.92
1.16
1.38
1.32
1.32
1.49
0.99
1.15
1.22
0.77
1.27
1.35
1.32
1.29
0.94
1.03
1.46
1.35
1.39
1.27
1.34
1.33
1.22
0.95
1.26
0.09
1.02
1.51
0.98
1.39
1.44
0.99
1.30
1.38
1.58
0.88
TPS
(BIT VO
0.6397
0.4924
0.6529
0.5629
0.4776
0.5027
0.5001
0.43B9
0.6279
0.5659
0.5411
0.7079
0.5201
0.4916
0.5027
0.5121
0.6458
0.6125
0.4472
0.4906
0.4744
0.5218
0.4925
0.499«
0.5402
0.6425
0.5238
0.6640
0.6164
0.4266
0.6290
0.4733
0.4540
0.6283
0.5081
0.4785
0.4045
0.6698
'SATURATION
33.66
43.90
39.B1
38.17
48.77
45.60
42.97
55.86
32.92
40.58
39.94
38.62
48.72
35.47
49.99
46.04
35.37
37.76
64.98
49.97
52.89
48.72
47.79
45.78
38.95
36.18
49.55
28.79
24.91
50.81
33.04
31.45
33.84
39.01
45.76
39. 10
42.91
28.97
DEPTH
(IN)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
TENSION
(CH)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-------
AVERAGES
HATER TP5
(BT VOL) (BY VOL)
0.2224
0.5417
DENSITY
AVER STD DV COEP VAR
(G/CC) {PER CENT)
1.21
0. IBB
15.«9t
-------
SURFACE MOISTURE
CO
Cola.
lac
Card
2nd
Card
etc .
Last
rnr.i
1-5
N 0
42!-!1
5
NO
44-ii
5
NO
"M-l*
5
NO
0|4|l
5
6-10
MS 0 I I.
J_
||
MS 0 I 1
_L
||
MS 0 I 1
J_
||
MS 0 I I
1
II
11-15
J_ 16-20 | 21-25
T DATE
4)|i(!
7(7
I DA TE
0 i|l|7
7|7
I DA TE
"I'M'
7 I7
1 DA TE
0| all 1 7
•
N n
0 &|-|l
I
N O
n|b|-|l|l
M S 0 I L
5|
II
M S 0 I L
5!
M
I D A T
7 I7
I
I
I
I
E
0bUtl7
1 D A T E
9 9I9J9
9
9J9
9|.|9
9 9J9 J9
1
I
9J9
9
D
D
D
1)
E P
0
EP
0
EP
0
EP
0
T 11 I S 1
Jjjl
ih
T II I S 'I
{ 2
sh
T II I S 'I
|l 1
iL
T II I S 1
2
5|]
26-30
1) 1C
7 101
D DI C
•111
t
9
P
8
D I OP
41
2
D DI CP
5 1(9
•
D
D
E P
10
EP
I)
T II I S T
|l|l
ik
T H I S T
1 fc
5ll
D 1C
&b
I) DI C
|
Js
9
9J9J9 9 9
>!'
9
9
9|9
l»
31-35
M
M
D
M
M
P
?
P
0
H
M
9
9
D
D
9
9J9
36-40
I TE N
I
I TE N
|
I TE N
|
I TE N
1
41-45 46-50 | 51-55 ] 56-60 61-65 66-70 71-75 76-BO j
I E
|
I E
|
I E
|
I E
1
N D
N D
N D
ND
.
I T E N
I T EN
1
9
9
9
9
9J9
I E
|
I E
j
1 E
9J9
N D
ND
ND
4(9 ^I^H^I^H.^ »|9| 9)9 ^|9 9)9 9(9 sH9|4J|..|.41|,|4'l'4'l
-------
SECTION 4
GREEN AND COREY MODEL
The main purpose of this program is to provide input data for the Mein
Numerical Model. The program computes Water Retention Curves and the
corresponding hydraulic conductivity values. Water Retention Curves are
computed merely by an interpolation from strategically measured points of
corresponding water pressure and water content. This is not true of
conductivity, however. Little information on conductivity is inputed into
the program. Thus, it is calculated by analytical equations which were
devised through an involved process.
The Mein Numerical Model requires Water Retention Curves and water pres-
sure vs. hydraulic conductivity curves as input. The Green and Corey Model
fulfills this requirement. Sometimes, however, these two types of curves may
be useful in their own right. In such cases, this program is beneficial for
more than just computing input for another program.
INPUT: THETA - Water content for each input point
DP - Desorption pressure for each input point
TMAX - Porosity
SCON - Saturated hydraulic conductivity
RESWAT - Residual (immobile) water
SURTEN - Surface tension of water
DENWAT - Density of water
VISWAT - Viscosity of water
TEMP - Temperature
GRAVTY - Force of gravity
29
-------
OUTPUT: TING - Interpolated values of water content
DPI - Interpolated values of desorption pressure
Hydraulic conductivities in several different units
CCAL - Relative hydraulic conductivities
REFERENCE: R. E. Green and J. C. Corey. 1971. Calculation of hydraulic
conductivity: a further evaluation of some predictive methods.
Soil Sci. Soc. Am. Proc. 35(1):3-8.
30
-------
BEEN. AND. COREL MODEL
1231567
1234567890123456789012345678901234567890123456789012345678901234567890123
0.1 //HNBXXXXX JOB (BEH01)
0.2 /*JOBPARH I=GRACONE
0.3 // EXEC FWCLG
0.4 /*JO£PARM FDLLSKIPS
0.5 //SISIB DD *
1. C ORIGINAL GREENSCOREI,1971 MODEL .
2. DIMENSION THETA(51) ,DP(51) , SPCH (51) ,CCAL (51) ,CHAT (51),DPI (51) ,TINC
3. 1 (51) , DMAT (51) ,HHAT{51)
4. C
5. C HTDBAOLIC CONDUCTIVITY CALCULATION OSISG FORTRAN IV BY
6. C GREEN AND COREY AT THI SAVANNAH SIVEB LABORATORY, CALCULATIONS
7. C ARE BASED ON PAPERS BY MARSHALL AND MILLIHGTCN-QUIRK. THIS
8. C IS A VARIATION OF A PROGRAM DEVELOPED BY DR. RAY KUNZE TO
9. C CALCULATE HYDRAULIC CONDUCTIVITY OF POROUS SOLIDS FROM
10. C WATER RETENTION DATA. THB PROGRAH, AS WRITTEN, REQUIRES NO
11. C CORRECTION FOE IMMOBILE WATER. THE NECESSARY CARDS TO TEST
12, C THAT NO DIFFERENCE IS OBTAINED IN THE HATCHED CONDUCTIVITY
13. C WHEN IT IS CALCULATED BY DUE METHOD OVER THE ENTIHB THETA
14. C RANGE OR WHEN IT IS CALCULATED BY TAKING INTO ACCOUNT
15. C IMMOBILE WATEfi HAVE BEEN INCLUDED FOR THE HEADER'S INFORMATION.
16. C
17. C INPUT VARIABLES
18. C
19. C ST = SAMPLE IDENTIFICATION
20. C THSTA = WATER CONTENT FOR EACH INPUT POINT (CM**3/CM**3)
21. C H = NUMBER OF INPUT DATA POINTS
22. C NC = NUMBER OF INCREMENTED PORE CLASSES CHOSEN FOR CALCULATING
23. C DATA (NC IS LIMITED TO 50)
24. C TMAX = MAXIMUM WATER CONTENT (CM**3/CM**3)
25. C SCON = EXPERIMENTALLY OBTAINED SATURATED CONDUCTIVITY (CM/MIN)
26. C DP = DESORPTION PRESSURE (CM OF WATER)
27. C RESWAT = ESTIMATE OF RESIDUAL (IMMOBILE) HATER
28. C EXPON = EXPONENT CHOSEN FOR POROSITY TERM
29. C
30. C INTERMEDIATE CALCULATED VARIABLES
31. C
32. C STDIMC = STANDARD WATER CONTENT INCBEMENT FOR CALCULATED
33. C VALUES (CM**3/CM**3)
34. C TINC = INCREMENTED THETA (CM**3/CH**3)
35. C DPI = INCREMENTED DP FOR RESPECTIVE TINC (CM OF H20)
36. C CLS = SQUARED RECIPROCAL OF NUMBER OF WATER CONTENT CLASSES
37. C (KL)
38. C PCH = INTERMEDIATE SUM OF PRODUCTS OF COEFFICIENTS AND
39. C HEADS IN CONDUCTIVITY EQUATION
4G. C SPCH = FINAL SUM OF PRODUCTS'
41. C ACF = CONVERSION FACTOR THAT TAKES INTO ACCOUNT TEMPERATURE
42. C AND GRAVITY INFLUENCES
43. C = 4*60* (SURFACE TENSION) **2 / (8*VISCOSITY*DENSITY*
44. C GRAVITY)
45. C UNITS FOR VARIABLES IN ACF
4fi. C 60 = SEC/MIN
47. C SURTEN = DYNES/CM
48. C VISWftT = DYNE SFC/CM**2
49. C DENWAT = G/CM**3
5C . C GRAVTY = CM/SEC**2
31
-------
GREEK . AND. COBEY. MODEL
1231567
12345678901234567890123456789012345678901234567890123456789012345678901
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69*
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
1Q:0.
101 .
102.
103.
104.
105.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
OUTPUT VARIABLES
CCAL « CALCULATED COSDUCTIVITY (CM/MIN) , CALLED 'CALCULATED K«
CHAT = HATCHED CONDUCTIVITY (CM/HIN) , CALLED 'MATCHED K«
DMA! = MATCHED CONDUCTIVITY (CM/DAY), CALLED 'MATCHED K»
HHAT = RELATIVE CONDUCTIVITY, CALLED: "PERMEABILITY"
FACTOR * EXPERIMENTALLY MEASUBED SATUBATED CONDUCTIVITY
DIVIDED BY CALCULATED SATURATED CONDUCTIVITY
THETA =HATER CONTENT AT UPPEB END OF
INCREMENT (CH**3/CH** 3)
PRESSURE sDESORPTION PRESSURE (CM OF SATEB)
READ INPUT PARAMETERS AND VARIABLES
86 8 BAD (5, 11 4,END=2) ST,ST1 , ST2 ,ST3 ,ST4 ,ST5 ,ST6 ,ST7,ST8,ST9
114 FORMAT { 10 A4)
S BAD (5r 1 16) »,NC,T MAX, SCON, BES1AT
116 FORMAT(T1,I2,T11,I2,T21,F5.4,T31,F8,0,T41,F5. 3)
READ(5,120) SURTEN, DENWAT, VISWAT,TEMP ,GBA VTX
120 FORMAT(T1,F5. 2,T 1 1 ,F5.3,T21,F7. 6, T3 1, F4. 1 ,T41 , F7. 3)
READ (5, 126) EXPON
126 FORMAT (F4. 2)
NOTE ORDEE OF INPUT DATA:
THETA (1) =LOWEST RATER CONTENT
DP(1) =HIGHZST PRESSURE (ABSOLUTE VALUE)
READ(5,117) {THETA (J),J=1,S)
117 FORMAT (10F5. 4)
BEAD(5, 119) (DP(J) ,J=1 ,N)
119 FORMATU10F7. 1))
CALCULATE CONVERSION FACTOR
ACF = 30.*SaRTSN**2/(VISWAT*DENHAT*GRAVTY)
CALCULATE INCREMENT SIZI
RNC=NC
STDINC = (TMAX-THETA{ 1) ) /RNC
INITIALIZE INC AND DPT ASSAYS
TINC(1) = THETAO)
DPI{1)=DP (1)
SCP1 = NC + 1
INDEX I REFERS TO INCREMENTED VARIABLES
INDEX J REFERS TO INPUT DATA
CALCULATE THETA INCREMENT LIMITS
DO 3 I = 2, NCP1
TINC(I) = TINC(I-1) * STDINC
CALCULATE PRESSURE INCREMENT LIMITS
DO 4 J=1,N
IF (THETA (J) .GE.TINC(I)) GO TO 5
4 CONTINUE
5 DPI(I) = ((TINC (I) -THETA (J-1) )/ {THETA (J) -THETA (J-1) ) ) * (DP (J) -DP (J
3 CONTINUE
ADJUST DPI TO GIVE VALUES AT MIDPOINT OF INCREMENT
DPI(NCP1) = 0.0
DO 178 I = 1, NC
DPI(I) = (DPI (I) * DPI (1*1) )*0.5
178 CONTINOE
32
-------
BEEN. AHD.COBEY.MODEL
1234567
123456789012345678901234567890123456789012345678901234567890123456789012:
106. C CALCULATE ADJUSTED NUMBER OF CLASSES (ANC) CORRESPONDING TO TOTAL
107. C BATER CONTENT
108. ANC = (TMAX -0.0)/STDINC
109. C CALCULATE SQOAEED RECIPROCAL OF * ANC'
110. CLS = (1.0/ANC)** (4/3)
111. C CALCULATE PRODUCT OF COEFFICIENT AND 'HEAD' TEBflS FOB
112. C EACH PORE CLASS
113. KL = NC
114. DO 176 J = 1,NC
115. NL = NCB1 - J
116. PCH =0.0
117. DO 175 1= J,NC
118. PCH = PCH + (2*1 +1-2*J)*(1./DPI(NL))**2
119. 175 NL=NL-1
120. SPCH(KL)=PCH
121. C CORRECT POROSITY TERM WITH COTINC FUNCTION (CORRECTION
122. C NEEDED ONLY VHEN LIMITED THETA RANGE IS USED)
123. COTINC = TINC(NCPI) -RESWAT
124. C CALCULATE K FOB A GIVEN WATER CONTENT AND PRESSURE
125. CCAL(KL)=SPCH (KL) *ACF*COTINC**EXPON*CLS
126. KL=KL-1
127. 176 CONTINUE
128. C CALCULATE HATCHING FACTOR
129. FACTDR = SCON/CCAL (NC)
13G. C ADJUST TISC AND DPI VALUES AT UPPER LIMIT OF INCREMENTS
131. C FOR PLOTTING AND CALCULATE MATCHED CONDUCTIVITY AT
132. C EACH 1ATER CONTENT
133. DO 179 1=1,NC
134. TINC(I) =TINC (1*1)
135. DPI(I)= (DPI(I)+DPI(I-H))*0.5
136. CCAL(I) =CCAL(I)/CCAL(NC)
137. CBAT(I) =SCON*CCAL (I)
138. HMAT(I)= (CMAT(I)) *60
139. 179 DMAT(I) =CMAT (T) *1 44 0.
140. DPI(NC)=0.0
141 . C
142. C PRINT OUTPUT
143. WRITE (6, 90)ST,ST1,ST2,ST3,ST4,ST5,ST6,ST7,ST8,ST9
144. 90 FORMAT(1H1,20X,10A4/)
145. IRIT3 (6, 180) N, TMAX, SCON, ACF
146. 18G FORMAT(»Q',' N = ',13,' TH AX = «,F6.4,« SCON = «,
147. 1F8.6,' AC? = ',F8.1/)
148. WRITE(6, 121)SURTBN,DENWAT, VISW AT, R ESW1T ,TEMP,GBA VTY
149. 121 FORMAT (1X,»SUBTEN =«, F5. 2, ' DENH AT = ' ,F5.3, • VISWAT =' ,F8.6,«
150. 1RES8AT =«,F5.3r» TEMP =',F4.1 , «C» , ' GRAVITY =»,F5.1/)
151. KRITE(6,127) 5XPON, FACTOR
152. 127 FORMAT(« »,'EXPONENT = ' , F5. 2, 29X, ' FAC TOE = «,F6.4/)
153. »RITE(6,174)
154. 174 FORMAT('Q ', 'CLASS', 31, 'PRESSURE', 6X,'THETA» ,9X,'MATCHED K»,
155. 15X,'CALCULATED K1 ,5X, 'MATCHED K',2X,' MATCHED K (/2.y. • (I) ' , 3 X,' (C
156. 2M «ATEB)',4X, '(BY VOL) ' ,7 X,' (CM/MIN) « ,8Xr ' ',8X, '{CM/DA
157. 3Y) ',8X, « (CM/HR)'/)
15fl. WRIT3(6,177) (I,DPI (I) ,TINC(I) ,CMAT(I) ,CCAL(I) ,DMAT(I) ,HMAT(I) f
159. 11=1,NC)
160. 177 FORMATC M3, 4X, OPF8 .2, 7X, OPF6. 4, 7X, 1PE9. 2, 7X, 1PE9. 2,61, 1PE9.2 ,
33
-------
GBESN, AND. GOBI Y. HODSL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890'
161. 17I,1PE9.2)
' 162. WHITE (6,125) (J, THETA (J) ,DP (J) , J= 1, N)
163. 125 FORMAT {'0',T2,'INPUT DATA FOE THE ABOVE OUTPUT V/lXrT4» f Jf ,T1Q,
164. 1«THETA' ,T20, • PSESSDSE '// <1 X*T2,I3 ,T9,F6.4,T19r F8. 2) )
165. GO TO 86
166. 2 CONTINUE
167. STOP
168. END
169. /*
170. //DATA.INPUT DD *
34
-------
KYLRilTOVN C.USnOM 1 SOU. TOP lAlfER
N = 7 Ti1.U = 0..117.1 SCOH = 0. i 18100 ACF = 16151.4
SIIH1EM =72.75 OCMUAT =0.99U VISSA1 =0.010050 BESHAT =0.0 TEMP =20.OC GRAVITt =900.1
EXPONENT = 1.J3 FACTCn = 0.0047
CLASS
(I)
1
2
3
4
5
6
7
8
9
to
It
12
13
14
15
16
17
18
19
20
21
22
2.1
24
25
26
27
2rt
29
30
31
32
33
3 '1
35
36
37
30
39
40
41
42
43
44
45
46
PRESSURE
(C'l HAT Bit)
I'l 66 0.91
14013. U5
11170.78
12725.71
120110.64
11415.57
10790.50
10145.43
9500.35
ft£S5. 20
3210.21
7565. 14
6920.07
6274.99
5629.92
4 « 94. (15
'1139.70
3694. 71
J0'«9.63
2404.56
1759.49
1114.42
5b9.37
2 7). 5 7
200. 16
175.93
152.04
128.82
105.99
86. 10
72.52
62. 'II
53.57
45.01
3H.51
13.92
29.95
25.90
22.01
18.04
14.01
10.46
7.56
r>. i>3
2.52
O.i)
TllfiTA
(UK VOL)
0. 1980
0.2011
0. 2042
0.2071
0.2104
0.2115
0. 3166
0.2197
0.2228
0.2259
0.2290
0.2320
0.2351
0.2382
0. 2413
0.2444
0.2475
0.2506
0.2537
0.2568
0.2599
0.2630
0.2661
0.2692
0.2723
0.2754
0.2785
0.2816
0.2847
0.2873
0.29 )'l
0.2940
0.2971
0.1002
0. 3032
0.1063
0. 10.94
0.1125
0. 1156
0.3187
0.3218
1). 1249
0. 12 JO
0.3111
0. 1342
0.1371
MATCHED K
(CM/niN)
7.30E-IO
2.99E-09
6.92E-09
1.27E-08
2.05E-CG
3.05E-OH
4.1IE-08
5.85E-C8
7.70E-C8
9.93E-08
1.26E-07
1.57F.-07
1.94E-07
2.38E-07
2.90E-07
3.53E-07
' 4.29E-C7
5.23E-07
6.42E-07
7.96E-07
1.01E-06
1.34E-06
2.02E-06
4. 3 IE- 06
1. 16E-Q5
2.72E-05
5.35E-05
9.42E-05
1.55E-04
2.46E-04
3.83E-C4
5.83F.-04
U.60E-04
1.27E-03
1.84E-03
2.63E-03
3.7IE-03
5.15E-03
7. 10F-03
9.71E-C3
1.34E-02
1.89F-02
2. 75S-C2
4.24F-02
7.29E-02
2. 1UE-01
CAICULATEC K
3.34E-OS
1.37E-00
3. 17E-OP
5.81E-08
9.18E-00
1.40E-07
I.97E-07
2.68E-07
3.53E-C7
4.54E-07
5. 75E-07
7. 19E-07
8.88E-07
1.09E-06
1. 33E-06
1.62E-06
I.97E-06
2. 40E-06
2.94E-Of
3.65E-06
4.03E-06
6. 15E-06
9.23F-04
1.97E-05
5.31E-05
1.241: -04
2.45E-04
4.3 1E-04
7. 1 1C-04
1. 13E-03
1.75K-OJ
2.67F-03
3.97E-03
.5.01E-03
0.40R-03
1.20E-02
I.7CE-02
2. 36F-02
3.25K-02
4.461-02
6. I4F-02
8.6JF-02
I.26S-01
1.94E-0 1
3.34TT-01
1.005*00
HATCHED K
(CH/DAY)
1.05E-06
4.30F-06
9.96E-06
1.83E-05
2.95E-05
4.391-05
6.20E-05
6.42E-05
l.HE-04
1.43E-04
1.81H-04
2.26E-04
2.79E-04
3.43E-04
4.18E-04
5.08C-04
6, 10E-04
7.53E-04
9.24E-04
1. 15E-03
1.46E-03
1.93F-03
2.90E-03
6.21E-03
1.67E-02
3.91F.-02
7.70E-02
1. 36E-01
2.24E-OI
3.55E-01
5.52E-01
8.40E-01
1.2!iF»00
1.83E»00
2.64F*00
J. 78E»00
5.34F,tOO •
7.42F*00
1.02F*01
1. 40EI01
l.93E*Ot
2.71Et01
3.96E»01
-------
INPUT DATA FOB THE AUOVK OUTPUT
.1 TIIBTA
1
2
3
4
5
6
7
0. I'Jil'l
0.2(i7i!
0.2107
0.2132
0. lOlb
0.32SO
0.3171
15J06.00
2MO.OO
ISO. 00
110.00
'10.01
10.00
0.0
-------
!) CAIS.101I 1 SPOIt AVEPAWE
II - / TrlAX = O.VI'll SCON = 3.150000 ACF = 16151.4
SHBTEH =72. 7f, OEliUAT =().1'J'l VTSWAT =0.010050 PESHAT =0.0 TEHP =20. OC SUAVITY =900. 1
EXPOMKNT = 1.11 FALTCK = 0.09)2
CLASS
(I)
1
2
3
H
'j
6
7
II
9
10
11
12
13
14
15
16
17
111
19
20
21
22
23
24
25
26
27
2H
29
30
31
32
3J
34
15
36
37
30
19
40
41
42
13
44
45
46
PBG!iai1I(P.
(CU UAT6U)
1 '16140. 41
119/4. Ul
1 1109.22
1.>(.'|3.63
1 1970.04
1 1112. '15
lOMfi.Uo
9981.27
9115.6!!
0650.09
798<«.49
711.1.40
6653.3 1
5507. 72
5322. 12
4656.54
)9')0.')4
1325.35
2659.76
1994. 17
1320.5!!
721. 6'l
U4.2B
210. 10
lUfl. 19
166.37
145.!) 1
124.29
11)3.114
36. 19
74.70
67. I'l
(.0. 12
51. 11
40. 15
39.65
3 J . 9 1
20.52
23. 13
17.75
12. ill
9. 12
6.5U
4. 19
2. 19
0.0
TIIHTA
(nv vet.)
0.0957
.0.0071
o.otoi
0.0921
0.0945
0.09f 6
0.09P1
0.1010
0. 1032
0.1054
0. 1076
0. 10911
0. 1120
0.1142
0. 1 164
0. 1106
0. 1200
0.1229
0. 12.51
0. 1271
0. 1295
0.1117
0. 1319
0.1161
0. 1103
0.1405
0. 1427
0.1449
0. 1470
0.1492
0. 1514
0.1536
0. 155(1
0.15HO
0. 1602
0. 1624
0. 1646
0.1660
0. l6lt)
0. 1711
0. H33
o.nr.r.
0. 1777
0. 1799
0. 1021
0.1 '111
MATCIiFD K
(CM/BIN)
0.42E-09
3.45E-00
7.99E-CH
1.47F.-07
2.37E-07
3.54E-07
5.01E-07
6.aOE-07
8.9BE-07
1.16E-06
1.47E-06
1.04E-06
2.29E-06
2.82E-06
3.45E-06
4.22E-06
5. 17E-06
6.36E-06
7.90F.-06
1.00E-05
I.3IE-C5
1.8JE-05
3.59E-C5
1.01E-04
2.52E-04
5.12E-04
9.09E-04
1.II9E-03
2.32F-03
3.51E-03
5.22E-03
7.61E-03
1.08E-C2
1.51E-02
2.00E-02
2.B2E-02
3.0IE-02
5.14E-02
6.94F.-02
9.48E-02
1.J3K-01
1.96E-01
3.J9E-OI
5.16R-01
9.61F-01
1.15K*00
L1.CUI.ATKR K
2.67E-09
1.10E-00
2.54E-CR
4.66 E-08
7.53E-CP
1. 12E-07
1.59E-C7
2. U.F-07
2.U5E-07
3.68E-07
4.67E-07
5.85E-07
7.2eE-07
8.9HE-07
1. 10E-06
1.34E-06
1.64E-06
2. 02E-06
2. 5 IE- Of.
3.17E-06
4. 17E-06
5.99E-06
1. I4E-Q5
3.21E-05
8.C1E-05
1.62E-04
2.H9E-04
4.73E-04
7.36E-04
1. 11F-03
1.66E-03
2.H2F-01
3.44E-C3
,4.niE-03
6.6CE-03
B.97E-03
1.21K-02
1.61F-02
2.20E-02
3.01E-02
4.22F-02
6.24E-02
9.01E-02
1.64E-0 1
1.05E-CI
1. OOFtOO
MATCHED K
(CM/DA*)
1.21E-05
4.97K-05
1.I5E-04
2. 11F.-04
3.42K-OU
5. 10E-OU
7.21F-04
9.80P-04
1.29E-03
1.67E-03
2.12E-03
2.661-03
3.29E-03
II.05E-03
"I.97E-03
6.08E-03
7.44E-03
9.15E-03
I.14E-02
1.44F.-02
1.89F-02
2.72E-02
5.17F-02
1.46K-01
3.61IF-01
7.37E-01
I.31F«00
2. 14E»00
3. 34E*00
5.05E+00
7 . 5 1 f * 00
1. 10E*01
I.56E»01
2. 10F»01
2.S9E»01
4.07F. + 01
S.«9F.»01
7.40E+01
9.99FI*01
1.36F«02
1.921:^02
2,H3F«02
4.45FJ02
7.«4F»02
l.lBEtOJ
4.54FMJ3
HATCHED K
(CH/HM)
5.05E-07
2.07E-06
H.flOK-06
fl.fllE-Of.
I.42E-05
2. UE-05
3.00E-05
-------
IHl'UT DAT* FOI1 TUB AflOVK OUTPUT
J TMRTA I'H
I O.OOJS 15106.00
2 0.1JJ1 210.00
i o. I'm " i io.oo
1 0.1 'I Ob (10.00
5 o. K»2i no. oa
6 0.17't] 10.00
7 o. M/io lo^at: ncniAi TINE. IHCIUOTNU 2.0 SEC stsrfti TIME: 5 <» *007/sEC = t <>.3r>
USER: MRXIIRICII UltlAN U I.JMFS PI.INTSD: 32M CARD.'] PUNCIIKO: 0 (4 $. 3S/IOO = 5 0.00
nesi'iNArroji: AA nA
-------
UKKEN AND CORKY
OJ
Cols.
lilt
Card
2nd
Card
3rd
Card
4 Hi
Card
5th
Card
6th
Card
7th
Cai'd
8th
Card
9 rh
Card
101 h
Card
llth
Card
12cii
Card
1-5
K|V
N
h
S II
E X
V
W
R
6-10
ij o| w| N|
H T
P 0
I3
•I'M*
!!*•
K|Y|I|E
N
h
S II
E
N
9
6
H
N
•h
,(o
6
U
n
7(2
H-15
CJA
N
4
K
0
C
6
N
16-20
,|sNo|.
U A
9(9
2|7|8
|2|4|0
"1
R T
EXPO
'IU'
J«l
8(3
1"
N
5
•h
3
n
-|<
a
S
h
T
11 HE
ih
h
C|A,J|S|^N
E
^ilikl Lb|.
;L
N U A
,
T
8
T
1
•|J
T A
8(8
5(0
S
<
T
II E
•I'
h
T A
21-25
.HI
L
T M A
•bH>
V
I
S
1"
J )
0
S P
T
. 1
V
. 0
6J.il
>
D
0
M
8
I
1
D
p
i
A
S
0
P
X
h
U
6
26-30
TH»
A 1
31-35
IW'L
.|3|2
( J )
H'l-
L
X
3
0
1
8
•
HV
S C
T E M
i
M*
A T|
5|0|
J )
7
•li
S CO
31 .ll
R
0
1
P
0
7
36-40
Mil
N t
•Nl
3
0
I
N
5
41-45 | 46-50 | 51-55 | 56-60 61-65 66-70 | 71-75 J 76-80 |
E S W A ll
0.0 J
G R A V T YJ
980. ll 2J J
II 'M.J 1 M.»l
II 1
1, 1
T E HPl
2I **( • J1* 1
H.
t
II '!•
E S W A TJ
0.0 1
G R A V T YJ
980. l|2(4|
., IIJjJ
-------
SECTION 5
MEIN AND LARSON INFILTRATION MODEL
The Mein and Larson Infiltration Model is a limited simulation program
for the unsaturated soil region. It is a good model for calculating runoff
and infiltration for nonsteady rains if one possesses a series of rainfall
intensities and their durations. This model can handle the three general
cases of infiltration during rainfall: the case when rainfall intensity is
less than saturated conductivity, the case when rainfall intensity is
between saturated conductivity and infiltration capacity and the case when
rainfall intensity is greater than infiltration capacity (saturated surface).
It can also handle the transitions between these cases. Other than the depth
of the wetting front, however, the Mein and Larson Infiltration Model gives
no information on the soil layers beneath the surface.
This model uses simple analytical formulas based on the Green and Ampt
Equation. This does not mean, however, that these formulas are easy to
derive. Although the program gives no information on water redistribution
as the Mein Numerical Model does, the information it does give is more
reliable. This is because the solutions are analytical and, therefore, exact
solutions. Furthermore, there are no convergence problems in this program as
there may be in programs like the Mein Numerical Model which utilize an
interative numerical solution.
Finally, the Mein and Larson Infiltration Model does not require long
data curves as input as does the Mein Numerical Model. In fact, it requires
only a few parameters beyond the basic rainfall intensity data. Most of the
40
-------
data can be directly measured, some of it perhaps with the aid of the Surface
Water and Density Program. It is conceivable that the output of this model
from several runs at various points along a surface could be used as input
into the statistical programs.
INPUT: PSIE - Suction at air entry
THETAE - Water content at air entry
CONN - Conductivity at air entry
THETA - Initial soil water content
DS - Depression storage
PINT - Rainfall intensities
OUTPUT: ZL - Position of the wetting front
T - Time to runoff
EXCESS - Precipitation excess (runoff)
F - Infiltration volume
FP - Infiltration capacity
Also cumulative values of time and runoff
REFERENCE: R. G. Mein. 1971. Modeling of the infiltration component of
the watershed rainfall-runoff process. University of
Minnesota, Ph.D. Thesis, Agricultural Engineering.
41
-------
BIN.AND.L ARSON,INFILTR ATION.HODS L
0,1
0.2
0.3
0.4
0.5
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31 .
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
//
/*
//
/*
/>
C
C*
C
C
C
C
C
C
C3
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
1234567
123456789012345678901234567890123456789012345678901234567890123456789012.
//SN1XXXXX JOB (BEW01)
I=MALINFL2
EXEC FWCLG
/*JOBPARM FULLSKIPS
//SYSIN DD *
C
C**********************************************************************C
C
f 6 C
MEIN AND LASSOS MODEL OF INFILTBATION COMPONENT . C
(GREEN AND AHPT (1911) EQUATION C
C
C
THIS PROGRAM IS A MODIFICATION OF MEL PROGRAM FOB NONSTEADI BAIN .
IT ASSUMES ONLY THAT EACH FS-VALUE IS COBBECTED FOB THE VOLUME
PREVIOUSLY INFILTBATED,1AND THAT THE SABE ANTECEDANT CONDITIONS
APPLY TO THE WHOLE BAIN EVENT
THE PROGBAM DEVELOPED BY HOGOWSKI IN EARLY 75 WAS FUBTHER MODIFIED
BY GBUREK IN AUG 75 TO GIVE UNUSED INFILTBATION CAPACITY FOB BOTH
CASE *1 AND *2 - ADDITIONALLY, DATA INPUT AND DATA OUTPUT FOBMATS
HERE MODIFIED SO AS TO ALLOW A MORE EASY INTERFACE WITH SUBSEQUENT
SURFACE RUNOFF VOLUME AND ROUTING PROGBAMS.
ALL CHANGES MADE ARE NOT NOTED.
FS,FF=INFILTRATION VOLUME TO STABT OF RUNOFF ,(CM)
FI,F =INFILTRATION VOLUME, (CM)
PP,PP=INFILTBATION CAPACITY (CH/HR)
THETA=INIT.SOIL WATER CONTENT (CM**3/CM**3)
THETAE=WATE8 CONTENT AT AIR ENTRY, (CM**3/CM**3)
THET =AVATLABLE POSE SPACE, (CM**3/CM**3)
PSIE =AIB ENTHY VALUE , (CM)
CONN =HYDBAULIC CONDUCTIVITY AT AIR ENTRY , (CH/HR)
FINT =RAIN INTENSITY , HERE TAKEN AS THE MAXIMUM FOB
TS,T =TIME TO BUNOFF (MINUTES )
TSS ^CUMULATIVE TIME (MINUTES)
DUR =DUBATION OF RUN (MINUTES )
ZL,Z =iETTING FRONT DEPTH (CM)
DUBA =SUMMATION OF INDIVIDUAL BAIN INCREMENTS , (MIN)
NM=1. 3 + NUMBEBOF INTENSITY INCBEMENTS
DS =DEPBSSSION STORAGE (CM)
UNINF= UNUSED INFIL CAP DURING AN INTERVAL (CM).
SXCESS= PRECIP EXCESS DURING THE ENTIRE STOBM.
CUMEX= CUMULATIVE EXCESS DURING THE ENTIRE STORM.
FITOEX= THE INTENSITY WHICH JUST GIVES EXCESS AT THE END OF THE
INTERVAL.
AGIVEN RAIN
^***********************************************************************
DIMENSION FINT (92) ,DUP(92) ,FF(92) ,FI(92) ,ZL(92) ,FP(92),TS (92),
1 TSS(92) ,FS (92) , DURA (92) , UN INF (92)
2,F(92),PF(92),T(92) ,Z (92)
42
-------
HEIH. AND.LABSON.INFILTRATIOH.aODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
51. LOGIC AL*1 IDS (4) , ID (6 6) , SQ (3)
52. 2 READ(5,3,ESD = 14) IDS, ID
53. WRITE (7, 3) IDS, ID
54. 3 FORHAT(4A1,66A1)
55. 4 READ(5,5)PSIE,THETAE,CONN,THETA,lDAi:EfItafDS
56. »RITE(7,5) PSIB, THETAErCONl*rTflETA,IDAT:B,NJ!,J>S
57. 5 FORMAT (4F13. 5,16, 4X, 12, F8. 4)
58. WRITE (6,8)IDS,ID,PSIE,THETAE,CONN,THETA,IDATE,NH
59. 8 FORMAT (1H1,1QX,4A1, 66 A1,/,»0» ,20X,' PSIE=« ,F6,2,2X, • THETAE=« ,F6. 4
60. 2 2X,'CONN=«,F7.4, ' THETA= ' ,F6. 4 ,2X,» DATE= * ,16 , 2X, ' NM=«, I2,//)
61. THET= THET AE-T BETA
62. 900 FI(1) =0.0
63. ZL(1)=3.0
64. FP(1)=0.0
65. FS(1)=3.0
€6. FINT(1)=Q.Q
67. DOR (1) =0.0
68. DUHA(1)=Q.O
i 69. FF{1)=0.0
70. TS(1)=0.0
71. TSS(1)=Q.O
72. CUMINF=0.0
73. CUHEX=0.0
74. C*****
75. c***** THE FOLLOWIHG READ STATEMENT AHD FORHAT IS SET OP SPECIFICALLI
76> c***** T0 IHPQT INTENSITIES KITH UNITS OF 0 . 1 IH/HR, THEREFORE THE! A;
77. c***** HOLIIPLIED BY 2.54 TO CONVERT TO CMS. EACH CARD CONTAINS THE
78. C***** THE INTENSITIES FOR ONE SQDARE MESH ON A GRID. THERE CAN BE OP
79. c***** TO 12 INTENSITIES PER SQUARE HESH HITH THE PRESENT FOFHAT.
80. c*****
81. 901 READ(5,600) SQ, (FINT { I) ,I=2,NM) , ACRES, IEND
82. 600 FORHAT(3A1,03X,12F2.1 ,OOX,F3.0,T67,I6)
83. IF (IEND. EQ. 999999) GO TO 2
84, IF (ACRES. SQ. 0,0) 30 TO 901
85. WRITE (6, 583) SQ
86, 580 FORMAT*' 2', ////,' »,4QX,»«« «,3A1,» »»',///)
87. DO 1 1=2, NM
88. DOR(I) = 10.0
89. 1 FINT(I) = FINT (I) *2. 54
90. C***** END OF DATA IHPOT CHANGE.
91 . DO 113 1=2, NH
92. DOR A (I) =DUR (I) +DORA (1-1)
93. C
94. C CASE A : KEMNT. *1.
95. C
96. CONTINUE
97. IF (CONN-FINT (I)) 16,15,15
98. 15 CONTINUE
99. FI(I) =(FINT(I)*DOR(I) /60.0) +FI(I-1)
100. ZL(I) =FI (I) /THET
101. Fa(I)=FI(I)
102. FP (I) =FINT(I)
103. c UNOSED INFIL. CAP. FOR THIS CASE IS APPROXIMATED BY THE DIFF.
104. C BETWEEN HIDR . COND. AT AIR ENTRY AND THE ACTUAL RAIN INTENSITY.
105. [IN INF (I) = (CONN-FINT (I)) *DOR (I)/60.0
-------
EIN. AND.LABSON. INFILTRATION. HODBL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
106, WRITE (6, 117)
107. 117 FORMAT(1H3,//, ' f1 KE>INT (SO RUNOFF,INF.ONLY)« ,/)
108. 8BITE{6,17)DUB (I) ,FI{I) ,FP(I),ZL(I)
109, 17 FOBMAT(1HO, 'DURATION (MIN) =• ,F6 .2 ,2X,< INF.7QL. (CM) = » , F8. 2, 2X,'INF.
110. 1CAP. = INT, (CM/HB) = ',F6.2,2X,'WETTING FBOHT DEPTH (CM) =',F6,2,//)
111. 500 FORHAT('Q«,20X, 'UNUSED ISFIL CAP IS «,F6.2,' CM',//)
112. WBITE(6,500) UNIRF(I)
113. IF (CUMEX.GT. G.Q) COHEX=CUMEX-UNINF(I)
114. IF (CUMEX.LT.Q.O) COMEX=0.0
115. TS(I)=DUB(I)
116. TSS(I) = TS (I)+TSS(I-1)
117. EXCESS=Q,0
118. GO TO 133
119. 16 CONTINUE
120. C
121. C CASE B : KE =FI(I)/THET
145. FS(I)=FI(I)
146. HRITE (6,80)
147. 80 FORMAT(1H2,' #2. KE
-------
MEIN, AND. L ARSON. INFILIBATION. MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890'
161. FI(I) =FS(I)+FI(I-1)
162. ZL (I) =FI (I)/THET
163. 43 CONTINUE
164. SBITE (6f90)
165. 90 FOBMAT(1H1,» *2. KE
-------
f. AND.LABSON.INFILTBATION.MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
6. 100 FORHAT(» •//• ' , 12X,« PBECI P EXCESS DOSING THIS INTERVAL = »,F9.5, '
7. 1 CSV)
8. 133 COMINF=COMINF-MDOE (I) *FIHT(I)/6Q.)-EXCESS
9. WHITE (6, 101) CUMINF
0. 101 FOEMATC •/' »,3GX, »COH IMF TO THIS POINT SHOULD = SFS-B,1 Cfl*/)
!1. HBITE{6,555) CUMEX
!2. 555 FOE8AT{» ',/,' ',30X,'CUW EXC TO THIS POINT SHOULD = ',F9.3f
!3. 2 ' CM',/)
!4, 113 COHTINUE
5, CUaEX=COfiEX*2. 54
6, RONOFF=(COBEX/12.0) *ACHES*43560.0
7. »HITE(7,551) SQ,ACHES,IDS,CU»IX,HOHOFF
8. 551 FOHSATC* ','GHID » , 3A1, 02X, F4 .0 ,' ACEES OF • ,4A1,6X, «CDaEX= •, F4. 2,
9. 2 ' IS',03X, «EONOFF(OJ,PT) =«,F12.0)
0. GO TO 900
1. 14 STOP
2. END
3. /*
4. //DATA. FT07F001 DD DNIT=BAT,FILES=$MANDL*
5. //DATA. INPUT DD *
46
-------
KfkH Ot>.Si(, I'lS, 1()S, If t - !/;!(/}? £1CHH
l'Slf = It.00 'JIIMAt = 0.3520 CChN-= 3.2UOO 't'UTA- O.J310 OA1S= 521(75
«« HO »»
11 KG>IM1 |NO It UNCFK.I tf.CMJ)
DIIUATICll(HIl) - 10,00 JMf.VOl. |C«J= 0.0 1 It.C iP. = I HT. (CH/UR) * 0.0 VETTING FRONT DEPTH (C M) * 0.0
-P-
•--J
UUUSED I (it'll CAt IS 0.55 CD
CLC I»F ?C THIS tCIIIl SIICULC = 0.0 CH
COt HKC 5C 1HI£ POIN1 SHOOIt = 0.0 CM
-------
-p-
OO
II KK>I Ml (HU liUNGFf ,11*.CUV)
IHIIIATJOU (»J M = 10.00 iUF.VCL. |CM)= 0.0 HF.C AP. = I NT. (CM/ I'R) = C.C KttVING FhOHl OEP1II (C M) - 0.0
UNUSED IMFII CAI IS 0.55 CR
cir lit ic THIS ICIM siicuic = o.o CH
cue me ic iiiii roini siiomt - o.o ct
II Ht>IWT (NC KUHOf I, 1HKOMLY)
DUIIATION |MIk)= 10.00 IN F. VOL. (CM) = 0.0 IKF .CAP .=IN1. jCe/HH) = 0.0 METTIIG FECNT CEPTH (CM) = 0.0
UNUSED JNHI. CAL' IS 0.55 CH
CUI! lit 1C THIS ECINT SHCIILC = 0.0 CH
Ctl! EJC TC 1IIIS ICINT SllOUIt = 0.0 CH
II KB>IM1 (110 HUHCFF .1 If.Ckl V)
DUIUTIOH (HI N) = 10.00 I »V . VC1. JC P.) = 0.0 UF.CAP. = IHT. (CM/IIII) = 0.0 WETTING FROH1 DEP1II(CM)= 0.0
UNUSED ItFIl CAE IS 0.56 CR
cur itr ic THIS ECJHI fitcuit = o.o c«
CUI! EXC 1C 1fcl£ P01NJ SIIOUIC = 0.0 CB
-------
II fEMM |NC KIJNCU , 1MI.DII I V)
DUUA'i'ICI, JMI h) = 1U.OO IN?. VOL. (CM) = C.C IJU .CAI'. = 1N1. (C fr/llt.) = C.O UFlTTfcG FRONT tFPIII (CBJ = 0.0
OMUSSC JNtU CAP IS 0.55 tf
CO* J>f 1C 1IIJS tCINT SllCUlf = 0.0 CM
CLC E1C TC THIS tCJHT SHClIlt = O.Q CM
II KE>III1 (MO If UMOFf ,Ikt.CH V)
DUBATIOH (M1N) = 10.00 I kF. VCl. |C*) - 0.0 J»F. C AP.= IKt. (C«/KB) = 0.0 HE1TIHG FBOMi: DEP1H(C«>= 0.0
UIIUSKU INFII CA{ IS C.!! CK
CUM IMf 10 1IUJ POINT SIIOOID = 0.0 CM
CUM IXC 10 1HI! POIN'J SIIOUID - 0.0 Ct
II Kt>IMT (UC BUHOH. IMf.OHIV)
DUaATIGH (HIM- tO.00 J NF. VOL. (CM) = O.C£ JNF.CAP.=IN1. (CK/llIi) = 0.51 UETTIIG FT.CNT CHPa>ll(CN)= 0.70
UNUSED INtIL CAP I£ C.'U CH
CIIH JNf 10 1III£ CUIMT SIIOil III = 0.065 CH
CUH (tC 10 1HIS ICINT SUCH ID = 0.0 CM
-------
e
I;
o
tl
A
C
w
*
s-
.£
t-^
II
*
U
^
U
* C
i*4 W
**
Cl
1
a
u
a
»•*
a
C
VI
r^
2>
M
a
c.
o
t
o
M
O
»4
O
0
Ul
2
*4
0
Ot
C
!M
r*
^
3
c
3
U
>•
»J
3B
z
»*
A
aj
«
-
""
O
Ul
t
ffl
II
c
X
IH
u
H
X
o
id
Bi
o
41
M
ft
Ol
a
vO
t
0
II
3?
S
U,
•
r-
2
M
II
•
cu
MC
O
1
a.
a
i11*
i7
•
0
11
C
U
*•*
1
Ml
O
s>
1
IX
35
M
£3
O
i
O
11
2B
rt
£_
as
0
6"
3
3
a
z: x
rn
CN
£T O
t f
O 0
(1 II
a u
fcj »4
S O
W U
VI VI
as z
a- H w
Cj u w
U* bU
»• cn «
• (MM
w a x
H **
5J W
vi fc-« S-*
w
M* U
cu a **
< l-t S4
W
x* M
N-: as
*** u u
HM
as
p^
ca
M)
VJ
=3
r:
^»
"•4
^O
W
04
^ft
I—I
*
fib
OU
O
Z3
a
O
a
"™*
*•*
X
^
S3
^
_
"*
.= IKT.
M
o
o
f
o
„
_^^
a
x:
g
H
^
a
aa
u
in
v
a
en
^4
u«
•f
u
•M
M
a.
2
W
a
u
ta
3
a
B
u
9
*
o
II
u
MA
a
u
-------
II KE>lN't (KC UliMOtf ,lNf .UN IV)
D(IUATION(MI»)= 10.00 I NK VOL. (CM) = C.H1 INF .CAP .=IN1. fCe/HBJ = C.O ktlTUG FfOfIT fl-PTII (CK) = 3.aS
UHUSEC INtJl CAP IS 0.55 C^
CUf llf 1C 7II1S {CINT SHCIJlt = 0.'U6 CM
Cl» BJC TC THIS ECIKT SllCUtC = 0.0 CM
II KK>IN2 (NO If UNCKF,! IF.CM 1}
OUHATIOM (rtlH) = 10.00 IKF. KCI. |Ct) = 0.51 1 H.CIP. = IHT. (CM/tfi) = 0.25 UETTIMG PROH1 BEPtll (CH) = (J. 20
UMOSED INFH CAI IS 0.50 CB
Ul
M
cut iIF 'io ami POINI snouio = o.soa CH
cun EXC 10 iitif POIHI SIIOUID - o.o ce
-------
«« Ml »»
II Kt>INT (NO bUNOfi, IHf.ONLY)
DURATION |MIk)= 10.00 INF. VOL. (CM) = 0.0 1MP.CAP.-IN1. (CK/IIR) - 0.0 UETTItG FSCHT DEPTH (CM) = 0.0
UNUSED INflL CAP I£ C.J? CH
CUM JNf 10 1IIIS POINT SI!OIHI) = 0.0 CH
CUM FJC 10 'I HIS [CINT SUCH ID = 0.0 CH
HI K£>IN1 (HO BUNCFF,! kF.CMV)
DURAYIOM IMIN) = 10.00 I HP. VCl. |C() = 0.0 m. CAP. = INT. (CM/HBI = 0.0 HETTIBG PBON1 DEP1II (CH) =• 0.0
LHUSED IkFlI CAt IS 0.5£ Cr
CUh IfF 1C 11IIS ICItil SHCUIC - 0.0 Cf.
Cllt (XC 1C 111! I 1'OIHI SIIOUIC - 0.0 CK
-------
c
•
o
JC
.
Oi
u
Q
O
Eh
o
II
e
cu
fr!
O
Efi
Ih
M
t*
o
*
o
E
P
o
IS
A*
•J
as
M
61
a
o
o
e
O
O
f
o
o
f
e
E r:
u u
a
i
o
u
6
U
s
'SI
g
IHt
u
so
e*
of
u
II
a
II
O
H
3B
M
U
b4
tn
u
I
f-
a
i^
ii
Oi
^
u
u
V)
f
u
X
Ml
O
u
9
«
O
=1
u
S
3
U
a
(u
o
c
o
a
»»
ii
«
i
o
ii
s
O
53
-------
B
f
"5
O
c
tc
o
"a.
re
v
»
c
in
re
c
o
i
o
f.
I
«
o
z
o
z
o
•X
O _
o e
o
M ee
tc =
>v B:
« O
O *a
C _
n
n
t*
ii
n
c
ac
— e
o m
r>
r4
O
r,
>•
•o
2
—
II
in
x
o
Ul
n
o a
c o
ro
P> n
3 B
•8
•
II
X.
SB
CD
r>
•
ISJ
U>
*n
n
a
n
•o
o
vt
B
O
o
II
n
"S
•
n
n
rv
X_
B
I!
O
O
n
ea
r,
=
o
o
n
s-
•B
n
3
s.
05
M
IB
R
•n
O
z
••3
en
r>
a
ra
•o
*
o
O
ts
•B
n
a
u
o
•
Ul
LT
n
3
II
O
o
3
a
*
a
-------
Ul
t_n
It H>IN1 |l,C KUMGH.IIU.CiNH)
DUMATlCh (HIM = 10.00 I NI . V L L. (CM) = O.OU IMF.CAP.^INl. (CH/IItt) - 0.25 fct'TTIHG FliUNl DEPUI (OH) = 0.70
UNUStt 1MH CA1 IS 0.50 CF
cur it; ic THIS ECIUT sucuic - o.oas en
Clt *1C 1C tUli ICIK'J SUCH 1C = 0.0 CK
II KE>Iti1' (NC BUNUt f,lMI.ONLY)
DUUATICN (HI !,)= 10.00 INF. VOL. (CH) = G.13 IUF.CAP.-IN1. (Cfl/HB) - 0.25 UETTIKG FbCNT ESPTII(CH)= 1.05
UMUSEB INilL CAP IS C.'C CD
CUM Mil 10 1U1< POINT SHGdlD - 0.12? CH
CCH HC TO THIS ECINT SI1CUID - 0.0 CH
II KK>IH1 JMO HUI10FF ,T bf .CMi)
DUUATION (NIH) = 10.00 I IF. VCl. JC K) = 0.13 1 IJ.CAP.= INT. (CN/Kb) = C.O WETTING FHOMt OEP1II(CH)= 1.05
tMUSED IUHI CAE IS 0.55 CC
Cie J»P 1C THIS ECIM-I SHCUIt = 0.127 C«
CUl fXC 1C IHlf POJM1 SIIOUIC « 0.0 CK
-------
c
9
II
£
u
5
o
•
o
u
=
B^
Oi
Ct]
o
o
es
a.
(N
a
SO
(J
30
u
>e
U
a
in
u
s-
u
=
-------
-3
^•t
o
c
SB
o
SE
2
II
O
v
HI
X
»•»
re
V
n
*••
3
i-i
»a
c
M
m
ft
tfi
n
ft
e
s
en
re
a
ft
>>
•B
n
ss
sr
ts
in
Pi
e
O
t"
D
s>
c
z
o
•»
tfi
tr
n
—
•e
O
X
H
•s
9
II
w
SE
id
B
"ft
n
c
ac
rs
t^
o
t!
O
~
O
e
o
ii
ft
o
3
O
u
tfl
5
o
D
ft
!«•
•O
II
H4
SE
rt
a
~
S
55
Ml
u>
o
ft
ir.
n
r:
p«
N.
ft
KJ
in
es
tn
o
«
o
ft
3
H
B!
?!
n
1-9
A
eo
o
3
^
O
(.1
•B
Ml
ft
3
ft
3
II
O
•
u
in
-------
>*
Mi
A
W
1
>•*•
*,
1**
%
w*
X
CJ
3S
13
3S
U
***
r«
3
)••»
/\
as
0.21 1»KC«P.= INT. JCM/KIi) = 0.51 KlTTIHfi FflC'IT DEPTH (CM) =
IS C.IU CN
f 10 1HI£ POIM1 SHOnlD = 0.212 CH
C 10 1HI£ FOIM1 SilOUID = 0.0 CH
w Z X
II •< M IM
— U
a. a: s
^ •* as
~ H u u
i c±*
M4 SB
W M
*
i a
fb 2Q
^A ^*)
M 3
™
M)
O
S3
•
O
H
S
s
2
h*
s«
•1
>«
>a
z
O
•
hU
Z
P4
%
MM
M>4
O
3
a
a
u
^*
3S
M
uu
ae
It
s?
ii
M
U
5-
U
kfi
Ob
I*
HI
fc»
fiti
at
(N
O
t
II
oa*
X
JU
II
i
a.
U
f^
u^
rn
•
o
II
^^
c
^J
1
o
»
1
Ob
z
HI
O
0
o
II
£
as
O
^i
<
I£ C.3t CM
E 1C THIS ECINT SIICIIIC = 0.361 CM
C 1C IHIS [CINX SHCUIC = 0.0 CH
Oi Z X
< »™t au
u
Z *J
_i a a
"1 VJ U
«•
z
f^
a
BU
Ul
S
3
M
A
u
•
UM
*Ot
M
%
Ob
a.
a
s
ca
o
«.
IT"
^
M
A
U
ac
II
y_
Q.
a
IT"
O
ss
Ou
»
s
HI
S-
H
3
CT1
f"
•
f*
II
S
S
X
u^
•
i-l
Z
M
II
1
U
t
ri*
Ul
9
f
O
11
jj
o
M4
u
^
,
X.
3>
ta4
O
a
a
u
?
3£
O
$4
0
t
O
in
HI
Wi
<
W4
^
b.
3S.
^
Q
U
1/3
3
Z
J
f 1C IHIS fCINI SIIOUIC = O.U17 CB
C 1C IliJJ POIN1 SIIOUIC = 0.0 CH
•* X
M W
** 44
25 a
U U
58
-------
12. KB I >* .C U , (CI!/Bn) U til I KG MlOITl t» fill (CM)
75.66
76.HO
77.35
78.23
75. 1H
00.07 ;
(1C. 00 'j.
,56
.it
.76
.66
.96
i.oe
.06
7. 34
7. 1C
c.aa
e.e£
6.51
£.3£
6.37
12.92
13.75
11.57
15.40
U.22
17.05
U. 99
1'HKCJP EXCESS DURIKG THIS IN1EIVJ1 = 0.06134 CD
CU« III 1C 1UIS ICJNT SI1CULC = 2.OSS CH
CUK EKC 1C 'IHIS FCIHT SIICUIC = 0,061 CM
Ul
-------
09
3
n
•o
re
o
z
12
o
s
C
ft
c
r*
X
n
t£
O
hd
=
M
rn
rs
O
n
c
r«
^
••
hB
O
S
M
Ul
»«
n
M
n
^
«n
U>
O
1
u
CD
^
o —
o st
o
o
t-
3
II
to
t
CD
•W
4
n
U;
ra
e
r~
*-
3Z
K
in
5
•o
c
Si
(-9
t/>
O
m
O
ft
e
O
t
o
n
s
X
O
to
r>
"B
SB
O
O
c
T>
n
•B
O
2
n
DC
II
ro
cs
O
•
O
-------
It KK>1N1 {IIC R UNCPF.l IF-fKlY)
DIIHATICII ((111) = 10.00 1NF.VOL. KH)= 2.«t> 1 »P.C hP. = I I»T. (L«/lill) = 0.21 h El XING FUOM1 tlEPTII JC«) = 23.61
UNUSED I KH 1 CAE IS 0.50 Cf
cue lit ic TIIIS tcm SHCOIC = 2.aeo CK
cun me 10 inif POIMI SHOHID = o.o CK
It K6>INT (NO HUNOtf,INf.ONLY)
DUBA'l'IOM |MIK)= 10.00 ItlF. V01. f CH) - 2.SC IMF ,CAP.=IN1. {Ce/Ufi| = 0.25 HETTIKG FliCHT CEP-rH(CH)= 23.98
INfli CAP I£ £.£l CM
CUH IN I 10 1IIIS POIH1* SIICUID = 2.902 CM
CtiH [1C 10 ttllS tflMT SIICUID = 0.0 CH
-------
«« 1311 »»
II KE>IN1 JHO DUNOlf ,1M.CU>)
DIIBAl'ICB (tilM- 10.00 INF.VOL. (CM)- 0.0 IUF.CAP.-IMT. (CM/11 H) = 0.0 HETTING FIJOHT DEPTH (CH) = 0.0
UNUSEC 1KH1 CAE IS 0.55 Ct
CUt I»F 1C THIS ICINT SHCUIC - 0.0 CM
Ctl! E«C 1C 1HI£ ICIN1 SHCIIIC = 0.0 CB
11 KE>INI (NO UIJNOH, IHKOMLY)
DUUATION |M1K)= 10.00 INF. VOL. (CH) = O.C INF ,CAP.=IN1. JCK/HB) = 0.0 HETTIKG FRONT EEPTH(CN)= 0.0
IIUUSEC INtlt CAP IS C.tt CM
CUM IMf 10 1III£ POINT SUCH ID = 0.0 CH
CUM DC TO THIS [CINT SIICULO = 0.0 CM
-------
II KK>INT (NC till HOP f , J kf.CM Y)
BUBATIOH (HINJ = 10.00 I KF. VCl. (Cf| = 0.0 m.CAP.= IHT. (C«/tK)= 0.0 HEWING FRONT DEPTH (CM) = 0.0
UNUSED INPI1 CAl IS t.'-'. CM
CUM IHt 10 Illlf PI) I 111 SIIOUID = 0.0 CM
COH IXC 10 1HI5 POIS3 SIIOUID = 0.0 CK
II KS>IUT (HC iillNOf I, IMLOMLY)
DOBATION (Bl!i)= 10.00 INF. VOL. (CH| = 0.0 1NF.CAP.=IH1. (CB/IIII) = 0.0 HETTISG ttCHf CEPTH(CH)= 0.0
UNUS£0 JWFIL CAP IS C.Sf CM
CUH IN* 10 IHIf POIN1' SIIOUIU = 0.0 CH
COM itC 10 THIS {COT SIIGU1D = 0.0 CM
II KG>IN1 (NC ItUNCFF.IlF.Ctin)
DUBATIOH {HIM) = 10.00 I BP . VCI. JC«) = 0.0 Uf.CAP.= INT. |CMy HB) = 0,0 WETTING FBOHt DEP1II
-------
a
n
6"
S.
1C
o
tb
•j
u
=
04
u
g
a
a*
U
»•
»••
*b
w
•
.44
—
*
'At
U
25
3
•^5
a
3
^™
5"
0
ii
\
t*
2
rH
II
I
C.
CJ
!h
ys
^
3T
c
1
•3
11
— »
c
<**
"**
«3
r-J
1
U4
s
t-t
o
0
o
•<
u
a
rfi
t
o
VI
to*
Ml
«;
^i
^4
•^
MM
^S
•^
u
U4
V)
s
2
a
o
o
II
u
M4
u
«
e^
2
W
U
Ui
V]
H4
S
C^
W
|-»
tb
A
Nt
«i
3
U
O
o
II
u
^4
U
V*
*&
f^
U
w*
W
M
a;
c*
u
•*
w
•«•!
uu
«I
•J
u
>•
.j
2
a
4
Wi»
Z
W
%
t*«
o
a
C2
0
Z
•••
W
II
cr
"N
ie
z
M
II
•
U
•
&,
z
^
p«
-------
•B
re
•4
5
re
if.
Z
e
*
*
n
»»
»B
n
e
a
o
c
«e
an
n
w
14
rs
ca
o
•B
M
U!
•4
•tfl
B
•O
O
HI
in
=
O
u
M
«d
9
ffi
c
e
o
0
o
•B
O
O
II
O
o
IB
tM
fi
rj
2
n
u>
t
u
o
o
O
ae
a
O
!E
3
M
Z
-------
It KK>INT (NO hHNCEt, 1HI.OHLY)
DUflATlOH |.11U) = 10.00 I UP. VCL. (CC) - i.iS U* -C AP.=IN1. tCK/Hi) = 0.76 tlETTIKG FfCHT CEPTI1(C.1)= 10. E9
UNUSED INFII. CAP is c.*; CH
CUtt JKt 10 Tllli POIII1 SIIOLID = 2.2£6 CH
COM IXC 10 IBIS POINT SHOUIO = 0.0 CH
II KE>IN1 (NO BUNCFF.IIiF.ttllV)
OUnATtOH (HIM) = 10.00 I NF. VCI. (C(f) = 2.29 1 tif.CAP. = IBT. (CH/I:H) = 0.0 WETTING FRONT DEPTH (CM) = 18.89
UNUSED IfcFII CAE IS 0.56 Cf
C\it 11! If. THIS [CIN1 SI1CULE = 2.2116 CB
CUE EXC 1C 1HI£ POINT SHGOIC - 0.0 CM
II KE>INT (NO UUNOIf,IHf.ONLY)
DUHATIOM |HII.)= 10.00 INF. VOL. (CH) = 2.33 1NF.CAP .=IN1. (Ct/UU) = 0.25 HEYtlMG FBCNT ttPl'll(CM)= 19.24
UtiUSED INtIL CAP IS C.<( CH
CU« IHF 10 1IIIS POINT SHOUID = 2.316 CH
CUtt [1C TO IK IS ECINT SIICI11D = 0.0 CH
-------
«« [39
II KE>IHT (110 UUHOf i.lN
DUIUTION |«IK|= 10.00 INF.VOL. (CH)^ 0.0 IHF.C4P , = IN7. (CK/IIB) = 0.0 WETTIKG PBOST CEPTH(CH)- 0.0
UNUSKE iHien. CAP is c.*! en
CUH IHf 10 IHIf POINT SHOUIO - 0, 0 C«
CUM E1C TO THIS [CINT SMCtllD = 0.0 Cfi
«J KBHU1 JH
BUS4TIOM JMIN)= 10.00 I NF. VCI. (C«) = 0.0 Uf. C*P. = INT. (CH/BB) = 0.0 KETTIMG FRONT DEPTH {CH) = 0.0
UNUSED INFII CAJ IS C.f! CK
CUM !Hf 10 'JHI£ POIII1 SIICIIID = 0.0 CK
CUM IXC 10 THIS POINT SIIOUIB = 0.0 CH
-------
89
e
c
n
r*
w
X
f-l
•*
n
h£
rr
b^
rn
•S
O
w
=
fcA
w
=:
o
c
n
ii
o
o
n
nc
n
nr
M
"»»
•w
*a
/*»
^*
— :
M
w
M
^
I—I
SE
b£
1A
—
f«5
t*
M
II
O
9
n
at
O
z
"a
M
Z 95
•— re
II V
»•<
«» c
O i-s
1
c —
e 0
C MS
in e c
P3 T Z
o « o
« *x
(-1 Ci ts
EC *•" »
•5 < M
l-i — w
•- n >fl
»» •
n — o
> I! V
•«•! *—
•£
U!
O
O
0
1
Ul
LA M
V.
r\ -r.
!W «
r*
!»
1
II
M
3
1
n
2
\
SB
V,
II
O
•
o
K
m
i^
z
IT
O
e
n*
fte
n
rt
o
•A
rs
M
10
m
n
M
9E
W
M
n
e
i^
a
ii
0
0
r>
3
(1
^
s:
•*
ri
O
bd
rr
^^
rfi
•o
O
M
Z
1-3
10
s
o
e
H
o
n
o
0
C5
2
O
te
'at
4»t
K 9C
•— m
II V
M
0 >i
•
0 _
c z
= 0
z
C H B
in z c
m *rc s
B • 0
< »r
i^ O *«
S I" «
•T > M
_ — Z
o ^ b
^* || Z
•B t-
•<
if)
O
0
n
i
in
I* i^
z
O «e
2 1
^
•o
•
n
w
z
hd
•
^
a
=
II
o
•
o
c
m
i-3
•J
w
9T
PI
O
O
I
o
o
•
o
o
a:
a
tn
in
n
9
v
E
c
ff
o
t-
II
*•*
•z.
*t
•5
*^
C.
3
n
n
2
n
-------
It KE>1N1 (UC IcUNCM , Jin.Otl I V)
DOBATICh (MI^J - 10.00 1 lit. VCI.. JCH» = C.C INI- .CAI>.= I HI. (f f/H F) = 0.0 KETTIHG fliOHT £JPTH(CM)= 0.0
IINUSiC JHUl C»E 15 0.55 Cf
CUI! IfF 1C IHIS ECINT SIIOUIC = 0.0 CM
CLC E»C 1C THIS ICINT SHCIIIC = 0.0 CM
II KK>IWJ (HO 9UNUFF.IKF.CMt)
OUUATIOH (HIM) - 10.00 I HP . VCI. |C») = 0.38 1H.C*P.= IDT. (CN/HH) = 2.29 WEITINU PRON1 DEPTH (C H) = 3.15
UMUSEO IIIFII C*I IS C.l'i CH
CUM JNf 10 1III5 POTM1 SIIOUID - 0.361 CH
CUH me 10 mi£ POIMI siiouio = o.o ce
-------
o
o
u
*-»
**
1
u,
a
f
a
JI-H
i-4
O
•
35
t&.
.A4
w
Z
5
O
~*
f
C^
«e
U
*
A*
z
V
1
's
••*
V
X
1
;M
«•
•h.
xi
7
*j
1
0
c^
z
J
>*•
u
5
S
tu
2B
Ul
^4
J*
i.
O
o
<
13
3
U
04
••
N
a.
U
X
r*
w
yj
-5
CU
t-
•d
H
m
t«
^;
U
i
-a
i
•
' o.
«I
1-1*
o
*
o
a
*
*
*
*
*
*
"
V?
&2
s^
5
Z
>-t
3^
M
13
M
**
C
O
^_
^
t
u
ul
^
i,
MB
w
nJ
Z
a
»-(
u
(U
'/J
3
S
s
XT SHCIIIC = 1. 312 CH
HT SHCUIC - 0.0 CH
1-1 m
w u
k*4 U4
en en
a; 35
r* H
*J U
«•* vl
au -»
u
ifi
*"
p»
1
11
II
as
s
^
•
H
S
M
II
o!
U
I
*4
«a
9
^
II
^-^
v
u
•
•4
U
»
(
^
M
O
O
O
i—
f|
S
M
•a
a
O
M
<
OS
3
a
B
u
a
0
sn
M
w
•t
U
•4
Cb
Z
M
^
U
3
SZ
a
a: a:
U U
ca
r- o
• i
r~ O
II II
N4 »*
a a
u O
in in
r« n
» OS
i-« 1-1
u o
>u 0,
tfl XI
H **
S S
U W
fib
-------
It hKXHl (NO ilUMOH',J tf.CMV)
DUBAl'lGk (HI K) = 10.00 I Ht . VCt. |CH) = 1.90 UF.C AP. = I NT. (CH/hli) = 0.76 UEITING PKOMT DEPTH (CM) = 15.711
UNUSED 1NFI1 CAI IS 0.12 Cf.
Cle 1IF 1C THIS ICIN1 SHCUlt = 1.905 C«
CUI! EXC 1C 1HI£ POIN1 SIIOUIC = 0.0 CB
II KE>INT (HO UUNOfi,INf.ONLY)
DUHATIOli |MIK)= 10.00 INF. VOL. (CH) - 1.9C 1MF.CAP .=IM1. (Ct/Hfi) = 0.0 HKTTIkG FliCNT DEPTH (CM) = 15.74
UNUSEC 1HHI CAP I£ C.£! CH
CUM IHf 10 1HI£ POINT SHOOID = 1.905 CH
CUH IIC 10 IBIS ICINT SHOULD = 0.0 CM
1 |NO
DUUATION (HIMJ = 10.00 I NF. VCl. |CH)= 1.95 UF,C*P. = IMT. (CM/KB) = C.25 WETTING PBONI DEPTH(CB)- 16.09
UNUSED IHFII CAE IS 0.50 CK
CUt US tC THIS ECIH1 SHCOIC = 1.9H7 CB
cue EXC -ic a«i£ poitn SHOUIC = o.o c«
-------
ZL
ft
cs
3
m
h^
n
»4
C
04
IS
fc*
10
m
n
••*
z
U>
n
c
p«
o
II
o
•
o
n
CK
ft
C
a
w
2
*»i
«J
0
ts
!T.
M
ffl
T
O
M
2
i£
o
s
»m
"
II
o
t
0
r>
SK
11 KE>IMT (NO HUNOH, 1HI.O
DURATION |«IK)= 10.00 IMF. VOL. (CM)
IJHUSIC JHH1. C
^ It S
•c r-
•<
IB
n
rt
i
(n
"* S
r> is
S i
rs
•8
•
II
M
at
*a
•
n
v
s
9
II
o
•
o
e
no
-I
M
S
91)
O
3
M
W
3
s
*n
ti
0
o
a
nn
X
n
*j
o
1-3
se
M
fft
*O
O
M
as
tn
O
C5
t^
a
n
o
o
n
s
B
2
M
8C
W
04
C
fed
a
M
in
•B
O
M
ce
In
O
e
o
n
o
1
o
n
at
11 KB>IHT (NO fiUNCFF,TK*.C
DUB AXIOM (HIM) = 10.00 I WF . VOL. (C B)
UNUSED It,Hl C
to II Z
l¥1 f*
•<
t/l
O
o
o
•
in
in M
n -r
s •
n
t!
1
II
2
1-3
•
O
DE
V
9
II
O
o
e
M
£
a
rt
n
3
3
^
H
e
o
A
A
v
v
V
-------
II HKMN1 (NC IdlHOKt.I H-.
DUHATION (aitJ) = 10.00 1 fcK. VC 1. (I H - 0.0 lit. C t P.= III . JCK/I i.) = 0.0 kiTTINO PKCNV DEPTII(CM)= 0.0
UMIISED IKFII CAl I£ C.Sf Cfl
CIIH INF 1O llllf 1=011(5 SIICU1D = 0.0 CM
CUM fcXC 10 1111! POIN1 SlIOUIO = 0.0 CM
—I
U)
It Kf>INl (DC BUHOJ [.Ik
OUUATIUH (HI k)= 1U.OO INF. VOL. |CH) - 0.0 JHF .CAP. = IHT. (Ci/IIH) = 0.0 UEtTING FRONT EEPTII(CHJ= 0.0
UMUSED IHfIL CAC IS 0.55 CIS
C(]£ I»F 1C THIS ICINT SIICIUC = 0.0 CH
cut fjc tc uns SCINT s MCU IE ~ o.o en
«t KB>IN1 (KC UUNCFF.I k
DUBATION («I N) = 10.00 I NF. VCl. |C«)= 0.0 I»F.CAP.= INT. (CH/HR) = 0.0 UETTING FRONT DEPTH (CD) = 0.0
UNUSED 1I1FII CAf IS 0.55 it
GUI' I»f 1C 1UJS ICIN"! SIICUIE - 0.0 CH
CUI EKC 1C THIS POJN1 SlIOUIE = 0.0 CH
-------
II miM |KC KIJhUH ,JNf .ON M)
DUBATION (fill) - 10.00 I NF. VCL. |C«) - C.G Uf .CAP. = Ili1. (CC/III.) = 0.0 HfTTTKG FCOHT CEPTII(CH) = 0.0
UNIIStC JIIMI tAt IS 0.55 Cf
cur HF ic 'i ins ICINT siicn ic = o.o CM
EJC 1C THIS [CINT SUCH 1C = 0.0 CM
II KK>INT (NO UUNCtf.I Nf .
DUUATION (HI N)- 10.00 I UP . VCI. (Ct) = 0. U m. C»P.= IN1. (CM/llft) - 1.02 HETTIliG PBCNT DEPTH (CM) = 1.10
UNUSED IhPII CA[ IE C.51 CM
CUH IHf 10 Illli POIH1 SMOIIID = 0.169 CH
CUM UC 10 1HI£ E01M1 SHOUID - 0.0 CD
-------
fENETMATlOH Cf 'Ihl kl'lTlWG If.CtM
TIME (tUNII'lfS) :«*«**» 60. CO IHF.VOI. . (CM) : 0.76 I ME »S11 V (Cf/H I) s 3.56 DUIi ATJON (« IN) : 10.00
UUUSBD IkFII CAE IS 0.75 C*
lit 1C 1IIIS ECIN1 SIIOUIC - 0.762 Ct
CUt EXC 1C 'Illli POJm SIIOUIC = 0.0 CK
II KIOINT (HC BUHOU, im.ONJ.y)
OUttA-riOII |HIM = 10.00 INF.VOL. (CH)= 1.14 INF .CAP . = 1 Hi. (CH/llfl) = 2.29 U£TTI»G PfiCNT DEPTH (CH) = 9.1*
II MUSIC IN fit CAP IS C.11 CH
CUM INI 10 1HIS 1'OIMf SIICUID = 1.143 CH
CUM E1C JQ THIS ECIHT SIICUID = 0.0 CH
-------
II *l>llTi (IIC UUiltif I, IHt.Ctlll)
DURATION |«l I) ^ 10.00 IhF.VOL. (CH) = 1 .'tt 1KF .CAP . = 1 Nl. (Cf/IIIJ) * 0.76 WETTIKG FfCNT tEPTII (CM) = 10.5C
UNUSEC 1NML CAP ]£ C-KI CM
CI1H INf 10 Illli POINT SIIOUID = l.iTO CH
CUM l»C 10 THIS ICINT SIICOID = O.C CH
II Kli>Itn (HO HUNOFf ,1 IF.CK1 V)
DUBATIOH(fllH) = 10.00 I NP. VCI. |Cl!) = 1.27 11(.CiP.= INT. (CH/HH) = C.O UE1TING FRONT DEPTH (CM) = 10.50
UNUSED IKFI1 CAI IS 0.55 Cf
CtK I»F TC THIS ICIK1 SIICD1C = 1.270 CK
cat ixc at aiiij toi»a SHOUIC = o.o CK
II fl>IKT (NC HUNOff,IHt.ONLy)
DUUATION("IM= 10-00 INF. VOL. (CM) = 1.21 3NP.CAP.=IN1. (CK/llli) = 0.25 UFTTIIG F8CNT CEPTH (CM) = 10.85
UNUStC IHIrIL CAP I£ C.5( CH
CUM INt 10 a»IJ POINT SIIOUID = 1.312 CB
CUM IXC 1O HIS ICINT SIICUID = 0.0 CM
-------
«« 137 »»
11 KE>IN1 (NO flUHCtf ,ll».CtI«)
DUBATICUHIH = 10.00 JSP.VOL. (CH)= 0.0 ] HP.CAP. = 1 NT. JCH/1III) =• C.O NETTING PBOMt DEPtH {CM) = 0.0
UtJUSEC IKfll Cit IS 0.55 Ct
C(1K I If 1C THIS ECIKT SHCUIC - 0.0 CH
Cit E>C 1C 1111 £ tdKl SIICDIC - 0.0 CH
11 KB>IUT (NC BONO!t,JHf.ONlY)
DUBAT10N |Mlk)= 10.00 1NF. VOL. (C«) - C-0 JNf .CAP.=JN1. (CKyllB) = 0.0 UE1TIKG FKCNV CEPTII (CH) » 0.0
UNUSEC JMUL CAP I£ C.tf CM
CUM Itlf 10 Oili: POINT SIIOIIID = 0.0 CM
f
CUN t>C 10 1II1S (C1NT SIICUIO = 0.0 CH !
-------
c
II
a;
Si
s
cu
u
Q
II
u_
I
Ok
a
O
OS
u
ta
a*
U
K
a
a
m
it
•
Oi
«:
U
u
IN
ii
a
a
u
(j W
tfl
a
o o
s
u
u
o
1*1
3
c
04
a
£-t
u
II
•
cu
OT1
u
a
o
O
in
o
Oi
II
a
s
x
x,
U
II
1
2.
•e
O
II
c
\fl
I
o
o
o
8
O
Ul
3
3
a
3
•4
A
O
3
O
II
E
;e
U
a
3
a
78
-------
o
o
c
^
1
a
u
as
CL.
U
a:
M
c
o
M
Jj
IB
S)
U
o
•
o
U
U U
o
9
O
U
a
U
a
u u
a
s
a
s
en
l-i
— -
:n
a —
u u
U
pj>
Cu
3
z
O
CJ
IB
O
U
a
§
a
79
-------
KEUfc'f.
10 nit
ii FRC«I ilk-Felt
fi r-ihcft : 10.
TIME TO KMFf(niN): 0.0 7C.OO I IF. VCI. EKt fUKCF*(CH): 0. C INI EhSIl Y (CH/IIR ): 11.13 DIJRATI OM (MI 11) : 10.00
I).
KE
-------
KtC 10 11113 [C1NT S1ICUID = 0.5Jt CH
II KE>IU1 (HO IICJHOfh ,Ikl'.CM»)
DUBAVIOH (HIN) - 10.00 INF.Vtl. |CJ!)= 3.58 Ut.CAP. = JN5. (CM/HflJ = 1.03 HEtTIUG PROMT DEPII1(CH}= 29.55
UNU£KD lt.Hl CAE IS 0.21 CK
»f 'K THUS ECU? SIICDIB - 3.576 C B
CUt SKC 1C 1I!I£ I-OIH1 SIIOUII = 0.043 CC
-------
in
(N
O
m
II
c
0
e.
o
e*
5
t*t
is
h-
*•
v>
W4
3
at
•
u
u
^
X
jg
U
i
fr*
-1
il
cu
a
t
*b
A
^
43
s£
"1
II
>•*
e
*P
•
•4
U
^
1
144
23
H4
O
O
*••
»
a*
w
sU
J»
1
0
«
hri
-e
u
M
Su
^
•4
a
*.i
VI
a
i*
^j
«
u
. 0
vO
t
n
II
O
;j
0
s
VI
C1^
z
p*
a
a<
v<
M
a»
C^
0
pt
WM
A
)••*
»*
U
w
U
o
«
a
n
o
•*
a
"^
OT
S^
2
rt
a
BU
Vi
M4
2
r^
a
rt
u
M
*«
£
W
>4
>u
a
t
x
**
%
IM
a
8
as
(J
—
^
z
w
A
(S
a
en
II
Sc
u
«MP
a
!-
cu
DU
bl
U
ia
uy
U
4b
*H
K
U4
3
O
0
II
£
"N
«_
9
f
31
H*
U
f
H
U.
as
r^
>w
*4J
•
f»»
II
-^.
c
^^
1
•3
Q
i
Z
M
0
t
o
II
E
u
Ul
Ul
i
«H)
v«
w
Oi
^
y
•4
Via
2
^
LJ
UU
iT
rj
3
x:
u
o
vu
SO
•
m
it
C
*-
o
™
V)
s
M
c
w
i«*
S
r"
O
B-»
Md
SB
c-t
•3
S3
u
as
a
a
82
-------
«« t2'J »»
oo
U)
II KEMNT (HC BUNGIf .INf.OHIY)
DURATION (HI K)= 10.00 IMF. VOL. (CM) - 0.0 JHF.CAP.=IN5«, (CE/!lit) = 0.0 WETTIKG FFCHT CEPTII (Cfl) = 0.0
UMUSED JNJIL CAP IS 0.55 CH
CU« lit 1C THIS ECIHT SIICntD = 0.0 CM
CUK EtC tC TUIS ECINT SHCUIC - 0.0 CH
II KK>!NT {NO UUHCFF.INF.ONL1T)
DUB4TIOM |,1 IN) * 10.00 I HP. KCl. (Cf| = 0.13 m. £«P. = IN1, (CH/hB| = 0.76 UETTItG PCONT DEPTH (C«)= 1.0*
UNUSED IM-JU CAE IS C.4: CH
CUM INf 10 lllli POIN1 SUOOLO = 0.127 C«
CUM IKC 10 1IU£ POIN1 SIIOUIO = 0.0 CB
-------
II KK>IH1 (NC IIIIHCFF.l >t . C M i)
OUttA'i'iOH (HIM) - 10.00 I NF. VCI. |CI!)= 0.63 J FK OP. = 1 N1. (CM/HI!) = 3.05 hFTTIHC KBOII'I DEP1H(CH)= 5. 2!
UNUSED IkFII CM IS 0.04 CK
cut I»F 1C 1IUS ECIN1 SIICD1C = 0.63S CK
CUf. EXC 1C 1HI£ POIN1 SIIOUIC = 0.0 CM
c»
-------
12. KFXJKT.CINKCAP.
TO Tin WETTING HICNT most tut S'IARI at BIIMOFP
Tine TO
*>.<>? at. 52 JHF.VOI.BFOK BINOFFCCH) : c.tn
7.62 DUBATIOU(HIN) : 10.00
i J. KtXIMF .C»P.
-------
DEPTH TO Till UETl'lMC fit CUV fctfOfil HIE S1AK1 Of lltHOFF : 15.i|
TIMK I'O hNFF(HIM): 0.0 10.00 INF.VOL.EFCH 6UIOPF (CH) : C.O I M1E MITY (CM/1111) : 7,37 Dll RATION (NIK) : 10.00
13. KKINF. CAE.<1NT.
•fine (HIM) INF.VOI. (C.I) III F .CAP . (CH/IIH) kKTII KG FBCN1 DEEIH(CH)
10.91
11.85
12.80
13.70
1 1. 70
15. CO
16.01
17.88
18.95
5C.01
50.00
1.97
2.07
2. 17
2.27
2.37
2.17
2.57
2.67
2.77
2.07
2.07
f.SC
£.31
6.2C
6.07
5.S5
5.85
5.75
5.65
£.57
5.19
5. IS
16.32
17. 11
17.97
16.80
19.62
;o. us
21.20
22.10
22.93
23. 76
23.73
PI.ECII' EXCBSS CUBING THIS KHEBVAt = 0.23130 C B
0° CUM IN* 10 1Ul£ BOIN1 SHODID » 2.871 CB
CUM EKC 10 Illli POIH1 SIIOUID - 0.262 CB
-------
12. K6XlhT.ONf.CAl'.
DEPTH TC 'i'llt WETTING HIUNT EEfCht 'illf ElAli'l Ol lilMOFP J 23.7251
TIME TO UUPF(NItl): 0.0 SO. 00 IMF. VOL.liFOH (ilNOFF(CM): 0.0 I NlKkSlTY (CM/11 B) : 5.59 1)11 li AT I Oil (N IN) : 10.00
IJ. KE<1MF. CAP. OUT.
TItll («rH) IMF. VOL. (CM) IHf .CAP . (CM/HR) «H1IBG HJCN1
51. 10
52.21
53. 3
-------
o
o
Ul
•
r-
as
U
O
e-
£
Oi
u
6-
O
u
•a
H
6-1
w
<*.
^*
N»
A
w
I**
I -fc
I-*
%-
t**
•i*
<^
45
«2
M£.
u
^
*"~
•
c*.
^
u
••-
1*
3
M-
»
i.
2
"•^
V
i;
^
ru
-«
»
y
t
SM
••^J
e-
•a
U
J*
2u
'J
3
I-*
i*
IT*
^
=
r*
^4
—
O
t*
<
?
u
3
a*
£
N
c
^4
*H
VI
uu
c^
»
F^
f*.
•
J?
••
••*.
JU
u
«
*4
U
>
u*
^a
^^
0
o
t
o
{•I*
*
•»
*
*
»
*
»»
V?
p4
3
2
17
*-
U
c
r*
3D
u
a
r»
f
0
wj
M
faM
-1
U
•*
M
Oi.
att
M
a
CEl
Ul
3
3
3
m o
• t
IT O
II l|
U U
»4 »•»
3 3
U O
-l
S 2
VI «4
H-l V-4
» »
&-i r-
w u
(r* B"*
«••
C<4 U >*
** X -4
1^ 1*4 SB
0
K* «l *
= a »
u y «
^4
*
M*
Q
•IP
3
at
a
z
^•"
p4
33
^
A
EU
JA
•—
O
•
II
3S
"N
*>
t
n
II
U
•
a.
K
^*t
9
Ul
t
»
II
—
£
U
t
_1
o
IB*
Eb
Z
w
o
o
t
3
f"
II
sa
H4
^
2
a
M
pri
•a
CS
a
U
ww
f^l
1
a
U)
M
Oi
y
-4
Wbl
2
^1
U
(Jj
01
rs
z
rn
JT
Ul
t
JT
11
a
Q
cn
SB
W
0
Ul
!-+
M
r^
O
p»
Uk*
3
3
U
.
O
t
G
U
a
kW
Q
01
z
M
w
U4
sn
«
55
H
O
fr^
U
#4
M4
3C
a
u
88
-------
II kE>I«'f (UG KIINUf t, Illt.l.lU V)
DUUATIOW («IN)= 10.00 I NP.VC1. (CK) = IN1 (NO
DUBATIOM JNIN) * 10.00 I NF . VCU JCt) = 5.35 IK* .CAP.=IHT. (CH/UHJ = 2.54 UETTIUG FRONT DEPTH (CM) = 44. 19
UNUSED INFIl CAf IS 0.12 CH
00
CUK IkF TC THIS fCIMS SUCKLE = 5.317 C«
cut ixc ic mis poim SHOUIC = o.o en
II KE>INT (NO EtUHOft, IMS-.ONLY)
DURATION JMIl) = 10.00 IHF. VOL. (CH) = 5.t4 INF.CAP.=I Ml. (CH/IIII) = 1.78 WETTIIG F6CHT CEPTH{CH)= 16.64
UNUSED JUFIL CAP I£ 0.2S CH
CUE 1KF 1C THIS ECINT SUCH IE = 5.644 CM
CIK £)C TC THIS ECItlT SIICULD = 0.0 CH
-------
It KKMIM (NC liUNOFF,] Ht.ONLY)
DUBATrOM |rtIM) = 10.00 I MF. VOL. (Cfl) = 5-fS lilf .CiP.-INl. (CH/HRJ = 0.25 HCTTIKG FBCMT EEPTII (CMJ =
-------
HI Kf>IN'l f. C Al'.= I (IT. (CN/liR) = 0.2!i WETTING PKCN'f DEPTII(CH)= 0. 35
UHUSGI) IfcUl CAt IS C.«C CN
CUH IMt 10 'JIIIJ POIN1 SIIOUID = 0.042 CH
cun txc ao inif POINI SIIOUID = o.o ce
II Kt>INT {HO BUNOf I,INt.ONLX)
DURATION (HIK)= 10.00 IMF. VOL. (CH) = 0.41 INF.C»P. = IN1. (CH/I1S) = 2.5«J HETTIiG PBCMT CEPTII(C«) = 3.85
umi;;EH IHML CAP is c.i; CH
CUH JNf 1O 1HI£ POINT SIIOUID = O.Htb CM
CUH {1C 10 THIS CCINT 3IICUID = 0.0 CH
-------
I 2,
DEPTH TO till WKtllttG FUCIIt t HOI t lilt S'IAL'1' CE MINCCt : 11.12i(.
TIME TC fNM(I1l;)): <>-'J« 3e.'j£ INF.VOL.RFOI) BIHOFF(CH): O.'Ji 1 K'J K k^ITY (CH/IIR) : 7.87 OUIIA1 ION (HIM) : 10.00
13. KtXINF-CA !'.
-------
«2. Ke
-------
• 2. KK
-------
o
o
&
IS
x.
u
a.
w
a
o
I
»
w
5"
u
tfl
o
0
a
Mi
u
Q
II
II
a
X
e-»
O
IT*
Ufe
3!
l-t
S
II
Q
U
tn
it
M
u
Ud
in
**
s
O
r*
-------
II KO1H1 (KU JtljIIOKF ,1 kf.tM V)
DURATION (HIH) = 10.00 1 UF . VC I . (C If) - 4.66 J » t. C AP. = INT. (CM/Ml) = 1.27 WE1TIMU FUON1 DEP1II (Cfl) = 30.51
UNUSED IfcFII CAt IS 0.33 CK
CC« IIP 1C THIS ECIN1 SllCIltC = 1.66U CM
cut EXC ic iui£ ponn SHOUIC - o.o CK
II Ht>INT (NO IttlNOf I, INI .ONLK)
OUGATION |HIK)= 10.00 IMF. VOL. |CH) = l.kt 1NF.CAP.-IN1. |CH/ttH) = 1.27 UETTIKC FBCNT DEPTH (CM) = 40.26
UNUSED JNiU CAP IS C.3- CM
CUM INf TO 3HI£ POINT SIIOUID = 4.875 CM
CUM iXC 10 111 IS ICINT SIICI11D = 0.0 CM
II KE>IH'I (UU IIUNOFF.IKF.CKIY)
DUBATIQH (MIN) = 10.00 I NK . VOl. |Cl!) = 5.00 1 SF. C *P. = INT. (CM/ Hfi) = C.76 WKTTINO FRONT DEPTH (CM) = 41.34
UNUSED INFI1 CAt IS 0.42 CK
CUE UP 1C 1'IIIS EC1N1 SIICUIC = S.002 CM
CUE fXC 1C 'ltll£ POIN1 SHOUIC = 0.0 CB
-------
11 ft>iN'l iHC fiUtiOH.m.UNI Y)
DIIUATIGIi (HIM- 10.00 1NF.VLL. |f«»= 5.00 INF.CAP.-I 111 . (CH/HU) = 0.0 KETTIKl! KHO.1t OKPTII (CM) = C 1C lllli ECItil SHCUIC = 0.0 CD
-------
HEIN AND LARSON INFILTRATION MODEL
Cols.| 1-5 | 6-10 | 11-15 | 16-20 | 21-25 | 26-30 \ 31-35 | 36-40 | 41-45 j 46-50 j 51-55 | 56-60 \ 61-65 | 66-70 { 71-75 \ 76-80~]
1st
Card
2nd
Card
Next
Cards
LasC
Card
I
#
S
C
c
C
E
E
E
F
M
M
M
9
n
R
Q
3
3
3
4
it
4
3
2
3
9
S
R
6
7
8
0
1
2
1
9
0
9
H
9
I6
P
|1
9J9
6
S
6
9
I
1
4
9
•>
E
0
1
9
4
0
3
1
2
9
-|
1
1
9
1
9
1
1
9
4
1
1
1
»
5
6
9
C
»
T
|
F
1
2
2
'
1
H
'1
I
•
•
0
7
6
'
4
E
N
3
3
9
9
T
3
T
8
4
6
9
,|
A
>|
(
1
2
9
I
1
E
^
I
2
7
9
0
9
D
6
|
)
9
6
5
1
6
4
8
9
1
9
|
2
2
1
3
1
1
5
5
6
9
•
•
•
»
»|
1
1
1
5
6
7
»
/
C
3
N
*|
0
2
i
X
i
2
h
«l
H
2
»
/|
N
8
1
1
9
7
A
9
5
C
9
R
1
9
9
ST|o|R|Ml Mil III 1 MM III II Mill II
THETA IDATE NM DS
|0|.|231 52|4|75 l|3 Ml ||0|. |»
E S
11 EN D |
9|9|9|9|9|9
-------
SECTION 6
MEIN NUMERICAL MODEL
The main purposes of the Mein Numerical Model are to simulate runoff,
infiltration, water redistribution and groundwater recharge. Thus, the Mein
Numerical Model is an advanced simulation program pertaining to the unsatu-
rated region of the soil. It performs all the functions of the Mein and
Larson Infiltration Model plus the additional tasks of predicting the
redistribution of soil water and recharge into groundwater.
The price paid for these added features is much greater mathematical
complexity and a much longer program. The central part of the program is
a numerical solution of the Partial Differential Equation
_ 5k(6)
fit
where 0 = 6(z,t) is the water content, S = S[0(z,t)] is the suction and
k = k[9(z,t)] is the hydraulic conductivity. Also, z is the depth and t
is the time. Numerous other equations were involved to determine additional
parameters based on the solution to the Partial Differential Equation and to
perform continuity between time steps.
This program requires as input the initial moisture profile, which can
be provided by the Standardization Program and Water Retention Curves which
can be provided by the Green and Corey Model. The groundwater recharge
output of the program can be used as input into the Illinois Aquifer
Simulation Program.
99
-------
INPUT: Water retention curves
Water pressure vs. hydraulic conductivity curves
OUTPUT: Moisture profiles
FRATE - Infiltration rates
FTOTAL - Infiltration volumes
WFPOS - Positions at the wetting front
PSIWF - Suctions at the wetting front
EXCESS - Runoff
PRECIP - Accumulated rainfall
FLUX - Groundwater recharge flux rates
REFERENCES: R. G. Mein. 1971. Modeling of the infiltration component of the
watershed rainfall-runoff process. University of Minnesota, Ph.D.
Thesis, Agricultural Engineering.
International Mathematical and Statistical Library Reference Manual.
June 1980. IMSL HB-0008, IMSL, Houston.
100
-------
UN . HUM EE ICAL .MO DEL
0.1
0.2
0.3
0.4
0.5
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
//H83XXXXX JOB (BEW01)
/*JOBPARM I=HEINFLRA
// EXEC FWCLG
/*JOBPABM FDLLSKIPS
//SYSIN DD *
C
PROGRAM TO CALCULATE INFILTRATION
OP THE DIFFUSION EQUATION
BY NUMERICAL SOLUTION
AUTHOR: RUSSELL 6. MEIN
MODIFIED BY:
BRIAN E. WEINSICH
USDA-SEA-AB
NORTHEAST WATERSHED RESEARCH CENTER
110 RESEARCH BD. A
UNIVERSITY PARK, PA. 16802
EXPLANATION OF NOTATION
A
AIT
AVAIL
AXIS
AXISD
B
C
cc
DELX
DELZ
DELZM
DELZP
CT
ETINIT
DTK AX
DTI
CVIDE
EPS
EXCESS
FGR
FLUX
FLTOTL
FRATE
fTOT AL
HYCON
I
INITMC
INPPSI
IPHPSI
IP8STP
ITERNO
J
ARRAY
MATRIX
VAR
ALPHA
ALPHA
ARRAY
ARRAY
VAR
VAR
ARRAY
ARRAY
ARRAY
VAR
VAR
VAR
ARRAY
VAR
VAR
ARRAY
VAR
ARRAY
VAR
ARRAY
ARRAY
ARRAY
VAR
VAR
VAR
VAR
VAR
VAR
VAR
LOSER MATRIX EIAGONAL
USED IN AITKEN CONVERGENCE.
SATC. M/C - INIT. M/C
AXES IN SUBROUTINE PLCTTT.
AXES IN SUBROUTINE CURVES.
MATRIX DIAGONAL
UPPER MATRIX DIAGONAL
AVERAGE SUCTIOH OVER LAST
DISTANCE BETWEEN PSI GRID
STEPS.
SOIL
SOU
SOIL
TIME
TIME
THICKNESS
THICKNESS
THICKNESS
INCREMENT
INCREMENT
NODE
NODE
TWO TIME
POINTS
FOR EACH NODE.
ON NEGATIVE SIDE OF EACH
ON POSITIVE SIDE OF EACH
FOR PRESENT TIMS STEP.
AT BEGINNING OF PRESENT TIME STEP
MAXIMUM TIME STEP EXCZPT WHEN RAINFALL IS 0.
TIME FACTORS FOB EACH NODE
RATIO OF DRYING TO WETTING CURVE
MATRIX CONVERGENCE RANGE
EXCESS RAIN (RUNOFF)
INFILTRATION FATES ON GRAPH IN SUB PLOTTT, THE
LARGEST OF WHICH IS INFOTED,
RECHARGE INTO GRODNDiATER. (CM/SEC)
CUMULATIVE FLUX (CM).
INFILTRATION BATE
ACCUMULATED INFILTRATION
INPUTED HEL. CONDUCTIVITY FOR K-PSI DATA CURVE.
THE CURRENT DEPTH NODE
INITIAL M/C OS M/C WHEN CURRENT RAIN STARTED. (R
INDICATES HHEN INITIAL PSI'S ARE INPUTED (WHEN
INPPSI=1, PSI IS INPUTED).
INDICATES HHETHER LAST FSI'S APE PUNCHED OR NOT.
INPUTED INDICATOR FOR PRINTING COMPUTATIONS FROM
ALL TIME STEPS (IF IPRSTP=1,PRINT FOR ALL).
ITSPATION STEP FOR S-KR AND S-SL CONVERGENCE.
TIME NODE
101
-------
1EIH. SOBEBICAL.MODEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901
NODE AT SHICH PSI IS INTERPOLATED
INDICATES RECENT CHANGS IN BAINFALL (J BA=0 MEANS
IT CHANGED IN PREVIOUS TIME STEP. JEA=1 MEANS
T90 STEPS BEFORE,)
TIME STEP UHEN BAINFALL STOPPED OB CURBSNT
BAINFALL STABTED.
