905984002A
HANDBOOK
a management technique for choosing
among point and nonpoint control strategies
Appendix G
Users Manual for WATERSHED Computer Program
-------
HANDBOOK
a management; technique for choosing
among point; and nonpoint control strategies
Users Manual for
Appendix G
Computer Program
By
Michael R. Donihue
Consultant
Timothy J. Monteith
Great Lakes Basin Commission Staff
August 1981
Prepared for
U.S. Environmental Protection Agency
Great Lakes National Program Office
536 South Clark Street, Room 932
Chicago, Illinois 60605
(312)353-2117
-------
DISCLAIMER
This report has been reviewed by the Great Lakes National Program
Office, Region V, U.S. Environmental Protection Agency, and approved for
publication. Approval does not signify that the contents necessarily reflect
the views and policies of the U.S. Environmental Protection Agency, nor does
mention of trade names or commercial products constitute endorsement or
recommendation for use.
ACKNOWLEDGEMENTS
The authors wish to thank the Great Lakes National Program Office
Staff and Don Urban of the USDA Soil Conservation Service for their support
and guidance throughout this project. We also wish to acknowledge Marie
Murrell for the secretarial support.
PROJECT OFFICERS
Great Lakes National Program Office
Kent Fuller
Great Lakes Basin Commission
Timothy Monteith
-------
TABLE OF CONTENTS
PAGE NO.
LIST OF TABLES 3
LIST OF FIGURES 5
INTRODUCTION 7
SECTION 1 - MAIN WATERSHED COMPUTER PROGRAM 9
Overview of Commands 9
Command Details 11
Sample Terminal Session ... 16
Sample Worksheet Output . 23
Program Flow Chart and Listing 33
Data Files 94
SECTION 2 - NETWORK PROGRAM ...... 101
Commands 101
Sample Terminal Session 101
Computer Flow Chart and Listing 103
Program Output 113
-------
LIST OF TABLES
NUMBER PAGE NO.
1 Legal Commands for WATERSHED Program . . 9
2 Legal Commands for NETWORK Program .... 101
-------
LIST OF FIGURES
NUMBER PAGE NO.
1 Flow of Commands for Typical Program Run ..... 10
2 WATERSHED Program Flow Chart 34
3 NETWORK Program Flow Chart 104
-------
APPENDIX G
USERS MANUAL FOR WATERSHED COMPUTER PROGRAM
INTRODUCTION
This computer program was developed to assist the user in manipulating
WATERSHED worksheet data. The program is particularly useful when analyzing a
network of river basins or when making a number of changes in the original
assumptions.
In order to use this program properly the user must have a good
understanding of• the basic WATERSHED process presented in the main handbook.
There is no substitution for using the worksheets presented in the handbook to
organize the initial assumptions. Once the data requirements of the
worksheets have been met the computer program can be implemented to assist
with calculations.
The program is written in Fortran and is runable on most medium to large
size computers. The output format necessitates a wide carriage terminal or
full 132 character printer. The data input and manipulation is done
interactively and may be accomplished on any type of computer terminal. The
program utilizes a "command" based system that requires the user be familiar
with the 14 commands, legal key words, and option lists available for driving
the program. Although the program prompts the user at many points for
specific information, the user should still become familiar with 'the program
commands-presented in the following chapter.
There are actually two programs that make up the full WATERSHED
computerized system. The first is called WATERSHED. This program performs
all operations of the WATERSHED process for one river basin. The second is a
sub-program called NETWORK. This program reads in the output data from
WATERSHED for up to 7 different river basins and produces a Worksheet 8 for
the entire network. This manual is divided into two sections. Section 1
describes the operation of the main WATERSHED program and Section 2 describes
the NETWORK program.
-------
SECTION 1 - MAIN WATERSHED COMPUTER PROGRAM
Overview of Commands
Each user must determine how their computer calls compiles, and runs a
Fortran program and how such a program interacts with their hardware. The
input and output subroutines utilize numbers to identify various data files.
The number 8 is used for the input file associated with the READ command. The
number 9 is used for the outputting of data, (other than final Worksheets) in
the SAVE command. Final worksheets will default to the terminal unless routed
to a data file identified by the proper number with the WORKSHEET command.
The full list of acceptable commands is shown in Table 1. As can be seen
many of the commands have keywords that are required to modify the command.
Once the computer run begins the program will prompt "enter command" and then
wait for further instruction. The user must then select one of the 14
commands from table 1 to properly respond to this prompt.
TABLE 1
Legal Commands for WATERSHED Programs
CONTROL Keyword (option!ist)
COST Keyword
XCOST Keyword
HELP
INPUT Keyword
LOAD .Keyword
PERCENT Keyword
XPERCENT Keyword
READ Keyword
SAVE Keyword
STOP
TITLE (value) Title list
TRANSMISSION (position number)
WORKSHEET (file number) Worksheet number
Many of the commands depend upon the completion of operations carried
out under other commands on the list. Figure 1 shows a flow of commands for a
typical WATERSHED run. Once the computer run has begun, HELP and STOP may be
used at any point. STOP should be used with caution because data can be lost
if it has not been properly saved. As can be seen in Figure 1, the use of the
LOAD command is optional although it should be activated early in the process.
The user may then use the READ command to bring in data from the previous run
or may proceed through the TITLE, INPUT, and SAVE commands to build new
Worksheets 1 through 4. The data may then be displayed using the WORKSHEET
command to check for errors before moving on to the pollutant control options.
It should be noted that the only way errors can be corrected is by STOPing the
program after the SAVE command and editing the output file or starting over by
re-entering all of the data.
Figure 1 shows the optional PERCENT and XPERCENT commands which may
be used before moving into the actual CONTROL options. Again controls may be
-------
ENTER COMMAND
Figure 1
Flow of Commands for
Typical Program Run
10
-------
put in from the keyboard or read from a file. The cost of the controls are
then entered (COST or XCOST) and transmissions may be modified with the
TRANSMISSION command. Worksheets can be printed to the terminal or data file
using the WORKSHEET ALL command and, the control options may be saved.
Command Details
The units used in this program are the same as those displayed on the
worksheets in the WATERSHED handbook. Where prompting for specific units does
not occur, worksheet units should be used. As previously mentioned, some
commands must be preceded by other commands in the list. Figure 1 provides a
general guideline although more detail can be found in this section.
CONTROL keyword (optionlist)
The CONTROL command accepts input of control strategy data. Each
command for the respective keywords increments the stage of controls for which
values are to be entered. No more than three stages of controls may be
specified. Each keyword has a set of optional arguments which may be
specified within parenthesis in the command line following the keyword.
Multiple options separated by commas within the set of parenthesis are
accepted. The user is then prompted for the values of the controls specified.
If no options are specified appropriate defaults are used.
keyword - URBAN for the input of point and urban non-point control
strategies. If no options are specified the default
optionlist is -- (FLOW,CONCiAREA,UAL).
(optionlist) - any of the following are valid options to identify
particular source values for controls.
FLOW - to control flow values for point sources
CONC - to control concentrations for point sources
AREA - to control area values for all non-point sources
AREA/sourcename - to control area values for a specific
source (e.g. AREA/STORM or AREA/COMBINED)
UAL - to control unit area loads for all non-point sources
UAL/sourcename - to control unit area loads for a specific
source
LOAD - to control load values directly for all urban sources.
Note: this is the default if the LOAD URBAN command
has been given.
keyword - RURAL to input control values for rural cropland sources.
The default value of the optionlist includes the five USLE
coefficients (R,K,LS,C,P).
(optionlist) - any of the following are valid options
R,K,LS,C,P - any combination of the USLE coefficients may be
specified using these identifiers.
EFF - to alter the efficiency ratio for a particular source.
The default value for all sources is 1.0
UAL - to alter unit area loads if USLE coefficients are not
used. Note: this is the default if the LOAD
CROPLAND(UAL) command has been given.
II
-------
LOAD - to control load values directly for all cropland
sources. Note: this is the default if the LOAD
CROPLAND command has been given.
COST keyword
Accepts input on the cost of controls. Each command for the
respective keyword increments the stage number for which the command applies.
Multiple keywords separated by commas may be used in a single command. The
user is prompted for the' appropriate costs of control. ?Note: The default sets
costs the same within any source group i.e. $1000/km to reduce stormwater
runoff loads by 10% in all cities.
keyword - valid keywords are URBAN and RURAL corresponding to costs
of control for urban point and non-point sources and rural
cropland sources, respectively.
XCQST keyword
This command is identical to the COST command with the important
distinction that costs may differ within source groups. The user is prompted
for "per unit costs of control" for each source. Valid keywords are the same
as those above.
HELP
This command prints a brief list and description of the valid
WATERSHED commands.
INPUT keyword
This command prompts the user for values for the initial state of the
WATERSHED area of study. Various keywords may be specified and multiple
keywords separated by commas are accepted. The default if no keyword is
specified is SOURCE.
keyword - SOURCE
prompts the user for type code, source name, point of entry
character, area or units served, and optional surface
features. Must be specified before additional keywords will
be accepted.
The following specifications are prompted for:
type code - an integer value equal to one of the following codes:
1 - for rural non-cropland sources
2 - for rural cropland sources
3 - for municipal (point) sources
12
-------
4 - for industrial (point) sources
12 - is a valid type code causing the corresponding source name to
apply to both a noncropland and a cropland source.
21 - the same as 12 except cropland is prompted before noncropland.
source name - an alphanumeric identifier for each source of not more
than 28 characters.
A blank carriage return signifies the end of source input.
point of entry code - a single character, alphanumeric, marking the
position of the source in the WATERSHED area of study.
area or units served - is a real (floating point) number of the
source area in square kilometers or the number of units for
point sources (e.g. households) served by a particular source.
surface features - is an optional alphanumeric descriptor of the
source. Up to 12 characters are allowed.
keyword - URBAN
To input flow (mgd) and concentration (mg/L) data for point
sources and unit area loads (kg/knr/yr) for non-point urban
sources. All values must be entered as real (floating point)
numbers. Default urban areas are point, storm sewer and
combined sewer. Two additional areas such as construction or
unsewered may be specified by the TITLE command.
keyword - NONCROPLAND
7 2
To enter, area (km ) and unit area loads (kg/km /yr) for
noncropland rural areas. All values must be entered as real
(floating point) numbers. Default areas are grassland and
woodland. Three other area names may be optionally specified
by the TITLE command.
keyword - CROPLAND
To enter values for either USLE coefficients, unit area loads
(kg/km /yr), or total loads for rural cropland areas,(the
latter two when the LOAD command has been used for cropland).
This is alwo where the pollutant delivery ratio is entered
or calculated based on the total rivermouth load. Again, all
values must be entered as real numbers.
LOAD keyword
This command is used to cause WATERSHED to be run using load figures
directly rather than unit area loads and USLE coefficients. This command must
be activated early in the run (see Figure 1). Multiple keywords separated by
commas are accepted.
keyword - URBAN
for point and urban non-point sources
13
-------
NONCROPLAND
for rural non-cropland sources
CROPLAND
for rural cropland sources
CROPLAND(UAL)
to load unit area loads for rural cropland sources rather
than USLE coefficients.
PERCENT keyword
Used if control values to be entered are in terms of percent
reduction from the intial state to stage I or between subsequent stages of
control. User is prompted following the CONTROL command for percent reduction
for the appropriate sources. Values entered must be in decimal form (i.e. 75%
is entered as .75) Multiple keywords separated by commas are accepted. Note:
reductions apply to all sources within a keyword type.
keywords: URBAN or RURAL
XPERCENT keyword
Identical to the PERCENT command but percent reductions are not
assumed to be the same for all sources within a keyword. Following the
CONTROL command the user is prompted for percent reductions for each source.
READ keyword
This command reads from a WATERSHED data file input values which were
SAVEd during a previous program run. File number 8 must be identified as the
data file when the program is run.
keyword - is optional. If omitted only values for the initial state
are read in. The only valid keyword is CONTROL and causes
the values for the various control strategies to be read in.
SAVE keyword
This command writes to a data file the existing data from a WATERSHED
computer session. File number 9 must be identified as the worksheet data file
when the program is run.
keyword - is optional. If omitted only values for the initial state
are stored. The only valid keyword is CONTROL and causes the
values for the various control strategies to be stored.
14
-------
STOP keyword
This command terminates the WATERSHED computer "program. NOTE: If
this command is used before the SAVE command, all data generated in that run
will be lost.
TITLE(value) titlelist
Enables the user to specify up to four titles identifying the
WATERSHED computer session output as a heading for Worksheet I. Also enables
the user to specify optional, other urban, or rural noncropland sources. The
actual title or name follows the value in parenthesis. Maximum title length
is 40 characters and maximum source name length is 12 characters.
(value) - may be an integer from 1 through 4 to indicate the title(s).
(Ill) - to specify one other urban area (such as unsewered)
(U2J - to specify a second other urban area, named in titlelist.
(Rl) - to specify one other rural noncropland area besides the
woodland and grassland default.
(R2) - to specify a second other rural noncropland area.
(R3) - to specify a third other rural noncropland area.
TRANSMISSION(n)
This command is used to alter the effective transmisions for each
source. The value in parenthesis is the integer position number of the
source. The user is then prompted for the value of the transmission. If "n"
is not specified, the user is prompted for the effective transmissions of all
sources.
This is the one major difference between this program and the
Handbook. In this program the TRANSMISSION command would be used to modify
effective transmission and bioavailability as shown in Worksheet 7 in the
Handbook. Because the Handbook columns a7 and by are always multiplied
together, the computer program eliminates tne bioavailable column by. This
variable can still be factored in by altering the transmission value
accordingly. For example, an initial T of 0.9 (column ay) and bioavailable
fraction of 0.5 (column b7) would result in a Load to the Mouth (column dy) of
0.45 times the load to the surface water (column c7). In this program an
initial TRANSMISSION would be entered as 0.45 rather than 0.9.
WORKSHEET (m) n
This command controls the final output of the WATERSHED sub-routines.
The full worksheet tables are outputed according to worksheet numbers as
specified in the manual.
(m) - is an optional output file number to which the tables will be
output. The default is to output to the terminal.
15
-------
n - Is a worksheet number 1 through 8. Multiple worksheet
separated by commas are also accepted.
ALL - is a valid keyword to output all available worksheets.
Sample Terminal Session
The following terminal session provides an example of how a WATERSHED
analysis can be run using the WATERSHED computer program. The data were
obtained from the Sandusky river basin in north central Ohio for example
purposes only. These input data and the resulting WATERSHED worksheets do not
necessarily represent actual conditions in this river basin.
In this example run a large Amdahl computer was used running the
Michigan Terminal System (MTS). The data file WATER.TMP contained input
information and was assigned to unit number 8. Data file WATER.DAT was used
to save new input data and was assigned to unit number 9. Finally, data file
-OUTFIL was a temporary storage area for the final worksheet forms, assigned
to unit number 3. All prompts from the computer program are indicated by a
triangle in the left hand margin. Lines without a triangle were entered by
the user on this sample run.
16
-------
RUN WATERSHED 3=WATER.TMP S»WATER. OAT 3=>-OUTFIL
£>#EX£CUTIQN BEGINS
WATERSHED MANAGEMENT CONTROL PACKAGE
|> ENTER COMMAND
TITL£(1>SANDUSKY RIVER
[> ENTER COMMAND
TITLSO) LAKE ERIE
j> SNTER COMMAND
INPUT SOURCE / UR8AN , NONCROPLAND , CROPLAND
!> ENTER TYPE CODE, SOURCE NAME FOR ACL SOURCES
12, LOSS CREEK
3.3UCYRUS CITY
12, BROKEN SWORD
12, UPPER SANDUSKY RIMER
3, UPPER SANDUSKY CITY
12-TYMOCHTEE CREEK
12 /MIDDLE SANDUSKY
12 /HONEY CREEK
3, TIFFIN CITY
12, WOLF CREEK
12/ROCK CREEK
3, FREMONT CITY
12 /LOWER SANDUSKY (SOIL 1)
12, LOWER SANDUSKY (SOIL 2)
£> INPUT FOR WORKSHEET 1 - PHYSICAL LAYOUT PER SOURCE
DENTSR POINT OF ENTRY CODE /AREA OR UNITS SERVED , SURFACE FEATURES PSR SOURCE
^NON-CROPLAND LOSS CREEK
A,3S,37
t> CROPLAND
A/1SS.9*
^ MUNICIPAL
A,13500.
>
A,'1.3
LOSS CREEK
3UCYRUS CITY
STORM
COMBINED
A,7,2
£>NON-CROPLAND BROKEN SWORD
8 ,71 . 7S
t> CROPLAND BROKEN SWORD
B,'137,13
j>NON-CROPLAND UPPER SANDUSKY RIVER
8,47.13
D CROPLAND UPPER SANDUSKY RIVER
8/274.S
[> MUNICIPAL UPPER SANDUSKY CITY
B/S250.
£> - STORM
SrO.
[> - COMBINED
B/3.7
17
-------
J> NON-CROPLAND TYMOCHTEE CREEK
C,5B.17
j> CROPLAND TYMOCHTEE CREEK
C,5ZS.4
[> NON-CROPLAND MIDDLE SANDUSKY
C,3S.23
t> CROPLAND MI DDLS SANDUSKY
C.542.3S
D> NON-CROPLAND HONEY CREEK
Or 47. 24
t> CROPLAND
QV343.55
[> MUNICIPAL
D,2SOOO.
D,7.0
0,10.4
j> NON-CROPLAND
E, 30.46
|> CROPLAND
S,343.11
>NON-CROPLAND
[> CROPLAND
E,409.3
j> MUNICIPAL
E, 13730.
E, 1 .4
HONEY CREEK
TIFFIN CITY
STORM
COMBINED
WOLF CREEK
WOLF CREEK
ROCK CREEK
ROCX CREEK
FREMONT CITY
STORM
COMBINED
Er12.3
j> NON-CROPLAND LOWER SANDUSKY (SOIL 1)
F, 34.54'
j> CROPLAND LOWER SANDUSKY (SOIL 1)
?,243.53
i>NON-CROPLAND LOWER SANDUSXY (SOIL 2)
F,3.25
£> CROPLAND LOWER SANDUSKY (SOIL 2)
F,100,0
p> INPUT FOR WORKSHEET 2 - POINT 4 URSAN RUNOFF LOADS
h>FOR POINT SOURCES: ENTER FLOW.CONCENTRATION
|>FOR NON-POINT SOURCES: ENTER UNIT AREA LOADS(KG/KM2/YR)
£>8UCYRUS CITY
2.5,4.0
£> STORM
250.
[> COMBINED
900.
£>UPPER SANDUSKY CITY
1.5,4.0
> STORM
0,0
250.
TIFFIN CITY
3.2,4.0
250.
1000.
COMBINED
STORM
COMBINED
1O
u
-------
j> FREMONT CITY
5. 1 ,4.0
j> STORM
2SO.
£> -^ COMBINED
1000.
j> INPUT FOR UORKSHEET 3 - RURAL NON-CROPLAND AREAS
CENTER AREA,UAL FORT GRASSLAND,WOODLAND
NLQSS CREEK
11.33,10.,25.04,10.
£> BROKEN SWORD
1.59,10.,13.17,10.
f> UPPER SANDUSKY RIVER
'12.31 , 10. ,34.33, 10.
|> TYMOCHTES CREEK
3.04,25.,47.13,10.
i> ill DOLE SANDUSKY
17.27,10.,57.38,10.
PHONEY CREEK
3.17,10.,44.07,10.
J>WOLF CREEX
7.57,10.,22.33,10.
£>RGCX CREHK
12.14,10.,55.47,10.
BLOWER SANDUSKY (SOIL 1)
10.0,23.,74.54,10.
OLOWER SANDUSKY (SOIL 23
3.25,10.,0.,10.
INPUT FOR UORKSHEET 4 - RURAL CROPLAND AREAS
IS A POLLUTANT DELIVERY RATIO KNOWN FOR EACH SOURCE
NO
DENTER TOTAL POLLUTANT LOAD AT MOUTH OF 3AsiN(KG/YR)
421000.
CENTER USLE COEFFICIENTS R,K,LSLOSS CREEK
125. ,'.35, .402, .233, 1 .
|> BROKEN SWORD
125.,.33,.424,.233,i.
t>UPPER SANDUSXY RIVER
130.,.42,.426,.245,1.
OTYMOCHTEE CREEK
133.,.32,.357,.280,1.
(>MIDDLE SANDUSKY
138. , .38, .381', .260, 1 .
5«NEY CREEK
125.,'.35, .338,.237,1.
[>WOLF CREEK
1'25. ,Y29. .256, .237, 1.
f>ROCK CREEK
125. , .34', .427, .237,1 .
£>LQWER SANDUSKY (SOIL i>
125. , .32, .410, .2S8-, 1,
£>LOWER SANDUSKY (SOIL 2)
125.,.28,.434,.237, 1.
j> ENTER COMMAND
SAVE
-------
[> ENTER COMMAND
PERCENT URBAN
CENTER COMMAND
tONTROL URBAN(CONG,UAL/STQRM,UBL/COMBINED)'
0 STAGS 1 CONTROL STRATEGIES FOR URBAN SOURCES
t> ENTER PERCENT REDUCTIONS' FOR SOURCE CONC
N IN DECIMAL FORM (E.G. ENTER 257. AS .235
'.75
j>ENTER PERCENT REDUCTIONS FOR NONPOINT STORM SEWER UflL
OIN DECIMAL FORM <£.G. ENTER 25% AS .25)
.25
CENTER PERCENT REDUCTIONS FOR NQNPQINT COMBINED UAL
|> IN DECIMAL FORM (E.G. ENTER 252 AS .25)
.OS
CENTER COMMAND
CON URB STAGE 2 CONTROL STRATEGIES FOR URBAN SOURCES
[>ENTER PERCENT REDUCTIONS FOR SOURCE CONC
5- IN DECIMAL FORM (E.G. ENTER 25* AS .25)
,50
DENTER PERCENT REDUCTIONS FOR NONPOINT STORM SEWER UAL
j>IN DECIMAL FORM (E.G. ENTER 252 AS .25)
.25
CENTER PERCENT REDUCTIONS FOR NONPOINT COMBINED UAL
j> IN DECIMAL FORM (E.G. ENTER 252 AS .25)
.25
-------
COMMAND
CONTROL RURAL(C)
j> 5TACE 1 CONTROL STRATEOIES FOR RURAL SOURCES
CENTER CONTROL VALUES PER SOURCE FOR C -
[>LQSS CREEK
, 109
!>3RQKEN SWORD
'.099
j>UPPER SANOUSKY RIMER
. 103
OTYMOCHTEE CREEK
. 108
[> MIDDLE SANDUSKY
. 1 10
i> HONEY CREEK
. 101
i>WQLF CREEK
. 108
|>ROCK CREEK
. 105
|> LOWER SANDUSKY (SOIL 1)
. US
[> LOWER SANDUSKY (SOIL 2)
.033
DENTER COMMAND
CON RUR(C)
£> STAGE 2 CONTROL STRATEGIES FOR- RURAL SOURCES
ENTER CONTROL VALUES PER SOURCE FOR C , -
LOSS CREEK
'.034
DSROKEN SWORD
,035
i> UPPER SANDUSKY RIMER
.034
£>TYMOCHTEE CREEK
.032
£> MIDDLE SANDUSKY
.035
j> HONEY CREEK
.034
[>WOLF CREEK
.032
[> ROCK CREEK
.033
j> LOWER SANDUSKY (SOIL 1)
. ,03S
SLOWER SANDUSKY (SOIL 21
.033
£> ENTER COMMAND
COST URBAN,RURAL>UR8AN,RURAL
j> STAGE 1 COSTS OF CONTROL FOR URBAN SOURCES
j> ENTER PER UNIT COSTS FOR POINT,STORM,COMBINED SOURCES
2.4,7*00.,7400.
21
-------
> STAGE 1 COSTS OF CONTROL FOR RURAL SOURCES
j> cNTER PER UNIT COSTS FOR RURAL SOURCES
S3.'
[> STAGE 2 COSTS OF CONTROL FOR URBAN SOURCES
j> SNTER PER UNIT COSTS FOR POINT,STORM,COMBINED SOURCES
3.5,3600.,24700.
l> STAGE 2 COSTS OF CONTROL FOR RURAL SOURCES
j> ENTER PER UNIT COSTS FOR RURAL SOURCES
3000.
5NTER COMMAND
WORKSHEETS) SLi.
t> ENTER COMMAND
5AUE CONTROL
0 SNTEfl COMMAND
STOP
j>#EXECUTION TERMINATED
-------
Sample Worksheet Output
Once the command WORKSHEET(S) ALL is given, all final worksheet forms
are written to the data file on unit number 3. An example of the printed
output from this data file follows. These output sheets do not necessarily
correspond to the example terminal session, although most of the names and
data are the same.
23
-------
PHYSICAL LAYOUT
ro
SANDUSKY RIVER
LAKE FRIE
SOURCE
LOSS CREEK
LOSS CREEK
BUCYRUS CITY
STORM
COMBINED
BROKEN SWTtD
BROKEN SWORD
UPPER SANOUSKY RIVER
UPPER SANOUSKY RI VER
UPPER SANOUSKY f ITY
STOPM
COMBINED
TYMOCHTEE CREEK
TYMOCHTEE CREEK
MIDDLE SANOUSKY
MIDDLE SANDUSKY
HOMEY C^EEK
HONEY CREEK
TIFFIN CITY
STORM
COMBINED
WOLF CREEK
WOLF CREEK
ROCK CREEK
ROCK CREEK
FREMONT C ITY
STORM
COMBINED
LOWER SANOUSKY (SO IL 1 I
LOWER SANOUSKY (SOIL 1»
LOWER SANDUSKY (SOU 2)
LOWER SANOUSKY (SOIL ?)
TOTAL
TYPE
NON-CROPLAND
CROPLAND
MUNICIPAL
NON-CROP I ANO
CROPLAND
NON-CROPLAND
CROPLAND
MUNICIPAL
NOM-CROPLANID
CROPLAND
NON-CROPLANO
CROPLAND
NON -CROPLAND
C R OP Lft NO
MUNIC IPAL
NON-CROP! ANO
CROPLAND
NON-CROPL A^O
CROPLAND
MUNICI PAL
NON-CRO:M. AW
CROPLAND
NON-CROPLANO
CROPl AND
POSITION
1
Z
3
4
5
6
7
0
9
10
11
12
13
14
15
16
I 1
18
19
20
21
22
23
24
25
?6
?7
28
29
30
31
3?
POINT
OF ENTRY
A
A
A
A
A
8
H
fl
R
B
B
B
C
C
C
C
0
0
D
0
D
E
E
E
F
E
E
E
F
F
F
F
WORKSHEET 1
AREA UNITS
KM2 SERVED SURFACE FEATURES
36 .9
189. 8
13500.
1.3
7.2
21.8
187 .?.
47. 2
274.6
6253.
0.0
6.7
56. 2
528.4
85.2
542. 4
47.2
343.5
26000.
7.0
10.4
30.5
3 '+ 3 . I
63. 6
409.9
19730.
I. 4
' 12.3
S4.5
243. 6
8.3
100. 0
3695.1 65480.
-------
POINT AND URBAN RUNOFF LOADS
TOTAL POLLUTANT LOADS
WORKSHEET 2
cn
SOURCF
INI Tl AL CONOt TION
RUfYRUS CITY
UPPER SANOUSKY Cr TY
T IFF IN CITY
FREMONT CITY
TOTAl
STAGE 1
RUCYRUS CI TY
UPPFR SANOUSKY CITY
TIFFIN CI TY
FRFHONT CITY
TOTAL
STAGE 2
DUCYRUS CITY
UPPER SANDUSKY CI TY
TIFF IN CITY
FREMONT CITY
TOTAL
POS I
TION
3
13
19
26
3
10
19
26
^
13
VI
26
FLOW
MOO
2.5
1.5
3.2
•5.1
2.5
1.5
3.?
5.1
2.5
1.5
3. ?
5.1
POIN1
CONC .
MG/L
4.0
4.0
4.0
4.T
L.O
1.0
1.3
1.0
0.5
0.5
0. 5
0.5
LO AO
KG/YR
13P20.
8292.
17690.
78193 .
67994 .
3455.
2073.
4422 .
7048.
16999.
1728.
1037.
7711 .
3524.
8499.
STORM
APFA UAL LOAD
KM2 KG/KM2/YR KG/YR
t.3
0 .0
7.0
1 .4
1.3
0.0
7.0
1 .4
I. 3
3,0
7.0
1.4
250.0
0.0
250.0
250.0
137.5
-0. 0
187.5
Ifl7.5
I 40 . 6
-0.0
140.6
140.6
325.
3.
1753.
353.
242r>.
244.
0.
1313.
252.
1819.
183.
3,
904.
197.
1364.
COMBINED
A*F
-------
RURAL NON-CROPLANO AREAS
TOTAL POLLUTANT LOADS
rfOR
-------
RURAL CROPIAND ARFAS
UNIVERSAL SOIL LOSS EQUATION/TOTAL POLLUTANT LOA} ESTIMATES
WORKSHEET 4
ho
SOURCE
INITIAL CONDITION
LOSS CREEK
BROKEN SWORD
UPPfR SANDUSKY RIVER
TYMOCHTEF C3EEK
MIDDLE SANDUSKY
HONEY CREEK
WOLF CRFEK
ROCK CREEK
LOW5R SANDUSKY (SOIL U
I OWFR SANDUSKY (SOIL 21
TOTAL
STAGE I
LOSS CREtK
BROKEN SVmO
UPPER SANOUSKY PIVfR
TYMOCHTEE CREFK
MIOOt F SANOUSKY
HONFY CRFEK
WOLF :REEK
POCK CRFEK
LOWER SANDUSKY ISOIL l»
LOWER SANOUSKY (SOIL ?»
TOTAL
STAGE 2
LOSS CREEK
BROKEN SHORT
UPPFH S6NDUSKY RIVER
TYMOCHTEE CREEK
MIDDLE SANOUSKY
HONFY CRFEK
WOIF CREEK
ROCK CREFK
LOWFR SANDUSKY (SOIL 1»
LOWER SANDUSKY (SOIL 21
T1TAL
POSI
T ION
2
7
9
14
16
in
23
25
10
12
2
i
9
14
16
ia
21
25
10
32
2
7
9
14
16
IB
23
?S
30
32
CROPl AMD
AREA
IHAI
139R4 .
18719.
?746T.
52840.
54236.
34355.
34111.
409PO.
24355 .
10000.
316250.
18984.
18719.
27460.
52840.
54236.
14355.
1431 1.
40990.
24355.
10000.
116250.
18914.
18719.
2746C.
57840.
54236 .
34355.
34311.
40990.
24355.
10000.
316250.
I
R
125.
125.
110.
138.
138.
125.
125.
125.
125.
125.
125.
125.
130.
138.
138.
125.
125.
125.
125.
125.
125.
125.
130.
138.
138 .
125.
125.
125.
125.
125.
JSLF COEFFIC
< LS
0.35 0.402
0. 38 0.424
0.42 0.426
0.32 0.357
0. 38 0.3fll
0.35 0.338
0.29 0.256
0.34 0. 427
3.32 0.410
0. ?8 0. 434
0.35 0.402
3.38 0.424
0.42 0.426
0.32 0.357
0.36 0.381
0.35 0. 338
3.29 0 .256
0. 34 0. 427
0.32 0.410
0.28 0.434
0. 35 0.402
0.18 0.424
0.42 0.426
0.32 0.357
3.38 0.381
0. 35 0. 338
0.29 0.256
0.34 0.427
0.32 0.410
3 .28 0.434
, I F. NT S
C
3.233
0.213
0.245
0.260
0.260
0. 237
0.237
0.237
0.268
0.237
0. 108
3 .399
0. 103
0. 108
0.110
0. 101
0. 108
0.105
0. 116
0 .099
0. 034
C.035
3.334
0.032
0,035
0.034
0.032
3 .033
0.036
0.033
P T/
.30
.00
. 00
.33
.00
.03 .
