-------
APPENDIX V-19
Estimation of Population Risk
Volume V
-------
Age-distributed Population
by ZIP Code
ZIP Code
43920
15059
15043
26034
26050
43968
44432
44455
44441
16115
15010
15052
15077
15050
26047
Population
Infants
364
84
42
66
24
112
157
20
32
41
386
35
3
43
60
Children
4.399
1,027
532
956
365
1,455
1,999
264
416
571
4,771
480
41
551
880
Adults
21.205
5.355
2.234
4.945
1.927
6,762
9.037
1,110
1.813
2,786
25.468
2,403
182
2.339
4.838
Source: CACI 1991
Volume V
Appendix V-19
-------
Fraction of ZIP Code Areas Contained within
VVTI Phase II Risk Assessment Suhareas
ZIP Code
43920
15059
15043
26034
26050
43968
44432
44455
44441
16115
15010
15052
15077 ..
15050
26047
Fraction of Zip Code Area Contained within Subarea
El
0.02
0.02
0.01
0
0
0
0
0
0
0
0
0
0
0
0
E2
0
0.19
0.23
0
0
0
0
0
0
0
0
0
0
0
0
E3
0
0.29
0.11
0
0
0
0
0
0
0
0
0.56
0.88
0.24
0
Nl
0.06
0
0
0
0
0
0
0
0
0
0
0
0
0
0
N2
0.24
0.10
0
0
0
0
0
0
0
0
0
0
0
0
0
N3
0.35
0.40
0
0
0
0
0.01
0.02
0.13
0.01
0.01
0.02
0
0
0
SI
0
0
0
0.13
0
0
0
0
0
0
0
0
0
0
0
S2
0
0
0.06
0.46
0.01
0
0
0
0
0
0
0
0
0
0
S3
0
0
0.24
0.40
0
0
0
0
0
0
0
0
0
0.06
0.26
Wl
0.06
0
0
0
0
0
0
0
0
0
0
0
0
0
0
YV2
0.17
0
0
0.01
0.79
0.03
0
0
0
0
0
0
0
0
0
W3
0.09
0
0
0
0.20
0.52
0.01 -
0
0
0
0
0
0
0
0.14
Notes-
Traction of ZIP code area within a siibaren was estimated hjised on Figure VIII-2, which was developed by superimposing suhnrcn l>omid;m<-s on a XII1
Code map of the Penns)|vanm, Ohio, and West Virginia area
Volume V
Appendix V-19
-------
REFERENCES
CACI Marketing, Inc. (CACI). 1991. The sourcebook of ZIP code demographics Census
edition, Volume one. CACI, Marketing Systems. Arlington. Virginia.
Volume V
-------
APPENDIX V-20
Estimation of Cancer Risks and Hazard Quotients
Resulting from Fugitive Emissions
Volume V
AnnpnHiv V-Tl
-------
CASTFRN SECTOR A VI n/UlF INHALATION
int. ii
CAB SYSTEM
1 li«Mim,al
Acetonp
Actylonilnle
Caibnn Oisulhde
C arbon letiachlonde
1 2 Dibtomoethane
1 1 Uichlotoethenp
Formaldehyde
Hydfazme
? rjilropiopane
Pyndme
Dichln'odifluoromethane
Total RisWHI
WASTEWATER
TANK
Chemical
Acetone
Acrylomtnle
Catbon Oisulfide
Carbon Tetfachlonde
1 2 Dibfomoethane
1,1 Uichloioethene
f oimaldehyde
Hydrazme
2 Niliopropan*
Pyndme
Oichlmodifluoiomethane
Total Risk/Hi
TRUCK WASH
Chemical
Acetone
Acrylomtnle
Carbon Disulfide
Carbon Tetrachlonde
1 ? Dibromoelhane
1 1 Dichlofoethene
F ormaldehyde
Hydraztne
2 Nitiopropane
Pyndme
Dichlorodilluofomethane
Total Risk/Hi
TANK FARM
Mpmiral
Acetone
\cfylomtrtle
arbon Disulddp
arbon Tetrachlorid?
2 Uibromoethane
1 Picriloioelhene
ormaldehyde
fydra?me
' Nitropropane
Vidme
ot.ll RisMHI
Slope
Factor
(rng/kg d)
NA
0 24
NA
0053
0 76
1 2
0045
17
P4
NA
% lolal Ml
Inhal
Slope
Factor
(mg/kq d)
NA
024
NA
0053
0 76
1 2
0045
17
94
NA
% total HI
Inhal
Slope
Fractof
(mg/Vg d)
NA
024
NA
0053
0 76
1 2
0045
17
94
NA
% total HI
\
Inhal
Slope
(mg/Vg d)
NA
0 24
HA
n C53
0 76
1 2
0 045
17
94
NA
RA[
(uq'rnll
87 5
05
2 5
05
005
7 9
175
NA
5
0875
008
RAC
(ug/m3)
87 5
05
25
05
005
79
175
NA
5
0875
008
RAC
(ug/ml)
875
05
25
05
005
7 9
175
NA
5
0875
008
RAC
(ug/ml)
875
05
2 5
05
OPS
7 9
175
NA
5
0875
0 H8
Inhalation
RID
(rug/kg d|
25F 02
1 4E 04
7 IE 04
1 4E 04
1 4E 05
23E 03
50E 02
OOE'OO
1 4E 03
25E 04
Inhalation
RID
(mg/kg d)
25E02
1 4E 04
7 1E04
1 4E 04
1 4E 05
23E 03
50E02
OOE'OO
1 4E 03
25E 04
Inhalation
RID
(mg/Uq d)
25E 02
1 4E 04
7 1E04
1 4E 04
1 4E05
23E 03
50E02
OOE»00
1 4E-03
25E 04
Inhalation
RtD
(mg/kg d)
25E02
1 4E 04
7 1E 04
1 4E04
1 4E05
23E 03
50E 02
OOE'OO
1 4E 03
?5E 04
Emission
Rale
(poMire
[mq/kq d) (mg/kgd)
9 OE 08 5 4E 08
2 OE 09 1 2E 09
5 9E 09 3 6E 09
4 OE 09 2 4E 09
20E 10 1 2E 10
5 BE 09 3 5E 09
4 9E 08 3 OE 08
1 3E 10 7 6E 11
1 6E 09 9 8E 10
2 1 F 09 1 2E 09
Cancer Cancer
Child School age
Exposure Exposure
(mg/kg d) (mg/kg d)
1 1E08 68E07
2 5E 08 1 5E 08
7 5E 08 4 5E 08
5 OE 08 3 OE 08
2 5E 09 1 5E 09
7 3E 08 4 4E 08
6 2E 07 3 8E 07
1 6E 09 9 6E 10
2 1E 08 1 2E 08
2 6E 08 1 6E 08
Child School age
Exposure Exposure
(mg/kg d) (mg/kg d)
4 8E 08 2 9E 08
1 1E 09 6 4E 10
3 2E 09 1 9E 09
21E09 13E09
1 1E 10 64E 11
3 1E 09 1 9E 09
2 7E-08 1 6E 08
68E 11 4 1E-11
88E 10 53E-10
1 1E 09 68E 10
Cancer Cancer
Child School age
(mg/kg d) (mg/kg d)
4 6E 06 2 8E 06
1 OE 07 6 2E 03
3 1E 07 1 9E 07
2 1E 07 1 2E 07
1 OE 08 6 1E 09
30E07 1 BE 07
2 6E 06 1 5E 06
6 5E 09 3 9E 09
8 5E 08 5 1E 08
1 1F 07 f, V OU
Adult
Exposure
(mg/kg d)
2 BE 07
6 2E 09
1 BE 08
1 2E08
6 IE 10
1 8E 08
1 5E07
39E 10
5 IE 09
64E 09
Noncancer
Adult
Exposure
(mg/kg d)
3 5E-06
78E08
23E07
1 6E 07
77E09
23E07
1 9E-06
50E09
64E 08
B2E 08
Adult
Exposure
(mg/kg d)
1 5E07
33E09
1 OE08
87E09
33E 10
9 BE -09
8 3E-08
21E-10
2 8E-09
3 5E 09
Noncancer
Adult
(mg/kg d)
1 4E05
32E 07
96E 07
6 4E 07
3 2E 08
94E 07
80E 06
20E08
26E 07
3 V 07
C hild School age
Exposure Fxpo-.ure
(rnglkq d) (mg/kg d)
1 OE 06 6 3E 07
2 3E 08 1 4E 08
6 9C 08 4 2E 08
4 6E 08 2 BE 08
2 3E 09 1 4E 09
6 BE 08 4 1E 08
5 7E 07 35E07
1 5E 09 8 8E 10
1 9E 08 1 1E 08
2 4F 08 1 5E 08
Noncancer Noncancef
Child School age
Exposure Exposure
(mg/kg d) (mg/kg d)
1 3E 05 8 OE 06
2 9E 07 1 8E 07
8 7E 07 5 3E 07
5 9E 07 3 5E 07
2 9E 08 1 7E 08
8 6E 07 5 2E 07
7 3E 06 4 4E-06
1 9E-08 1 1E 08
2 4E 07 1 5E 07
31E07 18E07
Child School-age
Exposure Exposure
(mg/kg d) (mg/kg d)
5 6E 07 3 4E 07
1 2E 08 7 5E 09
3 7E 08 2 3E 08
2 5E 08 1 5E 08
1 2E 09 7 4E-10
3 7E 08 2 2E-08
3 1E 07 1 9E-07
79E 10 48E-10
1 OE 08 6 2E 09
1 3E 08 7 9E-09
CAB
Adult
( ancer
Risk
0
?E 10
0
8E 11
6E 11
3E 09
9E 10
9E 10
6F09
0
1 1E-08
WW Tank
Adult
Cancer
Risk
0
2E09
0
1E 09
8E-10
4E08
1E-08
1E 08
8E 08
0
1 4E-07
Adult
Cancer
Risk
0
1E 10
0
5E-11
3E 11
2E09
5E 10
5E 10
3E09
0
SOE-09
Noncancer Noncancer Tank Farm
Child School age
(mq/kg d) (mg/kg d)
5 4E 05 3 3E 05
1 2E 06 7 2F 07
3 6E 06 2 2E 06
2 4F 06 1 5F Of,
1 2E 07 7 1[ 08
3 5E 06 2 IF 06
3 OE 05 1 8F. 05
7 6E 08 4 6F 08
° 9E 07 6 OF 07
1 2F 0<5 7 5F 07
Adult
Risk
0
1F 08
0
4F 09
JE 09
1E 07
•JF 08
4F 08
'!F 7f 07
CAB
Child
C.incer
Risk
0
sr: 10
0
2E 10
1E 10
7E 09
2E09
2E 09
2F 08
0
27E-08
WWTank
Child
Cancer
Risk
0
6E-09
0
3E09
2E-09
9E-08
3E08
3E08
2E07
0
35E-07
Child
Cance
Risk
0
3E 10
0
1E 10
8E 11
4E09
1E09
1E 09
BE 09
0
1 SE^JB
Tank Farm
Child
( AH
Sf hool age
Cancer
Risk
0
3E 10
0
1E 10
9E 11
4E 09
1E09
1E 09
9F 09
0
1 7E-08
WWTank
School age
Cancer
Risk
0
4E09
0
2E09
1E09
5E08
2E08
2E08
1E 07
0
2 1E-07
School-age
Cancer
Risk
0
2E 10
0
7E-11
5E 11
2E09
7E 10
7E 10
5F 09
0
90E-09
Tank Farm
School age
Risk R.sk
0
2F 08
0
1F 08
'!( (I'l
41 07
If 07
IF rj?
i'l "I
'
1 4F OG
0
IF on
0
n fn
r,i n'i
2! II!
71 0>)
/I 01
',1 'i/
',
n <>r 07
CAR
Adult
Child School age
Jonr.incer IJoncaricer NoiK-.-iruer
HO
1E 05
4F; 05
3E 05
9E 05
4E 05
BE 06
IE 06
ERR
4E 06
3E 05
2E 05
2 7E-04
WW Tank
Adult
Noncancer
HQ
IE 04
5E-04
3E 04
1E 03
5E04
1E04
4E 05
ERR
5E05
3E04
3E 04
34E-03
Adult
Noncancer
MQ
6E06
2E 05
1E 05
5E05
2E05
4E06
?E06
ERR
2E 06
1F 05
IE 05
1 5E 04
lank Farm
Adult
HO
r, 04
.' in
1 'n
', o i
/ ': ',
i 'it
.' '14
I'l'
''4
l '; '
1 ', '
1 4 07
HQ HO
4E 05 3E 05
2F 04 1t 04
1E 04 6E 05
3E 04 2E 04
2E 04 1E 04
3E 05 2E 05
1E05 7E06
ERR snn
1E05 BE 06
IE 04 6E 05
7E 05 5E 05
1 OE-03 6 1E-04
WW Tank WW Tank
Child School age
Noncancer Noncancer
HQ 1 IQ
5E 04 3E 04
2E 03 1E 03
1E03 7E04
4E 03 2E 03
2E03 1E03
4E 04 2E 04
1E04 9E-05
ERR ERR
2E 04 IE 04
IE 03 7E 04
9E 04 6E 04
1 3E-02 7 7E-03
Child School age
Noncancer No|K.ari( 3
11 '. : 'A '] ;
1 ?F 0? 1 7F 0?
»rr""dix V 20
-------
WESTERN SFCTOR
cnn '. i ',IIM
( hpiTnr.ll
Acplone
Actytonilnle
Carbon Oisullide
Carbon Tptrachlonde
1 2 Oibromoethane
1 1 Dichloroethene
F ortTialdehyde
Mydra/me
2 Nitropropane
Pyildme
Oichlotodifluoromethane
Total Risk/Hi
WASTEWATER
TANK
Chemical
Acetone
Acrylomtrile
Carbon Disullide
Carbon Tetrachlonde
t 2 Dibromoethane
1 1 Oichloioethene
f ormaldehyde
Mydrazrne
2 Nrtropropanp
Pyndme
Die h lorod if luo iom ethane
Total Risk/Hi
TRUCK WASH
Chemical
Acetone
Acrylonitnle
"arbon Disultide
~arbon Telrachlonde
I 2 Dibiomoethane
I 1 Dichloroethene
ormaldehyde
lydrazine
> Nitropropane
'yndine
lichlorodifluoromethane
otal Risk/Hi
ANK FARM
hernical
cetone
uylonitlrle
.iibon DisultidP
aibon letiachioiide
T pihiomoelhane
1 [)ichloioethene
vmaldphyde
ydra^me
Niliopiopaoe
iridme
hl'iinlilluornmelhanp
->l.ll Risk/Hi
.C INHAI ATION
Inli It
Slope
! act™
(mg/kg d) t
MA
0 24
NA
0053
0 76
1 2
0045
17
9 4
MA
% total Ml =
Inhal
Slope
Factor
(mg/kg d) 1
NA
0 24
NA
0053
0 76
1 2
0045
17
94
NA
% lolal Ml -
Inhal
Slope
Factor
(mg/kg d) 1
NA
024
NA
0053
0 76
1 2
0045
17
94
NA
% total Ml =
Hihal
Slope
Factor
[mg'kg d) 1
NA
0 JJ
NA
0053
0 76
1 2
0045
17
1 4
NA
% I',' 11 Ml -
RAC
(uq/r..1|
87 5
05
25
05
005
7 9
175
NA
5
0875
008
RAC
(ug/m3)
875
05
25
05
005
79
175
NA
5
OP7S
OOH
F)AC
(uq'rnl)
875
05
25
05
005
79
175
HA
5
0875
008
RAC
(ug/m3)
87 5
05
25
05
005
7 9
175
NA
5
PP75
0 08
Inhalation
RID
(rnq/kg d)
25E 02
1 4E 04
7 1E 04
1 4E 04
1 4E 05
23E03
50E 02
OOE'OO
1 4E03
25E04
Inhalation
RID
(mg/kg d)
25E02
1 4E04
7 1E04
1 4E 04
1 4E 05
23E03
50E 02
OOE'OO
1 4E 03
2 5E 04
Inhalation
RID
(mg'lg d)
25E 02
1 4E04
7 IE 04
1 4E 04
1 4E-05
23E03
5 OE 02
OOE'OO
1 4E 03
25E 04
Inhalation
RID
|mg/kg d)
25E 02
1 4E 04
7 1E 04
1 4E 04
1 4E 05
23E 03
50E 02
OOE'OO
t 4E 03
25E 04
Emission
Rate
(g/spc)
1 23E 03
271E OS
8 1E 05
5 44E 05
2 68E 06
7 95E 05
6 75E 04
t 72E 06
2 23E 05
2 83E 05
Emission
Rale
(g/sec)
1 10E 03
244E05
73E05
490E05
241E 06
7 16E 05
6 08E 04
1 55E 06
201E 05
2 55F 05
Emission
Rale
(g/ser)
5 4 1 E 05
1 19E 06
36E 06
240E06
1 18E07
351E08
2 98E 05
758E 08
9 86E 07
1 25E 06
Emission
Rate
(g/s»c)
1 16E 02
257E04
7 7E 04
5 16E 04
2 54E 05
7 54E 04
6 40E 03
1 63E 05
2 1 2E 04
2 68E 04
A.ql\psl
V.ipor
or
(ug/ml qlt)
064
064
064
064
064
064
064
064
064
064
Avg West
Vapoi
DF
(ug/m3 g/s)
9 7
9 7
9 7
9 7
9 7
9 7
9 7
9 7
9 7
Q >
A,g WfSl
V.ipor
Df
(ugiml g/5)
14
14
14
14
14
14
14
14
14
14
Avg West
Vapor
DF
lug/ml 4q/s)
208
208
208
208
208
208
208
206
208
20 a
Avg WPS!
nf) Site
Cone
(uq/ml)
00008
OOOOO
00001
OOOOO
OOOOO
OOO01
00004
OOOOO
OOOOO
OOOOO
Avg West
OH Site
Cone
(ug/m3)
00107
00002
00007
00005
OOOOO
00007
00059
OOOOO
00002
00002
Avg West
Oft Site
Cone
(ug/m3)
00008
OOOOO
00001
OOOOO
00000
OOOOO
00004
OOOOO
OOOOO
OOOOO
Avg West
Of) Site
Cone
jug/m3)
00603
00013
00040
00027
0 0001
00039
00333
00001
00011
0 0014
Cancpr
Adult
Fxposute
(mg/kg d|
2 BE 08
6 IE 10
1 8E 09
1 2E 09
60E 11
1 8E 09
1 5E 08
39E 11
50E 10
64E 10
Cancel
Adult
Fxposurp
{rng/kg d)
38E 07
83E 09
25E 08
t 7E 08
82F 10
24E08
21E07
53E 10
69E 09
8 7E 09
Cancel
Adult
Exposure
(mg/kg d)
2 7E 08
59E 10
1 8E 09
1 2E09
58E 11
1 7E09
1 5E08
37E 11
49E 10
62E 10
Cancer
Adult
Exposure
(mg/Vg d)
2 1E06
4 7C 08
1 4E 07
9 3 7E 05
1 4F 06 8 3E 07
4 It 06 2 5F 06
2 71 00 1 7E Of.