COMPUTED BELATIVE CONDOCTIVITY (REAL) .
FACTOB BY SHICH CONDUCTIVITY OF NODES BELOW KNC
DIFFEBS FBOB THE BEST. (BEAL)
NODE AT WHIC8 TflEIB IS A DBASTIC DECREASE IN
CONDUCTIVITY CQMPABED TO UPPEB NODES.
SAT CONDUCTIVITY, (BEAL)
CONST VECTOB FOB HATBIX (BEAL)
CALCULATED INDICATOB FOB PRINTING COMPUTATIONS
FOB A TIME STEPCIF LPBSTP =1, PRINT FOB
THE CUBBENT TIME STEP) .
DBYING DATA (=0), RETTING DATA (=1)
MATBIX TBUNCATION INDIC MOB (MATRUN= 1 MEANS NO
MATRIX TBUNCATION) .
MAXIMUN DIFFEBENCE EETSEEN COEBESPONDING PSI
VALUES FOB TWO SUCESSIVE MATRIX ITEBATIONS. (REJ
INPDTED MOISTUBE CONTENT FOB THETA-PSI DATA
CUBVE. (BEAL)
POBOSITY (BEAL)
NODE AT 8HICH MATBIX IS TBDNCATED
SOIL NUMBER.
NO. OF DEPTH INCREMENTS
INITIAL NUMBER OF DEPTH INCREMENTS
COUNTER FOR AITKEN CONVEBGENCE
POINT INDICATOB FOB THETA-PSI COfiVE
POINT INDICATOB FOB K-PSI CORVE
NO. OF POINTS ON THETA-PSI CUBVE
NO, OF POINTS ON K-PSI CUBVE
INDICATOB FOB PBINTING PSI-Z ANE S/C-Z GBAPHS
WHEN SUBFACE BECOMES S ATORATED (I. E. , BfiEN
NPLOT=1).
= 0 FOB BAINFALL, =1 FOB SAID SOBFACE
GRAPH POINTS IN SUBBOUTINE PLOTTT.
GBAPH POINTS IN SUBROUTINE CUBVES.
ACCUHULATED BAINFALL
COMPUTED SUCTION.
SUCTION FOB THETA-PSI COBVB
SUCTION (FOR K-PSI COBV2)
MAXIHUN DIFFEBENCE BETWEEN CORRESPONDING PSI
VALUES FOB TWO SUCESSIVE S-SL AND S-KR ITEBATI
SUCTION AT THE WETTING FRONT
SLOPES AT PBEVIOUS TIME STEP
CUBBENT EAINFALL BATE.
BAINFALL BATES IN THIS BUN.
DELTHETA/DELPSI
SECOND DEBIVATIVE OF THETA-PSI CUBVE AT NODES.
SOIL TYPE
INFILTBATION VOLUME IN CUBBENT TIME STEP.
INITIAL TIME FACTOP
COMPUTED MOISTUBE CONTENT.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91 .
92.
93.
94.
95.
96 .
97.
98.
99.
100.
101.
102.
103.
104.
105.
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
JA
JSA
JRNEW
KB
KFAC
KNODE
KSAT
LHS
LPBSTP
LSET
1SATBON
MAXDIF
MC
MCSAX
BM
NBBSL
NDI
NDII
NFLAG
NNA
NNB
NOPA
NOPB
NPLOT
NSAT
POINT
POINTD
PfiECIP
ESI
PSIA
PSIB
PSIDIF
PSIWF
PSL
SAIN
BAINN
SL
SLDER
STYPE
SUtf
TFACTB
1HETA
FAB
VAB
VAB
AEBAf
VAB
VAB
ABB AY
IBBAY
VAB
VAB
VAB
VAB
ABBAY
VAB
VAB
VAB
VAB
VAB
VAR
ABBAY
ABBAY
VAB
VAB
VAB
VAR
ALPHA
ALPHA
AEPAY
MATBIX
ABBAY
ABRAY
VAB
ABBAY
AEBAY
VAB
ARRAY
ABBA?
ABRAY
ALPHA
VAR
VAB
MATBIX
102
-------
!IH. MOHERIC&L. MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
TIME FROM START (SECS)
TIMES AT HHICH RAINFALL RATES CHANGE.
RUNNING TIME
MINIMUM STARTING HUE STEP
INITIAL AND FINAL TOTAL KATER CONTENT.
POSITION OF TBE WETTING FRONT.
ABSCISSA FOR INTEBP.
POINT HHERE SLOPE IS REQUIRED
ORDINATE VALUE FROM INTIBP
DEPTH IN CM.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
1117.
118.
119.
[120.
121.
122.
123.
124.
[125.
126,
!l27.
128.
129.
130.
131,
I32.
133.
134.
135.
36.
137.
138.
139.
40.
141.
142.
1 43.
144.
145.
146.
147.
148.
149.
15C.
151.
|152.
[1^3
154.'
155.
156.
157.
158.
159.
160.
C
C
C
C
C
C
C
C
C
C
C
C
C
c**
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
TIHE ARRAY
TIMR ARRAY
TMAX VAR
TMIN VAR
SATER VAR
HFPOS ARRAY
XIN VAR
XX VAR
YOUT VAR
Z ARRAY
DATA FOBSAT
*********** **
1ST CARD
2ND CARD
3RD CABD
4TH CABD
NEXT CARDS
SEXT CARD
NEXT CARDS
NEXT CARD
NEXT CARD
NEXT CARDS
NEXT CARD
NEXT CARDS
NEXT CARD
NEXT CARDS
NEXT CARD
NEXT CARD
NEXT CABD
NEXT CARD
NEXT CARD
NEXT CARD
IHPLICIT REA
COMMON /AAA/
COMMON /AAA1
COMMON /BBB/
COMMON /BBB1
COMMON /CCC/
COMMON /ODD/
COMMON /DDD1
COMMON /BEE/
COMMON /FFF/
COMMON /GGG/
COMMON /HHH/
COMMON /HHH1
COMMON /OOO/
COMMON /QQQ/
COMMON /RRR/
COMMON /SSS/
COMMON /TTT/
SOIL TYPE AND NUMBER (10A4,1X,I3)
THETA MAX, KSAT(1), KFAC, KNODE
(F1Q.4,5X,E10.3,5X,F4.C,I3)
LHET,DVIDE (I1,4X,F5. 1)
NS.AT (11)
PSI-THETA DATA (2F8.0)
-.6
PSI-CONDUCTIVITY DATA (F8.0,E10.3)
-.10QE+1
NUMBER OF DEPTH INCREMENTS (15)
DEPTH INCREMENTS (5F10.2)
INPPSI (11)
INITMC'S (2X, F6.0, 9F3.0) OR INITIAL PSI'S (1X,E14.6)
AND INITMC'S
-. 125
RAINN,TIMP (E10.3,10X,F9.0)
DTMAX,TMAX,TMIN, TIME (1), (F10. 0 ,5X,3F1Q. 0)
HATRUN (11)
IPHPSI (11)
IPRSTP (11)
FGR (F6.0)
FTOTAL'S,WFPOS(1) , PSIWF(1) , EXCESS (1) , PRECIP ( 1) , FRATE (
FBOM THE PREVIOUS RUN. (2E1 2. 4, F7. 2, F9. 3, 3E 12. 4)
,*8 (1-H, 0-Z)
>SIA (100) ,NOPA
'PSIAL(IGQ)
1C (100)
'MCL(IOO)
?SI(85,3) ,J
?SIB (100) ,NOPB
'PSIBL(IOO)
[,NNA (100)
S(85)
IDII
?YCON(100)
'HYCONL(1 00)
SAIN
CSAT{85) ,NDI
103
-------
HEIN. N0MEHICAL. MODEL
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
20C .
201.
202.
203.
204.
205.
206.
207.
2C8.
209.
210,
21 i.
212.
213.
214.
21S.
123456
123456789012345678901234567890123456789012345678901234567890123456789
COMMON /UUU/INITMC (100)
COMMON /V7Y/MCMAX
COMMON /WWW/DELZ(85) ,KB(85)
COMMON /XXX1/MM
COMMON /YYT1/THETA{85 ,3)
COMMON /ZZZ/TIHE(1QO)
COMMON /AAiA/DVIDS
COMMON /BBBB/CD(3)
COMMON /CCCC/TMIN
COMMON /DDDD/HATBDN
COMMON /EEEE/DELZM (85), DELZP (85)
COMMON /FFFF/MAXDIF,SL(85) , SLDEfi ( 85) ,PSIDIF,ITEBNO
COMMON /GGGG/EAINN{5) ,TIME (5) ,TMAX,LHET
COMMON /HHHH/JHA
COMMON /0000/DTHAX,EXCESS(100) ,FTOTAL (101) ,PSIWF( 100) ,»FPOS (100
1BECIP(100) ,IPRSTP
COMMON /PPPP/PSL(85)
COMMON /QQQQ/INPPSI
COMMON /BSBB/FBATE(1QO)
COMMON /SSSS/KFAC,IPHPSI,NBgSL,KNODE
COMMON /TTTT/JBNEH
COMMON /UOOO/FGB
COMMON /7VV7/TFACTB,FIDX (100) ,FLTOTL, LPPSTP
COMMON /W»WW/COEF(100,3) ,IC
COMMON /XXXX/JJL
BEAL*8 MCMAX,KSAr, INITMC,L HS, KH,MC, MCL,LHSS,MA XDIF ,K?AC
C
c
C
c
INITIALIZE VABIABLES.
DO 11 11=1,100
PSIA(II)=0.0
MC(II)=0.0
PSIB(II)=0.0
HTCON (II) =0.0
NNA(II)=0.0
11 NNB(II) =0.0
DO 3D 11=1,85
Z(II) =0.0
INITSC(II)=Q.O
DELZ(II)=0.0
DELZP (II) =0.0
DELZM (II) =0.0
SL(II)=0.0
KB (II) =0.0
SLDEE(II)=0.0
PSL(II)=0.0
KSAT(II)=0.0
DO 25 JJ=1,3
PSI(II,JJ) =0.0
IHETA (II,JJ)=0.0
2f CONTINUE
DO 30 JJ=1,100
PRATE (JJ) =0.0
FTOTAL(JJ)=0.0
104
-------
SIN. SDHERICIL.MODEL
1234567
123456789012345678901234567890123456789012345678901234567890123456789012
216. PBECIP(JJ)=0,0
217. EXCESS (JJ)=Q.O
218. KFPOS(JJ)=0.0
219. PSIWF(JJ)=0.0
220. FLTJX(JJ)=0.0
221 , 30 TIME (JJ) =0.0
222. BAIN=0.0
223. MCMAX=0.0
224. NDI=Q
225. DT=0.0
226. DTINIT=0.0
227. NDII=0
228. CD (3) =0.0
229. DTHAX=0.0
230. TMAX=0.0
231. TBIH=0.0
232. FLTOTL=0.0
233. NSAT=0
234. IPDNCH=0
235. JRNEW=101
236. FTOTaL(JENES)=O.Q
237. LPBSTP=0
238, BM = 4
239. JRA=2
240. J2=2
241 . JSERIE=0
242. C
243. C
244, C FIRST TIME STEP.
245. C
246 . 3-1
247. CALL DA TIN
248. IF (INPPSI. SQ. 1) J2 = 3
249. CALL CALC
250. CALL PLGTTT{1)
251 . CALL PLOTTI (2)
252. NPLOT=0
253. C
254. C
255, C SOBSEQUENT TIME STEPS.
256. C
257. 40 DO 1 J=J2,100
25B, JJL = J + JS2BIE*100
259. IF (JRA.EQ.O) NPLOT=0
26C. LL=J
261. CALL flAINN
262. JRA=JRA+1
263. IF (NSAT.EQ.1) NPLOT=NPLCT+ 1
264. IF (JRA.SQ. 1) GO TO 2
265. IF (JJL.EQ. 20) GO TO 2
266. C IF (J.EQ.50) GO TO 2
267. IF (NPLOT.EQ. 1.0R.J.EQ. 100) GO TO 2
268. IF ((TIME (J-1)+DT) .GE .TMAX) GO TO 2
269. GO TO 4
270. 2 LPRSTP=1
105
-------
MEIN. NUBERICAL. MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
271 . 4 CONTINUE
272. CALL CONS
273. IF (LPBSTP. NE. 1) GO TO 6
274. CALL PLOTTT(1)
275. CALL PLOTTT(2)
276. 6 CONTINOE
277. IF (NSAT.EQ. 0) GO TO 10
278. IF (LPRSTP.EQ.O.AND.J.NE.J2) GO TO 43
279. SHITE (6, 201)
280. 43 CONTINUE
281. WRITE (6,202) TIME (J) ,FBATS (J) ,FTOTAL (J) , EXCESS (J) ,W FPOS (J) , PSIW
282. U) ,JJL
283. 10 CALL RAINCH
284. LPESIP=0
285. IF (JBA.EQ.O) TF&CTH = 0.1D-15
286. ' IF (TIME(J).GE.TMAX) GO TO 3
287. IF (RAIN.EQ.0.0) SATRON=1
288, DO 45 I=1,NDII
289. PSI(I,1)=PSI (1,2)
29Q. PSI(I,2) = PSI(I,3)
291. THETA(I,1)=THETA(I,2)
292. THETA (I, 2)=THETA (I, 3)
293. 45 CONTINUE
294. 1 CONTINOE
295. C
296. C
297. C OOTPOT OF FINAL CHART.
298. C
299. 3 COHTINOE
300. WRITS (6, 100)
301. DO 33 J=1,LL
302. JJL = J + JSERIE*100
303. WRITE (6,101) JJL, TIME (J) ,FBATE (J) , FTOTAL (J) ,W FPOS (J) , PSISF (J) ,
304. 2 EXCESS (J) ,PBICIP(J), FLOX (J)
305, 33 CONTINOE
306. IF (IPHPSI.EQ. 1) WRITE (7,102) FTOT AL (JBNEW) ,FTOI AL (LL) , WFPOS (LL
307. 2 PSIWF (LL), EXCESS (LL) ,PBECIP(LL), FRATE(LL)
308, C
309. C
310. C CALCULATE AND OUTPUT FINAL TOTAL WATER CONTENT.
311. C
312. WATER=0.0
313. DO 35 I=1,NDII
314. 35 WATER =WATER+ (DELZ (I) *IHETA (1,3))
315. C
316. C
317. C PONCH PSI'S FOB LAST TIME STEP WHEN SO DESIBED (INPUT IPHPSI = 1) .
318. C
319. WRITE (6,302) WATER
320. WRITS (6,303) (PSI (I ,2 ) ,1=1 , NDII)
321. WRITE (6,303) (PSI (I, 3) , 1= 1, NDIT)
322. IF (IPHPSI.EQ.1) WBITE(7,303) (PSI (1,2) ,1=1 , NDII)
323. IF (IPIIPSI. SQ. 1) WRITE (7,303) (P SI (1,3) ,1= 1 ,NDII)
324. C
325. C
106
-------
SIB.NUHEBICA1.MODEL
1234567
123456789012345678901234567890123456789012345678901234567890123456789012:
326. C PUNCH H/C«S AT THE TIME 8HEN THE LAST BAIN S1ABTED.
327. C
328. IF {IPHPSI. EQ. 1) SHITE (7,304) (INITHC (I) ,1=1 ,NDII)
329, C
330. C
331. C PUNCH TIME INFOBHATION IS CASE THIS BON ENDS IN THE
332. C MIDDLE OF A DAY.
333. C
334. IF {IPHPSI, EQ. 1) WHITE (7,404) DTMAX, TMAX,1MIN,TIHE (LL)
335. IF (IPHPSI.EQ.1) WBITE (7,406) FGB
336. C
337, C
338. C WAKE GRAPH OF TIME VS. INFILTBATION BATE UNLESS BAINFALL BATE HAS
339. C STOPPED.
340. C
341. IF (BAIN. EQ. 0.0) GO TO 70
342. J=LL
343 . CALL PLOTTT(3)
344. JBNEW = 101
345. 70 CONTINUE
346. IF (IIME(LL) . GE. TMAX) GO TO 90
347. C
348. C
349. C SET ABBAIS FOB NEXT SEBIES OF TIME STEPS.
350. C
351 . DO 80 I=1,NDII
352. PSI(!,1)=PSI (1,2)
353. PSI(I,2)=PSI(I,3)
354. THETA (I,1)=THETA (1,2)
355. THETA(I,2)=THETA(I, 3)
356. 80 CONTINUE
357. TIME(1) =TIME (LL-1)
358. TI«E(2)=TIME(LL)
359. FEATS (1 ) = FBATE (LL-1)
360. FRATE (2) =FBATE (LL)
361. FTOTAL(1) =FTOTAL (LL-1 )
362, FTOTAL(2)=FTOTAL(LL)
363. WFPOS (1)=SFPOS(LL-1)
364. WFPOS (2)=MFPOS(LL)
365. PSIWF (1) = PSISF(LL-1)
366. PSIBF (2)=PSIWF (LL)
367. EXCESS (1)=2XCESS (LL-1)
368. EXCESS(2)=EXCESS(LL)
369. PBECIP(1) = PBECIP(LL-1)
370. PBECIP(2)=PBECIP(LL)
371. FLUX(1) =FLUX(LL-1)
372. FLUX(2) = FLUX (LL)
373. J2 = 3
374. JSEBIE = JSEBIE + 1
375. GO TO 40
376. 90 CONTINUE
377. 100 FOBHAT (' 3' , 1 X, 'STEP' ,6X, ' TI KE (SSC) »,2X,'INFIL BATE(C«/S) ', 1X,
378. 2 'TNFIL VOL(CM) ', 1X,'H.F. POS (CH) « , 1X , • H. F. SDCT(CM) ' ,4X,
379. 3 'RUbfOFF(C?l) • ,6X, »PPECI£ (CM) ',5X, 'FLUX (CM/SEC) ')
380. 101 FORHATC ' ,15, 5X,F9 .1 ,7X,E 1 0. 3 ,4 X ,E10. 3 ,
107
-------
IEIN. NUMERICAL MODEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901
381. 2 3X,F8.2,6X,E1Q,3,6X,E10.3,6X,E10.3,6X,E10.3)
382. 102 FORMAT (2E12.4,F7.2,F9.3,3212.4,« INF')
383. 201 FORMAT {'2« ,3X, 'TIME' , 3X,« INFIL RATE',2X,'INFIL 70L»,2X,'BUNOFF«
384. 2 ,4X,*W.F. POS',1X,'¥,F. SUCT',2X,'STEP',/)
385. 202 FORMAT(» •,F9.0,3E11.3,F8.2rE11.3,2X,15)
386. 302 FOBMAT (•1«,31X,'FINAL PSI TALDES»,32X,'FINAL TOTAL HATES CONTEN3
387. 1« ,F11.4,1X, 'CM',/)
388. 303 FORMAT (' « ,5E14. 6,6X , «PSI ')
389. 304 FORMAT (»MC» , F6. 4,9F8. 4)
390. 404 FORMAT (F10,2,5X,3F10.2,1X,'DTMAX,THAX,TMIN, TIHE(1)')
391. 406 FORMAT (F6. 4,39X, 'FGS »)
392. STOP
393. END
394. SUBROUTINE DATIN
395. C
396. C
397. C RSAD-IN AND PRINTOUT OF INPUT CATA
398. C
399, IMPLICIT B2AL*8 (A-H, 0-Z)
400. COMMON /AM/PSIA (100) ,NOPA
401. COMMON /AAA1/PSIAL(100)
402. COMMON /BEB/MC(100)
403. COMMON /BBB1/MCL (1 30)
404. COMMON /CCC/PSI(85, 3) ,J
405. COMMON /DDD/PSIB( 100) ,NOPB
406. COMMON /DDD1/PSIBL (100)
437. COMMON /FFF/Z (85)
4Q3. COMMON /HHH/HICON(100)
409. COMMON /HHH1/HICONL (1 00)
4tO. COMMON /COO/IAIN
411. COMMON /QQQ/KSAT(85),NDI
412. COMMON /SSS/NSAT
413. COMMON /UUU/INITMC (100)
414. COMMON /77T/MCMAX
415. COMMON /ZZZ/TISE (100)
416. COMMON /AAAA/DVID3
417. COMMON /CCCC/TMIN
418. COMMON /DDDD/MATRUN
419. COMMON /GGGG/HAINN(5) ,TIMR (5) ,TMAX,1WET
420. COMMON /0000/DTMAX, EXCESS (100) ,FTOTAL (101) ,PSIMF(100) ,HFPOS (100) ,
421. 1RECIP (100) ,IPRSTP
422. COMMON /QQQQ/INPPSI
423. COMMON /RBRR/FBATE( 10 0)
424. COMMON /SSSS/KFAC,IPHPSI,NBESL.KNODZ
425. COMMON /TTTT/JRNE*
426. COMMON /UUUO/FGR
427. DIMENSION PS IAD (1 00) , PSIBD ( 100) ,B AN HR ( 5) , HOUBS ( 5)
428. DIMENSION PSIADLdOO) ,PSIBDL(100)
429. CHARACTER*4 STIPE (10)
430. EEAL*8 MCMAX ,KSAT, INIT?1C,L HS, KR,MC, MCL,KFAC
431 . C
432. C
433. C BEAD IN SOIL TYPE AND NUMEEB.
434. C
435. B3AD (5,101) (ST? PE (II) , 11=1, 10) , NBBSL
108
-------
IN. NUMERICAL. MODEL
1 234567
1234567890123456789012345678901234567890123456789012345678901234567890123'
U36. C
437. C
438. C BEAD IN THETA-HAX (VOL/VOL), KSAT(1) (CM/SEC) , KFAC, AND KNODE,
439. C
>40. READ (5,99) HCSAX ,KSAT (1) , KFAC, KNQDE
441. C
142 .* C
j443. C BEAD IN LWET (=1 FOE WETTING DATA), AND DVIDE, A FACTOE
144. C 1C APPROX. THE WETTING CURVE FBOfl DRYING DATA
;>45. C
(46. FEAD (5,130) LWET, DVIDE
447. C
Us, c
149. C BEAD IN SURFACE RAINFALL CONDITION - SATD, C8 NOT
J50. C
^51. BEAD (5,132) NSAT
»52. C
453. C
54. C PHIKT OUT THE SOIL DATA
55. C
56. WHITE (6,111) (STYPE(II) ,11=1,10)
|457. HKSAT=KSAT(1) *3600
i»58. WHITE (6,109) KCMAX,KSAT (1) , HKSAT,KFAC,KNODE
159. IF (NSAT.EQ.O) WHITE (6,133)
J46G. IF (NSAT. EQ. 1) WHITE (6,134)
461. WRITE (6,131) LWST,DVIDS
[462. C
463. C
!464, C BEAD IN THETA - PSI COEVE
»65. C
,466. NOPA=0
1467. 11 NOPA=NOPA + 1
|»68. FEAD (5,100) PS IA (NOPA) , MC (NOPA)
469. PSIA(NOPA)=-PSIA(NOPA)
470. IF (MC(NOPA)) 10,11,11
471. 1C NOPA=NOPA-1
472. IF (LWET.EQ.1) GO TO 525
£473. C
474. C
475. C STORE THETA-PSI DHYING COBVE IN PSIAD.
476. C
J477. 21 DO 20 11=1, NOPA
478. PS IAD (II) =PS IA (II)
479. 20 PSIA(II)=PSIA (II)/DVIDS
480. C
481. C
482. C FIAD IN THETA - PSI CURVE
483. C
484. 525 NOPA=0
485. 511 NOPA=NOPA+1
486. PEAD (5,100) PSIAL (NOPA) ,MCL (NOPA)
487. PSIAL(NOPA) = -PSIAL(NOPA)
488. IF (MCL(SOPA)) 510,511,511
489. 51C NOPA=NOPA-1
490. IF (LWET.EQ.1) SO TO 22
109
-------
HEIN. MUMEBICAI. MODEL
123456"
12345678901 2345678901234567 89012 34567 89012345678901234567890123456789(3
491. C
l»92. C
493. C STOBE THETA-PSI DRYING CUBVE IN PSIAD.
494, C
495. 521 DO 520 11=1,HOPA
496. PSIADL(II)=PSIAL(II)
497. 520 PSIAL(II) = PSIAL(II)/D71DE
498. C
499. C
500. C BEAD IN HID.CONDUCTIVITY - PSI CUBVE
501. C
502. 22 NOPB=0
503. 12 flQPB=HOPB+1
504. BEAD (5,102) PSIB (NOPB) ,HYCON (NOPB)
505. PSIB(SOPB)=-PSIB(NOPB)
506. IF (HYCON (NOPB) .LT. 0.0) GO TO 13
5C7. GO TO 12
508. 13 NOPB=NOPB-1
509. IF (LUBT.EQ. 1) GO TO 522
510. C
511. C
512. C S10EE HYD, CONDUCTIVITY-PSI DBYING CUEVE IN PSIBD.
513. C
514. DO 3 11=1,NOPB
515. 3 PSIBD (II) = PS IB (II)
51fe. DO 30 11=1,NOPB
517. 30 PSIB(II) = PSIB(II)/DVIEE
518. C
519. C BEAD IH SECOND HYD. CONDUCTIVITY - PSI CURVE
520. C
521. 522 NOPB=0
522. 512 NOPB=NOPB+1
523. READ (5,102) PSIBL (NOPB) ,H YCOFL (NQPB)
524. PSIBL (HOPS) = -PSIBL (NOPB)
525. IF (HYCONL (NOPB) .LT.0.0) GO TO 513
526. GO TO 512
527. 513 NOPB=NOPB-1
528. IF (LSBT.EQ. 1) GO TO 5
529. C
530. C
531. C STORE SECOND HYD. CONDUCIIVIT Y-PSI DRYING CUBVE IN PSIEDL.
532. C
533. DO 503 11=1, NOPB
534. 502 PSIBDL(II)aPSIBMII)
535. DO 530 11=1,NOPB
536. 530 PSIBL (II) =PSIBL (II)/DVIDE
537. LIET=1
538. GO TO 31
539. C
540. C
541. C IF THE WETTING CC3VE HAS INPUTED COMPOTE THE DBIING CUBVE.
542. C
543. 5 DO 8 II=1fNOPA
544. PSIADL(II) = PSIAL(II)*CVIDE
545. 8 PSIAD (II)=PSIA(II) *DVIDE
110
-------
SIN. NOHEBICAL.MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
546. DO 9 11=1, NOPB
547. PSIBDL(II)=PSIBL(II)*DVIDE
548. 9 PSIBD(II)=PSIB(II)*DVIDE
549. 31 CONTINUE
550. C
551 . C
552. C PHINT OUT DBIING CUBVES
553. C
554. IP (80PA.LT.NOPB) GO 10 4
555. HBITE (6,112) NOPA, NOPB, (PSIAD (II) ,MC (II) , PSIBD(II) , HYCON (II) , 11= 1
556. 1,NOPB)
557. IF (NOPA.EQ.NOPB) GO 10 7
558. 80PB1=NOPB-H
559. iHITE (6,136) (PSIAD (II) ,«C (II) ,II=NOPB1, NOPA)
560. GO TO 7
561. 4 CONTINUE
562. iKITE (6,112) NOPA, NOPB, (PSIAD( II) , MC (II) ,PSIBD (II) ,HYCON (II) ,11=1
563. 1,NOPA)
564. NOPA1=NOPA+1
565. WEITE (6,137) (PSIBD(II) , HYCON (II) ,II=NOPA1 ,NOPB)
566. 7 CONTINUE
567. WRITE (6,1000)
568. 1000 FOBHAT(»3«)
569. C
57C. C
571. C P8IST DOT DEHHG COB7ES
572. C
573. IF (SOPA.LT.NOPB) GO TO 504
574. WRITE (6,112) NOPA, NOPB, (PSIADL (II) ,MCL (II) ,PSIBDL(II) ,H YCONI (II) ,
575. 1 11=1, NOPB)
576. IF (HOPA.EQ.NOPB) GO TO 507
577. HOPB1=NOPB+1
578. BBITE (6,136) (PSIADL (II) , MCL (II) ,II=KOPB 1,NOPA)
579. GO TO 507
580, 504 CONTINUE
581. HSITE (6,112) NOPA , NOFB , (PSI ADL (II) ,MCL (II) ,PSIBDL (II) , HICONL (II) ,
582. 1 11=1, NOPA)
583. NOPA1=NOPA+1
|584. WRITE (6,137) (PSIBDL (II) ,HICONI(II) ,II=NOPA1, NOPB)
585. 507 CONTINUE
586. C
587. C
588. C READ IN (1) NO. OF DEPTH INCBEHENTS AND (2) DEPTHS
589. C
590. 32 READ (5,120) NDI
591. READ (5,135) (2 (II) ,11=1 ,NDI)
592. C
593. C
594. C SET THE BEST OF KSAT ABB AY.
595. r
596. DO 33 1=2,NDI
597. KSAT(I)=KSAT (1)
598. 33 IF (I.GE.KNODE) KSAT (I) =KSAT (1) *KFAC
599. IF (KNODE.LE. 1) KS AT (1) =KS AT (1) *K FAC
600. C
111
-------
SEIN. NUMERICAL.MODEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901
601. C
602. C BEAD INPPSI.
603. C
604. READ (5,132) IHPPSI
605. IP (INPPSI.EQ. 1) J = 2
606. C
607. C
608. C READ IN INITIAL MOISTURE CONTENT OH INITIAL SUCTION AND M/C'S WHEN
609. C CUBES NT BAINFALL STARTEC.
610. C
611. IF (I JSP PS I. HE. 1) GO TO 34
612. READ (5,138) (PSI (I , 1) ,1=1 ,NDI)
613. BEAD (5,138) (PSI (I ,2 ) ,1=1 , NDI)
614. 34 CONTINUE
615. MMM=1
616. 36 Mflafl=HMM+9
617. READ (5,124) (INITHC( II) , II=MMM,«M«M)
618. IF (INITHC(MMM) .LE.0.0) GO TO 38
619. MH8=flHM-HO
620. GO TO 36
621 . C
622'. C IF INITIAL M/C IS UNIFORM MAKE ALL INITIAL H/C'S EQOAL TO THE FIRST.
623. C
624. 38 MHH=MMH-10
625. IF (MMM.GT. 1) GO TO 42
626. DO 40 11=2,NDI
627. 40 INITSC(II)=INITMC (1)
628. 42 CONTINUE
629. C
630. C
631. C BEAD IN RAINFALL BATES AND TIKES AT WHICH THEY STARTED
632. C
633. DO 50 K=1,5
634. 50 READ (5,125) RAINN (K) ,TI MR (K)
635, RAIN=RAINN(1)
636. C
637. C
638. C BEAD MAX. TIMS INCSB., RON TIHS, MIN. TIME STEP, AND STARTING RUN T:
639. C
640. BEAD (5,129) DTMAX, TH AX, TMIN, TIME (J)
641. IF (INPPSI.EQ.1) TIME(1) = TIME{2)
642. C
643. C
644. C READ MATRIX TRUNCATION INDICATOR .
645. C
646. READ (5,132) MATRON
647. C
648. C
649. C READ IPHPSI.
650. C
651. READ (5,132) IPHPSI
652. C
653 . C
654. C BEAD IPBSTP.
655. C
112
-------
SIN. NOMEBICAL.MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890122
656. BEAD (5,132) IPBSTP
657. C
658. C
659. C BIAD FGR.
660. C
661. BEAD (5,139) FGB
662. C
663. C
664. C BEAD INFILTRATION DATA WHEN NEEDED.
665. C
666. IF (INPPSI.EQ.1) BEAD (5,142) FTOTAL (JBNEi) , FTOTAL (J) ,HFPOS (J) ,PSI
667. 1WF(J) ,EXCESS(J),PBECIP(J) ,FBATE(J)
668. C
669. C
670. C PRIHT OUT BETTING 30BVES
671 . C
672. IF (NOPA.LT. NOPB) GO 10 58
673. WEIT3 (6,113) NQPA, NOPB, (PSIA (II) ,MC (II) ,PSIB (II) ,HYCON (II) ,11=1 , N
674. 10PB)
675. IF {NOPA. EQ. NOPB) GO TO 59
676. NOPB1=NOPB+1
677. WBITE (6,136) (PSIA (II) ,SC (II) ,II=NOPB1 ,80PA)
678. GO TO 59
679. 58 CONTINUE
680. WBIT2 (6,113) NOPA, NOPB, (PSIA (II) ,HC( II) ,PSIB (II) ,HYCON (II) ,11=1 , N
681. 10PA)
682. NOPA1=NOPA+1
683. WHITE (6,137) (PSIB (II) ,HYCON (II) ,11= NOPA1, NOPB)
684. 59 CONTINUE
685. C
686. C
687. C PEIHT OUT BETTING CUBVES
688. C
689. IF (NOPA. LT. NOPB) GO TO 558
690. WBITE (6,113) NOPA, NOPB, (PSIAL( II) , MCI (II) ,PSIBL(II) ,HYC08L (II) ,11
691. 1 = 1,NQPB)
692. IF (NOPA. EQ. NOPB) GO TO 559
693. HOPB1=NOPB-»-1
694. SBIT3 (6,136) (PS IAL(II) , MCL (II) , II=NOPB1 ,NOPA)
695. GO TO 559
696 . 558 CONTINUE
697. WRITE (6,113) NOPA , NOPB, (PSI AL (II) , flCL(II) , PSIBL(II) , HYCONL (II) , II
698. 1 =1,NOPA)
699. NOPA1=NOPA+1
700. WBITE (6,137) (PSIBL (II) ,H ICONL (II) ,11= 80PA1, NOPB)
701 . 559 CONTINUE
702. C
703. C
704. C PRINT OUT THETA-PSI AND HYD. CONDDCTIVITY-PSI DATA GBAPHS.
705. C
706. CALL COBVES
707. DO 620 K=1,NOPA
708. TEMP=PSIA(K)
709. PSIA(K) =PSIAL(K)
710. PSIAL (K)=TEMP
113
-------
HEIH.SOHEBICAL.MO DEL
1 2 3 (t 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789C
711. TEMP=MC(K)
712. MC{K)=flCL(K)
713. MCL(K)=TEMP
714. 620 CONTINUE
715. DO 630 K=1,NOPB
716. TEHP=PSIB(K)
717. PSIB(K) = PSIBL(K)
718. PSTBL(K) =TEMP
719. TEMP=HYCON(S)
720. FICON (K)=HYCONL(K)
721. HYCONL(K)=TEMP
722. 630 CONTINUE
723. CALL CUBVES
724. DO 570 K=1,NOPA
725. TEMP=PSIA(K)
726. PSIA(K)=PSIAL{K)
727. PSIAL(K)=TEMP
728. TEHP=«C(K)
729. HC(K)=«CL(K)
730. aCL(K)=TEMP
731 . 570 CONTINUE
732. DO 580 K=1,NOPB
733. TEMP=PSIB(K)
734. PSIB(K) =PSIBL(K)
735. • PSIBL (K)=TEMP
736. TEMP=HYCON{K)
737. HYCOH (K) = HYCONL (K)
738. HYCONL(K) =TEHP
739. 580 CONTINOE
740. C
741. C
742. C CHANGE TO DRYING CURVES IF EAINFALL RATE IS 0
743. C
744. IF (RAIN. HE. 0.0) GO TO 80
745. DO 63 II=1,NOPA
746. PSIAL (II) =PSIAL (II) *D VIDE
747. 60 PSIA(II) = PSIA(II) *DVIEE
748. DO 70 II=1,NOPB
749. PSIBL (II) =PSIBL(II)*D VIDE
750. 70 PSIB(II) = PSIB(II) *DVIDE
751. LWET=0
752. 80 CONTINUE
753. C
754. C
755. C PEINT OUT DEPTH INCREMENTS
756. C
757. WRITS (6,122) NDI
758. IF (INPPSI. NE. 1) SBITE (6,123) ' HOIS.COBT. ' , (I,Z (I) rINIT8C (I) ,
759. 1 1=1,NDI)
760. 17 (INPPSI.EQ.1) WEImZ (6,123) • SUCTION1 , (1,7 (T) , PSI (I, J) ,
761. 11,NDI)
762. C
763. C
764. C PEINT OUT RAINFALL AND TIME INFORMATION.
765. C
114
-------
EH.NUMERICAL.MODEL
1234567
1231567890123456789012345678901234567890123456789012345678901234567890123*
bee. c
767. DO 90 K=1,5
|768. HOURS(K)=TIMR (K)/3600
769. RANHB(K)=B1INN(K) *36QO
770. 90 CONTINUE
771. iRITE (6,126) (RAINN (K) ,BiNHR (K) ,TIMR(K) ,HOUBS (K) , K= 1, 5)
772. HDTMAX=DT MAX/3600
773. HTMAX=TMAX/3600
774. TJMEH=TiaE(J)/3600
775. WRITE (6,128) DTMAX,HDTMAX,TMAX,HTMAX ,TMIN,TIMB (J) ,TIMEH
776. C
777. C
f78. C PBINT OOT INDICATORS.
779. C
80. WRITE (6,140) MATBUN,INPPSI,IPHPSI,IPRS1P
81. 99 FORMAT (F13. 4, 5X, E10. 3, 5X, F4. 0,13)
82. 100 FORMAT (2F8.0)
83. 101 FORMAT (10A4,1X,I3)
84. 102 FORMAT (F8.0,E10.3)
785. 109 FORMAT (/5X,'POROSITY = «,F7.4,» VOL/VOL' ,5X,'SAT. CONDOCTIV ITY= ',
f86. 1E12.3,' CM/SEC OR',F9.4,« CM/HR' , 5X, ' KFAC=« ,F5. 2,5X, » KNODE= ' ,1 3)
191. 111 FORMAT (M1 ,15X,'SOIL TYPE - «,10A4)
f88. 112 FORMAT ('O',/,' ' ,56X ,'****DRTI NG CUEVSS**** ' ,/, • 0 ' , 9X, ' SOCTION «,
[89. 1« (CM) ',5X,»MOISTOBE CONTENT', 5X,I3,« DATA POINTS* ,1 OX, • SOCTION' ,'
r90. 2(CM) »,5X,'HYD. CONDY. (BELA. ) ' ,5X,I3, « DATA POINTS ' ,//, (1 OX, F9. 1 ,9
P91. 3X,F12.4,33X,F9.1,6X,F22.20))
'92. 113 FORMAT (f3*,/,« ' ,55X ,'****HETTING CURVES**** «,/»'0', 9X, 'SUCTION '
'93. 1,' (CM) ',5X, 'MOISTURE CONTENT',5X, 13 ,' DATA POINTS ', 10X, 'SUCTION1,«
'94. 2 (CM) ',5Xr'HYD. CONDI. (BELA.) », 5X,I3, ' DATA POINTS',//, (10X,F9.1 ,
^95. 39X,F12.4,33X,F9.1,6X,F22,20))
f96. 120 FORMAT (15)
f97. 122 FORMAT ('1», 5X,'THERE ARE1,14,' DEPTH INCEEMENTS. DEPTHS ARE IN '
798. 1, *CM. ')
799. 123 FORMAT {' ',' NODE ', 10X, 'DEPTH ', 10X, A 11,//, (' « ,13 , 1 OX,F6.2,8X,F1Q .
300. 13))
J01 . 124 FORMAT (2X,F6. 0, 9F8.0)
J02. 125 FORMAT (S 10. 3,9X, F10. 0)
J03. 12€ FORMAT (« ' ,52X, ' RAINFALL RATES ', 28X, "TIMES AT WHICH THEY START',/
^04. 1/{' ' ,39X,E11.3,1X,'CM/SEC OR' , 1 X,F9 . 4, 1X, ' CM/HH' ,91, F 10. 1, 1X, ' S
305. 2ECS OR',1X,F8. 2, 1X,'HOURS') )
^06. 128 FORMAT («1','MAX TIME STEP= ' ,F7. 1 , 1 X ,'SECS OR' , F6. 2, 1X, ' HOURS' ,
^07. 18X,'SUNNING TIME= ' , F1 0. 1 , 1 I,' SECS OR« , 1X,F8. 2, 1X, 'HOURS «, 9X, //, '
308. 2 ' ,TMIN=',F7. 2,1X, 'SECS', SOX, 'STARTING RUN TIME=',F10.1 ,1 X, ' SECS
309. 3 OR',1X,F8.2,1X,'HOURS')
^10, 129 FORMAT (F10. 0,5X,3F10.0)
311. 130 FORMAT (I1,4X,F5. 1)
312. 131 FORMAT (• +• , 55X,» LWET= ' ,12 ,5 X, ' DIVIDE FACTOR= ',F5. 1)
813. 132 FORMAT (11)
8U. 133 FORMAT (/10X,«— SORFACE IS INITIALLY UNSATURATSD --•)
J815. 134 FOFMAT (/10X,1-- SURFACE IS INITIALLY SATURATED --'}
|816. 135 FORMAT (' «,5F10.2)
[817. 136 FORMAT (' ' ,9X,F9. 1 ,9X,F 12. 4)
818. 137 FORMAT (' ' , 72X,F 9.1 , 6X,F2 2 .20)
819. 138 FORMAT (1X,5E14.6)
820. 139 FORMAT (F6.0)
115
-------
HBIN.NOHEBICAL.HODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
821. 140 FOBSAT ('0 • , ' HATRON=« , 12,7X, ' IHPPSI=« , 12, 4X, 'IPHPSI = ' 12,7X, 'IPS
822. 1P = ',I2)
823. 142 FOBMAT (2E12. 4,F7.2,F9.3,3E12 ,4)
824. RET08N
825. END
826. SDBfiOOTINE COBVES
827. C
828. C
829. C PBIRTEB PLOT OF PSI-M/C AND PSI-BYD. CONDY. DATA COHYES.
830. C
831. IMPLICIT BEAL*8 (A-H,Q-Z)
832. COMMON /AAA/PSIA (100) ,NOPA
833. COMMON /BBB/MC(100)
834. COMMON /DDD/PSIB( 100) , NOPB
835. COMMON /HHH/HYCON (100)
836. COMMON /AAAA/DVIDE
837. CHABACTEB*1 POINTD (1 00) , AXI SD (7 1)
838. BEAL*8 HCMAX, KSAT, INI1MC,LHS ,KE , MC
839. BEAL*8 KBGH
840. C
841 . C
842. C INITIALIZE PLOTTING AHRAYS.
843. C
844. DO 10 L=1,71
845. POINTD {L) = * '
846. 10 AXISD (L) = «-'
847. C ********************************************************************
848. C
849. C
850. C SUCTION 7S. MOISTOBE CONTENT DATA CUBVE.
851. C
852. C
853. C OOTPOT THE HEADING TO THE GBAPH.
854. C
855., WRITE (6,20) ' 1' , • 2« , • 3* , « 4« , • 5'
856. 20 FOBMAT («1»,13X,«SEMI-LOGAEITHMIC GBAPH OF SUCTION VS. MOISTUBE
857. 1'CONTENT (70L/VOL) ',/,' 0' ,391,' SUCTION (CM)»,/,« « , 11X, 5 ( 13X, A1)
858. 2,« «,8X,'-1',5(11X, «-10'))
859. WHITE (6,30) (AXI SD (L) ,L=1 ,71)
860. 30 FOBMAT (' «,9X,7U1)
861. WHITE (6,35)
862. 35 FOBMA? («+',9X,'I',5(13I,«I1))
863. C
864. C
865. C INITIALIZE VABIABLE FOB M/C iHEBZ POINTS AEE TO BE MADE ON THE GBAP
866 . C
867. THETAC = 0.0
868. DO 150 L=1,48
869. C
870. C
871. C MAKE SUBE THETAC DOES NOT EXCEED RANGE OF INTEEPOLAT ION.
872. C
873. IF (THETAC.GT.MC (1) ) GO TO 70
874. IF (THETAC. EQ.0.0) GO TO 145
875. KBITS (6,45) THETAC
116
-------
f. NUMERICAL. MO DEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901234
. 45 FOBHAT (' «,3X,F6.4,'I',69X,'I1 ,/,« 4» ,9X,«-« ,69X,«-')
f7. GO TO 130
78. C
f9. C
50. C INTEBPOLATE TO FIND CORRESPONDING PSI VALUES.
31 . C
|J2. 70 CONTINUE
33. C
54. C WETTING C0BVE.
?5. C
36. CALL INTEBP (TRETAC,PSIW,3)
b7. C
J8. C DBYING CUBVS-BUST C08VEBT VALUES FROM HETTIHG CURVE FIBST.
ftp C
)0. DO 85 K=1,NOPA
91. 85 PSIA(K) = PSIA{K)*DVIDE
?2. CALL INTEBP (THETAC,PSID,3)
93. C
p4. C B2CONVERT BACK TO WETTING COBVE.
95. C
36. DO 100 K=1.NOPA
97. 10C PSIA (K) = PSIA(K)/DVIDE
98. C
(^9. C
pO. C TBUNCATE GRAPH IF PSI IS GREATER THAN -1.
pi. c
32. IF (PSIW.GT.-1.0) SO TO 155
03. C
!04. C
05. C CALCULATION OF GBAPH POINTS.
06. C
07. PSIWL=DLOG10{DABS(PSIW))
08. PSIDL=DLOG10(DABS(PSID) )
09. IPSIWG= + 14. 0 * PSI WL+1.001
10. IPSIDG=^-14.0*PSIDL*1.001
11. C
12. C
13. C OUTPUT DP NEXT GRAPH LINE.
14. C
15. POINTD(IPSIWG) =»*•
116. WRITE {6,110} THETAC, (POIHTE(K) ,K=1 ,71)
f17. 110 FORMAT (' ' , 3X ,F6. 4, 7 1 A1,/ ,' +• ,9X ,« I' ,691, ' I')
»18. POINTD{IPSIDG)='5»
{19. WRITE (6,115) (POINTD (K) ,K=1,71)
120. 115 FORHAT {• + •, 9X, 71 A1,/,'+', 9X,' -« ,69X, '-«)
921. C
922. C
J23. C BEINITIALIZE PLOTTING ARRAY.
p24. C
925. POINTD(IPSIWG) =' «
(92b. POINTD(IPSIDG) = l '
927. C
^28. C
929. C COTPUT SIDE LABEL.
930. C
:' 117
-------
HBIS.HOHEBICil.MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
931 . 130 CONTINUE
932. IF (L.EQ.2) WHITE (6,140) '«'
933. IF (L.EQ.3) WHITE (6,140) ' 0«
934. IF (L, EQ. 4) WHITE (6,140) *!'
935. IF (L.EQ.5) WRITE (6,140) «S'
936. IF (L.EQ.7) WBITE (6,140) «C»
937. IF (L.SQ.8) WBITE (6,140) '0*
938. IF (L.EQ.9) HBITE (6,140) «N'
939. 140 FOBHAT {* + «,1X,U1)
940. C
941. C
942. C PBINT GBAPH KEY SHOWING WHICH LINE REPRESENTS EACH CUBVE.
943. C
IF (L.EQ.3) WBITE (6,142) ******** WETTING COSVS'
IF (L.EQ.4) WBITE (6,142) «&S£S£&S DBYING CUBVE '
946. 142 FORMAT (»+•,83X,A22)
947. C
948. C
949. C INCREASE MOISTURE CONTENT INCREMENT.
950. C
951. 145 THETAC=THETAC+G,0 125
952. 150 CONTINUE
953. C
954. C
955. C OUTPUT BOTTOM AXIS AND LABEL.
956. C
957. 155 CONTINUE
958. iiglTE (6,360) (AXISD (L) ,L=1 ,7 1)
959. WBITE (6,35)
960. WBITE (6,185) '1•,•2*,«3 ' , '4 ' ,»5«
961. 185 FORMAT ('S' , 11X, 5 (1 3X , A1) , /, « S« , 8X, '- 1 « ,5 (11X, '- 10 ') )
9631 C
964. C SUCTION VS. RELATIVE CONDUCTIVITY DATA CURVE.
965. C
966. C
967. C OUTPUT THE HEADING TO THE GRAPH.
968. C
969. WRITE (6,220) « 1* , ' 2« , • 3' , • 4« , • 5«
970. 220 FORMAT (« 1« , 18X, » LOGA RITHMIC GRAPH OF SUCTION VS. RELATIVE CONDU
971. 1, 'TIVITY',/,»0',39X,« SUCTION (CM)1,/,' ' , 11X, 5 (13X, A1) ,/, ' ',8X,
972. 21',5(11X,'-10'))
973. WRITE (6,33) (AXISD (L) ,1=1 ,71)
974. WRITE (6,35)
975. C
976. C
977. C INITIALIZE CONDUCTIVITY VARIABLE FOR GRAPH.
978. C
979. FTRGR=13** (-10. 4)
980. DO 350 L=1,53
981. C
982. C
983. C HAKE SURE KPGR DOES NOT EXCEED RANGE OF INTERPOLATION.
984. C
985. IF (KPGR. GS. HYCON(1)) GO TO 270
118
-------
IN.HUWEBICAL.HODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123i
386. IF (L.EQ.1) GO TO 313
p87. HBITE (6,245)
p88. 245 FOBMAT (' ' ,9X, «I' ,69X, «I*)
989. GO TO 313
?90. C
191. C
»92. C INTEBPOLATE TO FIND COBBESPONDING PSI VALUES.
993. C
>94. 270 CONTINUE
)95. C
}96. C WETTING CUBVE.
)97. CALL INTEBP (KBGB, PSI 1, 5)
)98. C
(99, C
100. C DRYING CURVE-BUST CONVERT VALDES FPOH SETTING CUBVE FIBST.
101 . C
)02. DO 285 K=1,NOPB
J03. 285 PSIB(K)=PSIB(K)*T)VIDE
[04. CALL INTEBP (KBGB,PSID,5)
I05. C
06. C EECONVEBT BACK TO WETTING COEVE.
C7. C
I08. DO 300 K=1,NOPB
)Q9. 30Q PSIB(K)=PSIB(K)/DVIDE
110. C
111. C
12. C TEUNCATS GRAPH IF PSI IS GBEATEB THAN -1.
13. C
114. IF (PSIH.GT.-1.0) GO 10 332
115. C
he. c
117. C CALCULATION AND OUTPUT OF GBAPH POINTS.
118. C
19. PSIWL=DLOG10 (DABS(PSIW) )
20. PSIDL=DLOG10 (DABS(PSID) )
21. IPSIiG=14.0*PSIiL+1.001
22. IPSIDG=14.3*PSIDL+1.001
123. POINTD(IPSIHG)='*«
j)25. C IF IT IS THE FIBST POINT PBINT THE POINTS ON THE TOP AXIS.
326.- C
)27. IF (L.EQ.1) WBITE (6,305) (POINTD (K) , K= 1,71)
hf». 305 FOBMAT (» +• , 9X,71 A1,/,' +', 9X,»I1 , 69X, » I')
29. IF (L.NE.1) WHITE (6,310) (EOINTD (K) ,K = 1,71)
}30. 310 FOBMAT (' «,9X,7U1)
)31. POINTD (IPSIWG)=' '
^32. POINTD(IPSIDG)='5'
333. WRITE (6,305) (POINTD (K) ,K=1 ,71)
034. POINTD (IPSIDG)=« •
035. C
036. C
037. C OUTPUT SIDE NUHEBICAL VALUES.
038. C
039. 313 IF (L.EQ.1) IC=4
040. IF (L.EQ.2) IE*-10
119
-------
HEIH.BOHEHICAI.80DEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
1041,
1042.
1043.
1044.
1045.
1046.
1047.
1048,
1049,
1050.
1051 .
1052.
1053.
1054,
1055.
1056.
1057.
1058.
1059.
1060 .
1061.
1062.
1063.
1064.
1065.
1066.
1067.
1068.
1069.
1070.
1071.
1072.
1073.
1074.
1075.
1076.
1077.
1078.
1079.
1080.
1081.
1082.
1083.
1084.
1085.
1086.
108T.
1088.
1089.
1090.
1091 .
1092.
1093.
1094.
1095.
IF (L.GT.49) GO TO 326
IF (1C. HE. 5) GO TO 320
IF (IE.LE.-10) WRITE (6,315) IE
IF (IE.GT.-10) WRITE (6,316) IE
315 FORMAT («*«,6X,I3)
316 FORMAT {'+«,6X,I2)
IE=IE+1
IC=0
GO TO 330
320 IF (IC.NE.1) GO TO 330
WRITE (6,323)
323 FORMAT (' +' ,4X, • 1 0» ,3X, • -' ,69X, •- ')
GO TO 330
326 IF (L.EQ.53) WRITE (6,327)
327 FORMAT {» + ', 5X,« 1»)
330 IC=IC + 1
332 IF (L.EQ.53.AND.PSIW.GT.-1 ) WRITE (6,334)
334 FORMAT (• f,5X,Mf)
C
C
C OUTPUT SIDE LABEL.
C
IF (L.EQ.7) WHITS (6,340) • K»
IF (L.EQ.9) WRITE (6,340) • R1
340 FORMAT (« + «,1X,lAl)
C
C
C PRIST GRAPH KEY SHOWING SHICH LINE REPRESENTS EACH CURVE.
C
IF (L.EQ.3) WRITE (6,142) ******** WETTING CURVE1
IF (L.EQ.4) WRITE (6,142) • SSSS&SS DEYING CURVE •
C
C
C INCREASE CONDUCTIVITY INCREMENT.
C
KRGR=KRGR*{10**0. 2)
350 CONTINUE
C
C
C OUTPUT BOTTOM AXIS.
C
355 CONTINUE
WRITE (6,360) (AXISD(L) ,L= 1 , 7 1)
360 FORMAT («+',9X,7U1)
WRITE (6,35)
WRITE (6,135) »1« ,«2» ,'3',«4« ,«5«
PETURN
END
SUBROUTINE CALC
C
C
C CALCULATION OF DEPTH INCREMENTS, REL. CONDUCTIVITY, INIT.
C
IMPLICIT REAL*8 (A-H,0-Z)
COMMON /AAA/PSIA{100) ,NOPA
120
-------
SIN. SDHERICAL.HODEL
096.
097.
098.
099.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
!126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
14C.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
1234567
123456789012345678901234567890123456789012345678901234567890123456789012:
COHHON /AAA1/PSIAL(1QQ)
COMMON /BBB/HC<100)
COHHON /BBB1/HCL(100)
COHHON /CCC/PSI{85,3) ,J
COHHON /DDD/PSIB{100) ,NOPB
COflHOH /DDD1/PSIBL(1QO)
COHHON /SEE/I,NNA(100)
COHHON /FFF/Z<85)
COHMON /GGG/NDII
COHHON /HHH/HICON(100)
COHHON /HHH1/HYCONL(100)
COHHON /000/BAIN
COHHON /PPP/JA
COHHON /QQQ/KSAT(85), SDI
COHHON /BBB/DT,DTINIT
COHHON /SSS/NSAT
COHHON /TTT/NNB (100)
COHMON /nOff/IMITHC(100)
COHHON /VVV/MCHAX
COHHON /W¥H/DELZ(85) r KTJ (85)
COHHON /YYY1/TaETA(85,3)
COHHON /ZZZ/TIHS (100)
COHHON /BBBB/CD(3)
COHHON /CCCC/THIN
COHHON /EEEE/DELZH(85) ,DELZP(85)
COHHON /PPPP/PSL(85)
COHHON /QQQQ/INPPSI
COHHON /SSSS/KFAC,IPHPSI,NBRSL,KNOD2
REAL*8 HCHAX,KSAT,INITHC,LHS,KB,HC,HCL,KFAC
C
c
C
c
CALCULATION OF SOIL THICKNESS fOB EACH NODE
DELZ(NDI)=(Z(NDI)-Z(NDI-1)
DELZ(1) =(Z(2)-Z(1)) /2.0
KK1=NDI-1
DO 1 11=2, KK1
DELZ(II)= (
c
c
c
c
c
c
c
c
/2.0
/2.0
CALCOLATION OF SOIL INCBEMESTS ON EACH SIDE OT NODE,
DO 2 11= 1,KK1
2 DELZP (II) =Z(II+1) -Z(II)
DO 3 II=2,NDI
2 DELZH (II) =Z(II)-Z (II-1)
DELZP (HDI) =0.0
DELZM (1)=0.0
OOTPOT OF SOIL INCREHENTS AT AND ON EACH SIDE OF THE DEPTH NODES.
WRITE (6,101) (I, DELZ (I) , DELZP (I) , DELZH (!),!= 1,8DI)
101 FOPMAT ('-«, 'DEPTH INCREMENTS ABE',//(' « , « NODE • ,14 , 5X, ' DELZ= ' ,F8
13, 5X, IDELZP=«,F8.3,5X,IDELZH=I,FB.3))
121
-------
HEIN.BDflEBICAI.MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
115t.
1152.
1153.
1154.
1155.
1 1 56 .
1157.
1158.
1159.
1160.
1161.
1162.
1163.
1164.
1165.
1166.
1167.
1168,
1169.
1170.
1171 .
1172.
1173.
1174.
1175.
1176.
1177.
1178.
1179.
1180.
1181.
1182.
1183.
1184.
1185.
1186.
1187.
1188.
1189.
1190.
1191.
1192.
1193.
1194.
1195.
1196.
1197,
1198.
1199.
1200.
1201 .
1202.
1203.
1204.
1205.
C
C
C INITIALIZE NNA AND NNB
C
DO 5 11=1,100
NNA(II)=1
5 BNB(II) = 1
C
C
C CALC INITIAL CONDUCTIVITIES AND SLOPES
C
WBITE (6,102)
102 FOSBAT ('2*,//,1 » , 601, 'INITI AL TIME STEP',/)
DO 6 1=1, NDI
C
IP (I.NE.KNOPE) SO TO 550
DO 520 K=1,NOPA
TEFP=PSIA (K)
PSIA(K)=PSIAL(K)
PSIAL (K) =TEHP
TEHP=«C(K)
«C(K) =MCL(K)
MCL(K)=TSMP
520 CONTINUE
DO 530 K=1,NOPB
TEMP=PSIB(K)
PSIB(K)=PSIBL(K)
PSIBL(K) =TESP
TEdP=HYCON(K)
HTCON (K)=HICONL(K)
HYCONL(K) =TSMP
530 CONTINUE
550 CONTINUE
C
IF (INPPSI. SQ. 1) CALL INTEEP (PSI (I, 2) , THETA (I,
IF (INPPSI. NE.1) TH?!TA(Ir2)=INITSC(I)
IF (NSAT.EQ.1) THETA(1,2) = HCFAX
IF (INPPSI. NE. 1) CALL INTEEP (THETA (I, 2) , PSI (I,
CALL INTEEP (PSI (I , 2) , KB (I) ,2)
CALL SLOPE (PSI (I, 2) ,PSL(I) )
HBITE (6,103) PSI(I,2),KB(I) ,I,PSL(I)
103 FOIHAT (30X,'PSI INIT= • ,E1 2. 4,51, ' KB= «,E12.4,
1PE=«,212.4)
PSI (1 ,3) * PS I (I, 2)
6 CONTINUE
C
IF (NDI.LT. KNODS) GO TO 600
DO 570 K=1fNOPA
TEMP=PSIA(K)
PSIA(K) =PSIAL(K)
PSIAL (K)=TEHP
TEMP=«C (K)
MC (K) = MCL(K)
HCL(K)=TEMP
570 CONTINUE
2) ,1)
2) ,3)
5X,3HI=
13, 5X, «S;
122
-------
e
IK.HOMESICiL.MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
206. DO 580 K=1, NOPB
207. TEMP=PSIB (K)
208. PSIB(K) =PSIBL{K)
209. PSIBL(K)=TEHP
210. TEMP=HYCON(K)
211. BYCON (K) = aYCONL(K)
212. HYCONL(K) =TEMP
213. 580 CONTINUE
214. 600 CONTINUE
15. C
216. C
217. C
218. C CALCULATE INITIAL TOTAL WATER CONTENT.
219. C
20. WATER =0.0
21. DO 8 1=1,NDI
22. 8 WATSB=«ATEa+(DELZ(I)*lHETA (1,2))
'223. WBITE (6,111) WATER
224. 111 FORMAT (•O1,50X,•INITIAL TOTAL WATER CONTENT=f,F11.4)
225. C
;226. C
227. C ASSUMPTION - LOSER NODE IS UNCHANGED
228. C
229. NDII=NDI
230. NDI = NDII - 3
;231. C
232. C
233. C CALCULATION OF INITIAL TIME STEP (.1 OF STOBAGE IN FIHST INCREMENT)
234. C
235. AVAIL= (MCMAX-TH£TA(1, 2)) *D1LZ(1)
236. CA=RAIN-KSAT (1) *KR (1)
237. CA=DABS(CA)
238. DT=A¥AIL*0.1/CA
239. IF ((CA*THIN) ,LT. AVAIL) GO TO 7
240. NSAT=1
241. DT=TSIN
242. 7 1=1
|243. C
244. C
245. C I IS THE NODE FOE THE TIMS FACTOB
,246. C
247. IF (NSAT. EQ. 1) 1=2
248. IF (NSAT.EQ.1) DT=TMIN
j249. IF (DT.LT.TMIN) DT=THIN
250. IF (DT.GT.10.0) DT = 10.0
|251 . CALL SLOPE(PSI{I, 2) ,?Y)
252. DTINIT=DT
253. C
254. RETURN
255. END
256. SUBROUTINE MAINN
257. C
258. C
259. C CALCULATION OF MATRIX COEFFICIENTS, SOIUTICN OF MATRIX
260. C FOB A GIVEN TIME STEP.
123
-------
HEIM.NUMERICAL.MODEL
1261.
1262.
1263.
1264.
1265.
1266.
1267.
1268.
1269.
1270.
1271 .
1272.
1273.
1274.
1275.
1276.
1277.
1278.
1279.
1280.
1281.
1282.
1283.
1284.
1285.
1286.
1287.
1288.
1289.
1290.
1291.
1292.
1293.
1294.
1295.
1296.
1297.
1298.
1299.
1300.
1301.
1302.
1303.
1304.
1305.
130t>.
1307.
1308.
1309.
1310.
1311.
1312.
1313.
1314.
1315.
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
IHPLICIT BEAL*8 (A-fl,0-Z)
COMMON /AAA/PSIA(100) »80PA
COMMON /AAA1/PSIAL(100)
COMMON /BBB/HC(100)
COMMON /BBB1/HCL(100)
COMMON /CCC/PSI(85,3) ,J
COMMON /DDD/PSIBC100) ,HOPB
COMMON /DDD1/PSIBL(100)
COMMON /EEE/I,NNA(100)
COMMON /FFF/Z (85)
COMMON /GGG/NDII
COMMON /HH8/HYCON{100)
COMMON /HHH1/HICONL (100)
COMMON /GOO/BAIN
COMMON /PPP/JA
COMMON /QQQ/KSAT(85) , NDI
COMMON /EBH/DT,DTINIT
COMMON /SSS/NSAT
COMMON /TTT/NNB (100)
COMMON /VVV/flCMAX
COMMON /1»W/DELZ(85) , KB (85)
COMMON /XXX1/HM
COMMON /BBBB/CD(3)
COMMON /CCCC/TMIN
COMMON /DDDD/MATHUN
COMMON /SEEE/DELZH(85), DELZP (85)
COMMON /FFFF/MAXDIF,SL(85) , SIDES (85) ,
COMMON /HHHH/JSA
COMMON /SSSS/KFAC,IPHPSI,NBBSL,RHODE
COMMON /XXXX/JJL
DIMENSION PSN(85) ,NCVG(85) ,AIT(3,85) ,
DIMENSION A (8 5), B (8 5) , C (85) ,L HS (8 5)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
PSIDIF.ITERNO
«{85),G(85)
SEAL*8 HCMAX,KSAT,INITMC,LHS,KB,MC,MCI,KFAC, MAXDIF
THE AITKSN CONVERGENCE PEGGED USE
STEP, IF NO, OF ITBHATIONS EXCEEDS 10 TIME
CENT AND NDEC=0
NFLAG IS A COONTEB FOH
NEEC=1 FOB NOBflAL TIME
STEP IS DECREASED 20 PSB
NFLAG=- 1
NDEC=1
NCVG (I) INDICATES STHETHEB OB NOT NODE I HAS CONVERGED FOR S-SL AND
S-KP VALUES. NCVG (I) =1 MEANS CONVERGENCE AND NCVG(I)=0 MEANS NO
CONVERGENCE.
301 DO 300 I=1,NDII
300 NCVG(I)=0
FIPST TIME STEP ONLf
IF (J.NE. 2) GO TO 31
124
-------
IN.NUHE1ICAL.MDDEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
316. C
317. C INFLUENCE IN FIRST TIMS STEP EXTENDS TO FIBST NODE ONLY
318. C
319. HH=4
320. PSI(1,3)=Q. 0
321. DO 14 I=2,NDII
322. 14 PSI(I,3) =PSI (1,2)
1323. IF (SAIN. HE. 0, .OR.NSAT. NE. 1) GO TO 20
324. NSAT=0
J325. JRA=0
326. IF (MATBUN. EQ. 1) Mfl=NBI
327. GO TO 20
328. C
^29. C
330. C SUBSEQUENT TIME STEPS - USE AN AHBITRARY .7 FACTOR
i331. C
332. 31 CONTINUE
,333. IF (MATRON. EQ. 1) HH*HBI
334. M«»=aa+1
p5. IF (3MM.GT.NDII) 8MM=NDII
336. DO 3 1=1, HHH
337. PSI(I,3) =PSI (1,2) + 0,7*{PSI (1,2) - PSI{I,1))
338. IF (PSI(I,3) .GT.C.3) PSI{I,3)=O.Q
339. IF (JRA.EQ. 1) PSI (1,3) =PSI (I, 2)
340. 3 CONTINUE
341 . C
342. C
343. C START THE ITERATION
[344. C
345. 20 DO 1 ITEBNO=1,2G
346. ITERN=ITSBNO
347. NFLAG=NFLAG+1
348. DO 4 1=1,HM
349. C
350. IF (I. HZ. KNODE) GO TO 550
351. DO 520 K=1,NOPA
352. TE«P=PSIA(K)
,353. PSIA(K) =PSIAL{K)
354. PSIAL (K)=TEMP
355. TEMP=MC(K)
356. HC (K) =flCL(K)
357. MCL(K)=TE3P
358. 520 CONTINUE
359, DO 530 K=1,NOPB
360. TEMP=PSIB (K)
361. PSIB(K) = PSIBL(K)
362. PSIBL (K) =TEMP
363. TEHP= HYCON (K)
364 . HYCON (K) =HYCONL (K)
365. flYCONL(K)=TEMP
366. 530 CONTINUE
367. 550 CONTINUE
368. C
369. IF (MCVG(I) .EQ.1) 30 TO 4
370. C
125
-------
9ZI
)•;:)/ (i) 3iJ*(i)
ia/ti) zisa* (i) is**a
aaoR i sail
EI ui oo (t *aN*i) ii
HH'l'I 9 0(J
HomatioD
•S 54303
622 01 09 U*03*JYSJl) II
Sd L017
KW'l=I I Ctj OQ
'NSd NI Sam¥A ROI«L3flS 3HOLS
anNIIR03 009
085
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
U)18031H=U) SOD1H
(X) ei£d=dH3I
8dOS't=S 085 OQ
SDNIIK03 OiS
38
l¥ISd= ()i
(S)¥ISd=dR3i
vdOR'i=s cis oa
009 01 OS (HK'IS*3GOHU) II
anNiiso3 ft
(E) G3= (I) HSaiS
( (l)lS'33)3dOTS
waai aaois asx ai¥iD3i?3 3
3
3
O*O=(I)HH (o'O'iT (Das) ii
0*2=C3 (0*2*19*33) II
(E'l) ISd> =33
I1HO SOON ASSd BOHI IIIAI£3QaS03 SNI2i?i Ifll 3
'SZlJl
H2til
ESftl
oznt
l til
lOfcl
'00* I
'Z.6EI
lt?6£l
M6E4
06£l
B8£t
98EI
E8El
'08£l
8Z.EI
'ZLEi
13QOH'1Y3Ia3HDH*NISB
-------
IN. NUMERICAL .MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
426. LHS(I)=-DA*PSI(I,2) -DB* (PSI (1 + 1 ,2) -ESI (1,2) -2.0*DELZP (I) ) -
427. 1 RAIN
428. B(I) = -(DA*DB)
J429, C(I)=DB
430. A (I) =0.0
]431. GO TO 6
432. C
433. C LAST NODE
»34. C
;t»35. 33 IF (I.NE.MM) GO TO 35
|»36, DA=SL (MM) *DELZ(MM)/DT
H37. DB=KSAT(MM)*KE(MM)/(2.0*DELZP(MM) )
'f}38. C
!139. C DE = 0 WHEN LOiER BOUNDARY IS IMPERMEABLE SINCE KSAT AT THAT POINT IS
*40, C ZEBO. THIS TAKES CARE OF ALL PSI VALUES ESLOi IMPERMEABLE BARRIER
141 . C SINCE ALL SOCH VALUES ARE MULTIPLIED BY DB.
»42. C
*43. IF (MM.EQ. NDI) DB = C.O
J44. DC=KSAI (MM-1)*KR(MM-1)/(2. 0*DELZM (MM))
US. LHS(MM) =-DA*PSI (JIM,2) -DB*(PSI ( afl+ 1, 2) -PSI(«M,2) -2.0*DELZP (MM
146. 1) ) +DC*(PSI(MM,2)-PSI(MM-1,2)-2.0*DEIZM (KM)) -DB*PSI (MS-H, 3)
*47. A (MM) =DC
|t48. B{MM)=-(DA+DB+DC)
*49. C (MM) =DB
150. GO TO 6
151. C
^2. C ISTEBI1EDIATE NODES
»53. C
*54. 35 DA=SL (I) *DELZ(I)/DT
»55 . DB=KSAT (I) *KB (I) / (2 . 0*DELZP (I))
*56. DC=KSAT (1-1) *KB(I-1) / (2. 0*DELZM (I) )
*57. LHS(I)=-DA*PSI (1,2) -DB*(PSI (1 + 1 ,2)-PSI (1,2) -2. 0 *DSLZP (I) ) +DC
*58. 1* (PSI (I,2) -PSI (1-1, 2) -2.0*DELZM (I))
460. B(I) =-(DA+DB+DC)
*61 . C(I) = DB
t62. 6 CONTINUE
,*63. C
,*64. C
»65. C SOLVE TRI-MAT8IX USING THOMAS ALGOLHTHM.
466. C
467. C WRITE (6, 151) (A (II) ,8 (II) ,C (II), LHS (II) ,11=1, NDI)
468. C
|469. C
»70. C CALCULATE i AND G ARRAYS.
471. C
472. DO 43 1=1,MM
473. IF (I.GT.1) GO TO 41
|474. K (1) = C(1)/B(1)
475. G( 1) =LHS(1)/B (1)
476. GO TO 43
477. 41 CONTINUE
478. IM1=I-1
479. W(I)=C(I)/(B (I)-A (I) *H (IM1 ) )
1480. G(I)= (LHS(I) -A (I) *G(IM1))/(E (I) -A {!)*» (IM1))
127
-------
HEIN.NUMERICAL.MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
1481.
1482.
1483.
1484.
1485.
1486.
1487.
1488,
1489.
1490.
1491.
1492.
1493.
1494.
1495.
1496.
1497.
1498.
1499.
1500.
1501.
1502.
1503.
1504.
1505.
1506.
1507.
1508.
1509.
151C.
1511.
1512.
1513.
1514.
1515.
1516.
1517.
1518.
1519.
1520.
1521.
1522.
1523.
1524.
1525.
1526.
1527.
1528.
1529.
1530.
1531.
1532.
1533.
1534.
1535.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
43 CONTINUE
CALCULATE UNKNOWNS.
DO 47 11=1, MB
I=MM-II + 1
IF (I. LT. MS) GO TO 45
PSI(MH,3)=S(MM)
60 TO 47
45 CONTINUE
PSI(I,3)=G(I)-H(I)*PSI (1 + 1 ,3)
47 CONTINUE
GO TO 51
************************ *******************************************
SATURATED SURFACE
229 PSI(1,3)=0,0
DO 206 1=2, MM
I AST NODE
IF (I.NE. MM) GO TO 55
DA=SL (MM) *DELZ (MM) /DT
DB=KSAT{MM) *KB (MM) / (2 . 0*DELZP (MM))
DE = 0 WHEN LOMER BOUNDARY IS IMPERMEABLE SINCE KS AT AT THAT POINT
ZERO. THIS TAKES CAPE OF ALL PSI VALUES BELOW IMPERMEABLE BAPRI
SINCE ALL SUCH VALUES ARE MULTIPLIED BY DB.
IF (MM. EQ. NDI) DB = 0.0
DC=KSAT(MM-1)*KB(MM-1)/(2.0*DELZM(MM))
LHS(MM) = -DA*PSI(MM,2) -DB* (PSI (MH + 1 , 2) -PSI (MM, 2) -2. 0*DELZP (MM
1))+DC* (PSI (MH, 2} -PSI (MS- 1, 2) - 2. 0*DELZM (MM) ) -DB *PSI (MM+1 ,3}
A (MM) =DC
B (MM)=- (DA+DB + DC)
C (MM) =DB
GO TO 206
INTERMEDIATE NODES
55 DA=SL(I) *DELZ(I)/DT
DB=KSAT(I)*KR (I) /(2 .0 *DELZP (I) )
DC=KSAT (1-1) *KB(I-1)/ (2.0*DZLZM (I))
LHS(I) = -DA*PSI(I, 2)-DE*
1*(PSI (I,2)-PSI (1-1,2) -2
A ( I) =DC
B(I)=-(DA+DB
C(I) = DB
206 CONTINUE
= 0.0
1,2)-P3I(I,2)-2.0*DELZP
0*DELZM (I))
C
C
C
SOLVE THE TPI-MATBIX USING THOMAS ALGOLRTHM.
128
-------
:H. NUMERICAL MODEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901234
536. C
>37. C
538. C
.39. C CALCULATE S AND G ARRAYS.'
>40. C
i41. DO 63 1=2, MM
i42. IF (I.GT.2) GO TO 61
143. W(2) = C(2)/B(2)
.44. G(2)=LHS(2)/B(2)
!45. GO TO 63
146. 61 CONTINUE
|47. IM 1=1-1
48. W(I)=C(I)/(]
49. G(I)= (LHS(I) -]
50, 63 CONTINUE
51. C
52. C
53. C CALCULATE UNKNOWNS.
54. C
55. DO 67 II=2,MM
56. I=HM-II + 2
57. IF (I.LT.MM) GO TO 65
58. PSI(MM,3)=G(MM)
59. GO TO 67
60. 65 CONTINUE
61 . PSI (I ,3) = G(I) -W (I) *PS 1(1 + 1, 3)
62. 67 CONTINUE
63. C 151 FORMAT (4E15. 3)
64. C
:65. C TEMPORARY PRINT OF CONVERGENCE BETWEEN THE SLOPE AND CONDUCTIVITY AND
66. C THE SUCTION. USE ONLY WHEN THERE IS TROUBLE RELATED TO THE
67, C ITERATION PROCESS.
68. C
J69. 51 CONTINUE
,70. C WRITE (6,200)
71. C 200 FORMAT (»-»,'TEMPORARY PRINT OF CONVERGENCE1)
72. C BRITE(6,120) HE RNO, (II,PSI (II, 3) , KR (II) , SL (II) ,NNA (II) ,NNB (II) ,
.73. C 111=1, KM)
i74. C 120 FORMAT(//,5X,«ITERATION NUMBER' ,13 , 5X, « NODE1 , 5X, ' PSI', 20X,
(75. C 1 'REL CONDY',91,'SLOPE',26X, «NNA«,7X, 'NNB',/, (30X,I 4,3X,E12 . 4 ,1 OX,
;i76. C 2 E12.4,5X,S12.4,20X,I5,5X,I5) )
>77. C
578. C
>79. C TIST FOR PSI GREATER THAN ZERO.
p80. C
^81 . DO 800 1=1, MM
>82. IF (PSI (I,3).GT.2.D) PSI (I, 3) =2.0
a83. 800 CONTINUE
384. C
585. C
586. C TEST FOR CONVERGENCE.
088. PSIDIF=0.0
589. DO 7 1=1,MM
590. IF (DABS (PS N (I)-PSI (I, 3) ) . GT.PSIDIF) PSIDIF=DABS (PSN (I)-PSI (1,3) )
129
-------
H2IN.NUMERICAL.MODEL
1591.
1592.
1593.
1594.
1595.
1596.
1597.
1598.
1599.
1600.
1601.
1602.
1603.
1604.
1605.
1606.
1607.
1608.
t609.
1610.
1611 .
1612.
1613.
1614.
1615.
16t6.
16.T7.
16:18.
1619.
1620.
1621.
1622 .
1623.
1624.
1625.
1626.
1627.
1628.
1629.
1633.
1631.
1632.
1633.
1634.
1635.
1636.
1637.
1638.
1639.
1640.
1641.
1642.
1643.
1644.
1645.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
IF (DABS (PSN (I)-PSI (1,3) ) .61.0.5) GO TC 364
7 CONTINUE
GO TO 39
AITKEN CON VERGE NCE SPEEDUP
364 IF (ITERNO.LE.1) GO TO 371
DO 372 11=1, 8M
372 AIT(NFLAG,II)=PSI (11,3)
IF (HFLAG. HE. 3) GO TO 371
DO 373 II=1,HM
IF (DABS (PSN (II)-PSI (11,3) ) .LE.O. 1) GO TO 375
IF (DABS (AIT (HFLAG,II )-2.0*AIT (NFLAG-1,II) + AIT (NFLAG-2, II) ) .LT.
1 0.05) GO TO 374
PSI(II, 3)=AIT (NFLA3-2 ,11)- (AIT (NFLAG-1 ,II)-AIT (NFLAG-2, II)) **2/
1 (Ml (NFLAG,II) -2.0*AIT (NFLAG-1,II) +AIT (NFLAG-2,II) )
374 HCVG(II)=0
GO TO 373
375 NCVG(II)=1
373 CONTINUE
WRITE (6,210)
210 FORMAT {'0«, «PSI VALUES AFTER CONVERGENCE SPEEDUP',/)
WRITE (6,131) (PSI (II,3) ,11=1 ,MH)
131 FORMAT(» ',10212.4)
NFLAG=0
GO TO 1
BESET CONVERGENCE INDICATOR FOB EACH NODE.
371 DO 8 1=1,MH
NCVG(I)=0
IF (DABS (PSN (I)-PSI (I ,3) ).LT.0.1) NCVG(I)=1
8 CONTINUE
CHECK (S-SL )-(S-KH) ITERATION NUMBER
IF (ITESNO. LT. 10) GO TO 1
IF (J.LS.3) GO TO 1
IF (JRA.LE. 0) GO TO 1
IF (ITERNO.LT.20.AHD. NDEC.NE. 1) GO TO 1
WRITE (6,130) JJL
130 FORMAT ('0','CONVERGENCE NOT ACHIEVED IN TIME STEP ',
2 I5,/)
DECREASE THE TIKE STEP AND REPEAT THE STEP
IF (NDEC.NE. 1) GO TO 1
DT=0.8*DT
DTINIT=0.8*DTINTT
NFLAG=-1
NDEC=0
GO TO 301
1 CONTINUE
130
-------
tIN.NOHEBICAL.MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
646. C
i D *T / • V*
648. C
649. 39 .ITEENO=ITERN
650. IF (NSAT.EQ.1) 30 TO 368
651. IF (PSI<1,3). LT.0.0) GOTO 363
652. NSAT=1
653. C
654. C
655. C CBAHGE THE TIME STEP AND EEPEAT THE STEP
656. C
657. DT=DT*{-PSI(1,2))/(PSI(1,3)-PSI (1,2))
658. DT=DABS(DT)
659. IF (DT. LT.TMIN) DT=TMIN
660. PSI(1,3)=0.0
661. NFLAG=-1
662. WHITE (6,403) JJL
663, 403 FOBMAT ('01,////, ' », •SURFACE BECAHE SATOEATED IN THIS TIME STEP-'
'664. 2 ,«STEP ',I5,/)
,665. GO TO 301
666. C
667. C
668. C CON7EBGENCE ACHIEVED-SATURATED SUBFACE
fe69. C
670. 368 PSI{1 ,3)=0.0
671. IF (S8.GT.NDI) GO TO 381
672. MHH=HH+1
673. DO 367 I=«MH,NDII
674. 3€7 PSI(I,3) =PSI (1,2)
675. GO TO 381
676. C
677. C
678. C CONVEEGENCE ACHIEVED-RAINFA1L CONDITION
679. C
680. 363 BHM*HH+1
681. IF (HK.GT.HDI) GO TO 381
582. DO 382 I=HHH,HDII
683. 382 PSI{I,3) = PSI (1,2)
684. 381 CONTINUE
|685. EETOEN
686. END
687. SDBSOOTINE CONS
688. C
689. C
I690. C CALCULATION OF INFILTRATION VOLUME, BATE, fiNC CONTINUITY
691 . C
j692. IMPLICIT REAL*8 (A-H,0-Z)
J693. COMMON /AAA/PSIA { 100) ,NOPA
694. COaaON /AAi1/PSI!VL(100)
€95. COHMON /BEB/MC(100)
696. COMMON /BBB1/MCL( 100)
697. COMMON /CCC/PSI (8 5, 3) , J
698. COMMON /EEE/I,NNi(100)
699. COMMON /FFF/Z (85)
700. COMMON /GGG/NDII
131
-------
BIN.HOHEBICA1.MODEL
1701.
1702.
1703.
1704.
1705.
1706.
1707.
1708.
1709.
1710.
1711.
1712.
1713.
1714.
1715.
1716.
1717.
1718.
1719.
1720.
1721.
1722.
1723.
1724.
1725.
1726.
1727.
1728'.
1729,
1730.
1731.
1732.
1733.
1734.
1735.
1736.
1737.
1738.
1739.
1741.
1742.
1743.
1744.
1745.
1746.
1747.
1748.
1749.
1750.
1751.
1752.
1753.
1754.
1755.
1234567
12345678901234567890123456789012345678901234567890123456789012345678901
COMMON /000/BAIN
COMMON /PPP/JA
COMMON /QQQ/KSAT(85), NDI
COMMOH /BBB/DT,DTINIT
COMMOH /nOU/IHITMC(100)
COMMON /VVV/MCMAX
COMMON /HH»/DE1Z(85),KB(85)
COMMON /XXX1/MM
COMMON /YYY1/THETA(85 ,3)
COMMON /ZZZ/TIHE(1QO)
COMMON /CCCC/TMIN
COMMON /DODD/HATRUN
COMMON /FFFF/MAXDIF,SL(85) ,SLDE1(85) ,PSIDIF,ITERNO
COMMON /0000/DTMAX,EXCESS (100) ,FTCTA1 (101) , PSTiF( 100 ) ,HFPOS (100) ,
1RECIP(100) ,IPBSTP
COMMON /PPPP/PSI{85)
COMMON /QQQQ/INPPSI
COHMOS /BBBB/FFATE(1QO)
COMMON /SSSS/KFAC,IPHPSI,NBBSL,KNODE
COMMON /TTTT/JBNEW
COMMON /VVVy/TF&CTB,FIUX (100) ,FITOTL,1£FSTP
COMMON /XXXX/JJL
RBAL*8 MCMAX,KSAT,INITMC,LHS,KB,MC,MCL,IHSS,MAXDIF,KFAC
DIMENSION Drr (85) ,PSIST(85) ,COSF(85,3) ,BPAR (4)
DATA BPAB/0.0,0.0,0.0,0.0/
C
C
C
C
FIBST FIND THE M/C FOE EACH DEPTH AT TIME NODE J
DO 1 I=1,NDII
IF (I. NE. KNODE) GO TO 550
DO 520 K=1,NOPA
TEHP=PSIA(K)
PSIA(K) =PSIAL(K)
PSIAL(K) =TSMP
TEMP= MC (K)
HC(K> =MCL(K)
MCL(K)=TEMP
52C CONTINUE
550 CONTINUE
1 CALL INTEEP (PSI (I ,3) ,THETA (I ,3 ) , 1)
570
60C
IF (KNODE.GT.NDII)
DO 570 K=1, NOPA
TEMP = PSIA (K)
PSIA(K)=PSIAL(K)
PSIAL (K)=TEMP
TEMP=MC(K)
8C(K) =MCL(K)
MCL(K)=TEMP
CONTINUE
CONTINUE
GO TO 600
132
-------
:u. NUMERICAL.HO DEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901234
'56. IF (IPBSTP. NE. 1.AND.LPRSTP.NE. 1) GO TO 130
[57, IF (LPRSTP.EQ.1) GO TO 122
[58. KBITS (6,85) JJL
[59. 85 FOBMAT (*3« , 44X, 'COMPUTATIONS FOR TIME STEP «,I5)
[60. WRITE (6,110) (II,THETA(II ,3) ,11=1,NDII)
[61. 110 FOBMAT (1X,'NODES AND MOISTOBE CONTENTS'/ (11 (2X, 12, 1X, F6. 4) ))
[62. GO TO 130
[63. 122 CONTINUE
[64. WHITE (6,125) JJL
i&5. 125 FORMAT {« 1» , 44X, 'COMPUTATIONS FOR TIME STEP ',15)
166. WRITS (6,128) (I, Z (I) , THETA (I,3) , 1=1, NDII)
67. 128 FOBMAT {' ', 'NODES, DEPTHS AND MOISTURE CONTENTS',/,{• «,
68. 2 7(3X,I2,F6.1,F7.4)) )
69. 130 CONTINUE
70, C
71. C
72. C CALCULATE THE CHANGS IN THE INTERVAL
[73. C
[74. C
75. C
'76. C FIRST, CALCULATE INFILTRATION VOL DM E DURING THE LAST TIME STEP.
[77. C
f78. SON=0.0
[79. DO 2 1 = 1,IfDII
[8C. 2 SUN=SaN+DELZ (I) * (THE! A(I, 3) -THETA(I,2) )
'81. C
[82. C CUSULATIVB INFILTRATION (CM)
f83. C
r84. FTOTAL(J)=FTOTAL(J-1) +SUN
[85. C
f86. C INFILTSATIOS RATE OVEB THE TIME STEP (I, E.-AVERAGE) CM/SEC
f87. C
fSB. FRATE (J) =S&N/DT
^89. C
?90. C TOTAL RAINFALL
^91 . C
f92. PBECIP(J)=PRECIP(J-1) *RAIH*DT
793. C
T9U.. C EXCESS RAIN (BONOFF)
795. C
|796. EXCESS (J) =PRECIP (J)-F TOTAL (J)
^97. IF (EXCESS (J).LT. 0.0) EXCESS( J) =0 .0
798. C
799. C COMPOTE TIME
^00 . C
JB01. TIME(J)=TISE(J-1) +DT
802. C
803. C
804. C CALCOLATE FLDX. PERFORM CALCOLATION AT BREAKPOINT NODE.
805. C
806. C FIBST FIND PROPER NODE.
807. C
808. DO 250 1=1,NDI
809. II=NDI-I+1
810. IF (THETA (11,3) . IE.THETA (II-H ,3 ). AND. THETA (II, 3). LS.THETA(II-1, 3) )
133
-------
HEIH.NUMERICAL.MODEL
1811.
1812.
t813.
1814.
1815.
1816.
1817.
1818.
1819.
182Q.
1821.
1822.
1823.
1824.
1825.
1826.
1827.
1828.
1829.
1830.
1831.
1832.
1833.
1834.
1835.
1836.
1837.
1838.
1839.
1840.
184t.
1 842 .
1843.
1844.
1845.
1346.
1847.
1848.
1849.
1850.
1851.
1852.
1853.
1854.
1855.
1856.
1857.
1858.
1859.
1860.
1861.
1862.
1863.
1864.
1865.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
123456
123456789012345678901234567890123456789012345678901234567890123456789
1 GO TO 260
IF (II,LE.3) GO TO 270
250 CONTINUE
260 CONTINUE
IF (TBETA (11-1,3) . LE. THETA(II,3) . AND. THETA (II-1 ,3) .LE .THE1A (II-
1)) 11=11-1
IF {THETA (11-1,3) .LE. 1HETA (II ,3 ) . AND. TBET A (11-1,3) . LE. THETA (II-
1)) 11=11-1
270 COHTINOE
IF (II. GT. (NDII-4)) II=NDII-4
NOW CALCULATE THE GRADIENT BY FISST CALCULATING A CUBIC SPLINE.
DO 280 I=1,NDII
PSIST(I)=PSI (1,3)
280 CONTINUE
CALL ICSIOJ (Z,PSIST, NDI, BP AH, COEF, 85, IEE)
CALL DCSEVU(Z,PSIST,NDI,COEF,85,Z(II) ,G5IB, 1, GBAD2, 1, IEP)
COMPUTE FLUX.
FLUX(J) = -KSAT(II) *KE(II)*GSAD
NFLUX=II
CCaPUTE POSITION OF BETTING FBONT HERE
DEL8C=THETA (1,3) -INIT .1C ( 1)
WFPOS(J) = (FTOTAL(J) -F10TAL (JRUSi) )/DEIMC
COMPUTE SUCTION AT BETTING FBONT
IF (HFPOS (J) ,LE. 0.0) ¥FPOS(J)=0,0
IF (WFPOS (J).GT. Z (SDII) ) GO TO 234
CALL INTEEP («FPOS (J) ,PSI«F (J) ,4)
GO TO 236
234 CONTINUE
PSIWF (J)=0.0
236 CONTINUE
CALCULATION OF THE NEW DT VALUE
DTTT=DT
DO 7 1=1,RH
7 DTT(I) =DABS((SL(I)-PSL(I))/ (SL {I)+PSL (I)) *DS£)KT(DABS (SLDEB(I) ))
1 (PSI(I,3)-PSI(I, 2)))
IF (JJL. SQ.2) TFACTR=DTT(1)
IF (INPPSI.EQ.1.AND.JJL.EQ.3) TFACTH= DTT(1)
IF (DTT (I).GT.TFACTB) TFACTR=DTT ( 1)
IF (DTT (1) .NE.TFiCTP) GO TO 199
WEITE (6,120) TFACTE
120 FORfUT (« ','INITIAL TIMS FACTOR IS',E12. 3)
134
-------
H,NUMERICAL.MODEL
1234567
, 12345678901234567890123456789012345678901234567890123456789012345678901234
56. C
67. C
58. C CHOOSE THE LARGEST
^9. C
70. 199 TEMP=DTT {1)
71. DO 8 1=2,MM
12. IF (DTT(I).LE.TEHP) GO TO 8
;73. TEHP=DTT{I)
74. 8 CONTINOE
75. IF (TEMP.LT.0.00001) TSSP=0.00001
76. DT=DTINIT*TFACTR/TEMP
,77. C
78. C
79. C AVERAGE THE CALCULATION AND PREVIOUS TIME STEP
30. C
31. DT= (DT+DTTT)/2.0
32. C
33. C DO NOT WANT DT TOO LARGE OS TOO SMALL
|34. C
35. IF (I TEE NO. LE. 2} DTIN IT=DTINIT* 1. 1
J36. IF (ITERNO.LE.4) DTINIT=DTINIT* 1. 1
37. IF (DT.GT. (1.2*DTTT)) DT=1.2*DTTT
38. IF (ITERNO.LE.4) DT=DT*1.2
39. IF (DT.LE.TMIN) DT=TMIN
po. c
31 . C IF RAINFALL RATE IS 0 LET DT GET LARGER.
92. C
33. IF (RAIN. EQ. Q.O) GO TO 9
|94. IF (DT.GT.DTMAI) DT=DTMAI
95. 9 CONTINUE
96. C ************************************************
97. C
98. C CUT DT IN HALF AFTER STEP 51 TO HSIP CCNVEEGINCE. DO SO FOB THIS
99. C DATA SET ONLI. DO NOT NORMALLY USE FOB ARBITRARY DATA SETS.
00. C
01. IF (JJL. EQ. 51) Dr = DT/2.0
02. IF (JJL.2Q.51) D7INIT - DTINIT/2.0
03. C ************************************************
04. IF (DT.GT.10000.0) DT = 10000.0
05. C
06. C
i07. C BESET PREVIOUS SLOPE TERM
08. C
09. DO 10 I=1rHf!
10. 10 PSL(I) = SL(I)
sir. c
|12. C
H3. C CALCULATION OF PREVIOUS MATRIX TRUNCATION POINT
»14. C
)15. HNST = Mf!
H6. DO 3 1=1,NDI
»17. 11=1
^18. IF (DABS(THETA (1,3)-INIT.1C {!) ).LE.0.0005) GO TO 4
919. 3 CONTINUE
p20. C
! 135
-------
BEIN. SOHERICAL. MODEL
1921,
1922.
1923.
1924.
1925.
1926,
1927.
1928.
1929.
1930.
1931,
1932.
1933,
1934,
1935.
1936.
1937.
1938.
1939.
1940.
1941 .
1942.
1943.
1944.
1945.
1946.
1947.
194^8.
1949,
1950.
1951,
1952.
1953.
1954.
1955.
1956.
1957.
1958.
1959.
I960.
1961.
1962.
1963.
1964.
19661
1967.
1968.
1969.
1970.
1971 .
1972.
1973.
1974.
1975.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
NCW COMPOTE THE LIKSLI WETTING DISTANCE IN Dl
4 DA=FRATE(J) *DT
IETDIS=DA/(TH£TA(1,3) -I»ITMC(1))
DO 5 I=II,NDI
MM=I
IF (Z(I) .GT. (Z(II) + WETDIS) ) GO TO 6
5 CONTINUE
ADD ONE FOB A SAFETY FACTOR
6 MM=HM+1
EXCEED THE NUM8EB OF
MAKE SURE THAT THE TRUNCATION NODE DOES NOT
DEPTH INCREMENTS.
IF (JIM. GT.NDI) H»=NDI
IF THERE IS NO MATRIX TRUNCATION IN THIS RUN SET MM TO NDII.
IF (MM . LT. MMST) «M=MMST
IF (HATRUS.EQ.LAND.RAIN.EQ.0.0) H8=NDI
IF (IPBSTP. NE. 1.AHD.LPRSTP.NE. 1) GO TO 200
WRITS (6,100) DA,WETDIS,II,MM,JJL,DTTT
100 FORMAT (1X,«INPUT VOL U!iE = ',G10. 3,5X , ' WET LENGTH=',G10.3,/,1X,'PR
1IOOS UNCHANGED NODE W 5S« ,14 ,/, 1 X, ' PREDICTED UNCHANGED NODE WAS1,
2,2QX,'TIME STEP', 15,1X, 'WAS', F9.1, • SECS1)
WHITE (6,102) WFPOS (J) ,PSIWF (J) ,DT
102 FORMAT (' EQUIV POSITION OF WETTING FRONT= ',F6. 2, ' CM',5Xf'SaC
10N AT WETTING FHONT= ',112. 4, ' CS',3X,'NEW TIME STEP «,F9.1,' SEI
2')
WBITE (6, 131) TIME(J) , FE ATE (J) , TTOTAL (J) ,PEECIP (J) ,BAIN, EXCESS(Jj
INFLUX,FLHX(J)
101 FOBSAT (/10X,«TIME FEOM START=« ,F10.1 , • SECSV10X,'INFIL BATE= »,
112.4,' Ca/SEC'r5X,«INFIL ?OL= «,E12.4,« CH',5X,'TOT AL PRECIP= ',
22.4,' Ca«/1QXf 'BAIN B ATE', E1 2. 4, « CM/SEC ' ,5Xt 'EXCESS RAIN= «,S12
3, • CH',6X,'FLUX (AT NODE ' ,13 , • )= ' , £1 0 . 3, ' CM/SEC')
WRITE (6,103) ITERNO,FSIDIF
103 FOBSAT (' ', 13, 1X, 'ITERATIONS ' , 3X, «PSIDIF=« ,E10, 3 , « CM')
200 CONTINUE
IF (FTOTAL(J).GT. (1. 5*PRECIP (J) )) STOP
RETURN
END
SUBROUTINE PLOTTT (L)
PFINTES PLOT OF THE THETA VS, DEPTH CURVE, THE SUCTION VS. DEPTH
CURVE AND THE TIME VS. IirFILTRATION RATE CURVE.
IMPLICIT REAL*8 (A-H,0-Z)
COMMON /AAA/PSIA(100) ,NOPA
COMMON /AAA1/PSIAL(100)
136
-------
6. CQHHDN /BBB/MC {100}
;77. COMMON /BBB1/HCL{100)
JB. COMMON /CCC/PSI(85,3) ,0
T9. COMMON /EEE/I, SNA (100)
30. COMMON /FFF/Z(85)
31. COHMOH /GGG/HDII
J2. COMMON /ZZZ/TIME(1QO)
33. COSMOS /RRRR/FRATE (100)
34. COMMON /SSSS/KFAC,IPSPSI,NBBSL,KNODE
35. COMMON /TTTT/JRNEW
J36. COMMON /OOUU/FGB
37. DIMENSION HFRATE (100) ,HTGR (6)
J8. REAL*8 MC,MCL,KFAC
39. CHARACTERS POINT (1 01 ) , AXI S (1 01 )
JO. C
91. C
\2. C INITIALIZE PLOTTING ARBAYS
p3. C
»4- DO 7 K=1,101
95. &XIS(K)='-»
?6. 7 POINT (K) = « '
?7. C
p8. C
99. C SET GRAPH INCREMENT SO THAT THE GRAPH IS ONLY ONE PAGE LONG.
30. C
31. ZI=Z(NDII)/55
;)2. BOOBS=TIME30. C
137
-------
SEIH.SDMEBICAI,MODEL
1 2 3 4 5 6 -
123456789012345678901234567890123456789012345678901234567890123456789C
2031.