.30
. 00
.00
.00
I. 00
1.33
.00
.00
.00
. 00
.00
.00
.00
I. 00
1.00
.03
.00
. 00
,00
.00
.00
.30
.00
.00
SOIL
LOSS
AC/YR »•
4.1
4 .7
5. 7
4.1
5.2
3. 5
2.2
4.3
4.4
3 .6
41.8
1.9
2.3
2.4
1. 7
2.2
1.5
1.0
1 .9
1.9
1.5
19,0
O.S
0. 7
0.8
0.5
0.7
0.5
0.1
0.6
3.6
0.5
5 .
-------
LOADING SUMMARY
TOTAL POLLUTANT LOADS
00
WORKSHEET 5
SOURCE
LOSS CREEK
CROPLAND
BUCYRUS CITY
STORM
COMBINFO
BROKEN SWORD
CROPLAND
UPPER SANOUSKY R t VFR
CROPLAND
UPPER SANOUSKY CITY
STORM
COMBINED
TYMOCHTEE C^EEK
CROPL AMD
MIDDLE SANOUSKY
CROPLAND
HONFY CREEK
CROPLAND
T IFF IN CITY
STORM
COMBINED
WOLF CREFK
CROPI AND
ROCK CREEK
CROPLAND
FREMONT C ITY
STORM
COMBINED
LOWER SANDUSKY (SOFL 1 (
CROPLAND
LOWER SANOUSKY (SOIL 2(
CROPLAND
TOTAL
POSITION
I
2
3
4
5
6
7
R
9
10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
33
31
32
I NI TI AL LOAD TO
WATERSHED BASIN
KG/YR
368.7
18321 .7
13820.0
125.0
6'iflO.O
217.6
206B7.9
471. 9
36854.2
8292.0
0.0
1675.0
697.3
51009. 5
352.3
66353.8
472. 4
20356.4
17689.6
1750.0
10400.0
304.6
17772.5
686.1
41520. 3
28192.8
350.0
12300.0
995.4
25210. 7
82.5
8478.6
420987. 9
OH TRILLED
LOAD
K3/YH
STAGE I STAGE 2
3492.5
3455.0
243.8
6091.2
8790. t
15493.8
2073.0
0.0
1574.5
21188.6
28372.8
12084.4
4422 .4
1312.5
9776.0
8098. 8
18395.1
7048.2
262.5
11562. 0
10912.1
3541.7
182R00.6
2673.6
1727.5
182. 8
4568.4
3107.6
5114. 5
1036.5
0.0
1180.9
S273.1
8932.3
4068.0
2211 .2
984.4
7332.0
2399. 7
5791.3
3524. 1
196.9
8671 .5
3385.5
I 1B0.6
74538.1
U1AO ^EOJCT IONS
KG/YR
STAGE I STAGE 2
9829.2
13365 .0
81. 2
388.8
11897.8
21360.4
6219.0
0.0
100. 5
2J323.9
38281 .0
16272.0
13267.2
437.5
624.0
9673. 7
23125.2
21144.6
87.5
738.0
14299 .6
4936.9
? 32948.3
5618.9
1727 .5
60.9
1522.8
5682. 5
ID379.3
1036.5
0.3
393.6
1 t?l0.5
19140.6
8016. 4
2211.2
328.1
2444.0
5699.2
12S13.8
3524.1
65.6
2190.5
7525.6
2361.1
133352.4
-------
PROGRAM COSTS
TOTAL POLLUTANT P.FOUCT1QNS
WORKSHEET 6
SOURCE
LOSS CREEK
BUCYRUS CITY
STORM
r.oMniNED
BROKEN SWORD
UPPFR SANOUSKY PIVER
UPPER SANOUSKY CITY
STORM
COMBINED
TYMOCHTEE CREEK
MIDDLE SANOUSKY
MONEY CREEK
TIFFIN CI TY
STOP "4
COMBINED
WOLF CREEK
ROCK CREEK
FREMONT CITY
STORM
COMBINED
LOWER SANOUSKY (SOIL U
CNO LOWER SANDUSKY (SOIL 2)
UD
POSITION
2
3
4
5
7
9
to
It
tz
14
16
in
19
20
?l 4
23
25
26
27
28
30
32
AREA
TREATED UNITS
KM2 SERVED
189. 8
13500.
1 .3
7.2
187 .2
274.6
6250.
3.0
6. 7
528.4
542.4
343.6
26000.
7.0
10.4
343.1
409. 9
19730.
1 .4
t2. 3
243.6
100.0
PER UNIT
STAGE I
65.
2.
743}.
7400.
65.
65.
2."
7433 .
7400.
65.
65.
65.
2.
7433.
7400.
65.
65.
2.
7433 .
7400.
65.
65.
COSTS
STAGE 2
3303.
4.
8600.
24700.
3000.
3300.
4.
8600.
24700.
3003.
3003.
3000.
4.
esoo.
24700.
3003.
3303.
4.
8600.
?4703.
1000.
3300.
Tor AL
STA3E 1
12340.
32400.
9620.
53280.
12167.
17849.
15000.
0.
49593.
34346.
35253.
223H.
62400.
51830 .
76960.
22332.
26643.
47352.
10360.
?i3eo.
15831.
6530.
COSTS
STAGE 2
569520.
48600.
II ISO.
177843.
561570.
823800.
22500.
0.
165490.
1585199.
1627080.
1033650.
93600.
60200.
256830.
1029330.
1229699.
7 1 C2 8 .
12040.
303813.
730650.
300000.
TOTAL
735334,
10713662.
-------
COST-EFFECTIVENESS ANALYSIS
TOTAL POLLUTANT LOADS
WORKSHEET 7
CO
O
SOURCE
STAGF 1
LOSS CRFEK
CPOPl AND
BUG YRUS Cr TV
STORM
COMBINED
BROKEN SWORD
CROPLAND
UPPER SANOUSKY RIVER
CROPLAND
UPPFR SANOUSKY CITY
STORM
COMBINED
TYMOCHTEF CRFEK
CROPLAND
MIOOLF SAN DUSKY
CROPLAND
HONEY CREEK
CROPLAND
TIFFIN Cl TY
STOR*
COMBINED
WOLF CREEK
CROPLAND
ROCK CREEK
CROPLAND
FRFMONT CITY
STORM
COMBINED
LOWFR SANDUSKY (SOIL 1)
CROPLAND
LOWER SANDUSKY (SOIL 31
CROPLAND
SUBTOTAL
TOTAL
POSIT I3N
1
?
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
IB
19
20
21
22
23
24
25
26
27
28
29
30
31
32
BIO-
EFFFCTIVF AVAILABLE
TRANSMISSION FRACTION
1.0
1.0
1.3
1.0
1.0
1 .0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.3
I. 0
1.0
1.0
1.0
1.3
1.0
1.0
1.0
1.0
1.0
1.0
1.0
I .0
1.0
1.0
1.0
1.0
1.0
TOTAL LOAD
TO
SURFACE WATER
I KG/YRJ
369.
18322.
13820.
3? 5.
6480.
218.
20688.
472.
36854.
079?.
0.
1675.
697.
51009.
85?.
66354.
472.
28356.
17690.
I 750.
10400.
305.
17772.
686.
41520.
28193.
350.
12330.
995.
25211.
P?.
8479.
4209
-------
COST-EFFECTIVENESS ANALYSIS
TOTAL POLLUTANT LOADS
WORK SHEE T 7
SOURCE
STACF 2
LOSS CREEK
CROPL \ND
BUCYRHS CITY
STORM
COMB IN ED
BRCKEN SWORD
CROPL AND
UPPER SANOUSKY RIVER
CROPLAND
UPPER SANDUSKY C I TY
STORM
C OMBI NED
TYMOCHTEE CREEK
CROPLAND
MIDDLE SANOUSKY
CROPLAND
HONEY CREEK
CROPLAND
T IFF IN C ITY
STORM
COMBINED
WOLF CREEK
CROPLAND
ROCK CREEK
CROPLAND
FREMONT CI TY
STORM
COMD! NED
LOWER SANOUSKY (SOIL I)
CROPLAND
LOWER SANDUSKY (SOIL 2!
CROPL AMD
SURTOT Al
TOTAl
POSITION
1
2
3
4
5
6
T
8
9
10
11
12
13
14
IS
16
\l
18
to
20
21
22
23
24
25
26
2?
28
29
30
31
32
TOTAL LOAD
BIO- TO
EFFECTIVE AVAILABLE SURFACE WATER
TRANSMISSION FRACTION (KG/YR)
1.0
1.0
1.0
1.3
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1 .0
1.0
1.0
1.0
1. 0
1.0
1.0
1.0
1.0
1.0
1.0
I .0
1.0
1.0
1.3
I. 0
369.
183?2.
13820.
325.
6480.
218.
20688.
47?.
36854.
8292.
0.
1675.
697.
51009.
852.
. 66354.
472.
26356.
1 7690.
1750.
10400.
305.
17772.
636.
41520.
28 193.
35^.
12300.
995.
25211.
33.
8'+79.
420988.
LOAD AT
M3UTH
(KG/YR>
369.
18322.
13829.
325.
5433 .
218.
20688.
47?.
36854.
8292.
0.
167-5.
697.
51009.
852.
6S35'+.
472.
28356.
17690.
I 750.
1343) .
305.
17772.
686.
41 520.
28.193.
350.
12300.
995.
25211.
83.
147? .
420988.
1 OAO
REDUCTION COST OF
AT 40UTH PROGRAM
UG/YRJ (t/YRI
STAGE 2
5819.
1728 .
61.
1523.
5682.
103 79.
1037.
394.
14910.
19141.
8016.
2211 .
32H.
2444.
5699.
12614.
3524.
66 .
2891.
7526.
2361.
108352.
341301.
STAGE 2
569520.
48600.
11180.
177840.
561570.
823833.
22500.
165490.
1585199.
1627383.
1030650.
93600.
60200.
256860.
1029330.
1229699.
71028.
12043.
303810.
730653.
300000.
10710662.
COST
PER UNIT
REMOVED COST-
AT MOUTH EFFECTIVE
($/KGl RANK
STAGE 2
97. 9
28.1
183.5
116.8
98.8
79.4
21.7
420.4
136.3
85.0
128.6
4?. 3
183.5
105.1
183.6
97.5
20.2
183.5
105.1
97. I
127.1
23
17
38
28
24
19
16
41
27
20
35
18
39
25
37
22
15
40
26
21
34
-------
SUMMARY OF PROGRAMS
TOTAL POLLUTANT LOADS
WORKSHEET 8
SOURCE
CROPLAND - UPPER SANOUSKY RIVER
CROPLAND - MIDDLE SANDUSKY
CROPLAND - BROKEN SWORD
CROPLAND - LOWER SANDUSKY (SOIL 11
CROPLAND - TYMOCHTCE T.RFFK
CROPLAND - ROCK CREEK
CROPLAND - I OSS CRFFK
CROPLAND - LOWER SANDUSKY (SOIL 21
CROPLAND - HONEY CREEK
MUNICIPAL - FREM3NT r ITY
CROPLAND - WOLF CREEK
MUNICIPAL - UPPER SANDUSKY CITY
MUNICIPAL - BU CYRUS CITY
MUNICI PAL - TIFFIN CITY
MUNICIPAL - FREMUNT CITY
MUNICIPAL - UPPER SANDUSKY CITY
MUNICIPAL - BUCYRUS CITY
MUNICIPAL - T IFFIN CITY
CROPLAND - UPPER SANOUSKY RIVER
CROPLAND - MIDDLE SAN3USKY
CROPLAND - LOWER SANOJSKY (SOIL 11
CROPLAND - ROCK CREEK
CROPLAND - LOSS CREEK
CROPLAND - BROKEN SWORD
COMBINED - TIFFIN CITY
COMBINED - FREMONT CITY
CROPLAND - TYMOCIITEE CRFFK
COMBINED - BUCYRUS CITY
STORM - FREMONT CITY
STORM - TIFFIN CITY
STORM - BUCYHUS Cl TY
COMBINED - T IFFIN CITY
COMBINED - FREMONT CITY
CROPLAND - LOWER SANDUSKY (SOIL 2)
CROPLAND - HONEY .CREFK
COMBINED - BUCYPtJS CITY
CROPLAND - WOt. f CREFK
STORM - BUCYRUS CI TY
STORM - TIFFIN CITY
STORM - FREMONT CITY
C3MBISED - UPPER SANOUSKY CITY
COMBINED - UPPER SANOJSKY CITY
RANK
I
2
3
5
6
7
0
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
?5
26
27
28
29
33
3 1
32
33
34
35
36
37
30
39
41
4?
ST AGE
1
1
1
I
I
I
I
1
I
1
t
I
I
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
1
LOAD
REDUCTION
(KG/YR »
21360:
38281.
UB98.
14299.
29821.
23125.
9B29.
4937.
16272.
21145.
9674.
6219.
10365.
13267.
352'+.
1037.
1728.
2211.
10379.
19141.
7526.
12614.
5819.
5682.
2444.
2891.
14910.
1523.
88.
438.
624.
738.
2361.
8016.
389 .
5699.
61.
328.
66.
394.
101.
SUM LOAD
REOUCT ION
(KG/Y* )
21360.
59641.
/1539.
85038.
115659.
138784.
143613.
153550.
169822.
193966.
200640.
206859.
217224.
230491.
234315.
235052.
236779.
238990.
249370.
268510.
276036.
288650.
294468.
300151.
302595.
305485.
323396.
321919.
3??006.
322444.
3??525.
323149.
323887.
326248.
334264.
334653.
340352.
340413.
343741 .
343807.
341200.
341331 .
PERCENT
*EDUC TION
5.1
14.2
17.0
20.4
27.5
33.0
35.3
36.5
40. 3
45.4
47.7
49.1
51.6
54. 8
55.6
55.8
56.2
56.8
59.2
63.8
65.6
68.6
69.9
71.3
71.9
7? .6
76. I
76.5
76.5
76.6
76.6
75.8
76. 9
77.5
79.4
79.5
80.8
80. 9
80.9
81. 0
ai.o
81 .1
COST OF
REOUCT ION
(t/YRI
17849.
35253.
12167.
15831.
34346.
25643.
12340.
5503.
22331.
47352.
22302.
15000.
32430.
62400.
71028.
22500.
48600.
93600.
823303.
1627080.
730650.
1229699.
569520.
561573.
2568BO.
303813.
1585199.
177840.
10360.
51800.
9620.
76960.
91020.
300300.
1030650.
532BO.
1029333 .
11180.
6020C.
12343.
165490.
49593.
SUM OF
REDUCTION
COSTS
U/YR)
17849.
53102.
65270.
81131.
115446.
142090.
154429.
163929.
183260.
230612.
252914.
267914.
300314.
362714.
433742.
456242.
504842.
598442.
1422242.
3049322.
3779972.
5009671 .
5579190.
6143763.
6397639.
6701449.
8286648.
8464487.
8474846.
8526645.
8536266.
8613225.
8704245.
9004245.
13334895.
10088174.
11117504.
1128684.
1188884.
1233923.
1366412.
1415991 .
-------
Program Flow Chart and Listing
The flow chart shown in Figure 2 indicates that the program is built
around a command interpreter. This interpreter screens all commands, checks
their validity, and then activates the proper subroutine (indicated in script
print). The fourteen legal commands are also shown in Figure 2.
The following program listings are organized by major subroutines
indicated in Figure 2. Documentation has been included in the form of
comments throughout the program code to assist in more detailed understanding
of its operation. This code is fairly extensive so that the program would run
in a simple manner for the users. Individuals interested in obtaining a tape
of these programs, rather than entering all the lines from scratch, should
contact Or. William C. Sonzogni, at the Great Lakes Environmental Research
Laboratory, NOAA, Department of Commerce, Ann Arbor, Michigan 48104, phone:
313/668-2249.
This main program has been broken up into 4 source files for ease in
writing and editing. To compile the WATERSHED main program four files must be
linked together. These four files are identified by the major subroutine in
each file. Each file shows the line numbers starting with number "1". An
example of this chain on the Michigan Terminal System is as follows:
$RUN *FTN PAR=S=WTRSHD+WRKSHT+WTRSAV+WTRCTL L=WATERSHED
where
*FTN calls the Fortran Compiler,
WTRSHD, WRKSHT, WTRSAV, WTRCTL are the four surface files,
and- WATERSHED is the object file for the compiled program.
The start of the command and subrouting sections of the program are
marked with a bracket and underline.
33
-------
Key
(SUBROUTINES V
j COMMAND
Start
Figure 2
Watershed Program Flow Chart
/Initial-
( ization
WRIMI
F Input of
Initial
State
WTRIWP
INPUT
Permanent
Storage
I/Q
WTRSAf
READ
LOAD
Listing of
Commands
WTRHLP
TITLE
HELP
Command Interpreter
ISRCH LEA/GTH I.WEX
WBLAWK JSQRT
SAVE
WORKSHEET
WORKSHEET
WRKSHT
CONTROL
PERCENT
XPERCENT
Input of Con-
trol Strategic
WTRCTL CTLIWI
COST
XCOS
Input of
Control Costs
OTRCST
TRANSMISSItN
Alter
Transmission
Rank
Cont.Strat.
RAWK
STOP
Stop
-------
The first source file is called
WTRSHD
en
-------
CO
CTt
3
4
S
6
7
fl
9
10
11
12
13
14
15
16
17
18
19
20
21
2?
23
24
25
26
27
28
29
30
31
3?
33
34
35
36
37
3fl
39
40
M
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
50
59
MAIN PROGRAM FOP WATERSHED POLLUTION MANAGEMENT PACKAGE
ACCEPTS COMMANDS AND CALLS SUBROUTIMES BANKING
T.OST-EFFFCTI VENFSS OF ALTERNATIVE CONTROL STRATEGIES
WMTTFN FOP GREAT LAKES BAS IN COMM (SS 10V
JAN - JUN IQftl BY MICHAEL OONIHUE
f.
**•**
ANN ARBOR, MI
INTFGFP CMOI801.RLNK ,COM A,ALL,NJMHRK( 13 I, OPT JRB( 5>, ")P TRUL I 81,
3PTVALI0),JVAL(3)
LOGICAL L INPUT , LOOU<* R , LODRMC , LODPC.P , L4U AL , I INl.L IN2,LINl,LI'4't
LOGICAL URRClL.RULCTL.UCTLOOt 3) ,RCTLOO(3I , UPRCNT .UXPCNT .RPRCNT ,
f. PXPCNT ,URBCST,RULCST,LPANK
INTfr.EP OTHUR , KT IT LE ( 4 , 40 I ,
r. SURFFA ( 210,3 i , CTLOO<213, 3),CTUSLe(3,33,5l
01 MEN SI UN STMCTLI 30,3) , STMARAI33 ,3) .COMCT Li 33 , 3 I . COMAR A( 33 , 3 ),
E OTIC IX (30, 3 1,OTIARA(?0,3I ,OT2C TL< 30, 3) ,DT2 AR A( 30 ,3 )
DIMENSION PFLOWt30l,PCONC(30»,UALS ( 30 1 , J ALC < 30 », W?UAL t< 301,
£ W2U , TLERU3 ( I 2) ,
I APOEmO) ,AREACN<4 I ,fJ4|.C(W(4l
OJMFNSION GRASA( 30I,(JALG( 301 ,WLNOA( 301 ,UALU(30) .W30TAI (301 ,
f, W3'JALl(30l,«3L)AL2 (301, W3UAL3( 331 ,^30TA2l 301 , H30TA 3t 30)
PEAL LOORNH 33» ,LOORM2(30I ,L001 W3 ( 30 > , L002W3 (30 l,t003H3(33 I
OIMENS ION iJSLERI 30I.USLEM 30),USLELS( 30) ,USLEC (30( ,W4UAL(30I ,
& USLE<>(30) .SOILS I (30 ) , SOILS 2 ( 30 ) , T TL ER ( 30I,RATIO( 301
OIMFMSI3N POIF(2lO,3r,TCOST<2LD,3J ,PUf OST« 2 t 0, 3 )
DIMENSION PMO'JTH(210 1 , 0 IFMTHI 210, 3J , CPU» FM( 21 0, 3 ) , KE RH NK( 2 10 ,3 )
COMMON /WTRin/ IN, I OUT ,NSRCE,KT IT LE, NT L E, NURB, NRJ^CP , 'JR'JC*"
/WTRTT/ L INPUT, LOO UP 8 ,1 OORNC ,LIN1 ,11 N2 , t \ N3 , LI N4 , OTHURB,
OTHR'JL.LOORCP.TYPCOO, J IN, JOUT , L 4UAL ,KOUT , LRANK
/WRKSH1/ SRCF , ITYP ,NPOS , APOE , AUN IT ,SURF E A, TL EUR I , TL EUR 2
/WRS LEK.USI FLS ,USL FC, 1JSL FP , SO IL S 1 ,
r. SOILS?, TTI.FRiM4UAL, RATIO
COMMON /WRKSH6/ PDI F, TCOST, PUCOST, TR^SM^J ,»MTUTH ,0 IFMTH , : PUREM,
& KERANK
COMMON /WTRCON/ UCTLOD,"CTLOO,t)RBCTL .RULCTL .UPPCNT , UXPCNT , RPRCNT,
F. RXPCNT,OPTVAt , NOPT, JRflC S T , RL»LCS T , AREAC'J, IJALCOM
OI'IFHSION C TLFLWI 30,3) ,C TLCNC ( 30 ,3 I
niMFNS ION CTLF(30, 3),Sr)ILCU 30, 31, SO H C 21 3T, 31 ,CTLERO( 30,3) ,
f. CUALW.I30 ,3 )
DIMENSION T01CSTI 3) ,TOTRFM(3) ,KNDX( 5401 , F INCST ( 540 ) ,F I NREM (54 3 ) ,
E ISFINI543)
INTFGF.P F|NSP,C(540,43)
COMMON /WRKSH1/ TOTC ST, TT TPEM .T'lTLCD , TOTMT-) , KNDX ,F I NSRC , F I MCST ,
f. FINPFM, I SPIN, MUM
f. OH MTV /UBNCTL/ CTI.FLW.C TLCNC ,C T Lf)D, STMCTL , ST MAP A, COMCT L ,
t COMARA.TTlCTLiOT IA« A ,OT2C TLf OT2ARA
COMMON /RFOCTt/ CTUS LE ,CT LF , SOIL Cl , SOIL C2, CTL FRO, CUALW4
COMMON
COMMON
COMMON
' , • A • , • t ' , ' ?. ' , ' 3« , '
' 5 ' , '6 «
OAT A RINK,COM\,ALL,N'JM.-JRK/' »,
f, • 8 ' , ' 9 ' , ' ^ • I
OAT A L PAR EN, IP PAR1, I SI A SH, I TEE .lOO.MMM/' ( ',•)','/',• T' , ' 0« , ' M1 /
A I"inPCF. UnAN.NCPt AN, fCPL A "I, IRU At / • S ', MJ ', 'N ', 'C ','''/
-------
61
62
63
64
65
66
67
(, B
69
70
71
7?
73
74
75
76
77
78
79
80
81
82
83
^4
85
86
87
8B
89
90
91
9?
93
94
95
96
97
98
99
100
101
10?
103
104
105
106
107
108
109
t 10
1 11
112
113
114
115
I 16
1 17
1 10
1 19
1 20
r
c
f
f
^f
c
c
c
c
c
c
c
r
r
r
c
r
c
r
C
C
C
f.
c
r
DATA 01' rURH/'F • , 'C • , 'A' , "U" ,' L" /
OAT A HPTRUL/ • R '.•K'.'L'.'C'.'P'.'E'.'U'.'LV
N = 30
I SR= I
ISU=l
ICS»=1
ICS'J=1
KNTPO
KNTU*0
KNTP2=0
KMTU2=T
INITIALI7E ARPAYS t IOGICAL FLAGS
CALL WTRINHNI
WRITF« IOJT ,2 )
.2 FORMAT ( •-' , 10X.1 WAfFRSHED MANAGEMENT CONTROL PACKAGE* 1
10 on i? 1=1,80
12 CMDUt-BLNK
RFAO COMMAND LINE
WRITE! IflUT, 15 )
15 FDRMATC -ENTER COMMAMO' »
REAOUN.16) (CMD( 1 >, 1 = 1, *0)
16 HOPMftTlflOAl )
FIND rOMMANO NUMBER , LFNGTH OF COMM AND, POS IT ION OF 1ST BLANK
NJMCi10= ISRCH(CMO,LEN, IPOS)
IFINUMCMD .EO. OJ GO TO 800
NU^CMO COMMAND
1 CONTROL
2 COST
3 STOP
4 HELP
5 INPUT
6 LOAO
7 PFRCF.NT
8 READ
9 SAVE
10 TITLES
11 WORKSHEETS
12 XCOST
13 XPERfENT
t4 TRANSMISSION ,
GO T0( 100, ?00,900, 140,160, 350, 375, ??0, 2 40, 250, 26 0,2 00, 375,
G 4001 ,NUMf,MO
CONTROL COMMAND
100 KEYWO=0
K=0
W!PT = 0
00 102 J=l,fl
102 npTVAL(J>=0
00 103 J=l ,4
APTACMI J 1=0
m uALroN(J)=o
IFUEN.IF. rpf>s» en TP 115
STAN COMMAHO LINE FOR "URBAN" OP "RURAL"
104 n'OSl=N(UANMCMO, IPOS 1
If (CMO( IPDSt) .FO. JU1 AN) KF YWPO=l
!F (CMO( IPOSl !• .P0.1"t!M » KF_VWRO= ?
SPACE
-------
121 IFIKEYWRO.EQ.0) GO TO 80?
122 C NOW REGIM STARCH FOR OPTION VALUES
123 IPOSI = INOEX(CW'J,LPAPFN, IPOSI I
124 IF< IP05l.EQ.-ll GO TO 114
125 LPOS= INOEXtCMO, IRPARM,IPOS 11
126 ir(LPnS.EO.-1 I GO TO fl32
127 106 IPOS1 = IPOSUI
120 IPOS1=N6LANKJCMD,IPOSI)
129 K = KM
130 IFIKrYWRO.EQ.?) GO TO 10<)
131 C HERE FOP URBAN OPTION VALUES
132 00 107 .1 = 1,5
133 M=J
13', IF (CMD( IPOSI I .NE.OPTURBU I t GO T3 107
135 f LOOK FOR "AREA" OK "UAL"
136 IF(H.L1.3 .OR. M.E0.5I GO TO 112
13 r ll>OSt = lNOEX(f.MO, IS LASH, IPOSI I
138 IF( IPOSI,NF.-I > GO TO 14?
139 DO 14 I J Z = 1 , 4
140 IFIM.E0.3I AREACNIJZ>=1
I'll IFI1.EO.4t UALCON(JZJ=l
142 141 CONTINUE
143 GO TO 112
144 C. "AREA/" OR "UAL/" FOR SPEC IF If SOURCES
145 14? IPOSl=IPOSl*1
146 IPOS1=NBLANK 'JALr,ON(2t= I
162 GO to 112
163 f HTRE FOR OTHFR URflAN AREAS
164 133 IF (CMOUPDSl I .FQ.TLEURl (1 I .AND . CMOt I POS 21 . EQ . TLEUR l( 2)
165 G fM0( IPOS3).FO.TtEURl(3 I) MF-3
166 IF(MF .FO. 0 .AND. OTHP'JL .FQ. ?l GO TD 135
167 IF( MF .P.O. 0) GO TO flO-;
168 IFIM .FO. 31 ARFACN(3)=l
169 IF(V ,«=0. 41 UM,CON(3l=l
170 GO TO 112
171 I3r> IF(CV10( IPOSlt .FIJ.TLEUR2I II .AND. CMPI I POS2 I .E 0. TLFUR2 ( 2 » .AND.
172 f, C'1D( IPOS3I .FO.TLF'IR?(3t ) MF^4
173 IFI MF .FO. 01 GO TO 805
174 IFI1 .FQ. 3) ARE ACM(4 1=1
175 IF(M .FT. 4» UALCONCt > = l
1 76 GO n 1 I 2
177 10? CON1 INUF
178 GO TO RrCi
179 C HIRE FOR RURAL OPT! UN VALUES
180 1T9 n& 113 ,*=!,•?
-------
j>
"^
Ifll M = J
18? IFICMLU IPOSI I .FQ .'jOTRULI ) )) GO TO 112
183 HP CON1 INUE
184 GO TO R05
185 C NPH STORF OPTION VALUE AN"! LOOK FOR NEXT OPTION
186 H2 OPTVMCKI=M
18/ NOPT=K I
189 1POS1 = INDFX(C,MO,COMA, IPOSI I
189 IF( IPUSl.GT. LPOSl GO TO R02
190 IF(IPOS l.EQ.-lI GO TO II*
191 GO TO 106
192 T. FIRST SORT OPTIONS FOP WTRCTL THEN DETERMINE STAGE NUMBFR
193 114 IFINOPT.GT.il CALL I SORTIQPTVAL,NOPT,ft»
19,J=l,ftOI
210 !POS=l
211 LFN=LFNGTH(CMD,80I
212 GO 10 104
213 C
214 C HFLP COMMAND
215 C
216 140 CALL WTRHLP
217 GO TO 10
2 I 8 C
C INPUT COMMAND
r,
221 160 KEYWRO=l
222 IPOS1=IPOS
223 IFILEN.LE. IPOS» GO TO 190
224 IPOSl = MBLANK(CHO, IPOSI
225 C SCAN FOR OPTION VALUES
226 165 KFYWP.D=0
227 IF«CM0((POSIl.EO.ISnRCFI KEYHPO=1
22R If (C.^rH IP3SU .FQ.HWANI KEYWPf) = 2
229 IF(CMO( IPOSII.FQ.NC"LANI KEYWR»=3
?30 IF
-------
>
241 C COST (NUMCHD=2) E XCOST I NUMCMI) = 12 ) COMMANDS
242 C ' ' ———
243 20^ KEYWRO=0
?44 ICFIG=0
245 C Ft AC IF COSTS DIFFER BETWEEN SOURCES (XCOST)
246 JFIMUMCMD.EO.12) ICFLG=l
247 IFILFN.IE.IPOSI GO TO 208
248 IPOS1=IPOS
249 202 IPOSI = NBLANK(CMO,I POSl)
250 1F(CMD( 1POSU .FQ.IORAN) KEYWRO=l
251 IF (CMDI I POSl I .FO. IPIJAL ) KEYWRD=2
252 IFJKFYWRO.EO. 01 GO TO 802
253 IF(KFYWRD.F0.2I GO TO 203
254 C COUNT STAGES
255 IFKNTU2.FQ.ICSU) ICSIM=IT. SUH
256 CALl WTRCST ( 1CFI.G, KFYWRO, ICSU.KNTU2, 1ER)
257 GO TO 204
258 203 IF(KNTR2.EQ. ICSRI If. SR=I CSR* 1
259 CALL WTRCST* ICFLG. KF.YWRD, ICSR, ,
-------
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
3?3
324
325
326
327
328
329
330
331
33?
333
334
335
336
337
33*
339
340
341
342
343
344
345
346
347
348
350
35?
353
354
355
356
35 /
358
359
360
251
25?
25
260
II
TO 802
EQ.N'JMWRM J M GO TO 255
ipnsi=ipnsm
|POS2 = NBI ANMCMOt
I F( I POS2 .FO.-l ) GO
IUT LG = 0
GET T HI f MUMHER
DO 252 J = l ,4
K = J
IFn<;2 = IPOS 2+1
!POr,2=MBLANK(CMU,IPOS2>
GO TO 251
IPOS 1 = 1NDEXICMO,IRPARN,J POS2)
IKIPOS1.FO.-U GO T[) 802
J=0
I F( II1FLG.
OTHER URBAN
!UFLG=l
IIJFLG=2
OR RURAL AREAS
IF< UFIG
-EO.OI
FO.U
1F« \ UFIG.EQ. 2)
NTLF=K
OTHURB=K
OTHRUL=K
IF(OTH'JRn.GT.2.0R.OTHRUL.GT.3| GO TO 802
DO
GE T
258 1 =
Tl TLE FROM
IBfG.LFN
COMMAND LINE
I F( UJFLG.
IF( I'JFLG.
IF('UEIG.
ITj IUFLG.
IF(IUFLG.