1 4f 07 8 2F 08
4 OF 06 2 4F 06
34F05 2 IE 05
8 7F 08 5 2F Ofl
1 1C 06 0 8( 07
1 4F 06 8 <5F 07
CAR
Adull
Cnm.pi
Risk
0
1E 10
0
6E 11
5E 11
2E09
7E 10
7C 10
5F 09
0
85E-09
WWTank
Adult
Cancer
Risk
0
2E09
0
9E-10
6E 10
3EOS
9E09
9E09
6F 08
0
1 2E-07
Ttuck
Adult
Cancer
Risk
0
1E 10
0
6E 11
4E 11
2E09
7E 10
6E 10
5F09
0
B2E-09
Tank Farm
Adult
Cancer
Risk
0
IF 08
0
y 8
WWTank WW Tank
Child School age
Cancer Cancer
Risk Risk
0 0
5E 09 3E 09
0 0
2E 09 1E 09
2E 09 9E 10
7E 08 4E 08
2E 08 1E 08
2E08 IE 08
2E 07 1E 07
0 0
2 9E-07 1 7E-07
Ttuck Tiuck
Child School age
Cancer Cancer
Risk Risk
0 0
4E 10 2E 10
0 0
2E-10 9E11
1E10 7E-11
5E 09 3E 09
2E09 1E09
2E 09 1E 09
1E08 7E09
0 0
2 OE-OB 1 2E-08
Tank Farm Tank Farm
Child School age
Cancel Cancer
Ri-.k Rr.k
0 0
IF OH 2( 08
0 0
1! OH 81 O'l
9( D') 5( O'l
4F 07 ?( 07
1F 07 HI oa
11 D7 HI 1)11
"I "/ ',( '!/
'
1 r.r Of, 9 RF 07
( AB
Adult
Uoncancei
HQ
9E06
3E05
2E 05
7E 05
3E05
6E06
2E06
ERR
3E-06
2E05
?E 05
2 1E-04
WW Tank
Adult
Noncancer
HQ
1E 04
5E04
3E04
9E 04
4E 04
8E05
3E 05
ERR
4E 05
3E04
2E04
2BE-03
Tiuck
Adult
Noncancer
HQ
BE 06
3E05
2E 05
6E05
3E05
6E06
2E06
ERR
3E06
2E 05
1F 05
20E-04
Tank f arm
Arlilll
MnnraruM
Mr)
7F F)4
II 0!
,'l 0!
',( II!
! 'i :
', 'J4
.' f|4
I'fJ
.' M
1 ', <
t <; o?
( AB
Child
t lone. UK et
HO
3E 06
1E 04
7E 05
2E 04
1E 04
2E 05
9E06
ERR
1E05
7E05
6E 05
7 BE -04
WW Tank
Child
Noncancei
HQ
4E04
2E03
1E 03
3E 03
2E 03
3E 04
1E 04
ERR
1E04
1E 03
BE 04
1 1EO2
Tiuck
Child
Noncar cer
HQ
3E 05
1E 04
7E05
2E 04
1E04
2E 05
9E06
ERR
1E05
7f 05
6F 05
7 5E 04
Tank F arm
r inH
ll'lll' ."HIM
MQ
21 1)1
IF 02
61 )!
A U
nr.-»ntpr
MQ
1F 03
61 03
IF 0)
11 1)2
',1 Hi
IF 0!
4F_ 0/1
( nil
M (14
!l 01
II '}'.
i <;r m
-------
NORTHERN SECTOR - AVERAGE IHHAl ATION
CAB SYSTEM
Chemical
Acetone
Acrylomtnle
Carbon Disulfide
Carbon Tetrachlonde
1 2 Fjibromoethane
1 1 Dichloroethene
Formaldehyde
Hydrazme
2 Nilropropanp
Pyndine
Uichlorodrlluoromethane
Total Risk/Hi
WASTEWATER
TANK
Chemical
Acetone
Acrylonitfile
Carbon Drsuldde
Carbon Tetrachlonde
1 2 Dibromoethane
1 1 Dichloroethene
formaldehyde
Hydrazine
2 Nitropropanp
Pyndine
Die hlorod if luoiom ethane
Total RIsWHI
TRUCK WASH
t hemical
Acetone
Acrylimtnle
Carbon Disullide
Carbon Tetrachlonde
1 2 Dibromoethane
1 1 Dichloroethene
Formaldehyde
Hydrazme
2 Nitropropane
Pyndine
Dichlofodifluoromethane
Total RIskJHI
TANK FARM
Chemical
Acetone
•\crylnmtiile
athon Disulfide
aibon Tptiarhlo'idp
1 I1 F)ibiornoethane
! 1 Oichloroethpne
ormaldehyde
lydra?me
1 MitiopiopaMp
Vid'"P
'i, iilMiodtfluoiO'Tislhanp
ottl Risk/Hi
Inhal
Slope
f actor
(mg/kg d) 1
MA
024
NA
0053
0 76
1 2
0045
17
9 4
NA
% tola! HI -
Inhal
Slope
Factor
(mg/kg d) 1
NA
024
NA
0053
0 76
1 2
0045
17
9 1
NA
% lotal HI -
Inhal
Slope
1 actor
(mg/kg d| 1
NA
024
NA
0053
0 76
1 2
0045
17
94
NA
% total HI =
^
Inhal
Slope
Factor
(mg/kg d) 1
NA
P 24
NA
OP53
n 76
1 2
0045
17
9 4
MA
% total HI -
RAC
lug/ml)
HI 5
05
25
05
005
7 9
175
NA
5
0875
008
RAC
(ug/m3)
875
05
25
05
005
79
175
MA
5
0875
008
RAC
lug/ml)
87 5
05
25
05
005
7 9
175
NA
5
0875
008
RAC
(ug/m3)
875
05
2 5
05
005
79
175
NA
5
P P75
008
Inhalation
RIU
(mg/kg d)
25E 02
1 4E 04
7 1E 04
1 4E 04
1 4E05
23E 03
50E 02
OOE'OO
1 4E03
25E 04
Inhalation
RID
(mg/kg d)
25E02
1 4E04
7 IE 04
1 4E 04
1 4E 05
23E03
50E 02
OOE'OO
1 4E 03
25F 04
Inhalation
RID
(mg/kg d)
25E 02
1 4E 04
7 1E04
1 4E04
1 4E05
23E03
50E02
OOE'OO
1 4E 03
25E04
Inhalation
RID
(mg/kg d)
25E02
1 4E 04
7 1E 04
1 4E 04
1 4E 05
2 3E 03
50E 02
OOE-00 "
1 4E 03
25E 04
F mission
Rate
(g/spc)
1 23E 03
2 71E 05
8 1E 05
5 44E 05
2 68E 06
7 95E 05
6 75E 04
t 72E 06
2 23E 05
2 83E 05
Emission
Rate
(g/sec)
1 IDE -03
2 44E 05
73E05
4 90E 05
241E 06
7 16E 05
6 QBE 04
1 55E 06
2 DIE 05
J 55F 05
F mission
Rate
Ig'SPc)
541E 05
1 19E 06
36E 06
240E06
1 18E 07
351E06
2 98E 05
758E08
8 86E 07
1 25E06
Emission
Rale
(g/sec)
1 16E02
257E 04
7 7E 04
5 16E 04
2 54E 05
7 54E 04
6 40E 03
1 63E 05
2 12E 04
2 SflF 04
A^q North
Vapor
OF
(ug/ml q/s)
049
049
049
0 49
049
049
049
049
049
0 49
Avg North
Vapor
DF
(ug/m3 g/s)
153
153
15 3
15 3
15 3
15 3
15 3
15 3
153
15 1
Avg North
Vapor
DF
lug/ml g's)
15 1
15 1
15 1
15 1
15 1
15 1
15 1
151
151
15 1
Avg North
Vapor
DF
(ug/m3 4g/s)
104
104
104
104
104
104
104
104
104
10 4
A.g North
cm Site
Cone
(ug/ml)
00006
00000
00000
00000
00000
00000
00003
00000
00000
00000
Avg North
OH Site
Cone
lug/mil
00168
00004
00011
00007
00000
00011
00093
00000
00003
00004
Avg North
Oft Site
Cone
(ug'ml)
ooooa
00000
00001
00000
00000
00001
00004
00000
00000
00000
Avg North
Off Site
Cone
(ug/m1|
00302
00007
00020
00013
00001
00020
00166
00000
00006
00007
Cancpi
Adult
Fxpo°une
(mg/kg d)
2 1E08
4 7E 10
1 4E 09
94E 10
46E 11
1 4E 09
1 2E 08
30E 11
38E 10
49E 10
Cancer
Adult
Exposure
(mg/kg d)
59E07
1 3E 08
39E 08
26E08
1 3E 09
39E 06
33E 07
84E 10
1 1E 08
1 4F 08
Cancer
Adult
Exposure
(mg/kg d)
29E 08
63E 10
1 9E 09
1 3E-09
63E 11
1 9E 09
1 6E 08
40E 11
52E 10
66E 10
Cancer
Adult
Exposure
(mg/kg d)
1 1E 06
2 4E 08
7 OE 08
4 7E C8
2 3E 09
6 9E 08
59E 07
1 5E 09
1 9E 08
? SF 08
Cancer Cancpr
Child School age
Exposure Exposure
(mg/kg d) (mg/kg d)
5 3E 08 3 2E 08
1 2E 09 70E 10
35E09 2 IE 09
2 3E 09 1 4E 09
1 2E 10 70E 11
34E09 2 IE 09
2 9E 08 1 8E 08
7 4E 11 4 5E 1 1
96E 10 58E 10
1 2E 09 7 4E 10
Cancer Cancer
Child School age
Exposure Exposure
(mg/kg d) (mg/kg d)
1 5E-06 89E-07
3 3E 08 2 OE 08
9 8E 08 5 9E 08
6 6E 08 4 OE 08
3 2E 09 2 OE 09
9 6E 08 5 8E 08
8 2E 07 4 9E 07
2 IE 09 1 3E 09
2 7E 08 1 6E 08
34F 08 2 IF 08
Cancer Cancer
Child School age
Exposure Exposure
(mg/kg d) (mg/kg d)
7 2E 08 4 3E 08
1 6E 09 95E 10
4 7E 09 2 9E 09
3 2E 09 1 9E 09
1 6E 10 94E11
4 6E 09 2 8E 09
3 9E 08 2 4E 08
1 OE 10 6 IE 11
1 3E 09 79E 10
1 7E 09 1 OE 09
Cancer Cancer
Child School age
Exposure Exposure
(mg/kg d) (mg/kg d|
1 6E 06 1 6E 06
5 9E 08 3 5F 08
1 BE 07 1 1E 07
1 2E 07 7 1E 08
5 8E 09 3 5E 09
1 7E 07 1 OE 07
1 5E 06 88E 07
3 7E 09 2 2F 09
4 8E 08 29E 08
F W 41 0'!
41 m ''.( o't
?F 07 IF r)7
71 08 41 08
r,F r-J" 41 01
•r fi/ ',i i)7
' 'j
R IF 07 4 9F 07
HO
7E06
3E 05
2F05
5E 05
3E 05
5E06
2E06
ERR
2E 06
2E05
1E05
1 BE -04
WW Tank
Adult
Noncancer
HQ
2E04
7E04
4E 04
1E 03
7E04
1E04
5E05
ERR
6E05
4E04
3E 04
4 5E-03
Truck
Adult
Noncancer
HQ
9E06
3E05
2E05
7E05
3E05
6E06
2E06
ERR
3E 06
2F 05
2E05
22E-04
Tank F aim
A'lull
Nonr ancei
MO
IF '14
IF 0!
ill 04
•I o :
11 ' 11
A 'A
'!( <>'
I 1(1'
11 ',1
;•! • 1
'.I ',4
R 'IF 01
HO HO
2E 05 1E 05
1E04 6E 05
6E 05 3E 05
2E 04 IF 04
9E 05 6E 05
2E05 1E05
7E 06 4E 06
ERR ERR
8E 06 5E 06
6E 05 3E 05
4E 05 3E 05
59E-O4 3SE-04
WW Tank WW Tank
Child School agp
Noncancer Noncancer
HO HO
7E 04 4E 04
3E 03 2E 03
2E 03 1E03
5E 03 3E 03
3E 03 2E 03
5E 04 3E 04
2E 04 IE 04
ERR ERR
2E04 IE 04
2E 03 1E03
1E 03 7E 04
1 7E-02 1 OE-02
Truck Fruck
Child School aqe
Noncancer Nonranrer
HO HO
3E 05 2E 05
1E 04 8E 05
BE 05 5E 05
3E 04 2E 04
IE 04 BE 05
2F 05 It 05
OE 06 6E 06
ERR EF*R
11 05 6E 06
8f 05 5F 05
61 05 4E 05
81E04 49F04
lank I .inn Fank F arm
r hiH School aqe
1 IOIH ,inf PI lloricancer
HO HO
II 01 71 04
',[ 0! 11 (13
!f 0! 2f 01
1[ Hi fit 0!
'.I 0! 11 Hi
')( 04 SF 04
M '14 21 04
1 HI) ( MR
4! '14 ?F 04
•1 ','. .'1 01
,'! ','. 11 01
1 01 0? 1 IF rj?
