905D95002D
                              REGION 5
Risk Assessment for the Waste Technologies Industries (WTI)
 Hazardous Waste Incinerator Facility (East Liverpool, Ohio)
                DRAFT — DO NOT CITE OR QUOTE
                            Volume IV:
           ATMOSPHERIC DISPERSION AND DEPOSITION
                    MODELING OF EMISSIONS
                                                 MP-108

                                        JK24I996
                                     1200 Sixth Avenue, Seattle, WA 98if
                        Prepared with the assistance of:
                   A.T. Kearney, Inc. (Prime Contractor: Chicago, IL);
  with Subcontract support from: ENVIRON Corp. (Arlington, VA), Midwest Research Institute (Kansas City, MO)
           and EARTH TECH, Inc. (Concord, MA) under EPA Contract No. 68-W4-0006
           NOTICE: THIS DOCUMENT IS A PRELIMINARY DRAFT.
   It has not been formally released by the U.S. Environmental Protection Agency as
     a final document, and should not be construed to represent Agency policy.
           It is being circulated for comment on its technical content.

-------


-------
                               VOLUME IV


                   ATMOSPHERIC DISPERSION
                  AND DEPOSITION MODELING


                                CONTENTS

                                                                         Page

  I.    INTRODUCTION	1-1

       A.    Overview  	 1-1
       B.    External Peer Review	 1-4
       C.    Project Scope	1-4

  II.    TECHNICAL DESCRIPTION OF ISC-COMPDEP	II-l

       A.    Basic Equations and Assumptions	: . II-l
       B.    Dispersion Coefficients	II-3
       C.    Plume Rise  	II-4
       D.    Building Downwash	11-10
       E.    Stack-tip Downwash	11-13
       F.    Dry Deposition of Paniculate Matter . .	11-13
             1. Deposition Velocity Calculation	11-13
             2. Modified Source Depletion	11-17
       G.    Wet Deposition	11-29
       H.    Complex Terrain	11-31
       I.     Treatment of Calm Wind Conditions	11-34
       J.     Treatment of Multilevel, Multistation Meteorological Data	11-35
       K.    Micrometeorological  Parameters	11-38
       L.    Differences Between  COMPDEP and ISC-COMPDEP Model
             Formulations  	11-42

  III.   MODELING INPUT PARAMETERS   	III-l

       A.    Source Data	III-l
             1. Main Incinerator  Stack	III-l
             2. Routine Fugitive  Emission Sources	III-2
       B.    Building Downwash Analysis	III-4
       C.    Meteorological Data  Selection and Processing  	IQ-5
       D.    Receptor Grid	  111-10
       E.    Geophysical Data	  HI-11
             1. Terrain Elevations	  III-ll
Volume IV                                                         External Review Draft
                                       i                          Do not cite or quote

-------
                                   CONTENTS
                                      (Continued)
                                                                                  Page

               2.  Land Use	   III-ll
         F.     Model Options and Switches	   ffl-12

  IV.    DISCUSSION OF MODELING RESULTS  	IV-1

         A.     Base Case Simulations of Incinerator Emissions	IV-2
         B.     Sensitivity Simulations of Incinerator Emissions	IV-5
               1.  Overview of Previous Modeling Results	IV-5
               2.  GEP Stack Height Tests   	IV-7
               3.  Precipitation Tests	IV-7
               4.  Dispersion Coefficient Tests	IV-8
               5.  Calm Wind and Fumigation Simulations	   IV-10
                     a.  Meteorological Data Analysis (April 1992 - March 1993)  . .   IV-12
                     b.  Full Year Application of CALPUFF  	   IV-14
               6.  Terrain Downwash Simulations	   IV-16
         C.     Routine Fugitive Emissions Modeling  	   IV-19
         D.     Uncertainty Analysis	   IV-20
               1.  Limitations of the Technical Formulations  .	   IV-20
               2.  Data Limitations	   IV-22

  V.     SUMMARY AND MAJOR ASSUMPTIONS	V-1

  VI.    REFERENCES  	  VI-1

                                        TABLES

  Table II-1:          Classification of Reported Precipitation
                     Type/Intensity To Precipitation Code  	11-48
  Table II-2:          Model Type Selected For Situation Depicted
                     in Figure II-6  	11-49
  Table II-3:          Values of Net Radiation Constants	11-50
  Table II-4:          Minimum Values  of Monin-Obukhov Length
                     During Stable Conditions for Various Land
                     Use Types   	11-51
  Table III-l:         Stack Parameters  for the WTI Incinerator Stack	   Ill-15
  Table III-2:         * Particle Weight Fractions Observed During Run 2
                     of the WTI Trial Burn Particle Distribution Study
                     March 17,  1993	   111-16
  Table III-3:         Size Distributions of the Pollutant Mass
                     Assumed in the WTI Modeling	   111-17
Volume IV                                                               External Review Draft
                                           ii                             Do not cite or quote

-------
                                    CONTENTS
                                       (Continued)
  Table ffl-4:
  Table m-5:
  Table III-6:

  Table III-7:

  Table IV-1:

  Table IV-2:

  Table IV-3:

  Table IV-4:

  Table V-l:
  Figure II-1:
  Figure II-2:

  Figure II-3:

  Figure II-4:

  Figure II-5:
  Figure II-6:

  Figure II-7:
  Figure II-8:
  Figure II-9:
  Figure ffl-1:
  Figure ffl-2:
  Figure III-3:
  Figure III-4:
Source Characteristics for Fugitive Emission Sources	  ffl-18
WTI Building Information	  ffl-19
Direction-Specific Building Dimensions for the WTI
Main Stack  .	  111-20
Geophysical Parameters Assigned to Each Land Use Type
in the Sensitivity Runs of ISC-COMPDEP	  111-21
Summary of ISC-COMPDEP Modeling Results for the
WTI Main Incinerator Stack  	  IV-24
Summary of WTI Modeling Results  with COMPDEP and
ISC-COMPDEP	  IV-25
Comparison of CALPUFF and ISC-COMPDEP Modeling
Results   	  IV-26
Summary of WTI Modeling Results  with ISC-COMPDEP
Fugitive Emission Sources	  IV-27
Key Assumptions  	V-3


                   FIGURES

Illustration of the initial dilution radius	11-52
Flow near a sharp-edged building in a deep boundary
layer	11-53
Observed deposition velocities as a function of
particle size for 1.5 g/cm density particles	11-54
Wet scavenging coefficient as a function of particle
size	II-55
Comparison of predicted scavenging ratio   	11-56
Cross-section of terrain illustrating positions of
sources and receptors	11-57
Illustration of temperature interpolation/extrapolation	11-58
Illustration of wind speed interpolation/extrapolation	11-59
Illustration of wind direction interpolation/extrapolation	11-60
Plot of particle mass as a function of particle diameter	  111-22
Plot plan of the WTI facility  	  ffl-23
Hourly wind rose for  WTI Site 2, 30-m data, located on-site .  .  111-24
Hourly wind rose for  WTI Site 3, located at the eastern
edge of the property   	  111-25
Volume IV
                                            111
                                                    External Review Draft
                                                      Do not cite or quote

-------
                                   CONTENTS
                                      (Continued)
  Figure ffl-5:        Section from a USGS map that depicts the topography of
                     the area surrounding the WTI site  	  Ul-26
  Figure ffl-6:        Section from a USGS map that depicts the topography of
                     the area surrounding the Beaver Valley Power Station
                     meteorological tower	  HI-27
  Figure ffl-7:        Cross section of terrain (MSL) at the sites of the BVPSMT
                     and WTI meteorological towers	  111-28
  Figure III-8:        Hourly wind rose at Beaver Valley Power Station
                     meteorological tower	 .  111-29
  Figure III-9:        As in Figure III-8,  except that winds less than 2.5 miles
                     per hour are not included  .	  111-30
  Figure 111-10:       Hourly wind rose at Beaver Valley Power Station
                     meteorological tower	  111-31
  Figure III-ll:       Hourly wind rose at Beaver Valley Power Station
                     meteorological tower	  111-32
  Figure 111-12:       Wind rose at Greater Pittsburgh International Airport  	  111-33
  Figure IV-1:        Annual average concentrations (/ig/m3) for the incinerator
                     stack	  IV-28
  Figure IV-2:        Annual wet deposition fluxes (g/m2) for the incinerator stack .  .  IV-29
  Figure IV-3:        Annual dry deposition fluxes (g/m2) for the incinerator stack .  .  IV-30
  Figure IV-4:        Annual total deposition fluxes (g/m2) for the incinerator stack   .  IV-31
  Figure IV-5:        Distribution of lateral turbulence intensity measured at the
                     Beaver Valley tower  	  IV-32
  Figure IV-6:        Frequency of occurrence of calm periods of a given number
                     of hours per day	  IV-33
  Figure IV-7:        Frequency of occurrence of calm conditions by time-of-day  . .  .  IV-34
  Figure IV-8:        Distribution of receptors used hi simulating concentrations
                     with ISC-COMPDEP and CALPUFF	  IV-35
  Figure IV-9:        Annual concentrations (jig/m3) for a unit  emission rate
                     (1 g/s) predicted by applying ISC-COMPDEP with ISC
                     terrain adjustments for all receptors  	  IV-36
  Figure IV-10:       Annual concentrations (^g/m3) for a unit  emission rate
                     (1 g/s) predicted by applying CALPUFF	  IV-37
  Figure IV-11:       Comparison of ISC-COMPDEP  results with U.S.  EPA
                    * FMF wind tunnel results for the flat terrain configuration ....  IV-38
  Figure IV-12:       Comparison of ISC-COMPDEP  results with U.S.  EPA
                     FMF wind tunnel results for "SE" winds	  IV-39
  Figure IV-13:       Comparison of ISC-COMPDEP  results with U.S.  EPA
                     FMF wind tunnel results for "NW" winds	  IV-40
Volume IV                                                                External Review Draft
                                            iv                            Do not cite or quote

-------
                                 CONTENTS
                                   (Concluded)


                                  APPENDICES
  APPENDIX IV-1:   Building Downwash (BPIP) Analysis

  APPENDIX IV-2:   Wind Data Plots

  APPENDIX IV-3:   ISC-COMPDEP Output Files

  APPENDIX IV-4:   ISC-COMPDEP Contour Plots

  APPENDIX IV-5:   Overview of the CALPUFF Non-Steady-State Dispersion Model

  APPENDIX IV-6:   Wind Tunnel Study of Terrain Downwash Effects
  APPENDIX IV-7:
Comments on External Peer Review of the following:
Scientific Peer Review of the ISC-COMPDEP model;
Wind-Tunnel Simulation Study of Terrain Downwash Effects;
CALPUFF and INPUFF simulations of Calm Wind and Fumigation
      Conditions
Volume IV
                                             External Review Draft
                                               Do not cite or quote

-------

-------
                               I.  INTRODUCTION

A.     Overview
       A preliminary risk assessment entitled, "Preliminary Risk Assessment for the WTI
Incinerator Considering Inhalation Exposures to Stack Emissions" (U.S. EPA 1992a), was
prepared for the WTI hazardous waste incinerator by Region 5 of the U.S. EPA.  At the
time of the assessment, both the Industrial Source Complex - Short Term (ISCST) and
COMPLEX I dispersion models were used with off-site meteorological data to assess the
potential health risk due to inhalation exposure to WTI stack emissions.
       In accordance with the "Methodology for Assessing Health Risk Associated with
Indirect Exposure to Combustor Emissions" (U.S. EPA 1990), the "WTI  Phase  II Risk
Assessment Project Plan" (U.S. EPA 1990) (hereafter referred to as Project Plan) was
designed to make extensive use of on-site data hi the calculations of a full multi-pathway
assessment of potential health risks from both stack and fugitive emissions from the WTI
facility. In addition, the Project Plan proposed the use of the COMPDEP model to predict
concentrations and deposition fluxes from stack and fugitive emissions from the  WTI facility.
COMPDEP is a hybrid model consisting of a combination of the modeling techniques in the
COMPLEX I and ISCST dispersion models.
       On December 8 and 9, 1993, a peer review workshop was held hi Washington, D.C.
to discuss the Project Plan.  Four Work Groups were formed to discuss different areas of the
study.  The Meteorology/Air Dispersion Work Group focused on the portions of the plan
dealing with air quality dispersion and deposition modeling.  In reviewing the Project Plan,
the peer review panel made several short-term recommendations to refine and improve the
air modeling for the WTI Risk Assessment and long-term recommendations for future studies
(U.S. EPA 1993b). The short-term recommendations for the WTI study are summarized
below:
       •  Combine site-specific meteorological observations at WTI with data collected at
          the 500-foot Beaver Valley Nuclear Power Station meteorological tower in
          developing an appropriate meteorological data set for the air dispersion modeling;

       •  Refine model predictions by the use of additional local meteorological data,
          especially precipitation data for wet deposition calculations and turbulence
          measurements for dispersion estimation;

       •  Evaluate the effects of calm wind conditions and fumigation on short- and long-
          term concentrations hi and beyond the valley;

       •  Evaluate the short-term concentration increases resulting from process upset
          conditions and accidents;
Volume IV                                                             External Review Draft
                                          I-1                          Do not cite or quote

-------
         •  Evaluate the impacts of fugitive sources of emissions;

         •  Evaluate the effects of terrain-induced downwash effects by conducting a wind
            tunnel study of the WTI site;

         •  Estimate the uncertainty of the model's concentration and deposition predictions
            by conducting sensitivity and uncertainty analyses;  and,

         •  Obtain additional peer reviewer comments on the vapor/particle partitioning of
            pollutants emitted from the facility and the significance of vapor/particle
            transformations.

         In addition, the Peer Review Panel made several long-term recommendations
  including the development of new guidance to ensure the collection of appropriate
  atmospheric measurements to support future risk assessments, the requirement for the use of
  advanced non-steady-state models for these types of studies, the collection of additional
  meteorological data at WTI  to support potential future risk assessments of the facility, and
  the development of a plan to improve our understanding of wet deposition processes and to
  develop improved wet deposition models.
         Concurrent with the development of the  Project Plan, a new model (ISC-COMPDEP)
  was developed to provide a  more refined analysis  of dispersion and deposition from a source
  in complex terrain such as the WTI facility.  The  model was based on the latest version of
  the ISCST2 model (U.S. EPA 1992b) in order to  take advantage of the updated ISCST2 basic
  model structure.  Among the differences between  COMPDEP and ISC-COMPDEP are  the
  inclusion hi ISC-COMPDEP of a new particle dry deposition scheme (U.S. EPA  1994), the
  option to allow receptor-specific land use parameters hi determining dry deposition rates, the
  use of a mass-conserving plume  depletion algorithm (Horst 1983), the ability to treat effects
  of terrain on plume depletion, the inclusion of the Schulman-Scire building downwash
  algorithm for short-stack emissions hi addition to  the Huber-Snyder scheme, a full
  implementation of the EPA  policy on intermediate terrain (defined as terrain between stack
  top elevation and plume height elevation), a generalized wet removal algorithm, an improved
  area source algorithm (U.S. EPA  1992c), and the option to compute short-term peak
  concentrations and deposition fluxes  as well as long-term averages.  ISC-COMPDEP has
  been independently peer  reviewed and is used in the WTI Risk Assessment1.
   1 An early version of ISC-COMPDEP served as a starting point for the new ISC3 model.  The major
differences between ISC-COMPDEP and ISC3 are: (a) ISC-COMPDEP includes the ability to use measured
profiles of winds and temperatures whereas ISC3 does not; (b) ISC3 uses a different form of the aerodynamic
resistance equation in the calculation of deposition velocities; (c) although ISC3 and ISC-COMPDEP both use
the same basic scavenging coefficient approach to calculate wet deposition, ISC3 adjusts the removal rate for
intermittency of the precipitation, while ISC-COMPDEP applies the observed precipitation rate uniformly
through the period during which it was measured.

   Volume IV                                                              External Review Draft
                                             1-2                           Do not cite or quote

-------
       Many of the peer review panel concerns related to the Project Plan are addressed by
the use of ISC-COMPDEP; in fact, additional refinements were made to the model based on
their recommendations.  To simulate the complex atmospheric dynamics of windflow in and
above the Ohio River Valley and adjacent hilly terrain, ISC-COMPDEP allows the use of
meteorological data (wind and temperature) measured at various heights hi the atmosphere
and is executed using both on-site data from WTI and data from the Beaver Valley
meteorological tower. In addition, a version of the model was developed to replace Pasquill-
Gifford horizontal dispersion coefficients (ay) with values based on observed measurements
of turbulence (ae) for calculating dispersion rates.
       To determine the effect of year-to-year variability in precipitation data on wet
deposition, a series of sensitivity test are evaluated using ISC-COMPDEP. In addition,
fugitive sources of emissions and upset or accident-related conditions are assessed to allow
the development of a cumulative assessment of WTI emissions.
       Terrain-induced downwash, like building downwash,  can affect plume dispersion.
Currently, there are no regulatory models that have the capability of assessing the potential
impacts of terrain on ambient concentrations.  To evaluate the effects of terrain induced
downwash at the WTI site, a wind tunnel study was conducted at the Fluid Modeling Facility
hi Research Triangle Park, North Carolina (Snyder 1994). The results of the study (see
Appendix IV-6) are discussed and compared to ISC-COMPDEP modeling predictions.
       For the case of calm wind and fumigation conditions, the basic steady state
assumption used hi ISC-COMPDEP is invalid.  Therefore, when assessing the impact of
these conditions for both short term and long term exposures, a limited application of the
CALPUFF non-steady-state model (Scire et al. 1995) is conducted.  A second non-steady-
state model, INPUFF (Petersen and Lavdas 1986) is  applied hi a separate study to examine
the effects of calm wind conditions in flat terrain.

B.     External Peer Review
       Several components of the WTI modeling application required the use of a  non-
guideline model or a physical model.  To ensure that Region 5 performed these applications
appropriately, the Office of Research and Development (ORD) conducted an external peer
review. The ORD requested the assistance of six experts, both within and outside of the
United States, to perform the peer review. The  reviewers' primary task was to determine the
technical merit of the ISC-COMPDEP model; to determine the technical merit of the
CALPUFF and INPUFF models and their applications; and to determine whether the goals of
the Wind Tunnel Simulation were achieved.   Appendix IV-7 contains the comments of the
external peer review.  Based on the review of these comments, Region 5 has incorporated
several recommendations into the existing application.

Volume IV                                                           External Review Draft
                                          1-3                          Do not cite or quote

-------
C.     Project Scope
       A dispersion and deposition modeling study of stack emissions and fugitive emissions
from the WTI hazardous waste facility are conducted as part of the risk assessment.  A
detailed description of the ISC-COMPDEP model and implementation procedures are
contained in Chapter II.  Chapter HI provides a discussion of the input parameters. Chapter
IV discusses the results of the base case runs, sensitivity tests and uncertainty analysis.
Chapter V provides a discussion of summary and conclusions.
 Volume IV                                                              External Review Draft
                                           I_4                           Do not cite or quote

-------
             H.  TECHNICAL DESCRIPTION OF ISC-COMPDEP

  A.    Basic Equations and Assumptions
        The ISC-COMPDEP model is based on the steady-state Gaussian plume equation for
  continuous sources as used in the ISC2 model (U.S. EPA 19.92b).  For receptors in simple
  terrain, the plume is assumed to be distributed according to a Gaussian distribution hi both
  the horizontal and vertical directions. According to the U.S. EPA definition, simple terrain
  is terrain at or below the elevation of the stack being modeled. The vertical distribution of
  the plume is modified to account for the reflection of the pollutant off the ground and the
  elevated inversion lid (if present). It is also modified to account for depletion of plume
  material due to dry deposition processes (see Section ELF.2).  The effects of plume depletion
  due to wet deposition is accounted for by adjusting the source term as a function of
  downwind distance (see Section II.G).
        The basic Gaussian equation is
                           X =
                                     • vff«
exp
                                                  -1/2
                                                                                 (IM)
  where  Q is the pollutant emission rate (g/s),
        /! is the vertical term (1/m) of the distribution,
         us is the stack height wind speed (m/s),
         a is the standard deviation (m) of the concentration distribution hi the crosswind
         direction,
         az is the standard deviation (m) of the concentration distribution hi the vertical
         direction, and
         y is the crosswind distance (m) from the plume centerline to the receptor.
         The vertical term of the Gaussian equation accounts for reflection off the ground and
  the top of the mixing height.  It is computed as:
Volume IV
                                           II-l
                            External Review Draft
                              Do not cite or quote

-------
                 /i  =  exp
        -0.5
                                    a.
                             exp
-0.5
.  +
                        £1
                        i=r


exp



-0.5


+ exp

r
jj
—


-0.5
r
2



H*
3


+ exp
2





-0.5


+ exp


H
2


-0.5

2


"
ZJ
	



2





                                                                                     (H-2)
  where  he  =  hs  + Ah
         #2 = Zr + (2&, - A.)
         //3 = *r - (2*z,. + h,)
         H4=zr + (2izt + A.)
         zr is the height (m) of the receptor above the local ground level (i.e., a "flagpole"
                height)
         he is the effective height (m) of the plume after accounting for plume rise, stack tip
                downwash, and gravitational settling effects,
         hs is the height (m) of the stack,
         Ah is the rise of the plume (m) above the stack top, and
         zf is the mixing height (m).

         If the effective height of the plume is greater than the mixing height, the plume is
  assumed to be  fully  above the mixed layer, and the ground-level concentration is set equal to
  zero.  Under stable atmospheric conditions, the plume is assumed to reflect only  off the
  ground (i.e., the mixed layer height is considered unlimited).  At large downwind distances,
  and when reflections off the top of the mixing  height are considered, the vertical distribution
  of the plume approaches a uniform distribution. When az/z, > 1.6, the summation hi
  Eqn.  (II-2) is eliminated, andfl/al is replaced by \/2ir~/z. (Turner 1970).
         The calculation of the effective plume height due to momentum and buoyant rise is
  discussed hi Section II. C.  The effect of building downwash on plume rise is described in
  Section II. D.  The modification of the plume height due to stack tip downwash effects and
  gravitational settling effects is discussed  in Section II. E and II. F, respectively.
Volume IV
                                             II-2
                                                       External Review Draft
                                                         Do not cite or quote

-------
         There are a number of important assumptions implicit in the Gaussian plume
  formulation. Among these are the assumptions of steady-state meteorological and
  environmental conditions. The steady-state plume approach does not account for variations
  hi winds, stability, and other meteorological variables occurring over the path of the plume's
  transport.  It does not include plume history or causality effects.  That is, it does not allow
  for a build-up of multiple hours' emissions (e.g.,  during a stagnation event) and it does not
  account for the finite amount of tune it takes for a plume to actually reach a receptor. It
  assumes  that the current meteorologicai conditions existed long enough for the plume to
  reach the receptor, regardless of the source-receptor distance. The steady-state equation also
  assumes  that the plume is bent over by the mean wind. With its inverse wind speed
  dependence, it cannot treat calm wind and very low wind speed conditions.
         The model's treatment of terrain effects is  relatively simplistic. For receptors in
  "complex terrain" (defined as terrain above the plume centerline height), ISC-COMPDEP
  uses the  22.5° sector-averaging approach of the U.S. EPA COMPLEX I model (U.S. EPA
  1993a).  For receptors in  "intermediate terrain," ISC-COMPDEP follows the U.S.  EPA
  recommendation of selecting the higher of the  simple terrain  concentration predicted using
  Eqn. (II-l) or the sector-averaged value of COMPLEX I.  See Section II.H for additional
  discussion of terrain  effects in ISC-COMPDEP.
         In this study,  due to the fundamental limitations of the steady-state approach in calm
  wind conditions,  during stagnation events, and in  inversion breakup-type fumigation
  situations, non-steady-state puff modeling has been performed to evaluate dispersion for these
  conditions (see Section IV.B.5).

  B.     Dispersion Coefficients
         ISC-COMPDEP contains empirical relationships that describe the variation of ay and
  oz as a function of atmospheric stability and  source-receptor downwind distance.  For rural
  environments, the Pasquill-Gifford (PG) curves are used (Turner 1970).  The equation used
  to calculate ay is:
                                 a  = 465.11628 x tan(TH)                         (H-3)
  where TH = 0.017453293 (c - d ln(x)),
         x is the downwind distance (km),
         c, d are empirical factors,  and
         ay is in units of meters.
         U.S. EPA (1992b) provides tables of the factors c and d as a function of stability
  class.  The vertical dispersion parameter, az is calculated as:
Volume IV                                                                  External Review Draft
                                            H-3                             Do not cite or quote

-------
                                         
-------
         g is the acceleration due to gravity (m/s2),
         w is the exit velocity (m/s),
         D is the stack diameter (m),
         Ts is the stack gas exit temperature (K), and
         AT is Ts  - Ta, where Ta is the ambient air temperature (K).
         The momentum flux, Fm (m4/s2) is:
                                     F  = w2D2  L                             (II-8)
         1.  Crossover Temperature — Neutral/Unstable Conditions
               For cases with a stack gas temperature greater than or equal to ambient
         temperature, it must be determined whether the plume rise is dominated by
         momentum or buoyancy.  The crossover temperature difference, (A7)c, is determined
         by matching the momentum and buoyant Briggs plume rise equations, and solving for
         (A7)c.
                                           ...1/3
                                  0.02977 _             R  < 55 m4/s3
                                            ...2/3
                                  0.005757 _           F.  > 55 m4/s3
                                           ' £>l/3            *
         If the difference between the stack gas and ambient temperatures, Ar, is greater than
         or equal to (AI)C, plume rise is assumed to be buoyancy dominated, otherwise plume
         rise is assumed to be momentum dominated.

         2.  Buoyant Rise — Neutral/Unstable Conditions
               For situations where AT exceeds (&T)C as determined above, buoyancy is
         assumed to dominate.  The distance to final rise, xf, is assumed to be 3.5**, where x*
         is the distance at which atmospheric turbulence begins to dominate entrainment. The
         value of xfis calculated as follows:
                Fb  < 55  m«/s>
119F2'5          Fb  > 55  m4/s3
                                                                                (IMO)
Volume IV                                                                 External Review Draft
                                           H-5                            Do not cite or quote

-------
              The final effective plume height, he (m), is:
                       k  = i
                        e
                               h  + 21.425—           Fb <  55 m4/s3
           F
ls  ' -'"•'x ~~r~            * b
                                          F
                               h  + 38.71 —             Fh >  55 m4/s3
        3. Momentum Rise — Neutral/Unstable Conditions
               For situations where the stack gas temperature is less than or equal to the
        ambient air temperature or where (AT) < (A7)c, the plume rise is assumed to be
        dominated by momentum.  The plume height is calculated as:

        Briggs (1969) indicates that this equation is most applicable when the ratio w/us is
        greater than four.

        4.  Crossover Temperature — Stable Conditions
               For cases with a stack gas temperature greater than or equal to ambient
        temperature, it must be determined whether the plume rise is dominated by
        momentum or buoyancy.  The crossover temperature difference under stable
        conditions is:

                                    (AT)C = 0.0195827>v/7                     (n'

        where s = g(d6/dz)/Ta, and 86 Idz is the potential temperature lapse rate (K/m).  The
        default values for 80/dz are 0.020 K/m and 0.035 K/m for stability classes E and F,
        respectively.
               If the difference between the stack gas temperature and the ambient
        temperature, AT, is greater than or equal to (A7)c, plume rise is assumed to be
        buoyancy dominated.  Otherwise, plume rise is assumed to be momentum dominated.

        5.  Buoyancy Rise — Stable Conditions
               For  situations  where AT > (AT)C, buoyancy is assumed to dominate.  The
        distance to final rise,  xf , is determined as:
Volume IV                                                                 External Review Draft
                                           H_6                            Do not cite or quote

-------
                                     xf = 2.0715 _1
        The final plume height, he, is:
                                     he = hs + 2.6
                                                         1/3
                                                                                 (11-15)
        6.  Momentum Rise — Stable Conditions
               Where the stack gas temperature is less than or equal to the ambient air
        temperature or AT < (ATC), the plume rise is dominated by momentum.
                                              1.5
                                                    ujs-
                                                          1/3
                                             (11-16)
         The equation for unstable-neutral momentum rise (Eqn. (11-12)) is also evaluated.
         The value of he that is used as the resulting final plume height is the lower of the two
         estimates.

         7.  Transitional Rise — All Conditions
               Where gradual or transitional rise is to be estimated for unstable, neutral, or
         stable conditions, and if the distance downwind from the source to the receptor, *, is
         less than the distance to final rise, the plume height is determined as:
he = ht
                                               1.6
 1/3  2/3
b X
 u.
                                                                                 (IM7)
         This height will be used only for buoyancy dominated conditions. The value of he
         from Eqn. (11-17) is always compared to the final neutral or stable rise, and the lower
         of the two values is used.
               For momentum-dominated conditions, with neutral or unstable conditions, the
         following equations (U.S. EPA 1992b) are used to calculate a distance dependent
         momentum plume rise:
Volume IV
                                            II-7
                                     External Review Draft
                                       Do not cite or quote

-------
                                                        1/3
                                                                                (IMS)
         where x is the downwind distance (m), with a maximum value defined by x,^ as
         follows:
4D(
                                  w
                             49F,
                                  wu.
                                 5/8
                             119F,
                                  2/5
                                                                   for Fb  =  0
                        for 0 < Fb < 55 m4/s3
                             for FB > 55 m4/s3
                                                                                (11-19)
         Under stable conditions,
                                            3F_
                                                              1/3
                                                   (11-20)
         where x is the downwind distance (m), with a maximum value defined by x^ as
         Q.5irus/Vs.
               The jet entrainment coefficient, fy, is defined as  1/3 + us I w.  As with the
         buoyant gradual rise, if the distance-dependent momentum rise exceeds the
         appropriate neutral or stable final rise, then the final rise is substituted instead.

         8.  Downwash Effects on Plume Rise
               Wind tunnel observations of plume dispersion and plume rise indicate that
         plume rise can be significantly reduced by building downwash.  Huber and Snyder
         (1982) found that during downwash conditions, plume rise was reduced by one-third
         below the value obtained in the absence of the building. In an analysis of plume rise
         observations, Rittmann (1982) found lower plume rise than predicted by the 2/3 law
         (a form of Eqn. 11-17) for smaller sources which are most likely to be affected by
                     v
         downwash. Several studies (e.g., Bowers and Anderson 1981; Scire and Schulman
         1981; Thuillier 1982) with the original version of the ISC building downwash
         algorithm, which did not account for the effects of building downwash on plume rise,
         showed that neglecting building downwash effects on plume rise can significantly
         underestimate peak concentrations during downwash conditions.
Volume IV
                                           II-8
                                           External Review Draft
                                             Do not cite or quote

-------
               The increased mechanical turbulence in the building wake which leads to
        enhanced plume dispersion, causes a rapid dilution of the plume.  This dilution
        reduces the rate of rise of the plume and leads to lower plume heights.  One method
        of treating the initially high dilution rate is to assume an initial "dilution radius" for
        the plume  (Scire and Schulman 1980).  This technique is incorporated hi the Buoyant
        Line and Point Source (BLP) model (Schulman and Scire 1980) and the ISC2 model
        (U.S. EPA 1992b).  It has been shown to produce more realistic estimates of ground-
        level concentrations  during building downwash conditions (Schulman and Hanna,
        1986).
               The plume rise of a downwashed plume with ayo <  aro during neutral-unstable
        conditions is given by:
         where R0 is the dilution radius [R0 =  (2)1/2aJ, ft is the neutral entrainment
         coefficient, and oyo, o^ are the horizontal and vertical dispersion coefficients,
         respectively, at a downwind distance of 3Hb (see Section II. D).  The factor of (2)1/2 hi
         the R0 equation converts the Gaussian dispersion coefficient into an effective top-hat
         distribution for the plume rise calculations.  A top hat distribution assumes that a
         variable (e.g., temperature) has a constant value within the plume and that a second
         constant value applies outside the plume, which leads to a crosswind distribution that
         resembles the shape of a top hat.
         Final stable plume rise is:
3Rz
                           0d
                                                                   6F
                                                                     b
         where ft is the stable entrainment coefficient.  Transitional plume rise during stable
         conditions is computed with Eqn.  (11-21) until the final plume height predicted by
         Eqn. (11-22) is obtained.
               When horizontal mixing of the plume in the building wake causes ayo >  am, it
         is necessary to account for the elongated shape of the plume.  The plume can be
         represented as a finite line source. The plume rise for a line source of length Le
         during neutral-unstable conditions is:

                   z]  + [3Le/(Tft)]^  + [stf^/ft + 6R£e/(v$ +  3Rll\
Volume IV                                                                  External Review Draft
                                            H-9                             Do not cite or quote

-------
        and, for final stable plume rise:

               The effective line length, Le, is (27r)1/2 (ayo - a^) if ayo > a^,.  Otherwise, Le =
        0, and Eqns. (11-23) and (11-24) reduce to Eqns. (11-21) and (11-22).
               As described in Section II. D, the enhanced dispersion coefficients, a^ and 
-------
               of the dispersion coefficients, accounts for the effect of downwash on plume
               rise, and uses wind direction-specific building dimensions.  It is used in ISC2
               and ISC-COMPDEP for stacks lower in height than Hb + 0.5Lb.

         1.  Huber-Snyder Downwash Procedure
               If the stack height exceeds Hb + Q.5Lb, the Huber-Snyder algorithm is applied.
         The first step is to compute the effective plume height, he, due to momentum rise at a
         downwind distance of two building heights. If he exceeds Hb +  1.5Lb (where Hb and
         Lb are the wind direction specific values), building downwash effects are assumed to
         be negligible.   Otherwise,  building-induced enhancement of the plume dispersion
         coefficients is evaluated.  For stack heights, hs, less than 1.2Hb,  both ay and az are
         enhanced.  Only az is enhanced for stack heights above l.2Hb (but  below Hb +
               A building is defined as a squat building if the projected building width, Hw,
         exceeds the building height (i.e., Hw > Hb). A tall building is defined as one for
         which Hw < Hb.  Because both the controlling  building height and projected width
         can vary with wind direction, the classification of a building as squat or tall can also
         vary by direction. For a squat building, the enhanced  az is:

                        az' = 0.7  Hb + 0.067 (x  - 3Hb)    3Hb  <  x  <  10Hb        (H'25)

         where x is the downwind distance (hi meters).
         For a tall building,

                       a'z = 0.7 Hw + 0.067 (x  - 3HW)    3HW <  x  <  1QHW        (H-26)

               If the ratio hs/Hb is less than or equal to 1.2, the horizontal dispersion
         coefficient, ay, is enhanced. For a squat building with  a projected width to height ratio
                 less than 5, the equation for ay is:
                       a'y = 0.35 Hw  + 0.067 (x  - 3Hb)    3Hb < x  <  lQHb       (D-27)

         For buildings with (HJH^ greater than 5, two options are provided for ar
                     \
                       a'y = 0.35 Hb  + 0.067 (x  - 3Hb)    3Hb < x  <  lOHb       C1

         or,

                       a'y = 1.75 Hb  + 0.067 (x  - 3Hb)    3Hb < x  <  lOHb       C1
Volume IV                                                                  External Review Draft
                                           11-11                            Do not cite or quote

-------
               Eqn.  (11-28) results in higher centerline concentrations than Eqn. (11-29), and
         is considered as an upper bound estimate of the impacts of the source.  The ISC2
         manual suggests that Eqn. (11-29) is most appropriate if the source is located within
         2.5Hb of the end of the building. Eqn. (11-28) is a better estimate if the source is
         located near the center of the building.  However, in practice, the more conservative
         Eqn. (11-28) is usually used for regulatory applications regardless of the position of
         the stack.
         For a tall building, the equation for ay is:
                      o'y = 0.35 Hw + 0.067 (r - 3HW)    3HW < x
                                                     (11-30)
         2.  Schulman-Scire Downwash Procedure
               The mam features of the Schulman-Scire algorithm are that the effects of
         building downwash on reducing plume rise are incorporated, and the enhancement of
         az is a gradual function of effective plume height rather than a step function.  In ISC-
         COMPDEP, both schemes use wind direction specific building dimensions.
               The plume rise equations incorporating building downwash effects are
         discussed in Section II.C.  Many studies have shown that plume rise is decreased
         during downwash conditions.  The increased mechanical turbulence in the building
         wake leads to enhanced plume dispersion (reflected in the enhanced dispersion
         coefficients), which causes a rapid dilution of the plume. This dilution reduces the
         rate of rise of the plume and results in lower plume heights.  As discussed in
         Section II. C, the initially high dilution rate is modeled by apply ing an initial "dilution
         radius" to the plume.  The inclusion of downwash effects in the plume rise equations
         is a key part of the Schulman-Scire downwash method.
               The second component of the model is the linear decay function which is
         applied to the enhancement of ar  The vertical dispersion coefficient is determined as:
                                            = A a'
         where az' is determined from Eqns. (11-25) or (11-26), and,
                                                     (H-31)
                     A =
1
(Hb-he)/(2Lb)
0
 he *•
Hb - 2Lb
2L,  <  h
                                                                                  (11-32)
Volume IV
                                           11-12
                                              External Review Draft
                                               Do not cite or quote

-------
        where he is the plume height due to gradual momentum rise at 2Hb.

 E.    Stack-tip Downwash
        If the ratio of the stack gas exit speed to the ambient wind speed is less than 1.5, the
 plume may be drawn into the lee of the stack.  Briggs (1973) suggests modifying the stack
 height to adjust for this stack-tip effect:

                              h, + 2D(w/us  - 1.5)      w/«,  <  1.5      .         (11-33)
                              h                         w/u  >  1.5
                               S                            *

 where h's is the adjusted stack top height,
        hs is the physical stack height,
        w is the stack gas exit velocity,
        us is the stack height wind speed
        In ISC-COMPDEP, an option is provided to allow the stack-tip downwash adjustment
 to be applied when the ratio w/us is less than 1.5.  Stack-tip downwash is not applied when
 the Schulman-Scire downwash model is used,  even if the stack-tip downwash option is
 selected.

 F.    Dry Deposition of Particulate Matter

        1.     Deposition Velocity Calculation
               ISC-COMPDEP uses a resistance model to parameterize dry deposition of
        particulate matter.  The deposition velocity is defined as:

                                          vd  = L                                 (11-34)
                                               X,

        where vd is the deposition velocity  (m/s)
               F is the pollutant deposition flux (g/m2/s), and
               Xs is the pollutant concentration (g/m3)
                     v
               The deposition velocity for particles depends on a larger number of
        parameters, including the characteristics of the surface (e.g.,  surface roughness,
        vegetation type, and amount), atmospheric variables, such as stability and turbulence
        levels in the atmosphere, and pollutant characteristics, such as the size, shape, and
Volume IV                                                                  External Review Draft
                                           U-13                            Do not cite or quote

-------
        density of the particles.  In Figure II-3, the strong relationship between deposition
        velocity and particle size is shown.
               In the resistance model, the deposition velocity for particles is expressed as the
        inverse of a sum of "resistances" plus gravitational settling terms (Slinn and Slinn,
        1980; Pleim et al.  1984):

                                 vd = - \ - + v                         (11-35)
                                       ra + rd + W,    .

        where ra is the  aerodynamic resistance (s/m)
               rd is the  deposition layer resistance (s/m), and
               vg is the  gravitational settling velocity (m/s)
               The resistance model used hi ISC-COMPDEP  is based on that in the ADOM
        model (Pleim et al. 1984) and CALPUFF (Scire et al. 1995). In a study  comparing
        observed and predicted deposition velocities (U.S.  EPA 1994),  the model was found
        to be within a group of the best performing particle deposition models.

               a.  Aerodynamic Resistance
                      The resistances  represent the opposition to transport of the pollutant
               through  the atmosphere to the surface. The aerodynamic resistance is used to
               parameterize the rate of pollutant transfer in a shallow surface layer near the
               ground.  This surface layer rapidly adjusts  to changes in surface conditions.
               Because the vertical fluxes are nearly constant, this layer is also called the
               constant-flux layer.
                      The aerodynamic resistance is obtained by integration of the
               micrometeorological flux-gradient relationships (Wesely and Hicks 1977):
                where,       zr is the reference height ( =10 m),
                             Z0 is the surface roughness length (m),
                             k is the von Karman constant (~  0.4),
                      %
                             «, is the friction velocity (m/s), and
                             \l/H is a stability correction term.
                       The stability correction term accounts for the effects of buoyancy on
                the eddy diffusivity of the pollutant.  It is assumed that the pollutant transfer is
                similar to that for heat (Wesely and Hicks  1977).
Volume IV                                                                   External Review Draft
                                             H-14                             Do not cite or quote

-------
   -5zr IL                                           0 <  zr IL  <  1
   0                                                        zr IL  = 0   (n.37)

   exp[0.598  + 0.391n(-zr/L)  - 0.09o(ln(-zr/L))j  -1  <  zr IL  <  0
              L is the Monin-Obukhov length (m) (see Eqn. 11-110),

b.  Deposition Layer Resistance
       Over very smooth surfaces, a thin non-turbulent layer (i.e., the
"deposition layer") develops just above the surface.  For typically rough
surfaces, this layer is constantly changing and is likely to be intermittently
turbulent.  For this reason, Hicks (1982) calls this layer the "quasi-laminar"
layer.  Under many conditions, the deposition layer resistance, rd, is the
dominant resistance controlling the rate of deposition for particulate matter.
       There are three major mechanisms for the transport of particles across
the deposition layer.  Small particles (<0.1 /tm diameter) are transported
through the laminar deposition layer primarily by Brownian diffusion. This
process becomes less efficient as the particle diameter increases.  Particles hi
the 2- to 20-/nm diameter range tend to penetrate the deposition layer by
inertial  impaction.  The stopping tune, t, defined as the settling velocity
divided by the acceleration due to gravity, is a measure of tendency of a
particle to  impact, and increases with increasing particle diameter.  Particles
larger than 20 /zm are dominated by gravitational settling effects.  Particles in
the range of 0.1- to 2-fj.m diameter range have very small settling velocities
and are not efficiently transported across the deposition layer by either the
Brownian diffusion or the inertial impaction mechanism. As a result, particles
in this size range tend to have  the lowest deposition velocities.
       The deposition layer resistance can be parameterized (e.g., Pleim et al.
1984) hi terms of the Schmidt  number (Sc  = v/D, where v  is the viscosity  of
air, and D is the Brownian diffusivity of the pollutant in air) and the Stokes
number (St = (vg/g)(u*2/v), where vg is the gravitational settling velocity and g
is the acceleration due to gravity).
                   rd =
                                               + 10-3/s')V
                                                                     CD-38)
       The diffusivity of a particle hi air, D, is a function of the particle size.
Smaller particles tend to be more efficiently transported by Brownian motion,
Volume IV
                                             11-15
                                                             External Review Draft
                                                              Do not cite or quote

-------
                and therefore have higher diffusivities.  The Stokes number is a measure of the
                likelihood of impaction of the particle.  It increases with increasing particle
                size.

                c. Gravitational Settling
                       The gravitational settling velocity is a function of the particle size,
                shape, and density.  For spheres, the settling velocity is given by the Stokes
                equation:
                where,        dp is the particle diameter (m)
                              g  is the acceleration due to gravity (~9.8 m/s2),
                              pp is the particle density (g/m3),
                              pg is the air density (g/m3), and,
                              C is the Cunningham slip correction factor for small particles.
                This slip correction factor is given by.

                     C =  1  + (2 X / df) [a, +  a2exp (-a3dp ! X)]                           (H-40)

                where,        X is the mean free path of air molecules (6.5 x lO'6 cm),  and
                              0i,a2,fl3 are constants (1.257, 0.40, 0.55, respectively).
                       Because of the sensitivity of the deposition velocity to particle size, the
                effective deposition velocity is computed for a number of individual  size
                categories, and then weighted by the fraction of mass in each size category.
                The particle size distributions used hi the modeling of the WTI incinerator are
                discussed in Section III. A.I.
                       The particle diameters are usually expressed in terms of aerodynamic
                diameters, rather than physical diameters.  The aerodynamic diameter is
                defined as the diameter of a sphere of unit density (1 g/cm3) that has the same
                gravitational settling velocity as the actual particle with its arbitrary shape and
                density.  Most devices designed to measure particle size distribution (e.g.,
                cascade impactors) report the particle distribution hi terms of aerodynamic
                rather than physical sizes.  One advantage of using the aerodynamic diameter
                is that it implicitly includes the effects of both particle density and shape.
Volume IV                                                                    External Review Draft
                                             H-16                             Do not cite or quote

-------
         2.     Modified Source Depletion
                In the absence of any terrain modifications, the deposition flux is modeled as
         the product of the deposition velocity (vd) and a near-surface concentration, C/zrf),
         where zd is a near-surface height at which the deposition flux and deposition velocity
         are estimated.

                              W = vd Cd (x,zd)                                    (II-4D

         The concentration profile Q(x,z) is a "corrected" form of the concentration profile
         C0(x,z) that is determined in the absence of dry deposition.  Following Horst (1983),
         the crosswind-integrated concentration in the absence of deposition can be written as
                              + 00
                    C0(x,z) =     C(x,y,z)dy =  Q0D(x,z,h)                          (II-42)
         D(x,z,K) is the vertical distribution factor for a plume whose axis is at an elevation h
         above the surface, and is evaluated at an elevation z above the surface.
                Deposition of particles will remove mass from the plume, and most of the
         mass lost will have been removed from the lower portion of the plume.  In Horst' s
         corrected source-depletion model, the mass emission rate (0 is  reduced to recognize
         the mass that is lost from the plume, and the distribution of concentration in the
         vertical is altered by a profile factor that recognizes that most of this mass is removed
         from the lower part of the plume. Call Q(x)/Q0 (< 1) the depletion factor, and call
         P(x,z) the profile factor. Then the "corrected" concentration profile is

                        Cd(x,z) = Q(x)D(x,z,K)  P(x,z)
                                                                                    (11-43)
                                        P(x,z)  C0(x,z)
         The depletion factor is obtained by integrating the deposition flux over the distance
         traveled by the plume:
                                                                                     (11-44)
                              =  -vd Q(x) D(x,zd,h) P(x,zd)
         so that
Volume IV                                                                  External Review Draft
                                            11-17                            Do not cite or quote

-------
                   *~o
                                   X
                                 -J  vdD(x>,zd,h)p(xi,zd)dx>
                                                        (H-45)
         This integral is evaluated numerically in the code.
                The profile factor is more difficult to obtain.  Horst (1993) relates the
         modified concentration profile (Q(x,z)) near the surface to the deposition flux by
         assuming that the deposition flux is constant with height near the surface. This
         requires the deposition flux to be equal to the flux due to turbulence in the layer:
                          vd  Cd(x,zd) = K(z)   - Cd(x,z)
                                                        (11-46)
         where K(z) is the diffusivity (m/s2).
                There is also a flux of particles toward zd due to gravitational settling in the
         layer,  so that a second term involving the settling velocity,  vg, is added to the right
         side:
= K(z) -- Cd(x,z)
                                                    vg Cd(x,z)
(11-47)
         Note that vd already .incorporates the contribution of the settling velocity in depositing
         particles to the surface from z = zd. The second term on the right addresses the
         influence of vg on determining the shape of Q(x,z) that is consistent with the constant
         flux assumption.  Horst solves Eqn. (11-47) for C^x.z):
                        = Cd(x,zd]
                                                        (11-48)
         where
                               R(z,zd) =
                                              dz'
                                                        (11-49)
         R is the atmospheric resistance, a measure of the resistance to pollutant transfer
  through the layer from zd to z.
Volume IV
                                             11-18
                                               External Review Draft
                                                 Do not cite or quote

-------
               Eqns. (11-48) and (11-43) allow the formulation of a similar expression for
         P(x,z):
     D(x,z,K) P(x,z) = D(x,zd,h) P(x,zd)
V — V
1 + "
v*
s (l - e~v>R(z
\x t.
.,>)"
                                                     (11-50)
         In the absence of removal at the surface, concentrations in a layer near the surface are
         independent of height, so that D(x,z,h) = D(x,zd,h) in Eqn. (11-50), and the
         approximate result is:
               P(x,z)  = P(x,zd)
                                                     (H-51)
         An additional constraint conserves the mass flux hi the plume:

                         oo
                         f u D(x,z,K) P(x,z) dz = 1
                                                     (11-52)
         which, when combined with Eqn. (11-51), gives
V^I
                                                         ,z,K) dz
                                                                    -\
                                                     (11-53)
                Horst notes once again that deposition is a near-surface process, so that P(x,zd)
         may be simplified by replacing D(x,z,K) with D(x,z,Q).  He argues that P(x,zd) only
         needs to be accurate when az is of order h (i.e., the plume is hi contact with the
         surface),  and the  switch to h = 0 is a reasonable approximation for this regime.
         When this scheme is used in ISC-COMPDEP, the user should note that concentrations
         obtained at flagpole receptors well above the  surface may not be accurate when dry
         depletion is modeled.  With this simplification,
                          V"  "
   oo
Vg I  (l  -
   i
                                                    u DCx.z.O) dz
                                                                    -i
                                                        (11-54)
         and P(x,z), the profile correction factor, has no dependence on the plume height.
                Horst obtained analytic solutions to the integrals for P(x,z
-------
        for the rural az(x) functions.  A numerical integration was implemented to complete
        the description, and placed in ISC-COMPDEP (see U.S. EPA 1994, for details).
               Although P(x,zJ is independent of h, the plume height still influences the
        deposition flux through D(x,z,h) in Eqn.  (11-43), and so it also influences the
        depletion factor in Eqn.  (11-45).  Therefore, the effect of the settling velocity on the
        height of the plume should be addressed.  Horst points out that the "tilted-plume"
        approximation is typically employed to simulate this settling.  Quite simply,  h is
        replaced by an effective height, he, given by
                       h  = MAX
                                         u
h -  -1 x   ,    0.0
                                                                                     (11-55)
         This essentially allows all particles hi the plume to fall toward the surface at their
         respective settling velocities, regardless of whether the particles are hi the center or
         upper portion of the distribution.  As he approaches zero, the lower part of the plume
         is "reflected" at the surface (in D(x,z,h), not necessarily in
               a.  Deposition/Terrain Interaction
                      When terrain adjustments are made hi either ISC2 (terrain below stack-
               top) or COMPLEX I, a second plume height is used.  Such terrain adjustments
               are strictly local.  Adjustments at adjacent receptors  are unrelated, being
               derived solely on the basis of the elevation of each receptor, relative to the
               plume height, stack height, and stack-base elevation. Although the end result
               on plume height is similar to the plume tilt used to simulate gravitational
               settling, the process differs fundamentally. There is no analogue to the settling
               flux term hi Eqn. (11-47). If there were, both vd and vg would be increased as
               a plume traversed the "front"  side of a hill, and decreased as the plume
               regained its original elevation  beyond the hill.  In fact, deposition velocity may
               decrease through zero on the lee of a hill, which would give rise to an upward
               flux of particles from the surface!
                       Therefore, the terrain adjustments made to the plume centerline
               elevation are viewed as a mechanism to enhance the probability that particles
               may be transported nearer the surface as a plume travels over terrain, thereby
                increasing the likelihood that more particles will reach the deposition layer.
                The deposition velocity is not altered hi this view, but the deposition flux to
                the surface of a hill will increase owing to D(x,z,he).  Furthermore, because
                the depletion factor is explicitly integrated along the plume trajectory, the

Volume IV                                                                   External Review Draft
                                             H-20                             D° not cite or quote

-------
                "history" of terrain upwind of a receptor will alter both the concentration and
                deposition flux predicted at that receptor. In essence, the mechanics of dry
                deposition and plume depletion are transparent to the terrain adjustments, and
                those terrain adjustments alter the predicted flux in exactly the same way that
                they alter the predicted concentrations in the absence of deposition — through
                a simple, effective plume height.
                       Both gravitational settling and terrain adjustments alter the effective
                height of a plume.  The settling, modeled with the "tilted plume"
                approximation, is always computed first.  It is viewed as a physical process.
                Any subsequent terrain adjustments are  applied to the "settled" plume height.

                b.  Gravitational Settling After Plume "Touchdown"
                       The total deposition velocity, vd, includes the flux associated with the
                gravitational settling velocity. The total flux of particles to the surface
                (associated with the dry deposition) is computed at a near-surface height within
                an assumed constant flux layer as the product of vd, the concentration predicted
                in the absence of deposition (C0), the source depletion factor (Q(x)/Q0), and a
                profile correction factor (P(x,zd)) that distributes the loss of material from the
                plume in a manner that approximates the results obtained from the surface
                depletion model for deposition.
                       In addition to augmenting the deposition velocity,  vg  also brings the
                plume as a whole nearer the  surface thereby influencing C0.   Gravitational
                settling causes all particles within the plume to fall, relative  to the local
                (turbulent) velocity field.   For an elevated plume, this process causes the
                center-of-mass to fall (on average) toward the surface at a rate vg.  Because the
                center-of-mass of a Gaussian plume is the plume centerline (h) when az is
                small compared to h, the tilted plume model is typically used to simulate the
                settling process.  In this model, an effective plume centerline height is defined
                               he = h  - (vglu)x                                     (11-56)

                where h is the initial height of a plume of uniformly-sized particles,  and vg is
                the settling velocity for these particles.
                       Horst (1983) points out that this approximation is probably appropriate
                only for h  >  az.  Certainly,  problems of interpretation arise at distances large
                enough to drive he negative.  In the original formulation of ISC2,  Eqn. (11-56)
                is used for all distances, even those that produce negative values of he.  When
                partial reflection coefficients are used, this  leads to a "bouncing" plume result

Volume IV                                                                   External Review Draft
                                            H-21                             Do not cite or quote

-------
               in that the plume centerline appears to fall to the surface, and then rise once
               again. (The exponentials that define the vertical distribution of concentration
               are invariant to a change in the sign of the plume centerline height.) The
               revised deposition algorithms for ISC-COMPDEP avoid this by enforcing
               Eqn.  (11-55), which shuts off the effect of vg on the center-of-mass when he
               becomes zero.  Because the deposition process embodied in vd and P(x,z)
               assumes  that gravitational settling is always active for non-zero  vg, this is not a
               satisfactory  solution to the problem encountered when a tilted plume reaches
               the surface. Also, note that the tilted plume approach is immediately canceled
               when h starts at zero.
                      The  bulk property of the plume that is altered by gravitational settling
               is its  center-of-mass.  As stated above, this is the plume centerline height when
               h > oz.  For h = 0, the center-of-mass is proportional to  az:

                                                                                     01-57)

               Therefore, we can simulate the effect of gravitational settling on the center-of-
               mass of  a plume that is on the surface by modify ing its depth in the vertical,
               or ar  In the absence of gravitational settling,  the center-of-mass of a surface-
               based plume (h  =  0) will  grow hi  proportion to ar With gravitational
               settling,  the rate of growth is diminished by the settling velocity.  Define a
               modified center-of-mass as /zcm'; then
                              d hL    d h
                                          cm
V.
                                     (11-58)
                               dx       dx      u
                This is similar to a differential form of the tilted plume expression hi Eqn. (II-
                56).
                       Plumes will continue to grow in the vertical when particles are small
                enough that dh'Jdx or d/dx(h'cj is positive in Eqn. (11-58).  But for larger
                particles, the plume can shrink hi the vertical.  Rewrite Eqn. (11-58) hi terms
                of az:
                      v
                             do'7    do,    i  ..   va                                  (11-59)
                             dx     dx            u
                value az' is the modified value of az accounting for the effects of settling.
                       If az were a linear function of distance, then the derivatives in Eqn.  (II-
                59) would yield constants, and a modified growth rate would be fixed for all

Volume IV                                                                   External Review Draft
                                             U_22                            Do not cite or quote

-------
               distances beyond x0.  If the growth rate were negative, then az' would
               eventually reach az  = 0.  This would represent a singularity in the Gaussian
               plume formulation, and so it must be avoided. This is done by setting a
               minimum value equal to twice the (small) value used as the deposition
               reference height, zd.
                      For those cases in which az(x) is nonlinear, we note that daz/dx
               typically decreases with distance.  As oz grows larger, its rate-of-growth
               diminishes.  Under the action of gravitational settling  large enough to cause az
               to shrink,  it  is assumed that the az(x) "curve" is followed backwards.  The rate
               of growth is assumed to be a local property, depending only on the value of
               a..  Therefore, as az grows smaller,  daz Idx may increase,  thereby  influencing
                                                                     / - v
               the value of daz'ldx in Eqn. (11-59).  If daz Idx exceeds \lirl2   -1 at some

               value of x, then a balance will be achieved at the  corresponding value of oz,
               and az' will become a constant. The point of balance is defined by

                               t^=^PTV-±                                     (H-60)
                                dx            u

               The equation that governs this process is clarified by rewriting Eqn. (11-59) as
                          (A    do
                         aJ =  — -  expressed in terms of az, not x.

                Integrate Eqn. (11-61) to obtain:
                                 da.
                                              = x +  const                            (11-62)
                and evaluate the constant of integration by demanding that az'(x  = x0)  = am,
                the value of oz at the "touchdown" point.  This will yield an equation for
                distance as a function of az' which must be inverted to obtain az'(x  = x - *0),
                where x0 is the point at which the plume centerline reaches the surface.
                       Curves of az(x) are expressed as a series of piece-wise continuous
                functions of the form ox* in ISCST2 for rural locations (the PGT sigmas), and
                are expressed as continuous functions for urban locations (the Briggs sigmas).
                Because it is necessary to evaluate dajdx = G(a^) hi Eqn. (11-62), the Briggs

Volume IV                                                                  External Review Draft
                                            11-23                            Do not cite or quote

-------
               curves are used for both rural and urban locations, as these produce continuous
               functions of dojdx.  This model is quantitatively the same as ISCST2 for
               x < x0 because Eqn. (11-62) only applies beyond x0; and for larger x, the
               difference in dajdx. between the two rural curves is of secondary importance
               to maintaining the gravitational settling effect.
                      The Briggs curves have four generic forms:

               Case 1
               Rural:        Stability A,B
               Urban:       Stability C
                                 az(x)  = ax                                       (11-63)


                               ^ = a  = G(a\                                     (H-64)
                                dx           v  '

          r      da,               r   da,              i     /	     \
     x =    	:	 + const  =    	—  + const    (K  = Jv/2  vlu)           (11-65)
          J  G(O'Z)-K           ]  a~K             ^                '

               Integrate and match az' = am at x = x0, to obtain

                    oj(x) = (a - fi/2  vs/u) (x - x0) + azo                          (H-66)

               Here it can be seen that a/ is a linear function of x, and az' either continues to
               grow at a reduced rate, or it actually shrinks at a fixed rate if Vg/u is large
               enough.

               Case 2
               Rural:         Stability E,F

                              a. = ax(l  + foe)'1                                     (H-67)
                                z
               daz
    = I (a  -  ba\2  = G(a\       (0 <  a  <  alb]                    (H-68)
dx    a \       zl      \ z/       l      z         '
Volume IV                                                                  External Review Draft
                                           TJ-24                            Do not cite or quote

-------
          x -
-Jl
const
                  ± la - bo}2 - K
                  a v       '
= v/7r/2 vt I K)
                                                                                     (H-69)
                Integrate and match az' = a^ at jc = x0, to obtain
                      -a
                            In
                    2b
                    ((a-ba',) -
                              (11-70)
                Invert to obtain
                                a

                where
                              (a
                                                - Y if  - *.)
                              (a - bazo] + JaK
                                                                                     (H-71)
                                                                         (11-72)
                Eqns. (11-71) and (11-72) are more interesting than Eqn.  (11-66) hi that they
                allow az' to reach equilibrium values where the local turbulent entrainment hi
                the vertical is hi balance with the bulk settling process.
                Case 3
                Rural:
                Urban:
                 Stability C,D
                 Stability D,E,F

                 az(x)  = ax (l  + fee)
                                                -1/2
                                                                                     (11-73)
Volume IV
                                             11-25
                                                                External Review Draft
                                                                 Do not cite or quote

-------
doz
~dx
                                 1 +
                                  2a_
                                  bo.
                         2fl2
                                      2a_
                                      ~ba.
                                                                                   (11-74)
   x  =
-I
+ const
                          2a_
                          bo.
                                        - K
            2a
                 1  +
                              2a
                                             = v/T/2  vs/u)     (II-75)
               Due to the complexity of this integral, an approximate solution to the integral
               is developed by solving for large az and small oz separately, and then matching
               the two solutions.
                Large Limit: G(az > 2alb} =
                                                    2ba.
                                                                                   (11-76)
                  Small Limit:  G(oz  <  2alb]  =
                                                     a
                                                          -» 2
                                                       a
                                                                              (11-77)
                Note that these two forms of G(o^ match at az = 2a/b. Plots of G^a^ versus
                oz show that Eqns. (11-76) and (11-77) provide a very good representation of
                Eqn. (11-74).
                      Develop the complete solution by solving
Volume IV
                                           11-26
                                                                     External Review Draft
                                                                      Do not cite or quote

-------
    X  =
                             dai
                                     + const      (az >  2alb]
                                                           (H-78)
                          2ba,
                                - K
X =
                             dai
                            a
                                    - K
                                         + const      (Oj < 2a/b)
                                                           ai-79)
                             a
                Then demand that az'(x0)  =  aro, using the correct form of solution
                (0^ > 2a/b or om < 2a/b) to determine one of the integration constants.  The
                second integration constant is found by matching the solutions for az' at lalb.
                The result is an implicit equation in oz' for each region:
                                                                                    (E-80)
                     2a/b:
X -<*« - CT* + K(X - Xo) _
                                        ,3/2
                            = In
                                                                 2a
                                                                     - JalK
                                                                        alK
                                                                      (H-81)
                where au and cr^ are constants that depend on the size of am relative to lalb:

                 c,>2a/b:   a  = (a/K)2 JL In
                   *•             *£*   v     '  /-» i
                                                                                     (H-82)
                                             in
                                                     ***
                                                        „,
                                                      2a
                                                           (H-83)
Volume IV
                                            11-27
                                                  External Review Draft
                                                   Do not cite or quote

-------
     Aa =
               and where
 a*
~2bK
                   i  _
                         4K

hi



•\

\
4K
a

In

f

\
                                                                         (H-84)
               Numerical iteration is used to solve these implicit equations for oz'(x — x0).
               The method chosen for this iterates directly on:
                              4= F (az, x - x0)
                                                                        (11-85)
               where F(az', x - *0) is either a natural logarithm function or an exponential
               function, depending on which choice results in the condition for convergence:
                                   dF
                                   da.
                                       < 1
                                                                        (11-86)
               Case 4
               Urban:
                        Stability A,B

                  a.(x) = ax(l  + bx]
                                                                                    (11-87)
               The function G(a^) that corresponds to Eqn. (11-87) involves the solution of a
               cubic equation, which precludes a simple expression for the integral hi Eqn.
               (11-62).  Because the growth of oz is rapid for this case, the settling velocity
               will generally have a small effect on a/.  Therefore,  the feedback embodied hi
               Eqn. (11-62) is neglected, and Eqn. (11-59) is solved Instead to obtain
                       a( = az(x)  - \jfl2  vs (x - X0)Iu
                                                                        (11-88)
                c.  Implementation in ISC-COMPDEP
                     * Adjustments to the mass of the plume, its distribution hi the vertical,
                and the effective az are characterized hi terms of correction factors. This
                allows the effects of dry deposition to be calculated for either simple terrain or
                complex terrain models in one group of subroutines, controlled by a single
                call. This group is isolated from the central commons of ISC-COMPDEP,
                being passed all needed information through its argument-list.  When complex
Volume IV
                                            11-28
                                                                External Review Draft
                                                                 Do not cite or quote

-------
               terrain adjustments are requested by setting a logical variable in the argument-
               list, the COMPLEX I adjustments are made by a subroutine taken directly
               from COMPLEX I.
                      The factor for the effective az is defined as

                                 "ZCOR  - ^D                                      (n-89)

               Likewise, the source depletion factor is defined as
                                  'COR
                                                                                    (11-90)
                and evaluated by Eqn. (11-45).  The profile correction factor was defined in
                Eqn. (11-51):
                      Substantial terrain effects can complicate the integrals needed for QCOR,
                because the local terrain elevation must be known at each point in the integral
                in order to compute the deposition flux. In the simplest application, the local
                terrain elevation is interpolated between that at the source and that at the
                receptor (the end-point of the path of integration).  Terrain for most
                applications is not sufficiently smooth for this type of characterization. For
                example, both the source and receptor may be at nearly the same elevation,
                but the path of integration may encounter a hill between them.
                      To better resolve the influence of terrain on the mass depletion due to
                dry deposition, a file of gridded  terrain elevations may be used in ISC-
                COMPDEP.  The gridded data are interpolated to obtain the elevation at any
                point in  the modeling domain (defined as that rectangular region which
                contains all sources and receptors in the simulation).  The gridded  terrain file
                may be specified on a new pathway (TG), as described in Section III.

  G.     Wet Deposition
         A scavenging ratio approach is used to parameterize the wet removal of gases and
  particles. In this model, the flux of material to the surface is the product of a scavenging
  ratio times the concentration, integrated hi the vertical:
Volume IV                                                                  External Review Draft
                                            H-29                            Do not cite or quote

-------
                                       A C(x,y,z) dz                                (11-92)
  where the scavenging ratio (A) has units of s'1.  Across the plume, the total flux to the
  surface must equal the mass lost from the plume so that
                    --•  COO -  f Fw(x,y) 
-------
  (1980) from observations.  The scavenging coefficients for frozen precipitation are expected
  to be reduced to about 1/3 of the values hi Figure II-4 based on data for sulfate and nitrate.
         National Weather Service (NWS) meteorological stations typically report hourly
  precipitation codes describing the type of precipitation.   ISC-COMPDEP uses this
  precipitation code to determine if the value of X for liquid or frozen precipitation is most
  appropriate. The reported precipitation code is related to precipitation type as shown hi
  Table II-l. The liquid precipitation values are used for precipitation codes  1-18, and frozen
  precipitation for precipitation codes 19-45.  If the precipitation code is missing, the ambient
  temperature, Ta, is used as  a surrogate  (Ta  < 32°F, frozen precipitation is assumed,
  otherwise liquid precipitation is assumed).
         The approach to specifying  the scavenging ratio for particles used hi ISC-COMPDEP
  is similar to that used hi the COMPDEP model (after Bowman et al. 1987). However,
  Bowman et al. group A-values into three particle size ranges, and three precipitation rate
  categories. Therefore, the  linear trend hi A with precipitation  rate is not resolved as well
  since all precipitation rates  within a category use one value.  Furthermore, the default
  COMPDEP scavenging coefficients use a single value of A for all precipitation rates hi the
  largest of the three particle size classes. See Section ILL for a discussion of the differences
  between ISC-COMPDEP and COMPDEP.

  H.     Complex Terrain
         The Environmental Protection Agency (U.S. EPA), through its Office of Air Quality
  Planning & Standards (OAQPS), provides guidance on the application of ah- quality models
  for regulatory purposes.  Several dispersion models are considered "Guideline models" by
  the U.S. EPA (U.S. EPA 1993a),  and results from these models, when properly applied, are
  accepted for use hi decision-making without a site-specific validation program.  Among
  several classifications which are  used to establish the preferred modeling approaches, one is
  the classification of the terrain surrounding a facility that must be modeled.  Terrain is
  considered "simple" if it does not  rise  above the height  at which pollutant plumes are  emitted
  into the atmosphere (i.e., the stack height). Terrain is  considered "complex" if it rises
  above the stack height.  By this definition, the terrain may appear "simple" for some
  sources, and "complex" for others. Because modeling techniques differ for simple terrain
  and complex terrain applications, the U.S.  EPA has determined that the use of either model
  should be decided on a source-by-source and receptor-by-receptor basis.  Receptors located at
  a height below  the stack height for a source are modeled with  the simple terrain model.
  Those located above the effective plume height after accounting for momentum and buoyant
  plume rise are modeled with the complex terrain model.  Receptors that fall between these
  two heights are characterized as  "intermediate," rather than as either simple or complex, and

Volume IV                                                                  External Review Draft
                                            11-31                            Do not  cite or quote

-------
  are modeled with both simple and complex terrain models, and the larger modeled
  concentration used in subsequent analyses and decisions.
        The result of this approach is that the correct model for a particular source and a
  particular receptor  during a particular hour depends on the height of the receptor relative to
  the stack height of the source and the modeled plume height for that hour. Because plume
  rise, and therefore  the effective plume height, depends on meteorological conditions, the
  model selected may change from hour-to-hour.  A further complication: because stack
  heights vary from source-to-source,  the model selected for one source may not be the model
  selected for another. An illustration of how the definition of terrain varies with source and
  plume heights is shown in Figure II-6.
        This figure  shows a cross-section of terrain downwind of two sources.  Ten receptors
  located on the terrain are identified, and the centerline of the plume from each source is
  marked by a solid  line.  These plumes are not deflected by the terrain in this figure,  because
  this schematic only depicts the process of selecting the appropriate model, rather than
  depicting the treatment of plumes within a model. Table II-2 summarizes the choice of the
  appropriate type of model for each combination of source and receptor.  The dotted lines in
  the figure mark the height of each of the stacks.  Receptors 2, 3, 4, and 5 all lie at heights
  equal to or less than the shorter stack, so that concentrations at these receptors are always
  obtained from a simple terrain model, regardless of the calculated plume heights. Receptors
  1 and 6 lie below the  top of the taller stack (Source 1), so that the simple terrain model is
  used to estimate concentrations at Receptors 1  and 6 that are the result of emissions from
  Source 1.  But the concentrations that result from emissions  from Source 2 must be estimated
  by both a simple terrain model and  a complex terrain  model, because these receptors lie
  between stack-top  and plume height (intermediate terrain).  The larger concentration modeled
  at each receptor is retained, and added to the concentration due to Source  1  to obtain the
  total concentration estimate at  Receptors 1 and 6. Receptors 7 and 10 lie above  the plume
  height for Source 2, and so concentrations due to Source 2 are estimated by  the complex
  terrain model.  These receptors lie between stack-top and plume height for Source 1, so
  concentrations due to  Source 1 must be estimated by both the simple and complex terrain
  models, with the larger concentration retained and added to the concentration due to Source 2
  at each receptor. The remaining two Receptors, 8 and 9, lie above the  height of both
  plumes, so concentrations at these receptors are estimated by the complex terrain model.
         Note that the simple terrain model is always used for Receptors 2, 3, 4, and  5; both
  simple terrain and complex terrain models  are used for Receptors 1, 6,  7, and 10, depending
  on which source is being modeled.  For the particular plume heights chosen for  this
  illustration, concentrations at Receptors 8  and 9 are obtained from the complex terrain model
  alone.  Therefore, it is apparent that the use of just a  simple terrain model,  or just a complex

Volume IV                                                                   External Review Draft
                                            JI-32                            Do not cite or quote

-------
  terrain model, at a particular receptor cannot be guaranteed. With the exception of those
  receptors that lie below height of the shortest stack, or those that lie above the height of the
  greatest conceivable plume-height, both models will be needed to implement the procedure
  for estimating concentrations at intermediate terrain heights.
         To streamline the treatment of terrain, and to broaden the application of the modeling
  assumptions,  simple terrain and complex terrain modeling algorithms were combined in ISC-
  COMPDEP, so that the intermediate terrain processing could be completed hi one application
  of the model.  A Guideline model for simple terrain is ISCST2 and a Guideline complex
  terrain model is COMPLEX I. ISCST2 serves as the base for ISC-COMPDEP, so its terrain
  treatment was already hi place.  The COMPLEX I model was  prepared as a  callable module
  or subroutine for use hi ISC-COMPDEP.  The COMPLEX I module in ISC-COMPDEP was
  implemented  in regulatory default mode.  The intermediate terrain processing algorithm was
  embedded hi  ISC-COMPDEP, and one or both terrain algorithms are called  as required.
  The primary differences hi the way these  models simulate the effect of terrain on ground-
  level concentrations are outlined below.

         1.  ISCST2 Terrain Treatment
                ISC is not intended for use hi situations in which receptors are placed on
         terrain that exceeds the height of the "stack."  Any receptors that are found above
         this height are lowered to a height that is 0.005 m below the height of the stack.  This
         is done hourly for each source in the simulation, and is therefore source-specific.
         The mixing height is not adjusted for the presence of any terrain feature, and the
         result  of any downwash calculations does not modify the stack height used to
         determine the height of the receptor.  Once the receptor height is determined, the
         vertical distribution factor contains the difference hi elevation between the centerline
         of the plume and the receptor.  In effect, the centerline of the plume  is lowered by an
         amount equal to the modified elevation of the receptor above the base of the stack.

         2.  COMPLEX I Terrain Treatment
                COMPLEX I is a screening model for use hi complex terrain.  It uses 22.5°
         sector-averaging rather than the Gaussian lateral distribution function, and it employs
         the partial height correction method to simulate the effect of terrain.  The height  of
         the plume  at a receptor depends on the height of the plume  over level terrain (which
         is taken to be the height of the plume above the elevation at the base of the stack
         from which the plume was released), the receptor height (above the base of the stack),
         and the plume path coefficient (which depends on the stability class).  Values for the
         plume path coefficient are typically C = 0.0 for stable (classes E and F), and

Volume IV                                                                External Review Draft
                                           H-33                            Do not cite or quote

-------
        C = 0.5 for the rest (classes A, B, C, and D).  The "half-height" correction model is
        equivalent to C = 0.5.
               Let zs be the elevation of the base of the stack above sea level, and zr be the
        elevation above sea level at the receptor.  Furthermore, let hs be the height of the
        plume at the source, and hr be the height of the plume at the receptor. If the
        elevation at the receptor exceeds the elevation of the centerline of the plume at the
        source,
                                        hr = hs-C                                (H-96)

        If the elevation at the receptor lies below the centerline of the plume at the source,

                                h,-h,- (z, - z,)  • (1 - C)                        OM7)

        In either case,  hr is not allowed to be less than some minimum value, which is
        typically set at 10 m.  Note that zr  ^ zs is assumed hi the above equation, so that the
        terrain-following plume result is obtained (C = 1) if the terrain on which the receptor
        sits lies below  the elevation of the base of the stack.  The mixing height is not altered
        unless C = 0.0,  hi which case the mixing  height is reset to 5000 m to simulate
        unlimited mixing.
               When C = 0.0, the full difference  between the plume height and the receptor
        height is obtained, subject to the specified  minimum.   This gives the appearance of
        keeping the plume level, and is therefore known as the level-plume  treatment.  It also
        results hi sending the plume over all terrain greater than plume height, which is not
        consistent with the behavior of plumes in stably-stratified flows.  Therefore, the
        "400-m correction" factor originally used hi the Valley model  (Burt 1977) is applied.
        This factor, which varies linearly from 1.0 at the plume centerline height to 0.0 at
        400 m above the plume centerline height, is applied to the concentration estimate to
        reduce reported concentrations to zero on all terrain that lies at least 400 m above the
        height of the plume.

  I.  Treatment of Calm Wind Conditions
        Calm conditiqns are typically defined as those periods hi which the  measured wind
  speed is less than 1 m/s.  U.S. EPA guidance (U.S. EPA 1993a) on applying plume models
  suggests that predicted concentrations become unrealistically large when wind speeds less
  than 1 m/s are input to  a plume model, and such predictions are not considered valid.
  Therefore, the procedure adopted by the U.S. EPA is to "skip" all calm hours hi a
  meteorological record when calculating hourly average concentrations, and to remove most
Volume IV                                                                  External Review Draft
                                            11-34                             Do not cite or quote

-------
  such hours from multiple-hour averages (e.g. 24-hour averages).  When an hour is skipped,
  all concentrations  for the hour remain at their initial value: zero.  If the calm hours were
  included hi multiple-hour averages, these zeros would artificially  reduce the magnitude of the
  average for the period, since non-zero concentrations are expected to occur during the calm
  hours.  However,  a minimum number of hours is also set for each averaging period.  These
  are:  18 hi a 24-hour period, 6 hi an 8-hour period, and 3 hi a 3-hour period.  No such
  minimum number of hours is specified for an annual average, so  all calm hours are ignored
  when forming the annual average.  ISC-COMPDEP implements this U.S. EPA-recommended
  procedure.
         As an example of this regulatory scheme to deal with calm winds, assume that 2 days
  in a non-leap-year have calm hours; Day 113 has calms reported  2 hours, and Day 267 has
  23 hours reported as calm (Hours 1-23). The annual average would be the arithmetic
  average of all 8735 concentrations calculated for the non-calm hours.  However, on
  Day  113, the 24-hour average would consist of the arithmetic average of all 22
  concentrations calculated for the non-calm hours hi the day.  However, on Day 267, the 24-
  hour average would consist of the concentration for Hour 24 divided by 18 (the minimum
  number of hours required) because only 6 calm hours hi a 24-hour period may be excluded,
  and the remaining 17 calm hours contribute zero concentrations to the average.

  J.     Treatment of Multilevel, Multistation Meteorological Data
         In response to peer reviewer's comments, changes made to ISC-COMPDEP allow it
  to accept vertical profiles of wind speed, wind direction, and temperature measured at one
  location.  This is a significant departure from ISC2 and COMPLEX I, the component models
  of ISC-COMPDEP, which assume that wind and temperature data are available from only
  one height above the surface, at one location.  Implementation of the vertical profiles allows
  the model to  respond to potential "layered" flow situations hi that plume rise is calculated
  iteratively using the mean wind speed and temperature gradient within the portion of the
  atmosphere through which the plume rises.  (Prior versions of the model use a stability-class-
  dependent temperature gradient, and they extrapolate the wind  speed to stack-top to
  characterize the mean speed for plume rise calculations, using a stability-class-dependent
  power law exponent.) Furthermore, the wind speed used for transport and dilution hi the
  new  version is obtahted at plume height, rather than at stack-top.  The direction of transport
  is obtained at the  final (equilibrium) plume height. However, even with the multilevel
  capabilities,  the plume trajectory in ISC-COMPDEP  is still assumed to be a straight-line
  (i.e., the plume does not respond to changes hi the flow field along its trajectory).
         The changes to ISC-COMPDEP allow vertical layering  hi the temperature and wind
  fields (as resolved by  a nearby instrumented tower) to influence plume rise and transport

Volume IV                                                                 External Review Draft
                                           H-35                           Do not cite or quote

-------
 (both speed and direction). An iterative approach similar to that used in CTDMPLUS (Perry
 et al. 1989) allows the plume rise equations of ISC2 to make use of the average wind speed
 and temperature gradient across the region through which the plume rises.  The iteration is
 done as follows:

               - Interpolate wind speed at stack-top (assign to new variable, UST)
               - Set new variable UMEAN equal to UST (for now)
               - Calculate final plume height (final rise) using stack-top wind speed and  the
                default temperature gradient
               - Perform  iteration

                      •     Calculate a layer-average speed between stack-top and final rise
                            (assign to UMEAN)

                      •     Interpolate T at current estimate of final plume height

                      •     Calculate the mean ddldz from stack-top to final plume height
                            (impose a minimum value of 0.01 deg/m)

                      •     Recalculate final plume height

                      •     Average new and old plume height estimates to obtain final rise

                      •     Calculate a layer-average speed between stack-top and final rise
                            (assign to UMEAN)

                      •     Interpolate  T at current estimate of final rise

                      •     Calculate the mean dO/dz from stack-top to  final plume height
                            (impose a minimum value of 0.01 deg/m)

                      •     Recalculate final plume height and compare with previous  value

                      •     Repeat all steps again until the change in plume height is less
                            than 1% (i.e., until the mean wind speed and temperature
                            gradient are consistent with the plume rise)

  If the iteration fails to find a plume height consistent with the temperature and wind speed
  profiles, an "information" message is sent to the error log, and UMEAN is set equal to
  UST, but the mean temperature gradient from the last iteration is retained (and the final
  plume height is recalculated).  Once the process is completed, the wind  direction  is
  interpolated at final plume height (DIRS).  The transport wind speed (US) is interpolated to
  plume height (transitional or final).
Volume IV                                                                  External Review Draft
                                           H-36                           Do not cite or quote

-------
         The wind at stack-top (UST) is used for stack-tip downwash and building downwash
  calculations,  and for computing transitional rise. The average wind in the layer over which
  the plume rises (UMEAN) is only used in computing the distance to final rise and the final
  rise height (which also limits the transitional rise height).  The wind direction at final rise
  determines the plume transport direction (the wind direction in the file of surface
  meteorological data is used in the direction-specific building downwash calculations).  The
  wind speed (US) at transitional or final plume height,  depending on the receptor location
  (i.e., downwind distance), is used hi the remainder of the code for transport and dilution.
  There is no attempt to segment the plume, allowing it to track changes hi wind direction as it
  rises.  Furthermore, integrations over distance from the source to a receptor, which are
  required for plume depletion due to dry deposition, use the plume height and wind speed
  (US) that are appropriate for the receptor location for  all distances hi the integral.  This is
  consistent with the intuitive expectation that dry deposition is  negligible while the "lower
  edge" of the  plume remains elevated above the surface, as it generally does during
  transitional rise.

         1. Interpolation Methods
                The methods used by ISC-COMPDEP to interpolate and extrapolate
         temperature data  obtained from the observed profile is illustrated hi Figure II-7.
         Within the range  of observed data points (indicated by the asterisks hi the figure), the
         temperature is interpolated linearly.  Beyond the range of the observed points (e.g.,
         below 20 m and above 150 m hi the illustration), the temperature gradient (dT/dz) is
         extrapolated using a straight line fit through the nearest two points.  In the figure, the
         solid lines show the region of interpolation, and the dashed lines show the
         extrapolated region.
                The wind  speed is handled in the same way  as temperature (linear interpolation
         within the range of data points, and extrapolation of the rate of change outside the
         range of data), except for heights less than 10 m (see Figure II-8).  Following the
         convention hi the regulatory model ISC2, wind speeds extrapolated to heights less
         than 10 meters are assigned the 10-meter wind speed value.  That is, the wind speed
         at heights below  10 meters is assumed constant at the value measured at  10 meters or
         extrapolated down to 10 meters from a higher anemometer height.
                Figure II-9 shows the extrapolation of wind  direction data. Within the  vertical
         range of the observed data, the wind direction is interpolated linearly between the
         observed data points.  Above the top observational point and below the lowest
         observational point, the wind directions are persistent at their "edge" values.
Volume IV                                                                   External Review Draft
                                            H-37                            Do not cite or quote

-------
  K.    Micrometeorological Parameters
        Applications of ISC-COMPDEP that do not involve either wet or dry deposition may
  use meteorological data files described in the ISC2 users guide.  For dry deposition,
  additional parameters such as the surface friction velocity («,), Monin-Obukhov length (L),
  and surface roughness length (zj must be added to the meteorological data file; also, wet
  deposition requires an hourly precipitation code, and a precipitation rate (mm/hr).  These can
  be provided by the meteorological processor called DEPMET.  Note that the hourly
  precipitation rate is obtained from running the PMERGE program, which is part of the
  CALPUFF system of processors (Scire et al. 1995).
        DEPMET combines a file of standard meteorological data (for ISCST2) in either
  binary or ASCII form with cloud data (either CD144 format or free format) and precipitation
  data (either binary or ASCII from the PMERGE processor) to estimate the surface heat flux,
  and to provide precipitation rates.  The methods of Holtslag and van Ulden (1983) are used
  to estimate solar radiation and surface sensible heat flux from these  routinely-available
  meteorological data and surface (land use) data.  The Holtslag-van Ulden scheme has been
  implemented into the HPDM model (Hanna and Chang 1991), extensively compared and
  tested with field data (e.g., Hanna and Chang 1992), and has been shown to produce
  reasonable results.  Therefore, the techniques used in the HPDM meteorological preprocessor
  are used to produce the micrometeorological variables required in ISC-COMPDEP.

        1.  Unstable/Neutral Conditions
               The energy balance at the surface can be written as:

                                Q. +  Qf =  Qh + Qe + Qg                       
-------
                                  C3  =
         where  T is the measured air temperature (K),
                A is the albedo,
                a is the Stefan-Boltzmann constant (5.67 x 10'8 W/m2/K4),
                N is the fraction of the sky covered by clouds,
                 is the solar elevation angle (deg.),
                a is an empirical surface moisture parameter, and,
                S is the slope of the saturation enthalpy curve [5 = s/j], where
                      s = d(q,)/d(T) and y =  Cp/L,
                qs is the saturation specific humidity, and,
                cp is the specific heat at constant pressure (996 m2/(s2 K)).

                The four terms in the numerator of Eqn. (11-99) account for absorption of
         short-wave radiation at the surface, incoming long- wave radiation from gaseous
         components of the atmosphere (e.g., water vapor and carbon dioxide),  incoming
         long- wave radiation due to clouds, and outgoing long- wave radiation from the surface,
         respectively. The factor in the denominator (1 + c3),  results from the use of air
         temperature rather than the more difficult-to-determine surface radiation temperature
         in the equation.  The term in the first set of parentheses hi Eqn.  (11-100) represents
         short-wave solar radiation in the absence of clouds.  The second term (1 + fc^V*2),
         accounts for the reduction of incoming solar radiation due to clouds (hi is negative).
         The values for the empirical constants  q, c2, alt a2,  blt and b2 suggested by Holtslag
         and van Ulden (1983) are shown in Table II-3.
                The flux of heat into the ground or storage hi surface materials, Qg, is usually
         parameterized during the day tune as a  fraction of the net radiation (e.g., DeBruin and
         Holtslag, 1982; Oke, 1978).
         where cg is an empirical coefficient which depends on the properties of the surface.
         Holtslag and van Ulden (1983) obtained a value of cg of 0.1 for a grass covered
         surface  hi the Netherlands.  Oke (1982) indicates that  typical ranges for cg are 0.05 to
         0.25 hi rural areas, 0.20 to 0.25 in suburban areas, and 0.25 to 0.30 hi urban regions
         and suggests that typical values  of cg are 0.15, 0.22, and 0.27  for rural, suburban,
         and urban areas,  respectively.  The anthropogenic heat flux, Qf, can usually  be
         neglected, except hi highly urbanized areas.

Volume IV                                                                   External Review Draft
                                            H-39                            Do not cite or quote

-------
       The sensible heat flux, Qh, and latent heat flux are determined by Holtslag and
van Ulden (1983) as:
                 Qh =
                            Qe=
                                                                       (H-104)
where j3' is an empirical coefficient (=20 W/m2).
       Typical values of a, based on empirical data of Holtslag and van Ulden and
summarized by Hanna and Chang (1991) are:
       a = 0.2  (arid rural areas)
       a = 0.5  (urban areas, some parks, crops and fields during mid-summer
             when rain has not fallen for several days)
       a = 0.8  (crops, fields, or forest with sufficient moisture)
       a = 1.0  (normal wet grass hi a moderate climate)
       In neutral and unstable conditions, the following relationship developed by
Wang and Chen (1980) is used hi HPDM and  other models such as MESOPUFF II to
compute the friction velocity.
                           ku
                      ln[(z-d)/zj
                                                                       (11-105)
where
                  0.128  + 0.005 In (z0/z)
                  0.107
ZjZ  < 0.01
zjz  > 0.01
                                                                       (H-106)
                                                                       CH-107)
             = 1.95 + 32.6(zo/z)
                               045
                                                                       (H-108)
                Qh  kgz
                f>cP  Tu\n
                                                                        (11-109)
Volume IV
                                           H-40
                                                                 External Review Draft
                                                                  Do not cite or quote

-------
         The term ^ln(l + d2d3) represents the correction due to instability,
         u*n = ku/[\n(z — d)/z0], k is the von Karman constant ( — 0.4), and d is the
         displacement height (m).
               Hanna and Chang (1990, 1992) tested the analytical formula against values
         produced by the iterative solution of w* and L.  They found that the Wang and Chen
         (1980) expression produced values within 10% of the results determined by the
         iterative solution for z = 10 m, d = 0, Zo  = 1 m, and a large value of Qh
         (400 W/m2).  Better agreement was found  for smaller roughness elements and smaller
         sensible heat fluxes.  In addition, the analytical solution was computationally
         significantly faster.
               The Monin-Obukhov length can then be computed directly from its definition
         once u» is determined from Eqn. (11-105) and  Qh from Eqn.  (11-103).

                                              3 T
                                      L  = ."* IPCP                            (11-110)
         2.  Stable Conditions
                The Weil and Brower (1983) method for estimating u* is used in ISC-
         COMPDEP during stable conditions. A first estimate of the scaling temperature, 6*,
         is calculated using Holtslag and Van Ulden's (1983) equation:

                                   Otl  =0.09(1 -0.5JV2)                        (H-111)

         where N is the total fractional cloud cover and 6* has units of K. Another estimate of
         6, is made from the profile equation for temperature:
                                                                                 (11-112)
                                        *2
         where the neutral drag coefficient C^ is defined as Mn[(z - d)/z0], and 6* is set equal
         to the smaller of 0n and 6^.
               The sensible heat flux, QH, is defined during stable conditions as:

                                      Qh = -pcpute.                            (H-113)

         For large values of u (or «,), 6n (which depends only on cloud cover) is smaller than
         6*2, but an additional check on the product u,0, must be made, since Qh does not keep

Volume IV                                                                 External Review Draft
                                           H-41                            Do not cite or quote

-------
         increasing indefinitely with higher wind speeds.  In HPDM, the value of 6. is not
         allowed to exceed 0.05/w,, where the numerator has units of K m/s and the
         denominator has units of m/s.  This limit is estimated from observations of heat
         fluxes during high-wind, stable conditions.
               The friction velocity, w,, can be calculated from:
u   =
                                            1 -
                                                            1/2
                                                                               (11-114)
         where  «o = (4.1zg6JT)
                                 1/2
         Because 6* is set equal to the smaller of 0n and 0,2, the following condition is always
         met:
                                                                               (11-115)
               During stable conditions, Hanna and Chang (1992) suggest a lower limit on L
         in recognition of the fact that the atmosphere is less stable over urban areas than over
         rural surfaces.  Their suggested values for use for the various land use categories
         defined in the Auer (1978) scheme are shown hi Table II-4.

  L.  Differences Between the COMPDEP and ISC-COMPDEP Model Formulations
         The original project plan called for the use of the COMPDEP model to evaluate
  concentration and deposition fluxes due to emissions from the WTI facility. However, ISC-
  COMPDEP has been developed in a parallel effort, and contains more refined algorithms for
  treating advection,  dispersion, and deposition processes.  Therefore, ISC-COMPDEP has
  replaced COMPDEP hi this risk assessment. A discussion of the most significant differences
  in the models is contained hi Schwede and Scire (1994). Since that paper was written,
  however, addition enhancements have been made to ISC-COMPDEP to address the points
  raised by the peer review panel. In this section, a brief overview of the differences in  the
  current versions of the COMPDEP and ISC-COMPDEP models is provided.
         COMPDEP and ISC-COMPDEP contain many similarities because they were both
  developed to implement U.S. EPA's policy on simple, intermediate, and complex terrain.
Volume IV
                                          11-42
                                              External Review Draft
                                                Do not cite or quote

-------
  Both models use the basic algorithms hi the ISC2 model to evaluate impacts in simple
  terrain.  Both models use the algorithms hi COMPLEX I for complex terrain receptors, and
  they both select the higher of the ISC2 or COMPLEX I estimates for intermediate terrain
  receptors on a hour-by-hour, receptor-by-receptor, and source-by-source basis.  COMPDEP
  and ISC-COMPDEP both contain reasonable sophisticated (but different) dry deposition and
  plume depletion models. They also both contain a wet removal scheme based on a
  scavenging coefficient approach (although it is implemented differently).
        COMPDEP was developed using the COMPLEX I model code as a starting point,
  and a module reproducing the main features of ISC2 was added. ISC-COMPDEP, however,
  used the latest version of the ISC2 model as a starting point.  This  was done to take
  advantage of the features available hi ISC2 but not hi COMPLEX I.  Included in this list are:

               •      urban and rural dispersion coefficients,
               •      volume sources,
               •      new area source algorithm,
               •      flexible output options, including short-term averaging capabilities,
               •      revised building downwash procedures, and
               •      new dry deposition module for paniculate matter.