IFJOTHURB
IF(OTHURB
IF (OTIIURf)
IF(OTHURR
Gf> TO 25(1
IF tOTHRUL
IFnTHHUL
CONTINUE
GO TO 10
NE.O.AND.J.GT. 121 GO TO 258
E0.3 .AND. J.GT.401 G3 TO 258
FO.Ol KTI TLEINTLEt J» = CMDJ I I
FO.O) GO TO 25fl
EU.2) GO TO 257
.FO.ll TLFURHJI=CMO(tl
.EO.ll TYPCOD(fl,JI=CMOC II
.E0.2 ! TLEUR2 (J)=CMfl( I
.EQ.2I TYPCOO(9, Jl =C
.EO.lI
.E0.2J
TLERUl I J)=CMDU
TIEPU2( Jl =C.MPU
n
HORKSHFFT COMMAND
KF
LOOK=LFM
IF 1 I FN.LF . IPOS I GO TO 2ft 2
lPPS?=NBLAMK. LHOK.LT.IE^J GO Tn
-------
361 JFMPOSP.FO.-ll GO TO 10
362 764 IPOS2=IPOS?*1
363 Lnf)K = NBLANK(CMO, IPOS?)
364 IF ( LOOK. CO.-H GO TO 10
365 265 KEYHRO=CMf>(in()K)
366 IFIKFVWRD.FO.ALL) GO TO 275
367 DO 268 J=l,9
368 KTAHLE=J
369 IFIKFYWRD.FQ.NUMWRK(JlI GO TO 277
370 ?68 CT^TIMUF
371 on TO P02
37? C HfRF. FPR "ALL" WORKSHEETS
373 275 KFYWRD=9
374 LOOK=LEN
375 GO TO 2flO
376 277 ,EO.NUMW»K( I»| GO TO 293
397 ?P? CONTINUE
39fl GO TO 80?
399 293 KOUI=M?
400 IPOS?=LPOS
401 GO TO ?64
402 C
403 C LOAD COMMAND
404 C ~~~
405 350 KEYWHO=0
406 IFJLFN.LF.IPOS) GO TO 365
407 IPHSl=IPOS
408 354 IPOS1 = NRLANK (CHI), IPOS I I
409 C GET KEYWORD
410 IF(Cf1()( IPOSII .FO.IU1ANI KEYWRO = l
411 1F(CMD( IPOSl KEO.ICPL AN>KfYWRI>2
412 IFlf.MDl IPOS1I .EO.NCPI AN)KEYWRO=3
413 If(KEYWRD.FO.OI GO TO P02
414 IFIKEYHRD.FO.l ) LOOJPB=. 1 RUE.
415 IF ( KFYWRO.FO. 31 LOOR NC = . TRUE .
416 IFIKFYWRO.NF.2 ) GO TO 362
417 C HERF FOP RUB At CROPLAND KfYWPD - SFAPCH FOP OPTil^l (UAL I
418 IPOSl= IMOr X(C^f),LPAREN,l POSll
419 IF (IPOSl.rO.-I ) GO Tl 360
420 IPOS = | ^f)FX(C'10 ,1 PPARM,! POS1 »
-------
V
V
3! -^
00
i 1
J-
o
o
1
i^£**:S$££££££££££££££S5£S$$$;$;££
,^VJ1*w>,~»,0»^o>v**-~~o*»^0.w.*u,.>.~,3*»
or* ^ <"> o n
UJ ^j U* » UJ ***
» CO » =0 ^ ~*
•^ Q* \J\ U? 7" Ul
cii~ '*-3crvc"nE o /*•—-«••• — »-. -« « — «« *-«—.«,.-,— ^
— * QmT'T!iOO>o o "^ "9 "i"1 T3 ""i "n -n-n"r'TiTi"n"C'^"^n
53 Z O J> O .^ •-• m O >o •— ^ *••' m Tt wmTicn_2.s»— — *n;o
^ CT*'*^ »— f-"HOCfMn3s O» t3~^^j*3rHOs3'3C3"O"O'™'3rf"1
w^ — a^2'--'Ti'^ t/imm •* •««»OQP»I/I«
«t — — • 3C •* 3 * "^ *— OX~rnrn"^fTl'T|ri'TitOi/i2 ""
O n — ^-'>>a ^.—OoOCoooo^'-^ "3
^ _£ n OTICD^O •— lo^o**1** »••—-—— O
— jj "35J* ""* 3 "'J*-* -«JfV'-"O"»O i^»
o f~ 2 z " n ' » - ^ ? ? ->
i 2 H 5 ^ 3b5xx»b"o^c — — — 3
5 , Of! X^-otJO»1B»CT
•^ ™» a i 1 «H > °71 ^"1 O "H -H O O •• ^ C CP C *^
3 II z "" 3-^>2Z232^3>J»'-^ O
~ S ^ ^OCC2 CC •«
-Q "n sim^B* mm z;C
C •< O • • 2 • • ^° TO
^ 3a ^ ? ?
S TJ i>J »—
- C3
« ^^
v «^
2
r>
S
_,
a
fl
J*
n i-
PCRCEMT
*" *
d
s
•^
o
-^
r^
•n
m
o
m
Z
^
2
i_
3;
O
0
II
-
f->
3
3
>
l/l
£££$£££££££
i n
jJ yj >jj
l/* $• 3*
^j
Or-^^^oo TIZ: o
m n •— — co o -^ — x
u) 2 — 2 II 3 «-. - . m ijJ
^»^ ^* r* it "c ^J c rn ^-
X ^2^~>~1^"^
3 n 0 OTJ£ §
•• o c ' — c
OD — . > = Z
- S 33 m
-" " > O
z "* ^ ^
39 o m
o = o
§n
•<
i Q
O 73
*° O
c
~ — .
> —
2 --)
^ 3
2
3 >
*J 2
O
^
3j
0
>
z
c
o
30
•SSiSS^fifSS^ivjNJiS^
->
jj wU
^ ^
ro O
•< O — 3 CO 3Cq^G —
^ >— ^ i— r-,")3nr-k^--""5
O H 3 n r- n -0 "C ii c ii ii 3
3*^^*^ > •— 3 ^ yi £3
•^ ;T— . ^^Sp.^^^^
-^5'<:" r'pn11;;
— O > Z 2 *"
» 2: m a o
° 1 1 c *^ °
•H ^ ^ ^ w ^
~ — ^ 2^3:
O Cw "^ '^
iO •< O
— 3
33 -H
O O
JD
o
Jl
-------
'.si IFILEN .IF. IPOS) on TO 4?o
48? iPrjsi=wiLANK(CMO, ipns>
483 isizE=r>
ABA 404 CONTINUF
485 trccMoc IPOSI).EQ.COIAI GO n 410
486 C GET POSITION NDMBFP
487 on 405 1=1,10
488 JV= I
489 IF (CMO( fPOSI 1 .FQ.NDMWRKU I I GOTO 138
493 405 CCmiMUE
"i91 GO ( 0 802
493 C TEST FOR NUMBER OF DIGITS IN POSITION NUMBER
493 40f! ISIZE=ISIZF f I
494 IFUSIZC .GT. 31 GO TO 802
495 JVALIIMZEI=JV
496 IPOS 1=IPOS 1*1
497 IFMPOSl .GT. L6NI GO TO 410
49fl GO T'l 404
499 410 IFIISUF .FO. 01 GO TO ROZ
500 GO TOI41L,414,417), ISIZE
501 C
502 All KEYHRD=JVAl (I )
503 GO TO 430
504 41', IF( JVALI 2> .FO.10) JVAI(?)=0
505 KEYWRO=JVAL ( 1 1*13 »J\'ALI?)
506 GO TO 4?0
507 417 IF(JVAL(3I.EQ.10) JVAL(?)=1
500 IFIJVALI3 I .FQ.IO I JVAl(3) = 0
509 KF YWRD=( J VAL U ) * 130 ) * (JVAI (2 ) *10 KJV AL « 3 )
51C IF(KEYW*0 .GT. NSPCE) GO TO 802
511 C
512 423 CA1L WTRTRN(KFYWRD)
513 IRANK=.FAtSE.
514 IPOSI=!POS1M
515 IF(I"OS1 .GT. LFN) GO TO 10
515 ISI/F = 0
517 GO TO 404
518 C EP^DRS
519 800 WRITFI IOUT.301 I
520 301 FORMAT! ' 01 LIFGAL COMM/VNI' /)
521 GO TO 10
522 C
523 80? WRITE(IOUT.302)
524 30? FORMAT)1HO,'ILLEGAL SYNTAX OF COMMAND1)
r-25 GO 10 10
526 C
52 1 804 WR ITEI IOUT,303) KFYWPO
528 303 FORMAT lltO, • INP1T DATA EXISTS FOR WOR<. SHFFT ' , I 2 I
529 GO TO 10
530 C
531 805 WRITFCIOUT,304)
532 304 FORMAT(1HO,«ILLFGM OPTION VALUF'I
533 00 TO 10
5 34 C
535 «06 WRI TF( HUT, 30r'l KF YWRO
53S 305 FORMAT (1HO, ' INPUT OATA IT1FS NOT F:XIT FOP W3»K S^F.E T ' , I 2)
537 GO 10 10
538 C
539 80f WRITFI IOUT,306 )
540 306 FO.RMA Tl IHO,' C AMNOT FNTFR MOPE THAN 3 SIAGFS OF CONTROLS1)
-------
GO TO 10
542 C
543 900 CONTINUE
544 STOP
545 END
546 C
\ 547 FJNCTU1N ISRCH(CMD,t EN,
548 C "~~ ~~
549 C WTPSHO FUNCTION TO OFTFRMJNE COMMAND NUMBER, LENGTH OF COMMAND,
550 C AND POSITION OF FIRST SPACE FOLLOWING THE COMMANi
551 C
55? INTFGEP CM(}( 80 I. COMANflt 14, 3» .fU.NK
553 DATA COMANO
554 f. /'C'.'C'.'S'.'H'.'I'.'L'.'P'.'R'.'S'.'T'.'H'.'X'.'X'.'T1,
555 £ «f}'t«IJl,*Tlt»El,lHttlO<.lEt»'Elf1AltlI»f'Ol»lClr'Pli'Rli
556 F. 'N1 . • S' ,' 0' ,' L1 , • P» , • A' , 'R ', »A' , 'V, «T ', 'R «, 'OS •£', ' AV
557 DATA RLMK/1 • /
558 ISRCH=0
559 00 10 1=1 ,14
560 K=I
561 DO 5 J=l,3
562 ir
-------
601
60?
60?
604
605
606
607
60fl
609
610
611
61?
6 11
614
615
616
6tT
618
619
620
621
62?
623
6?4
625
526
627
628
6?9
630
631
63?
633
63't
635
636
637
638
639
640
641
64?
6't3
644
645
646
647
648
649
650
651
652
553
654
655
656
657
65R
659
660
IF(CMO< II.NF.TSTVAt I CO TO 10
INOFX=1
RETURN
r.
15 INOFX=-1
RETURN
END
C
FUNCT invt NRl ANKlf MO, TBE3 1
C
C FUNCTION TP FIND THE FIRST NON-BLANK CHARACTER
C IN CMO BEGINS IMG SEARCH AT IREG
C
IMTtW* CHOI 801 .RINK
DATA BLNK/' '/
I=IREG-l
10 l=[tl
IF( I.GT.80 ) GO TO 15
IFICMOI II .EQ. BLNKI GO TO 10
NBLANK= [
RETURN
C
15 NflLAMK=-l
RETURN
ENO
C
SUBROUT INE ISORT { [R AY , NV AL , NO IH )
C
c PfUT PIE rn BURBLE SORT THF MVAL VAIOES IN IRAV IN ASCENOI
c
DIMENSION IRAYINOIM1
I IFI.AG=0
N=NVAL-l
00 5 I-l.N
IF( IRAY ( It .LE. IRAY{ I*l)J GO TO 5
irtAG=l
|TMP= IRAY( I »
JPAV< I )= IRAV ( fH)
IRAY( 1*11 =ITMP
5 CONT INUF
IF( IFtAG .NE. 01 GO TO 1
RETURN
FNO
C
SUBROUTINE WTRHLP
r.
C HELP LIST OF WTRSHf) COMMANDS
C
DIMENSION KT! TLEI4.401
COMMON /WTRin/ IN, IOUT ,N SICE , K TI TIE ,NTLE t ^'JRO .NPUNCP
C
WR ITFI HUT, 5)
NG ORDER
,NRUCRP
5 FORMAT! ' -'rP-OX. 'WTR^HO COMMANDS '//? X, • COMMAND', T33, 'DE SCR I PT I ON'
r. /7x,'cnN!RnL« ,T?5,«tn FNIFR CONTROL STRATEGIES'/
r,/?x, 'COST « , T.?5, • TO FNTFR PFP UNIT COSTS OF CONTROL*/
f./2X ,'STOP' , T?5, 'END FXFCUT I UN ' // 2*, 'HELP • ,T?5,
f. 'PRINTS IH1 S T,\BLF' /I
WR ITFI lOJT, 101
n FORMAT I?X, • INPUT' ,T?5, 'TO ENTER INITHI STATF OF WATER
?,' SOURCES' //?X,' L04!)' , T?5,' fU ENTFR LOAD OIRFCTLY'/
SHFO ',
-------
661
662
663
664
665
666
667
668
669
670
671
672
673
>675
676
677
670
679
6flO
68 I
682
633
664
685
6H6
687
698
689
690
691
692
693
694
695
696
69 f
698
699
700
731
702
703
704
705
706
707
70fl
709
710
711
712
713
714
715
716
717
710
719
720
f,/2X , 'PERCENT • ,T ?5, ' TO ENTER COMTROLS AS PERCENT REDUCTIONS'
C//2X, 'PEAD* ,T25,'RFAO INPUT DATA FROM PERMANENT ',
^'STORAGE'/I
WRITEUOUT.15)
5 FORMAT! 2X,1 SAVF',T?5,« SAVF WORKSHEET DATA'//
S2X,«T ITl E-.T25, 'TITLF(S> FOR WATERSHED AMALYSIS'//
f,?X,'WORKSHEET' ,T25 ,'SPECIFIED WORKSHEETS TO BE OUTPUT"/
C./2X, 'Xf3ST • ,T25,'IF COSTS DIFFER BETWEEN SOURCES'/
r./2X,'XPeRCENT',T25, ' IF PERCENT REDUCTIONS DIFFER BETWEEN SOURCES'/
C/2X,'TRANSMISSION' ,T?5,' TO ALTFR EFFECTIVE TRANSMISSIONS')
RETURN
END
SUP POUT INF HTKINHN)
INITIAtIZATION ROUTINE FOR WTRSHO
LOGICAL L INPUT, LODURB,LnDRNC .LODRCP fL4UAL ,L I Nl , LI N2 , LI N3 , L IN4
LOGICAL URBCTL.RULCTL ,UCTLPD(3 ),RCTLOD(3 I,UPPCNT.UXPCNT,PPRCNT,
C RXPCNT.URBCST.RULCST.LRANK
INTEGER OTHURB.OTHRUL.SRCEt 210,281, TVPCnD(9,12! .OPTVALI8)
DIMENSION ITYP(2101,NPOS (2 13 I , AUNIT(210.2I.KT !TLE(4,40»,
t SURFFAl210,3),CTIODI210,3),CTUSLE!3,30,5J
DIMENSION STMCTL(30,3>,STMARAt 30,3),COMCTLJ 30,31.COMARAI 33,31 ,
t OT1CTLI33,3),OT1ARAB 3,3 I,OT2fTLI 33,3 I ,OT2ARA(33,3»
DIMENSION PFLDWI301,PCOMC(30>,UALSl30),UALC(30) ,W?UALl (301 ,
t W2UAL2 nO),TRNSMN(2l3 I
nTfSER TLEUR H 121 , TLEUP2 « 12 I , TLEPU1 U 2 J , TLERU? (I 2 I, TLERJJ (121,
r. APOE (210), AREACNII 41, UAL CON ( 4)
DIMENSION GRASA(30 I ,UALG(30I,WLNDA<30 I , UALH(3CI,W30TA I(30 I,
f. W3UALU 30) ,W3UAL?(30I ,W?UAL^(30I , W30T A2 (30 I ,W30T A3 ( 30 I
REAL LOORNU30 », LOORN2 ( 3T| , LODIW31 30I,LOD2H3( 30 > ,L003W3( 301
TIME MSI ON USIER<30t .USLFKI30J,USLELS(30 ) .USLEC(33 ) ,W4JAL(33 I,
f, iJSLEPt 301, SOIL SI ( 30 >, SOILS2I 3C) ,TTLER(30I , RAT I (1(33 I
DIMENSION PDIF(210,3),TCOST(2 1C,3!,PUCOST(210,31
DIMFNSIDN PMOU1H(210) ,niFHTH(2!3 ,31 ,CPUREM{?10,3),KERANK<213,3 I
COMMON /WTRIO/ IN, (OIITtMSRCEf KTITIE tNTLE , N1IRB , NRUNCP, NRUCRP
COMMON /WTRTF/ L INPUT .LOPURB, LODRNC.L INI, L IN2, L 1^3, L N4,3THU43,43|
COMMON /WRKSHfi/ 10H.S! , r OT RfM, T 01 LOH, TOT MI H,
f, rtNPF'l, I SFIN.NUM
-------
81?
•f* oJ N;
DO-^^S-^o^^r-r— p-»-^S^3s —
~ Owll— "nc-lli^^r-fsj*-!! II H Q
* Tl "^ H 33 33 33 »3 ™
Tl '"H 2
'~1^«3^Cir^f~it~ior^f™)riio>*>i>i->JH-2^o^'Cl"0'H n ••* —* m >•
" " " it H n a it H it » H * -n "n -n -n * ti » n n o r*
-v
.
-
—
^
***•<*
*****
*
*
-*
#
*
*
*•
*
*
•»
*
*
*•
»
«•
*
*
•*
*
»
#
#
•t
*
*
****
*
*
*
*
#
*
*
*
I.-)
O O O O ^ O
>>>>>»
>>>>»>
2 O
2 O —
2 •— O •" 3 <">
CSSCO-o »
-^j;-; =
^ jp ~^ ^ ^ ~^j
*•»*«•••<•
0 <-0>
2
O
^
TI
^
^
^«
N)
t/1
•3
%J
1%)
—
•S\
<
3
O
-H
-<
3!
C
•H
ro
o
i>
?5
ri
O
i:
c
o
^x.
o
~4
»•
1—
n
o
r-
•=>
s
-^
£
>
70
o
o
.£
r>
-H
r-
-------
7fU
78?
783
78 't
705
786
787
78fl
789
790
791
792
79J
794
795
796
79T
798
799
800
801
802
603
804
fl05
806
807
ROB
H09
813
811
fl!2
113
814
815
817
818
"U9
820
821
822
823
R24
825
P26
027
828
829
fl30
831
832
833
R34
835
H36
837
839
840
TOTHtMl I )=0 .0
5 CONTI NUF
03 10 I =
PFtnWII
PCONC< 1
UAIS ( 1 1
UALCt I 1
W2UAL 1(
W2LJAL2C
GRASAI I
UAI.G( { 1
WLNDAI 1
UAlWt II
L 0 0« M I (
t OP RN2 (
UStFRl I
USITM !
USLf LS (
usiecu
JSLFPC t
SOt LSI (
SOI1S2I
TTLffU 1
P. ATI 0(1
W 30T A I (
W3OTA2 t
W30TA3t
W3UAL1 t
W3'JAL2<
W3UAL 3<
LOOIW3 (
LO02W3I
L OD JW 3 (
W4UAL( I
03 8 J= I
CTLFLW(
CTLCMC (
ST»1CTL(
STMARAJ
COMC TU
COMARAJ
OTICTI <
OTIAPAC
OT2CTI <
OT2ARAC
CTIPU,
son r ii
SOILC? t
CTLPRO(
CUM W4 (
DO 6 K =
iM
= 0.0
= 0.0
0.0
0 .0
1 =0. 0
»=0.0
=0.0
0.0
= 0 .0
0.0
1 = 0,0
1=0.0
=0.0
= 0.0
»=O.P
= 0.0
= 0.0
=0.0
= 0.0
0.0
0. 0
= 0.0
= 0.0
= 0. 0
= 0.0
=0.3
= 0.0
= 0.0
»=0. 0
>=o.o
=0 .0
3
t J 1=0. T
. J) =0.0
,J»=0.0
, J) = 0.0
t J)=0.0
,J 1=0.0
i J 1 = 0.")
, Jl =0.0
« J) = 0.0
, Jl=0.0
1=0.0
, J )=0.0
, Jl=0.0
, Jl = 3.0
, J ) = 0 ,0
,5
6 C TUSLF< J, I ,K)=0.0
8 f.ONTINUf
10 CONTINIIF
no 20 K=I, 210
APOFI K| = |IJI NK
J 1 YP(K) =0
NPQS
-------
tn
O
841
842
843
844
845
846
R47
848
849
850
851
852
853
854
855
856
857
858
859
869
861
862
863
864
865
866
867
868
869
870
872
873
874
875
fl 76
877
878
>879
880
PBl
882
883
884
885
886
887
88"
889
890
891
892
893
894
895
897
898
899
900
00 12 K2=l,3
IF"( K2.EQ. 31 GO TO
AJNII [ = 1,12
TYi>rofi( it II = STYPH
TYPf.nO<2 , t ) = STYP? {
TYPC30( 3, 1 ) = STYP3l
TYPCOOI4, I )=STYP4<
TYfconc; ,11 =rccNK
fYPCOn(6, I I=STYP6(
TYPCOOI7 , I )=STYP7 (
TYPCOO(8,I » =1 BLNK
TYPCOn(9, 1 1= 1BLNK
25 CONTINUE
nn 30 i = i,5'»o
KNOXI I » = 0
FINCSU IMO.O
F IMRFMI II =0.0
ISFIN< I J = 0
00 28 .1 = 1 ,43
28 FINSRCI I ,J)=IBLNK
30 CONTINUE
t I
C,
C
C
C ****'
ENO
SUBROUT1 NF WTRINP(KFYHRf), IFRI
KORKSHFET J NPI/T ROUTINES FOR INITIAL STATE OF WTRSHO
LOGICAL LINPUT , LOOURB , LODRNC, t (10PCP, L4U AL , L INI,LIM2,LIN3,LIY4
LOGICAL LOOPOR
INTEGER OTHURB,OTHRJL , SRCE »2 10, 28), TYPC30I 9,12)
01MCNSION iTYP 12101,NPOS12101,AUNIT1213,?i,KTiTLE(4,43i,
r. SUHFEA(?10, 3)
Ul HFNSION PI" LOW (33 I , Pf.ONC (30 ItUALS ( 33 I, U ALC ( 30 I , H 2UAL U 301 ,
C W2UAL2I30)
INTEGER TLEURK 12),T1 FUR? I 12 ) , Tl FRU 1 ( 1 2) , Tl F PU?( 12) , TLFR U3( 12 ) ,
r. APOC(?10>
(IIMFM SlfW GRASAI30),UALGl30).HLNDAI30) ,UALW(30),W30TAl (301,
f. W3'JALl (30) .W3IIAL ?( 30I,W3UAL3( 30I,W30TA2(30I,W30TA3(3D1
RFAL LnnPN1130) ,LOORN2(30I ,1 OOt W3 (30 1, L002W3 ( 30 1,1 01)3« 3( 33 I
DIMENSION USLFRI )0),
-------
901
90?
903
904
905
906
907
908
90=)
910
911
912
913
914
915
«16
917
91S
919
923
921
922
923
924
9?5
926
927
92B
929
930
931
932
933
934
935
936
937
938
939
940
941
942
9'+3
944
945
946
947
94n
949
950
951
95?
953
954
95'i
956
957
958
959
ofeO
COMMON /WRKSH I/
COMMON /WRKSH?./
fO*1M-)Nt /WKSH3/
f.
f,
COMM-lN /WRKSH4/
r.
INTF3GP STYPI12)
(, **** it.***************
SRCF, ITYP, NPOS, APOF ,AUNl T , SURFE A , TLEURl .TLEUR?
PFLOW, PCONC, UALS.J At C.W2JAL I.W2UAL2
GRASA,UALG .WLNOA ,UALW, LODRN1 , LOORN2 ,
W30TAI.W3UAL l,W 3UAL 2, W3UAL3, W3OTA2 , W30TA3 ,
TLFRUl,TLFRU2,TLFPU3,l001H3,LOn2W3,L003W3
USLFR,USLFK,USLFLS,USLEC , (JSLEP , SOU SI ,
^OILS?,TTLER, W4UAL.R AT 13
********«***********(<*»* ****** *****************
DATA FIN, ANSMO,BLNK, intMK, ICOMA/ 'CND1, 'N1, ' ',' »,','/
OAIA AM S YES/1 V /
C
IER=l
G3 TTI 100,200,300,400) .KFYWPD
C
C INPUT SOURCES
C
100 IF(L INI ) CO TO 500
WRITCI IOUT.101 )
101 FORMATI '0 FNTER
I- I
MUPB=0
TYPP COI1F, SOURCE NAME FOR ALL SOURCES' 1
10? REACH IN, 1 03 II TYPI II ,(SRCF(I ,NAM) ,NAM=l,28l
103 FORMAT < I3.2QA1 I
IF( 1 TYPI .FO. 0.
m (TYPI .CT.?2
IF(ITYP( .GT.4I
IFIITYPl .EO.ll
IF
-------
(.seven
it 'i=diN'
•J
o '01 j li Vtv&ud cV
t . t fcA/o>t)33anos add sovtn iviui adih3C. I iv^yoj io<-
'J>OSOV01 VJHV UNO adlNd :$j:)d(IOS INIOd-NUN »Gd • 'J
J33NIJ3 ' (U0h» WcJ id tfdlNd :S3'jaflUS JNIOd dOdC « JiVKHOd tC c'
(EOZ'inul ) 111 HM I ddlKJO 1 ) J 1
I 2o<;'inui ) Juan tuancoi HUN* ) di
>a NVBtfl 3 IMOd - £ ld3Hi»aUK «OJ KldM C«)lVWWUd 1C<;
no;; 'inoi Jdii a«
os1? ui 09 (0'03 'dartN ) -ti
C'0-^XHTll
ooi 01 oo < f. M i)di toe
3
e i33MsxaoH aud swiinua indNi j
3
sti 01 oo
31 =«1
liNIVOV AH1 — JN 11 KldNl Nl fcCabdC i 11 VVxaCd \-i\
uei 'inoi )dii an a\
IDdM NU «0«d3 3
O&V 01 00
•30d L'= IN 11
30N1J.N03 OZ1
('H M iuwnv Mil 30dv(ezi=aa3' en 'NI >ov3a
HVZi'i -• 'Xll JltfkibUd 60)
IZI'l»r'IDdAlS» (601 '1001 »dHaM(>,'19'300)lldI
11 VSZ *X£ '1V21 'X 1) IVWaOJ 901
lk)il' 1=H VN* ItoVN* 1 ) 3 3 as 15
•IM (9'3TJOO)I) JI
( f'd(JO)l)OOTdAl = (r) dAlS 611
^Ti=r 611 oa
( l>dAll=300>l
I = ( I ISCdN
1=31
33bS?J'Hl = l CZ1 00
( i 33anos add S3aniv39
siiNn ao vjav'3003 AaiN3 do iniod adiNd i/uvwaod 111
inoAvi ivcisxHd - l i33Hi.»aoM aod indNi Oilivwaod «>oi
mi 'inci )di ian E,£i
(i,01'inol 1311HM
0
i i33ns»ciuH aod awnooa ifidNi "j
j
o^Cl
6101
bid
noi
9101
-------
en
oo
1021
1022
1023
10 2 'f
1025
1026
1027
1028
1029
1030
1031
10J2
1033
1034
1035
1036
103T
1038
1031
1040
1041
1043
1044
1345
1046
1047
I0'«8
104<»
10SO
1051
1052
1053
1054
1055
1056
1057
1050
1059
1060
1061
1062
1063
104*
1065
1066
1067
1060
1069
1073
1071
1072
1073
1074
1075
1076
1077
137H
1079
3.080
205
210
215
220
IP4=3
IP5=0
IP6=0
IP 7=0
1 = 0
10=1*1
03 210 I=Ifi,NSRCE
ie= i
JF( ITYP1I I.GP.3» GO TO 215
CONTINUE
LIM2 = .TRUE.
GO TO 450
WRITE! iniJT, 220 )( SRCEI t.NAMI ,NAM=l, 2PJ
FORMAT (IX.28AI )
IFtLOOURBI GO TO 225
IF( ITVPd I.GT.4I GO TO 230
223
225
226
?3-3
231
FOR URBAN POINT SOURCES)
REAOC lM,22?,e«R = 223J PFLflW ( JP3 I , PCONC( IP31
A UNI T( I , 2>=PFL(1W(! P3J *PCONC< I P3 1*1382.0
TTLWK2=TTLWK?«^AUNIT( I , 21
GO TO ?05
FPPOR ON INPUT
IF(PFLOH( IP3) .FQ.FIN ) GO TO 450
Wft ITF( IOUT.123 »
WRI TE< I3UT.202I
1= IF-1
IP3=1P3-1
GO TQ 205
HERE FOR URfAAN |f)AOS LOADED OIRECTtV
RFAOdN, 222,FRR = 226> AUNIT(1,2I
GO 10 205
EPROR ON INPUT
IF(AUNf T( I ,7\ .F.O.FINI GO TO 450
WRITFl IOUT, 1231
WP ITE{ IOUT.203 1
I = I F- t
GO Tn 205
HFRF FOR URBAN MOM-POINT SOURCES
RCAO( IN,?22,FRR = 236» UAI.URP
KOOE=ITy PI I |--i
GO T0( 231 ,232 i?3 1,2341 , KOOF
IP4=IP4*1
UALS =UAUJRR
GO TO 235
IP5=IP5+1
UALCJ IP5MUAIURH
GO TO 235
IP6=IP6+l
W2UAI I (IP6) OALURP
GO TO 235
1P7=IP7H
234
c
23^ AUNIT I f ,2 )= AUtJlT (1, 1 )
1TI WK? = T TLWK2^UN1 T( t ,?)
GO TO 205
f FRPOR ON INOJT
236 IF ( UAI UPfl.F.O.FI N) GO TO ',50
-------
en
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
109?
1093
1094
1095
1096
1097
1098
1099
1103
1101
1102
1103
1104
1105
1106
1107
1109
1109
1110
llll
1112
11 13
1115
1116
1117
It 10
1119
1120
1127
ll?3
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1135
1137
1138
1139
1140
T,
C
r.
c
c
WR ITF< inUT,1231
WRI TE( inUT ,202)
1= IF-l
CO TO 205
INPUT HO'JTINF. FOR WOR, IOU13, ( TLE* U3( Jl , J= 1,LEN3I
IF(LODRNC) WRI TE (I OUT, 303 I IDUM1 ,( TLERUl U ), J=l , LEN1 ), I OUM2,
C ( TLERU?( J l,J=l,LE»42), IOUM3,« T LE RU3< Jl , J= I , LEN3 )
302 FORMAT {• OENTER AREA, UAL FOR: OR ASSL AND , WOODL AND ', 39A If
d 2X,'ARFA IN KM2, UAL IN KG/KM2/YR1)
303 FORMAT ( 'OENT ER TOTAL LOAOS FOR: GP A SSL AND , WTODL AND ' , 394 1 /
f. 2X, 'LOADS ARF
1=0
310 IR=tvl
DO 315 1= IR.NSRCE
IC=I
1FC !TY»( I I .EO.l ) GO TO 3?0
315 CONTIMUF
LIN3=. TRUE.
GO TO 450
320 WRITE! I OUT , 22 3 ) ( S RCF ( I , N AH ) , N AM= I, 28 )
I Pl=l Pl+ 1
IF(LOORNC) GO TO 335
REAI)(IN,330 ,ERR=33l 1GRASAI IPt),JALG{IPll,HLNOA I ) ,
CW30TAU IP it ,W3UAL1( I PI) , W30TA2M PI I ,W3UAL2( 1PI ),W30TA3«fPl ),
CW3UAI 3( IP I)
330 FOPMATUOFIO. 01
331
LOORN2 (I PI MWLNOA! IP I )*UALW( IP I I
IFIOTMPUL.FO. o) GO TO 345
tOOlWSUPl ) = W30TAU IP t >*W3UALH IP 11
L002W3I I PI I = W30TA2 (I PI )*W3UAL2f I PI I
I C103W3C IP l) = W3f)TA3( I Pl)*W3UAL3 (I PI)
GD TO ^45
ERROR PN INPUT
IF( GRASA( IP 1 I .EQ.FIN) :;0 TO 450
WR ITF( IOUT, l^T )
WRI Tcl IflUI, ?0?) I nil^l , «T( ERUt < J» , J=l ,lrNl I ,1 OUM?,(TLEKJ2( J), J= 1,
-------
1141
f. LEN2 I, 1DUM3, (TIERU3I J),J=l,LEN3)
en
en
1143
1144
1145
1 1'* 6
11.47
1 14R
U'«9
1150
1151
115?