-------
SOUTHERN SFCTOR
CAB SYSTEM
Chemical
Acetone
Acrylonitnle
Carbon Drsullide
Carbon Tetrachlorrde
1 2 Dibromoethane
1 1 Dlchlotoethene
Formaldehyde
Hydrazme
2 Nrlropropane
Pyndme
Dichlorodifluoromethane
Total Risk/Hi
WASTEWATER
TANK
Chemical
Acetone
Aciylonttnle
GattJon Chsultide
Carbon Tetrachlonde
1 2 Dibromoethane
1 1 Dichloroelherie
^ormaldehyde
lydrazrne
1 Nitropropanp
'yndme
lichlorodifluoromplhnnp
'otal RKk/HI
RUCK WASH
hemical
cetone
-crytonitnte
arbon Disuifide
a'bon Tetrachlonde
2 Dibromoethane
1 Dichloioethene
ormaldehyde
ydrazrne
Nitropropane
yridine
ichlorodiHuoiomethane
Jlal RIsWHI
VNKFARM
|
1 lemical
1 ptone
lylonitnlp
rbon Disuifide
rbon Telrachlonde
' Dibromoethane
Oichloroetfipnp
irnaldphydp
drazine
Mropropane
limp
M'midilluo'-vnp'h.ji p
nl RiskJHI
f r ,, ,F, ifJHAI A1ION
Inli il
Slope
F tictor
(mq/kg d| 1
NA
0 24
NA
0053
0 76
1 2
0045
17
94
NA
\ total Ml -
Inhal
Slope
f actor
(mg/kg d) 1
NA
024
NA
0053
0 76
1 2
0045
17
14
NA
% totsl III -
Inhal
Slope
F actor
(mq/kg d) 1
NA
0 24
NA
0053
0 76
1 2
0045
17
94
NA
% total HI =
Inhal
Slope
Factor
(mg/kg d) 1
NA
0 24
NA
0053
P 76
1 2
mJ5
17
Q 4
N«
•^ tc'at Hi -
RAC
(ug/m3|
87 5
05
25
OS
005
79
175
(JA
5
0875
008
RAC
(ug/mS)
S75
05
2 5
05
005
79
175
NA
5
PP75
o rift
RAC
(ugiml)
875
05
25
05
005
79
175
NA
5
0875
008
RAC
(ug/ml)
87 5
0 5
25
0 5
r>05
7 9
175
fJA
5
PR75
0 08
Inhalation
RID
(mg/kg d)
25E 02
1 4E 04
7 1E 04
1 4E 04
1 4E 05
23E03
50E 02
OOE'OO
1 4E 03
25E04
Inhalation
RID
(mg/kg d)
25E02
1 4E04
7 1E04
1 4E04
1 4E05
23E 03
50E 02
OOE'OO
1 4E 03
25F 04
InhaUtion
RIO
(mglkg d)
25E02
1 4E 04
7 IE 04
1 4E04
1 4E 05
23E03
50E02
OOE'OO
1 4E-03
2 5E 04
Inhalation
RIO
{mg/kg d)
25E02
1 4E 04
7 1E 04
1 4E 04
1 4E 05
2 3E 03
5 OF 02
OOE'OO
1 4E 03
?5F 04
Emission
Rale
(g/sec)
1 23E 03
271E 05
81E 05
5 44E 05
268E O6
7 95E 05
6 75E 04
1 72E 06
2 23E 05
2 83E 05
Emission
Rate
(g'sec)
1 10E 03
2 44E 05
73E 05
4 90E 05
241E 06
7 16E 05
6 08E 04
1 55E 06
2 DIE 05
2 55E 05
E mission
Rale
(q«,-c)
541E 05
1 19E 06
36E 06
2 40E 06
1 18E 07
351E06
2 98E 05
7 58E 08
9 86E 07
1 25F 06
Emission
Rate
(q/sec)
1 16E 02
257E04
7 7E 04
5 16E 04
2 54E 05
7 54E 04
6 40E 03
1 63E 05
2 12E 04
? MF 04
V.ipor
or
fug/ml g/s)
066
066
068
066
066
066
066
066
066
066
Avg South
Vapor
DF
lug/ml g/s)
54
54
54
54
54
54
54
54
5 4
5 4
»«g South
Vapor
or
(ugrml gis)
6 3
6 3
6 3
63
63
63
63
63
63
6 3
A jg South
Vapor
Of
(ug/ml 4g/s|
162
162
162
162
16 2
16 2
16 2
16 2
16 2
16 2
Off Sile
Cone
(<;g/m1)
00008
OOOOO
00001
OOOOO
OOOOO
00001
00004
OOOOO
0 0000
OOOOO
Avg South
Off Sile
Cone
|iig/m3)
00059
00001
00004
00003
OOOOO
00004
00033
OOOOO
00001
00001
Avg South
Otl Site
Cone
(..gfml)
00003
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
00002
ooooo
OOOOO
OOOOO
Avg South
Oft Site
Cone
(ug/ml)
00470
00010
00031
00021
00001
00031
00259
00001
00009
0 r>OH
Adull
Exposure
(mg/kg d)
29E 08
63E 10
1 BE 09
1 3E 09
62E 11
1 8E09
1 6E 08
40E 11
52E 10
66F 10
Cancer
Adult
Exposure
(mg/kg d)
21E07
46E09
1 4E 08
93E09
46E 10
1 4E08
1 2E07
29E 10
3 BE 09
4 8E 09
Cancer
Adull
Exposure
(mg/kg d)
1 2E08
26E 10
79E 10
53E 10
26E 11
78E 10
66E09
1 7E-11
22E 10
2 BE 10
Cancer
Adult
Exposure
(mg/kg d)
1 7E06
3 7E 08
1 1E 07
7 4E 08
36E09
1 1E 07
9 IE 07
2 3E 09
3 OE 08
1 8F 0«
Child S( hool age
Exposure Exposure
(mg/kg d) (mg/kg d)
7 IE 08 4 3E 08
1 6E 09 95E 10
4 7E 09 2 BE 09
3 1E 09 1 9E 09
1 6E 10 94E 11
4 6£ 09 2 8E 09
3 9E 08 2 4E 08
1 OE 10 60E 11
1 3E 09 7 8E 10
1 6F 09 9 9F 10
Cancer Cancer
Child School age
Exposure Exposure
(mg/kg d) |mg/kg d)
52E07 31E07
1 2E 08 7 OE O9
35E08 21E08
2 3E 08 1 4E 08
1 1E 09 69E 10
3 4E 08 2 OE 08
29E 07 1 7E 07
7 3E 10 4 4E 10
9 5E 09 5 8E 09
1 2F 08 7 IF 09
Cancer Cancer
Child School age
Exposure Exposure
(mg/kg d) (mg/kg d)
3 OE 08 1 8E 08
66E 10 40E 10
2 OE 09 1 2E 09
1 3E 09 8 OE 10
6 5E 1 1 3 9E 1 1
1 9E 09 1 2E 09
1 6E 08 1 OE 08
4 2E 11 25E 11
54E 10 33E-10
69E 10 4 2E 10
Cancef Cancer
Child School age
Exposure Exposure
(mq/Vq d) (n,g/kg d)
4 IE 08 25EQ6
9 IE 09 5 5E 08
2 7E 07 1 6E 07
1 8E07 1 1E 07
9 OE 09 5 5E 09
2 7E 07 1 6E 07
2 3E 06 1 4E 06
5 8E 09 3 5E 09
7 5E 09 t OF 09
o 5F 'll '• "F "R
Adult
Exposure
(rng/kq d)
22E 07
4 9F 09
1 5E 08
98E 09
4 BE 10
1 4E 08
1 2E07
3 1E 10
40E 09
5 IF 09
Noncancer
Adult
Exposure
(rng/kg d)
16E06
36E08
1 IE 07
72E08
36E09
1 1E07
90E07
23E09
30E 08
38F 08
Noncancef
Adult
Exposure
(mg/kg d)
93E08
2 IE 09
62E09
4 IE 09
20E 10
61E09
5 IE 08
1 3E 10
1 7E09
22E09
Honcancer
Adult
Exposure
(mg/kg d)
1 3E05
29E 07
85F 07
5 7F 07
2 BE 08
9 4E 07
7 1E 06
1 9F 08
24F 07
1 'If 07
Child School age
Exposure Exposure
(mg/kg d) (mg/kg d)
8 3E 07 5 OE 07
1 BE 08 1 IE 08
5 5E 08 3 3E 08
3 7E 08 2 2E 08
1 8E 09 1 1E 09
5 4E 08 3 2E 08
4 6E 07 2 8E 07
1 2E 09 7 OE 10
1 5E08 9 1E09
1 9E 08 1 2E 08
Noncancer Noncancer
Child School age
Exposure Exposure
(mg/kg d) (mg/kg d)
61E06 37E06
1 3E 07 8 1E 08
4 OE 07 2 4E 07
2 7E 07 1 6E 07
1 3E 08 8 OE 09
4 OE 07 2 4E 07
3 4E 06 2 OE 06
8 6E 09 5 2E 09
1 1E 07 6 7E 08
1 4E 07 8 5E 08
Noncancm Noncancer
Child School age
Exposure Exposure
(mg/kg d) (mg/kg d)
35E-07 21E07
7 7E-09 4 6E 09
2 3E 08 1 4E 08
1 5E-08 9 4E 09
76E10 46E-10
2 3E 08 1 4E 08
1 9E-07 1 2E 07
49E-10 30E10
8 4E 09 3 8E 09
81E09 49E09
Noncancer Noncancer
Child School age
Exposure Exposure
(mg/kg d) (mq/kg d)
4 <)E 05 2 9E 05
1 IE 06 64F 07
3 2E 06 1 V 06
2 1C 06 1 IF 06
1 IE 07 64F 08
1 1 f 06 1 9F 06
2 7E 05 1 6E 05
68E 08 4 1F 08
89E 07 5 IF 07
1 1f 00 6 l\ 'I?
CAB
Adull
Cancer
Risk
0
2F 10
0
7E 11
5E 11
2E09
TE 10
7E 10
5E09
0
87E-09
WW Tank
Adult
Cancer
Risk
0
1E09
0
5E 10
3E 10
2E08
5E09
5E09
4E 08
0
64E-OB
Truck
Adult
Car cer
Risk
0
6E 11
0
3E 11
2E 11
9E 10
3E 10
3E 10
2E 09
0
37E-09
lank f arm
Adult
Cancel
Risk
0
'>[ 09
0
IF 09
3E O'J
IF 07
IF 08
•IF 08
"1 rif
' IF 07
f AR
L-'Atl
Child
Cancel
Risk
0
4F 10
0
2E 10
1E 10
6E09
2E09
2E09
1F 08
0
22E-08
WW Tank
Child
Cancer
Risk
0
3E09
0
1E09
9E 10
4E08
IE 08
IE 08
9E 08
0
1 6E-07
Truck
Child
Cancer
Risk
0
2E 10
0
7E 11
5E 11
2E 09
7E 10
7E 10
5E 09
0
92E-09
lank Farm
Child
Cancel
Risk
0
?F 08
0
IF 08
7F ')<)
•1 07
11 07
11 ')/
n ' /
rj
1 IF Of,
School age
Cancer
Risk
0
2E 10
0
1E 10
7E 11
3E09
1E 09
IE 09
7E09
0
1 3E-08
WWTank
School age
Cancer
Risk
0
2F09
0
7E 10
5E 10
2E08
8E 09
BE 09
5E08
0
97E-OB
Truck
School-age
Cancer
Risk
0
1E 10
0
4E 11
3E 11
1E09
4E 10
4E 10
3E 09
0
55E-09
Tank F arm
Srhool age
Cancer
Risk
0
IF 08
0
01 ')9
IF O'J
2F 07
OF O'l
0( ')')
11 ')/
'
7 7F 07
Adult
Noncancer
HQ
9E 06
3E 05
2E 05
7EOS
3E05
6E06
2E06
ERR
3E06
2E05
2E05
21E-04
WW Tank
Adull
Noncancer
HQ
7EOS
3E04
2E04
5E04
2E04
5E05
2E 05
ERR
2E05
2E04
1E04
1 6E-03
Truck
Adull
Noncancer
HQ
4E06
1E05
9E06
3E 05
1E05
3E 06
IE 06
ERR
IE 06
9F 06
7E 06
90E-05
lank 1 arm
Ariull
1 lonr ancfl
HO
ri( 04
?l 01
11 'I!
41 ')',
1\ <>':
11 'i1
l( '11
( I'll
/I '/I
11 ')'.
'•I ')4
1 ?F 0?
Child
Noncaricei
MQ
3E 05
IE 04
BEOS
3E 04
1E04
2E05
9E06
ERR
1E05
8E05
6E05
BOE-04
WWTank
Child
Noncancer
HQ
2E04
9E04
6E 04
2E03
9E04
2E04
7E05
ERR
BEOS
6E04
4E 04
59E-03
Truck
Child
Noncancer
HO
1E05
5E05
3E05
IE 04
5E OS
11:05
-IE 06
ERR
4E 06
3F 05
2( 05
34E04
lank I arm
1 Vlllrl
Hour arne
HO
n 01
71 01
*( m
11 02
/f '))
11 ')•)
'rf '14
1 UK
',1 04
11 ')',
;l '/!
4 7f 07
( An
School agr
Noncaricei
MQ
2E 05
BE 05
5E05
2E04
8E05
1E05
6E06
ERR
6E 06
5E05
4E 05
48E-04
WW Tank
School age
Noncancer
MQ
1E 04
6E 04
3E 04
IE 03
6E 04
1E04
4E05
ERR
5E05
3E 04
3E 04
3 6E 03
Truck
School age
Honcancer
HQ
8F. 06
IE 05
2E 05
7E 05
3E05
6E 06
2E 06
ERI)
3E 06
2F 05
21 05
? OE 04
lank ( arm
">( ti'iil age
tl.mranrer
HQ
1( 01
1! 01
IF 01
'II 01
4! 01
81 04
If 04
f F)l(
1f 04
•I 'It
Ji 01
7 RF 0?
-------
MAX INHALATION
CAB SYSTEM
- l,pm,r.,l
Acptone
Ariylomtnle
Carbon Disullide
t a'bon Tetrachlonde
1 2 Dibromoethane
1 1 Dichloroethene
Formaldehyde
Hydrazine
2 Nifropropanp
Pyridme
Dichlorodifluoromelha
Total Risk/Hi
WASTEWATER
TANK
Chemical
Acetone
Acrylomtnle
Carbon Disulfide
Carbon Tetracblonde
1 2 F)ibromoethane
1 1 Dichloroethene
Formaldehyde
Hydiazme
2 Nitropropane
Pyndine
Dichloroditluoromptha
Total RiskJHI
TRUCK WASH
hemical
^etone
^tylonitnle
^aibon Disultide
"aibon Tetiachlonde
1 2 Dibromoethane
1 1 Dichloroethpne
ormaldehyde
tydrazine
' Nitropropanp
^yndine
Jichlorodilluorometha
otal Risk/Hi
ANK FARM
hemical
( plone
culonitnle
,ubon Disullide
aibon Tptrachloridp
2 Dibrornopthane
> Dichloroefhpne
oimaldehydp
ydrazme
Nitropropanp
>Mdme
ichlorodifluorornefha '
otal RiskJHI
Inh il
'"lotx-
(mg/kg d) 1
NA
0 24
NA
0053
0 76
0091
0045
17
94
NA
% total Ml =
Inhal
Slope
Factor
(mg/kg d) 1
NA
0 24
MA
0053
0 76
0091
0 045
9 4
NA
% total HI - % tots
Inhal
Slope
Factor
(mg/kg d) 1
(iiq/mlj
"75
05
2 5
05
005
125
175
NA
5
0875
008
RAC
(ug/m3)
875
05
25
05
005
125
175
f(A
5
0875
1 Ml -
RAC
(ug/m3)
NA 875
024 05
NA 25
0 053 05
0 76 0 05
0091 125
0045 175
17 NA
94 5
NA 0875
% total HI = % total HI =
y
Inhal
Slope
Factor
(mg/kg d) 1
NA
0 24
NA
0053
0 76
0091
0045
17
94
NA
t Ma' "1 - % total
RAC
875
05
2 5
05
005
125
175
NA
5
0875
Ml -
ion
RIU
(rrig/kg d|
25E 02
1 4E 04
7 1E 04
t 4E 04
1 4E 05
36E 02
50E 02
OOE'OO
1 4E03
25E04
Inhalation
RfD
(mg/kg d)
25E02
1 4E04
7 tE04
1 4E 04
1 4E 05
36E 02
50E 02
OOE<00
1 4E 03
25E 04
Inhalation
RID
(mg/kg d)
25E02
1 4E 04
7 1E 04
1 4E 04
1 4E 05
36E02
50E02
OOE»00
1 4E03
25E04
Inhalation
RID
(mg/kg d)
25E02
1 4E 04
7 1E 04
1 4£ 04
1 4E 05
36E 02
50E02
OOE'OO
1 4E 03
25E04
M 1. i 'II ',,!,.