2032.
2033.
2034,
2035.
2036.
2037.
2038.
2039.
2040.
2041.
2042.
2043.
2044.
2045.
2046.
2047.
2048.
2049.
2050.
2051.
2052.
2053 .
2054.
2055.
2056.
2057.
2058.
2059.
2060.
2061.
2062.
2063.
2064.
2065.
2066.
2067.
2068.
2069.
2 07Q.
2071.
2072.
2073.
2074.
2075.
2076.
2077.
2078.
2079.
2080.
2081.
2082.
2083.
2084.
2085.
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
INTERPOLATE TO FIND SUCTION FOE IBIS DEPTH.
CALL INTERP (ZG,PSIGB,4)
INTEBPOLATE TO FIND M/C FOR THE SOCTION JUST FOUND
IF (ICHNGE. EQ. 1) GO TO 550
IF (ZG.LT.2 (KNODE)) GO TO 550
DO 520 K=1,NOPA
TEHP=PSIA(K)
PSIA(K) =PSIAL(K)
PSIAL(K)=TEMP
TEMP=HC (K)
SC(K)=HCL(K)
MCL(K)=TEHP
520 CONTINUE
ICHNGE = 1
550 CONTINUE
CALL INTEE? ( PSIGB, TH ETGB, 1)
CALCULATION AND OUTPUT OF GBAPH FOB THIS NODE
ITH=10G*THSTGS+0. 00 1
POINT(ITH)=»*»
IF (I.EQ. 1) WSIIE (6,58) ZG, (POINT (K) ,K=1 ,70)
58 FOEHAT {' *• , 4I,F5 . 1 , » I « ,70 A 1)
IF (I.EQ. 1) GO TO 62
WHITE (6,60) ZG, (POINT(K) ,K=1,70)
60 FOBMAT (• • , 4X,F5 . 1 , 'I • ,70 A1 )
62 CONTINUE
SBITE (6,65)
65 FORMAT { ' +' ,9X, •- ' ,69 X, 'I ' ,/, •+ ' ,79 X, ' - ')
POINT (ITH)=f »
PBINT OUT OF SIDE LABEL
80 CONTINUE
IF (I.EQ.1) WRITE (6,85) 'D1
IF (I.EQ. 3) IBITS (6,85) 'E1
IF (I.EQ. 5) WBITS (6,85) 'P'
IF (I.EQ. 7) WBITE (6,85) •!•
IF (I.EQ. 9) 5TEITE (6,85) ' H»
IF (I.EQ. 11) WBITE (6,90)
85 FORMAT (« + « ,2X,A1)
90 FORMAT (' + ',' (CM) ')
INCREASE DEPTH FOH NEXT GRAPH LINE.
ZG=ZG+ZI
138
-------
CH. NUMERICAL HODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
86,
87.
88.
89.
90.
91.
92.
93.
94 .
(95.
96.
97.
98.
99.
00.
01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
1 30.
31 .
32.
33.
I34.
35.
I36.
I37.
I38.
139.
140.
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
100 CONTINUE
IF ({ZG-ZI).LT.Z(KNODE)) GO TO 599
DO 570 K=1,NOPA
TEMP=PSIA(K)
PSIA(K) =PSIAL(K)
PSIAL(K)=TEMP
TEMP=MC (K)
MC (K)=MCL(K)
MCL(K)=TEMP
570 CONTINUE
59S CONTINUE
OUTPUT BOTTOM AXIS.
WRITE (6,101) (AXIS (K) ,K=1,71)
101 FORMAT (• + •, 9X,71A1)
WRITE (6,102) ».0',«. 1','.2','.3',' . 4' , ' . 5' , ' • 6' , ' .7'
102 FORMAT (' *« ,9X, 'I ' ,7( 9X, 'I •) ,/, 'S ' ,9X,8 ( A2, 8X) )
GO TO 600
**********************************************************************
SUCTION AND POTENTIAL VS. DEPTH CURVE.
117 CONTINUE
OUTPUT THE HEADING TO THE GRAPH.
WRITE (6,120) TIME(J) , HOURS,' 4' ,' 3',' 2« ,' 1' ,' ' ,' 1 • ,» 2« , ' 3»
120 FORMAT ( ' 21 , 1 X , 'SEMI-LOG ABITHMIC GRAPH OF SUCTION AND POTENTIAL VS
1. DEPTH FOR TIME =»,F10.1,» SECS OR' , 1X ,F8, 2, 1X, ' HOURS ',//,' ',3
22 X,' SUCTION OR POTENTIAL', ' (CM)',/,' ' , 1 OX, 8 (A 1 , 9X) ,/, ' «,7X,'-10
3' ,3(7X, '-10') ,9X, «0«,3(8X, MO') )
WRITS (6,22) (AXIS (K) ,K = 1,71)
WRITE (6,23)
INITIALIZE DEPTH VARIABLE.
ZG=0,0
DO 230 1=1,54
INTERPOLATE TO FIND SUCTION FOR THIS DEPTH.
CALL INTEEP (ZG,PSIGR S,4)
IF (PSIGRS. GT.0.0) PS IGRS = 0.0
FIND POTENTIAL LOGARITHM AND STORE IN POTLGR.
POT=PSIGRS+ZG
139
-------
HUH. HUHEBICAl.aODEL
2141.
2142.
2143.
2144.
2145.
2146.
2147.
2148.
2 1 49 .
2150.
2151.
2152.
2153.
2154.
2155.
2156.
2157.
2158.
2159.
2160.
216T.
2162,
2163.
2164.
2165.
2166.
2167.
2168.
2169.
2170.
2171.
2172.
2173.
2174.
2175.
2176.
2177.
2178.
2179.
2180.
2181,
2182.
2183.
2184.
2185.
2186.
2187.
2188.
2189.
2190.
2191.
2192.
2193.
2194.
2195.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
123456
1234567890123456789012345678901234567890123456789012345678901234567891
IF (POT.LS.-1, ,OR,P01.GE.1.Q) GO TO 143
POTLGR=Q.Q
GO TO 146
143 CONTINUE
POTLGR=DLOG1Q (DABS (POT) )
146 CONTINUE
FIND LOGARITHM OF SUCTION AND STORE IN PSILGfi
IF (PSIGBS.LE.~1. .OR.PSIGRS.GE.1.0} GO TO 153
PSILGB = 0.0
GO TO 156
153 CONTINUE
P5ILGR=DLQG10 (DABS (PSIGES) )
15fc CONTINUE
CALCULATION AND OUTPUT FOR GRAPH AT THIS NODS.
IPSI=-10*PSIIGR+50.001
IP SI= + 10*PSILGB + 50.001
IPOT=-10*PC1LGB+50.001
IPOT=+10*POTLGB+50.001
IF (PSIGBS.LE.0.0)
IF (PSIGBS.GT.0,3)
IF (POT.LE.0.0)
IF (POT.GT.0.0)
POINT (IPSI) = '*'
IF (I.EQ.1) TJRITE (6,158) ZG, (POINT (K) ,K= 10 ,80)
158 FORMAT ('+ ', 41,F5.1,71Al,/,'+',9X,'I1)
IF (I.EQ.1) GO TO 162
WHITE (6,160) ZG, (POINT(K) ,K=10,80)
160 FOBSAT (' ',4X,F5. 1,7U1,/, '-»•',9X,'I')
162 CONTINUE
WRITE (6,65)
POINT (IPSI) = « '
POINT (IPOT) ='S'
iBITE (6,170) (POINT (K),K-10, 80)
170 FORMAT (« + • ,9X,7U1)
POINT (IPOT) =• '
PHINT OUT OF SIDE LABEL
180
CONTINUE
IF {I.EQ.
IF (I.EQ.
IF (I.EQ.
IF (I.EQ.
IF (I.EQ.
IF (I.EQ.
1)
3)
5)
7)
9)
11)
WRITE
W8ITE
WBITB
WRITE
WRITE
WRITE
(6,
(6,
(6,
(6,
(6,
(6
85)
85)
85)
85)
85)
,90)
t
i
i
t
i
D
S
P
T
H
i
t
i
i
i
PRINT GBAPH KEY SHOWING WHICH LINE REPRESENTS EACH CUBVE.
190
IF (I.EQ.2) WRITE (6,190) ********
IF (I.EQ.3) WHITE (6,190) '6SSSS&S
FORMAT (•+• ,831,A18)
SUCTION '
POTENTIAL1
140
-------
N.BDMEBICAL.MODEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901234
96. C
97. C
98. C INCREASE DEPTH FOB NEXT GRAPH LINE.
99. C
'00. ZG=ZG+ZI
01 . 200 CONTINUE
02. C
03. C
04. C OUTPUT BOTTOH AXIS.
05. C
06. WRITE (6,101) (AXIS (K) ,K=1 ,71)
07. SHITS (6,202) »4» , * 3' , • 2«, « 1« , « ' , ' 1« , • 2' ,« 3'
08. 202 FOBMAT (' + « ,9X,8 ('I» ,9 X) ,/ , 'S ', 10X, 8( A 1,9X) ,/, ' S' ,7X,'-1Q' ,3(7X,
09. 1 '-10') ,9X,«0»,3(8X,« 10'))
10. GO TO 600
12*. C
13. C
14. C TIME VS. INFILTBATION RATE CUBVE.
15. C
16. 217 CONTINUE
17. FGSST=FGR
18. JENE»T=JENE8
H9. IF (JRNEWT.EQ. 101) JPNE«T=1
i20. C
!21. C
22. C CALCULATE STARTING BUN T ME IN HOURS.
23. C
!24. C HTHIS=TIME (JBNEiT)/3600
25. C
!26. C
!27 . C CALCULATE TIME INCREMENTS FOB GEAPH LABEL,
J28. C
|29. TIMING = (TI»E(J) - TIME (JBNEIT)) /5.Q
J30. HTGR(1) = TIHE(JHNEWT)
?31. DO 219 K = 1,5
J32. 219 HTGR (K*1)=HTGH (K)*-TIMINC
233. C
234. C
535. C OUTPUT THE HEADING TO THE GBAPH.
236. C
?37. WRITE (6,220) HTGR
238. 220 FOBHAT (' 1 • ,37X, ' GBAPH OF INFILTBATION BATE VS. TIME FOB LAST BAIN
b9. 1 ',//,' ',56X,'TIME (SECS. )',/,' ' ,5 X, 6 (F9 .1, 11X) ,/, • I,11X,6(«II
240. 2,19X))
241. WRITE (6,222) (AXIS (K) ,K=1 ,10 1)
242. 222 FOBMAT (' +• , 11X, 10 1 A1)
,243. C
244 . C
245. C CALCULATE IKFIL. RATE IN MM/SEC.
246. C
247. DO 230 JJ=JBNEHT,J
248. 23J HFBATE(JJ) = FBATS(JJ)* 10.0
249. C
250. C
141
-------
,BIN. NUMERICAL.MODEL
2251.
2252.
2253.
2254.
2255.
2256.
2257.
2258,
2259.
2260.
2261.
2262,
2263.
2264.
2265.
2266.
2267.
2268 .
2269 .
2270.
227t.
2272.
2273.
2274.
2275.
2276.
2277.
2278.
2279.
2280.
2281.
2282.
2283.
2284.
2285.
2286.
2287.
2288.
2289.
2290.
2291.
2292.
2293.
2294.
2295.
2296 .
2297.
2298.
2299.
2300.
23C1.
2302.
2303.
2304.
2305.
C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
1234567
12345678901234567890123456789012345678901234567890123456789012345678901
CALCULATE INFIL. BATE INCREMENTS FOR GBAPH.
FINC=FGB/40.Q
BEGIN CALCULATING AND FEINTING GSAPH POINTS.
DO 300 K=1,41
FGB=DABS(FGB)
CALCULATE GBAPH POINTS FOB THIS INFIL. BATE (FGB).
DO 245 JJ=JB8EWT,J
IF (HFRATE(JJ) .GE. (F3 R+Q.5*FI NC). OB. HFB ATI( JJ) . LT. (FGR-0. 5*FINC) )
1GO TO 245
ITIME= (TIME (JJ)-TIME (JRNEHT) ) / (TI MB (J) -TIME (JBNSWT) ) * 100. 0+1. 00 1
POINT (ITIME) = «*'
245 CONTINUE
OUTPUT GRAPH LINE FOR THIS INFIL. BATE.
IF (K.3Q.1) HBITB (6,258) FGR, (POINT (N) ,N= 1 , 10 1)
258 FOBMAT (' + • , 5X,F6. 4, 101A1)
IF (K.GT.1) SBITE (6,260) FGB, (POINT( N) ,N=1 , 1 01)
260 FORMAT (' « , 5X,F6 . 4 ,1 01 A1, /,' +• ,11X ,' I« ,991, ' I')
WBITE (6,265)
265 FORMAT ('*',111,«-',991,•-')
REINITIALIZE PLOTTING ABRAY.
DO 275 N=1,101
275 POINT (N) =• '
CQTPUT SIDE LABEL.
IF (K.EQ. 5) WBITE (6,85) ' F'
IF (K.EQ.7) WBITE (6,290) '(»«/'
IF (K.EQ.8) HBITE (6,290) «SEC)»
290 FORMAT ('*',A5)
DECPEAS5 IN7IL. BATE FOR NEXT GRAPH LINE.
FGR=FGR-FINC
300 CONTINUE
FGR=FGRST
ODTPUT BOTTOM AXIS.
KPITE (6,222) (AX IS (K) ,K=1, 10 1)
142
-------
IN.NUHEBICAL.MODEL
1234567
12345678901234567890123456789012345678901 23456789012345678901234567890123
WHITE (6,302) HTGE
302 FOEHAT ('*' , 121, 4(19X,'I '),/,' ', 5X,6 (F9. 1, 11X))
600 CONTINUE
EETOBN
EHD
SUBBOOTINE BAINCH
C
C
C CHANGING OF BAINFALL BATES AND SWITCHING TC DSIING OS WETTING CCJEVES
C WHEN NECESSABY.
C
IHPLICIT RSAL*8 (A-H, 0-Z)
COMMON /AAA/PSIA(10Q) ,NOPA
COMMON /AAA1/PSIAL (100)
COMMON /CCC/PSI(85, 3) ,J
COMMON /DDD/PSI3(100) ,NOPB
COSflON /DDD1/PSIBL(100)
COHSOS /GGS/NDII
COMMON /OOO/BAIN
COSMON /BBB/DT,DTINJT
COHSON /SSS/NSAT
coaaos /uuo/iNiT?!C(ioo)
COMMON /YYY1/THETA(85,3)
COMMON /ZZZ/TIHE(100)
COMMON /AAAA/DVIDE
COMMON /GGGG/BAINN(5) ,TIMB(5) ,TMAX,LWET
COMMON /HHHH/JBA
COMMON /BBBB/FBATE(1CO)
COM80N /TTTT/JSNEI
COMMON /ODUO/FGB
COMMON /XXXX/JJL
EEAL*8 INITMC
C
C
C CEASGE 3AINFALI, BATE IF THE TIMS H SS BEACHED A SPECIFIED VALUE
C
PAINOL=EAIN
DO 160 K=1,4
K 1=K
EAINT=BAINN(K)
IF (TIHE (J) .LT.TIMB (K+1) ) GO TO 170
160 CONTINUE
RAINT=BAINN(5)
K 1 = 5
170 IF (BAIN. NS. BAINT) HRITE (6,175) SAINT,JJL
175 F08MAT {'2«,////,' ','SAINFALL BATS CHANGED TO»,E12.3,' CM/SEC*,1
1AFTEB THE LAST TIME STEP-STEP1,1X,13,//)
IF (EAIN-BAINT) 180,200,220
C
C
C IF MEW RAINFALL BATE IS GHEATEB THAN BEFOES MAKE SOfi^ WETTING COBVES
C ABE BEING (ISED,
C
180 EAIN= SAINT
JBA=0
143
-------
iEIS. NUMERICAL. MODEL
2361.
2362.
2363.
2364,
2365.
2366.
2367.
2368.
2369.
2370.
2371.
2372.
2373,
2374.
2375.
2376.
2377.
2378.
2379.
2380.
2381.
2382.
2383.
2384.
2385.
2386.
2387.
2388.
2389,
2390.
2391.
2392.
2393,
2394.
2395,
2396.
2397.
2398.
2399.
2400.
2401 .
2402.
2403.
2404.
2UG5.
2406.
2407.
2408.
2409.
2410.
2411 .
2412.
2413.
2414.
2415.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
1234567
12345678901234567890123456789012345678901234567890123456789012345678901
BESET INITIAL H/C»S TO CORRESPONDS TO M/C«S WHEN NEW RAINFALL STABTS
IF (RAINOL. NE.O.Q) GO TO 190
DO 185 I=1,HDII
185 INITMC(I)=THETA(I,3)
190 CONTINOE
CALL PLOTTT (3)
JRNBH=J
IF RAINFALL BATE CHAHGES HAKE SOSE DT IS LESS THAN 1 SEC,
IF (DT. GT.1.0) DT=1,0
IF (DT.GT.1.0) • DTINIT=1.0
IF (LHET. EQ. 1) GO TO 250
GO TO 208
IF RAINFALL SATS IS THE SAMS AS BEFORE MAKE SITSE PEOPEE CURVES AB S
BEING USED.
200 CONTINOE
IF CHANGE IN SURFACE MOISTURE CONTENT IN THIS TIME STEP IS NEGATIVE
HAKE SURE DEIING CORVES ARE USED.
IF (THETA (1,3) .LT.THETA (1,2)) GO TO 223
II RAINFALL HATE IS 0 MAKE SOSE DRYING CURVES ARE BEING USED.
IF (RAIN.EQ.0.0) GO TO 223
IF (LWET.EQ. 1) GO TO 250
208 DO 210 K=1,NOPA
PSIAL(K) = PSIAL (K)/DVIDE
210 PSIA(K)=PSIA (K)/D VIDE
DO 215 K=1,NOPB
PSIBL(K) = PSIBL(K) /DVIBE
215 P SIB (K) =P SIB (K)/D VIDE
DO 218 I=1,NDII
PSI(I,3)=PSI (1,3) /DVIDE
218 PSI(I,2) = PSI(I,2)/DV!DE
L«ET=1
GO TO 250
C IF NEW RAINFALL RATE IS LESS THAN BEFORE MAKE STJRE DRYING CURVES AB1
BEING USED.
22C RAIH-KMNT
C BESET INITIAL S/C'S TO COESESPONDE TO M/C'S WHEN RAINFALL STOPPED i:
IT HAS STOPPED.
IF (PAIN. NE.O. .OR. HAINOL. IQ. 0.0) GO TO 222
144
-------
NOHEBICAL.MODEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901234
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
|33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
l55.
t56.
>57.
^58.
t59.
^60.
t61 .
162.
t63 .
(64.
165.
166.
>67.
*68.
169.
170.
DO 221 I = 1,NDII
221 INITMC(I)=THETA(I,3)
222 CONTINUE
CALL PLOTTT (3)
JBNEW=J
C
c
C IF RAINFALL SATE CHANGES HAKE SOEE
C
IF (DT. GT. 1.0} J)T=1.0
IF (DT.GT.1.0) DTINIT=1.0
JBA=0
NSAT=0
223 IF (LSET.NE.1) 30 TO 250
DO 225 K=1,NOPA
PSIAL (K) =PSIAL (K) *DVIDS
225 PSIA(K)=PSIA(K)*D7IDE
DO 230 K=1,NOPB
PSIBL (K) =PSIBL(K) *DVIDE
230 FSIB(K)=PSIB (K)*DVIDE
DO 237 I=1,NDII
P SI (1 , 3) =PSI (1 , 3) *D 71 DE
237 PSI(I,2) = PSI (1,2) *D VIDE
LWET=0
250 CONTINOE
C
C
C RESET TIME INCBEHENT IF BAINFALL B
C
IF (K 1.GE.5) GO TO 300
IF ((TIHE{J) +DT). LE. TIHE(K 1 + 1)}
DT=TIMB (K1+1)-TIHE (J)
JEA=0
300 CONTINUE
IF {(TIME (J) +DT) .GT. THAI) DT=TM
RETURN
END
SOBBOUTINE INTER? (XXX, YTY , KKK)
C
C
C ITNEAB INTERPOLATION BETWEEN DATA
C
IMPLICIT RSAL*8 (A-HrO-Z)
COMMON /AAA/PSIA (100) ,NOPA
COMMON /BBB/MC(100)
COMMON /CCC/PSI(85, 3) ,J
COMM3N /DDD/PSIB (100) ,NCPB
COMMON /EEE/I,NNA(100)
COMMON /FFF/Z(85)
COMMON /GGG/NDII
COMMON /HHH/HYCON (100)
COMMON /PPP/JA
COMMON /TTT/NNB (100)
PEAL*8 MCMAX,KSAr,INITMC,LHS,KB
XIN=XXX
DT IS LESS
ATE CHANGES
GO TO 300
ai-TIME (J)
POINTS
,MC
THAN 1 SEC.
IN NEXT TIME STEP.
145
-------
SASHD ISd-NOD'dlH 3HI SO S3DTYA df) SHIMOD1 3
D
0
********************************************************************* 3
H HO iL 3 a
srsz
*{(D
et
- NIX I3HOSH8 SSGl^A aA'dDD D
D
Naniaa
(zi* =i
(l+l) DH=IQ01 t)l
1YH33
Z\. 01 OS
U 01 09 (?aOK*19*l) II
DOI si ii ai aas ci HDSSD
1+1=1 at
131 QNOO^ XOK
St'til'et ((l+T) ¥ISd-NIX) 51 ZL
dOIS
s Htj'ig'frta* 01 Bu'fzia'i si ssut,
i 'XL/) ISHSO* OOL
CCCt'9) 2IIHft U
Zl'll'll ((O IflSd-KIX) II
3DK¥H SI SI NIX II S03HD
Ot
3AHDD ISdAlZHI SHI HO DA dfl OKISODT
31 ' (OtS'Oltj'OU'OU'Ot) Oi 09
*********************************************************************
•aaSQ SI 3A3QD *HOD *
-------
iH. HOMES ICAL.HODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123^
C
110 HNB(I)=1
L=NNB(I)
»29, C
530. C CHECK IF XIN IS IH RANGE,
!>31 • C
532." IF (XIN-PSIB (1)) 111,111,112
;)33. 111 fBITE (6,100) XIN,PSIE(1),PSIB(NOPB),K,I
534. STOP
>35. 112 IF (XIN-PSIB (L+1) ) 113,114,115
536. C
»37. C NCT FOOND YET.
538. C
a39. 115 1=1+1
340. C
C CHECK TO SEE IF IT IS TOG LABGE.
542. C
543. IF (L.GT. NOPB) GO TO 111
o44, GO TO 112
345. C
546. C EQUAL.
547. C
548. 114 YOOT=HYCON(L+1)
549. YYY=YOtfT
[550. RNB(I)=L
551. EETUfiN
552. C
553. C COfiVE 7ALOES BRACKET XIN - INTERPOLATE.
554. C
555. 113 YOOT=HYCON(L) +(HYCON(L+1) -HYCON(L)) * (XIN-PSIB (L) ) /(PSIB(L-H) -PSIB(
556. 1L))
557. YYY=YOOT
558. NNB(I)=L
559.
560. C
561 . C
:562. C LOOKING OP VALUES ON THE PSI-THETA CURVE
!563. C
!564. 210 L=1
•565. C
>566. C CHECK IF XIN IS IN RANGE.
2567. C
2568. IF (XIN-aC(L)) 211,211,212
2569. 211 WRITS (6,100) XIN, HC( 1) ,MC(NOPA) , K, I
2570 . STOP
2571. C
2572. C NOT FOOND YET.
2573. C
12574. 212 IF (XIN-flC (L+ 1) ) 213,214,215
(2575. 215 L=L+1
2576. C
2577. C CHECK TO SEE IF IT IS TOO LARGE.
2578. C
2579. IF (L.GT. NOPA) GO TO 211
2580. GO TO 212
147
-------
en
•3A8QD 'ROD '
a HI SI KIX &I
1 = 1
3flNIiKOD OtS
3HI NO S3UTCA dfi 9NIH001
D
D
******************************************************************** 3
Nanisa
IDO 1=111
(e'i)isd)+(e't-i)isa=ioox EH?
D
- six lasDvaa saci^A SAEDD D
D
D
D
iD 01=111
(e'i)isa=inoi
Zl ft 01 OS
Oi OS (iraH'19'1) II
D
DOI si ii ii aas 01 aoasD D
D
l-»-l=l SL17
D
•121 ORflO^ XON D
D
SLtj'trtt'Elt? ((l)Z-HIX) II Ztt?
dOIS
(21* =X Ht7'XS't)*2L2' 01 Ht?'t?*2ta*i SI 29NL
aiaaaDxa assva HoiisioasaiRi, *xi/) x?wnoa SOL
H' (IIQN)Z' ( UZ'KIX (S0t.'9) 3Iia« It*
2U'2U'Ut7 ((I)Z-KIX) il
D
•39NYH HI SI NIX JI 2D33D D
D
1 = 1 Qltj
D
2AIDD Hiaaa-isd aai so saniVA ao DKIUODI D
D
ic******************************************************************** D
sanisa
1001=111
((l)DH-(t-H)DK)/((l)DK-NIX) * t (1) ?ISd- (L -H) YlSd) + (l)?ISd=X001 El 2
D
•zi;?ioaaaiNi - six iajiosaa saai¥A BASOD D
D
Kama a
IQ01=Iii
¥ISd=iDOi ht2
•1?Q5I 3
D
l068/.9Sfe£2l068£9St?£2l068I9St7£2L068/.9SijE2lG68£9Stj£2t068£9S1j£2l068£9SfteZl
L 9 S * E 2 I
'SE92
'1TE9Z
*££92
'2E92
*tE92
* OE92
* 8292
• LZ9Z
'9292
*1»Z.9Z
'ZZ9Z
• iz93
"OZ9Z
*9L9Z
*U192
'Et.93
*zi92
H19Z
'019Z
* 8092
*X092
*SD92
••5092
'U092
*2092
'0092
"66SZ
',8652
*L652
-9652
"S6S2
* £692
'2652
*16S2
*06S2
'6852
'',8852
M8S2
*98S2
*S8S2
'E8SZ
-2852
-1852
-------
IN . NUMERICAL.HO DEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
636. C
637. IF (XIN-HYCON (L)) 511,512,512
638. 511 HHITE {6,105} XIN, HYCON (1) , HYCON (NOFB) , K
639. STOP
640. 512 IF (XIN-HYCON (L)) 515,514,513
641. C
642. C NOT FOUND YET.
543. C
644. 513 L=L-H
545. C
}546. C CHECK TD SEE IF IT IS TOC LARGE.
547. C
548. IF (L.GT.NOPB) GO TO 511
549. GO TO 512
5 50 . C
551. C EQUAL.
552. C
553. 514 YOUT=PSIB(L)
554. YYY=YOUT
555. RETURN
556. C
557. C CURVE VALUES BRACKET XIN - INTERPOLATE.
553. C
559. 515 YOUT=PSIB{L-1)+(PSIB(L) -PSIB(L-1))* (XIN-HYCON (L-1) )/(flYCON(L) -HYCO
560. 1N(L-1))
561. YYY=YOUT
562. RETURN
563. END
a64. SUBROUTINE SLOPE (XXX,SLOUT)
,565. C
566. C
567. IMPLICIT REAt*8 (A-H, 0-Z)
568. COMMON /AAA/PSIA (100) ,NOPA
»69. COMMON /BBB/MC(100)
570. COMM3N /CCC/PSI (85,3) ,J
571. COMMON /EEE/I,SNA{100)
572. COMMON /PPP/JA
573. COMMON /BBBB/CD(3)
574. PEAL*8 MCMAX, KSAT,I NI TMC ,LH S, KR ,MC
575. XX=XXX
676. C
^77. C
578. C FIND PROPER M/C-SUCTION DATA POINT AND CALCULATE DIFFERENCE BETWEEN
IJ579. C SUCTIOH DATA POINTS.
680 . C
,681. CALL INTERP (XX,CX,1)
682. DELX=PSIA(JA+1) -PSIA(J&)
683. IF (JA.EQ.1) GO TO 20
684. IF ((XX-PSIA(JA)) .LT. (PSIA (J A+1)-XX)) GO TO 10
685. 2C JA=JA+1
686. C
J687 . C
688. C FIT A PARABOLA THRU THE NEAREST THREE POINTS
689. C
690. 10 SA=«C (JA-D-MC (JA)
149
-------
MEIH. NUMERICAL .MODEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901
2691.
2692.
2693.
2694.
2695.
2696.
2697.
2698.
2699.
2700.
2701 .
2702.
2703.
2704.
2705.
2706.
2707.
2708.
2709.
2710.
2711 .
2712.
2713.
2714.
2715.
2716.
2717.
2718.
2719.
2720.
2721.
2722.
2723.
2724.
2725.
272f>.
2727 .
2728.
2729.
2730.
2731 .
2732.
2733.
2734.
2735.
2736.
2737.
2738,
2739.
2740.
2741.
2742.
2743 .
2744.
2745.
C
C
C
C
C
C-
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SB=MC(JA-1) -MC(JA+1)
PA=PSIA (JA-1) -PSIA(JA + 1)
PB=PSIA(JA-1)-PSIA (JA)
PPA=PSIA(JA-1) *PSIA(J A-1) -PSIA(JA) *PSIA (JA)
PPB=PSIA (JA- 1) *PSIA (JA-1) -PSIA( JA+1) *PSIA (JA+1)
AA = (SA*PA-SB*PB)/(PPA*PA-PPB*PB)
BB=(SA-AA*PPA)/PB
CD(3)=2,0*AA
SLOUT=2.0*AA*XX+BB
IF (J. SQ. 1) GO TO 31
IF (DABS (PSI (1,3) -PSI (1,2 ) ) . GT. (0 . 2*DELX) .AND .PSI (1,3) .IT. 2.0)
1 GO TO 40
31 CONTINUE
EETUBN
CHORD FOB SLOPE DETBR3IN ATION
40 CALL INTEBP (PSI (I, 3) , CA, 1)
NNA(I)=1
CALL INTERP (PSI (I, 2 ),CB, 1)
NNA(I) = 1
SLOOT= (CA-CB) / (PSI (I, 3) -PSI (I ,2) )
EETURN
END
SUBROUTINE DCSEV'J (X ,Y, NX , C, 1C, OT, DS, M 1 ,DDS,M2,IER)
FUNCTION - EVALUATION OF FIBST AND SECOND DERIVATIVES
OF A CUBIC SPLINE.
USAGE - CALL DCSEVU (X, Y ,NX,C, 1C ,U, D S, M1 ,DDS, M2 ,IEB)
PAEAMETEFS X - VECTOR OF LENGTH NX CONTAINING THE ABSCISSAE
OF THE NX DATA POINTS (X(I)rY(I)) 1=1,...,
NX (INPUT). X MUST BE OBDEB2D SO THAT
X (I) .IT. X(I*1).
I - 7ECTOP OF LENGTB NX CONTAINING THE OBDINATES
(OE FUNCTION VALUES) Of THE NX DATA POINTS
(INPUT) .
NX - NUHBEE OF ELEHENTS IN X AND Y (INPUT) ,
NX MUST BE .GE. 2.
C - SPLINE COEFFICIENTS (INPUT). C IS AN NX-1 BY
3 MATRIX.
1C - ROW DIMENSION OF MATRIX C IN THE CALLING
PBOGSAM (INPUT). 1C MUST BE . GE. NX-1.
U - VECTOR OF LENGTH MAX(M1,«2) CONTAINING
THE ABSCISSAE OF THE POINTS AT WHICH THE
FIRST DERIVATIVE AND/OS THE SECOND
DERIVATIVE OF THE CUBIC SPLINE IS TO BE
EVALUATED (INPUT) .
OS - VECTOR OF LENGTH «1 (OUTPUT).
THE VALUE OF THE FIBST DERIVATIVE OF
THE SPLINE APPROXIMATION AT U (I ) IS
DS(I) = (3.0*C(J,3) *D+2.0*C (J,2))*D+C (J, 1)
WHERE X(J) .IE. U(I) .IT. X (J-H) AND
150
-------
NUMERICAL. HODEl
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
746.
747.
748.
749.
rso.
751.
752.,
753.
754.
'55.
756.
757,
758.
759.
[60.
761.
t £. **i
[62 .
'63.
764.
'65.
766.
'67.
769.
[69.
[70.
'71.
772.
'73.
774.
775.
776.
777.
778.
779.
780.
781.
782.
783 .
784.
785 .
786.
|787.
788.
789.
790,
791.
792.
793 .
794.
795.
796.
797.
798.
799.
aoo.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
D - 0{I)-X(J) , FOB 1=1, ...,H1.
H1 - NUMBER OF ELEMENTS IN OS (INPUT).
DBS - VECTOR OF LENGTH M2 (OUTPUT).
THE VALUE OF THE SECOND DERIVATIVE OF
THE SPLINE APPROXIMATION AT 0(1) IS
DDS(I) = 6.0*C(J,3) *D+2.0*C(J,2)
WHIEI X (J) .LE. 0(1) .LT. X (J+ 1) AND
D = D(I)-X(J) , FOR I=1,,,.,M2.
H2 - NUMBER OF ELEMENTS IN DOS (INPUT) .
IEB - EBBOR PARAMETER.
WARNING ERROR
IER = 33, 0(1) IS LESS THAN X<1).
IER = 34, 0(1) IS GREATER THAN X (NX) .
PRECISION - SINGLE/DOUBLE
FEQD. IMSL ROUTINES - 0 EETST
LANGUAGE - FORTRAN
LATEST REVISION - AUGUST 20, 1974
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION X(NX),Y (NX ) ,C (1C, 3) , U (1 ) ,DS(M1) ,DDS(M2)
DATA I/1/,ZEEO/O.Q/,THEEE/3.0/
INITIALIZE ERROR PARAMETERS
JSE = 0
KER = 0
U( 1) =UT
IF (31 .LE. 0 .AND. M2 .LE. 0) GO TO 9005
KXM1 = NX-1
IF (I .GT. NXM1) I = 1
EVALUATE FIRST DEBIVATIVS OF SPLINE
AT M1 POINTS AND EVALUATE SECOND
DERIV&TIVE OF SPLINE AT M2 POINTS
MM = MAXO (31,112)
DO 40 K=1,MM
FIND THE PROPER INTERVAL
D = U(K)-X(I)
IP (D) 5,25,15
5 IF (I .EQ. 1) GO TO 30
I = 1-1
D = U(K)-X (I)
IF (D) 5,25,20
1C I = 1*1
D = DD
15 IF (I .GE. NX) GO TO 35
DD = U (K) -X(I*1)
IF (DD .GE. ZFRO) GO TO 10
IP (D .ZQ. ZERO) GO TO 25
PERFORM FIRST AND SECOND
DERIVATIVE EVALUATIONS
20 SPP = THREE*C(I, 3) *D + C(I,2)
IF (K .LE. M1) DS(K) = (SPP+C(I,2))*C*C(I,1)
IF (K .LE. M2) DOS (K) = SPP+SPP
GO TO 40
25 IF (K .LE. M1) DS(K) = C (I , 1 )
151
-------
JIN.SUHERICAI.MODEL
1234567
123456789012345678901234567890123456789012345678901234567890123456789012
2801.
2.802.
2803.
1804.
2805.
2806,
>807.
2808.
2809,
2810.
2811 .
2812.
2813.
2814.
2815.
2816.
2817.
28 18 .
28t9.
M A «« M
2820 *
2821 .
2822.
2823.
2824,
2825.
2826.
282.7.
282ff.
2829.
2830.
2831.
2832.
2833.
2834.
2835.
2836.
2837.
2838.
2839.
2840.
2841.
2842.
2843.
2844.
2845.
2846.
2847.,
2848.
2849.
2850.
2851 .
2852.
2853.
2854.
2855.
IF (K .LE. M2) DDS(K) = C (1,2) +C(1 ,2)
C
C
GO TO 40
30 JSE = 33
GO TO 20
35 IF (DD ,GT. Z
D = U (K)-X (NX
I = NXM1
GO TO 20
40 CONTINUE
WARNING - U{I) .LT. X(1)
•
IF U(I) .GT. X(NX) - WARNING
ERO) KEE = 34
81)
IER = MAXO(JER,KER)
9000 CONTINUE
IF (JEE . GT. 0)
IF (KES .GT. 0)
CALL UEBTST(JER, 6HDCSEVU)
CALL UERTSI(KER,6HDCSEVU)
90G5 RETURN
END
SUBROUTINE 1C SIC
C
C-ICSICU--- S/D
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
FUNCTION
USAGE
PARAMETERS X
I
NX
BPAS
C
1C
IES
PRECISION
U {X,Y,NX,BPAR,C,IC,I£B)
--LIB BAB I 1 — — -— —
- INTERPOLATOR! APPROXIMATION BI CUEIC SPLINES
WITH ASBITRARY SECOND DERIVATIVE END
CONDITIONS.
- CALL ICSICU (X,Y,NX,BPAE,C,IC,IEB)
- VECTOR OF LENGTH NX CONTAINING THE ABSCISSAE
OF THE NX DATA POINTS (X(I),Y(I)) 1-1,...,
NX (INPUT). X MUST BE OEDEESD SO THST
X(I) .LT. X(I + 1).
- VECTOR OF LENGTH DX CONTAINING THE ORDINATES
(OR FUNCTION VALUES) OF THE NX DATA POINTS
(INPUT) .
- NUMBER OF ELEMENTS IN X AND I (INPUT) . NX
MUST BE .GE. 2.
- VECTOR OF LENGTH 4 CONTAINING THE END
CONDITION PARAMETERS (INPUT).
2.0*SPP (1)>BPAR(1) *SPP(2) = BPAR(2),
EPAR(3)*SPP (NX-1) +2.0*SPP(NX) = BPAR(4),
WHERE SPP (I) = SECOND DERIVATIVE OF THE
CUBIC SPLINE FUNCTION S EVALUATED AT X ( I) .
- SPLINE COEFFICIENTS (OUTPUT). C IS AN NX-1 BY
3 MATRIX, THE VALUE OF THE SPLINE
APPROXIMATION AT T IS
S(T) = ((C(I,3)*D+C (I,2))*D + C(I,1)) *D+¥(I)
WHERE X(I) .LE. T .LT. X (1+1) AND
D = T-X (I).
- HOW DIMENSION OF MATRIX C IN THE CALLING
PEOGBAM (INPUT). 1C MUST BE . GE. NX-1.
- ERROR PARAMETER.
TERMINAL ERROR
IER = 129, 1C IS LESS TPAN NX-1.
IER = 130, NX IS LESS THAN 2.
IER = 131, INPUT ABSCISSA ARE NOT ORDERED
SO THAT X(1) .LT. X (2) ... .LT. X(NX).
- SINGLE/DOUBLE
152
-------
IS.SOSEBICAI.MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
J56.
357.
[CO
JQ •
J59.
(60.
161.
I62 .
63.
i64.
!65.
66.
567.
(68.
)69.
(70.
171.
I72.
!73.
I74.
I75.
76 .
!77.
78.
!79.
80.
81 .
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94 .
95.
96.
97.
98.
99.
00.
01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
BEQD. IHSL BOOTINES - (T EBTST
LANGUAGE - FOBTBAN
LATEST REVISION - JULY 29, 1974
IMPLICIT BEAL*8 (A-H, 0-Z)
DIMENSION X(NX) ,Y (NX) , BPAB (4) ,C(IC,3)
EQUIVALENCE (DXJ,YPPB) , ( PJ, SIXI) , (CXJP1 ,YPPA)
DATA ZEBO/0,0/, HALF/0.5/, ONE/1.0/,
1 TWO/2.0/, SIX/6.0/
CHECK EBfiOE CONDITIONS
IEB = 0
NXM1 = NI-1
IP (1C .LT. NXS1) GO TO 30
IF (NX .LT. 2) 30 TO 35
IF (NX . EQ. 2) GO TO 10
COMPOTE COEFFICIENTS AND BIGHT
HAND SIDE OP THE TRIDIAGONAL
SYSTEM DEFINING THE SECOND
DEBIVATIVES OF THE SPLI
INTEBPCLANT FOB (X,Y)
C(J,1) = LAMBDA (J)
C(J,2) = MU(J)
C(J,3) = D(J)
DXJ = X(2) -X (1)
IF (DXJ . LE. ZEBO) GO TO 40
DYJ = Y(2)-Y(1)
DO 5 J=2,NXM1
DXJP1 = X (J+1) -X (J)
IF (DXJP1 .LE. ZEEC) GO TO 40
DYJP1 = Y (J+1) -Y (J)
DXP = DXJ+DXJP1
C(J, 1) = DXJP1/DXP
C(J,2) = ONE-2 (J,1 )
C(J,3) = SIX*(DYJP1/DXJP1-BYJ/DXJ) /DXP
DXJ = DXJP1
DYJ = DYJP1
5 CONTINUE
FACTCB THE TFIDIAGONAL
AND SOLVE FOB U
C(J,2) = U(J)
C(J,1) = Q(J)
BPAB (1) = LAMBDA (1)
BPAB (2) = D(1)
BPAB (3) = MU (NX)
BPAR (4) = D(NX)
10 C(1,1) = -BPAB (1) *HALF
C(1,2) = BPAB(2)*HALF
IF (NX .EQ. 2) GO TO 20
DO 15 J=2,NXM1
PJ = C(J,2) *C(J-1, 1) +THO
C(J, 1) = -C(J, 1)/PJ
C(J,2) = (C(J,3)-C(J,2) *C(J-1, 2))/PJ
15 CONTINUE
NE
MATBIX
153
-------
HEIH. NUMEBICAL. MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
SOLVE FOB CUBIC COEFFICIENTS
OF SPLINE IHTEBPOLANT
C(J, 1) , C(J,2) , AND C(J,3)
= (BPAS(4)-BPAR(3) *C( NXM1, 2) ) /(BPAB(3) *C(NXfl1, 1) +TBO)
ONE/SIX
I=1,NXM1
= HX-I
PA = C{J,1)*YPPB+C(J, 2)
= X(J+1)-X(J)
J, 3) = SIXI*(YPPE-YPP1)/BX
J,2) = HALF*YPPA
J,1) = (Y(J-t-l)-Y (J) )/DX-(C (J,2)+C{J,3) *DX) *DX
PB = YPPA
NUE
9005
129
9000
130
9000
131
NOB
DESTST(IES,6HICSICO)
N
F001 DD ONIT=BAT,FILBS=$aE!NF*
T DD *
2911.
2912.
2913.
2914.
2915.
2916.
2917.
2918.
2919.
2920.
2921.
2922.
2923.
2924.
2925.
2926.
2927.
2928.
2929.
2930.
2931.
2932.
2933.
2934.
2935.
2936.
2937.
C
C
C
20 YPPB *
SIXI =
DO 25
J '
YP:
DX
C{
C {'
C(<
YP
25 CONTI
GO TO
30 IEE =
GO TO
35 IEH =
GO TO
4G IEP =
9000 CONTI
CALL
9005 EETOR
END
/*
//DA1A.FT07
//DA2A. INPO
154
-------
SINIOd VIVO 8ft
oft
00000000000000000*1
00000000000000000*1
9000000000 00000ft EE*0
900000000000000061*0
100000000000000921 *0
i 1 000000000 OOOOE980'0
466666 66666 6666EI 90*0
6 666666666666669ft 00*0
20000000000000092£0*0
E 0000000000 00009E 20*0
00000000000 00 0004 10*0
2000000000000000210*0
9EOOOOOOOOOO 00 001800*0
90000000000000018900*0
45 6666666666 66696E 00*0
1000000000000004 9200*0
0666666 66666 66 6 hi I 00*0
86666666666666621100*0
6666666666666601 1,000*0
1 0000000000000 IE liOOO'O
66666666666666002000*0
00000000000000021000*0
00000000000001 £90000*0
00000000000004610000*0
000000000000 £2600000*0
00000000000091 900000*0
OOOOOOOOOOOOE9000000*0
000000000000 99 £00000*0
00000000000006200000*0
00000000000001)200000*0
00000000000016100000*0
00000000000029100000*0
OOOOOOOOOOOOEE 100000*0
00000000000060100000*0
00000000000888000000*0
00009000000614000000*0
00000000000949000000*0
00000000000090000000*0
000000 OOOOOE9E 000000*0
00000000000892000000*0
00000000000461000000*0
000000000000 hi 000000*0
00000000008E 60000000*0
0000000000 1890 000000 *0
OOOOOOOOOOt I £0000000*0
00000000004E 10000000*0
000000000 OEE 00 000000*0
00000000000000000000*0
(*viaa) 'AQNoa *OAII
9*1
Oh'ftlOYJM UII/UD 01
0*000006
0*0
9*2-
0*9-
9*4-
9*01-
roi-
0*Bl-
0*22-
0*92-
6*62-
6*££-
9*8£-
0*9»-
9*€9-
8*29-
S* 24—
1*98-
0*901-
8*821-
0*291-
6*941-
2*002-
9*642-
0*699-
0*0111-
5*6941-
9*0002-
9*600E-
4*069E-
8*6EEO-
8*OB6h-
6*6299-
0* 9429-
1*0269-
1*9994—
2*0128-
E*59B8-
E'0096-
0*9ftlOl-
9*06401-
9*9EOll-
9*08021-
4*92421-
8*04EEi-
8*91001-
6*09901-
0*000009-
(H3) NOliDnS
****Si
=HOJ.avj au
lOl'El Ho
'0
EtEC'O
SINlOd VIVO 60
!>HIAHQ***»
0
IIEE'O
OCZE *0
6hEE '0
BltE'O
iBlE'O
991E *0
SJlfO
«i60E *0
E90E *0
ZEOE *0
ZOOE *0
ILftZ'O
6062*0
'0
*0
9t8C*0
SBiZ *0
-0
1992 *0
OE92*0
66S2 *0
8992*0
9092*0
9tl)2 *0
trbfi2*0
EU2*0
28£2*0
19E2*0
02E2*0
0622*0
6922*0
B2E2*0
t6l2*0
9912 "0
9E12*0
Il012*0
Et02 *0
2li02*0
1102 *0
0861*0
6t»6t *0
0*0
3UH.IS10H
0*OC0006
0*0
I "bl-
OMIl-
0*92-
o 0 c~"
6*EE-
9"Bt-
0*9*-
9*15-
0'9CI-
B'Bn-
(C2SI-
6'Sil-
2*OC?.-
9'6it-
«i'(>S!i-
h'lilll-
9TjtOf-
«*hB6»i-
l * 9 991 -
2*0128-
l'99B«-
E'OC',,6-
IT9t(tOt -
S'Ot/Ol-
9*9E'ltl -
9*080tl -
t'S?/[2t-
B'Ottll -
H*S.lOhl-
6*099ht -
0*90E<,1 -
0*000005-
(KJ)
UilAVI d'
*j.»s -IOA/IOA i/ti-o
HHaJ.!l3'IA)t - 3ilA,t 'IIU'.;
-------
****DRlflMG CURVES****
-500000.0
-15106.0
- 14640.4
-1Wil.il
- 13309.2
-12643.6
- 1197U.O
-11312.4
- 10646.9
-
-------
*»**HRTTlllf. CURVES****
312500.0
-•JSS6.2
-mi. 6
-7C,50.4
-m ».2
-6744. 1
-6 V< 0 . 9
-5937.7
-5534.5
-S131.H
-'1 72 H . 2
-. CONDf. (RELA.)
00000000000000000000
00000000334000000000
00000001370000000000
00000003170000000000
00000005810000000000
00000009380000000000
00000014000000000000
00000019700000000000
00000026800000000000
00000035300000000000
00000045400000000000
00000057500000000000
00000071900000000000
00000088800000000000
00000109000000000000
00000133000000000000
00000162000000000000
00000197000000000000
00000240000000000000
00000294000000000000
00000365000000000000
00000463000000000000
00000615000000000000
00000923000000000000
00001970000000000000
00005310000000000000
00012400000000000000
00024499999999999999
00043100000000000001
00071099999999999999
00112999999999999998
00174999999999999998
00267000000000000001
00396999999999999957
00581000000000000006
00840000000000000035
0120000000000000002
0170000000000000004
0236000000000000003
0325000000000000002
0445999999999999999
0613999999999999997
0863000000000000017
126000000000000001
194000000000000006
334000000000000005
00000000000000000
00000000000000000
48 DATA POINTS
-------
**»*HETTliifi CIIRVFS****
s urn OH (cn|
-312530,0
Ln
00
-9734.3
-1111 a. 1
-7902.3
-71136.3
-7070.3
-6654.3
-6238.3
-5H22.3
-5106.3
-'•950.3
-4574.3
-4158.3
-3742.3
-3326.3
-2910.3
-2494.3
-2078.3
-1652.3
-1216.1
-630.1
-151.0
-23 B. 9
-131.3
-117.6
- 101.0
-90.6
-77.7
-51. 9
-53.9
-'46.7
-12.0
-37.6
-33.2
-2«.a
-2 1 . 0
-21.2
-17.fi
-11.5
-11,
-a.
- 5.
-1.1
- 2.7
-1.1
0.0
S 62500.0
, 1
.0
.7
MOISTURE CONTENT
0.0
0.0836
O.OB57
0.0879
0.0901
0.0923
0.0915
0.0966
0.0980
0.1010
0.1032
0.1054
0.1076
0.1098
0.1120
0.1142
0.1164
0.1186
0. 1208
0.1229
0.1251
0.1273
0.1295
0.1317
0. 1339
0.1361
0. 1303
0.1405
0. 1427
0.1449
0.1470
0.1492
0.1514
0.1536
0.1558
0. 1580
0.1602
0. 1624
0.1646
0.1668
0. 1690
0.1711
0. 1733
0.1755
0. 1777
0.1799
0. 1B21
0.1043
0.2200
49 D»T» POINTS
SUCTION (CD)
-312500.0
-9150.3
-8734.3
-8318.3
-7902.3
-7486.3
-7070.3
-6654.3
-6238.3
-5822.3
-5406.3
-4990.3
-4574.3
-4158.3
-3742.3
-3326.3
-2910.3
-2494.3
-2078.3
-1662.3
-1246.4
-830.4
-451.0
-208.9
-131.3
-117.6
-104.0
-90.6
-77.7
-64.9
-53.9
-46.7
-42.0
-37.6
-33.2
-28.8
-24.8
-21.2
-17.8
-14.5
-11.1
-8.0
-5.7
-4.1
-2.7
-1.4
0.0
562500.0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
O.i
0.
O.I
0.
O.I
0.
O.I
O.I
O.i
O.I
0.
0.
0.
1.1
1.1
HYD. COUDV. (REtX.)
.00000000000000000000
.00000000267000000000
.00000001100000000000
.00000002540000000000
.00000004660000000000
.00000007530000000000
.00000011200000000000
.00000015900000000000
.00000021600000000000
.00000028500000000000
.00000036800000000000
.00000046700000000000
00000058500000000000
.00000072600000000000
.00000089400000000000
.00000110000000000000
00000134000000000000
.00000164000000000000
00000202000000000000
.00000251000000000000
00000317000000000000
.00000417000000000000
,00000599000000000000
.00001140000000000000
,00003210000000000000
,00008010000000000000
,00016200000000000000
,00028899999999999998
00047300000000000000
,00073600000000000000
00110999999999999998
,00166000000000000002
,00242000000000000000
00344000000000000002
00481000000000000004
00659999999999999996
00896999999999999967
0120999999999999996
0163000000000000003
0219999999999999996
0301000000000000000
0421999999999999997
0623999999999999997
0981000000000000066
164000000000000007
304999999999999993
00000000000000000
00000000000000000
4>8 DATA POINTS
-------
liflAPII OP SUCTION VS. MniS'J'UPE CONTBHT (VOf./VOl)
(CH)
H
0
I
s
c
o
u
-1
o. o^*irtf
O.QJ/r.f
(1.0 SOOt
0.06251
0. 075 Ot
<).OH7r>f
O.IOOOt
O.IUSf
0. 1250f
0. 1500*
0.162SJ
0. 1750f
0. Ifl/r)i
0. 2()00i
0. 2 1 2*>J
0.2250f
0.23751
O.T500*
0. 2625i
0.2750f
0. ?fl /5t
0. lOOOt
-1
-10 -10 -10 -10 -10
I
t ******* HBTTING CUBVE
* G6f.G6GG OBYIHG CUBVE
f
I
i
f
•]
*
t
* i
* Gi
* G i
* G f
* G S
* G f
* 6 i
* 6 f
* G i
* G 2
* G 2
* G i
* G f
* G i
12345
-10 -10 -10 -10 -10
-------
as a>
a as,
t* X
M 03
31 a
e ix M
«• i
i i
s-
u
2
C
o c
HI >—
e^ 6-
i.
a
cs
o
a
i
*****
» » »
e
»•
i
* u u
*
* u
* u
» u
» u
* Id
»
*
160
-------
11
o
I
s
c
0
II
-1
0.012S1-
0. 02SOfr
0. •) }7St
0. 1-iOOt
0.01.2'il
0. <)7r»<>J
0. 007 r>t
0. lOOOi
0. 1125f
'). 12SOf
o. n7st
1). ISOOf
0. 162SJ
ft. ITirtl--
•ifi i-i .'»«»« mirtTC ntmi'ii op sue TICK vs. norsTiuie CONTENT (VOL/VOL)
Slid TO K (CN)
12315
-10 -10 -10 -10 -10
3
{
Jf
5
* j
* 6 3
* 6 i
* e i
» 6 f
* e s
* e i
* e i
* 6 I
*-(; J-- — _ -_-l- _ — _______!_________ ____!_____________ i
******* WETTING COBVB
ecceeee DRYING CURVE
-1
-10
-10
-10
-10
-10
-------
«H*PM OP flllfTJOH VS. PFIAT1VP CONDUCT!VITV
SIICTTCK (OH)
ON
K)
_
t )
-
10
-
in
-
10
-
10
-
10
-
10
-
10
-
10
-
t 0
1
-1 -10 -10 -10 -10
101
I
t
[
[
9 T
i
I
I
I * E
* 1 * 6
t * B
I * B
r * 6
T * B
71 * 6
t * e
t * 6
i * e
I * 6
6i * e
f * 6
i * e
i » e
I * 6
51 » 6
1 * 6
i * e
I * B
r * 6
'IT * 6
t * 6
I * 6
r * e
I * 6
11 * 6
1 * 6
i * e
I » £
* 6
? » E
£ * 6
' * 6
* 6
* e
1 # £
t * 6
* 6
* e
I* B
x , x f __ !_______ ____ Jr____
-10
I
f
I
I
I
I
f
I
* 6 I
I
i
I
I
I
I
i
I
I
I
I
*
I
I
I
I
i
I
I
I
I
•f
I
I
I
I
X
I
I
I
#*«**** WETTIHG CURVE
CCGGG6C DRVIHG CURVE
-1
-10
-10
-10
-tO
-10
-------
hOl'O OO'OCl /.<,
fcOl '0 <>0*«jtl 9S
«ioi*o 00*021 <,<,
hOl *0 Will !?<,
tlOl'O 00*011 £9
ftOl*0 OO'MH 25
tlOl'O 00*001 10
hOl '0 00'
-------
•jtl
r»1
M
61
62
63
61
65
66
67
6U
6<>
70
n
7?
73
71
75
7fi
77
7fl
?•'!
110
«1
B2
«1
mi
a 5
11'>.<»•)
mo.oo
1'15.0't
iso.no
r>S.OD
u.o.oo
165.00
170.00
175.00
ino.oo
195.00
190.00
1'I5.00
200.00
205.00
210.00
215.00
220.00
225.00
210.00
215,00
2UO.OO
:>i|5.00
250.00
255.00
?6rt.OO
265.00
275.00
0. 101
0.101
0. 10«
0.104
0. 10«l
0.1011
0. 104
0. 104
0. 101
0.101
0. 101
0.101
0. 10U
0.101
0. 101
0.101
0. 101
0.101
0. 101
0.101
0. 101
0.101
0. 101
0.101
0. 120
0.181
0. 161
0.161
RAINFALL BITES
TIHBS IT VHICH Til Elf STABT
O.S31D-02 CM/SEC OH
0.0 CM/SEC OB
0.0 CM/SEC OB
0.0 CM/SEC OB
0.0 CH/SEC OR
30.0210 CM/HB
0.0 CM/SB
0.0 CH/HB
0.0 CH/HB
0.0 CM/HB
o.o sees OH
5520.0 SECS OR
9999999.9 SECS OR
9999999.9 SECS OR
0.0 HOURS
1.53 HOURS
2777.78 HOURS
2777.7B HOOBS
9999999.9 SECS OR 2777.78 HOURS
-------
rux 'nt\'f. STPP= :>;>(). •> ZJBCS OK O.OG HOURS
TMIH= 0.20 :ifiO!i
n'i!i= o iHPi'sr= o rpnpsr= i
HUHNTHG TIME= 600.0 SECS OB
STARTINfi RUN TrflK=
IPHSTP= 0
0.17 HOURS
0.0 SECS OR
0.0 HOURS
DEPTH IN rn KM KITS ABE
NOD i;
HODK
MOOR
won R
NODR
MOOR
HOOK
HOD R
MODE
HODK
HOOK
NODR
MOOR
NODK
MODE
NOOK
NODE
HOD'S
NODK
NODR
MODE
MODE
NODE
MOO 12
MODS
MODE
MOOR
MODE
MODE
HOOK
NODE
HODR
NODE
HOD6!
MOOR
NODR
MODS
NODR
MODE
NODE
NODE
HODK
NODE
UODE
NODK
none
NODR
NODR
NODE
MODE
1101)1!
1
>
3
4
5
6
7
M
')
10
11
u
13
14
15
16
17
IB
19
20
21
2?
23
24
25
26
27
?rt
?9
30
31
3'>
33
34
35
36
3?
3ft
30
40
41
42
43
44
45
46
47
40
4'J
50
51
081.2 =
PE 1. 2=
ORI.Z =
DR LZ=
OBI.Z =
DRLZ-
OEr.2 =
DR I.Z=
DKI.Z =
DELZ=
OEI.Z =
DBI,Z=
OBI.Z =
r>EI,Z=
DELZ =
PR I.Z=
PE[.Z-
DELZ=
OBLZ =
DE LZ=
DEI-Z =
nei.z=
DEI,Z =
DB LZ=
DELZ =
DB L Z=
DEI.Z-
DB LZ=
DEI.Z =
OBl.Z=
DEI,Z =
DR LZ=
f»El.Z =
DELZ=
DELZ =
DELZ=
DRLZ =
DRLZ=
DBf,Z =
DE 1,2=
DELZ =
DEI.Z=
DELZ-
nm.z =
PBI.Z=
Di:tz =
DELZ=
OEI.2 =
PBI.2=
UKLZ =
DR LZ-
0. 200
0. 400
0. 400
A. 400
0. 400
I). 450
0. 500
0. 500
0. 500
0. 500
0.500
0. 500
0. 500
0. 500
0. 500
0. 500
0. 500
0.750
1.000
1.000
1.000
1.000
1.000
1. 000
1.000
1. 500
2.000
2.000
2.000
2.000
2. 125
2.250
2. 400
2. 550
3. 775
5.050
3. B25
2. 550
1.525
0. 500
1.850
4. 100
5. 000
5.000
5.000
5.000
5.000
5.000
5. 000
5.000
•5. 000
PEIZP =
DELZP=
PELZP=
PELZP=
PELZP=
DEIZP=
PEIZP=
DELZP=
PELZP=
PELZP=
PELZP=
PELZP=
PEtZP=
DELZP=
DELZP=
PELZP-
PBLZP=
PEL2P=
PELZP=
DELZP=
DELZP=
DEL2P=
PELZP=
DELZP=
DBIZP-
DEI.ZP-
DEiZP=
OELZP=
PBLZP=
P ElZ P=
PEIZP=
PELZP=
PELZP=
REtZP=
OB12P=
PEtZP=
PEIZP=
DELZP=
RBI.ZP=
DELZP=
DEtZP=
PEI.ZP=
[)ELZP=
PELZP=
DELZP=
DEI.ZP=
DELZP=
PBLZP=
PEI,ZP=
DEI.2P =
PELZP=
0.400
0. 400
0.400
0.400
0.400
0. 500
0.500
0. 500
0.500
0. 500
0.500
0.500
0.500
0. 500
0.500
0.500
0.500
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
2.000
2.000
2.000
2.000
2.000
2.250
2.250
2.550
2.550
5.000
5. 100
2.550
2.550
0.500
0. 500
3.200
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
DELZH=
DRLZH=
DEIZH=
OBI.?M =
DEf,ZM =
DBLZH=
DELZM=
DEIZ«=
DBIZ«=
DB(.Zn-
DBIZN=
DBIZH=
PEI.ZH"
DELZ« =
DELZH=
DELZH=
DRl.ZH=
DEJ.ZH =
DBI.ZH=
DBLZH=
OELZH=
DELZH=
DBIZH=
PFI.ZB =
OBLZH=
DELZM-
DELZM=
DEIZM=
DEI.ZN =
DELZN-
DBIZB=
DKLZH=
DBLZH-
0.0
0.400
0.400
0.400
0.400
0.400
0.500
0.500
0.500
0.500
0.500
O.SOO
0.500
0.500
0.500
O.SOO
0.500
0.500
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
2.000
2.000
2.000
2.000
2.000
2.250
2.250
2.550
2.550
S.OOO
5. 100
2.550
2.550
0.500
0.500
3.200
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
-------
no OK
NOD?
NOD K
NODE
HOD >'.
MOO £
NOO*!
HOD K
MOOR
10f»H
n tin K
NOOK
HOOF:
NOOK
HOOK
HODIi
IIOHR
MOO K
HOI)'!
HOOK
NOf> K
NO OB
HOOK
NODE
MOO ?.
None
HOOK
NODE
MODE
MOOR
NODE
NODE
NOD1?
MODE
52
51
5 II
55
56
57
5ft
5'1
60
61
62
61
6'i
65
66
67
6U
6')
70
71
72
71
7 1|
75
76
77
7il
79
80
81
82
8)
ai
85
IIKI.2-
W. 1.7 =
OEI.Z-
I»RIZ =
OR LZ-
nai.z-
OE \.y.=
nutz^
DKI.?.=
OELZ=
OKI. 2 =
OKLZ =
OE LZ=
5. 000
5.000
5. 000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5. 000
5.000
•i. 000
5. 000
5.000
5.000
5.000
5.000
PFLZP
000
,000
DP. 1 2=
5.000
5. 000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
7. 500
5.000
DELZP-
r.Er.zp=
DELZP*
DEIZP=
DELZP=
OELZP=
DEIZP=
DKLZP=
OELZP=
DEtZP=
BEIZP=
HELZP=
DEI.ZP =
I)BI.ZP=
DEL2P=
DEIZP=
DELZ P=
DELZP*
5.000
5.000
5.000
5.000
S.OOO
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
S.OOO
S.OOO
5.000
5.000
S.OOO
5.000
5.000
S.OOO
S.OOO
S.OOO
5.000
5.000
5.000
10.000
0.0
PEIZ fl=
BEI.ZH =
r)EI7.H=
DEC.Z M =
DK IZ M=
DEI.ZH =
|)f?LZM=
DELZH=
DBI.ZH-
DELZ«=
DBLZH=
DKL7,H =
DEtZ«=
DEI.ZH =
DEI.7,K=
I)BLZH =
DELZH=
DEt.ZM =
nBI.2H=
DELZH-
DEI.ZH=
DEI.Z« =
DELZH=
DBLZH*
DEIZK=
DBLZA*
DEIZN=
DEI.ZN =
DBLZ«=
DBI.ZM =
DBLZ«=
DEI.ZH =
DRLZH=
5.000
5.00*6'
S.OOO
5.000
5.000
5.000
5.000
5.000
S.OOO
5.000
5.000
5.000
5.000
5.000
S.OOO
5.000
S.OOO
S.OOO
5.000
5.000
S.OOO
5.000
S.OOO
5.000
S.OOO
S.OOO
S.OOO
S.OOO
S.OOO
5.000
5.000
5.000
S.OOO
10.000
-------
. TINB STEP
PSI
PSI
PS I
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
IMIt=
IHI1*
TNIT=
INI1 =
IH1T=
INI1*
INIT=
IMIT=
INIT=
I NIT*
INIT=
INIT*
I NIT*
INIT*
INIT=
mn=
INIT*
INIT*
IMIT=
IMI1=
I HIT*
INIt*
IKIT=
INI1*
I NTT*
INIT*
INIT=
INIt*
INIT*
IHI1=
IHIT=
IHIT*
INIT=
INIT*
INIT*
INI1*
INIT*
INIT*
INIT*
INIt=
1NIT=
INI1*
INIT=
INIT*
INIT=
IHI1=
INIT*
INIT*
INIT=
I HI I*
INIT*
INIT*
INI1 =
INIT=
INIT*
IN IT*
-O.B903n«04
-0.09030*04
-0. 89030*04
-0.fl903D*Oll
-0.0903D»0(»
-O.H903»*OI|
-0.09030*01
-ft. 09010*01*
-0.09030*04
-0.89030*04
-0.89030*04
-0. 89030+04
-0.89030*04
-0.89030*04
-0.89030*04
-0.89030*04
-0.89030*04
-0.89030*04
-0.89030*04
-0.89030*04
-0.89030*04
-0.89030*04
-0.89030*04
-0.89030*04
-0.89030+04
-0.89030*04
-0.89Q3D+04
-0.89030+04
-0.89030*04
-0.89030*04
-0.8903D+04
-0.89030+04
-0.09030*04
-0.89030*04
-0.09030*04
-0.89030*04
-0.89030+04
-0.8903D+04
-0.89030*04
-0.56520*04
-0.56520*04
-0.56520*04
-0.56520*04
-0.56520+04
-0.5652D+04
-0.56520+04
-0.56620*04
-0.56520+04
-0.56520+04
-0.56520*04
-0.56520+04
-0.56520*04
-0.56520+04
-0.5652D+04
-0.56520*04
-0.56520*04
KR =
KR=
KR =
KR=
KB =
KD=
KB =
KB=
KH =
KR=
KR =
KR=
KR =
KR-
KR =
KR=
KR =
Kfl=
KR =
KR=
KR =
KR=
KR =
KH=
KR"
KH=
KB*
KR-
KR =
KR=
KH =
KH=
KR =
KR=
KR =
KR=
KR =
KU=
KR =
KR=
KR =
KR=
KB*
KR=
KR =
KR=
KR =
KK=
KR =
KH=
KR =
KB =
KR=
KR =
KR-
KR =
0.1002D-07
0. 10020-07
0.1002D-07
0. I002D-07
0.t002D-07
0.1002D-07
0.10020-07
0.1002D-07
0. 10020-07
0. 1002D-07
0.1002D-07
0.1002D-07
0.10020-07
0. 10020-07
0.1002D-07
0.10020-07
0.1 0020-07
0. 10020-07
0. 10020-07
0.10020-07
0.1002D-07
0.1002D-07
0.1002D-07
0.1002D-07
0.1002D-07
0. 1002D-07
0.1002D-07
0.1002D-07
0.10020-07
0. 10020-07
0.10020-07
0.10020-07
0.1002D-07
0. 1002D-07
0.1002D-07
0. 1002D-07
O.I002D-07
0. 10020-07
0.1002D-07
0.3190D-06
0.3190D-06
0.3190D-06
0.3190D-06
0. 31900-06
0.3190D-06
0.3 1900-06
0.3190D-06
0.3190D-06
0.3190D-06
0.31900-06
0.31900-06
0. 31900-06
0.3190D-06
0.3190D-06
0.3 190D-06
0.3190D-06
a
[s
': S
31
' SB
1=
1 =
1=
I»
1=
I»
I»
1 =
1=
I-
1=
1 =
1=
I*
I»
1 =
1 =
I*
1=
I*
I«
1 =
1=
I»
1=
1 =
1=
I-
1=
1 =
1=
r*
i=
i =
i=
i =
i=
i»
i*
1 =
i*
i=«
i=
i =
i=
i*
i=
i=
i»
i=
i«=
i
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
SLOPB=
SLOPB=
SLOPB=
SLOPE=
SI.OPE=
SLOPE"
SLOPED
SLOPE=
SLOPB=
SLOPB=
SLOPB=
SLOPE-
SLOPB=
SLOPE*
SLOPE*
SLOPE =
SLOPB«
SLOPB=
SLOPE=
StOPE=
SLOPE=
SLOPE=
SLOPED
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE=
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPB*
SLOPE*
SLOPE*
SLOPB*
SLOPE*
SLOPE*
SLOPK*
SLOPB*
SLOPE*
SLOPE*
SLOPR*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
0.76890-05
0.76890-05
0.7689D-05
0.7689D-05
0.7689D-OS
0.76890-05
0.7689D-05
0.76890-05
0.76890-05
0.76890-05
0.76890-05
0.7689D-05
0.76B9D-05
0.7689D-05
0.76090-05
0.76890-05
0.7689D-05
0. 76890-05
0.76890-05
0.7689D-OS
0.7689D-05
0.76890-05
0.7689D-05
0.7689D-05
0.7689D-05
0.76890-05
0.7689D-05
0.7689D-05
0.7689D-05
0.7689D-05
0.7689D-05
0.7689D-05
0. 76890-05
0.76890- OS
0.7689D-05
0. 76890-05
0.7689D-05
0.7689D-05
0.7689D-05
0.5289D-05
0.5289D-05
0.52890-05
0.5289D-05
0.5289D-05
0. 52890-05
0. 52890-05
0.52B9D-05
0.52890-05
0.5289D-05
0.52890-05
0.52890-05
0. 52890-05
0.5289D-05
0.5289D-05
0. 52890-05
0.5289D-05
-------
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
INIT=
IW1T=
INIT=
IHI1 =
1NIT=
INIT=
INIT=
IHIT=
I NIT*
JNIT*
INIT=
INIT=
IHIT*
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
56520*04
56520*04
56520*04
56520+04
5652D+04
56520+04
56520+04
56520+04
56520*04
56520*04
56520*04
56520+04
KH =
0.3190T-06 1= 57
KH= 0.3190C-06 I- 58
KR -
KH=
KH =
KR=
KR =
KR*
KR*
KR-
KH3
KR*
0.31900-06
0.3 190 0-0 f.
0.31900-06
0.31900-06
0.31900-06
0.31900-06
0.31900-06
0.31900-06
0.31900-06
= 59
* 60
* 61
* 62
= 63
* 64
= 65
* 66
= 67
0.31900-06 I* 68
56520+04 KR= 0.31900-06 1= 69
INIT* -0.56520+04
INIT=
IHIT*
IHIT*
IWIT*
IHIT=
IHIl*
-0.
-0.
-0.
-0.
-0.
-0.
56520*04
56520*04
KR*
0.31900-06 1= 70
KR" 0.31900-06 I- 71
KR*
0.31900-06 I- 72
56520*04 KR= 0.31900-06 I* 73
56520*04
56520+04
56520*04
KR*
0.31900-06 I* 74
KR = 0.31900-06 t» 75
KR* 0.31900-06 I« 76
miT= -0.56520*04 KR*
IHI1*
IHIT*
IMIT=
INIT=
INIt=
I HIT*
INII*
IHIT=
-0.
-0.
5652D«04
56520+04
KR*
KR*
-0.56520*04 KR*
-0.
-0.
0.
0.
0.
56520*04
26460*04
0
0
0
0.31900-06 1= 77
0.3190D-06 1= 78
0.31900-06 I* 79
0.31900-06 X* 80
KR* 0.31900-06 I» 81
KR* 0.1531D-05 I* 82
KR* 0.10000*01 I* 83
KR*
0.10000*01 I» 84
KR* 0.10000*01 I* 85
SLOPE*
SLOPS*
SLOPE*
SLOPE*
SLOPE=
SLOPK*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPB=
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
SLOPE*
0.5289C-05
0.52890-05
0.52890-05
0.52890-05
0.52890-05
0.52890-05
0.5289D-05
0.52890-05
0.52890-05
0.52890-05
0.5289 D-05
0.52890-05
0.52890-05
0.52890-05
0.52890-05
0.52890-05
0.52890-05
0.52890-05
0.52890-05
0.52890-05
0.52890-05
0. 52890-05
0.52890-05
0. 52890-05
0.52890-05
0.52560-05
0. 16070-02
0.16070-02
0.16070-02
OO
INITIAL TOTAL HATER CONTENT*
35.0062
-------
JRMMI »>;• ?i
.0
n n n* - -
5.01
!* 1 0 . Oi
15.01
I1 7 0 . Oi
25. Oi
T 30.01
15.01
II '10. 0{
<»5. Oi
(CM) 50.01
55 . Oi
60. Ot
65.01
JO.Ot
/5.0f
'10. Ot
'•5 . Oi
"•0. Ot
05 . Of
100. flt
05 . Oi
10. Ot
1 5 . Oi
20. Ot
2 5 . Oi
30. OF
35. Oi
mo. ot
r« 5 . Oi
1 50 . OF
I 55 . Oi
1 60 . Ot
1 <>5 . Oi
170. Ot
1 1 '> . 0 1
HO.Ot
115.0*
100. OF
1 Or> . Oi
200. OF
20 5. Oi
2 10. Of
2 1 5 . Oi
r1 ?o . ot
225. Oi
210. Of
235.01
:>'io. ot
> H 5 . Oi
?50. Ot
255.0i
2(>0. Ot
*65 . OS
.0
OT'H'IIHU CUUTEMT VS. DEPTH FOB TI«F = ft.O SBC 3 OK
NOISTUPf: CONTFMT (VOL/VOL)
.1 .2 .3 .11 .5 .6
- — f --4- — --- — — -t _____ 1-— -—— — -i— -— — -
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
+
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
+
*
*
*
*
*
*
*
•1 -2 .3 .H .5 .6
0.0
.7
t
j
t
i
^
f
t
I
f
f
t
t
t
f
t
t
i
i
2
i
t
t
t
4
I
TT
f
t
I
I
I
,J
£
»
X
f
Jf
f
I
I
I
I
i
t
t
i
£
t
t
X
.7
-------
ttt.tl -1.0'iAIU rilMfl 'MUIMI OP SUCTION ANP POTENTIAL VS. OPI'Tll FOB TTNP * «. 0 SRCS 0« 0,0 HOURS
SUCTfOK CB POTENTIAL (CM)
(CM)
'1)21
-10 -1.) -10 -10 0
O.OB -i f — ---f — i— — -
5. OB
10. !)B
15. oar
20. OB
25. OB
10. OS
15.0*
5 . Of 1
200. Oi »
205. Of «
?10.0i »
2 15. Of «
220. Oi »
225. Of 8
210.0i »
2 15. Of ft
2'|0. Oi *
2 'J 5 . Of 8
2 50. Of »
255. Ofc *f.
260.01 *
V i 2 1
-10 -10 -10 -10 0
1 2 3
10 10 10
t
i
I
t
i
I
f
I
i
X
5
f
I
i
t
•f
t
f
J
i
t
f
I
f
f
i
I
t
f
J
f
f
t
i
f
s
X
i
I
I
•f
£
i
f
i
i
$
I
i
i
t
C i
1 2 3
10 10 tO
******* SUCTION
cececee POTENTIAL
-------
[Mf Tit I. TTHE KJU'TOft IS 0.9I17D-13
IHl'tlM. TIME MOTOR Ifj 0. 27BO-10
itirTiu. IT IK FACTO ii is 0.2660*06
i-: ior AcuiBven IN TINE STEP
COHVPRKKNCE MOt ACIItEVED IH TIHE STFP 9
IHITrtl. ilHE FACTOR f?» 0.1920-01
IMIPUL TTME FAfrOO IS 0.7660-01
CONVEftCBNCE NOT Arillf'VKD IH TIHE STEP 18
rnuvKRGBNce HOT ACIIIEVBD IN TIHE STEP 18
CONVKRCKNCE MOT ACHIEVED IM TIME STKP 19
f nor ACHIEVED IN TIHE STEP 20
-------
COMPUTATIONS FOR flHE STEP
20
HOOT.,
1
1r"
•>•>
->i)
3*
43
50
57
6'l
71
>J5
INPUT
PfiEV TO
PRBUr J
KQH TV
OKPTII.'i AMP IrtriTIIHE CONTENTS
ft. ft fl.J V>0 5 0.4 0.?747
3.0 0.2000 9 3.5 0.2000
6.5 0.2000 16 7.0 0.2000
12.0 «).21ftO 23 13.0 0,2000
22.0 0.200(1 10 24.0 0.2000
'10.6 0.200ft 17 45.7 0.2000
60.0 0.1041 44 65.0 0.1041
•)S.O ft. 1011 r>1 100.0 0.1041
110.0 0.1041 58 135.0 0.1041
16S.O 0.1041 65 170.0 0.1041
200.0 0.1041 72 205.0 0.1041
23S.O (J.1041 79 240.0 0.1041
275.0 0.1843
VO!.IINF= .5180-02 UF.T LENGTH
II 'i UNCIIAUOKD »OI>K HAS 4
TKIl UNrilAHOFO NODE HAS 6
POSITION OF HETTIMG FRONT= 0.
3
10
17
24
31
3d
45
52
59
66
73
80
O.I!
4.0
7.5
14.0
26.0
48.3
70.0
105.0
140.0
175.0
210.0
245.0
0. 2135
0. 2000
0.2000
0.2000
0.2000
0.2000
0.1041
0. 1041
0. 1041
0. 1041
0. 1041
0. 1041
4 1.2 0.2000
11 4.5 0.2000
It) 8.0 0.2000
25 15.0 0.2000
32 28.3 0.2000
39 50.8 0.2000
46 75.0 0. 1041
53 110.0 0.1041
60 145.0 0. 1041
67 IfO.O 0.1041
74 215.0 0. 1041
81 250.0 0.1041
5
12
19
26
33
40
47
54
61
68
75
82
1.6 0.2000
5.0 0.2000
9.0 0.2000
16.0 0.2000
30. 5 0. 2000
51.3 0.1041
80.0 0. 1041
115.0 0.1041
150.0 0.1041
185.0 0.1041
220.0 0.1041
255.0 0.1200
6
13
20
27
34
41
<|8
55
62
69
76
83
2.0
5.5
10.0
18.0
33.1
51.8
85.0
120.0
155.0
190.0
225.0
260.0
0.2000
0.2000
0.2000
0.2000
0.2000
0. 1041
0.1041
0. 1041
0.1041
0. 1041
0.1041
0. 1843
7 2.5 0.2000
14 6.0 0.2000
21 11.0 0.2000
28 20.0 0.2000
35 35.6 0.2000
42 55.0 0. 1041
49 90.0 0.1041
56 125.0 0. 1041
£3 160.0 0.1041
70 195.0 0. 1041
77 230.0 0.1041
84 265.0 0. 1843
= .494C-01
54 CH
TIHE
SUCTION
STEP 20 HAS
AT UETTINS fRONT=
0.5 SBCS
-0.
25070*04 CM
HEW
TIHE STEP
0.6 SECS
TIME FHOM ;mi»T= 6.9 SBCS
INPn. RATE= 0. 83420-02 CB/SEC
RATH RATE 0.83400-02 CM/SEC
PSIOIF= 0.1430-03 CH
IHFIt V0l=
EXCESS BAIM=
0. 56280-01 CN
0.8962D-03 CH
TOTAL PRBCIP=
FLUX (AT NODE
0.57 170-01 CH
79)=-0.335D-06 CM/SEC
-------
U* ,10r;i'«"e CON'IKHT V'i. OBI'TH POP IIP? ~
6 , 0 S KCS
0.00 HOURS
MOJSTIIHK CCN1BNT (VOl/VO!)
.0
5. Of
E 10. Of
IS. Of
1' 211. Of
15. Of
r 10. Of
15. Of
II llO.Of
't 5 . Of
•M) 50. Of
55. Of
60.01
65. Of
70.01
75. Of
"J0.01
115. Ot
•10.01
'1 5. Of
100.01
105.01-
110.01
1 15. Of
120.01
125. Of
1 10.01
1 15. Of
I'lO.Ol
115. Of
150.01
155. Of
KiO.Of
165. Of-
1 70.01
1 7 5. Of
1SI0.01
IflS.Of
100.01
195.01
700.01
205. Of-
210.01
215. Of
2J0.01
225. Ot
210.01
t. 15. Of
I'UO.Ol
2 '1 5. Of
250.01
255. Of
261.01
265. Of
.0
.1 .2 .3 .a .5 .6
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
*
*
*
*
t
*
*
*
»
*
*
*
*
*
*
*
*
*
»
*
t
»
*
*
*
*
-1 .2 .3 .« .5 .6
.7
|
£
3
£
j
£
j
£
j
£
£
£
£
j
^
j.
£
X
X
X
£
2
£
X
^
£
j
j
X
£
£
X
{
X
£
£
X
E
X
t
X
£
X
£
X
£
X
£
X
-—-I
.7
-------
01 01 01
C I I
f 9
£
}
3
£
)
£
2
f
j
I
2
£
f
£
*
£
2
£
3
£
£
X
£
j
f
I
£
i
£
£
£
£
5
£
£
£
X
£
2
£
£
£
j
£
£
X
3333333 £
******* £
01 Ot 01
£ E I
0 01- 01 - 01 -
I t f.
*
3*
9
f
«
«
9
fl
it
«
f
C
*
-------
jcNv«ir.'?NCR nor Anumn tu riNP STFP si
CONtf KlillKMOK MOT ACHIEVED Id TINE STEP 32
conv
-------
COMPUTATIONS FOB TIME STEP
79
um»»'i, nepTii.-: AND nnritiiiiE CONTHITS
i
it
ir>
0.0 0.1171 2 0.4 0.1161 1
3.0 0.?726 9 3.5 0. 2207 10
6.r> O.iOOO 16 7.0 0.2000 17
2'! 12.0 0.2000 •>! 11.0 0.2000 24
2''
If.
4 1
SI)
57
64
71
7H
8'i
INPUT
IMifi VI
22.0 0.2000 JO 24.0 0.2000 31
40.6 0.2000 <7 45.7 0.2000 38
60.0 0.1041 44 65.0 0.1041 45
9S.O 0.1041 SI 100.0 0.1041 52
110.0 0.1041 58 135.0 0.1041 59
165.0 0.1041 65 170.0 0.1041 66
200.0 0.1041 72 205.0 0.1041 73
235.0 0.1041 79 240.0 0.1041 80
275.0 0.1841
VOLUME- .6150-02 UET LENGTH" .
0115 UNCHANGED MODE WAS 10
O.fl 0.
4 .0 0.
7.5 0.
14 .0 0.
26.0 0.
48.3 0.
70.0 0.
105.0 0.
140.0 0.
175.0 0.
210.0 0.
245.0 0.
4480-01
PBK!>rCTED IIHCIIANOKO B3DE WAS 12
F.ruil
3147
2000
2000
2000
2000
2000
1041
1041
1041
1041
1041
1041
TIME
V POSITION OK WETTING FBONT= 2.82 CH SUCTION
TIME PDOM 5TAfiT= 46.0 SEC5
INFIL HATB= 0. 7774D- 02 CM/SBC
UA1N RATH 0.8340D-02 CH/SfC
INFIL
VOL=
EXCESS RAIN-
4 1.2 0. 3316
11 4.5 0.2000
18 8.0 0.2000
25 15.0 0.2000
32 28.3 0.2000
39 50.8 0.2000
46 75.0 0.1041
53 110.0 0. 1041
60 145.0 0.1041
67 180.0 0. 1041
74 215.0 0.1041
81 250.0 0.1041
STEP 79 8*3
IT UETTING FRONT'
0.38750*00 CH
0.0 CH
5 1.6 0.3255
12 5.0 0.2000
19 9.0 0.2000
26 16.0 0.2000
33 30.5 0.2000
40 51. 3 0. 1041
47 80.0 0.1041
54 115.0 0. 1041
61 150.0 0.1041
68 185.0 0. 1041
75 220.0 0.1041
82 255.0 0.1200
0. 5 SBCS
-0.90350*02 C«
TOTAL PHBCIP=
FL0X (AT MODE
6
13
20
27
34
41
48
55
62
69
76
83
NEW
2.0 0.3167
5.5 0.2000
10.0 0.2000
18.0 0.2000
33. 1 0.2000
51.8 0.1041
85.0 0. 1041
120.0 0.1041
155.0 0.1041
190.0 0.1041
225.0 0. 1041
260.0 0.1843
TIHE Sttt
7
14
21
28
35
42
19
56
63
70
77
64
0.
2.5
6.0
11.0
20.0
35.6
55.0
90.0
125.0
160.0
195.0
230.0
265.0
8 SECS
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
2992
2000
2000
2000
2000
1041
1041
1041
1041
1041
1041
1843
0.38330*00 CM
79J--0.335D-06 CH/SEC
-------
•ill*hi I)1' HOI'i I'll,0.0f
2S. Of
10. Of
IS. Of
1 0 . Of
IS. Of
SO. Of
SS.Of
60. Of
ciS.Of
/si of
10. Of
'IS . Of
'JO. Of
'JS . Of
100. Of
lOS.Of
1 10. Of
IIS. Of
120. Of
12S.Of
no. Of
i is. of
I'lO. Of
1-'lS.Of
ISO. Of
1 SS.Of
160. Of
1 (.S . Of
170. Of
1 7S.Of
1 '10 . Of
ItlS.Of
no. of
1 OS. Of
>00. Of
>OS.Of
?10.0f
> 1 S . Of
2 20. Of
2 *S . Of
? 10. OF
2 IS. Of
2. ss.of
260. Of
.0
NOI3TURR CONTENT (VOL/V
.1 .2 .1 ,l|
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
t
t
*
*
*
*
*
*
*
*
*
*
*
*
*
.1 .2 .3 .H
.S .6 .7
t
I
f
f
f
i
t
i
f
2
i
I
i
f
£
f
j
t
I
I
*
2
f
i
i
2
f
j
»
^
f
i
f
i
t
•t
f
1
f
^
t
I
I
3
X
I
f
i
S
t
t
.5 .6 .7
-------
Oi 01 01
e i i
i 3
4
S
5
*
t
X
*
|
J
t
X
£
X
t
i
E
X
t
X
I
*
?
£
*
s
X
I
*
*
t
t
t
t
X
t
*
X
*
t
X
t
J
3399993 f
******* t
j___ ^___ _ »-.« j _
01 01 01
e i i
0 01- 01- I'l- 01-
i e » h
* fO'itu.
f ?0 ' 0 li c
« JO 'M t
» woir
9 WOll
* tO'ili
» lO'Olc
« 10 '50?
* 10 •&(>(
• ^o * o i) i
* JO'MU
1 30 ' 0 HI
* JO '<,U
S iO'Oil
* }0 'V,' t
« WO'Jl
* io-<,t,i
* WO'jl
* to "5 tit
» JO • 0 ti I
« 10 "ill
» won
s wo? t
* I0'5tl
• 30 ' 0 I I
« 10 '^01
» wool
V ±0 ^> t)
» W0(.
0 10 '!»8
» WOP
0 }o -t,^
i WO/.
C 10 "S9
V 30 * 0 V
* 10 '9
-------
T 1 1 B
46.
4 ' .
4ft.
4') .
SO.
51 .
5?.
5).
54.
54 .
SS.
56.
r>6.
17.
5(1.
SI.
61.
62.
61.
64 .
64.
I!ll
0.
0
0
0
0
0
0
0
0
(1
0
0
0
0
0
0
0
0
0
0
I)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
\i. IA-I .:
77 70-02
HI 40-. 12
n )o-o2
7190-02
71 'lit- 02
7.160-112
7000-02
f.ltlD-02
67i|0-02
6i 111-02
66 20-02
t.5 1)0-02
64!IO- 02
6'4 10-02
6140-02
6220-02
6100-02
6140-02
6070-02
6000-02
S-> 3 IV- 02
INF I|. V0|.
0
.1
0
0
0
0
0
0
.3870*00
.1940*00
.4010*00
.4 100*00
.4160*00
.4240*00
.4340*00
.4390*00
0.4430*00
0
0
0
0
0
0
0
0
0
0
0
0
.4470*00
.4520*00
.4550*00
.4600*00
.4650*00
.4710*00
.4780*00
.4870*00
.4970*00
.5030*00
.5070*00
.5100*00
PIINOKP U
0.0
0.0
0.0
0.0
0.0
0. 1920-03
0.199D-02
0. 3660-02
0.450D-02
0.5180-02
0.6880-02
0.7860-02
0.9100-02
0. 1060-01
0. 1250-01
0. 1500-01
0. 1800-01
0. 2160-01
0.2390-01
0. 2530-01
0.2670-01
.P.
2.
2.
2.
2.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
ros w.
02
87
92
98
03
09
16
20
22
25
29
32
35
39
43
48
54
62
66
69
71
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
r, SIICT :
9010*02
9310*02
9590*02
9690*02
2180*01
2150*03
9770*02
9160*02
8770*02
0440*02
-0. 8261UQ2
-0.
-0.
8560*02
8840*02
-0.9110*02
-0.
-0.
-0.
-0.
-0.
-0.
-0.
9360*02
9350+02
1760*03
9570*02
8430*02
0330*02
8210*02
i'1'RP
79
do
81
82
81
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
-------
OCHPHTATIONS FOI) TJHK STFP 100
IKi(»!»'i, (1PPT
I
II
\r.
r>
:»i
ii.
4 1
so
S7
64
71
711
0.0
J.O
fc.r.
12.0
22.0
10.6
60.0
95.0
110.0
165.0
200.0
215.0
IS All!) .If.IiTUBF COU1FKTS
<>.) 171
0.1 IT>1
0.2000
0.2000
0.2000
0.2000
0.1041
o. ton
0.1011
0.1041
0.1011
0. 1011
2
9
16
23
10
17
11
SI
sa
(,5
72
;9
0.4
3.5
7.0
13.0
21.0
45.7
65.0
100.0
135.0
170.0
205.0
240.0
0. 1369
0.2978
0. 2000
0.2000
0.2000
0.2000
0, 104
0. 104
0. 104
0.104
0. 104
0.1011
1 0.8
10 1 .0
17 7.5
21 11.0
31 26.0
3(1 1U.3
15 70.0
52 105.0
59 110.0
66 175.0
73 210.0
80 245.0
0.3361
0.2716
0.2000
0.2000
0. 2000
0.2000
0. 1041
0.1041
0. 1041
0.1041
0. 1041
0.1041
4
11
HI
25
32
39
46
53
60
67
74
81
1.2
4.5
8.0
15.0
28.3
50. ft
75.0
110.0
145.0
1110.0
215.0
250.0
0.3353
0.2115
0,2000
0.2000
(1.2000
0. 2000
0.1041
0. 1041
0.1041
0. 1041
0.1041
0. 1041
5
12
19
26
33
40
47
54
61
68
75
82
1.6
5.0
9.0
16.0
30.5
51.3
80. 0
115.0
150.0
185.0
220.0
255.0
0.1140
0. 2000
0.2000
0.2000
0.2000
0. 1041
0.1041
0. 1041
0. 1041
0. 1041
0.1041
0. 1200
6 2.0 0.3310
13 5.5 0.2000
20 10.0 0.2000
27 1H.O 0.2000
34 33. 1 0.2000
41 51.8 0.1041
48 85.0 0. 1041
55 120.0 0.1041
62 155.0 0.1041
69 190.0 0.1011
76 225.0 0. 1041
83 260.0 0.1843
7
14
21
28
35
42
49
56
63
70
77
64
2.5
6.0
11.0
20.0
35.6
55.0
90.0
125.0
160.0
195.0
230.0
265.0
0. 3248
0.2000
0.2000
0.2000
0.2000
0.1041
0. 1041
0.1041
0. 1041
0.1041
0. 1011
0.1843
85 275.0 0.1(141
IMPHP WOI.UM E= . 1251)-02 UET IENGTII= .237D-01
['(IP VI OII'S IIHrilANGKD MODE HAS 12
pHEnTCTBD imciiANfiEn NODE MAS 11
Rlllltf PO:UfTON OF GETTING FHOMT= 3.74 Cfl
TIME STEP 100 WAS
SUCTION AT UETTING PROHT=
TIMK FROM STAHT= 65.0 SECS
IMFIL HATK- 0.5561P-02 CM/SEC ISFIt VOL= 0.51380*00 CH
RATH BATE 0.83400-02 CM/SEC EXCISS BATN= 0.28560-01 CM
ITERAl'IGMS PSIDIP= 0. 162P-02 CM
0.
-0.
7 SECS
82260*02 CH
MEW TIME STEP
0.6 SECS
TOTAL PBBCIP= 0.54230*00 CM
FMIX (AT KOBE 79) =-0.3350-06 CH/SBC
00
o
-------
f 9- S'
1
F
3
I
3
t
I
J
X
I
3
J
3
3
J
3
£
. 3
J
3
t
3
£
3
£
3
£
3
J
3
£
3
£
3
f
3
f
3
£
3
f
f
3
£
3
J
3
f
3
I
3
f 9" 5'
»' f I' I"
*
4
*
«
*
t
4
»
ft
ft
ft
4
t
ft
ft
4
*
4
ft
ft
ft
4
4
4
4
ft
4
4
*
4
ft
4
ft
4
ft
ft
4
ft
4
4
ft
ft
ft
ft
ft
*
ft
ft
ft
4
IT I* t * I '
ci-
io ' 09 7.
Jo "<,<-,;.
10 "0«,t
JO " <• h <
10 "Obi.
jo "iii r
10 "Of c
jo "«,;.<:
10 '(IE?
Jo "Mr,
10 '01 c
JO-'jOc
Jo •tu
10 '0(> I
10 "ct(- I
10 -01 I
J0'!,< I
10 '(II I
JO "<»9 1
10 *oyi
to '<><, i
10 'O'jl
JO '5,1) I
10 "01/1
JO'^,11
lO'Ol t
JO ' *, '< I
10 '07.1
JO "M I
10 '01 I
J 0 ° 'jO I
10 "001
JO'M,
10 '«<•
JO • S>lt
10 'Ob
JO '<3t
10 *OI.
JO • S'J
10 "09
JO "S'j
JO 'Hii
-------
SB.11 -MViAHl TIIHfC liff^ll OF SIICI'TOH MID IWfHTJM. VS. PEPtH FOB TTMR * 65.0 SBCS OH 0.02 ||OUflS
00
.'illCTIOH OR POTINTIAI (C.I)
« 1 2 1 1
-10 -10 -10 -10 0 10
5 . Oi
10.01
15. OS
20. OS
25. OS
10.01
15.01
40. OS
"1 5. OS
50. OB
55. Of B
60. Oi »
65. Oi «
70. Of *
? 5. Oi *
40. Of IS
15. Oi »
'10. Of *
'»5. Oi 9
100. Of 8
105. Oi »
110. Of »
115.01 »
125. Oi *
1 ill. Of *
1 15. Of 0
1 '1 0 . Of «
1-)5. 01 »
? 1 0 . Of »
*>15. Oi l»
2 ! 0 . Of »
225.01 »
?JO.()i I*
?1 5 . Of 8
2UO.OJ »
2 V) . Oi »
2 55. Of *t
Tt.O.Of »
'1121 1
-10 -10 -10 -10 0 10
2 1
10 10
*
i
f
£
f
«
^
£
£
f
3
£
i
*
£
*
£
X
£
i
£
S
£
£
£
£
3
£
£
£
2
£
j
{
£
£
J.
I
f
*
£
£
£
£
I
£
f
•i
e 3
— — — —£-——&-——--£
2 3
10 10
SUCTION
eeeeeec POTENTIAL
-------
TI UK i N?M, ftvi1': IMFII wot MINOPP w.f. PCS w.r. SIICT stun
f.S. O.V»f,n-i)! 0.5140*00 0.206D-01 3. Hi -0.02.10*02 100
sr KP
1
?
i
'i
s
f,
;
«
9
10
ti
12
11
1U
1'i
U.
17
11
I'l
.!i)
21
2:>
'>!