        As a  result of the developmental history of the models, some of the technical
  algorithms contain differences. These are summarized below.

        1.  Building Downwash
               COMPDEP contains a building downwash algorithm that was used in an older
        version of ISC (Bowers et al. 1979).  It is based of the work of Huber and Snyder
        (1976).  A few years ago, U.S. EPA modified ISC to include the Schulman-Scire
        downwash algorithm for short stacks. (ISC was later re-coded to develop ISC2).  The
        Huber-Snyder scheme is still used for taller (but still sub-Good Engineering Practice
        (GEP) height) stacks.  COMPDEP does not contain the Schulman-Scire downwash
        algorithm, but rather uses the Huber-Snyder scheme for all downwash cases.
        ISC-COMPDEP contains a full implementation of the currently-recommended
        building dowHwash algorithms.  See Section II.D for details.  This difference in the
        models can result hi possible underprediction  of the effect of building downwash by
        COMPDEP for short stacks.  Based on the building analysis, it appears that the WTI
        incinerator would not be affected by this difference in the models. It is high  enough
        to use the Huber-Snyder method.  However, some of the fugitive emission sources at
        WTI  are affected by  building downwash, and they  are short enough that current U.S.

Volume IV                                                                External Review Draft
                                          H-43                           Do not cite or quote

-------
        EPA guidance calls for the use of the Schulman-Scire method.  The impacts from
        these sources could be underestimated with COMPDEP.
               Another difference in COMPDEP and ISC-COMPDEP is that COMPDEP
        allows only one set of building dimensions to be entered. Because they are used for
        all wind directions, usually the worst-case building dimensions are used.  ISC-
        COMPDEP allows direction-specific building dimensions to be entered. The lack of a
        direction-specific building dimension option hi COMPDEP is a conservative feature of
        the model, which could lead to an overprediction of building effects under some
        conditions.

        2.  Dry Deposition
               COMPDEP contains a dry deposition module for paniculate matter based on
        the work of Sehmel and Hodgson (1978) and Sehmel (1980).  This scheme was coded
        by the California Ah" Resources Board (CARB) and is sometimes known as the CARB
        scheme.  The basis for the model is a set of wind tunnel deposition measurements of
        monodispersed particles to a variety of low-roughness length surfaces.  The deposition
        equations  are empirical curve fits of the data, and express the deposition velocity as a
        function of particle size, particle density, surface roughness length, and friction
        velocity.
               The plume depletion scheme hi COMPDEP is a K-theory method based on
        Rao (1981).  It accounts for the removal of the pollutant from the plume at the
        surface, and computes the remaining pollutant mass as a function of upwind removal.
        It can account for particle settling due to gravitational effects. One of the
        assumptions necessary to solve the gradient transfer equation in this method is that the
        dispersion coefficients vary as a function of xm. Since this is not necessarily
        consistent with the empirical dispersion coefficients hi the COMPDEP  model, the K-
        theory scheme does not always conserve mass exactly.  However, in practice for
        many combustion sources such as the WTI incinerator,  mass conservation problems in
        the COMPDEP plume depletion scheme are likely  to be small.
               ISC-COMPDEP uses a resistance-based particle deposition module derived
        from the Acid Deposition and Oxidant Model (ADOM) (Pleim et al. 1984) and
        modified for the CALPUFF model.  It computes gravitational settling, inertial
        impaction, and Brownian motion effects (see  Section II.F.l).  The deposition
        velocities are functions of the particle size, density, surface roughness, friction
        velocity, and atmospheric stability. Both the COMPDEP and ISC-COMPDEP
        deposition schemes produce  qualitatively similar deposition curves as a function of
        particle diameter (see Schwede and Scire 1994). However, their quantitative

Volume IV                                                                 External Review Draft
                                          H-44                           Do not cite or quote

-------
         predictions can be different. Generally (but not always), the COMPDEP scheme
         produces higher deposition velocities in the intermediate size range (0.1 pm diameter
         up to 10 urn diameter). ISC-COMPDEP can produce higher values for very small
         particles (<  -0.05/xm diameter).  The deposition velocities from both models
         approach the gravitational settling velocity as the particle size becomes large.
               The ISC-COMPDEP model uses the modified source depletion method of
         Horst (1983) to compute .plume depletion effects.  The Horst equations were extended
         for use in ISC-COMPDEP for stability classes A and B (which were not solved in his
         paper). The modified source depletion method, described hi detail in Section II.F.2,
         uses a profile correction factor to adjust the vertical distribution of the pollutant for
         removal at the  surface.  The resulting vertical pollutant distribution takes on a non-
         Gaussian shape.  The Horst scheme conserves mass exactly. It was found by Doran
         and Horst (1985) to compare very well with the reference surface depletion method
         (Horst 1977), but requires only a small fraction of the computational time  of the
         surface depletion scheme.
               One feature of ISC-COMPDEP that is not hi COMPDEP is the ability to
         specify a detailed, gridded field of terrain heights.  This allows ISC-COMPDEP to
         compute the effects of enhanced deposition due to  the interaction of terrain features
         with the plume.  The terrain data are specified  independently of the receptor field,
         and the depletion effect is evaluated regardless  of whether receptors are placed on the
         terrain.  This is done because the depletion effect is cumulative, and it will influence
         concentrations at receptors further downwind.

         3.  Micrometeorological Parameters
               The COMPDEP model internally estimates the surface friction velocity  (u.)
         and Monin-Obukhov length (L) from meteorological information already provided to
         the model.  The Monin-Obukhov length is approximated as a function of the stability
         class and surface roughness length using Golder (1972).  The friction velocity is then
         computed from the wind speed, surface roughness length, and  Monin-Obukhov length
         using the integral form for the flux profile relationship (McRae 1981).
               ISC-COMPDEP relies on externally-computed values of u* and L that are
         supplied to it In the hourly meteorological file.   The DEPMET processor (see Section
         II.K) is provided with ISC-COMPDEP for this purpose.  DEPMET uses the energy
         balance method of Holtslag and van Ulden (1983)  to compute sensible heat fluxes at
         the surface.  An empirical method of Wang and Chen (1980) is used to compute the
         friction velocity.  Once the heat flux and deposition velocity is known, L can be
         computed directly from its definition. The algorithms hi DEPMET are derived from

Volume IV                                                                 External Review Draft
                                           11-45                           Do not cite or quote

-------
        the HPDM model (Hanna and Chang 1990). They found that the friction velocities
        computed from the Wang and Chen method were generally within 10% of the results
        determined by a fully iterative solution of the u* and L equations. The best agreement
        was found for smaller roughness elements and smaller sensible heat  fluxes.  Overall,
        Hanna and  Chang found good agreement of the predicted values of the friction
        velocity and heat fluxes with observational data.
              In comparing the values of u, predicted by the COMPDEP and the
        ISC-COMPDEP (DEPMET) methods, Schwede and Scire (1994) noted that the
        COMPDEP scheme tended to produce smaller values of u. than those from
        DEPMET.   Since the deposition models hi COMPDEP  and ISC-COMPDEP are both
        sensitive to the value of u*,  the COMPDEP meteorological technique is likely to lead
        to smaller values of deposition velocity, with other factors being held constant.

        4. Wet Deposition
              Both COMPDEP and ISC-COMPDEP use a scavenging coefficient approach to
        estimate wet removal. However, COMPDEP divides the scavenging coefficients into
        a matrix of values as a function of a particle size category and precipitation intensity
        category.  COMPDEP uses an intermittence (F) factor which reduces the wet flux to
        account for unsteady precipitation.  F serves as a multiplier of the wet flux estimates.
        The values for F in the COMPDEP Overview Document provided by U.S. EPA
        recommend F = 1.0 (steady precipitation), 0.5 (showers) and 0.25  (thunderstorms or
        squalls).
              ISC-COMPDEP computes the scavenging ratio as a continuous function of the
        precipitation rate.  The scavenging coefficient for each particle size  category is
        specified separately in ISC-COMPDEP.  ISC-COMPDEP does not explicitly include
        intermittency effects, but rather uses the cumulative precipitation measured during the
        hour to  compute the scavenging ratio.  It allows different scavenging coefficients for
        liquid and frozen precipitation.  It is suggested that the values of the scavenging
        coefficients for frozen precipitation are about one-third of those for liquid
        precipitation, although this is based on very limited data for sulfate  and nitrate (Scire
        et al. 1984).
               The scavenging coefficient method hi both models allows only a rough
        parameterization of the complex processes involved hi wet scavenging. It is likely
        that the technique significantly overestimates wet deposition fluxes in the near field of
        the source.  The reasons for this are discussed hi Section I V.D.I.
Volume IV                                                                External Review Draft
                                          H-46                           Do not cite or quote

-------
         5.  Plume Rise and Transport
               One of the enhancements made to the ISC-COMPDEP model in response to
         the peer review was the introduction of multilayered meteorological data (winds and
         temperatures).  This is discussed in detail in Section IIJ.  This feature allows, for
         example, plumes from low-level fugitive sources released within the valley to be
         channelled with the valley flow,  while the incinerator plume, that may have risen
         above the valley walls, to be transported with the gradient, or above-valley, winds.
         In the multilayer mode, ISC-COMPDEP uses measured temperature gradients in the
         valley to determine the inversion strength and plume rise. The plume rise algorithm
         in ISC-COMPDEP,  based on the CTDM algorithm (Perry et al.  1989), makes use of
         the vertical profile of winds to account for wind shear effects hi  a more refined
         manner than COMPDEP. In general, ISC-COMPDEP should provide a better
         representation of plume transport and plume rise than COMPDEP.  However, both
         models suffer from the fundamental limitation of the steady-state approach in that they
         do not allow the plume trajectories to deviate from a straight line.  Especially in
         complex terrain situations, this is likely to produce errors hi the predicted
         concentration and deposition fields.
Volume IV                                                                 External Review Draft
                                           11-47                           Do not cite or quote

-------
                                         Table H-l
       Classification of Reported Precipitation Type/Intensity To Precipitation Code
Precipitation Code
Liquid Precipitation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Frozen Precipitation
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Type

Rain
Rain
Rain
Rain Showers
Rain Showers
Rain Showers
Freezing Rain
Freezing Rain
Freezing Rain
Not Used
Not Used
Not Used
Drizzle
Drizzle
Drizzle
Freezing Drizzle
Freezing Drizzle
Freezing Drizzle
\

Snow
Snow
Snow
Snow Pellets
Snow Pellets
Snow Pellets
Not Used
Ice Crystals
Not Used
Snow Showers
Snow Showers
Snow Showers
Not Used
Not Used
Not Used
Snow Grains
Snow Grains
Snow Grains
Ice Pellets
Ice Pellets
Ice Pellets
Not Used
Hail
Not Used
Not Used
Small Hail
Not Used
Intensity

Light
Moderate
Heavy
Light
Moderate
Heavy
Light
Moderate
Heavy
-
.
.
Light
Moderate
Heavy
Light
Moderate
Heavy


Light
Moderate
Heavy
Light
Moderate
Heavy
-
*
-
Light
Moderate
Heavy
-
-
-
Light
Moderate
Heavy
Light
Moderate
Heavy
-
*
-
-
*
-

* Intensity not currently reported for ice crystals, hail, and small
hail.
Volume IV
                                            11-48
External Review Draft
  Do not cite or quote

-------
                                          Table II-2
                 Model Type Selected For Situation Depicted in Figure II-6
Receptor
1.
2
3
4
5
6
7
8
9
10
Source 1
simple
simple
simple
simple
simple
simple
simple & complex
complex
complex
simple & complex
Source 2
simple & complex
simple
simple
simple
simple
simple & complex
complex
complex
complex
complex
Volume IV
                                            11-49
External Review Draft
  Do not cite or quote

-------
                                          Table H-3
                             Values of Net Radiation Constants
                                (Holtslag and van Ulden 1983)
                                Constant
        Value
                                   3]
                                   a2

                                   b,
                                   b2
990 W/m2
-30 W/m2

-0.75
3.4

5.31 x 10'13 W/m2/deg. K6
60 W/m2
Volume IV
                                             11-50
                                   External Review Draft
                                     Do not cite or quote

-------
                                      Table H-4
                      Minimum Values of Monin-Obukhov Length
                               During Stable Conditions
                              for Various Land Use Types
                             (From Hanna and Chang 1992)
Auer (1978)
Category
Cl
11,12
R3
R1,R2
A
Class
Commercial
Industrial
Compact Residential
Residential
Agricultural
Description
> 40-story buildings
10- to 40-story buildings
10-story buildings
-
-
-
-
Minimum L
150m
100m
50m
50m
50m
25m
2m
Volume IV
                                        11-51
External Review Draft
  Do not cite or quote

-------
  HB
        Suck = HB
                                                                             RO*O
StMk-2HB
Suck - 3HB
Figure II-1.   Illustration of the initial dilution radius, R0, as a function of stack height for a
             squat'building (from Schulman and Scire (1981)).  Momentum plume rise is
             neglected in the figure. Initial dilution radius varies from zero when H, = 3  Hb
             to Hb when H, = H,,.
Volume IV
                                        11-52
                            External Review Draft
                              Do not cite or quote

-------
  INCIDENT WIND
  PROFILE
-SEPARATED ZONES
 ON ROOF AND SIDES
                               •REATTACHMENT LINES
                                ON ROOF AND SIDES
                                                    LATERAL EDGE AND
                                                    ELEVATED VORTEX PAIR
                                                           MEAN CAVITY
                                                           REATTACHMENT LINE
    HORSESHOE VORTEX
    SYSTEM AND MEAN
    SEPARATION LINES
                                           TURBULENT
                                           WAKE
Figure n-2.   Flow near a sharp-edged  building in a deep boundary  layer.   [From Hosker,
             (1984)]
Volume IV
                                        11-53
                                              External Review Draft
                                                Do not cite or quote

-------
        E
        VJ
        t/t
        O
        Q.
                    *SEHMEL AND SUITER (1974)
                   **MOLl£R AND SHUMANN (1970)
            10
                                 10 "              1
                                  PARTICLE DIAMETER,
Figure n-3.   Observed deposition velocities as a function of particle size for 1.5 g/cm density
             particles.  Measured by Sehmel and Sutler (1974) and Moller and Schumann
             (1970). Figure from Slinn et al. (1978).
Volume IV
                                         11-54
External Review Draft
  Do not cite or quote

-------
        Wet  Scavenging  Rate Coefficient (lO'V
              T	1	1  1 I  I I 1|	1	1	1 I  I I I I |
       0.1                  1              ,    10
                      Particle  Diameter  (microns)
                                                                  "
           100
Figure n-4.  Wet scavenging coefficient as a function of particle size (Jindal and Heinold,
           1991).
Volume IV
                                   11-55
External Review Draft
  Do not cite or quote

-------
                     Wet  Scavenging Ratio  (10~4  s~')
       100-
    o

   '•5
    
-------
Figure n-6.   Cross-section of terrain illustrating positions of sources and receptors.
Volume IV
                                           11-57
External Review Draft
  Do not cite or quote

-------
     200-i
      150-
      100-
   CD
      50-
       o- 11111111111 n 1111111
                      Temperature  (C)
                                             8        10        12
Figure n-7.  Illustration of temperature interpolation/extrapolation.
Volume IV
                               11-58
External Review Draft
  Do not cite or quote

-------
     200 H
     150-
     100-
      50-
                                     (power law)
           (power law) ^
                     f  (WS  constant below  10m)
                          J       t        S
                    Wind   Speed  (m/s)
Figure n-8.   Illustration of wind speed interpolation/extrapolation.
Volume IV
                              11-59
External Review Draft
 Do not cite or quote

-------
      200-
      150-
      100-
  '.£?
  *d>
  X
       50-
                                    I |  i I
                                    100
     50            100            150
Wind   Direction   (deg)
200
Figure n-9. Illustration of wind direction interpolation/extrapolation.

Volume IV                                            External Review Draft

                                 11-60                  Do not cite or quote

-------
                     El.  MODELING INPUT PARAMETERS

  A.     Source Data

         1.     Main Incinerator Stack
               The source and emission parameters required for the air quality, modeling
         include the physical stack dimensions (i.e., stack height and stack diameter) and stack
         gas parameters such as the exit velocity and exit temperature.  Table III-l contains a
         listing of the stack parameters for the main incinerator stack.  The physical stack
         characteristics are based on site drawings submitted by WTI to U.S. EPA (U.S. EPA
         1992a).  The stack gas parameters were derived by U.S. EPA from measurements
         made at the WTI facility during a trial burn conducted hi March 1993 and
         performance testing conducted in August  1993 (U.S. EPA  1993f).
               The fraction of the particulate matter by weight in various particle diameter
         size categories is shown hi Table III-2 which is obtained from a report on the trial
         burn tests (U.S.  EPA 1993f).  The particle distribution data for the test run is plotted
         hi Figure IH-1, where six categories, 2.97, 1.89, 0.93, 0.55, 0.40, and <0.40-/im
         diameter are defined.  In order to resolve the particle distribution in the size range
         less than 0.40-/mi diameter, a best-fit curve that passes through the observed data
         points is drawn (solid line)  and extrapolated to smaller particle diameters. The
         extrapolated segment produces five additional particles sizes. These are 0.27, 0.18,
         0.12, 0.062, and 0.03 /xm diameter.  From Figure III-l, then- corresponding weight
         fractions are determined graphically as 11.91%, 10.0%,  5.0%, 4.0%, and 1.0%,
         respectively. These fractions sum up to 31.91%, which is  the fraction listed hi Table
         III-2 hi the  <0.4-/nm diameter size category.  The particle diameters are expressed in
         terms of aerodynamic diameter, defined as the effective diameter of a sphere of unit
         density which has the same settling velocity as the actual particle.  Thus, the
         aerodynamic diameter takes into account both particle shape factors and particle
         density effects.   In order to be consistent with the definition of aerodynamic diameter,
         a particle density of 1 g/cm3 is used in the modeling.
               The size distribution of the particulate matter is appropriate to characterize the
         distribution of pollutants bound throughout the volume of the emitted particles,  such
         as non-volatile metals, and  is referred to as the volume or mass-weighted distribution.
Volume IV                                           •                     External Review Draft
                                            III-l                            Do not cite or quote

-------
         It is derived directly from the stack test measurements of the particle size distribution.
         A second pollutant distribution, called the surface area distribution, assumes that the
         pollutant is distributed on the surface of the particles, and therefore is apportioned
         among the particles according to the relative surface area of the paniculate matter.
         This distribution is appropriate for pollutants, such as semi-volatile organics, which
         adsorb onto the outer surface of the particles (U.S. EPA 1993d).  It is computed by
         determining the percentage of the total surface area of all of the particles that is
         contained hi particles of a particular size  category. For example, if 50% of the
         surface area of all particles is in size category i, then the surface area weighting for
         that size category is 50%.  Because smaller particles  have a higher surface area (Sj) to
         volume (Vj) ratio (Ss / V; = irDj2 / (7rDj3/6) = 6 / Dj), the surface area distribution
         will tend toward higher weightings for the smaller particle size categories.  The
         surface area weighting is computed from the particle sizes and the mass-weighting
         factors as follows:

                •      Compute the product of the mass-weighted fraction with the surface
                       area to volume ratio for category i:  R, = 6 W; / D,, where W; is the
                       fraction of mass in size category i,  and D; is the diameter of size
                       category i;
                •      Sum the values of R; for all size categories (R, = £ Rj); and
                •      Compute the surface area-weighted fraction for  size category  i as: Rj /
                       R,

                Table III-3 summarizes the observed mass-weighted distribution and  the
         computed surface area-weighted pollutant distributions used in the base case WTI
         simulations.  Note that,  as expected, the  surface area distribution has  a higher fraction
         of the pollutant associated with smaller particles than the mass-weighted distribution.

         2.     Routine Fugitive Emission Sources
                The U.S. EPA conducted an analysis of fugitive emissions from the WTI
         facility, and has compiled an inventory of the type, location, characteristics, and
         magnitude  of'fugitive emissions for modeling purposes.  Five locations were
         identified where fugitive emissions may be released on a routine basis.  These are
         described by as (U.S. EPA 1995):

                •     CARBON ADSORPTION  BED.  The carbon adsorption bed consists of
                      4 units open to the atmosphere.  The estimated size of the units together

Volume IV                                                                   External Review Draft
                                            IH-2                            Do not cite or quote

-------
                     is 20 ft by 30 ft.  The emissions are vented through a single 92 ft stack.
                     The carbon adsorption bed is modeled as a point source It is subject to
                     building downwash effects.

               •     OPEN WASTEWATER TANK.  This tank is located on the plot plan
                     (Figure III-2) as the "C" water tank.  It has a diameter of 10.1 m and is
                     open to the atmosphere. The average liquid surface height is 25 ft.
                     The top of the tank is approximately 35 ft above the  ground level.  The
                     wastewater tank is modeled as a volume source because of the rapid
                     vertical mixing expected due to flow of air around and over the tank
                     structure itself.

               •     ORGANIC WASTE TANK FARM.  The organic waste tank farm is
                     enclosed in a building that has four vents to the atmosphere.  The vents
                     are located on the top of the building.  Each vent is about 5  ft tall.  It
                     can be assumed that each vent handles an equal amount of emissions.
                     The fugitive emissions from the organic waste tank farm are modeled as
                     four point sources, corresponding to the four vents at the top of the
                     building.

               •     TRUCK WASH.  The truck wash is a building enclosed on two sides
                     and open to  the atmosphere on the ends hi such a way as to allow trucks
                     to drive through.  The truck wash building is 25 ft by 70 ft.  The truck
                     wash emissions are modeled as a volume source.  As with the
                     wastewater tank, there is expected to be rapid mixing of the emissions
                     due to building-induced turbulence and flow perturbations.

               •     ASH HANDLING.  The source for fugitive emissions from ash
                     handling operations is a stack located at the top of the southeast corner
                     of the  steam plant building.  The steam plant building is 50 ft by 80 ft.
                     The top of the building is 22 ft above the ground.  The ash handling
                     'stack is modeled as a point source subject to building downwash effects.

               The fugitive emission sources are modeled using an unit emission rate (1 g/s
         for each point and volume sources, and 1 g/m2/s for the area source).  Source-specific
         concentrations and deposition fluxes can be obtained by scaling the modeling results
         obtained with the unit  emissions by the actual emission rates.  The base elevation of

Volume IV                                                                 External Review Draft
                                           HI-3                            Do not cite or quote

-------
        all fugitive emission sources is 212.1 m MSL.  Other source characteristics for the
        fugitive emission sources are listed in Table III-4.  All of the fugitive emissions are
        assumed to be at ambient temperature, so buoyant plume rise is not a factor.  For the
        point sources, the diameter and exit velocity is set to arbitrarily small values to
        produce negligible plume rise estimates while avoiding numerical problems associated
        with zero values for the stack parameters in the model.

 B.     Building Downwash Analysis
        Because stack heights associated with point source emissions at WTI are less than
 Good Engineering Practice (GEP) height, the  effects of building downwash must be
 considered in the modeling.  As part of a building downwash analysis conducted by Region 5
 (U.S. EPA 1992a), the dimensions and location of each structure in the vicinity of the WTI
 stack were collected. This information has been supplemented and revised with building
 information provided by WTI, and re-analyzed using the U.S. EPA Building Profile Input
 Program (BPIP).  BPIP (U.S. EPA 1993c) was developed by U.S. EPA to incorporate its
 guidance on GEP and building downwash (U.S. EPA 1985; U.S. EPA  1988; U.S. EPA
 1989; U.S. EPA 1993c), including recently clarified rules for assessing the complimentary
 effects of buildings which are sufficiently close to each other to have interacting  wakes.
 Table III-5 contains a list of the buildings at the plant that have been evaluated for possible
 downwash effects. The building locations are shown on the plot plan of the WTI facility
 (Figure III-2).
        According to the U.S. EPA guidance, a  stack which is within a  distance 5Lb of a
 building,  where Lb is the lesser of the building height (Hh) and the  projected building width
 (Hw) may be influenced by building downwash effects,  if the stack height is also less than
 Hb + l.5Lb.  Since Lb cannot be greater than the building height, a minimum building height
 for consideration in the  downwash analysis is hs/2.5. In the case of the main (150 ft)
 incinerator stack, there are five structures shown which could influence the dispersion from
 the plume:  the incinerator feed, scrubber, precipitator, spray dryer, and boiler structures.
 In addition,  there are three structures potentially affecting the fugitive emissions from other
 point sources at the facility: the container processing building, steam plant, and water
 treatment building.  The other structures in Table III-5 are beyond the 5Lb distance to the
  stack, or are lower, non-controlling structures.   Detailed building information (location,
 height, orientation) is provided in the BPIP output files contained in Appendix IV-1.  In the
  BPIP analysis, the origin of the coordinate system is defined at the main incinerator stack
  location, and the coordinates are listed in terms of plant north,  rather than true  north. As
  shown on the plot plan, plant north is rotated by BPIP counter-clockwise from true north by
  22° 47' 12".

Volume IV                                                                   External Review Draft
                                            IH_4                             Do not cite or quote

-------
         The ISC-COMPDEP model allows the use of direction-specific building dimensions.
  The BPIP program produces a set of effective building dimensions (height and width) at 10°
  direction intervals which are directly compatible with the ISC-COMPDEP input requirements
  and format.  The building dimensions produced by the latest version of BPIP (Version
  94074) for the main incinerator stack are shown in Table III-6.  For some directions, the
  buildings are sufficiently close to result in a combination of the buildings hi accordance with
  the U.S. EPA complimentary structure guidelines.  The GEP height determined by BPIP is
  72.69 m, based on the combined effects of the scrubber and spray dryer structures.  The
  direction-specific building dimensions for the fugitive point source emissions are shown in
  Appendix IV-1.

  C.     Meteorological Data Selection and Processing
         Meteorological data hi the vicinity of the East Liverpool Area that are available for
  use in the air quality modeling of the WTI facility include  the following:

         •  Observations of wind and temperature made at three sites on or near the WTI
            property.  Data from two 10-m towers and one  30-m tower are available for the
            tune period April 1992 through March 1993.

         •  Standard meteorological observations of wind, temperature, cloud cover, ceiling
            height, and precipitation made at the National Weather Service (NWS) station at
            the Greater Pittsburgh International Airport.  The Pittsburgh Airport is located
            approximately 25 miles southeast of East Liverpool.

         •  Wind, temperature, precipitation, and  turbulence measurements made at three
            heights on the 500-ft Beaver Valley Power Station meteorological tower
            (BVPSMT).  The BVPSMT is located near Shippingport, Pennsylvania,
            approximately 8 miles east of the WTI site.

         One of the recommendations of the Peer Review Panel was to use data from multiple
  meteorological stations and at multiple heights in order to better characterize the flow and
  temperature structure both within and above the Ohio River valley.  The ISC-COMPDEP
  model has been modified to allow vertical profiles of winds, temperatures, and turbulence,
  derived from the BVPSMT and the WTI onsite towers, to be used hi determining
  atmospheric stability* plume transport, and dispersion. The vertical temperature gradient
  data from the BVPSMT have been incorporated into the model hi order to provide an
  unproved representation of stability conditions at plume height during stable atmospheric
  conditions (i.e.,  inversions), which are common in the area.  Meteorological parameters that
  may be required for the modeling,  but are not available on-site or at the BVPSMT, such as
  cloud cover and ceiling height estimates,  are extracted from the Pittsburgh Airport data set.

Volume IV                                                                  External Review Draft
                                           IH-5                            Do not cite or quote

-------
  In the remainder of this section, a discussion and analysis of the meteorological data are
  provided.  The modifications to the ISC-COMPDEP model to allow the use of wind and
  temperature data at multiple levels are discussed in Section II.J.

         1.  WTI Site Data
                Wind data are available from two sites at the WTI source location and a third
         site.nearby (at the East End School).  Due to interference from nearby structures at
         the other sites/levels, the most representative  wind observations are from the 30-m
         level of the Site 2 meteorological tower and the 10-m level of the Site 3
         meteorological tower.  Site 2 is located near the stack,  while Site 3 is situated near
         the eastern extreme of WTFs property.  One  year of wind data (April 1992 through
         March 1993) from these sites are analyzed. The results, presented hi Figures III-3
         and III-4, show obvious channeling along the axis of the Ohio  River  Valley at the
         source.  At the point where the WTI facility is located  and  for some  distance up river
         (to the east) the river valley is angled at about 70° from north.  Just  down river (to
         the southwest) the angle changes to about 40° from north.  The vast  majority of
         reported wind directions reflect the 70° orientation, being from the southwest or the
         northeast with a maximum along the axis.  Cross-axis winds are rare, with hardly any
         winds from the southeast.  There is a steep cliff across  the river to the southeast. It
         is likely that the data from the low-level WTI meteorological sites  are not
         representative of conditions on the hills on top of the valley where elevations
         generally are some 500 to 600 ft higher than  river level.  Figure III-5 shows the
         terrain surrounding the WTI site.

         2.  Beaver Valley Power Station Meteorological Tower Data
                Wind data are available  at three levels (35,  150  and 500 ft) from the
         meteorological tower associated with the  Beaver Valley Power Station near
         Shippingport, Pennsylvania.  An analysis is conducted to investigate  whether one or
         more of the levels at this tower might be more representative of conditions atop the
         valley.  According to information provided by Duquesne Light (1993), the tower is
         operated in accordance with NRC regulations and includes primary and backup
         instrument systems.  The tower is located midway between the Beaver Valley and
         Bruce Mansfield Power Stations, on the southern side of the Ohio River at about river
         mile 34.5,  and is at 735 ft above sea level (ASL).  Thus, the 500-ft level of the
         tower, at 1235 ft  ASL, is at or above the terrain surrounding the river valley.
         Figure III-6 shows the topography in the vicinity of the tower.  The  tower is located
         at a bend hi the river valley.  Just down river to the west, at the bend, the valley is

Volume IV                                                                   External Review Draft
                                            III-6                           Do not cite or quote

-------
         somewhat wider and bends nearly east-west for about 1.5 miles before turning NW-
         SE further downstream. Up river from the tower the river valley becomes narrower
         and runs at an angle of 30° to 40° from North for about 1.5 miles before changing to
         about 70° from north.  The BVPSMT tower is about eight miles east of the WTI site.
         There are several tributary valleys that feed into the main valley between the WTI and
         BVPSMT sites and the river bends several times hi the intervening distance.
         Figure ffl-7 is a cross-sectional plot of the terrain through the Ohio River valley at
         the locations of the BVPSMT and WTI meteorological towers. The cross sections are
         taken in a line roughly perpendicular to the river at each site.  Also shown are the
         heights of the various levels  of the meteorological towers.  The plot shows that the
         lower tower levels are well within the valley, while the 500-ft (1235 ft MSL) level of
         the BVPSMT extends above  the valley walls.
                Hourly-average tower data for six years: 1986-1990 and 1992 are used.  At
         each level, data capture is over 99 percent.  The annual data are  combined to
         construct a six-year wind rose  for each level. Figures III-8 and III-9 show the wind
         rose for the 35-ft level. Winds are reported from all points of the compass but the
         vast majority of winds from  the east and south are very light.  Most stronger winds
         are from the southwest, which is the  only direction for which there is a relatively long
         fetch and is also the direction most likely to experience synoptic flow.  The surface
         level winds appear to show the effects of drainage winds.
                Figure 111-10 shows the wind  rose for the 150-ft level.  Valley channeling
         effects are more evident at this level  than at 35 ft.  Along-valley winds predominate
         over cross-valley flow. Again, southeast winds are least common.  The location of
         the tower closer to the river  bend compared to WTI seems to allow a larger range in
         the direction of westerly winds with synoptic winds having more influence.
                The pattern at 500  ft  (Figure III-11) is different from that seen at the other two
         levels. The most predominant winds are  from the west and southwest, similar to the
         150-ft level, but the other sectors are morfe evenly represented and, in contrast to the
         150-ft level, the wind comes from the northeast less often than from other directions.
         To see whether the 500-ft data are more representative of the synoptic conditions
         likely to  influence sites above the valley,  data from the Greater Pittsburgh
         International Airport are examined as well.
                The wind roses for each year  are analyzed separately to see if there were any
         significant changes in the wind patterns from year to year.  These plots are included
         hi the Appendix IV-2.  The  annual analysis suggested that the variation from year to
         year is relatively small compared to differences among the three  levels for the period
         examined.

Volume IV                                                                  External Review Draft
                                            III-7                            Do not cite or quote

-------
        3.  Pittsburgh Data
               Hourly surface wind speed and direction data from the Pittsburgh Airport are
        from the U.S. EPA SCRAM electronic bulletin board for the six year period
        corresponding to the BVPSMT data.  These data are free from the valley effects seen
        at WTI and BVPSMT. These are processed into a wind rose for comparison to the
        BVPSMT data (Figure HI-12).  The Pittsburgh wind rose is very similar to the 500-ft
        level BVPSMT wind rose, with westerly winds predominating, and northeast winds
        the least common.  There are more southerly winds at Pittsburgh relative to BVPSMT
        and, perhaps showing the influence of the valley, BVPSMT has more southwest
        winds.  The Pittsburgh pattern is different from that seen at the BVPSMT 35- and
        150-ft levels.
               Two years of rawinsonde data (1988 and 1989) from the Pittsburgh airport are
        also examined. These data also reflect the prevailing westerly  winds and are similar
        to the 500-ft tower data.  The plots of the rawinsonde observations at both 00 and 12
        GMT are presented for several heights in the Appendix IV-2.

        4.  Use of Meteorological Data in ISC-COMPDEP Modeling of WTI
               The discussion of the wind roses indicates that the 500-ft level winds at
        BVPSMT reflects a different flow regime than the winds at the lower levels of the
        tower.  The 500-ft winds are very similar in behavior to the conditions that are seen
        at Pittsburgh and thus are representative of the synoptic flow that  is more likely to
        influence the higher elevations surrounding East Liverpool. The 500-ft winds are
        mostly free of influence from valley topography.  The lower level winds at BVPSMT
        are greatly influenced by valley topography, and show channeling and drainage flow
        effects.  The BVPSMT data include a vertical temperature data set which may give a
        better picture of stability conditions in the valley at WTI than surface data or default
        assumptions in the model.
               Therefore, a modeling approach that uses wind data from WTI and the 150 ft
        level of BVPSMT to represent within-valley flow and the 500-ft BVPSMT tower data
        to represent flow above the valley walls may give a more accurate representation of
        the impacts of the WTI facility than extrapolation of the 30-meter WTI onsite tower
        winds to elevations above the top of the valley. The ISC-COMPDEP model has been
        modified to allow a profile of wind to allow differential transport of plumes at
        different heights. Although there are several bends of the river valley between the
        WTI site and the BVPSMT, the direction of the axis of the valley at the locations of
        the meteorological towers is nearly the same (within approximately 10°).  The effect
        of this small difference is considered negligible, and it is concluded that the BVPSMT

Volume IV                                                                 External Review Draft
                                           HI-8                           Do not cite or quote

-------
         150-ft level probably reflects the in-valley flow at the 150-ft height in the vicinity of
         the WTI facility reasonably well.
               If the 500-ft winds reflect the synoptic flow, and the 150-ft winds reflect the
         valley flow, there must be  a shear zone between these two levels when the flows are
         different.  Through this zone, the wind and temperature change from being valley-
         dominated to synoptic wind-dominated.  The topographical maps of the  areas
         surrounding the WTI site and BVPSMT indicate that the 1000-ft contours generally
         depict the sides of the valley wall.  At 1100 ft, the contour loses much of its
         relationship to  the shape of the  lower valley.  Therefore, it is likely that the shear
         zone is around the 1000-1100 levels.  With the ground  elevation at about 750 ft, the
         shear zone is assumed to be hi the region 265 to 365 ft above the ground.  In
         preparing the wind data for input into ISC-COMPDEP, five levels of winds are used:
         30 m (98.4 ft), 45.7 m (150  ft), 80.8 m (265 ft),  111.3 m (365 ft), and 152.4 m (500
         ft).  The 30 nij 45.7 m, and  152.4 m levels correspond to measurement heights of the
         BVPSMT or WTI towers.  The 80.8 m and 111.3 m levels correspond to the bottom
         and  top of the  assumed shear zone.  The bottom of the  shear zone is assumed to have
         the same wind as the 45.7  m level of the BVPSMT, and the top of the shear zone is
         assumed to have the same winds as the 152.4 m level of the BVPSMT.  The shear
         zone concept is necessary to avoid the effects of above-valley winds being  interpolated
         downward into the valley where they do not apply.
               Because the main incinerator stack height is 150 ft, the 500-150  ft temperature
         gradient observations at the BVPSMT are  used to  improve the characterization of
         stability conditions at plume height.  ISC-COMPDEP was modified to allow hourly
         values of potential temperature  gradient from the BVPSMT for the 150-500 ft layer to'
         replace the default temperature  gradients provided in the ISC-COMPDEP model.
         This provides a more direct measure of the frequency and intensity of temperature
         inversions  within the Ohio  River Valley to be represented within the model.
               Observations of cloud cover and ceiling height are needed for computation of
         the stability class. Since these observations are not made onsite, cloud data from the
         Pittsburgh Airport are used.  Morning and afternoon mixing heights  for the period are
         computed using upper air soundings from  Pittsburgh, PA and surface temperatures
         from the same site, hi accordance with U.S. EPA modeling guidance. Pittsburgh is
         the closest available upper  air station to East Liverpool.
               A modified version of the U.S. EPA meteorological preprocessor RAMMET
         is used to conduct the meteorological modeling.  The program  allows the use of
         different measurements for stability and transport calculations,  and will  substitute for
         missing data from user-selected backup measurements.  A calm threshold of 1 m/s is

Volume IV                                                                External Review Draft
                                           HI-9                            Do not cite or quote

-------
        used in the analysis.  Thus, wind speeds less than 1 m/s are reset to 1 m/s, in
        accordance with U.S. EPA guidance, and the hour is treated as a calm hour.
        RAMMET produces hourly estimates of stability class, wind vector, wind speed,
        temperature, and also interpolates the twice-daily mixing heights to hourly values.
               The dry deposition algorithm in ISC-COMPDEP requires hourly values of the
        surface friction velocity (u.) and Monin-Obukhov length (L). The friction velocity is
        a measure of the momentum flux to the surface, and is a function of the surface
        roughness length (z0), wind speed, and atmospheric stability.  The Monin-Obukhov
        length is a measure of the relative importance of mechanical and buoyant production
        of turbulence in the atmospheric boundary layer.  It ranges from small positive  values
        for highly stable conditions to infinity for neutral conditions to small negative values
        for highly convective conditions.
               ISC-COMPDEP requires the computation of u» and L externally.  The
        DEPMET meteorological processor,  described in Section ILL., is used to compute
        these variables for the ISC-COMPDEP  simulations.  DEPMET uses standard
        meteorological observations and surface characteristics to compute u» and L based on
        the energy balance method of Holtslag and van Ulden (1983).
               Hourly precipitation data is from the National Climatic Data Center (NCDC).
        The data consists of two types:  hourly  precipitation amounts (hi NCDC's TD-3240
        format), and hourly precipitation type codes (in CD-144 format).  The precipitation
        amount is used in determining the magnitude of the scavenging ratio.  The
        precipitation type code (e.g., rain, drizzle, showers, snow, hail, etc.) is used to
        distinguish liquid from frozen forms of precipitation.  The scavenging coefficient has
        different values  for liquid precipitation than frozen precipitation.

  D.    Receptor Grid

        A radial grid of receptors is developed for the air dispersion and deposition modeling.
  The modeling domain extended out to 50 km from the WTI stack.  Receptors are placed in
  rings at distances of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25, 1.50, 1.75, 2.0,
  2.25, 2.5, 3.0, 4.0, 5.0, 7.5, 10.0, 15.0, 20.0,  30.0, 40.0, and  50.0 km from the WTI
  stack.  The polar grid is centered at the WTI stack. Each receptor ring consists of 36
  receptors located at 10° intervals.  All of the receptors are located at local ground level.
  The terrain elevation of each receptor is specified as the maximum terrain height located
  within a sector defined as  ±5°  on either side of the receptor and including the area from the
  receptor ring out to the next distant receptor ring.
Volume IV                                                                  External Review Draft
                                           HI-10                            Do not cite or quote

-------
  E.    Geophysical Data

        1.     Terrain Elevations
               Two types of geophysical data are used in the dispersion and deposition
        modeling: terrain elevations and land use/land cover information.  Digitized, fine-
        resolution gridded terrain data of the area surrounding East Liverpool is from the
        U.S. Geological Survey (USGS) by U.S. EPA and provided for use in the modeling.
        In addition, 1:24000 scale terrain maps of the area are also used to determine the
        radial receptor terrain elevations required by the models.
               A gridded terrain data base is required by the ISC-COMPDEP model in order
        to track the cumulative effects of upwind plume depletion resulting from terrain
        variations.  ISC-COMPDEP reads the gridded terrain data and internally calculates
        the terrain heights that a plume encounters along its trajectory for any wind direction.
        The appropriate adjustments are made to the vertical term of the Gaussian plume
        equation for each step in the integration of the modified source depletion equations
        (see Section II.F.2). For example, the presence of a hill upwind of a receptor may
        cause enhanced dry deposition onto the hill surface, which will result hi a greater
        degree of plume  depletion at the receptor than if the hill did not exist.  ISC-
        COMPDEP includes an option to account for this effect.

        2.     Land Use
               ISC-COMPDEP allows the user to specify domain-average values  of land use
        and surface roughness length,  or receptor-specific values.  The domain average values
        represent the average or typical values of the variables over the entire  100 km x
        100 km modeling domain.   The receptor-specific option allows different values to be
        specified for each, receptor or group of receptors.  The base case simulations of ISC-
        COMPDEP uses domain-average values in order to allow an assessment of the
        importance  of plume depletion effects.  However, sensitivity runs are also made using
        receptor-specific values of land use. For the sensitivity runs, the land use category
        for each receptor is derived from USGS land use/land cover data for the modeling
        domain. The data for a 1°  latitude by 2° longitude area (40° - 41° N) x (80° - 82°
        W)  are provided hi GIRAS  format, which uses  polygon maps to define areas  of equal
        land use type.  The land use category at each of the radial receptors used in the
        modeling is determined by U.S. EPA using  the ARC-INFO GIS software package.
        Of the 936  receptors in the  grid, there are 12 receptors along the 50 km receptor ring
        which are outside the area covered by the land  use data.  As a result, the land use
Volume IV                                                                  External Review Draft
                                           HI-11                            Do not cite or quote

-------
        category for those receptors is assigned to be the value at the closest boundary of the
        land use coverage area.
               The use of receptor-specific surface characteristics required multiple runs of
        DEPMET  (one for each land use category).  The receptors are split into five groups,
        based on then" land use type (urban/suburban, agricultural, forest land, water, and
        barren).  The geophysical parameters shown in Table III-7 are  assigned to each land
        use type.  DEPMET is run for each land use type, and the output meteorological file  •
        is used to drive the ISC-COMPDEP model.  Only receptors of the same land use type
        are modeled hi a single run of ISC-COMPDEP.  After all of the land use categories
        are considered, the results from all receptors are then merged to reconstruct the
        original 936-receptor polar grid.
               The tradeoff hi using receptor-specific land use data is that plume depletion
        effects due to dry deposition should not be significant, since hi receptor-specific land
        use mode,  plume depletion effects due to dry deposition are not included (depletion
        due to wet removal is included in receptor-specific land use mode).  Plume depletion
        due to dry deposition must be turned off when receptor-specific land use is used
        because the dry deposition plume depletion scheme assumes a uniform deposition
        velocity  over the trajectory of the plume, which is not the case when the surface
        characteristics vary.  Typically, with combustion sources emitting small particles from
        elevated stacks (such as the WTI facility), the variation hi dry  deposition due to land
        use variations is much more significant than plume depletion effects, especially near
        the source where the maximum concentration and deposition flux is expected. The
        receptor-specific  land use sensitivity test is designed to quantify this effect.
               COMPDEP simulations were performed in a previous phase of the study, and
        the COMPDEP results are presented in Section IV.B.I for comparison to the
        ISC-COMPDEP  results.  The COMPDEP model uses a  domain averaged value of
        surface roughness hi the  deposition velocity  calculations. A roughness length of 30
        cm was estimated (Hjelmfelt 1982) for the domain, based on typical values for
        suburban residential and  agricultural land, which are important land uses for the risk
        assessment. In the base  case ISC-COMPDEP simulations, the same 30 cm roughness
        length is assumed.
                     v
  F.    Model Options and Switches
        ISC-COMPDEP  is derived from the ISC2 model code.  Unfortunately, one of the
  limitations of the  method used to allocate arrays in ISC2 that exists hi ISC-COMPDEP as
  well, is that only  one type of output field may be generated hi a single run.  That is, it is
  possible to produce concentrations, wet deposition fluxes, dry deposition fluxes, or total

Volume IV                                                                  External Review Draft
                                           III-12                           Do not cite or quote

-------
  deposition fluxes, but only one in a single run.  The model evaluates the effects of wet and
  dry deposition and plume depletion simultaneously, but one set of arrays is available for
  output purposes.  Therefore, the two base case paniculate runs require a total of four runs
  each (one for each type of output).  The base case vapor simulation, because it does not
  include deposition effects,  required only one additional run.
         Each of the base case simulations use the following model options.  These options
  affect only the simple terrain calculations; the complex terrain modeling options are
  independent and are automatically set to use regulatory default mode.

         •     Used regulatory default options:
                      - final plume rise  (except for downwash conditions),
                      - stack tip downwash (except with the Schulman-Scire downwash
                             algorithm),
                      - buoyancy-induced dispersion,
                      - U.S. EPA calm  processing algorithm,
                      - default wind profile exponents (0.07, 0.07, 0.10, 0.15, 0.35, 0.55 for
                             stability classes A-F, respectively),
                      - default potential temperature lapse rates (0.02 °K/m, 0.035  °K/m for
                             stability classes E and F,  respectively).
         •     Used receptor-specific terrain elevations
         •     Rural dispersion option (PG dispersion curves)
         •     Multilayer meteorological tower data used:
                      - 3 levels of temperature data - 30 m, 45.7 m, 152.4 m
                      - 5 levels of wind data - 30 m, 45.7 m, 80.8 m,  111.3 m, 152.4 m
                        (80.8 m and 111.3 m are pseudo-levels  defining the bottom and top of
                        the transition zone from valley flow to gradient, above-valley flow).
         •     Building downwash evaluated
         •     Unit emission rate  (1 g/s) used

         For the base case paniculate matter runs, the following deposition and depletion
  inputs are specified.
                     v
         •     Dry deposition and depletion  modeled

         •     Wet deposition and depletion modeled

         •     Gridded terrain data used for depletion calculations

Volume IV                                                                  External Review Draft
                                            HI-13                            Do not cite or quote

-------
               Particle density:  1 g/cm3
                Particle categories: 10
                Particle diameters (/xm):
                       2.97,         1.89,
                       0.27,         0.18,
                                  0.93,
                                  0.12,
0.55,
0.062,
0.40,
       0.030
                Size distribution - mass-weighted distribution:
                      0.04260,     0.08510,      0.17020,     0.19150,      0.19150,
                      0.11910,     0.10000,      0.05000,     0.04000,      0.01000

                Size distribution - surface area-weighted distribution:
                      0.00414,     0.01301,      0.05288,     0.10060,      0.13832,
                      0.12745,     0.16051,      0.12038,     0.18640,      0.09631
         •      Wet scavenging coefficients - liquid precipitation:
                      0.2U10-3,    0.14jclO-3,    O.SOxlO-4,    0.50x10^,     0.60x10^,
                      0.90JC10-4,    0.13;tlO-3,    O.lSxlO'3,    0.20*10-3,     0.22xlO'3
Wet scavenging coefficients - frozen precipitation:
       0.70*10^,    QAlxW4,    O.miO-4,     O.miQ-4,
       O.SQxlO-4,    QAlxW4,    O.SOjclO-4,     0.67x10^,
                                                                             0.20X10-4,
         In the vapor base case runs, the dry deposition, wet deposition, and plume depletion
  options are all turned off.  The multilayer meteorological data are used, as with the particle
  runs.  A listing of the model input parameters is shown hi the list file outputs hi Appendix
  IV-3.
Volume IV
                                            111-14
                                                            External Review Draft
                                                              Do not cite or quote

-------
                                        Table HI-1
                      Stack Parameters for the WTI Incinerator Stack
Variable
Stack height
Stack diameter
Exit velocity
Exit gas temperature
Stack base elevation
UTM Zone 17 coordinates:
X
Y
Value
45.7m
1.83 m
17.74 m/s
367.0 °K
212.1 m
538,460 m
4,497,750 m

(150 ft)
(6ft)
(58.2 ft/s)
(201°F)
(696 ft)
—
Volume IV
                                           m-15
External Review Draft
  Do not cite or quote

-------
                                     Table ffl-2
                Particle Weight Fractions Observed During Run 2 of the
                      WTI Trial Burn Particle Distribution Study
                                   March 17, 1993

                               (From A.T. Kearney, 1993)
Median Diameter (um)
8.88
6.48
4.38
2.97
1.89
0.93
0.55
0.40
<0.40
Weight Fraction
0.00
0.00
0.00
4.26
8.51
17.02
19.15
19.15
31.91
Volume IV
                                         111-16
External Review Draft
  Do not cite or quote

-------
                                        Table ffl-3
                          Size Distributions of the Pollutant Mass
                              Assumed in the WTI Modeling

                               Pollutant Mass Fraction (%)
Base Particle Size Distribution
Diameter (nm)
2.970
1.890
0.930
0.550
0.400
0.270
0.180
0.120
0.062
0.030
Mass-Weighted
Pollutant Distribution
4.26
8.51
17.02
19.15
19.15
11.91
10.00
5.00
4.00
1.00
Surface Area-Weighted
Pollutant Distribution
0.4144
1.3009
5.2876
10.0597
13.8321
12.7447
16.0512
12.0384
18.6401
9.6307
Volume IV
                                          111-17
External Review Draft
  Do not cite or quote

-------
                                              Table ffl-4
                      Source Characteristics for Fugitive Emission Sources
Point Sources
Description
Ash Handling
Organic Wastetank Farm
Vent#l
Vent #2
Vent #3
Vent #4
Carbon Adsorption Bed
X
(m)
23.89
173.47
193.12
199.30
179.65
61.02
r
(m)
48.98
108.45
116.90
102.31
93.99
42.83
Stack
Height
(m)
6.706
18.9
18.9
18.9
18.9
28.04
Temperature
(deg. K)
310.
310.
310.
310.
310.
250.
Exit Velocity
(m/s) .
0.1
0.1
0.1
0.1
0.1
31.05
Diameter
(m)
0.1
0.1
0.1
0.1
0.1
0.762
Volume Sources
Description
Open Wastewater Tank
Truck Wash
X
(m)
177.06
100.16
r
(m)
204.76
170.91
Height
(m)
5.3
3.048
Initial
°f
2.35
1.77
Initial
^
4.96
2.84
   Coordinates are relative to the origin (0.0, 0.0) located at main incinerator stack. Coordinates
             are oriented relative to true north.
Volume IV
                                                  111-18
External Review Draft
  Do not cite or quote

-------
                                        Table ffl-5
                                WTI Building Information

                                (From A.T. Kearney, 1992)
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Description
Maintenance
Administration
Truck Holding
Steam Plant
Container Hold
Incinerator Feed
Container Processing
Waste Tank Farm
Truck Unloading
Water Treatment
Scrubber
Precipitator
Spray Dryer
Boiler
Building Height (HB)
15.24 m (50 ft)
8.84 m (29 ft)
6.10 m (20 ft)
6.71 m (22 ft)
6.10 m (20 ft)
25.76 m (84.5 ft)
14.94 m (49 ft)
15.24 m (50 ft)
6.10 m (20 ft)
7.62 m (25 ft)
29.08 m (95.4 ft)
24.38 m (80 ft)
32.31 m (106 ft)
2 1.34m (70 ft)
Volume IV
                                          111-19
External Review Draft
  Do not cite or quote

-------
                                      Table IH-6
                         Direction-Specific Building Dimensions
                               for the WTI Main Stack
                            Produced by the BPIP Program
Direction
(degrees)
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
Building
Height
(m)
29.08
29.08
29.08
25.76
24.38
24.38
24.38
29.08
29.08
29.08
29.08
29.08
29.08
29.08
29.08 '
29.08
29.08
29.08
Building
Width
(m)
26.88
24.72
21.81
27.61
27.01
24.64
25.97
22.57
25.75
28.77
30.90
32.10
32.33
31.85
30.86
29.63
29.30
28.21
Direction
(degrees)
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
Building
Height
(m)
29.08
29.08
29.08
25.76
25.76
25.76
24.38
25.76
29.08
29.08
29.08
29.08
29.08
29.08
29.08
29.08
29.08
29.08
Building
Width
(m)
26.88
24.72
21.81
27.61
26.08
23.77
25.97
24.81
25.75
28.77
30.90
32.10
32.33
31.85
30.86
29.63
29.30
28.21
Volume IV
                                         m-20
External Review Draft
  Do not cite or quote

-------
                                      Table m-7
                Geophysical Parameters Assigned to Each Land Use Type
                        in the Sensitivity Runs of ISC-COMPDEP
Land Use
Category
Urban/suburban
Agricultural
Forest land
Water
Barren
Number of
Receptors
371
147
275
141
2
Surface
Roughness
(m)
1.00
0.25
1.00
0.0001
0.002
Albedo
0.20
0.20
0.14
0.10
.0.30
Minimum
Value of I
(m)
25
2
25
2
2
Soil Moisture
Parameter
0.8
1.0
0.8
1.2
0.3
Volume IV
                                        111-21
External Review Draft
  Do not cite or quote

-------
                           Cumutthw Wtigflt % GfMMrTtan StMd Szt
90.
100





10















01




^^




11




























*


u



























/



s

























1
^




B I































• S





















,'









S 1





















;
i






























t
i





























X
1




























































4
9






























J




























L
f





























/
L.





























r*
$

















•












^







,i










!











rr'



















2











'



















0































s a































20.































                            CumuOtiv* W«ght % IMS Thw SMrt Sat
Figure ffl-l.  Plot of particle mass as a function of particle diameter.  Data for particle sizes
             greater than 0.4-um diameter are from the Trial Bum test results of March 17,
             1993 (U.S. EPA, 1993f).  The points below 0.4-um diameter are based on an
             extrapolation of a best-fit line through the observed data points.
Volume IV
                                         ffl-22
External Review Draft
  Do not cite or quote

-------
ira       J/     ,, ' "**!,.           ii                                   III                                                          I
	['__ __  /_ !. UMO          j            | tXrWHG 3is,30*0           _           I            I            I



         I"/ :"»S'SI   '	:IS==iaS'^."iT11"l""j'!"<''* aii.no.oi           ~\~~                     7     r'      i'         — T           |~        : ~:':  ~' ~ ~~~:-:::—-:-.;:::::=.-=::=-=: —•-—•-;

-         I    »•>"•                    ---="-==-K-         "*>«.
                                                                                                                                                                 —  mwOTuu. run KuucmKT noun
Figure ffl-2.   Plot plan of the WTI facility.  The coordinates shown are m terms of plant north,  -


              and are in the units of feet. The main incinerator stack is labeled.  The fugitive  ~M
                                                                                            El r'

              emission sources are indicated by the circled numbers  1 through 5.

                                                             External Review  Draft	
                                                                                     -iT-Li**«D •J^B
 Volume IV                                                    Do not cite or  quote IBT   ..ii.m«
                                                                                                         RUST
                                                                                                                                                                      HI-23	-ii^™-:

-------

-------
                          NNW
                NW
        WNW
        W
         WSW
                 SW
                          SSW
0.0-04
          Ifl-iB
                    U-UJJ
     2J-U
                        ft 11.0
                                         N
    NNE
                                                         20%
                NE
                      ESE
                SE
    SSE
           WTI  Site  2
      Winds at 30 meters
April 1,  1992  -  March 31,  1993
  Figure DI-3.  Hourly wind rose for WTI Site 2, 30-m data, located on-site.
  Volume IV
                                      m-24
             External Review Draft
               Do not cite or quote

-------

-------
                          NNW
                 NW
        WNV
                           ssw
                    15-11.0
0.0-10
               U-4J
                         |t 11.0
                                         N
    NNE
                                                          20%
                NE
                                                                      ESE
                                                                SE
    SSE
           TTTI Site 3
      Winds  at 10  meters
April 1, 1992 - March  31.  1993
  Figure ffl-4.  Hourly wind rose for WTI Site 3, located at the eastern edge of the property.
  Volume IV
                                      m-25
             External Review Draft
               Do not cite or quote

-------

-------

Figure ffl-5.    Section from a USGS map that depicts the topography of the area surrounding the WTI
               site.  The cross indicates the location of the facility and the wind measurements.  The
	    1200-ft contour line is highlighted.  The BVPSMT 500-ft level is at 1235 ft ASL.
Volume IV                                            ~
                                               m-26
External Review Draft
  Do not cite or quote

-------

-------
Figure IH-6.   Section from a USGS map that depicts the topography of the area surrounding the Beaver
              Valley Power Station meteorological tower. The cross indicates the location of the tower.
              The 1200-ft contour line is highlighted.  The BVPSMT 500-ft level is at 1235 feet ASL.
                                                                                    External Review Draft
 Volume IV
                                               ra-27

-------

-------
    oo
    0
    cr>
 1300:


•1200-


 1 100:


 1000:


  900 :


  800^


  700 :
        600
                    	BVPSMT  Section
                          WTI  Section
                   DDDDD BVPSMT  Station
                          WTI Station
              i i i i  i i i i  i i i i  i i i i i  i i i i i  i i i i  i i i i i  i i i i i  i i i i
            4           9           14          19          24
  Cross  Va  ey  Distance   (1/10  mi
                                                            e
Figure ffl-7.  Cross* section of terrain  (MSL) at  the sites of the BVPSMT and WTI
          meteorological towers. Also shown are the elevations of the various levels of the
          meteorological towers.
Volume IV
                               HI-28
                                            External Review Draft
                                             Do not cite or quote

-------
                          NNW
                NV
         WNW
         WSW
                 SW
                           SSW
0.6-2.5
       WIND SPEED  CLASSES

          5.0-7.5
     2.5-5.0    7.5-10.0    gt 15.0

              (mph)
                                         N
  NNE
                                                         20%
                                                                NE
                                                                      ENE
                                                                      ESE
              SE
  SSE
        Project  1363
Beaver Valley PS Tower Data
1986-90,1992 35 Foot  Level
   Figure ni-8.  Hourly wind rose at Beaver Valley Power Station meteorological tower 35-ft level

               for 1986-1990, 1992 (six years).
   Volume IV
                                       ffl-29
           External Review Draft

             Do not cite or quote

-------
                       NNW
             NW
     WNW
     W
      WSW
              SW
                        SSW
    WIND SPEED CLASSES
  5.0-7.5    10.0-15.0

           (mph)
                                     N
NNE
                                                     20%
                                                           NE
                                                                 ENE
                                                                 ESE
                                                            SE
 SSE
                                                      Project 1363
                                              Beaver Valley PS  Tower  Data
                                             1986-1990,1992 35  Foot Level
Figure ffl-9.  As in Figure ffl-8, except that winds less than 2.5 miles per hour are not included

           in the wind rose.
Volume IV
                                   IH-30
         External Review Draft

           Do not cite or quote

-------
                           NNW
                 NW
         WNW
        W
         WSW
                 SW
                           SSW
0.6-2.5
       WIND SPEED CLASSES
          5.0-7.5
     2.5-5.0     7.5-10.0    gt 15.0
              (mph)
                                         N
  NNE
                                                         20%
              NE
                    ENE
                     ESE
               SE
   SSE
        Project 1363
 Beaver Valley PS  Tower D*
1986-90,1992  150  Foot  Le\
Figure HI-10. Hourly wind rose at Beaver Valley Power Station meteorological tower 150-ft
            level for 1986-1990, 1992 (six years).
Volume IV
                                    IH-31
         External Review Draft
          Do not cite or quote

-------
                          NNW
                 NW
         WNW
         WSW
                 SW
                           SSW
0.6-2.5
       WIND SPEED CLASSES

          5.0-7.5
     2.5-5.0     7.5-10.0   gt 150

              (mph)
                                         N
   NNE
                                                         20%
              NE
                    ENE
                    ESE
               SE
   SSE
        Project 1363
 Beaver Valley PS  Tower  Data
1986-90,1992 500  Foot Level
   Figure ffl-11. Hourly wind rose at Beaver Valley Power Station meteorological tower 500-ft

              level for 1986-1990, 1992 (six years).
   Volume IV
                                      ffl-32
            External Review Draft

             Do not cite or quote

-------
                          NNW
                NW
        WNW
        W
         wsw
                 sw
                           ssw
0.6-2.5.
       WIND SPEED CLASSES
          5.0-7.5    1&0-15.0.
     2.5-5.0    7.5-10.0   gt  15.0
              (mph)
                                         N
 NNE
                                                         20%
                                                                NE
                                                                      ENE
                                                                      ESE
                                                                SE
  SSE
        Project 1363
Pittsburgh NWS  Surface  Data
 1986-19§0,  1992  (6 years)
   Figure HI-12. Wind  rose  at Greater  Pittsburgh International  Airport,  based  on hourly
               observations at the surface, covering 1986-1990 plus 1992.
   Volume IV
                                       HI-33
           External Review Draft
             Do not cite or quote

-------
                 IV.  DISCUSSION OF MODELING RESULTS

         Modeling simulations are conducted with the ISC-COMPDEP model, as described hi
  Chapter n, to predict the peak and spatially-averaged concentrations and deposition fluxes
  due to the emissions from the WTI incinerator.  A set of "base case" simulations are used to
  predict the impacts of the different forms that the pollutants may take.  For example, the
  base case simulations include the following runs: (1) pollutants assumed to be distributed
  throughout the paniculate matter leaving the stack (i.e., the "mass" pollutant distribution),
  which is appropriate for non-volatile metals; (2) pollutants assumed to be distributed on the
  outside surface of the particulate matter (i.e., the "surface area" pollutant distribution, which
  is appropriate for semi-volatile organics; and (3) pollutants emitted as a vapor.
         The base case simulations constitute the best estimate of the actual impacts from the
  facility. The base case results are described hi Section IV.A.  In addition, however, a set  of
  sensitivity simulations (see Section IV.B) are conducted to determine the variation in the
  predicted results to various types of data inputs, and to assess the impact of alternative
  source configurations (e.g., a Good Engineering Practice (GEP) height stack rather than the
  present sub-GEP height stack).  The model input sensitivity tests that are  conducted  include
  simulations using nine-year high and low annual precipitation amounts, and the use of
  turbulence-based horizontal dispersion coefficients utilizing the BVPSMT measurements of
  horizontal wind fluctuations (oe).
         Additional model sensitivity tests are conducted with an earlier version of the ISC-
  COMPDEP model and the COMPDEP model,  prior to the peer review.  The results of
  these simulations are also presented, because they offer insight into the model's sensitivity
  (or lack thereof) to  alternative assumptions regarding the particle size distribution, the
  effects of plume depletion, and the sensitivity to assumptions regarding land use.  The
  COMPDEP simulations, with its different deposition and dispersion (i.e., building
  downwash) algorithms,  provide a reference point for assessing the ISC-COMPDEP results
  that is useful hi the uncertainty analysis.
         Because the  steady-state plume model is ill-suited to evaluate impacts during  calm
  wind conditions andsiuring fumigation events,  modeling is conducted with the CALPUFF
  non-steady-state dispersion model (Section IV.B.5).  The CALPUFF simulations are
  designed to isolate the effects of the calm wind and fumigation conditions to the extent
  possible.  Other than taking advantage of the inherent features of the non-steady-state
  approach, the CALPUFF is run in a mode that otherwise was similar to the ISC-COMPDEP
  run.  Additional simulations with the INPUFF  non-steady-state model, conducted by the

Volume IV                                                                 External Review Draft
                                           IV-1                            Do not cite or quote

-------
  U.S. EPA are also summarized.  The INPUFF simulations assess the effects of calm wind
  conditions for a WTI-like stack in a hypothetical flat terrain setting.
         The effects of terrain-induced downwash cannot be adequately modeled with the
  current generation of regulatory models.  Therefore, in order to evaluate the effects of
  terrain downwash, the U.S. EPA conducted a set of wind tunnel simulations of the WTI site
  and the surrounding terrain.  In Section IV.B.6, the results of the physical modeling
  performed hi the wind tunnel study are summarized along with mathematical modeling with
  ISC-COMPDEP for the conditions studied hi the wind tunnel.
         The impacts of routine fugitive emission sources are  also evaluated (Section IV.C).
  The fugitive sources  modeled include the carbon bed adsorption system, ash handling
  activities, the open wastewater tank, the organic waste tank  farm, and the truck wash.
         An analysis of the uncertainty hi the modeling is also conducted (see Section IV.D).
  The uncertainty analysis is categorized into two types:  limitations of the technical
  algorithms hi the models, and limitations hi the amount and quality of the data available to
  the model.

  A.     Base Case Simulations of Incinerator Emissions
         A total of thirteen sets of simulations of the main incinerator stack are conducted
  with a version of the ISC-COMPDEP model modified to address the peer reviewer
  comments.  Three base case sets of runs are conducted, corresponding to the three different
  pollutant distributions: mass-weighted (particle), surface area-weighted (particle), and  vapor
  distributions.  Wet and dry deposition effects are computed  for the distributions involving
  paniculate matter. The vapor simulations are conducted assuming no deposition. Ten sets
  of sensitivity tests are conducted to evaluate the response of the model to various input
  assumptions and model options.  Each simulation involving  particulate matter requires four
  runs of the model: one to generate predicted concentrations, and three to output wet
  deposition fluxes, dry deposition fluxes, and total deposition.  This is required due to  the
  structure of ISC-COMPDEP's parent model, ISC2, which allows the output of only one
  field per run.
         The matrix of simulations and a summary of the model output statistics are shown hi
  Table IV-1.  Contour plots for the base case simulations are presented hi Appendix IV-4.  In
  general,  the model is executed in a regulatory mode, i.e., using those options and switches
  which are recommended for regulatory use in the Guideline on Air Quality Models for
  ISCST2  and COMPLEX I (see Section ffl.F). However, enhanced features of ISC-
  COMPDEP,  which are not part of the ISCST2 and COMPLEX I models, are also used hi
  the simulations.  These enhancements include the use of multi-layer meteorological data, a
  scavenging coefficient model for wet deposition, a  resistance-based model for dry
Volume IV                                                                  External Review Draft
                                            IV-2                            DO not cite or quote

-------
  deposition, and multi-layer plume rise.  A partial listing of the model output files generated
  by ISC-COMPDEP for the base case simulations is shown hi Appendix IV-3.  Version
  94227 of ISC-COMPDEP is used hi all of the simulations.
         Table IV-1 shows the maximum annual concentration and total deposition flux
  predicted by the model for any of the 936 receptors.  The total deposition flux is the sum of
  the wet and dry fluxes. In addition, the following spatially-averaged variables are shown:

         •      Receptor average concentration, x:

                                                                                  (IV-1)
                                          =        v
                                            N tr
                where Xi is the concentration at receptor i, and
                      N is the number of receptors (i.e., 936).
                Receptor average total deposition flux,   ~Ft  :

                                      T =  1 f (F).                             (IV-2)
                                        '    # tT
                where (F^ is the total  (wet  + dry) deposition flux at receptor i, and
                        Tt  is the receptor average deposition flux
                "Total"  average deposition velocity,

                                                                                   (IV-3)
         Note that the "total" deposition velocity, as it is defined here, includes the effects of
  both wet and dry deposition.  It is useful as a convenient reference point for comparing the
  bulk removal rates for the base application with those from the other sensitivity runs as well
  as those hi other studies.  However, this variable should be applied only on a bulk basis,
  and not on a receptor-by-receptor basis because it is not necessarily well-behaved at all
  receptors.  For example,  hi the near-field where the plume is elevated and not interacting
  with the ground, the ground-level concentration will approach zero, but the total flux (due to
  wet removal) will be non-zero.  Thus, the "total"  deposition velocity can approach infinity.
  However, as applied here, the "total" deposition velocity is a useful bulk measure of the
  average rate of deposition per unit of concentration.

Volume IV                                                                  External Review Draft
                                            IV-3                             Do not cite or quote

-------
        As shown in Table IV-1, the base case simulations show relatively little sensitivity
  of the concentration to the pollutant distribution.  The maximum concentrations are within
  \%  for all three pollutant distributions, and are predicted to occur at the same receptor (1
  km  from the stack, to the east (100°)) on the West Virginia side of the Ohio River.  The
  terrain height at this receptor is 1,080 ft (329.2 m), or 234 ft above the elevation of the  top
  of the stack.  Thus, complex terrain effects are involved hi producing the peak
  concentration, as well as a relatively high frequency of winds from the west and west-
  northwest directions.  The concentration averaged over all receptors is also insensitive to the
  pollutant distribution.  The predicted deposition fluxes show a 40% increase with the surface
  area-weighted distribution over the mass-weighted distribution.
        The spatial patterns of the predicted concentrations, wet fluxes, dry fluxes, and total
  fluxes are shown in Figures IV-1 through IV-4. The  effects of terrain channeling of the
  wind flow can be seen in the orientation of the concentration and deposition isopleths. The
  dominance of wet deposition over dry deposition is also evident from the contour plots.
  Additional  detailed plots of near-field concentrations and deposition isopleths are provided in
  Appendix IV-4.
        The peak base case  deposition fluxes are predicted to occur at a receptor 100 m from
  the  stack to the east (80°).   Detailed plots of the wet  and dry deposition fluxes for the base
  case run la are provided on Pages IV-4-5 and IV-4-7, respectively, of Appendix IV-4.   Note
  the  similarity of the dry deposition flux pattern with the ground-level concentration pattern
  (Page IV-4-3).  This is due to the direct proportionality of the dry fluxes with ground-level
  concentrations (i.e.,  dry flux is the product of the concentration and the deposition velocity).
  The same factors that contribute to elevated concentration predictions will also produce
  higher dry deposition fluxes.  However,  also note the large differences between the wet
  deposition pattern and the dry deposition/concentration patterns.  Wet removal is modeled as
  being proportional to the vertically integrated concentration, so its peak occurs at the closest
  receptor ring where the plume depth is the smallest.   (As discussed in Section D.I.a, this
  formulation may tend to overestimate wet fluxes in the near field).  The wet flux peak is in
  an  area where the ground-level concentrations are small.  Because the model assumes that
  the precipitation falls through the plume, even if the plume is elevated, it is not necessary
  for the plume to have dispersed down to the ground for wet removal to occur.  A
  comparison of the wet and dry deposition values in the plots shows the dominance of wet
  removal at the point of peak predicted total deposition flux.
Volume IV                                                                   External Review Draft
                                             jy_4                             Do not cite or quote

-------
   B.    Sensitivity Simulations of Incinerator Emissions

         1.     Overview of Previous Modeling Results
                Based on the initial work plan and a version of ISC-COMPDEP developed
         before the peer review workshop, some initial simulations were conducted with the
         WTI incinerator stack. Although the ISC-COMPDEP model has been revised, as
         discussed in  Section n. A, the sensitivity results of the previous modeling offers some
         insight into the model's response to certain input variables.  An overview of the
         previous modeling results is presented here.
                A total of sixteen simulations are conducted with the COMPDEP and ISC-
         COMPDEP models to evaluate a set of base case  assumptions and to test the
         sensitivity of the model to various input assumptions and model options.  The matrix
         of simulations are shown hi Table IV-2 along with a summary of model output
         statistics.  Version 93340 of COMPDEP and Version 93349 of ISC-COMPDEP are
         used in the simulations discussed in this subsection.
                Table IV-2 contains the maximum annual concentration and total (wet + dry)
         deposition flux predicted by each model for any receptor, as well as the receptor-
         average concentration and total deposition flux averaged over all 936 receptors, and
         the effective  total (wet + dry) "deposition velocity."
                In comparing the base case COMPDEP simulations with the base case ISC-
         COMPDEP simulations, it is apparent that the models produce similar results.  The
         ISC-COMPDEP produces receptor-averaged deposition fluxes which are 30-40%
         higher than COMPDEP.  The corresponding receptor-averaged concentrations are
         approximately 15-17% lower with ISC-COMPDEP than COMPDEP.   The rate of
         removal,  with the new dry deposition scheme in ISC-COMPDEP and the differences
         in the wet removal technique, is about 50%-70%  higher than in COMPDEP, based
         on the magnitude of the total deposition velocities.  In the vapor base case
         simulations,  which does not include any deposition or depletion effects, ISC-
         COMPDEP predicts a receptor-averaged concentration about 15% lower than that
         with COMPDEP.  However, the predicted peak concentration is slightly higher with
         ISC-COMPDEP. These differences can be attributed to the differences in the
         treatment of  building downwash in the models.  As discussed hi Section II.M,
         COMPDEP uses the Huber-Snyder algorithm for  all sub-GEP stack heights, and  uses
         a single set of worst-case building dimensions for all wind directions.  ISC-
         COMPDEP has both the Huber-Snyder and Schulman-Scire algorithms implemented
         as in ISCST2, and uses direction-specific building dimensions with both algorithms.
         The building height used in the initial runs of ISC-COMPDEP have since been
Volume IV                                                                External Review Draft
                                          IV-5                           Do not cite or quote

-------
         revised based on new information so that the stack will use the Huber-Snyder
         downwash model.  In the results presented here, about half of the directions (16 out
         of 36) use the Huber-Snyder model, and the others use the Schulman-Scire model.
               The results suggest that the use of a single  worst-case set of building
         dimensions hi COMPDEP is contributing to the higher receptor-average values
         predicted with the model.  Therefore, it appears that the lack of the Schulman-Scire
         algorithm in COMPDEP tends to result in  lower concentrations in COMPDEP, but a
         compensating factor (and hi the case of the receptor-average concentrations, a
         dominating factor) is the use of conservative building dimensions for all direction,
         which tends to overestimate the impacts with COMPDEP for those directions where
         the controlling building dimensions are less favorable for downwash than the worst-
         case dimensions. These conclusions are strongly dependent on the specific source
         and building configuration input into the model.
               Both ISC-COMPDEP and COMPDEP show only a weak sensitivity of area-
         averaged concentrations  and  deposition fluxes to the assumption of mass-weighted or
         surface area weighted pollutant distributions.  For COMPDEP, the receptor-averaged
         deposition fluxes are only about 1 % higher for the surface area-weighted distribution,
         and for ISC-COMPDEP, the deposition flux for surface  area distribution is less than
         10%  higher than for the mass-weighted distribution.  Even hi the sensitivity runs
         with  all of the pollutant  mass on particles less than 0.4 /im diameter assigned to very
         small 0.03 /im diameter particles (i.e.,  sensitivity  runs C-2a, C-2b, I-2a, and I-2b),
         the receptor-average deposition flux is within  30% of the base  case values.  The
         receptor-average concentrations are  within 5% of the base case values  for both
         models.  The average concentrations are also insensitive (within 7% of the base case
         values) to the assumption of the vapor pollutant depositing at the same rate as 0.03
         /im diameter particles.   These  results suggest that  plume depletion is not a large
         factor in determining the ambient air concentrations.  It  should be noted, however,
         that the receptor-average statistics are weighted more heavily to the near-field
         impacts because the density of receptors decreases as the distance from the stack
         increases.  The peak deposition flux is  somewhat more sensitive to the pollutant size
         distribution.  The maximum deposition flux with the small particles is about 30%
         higher than the base case for the mass-weighted distribution (Run I-2a) and about
         60% higher for the surface area distribution (Run I-2b).  Again, these conclusions
         are likely to be a strong function of the particular WTI particle size distributions used
         in the tests, and may not be universally applicable.
                The final set of sensitivity tests involves the application of ISC-COMPDEP
         with receptor-specific land use and  surface characteristics. Runs are made for both
Volume IV                                                                  External Review Draft
                                            rV-6                            Do not cite or quote

-------
         the mass-weighted and surface area-weighted pollutant distributions. The deposition
         fluxes show more sensitivity to assumptions about land use than some of the other
         variables.  The receptor-specific land use runs with ISC-COMPDEP produce
         receptor-average deposition fluxes about twice as high for the mass-weighted
         distribution and about 50% higher for the surface area-weighted distribution than the
         base case simulations with a constant, area-wide average land use characterization.
                The general lack of sensitivity to many of the  assumptions regarding the
         pollutant distribution from the WTI incinerator suggests that the uncertainties
         associated with the  emission variables are not likely to dominate the results of the
         modeling analysis,  at least for the specific particle distribution identified at the WTI
         facility.  The sensitivity results also suggest that efforts to characterize the
         geophysical variables (e.g., land use) as well as possible are worth  the effort,  since
         the model is more sensitive to these variables.

         2.     GEP Stack  Height Tests
                A set of ISC-COMPDEP simulations is conducted to evaluate the effect of a
         GEP height stack on predicted concentration and deposition fluxes.   The actual WTI
         incinerator stack, at 45.7 meters, is less than GEP height of 12.1 meters (see Section
         III.B).  The peak and average ground-level concentrations decrease by approximately
         11-13% and 19%, respectively, with the higher GEP  height stack.  This is due to the
         effects of a higher plume and  the absence of enhanced dispersion due to building
         downwash with the GEP height stack.   The deposition fluxes, on the average, are
         insensitive to the stack height.  This is due to the dominance of wet deposition over
         dry deposition in the model for the WTI pollutant distribution.   Because wet
         deposition is a function of the vertically integrated concentration and is nearly
         independent of plume height, the wet flux patterns do not show much variation with
         stack height.

         3.     Precipitation Tests
                The effect of the year-to-year variability in precipitation is evaluated in a
         series of sensitivity tests with  ISC-COMPDEP.  In the base simulations, precipitation
         data observed at the Pittsburgh Airport  and  obtained from the National  Climatic Data
         Center (NCDC) are used in the calculation of wet fluxes.  For the annual period
         modeled, April 1992 through March 1993, the Pittsburgh precipitation was 39.3
         inches, as compared to a 30-year climatological average at the  Pittsburgh  Airport of
         36.3 niches (NOAA 1983). Precipitation data from the BVPSMT for the period
         1986 through May  1994 are analyzed.  The average annual precipitation at the
Volume IV                                                                  External Review Draft
                                            IV-7                             Do not cite or quote

-------
         BVPSMT is 33.7 inches for this period, with a low of 27.1 inches (1991) and a high
         of 47.34 inches (1990). The annual amounts at the BVPSMT for 1986 through 1994
         are 26.51, 39.79, 27.41, 30.50, 47.34, 27.10, 33.62, 34.55, and 36.22 (annualized).
                In the precipitation sensitivity tests, the base precipitation file (from the
         Pittsburgh Airport), is  scaled by the ratio of the highest annual BVPSMT
         precipitation to the base amount (i.e., 47.34/39.3 = 1.20) and the ratio of the lowest
         annual BVPSMT precipitation to the base amount (i.e., 27.1/39.3 = 0.69).  All of
         the other meteorological variables are kept unchanged.  This allows the effect of
         precipitation amounts to be isolated from other factors.
                The results, presented in Table IV-1, show that the peak and average
         concentrations are insensitive to the precipitation amount.  This is due to the fact that
         only a very small fraction of the mass emitted is actually depleted from the plume
         within the modeling domain. Therefore, a change in precipitation will only weakly
         influence the concentrations (other factors being equal) through the small change in
         the amount of mass depleted from the plume.  The average deposition shows a
         roughly proportional relationship with the precipitation amount.  The percentage
         change in total deposition flux is only slightly less than the change in the
         precipitation amount.   Although wet deposition is predicted to dominate the
         deposition flux for the  WTI pollutant distribution, the effect of dry deposition,  which
         is  insensitive to precipitation amount,  results in a slightly lower percentage change in
         deposition than a direct proportionality with the precipitation amount.

         4.      Dispersion Coefficient Tests
                A special version of ISC-COMPDEP was developed to  allow the use of
         measured turbulence data from  the BVPSMT in the calculation of the dispersion rates
         used in the model.  Measured values of oe are available from the BVPSMT at the
         150-ft and 500-ft levels of the tower.  The model computes ay  from the measured
         wind fluctuations, rather than on surface stability class.  The relationship between ay
         and 00 can be written as:
                                              J
                                               y
         where oy is in meters,
                oe is in radians,
                x is the downwind distance (m), and
                   the function, fy, is given by Draxler (1976):
Volume IV                                                                  External Review Draft
                                            IV-8                            Do not cite or quote

-------
                 fy(x)  = 1  + 0.9(0.001;c/H)05

          where  u is the wind speed (m/s).
                 In the first equation above, the approximate equivalence of the turbulence
          intensity  iy and ae is used (i.e., iy = ae,  for small values of oe, expressed in radians).
          Missing values of ae are filled by taking the slope of the initial (small x) portion of
          the rural  Briggs curves for oy (as reported by Gifford, 1976).  For small x, the
          growth hi oy is nearly linear, so that ae = Oy/x.  These values vary by stability class:
                   Stability class:     A     B     C     D     E      F
                   ae (radians):     0.22  0.16   0.11   0.08   0.06  0.04

                 The influence of using measured wind fluctuation data on the size of oe,
          relative to the base case runs which use  the PG sigmas, can be seen by comparing
          the distribution of the measured turbulence intensity with the values in the table
          above inferred from the Briggs curves.  Figure IV-1 shows that the median
          turbulence intensities observed at 45.7 m (150 ft) exceed the corresponding "Briggs"
          values by about 0.2 radians for stability classes 2 through 7, while median values
          measured at 152.4 m (500 ft) exceed the "Briggs" values by about 0.1 radians for
          classes 4  through  7, and 0.2 radians for classes 2 and 3 (the observed median is
          roughly twice the size of the  "Briggs" value at 500 ft).  For the rare occurrences of
          stability class 1 (highly convective), the observed turbulence intensity exceeds the
          "Briggs"  value by a substantially larger margin.  In the sensitivity tests, ae from the
          150-ft level of the BVPSMT is used in the calculation of ay because this level is
          closest to the plume height under most conditions.
                 The modeling results, presented earlier,  show little sensitivity  of the average
          concentrations and deposition fluxes to the use of the turbulence-based dispersion
          coefficients.  The average concentrations and deposition fluxes are both nearly the
          same as the base case  simulations (within 3%).   The maximum annual deposition
          fluxes are about 22% lower using the turbulence-based dispersion coefficients. The
          maximum annual  concentrations are insensitive to the use of the turbulence-based
          dispersion coefficients.
                 Much of this lack of sensitivity to fluctuations hi the wind direction is related
          to the treatment of receptors at elevations greater than stack-height.  These receptors
          comprise about 2/3 of all receptors used in the simulation.  The lateral plume
          parameter oy is only used in the ISC module of ISC-COMPDEP, because the
          COMPLEX I module uses a 22.5° sector-average description for the lateral

Volume IV                                                                   External Review Draft
                                            IV-9                             Do not cite or quote

-------
         distribution. For receptors between stack-top and the plume centerline height at final
         rise, concentrations are computed by both modules, and the larger concentration
         determines the module used to simulate concentrations and deposition at that
         receptor.  If ay is larger when the o6 data are used, peak concentrations from the ISC
         module are smaller, which would foster the selection of the COMPLEX I module
         results.  Therefore, it is expected that modeling results at receptors already
         "controlled" by the COMPLEX I module do not change.
               The reduction in the peak annual deposition flux may be related to the joint
         occurrence of precipitation events and larger values of ae.  Wet deposition dominates
         the annual deposition rate and is greatest near the source where the lateral plume
         distribution is smallest. This is also the region where most receptors lie below the
         top of the stack,  so that the ISC module determines the distribution.  With larger
         values of ay calculated from the turbulence data,  the wet flux decreases.  Hence the
         reduction in the peak annual deposition flux is expected.

         5.     Calm Wind and Fumigation Simulations
               The peer  reviewers identified the need to improve the treatment of transport
         and dispersion during low wind speed conditions and plume fumigation events in the
         modeling of the WTI facility. Because COMPDEP and ISC-COMPDEP are both
         steady-state Gaussian plume models, they are not well-suited to handle non-steady-
         state phenomena such as light wind speed dispersion and plume fumigation in valley
         situations.  The steady-state plume equation breaks down as the wind speed
         approaches zero  (i.e.,  they predict infinite concentrations), because it contains an
         inverse wind speed dependency.  For this reason, COMPDEP  and ISC-COMPDEP
         use the U.S. EPA calm wind procedures for light wind  speed events.  In these
         procedures, winds below  the instrument detection limit are considered calm.   Hours
         with calm winds are ignored in the calculation of multi-hour average concentrations
         and deposition fluxes.  For example, annual average concentrations are computed  as
         the  sum of concentrations during non-calm hours divided by the number of non-calm
         hours.  Short-term average concentrations are computed as the sum of concentrations
         during non-calm hours during the averaging period divided by the greater of the
         number of non-calm hours or 15%  of the number of hours hi the averaging time
         (i.e., 18 for a 24-hour average).  For hours with winds less than 1 m/s but greater
         than the instrument detection threshold, the U.S. EPA procedure is to reset the wind
         speed to 1 m/s for modeling purposes, but to include the hour in the modeling as  a
         non-calm  hour.
Volume IV                                                                  External Review Draft
                                           IV-10                           Do not cite or quote

-------
                At the WTI facility, a large number of hours (-22%) during the one year
         period from April 1, 1992 through March 31, 1993 are determined to be calm for
         modeling purposes.  In this analysis, a threshold wind speed of 1 m/s is assumed.
         The location of the WTI facility within a well-defined river valley is conducive to the
         development of strong nocturnal temperature inversions with light winds and stable
         temperature lapse rates within the valley.  A typical diurnal pattern involves the
         accumulation of pollutants hi the stable layer during nighttime hours with poor
         dispersion conditions, followed by the breakup of the inversion during the following
         morning. The  breakup of the inversion results in a situation where the elevated
         emissions of the previous night may mix rapidly down to the ground (fumigating),
         resulting in elevated ground-level concentrations and deposition fluxes within the
         valley.  The  comments of the Peer Review Panel ask that a more realistic treatment
         of both the calm wind conditions and plume fumigation events be considered in the
         WTI modeling.
                Straight-line Gaussian plume models  are fundamentally  ill-suited to treat such
         non-steady phenomena.  A basic assumption of the plume approach is that along-
         wind diffusion  is negligible in comparison to plume advection.  This is clearly not
         the case for calm wind conditions. Additionally, the plume model ignores plume
         history  and causality effects.  Each hour in the simulation is assumed to have reached
         a steady-state situation, which requires that the source-receptor distances be small
         relative to the transport wind speed, and that the winds and other meteorological
         conditions are constant during the period.  These conditions are not satisfied during
         light wind speed events.  Also, the plume model cannot easily  accumulate emissions
         from nighttime hours for later impact during the morning inversion breakup period.
         Although a plume model can be manipulated (through the use of virtual sources) to
         simulate a quasi-steady fumigation situation  such as encountered in coastal
         fumigation, valley fumigation is quite different and impractical to treat properly
         within the framework of a steady-state  plume model.  Modification of the  steady-state
         model to treat calm wind conditions is  difficult as well.
                For these reasons, a non-steady-state  puff model (CALPUFF) is used to
         simulate a typical calm wind and plume fumigation event in order to assess the
         impact of these conditions on long term concentrations at WTI. The puff model,
         unlike plume models, can easily handle light or calm wind conditions, along-wind
         diffusion, accumulation of emissions in an elevated stable layer, and the eventual
         fumigation of the emissions  during the morning inversion breakup period.   Prior to
         this analysis, U.S. EPA's Applied Modeling Research Branch also performed a study
         (Petersen and Schwede 1994) to help quantify model uncertainty on annual
Volume IV                                                                  External Review Draft
                                           IV-11                            Do not cite or quote

-------
         concentrations and peak 24-hour average concentrations due to low-wind-speed
         conditions.  They applied the INPUFF model using two versions of the full year of
         meteorological data, one with the calm periods removed, and one with the calm
         periods replaced with wind speeds less than 1 m/s.
               Because  CALPUFF uses a method different than that used in ISC-COMPDEP
         for characterizing the particle size distribution (i.e., using a geometric mean and
         standard deviation rather than discrete size bins), a direct comparison of deposition
         fluxes between the CALPUFF and ISC-COMPDEP is difficult.  Therefore, this
         analysis was restricted to ground-level concentrations.
               The remaining sections describe the methods used in this study and the results
         obtained.  An analysis of the type, frequency, and length of low wind speed and
         potential fumigation conditions  in the river valley near WTI is described in
         Section IV.B.S.a. In Section IV.B.S.b, the frequency and type of events occurring
         during an historical annual period are addressed by applying CALPUFF to the full
         year of meteorological data.  Information gained from the application of INPUFF by
         the U.S. EPA (Petersen and Schwede, 1994)  is also reviewed and incorporated.

               a.  Meteorological Data Analysis (April 1992 - March 1993)
                      Meteorological data from the tower located on-site, and from the
               Beaver Valley Power Station meteorological tower (BVPSMT) are used to
               identify days in which "calm" conditions, coupled with a strong  temperature
               inversion aloft (air temperature increases with height),  would likely allow
               emissions to build over the valley during the night,  only to mix rapidly to the
               surface (fumigate) during  the following morning. In the morning, solar
               heating of the ground warms the air, causing the atmospheric surface layer to
               overturn, entrain  air from above, and  grow in depth.  During this period, any
               pollutants emitted earlier above the surface layer would be entrained into the
               surface layer, and mix to  the ground.
                      Calm conditions  (wind speed less than or equal to  1.0 m/s) are
               determined from the wind speed measurements made 30 m above the ground
               at the on-site meteorological tower.  These data are listed in the file of
               processed meteorological data (DEPBIN.MET) used in the ISC-COMPDEP
               model.  The RAMMET meteorological processor is used to prepare the initial
               data file from on-site data.  The DEPMET processor revises this file to
                include surface layer parameters required by the ISC-COMPDEP dispersion
                model.  All hours in which wind speeds are less than 1.0 m/s are defined as
                calm, and RAMMET assigns a wind speed of 1.0 m/s to these while
Volume IV                                                                 External Review Draft
                                           IV-12                            Do not cite or quote

-------
                persisting the wind direction from the previous hour.  In the DEPMET stage
                of processing, the format of the meteorological data file is changed from the
                RAMMET "binary" form to the ISCST2 "ASCII" form.  Calm hours in the
                latter case are denoted by a wind speed of 0.0 m/s.  As a result, no measured
                speeds between 0.0 and 1.0 m/s are passed to the dispersion model.
                      Temperature inversions are determined from temperature difference
                ("delta-T") measurements made between 45.7 m (150 ft) and 10.7 m (35 ft) at
                the BVPSMT. The temperature difference between 152.4 m (500 ft) and
                10.7 m (35 ft) is also available from the BVPSMT, but is less representative
                of conditions within the valley, as the upper temperature measurements
                sample the flow well above the top of the valley. Duplicate delta-T
                measurements are reported — a primary and a backup. However, no
                distinction is made in the instrumentation or in their calibration and service
                schedules, so they are considered equivalent.   Recognizing this, the average
                delta-T is used in this analysis whenever both systems report valid data.
                      Wind speed data are also available from the 45.7 m (150 ft)  level of
                the BVPSMT. These are reported as "calm"  whenever the indicated speed is
                less than 0.27 m/s (0.6 mph).  Duplicate anemometers are used, so  the
                average speed is computed here when both report valid data, as with the
                temperatures. Only 4 hours in the year-long  period are characterized as
                "calm" using the 0.27 m/s cut-off.  Also note that all data received  from the
                BVPSMT are 15-minute averages, reported once per hour.
                      Figure IV-2 illustrates  the frequency of occurrence (number of days
                per year) of calm periods of a given number of hours per day, as determined
                from these data.  Three definitions of "calm" are used:

                •     Delta-T greater than or equal to 1.0 °C, with wind speed at the WTI
                      tower less than 1.0 m/s (model wind speed equal to 0.0 m/s) or wind
                      speed  at 45.7 m (150 ft) less than or equal to 1.0 m/s.