F mission Vapoi
FJaN'Flisp Fartoi
(g/sect(ug/m'i g/s
1 23F 03 38
271E05 38
8 IE 05 38
5 44E 05 38
2 68E 06 38
7 95E 05 38
6 75E 04 38
1 72E 08 3«
2 23E 05 38
2 83E 05 3 8
May Oft Site
Emission Vapoi
RateDisp Factor
(g/sec)(ug/m3 g/s
1 IDE 03 29868
2 44E 05 298 68
7 3E 05 298 68
4 90E 05 298 68
241E06 29868
7 16E 05 29868
6 08E 04 298 98
1 55E 06 298 68
201E05 29868
2 55E 05 208 68
Ma. no s-te
Fm.ssion Vapor
RateDisp Factor
Ig/spc)(ug(rn3 g/s
541E05 2031
1 19E 06 203 t
3 6E 06 203 1
2 40E 06 203 1
1 18E 07 203 1
351E06 2031
2 98E 05 203 1
7 58E 08 203 1
9 86E 07 203 1
1 25E 06 203 1
Max OH S/!e
Emission Vapor
RaleDisp Factor
(g/sec)(ug/m3 • g/s
1 16E 02 679
257E04 679
7 7E 04 67 9
5 16E 04 67 g
254E05 679
754E04 67 g
6 40E 03 679
1 63E 05 679
212E04 679
263E04 6? 9
Ma,
i '11 Sttp
Cone
(uq/m1|
00047
00001
00003
0 0002
00000
0 0003
00026
00000
00001
00001
Max
OH Sile
Cone
(ug/m3]
03285
00073
00218
00146
00007
00214
0 1818
00005
00060
0 0076
OH Slip
Cone
lug/ml)
0 0110
00002
00007
00005
00000
00007
00061
00000
00002
00003
Max
OH Slip
Cone
0 1969
00044
00130
00088
OOOQJ
00128
0 1086
00003
00036
00045
1 IMCPi
Adult
F >posuip
(mq/kq d)
1 6E 07
36E 09
1 IF 08
7 3F 09
36E 10
1 IE 08
90E 08
2 3F 10
30E 09
38F 09
Cancer
Adult
Exposure
(mg/kg d)
1 2F 05
26E 07
7 7C 07
52E 07
2 5F 08
7 5F 07
6 4E 06
1 6E 08
2 1E 07
2 7E 07
Canc-r
Adult
Exposure
(mg/kg d)
39E 07
85E 09
26E 08
1 7E 08
84E 10
25E 08
2 1E 07
54E 10
7 1EOB
89E 09
Cancer
Adult
Exposure
(mg/kg d)
69E 06
1 5F 07
4 6F 07
3 IE 07
1 5t 08
4 5E 07
3 8F. 06
9 7E 09
1 3E 07
1 6F 07
Cancel Cam pr
(. hild School age
Exposure Exposure
(mq/kq d) (mg/kg d)
4 IE 07 25F 07
9 OE 09 5 5E 09
2 7E 08 1 6E 08
1 BE 08 1 1E 08
8 9E 10 5 4E 10
2 6E 08 1 6E 08
2 2E 07 1 4E 07
5 7E 10 3 5E 10
7 "IE 09 4 5E 09
9 4F 09 5 7E 09
Cancer Cancer
Child School age
Exposure Exposure
(mg/kg d) (mg/kg d)
2 9E OS 1 7E 05
64E07 39E07
1 9E 06 1 2E 06
1 3E 06 7 8E 07
6 3E 08 3 8E 08
1 9E 06 1 IE 06
1 6E 05 9 6E 06
4 1E 08 25E 08
53E07 32E07
6 7F 07 4 OF 07
Cancer Cancer
Child School age
Exposure Exposure
(mg/kg d) (mg/kg d)
96E07 58E07
2 1E 08 1 3E 08
6 4E 08 3 9E 08
4 3E 08 2 6E 08
2 1E 09 1 3E 09
6 3E 08 3 8E 08
5 3E 07 3 2E 07
1 4E 09 8 2E 10
1 BE 08 1 IE 08
2 2E 08 1 3E 08
Cancer Cancel
Child School age
Exposure Exposure
(mg/kg d) {mg/kg d}
1 7E 05 1 OE 05
38E 07 2 3E 07
1 1E 06 6 QF 07
7 7E 0? 4 6F 07
3 BE 06 2 3E 08
1 1E 06 68F 07
9 5E 06 5 8E 06
2 4E 08 1 5E 08
32E 07 1 9F 07
4 OF 07 2 4F 07
Nonranrei
Adult
t xposuip
(mq/kq d)
1 3E 06
2 BE 08
8 4E 08
5 7E 08
2 BF 09
8 3F 08
70E 07
1 8E 09
23F 08
29F 08
Noncancer
Adult
Exposure
(mg/kg d)
90E 05
20E06
60E 06
40E 06
20E 07
59E 06
50E 05
1 3E 07
1 6E 06
2 IF 06
IJnncancer
Adult
Exposure
(mg/kg d)
30E 06
66E 08
20E 07
1 3E 07
66E 09
20E 07
1 7E 06
42E09
55E08
70E 08
Noncancer
Adull
Exposure
(mg/kg d)
5 4F 05
1 2t 06
3 6E 06
2 4E 06
1 2E 07
3 5E 06
30E 05
76E 09
99F 07
1 2F 06
Noncancer Noncancer
Child School agp
Exposure Exposure
(mg/kg d) (mg/kg d(
4 8E 06 2 9E 06
1 1E 07 64E 08
3 1C 07 1 9E 07
21E07 1 3E 07
1 OE 08 6 3E 09
3 IE 07 1 9E07
2 6E 06 1 6E 06
6 7E 09 4 OE 09
8 7E 08 5 2E 08
1 1E 07 6 7E 08
Noncancer Noncdncef
Child School-age
Exposure Exposure
(mg/kg d) (mg/kg d)
3 4E 04 2 OE 04
7 5E 06 4 5E 08
2 2E 05 1 3E 05
1 5E 05 9 1E 06
7 4E 07 4 5E 07
2 2E 05 1 3E 05
1 9E 04 1 IE 04
4 7E 07 2 96 07
6 1E 06 3 7E 06
7 8E 08 4 7E 06
Noncancer Noncancer
Child School-age
Exposure Exposure
(mg/kg d) (mg/kg-d)
1 1E05 6 BE 06
2 5E 07 1 5E 07
7 4E 07 4 5E 07
5 OE 07 3 OE 07
2 5E 08 1 5E 08
7 3E 07 4 4E 07
6 2E 06 3 7E 08
1 6E 08 9 5E 09
2 OE 07 1 2E 07
26E07 1 BE 07
Noncancer Noncancer
Child School age
Exposure Exposure
(mg/kg d) (mg/kg d)
2 OE 04 1 2E 04
4 5F 06 2 7F 06
1 If 05 8 IT 06
9 OF 06 5 4F 06
4 4E 07 2 7F 07
1 3E 05 7 9F 06
1 1E 04 6 7E 05
28E 07 1 7E 07
3 7E 06 2 2E 06
4 7F 06 2 IF 06
CAB
Adult
Cancer
Risk
0
9F 10
0
4E 10
3E 10
IE 09
4E09
4E 09
3E 08
0
39E-OB
WWTank
Adull
Cancer
Risk
0
6E-08
0
3E08
2E08
7E08
3E07
3E07
2E-08
0
27E-06
Truck
Adult
Cancer
Risk
0
2F 09
0
9E 10
BE 10
2E09
1E08
9E09
7E08
0
9 1E-08
Tank Farm
Adult
Cancer
Risk
0
4F 08
Q
2F OH
1F 08
4F OH
21 07
2E 07
1 1 06
1 ?F OS
CAB CAB
Child School agp
Cancpi Cancpr
Risk Risk
0 0
2F 09 IF 09
0 0
1E 09 6E 10
7E 10 4E 10
2E09 1E09
1E 08 6E 09
IE 08 6E 09
7F 08 4E-08
0 0
9 6E-08 9 8E-08
WW Tank WW Tank
Child School age
Cancel Cancer
Risk Risk
0 0
2E-07 9F 08
0 0
7E08 4E-08
5E-08 3E 08
2E 07 1E 07
7E-07 4E 07
7E 07 4E 07
5E 06 3F 06
0 0
6BE-O6 4 1E-OS
Truck Truck
Child School-age
Cancer Cancer
Risk Rrsk
0 0
5E 09 3E 09
0 0
2E 09 IE 09
2E 09 1E-09
6E 09 3E 09
2E08 IE 08
2E 08 IE 08
2E-07 1E 07
0 0
23E-07 1 4E-07
Tank F arm lank Farm
Child School agp
Risk Risk
0 0
IF 08 TF 08
0 0
4E 08 21 tm
3! OB 21 08
11 07 r,| OB
4F 07 IF 07
4( 07 21 07
3F or, .)( of,
0
4 1 F 0^ ? "if Of,
CAB
Adull
Noncancer
MQ
5E05
2E04
IE 04
4E 04
2E 04
2E06
1E-05
ERR
2E05
1E 04
9E05
1 2E-03
WWTank
Adult
Noncancei
HQ
4E 03
IE 02
8E 03
3E02
1E02
2E04
1E03
ERR
1E03
8E03
BE 03
85E-02
Truck
Adult
Noncancei
HQ
IE 04
5E04
3E04
OE04
5E 04
5E08
3E05
ERR
4E05
3E04
2E04
28E-03
Tank Farm
Adult
MO
2F 03
81 01
5f 03
2F 02
flf 0)
11 04
F I'K
7F 04
'.f '1 1
41 ri ;
•5 IF 0?
CAR
Child
Moncancer
MQ
2E04
7E 04
4E 04
1E 03
7E04
9E06
5E05
ERR
BEOS
4E04
3E04
4 5E-03
WW Tank
Child
Noncancer
HQ
1E02
5E02
3E02
1E01
5E02
6E 04
4E03
ERR
4E03
3E02
2E02
32E-01
Truck
Child
Noncancer
HQ
4E 04
2E 03
IE 03
3E03
2E03
2E 05
1E 04
ERR
1F04
1E03
8E 04
1 1E 02
lank larm
Child
HO
61 01
)l 02
21 02
11 02
11 ')4
'1 0!
1 I'l?
'.! 03
/( '!/
11 02
t IF ni
CAB
School ncjf
Nonrancei
MO
IE 04
4E 04
3E 04
9E 04
4E-04
5E06
3E05
ERR
4E 05
3E 04
2E 04
27E-03
WWTank
School age
Noncancer
HQ
8E03
3E02
2E 02
6E02
3E02
4E04
2E-03
ERR
3E03
2E02
1E 02
1 9E-01
Truck
School age
Noncancei
HO
3E 04
1E01
6E04
2E03
1E 03
1E 05
7F 05
FRR
9E05
6E 04
5E04
6 4F-03
Link 1 arm
School age
HO
'.(" 03
21 02
11 02
4F 02
?( 02
2F 04
1! 03
F I«U
2F 03
If 02
"1 r,.
t ir ni
> V Append'* V TO
-------
EAST SECTOR
ASH HANDLING
i hrmicai
Arspnic
Rariurn
Cadmium
ead
Nickel
Selprnum
Silver
Total Cyanide
Total RIsK/HI
WEST SECTOR
ASH HANDLING
Chpmic.il
Arsenic
barium
Cadmium
ead
Jickpl
Selenium
Silver
I ol.il Cyanide
Total Risk/Hi
IORTH SECTOR
iSH HANDLING
hpmicat
isenic
anum
admium
ead
ickel
elenium
ilver
ital Cyanide
i 3tal Risk/Hi
DUTH SECTOR
5H HANDLING
ipmi'-al
\ senir
ruim
iilrmum
id
kpl
1 ipniurn
pr
)! Cvjnulp
tal Rrsk/HI
. .lull
M,,,,,,
f rl' t"l
(niq'kq d) 1
51)
NA
6 1
NA
(184
NA
NA
NA
Inhal
Slope
Factor
(mg/kg d) 1
50
HA
6 1
NA
084
tIA
NA
NA
lrih.il
SlM(lP
( ,V.I'II
(itiq'kg ill 1
51)
HA
6 1
HA
084
HA
HA
HA
Inhal
Slope
Factor
(mg/kg d) 1
50
NA
6 1
NA
n 8-1
HA
HA
NA
RAC
n ?63
0 125
0 438
HA
17 5
4 375
4 375
17 5
RAC
(ug/m3)
0263
0 125
0438
NA
17 5
4 375
4375
17 5
RAC
lug/ml)
om
0 125
0 438
HA
17 5
4 375
4 375
17 5
RAC
(ug/m3)
0 263
0 125
0 438
NA
17 5
4 375
4 375
17 6
Inhal ill in
PtO
|mq/kq d)
7 51 n')
3 6E 05
1 3F 04
0 OE ' 00
50E 03
1 3E 03
1 3E 03
5 OF 03
Inhalation
RfD
(mg/Kg d)
75E 05
36E 05
1 3E 04
0 OE'OO
50E 03
1 3E 03
1 3E 03
5 OF 03
Inh.V lli in
If HI
(mg/kg ill
7 5E (ft
3 6F 05
1 3f 04
0 OE'OO
50E 03
1 3E-03
1 3E 03
5 OE 03
Inhalation
RfD
(mg/kg d)
75E05
36E 05
1 3E 04
0 OE • 00
50E 03
1 3E 03
1 3E 03
5 OE 03
A.q ( !>,!
! mi, sum ('.tit" ul, ilp
(ql'rc'wnn 4q,
1 37E 06 7 96
6 75E 07 7 96
2 86E 05 7 96
1 45E 05 7 96
2 92E 07 7 96
8 23E 08 7 96
1 04E 07 ' 7 96
1 41F 07 7 96
Avg West
Emission Participate
Rale DF
(g/sec)(ug/m3 4q/
1 37E 06 9 54
6 75E 07 954
2 86E 05 9 54
1 45E 05 9 54
2 92E 07 9 54
8 23f 08 9 54
1 04F 07 954
1 41! (17 0 «,.)
Avg I). .Mli
FmisS'un fait" mate
Rale (T
tfj'spr||,Kj/mt 4<,/
1 37f 06 5 '4
6 75F 07 5 '4
2 Bf F 05 5 74
1 45F U'> ', 74
2 92E 07 5 7.1
823E08 574
1 04E 07 5 74
14IE07 574
Avg South
Emission Paniculate
Rale DF
(g/sec)(ug/m3 4q/
1 37E 06 58
6 75E 07 58
2 86E 05 58
1 45E 05 58
292EO? 58
823E03 58
1 04E 07 5 B
1 41E 07 5 H
Avg
OH Slip
(uq/ml)
2 7F 06
1 3F 06
5 7E 05
2 9F 05
5 BF 07
t 6E 07
2 1E 07
2 BF 07
Avg
OtT Site
Cone
(ug/m3)
33E06
1 6F 06
6 BE 05
35E 05
7 OF 07
2 (it 07
25( 07
3 4F 07
Avg
Off Slip
( one
(uq'ml)
2 Of. 1)6
9 7E 1)7
4 If 1)5
2 If 05
4 2f 07
1 2( 07
1 5F 07
2 OF 07
Avg
on Sitp
Cone
(ug/m3)
2 OE 06
9 8E 07
4 1E 05
2 1F 05
4 2F 07
1 2C 07
1 cit 1)7
2 or 0?
C ,inc or
Adult
(mq/kq d)
9 r,l 11
47! 11
2 OF 09
1 (IF 09
2 OF It
5BF 12
7 3F 12
9 OF 12
Cancpr
Adult
Exposure
(mg/kg d)
1 2E 10
5 7E 11
2 4E 09
1 2E 09
2 5t 11
69E. 12
8 7F 12
1 2F 11
Cancer
Adult
Exposure
(mg/kq d)
69E 11
34E 11
t 4E 09
7 3E 10
1 5E 1 1
42E 12
53F 12
7 1F 12
Cancer
Arlult
Exposure
(mg/kq d)
7 OE 11
3 4F 11
1 5E 09
7 4F 10
1 Sf 11
4 2F 12
53F 12
7 2F 12
<" ciiu.pi Canrpr Noncancci Noru.atu-Pi Noncancpi f
Child Si.hniil ,icjp Adult Child School agp
(inq/kq d) fmrj'kq d) (mq/kq d) (mq/kg d) (tng/kq d)
2 4F 10 1 4t 11) 7 5E 10 2 BE 09 1 7E 09
1 ?E 10 71F11 3 7E 10 t 4E 09 8 3E 10
5 OF 09 3 OE 09 t 6E 08 5 8E 08 3 5E 08
2 5F 09 1 5E 09 7 9E 09 3 OE 08 1 8E 08
51E11 31E11 1 OE 10 59E10 36E-10
1 4E 11 8 7E 12 4 5E 11 1 7E 10 1 OE 10
1 8E 11 1 IE 11 5 7E 11 2 IE 10 1 3E 10
25F 11 t If 11 7 7F 11 29E 10 1 7E 10
il.il Hoith
Adult
Risk
5F 09
OE'OO
1E 08
OE'OO
2E 11
OE'OO
OE'OQ
OE'OO
1 7E-08
Cancer Cancer Noncancer Noncancer Noncancer Total North
Child School-age Adult Child School age
Exposure Exposure Exposure Exposure Exposure
(mg/kg d) (mg/kg d) (mg/kg d) (mg/kg-d) (mg/kg-d)
29E10 1 7E 10 89E10 3 3E 09 2 OE-09
1 4E 10 85E11 44E10 1 6E 09 1 OE-09
6 OE 09 3 6E 09 1 9E 08 7 OE-08 4 2E-08
3 OF 09 1 BE 09 9 5E 09 3 5E 08 2 1E-08
6 IE 11 37F11 1 9E 10 7 1E 10 4 3E-10
1 7F 11 IDF 11 54E11 20E10 1 2E 10
22E11 13F11 6 BE 11 2 5E 10 t 5E-10
29E11 IRFtl 92E-11 .3 4E 10 2 1E-10
Adult
Cancer
Risk
6E09
OE'OO
IF 08
OE'OO
2E 11
OE'OO
DE'OO
OE'OO
2 OE-08
Cancer C aor,er Noncancer Noncancer Noncancer Total North
Child School age Adult Child School age
Exposure Exposure Exposure Exposure Exposure
(mq/kq d) (mq/kg d) (mg/kg d) (mg/kg-d) (mg/kg d)
1 7E 10 1 OE 1" 5 4E 10 2 OE 09 1 2E 09
85E11 51F11 27E1D 9 9E 10 6 OE 10
36E09 2 2E 09 1 IE 08 4 2E 08 2 5E 08
1 8F 09 1 IE 09 5 7E 09 2 IE 08 1 3E 08
37E11 22E11 1 1E 10 4 3E 10 26E-10
10E11 63E12 32E11 1 2E 10 73E-11
13E11 79E12 4 1E-11 1 5E 10 92E-11
1RF11 1 1E-11 55E-11 2 1E-10 1 3E-10
Adult
Cancel
Risk
3E 09
OE'OO
9E09
OE'OO
1E-11
OE'OO
OE'OO
OE'OO
12E-C8
Cancer Cancel Noncancer Noncancer Noncancer Total North
Child School age Adult Child School age
Exposure Exposure Exposure Exposure Exposure
(mg/kq d) (mg/kg d) (mg/kg-d) (mg/kg d) (mg/kg d)
1 7E 10 1 1E 10 54E10 2 OE 09 t 2E 09
86E11 52E11 2 7E 10 1 OE 09 6 1E 10
36E09 ? ?F 09 1 1F 08 4 ?E 08 2 6E 08
1 8F. 03 1 1F 09 58F09 7 2F 08 1 IF OR
37E11 22E11 1 2F 10 4 3H 10 7 or 10
1 HF 11 6 if 12 3 M 11 1 ?E 10 7 4F 11
1 )F 11 8 i'f. 12 4 IF 11 1 5F 10 ') It 11
1 H! 1 1 11111 5 r,F 1 1 ) If 10 1 11 in
Adult
Cancer
Risk
3F 09
OE'OO
9F 09
(IF'(K)
1f 11
Dt '00
1)1 •( 10
'II '(jrj
1 ?E-OS
Iot.lt North lotnl Ninth
( luld School aqi-
Risk - Risk
1F (18 7F 09
OF '00 OE'OO
3E 08 2F 08
OE'OO OE'OO
4F 11 3F 11
OE'OO OE'OO
OE'OO OE'OO
OF. '00 OE'OO
4 2E-OB 2.6E-OB
nt.il Ninth Inl it Ninth liil.it Ninth
Adult
HO
IE 05
IE 05
IE 04
ERR
3E 08
4E08
5E08
2E08
1.4E-04
(JiiM School nqp
limit .inrpl NmiratHPI
HO HO
4F 05 ?! 05
4F 05 2F 05
IE 04 3| (14
FRR ERR
IE 07 7F 08
IE 07 BF 08
2E07 1E CI7
6E 08 3C 08
5 4E-04 3 3E-04
Total North Total North Total North Total North Total North
Child School-age
Cancer Cancpr
Risk Risk
1F 08 9E 09
HE '00 OE'OO
4E 08 2E 06
OE'OO OE'OO
5F 11 3E 11
OE'OO OE'OO
OE'OO OE'OO
OE'OO OE'OO
S1E-08 3.16-08
Total North Total North
Child School age
Cancer Cancel
Risk Risk
9F-09 5E 09
OE'OO OE'OO
2E: 08 1E 08
OE'OO OE'OO
3E 1 1 2E 1 1
OE'OO OE'OO
OE'OO OE'OO
OE'OO OE'OO
31E-08 1.8E-08
Total North Total North
Child School agp
C.incer Cancpr
Risk Risk
9F 09 5F 09
OF '00 OE'OO
2F 08 1F Of!