1153
1154
1155
1156
1157
1158
1159
1163
1161
116?
MM
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1170
1179
1180
llfll
HS?
1183
1184
11B5
1186
1187
118fl
1 189
1190
1191
1192
1193
1194
1195
1196
IP1 = IPl-l
GO TO 310
335 RE/vnt 1M, 340,ERR = 346KOf>R'OUP l» .LOORN2! 1 PI » , I DIM W3 1 1 PI > ,
f,l 002 W3 ( I PI I .LOD3W3I IPl >
340 FORMATC 6FIO.O)
345 AJNH ( I, 2» = LOI)RV|1( I" I I H OORN2! IP I )*LOf) IW3! IPIUL002W3! I PI I t-
f. L003H3IIPI)
TTL W< 3=TTLWK3 + AUNI T( I ,21
GO TO 310
EPROR OM INPUT
346 IF(LOORNU IPU .EQ.FINI GO TO 450
WRITE! I OUT , 123 )
WRITE ( I OUT, 30 31 I DUM1 .(TLEPU1 ( J) , J = l ,tFNl I , I OUM2 , ( TL ER J 2( J I, J=l,
f.l e^)2t, 10DM3,( TLCRU3I Jl ,J=l,t EM 3)
CROPLAND AREAS'!
40
GO TO 310
INPUT ROUTINE FOP WORKSHEET 4
400 IF(LIN4) GO TO 500
IFINRUCRP .EO. 0) GO TO 450
LOOPOR=.FALSE.
WRITE I I OUT,405)
FQRMATJ'O INPUT FOR WOR
GO TO 420
412 WRITE! IOUT,413 )
413 FORMAT! • C'PNIFR USIF COEFFICIENTS R,K,IS,C,P £ DELIVERY RAT 13 FH E
F,
415
416
42C
1198
1199
1200
ACH
LOO POR=. TRUE.
GO TO 420
IF ( .MOT .L4UAI I WR ITF.H1UT , 41 6»
FORMAT (• CENTER TOTAL LOADS FOR EACH S3 J* CE ' »
IF (L4UALI WRI TF( IOUT.41 71
FORMAT ! 'OFNTfR UNIT AREA LOADS FO1 EACH SOURCF
-------
en
cr>
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
l?l?
1213
1214
121-5
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1?2R
1230
1231
1232
1233
1234
1235
1236
1237
1238
1?39
1240
1241
1242
1243
1244
1245
1246
1247
1241
1249
1250
1251
1252
1253
1254
1255
1257
1258
1259
1260
DO 4?5 1= IB.NSRCF
IF = I
IF(1TYP<1» .F9. 21 00 TO 430
'»25 CONTINUE
UN4=. TRUE .
IF < .^OT .LOOPn* ) GO TO 416
GO TO 450
431 I C = I r »• 1
MR ITM IOIIT, 2'0) ( SHCF (I ,NAMI ,NAM=1,28)
CRPtNO = AUNIT < I ,11*100.0
IFILODRCP) GO TO 443
iF(.MOT. innpoRicn TO 432
REAOtIN,340,ERR=439IUSLER< 1C ) ,USLEK ( I Cl , USL EL S ( 1C I, USL EC I 1C I,
F> USLEP( 1C >, RATIO! ICJ
GO TO 434
432 RFAFM I N , 340 ,E RR = 43<» USl ERM C.) , US I EM 1C I, JSLELSt 1C), JSl ECt 1C I,
f. USLTPI 1C )
434 SOI! SI (!C)*USLEfU ICI*USLEK{ IC)*UStELS( 1C I*USLEC( ICI*USLEP( 1C)
SUILS2(IC» =SO! LSHIC(*2.243
TTtFRI IC»=SOltS2( 1C)*C»PINO
FROTOT=CROTOT+TTLERt 1C!
IF (.MOT.tOOPOR I GO TO 422
AJNIH 1,2 I = TTLER(ICI*RAT tnj 1C)
AUNI TH ,21 =AU'41T( I ,21*1000.
GO TO 422
NflW CALCULATE POP GIVEN TOTAL LOAD ANO TOTAL EROSION
436 RA TVAL = ( TTLWK4/1000. ) /FROTOT
IC = 0
00 438 I =l,NSRCE
IFdTYPI I I .ME. 21 GO TO 438
438
43;>
RATI31 TCI =RATV4L
AJN1T ( 1,2 ) = TTl FR( ICi *RATVAL
A UN I T( I ,2) =AUNIT( I ,21*1000.
CONTINUE
GO TO 450
ERROR ON INPUT
IMUSLFU 1C I .F3.FIN) GO TO
WRITE (IOUT.123I
IF(IOOPOR) HRI TF( IOIJT.413I
IF ( .NOT .LOOPDR ) WR [TE( lf)UT,4ll
I =IF-l
ir.= ic-i
r,o Tn
450
44C
441
44?
Iff .MOT.L4UAI I GO Tfl 442
RFAO( IN, 222, FRR=44l ) W4IJALIIC. I
AUNI T< i ,21 =AUNI T n ,i t*w4UAL( ic i
G3 T3 422
FPP.OR ON INPUT
If ( W4UALI ICI .FO.FI Nl GO TO 450
WRITF( (OUT, 1231
WRITFI IOUT,'.l 7 )
1 = I (- 1
tc=ir-i
HO TO 422
HERE FOP INPUT (f t OAO VALUES
KFAOU*', ?22,EP«=441| Al/NIT
-------
1262
1261
126*
1265
1266
1267
1268
126<>
1270
1271
127?
1273
END Of
443
FRRQP ON INPUT
If (AUNIT (I ,21 .EO.F INI (.0
WRITFt10UT.123)
WP1TFI|nUT,416l
TO
1C=
r,n
1C- I
in 122
OflNf
500
IFR=3
coNrr ^fUE
RETUKN
END
f ne
-------
The second source file is called
/
WRKSHT
in
CO
-------
. I SUP.ROJTINF WPKSHTI 1STAGF,STABLE, IfU
2 C
3 C ROUTINE TO OUTPUT WORKSHEETS
'» C
5 C * * * * i
6 I OGICAL L INPUT, LOOURB , I OORNC , I ODRCP , I 4L! AL ,L I Ml , LIN2 , t IN3 , L IN4
7 LOGICAL UPBC1L,RULCTL,UCTLOO( 3), PCTL001 31,UPRCNT,UXPCNT.RPRCNT ,
R K RXPCNT .tJRBCST ,PULCST .LRANK
9 INTEGER OTHURfi .OTHRIlt , SRCF ( 210 , 2B) , T VPCOD ( 9 ,1 2 1
10 DIMENSION nYP(2m,NPOS«210), AtlMITI 210, 2) ,KT ITLF( 4,40) ,
H f. SURFf A( 210, 3» ,CTLOD(210,3) ,CTUSLE(3 ,30,5 I
12 DIMENSION STMCU t 30, 31, STMARAt 30,3) ,COMC1L( 30,3) ,C OMAR A ( 30 , 3 1 ,
13 C OTICTL (30,3 I.OTIARAOO, 3), OT2CTU 30,31, OT 2ARAI 30,3)
14 DIMENSION PELOW<30) ,PCONCC30I ,UALS(30) .IJALC ( 3D ) , W2U AL I (30 1 ,
15 t W2UAL2I30),TRMSMMI210)
I ft INTEGER TLEUPt (12 ) .TLEUR2I 12 » .TLERUK 12),TLEPU2( 121, TLERU31 12) ,
17 t APDEl210),ARFACN(4).UALCOW4)
18 DIMENSION GR AS A( 30 I ,UAtG( 30 KM1 NO A ( 30] , UAL W« 301 , W30TA H 30) ,
19 E, W3UALK30) .H3UA12 (JO) .W3UAL3I33 I.H3O1 A2130 I,d30TA3(331
20 REAL LOORNK 30).LOORN21 30) ,LODIW3( 30) ,1002W3(30I .LOD3W3I30)
21 DIMENSION US LFR I 30 ), 'JSLEK {30 I. USL EL S I 30 ) , JSLEC I 30 ) , W4UAL ( 30) ,
22 f. USLEPI30I ,SOILSl(30l ,SOIiS2(30) ,TTiER(33 ) ,RAT I0( 30 I
?3 DIMENSION PDIE(210,31,TCOSTI210.3),PUCOST(21 0 ,3»
24 01 MENSI ON PMOUTHI210I,01FMTHI 213,3),CPUR EM(210,3 ),KERANK(210,3)
25 CGMM3N /WTRIO/ IN, I OUT, NSRCE ,K1 11 LE ,NT I E , NUPB, NP^JNCP .NRUCRP
26 COMMON /WTPTF/ LINPU1,LOOURB, LOORNC.LINl,LIN 2,LIN3,LIN4,OTHURB,
27 C OTHRUl,LOOPCP,TYPCOD, JIN, JO'JT , L4U AL , K'JJf ,L^A^<
28 COMMHN /WRKSH1/ SRCE,ITYP,NPOS,APOE,AUNIT.SURFEA,TLEUR1,TLEUR2
29 COMMON /WRKSH2/ PFLOW.PCCNC, UALS,UALC,W2UAL I,W2Uftl2
30 COMMON /WRKSH3/ GPASA,UALG,WiNDA,UALW,LOORNl,LOORN2,
31 G W3TTAl,W3UALl,W3UAL2,W3UAL3,W3nTA2,W30TA3,
32 G TLERU1 ,TLEPU2,TLERU3,LODN3,LOD2W3,L003VI3
33 COM^13N /WPKSH4/ USLFP ,USLE K.USiF IS , USLFC ,US LFP , SOI LSI ,
34 e SOILS2,TUFR,H4UAL, RATIO
35 COMMON /WRKSH6/ POIF,TCOST,PUCOST,TRNSMN,PMOUTH,0 IfW H,CPJRFM,
36 f. KERANK
37 COMMON /WTRCOW UCT LOO, RCTL 00, t/RBC TL ,R ULCII. , UPRCNT ,UXPC NT, RPRC NT,
3fl E, PXPCNT.OPTVAL.NOPT .URBCST .RULCST , AREACN, JALCO^I
39 DIMENSION CTLFLWI30,3),CTLCNC( 30,3)
40 01MENSION CTLE(3C,3),SOItCl(30,3I,SOILC2(30,3l,CTiERn(30.31,
41 C CUALW4(30,3)
42 DIMENSION TOTCST(3),TOT"EMI 3 I,KNOXI540»,FINCST(540) ,F1NRFMC543),
43 G (SFIH(54?)
44 INTEGER F INSRC(540,43)
45 COMMON /HRKSH9/ TOTCST , Til R EM, TOUOI), TOTMTH, KND X, FI N SRC ,F I N: ST ,
46 C FINREM, I SFIN.NUM
47 COMMON /UBNCTL/ CTl FLW.CTLCNC,CTLOD,STMCTL,SI MARA.COMCTL,
48 R COMARA.flT ICTL, OI IARA,OT 2CIL, OT 2ARA
49 COMMON /RFOCK/ C TUSLF ,t TLt , SQI LC I , SOI LC2 , CT LF.PO, CU ALW4
50 C **************************
51 IUGICAL SAMNAM.SCHSRC
52 OATA IPG, ITM,IBLNK/1 I','?• , ' '/
53 TEAL 111 ,LT2,LT1,LT4,L1 5.LT6, STGTOTI3) ,OIFT 1TI 31
54 INTFGFP NWRKSIMB) ,STY
-------
cr>
O
60
61
62
64
6r>
65
67
68
70
71
72
73
74
75
76
77
T\
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
95
96
97
98
99
100
101
102
103
104
105
106
107
138
109
10
11
12
13
14
15
16
17
11«
! 19
1
U.
C
3C
35
C
r
C
10?
131
105
106
108
109
113
III
C
115
UP
I 1 4
117
125
1 16
1 2T-
l?7
1
1
I
r)
C
I
I.
M
G
H
F
I
D
W
F
G
H
F
W
F
r,6
C6
C'
L
•
l_
n
I
i
s
i
W
r.
r
G
r.
r
<;
i
tv
r.
f
G
C
W
,f
ITM
IFIIUIUT .NF. . IOUT I IFF=IPG
IFf.MOT.LJNPUT .OR. MTABLF.FO.OJ GP TO 933
K = B
O 5 1=1,8
NWRKSH(I)=0
IF(Mr/»ftlE.60.9) MWRXSHMt'I
CONTINUE
IF(MTARLE.NF.9) GO TCI 35
LK = 0
l.K=( K+l
IFIK.3T.BJ GO TO 099
MTABLF=NWRKSHJLK)
O T3( 100,?30,300,400,500,600,700,800) .MTABLE •
OUTPUT ROUTINE FUR WORKSHFET I
HR |TF.{KnilT, 101 ) IFF
FORHAT(AI ,37X ,'PHYSICAL LAYOUT')
IfIMTLf.EO.O) GO TO 108
DO 115 l = l,NTL£
WRITF fKOUT, 106)
C3MT 1NUF
IFIKOOF .FO. 3 .OR. KODF .EO. ')) GO TO 125
I Tl = L T)tAUNIT(1,1)
SAMNAM--SCHSRC ( I ,SRCF , KOfM-(
IFISAMMAMI GO 1 0 1 14
WPI TE(KPUT,1IDt (SRCF( I,J»,J=l,28), {STYP(J),J=1, 12),
NPOS( I I, APOFI I), Atwm I, I) .< SIWFEAC 1 ,1 S > , 1 S= 1, 31
FORMAT
TO 120
UT, ll7HSrYP( Jl, J= 1, 12I,NPOS(( I ,APnE< It ,AUNI T( I , II ,
{SMRFEAI1,1S),IS=l,3»
F3RMATI 30X,12AI,19,I OX,A),FI 3. 1,16X,3A4)
TO 120
I T2=t T2»AUN«T(I ,11
tvRlTr(Kni)T, 11611 SRCF( I ,J| , J=l,29> ,1 STYPt J) , J = l ,12) ,NPOS< 1 I ,
APOEC I ) , ADMIT ( 1,1 I, (SURFFAI I, IS ), IS= I, 3)
TUX,?flAl,lX,12Al,l9,lCX,Al,13X,F11.0,5X,3A'i)
TO 120
CONTINUE
WPI 1F(K3I>T, 127) LTl.l T2
1110, 23 X. 'TOTAl «,36X,F13.1rF11.0)
-------
120 WR! IF(KOUT,130)
121 130 FORMAT ( IX, 52( '-' I, 5?( '-Ml
122
123
124
125
126
127
128
129
130
131
13?
133
134
135
136
137
138
1 19
HO
141
142
U3
144
145
146
147
148
141
150
151
152
153
15'+
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
1 10
171
172
173
1 7-V
175
176
177
178
17')
GO TO 16
C
f OUTPUT ROUTINE FOR rfORKSHFFT 2
r
200 IFIMURR .FO .0) GO TO 16
MS = 0
WR I TF( KOUT ,201 I IFF
201 FORMAT! A1.43X, 'PQIMT AMI URBAN KUNOFF LOADS" /47X,
f. 'TOTAL POLLUTANT LOADS' 1
IF( OTHUPB.FO.OI WRITF( KOUT, 202 I
1F(OTH»RB.F0.1 1 WRITF«nuT,233)( TLFURU JTl , JT=l, 12)
rF,NPOSH
C ,PCOMC( I T) , AUMI I (I ,2) , At) NIT < II ,1 I.UALS 1 IT ), AUNITI 11,2),
G.UALCt IT ) ,AUNI T( (2,?),AUNI T( I 3, 1) , W2UA L 1 ( I T ) , AUNI T ( 13 ,2
f. AUNITI 14,1 ),W2UAl 21 IT), AUMITI 14, 2)
LT 1=LT1*AUN1T(I ,2)
LT2=I.T?*AUMn (11,2)
LT3=LT3»AUN)T I I?,2 )
LT4=l T4
> .PFLOWC IT J
AUNITI 12, l»
> ,PFLOW{ IT>
AW IT1 12,11
)
» ,PFLOWCIT)
4U"IIT< 12, U
) ,
-------
LU=O.O
181 LT?=0.0
102 t.T3=0.0
183 l.T4=0.0
184 U5=0.0
185 1=0
186 11=0
IB? 214 10=1*1
188 00 215 1 = 1 B,NSRCE
189 I F( ITYP< I I.F0.3.0R. I TVP( II.FQ.4) GO TO 216
190 215 CONTINUE
191 GO TO 21T
192 216 IT= IT*1
193 11 = 1*1
19't 12 = 1*2
195 13=1*3
196 14=1*4
197 IFUlTHURB.FrQ. 01 WRI TE(KOUT,211 HSPCE( I ,JI tJ-l .28) , NPOS ( I ),
19R f.CUFLHl IT ,NS I.CTLCNCU T,NS),CTLOO( I ,NS ) ,STMARA(I T,NS» .
199 KSTMCTLIIT.NS), CTLOOl II ,NS I ,CO^ARA( IT, MS l.COMCTU IT.NS),
200 tCTtOOfI?,NS>
201 IFIOTHURB.EQ.l) MR ITE, C TLOOC I 3.NS 1
205 IF(OTHURB.EQ.2> WR1TEIKOUT,2 I 3 I(SRCE(l,JJ,J=l,28I.NPOSIt I,
235 f-CTLFLWI IT ,NS(, CTLCNCf I T ,MS > .CTLODI I ,NS),STMARA( II ,N5) ,
207 GSTMCTU IT.NSt.CTlOOl II ,NS) , CO MARA! IT ,NS I.COMCTL ( IT.^JSJ,
?08 CCTLOnd 2,MSI ,OTIARA( 1 T,NS) ,OT1CTL tl T ,NSI ,C1 LOD( I3,NS>,
709 COT2ARAI IT,NS),OT2CTL(IT,1SI.CTLODI I4.NS)
210 LTl=LH*CTLOO( I , NSI
211 LT?=LT?*CTLOn( 1 l.NSI
?l? LT3=LT3*CTLOD(I2.NSI
21) LT4 = L14*CTl OF)! I 3 ,NS)
214 LT5=LT5*CTLOO(I4.NS)
21«5 GO TO 214
216 217 IFfOTHURB.FQ.OIWRI TE(KOUT ,221) LT1.LT2.LT3
21T IF(OTHURR.EO. I )WR ITEJKOUT,222 I LTI,LT2.1T3,LT4
218 IFl OTHUPB.EO.? ) WPI TF(KnilT ,223) LT I, LT 2 , LT 3, L T4, L T5
219 21B IFIMS.GE .ISTAGF I GO TO 225
220 GO TO 224
221 225 IF(PTHURB.EQ.C)WPITFIKOUT,227)
222 227 FORMAT! IX,221 •-'1,7 f,, 3( 3X, '
-------
240 211 F-|RMAT< IX , 2BA I , I 4, ? X. 3< ?F 7. t ,F 3. OH
?( TLFRUHJTi,JT=l,l2)
256 IF IOTHPUL.F. 0. Zl WRITE < KUU1 ,3041 (TLERU1 { JT I , JT = 1 , 12 I ,
257 f. (Tt.ER'I2( Jfl t JT=1, 121
258 IFIOTHRUt. .EQ.3 IHR IT F ( KOUT , 305 MTLERUM JT I, JT= 1, 12),
259 f. ( TLFRU2I JT| , JT = l ,12) ,(TLFRJ3( JT ), JT = l, 12 )
?60 AT1=0.0
261 AT?=Q.C
262 LT1=3.0
2f>3 IT2 = T.O
264 I T3=0.0
265 IT 4= 0.0
266 LT5=^.0
267 LT6=0.0
CT, ?68 IT=0
Co ?60 1=0
270 306 IB = IH
271 00 307 I=IB,NSRCF
272 IF( ITYPI I) .EO.ll 00 TO 310
?73 307 ^ONTINUF
274 GO TO 317
275 310 IT=|T+1
276 IFIOTHPUL.F.O.OI
?7f eWRITE(KOUT, 311 MSRCFI I, J» , J = l , 28 ) ,NPOS I I ),SRASAJ|TI .UALGdTI ,
27B f. LOORNl ( [Tl ,WLNOA< IT ) ,IJALW ( IT I ,LOnPM2UT I, AUNIT (I, 2»
279 IFIOtHRUL.FO. I IWRI TE( KOUT, 3 12) I SRCFd , J) , J-l ,2fl) ,NPOS( I > ,GRASA( II J
283 f. .UALGI IT »,ir)DRNl ( I T } , WLMO A ( IT ) ,U ALW ( IT) ,LOORN2I IT), W30TAK IT) ,
2fll CW3UALU I T) ,LOOIW3< IT I , AUNI T ( I , 2 )
282 inoriKUIL .E0.2IWRI TF |KOUT, 3l3MSRrFU,JI,J = l,28) ,NPOS(I I .GRASAIIT J
283 C.UAtSt I Ti .LOOPNl (IT) 7WLNDA{ I T ) , UALW < IT ) ,LOI)RN2 ( IT I , W 301 A I ( If ),
?>H Kri3JAU( IT »,LOOU1» I r I.W3TTA2I IT) ,W3UAL2( I T» ,LOf)2W3II TI , AUNI Til ,21
285 IFimHRUL.F0.3 ) WR I T t ( KOUT , 3 14 ) ( SRCF I I , J ) , J= 1, 2e>,NPOS< I ),GRASA( I T)
2ft6 C.UALCt IT ),LOORMK IT) , WLNDAI I T) ,UALW< IT) ,LOORN2( I f I , rf JOT Al ( I T ) ,
2-J7 r.W3UALl( IT KLPDIWM IT ),W3f)TA2( I T I , W3UAL 2( I T) .LOD2W3I ITI .W30TA311T) ,
288 CW3UAL31 I Tl ,LOI)3W3(I T) ,AUN1T ( I ,? )
?B9 AT1=AT ItGPASAI IT )
290 AT2=AT2*WtNOAf IT »
?
-------
300 IFJPTHPDt .EQ.2 »WRITEIKOUT, 320)ATl,AT2,LTl,LT2,LT4,LT5,LT3
301 IF 10THPUL.EQ.3>WPI1F(KOIJT,321 »ATl,AT2,LTl,LT2,LT4,LT5,LT6,LT3
302 IFiOTHRUL.FQ.OIWRl TF(KO'JT, 3?2>
303 322 FORMAT UX , I4t" -• I, 79 (•-' I >
304 IP! OTHfUlL.FQ. I,OK. OTHRUL .F.0.2 ) WR ITEIKOUT ,3231
305 3?3 FORMAM IX,54( •-• ),601 •-• )»
306 IF »OTHPUL.E0.3IWRITC( KOJ1 ,324 I
307 324 FORMftTt IX, 60( •- ' ) , 7? ( '-'I I
308 CO TO 16
309 302 FORMAT(RIX,»WORKSHCFT 3' / IX , 14 I' -• >, 79 (' -« I/ 1 3* , ' GR ASSL AMD •, I 5X,
3io r.'wmnLAMD', isx. • TOML •/3ox, «POSI • ,21 5x,-AREA- ,3x,- UAL' ,4x,«ioAo •»
311 C,7X,« LOADV6X, 'SOURCE', 18X, «T ION ',2«4X, 'KM? KG/KM2/YR KC/YR»),7X,
312 C'KG/YR'/IX.14I'-'),79{' -• I /»
313 303 FORMAT(50X.52X,'WORKSHEET 3' / IX, 541 •-•), 601 •-' I /43X , 'GRASSLAND' ,
314 C I 5X,«WOODLAND1 ,13X,12AI,8X, 'TOT AL'/SOK , ' POS I ',
315 &315X,'AREA',3X,'UAL* ,4X,'LOAD ' > ,6X, •LOAO'/6X,' SOURCF' , 18X,
3lfi C'llOM •,3('tX,'KM2 KG/KM2/YR KG/YR • 1, 6X, 'KG/YR • / ,
317 r.lX,5/39X,«GRASS LAND',
319 ttOX .'WOODLAMD'^X, I ? Al, 6X, 12A I, 3X, • TOTAL • /30X , 'POS I • ,
320 KM 2X,'ARFA' ,2X,»UAL' ,2X,« LOAD ' »,2X,•LOAD' /6X,•SOURCE', 18X, »T ION•,
321 C^.( ?X, 'KH?',8X, 'KG/YR • >, ?X, 'KG/YR '/1X.541 '-• ) ,60(«-' I /I
322 305 FORMAT(60X.60X,•WOPKSHFET 3 • /IX,60( •-• 1, 72 ( ' -•I/39X, «GRASSLANO',
323 f. IOX, 'WOODLAND1 ,3 X,3( 6X, 12 Al I ,3X,« TOTAL' /30X,' POS I' ,
3?<» £5 (2X, ' AREA', 2X, 'UAL ', ?X, 'LOAD 'I,2X, «LOAO«/ftX,' SOURCE' , I RX,< TION* ,
325 F. 5( 2X, • KM2' ,8X,' KG/YR' I ,2X , 'KG/YP'/ IX ,60('-' I, 72 ( '-' I I
326 3U FORMAT! 1X.28AI, U,2X,2(F«. 1,F7. l.Ffl. 11 ,F12. I I
327 312 FORMAT(1X.2BAI,I4,2X,3(F8.1,F7.I,F8.1»,FI 1.U
328 3 13 FORMAT( IX.2BAI ,f,,lX,4(F7.l ,F5.l ,F6 .11 ,F8 .1 >
-P» 3?T '!'. FORMAT(1X,28AI, K. 1 X, 51 F 7. l,F 5. 1 ,F 6. U ,F 8.'l»
330 3 11 FORMATUH0.20X,' TOT Al « ,5X, F 12. 1, 3X , F 12 .1, F8 . I', 3X, 2F 1 2. 11
331 319 F":)P1AT(21X,«T:iTHLf,T32,F12.1,T'>5,FI2.1/lX,T /
353 C40X, 'CP 01'LAND' , 2 4X, ' TOTAL' /50X , • AP F A' , 1 ?X ,' U AL ' , 11 X , ' LO AD1/6X,
354 II• SOURCF', 18X, "POSIT ION' , l?X, •KM2't IOX, ".0
-------
S9
—LI -•>
—, ys is
"
f J\ *•
— ft Q 3 —
— -t 5 -n .t- _
t ^ 2 — Ul r-
II —1 M .4
O II » UJ
<-> O II
• O
o •
r* -^ n —
O * TI i
— TII-
C r- •" -H ~ ~
-H T! — -1 — o
i- Tl -< —
35 T3 It
-1 I/I
O ^
iv m
n
-n z — -t — -f
•vj . —. —
m
O
•v .—i
3 -H
— 2
— VI
X
i
-n
(— B
*•
»
r-
<~
O O "n
50 ^ -**
lli
t— P- t3
X X —•
• •>
O 3
> > -C
f"1 •—> ;g
• » ta-,
» • -H
-i *•* m
j ^i .m
OX*
Tl Tl 5
r— *™ "«i
f f *
O O uJ
- 1 »— —
.03 X -1
O *" ^
x *• — i
"n u
O
•
0
p.
o
X
«
~ o
^2 O
O
• o
3
o
TS
TJ
£
O
i— i
—4
"*1
^
^
3
M-l
^
NJ
""
^
f-
-H
"V
«
I/I
W
^ -^ -H T>
-1 Nl — O
•V II II 33
II "^ "^ J*
f rv '— >
-!++-(
n r- -a x
30 )T| f~ •
T3 J3 2 ^
r- — Q OD
C3 — >
•-.*
O^
«
Tl
r\j
"3
•
^5
••
-n
^
!L
«•
Tl
P.
Jl
O
*»»
5 :
J> MM
22-
-c ,
- -H
rx.) *
— w>
yj
^,
.«
'./i
>D
n
m
«.»
M4
<•
<^»
M>
C.
11
NJ
30
7"
z
^0
o
t/1
<«,
v^
*
w
&.
»-»
—1
«-.
r*
»-•
w
•*
•> -n -.
o 5
* —4
0 - X
Ts »
l— "SJ
UJ 09
• >
^-» «
<->•
•£"
«
Tl
fH>
o
,
o
••
-n
r
o
-n
»
rsj
%)
^i
O^
•
^
-n
ji
^j
*
Tl
•W
*
7"
Tl
NO
•
-H C
25
"«* •— •
« .,
^5 CI
> trt
-. .Tl
C r-
~* &
t-* ..H
•M "•
W «f
V ~^
O w
^o i-tr
•^3 yi
r* r*
8 2
-^
«
c
r~
-n
-o
~
*..•
-
O
^m
r*
wfl
p-
_
"H
v*
•"
s: — n r> -* o r> o — -" —
^jTl-3D^3-,-3C'-a33 H ^
— — • -o -Q II 2"^ "O»
-C33*WZ^SZ
^c > II ii _ ^ w <
w C C O — . II
-i • 2 2 — —
- 0 - _ - 3
^ o « i — i • •
— • — — "12
"•• P* • * • yC
•— Q IV r- IV O
,/) o •—• ^ — m
**'"•>*
-in — ,- o
•n -3 o o o
— «r O O
-. 0 . -1
• C1 . o 2
<- o
L. O O
II
*V 1*2
39
z
^
O
_
^*
"
»
"O
r-
^
•3
C
r"
rn
£
J>
-------
420 IFtnOPCP) WR I1F(KOUT,434|TI,ST3
421 424 FORMAT(21X,« TOTAL«,T3C,F14 .3,T6H,23X,F13.0,
42? f, 18X.F13. I)
423 irtflS .CE.ISTAGEI Gfl TO 4?5
424 GO TO 412
425 425 IFJ .NQT.LUDRCPIWRI TF ( K0
427 433 FORMAT! lX,fl4J' -'))
420 422 FOPMATf IX.65I •-' ),65t •-•M
429 GO TO 16
430 C
431 C 01JTPUI ROUTINE FOR WPRKSHEFT r>
432 C
433 501 IK .NOT. URIif. TL . ANO. .NOT.RULC1LI GO TO 16
434 TTLUn=n.Q
435 00 501 1 = 1 ,3
436 S (GTCm i 1 = 0.0
43 7 501 OIFJOT ( I 1 = 0.0
43fl WRITFIKOUT.50?> [FF
439 IFtlSTAGF . EQ . I) WRITF(KOUT,504)
440 IFUSTAGE .EO. 2) WRITFfKOUT,503)
441 IFdSIAGf .FQ. 3) WPITF (KnilT, 506 I
442 50' rriPMATC Alt SOX, 'LOADING SUMMARY*/47X,« TOTAL POLLUTANT LOADS'!