24
H'~t
2*-
27
2't
?9
10
11
V>
1)
14
IS
16
i;
11
i')
J|0
TTNK JSEC)
0.0
0. 1
O.S
0.7
0.9
1. 1
1. 1
1.5
1.7
1.9
2. 1
2.4
2.8
3.2
3.7
4. 1
5.0
5.7
6. 1
6.9
7. '1
7.0
ft. J
8. a
l>.4
10. 1
10.7
11. 4
12.0
12.6
11. 1
14. 1
14.9
ir>.7
16.7
17.2
17.6
IB. 1
111. 7
19.'l
INFIl. R»TB(CH/S)
0.0
0.8 340-02
0.8340-02
0.8340-02
0.0340-02
0.8340-02
0.8340-02
0.8340-02
0.9450-02
0.8310-02
0.8340-02
0.8340-02
0. 8340-02
0.8340-02
0.8340-02
0.8340-02
0.8340-02
0.6800-02
0.8330-02
0.8340-02
0.8340-02
O.B32D-02
0.8340-02
0.8340-02
0.8350-02
0. 8340-02
0.8320-02
0.8340-02
0.8320-02
0.8340-02
0.8340-02
0.8140-02
0.8350-02
0.11340-02
0.8310-02
0.8340-02
0.8 310-02
0.0350-02
0.8350-02
0.814D-02
INPII vct(cn)
0.0
0.2750-02
0.4410-02
0.608C-02
0.7750-02
0.9420-02
0. 1110-01
0.1280-01
0.1430-01
0. 1590-01
0.1790-01
0. 2030-01
0.232D-01
0.2670-01
0. 3080-01
0.3580-01
0.4180-01
0.4650-01
0.5200-01
0.5630-01
0.6040-01
0.6440-01
0.6820-01
0.7280-01
0.7750-01
0.8310-01
0.8850-01
0.9400-01
0.9890-01
0. 1040*00
0.1100*00
• 0. 1170*00
0.1240*00
0.1300*00
0. 1360*00
0.1420*00
0. 1460*00
0. 1500*00
0.1550*00
0. 1610*00
11. P. POS(Ctl)
0.0
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.21
0.24
0.28
0.31
0.35
0.40
0.45
0.49
0.50
0.51
0.54
0.58
0.64
0.67
0.68
0.72
0,75
0.78
0.00
0.82
O.B5
0.90
0.95
.01
.05
.10
.11
.14
.17
.20
.24
W.F. SUCT(CH)
0.0
-0.8010*04
-0.7470*04
-0.6920*04
-0.6380*04
-0.5850*04
-0.5320*04
-0.4810*04
-0.4560*04
-0.4620*04
-0.4800*04
-0.7900*04
-0.7780*04
-0.4550*04
-0.3890*04
-0.3230*04
-0.2760*04
-0.2370*04
-0.2290*04
-0.2510*04
-0.2690*04
-0.4140*04
-0.3590*04
-0. 1710*04
-0.1140*04
-0.4000*03
-0.1770*03
-0. 1360*03
-0.5380*03
-0.9550*03
-0. 1250*04
-0. 1160*04
-0.7090*03
-0. 2420*03
-0.1290*03
-0. 1190*03
-0.1110*03
-0. 1120*03
-0. 1130*03
-0.5210*03
RUNOFF (CM)
0.0
0.1240-10
0.2260-10
0.6210-08
0.5980-08
0.6030-08
0.6120-08
0.8820-07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.8910-03
0. 8970-03
0.8960-03
0. 8960-03
0.9030-03
0.9030-03
0.9040-03
0.9010-03
0.9010-03
0.9110-03
0.9120-03
0.9240-03
0. 9270-03
0.9280-03
0. 9260-03
0.9220-03
0. 9240-03
0.9310-03
0.9310-03
0.9360-03
0.933D-03
0.9290-03
0.9280-03
PRECIP(CM)
0.0
0.2750-02
0.4410-02
0.6080-02
0.7750-02
0.9420-02
0. 1110-01
0.1280-01
0.1410-01
0. 158D-01
0.1780-01
0.2020-01
0.2300-01
0.265D-01
0. 3070-01
0.3560-01
0.4160-01
0.4730-01
0.5290-01
0. 5720-01
0.6130-01
0.6530-01
0.6910-01
0.7370-01
0.7840-01
0.8400-01
0.8940-01
0.9490-01
0.9980-01
0.1050*00
0.1110*00
0. 1180*00
0.1250*00
0.1310*00
0. 1390*00
0.1430*00
0. 1470*00
0. 1510*00
0.1560*00
0. 1610*00
PLOX (CH/SBC)
0.0
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.335D-06
-0.3350-06
-0.5360-06
-0.5360-06
-0.3350-06
-0. 3350-06
-0. 3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.5360-06
-0.5360-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0. 3350-0 f.
-0.3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-------
00
-P-
'II
41
4 \
4 'I
4'j
Hf,
4 7
4 1)
4'»
50
51
•>>
53
5'l
5'.
56
57
5H
59
60
61
6?
63
ft It
65
66
67
61!
6<»
7H
71
72
73
74
75
7>>
7/
7 'I
7-1
.in
'! I
•p
ii
'14
•1'i
•H,
ft!
•JO
•II
94
ion
20. .•>
21.D
?:!.(>
2::.iJ
21.1
21. H
24. 1
24.'>
25.6
26.5
27.5
28.0
>H.5
28.9
29.2
?<». 6
10. 1
30.7
11.2
31.7
32. 1
11. 1
14.0
15.0
16.1
37. 1
17.6
17.9
18.4
39.0
19. '1
10.9
41.9
13. ft
44.0
44.7
15.i)
15.1
16. (1
16. 11
17.7
48.«
49.U
50.9
52.2
53. 1
51.6
51. 2
55.0
•j5. h
56. 2
57.0
5(1.0
50. 1
60.5
62. 2
61. >
61. /I
61. 3
65.0
O.H340-03
0. (1140-02
O.H11P-02
O.*»15i>-02
o.aiin-02
0.7710-02
O.ll J4D-02
0.8150-02
0.8140-02
0.11310-02
0.011D-02
O.nifiP-02
O.B31D-02
0.77flr>-02
0. 8340-02
0.8310-02
o.min-r>2
0.0330-02
O.B37D-02
0.0340-02
0. 8310-02
0. B 1
-------
F'TNAI. fill VAI.UIS PJNAt TOTAf. WATER COMTEK?3 35,5199 CH
(>.!> -(». 2.!» 00 -0. U.79210 + 01 PSI
-I). M''il03»tllt -0.6o(H.65n*01 -0.1415340*02 -0.3230500*02 -0. 1355fl'l 0*0 3 PST
-0. 740')V»D*04 -n.mo.!7 1D + 04 -0.H902970*04 -0.8902970*04 -0. B902'I7D * 04 PSI
-O.i»1029/n*04 -0. H'iO>970*04 - O.B9029JO*C4 -0.890297n*04 -0.89(12970*04 PSI
-0.fH02'»7U + 04 -O.U'>0297D*04 -0. fl90 2970*04 -0.8902970*04 -0.8902970*04 PSI
-O.H'J02<>70*Oi| -0.')970*04 -0.8902970*04 -0.8902970*04 -0.0903970*04 PSI
-O.H10J97DI O'l -0. B'J0^970*04 -0.8902970*04 -0.8902970*04-0.8902970*04 PSI
-O.H'i'l2l)70*(Ul -0.1(102970*04 -0.8902970*04 -0.8902970*04 -0.5652120*04 PSI
-O.r)f,5212nn>4 -0. Sof>2120*04 -0.5652120*04 -0.5652120*04-0.5652120*04 PSI
-ft. r.6S2 120*04 -0.5652120*04 -0.5652120*04 -0.5652120*04 -0.5652120+04 PSI
-O.ri65>120»04 -0.56?>2120*04 -0.5652120*04 -0.5652120*04-0.5652120*04 PSI
-0.5652120*04 -0.5652120*04-0.5652120*04 -0.5652120*04 -0.565212D+04 PSI
-O.lirir.2120*04 -0.5652120*04 -0.5652120*04 -0.5652120*04-0.5652120+04 PSI
-0.5652120*04 -0.5652120*04 -0.5652120*04 -0.5652120*04 -0.5652120*04 PSI
-0.5652120*04 -0.5652120*04 -0.5652120*04 -0.565212D+04 -0.5652120+04 PST
-I). 565? 120*04 -0.5652120*04-0.5652120*04 -0.5652120*04 -0.5652120+04 PSI
-0.565212B«04 -0.2645610*04 0.0 0.0 0.0 PSI
0.1 -0.2240410*00-0.5926230*00-0.9911350*00-0.1679210+01 PSI
-O.M9rtfl3D*01 -O.o60h65l)*01 -0. 14 1534D*02 -0.3230500+02 -0. 13S5B9D+03 PSI
-f). //lOO 5'IO»04 -0,(1902710*04 -0.8902970*04 -0.8902970*04 -0. 890297 0+OH PSI
-0.(I;JO>970«04 -0.8902970*04 -0.8902970*04 -0.8902970+04 -0.8902970*04 PSI
-O.M<»02970»04 -0.0002970*04-0.8902970*01 -0.8'90297D» 04 -0. 890297 D+04 PSI
-O.ft'»02970*04 -0.0902970*04 -0.«90297D*04 -0.8902970*04 - 0.8902970+04 PSI
-O.fl<)02970*04 -0.11902970*04-0.8902970+04 -0.8902970* 04 -0. 8902970+04 PSI
-O.a'10>'>70»04 -O.ai>0>970*04 -0.8902970*04 -0. 8902970+04 -0. 56S212D+04 PSI
-0.5652120*04 -0.5652120*04-0.5652120*04 -0.5652120*04 -0.565212D+04 PSI
-0.5652120*04 -0.5652120*04 -0.5652120*04 -0.5652120*04-0.5652120+04 PSI
-0.5652120*04 -0.5652120+04-0.5652120*04 -0.5652120*04 -0.5652120+04 PSI
,-i -0.5652120*04 -0.5652120+04 -0.5652120*04 -0.5652120+04 -0.5652120+04 PSI
po -0.5652120*04 -0.5652120 + 04 -0.5652120*04 -0.5652120*04 -0.5652120+04 PSI
01 -0.5652120*04 -0.5652120+04 -0.5652120*04 -0.5652120+04 -0.565212D+04 PSI
-0.5652120*04 -0.5652120*04 -0.5652120*04 -0.5652120+04 -0.565212D+04 PSI
-0.5652120*04 -0.5652120*04 -0.5652120*04 -0.5652120*04 -0.565212D+04 PSI
-0.5652120*04 -0.2645610*04 0.0 0.0 0.0 PSI
-------
CMPH tlf IHfll.TRATIOH HAIR VS, 11118 KOn U3T BAIM
TTNK (SRCS.)
0.0 11.0 26.0 19.0 52.0 65.0
o.i wo* ------------------- * ------------------- * ------------------- * ------------------- 1 ------------------- -j
D.!VJ7'Ji t
0.0150J » 1
0.0'^f.F *
O.OOOOf f
SKC) 0. 0825******** »**»»**•***»«* ****** *** ****** ********* ** * * **** * * * * {
0.0 400}- * *
0.07751 * * ***** j
o.a/sot * j
0.072S* » I
0.0700F * # J
0.0675? * ** I
O.OfaSO* * **** j
0.0(. >Sf ** * * j
0.0600i ** I
O.O'U'ii i
0.0100J
0.0<»7SI
Q.O'lOOi f
0.01751 i
O.OViOF i
0.0125f t
a.oiooi • j
(».027fif j
a. 0250* j
1.0225J I
0.0200J f
0.0175* „ ^
O.OTiOf ' i
O.»125f j
O.OIOOf f
f). 00751 „ j
0.0050f t
0.00251- j
(1. 0000 « ------------------- -J ------------------- i ------------------- J ------------------- J ------------------- f
0.0 13.0 26.0 39.0 52.0 65.0
-------
I'l 1?
INKK I I I1!-: IMKII. VOL PUKDFK
H.F. POS I..F. SUfT STKP
f.f>.
f>t» .
f.7.
6<».
7J.
73.
71.
7'l.
7ri.
7f,.
76.
11.
7(1 .
/').
no.
jii.
HI.
as.
«6 .
d/.
H'l .
H'>.
«0.
•»!.
<».? .
'M.
'»! .
<)5.
96 .
9rt.
100.
1D1.
102 .
102.
101.
102 in- 02
0.5230-0?
0.5140-02
o. so 110-02
0. 5060- 02
0.5060-02
0. r>06D-02
n. us 10-02
o. soon- 02
O.S9 10-02
0. U'JfiD-02
0.49 )n~02
0. 4400-02
0.4870-02
O.II07H-02
O.U300-02
0.4740-02
0.4750-02
0.16 on- 02
0.42 10-02
0.11670-02
0.4i'JI>-0:»
O.i|6 71)- 02
O.IH 10-02
o.«isn-02
o.iid in-02
0. US 70- 02
o.'ti in-02
0.1S20-02
0.5170*00
0.5220*00
0.5270*00
0.5340*00
0.5420*00
0.5520*00
0.5600*00
0.5660*00
0.5700*00
0.5730*00
0.577D*00
0.5H10*00
0.5040*00
0.5890*00
0.5950*00
0.6020*00
0.6100*00
0.6200*00
0.621)0*00
0.6330*00
0.6350*00
0.6390*00
0.6430*00
0.6480*00
0.6540*00
0.6580*00
0.6610*00
0.6680*00
0.6750*00
0.6830*00
0.6920*00
0.6990*00
0.7020*00
0.7050*00
0.7080*00
0.7120*00
0.7170*00
0.7210*00
0.7260*00
0.7320*00
0.7400*00
0.7490*00
NOV ACHIEVED IN TIME
0.1i()0-02
0. US 20- 02
0.'l32D-0>
0. Hit 10-02
O.'l'460-02
0. 4'I2D-0?
O.IIIIID-O?
O.II05D-02
O.It 10-02
0. Hi| 10-02
0.41HD-02
0.4320-02
0.4340-02
0.7570*00
0.7650*00
0.7690*00
0.7720*00
0.7750*00
0.7790*00
0.7810*00
0.7870*00
0.7920*00
0.7990*00
0.8060*00
0.8140*00
0.0250*00
0.3030-01
0. 3260-01
0. 3520-01
0. 3840-01
0. 4240-01
0.47JO-fi1
0. 5130-01
0.5460-01
0.5680-01
0. 5840-01
0.6030-01
0.6290-01
0. 6520-01
0.6810-01
0.7 160-01
0.7590-01
O.fl120-01
0.8760-01
0.9290-01
0.9590-01
0.9830-01
0. 1010*00
0. 1010*00
0. 1070*00
0. 1110*00
0. 1140*00
0. 1170*00
0. 1210*00
0. 1260*00
0.1320*00
0. 1390*00
0. 1440*00
0. 1470*00
0.1500*00
0. 1520*00
0.1560*00
0. 1600*00
0. 1630*00
0. 1630*00
0.1730*00
0. 1790*00
0. 1870*00
STEP 145
0. 1940*00
0.2000*00
0. 2040*00
0.2070*00
0. 2100*00
0.2140*00
0. 2180*00
0.2220*00
0. 2260*00
0.2320*00
0. 2380*00
0.2460*00
0. 2560*00
3.76
3. no
3. fl4
3.89
3.95
4.02
4.08
4.12
4.15
4.1«
4.20
4.23
4.25
4.29
4.33
4. 38
4.44
4.51
4.57
4.61
4.63
4.65
4.68
4.72
4.76
4.79
4.83
4.87
4.91
4.97
5.04
5.09
5.11
5.13
5. 16
5.19
5.22
5.25
£.29
5.33
5.39
5.45
5.52
5.57
5.60
5.62
5.65
5.68
5.71
5.71
5.77
5.82
5.87
5.91
6.01
-0.11210*02
-0.8280*02
-0.0760*02
-0.9060*02
-0.9200*02
-0. 1250*03
-0. 1040*03
-0.8670*02
-0.7890*02
-0.7920*02
-0.7900+02
-0.7970*02
-0.7990*02
-0,8150*02
-0.8640*02
-0.8930*02
-0.9100*02
-0. 1010+03
-0.8680*02
-0.7920*02
-0.7760*02
-0.7630*02
-0.7660*02
-0.7630*02
-0.7760*02
-0.8170*02
-0. 8500+02
-0.8770*02
-0.8940*02
-0.854D+02
-0. 8500*02
-0.7730*02
-0.7530*02
-0.7330*02
-0. 7410*02
-0.7470*02
-0.7660+02
-0.7740+02
-0. 8120+02
-0.8520*02
-0.8750+02
-0.8500+02
-0.7920+02
-0.7330+02
-0.719D+02
-0.7080*02
-0.7200+02
-0.7300+02
-0.7520+02
-0.7610*02
-0.7910+02
-0.834D+02
-0.8600*02
-0.8520+02
-0.7370+02
103
104
105
106
107
100
109
110
111
112
113
114
115
116
117
118
119
120
t21
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
-------
661
861
t6l
961
S61
(761
C61
161
061
681
881
t8l
9BI
S81
(781
£81
JBl
181
081
6tl
8tl
9tl
Sil
Etl
Itl
Otl
691
891
t9l
991
S91
7191
£91
E9I
191
091
851
•0- 6ft
•0- tft
)- Ift
tO+(U88*0- 69't
ZO*«JSE6°0- 99*t
Eo*aeii*o- Z9't
0040EIS*0
>'0- LH'L
C0«0£l76 '0- Oh't
ro- sc*t
zota69t"o- te*t
eo»azot'o- si't
)- Zl'L
>- 60't
•0- 96'9
•0- 06'9
•0- f78'9
•0- 6f 9
ro- E9*9
£0+U699*0- 09'9
I- El7*9
1*0- BE*9
)- Et '9
ZO»U908*0- 62*9
)- 9£'9
ZO*U9lfO- £1 '9
D- 11*9
I- 01 *9
U- HO'9
eo»06(,9 '0- 90*3
00*OE05*0
i'0
E61
00»OBBf *0
00*U8tE*0
00*00t£ *0
00+UE9£*0
00*085E *0
00*0£SE*0
oo*ai»it *o
00*Ot£E *0
00»UEEE*0
*0
io«atoi*o
10*0901*0
10*0901*0
»0*090fO
10*0501*0
00+«S8ll'0
zo -»r.LI *o
i?l °0
'0
ZO-OHbt'0
EO-000»i-0
"0
'0
HUH HI OaAillHOV ION
00*OESl7*0
00»a8£l7-0
00*0€£l7*0
oo»asi«r *o
oo«aoii7*o
00*09017*0
lo*atioi *o
10*U£01*0
10*0201*0
10*0101*0
io*uoot *o
00*0t66*0
00*a£66*0
00*0t86'0
00*0916°0
00*OU6"0
00*0906*0
00«U£06'0
00*0668*0
ZO-0861 *0
eo-oioh'o
ro-atofo
ZO-05 0(7*0
00*0tt6*0
00*0£t6°0
00*«t96'0
00*U9S6*C
00*0tl76*0
00*a6E6°0
00*0£E6*0
ro-agoii'o
?0-U90I>°0
tO -OtOh "0
C()-«/. 01) *0
20-01 lh'0
<0-0hlli'0
Z0-«f. lir'O
ro-oi?iro
to-aien'o
00»0ll£ *0
OU»«90E*0 00»tlSt8*0 EO-OlZt7*0
00*0662*0 00*069«-0 (0-Otlh'O
00«006E*0 00*0658*0 fcO-UEJIIi'O
c '0 00*attlW°0 iO-0<«2l)*0
00*0692*0 00«a8E8'(l f.O-Of(Jll'0
00*
-------
N0!»«i, 'HiPTIIS A NO MOISTURE CONTFMTS
FCIt TINE STfp
200
1
fl
41
S.J
r>J
6'l
71
7H
0.0
1.0
40.6
60.0
05.0
110.0
16S.O
200.0
21S.O
0. 1 171
0.1361
0.3 2 15
0.2000
0.2000
o.?ono
0.1041
0.1041
0. 1041
0.1041
(1.1041
0. 1041
2 0.4 0.1171
9 3.5 0. 3361
16 7.0 0. 3126
n 13.0 0.2000
10 24.0 fl. 2000
17 45.7 0.2000
44 65.0 0. 1041
•>1 100.0 0.1041
SB 135.0 0. 1041
(,5 170.0 0.1041
12 205.0 0. 1041
79 240.0 0.1041
3
10
17
24
31
38
45
52
59
66
73
80
0.8
4.0
7.E
14 .0
26.0
48.3
70.0
105.0
140.0
175.0
210.0
245.0
0.3171
0.3356
0.2976
0.2000
0. 2000
0.2000
0.1041
0.1041
0. 1041
0.1041
0. 1041
0.1041
4
11
IB
25
32
39
46
53
60
67
74
81
1.2
.4.5
8.0
15.0
26.3
50.8
75.0
110.0
145.0
180.0
215.0
250.0
0. 3370
0. 3340
0.2735
0.2000
0.2000
0.2000
0.1041
0. 1041
0.1041
0. 1041
0.1041
0.1041
12
19
26
33
40
47
54
61
68
75
82
1.6
5.0
9.0
16.0
30.5
51.3
80.0
115.0
150.0
185.0
220.0
255.0
0.3370
0.3335
0.2095
0. 2000
0.2000
0. 1041
0.1041
0. 1041
0.1041
0. 1041
0.1041
0. 1200
6
13
20
27
34
41
48
55
62
69
76
83
2.0
5.5
10.0
18.0
33.1
51.8
85.0
120.0
155.0
190.0
225.0
260.0
0.3368
0.3312
0.2000
0.2000
0.2000
0.1041
0. 1041
0.1041
0. 1041
0.1041
0. 1041
0.1843
7
14
21
28
35
42
49
56
63
70
77
64
2.5
6.0
11.0
20.0
35.6
55.0
90.0
125.0
160.0
195.0
230.0
265.0
0. 3365
0.3271
0.2000
0.2000
0.2000
0.1041
0. 1041
0.1041
0. 1041
0.1041
0. 1041
0.1843
8'i 275.0 0.1d43
INP'111 VOI.IIME= .505D-02 HEl LBNG1H= .3680-01
PREVIOUS UNCHANGED NODE W »S 20
PIlEDICTRn IIHCIUMGBD MODE WAS 22
post TIOH oi' wErriHC. FHOMT= 7,83 CN
TIHK STEP 200 HAS
SOCTIOH AT WETTING FRONT*
TIME FROM 'j'tAHT= 191.0 SECS
INKrt R»TB= 0.3930D-02 CH/SEC
HA IN RATE 0.8340D-02 CM/SEC
ITRRATIONS P!>IDIP= 0.1570-04 Cfl
INFIL VOI.=
BXCISS RAIN'
0.10740*01 CH
0.51810*00 CH
1.i sees
-0.88890*02 CM
TOTAL PRECIP=
FLUX (AT NODE
MEW TIME STBP 1.3 SECS
0.15930*01 CH
79)=-0.3350-06 CH/SEC
oo
-------
or nor rriiHE CONTENT vs. DEPTH FOR TINR = 191.0 sues op a.05 nouns
(CM)
.0
5. Of
10. at
15.0*
>0.0f
25. Of
10.01
15. Of
10.01
45.04
50. Of
55. Of
60 . ot
65. Of
10. Of
/5.0f
HO. Ot
•IS . Of
10. Of
05 . Of
100. Ot
105. Of
110. Of
1 15. Of
120. Of
125. Of
1 10. Ot
1 15. Of
1 60 . Of
.11
HOISTUHP CCHTEMT (VOI./VOL)
.1 .2 .1 .1 .5 .6
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
«
»
»
*
»
*
*
*
»
*
*
*
*
»
*
*
*
*
*
*
*
*
«
*
*
#
*
*
*
«.
*
*
.1 .2 .:< ,i| .5 .6
.7
I
f
i
*
f
i
i
i
£
2
i
X
f
*
X
*
*
f
*
f
4
£
1
J
*
f
f
f
1
t
f.
i
I
t
f
X
4
f
3
£
*
*
f
£
•I
S
3
£
f
f
i
I
_*«_£
.7
-------
SfMf -I.'WAI 1 rilrtl «' «il:A'll OF SIICTTUII AMU POTFHTJA1. VS. DEPTH FOP n«F. = 101.0 S".CS OH 0.05 HOMBS
SUCTTOH CD PtmHTIAI. (CM)
'1121 1
-It) -10 -10 -10 0 10
r. . Oi * e
K 10. 08
IS. 0*
P ."» 0 . 08
^ S . 08
T 10. 0«
IS. 0«
II '10.08
. 08
rt) SO. OS
S5. Oi 81
.lO.Of- *
fiS.Oi »
70. Of 8
7S. Oi »
10. Of 8
US. Oi 9
•»0.0f 8
')5. Oi »
100. Of 8
10S. Oi 9
110. Of 8
IIS. Oi 9
uo.ot «
12S. Oi *
1)0. Of 8
us. oi »
I'lO.Of 8
i. Oi l»
TOO.Oi 8
^OS. Oi 9
210. Of 8
2 IS. Oi »
? ? 0 . Of 8
22S. Oi i*
MO. Of 8
2 IS. Oi 81
2 '( 0 . Of 8
?15. Oi »
_'SO.Of 8
2r.S. Oi +6
260.01 . *
1 J 2 1 1
-10 -10 -10 -10 0 10
2 3
10 10
f ******* SUCTION
i ceeeeec POTENTIAL
j
i
i
f
t
*
«
i
f
$
f
j
i
i
*
5
£
j
£
j
i
j
j
j
I
j
at
^
f
j
t
^
i
i
i
f
€
j
2
i
t
f
t
f
i
i
£
I
S i
1 6 f
2 3
10 10
-------
TMK JHI'll. H'tf. 1NK1L VCI. nilMOF" fc.F. FOS VI. P. SIICT BTFP
IM. 0. l«» I0-i>2 0.1070*01 O.'LldlHQO 7.03 -0,fl«90*02 200
STKP
101
io:>
101
10 1)
IIS
101.
10 ;
10ft
10
11
i'>
11
i>i
i 'i
tr,
I/
H
I'l
20
21
2"?
21
12'J
127
12't
1 ID
1 11
112
1 Jl
ll'l
135
117
111
tt« (SEC)
64. 1
65.0
65.6
66.5
4,7. 5
6a. ?
70. 1
71.9
71. 1
74. S
75.2
75. II
76. 'I
77.2
77.8
78. tl
79. ')
HI. J
82.0
ti'i.fj
116.4
Il7.il
na.o
afi.7
n<>.5
90.5
91.7
92.5
9 !.*>
91. 6
96.0
97.7
99. J
101.0
101. ft
102.4
101.2
104.0
105. 1
106.0
IHFIF. ltATE(CM/S»
0.5930-02
0.556D-02
0.5290-02
0.5720-02
0.5740-02
0.5670-02
0. 55*10-02
0. 5530-02
0.555D-02
0.5M7D-02
0.544D-02
0.5»|6D-02
0.516D-02
0. 5060-02
0.4320-02
0.5210-02
0.523D-02
0.51MD-02
0.508D-02
0.506D-02
0.5060-02
0.5060-02
0. '15 10-02
0.5000-02
0.501D-02
0.115D-02
0.<|930-02
O.IJ90D-02
O.H870-02
O.HH7D-02
0.1 HO 0-0 2
O.II7IID-02
O.H75D-02
O.l|6fif>-02
0.«21D-02
O.M670-02
0.1590-02
0.167D-02
0.
-------
I'll
142
I'll
I'll
11'i
I'll.
14 /
1411
141
15(1
IS!
152
1r.l
1r>4
155
15..
15;
iv»
150
16(1
101
162
161
Ifi'i
165
\(>h
If./
161
169
17U
171
17?
1/1
171
175
17h
177
1 in
170
1.10
1ft 1
in?
MI
tail
i«5
I'U,
1(17
1fl>1
IflO
190
101
10?
103
191
105
106
107
198
100
200
M7, >
lOrt.S
t(l. 2
12. I
tl. 0
15. /
16.7
17.1
18. 1
19. 1
120.2
121.0
122.2
123.6
125.2
127.2
129.6
131. 2
112. 1
132. fl
113.7
111.8
1 16. 1
1 17.7
138.fi
110. 1
111.6
113.5
115.7
117. 2
110.1
119.0
1 10. 1
151.3
152. 8
151.1
155.1
157.0
15U.9
161. 1
163. 9
165. J
166. 1
167.1
16H.7
170.1
171.1
172.7
1 71. 3
1 76. 1
170. 1
181.0
183.6
105.2
186. 1
1U6. 7
1U7.6
1fl9.0
104.9
191.0
0.16 ln-02
0.1570-02
0.1530-02
0.152D-02'
0.1500-02
0. 1520-02
0.1020-02
0.1130-02
0. 1160-02
0.112D-02
0.11fln-02
0.1050-02
0.111D-02
0.11 10-02
O.llflD-02
0.1120-02
0.111D-02
0.132D-02
0.385D-02
0.1030-02
0.127D-02
0.125D-02
0.1260-02
0.423D-02
0. 1250-02
0.117D-02
0.1210-02
0. 1150-02
0.1190-02
0. 1210-02
0. 1170-02
0.1210-02
0.11 IP- 02
0.1 150-02
0.1130-02
0.1110-02
0.1 120-02
0.11 ID- 02
0.1070-02
0.1070-02
0.1070-02
0.1060-02
0.1060-02
0.1060-02
0. 1050-02
0.3B3D-02
0.1010-02
0.1030-02
0.1010-02
0.1010-02
0. 3980-02
0.3910-02
0.3960-02
0.398D-02
0.1000-02
0.3900-02
0.3910-02
0.359D-02
0.3730-02
0.3930-02
0.7?tE*00
0.7320*00
o.7icn*oo
0.74SD+00
0.7570*00
0.7650*00
0.7690*00
0.7720*00
0.775D*00
0.7790*00
0.781C*00
0.7870*00
0.7920*00
0.79SC*00
Q.R06D*00
0. H11D*00
0.8260*00
0.0320*00
0.0350*00
0.8380*00
0.8120*00
0.6170*00
0.8520*00
0.8590*00
0.8630*00
0.06Sn*00
0.8750*00
0.8830*00
0.8920*00
0.8990*00
0.9030*00
o.ooeruoo
0.91 10*00
0.9160*00
0.9220*00
0.9270*00
0.9330*00
0.9390*00
0.9170*00
0.9560*00
0.9670*00
0.9730*00
0.9770*00
0.9820*00
0.9870*00
0.9930*00
0.9970*00
0.1000*01
0.1010*01
0.1020*01
0.1030*01
0.1010*01
0.1050*01
0. 10£D*01
o.ioeo*oi
0.1060*01
0. 10£D*01
0.1070*01
0. 101D*01
0.1070*01
5.?9
5.33
5.. 19
5.15
5.52
5.57
5.60
5.62
5.65
5.68
5.71
5.73
5.77
5.82
5.87
5.93
6.01
6.06
6.08
6.10
6.13
6.17
6.21
6.26
6.29
6.33
6.38
6.13
6.50
6.55
6.57
6.60
6.63
6.67
6.72
6.75
6.79
6.81
6.90
6.96
7.01
7.09
7.12
7.15
7.19
7.23
7.26
7.30
, 7,35
7.10
7.17
7.51
7.62
7.66
7.69
7.71
7.71
7.77
7.79
7.83
-0.8120*02
-0.8520*0?
-0.8750*02
-0.8500*02
-0.792D*02
-0.7310*02
-0.7190*02
-0.7080*02
-0.720D*02
-0. 7300*02
-0.7520*02
-0.7610*02
-0.7910*02
-0.8310*02
-0.8600*02
-0.8520+02
-0.7370*02
-0.6990*02
-0.6950*02
-0.6900*02
-0.70lDt02
-0.7160*02
-0. 7210+02
-0.770D+02
-0. 806D+02
-0.8360+02
-0.8530+02
-0.829D+02
-0.6910*02
-0. 6710+02
-0.6510*02
-0.6690+02
-0.6910+02
-0.7090*02
-0.7210+02
-0.768D+02
-0.8060*02
-0.835D*02
-0.8150*02
-0.755&+02
-0.6110*02
-0.619D+02
-0.6730*02
-0.7020*02
-0.7270*02
-0.769D*02
-0.7950*02
-0.816D*02
-0.8970*02
-0.9130*02
-0.9780*02
-0.1670*03
-0. 1180*03
-0.9350*02
-0.8870*02
-0.8760*02
-O.B57D*Q2
-0.8590*02
-0.8620*02
-0.8890*02
0. 1680*00
0. 1730100
0. 1790*00
0. 1870*00
0. 191D*00
0.2000*00
0.2010*00
0.2070*00
0.2100*00
0. 214D*00
0.2180*00
0.2220+00
0. 2260*00
0.2320+00
0. 2380+00
0.2460+00
0.256D+00
0. 2630+00
0. 2670+00
0.2690+00
0.2730*00
0.2780+00
0.2830*00
0.2900*00
0.2940*00
0.299D*00
0.3060*00
0.3130*00
0.3230*00
0. 3290*00
0.3330*00
0.3370*00
0. 341D+00
0.3460+00
0.353D+00
0. 358D+ 00
0.3630+00
0.3700+00
0.378D+00
0.3880*00
0.3990*00
0.4060*00
0. 4100*00
0.4150*00
0.4200*00
0.4280+00
0.4320+00
0.4380+00
0.4440+00
0.4530*00
0.4620*00
0.4710*00
0.4850*00
0.4 920+ 00
0.4960*00
0.4990+00
0.5030*00
0. 5090+00
0.513D+00
0.5180+00
0.894D+00
0. 9050+00
0.9190+00
0.9350+00
0.9510+00
0. 9650+00
0. 9730+00
0.9790*00
0.98SD+00
0.9930+00
0.100D+01
0. 101D+01
0. 102IU01
0. 103D+01
0. 104D+01
"0. 1060+01 '
0. 1080+01
0.1090*01
0. 1100*01
o.mn+oi
0. 1110+01
0. 112D+01
0. 1140 + 01
0. 1150+01
0.1160+01
0,1170+01
0. 1180*01
0.1200+01
0. 1210+01
0.1230+01
0.124D+01
0. 124D+01
0. 1250*01
0. 1260+01
0. 1270+01
0. 1280*01
0. 130D+01
0.131D+01
0.132D+01
0. 134D+01
0.1370*01
0. 138D+01
0. 1390+01
0.1400*01
0.1410+01
0. 142D + 01
0. 1430*01
0. 144D+01
0.1450*01
0. 1470*01
0.1490+01
0. 151D+01
0. 1530*01
0. 1540*01
0. 1550+01
0. 1560+01
0. 1560*01
0.1580+01
0. 158D + 01
0. 159D+01
-0.3350-06
-0. 3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0. 335D-06
-0.3350-06
-0.335D-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.335D-06
-0.335D-06
-0. 3350-06
-0.335D-06
-0.335D-06
-0.335D-06
-0.335D-06
-0.3350-06
-0.3350-06
-0. 335D-06
-0.335D-06
-0.3350-06
-0. 3350-06
-0.335D-06
-0. 3350-06
-0.3350-06
-0. 3350-06
-0. 335D-06
-0.3350-06
-0.3350-06
-0.335D-06
-0.335D-06
-0. 3350-06
-0.3350-06
-0.335D-06
-0. 3350-06
-0. 3350-06
-0. 335D-06
-0.3350-06
-0. 3350-06
-0. 3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0.335D-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0. 335D-06
-0. 3350-06
-0. 335D-06
-0.3350-06
-0.335D-06
-0. 335D-06
-------
UNA! I'ST VALUES
FINAL TOTAL HATBtt COHTBN1*
36.0806 CM
0.
-0.
-0.
-0.
-0.
-0.
-0.
-o.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
a.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
.n
:>3 »9
1 27'»
1612
H'102
rttn toil
R6D*02
970 *04
090297(11 04
H-J02
*>652
56S2
5652
97Hi04
•l7Di»4
120*04
120 *04
120 «04
-0.
-0,
-0.
-0.
-0.
7i, 1(1750-02
VH)10BO»00
l'i2S370»01
.I>6'J640»02
-0
-0
e
a
-0.
-0
f
890.1970*04 -0.
-0.11902970*04
-0.
-0.
-0.
-0.
-0.
.•1902970*04
ft')02970*04
56521 20* 04
5652120*04
5652120*04
37D*01
3269640*02
1)902970*04
(1902970*04
8902970*04
8902970*04
5652120*04
5652120*04
5652120*04
5652120*04 -0.5652120*04
5652
56S2
••i6r>2
r.6r.2
5652
120*04
120*04
12D»rt4
120*04
120*04
-0.
-0.
-0.
-0.
-0.
5652120*04
5652120*04
5652120*04
5652120*04
26456 10*04
-0
-0
0
-0
*
^
w
m
5652120*04
5652120*04
0
1127890*00
-0.5136400*00
-0
-0
-0
-0
-0
m
^
^
—
-
3108980*01
1190670*03
8902970*04
8902970*04
8902970*04
-0.8902970*04
-0
-0
„
5652120*04
5652120*04
-0.5652120*04
-0
-0
-0
-0
-0
0
•
•
0
m
5652120*04
5652120*04
5652120*04
5652120*04
5652120*04
0
-0
-0
.1514530*00
.632fl7flD*00
-0.5243670*01
-0
-0
-0
-0
-0
.7666290*04
.8402970*04
.8902970*04
.8902970*04
.6902970*04
-0.5652120*04
-0
-0
-0
.5652120*04
.5652120*04
.5652120*04
-0.5652120*04
-0
-0
-0
0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
.£652120*04
.5652120*04
.5652120*04
.0
.1514530*00
.6328780*00
.£243670*01
.7666290*04
.8902970*04
.8902970*04
.8902970*04
.8902970*04
.5652120*04
.5652120»OU
.5652120*04
-0.5652120*04
-0
-0
-0
.5652120*04
.5652120*04
.5652120*04
-0.5652120*04
0
.0
-0.
-0.
-0.
-0.
-0.
'-0.
-0.
-0.
-0.
14R.1450*00
8706060*00
9020000*01
8907880*04
0902970*04
8902970*04
8902970*04
5652120*04
5652120*04
-0.5652120*04
-0.
-0.
-0.
-0.
-0.
-0.
0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
5652120*04
5652120*04
565212D*04
5652120*04
5652120*04
5652120*04
0
1482450*00
8706060*00
9028000*01
8902880*04
8902970*04
8902970*04
8902970*04
5652120*04
-0.5652120*04
-0.5652120*04
-0.
5652120*04
-0.5652120*04
-0.
-0.
-0.
-0.
0.
5652120*04
5652120*04
5652120*04
5652120*04
0
PS I
PSI
PS I
PSI
PSI
PSI
PSI
psr
PSI
PSI
PSI
PSI
psr
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
psr
PSI
PSI
PSI
PSI
PSI
PSI
PSI
-------
0*161 9*S9l
I — -—— ————------ — —_x_______.
t
3
2
t
I
3
2
*
I-
3
2
I
i *
2* *
|r **** * * * *** ***** * **
3
*
X
fr
{•
3
3
t
f
t-
fr
2
2
2
2
2
2
2
f
0*161 9*591
t'OM 0*511 t*68 1 '*<)
-———--—-—— -—t-—-——--— -——-—--- — i-- — — _-j — 40000 0
tO'jOO'O
•lOOlO'O
JOSIO'O
?: ^/.l 0*0
40020*0
15220'0
105,20-0
f SUO'O
iOOlO'O
4S2tO*0
i o?e o • o
* ISUO'O
* * * * 1001)0*0
******* ** ****** ** * * * * *G2hO"0
* ** ***** ***** * ?OShO*0
* ** **** ** * t<,L1i(>'{'
******* * * J00!>0*0
*** * *S290'«i
*** 4* <0<.ljO-<
*0090*0
I'jt90'0
tswo'o
*StiOM'
20*it 0 '0
I 5ttO '0
40000 *0
i^^tlO'O (33S
f OSOO'0/KH)
45i/.HO-0
10000*0 J
•IScfcO'O
lllll -I
.-— -- — ____!.___—. _ __ j __ j 40001 "0
E'On 0*511 i*6U 1*1)9
is vi
;imo, *HA
HHU,
KJtkV4.LlIJHl
-------
•n H<>. i N"M. RATI: inni vci. PHNOPP
H.f. POS W, P. SMC'*
I-J2 .
111.
116.
1 'VI.
202.
> 06 .
210.
211.
215.
216 .
217.
21U.
220.
222.
221.
?2r>.
227.
230.
211.
237.
212.
CON VK HUE MCE
217.
219.
260.
252.
255 .
! ?H6.
->!)") .
261.
261.
>(, 7 .
271.
276.
CO'iVKRGEHCB
2111.
2*11.
281.
2H6 .
2I1IJ.
211 .
291.
205.
2'Jft.
100.
101.
107.
112.
COHVliUBNCE
116.
nn.
120.
0.
0.
0.
0.
0.
0.
0.
u.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
VI1D-ll'.»
i.j^>n- o >
1110-02
1920-0>
1920-02
39 'J 0-0*
192D-02
39 10-02
19 ID- 02
1550-02
1890-02
1100-02
1870-02
1380-02
1B7D-02
1860-02
1860-02
185D-02
3060-02
1(150-02
1H1D-02
MOT ACIII
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
13 2 D- 02
1860-02
1820-02
1820-02
1570-02
lfllD-02
1920-02
3800-02
1810-02
17UD-02
379D- 02
17110-02
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
EVKO
0.
0.
0.
0.
0.
0.
0.
0,
0.
0.
0.
0.
MOT ACHIEVED
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1760-02
3'4 10-02
IB 00- 02
1780-02
1790-02
1760-02
17(10-02
1760-02
3771)- 02
1740-02
1770-02
37«I)-02
1710-02
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
HOT ACHIEVED
0.
0.
0.
171 !>-«•>
1720-02
1760-O.J
().
0.
0.
lOtllUO 1
1090*01
I09n*oi
1100*01
1 120*01
1130*01
1150*01
1 16D*0 1
1170*01
1170*01
1170*01
1 180*01
1190*01
119D*01
1200*01
1210*01
1220*01
1230*01
1210*01
1250*01
1270*01
IN TIME
129D*01
130D+01
1300*01
1110*01
1320*01
1330*01
1310*01
1350*01
1360*01
1370*01
1380*01
1100*01
IN TINE
1120+01
1130*01
1130*01
mb*oi
1150*01
116D*01
1160*01
1170*01
1180*01
1190*01
150D*01
152B+01
1510*01
IN TINE
1550*01
1560+01
157D*01
0.5210*00
0.5310*00
0.5100*00 '
0.5520*00
0.5660*00
0.5810*00
0.6010*00
0. 6160+00
0. £230+00
0.6280*00
0.6320*00
0.6390*00
0.6180*00
0.6550*00
0.6620*00
0. 670D*00
0.6800+00
0.693D»00
0.7070+00
0. 7250+00
0.7160+00
STSP 221
0.7670*00
0.777D+00
0.7830*00
0.7920+00
0.801D+00
0.8110*00
0.0210*00
0.8320+00
0.815D+QO
0. 8600*00
0.8780*00
0.9000*00
STEP 236
0. 9210+00
0.9330*00
0.9100*00
0.917D*00
0.9580*00
0.9710*00
0. 979D+00
0.9880*00
0.1000*01
0. 1010*01
0. 103D*01
0. 1010*01
0. 1060*01
STtP 219
0. 1090+01
0. 1100*01
0. 1100*01
7. (16
7.91
7.97
8.05
R.11
8.25
R.38
8.16
8.50
8.53
8.56
8.60
8.66
8.70
8.71
a. eo
8.86
8.91
9.03
9. 11
9.27
9.10
9.16
9.50
9.56
9.62
9.67
9.73
9.80
9.87
9.97
10,08
10.21
10.33
10.39
10.13
10. IS
10.51
10.62
10.67
10.73
10.79
10.87
10.95
11.06
11.18
11.30
11.36
11.40
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0,
-0.
-0,
925D+02
9700*02
1030*0.1
3230*03
5730+03
5710+03
2720+03
151D*03
1130*03
1070*03
1020*03
955D+02
0980*02
911D+02
926D+02
9110+02
956D+02
9790+02
186D+03
3360+03
202D+03
9880+02
916D+02
895D+02
8560*02
857D+02
-0. 8750+02
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
897D+02
921D+02
912D+02
951n+02
2350*03
191D+03
997D+02
9300+02
8980+02
8660*02
8200+02
815D+02
U65D*02
-0.8880*02
-0.9090+02
-0.
-0.
-0.
-0.
-0.
-0.
-0.
9290+02
936D+02
1950*03
1830+03
1020+03
879D+02
869D+02
201
201
205
206
207
208
209
210
211
212
213
211
215
216
217
218
219
220
221
222
223
221
225
226
227
228
229
230
231
232
233
231
235
236
237
238
239
210
211
212
213
211
215
216
217
218
219
250
251
-------
121.
122.
124 .
126.
128.
111.
134.
117.
141 .
147.
153.
157.
151.
361.
161.
165.
167.
169.
172.
175.
37.1.
Ifll .
Iflfl.
191 .
191.
194.
106.
190.
402.
'104 .
407.
410.
411.
417.
422.
0. 17 -II,- 02
0. 16 611- 1) i
0. V4U»-H>
0. 11 in- 02
I). 3740-02
0. 171 iv- 02
0. 174H-02
0. 1710-02
0. 1720-02
0. 1710-02
0. 1720-02
0. 36 SO- 02
0. 1740-02
0. 3710-02
0. 1700-02
0. 3710-02
0.1710-02
0. 1720-02
0.3710-02
0. 1700-02
0.1690-02
0. 1700-02
0. 1680-02
o. iftao-02
0. 1240-02
0. 1720-02
0. 1690-02
0.1590-02
0. 1670-02
0. 3580-02
0. 1680-02
0.16<>n-02
0. 3670-02
0.1S90-02
0.3670-02
0.1S7IU01
0.157n*01
0.1580*01
0.1500*01
0.1590*01
0.1600*01
0. 1620*01
0.1630*01
0.1640*01
0.1670*01
ft. 1690*01
0.1700*01
0.1710*01
0.1720*01
0.1730*01
0. 1730*01
0.1740*01
0.1750*01
0.1760*01
0.1770*01
0. 1780*01
0.1800*01
0.1820*01
0.1830*01
0.1830*01
0.1840*01
0.1850*01
0.1860*01
0.1870*01
0.1870*01
0.1880*01
0.1900*01
0.1910*01
0.1920*01
0.1940*01
WHENCE NOT ACHIEVED IN TIHF
1127.
429.
'111.
'112.
414 .
417.
419.
441.
441.
446.
449.
451.
O.li90-02
0. 1670-02
0. 1&UO-02
0. 3600-02
O.liflO-02
0. 33UO-02
0.1660-02
0.3660-02
0.1680-02
0. 3660-02
0. 1680-02
0. 3670-02
0. 1960*01
0.1970*01
0. 1970*01
0.1980*01
0.1990*01
0.2000*01
0.2000*01
0.2010*01
0.2020*01
0.2030*01
0.2040*01
0.2060*01
0. 1110*01
0.1110*01
0. 1120*01
0. 1110*01
0. 1140*01
0. 1150*01
0. 1170*01
o. iiao*oi
0. 1200*01
0. 1230*01
0. 1260*01
0. 1270*01
0. 1280*01
0.1290*01
0. 1300*0 1
0.1310*01
0. 1320*01
0.1330*01
0. 1340*01
0.1360*01
0. 1370*01
0. 1390*01
0.1420*01
0. 1430*01
0.1440*01
0. 1450*01
0.1460*01
0. 1470*01
0. 1480*01
0. 1490*01
0.1510*01
0. 1520*01
0.1540*01
0. 1560*01
0.1580*01
Site 287
0. 1600*0 1
0.1610*01
0. 1620*01
0.1630*01
0. 1640*01
0.1650*01
0. 1660*01
0. 1670*01
0. 1680*0 1
0.1690*01
0. 1710*01
0.1720*01
11.41 -0.8540*02
11.47 -0.8430*02
11. "52 -0. 8160*02
11.56 -0.8290*02
11. 62 -0.8370*02
11.60 -0.8680*02
11. 77 -0.8990*02
11.87 -0.0230*02
11.98 -0.9240*02
12.14 -0. 1960*03
12.30 -0.8590*02
12.39 -0.8530*02
12.44 -0. 8350*02
12.50 -0.8100*02
12.57 -0.8040*02
12.61 -0.8310*02
12.67 -0.8560*02
12.73 -0.8820*02
12.81 -0.9050*02
12.88 -0.9230*02
12.98 -0.9140*02
13.09 -0. 195D*03
13.23 -0.1190*03
13.32 -0.9390*02
13.36 -0.6660*02
13. 40 -0.8570*02
13.46 -0.6260*02
13.54 -0.7940*02
13.60 -0.8240*02
13.66 -0.8500*02
13.73 -0.8780*02
13.81 -0.9040*02
13.91 -0.9220*02
14.02 -0. 1200*03
14.15 -0.1730*03
14.27 -0.9850*02
14.34 -0.8560*02
14.38 -0.8460*02
14.42 -0.8340*02
14.48 -0.8160*02
14.54 -0.8170*02
14.58 -0.8200*02
14.63 -0.8480*02
14.70 -0. 8810*02
14.77 -0.9190*02
14.86 -0.. 9560*02
14.97 -0.1000*03
252
251
2S4
255
256
257
258
259
260
261
262
261
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
CCNVPIIUBNCE HOT ACHIEVED IN TIME STEP 299
450. O.lbllO-02 0.2070*01 0.1750*01
15. 10 -0.4040*03
299
-------
CCHPIITATTOHS POP TII1E STEP
300
iRU, DKI'TltS A Ni> HOIiTURK CON7SMlfi
1
'»
IS
2;>
•>*
K.
4 1
50
57
64
71
7fl
0.0
1.0
6.'j
12.0
2>.0
i|0.6
60.0
15.0
110.0
165.0
?no.o
2 IS. 0
0.) 171
0.3 j 71
0.1 !(> 275.0 0.1841
INPUT VOMIHF- . 24n>-01 WET LENGTH* .180
PREVIOUS IIWniftNCKD HOOE HAS 27
PBEIHrTEl) IINrilAMIiKU MODE HAS 29
Rciiirv pnsiTioH OF WETTING FBONT= 15.25 CH
TINE STEP 300 HAS
SUCTION »T WETTING FRONT*
TIME FBOH ST»BT= 463.6 SBCS
IHFTL «ATf= 0,3649D-02 CM/SEC
liATM HATE 0.8340D-02 CM/SEC
PSIDIF= o.446D-oi CH
IHFIt VOL-
ElCfSS RAIN=
0.2094D«01 CH
0.1773D»01 CH
5. 6 S ECS
-0.5256D+03 CH
TOTM. PBECIP=
PLOI (AT NODE
HEW TIME Site 6.8 SECS
0.30660*01 CH
79) =-0.3350-06 CH/SEC
-------
liS/U'll 07 H«l iilll'E CONTENT VS. nRPTII FOR TIKE - 161.6 SECS OR 0.11 HOURS
MOISTIIRK CONTENT (VOL/VOL)
(CM)
.0
s. of
10.01
IS. Of
20. Of
25. Of
10. Of
IS. Of
'10. Of
<|5. Of
50. Of
IS . Of
60. Ot
61. Of
70. Ot
7S . Of
HO. OF
US . Of
•10. Ot
')5 . Oi
100. ot
1 OS . Of
1 10 . OF
115. Of
120.0V
12S.Of
1 JO. Ot
115. Of
). Ot
11 5. Of
ISO. Ot
1Sr».Of
160.0t
165. Of
170. Ot
1 JS.Of
HO.Ot
1(15. Of
1'JO.Ot
1 IS . Of
200. Ot
205. Of
?10.0t
.715. Of
2?0. Ot
2 JS.Of
2 10. Ot
?15.0f
?'IO.Ot
?i«5.0f
250. Ot
255. Of
2(»0.0t
265. OJ
.0
.1 .2 .3 .1
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
«
*
*
*
*
*
*
*
*
*
»
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
*
*
*
.1 ,2 .3 *M
.S .6 .7
*
*
t
«
£
t
t
i
t
i
t
f
I
t
t
I
i
I
t
f
t
I
t
i
f
S
2
t
i
f
2
i
i
i
t
I
i
f
t
f
i
t
i
£
i
£
i
i
i
t
•J
f
.5 .6 .7
-------
003
= -5 -3
I
9
I
C
n
•-S
C -i
* O
0) n
CT *
n *
n *
n «
M <*
33
p
->
in
P!
O
w
2
a
U)
-------
aw INCH Kirn: IMPII. voi, FIIHOPP K.P. IOR w. f. su'-'T STBP
464. 0.16SO-02 0.209D*01 0.1770*01 15.25 -0.S2fcP»03 100
STXP
201
203
T. or,
207
2 OH
210
211
211
214
21r>
2 If.
21 7
210
21')
2 >')
221
222
2 24
2>fi
2?')
210
211
212
214
2 IS
2 If.
217
2 111
2TJ
240
TIME (SEC) IMP! I
191.
192.
193.
196.
1'JU.
201.
2 Of.
210. 3
213.2
214.7
215. 7
216. 7
218. I
220.2
221.7
223.
225.
227.
230.
233.
217.
242.
246.
249.0
250.4
252. 1
254. 7
2'if>. 5
2r»H.6
261. 1
261.9
267. 2
271. I
27f..O
2)10.6
2IU.O
21)4.4
286.0
1
2
,4
2
.4
4
1
.6
21IH. 4
. R*TE(C8/S|
0.3730-02
0.3930-02
0.3940-02
0.3920-02
0.3940-02
0.3920-02
0.3920-02
0. 3890-02
0.3920-02
0.3910-02
0. 3910-02
0.3550-02
0. 3890-02
0.3900-02
0. 3870-02
0.3880-02
0.3870-02
0.3860-02
0.3860-02
0.3850-02
0. 3860-02
0. 3850-02
0.3840-02
0.3820-02
0.3850-02
0.3820-02
0.3820-02
0.3670-02
0.3810-02
0.3820-02
0.3800-02
0.3810-02
0. 3780-02
0. 1790-02
0.3700-02
0. 3760-02
0.3430-02
0, lftOn-02
0.37(10-02
0. 3790-02
IMPII. voi. (cn)
0. 1070*01
0.1070*01
0. 1060*01
0. 1090*01
0.1090*01
0. 1100*01
0.1120*01
0. 1130*01
0. 1150*01
0.1160*01
0. 1 170+01
0.1170*01
0. 1170*01
0.1160*01
0.1190*01
0. 1190*01
0.1200*01
0. 1210*01
0.1220*01
0.1230*01
0. 1240 + 01
0.1250*01
0. 127C+01
0.1290*01
0.1300*01
0. 1300*01
0.1310+01
0. 1320*01
0.1330*01
0.1340*01
0. 1350*01
0.1360*01
0.1370*01
0. 1360*01
0.1400*01
0. 1420*01
0.1430*01
0.1410*01
0. 144C+01
0.1450+01
H.P. POS (CM)
7.79
7.83
7.86
7.91
7.97
8.05
8. 14
8.25
8.36
8.46
8.50
8.53
8.56
8.60
8.66
8.70
B. 74
8.80
8.86
8.94
9.03
9.14
9.27
9.40
9.46
9.50
9.56
9.62
9.67
9.73
9.80
9.87
9.97
10.08
10.21
10.33
10.39
10.43
10.48
10.54
H.F. SOCT(CB)
-0.8620*02
-0.8890+02
-0.9250*02
-0.9700+02
-0. 1030*03
-0.3230*03
-0.5730*03
-0.5740*03
-0.2720*03
-0. 1510+03
-0.1130+03
-0. 1070+03
-0.1020103
-0.9550+02
-0.0980+02
-0.911D+02
-0.9260+02
-0.9440+02
-0.9560*02
-0.9790*02
-0.1860+03
-0. 3360*03
-0.2020*03
-0.9880*02
-0.9160*02
-0.0950*02
-0. 8560*02
-0.8570*02
-0.8750*02
-0.8970*02
-0.9210*02
-0.9420+02
-0.9510*02
-0.2350*03
-0. 1940+03
-0.9970+02
-0.9300+02
-0.8980+02
-0.8660+02
-0.8200+02
RUNOFF (CM)
0.5130+00
0. 5180*00
0.5240+00
0.5310+00
0.5400+00
0.5520+00
0.5660*00
0.5830*00
0.6040*00
0.6160*00
0.6230*00
0.6280*00
0.6320*00
0.6390*00
0. 6480*00
0.6550*00
0.6620*00
0.6700*00
0.6800*00
0.6930*00
0.7070*00
0.7250*00
0.7460*00
0.7670*00
0.7770*00
0.7830*00
0.7920*00
0. 8040*00
0.8110*00
0.8210+00
0.8320+00
0.8450+00
0. 8600+00
0.8780+00
0.9000+00
0.9210*00
0.9330+00
0. 9400+00
0.9470+00
0.9580+00
PRECIP(CH)
0. 1580*01
0.1590+01
0.1600+01
0. 1620+01
0.1630*01
0. 1660*01
0.1680+01
0.1720*01
0.1750+01
0.1780+01
0. 1790+01
0. 1800+01
0.1810*01
0.1820*01
0. 1840*01
0. 1850*01
0.1860*01
0.1880+01
0. 1900+01
0.1920+01
0. 1950*01
0.1980*01
0.2020*01
0. 2060*01
0.2080+01
0.2090+01
0.2100*01
0.2120*01
0.2110*01
0.2160+01
0. 2180+01
0.2200+01
0.2230+01
0.2260+01
0.2300+01
0.2340+01
0.2360+01
0.2370+01
0.2390+01
0.2410+01
PtUX (CM/SBC)
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3 350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0.3 350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.3150-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-------
241
2't:'
241
2 4 'I
245
2 46
247
24U
240
2V)
2ril
2r>u
2r>7
2M
2 VI
260
2f>\
2f,2
261
2 fi'l
2r'.r>
Jof.
2t(,
2 17
2'lrt
2')'l
300
2 '1 1 . ?.
2 'H. 0
24',. 1
2<)7.«,
TOO. >
301.iI
10 7. 2
31 1. II
316. i
3111.5
3 19. -I
J 2 1 . 0
322.'!
124. 1
325. d
32H.O
310.6
3 n. a
317. 1
141.4
117. J
1S3._>
3*56. r»
358.4
160.6
361.2
364.8
366. 8
369.2
372.0
375.0
370.5
3H2. 1
3H7.7
3 91. 1
392.')
3<>4\ 1
396.4
39
417.0
4 IH. b
•440.6
442.9
445.U
1<*!). >
111. 2
'»S7.')
463.6
0. 1/6T-Q2
0. J7(l6-d2
0. 176D-02
0. 1770-02
0. 3740-02
0. 3770-02
0. 3740-02
0.3740-02
0.3730-02
0.3720-02
0.3760-02
0.3790-02
0.366D-02
0. 3400-02
0. 3330-02
0. 3740-02
0.3710-02
0.3740-02
0.37113-02
0.3720-02
0. 371D-02
0.3720-02
0.368D-02
0. 3740-02
0. 3110-02
0. 370D-02
0. 371D-02
0.3710-02
0.3720-02
0.3710-02
0. 370D-02
0. 3690-02
0.3 700- 02
0.3600-02
0.. 1660- 02
0.324D-02
0.3720-02
0. 3690-02
0.369D-02
0.3670-02
0. 3680-02
0. 3680-02
0.3690-02
0. 3670-02
0.3690-02
0.367D-02
0. 3690-02
0. 3670-02
0.36(10-02
0.3690-02
0. 3680-02
0, 3380-02
0. 3660-02
0. 3660-02
0.36flO-02
0. 1660-02
0. 368U-02
0. 3670-02
0. 36rtn-02
0. 3650-02
0.146C*01
0. 146D»01
0.1470*01
0. 14EE+01
0.1490*01
0. 150C*01
0. 1520*01
0.1540*01
0. 1550*01
0.1560*01
0. 1570*01
0. 157D*01
0.1570*01
0. 1580*01
0.1590*01
0. 159E*01
0. 1600*01
0.1620*01
0. 1630*01
0.1640*01
0.167D*01
0. 1690*01
0.1700*01
0. 1710*01
0.1720*01
0.1730*01
0. 1730*01
0.1740*01
0.1750*01
0.1760*01
0.1770*01
0. 1760*01
0.1800*01
0. 1820*01
0.1830*01
0.1830*01
0. 1840*01
0.1850*01
0. 1860*01
0.1870*01
0.1870*01
0. 1880*01
0.1900*01
0. 1910*01
0.1920*01
0.1940*01
0. 19£D*01
0.1970*01
0. 1970*01
0.1960*01
0.1990*01
0. 2000*01
0.2000*01
0. 2010*01
0.2020*01
0.2030+01
0. 204C+01
0.2060*01
0. 2070*01
0.2090*01
10.62
10.»i7
10.73
10.79
10.87
10.95
11.06
11.10
11.30
11.36
11.40
11.43
11.47
11.52
11.56
11.62
11.69
11.77
11.87
11.98
12.14
12.30
12.39
12.44
12.50
12.57
12.61
12.67
12.73
12.81
12.88
12.98
13.09
13.23
13.32
13.36
13.40
13.46
13.54
13.60
13.66
13.73
13.81
13.91
14.02 '
14.15
14.27
14.34
14.31)
14.42
14.40
14.54
14.58
14.63
14.70
14.77
14.06
14.97
15.10
15.25
-0.8450*Q2
-0.8650'* 02
-0.8880*02
-0.9090*02
-0.9290*02
-0.9360*02
-0. 1950*03
-0. 1830+03
-0.1020*03
-0.8790*02
-0.8690*02
-0.8540*02
-0.8430*02
-0.8160*02
-0.8290*02
-0.8370*02
-0.8680+02
-0.8990+02
-0.923D+02
-0.9240+02
-0. 1960+03
-0.8590*02
-0.6530+02
-0.835D+02
-0.8100*02
-0.8040*02
-0.8310+02
-0. 8560+02
-0. 8820+02
-0.9050+02
-0.9230*02
-0. 9140+02
-0.1950+03
-0.1190+03
-0.9390*02
-0.8860+02
-O.B57D+02
-0,8260*02
-0.7910*02
-0.8240*02
-0.8500+02
-0.8780+02
-0.9040+02
-0.9220*02
-0.1200+03
-0. 1730+03
-0.9850+02
-0.8560+02
-0.8U60*02
-0.8340+02
-0.8160+02
-0.8170+02
-0.8200+02
-0.8480+02
-0.8810+02
-0.9190*02
-0.9560+02
-0. 1000+03
-0.4040+03
-0.5260+03
q. 9710+OQ
0.9" 790* 00'
0. 9880*00
0.1000*01
0.1010*01
0. 1030*01
0. 1040*01
0. 1060*01
0.1090*01
0. 1100+01
0. 1100+01
0.1110+01
0.1110*01
0.1120*01
0.1130*01
0. 1140+01
0.1150+01
0. 1170+01
0.1160+01
0. 1200+01
0. 1230+01
0.1260*01
0. 1270+01
0.1280*01
0. 129D+01
0. 1300+01
0.1310*01
0. 1320+01
0. 1330*01
0.134D+01
0. 1360+01
0.1370+01
0. 1390+01
0.1420+01
0.1430*01
0. 144D+01
0. 1450+01
0. 1460+01
0.1470*01
0.1480+01
0. 1490 + 01
0.1510*01
0. 1520*01
0. 1540*01
0.1560*01
0. 1580+01
0.1600*01
0. 1610*01
0. 1620*01
0.1630*01
0. 1640*01
0. 1650*01
0. 1660*01
0. 1670*01
0.1600*01
0. 1690*01
0.1710*01
0. 1720+01
0. 175D+01
0.1770+01
0.2(130+01
0.2440*01
0.2460*01
0.2480*01
0.2500*01
0.2530+01
0.2560+01
0. 2600+01
0.2640*01
0.2660+01
0.2670+01
0.2680*01
0.2690*01
0.2700+01
0.2720+01
0.2740+01
0.2760*01
0.2780+01
0.2810+01
0.2850+01
0.2900+01
0. 2950+01
0.2970+01
0. 2990*01
0.3010 + 01
0.3030+01
0. 3040+01
0. 3060+01
0.3060+01
0.3100*01
0.3130+01
0. 3160+01
0.3190+01
0. 3230+01
0. 3260+01
0.3280+01
0.3290+01
0.3310+01
0. 3330+01
0. 3350+01
0. 3370+01
0. 3390+01
0. 3420+01
0.3450+01
0.3480+01
0.3520+01
0.3560+01
0.3580+01
0.3590+01
0.3610+01
0.3620+01
0.3640+01
0. 3660*01
0. 3670+01
0. 3690*01
0.3720*01
0. 3750*01
0.3780+01
0.3820+01
0.3870+01
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.335D-06
-0. 3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0. 3350-06
-0. 3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0. 3350-06
-0. 3350-06
-0. 3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0. 3350-06
-0. 3350-06
-0.3350-06
-0. 3350-06
-0. 3350-06
-0.335D-06
-0. 3350-06
-------
FINA1 I»SJ VMIIES
FTHHI. TOTAL WATER CONTEH1=
37.099R CM
0.0
0.-> 6(1 >Ur» 0-01
-ft. 1 >l
-ii.?661
-0.
- 0 . 1 116 1
-(>. '1902970 •(>'!
-0. II'102 970* 04
-0. '.652120*04
-0.5652120*04
-0. r>f>52 120*04
-0.Sf.52 120 + 01
-0.S652 120+04
-0.5652120*04
-0.5652120*04
-0.".652120*04
-O.S652 120*04
0.0
0. ^6021150-01
-0. •>. 661790* 00
-0.1646060*01
-0. 1(161810*04
-0.0903970*04
-0.5652120*01
-0.5652120*04
-0.5652 120*04
£? -0.5652120101
Cj -0.5652120*04
-0.5652120+04
-0.06<>212D»04
-0.5652120*04
-0.5652120*04
0. • 17 Hi 10-01
•0. 'i'*0704(J-0 1
0. M511 10- 01
•ft. 1)19600+00
0. 111111 30 + 01
•O.IIUH0540»04
0. H '102970 + 04
•0.8902970+01
0. 5652120+01
0.5652120*01
0. r>h5?120»01
0.56521 20»01
0. 5fjf»21 20* C1
0.5b521 20+04
0. fii:,S2120*04
0.5652120*01
0. 21.456 10*01
0.23716 10-01
0.5907010-01
0. 79511 10-01
0. 3)19600*00
0. 31U1130+01
0. 11(18(1510*01
0. B90>970*01
0. fH02970*04
0.5652120*01
0. 5652120*01
0. 5652120*01
0.5u5212D»01
0.5652120 + 01
0.5652120+01
0.5652120+01
0.5652120+01
0. 26156 10+01
-0. 5(lS37in-01
0. 1177070-01
-0. 1161800*00
-0. 1951430*00
-0. 7935760* C1
-0.8902970*04
-0.8902970*01
-0.0102970*01
-0.5652120*01
-0.5652120+01
-0.5652120*04
-0.565212C*04
-0.5652120*01
-0.5652120*01
-0.5652120*01
-0.5652120+04
0.0
-ft. 5853710-01
0. 3177870-01
-0. 1161800+00
-0.3951130*00
-0.7935760*01
-0.8902970*01
-0.8902970*04
-0.8902970*04
-0.5652120*01
-0.5652120*01
-0.5652120*01
-0.5652120*04
-0.5652120*04
-0.5652120*01
-0. 5652120+01
-0.5652120+01
0.0
-0. Ill 56030-01
0. 1580280-01
-O.?2fl7760*00
-0.5360190*00
-0.2038710*02
-0.8902970*04
-0.8902970*04
-0.8902970*04
-0.5652120+01
-0.5652120+04
-0.5652120*01
-0.5652120*04
-0. 5652120*01
-0.5652120*04
-0.5652120+01
-0.5652120+04
0.0
-0.1856030-01
0.1580280-01
-0.2287760+00
-0. 5360190+00
-0.2038710+02
-0.8902970+04
-0.8902970+01
-0.8902970+04
-0.5652120+04
-0.5652120*01
-0.5652120*04
-0.5652120+04
-0.5652120*04
-0.5652120+04
-0.5652120*04
-0.5652120*01
0.0
o. 450 m 10-01
- 0.998 1570- 01
-0.2171230*00
-0.8962710*00
-0.8396520*02
-0.8902970*01
-0.8902970*04
-0.5£52120+04
-0.5652120*04
-0.5652120+01
-0.5652120+04
-0.5652120+01
-0.5652120+01
-0.5652120+01
-0.5652120*01
-0.5652120*04
0.0
0,4507830-01
-0.9981570-01
-0.2171230*00
-0.8962710*00
-0.8396520*02
-0.8902970*01
-0.8902970*01
-0.5652120*04
-0.5652120*01
-0. 5652120*04
-0.5652120*01
-0.5652120*04
-0.5652120+04
-0.5652120*04
-0.5652120+01
-0.5652120*01
0.0
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
-------
OF JH»TI,TMTIOM "MR V!!. IT HP POli UST BATH
TINF (StCS.)
354.1 408.0 469.6
•1.0'J75t
0.0')50i
0.09251
F !J.O')OOt
O.OH751
(MIA). OH50f
SR'") 0.00251
0.0 1)00 *
0.0775f
0.07501-
0.07251
0.07001
0.0f.75t
0.0f»50i
0.0625T
0.06001
0.0'i75t
0.05501
0.0525*
0.05001
fl.<)4751
0.01)501
O.OH25J
0.0400J ***** *****
0.0175* ***** » *********** * ********** * *** ****
o.oisot * * *
0 . 0 125f *
O.OWOfr
0.0'>75i
0.03501
0.02251
4.02001
•J.OU5i
0.0 ISO 1
0.0 1251
O.OIOOf
0.00751
'K0050J
0.0025t
0.0 00 Of — -J — ._-_— j __——____—____
lily.1* 244,6 299.4
1. 4 ^
i
i
^
i
1
•i
1
j
i
j
.
*
•J
f
f
3
j
I
.
il
j
X
j
^
* * ********** * ********** ** ********* ** f
* j
* i
I
£
.j
.j
,
I
1
i
X
X
i
354.1 408.8 463.6
-------
n .IB
=•;.».
COIIVKHGRMC
<»7(..
479.
4-i>?
. 16 7D- 0?.
. 154 D-O'J
. 16 6 n- 0 >
.3570-02
. 16 ft IV- 02
. 1560-02
. 1650-02
. 1550-02
0
0
0
0
0
0
0
0
0
0
0
0
.2140*01
.2150*01
.2160*01
.2160*01
.2170*01
.2180*01
.2180*01
.2200*01
.2210*01
.223C*01
.2250*01
.2280*01
KH
0.
W¥f V,
IBOPtlM
f.
li.
pos w.
41
-0.
F, SHOT
2l>70»03
STFP
303
STEP 104
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1830*01
1040*0 1
1850*01
1860*01
1870*01
1080*01
1890*01
1900*0 1
1920*01
1950*01
1980*01
2010*01
15.
15.
15.
15.
15.
15.
15.
16.
16.
16.
16.
16.
58
65
70
76
80
64
91
01
11
23
41
63
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
1190*03
109l>*03
1020*03
9030*02
990D«02
9970*02
1010*03
1230*03
4660*03
7840*03
1040*04
1050*04
304
305
106
307
308
309
310
311
312
313
314
315
CUNVEIIGP.NCR SOT ACHIEVED IH TIME STEP
316
r.2J. 0. 1650-02 0.2310*01 0.2050*01
16.83 -0.7830*03
CONVEflGK t£K NOT ACHIEVED IH TIME STFP
317
K)
O
Ol
con VK n<; BUCK nor ACHIEVED IN TINE STEP 334
V)«. 0.3660-02 0.2590*01 0.2400*01 18.84 -0.3330*03
316
530.
515.
517.
518.
'»<«) .
S4J.
r>'l'l .
'» /O-O?
.3660-02
. 1640-02
. 1640-02
.1550-02
. 1660-02
.1650-02
. 1650-02
. 1660-02
. 1650-02
HOT ACIIT
.3640-02
. 1650-02
.3540-02
0
0
0
0
0
0
0
0
0
0
.
—
.
•
m
,
B
»
^
*
2340*01
2350*01
2360*01
2370*01
2380*01
2380*01
239D»01
2400*01
2410*01
2420*01
0.2430*01
0
0
0
—
a
-
RVED
0
0
0
.
.
2440*01
2460*01
2480*01
IN TIME
2500*01
2530*01
2560*01
0.
0.
0.
0.
0.
0.
0.
0.
0.
2090*01
2100*01
2120*01
2120*01
2130*01
2140*01
2150*01
2160*01
2180*01
0.2180*01
0.
0.
0.
0.
2200*01
2220*01
2240*01
2260*01
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
17.
03
14
20
25
30
36
40
47
55
60
67
77
17.89
18.
04
-0.4000*03
-0.2360*03
-0. 1850*03
-0. 1550*03
-0. 1230*03
-0.1150*03
-0. 1070*03
-0.9780*02
-0. 9660+02
-0.9600*02
-0.9490*02
-0.9440*02
-0.9470*02
-0.2090*03
317
318
319
320
321
322
323
324
325
326
327
328
329
330
STIP 331
0.
0.
0.
2290*0 1
2330*01
2370*01
18.
18.
21
41
18.66
-0.5520*03
-0.7080+03
-0.565D*03
331
332
333
334
-------
CCHlMITATIOUJi FOR TTflK STEP 315
NOOKS, OEM IIS » Nl) lUfiTIIPR CGNT JOT'S
1
H
15
.?.'
71
If,
41
SO
c>>
r,u
?i
7H
*)r»
r ti pur
PRE vrr
0.0 0.3 IM 2 0.1 0.3372 1 0.8 0.1373
1.0 ,1.1172 9 3.5 0.1372 10 4.0 0.1373
6.5 0.3171 16 7.0 0.3170 17 7.5 0.3170
12.0 0.1151* ?3 13.0 0.3346 21 14.0 0.1329
>2.0 11.2005 13 24.0 0.2000 31 26.0 0.2000
40.6 0.2000 J7 45.7 0.2000 18 48.3 0.2000
60.0 0.1041 44 65.0 0.1041 45 70.0 0.1011
15.0 0.1041 51 100.0 0.1041 52 105.0 0.1041
110.0 0.1 0«H >U 135.0 0.1041 59 140.0 0.1041
165.0 0.1041 CS 170.0 0.1041 66 175.0 0.1011
200.0 0.1011 72 205.0 0.1041 73 210.0 0.1011
215.0 0.1041 79 210.0 0.1011 80 215.0 0.1011
275.0 0.1H43
VfM.IIME= . flfl50-02 WEI LBN(3TH = .6150-01
MIS IINCIIANURD NODE MAS 29
I'RKIHOTBr UNCHANGED MODE HAS 31 TIME
K i)l)l V
•» r.n
' POSITION OF WETTING FBONT= 18.08 CM SUCTION
TI HK CROH START* 600.0 SECS
IHFIL !!ATR= 0. 3639D-02 CM/SEC IIIFIL VOL=
HATH KATR 0.8310D-02 CB/SIC EXCESS RAIN=
1 1.2
11 1.5
18 8.0
25 15.0
32 28.3
39 r.O.H
46 75.0
53 110.0
60 145.0
67 180.0
74 215.0
81 250.0
STEP 335
AT WETTING
0.3373
0. 3371
0.3371
0.3273
O.?000
0.2000
0.1041
0. 1041
0.1011
0. 1041
0.1041
0. 1041
HAS
FRONT*
0.25930*01 CM
0.24110*01 CM
5 1. 6 0. 3372
12 5.0 0. 3373
19 9.0 0.3369
26 16.0 0. 3179
13 30.5 0.2000
40 51. 3 0. 1041
47 80.0 0.1041
54 115.0 0.1041
61 150.0 0.1041
68 185.0 0. 1041
75 220.0 0.1041
82 255.0 0. 1200
1.7 SECS
-0.28370*01 CH
TOTAL PBECIP=
FLUX (AT NODE
6
13
20
27
34
41
48
55
62
69
76
83
NEW
2.0
5.5
10.0
18.0
33. 1
51.8
85.0
120.0
155.0
190.0
225.0
260.0
0.3372
0.3371
0.3367
0.2899
0.2000
0.1041
0. 1041
0.1041
0.1041
0. 1041
0.1041
0.1843
TIME STEP
0.50040*01
79) =-
CM
7
14
21
28
35
42
49
56
63
70
77
64
2.
2.5
6.0
11.0
20.0
35.6
55.0
90.0
125.0
160.0
195.0
230.0
265.0
4 SECS
0.
0.
0.
0.
0.
0.
0.
0.
0.
3373
3372
3361
2640
2000
1041
1041
1041
1041
0.1041
0.
0.
1041
1843
0. 3350-06 CM/SEC
-------
L'
t
I
f
f
I
f
3
t
I
t
I
t
t
I
3
I
i
t
t
I
f
t
t
t
I
t
I
f
t
f
I
3
{
t
I
3
i
f
I
I
I
I
t
f
I
t
1
t
t
L"
9' S' ft* f I' I"
*
4
4
4
4
4
*
4
4
4
4
4
4
*
4
4
4
4
4
4
4
4
4
4
4
4
*
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
*
4
9' <;• I/' f I' I '
o-
JO "O'Jc
10 "li
J0*0ti II
to '^i
JO'Ol 1
JO '5Z
K)'0c d
fO Mjl
JO • 0 1 3
tlOA/'IOA) J.KJINOJ
sunuii
*n
(10
o'oo1)
II.I.HU
.i,tin,i.!4u;) u
,!. .101-
-------
-MHiMU I'iUtM: >;n*l'll OF SUCriCN AIIP
ii i
. VS. PPf'TH POII TfHK
600.0 3BCS5 OR
n.i7 HOURS
oo
SUCTION op pniFumi. (CBJ
? i
-10
DA At
*' a '/*
5. Of
E 10. Of
15. Of
P >0. 01
25. 0«
r 10. os
15.01
II 40. 0*
45. 0«
(CM) 50. OB
5 5. Of
60. Oi
65. Of
70. Of
10. Oi
(15 . Of
'10. Oi
')5. Oi
100. Of
10. Of
15. Oi
JO. Of
25. Oi
JO.Of
15. Oi
1'lO.Of
145.0i
150. Of
155. Oi
160. Of
165. 01
70. Of 1
/5. Oi 8
'(O.Ot 1
15.01 a
10. Of 1
115. Of 1
200. Of a
205. Of 1
T. 10. Oi (
11 5. Of 1
220. Oi 8
215 . Of (
2»o.0i a
215. Of t
1!40. Oi »
2'»5.0f 1
25!).0i «
255. Of
260. Of
265. Of- -
-10 -10 -10 0 10 10 10
* f. f
* e i
* e t
w t
£
J
j
J
f
J
1 i
» £
3
£
£
{
f
£
*
*
f
i
£
5
j
i
£
i
£
j
j
> J
> £
i i
> £
1 i
> £
» £
I {
j.
1 $
' ' £
' 1
£
J
> £
l ^
£
• r. j
* e t
-f ^ * 1 x , »___« x
«**»*** SUCTION
eceeeee POTBHTI&L
- 10
- 1"
- 10
-10
10
10
10
-------
Tl 1H I I,"M. !<*!"< 1IIF1I VCr, WMOFF V.t. POS W.F. 5MCI STEP
•i'HI, Q.i6'iit-o; 0,2590*01 n. 21110*111 lfl.au -o.21)40*03 335
5 r "?!>
30 1
3<)'>
101
30'l
JO 5
XI
J 1 "
MM
31 1
330
321
322
323
3J4
125
326
327
3 2 It
320
310
331
31.'
» 1)
3)4
3 15
•tint: (SKC)
457.0
463.6
470.3
!|75.fl
47fl. 7
400.4
4H2.7
404. 1
4H5.H
4fl8. 3
491.9
495.U
500.5
507. 2
515.3
523.0
530.5
5314.5
516.11
5311.4
540. 4
542.6
544.4
547.0
540.9
551.7
554.4
55U. 2
562. I)
Shll.4
574. 7
3 U 2 . 4
591.6
501). 3
S 0 0 . >)
INFII. n*TK(C«/S)
0.3680-02
0. 3650-02
0.3670-02
0.3660-02
0.3680-02
1 0.3680-02
0.3660-02
0.3670-02
0.3640-02
0.3660-02
0.3670-02
0.3660-02
0.3660-02
0. 3650-02
0.3650-02
0. 3650-02
0.3670-02
0. 3670-02
0.3670-02
0.36BO-02
0.3670-02
0. 3660-02
0.3640-02
0.3640-02
0. 3650-02
0.3660-02
0.3650-02
0. 3650-02
0.3660-02
0. 3650-02
0. 3640-02
0. 3650-02
0. 3640-02
0.3660-02
0. 364D-02
IIIFI1 VCl(CH)
0.2070*01
0. 2090*01
0.2120*01
0.2140*01
0.2150*01
0.2160*01
o.2ieo*oi
0.2170*01
o.2iec*oi
0.2180*01
0.2200*01
0.2210*01
0.2230*01
0.22£0*01
0.22£0*01
0.2310*01
0.2340*01
0.2350*01
0.2360*01
0.2370*01
0.2380*01
0.2360*01
0.2390*01
0.2400*01
0.24 10*01
0.2420*01
0.2430*01
0.2440*01 .
0.2460*01
0.2460*01
0.2500*01
0.2530*01
0.2560*01
0.2590*01
0. 2590*01
H.P. POS (CM)
15.10
15.25
15.43
15.58
15.65
15.70
15.76
15.80
15.84
15.91
16.01
16.11
16.23
16.41
16.63
16.83
17.03
17.14
17.20
17.25
17.30
17.36
17.40
17.47
17.55
17.60
17.67
17.77
17.89
18.04
18.21
18.41
18.66
18.84
18.88
W.f. SUCTJCB)
-0.4040*03
-0.5260*03
-0.2670*03
-0.1190*03
-0.1090*03
-0.1020*03
-0.9830*02
-0.9900*02
-0.9970*02
-0.1010*03
-0. 1230*03
-0.4660*03
-0.7840*03
-0.1040*04
-0.1050*04
-0.7830*03
-0.4000*03
-0.2360*03
-0. 1850*03
-0.1550*03
-0. 1230*03
-0.1150*03
-0.1070*03
-0.9780*02
-0.9660*02
-0.9600*02
-0.9490*02
-0.9440*02
-0.9470*02
-0.2090*03
-0.5520*03
-0.7000*03
-0.5650*03
-0. 3330*03
-0.2840*03
BUHOFF(CM)
0.1750*01
0.1770*01
0. 1800*01
0.1830*01
0.1840*01
0. 1850*01
0.1860*01
0. 1870*01
0. 1880*01
0.1890*01
0. 1900*01
0.1920*01
0. 1950*01
0. 1980*01
0.2010*01
0.2050*01
0.2090*01
0.2100*01
0.2120*01
0.2120*01
0.2130*01
0.2140*01
0.2150*01
0.2160*01
0.2180*01
0.2180*01
0.2200*01
0.2220*01
0.2240*01
0.2260*01
0.2290*01
0.2330*01
0.2370*01
0. 24011*01
0.2410*01
PHRCIP(CM)
0.3820*01
0.3870*01
0.3920*01
0.3970*01
0.3990*01
0.4010*01
0.4030*01
0.4040*01
0.4050*01
0.4070*01
0.4100*01
0.4130*01
0.4170*01
0.4230*01
0.4300*01
0.4360*01
0.4420*01
0.4460*01
0.4480*01
0.4490*01
0.4510*01
0.4530*01
0.4540*01
0.4560*01
0.4590*01
0.4600*01
0.4620*01
0.4660*01
0.4690*01
0.4740*01
0.4790*01
0.4860*01
0.4930*01
0.4990*01
0.5000*01
FLUX (CM/SRC)
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.33fO-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0. 3350-06
-0.3350-06
-0.3350-06
-------
PINAl P:H
FfNAI TOTAl WATER COMTFNT*
37.5907
0.0
a. '"1406 in -o I
-0. ni.l30n»00
O.ri0n 100D-02
-0.4Mi1600*0<)
-0. 1"»43160*02
-0.5652120*04
-0.^,652 120*04
-O.'i(>53 120*1X1
-0.51.52120*04
-0.5652 12l>*fl4
-O.r>f,52l2l>«04
-O.S6S2l2P»0'i
-O.rb5212l)*04
-0.')65212I>HHI
n..j
-0.4 169430-01
0. 3!lflh<55n-U1
0. 1 27 !<>:> [>»<>«
-0. 4 '>0 ft 200 tOO
-o.i
-i). '
it. ;»a i i7i»~f i
-n. ft /iJMn-fii
-o. MM. nntoo
-o. y.?m.cmn- c.2
-0. '114/090*00
-0. 510^550*02
-0. <11)0.!070»0i|
-0. !VJO>97n*Oi|
-O.r»6'"i.i120*0lt
-0.5652120*0'* -
-o.r>ft';2 120*01
-o.-^sziantoi
-O.r»6'i212n»0'l
0.56521 2D»04
0.5652120*04
0. 5652120*04
0. 56521 20*0«
0.5652120*04
0.5ij5?1 20*04
(». 26456 10*04
0. 12654 OD- 01
0. 1212650-01
0.9442210-02
0. 1h4}84n»00
0. J0564 30*00
0.'IHO?190*02
0. «'I02970«0'I
0.«y0297D*04
0. 5652120*04
O.S65212D»04
0.5652120*04
0.5652120*04
0.5652120*04
0.5652120*04
0. 5652120*04
0.5652120*04
0.26456 10*04
-0.40«iOSflt)-01
0. 1972690-01
-0. 347(1010-02
-0. 1231150«nc
-0. 1094630*01
-0.7254260*C3
-0.0902970*04
-0.8902970*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
0.0 .
0.2776870-C1
-0.5850870-01
-0.8075040-01
-0. 1217620*00
-0.1383330*01
-0.582169D*03
-0.0902970*04
-0.8902970*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
0.0
-0.3631260-01
0.1037560-01
-0.269(1010-01
-0.2482780*00
-0.2541050*01
-0.8850790*04
-0.8902970*04
-0.8902970*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
0.0
0.2007580-01
-0.6162540-01
-0.6492740-01
-0. 1783650*00
-0.2213760*01
-0.8040080*04
-0.8902970*04
-0.6902970*04
-0.565212D*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
-0.5652120*04
0.0
0. 332?'J2R-01 PSI
-0.9975270-01 PSI
-0.4531790-02 PSI
-0. 369I46UD»00 PSI
-0.5154430*01 Piir
-0.8902'I7D«04 PSI
-0.8902970*04 PSI
-0.5652120*04 PST
-0.5652120*04 PSI
-0.5652120*04 PSI
-0.5652120*04 PSI
-0.5652120*04 PSI
-0.5652120*04 PSI
-0.5652120*04 PSI
-0.5£52120«04 PSr
-0.565212D*04 PSI
0.0 PSI
-0.4749600-01 PSI
0.2408120-01 PSI
-0.95H173D-01 PSI
-0.2801940*00 PSI
-0.5144860*01 PSI
-0.0902970*04 PSI
-0.8902970*04 PSI
-0.5652120*04 PSI
-0.5652120*04 PSI
-0.5652120*04 PSI
-0.5652120*04 PSI
-0.5652120*04 PSI
-0.5652120*04 PSI
-0.5652120*04 PSI
-0.5652120*04 PSI
-0.5652120*04 PSI
0.0 PSI
-------
'.iliAPII Hf INni-Wl'ION KATE VS. IIW. FOR US? H/UH
TfMF
H 17. -I MOf,! 5111.8 «i(U.2 571.6
0.1 0001 3 — __j _________________ — j — _________________ j_____ ______
i».0'»75f
0.00501
0 » 0 *^_? fi i '
f v 1 (\.\ A *
0.0075*
'0. 0 0501
0.08251
0.0 BOOT
0.07501
0.07251
0.07001
0.06751
0.06501
0.06251
0.0600}
1.05751
0.05501
'1.05251
0.05001
0.01751
0.0i|501
•1.04251
0.04001
0.0175C * * * +* *** * * * * * * * **** *** ****** * * *
0.0150}
0.0 1251
0.01001
0.02751
0.02501
0. 0 2251
1.02001
0.01751
0.0 1501
0.0 1251
0.01001
0.00751
•1.00501
157. «l 1186.3 5111.8 5M3.2 571.6
600.0
_
f
J
1
i
i
*
I
X
.
.
I
i
^
1
f
1
•I
i
s
-
•J
* * f
•I
_
£
I
1
i
I
1
.
i
X
X
i
1
600.0
-------
MEIN NUMERICAL MODEL
Cols
1st
Card
2nd
Card
3rd
Card
4 tli
Card
Next
Cards
Next
Card
Next
Cards
1-5
K
Y
L
E
R
6-10
T
OJHJN
M C M A X
1
L
0
M-h
W E T
3
7
3
1) V IDE
1
6
11-15
CJA
I
16-20 | 21-25 26-30 31-35 J 36-40 41-45 j 46-50 j 51-55 56-60 j 61-65 | 66-70 71-75 76-80 1
S T Y P E
sjsjoJNJ |i| jo jo
1
1
u|B{LEJ|,.|AJY|Eja|||| J!|| tlV"
KSAT(l) K F A CJ KNODE
0j.|3[6J4|E
-1M2 ILL! 1MJ* M*
N j S A T
0J
P S I A
5
1
1
-
0
5
4
9
0
3
6
0
0
0
6
0
0
6
0
2
0
0
0
.
.
0
•
0
9
5
0
0
0
0
3
•
2
0
P S I A L
5
1
1
0
5
4
0
3
6
0
0
4
0
6
0
u
.
•
0
4
0
0
1
HC
«
C
t
t
0
y
•
•
.
0
I
1
3
3
3
0
9
9
3
3
7
0
4
a
4
7
0
0
9
0
2
3
0
_y
6
M C L
0
0
0
0
0
0
0
8
8
0
">
5
0
5
7
'
HATER RETENTION CURVE FOR TOP LAYER
-------
MEIN NUMERICAL (CONT)
Coib.l t-5 | 6-10 j 11-15 j 16-20 | 2]-2S [26-30 j 31-35 | 36-40 | U-I? j 46-50 | 51-55 | 56-60 } 61-65 [66-70
71-75
76-80
Next
Card
Next
Cards
Next
Card
Next
Cards
-
9
0
0
2
0
0
.
0
1
0
«
0
P S I B
i
1
1
_
0
A
A
9
0
6
0
V
0
6
1
0
0
0
5
2
0
0
0
0
9
8
5
0
0
0
3
5
0
5
1
1
P
0
4
3
S
d
t
i
I
0
A
7
B
0
i>
A
L
0
.
A
8
0
1
]
-
0
0
0
.
.
1
i
2
a
8
2
2
A
0
I
3
0
_LLi
6
11 Y C 0 N
•
3
3
1
3
1
1
•
.
•
3
3
3
3
0
0
A
A
7
A
0
0
E
E
E
E
E
E
-
-
7
3
0
0
0
0
6
9
8
1
0
0
_
1
0|0!>;
11 Y
2
2
1
•
.
.
6
6
J
1010
CON1.
7
7
0
E
E
E
-
-
-
7
0
0
6
9
8
WATER RETENTION CURVE FOR BOTTOM tAYER
SUCTION VS HYDRAULIC CONDUCTIVITY CURVE FOR TOP LAYER
-------
ME1N NUMERICAL (CONT)
Cola.
Next
Card
Next
Card
Next
Cards
1-5
-
9
0
0
2
0
0
6-10
0
1
0
0
9
0
.
H » I I
i
8
5
.
11-15 j 16-20
3
1
1
B
.
0
0
0
5
0
0
E
E
E
-
it
It
0
1
0
0
-
1
010
E| |0|0
21-25 j 26-30 | 31-35
36-40 j 41-45
46-50 I 51-55 1 56-60 61-65 66-70 71-75 76-80 j
(
SUCTION VS HYDRAULIC CONDUCTIVITY CURVE FOR BOTTOM LAYER
2
2
5
7
2
C
0
2
0
1
5
5
0
•
•
.
0
0
6
8
0
0
0
0
0
0
0
0
0
2
2
4
5
e
i
5
0
2
5
5
0
0
5
t
•
.
•
.
4
5
7
0
0
0
0
t
t
0
0
0
0
Z ( I )
2
2
4
6
8
3
6
0
3
8
0
5
5
0
f
•
.
•
8
0
2
0
0
0
0
0
0
5
0
0
0
0
.
•
.
•
2
2
5
6
9
4
6
1
3
0
5
0
0
5
»
•
•
*
2
5
8
0
0
0
0
0
0
0
0
0
0
0
2
2
5
7
9
4
7
1
4
1
0
5
5
5
.
•
•
*
•
6
0
3
0
0
0
0
0
0
0
0
0
0
0
-------
MUIN NUMERICAL (CONT)
Co J s. I 1-5 I 6-10 I 11-15 I 16-20 | 21-25 [ 26-30 [^ 31-35 | 36-40 [ 41-45 ) 46-50 j 51-55 j 56-60 j 61-65 [ 66-70 J71-7 5 [76-80
Ul
Next
Card
Next
Cardt
Next
Card
Next
Cards
Next
Card
I|N P P s i
4.
01
t
d
0
•
2
2
1
1
0
0
0
0
0
0
4
4
0
0
1
I
_
1
2
5
0
0
(3
0
•
2
2
1
1
it
0
t
2
t
t.
^
0
I!
0
1
0
0
0
0
0
2
2
1
1
0
0
0
8
0
0
A
A
0
0
1
3
t
0
0
0
•
•
2
2
1
1
0
0
0
8
t
0
4
4
0
0
1
3
I N I TM
0
0
0
0
•
•
2
2
1
1
0
0
0
8
0
0
4
4
0
0
1
3
C ( I )
*
•
0
0
0
•
•
2
2
]
0
0
0
0
0
4
0
0
1
0
0
0
•
•
2
2
1
0
0
0
(9
0
4
0
0
1
0
0
t
•
•
2
:
2
1
•
0
0
0
0
0
4
0
0
1
0
0
0
•
•
2
2
1
0
0
0
0
0
4
0
0
1
«
0
0
•
•
2
]
1
0
0
0
0
4
4
0
1
1
RA1NN TIMR
0
0
0
0
0
.
•
8
0
0
0
0
3
0
0
0
0
4
0
0
0
0
E
E
E
E
E
-
0
0
0
0
0
2
0
0
0
0
D T MAX
2
»H.
0
9
9
9
9
9
9
9
9
9
5
9
9
9
5
9
9
9
T M A X
1
6(^0
0
2
9
9
9
0
0
9
9
9
.
.
.
f
0
0
9
9
9
THIN
i
M.«
T I M E ( 1 )
0
.
4
-------
MEIN NUMERICAL ( COMT)
-I .. '~5 i 6-1Q j U-I5J 16-20 | 21-25 } 26-30 j 31-35 | 36-40 | 41-45 j 06-50 | 51-55 j 56-60 { 61-65 [66-70 } 71-75 } 76-80
Next
Card
Next
Card
Next
Card
Last
Card
M
0
I
1
I
0
A T K U M
PUPS I
PR S T P
KG R
IIM.I*
-------
SECTION 7
ILLINOIS AQUIFER SIMULATION MODEL
The Illinois Aquifer Simulation Model is an advanced simulation model
which, given the proper input parameters, will simulate the rise and fall of
the water table. Specifically, the program will compute head values over a
two-dimensional region for an indefinite number of time steps. Thus, this
program deals with the saturated region of the watershed. It is a classic
hydrogeological model.
The main body of this program is a numerical solution to the Partial
Differential Equation:
6x 5y_ Sy 6t ~ >
Here T = T(x,y,t,h) is the aquifer transmissivity , h = h(x,y,t) is the hydraulic
head, s = s(x,y) is the storage coefficient and q = q(x,y,t) is the recharge
rate. Also, x and y are the spatial coordinates and t is the time.
Some of the output of the Mein Numerical Model, namely the recharge rates,
can be used as input into the model. Also, the output of this model could be
contoured by the Surface II Contouring System.
INPUT: FLUX - Fluxes for each soil type
Land contour
The following for each node:
C - Conductivities in both directions
S - Storage coefficients
H - Initial head
Q - Recharge rates
217
-------
OUTPUT: DRATE - Discharge rates
DISCH - Cumulative discharge
HELEV - Heads plus elevations for each node
REFERENCE: T. A. Prickett and C. G. Lonnquist. 1971. Selected digital
computer techniques for groundwater resource evaluation.
Illinois State Water Survey, Urbana, Bulletin 55.
218
-------
LIHOIS. AQUIFEB. SIMULATION. MODEL
0.1
0.2
0.3
0.4
0.5
1.
2.
3,
4.
5.
6.
7.
8.
9.
10.
11,
12.
13.
14.
15.
16.
17.
18.
19.
20.
21 .
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36 .
37.
38.
39.
40.
41 .
42.
43.
44.
45.
46.
47.
48.
49.
50.
//
/"
//
/«
//
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
1234567
123U5678901 2345678901234567890123*567890123U56789012345678901234567890123
//NN4XXXXX JOB (BEIQ1)
/*JOBPABM I=ILlGEi
EXEC FGCLG
/*JOBPARM FULLSKIPS
SIN DD *
ILLINOIS STATE iATEB SUBVEY BASIC AQUIFEB SIMULATION PBOGBAM
WITH VAEIABLE POMP AGE, CATEGORY PBINTOUT, COBEECTION FOB
SLOPING AQUIFEB, AND CBOSS SECTIONAL GBAPHS.