                •     Delta-T greater than or equal to 1.5 °C, with wind speed at the WTI
                      tower less than 1.0 m/s (model wind speed equal to 0.0 m/s) or wind
                      speed  at 45.7 m (150 ft) less than or equal to 1.0 m/s.
                     v
                •     Wind speed at the WTI tower less than 1.0 m/s (model wind speed
                      equal to 0.0 m/s).

                      The first definition combines the occurrence of a "modeling" calm
                hour with a substantial temperature inversion in the valley, while the second
                definition applies a more stringent measure of the temperature inversion.  The

Volume IV                                                                  External Review Draft
                                           IV-13                           Do not cite or quote

-------
               third definition removes the temperature inversion requirement altogether.
               With definition 3, we see that as many as 18 calm hours occur within a single
               day (midnight-to-midnight).  A total of 44 days during the year have 12 or
               more calm hours.  With definitions 1 and 2, as many as  15 hours in one day
               are found to be associated with calm winds and a strong temperature
               inversion, but it  is far more common to find fewer than 8 such hours hi one
               day. The total number of hours found to be calm are:

                      Definition 1 — 866
                      Definition 2 — 479
                      Definition 3 — 1942

                      Within a  day, the distribution of calm hours has a strong diurnal
               pattern, being largely associated with stable nighttime periods.  Figure IV-3,
               the frequency of occurrence (number of days per year) of calm hours at a
               particular tune of day, shows this.  On the basis of wind speed alone
               (definition 3) we see that comparatively few calms are found between 1000
               and 1700 (133 out of 1942 calm hours, or less than 7%). The most likely
               period for calms is between 2000 and 0800.  When the delta-T measure is
               added to signal the presence of an inversion (definitions 1 and 2), calms
               between 1100 and 1600 are dropped, and few remain between 0800 and  1800.
               The separation between the curve for definition 3 and those for definitions 1
               and 2 for the morning hours just after sunrise defines a period in which
               fumigation is likely to produce the  largest ground-level concentrations.  The
               worst such events are expected to be those in which the overnight hours are
               calm and stably-stratified, with calm conditions persisting into the morning as
               the convective mixing reaches and  exceeds the plume height.

               b.  Full Year Application of CALPUFF
                      In order  to evaluate the effects of calm wind conditions and fumigation
               events, CALPUFF is applied to the full year of meteorological data.
               CALPJJFF is applied using a unit emission rate of a gas-phase pollutant from
               the stack.  Concentrations are simulated at all receptors located at elevations
               below 260 m (MSL), which is approximately the elevation of the top of the
               WTI stack.  These receptors, numbering 320, are confined to the river basin.
               Then- distribution is plotted hi Figure IV-4.  CALPUFF employs the ISC
               terrain treatment, transitional rise,  and included stack-tip downwash and
Volume IV                                                                 External Review Draft
                                           IV-14                            Do not cite or quote

-------
                buoyancy enhancement of the sigmas.  Pasquill-Gifford dispersion coefficients
                are used during non-calm wind hours.  During calm wind conditions (wind
                speed <  1.0 m/s), the plume growth rates are based on an application of the
                turbulence-based dispersion coefficients with minimum values of aw of 0.16
                m/s and av of 0.5 m/s. Wet and dry deposition are not modeled.
                Meteorological data from the 30-meter level of the WTI tower is used  in the
                simulations to characterize the flow field.  This is not a preferred method for
                applying CALPUFF because it does not take advantage of the full three-
                dimensional wind field capabilities of the model.  However, using CALPUFF
                in an ISC mode will serve the intended purpose of this sensitivity analysis,
                which is to isolate, to  the extent possible, the  effects of calm winds and
                fumigation conditions.  Also note that in this application, CALPUFF employs
                the ISCST2 terrain adjustment procedures that are most relevant to receptors
                below stack-top.  (The ISCST2 terrain method holds the plume at a constant
                elevation, while limiting receptor elevation to  be at or below the stack  top
                elevation).  To facilitate comparisons, ISC-COMPDEP is run with the
                NOCMPL option specified, so that it too uses the ISCST2 terrain adjustment
                for all receptors.  Hence, results  from these simulations are only relevant to
                this sensitivity analysis. Peak concentrations are summarized in Table  IV-3.
                      The peak 1-hour, 24-hour, and annual  average concentrations predicted
                by CALPUFF in this ISC2 mode sensitivity test are similar in magnitude to
                the values predicted by ISC-COMPDEP (see Table IV-3).  This suggests that
                the inclusion of calm wind dispersion and fumigation does not have a
                significant effect on the peak predicted concentrations from the  elevated WTI
               . stack. Although CALPUFF is run in a mode  as close as possible to ISC-
                COMPDEP, some of the inherent features  of the  puff model (e.g., causality
                effects, time-variability to the fields, curved trajectories over multiple hours,
                etc.) also play a role in the concentration predictions by CALPUFF.
                      Figure IV-5 shows the annual average  concentrations simulated  by
                ISC-COMPDEP.  This has the characteristic distribution found  in the regular
                ISC-COMPDEP results presented earlier.  There  is  some along-river
                channeling, but the peak value lies on the hillside to the east of the  stack.
                Concentrations at the receptors nearest to the stack are less than the first
                isopleth (.05 /xg/m3).  In contrast, the CALPUFF results shown in Figure IV-
                6 shows larger concentrations just down-river  from the stack, and also  at
                greater distances to the east-northeast and west-southwest.  Clearly,  those
                concentrations nearest the stack result from some  pooling of emissions  near
Volume IV                                                                  External Review Draft
                                           TV-IS                           Do not cite or quote

-------
               the release during calm conditions.  The elongation of the pattern "along" the
               river's axis is probably due to a combination of the sole use of wind
               directions from the 30-m level of the tower at WTI in these CALPUFF
               simulations, and completely accounting for all of the mass released.  Note that
               winds above the valley measured at the Beaver Valley tower are available to
               ISC-COMPDEP for use when the plume height is well above the WTI stack.
               Without this supplementary wind information, puffs in CALPUFF are
               expected to follow a more channeled flow, even when they rise out of the
               valley.
                     The INPUFF simulation (Petersen and Schwede 1994) is derived from
               the same meteorological file as CALPUFF, so that it too produces the
               "channeled flow" concentration distribution, even though no terrain is
               specified in INPUFF.  Unlike the CALPUFF simulations, the wind directions
               during the lightest wind speed hours (less than 1.0 m/s) were randomized in
               the INPUFF simulations.  U.S. EPA's comparison of INPUFF with
               COMPDEP (no terrain, no calms) indicated that peak annual average
               concentrations were similar in magnitude and location, but the areal coverage
               of the isopleths from INPUFF was broader, leading to a factor of 3-5 increase
               hi concentration at receptors in the lower impact  areas.  Perhaps the random
               assignment of "low" wind speeds and directions during calm hours spread  out
               the puffs,  thereby increasing the cross-valley impacts as well as the along-
               valley impacts.
                      The results of both the INPUFF and CALPUFF simulations suggest
               that  calm wind conditions will not produce the controlling concentrations  for
               the WTI stack emissions.  The inclusion of plume fumigation effects in
               CALPUFF does not result in significantly different peak ground-level
               concentrations in the valley.  The purpose of the sensitivity tests with
               CALPUFF run in ISC2 mode is to isolate and thereby assess the importance
               of calm wind conditions and fumigation events rather than to exercise the full
               three-dimensional transport and dispersion features hi CALPUFF.

         6.     Terrain Downwash Simulations
               The  peer reviewers also identified the need to consider terrain-induced
         downwash,  which they considered a potentially serious problem at the site, at least
         for moderate-to-high wind speeds.  In response to this concern, the U.S. EPA Fluid
         Modeling Facility conducted  a series of wind-tunnel simulations  to investigate the
         potential for terrain downwash at the site, and to characterize the resulting peak
Volume IV                                                                 External Review Draft
                                          IV-16                           Do not cite or quote

-------
         ground-level concentrations (Snyder 1994).  A copy of this report is included as
         Appendix IV-6. To provide a context for their findings relative to the dispersion
         modeling program, ISC-COMPDEP simulations are performed that parallel the
         configurations studied hi the wind tunnel. These are discussed hi the following
         section.
                In the wind tunnel study, a 1:480 scale model was constructed which
         represented a full-scale region approximately 1 mile wide by 3 miles long. The wind
         tunnel simulations explored three terrain configurations: flat terrain (a base case),
         wind flow from the east-southeast (125 degrees), and wind from the west-northwest
         (305 degrees).  The most prominent nearby terrain feature that may promote
         downwash is located about 1 km to the east-southeast of the WTI stack.  Therefore,
         wind directions of 125/305 place this terrain upwind/downwind of the facility,
         respectively. Following the naming conventions used by Snyder (1994), the 125
         degree simulations are referred to as "SE", and the  305 degree simulations as "NW".
         Three stack heights were used in the simulations: 45.7 m  (existing stack), 72.7 m
         (GEP stack), and 120 m.  The  stated findings include:

                •     A small recirculation region is found at the base of the SE hill (for SE
                       winds).  The stack lies beyond this region,  but is itself hi an area of
                       downward-directed mean flow.

                •     All terrain configurations employ  the same  set of free-stream wind
                       speeds (at 500 ft, or 152 m).  Because of the terrain, however, the
                       wind speed at stack-top is considerably smaller hi the presence of the
                       actual terrain, when compared to the  corresponding flat terrain
                       simulation.

                •     Maximum ground-level concentrations clearly decrease as the stack-
                       height is increased for all three terrain configurations.  Furthermore,
                       differences due to changes in the stack-height are much more
                       significant than changes in the terrain configuration.
                      \
                •     High intensity, large-scale turbulence is generated by the presence of
                       the terrain hi concert with the changes hi the mean streamline patterns.

         These findings do indeed indicate that terrain-induced perturbations to the flow are
         expected to occur at the WTI site..
Volume IV                                                                   External Review Draft
                                            IV-17                             Do not cite or quote

-------
               Are these perturbations likely to lead to concentrations larger than those
         estimated with ISC-COMPDEP?  The configurations studied in the wind tunnel are
         simulated with ISC-COMPDEP to find out. The terrain and receptor data used hi the
         base case ISC-COMPDEP simulations discussed in Section IV.A are used here as
         well, but only those receptors that coincide with the wind tunnel configuration are
         included.  Furthermore, since the receptor radials are spaced at even increments of
         10 degrees, wind directions of 130/310 degrees replace the 125/305 pah- used hi the
         wind tunnel simulation.  Anemometer height is set at 152.4 m, and a wind profile
         exponent of 0.21 is specified to match that reported for the wind tunnel boundary
         layer with flat terrain.  The results are compared hi Figures IV-7 through IV-9.
               Figure IV-7 compares  the modeled peak concentrations as a function of wind
         speed with the corresponding peak concentrations from the wind tunnel simulations.
         For each stack-height, the wind tunnel simulations produce larger concentrations,
         generally by at least a factor of two.  Over the range of wind speeds modeled,
         concentrations resulting from emissions from the lowest stack increase with wind
         speed. With  the presence of actual terrain, however, Figures IV-8 and IV-9
         demonstrate significantly different behavior. Even though terrain downwash effects
         are not modeled  hi ISC-COMPDEP, the treatment of terrain hi the model produces
         concentrations that exceed those obtained hi the wind tunnel simulations.  The
         structure of the curves is also  different hi that  concentrations do not always decrease
         as the stack is raised.  This is particularly the  case hi Figure IV-9 hi which winds
         from the "NW" are simulated. The re-ordering of peak concentration and stack-
         height for the 9 m/s wind speed is probably related to the  use of two dissimilar
         models in implementing the intermediate terrain procedure. Under certain
         circumstances, the ISC and COMPLEX I treatments can produce markedly different
         concentration estimates.  Because the larger estimate is chosen within the
         intermediate terrain regime, and an abrupt switch to the Complex I  result is made in
         the complex terrain regime (i.e., receptors above stack top) and because the regime
         is itself a function of stack height, plume height, and receptor height,  concentration
         predictions from the model do not always show a decrease with increasing stack
         height.  This behavior is a result of the intermediate/complex terrain procedures
         rather than any physical process.
                These comparisons suggest that concentrations produced by the methods used
         to treat terrain in ISC-COMPDEP are sufficiently conservative, and that the changes
         in peak concentrations attributed to terrain downwash on the basis of the wind tunnel
         simulations are sufficiently minor, that the ISC-COMPDEP modeling performed for
         the WTI facility  does not need any modifications related to terrain downwash.
Volume IV                                                                  External Review Draft
                                           IV-18                           Do not cite or quote

-------
  C.    Routine Fugitive Emissions Modeling
         The fugitive source of emissions include the carbon bed adsorption system, ash
  handling activities, the open wastewater tank, the organic waste tank farm, and the truck
  wash.  The ash handling, organic waste farm, and carbon bed adsorption system emissions
  are vented through stacks, and therefore are modeled as point sources.  (The organic waste
  farm emissions are vented through four stacks).  The other two sources (the open
  wastewater tank and truck wash) are treated as volume sources.   (See Section HI. A.2  for a
  discussion of the sources and  emission parameters).
         Each  of the fugitive emission sources is modeled with a unit emission factor.  For
  both the point  and volume sources, the unit emission rate is 1 g/s in the modeling.
  Pollutant-specific modeling results can be obtained by multiplying the unit-emission rate
  results by the pollutant's emission rate.  Note that each of the four stacks hi the organic
  waste farm emission run has an emission rate of 1 g/s, for a total emission rate of 4 g/s.
  Therefore, pollutant-specific scaling of these results must be based on an average, per stack,
  emission rate.  The emissions for these sources is assumed to be in the vapor form, except
  for the ash handling facility, which is assumed to include both vapor and paniculate matter
  emissions. It is not possible to obtain specific size distribution data for the particulate
  matter emissions from the ash handling facility, so the same size distribution used in the
  base case simulations of the incinerator stack are used for the ash handling facility.
         Table IV-4 summarizes the results of the fugitive emission modeling.  Because of the
  very small pollutant emission rates  expected from these sources,  the large unit emission-
  based concentrations will actually produce relatively small, localized concentrations.
  Therefore, the  summary lists  only the maximum concentrations rather than the domain
  average concentrations over all receptors.  Contour plots of the spatial distributions of the
  concentration fields, and in the case of the ash handling facility,  the wet, dry,  and total
  deposition fluxes, are presented in Appendix IV-4.
         The contour plots of the fugitive emission concentrations  all show peak
  concentrations  hi the immediate vicinity of the source, except for the carbon adsorption bed
  stack.  This  reflects the  low release heights and the lack of significant buoyancy or
  momentum of  the emissions.  The carbon adsorption bed emissions have significant
  momentum (although no buoyancy) and are released at a height of 28 m.  The resulting
  concentration isopleths show a near-field peak a few hundred meters from the stack.   The
  general shape of the contour of concentrations show these strong channeling effects of the
  terrain on the low-level  winds used for advecting the fugitive emissions.  This pattern is hi
  contrast to that of the  incinerator stack, which reflects the influence of upper level winds
  during the periods when the plume rises out of the valley.
Volume IV                                                                  External Review Draft
                                            IV-19                            Do not cite or quote

-------
  D.     Uncertainty Analysis
         1.     Limitations of the Technical Formulations
                Recognition of the uncertainties of dispersion and deposition model
         predictions is important in conducting a health risk assessment. In this analysis, the
         uncertainties are categorized into two types: limitations of the technical algorithms in
         the model, and limitations in the amount and type of data available for the modeling
         (discussed in Section IV.D.2).  The principal areas of uncertainty hi the model are
         discussed below.

                a.  Wet Deposition
                       The wet deposition algorithm used hi ISC-COMPDEP is a simple,
                empirically-based scavenging coefficient scheme.  The scavenging coefficients
                are used by the model to determine the amount of pollutant removed from  the
                plume.  The scavenging coefficients are specified as a function of the particle
                size categories and precipitation type. The scavenging coefficients are derived
                from limited observational studies with a relatively small number of data
                points.  The data hi these studies do not allow the identification and
                parameterization of individual wet removal processes, such as in-cloud
                nucleation and below  cloud interception.  Instead, all wet removal
                mechanisms are  included implicitly in the empirical scavenging coefficients.
                Non-steady-state effects and saturation effects are not included hi the model.
                ISC-COMPDEP assumes that no changes hi the size distribution of the
                particles occurs, as can happen due to aerosol growth hi high humidity
                environments.
                       The scavenging coefficient scheme predicts deposition fluxes that
                depend on the vertically-integrated pollutant concentration, which increases
                rapidly as one approaches the source. It is likely that the wet deposition
                algorithm is biased to overpredict rather than underpredict near-field wet
                deposition fluxes because certain processes such as nucleation, which are
                important in enhancing the rate of wet removal, are probably not active near
                the stack.  (Near the stack, only below cloud processes are active, whereas
                the empirical scavenging coefficients include  the effects of all (below cloud
                and within-cloud) processes).  Because wet deposition is a dominant
                component of the total deposition and because the peak predicted wet
                deposition  fluxes occur near the stack, it is likely that this uncertainty results
                hi the model overestimating the  peak wet deposition flux (and therefore
                overestimating the estimated  risk) of the facility.
Volume IV                                                                  External Review Draft
                                            IV-20                            Do not cite or quote

-------
                b. Complex Terrain
                       The location of the WTI site in the steep-walled Ohio River valley
                presents challenges for the dispersion and deposition modeling. The
                meteorological data measured in the valley indicate that there is strong
                channeling of the flow at lower heights hi the valley. At higher elevations
                above the valley walls, the channeling is not present. This indicates that there
                is the potential for significant wind shear just above stack top.  In fact, the
                flow hi the two zones can be completely decoupled hi some circumstances.
                Thus, depending on exactly where the plume is predicted to be (i.e., within or
                above the valley), different plume trajectories can result. Although the ISC-
                COMPDEP model has been modified to allow for a characterization of the
                flow at different levels, the modeling approach still represents a simple
                approximation to the actual flow fields that are likely to be quite complex. In
                addition, the COMPLEX I terrain algorithm hi ISC-COMPDEP is considered
                a simple screening approach for evaluating complex terrain effects.
                       Another limitation is that the steady-state plume modeling approach
                does not allow the  plume trajectory to deviate from a straight line.  Especially
                hi complex terrain such as near the WTI facility, this assumption is
                questionable, and is likely to lead to errors hi plume trajectories.  However,
                over long averaging times such as the annual averages presented in Section
                IV, some of the errors will likely average out.  However, the model is not
                expected to be able to accurately predict an individual plume's behavior well
                for an  individual hour.
                       As noted by the peer reviewers, the model does  not contain algorithms
                for treating terrain-induced downwash effects.  However, a comparison of
                wind tunnel simulations of the WTI area with the ISC-COMPDEP model
                suggest that there is sufficient conservatism in the formulation of the complex
                terrain treatment in the model, so that the lack of terrain downwash will not
                lead to underpredictions of the predicted concentrations. In contrast, the
                comparison suggests that the model will overpredict concentrations at higher
                elevations in the domain (see Section IV.B.6).
                     v
                c.  Calm Winds and Fumigation
                       The meteorological observations in the valley indicate a high frequency
                of occurrence of low wind speed conditions and inversion conditions. The
                steady-state plume  approach used hi the ISC-COMPDEP model cannot treat
                calm conditions or fumigation associated with inversion break-up events.
Volume IV                                                                  External Review Draft
                                           IV-21                            Do not cite or quote

-------
                Therefore, the ISC-COMPDEP predictions are likely to be very uncertain
                during these types of conditions.  However, a limited application of a non-
                steady-state model has been applied to the WTI incinerator stack to help
                quantify the effects of calm winds and fumigation events (see Section IV.B.5).
                The results suggest that for the main WTI stack emissions, calm wind and
                fumigation conditions are not likely to significantly affect the peak
                concentration impacts.

                d. Dry Deposition
                       Comparisons of dry deposition velocity observations and predictions
                generally  show a significant amount of scatter (e.g., U.S. EPA 1993). The
                prediction of deposition velocities is a strong function of meteorological
                variables and the size characteristics of the pollutant, both of which represent
                sources of uncertainty, even with a perfect deposition model. The split of
                pollutants between the vapor and particle phases is also an area of uncertainty.
                As pointed out by the peer reviewers, the significance of transformations
                between the vapor and particle phases during plume transport is unknown.  In
                this study, wet deposition fluxes are found to dominate the total deposition
                from the WTI incinerator. Therefore, it is believed that the wet removal
                algorithms represent a larger source of uncertainty than the dry deposition
                model in the current study. For example, the sensitivity tests discussed in
                Section IV.B do not show significant variability of the total deposition flux for
                the particular size distributions tested. This conclusion may not be
                transferable to other sites or other pollutant distributions, but appears to be
                accurate for the WTI situation.

         2.     Data Limitations
                a. Meteorological Data
                       The wind fields and turbulence fields in the Ohio River valley are
                likely to have a great deal of fine scale structure.  As a result of the  peer
                reviewer's comments, improvements  were made in the model's ability to
                handle wind variations in the vertical, local temperature gradient data were
                used in the calculation of inversion strengths, and tests were conducted using
                local  measures of the horizontal wind direction fluctuations (ae).  Even with
                these improvements, the steady-state  plume modeling approach, necessarily
                results hi a significant simplification  of the meteorological conditions hi the
                valley. However, with the focus on  long-term average concentrations and
Volume IV                                                                   External Review Draft
                                            IV-22                             Do not cite or quote

-------
                deposition fluxes, the errors associated with the use of simplified
                meteorological approximations is likely to be mitigated somewhat.
                       The results of using local precipitation data from the Beaver Valley
                meteorological station rather than Pittsburgh precipitation data are discussed
                hi Section IV.B.3. It was found that year-to-year variability hi precipitation
                amounts can produce a nearly linear response in the deposition flux estimates,
                but that concentration predictions were only a very weak function of the
                precipitation data.  The precipitation amounts for the base period modeled are
                close to the longer term average precipitation amounts recorded at the Beaver
                Valley station.

                b.  Particle Size Distribution
                       The rate of removal of particulate matter from the atmosphere  (and
                therefore,  the magnitude of the predicted pollutant dry deposition fluxes from
                the model) is a strong function of the size distribution of the particulate
                matter.  For example, Sehmel (1980) shows curves of deposition velocities as
                a function of particle size which vary over several orders  of magnitude. Dry
                deposition velocities  tend to show a minimum for particles with diameters
                near 0.1 pm to 1.0 yum. Particles smaller than this range tend to exhibit
                larger deposition velocities  due to the Brownian motion effects. Because
                particles in the 0.1-1.0 /xm diameter size range are not transported across the
                quasi-laminar layer in the vicinity of the surface very effectively by any of
                these processes, they have the smallest dry deposition velocities.  In the stacks
                tests conducted at the WTI  facility about one-third of the  paniculate matter
                was found to be less than 0.4 /im in diameter.  Due to limitations of the
                testing equipment, the shape of the size distribution below 0.4 /xm diameter is
                not known.  Because of the potential sensitivity of dry deposition rates on
                particle size, sensitivity tests  of the model are made with  different
                assumptions of the distribution (see Section I V.B.I).  Probably because the
                wet deposition fluxes are predicted to dominate the deposition flux estimates,
                the model did not show significant variability as a function of the size
                distribution used.  Although wet deposition also depends on the particle size,
                it does not appear to be as  strong a function as the dry deposition (at least as
                modeled).
Volume IV                                                                    External Review Draft
                                             IV-23                             Do not cite or quote

-------
                                             Table IV-1
             Summary of ISC-COMPDEP Modeling Results for the WTI Main Incinerator Stack
                           Annual Simulation (April 1,  1992 to March 31, 1993)
                           All Results Are Based on Unit Emission Rate (1 g/s)
Run No.
la
Ib
Ic
2a
2b
2c
3a
3b
4a
4b
5a
5b
5c
f
Model
ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP
Run Description
Base Case
Base Case
Base Case
GEP Ht. Stack
GEP Ht. Stack
GEP Ht. Stack
9-yr High
Precipitation
9-yr Low
Precipitation
Turbulence-based
Sigmas

Pollutant
Distribution
Mass
Surface Area
Vapor
Mass
Surface Area
Vapor
Mass
Surface Area
Mass
Surface Area
Mass
Surface Area
Vapor
Maximum
Concentration
(Hg/m3)
.9128(1 km, 100°)
.9111 (1 km, 100°)
.9144(1 km, 100°)
.8077 (1 km, 100°)
.8057 (1 km, 100°)
.8098(1 km, 100°)
.9126 (1 km, 100°)
.9108 (1 km, 100°)
.9131 (1 km, 100°)
.9115 (1 km, 100°)
.9207 (I km, 100°)
.9190 (1 km, 100°)
.9223 (1 km, 100°)
Maximum
Deposition Flux
(g/mVyr)
.2213 (0.1 km, 80°)
.3052(0.1 km, 80°)
-
.1655 (0.1 km, 80°)
.2254(0.1 km, 80°)
-
.2653 (0.1 km, 80°)
.3653 (0.1 km, 80°)
.1505(0.1 km, 80°)
.2080(0.1 km, 80°)
.1733 (0.1 km, 1 00°)
.2394(0.1 km, 90°)
"
Receptor
Average
Concentration
Oig/m3)
.1018
.1013
.1024
.0830
.0826
.0836
.1017
.1012
.1019
.1014
.1018
.1014
.1024
Receptor
Average
Deposition Flux
(g/m2/yr)
.0123
.0168
-
.0121
.0164
-
.0145
.0196
.0087
.0120
.0121
.0164
~~
Total (Wet and
Dry) Average
Deposition
Velocity (cm/s)
.38
.53
-
.46
.63
-
.45
.62
.27
.38
.38
.51
~
IV

-------
                                                             Table IV-2
                                  Summary of WTI Modeling Results with COMPDEP and ISC-COMPDEP
                                                (Before Peer Review to ISC-COMPDEP)
                                           Annual Simulation (April 1, 1992 to March 31, 1993)
                                           All Results Are Based on Unit Emission Rate (1 g/s)





Run No.
C-la
C-lb
C-lc
C-2a
C-2b
C-3

I-la
I-lb
I-lc
I-2a
I-2b
1-3

I-4a
I-4b
I-5a
I-5b





Model
COMPDEP
COMPDEP
COMPDEP
COMPDEP
COMPDEP
COMPDEP

ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP

ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP
ISC-COMPDEP



*

Run Description
Base Case
Base Case
Base Case
Mass < .4 urn
At 0.03 urn
Vapor Modeled as
0.03 urn particle
Base Case
Base Case
Base Case
Mass < .4 urn
At 0.03 urn
Vapor Modeled as
0.03 um particle
No Depletion
No Depletion
Receptor-Specific
Land Use




Pollutant
Distribution
Mass
Surface Area
Vapor
Mass
Surface Area
Vapor/Particle

Mass
Surface Area
Vapor
Mass
Surface Area
Vapor/Particle

Mass
Surface Area
Mass
Surface Area




Maximum Concentration
(Mg/m3)
.9 174 (1.25 km, 250°)
.9144 (1.25 km, 250°)
.9454(1.25 km, 250°)
.901 2 (1.25 km, 250°)
.8752(1.25 km, 250°)
.8705 (1.25km, 250°)

.9404 (1.25 km, 250°)
.9443 (1.25km, 250°)
.9534 (1.25 km, 250°)
.9381 (1.25km, 250°)
.9392 (1.25 km, 250°)
.9388 (1.25 km, 250°)

.9534 (1.25 km, 250°)
.9534 (1.25 km, 250°)
.9534 (1.25 km, 250°)
.9534 (1.25 km, 250°)



Maximum
Deposition Flux
(g/m2/yr)
.3377 (0.1 km, 60°)
.3372(0.1 km, 60°)
—
.3539(0.1 km, 60°)
.3774(0.1 km, 60°)
.3820(0.1 km, 60°)

.4205 (0.1 km, 70°)
.5762 (0.1 km, 70°)
~
.5444 (0.1 km, 70°)
.9128 (0.1 km, 70°)
.9764 (0.1 km, 70°)

.4344 (0.1 km, 70°)
.6004(0.1 km, 70°)
.5840 (1.0 km, 60°)
.6029(0.1 km, 70°)


Domain
Average
Concentration
(Mg/m3)
.0978
.0976
.1002
.0965
.0944
.0941

.0813
.0830
.0852
.0810
.0824
.0825

.0852
.0852
.0852
.0852


Domain
Average
Deposition
Flux (g/mVyr)
.0178
.0180
~
.0193
.0216
.0220

.0229
.0250
~
.0273
.0317
.0381

.0285
.0309
.0462
.0366
Total (Wet
and Dry)
Average
Deposition
Velocity
(cm/s)
.58
.58
—
.63
.73
.74

.89
.96
~
1.07
1.22
1.46

1.06
1.15
1.72
1.36
Volume IV
                                                               IV-25
External Review Draft
  Do not cite or quote

-------
                                       Table IV-3
                       Comparison of CALPUFF and ISC-COMPDEP
                                    Modeling Results

ISC-COMPDEP
CALPUFF
Concentration (ng/m3)
Largest 1-hr
Average
18.67
19.46
Largest 24-
hr
Average
6.62
4.48
Largest
Annual
0.37
0.38
Volume IV
                                         IV-26
External Review Draft
  Do not cite or quote

-------
                                           Table IV-4
                     Summary of WTI Modeling Results with ISC-COMPDEP
                                    Fugitive Emission Sources
                       Annual Simulation (April 1, 1992 to March 31, 1993)
                  AH Results Are Based on Unit Emission Rate (1 g/s or 1 g/mVs)
Run No.
Sc

9c


lOc

lie

12c
Fugitive Emission Source
Carbon Bed Adsorption
System (one stack)
Ash Handling
(one stack)

Open Wastewater Tank
(volume source)
Organic Wastetank Farm
(four stacks)
Truck Wash
Pollutant Distribution
Vapor

Vapor
PM — Mass
PM — Surface Area
Vapor

Vapor

Vapor
Maximum Annual
Concentration
(ug/m3)
3.801' (0.8 km, 200°)

148.97' (0.1 km, 50°)
148.71 (0.1 km, 50°)
148.32 (0.1 km, 50°)
298.68' (0.3 km, 40°)

143.56b(0.1 km, 40°)

288.70" (0.2 km, 40°)
         a Based on an emission rate of 1 g/s.
         b Based on an emission rate of 1 g/s per stack (four stacks in run)
Volume IV
                                             IV-27
External Review Draft
  Do not cite or quote

-------

-------
    50000-
    40000-
    30000
    20000
    10000
o
z
                      Annual Concentrations (jUg/ni *
                     WTI Stack (Surface Distribution)
                                                              -—•0.005
                                      0.005
                                   0.020
   -10000
   -20000	.         	              ______
         I                    ~~^                                -0-005
   -30000-
   -40000
   -5000CH
       -50000 -40000 -30000 -20000  -10000    0    10000  20000   30000  40000  50000
                                       EAST (m)

       Figure IV-1.  Annual average concentrations (ug/m3) for the incinerator stack - Run Ib (ISC-
                  COMPDEP, base case, surface area-weighted pollutant distribution). Modeling
                  domain out to 50 km is displayed.
                    - 1.000

                      C.50C

                      C.20C

                      C.100

                      0.075

                      0.050

                      0.020

                      0.010

                      0.005

                      0.000
    Volume IV
                                       IV-28
External Review Draft
  Do not cite or quote

-------

-------
    50000
                      Annual Wet Deposition (g/m2)
                     WTI  Stack (Surface Distribution)
    40000-1
    30000-
    20000
    10000-)

E       !
^""       I
i
o:
o
2
       0-
           ro
   -10000
   -20000
   -30000-i
   -40000-
   -500CXH
       -50000 -40000 -30000  -20000  -10000
                   0.0001
                                                                           -HO. 100

                                                                         I—';0.05QC
                                                                         i   ;
                                                                         !
                                                                         !—- j 0.0201
                                                                         i   i
                                                                          — 0.005C

                                                                          — 0.002C
                                                                            I
                                                                          —; 0.001 c
                                                                         f -  I

                                                                         !•- ..! O.OOOf

                                                                         I   o.ooo:
                                                                         I
                                                                         !   0.000

                                                                            0.000(
                                     0    10000   20000  30000  40000  50000
                                 EAST (m)

Figure IV-2.  Annual wet deposition fluxes (g/m2) for the incinerator stack - Run Ib (ISC-
            COMPDEP, base case, surface area-weighted pollutant distribution). Modeling
            domain out to 50 km is displayed.
    Volume IV
                                       IV-29
                                                       External Review Draft
                                                         Do not cite or quote

-------

-------
    50000
    40000-
    30000
    20000-
    10000-
X
I—
or
O
2
                       Annual Dry Deposition (g/m 2)

                     WTI Stack (Surface Distribution)
'>/  /
   -10000
   -20000-
   -30000-
   -40000-
   -50000-j       r   -  -v

      -50000 -40000 -30000  -20000  -10000    0
      	OJ
 0.1000C


 0.05000


 0.0200C


 0.0100C


 0.0050C


 0.0020C


 0.00100


 0.0005C


 0.00020


 0.00010


 0.00005


10.00000
       10000  20000  30000   40000  50000
                                       EAST (m)



      Figure IV-3.  Annual dry deposition fluxes (g/m3) for the incinerator stack - Run Ib (ISC-

                  COMPDEP, base case, surface area-weighted pollutant distribution). Modeling

                  domain out to 50 km is displayed.
    Volume IV
                                         IV-30
                     External Review Draft

                       Do not cite or quote

-------

-------
    50000^
    40000-
    30000-
    20000
    10000-
£     CM
QC
O
   -10000
   -20000-
   -30000-
   -40000
                      Total Annual Deposition (g/m2)
                     WTI Stack (Surface Distribution)
                                                   0.0005
  .\

:" '. ''A
                                            ,
                                             O.OOQ5
                                  o.<

                     J0.100C
                     j
                     0.050C

                     0.020C

                     0.01 OC

                     0.005C

                     0.002C

                     0.001 C

                     0.0005

                     0.0002

                     0.0001

                     0.0000
   -50000
       -50000 -40000 -30000  -20000  -10000    0    10000   20000  30000  40000  50000

                                       EAST (m)

      Figure IV-4.  Annual total deposition fluxes (g/m2) for the incinerator stack - Run Ib (ISC-
                 COMPDEP, base case, surface area-weighted pollutant distribution). Modeling
                 domain out to 50 km is displayed.
    Volume IV
                                       IV-31
External Review Draft
  Do not cite or quote

-------

-------
                       Win WS152=1.0 m/s   (Percentiles: 1  5  25 50  75  95 99)
                       Win WS152  1.0 m/s   (Percentiles: 1  5  25  50  75 95  99)
Figure IV-5.  Distribution of lateral turbulence intensity measured at the Beaver Valley tower.
              The solid line identifies the corresponding turbulence intensity inferred from ay
              functions developed by Briggs.
Volume IV
                                            IV-32
External Review Draft
  Do not cite or quote

-------
                         Daily Duration of Calms/Inversions
       50-n
       40-
       30-
I
20-
                                               dT(15&-35ft)GE1.0C
                                      ws(Wn)=0; dT(150-35ft)GE1.5C
                               - &  -  ws(wn)=o
       10-
        0-
                                         I     I     I  T  T
           0    2    4    6    8    10   12   14   16   18   20   22   24
                             # Calm Hours per Day
 Figure IV-6. Frequency of occurrence of calm periods of a given number of hours per day.
            Cairn hours are determined from the measured wind speed at the WTI tower (30
            m), and inversion conditions are determined from temperatures measured at the
            Beaver Valley tower.
 Volume IV
                                      IV-33
                                                    External Review Draft
                                                      Do not cite or quote

-------
                      Diumal Distribution of Calms/Inversions
       160-1
       120-
        80-
I
        40-
                              	 ws(vVn)=Q; dT(150-35ft) GE 1.0C
                                     ws(Wn)=0; dT(150-35ft) GE 1.5C
                              _ &  - ws(wn)=o
                                            »  « -°~oX
                                                         S>
                                                         •t-r-r
             0    2    4     6    8    10   12   14    16   18   20   22   24

                                      Hour of Day
   Figure FV-7.  Frequency of occurrence of calm conditions by time-of-day.  Calm hours are
               determined from the measured wind speed at the WTI tower (30 m), and inversion
               conditions are detennined from temperatures measured at the Beaver Valley tower.
   Volume IV
                                       IV-34
External Review Draft
  Do not cite or quote

-------
      3—,
     2 —
      1  —
      0-
     -1 —
     -2-
     -3
          -3           -2
-1
 0
KM
Figure IV-8.    Distribution of receptors, centered on the WTI stack, used in simulating concentrations with ISC-
              COMPDEP and CALPUFF during May  11 to May 12.  These 320 receptors lie at or below the
              elevation of the top of the stack.
Volume IV
                                            IV-35
                                  External Review Draft
                                     Do not cite or quote

-------
                     ISC-COMPDEP  (NOCMPL)
               -6     -4      -2
                                                                         10
  Figure IV-9.  Anmfcl concentrations (Mg/m3) for a unit emission rate (1 g/s) predicted by
              applying ISC-COMPDEP with ISC terrain adjustments for all receptors. The
              WTI stack is located at (0,0) and distances marked are in kilometers.
Volume IV
                                   IV-36
External Review Draft
  Do not cite or quote

-------
                                CALPUFF (Slug)
  -10
         8      10
 10
  -10     -8
6
8      10
Figure IV-10.   Annual concentrations (ng/m3) for a unit emission rate (1 g/s) predicted by applying CALFUFF.
             The WTI stack is located at (0,0) and distances are in kilometers.
Volume IV
                                        IV-37
External Review Draft
  Do not cite or quote

-------
                       Terrain Downwash Tests: Hat Terrain
 o
 2
 b
f
20

18

16-

14-

12-

10-

 8-

 6 -

 4 —

 2 —
              I    I     !     I    I
Hs=45.7m(tunnel)
Hs=45.7m(mcxtel)
Hs=7Z7m (tunnel)
Hs=7Z7m(mcxte<)
Hs=120m(tunnd)
Hs=120m (model)
                                         I     I     I    I     I     I    I     T
           0    2   4    6    8   10  12   14  16   18   20  22   24   26  28
                              Wind Speed @500 ft (m/s)
Figure IV-11.   Comparison of ISC-COMPDEP results with U.S. EPA FMF wind tunnel results for the flat terrain
            configuration.
Volume IV
                                     IV-38
                                                     External Review Draft
                                                       Do not cite or quote

-------
                   Terrain Downwash Tests: Wind From SE
^- ^
 33
 o
3
^*^

I
20-

18 -

16-

14-

12-

10-

 8-

 6-

 4 —

 2 —

 0-
Hss45.7m (tunnel)
Hs=45.7m (model)
Hs=727m(tunnej)
Hs=7Z7m (model)
Hs=120m (tunnel)
Hs=120m (model)
                     -i—i—i—i—i—i—r
                                                               "i—I—r
     024
                        6    8   10   12  14   16  18  20  22   24  26   28
                             Wind Speed @500 ft (nVs)
 Figure IV-12. Comparison of ISC-COMPDEP results with U.S. EPA FMF wind tunnel results
              for "SE" winds.
  Volume IV
                                      IV-39
                                                       External Review Draft
                                                        Do not cite or quote

-------
                    Terrain Downwash Tests: Wind From NW
 o
15
f
20

18

16

14

12

10

 8

 6-

 4-
                                                           Hs=45.7m(tunnej)
                                                           Hs=45.7m (model)
                                                           Hs=7Z7m (tunnel)
                                                           Hs=7Z7m (model)
                                                           Hs=120m (tunnel)
                                                           Hs=120m (model)
             i   I  I  I   I
           0246
                                        i  l   i
                       8    10  12   14  16   18   20  22   24   26  28
                        Wind Speed @500 ft (nVs)
Figure IV-13.   Comparison of ISC-COMPDEP results with U.S. EPA FMF wind tunnel results for "NW" winds.
Volume IV
                                     IV-40
                                                      External Review Draft
                                                        Do not cite or quote

-------

-------
                 V.  SUMMARY AND MAJOR ASSUMPTIONS

        A revised dispersion and deposition modeling study of stack emissions and fugitive
 emissions from the WTI hazardous waste facility is conducted as part of the WTI Risk
 Assessment of the facility.  Modifications and enhancements were made to the Project Plan
 to reflect the comments of a peer review group convened hi Washington, D.C. on December
 8 and 9, 1993.  The Meteorology /Air Dispersion Work Group of the Peer Reviewer Panel
 made a set of short-term recommendations to refine and improve the air modeling for the
 WTI Risk Assessment Study and several long-term recommendations for future studies.
 Among the comments were recommendations to use additional meteorological data from a
 nearby meteorological tower and local precipitation and turbulence data, evaluation of calm
 wind conditions and fumigation hi the valley, evaluation of terrain-induced downwash effects,
 modeling of fugitive emission sources, inclusion of short-term average concentration
 estimates for use hi evaluating concentration increases from upset conditions, and an analysis
 of the sources of uncertainty hi the study.
        Concurrent with the development of the original Project Plan, a new model
 (ISC-COMPDEP) was developed to provide a more refined analysis of dispersion and
 deposition from a source in complex terrain such as the WTI facility.  The model has been
 peer reviewed and is applied to the WTI Risk Assessment. It is described hi detail in Section
 II of this report. Many of the peer review panel concerns are addressed by the use of
 ISC-COMPDEP; hi fact additional refinements were made to the model hi response to
 specific peer review comments.  Specifically,  ISC-COMPDEP was modified to allow the use
 of meteorological data (wind and temperature) measured at various heights in the
 atmosphere, and it was executed using both on-site data from WTI and data from the Beaver
 Valley meteorological tower. A version of the model was developed that replaced Pasquill-
 Gifford horizontal dispersion coefficients (ay) with values  based on observed measurements
 of turbulence (ae).  ISC-COMPDEP  simulations are conducted using local precipitation data,
 short-term concentration estimates are produced for evaluating upset or accident-related
  increases hi emissions, fugitive sources of emissions are modeled, and a series of sensitivity
 tests are conducted and uncertainty evaluated.  In addition, a separate wind tunnel study
  (Snyder 1994) is conducted of the WTI site, and the results compared to ISC-COMPDEP
 modeling predictions.  Associated modeling work of the wind tunnel scenarios suggested that
 the  ISC-COMPDEP model, although not capable of describing terrain downwash conditions,
  does appear to produce conservative estimates of the concentrations during these conditions.
Volume IV                                                                 External Review Draft
                                           V-l                            Do not cite or quote

-------
         For the case of calm wind and fumigation conditions, the basic steady-state
  assumption used hi ISC-COMPDEP is invalid.  Therefore, for assessing the impact of these
  conditions, a limited application of the CALPUFF non-steady-state model (Scire et al. 1995)
  is conducted. A second non-steady-state model, INPUFF (Petersen and Lavdas 1986), is
  applied in a separate study to examine the effects of calm wind conditions hi flat terrain.
  The results indicated that for the elevated emissions from the main WTI stack, simulation of
  calm wind and fumigation conditions with the puff models does  not lead to significantly
  higher predicted peak concentrations.   This conclusion may not apply to other source
  configurations, especially short-stack emissions and fugitive releases.
         The model output files are partially reproduced in the Appendices to this volume.  A
  set of tables, plots and files of predicted concentrations and deposition fluxes are presented.
  Three base case simulations of the WTI incinerator stack are prepared for use in the risk
  assessment analysis.  These consist of runs with mass-weighted pollutant distributions (for
  use with matrix pollutants bound to the particle material), pollutant area-weighted pollutant
  distribution (for pollutants that may adsorb onto the outside surface of the particle), and
  vapor-phase pollutants.  Wet and dry deposition effects are modeled for the paniculate
  matter. Pollutants hi the vapor phase are assumed not to be subject to deposition processes,
  but rather part of the inhalation exposure route  only.
         Five different sources of fugitive emissions are evaluated as part of the WTI Risk
  Assessment.  These include emissions from the carbon adsorption  bed,  ash handling
  operations, the open wastewater tank, the organic waste tank farm, and truck washing
  operations.  The impacts from these sources are localized, and given the expected emission
  rates associated with these  sources are much smaller than those from the incinerator.  (All of
  the modeling conducted in this volume are presented based on an unit (1 g/s) emission rate).
         A discussion of the key assumptions and limitations of the  modeling approach is
  provided hi Section IV.D,  and is summarized in Table V-l.  The  formulation of the wet
  deposition algorithm is viewed as one of the most significant limitations of the model.  It is
  likely that the wet flux estimates are overpredicted in the near field of the stack because of
  the inability of the technique to distinguish between in-cloud and below-cloud scavenging
  processes.  Another limitation is the inability of the steady-state ISC-COMPDEP model to
  simulate the spatially-variable plume trajectories that are expected  in the valley. Ideally,  it
  would be  desirable to have additional meteorological data, including turbulence
  measurements at plume height to use  in the modeling. However,  the modeling results appear
  to be reasonably robust estimators of the long term average concentration and deposition
  fluxes expected from the facility.
Volume IV                                                                  External Review Draft
                                             V-2                             Do not cite or quote

-------
                                                           TABLE V-l
                                                         Key Assumptions
              Assumption
                        Basis
Magnitude
 of Effect
 Direction of
    Effect
     Pollutants are distributed
     according to a steady-state,
     straight-line Gaussian
     distribution.
Straight-line Gaussian plume dispersion models are the
most widely-used type of model in regulatory applications
such as risk assessments.  Although they cannot reproduce
the effects of complex flow fields and non-steady-state
behavior, they are generally considered to provide robust,
reasonably conservative estimates of plume impacts.
  medium
   probably
  overestimate
     Low-wind speed stagnation
     events and plume fumigation
     are neglected.
The steady-state plume model cannot treat calm conditions
or plume fumigation during inversion break-up conditions.
Sensitivity tests with two non-steady-state puff models
(INPUFF and CALPUFF) were conducted that indicate
these conditions do not have a significant effect on the
peak impacts from the WTI incinerator.
    low
 underestimate
     Wet removal is a linear process
     proportional to the vertically-
     integrated plume concentration.
The scavenging coefficient wet removal algorithm is a
widely-used approach in regulatory modeling. More
sophisticated techniques would require a significantly more
complex base model than the Gaussian plume model. The
use of the scavenging coefficient method is likely to
overestimate rather than underestimate peak near-field wet
deposition.
 medium to
   high
overestimate (in
   near-field)
 underestimate
  (in far-field)
     Terrain downwash effects are
     neglected .
A wind tunnel study has been conducted that quantifies
terrain downwash effects on emissions from the WTI
incinerator stack.  A comparison of modeling predictions
with the wind tunnel results suggests that the model
contains sufficient conservatism to compensate for the lack
of an explicit terrain downwash algorithm in evaluating
the peak impacts from the WTI stack.
    low
 underestimate
Volume IV
                                                               V-3
                                                                       External Review Draft
                                                                         Do not cite or quote

-------
                                                           TABLE V-l
                                                        Key Assumptions
              Assumption
                        Basis
Magnitude
 of Effect
Direction of
   Effect
     Meteorological conditions and
     flows within the valley can be
     characterized by the available
     meteorological measurements.
The use of the Beaver Valley Power Station
meteorological data to supplement meteorological
measurements made by WTI was recommended by the
Peer Peview Panel. These data sources represent the best
available meteorological observations within the valley.
  low to
  medium
  unknown
     Terrain effects are adequately
     represented by the ISC2 and
     COMPLEX I  terrain algorithms.
The intermediate terrain and complex terrain algorithms
and procedures in ISC2 and COMPLEX I are considered
screening techniques that are likely to provide conservative
estimates of plume concentrations.
  medium
overestimate
Volume IV
                                                                      External Review Draft

-------
                                VI.  REFERENCES
  Auer, A.H. Jr., 1978: Correlation of land use and cover with meteorological anomalies. /.
        Appl. Meteor., 17, 636-643.

  Bowers, J.F., J.R. Bjorklund and C.S. Cheney, 1979:  Industrial Source Complex (ISC)
        Dispersion Model User's Guide. Volume I, EPA-450/4-79-030, U.S. Environmental
        Protection Agency, Research Triangle Park, NC.

  Bowers, J.F. and A.J. Anderson, 1981: An evaluation study for the Industrial Source
        Complex (ISC) dispersion model. EPA 450/4-81-002, U.S.  Environmental Protection
        Agency, Research Triangle Park, NC.

  Bowman, C.R., H.V. Geary, Jr., G.J. Schewe, 1987.  Incorporation of Wet Deposition in
        the Industrial Source Complex Model. Paper 87-73.6., Proc. of the 80th Annual
        Meeting ofAPCA, New York, NY,  June 21-26, 1987.

  Briggs, G.A.,  1969:  Plume Rise, USAEC Critical Review Series, TID-25075, National
        Technical Information Service, Springfield, VA.

  Briggs, G.A.,  1973:  Diffusion estimates for small emissions (Draft).  Air Resources
        Atmospheric Turbulence and Diffusion Laboratory.  ATOL No. 79.

  Burt, E.W., 1977:  Valley Model User's Guide. EPA-450/2-77-018. U.S.  Environmental
        Protection Agency, Research Triangle Park, NC.

  DeBruin, H.A.R. and A. A.M. Holtslag, 1982:  A simple parameterization of the surface
        fluxes of sensible and latent heat during daytime compared with the Penman-Monteith
        concept. /.  Clim. Appl. Meteor., 21, 1610-1621.

  Doran, J.C. and T.W. Horst, 1985:  An evaluation of Gaussian plume-depletion models with
        dual-tracer field measurements.  Atmos. Environ., 19, 939-951.

  Draxler, R.R., 1976: Determination of atmospheric diffusion parameters.  Atmospheric
        Environment,^, 99-105.

  Duquesne Light,  1993:  Letter dated 16 September 1993 from Stephen F. Lavie to Karl E.
        Bremer that describes the  site characteristics and the format of the meteorological data
        from the site.

  Gifford, F.A., 1976: Turbulent  Diffusion-Typing Schemes: A Review.  Nuclear Safety, 17,
        68-86.

Volume IV                                                               External Review Draft
                                          VI-1                            Do not cite or quote

-------
  Colder, D., 1972:  Relations among stability parameters in the surface layer. Bound. Layer
        Meteor. 3, 47-58.

  Hanna, S.R. and J.C. Chang, 1990:  Modification of the Hybrid Plume Dispersion Model
        (HPDM) for urban conditions and its evaluation using the Indianapolis data set. Vol.
        III.  Analysis of urban boundary layer data. Sigma Research Corp., Concord, MA.

  Hanna, S.R. and J.C. Chang, 1991:  Modification of the Hybrid Plume Dispersion Model
        (HPDM) for urban conditions and its evaluation using the Indianapolis data set. Vol.
        I.  User's guide for HPDM-Urban. Sigma Research Corp., Concord* MA.

  Hanna, S.R. and J.C. Chang, 1992:  Boundary-layer parameterizations for applied dispersion
        modeling over urban areas.  Boundary-Layer Meteorology, 58, 229-259.

  Hicks, B.B., 1982: In: Critical Assessment Document on Acid Deposition (Chapter VII-Dry
        Deposition). ATDL Contribution File No. 81/24.  Atmospheric Turbulence and
        Diffusion Laboratory, NOAA, Oak Ridge, TN.

  Hjelmfelt, 1982: Numerical simulations of the effects of St. Louis on mesoscale boundary-
        layer airflow and vertical air motion:  Simulations of urban vs. non-urban effects.
        Journal of Applied Meteorology, 21, 1239-1257.

  Holtslag A. A.M. and A.P. van Ulden, 1983:  A  simple scheme for daytime estimates of the
        surface fluxes from routine weather data.  /. Clim. and Appl. Meteor., 22, 517-529.

  Horst, T.W., 1977: A Surface depletion model for deposition from a Gaussian plume.
        Atmos. Environ,, 11, 41-46.

  Horst, T.W., 1983: A correction to the Gaussian source-depletion model. In Precipitation
        Scavenging, Dry Deposition, and Resuspension,  H.R. Pruppacher, R.G. Semonin,
        W.G.N.  Slinn, eds., Elsevier, NY.

  Hosker, R.P., 1984:  Flow and diffusion near obstacles.  In: Atmospheric Science and
        Power Production.  R. Randerson, Ed., DOE/TIC-27601, National Technical
        Information Service, Springfield, VA.

  Huber, A.H.  and W.H. Snyder, 1976:  Building  Wake Effects on Short Stack Effluents.
        Preprint Volume for the  Third Symposium  on Atmospheric Diffusion and Air Quality,
        American Meteorological Society, Boston, MA.

  Huber, A.H., 1977:  Incorporating Building/Terrain Wake Effects on Stack Effluents.
        Preprint Volume for the  Joint Conference  on Applications of Air Pollution
        Meteorology, American  Meteorological Society, Boston, MA.
Volume IV                                                                External Review Draft
                                          VI-2                            Do not cite or quote

-------
 Huber, A.H. and W.H. Snyder, 1982:  Wind tunnel investigation of the effects of a
        rectangular-shaped building on dispersion of effluents from short adjacent stacks.
        Atmos. Environ., 176, 2837-2848.

 Jindal, M. and D. Heinold, 1991:  Development of Paniculate Scavenging Coefficients to
        Model Wet Deposition from Industrial Combustion Sources, 84th AWMA Annual
        Modeling and Exhibition, Vancouver, Canada, June 16-21,  1991.

 McRae, G.J., 1981:  Mathematical Modeling of Photochemical Air Pollution, Ph.D.  Thesis,
        Env. Engr. Sci. Dept., California Institute of Technology, Pasadena, CA.

 Moller U. and G. Shumann, 1970: Mechanisms of transport from the atmosphere to the
        earth's surface.  J.  Geophy. Res., 75, 3013-3019.

 NOAA, 1983:  Comparative Climatic Data for the United States.  National Climatic Data
        Center,  Asheville, NC.

 Oke, T.R.,  1978: Boundary Layer Climates. John Wiley & Sons, New York,  NY.

 Oke, T.R.,  1982: The energetic basis of the urban heat island.  Quart. J.R. Meteor. Soc.,
        108, 1-24.

 Pasquill, F., 1976:  Atmospheric Dispersion Parameters hi Gaussian Plume Modeling. Part
        II.  Possible  Requirements  for Change hi the Turner Workbook Values.  EPA-600/4-
        76-030b, U.S. Environmental Protection Agency, Research Triangle Park, NC.

 Perry, S.G., D.J. Burns, L.H. Adams, R.J.  Paine, M.G.  Dennis, M.T. Mills,  D.G.
        Strimaitis, R.J. Yamartino, E.M. Insley, 1989: User's Guide to the Complex Terrain
        Dispersion Model Plus Algorithms  for Unstable Situations (CTDMPLUS) Volume 1:
        Model Description and User Instructions.  EPA/600/8-89/041,  U.S. Environmental
        Protection Agency, Research Triangle Park, NC.

 Petersen, W.B. and L.G. Lavdas,  1986:  INPUFF 2.0 — A Multiple Source Gaussian Puff
        Dispersion Algorighm.  User's Guide. EPA/600/8-86/024, U.S. Environmental
        Protection Agency, Research Triangle Park, NC.

 Petersen, W. and D.B. Schwede,  1994: Effects of Near Calms on Air Concentrations and
        Deposition.  U.S. Environmental Protection Agency, Research Triangle Park, NC.

 Pleim, J., A. Venkatram and R.J. Yamartino, 1984:  ADOM/TADAP model development
        program.  Volume 4.  The dry deposition model.  Ontario Ministry of the
        Environment, Rexdale, Ontario, Canada.

  Radke, L.F., P.V. Hobbs, M.W.  Eltgroth, 1980.  Scavenging of Aerosol Particles by
        Precipitation.  J. Applied Meteor.,  19, 715-722.
Volume IV                                                               External Review Draft
                                          VI-3           '                Do not cite or quote

-------
  Rao, K.S., 1981:  Analytical solutions of a gradient-transfer model for plume deposition and
        sedimentation. NOAA Tech. Memo. ERL ARL-109,  Air Resources Laboratory,
        Silver Spring, MD.

  Rittmann, B.E., 1982:  Application of the two-thirds law to plume rise from industrial-sized
        sources.  Atmospheric Environ., 16, 2575-2579.

  Schulman, L.L. and J.S.  Scire,  1980:  Buoyant Line and Point Source (BLP) dispersion
        model user's guide. Document P-7304-B, Environmental Research & Technology,
        Inc., Concord, MA.

  Schulman, L.L. and J.S.  Scire,  1981:  The development and  capabilities of the BLP model.
        In: Proc. APCA Speciality Conf.  on Dispersion Modeling from Complex Sources.
        St. Louis, MO.

  Schulman, L.L. and S.R. Hanna,  1986:  Evaluation of downwash modifications to the
        Industrial Source Complex Model. JAPCA, 36, 258-264.

  Schwede, D.B. and J.S. Scire, 1994:  Improvements in Indirect Exposure Assessment
        Modeling:  A Model for Estimating Air Concentrations and Deposition, 87th AWMA
        Annual Meeting and Exhibition, Cincinnati, Ohio, June  19-24, 1994.

  Scire, J.S. and L.L. Schulman,  1980:  Modeling plume rise from low-level buoyant line and
        point sources. Proceedings Second Point Conference on Applications of Air Pollution
        Meteorology, 24-28 March, New  Orleans, LA, 133-139.

  Scire, J.S., and L.L. Schulman, 1981: Evaluations of the BLP and ISC Models with SF6
        Tracer Data and SO2 Measurements at Aluminum Reduction Plants.  In:  Proc. APCA
        Specialty Conf.  on Dispersion Modeling from Complex Sources. St. Louis, MO.

  Scire, J.S., F.W. Lurmann, A.  Bass and S.R. Hanna, 1984:  User's guide to the
        MESOPUFF II  model and related processor programs.  EPA-600/8-84-013, U.S.
        Environmental Protection Agency, Research Triangle Park,  NC.

  Scire, J.S., D.G. Strimaitis, R.J.  Yamartino, and Xiaoming Zhang, 1995:  A User's Guide
        for the CALPUFF dispersion model.  Prepared for the USDA Forest Service,
        Cadillac, MI by EARTH TECH,  Inc.,  Concord, MA.
  Sehmel, G.A. and S!L. Sutler, 1974:  Particle deposition rates on a water surface as a
        function of particle diameter and air velocity. /. Rechs Atmos., in, 911-918.

  Sehmel, G.A. and W.H. Hodgson, 1978: A model for predicting dry deposition of particles
        and gases to environmental surfaces.  PNL-SA-6721, Battelle Pacific Northwest
        Laboratory.
Volume IV                                                               External Review Draft
                                          VI-4                           Do not cite or quote

-------
  Sehmel, G.A., 1980:  Particle and gas dry deposition - a review.  Atmospheric Environ., 14,
        983-1011.

  Slinn, S.A. and W.G.N. Slinn, 1980:  Predictions for particle deposition on natural waters.
        Atmospheric Environ., 14, 1013-1016.

  Slinn, W.G.N., L. Hasse, B.B. Hicks, A.W. Hogan, D. Lai, P.S. Liss, K.O. Munnich,
        G.A. Sehmel and O. Vittori, 1978: Some aspects of the transfer of atmospheric trace
        constituents past the air-sea interface.  Atmospheric Environ., 12, 2055-2087.

  Snyder, W., 1994:  Report on Results of Wind Tunnel Modeling of Terrain Downwash.
        Fluid Modeling Facility, Research Triangle Park, NC.

  Thuillier, R.H., 1982:  Dispersion characteristics in the lee of complex structures. JAPCA,
        32, 526-532.

  Turner, D.B., 1970:  Workbook of Atmospheric Dispersion Estimates.  PHS Publication No.
        999-AP-26.  U.S. Department of Health, Education and Welfare, National Air
        Pollution Control Administration, Cincinnati,  OH.

  U.S. Environmental Protection Agency,  1985: Guideline for Determination of Good
        Engineering Practice Stack Height - Revised.  EPA-450/4-80-023R.  U.S.
        Environmental Protection Agency, Research Triangle Park, NC.

  U.S. Environmental Protection Agency,  1988: Stack-structure relationships. Memorandum
        from J. Tikvart to Richard Daye, May 11,  1988.

  U.S. Environmental Protection Agency,  1989: Clarification of stack-structure relationships.
        Memorandum from J. Tikvart to  Regional Modeling Contacts,  Regions I-X, June 28,
        1989.

  U.S. Environmental Protection Agency,  1990:  Methodology for Assessing Health Risks
        Associated with Indirect Exposure to Combustor Emissions, Interim Final. Office of
        Health and Environmental Assessment, Washington, DC.   EPA/600/6-90/003.

  U.S. Environmental Protection Agency,  1992a:  Preliminary risk assessment for the WTI
        incinerator considering inhalation exposures to stack emissions.  Prepared by A.T.
        Kearney, Inc., Chicago, IL.

  U.S. Environmental Protection Agency,  1992b: User's Guide for the Industrial Source
        Complex (ISC2) Dispersion Models. Volume I. EPA/450/4-92-008a.  U.S.
        Environmental Protection Agency, Research Triangle Park, NC.
Volume IV                                                                External Review Draft
                                          VI-5                            Do not cite or quote

-------
 U.S. Environmental Protection Agency, 1992c:  Comparisons of a Revised Area Source
        Algorithm for the Industrial Source Complex Short Term Model and Wind Tunnel
        Data.  EPA-454/R-92-014.  U.S. Environmental Protection Agency, Research
        Triangle Park, NC.

 U.S. Environmental Protection Agency, 1993a:  Guideline on Air Quality Models (Revised),
        EPA-450/2-78-027R, U.S. Environmental Protection Agency, Research Triangle
        Park, NC 27711.

 U.S. Environmental Protection Agency, 1993b:  Report on the Technical  Workshop on WTI
        Incinerator Risk Issues, EPA/630/R-94/001, Risk Assessment Forum,  U.S.  EPA,
        Washington, DC.

 U.S. Environmental Protection Agency, 1993c: User's Guide to the  Building  Profile Input
        Program (draft). U.S. Environmental Protection Agency, Research Triangle Park,
        NC.

 U.S. Environmental Protection Agency, 1993d: Addendum to Meteorology for Assessing
        Health Risks Associated with Indirect Exposure to Combustion Emissions.  Office of
        Health and Environmental Assessment, Washington, D.C.

 U.S. Environmental Protection Agency, 1993e:  WTI phase II risk assessment project plan,
        EPA ID number OHD980613541.  Region V,  Chicago, Illinois. EPA Contract No.
        68-W9-0040, Work Assignment No. R05-06-15. November.

 U.S. Environmental Protection Agency, 1993f:  Test  report for particle size distribution
        study conducted at Waste Technologies Industries, Inc. in East Liverpool, Ohio
        during March 15-17, 1993.  Prepared by A.T. Kearney, Inc., Chicago, IL.

 U.S. Environmental Protection Agency, 1994: Development and testing of dry deposition
        algorithms, (Revised).  EPA-454/R-94-015, U.S. Environmental Protection Agency,
        Research Triangle Park,  NC.

 U.S. Environmental Protection Agency, 1995: Risk Assessment for the Waste Technologies
        Industries (WTI) Hazardous Waste Incinerator Facility (East  Liverpool, Ohio).  U.S.
        EPA Region 5,  Chicago, IL.

 Wang, I.T. and P.C. Chen, 1980:  Estimations of heat and momentum fluxes near the
        ground.  Proc. 2nd Joint Con/, on Applications of Air Poll. Meteor.,  American
        Meteorological Society,  Boston, MA, 764-769.

  Weil,  J.C. and R.P. Brower,  1983:  Estimating Convective Boundary Layer Parameters for
        Diffusion Application.  Draft Report prepared  by Environmental Center,  Martin
        Marietta Corp., for Maryland  Dept. of Natural Resources.
Volume IV                                                               External Review Draft
                                          VI-6                           Do not cite or (Iuote

-------
  Wesely, M.L. and B.B. Hicks, 1977:  Some factors that affect the deposition rates of sulfur
         dioxide and similar gases on vegetation.  /. Air Poll.  Control Assoc., 27, 1110-1116.
Volume IV                                                                   External Review Draft
                                             VI-7                             Do not cite or quote

-------

-------
                                       APPENDIX IV-1
                                  Building Dimension Analysis
                        Building Profile Input Program (BPIP) Output Files
               WTDBPIP3.OUT -
               WT1BPIP3.SUM -
BPIP summary output file containing wind direction-specific
building heights and widths for the main incinerator stack,
organic waste tank farm stacks, and the ash handling stack.

Detailed BPIP output file, including building input information
for the main incinerator stack, organic waste tank farm stacks,
and the ash handling stack.
               CADBPIP.OUT -
BPIP summary output file containing wind direction-specific
building heights and widths for the carbon bed adsorption
stack.
              CADBPIP.SUM -
Detailed BPIP output file, containing building input and output
information for the carbon adsorption bed stack.
Volume IV
Appendix IV-1
       IV-1-1
External Review Draft
  Do not cite or quote

-------

-------
                                  wtibpip3.out
 DATE  :  12/23/94
 TIME  :  16:56:52.99
 A363  -  WTI  Downwash Analysis
BPIP  PROCESSING INFORMATION:
   The  ST  flag has  been set for processing for an ISCST2 run.
   Inputs entered in FEET
    a conversion  factor of
                       will  be  converted to meters using
                      0.3048.  Output will be in meters.
   UTMP is  set  to UTMN.   The  input  is  assumed to  be in a local
    X-Y coordinate  system as  opposed to a  UTM coordinate system.
    True North  is in  the  positive Y direction.

   Plant north  is set to  337.21 degrees with respect to True North.
 A363 - WTI Downwash Analysis
                PRELIMINARY* GEP STACK HEIGHT RESULTS TABLE
                          (Output Units: meters)
                   Stack-Building
Stack    Stack     Base Elevation
Name     Height    Differences
                                              EQN1
Preliminary*
GEP Stack
Height Value
WTI1
wastel
waste2
waste3
waste4
steam
45.72
16.76
16.76
16.76
16.76
6.71
                                 0.00
                                 0.00
                                 0.00
                                 0.00
                                 0.00
                                 0.00
                                    72.69
                                    38.10
                                    38.10
                                    38.10
                                    38.10
                                    68.00
    72.69
    65.00
    65.00
    65.00
    65.00
    68.00
   * Results are based on Determinants 1 & 2 on pages 1 & 2 of  the GEP
     Technical Support Document.  Determinant 3 may be investigated  for
     additional stack height credit.  Final values result after
     Determinant 3 has been taken into consideration.
Volume IV
Appendix IV-1
                            IV-1-3
       Exteraal Review Draft
         Do not cite or quote

-------
                                  wtibpip3.out

   ** Results were derived from Equation 1 on page 6 of GEP Technical
      Support Document.  Values have been adjusted for any stack-building
      base elevation differences.

      Note:   Criteria for determining stack heights for modeling emission
      limitations for a source can be found in Table 3.1 of the
      GEP Technical Support Document.
  DATE :  12/23/94
  TIME :  16:56:52.99
 A363  - WTI  Downwash Analysis
 BPIP output  is  in meters
     SO BUILDHGT WTI1
     SO BUILDHGT WTI1
     SO BUILDHGT WTI1
     SO BUILDHGT WTI1
     SO BUILDHGT WTI1
     SO BUILDHGT WTI1
     SO BUILDWID WTI1
     SO BUILDWID WTI1
     SO BUILDWID WTI1
     SO BUILDWID WTI1
     SO BUILDWID WTI1
     SO BUILDWID WTI1
     SO BUILDHGT wastel
     SO BUILDHGT wastel
     SO BUILDHGT wastel
     SO BUILDHGT wastel
     SO BUILDHGT wastel
     SO BUILDHGT wastel
     SO BUILDWID wastel
     SO BUILDWID wastel
     SO BUILDWID wastel
     SO BUILDWID wastel
     SO BUILDWID wastel
     SO BUILDWID wastel
29.08
24.38
29.08
29.08
24.38
29.08
26.88
25.97
32.33
26.88
25.97
32.33
15.24
15.24
15.24
15.24
15.24
15.24
50.09
18.23
51.16
50.09
18.23
51.16
29.08
29.08
29.08
29.08
25.76
29.08
24.72
22.57
31.85
24.72
24.81
31.85
15.24
15.24
15.24
15.24
15.24
15.24
47.00
26.39
51.86
47.00
26.39
51.86
29.08
29.08
29.08
29.08
29.08
29.08
21.81
25.75
30.86
21.81
25.75
30.86
15.24
15.24
15.24
15.24
15.24
15.24
42.49
33.74
50.98
42.49
33.74
50.98
25.76
29.08
29.08
25.76
29.08
29.08
27.61
28.77
29.63
27.61
28.77
29.63
15.24
15.24
15.24
15.24
15.24
15.24
36.68
40.06
50.09
36.68
40.06
50.09
24.38
29.08
29.08
25.76
29.08
29.08
27.01
30.90
29.30
26.08
30.90
29.30
15.24
15.24
15.24
15.24
15.24
15.24
29.75
45.17
51.66
29.75
45.17
51.66
24.38
29.08
29.08
25.76
29.08
29.08
24.64
32.10
28.21
23.77
32.10
28.21
15.24
15.24
15.24
15.24
15.24
15.24
21.92
48.91
51.66
21.92
48.91
51.66
Volume IV
Appendix IV-1
IV-1-4
External Review Draft
  Do not cite or quote

-------
                                    wtibpip3. out
SO BUILDHGT waste2
SO BUILDHGT waste2
SO BUILDHGT waste2
SO BUILDHGT waste2
SO BUILDHGT waste2
SO BUILDHGT waste2
SO BUILDWID waste2
SO BUILDWID waste2
SO BUILDWID waste2
SO BUILDWID waste2
SO BUILDWID waste2
SO BUILDWID waste2
SO BUILDHGT waste3
SO BUILDHGT waste3
SO BUILDHGT waste3
SO BUILDHGT waste3
SO BUILDHGT waste3
SO BUILDHGT waste3
SO BUILDWID waste3
SO BUILDWID waste3
SO BUILDWID waste3
SO BUILDWID waste3
SO BUILDWID wasteS
SO BUILDWID waste3
SO BUILDHGT waste4
SO BUILDHGT waste4
SO BUILDHGT waste4
SO BUILDHGT waste4
SO BUILDHGT waste4
SO BUILDHGT waste4
SO BUILDWID waste4
SO BUILDWID waste4
SO BUILDWID waste4
SO BUILDWID waste4
SO BUILDWID waste4
SO BUILDWID waste4
SO BUILDHGT steam
SO BUILDHGT steam
SO BUILDHGT steam
SO BUILDHGT steam
15
15
15
15
15
15
50
18
51
50
18
51
15
15
15
15
15
15
50
18
51
50
18
51
15
15
15
15
15
15
50
18
51
50
18
51
29
6
25
29
.24
.24
.24
.24
.24
.24
.09
.23
.16
.09
.23
.16
.24
.24
.24
.24
.24
.24
.09
.23
.16
.09
.23
.16
.24
.24
.24
.24
.24
.24
.09
.23
.16
.09
.23
.16
.08
.71
.76
.08
15
15
15
15
15
15
47
26
51
47
26
51
15
15
15
15
15
15
47
26
51
47
26
51
15
15
15
15
15
15
47
26
51
47
26
51
29
25
25
29
.24
.24
.24
.24
.24
.24
.00
.39
.86
.00
.39
.86
.24
.24
.24
.24
.24
.24
.00
.39
.86
.00
.39
.86
.24
.24
.24
.24
.24
.24
.00
.39
.86
.00
.39
.86
.08
.76
.76
.08
15
15
15
15
15
15
42
33
50
42
33
50
15
15
15
15
15
15
42
33
50
42
33
50
15
15
15
15
15
15
42
33
50
42
33
50
29
25
25
29
.24
.24
.24
.24
.24
.24
.49
.74
.98
.49
.74
.98
.24
.24
.24
.24
.24
.24
.49
.74
.98
.49
.74
.98
.24
.24
.24
.24
.24
.24
.49
.74
.98
.49
.74
.98
.08
.76
.76
.08
15
15
15
15
15
15
36
40
50
36
40
50
15
15
15
15
15
15
36
40
50
36
40
50
15
15
15
15
15
15
36
40
50
36
40
50
24
25
29
24
.24
.24
.24
.24
.24
.24
.68
.06
.09
.68
.06
.09
.24
.24
.24
.24
.24
.24
.68
.06
.09
.68
.06
.09
.24
.24
.24
.24
.24
.24
.68
.06
.09
.68
.06
.09
.38
.76
.08
.38
15
15
15
15
15
15
29
45
51
29
45
51
15
15
15
15
15
15
29
45
51
29
45
51
15
15
15
15
15
15
29
45
51
29
45
51
24
25
29
24
.24
.24
.24
.24
.24
.24
.75
.17
.66
.75
.17
.66
.24
.24
.24
.24
.24
.24
.75
.17
.66
.75
.17
.66
.24
.24
.24
.24
.24
.24
.75
.17
.66
.75
.17
.66
.38
.76
.08
.38
15.24
15.24
15.24
15.24
15.24
15.24
21.92
48.91
51.66
21.92
48.91
51.66
15.24
15.24
15.24
15.24
15.24
15.24
21.92
48.91
51.66
21.92
48.91
51.66
15.24
15.24
15.24
15.24
15.24
15.24
21.92
48.91
51.66
21.92
48.91
51.66
24.38
25.76
29.08
24.38
Volume IV
Appendix IV-1
IV-1-5
External Review Draft
  Do not cite or quote

-------
                                  wtibpip3.out

      SO BUILDHGT steam      14.94   25.76   25.76   25.76    25.76    25.76
      SO BUILDHGT steam      25.76   25.76   25.76   29.08    29.08    29.08
      SO BUILDWID steam      25.95   24.72   21.81   28.86    27.01    24.64
      SO BUILDWID steam      16.41   24.81   26.44   27.27    27.27    26.44
      SO BUILDWID steam      24.80   22.42   20.13   25.95    25.95    25.95
      SO BUILDWID steam      25.95   24.72   21.81   28.86    27.01    24.64
      SO BUILDWID steam      65.31   24.81   26.44   27.27    27.27    26.44
      SO BUILDWID steam      24.80   22.42   20.13   25.95    25.95    25.95
Volume IV                                                     External Review Draft
Appendix IV-1                          IV-1-6                      Do not cite or quote

-------
                                 wtibpip3.sum
 DATE  : 12/23/94
 TIME  : 16:56:52.99
 A363  - WTI Downwash Analysis
BPIP PROCESSING  INFORMATION:
   The ST flag has been  set  for processing  for  an  ISCST2  run.

   Inputs entered in FEET       will be converted  to meters  using
    a conversion factor  of     0.3048.  Output will be  in  meters.

   UTMP is set to UTMN.  The input  is assumed to be in a  local
    X-Y coordinate system as opposed to a UTM coordinate  system.
    True North is in the positive Y direction.

   Plant north is set to 337.21 degrees with respect to True North.
    The plant coordinates will appear as entered in the Summary output
    file and they will be adjusted to True North prior to processing.
    The True North oriented coordinates appear below between
    the square brackets.
INPUT SUMMARY:
==============
 Number of buildings to be processed  :   8
 SCRUBBER has 1 tier(s) with a base elevation of    0.00 FEET
                                                (    0.00) meters

 BUILDING  TIER  BLDG-TIER  TIER   NO. OF      CORNER   COORDINATES
   NAME   NUMBER   NUMBER  HEIGHT  CORNERS        X           Y

 SCRUBBER    1        1     95.40     8
                            29.08 meters
                                                -15.00       19.00 FEET
                                                 -4.57        5.79 meters

Volume IV                                                    External Review Draft
Appendix IV-1                          IV-1-7                     Do not cite or quote

-------
                                  wtibpip3.sum
 PRECIP   has  1 tier(s)  with a base elevation  of
 BUILDING  TIER  BLDG-TIER  TIER   NO. OF
   NAME   NUMBER   NUMBER  HEIGHT  CORNERS
 PRECIP
5     80.00     4
      24.38 meters
-6.46
-15.00
-4.57
-12.01
14.00
4.27
-3.86
14.00
4,27
-2.79
24.00
7.32
0.02
24.00
7.32
2.85
14.00
4.27
0.04
14.00
4.27
1.69
3f 0.00
( 0.00)
3.57] meters
66.00 FEET
20.12 meters
16.78] meters
66.00 FEET
20.12 meters
20.20] meters
57.00 FEET
17.37 meters
17.67] meters
57.00 FEET
17.37 meters
18.85] meters
33.00 FEET
10.06 meters
12.11] meters
33.00 FEET
10.06 meters
10.93] meters
19.00 FEET
5.79 meters
6.99] meters
FEET
meters
CORNER COORDINATES
X
17.00
5.18
1.35
52.00
15.85
11.19
52.00
15.85
15.32
17.00
5.18
5.49
Y
29.00 FEET
8.84 meters
10.16] meters
29.00 FEET
8.84 meters
14.29] meters
-6.00 FEET
-1.83 meters
4.45] meters
-6.00 FEET
-1.83 meters
0.32] meters
 SPRAY D  has  1  tier(s)  with a base elevation of
Volume IV
Appendix IV-1
               IV-1-8
                               0.00 FEET
External Review Draft
  Do not cite or quote

-------
                                 wtibpipB.sum
                                                     0.00)  meters
BUILDING  TIER  BLDG-TIER  TIER   NO. OF
  NAME   NUMBER   NUMBER  HEIGHT  CORNERS
 SPRAY D
      106.00     8
       32.31 meters
 BOILER   has 1 tier(s) with  a  base elevation of
 BUILDING  TIER  BLDG-TIER  TIER   NO.  OF
   NAME   NUMBER   NUMBER  HEIGHT  CORNERS
 BOILER
13     70.00     6
       21.34 meters
CORNER
X
64.00
19.51
8.89
77.00
23.47
13.14
82.00
24.99
16.08
77.00
23.47
16.21
64.00
19.51
13.14
51.00
15.54
8.90
46.00
14.02
5.96
51.00
15.54
5.83
3f 0.
( 0.
CORNER
X
80.00
24.38
18.94
143.00
43.59
COORDINATES
Y
77.00 FEET
23.47 meters
29.19] meters
72.00 FEET
21.95 meters
29.32] meters
59.00 FEET
17.98 meters
26.26] meters
46.00 FEET
14.02 meters
22.02] meters
41.00 FEET
12.50 meters
19.08] meters
46.00 FEET
14.02 meters
18.95] meters
59.00 FEET
17.98 meters
22.01] meters
72.00 FEET
21.95 meters
26.25] meters
00 FEET
00) meters
COORDINATES
Y
30.00 FEET
9 . 14 meters
17.87] meters
30.00 FEET
9.14 meters
36.64 25.31] meters
Volume IV
Appendix IV-1
                IV-1-9
External Review Draft
  Do not cite or quote

-------
                                 wtibpip3.sum
 INCIN FD has 1 tier(s) with a base  elevation of
 BUILDING  TIER  BLDG-TIER  TIER   NO.  OF
   NAME   NUMBER   NUMBER  HEIGHT  CORNERS
 INCIN FD
17     84.50     6
       25.76 meters
143.00
43.59
41.48
121.00
36.88
35.30
121.00
36.88
33.18
80.00
24.38
21.65
if 0.
( 0.
CORNER
X
179.00
54.56
44.16
239.00
72.85
61.02
239.00
72.85
69.40
184.00
56.08
53.95
184.00
56.08
51.71
179.00
54.56
50.30
-11.00 FEET
-3.35 meters
13.79] meters
-11.00 FEET
-3.35 meters
11.19] meters
7.00 FEET
2.13 meters
16.25] meters
7.00 FEET
2.13 meters
11.41] meters
00 FEET
00) meters
COORDINATES
Y
52.00 FEET
15.85 meters
35.74] meters
52.00 FEET
15.85 meters
42.83] meters
-19.00 FEET
-5.79 meters
22.87] meters
-19.00 FEET
-5.79 meters
16.38] meters
0.00 FEET
0.00 meters
21.72] meters
0.00 FEET
0.00 meters
21.13] meters
 steamplt has 1 tier(s) with  a base elevation of
                                0.00  FEET
                                0.00) meters
 BUILDING  TIER  BLDG-TIER  TIER   NO.  OF
   NAME   NUMBER   NUMBER  HEIGHT  CORNERS
                          CORNER    COORDINATES
                             X            Y
Volume IV
Appendix IV-1
               IV-1-10
External Review Draft
  Do not cite or quote

-------
                                   wtibpip3.sum
  steantplt
 21     22.00     4
         6.71 meters
  contain  has 1 tier(s) with a base elevation of
 BUILDING  TIER  BLDG-TIER  TIER   NO. OF
   NAME   NUMBER   NUMBER  HEIGHT  CORNERS
 contain
25      49.00      4
        14.94 meters
52.00
15.85
-5.22
132.00
40.23
17.26
132.00
40.23
23.16
52.00
15.85
0.68
>f 0.00
{ 0.00)
168.00 FEET
51.21 meters
53.35] meters
168.00 FEET
51.21 meters
62.79] meters
118.00 FEET
35.97 meters
48.74] meters
118.00 FEET
35.97 meters
39.30] meters
FEET
meters
CORNER COORDINATES
X
338.00
103.02
67.00
575.00
175.26
133.60
575.00
175.26
157.57
338.00
103.02
90.97
Y
237.00 FEET
72.24 meters
106.50] meters
237.00 FEET
72.24 meters
134.48] meters
34.00 FEET
10.36 meters
77.43] meters
34.00 FEET
10.36 meters
49.46] meters
 wastefrm has  1  tier (a)  with a. base elevation of
                                0.00 FEET
                                0.00)  meters
 BUILDING  TIER   BLDG-TIER  TIER   NO. OF
   NAME   NUMBER   NUMBER  HEIGHT  CORNERS
                          CORNER   COORDINATES
                             X           Y
 wastefrm
Volume IV
Appendix IV-1
29     50.00     4
       15.24 meters
               IV-1-11
617.00      106.00 FEET

             External Review Draft
               Do not cite or quote

-------
                                    wtibpip3 . sum



Number of stacks



to be
'

[
processed : 6
STACK STACK
STACK NAME
WTI1
(



wastel
(



waste2
(



waste3
(



waste4
(
-


steam
(



BASE HEIGHT X
0.00
0.00



0.00
0.00



0.00
0.00



0.00
0.00



0.00
0.00



0.00
0.00



150.00 FEET
45.72) meters
0.00
( 0.00
[ 0.00
55.00 FEET
16.76) meters
663.00
( 202.08
[ 173.80
55.00 FEET
16.76) meters
733.00
( 223.42
[ 193.47
55.00 FEET
16.76) meters
733.00
( 223.42
[ 199.61
55.00 FEET
16.76) meters
663.00
( 202.08
[ 179.94
22.00 FEET
6.71) meters
132.00
( 40.23
[ 23.16
188.06 32.31 meters
160.87 102.62] meters
779.00 106.00 FEET
237.44 32.31 meters
206.39 121.75] meters
779.00 54.00 FEET
237.44 16.46 meters
212.53 107.14] meters
617.00 54.00 FEET
188.06 16.46 meters
167.01 88.01] meters

COORDINATES
Y


0.00 FEET
0.00) meters
0.00] meters


106.00 FEET
32.31) meters
108.05] meters


106.00 FEET
32.31) meters
116.32] meters


54.00 FEET
16.46) meters
101.71] meters


54.00 FEET
16.46) meters
93.44] meters


118.00 FEET
35.97) meters
48.74] meters
Volume IV
Appendix IV-1
IV-1-12
External Review Draft
  Do not cite or quote

-------
                                 wtibpipS.sum
 The number of stack-tier combinations entered, where each stack is at least
5L
 in from at least one of the edges of their respective tier roofs, is:   0
                     Overall GEP Summary Table
                          (Units: meters)
 StkNo:   1  Stk Name:WTIl     Stk Ht:  45.72 Prelim. GEP Stk.Ht:   72.69
            GEP:  BH:  29.08  PBW:   29.08             *Eqnl Ht:   72.69
          *adjusted for a Stack-Building elevation difference of    0.00
  No.  of Tiers affecting Stk:  2  Direction occurred:  172.50
   Bldg-Tier nos. contributing to GEP:   1   9


 StkNo:   2  Stk Name:wastel   Stk Ht:  16.76 Prelim. GEP Stk.Ht:   65.00
            GEP:  BH:  15.24  PBW:   15.88             *Eqnl Ht:   38.10
          *adjusted for a Stack-Building elevation difference of    0.00
  No.  of Tiers affecting Stk:  1  Direction occurred:   67.25
   Bldg-Tier nos. contributing to GEP:  29


 StkNo:   3  Stk Name:waste2   Stk Ht:  16.76 Prelim. GEP Stk.Ht:   65.00
            GEP:  BH:  15.24  PBW:   15.88             *Eqnl Ht:   38.10
          *adjusted for a Stack-Building elevation difference of    0.00
  No.  of Tiers affecting Stk:  1  Direction occurred:   67.25
   Bldg-Tier nos. contributing to GEP:  29
 StkNo:   4  Stk Name:waste3   Stk Ht:  16.76 Prelim. GEP Stk.Ht:   65.00
            GEP:  BH:  15.24  PBW:   15.88             *Eqnl Ht:   38.10
          •adjusted for a Stack-Building elevation difference of    0.00
  No.  of Tiers affecting Stk:  1  Direction occurred:   67.25
   Bldg-Tier nos. contributing to GEP: . 29
 StkNo:  5.  Stk Name:waste4   Stk Ht:  16.76 Prelim. GEP Stk.Ht:   65.00
            GEP:  BH:  15.24  PBW:   15.88             *Eqnl Ht:   38.10
          •adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  1  Direction occurred:   67.25
   Bldg-Tier nos. contributing to GEP:  29
 StkNo:  6  Stk Name:steam    Stk Ht:   6.71 Prelim. GEP Stk.Ht:   68.00

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-13                     Do not cite or quote

-------
                                 wtibpip3.sum

            GEP:  BH:  29.08  PBW:   25.95              *Eqnl Ht:   68.00
          *adjusted for a Stack-Building elevation difference of ,   0.00
  No.  of Tiers affecting Stk:  2  Direction occurred:    14.75
   Bldg-Tier nos. contributing to GEP:   1    9
                     Summary By Direction Table
                          (Units:  meters)
 Dominate stand alone tiers:
 Drtcn:   10.00
                                                                    \
 StkNo:   1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  15.44  *Wake Effect Ht:   52.24
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:   2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.09  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:   3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.09  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:   4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.09  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:   5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.09  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          •^adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:   6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  21.34  PBW:  22.91  'Wake Effect Ht:   53.34
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:   68.00
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  4  Bid Name:BOILER    TierNo:  1
Volume IV                                                    External Review Draft
Appendix IV-1                         FV-1-14                     Do not cite or quote

-------
                                  wtibpip3.sum

 Drtcn:   20.00

 StkNo:   1   Stk Name:WTIl                               Stack Ht:    45.72
     Directional MAX:   BH:   29.08  PBW:  16.22   *Wake  Effect Ht:    53.40
                  GEP:   BH:   29.08  PBW:  29.08    *Equation 1 Ht:    72.69
          *adjusted for a Stack-Building elevation difference of     0.00
                 BldNo:   1   Bid Name:SCRUBBER TierNo:   1
 StkNo:   2   Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  47.00   *Wake  Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    *Equation 1 Ht:    38.10
          'adjusted for a Stack-Building elevation difference of     0.00
                 BldNo:   8   Bid Name:wastefrm TierNo:   1
 StkNo:   3   Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  47.00   "Wake  Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    "Equation 1 Ht:    38.10
          *adjusted for a Stack-Building elevation difference of     0.00
                 BldNo:   8   Bid Name:wastefrm TierNo:   1
 StkNo:   4   Stk Name:waste3                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  47.00   *Wake  Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    "Equation 1 Ht:    38.10
          *adjusted for a Stack-Building elevation difference of     0.00
                 BldNo:   8   Bid Namerwastefrm TierNo:   1
 StkNo:   5   Stk Name:waste4                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  47.00   *Wake  Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    "Equation 1 Ht:    38.10
          "adjusted for a Stack-Building elevation difference of     0.00
                 BldNo:   8   Bid Name:wastefrm TierNo:   1
 StkNo:   6   Stk Name:steam                              Stack Ht:     6.71
     Directional MAX:   BH:   29.08  PBW:  16.22   "Wake  Effect Ht:    53.40
                  GEP:   BH:   29.08  PBW:  25.95    "Equation 1 Ht:    68.00
          "adjusted for a Stack-Building elevation difference of     0.00
                 BldNo:   1   Bid Name:SCRUBBER TierNo:   1

 Drtcn:   30.00

 StkNo:   1   Stk Name:WTIl                               Stack Ht:    45.72
     Directional  MAX:   BH:   29.08  PBW:  16.75   "Wake  Effect Ht:    54.21
                  GEP:   BH:   29.08  PBW:  29.08    "Equation 1  Ht:    72.69
          "adjusted for a Stack-Building elevation difference of     0.00
                 BldNo:   1   Bid Name:SCRUBBER TierNo:   1
 StkNo:   2   Stk Name:wastel                             Stack Ht:    16.76
     Directional  MAX:   BH:   15.24   PBW:  42.49   "Wake  Effect  Ht:    38.10
                  GEP:   BH:   15.24   PBW:  15.88    "Equation 1  Ht:    38.10
          "adjusted for a Stack-Building elevation difference of     0.00
                 BldNo:   8   Bid Name:wastefrm TierNo:   1
 StkNo:   3   Stk Name:waste2                             Stack Ht:    16.76
     Directional  MAX:   BH:   15.24   PBW:  42.49   "Wake  Effect  Ht:    38.10

Volume IV                                                      External Review Draft
Appendix IV-1                         IV-1-15                     Do not cite or quote

-------
                                 wtibpip3. sum.