443 513 FORMAT O9X ,'WORKSHEET 5 ' / I X, 50 ( ' - ' >, 63( •- ' I / 5 3X,
444 C'lNlTI&L LOAD TO CONTROtLEO LOAD' ,6X,'LOAD PfDUCT IONS'/53X,
445 f. 'WAT PUSHED BAS W<, "X, 'KG/YR ' , 17X , «KG/YR'/6X, ' SOURCE • ,22X,» TYPE' ,
446 F.4X,'POSITION' ,<»X ,'KG/YR-,4X,2 <4X ,'ST AGE I',4X, 'STAGE 2')/
447 r.lX, 50( '- ' I ,601 '-'II
^ 448 50/, fOI>MAT (99X,'WORKSHEET 5 ' / I X, 50 ('-• I , 60( ' - ' I / 53X ,
CT> 449 C'lNITIAL LOAD TO'/5 3X, • WAT ERSHED BASIN CONTROLLED LOAOS6X,
450 E'LOAO RfiltlCl IONS-/6X, 'SOURCE' ,22X, • TYPE' 14X ,' POS1 Tl ON' ,fl X ,
451 <: «KG/YR',2(14X,'Kn/yfV,3X»/lX, 50 {'-•>,601'-')}
452 50^ FORMATC/>OXt61X('WURKSHF.FT 5« /IX,66( •-• I ,66 ( '-' I/53X,
453 f,' INITIAL LOAD TT , 10X, 'CONTROLLED LOAD ', tflX ,« LOAD REDUCTIONS'/
454 G53X,' WATERSHED OASIN' ,15X,'KG/YR',?8X, «KG/YR'/6X, 'SOURCE «, 22X,
455 C'TYPF',4X,'POSITION' ,OX,'KG/YR',4X,
456 f.2 <4X, ', J=l, l2l,Mf'nS( I), AUNI T( I, 2J
465 IF( SAMNAMI WR I TR ( KOUT ,53 I I (STY P ( J) , J= 1, 1 ? I.NPOS1 I I, AU^J IT( I, 21
466 GO TO 54fl
467 5^5 CONTINUE
468 IF(SAHNAM) GO TO 530
46') irUST4GE.EQ.llWR! TE< *n»JT , 5261 < SRCfiJ I , J) , J = l , 2 8 I , ( ST YP f Jl , J = l , t 2 I ,
470 r. NPOS( I I , AUNITII,? I,CTLOD( I, U, PniFU, II
471 IFIISTAGF.rO.2> WPITFIKOUT,52 n(SRCF(l,J),J = l,28l,(STYP(JI,J=l,l2l,
47? r. NPOS( I ), AUN IT ( 1, 2 ), (T Tl 00 ( I , J I ,J= I, ? I , ( PD U ( I , J) , J = l , ? I
473 IF (1ST AGE. F 0.3) WR [ T f ( KIJJT , 52 7 I ISRCFH,JI,.!=1,28).(STYP|JI,J=1,12),
474 r Nir« I ,11
478 IF ( 1ST \GE.FO. "> I WPIT EtKOUT, 53 ) KST YP( J I , J= I, 12) ,
4 79 t iJP'IS* H ,/>UNI T« [ ,?) , (f TLOnil , J) ,J = l ,? ) , (POIf ( I, J J, J= I, ? »
-------
'•80 IM 1ST AGF.FQ.3) W R IT T (KOUT, 53 3 ) « STYP ( J I , J = I , 12 I ,
481 f. NPOS< I I ,AUNI T< I ,21 , (CTLOOU, Jl , J=l ,3 I, (PDIF( I, Jl, J=l, 31
540 OR 545 J=l,lSTftGF
STGT"T| J|=STGTOT (J| »fTLOO( 1, J»
484 545 OlFTflTJ J) =DirTOT| JI + Pr>|F II iJI
'•85 548 lTLnO=TTLOO«-AIINlr( I. 2)
486 55^ CO'JTINUF
48 f C
1AT«'0«,20X,'TOT4L" ,2rX,Fl2. l,F18.l,F22.t>
499 556 H1RMAT('0',2TX,'TOTAL ',27X.F12. I, ?X, 6F11.II
500 531 FORMATMOX ,12Al , 15 ,6X ,U2 . I ,F18 . 1 .F22.1 I
501 533 FORMAT*30X,12A I,I 5,6X.Ft2.l,2X,6Fll.ll
502 565 FOP^ATt IX.50C -• 1, 60 ( ' - ' I I
503 GO TO 16
504 C
505 C OUTPUT ROUTINE FOR WORKSHFET 6
506 C
507 600 IFI.MOT.URRCTL .AND. .NOT.RULCTtl GO TO 16
508 WPfTE(KOUT,605I IFF
509 605 rORMATIA 1.51X,'PROGRAM COSTS'/44X,'TOTAL POLLUTANT REDUCTIONS')
510 IF( (STAGE .FO. II WRITE(KOUT , 606 I
5M IFdSTAGE .60. 2> UP I TF IKOUT ,6 I 0 I
512 IF1ISTAGE .FQ. 31 WHITF(KOUT,612 I
513 60t FOPMAT<99X,'WORKSHEET 6'/ I X, 50(*-«»,60('-')/53X,'ARFA•/
514 E51X, • TPFATFO',4X,«UMI TS* ,6X,« PF.K UNIT COSTS', flX., ' TOf AL COSTS'/
515 F.6X, 'SOURCE', 22X, 'TYI>F«,4X, 'POSI TIOM' ,3X ,'KM2' ,5X,« SERVED' ,11X,
516 G't/YP',l6X,'t/VK'/lX,53(•-'»,60{»-"M
517 61J FORMAH 99X, ' WORK SHFf T 6 « /I X ,50 (• -' I ,63 (• -' I /53X , • ARE A« , I 6X ,
51"? &-PER UNIT COSTS',8X, 'TTTAL COST S • /5 I X, « T*E4 TEf) « , 4X ,' UNI T S' , 11 X ,
519 KU/YR' ,16X,'$/YR' /6< t • SOiJRCf • ,22X,'TYPF',4X,' POS IT JON « , 3X,
520 r.'K"? ', 5X, 'SFRVFO', ?{ 4X, 'STAUF l',4X,'SIAGE 2' I/I X,5O( •-• » , 60 <'-'II
571 6!? FORMAT(60X.61X, 'WORKSHFFT 6f/I X,661 •-• 1,661 '- ' I /53X , «AREA»,
522 G21X,«PFR UNIT COSTS1 ,21X,' TOTAL COSTS' /5IX,«TRTATFO',4X, «JNITS•,
523 1 16X, • t/Vft », 29X, • t/YR V6X, • SOURCE ' ,22X, • TYPE ' , 4X ,' POSI TIOM' ,
5?4 E3X,'KM?' ,5X,'SFRVED' ,2 C»X,«STAGF I',4X,•STAGE 2',4X, 'STAGE 3'l/
525 f.l X, 661 •-« I ,66( '-' I I
5?6 f
527 DO 615 I =1 ,3
528 615 3TGTUTI I 1=0.0
529 00 610 I=l,NSPCE
530 !F( ITYP(I I.tO.1 .OR. AU*H T(I.2).FQ.3.3) GUT063D
531 IF( ITVP( I) .GF .31 GO TO 670
53? C
533 1FU STAGF.FO. 1 I WRI TF( KnUT,61'>» (S"3r.F(I,J|,j = l,?R), ^POS ( I I ,
534 r. AUN1T U* U,P'JtnST< I, I I, TCnSTC I, II
535 IF( ISTAGF.f 0. 2) WP ! I F ( KOUT ,6 19 MSP CFM , J >, J= 1, 2t\ I, NPJS I I I ,
536 r. AUMITI I , II .(PtICOSTI I , J) , J= l,?| , (TCOSTI I , Jl , J = l ,2 I
537 IF! 1ST AGF.FO.31 WP I T HK1UT,619MS^CEI I,JI,J- 1,2«l,NPOS(I I ,
538 E 41NITI I f U .("UCOSn J , Jl , J=l ,31 , (TCOSTJ I , J I , J= 1 , 3 I
539 (HI in 6?5
-------
540 620 COMT INIIF
541 Knnr-= i TYP( I)
54? 00 <>40 J=i,12
543 640 STYPt J) =JYPCOO(KOOF, Jl
544 IFIKf)OF.GT.'»l GO TO 641
545 IFtlSTAGE.fcQ.il WRITE(Kni)T,62l ) (SPCFI I,J I , J=l, 201 ,
546 e « STYPI .i) ,j = t ,12) .Npnsii), AUNI n 1,1) .PUCOST«1,1 I.TCOST u, 11
54T IF( 1STAGE.EQ.7I WRITFIKOUT,6?3I(SPCEl I,JI ,J = l,201,
541 e 1STYPIJI ,J=L, I? t ,NPOS< I) ,
549 C AUNllt I , 1) , IPUCOSTI 1 , J» , J=l,2) ,(TCOST( I ,Jt , J=l,2 J
553 IF(iSTAGe.EQ.lt WR IT El KDUT , 623 I f SRCF. d , J I , J= I , 281 ,
551 C C STYPC Jl ,J=1 .12) .NPriSd) ,
552 C AIINIM I , It .(PUCOSTd, Jl ,J=1,?I .dCOSTU ,J> , J = l ,31
553 GO TO 625
554 641 irdSTAGF.EQ.il WRIT E ( KOUT ,642 I 1 STYP 1J I , J = l , 12 I, NPOS < I I,
555 f. AUMITI I, d.PUCnSTd , II , TCOSTd ,11
556 IF dSTAGE.EQ.2 I WRITr(KOUT,643 11STYP»JI, J=1, 12 I,NPOSCI I, '
557 f, AUNI T( 1 , II ,(PUCOST( I , J) ,J = 1 ,21 , ( TCOST (I , Jl , J = l ,2 I
558 IFdSl AGE.F0.3 » HR 1 TE(KOUT,64311STYPCJ), J = l,121,NPOSdI,
559 G AUNI T(f ,1) .tPUCOSTI I, J) , J=l,3), (TCPST ( I, Jt, J= I, 31
560 6?5 00 628 J=l,ISTAGF
561 6?(1 STG10T ( JI=STGTOT ( J IHCOSTI !,.)!
562 630 CONTINUE
563 C
564 IFUSTAGE.FQ.il WR IT F(KOUT , 635 ISTGTOTt I)
565 IFdSTA5E.EQ.2l WR I TE (KOUT ,637 I (STGTOT C Jl , J= I , 2 I
566 tr(1STAGE.FQ.3I WR1TF(KOUT,633) ( STGTOTtJt ,J=1,31
567 616 FORMAT It X.28AI , 3 X , • C RDPl ANf)1 , 17,FU. I.9X.F17.1, F20. II
568 619 FOPMAT< IX,28A1,3X,«CROPLANO' .IT.FIl. l,9X ,6Fli.1 I
00 569 621 FORMAT
-------
633 00713 NAM = l,12
601 7H STYP{NiAM)=TYPCOO(KOOF, NAM(
602 IFI ITYPI H.FO.l .OR. AUNmI,?I.EQ.0.0) GO TO 716
603 SAMNAf=SCMSPC(I,SRCE.KODEI
604 IF(SAMNAMI GO TO 715
605 WKI 1 EJKOUT ,71AM SRCEI I, NAMI ,NAM = I, ?8 I, I ST YP( HAM >,NAM= I, l?> ,
636 r.NPflSd ) , TR^S1N( l» ,AUNIT( [,2» , PMOUTH(I t .DIFMTHU ,.J),TCUST (I, J ),
607 60PURFMC I,J I.KERANKU, J I
605 GO TO 718
609 715 WR ITF.JK3UT, 71 9K STYPI NAM),MAM=1,1?),NPOS«I),TPNSMN(II, AUNIHIi?!i
610 f.PMUUTHf D.IMFMTHC I, J J, TCOST (I, J >, CPUR El ( I ,J1 .KERANM I , J»
611 719 FORMAT ( 30X.12 M ,15 .F12.1 ,5X ,Pl? .0,F14.0, IX, 2FIO .0, f 13 .1, 18 I
61? GO TO 718
613 716 WPITF. ,NAM=l, 121, NPOS1 I ( ,
614 &1RNSMNI ! > ,AUMI Tl I,21 ,PMQUTH(I I
615 718 CONTINUE
616 714 FORMATd X,2flAl . IX .1? Al , 15 ,FIZ. I ,5X ,F1?.0, F14.3, IX, 2F 10. 0, F 10 . I , I 8 )
617 717 FORMAT) IX, 20A1 , IX, 1?M ,r 5 ,F12. I ,5X,F 12.3 .F14.0I
61B FIN10T=F|NTOTHf)TRrM(.M
619 IFIJ.FO.ISTAGEIWRITFJ MBIT, 720 ITOTRFMUI .TOTLOO, TOTMTH, F INTOT,
623 r. T3TCST(JI
621 IF(J.LI . 1ST AGE(WRITC(KOUT,77?)TOTPEM(J J,TOTLOO,TOTMTH,TOTC ST(Jl
62? 7?0 FORMAT! H0.16X,1 SUBTOTAL1 ,64 X ,Fl 2 .0//20X , • TOT AL « , 39X , Fl 2 .3 , F 14 .0,
623 f. !X,2flO.O»
624 72? FORMAT{1H0.16X,1SUBTOTAL' ,64X,f I 2 .0,/20X, 'TOTAL •,39X,F1?.0,F14.0,
6?5 f. UX.riO.O)
6?f. WRITFIKOUT, 7?5)
627 7?"j FORMAT! 1 X,65( '-• I ,66 (•-• I )
628 7/5 CONTINUE
629 GO T1 16
630 C
631 f OUTPUT ROUTINE FOP WORKSHEET fl
632 C
633 ROC IF ( .MOT.URBCTL .AND. . NOT . RI/LC1 L) GO TO 16
63'^ IfllS.FO.O .OR. NSRCF.EO.O) GO TO 16
635 IF{ .NOr .LRAMK) CALI WTPAMKI 1ST AGE I
636 SUM 1=0.0
637 SLI,"?=0.0
63H WRITE(KOUT.fll^(IFF
639 815 FOPMATI A 1.4BX.'SUMMARY OF PROGRAMS' M7X ,« TOT AL POLLUTANT LOADS'/
640 f. 'i5X,56X,'WORKSHEET fl • / IX, 601 •- '» , 6 l( ' - ' I /57X , 5 7 X, ' SUM OF'/65X,
641 f. 'LOAO' ,6X ,'SIIM OF LOAD' , I 5X, • COST OF •, 5X , «R EOUCT ION •/63X,
f-42 C 'MFOUCT IOM' ,4X, 'REOUC Tl ON' , 4X ,'PERCENT ' ,4X, « RFDUCT ION' ,6X, ' COSTS'/
643 It X, -SOURCE' ,34X , 'RANX',4X, 'STAGE', 5X,MKG/YRI',6X,'(KG/YRI ',4X,
644 f.'PFOUCTiriN' ,4 X ,' U/YRI' ,7X ,' < t / YR )' /1X , 63 (' - ' »,61 ('-'))
645 C
646 00 R75 1=1,MUM
647 M? = KNRXM»
641) S'jrU = SUMltr [NREM1M21
649 SUM?=S'JH2*-FINCST«M7 )
650 Pf 1RF1=C SUM I/TOTLOO)* t 00.0
651 WRITE(KOIJT,820I(r INSPC ( M?, J I , J= t, 43) , I , I SF I N( M? ) ,F I NR EM( M2 I ,SIJMl ,
65? 1 PCTRfn,F(NCSl(M?).SUM?
653 B75 CONTINUE
654 WPl'E(KOUT,853 )
655 850 FORMAT 1 1 X,6.)( ' -' I ,61 ( ' -• ) I
656 P?0 I ORMAT ( 1X.43M. I 5, I «,F14.0,F 13. C.F 1 1. 1 .2F13.0I
65? GO TO 16
65fl T,
659 809 IF«=0
-------
660 900 CONTINUE
661 RF.TWN
662 FMO
663 T
66'. f
665 LOGICAL FUNCTION SCHSRC 1 I, SRCE, Kf)OE )
666 C
667 C LOGlCAl FUNCTION TO SEE IF CURRENT SOURCE NAME IS IDENTICAL TO
668 C THE PREVIOUS SOURCE NAME FOR WORKSHEFT OUTPUT
669 C
670 INTEGER SRCF ( ? 10, ?fl I .CURSRC ( 2B> , T ST SRC( 26 I
671 SCHSRC=.FALSE.
672 IT(1.EO. I) RF TURN
673 IFCKflDf.GT.AI GO TO 25
67'* .1=1-I
675 DO 10 K = l,2f)
676 fSTSRCfK ) = SRCF.(J,K t
677 r,URSRC(KI=SRCFI I ,K I
670 10 CDNTINUF
679 LENlST=LENGTH(TSTSPC,2ft)
680 LFNrUR=lENGTH(CURSRC,28>
681 IFtLFNTST .NE. LENCURI RETURN
6B2 uo 2"> K = I,LENT<;T
683 IF(TSTSRCIK) .NE. CURSRC1KII GO TO 3D
684 20 CONTINUE
685 25 SCHSPC=.TRUF.
686 3? RETURN
687 FNO
E NT (IF F I LF
-------
The third source file is called
WTRSAV
-------
ro
2
3
4
5
f.
7
8
J
10
11
12
13
14
15
16
I/
18
20
21
2?
23
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
r,
c
c
c
c
c
c
£
c
r.
c
SUBROUTINE WT RS AV ( I SWTCII,1STAGF,KEYHPDI
ROUTINE TO WRITE TO AHO RFAD (ROM PERMANENI STHR'/VCE
DATA FOP WTKSHf) ISWTCH=1 FOR READ COMMAND
JIN - INPUT nrVICF INITIALIZED INWTRJNI AT 8
Jf'JT - OUTPUT DEVICE INITIALIZED IN WRINI AT 9
LOGICAl L INPUT,LOOURfM ODRNC,LOORCP,L4UAL , L I NI,LIN2,LIN3,LIN4
LOGICAL URBCTL ,RULCTI ,UCTLOD(3I,RCTl ODI3 t.UPRCMT,JXPCNT,RPRCNT,
K *XPCNT,URBCST,RULCST,LRANK
IMTEGEP OTHUR8,OTHPUL,SRCE(210,28), TYPCOO(9,12).OPTVAL< 81
DIMENSION ITYPI210).MPOSI2I3),AUNIT(210,2),KTITLE(4,43),
r, SURFFAI 210, 3|,CTLOD(210, 3) ,CTUSLF( 3,30,5)
DIMENSION STMCTL(33,3 I ,STMAPA(33,3),COMCTL(30, 3I,CO<4ARA( 30,31,
E OTICTK30,3),OT1ARA(30,3) ,OI2CTL(30,3 I,OT2ARA(30,3)
IHMFNS ION PFLOWt 30 I.PCONCI 30), UAL SI 30) ,UALC ( 30) .W2UAL 1(33) ,
E W2UAL2130),TRMSMN(213)
INTEGER TLFUR H 12) ,Tl.EUR2( 12) , TLERUl (12) , TIERU2U2) .TLERU3 (12 ) ,
f. APOEJ210 I, APFACN(4 ),UALCON( 4)
DIMFNSION GRASA (30) , UALG(30 I,WLNOA(30I ,UALW(30I.W30TAl(30),
E W3UALU 30) ,W3'JAI. 2( 30) ,W3UAL3( 30) , W30TA2< 30) ,W30TA3(30I
o.EAL LOORNl (30 ),LOORN2 (30 I, LODlWil 30 I,LO02W3( 30),L033W3( 30)
01 MEN SI ON USLER( 301 , UStfi K{ 30) ,USLf LS(30) .USLFCOO) ,W4UAL (30 ),
E USLF.P{ 30), SOILS 1(30) .SOIL S2< 30), TTLERl 301 ,R ATI 0( 30)
DIMENSION PDIF(213,3 ),TC OST(210,3),PUCOST(210,3)
DIMENSION P MOUTH ( 210) ,()IFMTHI 210,3) ,CPUREM(210,3>,KERANK(210,3 I
COMMON /WTfUO/ IN, IOUT, NSP-CE.KTI TL E.NTL E ,NU«8 .NRUNCP , Nftu: RP
COMMON /WTRTF/ LINPUT.LODURB,LOORNC,LINl.LIN2.LIN3,LIN4,OTHURB,
E OTMRUL.t.OORCP, TYPCOO , JI N , JOIIT , L4UA L , KOUT ,LP ANK
COMMON /WWSHl/ SRCE, ITYP.NPOS,APOE,AUMIT,SUREEA,TLEUR I,TLEUR2
COMMON /HRKSHZ/ PFLOW.PCONC,UALS,UALC,W2UALl, W2UAL2
COMMON /WRKSH3/ GRAS A,UALG,WLNOA,UALW,LODRNl,LOORN2,
£ W30TAI .W3UAL1 , W3IIAL2 ,W 3J AL 3, W 30T A2, W33 T A 3,
6 TLERUl, TLFRU2,TIERU3,LOOIW3,L002W3,L003W3
COMMON /WRKSH4/ USLER ,USLEK, USLEL S, USl.EC , USL EP , SO IL SI ,
E SOI I.S2,TTLEP,W4UAL,R AT 10
COMM1N /WRKSH6/ PDIF,TCOST,»UCOST,TPNSMN,PMOUTH,01FMTM,CPUREM,
F. KFRANK
COMMON /WTRCON/ UCTLOD.RCTLOO,URBCTL,RULCTL.UPRCNT,JXPCNT,RPRCNT,
E RXPCNT,nPTVAL,N3PT,URBCST,RUL: ST,AREACN,UALCON
DIMENSION CTIFLW(30,3),CTLCNC ( 33, 3)
DIMENSION CTLF(30,J),SOUCl(30,3),SOI LC2(33,3) , CTLERO ( 33, 3 I,
E CUALW4( 30, 3 I
DIMENSION TOTCST (3),TOTREM(3) ,KNDX( 543 ), FINCST (5401, F IN1* F1 ( 543 I ,
E ISFIN( 540)
INTFGEP FINSRC(540,43)
COMMON /WRKSH8/ TOTCST,TOTREM,TOTLOO,TOTMTH, KNDX, F1MSRC,FINCST,
E FINRFM,ISFIN.NUM
COMMON /UBNCTL/ CTLFLW,CTLCNC,CTLOO, STMCTL.STMARA,COM:TL,
£ COMAPA.OTlCTL.OriARA.OT2CTL,OT2ARA
COMMON /RFOCTL/ CTUSI F,rTLE,SOILCI,SOI I C2,CTIEUO.CUALW4
*********************************+**************+*********************
')ATA ALPHA I, ALPHA?/'* «*»•,**»**•/
1F( ISWTf.M.FO.l I GO TO 13^
IF(.NOT.LINPUTI GO TO 700
SAVE COMMAND
-------
60
61
62
61
64
65
66
67
68
60
70
71
7?
73
74
75
76
77
78
79
00
81
82
83
84
85
86
87
08
89
90
11
72
93
94
95
96
97
98
99
100
131
102
i03
104
105
106
107
108
109
110
11 I
112
113
114
115
116
117
lie
H9
10
21
24
IP 3=0
IP4 = 0
IFIKFYWRO
IFtlDOURBl
GT. 1 » CO TO 700
IPt=l
IP2=l
IP3 = 1
IP 4=1
NSI>.CF.,OTHI1RR,QTHRUL,NTLF , IP I, IP 2, IP 3, IP 4
II 1 LOORC P)
IF(L4'JAL>
WRI Tf < JOUT, I )
FOHIATt 8151
IFINTLF.EQ.T I GO TO 7
00 5 1=1 ,NTLE
WR 1TF< JOUT,2HKTITLF( I , JJ ,J=l,40l
7
5
7
8
FOKMAT (40AI )
CONTINUE
IFUIffURfl
IF» PFLOW( I I>3> , PC ONC (I f>3)
FOI'MAT(2Fl'J.4 )
GO TO 80
HF*F FOR URftAN NON-POINT SOURCES
KOI)C = ITVP( I (-5
GO TOI2I,2?,23,24>,KORF
IP 4= IP 4*1
WRITtIJOUT,15) UALS(IP4I
GO TO 80
WRITE! JOUT, 15 ) UALC(l<>5)
GO T3 SO
IP6= IPf »•!
V'RITFI JOUT ,15) W2UALHIP6)
GO TO po |
IP7 = IP7 H
WRI TH( JDUT, 15) W2UAL^(K>n
GO TO 80
HfRF FOR RURAI CROPLAND SOURCES
-------
120 40 IP?=IP2*l
l?l AUNIT< I,2I=AUNIT(I, ?l*l 000.
122 IT(LOORCPI GO TO 50
123 WRITEtJOLIT,4?IUSLFR( I"7),USLEKI IP?),USLELS ( IP2I ,USLEC(IP2I,
124 £ USLEPMP2I .RATIO! IP2 »
I2"i 4? FOR»1A1< 5F15.4.F15.R)
126 GO TO 13
I? 7 C
123 50 IF( .^TT.L4UAL1 GO TO «fl
179 HRITFJ JOUT, 15 I W4UALIIP2I
130 GO TO 83
131 C HFRF FOR RURAL NON-CROPLANO SOURCFS
132 60 IPl=IPl*l
133 IFtLODRNC) GO TO 70
134 WR ITE( JOJT,6?IGRASAHPH,UALG< IP 1) ,WLNOA( I PI I , UALW (I PI I ,
135 & H 3 OTA I ( IPl I.W3UM. It IPl I.W30TA2I I P 11 , *f3U AL 2( I P 11 , W 3(1 T A 3( IP II ,
136 C W3UAL3I IPl I
13? 6? FORMAT<13F15.4J
138 GO TO R"
139 C
140 7) MR ITEI JOUT.6? ILOORN HIP U.LOORN2I I P I I, I OD I W3( I P 11 ,LOD 2W3I I P 11 ,
141 t LOn3W3UPl)
142 C
143 00 CONTINUF
144 C
145 GO TO flOO
146 C
147 C TO SAVF CONTROLS
148 C
149 200 IFH STAGE .F.Q. 01 GO TO 700
150 WRlTF(JDUT,202( ALPHAl
151 202 FORMAT IA4)
152 IFIURRfTLI If>l=l
!53 IF(RULCTL) IP2=l
154 IF(LRANK) IP3=l
155 WRl TF( JOUT.l( I PI , IP2 ,1P3,1ST AGE
156 C
157 00 ?50 J=l, ISTAGF
15B IP 1=0
15? IP2=0
160 DO 240 1=1.NSRCE
161 IFIITYPIII.EO.U GO TO 240
162 WPITFIJOUT, 15 > CTLOtm.J)
163 IFUTYPt II . EQ.2 ) GO TO 2?5
164 C HF3E FOR URRAN C POINT SOURCFS
165 IP1=IPI*1
166 HRI TF( ,IOIJT,62I CTIFLW(IPI,J»,C1 LCNCI I PI , J I, STM AR A( IP I', J ),
167 t ST'ICTLIIPI.J ),COMARA( IPl, JI .COMCTLI IPl , JI , OT I A RA( I PI , J) ,
168 f. OTICTI ( IPI,J),OT?ARAUPI, JI.OT2CTLI IPl, JI
169 GO TO 240
170 C. HERE FOR RURAL CROPLAUO SOURCfS
171 2?5 IP?=IPZ*l
17? WRl TF( J3UT,62IICTUSIC« J,IP2.I P3I ,1P' = l ,51 .SOILCl ( IP2,J I,
173 C SOU C?( IP?, J I.CTIFROI IP?, JI.CUEI IP?, Jt .f.UAL W'.( IP2, JI
174 C
175 24T C.OMTINUF
176 250 CONTINUE
177 C TP SAVF WANK I MCA
17R WPITF(JTUT,?G?I ALPHA?
179 WR IT F( J0(,n , 252 ) NUM, TOTI.ni), TOT4TH
-------
189 ?S2 Fill'MATC I 5.2F15.4I
IRl MR|TF(.IOUT,62MTnTRFM( J |,.| = l, I STAGE I,< T1TCST«Jl ,.1=1, I STAGE I
18? (JO 260 1=1 .NSRCF
181 WPI TF(.»r)UT, 151 TRNSMNdl .PMOUTHU )
IB'. DO 25r> J = l, ISTAGE
185 WRl Tf ( JOU1 ,262) PQ1F(I,JI,PUCOST(I,JJ,TCOST« I, J ),DIFMTH( I, Jl,
IBS f. CPMUFMJ f, J ),KERANK< I , Jt
187 26? FORMAT(5Tl5.4, 15 I
»88 255 CONTINUE
189 260 CONTINUE
190 C
191 00 275 1=1,NUM
19? WRIT C« JOUT, 273 UFINSPCI I, J ), J° 1,411 ,K<*nxm ,1 SFINt II tMNREMd) ,
193 C FINC SI I I I
194 270 FORMATi 4 3A I, 215.2F15.4)
195 775 CONMNUF
196 C
197 GO TO POO
198 C
199 C REAO COMMAND
?00 C
?0l 100 IF(KFYWPO .GT. 01 GO TO 300
202 RFAOJJIN.U NSKCE,OTHUPB,OTHRUL,NTLE,I PI,IP2, IP3,1P4
203 IFIIPl.EO.il I OOURB=.TRUE.
204 IFI1P2.E0.1) LODRNC=.TRUF.
205 IF(IP1.FO.l» LOORCP=.TRUF.
206 IF( 1P4.F0.1 > L4UAI = .TPtJF.
207 IFINUF.EQ.OI GO TO 107
20fl 00 105 l=l,NTLC
209 RFAO( J IN,2 H KT ITLE( I, J I, J=l, 40 >
210 105 CONTINUE
211 107 IFIOTHURB.GE.l
REAO( JIN.8H TLEURU J» ,J = l,l2>
REAOIJIN.B HTLEUR2(Jl,J=l, 121
REAIX JIN.RMTLFRU1 I Jl , J = l ,12 I
REAO( JIN, BHTLERU21J),J=l,l2l
PEAOI JIN.BJ (TLERU3U ), J=l, 12 »
212 IFIOTHUPB.FQ.2
213 IFtOTHPUt.GE. I
214 IFIOTHPUL .GE.2
215 IF« OTHRUl .E0.3
216 IP1=0
217 IP?=T
218 )P3=0
219 IP4=0
220 IP5=J
221 IP6=0
22? IPI = 0
223 Nl)RP=0
224 NRUCRP=0
225 NRUMCP=C
226 C
227 00 18j I=l,MSRCE
??8 NPOS< 11= I
229 PFAUCJIN.IOI (SRCFI I,J) , J=l ,28 I, ITVP< ! !, APOF d I , ( MJV !T( I,J>,J = l,2l
230 C .( SIWFFA1 I , J) ,J = l ,31
231 IFdTVPdl.EO.il GO TO 160
232 IF( ITYPt I » .F0.2I GO TD 140
233 C Hf«F F0« URBAN POINT SOURCFS
234 IFILOnURRI GO TO 100
235 IF( I TYP( I » .GT.5) GO TO l?0
237 MURB=NURB*l
238 RFA'M JIN, 151 PF l.OW{ I P3 1 , PCONf. ( I P1I
239 f.O TH 1RO
-------
240 C HFRE FOR URBAN NON-POINT SOURCES
241 120 REAOUIN, 15» IMLURB
242 KOf)E = ITYP( I 1-5
243 GO Tfll 121, 122,123,1 ?4I ,KOO£
244 121 IP4=IP4»1
245 UAt S< 1P4) =IMLURB
246 GO T'l 1BO
24T 12? IP5=IP5H
248 UAICJ IP5-J =UAl URB
240 GO TO IPO
250 123 IP6=lPfr*l
251 W2UAL KIP 61 =IIALURB*
252 GO TO 180
253 124 IP7 = IP7H
254 W2UAL 2UP 7)=UALURQ
255 GP TO 1BO
256 C 4ERE FOR RIJRAL CROPLAND SOURCES
257 140 NRUCRP=NRUC«P*1
?5fl ' AI)NIT( f ,?)=AUNITH,?)*1000.