AUTHORS: T. A. PBICKETT AND C. G. LONNQUIST
MODIFIED BY:
BEIAN E. HEINBICH
OSDA-SEA-AB
HORTHEAST WAT2BSHED
BESEABCH CENT2E
110 BESEABCfl ED. A
ONIVEESITI PABK, PA.
16802
DEFINITION OF VAEIABLIS
AA,BB,CC,DD-COEFFICIENTS IN WATEE BALANCE EQUATIONS.
B(I OE J) PEACEMAN-BACHFOBD B ABBAY.
DELTA TIME INCBEMENTS, (DAYS)
D£LX(I) COLUMN INCEEMENTS (M) .
DELY(J) EOW INCEEMENTS (M).
DISCH CUMULATIVE DISCHAEGE FOE ENTIEE BUN (CU. M) .
DISCHT —CUMULATIVE DISCHAEGE AT END CF PBEVIOUS STEP (CU. M) .
DEATS -DISCHAEGS BATE FOE CUBE1NT TIME STEP (CU. M/DAI) .
FLUX(KC) FLUXES FEOM UNSATUEATED SOIL (M/DAY) .
G(I OB J) PSACEMAN-FACHFOBD G ABBAY
H (I,J) HEADS AT THE END OF TIME INCBBMENT (3) .
HELCf? (K,N)--CEOSS SECTIONAL HEADS FOB LAST FOUB TIME STEPS IS
¥HICH ESSULTS AEE BEING OUTPUTTED (M) .
HHfS1fQQ,IT-DEFAULT VALUES
HINT INITIAL TOTAL HATEB CONTENT (CU. M) .
HO(I,J) HEADS AT THE STAHT OF TIME INCEEMENT (M) .
HTOTAL TOTAL W AT EE CONTENT AT CUEEENT TIME STEP (CU. M) .
I MODEL COLUMN NUMBEB.
IOUT COUNTEB FOB ITCALP AEBAY.
IP(K) 1 COOEDINATZ OF PUMP K.
ITCALP (M) TIME STEPS IN WHICH THESE IS OUTPUT.
j MODEL EOW NUMBEE
JP(K) J COOBDINATE OF PUMP K.
LC(I) TOTAL LENGTH OF GBID IN COLUMN DIBECTION UP TO
NODE I (M) .
LCM(II) CUMULATIVE LENGTHS OF GEID IN COLUMN DIESCTION FOE
CATEGOEY PBINTOUT (M) .
LB(J) TOTAL LENGTH OF GBID IN BOW DIEECTION UP TO NODE J (H)
LRM(JJ) CUMULATIVE LENGTHS OF GBID 18 BOH DIEECTION FOB
CATEGOEY PEINTOUT (M) .
HC NO. OF COLUMNS IN MODEL.
NCC COLUMN DIBECTION LENGTH OF CATEGOBY PBINTOUT IN SPACES
NODESL NUHBEB OF NODES EACH SOIL COV EBS AND, THUS, EACH SET
219
-------
:LLIMOIS. AQUIFEB, SIMULATION. HODEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901:
OF FLUXES.
TOTAL NUMBER OF TIME STEPS IN WHICH THESE IS OUTPUT.
NUMBER OF PUMPS.
NO. OF BOWS IN MODEL.
ROW DIRECTION LENGTH OF CATEGORY PRINTOUT IN SPACES.
NUMBER OF BATES IN PUMPING SCHEDULE.
NUMBER OF ROWS WHICH ABE NOT RECHARGE AREAS OR
BOUNDARIES.
NUMBER OF SOILS WITHIN GRID AREA.
NUMBER OF TIME INCREMENTS PEE PUMPING CHANGE.
NO. OF TIME INCBEMENTS.
NUMBER OF HEAD CATEGORIES FOB CATEGOBY PBINTOUT.
PUMPING RATE KC AT WELL K (CU. M/DAY).
CONSTANT SITHDRAHAL BATES (CU. M/DAY) .
CUMULATIVE WITHDRAWAL OR RECHARGE UP TO CURRENT TIME
STEP (CU. M) .
STORAGE COEFFICIENTS FOB WATER COND (V OL/VOL) .
STORAGE FACTOR FOB WATER TABLE CONDITIONS (CU. M / M) ,
UPPER BOUND OF MAXIMUM HEIGHT OF LAND SURFACE ABOVE
AQUIFEB EASE AND CROSS-SECTIONAL GRAPH MAXIMUM. (M)
HEIGHTS OF LAND SURFACE ABOVE AQUIFER BASE IN MIDDLE
COLUMN OF GRID (M) .
AQUIFER TRANSMISSIVITY BETWEEN I,J AND I,J+1 (CU. M/DJ
JIFER TPANSMISSIVITY EETWIEN I,J AND 1+1, J (CU. M/DJ
CEGOBY NO. FOR HEADS BETWEEN TAB (2, N) AND TAB(2,N + 1)
AD VALUES FOB EACH CATEGORY IN CATEGORY PRINTOUT (M)
FORMAT CARDS-FOBMA (20A4).
NOUT (13).
ITCALP (13) .
PABAMETEB CABD-NSTEPS, DELT A,EBBOB (16, 2F6. 0) .
DEFAULT VALUE CABD-NC, MB, IT, S1 ,HH,QQ (2I6,4F6.0).
CATEGORY PRINTOUT DATA-NT,TAB (12, 13 (A 1 ,F5 .0} ) .
DELX (10F7.0) .
CSLY ( 10F7.0) .
POHP PARAflBNTEB CARD-NP, NSP, KRT, NSOILS (416).
FLOX FOE EACH SOIL {11X, (11F6.0) ) AND NODESL, IP, JP
FOR EACH SOIL (12X,15,1X, 1813) MIXED TOGETHEB SO
THE NODE INFOB. FOB EACH SOIL IMMEDIATELY FOLLOWS
THE FLUX FOE THE SAME SOIL.
MAXIMUM SURFACE HEIGHT-SHAX (F7.Q).
SUBFACE HEIGHTS-SUBF(10F7.0) .
ELEV (12F6.0) .
NODE CABDS-I, J,C(I,J, 1) ,C(I,J,2) ,S(I,J) ,H(I,J) ,
Q(I,J) (2I3,5P6.0).
B (A-H, 0-Z)
H(50,50) ,LC(50) ,LB(50) ,NC,NB
HO (50,50) , SF1 (50,50) ,Q(50,50) ,T (50,50,2),
1DL(53,50) ,DUMB1(2) , B(5Q) , DUMB 2 (2) ,G(50) ,VAP (20) , FOB MA (20,20) ,
| ,P (100,12) , ELEV (50,50) ,LCM(36) ,LBM (54) , C (50, 50, 2)
51.
co
j£ *
jr -3
^•3 *
Ct\
j" •
jr c
J -/ •
j- f
S7
J / *
58.
C Q
J f #
f.r:
ou »
f. 1
O 1 •
f *\
O^~.'
63.
A £l
C *+•»-
£C.
Q-/ •
66.
fiT
O-/ .
6:8 .
/2 Q
O -7 •
70.
7 1
/ ' *
72-
TJ*.
74...
75..,
7:6.,
77V
78..
79.,
80.
ffT.
82.
83.
84.
85.
86.
87.
88 .
89.
90.
91 .
92.
9-3.
94.
95.
96.
97.
98.
99.
1iQO .
101 .
102.
103.
104.
105.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c*<
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
H D___ _______
M D __ ________
II p/~_ ________
HCnTT __ _____
M T.. ________
P(K,KC)
3/T t\ ______
SF1 (I,J)
SM I Y_ _______
T (I, J,1)
T(I,J,2)
TAB(1,N)
TAB(2,N)
DATA FORMAT
e************
1ST CARDS
SEXT CARD
NEXT CABDS
NEXT CARD
NEXT CABD
NEXT CARDS
NEXT CARDS
SEXT CARDS
NEXT CARD
NEXT CARDS
NEXT CABD
NEXT CARDS
NEXT CARDS
NEXT CABDS
IMPLICIT R3A
COMMON H(50,
DIMENSION HO
1DL(53,50) ,DU
2IP(100) ,JP(1
220
-------
.LINCIS. AQUIFZB. SIMULATION,MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890122
106. 3 ,DELX(50) ,DEIY (50) ,FLDX (50), 3(50,50), TAB (2,20), BOS (120)
107. 4 ,BELCB(50,6),HELCB2(50,6) ,SUBF(50) ,aELCBG(50),ITCALP(12)
108. BEAL*8 LC,LB,LCH, LBM, LCHI,LBHI
109. BEAL C,S,TAB
110. INTEGEB DOT
111 . C
112. C TUBN OFF UNDEBFLOH TBIP
113. C
114. CALL EBBSET(208,256,-1,1)
115. C
116. C DEFINE INPUT AND OOTPOT DEVICE NUS8EBS
117. C
11R. IN=5
119. OUT=6
120. C
121 . C BEAD FOBHAT CABDS (20 CARDS)
122. DO 4 1=1,20
123. 4 READ(IN,5) (FOBMA(I,K) ,K=1, 20)
124. 5 FOBMAT(20A4)
125. C
126. C
127. C BEAD TI3E STEPS WHERE OUTPUT OCCUBS AND
128. C INITIALIZE ASSOCIATED INDICATORS.
129. C
130. READ(IN,410) NOUT
131 . 410 FOBHAT (13)
132. DO 420 M=1,NOUT
133. READ(IN,41Q) ITCALP(M)
134. 420 CONTINUE
135. ISTCOM=0
136. IOUT=1
137. C
138. C
139. C BEAD PABAHSTEB CABD AND
140. C DEFAULT VALUE CARD
141. C
142. READ(IN, 10) NSIEPS , DELTA, EBBOE ,
143. 1NC,NB,TT,S1,HH,QQ
144. 10 FOEMAT(I6,2F6.0/216,4F6.0)
145. C
146. C
147. C BEAD CATEG08I PPINTOUT DATA.
148. C
149. READ (IN, 450) NT, ( (T AB(I, J) , 1= 1, 2) ,J=1,NT)
150. 450 FOBMAT(I2,13(A1,F5.0) )
151. C
152. C
153. C READ GBID INTEBVALS.
154. C
155. READ(5,500) (DELX (I) ,1 = 1 ,NC)
156. BEAD(5,500) (DELI (J) , J=1,NB)
157. 500 FOBMAT(10F7.0)
158. C
159. C
160. C CALCULATE GBID LENGTHS ANE WICTHS.
221
-------
ILLIHCIS. AQUI1?IB. SIMULATION. MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
161. C
162. LC(1)=DSLX(1)/2.0
163. LR (1) =DELI{1)/2.0
164. DO 520 1=2, NC
165. 520 LC (I)=LC (1-1) + (DELX (I)+DELX (1-1)) /2.0
166. DO 530 J=2,HR
167. 530 LB (J)=LR(J-1) + (DELI (J)+DELY(J-1))/2.Q
168. C
169. C
170. C CALCULATE SIZE OF CATEGORY PRINTOUT.
171. C
172. IF (LC(NC) .ST.LB(NR)) GO TO 550
173. NRC=54
174. HCC=H8C*((LC(NC)-LC (1))/(LR{NB) -LB(1))) +0.001
175. IF (NCC.LE.36) GO TO 560
176. NCC=36
177. NRC=NCC * { (LE (NR) -LR (1 ) ) / (LC (NC) -LC (1) )) +0.00 1
178. GO TO 56C
179. 550 NCC=36
180. NRC=HCC*((LR (NR)-LR (1 )} / (LC (NC) -LC (1) ) ) +0.001
181. IF (NRC.LE.54) GO TO 560
182. NRC=54
183. NCC=NRC*((LC (NC)-LC (1 ) ) / (LI (NE) -LR (1) ) ) +0.001
184, 560 CONTINUE
185. C
186. C
187. C CALCULATE CATEGORY PRINTOUT GRID INCRMENTS.
188. C
189. LCM(1) = LC(1)
190. LCHI=(LC(NC)-LC(1))/(NCC-1)
191 . DO 570 11=2,NCC
192. 570 LCM(II) =LCM (II-1)+LCHI
193. LRH(1) = LR(1)
194. LRHI=(LS(NR)-LBO) )/(NHC-1)
195. DO 580 JJ=2,NRC
196. 580 LEM(JJ) =LRM(JJ-1)+LRMI
197. C
198. C
199. C READ PUMP PARAMETER CARD.
200. C
201 . READ(IN,1 1) NP,NSP, NRT^SOILS
202. 11 FORMAT(4I6)
203. IF (HP. EQ. 0) GO TO 700
204. C
205. C
206. C READ FLUXES AND COORDINATES FOB EACH SOIL, AND CONVERT TO PUMPING
207. C RATES.
208. C
209. DO 630 K=1,NSOILS
210. READ(5,600) (FLUX (N) , N=1 ,NBT)
211. 600 FORMAT (1 1X, (11F6.0))
212. READ(5,610) NODESL, (I P (N) , JP (N) ,N=1 ,NODESL)
213. 610 FORMAT(12X,I5,1X, 1813,/, (2413))
214. DO 620 N=1,NRT
215. DO 620 M=1,NODSSL
222
-------
[.IHOIS. AQUIFER. SIMULATION. MODEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901234
216. 62G P (H,N)=-FLUX(N) *DELX(IP(M) )
h7. 630 CONTINUE
;218. C
»19. C ECHO CHECK PUMP SCHEDULE CARDS
220. C
J21 . HRITE(OUT,14)
222. 14 FORHAT('1','PUMPING SCHEDULE ECHO CHECK1,//,' ',4X,'NODE1,8X,
b3. 2 'PUMPING RATES (CU. M/DAT)1)
>24. DO 12 I=1,NP
225. 12 WRITE (OUT,15) IP (I) ,JP (I) ,(P(I,K) ,K=1,NBT)
^26. 15 FOfiMATC ',216, 12F9.2)
227. 700 CONTINUE
228. C
230. C READ SUHFACE HEIGHTS.
231. C
?.32 . BEAD(5,730) SMAX
P3. 730 FORMAT(F7.0)
234. BEAD(5,500) (SURF (J) , J=1 ,N8)
235. C
236. C FILL ARRAYS WITH DEFAULT VALUES
»37. C
238. DO 20 1 = 1,JfC
>3<>. DO 20 J=1,NR
240. C(I,J,1)=TT
241. C(I,J,2)=TT
242. S(I,J)=S1
243. SF1 (I,J)=S(I,J) *DELX(I) *DELI (J)
244. H(I,J)=HH
245. HO(I,J)=Hfl
246. DL(I,J)=0.0
47. G(J)=0.0
48. B(J)=0.0
49. Q(I,J)=QQ
250. 20 CONTINUE
251. SF11 = SF1(1,1)
252. C
253. C FILL DUMMY AFBAYS HITH ZEROS BECAUSE THE (J-1) SUBSCEIPTS IN STS'T
25U. C 160 AND 270 SILL CALL THE LAST VALUE IN THESE AEUATS WHEN J=1.
^55. C
|256. DO 21 K=1,2
257. DUMB1 (K)=0.0
^58. 21 DOMB2(K)=0.0
259. C
^60. C
261. C READ AND ECHO CHECK ELEVATION CARDS FOR SLOPING AQUIFER.
262. C NUMBER OF ELEV CARDS=NR.
263. C
264. WRITS (OUT,46)
265. 46 FOBMATC 1', 'ELEVATION CARD ECHO CHECK (H)')
266. DO 1010 J=1,NR
267. PEAD(IN,980) (ELEV (I, J) , 1=1, NQ
268. 980 FOBMAT(12F6,0)
269. WRITE (OUT, 1006) J, (ELEV (I, J) , 1= 1, NC)
270. 1006 FOBMATC « ,16, (12F6 .1 ))
223
-------
[LXIHCIS.AQUIfEB. SIMULATION. HODEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
30Q.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
31,1.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
1010 CONTINUE
C
C
c
c
25
39
40
C
C
C
c
c
c
c
c
c
c
c
c
c
c
READ BODE CARDS (OP TO 500 CABDS) AND ECHO CHECK.
WRITE (OUT, 25)
FORHAT('1','NODE CABD ECHO CHECK',//,' ', IX, 'NODE',
2 2X,'COL PEBMB',2X,»STOB F ACT' ,6X,» HEADS' ,4X, 'WITH
3 ,' (CTT. H/DAY/SQ. M)',3X,'(CU. H / H) ' , 6X,» (fl) ' ,41,
NCABDS=0
DO 39 L= 1,500
8EAD(IN,40,END=45)I,J,C (I, J,1 ) ,C (I, J,2) , S (I,J),H(
SF1 (I,J) = S(I,J)*DELX (I)*DELY (J)
WRITE (OUT, 42) I, J,C (I, J, 1) ,C (I, J,2) , SF1 (I, J) ,H(I,J),
SCARDS=NCABDS-H
CONTINUE
FOBMAT{2I3,5F6.0)
42 FORMATC ' , 2I3,2 1 1 .3 , 3X,G 10. 3, 2X, 2G1 1 . 3)
45 CONTINUE
WRITE (OUT, 43) NCABDS
43 FOBMATC-', 'THERE ABE' , 16, 4X, « CABDS IN NODE DECK')
CALCULATE INITIAL TOTAL WATER CONTENT. DO NOT INCLUDE
IN CALCULATION.
NR3=NR-3
HINT=0.0
DO 800 J=1,NR3
DELYJ=DfiLY{J)
DO 800 1=1, NC
803 HINT=HINT+H(I,J)*DELX(I) *DELYJ*S { I, J)
INITIALIZE VARIABLES FOR CALCULATING MUSS BALANCE.
HTOTAL=HINT
QTOTAL=0.0
DISCHT=0.0
FILL VAB ARRAY WITH NECESSARY VARIABLES
9999==s> EMPTY VARIABLE LOCATION
VAR (1)=FLOAT(NSTEPS)
VAR(2) =DELTA
VAR (3) = ERROR
VAR(4)=FLOAT(NC)
VAB (5 ) = FLOAT (NB)
ViR (6) =9999
7AR(7)=S1
VAH(8)=HH
V&B (9)=QQ
VAR(10) =9999
VAE(1 1)=9999
5X, 'BOH PEBMB'
HATE1,/,' «,11
' (CO. H/DAY) •)
I, J) , Q (I, J)
Q(I»«J)
RECHARGE ARE!
224
-------
LLIHOIS.AQUIFER.SIHULATIQH. MODEL
1234567
123456789012345678901234567890123456789012345678901234567890123456789012
326. 7AB(12)=9999
327. VAR{13)=9999
328. VAR(14)=TT
329. VAR(15)=TT
330. 7AR(16)=9999
331. 7AR{17)=9999
332. ?AH(18)=SF11
333. VAR(19)=9999
334. 7AR(20)=9999
335. C
336. C OUTPUT FORMA AND 7AR VARIABLES ON FIRST PAGE
337. C
338. WRITE (OUT,7)
339. DO 6 1=1,20
340. »RITE(OUT,8) (FORMA (I, K) ,K= 1 ,20)
341. 6 WRITE (OUT,9) VAR(I)
342. 7 FORHAT('I')
343. 8 FORMAT('0',2QA4)
344. 9 FQRMAI('+',80X,F14. 4)
345. C
346. C
347. C START OF SIMULATION
348. C
349. 50 TIflE=0
350. C
351. C PUNCH FIRST CARD FOR CALCOMP PLOTTER WATER LEVEL VS. TIME GRAPH.
352. C
353. WRITE (37,332) TIME,H( 3, 10)
354. DEL=DELTA
355. KC=1
356. DO 320 ISTEP = 1 ,NSTBPS
357. IF (NP. EQ.3) GO TO 900
358. C
359. C ENTER PDMPAGE SCHEDULES
360. C
361. Z= (ISTEP-1.0)/NSP + 1.0
362. IF(Z-KC) 53,51,53
363. 51 DO 52 K=1,NP
364. I=IP(K)
365. J=JP(K)
366. 52 Q (I,J) = P(K,KC)+Q{I, J)
367. DELTA=DSL
368. KC=KC + 1
369. 900 CONTINUE
370. C
371. C PREDICT HEADS FOR NEXT
372. C TIflE INCREMENT
373. C
374. 53 DO 73 1=1,NC
375. DO 70 J=1,NR
376. C D=H(I,J) -HO(I,J)
377. HO (I,J)=H (I,J)
37B. C F=1.0
37Q. C IF (DL(I,J).EQ.O.O)GO TO 60
380. C IF(ISTEP.GT.2)F=D/DL(I,J)
225
-------
ILLIHOIS. AQUIFER. SIMULATION. HODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
381. C IF(F.GT.5)F=5.0
382. C IF(F. LT. 0.0) F=Q,0
383. C60 DL{I,J)=D
384. C H (I,J) = H(I,J)+D*F
385. IF (H(I,J) .LE. 0.001) H (I , J) = 0.001
386. 70 CONTINUE
387. C
388. C REFINE ESTIMATES OF HEADS BY IADI METHOD
389. C
390. TI«E=TIME+DBLTA
391. ITES=0
392. 80 E=0.0
393. ITER=ITER + 1
394. C
395. C
396. C CALCULATE TEANSMISSIVITY.
397. C
398. DO 850 J=1,NE
399. DO 850 1=1,NC
400. IF (J.LT. NB) T (I, J, 1) =C( I, J, 1) *DSQBT( (H{I,J) - ELEV(I,J))
401. 2 *(H(I,J+1) - EL£V(I,a«-1)))
402. IF (T(I,J,1) .LT.0.0) T{I,J,1) =0.0
433. IF (I.LT. NC) T (I, J, 2) =C (I, J, 2) *DSQRT ( (fl (I,J) - ELEV(I,J))
404. 2*(H(I+1,J) - ELEV(I+1,J)) )
405. IF (T(I,J,2) .LT.Q.O) T(I,J,2) =0.0
406. 850 CONTINUE
407. C
4Q8. C
409. C COLUMN CALCULATIONS
41Q. C
411. DO 190 11=1,NC
412. 1=11
413. IF{MDD(ISTEP + ITER,2) .EQ.1) I=BC-I + 1
414. DO 170 J=1,NE
415. C
416. C CALCULATE B AND G ARE ftYS
417. C
418. BB=SF1 (I, J)/DELTA
419. DD=HO (I,J)*SF1 (I,J) /DELTA-Q (I , J)
420. AA=0.0
421. CC=0.0
422. C
423. C TEST FOE FIBST NODE OF 3 COLUHN: IF YES ==> AA=0.0
424. C
425. IF(J-1) 90,100,90
426. 90 AA=-T (I,J-1, 1)
427. BB=BB*?(I,J-1,1)
428. C
429. C TEST FOR LAST NODE OF A COLU^B: IF YES ==> CC=0.0
430. C
431. 100 IF(J-NR) 110,120,110
432. 110 CC=-T(I,J,1)
433. BB=BBVT(!,J,1)
434. C
435. C TEST FOB FIRST NODE OJ A BOW
226
-------
IHOIS. AQUIFER. SIMULATION. MODEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901234
36.
37.
38.
39.
40.
(41.
l42.
43.
.44.
[45.
46.
47.
48.
i49.
>50.
151 .
• 52.
• 53.
54.
•55.
.56.
&57.
i58.
>59.
»6ll
r Ofc *
T V J *
464.
165.
(66.
167.
168.
J6°.
170.
171.
H72 .
!473.
474.
J75 .
476.
477 .
H78.
479.
480.
481 .
482.
483.
484.
485.
486.
487.
488.
489.
490.
C
120
130
C
C
C
140
150
160
170
C
C
C
18C
190
C
C
IF (1-1) 130,140,130
BB=BB+T(I-1,J,2)
DD=DD +H (1-1 , J) *T ( I- 1, J, 2)
TEST FOB LAST SODE OF A ROW
IF (I-NC) 150,160, 150
BB=B8+T(I,J,2)
DD=DD+H(I+1,J) *T(I, J, 2)
IF (J.GT.1) i=BB-AA*B(J-1)
IF (J.EQ.1) W = BB
B(J)=CC/H
IF (J.GT.1) G (J)=(DD-AA*G (J-1))/H
IF (J.5Q. 1) G(J) = DD/¥
COHTISUE
BE-ESTIHATE HEADS
E=E+DABS(H(I,NE)-G (NE))
H (I,NB) =G (NR)
N=NH- 1
HA=G(N)-B(N)*fl{I,N+1)
E=E*DABS(HA-H (I,N))
N=N-1
IF(N.GT.O) GO TO 180
CONTINUE
C CALCULATE TRANSMISSI VI TY .
C
875
C
C
C
C
C
C
DO 875 J=1,NR
DO 875 1=1, NC
IF (J.LT.NF) T(I/J,1)=C(I,J,1)*DSQHT((H(IrJ) - ELEV (I, J) )
2 *(H(I,J+1) * ELEV (I, J + 1)) )
IF (T(I,J,1) . LT.0.0) T(I,J,1) =0.0
IF (I.LT.N3) T(I,J,2) =C (I, J,2) *DSQHT «H (I, J) - ELEV (I, J) )
2 *(H(X+1,J) - ELEV(H-1rJ)) )
IF {T (I,J,2) .LT.0.0) T(I,J,2) =0.0
CONTINUE
BOW CALCULATIONS
„
DO 300 JJ=1,NR
J=JJ
IF (MOD{ISTEP + ITEP. ,2) .EQ.1) J=NB-J*1
DO 280 1=1, NC
BB=SF1 (If J)/DELT&
DD=HO (I,J) *SF1 (I,J) /DELTA-Q (I ,J)
AA=0.0
CC=0.0
TEST FOB FIEST NODE OF A ROW: IF YES "> AA=0.0
227
-------
ILUHOIS. AQUIFEB. SIMULATION. MODEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901
491. IF (J-1) 200,210,230
492. 200 BB-fiB+T (I,J-1,1)
493. DD=DD+H(I,0-1)*T(I,J-1,1)
494. C
495. C TEST FOE LIST NODE OF A SOW: IF YES ==> CC=0.0
496. C
497. 210 IF (J-HR) 220,230,220
498. 220 DD=DD+H(I,J+1)*T(I,J,1}
499. BB=BB+T (I,J,1)
500. C
501. C TEST FOR FIRST NODS OF A COLUMN
502. C
503. 230 IF (1-1) 240,250,240
504. 240 BB=B8+T(I-1,J,2)
505. AA=-T(I-1,J,2)
506. C
507. C TEST FOR LAST NODE OF A COLUHN
508. C
509. 250 IF(I-NC) 260,270,260
510. 260 BB=BB+T(I,J,2)
511. CC=-T(I,J,2)
512. 270 IF (I.GT. 1) » = BB-AA*B (1-1)
513. IF (I.EQ. 1) H = BB
514. B(I)=CC/«
515. IF (I.GT. 1) G(I) = (DD-AA*G(I-1))/H
516. IF (I.EQ.1) G(I)=DD/«
517. 280 CONTINUE
518. C
519. C SE-ESTIMATE HEADS
52C. C
521. E=E+DABS(H(NC,J)-G (NC))
522. H (NC,J)=3(NC)
523. N=NC-1
524. 290 HA=G(N)-B(N)*H(N+1,J)
525. E=E+DABS(H(N,J)-E!A)
526. H(N,J) = HA
527. H=H-1
528. IF (N.GT.O) GO TO 290
529. 300 CONTINUE
530. LL=1
531. C
532. C
533. C HAKE SURE THERE IS AT LEAST THESE ITERATIONS PER STEP.
534. C
535. IF (ITER.LT.3) GO TO 80
536. C
537. C COMPARE E (THE SUM OF ANY HEAD DIFFERENCES) TO ERROR.
538. C
530. IF (E.LT. (EREOR*5.0) . AND.ITER.GT. 150) GOTO 9999
540. IF(E.GT.EBHOR) GO TO 80
541 . 9999 CONTINUE
542. C
543. C
544. C CALCULATE TOTAL MITHDBAHAL OR RECHARGE OP TO PRESENT HUE AND TOTAL
545. C WATER CONTENT.
228
-------
UN CIS. AQUI FEE. SIMULATION. MODEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901234
C
j*7. HTOTAL=0.0
jt8. DO 301 J=1,NE3
19. DO 301 1=1, NC
pO. HTOTAL=HTOTAL + (H (I, J) *SF1 (I ,J) )
pi. 301 QTOTAL=QTOTAL+Q(I,J)*DELTA
52. C
53. C
54. C CALCULATE DISCHABGE THEOUGH MASS BALANCE.
35. C
56. DISCH=- (HTOTAL+QTOTAL)
57. DRATE = (DISCH-DISCHT)/DELTA
>8. DISCHT=DISCH
59. C
iO. C PUNCH CARDS FOE CALCOMP PLOTTER SATER LE?EL 7S. TIME GBAPH.
(51. C
p2. WRITE (37,302) TI«E,H(3, 10)
53. 302 FORMAT(F10.2,1X,F6.2)
54. C
56. C PRINT RESULTS ONLY AT CERTIAN STEPS INDICATED BY INPUT.
67. C
j>8. IF (ISTEP.EQ.NSTSPS) GO TO 303
p9. IF (ISTEP, NE. ITCALP(IOUT)) GO TO 400
|70. IOUT=IQUT+1
71. 302 CONTINUE
72. C
73. C
74. C PRINT AND PUNCH RESULTS.
75. C
76. WRITE (OUT, 30 5) ISTEP
j77. 305 FORMAT('2',20X,'TIME STEP',1X,I3)
|78. WRITE (OUT, 310) TIME, ITER,E,DR ATI,DISCH
79. 310 FORMAT('G',«TIHE=«,F9.3,1X,« DAYS',5X,«IIER=',I5,5X,»EREOR=',F9.6,
30. 2 1X,'8',5X,'DISCH EATE=',E11. 3 ,1X, ' CU. M/DAY ' ,5X, 'CUMUL DISCHARGE=
31. 3',E11.3,1X,'CU. M1,//,1 ','HEAES ADDED TO ELEVATION FOE EACH ROW,
82 . 4 ' (H) ')
83. WBITE(27,327) ISTEP
84. 327 FOBMAT(I6)
85. DO 340 J=1,NE
6. WRITS (3 UT, 330) J, (H (I, J) ,1=1 , NC)
7. 330FOB9ATC ' ,14,5X, 16F7 .1 ,/, (' » , 12X, 17F7. 1) )
8. WRITE (27,335) (H(I, J) ,1=1, NC)
9.. 335 FORMAT(16F5.2)
0. 340 CONTINUE
1. C
2. C
3. C CATEGORY PRINTOUT.
94. C
95. HEIT2(6,345) ( (TAB (K, N) ,K= 1 ,2 ) ,N=1, NT)
96. 345 FOBHATC 1' ,20X,« CONTOUR MAP',//,' ','RANGIS ANC CHARACTERS', 2X,
97. 2 'NO AQUIFER-',7 (A1, 3X, G10. 4) ,/, ' ' , 34X,7 (A 1, 3X,G 10 . 4) )
98. DO 375 JJ=1,NRC
99. DO 360 11=1,NCC
00. CALL INTP2D(LCM(II) ,LRM (J J ) ,HZLINT)
229
-------
LLINOIS. AQUIPEB. SIMDLiTION. MODEL
1234567
123456789012345678901234567890123456789012345678901234567890123456789012.
601. DO 350 K=1,NT
602. IF (HELINT-TAB (2,K)) 360,360,350
603. 350 CONTINUE
604. 360 EO«(II)=TAB(1,K)
605. i8ITE(6,370) (BOS(K) , K=1 ,NCC)
606. 370 FOBHAT(« «,36A2)
607. 375 CONTINUE
608, C
609. C
610. C SET STORAGE SUBSCRIPT FOB MATBIX OF HEAD VALUES TO GO ON PLOTTEE.
611.. C
612, ISTCOM=HQD{ISTCOM,6) * 1
613 . C
614. C
615, C SET ABBAY AND COLUMN FOE CBOSS SECTIOHAL GRAPH OF HEAD VS. POSITION.
616. C
617. NCH=NC/3
618. NCM2 = (2*NC)/3
619. DO 377 J=1,NE
62C. HELCBG(J)=H(NCM,J)
621. HELC8 (J,ISTCOH) =H (NCH,J)
622. 377 HELCR2(J,ISTCOH) =H(NCM2,J)
623. C
624. C
625. C OtTPUT CROSS SECTIONAL 3BAPH.
626. C
627',. CALL PLOTT(HE1CBG,LR, NB,TIMZ, NCH,SUBF,SMAX)
628. C
629. C
630. C PUNCH CABDS FOB CALCOMP PLOTTEE CBOSS-SECTIONAL GBAPHS.
631. C
632. IF {ISTCOH. NE. 6. AND. ISTEP. NE.NSTEPS) GO TO 400
633. DO 390 J=1,NB
634. »BITE(47,385) LR( J) , f HELCB (J, 1ST) ,IST= 1,ISTCOS)
635. WHITE (57,385) LB (J) , (HELCB2 (J,IST) ,IST= 1 ,ISTCCM)
636. 385 FOBMAT{F11.2,6F6.2)
637. 390 CONTINUE
638. 400 CONTINUE
639, 320 CONTINUE
640. STOP
641. END
642. SUBROUTINE INTP2D {X,Y ,HE)
643. C
644. C
64-5. C TWO DIMENSIONAL INTESPOL STION OF HEAD VALUES WITH BESPECT TO GEID
646. C POSITION FOR CATEGOBY PBINTOUT.
647. C
648., IMPLICIT BEAL*8 (A-H, 0-Z)
649. COMMON H {50, 50) , LC (50) ,LB (50) , NC, NB
650. FEAL*8 LC,LB
651. C
652. C
653. C CHECK IF X IS IN BANGE.
654. C
655. 1=1
230
-------
INCIS. AQDIFEB. SIMULATION. MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123'
56. IF (X.GE.LC: (1)) 30 TO 20
457. 5 SUITE (6, 10) X
t58. 10 FORMAT('-1,1 INTERPOLATION BANGE EXCEEDED FOB»,1X,*I X=», E10.3)
p59. STOP
560. 20 1=1+1
561. IF (I.GT.NC) GO TO 5
,62, IF (X-LC(I)) 30,30,20
p63. C
564. C
p65. C CHECK IF Y IS IN BANGE.
i66. C
567. 30 J=1
i68. IF (Y. GE. LB(1)} GO TO 50
J69. 35 WRITE (6,40) I
170. 40 FORSAT{»-','INTERPOLATION BANGE EXCEEDED FOB',1X, »J Y=»,E10.3)
571 . STOP
572. 50 J=J+1
[73. IF (J.GT.NR) GO TO 35
p74. IF (Y-LR(J)) 60,60,50
575. C
J76. C
'>77. c INTERPOLATE ON Y FOB X.
578. C
579. 60 HE1=H (1-1,J- 1) + ( (X-LC (1-1) )/(LC(I) -LC (1-1)))* (H(I,J-1)-
^80, 2 H(I-1,J-1)}
581 . RE2=H (I- 1 ,J) + ( (X-LC (I -1) ) / (LC (I) -LC (1-1) ) )* (fl (I, J) -
582. 2 H(I-1,J))
583. C
584. C
^85. C INTERPOLATE ON X FOR Y.
586. C
>87. HS=HS1+((Y-LR (J-1) )/(LE (J) -LP (J-1 ) ) ) * (HF.2-HE1)
588. EETDRN
589. END
590. SUBROUTINE PLOTT (HELCB,LR, NB,TI8E, NCM,SOEF, SSAX)
bt. c
^92. C
593. C C BOSS-SECTIONAL GBAPH OF HIADS(PLUS ELEVAflOS) AND HEIGHT OF LAND
594. C SURFACE VS. POSITION.
o95. C
596. IMPLICIT BSAL*8 (A-H,0-Z)
!597. DIMENSION HELCB (50) , HFLGB (8) , LR (50) ,SDEF (50)
698. LOGICAL*! POINT (71) , AXIS (7 1) , POSIT (3) / »P ', '0' ,« S'/, BLANK/* V
699. LOGICAL*1 ASTEB/* *• /, DASH/» -' / ,AMBIB/«S«/
700. BEAL*8 LB,LINC,LBGE
,701. C
1702. C
[703. C INITIALIZE PLOTTIN3 ARRAYS.
704. C
705. DO 10 K=1,71
706. POINT (K) = BLANK
07. 10 AXIS(K) =DASH
OB. C
709. C
710. C CALCULATE POSITION INCREMENTS SO THAT GPAPH IS ONE PAGE LONG.
231
-------
LLIH OIS. AQOIFIB.SIMOLA TIOH.MODEL
1234567
123456789012345678901234567890123456789012345678901234567890123456789012:
711. C
712. LINC=LE(NB)/54,0
713. C
714, C
715, C CALCULATE HEAD INCBSMENTS FOB GBAPB LABEL.
716. C
717. HINC=SMAX/7.0
718. HELGS(1)=0.0
719. DO 43 K=1,7
720. 40 HELGR (K + 1) =HELGS (K) +HINC
721 . C
722. C
723. C OUTPUT GBAPH HEADING AND UPPEB LABEL AND AXIS.
724. C
725. WRITE (6,60) TIME, HC M,HELGR
726. 60 FOBMAT{«1 ', ' CEOSS-S ECTI08AL GBAPH OF HEAD AND SURFACE HEIGHT ?S. ' ,
727. 2» POSITION FOB TIME=',F6.1 , ' DAIS',/,«0•,28X,'HEAD ALONG COLOHN',
72B. 3 1X, 12, 1X,"(H)',/,1 ' ,1X,8(4X,F6.1) ,/,' «,8<9X,«I'))
729. RBITE(6,7Q) AXIS
730. 70 FOEMAT(» + ',9X,7U1)
731 . C
732. C
733. C INITIALIZE POSITION VAEIABLE AND POINT I8DICATOS FOE I NT EB POL AT ION.
734. C
735. LRGB = 0.0
736. C
737. C
738. C START CALCULATING AND PSINTING GPAPH POINTS.
739. C
740. DO 200 JJ=1,55
741 . C
742. C
743. C I8TESPOLATE TO FIND HEAD AT COEEENT POSITION.
744. C
745. CALL INTERP (HELCH, LB, LHGR, NB,HITP)
746. C
747. C
748. C CALCULATE GBAPH POINT.
749. C
750 . IH= {(HITP-HELGBO) ) /{ HELGE (8) -HELGB (1) ) ) *70.0+ 1.001
751. POINT (IH) =ASTEE
752. C
753. C
754. C OUTPUT NEXT GEAPH LINE.
755. C
756. IF (JJ. NE. 1) GO TO 100
757. WRITE (6,90) LRGB, POINT
758. 90 FOBHAT{'-M,3X,F6. 1, 71 »1,/, «+• ,«. ' I1 , *9X, •!•)
759. GO TO 120
760. 100 WHITE (6,110) LEGR, POINT
761. 110 FOPMAT(» • ,3XrF6. 1 ,71A1, /, '+ ' , 9X, «I ', 69X, 'I')
762. 120 CONTINUE
763. C
764. C
765. C PI-INITIALIZE POINT AHEAY.
232
-------
Q
LISOIS. AQUIFEB. SIHOLATION. MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
J766. C
l767. POINT (IH)=BLANK
768. C
769. C
770. C I8TEBPOLATE TO FIND LAND SURFACE AT CURB EN! POSITION.
(771. C
JT72. CALL INTEHP(SURF, LR,LRGR,NB, SITP)
773, C
774. C
J775. C CALCULATE GRAPH POINT.
776. C
777. IS=((SITP-HELGR{1) )/(BELGB <8)-HELGR (1) )) *70. 0 + 1.00 1
778. POINT(IS)=AMBEB
779. C
^80. C
781. C OUTPUT LAND SOEFACE POINT FOB CUBBENT GBAPH LINE.
^82. C
783. WRITE (6, 125) POINT
p84. 125 FOHH&T(l + 'f9X,7U1,/,»+»r9I»lIl»69X,»I«)
|785. C
786. C
787. C RE-INITIALIZE POINT ARBAI.
788 C
789. POINT (IS) =BLANK
790. C
791 . C
792. C OUTPUT SIDE LABEL.
793. C
794. IF (JJ.EQ.2) WRITE (6,130) POSIT (1)
795. IF (JJ.EQ.4) WRITE{6, 130) POSIT(2)
796. IF (JJ.EQ.6) WRITE(6,130) POSIT (3)
797. IF (JJ.EQ.8) WRITE(6, 140)
798. 130 FOR«HT(' + »r1X,Al)
799. 140 FOBMATC + 1, ' (fl) ')
;soo. c
1801. C
802. C OUTPUT GRAPH KEY.
803 . C
804. IF (JJ.SQ.2) WRITE (6,160)
805. IF (JJ.EQ.3) HRITE(6, 170)
806. 160 FOeHAT(' + »,83X, ******** HEAD1)
807. 170 FORMAT (' •»•« , 83X, ' SS&S&S8 LAND SURFACE*)
808. C
809. C
10. C INCREASE POSITION INCREMENT.
811. C
812. LRGB=LRGR+LINC
813. C
814. 200 CONTINUE
815. C
816. C
817. C OUTPUT BOTTOM AXIS AND LABEL.
818. C
819. SBITS (6,70) AXIS
820. WHITE (6,210) HEL3R
233
-------
ILLINOIS. AQUIF1S. SIMULATION. MODEL
1 234567
12345678901234567890123456789012345678901234567890123456789012345678901
821. 210 FOEMAT(' + ',8 (9X,'!•) ,/, ' », 1X, 8{ 4X,F6. 1) )
822. RETURN
823. END
824. SDBRDUTINE INTERP (HELCB,LR,LBGB,NB,HITP)
825. C
826. C
827. C ONE DIMENSIONAL INTERPOLATION BETWEEN POSITION AND HEAD VALUES.
828. C
829. IMPLICIT BEAL*8 (A-H, 0-Z)
830, DIMENSION HELCE (50) ,LE (50)
831. REAL*8 LB,LEGB
832. C
833. C
834. C INITIALIZE COUNTEB.
835. C
836 . N=1
837. C
838. C
839. C CHECK IF LEGS IS IN EANSE.
840. C
841. IF (LEGR-LR(1)) 20,20,40
84-2. 2G HITP=HELCB(1)
843. RETUBN
844. C
845. C
846. C FIND CORRECT NODE.
847. C
84-!?. 40 IF (LKGR-LR(N)) 80,70,60
849. 60 IF(N. GE. NR) GO TO 70
850. N=N + 1
851. GO TO 40
852. 70 HITP=HELCR(N)
853. RETURN
854. C
855. C
856. C INTERPOLATE.
857. C
858. 80 HITP=HELCR(N-1)+(HELCE(N)-HELCE (N-1 )) * (LEGB-LB (N-1) )/ (LB (N)-
859. 2 LB(N-1))
860. RETURN
861. END
862, /*
863. //DATA. FT47 FO01 DD VOL=BEF=MEN.P 65440 .BEH .LIB ,
864. // DSN=MES.P65440.BE».GEiHOUT.POS1000A,
865. // DCB= (SECFM=FB,LRECL=50, BLKSIZE=3150,BUFNO=1),
866. // SPACE=(TRK,1) ,DISP=( OLD, KEEP)
867. //DATA. FT57F001 DD VOL=8EF=MEN,P65440 .BEW.LIB,
868. // DSN=MEN. P65440. BES. GEWROUT.POS 1000B,
869. // DCP=(RECFM=FB,LRECL=50,BLKSIZE=3150,BTJFNC=1) ,
870. // SPACE=(TPK, 1) ,DISP= (OLD,KEEP)
871. //DATA. FT27F001 DD 70L=RE^ MEN.P65440.BEff .LIB,
872. // DSN=MES.P65440.BE«.GRWHOOT.CON1000,
873. // CCB= (RECFM=FB,LBECL=80, ELKSIZ E= 3 1 20 ,BUFNO=1) ,
874. // SPACE=(TRK, (1,1) ,ELSE),DISP= (OLD,KEEP)
875. //DATA.FT37F001 DD UNIT=BAT,?ILES=$GETMA*
234
-------
LLINOIS. AQOIFES. SI MO LA f I OS. HODEL
1 234567
123456789012345678901234567890123456789012345678901234567890123456789012
876. //DATA. IHPOT DD *
235
-------
I-J IV .
— — '
— .•» t r» a ->
-------
NODE r-
KCttn
401
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
b
1
2
3
4
S
f,
1
2
i
/l
S
6
1
2
1
4
5
b
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
>'•!
5
5
r>
5
5
5
6
(t
ft
(t
(,
6
7
7
7
;
7
7
a
it
•i
n
a
u
>j
•)
•j
q
r)
)
10
10
10
10
10
10
M
12
1 >
12
12
12
13
1 1
1 i
13
1 1
13
14
14
Hi; i l'''«ft
(.'It. ,v
117.4
II 7. '1
1)7. '1
117. '1
117. <\
117. '1
II / . 4
07 .4
07.4
H7 .4
(17.4
07.4
(17.4
117.4
(17.4
(17.4
(17.4
(17.4
•17. M
B7.4
117.4
H7.4
(17.4
(17.4
07.4
07.4
(17.4
(17.4
117.4
117.4
87.4
U7.4
87.4
II 7 . 4
(17.4
H7. 4
(17.4
(17.4
07. 4
(17.4
1)7.4
H7.4
117.4
07.4
87.4
117.4
(17.4
H7.4
M7.4
(17.4
117.4
(17.4
1)7.4
1)7.4
. I174"-0 1
. tl 74 !> 0 1
*t cot pmci'
im/i'j. KJ
H ' . 4
• 17.4
117. 4
II 1 . 4
117. 4
.-I74F-01
07. 4
(17.4
1)7.4
H/.4
H7. 4
.H74R-01
(17.4
H/.4
117. 4
07.1
07. 4
.. 25
10.0
10.0
10.0
10.0
10.0
6.25
10.0
10.0
10.fi
10.0
10.0
6.25
10.0
10.0
10.0
10.0
10.0
6.25
10.0
10.0
10.0
10.0
10.0
6. 25
10. C
10.0
10.0
10.0
10. 0
(>. 25
10.0
10.0 •
10. n
10.0
10,0
(,. 25
C.2S
r,. :;5
i-M.r:;
(.i) .
lfli)n-»)2
loo r- 02
1000-02
tooc-o.?
1000-02
IOOt-02
1000-02
loor-02
ioon-02
ionr.-o2
ioon-02
100C-02
1000-02
100K-02
ioon-02
ioor-02
1000-02
ioon-02
ioon-02
100 n- 02
ioon-02
100C-02
1 OOD-02
100E-02
1 OOD-02
100D-02
ioon-02
100C-02
1 OOD-02
100D-02
1000-02
ioor-02
1000-02
100 D- 02
1000-02
1000-02
ioon-02
100 C- 02
100D-02
100C-02
1 OOD-02
ioor-02
1 OOD-02
100H-02
100D-02
100 n- 02
1000-02
ioor-02
ioon-02
ioon-02
ioon-02
ioon-02
ioon-02
ioon-02
1000-02
100P-02
M'JH ' A'l ".
(en. "!/r\v)
-1. )H
-1.3i!
-1.111
-i. in
- 1 . 3 rt
-.('13
-2.r>0
-?.50
-2.51)
-?.50
-2.r>0
-1.30
-3.50
-2.50
-?.SO
-2.50
-2.50
-1.36
-2.50
-2.50
-2.50
-2.50
-2.50
-1.30
-2.50
-2.50
-2.50
-2.50
-2.50
-1.36
-2.50
-2.5(1
-2.50
-2.50
-2.50
-1.30
-?.50
-2.50
-2.5(1
-2.50
-2.50
-1.3£
-2.50
-2.50
-2.50
-2.«=C
-2.50
-1. J8
-2.50
-2.50
-?.50
-2.50
-2.50
-1.38
-1.311
-1.3H
-------
HI sanvo
311V »I'HIM,
o-
o-
0'
0'
0'
o-
0*
0'
0'
0'
0'
0'
0*
0'
0'
0'
IT
0'
0*
0'
0'
0'
0-
0'
0"
t !»(•-
•II 'l-
Jl M-
00!.'
00*."
00!,'
009*
00!,°
OOb '
00!,°
OOi.'
00 !•'
000'
009*
00!.*
00!.'
OOs'
00!,'
OOi'
00!, •
00!,'
00!,*
009 '
00 (j"
OO'j*
00!.'
009 '
OO'.-'
OU'j
i(l-UOJl •
<:u-jooi '
6t«aszt
6l«OiCE'
bi + us?:E'
51+05ZE
•>l«OicE *
Jt "ll
-..; • i
at' I
u+aoor
u»«ooi •
te»aooi"
iz+aoor
tr«aoor
ie«aooi •
l2+300f
U + 3001 '
12*3001°
ie»aoot•
12*3001'
I 0 - d h L n •
10 -
Ir MI
h '/'I
h M<
U MOOt
l c «aoo l
l?+.*00l
I?
11 «JOO I •
i r. -.Hit «'
I?,
U
e
Oc
M
M
1,1
M
M
M
M
(•I
dt
fcl
M
HI
lit
ill
cl
ll
01
r h
c E
t 7,
c I
oe 7.\.
Of ll
or 01
01' (>
Oc l?
Oi. L
Oc 9
OE ri
(c ll
Oc I
I
et
u
01
r>
u
L
-------
0000-GG6<>
0000-6660
OOOS't
0000*6666
0000*6666
frtOO'O
HiUO'O
OOUO'6666
0000*6666
0000*6666
0000*6666
0052*0-
OOUii'O
0001*0
"106
'006
0000* 17.
0000*cl
OCOl'O
0000 'I
OOtP'OUl
*=(H / H -On) UOtDVJ 3!!V-|O,1,K .L'lllVJIO
UB»D aooH IOHJ aivn jtn.iwn.j IVU.IHJ
= UI (MdinOv jo HOI.IOU jo nuu vAa'iH o>
ro
•=(H *On/»vu/H -nj) c%'i»iJH» r'j Hianinti A.I.rnnvHUvaa HMjniCv
(H -OS/AVO/H -u> iir'i JNV r'i Naaniaa AI.n invnH>i;ui ua.-tinOv
= (N) H-J.LI.OU aanHvau.tr. HUAIM jonoi.i»Aaid
-(») H:>V liOU VAi'ia
= UVHII 1VIJ1NI 110 VHIVd.1(l
= (I'JA/I3A) ,tH3IDJJaMO:) JIIIVHO.I.S
= (H/Ava/H •no) JUJA nn JW-.-H vm.
^!:HOII ^tj II.MIKIIH
=?:mm'!().-) «o H.,i:uit!
i j.i V:J!HVH) avail 0,-ii.v iu:)'i v.) ju hns) tiuinc-i
HI .lllriW>ill.)» t 3UH,)W,IJtl
-------
I 1 '. f .'i'l I:!'
10
fl.lB'
af AD;
i
i
it
5
6
7
a
•j
10
11
12
1 1
I'I
15
16
17
ID
1 J
20
21
111. 1i> ) I<.A Vi
rpi; t.) I:lfv^
1. 0
i. •»
i. r>
1. to
2* 1
2. 1
?. 1
~>.. 1
2. 1
2. »
2. 3
2. S
2. 1
2. 1
1. &
1.5
1. 5
1.1
0. r>
1. 5
rt." 5
ION
„ *»
.<-,
.5
.{,
2. I
2. 1
2. I
>.!
2. )
2*. 3
2. 1
2.3
2. J
2. J
1.1,
1.5
I.S
I.'I
0.5
0.5
0.5
•in,-
FUi < \
J. r
1.5
1. r.
1 .'.
2. 1
2.3
3. 1
2. 1
2. 1
2.3
2. 1
>. i
2.1
2.3
!.(,
1.5
1.5
1.1
0.6
0.5
0.5
»,
i II M V:
1 . c.
1.'*
1 . i
1.6
?.3
2. 1
?.3
2.1
2.3
2.1
2.3
2.3
2.1
2.3
1.6
1.5
1.5
1.1
0.5
0.5
0.5
M.H-I-
(?!>
1.°'-
1 .r.
l.f.
2.1
2. 3
2.1
2. 1
2.1
?. 1
2.1
2. 1
2.3
2. 3
1.6
1.5
1.5
1.1
0.5
0.5
0.5
>,ii'i vi •>•! ', |. j:i.-i| I-AI?S n.M'iui'il IMI, f./a\"i
1.5 .'•- 1.'. .r. 1.1 ,r- 1.5
1.1 .5 l.'i .'i 1.5 ,r. l.'i
1.5 . r> 1 . '• . '• .5 . r> 1.5
1.(> .5 1.5 .c .5 .5 1.5
2.1 .(i 1.5 .5 .5 .5 1.5
2.1 .t 1.5 .5 .5 .5 1.5
2..1 .fi 1.5 .r. .5 .5 1.5
2.1 .(, 1.5 .5 .5 .5 1.5
2.1 .f, 1.1 .5 .5 .5 1.5
2.3 .6 1.5 .5 .5 .5 1.5
2.3 .6 1.5 .5 .5 .5 1.5
2.3 .6 1.5 .5 .5 .5 1.5
2.3 .6 1.5 .5 .5 .5 1.5
2.3 .6 .5 .5 .5 .5 1.5
1.6 .5 .5 .5 .5 1.5 1.5
1.5 .5 .5 .5 .5 1.5 1.5
1.5 .5 .5 1.5 1.5 1.5 1.5
1.1 .1 .1 1.1 1.1 1.1 1.1
0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5
ni sriii\n>"?= -n. 1'iicto -
-------
OO'i'l
00* id
00000000 00 0 0 0 0 0 (
0 00000033000900 'J
0000000 0000000 01
OOOOOJ3030000001
0 00000000 00 0 0 0 0 (
OU0000999000000C
OOWOOO 00 00000 001
0000003990900001
0000000000000001
000000333339900C
00000000 00 00 0 0 0 (
0000033333000001
0000000000000001
00000 0-999933000C
0000000000000 00(
00 00 0030 'J 00000 01
OOOOOOOOOOOOOOO)
000000339990900C
ooooooooooooooo
0000090000000001
ooooooooooooooo
000000999090000
OOOOOOOOOOOOOOO
000000900009900
ooooooooooooooo
000000399000000
0000000000000.00
000000903000000
ooooooooooooooo
000009099900000
UO 000000 00 00000
000000990000000
ooooooooooooooo
000009339099900
OOOOOOOOOOOOOOO
W0090039000JOOO
ooooooooooooooo
000009930090900
OOOOOOOOOOOOOOO
000009990000000
OOOOOOOOOOOOOOO
000000099003900
OOOOOOOOOOOOOOO
000009093000000
000000000000000
0000039390 9 00 001
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0000037099009001
000000000000 0 0 0
000009399909000
0 0 0 0 0 0 0 0 0 0 0 0 0 C 0
00009 9 3 -> •> 3 0
(i I) (' 0 y 9 '•> 3 3 3 0 J :> (i 0
1 J* !l i! t>;> "ll t 00*1:1 1
()(.'•'• 1, I \'H«' / il '.>' 'l-'i t-- tllTi
) 0 (
0 (
1 0 t
0 C
1 0 (
1 0 I
) 0 1
0 t
) 0 (
0 t
) 0 <
0 (
) 0 (
1 0 (
) 0 t
) 0 (
) 0 (
» 0 C
I I
I
t
L
I
I
I
I
I
I
t
I
I
I
I
I
I
t
I
I
I
I
t
I
1
L I
1 0
) 0 <
l» 0
) 0 (
) 0
) 0 (
If 0
1 0
9 0
) 0 1
/ OH
) 0 (
) 0 I
1 0 (
1 0 C
) 0 I
> 0 t
) 0 (
) 0 (
} 0 (
) 0 (
> 0 (
) 0 <
) 0 (
) 0 (
) 0 (
I 0 (
) 0 (
) 0 (
I
I
I
t
I
I
I
I
1
I
I
t
I
t
I
I
I
I
t
I
t
t
1
I
I I
L I
n o
) 0
1 0
) 0
9 0
> 0
> {I
I 0
1 (1
' (1
!>'i
> I
) <
t I
t (
1 I
) I
) (
) t
1 (
) <
) t
1 (
) (
1 (
) (
) I
) (
) t
L 1
y
1 (
1
1 (
1 (
>
)
I
1 1
;
il.
1 (
> (
1 (
1 (
) (
1 (
) (
1 (
1 (
) <
1 (
) <
) (
i 1
1 (
I (
) (
1 1
L
1
>
1
)
I
1
1
1
'
1
il1
1 (
) (
) (
i <
> (
) (
) 1
) (
) (
J (
) (
1 (
> i
1 <
1 (
1 <
) {
) (
L
1 1
)
)
)
) (
1
1)
1
)
:
IV
1 (
) 1
) (
) (
} {
1 <
) I
1
) (
)
) <
1 (
) (
1
> (
' <
1 (
! (
i
1
'
ll
1
1
1
1
1
1
II >
) I
•) (
) (
) <
) (
) I
) I
)
1 (
J
) t
I I
1 (
) 1
) (
)
) (
1
(
1
1
3 1
0
) 1
0
) 1
II
1
0
1
0
n
1 (
) (
) (
) I
1 (
) (
) {
)
) 1
)
) (
1
) (
1 (
1 I
)
) I
3
1
) <
>
J
0
) (
D
i
l>
)
)
,\
) t
1 I
1 t
1 1
) (
) (
) t
1
) I
)
) I
3 (
1 (
) (
) <
•)
) (
I
1
I
)
1
J <
1
I I
0
) 1
u
1 (
I
!•
i r
1
C
1
I (
1
> (
1
) (
!
1 (
1
) (
)
) \
:
(
)
1
) (
1
I
)
1
0
1
1
)
)
'! !'
) 0
t 0
) 0
1 (
1 0
) 0
) 0
i r
1 0
B (
) 0
J (
) 0
' (
) 0
t (
) 0
t C
I
, I
I
L
I
) 0
n f
j ^
0 (
1 (
0 t
J C
0 (
) (
) (
II VI
-------
(HI VI 3933J31.'
(IVHII »***»**
Kit WOE O'Se O'OE 3°Sl
I
I
I
I
I
1
1 3
1 3
I 3
I 3
I 3
I 9
I 3
I 3
I 3
I 3
I 3
I 3
I 3
I 3
I 3
I 3
I 3
I 3
I 3
1 3
I 3
I 3
I 3
I 3
I 3
I 3
I 3
I 9
I 3
I 3
I 3
I 3
I 3
I 3
I 3
I 3
I 3
3
;j
3
3
•x
3
3
3
9
I 3
"M inn o °:jr; uM;t i> v-i
0*01 OMJ 0"()
*I9 '001
* Wilfc
»S() "9d
4 J(p " lit.
4 10 'i.I>
3 »Il *lf,
4 1C "fill
* K °m
4 II? *«,«
* 15, *f !<
» 19 'M-
4 It *f.t
4 1 « * I L
* K. 'lj£
4 10 "lit
* 11 •?<
4 It "Ot
* It 'U9
4 III *99
4 I(j "l|9
4 19 'c9
* It "09
4 1(1 'HO
* If, '9S
* I 0 " \> *!
* It H«> ^!
4 1C "I •> CNJ
4 III "Ml
4 IS "/ ll
4 I9-«,ll
4 It 'I 'I
4 Ifl "III
* 1«, '(.I
* 10 'HI
4 II -91
4 12 "lit
4 it *n
4 111 *()t
4 1*, '('t
4 19 *9t
4 It Mlc
4 IH 'it
» If, "0?
4 1(1 °(,l
4 II 'tl
4 ie -«,i
4 11 'I! IW)
4 111 ' I I
4 IS, *b S
4 19 '/.
4 !<•«, 0
4 HI * I
4 I (i " I >iv jl .11
0*01
IL'l 'I!
ill.V UVail 4(lll.'¥''t IV MO t Jj:l!i- l.WHI.)
-------
•II HK
vine-
a-)i> DAY:
i i:;r:i IAI-«.. o..'iMn».>> c:ti.
n i r:m .< I i-n. a
i
2
1
'I
•i
6
7
a
<)
10
11
12
1 1
III
IS
16
17
ia
21
TO KLI'
1. 1
3. :>
». 'i
'i. i
5. 1
5. )
5. I
5.3
5. 3
5. 3
5. 1
5.3
5. J
5. 1
4. 2
3.4
3.0
2.5
0.5
0.5
0. 5
tff.T fill!
3. 1
3.2
3.5
't. 2
5. J
5.3
5. 3
5. 3
5. 3
5. )
5.3
5.3
5.3
4. 2
3.4
3.0
2.5
0.5
0.5
0.5
PCIi f 1<'
3. 1
3.2
3.5
4.2
5. 3
5.3
S.3 .
5.3
5.3
5.3
5.3
5.3
5.3
4.2
3.4
3.0
2.5
0.5
0.5
0.5
II Mlh (
3. 1
3.2
3.e
4.2
5.3
5. 3
5.3
5.3
5.3
5.3
5.3
•-.3
5.3
4.2
3.4
3.0
2.5
0.5
0.5
0.5
1. 1
3.2
3 .c
4. 2
5.3
5. 3
5.3
5.3
5.3
5.3
5. 3
5.3
5. 3
4.2
3.4
2.9
2.5
0.5
0.5
0.5
3.0
3. 1
3.4
4. 1
5.3
5. 3
5*. 3
5. 3
5.3
5.3
5.3
5.3
5.3
4.0
3.3
2.9
2.4
0.5
0.5
0.5
1.0
3. 1
I.?
3.fi
4.1
4.2
4./!
4.2
4.2
!• "j
" * £
4.2
4.2
4.2
4. 1
3.5
3.2
2.9
2.4
0.5
0.5
0.5
3.0
3.0
3.1
3.2
3.4
3.5
3.5
3.5
3.5
3r
• ->
3.5
3.5
3.5
3.4
3.2
3.0
2.0
2.4
0.5
0.5
0.5
3.D
3.0
3.0
3.1
3. 1
1.2
3.2
3.2
3.2
3*>
* s.
3.2
3.?
3.2
3.1
3.0
3.0
2. rt
2.4
0.5
0.5
0.5
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3 A
3.0
3.0
3.0
3.0
3.0
2.9
2.8
2.4
0.5
0.5
0.5
?.o
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
1 A
J •*!
3.0
3.0
3.0
3.0
3.0
2.1
2. ft
2.4
0.5
0.5
0.5
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3 A
• «
3.0
3.0
3.0
3.0
3.0
2.9
2.1
2 .*<
0.5
0.5
0.5
-------
MJ\.>
HAttJI'
1
1
1
I
1
1
1
1
222
2 2 ?
222
222
222
222
222
2 2 ?
2 2 2
222
2 2 '>
2 2 >
222
222
222
222
222
222
222
222
22?
2 2 :>
222
222
222
222
222
222
222
1
1
1
1
1
1
1
1 1
0 0 0
000
0 0 0
0 0 0
0 0 0
000
000
000
i Ml:) l
1
1
222
222
222
222
222
222
222
222
222
222
222
222
2 ? 2
222
222
222
222
222
222
222
222
2 2 2
222
2 ? 2
? 2 2
222
222
222
0 0 0
000
0 0 0
0 0 0
0 0 0
0 0 0
000
0 0 0
HAS:
1
1
1
1
1
1
1
1
• -»
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
? 2
2->
£
:> 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
> 2
2 2
2 2
2 2
2 2
2 2
0 0
0 0
0 0
0 0
0 0
0 0
0 0
I) 0
U'T.M
1
1
2 2
? ?
'i 2
2 2
2 2
2 2
2 2
2 2
2 2
? ^
21
.5
2 2
2 2
2 2
2 2
'* 2
2 2
2 3
2 2
2 2
2 2
2 2
2 2
2 >
2 2
2 2
2 2
2 2
2 2
0 0
0 0
0 0
0 0
I) 0
0 0
0 (>
0 0
>:; u<>
i
i
i
i
i
i i i
i i i
i i i
222
222
222
222
222
222
222
222
222
222
o *> 2
222
222
222
222
222
222
222
222
222
222
222
222
222
222
222
222
222
222
222
1 1
1
000
000
o a o
ooo
0 I) 0
ooo
ooo
0 0 0
M:
-------
r 10 HI IWMI «: t IIMII M:I> :;iir:f*fi ii'.Min v;, ITI-HI..?; i'c; 'jici--
(HI
o.o -t.o
0. Of * 1
l.'tl *
J. (II *
r> . 7 1 *
7. 61 *
'). SI >
11.41 *
11. U *
IS. ?I *
17. 11 *
1'».OI *
2'). f..r.i *
2n. r,i *
10.41 . *
J2. 11 *
14.21 *
16. 11 *
111. 01 «
)'). ')! *
41.<>. 'JI *
Sll.HI *
60.71 *
62.61 *
64. 51 *
66.41 *
hll. 11 *
70. TI *
72. 11 *
74.01 *
IS. 41 *
/7.tll *
7'*. /I *
(11.61 *
HI. 51 *
fl'.. 41 *
'I/. 31 *
llO. T.I *
y i. u * s
'»!. 01*
'J4.'« +
')(>. HI*
•Jtl.71*
MO. hi*
0.0 S.O
in M AI < M; tn i.ni 4 n»
in.o Pi.o ?o,o ""-.d "fo.ii
fi
I?
£;
e
/-,
8
e
e
s
r.
c
G
G
G
G
E
G
e
e
G
G
G
G
G
e
e
K
G
c
6
G
G
G
e
e
G
G
G
(,
c
r.
r
r.
G
G
6
10.0 15.0 20.0 25.0 30.0
lr>.0
•*- 1
~ T
r. i
I
i
I
I
I
I
I
I
I
I
I
I
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i
I
I
I
I
I
I
I
I
I
I
I
i
35.0
r.t:!~.f.r,r,r. tAiin S(I«FACF
-------
if. c> «f in vn in u~. m ui in » m o e o
GC ceoeec*.
u- ir; ^ ^3 * c vi w-i
246
-------
00' •;:
i o'f.\
otrti<:
ou'ut
ooi •«
u
0
0
0
0
u
0
I
I
i
f
c
z
z
z
z
z
I
£
7
'z
z
z
I
I
2
e
2
z
£
•i
I
z
J
z
7
t
7
c
z
I
7
£
z
i
i
c
I
t'.
"J
'IK
u
0
u
0
0
0
u
I
I
z
z
z
I
z
z
L
t
z
z
z
I
z
z
z
z
z
z
z
z
z
z
I
z
z
z
z
z
z
z
c
•f
t
z
z
z
?
,;
(,
t'.
••>
o
u
u
0
0
0
0
I
I
z
z
I
z
z
z
z
z
z
z
z
1.
z
z
z
z
z
z
z
z
z
t
z
z
z
z
z
z
z
z
t
t
c
j;
z
c
,;
;;
<
0
0
(1
0
0
0
0
I
t
Z
I
I
Z
z
7
z
z
z
z
z
z
z
E
E
E
E
E
E
E
E
E
E
j
Z
Z
z
r
Z
z
z
J
z
z
z
i
c
i.
z
0
0
0
0
0
0
U
I
I
Z
I
Z
z
z
z
z
I
z
z
t
E
E
E
t
E
E
E
E
E
E
£
£
£
E
E
E
£
E
z
Z
z
I
z
z
z
i
i
(_
1,
I
(1
0
9
0
0
U
3
0
t
I
Z
r
Z
I
Z
7
Z
E
E
£
E
E
£
E
i
E
E
E
E
t
E
t
E
E
E
E
£
£
£
E
Z
£
e.
z
z
j
z
i
z
0
0
0
0
0
0
0
I
I
z
T
z
z
z
z
E
E
[
£
E
t
£
E
E
£
E
E
E
E
E
E
E
E
t
E
t
f
E
f
£
E
E.
Z
Z
I
r
C
7
f
U
a
0
0
0
0
0
i
z
z
i.
Z
Z
7
•c
Z
E
£
E
E
E
E
E
E
E
E
E
E
E
E
£
E
E
E
E
E
£
£
E
£
£
£
E
£
E
£
Z
C
Z
-
i
•0
0
•}
0
3
0
3
(1
I
Z
Z
Z
I
I
E
£
E
t
£
(
£
C
E
E
E
£
E
£
£
E
£
E
E
E
E
E
E
E
E
E
E
E
E
E
E
T,
s
7
/
'III
•J '
0
0
0
0
0
3
0
I
Z
Z
z
z
z
£
E
E
E
E
E
E
E
£
E
£
E
E
E
£
E
E
E
E
E
£
E
E
£
£
E
E
£
£
£
E
E
E
E
f.
<
0
0
0
0
0
0
0
t
z
z
z
r
E
E
E
E
E
E
E
£
E
£
E
E
E
E
E
E
E
E
t
E
t
E
E
E
£
E
E
£
E
£
t
E
r
E
E
£
Z
0
a
0
0
u
0
0
I
z
z
z
z
E
E
E
E
E
E
E
E
E
£
E
E
E
E
E
E
E
E
E
E
E
E
E
£
E
£
t
E
£
E
E
E
E
£
£
I.
E
t
\
0
a
0
0
0
3
0
I
z
7
z
E
E
I
E
E
E
E
t
ft
b
b
b
b
b
ft
h
b
ft
b
b
b
ft
b
b
b
r
E
C
£
i
E
t
E
r
E
E
t
E
-'1
0
0
0
0
0
0
(1
I
z
i
z
E
£
£
E
£
b
ft
h
b
b
h
b
ft
h
ft
h
b
ft
b
b
ft
b
ft
b
b
b
ft
ft
£
£
t
E
£
E
(
t
1
t
i •)
0
0
0
u
0
0
0
I
z
z
z
E
E
£
E
ft
h
b
h
b
ft
b
ft
b
b
ft
b
ft
ft
ft
ft
ft
b
ft
ft
ft
ft
b
b
ft
E
£
£
£
E
£
E
E
E
til
0
0
0
0
0
t)
0
I
z
7
z
"
E
£
£
b
ft
b
b
ft
h
ft
ft
ft
ft
b
b
ft
ft
ft
ft
ft
ti
ft
ft
b
ft
h
ft
ft
li
ft
£
f
£
i
I
E
E
f
•>v
0
(1
0
0
0
0
0
I
z
z
z
E
E
E
h
ft
ft
ft
ft
h
h
ft
ft
ft
ft
I.
If
ft
ft
b
ft
ft
b
ft
b
b
b
b
ft
h
ft
b
b
£
£
£
f
E
£
E
E
OM
0
£)
0
0
0
U
0
I
r
z
z
£
£
b
ft
ft
ft
h
b
h
b
ft
h
ft
h
fl
W
ft
ft
ft
h
ft
b
ft
b
h
h
h
b
b
b
b
b
E
£
f.
E
r
E
i
i
0
0
0
(1
()
0
0
t
z
z
z
E
f
b
b
b
b
b
b
b
b
b
ft
ft
h
b
b
b
b
b
b
ft
h
h
h
h
b
h
b
ft
ft
ft
E
£
E
£
E
1
E
(i
(1
0
(1
0
0
0
I
z
z
<
I
I
E
t
b
b
b
b
ft
h
b
ft
h
b
li
u
b
b
ft
b
b
b
b
b
b
b
b
ft
ft
b
b
b
b
b
b
0
0
0
(.1
0
()
f)
I
z
z
I
r
r
£
E
b
b
b
ft
ft
h
b
b
b
b
b
b
h
ft
b
b
b
b
h
b
b
h
h
b
b
ft
h
b
b
£
|
1
r
E
E
r
I..1V
t)
0
0
0
0
(1
0
I
z
z
z
E
E
b
b
h
h
ft
ft
ft
h
h
b
h
•i
b
ft
ft
ft
b
b
h
b
b
b
ft
b
h
ft
b
b
h
b
b
I
£
I
f
E
E
1.
;!'
0
U
(1
()
0
0
(1
I
z
z
z
E
£
ll
ft
ft
ft
h
b
b
h
b
b
b
b
b
h
h
b
h
ft
b
ti
b
b
ft
b
ft
h
ti
h
II
E
I1
0
0
0
0
0
0
0
I
z
z
z
E
E
h
b
h
b
ft
b
h
b
h
b
ft
b
b
b
h
b
h
b
ft
b
ft
ft
b
b
b
b
h
ft
£
f
E
f
r
E
£
l
0
0
0
0
0
0
0
I
c
z
z
I
t
E
£
b
b
b
h
ft
b
b
b
b
b
b
ft
b
b
ft
h
h
h
b
b
h
b
h
b
b
h
b
h
b
E
£
1
£
£
t
E
(ill V
0
0
0
0
0
0
0
I
I
I
?
E
£
b
b
b
b
b
b
b
b
b
h
b
b
b
h
b
b
h
h
b
b
b
b
ft
b
b
b
b
ft
b
E
£
I
£
E
£
£
()
0
0
0
0
0
0
I
i
z
z
c
t
E
£
b
h
ft
b
h
b
b
ft
ft
b
h
b
b
b
b
b
b
h
Ir
b
b
b
b
b
h
ft
ft
ft
ft
E
£
£
E
1
f
£
, J!
0 0
0 0
0 0
(I 0
0 0
0 0
0 0
t I
z z
z z
z z
If
I
Cr
1,
£ E
£ £
b b
b b
b b
h h
h b
b b
b b
b h
b b
h ft
ft b
b ft
h b
b h
b b
ft b
b b
h b
b b
b b
h h
h b
b h
b h
ft b
b h
ft ft
h b
b h
£ £
£ £
£ E
£ £
£ E
f £
£ 1
•HVIJ
-------
iiii-\,'iior IIFAD VM r.ii'fuv ir-:n;ii'i vr. .MfT'ii'U. '-''-I: I'Tff- '~>o.;i
(MI
0.0
1.11
l.fll
5.71
7. 6r
1. 51
n.ir
11. u
15. n
i/. u
11. or
20. 9T
22. -11
24. 71
>6. 61
1U. 51
10. HI
»:>. 11
I'l. 21
16. 11
111. 01
11. !>I
'11. HI
41. 71
45. 61
47. 51
41. 41
51. 21
5J. 11
55. 01
56. 11
5rt. HI
60. 71
62. 61
64. 51
<>(>. HI
6 tl. 11
70. 2r
72. 11
74.01
75. 11
77.111
79. 71
HI. 61
B.l. 51
H5. 41
(17. IT
31. ?I
11. 11 *
11. 01*
14. It*
16. HI*
in. 7i*
100. 61*
t n 7 *r:,0 1ft. (1 15.i)
f, I ******* j| o U
«• I eC*f. Kf.fi IAKD
« I
B I
B I
B I
6 I
B I
e r
B I
B I
r. i
B I
B I
B I
C I
B I
B I
e i
6 I
B I
6 I
e i
f. i
£ I
C I
E I
B I
t I
£ I
e i
6 I
C I
f. I
e i
6 I
e i
6 I
£ I
E I
e i
8 I
6 I
e i
s i
B I
e r
r
i
i
i
i
i
, _.] , — .j_ ___.j__ _ — j __ — ,_j
10.fi 20.0 25.0 30.0 35.0
-------
(T.
-fl!);
S'O
5*0
S'O
It'S
9*9
li't
O'B
S'R
G'8
I '6
1'6
fr'6
ft'6
t»'6
ft' 6
I '6
c'Ti
I'*,
0'6
l»*8
ll Tl
S'O
S'O
S'O
S'S
t"9
S't
£"B
t'U
0'6
t '6
S'b
V *6
•J'6
•JT,
ST,
ST,
IT,
CT.
I'll
O'b
!>*!'
S'O
S "0
S'O
t "S
6'9
«'t
*»"tl
0'6
l)*6
t *f>
8'fc
b'fc
OTU
fcTj
b'l.
b'f.
t'b
S "t>
I T-
i: T,
I T.
S'O
S'O
S'O
b"S
t't
i "1?
b'U
ST,
6T>
r *oi
t'Ol
li'Ol
STH
S'OI
h'Ol
I Ttl
I '01
<>T,
/.T,
'j "'•
l| "u
S'O
S'O
S'O
t'9
S't
VI)
S'5
2"0l
9'0l
Ci'Ol
0*11
I'll
I'll
I'll
0*11
(>"Ul
t*0l
li'OI
I '01
f T.
f:,
s*o
S'O
S'O
S'9
6't
IT.
£'01
I'll
STl
i'U
tTl
8TI
HTl
«Tl
OTl
tTl
a'l I
OTl
i'Ot
c'Ol
1 *l)l
S'O
s*o
S'O
t'9
2 '8
9'6
6*01
S'Zl
S'Zl
S "21
S'Zl
S'Zl
S'i^l
STl
y *ei
STl
S '7.1
•JTl
O'll
'.1*0 1
ll "01
S'O
S'O
S'O
6*9
S"8
6*5
tTl
S'Zl
S "21
STl
STl
S'Zl
STl
S'Zl
S'Zl
STl
STl
('Tl
.7*11
L' * J I
" *()l
CM)
G'O
S'O
ST)
l*t
9T)
O'Ol
tTl
5 "Zl
STl
•i Tl
STl
STl
STl
iTl
STl
i "Zl
O'iT
&TI
bTl
OTl
II Til
10 J II
S'O
ST)
S'O
1 T
tTl
I '01
hTl
S'Zl
STl
STl
S * IT
S'Zl
S'Zl
STl
S'Zl
•i T I
S'Zl
OTl
STl
1 Tl
(,*0l
.n,< >I:M
ST)
ST)
S'O
z*t
irn
I T)l
hTl
S "Zl
S'Zl
S "Zl
STl
S'Zl
STl
S "Zl
STl
S'Zl
S'Zl
OTl
STl
ZTl
O'll
liOJ.I.1i A.I
S'O
S '0
S'O
t 't
V'V
^ *oi
ii'ii
S "Zl
S Tl
S *Zt
S "tl
S 'Zl
S "Zl
S 'Zl
S'tl
•> "Zl
S VI
C "i I
•I'll
Z "I t
OTl
\a O,l i| Mt
IZ
Ot
M
I' I
tl
n
/
')
S
h
I
Z
I
lev 'juv;m
Tu
i. lit i 1,1.0*0 r U i '.i
OC'O'S/
tl J t.l, .11 II.
-------
00000033000090000 00 P 0 0 0 00 00 00
OUOOOOOOOOUUOOOO 00 II 000000 0000
0000089980000003000 0 00 0 00 (I 000
OOVUOOO 00 0000000000 (I 000 00 00 00
00000333339000000000000000000
00000000000 I) 00 00000 00 0000 (I 000
0 000033000 Oilli IS ill i iillllll
iiiiiiiiizzzzzziziz
ft
ft
It
ft
t.
It
It
ft
ft
ft
ft
ft
h
It
(l
b
It
It
ft
J.
ff
ft
li
li
ft
ft
ft
ft
h
t»
fi
ft
it
ft
ft
ft
b
ft
k
ft
ft
b
b
9
9
t,
5
9
r
9
9
9
9
»
ft
ft
ft
h
it
It
h
li
b
It
ft
ft
fa
l|
(I
It
It
ft
ft
It
ft
9
S
9
S
9
s
9
9
t-
9
9
9
9
9
9
9
9
9
h
h
ft
It
ft
h
ft
b
h
ft
(,
-
9
t,
t,
9
«,
5
9
9
9
;•
S
a
S
9
9
9
^
t,
9
<,
y
ft
It
1;
ft
ft
ft!
I, •
ft
ft
9
«,
"
S
:;
9
5
»,
9
9
9
9
-
9
9
9
9
^
9
9
S
i
9
9
t,
h
h
h
h
t.
If
5
S
s
S
-
5
5
5
9
9
;
S
9
9
;-
S
5
S
9
5
9
9
«,
9
9
a
$
ft
ft
h
9
S
3
S
."
S
y
«;
9
S
9
«;
9
9
?i
9
9
5
9
*
S
y
«i
^
9
9
?
9
>,
t.
II
ft
J-
9 9
5 5
3 t*
S 5
S S
i b
9 S
» 5
S 9
9 S
9 »,
9 9
9 9
S 9
S 9
9 9
9 9
S 9
9 9
9 9
9 9
9 9
9 9
5 9
9 9
<" f"
J 3
•J »
*i S
5 a
t* «
J V
'!;'•)
9
9
S
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
S
9
9
(.
9
t;
9
s
III!
9
9
9
9
9
9
J
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
•1
.,
5
f
a
•.;
»
»
'•V
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
5
9
t,
9
9
OS
9
9
9
9
9
9
9
9
9
9
9
9
9
9
«|
9
9
9
9
9
9
9
9
9
9
9
t,
r,
r,
J
9
9
*l
9
9
9
9
'1
9
9
9
9
9
9
9
9
9
9
9
9
9
9
0
9
9
9
4,
9
9
;;;
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
-------
r.iU!»ll <>K il F1 P. A!, I: !*IIH'ArV II t I fl T V:5. I'fS I'l 1O(I !• i. 1!H.:- /•"*.'>
to
Ul
li''AD /•
0.0 ri.O 10.0
P 1 . <3I *
1. :1I *
0 'i. 71 *
7.61 *
S 4.r>I *
11. 0 . ')! *
1 2 . Ill
2 '1 . 71
26. f;I
2 1| . SI
10. 'IT
T». 11
M . 21
ll>. 11
la.oi
19. 'ii
I *
ilri.1I *
H7. 11 *
'1 4 . 21 *
41. 11 * fi
01.01*
4/1. 4J +
96. PI*
OH. 71*
100. f,I*
O.I) i.O 10.0
UN.; r-in;il. i» {'1>
r.e ?o.o ->r..i) »o.i) «-..o
B »<.1***» HFAIi
v. l.t.F,f.t.lf. LAND
f.
Ft
fi
fi
fi
fi I
e i
r. i
fi i
6 I
fi J
fi I
e i
r. i
fi I
6 I
e i
6 I
e i
fi i
fi i
e i
e i
6 I
r, i
B I
B i
fi i
r, i
fi I
K I
fi I
fi I
6 I
t. I
e I
r- i
e i
e i
f i
B I
E I
fi I
f I
fi I
I
I
I
I
I
I
-------- -J. -. --— -— — — J. — ——--.- — _ — ^—__- ___-.£
1S.O 20.0 2K.0 3C.O 1S,0
-------
zsz
S C> p O —* N^ k^ '-^ J* Jl Jl ^ J^ -•* LH ^."1 (^ JE ^ J ^ —, ^
iJi «a ji w s ? ,£ iw r. iw. r,; is; N* iv ro i>j n c «j ?• „•> f —
^ O s£ •* IO u> L* in U* ^ *f in ^1 L?t U1 L"> ^ A — JE »i
tn ji ro e ov ^ to to NJ tj tw u- w NJ 'v tj v£ »j c- ,r r
O » O C _-
-------
HJUI'iK
7 7 1
1 7 7
777
7 7 7
777
7 7 7
7 7 7
7 7 7
7 7 7
7 7 7
777
777
t3 7 7 7
7 7 7
7 7 7
b b f.
b b h
b b b
b 6 b
5 «i •>
5 S •)
5 5 S
4 4 4
4 4 't
3 3 1
1 1 1
0 o n
0 0 l)
0 0 0
000
0 () 0
000
•i A !IH (
7 7 7
7 7 7
1
7
7
7
7
7
7
7
7
7
7
b
b
6
6
5
5
4
4
1
1
0
0
0
fl
0
7
7
7
7
7
7
7
7
b
b
f,
b
S
4
4
1
1
0
0
0
0
0
7
7
1
7
7
7
7
b
b
5
5
5
4
3
1
0
0
0
0
0
0
•IIAf'Al'
7 7 7
7 7 7
7
7
7
7
7
7
7
6
6
b
4
J
1
l)
0
0
0
0
7
7
7
7
7
7
7
6
b
6
b
r,
5
5
4
3
1
0
0
0
0
0
0
7
7
7
7
7
7
7
t>
b
b
r>
4
4
2
1
0
0
0
0
0
rti
7
7
7
7
7
7
7
7
7
b
b
6
•5
5
•i
4
4
2
I
0
0
0
0
0
l)
7
7
7
7
7
7
7
7
7
7
b
b
b
5
5
4
4
2
1
0
0
0
0
0
0
7
7
7
7
7
7
7
7
7
b
6
b
b
S
4
4
2
1
0
0
0
0
0
0
NO
7
7
7
7
7
7
7
7
7
b
6
b
r
5
5
4
4
2
t
0
0
0
0
0
0
A'
(,
7
7
7
7
7
7
7
b
£
b
5
5
5
4
4
1
0
0
0
0
0
CH!
fl
L
b
7
7
7
7
7
7
b
6
£
4
4
4
2
1
0
0
0
0
0
0
i F !• r
(l 1
0 1
fi 1
b f,
b 6
7
7
7
7
b
b
li
b
•i
5
5
4
4
4
2
1
0
0
0
0
0
0
b
7
7
b
£
b
fi
b
£
5
5
4
4
4
2
1
0
0
0
0
n
0
-r
i
t
t
h
1
7
7
b
e
b
b
e
b
t
b
i;
5
5
4
4
2
1
0
0
0
0
fl
0
l>
f
u
£
6
b
7
7
b
£
b
e
b
£
6
b
£
b
6
b
c
5
4
4
4
2
1
0
0
C
0
0
0
f
1.
t
b
6
6
6
b
b
e
b
6
b
e
6
6
b
b
b
£
b
e
b
b
6
b
b
5
5
5
4
4
4
4
2
1
0
0
c
0
0
n
14.
6
£
b
b
b
6
6
6
6
b
6
6
£
b
b
6
£
b
b
6
b
5
5
5
5
5
5
4
4
4
4
3
2
1
C
0
0
0
c
0
0
7
1.
f.
b
(,
6
6
b
b
b
6
6
b
6
b
6
6
6
b
b
b
b
b
b
b
b
b
£
e
b
5
5
5
5
5
5
4
4
4
4
3
2
1
C
fl
fl
n
0
n
f.
f.
r>
b
e
6
b
b
b
b
£
b
b
b
e
6
6
6
6
6
b
b
b
b
b
6
b
b
b
6
c;
5
5
5
S
5
4
4
4
4
4
3.
2
1
0
n
0
0
0
fl
- * '
11.,
f- 1,
(l 1.
(. 1.
fl 1.
fl tl
(> (>
(. 6
f. 6
b 6
b b
b I
b b
b b
b b
b b
f, b
b 6
6 6
b 6
6 6
b 6
b b
b b
6 b
b b
b b
b b
b 6
b 6
b b
b b
b b
b S
5 r;
5 5
5 5
5 S
1 5
S 5
•> 5
4 4
4 4
4 4
4 4
3 3
3 3
2 2
1 1
0 fl
0 0
0 0
0 0
0 0
0 0
MM
.00
f
f,
f,
£
6
6
£
f.
b
6
f
b
b
£
b
fi
fi
b
e
A
£
b
b
f
b
£
C
S
5
5
c
5
R
4
4
4
4
3
3
j
1
0
0
fl
n
0
0
4.n')f)
If. CO
in. on
12. on
-------
i>r it'll ii i- imn
: :;iji>'-ifi- ii''i«J
-iifF-
MV;
Oi
tit AT. AI rn:
;>.o r..n 10.*) v*
Oftl ~ „ -_4_._._ 4. __„,.___ _
1' 1. <»T
1. HI
0 5.71
/. 6r
S '), 51
11 . 'II *
H| 11.11 *
15. ">! »
17. 11 *
19.01 »
20. 'U
22. HI
11. 71
,">».. 61
2)1. 51
10. HI
12. 11
JH. 21
16. 11
in. oi
10. -ii
H 1. 'II
'« 1. 71
'15. id
H7. 51
H'J. HI
51. ?I
51. 11
55.01
56. 01
517. 11 *
'!•». 21 * 6
'i 1. 11 * 6
9 1. 01*
OH . 01 *
•)6. ill*
oa.Jt*
100. f.J*
102. 5S* f •} , i
0.0 -i.O 10,0 1«.
(TI IMK II (Kl
. :) "". *> 2f . r ^o.D 'i1!.
r 1 — i o-J
6 I
f. I
r. i
ef I
E I
B I
F. I
fi I
r, i
f. I
e i
F. I
£ I
6 I
B I
6 I
6 I
6 J
8 I
e i
F. I
6 I
K I
e x
F. I
B I
e i
e i
G I
E I
E I
e i
F, I
fi X
B I
e i
e i
S I
t i
F. I
6 I
F. I
£ T
r. i
c i
i
i
I
I
I
i
i
^ ^ j j
C 2(1.0 25.0 10.0 35.0
******* lll'AD
LAND 'ill'liMCE
-------
in
in
01
1C
vz
M
ui
il
91
SI
hi
tl
n
tl
Ul
S
h
I
I
U) (HI -I M.iV.i M(M HTI.I.V AHM 0.1, U-UKIV 1JUV5III
*« =iil>«Vll:»MU Ui'-ill.l AVliA 'I.J fl+Jbh'.'O = H .!.» i ilJMu J tl
1*51
fftl
fbl
h'Ol
h'Cit
S'O
S'O
S'O
9'U
t'tl
b'il
6*91
I'Ol
!>'«l
(•'HI
0'f.l
l'f>l
£'61
ffcl
fbl
1'f.l
If 'lit
li'M
•i't.1
li'(,l
li''.l
S'O
!,*0
S'O
6'll
O'lll
8 'SI
S'U
ti'61
h '61
b'6t
h'Ol
h'6l
h '61
h'6l
b'bl
h'f.1
h 'bl
ft'hl
h 'bl
S'bl
!. 't>l
S'O
S'O
S'O
I'Zl
Z'lll
t'9l
O'll
ft'il
h'6l
h'5t
ll'bl
h'5t
Ir'fil
h'it
h'Ol
ti'il
ft* 01
S'il
S'bl
S'il
•.rot
S'O
S'O
s*o
fti
h'lil
e-9i
b'tl
ft'51
tl'6l
I)'6l
b'6l
ft'ol
«?'6l
li'&l
l)'6l
l»'6l
If'bl
9'&l
S'O I
i'il
S'Gt
S'O
S'O
S'O
C'Zl
S'hl
E'9l
6*tl
ll'f»l
h'bl
h'f.l
tr'bl
h'6l
h'fil
ft '61
h'f.l
lr'6l
ft'ol
S'Cl
•i'M
',»'f>t
•'•(,1
S'O
S'O
S'O
ti'Zl
S'hl
h'9t
O'lll
ti'&l
h'fil
h'bl
ft'bl
h'Gt
fc'fil
h'6l
h'f,l
ll'bl
ft'M
S'hl
S'hl
9 "SI
9'bl
S'O
S '(>
S'O
«i 'Zl
9 'HI
h '91
(I'll I
h V,l
ft "hi
ft 'M
h'Ol
h T,l
li'M
ft '(.I
l'*bl
h 'bt
fi'1.1
S '(.1
S't I
•1 'hi
•I'M
-------
C.tHTdlll A'.P
(U
9
9
9
9
9
9
q
9
9
9
9
9
i)
,j
9
4
9
9
9
9
9
9
9
9
9
9
9
1X0 '»
Ol *
ON 9
9
9
9
9
9
9
9
9
9
a
a
a
/
7
7
b
6
H
t
0
0
0
u
0
0
!!l<;r'!i
9 9
9 9
9 9
9 9
9 9
9 J
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
.j 4
9 9
9 9
9 9
9 9
9 9
9 9
9 J 9
9 9
9 9
9 9
9 9
9 9
a a
a H
H II
7 7
6 b
b ft
fi (t
\ 1
0 0
0 0
0 0
0 0
0 0
Q 0
i *
9
9
9
9
9
9
9
9
9
9
9
y
9
9
'i
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
a
tl
a
7
b
4
1
0
0
0
0
0
0
i H» <
9 'i
9 9
9 9
9 'J
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
•i 9
9 9
0 9
U 9
9 9
9 9
9 9
9 9
9 9
9 9
0 9
9 9
9 9
n ti
9 9
9 9
9 9
9 9
9 9
9 9
9 9
'J 9
9 9
9 9
ii a
u a
H a
H a
7 b
(•> b
f r
b b
'I '1
1 t
a o
0 0
0 0
0 0
(i 0
(J 0
ii A r '
1 9
9 9
9 9
9 9
9 y
9 9
9 9
9 9
'» 'J
«J 9
9 'J
6
6f
r
•'1 '1
1 t
n o
0 J)
(1 0
0 0
0 0
i) 0
lt.1
•I
1)
9
9
9
9
9
I
v)
0
0
0
0
I)
. s ;,
9 9
9 y
9 9
9 9
9 9
9 9
9 9
9 9
9 9
'J 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
•J 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 y
9 9
a a
u a
a a
£ 6
6 b
6f
O
3 1
1 1
0 0
0 0
a a
0 0
o a
0 0
10
9
9
9
9
9
9
U
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
«J
9
9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 •}
9 9
9 9
9 9
9 a
a a
a a
a a
a 7
6 6
b 6
3 3
1 1
0 0
0 0
0 0
0 0
0 0
0 0
' Ii"
I
9
r)
9
«j
9
S
9
9
9
9
9
9
9
9
9
9
9
9
9
5
c
.1
3
1
0
0
n
0
0
0
i
c,
'•
9
9
0
9
9
'J
9
9
9
9
9
9
9
9
9
9
9
9
4j
rt
4
a
ft
a
a
a
a
u
a
8
6
b
r>
j?
3
1
0
0
0
0
0
0
'.1
9
/. ,onr.
00 II 1H. 00 '» ?0.00
if
9
'
*>
9
9
9
O
*)
9
9
9
9
9
9
9
9
1
9
9
9
9
9
9
9
n
ft
8
8
a
8
fi
8
7
6
6
t
c.
3
t
0
0
0
0
0
0
n.oftft
22.00
n
p
in. oo
?«i.on
12.00
.?< ,00
-------
rt. 0
p i.'ir
». ir
0 5. 71
7. 61
3 O.ST
11. 11
) 1 . <) J t
<>«. . Ill *
' !IM. -I f 1)
5.0 10.') • ir,C ,'0,i) '">,'» (0,i» IS.')
+ f. I ******* ||K\l)
* s i rr.r.f. •:«;»•• LAKO SIIFFACI?
* '-- i
* B I
* B I
* B I
* B I
* •; j
* r. I
* 61
* 61
* f. I
* B I
* B I
* f. J
* C I
* e i
* e i
* 61
* 61
* 61
* 61
* B I
* SI
* El
* 61
* B I
* B I
* 61
* 61
* 61
* fi I
* fi I
* 61
* F. I
* fi I
* f. I
* fi I
* fi I
* 61
* f I
* 6 I
* 61
* K I
* . E I
* B I
* fi I
* B I
I
I
I
I
I
5.0 10. i) 15.0 20.0 25.0 30.0 35.0
-------
-*••*-* (w ^J to Jw tv W w [-v .NJ w tj *«; tv «-J (•» —i i
S- c- C * «*g ^ _* tw w iv N; re TJ Ni rj :w u i« w »> **> 3 —
!~ 5>
1*1 «;
< •.
-4 a
I- —
> 10 NJ tj 10 IJ N) i
J T-J M FN) to to i
M W 10 K> IO >O
^ — KJ 10 KJ.'J^J !—'_; — ^~
to NJ to ro to s» .o iw iw u TO "J
to o ui ^ -j o r
' Ki K> tO *V KJ W tvS tV »C tj M *J -
•3
•3
VI
-------
oo ••.»'•:
.« oo* tic
a 00* Ot
tttjvz
oo 'Of.
000*4
oo "Jt
not,' It
000
000
000
000
000
000
I) I) II
9 9 y
11 0 V
H B U
a 8 u
H B n
b 6 6
b f> 6
b 6 d
b 6 b
666
X X X
J. X X
X ,1 X
I I A
a a H
a a a
a a a
i J 3
a a a
333
a a a
A A A
i A i
A .3 a
333
3 a a
3 3 3
3 a j
d a a
4 J 3
3 .4 .4
i 3 :i
d ••) :<
(;!>*. M
0
0
0
0
0
0
h
1)
8
B
B
b
b
b
b
b
X
I
A
a
a
t
a
a
3
a
3
a
a
3
3
a
3
a
a
.4
4
a
0
0
0
0
0
0
ll
8
B
B
6
b
6
b
6
X
X
t.
X
a
a
i
a
a
a
a
3
.3
3
4
4
I
0
0
a
0
D
0
0
tl
9
U
B
U
6
6
b
6
X
L
X
3
a
3
3
a
3
a
a
a
3
.1
3
a
3
i
0
•3
0
0
0
3
ti
H
tl
B
f,
5
X
X
r.
X
3
a
3
3
a
3
3
3
A
3
a
3
a
i
a
L4
i
4
.4
0
J
0
0
0
0
\l
9
B
i?
8
5
b
6
b
X
X
I
3,
I
a
a
3
3
3
a
3
3
3
a
3
3
a
3
3
3
A
3
a
3
0
0
0
0
t'
3
h
U
9
8
5
G
6
b
X
X
L
X
I
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
ii
H
J
•III
tl*
0
3
0
0
0
3
ll
9
8
3
6
6
r>
6
X
X
t
.1
a
3
3
i
I
3
3
3
3
3
3
3
•i
3
,3
3
3
'A
0
0
0
0
0
h
9
8
3
b
G
b
6
X
X
X
I
a
3
a
a
3
3
a
3
3
3
3
a
a
3
3
3
3
3
i
i
0
0
0
0
0
0
ll
9
8
a
b
G
6
6
X
X
X
I
3
3
3
3
3
3
3
.3
3
a
3
3
3
3
A
3
.3
3
3
1
3
i
J
J
3
0
0
0
0
0
D
It
B
r>
b
'i
t
X
X
X
3
a
3
3
3
i
3
a
3
3
3
3
3
a
3
3
3
3
3
3
3
4
4
•i
J
-'1
0
0
0
0
0
0
h
V
6
f>
b
b
J.