D( '00 OF' 00
if 11 7F 11
Of 'DO 1)1 >l)l)
ill •(«) ni inn
MI -(in ni M)n
3 1E-08 1 9E-OR
Adult
Noncancer
HO
1E05
IE 05
1E04
ERR
IE 08
IE 08
5E 08
2EOB
1.7E-04
Total North
Adult
Noncancei
HO
7E 06
7E 06
9E05
ERR
2E08
3E08
3E08
1E08
1.0E-04
Total North
Adult
Nonr anr,pr
HO
7f 06
RI on
It (\r,
f Rl*
7! Ml!
tl Oil
If Of)
11 O'l
1 1E-04
Child School age
Noncancer Nonrancer
HO I IO
4E 05 3E 05
5E-05 3C 05
RE -04 IF 04
ERR ERR
1E 07 9F 08
2E 07 1C 07
2E 07 IF 07
7E 08 4E 08
6 5E-04 3 9E-04
Total North Total North
Child School aqp
Noncancei t loncancpr
HO HO
3F 05 2F 05
3E 05 2F 05
3E 04 2[ 04
ERR ERR
9E 08 5E 08
IE 07 6E 08
IE 07 7F 08
4f£ Of! 3E OB
3 9E-04 2 4E-04
lol.il North Total North
Chili) School agp
Nonrancpr Nonrancpr
HO HO
3t 05 7f 05
« 01 2f 115
M 04 ?f 1)4
1 PR ! I'R
')! Hit 51 OB
11 07 r,[ ni]
If (If 71 <«
41 O'i )[ DM
3 9E-04 2 4E 04
-------
ASH HANDLING lnh.il
MAX INHALATION Slope
Chemical
Arsenic
Barium
Cadmium
1 end
Nickel
Selenium
Silver
I Dial Cyanide
Total Risk/Hi
f actor
(mq/kq d) 1
50
tIA
6 1
NA
084
NA
NA
HA
RAG
(uq/m3)
o 263
0 125
0 438
MA
17 5
4375
4 3T5
17 5
Inhalation
RID
(mg/kg d)
7 5E 05
3 GE 05
1 3E 04
0 OE'OO
50E 03
1 3E 03
1 3E 03
50E 03
Max (311 Sil
Emission Participate
RatePisp F ado
(q/spcl(nq/m3
t 37E 06
6 75E 07
2 86 E 05
1 45E 05
292E 07
8 23E 08
1 04E 07
t 41F 07
9's
64
04
64
64
64
64
64
r>4
Max
Off Site
Cone
(ug/m3)
8 Bb 05
4 3C 05
1 BE 0)
93E 04
1 9E 05
53E 06
6 7E 06
9 OF 06
C anrnr
Adull
F xposiite
(niq/kq dl
3 IE 09
1 r;F 09
64F 08
3 3E Ofl
66E 10
1 9E 10
1 3E 10
3 2F 10
Cancer Cancel
Child School age
Exposure
(mq/kq d)
7 7! 09
3 8F 09
1 HE 07
B 1F 08
1 6F 09
4 6E 10
58E 10
7 9F 10
Exposure
(mq/kq d)
4 GF 09
2 3F 09
9 7E 08
4 9E 08
9 9E 10
2 BE 10
35E 10
4 8F 10
Noncancer
Adult
Exposure
(iriq/kq d)
2 4F 08
1 ?E 08
5 OE 07
2 5F 07
5 1E 09
1 4E 09
1 8E 09
2 5F 09
Noncancer NoncancerAsh HaruJlinAsh HandlinAsh HandhrxAsh HaniJlrnAsh HandlinAsh tlaiullin
Child School aqe Adull Child School age Adult Child S< hool age
Exposure
(mg/kq d)
90E 08
4 4E 08
1 9E 06
95E07
1 9E 08
54E 09
68E09
92E 09
Exposure
(mg/kq d)
5 4E 08
2 7E 08
1 1E 06
5 7E 07
1 2E 08
3 3E 09
4 1E09
5 6E 09
Cancer
Risk
2F 07
OE'OO
4F 07
OE'OO
6E 10
OE'OO
OE'dO
OE'OO
5E-07
Cancer
Risk
4F 07
OE'OO
1E 06
01: ' 00
1F 09
OE'OO
OE'OO
OE'OO
1E-06
Cancer Nnnrancer N
Risk
2E 07
OE'OO
6E 07
OE'OO
8E 10
OE'OO
OE'OO
OE'OO
8E-07
HO
3E 04
3E 04
4E 03
ERR
1E 06
1E 06
1E 06
5E 07
5E-03
oncincei Uoru anrer
HO
1E 03
1E 03
1E-02
ERR
4F 06
4E 06
5E 06
2E 06
2E-02
MQ
7E 04
7f 04
9E 03
f RR
2E 06
3E 06
31. 06
1E OG
1E-02
-------
( im u PF^.'Uf NI
typ.r ,l) ( am Pi n>,lr«i
ag r«pos 39 p"1'
Suba'f a vrg mq vrg mg
Ini.l ,,,g
TAST
Arsenic
Barium
Cadmium
NicVel
Selenium
Sirvef
Cyan.de
NORTH
Arsenic
Barium
Cadmium
Nickel
Selenium
Sttve*
! Cyanide
SOUTH
Arsenic
3a,Mm
ladmium
-' Nickel
Selenium
1 jifvei
J >amde
", VEST
krsenic
lanum
! -admium
lick el
.elentum
>ltv«l
ya.ide
East
Easl
Fasl
East
East
Easl
East
North
North
North
North
North
North
North
South
South
South
South
South
South
Soulh
Wes
Wes
Wes
Wes
Wes
Wet
Wes
2 IE 12
OOE'OO
OOF'OO
OOE'OO
OOE'OO
OOE'OO
ERR
1 7E 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
1 1E 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
t 9E 12
OOE'OO
OOE'OO
OOE '00
OOE'OO
OOE'OO
ERR
5 if 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
FRR
4 4E 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE»00
ERR
2 7E 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
5 IE 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
1 8F 1?
OOE'OO
OOF'OO
OOE'OO
OOE'OO
OOE '00
ERR
1 SE 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
92E 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
1 7E 12
OOE'OO
OOE'OO
OOE'OO
OOF'OO
OOE'OO
ERR
4 Of 16
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOf '00
ERR
32E 18
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
20E 18
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
FRR
38E 18
OOF'OO
OOE -00
OOE -00
OOE -00
OOE'OO
FRR
J5E 12
OOE'OO
OOF'OO
OOE'OO
OOE'OO
OOE'OO
ERR
20E 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
1 3E 12
OOE'OO
OOE'OO
OOE'OO
OOF'OO
OOE'OO
FRR
2 3E 12
OOE'OO
OOE -00
OOE'OO
OOE'OO
OOE'OO
ERR
1 OF 12
OOE '00
OOE'OO
OOF'OO
OOE -00
OOE'OO
f RR
t SE 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
94E 13
OOE'OO
OOE'OO
OOE'OO
OOE '00
OOE'OO
ERR
1 BE 12
OOF'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
FRR
) «F 11
0 OF • (X)
OOF -00
0 OE • 00
OOF'OO
0 01 • Oil
frm
28E 11
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
1 7E 11
OOE'OO
OOE'OO
OOE'OO
OOF'OO
OOE'OO
ERR
3 2E 11
OOE'OO
OOF'OO
OOE '00
OOE'OO
OOE'OO
ERR
flfiF M
001 '00
0 OF • (X)
001 -00
0 Of • 00
OOF •(«)
ERR
5 3F 13
OOE'OO
OOE'OO
OOF'OO
OOE'OO
OOE'OO
FRR
3 3F 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
FRR
8 2E 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
J II 11
ool -oo
0 01 '(X)
out -uo
0 Of • 00
0 OF • 00
FRR
3SE 11
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
FRR
22E 11
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
4 IE 11
OOE'OO
OOE -00
OOf'OO
OOE'OO
OOE'OO
FRR
I MAXIMUM LOCATION
.rsemc
larium
admium
lH.K«l
elentum
llvni
ranida
Ma mum
Ma mum
Ma mum
Ma mum
Ma mum
Ma mum
Max mum
1 2E 11
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
29E 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
1 OE 11
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
2 2E 15
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
FRR
1 4E 11
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
t OE 11
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
1 BE 10
OOF'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
38E 12
OOE'OO
OOE'OO
OOE'OO
DOE '00
OOE'OO
FRR
24E 10
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
( Ul|() HI S
lypif a' lia/.i
ag f "pos
vrq ing
4 nf 08
t « 10
8 If 07
5 ?f 10
34E 10
1 2F 10
( wn
3 7E 08
93E 11
BSE 07
43E 10
2 BE 10
59E 10
FRR
23EOS
58E 11
4 1E 07
2 BE 10
1 7E 10
3 BE 10
ERR
43E08
1 IE 10
7 BE 07
48E tO
32E 10
8 BE 10
ERR
27E07
8 BE 10
4flE08
29E09
1 9E09
40E09
ERR
<(>( til
'd indie PS
ag p. ill
vrg mq
1 ?F OB
41(11
351 0?
36t 10
1 9F 10
49E in
ERR
9 BE 09
33E 11
2 BE 07
29E 10
1 8E 10
40E 10
ERR
80E 09
20E 11
1 7E07
1 8E 10
9 7E 11
25E 10
ERR
1 1E08
39E 11
33E07
34E 10
18E 10
4«E 10
ERR
BSE 08
22E 10
19E06
19E09
10E09
27E09
ERR
lp,ity
vrq ,nq
4 0( 08
1 5t 10
5ftf 07
1 SI 10
1 K 10
6 IF. 10
f RR
33E 08
1 2E 10
4 7E07
1 3E 10
9 7E 11
49E 10
ERR
20E08
75E 11
29E07
79E 11
8 IE 11
3 IE 10
ERR
3 BE 08
1 4E 10
54E07
1 5E 10
1 IE 10
5 BE 10
ERR
23E07
83E 10
32E06
88E 10
see 10
33E09
ERR
root
vrg mq
8BC 12
i sr u
1 3F 09
1 81 11
5 7E 14
1 2F 1?
ERR
7 2E 12
8 IE 14
10E09
1 4E 14
4 BE 14
98E 13
ERR
45E 12
3 BE 14
83E 10
B9E IS
2 BE 14
8 IE 13
ERR
84E 12
7 IE 14
1 2E09
1 7E 14
S4E 14
1 1E 12
FRR
4 BE 11
4 1E 13
8 BE 09
98E 14
3 IE 13
85E 12
ERR
119 enpos
Ililil ing
56F 08
1 4E 10
9 7t 07
8 3E 10
4 1E 10
fl 7£ 10
ERR
45EOB
1 IE 10
79E07
51E 10
33E 10
7 IE 10
ERR
2 BE 08
TOE 11
49E 07
32E 10
2 IE 10
44E 10
ERR
52108
1 3E 10
B IE 07
80E 10
39E 10
82E 10
ERR
32E07
7»E 10
S5E06
35E09
23EOfl
4 BE 09
ERR
ag piot
lluil ing
4 IE 08
1 4E tO
1 2E 08
1 JE 09
8 7E 10
t 7E09
ERR
34EOB
1 IE 10
97E07
1 OE 09
S4E 10
14E09
ERR
2 IE 08
7 1E 11
90E07
82E 10
34E 10
BSE tO
ERR
39E08
1 3E 10
1 IE 08
1 2E09
BSE 10
16E09
ERR
23E07
7 BE 10
BSE 06
87E09
3 BE 09
• 2E09
ERR
'
soil
1114
7 5F 07
48E 10
32E 07
1 BE 09
40E 09
7 BE 10
ERR
8 1E07
39E 10
2 BE 07
1 SE 09
33E09
84E 10
ERR
3 BE 07
24E 10
1 8E 07
91E 10
20E09
39E 10
ERR
7 IE 07
4 BE 10
30E07
1 7E 09
3 BE 09
74E 10
ERR
4 1E 08
2 BE 09
1 7EOfl
9 BE 09
22E 08
42E09
FRR
soil drim
contact
8 7E 14
2 3E 12
79E 14
7 IE 13
99E 14
19E 14
EHH
54E 14
1 9E 12
84E 14
5 BE 13
B IE 14
18E 14
ERR
34E 14
1 2E 12
40E 14
38E 13
SOE 14
B/E tS
ERR
«3E 14
22E 12
75E II
88E 13
94E 14
1 8E 14
FRR
38E 13
1 3E 11
43E 13
39E 12
54E 13
10£ 11
ERR
tntAL
srm VF1
Ml
95E 07
1 IE 09
42E Ofl
4 7E 09
5 BE 09
•S2E09
FRR
7 7E07
8 7E 10
•ME Ofl
3 BE 09
4 7E 09
4 2E09
ERR
4 BE 07
S4E 10
2 lEOfl
24E 09
29E 09
2 BE Ofl
FRR
90E07
1 OE09
40E08
45E09
55E 09
49EM
FRR
S2EOB
S9E09
23E05
2 BE Ofl
3 IE OB
2 BE 08
FRR
OTE
RR = Ruki and HOs can not be calculated lor cyanide because chemical «p«i!ic values c»n nol br e
olume V, Appendix V-20
8
-------
rhrmic.fl
EAST
Ar^emc
Banum
C admiuni
Nickel
Seitfnium
Silver
Cyanide
NORTH
Auenic
Barium
Cadmium
Nickel
Selenium
Silver
Cyanide
SOUTH
Arsenic
Barium
Cadmium
Nickel
Selenium
Silver
Cyanide
WEST
Anenlc
Barium
Cadmium
Nickel
Selenium
Silver
Cyanide
S*.«
East
East
East
Fasl
Easl
East
East
North
North
North
North
North
North
North
South
South
South
South
South
South
South
Weil
West
Weil
Weil
West
Weil
Weil
S( Ml I' H A
ag r.pos
yen ,ng
1 6F 12
OOE '00
OOE'OO
OOf -00
OOF'OO
OOt '00
FRR
t 3E 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
8 1E 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
1 5E 12
OOE'OO
OOF'OO
OOE'OO
OOE'OO
OOE'OO
ERR
';( c MII n
ag p'ol
»*« ">9
4 2E 13
OOE'OO
OOF'OO
OOE'OO
OOE'OO
OOE'OO
FRR
34E 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
2 IE 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
40E 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
»rg ing
1 4E 12
OOE'OO
OOE'OO
ooe-oo
OOF'OO
OOE'OO
ERR
1 IE 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
BBE 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
t 3E 12
OOE'OO
OOF'OO
OOE'OO
OOE'OO
OOE'OO
ERR
10- il
29f 18
OOF'OO
OOF'OO
OOE'OO
OOf -00
OOF '00
FRR
24E 18
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
1 SE 18
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
3 BE IB
OOE'OO
ooe-00
OOE'OO
OOE'OO
OOE'OO
ERR
ag f -pos
1 IE 12
OOF '00
OOF '00
OOF'OO
OOF'OO
0 OF ' TO
FRR
1 1E 12
OOF'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
87E 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
1 2E 12
OOE'OO
OOf -00
OOE'OO
OOE'OO
OOE'OO
ERR
ag pinl
9 7F t J
OOF'OO
OOF -00
OOF'OO
OOE '00
OOF'OO
FRR
79? 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
FRR
4 BE 13
OOE'OO
OOE '00
OOE'OO
OOE'OO
OOE'OO
ERR
S2E 13
OOE'OO
ooe-00
OOE'OO
OOE'OO
OOE'OO
ERR
4 9f 12
001 -'in
oof • on
oo( -no
oof '00
oor 'no
fRM
40E 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
25E 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
4 7E 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
,„,„.„„
< If 1 1
0 nf • (x)
0 or MX)
0 Of M»)
o of • (X)
nof MO
f RR
3 5F 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
FRR
22E 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
4 1E 13
OOE'OO
OOt'OO
OOE'OO
OOE'OO
OOE'OO
ERR
RISK
1 If 1 t
0 i| MX)
C "1 •'«)
o u ••»
001 "XJ
OOE •(»)
F RR
B9E 12
OOE'OO
OOE -OO
OOE'OO
OOE'OO
OOE'OO
ERR
58E 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
1 OE 11
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
MAXIMUM LOCATION
Arsenic
Bailum
Cadmium
Nickel
Selenium
Silver
Cyanide
Maximum
Maximum
Maximum
Maximum
Maximum
Maximum
Maximum
B2E 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
23E 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
7 7E 12
0 OE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
1 BE 15
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
7 BE 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
53E 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
2 7E It
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
24E 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
8 1E 11
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
Si IK II 11 Af'.f f 1(11 0
typii al ha/a>d indices
*g f «po-.
"9 '"»
5 fir on
S 11 11
fl :i o?