259 IP2=IP2+l
260 IFILOnRCPt GO TP 150
261 CPPLNO=AUNIT (I,U*130.0
262 RFAOI JIN.42IUSLFRI 1P2) ,USLEK(I P2 » .UStFIS < I P2 I ,USLEC ( I P2 J,
263 f. lISLfPt IP2 t.RAT I0( IP2»
264 SO I LSI ( IP2 I=USLCR( I P2 » *USLEK { I P2 » *USL FLS ( IP 2 I *USL EC( IP 2 I *
265 f, USLEPI IP2)
266 SO ILS2 ( IP2 ) = S OILS It IP? 1*2.243
267 T1LFRUP2) =SOI LS2 I I P2 I *CRPLND
26S CO TO IflO
269 C
270 150 IF< .NOT. 1.41/AL) GO TO ISO
271 REAO< J IN, 151 H4UAH IP2J
272 GO TO 180
273 r HFRE FOB RURAl NON-fROPLAND SOURCES
274 160 NRUNCP=NP,UNCPH
275 IP1 = IPI«-1
276 IFUOORNC ) GO TO 170
?77 READ! J IN, 6 2 1GRAS A(IP1»,UALG( IP I I.ULNOAI !P1» , UAL Ml IP I) , W30TAH IPII
278 C .W3UAI Ul»U ,W30TA?( IPH .VI3UAL2 (IPI I.W30TA3I IP 1» ,W 3UAL3UP 1 I
279 LODRNK I P 1 I = GR ASA( I P U*UALG( IPII
230 LOORN2 ( IPI I=WLNOA( I PI I *UAl H( IP I I
2fll IF( OTHRU1 .FO. 0) GO TO 100
202 LOD1W3( tPl ) = W30TAl( tPll*W3UAL U IP I!
283 L002WH I PI I =W30T A2 t I PI ) *W3l» AL2 ( I P 1 )
284 LOP3W31 IPI I=W30TA3( IPll*W3UAL3( IPII
205 GO Tn 1S3
287 170 RFAD( J I\) , 62 ILOORN 11 IPII .LODRN2UPU ,LOOIW3( I PI I , LOU2 W3 1 I PI I
2«8 f. L003W3IIPI)
269 C
290 1RO r.ONT INUF
291 C
292 UNP'JT = . TRUE.
293 GO TO «OO
294 r
295 C TO REAP CONTRHl S
296 f
297 30T R6AIK jrN,207,fNO=400 I ALPTST
298 I F( ALPTST .NF . ALPHA 1 1 GO TO 300
299 C
-------
ONJ
NbdlJH
'j coo
co/
1/ilDdNI NJ39 13A ION SVH VIVO Oi
no/ 'irun l
<.s3rnvA loaiNOJ 30 indinu/indtti NI duad^Ci IIVHUUJ
(ZCV iflOI JdLldH 00 ^
CCS 01 UO
3113 30 ON3
see
>><,£
toe
zse
IS£
ost
6*?C
B»/£
INI JS
tr*
M =
(1HS3U1J 3
d
00
iNU'J 09 1
dnNllNOO
If I )»NVaj>lMr ' 1 IrtJdlldJ 3
30V1S I' T = f S9£ UO
I 1 IHinOhdMI INWSNbl (
-------
The fourth source file is called
WTRCTL
oo
-------
3
4
5
6
7
n
9
10
11
12
13
14
16
17
18
19
20
21
22
23
25
26
27
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
4fl
49
50
51
5?
53
54
55
56
57
59
r
c
c
c
r.
c
c
1NE WTRCTL1 IS ,KFYHRP, KOLINT P, I ER.)
ROUTINE TO ACCEPT OF CONTROL STRATEGIES FOR WATERSHE3
IS - STAGE CODE MAXIMUM IS 3 STAGES
KFYWin - INPUT SNITCH CONTROL IMG PROGRAM FLOW TO ACCEPT
CONTROL STPATFGIES FOR URBAN (POINT t NON-POINT) SOURf.ES
ANfl RURAL CROPLAND SOURCES
«******+*+*#*++*******tit*********i*******************+***ttt*it***:
LOGICAL L INPUT. LODURR.LO OR NC, LODRCP, L4U AL , LIN 1,1 lN2,Lm,llM4
LOGICAL URflCTL.SULf. TL.UCTLODU) , RCTI 00(3) .UPRCNT .JXPCNT , RPRCNT ,
f. RXPCNT.URRCST.RIILCST
INTEGFP OTMURfl .OTIIRUI ,SI»CE ( 2 10 , 28 I, T YPCOOI9 , 1 2 ) ,OPT V AL ( 8 I
OIMFNS I3N ITYPJ 210) ,NPDS< 210) ,AUNIT( 21 0,2 ) , K.T I TLF ('+ ,40 1 ,
K SURFFA(210,3I,CTLOOI210, 31, CTUSLE!3,30,5)
01MFNSION STMCTLI30.3),STMARA(30,3 I,COMCTL(33,3),COMARAl33,3),
£ OT1CTL(30,3I,OT1ARA( 30,3 I,OI?CTL(3O ,3 I .OT2ARAC30,3 I
01MFNSION PFl OW»30),PCONC(30),UALS(30),JALC(301,W2UAL K 301,
f. W2UAL2J30),TRNSMNI210)
[NTEGEP TL EUR 1 ( 12I,ILFI«2( l?),APOF( 210!,AREACN< 4) ,UALCON(4)
DIMENSION USLF.RI30) ,USLEK(30 I ,US LELS (30 ), USL FC ( 30 ), W4UAL ( 30 ) ,
K USLFPI 30),SOI LSI!30),SOILS2t30) ,TTLER(30 I ,RATI0(30 I
01MENSION PniF(2lO,3),TCOST( 210, 3 I,PUCOSH210,3)
COMMON /WTRIO/ IN.IOUT.NSRCE ,KT IT LF ,NT LE, NURB, NRUNCP, NR'JCRP
L INPUT,LOOURO, LODRNC,LINl, I IN2,LIN3,LIN4,OTHDRR,
OTHRUl,LOORCP,TYPf,00,JIN,J(1UT ,L 4UAL , KQUT
SRCF,1TYP.NPOS.APOE,AUNIT,SURFEA,TLEUR1 .TLEJR2
PFLOW,PCUNC.,UALS,UALC,W2UAL I ,W2UAL2
US LFR,US LFK.USL FLS,USL CO,USL FP,SO !L S 1,
SOILS2,TTLER,W4UAL,RATIO
PDIF.TCOST.PUCOST.TRNS"^
UCTLOO.RCTLOO,URBCTt,RUI CTL,UPRCNT,JXPCNf,RPRCNT,
RXPCNT,OPTVAL,NOPT,URHCST,RULCST,AREACN,UALCON
•IIMFNSION CTL FLW( 30, 3J.CTLCNCI 3O,3I , PCTI 81 , A PC T 1 4) , UPCTt 4)
iJIMFNSION CTt £(30,3 ) , SO f LCI ( 30 , 3 ), S 0 ILC2 ( 30, 3I,CTLERO( 30, 3),
CUALU4!30.3)
COMMON /UBNCTL/ CTLFLW .CTLC.NC , CTLOO, STMC TL , S TMAR A .f.OMC TL ,
; COHARA.nrICTI , Or I4RA,OT2CTL,Or?ARA
/RFDCTL/ CTUSLE ,CTLE,SOI LCI,SOILC2,CTlERO.CUALW4
{<««*«%««<
INTfGEP OPTURO(5),OPTPUL<5!.OPTOUTIfl)
DATA OPTURB/'FLOW, 'COMC* , 'AREA' , 'UAL ','LOAO'/
DATA OPTRUL/'R *,'K '.'LS'.'C ','P '/
DATA IflLNK/' • /
00 I 1=1,8
PCT(I)=0.0
OPTOUT( I) = I(iLNK
HEARING OUIPUT OF STAGE OF CONTROl
COMMON
G
COMMON
COMMON
r, OMMU1
6
COMMON
COMMON
f.
/WTRTF/
/HRKSHl/
/WRKSH2/
/WRKSH4/
/WRKSH6/
/WTPCON/
IF( IS.CT.3) RE TUPN
If (KrYWRO.tO. 1 )WR ITE ( I OUT, 21 IS
FORMAT! I HO,5X, 'STAGE' ,}?.,' CONIROl
IE(KFYV-'RO.F0.2)WRITE(|niJT, 3) IS
FORMAT! UIQ.5X, 'STAGE' , I? , • CONTROL
IMITIAL17F
!>0 4 1=1,4
\PCT(I)=0.0
UPCTt I ) = C.O
ISl^ IS-l
CM. I CTLINI ( I S ,KEYW>.n, 1
STRATEGIES fOR JRBAN SOJRCFS')
STRATEGIES FOP RURAL S3U*CFS' 1
-------
CO
O
60
61
62
61
64
65
66
67
68
69
70
71
7?
73
74
75
76
77
78
79
ao
ni
fl2
83
84
85
86
87
B8
89
90
91
92
93
94
95
96
97
98
99
100
101
10?
103
104
105
106
107
100
109
13
11
1 2
13
14
15
16
17
10
119
C
C
c
r.
C
f
11
13
IF( IER.NE.O ) RETURN
IF(KFYHRO.EQ.2 I GO TO 110
URBAN CONTROL STRATEGIES
HPUT=NCPT
IFINPPT.EQ. 01 NOUT=4
IFUOO'JRB .AND. NOPT.FO.O) NOPT=l
IFdODURB .AND. NOPT.EQ.O) OPTVAL(1I=5
DO 51=1,NOUT
IF 1NOPT.EO.OI OPTVALCII=I
K = OPTVAI (I I
OPTOUT(I)=OPTURB(K)
CONTINUE
IF(.MOT.UPRCNTI GO TO 20
TF(UXPCNT) GO TO 20
HERE TO ENTER PERCENT REDUCTIONS FDR SELECTED SOUR3ES
1=0
1=1 + 1
IF( I .GT . NOUT I GO TO 20
K = PPTVAL(I I
IFIK .E0.3I GO TO II
IFIK.EG.4) GO TO 15
WRITEl IOUT,101 OPTOUTdl
PEAOIIN,46) PCT(K)
GO TO fl
PPOMPT FOR ARFA T REDUCTIONS
IF(ARCACNI1 I .EQ .0 I GO TO 12
WP ITFI I OUT, 11 I )OPTURB(3I
READU M ,461 APCTI II
1=1+1
IF t 1 .GT. NOtlT) GO TO 20
IF(AREACN(2».FO.Ol GO TO 13
HP ITF< I OUT, 112 lOPTJRRH)
RFAT(IN,46I APCT(2>
IFU .GT. NOUT I GO TO 20
IF(AREACNI3I.FO.OI GO TO 14
WRIT E( IOUT, U3HTLEURH JNMI ,JNM=l, 12) .OPTURflm
PFAOIIN.46I APCTI3I
1=1+1
IF( I .GT . MOUT I GO TP 20
IF
-------
oo
120
121
122
123
124
125
12S
127
128
130
131
132
133
136
137
13(1
139
140
144
146
147
I4fl
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
169
169
170
171
172
173
174
175
176
177
1 78
I 79
IF!I .GT. NOUT) GO TO 70
16 IFIUAt C.ONI2I .tO.O > GO TO
WRITF( I OUT,112)OPTUPflt4)
RFAOIIM.46) UPCTl21
17
17
IF(I .GT. NOUT) GO TO 20
IFIUA1CON!3) .FO.CI GO TO 18
WPITH IOUT.113) (TLFURl M»T OF SELECTED CONTROLS
25
OPToim n
2? FORMAT*-3FMTFR CONTROt VAHJES FOR «,A4,( PER SOUR:E'I
GO TO 40
25 IFINOPT.GT.21 GO TO 30
IF<(fOPTl. EO.I.AND.IOPT2.EO.I ) .OR . ( I OPT 3.F3. l.ANO.MPT4.E3. Ill
r, GO TO 27
WRIT El 10IJT, 26HOPTO'JT( I I , 1 = 1,2)
26 FORMAT {• OFNTTR CONTPOt VALUES FOR »,A4,' OR g,A4, • PFR S3U3CE"!
GO TO 40
2 1 V'P ITF' tOUT, 2H IIOPTPIJTI I ) , 1= I, ?l
Z<\ FflRM/1 ({ 'OFNirR OONIROI VAI.I/ES FOR • , A4 , • ,'" , A4 , • PFR SOJ«CF ' I
GO TO 40
30 IFINOPT.GT.31 GO TO 35
IFt IOP3.EO. 1. AND. IOPT4.FO. I ) GFI TO 33
WR IT CI IOUT, 32 IIOPTOIJTI I ) , ! = 1 ,?)
32 FORMAT (•CfNlFP CONTROL VALUES FOR •,A 4, •, •,A4, ' OR ',A4,
fi ' PEP SOURf F1 )
GO TO 41
33 WR ITF I I OUT, 3 4 MOP TOUT I I ) ,1 = 1,3)
34 FORMAT! 'OFNTfP CONTROL VALUfS f OR '.A'l,' OP ' , A4 ,« ,' , A'» ,
£ ' PEP
.EO.l I
.F0.2)
.F0.3I
.E0.4I
.FQ.51
I OPT 1=
IOPT2=
IOPT3=
IOPT4=
I OPT5 =
IF!IOPT5.EO.I .AND.
IF(.MOT.UXPCNT .AMD.
HF.RE fOR IMPUT
IFINOPT.GT.I I GO TO
WR ITFI IOUT,23)
FORMAT < '3FMTFR
-------
oo
180
111
182
183
184
185
IH6
187
iafl
189
190
191
19?
193
194
195
196
197
193
199
200
201
20?
203
204
205
?06
207
208
209
?10
211
35
37
40
41
4?
44
213
214
215
216
217
218
219
220
2?l
222
2?3
22/»
46
54
226
2? 7
229
230
231
232
233
234
235
236
237
64
c-5
0. AND. IIP 12.f3 .0. ft tO. I OPT 5. Ed. 3)
5.AN().!nPT3.EO.i).ANO. IOPT4.EQ. 0. AM). I DPT5.EQ.O)
GO TO 40
WRIT E( I OUT,37 ) (OP TOUT( 11,1 = 1,4)
FORMAT('3ENTER CONTROL VALUFS FOR
•PEP SO UR r F • )
ACCEPT VALUES FOR CONTROLS
00 95 I=1,NSRCE
1F( ITYP( I ).LF .2! GO TO 95
IFUTYPUI.LE.5 .ANO.IOPT l.EO,
; GO TO 95
IF(ITYP( I I.GT
GO TO 95
IF(.NUT.UXPCNT .AND
|F( I OPT I.EQ.l .OR.ITPT 2.FO.I)
16=1-1
I 7=1-2
18=1-3
19
-FQ.6)
.FQ.7)
.F0.8I
.FO
, A4,
A4,
, A4,
',A4,
UPRCNT)
GO
GO
TO
44
41
= 1-4
!F< ITYP( I).
IFUTYPI 1)
IF(1TYP(I),
IF( ITYPC I)
.91
WRITE(IOUT.42J(SRCFI 16,J),J=l ,28)
WRIT FtIOUT.4?)(SPCE( I7,J),J=1,28)
WRITF(10UT,42)(SRCE« 18,J I ,J = I,28 |
WRITE(IOUT.42)(SRCEI 19,J),J = l,28)
TE( 1 OUT, 4 2 MSRCE(!,J),J = l,28)
FORMAT(IX.28A1I
IM ITYP( 1 I.GT .5 I GO TO 65
HFRE FOR CONTROLS FOR URBAN POINT SOURCES
IP3= IP3*l
UtUXPCNT ) GO TO 54
1F(IOPT5.EO.1) GO TO 60
fF(UPPCNT) GO TO 56
1FtlOPTl.FO.l .AND. IOPT2.EQ.ll GO TO 52
rFUniPl.EQ.il REAOIIN.46) C TLFLW (I P3 , I S I
IF{ IOPf2.EO.il ReAOHN,46l C TLCNC( I P 3 , f S I
GO TO 58
RFAOI1^,46) C TLFLWIIP3.I S) .CTLCNCC1P3, IS)
FORMAT<2F10.'1 I
GO TO 58
FOR PERCENT RFOUCT10N CALCULATIONS
.FO.O) RFAOUN.46I PCT ( I I,PCT« 2 I
PFAD(IN.46I PCT(51
GO TO 60
CTLFIW* rP3, ISI = CTLFLM( IP3, ISI-»CRFLW( I'3,ISI*
HFRE
IF(IOPT5,
!F(I OPT 5.
II( 10PT5.
CTLCNCI IP 3,ISI=CTLCMC( I P3 ,1S)- ICTLCNC(1P3, IS)*
IS) * CTLCNfUP^,IS) * 1382.0
239
,FQ.II
. E Q. 11
I F(inpTt.FO.l »
i PCTIUI
IF(IOPT 2.E0.1)
i PCT(2)»
CTLOO( I, IS»=CTLFLMIIP3,
GO TO 93
in iJPPCNT) GO TO 64
RFAOt n,46) CTLOOt I , I S)
GO TO 90
C TLODII ,IS) =CTLOO*Prr(5 I )
GO TO 90
HFRF FOR CONTROLS FOR URBAN NON-POINT SO'.JPCTS
K=r TYPI!1-5
IF(APEAfN(K).EO.O .ANO. UALCON(K).FO.0) GO TO 90
IF ItlXPrNTI GO TF» 76
I F( OPT 5. FO.l ) 30 TO fl5
If (UPRCMT I GO TO 78
GO 10(67,69,71,7)1,K
HFRF FPP Nr)NPf)fNT CONTPOtS FOP STORM SEWF-R
IP4.--IP4+1;
-------
240 IF(A3FACNIKI.FO.l .AMD. IIAt CONI Kl . FO. I ( GO Til 68
241 IF ( ARFACNIK ) .FO.l ) P F ADI IN, 46 > STM ARA ( I P '<, I S I
242 IF( UALCf'NI KI.FQ.U RF All t I N ,46 IS r MCT I ( I P'., IS I
24^ GO TO ?PO
244 68 RFAD(|N,46) STMARAI IP4, ISI.STMCTLf IP't, ISI
245 GO TO ?flO
246 C HFRF FOR NONPOINT CONTROLS FO" COMBINED SEWER
247 69 IPr. = IP5*1
248 IIM AREACNIKJ .FO. I.AND.UALCON(K) . EO. 1 I GO TO 70
?49 1HAHFACN
250 IF(UALCONfKl.FU.l I RF Al)( I N.46 1COMCTL ( 1P5, IS »
?51 GO T'l 282
25? 70 RFAOIIN|46I COMARA( IP 5, IS>,CUMCTL( IP 5,IS)
253 CO 10 2fl2
2S't C HFHF FOR NONPOINT CONTROLS FOR OTHER SOURCE #1
255 71 1P'.= IP6H
256 ff IARE«CN(KI.FQ.I .AND. UALCOM(K).EQ.1t GO TO 72
257 IF(ARFACN1K).CO. II OF AIM IN,46)OT1ARA(IP6,1S)
?5() IF(UAL( flHi K) .FO.l) RrAOM
290 IF(APEftCNIKI.ro.l» TOMARAI IP5,ISI=COMARA( IP5, I SI -
291 S (COMARAI IP5 , ISI*APCT(2 I I
29? IF(IJALCON)K).FO. 1) f.OMC Tl « I P5 ,1 S I =COMC Tl ( I PS, I S I -
29} r, (CO"CTL( IP5, IS l*'JPr.l (21 I
29', 78? C TI.PDU ,1S) =CO"1ARA( I P-i, IS)*COMCTt (IP5, IS I
295 GO TM oc
296 C HfPF FOR PFT.FNT RFOUf.TIONS IN CONTROLS f OR 01HER SOURCE: H I
297 201 IPft=IPf*l
298 IF(ARFACNIK J.FO.lI OT1APA(JP6,ISI=OT1ARAI IP6,1 SI -
?99 r, (01' ARA( I PC. . IS)* 'VPCT (3 I I
-------
313 IFCJALCONIKI.EO.II IT 1CTL( IP 6,!S»= OT1CTL ( I P6,1 SI -
301 r. IOTICTLMP6, IS )*JPCT !3 ) I
302 284 CTUTM ! , I S)=r)TlARAH Pf>, I S) *f)TlCTL! IP6, IS )
303 GO TO 90
30'. C HERE FOR PERCENT REDUCTIONS IN CONTROLS FOR OTHER SOURCE #2
305 785 IP7=IP7H
306 IE(AREACNIK I.EQ.l ) OT2ARA! IP7, IS) = OT2ARAt IP 7,1 SI -
307 5 IOT7ARAU P7 ,1 S)*APCT K ) )
308 IFHJALCONIK ).EQ. t» OT 2C TL< I P7 ,1 SI =0 T2C TL ! IP7 , I S I -
309 C (OT2CTL tIP7,IS)*')PCT!4l )
310 286 CTLOnt I ,1 SI =OT?ARA< I P7, 1 S)*PT2CTLUP7 , ISI
311 00 TO "0
312 85 IFIUPrCMTI GO TO flft
313 RFAOTVAI.I I 1 = I
339 K = OPTVAL( t »
340 ir{K.GT.5 » RO TO 114
341 NUSLE=NUS1E»I
342 OPTOUT ( I J = OPTRIJL(K)
343 CO T0 115
344 114 IFIK.E0.6I OP TOUT!I I=1BtNK
*45 IFJK.FO.t) OPTOIJTI I ) = PPTUR!H4I
346 IFJK.F0.3> OPTOUTU)=OPTURB(5I
347 115 CONTINUE
34R C HERE TO ENTER PERCENT REDUCTIONS FOR SELECTEO CONTROLS
349 IT I.MOT.RPRCNTJ GO TO 125
350 IF(PXPCNT) GO TO 125
351 DO 120 1=1,NOUT
352 M=0»TVAL<1)
353 IFIM.NE.M MR 11 F HP'IT , 10 » OPTHUTdl
354 IHM.rQ.61 WRITE! inUT.l IM
355 KFAD( JN.46) T. TIM)
356 12? CONTINUC
357 117 FORrnn 'OFNTf R PERCENT REDUCTIONS FOP SOURCE EFFICIENCY RATIO')
-------
360 K3=OPTVAL(3|
361 K4=OPTVAL<4>
362 IF ( .NOT.PXPCN1 . ANO. P»RCNTI GO TO
363 C HfRE FOP PROMPT f(M> INPUT OF SELECTED CONTROLS
364 11=0
365 IT (MUSI E.GT.OI WRITf (TOUT , 127 »< OPTOUT t I) , 1=1 .NUSLEI
366 12T FORMAT ( 'OFNTFR CONTROL VALUES P6R SOURCE FOR • , 4< A2 , ' , ' ) , A2 I
36T I F(NIISIE.GT.O> GO TO 143
368 I 30 I 1= I Tf 1
36-) IFUT .GT .NOUT t GO TO 200
370 IF (OPTVAL (ITI.EQ.6i WR IT Ft IOUT , 132 I
371 132 FORMAT! • OC1TFR CONTROL VULUES FOR EFFICIFNCY RATIO PER SOURCE' »
372 IF (PPTVAL ( IT I.NE.6I WR ITE ( IOUT, 134 » OPTOUTUTI
373 134 FORMAT! ' OF.NTER CONTROL VALUES FOR • , A4 , • PER SOURCE'!
374 C Of GIN CONTROLS
375 140 IP2=0
3 16 OH 195 I =1 .NSRCE
377 IT! TTYPI 1 I .NE .21 50 TO 195
370 !P2=IP2*l
379 1F( NUSLE.FQ. 01 GO TO 173
380 C HERE FOR INPUT OF IJSLF COEFFICIFNTS
381 IFIRXPCNT .OR. .NOT. R PPC NT I WR IT F. ( IOUT , 42 M SRCEt I , J ), J = 1 , 2 81
382 IFIPXPCNTI GO TO 150
383 IFIPPRCNT ) GO TO 154
384 IHHUSLt.FQ. I) REAOHN.155) CTUS LE( I S , I P2 , K 1»
385 1F(M JSLf.EQ.2l REAOUN.155I C TUSLF. { I S 1 1 P2 ,Kl I ,f tUSLC { I S , I P2 , K? I
386 (FINIJSL E.F.Q.3) REAOIIN.155) CTUSLEI IS , IP 2,K U ,C TUSL61 I S , I P 2, K2I ,
387 C CTUSLEI I S.IP2.K3)
co 3flfl ir iPC T( K2 » , PCT ( K3)
397 IF(M/SLE.F 0.4 I RFAOUN.I55I PCf (K t J , PCT «K2I , PCI (K 3) , PC U K4J
398 IPf MUSLF.EQ.5J RF A0{ I N, 155 HPCT ( KO) , K3 = 1 , 5 »
399 154 CTUSLEC IS, IP2.KI ) = CT(JSLF( lS,IP2,Kl)-(CTUSLE
416 CTLFROC I IV , 1S)=S01LC? t P2 , IS ) * CRPLND
417 OIFPNC=niFRNC - C TLFROI I P? , I SI
4 Ifl CTlOr>( |, IS ) = CTLOOI I, IS |-Cnir»Nf*RATin| IP?)*CTLF< JP2.I S) )
419 r,0 If' 190
-------
420 f MFPF. FOR INPUT OF EFFICIENCY RATin
421 171 |F(DI>TVAL( IT l.fJt .6 I GO TO 133
422 IFJRPRfMT) GO TO 175
423 RFMH IM» 155» r Tl F < IP2, I S )
424 GO TO 178
425 175 IF(.NOT.RXPCNT) GO TO 176
'.26 PFAnt IN,1551 PCT (61
427 1 T6 CTLFI IP2 ,1 SMCTLFI I P2 ,1 S ) - ( CT LF 1 IP2, IS )*PCT «S I I
'.28 178 CRPL'>ir>=AIINm I. 11*100.0
'.29 IF(lS.FO.l) OIFRNC=TTLFfU IP2l-CTLEflOtIP2,IS)
430 IFdS.NE.ll DIFRNC = C TIH RD» IP2, ISl J-CTLFROI IP2, IS I
431 CTI pr>< i, is >=cTLorx i, is )-0
431 C HFRF FOR INPUT OF FITHFR I GADS OP UAL
434 IS1) IF=CUALW4HP2, I SI -( CL)ALW4( IP?,ISI*PCT(7)I
'.40 18'. CTLOOn , IS I=AUNIT( I, I »*CUALW4( IP2, IS )
441 GO TO 190
442 185 IF(PPRfNT) GO TO 187
443 READUN.155) CTtOOU.IS)
444 GO TO 190
445 187 ir(PXPOIT) RFAfX IN, 155 I PCT(8I
446 CTLOniI,IS)=CTtOOl I, ISl-(CTLOO(I, IS)*PCT(81 I
447 f SCAiF CONTROL LOADS £ CALCULATE LOAD OrFFt'PENCES
448 190 CTLOO(I,IS»=CTLOD(I, IS 1*1000.
449 IF(IS.EQ.t) POIFJI4U=AUNfT(I,2>-CTLOOII,1>
450 IF(IS.GT.l) POIFII.ISJ=CTLOOII,ISl)-CTLOD( I ,IS)
451 195 CONTINUE
452 IF(NIISIF.GT.O) I T = NUSLF
453 NIJSIE=C
454 GU TO 130
455 C DONE
456 ?nO *>ULCTL= .TRUE.
457 KUJNTR = KOUNTfm
458 IF»=0
459 999 HETUPN
460 ENO
461 f
46? SUORnUTtNE CTttNttIS.KEVHROt 1EP>
463 C
464 C ROUTINE TO INITIALIZE CONTROL STRATEGY VALUES AT INITIAL STATE
465 C PR PREVIOUS STAGE OF CGNTHOI S
466 C IFM = I IF NO INPUT DATA EXISTS FOR KEYWRO SOURCE
467 C
468 C **********************«•****************+********•********************»*
469 LOG I r. At LlNPUT,LODURB,l.OORNC,LOORCP,L4UAL,LINl,LIN2,LIN3,L IM4
470 IOGICAI URBCTL.RULCTL,UCTLOO(3),RClLOni 3) .UPRCNT ,IJXPCNT, RPRCNT,
471 F. PXPCNT .URBCST .RULCST
472 INTEGER OTHURH.OTHRIIL ,S«CF(210,281 ,TYPCOO(9,12 >,OPTVAL(8 »
473 OIMFNS [ON ITYfM2iOI,'l<>nS< ?IOI,AUN[T( 210.2I.KTI TLE(4,40I ,
474 d SlinFFA(?lC ,3) ,CT LOOCPIO , 3 » , CT USL F I 3 , 30 , 5 I
475 OI^FNS \r)V nFLI);V( 30) , PCONC { 30) ,UALS( aO) , KALC ( 3O) , U'?UALl ( 301 ,
476 F. W?UAL2(30(,TRNSMN(210I
477 01 MFNSI ON STMCTL 130,3) , STMAR A ( 30 , 3 »,COMCTH3i, 3),COMAKAI 33, 3>,
478 R 01 IC1L(30,3),nTlARA(30,3) ,OT2CTLI 30,3) ,OT2ARA130,3 I
479 INTFr.FP Tl EUPl (1? ) ,Tl FUR 2 I I? ), APOF! ? 10 >, AP FACNi 4>, UAl COM ( 4)
-------
4 HI
48?
4fl3
484
485
4fl7
480
4R9
49?
493
494
CO
•-J
496
497
49fl
499
500
501
50?
503
504
505
506
507
500
509
510
511
512
513
514
515
516
517
518
519
520
521
52?
523
524
525
526
527
528
520
530
531
532
533
534
535
536
537
538
539
COMMON /WTRTF/
COMMON
COMMON
COMM1N
C
COMMON
/WRXSHl/
/WRKSH?/
/WPKSH4/
/WRKSII6/
/WTRCON/
1 I
12
ION 'JSl FR< 30), USI FK( 30 J ,USLFLS< 301 , USIEC (30) , W4UAL 1301 ,
f. USirP(30),SOlLSU33l,SOHS?( 30),TTLFR( 30I,RATIO( 301
111 Mf NSION POir (210. 3) ,TCUST(210,3 I , PUCOST (213,3)
COMMON /WTP 10 / IN, imH.NSRCE.KTITtF ,NTI F. ,Nl/PB , NRUNC P, NRUCRP
L INPUT , LOOUPB , LOORNC, L IN 1, L IN 2, L IS 3, L IN4, D THIP tt ,
OTHRUL.LOORCP, TYPCnD, JIN, JOU T , L4UAL , KOUT
SRCE, ITVP, NPOS, APOE , AU^n,SU'FFA,TLEt)Rl,TLEUR2
1>F LOW , PCONC.U AI.S , J Al C, W? J At 1 , W 2U AL 2
USI.fR , USt F K ,UStf L S, USLTC ,I)S LE P , SOI LSI ,
Stilt S2,TTLFR,W4UAL, RATIO
PDIF, TCOST.PUCOS1 .TRNSMN
UCTt 00, «C TLOI) ,U«BC Tl ,RULC TL , UPRCNT .UXPCNT, P PRCNT,
K RXPCNT.OPTVAL.NQPT.URBCST ,RULCST, AR F ACN, UALC"H
OIMFMSI 3N C TIFLWI 30,3) ,C TLCNC ( 30 ,3 )
OIMFNS ION CTIEI 30, 3 I , SO II C II 30, 31, SOUC2I 30,3) ,C TLFROI 30 ,3 I ,
G CUALW4(30,3)
COMMON /UflNCTL/ C TLF t W.C1 LCNC , CTLOD, STMC TL , ST MARA, COMCT L ,
f, COMARA.O' ICTL, OT I AR ft, OT ?C TL ,OT2ARA
COMMON /RFOCTL/ CTUSLE ,CT LE, SOI LCI , SOI LC? , CT LERO, CUALW4
I 51=1S - 1
IF (KFYWP.D.E0.2) GO TO ?0
HFRF FOP URBAN CONTROLS
IF(NUP.H.rO.O) RFTUPN
IP3 = 3
IP4 = 0
IP6 =3
00 10 IM.NSRCE
\f(ITVP(l).LE.2J GO TO 10
IF«ITYP(I).GT.5J GO TO 5
HFPE FOR POINT SOURCES
I°3=IP3H
1F( IS.GT.lI GO TO 3
CTlfLWI IP3,I) = PFLOW1|P3)
CTLCNCIIP3.U =PCONC(IP3)
GO TO 9
CTLFLW( IP3,ISI = CTLFLW(If3, IS1)
CTLCNCC !P3,I S) =CTLCNC( IP3 ,ISl )
GO TO 9
HFRE Ff!R NON-POINT SOURCES
K=ITVP(I) - 5
GO 10(11,14, 17,21 ),K
MERE FOR STORM SFWF.'<
IP4= IP4H
IF( IS .GT .1 » GO TO 12
STMARA(IP4 ,1 I = AUMIT( 1,11
STMCTL( IP4, U = IIALS( I P4)
GO TO 9
STMftPM I P4,l SI =STH4KA(I P't , ISl I
STMCTLt IP4, IS I=STMCTI ( (P4, ISl)
GO TO o
Hf
-------
540 15 CPMARAHP5, IS)=COMARA< IP'S, ISII
541 COMCTLI IP5 , IS)=COMCTL ( 1P5 , ISI)
54? GO rn <5
543 C HFRE FPP nTHER SOURCE » I
544 17 IP6MP6M
545 IK IS .GT.l ) GO TO l»
546 OTlARAt IP6, I I = A'.)NIT (1,1)
547 OTICTL1 [T>6, 1) =W?UALl I IP6I
540 OP TO i
549 1" DO 31 I=l,NSRCF
00 569 IF( ITYPU I.Nf .2! GO TO 33
570 IP?=1P?*1
571 IFdS.GT. II GO TO ?1
,1 P?,II=USLER(IP2)
,IP2.2)=USIEK|FP2J
,IP2.3)=USLELS IIP2)
,IP2,4I=USLFC(IP?)