X
X
1
a
4
3
3
a
3
a
a
a
3
a
a
3
3
.3
3
H
H
3
3
a
a
•K
0
0
0
0
0
0
h
0
b
b
b
X
X
X
3
3
a
.1
3
A
3
3
a
a
3
a
a
a
a
3
3
3
3
a
3
3
3
3
3
3
i
i
A
'A
0
9
0
3
0
0
h
tt
r,
6
5
X
L
3
3
3
3
3
3
3
3
3
J
3
a
3
3
3
3
3
3
3
3
3
3
3
3
J
3
3
3
3
3
4
0
0
0
0
0
0
h
B
6
b
b
X
X
:i
a
a
•A
a
'A
3
3
a
a
a
a
a
a
a
3
a
a
a
3
a
a
a
A
3
a
a
3
a
a
OH
0 0
0 0
0 0
0 0
0 0
0 0
7. 7.
Ii li
tl M
f. f.
b b
X X
X X
3 a
a a
a 3
a a
a a
a 3
a a
3 a
3 a
a a
3 i!
a a
a a
a 3
a a
a 3
a a
a i
•A a
a 3
'A 'A
3 3
a 3
a a
a a
a 3
a .-i
3 3
.4 A
a 3
H "i
0
0
0
0
0
0
f.
I)
I
fl
,1,
ft
;i
•A
•A
3
3
**
!t
3
a
a
3
a
a
3
'4
3
H
3
3
•1
a
•4
a
0
0
0
0
0
0
c
ft
/
b
b
X
X
3
3
a
3
,1
H
A
0 (I
0 0
0 0
0 0
0 0
0 0
i i
ii ii
L L
b b
b t.
6 b
,1 X
X X
a a
3 a
a a
a a
a 3
a 3
n o
a a
a a
a a a
3 a a
a a a
3 3 .3
a 3 a
333
;•! a H
3 :3 i
:; a n
.4 A i
A a a
.4 a a
;i 3 a
3 a 3
a 3 a
4 M 3
a a u
3 a 4
;•[ ;•) H
4 a .4
a a :•!
I.JVIIVII.
0
0
0
0
0
0
r
ii
i
r.
t.
X
a
a
a
3
a
3
.4
3
a
d
a
a
3
3
g
3
a
3
d
a
a
,3
a
3
a
A
'A
3
a
.4
a
.4
.1
0
I!
0
0
0
0
(.
ll
L
b
!)
X
.1,
d
•J
'A
3
.4
3
3
a
3
3
B
a
3
3
3
3
3
a
3
a
3
a
4
a
4
4
A
(III
0
0
0
0
0
0
t;
L
f.
b
1.
X
H
3
a
a
a
a
3
3
A
a
3
a
3
3
a
3
a
3
3
3
a
M
a
a
a
,4
H
V !
0
0
0
(i
0
(;
It
/
L
b
f,
X
a
3
3
3
M
d
3
;i
n
.4
d
d
a
3
a
d
a
a
a
H
a
a
a
a
a
d
0 0
0 0
0 0
0 0
0 0
0 0
h ti
L I
L I
r, r.
r. f,
f, b
X X
X J
d ill
A 3
•A a
3 3
a 3
3 3
3 'A
a a
:4 a
a a
a a
•A a
3 3
a a
a 3
a 4
a a
a a
a a
a a
a a
a a
a 3
3 a
a 3
a a
a a
a a
a a
a a
a a
3 3
3 SI
ilKVM
cr*
LO
r\i
-------
fi.-oj.j-:;. 21
17. II
I'l. 01
20. 'II
22. HI
21. 71
26. 61
?y. r>i
10. 11
12. U
11. 21
16. 11
1H. 01
1'). 'II
1 1. Ill
1 J. 71
15. 61
17. 51
'i'J. 11
'"> t. 21
r>l. 11
5r>. 01
r>6. 'II
5H. 'II
(•0. 71
62. 61
61. 51
66. 1)1
6!|. 11
70. 21
72. 11
71. 01
7*i. ')!
77. ai
It. 71
H 1. 61
'1 1. C'I
•15. 11
'!/. 31
rt'». 21
'11. 11
'1 1. 01*
'»1 . '11 *
•»6. HI*
'HI. 7J«
100. U*
10 2. 51*
0.0
ii'. in AI (•:,- ; re; i -is 'i r-'j
'>.!> HI. 1 1'..0 XI. ll ;r,.0 .T;.!) 15.0
< f, l <«***** II CA D
* « I tf.r.eeer. Linn SIIKPACF
* B I
* fi T
* El
* fi I
* r. I
* C I
* - r. i
* . fi i
* E I
* f. I
* C I
* f. i
« f. i
* £ I
» 61
* C I
* 61
* fi I
* fi I
* 61
* 61
* C I
* 61
* e i
» e i
* 61
* 61
* 61
* e i
* e i
* s i
* 61
* E i
* E I
* 61
* E I
* 61
* 61
* 61
« 61
* f I
« 6 I
» . f I
* e i
* t i
* 6 I
I
I
I
I
I
I 3 t- - f- --J- ~-f~~_-._-<, _ J
*».0 10.0 15.0 20.0 25.0 1C.O 1S.O
-------
•rid'-:- .'50.0.IO '>AY ; ITFII= _>-.. ri!.rr = a,n<"mo M n ••'•<» -A . ••- o, r> 9p KIT «MI , H/nfy CUHIII ni
Id'AO!. ADTKO i:> KIKVilUiN ffh I *l I! IK U (;i)
J
2
1
1
5
6
7
il
9
10
It
12
13
14
15
16
17
1rt
19
20
2 1
25. '
?5.l>
?5. 'I
25. 2
21. )
24 . '»
2 «. 9
^'1.9
:>'». •>
21. 'J
2't. '»
21. '»
2.6
0. S
o.s
0. r.
21-.. 7
^•..1.
2r:.1
i'J.J
Tl.'t
^'t.!J
II.1)
!'«.'3
.»'I.'J
in.:J
2H.9
2M.')
2't.4*
2<».y
23.2
21.3
iy. i
16.6
0.5
0.5
0.5
2r. . 7
?r..t.
25. r.
25..?
2«.'»
?!».'•.
2r.. t!
25.6
21:. 1
21.9
J1. 9
ni.'J
21. '.1
2'!.1*
2«l. 9
21.0
21.9
21.9
21.9
22.7
20. 7
IB. 6
16. 1
0.5
0. 5
0.5
2( .0
2r.'»
2r..H
2r..h
25. 1
?c.2
25.1
?r. 1
25.0
21. fl
21,7
21.5
21.1
23.5
22.0
20. 3
1H.2
15. H
0.5
0.5
0.5
.' h . (1
?(:.()
25.-I
I1:.?
2 5. ft
J5.M
25.1
25. 2
25.0
?.
25.1
?5.'
25.0
21.7
21.1
23. ft
23.1
22.2
21.0
19.5
17. fi
15.1
0.5
0.5
0.5
>(. . ?.
2o. 1
if.. 1
26.0
25.1
25.7
2'i. 5
25.2
25.0
21.6
21. 2
23.6
22.9
21.9
20.7
19.2
17. 1
15.1
0.5
0.5
0.5
2< . •>
2t.?
26. 1
2ti.O
25.9
2r>.7
25.5
25.3
25.0
?1.6
21. 1
23.5
22.7
21.7
20.5
19.0
17.2
11.9
0.5
0.5
0.5
2ft. 1
26.2
26. 1
26.0
25.4
75.7
25.5
25.3
21. 9
21.5
21.0
23.1
22.6
21.6
20.1
10.9
17.1
11.9
0.5
0.5
0.5
ro
-------
Kr
G £
C £
B E
6 fi
£ £
£ £
£ £
£ £
£ £
£ F.
£ £
fi £
B £
6 E
S C.
jy £ G
ro E E
£ £
E B
£ F./
6 E
£ £
F. £
"! R
1 -t
V T
T T
9 9
9 9
a
2 2
0 U
0 0
o a
0 I)
0 0
0 0
itf
£
p
G
£
K
£
F.
£
£
£
£
B
F.
£
£
E
£
£
£
£
e
G
t;
K
T
T
T
9
9
2
0
0
0
0
0
0
'i !
f;
'
£
»;
C
c
£
F.
£
£
£
£
t:
£
£
B
£
£
t
£
G
£
F.
R
1
T
T
9
2
0
i)
0
0
0
0
Mil
f,
K
£
K
f
E
E
F
t
£
£
£
B
E
F,
£
t.
£
£
B
ti
£
p
B
E
7
T
1
9
9
2
0
0
0
n
0
0
i) i
P
£
t:
£
E
£
f
C
G
L
B
F.
£
£
£
f
B
F.
£
t,
£
£
t.
£
£
£
K
T
'I
T
9
2
0
0
U
0
0
U
l'.
£
l>
F
G
C
£
6
£
f
6
£
B
t.
£
B
B
£
B
£
£
R
T
T
E
G
B
B
6
g
B
E
T
I'
9
2
o
0
a
0
0
0
NO
f'
(•
£
f
(•
£
G
E
K
G
G
i<
B
£
£
B
e
P
B
G
B
b
fi
£
G
E
G
B
B
E
T
T
9
9
2
0
0
a
0
0
u
Ai
f
£
f
fi
£
£
t
G
E
e
6
t.
E
£
B
e
B
f
E
e
£
t
6
G
£
£
B
p
e
e
F
T
1
9
9
a
2
u
0
c
0
0
0
nr
f
fi
fi
f.
£
E
G
ti
F.
£
F.
B
F.
p
G
F.
B
t.
B
E
F
K
e
e
E
E
T
t
9
9
a
0
n
0
0
0
0
1 F'
*;
f
r
s
£
u
v;
B
B
f
G
£
B
£
e
G
B
f
G
F,
t
t.
F.
G
f,
F.
F.
E
E
B
T
'I
9
9
a
2
0
0
0
0
0
0
\ f,.
r
e
E
F.
f
£
E
J,
£
e
G
G
B
f
F.
e
B
fe
£
F.
£
t:
E
E
f
T
T
9
9
9
n
2
ti
n
0
0
0
0
-(
f
t
f
E
F.
E
G
i,
C
£
I
t
t
t
B
F
G
F.
t
£
F.
G
i
F
f
t
T
T
9
9
r
a
2
0
0
0
0
0
0
j1
t',
f
f.
&
F.
f
F>
E
b
&
G
G
G
B
f
t
t
B
b
£
£
F
t
I
E
E
T
T
9
9
9
a
2
0
n
0
0
0
0
f
p
f
ti
p
£
£
£
f
F.
£
t
I
t
t
£
t,
f
G
t
£
E
R
i
I
I
T
T
S
9
a
2
0
0
0
0
0
0
.c
I'l.
f
B
p
p
£
F,
£
£
e
£
6
£
£
C
e
F.
p
£
e
B
b
K
f
K
E
E
E
F
T
9
9
a
e
u
2
C
1)
C
0
C
u
. 01
p
p
f
F,
f
tl
E
p
B
K
E
f
F.
£
(,
G
E
G
E
E
f
£
e
F.
tl
E
E
R
f
E
E
T
T
9
9
9
C
n
2
G
0
fi
0
c
0
1
1"
p
p
F.
t
Ft
f
p
£
£
£
f
G
e
t>
e
E
£
B
£
f,
E
f
t,
E
f
R
t
E
E
T
1
9
S
9
6
II
2
f
0
0
0
0
a
P
p
£
p
p
(;
p
t
£
F.
f
b
F.
fc
C
G
t,
F.
f
£
E
t>
E
f
E
F
E
E
T
T
9
9
9
8
t)
2
C
0
C
0
C
0
n
7
»•
f
ti
P
P
c
p
£
£
e
f
e
F,
1,
E
F,
F.
£
F.
f,
f:
F,
t,
E
f
E
R
T
f
9
9
9
a
2
0
0
0
0
0
0
E r F f
t'. >", F. r
£ I" F. F
B K F. F
£ F, B F
F 1. F F
G £ C F
C B F. F
E F F. F.
£ £ G E
F. C G £
F. E B F.
B G G F.
G £ F. B
G F. G E
BEEF.
F. G f. B
G G e G
B G G F.
fi G e E
e G B G
£ G G £
f. F. t f.
B F, & B
f f f f
BEEP
1: E I f
BEEF.
f t f f
BERK
f f v r
•Sift
T T T T
T 'f T T
1999
9999
9999
9999
8 0 R fl
e a n n
2222
0000
0000
o n o o
0000
0000
0000
1I-.00
1 ?. no
2F.OO
-------
(T9E O'OE
I
I
I
I
I
I 3
I 3
I 3
I 3
I 9
I 3
I 3
I 3
I 3
I 3
I 3
I 3
I 9
I 3
I 3
I 3
I 3
I 9
I 3
I 3
I 9
I 3
I 3
I 3
I 3
I 3
I 3
I 3
I 3
I 3
I 3
I a
I 3
I 3
I 3
I 9
I 9
I 3
I 3
I 3
•<•« O'Jl
O'SZ Q'OZ 3*51 OMJl 0"<,
5 »
9 *
3 »
3 ' *
3 *
3 *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
(I",,-. OM'i C''jl (.'Mil I)*'.
U) ii tii;,iiJ3 :miv iv in
OM)
- * SS " 1 0 1
*!') •('HI
*Itl •')(,
* 10 Mil,
*itri(,
II M «,
i?: M.i>
n •/.«
iii "ii«
!«, M; n
19 M. H
It M>t
IB *£/
K, "St
10 'lit
II Y/
IE Mil
II MI9
Ih "99
I'j *ti9
19 •<:•)
It M)'J
It) M<».
Id "9i
, 10 •'.•'..
II M.«.
T.L. M. G
Ih M>h
I'j *t l»
19 '!.«>
It Mil
III M Ii
1(> Mil
10 Mil
II -91
IE Mil
II "i! f
Hi M't
is, MI;:
I') '9t
It Ml?
IP 'tc
I(. M)c
10 '(.I
II 'tl
I£ "*>l
It Tl
lliTl
!*>"('
IV •/
It "*,
IUT
I(. M
1(1 Ml
OM)
CO
\£>
CM
(H)
E
0
d
»t-o-,r =
MIDI MI
;t!i:; u..v ov-ui
-------
t.
t*~
e
tr.
c
N
-,
l IN M l CB Ul If
(**^-f*t>^r*f».r*Na»a\a^i««: ^(^"^.^^ce
< •• f-l 1-4 (N (-J fM 04 (M (% ;v f^ i«l CM m r~ >
»1-^sj**>^c-i'vs^^3^'sa%''iS'<
tv. <".' f ; Oi fN (N fj Ol (N C«J {V CM (M IN M f
• i_* «• M & \f. u* (T «1 UO tfl tf! IT. w-» U", ;*. P* y X ^ tf} ^
»rilir*'^i>S'CW^*5^\Ui^ ^SyJ^Cj^fMsf^^Qs^
! c*j f*' ^ f*j ^ r-i (» ^t p\4 f^* f>i r^ ?*i •
e
3
i *_ ^ -• 7 t
264
-------
f|A I'
NANiili'i A 10 <'II.11'
000
0000
0000
0000
II.IKl'l
IK. (HI
.1.1100
1 ;>.<>.»
10. on
12.
-------
a' c
* =!
5, «
* 5.5
» U
* -o
» -J
* u
in
n
if*
ft
e
O
tf.
o
c
«•
v.
c
O. O 81
266
-------
ILLINOIS AQUIFER SIHULATIOH MODEL
Cols.
First
20
Cards
21st
Card
1-5
N
D
E
N
N
0
0
D
0
R
B
E
E
A
A
E
I
D
B
B
s
E
R
11
U
E
E
E
E
E
L
L
L
Q
Q
L
N
E
L
L
T
L
R
«
M
F
F
F
F
C
E
E
E
U
U
E
I
F
A
A
t) 0 U
|l|2
E
T
0
B
B
A
A
A
A
I!
V
V
V
I
I
V
T
A
N
N
P
A
R
E
E
U
U
U
U
A
A
A
A
?
?
A
I
U
»
I
6-10 j 11-15
S
(
(
R
R
L
L
I
r
r
T
E
E
T
/
I
(
T
S
T
T
T
T
G
I
I
I
R
R
I
L
T
C
C
N
I
U
O
0
E
Q
a
0
0
A
A
U
M
M
F
S
[
S
3
tf
4
J
N
P
P
N
P
S
R
R
M
E
I
r
R
c
F
t
t
U
T
D
D
B
0
C
R
A
0
T
A
0
0
0
R
R
0
M
0
E
I
F
0
0
N
R
I
11
G
F
F
F
M
M
F
P
R
R
N
L
tf
S
A
N
D
r
E
E
I
A
C
C
U
s
M
I
R
0
U
s
R
A
A
B
N
G
0
R
A
M
W
I
E
T
A
R
A
T
I
B
B
0
C
E
16-20
F
F
J
-4
t
1
[
1
I
V
I
I
T
0
M
S
S
C
A
A
(
E
j
E
r
R
F
R
T
E
U
I
0
L
L
C
R
A
R
[
[
a
A
A
M
I
tt
I
V
B
U
1
T
T
M
T
C
A
K
r
A
I
F
H
R
L
S
1
1
Z
T
21-25 j 26-30 | 31-35
(
E
r
r
f
3
A
E
S
T
0
0
I
I
B
Y
i
V
r
M
V
u
R
B
B
F
F
R
»
I
N
D
C
D
E
/
E
R
E
E
E
R
K
N
(
I
)
?
A
T
T
A
0
<
)
C
D
H
C
E
(
(
A
A
M
U
U
Q
M
C
R
A
E
U
N
H
C
1
I
C
B
E
E
U
U
E
*
\
r
)
j
f
i
I
E
E
E
I
N
*
H
S
D
M
U
N
N
F
0
E
)
1
(
i
E
D
H
N
C
/
V
M
IK
0
M
B
[
[
R
E
T
H
D
0
/
U
)
0
>
/
s
A
A
L
D
•I
3
T
J
(
C
)
H
If
/
A
rj
T
A
^
A
M
G
/
V
1
E
0
N
)
R
)
B
i
)
)
M
D
D
a*
36-40 j 41-45
:
)
L
-
1
*
\
)
I
(
I
(
)
M
*
C
T
)
J
U
3
(
+
•
L
M
1
E
)
(
M
R
-
C
/
T
L i
•
.
A
46-50 1 51-55
C
M
Y
E
/
)
)
D
••
A
•
(
Y
4
/
)
S
/
•
q
s
Q
•
56-60
K
)
M
)
61-65
66-70
71-75
76-80
ON
-------
ILL AQU GKHATER (CONT)
OO
Cola.
Next
12
Cards
34th
Card
J5th
Card
36th
Card
37th
Card
38th
Card
39th
Card
40th
Card
41at
Card
1-5 J 6-10
I TC
4
5
N
1
2
•
5
0
S
,
N
1
T
4
|
0
5
0
0
T
B
AL P
EPS
3|0|0
N C
|l|2
D
|
|
N-
N-
N P
Ml
3
S M A
3|5J.
t
i
X
4|.|0|0
H
E
0
1 "-"
L T A
N R
M*
E R
IH
I.
T A
N-l'l
D E
M'
D E
Hi*
S
|
P
! II
s u
M-
L X
.|0
L V
T
B
(
(
N R
||
R F
9|4
16-20
21-25 | 26-30 J 31-35 | 36-40 j 41-45 | 46-50 | 51-55 J 56-60 J 61-65 [ 66-70 | 71-75 ( 76-80 I
R 0 R
•I1!
T
j
( L . H )
M-M
Vi N.
Vl
1
II
4-
N S
1
V4 .la
2
0
0
0
4
SI HH 1 QQ 1
Mi j 0.5101 M.Msl
kLW_3_WJ*LJ-l«kLL
II |5 . 0 Mtlc .1
SI ls.JutU.1
I L S
ILL
1 M. 6lJ leltlc .1
-------
ILL AQU GRWATEK (CONT)
Cols.
Next
Cards
t-o
ON
T a ft t
Litt B L.
Cards
1-5
6-10
I
I
2
3
4
5
6
1
2
3
4
5
6
J
5
5
5
5
5
6
6
6
6
6
6
11-15
E L E V (
C
8
8
8
8
a
a
8
8
8
8
8
8
1
7
7
7
7
7
/
7
7
7
7
7
7
7
•
.
.
•
,
.
.
.
.
•
•
4
4
4
4
A
H
4
4
4
4
4
4
4
16-20
I . J )
•
,
C
8
8
8
8
0
8
8
8
8
8
0
2
7
7
7
7
7
/
8
7
7
7
7
7
8
•
.
.
•
7
.
.
.
.
.
7
4
4
4
4
A
H
4
4
4
4
4
4
21-25 | 26-30
0
0
0
0
0
0
S
.
,
.
•
1
0
0
0
0
0
2
2
2
2
7
.
.
.
.
.
2
5
5
5
5
5
4
4
4
4
4
5
31-35
36-40 J 41-45 | 46-50 | 51-55 j 56-60 | 61-65 j 66-70 | 71-75 J 76-80 j
•
e
e
e
e
0
0
0
0
0
0
0
0
0
0
t
t
t
t
.
B
.
•
f
.
.
.
.
.
C
C
C
C
H
0
0
0
0
0
0
0
0
0
0
B
.
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
-
-
-
-
-
1
1
1
1
B
1
Q
.
,
.
•
8
-
-
-
-
-
3
3
3
3
1
2
2
2
2
2
3
7
7
7
7
2
.
.
.
.
,
7
5
5
5
5
5
5
5
5
5
5
5
-------
ILL AQU GRHATER (COHT)
Cols.
1-5
1
1
6
1
2
1
2
1
1
1
2
2
6-10
4
9
9
1
1
1
1
1
1
t
•
•
•
0
0
0
0
0
8
0
0
0
0
11-15
7
2
2
2
2
4
0
0
0
0
•
1
1
.
•
0
•
0
0
0
0
0
16-20
8
8
8
0
0
7
7
7
2
2
4
4
4
0
0
1
1
1
1
0
.
•
.
21-25
.
3
3
3
3
1
0
0
0
0
7
1
1
1
1
5
7
7
7
7
•
•
26-30
0
•
0
0
0
0
0
«
«
.
0
5
5
5
5
1
0
0
0
0
31-35
.
a
1
2
36-40 J 41-45_|_ 46-50 | 51-55 | 56-60 J 61-65 J 66-70 | 71-75 | 76-80 |
5
ho
--J
O
-------
SECTION 8
RITCHIE EVAPOTRANSPIRATION (ET) MODEL
One important component of the Watershed-Run-Drainage system not
addressed by any other model in this package is soil and plant evaporation.
The Ritchie Evapotranspiration Model addresses this issue. This model will
compute the soil and plant evaporation day by day using equations developed
over a long period of time. The model also yields information about runoff,
drainage and aggregate water content for a one-dimensional slice into the
soil.
As with many of the other programs in this package, the output from the
Ritchie Evapotranspiration Model can be contoured using the Surface II
Contouring System. We merely need to run this program at a number of dif-
ferent points in the soil and, then, feed the output from all the runs into
Surface II.
INPUT: ELEV - Site elevation
SW - Initial soil water content
UL - Soil water upper limit
PLL - Soil water lower limit for potential evaporation
U - Upper limit for stage 1 soil evaporation
CONA - Soil evaporation equation constant
XMLA - Soil mulch
XLAI - Leaf area indices
For each day simulated:
" RAD - Solar radiation
TMAX - Maximum temperature
TMIN - Minimum temperature
WIND - Wind movement
RAIN - Rainfall
Q - Runoff
271
-------
OUTPUT: For each day and month simulated:
HO - Not radiation
DR - Drainage
EO - Potential cooperation
EP - Plant evaporation
ES - Soil evaporation
ET - Total evaporation
SW - Soil water content
For each year simulated:
AYR - Rainfall
AYQ - Runoff
ETYR - Evaporation
DY - Drainage
SDAYS - Number of stress days
REFERENCE: J. T. Ritchie. 1972. Model for predicting evaporation from
a row crop with incomplete cover. Water Resour. Res. 8(5):
1204-1213.
272
-------
ITCHIE.EVAPOTRANSPIBATION. MODEL
1 234567
123456789012345678901234567890123456789012345678901234567890123456789012;
0.1
0.2
0.3
0.4
0.5
1.
2.
3.
4.
5.
6 .
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21 .
22 .
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
//MN1XXXXX
/*JOBPABM I
JOB (BEI01)
=RITCHET
// EXEC FWCLG
/*JOBPAEH FULLSKIPS
//SYSIN DD
c**********
C
C
c
c
c
c
C MODIFIED
C
C
c
c
c
c
*
*************************************************************
SOIL WATER BALANCE MODEL
DEVELOPED AT THE
BLACKLAND CONSEBVATION EESEABCH CENTER
TEMPLE, TEXAS
BY: BRIAN E. WEINRICH
OSDA-SEA-AR
NORTHEAST WATEBSHED BESEABCH CENTER
110 RESEARCH BD. A
UNIVEBSITY PARK, PA. 16802
C THIS PROGRAM COMPUTES DAILY SOIL AND PLANT EVAPOBATION FROM
C DA
ILY METEOROL03ICAL VABIABLES BY THE ENERGY BALANCE TECHNIQUE
C DAILY SOIL WAIER CONTENT IS ALSO COMPUTED.
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
THE VABIABLES READ IN ARE-
NYRS = NUMBER OF YEARS OF DATA TO BE RUN.
MO = MONTH.
KDAY = DAY .
KYR = YEAR.
SW = SOIL WATER CONTENT ON BEGINNING DATE, INCHES.
UL = SOIL WATER UPPER LIMIT, MM.
PLL = SOIL WATER LOWER LIMIT FOB POTENTIAL EVAP., MM.
U = UPPER LIMIT FOR STAGE 1 SOIL EVAPORATION, MM.
CONA = CONSTANT FOB SOIL EVAPORATION EQUATION.
XMLA = VARIABLE FOR MULCH ON SOIL. VALUES BANGS FBOM 0
FOR NO MULCH TO 1 FOP COMPLETE MULCH COVER.
IDAY = DAY OF YEAS.
KE = A CODE TO SIGNIFY WHETHER SOLAR RADIATION OR PAN
EVAPORATION WILL BE BEAD IN.
KE * 0 IF SOLAR RADIA ION READ IN.
KE = 1 IF PAN EVAPORATION READ IN.
KPLOT = CODE TO CAUSE A PRINTER PLOT OF RESULTS.
KPLOT = 0 FOR NO PLOT
KPLOT = 1 FOB PLOT
PC (I) = PAN COEFFICIENTS. USED ONLY IF PAN EVAPORATION
DATA USED AS INPUT.
PEV = DAILY PAN EVAPORATION DATA, INCHES.
NLAI = NUMBER OF LAI MEASUREMENTS.
ND = DAY OF YEAR THAT LAI WAS MEASURED.
XLAI = LAI MEASURED VALUE.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
NDAYS = NUMBER OF DAYS OF DATA TO BE READ FOR A GIVEN YEAR.
RAD = SOLAR RADIATION, LY/DAY.
TMAX = DAILY MAXIMUN TEMPERATURE, DEG. F.
TMIN = DAILY MINIMUM TEMPERATURE, DEG, F.
WIND = DAILY MIND MOVEMENT, MILES.
*
*
*
*
273
-------
BITCHIE. E7APOTBA8SPIRATION. MODEL
1 23456:
123456789012345678901234567890123456789012345678901234567890123456789C
51. C BAIN = DAILY EAINFAL1, INCHES.
52. C Q = DAILY RONOFF, INCHES
53. C TDB = DBY BULB TEHPEBATUBE, DEG, F.
54. C TUB = SET BOLB TENPEBATOBE, DEG. F.
55. C
56. c*********************************************************************
57. DIMENSION AL AI (367),PC (12) ,NAHE (20) ,DAY(366) ,SSAT (366)
58. DIMENSION BAD* (366) ,1 MX (366) , TMN(366J ,BB (366)
59. COMMON XMLA
60. COMMON/A/ PLL,SS
61. INTEGER TP
62. BEAD(5,1QQ) NYBS
63. 74 NYB = 0
64. DB = 0.
65. SOM9 = 0.0
66. DRAIN = 0.
67. AMR = 0.
68. AMQ = 0.
69. ASEO = 0.
70. AMEP = 0.
71. AMES = 0.
72. AflET = 0.
73. AMH2 = 0.
74. AMSTM = 0.
75. AM ERR = 0.
76. AMPE = 0.
77. T = 0.
78. SOMES 1 = 0.
79. SUMES2 = 0.
80. NDPE = 0
81. XMAX = 366.
82. YMAX = 125.
33. TP = 0
84. PP = 0.
85. ESP = 0.
86. TX = 0.
87 . LCT=3
88. KDATA = 0
89. M0=0
90. DAY(1) = 0.
91. DO 76 I = 2,366
92. 76 DAY(I) = DAY (1-1) * 1.
93. DO 747 1=1,366
94. XI=I
95. RC = 520. * 193. * SIN(O.Q172 * (XI - 80.))
96. XDAY = I
97. IF (I .ST. 182) 30 TO 850
98. YRAD = 0.0014 * XDAY + .46
99. GO TO 851
100. 850 YBAD = -0.0011 * XDAY * 0.96
101. 851 RADX(I) = RC > YRAD + (RC * (1.0 - YRAD) * 0.2)
102. TMX(I)=77.5*18.5*SIN(0.0172*(XI-90.))
103. TMN(I)=55. + 17.*SIN(0. 0172* (XI-100.) )
104. 747 CONTINUE
105. C**** READ INITIAL SOIL BATER AND EQOATION PARAMETERS ***
274
-------
CICH'IE. EYAPOTBAHSPIRATION. MODEL
1234567
123456789012345678901234567890123456789012345678901234567890123456789012:
106. READ(5,300) M01,KD1,KYR1,SH,OL,PLL, 0,CONA,TL,EBAR
107. 300 FDRHAT(3I3,1X,7F10.0)
108. C*** CONVERT SOIL WATER TO MM.
109. SW = SW*25. 4
110, GO TO 4100
111. 75 CONTINUE
112. 3000 CONTINUE
113. READ(5,300) MO1,KD1,KYR1
114. 4100 CONTINUE
115. C*****READ ELEVATION IN FEET
116. BSAD{5,1111) ELEV
117. 1111 FORMAT(FIO.O)
118. ETYR = 0.
119. ADM = 0.0
12Q, DY - 0.
121. SSDM =0.0
122, AYR = 0.
123. AYQ = 0.
124. AYEO = 0.
125. AYEP = 0.
126. AYES = 0.
127. AYET = 0.
128. SDAYS=0.
129. H = 0.
[130. IF(KDAIA .GT. 0) GO TO 555
131. 750 BEAD(5,1QQO) (HAME(I), I = 1,20)
132. 1000 FOBMAT(20A4)
133. WRITE{6,2000) (NAME{I),I = 1,20)
134. 2000 FOBMAT{'1',20A4)
135. HRITE(6,2001) OL, PLL, D,CONA
136. 2001 FOBMAT(1GX,'THE SOIL PABAMETEES ABE --- » ,//,20X, 'UPPEB LIMIT =',F5.
137. 12,»MS«,/,23X, 'LO»ER LIMIT FOB POT. E7AP. =' ,F5. 0, 'MM' ,/,20X, ' THE U
138. 2PPER LIMIT FOB STAGE I SOIL EVAPORATION IS » ,F5. 1,/, 20X, 'THE STAGE
139. 311 SOIL EVAPOBATION EQUATION IS— ' ,/,25X, ' SUMES = f ,F7. 4, «T**0. 5«,
140. 4//)
141. READ{5, 401) XMLA
142. 401 FOBMAT(FIO.O)
;143. DO 77 I - 1,366
144. 77 SWAT(I) = 0.
145. BEAD(5,4000) IDAY
146. 4000 FOBMAT(I3)
147. READ{5,771) KE ,KPLOT, KDATA
148. 771 FORMAT (312)
149. 67 ETMO = 0.
150. IF (KE . EQ. 1) GO TO 93
151 . GO TO 94
152. 93 BEAD(5,772MPC(I), I = 1,7)
153. 772 FOBMAT(12F6.0)
154. 94 BEA0{5, 100) NLAI
155. WRITE (6, 200 2)
J156. 2002 FORtUTC »,10X,»THE MEASURED LEAF ABEA INDEX VALJES ABE --',/» 20X,
157. 1 »DAY« ,10X,'LAI',/)
158. KT = 0
159. READ(5, 400) ND,XL&I
160. 400 FOBMAT(I5,F5.0)
275
-------
CTCHIE. EYAPOTRANSPI8 ATIOH. MODEL
1234567
123456789012345678901234567890123456789012345678901234567890123456789012
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
2003
0.) GO TO 52
50
52
180.
181 .
182,
1*83.
184.
1B5.
186.
1187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200'..
201.
202.
203.,
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
51
53
54
55
100
555
2176
2076
189
200
SRITE(6,2Q33) HD,XLAI
FORMAT <2QX,I3,10X,F5. 2)
ALAI(ND) * XLAI
KT = KT+1
IF{ALAI{ND) .HE,
DO 50 I = 1,ND
ALAI(I) = 0.
HD1 = HD
READ (5,400) ND,XLAI
WRITE(6,2003) ND,XLAI
ALAI(ND) = XLAI
KT = KT + 1
DELTA = (ALAI(ND) -ALAI(ND1) )/(ND -
HP1 = ND1 + 1
DO 51 I = NP1,ND
ALAI(I) = ALAI(I-1)+DELTA
IF(KT - NLAI) 52,53,53
NDP1 = ND + 1
DO 54 I = NDP1,366
ALAI(I) = 3.
ftEAD(5,1CO) NDAYS
FORMAT(I3)
EPDM1 = 0.
IFLAG = 0
SOMES = 0.
IHAIN = 0
T = 0
IF(KDATA .EQ. 0) GO TO 189
8BAD(5,2176) KTB1 , (RR (I) ,1 = 1 , 10 )
FORMAT(8X,I2,10F5.0)
8EAD(5, 2076) (RR (I) ,1 = 11 , HDAIS)
FORMAT (10X, 10F5. 0)
IF(KE .EQ. 1) GO TO 36
WRITE (6, 200)
FORMAT(1H1,
ND1)
//,13X,'NET
SOIL«,/,13Xr 'RAD.
LEAF',25X,«POT. PLANT SOIL
AREA RAIN RUNOFF DRAINAGE EVAP.
1 MO DAY YR (MS/DAY) INDEX (
(MM/DAY) (HM/DAY) (MM)',/)
(MM/DAY)
LEAF' ,25X,'POT.
RAIH BDNOFF
• HO DAI YB
PLANT
DRAINAGE
(MM/DAY)
SOIL
E7AP.
IHDEX (
1 T OT A L
2 ETAP. E7AP. 2VAP.
3M) (MM) (MM) (MM/DAY)
GO TO 1
36 WRITE (6,2030) (NAME(I) ,1 = 1,20)
WRITE (6,203)
203 FORMAT(1H ,////////,131,•PAN
1 TOTAL SOIL',/, 13X,'E?AP. AREA
2 EVAP. E7AP. E7AP. SATEB1,/
3H) (MM) (MM) (MM/DAY) (MM/DAY)
IDAY = IDAY + 1
IF(KDATA .EQ. 0) GO TO 2
BAD=BADX(IDAY)
TMAX=TMX(IDAY)
TMIH=TMN(IDAY)
RAIN=RB (IDAY)
GO TO 3
IF (KE .EQ. 1) GO TO 37
READ(5, 101 ) MO,KDAY,KYB,RAD,THAX,TMIN,iIND,BAIN,g.,TDB,TMBr
1ETM
(MM/DAY) (MM/DAY) (MM)',/)
276
-------
CHIE.E71POTHAH SPISATION.MODEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901234
16. 101 FORMAT (312, 2X,F6.0,F5.0,F5.0,3X,F6.0,18X,F6.0,F1.0,F3.0,F4.0,F7.0)
17. 8001 IF(MO-99)3001,3000, 3001
18. 3001 COHTIN0E
19. 3 IF(HAIH) 111,111*222
20. 111 Q-0.
21. GO TO 333
I22. 222 CS=0. 19*SW+36.
23. SS=(10QO.-10.*CN)/CN
24. QQ=EAIH-0.2*SS
25. IF(QQ) 247,247,248
26. 247 Q=0.
[27. GO TO 333
28. 248 Q= (QQ**2)/(BAIH+0.8*SS)
£9. 333 BAIN2=BAIN-Q
0. GO TO 38
1. 37 READ(5, 102) MO,KDAY,KYR, PIV,RAIN
2. 102 FORMAT(3I2,3X,F6.0,36X,F7,0,F7,0)
33. IF (RAIN) 444,444,445
&4. 444 Q=0.
35. GO TO 446
36. 445 CN=0.190 * SW + 36,
37. SS=(1000.-10.*CN)/CN
38. QQ=BAIN-0.2*SS
39. IF (QQ) 447,447, 448
40. 447 Q=0.
41. GO TO 446
42. 448 Q=(Q2**2)/(8AIN+0.8*SS)
43. 446 RAIN2=BAIN-Q
44. PEV = PEV*25.4
45. ASPS = ASPE * PE7
46. IF(IDAY ,LE, 85) EO = PSV*PC(1)
47. IF(IDAY .GT. 85 .AND. IDAY .LE. 150) EO = PEV*PC(2)
48. IF (IDAY .GT. 150 .AND. IDAY .LE. 230) EO = PEV* PC (3)
49. IF (IDAY .GT. 230) EO = EE7*PC{4)
50. 38 IF(KDATA .2Q. 1) SO TO 69
51. IF (MO .EQ. «01) GO TO 69
52. IF (MO .EQ. 1) GO TO 69
53. IF (KB . EQ. 1) GO TO 24
54. WRITE (6,701) A HH2, AflR, AMQ,DBAI N, AMEO, AMEP, AMES, ETMO, SSDM
I55. 701 FORHAT(/,' MONTHLY',/,' TOTALS',F9. 1, F14. 1 ,F6. 1, 2F8 . 1, 3F9. 1, 101, F8
56. 1.1)
57. GO TO 25
58. 21 WBITE(6, 701) AHPE, AMH, AHQ,D8AIN, AHEO,AMEP, AMES, ETMO,SSDM
!59. 25 IF (K2 .EQ. 1) GO TO 35
|60. WRITE (6, 200)
161 . GO TO 43
!62. 35 WRITE (6,203)
^63. a3 ETMO = 0.
264. DRAIN = 0.
!65. AMR = 0.
J66. AMQ = 0.
>67. SSDM = 0.0
268. AMEO = 0.
269. AMEP = 0.
>70. AMES = 0.
277
-------
BITCHIE.EVAPOTRANSPIR ATIOH. MODEL
123456
123456789012345678901234567890123456789012345678901234567890123456789
271. AMH2 = 0.
272. AMETM = 0.
273. AMERR = 0.
274. AMPE = 0.
275. C**** CONVERT RAINFALL FROM INCHES TO MM, ****
276, 69 RAIN = BAIN*25.4
277. RAIN2 = BAIN2*25. 4
278. Q = Q * 25.4
279. AMQ = AMQ * Q
280. AYQ = AYQ * Q
281. AMB = AMB + BAIN
282. AYE = AYR * RAIN
283. IF (ALAI (IDAY)) 83,80,81
284. 80 NDPE = 0
285. GO TO 82
286. 81 NDPE = NDPE + 1
287. 82 CONTINOE
288, IF(KE . EQ, 1) SO TO 39
289 • -M.L POTEVA(EAD,TMAX, TMIN,ELEV,IDAY,ALAI, HO,EO,D,G, DELTA, GAMMA)
290. 39 ASBO = AMEO + EO
291. AYEO = AYEO + EO
292. CALL EVAP(EO, ALAI, IDAY, 0, SOSES 1, SOMES2,RAIN2 ,CONA,T, NDPE, E
293. 1 EP,ET,HO,D,KE)
294. CALL SOLSAI (ALAI, EO, EP, ES, ET, S»,F AIN2,EPDM1 , IDAY, DRAIN, DY,OL, PL
295. 1 IFLAG,TX,TL,MO,EBAR,DB)
296, SHAT(IDAY) = SW
297. " IF(KE .EQ. 1) GO TO 40
298, ETM=0.
299. ERROR=0.
300. SOM9 = SOMES 1 + SOMES 2
301. IF(KDATA .EQ. 0) GO TO 118
332. LCT = LCT + 1
303 • SPITE (6, 202) IDAY,KYB1,HO,ALAI (IDAY) , RAIN,Q, DR, EO, EP, ES, ET, S¥
304. 202 FORMAT(I6,I4,F6.1,F8.1,2F6.1,2F8.1,3F9.1,F8,0)
305. IF (LCT .EQ. 50) IBITE(6,200)
306. IF(LCT .EQ. 50) LCT = 0
3C7. GO TO 41
308. 118 WRirE(6,201) MO,KDAY,KYR, BO, ALAI (IDAY) ,HAIN,Q,DS ,EO, EP,ES,ET,S»,
309. 1IDAY,SUM9
310. 201 FORMAT(213,14,F6. 1, F8.2,2F6.1,2F8.1,3F9.1,F8.0,110,F10.3)
311. GO TO 41
312. 40 WRITE(6,201) MO,KDAY,KYH,PE7,ALAI(IDAY),HAIN,Q,DR,EO,EP,ES ,ET ,SH
313. 41 ETSO = ET * ETMO
314. ETYR = ET + ETYR
315. AMEP = AMEP + EP
316. AYEP = AYEP + EP
317. AMES = AMES * ES
318. AYES = AYES + ES
319. IF(ALAI (IDAY) .31. 1. .AND. SH , LT. PLL) SDAYS=SDAIS+(1. - (SW/PL]
320. IF(KE . EQ. 1) GO TO 26
321. AMH2 = AMH2 + HO
322. AMET8 - AMETM * ETM
323. AMERR = AMERR + EBBOR
324. 26 M01 = MO
325. IF (IDAY . SQ. NDAIS) GO TO 4
278
-------
CCHIE. EVAPOTIANSPIBATIOH. HODBL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123'
126. EPDM1 = SP
I27. GO TO 1
128. 4 IF(KDATA .GT. 0) 30 TO 6
129. IF(KS ,EQ. 1) GO TO 5
I30. HRITB(6,701) AMH2,AflB,AHQ,DBAIN,AHEO,AHEP,iHES,ETMO,SSDH
131 . GO TO 6
I32. 5 WRITE (6,701) ASPE,AMR, AMQ,DBAIN, AflBO,AHEP, AflES,ET8O
33. 6 ETHO = 0.
34. DRAIN = 0.
35. AMR = 0.
36, SSDH =0.0
37. AflQ = 0.
38. AMEO = 0.
39. AMEP = 0.
I40. AMES = 0.
41. AMH2 = 0.
42. AMSTM = 0.
43. AMERR = 0.
44. AMPE = 0.
45. WRITE (6,702) AYR, AY Q, ETYR, DY, SDAYS
46. 702 FOBMAT(//,55X,'ANNUAL WATEB BUDGET',/,SOX,'RAINFALL ',
47. 1 F6.1,' SM. «,/, 50 X, 'RUNOFF ',F6.1,« MS.',/,SOX,
J48. 2 'EVAPORATION ',F6.1, ' MS .«,/, SOX, ' DRAINAGE ',
!49. 3F6.1,1 flM.',/,50X,'STRESS DAIS ',F6.1)
[50. IF(KPLOT) 79,78,79
151. 79 CALL PRINT(XaAX,r«AX,DAY,SIAT,NDAYS)
\52. 78 EPDM1 = EP
|53. NYB = BYB + 1
I54. IDAY = 0
I55. IF(NY8 .LT. NYRS) 30 TO 75
56. 999 CONTINUE
I57. STOP
|58. END
[59. SUBROUTINE POT EV A (B AD,TMAX ,TMIN ,ELEV, IDAY,ALAI,HO ,EO,D ,GO,DELTA,
J60. 1GAHBA)
161. C*****THIS SUBBOOTINE COMPUTES THE DAILY POTENTIAL EVAPORATION.
362. DIMENSION ALAI (366)
I63. C*****COMPaTE MEAN DAILY TEMP, IN DEG CENTIGRATE, TM.
J64. TM = ((TMIN+THAX) /2.-32.) * (5./9.)
365. C*****CO«PUTE ALBEDO
366 . ALBEDO=0. 07+0.053*ALAI (IDAY)
i67. C*****COMPUTE CLEAR DAY SOLAB RADIATION, RC (LY)
368. XIDAY=IDAY
J69. RC=520.+193. *SIN(0.0172* (XIDAY-80.) )
170. IF (RAD .GT. BC) BAD = BC
J71 . C*****COflPUTE NET LONGWAVE RADIATION, RNL(LY)
J72 . E4=1. -0. 261*EXP(-7.77E-04*TH**2)
J73. RNL=(E4-0.96)*1. 1 7E-07* (TH + 273.) **4* (0. 2+0. 8* (BAD/RC) )
[374. C*****COHPUT2 NET RADIATION, H (LY)
375. H = RAD* (1. -ALBEDO) +RSL
b6. C*****COMPUTE SOIL HEAT FLOX, G (LY)
377. G=1.7 + 14.6*SIN(0.0172*(XIDAY-51.) )
J378. C*****CONVEBT TO MM OF WATER
[379. HO=H/58.3
38C. IF (HO. LT.3.0) HO=O.C
; 279
-------
083
tiz oi os • set*
soa = sa 9 *»EU
£'9*9 (il - lSaWflS)dI '££17
soa + t.£3Bns = isawDs s *Z£tr
*0 = LS3BOS 17 *l£!7
9 oi oo
a - LsaKcs = i satins e
t7*i?'£ (tsawns - a)ai t
2*2*1 (0 - IS2HDS)£I 66 '£217
(*i+a)/(soH*a) =soa • 92tr
((Y1RX*5'2 + {I¥dl) I¥1Y)*86£'0-)dXa * OH = SOH *SZ17
66 01 09 (t 'Oa* 32)41 'ft 2*
o-)dxa*oa = soa U *oa • ax)ai 'C2t»
66 Oi 09 (5*0 'II • (lYai)lVlY) il D ' 22U
oa = soa (s*o *XT (i?ai)i¥i^) 41 D
s IY a = d
SfiNIINOD 001 '6ti7
U2 01 09 *8tt?
0*0 = sa 'Lit
OOt Oi 09 (nd*J,9*fiS) II '9117
MS'TId /Y/SOHB03 'Stir
YIRX KOHKOD ••ft 11}
{99£>I¥'I¥ NOISH3BIO
****D
**** SOII¥SOd¥Aa "IIOS EiDdHOD ****D 'tltl
•IYQ/HB * (dS + SS) ROIIYBOdYAa TYIOI = 1,3 D *80t7
•1YO/BR 'HOIi¥30d¥Aa IS¥ld = dS D 'ID1?
•RH 'II 39¥1S 81 NOIi¥HOd¥A3 IIOS 3A II ¥10802 = SSBHOS D * 90tj
•HH 'I E9¥XS 81 NOII¥HOd¥Aa IIOS aAIIYlDHCD = IS3HQS D
•i¥0/RW 'NOII¥80d¥Aa IIOS = S3 D
•I¥a/RH *IdON¥D iN¥ld 3BI AOiaa *d¥A3 l¥IIK3IOd = S03 D * COft
—SHY sai8¥ia¥A am D 'to*?
3 'tOfc
•aailRII XOH SI H3i¥H IIOS SHIRflSS¥ D * 001?
NOII¥HOd¥A3 IIOS QH¥ IS¥Td 2TI¥d 3Hi SSIDdWOD 3NIIOOHaOS SIHJ, D "66E
D '86E
******************************************************* *********** ***D ' L6t
(ay'a'oH'ia'da'sa'adas t *96E
I¥1¥'03> d¥A3
=a
•0=03 ("0 'IT 03) il H6E
(OD-OH) * ( (¥HH¥D+¥a,iaa)/¥naa) * (¥iae + *t) =oa *o&e
* (RH) 03 *d¥A3 1¥IIK3IOd 3IfidROD*****D • 68E
'98E
(OI*Sl 1 00 *+ *l ) *d*ij 0-39 "9=¥BRY9
(*6/'S)» ( *2e-
(3H) d 'aaOSS3Hd NY3R aiOdHOD*****D '28E
£'85/9=09
2 I
*HOII¥aidSS¥aiOd¥A3 '
-------
PCHIE.EVAPOTfiANSPIBATIOH.MODEL
436.
437.
1438.
[440.
441.
(442.
[443.
,444.
[445.
[446.
[447.
,448.
[449.
450.
,451.
452.
453.
454.
[455.
456.
457.
458.
459.
460.
,461 .
462.
463,
,464.
465.
67.
68.
69.
r70.
471.
472.
473.
474 .
^475.
[476.
J477.
478.
479.
480.
1481.
482.
483.
484.
485.
486.
487.
48ft.
489.
490.
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123<
7 ES = EOS - 0.4* (SOMES 1 - 0)
SOMES2 = 0,6* (SOMES 1 - 0)
T = (SOHES2/COHA)**2
GO TO 24
2 IF(P - SOHES2) 9,8,8
8 P - P - SOMES2
SDMES1 = 0 - P
T = 0.
IF(P- D) 5,5,4
9 T = T + 1.
ES = CONA*T**0.5 - SOMES2
IF(P .GT. 0.) GO TO 10
IF(ES .GT. EOS) ES = EOS
GO TO 11
10 ESX = 0.8*P
IF (ESX .LE. ES) ESX = ES + P
IF (ESX .GT. EOS) ESX = SOS
ES = ESX
11 SUMSS2 = SOMES2 + ES - P
T « (SOMES2/CONA) **2
C****
C**** COMPOTE PLANT EVAPORATION
C****
24 IF(ES .LT. 0.) ES = 0.
IF(ALAI(IDAY) .GT. 3.0) GO TO 26
IF(ALAI(IDAY) .LE. 0.0) GO TO 51
FP = (-0.21 + 0.70*(ALAI(IDAI)**0.5)) * EO
GO TO 50
51 EP = 0. 0
50 CONTINOE
IF (EP .LT. 0.) HP = 0.
GO TO 25
26 EP = EO - ES
C****
C**** COMPOTE TOTAL EVAPORATION ****
C****
25 ET = ES + EP
IF(EO-ET) 39,41,41
39 ET = EO
EP = ET - ES
41 RETOSN
END
SOBR30TINE SOLifAT (ALAI,EO,SP,ES,ET,SW, BAIH,EPDal, IDAY, DRAIN, DY,
1 OL,PLL,I,TX,TL,MO,EBAR,DR)
C
C
C
C
C
C
C
C
C
C
THIS SOBBOOTINE COMPOTES THE DAILI PLANT EVAPORATION WHEH
SOIL WATER IS LIMITED AND ACCOUNTS FCR SOIL iATSE CONTENT.
THE VARIABLES ARE —
3L = MAXIHOM AVAILABLE WATER HOLDING CAPACITY, MM.
ALLEO = LOWER LIMIT OF SOIL WATER CONTENT FOB POTENTIAL
EVAPORATION, MM.
SH = SOIL WATER CONTENT, MM.
*
*
*
*
*
*
*
281
-------
SITCHIE. EVAPOTHAHSPIfiATION. HOOEL
1 2 3 It 5 6 1
123456789012345678901234567890123456789012345678901234567890123*567890
491. C IL = IIH2 IN DAYS FOR SW TO DECREASE FROM ALIEO TO 0.
492. C
493. C*********************************************************************
494. DIMENSION 1LAI (366)
495. COMMON XHLA
496. IF (SB . GT. OL) SI = UL
497. ALLEO = PLL
498. IF(ALAI(IDAY) .12. 0.0} GO TO 11
499. 2 IF(SH - ALLEO) 8,9,9
500. 8 EP = 0.0
501. 9 CONTINUE
502. 5 ET = ES + EP
503. IF(EO - ET) 10,11,11
504. 10 ET = EO
505. EP = ET - ES
506. 11 SH = SS - ET * RAIN
507. IF(SW . LE. UL) DR = 0.
508. IF(SS .LE. OL) 30 TO 81
509. Dfi = SH - UL
510. SW = UL
511. DHAIH = DRAIN + DR
512. DY = DY -«• DR
513. 81 IF(SW , LT. 0.) SST = 0.
514. EETUBN
515. END
516. SUBROUTINE PRINT(XMAX, YMX, X, I, N)
517. DATA POINTI, XMINUS, BLANK, POINT/1HI,1H~,1H ,1HX/
518. C
519. C
520 . C -• •
521. C THIS IS A SUBROUTINE TO PROVIDE A PLOT OF ANY TWO DATA FIELDS,
522. C CALLED X AND Y, ON THE PRINTER.
523. C YSAX IS THE MAXIMUM OBDINATE AND FOR BEST RESULTS SHOULD BE IN
524. C INTEGER MULTIPLES OF FIFTY.
525. C XMAX IS THE MAXIMUM ABCISSA AND FOE BEST RESULTS SHOULD BE IN
526. C SOHE EVEN INTEGER MULTIPLE OF THBEE, SUCH AS 3, 6, OE 12.
527. C THE PSIUT AREA IS FIFTY ROMS BY NINTY COLUMNS.
528. C X IS THE DATA FIELD WHICH COMPOSES THE ABCISSAS.
529. C Y IS THE DATA FIELD WHICH COMPOSES THE ORDINATES.
530. C N IS THE NUMBER OF DATA POINTS TO BE PLOTTED.
531 . C •-• •
532. C
533. C
534. C
535. DIMENSION X (366) , Y{366), YAXIS (50) , XAXIS(90), YSCALEC5Q),
536. CXSCALE(7), ARRAY (100, 100)
537. COMMON XMLA
538. WRITE (6r1030)
539. 1000 FORMAT('I')
540. C
541 . C
542. C GENERATING THE Y-AXIS HHICH IS A COLUMN OF I«5
543. C
544. DO 100 J=1,50
545. YAXIS (J) = POINTI
282
-------
CHIE. EYAPOTBABSPIHATION. MODEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901234J
. C
i47. C
18. C PUTTING -'S AT THE I SCALE LOCATIOHS
jt9. IF(J.E3.1.0B. J.EQ.10.0B.J. EQ.20.0B. J, EQ.30.OB.J.EQ.4Q.OB.J.EQ.50)
pO. C GO TO 102
51 . GO TO 100
52. 102 YAXIS(J) = XMINUS
53. 100 CONTINUE
54. C
35. C
56. C
p7. C CALCULATING THE SCALE VALUES POB THE Y-AXIS.
38. DO 300 J=1,50
59. XJ = J
50. IF (J.EQ. 1.08. J.EQ. 10.0B.J.EQ. 20.OB.J.EQ,30.OB,J.EQ.4Q.OB.J.EQ.50)
!>1. C GO TO 302
p2. YSCALS(J) =0.0
63. GO TO 300
^4. 302 I?(J. EQ. 1) GO TO 303
55. GO TO 304
Sfe. 303 YSCALB(J) = YHAX
|>7. GO TO 300
68. 304 IF (J.EQ.10.0B.J.EQ.20.0B.J.EQ.30. OB. J, EQ.40.0B. J.EQ.50) GO TO 305
o9. GO TO 300
70. 305 YSCALE{J) = (YMAX) * {(50.0 - XJ)/50.0)
(71. 300 CONTINnE
72. C
73. C
(74. C CALCULATING THE LOCATIOH OF EACH OF THE PLOTTING POINTS
[75. C
76. C COMPOIING YINC, if HIGH IS T8E UNITS PEB PS INT BO«
77. C
j78. YINC = YMAX/50.0
79. C
80. C
81. C COMPUTING XINC, i HIGH IS THE UNITS PEB PBINT COLUMN
82. C
83. XINC = XSAX/90. 0
84. C
85. C
86. C BUILDING THE PBINT FIELD'CALLED ABBAY(J,I), IN WHICH J IS THE BOS
87. C NUMBEB AND I IS THE COLUMN NUMBEB.
88. C
.89. C
90. DO 431 J = 1,50
i91 . DO 401 I = 1,90
[92. 401 ABBAY(J,I) = BLANK
i93. DO 400 JJ=1,N
:9U. J = (50.0 - (Y(JJ)/YISC)) + 1.0
»95. I = (X(JJ)/XINC) 4- 1. 0
^96. A8KAY(J,I) = POINT
597. 400 CONTINUE
p98. C
599. C
bOC. C SETTING THE X-AXIS B* PUTTING IN A ROW OF -'S
i 283
-------
BITCfllE. E7APOTRANSPISATION.HODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
601. C
602. DO 500 J=1,90
603. XAXIS (J) = XHINUS
604 . IF (J. EQ. 15. OR. J. SQ. 30 .OB. J . EQ. 45. OB . J . EQ. 60.OH . J. EQ. 75. OR. J.EQ. 9(
605. C GO TO 501
606. GO TO 500
607. 501 XAXIS (J) = POIHTI
608. 500 CONTINUE
609. C
610. C
611. C DETERMINING I HE SCALE COORDINATES FOR THE X-AXIS
612. C
613. XSCALE(1) = 0.0
6t4. DO 600 J=1,6
615. XJ = J
616. XSCALE(J+1) = (XJ/6.0)*XMAX
617. 600 CONTINUE
618. C
619. C
620. C
621. C NOW PRINTING THE OUTPUT
622. C
623. C
624. DO 700 J=1,5Q
625. IF{J.EQ.50) GO TO 708
626. IF (J. EQ. 1. OR. J.EQ. 10. OB. J.EQ. 20. OR. J.EQ. 30. OR. J.EQ. 40) GO TO 707
627. WRITE (6,2) YAXIS(J), (ARR AY (J, I) ,1=1, 90)
628. 2 FORMAT(29X.A1,90A1)
629. GO TO 700
630. 707 WHITE (6,3) ISCALE (J) , IAXIS(J), ( ARRAY {J, I) ,1=1,90)
631. 3 FOHMAT(23X,F6.1,A1,90A1)
632. GO TO 700
633. 708 WRITE {6,4) YSCALE ( J) , YAXIS ( J) , XAXIS
634. 4 FORMAT(24X,F5.0,A1,90A1)
635. 700 CONTINOS
636. C
637. C
638. WRITE (6,5) XSCALE
639. 5 FORHAT(27X,6 (F5. 1, 1CX) ,F5. 1)
640. DO 800 1=1,90
641. DO 800 J=1,5C
642. ARRAI(J,I) = BLANK
643. 800 CONTINUE
644. RETURN
645. END
646. C « •••••
647. /*
648. //DATA.INPUT DD *
284
-------
U:»HlJ4e:»> I MArtK
,,^4.4. t-AliAflfcl'lilc; AHK-— •
Ul'l'Kk LIMIT = n.Att
nu.lit LIMIT FOK PO1. EVAl'. = 19. HH
i'ut UPPEB Linrr FOU STAGE i SOIL EVAPORATION is o.o
Tilt iTAGE II SOIL EVAPOBA1IOM EQUATIOU IS —
SUMB3 = 7. 1000T**0. 5
LEAF AUEA INDKK VALUES ABE
UJ.V LAI
2J 0.0
J7 0.0
id I. 'II
bd 1.41
6'J 2.82
74 2.1)2
MO 2.40
CIV 2.1U
ao 1.37
10J 1.37
10H 1.70
1^1 1.70
122 2.15
Uu 2. IS
U'J 1.82
tbJ 1.32
ttil 0.93
269 0.93
OO
Ln
-------
vO
oo
Cxi
LtL'l
9Z9*0
Sfilr'S
EIJ8°ti
£EG*t
OhZ'C
19S-Z
CSS*Z
OMf'l
0*0
1C
OC
/.e
92
5?
HZ
ft
0*11
0*61
0*0 0*lt
(WH)
aaxvn
1IOS 1VAO.T.
(A¥U/HH)
MVAH
-1IOS J.UV1J
(AVO/HH»
*d¥A3
*J,O-1
U|J|)
rnvn
kL
St
It
ZL
tL
Ci
tiL
ft/.
S£
2 "I
9*0
L'O
6*0
L'O
L'O
0*0
1 *l
-------
POT.
KAU. AuiiA UA1M BUNGP? JJhAlhAUE EVAP.
.to UAY (ti (rtrt/UAI) ittliti (Hi1) (H.1) (MH) (tlti/DAY)
PLANT SOIL TOTAL SOIL
EVAP. KVAt>. tVAP. liA'TEH
(MH/DAK) (MH/DAV) (HH/D&Y) (US)
2 1
2 2
i. i
2 4
2 5
z u
2 /
J fl
2 'J
2 IL!
2 11
2 12
2 U
2 1-1
2 1!>
2 lu
2 I/
/ lu
2 1'J
2 21
2 22
2 2J
2 24
K> 2 25
OO ^ Jo
"""* 2 2 /
2 2
-------
88Z
K O £•
C C ULhWUW.fcUUWUUU^U.WUU-t.UUU.i-fc.UUUt.U.WUU. C
« fc
»• II UUtvh.K.NtvlvK.KNK>«-» — — — • •*•«•• .-> — C
C- & — »C*£CL«wPt-r't&Wfv«-C.^-t»^Ctr«W^— >CCC-«wCy*Wlw— *•
f r •*
c o-
U U.CV"'W — CC«'K«-t^*rc.Ut- — Ceu^eK.tw(vCs.«-wu.C.u — • at
. .,,,..,,..,,.,,,,.,,,.,....•... V
C ^iCS,O-t(M-^U'^-*U--K-l-li-«;— .«JCWi£C--C~»rK CiV-V,-C- C
c r. >-
tc -» — _ — -> ^ _* » ^- ~
OUiCOl^OSOO» 2»
...... ...1 St • 1 —
KJ 2
N> -i_»_aoooo.jO — oooooooooooo — e— I—-.— -O-.O s
»• ff
-------
886*8
tl96'9
tiif Z
ftSO'h
988*0
£.til*9
9ZE*E
?OZ*l
89f 0
f.60*ti
f-90'h
86S'Z
901'?
6E8*E
IBE'Z
OZl 'ft
SEft'l
060 'L
lB6'ti
OtiZ'O
186*0
£01*0
EZ6'5
hOZ'fi
O'O
OZl
611
811
£11
911
SU
till
Ell
Zll
III
Oil
601
801
to i
901
SOI
1)01
EOl
ZOl
101
001
66
86
f.6
96
96
ti6
E6
Z6
16
0*0f. . 6*hll 0*EZ
O'O O'trZl
•f?l mvtnt
XT II,?. HOP
89
69
Sf.
99
O/.
5£
E9
89
lit
St
99
99
Of.
09
59
69
Ef.
Z9
89
SS
69
69
Of.
Et
Sf.
89
E*S
1*9
E*9
E'E
6 *0
6*1)
8 *S
O'l
9*0
0*0
6*E
8*5
E'S
tl*E
6'E
S'tf
li "9
Z *Z
8'E
0-9
f 9
ll-O
ti*E
O'Z
I '0
I •»
B*E
J
j
£
J
6
li
9
I
tl
E
0
9
I
6
£
S
6
L
0
t,
I
ir
f,
JT
9
r,
l
L
9
:;
• j
•j
• i
•i
*0
"I
*z
•o
•o
•o
•I
"J
•
•
•
•
•
"
-
•z
*z
•J
*0
*l
*0
•o
•I
"I
6'E
E'E
6*E
O'fl
0*Z
E'E
9*0
l*E
f E
9*0
E*0
0*0
tl*Z
f E
E'E
I'Z
S'Z
9*Z
8'E
Z*l
f;*Z
6'Z
E'E
E'E
Z "0
O'Z
1*1
0*0
li "Z
Z'Z
8'9
£•9
1*9
E'9
E *E
Z'S
6*0
6 Mi
8'9
O'l
9*0
o-o
6*E
8'S
E'S
tl'E
6'E
S'ft
tr "9
Z*Z
O'ti
0"S
f 9
f 9
It'O
ti'E
O'Z
1*0
I'ti
8*E
0*0
0*0
0*0
f 0
0*0
O'O
fl *Z
O'O
0*0
0*0
9'9
0*0
0*0
0*0
0*0
0*0
0*0
0*0
0*0
O'O
0*0
0*0
0*0
0*0
L'f>
O'P
0*0
I *tl
o-o
0*0
0*0
O'O
0*0
0*0
O'O
O'O
O'O
O'O
O'O
O'O
O'O
0*0
0^0
O'O
O'O
0*0
0*0
0*0
0*0
O'O
O'O
O'O
O'O
O'O
0*0
O'O
O'O
0^0
P'O
O'O
O'O
O'O
0-0
S'9l
0*0
O'O
9-91
O'O
O'O
O'O
9'Sl
O'O
O'O
9'9l
O'O
O'O
O'O
9-91
O'O
9 W9l
o-o
0*0
O'O
0^0
9'9l
0-0
0-0
9'9l
O'O
O'O
pf *l
P£'l
Pt 'I
Pfl
Of 'I
P/.U
Ofl
Ofl
Ofl
Of 'I
Ofl
Ofl
Ofl
Pfl
Of 'I
Pfl
Ofl
tr-i
tr *i
f.r *i
fr*i
tr*i
fr*i
tr*i
tr M
fr -i
tr M
tru
fr-i
fr M
f •>
f ••;
P"')
«•'?
wr
p*9
r-i
r*
«;-q
tl-l
fi'O
O'P
r*ti
r-o
6'9
p-r
f" * f?
q-h
9*9
T'7
r'h
*»•<;
7*1
PT
f 0
fr
r-7.
h-n
n-h
P'ti
Pt
Pf
Pf
ft
Pf
Pf
Pf
Pf
Pf
Pf
Pf
Pf
Pf
Pf
Of
pf
pf
Pf
Pf
nf
Pf
Of
Pf
pf
«f
Pt
Pf
Of
pf
pr ft
r,7 |.
P7 It
f7 1,
t? ^
r,7 ti
h? ft
r? ft
-7 f.
1" I'
pr f?
r,l it
PI ft
f l it
11 !•
Cl ft
M h
Ft fi
?t ft
1 1 t-
PI ft
r. f-
P »-
f «•
O f*
*j '•
1? f>
r f-
7 |.
t ^
(HB) (AVO/HH) (AVO/HH) (AVO/HH) (AVO/HB)
83tvn -civAa -dVA3
riios
(HP)
(KM) (MH)
djrr.ns NTTH
fif
-------
0*0
6*911
6*501 9'Z S'COZ
1IOK TVJ.OI
*<]VA3
•iios
MM.tun*1
BEIi*9t
tS6*ll
EIB'6
t9f 8
898 -S
COST
68t)*6
8*9*6
ZZf t
itoZ'S
60Z*l
965*1
Blli'l
F6t *0
t6ET
fttET
tiliE'Z
8Zi "I
6tt *0
98S'Z
OBE'l
Z9f 0
OZf 0
900*9
9 1 Z * l(
ISl
OS I
6DI
Bill
Sftl
ii til
EM
Zlrl
I tit
Ohl
6EI
BE I
9tl
set
DEI
EEl
Ztl
IEI
OEl
6ZI
821
tzt
SZl
ItZl
EZt
ZZl
IZl
•9E
•ss
•19
'89
•st
'OS
*os
*zs
•8S
*lj9
'69
*st
•zt
•st
'ZL
•ZL
•st
'69
'It
*st
-59
*69
*tt
•It
*9S
*89
(HH) 1
9*5
ft
6'S
9*0
6*1
I '9
6'S
Z'S
f 9
ire
Z "E
0*0
Z "0
O'O
ft -9
f Z
0*0
B'E
8 'I
0*0
0*1
8'S
t*S
AVn/HH)
S'Z
fl
irz
Z'O
f 0
6-1
8'i
Z °Z
e'o
Z'O
O'l
0*0
I "0
O'O
O't
O'Z
f 0
E-l
O'O
z*t
9*0
O'O
f 0
B*t
8*1
f Z
Uva/ww)
9'C
8-E
S'lr
2*0
Z'l
fit
8*E
f E
f (1
f I
Z'O
ft
o-o-
1*0
O'O-
Z" Z
irh
h"i
6*Z
O'O-
9'Z
Z "I
O'O-
9*0
0*D
9T
(•VU/HH)
9'S
ft
6*5
f 9
f 9
S*0
6'1
f 9
6*5
Z'S
f 9
9*Z
ft'O
Z*E
O'O
Z *0
0*0
f C
h*9
f Z
f Ij
0*0
8*E
8"l
O'O
O'l
B'S
f S
t'S
(ATO/HH)
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
t
0
0
h
0
0
0
0
0
0
0
(
•o
•o
•o
°0
•o
*0
•r
*0
•o
*0
•o
"0
•o
*iir
*0
•o
•ot
*(l
•o
*0
*z
•o
•(I
*9
•o
•o
'0
•o
*0
•o
•(1
UK)
O'O
0"0
0*0
0*0
O'O
0*0
O'O
0*0
O'O
0*0
0*0
0*0
0*0
O'O
0*0
0*0
O'Z
0*0
0*0
O'O
0*0
O'O
0*0
O'O
0*0
O'O
0*0
O'O
(CO
O'O
O'O
(IV)
0*0
0*0
0*0
O'O
0*0
0*0
S'liE
0*0
0*0
5*0
O'O
O'O
0*0
O'lE
0*0
0 "0
li'Si
0*0
O'O
O'O
s*st
O'O
0*0
S'Sl
0"0
O'O
0*0
S'Sl
O'O
O'O
5*51
(HH)
rn-
?p*
7.V
?B'
?B"
7ff *
?•!?•
?n *
zn-
7p •
TP *
51 "
5t *
51
51 -
51
5t *
51 ">
51 *
5f
51 "
51 *
51 *
51 *
51 *
51*
51 *
51 *
Of •
ft
ft
ft'f
7~t
n*o
1i~7
7" t.
1I--J
I <••«:
I fl*t
• IT
' f 0
• tl*l»
* f 0
* 5*0
• f P
r i'f
• fi*n
* fj *7
' I'll
• O'O
r *»i
r r T
r 7~n
r 5*1
r n-n
\ n*t
r (rvn/nul
PI
p/
PI
rt
Of
PI
ni
in
P/
P/
P/
p/
ft
P/
nt
"/.
p/
R/
P/
P/
P/
Pf
"'
P/
Pf
Of
P/
P/
"'
'<*
tr «:
or r-
fir 5
f>7 r
/ 7 r,
9T 5
r •? r.
ft? C
f 7 <;
77 <;
17 r.
{17 f^
PI r.
PI 5
tl 5
°l 5
51 5
«il 5
M 5
71 T
It 5
01 <^
r. r
P 5
/ ^
1 5
c r
IT r.
r <^
7 r
• rt
^ ^ fi n
O
-------
tt9'lZ
teft*6i
BIC'OZ
BEf ftl
BEfhl
BEf ftl
Z6Z'El
ZfiZ'El
999*6
OEZ'Ol
££l*Fl
tei*oz
849*91
ZlB*El
ISf »
OBh'OZ
(TO
181
081
6tl
Htl
ttl
9tl
911
htl
Etl
Ztl
Itl
Otl
691
891
991
991
E91
Z91
191
091
651
851
t9l
991
951
ft5l
£51
9*611
6'19
L'L.9
6'Bftl 0*0
0*0 fEOl
P"f "1
9Z
9Z
OE
OE
ftE
6E
9ft
81
81
'IZ
Zl
Zl
oz
IZ
9Z
'EZ
6Z
'OE
9E
'Zft
6ft
'ft9
Oh
Hi
'9ft
'IZ
'ftZ
'9Z
•fiZ
9*h
ft*9
fft
I '9
E'E
9*5
E'9
0*0
O'O
t'Z
O'O
O'O
Z't
fc'l
6*l»
9-9
Z "9
Z'l
E'9
L'9
S-9
0*9
9'Z
6*0
9 "9
Z'ft
9'E
9'0
E'ft
I'L
S'Z
I 'Z
Z*E
fl
ft *Z
Z-E
O'O
0*0
ft'l
o-o
0"0
f E
8'0
ft-Z
«I*E
Z-E
f 0
en
t'Z
E-Z
8*1
6'0
ft*0
O'Z
5*1
E'l
E'O
9M
9'Z
9'Z
9*Z
O'E
9'1
I'E
I'E
o-o
O'O
E'l
0*0
O'O
9'E
9*0
ft*Z
JT'E
O'E
9 *0
ft'ft
ft 'ft
E'ft
Z*E
9 'I
9 *0
9 "£
f Z
E'Z
E'O
8 *Z
9*h
(HH) (XVO/HH) (*?0/KH) (AVI1/HH)
«ax»« *dYA3 'd«A3 *«1YA3
•1JOK 1VJ.0.1. 1IOK AK»1d
(HH)
(KM)
HIVH
••I
ft*9
9-5
t*9
ft'9
ft*E
t'9
9*9
0*t
f. 9
8*Z
9*t
9'E
9't
ft't
Z'9
6'9
ti*9
Z'l
E'9
t'9
9*9
0*9
9'Z
6'0
9'9
Z'ft
9'E
9*0
E'ft
I 't
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*0
•o
•o
•o
•o
'0
•o
•o
'0
*0
'0
*0
•o
"0
*0
*0
*0
*0
*0
*0
*0
*0
*0
*0
*0
'0
*0
*0
*0
*0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*0
*0
•o
*0
*0
'0
*0
•o
•o
*0
*0
'0
*0
*0
•o
•o
*0
•o
•o
*0
*0
•o
'0
•o
*0
*0
*0
•o
*0
*0
0
8
0
0
0
0
0
6
0
0
9
0
0
0
0
6
0
0
8
0
0
0
9
0
0
t
0
0
0
0
*0 FR-r
•h F6*(
*0 fl'f
*9 r^*»
*0 F6*f
'0 F6*r
*0 Cfi'»
*9Z Ffi'f
*0 ffi't
•0 Ffi'(
•0 Cfi'«
'0 'Ffi*(
*0 Ffi*t
•0 F6*(
*0 Efi'l
*6 F6*<
•0 «-«5M
•0 ER'l
*0 7« '
*0 7P*
•o "P*
*0 7f»*
'91 TP*
'0 7n*
'0 *P "
•67 7fl*
•o 7n •
•o 7 IT
-0 70*
*o TP*
) t
) P
1 7
' 9
t r
) r
> I
) n
i 0
i f
i 0
i r
i t
) i
t r
1 0
i t
«;
7
E
I
t
F
P
P
«!
0
5
IT
*9
'9
*1
M
*t
*t
*t
*9
*F
*P
•h
't
*I
•0
*P
*P
*l
•o
"/
•I
*rl
•7
•\
•n
*t!
'*
*l
•tl
't
?!
p(
VI
P{
Pt
p/
nt
"/
nt
nt
Pt
n/
p/
P/
Pt
P/
P/
p/
p/
Pt
n/
P/
"**
n/
n/
Pt
n/
nt
n/
nr
f-7
P7
tr
97
r.7
f'7
fZ
77
17
07
ri
ni
/I
"I
51
*"!
n
71
It
01
f<
n
t
9
<;
t-
r
7
t
•1
n
"
1
n
n
"
0
"
n
o
"
o
fl
n
t
n
n
t
n
n
n
"
41
n
CM
Moj
-------
O'O
2*68
6"IC
fiS
t*B9l O'O
O'O
•nv.Tn.T
E6ft'tl
1 1£ "12
2t»9'6l
£26'Bl
0?E *£2
296 '92
225 *h2
2ft2 *EE
lEB*£f
696 *9E
090 *9E
OEl "9£
991 *»E
991 'EE
121*2E
12t'2E
121 '2E
121 °2E
121 *2E
121 "2E
121 "2E
620'tE
1 OB *6T
899'82
8££ "£2
266'92
gt)(i *92
986 't?2
08E'£2
one *E2
oer °E2
212
112
012
602
802
£02
902
502
*02
E02
202
102
002
661
861
£61
961
961
I>61
£61
261
161
061
601
801
£81
981
581
tlHl
EHt
281
"55
'82
*2E
•IrE
*82
"2E
*9E
*£2
*S2
*62
*££
*9£
•| ti
*S*
*6lt
*9l
•91
•91
*9l
•91
•91
'61
"E2
*£2
'IE
*9E
'6£
'Eft
'£»
•91
•91
S'O
9 "ft
ft °l
fi*9
B'E
E'ft
8*1
fi'9
9*E
B'E
6'E
2 "1
I "to
9'l»
0*0
0*0
O'O
O'O
0*0
0*0
6*E
£•£
fi "ft
£'E
£'lr
£•9
9*ft
B'E
O'O
O'O
1 'ti
t'O
I'Z
t*0
fl'2
ft "I
2'2
6*0
8*2
6*0
6*0
6*0
0" I
0*1
0*1
O'O
0*0
0*0
O'O
0*0
0*0
I*
ft*
2*
£*
ft*
fl* I
9*1
9*1
0*0
O'O
8'1
2*0
ti'Z
9*0
9*2
li"2
IT
8*0
9*2
8*2
6*2
6*2
2*E
I'C
S'E
O'O
O'O
0*0
0*0
O'O
O'O
8°2
E°2
2"£
ft "2
h*E
I»*E
I'E
2 °2
0*0
O'O
E*2
5*0
I '9
tl °l
9'9
1*9
9°h
8^1
9'9
6*9
E°9
£'9
6*9
£°9
9'£
9'9
£'t>
0'£
2 "ft
1*9
Z"L
0*9
0*9
6'9
2 "9
2'£
!»'£
£"9
£*h
9*ft
9*h
O'S
(NU) (AVa/HH)
<*»n/H») lAVCl/HH) (UVt)
O'O
O'O
0*0
O'O
O'O
0*0
0*0
O'O
0*0
O'O
O'O
O'O
O'O
O'O
O'O
O'O
O'O
O'O
O'O
O'O
0*0
O'O
O'O
O'O
O'O
O'O
O'O
O'O
O'O
O'O
O'O
(*nt)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
°0
'0
"0
°0
•o
°0
•o
'0
*0
'0
'0
'0
'0
'0
•o
•o
•o
'0
*0
'0
•o
"0
•o
•p
•o
•o
"0
'0
•o
'0
•o
(MR)
2
0
0
z
0
8
£
tl
0
0
0
0
0
0
0
0
0
0
0
0
0
t
0
0
0
t
0
0
I
0
0
"87:
•o
'0
•11
•o
•o
'6
*£
•o
'0
'0
'0
•o
•o
'££
'0
'0 .
'0
'0
'0
'0
"0
'0
'0
'0
•t
'0
*0
'IE
•o
•o
rfi
Efi
rfi
r6
Cfi
£fi
rfi
tfi
rfi
rfi
rfi
Efi
re
rfi
rfi
Cfi
rfi
rfi
rfi
ffi
rfi
rfi
rfi
rfi
rfi
rfi
rfi
rfi
rfi
rfi
TK
•o
•o
*o
°0
'0
•n
"0
•p
•o
*0
•o
•n
'0
•p
•o
•p
*o
•p
'0
•n
°o
•o
'p
•p
°o
•<1
'0
•n
•p
•p
•o
«•
r
£
t
t
«!
0
n
£
<1
I
£
fi
p
t
P
i
r
a
J
fi
1
fi
?
ti
£
0
9
5
0
0
•o
•<;
*l
•n
*5
-Ir
'7
°r.
*S
*9
'9
•9
*9
'£
'9
"h
*£
'•»
•i
•n
°9
'<<
•9
'«;
"£
°£
*£
•<;
*c
*«;
*5
(MB) TTfi'JT <»*n/npl
p,f
n/
if
PI
p/
Pl
ni
nt
nt
Pt
n£
P/
p/.
fU
fU
"£
P/
P/
Pf
P/
w/
P/
P7
p/
Of
Pf
p/
p/
P.£
P/
P/
1 ™ '
I*
pr
f<7
fir
r 7
«?
CT
tir
r '
rr
i?
P7
M
PI
£1
91
?l
»ll
ri
71
II
n
r.
P
t
o
r.
?i
r
-
t
XVf
f
f
f
t
t
f
l
l
t
i
r
t
f
l
r
l
l
i
t
l
t
l
l
l.
l
l
t
l
l
l
l
•T
>»WTV10 JJPKflll IIIfH TVIV •rt»t
nios -mot
nos
-------
,.tt
IUU.
JO U4» tu (tltt/UAX)
POT. Pi.A;lf SOIL TOTAL SOIL
ttAIN IIUMOPP OhAiNAUE EVAP. EVAP. EVAP. EVAP. WATEU
(an) (««) (Hit) (ttM/OAY) (MM/DAY) (HH/DAY) (HH/DAY) (flS)
u
a
j
a
a
u
a
a
a
a
a
d
a
,j
u
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
1
*.
j
4
u
U
a
11
12
U
14
I'j
1o
17
la
la
21
2J
24
2 J
27
2d
2*
JO
Jl
/a
/a
7U
7d
la
7U
/a
7U
7a
7 a
7d
la
7U
/a
/a
/a
/a
7a
7d
/a
7a
7 a
/a
7a
7a
7a
7U
7a
7d
7U
i-.'J
5. a
1». J
j.y
l.a
2. J
4.U
J.U
4.1
4^5
4.4
4.J
4.4
4.3
6.5
ti.U
4.7
b.7
b.b
U.I
5.5
5*7
1.1
2.5
5.2
1.4
0.3
U.'JJ
O.y J
U.ij
u. y3
O.aJ
O.'JJ
O.Sj
J.'JJ
0.9J
O.yj
o.yj
u. aj
o.yj
O.V3
O.iJ
U.9J
o.yj
O.yj
o.yj
it. y J
o.yj
O.'JJ
O.'JJ
o.y3
o. yj
0.93
0.9J
O.yj
u.yj
0. J
0.0
0.0
31.0
0.0
0.0
10.4
38.4
0.0
1.5
0.0
0.0
0.0
2.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
8.9
0.0
0.0
12.2
0.0
0.0
d.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
29.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5.7
5.6
5.4
3.6
1.6
3.8
2.2
4.4
4.7
2.8
4.0
4.4
4.5
4.3
4.2
4.3
4. 1
6.2
5.6
4.2
5.8
6.0
5.8
5.3
4.2
5.3
1.0
2.5
5.2
1.3
0.3
2.7
2.6
2.5
1.7
0.7
1.8
1.0
2.1
2.2
1.3
1.9
2.1
2.1
2.0
1.9
2.0
1.9
2,9
2.6
2.0
2.7
2.8
2.7
0.0
0.0
0.0
0.0
0.0
2.4
0.6
0.1
2.8
2.7
2.6
1.8
0.8
1.9
1.1
2.2
2.3
1.4
1.9
2.0
2.2
2.1
2.0
2.1
2.0
2.6
2.1
1.8
1.6
1.5
1.3
0.0
0.0
0.0
0.0
0.0
1.3
0.6
0.1
5.5
5.3
5.1
3.5
1.5
3.6
2.2
4.2
4.5
2.7
3.8
4.1
4.3
4.1
4.0
4.1
3.9
5.4
4.7
3.7
4.3
4.2
4.0
0.0
0.0
0.0
0.0
0.0
3.7
1.3
0.2
50.
45.
40.
67.
66.
62.
71.
75.
71.
69.
66.
62.
57.
55.
51.
47.
43.
38.
33.
29.
25.
21.
17.
17.
17.
17.
17.
26.
22.
21.
33.
213
2 1'l
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
210
241
242
243
16.046
18.778
8.318
1.911
2.711
4.571
1.232
2.284
4.582
4.426
6.375
B.678
10.861
10.904
12.933
15.033
17.028
19.579
21.647
23.432
25.027
26.481
27.827
27.827
27.827
27.827
27.827
27.827
29.085
29.720
17.657
U'l.2
104.6 0.0
29.6 128.3
51.2
46.6
97.8
0.0
-------
O'O
*HH 8°192 —
°HB I*l2i —
•BH 0*2
•HH 6*696 —
J.33(ina
SS3HAS
-NOIitHOdYAa
0*0
£*9b
1*22
6-90
0*0
O'O 9'£9
CfiS'lil
020-U
tiOZ'Ol
C09"0l
09* *ft2
291 *C2
801*92
001*92
9ftl *ft2
I9tt *22
lSlr"22
I9b "22
I9ti*22
I9ti *22
I9ft*22
lS«i'22
I91i *!2
I9fi*22
129 *02
tlfH *C2
ti90*22
U0*02
692
092
992
992
1(92
C92
292
192
092
692
092
£92
9S2
992
K92
CS2
292
192
092
B'i2
th2
'JhZ
9M2
*l)9
*t9
*19
*C9
*99
*99
•09
•ot
•fcS
*Bl
*0l
*02
*C2
'01
*0l
*0l
•01
•01
•Bl
*ei
*8l
*ei
'22
*12
*02
C*E
O'E
9*1
C*E
2*0
0-E
9*2
2'E
0°0
O'O
6*1
9*C
0-0
O'O
0*0
0*0
O'O
0*0
O'O
0*0
0*0
2*»
E °1
2 "2
2*tl
B'fl
fl
6*1
8*0
E*l
1*0
2*1
C*l
9 "I
O'O
owo
O'l
L"\
O'O
O'O
O'O
0*0
0*0
0*0
0*0
0*0
0*0
6'1
2-2
1*1
0*2
tl-2
L'l
6 'I
0*0
0 *l
t-o
8*1
E *l
9*1
0*0
0*0
O'U
6*1
O'O
0*0
O'O
O'O
O'O
O'O
0*0
O'O
O'O
E *2
I'Z
I'l
Z'Z
ii'Z
9'E
I'ft
O'l
O'fc
2'0
O'ft
0 "2
ft'E
C*C
I *2
1*2
2*l»
6"l
9*E
9*1
0'2
8*2
t*«i
2*C
6*E
1*9
0*9
9 *1>
IT2
8*li
I *9
(HH>
83,1 V«
II OS 'IV.T.OT.
UVd/WH) (AVd/HK) (AVO/HB)
-d¥Aa -JUfta *J»Aa
•II OS ANVId M.0d
(HH)
O'O
O'O
0*0
O'O
0*0
0*0
0*0
0*0
0*0
0*0
0*0
0*0
0*0
0*0
0*0
O'O
0*0
O'O
0*0 •
O'O
0*0
0*0
0*0
o-o
O'O
0*0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*0
'0
*0
'0
'0
"0
•o
•o
'0
'0
"0
'0
*0
'0
•o
•o
•o
°0
•o
•p
•o
•o
"0
•o
•o
•o
0
0
0
0
5
0
0
g
0
0
0
0
9
0
0
0
0
0
0
0
0
0
0
0
0
0
•o
'0
'0
•o
•I
•o
'0
*6l
"SE
•o
•o
•o .
"S
•o
'0
"0
•o
'0
'0
'0
°0
'0
•ft
'0
*0
•o
E6
F. 6
F*?
Cfi
Ffi
f 6
Ffi
F«5
rr,
Ffi
rfi
F*
rr;
r<;
F*
f r,
rr.
Ffi
rr,
rr.
r*
Cfi
rr.
r*
rr,
rfi
•o
"0
*0
*0
•o
"P
*0
•n
•o
'0
•o
"0
•o
"P
*0
•o
"0
•p
•o
•n
•o
•n
•o
•p
•o
•n
t
«!
0
L
7
9
L
f
7
7
t
r
1
o
1
f,
7
R
I
t
r
5
p
a
1
/
•t?
*f>
"7
•ft
'0
*r
"7,
•F
•r
°7
a -.
"ft
T
*f»
*l
•7
*r
°fl
T
"F
•5
°5
*r.
•7
"0
*<;
p/
p^
fit
fl f
p/
Pf
p/
f'/
p/
"/
p/
p/
p/
p/
Pt
p/
p/
p/
p/
p/
p/
P{
n/
p/
"/
n
••7
s?
\\?
r7
77
17
f17
r-t
PI
n
"1
•u
••I
Ft
71
tt
PI
f.
p
£
"
rl
t-
r
7
1
r,
fi
K
f.
f.
f.
r.
f
r.
f,
f
r.
r,
fi
r.
f.
r-
*•
r,
r
r,
r.
r,
r
r
r,
-------
0*99E O'SOE O'litiJ 0
XX XXX
XXXX X
XX X
XX X
•C81 Q'ZZl (Tt9
X
X
X XX
XX X
XXX
(TO
I
I
I
I
I
I
I
I
I
'0
XX
XX
XXX
XX
X X
XX
XXX
X X
XX I
X
X
X
X
X
X X
X
XX X
X
X XX
X X
X
X
XX
X
X
X
XX
XXX
X
XX
X
( X X
X XX
I XX X XX
X XX X
X XXXXXXXXXX
X X
XX
XXX
X XXXX XXX
XX XX XX X
XXXX XX XXXXX XX XXXX
X XX7 XXXX XXXXXXXX X XXXXXX
(TOS
I
I
I
1
I
I
I
-0*9£
I
I
I
I
I
I
1
I
I
-O'OOl
I
I
1
J
1
I
-------
RITCHIE ET MODEL
Cols, j 1-5 { 6-10 [ 11-15 j 16-20 j 21-25 | 26-30 | 31-35 [ 36-40 { 41-45 j 46-50 ] 51-55} 56-60 [ 61-65 | 66-70 | 71-75 } 76-80 1
1st
Card
2nd
Card
3rd
Card
4th
Card
5tli
N Y R|S
Jl'j
MO 1
Mi
K 0 1 K Y RM
I'MhH
S W UL If L L 111 COMA I D U H H Y V A|R I A B I,
»J.M»I MM! »N.U MM! NiM MM! kl»l M M 11 ?hN M II M 11 III M I M It 1111
* ES
1 M 1
E L E V
I UhN.Ul I
NAME
I UM^JTbUM |tMsNHi,H«H Ml 11II M IIIIII i I II II M I III M M M IIII II III 11II M I i M III M
XM L A
1H-MIII
6th
Card
7 Hi
Card
8th
Card
IDA
tab
KEKPI, OJT KDAT
UliliJ
N I. A
Jll
N 0 X LAI
Next
Ca rdy
-------
HITCH IE ET (CONT)
Co J a .
Next
Card
Last
Cards
1-5
„ L_
6-10
11-15
16-20
21-25 J 26-30
31-35
N 0 AJY S
2J6J9J
M 0 K 1) A Y
0
0
0
0
0
0
0
0
1
1
a
8
8
9
9
9
2
2
0
0
0
2
2
2
3
4
•
•
6
7
8
4
5
6
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
B
K Y
R RAD
2
2
3
2
4
2
4
4
9
4
4
2
0
2
6
7
7
0
9
2
3
9
4
4
.
.
•
fa
6
2
0
8
8
4
6
T M A X
•
5
5
7
7
7
>
i
5
7
7
5
6
6
5
8
8
T M I N
4
4
6
6
6
4
4
3
7
7
3
3
1
2
2
3
WIND
4
4
4
4
8
a
•
1
5
5
8
1
1
.
.
•
.
.
1
6
6
8
4
4
36-40 j 41-45 j 46-50 j 51-55
56-60
61-65
66-70 | 71-75 J 76-80 |
RAIN
0
0
1
.
.
•
6
4
5
1
1
1
q
•
•
D U
1
1
I
8
8
0
0
0
9
9
,,
3
3
0
0
0
9
9
R
M M Y
7
7
5
6
4
7
4
,
a
8
3
2
6
5
4
-,
VA R I A B I
E S
-------
SECTION 9
RARIE EROSION MODEL
The Rarie Erosion Model will compute the erosion energy of rainfall. It
will thus compute the potential of a storm to produce erosion. More
specifically, the model will calculate the El (erosion force per unit time)
aj\ or4\no-ry
of a rainfall. It is a—Limited simulation program which falls into the group
of programs dealing with runoff.
The major input to the Rarie Erosion Model—rainfall intensities and
durations—is also input to the Mein and Larson Infiltration Model. We can
therefore, get both runoff and erosion information from largely the same data.
Furthermore, the output of this program can be inputed directly into the Soil
Loss Equation for specific results about soil loss. This model is ingenious
in that it requires simple input, but leads to exact analytical results which
can be used to compute erosion directly.
INPUT:
OUTPUT:
DUE, TEN - Durations and intensities for each rainfall.
Storm segments, total storm and yearly values for:
AMT, AMIM - Rainfall amounts
ENG - Kinetic energy
El - Erosion index
REFERENCE:
137,
A. S. Rogowski and T. Tamura. 1965. Movement of Cs by runoff,
erosion and infiltration on the alluvial Captina silt loam.
Health Physics 11:1333-1340, Pergamon Press.
298
-------
BABIE.EBOSION. MODEL
0.1
0,2
0.3
0.4
0.5
1.
2.
3.
4.
5.
6.
7.
8.
9.
TO.
11.
12.
13.
T4.
15.
16.
17.
18.
19.
20.
21.
22.
23.
2U.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
//
/*
//
/*
//
C
C*
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
MODIFIED BI:
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
N1XXXXX JOB (BEW01)
/*JOBPABM I=8ABIE
EXEC FWCLG
/*JOBPABM FULLSKIPS
//SYSIN DD *
BABIE ***************************************#!
BBIAN E. BEINBICB
USDA-SEA-AB
NOBTHEAST WATEBSHED BESEABCH CENTEB
110 BESEABCH BD. A
UNIVERSITY PABK, PA. 16802
STOBM EVENTS ARE TAKEN AS SEP ABATE IF THEY ABE 6 OB MOBE HOOBS AI
FDB A SAIN THAT CONTINUES FOB HOSE THAN ONE DAY IDATEF IS GIVES.
END CABDS****: (1) BLANK SIGNIFIES END OF EVENT (2) NUHBEfi 999999 II
(AFTEB THE LAST BLANK CABD SIGNIFIES END OF FILE ,
ON "TBACE" AMOUNTS «0.25«=0.66CH) NO DUE OB ENEBGY CONSIDEBED .
AEIE =YEARLY TOTAL OF El.
AEIFF =YEASLY TOTAL OF EIF .
AHT =AMOONT OF BAIN IN INCHES
A8TS =AS ABOVE BUT IN CH
ATOTD =YEARLY TOTAL
ATOTE =YEABLY TOTAL
ATOTB =YEABLY TOTAL
ATOTBS=YEABLY TOTAL
DUB
TEN
TENtt
ENG
OF
01
OF
01
DUBATIONS, HCUBS
ENG.
BAIN, INCHES.
BAIN, CH.
IS HOOBS
=DUBATION OF STOBM
= INTENSITY,IN/HBS
=AS ABOVE BUT IN CM/HBS
=KINETIC ENEBGY OF A STOBM
IN FOOT-TONS/ACBE
TOTE =TOTAL OF ABOVE
TOTB =TOTAL BAIN ,INCHES
TOTBM =ASABOVE BUT IN CM
TOTD =TOTAL DUBATION HOUBS
XINT =MAX. 30-MINUTE INTENSITY, IN/HBS
XINTM =AS ABOVE IN CM/HBS
EIF =PBODUCT OF ENEBGY5MAX. 30-MINUTE
IN FOOT-TONS-INCHES/ACBE-HOUB
SIFF =TOTAL AS ABOVE
El =PBODUCT OF 2NEBGY AND MAX. 30-MIN.
AFTEB SISCHMEIEB ASD SMITH
INTENSITY
INTENSITY, DYNES/SEC
ACTUAL UNITS ABE EBGS/CM-SEC SBICH SIMPLIFIES TO DYNES/SE
=TOTAL AS ABOVE
=MONTHLY TOTAL OF El.
=1 FOB CALCULATIONS AND PBINTING OF YEARLY TABULATIONS OF
TOTALS.
OTHEB PBINTING.
PUNCHING np STOBM TOTALS.
EIE
MEIE
IADD
STOBM
IPBINT=1 FOB
IPUNCH=1 FOB
CH*BAC?EB*12 GAGE
DIMENSION AMT(75) ,DUB (75) ,TEN(75) ,ESG(75) ,TOTB(50) ,TOTD(
299
-------
' ooe
(rr)ara' (cc)iuz z *SCH
' (rr)axox'(rr)3£vai' (rr)aioi' (rr)HHioi' (re) HIOI (9U*9) SUHM *tioi
(fT)3ia-»-2ia¥=3I3¥ "EOL
(rr)
(rr) aioi+aioi¥=aioi¥ *oot
r'i=rr etj oa '66
0*0=3ia¥ *86
0*G=3iOJ¥ * L6
*96
"56
(//'• Dss/sasia SHH-T/NI-I-U Y/i-ii t *t)t>
SHDOH BD HI i* Ht)l^H80J Zll ' £6
13 II ID3SR2 L * 16
soi£?aDa NIYH IYIOI i* HI)HBHOJ in *os
HOI siYiox KHOISI'XSIJ'I i •) ivsaoa sot "88
(80 L '9)311 8tt '18
2DHIINOD t? *98
3 *£8
•3T8¥rH?A SlflOJ, HSOIS I1HMOB SZIlYIIINiaa D *Z8
D U8
0=IHir *08
3QHIIHOD Ot *6i
si? oi OD (oooooi • 19*13 i?ai*aoH *as 'iRiry ai *8i
OC 01 09 (666666*03'iai¥ai) II • LL
D *9I
•aval 2Hi aoa SITIOI KSOLS fens as? r azii?iiiNiaa D *si
D *1?A
D 'e^
05 01 09 (l'3H*aa¥l) il 'Zi.
l=iRir (OOOOOL*i9*I3I¥ai) il 'I/.