401 10
; 6! 10
"i flf in
f RR
29E 08
7 2E 11
50E 07
33E 10
2 IE tO
45E 10
ERR
t BE 08
45E 11
32E 07
JOE 10
1 3E 10
2 BE 10
ERR
33E08
»3E 11
5 BE 07
38E 10
25E 10
S3E 10
ERR
JOE 07
51E 10
3SE08
22E09
1 5E09
3 1E 09
ERR
ag P'ol
•ifq :nq
9 Jf 00
i :( 11
2 'f 07
2sr 10
1 SI 10
161 10
FRR
7 BE 09
2 BE 11
22E 07
23E 10
1 2E 10
3 1E 10
ERR
t 7E09
186 11
1 4E 07
1 4E 10
76E 11
1 9E 10
ERR
89E09
30E 11
28E07
27E 10
1 4E 10
3 BE 10
ERR
5 IE 06
1 7E 10
1 5E 08
15E09
82E 10
21EW
ERR
Ir.lfy
vr<) ,nq
3 or on
1 If 10
4 If 0'
1 2F 10
90t 11
4 5E 10
FRK
24E 08
90E 11
35E07
BSE 11
73E 11
37E 10
ERR
1 5E08
58E It
22E07
5»E 11
45E 11
2 3E-10
ERR
2 BE 08
1 OE 10
40E07
1 1E 10
84E 11
OE 10
ERR
17E07
82E 10
24E08
8«E 10
5 IE 10
2 SEW
ERR
10' )t
*r<) ing
B5F 12
s fir 14
9 ir to
1 If 14
4 2( 14
B9E 11
FRR
53E 12
45E 14
76E 10
1 IE 14
34E 14
73E 13
ERR
33E 12
28E 14
4 7E 10
88E 15
J1E H
45E 13
ERR
82E 12
S3E 14
8 BE 10
1 2E 14
40E 14
BSE 13
ERR
3 BE 11
30E13
S1E09
7 IE 14
23E13
4 BE 12
ERR
ag e*pns
Iruil mg
29F 08
7 4! 11
' 5 1F 07
3 If" 10
22f 10
46E 10
FRR
24E 08
S9E 11
42E07
2 7E 10
1 8E 10
3 7E 10
ERR
1 5E08
37E 11
28E07
1 7E 10
1 IE 10
23E 10
ERR
27E08
89E 11
48E07
31E 10
2 IE 10
43E-10
ERR
1 7E07
42E 10
29E08
1 BE 09
1 2E09
25E09
ERR
ag pfot
fruit ing
2 2E 08
7 IE 11
8 2E 07
64E 10
35E 10
8 BE 10
ERR
18E08
80E 11
51E07
53E 10
2 BE 10
72E 10
ERR
1 1E08
37E 11
3 IE 07
33E 10
1 8E 10
44E 10
ERR
2 IE 08
70E 11
5 BE 07
61E 10
33E10
>4E 10
ERR
12E07
40E 10
34E08
3 SEW
1 BEO«
48E09
ERR
soil
ing
1 1E 07
70E 11
48E 08
2 BE 10
5 BE 10
1 1E 10
ERR
89E08
57E 11
3 BE 08
21E 10
4 BE 10
B2E 11
ERR
55E08
35E 11
23E08
1 3E 10
29E 10
57E-11
ERR
10E07
«7E 11
44E08
25E 10
5 BE 10
1 1E 10
ERR
59E07
38E 10
25E07
1 4E09
32E09
82E 10
ERR
soil drim
contact
44E 14
1 5E 12
5 2E 14
4 7E 13
BSE 14
1 3E 14
ERR
38E 14
1 3E 12
43E 14
39E 13
S4E 14
10E 14
ERR
22E 14
79E 13
28E 14
24E 13
33E 14
8SE IS
ERR
42E 14
1 5E 12
50E 14
45E 13
«3E 14
12E 14
ERR
24E 13
84E 12
2 BE 13
28E 12
3 BE 13
8 BE 14
ERR
TOIAl
SOIL VFi;
Ml
24E 07
45E 10
25E 08
20E09
1 7E 09
2 BE 09
FUR
1 BE 07
37E 10
20E08
1 7E09
1 3E 09
J3E09
ERR
12E07
23E 10
1 3E08
10EOB
84E 10
1 4E09
FRR
2 2E 07
42E 10
24E08
IDEM
1BEOB
27EOB
ERR
1 3E08
2 SEW
1 4EOS
1 IE 08
9 IE W
18EOB
ERR
NOTE
NU(t
ERR = Ri»«« and HQt can not be calculated lor cyanide because chemical ipecilic valuer can not be estimated
\/olume V, Appendix V-20
-------
Chemical
EAST
Aispmc
Banum
Cadmium
Nickel
Selenium
Silver
Cyanide
NORTH
Arsenic
Barium
Cadmium
Nickel
Selenium
Silvw
Cyanide
SOUTH
Arsenic
Banum
Cadmium
Nickel
Selenium
Silnr
Cyanide
WEST
Arsenic
Barium
"admium
Nickel
Selenium
Sitvm
lyanide
Suharea
Fa*
Ex
Eas
Eas
Eas
Eas
Eas
North
North
North
North
North
North
North
South
South
South
Soulh
South
South
South
West
West
Weil
W«it
Aol
Weil
w«st
I.I ' !""
ag r-pos
vrg ing
1 7E 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
FRR
1 4E 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
BSE 13
OOE'OO
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ERR
1 8E 12
OOE'OO
OOE'OO
OOE'OO
OOE'OO
ooe-oo
ERR
ft (K.I.S
ag p'ol
"9 '"9
4tm
contact
2 BE 14
97E 13
33E 14
30E 13
4 IE 14
80E 15
ERR
23E 14
7 BE 13
27E 14
24E 13
34E 14
88E 15
ERR
1 4E 14
4 BE 13
1 7E 14
1SE 13
2 IE 14
4 IE 15
ERR
28E 14
B3E 13
3 IE 14
2 BE 13
3 BE 14
7 7E 15
ERR
15E 13
53E 12
1 BE 13
18E 12
23E 13
44E 14
ERR
1O1AI
son vrci
Ml
1 1E 07
24E 10
1 4E Ofl
1 OE09
7 7E 10
15E09
ERR
BOE08
20E 10
1 1E 08
82E 10
83E 10
1 2E09
ERR
5 BE 08
1 2E 10
BBE07
5 IE 10
3 BE 10
78E10
FRR
10E07
23E 10
1 3E08
BBS 10
73E 10
14EOB
ERR
82E07
1 4E 09
78E08
55EOB
43E09
82E09
FRR
'cHume V; Appendix V-20
10
-------
APPENDIX V-21
Summary of Input Parameters Used in Uncertainty Analysis
Volume V
\^c*~A:.. 17 "II
-------
APPENDIX V-21
Summary of Input Parameters Used in Uncertainty Analysis
Because the uncertainty analysis focuses on the indirect exposure of subsistence farmers
to 2,3,4,7,8-PeCDFand arsenic, the important fate and transport model components are the
constituent concentrations in soil, meat, eggs, milk, and vegetation. In the HHRA. the
surface water, sediment, fish, and mother's milk model components were not found to be
significant contributors to exposure for this population subgroup, and thus the input
parameters associated with these model components are not included in this analysis.
The ranges of the possible values for the relevant input parameters are summarized in
Table IX-1 of Chapter DC. The rationale for the selection of the ranges are discussed below.
While ranges are defined based on available data or guidance to the extent possible, scientific
judgment is used to estimate conservative ranges where appropriate data or guidance are
unavailable. As discussed in Chapter IX, these ranges are estimated to represent the 95
percent confidence interval.
A. Chemical and Physical Properties
• Henry's Law constant (H)
2.3.4.7.8-PeCDF: The Henry's Law constant of 6.2 x 10~6 atm-m3/mol for
2.3,4,7,8-PeCDF (U.S. EPA 1994a), which is calculated from the chemical's vapor
pressure/water solubility (VP/WS) ratio (Lyman et al. 1990), is used as the most
likely value of H. Vapor pressures estimated for PeCDF congeners range from
2.0xlO~12 to 5.7xlO~i: atm (U.S. EPA 1994a), spanning a factor of about three.
Only one value is reported for the water solubility of PeCDFs; however, values for
other dioxin and furan congeners have ranges spanning about one order of
magnitude (U.S. EPA 1994a). Therefore, the Henry's Law constant for 2,3,4,7,8-
PeCDF is assumed to be accurate over a factor of approximately 30, from 8.Ox 10"7
to 2.4X10"5 atm-m3/mol.
Arsenic: Arsenic is assumed to have a Henry's Law constant of zero (i.e.,
nonvolatile).
Volume V
Annenrliv V-"M
-------
• Octanol/water partition coefficient (K0J
2.3.4.7.8-PeCDF: The only value of log Kw reported by U.S. EPA (1994a) for
2,3.4.7,8-PeCDF of 6.92 (Sijm et al. 1989), which corresponds to a value for A",,,, of
8.3X106, is used as the most likely value of log K^.. Values have been reported for
log K^ for other PeCDF congeners ranging from 6.19 to 6.79 (Sijm et al. 1Q8Q).
Thus, the range of log K^, values for all PeCDF congeners spans a factor of about
one, which corresponds to a range of about an order of magnitude for K^ values.
Because the value of log K<,w for 2,3,4,7,8-PeCDF is the upper limit of the range of
values for all PeCDF congeners, the value of K^ for 2,3,4,7,8-PeCDF is
conservatively estimated to range over two orders of magnitude, ranging from
4.2xlO5 to 4.2X107 (which corresponds to values of log Kou. ranging from 5.t> to
7.6).
Arsenic: Value not required for modeling.
• Organic carbon adsorption coefficient (K^.)
2.3.4.7.8-PeCDF: Values for K^- are based on the following relationship with the
octanol/water coefficient (Kw) (U.S. EPA 1993, 1994a):
logA'oi. = log Km- 0.21 (V-21-1)
This regression equation is based on data collected for ten chemicals by Karickhoff
et al. (1979), and is recommended for chemicals with high Kow values. Using the
range for log K^ of 5.6 to 7.6. K^ ranges from 2.5 x 105 to 2.5 x 107 L/kg, with a
most likely value of 5.1 x 10" L/kg (using log K^ =6.92).
Arsenic: Value not required for modeling.
• Soil/water distribution coefficient (Kd,)
2.3.4.7.8-PeCDF: For organic compounds, Kds is calculated as follows (U.S. EPA
1993, 1994a):
A< = (AJ(OCJ (V-21-2)
where OCSO|1 is the fraction of organic carbon in soil and K^ is calculated from the
relationship with Kw given by equation (V-21-1). Using the range for log K^ of
5.6 to 7.6 and a range for OCsoll of 0.010 to 0.016 (USDA SCS 1968. 1974, 1981.
Volume V
Annendiv V-?l
-------
1982. 1983, 1989). Kds ranges from 2.500 to 4.0 xlO5 L/kg. with a most likeh
value of 6.6 xlO4 L/kg (using OCsoiI=0.013 and log Kw=6.92).
Arsenic: The most likely value for Kds for arsenic is 200 L/kg (Baes et al.
This value of Kds is estimated by Baes et al. (1984) to be uncertain o\er three
orders of magnitude, which corresponds to a GSD of 5.62. Assuming this range
represents the 95 percent confidence interval of a lognormal distribution, the
geometric mean is estimated to be 45 L/kg, ranging from 1.4 to 1.400 L/kg.
• Diffusion coefficient (Da)
2.3.4.7.8-PeCDF: Measured values for D, are not available for dioxin-like
compounds. Therefore, U.S. EPA (1994a) estimates values based on the square
root of the ratio of the molecular weight of each dioxin-like compound and diphenvl.
a compound for which Da is available (Thibodeaux 1979). Using this method, the
value of D, for 2,3,4,7,8-PeCDF is 0.047 cm2/sec. Based on professional judgment.
the uncertainty associated with this approximation is estimated to be a factor of two.
The value of Da for 2.3,4,7,8-PeCDF is therefore assumed to range from 0.023 and
0.1 cnr/s.
Arsenic: Value not required for modeling.
B. Emissions and Atmospheric Transport
• Emission rate
2.3.4.7.8-PeCDF: As discussed in Chapter En of Volume IE, emission rates can be
variable depending on the operating conditions and waste feed composition. Based
on data collected during the February 1994 trial burn (four test runs) and the 22
performance test runs conducted between August 1993 and August 1994, emission
rates of 2,3,4,7, 8-PeCDF ranged from 9.0X1Q-11 to 1.5xlO~9 g/sec, with a most
likely value of 4.7 x 10~10 g/sec. Because of the wide variety of operating
conditions used, this range is assumed to be an adequate characterization of the
range of emission rates. The upper limit of this range is multiplied by a correction
factor ranging in value from 1.0 to 1.5 to account for the possible presence of
brominated compounds, as discussed in Chapter IX.
Arsenic: The most likely value for the emission rate of arsenic is 3.7x 10~5 g/sec
(Chapter HI of Volume HI). This emission rate is estimated to vary over an order
Volume V
Annendix V-^1 *>
-------
of magnitude (Appendix EQ-1 of Volume ED). which corresponds to a GSD of 1.78.
Assuming this range represents the 95 percent confidence interval of a lognorma!
distribution, the geometric mean is estimated to be 2.7xlO~5 g/sec. ranging from
8.4xlO~6to 8.4X10'5 g/sec.
Atmospheric dispersion
2.3.4.7.8-PeCDF: Dispersion factors relating emissions from the WTI incinerator
to ambient concentrations at the receptor site are developed using the dispersion
model ISC-COMPDEP. A series of sensitivity tests of the model predictions to a
range of inputs was performed to assess the response of the model to uncertainties in
the model input parameters (Chapter V of Volume IV). Based on an analysis of
these sensitivity tests and the performance of other similar steady-state Gaussian
models, it is estimated that the uncertainty of the annual average concentration
predictions from ISC-COMPDEP is a factor of four. Therefore, the dispersion
factor for 2,3,4,7,8-PeCDF of 0.914 (/xg/m3)/(g/s) at the location of maximum
vapor intake is assumed to range from 0.23 to 3.66 (jig/m3)/(g/s).
Arsenic: The dispersion factor for arsenic is estimated to be accurate to within a
factor of four, based on the sensitivity testing of the ISC-COMPDEP model and
previous evaluation studies with the ISC and COMPLEX I models (Chapter V of
Volume IV). Therefore, the dispersion factor for arsenic of 0.0155 (^g/m3)/(g/'s) at
the location of maximum wet deposition is assumed to range from 0.0039 to 0.062
Wet and dry deposition
2.3.4.7.8-PeCDF: Deposition factors are developed relating ambient concentrations
at the receptor site to the wet and dry deposition fluxes. The wet deposition factors
discussed in Chapter II of Volume IV are maximum values. The actual peak values
could range to as low as one tenth this value. For reasons discussed in Chapter IV
of Volume IV, the wet deposition algorithm is likely to overestimate near-field wet
removal rates and, therefore, wet deposition fluxes. This is due to the use of
scavenging coefficients that implicitly include the effects of both below-cloud and in-
cloud scavenging, whereas, near the stack, only below-cloud scavenging occurs
under most conditions. To estimate an upper limit for this maximum wet deposition
factor, the uncertainty in the ISC-COMPDEP model (factor of four) is used.
However, this is considered very conservative because the wet deposition algorithm
is likely to have a bias toward overprediction of wet deposition fluxes in the near
Volume V
Annpnrliv V-'' 1
-------
field, where the peak deposition is predicted to occur. For wet deposition, the
deposition factor for 2,3,4,7,8-PeCDF of 0.0245 (g/m:-yr)/(g/s) is assumed to range
from 0.00245 to 0.098 (g/nr-yr)/(g/s).
Dry deposition factors are estimated to be accurate to within a factor of fi\e. A
series of sensitivity tests evaluating the sensitivity of the deposition fluxes to model
inputs (e.g., particle size distribution, land use assumptions) show variations from
the base case results that are within this factor. For dry deposition, the deposition
factor for 2,3,4,7,8-PeCDF of 0.00515 (g/m2-yr)/(g/s) is assumed to range from
0.00103 to 0.026 (g/nr-yr)/(g/s).
Arsenic: The same uncertainty factors used for 2,3,4,7,8-PeCDF are assumed to be
applicable for arsenic. The dry deposition factor for arsenic of 1.2 x 10~4 (g/nr-
yr)/(g/s) is assumed to be accurate to within a factor of five, ranging from 2.4x 1(T5
to 6.0xlO~4 (g/m2-yr)/(g/s). The maximum predicted wet deposition factor for
arsenic of 0.221 (g/nr-yr)/(g/s) is assumed to range from 0.0221 to 0.884 (g/nr-
yr)/(g/s).
• Vapor/particle partitioning fraction ()
2.3.4.7.8-PeCDF: No specific data for were found for 2,3,4,7,8-PeCDF.
Therefore, using the theoretical approach of Junge (1977) as recommended by
Bidleman (1988). the most likely value for A 1994a), which is used for
the range for 2,3,4,7,8-PeCDF.
Arsenic: Arsenic is assumed to exist entirely in the paniculate phase (i.e., 0=1.0).
• Wind speed (u)
According to airport wind speed data used in this risk assessment (Vreeland 1994),
wind speeds typically range from 1 to 10 m/sec, with a most likely value of 4.1
m/sec.
• Air temperature (T)
Based on regional soil surveys (USDA SCS 1968, 1974. 1981, 1982. 1983. 1989).
^*
the air temperature in the site vicinity typically ranges from 265 to 301 K, with a
most likely value of 293 K.
Volume V
Annenriiv V-'M
-------
• Viscosity of air (/*„)
The average temperature at the site is 293 K, which corresponds to an air viscosit\
of 1.82xlO~4 g/cnr-s (Perry and Green 1984). For temperatures ranging from 265
to 301 K, the viscosity of air ranges from 1.68xlO~4 to 1.86xlO~4 g/cnr-s.