                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  42.49  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefnn  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  42.49  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          •adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  29.08  PBW:  16.75  'Wake Effect Ht:   54.21
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:   68.00
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1

 Drtcn:  40.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  25.76  PBW:  27.61  *Wake Effect Ht:   64.39
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  36.68  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefnn  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  36.68  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name-.wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  36.68  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  36.68  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  6  Stk Name-.steam                             Stack Ht:    6.71

Volume IV                                                    External Review Draft
Appendix IV-1                         IV-1-16                     Do not cite or quote

-------
                                 wtibpip3.sum

     Directional MAX:  BH:  29.08  PBW:   16.78   *Wake Effect Ht:    54.25
                 GEP:  BH:  29.08  PBW:   25.95   *Equation 1 Ht:    68.00
          *adjusted for a Stack-Building  elevation difference of     0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1

 Drtcn:  50.00

 StkNo:  1  Stk Name-.WTIl                              Stack Ht:    45.72
     Directional MAX:  BH:  29.08  PBW:   16.30   *Wake Effect Ht:    53.53
                 GEP:  BH:  29.08  PBW:   29.08   'Equation 1 Ht:    72.69
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  29.75   *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  29.75   'Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  29.75   'Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  29.75   'Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name .-was tefrm  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:     6.71
     Directional MAX:  BH:  29.08  PBW:  16.30   'Wake Effect Ht:    53.53
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:    68.00
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1

 Drtcn:  60.00

 StkNo:  1  Stk Name.-WTIl                              Stack Ht:    45.72
     Directional MAX:  BH:  29.08  PBW:  15.32   'Wake Effect Ht:    52.06
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:    72.69
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  21.92   'Wake Effect Ht:    38.10

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-17                     Do not cite or quote

-------
                                 wtibpip3.sum

                 GEP:  BH:  15.24  PBW:   15.88   *Equation 1 Ht:   38.10
          'adjusted for a Stack-Building  elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   21.92  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:   15.88   'Equation 1 Ht:   38.10
          *adjusted for a Stack-Building  elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:wasteS                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   21.92  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:   15.88   *Equation 1 Ht:   38.10
          'adjusted for a Stack-Building  elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   21.92  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:   15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building  elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:   6.71  PBW:   18.18  'Wake Effect Ht:   16.76
                 GEP:  BH:  29.08  PBW:   25.95   'Equation 1 Ht:   68.00
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  6  Bid Name:steamplt  TierNo:  1

 Drtcn:  70.00

 StkNo:  1  Stk Name:WTIl  \                            Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:   14.74  'Wake Effect Ht:   51.19
                 GEP:  BH:  29.08  PBW:   29.08   'Equation 1 Ht:   72.69
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   18.23  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:   15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building  elevation difference of    0.00
                BldNo:  8  Bid Namerwastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   18.23  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:   15.88   'Equation 1 Ht:   38.10
          ^adjusted for a Stack-Building  elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   18.23  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:   15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building  elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-18                     Do not cite or quote

-------
                                  wtibpip3.sum

     Directional MAX:   BH:   15.24  PBW:  18.23   *Wake  Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    *Equation 1 Ht:    38.10
           *adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   8   Bid Name:wastefnn TierNo:   1
 StkNo:   6  Stk Name:steam                              Stack Ht:     6.71
     Directional MAX:   BH:    6.71  PBW:  16.41   *Wake  Effect Ht:    16.76
                 GEP:   BH:   29.08  PBW:  25.95    'Equation 1 Ht:    68.00
           *adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   6   Bid Name:steamplt TierNo:   1

 Drtcn:   80.00

 StkNo:   1  Stk Name:WTIl                               Stack Ht:    45.72
     Directional MAX:   BH:   29.08  PBW:  15.93   *Wake  Effect Ht:    52.97
                 GEP:   BH:   29.08  PBW:  29.08    *Equation 1 Ht:    72.69
           *adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   1   Bid Name:SCRUBBER TierNo:   1
 StkNo:   2   Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  26.39   'Wake  Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    'Equation 1 Ht:    38.10
           *adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   8   Bid Name:wastefrm TierNo:   1
 StkNo:   3   Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  26.39   *Wake  Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    'Equation 1 Ht:    38.10
           *adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   8   Bid Name:wastefrm TierNo:   1
 StkNo:   4   Stk Name:waste3                         .    Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  26.39   *Wake  Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    'Equation 1 Ht:    38.10
           'adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   8   Bid Name:wastefrm TierNo:   1
 StkNo:   5   Stk Name:waste4                             Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  26.39   'Wake  Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    'Equation 1 Ht:    38.10
           'adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   8   Bid Name:wastefrm TierNo:   1
 StkNo:   6   Stk Name:steam                              Stack Ht:     6.71
     Directional MAX:   BH:   25.76  PBW:  24.81   'Wake  Effect Ht:    62.98
                 GEP:   BH:   29.08   PBW:  25.95    'Equation 1 Ht:    68.00
           'adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   5   Bid Name:INCIN FD TierNo:   1

 Drtcn:   90.00

 StkNo:   1   Stk Name:WTIl                               Stack Ht:    45.72
     Directional MAX:   BH:   29.08   PBW:  16.63   'Wake  Effect Ht:    54.02

Volume IV                                                      External Review Draft
Appendix IV-1                         IV-1-19                     Do not cite or quote

-------
                                 wtibpipB.sum

                 GEP:  BH:  29.08  PBW:  29.08   *Equation 1 Ht:   72.69
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:   1
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  33.74  *Wake  Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:   38.10
          •adjusted for a Stack-Building elevation difference of  .0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:   1
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  33.74  'Wake  Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:   1
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  33.74  *Wake  Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Nametwastefrm  TierNo:   1
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  33.74  'Wake  Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:   1
 StkNo:  6  Stk Name-.steam                             Stack Ht:    6.71
     Directional MAX:  BH:  25.76  PBW:  26.44  'Wake  Effect Ht:   64.39
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:   68.00
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:   1

 Drtcn: 100.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  16.83  'Wake  Effect Ht:   54.32
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:   1
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  40.06  'Wake  Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:   1
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  40.06  'Wake  Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:   1
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76

Volume IV                                                    External Review Draft
Appendix IV-1                         IV-1-20                     Do not cite or quote

-------
                                 wtibpip3.sum

     Directional MAX:   BH:   15.24   PBW:   40.06   'Wake  Effect  Ht:    38.10
                 GEP:   BH:   15.24   PBW:   15.88    'Equation  1  Ht:    38.10
           •adjusted for a Stack-Building  elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm  TierNo:   1
 StkNo:   5 Stk Name:waste4                             Stack  Ht:    16.76
     Directional MAX:   BH:   15.24   PBW:   40.06   *Wake  Effect  Ht:    38.10
                 GEP:   BH:   15.24   PBW:   15.88    'Equation  1  Ht:    38.10
           •adjusted for a Stack-Building  elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm  TierNo:   1
 StkNo:   6 Stk Name:steam                              Stack  Ht:     6.71
     Directional MAX:   BH:   25.76   PBW:  27.27   *Wake  Effect  Ht:    64.39
                 GEP:   BH:   29.08   PBW:   25.95    'Equation  1  Ht:    68.00
           'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   5  Bid Name:INCIN FD  TierNo:   1

 Drtcn: 110.00

 StkNo:   1 Stk Name:WTIl                               Stack  Ht:    45.72
     Directional MAX:   BH:   29.08   PBW:  16.57   'Wake  Effect  Ht:    53.94
                 GEP:   BH:   29.08   PBW:  29.08    'Equation  1  Ht:    72.69
           'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   1  Bid Name:SCRUBBER  TierNo:   1
 StkNo:   2  Stk Name:wastel                             Stack  Ht:    16.76
     Directional MAX:   BH:   15.24   PBW:  45.17   'Wake  Effect  Ht:    38.10
                 GEP:   BH:   15.24   PBW:  15.88    'Equation  1  Ht:    38.10
           'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm  TierNo:   1
 StkNo:   3  Stk Name:waste2                             Stack  Ht:    16.76
     Directional MAX:   BH:   15.24   PBW:  45.17   'Wake  Effect  Ht:    38.10
                 GEP:   BH:   15.24   PBW:  15.88    'Equation  1  Ht:    38.10
           'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm  TierNo:   1
 StkNo:   4  Stk Name:waste3                             Stack  Ht:    16.76
     Directional MAX:   BH:   15.24   PBW:  45.17   'Wake  Effect  Ht:    38.10
                 GEP:   BH:   15.24   PBW:  15.88    'Equation  1  Ht:    38.10
           'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm  TierNo:   1
 StkNo:   5  Stk Name:waste4                             Stack  Ht:    16.76
     Directional MAX:   BH:   15.24   PBW:  45.17   'Wake  Effect  Ht:    38.10
                 GEP:   BH:   15.24   PBW:  15.88    'Equation  1  Ht:    38.10
           'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm  TierNo:   1
 StkNo:   6  Stk Name:steam                              Stack  Ht:     6.71
     Directional MAX:   BH:   25.76   PBW:  27.27   'Wake  Effect  Ht:    64.39
                 GEP:   BH:   29.08   PBW:  25.95    'Equation  1  Ht:    68.00
           'adjusted for  a Stack-Building elevation difference of     0.00
                BldNo:   5  Bid Name:INCIN FD  TierNo:   1

Volume IV                                                      External Review Draft
Appendix IV-1                         FV-1-21                     Do not cite  or quote

-------
                                 wtibpip3.sum

 Drtcn:  120.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:    45.72
     Directional MAX:  BH:  29.08  PBW:  16.47  *Wake Effect Ht:    53.79
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:    72.69
          *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  48.91  'Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
          *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  48.91  *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:    38.10
          *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  48.91  *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
          'adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  48.91  *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
          'adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Naroe:wastefrm  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:     6.71
     Directional MAX:  BH:  25.76  PBW:  26.44  'Wake Effect Ht:    64.39
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:    68.00
          'adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 130.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:    45.72
     Directional MAX:  BH:  29.08  PBW:  15.87  'Wake Effect Ht:    52.88
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:    72.69
          'adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  51.16  'Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
          'adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Namerwastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  51.16  'Wake Effect Ht:    38.10

Volume IV                                                    External Review Draft
Appendix IV-1                         IV-1-22                     Do not cite or quote

-------
                                 wtibpipB.sun

                 GEP:  BH:   15.24   PBW:   15.88   ''Equation  1 Ht:    38.10
           •adjusted  for a Stack-Building  elevation difference  of     0.00
                BldNo:  8  Bid Nametwastefrm  TierNo:   1
 StkNo:  4  Stk Name:waste3                             Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:   51.16   *Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:   15.88    'Equation  1 Ht:    38.10
           'adjusted  for a Stack-Building  elevation difference  of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:   1
 StkNo:  5  Stk Name:waste4                             Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:   51.16   *Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:   15.88    'Equation  1 Ht:    38.10
           'adjusted  for a Stack-Building elevation difference  of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:   1
 StkNo:  6  Stk Name .-steam                              Stack Ht:     6.71
     Directional MAX:  BH:   25.76   PBW:  24.80   'Wake Effect Ht:    62.96
                 GEP:  BH:   29.08   PBW:  25.95    'Equation  1 Ht:    68.00
           'adjusted  for a Stack-Building elevation difference  of     0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:   1

 Drtcn: 140.00

 StkNo:  1  Stk Name:WTIl                               Stack Ht:    45.72
     Directional MAX:  BH:   29.08   PBW:  14.78   'Wake Effect Ht:    51.25
                 GEP:  BH:   29.08   PBW:  29.08    'Equation  1 Ht:    72.69
          'adjusted  for a Stack-Building elevation difference  of     0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:   1
 StkNo:  2  Stk Name:wastel                             Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  51.86   'Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1 Ht:    38.10
          'adjusted  for a Stack-Building elevation difference  of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:   1
 StkNo:  3  Stk Name:waste2                             Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  51.86   'Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1 Ht:    38.10
          'adjusted  for a Stack-Building elevation difference  of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:   1
 StkNo:  4  Stk Name:waste3                             Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  51.86   'Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1 Ht:    38.10
          ''adjusted  for a Stack-Building elevation difference  of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:   1
 StkNo:  5  Stk Name:waste4                             Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  51.86   'Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1 Ht:    38.10
          'adjusted  for a Stack-Building elevation difference  of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:   1
 StkNo:  6  Stk Name:steam                              Stack Ht:     6.71

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-23                     Do not cite or quote

-------
                                 wtibpip3.sum

     Directional MAX:  BH:  25.76  PBW:  22.42  'Wake Effect Ht:   59.38
                 GEP:  BH:  29.08  PBW:  25.95   ^Equation 1 Ht:   68.00
          •adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 150.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  13.25  *Wake Effect Ht:   48.95
                 GEP:  BH:  29.08  PBW:  29.08   *Equation 1 Ht:   72.69
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.98  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.98  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.98  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.98  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  25.76  PBW:  20.13  'Wake Effect Ht:   55.96
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:   68.00
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid NamecINCIN FD  TierNo:  1

 Drtcn: 160.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  12.36  'Wake Effect Ht:   47.62
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.09  'Wake Effect Ht:   38.10

Volume IV                                                     External Review Draft
Appendix IV-1                         FV-1-24                     Do not cite or quote

-------
                                  wtibpip3.sum

                  GEP:   BH:   15.24  PBW:  15.88    *Equation 1 Ht:    38.10
           *adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm TierNo:   1
  StkNo:   3  Stk Name:waste2                            Stack Ht:    16.76
     Directional  MAX:   BH:   15.24  PBW:  50.09   *Wake  Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    *Equation 1 Ht:    38.10
           'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm TierNo:   1
  StkNo:   4  Stk Name:waste3                            Stack Ht:    16.76
     Directional  MAX:   BH:   15.24  PBW:  50.09   *Wake  Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    'Equation 1 Ht:    38.10
           *adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm TierNo:   1
  StkNo:   5  Stk Name:waste4                            Stack Ht:    16.76
     Directional  MAX:   BH:   15.24  PBW:  50.09   'Wake  Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    *Equation 1 Ht:    38.10
           *adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm TierNo:   1
  StkNo:   6  Stk Name .-steam                             Stack Ht:     6.71
     Directional  MAX:   BH:   21.34  PBW:  19.79   *Wake  Effect Ht:    51.02
                  GEP:   BH:   29.08  PBW:  25.95    *Equation 1 Ht:    68.00
           'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   4  Bid Name:BOILER    TierNo:   1

  Drtcn: 170.00

  StkNo:   1   Stk Name:WTIl                              Stack Ht:    45.72
     Directional  MAX:   BH:   29.08  PBW:  13.82   *Wake  Effect Ht:    49.81
                  GEP:   BH:   29.08  PBW:  29.08    'Equation 1 Ht:    72.69
           'adjusted for a Stack-Building elevation  difference of     0.00
                BldNo:   1  Bid Name:SCRUBBER TierNo:   1
  StkNo:   2   Stk Name:wastel                             Stack Ht:    16.76
     Directional  MAX:   BH:   15.24  PBW:  51.66   *Wake  Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    'Equation 1 Ht:    38.10
           'adjusted for a Stack-Building elevation  difference of     0.00
                BldNo:   8  Bid Name:wastefrm TierNo:   1
  StkNo:   3   Stk Name:waste2                             Stack Ht:    16.76
     Directional  MAX:   BH:   15.24   PBW:  51.66   'Wake  Effect Ht:    38.10
                  GEP:   BH:   15.24   PBW:  15.88    'Equation 1 Ht:    38.10
          -'adjusted for a Stack-Building elevation  difference of     0.00
                BldNo:   8 Bid Name.-wastefrm TierNo:   1
  StkNo:   4   Stk Name:waste3                             Stack Ht:    16.76
     Directional  MAX:   BH:   15.24   PBW:  51.66   'Wake  Effect Ht:    38.10
                  GEP:   BH:   15.24   PBW:  15.88    'Equation 1 Ht:    38.10
           'adjusted for a Stack-Building elevation  difference of     0.00
                BldNo:   8  Bid Name:wastefrm TierNo:   1
  StkNo:   5   Stk Name:waste4                             Stack Ht:    16.76

Volume IV                                                      External Review Draft
Appendix IV-1                         FV-1-25                     Do not cite  or quote

-------
                                 wtibpipS.sum

     Directional MAX:  BH:  15.24  PBW:  51.66  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  21.34  PBW:  21.49  *Wake Effect Ht:   53.34
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:   68.00
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  4  Bid Name:BOILER    TierNo:  1

 Drtcn: 180.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  14.86  'Wake Effect Ht:   51.36
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  51.66  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.0.0
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  51.66  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  51.66  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:waste£rm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  51.66  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  21.34  PBW:  22.54  'Wake Effect Ht:   53.34
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:   68.00
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  4  Bid Name:BOILER    TierNo:  1

 Drtcn: 190.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  15.44  'Wake Effect Ht:   52.24

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-26                     Do not cite or quote

-------
                                  wtibpip3.sum

                 GEP:   BH:   29.08  PBW:  29.08    'Equation 1  Ht:    72.69
           *adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   1   Bid Name:SCRUBBER  TierNo:   1
 StkNo:  2   Stk Name:wastel                            Stack  Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  50.09   *Wake Effect  Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    'Equation 1  Ht:    38.10
           *adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   8   Bid Name:wastefrm  TierNo:   1
 StkNo:  3   Stk Name:waste2                            Stack  Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  50.09   *Wake Effect  Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    'Equation 1  Ht:    38.10
           *adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   8   Bid Name:wastefnn  TierNo:   1
 StkNo:  4   Stk Name:waste3                            Stack  Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  50.09   *Wake Effect  Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    *Equation 1  Ht:    38.10
           *adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   8   Bid Name:wastefrm  TierNo:   1
 StkNo:  5   Stk Name:waste4                            Stack  Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  50.09   *Wake Effect  Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    *Equation 1  Ht:    38.10
           *adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   8   Bid Name:wastefrm  TierNo:   1
 StkNo:  6   Stk Name:steam                              Stack  Ht:     6.71
     Directional MAX:   BH:   21.34  PBW:  22.91   *Wake Effect  Ht:    53.34
                 GEP:   BH:   29.08  PBW:  25.95    'Equation 1  Ht:    68.00
          *adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   4   Bid Name:BOILER    TierNo:   1

 Drtcn: 200.00

 StkNo:  1   Stk Name:WTIl                               Stack  Ht:    45.72
     Directional MAX:   BH:   29.08   PBW:  16.22   *Wake Effect  Ht:    53.40
                 GEP:   BH:   29.08   PBW:  29.08    'Equation 1  Ht:    72.69
          'adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   1   Bid Name:SCRUBBER  TierNo:   1
 StkNo:  2   Stk Name:wastel                             Stack  Ht:    16.76
     Directional MAX:   BH:   15.24   PBW:  47.00   'Wake Effect  Ht:    38.10
                 GEP:   BH:   15.24   PBW:  15.88    'Equation 1  Ht:    38.10
          ^adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   8   Bid Name:wastefrm  TierNo:   1
 StkNo:  3   Stk Name:waste2                             Stack  Ht:    16.76
     Directional MAX:   BH:   15.24   PBW:  47.00   'Wake Effect  Ht:    38.10
                 GEP:   BH:   15.24   PBW:  15.88    'Equation 1  Ht:    38.10
          'adjusted  for a Stack-Building elevation  difference of     0.00
                BldNo:   8   Bid Name:wastefrm  TierNo:   1
 StkNo:  4   Stk Name:waste3                             Stack  Ht:    16.76

Volume IV                                                      External Review Draft
Appendix IV-1                         IV-1-27                     Do not cite or quote

-------
                                 wtibpip3.sum

     Directional MAX:   BH:   15.24   PBW:  47.00   'Wake Effect Ht:    38.10
                 GEP:   BH:   15.24   PBW:  15.88    'Equation 1 Ht:    38.10
           •adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm  TierNo:  1
 StkNo:   5   Stk Name:waste4                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24   PBW:  47.00   'Wake Effect Ht:    38.10
                 GEP:   BH:   15.24   PBW:  15.88    *Equation 1 Ht:    38.10
           *adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm  TierNo:  1
 StkNo:   6   Stk Name:steam                             Stack Ht;     6.71
     Directional MAX:   BH:   21.34   PBW:  22.58   *Wake Effect Ht:    53.34
                 GEP:   BH:   29.08   PBW:  25.95    'Equation 1 Ht:    68.00
           'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   4  Bid Name:BOILER    TierNo:  1

 Drtcn: 210.00

 StkNo:   1   Stk Name:WTIl                              Stack Ht:    45.72
     Directional MAX:   BH:   29.08   PBW:  16.75   *Wake Effect Ht:    54.21
                 GEP:   BH:   29.08   PBW:  29.08    'Equation 1 Ht:    72.69
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:   2   Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24   PBW:  42.49   *Wake Effect Ht:    38.10
                 GEP:   BH:   15.24   PBW:  15.88    'Equation 1 Ht:    38.10
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm  TierNo:  1
 StkNo:   3   Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24   PBW:  42.49   'Wake Effect Ht:    38.10
                 GEP:   BH:   15.24   PBW:  15.88    'Equation 1 Ht:    38.10
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm  TierNo:  1
 StkNo:   4   Stk Name:waste3                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24   PBW:  42.49   'Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    'Equation 1 Ht:    38.10
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name-.was tefrm  TierNo:  1
 StkNo:   5   Stk Name:waste4                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24   PBW:  42.49   'Wake Effect Ht:    38.10
                 GEP:   BH:   15.24   PBW:  15.88    'Equation 1 Ht:    38.10
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm  TierNo:  1
 StkNo:   6   Stk Name:steam                             Stack Ht:     6.71
     Directional MAX:   BH:   32.31   PBW:  11.10   'Wake Effect Ht:    48.96
                 GEP:   BH:   29.08   PBW:  25.95    'Equation 1 Ht:    68.00
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   3  Bid Name:SPRAY D   TierNo:  1

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-28                     Do not cite or quote

-------
                                  wtibpipB.sum

  Drtcn:  220.00

  StkNo:   1   Stk Name:WTIl                              Stack Ht:    45.72
      Directional MAX:   BH:   25.76  PBW:  27.61   *Hake  Effect Ht:    64.39
                  GEP:   BH:   29.08  PBW:  29.08    *Equation  1 Ht:    72.69
          •adjusted for a Stack-Building elevation difference of     0.00
                 BldNo:   5  Bid Name:INCIN  FD  TierNo:   1
  StkNo:   2   Stk Name:wastel                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:  36.68   *Wake  Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    »Equation  1 Ht:    38.10
          •adjusted for a Stack-Building elevation difference of     0.00
                 BldNo:   8  Bid Name:wastefrm  TierNo:   1
  StkNo:   3   Stk Name:waste2                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:  36.68   *Wake  Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    *Equation  1 Ht:    38.10
          •adjusted for a Stack-Building elevation difference of     0.00
                 BldNo:   8  Bid Name:wastefnn  TierNo:   1
  StkNo:   4   Stk Name:waste3                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:  36.68   *Wake  Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    'Equation  1 Ht:    38.10
          •adjusted for a Stack-Building elevation difference of     0.00
                 BldNo:   8  Bid Name:wastefrm  TierNo:   1
  StkNo:   5   Stk Name:waste4                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:  36.68   *Wake  Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    'Equation  1 Ht:    38.10
          •adjusted for a Stack-Building elevation difference of     0.00
                 BldNo:   8  Bid Name:wastefrm  TierNo:   1
  StkNo:   6   Stk Name:steam                             Stack Ht:     6.71
      Directional MAX:   BH:   32.31  PBW:  10.67   *Wake  Effect Ht:    48.32
                  GEP:   BH:   29.08  PBW:  25.95    *Eguation  1 Ht:    68.00
          •adjusted for a Stack-Building elevation difference of     0.00
                 BldNo:   3   Bid Name:SPRAY D   TierNo:   1

 Drtcn: 230.00

 StkNo:  1   Stk Name:WTIl                               Stack Ht:    45.72
     Directional  MAX:   BH:   25.76   PBW:  26.08   *Wake  Effect Ht:    64.39
                  GEP:   BH:   29.08   PBW:  29.08    *Equation  1  Ht:    72.69
          •adjusted for  a Stack-Building elevation difference  of     0.00
                 BldNo:   5   Bid Name:INCIN FD  TierNo:   1
 StkNo:  2   Stk Name.-wastel                             Stack Ht:    16.76
     Directional  MAX:  BH:   15.24   PBW:  29.75   *Wake  Effect  Ht:    38.10
                  GEP:  BH:   15.24   PBW:  15.88    *Equation  1  Ht:    38.10
          •adjusted for  a Stack-Building elevation difference  of     0.00
                 BldNo:   8   Bid Name:wastefrm  TierNo:   1
 StkNo:  3   Stk Name:waste2                             Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  29.75   *Wake  Effect Ht:    38.10

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-29                     Do not cite or quote

-------
                                 wtibpipB.sum

                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Namerwastefrm  TierNo:  1
 StkNo:  4  Stk Naroe:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  29.75  *Wake Effect Ht:   38..10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:   38.10
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  29.75  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  14.94  PBW:  80.48  *Wake Effect Ht:   37.34
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:   68.00
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  7  Bid Name:contain   TierNo:  1

 Drtcn: 240.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  25.76  PBW:  23.77  'Wake Effect Ht:   61.40
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  21.92  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  21.92  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  21.92  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          ''adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  21.92  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  6  Stk Name-.steam                             Stack Ht:    6.71

Volume IV                                                    External Review Draft
Appendix IV-1                         IV-1-30                     Do not cite or Quote

-------
                                 wtibpipS.sum

     Directional MAX:  BH:   14.94   PBW:  70.45   'Wake Effect Ht:    37.34
                 GEP:  BH:   29.08   PBW:  25.95    *Equation  1 Ht:    68.00
           •adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  7  Bid Name:contain   TierNo:  1

 Drtcn: 250.00

 StkNo:  1  Stk Name.-WTIl                              Stack Ht:    45.72
     Directional MAX:  BH:   25.76   PBW:  22.43   *Wake Effect Ht:    59.40
                 GEP:  BH:   29.08   PBW:  29.08    'Equation  1 Ht:    72.69
           *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  5  Bid Name:INCIN PD  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  18.23   *Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1 Ht:    38.10
           'adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  18.23   'Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1 Ht:    38.10
           'adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  18.23   'Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1 Ht:    38.10
           'adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  18.23   'Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1 Ht:    38.10
           'adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  6  Stk Name .-steam                             Stack Ht:     6.71
     Directional MAX:  BH:   14.94   PBW:  65.31   'Wake Effect Ht:    37.34
                 GEP:  BH:   29.08   PBW:  25.95    'Equation  1 Ht:    68,00
          'adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  7  Bid Name:contain   TierNo:  1

 Drtcn: 260.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:    45.72
     Directional MAX:  BH:   25.76   PBW:  24.81   'Wake Effect Ht:    62.98
                 GEP:  BH:   29.08   PBW:  29.08    'Equation  1 Ht:    72.69
          'adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  26.39   'Wake Effect Ht:    38.10

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-31                     Do not cite or quote

-------
                                 wtibpip3.sum

                 GEP:  BH:   15.24   PBW:  15.88    *Equation 1 Ht:    38.10
           *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  26.39  *Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    *Equation 1 Ht:    38.10
           *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  26.39  *Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    *Equation 1 Ht:    38.10
           *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name.-wastefnn  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  26.39  *Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    *Equation 1 Ht:    38.10
           *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:     6.71
     Directional MAX:  BH:   25.76   PBW:  24.81  *Wake Effect Ht:    62.98
                 GEP:  BH:   29.08   PBW:  25.95    *Equation 1 Ht:    68.00
          *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 270.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:    45.72
     Directional MAX:  BH:   29.08   PBW:  16.63  *Wake Effect Ht:    54.02
                 GEP:  BH:   29.08   PBW:  29.08    *Equation 1 Ht:    72.69
          •adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  33.74  *Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    *Equation 1 Ht:    38.10
          •adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  33.74  *Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    *Eguation 1 Ht:    38.10
          •*adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  33.74  *Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    *Equation 1 Ht:    38.10
          •adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:    16.76

Volume IV                                                     External Review Draft
Appendix IV-1                         FVM-32                     Do not cite or quote

-------
                                 wtibpip3.sum

     Directional MAX:  BH:  15.24  PBW:  33.74  *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
          *adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefmi  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:     6.71
     Directional MAX:  BH:  25.76  PBW:  26.44  *Wake Effect Ht:    64.39
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:    68.00
          *adjusted for a Stack-Building elevation difference of     0,00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 280.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:    45.72
     Directional MAX:  BH:  29.08  PBW:  16.83  *Wake Effect Ht:    54.32
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:    72.69
          *adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  40.06  *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  40.06  'Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  40.06  'Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  40.06  'Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW.:  15.88   'Equation 1 Ht:    38.10
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:     6.71
     Directional MAX:  BH:  25.76  PBW:  27.27  'Wake Effect Ht:    64.39
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:    68.00
          'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 290.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:    45.72
     Directional MAX:  BH:  29.08  PBW:  16.57  'Wake Effect Ht:    53.94

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-33                     Do not cite or quote

-------
                                 wtibpip3.sum

                 GEP:  BH:  29.08  PBW:  29.08    *Equation 1 Ht:   72.69
           *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
• StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  45.17  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88    *Equation 1 Ht:   38.10
           *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  45.17  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88    *Equation 1 Ht:   38.10
           •adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  45.17  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88    *Equation 1 Ht:   38.10
           •adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  45.17  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88    'Equation 1 Ht:   38.10
           *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:     6.71
     Directional MAX:  BH:  25.76  PBW:  27.27  *Wake Effect Ht:   64.39
                 GEP:  BH:  29.08  PBW:  25.95    *Equation 1 Ht:   68.00
           •adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 300.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  16.47  *Wake Effect Ht:   53.79
                 GEP:  BH:  29.08  PBW:  29.08    *Equation 1 Ht:   72.69
           •adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  48.91  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88    *Equation 1 Ht:   38.10
          ""adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  48.91  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88    *Equation 1 Ht:   38.10
           •adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Namerwastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76

Volume IV                                                    External  Review Draft
Appendix IV-1                         IV-1-34                     Do not cite or quote

-------
                                  wtibpip3.sum

     Directional  MAX:   BH:   15.24  PBW:  48.91   'Wake  Effect  Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    "Equation 1  Ht:    38.10
           *adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm TierNo:   1
  StkNo:   5  Stk Name:waste4                            Stack  Ht:    16.76
     Directional  MAX:   BH:   15.24  PBW:  48.91   'Wake  Effect  Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    *Equation 1  Ht:    38.10
           *adjusted for a Stack-Building elevation difference of  .   0.00
                BldNo:   8  Bid Name:wastefrm TierNo:   1
  StkNo:   6  Stk Name:steam                             Stack  Ht:     6.71
     Directional  MAX:   BH:   25.76  PBW:  26.44   *Wake  Effect  Ht:    64.39
                  GEP:   BH:   29.08  PBW:  25.95    'Equation 1  Ht:    68.00
           *adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   5  Bid Name:INCIN FD TierNo:   1

  Drtcn: 310.00

  StkNo:   1  Stk Name:WTIl                              Stack  Ht:    45.72
     Directional  MAX:   BH:   29.08  PBW:  15.87   *Wake  Effect  Ht:    52.88
                  GEP:   BH:   29.08  PBW:  29.08    *Equation 1  Ht:    72.69
           *adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   1  Bid Name:SCRUBBER TierNo:   1
  StkNo:   2  Stk Name:wastel                             Stack  Ht:    16.76
     Directional  MAX:   BH:   15.24  PBW:  51.16   *Wake  Effect  Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    'Equation 1  Ht:    38.10
           *adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm TierNo:   1
  StkNo:   3   Stk Name:waste2                             Stack  Ht:    16.76
     Directional  MAX:   BH:   15.24  PBW:  51.16   *Wake  Effect  Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    *Equation 1  Ht:    38.10
           •adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8 Bid Name:wastefrm TierNo:   1
  StkNo:  4   Stk Name:waste3                             Stack  Ht:    16.76
     Directional  MAX:   BH:   15.24  PBW:  51.16   *Wake  Effect  Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    'Equation 1  Ht:    38.10
           *adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm TierNo:   1
  StkNo:   5   Stk Name:waste4                             Stack  Ht:    16.76
     Directional  MAX:   BH:   15.24   PBW:  51.16   *Wake  Effect  Ht:    38.10
                  GEP:   BH:   15.24   PBW:  15.88    'Equation 1  Ht:    38.10
           'adjusted for a Stack-Building elevation difference of     0.00
                BldNo:   8  Bid Name:wastefrm TierNo:   1
  StkNo:   6   Stk Name:steam                              Stack  Ht:     6.71
     Directional  MAX:   BH:   25.76   PBW:  24.80   *Wake  Effect  Ht:    62.96
                  GEP:   BH:   29.08   PBW:  25.95    'Equation 1  Ht:    68.00
           'adjusted for a Stack-Building elevation difference  of     0.00
                BldNo:   5  Bid Name:INCIN FD TierNo:   1

Volume IV                                                      External Review Draft
Appendix IV-1                         IV-1-35                     Do not cite or quote

-------
                                 wtibpip3.sum

 Drtcn: 320.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  14.78  *Wake Effect Ht:   51.25
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  51.86  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  51.86  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:   38.10
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  51.86  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:   38.10
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  51.86  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          •adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  25.76  PBW:  22.42  *Wake Effect Ht:   59.38
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:   68.00
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 330.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  13.25  'Wake Effect Ht:   48.95
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.98  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.98  'Wake Effect Ht:   38.10

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-36                     Do not cite or quote

-------
                                 wtibpipS.sum

                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:   38.10
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.98  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1.
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.98  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          •adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  25.76  PBW:  20.13  *Wake Effect Ht:   55.96
                 GEP:  BH:  29.08  PBW:  25.95   *Equation 1 Ht:   68.00
          •adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 340.00

 StkNo:  I  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  12.36  *Wake Effect Ht:   47.62
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          •adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.09  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:   38.10
          •adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 .StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.09  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          •adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.09  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          -'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.09  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-37                     Do not cite or quote

-------
                                 wtibpip3.sum

     Directional MAX:  BH:  21.34  PBW:  19.79   "Wake Effect Ht:    51.02
                 GEP:  BH:  29.08  PBW:  25.95    *Equation 1 Ht:    68.00
           *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  4  Bid Name:BOILER    TierNo:  1

 Drtcn: 350.00

 StkNo: -1  Stk Name:WTI1                              Stack Ht:    45.72
     Directional MAX:  BH:  29.08  PBW:  13.82   "Wake Effect Ht:    49.81
                 GEP:  BH:  29.08  PBW:  29.08    *Equation 1 Ht:    72.69
           *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  51.66   *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88    *Equation 1 Ht:    38.10
           *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  51.66   *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88    "Equation 1 Ht:    38.10
           *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  51.66   *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88    *Equation 1 Ht:    38.10
           *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  51.66   *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88    "Equation 1 Ht:    38.10
           *adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  8  Bid Name: wastef rrn  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:     6.71
     Directional MAX:  BH:  21.34  PBW:  21.49   *Wake Effect Ht:    53.34
                 GEP:  BH:  29.08  PBW:  25.95    "Equation 1 Ht:    68.00
          "adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  4  Bid Name:BOILER    TierNo:  1

 Drtcn: 360.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:    45.72
     Directional MAX:  BH:  29.08  PBW:  14.86   *Wake Effect Ht:    51.36
                 GEP:  BH:  29.08  PBW:  29.08    "Equation 1 Ht:    72.69
           "adjusted  for a Stack-Building elevation difference of     0.00
                BldNo:  1  Bid Name:SCRUBBER  TierNo:  1
 StkNo:  2  Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  51.66   "Wake Effect Ht:    38.10

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-38                     Do not cite or quote

-------
                                 wtibpip3.sum

                 GEP:  BH:  15.24  PBW:  15.88   "Equation 1 Ht:   38.10
          "adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  51.66  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   "Equation 1 Ht:   38.10
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  51.66  "Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   "Equation 1 Ht:   38.10
          "adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  51.66  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   "Equation 1 Ht:   38.10
          "adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  8  Bid Name:wastefrm  TierNo:  1
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  21.34  PBW:  22.54  "Wake Effect Ht:   53.34
                 GEP:  BH:  29.08  PBW:  25.95   "Equation 1 Ht:   68.00
          "adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  4  Bid Name:BOILER    TierNo:  1
Dominate combined buildings:

 Drtcn:  10.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  26.88  "Wake Effect Ht:   69.39
                 GEP:  BH:  29.08  PBW:  29.08   "Equation 1 Ht:   72.69
          "adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:   1   9
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.09  "Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   "Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  3-  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.09  "Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   "Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  50.09  "Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   "Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-39                     Do not cite or quote

-------
                                  wtibpipS.sum

  StkNo:   5   Stk Name:waste4                             Stack Ht:
     Directional MAX:   BH:   15.24  PBW:  50.09   *Wake  Effect Ht:
                 GEP:   BH:   15.24  PBW:  15.88    *Equation 1 Ht:
      No  combined  tiers affect  this stack  for  this direction
  StkNo:   6   Stk Name:steam                              Stack Ht:
     Directional MAX:   BH:   29.08  PBW:  25.95   *Wake  Effect Ht:
                 GEP:   BH:   29.08  PBW:  25.95    *Equation 1 Ht:
          *adjusted  for a Stack-Building elevation difference of
  No. of  Tiers  affecting Stk:   2
   Bldg-Tier nos.  contributing  to MAX:   9    1

  Drtcn:   20.00

  StkNo:   1   Stk Name:WTIl                               Stack Ht:
     Directional MAX:   BH:   29.08   PBW:  24.72   *Wake  Effect Ht:
                 GEP:   BH:   29.08   PBW:  29.08    *Equation 1 Ht:
          *adjusted  for a Stack-Building elevation difference of
  No. of  Tiers  affecting Stk:   2
   Bldg-Tier nos.  contributing  to MAX:   1    9
  StkNo:   2   Stk Name:wastel
                             15.24   PBW:
                             15.24   PBW:
             47.00
             15.88
    Directional MAX:  BH:
                GEP:  BH:
     No combined tiers affect this stack for
StkNo:  3  Stk Name:waste2
    Directional MAX:  BH:  15.24  PBW:  47.00
                GEP:  BH:  15.24  PBW:  15.88
     No combined tiers affect this stack for
StkNo:  4  Stk Name:waste3
    Directional MAX:  BH:  15.24  PBW:  47.00
                GEP:  BH:  15.24  PBW:  15.88
     No combined tiers affect this stack for
StkNo:  5  Stk Name:waste4
    Directional MAX:  BH:  15.24  PBW:  47.00
                GEP:  BH:  15.24  PBW:  15.88
     No combined tiers affect this stack for
StkNo:  6  Stk Name:steam
    Directional MAX:  BH:  29.08  PBW:  24.72
                GEP:  BH:  29.08
              Stack Ht:
       *Wake Effect Ht:
        *Equation 1 Ht:
      this direction
              Stack Ht:
       *Wake Effect Ht:
        •Equation 1 Ht:
      this direction
              Stack Ht:
       *Wake Effect Ht:
        •Equation 1 Ht:
      this direction
              Stack Ht:
       *Wake Effect Ht:
        •Equation 1 Ht:
      this direction
              Stack Ht:
       *Wake Effect Ht:
        •Equation 1 Ht:
                                   PBW:  25.95
          •adjusted for a Stack-Building elevation difference of
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:   1   9

 Drtcn:  30.00
                                       16.76
                                       38.10
                                       38.10
                                        6.71
                                       68.00
                                       68.00
                                        0.00
                                       45.72
                                       66.16
                                       72.69
                                        0.00
                   16.76
                   38.10
                   38.10

                   16.76
                   38.10
                   38.10

                   16.76
                   38.10
                   38.10

                   16.76
                   38.10
                   38.10

                    6.71
                   66.16
                   68.00
                    0.00
 StkNo:  1  Stk Name:WTIl
     Directional MAX:  BH:
                 GEP:  BH:

Volume IV
Appendix IV-1
29.08
29.08
                                  PBW:
                                  PBW:
21.81
29.08
        IV-1-40
       Stack Ht:   45.72
•Wake Effect Ht:   61.80
 •Equation 1 Ht:   72.69
                                                            External Review Draft
                                                              Do not cite or quote

-------
                                  wtibpip3.sum

           *adjusted for a Stack-Building elevation difference of    0.00
   No.  of Tiers affecting Stk:   2
    Bldg-Tier nos.  contributing to MAX:    1    9
  StkNo:   2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:   BH:   15.24  PBW:   42.49  *Wake Effect Ht:   38.10
                 GEP:   BH:   15.24  PBW:   15.88   'Equation 1 Ht:   38.10
       No combined  tiers affect this stack for  this direction
  StkNo:   3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:   BH:   15.24  PBW:   42.49  *Wake Effect Ht:   38.10
                 GEP:   BH:   15.24  PBW:   15.88   *Equation 1 Ht:   38.10
       No combined  tiers affect this stack for  this direction
  StkNo:   4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:   BH:   15.24  PBW:   42.49  *Wake Effect Ht:   38.10
                 GEP:   BH:   15.24  PBW:   15.88   *Equation 1 Ht:   38.10
       No combined  tiers affect this stack for  this direction
  StkNo:   5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:   BH:   15.24  PBW:   42.49  *Wake Effect Ht:   38.10
                 GEP:   BH:   15.24  PBW:   15.88   *Equation 1 Ht:   38.10
       No combined  tiers affect this stack for  this direction
  StkNo:   6  Stk Name:steam                              Stack Ht:    6.71
     Directional MAX:   BH:   29.08  PBW:   21.81  *Wake Effect Ht:   61.80
                 GEP:   BH:   29.08  PBW:   25.95   *Equation 1 Ht:   68.00
           *adjusted for a Stack-Building elevation difference of    0.00
  No.  of Tiers  affecting Stk:   2
   Bldg-Tier nos.  contributing to MAX:    1    9

  Drtcn:   40.00

  StkNo:   1   Stk Name:WTIl                              Stack Ht:    45.72
     Directional MAX:   BH:   25.76  PBW:   27.61  *Wake Effect Ht:    64.39
                 GEP:   BH:   29.08  PBW:   29.08   *Equation 1 Ht:    72.69
           *adjusted for a Stack-Building elevation  difference of    0.00
  No.  of  Tiers  affecting Stk:   3
   Bldg-Tier nos.  contributing to MAX:    159
  StkNo:   2   Stk Name:wastel                             Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:   36.68  *Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:   15.88   *Equation 1 Ht:    38.10
      No  combined  tiers affect this  stack for   this  direction
  StkNo:   3   Stk Name:waste2                             Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:   36.68  *Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:   15.88   *Equation 1 Ht:    38.10
      No  combined  tiers affect this  stack for   this  direction
  StkNo:   4   Stk Name:waste3                             Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:   36.68   *Wake Effect Ht:    38.10
                 GEP:   BH:   15.24   PBW:   15.88    *Equation 1 Ht:    38.10
      No  combined  tiers  affect  this  stack for   this  direction
  StkNo:   5   Stk Name:waste4                             Stack Ht:    16.76

Volume IV                                                     External Review Draft
Appendix IV-1                          IV-1-41                     Do not cite or quote

-------
                                 wtibpipS.sum

     Directional MAX:  BH:  15.24  PBW:  36.68  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   "Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  6  Stic Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  24.38  PBW:  28.86  *Wake Effect Ht:   60.96
                 GEP:  BH:  29.08  PBW:  25.95   *Equation 1 Ht:   68.00
          *adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  3
   Bldg-Tier nos. contributing to MAX:   159

 Drtcn:  50.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  24.38  PBW:  27.01  *Wake Effect Ht:   60.96
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          *adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  3
   Bldg-Tier nos. contributing to MAX:   159
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  29.75  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  29.75  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  29.75  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  29.75  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  24.38  PBW:  27.01  'Wake Effect Ht:   60.96
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:   68.00
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  3
   Bldg-Tier nos. contributing to MAX:   159

 Drtcn:  60.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  24.38  PBW:  24.64  'Wake Effect Ht:   60.96
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          'adjusted for a Stack-Building elevation difference of    0.00

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-42                     D° not cite or quote

-------
                                 wtibpip3.sum

  No. of Tiers affecting Stk:  3
   Bldg-Tier nos. contributing to MAX:   159
 StkNo:  2  Stk Name.-wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  21.92  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  3  Stk Name:waste2                            Stack Ht:  '16.76
     Directional MAX:  'BH:  15.24  PBW:  21.92  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  21.92  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  21.92  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  24.38  PBW:  24.64  'Wake Effect Ht:   60.96
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:   68.00
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  3
   Bldg-Tier nos. contributing to MAX:   159

 Drtcn:  70.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  24.38  PBW:  25.97  'Wake Effect Ht:   60.96
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  3
   Bldg-Tier nos. contributing to MAX:   159
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  18.23  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  18.23  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  18.23  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  18.23  'Wake Effect Ht:   38.10

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-43                     Do not cite or quote

-------
                                 wtibpip3.sum

                 GEP:  BH:  15.24  PBW:   15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:   6.71  PBW:  16.41  'Wake Effect Ht:   16.76
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:   68.00
      No combined tiers affect this stack for  this direction

 Drtcn:  80.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  22.57  *Wake Effect Ht:   62.93
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:   1   9
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  26.39  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  26.39  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  26.39  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  26.39  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  25.76  PBW:  24.81  'Wake Effect Ht:   62.98
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:   68.00
      No combined tiers affect this stack for  this direction

 Drtcn:  90.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  25.75  'Wake Effect Ht:   67.71
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:   1   9
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  33.74  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-44                     Do not cite or quote

-------
                                  wtibpip3.sum

       No  combined tiers affect this stack for  this direction
  StkNo:   3   Stk Name:waste2                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   33.74  *Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88   'Equation 1 Ht:    38.10
       No  combined tiers affect this stack for  this direction
  StkNo:   4   Stk Name:waste3                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   33.74  *Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88   *Equation 1 Ht:    38:10
       No  combined tiers affect this stack for  this direction
  StkNo:   5   Stk Name:waste4                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   33.74  *Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88   'Equation 1 Ht:    38.10
       No  combined tiers affect this stack for  this direction
  StkNo:   6   Stk Name:steam                              Stack Ht:     6.71
      Directional MAX:   BH:   25.76  PBW:   26.44  *Wake Effect Ht:    64.39
                  GEP:   BH:   29.08  PBW:   25.95   *Eguation 1 Ht:    68.00
       No  combined tiers affect this stack for  this direction

  Drtcn: 100.00

  StkNo:   1   Stk Name:WTIl                               Stack Ht:    45.72
      Directional MAX:   BH:   29.08  PBW:   28.77  *Wake Effect Ht:    72.23
                  GEP:   BH:   29.08  PBW:   29.08   'Equation 1 Ht:    72.69
          *adjusted for a Stack-Building  elevation  difference of     0.00
  No.  of  Tiers  affecting Stk:   2
   Bldg-Tier nos.  contributing to MAX:    1    9
  StkNo:   2   Stk Name:wastel                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   40.06  *Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88   *Equation 1 Ht:    38.10
      No  combined tiers affect this stack for  this  direction
  StkNo:   3   Stk Name:waste2                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   40.06  *Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88   *Equation 1 Ht:    38.10
      No  combined tiers affect this stack for  this  direction
  StkNo:   4   Stk Name:waste3                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:   40.06  *Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88   *Equation 1 Ht:    38.10
      No  combined tiers affect this  stack for  this  direction
  StkNo:   5   Stk Naine:waste4                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:   40.06  'Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88   'Equation 1 Ht:    38.10
      No  combined tiers affect this  stack for  this  direction
  StkNo:   6   Stk Name:steam                              Stack Ht:     6.71
     Directional  MAX:   BH:   25.76   PBW:   27.27   'Wake Effect Ht:    64.39
                  GEP:   BH:   29.08.  PBW:   25.95   'Equation 1 Ht:    68.00
      No  combined tiers affect this  stack for  this  direction
Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-45                     Do not cite or quote

-------
                                 wtibpip3.sum

 Drtcn: 110.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  30.90  *Wake Effect Ht:   72.69
                 GEP:  BH:  29.08  PBW:  29.08   *Equation 1 Ht:   72.69
          *adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:   1   9
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  45.17  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:   38.10
      No combined tiers affect this .stack for  this direction
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  45.17  *Wake Effect Ht:   38.'10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  45.17  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  45.17  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  25.76  PBW:  27.27  'Wake Effect Ht:   64.39
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:   68.00
      No combined tiers affect this stack for  this direction

 Drtcn: 120.00

 StkNo:  1  Stk NamerWTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  32.10  *Wake Effect Ht:   72.69
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:   1   9
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  48.91  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  48.91  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  48.91  'Wake Effect Ht:   38.10

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-46                     Do not cite or quote

-------
                                 wtibpip3.sum

                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
      No combined tiers affect this stack for  this direction
 StkNo:  5  Stk Name:waste4                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  48.91  'Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:    38.10
      No combined tiers affect this stack for  this direction
 StkNo:  6  Stk Name:steam                             Stack Ht:     6.71
     Directional MAX:  BH:  25.76  PBW:  26.44  *Wake Effect Ht:  .  64.39
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:    68.00
      No combined tiers affect this stack for  this direction

 Drtcn: 130.00
                                                                          v
 StkNo:  1  Stk Name:WTIl                              Stack Ht:    45.72
     Directional MAX:  BH:  29.08  PBW:  32.33  *Wake Effect Ht:    72.69
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:    72.69
          'adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:   1   9
 StkNo:  2  Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  51.16  'Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
      No combined tiers affect this stack for  this direction
 StkNo:  3  Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  51.16  'Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
      No combined tiers affect this stack for  this direction
 StkNo:  4  Stk Name:waste3                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  51.16  'Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
      No combined tiers affect this stack for  this direction
 .StkNo:  5  Stk Name:waste4                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  51.16  'Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
      No combined tiers affect this stack for  this direction
 StkNo:  6  Stk Name:steam                             Stack Ht:     6.71
     Directional MAX:  BH:  25.76  PBW:  24.80  'Wake.Effect Ht:    62.96
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:    68.00
      No combined tiers affect this stack for  this direction

 Drtcn: 140.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:    45.72
     Directional MAX:  BH:  29.08  PBW:  31.85  'Wake Effect Ht:    72.69
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:    72.69
          'adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:  2

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-47                     Do not cite or quote

-------
                                  wtibpip3.sum

    Bldg-Tier nos.  contributing to MAX:    1    9
  StkNo:   2   Stk Name:wastel                             Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   51.86   *Wake  Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:   15.88    'Equation  1 Ht:    38.10
      No  combined  tiers affect this stack  for  this  direction
  StkNo:   3   Stk Name:waste2                             Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   51.86   *Wake  Effect Ht:    38.10
                 GEP: '  BH:   15.24  PBW:   15.88    'Equation  1 Ht:    38.10
      No  combined  tiers affect this stack  for  this  direction
  StkNo:   4   Stk Name:waste3                             Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   51.86   *Wake  Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    *Equation  1 Ht:    38.10
      No  combined  tiers affect this stack for  this  direction
  StkNo:   5   Stk Name:waste4                             Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:  51.86   *Wake  Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    *Equation  1 Ht:    38.10
      No  combined  tiers affect this stack for  this  direction
  StkNo:   6   Stk Name:steam                              Stack Ht:     6.71
      Directional MAX:   BH:   25.76  PBW:  22.42   *Wake  Effect Ht:    59.38
                 GEP:   BH:   29.08  PBW:  25.95    *Equation  1 Ht:    68.00
      No  combined  tiers affect this stack for  this  direction

  Drtcn: 150.00

  StkNo:   1   Stk Name:WTIl                               Stack Ht:    45.72
      Directional MAX:   BH:   29.08  PBW:  30.86   *Wake  Effect Ht:    72.69
                 GEP:   BH:   29.08  PBW:  29.08    *Equation  1 Ht:    72.69
          *adjusted for a Stack-Building elevation difference of     0.00
  No. of  Tiers  affecting Stk:   2
   Bldg-Tier nos..  contributing to MAX:   1    9
  StkNo:   2  Stk Name:wastel                             Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:  50.98   *Wake  Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    *Equation  1 Ht:    38.10
      No  combined  tiers  affect  this stack for  this  direction
  StkNo:   3  Stk Name:waste2                             Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:  50.98   *Wake  Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    *Equation  1 Ht:    38.10
      No  combined  tiers  affect  this stack for  this  direction
  StkNo:   4  Stk Name:waste3                             Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:  50.98   *Wake  Effect Ht:    38.10
                 GEP:   BH:   15.24   PBW:  15.88    *Equation  1 Ht:    38.10
      No  combined  tiers  affect  this stack for  this  direction
  StkNo:   5  Stk Name:waste4                             Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  50.98   *Wake  Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    *Equation  1 Ht:    38.10
      No  combined  tiers  affect  this stack for  this  direction
  StkNo:   6  Stk Name:steam                              Stack Ht:     6.71

Volume IV                                                      External Review Draft
Appendix IV-1                          IV-1-48                     Do not cite or quote

-------
                                  wtibpip3.sum

      Directional MAX:   BH:   25.76  PBW:   20.13   'Wake Effect Ht:    55.96
                  GEP:   BH:   29.08  PBW:   25.95    'Equation 1 Ht:    68.00
       No combined tiers affect this stack for  this  direction

  Drtcn:  160.00

  StkNo:   1   Stk Name:WTIl                               Stack Ht:    45.72
      Directional MAX:   BH:   29.08  PBW:   29.63   'Wake Effect Ht:    72:69
                  GEP:   BH:   29.08  PBW:   29.08    'Equation 1 Ht:    72.69
          'adjusted for a Stack-Building elevation difference of     0.00
  No.  of Tiers  affecting Stk:   2
   Bldg-Tier nos.  contributing to MAX:    1    9
  StkNo:   2   Stk Name:wastel                             Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   50.09   *Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88    'Equation 1 Ht:    38.10
       No combined tiers affect this stack for  this  direction
  StkNo:   3   Stk Name:waste2                             Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   50.09   'Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88    'Equation 1 Ht:    38.10
       No combined tiers affect this stack for  this  direction
  StkNo:   4   Stk Name:waste3                             Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   50.09   'Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88    'Equation 1 Ht:    38.10
       No combined tiers affect this stack for  this  direction
  StkNo:   5   Stk Name:waste4                             Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   50.09   'Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88    'Equation 1 Ht:    38.10
       No combined tiers affect this stack for  this  direction
  StkNo:   6   Stk Name:steam                              Stack Ht:     6.71
     Directional MAX:   BH:   29.08  PBW:   25.95   'Wake Effect Ht:    68.00
                  GEP:   BH:   29.08  PBW:   25.95    'Equation 1 Ht:    68.00
          'adjusted  for a Stack-Building  elevation difference of     0.00
  No.  of  Tiers  affecting Stk:   2
   Bldg-Tier nos.  contributing to MAX:    9    1

 Drtcn:  170.00

 StkNo:   1   Stk  Name.-WTIl                               Stack Ht:    45.72
     Directional MAX:   BH:   29.08   PBW:   29.30   'Wake Effect Ht:    72.69
                 GEP:   BH:   29.08   PBW:   29.08    'Equation 1 Ht:    72.69
          'adjusted  for a Stack-Building  elevation difference of     0.00
  No. of Tiers affecting Stk:   2
   Bldg-Tier nos.  contributing  to MAX:    1    9
 StkNo:   2   Stk Name-.was tel                             Stack Ht:    16.76
     Directional MAX:   BH:   15.24   PBW:   51.66   'Wake Effect Ht:    38.10
                 GEP:   BH:   15.24   PBW:   15.88    'Equation 1 Ht:    38.10
      No combined  tiers  affect  this  stack for   this  direction

Volume IV                                                     External Review Draft
Appendix IV-1                          P/-1-49                     Do not cite or quote

-------
                                 wtibpipS.sum

 StkNo:  3  Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:   51.66  *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:   15.88   *Equation 1 Ht:    38.10
      No combined tiers affect this stack for  this direction
 StkNo:  4  Stk Name:waste3                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:   51.66  *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:   15.88   *Equation 1 Ht:    38.10
      No combined tiers affect this stack for  this direction
 StkNo:  5  Stk Name:waste4                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:   51.66  *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:   15.88   *Equation 1 Ht:    38.10
      No combined tiers affect this stack for  this direction
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  29.08  PBW:  25.95  *Wake Effect Ht:    68.00
                 GEP:  BH:  29.08  PBW:  25.95   *Equation 1 Ht:    68.00
          •adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:   9   1

 Drtcn: 180.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:    45.72
     Directional MAX:  BH:  29.08  PBW:  28.21  *Wake Effect Ht:    71.40
                 GEP:  BH:  29.08  PBW:  29.08   *Equation 1 Ht:    72.69
          *adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:   1   9
 StkNo:  2  Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  51.66  *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:    38.10
      No combined tiers affect this stack for  this direction
 StkNo:  3  Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  51.66  *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:    38.10
      No combined tiers affect this stack for  this direction
 StkNo:  4  Stk Name:waste3                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  51.66  *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:    38.10
      No combined tiers affect this stack for  this direction
 StkNo:  5-  Stk Name:waste4                            Stack Ht:    16.76
     Directional MAX:  BH:  15.24  PBW:  51.66  *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:    38.10
      No combined tiers affect this stack for  this direction
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  29.08  PBW:  25.95  *Wake Effect Ht:    68.00
                 GEP:  BH:  29.08  PBW:  25.95   *Equation 1 Ht:    68.00
          •adjusted for a Stack-Building elevation difference of    0.00

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-50                     Do not cite or quote

-------
                                 wtibpip3.sum

  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:    9   1

 Drtcn: 190.00

 StkNo:  1  Stk NamerWTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:   26.88  'Wake Effect Ht:   69.39
                 GEP:  BH:  29.08  PBW:   29.08   *Equation 1 Ht:   72.69
          •adjusted for a Stack-Building  elevation difference of     0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:    1   9
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   50.09  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:   15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   50.09  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:   15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   50.09  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:   15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   50.09  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:   15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  6  Stk Name:steam                             Stack Ht:     6.71
     Directional MAX:  BH:  29.08  PBW:   25.95  'Wake Effect Ht:   68.00
                 GEP:  BH:  29.08  PBW:   25.95   'Equation 1 Ht:   68.00
          'adjusted for a Stack-Building  elevation difference of     0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:    9   1

 Drtcn: 200.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:   24.72  'Wake Effect Ht:   66.16
                 GEP:  BH:  29.08  PBW:   29.08   'Equation 1 Ht:   72.69
          -'adjusted for a Stack-Building  elevation difference of     0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:    1   9
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   47.00  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:   15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76

Volume IV                                                     External  Review Draft
Appendix IV-1                         IV-1-51                     Do not cite or quote

-------
                                 wtibpipB.sum

     Directional MAX:  BH:   15.24   PBW:   47.00   'Wake Effect  Ht:    38.10
                 GEP:  BH:   15.24   PBW:   15.88    *Equation  1  Ht:    38.10
      No combined  tiers affect  this stack for  this direction
 StkNo:  4  Stk Name:waste3                            Stack  Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:   47.00   *Wake Effect  Ht:    38.10
                 GEP:  BH:   15.24   PBW:   15.88    *Equation  1  Ht:    38.10
      No combined  tiers affect  this stack for  this direction
 StkNo:  5  .Stk Name:waste4                            Stack  Ht:  .  16.76
     Directional MAX:  BH:   15.24   PBW:   47.00   *Wake Effect  Ht:    38.10
                 GEP:  BH:   15.24   PBW:   15.88    'Equation  1  Ht:    38.10
      No combined  tiers affect  this stack for  this direction
 StkNo:  6  Stk Name:steam                             Stack  Ht:     6.71
     Directional MAX:  BH:   29.08   PBW:  24.72   *Wake Effect  Ht:    66.16
                 GEP:  BH:   29.08   PBW:  25.95    'Equation  1  Ht:    68.00
          'adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:   2
   Bldg-Tier nos.  contributing  to MAX:   1    9

 Drtcn: 210.00

 StkNo:  1  Stk Name:WTIl                              Stack  Ht:    45.72
     Directional MAX:  BH:   29.08   PBW:  21.81   *Wake Effect  Ht:    61.80
                 GEP:  BH:   29.08   PBW:  29.08    'Equation  1  Ht:    72.69
          'adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:   2
   Bldg-Tier nos.  contributing  to MAX:   1    9
 StkNo:  2  Stk Name:wastel                            Stack  Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  42.49   'Wake Effect  Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1  Ht:    38.10
      No combined  tiers affect  this  stack for   this direction
 StkNo:  3  Stk Name:waste2                            Stack  Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  42.49   'Wake Effect  Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1  Ht:    38.10
      No combined  tiers affect  this  stack for   this direction
 StkNo:  4  Stk Name:waste3                            Stack  Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  42.49   'Wake Effect  Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1  Ht:    38.10
      No combined  tiers affect  this  stack for   this direction
 StkNo:  5  Stk Name:waste4                            Stack  Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  42.49   'Wake Effect  Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1  Ht:    38.10
      No combined  tiers affect  this  stack for   this direction
 StkNo:  6  Stk Name-.steam                             Stack  Ht:     6.71
     Directional MAX:  BH:   29.08   PBW:  21.81   'Wake Effect  Ht:    61.80
                 GEP:  BH:   29.08   PBW:  25.95    'Equation  1  Ht:    68.00
          'adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:   2

Volume IV                                                      External Review Draft
Appendix IV-1                          IV-1-52                     Do not cite or quote

-------
                                  wtibpip3.sum

   Bldg-Tier nos,  contributing to MAX:   1    9

 Drtcn:  220.00

 StkNo:   1  Stk NameiWTIl                              Stack Ht:    45.72
     Directional MAX:   BH:   25.76  PBW:  27.61   *Wake Effect Ht:    64.39
                 GEP:   BH:   29.08  PBW:  29.08    *Equation  1 Ht:    72.69
          *adjusted  for a Stack-Building elevation difference of     0.00
  No. of  Tiers affecting Stk:   3
   Bldg-Tier nos.  contributing to MAX:   159
 StkNo:   2  Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  36.68   *Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    'Equation  1 Ht:    38.10
      No  combined  tiers affect this stack for this direction
 StkNo:   3  Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  36.68   *Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    *Equation  1 Ht:    38.10
      No  combined  tiers affect this stack for this direction
 StkNo:   4  Stk Name:waste3                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  36.68   *Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    *Equation  1 Ht:    38.10
      No  combined  tiers affect this stack for this direction
 StkNo:   5  Stk Name:waste4                            Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:  36.68   *Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:  15.88    *Equation  1 Ht:    38.10
      No  combined  tiers affect this stack for this direction
 StkNo:   6  Stk Name:steam                             Stack Ht:     6.71
     Directional MAX:   BH:   24.38  PBW:  28.86   *Wake Effect Ht:    60.96
                 GEP:   BH:   29.08  PBW:  25.95    *Equation  1 Ht:    68.00
          *adjusted  for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:   3
   Bldg-Tier nos.  contributing to MAX:   159

 Drtcn: 230.00

 StkNo:   1  Stk Name:WTIl                              Stack Ht:    45.72
     Directional MAX:   BH:   25.76   PBW:  26.08   *Wake Effect Ht:    64.39
                 GEP:   BH:   29.08   PBW:  29.08    *Equation  1 Ht:    72.69
          •adjusted  for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:   3
   Bldg-Tier nos.  contributing to MAX:   159
 StkNo:  2  Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  29.75   *Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    *Equation  1 Ht:    38.10
      No combined  tiers affect  this stack for  this direction
 StkNo:  3  Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  29.75   *Wake Effect Ht:    38.10

Volume IV                                                    External Review Draft
Appendix IV-1                         IV-1-53                     Do not cite or quote

-------
                                 wtibpip3.sum

                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1 Ht:    38.10
      No combined  tiers affect  this stack for this direction
 StkNo:  4  Stk Name:waste3                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  29.75  *Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1 Ht:    38.10
      No combined  tiers affect  this stack for this direction
 StkNo:  5  Stk Name:waste4                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  29.75  'Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation'1 Ht:    38.10
      No combined  tiers affect  this stack for this direction
 StkNo:  6  Stk Name:steam                             Stack Ht:     6.71
     Directional MAX:  BH:   24.38   PBW:  27.01  'Wake Effect Ht:    60.96
                 GEP:  BH:   29.08   PBW:  25.95    'Equation  1 Ht:    68.00
          'adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:   3
   Bldg-Tier nos.  contributing  to MAX:   159

 Drtcn: 240.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:    45.72
     Directional MAX:  BH:   25.76   PBW:  23.77  'Wake Effect Ht:    61.40
                 GEP:  BH:   29.08   PBW:  29.08    'Equation  1 Ht:    72.69
          'adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:   3
   Bldg-Tier nos.  contributing  to MAX:   159
 StkNo:  2  Stk Name:wastel                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  21.92  'Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1 Ht:    38.10
      No combined  tiers affect  this stack for  this direction
 StkNo:  3  Stk Name:waste2                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  21.92  'Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1 Ht:    38.10
      No combined  tiers affect  this stack for  this direction
 StkNo:  4  Stk Name:waste3                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  21.92  'Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1 Ht:    38.10
      No combined  tiers affect  this stack for  this direction
 StkNo:  5  Stk Name:waste4                            Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:  21.92  'Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:  15.88    'Equation  1 Ht:    38.10
      No combined  tiers affect  this stack for  this direction
 StkNo:  6  Stk Name:steam                             Stack Ht:     6.71
     Directional MAX:  BH:   24.38   PBW:  24.64  'Wake Effect Ht:    60.96
                 GEP:  BH:   29.08   PBW:  25.95    'Equation  1 Ht:    68.00
          'adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:   3
   Bldg-Tier nos.  contributing  to MAX:   159

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-54                     Do not cite or quote

-------
                                  wtibpip3.sum

  Drtcn:  250.00

  StkNo:   1   Stk Name:WTIl                              Stack Ht:    45.72
      Directional MAX:   BH:   24.38  PBW:   25.97   *Wake Effect Ht:    60.96
                  GEP:   BH:   29.08  PBW:   29.08    *Eguation 1 Ht:    72.69
           *adjusted for a Stack-Building elevation difference of     0.00
  No.  of Tiers affecting Stk:   3
   Bldg-Tier nos.  contributing to MAX:    1    5.9
  StkNo:   2   Stk Name:wastel                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   18.23   *Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88    *Eguation 1 Ht:    38.10
       No combined tiers affect this stack for  this direction
  StkNo:   3   Stk Name:waste2                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   18.23   *Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88    'Equation 1 Ht:    38.10
       No combined tiers affect this stack for  this direction
  StkNo:   4   Stk Name:waste3                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   18.23   *Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88    'Equation 1 Ht:    38.10
       No combined tiers affect this stack for  this direction
  StkNo:   5   Stk Name:waste4                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   18.23   *Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88    'Equation 1 Ht:    38.10
       No combined tiers affect this stack for  this direction
  StkNo:   6   Stk Name:steam                              Stack Ht:     6.71
      Directional MAX:   BH:   14.94  PBW:   65.31   'Wake Effect Ht:    37.34
                 GEP:   BH:   29.08  PBW:   25.95    'Equation 1 Ht:    68.00
       No combined  tiers affect this stack for  this direction

 Drtcn:  260.00

 StkNo:   1   Stk Name:WXTl                               Stack Ht:    45.72
     Directional MAX:   BH:   25.76  PBW:   24.81   *Wake Effect Ht:    62.98
                 GEP:   BH:   29.08  PBW:   29.08    'Equation 1 Ht:    72.69
          'adjusted  for a Stack-Building  elevation difference of     0.00
  No.  of  Tiers  affecting Stk:   2
   Bldg-Tier nos.  contributing to MAX:    1    9
 StkNo:   2  Stk Name:wastel                             Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:   26.39   'Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:   15.88    'Equation 1 Ht:    38.10
      No  combined  tiers affect this stack for  this direction
 StkNo:   3  Stk Name:waste2                             Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:   26.39   'Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:   15.88    'Equation 1 Ht:    38.10
      No  combined  tiers affect this stack for  this direction
 StkNo:   4  Stk Name:waste3                             Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:   26.39   'Wake Effect Ht:    38.10

Volume IV                                                     External Review Draft
Appendix IV-1                          IV-1-55                     Do not cite or quote

-------
                                  wtibpipS.sum

                  GEP:   BH:   15.24  PBW:   15.88    *Equation  1  Ht:    38.10
      No  combined tiers affect  this stack  for  this  direction
  StkNo:   5   Stk Name:waste4                            Stack  Ht:    16.76
     Directional  MAX:   BH:   15.24  PBW:  26.39   'Wake Effect  Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    *Equation  1  Ht:    38.10
      No  combined tiers affect  this stack  for  this  direction
  StkNo:   6   Stk Name:steam                             Stack  Ht:     6.71
     Directional  MAX:   BH:   25.76  PBW:  24.81   'Wake Effect  Ht:    62.98
                  GEP:   BH:   29.08  PBW:  25.95    'Equation  1  Ht:    68.00
      No  combined tiers affect  this stack  for  this  direction

  Drtcn: 270.00

  StkNo:   1   Stk Name:WTIl                              Stack  Ht:    45.72
     Directional  MAX:   BH:   29.08  PBW:  25.75   *Wake Effect  Ht:    67.71
                  GEP:   BH:   29.08  PBW:  29.08    'Equation  1  Ht:    72.69
          'adjusted for a Stack-Building elevation difference of     0.00
  No. of  Tiers  affecting Stk:   2
   Bldg-Tier nos.  contributing  to MAX:   1    9
  StkNo:   2   Stk Name:wastel                            Stack  Ht:    16.76
     Directional  MAX:   BH:   15.24  PBW:  33.74   'Wake Effect  Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    'Equation  1  Ht:    38.10
      No  combined tiers affect  this  stack for   this  direction
  StkNo:   3   Stk Name:waste2                            Stack  Ht:    16.76
     Directional  MAX:   BH:   15.24  PBW:  33.74   'Wake Effect  Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    'Equation  1  Ht:    38.10
      No  combined tiers affect  this  stack for   this  direction
  StkNo:   4   Stk Name:waste3                            Stack  Ht:    16.76
     Directional  MAX:   BH:   15.24  PBW:  33.74   'Wake Effect  Ht:    38.10
                  GEP:   BH:   15.24  PBW:  15.88    'Equation  1  Ht:    38.10
      No  combined tiers affect  this  stack for   this  direction
  StkNo:   5   Stk Name:waste4                            Stack  Ht:    16.76
     Directional  MAX:   BH:   15.24  PBW:  33.74   'Wake Effect  Ht:    38.10
                  GEP:   BH:   15.24   PBW:  15.88    'Equation  1  Ht:    38.10
      No  combined tiers affect  this  stack for   this  direction
  StkNo:   6   Stk Name:steam                             Stack  Ht:     6.71
     Directional  MAX:   BH:   25.76   PBW:  26.44   'Wake Effect  Ht:    64.39
                  GEP:   BH:   29.08   PBW:  25.95    'Equation  1  Ht:    68.00
      No  combined tiers affect  this  stack for   this  direction

 Drtcn: 280.00

  StkNo:   1   Stk Name:WTIl                              Stack  Ht:    45.72
     Directional  MAX:   BH:   29.08   PBW:  28.77   'Wake Effect  Ht:    72.23
                  GEP:   BH:   29.08   PBW:  29.08    'Equation  1  Ht:    72.69
          'adjusted for a Stack-Building elevation difference of     0.00
  No. of  Tiers  affecting Stk:   2

Volume IV                                                      External Review Draft
Appendix IV-1                          IV-1-56                     Do not cite or quote

-------
                                  wtibpipS.sum

    Bldg-Tier nos.  contributing to MAX:    1    9
  StkNo:   2   Stk Name:wastel                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   40.06  *Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:   15.88   'Equation 1 Ht:    38.10
       No combined  tiers affect this stack for  this  direction
  StkNo:   3   Stk Name:waste2                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   40.06  *Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:   15.88   *Equation 1 Ht:    38.10
       No combined  tiers affect this stack for  this  direction
  StkNo:   4   Stk Name:waste3                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   40.06  *Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:   15.88   'Equation 1 Ht:    38.10
       No combined  tiers affect this stack for  this  direction
  StkNo:   5   Stk Name:waste4                            Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   40.06  *Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:   15.88   'Equation 1 Ht:    38.10
       No combined  tiers affect this stack for  this  direction
  StkNo:   6   Stk Name:steam                              Stack Ht:     6.71
      Directional MAX:   BH:   25.76  PBW:   27.27  *Wake Effect Ht:    64.39
                 GEP:   BH:   29.08  PBW:   25.95   'Equation 1 Ht:    68.00
       No combined  tiers affect this stack for  this  direction

  Drtcn:  290.00

  StkNo:   1   Stk Name:WTIl                               Stack Ht:    45.72
      Directional MAX:   BH:   29.08  PBW:   30.90  'Wake Effect Ht:    72.69
                 GEP:   BH:   29.08  PBW:   29.08   'Equation 1 Ht:    72.69
          'adjusted for a Stack-Building  elevation difference of     0.00
  No.  of  Tiers  affecting Stk:   2
   Bldg-Tier nos.  contributing to MAX:    1    9
  StkNo:   2   Stk Name:wastel                             Stack Ht:    16.76
      Directional MAX:   BH:   15.24  PBW:   45.17   'Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:   15.88    'Equation 1 Ht:    38.10
      No  combined  tiers  affect this  stack for  this  direction
  StkNo:   3   Stk Name:waste2          .                   Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:   45.17   'Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:   15.88    'Equation 1 Ht:    38.10
      No  combined  tiers  affect this  stack for  this  direction
  StkNo:   4   Stk Name:waste3                             Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:   45.17   'Wake Effect Ht:    38.10
                 GEP:  BH:   15.24   PBW:   15.88    'Equation 1  Ht:    38.10
      No  combined  tiers affect this  stack for  this  direction
  StkNo:   5   Stk Name:waste4                             Stack Ht:    16.76
     Directional MAX:  BH:   15.24   PBW:   45.17   'Wake Effect  Ht:    38.10
                 GEP:   BH:   15.24   PBW:   15.88    'Equation 1  Ht:    38.10
      No  combined  tiers affect  this  stack for  this  direction
  StkNo:   6   Stk Name:steam                              Stack Ht:     6.71

Volume IV                                                     External Review Draft
Appendix IV-1                          IV-1-57                     Do not cite or quote

-------
                                 wtibpip3.sun

     Directional MAX:  BH:  25.76  PBW:  27.27  *Wake Effect Ht:   64.39
                 GEP:  BH:  29.08  PBW:  25.95   *Equation 1 Ht:   68.00
      No combined tiers affect this stack for  this direction

 Drtcn: 300.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  32.10  *Wake Effect Ht:   72.69
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          *adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:   1   9
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  48.91  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  48.91  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  48.91  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  48.91  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   *Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  25.76  PBW:  26.44  *Wake Effect Ht:   64.39
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:   68.00
      No combined tiers affect this stack for  this direction

 Drtcn: 310.00

 StkNo:  1  Stk Naroe:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  32.33  *Wake Effect Ht:   72.69
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:   1   9
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  51.16  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:  51.16  'Wake Effect Ht:   38.10

Volume IV                                                     External Review Draft
Appendix IV-1                         FV-1-58                     Do not cite or quote

-------
                                 wtibpip3.sum
                 GEP:   BH:   15.24  PBW:   15.88
      No combined tiers affect this stack for
 StkNo:   4  Stk Name:waste3
     Directional MAX:   BH:   15.24  PBW:   51.16
                 GEP:   BH:   15.24  PBW:   15.88
      No combined tiers affect this stack for
 StkNo:   5  Stk Name:waste4
     Directional MAX:   BH:   15.24  PBW:   51.16
                 GEP:   BH:   15.24  PBW:   15.88
      No combined tiers affect this stack for
 StkNo:   6  Stk Name:steam
     Directional MAX:   BH:   25.76  PBW:   24.80
                 GEP:   BH:   29.08  PBW:   25.95
      No combined tiers affect this stack for

 Drtcn:  320.00
                     •Equation 1 Ht:
                   this direction
                           Stack Ht:
                    *Wake Effect Ht:
                     •Equation 1 Ht:
                   this direction
                           Stack Ht:
                    •Wake Effect Ht:
                     •Equation 1 Ht:
                   this direction
                           Stack Ht:
                    •Wake Effect Ht:
                     *Equation 1 Ht:
                   this direction
 StkNo:   1  Stk Name:WTIl                              Stack Ht:
     Directional MAX:   BH:   29.08  PBW:   31.85  *Wake Effect Ht:
                 GEP:   BH:   29.08  PBW:   29.08   *Equation 1 Ht:
          •adjusted for a Stack-Building elevation difference of
  No.  of Tiers affecting Stk:   2
   Bldg-Tier nos. contributing to MAX:
 StkNo:   2  Stk Name:wastel
                               24  PBW
15.
51.86
15.88
 for
                              .24  PBW:  51.86
                              .24  PBW:  15.88
                               this stack for
    Directional MAX:  BH:
                GEP:  BH:  15.24  PBW
     No combined tiers affect this stack
StkNo:  3  Stk Name:waste2
    Directional MAX:  BH:  15
                GEP:  BH:  15
     No combined tiers affect
StkNo:  4  Stk Name:waste3
    Directional MAX:  BH:  15.24  PBW:  51.86
                GEP:  BH:  15.24  PBW:  15.88
     No combined tiers affect this stack for
StkNo:  5  Stk Name:waste4
    Directional MAX:  BH:  15
                GEP:  BH:  15
                              .24
                              .24
       PBW:
       PBW:
51.86
15.88
      No combined tiers affect this stack for
 StkNo:  6.  Stk Name:steam
     Directional MAX:  BH:  25.76  PBW:  22.42
                 GEP:  BH:  29.08
      No combined tiers affect
       PBW:  25.95
   this stack for
        Stack Ht:
 •Wake Effect Ht:
  •Equation 1 Ht:
this direction
        Stack Ht:
 •Wake Effect Ht:
  •Equation 1 Ht:
this direction
        Stack Ht:
 •Wake Effect Ht:
  •Equation 1 Ht:
this direction
        Stack Ht:
 •Wake Effect Ht:
  •Equation 1 Ht:
this direction
        Stack Ht:
 •Wake Effect Ht:
  •Equation 1 Ht:
this direction
                          38.10

                          16.76
                          38.10
                          38.10

                          16.76
                          38.10
                          38.10

                           6.71
                          62.96
                          68.00
                                       45.72
                                       72.69
                                       72.69
                                        0.00
16.76
38.10
38.10

16.76
38.10
38.10

16.76
38.10
38.10

16.76
38.10
38.10

 6.71
59.38
68.00
 Drtcn: 330.00

 StkNo:  1  Stk Name:WTIl

Volume IV
Appendix IV-1
        IV-1-59
                           Stack Ht:   45.72
                    External Review Draft
                      Do not cite or quote

-------
                                 wtibpip3. sum

     Directional MAX:  BH:  29.08  PBW:   30.86  *Wake Effect Ht:   72.69
                 GEP:  BH:  29.08  PBW:   29.08   'Equation 1 Ht:   72.69
          •adjusted for a Stack-Building  elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:    1   9
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   50.98  *Wake Effect Ht:   38.10
                 GEP:  'BH:  15.24  PBW:   15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   50.98  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:   15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   50.98  *Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:   15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   50.98  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  6  Stk Name:steam                             Stack Ht:    6.71
     Directional MAX:  BH:  25.76  PBW:  20.13  'Wake Effect Ht:   55.96
                 GEP:  BH:  29.08  PBW:  25.95   'Equation 1 Ht:   68.00
      No combined tiers affect this stack for  this direction

 Drtcn: 340.00

 StkNo:  1  Stk Name:WTIl                              Stack Ht:   45.72
     Directional MAX:  BH:  29.08  PBW:  29.63  'Wake Effect Ht:   72.69
                 GEP:  BH:  29.08  PBW:  29.08   'Equation 1 Ht:   72.69
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:   1   9
 StkNo:  2  Stk Name:wastel                            Stack Ht:   16.76
   •  Directional MAX:  BH:  15.24  PBW:   50.09  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:  15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  3  Stk Name:waste2                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   50.09  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:   15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  4  Stk Name:waste3                            Stack Ht:   16.76
     Directional MAX:  BH:  15.24  PBW:   50.09  'Wake Effect Ht:   38.10
                 GEP:  BH:  15.24  PBW:   15.88   'Equation 1 Ht:   38.10
      No combined tiers affect this stack for  this direction
 StkNo:  5  Stk Name:waste4                            Stack Ht:   16.76

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-60                     Do not cite or quote

-------
                                  wtibpipB.sum

      Directional  MAX:   BH:   15.24  PBW:   50.09   *Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88    'Equation 1 Ht:    38.10
       No combined tiers affect this stack for  this  direction
  StkNo:   6   Stk Name:steam                             Stack Ht:     6.71
      Directional  MAX:   BH:   29.08  PBW:   25.95   'Wake Effect Ht:    68.00
                  GEP:   BH:   29.08  PBW:   25.95    *Equation 1 Ht:    68.00
           *adjusted for a Stack-Building elevation difference of     0.00
  No.  of Tiers  affecting Stk:   2
   Bldg-Tier nos.  contributing to MAX:    9    1

  Drtcn:  350.00

  StkNo:   1   Stk Name:WTIl                              Stack Ht:    45.72
      Directional  MAX:   BH:   29.08  PBW:   29.30   *Wake Effect Ht:    72.69
                  GEP:   BH:   29.08  PBW:   29.08    *Equation 1 Ht:    72.69
          *adjusted for a Stack-Building elevation difference of     0.00
  No.  of Tiers  affecting Stk:   2
   Bldg-Tier nos.  contributing to MAX:    1    9
  StkNo:   2   Stk Name:wastel                             Stack Ht:    16.76
      Directional  MAX:   BH:   15.24  PBW:   51.66   *Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88    'Equation 1 Ht:    38.10
       No combined tiers affect this stack for  this  direction
  StkNo:   3   Stk Name:waste2                             Stack Ht:    16.76
      Directional  MAX:   BH:   15.24  PBW:   51.66   *Wake Effect Ht:    38.10
                  GEP:   BH:   15.24  PBW:   15.88    'Equation 1 Ht:    38.10
       No combined tiers affect this stack for  this  direction
  StkNo:   4   Stk Name:waste3                             Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:   51.66   *Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:   15.88    'Equation 1 Ht:    38.10
      No  combined tiers affect this stack for  this  direction
  StkNo:   5   Stk Name:waste4                             Stack Ht:    16.76
     Directional MAX:   BH:   15.24  PBW:   51.66   *Wake Effect Ht:    38.10
                 GEP:   BH:   15.24  PBW:   15.88    'Equation 1 Ht:    38.10
      No  combined  tiers affect this stack for  this  direction
  StkNo:   6   Stk Name:steam                              Stack Ht:     6.71
     Directional MAX:   BH:   29.08  PBW:   25.95   'Wake Effect Ht:    68.00
                 GEP:   BH:   29.08  PBW:   25.95    'Equation 1 Ht:    68.00
          'adjusted  for a Stack-Building  elevation difference of     0.00
  No. of  Tiers  affecting  Stk:   2
   Bldg-Ti«r nos.  contributing to MAX:    9    1

 Drtcn: 360.00

 StkNo:   1  Stk Name:WTIl                               Stack Ht:    45.72
     Directional MAX:   BH:   29.08   PBW:   28.21   'Wake Effect  Ht:    71.40
                 GEP:   BH:   29.08   PBW:   29.08    'Equation 1  Ht:    72.69
          'adjusted  for a Stack-Building  elevation difference of     0.00

Volume IV                                                     External Review Draft
Appendix IV-1                         FV-1-61                     Do not cite or quote

-------
                                 wtibpip3.sum

  No. of Tiers affecting Stic:   2
   Bldg-Tier nos. contributing  to MAX:   1    9
 StkNo:  2  Stk Name:wastel                             Stack Ht:    16.76
     Directional MAX:  BH:  15.24   PBW:  51.66   *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24   PBW:  15.88    'Equation  1 Ht:    38.10
      No combined tiers affect  this stack for  this direction
 StkNo:  3  Stk Name:waste2                             Stack Ht:    16.76
     Directional MAX:  BH:  15.24   PBW:  51.66   *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24   PBW:  15.88    *Equation  1 Ht:    38.10
      No combined tiers affect  this stack for  this direction
 StkNo:  4  Stk Name:waste3                             Stack Ht:    16.76
     Directional MAX:  BH:  15.24   PBW:  51.66   *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24   PBW:  15.88    'Equation  1 Ht:    38.10
      No combined tiers affect  this stack for  this direction
 StkNo:  5  Stk Name:waste4                             Stack Ht:    16.76
     Directional MAX:  BH:  15.24   PBW:  51.66   *Wake Effect Ht:    38.10
                 GEP:  BH:  15.24   PBW:  15.88    *Equation  1 Ht:    38.10
      No combined tiers affect  this stack for  this direction
 StkNo:  6  Stk Name:steam                              Stack Ht:     6.71
     Directional MAX:  BH:  29.08   PBW:  25.95   *Wake Effect Ht:    68.00
                 GEP:  BH:  29.08   PBW:  25.95    'Equation  1 Ht:    68.00
          'adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:   2
   Bldg-Tier nos. contributing  to MAX:   9    1
Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-62                     Do not cite or quote

-------
                                  CADBPIP.OUT
  DATE :  02/14/95
  TIME :  17:54:22.75
  A363 -  WTI Downwash Analysis
 BPIP  PROCESSING INFORMATION:
 ============================

   The  ST  flag has  been set for processing for an ISCST2  run.

   Inputs  entered in FEET       will  be converted to meters using
    a conversion factor of     0.3048.   Output  will be in  meters.

   UTMP is set to UTMN.   The  input  is assumed  to  be in a  local
    X-Y coordinate  system as  opposed  to a  UTM  coordinate  system.
    True North is in the positive Y direction.

   Plant north is set to 337.21 degrees with respect to True North.
 A363 - WTI Downwash Analysis
                PRELIMINARY* GEP STACK HEIGHT RESULTS TABLE
                          (Output Units: meters)

                            Stack-Building            Preliminary*
         Stack    Stack     Base Elevation    GEP**   GEP Stack
         Name     Height    Differences       EQN1    Height Value
        cadbed     28.80         0.00        64.39        65.00

   * Results are based on Determinants 1 & 2 on pages 1 & 2 of the GEP
     Technical Support Document.  Determinant 3 may be investigated  for
     additional stack height credit.  Final values result after
     Determinant 3 has been taken into consideration.
  ** Results were derived from Equation 1 on page 6 of GEP Technical
     Support Document.  Values have been adjusted for any stack-building
     base elevation differences.

     Note:  Criteria for determining stack heights for modeling emission

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-63                     Do not cite or quote

-------
                                  CADBPIP.OUT

     limitations  for  a  source  can be found in Table 3.1 of the
     GEP Technical  Support Document.
 DATE  : 02/14/95
 TIME  : 17:54:22.75
 A363 - WTI Downwash Analysis
 BPIP output is in meters
     SO BUILDHGT cadbed
     SO BUILDHGT cadbed
     SO BUILDHGT cadbed
     SO BUILDHGT cadbed
     SO BUILDHGT cadbed
     SO BUILDHGT cadbed
     SO BUILDWID cadbed
     SO BUILDWID cadbed
     SO BUILDWID cadbed
     SO BUILDWID cadbed
     SO BUILDWID cadbed
     SO BUILDWID cadbed
25.76
24.38
25.76
25.76
24.38
25.76
27.09
25.97
24.80
27.09
25.97
24.80
25.76
25.76
25.76
25.76
25.76
25.76
28.12
24.81
22.42
28.12
24.81
22.42
25.76
25.76
25.76
25.76
25.76
25.76
28.29
26.44
20.13
28.29
26.44
20.13
25.76
25.76
25.76
25.76
25.76
25.76
27.61
27.27
19.32
27.61
27.27
19.32
25.76
25.76
25.76
25.76
25.76
25.76
26.08
27.27
22.62
26.08
27.27
22.62
25.76
25.76
25.76
25.76
25.76
25.76
23.77
26.44
25.24
23.77
26.44
25.24
Volume IV
Appendix IV-1
IV-1-64
External Review Draft
  Do not cite or quote

-------
                                  CADBPIP.SUM
 DATE  :  02/14/95
 TIME  :  17:54:22.75
 A3 63  -  WTI  Downwash Analysis
BPIP PROCESSING INFORMATION:
============================

   The ST  flag  has  been set for processing for an ISCST2 run.

   Inputs  entered in  FEET       will  be converted to meters using
    a conversion factor of    0.3048.   Output will be in meters.

   UTMP is set  to UTMN.   The  input  is assumed to be in a local
    X-Y coordinate  system as  opposed  to a UTM coordinate system.
    True North  is in  the positive Y direction.