'O'ZU' (9l)2)i¥H805 OOt 'OA
'I3IYQI (001 'S)d?3H Ot '69
(l.l)i¥HaOJ 56 *89
BDSfidl (66'S)C¥aa ' 19
IHIHdl {66'S)G¥38 * 99
aa¥i (66's)a¥as *S9
D *1r9
D ~Z9
******************************************************** *¥£¥Q d¥Sa D * 19
D '09
0=IHIf *6S
0=r '85
D '19
•80I¥DiaHI aRS 8¥2I QS¥ aSlSflOO H80SS 3Zn¥riIRI D '9S
D *SS
D *1rS
1¥38 *ES
(os) JJis* (os) aioi' (sz.) ra' (si) iia* (os) aia' (osi 'is
-------
BABIE.EBOSIOH.HODEL
123456
123456789012345678901234567890123456789012345678901234567890123456789
106. 116 FOBMAT(1H ,2 (2X, F5. 2) ,7X, F6. 3,1«X,I6,4X,3 (8X,F8. 2) )
107, C
108. C DETERMINE MONTHLY TOTALS OF El.
109. C
110. DO 36 K=1,11
111. NDATE=(K+1J* 10000
112. IF (IDATE
-------
RABIE.EROSIOS.HODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123i
161. TOTE(J)=0.0
162. EIFF(J)=0.0
163. AMT(I)=0.0
164. DUB(I)=Q.O
165, TEH(I)=0.0
166. ENG(I)=0.0
167. EIF(I)=0.0
168. El (I) =0.0
169. C
170. C COMPUTE El .******************************************************
[171. C
172. 13 READ(5, 102)DOE(I) ,TEN JIJ
173. 102 FOBHAT(2F1Q.O)
p4. IF (DUB(I)) 12,11,12
,175. 12 CONTINUE
176. TENH{I) =TEN(I)*2.54
177. AMT(I)=TEN(I)*DOR (I)
178. AflTM{I)=AMT(I) *2. 54
179. IF {TEN (I) .LT. 0.002) GO TO 88
i180. ENG(I) = AMT(I) * (916. +1 43. 75147*ALOG (TEN (I)))
181. GO TO 87
182. 88 ENG(I)=0.0
183. 87 CONTINUE
|184. EIF(I)=ENG(I) *TEN(I)
185. EI(I)=EIF (I)*0.473
186. C
!l87. C COMPOTE TOTALS ,**************************************************
188. C
189. TOTR(J) =TOTS (J)+&MT(I)
190. TOTEM (J) =TOTB (J) *2. 54
191. TOTD(J) =TOTO (J)+DOB (I)
192. TOTE(J)=TOTS(J)+ENG(I)
193. 1=1+1
194. GO TO 13
195. 11 EIFF(J)=TOTE{J)*XIHT
|196. EIE(a)=EIFF (J) *0.473
[197. 11=1-1
|198. XISTM=XINT*2. 54
199. C
201'. C
j202. IF (IPRINT. NE. 1) GO TO 92
203. DO 85 1=1,M
204. WRITE (6f 89) AflT(I), AHTfl (I) ,DOR(I) ,TEN (I) ,T2NH (I) ,ENG (I) ,EIF (I) ,EI (
205. 11)
206. 89 FORMAT(1H ,2 (2X,F5.2) ,7X,F6 .3 ,101,2 (2X,F5. 2) , 3 (8X, F8. 2))
207. 85 CONTINUE
!208. WRITE (6,109) TDATEI, XINT,XINTfl
209. 109 FORMAT (//• RAIN OF ',16,' HAXINOM 30 HIS INTENSITY OF',2X,F4,2,
210. 1 ' WHfiS OH »,2X,F4. 2, • CM/BBS ' ,/)
211. WHITS (b,114)
212. 11«! FOBMAT(1H , « TOTALS : ' ,/)
213. WBITE (6, 113)TOTfl(J) ,TOTEM(J) ,TOTD{J) ,TOTE(J) ,EIFP (J) ,EIE (J)
214. 113 FOEMAT(1H , 2 (2X,F 5. 2) ,7X,F6 .3 ,24 X ,3 {81 ,F8. 2))
215. 92 CONTINUE
302
-------
EAEIE.EBOSIOS. MODEL
1234567
12345678901234567890123456789012345678901234567890123456789012345678901:
216. GO TO 10
217. 300 STOP
218. END
219. /* THIS IS i SLASH ASTEBISK CARD
220. //DA1A.FT07FOQ1 DD ONIT=BAT,FILES=$BAB*
221. //DATA. INPUT DD *
303
-------
COMPOSITE RAIN OF 10272
TOTAL ItAfN
IN CH
0. 10
0. 10
0. 10
0. 10
0. 10
3.0
0.25
0.25
0.25
0.25
0.25
0.0
DURATION
HOURS
O.IJ17
1.093
O.il 17
1.000
1.003
0.750
INTENSITY
IU/IIRS
0.20
0.09
0.24
0. 10
0.09
0.0
CM/11 Rf
0.61
0.23
0.61
0.25
0.23
0.0
ENEROY
FT-T/A
71.09
57. 3'l
71.09
5fl.50
57.31
0.0
El
FT-T-rN/ft-HRS
17.06
5.29
17.06
5.85
5.29
0.0
El
PYNFS/SFC
0.07
2.50
8.07
2.77
2.50
0.0
(IAIN OF 10272 MAXt.lUH 10 NTH INTENSITY OF 0.22 IH/IIPS OH 0.55 CH/HRS
TOTALS :
0.50 1.27 «.750 315.36
66.34
32.32
u>
o
-p-
CCHPOSITiJ BAIH OF 11372
TOTAL RAIH
IN CH
DURATION
HOURS
INTENSITY
IN/IIBS CH/IIB";
EHEUGY
FT-T/A
El
FT-T-IN/A-1IRS
El
DYNES/SRC
0. 10 0.25
0.10 0,2'J
0.10 0.25
0. 10 0.25
0.003
0.0(13
0.667
0.1 t7
1.20 3.05
1.20 3.05
0.15 0.3tt
0.24 0.61
9«. in
91.IB
64.33
71.09
113.02
113.02
9.65
17.06
53.4fi
53.l»6
«.5h
fl.07
HAIN OF 11172 lAXTHUn 10 1IN INTENSITY OF 0.50 IH/HES 01? 1.27 CVH&S
TOTALS :
0.00 1.02 1.250 323.79
161.09
76.51
-------
COMPOSITE RAIH OF 20372
TOTAL PAIN
ui cn
DURATION
HOURS
IMTKHSITY
IH/IIBS CM/IIRS
F.NFROY
FT-T/A
El
FT-T-IN/A-IIRS
El
3. 10 0.25
0.10 0.25
0. 10 0.25
3. 10 0.25
0. 167
0.667
0.500
0.500
0.60 1.52
0. 15 0.38
0.20 0,51
0.20 0.51
RAIIf OF 20172 UAXTH'II 10 KIN INTENSITY OF 0.30
TOTALS :
0.10 1.02 1.133
OR
81.27
61.33
60.116
6(1. H6
0.76 CH/IIRS
215.53
50.56
9.65
13.69
13.69
23.92
1.56
6.110
6.48
85.66
«0.52
OJ
o
Ln
COMPOSITE RAIW OF 21972
T3TAL RAIN
IN C«
DIIJ1ATIOH
HOURS
INTENSITY
IM/IIRS CH/IIRS
EHFHGt
FT-T/A
El
FT-T-IH/A-HPS
DYKFS/SEC
0. 10 0.25
0.10 0.25
0. 10 0.25
0. )03
0.917
0.667
1.20 3.05
0. II 0.28
0. 15 0.3fl
9«. 1ft
51.76
61.33
HAIH OF 21072 HAXIMII1 30 NIN INTENSITY OF 0.29 IH/IIRS OR 0.71 CM/IISS
TOTALS I
0.30 0.76 1.667 21«.27
113.02
6. 52
9.65
53.H6
3.OB
1.56
63. 50
10.03
-------
CONPOSITE RATH OP 21*972
ror/ii. RATH
Id C1
nouns
INTENSITY
IH/1IRS CH/HRS
ENERGY
Tt- T/A
FI
FT-T-IN/A-HRS
El
DYNES/:; EC
0.10 0.25
3. 10 0.25
0.10 0.25
0.10 0.25
0.003
0.500
0.250
0.500
1.20 3.05
0.20 0.51
0.40 1.02
0.20 0.51
9'1.10
en, is
78.43
60.46
113.02
13.69
31.37
13.69
53.46
6.HO
11.04
6.40
RAIN OF 21972 NAXtNtll 10 MI N INTENSITY OF 0.37 IN/HRS OR 0.93 CH/IIPS
TOTALS :
O.'IO 1.02 1.133 309.54
1 13. 51
53.69
COHPOSITR RAIN OF 30372
TOTAL
T H
0. 10
0. 10
0. 10
0.10
0. 10
0. 10
0. 10
0. 10
3. 10
RACN
CM
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
DURATION
HOURS
0.133
0.250
0.0(13
O.OH3
0.031
0. 167
0.250
0.533
0.5IH
INTENSITY
IN/HRS CH/HHS
0.30
0.40
1.20
). 20
1.20
0. 60
0.40
0. 17
0.17
0.76
1.02
3.05
3.05
3.05
1.52
1.02
0.44
0.44
ENERGY
FT-T/A
74.29
70.43
94.IB
94. 18
94. 18
04.27
70.43
f.6.23
6(». 23
El
FT-T-r N/A-llflS
22.29
31.37
11 3. 0 2
113.02
113.02
50.56
31.37
11.35
11.35
El
DYNES/SRC
10.54
14.81
51.46
53.46
53.46
23.92
14.84
5.37
5. .17
RAIN OF 10172 IMUflUI 10 HIH I1TE1SITY OF 0.87 1H/IIBS CR 2.20 CH/IIRS
TOTALS :
0.90 2.29 2.416 730.43
633.06
299.44
-------
COMPOSITE RAIN OF 31672
TOTAL RATH
I tl C.I
DURATION
IIOU1S
INTENSITY
IH/IIRS CH/FIHS
EMFRfiY
FT-T/A
El
FT-T-IN/A-IIRS
f.I
I>YNES/SKC
3. 10 0.25
0.10 0.25
0.10 0.25
0. 167
0.667
O.U 17
0.60 1.52
0.15 0.38
0.24 0.61
»4.27
f.4.33
71.09
50. 56
9.65
17.06
23.«»2
4.56
fl.07
RAIH OF JI672 HAXINUH 10 PfIS INTENSITY OF 0. TO JN/IIR5 OR 0.76 CN/IIHS
TOTALS :
0.30 0.76 1.250 219.70
65.91
31.17
UJ
O
COMPOSITE BAIN OF 32272
TOTAL RAIH
IN C1
DUIi \TION
IIOI1HS
IMTKHSITY
IN/IIRS CH/IIRS
EKKRGY
FT-T/A
KI
FT-T-IN/A-ilHS
El
D1TNES/SRC
0.10 0.25
0.10 0.25
0.10 0.25
0.10 0.25
0. 750
0.33 J
0.750
0.667
0. 13 0. 34
0.30 0.76
0.13 0.34
0. 15 0.3fl
62.62
74.29
62.f.2
6«l.33
8.35
22.29
0. 35
9.65
3.95
10.54
3.95
4.56
RAIH OF 12?72 MAXIIUfl in HIM INTENSITY OF 0.21 IH/IIRS OR 0.62 CM/MRS
rOTALS :
0.40 1.02 2.500 26.1.15
64.48
10.50
-------
COMPOSITE BAIH OF 32272
fOTAf. RAIfl
IH CH
DHRATION
nouns
IHTENSIT1T
IN/MRS CM/IIRS
FT-T/A
El
FT-T-IN/A-nHS
El
DYNFS/SEC
0.10 0.25
0. 10 0.25
O.JO 0.25
0.10 0.25
0. '50
0.133
0.500
0.500
0. 13 0.31
0.30 0.76
0.20 0.51
0.20 0.51
62.62
71.29
6(1.46
en.'ir>
8.35
22.29
13.69
13.69
3.95
10.54
6.an
6.16
BAIN OF 32272 MAXIMUM 30 HIM INTENSITY OF 0.27 IH/IIHS OR 0.68 CM/IIRS
TOTALS :
0.10 1.02 2.083 273.B3
73.03
31.51
UJ
o
00
COMPOSITR RAIN OF 11672
TOTAL
1 N
0. 10
1. 10
0. 10
0. 10
0. 20
0. 10
0. 10
RAIN
CM
0.25
0.25
0.25
0.25
0.51
0.25
0.25
DURATION
HOURS
O.U17
0.333
0.333
0.250
0. 167
0.003
0.033
INTENSITY
Ill/UBS CM/IIRS
0.21
0.30
0.30
0. 10
1.20
1.20
0. 12
0.61
0.76
0.76
1.02
3.05
3.05
0.30
ENJf'tfiY
FT-T/A
71.09
71.29
71.29
78.1.1
mn.iB
91.13
(.1.12
El
FT-T-rN/A-HRS
17.06
22.29
22,29
31.37
226. 18
113.02
7.33
El
DYNKS/STC
n.07
10.51
10.51
ii.ni
106.9fl
53.16
3.17
RAIN OF 11672 MIUJNUH 30 MIH INTENSITY OF 0.80 IH/IIFf, OB 2.03 CH/HRS
TOTALS :
0.80 2.03 2.117 fill.87
513.50
212.«n
-------
COH"OSITE RAIN OF 50172
TOTAL RAT II
Id Ctt
OIIKATJOM
HOURS
INTENSITY
IN/IIHS CH/IIRS
ENERGY
FT-T/A
El
FT-T-IN/A-IIRS
"I
PYHCS/SRC
0.10 0.25
O.fO 0.25
0.10 0.25
0.1 HI
0.750
O.il 17
1.20 3.05
0. 13 0.3ft
0.211 0.61
62.62
71.09
113. 0 2
fl. 35
17.06
53.«lf.
3.95
P.07
BAIN OF 50172 HJUTNUH 10 Hilt INTIHSITY OF 0.31 IN/IIRS OR 0.79 Cft/HRS
TOTALS :
0.30 0.76 1.250 227.89
70.90
33.53
COMPOSITE RAIW OF 50«72
IH
RAIN
CM
DURATION
HOURS
INTENSITY
IN/IIRS CI/HRS
ENFRGY
FT-T/A
El
FT-T-IN/A-HRS
El
DYNRS/SKC
0.10 0.25
0.0 0.0
0.10 0.25
0.10 0.25
O.OH3
0.917
0.003
0.750
1.20 3.05
0,0 0.0
1.20 1,05
0. 13 0.3H
9Q. Ifl
0.0
91. 18
62.62
113.02
0.0
113.02
fl. 35
53.«6
n.o
53.
-------
COHPOSJTK RAIN
riOH72
rOTAL RAIN
IN CM
DURATION
HOURS
INTENSITY
IN/IIRS Cfl/HRS
ENKflfil
FT-T/A
El
FT-T-IN/A-HItS
DTMRS/S^C
0.10 0.25
0. 10 0.25
0.10 0.25
D.10 0.25
a. 10 0.25
o.om
0.250
0.0!) .1
o.om
0.250
t. 20
0.10
1.20
1.20
0.40
3.05
1.02
3.05
3.05
1.02
94. Ifl
7fl.<)3
94. Ifl
94. in
7B.<13
113.02
31.37
113.02
113.02
31.37
53.46
1U.84
5.1. « 6
53. M6
RAIM OF 50H72 .1AKIHIIH 30 WIN IBTEHSITI OF 0.00 IN/IIBS OR 2.03 CH/IIPS
TOTALS :
0.50 1.27 0.750 H3S.M1
351.52
166.27
OJ
M
O
COMPOSITE BAIN OF 53072
TOTAL RAIN
IM CM
DURATION
noons
INTENSITT
IN/IIRS CH/HRS
KNKHGY
FT-T/A
El
FT-T-IN/A-IIRS
RJ
D1TMF.S/SFC
3. 10
0. 10
0. 10
3. 10
0.10
0.20
0.25
0.25
0.25
0.25
0.167
0.417
0.500
0.583
0. Ifi7
0.60
0.21
0.51
0.44
1.52
84.27
71.09
60.46
66.23
PI.27
50.56
17.06
13.69
11.35
50.56
23.92
0.07
(,.1411
5.37
23.92
HAIH OP 51072 1AXIMUI1 10 HIM INTENSITY OF 0. 3fi IH/HRS OR 0.91 CM/HRS
TOTALS :
0.50 1.27 1.033 374.33
134.76
6.1.74
-------
COMPOSITE RATH OF 53072 THRU 53172
It A III
IM CPI
0.10 0.25
0.10 0.25
0.10 0.25
0.10 0.25
0.10 0.25
our; A Tin ii
nouns
0.331
0.250
0.013
0. 133
0.667
INTENSITY
IH/HHS
0.30
0.40
1.20
0. 30
0. 15
CH/IIBS
0.7f.
1.02
3.05
0.76
0.38
F.WKHOY
FT-T/A
Vt.21
711.1)3
9'l.1fl
74.29
64. 13
KI
FT-T-I VA-HRS
22.29
31.37
113.02
22.29
9.65
El
10.54
14. 84
53. 4 6
tO.54
4.56
RAIN OF 53072 .1AXIMUM 10 MIN INTENSITY OF 0.50 IH/HRS OR 1.27 CM/IIBS
TOTALS :
0.50 1.27 1.667 3f»5.51
192.76
91. 17
COMPOSITE RAIH OF 53172
TOTAL, RAIH
IN CM
DURATION
HOURS
INTENSITY
IN/IIRS Cfl/HRS
ENERGY
FT-T/A
RI
FT-T-IN/A-HRS
DYNES/SKC
0. 10 0.25
0.10 0.25
3.10 0.25
0, 167
0. 167
0. 167
0.60 1.52
0.60 1.52
0.60 i.52
04.27
04.27
fl4.27
50.56
50.56
50.56
23.92
23.92
23.92
RAIN OF 53172 lAXIHUM 10 n!H INTENSITY OF 0.60 TN/IIRS OR 1.52
TOTALS :
0.30 0.76 O.SOO ' 252.«2
151.69
71.75
-------
COMPOSITE RAIN OF 60272
VOl'AL HAIII
IN C1
0.10 0.25
3.20 0.51
0.10 0.25
DURATION
nouns
0.013
0.003
0.250
INTENSITY
IN/IIRS
1.20
2.10
0. MO
CM /UBS
3.05
d. 10
1.02
F.MHROY
FT-T/A
9M. 10
200.29
70.13
El
FT-T-I N/A-IIRS
113.02
109.89
3 1. 37
KT
DYNES /SEC
53.116
236.15
11 . «H
BAIN OF 60272 HAKtriUN 10 nil) INTENSITY OF 0.0 IN/IIRS OR 0.0 CH/HHS
TOTALS :
3.110 1.02 0.117 380.90
0.0
0.0
UJ
M
K)
COMPOSITE RAIN OF 61672
TOTAL RAIN
IN CM
3.10 0.25
0.10 0.25
0. 10 0.25
DURATION
nouns
0.133
0.167
0.5IU
INTENSITY
IN/UBS CM/MRS
0.30
0.60
0. 17
0.76
1.52
0.41
ENKHGY
FT-T/A
71.29
01.27
66.23
El
FT-T-IH/A-HRS
22.29
50.56
11.35
F.I
10.51
23.92
5.37
RAIN OK 61672 NAXIHDM 10 1IN INTENSITY OF 0.10 IN/IIRS OR 1.02 CM/IIRS
TOTALS :
0.30 0.7f. 1.0il3 ' 221.79
09.92
12.53
-------
COMPOSITE RAIN OF 61072
rOTAI. HAtH
IS C1
DIIIIATTOH
HOURS
INTENSITY
TN/IIRS cn/nns
EHF.RGY
FT-T/A
El
FT-T-tN/A-HRS
0. 10
0. 10
0. 10
0. 10
3. 10
0. 10
0. 10
0. 10
0.25
0.25
0,25
0.25
0.25
0.25
0.25
0.25
0. 167
0.500
O.OH3
0.500
0.503
0.1417
0.0*13
0. 167
0. 60
0.20
1.20
0.20
0.17
0.21
1.20
0.60
t.52
0,51
3.05
0.51
O.Mil
0.6 1
3.05
1.52
fll.27
6(1.46
91. 10
6(1.16
66.23
71.09
91. Ifl
ft.27
50.56
13.69
113.02
13.69
11.35
17.06
113.02
50.56
23.92
6.UR
•n.16
6.00
5.37
S.07
53.146
23.92
RAIN OF 6IH72 lAKIlUt 30 IT N INTENSITY OF 0.52 TH/IIRS OR 1.32 CM/HRS
TOTALS :
O.flO 2.03 2.r>00 631.16
320. 20
155.2«
U)
M
UJ
COHPOSITR PAIM OF 61072
TOTAL
in
en
»')R\TIOH
HOURS
INTFNSITI
IH/IIRS C.1/IIRS
EMKRGY
FT-T/A
El
rr-t-iN/A-iins
0. 10 0.25
0.10 0.2J
0.10 0.2H
0.500
0.750
0.331
0.20 0.51
0. 13 0.31
0.30 0.76
6R.46
62.62
71.29
13.69
0.35
22.29
6.l| ft
3.95
10.5«
RAIH OF 61072 ttAXMUH »!) 'UN TNTRHSITV OF 0.21 I'l/IIRS OR 0.62 CH/IIRS
TOTALS :
0.30 0.76 1.r>nj ' 205.37
50. 19
23.71
-------
COMPOSITE RAIH OF 62172
TOTAL
IN
0. 10
0. 10
0. 10
0.20
0. 10
0.20
0. 10
0.10
0. 10
o. 10
0. 10
0. 10
D. 10
3.20
0. 10
0.10
0. 10
0. 10
0. 10
0.0
3. 10
0. 10
0. 10
0. 10
HA III
CM
0.25
0.25
0.25
0.51
0.25
0.51
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.51
0.25
0.25
0.25
0.25
0.25
0.0
0.25
0.25
0.25
0.25
1)11 PAT 10II
iiounr,
0.250
0. 750
0.750
0.250
0.083
0. 167
o.on3
0.083
0.417
0.250
0.167
0.133
0. 167
0.013
0.0 U3
0. 167
0.333
0. 167
0.417
0.9 17
0.0(13
0. 167
0.003
0.500
INTENSITY
IN/IIRS
0.10
0.13
0.13
0.80
1.20
1.20
1.20
1.20
0.24
0.40
0.60
0.30
0.60
2.40
1.20
0.60
0.30
0.60
0.24
0.0
1.20
0.60
1.20
0.20
CH/MRS
1.02
0.34
0.34
2.03
3.05
3.05
3.05
3.05
0.61
1.02
1.52
0.76
1.52
6. 10
3.05
1.52
0.76
1.52
0.61
0.0
3.05
1.52
3.05
0.51
ENFRGY
FT-T/A
70.43
62. 62
62.62
176.10
91. in
ion.in
94.10
94.18
71,09
78.43
84.27
7H.29
a*. 27
208.29
94.10
84.27
74.29
84.27
71.09
0.0
9't. Ifl
84.27
94.18
68.46
BI
FT-T-IM/A-HBS
31.37
ft. 35
8.35
141.13
113.02
226.18
113.02
113.02
17.06
31.37
50.56
22.29
50.56
499.89
113.02
50.56
22.29
50.56
17.06
. 0.0
113.02
50.56
113.02
13.69
BI
PYMES/SFC
1ll.ni
3.95
3.95
66.90
53.46
106.98
53.46
53.46
fl.07
14.84
23.92
10.54
23.92
236.45
53.46
23.92
10.54
23.92
0.07
0.0
53.16
23.92
53.46
6.48
IIMM OF 62172
TOTALS :
2.60 6.60
MAXfllUH 10 TIN INTENSITY OF 1.13 IH/HRS OB 2.80 CN/KRS
6.750
2201.12
2494.75
11B0.02
-------
COItOSITE RAIN CP 62172 TIWI 62272
TOTAL
T H
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 30
0. 10
0. 10
3. 20
0. 10
0. 10
0.20
0. 20
0. 10
0. 10
0.20
0. 10
0. 10
o. to
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
a. 10
0. 10
3. 10
0. 10
0. 10
0. 10
0.20
0.10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
3. 10
0. 10
RAIN
C1
0.25
0.2'i
0.2'i
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.76
0.20
0.25
0.51
0.25
0.25
0.51
0.51
0.25
0.25
0.51
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.51
0.25
0.25
0.25
0.2'i
0.25
0.25
0.25
0.25
0.25
DilfiATTOU
HOURS
0. 167
0.333
0.500
0.750
0.013
0.250
0.167
0. 167
0.003
0.003
0.003
0.083
0.083
0.003
0.003
O.OfU
0.103
0.081
0.013
0.083
0.003
O.Ofll
0.003
O.OH3
0.003
O.OB3
0. 167
0.013
0. 167
0. 167
0.013
0. 167
0. 167
0.01.1
0.250
0. 133
0.500
0.250
0.117
0. 131
0.500
0.003
0.0(13
0. 167
0.013
0.011
0.001
O.Ortl
0.001
0. lf»7
0. 167
0.001
INttNEITY
iH/nns
0. 60
0.30
0.20
0. 13
1.20
0.10
0.60
0.60
1.20
1. 20
1.20
1.20
1.20
3.60
1.20
1.20
2.10
1. 20
1.20
2.10
2.10
1.20
1.20
2. 10
1.20
1.20
0.60
1.20
0.60
0. 00
1.20
0.60
0.60
1.20
0.10
0.30
0.20
0. 10
0.21
0.30
0.20
1. 20
2.10
0.60
1.20
1. 20
1.20
1.20
1.20
0.60
0. (>0
1. 20
C1/IIRS
1.52
0.76
0.51
0.31
3,05
1.02
1.52
1.52
3.05
3.05
3.05
3.05
3.05
9. 11
3.05
3.05
6.10
3.05
3.05
6. 10
6.10
3.05
3.05
6. 10
3.05
3.05
1.52
3.05
1.52
1.52
3.05
1.52
1.52
3.05
1.02
0.76
0.51
1.02
<>.(,!
0.76
0.51
3.05
6.10
1.52
1.05
3.05
.1.05
J.05
3. OS
1.52
l.f.2
1 . 05
EHFRG?
PT-T/A
01.27
71.29
61.16
62.€2
9U.1B
7ft.13
011.27
61.27
91. 10
91.10
«»i. in
91. 10
9l».18
329.91
91.10
9«. 18
200.29
94. 18
9 M.10
200.29
200.29
91.10
94. 1R
200.29
91. Ifl
9'l.18
01.27
91. in
B'1.27
fi'1.27
9i. IB
01.27
n<4.27
91.18
70.13
71.29
60.16
78.1.1
71,09
71.29
6*!. 16
91. II
200.29
fil.27
9
-------
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
1.10
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
11. 10
0. 167
0. 167
0.250
O.M3
0. 167
0.167
0. 167
0. 167
0.0'!. 19
fll.26
fl'1.27
e'l. 27
n«.26
91.19
01.26
78.13
78.13
81.26
71.29
71.29
3196. 17
50.56
50. 56
31.37
113.01
50.55
50. 56
50.56
50.55
1 13.01
50.55
31.37
31.37
50.55
22.29
22.29
1215.38
23. 92
23.92
li.ni
53.17
23.9 I
23.92
23.92
23.91
53.17
23.91
II. fll
11.81
23.91
10.51
10.51
589.06
RAIN OK 62172 MAXIHUN 30 MIM IHTEHSITY OF 1.90 IN/HPS OB 1.57 CH/HBS
TOTALS :
11.BO 29.97 23.566 5990.16
17997.23
9512.69
COMPOSITE RAIN OF 62872
TOl'AL RATH
I H CH
0. 10
0. 10
0. 10
0. 10
0. 10
I). 10
0.2r)
0.25
0.2'i
0.25
0.25
0.25
Dtll'ATIOH
nouns
0.533
0.0fl3
O.OU3
0.003
0.250
0.133
IHTEMSITY
IM/HRS
0. 17
1.20
1.20
1.20
0.10
0. 12
CH/nns
0.11
3.05
3.05
3.05
1.02
0.30
ENESflY
FT- T/A
66.23
91. Ifl
91.18
51. 18
78.13
61.12
KI
FT-T-IH/A-HRS
11.35
1 13.02
113.02
1 13.02
31.37
7.33
RI
DYNFS/SEC
5.37
53.16
53.16
53.16
11,01
3.17
RAIN OF 62f<72 rtAKTMUM JO HIN INTENSITY OF 0.00 IN/I1RS OP 2.03
TOTALS :
0.60 1.52 1.916 1fl<1.33
390.66
181. 711
-------
COHPOSITE HAI1I OF 62172
flATM
IN CH
DURATION
HOURS
IllTENSITY
IN/11 IIS Crt/IIRS
FHEROY
FT-T/A
El
FT-T-IH/A-HRS
El
DYNFS/SEC
0.10 0.25
0.10 0.21
0.10 0.25
0. 133
0.133
0.017
0.30 0.76
0.30 0.76
0.11 0.20
74.29
74.29
59.76
22.29
22.29
6.52
10.54
10.50
1.08
BAIN OF 62972 IMXIHUM 10 HTN IMTENSIT* OF 0.30 IM/HFS OR 0.76 CH/IIRS
TOTALS :
0.30 0.76 1.583 208.33
62.50
29.56
CCMPOSITE RATM OF 71572
TOTAL
IH
0. 20
O.JO
0. 10
0. 10
0. 10
0. 10
0. 10
RAT H
CN
O.-il
0.76
0.25
0.2r>
0.25
0.25
0.25
DURATION
noons
0.083
0.083
0.083
0.083
0.2SO
0.500
0.033
INTENSITY
IM/I1RS CN/IIR3
2.40
3.60
1. 20
1.20
0. 40
0.20
0. 12
6.10
9.1«
3.05
3.05
1.02
O.IS1
0.30
FT-T/A
208.29
329.91
94.IB
94. It)
7B.43
60.46
61.12
El
FT-T-IN/A-I1RS
499. 09
1187.67
113.02
113.02
31.37
13.69
7.33
nyNFS/SEC
236.45
561.77
53.46
53.46
14.84
6.48
3.47
MAIM OF 71r>72 (1AXIHHM 30 HIM INTENSITY OF 1.53 IN/1IHS OR 3.89 Cfl/IIRS
TOTALS :
1.00 2.54 1.916 934.07 1432.98
677.80
-------
COMPOSITE RAIN OF 71672
TOTAL RAlll
I M CM
DIUMTTOM
HOURS
INTENSITY
IM/I1B3 CM/HRS
ENERGY
FT-T/A
FT-T-r N/A-H RS
El
DYNES/S"C
0.tO 0.25
3.20 0.51
0.30 0.76
0.0.13
0.013
0.003
1.20 3.05
2.10 6.10
1.60 9.11
91. 18
200.29
329.91
113.02
199.89
1187.67
S3.16
236.15
561.77
RAIN OF 71672 flAXI'WI 30 [UN INTENSITY OF 0.0 IN/HBS OR 0.0 Cfl/IIRS
TOTALS :
3.60 1.52 0.250 632.38
0.0
0.0
U)
M
CO
COHPOSITE RAIN OF 71672
TOTAL
IN
0. 10
0. 10
0. 10
3. 10
0. 10
0. 10
0. 10
RAIN
CH
0.2r>
0.25
0.25
0.25
0.25
0.25
0.25
DURATION
HOURS
0.113
0.0fl3
0.167
0.500
0.003
0.333
0.583
INTENSITY
IN/HBS CH/IIBS
1.20
1.20
0.60
0.20
1.20
0.30
0. 17
3.05
3.05
1.52
0.51
3.05
0.76
0.11
ENERKY
FT-T/A
91. 18
91.10
81.27
6H.16
9«. 18
71.29
66.23
El
FT-T-IN/A-IIRS
113.02
113.02
50.56
13.69
1 13.02
22.29
11.35
KI
I>YNES/S«:C
53.16
53.16
23.92
6.18
53.16
10.51
5.37
RAIN OF 71672 "UXIMUn 30 MIN INTENSITY OF 0,67 IM/IIRS OR 1.69 CM/HI'S
TOTALS :
0.70 1.70 1.133 575.80
383.89
1111.50
-------
COMPOSITE RAJS OF 00772
TOTAL RAIN
I M CM
IHrtiATION
HOil PS
INTENSITY
IK/II us CH/IIRS
FMKBOY
FT-T/A
El
FT-T-IN/A-HHS
KI
OYMFS/SKC
0.20
0. 20
0. 10
0. 10
O.'jl
0.51
0.25
0.25
0.500
O.OfU
0.003
0. 167
0. DO 1.02
2.'IO 6.10
1.20 3.05
0.60 1.52
156,06
20H.29
tit. 1(1
84.27
62.74
499,89
113.02
50.56
29.6fl
23J..H5
53.46
23.92
RAIN OF 00772 niXINUH 30 1IN INTBHSITIT OF 0.93 IM/IIBS OR 2.37 CH/ttKS
TOTALS :
0.60 1.52 0.031 541.60
507. 34
239.97
VO
COHPOSITR BAIH OF B2772
IN
RAIH
CM
DURATION
HOURS
THTEHSITV
IN/11 HS CK/IIRS
ENFIRGf
FT-T/A
El
FT-T-IN/A-IIRS
FI
OtNFS/SKC
0.10 0.25
0.10 0.25
0.10 0.25
0. 1fe7
0. 167
O.U17
0.60 1.52
0.60 1.52
0.24 0.61
84.27
(-4.27
71.09
50.56
50.56
17.06
23.92
23.92
8.07
RAIN OP H2772 1/HIHIM 30 HIM IHTKNSIT* OF 0.4B If/UPS OB t- 22 CN/IIRS
TOTALS :
0.30 0.7b 0.750 ' 239.64
115.03
54.41
-------
COMPOSITE HAIN OF 10972
TOTAL
IM
a. 10
0. 10
0. 10
3. 10
0. 10
0. 10
0.10
RAIN
CM
0.25
0.25
0.25
0.25
0.25
0.25
0.25
DIIRATIO'I
HOURS
0.1117
0.250
0.333
0.003
O.OH3
o.ifi3
0. 167
UITENSITY
IH/IIBS CM/IIKS
0.24
0.1)0
0.30
1.20
1. 20
1.20
0.60
0.61
1.02
0.76
3.05
3.05
3.05
1.52
CNFPGY
FT-T/A
71.09
7P.H1
71.29
91. 1fl
91.18
91.18
H1.27
FT-T-IH/A-HRS
17.06
31.37
22.29
113.02
1 13.02
113.02
50.56
El
DYHF.S/SEC
R.07
Ifl.fll
10.51
53.16
53.16
53. 46
23.92
RAIN OF 90972 fUXTlUM 30 HTM INTENSITY OF 0.85 IN/HRS OB 2.16 CH/IIRS
TOTALS :
0.70 1.70 1.117 590.63
502.03
237.16
ro
o
CONPOSITi! RAIH OF 100672
TOTAL RAISt
IM CH
IMIB^TTOB
HOURS
INTENSITY
IH/IIRS CM/11 RS
FT-T/A
KI
FT-T-IH/A-HHS
El
DYKES/SEC
0.10 0.25
0.10 0.25
0.10 0.25
0.117
0.583
0.1 17
0.21 0.61
0. 17 O.U1
0.21 0.61
71.09
66.23
71.09
17.06
11.35
17.06
8.07
5.37
0.07
RAIM OF 100672 lUXINUrt 30 HIN INTENSITY OF 0.23 IH/HRS OP 0.50 C»/l\«S
TOTALS :
0.30 0.76 1.117 ' 209.11
22.51
-------
O'O
0*0
ti'ZOl £91 °0 9*'0 OfO
S S'IV.101
0*0 UO 'JUI1/NI 0*0 JO AXISHai.Hl Nlli 01 MIHIXVH ZtblUI JO NtVU
68*66K
EO'El 1
Ul °*6
ot "i otrz
SOT OZ'l
CMO'O
IVO
5?'0
QZ °o
01 '0
DStS/SilNJKl
la
V/X-X4
SUII/H3 SU1I/NI
AJ.ISNJXNI
b'tlilOlt
N01J.VUIIO
no MI
HJVtl 'IVIOJ
JO NIVU JXISOdHOO
CM
CO
98'toB
66 '681
ti9'9ic
sun/wo
HO suit/ni 09*0 Jo
turn
ron
HIM 01 unuixvk e^9oci
NIVII
HOT
1)0-ft I
Z6TZ
Z&°9
£C "IE
9S"OS
ZO'Sll
SaH-V/HI-1-J.d
13
94 "GS
Eli-Bt
tZ "flB
«l "lib
V/i-iJ
Ayil'dHS
uz-o ii -o
ZO'l Oh'O
ZS'l 09'0
SOT 02 •!
Siiii/MD suit/in
SilSNalHI
H l>'0
OJ.2'0
i9l "0
tbO'O
SUIIUH
IIOIXVHIIO
SK'O
J,£ °0
«>Z "0
St'O
bo
H1VU
01 -0
01*0
01 '0
01 -0
NI
IV 10.1
imui et-tooi jo Ntvu axtsoauoo
-------
COMPOSITE BAIN OF 110072
l-o
TOTAL
IN
o. to
0. 10
0. 10
o. to
0. 10
0.10
0. 10
0. 10
0. 10
0. 10
o. to
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
RAIN
CM
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
DURATION
HOURS
0
O.OH3
0.501
583
0.500
0.667
0.417
0.333
0.417
0.311
0.4 17
0.333
0.500
0.750
0.667
0.250
0.333
0.417
333
0.500
0.583
0
INTENSITY
IN/11 BS
1.20
0.17
0.17
0.20
0.15
0. 24
0.30
0. 24
0.30
0. 24
0.30
0.20
0.13
0. 15
0.40
0.30
0.24
0. JO
0.20
0.17
CH/HBS
3.05
0.44
0.44
0.51
0.38
0.61
0.76
0.61
0.76
0.61
0.76
0.51
0.34
0.30
1.02
0.76
0.61
0.76
0.51
0.44
F.I
FT-T/A
90.16
66. 23
66.23
68.46
64..13
71.00
74. 2<»
71.09
74.29
71.09
74.29
60.46
62.62
64.33
78.43
14.29
71.09
74.29
60.46
66.23
UilN OF 110072 ilAJCIMUH 30 KIM INTENSITY OF 0.35 IN/IIIiS OR 0.09 Cfl/IIHS
TOTALS :
2.00 5.00
FT-T-rN/A-IIRS
113.02
U.35
11. 35
13.69
9.65
17.06
22.29
17.06
22.29
17.06
22.29
13.69
B.35
9.65
31. 37
22.29
17.06
22.29
13.69
11.3S
53.46
5.37
5.37
6.4R
4.56
0.07
10.54
B.07
10.54
8.07
10.54
6.4fl
3.95
4.56
14.04
10.54
«.07
10.54
6.40
5.37
•J.OOO
1423.76
498.32
235.70
-------
TOTAL
IN
a. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
RAIM OP 1
TOTALS
1. 10
OJ
1-0
HATH
CM
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0,25
0,25
0.25
11 172
••
2.79
IVIUATTOH
II (Ml!):;
0.1113
0. 167
0.131
0.500
0.500
0,667
0.750
0.500
0,500
o. in
IM/HIJS CM/IIP.-!
0.12
0.60
0.30
0.20
0, 20
0. 15
0. 1.1
0. 17
0.20
0.20
O.JO
0.30
1.52
0.76
0.51
0.51
0.39
0.34
0.11
0.51
0.51
0.76
COMPOSITE PSIH OP 111172
Kfl^KRY
FT-T/A
61. 12
OH,27
71.29
60.46
(,«.!»&
6'!..13
62.62
66.23
6«.46
60.16
71.29
30 HTM INTENSITY OF 0.40 IN/BBS OR 1.02 CM/IIBS
5.667
761.00
COMPOSITE BAIM OF 111472
El
FT-T-IH/A-IIRS
7.33
50. 56
22.29
13.69
U.6<»
9.65
8.35
11.35
13.69
13.69
22.29
301.110
KJ
PYNKS/SEC
3.17
23.92
10.51
6.10
6.If)
1.56
3.95
5.37
6.10
6.18
10.51
111.98
TOTAL BAfH
IN CM
D'lfiATTON
HOURS
INTENSITY
IK/IIHS CM/IIRS
EMERGT
FT-T/A
81
FT-T-IN/A-HRS
El
OlfHES/SFC
1.10 0.25
0.10 0.25
0, 10 0.25
0.13.1
0.750
0.750
0.30 0.76
0. 13 0.31
0. 13 0.31
71.29
62.62
62.62
22.29
fl, 35
8.35
10.51
3.95
3.95
(IAIN OF 1IH72 HA* mil 3D MIH INTENSITY OF 0.21 T1/IIBS OP 0.62 CH/HRS
0.10 0.76
l.fU.l
199.52
10.76
23.06
-------
COMPOSITE UAIN OF 111972
TOTAL
IN
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
HA 111
C(1
0.25
0.25
0.25
0.25
0.25
0.25
0.25
DIIHITIOri
nouns
O.lfl)
O.flJ.1
O.H17
0.333
0.500
0.500
0.667
INTENSITY
IN/11 US CH/HRS
1. 20
0. 12
0.24
0.30
0.20
0. 20
0.15
3.05
0.30
0.61
0.76
0.51
0.51
0.311
EHKRfiY
"T-T/A
94. IB
61. 12
71.09
74.29
64.33
KI
FT-T-IN/A-linS
113.02
7. 3J
17.06
22.29
13.69
13.69
9.65
KI
S3."16
3.47
It.07
10.51
6.MS
6.40
4.56
DATH OP 111972 HAXIHUH 10 HIM INTENSITY OF 0.30 IN/HHS OR 0.76 CM/MRS
TOTALS :
0.70 t.7fl 3.333 501.94
150.58
71.22
uo
N3
-P-
COMPOSITE ItAIH OF 112672
TOTAL
IN
0. 10
o. to
0. 10
:>. 10
o. to
9. 10
0. 10
0. 10
RAIN
CM
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
DURATION
HOURS
O.O.'H
0.5«3
0.500
0. 133
0.4 17
0.583
0.417
0.33 J
INTENSITY
IN/11 RS CH/HRS
1.20
0. 17
0.20
0.30
0. 24
0.17
0. 24
0.30
3.05
0.44
0.51
0.76
0.61
0.44
0.61
0.76
ENERGY
FT-T/A
94. 1fl
66.23
60.46
7'«.29
71.09
66.23
71.09
74.29
El
FT-T-IN/A-HBS
113.02
11.35
13.69
22.29
17.06
11.35
17.06
22.29
El
DVNfcS/SBC
53.46
5.37
6.48
10.54
8.07
5.37
«.07
10.54
RAIN OF 112672 HiUlHUn 30 MTN INTENSITY OF 0.34 TH/IIUS OR O.FI7 CN/IIPS
TOTALS :
O.HO 2.03 3.250 505.fUi
200.89
15.02
-------
COMPOSITE RATH OF 113072
TOTAJ. PAIN
IN C1
DURATION
HOURS
INTRNSITY
IN/IIRS CH/1IPS
EHERfiY
FT-T/A
El
FT-T-IH/A-HPS
El
DYMRS/SF.C
0.10 0.25
0.10 0.25
0.10 0.25
O.Ofll
0.667
0.917
1.20 3.05
0. 15 0,38
0. 11 0.20
94. Ifl
6
-------
COHPOSITE RAIN OF 120672
TOTAL RAIN
IN C1
DtlPATTON
HOURS
INTENSITY
IN/IIRS CN/IIRS
ENERGY
FT-T/A
RI
FT-T-IH/A-IIRS
RI
DYHHS/SEC
0. 10
0. 10
0, 10
0. 10
0. 10
0.25
0.25
0.25
0.25
0.25
0.167
0.250
0.167
0.500
0.60 1.52
0. 12 0.30
0.40 1.02
0.60 1.52
0.20 0.51
84.27
61.12
70.113
an.27
60.46
50.56
7.33
31.37
50.56
13.69
23.92
3.47
14.84
23.92
6.40
RATH Of 120672 HAXimitl JO HIM INTENSITY OF 0.43 IN/IIRS OR 1.10 CM/MRS
TOTAL'S :
0.50 1.27 1.917 376.56
163. 16
77. 1ft
UJ
COHPOSITe RAIN OF 120872
FOFAL RAIM
II C1
DO RATIO II
(I OURS
INTENSITY
IN/II na CN/HRS
EMKHRY
FT-T/A
El
FT-T-tH/A-«BS
El
OYNES/SFC
0.10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0. 10
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0. 167
0.667
0.503
0.667
0.667
0.750
O."i00
0.333
0.'I17
0.510
0.60
0. 15
0.17
0. 15
0.15
0. 13
0.20
0. 30
0.24
0.20
1.52
o.in
0.44
0.30
0.30
0.34
0.51
0.76
0.61
0.51
fll.27
64.33
66.23
64.33
64. 33
62.62
68.46
74.29
71.09
6(1.46
50.56
9.65
11.35
9.65
9.65
R.35
13.69
22.29
17.06
13.69
23. 9 2
4.56
5.37
4.56
4.56
3.95
•6.40
10.54
IJ.07
t>.40
RAIN OF I20R72 NAXIMIM 10 1IN INTENSITY OF 0.30 IN/IIRS OR 0.76 CH/IIRS
TOTALS :
1.00 2.54 5. >50
206. 53
97.69
-------
CONPOSITR RAIH OP 123172
TOTAL RAIN
IN CM
0. 10 0.25
0.10 0.25
0.10 0.25
DIIP4TTOU
HOURS
0.
-------
STORM TOTALS FOP
TOTAL
IN
0.50
3.10
0.10
a. 30
0.10
0.90
0.30
0.10
0.10
0.80
0..10
0. 30
0.50
3. 50
0.50
0. 10
0.10
0. 30
0.80
0. 30
2.60
11.80
0.60
0. 30
1.00
0.60
0.70
0.60
0. 30
3. 70
0.30
0.10
0. 30
2.00
1. 10
0. 30
0.70
0.80
0.30
0. 30
0.50
1.00
0.30
RATH
CN
1.27
1.02
1.02
0.76
1.02
2.29
0.76
1.02
1.02
2.03
0.76
0.76
1.27
1.27
1.27
0.76
1.02
0.76
2.03
0.76
6.60
29.97
1.52
0.76
2.51
1.52
1.7tt
1.52
0.76
1.78
0,76
1.02
0.76
5.08
2.79
0.76
1.70
2.0.1
0.76
0.76
1.27
2.51
0.76
PUPATION
HOURS
'1.750
1.250
1.833
1.667
1.313
2.116
1.250
2.r>00
2.011
2.117
1.250
1.833
0.750
1.133
I. 667
0.500
0.1 17
1.093
2.500
1.503
6.750
23.fi66
I.OI6
1.583
1.916
0.250
1.833
0.033
0.750
1.117
1.1 17
1.117
0. 167
').000
5.667
1.013
3.333
3.250
1.667
1.667
1.517
5.250
2.083
DATE
10272
11372
20312
21972
21972
30372
31612
32272
32272
11672
50172
50172
50172
53012
53012
53172
60272
61672
61872
61072
62112
62172
62072
62972
71512
71672
71672
00772
82772
90972
100672
100672
101972
1 10072
111172
111172
I 11912
1 12612
113012
120612
120612
120072
123172
ENERGY
FT-T/A
315.36
323.71
285.51
218.27
30<).51
730.13
219.70
263.85
271.63
611.87
227.89
250.98
1.19.11
371.33
385.51
252.82
180.90
221.79
631.16
205.37
2201.32
9998.16
IBS.33
208.33
931.57
632.38
575.00
513.60
239.61
590.63
208.11
.116.61
302.17
1123.76
761.00
199.52
501.91
505.06
218.27
205. 11
376.56
688.12
195.16
El
FT-T-IN/A-IIRS
60.31
161.89
85.66
63.50
I 13.51
633.06
65.91
61.18
73.03
513.50
70.90
78.08
351.52
131.76
192.76
151.69
0.0
89.92
328.20
50. 19
2191.75
17997.23
390.66
62.50
1132.98
0.0
303.09
507.31
115.03
502.03
17.61
189.99
0.0
190.32
301.10
18.76
150.58
200.89
70.91
1ft. 19
163. 16
206. 53
16. 11
12.32
76.50
10.52
30.01
53.69
299.11
31.17
30.50
31.51
212.88
33.51
.16.93
166.27
63.71
91. 17
71.75
0.0
12.53
155.21
23.71
1180.02
B512.69
181.70
29.56
677.80
0.0
181.58
239.97
51.11
237.16
22.51
89.86
0.0
235.70
IM3.9H
23.06
71.22
95.02
33.55
22.91
77. Ifl
97.69
21.P2
TOTALS :
36.50 '»2.
29351.18
29153.06
13700.10
ACCOUNT; i>65'4'l
DATR: 01/21/80 TDSilT:
USER: MFINR1"II IWAII E
DESTINATION: AA
OS-21.8 MASP-2.T5: 370/1013
.1AKT1IM TIHE (SEC): r>0 NKT CPU [SVC] I 1
ACTUAL TI1K, IHCIIIDIHU 2.0 SEC STSTtU Tin*: 5 » S.07/SEC
LTVP.S PHIMTFD: 1215 CAPDS PIINCIIF.r: 0 S> ».15/100
"HX-MU1 RECORD!!: 2500 TOTAL RFCORIIS: 1215 9 ft. 12/100
s UKAII: 625 ***** TOTAL cast
* 0.15
< 0.00
$ 1.11
s 1.79 .ion NAHF NP i flr.1169
-------
RARIE EROSION MODEL
Cola. [ 1-5 6-10
1st
Card
2nd
Card
3rd
Card
4th
Card
Next
Cards
etc .
I
1
r
i
r
t
11-15
16-20
21-25 26-30 31-35 J 36-40 j 41-45 j 46-50 j 51-55 j 56-60 | 61-65 | 66-70 71-75 J 76-80 ]
ADD
PRINT
f UN C H
a
i
U
I
A
T E ill
liizhL
DAT
II
D U R
0 .
1 .
0 .
1 .
1 .
0 •
IDA T E 1
5
3
072
4
0
4
0
0
7
1
8
1
0
8
5
6
3
i>
0
3
0
7
3
7
0
3
0
E
F
X I N T GAGE
1 4. MI N / HhhhluM HIM
TEN
I D A T E F
5J3
1
DUB
n°
|0|.
3
2
3
5
3
0
3
0
1
2
0
0
0
0
0
0
•
.
.
.
.
*
2
0
2
1
0
0
4
9
4
0
9
0
2
0
0
2
0
3
0
0
3
X 1 N T GAGE
I 1
LjUK
T E M
0
0
.
.
3
4
0
0
0
0
0
0
5|0I0|0 HlllzMu II 1 III
-------
KARIE EROSION MODEL (CONT)
Cola.
OJ
U)
o
Last
r.ard
1-5
0
0
0
6-10
1 » A T E I
1
2
3
1
7
2
0
3
6
8
3
6
3
)
i>
3
3
7
11-15
I DA T E F
1
0
0
16-20
.
.
2
3
1
0
0
5
0
0
0
0
0
0
21-25 26-30 31-35 36-40 41-45 | 46-50 51-55 56-60 61-65 66-70 71-75 76-80
X I N T I GAGE
0
4
D U K TEN
9
9
9
9
0
0
0
9
.
,
9
8
9
3
9
1
1
3
1
6
3
3
7
3
9J9J9
9
9
9
9
0
0
0
.
.
1
1
3
9|9|9
?
0
0
9
0
9
0
9
0
1
0
9
2bM nUahlw HUM
9J9|9 9J9 9J9J9|9|9 9J9|9J9|99J9 9|9J9|9J99 9|9J9J9J9 J9^ |9J9J9 J9J9 9J9J9J9J99 9J9|9 9|9J9J9J9|9 9J9 99 9| 9| 9 999
-------
SECTION 10
SOIL LOSS EQUATION
The Soil Loss Equation is a computer program which does precisely what
the name implies. It utilizes the Universal Soil Loss Equation to compute
soil loss. Therefore, it is a-limited simulation program which pertains to
the surface layer of the soil and is related to the runoff programs.
Obviously, the Soil Loss Equation must use the various parameters to the
Universal Soil Loss Equation as input. The most important of these is the El
(Erosion Index) value. The El is computed by the Rarie Erosion Program so
that the Rarie Program's output serves as input here. In turn, the output
from the Soil Loss Equation for different points in an area can be used as
input into the Semivariogram Calculation Program or the Surface II Contouring
Program. We can then obtain a structural analysis and contours of soil loss.
INPUT: El - Erosion index
K - Soil erodibility factor
LAMBDA - Average slope length
SS - Average plot gradient
C - Cropping management factor
P - Erosion-control practice factor
OUTPUT: A - Soil loss per unit area
REFERENCE: W. Wischmeier and D. Smith. December 1978. Predicting rainfall-
erosion losses - a guide to conservation planning. Agricultural
Handbook No. 537, USDA-SEA, U.S. Government Printing Office,
Washington, D.C.
331
-------
SOIL.LOSS. EQUATION
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
0.1 //MHWXXXXX JOB (BEW01)
0.2 /*JOBPARfl I=SOILLOSS
0.3 // EXEC FSCLG
0.4 /*JOBPARM FOLLSKIPS
0.5 //SYSIN DD *
1. C
2. C PROG1AM TO CALCULATE EBOSION THROUGH USE OF THE SOIL-LOSS EQUATION.
3. C
4. C WKITER OF PBOG8AM: BRIAN E. HEINRICH
5. C USDA-SEA-AB
6- C NORTHEAST iATEBSBED KESEABCH CENTER
7. C 110 EESSABCH BD. A
8V C UNIVEBSITY PARK, PA. 16802
9. C
10. C
1'1. C EXPLANATION OF VASIABLES
12. c**************
13. C
14. C A COMPUTED SOIL LOSS PEB UNIT AJBEA. (G/SQ. M)
15. C AM(K) • MONTHLY VALUES OF • A'.
16. C C RATIO OF SOIL LOSS FROM A FIELD BITH CROPPING AND
17. C MANAGEMENT TO ONE WITH BABE SOIL CONDITIONS.
18. C El COMBINED EROSION FORCE OF ALL MAJOR RAINFALLS FOR A
19. C SPECIFIC YSAE. (DYNES/SEC)
213:. C EI«(K) MONTHLY VALUES OF 'El'. (DYNES/SEC)
21'. C K EROSION BATE PER UNIT OF El FOR A SPECIFIC SOIL IN A
22. C CULTIVATED CONTINUOUS FALLOW. (G/SQ. fl/DYNE/SEC)
23. C LAMBDA AVERAGE SLOPE LENGTB. (CM)
24. C M- EXPONENT FOR CALCULATING SLOPE LENGTH (USUALLY = 0.5).
25. C NYEAHS--- MOUSES OF YEARS.
26. C B EROSIOS-CONTBOL PRACTICE FACTOR.
27. C SL RATIO OF SOIL LOSS PEP UNIT A5ES ON A FIELD SLOPE TO
28. C THE CORRESPONDING LOSS ON THE BASIC 9-PEF CENT SLOPE.
29. C S3 -AVERAGE PLOT GRADIENT. (PER CENT)
30. C YEAR CURRENT YEAR OF CALCUIATICNS.
31 . C
32. C
33. DIMENSION AM ( 12) , EIM ( 12)
34. REAI K,LAMBDA,LAMBDS!, M
35. INTEGER *2 YEAR,I YEAS
33S. C
37. C
38.- C BEAD CALCULATION PARAMETERS.
39.- C
40:. READ(5,20) NYEABS
4-1 . 20 FOBHAT(I2)
42. READ (5, 30) M
43 . 30 FO£MAT(F4.0)
44. C
45. C
46. C BEAD CONSTANT DATA
4^7. C
48. READ(5, 30) K
49. READ(5,50) LAMBDA,SS
50. 50 FORMAT(2F10.0)
332
-------
SOIL,LOSS.EQUATION
1 2 3 4 5 6 7 i
12345678901234567890123456789012345678901234567890123456789012345678901234,'
51. ESSD{5,30) C
52. REID{5, 30) P
53. C
54. C
55. C CALCULATE LAHBDA IN METEBS FOB OUTPUT.
56. C
57. LAHBD«= LAMBDA/100. 0
;58. C
59. C
60. C CALCULATE SL.
|si. c
62. IF {M.NE.0.5) GO TO 70
63. SL=SQP.T {LAMBDA/2212. 8 5) *{(Q.52+0.36*SS+0,052*SS*SS)/8.0)
64. GO TO 80
'65 . 70 SL= {{LAMBDA/2212. 85) **MJ* { {0. 52+0. 36*33+0. 052*33*S3)/8. 0)
66. '80 CONTINUE
67. C
68. C
|69, C OUTPUT CONSTANTS
(70. C
71. WRITS (6,100)
(72. 100 FOBMATC ','ECHO CHECK OF INPUT')
. »SIT5(6,11Q) K,C, P
. 110 FOBHAT('-',«SOIL EEOD. FACTOB= • ,F10 .2 , IX, »G/S Q. M/DYNE/SEC* , 5Z,
. 2 'CHOPPING MGHT. FACTOa=', T6.2,14X,'EROSION CTBL. PRACTICE ',
. 3 'FACTOE=»fFl0.2)
77. WRITS (6,120) LAMBDfl,SS,SL
8. 120 FOBMAT('0«, «AVE. SLOP! L1NGTH=« ,F10. 2, 1X,»a' ,20X, «A VE. PLCT»,
9, 2» GRADIENT=',3X,F6.2,1X,«PEE CENT',5X,«LS=',27X,E10,3)
80. C
81. C
82. C MULTIPLY ALL CONSTANTS IN SOIL-LOSS EQUATION
83. C
84. ATEHP=K*SL*C*P
85. C
86. C
87. C SOIL-LOSS CALCULATION LOOP FOB EAC8 YEAE.
88. C
89. DO 220 IYEAS = 1,NIEAES
[90. C
91 . C
92. C INPUT MONTHLY EI'S AND CSLCULATI MONTHLY SOIL-LOSS.
93. C
94. DO 130 J=1,12
95. HEAD(5, 125) EI«{J)
96. 125 FOBM&T(10X,F1Q.O)
| 97. C
98. AM(J) =ATEMP*EIM{J)
99. 130 CONTINUE
100. C
|101. C
102. C INPUT YEARLY El.
103. C
104. RSAD(5, 135) YEAR, El
105. 135 FDBMAT(4X,I2,4X,F 10.0)
!
333
-------
SOIL.LOSS.EQUATION
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
106. C
107. C
108. C OUTPUT HEADING TO SOIL-LOSS CHABT.
109. C
110. WHITE (6, 140) YEAR
111. 140 FORMAT {«2 ',6X, »SOIL -LOSS CHART JOB 19',12)
112. WO ITS (6 , 150)
113. 150 FOBHATCO1,1 DATE' , 11X, * EI» , 1 1X,1 SOIL -LOSS1)
114. »BITE{6,160)
115. 160 FOBMAT{» ' , 11X,' (DYNES/SEC) ' ,5X,« (H, TONS/HEC) ' , 1QX, • 1 S. TON/HE
116. 2 f» = 0.1 KGHS/SQ. «',/)
117. C
118. C
119. C CALCULATE SOIL-LOSS.
120. C
121. A=ATEMP*EI
122. C
123. C
124. C CON7BBT SOIL-LOSS TO METBIC TONS/HZCTAB3.
125. C
126. DO 180 J=1,12
127. 180 AM(J) =0.01*AM(J)
128. A=0.01*A
129. C
130. C
131. C OUTPUT INPUT DATA WITH COBEESPON CING SOIL-LOSS.
132. C
133. DO 195 J~1,12
134. MRITE(6,190) J,T2AR,EIfl (J) , AH (J)
135. 190 FOBHAT(« ',12, '/% 12, 7X, 2(18. 2, 8X))
136. PLOTJ = { (IIEAfi - 1)*12) * J - 0.5
137. WBITE(7,210) PLOTJ, Afl (J)
138. 210 FOESAT(F10. 1, 1X,F6. 2)
139. 195 CONTINUE
140. HBITE (6,200) YEAB,£I,A
141. 200 FOBMAT(«0',' 19« , I2,7X, f 8. 2,8X,F8 . 2)
142. 22G CONTINUE
143. STOP
144. END
145. /*
146. //DA1A.FT07F001 DO UNIT^BAT ,FILE S=$SL*
147. //DATA. ISPUT DD *
334
-------
ECHO CHECK OF INPUT
SOIL niton. FACTOID
AVE. SJ.OPR LBHCtll-
1. 10 G/.SQ. H/DINE/SF.C
i.oo n
CROPPING CCm. FAC1OH= 1.00
A»f. PLOT GIUniENl* 20.00 PEH CRNT
EPOSIOM CTBt. PUACTICE FACTOB= O.UO
LS= 0.710E*01
U)
CO
SOTL-I.OKS CHART FOR 1971
DAJ'K
1/71
2/71
3/71
V1'
V7'
6/71
7/71
tl/71
9/71
10/71
11/71
12/71
El
(OY1ES/SKC)
'•8.77
324.70
75. 2'«
0.0
I2t>. 1 I
1J2. 2(1
Ifl68.6J
H.S. 01
2916.y )
96.27
I064.0<1
10'). 50
SOTL-IOSS
(H. TOMS/HEC)
3.31
22.0«
5. 11
0.0
0.60
8.9(1
U6.82
11.25
200.01
6.53
72.22
7.HI
1 H. TON/11 EC = 0. 1 KGHS/SQ. H
1071
fi'JSH.'JI
172.30
-------
SOIL-LOSS CHART P0!» 1072
DATK
1/72
2/72
3/72
5/72
6/72
7/72
S/72
V72
10/72
11/72
12/72
1972
El
(BtMBS/S"5C)
ion. ID
121. 2*1
3l»i. bfe
2'4 2.80
M63.10
7237.05
flr>9. »7
29«. 17
2J7.UO
112.40
602.S4
2 19. (12
10(197.90
son-toss
(H. TO MS/11 EC)
7.31
0.13
26.P5
16.40
31.H5
-------
SOIL LOSS EQUATION
Cols
1st
Card
2nd
Card
3rd
Card
4tU
Card
5th
Card
6th
Card
Next
12
Cards
19th
Card
1-5
N
H
i
i
0
Y
2
E
M
-
5
K
.
1
C
.
P
0
8
A R
8
L
9
Y
E
7|
6-10
S
A
0
A
1
M
0
11-15
16-20
21-25 j 26-30 j 31-35 36-40 | 41-45 j 46-50 j 51-55 56-60 61-65 | 66-70 71-75 76-80
ft D A| S S |
ill
0| .| 0|
2J 0| .
1
4
R
E I M
1
3
0
1
4
2
7
6
P
8
4
5
0
4
9
.
.
.
•
•
7
6
2
0
0
4
7
9
3
7
9
4
7
7
8
6
E I
6
<,
,}„!
91010
-------
SOIL LOSS EQUAT1OH
.
.
.
•
•
9
2
6
8
5
6
0
4
5
8
3
1
1
0
6
3
9
7
E I
1
3
7
41-h
9 la
21-25 J 26-30 31-35 J 36-40 41-45 J 46-50 j 51-55 56-60 | 61-65 66-70 j 71-75 76-80
-------
SECTION 11
MORTH OXYGEN DIFFUSION MODEL
The Mbrth Oxygen Diffusion Model is an advanced simulation model that will
predict the oxygen mole fraction in a long channel at various times in the
future. Thus, the program in effect calculates the oxygen gradient as we go
deeper and deeper into the soil or a spoil bank. The model can be applied to a
situation where there is variable atmospheric pressure. This is quite an
advance over the usual practice of assuming a constant atmospheric pressure.
As implemented, the program assumes that the pressure oscillates back and forth
between two extremes. It would not be too difficult, however, to modify the
program so that it could handle arbitrary variation in pressure.
Embedded in this program is a solution to the Partial Differential
Equation:
r M _ 8X AP(L-z) 3X
C " CD + ~
AP
3t " ab a 2 RT 3z ~ RT
dZ
where X = X(z,t) is the oxygen mole fraction, C is the total gas concentration,
D , is the oxygen in air diffusivity, AP = P(t) is the change in atmospheric
pressure, R is the gas constant, T is the ambient temperature, K is the
reaction rate constant, L is the length of the channel, z is the depth and t is
the time. The solution to this equation is the key step of the program upon
which all other steps depend.
339
-------
An important application of the results of the Morth Oxygen Diffusion
has to do with acid drainage, especially in a region which has been strip
mined. Oxygen gradient is a critically needed parameter in the determination
of the production and discharge of pyritic materials.
INPUT: Channel and time parameters
NORDER - Reaction order
P - Initial atmospheric pressure
RATEK - Reaction rate constant
DAB - Oxygen in air diffusivity
OUTPUT: X - Oxygen mole fractions at specified depths and times
REFERENCE: A. Morth, E. Smith, and K. Shumate. November 1972. Pyritic
systems: a mathematical model. Environmental Protection
Technology Series, EPA-R2-72-002, Environmental Protection
Agency.
340
-------
>BTH.OXYGEN.DIFFUSION.MODEL
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
0.1 //MN1XXXXX JOB (BES01)
0.2 /*JOBPARM I = MQBTGBAD
0.3 // EXEC FWCLG
0.4 /*JOBPABM FOLLSKIPS
0.5 //SYSIN DD *
1. C*********GRADIENT PEO3BAM
2. C**********MAIN
3. C
4. C MODIFIED BY: BRIAN E. WEINRICH
5. C OSDA-SEA-AB
6. C NORTHEAST HATEESHED EESEAP.CH CENTER
7. C 110 RESEARCH BD. A
8. C UNIVERSITY PARK, PA. 16802
9. C
1C. C THIS PROGRAM ESTIMATES OXYGEN MOLE FEACTION
11. C IN A LONG CHANNEL. CBANK NICOLSON FINITE
12. C DIFFERENCE APPROXIMATIONS AEE USED FOB TBE
13. C DERIVATIVES. THE RESULTING SERIES OF EQUATIONS
14. C ARE SOLVED USING THE «TRIDAG« SUBROUTINE
15. C
16. C -THE EQUATION BEING SOLVED IS
17. C C*DX/DT = C*DAB* (D2X/DZ2) - K*X*C •*• X*DELP/(IT)
18. C - DELP/(BT) * (L-Z) * (DX/DZ)
19. C
20. DIMENSION A(1003), R(1000), C(1000), D(1QQQ),
21. 1X(1000), XSTQEE{100,4) ,TSUM|100)
22. C
23. C IN IS INPUT UNIT NUMBER
24. C THIS IS UNIT NDMBER 5 AT PENN STATE UNIVERSITY
25. IN = 5
26. C 10 IS OUTPUT UNIT NUMBER
27. C THIS IS UNIT NUMBER 6 AT P2NN STATE UNIVEBSITY
28. C
29. 10 = 6
30, C
31. C READ INITIAL CONDITIONS AND OTHER DATA
32. C L IS LENGTH OF CHANNEL
33. C N IS NOMBEB OF INCREMENTS PER FOOT
34. C NOBDEB IS OBDER OF REACTION
35. C K AND MIN CONTROL IT^BATIONS AND PRINTED PUTPUT
36. C
37. RHAD(IN,1001) L, N, M, MIN,NOBDZB
38. NSTORS = NOBDSH
39. C
40. C DTHETA IS TIME INCREMENT IH HOUBS
41. C P IS AMBIENT PRESSURE, MM. HG.
42. C T IS AMBIENT TEMPERATURE, DEGREES FAHRENHEIT
43. C BATEK IS REACTION RATE CONSTANT (1/HB.).
44. C DAB IS OXYGEN IN AIB DIFFUSIVITY (SQ. FT./HB.)
45. READ(IN, 1000) DTHETA, P, T, BATEK, CAB
46. NL = N*L
47. C
48. C
49. C ECHO CHECK OF DATA.
50. C
341
-------
BOBTH.OXYGEN.DIFFDSION.MODEL
1 234567
1234567890123456789012345678901234567890123456789012345678901234567890
51 - WHITE (10, 1995) N, H, MIS, DAB
52. C GAS C08STANT HM,HG.FT**3 / Gfl.HOLE DEGREE BA8KINZ
53. E = 760. * 359. / (454. * 492.)
54. C
55« WRITE (10, 230 2) DTHETA,E,P,T,RATEK,NOBDEB,L
56. iRITE (10, 2005)
57. ZN = H
58. C CALCULATE DELTA Z
59.. DZ = 1.0 / ZN
60. C SAWTOO CAUSES DELTA P TO CHANGE SIGN DAILY
61. SAWTOO = -1.
62. NHODBS = 24
63.. KHRS = N HOURS
64-.. COUNT = 8.0
€5. C ASSUHE A DAILY DELTA P OF BIGDP HM. HG.
66. VOL = 8. 33
67. BIGDP = 12.
65. DELTA? = BIGDP / NHOU SS
69. H HOURS = NHOURS + 1
70. C
T1. C ESTABLISH INITIAL EXPONENTIAL GBADIENT
72. C
73. X(1) = .21
74. FOOT = SQHT ( EATER / DAB )
75, NN = NL + 2
76. DO 110 I = 2, NN
77. K = I
78. Z = DZ * ( I - 1 )
79. 1(1) = .21 * (EXP (-ROOT * Z ) )
80. IF (X(I) .LT. 1.S-4Q) GO TO 111
8T, 110 CONTINUE
82. GO TO 113
83. 111 DO 112 I = K, NN
84. 112 X (I) = 0.0
85. 113 CONTINUE
86. 48 CONTINUE
87. C
8.8. C START A SERIES OF CYCLES
89. C
?C . DO 30 MH = 1, M
9=1. SUM =0.0
92. DELTA? = DELTA? * SAWTOO
9-3, TIHE =0.0
94>., C STAET A 24 HOUR CYCLE
95. DO 47 NTIflE = 1, NHOURS
96. P = P + DELTA?
97. EHO = 1.34 *(P/ 760.) * (492.0 / 515.0)
98. CTOTAL = P/ (E*T)
99 . C CALCULATE SECOND ORDER CONSTANT
1XTO. CON1 = 0.5*CTOTAL*DAB / (D2**2)
TO-T. C CALCULATE TRANSPORT CONSTANT
1^0-2. CON2 = DELTA? /(E*T)
1'03. C CALCULATE TINE CONSTANT
10~,4. CON 3 = CTOTAL / DTHETA
1*05. C
342
-------
5TH. OXYGEN. DIFFUSION. MODEL
06.
07.
08.
09.
1C.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
|26.
27.
28.
29.
30.
33.
34.
35.
36.
37.
38.
39.
40.
J41.
!42.
I43.
44.
45.
46.
47.
J49.
50.
51.
52.
53.
54.
55.
56.
57.
i 58.
I59.
160.
1234567
12345678901234567890123456789012345678901234567890123456789012345678901234
C
C
C
CALCULATE CONSTANT FOB INFLOE8CE OF REACTION OBDER
COM4 = .21* HATEK * CTO'IAL*{ 1 - NQBDEB )
CALCULATE T1IDAG COEFFICIENTS
A, B, AND C ARE COEFFICIENTS OF UNKHOBN TEBMS
D IS SOLUTION TEES
DO 1 I = 1, NL
C(I) = CON1 - CON2*(NL - I)
A (I) = CON1 * COS2*{NL - I }
1(1) .LT. 0.02 ) SOBDER
CON2 - CO S3
1
= 1
- BATEK
OF OXYGEN CONSUMED
) GO TO 301
IN CHANNEL
02 ) NOBDEB = 1
21*RATEK*DTHETA *
(1-NORDEE)
+ DZ/
RATEK
6,
*
0 * (X(I
DTHETA *
^2) * 4.0
NOBDEP
300
301
I ) GO
2
3.0 *
DTHETA
TO 302
* RHO * NOBDEB
C
C
IF (
R (I) = -2*CON1 +
1CTOTAL * NORDEB
NOBDEE = NSTORE
INTEGBATE QUANTITY
IF (NOEDSB .EQ.1
DO 300 I = 1, NL
IF ( X(I) .LT. 0,
SUM = SUM
1EHO * DZ
SUM = SUM
1+ X(I)) *
CONTINUE
CONTINUE
NOEDSR = NSTORE
IF ( NOBDER .EQ.
DO 99 I = 1, NL,
SUM = SUM + DZ/
1X(I)) * BATEK *
99 CONTINUE
302 CONTINUE
J =NL- 1
D(1) =-CONl* ( X(1)
1*X (2) - (CON1 +CON2 *
DO 4 I =2,J
IF ( X(I) .LT. 0.02 )
D (I) = -CON1*(X(I) -
12)) - CON3 * X(I*1) +
NK = I + 1
IF (ABS( D(I) )
DO 5 LL = I,
5 D (LL) = 0.0
GO TO 8
H CONTINUE
8 CONTINUE
D(NL-1) = -CON1 *(X(NL -1) - 2.* X(NL)) -
1CON3 * X(NL) * CON4
ESCAPE FROM DO LOOP AT END OF 24 BOUB CYCLE
PPINT INITIAL AND FINAL SETS OF CONCENTRATION DATA
IF( MM .EQ. 1 ) GO TO 21
IF ( MM .LT. MIN) GO TO 20
21 CONTINUE
IF(NTIME - 1 ) 9, 9, 15
HRITE OUT EVERY 8TH TIME INCREMENT
15 FLAG = ( NTIBE - 1 ) / COUNT
MFLAG = FLAG
FLAG = FLAG - NFLAG
- 2*3f(2)
(NL-1)) *
CON4 = 0,
2.*X( I
CON4
+ X(3)) - CON3
X{1) * CON4
D + X(I
,GT,
1 .E-20) GO TO 4
NL
343
-------
HOBTH.OXYGEN. DIFFUSION. HODEL
123456
123456789012345678901234567890123456789012345678901234567890123456789
161. IF ( ABS (FLAG) .GT. 0.01 ) GO TO 20
162. 9 WRITS (10,2000) MM , TIME, P
163. C WRITE OUT FIRST 20 CONCENlfiATION INCREMENTS
164. IPRINT=NL
165. IF (IPRINT.GT.20) IPRINT=20
166. DO 19 I = 1, IPSINT
167. DIST * DZ *(I - 1 )
168. SHITE (10,2D01) DIST,X (I) , A (I) ,8 (I) ,C (I) ,D (I)
169. 10 CONTINUE
170. C IFITE OOT EVERY FOURTH DISTANCE INCREMENT
171. IF (NK.LT.21) GO TO 20
172. DO 11 I = 21, NK, 4
173. DIST = D2 *(I - 1 )
174. C PRINT ONLY NON ZERO HESOLTS
175. IF( X(I) .LE. 0.0001) GO TO 20
176. 11 WRITE(IO,20Q1) DIST,X (I) ,A (I) ,R (I) ,C(I) ,D (I)
177. 20 CONTINUE
178, C STORE DAILY DATA FOR LATER PRINTOUT
179. IP( HTIME .HE. NBRS ) GO TO 80
180. XSTORE (MM, 1) = X (2)
181. XSTORE (MM, 2) = X(15)
182. XSTOHE (MM, 3) = X(35)
183. XST08Z (MM, 4) = X(100)
184. IF( NTIME . EQ. NHOURS ) GO TO 30
185. 80 CONTINUE
186. CALL THIDAG ( A, S, C, D, X, NK)
187. C TRIDAG IS AH SUBROUTINE FOB SOLVING
188. C TRIDIAGONAL HATEICES SUCH AS THOSE ARISING FROM
189. C IMPLICIT SOIOTIONS OF HASS TRANSPORT EQUATIONS
190. DO 150 1=1, NN
191. IF( X (I) .LT. 0.0 ) X (I) = 0.0
192. 150 CONTINUE
193. TIME = TIME * DTHETA
194. TSUM(MM) = SUM * 120. / 112. * VOL
195. 47 CONTINUE
196. 30 CONTINUE
197. WRITS (6, 2003)
198. DO 31 MM = 1, M
199. 31 WRITE (10,2004) MM, XSTORE (MM, 1) , XSTORI(MM,
2QC. 12), XSTORE(SB,3) , XSTOSZ (MM,4) , TSUM(MM)
201. STOP
202. 1000 FOSMAT( 5F10.0)
203. 1001 FORMAT ( 515)
204. 1995 FORSAT(»1','INCREMENTS PER FOOT=',12X,15,//,' ' , «ITERATIONS^',21
205. 2 I5,//,1 ','PRINT ED OUTPUT CONTROL=«,9X,I5,//,' ',
206. 3 'OXYGEN IN AIR DIFFUSI7ITI=', 1X,F10,2,1X,'SQ. FT./HB')
207. 2000 PORMAT{//,»2» ,' T'HIS IS DAY ' ,15, ' AFTER ',
20P. 1F8.3, ' HOURS', // 12 X, ' THE PRESSURE IS ',
209. 2F7.3, ' MMHG.' , ///13X, » DEPTH {FT. ) ' , 7X,
210. 3'02 FRACTION', 81, ' A (I) ', 15X, '?.(II ', 13X,
211. 4 'C(I) ', 15X, 'D(I) ',/)
212. 2301 FOBMAT(1H ,10X, F10.3, 10X, F10.6, 4E17.8)
213. 2002 FORMATC-', 'DT =',F4.2, ' HR.' // ' GAS «,
214. 1'CONSTANT =', F6.4,// « INITIAL PRESSURE =»,
215. 2F6.1, ' MM.HG.', // ' TEHPESATUR^ =',F6.0,
344
-------
IOBTH.OXYGEN.DIFFDSIOH. MODEL
1234567
123456789012345678901234567890123456789012345678901234567890123456789012-
216. 3» DEGRESS S. ',// ' SATE CONSTANT = ', F10,8,//
217. 4' ORDER OF REACTION IS «, I2,//' LENGTH IS',
218. 5 1X,I3,« FEET')
219. 2003 FORMAT ( 1H1, ' X(I) VALUES ARE TABULATED »,
220. 1'BELOW FOE THE LAST',// » DAILY TIME INCBIH',
221. 2'ENT AT THE 2ND, 13TH, 35TH, AMD 100TH ',
222. 3'DISTANCE INCREMENTS', // ' A FORH OF STEADY',
223. 4' STATE IS REACHED WHEN VALUES FOB ALTERNATE',
224. 5' DAYS ARE THE SAME', //' THIS IS USUALLY ',
225. 6'OCCCJRS AFTEP. 20 TO 30 DAYS ',// ' THE FINAL «,
226. 7»COLUMN IS THE PYRITE OXIDIZED IN MGMS/DAY',
227. 7///15X, 'DAY',6X,'02 FRACTION*,60X,'OXIDATION')
228. 2C04 FORHAT (16X, 13, 5( 8X, F9.6))
229. 2005 FORMAT { 1H2)
23G. END
231. SUBROUTINE THIDAG (A ,R ,C,D, X ,NK)
232. C
233. C
234. C SOLUTION OF TRI-DIAGONAL MATRIX EY THOMAS ALGORITHM.
235, C
236. DIMENSION A (1000) , R (1000) , C (1000) ,0(1000) ,X(1000) ,W(1000) ,G(1000)
237. C
238. C
239. C CALCULATE W AND G ARRAYS.
240. C
241. DO 23 1=2,NK
242. IF (I.GT.2) GO TO 10
243. V (2)*C(2)/H(2)
244. G(2)=D(1)/H{2)
245. . GO TO 20
246. 10 W(I)=C(I)/(R(I)-A(I)*8(I-1))
247 . G (I) = (D (1-1) -A (I) *G (1-1) ) / (R (I) -A (!)*¥ (I- 1) )
248. 20 CONTINUE
249. C
250. C
251. C CALCULATE UNKNOWNS.
252. C
253. DO 40 J=2,NK
254. I=NK-J+2
255. IF (I.LT.NK) GO TO 30
256. X(NK)=G(NK)
257. GO TO 40
258. 30 X (I) = G(I)-» (I)*X(I+1)
259. 40 CONTINUE
26C. RETURN
261. END
262. /* THIS IS A SLASH ASTERISK CARD
263. //DA1A.INPUT DD *
345
-------
INCHKNKH'CJ ff.li pr,flT= 1
IVKRATTONR- 10
PHIill'BI) OII1PI11 COM 1IIOI.= 10
OXVUKN IK AIR DlfPUSIVriT= O.fiS SC.
DT =1.00 HB.
GAS COHSIAHI =1.2? 15
IMITISL PKKSSIIHE = 710.7 HM.IIG.
TEMI'EflATUfiE = 510. DEGREES B.
BATE COMSTANT =0.06699997
ORDen OF REACTION I:! 0
LENGTH is 100 PKET
u>
*~
en
-------
THIS IS OA» 1 A"1TR O.fi HO II I. f
THE PhFSSIIRI: IS 74C.250 Htllfi.
c.i
0.0
1.000
2.000
1.000
4.000
r>.0()0
r. .000
/ . 0 0 (I
0.000
'».000
10.000
1 1.000
12.000
11.000
1?>E«00
0. 34304 392E*00
0. 34364£56E*CO
0.34464920E+00
0. 345451838*00
0.34625441R*00
0. 3180270E*01
-0.208fl0270E*01
-0.208802708*01
-0.20880270^*01
-C.2G880270E*01
-0.20880270E*01
-0.20080270B*01
-0.20880270E*01
-0.208B0270E*01
0. 4fl')12n4E*00
0.4(1113 1910E*00
0.4t)7516«6K*00
0.48671389E*00
0.UBS9112SE+00
0.48'>10Bfi1E*00
0.4843059aE*00
0.40J50314E*00
0.48270077E*00
0.48189813E*00
0.481095498*00
0.48029286E*00
0.47949022E*00
0.'I7868758E*00
0.47788S01B*00
0.47708237F*00
0.(|7627S74E*00
0.«7547710K*00
0.47467446E*00
0.47107183E*00
0.47306925E*00
0.46985871E*00
-0.24150282E*00
-0.121575361*00
-0.84537745E-01
-0.57419579S-01
-0.3756«062B-01
-0.23026120E-01
-0.12381656E-01
-0.458798181-02
-0.15600756E-01
-0.11422619E-01
-0.8363451EE-02
-0.61235800E-02
-0.44835880E-02
-0.32820124J-02
-0.24036220E-02
-0.175989141-02
-0.12885635E-02
-0.943465161-03
-0.69078989B-03
-0.50578499E-03
-0.37032762E-03
-0.106430551-03
OJ
-------
rs iuv i Kn-KR ii,ooo
•lilt I'll ESr.llli B IS TI<:.?fiO
DEPTH (Fi.)
0.0
1.000
2.000
3.000
4.000
5.000
6.000
7.000
11,001)
9.000
10.000
1 1.000
12.000
13.000
11.000
15.000
16.000
17.000
18.000
19.000
20.000
t!2 FliACIICK
C.210000
0. 11*44*
0.053925
O.C17800
0.0021165
0.00^361
0.006080
0.005917
0.00'i443
n.on«06i
0.004227
0.003573
0.002936
0.0023(18
0.001833
0.001402
0.001056
0.000787
0.000583
0.000430
0.000316
A (I)
0.3279H827F+00
0. 32879090K*OC
0.32959354E*00
CCD
0.3J119fl75E*00
0.;32Q0139E»OC
0. 33200II02RIOO
0.33601.451R«00
0. 336ei715E*OC
0.33761978E+00
0.33042242E+CC
0.339?2499E*OC
0.31002763R+OC
0. 340m027E*00
0. -41632908 + 00
0. 342435S4E*00
0.34323817E+OC
0.34404075E»00
0.
0. 19J75643R*01
0. 19975643F*01
0.33440924E>00 -
0.20/674BflE»01
C.207674f>(]R»01
0.207674fiflg*01
0.207fi74eflR»01
0. 207674flOE+01
C.2Q767460E*01
0.2076746aE«01
C,20767488E*01
0.20767488E*01
0.207674CaF>01
0. 2076T»eOHt01
C.207674flBEtC1
0. 2076746aEt01
0.207674£OE*01
o.'inr,
0.48365759K*00
0.4B289496E+00
0.4fl209232E*00
0.4812n968E»00
0.4B04B711E»00
-0.207674eBE»01
-0. 20767i|flUS»01
0.47886184E»00
0.47807920E»00
0. 47727656E»00
0.47647393FiOO
0.47567135E*00
0.47l|06U71E»00
0.«740660UR*00
0.47326344E+00
0.47246081£*00
0.4716S817EtOO
0. 47085559E*00
net)
-0.20214915E»00
-0.5745026 1E-01
-0.12B79122E-01
-0. 10341052S-01
-0.5452014SE-02
-0.6B293922E-02
-0.68698563E-02
-0.63889138E-02
-0.57236701E-02
-0.49873143E-02
-0.422934Q7E-02
-0.348958931-02
-0.28045354E-02
-0.22006691E-02
-0.16918269E-02
-0.127971228-02
-0.9566568eE-03
-0.70960517E-03
-0.52388245E-03
-0.18576080E-03
-0.28367527E-03
OJ
4N
do
-------
THIS 13 DAY 1 All'Ell If.. 000 IIOIIPS
TUP PKEliStll'K IS 732.250 NHIUJ.
OFPTII (FT.)
0.0
1.000
2.000
3.000
H.OOO
5.000
6.000
7.000
11.000
9.000
10.000
1 1.000
12.000
11.000
11.000
15.000
16.000
17.000
la.ooo
19.000
20.000
<:2 Sli/ICIlfiN
C.210000
0.112015
0.050331
0.016198
0.012029
0.008122
0.005696
0.001210
0.003290
0.002609
0.002251
0.001901
0.00159H
0.001319
0.001071
0.000060
0.000678
0.000527
0.000105
0.000307
0.000231
MI)
0. 32657719P*00 -
0. 32(1 1(121 OK » 00
C. ;;eSfl501P.*f)C
0.329787678*00
0. ;30?9031E»OG
0.33139291E+00
0. ;3219552E*00
0.33299fl16E»00
0.33380079K*00
0.33160313K*flO
0.33510606B*00
0. -36;0£70K*OC
0.33701128E*00
0.3376139115*00
0.33fl61655B«00
0.33911$19E*OC
0.310221826*00
0.31182703E»00 -
BIT)
C.190671538*01
0. 19H67153E + 01
C.19(»671fi3P*01
0.20651697E+01
0.2065»I6S7E*01
0.20651697E»01
C.206516S7E*01
0.206516971*01
0.2065lfi?7R*01
0.20651697E*01
0.20651697£*01
0.206516«7E*01
0.20651697F+01
C.206516978*01
0.20651f>97E*01
0.20651697E*01
0.20651697E*01
0.20651697B*01
0.20651697E»01
0.20651697E*01
0.20651697E«01
0.18169136E*00
0. 183fl9173l?tOO
0. 1830090
-------
TUTS l!i PA» 10 AH'SB o HHIIC.
OFPTIKFT.)
0.0
1.000
1.000
3.000
4.000
s.ooo
6.000
7.000
a.ooo
9.000
10.0i)0
1 1.000
12.000
13.000
14.000
15.000
16.000
17.000
1A.OOO
19.000
C2 fDACTION
C.2 10000
0.112029
0. Of.03U"»
0.01018*)
0.011905
O.C078Q1
0.005124
0.003301
0.002249
o.ooisir.
0.001037
0.000725
0.000519
0.000379
0.0002(13
0.000214
0.000164
0.000126
0.000097
0.000074
Mi)
0.4022n74F»00
O.«f maSIOE + Ofl
0.4B062652E*00
0. i|^SC23fl9R*OC
0. (17902 125E*00
0.4774159flE»00
0. 17£61340F»CC
0.47581077E*00
0. «7E00613R»00
0,47420549E»00
0.47260022E+00
O.K7179765EtOO
0. 4709950 1E*00
C.«7019237B*00
0.46938974E*00
nil)
-C.197li9754E»01
-0.
-fl.20l>5407f>i*01
-C.2C554075E* 01
0.46778446E»00 -
0.2G554075E»01
0.2055«075H*01
0.2C554075E*01
0.20554075E+01
C.20554075E»01
0.20554075M01
fl.20554075E»01
0. 20554075E+01
0.20554075E«01
0. 20554075E«01
0.20554075R*01
0.205540756*01
0.20554075E*01
0.20554075H»01
0.32411456E«00
0.32491720£»00
0.32S719B3B+00
0. 32652211F»00
0.32732505EtOO
0.32H93032E+00
0.32973295E»00
0.33053553E*00
0.33133817E*00
0.33214080EtOO
0.33294344E»00
0. 333711 60QE*00
0.33454871E»00
0.33535129E*00
0.33615392E»00
0.33775920E+00
0.330561338*00
0. 33936447E+00
-0.2307556Sf+00
-0.543799688-01
-0.15262090S-01
-0.14B14325B-01
-0.97078495H-02
-0.63752346E-02
-0.42044669F-02
-0.27932466E-02
-0.18767826S-02
-0.12809264E-02
-0.89154020E-03
-0.63433172E-03
-0.46143425E-03
-0.34239353E-03
-0.258088561-03
-0.19664156E-03
-0.150704291-03
-0.11569653E-03
-0.88693021S-OM
-0.67746747E-04
Co
Ul
o
-------
r-l
LO
ro
tiO-JOC99906t*0-
£0-a£tilt(990l*0-
£0-a«.E9E800e*0-
EO-U998U8Z*0-
EO-a668U86E*0-
EO-atoti»EUS'o-
EO-a5lE9ltrZB*0-
20-J59ZOZ611-0-
00+aElOtSltiE'O 10+319B9990Z"D-
00*30l£SlS£E"0
00*39lilrSE«iEE"0
ZO-aOU»i889E*0- 00*36l6httEt *0
D- 00»3199«161EE'0
.•Q- 00*3hElhEOEE"0
*0
lO-3B5Z669«il'0-
(1)3
00«39t0080tli'0
'0
I0»3t9899902-0-
"0- 00*31
I0*3ta89990e"0-
*o
O
"0
10
(llM
BBOOOO
611000
C01900*0
UE6UOO-0
mooo
E9h000
B99000
t9bOOO
66t"lOO
OZOZOO
IBJilO'O
ct»05»il -0
(lOOOlc '0
OOO'Bl
COO'tl
000'9l
OOO'ft I
000*1 I
000*11
000*01
000*6
000*1)
OOO*/.
000*9
000 '«»
OOO'E
000*?.
000*1
O'O
(*.l.j) II.I..1.4U
I'ji'LU SX dBII!.TSI«iJ ail).
SHU Oil OOO'U 'J-I.UV 01 XVU SI SI HI
-------
Till!! f'J DAY 10 AI'TKfi U.i'llO liriJI.F
1IIK fllfcSSIIRF IF 7TJ..T50 ftlhr.
flFPTHJFI.)
1.KOD
2.000
1.000
'1.000
5. ft 00
6.000
7.000
8.000
9.000
10.000
11.000
12.000
13.000
1H. 000
15.000
16.000
17.000
18.000
19.000
C2 FHArUCt.
0.210000
0. 1(17051)
0.09292?
0.04S697
O.C19604
0. 01 1H 19
0.006461
0.C05209
0.004364
0.003491
0.002694
O.OC2030
O.OC1500
0.001090
0.0007flO
0.000552
0.000388
0.000271
0.000190
0.000134
Ml)
r ID
fl.
0. tf5fl'i390K»OC
O.Ufl<(2'i
0,(|0264599K«00 -
0.
C.1«)9llf725R*C1
0. 19'JHf,725S*01
6.199flfc725E*01
0.20779£«lif + 01
0.20779648E*01
0.2077964flE*01
0.20779C4UPK)1
0.207796«(flM01
0.20779648E*01
0.20779648E»01
0.207796488*01
0.47783023K*00 -0.20779648£*01
0.l|')7C27fcOE»OC -0.207796l}8R*01
0.476225026*00 -0.20779648E+01
0.17512238E*OC -0,20779648E*01
0.47461975E*00 -0.20779£«8E*01
•0.207796488*01
0. 4£023P14l'*CC -
C(IJ
0.3285l|193E»00
0. 3293'I(»57F*00
-C.2C779648E+01
0. 330949786*00
0. 331752426*00
0.33255506K*00
0. 33335769E*00
0.33116033E»00
0. 33496290E«00
0.335765'54H*00
0. 3365fi81QE*00
0.33737081E*00
0. 338173
-------
X(l| VAIUFS A!^ TABULATED PtICI*' HI. til* 1 K-'l
DAUY TIJ1K IMCItPHKMT AT Tllf 2HO, 13111, Kill, Mil) 100111 MS-UUCP
A POP1 OF S1FM1Y SIA1E 1 li IH-ACIIH! fcllFN VAIUF£ tCT AITKPMMf ffY.'i U. F 'III? SAN"
THIS is USUALLY croons AFTFH 20 in 30 OAVP
THE KIHAI rr.lHMH IS 1IIK PYR11F CXU12EC IK
Lo
Ui
Co
Y
1
2
j
il
•;
6
7
a
9
10
11
12
13
11
IS
16
17
111
1'J
20
21
22
23
21
25
26
27
2tl
29
30
02 FBAC1ICII
0. 112115
0.117C21
0. 112011
0. 116999
0. 112029
0. 116998
0.112029
0. 11d998
0.112029
0. 116998
0.112029
0.116998
0.112029
0. 11699B
0.112029
0. 116S9B
0.112029
0. 116998
0.112029
0. 116990
0.112029
0. 116998
0.112029
0. 116998
0.112029
0. 116998
0.112029
0. 116998
0. 112G29
0. 116998
0.000675
0. CO 1002
C.000298
C.000912
0.000281
C.00093ft
0.000283
G.00093R
0.0002H3
C.000930
0.000283
C.000938
0.000283
G.000938
0.000283
C.0009311
0.000283
C.000938
0.000283
0.000938
C.000283
C.000938
0.000283
0.000938
0.000283
C.000930
0.000283
C.C00938
0.000283
C.C00938
0.000003
0.000001
0.000002
C.000002
0.000001
0.000002
0.000001
C.000002
0.000001
C.000002
0.000001
0.000002
0.000001
0.000002
0.000001
0.000002
0.000001
0.000002
0.000001
0.000002
0.000001
0.000002
0.000001
C.000002
0.000001
C.000002
0.000001
0.000002
0.000001
C.000002
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
OXIDATION
13.960218
15.902076
12.119191
15.862102
12. 135695
15.859766
12.135163
15.859662
12.13S1M7
15.859651
12.135117
15.859651
12.135117
15.859651
12.135117
15.859651
12. 135117
15.859651
12.135117
15. 859651
12.135117
15.859651
12.1351M7
15.859651
12. 135117
15.859651
12.135117
15.859651
12. 135117
15.859651
-------
MOKTH OXVCEM DIFFUSION MODEL
Cols. [ 1-5 J 6-10 | 11-15 | 16-20 j 21-25 j 26-30 j 31-35 [ 36-40 ] 41-45 T 46-50 I 51-55 I 56-60 I 61.-65 I 66-70 I 71-75 [ 76-80 1
1st
Card
2nd
Card
IhUh
.11
D T BETA
M I N
.LLbIt
74f>.75
NO R D
11.11
I'M!
E R
R A T E KDAB
U)
-------
SECTION 12
SEMIVARIOGRAM CALCULATION PROGRAM
As its name indicates, the Semivariogram Calculation Program, calculates
a semivariogram. The semivariogram is a function which describes how
spatially arranged data varies with respect to the data's separation. This
program, then, employs a sophisticated statistical technique which can be
applied to any type of data including runoff, water content, water table
height, etc. For data located at equal intervals along a line, the semi-
variogram function y is
Y(h) = (l/2n) Z [z(x.+h) - z(x.)]2
where h is the distance between data points, n is the number of data points,
x. is the coordinate of data point i and z is the data values. What the
above equation suggests is that the semivariogram is related to sample
variance. In a way, the semivariogram is the result of the transformation
of variance into a function.
Perhaps the greatest use of the Semivariogram Calculation Program is that
it supplies input to the universal kriging techniques of the Surface II
Contouring System. Surface II needs several types of information about the
semivariogram of a data set before it can perform universal kriging. However,
a semivariogram is also important information itself. It provides an indica-
tion of how data values vary over a region.
355
-------
INPUT: Line printer graph parameters
Semivariogram parameters
ID - Assumed polynomial degree for the drift
Z - Data sample values
OUTPUT: Basic statistics
FU - Calculated (experimental) Semivariogram
TU - Assumed Semivariogram
DF - Semivariogram slope at the origin
REFERENCES: R. A. Olea. 1975. Optimum mapping techniques using regionalized
variable theory. Kansas Geological Survey Series on Spatial
Analysis No. 2, Lawrence, Kansas.