• Density of air (pa)
The average temperature at the site is 293 K, which corresponds to an air densiu of
1.20xlO~3 g/cm3 (Perry and Green 1984). For temperatures ranging from 265 to
301 K. the density of air ranges from 1.18xlO"3 to 1.33 xlO~3 g/cm3.
C. Soil Concentration
• Soil bulk density (BD)
Based on regional soil surveys (USDA SCS 1982, 1983, 1989). the site-specific
value of BD is estimated to be 1.31 g/m3, ranging from 1.10 to 1.55 g/m3.
• Fraction organic carbon in soil (OC8oU)
Based on regional soil surveys (USDA SCS 1968, 1974, 1981, 1982, 1983. 1989).
the site-specific value of OCSOI] is estimated to be 0.013. ranging from 0.010 to
0.016.
• Average annual precipitation (P)
Based on regional soil surveys (USDA SCS 1968, 1974, 1981, 1982. 1983. 1989).
the site-specific average annual precipitation is 95 cm/year, ranging from 87 to 101
cm/year.
• Average annual irrigation (I)
The site-specific value of I is estimated to be 28 cm/year (Jarrett 1994). During a
normal crop season, the irrigation need for the area could be as low as 11 cm/year.
an upper limit on the range for I is estimated to be 40 cm/year (Jarrett 1994).
• Average annual runoff (RO)
The site-specific value for the annual average surface water runoff is estimated to
be 25 cm/year (Jarrett 1994). The annual average surface wajter runoff for Ohio is
estimated to range from 12 to 38 cm/year (Geraghty et al. 1973).
Volume V
Aooendix V-21
-------
Average annual evapotranspiration (Ev)
The site-specific average potential evapotranspiration is estimated to be 88 cm -year
(Reinke 1994). The average potential evapotranspiration for Ohio ranges from 60 to
90 cm/year (Geraghty et al. 1973). Average annual evapotranspiration is assumed
to be half of the potential evapotranspiration (U.S. EPA 1993).
Soil volumetric water content (65)
Volumetric water content, estimated as the midpoint between a soil's field capacit)
and wilting point, ranges from 0.10 mL/cm3 for very sandy soils to 0.30 mL/cnr lor
heavy loam/clay soils (U.S. EPA 1993). Based on the recommendation of Seiben
(1994), the most likely value used in the risk assessment is 0.25
• Enrichment ratio (E)
Enrichment ratios have been assigned values ranging from 1 to 5 for organic matter.
phosphorus, and other soil-bound constituents of concern (U.S. EPA 1994a. 1^93)
Based on EPA guidance (U.S. EPA 1994a, 1993), a value of 3 is selected as the
most likely value in the risk assessment.
• Erosivity factor (R)
Annual values for the rainfall/erosivity index range from < 50 for the arid western
United States to 300 or 400 for the Southeast (U.S. EPA 1994a, 1993). A value of
125, recommended by Moyer (1994), is selected as the most likely value in the risk
assessment.
• Erodability factor (K)
Based on regional soil surveys (USDA SCS 1982, 1983, 1989), the site-specific
value of K is estimated to be 0.34 yr~', ranging from 0.15 to 0.49 yr"1.
• Slope length factor (LS)
LS is a topographic factor that reflects the influence of slope steepness and length of
the field in the direction of erosion, with values ranging from 0.1 for slopes < 1.0 7r
and lengths < 100 feet, to >2.0 for slopes generally > 10% (U.S. EPA 1994a,
1993). Based on EPA guidance (U.S. EPA 1994a. 1993). a range of 0.1 to 2.0 is
assumed for this analysis, with a most likely value of 0.20.
Volume V
Annendix V-21
-------
• Cover management factor (C)
The cover management factor reflects how vegetative cover and cropping practices
influence erosion, and range from 0.1 for areas with dense vegetative cover to a
maximum of 1.0 for bare soils (U.S. EPA I994a. 1993). Based on EPA guidance
(U.S. EPA 1994a, 1993), the most likely value is set at 0.3. which is recommended
for rural settings.
•to1-
• Supporting practice factor (P,)
The supporting practice factor reflects the use of surface conditioning, dikes, or
other methods to control runoff/ erosion, and has a value of 1.0 when no such
practices are employed (U.S. EPA 1994a, 1993). The uncertainty analysis
conservatively assumes Ps to be constant at 1.0, given a lack of information
suggesting that any supporting practices are used in the area.
• Soil loss due to degradation (ksg)
2..3.4.7.8-PeCpF: The degradation soil loss constant of 0.0693 yr"1 recommended
by U.S. EPA (1994a) for 2,3,4,7,8-PeCDF corresponds to a degradation half life of
10 years. Fries and Paustenbach (1990) report that half lives for TCDD could be as
long as 20 years. Therefore, estimating the degradation half life to be uncertain b\
a factor of 2, the values of ksg that correspond to half lives of 5 and 20 years are
0.139 and 0.0347 yr~l. respectively.
Arsenic: It is assumed that arsenic does not degrade in soil (i.e.. ksg=0).
• Root concentration factor (RCF)
2.3.4.7.8-PeCDF: The root concentration factor is calculated from a correlation
with Kw (U.S. EPA 1993. 1994a), which was developed by Briggs (1982) for
lipophilic compounds (i.e.. log Kw >2.0):
logtfCF = 0.771ogA^-1.52 (V-21-3)
Assuming log Kow ranges from 5.6 to 7.6, RCF ranges from 620 to 21,500 L/kg for
2,3,4,7,8-PeCDF, with a most likely value of 6,400 L/kg (using log K^ =6.92).
Arsenic: The value for RCF of 0.008 L/kg recommended by'U.S. EPA (1994b) is
used as the most likely value. Estimating the uncertainty for arsenic to be
comparable to that of 2.3,4,7.8-PeCDF, the values of RCF are assumed to range
Volume V
Annpnrliv V-'M
-------
over a factor of 35. which corresponds to a GSD of 2.43. Assuming this range
represents the 95 percent confidence interval of a lognormal distribution, the
geometric mean is estimated to be 0.005, ranging from 0.0009 to 0.032.
D. Meat, Eggs, and Milk Concentrations
The following parameters are required to determine the constituent concentration in beef.
pork, chicken, eggs, and milk.
• Soil bioavailability (Bs)
From studies measuring the oral bioavailability of TCDD in soil in the diet of rats.
the bioavailability of soil is reported to range from 0.5 to 0.8 (U.S. EPA 1994a),
Because no other data were available for the bioavailability of PeCDF in soil in the
diet of cattle, the same range is adopted in this assessment, with a most likely value
of 0.65 (U.S. EPA 1994a).
• Fraction of beef that is fat
According to data reported by Pennington (1989), the average fat content of beef
(including brisket, chuck, flank, ground, ribs, round, shank, short loin, and wedge-
bone sirloin) is 0.23, ranging from 0.12 to 0.35.
• Fraction of milk that is fat
The most likely value for the fat content of milk is assumed to be 0.02 (U.S. EPA
1994a). The value of fat^ is assumed to range from 0.002 (skim milk) to 0.037
(whole milk) (Pennington 1989).
Fraction of pork that is fat
According to data reported by Pennington (1989), the average fat content of pork
(including arm picnic, bacon, boston blade, center loin, center rib, ham, leg, loin.
loin blade, rump, sausage, shank, shoulder, sirloin, spareribs, and top loin) is 0.23,
ranging from 0.050 to 0.35.
Fraction of chicken that is fat (fatcbickM))
According to data reported by Pennington (1989), the average fat content of chicken
(including light and dark meat) is 0.058, ranging from 0.015 to 0.12.
Volume V
Aooendix V-21
-------
Fraction of eggs that is fat
The most likely value for the fat content of an egg is assumed to be 0.08. based on
data reported by CalEPA (1993). McKone (1993). and Goldman et al. (1989)
Other estimates of fat content have been reponed as high as 0.11 (Pennineton l^S^i
Therefore, assuming 0.11 represents the upper bound, the lower bound is estimated
to be 0.05.
Animal tissue bioconcentration factors (BCF)
2.3.4.7.8-PeCDF: McLachlan et al. (1990) reported the only measured value of
BCF for 2,3,4,7,8-PeCDF, 3.1, which is used as the most likely value. Values are
reponed for other dioxin-like compounds in beef and milk fat ranging from 0.05 to
5.7 (U.S. EPA 1994a; McLachlan et al. 1990; Fries and Paustenbach 1990; Jensen
and Hummel 1982; Jensen et al. 1981; Arstilla et al. 1981; Parker et al. 1980;
Firestone et al. 1979). with lower chlorinated congeners generally having higher
values of BCF than higher chlorinated congeners. Taking this association of
decreasing bioconcentration ratios with increasing chlorination into consideration.
the range of BCF values reported for tetra-, penta-, and hexa-chlorinated dioxins and
furans, from 0.73 to 5.7, is selected to represent the estimated uncertainty in the
BCF value for 2,3,4,7.8-PeCDF in the fat content of beef, milk, pork, chicken, and
eggs.
Arsenic: Value not required for modeling.
Animal tissue biotransfer factors (Ba)
2.3.4.7.8-PeCDF: Value not required for modeling.
Arsenic: Baes et al. (1984) and Ng (1982) provided the only available estimates of
the ingestion-to-beef biotransfer factor for arsenic of 0.002 day/kg, which is used as
the most likely value for BabMf. The GSD of the arsenic biotransfer factors is not
reponed, however, GSDs for other elements range from 1.3 to 3.8. Therefore, the
GSD of Babeef for arsenic is conservatively estimated to be 3.8. which corresponds to
a geometric mean of 8.2 x 10~4 and values for Babecf ranging from 5.7 x 10"5 to
0.012. For milk and other animal tissues, most likely biotransfer factors that have
been reported are 6.0xlO~5 for milk (Baes et al. 1984). 0.0037 for pork. 0.2011 for
chicken, and 0.2615 for eggs (Belcher and Travis 1989). The same GSD is assumed
for Ba in milk and other animal tissue groups, resulting in the following geometric
means and ranges: GM = 2.5xlO~5 and range = 1.7x 10~6 to 3.6xlO"4 for milk:
Volume V
Appendix V-21
-------
GM =0.0015 and range = 1. 1 x!0~4 to 0.022 for pork: GM =0.082 and
range=0.0057 to 1.2 for chicken; and GM=0.11 and range=0.0074 to 1.5 for
eggs.
Plant and soil diet fractions of animals (DFpu,
The diets of beef cattle, dairy cattle, hogs, and chicken consist of various
proportions of forage, grain, silage, and soil.
For beef cattle, reported soil ingestion rates range from 1 to 18% of dr> matter
intake, which is 1 to 15% of total intake, with a typical value of 3% (U.S. EPA
1990a, Thorton and Abrams 1983). Therefore, forage, grain, and silage compose
the remaining portion of the diet. Typical diets for beef cattle reportedh consist of
72% forage, 4% grain, and 21% silage (U.S. EPA 1990a, Ensminger 1976).
Generally, soil ingestion is inversely related to the availability of forage (Fries and
Paustenbach 1990). The higher soil ingestion rates likely occur under poor pasture
conditions with sparse vegetation, whereas periods of lush plant growth are
associated with low soil intake. Because beef cattle often subsist on diets that are
largely forage (Fries and Paustenbach 1990), the upper limit of the forage diet
fraction is assumed to be 99%, with a soil diet fraction of 1 %, in which case the
lower limits of the silage and grain diet fractions would both be 0%. Under poor
pasture conditions or for various dietary considerations, the lower limit of the forage
diet fraction is estimated based on professional judgment to be one third (33%),
approximately a factor of two lower than the typical value of 72%, with the soil
ingestion increasing to its maximum value of 15%, and the balance of the diet
comprised of an increase from the most likely value in either the silage or grain
fractions (i.e., either 4% grain and 48% silage or 31 % grain and 21 % silage). The
higher silage diet fraction corresponds to periods of short growing seasons and low
rainfall; the higher grain diet fraction corresponds to periods of beef cattle fattening
(Fries and Paustenbach 1990. NRC 1984). In summary, for beef cattle, the diet
fractions are assumed to range from 33 to 99% forage, 1 to 15% soil. 0 to 31 %
grain, and 0 to 48% silage.
Dairy cattle generally do not graze to the extent that beef cattle do, partly
because high-producing cows are unable to meet their energy requirements when
pasture is their main food source (Bath et al. 1985). Therefore, a 99% upper bound
forage diet fraction for dairy cattle is not likely. Typical diets for dairy cattle
fr*
reportedly consist of 64% forage, 15% grain, and 19% silage, with the remaining
2% intake being soil (U.S. EPA 1990a). Reported soil ingestion rates range from 1
to 7% of total intake, with a typical value of 1% for lactating dairy cows and 4%
Volume V
Annendix V-71
-------
for nonlactating cattle (U.S. EPA 1990a. Fries et al. 1982a). Because of the lou.
cost of pasture grass and the high nutritive value of grain, it is unlikely that the diets
of dairy cattle are completely devoid of either roughage or grain (Bath et al. 1985.
NRC 1978). Therefore, based on professional judgment, the lower limits of the
forage and grain diet fractions are estimated to be 30% and 1%. respective!).
approximately a factor of two lower than the typical values. For nutritional reasons.
grain does not generally exceed 50% of the total diet (Stallings 1995). The
maximum forage diet fraction is estimated to be 92% by assuming all other diet
components are at their minimum values. The maximum silage diet fraction is
estimated to be 56% by assuming forage and grain are at their minimum values and
soil is at its maximum value (assuming soil and forage ingestion are inverse!)
related). In summary, for dairy cattle, the diet fractions are assumed to range from
30 to 92% forage, 1 to 7% soil, 7 to 50% grain, and 0 to 56% silage.
Hogs and poultry are not grazing animals, and are assumed not to eat forage.
Reported soil ingestion rates for hogs range from 2 to 7% of total intake (U.S. EPA
1993, Fries and Paustenbach 1990, Fries et al. 1982b). Grain reportedly comprises
35 to 80% of the dry matter intake (NRC 1988). with a typical value of 70% (U.S.
EPA 1993). For a soil diet fraction of 2%, the grain diet fraction is assumed to
range from 34 to 78%, and the silage diet fraction from 20 to 64%: for a soil diet
fraction of 7%, the grain diet fraction is assumed to range from 33 to 75%. and the
silage diet fraction from 18 to 60%. In summary, for hogs, the diet fractions are
assumed to range from 2 to 7% soil, 33 to 78% grain, and 18 to 64% silage.
Poultry typically subsist entirely on grain, although free ranging chicken may
also ingest soil. For free ranging chicken, the maximum soil diet fraction is
estimated to be 3% of total intake (U.S. EPA 1993), with the remainder of the diet
comprised of grain. Therefore, for chicken, the diet fractions are assumed to range
from 0 to 3% for soil and from 97 to 100% for grain.
E. Vegetation Concentrations
The following parameters are required to determine the constituent concentration in fruit
and vegetables.
• Fraction of wet deposition that adheres to plant surfaces (Fw)
For organic compounds, the fraction of material retained on vegetation from wet
deposition is estimated based on the measurements of Hoffman et al. (1992) of
particles to three plant types during moderate and high intensity rainfall to range
from 0.32 to 0.79, with an average of 0.60 (U.S. EPA 1995b). Based on the
Volume V
Appendix V-?1 •- . ... ..
-------
measurements of Hoffman et al. (1992) for beryllium. Fw is estimated to range from
0.32 to 0.60. with an average of 0.46.
Length of plant's exposure to deposition (Tp-,)
The Pennsylvania Agricultural Statistics Service (1994) reponed the following ranges
for plant exposure to deposition: 0.123 to 0.329 years for exposed vegetables:
0.247 to 0.329 years for leafy vegetables; 0.096 to 0.150 years for gram; and 0.27
to 0.36 years for forage. For silage, the range is estimated to be 0.042 to 0. 122
years. Typical values are reported in Table IX- 1.
Yield or standing crop biomass (Yp,)
The following ranges for site-specific crop yields are reported in the 1992 Census of
Agriculture (USDC 1993a,b,c): 0.17 to 0.66 kg DW/nr for grain; 0.29 to 0.57 kg
DW/nr for forage; and 2.5 to 3.4 kg DW/m2. For crops for which site-specific
data are not reported, the default ranges reported by Belcher and Travis (1989) are
used: 0.01 to 0.25 kg DW/nr for above ground exposed fruits and vegetables, and
0.09 to 0.35 kg DW/nr for leafy vegetables. Typical values are reported in Table
IX- 1.
Environmental half-life on plant surfaces (t,/2)
The most likely value of the environmental weathering half life is assumed to be 14
days (Fries and Paustenbach 1990). Miller and Hoffman (1983) analyzed 54
measurements of t,/; from 25 studies, ranging from 2.8 to 34 days. These data
include various categories of depositing substances and vegetation growth forms.
Plant/soil bioconcentration factor (Bv or Br)
2.3.4.7.8-PeCDF: Based on a review of bioconcentration factor data for 29 organic
chemicals in vegetation, Travis and Arms (1988) developed the following regression
equation for Br (U.S. EPA 1993, 1994a):
logBr = 1.588 -0.578 log K^ (V-21-4)
Assuming log Kow ranges from 5.6 to 7.6, Br ranges from 0.0016 to 0.022, with a
most likely value of 0.0039 (using log 1^=6.92).
/•••
Arsenic: For arsenic. Baes et al. (1984) report the most likely values of the
plant/soil bioconcentration factors for vegetative (Bv) and non vegetative/ reproductive
Volume V
Appendix V-21
-------
(Br) portions of food crops and feed plants to be 0.04 and 0.006. respective!) .