   Plant north  is set to 337.21 degrees with respect to True North.
    The plant coordinates will  appear  as  entered in the Summary output
    file and they will be adjusted  to  True North prior to processing.
    The True North oriented  coordinates appear  below between
    the square brackets.
INPUT SUMMARY:
 Number of buildings to be processed  :    8
 SCRUBBER has 1 tier(s) with a base elevation of     0.00  FEET
                                                (     0.00) meters

 BUILDING  TIER  BLDG-TIER  TIER   NO. OF      CORNER   COORDINATES
   NAME   NUMBER   NUMBER  HEIGHT  CORNERS        X            Y

 SCRUBBER    1        1     95.40     8
                            29.08 meters
                                                -15.00        19.00 FEET
                                                 -4.57         5.79 meters

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-65                     Do not cite or quote

-------
                                   CADBPIP.SUM
 PRECIP   has  1  tier(s)  with a base elevation of
 BUILDING  TIER  BLDG-TIER  TIER   NO. OF
   NAME   NUMBER   NUMBER  HEIGHT  CORNERS
 PRECIP
80.00     4
24.38 meters
-6.46
-15.00
-4.57
-12.01
14.00
4.27
-3.86
14.00
4.27
-2.79
24.00
7.32
0.02
24.00
7.32
2.85
14.00
4.27
0.04
14.00
4.27
1.69
»f 0.
( 0.
CORNER
X
17.00
5.18
1.35
52.00
15.85
11.19
52.00
15.85
15.32
17.00
5.18
5.49
3.57] meters
66.00 FEET
20.12 meters
16.78] meters
66.00 FEET
20.12 meters
20.20] meters
57.00 FEET
17.37 meters
17.67] meters
57.00 FEET
17.37 meters
18.85] meters
33.00 FEET
10.06 meters
12.11] meters
33.00 FEET
10.06 meters
10.93] meters
19.00 FEET
5.79 meters
6.99] meters
00 FEET
00) meters
COORDINATES
Y
29.00 FEET
8 . 84 meters
10.16] meters
29.00 FEET
8 . 84 meters
14.29] meters
-6.00 FEET
-1.83 meters
4.45] meters
-6.00 FEET
-1.83 meters
0.32] meters
 SPRAY D  has  1  tier(s)  with a base elevation  of
Volume IV
Appendix IV-1
        IV-1-66
                         0.00 FEET
External Review Draft
  Do not cite or quote

-------
                                  CADBPIP.SUM
                                                     0.00) meters
 BUILDING  TIER  BLDG-TIER  TIER   NO.  OF
   NAME   NUMBER   NUMBER  HEIGHT  CORNERS
 SPRAY D
      106.00     8
       32.31 meters
 BOILER   has 1 tier{s) with a base elevation of
 BUILDING  TIER  BLDG-TIER  TIER   NO. OF
   NAME   NUMBER   NUMBER  HEIGHT  CORNERS
 BOILER
13     70.00     6
       21.34 meters
CORNER
X
64.00
19.51
8.89
77.00
23.47
13.14
82.00
24.99
16.08
77.00
23.47
16.21
64.00
19.51
13.14
51.00
15.54
8.90
46.00
14.02
5.96
51.00
15.54
5.83
»f 0.
{ 0.
CORNER
X
80.00
24.38
18.94
143.00
43.59
36.64
COORDINATES
Y
77.00 FEET
23.47 meters
2 9'. 19 ] meters
72.00 FEET
21.95 meters
29.32] meters
59.00 FEET
17.98 meters
26.26] meters
46.00 FEET
14.02 meters
22.02] meters
41.00 FEET
12.50 meters
19.08] meters
46.00 FEET
14.02 meters
18.95] meters
59.00 FEET
17.98 meters
22.01] meters
72.00 FEET
21.95 meters
26.25] meters
00 FEET
00) meters
COORDINATES
Y
30.00 FEET
9.14 meters
17.87] meters
30.00 FEET
9 . 14 meters
25.31] meters
Volume IV
Appendix IV-1
               IV-1-67
External Review Draft
  Do not cite or quote

-------
                                  CADBPIP.SUM
                                                 143.00       -11.00 FEET
                                                  43.59        -3.35 meters
                                                  41.48        13.79]  meters
                                                 121.00       -11.00 FEET
                                                  36.88        -3.35 meters
                                                  35.30        11.19]  meters
                                                 121.00         7.00 FEET
                                                  36.88         2.13 meters
                                                  33.18        16.25]  meters
                                                  80.00         7.00 FEET
                                                  24.38         2.13 meters
                                                  21.65        11.41]  meters
 INCIN FD has 1 tier(s) with a base elevation of
                               0.00 FEET
                               0.00) meters
 BUILDING  TIER  BLDG-TIER  TIER   NO. OF      CORNER
   NAME   NUMBER   NUMBER  HEIGHT  CORNERS        X
                                   COORDINATES
                                         Y
 INCIN FD
17     84.50     6
       25.76 meters
179.00
54.56
44.16
239.00
72.85
61.02
239.00
72.85
69.40
184.00
56.08
53.95
184.00
56.08
51.71
179.00
54.56
50.30
52.00 FEET
15.85 meters
35.74] meters
52.00 FEET
15.85 meters
42.83] meters
-19 . 00 FEET
-5.79 meters
22.87] meters
-19.00 FEET
-5.79 meters
16.38] meters
0.00 FEET
0.00 meters
21.72] meters
0.00 FEET
0.00 meters
21.13] meters
 steamplt has 1 tier(s) with a base elevation of
                               0.00 FEET
                               0.00) meters
 BUILDING  TIER  BLDG-TIER  TIER   NO. OF      CORNER
   NAME   NUMBER   NUMBER  HEIGHT  CORNERS        X
                                   COORDINATES
                                         Y
Volume IV
Appendix IV-1
               IVM-68
External Review Draft
  Do not cite or quote

-------
                                  CADBPIP.SUM
 steamplt
21     22.00     4
        6.71 meters
 contain  has 1 tier(s) with a base elevation of
 BUILDING  TIER  BLDG-TIER  TIER   NO.  OF
   NAME   NUMBER   NUMBER  HEIGHT  CORNERS
 contain
25     49.00     4
       14.94 meters
52.00
15.85
-5.22
132.00
40.23
17.26
132.00
40.23
23.16
52.00
15.85
0.68
}f 0.
( 0.
CORNER
X
338.00
103.02
67.00
575.00
175.26
133.60
575.00
175.26
157.57
338.00
103.02
90.97
168.00 FEET
51.21 meters
53.35] meters
168.00 FEET
51.21 meters
62.79] meters
118.00 FEET
35.97 meters
48.74] meters
118.00 FEET
35.97 meters
39.30] meters
00 FEET
00) meters
COORDINATES
Y
237.00 FEET
72.24 meters
106.50] meters
237.00 FEET
72.24 meters
134.48] meters
34.00 FEET
10.36 meters
77.43] meters
34.00 FEET
10.36 meters
49.46] meters
 wastefrm has 1 tier(s) with a  base elevation of
 BUILDING  TIER  BLDG-TIER   TIER   NO.  OF
   NAME   NUMBER   NUMBER  HEIGHT  CORNERS
 wastefrm
Volume IV
Appendix IV-1
29     50.00     4
       15.24 meters
               IV-1-69
                                0.00  FEET
                                0.00) meters
                          CORNER   COORDINATES
                             X            Y
617.00      106.00 FEET

             External Review Draft
               Do not cite or quote

-------
                                  CADBPIP.SUM
 Number of stacks to be processed  :
  STACK NAME
   STACK
BASE  HEIGHT
STACK
  X
188.06
160.87
779.00
237.44
206.39
779.00
237.44
212.53
617.00
188.06
167.01
32.31 meters
102.62] meters
106.00 FEET
32.31 meters
121.75] meters
54.00 FEET
16.46 meters
107.14] meters
54.00 FEET
16.46 meters
88.01] meters
COORDINATES
      Y
  cadbed
0.00   94.50 FEET
0.00   28.80) meters
                                     239.00       52.00 FEET
                               (       72.85       15.85) meters
                               [       61.02       42.83] meters
 The number of stack-tier combinations entered, where each  stack is  at least
5L
 in from at least one of the edges of their respective tier roofs, is:   0
                     Overall 6EP Summary Table
                           (Units: meters)
 StkNo:  1  Stk Name:cadbed   Stk Ht:  28.80 Prelim. GEP  Stk.Ht:    65.00
            GEP:  BH:  25.76  PBW:   25.76              *Eqnl  Ht:    64.39
          •adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:  1  Direction occurred:   124.75
   Bldg-Tier nos. contributing to GEP:  17
                     Summary By Direction Table
                           (Units:  meters)
 Dominate stand alone tiers:

Volume IV
Appendix IV-1
                   IV-1-70
                        External Review Draft
                          Do not cite or quote

-------
                                  CADBPIP.SUM
 Drtcn:  10.00

 StkNo:  1  Stk Name:cadbed                             Stack Ht:    28.80
     Directional MAX:  BH:  25.76  PBW:  27.09   *Wake Effect Ht:    64.39
                 GEP:  BH:  25.76  PBW:  25.76    'Equation  1 Ht:    64.39
          *adjusted  for a Stack-Building elevation difference  of     0.00
                BldNo:  7  Bid Name:contain   TierNo:   1

 Drtcn:  20.00

 StkNo:  1  Stk Name:cadbed                             Stack Ht:    28.80
     Directional MAX:  BH:  25.76  PBW:  28.12   *Wake Effect Ht:    64.39
                 GEP:  BH:  25.76  PBW:  25.76    *Equation  1 Ht:    64.39
          *adjusted  for a Stack-Building elevation difference  of     0,00
                BldNo:  5  Bid Name:INCIN FD  TierNo:   1

 Drtcn:  30.00

 StkNo:  1  Stk Name:cadbed                             Stack Ht:    28.80
     Directional MAX:  BH:  25.76  PBW:  28.29   'Wake Effect Ht:    64.39
                 GEP:  BH:  25.76  PBW:  25.76    'Equation  1 Ht:    64.39
          *adjusted  for a Stack-Building elevation difference  of     0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:   1

 Drtcn:  40.00

 StkNo:  1  Stk Name:cadbed                             Stack Ht:    28.80
     Directional MAX:  BH:  25.76  PBW:  27.61   *Wake Effect Ht:    64.39
                 GEP:  BH:  25.76  PBW:  25.76    'Equation  1 Ht:    64.39
          'adjusted  for a Stack-Building elevation difference  of     0.00
                BldNo:  5  Bid Name.-INCIN FD  TierNo:   1

 Drtcn:  50.00

 StkNo:  1  Stk Name:cadbed                             Stack Ht:    28.80
     Directional MAX:  BH:  25.76  PBW:  26.08   'Wake Effect Ht:    64.39
                 GEP:  BH:  25.76  PBW:  25.76    'Equation  1 Ht:    64.39
          'adjusted  for a Stack-Building elevation difference  of     0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:   1

 Drtcn:  60.00

 StkNo:  1  Stk Naroezcadbed                             Stack Ht:    28.80
     Directional MAX:  BH:  25.76  PBW:  23.77   'Wake Effect Ht:    61.40
                 GEP:  BH:  25.76  PBW:  25.76    'Equation  1 Ht:    64.39
          'adjusted  for a Stack-Building elevation difference  of     0.00

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-71                     Do not cite or quote

-------
                                  CADBPIP.SUM

                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn:  70.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  22.43  *Wake Effect Ht:   59.40
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for'a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn:  80.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  24.81  *Wake Effect Ht:   62.98
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn:  90.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  26.44  'Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  7  Bid Name:contain   TierNo:  1

 Drtcn: 100.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  27.27  'Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 110.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  27.27  'Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          •*adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 120.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  26.44  'Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-72                     Do not cite or quote

-------
                                  CADBPIP.SUM

          *adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  5  Bid Name.-INCIN FD  TierNo:  1

 Drtcn: 130.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  24'.80  *Wake Effect Ht:   62.96
                 GEP:  BH:  25.76  PBW:  25.76   *Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 140.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  22.42  *Wake Effect Ht:   59.38
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 150.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  20.13  *Wake Effect Ht:   55.96
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 160.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  19.32  *Wake Effect Ht:   54.73
                 GEP:  BH:  25.76  PBW:  25.76   *Equation 1 Ht:   64.39
          •adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 170.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  22.62  *Wake Effect Ht:   59.69
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          •adjusted for a Stack-Building elevation difference of     0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 180.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  25.24  *Wake Effect Ht:   63.62

Volume IV                                                     External Review Draft
Appendix IV-1                         FV-1-73                     Do not cite or quote

-------
                                 CADBPIP.SUM

                 GEP:  BH:  25.76  PBW:  25.76   *Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  7  Bid Name:contain   TierNo:   1

 Drtcn: 190.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  27.09  *Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  7  Bid Name:contain   TierNo:   1

 Drtcn: 200.00

 StkNo:  I  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  28.12  *Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   *Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:   1

 Drtcn: 210.00

 StkNo:  1  Stk Name-.cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  28.29  *Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:   1

 Drtcn: 220.00

 StkNo:  1  Stk Name.-cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  27.61  *Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   "Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:   1

 Drtcn: 230.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  26.08  *Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:   1
 Drtcn: 240.00

 StkNo:  1  Stk Name:cadbed

Volume IV
Appendix IV-1
                   Stack Ht:   28.80
IV-1-74
External Review Draft
  Do not cite or quote

-------
                                  CADBPIP.SUM

     Directional MAX:  BH:  25.76  PBW:  23.77  'Wake Effect Ht:   61.40
                 GEP:  BH:  25.76  PBW:  25.76   *Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  7  Bid Name:contain   TierNo:  1

 Drtcn: 250.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  22.43  *Wake Effect Ht:   59.40
                 GEP:  BH:  25.76  PBW:  25.76   *Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  7  Bid Name:contain   TierNo:  1

 Drtcn: 260.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  24.81  'Wake Effect Ht:   62.98
                 GEP:  BH:  25.76  PBW:  25.76 >  *Equation 1 Ht:   64.39
          •adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  7  Bid Name:contain   TierNo:  1

 Drtcn: 270.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  26.44  *Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  7  Bid Name:contain   TierNo:  1

 Drtcn: 280.00

 StkNo:  1  Stk Name.-cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  27.27  *Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 290.00

 StkNo:  1-  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  27.27  *Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 300.00
Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-75                     Do not cite or quote

-------
                                  CADBPIP.SUM

 StkNo:  1  Stk Name:cadbed                            -Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  26.44  *Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 310.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  24.80  *Wake Effect Ht:   62.96
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 320.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  22.42  "Wake Effect Ht:   59.38
                 GEP:  BH:  25.76  PBW:  25.76   -Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 330.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  20.13  'Wake Effect Ht:   55.96
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 340.00

 StkNo:  1  Stk Name-.cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  19.32  'Wake Effect Ht:   54.73
                 GEP:  BH:  25.76  PBW:  25.76   -Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 350.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  22.62  'Wake Effect Ht:   59.69
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  5  Bid Name:INCIN FD  TierNo:  1

 Drtcn: 360.00

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-76                     Do not cite or quote

-------
                                  CADBPIP.SUM

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  25.24  *Wake Effect Ht:   63.62
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
                BldNo:  7  Bid Name:contain   TierNo:  1
Dominate combined buildings:

 Drtcn:  10.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  27.09  *Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn:  20.00

 StkNo:  1  Stk Nametcadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  28.12  *Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier hos. contributing to MAX:  17  13

 Drtcn:  30.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  28.29  'Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn:  40.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  27.61  'Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  3
   Bldg-Tier nos. contributing to MAX:   159

 Drtcn:  50.00
Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-77                     Do not cite or quote

-------
                                  CADBPIP.SUM

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  26.08  *Wake Effect Ht:   64.39
                 6EP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  3
   Bldg-Tier nos. contributing to MAX:   159

 Drtcn:  60.00                                            .

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  23.77  'Wake Effect Ht:   61.40
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  3
   Bldg-Tier nos. contributing to MAX:   159

 Drtcn:  70.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  24.38  PBW:  25.97  'Wake Effect Ht:   60.96
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  3
   Bldg-Tier nos. contributing to MAX:   159

 Drtcn:  80.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  24.81  'Wake Effect Ht:   62.98
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:   1   9

 Drtcn:  90.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  26.44  'Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          -*adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 100.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  27.27  'Wake Effect Ht:   64.39

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-78                     Do not cite or quote

-------
                                  CADBPIP.SUM

                 GEP:  BH:  25.76  PBW:  25.76   *Equation 1 Ht:    64.39
          •adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 110.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:    28.80
     Directional MAX:  BH:  25.76  PBW:  27.27  *Wake Effect Ht:    64.39
                 GEP:  BH:  25.76  PBW:  25.76   *Equation 1 Ht:    64.39
          *adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 120.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:    28.80
     Directional MAX:  BH:  25.76  PBW:  26.44  *Wake Effect Ht:    64.39
                 GEP:  BH:  25.76  PBW:  25.76   *Equation 1 Ht:    64.39
          *adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 130.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:    28.80
     Directional MAX:  BH:  25.76  PBW:  24.80  *Wake Effect Ht:    62.96
                 GEP:  BH:  25.76  PBW:  25.76   *Equation 1 Ht:    64.39
          *adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 140.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:    28.80
     Directional MAX:  BH:  25.76  PBW:  22.42  *Wake Effect Ht:    59.38
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:    64.39
          •adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 150.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:    28.80
     Directional MAX:  BH:  25.76  PBW:  20.13  *Wake Effect Ht:    55.96
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:    64.39
          •adjusted for a Stack-Building elevation difference of     0.00

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-79                     Do not cite or quote

-------
                                  CADBPIP.SUM

  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 160.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  19.32  'Wake Effect Ht:   54.73
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          "'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 170.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  22.62  *Wake Effect Ht:   59.69
                 GEP:  BH:  25.76  PBW:  25.76   *Equation 1 Ht:   64.39
          •adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 180.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  25.24  'Wake Effect Ht:   63.62
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 190.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  27.09  *Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 200.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  28.12  'Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13,

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-80                     Do not cite or quote

-------
                                  CADBPIP.SUM

 Drtcn: 210.00

 StkNo:  I  Stk Name roadbed                            Stack Ht:    28.80
     Directional MAX:  BH:  25.76  PBW:  28.29  *Wake Effect Ht:    64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:    64.39
          •adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:  2
   Bldg--Tier nos; contributing to MAX:  17  13

 Drtcn: 220.00

 StkNo:  1  Stk Nametcadbed                            Stack Ht:    28.80
     Directional MAX:  BH:  25.76  PBW;  27.61  *Wake Effect Ht:    64.39
                 GEP:  BH:  25.76  PBW:  25.76   *Equation 1 Ht:    64.39
          •adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:  3
   Bldg-Tier nos. contributing to MAX:   159

 Drtcn: 230.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:    28.80
     Directional MAX:  BH:  25.76  PBW:  26.08  *Wake Effect Ht:    64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:    64.39
          'adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:  3
   Bldg-Tier nos. contributing to MAX:   159

 Drtcn: 240.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:    28.80
     Directional MAX:  BH:  25.76  PBW:  23.77  'Wake Effect Ht:    61.40
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:    64.39
          'adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:  3
   Bldg-Tier nos. contributing to MAX:   1   5.9

 Drtcn: 250.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:    28.80
     Directional MAX:  BH:  24.38  PBW:  25.97  'Wake Effect Ht:    60.96
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:    64.39
          'adjusted for a Stack-Building elevation difference of     0.00
  No. of Tiers affecting Stk:  3
   Bldg-Tier nos. contributing to MAX:   159

 Drtcn: 260.00
Volume IV                                                    External Review Draft
Appendix IV-1                         IV-1-81                     Do not cite or quote

-------
                                  CADBPIP.SUM

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  24.81  *Wake Effect Ht:   62.98
                 6EP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  3
   Bldg-Tier nos. contributing to MAX:   159

 Drtcn: 270.00

 StkNo:  1  Stk Name roadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  26.44  *Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 280.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  27.27  *Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   "Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 290.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  27.27  *Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 300.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  26.44  'Wake Effect Ht:   64.39
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          -'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 310.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  24.80  'Wake Effect Ht:   62.96

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-82                     Do not cite or quote

-------
                                  CADBPIP.SUM

                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 320.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:  .28.80
     Directional MAX:  BH:  25.76  PBW:  22.42  *Wake Effect Ht:   59.38
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 330.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  20.13  *Wake Effect Ht:   55.96
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 340.00

 StkNo:  1  Stk Name roadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  19.32  *Wake Effect Ht:   54.73
                 GEP:  BH:  25.76  PBW:  25.76   *Equation 1 Ht:   64.39
          •adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 350.00

 StkNo:  1  Stk Name:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  22.62  'Wake Effect Ht:   59.69
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          *adjusted for a Stack-Building elevation difference of    0.00
  No. of Tiers affecting Stk:  2
   Bldg-Tier nos. contributing to MAX:  17  13

 Drtcn: 360.00

 StkNo:  1  Stk Naroe:cadbed                            Stack Ht:   28.80
     Directional MAX:  BH:  25.76  PBW:  25.24  *Wake Effect Ht:   63.62
                 GEP:  BH:  25.76  PBW:  25.76   'Equation 1 Ht:   64.39
          'adjusted for a Stack-Building elevation difference of    0.00

Volume IV                                                     External Review Draft
Appendix IV-1                         IV-1-83                     Do not cite or quote

-------
                                   CADBPIP.SUM

  No. of Tiers affecting Stk:   2
   Bldg-Tier  nos.  contributing to MAX:  17  13
Volume IV                                                        External Review Draft
Appendix P/-1                          IV-1-84                      Do not cite or quote

-------
                                       APPENDIX IV-2

                                  Additional Wind Data Plots
Figures IV-2-1 thru IV-2-21. Beaver Valley Power Station Meteorological Tower (BVPSMT) wind
        data for each level for 1986-1990, 1992, Jan. - Apr. 1993.

Figures IV-2-22 thru IV-2-29. Greater Pittsburgh International Airport sounding data for 1988 and
        1989 at 0 GMT at various heights.

Figures IV-2-30 thru IV-2-37. Greater Pittsburgh International Airport sounding data for 1988 and
        1989 at 12 GMT at various heights.
Volume IV                                                              External Review Draft
Appendix IV-2                              IV-2-1                         Do not cite or quote

-------

-------
                                      N
                        NNW
             NW
     WNW
     WSW
             sw
                       ssw
       WIND SPEED CLASSES

          50-75    10.0-15.0
0.6-2.5    S'D 7'5    	'	


     2.5-5.0    7.5-lo!b"


              (mph)
                                                     NNE
                                                      20%
                                                                 NE
                                                                       ENE
                                                                       ESE
                                                                 SE
                                                     SSE
                                                      Project 1363
                                              Beaver Valley  PS  Tower Data
                                                 1986  — 35  Foot  Level
Figure IV-2-1. Annual wind rose for the BVPSMT for 1986, 35-foot level.
Volume IV
Appendix IV-2
                                        IV-2-3
External Review Draft

  Do not cite or quote

-------
                       NNW
            NW
    WNW
    W
    WSW
            SW
                      SSW
  WIND SPEED CLASSES

     5.0-7.5    10.0-15.0
          7.5-10.0    gt 15.0

         (mph)
                                     N
            NNE
                                                     20%
                        NE
                              ENE
                              ESE
                        SE
           SSE
                                                     Project  1363
                                             Beaver Valley PS Tower  Data
                                               1987 —  35 Foot Level
Figure IV-2-2. Annual wind rose for the BVPSMT for 1987, 35-foot level.
Volume IV
Appendix IV-2
IV-2-4
External Review Draft
  Do not cite or quote

-------
                        NNW
              NW
     WNW
     WSW
             sw
                       ssw
   WIND SPEED CLASSES

      5.0-7.5     10.0-15.0
 7.5-10.0   gt  150

(mph)
                                      N
                                       NNE
                                                      20%
                                                   NE
                                                         ENE
                                                         ESE
                                                   SE
                                       SSE
                                                      Project  1363
                                              Beaver Valley PS Tower Data
                                                1988 —  35 Foot Level
Figure IV-2-3. Annual wind rose for the BVPSMT for 1988, 35-foot level.
Volume IV

Appendix IV-2
                          IV-2-5
External Review Draft
  Do not cite or quote

-------
                                      N
                        NNW
              NNE
                                                      20%
              NW
                         NE
      WNW
      wsw
                               ENE
              sw
                        ssw
    WIND SPEED CLASSES

       5.0-7.5     10.0-15.0
                     gt 15.0
                               ESE
                         SE
             SSE
                                                      Project  1363
                                              Beaver Valley PS Tower Data
                                                1989 —  35 Foot Level
Figure IV-2-4.  Annual wind rose for the BVPSMT for 1989, 35-foot level.
Volume IV
Appendix IV-2
IV-2-6
External Review Draft
  Do not cite or quote

-------
                       NNW
             NW
     WNW
    W
    WSW
            SW
                      SSW
  WIND SPEED CLASSES

     5.0-7.5    10.0-15.0
          7.5-10.0    gt 15-0

         (mph)
                                     N
            NNE
                                                     20%
                        NE
                              ENE
                              ESE
                        SE
            SSE
                 Project 1363
         Beaver Valley  PS Tower  Data
            1990  — 35  Foot Level
Figure IV-2-5.  Annual wind rose for the BVPSMT for 1990, 35-foot level.
Volume IV
Appendix IV-2
IV-2-7
External Review Draft
  Do not cite or quote

-------
                                      N
                        NNW
             NNE
              NW
      WNW
     W
     wsw
             sw
                       ssw
    WIND SPEED CLASSES

      5.0-7.5    10.0-15.0
                     gt 15.0
                                                      20%
                         NE
                               ENE
                               ESE
                         SE
             SSE
                                                      Project  1363
                                              Beaver Valley PS Tower Data
                                                1992 —  35 Foot  Level
Figure IV-2-6.  Annual wind rose for the BVPSMT for 1992, 35-foot level.
Volume IV
Appendix IV-2
IV-2-8
External Review Draft
  Do not cite or quote

-------
                        NNW
              NW
      WNW
     w
     wsw
             sw
                        ssw
    WIND SPEED CLASSES

      5.0-7.5    10.0-15^0.
 2.5-5.0    7.5-10.0
                     gt 15.0
                                       N
             NNE
                                                       20%
                         NE
                               ENE
                               ESE
                         SE
             SSE
                   Project  1363
           Beaver Valley PS Tower Data
          1993  (Jan-Apr)  35 Foot Level
Figure IV-2-7. Four-month (Jan.-Apr.) wind rose for the BVPSMT for 1993, 35-foot level.
Volume IV

Appendix IV-2
IV-2-9
External Review Draft
  Do not cite or quote

-------
                       NNW
             NW
     WNW
    W
     WSW
             SW
                       ssw
   WIND SPEED CLASSES

      5.0-7.5     10.0-15.0_
2.5-5.0     7.5-10.0
                    gt 15.0
                                      N
             NNE
                                                      20%
                         NE
                               ENE
                               ESE
                         SE
             SSE
                  Project 1363
          Beaver Valley PS  Tower Data
            1986 —  itO Foot Level
Figure IV-2-8. Annual wind rose for the BVPSMT for 1986, 150-foot level.
Volume IV
Appendix IV-2
IV-2-10
External Review Draft
  Do not cite or quote

-------
                         NNW
               NW
      WNW
      WSW
              SW
                        ssw
    WIND  SPEED CLASSES

       5.0-7.5     10.0-15.0
           7.5-10.0

          (mph)
gt  15.0
                                       N
                            NNE
                                                       20%
                                        NE
                                              ENE
                                                                   ESE
                                       SE
                           SSE
                                 Project  1363
                         Beaver Valley PS Tower Data
                           1987  — ISO  Foot  Level
Figure IV-2-9. Annual wind rose for the BVPSMT for 1987, 150-foot level.
Volume IV

Appendix IV-2
              IV-2-11
External Review Draft
  Do not cite or quote

-------
                                      N
                        NNW
                           NNE
                                                      20%
              NW
                                       NE
      WNW
      wsw
                                              ENE
              sw
                        ssw
    WIND SPEED CLASSES

       5.0-7.5     10-0-15.0
            7.5-10.0

          (mph)
gt  15.0
                                             ESE
                                       SE
                           SSE
                                                       Project  1363
                                               Beaver  Valley PS Tower Data
                                                 1988  —  ISO  Foot Level
Figure IV-2-10.  Annual wind rose for the BVPSMT for 1988, 150-foot level.
Volume IV
Appendix IV-2
              IV-2-12
External Review Draft
  Do not cite or quote

-------
                       NNW
             NW
     WNW
    W
     wsw
             sw
                       ssw
   WIND  SPEED CLASSES

      5.0-7.5     10.0-15.0
           7.5-10.0   gt 15.0

         (mph)
                                      N
             NNE
                                                     20%
                         NE
                               ENE
                               ESE
                         SE
             SSE
                                                     Project 1363
                                              Beaver Valley PS  Tower Data
                                               1989 —  itO Foot Level
Figure IV-2-11.  Annual wind rose for the BVPSMT for 1989, 150-foot level.
Volume IV
Appendix IV-2
IV-2-13
External Review Draft
  Do not cite or quote

-------
                                      N
                        NNV
             NNE
                                                      20%
              NW
                         NE
      WNW
     wsw
                               ENE
                                                                  ESE
                                                            SE
                       ssw
   WIND SPEED  CLASSES

      5.0-7.5     10.0-15.0
                     gt 15.0
             SSE
                                                      Project  1363
                                              Beaver  Valley PS  Tower Data
                                                1990  —  1BO  Foot Level
Figure IV-2-12.  Annual wind rose for the BVPSMT for 1990, 150-foot level.
Volume IV
Appendix IV-2
IV-2-14
External Review Draft
  Do not cite or quote

-------
                        NNW
              NW
      WNW
     W
     wsw
             sw
                       ssw
    WIND SPEED CUSSES

      5.0-7.5    10.0-1S.O
 2.5-5.0    7.5-10.0
                     gt  15.0
                                      N
              NNE
                                                      20%
                          NE
                                ENE
                               ESE
                         SE
             SSE
                   Project  1363
           Beaver Valley PS Tower Data
             1992  — 150  Foot  Level
Figure IV-2-13.  Annual wind rose for the BVPSMT for 1992, 150-foot level.
Volume IV
Appendix IV-2
IV-2-15
External Review Draft
  Do not cite or quote

-------
                            NNW
                 NW
         WNW
         WSW
                 SW
                           ssw
0.6-2.£
       WIND SPEED CLASSES

          5.0-7.5    10.0-15.0
     2.5-5.0
 7.5-10.0

(mph)
                         gt 15.0
                                          N
                                       NNE
                                                          20%
                                                   NE
                                                         ENE
                                                         ESE
                                                   SE
                                       SSE
         Project 1363
 Beaver Valley PS  Tower Data
1993  (Jan-Apr)  150 Foot Level
     Figure IV-2-14.  Four-month (Jan.-Apr.) wind rose for the BVPSMT for 1993, 150-foot level.
     Volume IV
     Appendix FV-2
                          IV-2-16
                External Review Draft
                 Do not cite or quote

-------
                                      N
                       NNW
             NW
     WNW
    WSW
             SW
                       SSW
  WIND SPEED CLASSES

     5.0-7.5    10.0-15.0
2.5-5.0    7.5-10.0
                    gt 15.0
             NNE
                                                      20%
                         NE
                               ENE
                               ESE
                        SE
            SSE
                  Project  1363
          Beaver Valley PS Tower  Data
            1986  — 500  Foot Level
Figure IV-2-15.  Annual wind rose for the BVPSMT for 1986, 500-foot level.
Volume IV
Appendix IV-2
IV-2-17
External Review Draft
  Do not cite or quote

-------
                        NNW
              NW
      WNW
     wsw
             sw
                       ssw
   WIND SPEED CLASSES
      5.0-7.5    10.0-15.0
                     gt 15.0
                                      N
              NNE
                                                      20%
                          NE
                                ENE
                                                                  -   E
                               ESE
                         SE
             SSE
                                                      Project  1363
                                              Beaver Valley PS Tower Data
                                                1987  —  500  Foot Level
Figure IV-2-16.  Annual wind rose for the BVPSMT for 1987, 500-foot level.
Volume IV
Appendix IV-2
IV-2-18
External Review Draft
  Do not cite or quote

-------
                       NNW
             NW
     WNW
    W
     WSW
                      ssw
   WIND SPEED CLASSES

     5.0-7.5    10.0-15.0
          7.5-10.0   gt  150

         (mph)
                                     N
             NNE
                                                     20%
                         NE
                               ENE
                               ESE
                                                            SE
            SSE
                  Project  1363
          Beaver Valley PS Tower  Data
            1988  — 500  Foot  Level
Figure IV-2-17.  Annual wind rose for the BVPSMT for 1988, 500-foot level.
Volume IV
Appendix IV-2
IV-2-19
External Review Draft
  Do not cite or quote

-------
                       NNW
             NW
     WNW
     WSW
                       ssw
   WIND SPEED CLASSES
 2.5-5.0    7.5-10.0    gt 15.0

          (mph)
                                      N
             NNE
                                                      20%
                         NE
                               ENE
                               ESE
                                                            SE
             SSE
                   Project 1363
           Beaver  Valley PS  Tower Data
             1989  --  500 Foot Level
Figure IV-2-18.  Annual wind rose for the BVPSMT for 1989, 500-foot level.
Volume IV
Appendix IV-2
IV-2-20
External Review Draft
  Do not cite or quote

-------
                                      N
                       NNW
             NW
     WNW
     wsw
             sw
                       ssw
   WIND SPEED CLASSES

      5.0-7.5     10.0-15.0
          7.5-10.0   gt 15.0

         (mph)
             NNE
                                                      20%
                         NE
                               ENE
                               ESE
                         SE
             SSE
                  Project 1363
           Beaver Valley PS  Tower Data
            1990 —  500 Foot Level
Figure IV-2-19.  Annual wind rose for the BVPSMT for 1990, 500-foot level.
Volume IV
Appendix IV-2
IV-2-21
External Review Draft
  Do not cite or quote

-------
                        NNW
              NW
      WNW
      wsw
              sw
                        ssw
    WIND SPEED CLASSES

      5.0-7.5     10.0-15.0
 2.5-5.0
           7.5-10.0   gt 150

          (mph)
                                       N
              NNE
                                                       20%
                          NE
                                ENE
                                ESE
                          SE
              SSE
                   Project 1363
           Beaver Valley  PS  Tower Data
             1992 — 500 Foot Level
Figure IV-2-20.  Annual wind rose for the BVPSMT for 1992, 500-foot level.
Volume IV
Appendix IV-2
IV-2-22
External Review Draft
  Do not cite or quote

-------
                                      N
                       NNW
             NW
     WNW
     WSW
             SW
                       ssw
   WIND SPEED CLASSES

      5.0-7.5    10.0-15.0
           7.5-10.0    gt 150

          (mph)
             NNE
                                                      20%
                         NE
                               ENE
                               ESE
                         SE
             SSE
                   Project  1363
           Beaver  Valley PS  Tower Data
         1993 (Jan-Apr)  500 Foot Level
Figure IV-2-21.  Four-month (Jan.-Apr.) wind rose for the BVPSMT for 1993, 500-foot level.
Volume IV
Appendix IV-2
IV-2-23
External Review Draft
  Do not cite or quote

-------
                        NNW
              NW
     WNW
     W
     WSW
             SW
                        ssw
   WIND SPEED CLASSES

      5.0-7.5    10.0-15.0
           7.5-10.0   gt 15.0

          (mph)
                                       N
             NNE
                                                       20%
                         NE
                                ENE
                               ESE
                         SE
             SSE
                                                       Project  1363
                                                 Pittsburgh Sounding  Data
                                                   1988 5  GMT  Surface
Figure IV-2-22. Annual wind rose for Pittsburgh 0 GMT sounding data, surface level, 1988.
Volume IV
Appendix IV-2
IV-2-24
External Review Draft
  Do not cite or quote

-------
                        NNW
              NW
     WNW
     wsw
             sw
                        ssw
                                       N
              NNE
                                                       20%
                          NE
             SSE
                                ENE
                                ESE
                          SE
   WIND SPEED CLASSES
 2-5-5.0    7.5_10.o
                   Project 1363
             Pittsburgh Sounding Data
            1989 0  GMT Surface Layer
Figure IV-2-23. Annual wind rose for Pittsburgh 0 GNfT sounding data, surface level, 1989.
Volume IV
Appendix IV-2
IV-2-25
External Review Draft
  Do not cite or quote

-------
                        NNW
     WNW
     W
     WSW
             SW
                       SSW
   WIND SPEED CLASSES

      5.0-7.5     10.0-15.0
                                      N
             NNE
                                                      20%
                                                             NE
                               ENE
                               ESE
                         SE
             SSE
                                                      Project  1363
                                                Pittsburgh Sounding Data
                                                  1988  Cf GMT  950  mb
Figure IV-2-24. Annual wind rose for Pittsburgh 0 GMT sounding data, 950 mb level, 1988.
Volume IV
Appendix IV-2
IV-2-26
External Review Draft
  Do not cite or quote

-------
                         NNW
              NW
      WNW
     W
      WSW
              SYT
                        SSW
    WIND SPEED  CLASSES

       5.0-7.5     10.0-15.0
 2.5-5.0     7.5-10.0
                      gt 15.0
                                        N
              NNE
                                                        20%
                           NE
                                 ENE
                                ESE
                          SE
              SSE
                    Project  1363
             Pittsburgh  Sounding Data
                1989  (f GMT 950 mb
Figure IV-2-25. Annual wind rose for Pittsburgh 0 GMT sounding data, 950 mb level, 1989.
Volume IV
Appendix IV-2
IV-2-27
External Review Draft
  Do not cite or quote

-------
                        NNW
              NW
      WNW
     W
      wsw
                        ssw
    WIND SPEED CLASSES

       5.0-7.5     10.0-15.0
            7.5-10.0    gt 15.0

          (mph)
                                       N
              NNE
                                                       20%
                          NE
                                ENE
                                ESE
                                                              SE
              SSE
                   Project  1363
             Pittsburgh  Sounding  Data
               1988 (f GMT 900 mb
Figure IV-2-26. Annual wind rose for Pittsburgh 0 GMT sounding data, 900 mb level, 1988.
Volume IV
Appendix IV-2
IV-2-28
External Review Draft
  Do not cite or quote

-------
                        NNW
              NW
     WNV
     wsw
             sw
                        ssw
    WIND SPEED CLASSES


      5.0-7.5
 2.5-5.0    7.5-10.0
                     gt 15.0
                                      N
              NNE
                                                       20%
                          NE
                                ENE
                                ESE
                          SE
              SSE
                   Project 1363
             Pittsburgh  Sounding Data
               1989 
-------
                        NNW
              NW
      WNW
      wsw
              sw
                        ssw
    WIND SPEED CLASSES
       5.0-7.5     10.0-15.0
                                       N
              NNE
                                                       20%
                          NE
                                ENE
                                                                        E
                                ESE
                          SE
              SSE
                                                       Project  1363
                                                 Pittsburgh Sounding  Data
                                                   1988  (f GMT  850 mb
Figure IV-2-28. Annual wind rose for Pittsburgh 0 GMT sounding data, 850 mb level, 1988.
Volume IV
Appendix IV-2
IV-2-30
External Review Draft
  Do not cite or quote

-------
                                       N
                        NNW
              NW
      WNV
      WSW
              SW
                        SSW
    WIND SPEED CLASSES

      5.0-7.5     10.0-15.0
              NNE
                                                       20%
                          NE
                                ENE
                                ESE
                          SE
             SSE
                                                       Project 1363
                                                 Pittsburgh Sounding Data
                                                   1989 (f  GMT  850  mb
Figure IV-2-29. Annual wind rose for Pittsburgh 0 GMT sounding data, 850 mb level, 1989.
Volume IV
Appendix IV-2
IV-2-31
External Review Draft
  Do not cite or quote

-------
                        NNW
              NW
      WNW
      WSW
              sw
                        ssw
0.6-2.5
    WIND SPEED CLASSES

      5.0-7.5     10.0-15.0
               7.5-10.0

              (mph)
                     gt 15.0
                                       N
                                                      NNE
                                                       20%
                                                                  NE
                                                                        ENE
                                                                       ESE
                                                                 SE
                                                     SSE
                                                       Project  1363
                                                 Pittsburgh Sounding Data
                                               1988  12 GMT Surface  Layer
Figure IV-2-30. Annual wind rose for Pittsburgh 12 GMT sounding data, surface level, 1988.
Volume IV
Appendix IV-2
                                        IV-2-32
External Review Draft
  Do not cite or quote

-------
                           NNW
                 NW
         WNW
         W
         WSW
                 SW
                           ssw
       WIND SPEED CLASSES

	


     2-5-5.0    75_100


              (mph)
                                          N
             NNE
                                                          20%
                         NE
                               ENE
                               ESE
                         SE
             SSE
                   Project 1363
             Pittsburgh Sounding Data
            1989  12 GMT  Surface Data
    Figure IV-2-31.  Annual wind rose for Pittsburgh 12 GMT sounding data, surface level, 1989.
    Volume IV
    Appendix IV-2
IV-2-33
External Review Draft
  Do not cite or quote

-------
                        NNW
              NW
     WNW
     WSW
             SW
                       SSW
   WIND SPEED CLASSES

      5.0-7.5    10.0-15.0
          (mph)
                     gt 15.0
                                      N
             NNE
                                                      20%
                         NE
                                ENE
                               ESE
                         SE
             SSE
                                                       Project  1363
                                                Pittsburgh  Sounding  Data
                                                  1988 12 GMT 950  mb
Figure IV-2-32. Annual wind rose for Pittsburgh 12 GMT sounding data, 950 mb level, 1988.
Volume IV
Appendix IV-2
IV-2-34
External Review Draft
  Do not cite or quote

-------
                        NN¥
      WNW
     WSW
             SW
                       SSW
   WIND SPEED CLASSES

      5.0-7.5     10.0-15.0
 2.5-5.0     7.5-10.0
                     gt 15.0
                                       N
              NNE
                                                       20%
                                                              NE
                                ENE
                                ESE
                         SE
             SSE
                   Project  1363
             Pittsburgh Sounding Data
              1989 12  GMT 950  mb
Figure IV-2-33. Annual wind rose for Pittsburgh 12 GMT sounding data, 950 mb level, 1989.
Volume IV

Appendix IV-2
IV-2-35
External Review Draft
  Do not cite or quote

-------
                        NNW
              NW
      WNW
     W
      wsw
              sw
                        ssw
    WIND SPEED CLASSES
          (mph)
                     gt 15.0
                                       N
              NNE
                                                       20%
                                                             NE
                                                                   ENE
                                                                   ESE
                                                             SE
             SSE
                                                      Project 1363
                                                Pittsburgh Sounding Data
                                                  1988  12 GMT  900 mb
Figure IV-2-34.  Annual wind rose for Pittsburgh 12 GMT sounding data, 900 mb level, 1988.
Volume IV
Appendix IV-2
IV-2-36
External Review Draft

  Do not cite or quote

-------
                                      N
                        NNW
              NW
     WNW
     WSW
                        ssw
   WIND SPEED CLASSES

      5.0-7.5     10.0-15.0.
 2.5-5.0    7.5-10.0
                     gt 15.0
             NNE
                                                       20%
                          NE
                                ENE
                                ESE
                                                              SE
             SSE
                   Project 1363
             Pittsburgh Sounding Data
              1989  12 GMT  900  mb
Figure IV-2-35. Annual wind rose for Pittsburgh 12 GMT sounding data, 900 mb level, 1989.
Volume IV
Appendix IV-2
IV-2-37
External Review Draft
  Do not cite or quote

-------
                        NNW
              NW
      WNW
     W
     WSW
              SW
                        ssw
    WIND SPEED CLASSES
      5.0-7.5    10.0-15.0
           7.5-10.0   gt 15.0
          (mph)
                                      N
              NNE
                                                      20%
                          NE
                                ENE
                               ESE
                         SE
             SSE
                                                       Project  1363
                                                Pittsburgh  Sounding Data
                                                  1988 12 GMT 850  mb
Figure IV-2-36.  Annual wind rose for Pittsburgh 12 GMT sounding data, 850 mb level, 1988.
Volume IV
Appendix IV-2
IV-2-38
External Review Draft
  Do not cite or quote

-------
                                      N
             NW
     WNW
    W
     WSW
             sw
                       NNW
             NNE
                                                      20%
                       ssw
   WIND SPEED CLASSES

      5.0-7.5     10.0-15^0.
                         NE
                               ENE
 2-5-5.0     7.5-10.0
                               ESE
                         SE
             SSE
                  Project 1363
            Pittsburgh  Sounding  Data
              1989  12 GMT  850  mb
Figure IV-2-37. Annual wind rose for Pittsburgh 12 GMT sounding data, 850 mb level, 1989.
Volume IV
Appendix IV-2
IV-2-39
External Review Draft
  Do not cite or quote

-------

-------
                                    APPENDIX IV-3

                            ISC-COMPDEP Model Output Files
                           (Partial Listings Showing Model Inputs)
       Main Incinerator Stack - Base Case Simulations

             BASEA.PRT -        Mass-weighted pollutant distribution.

             BASEB.PRT -        Surface area-weighted pollutant distribution.

             BASECPRT -        Vapor pollutant.

       Fugitive Emission Sources

             TRUCKWSH.OUT -   Truck wash

             WASTE.OUT -       Organic waste tank farm stacks

             TANK.OUT -         Open wastewater tank

             CADSTACK.OUT -    Carbon adsorption bed stack

             ASHx_y.OUT -       Ash Handling stack
                                        x =    A for mass-weighted pollutant distribution
                                               B for surface area-weighted pollutant
                                                  distribution
                                               C for vapor pollutant
                                        y =    C for concentration output
                                               W for wet flux output
                                               D for dry flux output
                                               2 for total (wet+dry) flux output
                                        (e.g., ASHA.W.OUT is the mass-weighted distribution
                                        run generating wet flux output).
Volume IV                                                           External Review Draft
Appendix IV-3                            IV-3-1                        Do not cite or quote

-------

-------
                                                                       .prt


  ••• ISCONDEP VERSION 94227 •••    •••  WTI stack modeling,  EPA Region  V. Project 1363, Base Cess           •••         08/25/94
                                   ••*  CUB source; 936 receptors 19 to SOKM any; Hue wt.                 "•         17:37:03
                                                                                                                      PAGE    1
  ••• MODELDO OPTIOHS USED:  COHC   RURAL  EUV          DPAOLT                                          EMDPL NBTOPL


                                           •••     MODEL snap OPTIONS  sawMnr       •••


 ••Intermediate Terrain Processing is Selected

 ••Modal  Is Setup For  Calculation of Average CCNCentration Valuea.

   —  SCAVENGOn/DEPOSITION LOGIC —
 ••Model  Me*  OKr DEPLETION.  DDPLETE *  T
 ••Model  Uses  MET DEPLETION.  MDPLETE •  T
 ••SCAVENGING  Data Provided.  LHGAS.LHPAin •  T T
 ••Model  Uses  GUDDED  TERRAIN Data for Depletion Calculation*

 ••Model  Use*  RURAL Dispersion.

 ••Model  Use*  Regulatory DEFAULT Option*:
           1. Final Plume Rise.
           2. Stack-tip Dovmash.
           3. auoyancy-induced Dispersion.
           4. Oae CalM Proeeaaing Routine.
           S. Mot Use Mi*»ino Data. Processing Routine.
           6. Default Mad Profile Exponents.
           7. Default Vertical Potential Teaperature Gradient*.
           8. "Upper Bound* Valuea for Supersquat Building*.
           9. Mo Exponential Decay for ROTAL Mode

 ••Model Accepts Receptors en ELEV Terrain.

 ••Model ASSUBB* Mo PIAGPOLE Receptor  Heights.

 ••Model Accepting Temperature Profile Data.
  Muster of levels :            3
     (• ACL)           30.0000
     (• AGL)           45.7000
     (• AGL)           152.400

 ••Model Accepting Wind Profile Data.
  Number of Level* :            5
     IB AGL)           30.0000
     In AGL)           45.7000
     (B AGL)           80.8000
     IB AGL)           111.300
     IB AGL)           152.400

 ••Model Calculates  1 Short Term Average I*) of:    1-HR
    and Calculates PERIOD Averages

 ••This Run Includes:    1 Source Is);      1 Source Group (• I; and    936  Receptor Is)

 •The Model  ASSUBSS A Pollutant Type  of:  LEAD

 ••Model Set  To Continue Running After the Setup Testing.

 ••Output Options  Selected:
         Model Output* Tables  of PERIOD Average* by Receptor
         Model Output* Tables  of Highest Short Term Values by Receptor (RECTABLB Keyword)
         Model Outputs Tables  of Overall Mairi«» Short Term Values  (MUTABLE Keyword)
         Model Outputs External Pile(s) of High Values for Plotting  (PLOTFILE Keyword)

••NOTE:   The Following Flsgs May Appear Following COMC values:   c for Calm Hours
                                                               m for Missing Hours
                                                               b for Both Calm and Missing Hours

••Misc.  Inputs:  Anem. Hgt.  (B)  •    30.00  :    Decay coef.  -   0.0000    ;    Rot. Angle *     0.0
                Emission units - GRAMS/SEC        '                       ;  Emission Rate Unit Factor •   0.100001*07
                Output Units    •> MICROGRAMS/M**3

"Input Kunitraam File: basea.inc                               ;  "Output Print File: basaa.eon
••Detailed Error/Message  File:    ERRORS.OOT
    Volume IV                                                                                      External Review Draft
    Appendix IV-3                                         IV-3-3                                   Do  not cite or quote

-------
                                                           buu.prt


   ISCOHD0 VntSIOM 94227 •••    ••* WTI mtmek modeling, EPA R«flion V, J>roj«ct 13«3. Bua Cue           •••        08/25/94
                               *** On* source;  936 r«c«ptor« up to 5OHM may; turn* wt.                •••        17:37:03
            	    	   	   	                                                                          PAO1   2
   MODKM1K? OPTIOM5 US1D:  OONC   RDRAL  KLKV         DMULT                                        ORYDPL NB1DPL
                                            •*•  romT sooxci DM* •••


          .NUMBER EKISSIOM RATE                   BASE     STACK   STACK    STACK     STACK    •OILDZK! HUSSION KATE
 SOURCE     FART.  (GRAMS/SEC)     X       ¥      ELEV.    HEIGHT  TEMP.   EXIT VtL. DIAMETER   EXISTS   SCALAR VARY
   ID      CATS.              (METERS) (METERS)  (METERS) (METERS) (DBG.K)   (M/SEC)  (METERS)               BY


MTISTACK     10   0.10000E»01       0.0       0.0   212.1    4S.70   3(7.00    17.74     1.S3      YES
  Volume IV                                                                                  External Review  Draft
  Appendix IV-3                                       IV-3-4                                 Do not cite or quote

-------
OROOP ID
                                                          buaa.prt


            VERSION 94227 »•    ••• WTI *t«ck •odclino, EPA Region V.  Project 1363, Bu* Cue          •••        08/25/94
                               ••• On* •oure*; 936 r>c*pto» up to 50m may;  Mu< vt.                *••        17:37:03
                                                                                                          PAOE   3
            OPTIONS USED:  COHC   RURAL  ELEV         DFADLT                                      DRYDPL DEIOPL
                                         SOURCE IDs OEFOIDR SOURCE GROUTS

                                                   SOURCE IDs
          tRTSTOOC.
     Volume IV                                                                              External Review Draft
     Appendix IV-3                                      IV-3-5                                Do not cite or quote

-------
                                                               .prt


ISCONDEP VERSION 94227 •••    •••  WIT «uck •odcliag, EPA Region V, Project 1363.  Bu« CM*           •••        01/25/94
                             **•  On* >oure«; 936 nmptors up to  SOU* may; Mu«  vt.                 •••        17:37:03
                                                                                                              PAOE   4
         OPTIONS USB:  OOHC   RURAL  SLSV          DPAOLT                                         DRYDPL WTTDPL


                                        ••• SOOKCS PAKTICnLAIS/GAS DM* •••
    ••• SODRCE ID - WTISTACK; SOURCE TYPE -   POINT  ••*

    MASS PRACTIOH -
     0.04260,  0.0*510, 0.17020. 0.19150, 0.19150, 0.11910,  0.10000, O.OSOOO,  0.04000, 0.01000,


    PARTICLE DIAMETER  (MICRONS > -
     2.97000,  1.19000, 0.93000, O.SSOOO. 0.40000, 0.27000,  0.11000, 0.12000,  0.04200, 0.03000,


    PARTICLE DENSITY (0/CM**3) »
     1.00000.  1.00000, 1.00000, 1.00000, 1.00000, 1.00000,  1.00000. 1.00000,  1.00000, 1.00000,


    SCAV COEF  [LIQ] I/(S-IM/KR)-
    0.21E-03,0.14E-03,0. SOE-04,0. SOE-04,0.60E-04,0.90S-04,0.131-03,0.15S-03.0.20E-03,0.22E-03,


    SCAV COEP  [ICE] 1/(S-I«/KR)-
    0.70E-04,0.47E-04,0.17E-04,0.17E-04,0.20E-04,0.30E-04,0.431-04,0.50E-04.0.67E-04.0.73S-04.
Volume  IV                                                                                    External Review Draft
Appendix IV-3                                         FV-3-6                                  D° not cite or quote

-------
            VBRSICM 94227 •••


            OVT1CMS vamui  OQNC
                          buw.prt

•••  WTI «t*ck mottling,  EPA Mgien V, Fro]«ct 1363, tan Cam
•"  On* moaicm: 936 r«c«pcer« up to 50KH ray; Mu« vt.

 XDBAL  BUV         anata

     ••• DIMCTION SPECIFIC BOXLDHB DIMENSIONS •••
                                                                                            DKYDPL MRDPL
           08/25/94
           17:37:03
           FMn  5
SOORCE ID: HTISTM3C
IFV BH
1 29.1.
7 24.4,
13 29.1,
19 29.1,
25 24.4,
31 29.1,
EM KM
26.9, 0
26.0, 0
32.3, 0
26.9, 0
26.0, 0
32.3, 0
IFV BH
2 29.1.
8 29.1,
14 29.1,
20 29.1.
26 25. t.
32 29.1,
BH WUC
24.7 0
22.6 0
31.8 0
24.7 0
24.8 0
31.8 0
IFV BH
3 29.1.
9 29.1,
IS 29.1,
21 29.1,
27 29.1,
' 33 29.1,
BH NMC
21.8 0
25. « 0
30.9 0
21.8 0
25.8 0
30.9 0
IW BH
4 25.8.
10 29.1,
16 29.1,
22 25.8,
28 29.1.
34 29.1,
BH MAK
27.6 0
28.8 0
29.6 0
27.6 0
28.8 0
29.6 0
IFV BH
5 24.4,
11 29.1.
17 29.1.
23 25. 8.
29 29.1,
35 29.1,
BH NAK
27.0. 0
30.9, 0
29.3. 0
26.1. 0
30.9, 0
29.3, 0
IFV BH
6 24.4.
12 29.1,
18 29.1.
24 25.8,
30 S9.1.
36 29.1.
BH HAK
24.6. 0
32.1, 0
28.2, 0
23.8. 0
32.1. 0
28.2. 0
    Volume IV
    Appendix IV-3
                          IV-3-7
External Review Draft
  Do not cite or quote

-------
                                                          .prt
 XSCOMDEF VIRSIOH 94227 •*•


         OPTIONS DSID:  CONC
•••  HTX >t«ck modeling,  EPA Mgion V,  Project 1363. Bu« <
***  On* •euro;  936 receptor* up to 50m •ray; Mu« wt.

 XDML  ILIV         OTM1LT
                                                                                         D9LXDPL MXTDPZ.
            OI/2S/94
            17:37:03
            PABI   «
                                    *• DISCWTS CMHESIM! HECUTOKS —
                                     (I-COORD. Y-COORD, ZILCV, ZPIAG)
( 17.4.
( 52.1,
S6.8.
121.6,
156.3,
217.1,
303.9,
390.7,
520.9,
8C8.2,
1736.5,
3473.0,
6945.9.
34.2,
102.6,
171.0,
239.4,
307. «,
427.5,
598.5,
769.5.
1026.1,
1710.1,
3420.2,
6840.4,
13680.8.
50.0,
150.0,
250.0,
350.0.
450.0,
625.0,
875.0.
1125.0,
1500.0,
2500.0.
5000.0.
10000.0,
20000.0.
64.3.
192.8,
321.4,
450.0.
578.5,
803.5.
98.5,
295.4,
492.4,
689.4,
886.3,
1231.0,
1723.4.
2215.8,
29S4.4,
4924.0,
9848.1,
1*696.2,
39392.3,
94.0.
281.9,
469.8,
657.8.
845.7,
1174.6,
1644.5,
2114.3,
2819.1.
4698.5,
9396.9.
18793.9
37587.7
86.6
259.8
433.0
606.2
779.4.
1082.5.
1515.5,
1948.6,
2598.1,
4330.1,
8660.3,
17320.5.
34641.0,
76.6,
229.8,
383.0,
536.2,
689.4,
957.6.
213.4,
225.6,
225.6,
243.8.
280.4.
353.6,
310.9,
353.6,
347.5,
141.4,
360.0,
340.0,
350.0,
213.4,
225.6,
225.6,
237.7.
256.0,
329.2,
335.3,
353.6,
362.4,
359.7,
385.9.
340.0.
380.0,
213.4,
225.6,
225.6,
225.6.
243.8,
225.6,
359.7,
353.6.
323.1.
366.7.
396.2.
360.0
370.0
213.4
225.6
22S.6
225.6
225.6
280.4
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
( 34.7,
( 69.5,
I 104.2,
136.9,
173.6.
260.5,
347.3.
434.1.
694.6,
1302.4.
2C04.7.
5209.4,
8612.4,
68.4,
136.8.
205.2.
273.6.
342.0,
513.0,
684.0,
855.1.
1368.1,
2565.2,
5130.3.
10260.6,
17101.0,
100.0,
200.0.
300.0.
400.0.
500.0.
750.0,
1000.0,
1250.0.
2000.0.
3750.0,
7500.0,
15000.0,
23000.0,
128.6,
( 257.1,
( 385. 7,
( 514.2.
( 642.8,
( 964.2.
197.0.
393.9.
590.9.
787.8.
964.8.
1477.2.
1969.6.
2462.0.
3939.2.
7386.1,
14772.1.
29544.2.
49240.4.
117.},
375.9,
563.8,
751.8.
939.7,
1409.5,
1879.4,
2349.2.
3758.8,
7047.7,
14095.4,
28190.8,
46984.6,
173.2.
346.4,
519.6,
692.8,
866.0,
1299.0.
1732.1,
2165.1.
3464.1,
6495.2.
12990.4.
25980.8,
43301.3,
153.2.
306.4.
459.6.
612.8.
766.0,
1149.1,
225.6,
225.6,
225.6,
256.0. .
286.5.
353.6.
347.5.
359.7.
341.4.
365.8,
340.0,
360.0,
360.0.
225.6.
225.6.
225.6.
243.8,
286.5.
347.5,
347.5,
359.7.
329.2,
369.7,
340.0.
360.0,
390.0.
219.5.
225.6.
225.6,
231.6.
262.1,
347.5,
353.6.
329.2.
361.2.
378.0.
320.0.
380.0.
400.0,
213.4,
225.6.
22S.6,
225.6.
243.8,
353.6.
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
                          IV-3-8
External Review Draft
  Do not cite or quote

-------
                                                      buM.prt
 ISCCMDEP VERSION 94337

 MDDKLXMS OPTJCHS OSZD:
HTI «tack Kxteling,  EPA Melon V. Project 1363. Ba» Cam
Go* aouxc*;  936 ne«ptora up to SOfOt may; MAM we.
                      CCHC   RURAL  ELIV
            08/25/94
            17:37:03
            not   7
                                    •• DISCRETE CARTESIAN
                                     (X-COORE,  Y-COORD. ZELEV
                                                (METERS)
                            zn*s)
1124.9.
1446.3.
1928.4.
3213.9,
6427.9,
12855.8,
25711.5.
76.6,
229.8,
3(3.0,
536.2,
«89.4,
957.6,
1340.6,
1723.6,
2298.1.
3(30.2.
7660.4,
15320.9,
30641.8,
86.6,
259. (,
433.0,
606.2,
779.4,
1082.5,
1515.5.
1948.6.
2598.1,
4330.1.
8660.3,
17320.5,
34641.0,
94.0.
281.9,
469.8,
657.8,
845.7,
1174.6.
1644.5,
2114.3,
2(19.1,
4698.5,
9396.9,
18793.9.
1340.6.
1723.6,
2298.1.
3830.2.
7660.4.
15320.9.
30641.8.
64.3.
192.8.
321.4.
450.0,
578.5.
803.5.
1124.9.
1446.3,
1928.4,
3313.9,
6427.9.
12155.8,
25711.5,
50.0,
150.0.
250.0.
350.0,
450.0,
625.0.
(75.0.
1125.0,
1500.0.
2SOO.O.
5000.0.
10000.0,
20000.0,
34.2,
102.6,
171.0,
239.4,
307.8,
437.5,
598.5,
769.5.
1036.1.
1710.1.
3430.2,
6840.4,
361.5,
353.6,
335.3.
353.0,
398.4.
380.0,
420.0.
213.4.
213.4,
319.5,
319.5,
235.6,
319.5,
353.6,
335.3,
347.5.
335.3.
396.2,
380.0,
420.0,
213.4,
207.3,
207.3,
213.4,
213.4,
225.6,
243.8,
310.9.
317.0.
359.7,
408.7,
360.0,
380.0,
307.3,
303.7,
207.3.
207.3.
213.4.
213.4,
213.4,
213.4,
331. C,
3(4.0.
370.3.
3(0.0,
0.0);
0.0);
0.0);
0.01;
0.0),
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0»;
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
( 1285.6
1607.0
2571.2
4(20.9
9641.1
19213 . C
32139.4
153.2
306.4
459. C
C12.8
766.0
1149.1
1532.1
1915.1
30C4.2
5745.3
11490.7
22911.3
38302.2
173.2
346.4
519.6
692.8
166.0
1299.0
1732.1
21C5.1
3464.1
6495.2
12990.4
2S980.8
43301.3
1«7.9
375.9
563.8
751.8
939.7
1409.5
1879.4
2349.2
3758.8
7047.7
14095.4
28190.8
1532.1,
1915.1.
3064.2,
5745.3,
11490.7,
22981.3,
38302.2.
128.6,
257.1,
385.7,
514.2,
642.8,
964.2,
1385.6,
1607.0,
2571.2,
4820.9.
9641.8.
19283.6,
32139.4,
100.0.
200.0,
300.0,
400.0,
500.0,
750.0,
1000.0,
1350.0,
2000.0,
3750.0.
7500.0,
15000.0,
25000.0.
C8.4,
136.8.
205.2.
273.6.
342.0,
513.0,
684.0.
855.1.
1361.1.
2565.2,
5130.3.
10260.6.
353.6,
353.6.
353.9,
378.0.
376.0,
360.0,
420.. 0,
207.3,
219.5.
219.5.
219.5,
219.5.
323.1.
353. C.
347.5,
141.4.
373.1.
360.0,
380.0.
420.0,
207.3.
201.2.
213.4.
213.4.
219.5.
219.5,
292.6,
323.1,
323.1,
378.9.
3(0.0,
380.0,
420.0.
301.2.
202.7,
207.3,
213.4.
213.4.
213.4,
213.4.
231.6,
310.9.
3(4.0.
360.0.
400.0,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0))
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
                      IV-3-9
External Review Draft
  Do not cite or quote

-------
 ISCOKDKP VBtSION 94227  •••


 HODBLSKj OPTICM5 USED:  OGMC
HTI itaek Bodcling,  EPA Region V. Project 1363, B*n
On* •ourea;  936 r«e«ptors up to 50m my; iu«i «t.

               DFADLT
                                                                                          DRYDPL NBTDPL
            08/25/94
            17:37:03
            PACT   a
                                     •• DISCRETE CMHISXMI KICIPTOHS ••
                                     (X-COORD, r-COORD. ZELIV. ZFLAGI
                                                (MOTHS)
37St7.7,
98.5,
295.4,
492.4.
619.4.
8S6.3,
1231.0,
1723.4,
2215. 8.
2954.4.
4924.0,
9848.1,
19696.2,
39392.3,
100.0,
300.0,
500.0,
700.0,
900.0,
1250.0,
1750.0,
2250.0,
3000.0,
5000.0,
10000.0.
20000.0,
40000.0,
98. 5.
295.4.
492.4,
689.4,
886.3.
1231.0,
1723.4,
2215.8,
2954.4,
4934.0,
9848.1,
19696.2.
39392.3,
94.0.
281.9.
469.8,
657.8,
845.7.
13680.8,
17.4.
52.1,
86.8.
121.6.
156.3.
217.1,
303.9, .
390.7,
520.9,
868.2,
1736.5,
3473.0.
6945.9,
0.0.
0.0.
0.0,
0.0,
0.0,
0.0,
0.0,
0.0.
0.0,
0.0,
0.0,
0.0,
0.0.
-17.4,
-52.1,
-86.8.
-121.6.
-156.3.
-217.1,
-303.9,
-390.7.
-520.9,
-868.2.
-1736.5,
-3473.0,
-694S.9,
-34.2.
-102. C,
-171.0,
-239.4.
-307.8,
360.0.
207.3,
202.7,
202.7,
202.7,
202.7,
202.7,
213.4.
207.3,
304.8.
365. 8,
371.9,
360.0,
380.0,
207.3.
202.7,
202.7,
202.7,
202.7,
243.8,
323.1,
304.8,
310.9,
402.3,
380.1,
360.0,
400.0,
207.3,
202.7,
202.7,
202.7,
225.6.
347.5,
323.1.
341.4,
347.5.
38C.5.
360.0.
310.0,
310.0,
207.3,
202.7.
202.7.
256.0.
286.5,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
46984.6,
197.0,
393.9.
590.9,
787.8,
984.8.
1477.2.
1969.6.
2462.0.
3939.2,
7386.1,
14772.1,
29544.2,
49240.4,
200.0.
400.0,
COO.O.
800.0,
1000.0,
1500.0,
2000.0,
2500.0,
4000.0,
7SOO.O.
15000.0.
30000.0.
50000.0.
197.0.
393.9.
590.9.
787.8,
984.8,
1477.2,
1969.6.
2462.0.
3939.2,
7386.1
14772.1
29544.2
49240.4
187.9
375.9
563.8
751.8
939.7
17101.0.
34.7.
69.5.
104.2,
138.9.
173.6.
260.5.
347.3,
434.1,
694.6.
1302.4,
2604.7.
5209.4,
8682.4.
0.0.
0.0,
0.0,
0.0.
0.0,
0.0,
0.0,
0.0,
0.0,
0.0.
0.0,
0.0,
0.0,
-34.7,
-69.5.
-104.2.
-138.9,
-173.6.
-260.5,
-347.3,
-434.1,
-694.6,
-1302.4.
-2604.7.
-5209.4.
-8682.4,
-68.4,
-136.8.
-205.2.
-273.6.
-342.0.
400.0,
202.7.
202.7.
202.7,
202.7.
202.7.
202.7.
207.3,
231.6,
346.6,
384.0,
320.0.
380.0.
400.0,
202.7,
202.7,
202.7,
202.7,
202.7.
341.4,
341.4,
292.6,
359.7,
347.5,
360.0.
380.0,
360.0,
202.7.
202.7,
202.7,
219.5.
329.2,
353.6,
341.4.
323.1,
353.6.
353.6,
340.0,
380.0.
400.0.
202.7.
202.7.
213.4.
298.7,
323.1,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
.0);
.0);
.0);
.0);
.0);
.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
                     IV-3-10
External Review  Draft
  Do not cite or quote

-------
                                                          .prt
 XSCOMDBP VIKSIOM 94227 •••


 MQHUM6 OPTZOHS DSD:  COMC
HIT (tack aodelino. EPA Mgion V. trojKt 1363.
On* aouro;  936 receptors up co SOW away; Mui vt

               DPMI.T
           08/25/94
           17:37:03
           not   9
                                    •* D1SCMTE CMtTISIMI MCUTOHS ••
                                     (X-COORD. Y-COOHD.  ZKLBV,  ZPIAS)
                                               (METERS)
1174.6,
1644. 5.
2114.3.
2819.1.
4698. 5,
9396.9,
18793.9,
375*7.7,
86.6,
2S9.8,
433. O/
C06.2.
779.4,
1083. 5,
1515.5,
1948.6,
2598.1,
4330.1,
8660.3,
17320.5,
34641.0,
76.6,
229.8.
383.0,
536.2,
689.4,
957.6,
1340.6,
1723.6.
2298.1.
3830.2.
7660.4.
15320.9,
30641.8,
64.3,
192.8,
321.4,
450.0,
578.5.
803.5,
1124.9.
1446.3,
1928.4,
3213.9,
6427.9,
-427.5.
-598.5.
-769.5.
-1026.1.
-1710.1.
-3420.2.
-6840.4.
-13680.8,
-50.0.
-150.0.
-250.0.
-350.0.
-450.0.
-62S.O,
-875.0.
-1125.0,
-1500.0,
-2500.0.
-5000.0.
-10000.0.
-20000.0,
-64.3,
-192.8,
-321.4,
-450.0,
-578.5.
-803.5.
-1124.9,
-1446.3,
-1928.4,
-3213.9,
-6427.9,
-12855.8,
-25711.5,
-76.6.
-229.8,
-383.0,
-536.2,
-619.4,
-957.6,
-1340. f.
-1723.6,
-2298.1.
-3830.2,
-7660.4,
347.5,
310.9.
350.2.
347.5.
371.9.
408.4.
360.0.
360.0.
207.3.
202.7,
213.4.
317.0.
353.6.
310.9.
335.3.
359.7.
365.8.
353.6.
396.2,
380.0,
360.0,
207.3,
202.7,
243.8,
323.1,
353.6,
353.6,
341.4,
353.6.
359.7.
359.7,
408.4,
360.0.
360.0,
207.3,
202.7,
2C8.2.
310.9.
329.2.
347.5.
329.2,
353.6,
406.4,
371.9.
390.1,
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0)1
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
I 1409.5,
( 1*79.4.
I 2349.2.
( 3758.8.
( 7047.7.
( 1409S.4,
2*190.8.
469*4.6.
171 .2,
346.4,
519.6,
492.8,
866.0.
1299.0,
1733.1,
2165.1,
3464.1,
6495.2,
12990.4,
259*0.*.
43301.3,
153.2.
306.4.
459.6.
412. ».
76C.O.
1141.1.
1533.1.
1915.1.
3064.2.
5745.3.
11490.7.
22911.3.
3*302.2.
12*. 6.
257.1.
315.7,
514.2.
643.*.
964.2.
12*5.6.
1607.0.
2571.2.
4120.9.
( 9641.8.
-513.0.
-6*4.0,
-855.1.
-1368.1,
-2565.2.
-5130.3.
-10260.6,
-17101.0,
-100.0.
-200.0.
-300.0.
-400.0,
-500.0,
-750.0,
-1000.0,
-1250.0.
-2000.0.
-3750.0,
-7500.0.
-15000.0.
-25000.0,
-128.6.
-257.1.
-3*5.7.
-514.2.
-642. (,
-964.2,
-13*5.6,
-1607.0.
-2571.2.
-4120.9.
-9641.*.
-19213.6.
-32139.4.
-153.2,
-306.4.
-459.6.
-612.*.
-766.0.
-1149.1.
-1532.1,
-1915.1,
-3064.2,
-5745.3,
-11490.7.
347.5,
353.6,
347.5,
345.9,
• 365.*.
3*0.0,
360.0,
360.0.
202.7.
202.7,
261.2.
347.5.
347.5,
359.7.
35J.7,
347.5,
359.7,
402.3,
3*0.0,
360.0.
360.0.
202.7.
202.7,
29*. 7.
353.6,
353. C,
359.7,
353. «,
141.4.
359.7,
40*. 4,
3*0.0,
360.0,
360.0.
202.7,
202.7.
304.*.
323.1.
323.1.
159.7.
359.7.
159.7.
420. C.
392.0.
340.0.
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
.0);
.0);
.0);
.0);
.0);
.0);
• 0);
.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
                     IV-3-11
External Review Draft
  Do not cite or quote

-------
                                                      bMM.prt
 ISCOMDO VBISICN 94227


 MODELING OPTIONS USID:
                      COBC  RDRAL  ELEV
HTI iuek Bodcling.  EPA R«gion V, Project 1363, Bu*
MM »ourc«;  936 r«c«ptor« up to SOKM n«y; Hail vt.
                                               DFADLT
                                    •• DISCRETE CARTESIAN RECEPTORS
                                     (X-COORD, Y-COORD, ZELEV,
                                                (•ERRS)
12135.8.
25711.5,
50.0.
150.0,
250.0.
350.0,
450.0.
625.0,
•75.0.
1125.0,
1500.0.
2500.0.
5000.0,
10000.0,
20000.0,
34.2,
102.6,
171.0.
239.4.
307.8,
427.5,
598. 5,
769.5,
1036.1.
1710.1,
3430.2.
6840.4,
13610.8,
17.4,
52.1.
86.8,
131.6.
156.3.
217.1
303.9
390.7
520.9
868.2
1736.5
3473.0
C94S.9
0.0
0.0
0.0.
0.0.
-15320.9,
-30641.8,
-86.6.
-259.8.
-433.0.
-606.2.
-779.4,
-1082.5,
-1515.5,
-1948.6,
-2598.1,
-4330.1,
-8660.3,
-17320.5.
-34641.0,
-94.0.
-281.9,
-469.8,
-657.8,
-845.7,
-1174.6,
-1644.5,
-2114.3,
-2819.1,
-4698.5,
-9396.9,
-18793.9.
-37587.7,
-98.5,
-295.4.
-492.4,
-689.4,
-886.3.
-1231.0.
-1723.4,
-2215.8,
-2954.4.
-4924.0,
-9848.1.
-19696.2,
-39392.3,
-100.0,
-300.0,
-500.0,
-700.0,
380.0
400.0
207.3
202.7
261.2
310.9
323.1
298.7
341.4
365.8
401.4
408.4
396.2
360.0
400.0
207.3
202.7
268.2
304.8
286.5
304.8
304.8
359.7
396.2
411.5
408.1
360.0
400.0
207.3
202.7
249.9
280.4
286.5
291.7
304.8
29S.7
402.3
414.5
398.1
360.0
400.0
207. 3
202.7
219.5
280.4
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
19283.6,
32139.4,
100.0,
200.0,
300.0,
400.0,
500.0.
750.0.
1000.0,
1250.0,
2000.0,
37SO.O.
7500.0,
15000.0,
25000.0,
<8.4,
136.8,
205.2,
273.6,
342.0,
513.0,
684.0,
855.1.
1368.1.
2565.2.
5130.3.
10260.6.
17101.0,
34.7.
69.5.
104.2,
138.9,
173.6.
260.5,
347.3,
434.1,
694.6,
1302.4,
2604.7,
5209.4,
8682.4,
0.0,
0.0,
0.0,
( 0.0.
-22981.3
-38302.2
-173.2
-346.4
-519.6
-692.8
-866.0
-1299.0
-1732.1
-2165.1
-3464.1
-6495.2
-12990.4
-25980.8
-43301.3
-187.9
-375.9
-563.6
-751.8
-939.7
-1409.5
-1879.4
-2349.2
-3758.8
-7047.7
-14095.4
-28190.8
-46984.6
-197.0
-393.9
-590.9
-787.8
-984.8
-1477.2
-1969.6
-2462.0
-3939.2
-7386.1.
-14772.1.
-29544.2.
-49240.4,
-200.0,
-400.0,
-600.0.
-800.0.
400.0.
380.0,
202.7,
213.4,
298.7,
323.1.
329.2.
341.4.
359.7,
371.9,
420.6,
408.4,
340.0,
420.0,
400.0,
202.7,
207.3.
292.6,
304.8,
286.5,
310.9.
335.3,
378.0.
402.3.
402.3.
360.0.
420.0,
420.0,
202.7,
202.7,
286.5,
274.3,
286.5,
304.8,
298.7,
365.8,
390.1,
408.4,
380.0,
400.0.
400.0,
302.7,
202.7,
274.3,
274.3,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0)1
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
                                                                                                MBTUJPL
            08/25/94
            17:31:03
            PAGE  10
Volume IV
Appendix IV-3
                     IV-3-12
External Review Draft
  Do not cite or quote

-------
                                                       bum.prt
 ISCCMDEP V0SXOH 94227


 NODBL3NS OPTIONS USD:
HTI luck Bodeling. EPA Region V. Project 1363.  Bue Cue
One source; 936 receptor* up to  SOKK any; Hu*  vt.
                      CCNC  nnuo.  BW
                                               DFADLT
                                                 08/25/94
                                                 17:37:03
                                                 PACT  11
                                     •• DISCRETE CARTESIAN UCEPTOXS ••
                                      (X-COORD, Y-COORD, ZEVEV, ZPLAC)
                                                (UTTERS)
( 0.0,
0.0.
0.0,
0.0.
0.0.
o.o.
0.0,
0.0,
0.0,
-17.4,
-32.1,
-86.1,
-121.6,
-1S«. 3,
-217.1,
-303.9,
-390.7,
-S20.9,
-868.2,
-1736.5,
-3473.0,
-694S.9,
-34.2,
-102.6,
-171.0,
-239.4.
-307.8,
-427.5,
-598.5,
-769.5,
-1026.1,
-1710.1,
-3420.2,
-6(40.4,
-13680.8,
-50.0,
-150.0,
-2SO.O.
-350.0.
-450.0,
-625.0,
-875.0,
-1125.0,
-1500.0,
-2500.0,
-900.0,
-1250.0,
-1750.0,
. -2250.0,
-3000.0.
-5000.0,
-10000.0,
-20000.0,
-40000.0,
-98.5.
-2»5.4,
-492.4,
-689.4.
-•86.3,
-1231.0,
-1723.4,
-2215.8,
-2954.4.
-4924.0,
-9848.1,
-19696.2.
-39392.3.
-94.0,
-381.9,
-4C9.8.
-657.8,
-845.7,
-1174.6,
-1*44.5,
-2114.3,
-2819.1,
-4698.5,
-9396.9,
-1(793.9,
-37587.7,
-86.6,
-259.8,
-433.0,
-C06.2.
-779.4.
-1082. S,
-1515. 5,
-1948.6,
-2598.1,
-4330.1,
243.8,
304.8.
304.8,
298.7,
406.3.
396.2,
396.2,
360.0,
380.0,
207.3,
302.7,
202.7,
274.3,
237.7,
304.8,
292.6.
304.8.
384.0,
415.4,
392.0,
340.0.
360.0.
213.4.
202.7,
202.7,
219. S.
219. S,
280.4.
280.4.
298.7.
371.9,
397.2,
384.0,
340.0,
380.0,
213.4.
202.7.
202.7,
202.7,
202.7,
219.5,
213.4.
231.6,
359.7,
414.5.
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0):
0.0):
0.0);
0.0);
0.0);
0.0);
0.0);
0.0):
0.0);
0.0):
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0,
0.0,
0.0,
0.0.
0.0.
0.0.
0.0.
0.0,
0.0.
-34. 7,
-49.5.
-104.2,
-138.1.
-173.6,
-3(0.5.
-347.3,
-434.1,
-694. S,
-1302.4.
-2604.7.
-5209.4,
-8682.4,
-68.4.
-136.8.
-205.2.
-273.6.
-342.0,
-513.0.
-684.0.
-855.1.
-13C8.1.
-2565.2.
-5130.3.
-10260.6,
-17101.0,
-100.0,
-200.0,
-300.0,
-400.0.
-500.0,
-750.0.
-1000.0,
-1250.0.
( -2000.0,
( -3750.0,
-1000.0,
-1500.0.
-2000.0,
-2500.0,
-4000.0.
-7500.0,
-1SOOO.O,
-30000.0,
-50000.0.
-197.0,
-393.9.
-590.9.
-787.8.
-984. t,
-1477.2,
-1969.6,
-2462.0,
-3939.2,
-7386.1,
-14772.1,
-29544.2,
-49240.4,
-187.9.
-375.9.
-563.8.
-751.8,
-939.7,
-1409.5,
-1879.4,
-2349.2,
-3738.8,
-7047.7,
-14095.4,
-28190.8,
-46984.6,
-173.2,
-346.4,
-519.6,
-692.8,
-866. 0,
-1299.0,
-1732.1,
-2165. 1-,
-3464.1,
-6495.2,
298.7,
304.8,
292.6,
365.8,
402.3,
390.1,
380.0,
380.0,
400.0.
202.7,
202.7,
225.6,
274.3,
292.6,
286.5.
280.4,
353.6.
39«.2.
390.1,
360.0,
340.0,
380.0,
202.7,
202.7.
202.7.
249.9.
380.4,
280.4.
262.1,
353.6.
402.3.
384.0.
340.0.
360.0,
380.0.
202.7.
202.7.
202.7,
203.7.
219.5,
213.4,
331.6,
292.6,
396.2.
396.2,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
IV-3-13
                                                           External Review Draft
                                                             Do not cite or quote

-------
ISCOMDBP VBRSICH $4227
                               WTI «t«ek modeling. IPX Melon V.  Project 1363, *u« Cue
                               On* •ourn; 936 r«c»pcor» up to 50KM ««y; MOM vt.
MODHJHB OPTIONS USD:  ODBC  ROML  KLBV
                                              DPJtOLT
                                               01/25/94
                                               17:37:03
                                               FACT  12
                                   •• DISOUTE CMOKSIMI WCBPTOHS •«
                                    (X-COOXD. Y-COORD. ZILBV. ZFIAB)
                                               (MERRS)
( -5000.0
-10000.0
-20000.0
-64.3
-192.1
-321.4
-450.0
-S78.5
-103.5
-1124.9
-1446.3
-1928.4
-3213.9
-6427.9
-12855. B
-25711.5
-76.6
-229.8
-3(3.0
-536.2
-689.4
-957.6
-1340.6
-1723.6
-2298.1
-3830.2
-7660.4
-15320.9
-30641.8
-16.6
-259.8
-433.0
-606.2
-779.4
-1082.5
-1515.5
-1948.6
-2598.1
-4330.1
-8660.3
-17320.5
-34641.0
-94.0
-281.9
-469.8
-6660.3, 392.6, 0.0);
-17320.5, 380.0, 0.0);
-34641.0, 360.0, 0.0);
-76.
-229.
-383.
-536.
-689.
-957.
-1340.
-1723.
'-2298.
-3830.
-7660.
-15320.
-30641.
-64.
-192.
-321.
-450.
-578.
-803.
-1124.
-1446.
-1928.
-3213 .
-6427.
-12855.
-25711.
213.4, 0.0);
202.7, • 0.0);
202.7, 0.0);
202.7, 0.0);
202.7, 0.0);
202.7. 0.0);
213.4, 0.0);
213.4. 0.0);
371.9, 0.0);
39C.2. 0.0);
378.0, 0.0);
3(0.0. 0.0);
380.0. 0.0);
213.4. 0.0);
207.3, 0.0);
202.7, 0.01;
202.7, 0.0);
207.3. 0.0);
207.3, 0.0);
207.3, 0.0);
213.4, 0.0);
323.1, 0.0);
384.0. 0.0);
371.0. 0.0);
380.0. 0.0);
400.0, 0.0);
-50.0, 213.
-150.0, 213.
-250.0, 213.
-350.0, 213.
-450.0, 213.
-625.0. 22S.
-875.0, 329.
-1125.0, 286.
-1500.0. 243.
-2500.0, 372.
-5000. . 402.
-10000. , 310.
-20000. . 400.
-34. , 213.
-102. . 213.
-171.0, 213.
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0)|
0.0);
0.0);
0.0);
0.0);
0.0);
-7500.0
-15000.0
-25000.0
-128.6
-257.1
-385.7
-514.2
-642.8
-964.2
-1285.
-W07.
-2571.
-4120.
-9641.
-19283 .
-32139.
-153.
-306.
-459.
-612.
-766.
-1149.
-1532.
-1915.
-30C4.
-5745.
-114*0.
-22911.
-36302.
-173.
-346.
-519.
-692.
-866.
-1299.
-1732.
-2165.
-3464.
-6495.
-12990.
-25910.
-43301.
-117.
-375.
-563.
-12990. . 360.0
-25980. . 360.0
-43301. . 380.0
-153. . 202.7
-306. . 202.7
-459. . -202.7
-612. . 202.7
-766.0. 202.7
-1149.1. 213.4
-1532.1, 213.4
-1915.1, 213.
-3064.2. 371.
-5745.
-11490.
-22911.
-31302.
-121.
-257.
-315.
-514.
-642.
-964.
-1215.
-1607.
-2571.
-4120.
-9641.
-19213 .
-32139.
396.
349.
3(0.
3(0.
201.
207.
202.
202.
207.
207.
213.
256.
359.
371.
3(0.
400.
310.
-100.0, 213.
-200.0, 207.
-300.0, 213.
-400.0. 213.
-500.0. 213.
-750.0, 274.
-1000.0, 310.
-1250.0, 256.
-2000.0. 365.
-3750.0. 371.
-7500.0. 3(0.
-15000.0. 310.
-25000.0. 3(0.
-CI.4, 213.
-136.1, 213.
-205.2, 213.
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0):
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
IV-3-14
External Review Draft
  Do not cite or quote

-------
••  ISCONMP VSRSIOH 94227



**  MODBJMB OPTXGM8 USED:
NTI «wck •octaling, SPA Reg-ion V,  Project 1363,  >u« i
On* «ouzc«;  936 r*c«ptor> up Co 50ml may; Mu«  «.
                       COHC  RDMI. IUV
                                                                                          BRYDPL MRDPL
            08/25/94
            17:37:03
            not  13
                                     •* DISCMTl CMtTBSXMf
                                      IX-COORD,  Y-COORD. ZXLXV
                                                 IKETEKS)
                            ZFLM)
( -657.8,
( -845.7,
( -1174.6.
( -1644. S.
( -2114.3,
( -2819.1.
( -4698. 5.
( -9396.9.
( -11793.9,
( -375(7.7,
( -98.5,
I -295.4,
( -492.4,
( -619.4,
I -8(6.3,
( -1231.0,
( -1723.4,
/ -221S.8.
( =2954.4,
( -4924.0.
( -9148.1.
I -19696.2,
( -39392.3.
( -100.0.
I -300.0,
1 -500.0,
( -700.0.
I -900.0.
( -1250.0,
( -1750.0.
( -2250.0,
( -3000.0.
( -5000.0,
( -10000.0,
( -20000.0,
( -40000.0,
( -98.5,
I -295.4,
( -492.4,
( -6(9.4,
I -((6.3,
I -1231.0,
( -1723.4,
( -2215.8,
( -2954.4,
-339.4,
-307.8,
-427.5.
-598.5,
-769.5.
-1026.1,
-1710.1.
-3420.2,
-6*40.4,
-13680.8,
-17.4,
-52.1.
-86.8.
-121.6.
-156.3.
-217.1.
-303.9.
-390.7,
-520.9.
-868.2.
-1736.5.
-3473.0,
-6945.9,
0.0,
0.0.
0.0,
0.0.
0.0.
0.0.
0.0.
0.0.
0.0,
0.0.
0.0.
0.0,
0.0,
17.4,
52.1,
(6.8,
121.6,
156.3,
217.1,
303.9,
390.7,
520.9,
313.4,
219.5,
353.6.
341.4,
353.6.
243.8.
359.7,
402.3,
400.0,
400.0,
213.4,
213.4,
213.4.
213.4.
225.6,
359.7.
365.8.
353.6,
353.6,
365.8,
339.9,
3(0.0,
400.0,
213.4,
213.4.
213.4.
213.4,
243.8,
304.8.
335.3,
371.9,
371.9.
371.9.
360.0.
360.0,
3(0.0.
213.4,
213.4,
213.4,
225.6,
243.1,
317.0,
298.7.
371.9,
365.8,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
-751.8.
-939.7,
-1409. S,
-1879.4,
-2349.2,
-3758.8.
-7047.7,
-14095.4.
-28190. (.
-44J84.4,
-197.0.
-3*3.1.
-590. >,
-7(1.8,
-984.8.
-1477.2.
-1969.6.
-2462.0.
-3939.2.
-73(6.1.
-14772.1.
-29544.2.
-49240.4,
-200.0,
-400.0,
-600.0,
-800.0,
-1000.0.
-1500.0,
-2000.0.
-2500.0,
-4000.0,
-7500.0,
-15000.0,
-30000.0,
-50000.0,
-197.0,
-393.9.
-590.9.
-7(7.8,
-9(4. (,
-1477.2.
-1969. «,
-3462.0,
( -3939.2,
-273.6,
-342.0,
-513.0.
-6(4.0,
-855.1,
-1368.1,
-2565.2,
-5130.3,
-10260.6.
-17101.0,
-34.7.
-69.5,
-104.2.
-138.9.
-173.6,
-260.5,
-347.3,
-434.1.
-694.6.
-1302.4.
-2604.7,
-5209.4,
-8682.4.
0.0,
0.0,
0.0,
0.0,
0.0.
0.0.
0.0,
0.0,
0.0,
0.0,
0.0.
0.0,
0.0,
34.7,
69.5,
104.2.
138.9.
173.6,
260.5,
347.3.
434.1,
694.6.
219.5,
213.4.
353.6.
335.3,
304.8.
298.7.
365.8,
380.0.
3(0.0.
3CO.O.
213.4.
213.4.
213.4.
219.5.
310.9.
359.7,
371.9.
371.9,
36S.8.
390.1.
360.0.
420.0.
400.0,
213.4.
213.4,
213.4.
213.4,
298.7,
304. (,
341.4,
371.9.
378.0,
371.9.
340.0,
380.0,
400.0,
213.4,
213.4,
22S.6,
237.7,
2(0.4,
304. (.
341.4.
353.6,
353.6.
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
 Volume IV
 Appendix IV-3
                     IV-3-15
External Review Draft
  Do not cite or quote

-------
                                                      buM.prt
XSCGNDKP VERSION 94227 •••


       ' OPTIONS USD):  COMC
                                MR iuck •od.lino, EPA Region V, Project 1363, Bam Cu«
                                On* leure*; 936 r«c«pcors up to SOXM away; Hue vt.
                            XDML tt«V
                                               OFADLT
                                                                                          ORXDP1* N1TUPL
                                                08/25/94
                                                17:37:03
                                                PM»  14
                                    •• DISCRRE CMtTISIMI
                                     (X-COORC,  Y-COOKD.  ZSLKV
                                                (METERS)
       ZPIAO)
-4924.0,
-9148.1,
-19696.2,
-39392.3,
-94.0.
-211.9,
-469.8,
-657.8,
-845.7,
-1174.6.
-1644.5.
-2114.3,
-2819.1,
-4«98.5,
-9396.9,
-18793.9.
-37587.7,
-86.6,
-259.8,
-433.0,
-606.2,
-779.4,
-1082.5,
-1515.5,
-1948. C,
-2598.1,
-4330.1,
-8660.3,
-17320.5,
-34641.0.
-7«.6,
-229.8,
-383.0,
-536.2,
-689.4.
-957.6,
-1340.6,
-1723.6,
-229*. 1,
-3S30.2.
-7660.4.
-15320.9,
-30641.8.
-64.3,
-192.8,
868.2,
1736.5.
3473.0,
6945.9,
34.2.
102.6.
171.0,
239.4,
307.8.
427.5.
598.5.
769.5.
1026.1,
1710.1,
3420.2,
6840.4.
13680.8.
50.0.
150.0.
250.0,
350.0,
450.0,
625.0,
875.0,
1125.0.
1500.0,
2500.0.
5000.0,
10000.0.
20000.0,
64.3,
192.8,
321.4.
450.0.
578.5,
803.5,
1124.9,
1446.3.
1928.4.
3213.9,
6427.9,
12835.8,
25711.5,
76.6,
229.8,
378.0.
389.2.
420.0.
380.0.
213.4.
213.4.
225.6.
243.8.
286.5,
317.0,
298.7,
384.0,
378.0.
37*. 0,
424.9.
360.0,
380.0,
213.4,
219.5.
225.6,
268.2.
310.9.
292.6,
359.7,
371.9,
37*. 0,
384.0,
426.7.
400.0,
400.0,
213.4,
225.6.
225.6.
268.2.
316.4.
304.8,
353.6,
371.9,
384.0,
384.0.
379.2.
400.0,
400.0,
213.4,
231.6.
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
-7386.1,
-14772.1,
-29544.2,
-49240.4,
-187.9,
-375.9,
-563.8,
-751.6.
-939.7,
-1409. S,
-1879.4,
-2349. 2,
-3751.8.
-7047.7,
-14095.4.
-28190.8,
-46914.6,
-173.2,
-346.4.
-519.6,
-692.8,
-866.0.
-1299.0,
-17J2.1,
-21*5.1,
-3464.1.
-6495.2.
-12990.4,
-25980.8,
-43301.3,
-153.2.
-306.4.
-459.6,
-612.8.
-766.0,
-1149.1,
-1532.1,
-1915.1.
-3064.2,
-5745.3.
-11490.7,
( -22911.3,
( -38302.2.
( -128.6.
( -257.1,
1302.4,
2604.7,
5209.4.
8682.4.
68.4,
136.8.
205.2,
273.6,
342.0,
513.0.
684.0,
855.1,
1368.1.
2565.2,
5130.3.
10260.6,
17101.0,
100.0,
200.0,
300.0,
400.0.
500.0.
750.0.
1000.0,
1250.0,
2000.0,
3750.0.
7500.0.
15000.0.
25000.0,
128.6.
257.1,
385.7,
514.2.
642.8.
964.2,
1285.6,
1607.0.
2571.2,
4820.9.
9641.8.
19283.6.
32139.4. -
153.2.
306.4,
384.0,
400.0,
380.0,
400.0.
213.4,
219.5,
225.6,
274.3,
298.7,
298.7,
359.7,
378.0,
378.0.
371.},
420.0.
400.0,
400.0,
213.4,
231.6,
231.6.
304.8.
304.8.
323.1,
371.9,
378.0.
378.0.
384.0,
400.0,
420.0.
350.0.
213.4.
231.6.
231.6.
304.8,
317.0,
341.4,
365.8.
378.0.
359.7.
378.0,
360.0,
400.0.
370.0.
225.6.
231.6,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
IV-3-16
                                                                                          External Review Draft
                                                                                            Do not cite or quote

-------
                                                      buu.prt
 ISCCMDBP VBISIOM 94227  »•


' MODEUM OfTXOHS OSID:  COMC
*m ctaek BOdcling.  EPA R*vion V. Project 1363. ••»•
           936 r«c»ptor» up to 50XM «ny; Mui «t.
                            XDML  ELEV
                                               DPAOLT
                                                                                          ORYDPIt METDflt
            08/35/94
            17:37:03
                 IS
                                     •• DXSCXER CMHESXMf
                                      (X-COOXD. Y-COORD. ZCLCV
                                                (METERS)
-32V.4,
-450.0,
-578.5.
-803.5,
-1124.9,
-1446.3.
-1928.4.
-3213.9.
-6427.9.
-12855.8.
-25711.5.
-50.0.
-150.0.
-250.0,
-350.0.
-450.0,
-625.0,
-875.0,
-1125.0.
-1500.0,
-2500.0.
-5000.0.
-10000.0.
-20000.0,
-34.2,
-102.6,
-171.0,
-239.4,
-307.8,
-427.5.
-598.5.
-769.5.
-1026.1,
-1710.1.
-3420.2.
-6840.4.
-13680.8.
-17.4.
-52.1.
-16.8.
-121.6.
-ISC. 3.
-217.1.
-303.9.
-390.7,
383.0,
536.2,
689.4.
»57.6.
1340.6.
1723.6.
2298.1.
3830.2.
7660.4,
15320.9,
30641.8,
•6.6,
2S9.8,
433.0,
606.2,
779.4,
1082.5,
ISIS. 5.
1948.6,
2598.1,
4330.1.
8660.3.
17320.5.
34641.0.
94.0,
281.9,
469.8,
657.8,
345.7,
1174.6,
1644.5,
2114.3,
2819.1.
4698.5,
9396.9.
18793.9.
37587.7,
98.5.
295.4,
492.4,
689.4.
886.3,
1231.0,
1723.4,
2215.8.
225.6.
274.3,
310.9.
317.0.
353.6.
359.7,
384.0,
378.0.
378.0,
400.0.
3CO.O,
213.4,
231.6,
225.C,
249.9,
304.8,
286.5,
347.5,
353.6,
384.0,
378.0.
371.9.
360.0.
380.0,
213.4,
225.6.
225.6.
262.1,
280.4,
323.1,
359.7,
329.2,
378.0,
371.9.
349.0,
360.0,
370.0.
213.4.
225.6.
22S.6,
262.1,
291.7,
335.3.
359.7.
341.4,
0.0);
0.0);
0.0);
0.01;"
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
( -385.7,
I -514.2.
( -642.8,
( -964.2.
( -128S.6.
-1607.0,
-2571.2,
-4820.9.
-9641.8,
-19283.6.
-1213*. 4,
-100.0,
-300.0,
-300.0,
-400.0.
-500.0,
-750.0,
-1000.0.
-1250.0,
-2000.0.
-3750.0.
-7SOO.O.
-15000.0.
-25000.0.
-6S.4,
-136.8.
-205.2.
-273.6.
-342.0.
-513.0.
-6*4.0.
-855.1.
-1368.1.
-2565.2,
-5130.3.
-10260.6.
-17101.0,
-34.7.
-69.5.
-104.2,
-131.9,
-173.6.
-260.5.
-347.3,
-434.1,
459.6.
612.8,
766.0.
1149.1,
1532.1,
1915.1.
3064.2.
5745.3.
11490.7.
22981.3.
38302.2.
173.2,
346.4.
519. (,
692.8.
866.0,
1299.0,
1732.1,
2165.1,
3464.1,
6495.2.
12990.4.
25980.8.
43301.3.
187.9.
3TS.9,
563.8
751.8
939.7
1409.5
1879.4
2349.2
3758.8
7047.7,
14095.4,
28190.8.
46984.6,
197.0.
393.9.
590.9,
787.8,
984.8,
1477.2.
1969.6,
2462.0,
231.6,
304.8,
310.9,
347.5. •
353.6.
365.8.
384.0.
378.0.
380.0.
400.0,
360.0,
225. «,
231. C,
243.8,
343.1,
304.8.
329.3.
353.6,
384.0.
384.0.
365.8.
360.0,
340.0,
350.0,
225. C.
225.6.
343.8,
286. S,
292.6,
353.6.
359.7.
347.5,
385.0,
329.2.
360.0.
340.0,
350.0,
225. C.
225.6,
343.8,
292. C.
298.7,
365.8,
359.7.
376.0.
0.0);
0.0);
0.0);
0.0);
' 0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
                     IV-3-17
External Review Draft
  Do not cite or quote

-------
                                                          buai.prt
 ISCCMMP VntSXON 94227


 MDHfTiTBO OfTXGMS USD:
•••  HTI mtfck Bedding. BPA fmgim V. Project 1363. Bam Cu*
***  On* •eura; 936 rmcfptoim up to  50ml may; HIM vt.
                        CCHC   KOMI.  ILIV
                                                  DFADLT
                                                                                                MXDPL IflRDPL
                                08/25/94
                                17:37:03
                                THO*  16
                                       •• DISCMTI CMHZSXMI
                                        (X-COOKD,  Y-COOXD. ZB4EV,  ZKJI0)
-S20.9,
-868.2.
-1736. 5.
-3473.0.
-6945.9,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
2954.4.
4924.0,
9848.1.
19696.2.
39392.3,
100.0,
300.0,
500.0,
700.0.
900.0,
1250.0,
1750.0.
2250.0,
3000.0,
5000.0,
10000.0.
20000.0,
40000.0,
                         314.0.
                         365.8.
                         339.9,
                         360.0,
                         330.0,
                         213.4,
                         225.6.
                         225.6,
                         256.0.
                         298.7,
                         353.6,
                         341.4.
                         359.7,
                         378.0,
                         359.7,
                         380.1,
                         340.0,
                         350.0,
        0.0);
        0.01;
        0.0);
        0.0);
        0.0);
        0.0);
        0.0);
        0.0);
        0.0);
        0.0);
        0.0);
        0.0);
        0.0);
        0.0);
        0.0);
        0.0);
        0.0);
        0.0);
-694.6,
-1102.4,
-2604.7,
-5209.5.
-8682.4,
0.0.