, IP2, 5) = USt EP( IP2)
57? CTUSLF(
573 CTUStEl
574 C.rUSLF(
575 C TUSLFJ
576 CTUSl F(
577 CTI EPOI IP? ,1 )=TTLEP(I P2 I
578 CTt El IP?, 1 )=l.O
579 CIJALW4 ( IP?, I )=W4JAL ( IP? I
580 CTI. 001 I ,11 =AUNI T(I ,21/1000.
5fU CO TO 30
582 ?3 00 ?5 J=l,5
5R3 ?5 C TUSLFI I S.IP2 , J)=CTUSLE t ISI , IP2 , J)
534 CTtFRO(rP2, IS) = CTLFROUP?,IS1I
5R5 CTLEHP2 , IS) = CTLE( IP?, ISI )
586 C(IALW4( IP?, I S) =CUALW41 I P? , 1 Sl>
587 C
59 fl CTLOOII t IS) = CTLOD(I » ISI I/IOOO .
589 30 CONTINUE
590 C DOME
591 50 lfR=0
592 RETURN
593 ENO
594 C
595 SURRTUTINE H fRC STt I r L AH ,KC YWRO.I S ,KPUNTR , IFRJ
r - ~~*~
597 C ROUTINE Tn ACCEPT INPUT OF COST OF CONTROL OAT A
598 C . I FLAG = I IF COSTS DIFFER RFTWFFN SOURCES
599 C -IFR = 'L IF MORE THAV 1 STAGES OF COST :)ATA PFOUESTFO
-------
600
601
602
603
60'f
605
606
607
60fl
600
610
611
612
613
614
615
616
617
61 R
619
620
6?l
62?
623
f = ? IF INPUT DATA DOES NOT EXIST
C KEYWRO = I FOR URP-AN COSTS
C = 2 FOR RURAL COSTS
fr****,l<***********iM
LUGICAl L INPUT, IODUPB.I OORNC.l OORCP , L4UAL , I I HI , LI N2 , L I N3 ,L I N4
I OGlCAt URNCTL.RULCT L.UCTLUnm , RCT I00t3 I , UPRCNT , UXPf.NT , RPRCNT,
G RXPCNT.URBCST.PULCST
INTEGER SPCE(210,2R1, ARE ACNJ 4 > , UALCONJ 4 I ,0f» T VAL t 81
ni MfNSlON I TYP1210) ,NPOS(210» , AUNIT <213,2!,KriTLE14,4J),
f. StJRFf At 210, 31
INfEGEP Tl FURl (I 2 1 , TL FUR2 I 12 I , APOE ( 2 10 1
DIMENSION PDIF (2 10, 3) , TCOST(210,3) ,PUC OST ( 2 10 , 3 ) , T RNSMN 12 I 0 >
COMMON /WT»TF/ L lN»in ,LOOUR8 , L flDRNC ,LIM t ,L I N2 , LI N3, LI N4 , OTNURB ,
C OTHRUL.LOORCP.TYPCOO, J IN, JOUT , L4U4L , KOUf
/WTR 10 / IN, I OUT, NSRCF ,KTI TLF. .NTLF.NURB ,NRUNCP» NRUCRP
/WRKSIH/ SRCE, IT YP, NPOS, APOE, AUN I T, SURFf A , 1LE UR 1 , TLEUR2
/WRKSH6/ POIF , 1COST , PUCOS T ,TR NS MN
/WTR CON/ UCTLOO,RC TLOO ,URBC TL ,RU1 C TL , UPRCNf , UXPCNT , RPRCNT,
f. RXPCNT,OPTVAL,MOPT .URBCS T , R'JLCSl, AREAC.NI, UALC3*J
oo
IJD
625
626
627
S2<*
629
630
631
632
633
634
635
636
637
638
630
640
641
642
643
544
645
646
647
64B
649
653
651
652
653
654
655
656
657
650
659
COMMON
COMMON
COMMON
URBAN
RURAL
SOURCES')
SOURCES' I
IFIIS.GT.-JJ RETURN
IF(KEYWRO.FO.l .AMD. MJRB.EQ.O! RETURN
IF( KEYWRD.FQ.2 .AND. NRUCRP.E0.3) RETJRN
IFIKFYWRO.FO.il WR I TF(COUT,5» IS
IFIKEYWRO.FQ.2) WR ITE«TOUT,6 ) IS
5 FORMATI'0' ,5X,'STAGF1 , 12 ,* COSTS OF CONTROL FOR
6 FORMAT CO', 5X, -STAGE', I?,1 COSTS OF CONTROL FOR
IF!IFLAG.EO.lI GO TO 27
IFIKEYWRD.FQ.2) GO TO 20
HERE FOR URBAN COSTS FOR AIL SOURCES
Ll=LENGTHITLFURl,12)
L?=LENr,TH< TLEUR?, 121
rFIOTHURO.EO.O I WRITEHOUT, 10}
[FIOTHURR.EO. t) WRITE(I OUT,11 I ITLEUR1 GO TO 51
IF! IT YP| I ) .fjf .2 .AND.KF YWRO.EO. 2) GO TO 50
IF (If L 4G.FO.T) GO II) 35
-------
660
661
662
663
664
665
666
667
66H
669
670
671
672
673
674
675
676
677
f,78
679
680
681
68?
683
684
6fl5
686
687
6ft8
689
690
691
692
693
694
695
696
69?
698
699
700
701
702
703
704
705
706
707
70R
709
710
711
712
713
C
C
C
715
716
71 7
7 IB
719
3?
35
40
50
WR ITE< I OUT, 32KSRCFU,J»,J=1,2R)
FORMAT I1X.28AII
REAmiN.?<5) PUCOSTM.ISI
GO TO 40
.EO.?) PUCOSTf I, IS I = COSTO
.GE . 3.AN3.ITYPJI I.LE.5I PUCOST1 I,IS) = COST1
.tO.6) PJCOSTt t, |S» = COST?
.EQ.71 PUCOST(I,IS)=COST3
.EQ.RI P'JCOST
-------
720 99 RF. TU"N
>
^
7?? C
7?3 SUHROUT1 NF WT RANK I I S I
725 C. ROUTINE TO RANK CONTROL STRATFG1ES BY COST EFFEC f I VFNF SS
7?6 C
728 DIMENSION CPUTMP (540 » ,K ERTHP ( 543 )
729 LOGICAL L INPUT , LODURfl .LOORNC , LODRC P, L4UAI , L I Ml , L I N2 , L IN3 ,L IN4
730 LGGICAt URRCTL , RIJICTL ,UCTLOD{ 3) , RCTLOOI 31 , UPRCN T , UXPC N T ,«PRCMT ,
731 F. RXPCNT .URRCST , PHI CST , (.RANK
73? INTEGER OTHURa.QTHRUL.SRCF C 210,281 , TYPCO()(9,12 ) ,OPTVAL(8 I
733 DIMENSION ITYP(210I,NPOS(213I, AUN IT( ?iO,2),KT ITLEI 4,40) ,
734 r, SURFFAJ ?10,3) ,CTLOD(210,3) ,CTUSLE(3,30 ,5 I
73-5 OIMFNS ION STMC TL( 30, 3) , STMARA1 30 , 3) ,COMC IL( 30,3) ,C01AR A ( 30 ,3 J ,
736 6 OT1CTH30, 3 I , OT 1 ARA ( 30, 3 I , QT2CTLI 30,3) ,OT2ARA( 30,31
737 DIMENSION PFLOWI30) , PCONC ( 33 ) ,U ALS (30 ) , J ALC (3D ) , W2U AL 1 ( 30 ) ,
73B f, W?UAL?( 301, TRNSHNI Z10)
739 INTFOFR TLFURK12I ,T IEUR2 { 1 2 I , U ERUl (1 2 I , TL F.RU2 ( 12 I , U ERJ3I I 2 I ,
710 t APOF( 210),APFACN( 'Vl ,UALCON{',I
741 01 MtNSION GRAS A ( 30 I , U ALOt 30 I, WLNOAC 30 ) ,UALW( 301 ,W30TA U 30) ,
74? C W3UALI (30) .W3UAL2 (30) .W3UAL3 133 ) ,W30T A2(33 I.W30T A3(30»
743 REAL LOORNK 30),LOORN?t 30),LOOlW3l 30! ,LO02H3( 30 » ,LOU3W3(30)
744 01 ME NS I ON OSLER<3Q) ,US LEK ( 30 » .USLFLS (30 ) , DSL EC< 30),W4UAL (30) ,
745 & OSLFP( 301, S01LSK30) ,SOILS2(30) ,TTLER(30(, RAT(Q(30I
746 OIMFMSION PD IF ( 2 10 , 3 ), TCOS T( 2 10, 3) , PUCOSTI 2 10 , 3 )
747 OIMFMSION PMOinH(210) ,OIFMIH(213,3I , CPURFM< 2 13 , 3 ), KER AN< t 2 13, 3 )
7'<8 COM«^M /WTRIC/ rN, f OUT, NSRCE , KTt TLF ,NTLE ,NURB .NRUNCP, NRUCRP
749 COMMON /WTRTF/ L INPUT , LOOURO.LOORNC ,L IN l,L IN2, LIN 3 ,L t N4 .OTHURB,
7r>0 f. OTHROL.LOORCP.TYPCOn.JIN, JOUT ,l4UAL,KOUr,LRAN<
751 COMMON /rfRKSHl/ SRCE, I TYP , NPOS , APOE , AONJ T , SUPFE A.TLEURl , TLEUR2
752 COMMON /WRKSH?/ PFLOW , PCONC, U ALS ,U ALC , W 2JAL I, ri 2UAL 2
7r>3 COMMON /WRKSH3/ GRASA ,UALG,WLNnA ,UALW,LODRNl , LOORN2 ,
754 f. W30TAI.W3UAL 1, W3UAL 2, W3UAL 3, W30TA2, W30TA3,
755 £ TlEfUJt ,ILFRLI2,TLFRU3,« 001W3 , L002W3, L003W3
756 COM^IN /WRKSM4/ US LFR ,USLE K.USLE LS .USLEC ,USL FP , SOILSI ,
757 f. SnrLS2,TTLER,W4UAL,«ATrO
75« COMMON /WRKSH6/ POI f , TCdST .PUCOST .TPNSMN ,PMOU T H, 01 FMT H, CPJREM,
759 f. KERAMK
767 COMMON /WTRCOM/ UCTLOO, RCTLOO, UR8CTL ,RUt Cfl , UPRCNf, UXPCN T , RPRCM T ,
76t & RXPCMT.OPTVAL ,NOPT .URF1CST , RULCSf , APF ACN, UALCOV)
76? DIMENSION CTL FL W( 30, 3 1 .CTLCNC ( 30 , 3)
763 IH MENSf ON CTtE(JC,3l,SOIlCK33,3l,SORC2(30,3l,CTI ERO(30,3I,
764 G CUALW4I 30,3)
765 DIM ENS ION TOT C SI ( 3 ) , TOTREM I 3 I ,KNOX ( 540 I , F INC ST( 540) ,F 1 NRFMI 54DI ,
766 r, rSFIN(543>
767 IMTFGFP F INSRC ( 540, 4 3)
768 COMMON /WRKSHO/ T OT CST , TQTRFM , TOTLOO, T3TMTH , KNO X ,F t NSRC ,F I N: ST ,
769 f, rrMRFM.I SFIN.NUM
770 COMMON /UPNCTL/ CTLFLW.C TLCNC , C TtOO , STMC TL , ST MARA ,COMC T L ,
771 r, COMARA.OTICTI , OT IARA.OT2CTL, OT 2ARA
77? COMMON /RFOCTL/ CTUSLF ,TTLr ,SOI LCI ,SOn.C2 ,C.r t FRO, C'JALWi
T73 C, **** + <^**t** + + + *****+* *
774 DATA IRLNK.IOSH/' «,'-•/
775 TorLnr>=o.o
776 TOT MT 11=0.0
777 00 5 I =1 ,3
770 TOTCST< I )=•">. 0
779 S 10TPEM{ n = T .3
-------
780 ou 7 i =1,540
781 CPUTMPJI)=0.0
782 7 KERTfP(II=0
783 C
784 00 13 f=l,NSRCF
7B5 PMQUTHt I ) =TRMSMNU I * AUNIT d,2»
786 TOTMTM=TOTMTH*PMOUTHd )
787 TOTLCO=TOTLPO*A'JNIT I I, ?\
788 iriltYPIII.EQ.l .OR. AUNIT(I,2).EO.O.0) GOTO ID
789 DO 8 J=l, IS
790 CfFMTHU, JI = POIFd, J t*rRNSMN( (I
791 If (DIF'ITHl I , J» .EQ.O.O» GO TO 8
79? CPURE^I I,J )=TCOSt(I,J)/OIFMTM( I ,JI
793 rOTCSTJJI =mTCST( J»+TC.flST U , J »
794 TOTRFMI J( = TOTRF M(J)+01FMTH(I ,J)
795 8 ("ONI INtIF
796 I •) CfWrNt/F
797 C
798 K=T
799 00 20 J = l ,1S
800 DO l« J=1,MSRCE
801 IFdTVPJ D.EO.l .OR. AUNITC I, 2) .FO.0.0) GD TO 18
P02 K=K»l
803 CPUTMP< K) = CPURF«1( I, J »
804 KNOXJKI=K
P05 PI MREM(KJ=OirMTH([,J)
806 FINCST(K»=TCOST( I,J )
807 ISFIN IE=IE-l
817 IFILl.rO.6) 1F=5
818 OH 12 I 2 = I. IE
819 12 Fl NSRCIK.I2)=TYPCOD(L1,12 * II)
820 FINSRCIK, IF*1)=IBLNK
821 FINSRCIK,IE*21=IOSH
822 F!f^SRC( K , IF + 3) =IOLNK
823 !.? = ?
824 IB=1E*4
825 CL=in*?7
826 13=1
827 1FUI.FQ.6) 13 = 1-1
8>R IHLl.FO.7l 13=1-2
829 IFtLl.FO.8) 13=1-3
830 IFdl.FO.9l 13 = 1-4
831 00 14 I?= IB, IE
83? 1.2 = 12*1
833 14 fINSRCIK , 12) = SRCF( I3.L2I
834 C
835 13 CONTINUE
836 ?"> f.ONTtMMF
837 C RA"'K USING SHFd
838 H;AP=K/?
839 2? IfjIGAP .LF. 01 GO TO
-------
840 IIGAP=|GAPH
841 00 33 I=I1GAP,K
84? J= I - IGAP
843 25 1F( J .Lf. 01 GO TO 30
844 JG=J » IGAP
845 IFICPUTMP(J) .LE. CPUTMPtJCU GO TO 20
846 f. EXCHANGE PLACES IN TEMPORARY DATA ARRAY
847 AK=CPUTMP(J)
B43 C.PUTMP(J ) = CPUTMP(JG)
849 CPUTMPt JGI =AK
fl50 C EXCHANGE PLACFS OF INDFXFS
8"H fK=KNOX(J(
O'i? KNOX« J» =KM()X< JG)
853 KNOX(JG)=!K
854 28 J=J - IGAP
B55 GO TO 2*>
856 30 CONTINUF
857 IGAP=IGAP/2
858 GO TH ?2
859 38 C.ONT IHdf
860 C OHNE WITH SORT
061 0(1 40 1 = 1 ,K
862 M=KNOX(I|
863 KF.RTMP(M> = I
864 40 CONTINUE
865 K2=0
866 00 63 J = l ,(S
867 00 50 I = l,MSPCF.
P68 IF(ITYIM I I.FO.l .OR. AUN IT( I.2> . EO .3 .3 ) GO TO 50
869 K2=K2*1
H70 KERANKI I,J (=KFRTMP(K2)
871 50 CONTINUE
872 60 CONTINUF
P73 LRANK=.TRUF.
874 NUM=K
875 RFTU1M
876 f-NO
FND OF fILE
-------
Data Files
The example data file listings that follow were generated from
terminal sessions similar to that included in this manual. It is important to
note that the data file structure can change for some parameters depending
upon the commands and key words utilized in a particular run. The data files
are compatible with the NETWORK program.
94
-------
UD
en
32 0 0 3
SANDUSKY RI Vff>
LAKE FRIE
LOSS CPEEK
11.8303
LOSS CREfK
125.0000
BUCYRJS CITY
2.5100
STORM
250.0000
COMBINED
900.0000
BROKEN SWORO
3.5900
BROKEN SWORO
125.0000
UPPF* SAMOUSKY RfVFR
12.8103
UPPER SANOUSKY RIVFR
130.0000
UPPFR SANOUSKY CITY
1.5000
ST3RM
0 .0
C OMB INE 0
250.0COO
TYMOCHTEE CREFK
9.0400
TYMOCHTEP CKF.EK
13B.OOOO
MIOOLE SANOUSKY
17.2700
MIDDLE SANDUSKY
138.0300
HONFV CREEK
3.1730
HONEY CREEK
125.0000
TIFFIN ClTY
3.2000
STORM
250.0000
COMTINFO
IOOO.OTOO
W3LF CRFEK
7 .5733
WOLF CREEK
125.0000
ROCK CREEK
12. 1400
ROCK CREFK
125.OTTO
FREMONT CITY
5 .1030
STORM
250.0^00
CO '•W I NED
t A
10.0003
2A
0.3500
3A
'..0000
6 A
7A
in
10.0000
2fl
3,3810
1 f)
ir .0000
2U
0.1200
3B
A .0000
63
7fl
1C
25.0030
2C
0.3200
1C
IP. 0000
2C
0. 3803
10
10.0000
20
0.3500
30
4 .0000
60
70
IF
1C. 0000
2F
0.2900
IE
10.0000
2(
0.34">0
3T
A. 0000
6E
7F
36 .8700
?5. 0400
Ifl9. 8400
0.4020
13500. 0000
1.3000
7.2000
21.7600
18.1700
187. 1900
0.4240
47.1933
34.3800
274.6001
0.4260
6250.0000
0.0
8.700J3
56.1700
47.1333
528, 3999
0. 3570
85. 2300
67.9600
54?. 3601
0.3810
4 7 . 24 00
44 .0700
343. 5500
0. 3380
26300.0033
7.0000
10. 4000
30.4633
22. 1900
343.1101
0.2560
68.6100
56.4700
409. 8999
0.4? 70
19733. 030T
1.4000
I?. "5000
368.6997
10. 0000
lfl.0678
0.2333
13820. 0000
325 .0000
6479.9961
21 7.6000
10.3030
20.4012
0.2330
471 .8999
10. COOO
36.3436
0.2453
S292.0000
0.0
2174 .9998
697. 299R
10.0300
54.17?3
0.2800
852 .2998
10.0000
6S.4346
0.2633
47^.3999
10.0000
27.9635
0. 2370
1 7689.5977
1750. 0000
1 0399. 9961
334.5999
10. 0000
17.5262
0.2373
686. 0999
10.0300
43 .9451
0.2370
28192.7891
349.9990
12300, 000"
0.0 3.0
1.3333 0.00010355
0.0 0.0
I. 0000 0.03010355
0.0 3.0
1.3330 0.00010355
0.0 0.0
I. 0000 0.00010355
0.0 0.0
1.3333 0.00010355
0.0 0.0
I. 03^0 0.00010355
0.0 3.3
1.3333 0.03310355
0.0 0.0
1.0330 0.03010355
0.0
0.0
0.0
0.0
0.3
0. 0
3.3
0.0
0.0
0.0
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.3
0.0
0.0
0.0
0.3
-------
1000. OOCO
LOWER SANOUSKY
10.0000
LOWFR SANDUSKY
125.0000
LOWFR SANOUSKY
8.2500
LOWER SANDUSKY
125.00CO
I 1 I
8374.2578
125.0003
3455.0000
2 .5000
243. 7500
1.5303
6091. 1992
3.2000
8667. 714«
125. 0000
15278. 1523
130.0000
2073.0000
5. 1000
0.0
0.0
2044.499B
0.0
20893.4922
138.0003
27682.0977
138 .C300
11916.1523
125.0000
4422. 3184
0.0
1312. WOO
0.0
9775.9961
0.0
7986. 1?50
125.0000
IB139.1602
125. 0000
7048.199?
0.0
262.4998
0.3
11562. 0000
0.0
10760 .2227
125.0033
3492.3647
125.0300
2635. 706P
125 .0000
I 727.5000
2.5000
H2 .9 125
(SOIL 11 IF
25.0000
( SOIL 1 » 2F
0.3200
(SOIL 21 IF
10.0000
(SOIL 2» 2F
0.2800
1
0.3*03
I .0000
I .0000
1 .0000
C. 3800
0.4200
I. 0000
0.0
0.0
3 .3230
0.3POO
0.3500
0.0
0.0
c.o
0. 2903
0.3400
? .0
0.0
C. 0
0.3200
0.2803
0.35CO
0. 5000
« *
14. 5430
74.5400
243.5530
0.4100
8.2500
0.0
100.0000
0.4340
0.4020
1.3000
0.0
7.0000
0.4240
0.4260
1.4000
0.0
0.3
0.3570
0. 3810
0. 3380
0.0
0.0
0.0
0.2560
0.4270
0.0
4o. o
0.0
0.4103
0.4340
0. 4020
I .1000
"95.3999
1C. 0000
24 .8614
0. 2680
82. 5000
10.0030
8. 3611
0 .2370
0.1080
187.5000
-0. 0
187.5000
0.0993
0. 1033
187. 5000
0.3
0.0
0. 1080
0. 1 1 00
0.1010
0.0
0.0
0.0
0. 1383
C. 1350
0.0
0. 0
3.0
0. 1160
0. 0990
0. 0340
140. 6253
0. 0
I. 0000
3.0
I. 0000
1 .3033
7. 2000
8. 7000
10.4000
1.3030
I. 0000
12.3000
0.0
0.0
I. 0000
1.0000
1.0330
0.0
0.0
0.0
1. 0000
1.0000
0. 0
0.0
3.3
1.0300
1. 0000
1.0000
7.2303
0. 0
0.03310355
0.0
0.00010355
1.8994
846. 0030
235.0030
940.0000
1.9939
2. 3957
940.0000
0.0
0.0
I. 7026
2.1978
1.4935
0.0
0.0
0.0
1.0022
1,9055
0.0
3 .0
0.0
I. 9024
I. 5038
T.59B3
634.5003
0.0
0.0
4.2605
0.0
0.0
0.0
4. 4722
5.3736
0.0
0.0
0.0
3 .8190
4.9296
3. 3500
0. 0
0.0
3.0
2.2480
4.2740
0.0
3.3
0.0
4. 2671
3.3730
1.3413
0.0
3.3
0.0
83880.5625
3.3
0.0
O.'O
83715.4375
147559.9375
0.0
0.0
0.0
231795.9375
267360. 1875
1 15089.2500
0.0
0.0
0.0
77 131.8125
175191.3125
3.3
0.0
0.0
1 03924.6875
33730.4180
25462.3984
0.0
,
0.0
0.0
1.00
0.0
0.0
0.0
1. 00
1.00
0.0
0.0
0.0
1.00
1.00
1.00
0.0
0.0
0. 0
1.00
1 .00
0.0
0. 0
0.0
I. 00
1.00
I. 00
0.0
-------
I .5300
4568. 3984
3.2000
3063. 6R63
125.0000
5042.1523
130.0003
1036.5000
5.1000
0.0
0.0
1533.3748
0.0
6188.9102
138.0000
8805. 0438
138 .0000
4010.4980
125.0000
2211 .1990
0.0
984.3750
0.0
7331.9061
0 .0
2365.6472
125.0000
5699.574?
ua 125.0000
"-» 3524.1001
0.0
196. 8749
0.0
8671.5000
0.0
3338 .5676
125.0000
1163.8401
125.0000
$$$$
4? 470999.
234369.93 75
1.0000
0.0
0.0
I .0000
9693. 5195
5 738.5508
I .0000
10365.0003
1727.5000
I. 0000
81.2500
60.9375
1.0000
388.7960
1522 .0038
m i. oooo
0 .0
0.0
t
0.5000
0 . 50OO
0. 3803
0.4200
0.5000
0. 0
0.0
0.3200
0.3800
0. 3500
0.0
0 .9
0.0
0.2900
0.3400
0.0
0.0
0.0
0.3200
0.2803
3625 4?0999.
137197.4375
368.6997
0.0
0.0
IPT67 .7773
65.00CO
300C.0300
13420.0003
?. 4000
3.6CDO
325.0000
7400.0030
H690.0000
6479.9<»ftl
7400.0000
74700.0303
217. 6000
0.0
p. a
0.0
7. 0000
0.4240
0.4260
1.4000
0.0
0.0
0.3570
0. 3810
0.3380
0.0
0.0
0.0
0.256C
0.4270
0.0
0. 0
0.0
0.4100
O.4340
0625
720133.8750
0. 0
0.0
l?339.r>977
569519.9^75
32399.9922
48600.0039
962 C. 0000
11 180.0000
5T79. 0061
I 77339.9375
0.0
C.T
-0.0
140. 6250
0.3350
0.0340
140.6250
0.0
0.0
0.0320
0. 0350
0.0340
0.0
0.0
0. 0
0.0320
0.0330
0.0
0. 0
0.0
0.0360
0.0330
10760062. OCOO
0. 0
0.0
9693. 5135
5738. 5508
10365.0333
1727. 5COO
fll. 2530
60. 9375
388. 7969
152?.8CO«
0. 0
0.0
8. 7000
10.4000
I. 0000
1.0000
12. 3030
0.0
0.0
1.0000
I. 0000
1 .0000
0.0
0. 0
0.0
1 .3000
1.0000
0.0
0.0
0.0
1.0000
I. 0000
0.0
0.0
1.2730
99.7 w;>
3.1259
78. 1331
1 18. ',000
183.4666
137.0311
I 16. 7848
0.0
0.3
176. 2500
735.3333
0. 7049
0. 7 90S
705.0000
0.0
0.0
0. 5045
0.6993
0.502B
0.0
0.0
0.0
0.2970
0.5989
0.0
0.0
0.0
0. 5904
0. 5013
3
3
7
23
13
17
31
3fl
36
?<1
0
a
0.0
0.0
1.5811
1 .7738
0.0
0.0
0.0
1.1316
I .5685
1.1277
0.0
0.0
3.3
0.6661
1. 3433
0.0
3.0
0.0
1.3243
I .1243
3.3
0,0
29596. 3867
«8709. I32fl
0.0
0.0
0.0
59791.3789
85069. 1250
38742. 9492
0.0
3.3
0.0
22853. 9023
55060.1250
0.0
0.0
0.0
32252.4844
ll?43.4648
0.0
0.0
t.OO
I. 00
0.0
0.0
0.0
1.00
I. 00
1.00
0.0
0.0
0. 0
I. 00
1.00
0.0
0.0
0.0
1.00
1.00
-------
1. 0000
11 733.4680
5604.0273
1 .0300
0.0
0.0
I .0000
21065. 4297
10236.0000
I. 0000
6219.0000
1036.5300
I. 0000
0.0
0.3
I. 0000
130.5000
511.1253
1.0000
0.0
0.0
1.0000
33278.7930
14704.5820
I .0000
0.0
0.0
1.3030
to 37752.4844
00 18876.2539
1 .0000
0. 0
0.0
I .0000
16047.3320
7905.6523
I. 0000
13267.1992
2211.1995
i. oooo
437.5000
328.1250
1.0000
624.3303
2444.0000
I. 0000
0.0
0.0
l.OQOO
9540.0506
5620.4766
I. 0000
0.0
0.0
I .3303
22805.9219
12439.5859
I .0000
21144.5898
3524.0191
?0401. 1836
6'i .0300
3900. 0000
471.8999
0.0
0.0
36343. 5B 20
65. 0000
3000. OOOC
8292.0300
2.4000
3.6000
0.0
7400.0000
8600.0000
2174.9998
7400.0000
24700.0000
697. 2998
0.0
0.0
54172.2852
65 .0000
3300. 0000
852.2998
3.0
0.0
65434.5820
65.0003
3300.0000
472.3999
0.0
0.0
27963.4844
65.0000
3000.0000
17689.5977
2.4000
3 .6000
1750.0003
7 '.00. 0000
8600.3330
1C399. 9961
7400. OOOO
24700.0000
304. 5999
3 .3
C.O
17526. 1836
65.0000
300C. 3000
686.0999
0.0
0.3
40945 .0870
65.0330
?OOC.OOOO
28192 .7891
2. 4D03
'.,6000
12167.3477
561570. 0000
0.0
0.0
17849.3339
823800. ?500
14999.9961
22500.0000
0.3
0.3
64379.9961
214889.9375
0.0
0.0
34345.9922
1585199.0000
0.0
0.0
35253.4063
1627080.0000
0.3
0.0
22330. 7500
1030650.1250
62399.9883
93600.0300
51«00. 0000
602^0.3000
76959.9375
256979 .9375
O.i
0.3
22332.1563
1029330.3125
3.3
0. 0
26643. '.9? 2
1229699. 0000
47351.9922
71028.0000
11733.4688
5604.0273
0.0
0.0
21065.4237
10236.0000
6219.0000
1036. 5010
0.3
0.0
130.5000
51 I. 1250
0. 0
3.0
33278. 7930
14704.5820
0.0
3.0
37752.4844
18876.2539
0.0
0. 0
16047.3320
7905.6523
13267. 19Q?
2211. 1995
437.5000
328.1250
624. 0000
2444.3330
0.0
0.0
9540.0586
5623.4766
0.0
0.3
22135. 9219
12439. 5859
21144.5898.
3524.0991
1.0370
133.2383
0.0
0.0
3 .8473
80.4807
2.4120
21. 7077
0.0
0.0
493.3333
420.4253
0.0
0.0
1.0321
107.8331
0.0
3.3
0.9338
86 .1972
3.0
0.0
1 .3916
130.3688
4.7033
42. 3300
118.4000
183. 4667
123. 3332
105.1064
0.0
3 .0
2.3377
183.1393
0.0
0.0
1 .1613
98.H537
2.2394
20. 1549
4
24
0
3
1
17
12
16
3
0
42
41
0
0
3
27
0
0
2
20
0
3
9
35
I't
ia
33
39
32
25
0
0
11
37
0
3
5
22
10
15
-------
1. 0000 349.9998
87.5000 7400.0000 10*59. 9961
65.6248 8600.3300 12039.9961
1. 0000 12300.0000
733.0300 7400.0000 91020.0000
2890.5010 24700.0000 303810.0000
1.0000 995.3999
0.0 0.0 0.0
0.0 0.0 3.3
1. 0000 24861.3867
14101.1641 65.0000 15830.7500
7421.6523 3000.0000 730650.0000
1.0000 82.5000
0.0 0.0 0.0
0.0 0.0 0.0
1.3300 8361.0938
4B68.72f.fi 65.0000 6500.3000
2378.5247 3000.0000 300000.0000
CROPLAND - LOSS CRFFK
MUNICIPAL - BUCYRUS CITY
STORM - BUCYRUS C II Y
COMBINED - BUCYRUS CITY
CROPLAND - BROKEN SWORD
CROPLAND - JPPER SANDUSKY RIVER
MUNICIPAL - UPPER SAMDUSKY CITY
COMBINED - UPPEP SANDUSKY CITY
CROPLAND - TYMOCHTEE CRFFK
CROPLAND - MIDDIF SANntJSKY
CROPLAND - HONEY CREEK
MUNICIPAL - TIFFIN CITY
STORM - T IFF IN CITY
COMBINED - TIFFIN CITY
CROPLAND - WOLF CREEK
CROPLAND - ROCK CPCEK
MUNICIPAL - FREMONT CITY
STORH - FJFMONT C 1 TY
COMBINFD - FREMONT CITY
CROPLAND - LOWER SANOUSKY (SOIL I)
CROPLAND - I OWFR SANOUSKY (SOIL 2)
CROPLAND - LOSS CREEK
MUNICIPAL - BUCYRUS CITY
STORM - BUCYRUS C ITY
COMBINED - BUCYPUS CITY
CROPLAND - BROKEN SWORO
CROPLAND - UPPER SIWO'JSKY RIVER
MUNICIPAL - UPPFR SANOUSKY CITY
COMBINED - UPPFR SANDUSKY CITY
CROPLAND - TYMOCHTEE CREEK
CROPLAND - MIDDLE SANDUSKY
CROPLAND - HONEY CREEK
MUNICIPAL - TIFFIN CITY
STORM - TIFF IN CITY
COMBINFD - T IFF IN C 11 Y
CROPLAND - WOLF C"EFK
CROPLAND - POCK CREEK
MUNICIPAL - FPFMTMJ CITY
STORM - FPF?OMr CI TY
COMBINED - FPFMONI CITY
CROPLAND - LOWER SAMDUSKY (SOU l»
CROPLANO - LOWfP SANOUSKY (SOIL 21
87.5000
65.6248
738. 0000
2B90.5000
0.0
0.0
14101. 164 I
7421.6523
0.0
0.3
4868.7266
2328.5247
6
13
9
5
20
16
1
21
11
17
15
7
2
12
38
28
23
33
27
31
41
I 9693.