Available plant and product elemental concentration data for arsenic (Baes et al.
1984. Shacklette et al. 1978, Vinogradov 1959) show values of Bv ranging from
0.01 to 0.05 and Br ranging from 0.006 to 0.78.
Volumetric air-to-leaf biotransfer factor (Bvol)
2.3.4.7.8-PeCDF: Bvol is correlated with K^ and the Henry's Law constant (U.S.
EPA 1993, 1994a):
logBvo/ = l.OeSlog/^-log A -1.654 (V-21-5.
This correlation is based on data for 14 chemicals collected by Bacci et al. (1990.
1992). Assuming log Kw ranges from 5.6 to 7.6 and H from 1.2xlO"6 to
1.2xlO~5 atm-m3/mol, Bvol could range from 8.66xl07 to 1.17xlOn. with a most
likely value of 1.95X109 (using log Kw=6.92 and H=6.2xlO~6 atm-m3/mol).
Arsenic: Value not required for modeling.
F. Dose Parameters
Intake of Beef
The intake of beef by subsistence farmers is estimated from a 1987-88 USDA
national food consumption survey to range from 27 to 251 g/day (USDA 1993,
1982). These values correspond to the 5th and 95th percentile consumption rates.
respectively, as calculated by the methodology described in Chapter VTI.
Intake of Milk
The intake of milk by subsistence farmers is estimated from a 1987-88 USDA
national food consumption survey to range from 20 to 712 g/day (USDA 1993,
1982). These values correspond to the 5th and 95th percentile consumption rates.
respectively, as calculated by the methodology described in Chapter VTJ.
• Intake of Pork
The intake of pork by subsistence farmers is estimated from a- 1987-88 USDA
national food consumption survey to range from 5 to 127 g/day (USDA 1993,
Volume V
Appendix V-21
-------
1982). These values correspond to the 5th and 95th percemile consumption rates.
respectively, as calculated by the methodology described in Chapter vn.
Intake of Chicken dRchi<.kel,)
The intake of chicken by subsistence farmers is estimated from a 1987-88 USDA
national food consumption survey to range from 18 to 125 g/day (USDA 1^3.
1982). These values correspond to the 5th and 95th percentile consumption rates.
respectively, as calculated by the methodology described in Chapter Vn.
Intake of Eggs
The intake of eggs by subsistence farmers is estimated from a 1987-88 USDA
national food consumption survey to range from 8 to 61 g/day (USDA 1993. 1982)
These values correspond to the 5th and 95th percentile consumption rates.
respectively, as calculated by the methodology described in Chapter VH.
• Intake of Vegetables (IRAGexpo, IRAGpro,, IR^,
The intake of vegetables by subsistence farmers is estimated from a 1987-88 USDA
national food consumption survey to range from 63 to 708 g/day (USDA 1993.
1982). This includes the consumption of above ground exposed (21 to 234 g/day).
above ground protected (10 to 113 g/day), leafy (8 to 92 g/day), and root (24 to 26Q
g/day) vegetables. These values correspond to the 5th and 95th percentile
consumption rates, respectively, as calculated by the methodology described in
Chapter VH.
• Intake of Fruits (IRFexpo, IRFpro()
The intake of fruit by subsistence farmers is estimated from a 1987-88 USDA
national food consumption survey to range from 42 to 471 g/day (USDA 1993,
1982). This includes the consumption of exposed (18 to 198 g/day) and protected
(24 to 273 g/day) fruit. These values correspond to the 5th and 95th percentile
consumption rates, respectively, as calculated by the methodology described in
Chapter VII.
• Ingestion of Soil (IR.oU)
Based on the results of soil exposure models and extrapolations from soil ingestion
&*
data for children, soil ingestion rates for adults are estimated to range from 0.025
g/day under most conditions to 0. 100 g/day for people who are in direct contact
with contaminated soil (LaGoy 1987).
Volume V
Annendix V-'M i c
-------
• Body Weight (BW)
Data and cumulative probability distributions for body weight for over 20.000 adults
and children (ages 6 months to 74 years) were collected during the second National
Health and Nutrition Examination Survey (NHANES n), conducted between JQ7b
and 1980. For adult male and female (combined) body weights (ages 18 to 75). the
values corresponding to the 5th and 95th percentiles are 52 and 97 kg. respecmeh
(AfflC 1994, U.S. EPA 1990b).
G. References
American Industrial Health Council (AIHC), 1994. Exposure factors sourcebook.
Washington, DC. May.
Arstilla, A. U., G. Reggiani, T. E. Sovari, S. Raisanen, and W. K. Wipf. 1981.
Estimation of 2,3,7,8-tetrachlorodibenzo-p-dioxin in goat milk. Toxicol. Lett. 9:215-
219.
i
Bacci. E., D. Calamari, C. Gaggi, and M. Vighi. 1990. Bioconcentration of organic
chemical vapors in plant leaves: Experimental measurements and correlation. Environ.
Sci. Technol. 24:885-889.
Bacci, E., M. J. Cerejeira, C. Gaggi, G. Chemello, D. Calamari, and M. Vighi. 1992.
Chlorinated dioxins: Volatilization from soils and bioconcentration in plant leaves.
Bulletin of Environmental Contamination and Toxicology 48(3):401-408.
Baes. C. F., m, R. D. Sharp, A. L. Sjoreen, and R. W. Shor. 1984. A review and
analysis of parameters for assessing transpon of en\ironmentallv released radlonuclides
through agriculture. ORNL-5786. Oak Ridge. TN: Oak Ridge National Laboratory.
September.
Bath, D. L.. F. N. Dickinson, H. A. Tucker, and R. D. Appleman. 1985. Dairy cattle:
Principles, practices, problems, profits. Third edition. Philadelphia, PA: Lea &
Febiger.
Belcher. G. D. and C. C. Travis. 1989. Modeling support for the rural and municipal
waste combustion projects: Final repon on sensitivity and uncertainty analysis for the
Terrestrial Food Chain Model. Contract No. DE-ACO5-84OR214CO. Oak Ridge, TN:
Oak Ridge National Laboratory.
Bidleman, T. F. 1988. Atmospheric processes. Environ. Sci. Technpl. 22:361-367.
Volume V
Annendiv V-°1
-------
Briggs. G. G., R. H. Bromilow. and A. A. Evans. 1987. Relationship between hpophiliciu
and root uptake and translocation of non-ionised chemicals by barley. Pesticide Science
13:495-504.
California Environmental Protection Agency (CalEPA). 1993. CalTOX. A multimedia iota!
exposure model for hazardous waste sites, DRAFT. Office of Scientific Affairs.
Department of Toxic Substances Control. Sacramento, CA. June.
Ensminger, M. E. 1976. Beef cattle science. Fifth edition. Danville. IL: Interstate.
Firestone. D., M. Glower, A. P. Borsetti. R. H. Teske. and P. E. Long. 1979.
Polychlorodibenzo-jp-dioxin and pentachlorophenol residues in milk and blood of cows
fed a technical pentachlorophenol. J. Agric. Food Chem. 27:1171.
Fries. G. F. and D. J. Paustenbach. 1990. Evaluation of potential transmission of 2.3.7.8-
tetrachlorodibenzo-p-dioxin-contaminated incinerator emissions to humans via foods. J.
Toxicol. Environ. Health 29:1-43.
Fries, G. F., G. S. Marrow, and P. A. Snow. 1982a. Soil ingestion by dairy cattle. J.
Dairy- Sci. 65:611-618.
Fries, G. F., G. S. Marrow, and P. A. Snow. 1982b. Soil ingestion by swine as a route of
contaminant exposure. Environ. Toxicol. Chem. 1:201-204.
Geraghty, J. J.. D. W. Miller. F. van der Leeden. and F. L. Troise. 1973. Water atlas of
the United States. Port Washington. NY: Water Information Center.
Goldman. L. R.. D. G. Nayward. J. Flatter;, M. E. Hamly. D. G. Patterson. Jr.. L. L.
Needham, D. Siegel, R. Chang. R. D. Stephens, and K. W. Kizer. 1989. Serum.
adipose and autopsy tissue PCDD and PCDF levels in people eating dioxin contaminated
beef and chicken eggs. Chemosphere 19:841-848.
Hoffman, F. O., K. M. Theissen, M. L. Frank, and B. G. Blaylock. 1992. Quantification
of the interception and initial retention of radioactive contaminants deposited on pasture
grass by simulated rain. Atmos. Environ. 26A(18):3313-3321.
Howard, P. H. (Ed.) 1989. Handbook of environmental fate and exposure data for organic
chemicals. Volume I. Large production and priority pollutants. Lewis Publishers.
Chelsea, Michigan.
Howard. P. H.. R. S. Boethling. W. F. Jarvis. W. M. Meylan. and E. M. Michalenko.
1991. Handbook of environmental degradation rates. Lewis Publishers. Chelsea.
Michigan.
Jarrett, A. 1994. Pennsylvania State University. Personal communication.
Volume V
Appendix V-21
-------
Jensen. D. J. and R. A. Hummel. 1982. Secretion of TCDD in milk and cream following
the feeding of TCDD to lactating cows. Bull. Environ. Contam. Toxicol. 29:440-446.
Jensen. D. J., R. A. Hummel. N. H. Mahle, C. W. Kocker. and H. S. Higgins 1081. A
residue study on beef cattle consuming 2.3,7,8-tetrachlorodibenzo-p-dioxins in grass and
rice. J. Agric. Food Chem. 31:118-122.
Junge. C. E. Basic considerations about trace constituents in the atmosphere as related to the
fate of global pollutants. In Fate of pollutants in the air and water environments. Pan I.
I. A. Suffet, Ed. New York: John Wiley & Sons. pp. 7-25.
Karickhoff, S. W., D. S. Brown, and T. A. Scott. 1979. Sorption of hydrophobic
pollutants in natural sediments. Water Res. 13:241-248.
LaGoy, P. K. 1987. Estimated soil ingestion rates for use in risk assessments. Risk
Analysis 7(3):355-359.
Lyman. W. J., W. F. Reehl, and D. H. Rosenblatt. 1990. Handbook of chemical property
estimation methods: Environmental behavior of organic compounds. Washington. DC:
American Chemical Society.
McKone, T. E. 1993. CAirTOX: A companmeni model for assessing the fate of and human
exposure to toxic-chemical emissions to air. UCRL-CR-115619. Livermore. CA:
Lawrence Livermore National Laboratory. October.
McLachlan. M. S.. H. Thoma, M. Reissinger. and O. Hutzinger. 1990. PCDD/F in an
agricultural food chain. Pan 1: PCDD/F mass balance of a lactating cow. Chemosphere
20:1013-1020.
Miller, C. W. and F. O. Hoffman. 1983. An examination of the environmental half-time
for radionuclides deposited on vegetation. Health Phys. 45(3):731-744.
Moyer. R, 1994. Allegheny County Soil Conservation Service. Personal communication.
October 27.
National Research Council (NRC). 1978. Nutrient requirements of dairy cattle. Fifth
revised edition. Washington. DC: National Academy Press.
National Research Council (NRC). 1984. Nutneni requirements of beef cattle. Sixth
revised edition. Washington. DC: National Academy Press.
National Research Council (NRC). 1988. Nutrient requirements of swine. Ninth revised
edition. Washington, DC: National Academy Press.
Volume V
Appendix V-21
-------
N" Y. C. 1982. A review of transfer factors for assessing the dose from radionuclides in
agricultural products. Nucl. Safely 23:51'-71.-
Parker. C. E.. W. A. Jones, H. B. Matthews. E. E. McConnell. and J. R. Hass. 1Q80.
The chronic toxicity of technical and analytical pentachlorophenol in cattle, n. Chemical
analysis of tissues. Toxicol. Appl. Pharmacol. 55:359-369.
Pennington, J. A. T. 1989. Bowes and Church's food values of portions commonly used.
15th edition. New York: Harper & Row.
Pennsylvania Department of Agricultural (PDA). 1994. 1993-1994 statistical summon and
Pennsylvania Department of Agriculture annual report. PASS-115.
Perry, R. H. and D. W. Green (Eds.). 1984. Perry's chemical engineering handbook. Sixih
edition. New York: McGraw Hill.
Reinke, B. 1994. Midwest Regional Climate Center. Personal communication. November
11.
Seibert. D. 1994. Beaver County Soil Conservation Service. Personal communication.
October 28.
Shacklette, H. T., J. A. Erdman, T. F. Harms, and C. S. E. Papp. 1978. Trace elements
in plant foodstuffs. In Toxicity of heavy metals in the environment. F. W. Dehme. Ed.
New York: Marcel Dekker, Inc. pp. 25-68.
Sijm, D. T. H. M., H. Wever, P. J. de Vries, and A. Opperhuizen. 1989. Octan-1-
ol/water partition coefficients of polychlorinated dibenzo-p-dioxins and dibenzofurans:
Experimental values determined with a stirring method. Chemosphere 19(l-6):263-266.
Stallings. C. 1995. Professor of Dairy Science. Virginia Polytechnic Institute and State
University. Personal communication.
Thibodeaux, L. J. 1979. Chemodynamics: Emironmental movement of chemicals in air,
water, and soil. New York: John Wiley &. Sons.
Thorton, I. and P. Abrams. 1983. Soil ingestion: A major pathway of heavy metals into
livestock grazing contaminated land. 5c/. Total Environ. 28:287-294.
Travis. C. C., and A. D. Arms. 1988 Bioconcentration of organics in beef, milk, and
vegetation. Environ. Sci. Technol. 22(3):271-274.
U.S. Department of Agriculture (USDA). 1982. Foods commonly eaten by individuals:
Amount eaten per day and per eating occasion. Pau, E. M., K. H. Fleming, P. M.
Guenther, and S. J. Mickel. Home Economics Research Report No. 44.
Volume V
-------
U.S. Department of Agriculture (USDA). 1993. Food and nutrient intakes by individuals in
the United States, 1 day, 1987-88. Nationwide Food Consumption Survey Report No.
87-1-1. Human Nutrition Information Service. September.
U.S. Department of Agriculture Soil Conservation Service (USDA SCS). 1968. Soil sune\
of Columbiana County, Ohio.
U.S. Department of Agriculture Soil Conservation Service (USDA SCS). 1974. Soil surve%
of Brooke. Hancock, and Ohio Counties, West Virginia.
U.S. Department of Agriculture Soil Conservation Service (USDA SCS). 1981. Soil survey
of Allegheny County, Pennsylvania.
U.S. Department of Agriculture Soil Conservation Service (USDA SCS). 1982. Soil survey
of Beaver and Lawrence Counties, Pennsylvania.
U.S. Department of Agriculture Soil Conservation Service (USDA SCS). 1983. Soil survey
of Greene and Washington Counties, Pennsylvania.
U.S. Department of Agriculture Soil Conservation Service (USDA SCS). 1989. Soil survey
of Butler County, Pennsylvania.
U.S. Department of Commerce (USDC). 1993a. 1992 Census of Agriculture, Volume 1.
Geographic Area Series, Pan 35, Ohio, State and County Data. AC92-A-35.
U.S. Department of Commerce (USDC). 19935. 1992 Census of Agriculture. Volume 1,
Geographic Area Series, Pan 38, Pennsylvania, State and County Data. AC92-A-38.
U.S. Department of Commerce (USDC). 1993c. 7992 Census of Agriculture. Volume 1.
Geographic Area Series, Pan 48, West Virginia, State and County Data. AC92-A-48.
U.S. Environmental Protection Agency (U.S. EPA). 1990a. Methodology for assessing
health risks associated with indirect exposure to combustor emissions, Interim Final.
Environmental Criteria and Assessment Office. Office of Health and Environmental
Assessment. EPA/600/6-90/003. Cincinnati, OH. January.
U.S. Environmental Protection Agency (U.S. EPA). 19905. Exposure factors handbook.
Exposure Assessment Group. Office of Health and Environmental Assessment.
EPA/600/8-89/043. Washington. DC. March.
U.S. Environmental Protection Agency (U.S. EPA). 1993. Addendum to "Methodology fat-
assessing health risks associated with indirect exposure to combustpr emissions. "
Exposure Assessment Group. Office of Health and Environmental Assessment.
EPA/600/AP-93/003. Washington, DC. November.
Volume V
Aonendix V-">1
-------
U.S. Environmental Protection Agency (U.S. EPA). 1994a. Estimating exposure to dioxin-
like compounds. Volumes I-III. Office of Research and Development EPA'bGO't>-
88/055Ca-c. Washington. DC. June.
U.S. Environmental Protection Agency (U.S. EPA). 1994b. Guidance for performing
screening level risk analyses at combustion facilities burning hazardous wastes. Office
of Emergency and Remedial Response. Office of Solid Waste. Washington. DC April
U.S. Environmental Protection Agency (U.S. EPA). 1995. Further issues for modeling the
indirect exposure impacts from combustor emissions. Memorandum from M. Lorber.
Exposure Assessment Group and G. Rice, Environmental Criteria and Assessment
Office. Office of Research and Development. United States Environmental Protection
Agency. January 20.
U.S. Nuclear Regulatory Commission. 1977. Calculation of annual doses to man from
routine releases of reactor effluents for the purpose of evaluating compliance with JO
CFR Pan 50, Appendix I (Revision 1). Regulatory Guide 1.109, Office of Standards
Development.
Vinogradov, A. P. 1959. The geochemistry of rare and dispersed elements in soils. 2nd
Edition. New York: Consultants Bureau, Inc.
Vreeland, C. 1994. Northeast Regional Climate Center. Personal communication.
November 11.
Volume V
-------