.0.
.0,
.0,
.0,
.0.
• 0,
.0,
.0,
.0.
.0,
.0.
0.0,
3939.2,
7386.1,
14772.1,
29544.2,
49240.4,
200.0,
400.0,
600.0,
800.0.
1000.0,
1500.0,
2000.0.
2500.0.
4000.0.
7500.0.
15000.0.
30000.0.
50000.0.
378.0
341.4
340.0
340.0
320.0
225.6
225.6
237.7
280.4
292.6
323.1
317.0
359.7
313.4
371.9
360.0
380.0
350.0
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
                           IV-3-18
                   External Review Draft
                      Do not cite or quote

-------
                                                           beMa.prt
ISCOMDEP VBISICH 94227  •••


         OFTICHS US1D:
          ten «t«ck eodeling.  EPA Region V,  Project 1361, But Cue
          On* •ouree; 936 receptors up to  SOKM away; Hu< wt.
                       CONC   RURAL  ELEV
                                                                           DRYDPL HETDPL
                                                                         08/25/94
                                                                         17:37:03
                                                                         rue*  17
                                         METEOROLOGICAL OUTS SELECTED FOR PROCESSING
                                                        U-Y1S; 0-NO)
11111
11111
11111
11111
11111
11111
11111
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1111111111 1111111111 1111111111
1111111111 1111111111 1111111111
1111111111 1111111111 1111111111
1111111111 1111111111 1111111111
1111111111 1111111111 1111111111
111111 i 111 1111111111 1111111111
1111111111 1111111111 1111111. 111
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
1111
1111
1111
1111
1111
1111
1111
i i
i i
i i
i i
i i
i i
i i
          NOTE:
                 METEOROLOGICAL DATA ACTUALLY PROCESSED HILL ALSO DEPEND CM WHAT IS INCLUDED IN THE DATA FILE.
                              1 UPPER BOUND OP FIRST TH
                                                                     > SPEED CATEGORIES
                                                     (HCTIU/SK)

                                          1.S4,    3.09,    5.14,   8.23.  10.80,
                                                HIND PROFILE EXPONENTS
          STABILITY
          CATEGORY
             A
             B
             C
             D
                                               WIND SPEED CATEGORY
.700001-01
.700001-01
.100001*00
.150001*00
.350001+00
.550001*00
.700001-01
.700001-01
.100001*00
.150001*00
.350001*00
.550001*00
.700001-01
.700001-01
.100001*00
.150001*00
.350001*00
.550001*00
.700001-01
.700001-01
.100001*00
.150001*00
.350001*00
.550001*00
              .700001-01
              .700001-01
              .100001*00
              .150001*00
              .350001*00
              .550001*00
               .700001-01
               .700001-01
               .100001*00
               .150001*00
               .350001*00
               .550001*00
                                       VERTICAL POTENTIAL TEMPERATURE GRADIENTS
                                              (DEGREES KELVIN PER METER)
          STABILITY
          CATEGORY
             A
             B
             C
             D
             C
             F
                                               HIND SPEED CATEGORY
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.300001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
                             .000001*00
                             .000001*00
                             .000001*00
                             .000001*00
                             .200001-01
                             .350001-01
Volume IV
Appendix IV-3
                                   IV-3-19
                                                             External  Review Draft
                                                                Do not cite or quote

-------
         VERSION 94227 •••


         OPTIONS USBD
••*  tm itack Modeling. EPA Region V.  Project 1363. Bam
••*  Cam source; 936 receptor* up to SOKM «my; Mas* vt.
                       CONC   RURAL ELEV
                                                DPADLT
                                                                                            DftYDPL NRDPL
           08/25/94
           17:37:03
           PAGE 18
PILE
depbin
Bet
SURFACE STATION


I
NO.:
OWE:
YEAR:

YEAR
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93


MONTH DAY
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

94823
WTI
1993
PLOH SPEED -
HOUR VECTOR IM/S)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
104.0 4.47
112.0 5.36
106.0 .47
115.0 .47
130.0 .02
123.0 .36
130.0 .92
124.0 .92
115.0 .47
107.0 .02
113.0 .02
108.0 .47
114.0 .36
107.0 .92
120.0 .92
119.0 .47
118.0 .58
124.0 .68
124.0 2.68
113.0 2.23
97.0 2.68
113.0 3.13
117.0 3.13
152.0 2.68
FORMAT: (4I2.2P9.4.P6.
UPPER AIR STATION NO. :
HAKE:
YEAR:
TEMP STAB MBUNG KEI
IK) CLASS RURAL
275.4
274.8
274.0
273.9
273.8
273.3
272.5
271.9
271.0
270.9
270.6
270.9
271.1
271.0
270.8
270.5
270.4
270.4
270.1
270.3
270.3
270.3
270.4
269.9
601.6
617.6
633.5
649.5
665.4
611.4
697.3
713.3
729.2
745.2
761.1
777.1
793.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
1.I2.2P7
94823
wn
1993
CUT (M)
DRBAN
601.6
617.6
633.5
649.5
665.4
611.4
697.3
713.3
729.2
745.2
761.1
777.1
793.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
I,f9.4.fl0



I,f8.4



USTAR M-O LEW
(M/S)
0.3366
0.4269
0.3363
0.3363
0.2874
0.4366
0.3820
0.3819
0.3355
0.3534
0.3534
0.3926
0.4712
0.4319
0.3817
0.3354
0.2310
0.1178
0.1178
0.0982
0.1178
0.1374
0.1374
0.1178
(M)
176.
283.
175.
175.
128.
211.
225.
224.
172.
fS. 1,14. 17. 2]



m z-o zd IPCODE
(M) (M)
0.3000 l.S 13
0.3000 1.5 0
0.3000 1.5 0
0.3000 l.S 28
0.3000 1.5 28
0.3000 1.5 28
0.3000 l.S 28
0.3000 1.5 28
0.3000 l.S 28
-999.0 0.3000 1.5 28
-999.0 0.3000 1.5 28
-999.0 0.3000 1.5 28
-999.1
-999.
223.
172.
81.
29.
29.
29.
29.
29.
29.
29.
) 0.3000 1.5 28
0.3000 l.S 28
0.3000 1.5 28
0.3000 1.5 28
0.3000 1.5 28
0.3000 1.5 28
0.3000 1.5 28
0.3000 l.S 28
0.3000 l.S 0
0.3000 l.S 28
0.3000 l.S 0
0.3000 l.S 28




PRATE
(•m/HR)
0.00
0.2S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
NOTES:
       STABILITY CLASS 1-A, 2-B.  3-C, 4-D.  5-E AND 6»P.
       PLOW VECTOR IS DIRECTION TOWARD HKtCH MIKD IS BLOHINB.
 Volume IV
 Appendix IV-3
                           IV-3-20
External Review Draft
  Do not cite or quote

-------
                                                                 baaeb.prt


  *•• ISCOMDSP VERSION 94227  •••    *••  WIT stack aodeling,  EPA Region V.  Project 1363, Baae COM           •••        08/25/94
                                   **•  On* aouree; 936 receptor* up to  SOKM away; Surface wt.              ••*        17:30:09
                       	                                                                                            not   i
  ••• MODELINC OPTICMS USED:  CCMC   RURAL  ELEV          DPAULT                                          DRTDFL NETDPL


                                           •••     MODE. SETUP OPTICHS SOMARY       •••


 ••Intermediate Terrain Proceeding i* Selected

 ••Model Is Setup  For  Calculation of Average concentration Valuea.

   —  SCAVENGING/DEPOSITION LOGIC —
 ••Model U*e*  DRY  DEPLETION.  DDPLETE -  T
 ••Model U*e*  NET  DEPLETION,  NDPLETE -  T
 ••SCAVENGING  Data Provided.  LMGAS.IMPACT *  P T
 ••Model U*e*  GRIDDED  TERRAIN Data for Depletion Calculation!

 ••Model uaea  RURAL Diaperaion.

 ••Model Oaes  Regulatory DEFAULT Option*:
            1   Final PluM RiM.
              Stack-tip Downwaah.
              Buoyancy-induced Dispersion.
              U*e cals» Proceuing Routine.
              Not Use Missing Data Proceaaing Routine.
              Default Hind Profile Exponent*.
              Default Vertical Potential Temperature Gradients.
              •Upper Bound* Valuea for Superaquat Building*.
              No Exponential Decay for RURAL Mode
 ••Model Accepta Receptor* on BLBV Terrain.

 ••Model AaatiBM No FLAGPOLE Receptor Height*.

 ••Model Accepting Temperature Profile Data.
  Nuaber of Levela :            3
       AOL)          30.0000
       ACL)          45.7000
       AGL)          152.400
••Model Accepting Kind Profile Data.
  Number of Level* :            S
       AGL)          30.0000
       AGL)          45.7000
       AGL)          (0.8000
       AGL)          111.300
       AOL)          152.400
••Model Calculate*  1 Short Tern Average la)  of:   1-HR
    and Calculate* PERIOD Averages

••This Run Include*:    1 Source(s);      1  Source Group!*); and    936 Receptor I*)

••The Model A**une» A Pollutant Type of:  LEAD

••Model Set To Continue RDNning After  the Setup Teating.

••Output Option* Selected:
         Model Output* Table* of PERIOD Average* by Receptor
         Model Outputs Tables of Highest Short Ten Valuea by Receptor (RECTABLE Keyword)
         Model Outputs Table* of Overall Mariauei Short Ten Value* (MMCTABLE Keyword)
         Model Output* External Filelal of High Valuea for Plotting (PLOTFILE Keyword)

••NOTE:  The Following Plage May Appear Following CONC Values:  c for Cain Hour*
                                                               • for Mi**ing Hour*
                                                               b for Both Calm and Miuing Hour*

•*Mi«c. Input*:   Anaa. Hgt.  In)  •   30.00 ;    Decay Coef. -   0.0000     ;     Rot. Angle •     0.0
                 EBiaaion Unit* . GRAMS/SEC                                ;  taiaiion Rate Unit Factor -   0.10000E+07
                 Output Unit*   - *HCROGRAIIS/Br»3

••Input Ruiutreaa File: bueb.ine                              ;  ••Output Print File- baaeb con
••Detailed Error/Meaaage File:    ERRORS.OUT
     Volume IV                                                                                     External Review Draft
     Appendix IV-3                                        IV-3-21                                  Do not cite or quote

-------
                                                           baaeb.prt


   ISCOMDEP VERSION 94227 •	WTI itack Bedeling. EPA Region V, Project  1363. Baae Ca*e           •••        08/25/94
                               •••  On* aource;  936 receptor* up to SOKM amy; Surface wt.              ••»        17:50:05
            	    	   	   	                                                                           PAGE   2
   MODELDB OPTIONS USED:  CCHC   ROMtL  CLEV         DFADLT                                        EKYDFL METDFL
                                            ••• rOIHT SODXCE DMK •••


          NUMBER EMISSION RATE                  BASE     STACK   STACK   STACK     STACK    BUILDIMG EMISSION RATE
 SOURCE     PART.  (GRAMS/SEC)     X        Y     ELBV.    HEIGHT  TEMP.   EXIT VBL. DIAHETER   EXISTS  SCALAR VARY
   ID      CATS.              (METERS) (METERS)  (METERS) (METERS) (DEG.ICI  (M/SEC)  (METERS)               BY


WTTSTACK     10   0.100001*01      0.0       0.0   212.1    45.70   367.00    17.74     1.13      YES
  Volume IV                                                                                  External Review Draft
  Appendix IV-3                                      IV-3-22                                Do not cite or quote

-------
                                                         buob.prt


 •••  XSCCNDEP VERSION 94227 •••    •••  tfTI (tack nodtling.  EPA Ragion V, ProD.ct U63. Bu« CM.          •*•        08/25/94
                               *••  On* source; 936 r«c«ptor» up to SOKM airay; Surface vt.             •••        17:50:05
                                                                                                         MCB   3
 •••  HODKLDIO OmCHS OS«D: OOHC   KOIUIL  CUEV         OTAOLT                                      ORXDPL WTTDPL
                                     '*• sconce ID* venoms soracz CTOOPS
GROUP ID                                           SOURCE ID*
 ALL      HTISTACK,
   Volume IV                                                                             External Review Draft
   Appendix IV-3                                    IV-3-23                              Do not cite or quote

-------
                                                          barab.prt


ISCGNDEP VERSION »4227 —    ***  MTI Itack Kxteliag,  B?A Region V, Project 1363. B«M Cmm           *••        08/25/94
                             *••  On* aourc*; 936 nccpeora up to 50KM ray; Surface wt.              •••        17:50:05
                                                                                                             PACE   4
HODCUMO OPTIONS USED:  OMC   KDML ELBV          DTADI.T                                         JMTDTl. HETDPI.


                                        ••• SOOKCB PMtTICDLKTE/GAS DMA •••
    •••• SOORCB  ID . WWSTUCK; SOURCE T»E •   POWT  •••

    MASS FRACTION -
     0.00414, 0.01301, 0.05288.  0.10060, 0.13832.  0.12745. 0.16051. 0.12038.  0.18640, 0.0*631.


    PARTICLE DIAMETER (MICRONS)  -
     2.97000, 1.89000, 0.93000,  0.55000, 0.40000,  0.27000, 0.18000, 0.13000,  0.06200, 0.03000,


    PARTICLE DKHSITY |G/CM**3) •
     1.00000, 1.00000, 1.00000,  1.00000, 1.00000,  1.00000, 1.00000, 1.00000,  1.00000, 1.00000.


    SCAV COEP [L1Q1 1/(S-MM/HR>«
    0.21E-03,0.14B-03,O.SOE-04.0.50E-04,0.60B-04.0.90E-04,0.13B-03.0.1SE-03.0.20E-03.0.22E-03.


    SCAV COEF [ICE] 1/(S-MM/HR)>
    0.70E-04,0.47E-04,0.17B-04,0.17E-04,0.20E-04.0.30B-04,0.43E-04,0.50B-04,0.67E-04,0.73E-04.
Volume IV                                                           .                        External Review Draft
Appendix IV-3                                        IV-3-24                                 Do not cite or quote

-------
XSCCMDSP VERSION 94227 •••



NODELXNG OPTXGMS USKU:
      MTISTACK
                           baaeb.prt


•*•  MTI stack Modeling, EPA Region V.  Project 1363. Baa* Case
•••  On* source; 936 receptors up to SOXM away; Surface trt.

 RURAL  ELBV        DFADLT


     ••• omcnoN SPECIFIC BOXLOIHG DMEMSIOIS •••
                                     ORYDFL NEl'UPL
                                                OS/2S/94
                                                17:50:05
                                                mat   5
lUUKUA AM . r
IFV BK
1 29.1,
7 24.4,
13 29.1,
19 29.1.
25 24.4.
31 29.1,
r* *0 itv^n.
BH HAK
26.9, 0
26.0, 0
32.3, 0
26.9; 0
26.0. 0
32.3, 0
IFV BH
2 29.1,
8 29.1,
14 29.1.
20 29.1,
26 25.8,
32 29.1,
BH HAK
24.7 0
22.6 0
31.8 0
24.7 0
24.8 0
31.8 0
IFV BH
3 29.1,
9 29.1,
IS 29.1,
21 29.1.
27 29.1.
33 29.1,
BH MAK
21. 0
25. 0
30. 0
21. 0
25. 0
30. 0
IFV BH
4 25.8.
10 29.1,
16 29.1.
22 25.8,
28 29.1.
34 29.1,
BH MAK
27. 0
28. 0
29. 0
27. 0
28. 0
29. 0
IFV BK
5 24.4,
11 29.1,
17 29.1,
23 25.8,
29 29.1,
35 29.1,
BH MAX
27.0 0
30. 0
29. 0
26. 0
30. 0
29. 0
IFV BH
S 24.4.
12 29.1,
18 29.1.
24 25.8,
30 29.1,
36 29.1.
BH MAX
24.6. 0
32.1. 0
28.2, 0
23.8. 0
32.1, 0
28.2, 0
Volume IV
Appendix IV-3
IV-3-25
                                                               External Review Draft
                                                                  Do not cite or quote

-------
 ISCOMDEP VERSION 94327



' MODB*2]IS OPTIONS DSD:
WTI cuek BOdcling,  BPA Region V, Project 1363, Base
On* source;  936 receptors up te SOXH nny; Surface wt
                      CONC   RtnwL  njcv
                                               DFADLT
                                                                                          DRYDPL
           08/25/94
           17:50:05
           PADS   6
                                     •• Dxsatcn currasiM>
                                      (X-COOKD. Y-COOHD, ZKLTV
                                                (METBtS)
                            ZFLXC)
17.4.
52.1.
86. 8,
121.6.
156.3.
217.1,
303.9,
390.7,
520.9,
161. 2,
1736.5,
3473.0,
6945.9.
34.2.
102.6.
171.0,
239.4.
307.8.
427.5,
598.5,
769.5,
1026.1,
1710.1.
3420.2.
6840.4,
13680.8,
SO.O,
1SO.O,
250.0.
350.0,
450.0,
625.0,
875.0.
1125.0,
1500.0,
2500.0,
5000.0.
10000.0,
20000.0,
64.3,
192.8.
321.4,
450.0,
578. 5,
803.5,
98.5
295.4
492.4
689.4
886.3
1231.0
1723.4
2215.8
2954.4
4924.0
' 9848.1
19696.2
39392.3
94.0
281.9
469.8
657.8
845.7
1174.6
1644.5
2114.3
2819.1
4698.5
9396.9
18793.9
37587.7
86.6
259.8
433.0
606.2
779.4
1082.5
1515.5
1948.6
2598.1
4330.1
8660.3
17320.5
34641.0
76.6
229.8
383.0
536.2
689.4
957.6
213.
225.
225.
243.
280.
353.
310.
353.
347.
341.
3(0.
340.
350.
213.
225.
225.
237.7
256.0
329.2
335.3
353.6
362.4
359.7
385.9
340.0
380.0
213.4
22S.6
225.6
225.6
243.8
225.6
359.7
353.6
323.1
366.7
396.2
360.0
370.
213.
22S.
225.
225.
225.
280.
0.0):
0.0);
0.0);
• 0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
34.7, 197.0. 225.6 0.0);
69.5. 393. . 225.6
104.:
138.
173.
260.
347.
434.
(94.
1302.
2604.
5209.
8(82.
fl.
136.
205.
273.
t, 590. , 225.6
767. , 256.0
9(4. . 286.5
1477. . 353.6
19(9. , 347.5
24(2.0. 359.7
3939.2, 341.4
7386.1. 3(5.8
14772.1. 340.0
29S44.2, 3(0.0
49240.
1(7.
375.
5(3.
751.
342.0. 939.
513. (
), 1409.
(84.0. 1879.
855.1
L. 2349.
13(8.1. 3758.
25(5.2, 7047.
5130.]
14095.
102(0.6, 28190.
17101. (
). 4(984.
100.0, 173.
200. <
), 346.
300.0, 519.
400.0, (92.
500. (
3(0.0
225. (
225.6
225.6
243.8
286.5
347.5
347.5
359.7
329.2
369.7
340.0
3(0.0
390.0
219.5
225. (
225. (
231. (
866.0, 262.1
750.0, 1299.0, 347.5
I 1000. (
), 1732.1. 353.6
( 1250.0. 2165.1, 329.2
( 2000.0, 3464.1, 3(1.2
( 3750. (
6495.2, 378.0
( 7500.0. 12990. , 320.0
( 15000.0. 25980. , 380.0
( 25000.0, 43301. , 400.0
( 128. «
153. . 213.4
( 257.1, 306. , 225. (
( 385.7, 459. , S2S.«
( 514.2
612. , 225.6
( 642.8, 766.0. 243.8
( 964.2, 1149.1, 353.6
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
 Volume IV
 Appendix IV-3
                      IV-3-26
External Review Draft
  Do not cite or quote

-------
                                                        bucb.prt
 ISCOMDEP VERSION 94227


 MODELING OPTIONS USED:
••*  WTI acaek aod*Ung. EPA Region V, Project 1363. Bu« C**«
***  On* sourett; 936 r*c«ptors up to 50KM w*my;. Sur£ac* wt.
                       COBC   KDML  ELEV
                                                DfABLT
                                                                                            OKYDPL NE'lVPL
                                                  08/25/94
                                                  17:50:05
                                                  PMS  7
                                     •• DISCRETE CMtTSSXMf RECEPTORS
                                      (X-COORD. Y-COORD, ZELEV,
                                                 (METERS)
1124-.9.
1446.3,
1928.4,
3213.9.
6427.9,
12855.8,
25711.5,
76.6,
229. »,
3R3.0,
S36.2,
CS9.4,
9S7.6,
1340.6,
1723.6,
2298.1,
3830.2,
7660.4,
15320.9,
30641.8,
•6.6,
2S9.8,
433.0,
606.2,
779.4,
1082.5,
1515.5,
1948.6,
2598.1,
4330.1,
8660.3,
17320.5,
34641.0,
94.0,
281.9,
469.8,
6S7.8,
845.7,
1174.6,
1644.5,
2114.3,
2819.1,
4698.5,
9396.9,
18793.9,
1340.6.
1723.6,
2298.1,
3830.2,
7660.4,
15320.9.
30641.8,
64.3,
192.8,
321.4.
450.0,
578.5,
803.5,
1124.9,
1446.3,
1928.4,
3213.9.
C427.9,
12855.8,
25711.5.
SO.O,
150.0,
250.0,
350.0,
450.0,
625.0,
875.0,
1125.0,
1500.0,
2500.0,
5000.0,
10000.0,
20000.0.
34.2,
102.6.
171.0,
239.4.
307.8,
427.5,
598.5,
7C9.5,
1026.1.
1710.1.
3420.2.
6840.4,
361. 5.
353.6,
335.3,
353.0,
398.4,
380.0,
420.0.
213.4,
213.4,
219.5.
219.5.
235.6,
219.5,
353.6,
335.3,
347.5,
335.3,
396.2,
380.0.
420.0.
213.4,
207.3.
207.3,
213.4.
213.4,
225.6,
243.8,
310.9.
317.0,
359.7.
408.7,
360.0,
380.0.
207.3,
202.7,
207.3,
207.3,
213.4.
213.4,
213.4,
213.4,
231. C,
384.0,
370.3,
380.0,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0):
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
12(5.6.
1607.0,
2571.2.
4820.9,
9641.8,
19283.6.
32139. 4,
153.2,
30C.4,
45».6.
612.8,
7C6.0,
114*. 1,
1512.1,
1*15.1,
30(4.2,
5745.3.
114*0.7,
22*81.3,
31302.2,
173.2,
346.4.
519.6,
C92.I,
86C.O,
1299.0,
1732.1,
2165.1,
3464.1,
64*5.2,
129*0.4,
25*80.8,
43301.3,
187.*.
375. 9,
563.8,
751.8,
939.7,
140*. 5.
187*. 4,
234*. 2.
3758. S,
7047.7,
140*5.4,
28190.8.
1532.1.
1915.1,
3064.2,
5745.3,
11490.7.
22981.3,
38302.2,
128.6,
257.1,
385.7,
514.2.
642.8,
964.2.
1285.6,
1607.0,
2571.2,
4820.9,
9641.8,
19283.6,
32139.4,
100.0,
200.0,
300.0,
400.0,
500.0,
750.0,
1000.0,
1250.0,
2000.0,
3750.0,
7500.0.
15000.0.
25000.0,
68.4,
136.8,
205.2,
273.6,
342.0,
513.0,
684.0.
855.1,
1368.1,
2565.2,
5130.3,
10260.6,
353.6,
353.6,
353.9.
378.0,
376.0.
360.0,
420.0,
207.3.
219.5,
21*. 5,
219.5,
21*. 5,
323.1.
353. C,
347.5,
341.4,
373.1,
360.0,
380.0.
420.0,
207.3,
201.2,
213.4.
213.4,
21*. 5,
21*. 5,
2*2. C.
333.1,
323.1,
378.*,
380.0,
380.0,
420.0,
201.2
202.7
207.3
213.4
213.4
213.4
213.4.
231. C,
310.9,
384.0.
360.0,
400.0,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0):
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
IV-3-27
                                                               External Review Draft
                                                                  Do not cite or quote

-------
                                                     beeeb.prt
iscaaar vnsioi 94337 •*•


MODBLJMB OfTZOHS USED:  OOHC
                              MTT «uek
 iling, EPA Region V. Project 1363. Be» Cue
936 receptors up to SOKM any; Surface wt.

    DPADLT
                                                                                       DKYDPL NRUVL
           08/25/94
           17:50:05
           net   t
                                   •• DXSOURB CMtraSIMI
                                    (X-COOKD, Y-COOKD. tXLXV
                                              (MOTHS)
( 37587.7.
( Si. 5.
295.4,
492.4.
689.4.
886.3.
1231.0.
1733.4,
2315.8.
3954.4,
4934.0,
9848.1,
19696.3,
39392.3,
100.0,
300.0,
500.0,
700.0,
900.0,
1250.0,
1750.0.
2250. 0,
3000.0.
5000.0,
10000.0,
20000.0,
40000.0,
98.5,
295.4,
493.4,
689.4,
886.3,
1231.0.
1723.4,
2315.8,
3954.4,
4934.0,
9848.1.
19696.3,
39393.3,
94.0,
1 281.9,
4C9.8.
657.8,
845.7,
13680.
17.
52.
86.
121.
156.
217.
303.
390.
520.
868.
1736.
3473.
6945.
0.
0.
360.0,
207.3,
302.7,
202.7,
202.7,
303.7,
302.7.
313.4.
307.3,
304.8,
365.8,
371.9.
360.0,
380.0,
307.3,
202.7,
0.0, 202.7,
0.0. 302.7,
0.0. 302.7,
0.0, 343.8.
0.0, 333.1.
0.0. 304.8,
0.0, 310.9.
0.0. 403.3,
0.0, 380.1,
0.0, 360.0,
0.0, 400.0,
-17.4, 207.3,
-53.1, 202.7,
-86.8. 303.7,
-131.6, 302.7,
-156.3. 325.6,
-317.1, 347.5.
-303.9, 333.1.
-390.7, 341.4,
-520.9, 347.5,
-868.2, 386.5,
-1736.5, 360.0.
-3473.0, 380.0,
-694S.9, 380.0,
-34.2, 207.3.
-102.6, 302.7,
-171.0. 202.7,
-239.4, 256.0,
-307.8, 286.5,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
46984.
197.
393.
590.
787.
984.
1477.2
1969.6
2462.0
3939.2
7386.1
14773.1
39544.3
49340.4
300.0
400.0
600.0
800.0
1000.0
1500.0
2000.0
2500.0
4000.0
7500.0
15000.0
30000.0
50000.0
197.0
393.9
590.9
787.8
984.8
1477.2
1969.6
2462.0
3939.2
7386.1
14772.1
29544.2
49240.4
187.9
375.9
5C3.I
751.8
939.7
17101.
34.
69.
104.
138.
173.
260.
347.
434.
694.
1302.
2604.
5209.
8683.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-34.'
-69.
-104.:
-138.
-173.
-260.
-347.
-434.
-694.
-1302.
-2604.
-5209.
-8682.
-68.
-136.
-205.
-273.
-342.
9, 400.0.
1. 303.7,
S, 303.7.
i. 303.7,
), 302.7,
5, 303.7.
S. 203.7,
), 307.3.
L, 331.6.
(. 346.6,
1, 384.0.
7, 330.0,
1, 380.0,
1, 400.0,
), 202.7,
), 303.7,
), 302.7.
1. 202.7,
), 202.7,
), 341.4,
), 341.4.
>, 293.6,
>, 359.7,
). 347.5.
), 360.0,
), 380.0,
>, 360.0,
t. 302.7,
I, 303.7,
t, 303.7,
219.5,
329.3.
353.6.
341.4,
333.1,
353.6,
353.6.
340.0,
380.0,
400.0,
203.7,
303.7,
213.4,
398.7,
333.1.
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0)1
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
           IV-3-28
External Review Draft
  Do not cite or quote

-------
                                                      bueb.prt
ISCOHDEP VERSION 94227


MODELING OPTIOHS USED:
DTJ itaek BOdelino, EPA Region V,  Project 1363. Bue Cue
One source ;  936 receptors up to 50KM nay; Surface vt.
                      COMC   K01WL  ELTV
               DPA0LT
                                                           DRYDPL NEIUPL
           08/25/94
           17:50:05
           PACE   9
                                    •• DISCRETE CARTESIAN RECEPTORS •«
                                     (X-COORD, Y-COOKD. ZCLEV. ZPLAO)
                                                (UTTERS)
1174.6.
1644.5.
2114.3,
2819.1.
4698.5.
9396.9.
18793.9,
37587.7,
86.6,
( 259.8,
( 433.0,
{ 606.2,
( 779.4.
( 1082.5,
( 1515.5,
1948.6,
2598.1,
4330.1.
8660.3,
17320.5.
34641.0,
76.6,
229.8.
383.0,
536.2,
689.4,
957.6,
1340.6,
1723.6,
2298.1,
3830.2,
7660.4.
15320.9,
30641.8.
64.3,
192.8,
321.4,
450.0,
578.5,
803.5.
1124.9,
1446.3,
1928.4,
3213.9.
( 6427.9.
-427.5, 347.5,
-598.5, 310.9,
-769.5, 350.2,
-1026.1, 347.5,
-1710.1. 371.9.
-3420.2, 408.4,
-6840.4, 360.0,
-13680.8, 360.0.
-50.0. 207.3.
-150.0, 202.7,
-250.0, 213.4,
-350.0, 317.0,
-450.0. 353.6,
-625.0, 310.9,
-875.0, 335.3,
-1125.0, 359.7,
-1500.0, 365.8.
-2500.0, 353.6.
-5000.0, 396.2,
-10000.0, 380.0,
-20000.0. 360.0.
-64.3, 207.3,
-192.
-321.
-450.
-578.
-803.
-1124.
-1446.
-1928.
-3213.
-6427 .
-12855.
-25711.
-76.
-229.
-383.
-536.
-689.
-957.
-1340.
-1723.
-2298.
202.7,
243.8,
323.1,
353.6,
353.6.
341.4,
353.6.
359.7,
359.7,
408.4.
360.0,
360.0,
207.3,
202.7,
268.2,
310.9,
329.2.
347.5,
329.2,
353.6,
408.4,
-3830.2, 371.9,
-7660.4, 390.1,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
1409.5,
1179.4.
2349.2.
3756.8.
7047.7.
14095 . ,
28190. .
4C984. ,
173. ,
34C. .
519. .
692. ,
866. ,
1299.0,
1732.1.
2165.1,
3464.1,
6495.2,
12990.4.
25980.8.
43301.3.
153.2,
30C.4,
459.6.
613.8,
766.0.
1149.1.
1532.1,
1915.1.
3064.2,
5745.3,
11490.7.
22981.3.
38302.2.
128.6,
257.1,
385.7,
514.2.
642.8.
964.2,
1285.6,
1607.0,
2571.2.
4820.9,
9641.8,
-513.0, 347.!
-684.0, 353. (
-855.1, 347.!
-1368.1, 345.!
-2565.2, 3S5.I
-5130.3, 380.1
-10260.6, 360.1
-17101.0, 360.1
-100.0, 202.'
-200.0. 202. •
-300.0, 268.:
-400.0. 347.!
-500.0. 347.!
-750.0. 359.'
-1000.0. 359.'
-1250.0. 347.!
-2000.0, 359. •
-3750.0, 402.:
-7500.0, 380.1
-15000.0, 360. (
-25000.0, 360.1
-128.6, 202.'
-257.1, 202.'
-385.7, 298.'
-514.2, 353.
-642. , 353.
-964. , 359.
-1285. , 353.
-1607. . 341.
-2571. , 359.
-4820. , 408.
-9641. , 380.
-19283. , 360.
-32139. , 360.
-153. , 202.
-306. , 202.
-459. , 304.
-612. . 323.
-766. , 323.
-1149. , 359.
-1532. . 359.
-1915.1, 359.
-3064.2, 420.
-5745.3. 392.
-11490.7, 340.
0.0);
0.0);
0.0);
. ' 0.0);
0.0);
). 0.0);
I. 0.0);
), 0.0);
>, 0.0);
r, o.o);
t, 0.0);
i, 0.0):
i, 0.0);
1. 0.0);
', 0.0);
S. 0.0);
', 0.0);
1, 0.0);
>, 0.0);
), 0.0);
), 0.0);
1. 0.0);
!. 0.0);
'. 0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
I, 0.0);
>. 0.0);
', 0.0);
i, 0.0);
}, 0.0);
}, 0.0);
Volume IV
Appendix IV-3
                       IV-3-29
External Review Draft
  Do not cite or quote

-------
                                                       bucb.prt
 ISCOOEP VBtSION 94227



 MODBL3B5 OPTIONS USB):
WIT »t«ck Bedding, EPA Region V, Project 1363.  Bam CM*
On* •com;  936 receptor* up to  SOKM may; Surf*c* wt.
                      COMC   RDML  ELIV
            08/25/94
            17:50:05
            PACE  10
                                     •• DISCRETE CARTESIAN RECEPTORS ••
                                      (X-COORD, Y-COORD, ZELEV.  ZPLMS)
                                                (METERS)
12855. «.
25711.5,
50.0,
150.0,
250.0,
350.0,
450.0,
C2S.O.
875.0,
1125.0,
1500.0.
2500.0,
5000.0,
10000.0,
20000.0,
34.2,
102.6,
171.0.
239.4.
307.8,
427.5.
598.5
769.5
1026.1
1710.1
3420.2
6840.4
13680.8
17.4
52.1
86.8
121.6
156.3.
217.1,
303.9,
390.7.
520.9,
868.2.
1736.5.
3473.0,
6945.9.
0.0,
0.0,
0.0,
0.0,
-15320.9.
-30641.8,
-86.6,
-259.8.
-433.0.
-606.2,
-779.4,
-1082.5,
-ISIS. t.
-1948.6,
-2598.1,
-4330.1,
-8660.3,
-17320. S,
-34641.0,
-94.0,
-281.9.
-469.8.
-657.8,
-845.7.
-1174.6.
-1644.5,
-2114.3.
-2819.1.
-4698.5,
-9396.9,
-18793.9,
-37587.7,
-98.5,
-295.4.
-492.4.
-689.4,
-886.3,
-1231.0,
-1723.4,
-2215.8,
-2954.4,
-4924.0.
-9848.1,
-19696.2,
-39392.3,
-100.0,
-300.0.
-500.0.
-700.0,
380.0,
400.0,
207.3,
202.7,
268.2.
310.9,
323.1,
298.7,
341.4.
365.8,
408.4,
408.4,
396.2,
3CO.O,
400.0,
207.3,
202.7,
268.2,
304.8,
286.5,
304.8.
304.8.
359.7,
396.2,
411.5,
408.1,
360.0,
400.0,
207.3,
202.7,
249.9,
280.4,
286.5,
298.7,
304.8,
298.7,
402.3,
414.5,
398.1.
360.0.
400.0,
207.3,
202.7,
219.5,
280.4.
0.0);
0.0):
0.0);
0.0);
0.0);
0.0);
0.0);
0.6);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
( 19283.6.
( 32139.4.
( 100.0.
( 200.0.
< 300.0.
400.0.
500.0,
750.0,
1000.0.
1250.0,
2000.0,
3750.0,
7500.0,
13000.0,
23000.0,
68.4,
136.8,
205.2,
273.6,
342.0,
513.0,
684.0,
855.1.
1368.1.
2365.2.
5130.3.
10260.6,
17101.0,
34.7,
69.5.
104.2,
138.9.
173.6.
260.5,
347.3,
434.1,
694.6.
1302.4.
2604.7,
5209.4,
8682.4,
0.0.
0.0,
0.0,
0.0,
-22981.3,
-38302.2.
-173.2,
-346.4.
-519.6,
-692.8,
-866.0,
-1299.0,
-1732.1,
-2165.1.
-3464.1,
-6495.2.
-12990.4,
-25910. t.
-43301.3,
-18719,
-375.9,
-563.8,
-751. 8,
-939.7,
-1409.5.
-1879.4.
-2349.2,
-3758.8,
-7047.7,
-14095.4,
-28190.8,
-46984.6,
-197.0.
-393.9,
-590.9.
-787.8,
-984.8,
-1477.2.
-1969.6,
-2462.0,
-3939.2,
-7386.1,
-14772.1,
-29544.2,
-49240.4,
-200.0.
-400.0.
-600.0,
-800.0,
400.0,
380.0.
202.7,
213.4,
298.7.
323.1.
329.2.
341.4.
359.7,
371.9.
420.6,
408.4.
340.0,
420.0,
400.0,
202.7,
207.3.
292.6,
304.8,
286.5.
310.9.
335.3,
378.0,
402.3,
402.3,
360.0.
420.0,
420.0,
202.7,
202.7,
286.5.
274.3,
286.5,
304.8,
298.7,
365.8,
390.1,
408.4,
380.0.
400.0,
400.0,
202.7,
202.7,
274.3,
274.3,
0.0);
0.0) ;
0.0);
0.0) ;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
                     IV-3-30
External Review Draft
  Do not cite or quote

-------
                                                       bueb.prt
 ISCOHDIP VERSION 94227


 MODEUNS OFTICHS USB):
HTI ataek nodeling, EPA Region V,  Project 1363, Bua Cue
One •oure«; 936 receptor* up to 50m «ray;  Surface wt.
                      CONC   RURAL  ILBV
                                               DPADLT
                                                                                           DRYDPL HETDPL
            08/25/94
            17:50:05
            PAGE  11
                                     •• DISCRETE CARTESIAN RECEPTORS ••
                                      (X-COORD,  Y-OOORD.  ZELBV. ZPLAG)
                                                 (METERS)
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0.
0.0,
-17.4,
-52.1,
-86.8,
-121.6,
-156.3,
-217.1,
-303.9,
-390.7,
-520.9.
-868.2.
-1736.5,
-3473.0.
-6945.9.
-34.2,
-102.6,
-171.0,
-239.4,
-307.8,
-427.5,
-598.5,
-769.5,
-1026.1,
-1710.1,
-3420.2,
-6840.4.
-13680.8,
-50.0.
-150.0,
-250.0,
-350.0,
-450.0.
-625.0.
-875.0.
-1125.0.
-1500.0.
-2500.0,
-900.0.
-1250.0,
-1750.0,
-2250.0,
-3000.0,
-5000.0,
-10000.0,
-20000.0, •
-40000.0,
-98.5,
-295.4,
-492.4,
-«89.4.
-886.3.
-1231.0.
-1723.4.
-2215.8.
-2954.4,
-4924.0,
-9848.1.
-19696.2,
-39392.3.
-94.0.
-281.9,
-469.8,
-«57.8,
-845.7,
-1174.6,
-1644.5,
-2114.3,
-2819.1,
-4698.5.
-9396.9,
-18793.9,
-37587.7,
-86.6,
-259.8.
-433.0,
-606.2,
-779.4,
-1082.5,
-1515. 5,
-1948.6,
-2598.1,
-4330.1,
243.8.
304.8.
304.8,
298.7,
406.3.
396.2,
396.2.
360.0,
380.0,
207.3.
202.7,
202.7,
274.3.
237.7.
304.8.
292.6,
304.8.
384.0.
415.4,
392.0,
340.0.
360.0.
213.4.
202.7,
202.7,
219.5.
219.5.
280.4.
280.4,
298.7,
371.9,
397.2,
384.0,
340.0,
380.0,
213.4,
202.7.
202.7,
202.7,
202.7,
219. S.
213.4,
231.6,
359.7,
414.5.
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0):
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0):
0.0);
0.0);
0.0);
( 0.0.
( 0.0.
( 0.0,
( 0.0,
0.0,
0.0,
0.0.
0.0.
0.0,
-34.7,
-69. 5,
-104.2,
-131.9.
-173. C,
-260.5,
-347.3,
-434.1,
-694.6.
-1302.4,
-2604.7,
-5209.4.
-8682.4.
-68.4.
-136.8,
-205.2.
-273.6,
-342.0.
-513.0,
-684.0,
-855.1,
-1368.1,
-2565.2,
-5130.3,
-10260.6.
-17101.0,
-100.0,
-200.0,
-300.0,
-400.0.
-500.0.
-750.0,
-1000.0,
-1250.0,
-2000.0.
-3750.0,
-1000.0,
-1500.0,
-2000.0,
-2500.0.
-4000.0.
-7500.0.
-15000.0,
-30000.0.
-50000.0,
-197.0,
-393.9.
-590.9.
-787.8,
-964. t.
-1477.2,
-1969.6,
-2462.0,
-3939.2,
-7386.1,
-14772.1.
-29544.2,
-49240.4,
-187.9.
-375.9.
-563.8.
-751.8.
-939.7,
-1409.5.
-1879.4.
-2349.2.
-3758.8,
-7047.7,
-14095.4.
-28190.8.
-46984.6,
-173.2,
-346.4,
-519.6,
-692.8,
-866.0,
-1299.0,
-1732.1,
-2165.1,
-3464.1.
-6495.2.
298.7,
304.8,
292.6,
365.8,
402.3,
390.1,.
380.0,
380.0.
400.0,
202.7,
202.7,
225.6,
274.3,
292.6,
286.5,
280.4,
353.6.
396.2,
390.1,
360.0.
340.0.
380.0,
202.7,
202.7,
202.7,
24». 9,
280.4.
280.4,
262.1.
353.6.
402.3.
384.0.
340.0,
360.0.
380.0,
202.7.
202.7.
202.7,
202.7,
219.5.
213.4.
231.6.
292.6.
396.2.
396.2.
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
                      IV-3-31
External Review Draft
  Do not cite or quote

-------
                                                      bueb.prt
 ISCCMDEP VERSION 94227


        OPTIONS USD:
trfl stack Modeling,  EPA Region V, Project 1363. MM Cu*
On* •ourc«;  936 receptor* up to SOXM any; Surf an wt.
                      CCNC   KOML  IUV
                                              DPADLT
                                                                                          DRYDPL N1TDPL
           08/25/94
           17:50:05
           PAOI  12
                                    •• DISCKBTB CMtTBSIAN RECEPTORS ••
                                     (X-COORD.  Y-COORD, ZELSV,  ZPLM)
                                                (METERS)
I -5000.0.
( -10000.0.
( -20000.0,
( -64.3,
I -192.1,
-321.4,
-450.0,
-571.5,
-103. S,
-1124.9,
-1446.3,
-1931.4,
-3213.9,
-6427.9,
-12*55. (,
-25711.5,
-76.6,
-229.8,
-383.0,
-536.2,
-689.4,
-957.6,
-1340.6,
-1723.6.
-2298.1,
-3830.2,
-7660.4,
-15320.9.
-30641.8,
-86.6.
-259.8,
-433.0,
-606. 2.
-779.4,
-1082.5,
-1515.5,
-1948.6,
-2598.1.
-4330.1.
-8660.3.
-17320.5,
-34641.0.
-94.0.
-281.9.
-469.8,
-8660.3,
-17320.5.
-34641.0,
-76.6,
-229.8,
-383.0,
-536.2,
-C89.4,
-957.6,
-1340.6.
-1723.6,
-2298.1,
-3830.2,
-7660.4.
-15320.},
-30641.8.
-64.3.
-192.8.
-321.4,
-450.0,
-578.5,
-803.5,
-1124.9.
-1446.3.
-1928.4.
-3213.*,
-6427.9,
-12855.8,
-25711.5,
-50.0,
-150.0,
-250.0,
-350.0,
-450.0,
-625.0.
-875.0.
-1125.0,
-1500.0,
-2500.0,
-5000.0,
-10000.0.
-20000.0.
-34.2.
-102.6.
-171.0,
392.6.
380.0,
360.0,
213.4.
202.7,
202.7,
202.7.
202.7.
202.7,
213.4,
213.4,
371. 9,.
396.2,
378.0.
360.0.
380.0,
213.4,
207.3,
202.7.
202.7.
207.3,
207.3,
207.3,
213.4,
323.1.
3*4.0,
378.0,
380.0.
400.0.
213.4.
213.4,
213.4,
213.4.
213.4.
225.6,
329.2,
286.5,
243.8.
372.5.
402.3,
310.0,
400.0,
213.4,
213.4,
213.4,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
( -7500.0
I -15000.0
( -25000.0
( -128.6
-257.1
-385.7
-514.2
-642.8
-964.2
-1215.6
-1C07.0
-2571.2
-4120.9
->641.8
-19213.6
-3ZU9.4
-153.2
-306.4
-459.6
-612.8
-766.0
-1149.1
-1532.1
-1915.1
-3064.2
-5745.3
-11490.7
-22981.3
-38302.2
-173.2
-346.4
-519.6
-692.8
-866.0
-1299.0
-1732.1
-2165.1
-3464.1
-C495.2
-12990.4
-25980.8
-43301.3
-187.9
( -375.9
( -563.8
-12990.4
-25980.8
-43301.3
-153.2
-306.4
-459.6
-612.8
-766.0
-1149.1
-1532.1
-1915.1
-3064.2
-5745.3
-11490.7
-22981.3
-38302.2
-128.6
-257.1
-385.7
-514.2
-642.8
-964.2
-1285.6
-1607.0
-2571.2
-4820.9
-9641.8
-19283.6
-32139.4
-100.0
-200.0
-300.0
-400.0
-500.0
-750.0
-1000.0
-1250.0
-2000.0
-3750.0
-7500.0
-15000.0
-25000.0
-68.4
-136.8
-205.2
360.0,
360.0.
380.0,
202.7.
202.7. '
202.7,
202.7.
202.7.
213.4,
213.4.
213.4,
378.0,
396.2.
349.0,
360.0.
360.0,
201.2.
207.3,
202.7.
202.7,
207.3,
207.3,
213.4,
256.0,
359.7,
378.0.
360.0.
400.0,
380.0,
213.4,
207.3.
213.4.
213.4,
213.4,
274.3.
310.9,
256.0.
365.8.
378.0,
360.0,
380.0.
340.0,
213.4,
213.4,
213.4,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0))
0.0)1
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
                      IV-3-32
External Review Draft
  Do not cite or quote

-------
                                                         batcb.prt
••  ISCOMDEP VERSION 94227


••  MODELING OPTIONS OSBJ:
NTI «t*ck nodeluw. EPA Region V. Project 1363. Bam Cue
One source; 936 receptor* up to SOKH ew*y; Surface wt.
                        CONC   RURAL  ELTV
                                                  DPMJLT
                                                                                              DRYDPl* METDPL
            08/25/94
            17:50:05
            PAGE  13
                                       •• DISCRETE CARTESIAN RECEPTORS •«
                                        (X-COORD,  IT-COORD,  ZELEV, ZFLAG)
                                                   (METERS)
-657.8,
-845.7,
-1174.6,
-1644.5,
-2114.3,
-2819.1,
-4698.5,
-9396.9,
-18793. 9,
-37587.7,
-98.5,
-295.4,
-492.4,
-689.4,
-886.3,
-1231.0,
-1723.4,
-2215.8,
-2954.4.
-4924.0,
-9848.1,
-19696.2,
-39392.3,
-100.0,
-300.0.
-500.0,
-700.0,
-900.0,
-1250.0,
-1750.0,
-2250.0.
-3000.0,
-5000.0,
-10000.0,
-20000.0,
-40000.0,
-98.5,
-295.4,
-492.4.
-689.4.
-886.3.
-1231.0.
( -1723.4.
( -2215.8.
( -2954.4,
-239.4.
-307.8.
-427.5,
-598.5.
-769.5.
-1026.1,
-1710.1,
-3420.2.
-SS40.4,
-13680.8.
-17.4,
-52.1.
-86.8.
-121. 6.
-156.3,
-217.1,
-303.9,
-390.7,
-S20. 9,
-868.2,
-1736.5,
-3473.0,
-6945.9.
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0.
0.0,
0.0.
0.0.
0.0.
17.4.
52.1.
86.8.
121.6.
1S6.3.
217.1.
303.9.
390.7,
520.9,
213.4.
219.5,
353.6.
341.4,
353.6.
243.8,
359.7,
402.3,
400.0,
400.0,
213.4,
213.4,
213.4,
213.4.
225.6,
359.7,
365.8.
353.6,
353.6,
365.8,
339.9,
380.0.
400.0,
213.4.
213.4.
213.4,
213.4,
243.8,
304.8,
335.3,
371.9,
371.9,
371.9.
360.0,
360.0,
380.0.
213.4,
213.4,
213.4,
225.4.
243.8,
317.0,
298.7,
371.9,
365.8,
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
-751.8.
-939.7.
-1409.5.
-1879.4.
-2349.2,
-3758.8,
-7047.7,
-140*5.4,
-28190.8,
-469(4.6.
-1»7 .0.
-3»3.»,
-590. »,
-7«7.8,
-984.8,
-1477.2.
-1969.6,
-24C2.0,
-3939.2,
-73*6.1,
-14772.1,
-29544.2.
-49240.4.
-200.0.
-400.0,
-600.0,
-800.0,
-1000.0,
-1500.0,
-2000.0.
-2500.0,
-4000.0,
-7500.0,
-15000.0,
-30000.0,
-50000.0,
-197.0,
-393.9.
-590.9.
-717.8,
-9(4.8,
-1477.2,
-1969.6,
-2462.0,
-3939.2,
-273.6,
-342.0,
-513.0,
-684.0,
-855.1,
-1368.1,
-2565.2,
-5130.3,
-10260.6,
-17101.0,
-34.7,
-69.5,
-104.2,
-U0.9.
-173.6,
-260.5.
-347.3,
-434.1,
-694.6.
-1302.4,
-2604.7,
-5209.4,
-8682.4,
0.0,
0.0.
0.0.
0.0.
0.0,
0.0,
0.0.
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
34.7,
69.5,
104.2,
138.9,
173.6.
260.5,
347.3,
434.1,
694.6,
219.5,
213.4,
353.6.
335.3.
304.8.
298.7.
365.8,
310.0.
380.0,
360.0,
213.4.
213.4.
213.4.
219.5,
310.9,
359.7,
371.9,
371.9,
365.8.
390.1,
360.0.
420.0,
400.0,
213.4,
213.4,
213.4,
213.4,
298.7,
304. t.
341.4.
371.9.
378.0,
371.9,
340.0.
3(0.0,
400.0,
213.4,
213.4,
225. C,
237.7,
2«0.4,
304. (,
341.4,
353.6,
353.6,
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
 Volume IV
 Appendix IV-3
                      IV-3-33
External Review Draft
  Do not cite or quote

-------
                                                      bucfe.prt
ISCCHDEP VBtSIOH 94227


MODELING OPTIONS USD:
WTI «uek BOdcling, EPA Region V. Project 1363,  Mm Cu*
On* •ourc«;  936 r«c«ptor« up to SOKK may; Surtac* «.
                     CCMC   RDML  ILEV
                                              DPAULT
                                                                                          DRVDPL WC1SPL
           08/25/94
           17:50:05
           PAGI  14
                                    •• DXSOURC CAKTISIAN UCKPTOKS ••
                                     (X-COOUD, Y-COOKD. ZXLXV. ZFIAB)
                                               (MEnRS)
( -4924.0,
( -9848'.!,
-19696.2,
-39392.3,
-94.0.
-281.9,
-469.8,
-657.8,
-845.7,
-1174.6,
-1644.5,
-2114.3.
-2819.1.
-4698.5,
-93*6.9,
-18793.9,
-37587.7,
-86.6,
-259. 8,
-433.0,
-606.2,
-779.4.
-1082.5,
-1515.5,
-1948.6,
-2598.1,
-4330.1,
-8660.3,
-17320.5,
-34641.0.
-76.6,
-229.8,
-383.0,
-S36.2,
-689.4,
-957.6.
-1340.6,
-1723.6.
-2298.1.
-3830.2,
-7660.4,
-15320.9,
-30641.8.
-64.3.
-192.8.
868.2.
1736.5,
3473.0,
6945.9,
34.2,
102.6,
171.0.
239.4,
307.8, '
427. S,
598.5,
769.5,
1026.1.
1710.1.
3420.2.
6840.4,
13680.8,
50.0,
150.0,
250.0,
350.0,
450.0,
625.0,
875.0,
1125.0,
1500.0,
2500.0.
5000.0,
10000.0,
20000.0,
64.3,
192.8,
321.4,
450.0,
578.5,
803.5,
1124.9,
1446.3,
1928.4.
3213.9,
6427.9,
12855.8,
25711.5,
76.6,
229.8.
378.0.
389.2.
420.0.
380.0,
213.4,
213.4,
225.6.
243.8,
286.5,
317.0,
298.7,
384.0,
378.0,
378.0,
424.9,
360.0,
380.0.
213.4.
219.5,
225.6,
268.2,
310.9,
292.6,
359.7,
371.9,
378.0,
384.0,
426.7,
400.0.
400.0,
213.4,
225.6,
225.6,
268.2,
316.4,
304.6,
353.6,
371.9.
384.0.
384.0,
379.2.
400.0.
400.0.
213.4,
231.6.
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
-7386.1
-14772.1
-29544.2
-49240.
-1«7.
-375.
-5«3.
-7S1.
-»39.
-1409.
-int.
-234*.
-37Si.
-7047.
-140»S.
-28190.
-46914.
-173.
-346.
-519.
-692.
-866.
-1299.
-1732.
-2145.
-34C4.
-6495.
-12990.
-259*0.
-43301.
-153.
-30C.
-459.
-612.
-766.
-1149.
-1532.
-1915.
-3064.
-5745.
-11490.
-229(1.
-38302.
-128.
-257.1
1302.4,
2604.7,
5209.4.
8682.4.
61.4.
136.8,
205.2,
273.6.
342.0.
513.0,
6(4.0,
855.1.
1366.1,
2565.2,
5130.3.
10260.6,
17101.0,
100.0,
200.0,
300.0,
400.0,
500.0.
750.0.
1000.0,
1250.0,
2000.0,
3750.0,
7500.0.
15000.0,
25000.0,
128.6,
257.1.
385.7,
514.2,
642.8,
9<4.2,
1285.6,
1607.0,
2571.2,
4820.9,
9641.8.
19283.6,
32139.4,
153.2,
306.4,
384.0
400.0
380.0
400.0
213.4
219.
225.
274.
298.
298.
3S9.
378.
378.
371.
420.
400.
400.
213.
231.
231.
304.
304.
323.
371.
378.
371.
384.
400.
420.
3SO.
213.
231.
231.
304.
317.
341.
365.
378.
359.
378.
360.
400.
370.
225.
231.
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0):
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0))
0.0);
0.0);
0.0)1
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
.0);
.0);
.0);
.0);
.0)1
.0)1
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
                      IV-3-34
External Review Draft
  Do not cite or quote

-------
                                                      bucb.prt
ISCONMP VEKSICN 94227


        OPTIONS USD:
          HTI »t»ck aocteling,  EPA Region V, Project 1363.  Rue CMC
          Co* •ourc«;  936 r«c«ptors up to  50KM way; Surf»c« wt.
COHC  RURAL  ELIV
          08/25/94
          17:50:05
          PAGE 15
                                                                     DRYDPL NETUPZ.
                                    •• DISCRETE CARTESIAN RECEPTORS ••
                                     (X-COORD,  Y-COORD,  ZELIV. ZFIAG)
                                                (METERS)
-321.4.
-450.0.
-578.5.
-803.5,
-1124.9,
-1446.3.
-1928.4,
-3213.9,
-6427.9,
-12855.8,
-25711.5.
-50.0,
-150.0,
-250.0,
-350.0.
-450.0,
-625.0,
-875.0,
-1125.0,
-1500.0.
-2500.0,
-5000.0,
-10000.0,
-20000.0,
-34.2,
-102.6,
-171.0,
-239.4,
-307.8,
-427.5,
-598.5,
-769.5,
-1026.1.
-1710.1,
-3420.2,
-6840.4,
-13680.8,
-17.4,
-52.1,
-86.8.
-121.6.
-15C.3.
-217.1,
-303.9,
-390.7,
383.0,
536.2,
689.4,
957.6,
1340.6,
1723.6,
2298.1,
3830.2,
7660.4,
15320.9.
30641.8.
86.6,
259.8,
433.0,
606.2,
779.4,
1082. S.
1515.5,
1948.6,
2598.1,
4330.1.
8660.3,
17320.5,
34641.0,
94.0,
281.9,
469.8,
657.8.
845.7,
1174.6.
1644.5,
2114.3,
2819.1,
4698.5,
9396.9,
18793.9,
37587.7,
98.5,
295.4.
492.4.
689.4,
886.3,
1231.0,
1723.4,
2215.8,
225.6,
274.3.
310.9,
317.0,
353.6.
359.7,
384.0,
378.0,
378.0.
400.0,
360.0,
213.4,
231.6,
225.6.
249.9,
304.8,
286.5,
347.5,
353.6.
384.0.
378.0,
371.9.
360.0,
380.0,
213.4,
225.6,
225.6,
262.1.
280.4,
323.1.
359.7.
329.2,
378.0,
371.9,
349.0,
360.0.
370.0,
213.4,
225.6,
225.6,
262.1.
218.7,
335.3,
359.7,
341.4,
0.0);
0.0);
0.0);
• 0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
-385.7.
-514.2.
-6*2.8.
-964.2.
-1285.6,
-1807.0,
-2571.2.
-4820.9,
-9641.8,
-19283.6,
-32139.4,
-100.0,
-200.0,
-100.0.
-400.0,
-500.0,
-750.0,
-1000.0,
-1250.0.
-2000.0.
-3750.0.
-7500.0,
-15000.0,
-25000.0,
-«8.4.
-136.8,
-205.2,
-273.6,
-342.0.
-513.0.
-684.0.
-855.1,
-1368.1.
-2565.2.
-5130.3.
-10260.6,
-17101.0.
-34.7,
-69.5,
-104.2.
-138.9,
-173.6,
-260.5.
-347.3.
-434.1.
459.6,
612.8,
766.0,
1149.1,
1532.1.
1915.1.
3064.2.
5745.3.
11490.7.
22981.3,
38302.2,
173.2,
346.4.
519.6.
C92.8,
866.0.
1299.0.
1732.1.
2165.1.
3464.1.
6495.2.
12990.4.
25980.8,
43301.3,
187.9.
375.9,
563.8.
751.8.
939.7,
1409.5.
1879.4.
2349.2,
3758.8,
7047.7,
14095.4.
28190.8.
46984.6,
197.0,
393.9,
590.9.
787.8.
984.8.
1477.2.
1969.6,
2462.0.
231.6,
304.8,
310.9,
347.5,
•353.6,
365.8.
384.0,
378,0,
380.0,
400.0.
360.0.
225.6,
231.6.
243.8.
243.8.
304.8,
329.2,
353.6,
384.0,
384.0,
365.8,
360.0.
340.0,
350.0,
225.6,
225.6,
243.8,
284.5,
292.6.
353.6.
359.7,
347.5,
385.0,
329.2,
360.0.
340.0,
350.0,
225.6,
225.6,
243.1.
292. S,
298.7,
365.8,
359.7,
378.0.
0.0);
0.01;
0.0);
0.0);
0.0):
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0)1
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
 Volume IV
 Appendix IV-3
                                 IV-3-35
External Review Draft
  Do not cite or quote

-------
                                                               .prt
 ISCOHDBP VERSION 94237


 MODKL3MG OPTIONS USZD:
im stack modeling. EPA Region V. Project 1363. Bue
On* source; 936 receptors up to 50m amy; Surface wt
                       CCNC   RURAL KUV
                   08/25/94
                   17:50:05
                   PACT  16
                                       (X-COORD, Y-COORD. ZILIV, ZFLAG)
                                                   (METERS)
-520.9.
-•61.2.
-1736.5,
-3473.0,
-6945.9,
0.0.
0.0,
0.0.
0.0,
0.0.
0.0,
0.0,
0.0,
0.0,
0.0.
0.0,
0.0,
0.0,
2954.4,
4924.0.
9848.1.
19696.2.
39392.3,
100.0,
300.0.
500.0.
700.0,
900.0,
1250.0,
1750.0,
2250.0,
3000.0.
5000.0,
10000.0,
20000.0.
40000.0.
384.0.
365.8,
339.9.
360.0,
330.0,
213.4,
225.6.
225.6.
256.0,
298.7,
353.6.
341.4,
359.7,
378.0.
359.7.
380.1,
340.0,
350.0,
                                     0.01;
                                     0.0);
                                     0.0):
                                     0.0);
                                     0.0);
                                     0.0);
                                     0.0);
                                     0.0);
                                     0.0);
                                     0.0);
                                     0.0);
                                     0.0);
                                     0.0);
                                     0.0);
                                     0.0);
                                     0.0);
                                     0.0);
                                     0.0);
-69
-130
-260
-520
-8(8:









1
(
(
(
1.
I.
1.
I.
i.
).
).
.
.
,
.
.
.

!c
1.0
(.0
1.0
3939.2
7386.1
14772.1
29544.
49240.
200.
400.
600.
too.
1000.
1500.
2000.
2500.
4000.
7500.
15000.0
30000.0
50000.0
                                           378.0
                                           341.4
                                           340.0
                                           340.0
                                           320.0
                                           225.
                                           225.
                                           237.
                                           210.
                                           292.
                                           323.
                                           317.
                                           359.
                                           3(3.
                                           371.
                                           360.0
                                           380.0
                                           350.0
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
                       IV-3-36
       External Review Draft
          Do not cite or quote

-------
                                                           baeeb.prt
ISCOMDEP VERSION 94227
MODELXMS OPTIONS OSB):  CONC   RDRAL  ELBV
wn »uefc Bodeling. EPA Region V, Project 1363,  Base Cue
            936 receptor* up to 50KM «ny; Surface wt.

                 DFAULT
                                                                                                  DRYDPL
                                                                                                               08/25/94
                                                                                                               17:50:05
                                                                                                               PAGE  17
                                         METEOROLOGICAL UMTS SELECTED FOR PROCESSIK
                                                       (1-YES; 0-NO)
1 1
1 '1
1 1
1 1
1 1
1 1
1 1
111
111
111
111
111
111
111
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1111111111 1111111111 11111111
1111111111 1111111111 11111111
1111111111 1111111111 11111111
1111111111 1111111111 11111111
•1111111111 1111111111 11111111
1111111111 1111111111 11111111
1111111111 1111111111 11111111
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1
1
1
1
1
1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
111
111
111
111
111
111
111
1111
1111
1111
1111
1111
1111
1111
          MOTE:  METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND CM WHAT IS 9KLODED Oi IBS DATA FILE.
                                     BOUND OP FIRST THROU8H FIFTH WIHD SPEED CATEGORIES
                                                     (METEM/SK)

                                          1.54,    3.09.   S.14.   8.23,  10.(0,


                                            •••  KIND  PROFILE EXPONENTS •••
          STABILITY
          CATEGORY
            A
            a
            c
            D
                        .70000E-01
                        .70000E-01
                        .100001*00
                        .1SOOOE*00
                        .3SOOOE+00
                        .550001*00
WIND SPEED CATEGORY
3 3
.70000E-01 .70000E-01
.700001-01 .70000E-01
.10000E*00 .10000E*00
.150001*00 .150001*00
.35000E*00 .35000E»00
.55000E*00 .55000E*00
4
.700001-01
.700001-01
.100001*00
.15000E*00
.35000B*00
.550001*00
                                                .70000B-01
                                                .70000E-01
                                                .10000E*00
                                                .1SOOOE+00
                                                .J5000E»00
                                                .55000E»00
                                            .70000E-01
                                            .700001-01
                                            .lOOOOEfOO
                                            .ISOOOEfOO
                                            .35000E+00
                                            .55000E»00
                                       VERTICAL POTENTIAL TEMPERATURE GRADIENTS
                                              (DECREES KELVIN PER METER)
          STABILITY
          CATEGORY
            A
            B
            C
            D
            E
            F
                                               WHO) SPEED CATEGORY
                        .OOOOOB«00
                        .OOOOOStOO
                        .OOOOOE»00
                        .OOOOOE*00
                        .20000E-01
                        .35000E-01
    .OOOOOE+00
    .OOOOOE»00
    .000001*00
    .OOOOOE-00
    .20000E-01
    .3SOOOE-01
.OOOOOE*00
.OOOOOEtOO
.OOOOOEoOO
.OOOOOE»00
.200001-01
.350001-01
.OOOOOE*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.OOOOOE»00
.OOOOOE»00
.000001*00
.OOOOOE*00
.200001-01
.350001-01
,OOOOOE*00
.OOOOOE»00
.OOOOOE»00
.OOOOOE*00
.20000E-01
.350001-01
Volume IV
Appendix IV-3
                                                          IV-3-37
                                                                 External Review Draft
                                                                    Do not cite or quote

-------
                                                         banb.prc
         VBISION 94227  •••



         OVTZOMS USED:
                       OJK   RURAL  ILBV
wn itaek modeling,  EPA Region V. Project 1363. Bue Cue
One lourc*; 936 receptor* up to  SOUK any;  Surface vc.
                                                 DTADLT
                                                                                              IJRVDVl* WBTDFL
            01/25/94
            17:50:05
                  18
       FILE: depbin.Mt
       SURFACE STATION MO.:  94(23
                     mm: wn
                     YIAK:   1993
                    , DATA •••

                FORMAT: (4I2.2F9.4.M.l.I2.2F7.1.l9.4.ll0.l.f8.4.fS.l.i4.f7.2)
                OFFER AIR STATION HO.:   94823
                                      wn
                                       1993
YEAR
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
MONTH
1
1
'1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DAY HOOK
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
1 11
1 12
1 13
1 14
1 15
1 16
1 17
1 18
1 19
1 20
1 21
1 22
1 23
1 24
FLOW • SPEED
VECTOR (M/S)
104.0 4.47
112.0 5.36
106.0 .47
115.0 .47
120.0 .02
123.0 .36
130.0 .92
124.0 .92
115.0 .47
107.0 .02
113.0 .02
108.0 .47
114.0 .36
107.0 .92
120.0 .92
119.0 .47
118.0 .58
124.0 .68
124.0 .66
113.0 .23
97.0 2.68
113.0 3.13
117.0 3.13
152.0 2.68
TEMP ST
IK) 0.
275.4
274.8
274.0
273.9
273.8
273.3
272.5
271.9
271.0
270.9
270.6
270.9
271.1
271.0
270.8
270.5
270.4
270.4
270.1
270.3
270.3
270.3
270.4
269.9
ISS RURAL
601.
617.
633.
649.
66S.
HI.
697.
713.
729.
745.
761.]
777.]
793. (
809. (
809. (
809.
809.
809.
809.
809.
809.
809. (
809. C
809. C
HEIGHT II
URBAN
601.
617.
633.
649.
665.
681.
697.
713.
729.
745.
L 761.
L 777.
) 793.
) 809.
> 809.
809.
809.
809.
809.
809.
809. (
809. C
809. (
809. C
I) USTAR
(M/S)
0.3366
0.4269
0.3363
0.3363
0.2874
0.4266
0.3820
0.3819
0.3355
0.3534
0.3534
0.3926
0.4712
0.4319
0.3817
0.3354
0.2310
0.1178
0.1178
0.0982
0.1178
0.1374
0.1374
0.1178
M-O LEND
176.
213.
175.
175.
128.
211.
225.
224.
172.
-999.
-999.
-999.
-999.
-999.
223.
172.
81.
29.
29.
29.
29.
29.
29.
29.
TR Z-0 Id
(M) (M)
8 0.3000 1.
1 0.3000 1.
0.3000 1.
0.3000 1.
0.3000 1.
0.3000 1.
0.3000 1.
0.3000 1.
0.3000 1.
D 0.3000 1.
D 0.3000 1.
9 0.3000 1.
9 0.3000 1.
9 0.3000 1.
0.3000 1.
0.3000 1.
0.3000 1.
0.3000 1.
0.3000 1.
0.3000 1.
0.3000 1.
0.3000 1.
0.3000 1.!
0.3000 1.!
IPCODE
5 13
5 0
0
28
28
28
28
i 28
5 28
' 28
S 28
5 28
28
28
28
28
28
28
28
28
0
28
S 0
S 28
PRATE
l»n/HR)
0.00
0.25
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
       STABILITY CLASS 1-A. 2>B, 3-C.  4.D. S-E AND 6-P.
       FLOW VECTOR IS DIRBCTIOH TOWARD WHICH WIHD IS BLOWING.
Volume IV
Appendix IV-3
                      IV-3-38
External Review Draft
  Do not cite or quote

-------
                                                                 baaec.prt



  "• ISCCHDIP VERSION 94227 •••     •••  HTI (tack Bodeling, EPA Region V.  project 1363,  Base Cu*           •••        01/29/94
                                    ••*  on* source, 336 receptors up to 50KM away;  Vapor.                   •••        10:56:41
                       _                                                                                           PACE   1
  ••• MODELING OPTIONS USED:  COMC   RURAL  ELBV          DFAULT


                                           •••     MODEL SETUP OPTIONS SMOKY       •••


 ••Intermediate Terrain Processing  ia Selected

 ••Modal la Setup Po'r Calculation of Average concentration values.

   —  SCAVENGING/DEPOSITION LOGIC  —
 ••Modal Uaaa NO DRY DEPLETION.  DDPLZTE >  T
 ••Model Uaaa NO HET DEPLETION.  MDPLETE -  F
 ••NO MET SCAVENGING Data Provided.
 ••Model Uaea ORIDDED TERRAIN Data  for Depletion Calculations

 ••Model Daea RURAL  Dispersion.

 ••Modal Daea Regulatory DEFAULT Options:
            1.  Final Plua*  Rise.
            2.  Stack-tip Downwesh.
            3.  Buoyancy- induced Diaperaion.
            4.  Use Calsw Processing Routine.
            5.  Not Use Missing Data Processing Routine.
            6.  Default Wind Profile Exponents.
            7.  Default vertical Potential Temperature Gradients.
            1.  'Upper Bound* Values for Superaguat Buildings.
            9.  No Exponential Decay for RURAL Mode

 ••Modal Accepts Receptors  on ELEV Terrain.

 "Model Aaaueaa No  FLAGPOLE Receptor Heights.

 ••Model Accepting Tesperature Profile Data.
  NuBber of  Levels  :            3
     (m  ACL)           30.0000
     Im  AOL)           45.7000
     (m  AOL)           152.400

 ••Model Accepting Mind Profile Data.
  Number of Levels  :            5
     (B  AGL)          30.0000
     (B  AGL)          45.7000
     (a  AGL)           80.8000
     (B AGL)          111.300
     (B AGL)          152.400

 ••Model Calculates  1 Short Term Average (a) of:   1-BR
    and Calculates PERIOD Averages

 ••This Run Includea:    1 Sour eels I;      1 source Group Is I; and    936 Receptor(a)

 ••The Model Assumes A Pollutant Type of:  LEAD

 ••Model Sat To Continue Running After the Setup Testing.