10365.
81.
3Rfl.
11733.
21065.
6219.
130.
33278.
37752 .
16047.
13267.
437.
624.
9540.
22805.
21144.
97.
738.
14 10 I.
4868 .
37 7 573B.
22 2 1727.
26 2 60.
35 2 1522.
40 2 5604.
30 2 10256.
25 2 1036.
18 2 511 .
13 2 14704.
3 2 18876.
14 2 7905.
19 2 2211.
42 2 323.
M 2 2444.
4 2 5620.
36 ? 12439.
24 2 35?4.
34 2 65.
39 2 2890.
29 2 7421.
U I 2t?6.
118.
183.
123.
105.
0.
3.
I.
98 .
0.
0.
I .
128.
5195
0333
2500
7969
4688
4297
0003
5000
7930
4844
3320
1992
5330
0000
0586
9219
5898
5333
0000
1641
7266
5508
5003
9375
8008
0273
0000
5000
1250
5820
2539
6523
1995
1253
0000 '
47f>6
5859
0991
6 248
5000
6523
524 7
3999 29
4671 40
3333 33
1064 26
0 0
0 0
1227 5
4484 21
0 0
0 3
3351 8
8359 34
12339. 5977
32399.9922
9620.00^0
532 79. 9961
12157.3477
17849. 0039
14999.9961
64379.9961
34345. 9922
35253.4063
22330.7500
62399.9883
51800.0333
76959. 9375
22302. 1563
26643.4922
47351. 9922
10359.9961
91020.0000
15B30. 7500
5500.0000
569519. 9375
48600.3039
11 lflO.0030
177839. 9375
561570.0000
823B00.2500
22500.0000
? 14 IB 9. 9 37 5
1585199. 0000
1627080.3000
1033650. 1250
93600.0000
63200.0000
256879.9375
1029330.3125
l??9699.0000
71 028. 0000
12039.9961
303810.0333
730650. 0000
303000.0030
-------
SECTION 2 - NETWORK PROGRAM
Commands
Table 2 includes a list of the commands utilized by the program
NETWORK. This program simply reads in stored data from Worksheet 7 for up to
7 river basins, performs the cost effectiveness ranking, and outputs one
master Worksheet 8. This program is designed to support the network concept
discussed in Chapter 4 of the Handbook.
TABLE 2
Legal Commands for NETWORK Program
NAME(n) basin name
Allows for the input of basin names, "n" is the basin number,
a positive non-zero integer less than or equal to 7.
"basin name" is a maximum 20 character label for the
sub-basin.
READ ip i2...,i7
Causes the input of sub-basin data, "i" is the input device
number of a WATERSHED data file. Multiple device numbers,
separated by commas are accepted.
RANK(m)
Causes the ranking and output of the basin pollutant loads.
"m" is any optional positive, non-zero output file number
operating just like the WORKSHEET(m) command of WATERSHED.
STOP
Terminates the program.
Sample Terminal Session
In this session the computer prompts are marked by a triangle. It
should be noted that the READ command is used to designate the file numbers
that contain the results from the main WATERSHED program for the various river
basins in the network. There must be a unique NAME command for each for file
number that follows the READ command.
101
-------
f?UN 3ASIN 3=-WATES.0N£ 9sWATER.DAT 3=-TEMPFIL
[> ^EXECUTION BEGINS
WATERSHED MULTIPLE BASINS PROGRAM
j> ENTER COMMAND
NAME! USANOUSKY ONE STAGE
0 ENTER COMMAND
NAME(2)SANDUSKY TWO STAGE
j> SNTSR COMMAND
READ 3,9
[> ENTER COMMAND
f?ANK (3)
t> ENTER COMMAND
STOP
i>#eXECUTtON TERMINATED
13Z
-------
Computer Flow Chart and Listings
Figure 3 contains a flow chart from the NETWORK program which
includes the commands and subroutine names. The following program listing is
documented to describe the workings of the various sections of the program.
The command sections and subrouting are underlined and marked by a bracket.
This entire program is in one source file called NTWRK.
103
-------
Figure
Network Program Flow Chart
Start
Key
J^'
(SUBROUTINE ^
COMMAND
Initial-
( ization
\ WIMIT
NAME
1 Read in /
/Network I READ
/Data A
/ 8SMLVP /
Command Interpreter
I.SRCtf LENGTH
LWEX MB LAWK
N,
x STOP
RANK x
s.
/
/
/ Output /
/ Network /
/ Worksheets
/ Rcmn/nr /
Rank Program
in Network
BS.S/RMK
Stop
-------
NETWORK PROGRAM
o
en
I
2
3
4
5
6
7
fl
9
n
11
12
13
14
1 5
16
17
18
19
20
21
22
23
24
25
26
27
28
29
33
31
32
33
34
35
36
37
3B
39
40
41
42
43
44
45
46
47
4B
49
50
51
52
53
55
56
57
58
59
C
C
r,
C
f
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
-•**-**.*• i-'J-ViV J. XW^t^l J.W. ii J.
MAn PROGRAM FOP MULTIPLF WATFRSHEP BASINS
PROGRAM ACCEPTS BASIN NAMES, REAOS INPUT OATA FROM
A WATERSHED DATA F 1 LF AND OUTPUTS RANKER COST-
EFFECTIVENESS RATIOS AMONG ALL BASINS
i^t***^********^^,!,********^****^^*^^***************** ********«*<•******
OI1FNSI3N AUNITI 7, 210) . TRN SIN I 7, 210) .PMOUTHt 7,? 10) iTCOST (7,210,3),
f. OIFMTM(7,2n,3),CPUR£MI 7, ? 10, 3 1 , F INRFM( 3783) ,F INCSTI 37801
INTEGER SfiCE< 7,210,201 ,1 TYP(7,ZIO) , 1ST AGF l.KFRANK (7,210, 3),
f. FIN SRC I 3780, 43), ISFINI 3 7 BO! ,KNOX< 37801 .NAMBSNI 7 , 201 ,
C KTRANKI 7,210 ,3 1 .NSRCEI7 1 ,BAS IN( 3780, 20)
COMMON /WTRIP/ IN, f OUT
COMMON /WTRINP/ AUN IT , TRNSMN, PMOUTH, TCOST ,0 IFMTH .CPUREM.NSRCE
COMMON /WTRIN?/ SRCE , ITY P, 1ST AGF, KF.R ANK , N AMBSN, BAS IN
COMMON /W TROUT/ F I NWFM.F I NCST ,F I NSRC , 1 SF IN, KMOX , KTRANK, BSNTL , NUM
****<<*<; H,^******tt*tt*****4****t**********t<>*t***+**4A*********t*<
IMTE3FP CMD( 30) , SINK , NMBR ( 91 .LPAREN, RPAREN.COMA
OAT A NMB»/ 'l','2','3«,'4','5',"6'f»7','B',>9'/
NO ASM = 0
KOUNTR = I
CALL wm T
WRITE (lOJl,?)
' FORMA! (•-• ,IOX ,'WATC-PSHEO MULTIPLF BASINS PROGRAM1)
10 DO 12 1=1,30
12 CMOU)=BLNK
READ COMMANO LINE
WP ITFI ITUT, 15)
15 rORMATJ '-ENTER COMMAND')
RE AD (IN, 16) (CHOC I) ,1=1 ,301
16 TORMATI 30AI)
FIND COMMANO NJMOER, t ENGTH OF COMMANO, POS I T IOM OF 1ST BLAMK 5
NUMCMO = I SRCHICMO.LEN.IPOS)
IFINUMfMO .IE. 0) GO TO BOO
MIMCMO COMMAND
I NAME
2 RANK
3 READ
4 STOP
CO TOt 100,200, 300, 900) .NUMCMO
NAME COMMAND
IOC 1 POS1=I NDEX (CMO, LPAREN, 3 )
IFI IPOSI .EO. -I ) GO TC BIO
IPOSl=IPOSV «• 1
IPOSI =WLANK«CMO , i POSI I
IFI1PO.S1 .FO. -1) GO TO RIO
00 115 J = I , 7
IF(CMO( IPOSI) .FO. MMRR(J)) GO TO 110
105 CONTINUE
GO 10 P10
I in IP IS 1= INOFXIC M'l.npARFN, 1 POSH
IF ( I 'MIM ,tO. -1) GO TO f)10
-------
60 IBEG=IPOSI + 1
61 IFND= IBFG * 19
6? K = 0
63 on 115 J=IBEG,IFND
64 K = K * I
65 115 MAMBSN(M,K) =CM[)( Jl
66 00 TO 10
67 C
60 C RANK COMMAND
69 C ~~~~~
fO ?00 IOCHML = IOUT
71 »POS1=INOEX(CMO,LPARFN,3I
11 in IPOSI .FQ. -1) GO TO 220
73 IPOSI=|POS1 «• I
74 IPOSl=NBLANK(CMD,lPOSH
75 ITUPOSl .FQ. -II GO TO 010
76 HO 205 J=l,i
77 IOCHNL = J
70 IF (CUT (IPOS 1) .F.O. NMRRUI) GO TO 213
79 205 CONT IN.IF.
80 GO TO 810
81 210 IPTS1= INOf X(CMD,RPARFN,l POSH
R2 IFUPOS1 .EQ. -II G3 TO 810
83 220 CALL BSNRNK(NBASN)
04 CALL BSNOUTt IOCHNL .NRASN)
85 00 TO 10
86 C
87 C 3FAI) COMMAND
88 C
89 3CO IMIF.N .LF. IPOS) GO Tn 820
90 |POS 1 = NQLANK(CMO , IPOSI
91 302 DO 335 J=l,9
92 IOCHNL = J
93 IF(C"in( 1POS1I .P.O. NMBRtJIl GO TO 310
94 315 CONTINUE
95 GO TO BIO
96 310 NPASM « NBASN ^ I
97 IFIMBASN .GL 71 GO TO 830
98 CALL BSNINP1IOCHNL,NBASN,KOUNTRI
99 IPOSl = IPOSI *• I
100 IF1LFN .LE. IPOSII GO TO 10
101 |pnSl=NBLAMK(CMr) ,IPOSU
10? irtCMOIIPOSIJ -NE. COMA) GO TO 810
103 I POSl = IPOSI *• 1
135 IF(IPOS I .EQ. -II G1 TO 810
106 00 TO 302
107 C
100 C EPRORS
109 C
110 flOO WP ITEt IOUT.00'1
HI ft-l? FORMAT ('0 IL I FGAL COMMAND1 I
H2 GO TO 10
113 tUQ UP IT F( inUT, (112 I
U4 812 M.1HMAT COIIJ FGAL COMMAND AP GIJMFNT •')
115 00 10 10
IH, 820 WRITFI IP«JT, n?;» I
H7 n?? ropMATC OMISSING FltF NOMOfR FflK INPUT OAT A' I
HO (id If) 10
>)& ITK ft)OT, R3? )
-------
120
121
12?
123
i ?'*
125
126
127
128
129
110
131
132
133
134
135
136
137
139
139
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
I 58
159
160
161
162
163
154
165
166
167
168
16,9
170
171
172
173
1 74
175
176
177
I 7 9
179
832 rORMATt 'OFRROR - MAXIMUM IS 7 BASINS' I
GO TO 10
THF CNO
900 CONTINUE
S10P L
END
f-UNC T13M 1 StCIM C Ml) ,LF N, IPO SI
vTRiHn ruin ION TO OEICRMINF. COMMAND NJMOFR, LENGTH OF
AMI POSITION OF Ff*ST SPACE FOl LOWING THF COMMAND
INTEGER CMO (30) ,COMAND(4 ,31 ,BLNK
DATA C01AMD
K / 'N1 ,'R' , »P« , 'S',
£ 'A' ,'A' ,'E' ,'T' ,
C 'M', «N ', 'A ', «0»/
DATA flLNK/' •/
ISRCM=0
1)0 10 1=1,4
K=I
00 5 ,1= 1, 3
IF ,nt-NK
DATA BLNK/1 • /
K = NU
DO 13 1 = 1, N
K=K-l
IF(Cin( K) .NF.BLNK1 GO TC 15
CONTINUE
LENGTH=-l
15 I t NGTH=K
RETURN
CNO
FUNCTION I NOF X
, T SI VAL , IOFG )
FUNCTION TH LOfATF TSTVAL IN CMO BEGINNING SFAPCH AT IBFG
IMTF3FF C MO (3P » , TS T V At
-------
1HO
181
182
183
18'.
ins
186
187
ins
180
190
\ 191
' 192
193
19*
195
196
197
19ft
199
200
201
20?
201
20*
205
206
207
H-- K 208
0 > 209
00 7 210
21 I
212
213
'I*
215
216
217
218
219
223
221
222
223
224
225
226
2?7
2?fl
229
230
231
21?
213
23 .EQ.GLNK) GO TO 13
MBLAVK= I
RETURN
C
15 N(5I.ANK = - 1
PFTU"^N
FMO
C
S'JBPOUT INF WINIT
C
f, RO'JTINF. TO INITIAL! If ALL ARRAVS AND VARIABLES IN COMMON
C
f ********#****t* ************ «**(,** (<« t***********************,***********
DIMENS ION AUN IT ( 7, 21 0) , TRN SMN( I, 210) ,P MOUTH I 7 , 2 1 0) , TCOST ( T, 2 1 0 t3 I ,
r, OIFMTH<7,2l3,3»,CPUREM(7,2lO,3»,FrM«EM( 3 760) , F 1 VCS T« 3 7801
INTFGEP SRCFI 7 , 2 t 0 ,28) , I TYP( 1 , 21 01 ,1 STAGE! 71 , KE RANK ( 7, 210, 3),
r. FINS«C(3780, ^i), ISFIW 37 BO) ,KNDX( 3780) ,NAMBSN( 7,201 ,
t KTRANM7 ,210 ,3) .NSRCFJ7) , BAS IN(37fi3,231
COMMON /WT^IO/ INtlOUT
rri^MON /WTRINP/ AUMIT.TRNSMN, PMOUTH, TCOST, 01 FMTH.CPUREM ,NSRCE
COMMON /WTRIN2/ SRCF , I TYP , 1 ST AGE t KER ANK, NAMBS N, (US IN
COMMON /W TROUT/ FIMRFM.F INCST.F INSRC ,1 SF I M, KND X .KTRANK , BSNTL, NUM
p *************.***********»***+***************** + ***<:**********»********
INTEGER ONF( 3) ,TWO( 3) .THRFF (5) , FOUR I'll ,riVECi),SIX(3),SEVEN(5),nLMK
DATA OMF, TWO, THREE, FOUR, F ! VF, S i X, SEVEN, IUNK
r. /•()• ,'N1 ,'F ' ,' T1 ,'W ,' 0' , »T« ,'H' , 'P1 , • E' , • E' , " f • , 'O' , 'U ' , 'ft ', 'F ',
C
IN=5
oin = ^
00 17 1=1,7
DO 5 .) = t , 2 T
5 NAMRSN ( 1, J )=RLNK
10 rONTINUF
1)0 151 = 3,7
J= I-?
IF (J .GT. 3) GO TO 12
NAMOSN( 1, I ) = ONF( J)
, NAMfWt?, I l=TWll(J )
-------
240 NAMBSM(6,I ) =SI X(J)
241 12 IF(J .GT . 4) GO TO 14
?42 NAMBSNI4 . I ) =FOl)R( J(
243 N.
2flfi £ OIFMTHU, 21?, 3),CPUREMI 7, 210, 3|,F|N«EM« 3780) ,FINCSTJ3780)
287 INTE5FP SRf F( 7 ,2 10 ,2 8 ) , ITY P( 7 , 2 I Ol , I SI AGE( 7 I, KERANM 7,210,3),
288 f. F INSRCt 3/80, 43), ISFIMI 37801 ,KNOX( 3780) .NAMUSNI7 ,201 ,
289 f. K7PANKJ7,210, 3),NSRCEI7), BAS H« 3780,20)
290 COMMON /WTPIO/ IN,I OUT
291 COMMON /W1RINP/ AU"J IT , TRNS^N, PMOUTH , ICOST ,01 F MTH ,C PUREM, NS HCE
292 COHMOM /WTRIM2/ SRCF,JTyo, 1ST AGE,KFRANK,NAMftSN,HAS IN
293 COMMON! /WTROU1/ F I NRF M,f I NC ST ,f I NSPC , I S F I N, KNOX , KT RANK, USNTL , NUM
27^ C **********************************************************************
295 D!Mf NSI ON C PUTMP (37f»0 ) , KFRTMP ( 3780 )
296 C
297 00 5 1=1,3780
29R CPUTMPII)=0.0
299 5 KFRTMPl J ) = 0
-------
300 K = 0
301 OT 43 I = l.NHASN
30? IS = 1ST AGfcU I
303 NS=NSPCE(LI
304 00 30 J = l, IS
305 OH ?_"! I = 1,NS
306 K(I TYPJUIKFO.I .OR. AUN1T(L, 1 I .EQ.3.3» GO TO 23
307 K=Kll
308 Cf'U1MP(K) = CPURCM(L, I, J >
309 00 10 I 1=1,20
310 10 PAS1NIK. m-NAMPSNU , 111
311 23 CONTINUE
312 30 CONTINUE
313 40 rONTINJE
314 f, «ANK USING SHELL SITU
315 JGAP=K/2
316 50 IFdGAP .LF. 0» GO TO 70
31!) no 65 I=HGAP,K
319 J=l - I GAP
320 55 |F( J .IE. 0) GO TO 65
321 JG=J «- 1GAP
322 IF(CPUTMPJJ) .LE. CPUTMP(JGJ) GO T0 60
323 C EXCHANGE PLACES IN TEMPORARY DATA ARRAY
3?4 AK=CPOTMP(J)
325 CPUTMPUl =Ct>UTMP(JG>
326 CPUTMPIJGI'AK
327 C EXCHANGE PLACES OF INDEXES
328 IK=KMOX(JI
329
-------
360 C ROUTINE Ul INPUT CONTROL STRATFGY DATA P FR BASIN
361 f
362 C ****«-******************************<-**********************************
363 D IMF MSI ON AtJNI T( / , 21 01 ,TPNSMN(7 ,210) ,PMOUTH(7 , 2 13 ), r COS T (7, 210, 31,
364 r. OIFMTHI 7,210,3I,CPUREM< 7,210,3) ,FINREM(3780) ,F1NCST(3780)
365 INTFC.FP SRCt (7 , 210,2R I,ITYP<7,210), 1ST AGE ( n,KCRANK( 7, 210, 31 ,
366 f, FINSRCM780,43t ,1 SFIimrRO) ,KNOX(37BO I , NAMBSN<7,20 I,
3*.7 r. KTRANM7, ?10, 31, NSFCEI 7),nASIM( 3780,20)
368 COMMON /WIPin/ IN,I OUT
369 COMMON /WT , I T I , I T2,1T3
376 5 FORM AT (4 I "S >
377 IFNn=NS«CF( N)
378 IFUT3 ,FO. 0) GO TT 15
379 DO 10 1=1,IT3
380 10 RFAr>(JM,7) ALPHA
391 7 FORMAT(At I
38? 15 IFUTl .GE. 1} READ(JN,71 ALPHA
383 IF(IT1 .EQ. 2) REAO(JM,7) ALPHA
38'i IFHT2 .GF. I) REAntJN,7) ALPHA
385 ITUT2 .GF. 2\ READ(JN, M ALPHA
386 IFIIT2 .EO. 3) REAOIJN.7) ALPHA
3S7 C
388 00 30 I=1,IENO
389 RFAD(JM,20,FRR=810I( Sf»rF(N,I,JI,J=l,28),ITYP(N,II , ALPHA , TEMP, AUN1 T ( N, I )
390 23 FORMATI28AI , 13 ,Al tZfl't .-V.)
391 IF(irYP(N,ft .EO. 2) MIM T(N,It=AUNIT(N,fl * 1000,
39? 30 RCAIM JN.7 ) ALPHA
393 C
394 40 R[-AO< JN, 7,FNO=780) ALPfST
395 !F(ALPTST .ME. ALPHA1) GO TO 40
396 PEADIJN.S! ITl ,1 T2 ,1T3,ISTAGE(N)
3^7 IF(ISTAGE(MI .£0. 0 .OP. IT3 .FO. 01 GO TO 830
398 4S KEAOI JN, 7, EMO=780I AI.P1ST
399 IFIALPTST .NF. ALPHA?) GO TO 45
400 REAOUI. 53J N'JM, TOTLOO, TOTMTH
401 50 FORMAT! I5.2F15.4)
402 REAO(JN,7) ALPHA
403 CENO?=ISTAGF(Ml
404 00 6"? J =1 ,lF.NO
405 R'rAO(JN|,67) TRNSMN ( N , I I , PMOUTHl N , I I
406 00 63 J=l,ITN02
437 60 REA1(J^,68) Pl)| F .PUCOS T , TC OST{ N, I , J ) , Dl FMTH ( N, I , J) , CPJREM (N, I, J I,
40R f. KFRANMN, I, J )
409 65 CONTINUE
410 67 FORMAT!2F15.4I
411 61 FORMAT(5F15.4, 15 I
412 HSNTL=PSNTL»-IOTIOD
413 70RFAr>(JM, 7?,CNn = 75Mr I NSHC (I NOX , J) , J=l ,4B) , IAL", ISF1N( INOX ) ,
414 r. FINRF'K INDX ), t-INC^T ( INDX I
415 KNOXIIMOX)=INOX
41& INOX- INOXtI
417 GO TO 70
418 72 f IIR^ATI 43A 1 ,21 ';,2F 15. 4)
41 9 r
-------
420 803 WRITE( IOUT ,802}
421 102 FOPMATt 'OCRROR IN INPUT OF INITIAL VALUES OF WATERSHED DATA FILF'I
422 GO TO 75
4?3 810 URI T? ( lOtJI , 812)
424 81? FORMAT('OERROR IN INPUT OF S1URCE ID DATA'I
425 GO TO 75 ,
4?6 780 WRITEIIOUT.782J
427 782 FORMAT<'3FRRDR — CONTROL DATA NOT FDIWOM
428 On TO 75
429 f)?0 WR ITF( IOUT, 0 10 FORMAT I A1.56X, 'SUMMARY OF PROGRAMS'/ 56 X, ' TO TAL POLLUTANT LOADS1//
461 r,lX,65('-' ) ,661'-')/62X,62X ,'SUM OF'/BOX , ' LO AD', 5X, ' SUM OF L3AO',
4f>2 Cl3X,'CflST OF REOUCTION'/78X,2('REDUCTION ' I ,'PERCENT', IX,
463 f.'PEOUCT IOM COSTSV6X, 'SOURCE', 34X, 'RANK ',6X,'flASIM',10X, 'STAGE',
464 6?< 3X,MKG/YRJ '),' REDUCTION )
477 ^5 FORMATdX.65 (•-• l,66( •-• I I
478 P F f UR N
479 (JNO .)
-------
Program Output
The worksheet 8 that follows is the output from the sample'terminal"
session that has been compiled for example purposes only.
113
-------
SUMHARY OF PROGHAMS
TOr»L POllUUNI LOADS
WORKSHEET 8
SOURCE
CROPLAND
CROPLAND
CROPLAND
CROPLAND
CROPLAND
CROPLAND
CROPLAND
CROPLAND
CROPLAND
CROPLAND
MUNICIPAL
CROPLAND
MUNICIPAL
CROPLAND
MUNICIPAL
MUNICIPAL
CROPLAND
MUNICIPAL
CROPLAND
CROPLAND
MUNICIPAL
MUNICIPAL
CROPLAND
CROPLAND
CROPLAND
CROPLAND
MUNICIPAL
CROPLAND
MUNICIPAL
MUNICIPAL
MUNICIPAL
MUNICIPAL
CROPLAND
CROPLAND
CROPLAND
CROPLAND
CROPLAND
CROPLAND
COMBINED
COMBINED
CROPLAND
COMBINED
- UPPER SANDUSKY EIVER
- MIDDLE SANDUSKY
- TYMOCHTEE CREEK
- OEOKEN SWORD
- LOW EC SANDUSKY
30
31
32
33
3 't
33
36
37
38
3<>
HO
HI
42
'13
ill
45
46
M7
«n
4<>
r>0
51
52
BASIN
SANDUSKY
SANDUSKY
SANDUSKY
SAN DUSKY
SAHDUSKY
SANDUSKY
SANDUSKY
SAHDUSKY
SANDUSKY
SANDUSKY
SANDUSKY
SANDUSKY
SANDUSKY
SAN DUSKY
SANDUSKY
SANDOSKY
SANDUSKY
SANDUSKY
SANDUSKY
SANDUSKY
SANDUSKY
SAM DUSKY
SANDUSKY
SANDUSKY
SANDUSKY
SANDUSKY
SAN' DUSKY
SANBUSKY
SANDUSKY
SANDUSKY
SANDUSKY
SANDUSKY
SAWDIISKY
SANDHSKY
SANDUSKY
SANDUSKY
SANDUSKY
SANDUSKY
SAHDUSKY
SANDUSKY
SANDUSKY
SANDUSKY
SANOUSKY
SANDUSKY
SAHDUSFY
SANDUSKY
SANDUSKY
P. \NIMI SKY
SANDUSKY
SANDIISKY
SAHDUSKY
SANDIISKY
TWO
TWO
TWO
TWO
TWO
TWO
THO
TWO
TWO
ONE
THO
TWO
THO
ONE
TWO
ONE
ONE
ONE
ONE
ONE
ONL'
TWO
ONE
ONE
ONE
ONE
ONE
ONE
TWO
TWO
TWO
TWO
TWO
TWO
TWO
TWO
THO
TWO
TWO
TWO
TWO
TWO
TWO
TWO
TWO
THO
TWO
THO
TWO
TWO
ONE
ONE
LOAD
REDDCIIDH
STAGE (ICS/YR)
STAGE
STAGE
STAGE
STAGE
STAGE
STAGE
STARE
SIAGE
STAGE
SIAGE
SIAGE
STAGE
SIAOE
STAGE
SIAGE
SIAGE
STAGE
SIAGE
STAGE
ST AC. E
STAGE
STAGE
5 1 AG E
STAGE
STAGE
SIAGE
STAGE
SIAGE
21065.
37752.
33279.
11733.
11101.
22806.
969'4.
'4869.
16047.
3882.
21145.
95118.
6219.
5923.
10365.
14096.
3614.
4146.
3221.
5593.
591D.
13267.
3103.
4B17.
5079.
5166.
8845.
2418.
SIAGE 2 352'4.
STARE 2 1037.
SIAGE 2 1721.
STAGE 2 2211.
SIAOE 2 19236.
SIAGE 2 18876.
STAGE 2 7422.
STAGE 2 12440.
SIAGE 2 5739.
STAGE 2 560'4.
SIAGB 2 2444.
STAGE 2 2891.
STAGE 2 14705.
SIAGE 2 1523.
STAGE 89.
•5 1 AG E 1 1 .
STAGE 439.
STAGE 62'4.
STAGE 739.
SIAGE 2329.
STAGE 7906.
STAGE 339.
STAGE 523.
SIAGE 615.
SUM Or LOAD
REDUCTION
(K3/YR)
21365.
58918.
92397.
133330.
117931.
143737.
153431.
155299.
171347.
175229.
196373.
205913.
212132.
219J55.
229423.
243517.
247133.
251276.
254498.
269)91.
267001.
283268.
233376.
288193.
293272.
298438.
3J7283.
309709.
313224.
314261.
315988.
318200.
323)36.
347312.
354733.
367173.
372911.
173515.
380959.
383853.
393555.
403377.
4)3165.
40J246.
403684.
101)09.
432346.
43'4374.
412280.
412668.
'413198.
413803.
PERCENT
REDUCTION
2.
7.
10.
12.
14.
16.
17.
IB.
2).
2).
23.
2'4.
25.
26.
27.
28.
29.
29.
30.
33.
31.
33.
33.
31.
3'4.
35.
36.
36.
37.
37.
37.
37.
39.
41.
42.
43.
44.
'45.
45.
45.
47.
47.
47.
'47.
47.
47.
47.
'»8.
'49.
49.
(9.
49.
5
3
9
3
0
7
9
4
3
a
3
5
2
0
2
9
4
9
2
9
7
3
7
2
8
4
5
9
2
3
5
8
)
2
1
6
3
)
2
6
3
5
5
5
6
7
7
3
}
0
1
1
COST OF
REDUCTION
(t/YR(
17B49.
35253.
34346.
12167.
15831.
26643.
12343.
6500.
22331.
6539.
47352.
22332.
15000.
17949.
32430.
47352.
1234S.
15030.
12167.
22331.
32400.
6243D.
15831.
266U3.
34346.
35253.
62400.
22332.
71028.
22533.
48633.
93600.
823800.
1627000.
730650.
1229699.
569520.
561570.
256880.
303810.
1585199.
177840.
1)363.
9629.
51800.
76960.
91020.
3)93)0.
1333653.
53280.
76960.
91020.
SUM OP
DEDUCTION
COSTS
(Sx-IH)
17849.
53132.
87440.
99616.
115446.
142090.
154M29.
160929.
183260.
189760.
237112.
259414.
274414.
292263.
324663.
372015.
384355.
399355.
411522.
433853.
466253.
528653.
544483.
571127.
635473.
640726.
703126.
725428.
796456.
818956.
867556.
961156.
1784956.
3412036.
4142686.
5372385.
5941904.
6503474.
6760353.
7064163.
8649362.
8827201.
8837560.
8847183.
8898990.
8975939.
9066959.
9366959.
10397609.
10450898.
13527847.
10618867.
-------
COMBINED
CROPLAND
STORM -
STORM -
STORM -
STORN -
STOHM -
STORM -
COMBINED
COMIIINBO
COMnlNEO
- BIICYRIIS CITY
- HOI. F CREEK
DUCYHUS CTTY
TIFFIN CITY
FREMONT CITY
FREHOHT CITY
DUCYPUS CITlf
TIFFIN CTIY
- UPPER SANDUSKY CITY
- UPPER SANDUSKY CITY
- UPPER SANDUSKY CITY
53
04
05
06
07
sn
•i1)
60
61
62
63
SANDUSKY
SANOUSKY
SANUIISKY
SANDUSKY
SANDUSKY
SAN DO SKY
SJVNPU3KY
SANDUSKY
SANOUSKY
SANDUSKY
SANDUSKY
ONE
TWO
TWO
THO
TWO
ONE
OHE
ONE
TWO
TWO
ONE
STAGE
STAGE
STAGE
STAGE
STAGE
STAGE
STAGE
STAGE
STAGE
SI AGE
f.IAGE
324.
! 5620.
! 61.
> 328.
2 66.
35.
33.
175.
511.
131.
103.
'4 1U127.
419713.
119809.
•423137.
423232.
120237.
!»23270.
1(20115.
'420956.
•421337.
121195.
19.
'49.
49.
'49.
•49.
19.
49.
19.
50.
53.
50.
2
9
9
9
9
9
9
9
0
3
0
* 51200*
1029330.
11180.
63233.
1201!).
10360.
9620.
51800.
214B90.
61383.
643flO.
10672116.
11791476.
11712656.
11772856.
11781895.
11795251.
11834871.
11056671.
1207f>63.
12135942.
12200321.
------- |