R. A. Olea. 1977. Measuring spatial dependence with semivariograms,
Kansas Geological Survey Series on Spatial Analysis No. 3, Lawrence,
Kansas.
356
-------
EMIV ABIO GB AM.CALC OLA TION.PBOGBAM
0.1
0.2
0.3
0.4
0.5
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13,
14.
15.
16.
17.
18.
19.
20.
21 .
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33 .
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
//«
/*J
//
/*J
//s
c
c
c
c
c
c
c
c
c
c
c
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
c
c
c
c
c
c
c
c
c
c
ccc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
1XXXXX JOB
/*JCBPABM I=SEMIVABL
EXEC FWCLS
/*JOEPARM FOLLSKIPS
:» DO *
STBOCTOBAL ANALYSIS USING SEHIYABIOGRAaS .
AOTHOB : BICAHDO A. OLEA
EMPRESA NACIONAL DEL PETBOLEO
CASILLA 3556
SANTIAGO , CHILE .
DATS : DECEMBEB 1974
MODIFIED FOE PSTT IBM 370/3033 BY:
BRIAN E. WEINRICH
USDA-SEA-AB
HOBIHEAST WATEBSHED BESEABCH CENTEB
110 RESEABCH BD. A
UNIVERSITY PARK, PA. 16802
814-238-4976
DIRECT INQUIRIES
ADTHOB , OB
JOHN C. DAVIS
GEOLOGIC BESEABCH SECTION
KANSAS GEOLOGICAL SOBVEY
1930 AVENUE "A" , CAMPOS WEST
THE UNIVERSITY OF KANSAS
LAWRENCE , KANSAS 66044
913-864-4991
MEMOEY BEQOIBED : 80K .
POBPOS2:
THIS IS A PBOGBAM TO CALCULATE SSMIVARIOGHAMS FOB A
5SGIONALIZED VARIABLE SAMPLED AT BEGDLAB INTEBVALS ALONG A
LINE . THE DBIFT CAN BE A POLYNOMIAL OF DEGBEE 0 , 1 OB 2 .
METHOD :
LET M BE THE NOHBEB OF SAMPLES ALONG A LINE . SUPPOSE
YOO ABE INTERESTED IN A SEMIVABIOGB AM FOB AN INTERVAL LENGTH
OF N SAMPLES , N NOT GBEATEB THAN M . THE PBOGBAM SLIDES A
WINDOW N SAMPLES LONG OVEB THE LINE . THE SEMIVASIOGRAM
FOR THE LINE IS THE AVERAGE OF ALL PARTIAL SEMIVABIOGBAMS .
THE N SAMPLE INTERVAL SEM IV AR10 GB AM FOR A GROUP OF LINES
ALONG THE SAME DIRECTION IS THE AVZBAGE OF ALL PABTIAL
SEMIVABIOGBAMS .
DATA
THEPE IS ONE CAED PER SAMPLE POINT , TWO FIELDS PER
357
-------
SEHIVARIOGBAM, CALCULATION. PHOGEAM
1 2 3 a 5 6 7
12345678901234567890123456789012345678901234567890123*5678901234567890
51. C CABD . THE ESSENTIAL INFORMATION IS THE REGIONALIZED VABIABL
52. C VALUE . THEEE IS AN OPTIONAL FIELD 12 ALPHAHOBEHIC CHABACTEB
53. C LONG FOR IDENTIFICAT10H PURPOSES . THE FOSHAT AND BELATIVE
54. C LOCATION IS OPTIONAL . HOHEVEH , THE FORMAT MOST BE ABLE
55. C TO READ A BEAL VABIABLE AND ALPHANUMEBIC ISFORSATI08
56. C FOB ANOTHEB THBEE VABIABLES .
57. C
58. C DATA STBUCTUHE IS :
59. C
60. C
61. C VAEIABLE FORMAT CABD
62. CCC OPPEB LIMIT CARD
63. C CONTBOL CAED FOB THE FIRST GBOUP OF LINES
64. C DATA FOB LINE 1
65. C ENDSEQ
66. C DATA FOB LINE 2
67. C ENDSEQ
68. C
69. C
70. C
71, C DATA FOB THE LAST LINE IN GBOOP 1
72. C ENDSEQ
73, C ENDSEQ
74. C COSIBOL CABD FOB TH2 SECOND GBOUP OF LINES
75. C
76. C
77. C
78. C DATA FOE THE LAST LINE IN THE LAST GBOUP
79. C ENDSSQ
80. C SUDSEQ
»1 . C $ ENDJOB
8"2. C THE ENDSEQ HUST 30 IN THE REGIONALIZED VARIABLE VALUE FIELD
83., C AND MUST BE ANT NUMBER LABGER THAN VARIABLE EOD SPECIFIED IN
8'4. C THE PHOSBAM .
85. C
86. C THE VARIABLE FORMAT CARD TO BEAD IN DATA HAS THE FOLLOWING
87. C FIELDS:
88. C
89. C COLUMN 1-40 : VARIABLE FORMAT TO BEAD IN DATA (10A4)
93. C COLO MS 50 : THE INTEGER VALUE 1 OR 2 TO DEFINE RELATIVE
91.. C LOCATION BETWEEN THE IB FIELD AMD THE
92. C REGIONALIZED VARIABLE VALUE FIELD . 1 MEANS
93. C THE REGIONALIZED VARIABLE COMES BEFOBE THE
94. C IDENTIFICATION AND 2 OTH2B HAY ABOUND. THE
95. C ASSIGNED VALUE IS 1 .
96. C
97, CCC THE UPPER LIMIT CARD CONTAINS ESTIMATES OF THE UPPER LIMIT
98. CCC OF THE SEfllVARIOGRAH. THE FIRST VALUE MUST BE EQUAL TO OR
99. CCC GREATER THAN THE MAXIMUM VALUE OF THE BIASED SEMIVARIOGBAM.
TOO. CCC THE SECOND VALUE MUST BE EQUAL TO OR GREATER THAN THE
1C1. CCC MAXIMUM VAL3E OF THE UNBIASED SEM IVARIOGRAM. THE? ABE
102. CCC USED TO DETERMINE THE HEIGHT OF THE GBAPHS (2F10.0).
1C3. CCC
104. CCC
1C5. C THE CONTROL CARD FORMAT IS :
358
-------
2MIV ABIOGB AM .CALCULATION .PROGBAM
1234567
1234567890123456789012345678901234567890123456789012345678901234567890125
106. C
107. C COLUMN 1- 5 : NUMBER OF SAMPLE POINTS IN THE WINDOW (15).
108. C 6-10 : THE POLYNOMIAL DEGEEE FOB THE DBIFT (15) .
109. C 11-15 : FEINTING OPTION (15) . A ZEBO iILL PBINT
110. C THE SEHIVABIOGRAM FOB ALL SEQUENCES PLDS
111. C THE AVEBAGE SEMIVABIOG8AM . A ONE WILL
112. C ONLY PBINT THE AVEBAGE SEMIVAEIOGBAM FOB
113, C THE GBOUP . THE ASSUMED VALUE IS 0 .
114. C 16-20 : FOB THE CASE THE POLYNOMIAL DEGBEE FOB
115. C THE DSIFT IS 1 OB 2 , A ZEBO WILL
116. C PBINT ONLY THE BIASED AVEBAGE SEMI VABIOGBAH.
|117. C A ONE WILL PBINT BOTH THE BIASED AND
118. C THE UNBIASED AVERAGE SSMIVARIOGRAMS.
119. C 21-25 : DISTANCE BETWEEN SUCCESSIVE SAHPLES (F5.0) .
120. CCC 26-29 : UNIT USED IN MEASURING THE DISTANCE (A4) .
121. CCC 31-78 : COMMENTS (6A8) .
122. C
|!23. C SPECIAL SUBBOUTINES:
^24. C THE PROGRAM CALLS A SUBROUTINE TO PLOT
'25. C THE SEMIVABIOGBAMS . IN CUBBENT VEBSION THAT SUBBOUTINE NAME
|126. CCC IS RECPLT.
127. C
I28. C BESULTS :
129. C IF DESIRED , THE PBOGRAMS CFFEES THE POSSIBILITY
130. C TO LISI INPUT DATA , PLOT THE SEMIVABIOGBAMS AND
pi. c
132. C PBINT A SEMIV ABIOGB AM TABLE FOB EACH
!33. C DAI A SEQUENCE . FOB THE GBOUP OF LINES THESE IS A.
J34. C TABLE FOE THE AVERAGE SEMIVABIOGSAM AND A GBAPHIC DISPLAY .
[35. C BOTH IN THE TABLE AND IN THE GBAPH THERE IS A COMPABISON TO
I36. C AN ASSUMED SB HIVABIOGRAM TO DETEBMINE THE GOODNESS OF
i37. C FIT OF THE SSHIVARIOGBAM AND DSIFT CHOICE TO REALITY .
I38. C THE COMPARISON CAN BE DONE IN TERMS OF THE BIASED
[39. C SEMIVABIOGBAMS ONLY OR FOB BOTH THE BIASED AND UNBIASED
[40. C SEMIVABIOGBAMS .
[41. C
42. c************ ***********************************************************
43. C
44. CCC
45. IMPLICIT REAL*8 (A-H, 0-Z)
146. CCC
47. DIMENSION Z (300) , GAfl ( 300) , VAR (300) , Y (300) ,FV (300) ,F T (10)
:48. CC DIMENSION 1(300),TV (300) ,H(3QO) ,TIT(12) ,POINT(3, 300)
149. CCC
J5C. C DECLARATIONS FOR PSt? VEBSION.
51. CCC
[52. DIMENSION X (2,300), TV (300) ,H (300) ,TIT (10) ,POINT (3, 300)
53. INTEGER*2 IDO HH1, IDUMM2, IDUMMY ( 2r 2) ,RCHAR (2) /'E «, 'A «/,
54. 2 RCHARO(2) /' E',» '/
(55. REAL*8 LXVALS,LYVALS
56. REAL YLABEL(5)/5*« '/,
I57. 2 XLABEL{2,3)/'DIST','DIST', »ANCE», 'ANCE',' ',' '/
(58. DIMENSION SF (2) ,XLVALS (2 ,1 1) ,GAMMA (2,300) ,NDPS (2) ,XVAL(2, 300)
J59. DATA TIT/10*' »/
160. CCC
359
-------
SBHI7ABIOGBAH.CALCULATION.PSOGBAS
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
161. DATA IFILE/5/,JFILE/6/
162. DATA EOD/9998.0/
163. C
164. C DATA I/O
165. C
166. RE AD (I FILE, 9 5) FT,IOB
167. IF(IDB .LE. 0 .OB. IOB .GT. 2) JOB = 1
168. CCC
169. BEAD(IFILE, 116) GHLIHB.GSLIMD
170. CCC
171 . 42 READ(IFILE,96,END=47) N, ID, HPLL, IB,DL, UNIT, (TIT (L) ,L=1 ,6)
172. CCC
173. C SET NOMBEB OF POIHTS IHDICATOB FOE EECPLT.
174. CCC
175. NDPS(1) = H
176. NDPS(2) = N
177. CCC
178. C SET X-LABSL ARRAY FOE BECPLT.
179. CCC
180. XLABEL(1,3) = UNIT
181. XLABEL{2,3) = UNIT
182. CCC
183. ID =ID + 1
184. KOON = 0
185. DO 21 K = 1,N
186. CC X(K) = (K - 1) *DL
187. CCC
188. C SET ABSCISSA ABBAYS FOB BECPLT .
189. CCC
190. X(1,K) = (K - 1)*DL
191 . X (2,K) = (K - 1)*DL
192. CCC
193. 21 FV (K) = 0.
194. TS = 0.
195. 13 fl = 3.
196. GO TD (69,70) ,IOB
197. 69 DO 71 I = 1,301
198. 3EAD(IFILE,FT,EEE=50) Z (I) , (POINT (II, I) ,11= 1, 3)
199. IF (2 (I) .GE. EOD) GO TO 50
200. 71 H = 8' + 1
201. GO TO 73
202. 70 DO 72 I = 1,301
203. READ(IFILE,FT,SND=50) (POIHT (II ,1) ,II»1 ,3) ,Z (X)
204. IF(Z(I) .GS. EOD) GO TO 50
205. 72 M = M + 1
206. 73 WRITS (JFILE,89)
207. STOP
208. 50 CONTINUE
209. CCC
210. C SET Y-LABEL ABBAIS FOE EECPLT.
211. CCC
212. DO 200 II = 1,3
213. ILABSL(II) = POINT (11,1)
214. 200 CONTINUE
215. IF (M) 23, 23, 11
360
-------
EMIVABIOGRAM.CALCULATION.PROGEAM
1234567
1234567890123456789012345678901234567890123456789012345678901234567890122
216. 11 KOUH = KOON 4 1
217. IF(NPLL .GT. 0) 30 TO 33
218. CCC
219, C CHARGE TIT TO ACCOUNT FOE LONGER WORD LENGTH .
220, CCC
22ll BE ITE (JFILE,92) (TIT (L) ,L=1 ,6) ,DL,UNIT,KOUN
222. DO 24 J = 1,M
223. 24 HBITE (JFILE, 103) J, (POINT (I, J) ,1=1,3), Z (J)
224. CCC
225. C PEBFOEH STATISTICAL CALCULATIONS FOR AIL POLYNOMIAL DEGREES.
226 . CCC
227. CC GO 10(60,31,32) ,ID
228. CC 60 SUMM =0.0
229. SUMM = 0.0
230. SUMS = 0,0
231. DO 80 J = 1,H
I232. SUHH = SUMM * Z(J)
233, 80 SUMS = SUMS + Z(J)*Z(J)
234. SUMM = SUMM/M
235. SUHS = SOMS/M - SUMM*SUMM
236. CCC
237. SO T0(60,31,32),ID
238. 60 CONTINUE
239. WE ITE (JFILE , 111) N, SUM M, SUMS
'240. GO TO 33
241. CC 31 WEITE (JFILE, 1 05) N
242. 31 WPITS(JFILE,105) N, SO MM, SUMS
243. GO TO 33
244. CC 32 KBITS (JFILE, 106) N
245. 32 WSITE (JFILE,106) N,SUHM,SUMS
246. 33 IF(M ,GE. N) GO TO 12
247. W SITE (JFILE, 91)
248. N = M
249. C
250. C WINDOW ORIGIN
251. C
252. 12 INT = M - N + 1
253. EM = M
254. PN = N
255. N1 = N - 1
256. RN1 = N1
?57. DO 19 K = 1,N1
258. 19 VAB(K) = 0.
259. DO 14 I = 1,INT
260. HI = H + I - 1
261. RI = I
262. GO TO (6 1,34,3 5), ID
263 . C
264. C RESIDUALS FOR A STATIONARY DRIFT.
265. C
266. 61 DO 62 K = 1,N
267. KI = K + 1
268. 62 Y(K) = Z (KI - 1)
269. RO TO 38
270. C
361
-------
SEmVABIOGRAfl. CALCDLATION. PROGRAM
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
271. C FIRST DEGREE POLYNOMIAL COEFFICIENT .
272. C
273. 34 A1 = (Z(NI) - Z(I))/RN1
274. C
275. C RESIDUALS FOB FIRST BSGHEE DRIFT.
276. C
277. DO 37 K = 1,N
278. KI = K * I
279. BK1 = K - 1
280. 37 Y(K) = Z{KI - 1) - A1 *RK1
281. GO TO 38
282. C
282. C SECOND DE3EEE POLYNOMIAL COEFFICIENTS.
284. C
285. 35 ZS = 0.
286. DO 15 JJ = I,HI
287. 15 Z« = Z(JJ) + ZM
2.88. ZM = 2. *ZM/RK
289. A2 = (3.*(Z(NX) * Z (I) -ZM))/((BN1 -1.0)*BN1)
29C. A1 = (Z(NI) - Z(I))/HN1 -RN1*A2
291. C
292, C RESIDUALS FOR SECOND DEGREE DRIFT ,
293. C
294. DO 16 K = 1,N
295. KI = K + I
296-. HK1 = K -1
297., RK1 = K - 1
298., 16 Y(K) = Z(KI - 1) - A1 *RK1 - A2*EK1*BK1
299. C
300. C SEMI VARI OGHAM FOE A WINDOW .
301. C
302. 38 DO 17 K = 1,N1
303. GAM(K) = 0.
304. IMAX = S - K
305.= RBAX = N - K
3CT6. DO 18 L = 1,1 MAX
307. LK = L + K
308. 18 GA«(K) = GAM(K) + (?(L) - T (LK) ) * (I (L) - I(LK))
3Q9. 17 GAM(K) = GAM (K) / (2. 0*RM AX)
310. C
3,11. C ' SEJIIVARIOGSAH FOR A LINE .
312. C
313. DO 14 K = 1,N1
314. 14 VAR(K) = 7AR(K) + GAM (K)
315. DO 20 KK = 1,N1
316. K = N - KK + 1
317. 20 VAE(K) = 7AR(K-1)/HI
318. 7AR(1) = 0.
319. IF(NPLL .GT. 0) 30 TO 49
320. CCC
321. C ORIGINAL VERSION .
322. CCC
323. CC CALL H15A (1, X ,7 AR, N, , , , 0)
324. CCC
325. C CHANGE TIT TO ACCOONT FOR LONGER WORD LENGTH ,
362
-------
EfllViBIOGR AH. CALCULATION.PROGRAM
1234567
1234567890123456789012345678901234567890123456789012345678901234567890123
326. CCC
327. WRITE (JFILE, 104) (TIT (L) ,L=1, 6) ,fl,N ,DL,UHIT
328. GO T3 (63,51,52),ID
329. 63 IBITE(JFILE, 112)
330. GO TO 53
331. 51 WRITE (JFILE, 100)
332. GO TO 53
333. 52 WRITE (JFILE, 101)
334. 53 WRITE (JFILE, 98)
335. DO 48 K = 1,N
336. KL = K - 1
[337. 48 WRITE (JFILE, 97) KL, VAR (K)
i8. C
19. C SEHIVARI03RAH FOR A GROOP OF LINES .
.Q. C
H. 49 FV(1) = 0.
,2. DO 22 K = 2,N
G. 22 FV(K) = F¥(K) + VAR(K)*RI
i4. TS = TS + RI
>5. GO TO 13
.6. 23 DO 25 K = 2, N
^7. 25 FV(K) = FV(K) /TS
i8. C
^9. C ASSUMED SE MI VARIOGRAM .
)Q. C
>1. SO TO (64,45,44) ,ID
>2. C
53. C LINEAR DRIFT
>4. C
55. 45 CF = RN1*FV(2)/(RN1 - 1.0)
>6. GO TO 43
>7. C QOADRATIC DRIFT .
58. 44 AOX1 = RN1*(RN1*RH1 - 1.0)
J9, AUX2 = 2.0*RN1*(RN1 * 1.0) - 1.0
50. CF = HN1*FV(2)/(RN1 - 2.0)
)1 . 43 DO 26 I s 1,N
J2. H(I) = I - 1
>3 . GO TO (47,28,29) , ID
j4. C LINEAR DRIFT
55. 28 TV(I) = CF*H(I)*(1.0 - H(I)/RN1)
i6. GO TO 26
57. C QUADRATIC DRIFT .
b8. 29 AUX = AUX2 - 2.0*H (I) *(RN1 + 1.0) + H(I)*H(I)
59. TV (I) = CF*.H(I)*(1.0 - H(I) *AOX/AUX1)
J'j. 26 CONTINUE
M . C
72. C RESULT PRINTING .
?3. C
74. 64 GO TD (65,66,66) ,ID
75. P5 CONTINUE
76. GAMMAX = 0.0
77. DO 340 1=1,N
78. GAMHA(1,I) = FV (I)
79. GAMMA (2,1) = 0.0
3Q. IF (GAMMAX. LT.FV (I) ) GAMMAX = FV(I)
363
-------
3EHIVABIOGBAM. CALCULATION, PROGHAH
1234567
12345678901234567890123456789012345678901234567890123456789012345678901
381. 340 CONTINUE
382. LLINE = (50. 0*GAMflAX/(GKLIHU/5. 0) ) + 0.001
383. IP (LLINE.GT.49) LLINE = 49
384. IF (LLINE.LT.5) LLINE = 5
385. CALL RECPLI(6AHMA,X,XVAL,2,N,LTVALS,LXVALS,IDUSH1,IDUHM2 ,
386. 2 1,2, HOPS, HCHABQ,LLINE,0,. FALSE., .FALSE. ,.TBUE. ,0 ,SF, IDUMMY, .TBUE
387. 3 ,TII ,XLABEL,XLVALS,ILABEL,.TBO£. ,.FALSE.,.FALSE.)
388. CCC
389. C CHANGS III TO ACCOUNT FOE LONGER BOBD LENGTH .
390. CCC
391. « BITE (JFILE, 113) (T II (L) ,L=1, 6) ,KOUN,N,DL,TJNIT
392. DO 67 K * 1,R
393. KL = K - 1
394. 67 HRITE(JFILS,97)KL,FV(K)
395. CF = FV (2)
396. GO TO 74
397. C BIASED SESIVABIOGR AMS .
398. 66 IBI - 0
399. 78 CONTINUE
400. CCC
401. C SIDES 08DINATE VALUES AND CONSTEUCT GRAPH.
402. CCC
403. GAMMAX = 0.0
404. DO 400 1=1,N
405. GAMMA (1,1) = FV (I)
406. GAHMA(2,I) = TV (I)
407. IF (IBI. EQ. 1) GO TO 400
408. IF (GAMHAX.LT.FY(I) ) GAMMAX = FV(I)
409. IF (GAflaAX.LT.TV(I) ) GAHMAX = T7(I)
410. 400 CONTINUE
411. IF (IBI.SQ.O) LLINS = (50.0*G AMMAX/GflLIMB) +0.001
412. IF (IBI.EQ.1) LLINE = (50. Q*TV (N) /GHLIMD) + 0.001
413. IF (LLINE.GT. 49) LLINE = 49
414. I? (LLINE.LT, 5) LLINE = 5
415. CALL BBCPLI(GAHMA,X,XVAL,2,N,LYVALS,LX7ALS,IDOHM1,IDUHM2,
416. 2 1f2,NDPS,RCHAR,LLIN£,0, .FALSE. ,.FALSE. r,TBUE. , 0 , SF, IDUHMY, .TEUE.
417. 3 TIT, XLABEL,XLVALS, YLABEL,. TEUE. ,. FALSE. ,. FALSE.)
418. CCC
419. C CHAN'GS TIT TO ACCOUNT FOS LONGER WORD 1SNGTH .
42C. CCC
421. WPITE(JFILE,93) (TI T (L) ,L=1 ,6 ) , KOUN ,N,DL,UNIT
422. GOTO (74,54,55) ,ID
423. 54 SRITE(JFILE,100)
424. GO TO 56
425. 55 HRITE(JFILE, 101)
426. 56 IF ( IBI . LS, 0) GO TO 75
427. KRITE{JFILE,115)
428. IB = 0
429. GO TO 76
430. 75 WRITS (JFIL2, 114)
431. 76 VBITE(JFILE,109)
432 . DO 39 K = 1,N
433. J = K - 1
434. 39 WHITE (JFILE, 110) J,FV(K) ,J, TV (K)
435. IF (IB .LE. 0) GO TO 74
364
-------
IV ARIOGR AM . CALC ULA TION .PBOGBAM
1234567
12345678901234567890123456789012345678901234567890123456789012345678901234
6. C UNBIASED SEMIVARIOGBAMS .
:7. DO 77 I * 1,N
18. RI = I - 1
9. CCC
|0. C BESET DISTANCE ARRAYS FOB BECPLT.
• 1. CCC
[2. X(1,I) == RI*DL
3. 1(2,1) = 1(1,1)
4 . CCC
|5. FV(I) = EI*CF * FV(I) - TV {I)
16. 77 TV (I) = RI*CF
7. IBI = 1
8. GO TO 78
9. 74 CF = CF/DL
0. WPITE (JFILE,108)CF,UNIT
1. CCC
2. C MOST FORMATS HAVE BEEN MODIFIED OR ADDED.
3. CCC
4. 89 FORMAT{//' ','END OF DATA WAS NOT FOUND UPON BEADING 300 SAMPLES')
5. 91 FORMAT (///,' ',' THE WINDOW IS LONGIB THAN THE LINE . «)
6. 92 FOEMAT(1H1,1X,6A8,//, ' ',' SAMPLE DISTANCE',F10.2,2X,1A4,//,' ',
7. 1 'THIS IS LINE « ,113,' FOB THE GBOUP',////)
8. 93 FORMAT*/,' ',' EXPERIMENTAL SEMIVARIOGRAH (E) AND ASSUMED (A)',
9. 1 23X,6A8,/,' ', » NUMBER OF LINES FOB THE GBOUP : ',12,
0. 2 5X,»NUMBER OF SAMPLES IN THE WINDOW : ',13,
|1. 3 5X,'SAMPLE DISTANCE', F10. 2, 2X, 1A4)
(2. 95 FORMAT(10A4,5X,1I5)
|3. 96 FORMAT (415,F5.0, 1A4, 1X, 6A8)
)4. 97 FORMATC
5. 98 FORMAT{'2
16. 100 FORMATf'Q
|7. 101 FORMAT (»0
18. 103 FORMATf
»9. 104 FORMAT (/,
GAMMA(',I2,«) » «,E12.4)
,//,' ',29X,' EXPERIMENTAL SEMI7AEIOGBAM* ,///»
,171,'FIRST DEGREE POLYNOMIAL FOR THE DRIFT')
,17X,'SECOND DEGREE POLYNOMIAL FOB THE DRIFT')
,' Z(',I3,») ', 5X,3A4,5X,F10.3)
',' EXPERIMENTAL SEMIVARIOGEAfl', 40X ,6A8,/, ' «
1 'NUMBER OF SAMPLES IN THE LINE : ',13,
[1. 2 5X,» NUMBER OF SAMPLES IN THE WINDOW : ',13,
f2. 3 5X,' SAMPLE DISTANCE ' ,F10.2,2X, 1A4)
f3. 105 FOEHAT (////,' ',' NtJMBER OP SAMPLES IN 1HE WINDOW : «,I2,///, ' ',
f'4. 1 ' THE DRIFT IS A FIRST DEGREE POLYNOMIAL ',///,* ',
75. 2 • THE MEAN IS ',F15.5,' AND THE VABIANCE »,F15.5)
16. 106 FORMAT (////,« ',' NUMBER OF SAMPLES IN THE WINDOW : «,I2,///, ' »,
H, 1 ' THE DBIFT IS A SECOND DEGBEE POLYNOMIAL ',///,' ',
78. 2 ' THE MEAN IS ',F15.5,' AND THE VARIANCE «,F15.5)
79. 108 FOBMAT (///,' ',' SEMIYARIOGHAM SLOPE AT THE OBIGIN* ,4X,E 12. 4
]30. 1 r» SQUARE UNITS / »,A4,////)
31. 109 FORMAT('2«,//,« ',29X,' EXPERIMENTAL SEMIVABIOGRAM' ,170,
82. 1 'ASSUMED SEMIV ARIOGRAM',///)
|83. 110FORMAT(' ',33X,' GAMMA (• ,1 2, ') = », E12. 4,T70, ' GAMMA (' ,12,') *• ,
84. 1 E12.4)
85. 111 FORMAT(////,' ', ' NUMBEH OF POINTS IN THE WINDOW : ',I2,///,' ',
86. 1 ///,' THE DSIFT IS A CONSTAST',///,' ',
J87. 2 ' THE MEAN IS ',F15.5, ' AND THE VABIANCE «,F15.5)
|88. 112 FOSMAT(/,' ',47X,TRE DRIFT IS A CONSTANT1,//)
89. 113 FORMAT(/,' ',' AVERAGE EXPERIMENTAL SEMIVARIOGBAM',33X,6A8,/,• ',
!90. 1 'NUMBER OF LINES USED : ',12,
365
-------
SEHI7A1IOGBAS. CALCULATION. PEOGEAH
1234567
1234567890123456789012345678901234567890123456789012345678901234567890
491. 2 5X,« NtJHBES OF SAMPLES IN THE WINDOW : »,I3
492. 3 ,5X,' SAMPLE DISTANCE',F10.2,2X,1A4,/,• ',47X,
493, 4 • THE DRIFT IS A CONSTANT',//////,25X,
494. 5 » AVERAGE EXPEBIMEHTAL SEMIYAEIOGBA«',///)
495. 114 FOEMAT {'<-',80X, « BIASED SSHIYAB10GRABS »)
496. 115 FOHHAT(»+«r8QX,• OHBIASED SEHIVABIOGBAHS'}
497. 116 FOBMAT(2F10.0)
498. GO TO 42
499. 47 STOP
5QQ. EHD
501. /*
502. //DATA. ISPOT DD *
366
-------
KYLEHTOUN SURFACE MOISTURE - fl/3/78
SAMPLE DISTANCE 33.12 N.
THIS IS LINE 1 FOI1 TUB GROUP
7.
2
7.
Z
7.
Z
Z
1)
2)
3)
5)
7)
P2
P5
P5
P7
P7
P3
P4
(12.86)
(34.113)
(75,114)
(91, 147)
(96,168)
(134, 198)
(151,225)
0. 177
0.279
0.214
0.192
0.164
0.242
0.288
NUMBER OF POINTS IN THE HINDOH ',
U)
0-v
THE DRIFT IS » COBST41JT
THR MEAN IS
0.22214 AND THE VARIANCE
0.00204
FXPERIHEHTAt SENIVARIOGRAH
NUMDRR OF SAMPLES IN TUB LINE :
NUHBEB OP SAMPLES IN THE WINDOW
THE DRIFT IS A CONSTANT
KYLERTOWK SDRFACE BOISTORE - 8/3/78
4 SAHPtE DISTANCE 33.12
M.
-------
EXPERIMENTAL SEHmitlOCUtftN
0) - 0.0
GAMHA ( 1) = 0.25140-02
G&nni( 2) - Q.22HOD-02
GAMMA( 3) - 0.10660-03
U)
CT>
00
-------
KVLERTOUH SURFACE HOISTUHB - 8/3/78
DISTANCE 11.
DISTANCE H.
0.00248
0.00241
0.00233
0.00226
0.0021'J
0.00212
0.00205
0.00197
0.00190
0. 00183
' 0.00176
O.U0169
0.00162
0.00154
0.00147
0.00140
0.00133
0.00126
0.00118
0.00111
0.00104
0.00097
0.00090
0.00083
0.00075
0.00068
0.00061
0.00054
0.00047
0.00039
0.00032
0.00025
0.00018
0.00011
0.00004
0.0
0.0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
IE
9.936 19.872 29.808 39.744 49.680 59.616 69.552 79.488 89.424 99.360
9.936 19.872 29.808 39.744 49.680 59.616 69.552 79.488 89.424 99.360
E I
I
I
E I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
El
I
* * * * * * * * * *
AVSHAGE EXPHilHSNTAL SENIVARIOGRAM KYLERTOVN SURFACE HOISTUBB - 8/3/78
NIIHBFB OF LINES USED : 1 NUMBER OF SAMPLES IN THE WINDOW : 4 SAMPLE DISTANCE 33.12 H.
THE DRIFT IS A CONSTANT
AVERAGE EXPERIHENTAI SENIVARIOGRAH
GAHNA( 0) = 0.0
GAHNA( 1) = 0.2514P-02
GANHA( 2) = 0.2240D-02
GAMMAJ 1) = 0.1066D-03
-------
SE1TVMUOGIUN SICPB HT THE ORIGIH 0.7589D-0* SQUARE WHITS /
OJ
-4
O
-------
K11BKTOKH SIIHFACE MOISTURE » 8/3/78
SAMPLE DISTANCE 33.12 H.
THIS IS LINK. 1 FOR THE GBOFIP
z
z
z
z
z
z
z
1)
2)
1)
1)
5)
6)
7)
P2
PS
P5
P7
P7
P3
P
-------
EXPERIMENTAL SEfUVARIOGDAH
GAHH»( 0)
GAHNA( 1)
GAMMA( 2)
GAMNA( 3)
GAHMA( 4)
0.0
0.t981D-02
0.190BD-02
0.3354D-02
0.0580D-04
U)
•^4
K5
-------
KYLERTOHN SURFACE HOISTORB - 8/3/7B
U>
OTSTAHCE H.
DISTANCE H.
0.00332
0.00325
0.00318
0.00310
0.00303
0.00206
0.00289
0.00282
0.00275
0.00268
0.00260
0.002S3
0.00246
0.00239
0.00232
0.00225
0.00218
0.00211
0.00203
0.00196
0.00189
0.00182
0.00175
0.00168
0.00161
0.00153
0.00146
0.00139
0.00132
0.00125
0.00118
0.00111
0.00103
0.00096
0.00089
0.00082
0.00075
0.00068
0.00061
0.00054
0.00046
0.00039
0.00032
0.00025
0.00018
0.00011
0.00004
0.0
0.0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
T
I
I
I
I
T
I
I
I
IE
*
13.248 26.496 39.744 52.992 66.240 79.488 92.736 105.984 119.232 132.480
13.248 26.496 39.744 52.992 66.240 79.488 92.736 105.984 119.232 132.480
E I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
E
E
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
El
I
* * * * # * * * * *
AVEKAGR EXPERIMENT*!. SEN!VARIOOHAM
NUMBER OF LINES USED : 1 HUHDEH OF SAMPLES IN THE WINDOW : S
THE DRIFT IS A CONSTANT
SnHFACE HOISTUKE - B/3/78
SAMPLE DISTANCE 33.12 fl.
-------
AVERAGE EXPfHIHENlAl SENIVARIOGRAM
6A««A(
GAMHAJ
GAflHAJ
GAMMAj
GAf1HA<
0)
D
2)
3)
U)
0.0
0. 1981U-02
0, 190BD-02
0. 3351D-02
o.
SEHIVARIOGRAIf SICPK AT THE ORIGIN
0. 5981D-01 SQUARE ONUS / N.
-------
KYLFRTOVMI SURFACE MOISTURE - 8/3/78
SA1PLE DISTANCE 33.12 M.
THIS IS LIMB 1 FCIt THE GROUP
7.
Z
Z
Z
Z
Z
Z
1)
2)
3)
•0
5)
6)
7)
P2
P5
P5
P7
P7
PJ
P4
(12.86)
(34,113)
(75,114)
(94,147)
(')(>, 160)
(134, 190)
(15-1,225)
0.177
0.279
0.214
0.192
0.161
0.212
0.200
HUMMER OF POINTS IN TUB WINDOW •
THE DRIFT IS A CONSTANT
THE .1EAN IS
0.22214 AND THE VARIANCE
0.00204
EXPERIMENTAL SEMIVARIOGRAH
NUMBEH OF SAMPLES IN THE LINE :
NUMBER OF SAMPLES IN THE WINDOW
THE DRIFT IS A CONSTANT
KYLERTOWN SURFACE flOISTORE - 8/3/78
6 SAMPLE DISTANCE 33.12
H.
-------
EXPERIMENTAL SEN IVARIOGIUM
GAHflAJ 0)
GAMHA< 1)
GAHNA( 2)
GRHHA( 3)
GAMNAJ 1)
GAMMA( 5)
0.0
0.2192D-02
0.17160-02
0.23670-02
0.3B520-03
0.2100D-02
-------
KYLFRTOHN SURFACE MOISTURE - 8/3/78
CO
-~J
—j
DISTANCE M.
DISTANCE H.
0.002J3
0.00226
0.00219
0.00212
0.00204
0.00197
0.00190
0.00183
0.00176
0.00169
0.00161
0.00154
0.00147
0.00140
0.001J3
0.00125
0.00118
0.00111
0.00104
0.00097
0.00090
0.00082
0.00075
0.00068
0.00061
0.00054
0.00047
0.00039
0.00032
0.00025
0.00018
0.00011
0.00004
0.0
0.0
I
I
t
I
I '
I
I
I
I
I
I
I
I
T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
IE
16.560 33.120 49.600 66.240 82.800 99.360 115.920 132.480 149.040 165.600
16.560 33.120 49.680 66.240 82.800 99.360 115.920 132.480 149.040 165.600
E I
I
E I
El
I
I
I
I
E I
I
I
T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
E I
I
I
I
I
I
_ *_________*_________*_____——_*_________*_-____——*_-__-_-_—*—_------*---------*--- — ____*
AVERAGE EXPERIMENTAL SEMIVARIOGRAM
NUMBER OP LINES USED : 1 NUMBER OF SAMPLES IN TUB HINDOH : 6
THE DRIFT IS A CONSTANT
KYLEHTOWN SURFACE MOISTURE - 8/3/78
SAMPLE DISTANCE 33.12 M.
AVFRAGE EXPERIMENTAL SEMIVARIOGRAM
GAMMA ( 0)
GAMMAJ 1)
GAMMA( 2)
GAMHA( 3)
GAHHA( 4)
GAMMA( 5)
0.0
0. 21920-02
0.17460-02
0.2367D-02
0.3B52D-03
0.21000-02
-------
n
3
O
o
o
"•0
L-l
a»
t-S
1-9
5
a
o
o
tn
O
c
SE
H.
tn
X
-------
KYLKRTOUH iUBFACE MOISTURE - 8/3/7B
SAMPLE DISIANCE 33.12 N.
THIS IS LINE 1 FOU THE GROUP
z
z
7.
Z
Z
z
z
1)
2)
3)
1)
5)
6)
7)
P2
P5
PS
P7
P7
P3
pa
(12
(31,
(75,
(91,
(96,
(134
(154
.86) .
113)
114)
117)
168)
,W)
,225)
0.177
0.279
0.214
0.192
0.164
0.242
0.208
NUMBER OP POINTS IN THE WINDOW :
THE DRIFT IS A CONSTANT
THE MEAN IS
EXPERIMENTAL SEHIVARI06RAH '
NUMBER OF SAMPLES IN THR LINE :
0.22214 AND TIIF. VARIANCE
7
0.00204
KYLERTOHN SDRPACB HOISTORK - 8/3/78
NUMBER OF SAMPLES IN THE WINDOW : 7 SAMPLE DISTANCE 33.12
TUB DRIFT IS A CONSTANT
-------
EXPERIMENTAL SENIVABIOGRAN
GANHA( 0)
GAHNA( 1)
GAMMA( 2)
GAHHA( 3)
GAMMA( 4)
GAHHA( 5)
GAMMA j 6)
0.0
0.20000-02
0.2922D-02
0.2922D-02
0. 1160D-02
0.1068D-02
0.609i)D-02
OJ
oo
o
-------
KYLERTOHN SURFACE MOISTHRK - 8/3/70
OJ
00
DISTANCE M.
DISTANCE M.
0.00603
0.00591
0.00578
0.00566
0.00553
0.00541
0.00529
0.00516
0.00504
0.00491
0.00479
0.00466
0.00454 .
0.00442
0.00429
0.00417
0.00404
0.00392
0.00379
0.00367
0.00354
0.00342
0.00330
0.00317
0.00305
0.00292
0.00280
0.00267
0.00255
0.00243
0.00230
0.00218
0.00205
O.G0193
0.00180
0.00168
0.00155
0.00143
0.00131
0.00118
0.00106
0.00093
0.00081
0.00068
0.00056
0.00044
0.00031
0.00019
0.00006
0.0
0.0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
T
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
IE
19.872 39.744 59.616 79,488 99.360 119.232 139.104 158.976 178.848 198.720
19.872 39.744 59.616 79.488 99.360 119.232 139.104 158.976 178. B4B 198.720
El
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
E B I
I
I
I
I
I
•I
E ' I
I
I
I
I
I
I
E I
E I
* * * * * * * * * *
AVERAGE EXPERIMENTAL SEMIVARIOGRAH
NUMBER OF LINES USRI) : 1 NtlMP ER OF SAMPLES IN THE WINDOW : 7
THE DRIFT IS A CONSTANT
KYlEnTOHM SURFACE MOISTURE - fl/3/70
SAMPLE DISTANCE "-13.12 M.
-------
AVERAGE EXPERIMENTAL SEHIVARIOGRAN
GAMMA( 0)
GAHHA( 1)
GAHMAJ 2)
GAMMA ( 3)
GAM«A( 4)
GANMAf 5)
GAMMA ( 6)
0.0
0.2000D-02
0.2922D-02
0.29220-02
O.H60D-02
0. 1068D-02
0.6094D-02
SBHTVARIOGRAH SIOl'E AT THE ORIGIN
0.6038D-OH SQtIABE OMITS /
OJ
-------
KYIERTCHN JURPACE MOISTURE - 0/3/78
SAMPLE DISTANCE 33.12 n.
THIS IS LIKE 1 FOtt THE GROUP
z
z
z
z
7.
Z
Z
1)
2)
3)
4)
5)
6)
7)
P2
P5
P5
P7
P7
P3
P4
(12,86)
(34.113)
(75.114)
(94.147)
(9t.,16U)
(134.196)
(151,225)
0.177
0.279
0.211
0.192
0.164
0.242
0.288
OJ
Co
CO
OF SAMPLES IN THE WINDOW : 4
Tll<; DRIFT IS A FIRST DEGREE POLYNOMIAL
TIIK MEAN IS
0.22214 AND THF VARIANCE
0.00204
EXPERIMENTAL SBHIVARIOGRAH
N1IHDER OF SAMPLES IN THE LINE : 7
NUHBED OF SAMPLES IN THE HINDOM
FIRST DEGREE POLYNOMIAL FOR THE DRIFT
KYLBRTOWN SURFACE MOISTURE - 8/3/78
4 SAMPLE DISTANCE 33.12
-------
oo
(C )VHH*9
Z0-060ei*0 = (I )VWHV9
(TO = (0 >VHHV3
-------
KTLERTOHN SURFACE MOISTURE - 8/3/70
DISTANCE H.
DISTANCE M.
0.00123
0.00115
0.00106
0.00098
0.00009
0.00081
0.00072
0.00061
0.00055
0.000147
0.00038
0.00030
0.00021
0.00013
0.00004
0.0
0.0
I
I
I
I
T
I
I
t
I
I
I
I
I
I
IK
9.936 19.872 29.808 39.714 49.680 59.616 69. 552 79.488 89.424 99.360
9.936 19.872 29. BOB 39.744 49.680 59.616 69.552 79.488 89.424 99.360
B * I
I
I
I
I
I
I
I
I
I
I
I
I
I
El
* * * * * * * » * *
00
Ul
EXPESIMKNTAl SEHIVARIOGHAH (E) AND ASStlHED (A) KYLBRTOVH SURFACE MOISTURE - 8/3/78
NUMBER OF LINES fOR TUB GROUP : 1 NUMBER OP SAMPLES IN THE WINDOW : 4 SAMPLE DISTANCE 33.12 «.
FIRST DEGREE POLYNOMIAL FCR THE DRIFT BIASED SEMTWARIOGRAMS
EXPERIMENTAL SEMIVARIOGRAH ASSUMED SEHIVARIOGRAH
GAMHAl 0) = 0.0 -GANMA( 0) " 0.0
GANM»( 1) = 0.1209D-02 GAHHA( 1) = 0.1209D-02
GAMHM 2) = 0.12750-02 GAMMA( 2) = 0.1209D-02
GAMMM 3) = 0.4815D-34 GAMMA( 3) = 0.0
-------
KYLKRTOHN SURFACE MOISTURE - fl/3/78
DISTANCE H.
DISTANCE H.
0.00526
0.00490
0.00453
0.00417
0.003Q1
0.00345
0.00300
0.00272
0.00236
0.00199
0.00163
0.00127
0.00091
0.00054
0.00010
0.0
0.0
I
J
I
I
I
I
I
r
I
i
t
i
i
i
IR
9.936 19.872 29.808 39.744 49.680 59.616 69.552 79.488 89,424 99.360
9.936 19.872 29.808 39,744 49.680 59.616 69.552 79.488 89.424 99.360
II
I
I
I
E I
A I
I
I
! I
I
I I
I
I
I
I
.____*_________* ______*_________*_________*_________»_________*_ ______»__-______*_________*
oo
ON
EXPERIMENTAL SSMIVARIOGHAH (E) AHD ASSUMED (A) ' KTLERTOWN SURFACE MOISTURE - 8/3/78
NUMBER OF LINES fOB THE GROUP : 1 NUMBER OP SAMPLES IN THE WINDOW S 4 SAMPLE DISTANCE 33.12 M.
FIRST DEGREE POLYNOMIAL FOR THE DRIFT . UNBIASED SBNIVARIOGPAUS
EXPERIMENTAL SEJ1IVARIOGRAN ASSUMED SENIVARIOGRRM
GANNA( 0) = 0.0 GAMHft( 0) = 0.0
GAMHA( 1) = 0.1814D-02 GAMMA( 1) = 0.18110-02
GAMMA( 2) = 0.3693D-02 GAHHA( 2) = 0.3627D-02
GAMHAf 3) = 0.5441D-02 GAHNA( 3) = 0.5441D-02
SE1TWAHTOGRAB SLOPE AT THE ORIGIN 0.5476D-04 SQUARE UHITS / M.
-------
KYLERTOHN SURFACE MOISTURE - 8/3/70
SAMPIB DISTANCE 33.12 N.
THIS IS LINE 1 FOH THE GROUP
7.(
Z<
Z<
2(
Z<
Z(
Z(
1»
2)
1)
1)
5)
6)
7)
P2
P5
P5
P7
P7
Pi
PI
(12, U6)
(31,113)
(75,111)
(91, 117)
(96, 16ft)
(131,198)
(151,225)
0.177
0.279
0.21U
0.192
0.161
0.212
0.288
NUMBER OF SAMPLES IN THE WINDOW : 5
OJ
00
THE DRIFT IS A FIRST DEGREE POLYNOMIAL
THE MEAN IS
0.22214 AND THE VARIANCE
EXPERIMENTAL SEMIVARTOGRAM
NUMBER OF SAMPLES IN THE LINE : 7
0.00204
NDMDER OF SAMPLES IN TUB WINDOW
FIRST DEGREE POLYNOMIAL FOR THE DRIFT
KYLKBTOWN SURFACE MOISTURE
5 SAMPLE DISTANCE
8/3/78
33.12
-------
EXPERIMENTAL SENIVARTOGRAN
GAHHA( 0)
GAMHA( 1)
GAHHAJ 2)
GAHNM 3)
GAHHA( 4)
0.0
0. 1461D-02
0.19950-02
0.2061D-02
0.0
00
00
-------
KYLEHTOWN SURFACE MOISTURE - 8/3/70
Co
00
DISTANCE M.
OISTANCF M.
0.00202
0.00193
0.001U5
0.00176
0.00167
0.00159
0.00150
0.00142
0.00133
0.00125
0.00116
0.00107
0.00099
0.00090
0.00082
0.00073
0.000611
0.00056
0.000
-------
EXPERIMENTAL SENIVABIOGHAN
ASSUMED SEtllVAIlTOGRAN
GftHHA( 0)
GAMMA( 1)
GAMMA( 2)
GAMMA( 3)
GAMMA ( (I)
0.0
0.1II61D-02
0.1995D-02
0.2061D-02
0.0
GAMMA(
GAMMA{
GAMMA(
6AH MA(
GAMMA (
0)
D
2)
3)
1)
0.0
0.1M61D-02
0. 1<)iiaD-02
O.VI61D-02
0.0
-------
KYLERTOWS SURFACE MOISTURE - 8/3/78
DISTANCE H.
DISTANCE H.
0.00762
0.00726
0.00691
0.00655
0.00620
0.00585
0.00519
0.00511
0.00478
0.00443
0.00407
0.00372
0.00337
0.00301
0.00266
0.00230
0.00195
0.00159
0.00124
0.00089
0.00053
0.00018
0.0
0.0
t
I
I
I
I
I
I
I
I
I
I
I
I
I
IK
13.248 26.496 39.744 52.992 66.240 79.488 92.736 105.984 119.232 132.400
13.248 26.496 39.744 52.992 66.240 79.488 92.736 105.984 119.232 132. 4BO
II
I
I
E I
I
A I
I
I
I
I
B I
A I
I
I
I
I
1 . I
I
I
I
I
I
* * * * * --*- __*_- -* *_- *
EXPERIMENTAL SIHIVARIOGRAH (E) AND ASSUMED (A)
OF LINES FOR THE GROUP : 1 NUMBER OP SAMPLES IK THE WINDOW
FIRST DEGREE POLYNOMIAL FOR THE DRIFT
KTLERTOHK SURFACE MOISTURE - 8/3/78
5 SAMPLE DISTANCE 33.12 H.
RNBIASED SFHIVARIOGRAHS
-------
EXPERIMENTAL SE«IVftRIOGRAM
ASSUHED SEHIVARIOGRAH
GAMMA( 0)
GAMMA( 1)
GAMMA( 2)
GAMMA( 3)
GAMMA ( 1)
0.0
0.19U8D-02
0.39«(3D-02
0.6UK5D-02
0.7793D-02
GAH«A( 0)
GAMMA( 1)
GAMHAf 2)
GAMMA( 3)
GAMMA ( It)
0.0
0. 19<|8D-02
0.3897D-02
0.5845D-02
0.7793D-02
SEMIVAKIOGRAH SICPE AT TUP ORIGIN
0.5883D-OU SQUARE UNITS /
U>
^O
to
-------
KYIERTCfcN SURFACE MOISTURE - 0/3/78
SAHPI.E DISTANCE 11.12 H.
THIS IS LINE 1 FOR THE GBOUP
z
z
z
z
z
z
z
1)
2)
3)
'«>
5)
6)
7)
P2
P5
P5
P7
P7
P3
P4
(U.86J
(31,113)
(75,114)
(94, 147)
(9f.,168)
(1314,198)
(154,225)
0.177
0.279
0.214
0.192
0.164
0.242
0.288
OJ
VO
U>
NIMIIER OF SAMPLES IN THE WINDOW : 6
TI1K UIIIFT IS A FIRST DEGREE POLYNOMIAL
THE MEAN IS
0.22214 AND THE VARIANCE
EXPERIMENTAL SKfllVAHIOGRAM
NtlilBFR OF SAMPLES IN THE LINE : 7
0.00204
NUMBER OF SAMPLES It) THE WINDOW
FIRST DEGREE POLTNOMIAL FOR THE DRIFT
KJtERTOWN SURFACE HOISTORE - 8/3/78
6 SAMPLE DISTANCE 33. 12
H.
-------
EXPERIMENTAL SEMIVARIOGRAM
0) = 0.0
GAMMA ( 1) - 0.17350-02
GAMMA( 2) = 0.2932D-02
GAMMA( 3) = 0.39590-02
GAHMA( t) - 0.2311P-02
GAMMA( 5) = 0.48150-34
OJ
VD
-------
KYLERTOUN SURFACE HOISTIIRE - fl/3/78
DISTANCE M.
DISTANCE «.
0.00392
0.00303
0.00375
0.0036t>
0.00358
0.00350
0.00341
0.00333
0.00324
0.00316
0.00307
0.00299
0.00291
0.00282
0.00274
0.00265
0.00257
0.00218
0.00240
0.00232
0.00223
0.00215
0.00206
0.00198
0.00190
0.00181
0.00173
0.00164
0.00156
0.00147
0.00139
0.00131
0.00122
0.00114
0.00105
0.00097
o.oooua
0.00000
0.00072
0.00063
0.00055
0.00046
0.00038
0.00029
0.00021
0.00013
0.00004
0.0 16.560 33.120 49.6RO 66.240 82. BOO 99.360 115.920 132.480 149.040 165.600
0.0 16.560 33.120 49.680 66.240 62.800 99.360 115.920 132.480 149.040 165.600
I B I
1 I
I I
I
I
I
I
I
I
I
I
I
I B
I
I
I
I A A
I
I
I B
I
I I
I I
I I
I I
I I
I.I A I
I I
I I
I , I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
T I
I I
I I
I I
IK XT
* * * * _ * * * * * *— *
EXPERIMKNTAL SEMIVARIOURAN (K) AND ASSUMED (A) KYLERTOWN SURFACE MOISTURE - fl/3/78
HIM [IE It OF IINES FOR TUB GROUP : 1 NUMBER OF SAKPLFS IN TUP. WINDOW : 6 SAMPLE DISTANCE 33.12 N.
FIRST DEGREE POIYKOHIM FCP THE DRIFT DIASFD SF.MIVAKIOGRAHS
-------
EXPERIMENTAL SEMIVARIOGBAH
ASSUMED SEHIVARIOQRAn
GAMMA ( 0)
GANMA( 1)
GA«HA( 2)
GAMMA( 3)
GAMMA ( 1)
GAHHA( 5)
0.0
0.1735D-02
0,29320-02
0.3959D-02
0.2311D-02
O.H815D-31
GAHMA( 0)
GAHHA( 1)
GAMMA( 2)
GAMMA( 3)
GAMMA( «)
GAHHA( 5)
0.0
0.1735D-02
0.2602D-02
0. 26020-02
0.1735D-02
0.0
OJ
-------
KYLERTOHN SflRFACB MOISTURE - 8/3/7fl
DISTANCE N.
DISTANCE M.
6.01066
0.01030
0.00994
0.00950
0.00922
0.008U5
0.00049
0.00813
0.00777
0.00741
0.00705
0.00669
0. 00632
0.00596
0.00560
0.0052M
0.00488
0.00452
0.00416
0.00379
0.00343
0.00307
0.00271
0.00235
0.00199
0.00163
0.00126
0.00090
0.00054
0.00018
0.0
0.0
r
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
IX
16.560 33.120 49.680 66.240 82.800 99.360 115.920 132.480 149.040 165.600
16.560 33.120 49.680 66.240 82.800 99.360 115.920 132.480 149.040 165.600
II
I
I
I
E I
A I
I
I
E I
I
I
I
k I
I
I
I
I
E I
* I
I
I
I
I
1 I
I
I
I
I
I
I
_ *_ — ______*___ ___*_____ *_________*_________*_________*_________*_______-_*__----.---*
EXPFHI.1ENTAL SSMIVAHIOGHAM (E) AMD ASSUMED (A) KYIEBTOHN SURFACE MOISTURE - 8/3/78
NUflBFR OF LINES [Ott THE GROUP : 1 NUMBER CF SAMPLES IN THE WINDOW : 6 SAMPLE DISTANCE 33.12 M.
FIRST DEGREE POLYNOMIAL FCR THE DRIFT UNBIASED SENIVARIOCRAMS
-------
EXPERIHENTAL SEHIVARIOGRAH
ASSUMED SEH1VAHIOGRAB
GAHN»( 0)
GANMA( 1)
GAMMA( 2)
GAMMA( 3)
GAMMA( 4)
GA!INA( 5)
0.0
0.216UD-02
0.4667D-02
0.7862D-02
0.9250D-02
0.10B4D-01
GAHHA(
GAMMA (
GAHHAf
GAMMA(
GAMMA(
GAMMA(
OJ
1)
2)
3)
«)
5)
0.0
0.2168D-02
O.H137D-02
0.65050-02
O.B67MD-02
0.108UD-01
SPHIVA8IOGBAH SIOPU AT THE ORIGIN
0.6547D-OII SQIIABE UNITS / M.
Co
VO
00
-------
KYLKRTOWN SURFACE MOT STORE - a/3/70
SAMPLE DTSTANCE 33.12 N.
THIS IS LINE 1 FOR THE GROUP
7.
Z
Z
Z
7,
Z
Z
1)
2)
3)
1>
5)
6)
7)
P2
P5
P5
P7
P7
P3
P4
(12,86)
(31.113)
(75,114)
(94,117)
(96,160)
(134,198)
(154,225)
0.177
0.27<>
0.214
0.192
0.164
0.242
0.2H8
NUMBER OF SAMPLES IN THE WINDOW : 7
THE DRIFT IS A FIRST DECREE POLYNOMIAL
TUB MEAN IS
0.22214 AND THE VARIANCE
EXPERIMENTAL SEHIVARIOGHAN
NUMBER OF SAMPLES IN THE LINE : 7
0.00204
KYtERTOWH SDRFACE HOISTORE - 8/3/78
NUHBER OF SAMPLES IN THE WINDOW : 7 SAMPLE DISTANCE 33.12 H.
FIRST DEGREE POLYNOMIAL FOR THE DRIFT
-------
o
o
zo-auitro
co-aoc8i-o
0°0
(9 }VUHV9
(9 )VUUV9
tfr HHHV9
(S HHH19
(l )VHNT9
(t )YUUV9
(0 )VMHV9
1VLN3HIH3dI3
-------
KYLERTCWB SURFACE MOISTIIRB - 8/3/78
DISTANCE H.
DISTANCE H.
0.00408
0.00400
0.00391
0.00303
0.00374
0.00366
0.00357
0.00349
0.00341
0.00332
0.00324
0.00315
0.00307
0.00299
0.00290
0.00282
0.00273
0.00265
0.00257
0.00248
0.00240
0.00231
0.00223
0.00214
0.00206
0.00190
0.00189
0.00181
0.00172
0.00164
0.00156
0.00147
0.00139
0.00130
0.00122
0.00114
0.00105
0.00097
0.00088
0.00080
0.00071
0.00063
0.00055
0.00046
0.00038
0.00029
0.00021
0.00013
0.00004
0.0
0.0
I
I
t
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
T
I
I
1
r
i
i
IR
19.872 39.744 59.616 79.488 99.360 119.232 139.104 158.976 178.848 198.720
19.872 39.744 59.616 79.488 99.360 119.232 139.104 158.976 178.848 198.720
E I
I
I
I
I
I
I
I
I
A E I
I
I
E I
I
ft A I
I
I
I
I
I
I
I
I
I
I
I
E I
I A I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
HI
* * *__ * — _____——* ___ — _* — _______*_________*_________*______-__*
EXPERIMENTAL SEHTVAHIOGRAM JE) AND ASSUMED (A) KYIEHTOWN SURFACE HOISTUHF. - fl/3/70
OF IINFS FOU TIIR GHOOP : 1 NUMBER OF SAMPLES III THE HINDOH : 7 SAMPLE DISTAHCB 33.12 M.
-------
flKST DEGREE POLTHCHIkl FOB TDK DRIFT
BIASED SGHIVARIO^RAHS
O
K>
EXPERIMENTAL SEKIVABIOGDAH
GAttHA( 0)
GAHHA( 1)
GAHH&( 2)
GAMMAj 3)
GAHHA( 4)
GAMMA( 5)
GAMMA( 6)
0.0
0.1B30D-02
0.3059D-02
O.H121D-02
0.3292D-02
0.19210-02
0.96300-31
GAHHA( 0)
GA1NA( 1)
GAHHA( 2)
GAHHA( 3}
GAHHA(
GAHMA(
GAHHAf
5)
0.0
0.1830D-02
0.2929D-02
0.32950-02
0.29290-02
0.1830D-02
0.0
-------
KYIERTOHN SURFACE MOISTURE - 8/3/78
O
DISTANCE n.
DISTANCE M.
0.01300
0.01264
0.01229
0.01193
0.01158
0.01122
0.01086
0.01051
0.01015
0.00980
0.00944
0.00908
O.OOH73
0.00837
o.ooaoi
0.00766
0.00730
0.00695
0.00659
0.00623
0.00588
0.00552
0.00516
0.00401
0.00445
0.00410
0.00374
0.00338
0.00303
0.00267
0.00232
0.00196
0.00160
0.00125
0.00089
0.00053
0.00018
0.0
0.0
I
I
I
I
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
IK
19.B72 39.741 59.616 79.488 99.360 119.232 139.104 158.976 178.848 198.720
19.872 39.744 59.616 79.488 99.360 119.232 139.104' 158.976 178.848 198.720
II
I
I
I
I
t I
A I
I
I
I
I
E I
A I
I
I
I
E I
I
A I
I
I
I
I
I
I I
I
I
I
I
I
I I
I
I
I
I
I
I
* * * * * * * * * *
EXPERIMENTAL SSHIVARIOGRAH (E) AND ASSUMED (A) KYIEHTOHM SURFACE MOISTURE - 8/3/78
OF LINES fOtt TIIK GROUP : 1 NUMBER CF SAMPIFS IN THE WINDOW : 7 SAMPLE DISTANCE 33.12 M.
FIttST DEGREE POtYNCMIAl FCH THE DRIFT QNHIASED SF.MIVARIOGHANS
-------
EXPERIMENTAL SEMIVARIOGPAH
ASSUMED SBHIVARIOGRAH
GAMMA
GAMNA
GAHHA
GAMMA
GAMMA
OJ =
D =
2) -
3) =
(1) =
6ANMA ( 5) =
GAMHA ( 6) =
0.0
0.2196D-02
0.
-------
KYIERTCNN SURFACE MOISTURE - B/3/78
SAflPtE DISTANCE 33.12 H.
THIS IS LINE 1 FOB THE GROUP
7.
Z
Z
Z
Z
Z
Z
1)
2)
3)
4)
5)
<>)
7)
P2
P5
P5
P7
P7
P3
P4
(12,86)
(34.113)
(75,114)
(94,147)
(96,168)
(134,198)
(154,225)
0.177
0.279
0.214
0.192
0.164
0.242
0.288
NUMBER OP SAMPLES TN THE WINDOW : 4
THE DRIFT IS A SECOND DEGREE POLYNOMIAL
-P-
O
Ul
THE SEAN IS
0.22214 AND THE VARIANCE
0.00204
EXPERIMENTAL SEHIVARIOGRAN
NUMnER OF SAMPLES IN THE LINE : 7
NUMBER OF SAMPLES IN THE WINDOW
SECOND DEGREE POLYNOMIAL FOR THE DRIFT
KYLERTOWN SURFACE MOISTURE - 8/3/78
4 SAMPLE DISTANCE 33.12
-------
EXPERIMENTAL SEMIVARIOUSAH
GAK!U( 0) =
GAMMA ( 1) =
GAMMA( 2) =
GAHHA( 3) =
0.0
0.53910-03
0.26950-03
0.96300-31
-------
KYLERTOUN SURFACE HOISTIIBK - 0/3/78
DISTANCE
DISTANCE
H.
n.
0.00049
0.00010
0.00031
0.00022
0.00013
0.00004
0.0
0.0
I
I
I
I
I
IK
* .
9.936
9.936
. *_____
19.872 29.008 .19. 744
19.872 29.808 39.744
___-*___ ____*_
X
49.680 59.616
49.680 59.616
____»_________*____-
69.552
69.552
1
.___-*_____
79.488 89.424
79.488 89.424
____*_________*_____
99.360
99.360
T
I
I
I
I
XI
____*
EXPERIMENTAL SEMIVARIOGRAft (E) AMD ASSUMED (A)
HII1RER OF LINES (OR THE GROUP : 1 NUMBER OF SAMPLES IN THE WIHDOH
.SECOND DEGHGE POLYNOMIAL FOR THE DRIFT
KTIEHTOWH SOBFACE MOISTURE - 8/3/78
4 SAMPLE DISTANCE 33.12 H.
BIASED SEHIVARIOGRAHS
EXPERIMENTAL SEMIVARIOGRAM
ASSUMED SEMIVARIOGRAH
GAMHA( 0) = 0.0
GAMMA( 1) = 0.5391D-03
GAFltA( 2) = 0.269SD-01
GAHMA( 3) = 0.9630D-34
GAHMA( 0) = 0.0
GAMMA( 1) = 0.5391D-03
GAHMA( 2) = 0.26950-03
GAMMA( 3) = 0.0
-------
KVI.El)TOWN SURFACE HOISTORE - B/3/78
DISTANCE H.
DISTANCE H.
0.00 AND ASSUMED (A)
NUMBER Of LIKES FOK THE GROUP : 1 NtlHBEH OF SAMPLES IH THE UINOOW ;
ICY1ERTOVH SURFACE MOISTURE - 8/3/78
SAMPLE DISTANCE 33.12 H.
SECOND DEGREE POLYNOMIAL FOR THE DRIFT
UNBIASED SEniVAlilOORAMS
O
CO
EXPERIMENTAL SENIVARIOGRAH
ASSUMED SENIVABIOGRAH
GAH1A{ 0) -
GAMMA ( ij =
6AHHM 2) =
GA»HA{ 3) =
0.0
0.16170-02
0.32340-02
0.4852D-02
GAHHA( 0)
GAHHAf 2)
ftANNAJ! 3)
0.0
0.1617D-02
0.3234D-02
0.4052D-02
SEMIVARIOGRAH SICPU AT THE ORIGIN
O.II883D-04 SQUARE UMItS / H.
-------
KTLERTOWN SURFACE HOISTOBE - 8/3/78
SAMPLE DISTANCE 33.12 H.
THIS IS LINE 1 FOB THE GB01IP
z
z
z
z
z
z
z
1)
2)
3»
1)
5)
6)
7)
P2
P5
P5
P7
P7
PJ
PI
(12,86)
(31.113)
(75.114)
(94.147)
(96,160)
(134,198)
(15H,225)
0.177
0.279
0.214
0.192
0.164
0.242
0.288
NUMBER OF SAMPLES IH THE WINDOW :
THE DRIFT IS A SECOND DEGREE POLYNOMIAL
THE MEAN IS
0.22214 AND THE VARIANCE
EXPERIMENTAL SEMIVARIOGRAM
NUMBFH OF SAMPLES IN THE LINE :
0.00204
KYLEBTOUN SURFACE MOISTURE - 8/3/78
NUMBER OF SAMPLES IN THE WINDOW : S SAMPLE DISTANCE 33.12 M.
SECOND DEGREE POLYNOMIAL FOB THE DRIFT
-------
EXPERIMENTAL SEMIVARIOGRAH
6AKHA( 0) =
GAMMA( 1) =
fiAMMAj 2) =
GAMMAC 3) -
GAMMA{ 4) =
0.0
0.6M03D-03
0.5971D-03
0.3837D-03
0.6420D-3U
-p-
M
O
-------
KKLERTOWN SURFACE MOISTURE - 8/3/78
DISTANCE
DISTANCE
n.
H.
0. 00059
0.00050
0.00041
0.00032
0.00023
0.00014
0.00005
0.0
0.0
I
I
I
I
I
I
IK
13.240 26.496 39.744 52.992 66.240
13. 2MB 26.496 39.744 52,992 66.240
1 I
* * * * *
79.40U 92.736 105.984 119.232 132.480
79.4U8 92.736 105.984 119.232 132.480
I
I
R I
I
I
I
RI
* * * * *
EXPERIMENTAL SEMIVARIOGRAH (E) AND ASSUMED (A)
NUMBER OF IINl'S FOlt THE GROUP : 1 NUMBER OF SAMPLES IN THE WINDOH
SECOND DEGREE POLYNOMIAL FOR THE DRIFT
KYIEBTOHH SURFACE HOISTURE - 8/3/78
5 SAMPLE DISTANCE 33.12 H.
BIASED SEHIVABIOGRAHS
EXPEBIMENTAL SEHIVARIOGRM1
ASSUMED SEHIVARIOGRAH
GAHHA(
GAMMA(
GAMMA(
GAMMA(
GAHMA(
0)
D
2)
3)
0.0
0.64030-03
0.5971D-03
0.38370-03
0.6420D-34
GAMMA(
GAMMA(
GAMMA{
GAHHAJ
GAMMA(
0)
1)
2)
3)
1)
0.0
0.6403D-03
0.5976D-03
0.3842D-03
0.0
-------
K»IERIO«N SURFACE HOISTIIRE - 8/3/78
DISTANCE H. (
DISTANCE «. (
0,00494 J
0.00457
0.00121
0.00384
0.00148
0.00311
0.00274
0.00238
0.00201
0.00165 1
0.00128
0.00091 1
0.00055 1
0.00018 1
).0 13,248 26.496 39,744 52.992 66.240 79.488 92.736 105.984 119.232 132.480
).0 13.?4B 2fi.«96 39.744 52.992 66.240 • 79.488 92.736 105.984 119.232 132.480
[ II
I
I
I I
I
I
I
K I
I
t I
C 1 I
[ • I
[ T
IS I
* — ____-_-•__ — .—___*____-_--,_#_-_—____*-,___„____*_________*_________*_________*_________•_________*
EXPEBINFNTAt SEMIVARIOGBA» (Ej AND ASSUMED (A)
NU1DER OF LINES FOR THE GBOUP : 1 HOMBBB OP SAMPLES IN TUB WINDOW :
SECOND DEGREE POLYNOMIAL FOB THE DBIFT
KTIBRTOHH SURFACE MOISTURE - 8/3/78
5 SAMPLE DISTANCE 33.12 N.
UNBIASED SENIVARIOGRANS
EXPEBINENTAL SENIVABIOGRAN
ASSUMED SEMIVABIOGRAM
0)
GAMMA( 1)
GANMA( 2)
GAMMA( 4)
0,0
0.1281D-02
0.25610-02
0.3841P-02
0.5122D-02
GAHHA( 0)
GAMBA( 1)
GAMMA( 2)
GA(1HA( 3)
GAMMA( 4)
0.0
0.1281D-02
0.2561D-02
0.38420-02
0.51220-02
SE«JI«ARIOGRAM SICPB AT THE ORIGIN
0.30660-04 SQUARE UNITS / «.
-------
KYIEHTCHN SUHFACE MOISTtlflE - 8/3/78
SA.1PIE DISTANCF 33.12 N.
THIS IS LIKE 1 FOB THE GROHP
Z<
Z<
Z(
Z(
Z(
Z(
Z(
1)
2)
3)
<))
5)
6)
7)
P2
P5
P5
P7
P7
P3
P4
(12.86)
(3M, 113)
(75.11H)
(91,1"47)
(96,160)
(13<4,19U)
(151,225)
0. 177
0.279
0.214
0.192
0.164
0.242
0.280
OF SAMPLES IN THE WINDOW : 6
THE DRIFT IS A SECOND DEGREE POLYNOMIAL
THE MEAN IS
0.22210 AND THF VARIANCE
EXPFRIHENTAL SEHIVARIOGR AH
Nil fin EH OF SAMPLES IN THE LINE : 7
0.00204
NUMBER OF SAMPLES IN THE WINDOW
SECOND DECREE POLYNOMIAL FOR THE DRIFT
KYLERTOHN SURFACE MOISTURE - 8/3/78
6 SAMPLE DISTANCE 33.12
-------
EXPERIMENTAL SEMIVBRIOGRAH
GAHNA( 0)
GAMHS( 1)
GAHMAf 2)
GANNAJ 3)
GAHHA( 4)
GAHHA( 5)
0.0
0.12180-02
0. 1293D-02
0.2131D-02
0. 1555D-02
0.770IJD-33
-------
KYLERTOUN SURFACE MOISTURE - 8/3/78
DISTANCE H.
DISTANCE N.
0.00209
0.00200
0.00192
0.00183
0.00175
0.00166
0.0015B
0.00149
0.0011(1
0.00132
0.001211
0.00115
0.00107
0.00098
0.00090
0.00081
0.00072
0.00064
0.00055
0.000i»7
0.00038
0.00030
0.00021
0.00013
0.00004
0.0 16.560 33.120 49.600 66. 240 82.800 99.360 115.920 135!. 480 149.040 165.600
0.0 16.560 33.120 49.680 66.240 82.800 99. .360 115.920 132.480 149.040 165.600
I E
T
i
i
i
i
I E
I
I A
I E
II A I
I . I
I I
I I
I I
I A I
1 I
I I
I I
I I
I • I
I I
I ' I
I I
II II
* -. * ______*______ — _*_________*_________*___—_____*_________*___ — _-_-*-_—--__-*-__------*
EXPERIMENTAL SEMIVABIOGRAH (E) AMD ASSUMED (A) KflBRTOHH SURFACE >IOISTOHE - 8/3/78
NUMBER OP ITNES FOR THE GROUP : 1 NUMBER OF SAMPLES IN THE WINDOW : 6 SAMPLE DISTANCE 33.12 M.
SECOND DEGREE POLYNOMIAL FOR THE DRTPT BIASED SRHIVARIOGRAflS
-------
BXPFRIMENTAL SEHIVARIOGRAM
ASSUMED SEMIVABIOGRAfl
GAMMA
GAMMA
GAMMA
GAHMA
GAHflA
GAMMA
0) =
1) =
2) =
3) =
1) =
5) =
0.0
0.1218D-02
0.1293D-02
0.2131D-02
0. 1555 D- 02
0.7701D-33
GAHHA( 0)
GAMMA ( 1)
GANNft( 2)
GAMHA( 3)
GAMMA ( 0)
GA.IMAf 5)
0.0
0.1218D-02
0.1U21D-02
0.1218D-02
0.8120D-03
0.0
-------
KYLERTOUN SURFACE HOISTORK - 8/3/78
DISTANCE H.
DISTANCE N.
0.00998
0.00963
0.00928
0.001)93
0.001150
O.OOH23
0.00708
0.00753
0.00710
0.00603
0.00648
0.00613
0.00578
0.00543
0.00508
0.00473
0.00138
0.00403
0.00368
0.00333
0.00298
0.00263
0.00228
0.00193
0.00158
0.00123
0.00088
0.00053
0.00018
0.0
0.0
I
I
I
I
T
I
I
I
t
I
I
I
I
I
I
I
I
I
I
r
i
i
i
t
i
t
i
i
ii
16.560 33.120 49.680 66.240 82.800 99.360 115.920 132.480 149.040 165.600
16.560 33.120 49.680 66.240 82.800 99.360 115.920 132.480 149.040 165.600
«I
I
I
E I
I
A I
I
I
E I
I
I
A r
i
i
8
I
I
I
I I
I
I
I
I
I
* * * _ * * * * * — — « — »
EXPERIMENTAL SENIVARIOGBAH (E) AND ASSUMED (A) ICYLEBTOHN SUB FACE MOISTURE - 0/3/78
NUMBER OF IINES FOR THE GBOUP : 1 NUMBER OF SAMPLES IN TUB WINDOW : 6 SAMPLE DISTANCE 33.12 M.
SECOND DEGWEE POLYNOMIAL FOR THE DRIFT tlHBIASED SEMIVABIOGHAMS
-------
EXPERIMENTAL SEHIVAPIOGBAH
ASSUMED SBNIVABIOGRAM
GAMMA ( 0) =
GAMMA ( 1) =
GfiNMA( 2) =
GAMMA ( 3) =
GAMMA { 4) =
GANHA( 5) =
0.0
0.20300-02
0.3932D-02
0.7003D-02
0.8863D-02
0.10150-01
GA«MA(
GAMMA(
GAMMA(
GAHHA(
GAHHA{
GAMMA(
0) =
2» =
3J =
4) =
5) =
0.0
0.2030D-02
0.4060D-02
0.6090D-02
0.8I20D-02
0.1015D-01
SEHTVARIOGRAd SLCPR AT THE ORIGIN
0.61290-04 SQUARE UNISS / fl.
OO
-------
KYIERTCHN SOBFACE MOISTURE - 8/3/78
SAMPLE DISTANCE 33.12 H.
THIS IS LINE 1 FOll THE GROOP
z
7:
Z
z
7.
Z
Z
1)
2)
3)
'<)
5)
6)
7)
P2
P5
P5
P7
P7
P3
P4
(12, Ub)
(34,113)
(75,114)
(94,147)
(96,168)
(134,193)
(154,225)
0.177
0.279
0.214
0.192
0.164
0.242
0.2A8
NUMBER OF SAMPLES IN THE WINDOW I 7
TUB DRIFT IS A SECOND DEGREE POLYNOMIAL
THE MEAN IS
0.22214 AND THE VARIANCE
EXPERIMENTAL SEfllVARIOGRAM
NUMBER OF SAMPLES IN THE LINE : 7
0.00204
NUMBER OF SAMPLES IN THE WINDOW
SECOND DEGREE POLYNOMIAL FOR THE DRIFT
KYLERTOWN SBBFACK MOISTURE - 8/3/78
7 SA1PIE DISTANCE 33.12
-------
EXPERIMENTAL SEMIVARIOGRAM
GAMMA ( 0)
GAMMA( 1)
GAMMA( 2)
GAMMA( 3)
GAHMAJ «)
GAMM%( 5)
GAHHA( 6)
0.0
0. 1Q06D-02
0.2620D-02
0.3625D-02
0.2910D-02
0.2261D-02
0.0
-------
KYLERTOHB SUBFACF MOISTURE - 8/3/70
DISTAKCF M,
DISTANCE H.
0.0035U
0.00350
0.00341
0.00333
0.00325
0.00316
0.00308
0.00299
0.00291
0.00202
0.00271
0.00266
0.00257
0.00249
0.00210
0.00232
0.00223
0.00215
0.00207
0.00198
0.00190
0.00181
0.00173
0.00161
0.00156
0.00148
0.00139
0.00131
0.00122
0.00114
0.00105
0.00097
0.00089
0.00080
0.00072
0.00063
0.00055
0.00046
0.00038
0.00030
0.00021
0.00013
0.00004
0.0
0.0
I
I
I
I
I
I
I
I
I
[
T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t
IK
*___ —
19.872 39.744 59.616 79.480 99.360 119.232 139.104 158.976 178.848 198.720
10.872 39.744 59.616 79.488 99.360 119.232 139.104 158.976 178.848 198.720
E I
I
I
I
I
I
I
I
E I
I
I
K I
I
I
Jl I
k I
E T
I
I
A I
I
I . I
I
I
I
I
I
A I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
II
* * * * * * * *-- --* *
EXPERIMENTAL SEMIVARIOGRAH (E) AND ASSUMED (A) KYLERTOWN SURFACE MOISTURE - 8/3/78
OF LIMES BOH THE GROUP : 1 NUMBER OF SAMPLES IN THE WINDOW : 7 SAMPLE DISTANCE 33.12 «.
SECOND DEGREE POLYNOMIAL FCH HIP DRIFT BIASED SRHIVAEIOGRAMS
-------
EXPEHIMENTAL SEHIVARIOGRAN
ASSUMED SKMIVUHIOGRAM
GAHHA( 0) =
GAM.1A( 1) =
GAMMA ( 2) =
GAMMA ( 3) =
GAHHA{ 1) =
GAMMA < 5) =
GAMMA ( 6) -
0.0
0. 1806D-02
0. 26200-02
0.36250-02
0.29100-02
0.2261D-02
0.0
GAMMA( 0)
GAHHA( 1)
GAMMA( 2)
GAHHA( 3)
GAHHA( 4)
GAMMA( 5)
GAMMA( 6)
0.0
0. 1806D-02
0.23710-02
0.23220-02
0.1961D-02
0.12900-02
0.0
-P-
KJ
K)
-------
KYIEBTOKN SURFACE MOISTURE - 8/3/7B
ho
OJ
DISTANCE M.
DISTANCE H.
0.01608
0.01573
0.01537
0.01502
0.01167
0.01431
0.01396
0.01361
0.01325
0.01290
0.01255
0.01219
0.01181
0.01119
0.01113
0.01078
0.01013
0.01007
0.00972
0.00937
0.00901
0.00866
0.00831
0.00795
0.00760
0.00721
0.00689
0.00651
0.00618
0.00503
0.0051R
0.00512
0.00177
0.00112
0.00406
0.00371
0.00336
0.00300
0.00265
0.00230
0.00194
0.00159
0.00124
0.00088
0.00053
0.00018
0.0
0.0
T
I
T
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
IK
*__
19.872 39.744 59.616 79.488 99.360 119.232 139.104 158.976 178,848 198.720
19.872 39.711 59.616 79.488 99.360 119.232 139.104 158.976 178.848 198.720
HI
I
I
I
E I
I
I
A 1
I
, I
I
I
E I
I
I
A I
I
I
I
E I
I
I
I
A • I
I
I
I
I
I
E I
A I
I
I
I
I
I
I
I
K I
I
I
I
I
I
I
I
* ____ — *_________*_ — ______*____ — ___*_ — _ — ___*_________*_________*_________*_________»
EXPFBINENTAL SEH1VARIOGRAH (E) AND ASSUMED (A) KYLERTOUU SURFACE MOISTURE - 8/3/78
NllftDFR OF LINES (OR, THE GHOtIP : 1 NIIHBEK OF SAMPLES IN THK WINDOW : 7 SAMPLE DISTANCE 33.12 M.
StCOND DECKER POLYNCNIAt FOF. TUB DRIFT UNWVSED SEHIVARIOGBAMS
-------
EXPFBIMENTAl SEHIVARIOGRAH
ASSUMED SEHIVABIOfiHAM
KAHMAI 0)
GAMMA< 1)
GAHflA( 2)
GAMMA( 3}
GAHHM 1)
GAMMA( 5)
GAMMA ( 6)
0.0
0.2709D-02
0.5665D-02
0.9431D-02
0.1179D-01
0.1M52D-01
0.16260-01
GAHHA(
GAHHA(
GAHMA(
GAMMA (
GAHH&{
GAMHA{
GAMMA (
0)
1)
2}
3)
•»)
5)
6|
3
»
3S
S
0.0
0.2709D-02
0.6*190-02
0.812BD-02
0.1081D-01
0. 1355D-01
0.16260-01
SEIUVARIOGRAH SIOPE AT THE ORIGIN
O.B1B1D-04 SQUARE UNITS / H.
-------
SEMIVAKIOGKAH CALCULATION - DATA ALONG A LINE
Cola.
1-5 | 6-10
11-15
16-20
21-25
26-30
31-35
36-40
41-45 J 46-50
51-55 J 56-60
61-65 J 66-70 | 71-75 | 76-80 j
N3
t-n
1st
Card
2nd
Card
3rd
Card
Next
Cards
Next
Card
Next
Card
Next
Card
FT T « nl
3
A
4
,
F
6
0
)
CM LIMB
0
N
4
|»|
• 1*1 *l*
2
i u
|0
1
u 111 mi 111 i 111 irui
C M L I Ml)
i iii
0
N P L L
P01NT( II .1 )
P
P
P
P
P
P
1
2
5
5
7
7
3
4
(
(
(
(
C
i
(
3
7
9
9
L
1
i
4
5
4
6
3
5
2
,
.
B
.
4
4
,
1
1
1
1
,
8
1
1
4
6
1
2
6
3
4
7
8
9
2
)
)
)
)
)
B
5
)
)
|0
• m
75
1
a( i )
0
0
0
0
0
0
0_
.
.
•
|
.
.
1
2
2
1
1
2
2
7
7
1
9
6
4
8
7
8
3
1
4
I
7
i
9
9
7
0
9
S
9999 .
9999 .
H'M-liH 1 M.l 1 1 1 1 1 MY|L|E »|TO|«|«| |S|U|R|,|A|C|E| Molilsfrlu at 1 M M/b /Hal I I I
•
N
7
I D
0
N P L L
0
IB D L 1 U N I T| TIT(L)
Milil'l 1 IM. | | Ml |K|YL|EMr|o|wM W«MA|c|E| ^I'l'MuR*! |-| M/b/bM | | |
-------
SEMIVARL (CONT)
Cols.
Next
Carda
Next
Next
Card
Next
Card
Next
Carda
Next
Ca rd
1-5
6-10
11-15
P 01 N T ( 1 I . I )
P
P
P
P
P
P
P
2
5
5
7
7
3
«
(
(
(
{
(
(
(
3
7
9
9
1
1
1
4
5
4
6
3
5
2
,
t
,
4
4
.
1
1
1
1
,
,
8
1
1
4
6
1
2
6
3
4
7
8
9
2
)
)
)
)
)
8
5
)
)
P
P
P
P
P
1
I
I
0
2
5
5
7
7
3
4
I
H
(
(
(
(
(
(
1l
T ( I
(
3
7
9
9
1
1
1
4
c
4
6
-
*;
2
,
,
,
,
4
4
IH
16-20 | 21-25 26-30 31-35 36-40 | 41-45 j 46-50 51-55 J 56-60 j 61-65 J 66-70 ( 71-75 j 76-80 J
X ( 1 )
0
0
0
0
0
0
0
.
.
.
.
.
i
2
2
J
1
2
2
7
7
1
9
6
4
8
**,
7
8
3
1
4
1
7
9
1
9
9
7
0
9
5
.
N^9
N P
1
,
i
i
i
i
,
,
8
1
1
4
6
1
2
6
3
4
7
8
9
2
)
)
)
)
)
I
c
)
)
L
I
9
9
,
IB! DLUNIT! T i T ( L )
MJU.12IM.I | 11 ||H4iJ4UH4i44U
-------
SEMIVARL. (CONT)
Cols.
Next
Card
1-5 | 6-10
11-15 I 16-20 j 21-25 1 26-30 j 31-35 1 36-40 1 41-45 j 46-50 1 51-55 1 56-60 1 61-65 j 66-70 J 71-75
|»K1»I-
76-BO |
Next
Card
Next
Cards
Next
C.ir
P
r
2
5
5
7
7
3
4
(
(
(
(
(
(
(
3
7
9
9
1
1
1
4
5
4
6
-1
5
2
(
.
.
.
4
'•
,
1
1
1
1
,
.
a
i
i
4
6
I
2
6
3
4
7
8
9
2
)
)
)
)
)
1
5
)
)
P
L\\
X (I )
0
0
0
0
0
0
li
.
.
.
.
i
2
2
1
1
2
t
7
7
1
9
6
i
ft
7
a
3
i
4
1
7
1
9
9
7
0
9
5
1 1 I I
PPM9
•
9(9 (9)9
,
YMM'W iVMl 1 1 1 1 i 1 ! |K|YN4RNo|w|iT|sMl|HAlc|E| |H|O|,IS|TIU|R|E| |-| |s|/H/H 4 1 1 1 1
-------
SECTION 13
SURFACE II CONTOURING SYSTEM
As stated in the beginning of this compilation, the Surface II Contouring
System has the capability of using the new Universal Kriging techniques to
determine highly accurate contours of data arbitrarily arranged on a surface.
The program takes the arbitrarily arranged data and forms a grid matrix of
interpolated values through Kriging techniques. Then, the program draws
contours on the basis of the grid matrix and outputs plotting commands
according to the type of plotter the user possesses.
We cannot reveal too much about Surface II in this compilation of programs
because it is a proprietary program. We have, however, included a sample data
set and several contour maps resulting from this sample data set. One of the
contour maps is the contours for the actual data values inputed. The other is
a contour map of the probable errors (in standard deviations) caused by the
Kriging interpolation.
Surface II can contour measured data or any of the outputs of the other
programs in this manual. Indeed, we ourselves, have used it in conjunction
with the Standardization Program, the Surface Water and Density Program, the
Green and Corey Model, the Mein Numerical Model, the Soil Loss Equation, and
the Ritchie Evapotranspiration Model. The Kriging module of Surface II
requires information on the Semivariogram of the data to be Kriged. This is
provided by the Semivariogram Calculation Program.
428
-------
There is much more, however, to Surface II than just the Kriging and the
contouring techniques. Moreover, Surface II is available from the Kansas
Geological Survey of the University of Kansas at reasonable rates for non-
profit organizations. Here is the best address to use:
Mr. Owen Spitz
Computer Services Section
Kansas Geological Survey
1930 Avenue A, Campus West
University of Kansas
Lawrence, Kansas 66044
913-864-4991
INPUT: Graph parameters
Outlines within graph
Polynomial degree of the drift
Semivariogram slope of standard and wide neighborhoods
Sample variance
At least 12 to 15 samples of phenomenon to be Kriged
OUTPUT: Grid matrix, error matrix, contour plots and 3-D plots
of phenomenon studied
REFERENCES: R. A. Olea. 1975. Optimum mapping techniques using regionalized
variable theory. Kansas Geological Survey Series on Spatial
Analysis No. 2, Lawrence, Kansas.
R. J. Sampson. 1975. Surface II Graphics System. Kansas
Geological Survey Series on Spacial Analysis No. 1,
Lawrence, Kansas.
429
-------
SURFACE II CONTOURING SYSTEM - INPUT DATA
LO
O
SAMPLE
1
2
J
4
5
6
7
0
9
10
t 1
12
13
14
IS
1b
17
10
10
20
21
22
23
2
-------
CO
-------
o
cu
o
o
(U
rrTrrrtVJl
o
UJ
o
o
O
O
OJ
o
U)
o
o
o
U1
i i i i i
o
Ul
o
CNI
CO
-------
REFERENCES
1. Bittinger, M. W., H. R. Duke, and R. A. Longenbaugh. Mathematical
Simulations for Better Aquifer Management. In: Proceedings,
Symposium of Haifa, International Association of Scientific Hydrology,
Publ. 72, 1967. pp. 509-519.
2. Chiles, J. P., P. Delfiner, A. Marechal, and G. Matheron. Specialized
Techniques of Geostatistics. Center de Geostatistique, Fountainebleau,
France, October 1979.
3. Delfiner, P. Basic Introduction to Geostatistics. Center de Geostatistique,
Fountainebleau, France, July 1979.
4. Engman, E. T., L. H. Parmele, and W. J. Gburek. Hydrologic Impact of Tropical
Storm Agnes. J. Hydro1., 22:179-193, 1974.
5. Gill, M. A. Analysis of One-Dimensional Non-Darcy Vertical Infiltration.
J. Hydrol., 35:1-11, 1976.
6. Green, R. E. and J. C. Corey. Calculation of Hydraulic Conductivity: A
Further Evaluation of Some Predictive Methods. Soil Sci. Soc. Am.
Proc., 35(1):3-8, 1971.
7. Hamilton, E. L. Rainfall Sampling on Rugged Terrain. USDA-Forest Service,
U.S. Government Printing Office, Technical Bulletin No. 1096, Washington,
D.C., December 1954.
8. J. T. Helwig and K. A. Council. Statistical Analysis System User's Guide.
SAS Institute, Inc., Gary, North Carolina, 1979.
9. International Mathematical and Statistical Library Reference Manual. IMSL
LIB-0008, IMSL, Houston, Texas, June 1980.
433
-------
10. Jaynes, D. B., A. S. Rogowski, and H. B. Pionke. Atmosphere and Temperature
within a Reclaimed Coal Strip Mine and a Numerical Simulation of Acid Mine
Drainage from Strip Mined Lands. EPA-600/7-84-033, U.S. Environmental
Protection Agency, Cincinnati, Ohio, 1984.
11. Kirkham, D. and W. L. Powers. Advanced Soil Physics. Wiley-Interscience,
New York, 1972.
12. Liakopoulous, A. C. Theoretical Solution of the Unsteady, Unsaturated Flow
Problems in Soils. Bull. Int. Assn. Sci. Hydrol., 10(1):5-39, March 1965.
13. Mein, R. G. Modeling of the Infiltration Component of the Watershed
Rainfall Runoff Process. Ph.D. Thesis, University of Minnesota,
Minneapolis, Minnesota, 1971.
14. Morth, A., E. Smith, and K. Shumate. Pyritic Systems: A Mathematical
Model. EPA-R2-72-002, U.S. Environmental Protection Technology Series,
U.S. Environmental Protection Agency, November 1972.
15. Muscat, M. The Flow of Homogeneous Fluids through Porous Media. J. W.
Edwards, Inc., Ann Arbor, Michigan, 1946.
16. Olea, R. A. Measuring Spatial Dependence with Semivariograms. Kansas
Geological Survey Series on Spatial Analysis No. 3, University of
Kansas, Lawrence, Kansas, 1977.
17. Olea, R. A. Optimum Mapping Techniques Using Regionalized Variable
Theory. Kansas Geological Survey Series on Spatial Analysis No. 2,
University of Kansas, Lawrence, Kansas, 1975.
18. Peaceman, D. W. and H. H. Rachford. The Numerical Solution of Parabolic
and Elliptic Differential Equations. J. Soc. Ind. Appl. Math., 3(1):
28-41, March 1955.
434
-------
19. Pedersen, T. A., A. S. Rogowski, and R. Pennock, Jr. Comparison of Some
Properties of Minesoils and Contiguous Natural Soils. EPA-600/7-78-162,
Research and Development Series, U.S. Environmental Protection Agency,
Cincinnati, Ohio, August 1978.
20. Philip, J. R. Numerical Solution of Equations of the Diffusion Type with
Diffusivity Concentration-Dependent. Transactions of the Faraday Society,
Aberdeen, United Kingdom, Part 7, 51(391):885-892, July 1955.
21. Pinder, G. F. and J. D. Bredehoeft. Application of the Digital Computer
for Aquifer Evaluation. Water Resour. Res., 4(5):1069-1093, 1968.
22. Prickett, T. A. and C. G. Lonnquist. Selected Digital Computer Techniques
for Groundwater Resource Evaluation. Illinois State Water Survey,
Urbana, Illinois, Bulletin 55, 1971.
23. Raats, P. A. C. Unstable Wetting Fronts in Uniform and Nonuniform Soils.
Soil Sci. Soc. Am. Proc., 37(5) :681-685, 1973.
24. Remson, I., C. W. Hornberger, and F. J. Molz. Numerical Methods in
Subsurface Hydrology. Wiley-Interscience, New York, 1971.
25. Ritchie, J. T. Model for Predicting Evaporation from a Row Crop with
Incomplete Cover. Water Resour. Res., 8(5) -.1204-1213, 1972.
26. Rogowski, A. S. and E. L. Jacoby, Jr. Monitoring Water Movement through
Strip Mine Spoil Profiles. Trans. ASAE, 22(1) :104-109, 114, 1979.
27. Rogowski, A. S., H. B. Pionke, and B. E. Weinrich. Hydrological and Water
Quality Modeling on Reclaimed Stripmined Land. Hydrological Forecasting
(Proceedings of the Oxford Symposium), IAHS Publ. 129, pp. 299-304,
April 1980.
28. Rogowski, A. S. and T. Tamura. Movement of 137 by Runoff, Erosion and
vjS
Infiltration on the Alluvial Captina Silt Loam. Health Physics,
Pergamon Press, 11:1333-1340, 1965.
435
-------
29. Rogowski, A. S. and B. E. Weinrich. Modeling Water Flux on Strip-Mined
Land. Trans. ASAE, 24(4):935-940, July 1981.
30. Rogowski, A. S. and B. E. Weinrich. Simulating a Long-Term Response of
Reclaimed Area to Percolation. In: Proceedings, Symposium on Surface
Mining Hydrology, Sedimentology and Reclamation, University of Kentucky,
Lexington, Kentucky. UKY BULL. 9, pp. 152-160, December 1979.
31. Sampson, R. J. Surface II Graphics System. Kansas Geological Survey Series
on Spatial Analysis No. 1, University of Kansas, Lawrence, Kansas, 1975.
32. Sincovec, R. F. and N. K. Madsen. Software for Nonlinear Partial
Differential Equations. ACM Transactions on Mathematical Software,
1(3):232-263, September 1975.
33. Snedecor, G. W. Statistical Methods. Fifth Edition, The Iowa State
University Press, Ames, Iowa, 1956.
34. Sternberg, Y. M. and A. F. Agnew. Hydrology of Surface Mining - A Case
Study. Water Resour. Res., 4(2):363-368, April 1968.
35. Wachspress, E. L. and G. J. Habetler. An Alternating-Direction-Implicit
Interation Technique. J. Soc. Ind. Appl. Math., 8(2):403-424,
June 1960.
36. Wischmeier, W. and D. Smith. Predicting Rainfall Erosion Losses - A Guide
to Conservation Planning. USDA-SEA, Agricultural Handbook No. 537,
U.S. Government Printing Office, Washington, D.C., December 1978.
436
-------
_ TECHNICAL-REPORT DATA
(Please readlauructions on ihc reu-ric before compleiingj
. REPORT NO.
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
Water Movement and Quality on Stripmined Lands:
Compilation of Computer Programs
5. REPORT DATE
June 1984
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
B. E. Weinrich and A. S. Rogowski
8. PERFORMING ORGANIZATION REPORT NO
4
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Northeast Watershed Research Center
USDA-ARS, 110 Research Building A
University Park, Pennsylvania 16802
10. PROGRAM ELEMENT NO.
EHA-541
11. CONTRACT/GRANT NO.
EPA-IAG-D5-E763
12. SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
Office of Research & Development
Office of Energy, Minerals & Industry
Washington, B.C. 20460
13. TYPE OF REPORT AND PERIOD COVERED
Interim 9/1/75-8/31/80
14. SPONSORING AGENCY CODE
EPA-ORD
15. SUPPLEMENTARY NOTES
This project is part of the EPA-planned and coordinated Federal Interagency
Energy/Environment R&D Program.
6. ABSTRACT • ' ———' ——
This publication is a collection of the computer programs written, adapted
and/or developed during the Northeast Watershed Research Center's strip mine
hydrology research project. Although, in our study, we dealt with mined and
reclaimed lands the programs can be applied to any general hydrological situation.
One can find here programs applicable to all the major components of the watershed
rainfall-runoff-drainage process. Included in this compilation, are also programs
handling erosion and pollution.
(Circle One or More)
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS C. COSATi field/Group
Ecology
Fnvironmer.ts
ir. Armospnerc
Environmental
.eograpr.v
Larth Hycrospnerr
Combustion
Reiimnq
Energy Conversior
Pnvsical Cnemistrv
Materials Handiinc
inorganic Cnemistrv
Orcanic Cnemistr\
Cnemical Engmee'ing
Computer Science
6F 8A 8F
8H IDA 10B
7B 1C 13B
2. DISTRIBUTION STATEMEN"
19. SECURITY CLASS iTnis Report/ I 21. NO. OF PAGES
20 SECURITY CLASS ;Tntspafe/
22 PRICE
Form 2220-1 (9-73)
------- |