 ••Output Options Selected:
         Model Outputs Tables of PERIOD  Averages by Receptor
         Model Output* Tables of Highest Snort Term Values by Receptor (RECTABLE Keyword)
         Model Outputs Tables of Overall Mairimm Short Term Values (MAXTABLE Keyword)
         Model Outputs External Filela)  of  High Values for Plotting (PLOTFILE Keyword)

 ••NOTE:   The Following Flaga May Appear  Following CONC Valuea:  c for Calm Hours
                                                               B for Missing Hours
                                                               b for Both Cala and  Missing Hours

 ••Misc.  Inputs:  Anaai. Hgt. (B)  -  . 30.00  ;    Decay Coef . -   0.0000     ;     Rot. Angle -     00
"Input RuaatreaB Pile:  naaec.inc                               ,   —output Print  File: baaec.con
••Detailed Error /Massage Pile:   ERRORS. OUT
    Volume IV                                                                                       External Review Draft
    Appendix IV-3                                         IV-3-39                                  Do not cite or quote

-------
                                                            bucc.prt


••*  XSCOMDEP VERSION 94237 •••    *••  NTI stack modeling,  EPA Mgion V,  Project 1363, B*n C«M          •••       08/29/94
                                •••  On* «ourc«; 936 xM«ptox> up to SOKM may; Vapor.                  •••       10:56:41
                                                                                                             not   2
...  irmiynn OFTXCNS OSED:  owe  wnuu.  ILIV         DFADLT
                                            ••• POINT SODRCE DMA •••



           MUMBUt EMISSION MTE                  BASE    STACK   STACK    STACK    STACK    KRLDINS EMISSION RATE
  SOURCE     PART.   (GRAMS/SBC)     X       Y      ELEV.    HEIGHT  TCMP.   EXIT VEL. DIAMETER   EXISTS   SCALAR VARY
    ID       CATS.               (METERS)  (METERS) (METERS)  (METERS]  (DEG.K)  (M/SEC)  (METERS)                BY



 MTTSTACK      0  0.100001*01      0.0      0.0   212.1   45.70   3*7.00    17.74     1.S3     YES
   Volume IV                                                                                 External Review Draft
   Appendix IV-3                                      FV-3-40                                 Do not cite or quote

-------
                                                          baMc.prt



 •*•  ISCOHUP VBSXCN 94227 •••    *••  WTI »t»ck nodeling. EPA Region V. Project 1363. Bam CM*          •••       08/29/94
                               •••  One source; 936 recepcor* up to SOnt any; Vapor.                 •"       10:56:41
                                                                                                         PACT   3
 ...  MODBJNG OPTIONS USB):  CCMC   KORU.  tUCV         DTADLT
                                     ••• SOOltCE ID* DEFDHMG SODRCI GROOPS


GROUP ID                                           SOURCE XX*




 ALL       MTISTACK.
    Volume IV                                                                             External Review Draft
    Appendix IV-3                                     IV-3-41                               Do not cite or quote

-------
                                                      bucc.prt


ISCCMMP VERSION 94227  •••    •••  HTI «uek BedBlina, EPA Mgioa V, Project 13S3.  Bu« Cu«          •••       08/29/94
                           •••  Cm »ourc«; 936 r«c«ptor« up to 50XM «nv; V«por.                  •••       10:56:41
                                                                                                     MOT   4
       s OTTIOMS DSD:  COHC   KOKAL  ZLKV         DTAOLT


                                               PAKTICOlAn/Q»S DABk •••
    ••• SODXCE ID - HTISTACK; SOURCE TCPI -   POINT

    SCAV COEP [UQ] 1/IS-IM/KR)-
    0.001*00,

    SCAV COST [JCB] l/IS-MI/KRI-
    O.OOBfOO.
Volume IV                                                                              External Review Draft
Appendix IV-3                                     IV-3-42                               Do not cite or quote

-------
 ••• ISCOMDEP VERSION 94227 •••
                                                          buvc .prt
                                   MTI (tack nodaling. EPA Region V. Project 1363, B
                                   On* aourcc 936 raeaptora up to  50KM avay; Vapor.
    MODELING OPTIONS USED:  COMC   EORAL  ELEV
                                                 08/29/94
                                                 10:36:41
                                                 PACE   5
                                        DIRECTION SPECIFIC BUILDING DIMENSIOHS
SOURCE ID:  MTISTACK
IFV BH
1 29.1,
7 24.4,
13 29.1,
19 29.1,
25 24.4,
31 29.1,
BH MAK
26.9, 0
26.0, 0
32.3, 0
26.9, 0
26.0, 0
32.3. 0
IFV BH
2 29.1,
8 29.1.
14 29.1,
20 29.1,
26 25.8,
32 29.1,
BH WAX
24.7 0
22.6 0
31.8 0
24.7 0
24.8 0
31.8 0
IFV BH
3 29.1.
9 29.1,
IS 29.1.
21 29.1.
27 29.1.
33 29.1.
BH KAK
21.8 0
25.8 0
30.9 0
21.8 0
25.8 0
30.9 0
IFV BH
4 25.8,
10 29.1.
16 29.1.
22 25.8.
28 29.1.
34 29.1,
BH HAK
27.6 0
28.8 0
29.6 0
27.6 0
28.8 0
29.6 0
IFV BH
5 24.4,
11 29.1.
17 29.1,
23 25.8.
29 29.1,
35 29.1.
27.0, 0
30.9, 0
29.3. 0
26.1, 0
30.9. 0
29.3. 0
IFV BH
6 24.4.
12 29.1,
18 29.1,
24 25.8,
30 29.1,
36 29.1.
BW HAK
24.6, 0
32.1. 0
28.2, 0
23.8. 0
32.1. 0
28.2, 0
    Volume IV
    Appendix IV-3
IV-3-43
External Review Draft
  Do not cite or quote

-------
ISCOMDEP VBISICH 94227


        OffTZOMS USD:
WTI itmek Modeling, EM tagion V.  Project 1363.
On* soura; 936 r»c«pter» up to 50KM nay; Vapor.
                     CCHC   CORAL  «UV
                                              DFADLT
           Ot/29/94
           10:56:41
                 t
                                   •• DXSCMR CAKTESIMI
                                    (X-COORD, r-COORD,  ZILSV
                                               (METERS)
                            ZFLMi)
( 17-.4,
52.1,
86.8,
121.6,
156.3.
217.1,
303.9,
390.7,
520.9,
868.2,
1736.5,
3473.0,
6945.9.
34.2.
102.6.
171.0.
239.4.
307.8.
427.5.
598. 5,
769.5,
1026.1,
1710.1,
3420.2.
6840.4.
13610.8,
50.0,
150.0.
250.0.
350.0,
450.0.
625.0,
875.0,
1125.0,
1500.0.
2500.0,
5000.0,
10000.0.
20000.0,
64.3.
192.8.
321.4,
450.0,
578.5.
803.5,
98.5
295.4
492.4
689.4
886.3
1231.0
1723.4
2215.8
2954.4
4924.0
9848.1
19696.2
39392.3
94.0
281.9
469.8
657.8
845.7
1174.6
1644.5
2114.3
2819.1
4698.5
9396.9
18793.9
37587.7
86.6
259.8
433.0
606.2
779.4
1082.5
1515.5
1948.6
2598.1
4330.1
8660.3
17320.5
34641.0
76.6
229.8
3S3.0
536.2
689.4
957.6
213.4,
225.6,
225.6.
243.8.
280.4.
353.6.
310.9,
353.6,
347.5.
341.4,
360.0.
340.0.
350.0.
213.4,
225.6.
225.6,
237.7,
256.0,
329.2,
335.3,
353.6.
362.4,
359.7,
385.9.
340.0.
380.0,
213.4.
225.6.
225.6.
225.6,
243.8.
225.6,
359.7.
353.6.
323.1.
366.7,
396.2.
360.0.
370.0,
213.4.
225.6,
225. C.
225.6,
225.6,
280.4,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
4.0);
O'.O);
0.0);
34.7, 197.0,
69.5, 393.9.
104.
138.
173.
260.
347.
434.
494.
1302.
2604.
520*.
8612.
(1.
136.
205.
273.
342.
590.9.
787.8.
984.8.
1477.2.
1969.6,
2462.0,
3939.2,
738C.1,
14772.1,
29544.2,
49240.4.
M7.9,
375.9.
$63.8.
751.8,
939.7.
513.0. 1409.5.
684.0. 1879.4,
855.1. 2349.2,
1368.1, 3758.8.
2565.2. 7047.7.
5130. . 14095.4.
10260. . 28190.8.
17101. . 46984.6,
100. . 173.2,
200. , 346.4,
300. , 519.6,
400. . 692.8,
500. , 866.0,
750.0. 1299.0.
1000.0. 1732.1,
1250.0, 2165.1,
2000.0, 3464.1,
3750. , 6495.2,
7500. . 12990.4,
15000. . 25980.8.
25000. , 43301.3.
128. , 153.2.
257. , 306.4.
< 315.7. 459.6,
( 514.2, 612.8,
( 642.8, 766.0.
( 964.2. 1149.1,
225.6.
225.6.
225.6.
256.0, '
286.5.
353.6.
347.5.
359.7,
341.4,
365.8,
340.0,
360.0,
360.0,
225.C,
225.6,
225.6,
243.8.
286.5.
347.5,
347.5.
359.7.
329.2.
369.7,
340.0,
360.0,
390.0,
219.5,
225.6,
223. C,
231.6.
262.1.
347.5.
353.6.
329.2,
361.2.
378.0,
320.0,
380.0.
400.0,
213.4.
225.6.
225.6.
225.6,
243.8,
353.6,
0.0);
0.0);
0.0);
0.0);
0,0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
                      IV-3-44
External Review Draft
  Do not cite or quote

-------
                                                          .prt
        1 VBtSICM 94227


 MODELIMB OPTIONS USED:
WTI (tack »od«ling, EPA tagion V,  Project 1363.  Bu*
Om mouic*:  936 r«c«pcor» up to 50KM «ny; Vapor.
                      CCMC   RURAL  CLIV
            08/29/94
            10:56:41
            PACT   7
                                    •* DISCUR CARTISIAH !
                                     (X-COORD. Y-COORD. ZSLKV, ZPUG)
                                               (HETTOS)
1124.9,
1446.3.
1928.4.
3213.9.
6427.9.
12655.8,
25711.5.
76.6,
229.8,
383.0.
536.2.
( 689.4.
( 9S7. 6.
( 1340.6.
( 1T23.6,
2298.1,
3830.2,
7660.4,
15320.9.
30641.8.
86.6.
259.8.
433.0,
606.2,
779.4,
1082.5,
1515.5,
1948.6.
2598.1.
4330.1.
8660.3,
17320.5,
34641.0,
94.0.
281.9,
469.8,
657.8,
845.7,
1174.6,
1644.5,
2114.3.
2819.1,
4698.5,
9396.9,
18793.9,
1340.6,
1723.6.
2298.1,
3830.2,
7660.4,
15320.9,
30641.8,
64.3,
192. «.
321.4,
450.0,
578. 5,
803.5,
1124.9,
1446.3,
1928.4.
3213.9,
6427.9,
12855.8,
25711.5.
SO.O,
150.0,
250.0.
350.0,
450.0.
625.0.
875.0.
1125.0,
1500.0.
2500.0,
5000.0.
10000.0,
20000.0,
34.2,
102.6.
171.0,
239.4,
307.8,
427.5,
598.5.
769.5,
1026.1,
1710.1,
3420.2.
6840.4,
361.5,
353.6,
335.3.
353.0,
398.4,
380.0,
420.0.
213.4.
213.4,
219.5,
219.5.
225.6.
219.5,
353.6,
335.3,
347.5,
335.3,
396.2,
380.0.
420.0,
213.4,
207.3,
207.3,
213.4,
213.4,
225.6,
243.8.
310.9.
317.0,
359.7.
408.7.
360.0,
380.0.
207.3.
202.7.
207.3.
207.3,
213.4.
213.4.
213.4,
213.4,
231.6.
384.0,
370.3.
380.0.
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
1285.6.
1607.0,
2571.2,
4820.9.
9641.8.
19283.6.
32139.4.
153.2.
306.4,
459.6,
612.8,
766.0.
1149.1,
1512.1,
U1S.1,
3064.2,
5745.3,
11490.7,
22981.3,
38302.2.
173.2,
346.4.
519.6.
692.8.
•66.0,
1299.0,
1732.1,
2165.1.
3464.1,
6495.2,
12990.4,
25980.8.
43301.3.
187.9.
375.9,
563.8,
751.8,
939.7,
1409.5,
1879.4,
2349.2.
3758.8,
7047.7,
14095.4.
28190.8.
1532.1,
1915.1,
3064.2,
5745.3.
11490.7,
22981.3,
38102.2.
128.6.
257.1,
185.7,
514.2.
642.8,
964.2,
1285.6,
1C07.0,
2571.2.
4820.9,
9641.8.
19283.6.
32139.4,
100.0,
200.0,
300.0,
400.0,
500.0.
750.0.
1000.0.
1250.0,
2000.0,
3750.0,
7500.0,
15000.0,
25000.0,
68.4,
136.8.
205.2,
273.6.
342.0,
513.0.
684.0,
855.1.
1166.1.
2S65.2.
5130.3,
10260.6,
353.6.
353.6.
353.9.
378.0.
376.0.
360.0.
420.0,
207.3,
219.5.
219.5.
219.5.
219.5,
321.1.
151.6,
347.5.
141.4,
171.1,
160.0,
180.0,
420.0.
207.1,
201.2.
213.4,
213.4,
219.5,
219.5.
292.6,
323.1,
323.1,
178.9,
180.0,
160.0.
420.0,
201.2,
202.7,
207.1.
211.4,
213.4,
211.4,
211.4,
211.6,
110.9.
1(4.0,
160.0,
400.0,
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
                     IV-3-45
External Review Draft
  Do not cite or quote

-------
                                                      baMc.prt
 1SCOHDD VERSION 94327


         OPTIONS US1D:
WTI stack Boteline. EPA Mgion V.  Project 1363,
Cn* •ourc«;  936 r«c«ptor» up to SOX* amy; v«por.
                                          Ban Cam
                      CONC   RDRM.  EL«V
           01/29/94
           10:56:41
           PAOI   I
                                    •• DISCRIR CARTISZMI 1
                                     U-COORD, Y-COOKD, ZILBV. ZFIAB)
                                               (METERS)
37587.7,
91. 5,
295.4,
492.4,
6*9.4,
886.3,
1231.0,
1723.4.
2215. «,
29S4.4,
4924.0.
9S4t.l,
196*6.2,
39392.3,
100.0,
300.0,
500.0,
700.0,
900.0,
1250.0.
1750.0,
2250.0,
3000.0,
5000.0,
10000.0,
20000.0,
40000.0.
9*. 5,
295.4.
492.4.
689.4,
886.3,
1231.0,
1723.4,
2215.8,
2954.4,
4924.0,
9848.1,
19696.2.
39392.3,
94.0,
281.9,
469.8.
657.8,
845.7,
13680.8,
17.4.
52.1,
86.8,
121.6,
156.3.
217.1.
303.9, .
390.7,
520. 9.
868.2,
1736.5.
3473.0.
6945.1,
0.0,
0.0.
0.0.
0.0,
0.0.
0.0.
0.0.
0.0,
0.0.
0.0.
0.0,
0.0,
0.0.
-17.4,
-52.1,
-86.8.
-121.6.
-156.3,
-217.1,
-303.9.
-390.7.
-520.9.
-868.2.
-1736.5.
-3473.0,
-6945.9,
-34.2,
-102.6,
-171.0,
-239.4,
-307.8,
360.0,
207.3,
202.7,
202.7,
202.7.
202.7,
202.7,
313.4,
207.3,
304.8.
365.8,
371.9,
3(0.0,
380.0,
307.3.
302.7,
202.7,
202.7,
202.7,
243.8,
333.1,
304.8,
310.9,
402.3,
380.1.
360.0,
400.0,
207.3.
202.7.
202.7.
202.7,
225.6.
347.5.
323.1,
341.4,
347.5.
38C.S.
360.0,
380.0,
380.0.
207.3.
202.7,
202.7,
256.0.
286.5,
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
46984.6.
197.0.
393.9.
590.9.
787.8,
984.8.
1477.2.
1969.6,
2463.0.
3939.2,
7386.1,
14772.1,
29544.2,
49240.4,
300.0,
400.0.
600.0.
800.0,
1000.0.
1500.0,
2000.0.
2500.0,
4000.0,
7500.0,
15000.0,
30000.0,
50000.0,
197.0.
393.9,
590.9,
787.8,
984.8,
1477.2,
1969.6,
2462.0,
3939.2,
7386.1,
14772.1,
29544.3,
49340.4,
187.9,
375.9,
563.8,
751.8,
939.7,
17101.0,
34.7,
69.5.
104.2,
138.9,
173.6.
260.5.
347.3,
434.1,
694.6,
1302.4.
2604.7.
5209.4,
8682. 4,
0.0,
0.0,
0.0,
0.0.
0.0.
0.0,
0.0,
0.0,
0.0,
0.0,
0.0.
0.0,
0.0.
-34.7,
-69.5.
-104.2,
-138.9,
-173.6.
-260.5.
-347.3,
-434.1,
-694.6,
-1302.4,
-2604.7,
-5209.4.
-8682.4.
-68.4,
-136.1,
-205.2.
-273.6.
-342.0,
400.0,
202.7,
202.7,
202.7,
202.7,
202.7.
202.7',
207.3.
231.6.
346.6.
384.0.
320.0,
380.0.
400.0,
202.7,
202.7,
202.7,
202.7,
202.7.
341.4,
341.4,
292.6,
359.7,
347.5.
3CO.O,
380.0.
360.0,
202.7.
202.7,
202.7.
219.5.
329.2.
353.6.
341.4.
323.1,
353.6,
353.6.
340.0.
380.0.
400.0.
202.7,
203.7,
213.4,
298.7.
323.1,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
.0);
.0);
.0);
.0);
.0);
.0);
.0);
.0);
.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0):
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
                     IV-3-46
External Review Draft
  Do not cite or quote

-------
                                                        bwce.prt
XSCCMDCP VERSION 94227


MODSX.XMB OPTIONS USED:
NTT cuek Bodcling, ZPA Itogion V. Project 1363,  Bu*
On* •aura; 936 receptor* up to 5OHM may; Vapor.
                      CMC   nnui.  «LIV
                                                DPAOLT
            08/29/94
            10:56:41
            MOI   9
1174.6, -427.5,
1644.5, -598.5,
2114.3, -769.5,
2819.1, -1026.1,
4698.5, -1710.1.
9396.9, -3420.2.
18793.9, -«840. ,
37587.7. -13680. .
86.6. -50. .
259.8. -ISO. ,
433.0. -250. ,
606.2, -350. .
779.4. -450. .
1082.5, -625. ,
1515.5, -875. .
1948.6. -1125.0.
2598.1, -1500.0,
4330.1, -2500.0,
8660.3, -5000.0,
17320.5, -10000.0,
34641.0, -20000.0,
76.6, -64.3,
229.8, -192.8,
383.0, -321.4,
536.2. -450.0,
689.
957.
1340.
1723.
2298.
3830.
7660.
15320.
30641.
64.
192.
321.
450.
578.
803.
1124.
1446.
1928.
3213.
6427.
-578.5,
-803.5,
-1124.9,
-1446.3.
-1921.4,
-3213.9,
-6427.9,
, -12855.8,
, -25711.5,
-76.6,
-229.8,
-383.0,
-536.2,
-689.4,
-957.6,
-1340.6,
-1723.6.
-2298.1.
-3830.2,
-7660.4,
347.5,
310.9,
350.2,
347.5.
371.9.
408.4.
360.0,
360.0,
207.3,
202.7.
213.4.
317.0.
353.6.
310.9.
335.3.
359.7,
365.8,
353.6.
396.2,
380.0,
360.0,
207.3,
202.7,
243.8,
323.1.
353.6,
353.6,
341.4.
353.6.
359.7,
359.7,
408.4.
360.0.
360.0,
207.3,
202.7,
268.2,
310.9.
329.2.
347.5,
329.2,
353.6,
408.4,
371.9,
390.1,
0.0);
0.0);
0.0);
. 0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
*•• DISCRETE CM
(X-COORD, Y-CI
(1
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
ETISIMi RKB
X)RO, ZSXSV,
OTZRSI
1409.5,
1879.4,
2349.2,
3758.8,
7047.7,
14095. ,
28190. ,
46984. .
173. ,
346. .
SI*. .
692. ,
866. .
12»». 0,
1732.1,
2165. 1,
3464.1,
6495.2,
( 12990.4,
25980.8,
43301.3,
153.2,
306.4,
459.6,
612.8,
766.0.
114*. 1,
1532.1,
1915.1.
3064.2,
574S.3.
11490.7.
22981.3,
38302.2,
128.6,
257.1,
385.7.
514.2.
642.8.
964.2.
1285.6,
1607.0.
2571.2.
4820.9.
9641.8,
(TORS •••
ZFLtt)

-513.0,
-684.0,
-855.1,
-1368.1,
-2565.2.
-5130.3,
-10260.6,
-17101.0,
-100.0.
-200.0.
-300.0.
-400.0,
-500.0.
-750.0,
-1000.0.
-1250.0,
-2000.0,
-3750.0,
-7500.0,
-15000.0,
-25000.0.
-128.6.
-257.1,
-365.7.
-514.2.
-642.8.
-964.2,
-1285.6,
-1607.0,
-2571.2,
-4820. ,
-9641. ,
-19283. ,
-32139. .
-153. .
-306. ,
-459. .
-612. ,
-766.0,
-1149.1,
-1532.1,
-1915.1,
-3064.2,
-5745.3,
-11490.7,



347.5
353.6
347.5
345.9
•365.8
380.0
360.0
360.0
202.7
202.7
268.2
347.5
347.5
359.7
359.7
347.5
359.7
402.3
380.0
360.0
360.0
202.7
202.7
298.7
353.
353.
359.
353.
341.
359.
408.
380.
360.
360.
202.
202.
304.
323.
323.
359.
359.
35*.
420.
392.0
340.0
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);.
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0)1
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
                                                                                      0.0);
Volume IV
Appendix IV-3
                       IV-3-47
External Review Draft
  Do not cite or quote

-------
*•• XSCOKDBP VERSION 94227



••• MODEL1MS OfTIONS DSBD:
tm »t«ck •od.ling.  SPA Melon V,  Project 1363,
On* »ourc«;  936 r»c«ptor« up to 50m «ny; Vapor
                        CCK   R0ML  IL1V
                                                 DPAOLT
           OR/29/94
           10:56:41
           mat 10
                                       •• DISCRETE CARTESIAN UCEPTOHS ••
                                        U-COORD, Y-COORP. ZEUV. ZHAO I
                                                  Hams)
12895.8,
25711.5,
50.0,
150.0,
250.0,
350.0,
450.0,
625.0,
875.0,
1125.0,
1500.0,
2500.0,
SOOO.O,
10000.0,
20000.0.
34.2,
102.6.
171.0.
239.4.
307.8,
427.5,
598.5.
769.5,
1036.1.
1710.1.
3420.2,
6840.4,
13680. a.
17.4.
52.1.
86.8,
121.6.
156.3.
217.1.
303.9,
390.7,
520.9.
868.2.
1736.5,
3473.0.
6945.9.
0.0.
0.0,
0.0,
0.0,
-15320.9
-30641.8
-86.6
-259.8
-433.0
-606.2
-779.4
-1082.5
-1515.5
-1948.6
-J5J8.1
-4330.1
-8660.3
-17320.5.
-34641.0
-94.0
-281.9
-469.8
-657.8
-845.7
-1174.6
-1644.5
-2114.3
-2819.1
-46*8.5
-9396.9
-18793.9
-37587.7
-98.5
-295.4
-492.4
-689.4
-886.3
-1231.0
-1723.4
-2215.8
-2954.4
-4924.0
-9841.1
-19696.2
-39392.3
-100.0
-300.0
-500.0
-700.0
380.0,
400.0,
207.3,
202.7.
268.2.
310.9,
323.1,
298.7,
341.4,
365.8.
408.4.
408.4.
396.2,
360.0.
400.0.
207.3.
202.7.
268.2,
304.8,
286.5,
304.8,
304.8.
359.7,
396.2,
411.5.
401.1,
360.0.
400.0,
207.3.
202.7.
249.9,
280.4,
28C.5,
298.7.
304.8,
296.7,
402.3.
414.5,
398.1,
360.0.
400.0,
207.3.
202.7.
219.5.
280.4,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0)1
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
, 0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
19283.6.
32139.4.
100.0,
200.0,
300.0,
400.0,
500.0,
750.0,
1000.0,
1250.0.
2000.0.
3750.0,
7500.0,
15000.0,
25000.0.
•8.4.
136.8.
205.2.
273.6,
342.0,
513.0.
684.0.
855.1,
1368.1,
2565.2,
5130.3,
10260.6,
17101.0,
34.7,
69.5.
104.2.
138.9.
173.6,
260.5.
347.3,
434.1.
694.6,
1302.4,
2604.7,
5209.4.
8682.4.
0.0,
0.0,
0.0,
0.0,
-22981.3,
-38302.2,
-173.2.
-346.4.
-519.6.
-692.6,
-666.0,
-1299.0,
-1732.1,
-2165.1,
-3464.1,
-6495.2,
-12990.4,
-25980.8,
-43301.3,
-187.9,
-375.9,
-563. 8,
-751.8.
-939.7.
-1409.5.
-1879.4.
-2349.2.
-3756.6,
-7047.7,
-14095.4.
-28190.8,
-46984.6.
-197.0,
-393.9,
-590.9.
-787.8.
-984.8.
-1477.2.
-1969.6,
-2462.0,
-3939.2.
-7386.1,
-14772.1,
-29544.2,
-49240.4,
-200.0.
-400.0.
-600.0,
-800.0,
400.0,
380.0,
202.7,
213.4.
298.7.
323 :l.
329.2,
341.4,
359.7,
371.S,
420.6,
408.4,
340.0,
430.0.
400.0,
202.7. I
207.3. <
292.6,
304.8, I
286.5. (
310.9. I
335.3. 1
378.0, I
402.3, (
402.3, <
360.0, I
420.0. 1
430.0.
302.7.
202.7.
286.5.
274.3.
3*6.5.
304.6.
298.7,
365.8,
390.1.
408.4.
380.0.
400.0.
400.0,
202.7,
202.7,
274.3. (
274.3. (
1.0};
3.0);
3.0);
3.0);
9.0);
3.0);
3.0);
3.0);
9.0);
3.0);
9.0);
3.0);
3.0);
).0);
).0);
).0);
).0);
3.0);
>.0);
>.0);
).0);
).0);
1.0);
).0);
1.0);
).0);
1.0);
.0);
.0);
.0);
.0);
.0);
.0);
.0);
.0);
.0);
.0);
.0);
.0);
.0)!
.0);
.0);
.0);
1.0);
>-0);
   Volume IV
   Appendix IV-3
                      IV-3-48
External Review Draft
  Do not cite or quote

-------
                                                       baMC.prc
         VERSION 94227

 MODEUMG OFTZGHS DSKD:
HTI (tack Bodclina, EPA Region V. Project 1363,  Bu«
           936 r»c«peor« up eo 50XM may; Vapor.
                      CCMC  RURAL  «LIV
            08/29/94
            10:56:41
            PAGE  11
                                     •• DISCRETE CARTESIAN RECEPTORS ••
                                      (X-COORD, Y-COORD. ZKLBV, ZFLMi)
                                                (METERS)
( 0.0,
( 0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
-17.4,
-55.1.
-86.1.
-121.6,
-1S6.3,
-217.1,
-303.9,
-390.7,
-520.9,
-868.2,
-1736.5,
-3473.0,
-6945.9,
-34.2,
-102.6,
-171.0,
-239.4,
-307.8.
-427.5,
-598.5.
-7C9.5,
-1026.1,
-1710.1,
-3420.2.
-6840.4,
-13680.8,
-50.0,
-150.0.
-250.0,
-350.0,
-450.0,
-625.0.
-87S.O,
-1125.0,
-1500.0,
-2500.0,
-900.0,
-1250.0,
-1750.0,
-2250.0,
-3000.0.
' -SOOO.O,
-10000.0.
-20000.0,
-40000.0,
-98.5.
-295.4.
-492.4.
-689.4.
-886.3.
-1231.0,
-1723.4,
-2215.8,
-2954.4,
-4924.0,
-9848.1,
-19696.2,
-39392.3,
-94.0,
-281.9,
-469.8,
-657.8.
-845.7,
-1174. C.
-1644.5.
-2114.3.
-2819.1,
-4698.5,
-9396.9,
-18793.9,
-37587.7,
-86.6,
-259.8,
-433.0,
-606.2.
-779.4,
-1082.5,
-1515.5.
-1948.6,
-2598.1,
-4330.1.
243.8,
304.8,
304.8,
298.7,
406.3,
396.2.
396.2.
360.0,
380.0.
207.3.
202.7,
202.7,
274.3.
237.7.
304.8.
292.6,
304.8,
384.0,
415.4,
392.0.
340.0,
360.0,
213.4,
202.7.
202.7,
219.5,
219.5,
280.4,
280.4,
298.7,
371.9.
397.2,
384.0,
340.0,
380.0,
213.4,
202.7,
202.7,
202.7,
202.7,
219.5.
313.4,
231.6.
359.7.
414.5,
0.0);
0.0);
0.0);
0.0):
0.0);
0.0);
0.0):
0.0);
0.0);
0.0):
0.01:
0.0);
0.0);
O.Oli
0.0):
0.0);
0.0);
0.0):
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.01;
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0,
0.0,
0.0.
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
-34.7.
-M.S.
-104.2,
-138.9.
-173. C.
-260.5,
-147.3,
-434.1,
-694.6,
-1302.4,
-2604.7,
-5209.4,
-8C82.4,
-68.4,
-136.8,
-20S.2,
-273.6.
-342.0.
-513.0,
-684.0.
-85S.1.
-1368.1,
-2565.2,
-5130.3,
-10260.6,
-17101.0,
-100.0.
-200.0.
-300.0,
-400.0,
-500.0.
-750.0,
-1000.0,
-1250.0,
-2000.0,
-3750.0,
-1000.0,
-1500.0,
-2000.0,
-2500.0,
-4000.0,
-7500.0,
-15000.0.
-30000.0,
-50000.0.
-197.0,
-393.9,
-590.9,
-787.8,
-984.8,
-1477.2.
-19C9.6.
-2462.0.
-3939.2,
-7386.1,
-14772.1.
-29544.2.
-49240.4.
-187.9,
-375.9,
-563.8,
-751.8,
-939.7,
-1409.5,
-1879.4.
-2349.2.
-3758.8,
-7047.7,
-14095.4,
-28190.8,
-46984.6,
-173.2,
-346.4,
-519.6,
-692.8.
-866.0,
-1299.0,
-1732.1,
-2165.1,
-3464.1,
-6495.2.
298.7,
304.8,
292.6,
365. 8,
402.3,
390.1.
380.0,
380.0,
400.0.
202.7.
202.7,
225.6.
274.3.
292. C.
286.9,
280.4,
353.C,
396.2.
390.1,
360.0,
340.0,
380.0,
202.7.
202.7,
202.7,
249.9.
280.4.
280.4,
262.1.
353. (.
402.3,
384.0,
340.0.
360.0,
380.0,
202.7,
202.7,
202.7.
202.7.
219.5.
211.4.
231.4,
292.6.
39S.2.
396.2.
0.0);
0.0);
0.0);
0.0);
0.0):
0.0);
0.0);
0.0);
0.0);
0.0):
0.0);
0.0);
0.0);
0.0);
0.0)1
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0)i
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0)1
0.0);
0.01;
0.0);
0.0);
Volume IV
Appendix IV-3
                     IV-3-49
External Review Draft
  Do not cite or quote

-------
                                                       buvc.prt
ISCOMDEP VBRSICN 94227 •••



itDniLTMB OPTIONS OSID: COHC
                                HTI itmek Modeling, DA Mgien V, Projoct 1363,  Bu* Cue
                                On* soura; 936 r«e«pto» up to SOKM away; Vapor.
                             ROML  BJV
                                               DFAOLT
                                                 08/29/94
                                                 10:56:41
                                                 mat  12
                                     •• DISCRETE CARTESIAN KECEPTOM ••
                                      (X-COORD, Y-COORD. IELEV, XPLftC)
                                                (METERS)
-5000.0,
-10000.0.
-20000.0,
-64.1,
-192.8,
-321.4,
-450.0.
-578.5.
-803.5.
-1134.9,
-144C.3.
-1928.4.
-3213.9,
-6427.9,
-128SS.8.
-25711.5,
-76.6,
-229.8,
-383.0.
-536.2.
-689.4.
-957. 6,
-1340.6.
-1723.6,
-2298.1.
-3830.2.
-76C0.4,
-15320.9,
-30641.8,
-86.6.
-259.8.
-433.0,
-606.2,
-779.4,
-1082.5,
-1515.5,
-1948.6,
-2598.1,
-4330.1,
-8660.3.
-17320.5.
( -34641.0.
-94.0,
-281.9,
-469.8,
-8660.3.
-17320.5.
-34641.0.
-76.6,
-229.8,
-383.0.
-536.2,
-C89.4,
-957.6,
-1340. C,
-1723. (,
-2298.1.
-3830.2.
-7660.4.
-15320.}.
-30641.8.
-64.3.
-192.8,
-321.4,
-450.0,
-578.5.
-803.5.
-1124.9,
-1446.3.
-1928.4,
-3213.9,
-6427.9,
-1285S.8,
-25711.5.
-50.0,
-150.0,
-250.0.
-350.0.
-450.0,
-625.0.
-875.0,
-1125.0,
-1500.0,
-2500.0,
-5000.0,
-10000.0,
-20000.0,
-34.2,
-102.6,
-171.0,
392.6.
380.0,
360.0,
213.4.
202.7,
202.7.
202.7,
202.7,
203.7,
213.4.
213.4,
371.9,
396.2,
371.0.
360.0,
380.0,
213.4,
207.3,
202.7.
202.7,
207.3,
207.3,
207.3.
313.4,
323.1.
384.0.
378.0,
380.0,
400.0,
213. 4.
213.4.
213.4.
213.4,
213.4,
335.6.
329.2.
286.5.
243.8,
373.5,
402.3,
380.0.
400.0,
313.4.
313.4.
213.4,
0.0);
0.0);
0.0);
.0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
{ -7500.0, -12990.4.
( -15000.0. -25980.8.
( -25000.0. -43301.3.
-128.6 -153.2.
-257.1
-385.7
-514.2
-642.8
-9C4.2
-1385. <
-If 07.0
-3571.2
-4820.9
-9(41.1
-19213. C
-3213*. 4
-IS] .2
-304.4
-459. 6
-612.8
-746.0
-1149.1
-1532.1
-1915.1
-3064. S
-5745.3
-11490.7
-22981.3
-38302.2
-173.2
-346.4
-519. C
-692.8
-8*6.0
-1299.0
-1732.1
-2165.1
-3464.1
-6495.3
-12990.4
-25980.8
-43301.3
-187.9
-375.9
( -563.8
-306.4.
-459.6.
-612.8.
-766.0.
-1149.1.
-1532.1.
-1915.1.
-3064.2.
-5745.3,
-11490.7,
-22981.3.
-38302.2,
-128.6.
-257.1.
-385.7,
-514.2,
-642.8,
-964.2.
-1285.6,
-1607.0,
-2571.2.
-4820.9.
-9*41.8.
-19283.6,
-32139.4,
-100.0,
-200.0,
-300.0.
-400.0.
-500.0,
-750.0,
-1000.0.
-1250.0,
-2000.0,
-3750.0,
-7500.0,
-15000.0,
-25000.0,
-C8.4,
-136.8,
-205.2,
360.0,
360.0.
380.0.
202.7,
202.7.
202.7,
202.7,
202.7.
213.4,
213.4.
313.4.
378.0.
396.3,
349.0,
3*0.0.
3*0.0,
301.3.
207.3,
202.7,
202.7,
207.3,
207.3,
213.4.
25*. 0,
359.7.
378.0,
3*0.0.
400.0.
310.0,
213.4.
207.3,
213.4,
213.4,
213.4,
274.3,
310.9.
25*. 0.
3*5.8.
378.0,
3*0.0,
380.0,
3*0.0,
213.4.
213.4,
213.4,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
IV-3-50
                                                                                          External Review Draft
                                                                                            Do not cite or quote

-------
                                                       bucc.prt
••  ISCONDBF VERSION 94237
                                 WIT stick •odlluog.  EPA Mgion V. Project 1363. COM Cue
                                         i; 936 r»e«pcor« up to SOXM «ny; Vapor.
                       CCNC   FOKAL  EtEV
                                                DPAOLT
                                                 08/29/94
                                                 10:56:41
                                                 PM»  13
                                      •• DISOtEIC CMERSIMI RECEPTORS ••
                                       (X-COORD, y-COORD, ZELEV, ZHAO)
                                                 (METERS)
-657.8,
-845.7.
-1174.6.
-1644.5.
-2114.3,
-2119.1.
-4698.5.
-9396.9.
-18793.9,
-37587.7,
-98.5.
-295.4.
-492.4,
-685.4,
-8*6.3,
-1231.0.
-1723.4,
-2215.8,
-2954.4.
-4924.0,
-9848.1.
-19696.2,
-39392.3,
-100.0,
-300.0,
-500.0,
-700.0,
-900.0,
-1250.0.
-1750.0,
-2250.0,
-3000.0,
-5000.0.
-10000.0,
-20000.0,
-40000.0,
-98.5,
-295.4,
-492.4,
-689.4,
-88C.3,
( -1231.0,
( -1723.4,
< -2215.8.
( -2954.4.
-239.4.
-307.8.
-427.5.
-598.5.
-769.5.
-1026.1.
-1710.1.
-3420.2,
-6140.4.
-13680.8.
-17.4.
-52.1,
-86.8,
-131. C.
-156.3,
-217.1,
-303.9,
-390.7,
-520.9,
-868.2,
-1736.5,
-3473.0,
-6945.9.
0.0,
0.0.
0.0,
0.0.
0.0.
0.0,
0.0.
0.0.
0.0.
0.0,
0.0,
0.0,
0.0,
17.4,
52.1,
86.8,
121.6,
156.3.
217.1,
303.9,
390.7,
520.9.
213.4
219.5
353.6
341.4
353.6
243.8
359.7
402.3
400.0
400.0
213.4
213.4
213.4
213.4
225.6
359.7
365.8
353.6
353.6
365.8
339.9
380.0
400.0
213.4
213.4
213.4
213.4
243.1
304.8
335.3
371.9
371.9
371.9
360.0
360.0
380.0
213.4
213.4
213.4
235.6
243.8
317.0
298.7
371.9
365.8
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
, 0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
-751.8,
-939.7,
-1409.5,
-1879.4,
-2349.2.
-3758.8.
-7047.7,
-140*5.4,
-28190.8.
-46984.6.
-M7.0.
-393.1,
-5*0.9,
-7t7.8,
-984.8,
-1477.2,
-1969.6,
-2462.0.
-3*39.2.
-7386.1.
-14772.1,
-29544.2,
-49240.4.
-300.0,
-400.0,
-600.0,
-800.0,
-1000.0,
-1500.0,
-2000.0,
-2500.0,
-4000.0,
-7500.0,
-15000.0,
-30000.0,
-50000.0,
-197.0,
-393.9,
-5*0.*,
-787.8,
-984.8,
-1477.2,
-1969.6,
-2462.0,
-3939.2.
-273.6,
-342.0,
-513.0,
-684.0,
-855.1.
-1368.1.
-2565.2.
-5130.3,
-10260.6,
-17101.0,
-34.7.
-69.5.
-104.2.
-138.*.
-173.6,
-260.5,
-347.3.
-434.1.
-6*4.6,
-1302.4,
-2604.7,
-5209.4,
-8682.4.
0.0,
0.0,
.0,
• 0,
• 0,
.0,
• 0,
.0,
0.0,
0.0.
0.0,
0.0.
0.0,
34.7,
69.5.
104.2,
138.*.
173.6,
360.5,
347.3,
434.1,
694.6,
219.5,
213.4,
353.6.
335.3,
304.8.
298.7.
365.8,
360.0.
310.0.
360.0.
213.4.
313.4,
213.4,
219.5,
310.9,
359.7.
371.9.
371.9.
365.8.
3*0.1.
360.0,
420.0.
400.0.
213.4,
213.4,
313.4.
313.4,
3*8.7,
304.8,
341.4.
371.9.
378.0.
371.9.
340.0,
380.0,
400.0,
313.4.
313.4.
335.6.
337.7,
280.4,
304.8,
341.4.
353.6,
353.6.
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
 Volume IV

 Appendix IV-3
IV-3-51
External Review Draft

  Do not cite or quote

-------
                                                      buec.prt
 ISCCHDBP VBRSICN 94227
                               WIT «t«ck Kxteling, EM Region V. Project 1363.
                               On* soure*; 936 rcoptori up Co 50m ««y; V<
         OPTZGMS USED:  COMC   RURAL  BLKV
                                              DPAOtT
                                                01/29/94
                                                10:56:41
                                                MOB  14
                                     (X-COORD. If-COORD, ZELSV, ZPLM)
                                               (METERS)
-4924.0,
-984*. 1,
-19696.2.
-39392.3,
-94.0.
-211.9,
-469.8,
-657.8,
-845.7.
-1174.6.
-1644.5.
-2114.3.
-2819.1,
-4C98.5.
-9396.9.
-18793.9,
-37587.7,
-86.6.
-259.8.
-433.0.
-606.2,
-779.4.
-1082.5.
-1515.5.
-1948.6.
-25*8.1.
-4330.1,
-86*0.3,
-17320.5,
-34641.0.
-76.6,
-229.8,
-383.0.
-536.2,
-619.4,
-957.6.
-1340.6,
-1723.6,
-22M.1.
-3830.2,
-7660.4,
-15320.1,
-30641.8,
-64.3,
-192.8,
868.2,
1736.5,
3473.0,
. 6945.9,
34.2.
102.6.
171.0.
239.4,
307.8,
427.5.
598.5.
769.5,
1026.1,
1710.1.
3420.2,
6840.4,
13680.8.
50.0,
150.0,
250.0,
350.0,
450.0.
625.0.
875.0.
1125.0.
1500.0,
2500.0,
5000.0.
10000.0,
20000.0,
64.3.
192.8,
321.4,
450.0,
578.5.
803.5.
1124.9,
1446.3,
1928.4,
3213.9.
6427.9.
12855.8,
25711.5,
76.6.
229.8,
378.0
389.2
420.0
360.0
213.4
213.4
225.6
243.8
286.5
317.0
298.7
384.0
378.0
378.0
424.9
360.0
380.0
213.4
219.5
225.6
268.2
310.9
292.6
359.7
371.9
378.0
384.0
42C.7
400.0
400.0
213.4
225.6
225.6
268.2
316.4
304.8
353.6
371.9
364.0
384.0
37*. 2
400.0
400.0
213.4
231.6
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
-7386.1
-14772.1
-29544.2
-49240.4
-187.9
-375.9
-563.8
-751.8
-939.7
-1409.5
-1879.4
-2341.3
-3758.8
-7047.7
-140*5.4
-281*0.8
-46984. «
-173.2
-346.4
-51*. 6
-6*2.6
-866.0,
-12*9.0,
-1732.1,
-2165.1,
-3464.1,
-6495.2.
-12990.4.
-25980.8.
-43301.3,
-153.2.
-306.4.
-459.6,
-612.8,
-766.0.
-1149.1.
-1532.1.
-1915.1.
-3064.2,
-5745.3,
-114*0.7,
-22*81.3,
-38302.2.
-128.6,
-257.1,
1302.4.
2604
5209
8682
68
136
205
273
342
513
684
855
1366
2565
5130
10260
17101
100
200
300
400
500
750
1000
1250
2000
3750
7500
15000
.7.
.4.
.4.
.4.
.8,
.2.
• 6.
.0.
.0.
.0,
.1.
• 1.
.2.
.3.
.6,
.0,
.0,
.0,
.0,
.0.
.0.
-0,
.0,
.0,
.0.
.0.
• 0,
.0.
25000.0.
128
.6.
257.1,
385
.7,
514.2.
642
.8.
964.2.
1285
.6.
1607.0.
2571.2,
4620
.9.
9641.8,
1*283.6,
32139
4. •
153.2,
306
4.
364.0,
400.0,
380.0,
400.0,
213.4,
219.5.
225.6,
274.3,
2*8.7,
2*6.7,
35*. 7,
378.0,
378.0.
371. J.
420.0,
400.0,
400.0.
213.4,
231.6,
231.6,
304.8.
304.6,
323.1.
371.9,
378.0,
378.0.
3*4.0.
400.0.
420.0,
350.0.
213.4.
231.6.
231.6.
304.8,
317.0,
341.4,
365.6,
378.0,
359.7.
376.0.
360.0,
400.0,
370.0,
225.6,
231.6,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0)|
0.0))
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0)i
0.0);
0.0)i
0.0);
0.0);
0.0);
0.0);
Volume IV
Appendix IV-3
IV-3-52
External Review Draft
  Do not cite or quote

-------
                                                         buec.prt
•• ISCCHDIP VERSION 94227 •••


•• MODELING OPTIONS USED:  CONC
HTI itack Bodeling, EPA Region V, Project  1363. Base
One eource; 936 receptor* up to 5OHM amy; Vapor.
                                                                                 Ca««
                                                 OS/29/94
                                                 10:56:41
                                                 PACT  15
                                      •• DlSCJUm CMTESXMf RECEPTORS ••
                                       IX-COOKD, Y-COORD. ZELEV, 2PUG)
                                                  (METBtS)
-321.4,
-450.0.
-578. S.
-803.5.
-1124.9,
-1446.3,
-1928.4,
-3213.9,
-6427.9,
-12*55.8,
-25711.5.
-50.0.
-150.0,
-250.0,
-350. 0.
-450.0,
-625.0,
-875.0,
-1125.0,
-1500.0,
-2500.0,
-5000.0,
-10000.0.
-20000.0,
-34.2.
-102.6,
-171.0,
-239.4,
-307.8,
-427.5.
-S98.5,
-769.5,
-1026.1,
-1710.1,
-3420.2.
-6840.4.
-136(0.8,
-17.4,
-52.1.
-86.8,
-121.6,
-156.3.
-217.1,
-303.9,
( -390.7.
383.0,
536.2.
689.4.
957.6.
1340.6.
1723.6.
2298.1.
3830.2,
7660.4,
15320.9.
30641.8.
86.6.
259. 8.
433.0.
606.2,
779.4.
1082.5,
1915.5.
1948.6,
2598.1,
4330.1.
8660.3,
17320.5,
34641.0,
94.0,
281. S,
469.8,
657.8.
845.7,
1174.6,
1644.5,
2114.3.
2819.1,
4698.5,
9396.9,
18793.9,
37587.7,
98.5,
295.4.
492.4.
689.4,
886.3,
1231.0.
1723.4,
2215.8,
225.6.
274.3,
310.9.
317.0,
353.6.
359.7.
384.0.
378.0.
378.0.
400.0,
360. 0.
213.4.
231.6.
225.6.
249.9.
304.8.
286.5.
347. S.
353.6.
384.0,
378.0,
371.9,
360.0.
380.0,
213.4.
225.6,
225.6,
262.1,
2S0.4.
323.1,
359.7,
329.2.
378.0,
371.9,
349.0.
360.0.
370.0,
213.4.
225.6,
225.6,
2(2.1,
J98.7.
335.3.
359.7.
341.4,
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
( -385.7.
( -514.2.
-642.8,
-964.2.
-12*5.6,
-1607.0,
-2571.2,
-4*30.9,
-9641.*,
-192*3.6,
-32139.4,
-100.0,
-300.0,
-300.0,
-400.0.
-500.0,
-750.0,
-1000.0.
-1250.0.
-3000.0.
-3750.0.
-7500.0.
-15000.0.
-25000.0.
-68.4.
-136.8.
-205.2.
-273.6.
-343.0.
-513.0.
-6(4.0.
-855.1.
-1368.1.
-2565.2,
-5130.3.
-10260.6,
-17101.0.
-34.7,
-69.5,
-104.2.
-131.9,
-173.6,
-260.5,
-347.3,
-434.1.
459.6,
612.8.
766.0.
1149.1.
1532.1,
1915.1,
3064.2,
5745.3,
11490.7,
22981.3,
38302.2,
173.2,
346.4.
S19.6,
692.8.
866.0.
1299.0.
1732.1.
2165.1.
3464.1.
6495.2.
12990.4.
25980.8.
43301.3,
187.9.
375.9.
563.8.
751.1,
939.7,
1409.5.
1879.4,
2349.2.
375*. «,
7047.7,
14095.4,
28190.8,
46984.6,
197.0,
393.9,
590.9.
787.*,
984.8,
1477.2,
1969.6,
2462.0.
231.6,
304.*,
310.9.
347.5,
353.6,
365.*.
384.0.
378.0,
3*0.0,
400.0.
360.0.
225.6,
231.6,
243.1,
243.*,
304.8.
329.2.
353.6.
3*4.0.
384.0.
365.8.
360.0.
340.0.
350.0,
225.6.
225.6.
243.*,
2*6.5.
392.6.
353.6.
359.7.
347.5.
3*5.0.
329.2,
360.0.
340.0,
350.0.
225.6,
225.*.
243.*.
292. «.
298.7,
365.*.
359.7,
378.0.
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.01;
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
0.0);
 Volume IV
 Appendix IV-3
IV-3-53
                                                           External Review Draft
                                                             Do not cite or quote

-------
                                                          banc.prt
ISCCMD0 VBtSICM 94337
HTI ataek Bodaling, EPA Ragion V, Projact 1363,
Ona aourea; 936 racaptora up to 50KM away; Vapor.

                DPAOLT
                                                                                                             OS739/94
                                                                                                             10:56:41
                                                                                                             PACE  16
                                       " DISCRETE CARTESIAN RECEPTORS ••
                                        (X-COORD,  Y-COORD, ZELEV. ZPLAGI
                                                   (METERS)
-530.9,
-868.2,
-1736.5,
-3473.0,
-6945.9,
0.0,
0.0,
0.0,
0.0.
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0.
0.0,
2954.4
4924.0
9848.1
19696.2
39392.3
100.0
300.0
500.0
700.0
900.0
1250.0
1750.0
3350.0
3000.0
5000.0
10000.0
30000.0
40000.0
                         384.0,
                         365.8,
                         339.9.
                         360.0.
                         330.0,
                         313.4.
                         335.6,
                         335.6.
                         356.0.
                         298.7,
                         353.6.
                         341.4.
                         359.7,
                         378.0,
                         359.7,
                         380.1,
                         340.0.
                         350.0,
    0.0);
    0.0);
    0.0);
    0.0);
    0.0);
    0.0);
    0.0);
    0.0);
    0.0);
    0.0);
    0.0);
    0.0);
    0.0),-
    0.0);
    0.0);
    0.0);
    0.0);
    0.0);
-694.6
-1303.4
-3604.7
-5309.5
-86S3.4













.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

-------
                                                           bBMc.prt
         VBtSION 94227 •••


         OPTIONS U&EU:
           Wn stack •odalina. EPA Region V,  Pro}«ct 1363, E*m Cu*
           On* •eura; 936 r*e«ptor« up to 50KK any;  Vcpor.
                        COHC   RURAL  ELSV
                                                                         01/29/94
                                                                         10:96:41
                                                                         PAG1  17
                                      ••* METEOROLOGICAL UMTS SELECTED POR PROCESSOR; •••
                                                        U-YES;  0-NO)

      1111111111   1111111111   1111111111   1111111111   1111111111
      1111111111
      1111111111
      1111111111
      1111111111
      1111111111
      1111111111
      1111111111
    1111111111
    1111111111
    1111111111
    1111111111
    1111111111
    1111111 '111
    111111
           1111111111
           1111111111
           1111111111
           1111111111
           1111111111
           1111111111
                   1111111111
                   1111111111
                   1111111111
                   1111111111
                   1111111111
                   1111111111
          1111111111
          1111111111
          1111111111
          1111111111
          1111111111
          1111111111
          MOTE:  NSTEOROLOGICAL DATA ACTUALLY PROCESSED MILL ALSO DEPEND OH WHAT IS nCLODED IN THE DATA PILE.
                                     BOUND OP FIRST THROUGH FIPTH HXHD SPEED CA'
                                                     (METERS/SBC)

                                          1.54,   3.09.   S.14,    1.23,   10.(0,
                                                W1KD PROPILE
          STABILITY
          CATEGORY
             A
             B
             C
             D
             E
             P
                                               WIND SPEED CATEGORY
.70000E-01
.70000E-01
.10000E»00
.15000E»00
.350001+00
.55000E»00
.700008-01
.70000X-01
-10000K+00
.150001+00
.350001*00
.55000«+00
 .70000E-01
 .700001-01
 .10000E+00
 .150001+00
 .350001+00
 .550001+00
.700001-01
.700001-01
.100001*00
.150001+00
.350001+00
.550001+00
.700001-01
.700001-01
.100001+00
.150001+00
.350001+00
.550001+00
.70000E-01
.70000E-01
.100001+00
.150001+00
.350001+00
.550001+00
                                       VERTICAL POTENTIAL TEMPERATURE GRADIENTS
                                              (DEGREES RELVm PER METER)
          STABILITY
          CATEGORY
             A
             B
             C
             D
             t
             T
.000001+00
.000001+00
.000001+00
.000001+00
.200001-01
.350001-01
.000001+00
.OOOOOE+00
-OOOOOE+00
.OOOOOE+00
.200001-01
.350001-01
SPEED CATEGORY
    3
 .OOOOOE+00
 .OOOOOE+00
 .000001+00
 .OOOOOE+00
 .200001-01
 .350001-01
.OOOOOE+00
.OOOOOE+00
.000001+00
.000001+00
-20000E-01
.350001-01
.OOOOOE+00
.OOOOOE+00
.OOOOOE+00
.OOOOOE+00
.20000E-01
.350001-01
.000001+00
.OOOOOE+00
.OOOOOE+00
.OOOOOE+00
.200001-01
.350001-01
Volume  IV
Appendix IV-3
                                   IV-3-55
                                                             External Review Draft
                                                                Do not cite or quote

-------
•••  ISCCHDBP VERSION 94227 —
                                                           banc.prt
                                    MTI «uek Bodeling. EPA Region V, Project 1363.  •
                                    One aource;  936 receptor* up co SORV away,- vapor.
   HDDELHB OPTIONS USB):   COMC   RURAL ELEV
                                                  08/29/94
                                                  10:56:41
                                                  PACT  IB
                      THE FIRST  24 BOORS OP METEOROLOGICAL DATA
                                                    FORMAT:  (4I2,2P9.4.P6.1.I2.2P7.1.f9.4.£10.1.H.4.£5.1.i4,«7.2)
SURFACE STATION NO.: 94823
NAME: NTT
YEAR: 1993
PLOW SPEED
YEAR MONTH DAY HOUR VECTOR (M/S)
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
1 11
1 12
1 13
1 14
1 IS
1 16
1 17
1 18
1 19
1 20
1 21
1 22
1 23
1 24
104.0 4.47
112.0 5.36
106.0 .47
115.0 .47
120.0 .02
123.0 .36
130.0 .92
124.0 .92
115.0 .47
107.0 .02
113.0 .02
108.0 .47
114.0 .36
107.0 .92
120.0 .92
119.0 .47
118.0 .58
124.0 .68
124.0 .68
113.0 .23
97.0 .68
113.0 .13
117.0 .13
152.0 2.68
UPPER AIR STATION NO. : 94823
NAME: NTI
YEAR: 1993
TEMP STAB MIXING HEIGHT (N)
' (1C) CLASS RURAL URBAN
275.
274.
274.
273.
273.
273.
272.
271.
271.0
270.9
270.6
270.9
271.1
271.0
270.8
270.5
270.4
270.4
270.1
270.3
270.3
270.3
270.4
269.9
601.6
617.6
633.5
649.5
6(5.4
681.4
697.3
713.3
729.2
745.2
761.1
777.1
793.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
601.6
617.6
633.5
649.5
665.4
681.4
697.3
713.3
729.2
745.2
761.1
777.1
793.0
809.0
809.0
809.0
809.0
«09.0
•09.0
809.0
•09.0
809.0
109.0
809.0
*( »>» ,mr a.
USTAR
(M/S)
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
LW . *( «O . •» ( &
M-O LENGTH
(M)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
a • *• *•! ft/ ,4 }
Z-0 Zd
IM) (M)
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
O.OOOC 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
0.0000 0.0
IPCODE
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PRATE
In/HR)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
          STABILITY CLASS 1-A, 2-B,  3-C. 4»O,  5»E AMD 6»P.
          PLOW VECTOR IS DIRECTION TOWARD MUCH HIND IS BLOWING.
   Volume IV
   Appendix IV-3
IV-3-56
External Review Draft
  Do not cite or quote

-------
                                                               TROCHIISH.OOT



 ••• ISCOXDBP VERSION 94227 •••    ••*  WTI Fugitive *oure* Modeling - TRUCK HASH                          •••        12/23/94
                                   •••  On* Volume eource; 936 receptor* up to SOKM way; Vapor.            •••        18:26:17
                                                                                                                     PASS   i
 ••• MODILTIC OPTIOHS OSZD:  COHC   HOMO.  ELEV         DPADLT


                                           ...    MOB. srrop omoMS SOMMARY       •••


 ••Intermediate Terrain Procuring im Selected

 .•Model I* S«tup rer Calculation of Average concentration Value*.

  —  scAVE»siNG/DBPosrnoN LOGIC —
 ••Modal Uie* MO DRY DEPLETION.   DDFLETB •  F
 ••Model U*e* HO MET DEPLETION.   MDFLETE •  P
 ••NO MET SCAVENGING D»t* provided.
 ••Modal Oaea GRIDDED TZRJIAIN Data for Depletion Calculation*

 ••Model Oaea KDHAL Diaperaien.

 ••Model Oaee Regulatory DEPADLT Option*:
           1. Final Plua* Riae.
           2. Stack-tip Peimoaah.
           3. luoyancy-induced  Diaperaion.
           4. Dae CalM Vrocnaing Routine.
           5. Hot Dae Milling Data Proeeaaiag Routine.
           6. Default Hind Profile Exponenta.
           7. Default Vertical  Potential Teaperature Gradients.
           8. 'Upper Bound* Valuea for Superaguat Building!.
           9. No Exponential Decay for RURAL Mode

 ••Model Accept* Receptor* on ELEV Terrain.

 ••Model Aaeuaea No FLAGPOLE Receptor Height*.

 ••Model Accepting Te-aperature Profile Data.
  Number of Level* :             3
    IB AOL)          30.0000
    (• ACL)          45.7000
    (• AOL)          152.400

 ••Model Accepting Mind Profile  Data.
  Number of Level* :             5
    (• AGL)          30.0000
    (B ACL)          45.7000
    In ACL)          10.1000
    Im AGL)          111.300
    Im AGL)          152.400

 ••Model Calculate*  1 Short Tex* Average (a)  of:   1-HR
    and Calculate* PERIOD Average*

 **Thi« Run Include*:     1 Source!*);      1  Source Group(•); and    936 Receptor!*)

 ••The Model Aaiume* A Pollutant Type of:  POSITIVE

 ••Model Set To Continue Running After the Setup Teating.

 ••Output Option* Selected:
         Model Output* Table* of PERIOD Average* by Receptor
         Model Output* Table* of Highest  Short Term Value* by Receptor (RSCTMLE Keyword)
         Model Output* Table* of Overall  mrltann Short Term Value* (MAXTAELE Keyword)
         Model Output* External File la)  of High Value* for Plotting (PLOTFILE Keyword)

••NOTE:   The Following Flag* May Appear Following CONC Valuea:  e for Calm Hour*
                                                               m for Milling Hour*
                                                               b for Both Cain and Miaaing Hour*

••Miac.  Input*:   Anam.  Hgt.  (»)  -    30.00  ;    Decay Coef. -   0.0000     ;     Rot. Angle •     0.0
                 •million unit* - GRAMS/SEC                                ;   Bmiaaion Rate Dnit Factor •   0.100001*07
                 Output Unit*   - HICROGRAIIS/aT**3

••Input Runitraaa File:  truckwah.inc                           ;  ••Output Print File: truckwah.out
••Detailed Brror/Meaaage Pile:    TROCKMSB.ERR
     Volume IV                                                                                      External Review Draft
     Appendix IV-3                                         IV-3-57                                  Do not cite or quote

-------
••• ISCOMDBF VERSION 94227 •••    •••  NTI Fugitive source Modeling - TRUCK NUB                         •••        12/23/94
                               •••  One Voluae •ouree; 936 receptor* vp to SORM may: Vepor.            •••        1«:28:17

*•• MOPB.TMB OFTIONS USED:  COMC   RURAL  (LBV         DFAULT
                                            ••• VOLEKE SODRCI tATA •••

           MDMBBR nCSSION KATE                   BASE    REUlkSC    OUT.    HUT. BaSSZON KATE
  SOURCE     FART.  (GRAMS/SEC)     X       Y      ELSV.   HEIGHT     SY      SZ    SCALAR VARY
    ID       CATS.              (METERS)  (METERS)  (METERS) (METERS)  (METERS)  (METERS)     BY


 TROOC         0   0.10000E+01     100.2     170.9   212.1     3.OS     1.77     2.14
   Volume IV                                                                                External Review Draft
   Appendix IV-3                                      IV-3-58                                Do not cite or quote

-------
                                                        flRJCXMSH.OOT


 •• XSCCHDEP VERSION 94227 •••    •••  NTI rugitiv* »ourc« Modeling - TRUCK HftSK                         •••        12/23/94
                               •••  On* Voliow •ouroi 936 receptor* up to 5QKN >vay; Vapor.           •••        11:28:17
                                                                                                          VAGI   3
 •• HTtl-™" OPTICMS USED:  COHC  HOWkL  CLIV         DTAULT
                                        500XCC IDC DKF1M1MB SODKCX GKOOVS

                                                  SODXCE ID*
ALL      TRUCK
   Volume IV                                                                              External Review Draft
   Appendix IV-3                                     IV-3-59                               Do not cite or quote

-------
                                                     TODCKMSH.OOT


XSCOMHP VBRSXCM 94227 •••   •••  WIT Fugitive «oure* Kidding - TRDCT MASK                        •••       12/23/94
                           •••  On* VoluB* coure*; 93C rae*ptora up to SOKM nny; Vapor.           •••       18:28:17
                                                                                                       mat  4
MODELXMB OPTIOMS DSK):  COMC   ItOHAL KJEV         DPADLT


                                      ••* SOa»CS rAKTZCDlATE/US DM* •••
    -•• SOURCE ID - TRUCK   ; SOURCE TVPB •   VOLUME

    SCjiv COEF [LIQ] 1/IS-1M/HR).
    0.001*00.

    SCAV COir [ICE] l/IS-Mf/HR)-
    0.001*00.
Volume IV                                                                               External Review Draft
Appendix IV-3                                     IV-3-60                                Do not cite or quote

-------
••• ISCCKBU VERSION 94227 •••    •••  NT! Fugitive source Bodcling - THOCK VOSH                        •••       12/23/94
                               •••  On* Volua* Boura; 936 r«c«pcor. up Co 50XM any; Vapor.           ••*       16:28:17
                                                                                                          PASS  16
••* MODBJXG OPROBS USZD:  CCHC  BtmAL  ELCV         OFJtDLT


                         • SOOKCT-mCErlUK COHBDATiaHS LESS HDW 1.0 MRn OK 3'ZLt •
                               in oisiMiat.  aacaiAnoMS tax MOT n nxronax>.


                          SODKCI         	RBCSPTOR LOCXTIOK - -        DISTAHCB
                            ID          XK (MRnSI   XK (NETIXS)        (METERS)
                          mncic               100.0        173.2
   Volume IV                                                                               External Review Draft
   Appendix IV-3                                     IV-3-61                                Do not cite or quote

-------
                                                          TXOCKHSH. OUT
ISCOHDEP VERSION 9422-7 -••

         OPTIONS USED
           HTI Fugitive »ourc« BcxUling - moot HASH
           On* Volua* •ourc«; 936 receptor* up to  50KM nay; Vapor.
                        CONC   RURAL  ILIV
                                                   DFADLT
                                                                         12/23/94
                                                                         10:28:17
                                                                         FAG1  17
                                     ••• HBTBOROLOsxcAL DAYS SELECTED mt PROCESSOR •••
                                                        U-YIS;  0«HO)

      1111111111   1111111111   1111111111   1111111111   1111111111
      1111111111
      1111111111
      1111111111
      1111111111
      1111111111
      1111111111
      1111111111
    1111111111
    1111111111
    1111111111
    1111111111
    11111-11111
    1111111111
    111111
           1111111111
           1111111111
           1111111111
           1111111111
           1111111111
           1111111111
                 1111111111
                 1111111111
                 1111111111
                 1111111111
                 1111111111
                 11111-11111
                        1111111111
                        1111111111
                        1111111111
                        1111111111
                        1111111111
                        1111111111
          MOTE:   METEOROLOGICAL DATA ACTUALLY PROCESSED HILL ALSO DUEMD OH HBAT IS MCLOPED IN THE DATA- FILE.



                            ... QPFER BOOND OF FIRST THROUGH FIFTH HOD SPEED CATEGORIES •••
                                                     (METERS/SEC)

                                          1.54.    3.09.    5.14,   1.23.  10.SO,


                                            •*• HIND PROFILE  EXPONENTS •••
          STABILITY
          CATEGORY
             A
             B
             C
             D
             E
             F
                                               HIND SPEED CATEGORY
.70000S-01
.70000E-01
.lOOOOEtOO
.150001*00
.35000E*00
.55000E+00
.70000E-01
.700001-01
.10000«»00
.1SOOOE+00
.35000E*00
.550001*00
.700001-01
.700001-01
.100001*00
.150001*00
.350001*00
.550001*00
.700001-01
.700001-01
.100001*00
.150001*00
.350001*00
.550001*00
.700001-01
.700001-01
.100001*00
.150001*00
.350001*00
.550001*00
.700001-01
.700001-01
.100001*00
.150001*00
.350001*00
.550001*00
                                       VERTICAL POTENTIAL IINVIRATURE GRADIENTS
                                              (DEGREES KELVIN PER METER)
          STABILITY
          CATEGORY
             A
             B
             C
             D
                                               HUID SPEED CATEGORY
.000001*00
.000001*00
.000001+00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.300001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.20000E-01
.350001-01
Volume IV
Appendix IV-3
                                   IV-3-62
                                                             External Review  Draft
                                                                Do not cite or quote

-------
                                                           TKUCKMSH.OUT
     ISCOMDEP VERSION 94227 •••


   •  MODELING OPTIOHS USED:  CCMC
                     •••  HTI Fugitive course nodeling - TKOCK WASH
                     •••  One VoluM iourc«; $36 receptor* up to 50KM mey; Vapor.

                      RURAL  ELEV         DFAOLT
           12/23/94
           18:28:17
           FACE  18
                       TOE FIRST 24 BOORS OF METEOROLOGICAL DATA
          FILE:  depbin.Mt
          SURFACE STATION HO. :   94823
                        NAME:  WTI
                        YEAR:    1993
                                           FORMAT:  (4I2.2F9.4,F«.1.I2.2F7.1,Z9.4,fl0.1.f8.4.f5.1.i4.f7.2)
                                           UPPER AIR STATION MO. :  94823
                                                           NAME: NTI
                                                           YEAR:   1993
YEAR
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
MONTH
1
I
^
1
j
1
1
j.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
j.
1
DAY
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
HOUR
1








10
11
12
13
14
15
16
n
18
19
20
21
22
23
24
FLOW SPEED
VECTOR (M/S)
104.0 4.47
112.0 5.36
106.0 .47
115.0 .47
120.0 .02
123.0 .36
130.0 .92
124.0 .92
115.0 .47
107.0 .02
113.0 .02
108.0 .47
114.0 .36
107.0 .92
120.0 .92
119.0 .47
118.0 .58
124.0 2.68
124.0 2.68
113.0 2.23
97.0 2.C8
113.0 3.13
117.0 3.13
152.0 2.68
TEMP STJ
• IK) OJ
275.4
274.8
274.0
273.9
273.8
273.3
372.5
271.9
271.0
270.9
270.6
270.9
271.1
271.0
270.8
270.5
270.4
270.4
270.1
270.3
270.3
270.3
270.4
269.9
kB MIXING
hSS RURAL
601.
617.
633.
649.
665.
681.
6>7.
713.
729.
745.
761.
777.
793.
809.
809.
809.
809.
809.
809.
809.
809.
809.
809.
809.
HEIGHT IM)
URBAN
601.6
617.6
633.5
649. S
665.4
681.4
697.3
713.3
729.2
745.2
I 761.1
I 777.1
) 793.0
) 809.0
) 809.0
9 809.0
3 809.0
3 809.0
9 809.0
9 809.0
9 809.0
9 809.0
9 809.0
9 809.0
USTAR
(M/S)
0.0000
0.0000
0.0000
o.oooo
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
M-O LENGTH Z-0 Zd II
IM) (M) (M)
0.0 0.0000 0.0
0.0 0.0000 0.0
0.0 0.0000 0.0
0.0 0.0000 0.0
0. 0.0000 0.0
0. 0.0000 0.0
0. 0.0000 0.0
0. 0.0000 0.0
0. 0.0000 0.0
0. 0.0000 0.0
0.0 0.0000 0.0
0.0 0.0000 0.0
0.0 0.0000 0.0
0.0 O.OOOO 0.0
0.0 0.0000 0.0
0.0 0.0000 0.0
0.0 0.0000 0.0
0.0 0.0000 0.0
0.0 0.0000 0.0
0.0 0.0000 0.0
0.0 0.0000 0.0
0.0 0.0000 0.0
0.0 0.0000 0.0
0.0 0.0000 0.0
•CODE
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PRATE
(•n/KR)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
••* MOTES:
STABILITY CLASS 1"A,  2»B, 3-C, 4-D.  5-E AND 6-P.
FLOW VECTOR IS DIRECTION TOWARD WHICH WIND IS BLOWING.
     Volume IV
     Appendix IV-3
                                                  IV-3-63
External Review Draft
   Do not cite or quote

-------
                                                                 msn.our


 *"• ISCOXDSP VBtSIOM 14227 *••    •••  tffl Fugitive  aource Bodeling - ORGANIC WASTE TANK PARM              •••         12/27/94
                                   •••  Pour Point  aource; 936 receptor* up to 50XN «way; Vapor.             *••         16:48:17
     	            	   	                                                                                     PACT   1
 ••* MrmTTrTla? OPTIONS USED:  CONC   RURAL  ELEV         DPAULT


                                           ***      w*TTIf SCTOP OPTXGMS JilJMaTAP 1       •••


 ••Intermediate Terrain Proceaaing U Selected

 ••Model I« Setup Per Calculation of Average CONCentration Valuea.

  —  SCAVENGING/DEPOSITION LOGIC —
 ••Model Uaea HO DRY DEPLETION.  DDPLRE •  P
 ••Modal Uaea NO NET DEPLETION.  NDPLETE -  P
 ••NO HET SCAVENGING Data Provided.
 ••Model Uaea GUDDED TERRAIN Data for Depletion Calculation*

 ••Model Uaea RURAL Diaperaion.

 ••Model Uaea Regulatory DCPADbT Option*:
           1. Pinal PliaM Riae.
           2. Stack-tip Downwaah.
           3. Buoyancy-induced Oiaperaion.
           4. uae CalM Koeeaaing Houtine.
           5. Not Uae Mieaing Date Proceaaing Routine.
           6. Default Wind Profile  Exponenta.
           7. Default Vertical Potential  Temperature Gradienta.
           8. 'Upper Bound' Valuea  for Superaguat (uildinga.
           9. No Exponential Decay for RURAL Mode

 ••Model Aceepta Receptor* on ELEV Terrain.

 ••Model Aeauaea No PLAOPOLE Receptor Haigbta.

 ••Model Accepting Teeperatuze Profile Data.
  NuBber of Levela :             3
    Id AGL)          30.0000
    (e> ACL)          45.7000
    (•ACL)          152.400

 ••Model Accepting Mind Profile Data.
  Nuaber of Levela :             5
    IB ACL)          30.0000
    (m AGL)          45.7000
    (• AOL)          80.1000
    In AGL)          111.300
    IB AGL)          152.400

 ••Model Calculate*  1 Short Ten Average (a I  of:   1-HR
    and Calculate* PERIOD Average*

 ••Thia Run Include*:     4 Soureel*),      1  Source Group(•);  and    936 Recaptor la)

 ••The Model Aaauawa A Pollutant Type of:  POSITIVE

 ••Model Set To Continue RDJtaing After the Setup Teating.

 ••Output Option* Selected:
         Model Output* Table* of PERIOD Average* by Receptor
         Model Output* Table* of Bigheat  Short Ten Valuea by Receptor (RECTABLE Keyword)
         Model Output* Table* of Overall  Mart ami Short Tern Valuea (NAXTABLE Keyword)
         Model Output* External Pilel*) of High Value* for Plotting (PLOTPILE Keyword)

••NOTE:   The Following Plaga May Appear Following CONC Valuea:  c for Calai Hour*
                                                               B tor Mixing Hour*
                                                               b for Both Cala and  Miaaing Hour*

••Miac.  Input*:   Anem.  Hgt.  <•>  >    30.00  ;    Decay Coef.  -   0.0000     ;    Rot. Angle -     0.0
                 Badaaion Unite » GRAMS/SEC                                :   Bmiaiion Rate Unit Paetor »   0.10000E*07
                 Output Unit*   - MXCMaRAKS/M**3

••Input Runstree* Pile:  WASTE.me                              :  ••Output Print Pile: MASTS.OUT
••Detailed Brror/Meaaage Pile:    WAsn.ERP.
     Volume IV                                                                                      External Review Draft
     Appendix IV-3                                         IV-3-64                                  Do not cite or quote

-------
 ISCOMDSF VBtSIOH 94227 •••    •••  NT! rugitiv* »ourc« *aO»liaa - ORGANIC HASTE TAMC FARM            •*•       12/27/94
                           •*•  Four Point >oure«; 936 r*c«ptor> up Co 50KM any; v*por.           •••       16:48:17
                                                                                                   PACE   2
 MODSUK: OPTIONS nsso:  ccwc   RURAL  ELEV         DPAULT
                                          POIMT SODXCS WXA
soratcz
ID
WASTEl
WASTE!
HASTE3
WAST14
MUKBEK
PART.
CATS.
0
0
0
0
BUSSION RATE
(GRAMS/SEC)
O.lOOOOEoOl
0.10000B»01
0.10000E»01
0.100001*01
X
(METERS)
173.5
193.1
199.3
179.7
Y
(UTTERS)
10g. 6
116.9
102.3
94.0
BASE
ELEV.
(METERS)
21Z.1
212.1
212.1
212.1
STACK
HEIGHT
(METERS)
It. 90
18.90
18.90
18.90
STACK
TEXT.
(DBG. HI
310.00
310.00
310.00
310.00
STACK
EXIT VEL.
(K/SECI
0.10
0.10
0.10
0.10
STACK
DIAMETER
(METERS)
0.10
0.10
0.10
0.10
BUILDING
EXISTS
•• YXS
YES
YES
YES
EMISSION RATE
SCALAR VARY
BY

Volume IV                                                                            External Review Draft
Appendix IV-3                                    IV-3-65                              Do not cite or quote

-------
                                                         NftSTE.OOT


•••  ISCCMDEP VERSION 94227 •••    *••  WTI Pugitiv* lourec BOdcling - OKSMHC WASTE TMK TOOt            •••       12/27/94
                              •••  four Point «ourc«; 936 receptor* up  to 5OHM any; Vapor.           -••       16:48:17
                                                                                                         PAGE   3
•••  MODELING OPTIONS USED:  CONC   ROTXL ELEV         OPJUOLT
                                        SODIICE ID* OEPnOMS SOOXCE SHOOTS '"

                                                  SOURCE ID*
         HASTE1  .  WASTE2  ,  HWSTS3  , HASTB4  .
    Volume IV                                                                              External Review Draft
    Appendix IV-3                                    FV-3-66                               D° not cite or quote

-------
 ISCOMDEF VERSION 94227  *••    •••  WIT Fugitive IOUTC* Modeling - ORGANIC MUTE TAW FARM             •••        12/27/94
                             **•  Four Point loura; 936 r«c*peor» up to 50JCM •my,- Vapor.           •••        16:48:17
                                                                                                            PAGE   4
 MODELING OPTIONS USD):  CONC   RURAL ELEV          DPAOLT


                                        ••• SODRCB naencnxrs/efs DMA •••
     ••• SOURCE ID - WtSTEl  ; SOORCE TYPE -   POINT

     SCAV COEP [LIQ]  l/IS-Mt/HR)-
     O.OOE»00,

     SCAV COET [ICE)  I/(S-IM/HR).
     O.OOE+00,
     — SOORCE ID • HASTK2  ; SOURCE TYPE •

     SCAV COEP [LIQ) l/(S-Nf/HR>-
     O.OOE»00,

     SCAV COET [ICC] 1/IS-NM/HR).
     O.OOEfOO.
     ••• SOORCE 10 • KASTE3  ;  SOURCE TYPE •   FOUR

     SCAV COET [LIQ] 1/lS-MM/HRI-
     O.OOE+00,

     SCAV COEF [ICE] I/(S-KK/HR).
     0.001*00,
Volume IV                                                                                  External Review Draft
Appendix IV-3                                      IV-3-67                                 Do not cite or quote

-------
 ZSCOHDV VERSION 94227 •••    •••  NTX Pugitiv* »ourc« •odxling - ORGANIC HASTE TANK PAm             •••        12/27/94
                            •••  Pour Point •ourci; 936 nc
-------
     ISCOHDEF VERSION 94227 •••


     MODELSB OPTIONS USED: CONC
                           HASTE.OOT


"•  MTI Pugitiv* sourc* MMteling - ORGANIC HASTE TANK PARK
•••  Four Point •ourc«; 936 raoptor* up to 50KM away; Vapor.

 RURAL  EUV         DPADLT


     — DinCTIOH SPECIFIC BUHDIIC DIMENSIONS •••
            12/27/94
            16:48:17
            PAGE   6
SOURCE ID: MASTE1
IPV BH
1 15.2,
7 15.2.
13 15.2.
19 15.2,
25 15.2,
31 15.2,
BH HAK
50.1, 0
18.2, 0
51.2, 0
50.1. 0
18.2. 0
51.2, 0
IPV
2
8
14
20
26
32
BH
15.2.
15.2,
15.2,
15.2.
15.2.
15.2,
BH MAX
47.0, 0
26.4, 0
51.9, 0
47.0, 0
26.4, 0
51.9, 0
IPV BH
3 15.2,
9 15.2,
IS 15.2,
21 15.2,
27 15.2.
33 15.2,
BH MAX
42.5, 0
33.7, 0
51.0. 0
42.5, 0
33.7, 0
51.0, 0
IPV BH
4 15.2,
10 15.2.
16 15.2.
22 15.2,
38 15.2,
34 15.2.
BH MAX
36.7. 0
40.1, 0
50.1. 0
36.7. 0
40.1, 0
50.1, 0
IPV BH
5 15.2,
11 15.2.
17 15.2.
23 15.2,
29 15.2,
35 15.2.
BH HAK
29.8, 0
45.2, 0
51.7, 0
29.8, 0
45.2. 0
51.7, 0
IPV
6
12
18
24
30
36
BH
15.2.
15.2,
15.2,
15.2.
15.2,
15.2.
BH HAK
21.9. 0
48.9. 0
51.7, 0
21.9. 0
48.9, 0
51.7, 0
SOURCE ID: HASTE2
IPV BH
1 15.2,
7 15.2.
13 15.2,
19 15.2,
25 IS. 2,
31 15.2,
BH HAK
50.1. 0
18.2, 0
51.2, 0
50.1, 0
18.2. 0
51.2. 0
IPV BH
2 15.2,
8 15.2.
14 IS. 2,
30 15.3,
26 15.2,
32 15.2,
BH HAK
47.0 0
26.4 0
51.9 0
47.0 0
26.4 0
51.9 0
IPV BH
3 15.2.
9 15.2.
15 15.2,
21 15.2,
27 15.2,
33 15.2,
BH HAK
42.5, 0
33.7. 0
51.0. 0
42.5, 0
33.7. 0
51.0, 0
IPV BH
4 15.2.
10 15.2,
16 15.2.
32 15.2.
28 15.2,
34 15.2,
BH HAIC
36.7 0
40.1 0
50.1 0
36.7 0
40.1 0
50.1 0
IPV BH
5 15.2,
11 15.2.
17 15.2,
23 15.2.
29 15.2.
35 15.2,
BH MAX
29.8, 0
45.2. 0
51.7, 0
29.8. 0
45.2, 0
51.7. 0
IPV BH
6 15.2,
12 15.2.
18 15.2.
24 15.2,
30 15.2,
36 15.2,
BH HAX
21.9 0
48.9 0
51.7 0
21.9 0
48.9 0
51.7 0
SOURCE ID: HASTE3
IPV
1
7
13
19
25
31
BH
15.2.
15.2,
15.2.
15.2.
15.2.
15.2.
BH HAK
50.1, 0
18.2, 0
51.2, 0
50.1, 0
18.2. 0
51.2. 0
IPV
2
8
14
20
26
32
BH
15.2,
15.2,
15.2.
15.2.
15.2.
15.2.
BH
47.0
26.4
51.9
47.0
26.4
51.9
HAX
0
0
0
0
0
0
IPV
3
9
IS
21
27
33
BH
15.2,
15.2,
15.2.
15.2,
15.2.
15.2.
BH HAK
42.5, 0
33.7, 0
51.0. 0
42.5. 0
33.7, 0
51.0. 0
IPV
4
10
16
32
38
34
BH
15.2.
15.2,
15.2,
15.2.
15.2.
15.2.
BH HAX
36.7. 0
40.1, 0
50.1. 0
36.7, 0
40.1. 0
50.1. 0
IPV
5
11
17
23
29
35
BH
15.2,
15.2,
15.2.
15.2.
15.2,
15.2,
BH MAX
29.8, 0
45.2, 0
51.7, 0
29.8, 0
45.2. 0
51.7. 0
IPV
. 6
12
18
24
30
36
BH
15.2,
15.2.
15.2.
15.2,
15.2.
15.2,
BH HAK
21.9. 0
48.9, 0
51.7, 0
21.9, 0
48.9. 0
51.7, 0
SOURCE ID: HASTE4
IPV BH
1 15.2,
7 15.2,
13 15.2,
19 15.2.
25 15.2.
31 15.2,
BH HAK
50.1, 0
18.2, 0
51.2, 0
50.1, 0
18.2. 0
51.2, 0
IPV
2
8
14
20
26
32
BH
15.2,
15.2.
15.2,
15.2,
15.2.
15.2,
BH
47.0
26.4
51.9
47.0
26.4
51.9
HAK IPV
0 3
0 9
0 15
0 21
0 27
0 33
BH
15.2,
15.2,
15.2,
15.2,
15.2,
15.2,
BH HAK
42. 5, 0
33.7. 0
51.0, 0
42.5, 0
33.7, 0
51.0. 0
IPV
4
10
16
22
28
34
BH
15.2,
15.2,
15.2,
15.2.
15.2,
15.2.
BM MAX
36.7, 0
40.1, 0
50.1. 0
36.7, 0
40.1, 0
50.1, 0
IPV
5
11
17
23
29
35
BH
15.2,
15.2,
15.2.
15.2,
15.2,
15.2,
BH HAK
29.8, 0
45.2, 0
51.7, 0
29.8. 0
45.2. 0
51.7. 0
IPV
6
12
18
24
30
36
BH
15.2.
15.2,
15.2.
15.2,
15.2,
15.2.
BH HAX
21.9, 0
48.9. 0
51.7, 0
21.9, 0
48.9. 0
51.7. 0
    Volume IV
    Appendix IV-3
                          IV-3-69
External Review Draft
  Do not cite or quote

-------
ISCOMDEP VERSION 94227 •••    •••  HTI Fugitive aourc* Bodaling - ORGANIC HASTE TASK FARM             •••        12/27/94
                             •••  Pour Point louro; 936 raeaptora up to SOKM away; Vapor.           •••        16:48:17
                                                                                                            PACT  18
MODELING OPTIONS DSSD:  CONC  RURAL  ELEV         DPAOLT


                       • SOURCE-RECEPTOR COMBIMATIOHS LESS THAN 1.0 NITER OR 3*ZL> •
                             TX DISTANCE.   CALCULATIONS HAY NOT BE PERPORMED.


                        SOURCE         - -  RECEPTOR LOCATION - -         DISTANCE
                          ID          XR (METERS)   TO (METERS)         (METERS)


                        MASTE1               153.2         128.6            28.45
                        HASTE1               173.2         100.0             8.58
                        KASTE1          .     187.9          68.4            42.70
                        HASTE2               153.2         128.6            41.58
                        HASTES               173.2         100.0            26.12
                        MASTE3               173.2         100.0            26.20
                        WASTES               187.9          68.4            35.76
                        MASTE4               153.2         128.C            43.52
                        MASTE4               173.2         100.0             8.81
                                            187.9          C8.4            26.89
Volume IV                                                                                   External Review Draft
Appendix IV-3                                       IV-3-70                                 Do not cite or quote

-------
                                                            WASTE.OCT


 XSCONDEP VERSION 94227 •••    ••*  WTI Pu01tiv> Mum mottling - ORGANIC WASTE TANK PARK              •••        12/21/94
                              ••*  Pour Point source; 936 receptor* up to 50KM nray; Vapor.            •••        16:48:17
                                                                                                                PACT  19
 MOOEUHQ OPTIONS USED:  CONC   RURAL  ELSV         DPAOLT



                                      ••• METEOROLOGICAL OUTS SELECTED POR Pff*Vi.1ffTH7 ••*
                                                        U-Y1S; O.NO)

MOTE: MRI

SOXOLOGXOU. DMA ACTUALLY PROCESSED HILL ALSO BBPEKD OH WHAT IS INCLUDED IK THE DATA PILE.
                            *•* UPPER BOUND OP PIRST THR30GH FIPTS MMB SPEED CATEGOIUXS •••
                                                     
-------
••• ISCONDEP VERSION 94227 •*•


• •• ijurtBi.TM*



OPTIONS OS]
••«


D: CONC
THE rnsT
FILE: dapbin.Mt
SOU

FACE STATIC

N NO.: 94
NAME: HTI
••• WTI Puoltiw
••• Four Point

RURAL ELEV
24 HOURS OF MET!

823

YEAR: 1993

YEAR
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93


MONTH DAY HOUR
1
1
1
1
1
1
1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
FLOW SPEED
VECTOR IM/S)
104.0 .47
112.0 .36
106.0 .47
115.0 .47
120.0 .02
123.0 .36
130.0 .92
124.0 .92
115.0 .47
107.0 .02
113.0 .02
108.0 .47
114.0 .36
107.0 .92
120.0 .92
119.0 .47
118.0 .58
124.0 .68
124.0 .68
113.0 .23
97.0 .68
113.0 .13
117.0 3.13
152.0 2.68
i •oure* Bodclino: - ORGANIC WASTE TANK
lourn; 936 r«c«ptor« up to 50KM **my:

DFAULT
lOttOLOQTCAli DATA ***
FORMAT: (4I2.2F9.4.F6.1.I2.2F7.1
UPPER AIR STATION NO. : 94823
NAME: WTI
YEAR: 1993
TEMP STAB inXUTi HEIGHT (N)
IK) CLASS RURAL URBAN
275.
274.
274.
273.
273.
273.
272.
271.
271.
270.
270.
270.
271.
271.
270.
270.
270.
270.
270.
270.
270.
270.
270.
269.
























601. 601.6
617. 617.6
633. 633.5
649. 649.5
665. 665.4
681. 681.4
C97. 697.3
713.3 713.3
729.2 729.2
745.2 745.2
761.1 761.1
777.1 777.1
793.0 793.0
809.0 809.0
809.0 809.0
809.0 809.0
809.0 809.0
809.0 809.0
809.0 809.0
809.0 809.0
809.0 809.0
809.0 809.0
809.0 809.0
809.0 809.0
FARM
Vapor.



,f9.4.fl0.1



USTAR M-O
(M/8)
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
••• 12/27/94




,«8.4,



***



«5.1,i4.



LENGTH Z-0
(M)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
(H)
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
16:48
PAGE


f7.2)



17
20




•

Zd IPCODE PRATE
(H)
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
0.0 0
IBB/HR)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
•*• NOTES:
          STABILITY CLASS 1«A. 2-B, 3'C. 4-D. 5-E AND 6-F.
          FLOW VECTOR IS DIRECTION TOWARD WHICH WIND IS BLOWING.
    Volume IV
    Appendix IV-3
IV-3-72
External Review Draft
  Do not cite or quote

-------
                                                                 TANK.OUT




     ISCCMDEP VERSION 14227 •*•     ***  WTI Fugitive aource modeling - OPEN MASTEMATER TURK                 *••        12/23/94
                                   •••  Om Volume source; 936 receptors up to 5OHM any; Vapor.            •••        17:14:24
                                                                                                                     PACK   1
     MODELING OPTIOHS OSH):  CCNC   RURAL  ELkV          DFADLT
 "Intermediate Terrain Processing is Selected

 ••Model Is setup For Calculation of Average Concentration Valuea.

  —  SCAVENGING/DEPOSITION LOGIC —
 ••Model Uaea NO DRY DEPLETION.   DDPLETE -  P
 ••Model Uaea NO .WET DEPLETION.   MDPLETE >  F
 "NO NET SCAVENGING Data Provided.
 ••Model Uaea GRIDDED TERRAIN Data for Depletion Calculations

 ••Model Uaea RURAL Diaperaion.

 ••Model Uae* Regulatory DEFAULT Option*:
           1. Final Hurse RIM.
           2. Stack-tip Downwaah.
           3. Buoyancy-induced  Dispersion.
           4. Use Calm* Proceaaing Routine.
           5. Not Use Miaaing Data Proceaaing Routine.
           6. Default Mind Profile Exponent*.
           7. Default vertical  Potential Temperature Gradient*.
           6. 'Upper Bound*  value* for Super*quat Building*.
           9. Ho Exponential Decay for RURAL Mode

 "Model Accept* Receptor* on ELEV Terrain.

 ••Model Assumes Mo FLAGPOLE  Receptor Heights.

 ••Model Accepting Temperature Profile Data.
  Number of Levels :             3
    (m AGL)          30.0000
    In AOL)          45.7000
    (m AGL)          152.400

"Model Accepting Hind Profile  Data.
  Number of Levels :             5
    (m AGL)          30.0000
    (m AGL)          45.7000
    la AOL)          80.8000
    (D AGL)          111.300
    (m AOL)          152.400

••Model Calculate*  1 Short  Term Average (a) of:   1-HR
    and Calculate* PERIOD Average*

••This Run Include*:     1 Source(s);      1 Source Groupie); end    936  Reeeptorjs)

••The Model Assumes A Pollutant  Type of:  FUGITIVE

••Model set To Continue Running  After the Setup Testing.

••Output Option*  Selected:
         Model Output* Tables of PERIOD Average* by Receptor
         Model Outputs Tables of Highest Short Ten Value* by Receptor  IRECTABLE Keyword)
         Model Output* Table* of Overall lUTietm Short Ten value* IMAXTABLE Keyword)
         Model Outputs External  file(s) of High Values for Plotting IPLOTFILE Keyword)

••NOTE:   The Following Flaga May Appear Following CONC Value*:  c for Calm Hour*
                                                               • for Missing Hour*
                                                               b for Both Calm and Miaaing Hour*

"Misc.  Input*:   Anam.  Hgt.  (ml  •    30.00 ;    Decay Coef. -   0.0000     ;    Rot. Angle -     0.0
                 Keowion Units  - GRAMS/SEC                 •              ;  sniaaion Rate Unit Factor -   0.100001*07
                 Output Units    > MXCROGRAMS/M**3

"Input RunstraaB File:  tank.inc                               ,-   "Output Print File: tank.out
••Detailed Brror/Meaaage File:   TANK.ERR
     Volume IV                                                                                      External Review Draft
     Appendix IV-3                                         IV-3-73                                  Do not cite or quote

-------
•• ISCOKDEP VBtSICM $4227 •••    •••  DTI Fugitive aoure* BOdaling - OPEN MASTEMATER TANK                •••        12/33/94
                               •••  OB* Volma aourc*; 936 racaptori up to SOKM may; Vapor.            •••        17:14:24
                   	                                      '                                                PACE   2
•• MODELING OPTIONS USED:  CCHC  RDRAL  EbEV          DFAULT
                                           **• VOLUME SOOKCE DMA •••

          NUKBER EMISSION RATE                  BASE   RELEASE   OUT.     HRT. EKISSION RATE
 SOURCE     PART.   (GRAMS/SEC)     X       Y      ELEV.   HEIGHT     SIT      SZ    SCALAR VARY
   10      CATS.               (METERS)  (METERS) (METERS) (METERS)  (METERS)  (METERS)     BY


TANK         0   O.lOOOOEtOl    177.1 .   204.6   212.1     S.30    2.35     4.96
  Volume IV                                                                                 External Review Draft
  Appendix IV-3                                       IV-3-74                                Do not cite or quote

-------
                                                           TANK.GOT


 ••• ISCONDKP VtRSION »4227 •••   •••  HTI Fugitive source •odlling - OPBJ KASTMATER TAUT               •••       12/23/94
                               •••  On* VoluM «ourc«;  936 r««ptor« up co SOm nay; Vapor.           •••       17:14:24
                                                                                                          PJtQX   3
 *•• MQD1LZNS OPTIONS USB):  CCHC   RDMI. ELCV         DFADLT




                                      •" SOCXCI H» DEPIHIHS SODKCB SHOOTS •••

GROUP ID                                            SODRCE IDs



 AU.      TANK
    Volume IV                                                                               External Review Draft
    Appendix IV-3                                     IV-3-75                               Do not cite or quote

-------
                                                        TAWS. OUT


ISCCMDEP VERSION 94231 •••    •••  HTI PugitiVB sourc* Budding - OPEN HASTZMATER TANK               »•       12/23/94
                            •••  On* VoluM sourc*; 936 r«e«ptor* up to SOKM any;  Vapor.           •*•       17:14:24
                                                                                                        PACE   4
MODELING OPTIONS USED:  CCMC   RURAL  ELEV         DPADLT


                                       ••• SODRCE PARTICD1ATZ/QAS DATA *•*
    •••  SOURCE IO - TANK    ;  SOOKCZ TYPE

    SOW COBF [LIQJ 1/IS-IOI/HP).
    0.001*00,

    SCAV COEF [ICE] I/(S-IM/HHI-
    0.OOE*00,
Volume IV                                                                                External Review Draft
Appendix IV-3                                      IV-3-76                                Do not cite or quote

-------
ISCOMDEP VERSION 94227  •••


MODELING OPTIONS USED:  COHC
•••  HTT Fugitive aoure* aodaling - OPEN NASTEHATER TANK
•••  One Volua* aourec; 936 rec«ptor« up Co 50KM avay; Vapor.

 RURAL  ELSV         DFAULT
                                                                                                                12/23/94
                                                                                                                17:14:24
                                                                                                                PAGE  16
                                      ••• METEOROLOGICAL DATS SELECTED KK ntOCESSDC •••
                                                         U-YES; 0>NO)

       1111111111   1111111111   1111111111   1111111111   1111111111

NOTE:

METEOROLOGICAL DATA ACTUALLY PROCESSED MILL ALSO DEPEND ON WHAT IS INCLUDED H) THE DATA FILE.
                                      BOUND OP FIRST THKOU58 PITTH MUD STEED CATEGORIES
                                                      (UTTERS/SEC)

                                           1.54.    3.09,   S.14.   S.23.  10.SO.


                                             ••• WHO)  PROFILE EXPONENTS —
          STABUJTY
          CATEGORY
             A
             B
             C
             D
             E
             P
                                                NZMD SPEED CATEGORY
                       .70000E-01
                       .70000E-01
                       .lOOOOfccOO
                       .1SOOOE»00
                       .330001+00
                       .550001*00
         .700001-01
         .700001-01
         .100001+00
         .150001*00
         .350001*00
         .550001+00
.700001-01
.700001-01
.100001+00
.150001+00
.350001+00
.550001+00
.700001-01
.700001-01
.100001+00
.150001+00
.350001+00
.550001+00
.700001-01
.700001-01
.100001+00
.150001+00
.350001+00
.550001*00
                             .700001-01
                             .700001-01
                             .100001*00
                             .150001*00
                             .350001*00
                             .550001*00
                                        VERTICAL POTENTIAL TEMPERATURE GRADIENTS
                                               (DEGREES KELVIN PER METER)
          STABILITY
          CATEGORY
             A
             B
             C
             D
             E
             P
                                               WIND SPEED CATEGORY
                       .000001*00
                       .000001+00
                       .000001*00
                       .000001*00
                       .200001-01
                       .350001-01
        .000001*00
        .000001*00
        .000001*00
        .000001+00
        .30000E-01
        .350001-01
.000001*00
.000001.00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001+00
.000001*00
.000001*00
.200001-01
.350001-01
              .000001*00
              .000001+00
              .000001*00
              .000001+00
              .200001-01
              .350001-01
               .000001+00
               .000001+00
               .000001*00
               .000001+00
               .200001-01
               .350001-01
Volume  IV
Appendix IV-3
                                                          IV-3-77
                                                                     External Review Draft
                                                                       Do not cite or quote

-------
        1 VERSION 94227 •••


 HI'Bim
-------
  ••• XSCONDtP VERSION 14227  •••    •••  MTI Fugitive aource Modeling -  CARBON VEST STACK                    •••        02/1«7»S
                                   •••  On* Point aouree;  »3( receptor* up  to 50m away; Vapor.             •••        17:13:30
                                                                                                                      not    i
  ••• ttgrrLT"? OPTIONS ostD:  ODBC   RURAL  ELEV          onaur


                                           •••     MOML SETUP OFTXOHS  SDJMuTY       *•*


 ••Intermediate Terrain Proeeaaiag is Selected

 ••Model I* Setup 'or Calculation of Average concentration Value*.

   —  SCAVENGDB/DSPOSrrXCM LOGIC —
 ••Model U*e*  NO DRY  DEPLETION.  DDPLETE •  T
 • •Model U*e*  NO WET  DEPLETION.  MDPLETE •  F
 ••NO MET SCAVENGING  Data provided.
 ••Model Dm  GRXODKD TERRAIN Data (or Depletion Calculation*

 ••Modal Dm*  RURAL Oiaperaion.

 ••Model Uaea  Regulatory DCFADLT Option*:
            1   Final  PluBM RiM.
            3   Stack-tip DoMMaah.
            3   Buoyancy-induced Ciaperaien.
               IMe Cala* ProceMiag Routine.
               Hot U»« Mining Data Froceaaiag Routine.
               Default Mind Profile Exponent*.
               Default Vertical Potential Teaverature Gradient*.
               •Upper Bound * Value* for Supenguat Building*.
               No  Exponential Decay for RtnuvL Mode

 ••Model Accept* Receptor* on ELCV Terrain.

 ••Model Aaauae* No FLAGPOLE Receptor  Height*.

 ••Model Accepting Teiperatuxe Profile Data.
  Number of Level* :            3
     (•  AGL)           30.0000
     (•  ASL)           45.7000
     (•  ACL)           152.400

 ••Model Accepting Hind Profile Data.
  Nuaber of Level* :            S
     <•  AGL)          30.0000
     IB  AGL)          45.7000
     IB  AGL)           80.SOOO
     IB  AOL)          111.300
     IB AOL)          152.400

 ••Model Calculate*  1 abort Ter» Averagel*> of:    1-HR
    and Calculate* PERIOD Average*

 •Thi*  Run Include*:     1 Source!*);      l Source Group!*); and    >3C  Receptor!*)

 ••The Model A**UB*> A Pollutant Type of:  FUGITIVE

 ••Model Set To Continue Running After  the setup Teiting.

 ••Output Option* Selected:
         Model Output* Table* of PERIOD Average* by Receptor
         Model Output* Table* of Higheit Snort Tern Value* by Receptor IRKTABLE Keyvord)
         Model Output* Table* of Overall "--•—— Short Ten Value* IMXTXABLE Keyvord)
         Model Output* External File (a) of  High Value* for Plotting (PLOTPXU Keyword)

 ••NOTE:   Tbe Following Flag*  May Appear Following CONC Value*:  c for Cala Hour*
                                                               B for Mi*aing Hour*
                                                               b for Both Cala and Milling Hour*

 •*«U«c.  input*:  AneB. Hot.  IB)  •    30.00  ;    Decay Coef. -   0.0000    ;    Rot. Angle -     0.0
                 EBiaaion Unit* - ORAMS/SCC                              ;  Bmiaaion Rate Obit Factor «   0.10000E*07
                 Output UUt*    » MJCROORAMS/lf'3

"input  Kunitrea. File.-  cad*tack.i»c                            .   "Output  Print File: eedateek.out
••Detailed Error/Memo* Pile:   CACSTACK.ERR
     Volume IV                                                                                      External Review Draft
     Appendk IV-3                                         IV-3-79                                  Do not cite or quote

-------
                                                        cusnac.ooT
           VERSION 1122? •••    •••  wrx ruoitiv* «ourc« moamiiag - CMBON van STUCK                  •••       o2/ic/»s
                              •••  On* faint coum; 93C receptor* up to SOKM may; Vapor.            •••       17:13:30
                                                                                                         no*   2
   msoD.TWi OVTZCMS VOXD-.  OOHC   nauu.  ILIV         DPADLT
                                          ••• fonrr socmci


          HDKBBI Hussion RATE                  BASZ     smcx   STACK    STUCK     STACK    RJXLDIHO BQSSIQN wmt
 SOUUCI     PART.  (GWtMS/SBC)    X       Y      KLBV.    HEIGHT  VBB.   EXIT V«L. DIAKCTW   EXISTS   SCkUUt VMIY
   ID      CATS.              ixems) (KETERSI (KETEUSI iHemts) (MB.KI  m/SKi  IMETIM)              n


CAOSTACX      0   0.100001*01     Cl.O     42.1  212.1    21.04   2SO.OO    31.05     O.Ti   '• f*S
  Volume IV                                                                               External Review Draft
  Appendix IV-3                                      IV-3-80                               Do not cite or quote

-------
                                                         CADSTXaC.OOT


 •••  XSCOKDEP VBtSIOM 9*227 •••   •••  MTI Vugitiv* »ourc» HOd*ling - CARBON VSNT STACK                  •••       02/16/95
                               •••  On* Point •ottre*;  936 r«c«ptor« up to 50KJC my; Vapor.            •••       17:13:30
                                                                                                          PACE   3
 '•'  NOOELOB OmCKS USB):  CONC   RDRAt. ELBV        OTAULT
                                     ••• SOOKCE HM Dtrmmo SOOXCE CROUPS

GROUP ID                                            SOURCE IDs
          CADSTACK,
    Volume IV                                                                              External Review Draft
    Appendix IV-3                                     IV-3-81                               Do not cite or quote

-------
                                                      CADSTACK.OUT


ISCOHDCP VBtSION 94227  •••    ••• HIT Pugritiv* loure* KXteliag - CARBON VENT STACK                   >••        02/16/95
                            ••• On* Point fourcm; 936 r«e«pcor» up to SOXM away; Vapor.             •••        17:13:30
                                                                                                         PAOI  4
MODBUMG OPTICHS USD):  COHC   KDRU.  BLIV         DPADLT


                                       ••• SOURCE VAItTICDLATI/GAS DATA •••
    ••• SOOKCE ID - CADSTACK; SOORCE TYPE >  POINT

    SCAV COEF [LIQ1 1/1S-KK/HR).
    O.OOE»00,

    SCAV COEF [ICE] l/(S-MM/nt)»
    O.OOE+00.
Volume IV                                                                                 External Review Draft
Appendix IV-3                                      IV-3-82                                Do not cite or quote

-------
 ISCOMDKF VSR5ION 94227 •••


 MODELING OPTIONS USED:  CONC
                         CADSTACK.OOT


•••  WIT Fugitive aouxc* •odtling - CMBON VBIT STACK
••*  dam Point tour cm: 936 receptor* up to SOKM n«y; Vapor.

 RURAL  RJTV         DFAOLT


     •*• DIRECTION sraciric wanaaa OMEKSIOHS •••
            02/16/95
            17:13:30
            PAOI   5
SCOXCI ID:
IFV BK
1 25.
7 24.
13 25.
19 25.
25 24.
31 25.
CAUSTACX
BW WAX IFV BK
27.1. 0 2 25.8
26.0, 0 B 25.8
24.8, 0 14 25.8
27.1, 0 20 25.8
26.0, 0 26 25.8
24.8. 0 33 25.8
BW
28.1
24.8
22.4
28.1
24.8
22.4
WUC IFV BK
0 3 25.8
0 9 25.8
0 15 25.8
0 21 25.8
0 27 25.8
0' 33 25.8
BW MJC IFV BK
28.3. 0 4 25.
26.4, 0 10 25.
20.1, 0 16 25.
28.3. 0 22 25.
26.4, 0 28 25.
20.1, 0 34 25.
BW
27.6
27.3
19.3
27.6
27.3
19.3
WAK IFV BK
0 5 25.8
0 11 25. B
0 17 25.8
0 23 25.8
0 29 25. B
0 35 25.8
BW WAX IFV BH BW WAX
26.1. 0 6 25.8, 23.8, 0
27.3, 0 12 25.8. . 26.4, 0
22.6, 0 18 25.8, 25.2, 0
26.1. 0 24 25.8, 23.8. 0
27.3. 0 30 25.8, 26.4, 0
22.6. 0 36 25.8, 25.2, 0
Volume IV
Appendix IV-3
                         IV-3-83
External Review Draft
  Do not cite or quote

-------
                                                        CADSTACK.OOT


ISCOHDBP VERSION 94227 •••    •••  WTI Pugitiv* »eurc« aodllino - CARBON VENT STACK                   "*        02/16/95
                             •••  On* Point •oura; 936 raecpton up to 30XM nray; V«por.             •••        17:13:30
                                                                                                            PACE  17
KODELINa OPTIONS USED:  CONC   RURAL  ELEV         DPADLT


                       • SOURCE-RECEPTOR COMBINATIONS LESS THAH 1.0 METER OR 3*tLB *
                              IN DISTANCE.   CALCULATIONS NAY NOT BE PERFORMED.


                        SOURCE        - -  RECEPTOR LOCATION - -         DISTANCE
                          ID          ZR (METERS)   YR (METERSI         (METERS)


                        CADSTACK             34.2          94.0            57.74
                        CADSTACK             50.0          16.6            45.14
                        CADSTACK             64.3          76.6            33.93
                        CADSTACK             76.6          64.3            26.51  .
                        CADSTACK             86.6          50.0            26.57
                        CADSTACK             94.0          34.2            34.06
                        CADSTACK             98.5          17.4            45.30
                                           100.0          0.0            57.91
Volume IV                                                                                   External Review Draft
Appendix IV-3                                       FV-3-84                                Do not cite or quote

-------
                                                         CADSTAOC.OUT
         VERSION 94227 •••


         OPTIONS DSKD:  COMC
      •••  HTI Pugitiv* mure* •eteXing - CARBON VENT STACK
      •••  On* Point •ourec; 936 r«c«ptor« up  to SOXM »w»y; Vapor.

       RURAL ELEV          DPAOLT
                                                                         02/16/95
                                                                         17:13:30
                                                                         PAGE  18
                                         METEOROLOGICAL DAYS SELECTED POX PROCESSING
                                                        (1-YES; 0«NO)
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1111
1111
1111
1111
1111
1111
1 '1 1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1111111111 1111111111 1111111111
1111111111 1111111111 1111111X11
1111111111 1111111111 1111111111
1111111111 1111111111 1111111111
1111111111 1111111111 1111111111
1111111111 1111111111 1111111111
'l 111111111 1111111111 1111111X11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
111
111
111
111
111
111
111
1111
1111
1111
1111
1111
1111
1111
          NOTE:   METEOROLOGICAL DMA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED HI THE DATA FILE.
                                     BOGND OF FIRST THROUGH FIFTH HIND SPEED
                                                     (METERS/SEC)

                                          1.S4,    3.09,   5.14.   8.23.  10.10.


                                            •••  HIND PROFILE EXPONENTS •••
          STABILITY
          CATEGORY
                        .70000E-01
                        .700001-01
                        .10000E+00
                        .1SOOOE+00
                        .35000E+00
                        .550001*00
HIND SPEED CATEGORY
2 3
.700001-01 .70000E-01
.70000E-01 .700001-01
.100001*00 .100001*00
.1SOOOE*00 .150001*00
.35000E*00 .350001*00
.55000E*00 .5SOOOE*00
4
.70000E-01
.70000E-01
.10000i*00
.XSOOOE*00
.35000E*00
.55000E*00
                                                          .70000E-01
                                                          .70000E-01
                                                          .10000E*00
                                                          .15000E*00
                                                          .35000E*00
                                                          .55000E*00
                                                          .70000E-01
                                                          .70000E-01
                                                          .XOOOOE*00
                                                          .1SOOOE*00
                                                          .350001*00
                                                          .SSOOOE*00
                                       VERTICAL POTENTIAL TEMPERATURE GRADIENTS
                                              (DEGREES KELVIN PER METER)
          STABILITY
          CATEGORY
             A
             B
             C
             D
             E
             F
                                               HD1D SPEED CATEGORY
.OOOOOE*00
.000001*00
.OOOOOE*00
.000001*00
.200001-01
.35000E-01
.OOOOOE*00
.000001*00
.OOOOOE*00
,OOOOOE»00
.20000E-01
.35000E-01
.OOOOOS*00
.OOOOOE*00
.OOOOOE*00
.000001*00
.200001-01
.350001-01
.OOOOOE*00
.OOOOOE*00
.000001*00
.000001*00
.20000E-01
.3SOOOE-01
.OOOOOE*00
.000001*00
.OOOOOE*00
.000001*00
.20000E-01
.35000E-01
.OOOOOE*00
.OOOOOE*00
.000001*00
.000001*00
.20000E-01
.35000E-01
Volume IV
Appendix IV-3
                                   IV-3-85
                                                            External Review Draft
                                                               Do not cite or quote

-------
                                                            CADSTACX.OUT
 ••• ISCOXDEP VERSION 94227
                                      HTI Fugitive IOUTC* aodaling - CARBON VENT STACK
                                      One Point •cure*; 936 rcOTptor* up to 50KM mmy; Vapor.
     MODELING OPTIONS USED:  CONC   RURAL ELEV
                                                                     02/1C/95
                                                                     17:13:30
                                                                     PAGE  19
                       THE FIRST  24 HOODS OP HETEOROLOOICAL DATA
          PILE:
          SURFACE STATION NO. :  94123
                        MAKE: WTI
                        YEAR:   1993
         YEAR  MONTH  DAY  HOUR
                                   PLOW
                                  VEt'iXJR
            FORMAT:  (4I2,2P9.4,P«.1.I2.2P7.1.f9.4.fl0.1.f8.4.15.1.14.f7.2)
            UPPER AIR STATION NO.:   94823
                            HAKE: MR
                            YEAR:   1993
SPEED
(M/S)
                                                   (K)
STAB
cuss
MTKTIIQ HEIGHT
 RURAL
                                                                               (M)
USTAR
(M/S)
M-O LBHTK
   (M)
Z-0
(M)
 Xd IPCODE PRATE
(M)        (na/KR)
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
3
4
S
t
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
104.0 4.47 275. 601.6 601.6 0.0000 0. 0.0000 0.0 0 0.00
112.0 5.36 274. 617.6 617.6 0.0000 0. 0.0000 0.0 0 0.00
106.0 .47 274. 633. S 633. S 0.0000 0. 0.0000 0.0 0 0.00
115.0 .47 273. 649.5 649.5 0.0000 0. 0.0000 0.0 0 0.00
120.0 .02 273. 665.4 66S.4 0.0000 0. 0.0000 0.0 0 0.00
123.0 .36 273. 681.4 681.4 0.0000 0. 0.0000 0.0 0 0.00
130.0 .92 272. 697.3 697.3 0.0000 0. 0.0000 0.0 0 0.00
124.0 .92 271. 713.3 713.3 0.0000 0.0 0.0000 0.0 0 0.00
115.0 .47 271. 729.2 729.2 0.0000 0.0 0.0000 0.0 0 0.00
107.0 .02 270. 745.2 745.2 0.0000 0.0 0.0000 0.0 0 0.00
113.0 .02 270. 761.1 7<1.1 0.0000 0.0 0.0000 0.0 0 0.00
108.0 .47 270. 777.1 777.1 0.0000 0.0 0.0000 0.0 0 0.00
114.0 .36 271. 793.0 793.0 0.0000 0.0 0.0000 0.0 0 0.00
107.0 .92 271. 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
120.0 .92 270. 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
119.0 .47 270. 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
118.0 3.58 270. 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
124.0 2.68 270. 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
124.0 2.68 270. 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
113.0 2.23 270. 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
97.0 2.68 270. 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
113.0 3.13 270. 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
117.0 3.13 270. 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
152.0 2.68 269. 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
••• NOTES:
           STABILITY CLASS 1-A,  2-B.  3«C. 4-D.  5»E AND 6»P.
           PLOW VECTOR IS DIRECTION TOMARD WHICH WIND IS BLOWING.
    Volume IV
    Appendix IV-3
                   IV-3-86
                                          External Review  Draft
                                             Do not cite or quote

-------
                                                                ASHA_C.OUT



  ••• ISCOMDEP VERSION »4227 •••    •••  MTI Fugitive source modeling - ASH HANDLING/STEAK BLDG              •••        01/25/9!
                                   •••  On* Point «ourc«;  936 receptors up to SOXM sway; Mass Wt.           •••        18:00:36
                                                                                                                      MGI   1
  ••• MODELING OPTIONS DSD:  CONC   RURAL  ELSV          DFAOLT                                          DRYDFL MBTDPL


                                           •••     MODEL soar OPTICNS SUMMARY       •••


 ••Intermediate Terrain Processing is Selected

 • •Model  Is Setup Par Calculation of Average concentration Values.

   —  SCAVENGING/DEPOSITION LOGIC —
 ••Model  Uses DRY DEPLETION.  DEPLETE >  T
 ••Model  Uses MET DEPLETION.  WDPLETE -  T
 ••SCAVENGING Data Provided.  LUCAS, LWPART -  P T
 ••Model  Uses GRIDDED TERRAIN Data for Depletion Calculations

 ••Model  Uses RURAL Dispersion.

 ••Model  Uses Regulatory DEFAULT Options:
           1. final Flume Rise.
           2. Stack-tip Downwash.
           3. Buoyancy-induced Dispersion.
           4. Use Calms Processing Routine.
           5. Hot Use Kissing Data Processing Routine.
           6. Default Mind Profile Exponents.
           7. Default Vertical Potential Temperature Gradients.
           8. 'Upper Bound* Values for Supersquat Buildings.
           9. Ho Exponential Decay for RURAL Mode

 ••Model Accepts Receptors on ELEV Terrain.

 ••Model Aasuates Ho FLAGPOLE Receptor Heights.

 ••Model Accepting Temperature Profile Data.
  number of Levels :            3
     IB AOL)           30.0000
     IB AGL)           4S.7000
     In ACL)           153.400

 ••Model Accepting Mind Profile Data.
  Number of Levels :            5
     (m ACL)           30.0000
     (m AGL)           4S.7000
     (n AOL)           80.8000
     (• AGL)           111.300
     (B AGL)           152.400

 ••Model Calculates  1 Short Tern Aver age Is)  of:    1-HR
    and Calculates PERIOD Averages

 ••This Run Includes:    1 Sour eels);      1 Source Oroup(s); and    93C Receptor Is)

 ••The Model  Assumes A Pollutant Type  of:  POSITIVE

 ••Model Set  To  Continue XONning After the Setup Testing.

 ••Output Options Selected:
         Model  Outputs  Tables  of PERIOD Averages by Receptor
         Model  Outputs  Tables  of Highest Snort Term Values by Receptor (RECTABLE Keyword)
         Model  Outputs  Tables  of Overall "—'—— Short Ten Values (KAXTABLE  Keyword)
         Model  Outputs  External Pile Is)  of  High Values for Plotting (PLOTPILE Keyword)

••NOTE:  The Following  Plags May Appear Following  CONC Values:  c for Cain Hours
                                                               B for Missing Hours
                                                               b for Both CalB  and Missing Hours

••Misc. Inputs:  AMB.  Hgt.  IB)  -    30.00  ;    Decay Coef. -   0.0000     ;     Rot. Angle •     0.0
                Emission units - GRAMS/SBC                               .•   Emission Rate Unit Factor -   0.100001*07
                Output units    • BTOtOGRMIS/M*^

••Input Runstream  Pile:  steam._c.inc                            ,-  •-output Print File: ateama_c.out
••Detailed Error/Message File:    STIAM_C.BMt
     Volume IV                                                                                       External Review Draft
     Appendix IV-3                                         IV-3-87                                  Do not cite or quote

-------
                                                           ASHA_C.OOT


   ISCONDEP VERSION 14227 •••    ••• KTI Fugitive «ourc« •adeline  - ASH KAHDLING/STEAM BUB             •*•        01/25/95
                               ••* On* Point source; 936 receptor* up to 50KM nmy; Mua Ht.           ••*        18:00:36
                                                                                                             PAGE   2
   MODZLHB OPTIOMS USED:  CCMC   RDRAI, KLBV         DPJtOLT                                        OKfOK. NCTDPL
                                            •••  POOR SODRC1 D*T* •••


          NUMBER EMISSION RATE                   BASE     STACK   STACK    STACK     STACK    DUILDIHG EMISSION RATE
 SOURCE     PART.  (GRAMS/SEC)     X       Y      ELEV.    HEISRI  TEMP.   EXIT VIL. DIAMETER   EXISTS   SCALAR VARY
   ID      CATS.              (METERS)  (METERS)  (METERS) (METERS) (DEO.KI   (M/SEC)  (METERS)               BY


STEAM       10'  0.10000E»01  '    23.9      49.0   212.1     6.71   310.00     0.10     0.10      YES
  Volume IV                                                                                  External Review Draft
  Appendix IV-3                                      IV-3-88                                 Do not cite or quote

-------
                                                          ASKA_C.OCrT


 ••• ISCOMMP VERSION 94227 •••    •••  NTI  Fugitiv* source oodeling - ASH HANDLXNB/STEMf BLOC             •••        01/25/55
                                •*•  One  Point «ourc«; 936  receptor* up Co 50JCM way,  Hu< wt.           •••        18:00:36
                                                                                                           PACE   3
 ••• MOMLIIIG OPTXOKS USB):  CCHC  KUKAL ILEV         DFAOLT                                       OHYDPL WETDPL
                                      ••• SOOKCE IDs DKPIHIHB SOORCT GROUPS

GROUP ID                                            SOOSCI ID»
 ALL      STEAM
   Volume IV                                                                              External Review Draft
   Appendix IV-3                                     IV-3-89                               Do not cite or quote

-------
                                                           ASHA_C.OOT


 ISCOMDSP VERSION 94227  •••    •••  WTI Pugitiv* source BOdcling - ASH HANDLING/STEAM BUXi             •••        01/25/95
                              *••  On* Point *ourn; 936 r«c«ptor« up to SOXM may; Hu> wt.           •••        18:00:36

 NODEUNS OFTIOKS USED:  CONC   RURAL  ELEV         DFAULT                                         nam ta"**   *


                                          "* SODRCK PAimCDIAn/GAS  DMA •••
     ••• SOURCE ID - STEAM   ; SOURCE TYPE -   POINT  •••

     MASS FRACTION »
      0.04260,  0.01510. 0.17020, 0.19150,  0.19150, 0.11910, 0.10000,  0.05000, 0.04000.  0.01000,


     PARTICLE DIAMETER  (MICRONS I -
      2.97000,  1.89000, 0.93000, O.S5000,  0.40000, 0.27000, 0.18000,  0.12000, 0.06200,  0.03000.


     PARTICLE DENSITY  (G/CM"3) »
      1.00000,  1.00000, 1.00000, 1.00000.  1.00000, 1.00000, 1.00000,  1.00000, 1.00000,  1.00000,


     SCAV COEF  [LIQ1 1/(S-MI/HR)«
     0.21K-03,0.141-03,0.SOB-04,0.50E-04.0.60E-04,0.901-04.0.131-03,0.151-03.0.20E-03.0.22E-03,


     SCAV COEF  (ICE) 1/IS-MM/HR).
     0.70E-04,0.47E-04,0.17E-04,0.17E-04,0.20E-04.0.30E-04,0.43E-04,0.SOE-04,0.67E-04,0.73E-04.
Volume  IV                                                                                    External Review Draft
Appendix IV-3                                        IV-3-90                                  Do not cite or quote

-------
        VERSION 94227 •••


        OVTXCMS USED:
                          ASIA_C.aOT


•••  WTI Fugitive soure* BOdcling - ASK HANDLHIB/STEMI BLOC
•••  On* Point *oura; 936 necpeor* up to SOKM «ny;  Mu« Ht.

 KOMI.  ELIV        DPAOLT


     ••• DXUCTIGN SPECIFIC BUILDING DXMDISXGNS ••*
                                                                                          DRYDPL ME'IUVL
           01/25/95
           18:00:36
           PACE   5
SOURCE ID: STEAM
irv BH BW
1 29.1, 25.9
7 6.7, 16.4
13 25. t, 24. 8
19 29.1, 25.9
25 14.9, 65.3
31 25.8, 24.8

MAX IPV BH
0 2 29.1
0 8 25. 8
0 14 25.8
0 20 29.1
0 26 25.8
0 32 25.8

BW
24.7
24.8
22.4
24.7
24.8
22.4

KAK IPV BH
0 3 29.1
0 9 25.8
0 15 25.8
0 21 29.1
0 27 25.8
0 33 25.8

BW
21.8
26.4
20.1
21.8
26.4
20.1

HMC IfV BH
0 4 24.4
0 10 25.8
0 1C 29.1
0 22 24.4
0 28 25.8
0 34 29.1

BW
28.
27.
25.
28.
27.
25.

MAK IPV BH
0 5 24.4
0 11 25.8
0 17 29.1
0 23 24.4
0 29 25.8
0 35 29.1

BW MAX IPV BH
27.0, 0 6 24.4
27.3, 0 12 25.8
25.9, 0 18 29.1
27.0, 0 24 24.4
27.3. 0 30 .25.8
25.9, 0 36 29.1

BH
24.6
26.4
25.9
24.6
26.4
25.9

KAK
0
0
0
0
0
0
Volume IV
Appendix IV-3
                          IV-3-91
External Review Draft
  Do not cite or quote

-------
                                                       ASRA_C.OOT


 ISCOMDEP VERSION 9*237 •••    •••  WTI Fugitive source Bodeling - ASH HANDLIN3/STEJ* BLOC             •••       01/25/95
                             •••  One Point source; 936 receptors up to SOKM »w»y; Mass Mt.          -••       18:00:36

 MODELING OPTIONS USED:  COMC  RURAL  EUEV         DPAULT                                      DRYDPL METDPL


                       • SOOTa-RKXPTOK COMBDaTIOKS IMSS THWJ 1.0 METKR OR 3*ZLB •
                             IN DISTOMC1.  CALCULATIONS MAY MOT BI PEKFOmlD.
SOURCE
ID
STEAM
STEAM
STEAM
STEAM
STEAM
STEAM
STEAM
STEAM
STEAM
	 RECEPTOR LOI
XR (METERS) XI
17.4
- 34.2
50.0
64.3
86.6
94.0
-34.2
-17.4
0.0
JATION - -
ft (METERS)
98.5
94.0
86.6
76.6
SO.O
34.2
94.0
98.5
100.0
DISTANCE
(METERS)
49.93
46.16
45. SO
48.93
62.72
71.62
73.48
64.44
56.34
Volume IV                                                                               External Review Draft
Appendix IV-3                                     IV-3-92                               Do not cite or quote

-------
                                                              ASHA_C.OUT
            VERSION 94227 •••
           wn Fugitive source Modeling - ASH HANDLING /STEAK BLOC
           One point cource;  936  receptor* up to 50KM away,-  Mu* Wt.
•*• MODELING OPTIONS OSED:  COHC   RURAL  ELEV
                                                                                                      DRYDFL W8TDPL
                                                                                                                   01/25/»5
                                                                                                                   18:00:36
                                                                                                                   PAGE  IS
                                         *•* METEOROLOGICAL HAYS SELECTED FOR PROCESSING •••
                                                           (1-YES; 0-HO)

          1111111111   1111111111   1111111111   1111111111   1111111111
          1111111111   1111111111   1111111111   1111111111   1111111111
          1111111111
          1111111111
          1111111111
          1111111111
          1111111111
          1111111111
    1111111111
    1111111111
    1111111111
    1111111111
    1111111111
    111111
           1111111111
           1111111111
           1111111111
           1111111111
           1111111111
                   1111111111
                   1111111111
                   1111111111
                   1111111111
                   1111111111
                         1111111111
                         1111111111
                         1111111111
                         1111111111
                         1111111111
             NOTE:  METEOROLOGICAL DATA ACTUALLY PROCESSED MILL ALSO DEPEND OK WAT IS BKXOBtD IN THE DATA PILE.
                                        BOUND OP FIRST THROUUK FIFTH MIND SPEED CATEGORIES
                                                        (METERS/SEC)

                                             1.54,   3.OS.    5.14,    t.23,  10.80,


                                               ••• WHO PROFILE EXPONENTS •••
             STABILITY
             CATEGORY
                A
                B
                C
                D
                                                  WIND SPEED CATEGORY
.70000E-01
.700001-01
.100001*00
.15000E»00
.350001*00
.550001*00
.70000E-01
.70000E-01
.10000E.OO
.150001*00
.3SOOOE+00
.550001*00
 .70000E-01
 .70000E-01
 .lOOOOEoOO
 .15000E*00
 .35000E*00
 .55000E*00
.700001-01
.70000E-01
.10000E»00
.15000E*00
.350001*00
.55000E»00
.700001-01
.70000E-01
-10000E»00
-15000E*00
.35000E*00
.S5000E*00
.70000E-01
.70000E-01
.100001*00
.15000E*00
.35000E»00
.550001*00
                                          VERTICAL POTENTIAL TEMPERATURE GRADIENTS
                                                 (DECREES KELVIN PER METER)
             STABILITY
             CATEGORY
                A
                B
                C
                D
                E
                F
.000001*00
.OOOOOE*00
.OOOOOE»00
.OOOOOE»00
.20000E-01
-35000E-01
.OOOOOE*00
.000001*00
.000001*00
.000001*00
.20000E-01
.35000E-01
SPEED CATEGORY
    3
 .000001*00
 .000001*00
 .000001*00
 .OOOOOE«00
 .200001-01
 .350001-01
.000001*00
.000001*00
.000001*00
.OOOOOE*00
.20000E-01
-35000E-01
.OOOOOE*00
.OOOOOE*00
.OOOOOE*00
.OOOOOE*00
.20000E-01
.35000E-01
.000001*00
.000001*00
.000001*00
.000001*00
.20000E-01
.350001-01
   Volume IV
   Appendix IV-3
                                  IV-3-93
                                                            External Review Draft
                                                               Do not cite or quote

-------
                                                         ASHA_C.OUT
 ISCONPEP VXKSICM 94227 •••


 MODELLING OPTIONS UbU>:
HTI Pugitiv* loom moOfliag - ASK HANDLING/STEAM BLOC
On* Point »ourc«;  936 r«c«ptor» up to 50m «wmy; Mali Ht.
                                                                                               DRYDPL METDPL
            01/2S/9S
            18:00:36
            PAGE  19
                   THE FIRST  24 MOORS OP METEOROLOGICAL DAT*
      FILE: dcpbin.Mt
      SURFACE STATION NO. :   94823
                    NAME:  WTI
                    YEAR:    1993
                 FORMAT: <4I2.2F9.4.P6.1.I2.2P7.1.».4,fl0.1, fi.4. fS.l,i4. f7.2)
                 UPPER AIR STATION BO. :   94123
                                HAKE:  WTI
                                YEAR:    1993
YEAR MONTH
93 1
93 1
93 1
93 1
93 1
93 1
93 1
$3 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
DAY
1
1 '
1
1
1
1
1
1
1
1
1
1
1
1






1
1
1
1
HUUK
1
2
3
4
S
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
FLOW SPEED TWF STAB NOONS HEIGHT (M) USTAR N-O LBOTH Z-0 Zd IPCODE PRATE
VECTOR (M/S) IK) CLASS RURAL URBAN (M/S) (M) (M) . (M) (n/KRj
104.0 4.47 275.4 601. C 601. C 0.3366 176.8 0.3000 1.5 13 0.00
112.0 5.36 274.8 617.6 617.6 0.4269 283.7 0.3000 1.5 0 0.25
106.0 .47 274.0 633.5 633.5 0.3363 175. 0.3000 1.5 0 0.00
115.0 .47 273.9 649.5 649.5 0.3363 175. 0.3000 1.5 28 0.00
120.0 .02 273.8 665.4 665.4 0.2874 128. 0.3000 1.5 28 0.00
123.0 .36 273.3 681.4 681.4 0.4266 281. 0.3000 1.5 28 0.00
130.0 .92 272.5 697.3 697.3 0.3820 225. 0.3000 1.5 28 0.00
124.0 .92 271.9 713.3 713.3 0.3819 224. 0.3000 1.5 28 0.00
115.0 .47 271.0 729.2 729.2 0.3355 172. 0.3000 1.5 28 0.00
107.0 .02 270.9 745.2 745.2 0.3534 -999. 0.3000 1.5 28 0.00
113.0 .02 270.6 761.1 761.1 0.3534 -999. 0.3000 1.5 28 0.00
108.0 .47 270.9 777.1 777.1 0.3926 -999. 0.3000 1.5 28 0.00
114.0 .36 271.1 793.0 793.0 0.4712 -999. 0.3000 1.5 28 0.00
107.0 .92 271.0 809.0 809.0 0.4319 -999. 0.3000 1.5 28 0.00
120.0 .92 270.6 809.0 809.0 0.3817 223. 0.3000 1.5 28 0.00
119.0 .47 270.5 809.0 809.0 0.3354 172. 0.3000 1.5 28 0.00
118.0 .58 270.4 809.0 809.0 0.2310 81. 0.3000 1.5 28 0.00
124.0 2.68 270.4 809. 809.0 0.1178 29. 0.3000 1.5 28 0.00
124.0 2.68 270.1 809. 809.0 0.1178 29. 0.3000 1.5 28 0.00
113.0 2.23 270.3 809. 809.0 0.0982 29. 0.3000 1.5 28 0.00
97.0 2.68 270.3 809. 809.0 0.1178 29. 0.3000 1.5 0 0.00
113.0 3.13 270.3 809. 809.0 0.1374 29. 0.3000 1.5 28 0.00
117.0 3.13 270.4 809.0 809.0 0.1374 29. 0.3000 1.5 0 0.00
152.0 2.68 269.9 809.0 809.0 0.1178 29.4 0.3000 1.5 28 0.00
       STABILITY CLASS 1-A, 2«B, 3-C.  4»D, S-E AMD 6«F.
       FLOW VECTOR IS DIRECTION TOWARD HHtOJ NIMD IS BLOWING.
Volume IV
Appendix IV-3
                       IV-3-94
External Review Draft
   Do not cite or quote

-------
                                                                ASRA_H.OOT


 ... ISCONDEP VDtSICN  94227 •••    •••  HTI Fugitive *Ouree modeling  - ASH  HANDLINa/STEAM BLOC              •••
                                   •••  On* Point *ouree;  936 receptor* up to SOKM nay; Mas* Wt.           •••        23:53:23
                                                                                                                      PAGE   1
  •*• MODELING OPTIONS USD):  NDEP   RURAL  ELEV         DFADLT                                          DRYDPL WBTDPL


                                           —     MODEL SETUP OPTIONS SUMMARY       •••


 ••Intermediate Terrain Proee**ing i* Selected

 ••Model  I* Setup Par  Calculation of Net DEPo*ition Valuea.

   —  SCAVENGING/DEPOSITION LOGIC —
 • •Modal  Uaa* DRY DEPLETION.  DDFLETE «  T
 ••Mode],  U*e* MET DEPLETION.  WDPLETE •  T .
 ••SCAVENGING Data Provided.  LNGAS,IMPART -FT
 ••Model  Uaei GRIDDEO  TERKAIH Data for Depletion Calculation*

 ••Model  Um»m RURAL Di«per*ion.

 ••Model  Uae* Regulatory DEFAULT Option*:
           1. Final Flume Rim.
           2. Stack-tip Downwa*h.
           3. Buoyancy-induced Diaperaion.
           4. U»* Calm* Preeeaaing Routine.
           5. Hot Uaa Mining Data Proeeeaiiig Routine.
           6. Default Wind Profile Exponent*.
           7. Default Vertical Potential Teaperature Gradient*.
           8. 'Upper  Bound* Value* for Superaquat Buildinga.
           9. No Exponential Decay for RURAL Mode

 ••Model  Accept* Receptor* on ELEV Terrain.

 ••Modal  Aacuxe* No PLAGPOLE Receptor Height*.

 ••Model  Accepting Teaperature Profile Data.
  Huaber of Level* :  3
     (m AOL)        30.0
     (•ACL)        45.7
     (•AOL)        152.3999

 ••Model Accepting wind Profile Data.
  Number of Level* :  5
     (m AOL)        30.0
     In AGL)        45.7
     In AOL)        80.8
     (m AGL)        111.3
     (• AGL)        152.3999

 ••Model Calculate*  1  Short Term Average(    .00001*00 ;     Rot. Angle -       .0
                 EmiMion miu - CRAMS/SEC                                ,•  EBiuion Rat* Unit Factor -    3600.0
                 Output Onita   • GRAWS/M>*2

 ••Input Runatream File: *taama_w.uid                            ;  "Output print Pile: *e«a»a w.out
 ••Detailed Error/Meeaage  File:
STEAMA_H.E*J)
    Volume IV                                                                                      External Review Draft
    Appendix  IV-3                                         IV-3-95                                  Do not cite or quote

-------
                                                          ASH*_M.OOT


  XSCCKDIP VERSION 94227  •**    •••  MTI Pugitiv* IOUTC* sodding - ASH HANDLING/STEAK BLOC             •••
                               ••• On* Point «ourc«; 936 r«c«ptor» up to SOKM «w»y; Mu* Wt.           •••       23:53:23
                                                                                                             PAGE   2
           OPTIONS DSK):  MDIP   KDRAL IUV         DFADLT                                        DKXDPI. NRDPL
                                            ••• POINT SOOIICr DMA •••


          NUMBER BKCSSICM RATE                   BkSI     STUCK  STACK    STACK     STACK   BUILDING HUSSION KATE
         .  PART.  (GRAMS/SEC)     X       Y      ELEV.    HEIGHT TEKP.   EXIT VEL. DIAMETER  EXISTS   SCALAR VARY
   ID      CATS.              (METERS)  (METERS)  (METERS) (METERS) (DBQ.K)  (M/SEC)  (METERS)                BY


STEAM       10    .IOOOOE+01      23.9      49.0    212.1     6.71  310.00      .10      .10     YES
  Volume IV                                                                                  External Review Draft
  Appendix IV-3                                       IV-3-96                                Do not cite or quote

-------
                                                         ASHA_W.OOT


••• XSCGMDEP VERSION S42J7 •••    ••*  WTI Fuaftiv. aoure* moOaliaa - ASH HAHDLmCi/STttM BLOC             ••*
                               *"*  On* Point •ourcc; 936 r«c up to 50XM «w»y; Mu« Mt.          •••       23:53:23
                                                                                                          PACK   3
 ... ur,r»ti^n OPTZOHS USD:  NDEP  KORAL SLIV         DFADLT                                      DKfDPL MCIDPb



                                     ••• somes to* BEFTCNE SODRCS otoops •••

CROOP IE                                            SOURCE IDs


 ALL      SIMM
  Volume IV                                                                              External Review Draft
  Appendix IV-3                                     IV-3-97                               Do not cite or quote

-------
 ISCOMMP VBISICN 94227 •••    •••  WTI Fugitive lource Kidding - ASH HMmUMS/STEAM BLDG              '"
                               •••  On* Point aourea; 936 nnptor* up to 50m my; HUB Wt.           •••       23:93:23
                                                                                                               PAGE   4
• MOOELXMG OPTIONS HSU):  IMP   RURAL  ELEV          DFAOLT                                         HtyCPL METDPL


                                                     PAKtlCDLKR/OKS WOK. •••
      •*-  SOOUCI ID - STIMI   ;  SOURCE TYPE -   POINT  •••

      MASS PMCTTCN -
        .04260,  .01510,   .17020,   .19150,  .19150,   .11910,   .10000,  .05000.   .04000.  .01000,


      PARTICLE DIAMETER (MICRONS)  -
       2.97000. 1.89000,   .93000,   .55000.  .40000,   .27000,   .18000,  .12000,   .06200,  .03000,


      PARTICLE. DENSITY (G/QI"3I •
       1.00000, 1.00000,  1.00000,  1.00000, 1.00000,  1.00000, 1.00000, 1.00000,  1.00000. 1.00000,


      SCAV COEf (LIQ) l/IS-MK/HRI-
       .21E-03, .14E-03,  .50E-04,  .SOB-04, .60E-04,  .901-04, .13E-03, .15E-03,  -20E-03, .221-03.


      SCAV COEF tICEl 1/(S-MH/KR>-
       .70E-04, .47E-04.  .17E-04.  .17E-04, .20E-04,  .30E-04. .431-04, .SOE-04,  .671-04, .731-04,
 Volume IV                                                                                     External Review Draft
 Appendix IV-3                                        IV-3-98                                 Do not cite or quote

-------
ISCCMDEP VERSION 94227 •••


        ' OPTIONS USED:  NDEF
SOURCE ID: STUM
'"  WTI Fugitiv* coure* BCXtaliaa - ASH HANDLING/STEAK BUG
•••  On« Pome mouret:  336 r*eq>to» up to 50KM amor; lUu Wt.

 RURAL HIV        DFAOLT


      •»• DmcnON SPECIF 1C •"TTt!v"a7 DIMkKSIONS ••*
                                                                                             OGXDPL MRDPL
                                                                                                         23:53:23
                                                                                                         PACE  5
MA»U^ AJJ; 04JUU*
IFV BH BW
1 29.1, 25.9
7 S.7, 16.4
13 25. 8. 24.8
19 29.1, 25.9
25 14.9. 65. 3
31 25.8, 24.8
MAX IFV BH
0 2 29.1
0 8 25.8
0 14 25.8
0 20 29.1
0 26 25.8
0 32 25.8
BH
24.7
24.8
22.4
24.7
24.8
22.4
MM IFV BH
0 3 29.1
0 9 25.8
0 15 25.8
0 21 29.1
0 27 25.8
0 33 25.8
BH
21.8
26.4
20.1
21.8
26.4
20.1
MAX IFV BH
0 4 24.4
0 10 25.8
0 16 29.1
0 22 24.4
0 28 25.8
0 34 29.1
BW
28.9
27.3
25.9
28.9
27.3
25.9
WAK IPV BH
0 5 24.4
0 11 25.8
0 17 29.1
0 23 24.4
0 29 25.8
0 35 29.1
BW MAX IFV BH
27.0. 0 6 24.4
27.3. 0 12 25.8
25.9, 0 18 29.1
27.0. 0 24 24.4
27.3, 0 30 25. 8
25.9, 0 3C 29.1
BW WAX
24.6. 0
26.4. 0
25.9, 0
24.6, 0
26.4. 0
25.9. 0
   Volume IV
   Appendix IV-3
                                                    IV-3-99
                                                              External Review Draft
                                                                Do not cite or quote

-------
                                                         ASBA.W.ODT


 ISCOMDEP VERSION 94227 «••    •••  NTI Fugitive lource Badeling - ASH HANDLING/STEAM BLDG              •••
                              *••  One Point •ouree;  936 receptor* up to SOXM amy;  Man WE.          •••        23:93:23

• MODELING OPTIONS USED:  NDEF   RURAL  ELEV         DFAOLT                                        DRTOPL KnOFL'*"   "


                        • SOURCE-RECEPTOR CONBimTICMS LESS THAN 1.0 METER OR 3'ILB  •
                               IN DISTANCE.  CALCOLATIONS KAY HOT BE PERFORMED.


                         SOORCE        	RECEPTOR  LOCATION	        DISTANCE
                           ID          ZR (METERS)    YR (METERS)        (METERS)


                         STEAK                17.4          98.5           49.93
                         STEAK                34.2          94.0           46.16
                         STEAK                50.0          86.6           45.10
                         STEAK                64.3          76.6           48.93
                         STEAK                86.6          50.0           62.72
                         STEAM                94.0          34.2           71.62
                         STEAK               -34.2          94.0           73.48
                         STEAK               -17.4          98.5           64.44
                         STEAK                  .0         100.0           56.34
Volume IV                                                                                  External Review Draft
Appendix IV-3                                      IV-3-100                                Do not cite or quote

-------
                                                           AS8A_N.OOT
 iseoMDEp VERSION 9422? •••


• MODELING OPTIONS USED:  WDEP
     •••  KTI Fugitive •oure* BOdlling - ASH HANDLING/STEAM
      •••  On* Point «ourc«; 936 r«c«pcor« up to  50KH «ny;
                                RDRAL  ELSV
                           DPADLT
                                                                           acton. KETDPL
                                                                                       23:53:25
                                                                                       PACE  II
                                                        t DAYS SELECTED FOR PROCESSING
                                                         (1-YIS; O.BO)
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1111
1111
1111
1111
1111
1111
1111
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1111111111 1111111111 1111111111
1111111111 1111111111 1111111111
1111111111 1111111111 1111111111
1111111111 1111111111 1111111111
1111111111 1111111111 1111111111
1111111111 111111111J. 1111111111
1111111111 1111111111 1111111111
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
111
111
111
111
111
111
111
111
1 1 3.
Ill
111
111
111
111
           MOTE:  METEOROLOGICAL DMA ACTUALLY PROCESSED WILL ALSO DEPEND CM WHAT IS INCLUDED IN THE DATA PILE.
                                 UPPER BOUND OP FIRST TMKOUOH FIPTB WIND SPEED CK,
                                                      IHETERS/SEC)

                                            1.54.   3.0§,  ' S.14,    1.23.   10.SO.


                                              ••* HIND PROFILE EXPONENTS •••
           STABILITY
           CATEGORY
              A
              B
              C
              D
              E
              F
                                                KIND SPEED CATEGORY
.70000E-01
.70000E-01
.10000E+00
.15000E+00
.35000E*00
.SSOOOEfOO
.70000E-01
.70000S-01
.10000E»00
.15000S*00
.33000S+00
.55000E»00
.70000E-01
.70000E-01
.10000E»00
.15000E»00
.35000B»00
.55000B+00
.70000E-01
.70000B-01
.10000E+00
.15000E+00
.35000E»00
.SSOOOE*00
.70000E-01
.70000E-01
.10000E»00
.15000E»00
.35000B*00
.SSOOOEfOO
                                             .70000E-01
                                             .70000E-01
                                             .lOOOOttOO
                                             .15000E*00
                                             .35000E*00
                                             .55000E+00
                                        VERTICAL POTEHTIAL TENPERATORE QRADISHTS
                                                (DEGREES KELVIN PER METER)
           STABILITY
           CATEGORY
              A
              B
              C
              D
              E
              F
.OOOOOE+00
.OOOOOE+00
.OOOOOE+00
-OOOOOE»00
.20000E-01
.310001-01
.OOOOOE+00
.OOOOOE-4-00
.OOOOOE»00
.OOOOOE»00
.20000E-01
.350001-01
SPEED CATEGORY
    3
 .OOOOOB+00
 .OOOOOB+00
 .OOOOOB+00
 .000008+00
 .20000B-01
 .33000B-01
               .OOOOOB+00
               .OOOOOB+00
               .OOOOOB+00
               .OOOOOB+00
               .20000S-01
               .35000E-01
               .OOOOOB+00
               .OOOOOE+00
               .OOOOOB+00
               .OOOOOB+00
               .20000E-01
               .3SOOOE-01
               .OOOOOB+00
               .OOOOOB+00
               .OOOOOB+00
               .OOOOOB+00
               .20000E-01
               .35000B-01
Volume IV
Appendix IV-3
                                 IV-3-101
                                                            External Review Draft
                                                              Do not cite or quote

-------
 ISCOXDEP VERSION 94227


* MODELING OPTIONS USKD:
                                                         ASKA_M.OCT


                                  HTI Fugitive lource BOdcling - ASH HANDLING/STEAM BLDG
                                   On* Point «oure«; 936 r«c«ptor« up to SOKM any; Mus Nt.
                        HDEP   RURAL ELEV
                                                  DFADLT
                                                                                                DRYDFL WETDFL
                                                                                                            23:53:23
                                                                                                            PAGE  19
                    THE FIRST  24 HOURS OF METEOROLOGICAL DATA •••
       FILE: dcpbin.Mt
       SURFACE STATION NO. :  94823
                     HAKE: WTI
                     YEAR:   1993
                                                   FORMAT:  <4I2.2P9.4.P6.1.I2.2F7.1.f9.4,flO.l.f8.4,£5.1,14,£7.2)
                                                   UPPER AIR STATION NO.:   94823
                                                                   NAME:  HTI
                                                                   YEAR:    1993
YEAR
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
MONTH
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DAY
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
HOUR
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
FLOW SPEED
VECTOR (M/S)
104.0 .47
112.0 .36
106.0 .47
115.0 .47
120.0 .02
123.0 .36
130.0 .92
124.0 .92
115. 0 .47
107.0 .02
113.0 .02
108.0 .47
114.0 .36
107.0 .92
120.0 .92
119.0 .47
118.0 .38
124.0 .68
124.0 .68
113.0 .23
97.0 .68
113.0 3.13
117.0 3.13
152.0 2.68
TEMP ST
. (K) 0.
275.4
274.8
274.0
273.9
273.8
273.3
272.5
271.9
271.0
270.9
270.6
270.9
271.1
271.0
270.8
270.5
270.4
270.4
270.1
270.3
270.3
270.3
270.4
269.9
U MIXING
ASS RURAL
601.
617.
633.
649.
665.
681.
697.
713.
729.2
745.2
761.1
777.1
793.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
HEIGHT (M)
URBAN
601.6
617.6
633.5
649.5
665.4
681.4
697.3
713.3
729.2
745.2
761.1
777.1
793.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
USTAR
(M/S)
.3366
.4269
.3363
.3363
.2874
.4266
.3820
.3819
.3355
.3534
.3534
.3926
.4712
.4319
.3817
.3354
.2310
.1178
.1178
.0982
.1178
.1374
.1374
.1178
M-O LENGTH
IK)
176.8
283.7
175.6
175.4
128.1
2S1.8
22S.3
224.6
172.9
-999.0
-999.0
-999.0
-999.0
-999.0
223.4
172.4
81.7
29.4
29.4
29.4
29.4
29.4
29.4
29.4
Z-0 Zd IPCODE
(M) (M)
.3000 1.5 13
.3000 1.5 0
.3000 1.5 0
.3000 l.S 28
.3000 l.S 28
.3000 l.S 28
.3000 1.5 28
.3000 l.S 28
.3000 l.S 28
.3000 l.S 28
.3000 1.5 28
.3000 l.S 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 l.S 28
.3000 1.5 28
.3000 1.5 28
.3000 l.S 28
.3000 l.S 0
.3000 1.5 26
.3000 1.5 0
.3000 1.5 28
PRATE
.00
.25
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
        STABILITY CLASS 1«A, 2»B, 3-C, 4-D,  S-I AND 6-F.
        FLOW VECTOR IS DIRECTION TOWARD WHICH HOD IS BLOWING.
Volume IV
Appendix IV-3
                                                        IV-3-102
External Review  Draft
   Do not cite or quote

-------
                                                                AHSA_D.OOT


  •••  ZSCONDEP VERSION $4227 •••    *••  HTI Fugitive aouree modeling - ASH HANDLIWJ/STEAM BLDC              •••        01/26/95
                                   •••  On* Point lource;  936 receptor* up to SORM may: Maa* Nt.            •••        00:18:55
                                                                                                                     PAGE   1
  •••  MODELING OPTIONS DStD:  BDEF   RURAL  BLEV         DPAULT                                           DRYDPL HETCPL


                                           •••     MODEL SCTBF OPTIOHS SUMMARY       •••


 ••Intermediate Terrain Froeeaaing i* Selected

 ••Model I* Setup For Calculation of Dry Deposition Value*.

   —  SCAVENGING/DEPOSITION LOGIC —
 ••Model Uae* DRY DEPLETION.  DDPLETE -  T
 ••Model U*e* NET DEPLETION.  WDPLETE >  T
 ••SCAVENGING Data Provided.  LWGAS.LMPART -FT
 ••Model U*e* GRIDDED TERRAIN Data {or Depletion Calculation*

 ••Model U*e* RURAL Di*per*ion.

 ••Model U*e* Regulatory DEFAULT Option!:
           1. Final Flue* Rise.
           2. Stack-tip DOHiwach.
           3. Buoyancy-induced Di*p*r»ion.
           4. Use Calm* Preceding Routine.
           5. Not Uae Mixing Data Proeeuing Routine.
           6. Default Mind Profile Exponent*.
           7. Default Vertical Potential Tetveratura Gradient!.
           8. 'Upper Bound* Value* for Superaguat Building*.
           9. No Exponential Decay for RURAL Mode

 ••Model Accept* Receptor* on ELEV Terrain.

 ••Model Auuae* No FLAGPOLE Receptor Height*.

 ••Model Accepting To-operature Profile Data.
  Number of Level* .-            3
    In AOL)          30.0000
    (B ACL)          4S.7000
    (m AOL)          152.400

 ••Model Accepting Hind Profile Data.
  Number of Level* :            5
     m AGL)          30.0000
     m AOL]          4S.7000
     m AGL)          80.8000
     m AGL)          111.300
     m AGL)          152.400

 ••Model Calculate*  1 Snort Ten Averaged)  of:    1-HR
    and Calculate* PERIOD Average*

 •Thi» Run Include*:    1 Source!*);      1  Source Group!*); and    936  Receptor!*)

 ••The Model Axuae*  A Pollutant Type  of:  FUU1T1VE

 ••Model set To  Continue  Running After the Setup Teating.

 ••Output Option* Selected:
         Model  Output* Table*  of PERIOD Average* by Receptor
         Model  Output* Table*  of Higheet Short Term Value* by Receptor  (RICTABLE Keyword)
         Model  Output* Table*  of Overall Miriam short Tare) Value*  (MAZTABLE  Keyword)
         Model  Output* External File(*l of High Value* for Plotting IPUnriLE Keyword)

••NOTE:   The Following Flag* May Appear Following  DSPO value*:   c for Cala Hour*
                                                               • for Mining Hour*
                                                               b for Both Cain and Kiuing Hour*

••Mi*c.  Input*:  Anem. Hot.  !•)  •     30.00 ;    Decay Coef. >    0.0000      ;    Rot. Angle -     0.0
                EBiaaion unit* - GRAMS/SEC                                ;  Eniilion Rate Unit Factor «    3600.0
                Output Unit*    - GRAKS/M**2

••Input  Runatreaa  File: ateaa*x_d.ind                            ,-   ••Output Print Pile: •CMMa_d.out
••Detailed Error/Mesaage  Pile:   STEAMA_D.ERR
    Volume IV                                                                                       External Review Draft
    Appendix IV-3                                        IV-3-103                                 Do not cite or quote

-------
                                                            AHSA_D.OOT


••• ISCOMDEP VERSION 94227 •••    •••  WTI Fugitive *ource modeling - ASK HAMDLIHS/STEAM BLDG             •••       01/26/95
                                "•  One Point *ource; 936 receptor* up to SOKM away; MM* Mt.           •••       00:18:55
                    	   	                                                                                PAGE   2
••• MODELXHG OPTIONS USED:  DDEP   RURAL  ELEV         DFAULT                                        DRYDPL MRDPL
                                             •••  P01HT SODRCI DATA •••


           NUMBER EMISSION RATE                   BASE     STACK   STACK    STACK     STACK   BUILDING EMISSION RATE
  SOURCE     PART.   (GRAMS/SEC)      X        Y      ELEV.    HEIGHT  TEKP.   EXIT VEL. DIAMETER  EXISTS   SCALAR VARY
    ID       CATS.               (METERS) (METERS)  (METERS) (METERS) (DEG.K)   (M/SEC)  (METERS)                BY


 STEAM        10   O.lOOOOEtOl      23.9      49.0   212.1     6.71   310.00      0.10     0.10    . YES
   Volume IV                                                                                  External Review Draft
   Appendix IV-3                                      IV-3-104                                Do not cite or quote

-------
                                                       AHSA_P.OUT


    XSCOMMF VnSION 94257 •••    •••  WTI Fugitiv* •oure* •od.ling - ASH KMOLOB/STIMI BLD6            •••       01/26/95
                              *••  On* Taint moazct;  936 iKwptoim vp to 5OHM mtay; Ha» Mt.          •••       00:18:55
                                                                                                      PAGE  3
           ornoHS asm: EBB?  RURAL ILIV        DFAOLT                                     M»PL NBTOPL
                                       sacntcB zoa DsrakiMB SOURCE GROUPS ••*
ALL
   Volume IV                                                                            External Review Draft
   Appendix IV-3                                    IV-3-105                              Do not cite or quote

-------
                                                            AHSA_D.OOT


• • ISCOMDBP VERSION 94227 •••    •••  HTI Pugitiv* «ourc« BOdcling - ASH HANDLING/STEAM BLDG             •••        01/26/95
                                **•  On* Point «ourc«;  936 r*c«ptor« up to  SOKM «ny; Na» Wt.           •••        00:18:55
                                                                                                                PAGE   4
•• MODELING OPTIONS USED:  BOEP  RDRAL  ELEV         DPAOLT                                         DRYDPL NETDPL


                                           ••* SOmCS  PAKnCDLATE/OAS DATA •••
       ••• SOURCE ID « STEAM   ; SOURCE TYPE -   POUR  •••

       MASS PKACTION "
       0.04260, 0.01510.  0.17020, 0.19150,  0.19150, 0.11910. 0.10000,  0.05000, 0.04000,  0.01000,


       PARTICLE DIAMETER (MICRONS) >
       2.97000, 1.89000,  0.93000, O.SSOOO,  0.40000, 0.27000, 0.18000,  0.12000, 0.06200,  0.03000.


       PARTICLE DENSITY 
-------
 ISCCHBBP VBXSION 94227
                                MI Fugitive mure* Modeling - MR HMOLIHG/STIMI BLOC
                                ODB Point •oure*; 936 r«e«ptor« up to SOm way; HBM Ht.
 MODELJMC OVTIOKS USK>:  DOW   KDRAL  BLBV
                                                                                         DRVDPL MRTDn*
                                                 01/26/15
                                                 00:18:55
                                                 PACE   S
                                    DZUCTXOH SfBCIVXC illlUVmS DDOMSICKS
SOURCE ID: STIMI
IFV EH BH
1 29.1, 25.9
7 6.7, 16.4
13 25. «, ' 24. «
19 29.1, 25.9
25 14.9, 65.3
31 25.8, 24. B
WUC IFV BH
0 2 29.1
0 8 25.8
0 14 25.8
0 20 29.1
0 26 25.8
0 32 25.8
BH
24.7
24.8
22.4
24.7
24.8
22.4
MM ITV BH
0 3 29.1
0 9 25.8
0 15 25.8
0 21 29.1
0 27 25.8
0 ' 33 25.8
BH
21.8
2C.4
20.1
21.8
26.4
20. 1
HJUt ITV BH
0 4 24.4
0 10 25.8
0 16 29.1
0 22 24.4
0 28 25.8
0 34 29.1
BH
28.9
27.3
2S.9
28.9
27.3
25.9
NMC IFV BH
0 5 24.4
0 11 25.8
0 17 29.1
0 23 24.4
0 29 25.8
0 35 29.1
BH NMC IFV BH BH
27.0, 0 6 24.4, 24.6
27.3, 0 12 25.8, 26.4
25. 9, 0 18 29.1, 25.9
27.0, 0 24 24.4, 24.6
27.3, 0 30 25.8. 26.4
2S.9, 0 36 29.1, 25.9
NM
0
0
0
0
0
0
Volume IV
Appendix IV-3
IV-3-107
External Review Draft
  Do not cite or quote

-------
                                                       AHSA_D.OOT


 ISCOHDEP VDISION 94227  •*•    •••  WTX Pugitiv* *oure< BOdcling - ASH KANDLINS/STEAM 1LDC             •••        01/26/95
                            •••  OM taint, •sure*;  936 r»c«pcor« up to  50KM wny; Hu> Nt.           •••        00:18:55
                	                                                                                    PAGE  17
 MODEUM! OPTIOHS USTD:  OOtF   RDKAL  ELEV        DTADLT                                       DHYOPL MRDPL


                      • SODKCE-KZCKPTOR COMBDttTiaJS LESS IBM 1.0 HfTOt OT 3*ZLB *
                             IK DISTANCE.  CALCULATIONS KAY WOT IE PERFORMED.
SOURCE
ID
STEAM
STEAM
STEAM
STEAM
STEAM
STEAM
STEAM
STEAM
STEAM
- - RECEPTOR
XR (KERRS)
17.4
34.2
50.0
64.3
86.6
94.0
-34.2
-17.4
0.0
LOCATION - -
YR (METERS)
»«.5
94.0
86.6
76.6
50.0
34.2
94.0
98. 5
100.0
DISTANCE
(METERS)
49.93
46.16
45.80
48.93
62.72
71.62
73.48
64.44
56.34
Volume IV                                                                               External Review Draft
Appendix IV-3                                     IV-3-108                              Do not cite or quote

-------
                                                          AHSA_D.OUT
VERSION 94227 •••


OPTIONS USED:  DDEP
•*•  NTI  Pueitiv*
•••  On*  Point
                              RURAL  ELEV
                                               »ourc« vxteling - ASH KAKDLBC/ST1AM BLDC
                                                    936 r*c«ptor> up to 50KM my; MM* Ht.
                                                  BPAOLT
                                                                                                  OMXPPL ME'IDPL
                                                                                       01/26/95
                                                                                       00:18:55
                                                                                       PAGI  IS
                                         METEOROLOGICAL CAYS SELECTED FOR PROCESSING
                                                        (1»YES; 0-HO)
111
111
111
111
111
111
111
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
111
111
111
111
111
111
111
1111111111 1111111111 1111111111
1111111111 1111111111 1111111111
1111111111 1111111111 1111111111
1111111111 1111111111 1111111111
1111111111 1111111111 1111111111
.1111111111 1111111111 1111111111
1111111111 1111111111 1111111111
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
111
111
111
111
111
111
111
1111
1111
1111
1111
1111
1111
1111
                              . DMA ACTUALLY PROCESSED MIU. ALSO DBPBID CM MAT IS BKLODID IN IBB DM* FUJI.
                                     BOUND OP PmST TSROOBB PTPTH KIND SPBD
                                                     UHTOS/SK)
                                          1.S4,   3.09.   5.14,   1.23.   10.80,
          STABILITY
          CATEGORY
             A
             B
             C
             D
             B
             P
.700001-01
.70000E-01
.100001*00
.150001*00
.3SOOOE+00
.5SOOO*»00
HIM
2
.70000S-01
.700001-01
.10000B»00
.150001+00
.350001*00
.550008*00
D SPEED CATEGORY
3
.700001-01
.700001-01
.100001*00
.150001*00
.350001*00
.550001*00
4
.700001-01
.700001-01
.100001*00
.150001*00
.350001*00
.550001*00
                                                                         .700001-01
                                                                         .70000E-01
                                                                         .100001*00
                                                                         .150001*00
                                                                         .350001*00
                                                                         .550001*00
                                                                  .700001-01
                                                                  .700001-01
                                                                  .100001*00
                                                                  .150001*00
                                                                  .350001*00
                                                                  .550001*00
                                       VERTICAL POTENTIAL TEMPERATDKI GRADIENTS
                                              (DECREES KELVIN PER METER)
          STABILITY
          CATEGORY
            A
            B
            C
            D
            E
            P
                                              WIND SPEED CATEGORY
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
                             .000001*00
                             .000001*00
                             .000001*00
                             .000001*00
                             .200001-01
                             .350008-01
                       .000001*00
                       .000001*00
                       .000001*00
                       .000001*00
                       .200001-01
                       .350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.OOOOOE*00
.300001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
Volume IV
Appendix IV-3
                                  IV-3-109
                                                                                         External Review Draft
                                                                                            Do not cite or quote

-------
VERSION 94227  **•


OPTIONS USED:  DDKP
                                                     AHSA_D.OOT
                          '••  HTI Fugitive »ourc« KXte lino - ASH mNDLIMG/STEAM BLDS
                          •••  On« Point *oure«;  936 nccpter* up to 5OHM any; M*M Ht.

                           RURAL KLKV        DPAULT
                                                01/26/95
                                                00:18:5!
                                                PACE  19
• •• TOE FIRST 24 HOURS OF MBTB
FILE

SURFACE



YEAR
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93



pbin.net
STATION NO. :
NAME: 1
YEAR:

MONTH DAY HOUR
1
3
3
]
3
J

]
1
3
]
3
3
1
]
1
3
3
1
3
1
3
1
1
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
1 11
1 12
1 13
1 14
1 15
1 16
1 17
1 18
1 19
1 20
1 21
1 22
1 23
1 24

94823
ITI
1993
FLOW SPEED
VECTOR 'IK/SI
104.0 4.47
112.0 5.36
106.0 .47
115.0 .47
120.0 .02
123.0 .36
130.0 .92
124.0 .92
115.0 .47
107.0 .02
113.0 .02
108.0 .47
114.0 .36
107.0 .92
120.0 .92
119.0 .47
118.0 .58
134.0 .68
124.0 2.68
113.0 2.23
97.0 2.68
113.0 3.13
117.0 3.13
152.0 2.68
DROLOGXCAL DATA "-
FORMAT: (4I2.2F9.4

F6.1.I2.2F7

1. £9. 4, £10.1

,£8. 4, £5

.I.i4.f7.2)




UPPER AIR STATION NO. : 94823
M
WE: HTI





YEAR: 1993
TEMP STAB MJJUMU
(K> CLASS RURAL
275. 601.
274.
274.
273.
273.
273.
272.
271.
271.
270.
270.
270.
271.
271.
270.
270.
270.
270.
270.
270.
270.
270.
270.
269.
617.
633.
649.
665.
681.
697.
713.
729.
745.
761.
777.
HEIGHT (Ml
URBAN
601.6
617.6
633.5
649.5
•65.4
681.4
C97.3
713.3
729.2
745.2
761.1
I 777.1
793.0 793.0
809.0 809.0
809.
9 809.0
809.0 809.0
809.
9 809.0
809.0 809.
809.
9 809.
809.0 809.
809.
9 809.
809.0 809.
809.0 809.0
809.0 809.0
USTAR M-O
(M/S)
0.3366
0.4269
0.3363
0.3363
0.2874
0.4266
0.3820
0.3819
0.3355
0.3534
0.3534
0.3926
0.4712
0.4319
0.3817
0.3354
0.2310
0.1178
0.1178
0.0982
0.1178
0.1374
0.1374
0.1178
LENGTH
(«)
176.8
283.7
175.
175.
128.
281.
225.
224.
172.
-999.
-999.0
-999.0
-999.0
-999.0
223.
172.
81.
29.
29.
29.
29.
29.
29.
29.
Z-0 Zd IPCODE
(M) IM)
0,3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5
0.3000 1.5

13
0
0
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
0
28
0
28
PRATE
Ina/HR)
0.00
0.25
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
      STABILITY CLASS 1-A,  2»B. 3-C, 4«D, S«E AND 6-F.
      FLOW VICTOR IS DIRECTION TOWARD MUCH MIND IS BLOWING.
Volume IV
Appendix IV-3
IV-3-110
                                                                                   External Review Draft
                                                                                     Do not cite or quote

-------
                                                                ASHA_2.0OT


 ••• ISCOHDIP VERSION S42J7  —    •••  HTI Fugitive aource modeling - ASK HANDLIH3/STEAM BLOG              •••
                                   •••  On* Point aource; 936 receptor*  up to SOKM ««y; Ma*« Ht.           •••        10:57:13
                                                                                                                      PAGE   1
  ••• MODELOB OPTIONS USE):  DEPOS  RURAL  ELEV          DPABLT                                          DRYDFL NETDPL


                                           •••     MODEL SETUP OPTIONS SOMKARY       •••


 ••Intermediate Terrain Proceaaing i* Selected

 ••Model  I* Setup Per Calculation of Total Deposition Value*.

   —  SCAVENGING/DEPOSITION LOGIC —
 ••Model  U*e* DRY DEPLETION.  DEPLETE .  T
 ••Model  U*e* MET DEPLETIOH.  MDPLETt >  T
 ••SCAVENGING Data Provided.  LMGAS.LNFART -FT
 ••Model  O*e< GRIDDXD TERRAIN Data for Depletion Calculation*

 ••Model  Dec* RURAL Di*per*ion.

 ••Model  U»e* Regulatory DEFAULT Option*:
           1. Final  Plume Riae.
           2. Stack-tip Dowiwaah.
           3. Buoyancy-induced Diaperaion.
           4. U»e Calam- Froeeaaing Routine.
           5. Mot Dae Miaaing Data Proceaaiag Routine.
           6. Default Wind Profile Exponent*.
           7. Default Vertical Potential Teoperatur* Gradient*.
           8. 'Upper Bound* Value* for Superaquat Building*.
           9. Mo Exponent!*! Decay for RURAL Mode

 ••Model  Accept* Receptor* on ELEV Terrain.

 ••Model  Aaauaie* No FLAGPOLE Receptor Height*.

 ••Model  Accepting Temperature Profile Data.
  Number of Level* :  3
     <• AGL)       30.0
     (• AGL)       45.7
     (• AGL)       152.3MS

 -•Model  Accepting Hind Profile Data.
  Nuaber of Level* :  5
     (• ACL)       30.0
     (•AGL)       45.7
     (• ACL)       SO.I
     (• AGL)       111.3
     (» AGL)       152.399$

 ••Model Calculate*  1 Short Term Averaged) of:    1-HR
    and Calculate* PERIOD Average*

 ••Thi* Run Include*:     1 Source(•);       1 Source Group(•); and    »3« Reeepter(a)

 ••The Model Aaauaa* A Pollutant Type  of:   FUGITIVE

 ••Model Set To Continue Running After the  Setup Teating.

 ••Output Option*  Selected:
         Model Output* Table* of PERIOD Average* by Receptor
         Model Output* Table* of Highest Short Tern Value* by Receptor (RECTARLE Keyword)
         Model Output* Table* of Overall «*--'—— Short Term Value* (MAXTABU Keyword I
         Model Output* External File!*) of High Value* for Plotting (FLOTFtLE Keyword)

 ••NOTE:  The Following Flaga May Appear Following  DKPO Value*:  c for Cain Hour*
                                                               • for Milling Hour*
                                                               b for Both Calm  and Mi«*ing Hour*

 ••Mi*c. Input*:  Anem. Hgt.  (m)  -    30.00 ;    Decay Coef. -    .00001*00 ;    Rot. Angle -       .0
                 EBiuion Unit* • GRAMS/SBC       •                         ;  Bmiaaion Rate Unit Factor -    3600.0
                Output Unit*   • GRAMS/IC'2

 ••Input Runatiream  File: •tea>a_dv.ind                          ;  ••Output Print File: • t«ama_dw.out
 ••Detailed Error/Meaaage  Pile:                                                           —--   •=»'
STEAMA_DH.ERR
    Volume IV                                                                                       External Review Draft
    Appendix IV-3                                        JV-3-111                                 Do not cite or quote

-------
                                                          ASBA_2.OOT


  ISCOMDBP VERSION 94227 •••    **• MTI Fugitive Soure* Modeling  - ASH HANDLING/STEAM BLDC             •••
                               •••  OM Point cource; $36 receptor* up to 5OHM nmy; Mu« Wt.           •••        10:57:13
                   	   	                                                                    	         PMC   2
 * Mr?fWTrTlaB OPTIONS USED:  08POS  jumJk£i  IZAV         DPAOLT                                        EKTDPL 1
                                            ••• POINT somes own •••


          NDMBBt EKISSXCN KATE                  BASE     STACK   STACK    STACK     STACK    BOILDXNS KKISSIOK RATE
 SOURCE     PART.  (GRAMS/SEC)     X       Y     ELEV.    HEIGHT  TWP.   EXIT VEL. DIAMETER   EXISTS   SCALAR VARY
   ID      CATS.              (METERS)  (METERS)  (METERS) (METERS) (OEG.K)   IM/SEC)  (MBTKRS)               BY


STEAM       10 '   .10000S+01  '    23.9      49.0   212.1     C.71   310.00      .10      .10      YES
  Volume IV                                                                                  External Review Draft
  Appendix IV-3                                      IV-3-112                               Do not cite or quote

-------
                                                         ASOV.2.00T


 ••  ISCCKDIP V0SION 94227 •••    ••• wn Fugitive •oure* Bodalinv - ASH HAMDLINO/SRMC BUB             •••
                               ••• On* Paint «oure«; 936 receptor* up to 50XM stray; MM* HI.          •••        10:57:13
                                                                                                          PACT   3
 ••* MODILXKi OFTIOHS OSB>:  DCKS  KDWO.  ZLXV        DTAOLT                                      OOOfL
                                     ••• SODKCB ZO> DBPIMUIB SOUKCB OKOOPS

GROOP ID                                           SOORCZ ID*
 ALL
   Volume IV                                                                             External Review Draft
   Appendix IV-3                                    IV-3-113                              Do not cite or quote

-------
                                                           ASHA_2.OOT


 ISCOMDEP VERSION  94227 •••    •••  NTT Pugitiv* •ourc* Bedding - ASH HANDLING/ STEAK BLOC              • ••
                               •••  On* Point »ourc«; 936 receptors up to 50m «w»y;  Mu« Mt.           •••        10:57:13

• MODELXHB OPTIONS USED:  DEPOS  RURAL  (LEV          DPAOLT                                         VKIDH.       '^'   *


                                          *•• SOURCE rARTICDLATE/OAS DAT* •••
      •••  SOORCE ID • STEAM   ;  SODRCE TYPE •   POINT  •••

      MASS FRACTION -
        .04260,  .08510.  .17020.   .19150.  .19150,   .11910,   .10000,  .05000,   .04000.   .01000,


      PARTICLE DIAMETER (MICRONS)  -
       2.97000, 1.89000,  .93000,   .55000,  .40000,   .27000,   .18000,  .12000,   .06200,   .03000,


      PARTICLE DENSITY (O/CM"3> •
       1.00000. 1.00000, 1.00000,  1.00000, 1.00000,  1.00000, 1.00000, 1.00000.  1.00000. 1.00000,


      SCAV COBF tLXQ] l/IS-Mf/HK)*
       .211-03, .14E-03, .SOE-04,  .501-04, .601-04,  .90E-04, .13E-03, .151-03,  .208-03, .22E-03,


      SCAV COEF [ICE] 1/IS-MM/HR)-
       .70E-04. .47E-04, .17E-04,  .17E-04, .20E-04,  .30E-04, .431-04, .50E-04,  .67B-04, .73E-04,
Volume IV                                                                                    External Review Draft
Appendix IV-3                                       IV-3-114                                 Do not cite or quote

-------
    ISCCHBBP TORSION »4227
                                                        ASB*_2.0DT
                                  HIT Fugitiv* sourc* moO»liat - ASH HMDLXNG/STMII BLOC
                                   era taint mouic*; 93 f receptors up to SOXM amy; Mui wt.
    HODILJIIO OmOMS tJRD:  D0OS  KOTAL  BLtV
                                                                                                   NA'IVPL
                                                                                                         10:57:13
                                                                                                         PJUS1   5
                                       DIUCTXON SFKZFZC
SOORC8 ID:  STMM
IFV BH BM HMt ITV BR
1 29.1. 2S.9. 0 2 29.1
7 6.7. . 16.4, 0 « 25.8
13 25.8. 24.8. 0 14 25.8
19 29.1. 25.9. 0 20 29.1
25 14.9, 65.3, 0 26 25.8
31 25.8, 24.8, 0 32 25.8
BM
24.7
24.8
22.4
24.7
24.8
22.4
NMC IFV BH
0 3 29.1
0 9 25.8
0 IS 25.8
0 21 29.1
0 27 25.8
0 • 33 25.8
BH
21.8
26.4
20.1
21.8
26.4
20. 1
MMt tFV BR
0 4 24.4
0 10 25.8
0 16 29.1
0 22 24.4
0 28 25.8
0 34 29.1
BH HAK IFV BH
28.9, 0 5 24.4
27.3. 0 11 25.8
25.9. 0 17 29.1
28.9, 0 23 24.4
27.3, 0 29 25.8
25.9. 0 35 29.1
BH HAK IFV BH
27.0, 0 6 24.4
27.3, 0 12 25.8
25.9, 0 18 29.1
27.0. 0 24 24.4
27.3. 0 30 25.8
25.9, 0 36 29.1
BH
24.6
26.4
25.9
24.6
26.4
25.9
HUC
0
0
0
0
0
0
   Volume IV
   Appendix IV-3
IV-3-115
External Review Draft
  Do not cite or quote

-------
                                                         ASHA_2.OOT


 ISCOMDEP VERSION 94227 —    ••• WTI Fugitive source Modeling  - ASH HANDLING/STEAM BLDG             •••
                              ••*  Cm Point source; 936 receptors up to SOKM evey; Mess Mt.           •••        10:57:13
                                                                                                            PACE  17
* MODEUMG OPTIONS USED:  DEPOS  RURAL  ELEV         DFAULT                                        ORYDPL HETDPL


                        • SOCRCE-RECEPTOR COMBIKATIOMS LESS THAU 1.0 METER OK 1*ZLB •
                               IN DISTANCE.   CALCULATIONS MAY NOT BE PERFORMED.


                         SOURCE        	RECEPTOR LOCATION	         DISTANCE
                           1C          XR (METERS)   YR (METERS)         (METERS)
                                             17.4         98.5           49.93
                         STEAM              -34.2         94.0           46.16
                                             50.0         86.6           45. SO
                                             C4.3         76.6           41.93
                         STEAM               86.6         50.0           62.72
                                             94.0         34.2           71.62
                                            -34.2         .94.0           73.48
                         STEAM              -17.4         98.5           64.44
                         STEAM                 .0         100.0           S6.34
Volume IV                                                                                 External Review Draft
Appendix IV-3                                      IV-3-116                                Do not cite or quote

-------
                                                          ASHA_2.0OT
ISCOHBIP V0SIQN 91257
                                  Mil Pugitiv* sourc* BixWlino - ASH HANDLING/STEAM BUG
                                   On* Point lourc*; 936 r»c«ptor« up  to SOW nny; Mwi wt.
          OFTIOKS USD:  DEPOS  RDRAL  EL«V
                                                                                                  DRYDPL WETOPL
                                                                                                               10:57:13
                                                                                                               fACI  U
                                         METEOROLOGICAL DAYS
                                                        (1-WS;  0«HO)
                                                                     POR PROCESSOR?
       1111111111   1111111, 111   1111111111   1111 l 11111   1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
111111
                                                  1111111111
                                                  1111111111
                                                  1111111111
                                                  1111111111
                                                  1111111111
                                                  1111111111
              1111111111
              1111111111
              llllllllll
              1111111111
              1111111111
                                                                                           1111111111
                                                                                           1111111111
                                                                                           llllllllll
                                                                                           1111111111
                                                                                           1111111111
                                                                      1111111111   1111111111
          NOR:  MRCCnOLOGICkL MIA ACTUALLY PKOCBSSCO MILL ALSO MFBB ON MAT IS XMCbBDCD IK «K DATA FXLB.
                               urn* team or ratsr IBKOOOB rirra MOD SPUD CATHORXES
                                          1.54,   3.01,    S.14,   $.23,  10. iO,

                                            ••* HIHB pttoriLB IXKMPJT& •••
STABILITY
CATEGORY
   A
   B
   C
   D
                                               WIND SPEED CATEGORY
.700001-01
.700001-01
.100001*00
.150001*00
.350001*00
.550001*00
                                .700001-01
                                .700001-01
                                .100001*00
                                .150001*00
                                .350001*00
                                .550001*00
                         .700001-01
                         .700001-01
                         .100001*00
                         .150001*00
                         .350001*00
                         .550001*00
                                                                    .700001-01
                                                                    .700001-01
                                                                    .100001*00
                                                                    .150001*00
                                                                    .350001*00
                                                                    .550001*00
                          .700001-01
                          .700001-01
                          .100001*00
                          .150001*00
                          .350001*00
                          .550001*00
                                                                                                .700001-01
                                                                                                .700001-01
                                                                                                .100001*00
                                                                                                .150001*00
                                                                                                .350001*00
                                                                                                .550001*00
                                       VERTICAL POTBRTAS, TPOEKATOm CTADOKTS
                                              (DEGREES KELVm PER METER)
STABILITY
CATEGORY
   A
   B
   C
   D
   E
   P
                                               HDD SPEED CATEGORY
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
                                .000001*00
                                .000001*00
                                .000001*00
                                .000001*00
                                .200001-01
                                .350001-01
                         .000001*00
                         .000001*00
                         .000001*00
                         .OOOOOE*00
                         .200001-01
                         .350001-01
                                                                    .000001*00
                                                                    .000001*00
                                                                    .000001*00
                                                                    .000001*00
                                                                    .200001-01
                                                                    .350001-01
                         .000001*00
                         .000001*00
                         .000001*00
                         .00000«*00
                         .200001-01
                         .350001-01
                                                                                                .000001*00
                                                                                                .000001*00
                                                                                                .000001*00
                                                                                                .000001*00
                                                                                                .200001-01
                                                                                                .350001-01
Volume IV
Appendix IV-3
IV-3-i n
                                                                                                 External Review Draft
                                                                                                    Do not cite or quote

-------
                                                            ASRA.2.0C7T
    ISCOMDIP VERSION 94227 •••


   * MODELING OWIONS
HTI Fugitive source Bodeling - ASH HANDLING/STEAM BLOC
 On* Point maaicm:  936 receptor* up to 50KM nray; MUM Ht.
                                                                          10:57:13
                                                                          PACE  19
                        THB FIRST  24 BOORS OF METEOROLOGICAL DATA
           FILE: depbin.Mt
           SURFACE STATION NO.:  94*23
                         NAME: MTI
                         YEAR:   1993
                  FORMAT: (4I2.2F9.4,FC.l.I2.2F7.1.f9.4.fl0.1.f8.4,fS.l,14.f7.2)
                  UPPER AIR STATION HO. :   94*23
                                 HAKE:  NTT
                                 YEAR:    1993
YEAR
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
MONTH
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DAY HOUR
1 1
1 ' 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
1 11
1 12
1 13
1 14
1 15
1 16
1 17
1 18
1 19
1 20
1 21
1 22
1 23
1 24
FLOW
VECTOR
104.0
112.0
106.0
115.0
120.0
123.0
130.0
124.0
115.0
107.0
113.0
108.0
114.0
107.0
120.0
119.0
118.0
124.0
124.0
113.0
97.0
113.0
117.0
152.0
SPEED
(M/S)
4.47
5.36
4.47
4.47
4.02
5.36
4.92
4.92
4.47
4.02
4.02
4.47
5.36
4.92
4.92
4.47
3.58
2.68
2.48
2.23
2.68
3.13
3.13
2.68
TEMP ST
IK) 0.
275.4
274.8
274.0
273.9
273.8
273.3
272.5
271.9
271.0
270.9
270.6
270.9
271.1
271.0
270.8
270.5
270.4
270.4
270.1
270.3
270.3
270.3
270.4
269.9
•B MTKIHTt B
kSS RURAL
601.6
617.6
633.5
649.5
665.4
6*1.4
697.3
713.3
729.2
745.2
761.1
777.1
793.0
•09.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
•09.0
•09.0
109.0
EIGHT (M)
URBAN
601.6
617.6
633.5
649.5
665.4
611.4
697.3
713.3
729.2
745.2
761.1
777.1
793.0
809.0
109.0
•09.
809.
809.
809.
109.
•09.
•09.0
109.0
809.0
USTAR
(M/S)
.3366
.4269
.3363
.3363
.2874
.4266
.3820
.3*19
.3355
.3534
.3534
.3926
.4712
.4319
.3817
.3354
.2310
.1178
.1178
.09(2
.1178
.1374
.1374
.1178
M-O LEND
IM)
176.
2*3.
175.
175.
128.
281.
225.
224.
172.
-999.
-999.
-999.
-999.
-999.
223.
172.
81.
29.
29.
29.
29.
29.
29.
29.
IH Z-0 Zd IPCODE
(M) (M)
• .3000 1.5 13
7 .3000 1.5 0
.3000 1.5 0
.3000 1.5 28
.3000 1.5 28
.3000 l.S 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
9 .3000 1.5 28
9 .3000 1.5 28
9 .3000 l.S 28
9 .3000 1.5 28
) .3000 1.5 28
.3000 1. 28
.3000 1. 28
.3000 1. 28
.3000 1. 28
.3000 1. 28
.3000 1. 28
.3000 1. 0
.3000 1. 28
.3000 1.5 0
.3000 1.5 28
PRATE
IBB/HR.)
.00
.25
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
•*• MOTES:
           STABILITY CLASS 1»A.  2>B. 3-C. 4-D,  5-1 AMD 6»F.
           FLOW VECTOR IS DIRECTION TOWARD WHICH WIND IS BLOMIMS.
   Volume IV
   Appendix IV-3
                      IV-3-118
External Review Draft
   Do not cite or quote

-------
                                                               ASBB_C.OOT


 ••*  XSCOMDEP VERSION 94227 •••    •••  MTX Fugitive »OUTC« modeling  - ASH HANDLING/STEAM BLDG              •••
                                   •••  On* Point aouree;  936 receptor* up to SOW away; Surface Me.         •••        02:23.-06
                                                                                                                      PACE   1
  ••• tmvn.Turs OPTIONS USED:  COMC   RURAL  SUV         DFAULT            .                              DftYDPL NETDFL


                                           •••     MODEL STTOP  omoMS SUMMARY       •••


 ••Intermediate Terrain Proceaaing is Selected

 ••Modal  I> Satup For Calculation of Average concentration  Valuaa.

   — SCAVBCOIB/DEPOSmaH LOGIC —
 ••Modal  Uaea DRY DEPLETION.  DDPLETE •  T
 ••Modal  Uaaa NET DEPLETION.  HDPLETE »  t
 ••SCAVENGING Data Provided.  LMBAS.LMPMIT «  P T
 ••Modal  Uaaa GRXDDED TERRAIN Data for Depletion Calculation*

 ••Modal  Uaaa RURAL Diaperaion.

 ••Modal  Uaaa Regulatory DEFAULT Optiona:
           1  Final Pluee Riaa.
              Stack-tip Dovnvaah.
              Buoyancy*induced Diaparaion.
              Uae Calve Proceeaing Routine.
              Hot Oae Miaaing Data Proceaaiag Routine.
              Default Hind Profile Exponent!.
              Default Vertical Potential Teapereture Gradient*.
              •Upper Bound* Valuea for Superaguat Buildinga.
              No Exponential Decay for RURAL Mode
••Model Accept* Receptora en ELEV Terrain.

••Model Aaeunea No FLAGPOLE Receptor Height*.

••Model Accepting Temperature Profile Data.
  Nuafeer of Level* :   3
    (•ACL)       30.0
    (• ACL)       45.7
    (• AGL)       152.3>»9

••Model Accepting Mind Profile Deta.
  Nuaber of Level* :   S
      i AGL)       30.0
     • AOL)       45.7
      I AOL)       80.*
      > AOL)       111.3
     • AOL)       152.3999

••Model Calculate* 1 Short Term Average la) of:   1-HR
    and Calculate* PERIOD Average*

••This Run Include*:     1 Souree(a);      1 Source Group!*); and    »3« Receptor)*)

••The Model Aaeunaa A Pollutant Type  of:  POSITIVE

••Model Set To Continue Running After the Setup Teating.

••Output Option* Selected:
         Model Output* Table*  of PERIOD Average* by Receptor
         Model Output* Table*  of Higbeat Short Ten Valuea by Receptor (RECTABLE Keyvord)
         Model Output* Table*  of Overall "—•—— Short Term Valuea S/M**3

••Input KunatreeB File:  ateeec>_c.ine                            ;  ••Output Print Pile: ateaafc e.out
••Detailed Error/Meaaage File:
	~B_C.ERR
    Volume IV                                                                                       External Review Draft
    Appendix IV-3                                        IV-3-119                                 Do not cite or quote

-------
                                                         ASKB_C.ODT


  ISCOMDSF VERSION 9«227 •••    •••  WR rugitiv* •oure* »od«linc - ASH HANDUMG/STEAM BLDO             •••
                               •••  one Point lourc*;  936 r«c«ptor« up Co SOKM away; Surface Wt.        •*•        02:23:06
                                                                                                            not   i
 • waotLaa omoBS ono:  ccnc  innuu.  ELTV         DTMZLT                                        EKYDTL MRDK.
  •                                         •«• PO1XT SOURO5 DMA •••



          HODBl HUSSION KATE                  BASI    STACK   STACK    STACK     STACK    BUILDIMG BHSSION RATE
 SODXCE     PART.  I GRAMS/SIC)     X       Y      ELEV.    HEIGHT  TEMP.   EXIT VEL. DIAMETER   EXISTS  SCAUUt VARY
   ID      CATS.              (METERS)  (METERS) (METERS)  (METERS)  (DK.K)  (M/SEC)  (METERS)               *Y



STEAM       10    .lOOOOEtOl     23.9     49.0   212.1     6.71   310.00      .10      .10      YES
  Volume IV                                                                                 External Review Draft
  Appendix IV-3                                      IV-3-120                               Do not cite or quote

-------
                                                         *SH»_C.OOT


    XSCCWnr vmsiCN 94227 •••   ••*  NTI Fugitive «ourc« aodcling - ASH HMJDLJJ1G/STIAM BLOC             ••*
                               •*• On* Point »ourc«; 936 r»c«ptor« up to 50XM nay; Surt«c» Ht.        •••       02:23:06
                                                                                                         VACS  3
   • HOPILTBB OPTIOHS OSD:  CCMC   IHULL  (LBV        DFAUlff                                      EKYDTL MITDPL
                                     •*• SOURCE n* Dirnroc SOOKCB CRODPS

GROOP ID                                           SODRCZ HW
 ALL       STUM
  Volume IV                                                                             External Review Draft
  Appendix IV-3                                    IV-3-121                              Do not cite or quote

-------
                                                          ASHB.C.OUT


 ISCOMDSP VERSION 94227 •••    •••  KIT Pugitivi •OUTCB BOdtliae - ASH HANDLlm/SnAM BLDG              •••
                               •••  On* Point •aura;  936 ne«peo» up to SOXM n«y; Surface Nt.         ••*        02:23:06
                         	                                                                      	 	  PAGE   4
* MODELINQ OPTIONS USED:  COMC   kURAL  ELBV         DPAOLT                                          Uitbtii MElVPi.


                                          ••• SOU*C»  PARTICDLATE/CAS DATA •••
      ••• SOOXCe ID • STEAM   ;  SOURCE TYPE -   POINT  **•

      MASS PRACTIOH >
        .00414,  .01301,   .052*8.   .10060,  .13832,   .12745,   .16051,   .12038,   .18640,  .09631,


      PARTICLE DIAMETER (MICRONS) -
      2.97000, 1.89000,   .93000,   .55000,  .40000,   .27000,   .18000,   .12000,   .06200,  .03000,


      PARTICLE DENSITY (G/CM**3) •
      1.00000, 1.00000,  1.00000, 1.00000, 1.00000,  1.00000. 1.00000,  1.00000. 1.00000. 1.00000,


      SCAV COEP {LXQJ 1/(S-MM/HR)«
      .21E-03, .14E-03,  .501-04, .50E-04, .60E-04,  .»OI-04, .13E-03,  .151-03, .20E-03, .22E-03.


      SCAV COEP [ICE] 1/(S-MM/RR)-
      .70E-04, .47E-04,  -17E-04, .17E-04, .20E-04.  .30E-04, .431-04,  .501-04, .67E-04, .73E-04,
Volume IV                                                                                    External Review Draft
Appendix IV-3                                      IV-3-122                                 Do not cite or quote

-------
         VSXS1OH 94227 •••


         OPl'ltMS USBD:  CONC
                                                     ASH»_C.
-------
                                                         ASRB.C.ODT


 XSCOMDEP VERSION 94227  *••    •••  HTI Pugitiv* »ourc« BOdelino - ASH HANDLING/STEAM BLDG             •••
                              ***  Cm* Point lourca; 936 r«c«ptor« up Co SOXM «w»y; Surface Ht.        •••        02:23:06
                                                                                                             PAGE  17
• MODELING OPTIOHS DSD):  CONC   KOMU, SLCV         DFADLT                                        DKYDPL NETDPL


                        • SOORCE-nCEPTOIt CCHBWMTONS LESS TRW 1.0 MET** OR 3'ZLB •
                               IN DISTANCE.  CALCOLATICHS MAY NOT BE PEKPOKKED.


                         SOOKCE        	RBCEPTOK LOCATION	        DISTANCE
                           ID          XR (METERS)   YR (METERS)         (METERS)
                         STEAM                17.4          98.5            49.93
                         STEAM                34.2          94.0            46.16
                         STEAK                SO.O          86.6            45.10
                         STEAM                64.3          76.6            48.93
                         STEAM                86.6          SO.O            62.72
                         STEAM                94.0          34.2            71.62
                         STEAM               -34.2          »4.0            73.48
                         STEAM               -17.4          98.5            64.44
                         STEAM                  .0         100.0            56.34
Volume IV                                                                                  External Review Draft
Appendix IV-3                                      F/-3-124                             .   Do not cite or quote

-------
                                                             ASHB.C.OOT
•• ISCOHDBP VERSION 9*227
     •••  NTI Fugitive source nod* lino - ASH HANDLING/STEAM BUG
      •••  on* Point •euro; 936 receptor* 19 to  50KM emy; Surface wt.
            OPTIOKS USB):  CCHC   RURAL  ELEV
                                                                                                     DRYDPL METUPL
                                                                                                                  02:23:06
                                                                                                                  no*  is
                                           ' METEOROLOGICAL DAYS SELECTED rat PROCESSING
                                                           (l-YES;  01*3 ]
1111
1111
1111

1 1
1 1
1 1

1 1
1 1
1 1

1 1
1 1
1 1

1
1
1
1

1111
1111
1111
1111

1111
1111
1111
1111

1
1
1
1

1111111111 1111111111
1111111111 1111111111
1111111111 1111111111
1111111111 1111111111

1 1
1 1
1 1
1 1

1111
1111
1111
1111

1 1 1.1
1111
1111
1111

             NOTE:
                                 r DMA ACTUALLY PROCESSED WILL ALSO DEPEND CM WHAT IS TBCLHnPl IK THE DATA FILE.
                                  UPPER BOUND OF FIRST 1URUUUH PIPIU MOID SPEU)
                                                        (METERS/SEC)

                                             1.S4.   3.09,    S.14,   1.23.  10.10,
                                                   WHID PROFILE EXPONENTS
             STABILITY
             CATEGORY
                A
                B
                C
                D
                I
                P
.TOOOOE-01
.70000B-01
.100001*00
.1SOOO*»00
.35000B+00
.S5000E+00
HIND SPEED C&TEGOK1
2 3
.700001-01 .70000B-01
.70000K-01 .70000E-01
.100001*00 .10000E*00
.150001*00 .150001*00
.350001*00 .350001*00
.550001*00 .550001*00
r
4
.700001-01
.700001-01
.100001*00
.130001*00
.350001*00
.550001*00
                                            .700001-01
                                            .700001-01
                                            .100001*00
                                            .150001*00
                                            .350001*00
                                            .550001*00
                                            .700001-01
                                            .700001-01
                                            .100001*00
                                            .150001*00
                                            .350001*00
                                            .550001*00
                                         ' VERTICAL POTKCTIAL TEMPERATORE GRADIBRS
                                                 (DEGREES KELVIN PER METER)
             STABILITY
             CATEGORY
                A
                B
                C
                D
                E
                F
                                                  HOID SPEED CATEGORY
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
  Volume IV
  Appendix IV-3
                                 IV-3-125
                                                           External Review Draft
                                                              Do not cite or quote

-------
 ISCOMDEP VERSION 94227


• MODELHB OPTIONS USED:
                                                       ASKB.C.OOT
WTI Fugitive lource Modeling - ASH HANDLING/STEAM I	
 One Point source; 936 receptor! up to SOXX my; Surface wt.
                        CONC   RURAL  ELEV
                                                 DPAULT
                                                                                             DKXDPL WETDPL
                                                                        02:23:06
                                                                        PACE  19
FILE:
SURFAI



YEAR 1

93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
dl
3



•ON

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
pbin.ea
STATION
1
1

TH DAY

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
HO.:
«AME:
flAR:

HOUR

1
2
3






10
11
12
13
14
15
16
17
11
19
20
21
22
23
24

94123
MTI
1993
FLOW SPEED
VECTOR (M/S)

104.0 4.47
112.0 5.36
106.0 .47
115.0 .47
120.0 .02
123.0 .36
130.0 .92
124.0 .92
115.0 .47
107.0 .02
113.0 .02
101.0 .47
114.0 .36
107.0 .92
120.0 .92
119.0 .47
111.0 3.51
124.0 2.61
124.0 2.61
113.0 2.23
97.0 2.61
113.0 3.13
117.0 3.13
152.0 2.61
FORMAT
UPPER


TEMP 511
(K) 0.

275.4
274.1
274.0
273.9
273.1
273.3
272.5
271.9
271.0
270.9
270.6
270.9
271.1
271.0
270.8
270.5
270.4
270.4
270.1
270.3
270.3
270.3
270.4
269.9
: (4I2.2F9.4.F6
MR STATION NO.
NAME
YEAR
M tmasK HE
kSS RURAL

601.6
617.6
633.5
649.5
66S. 4
(11.4
697.3
713.3
729.2
745. 2
761.1
777.1
793.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
109.0
•09.0
•09.0
109.0
.1.I2.2F7
: 94123
: WTI
: 1993
IGHT (M)
OMAN

601.6
617.6
633. S
649.5
665.4
611.4
697.3
713.3
729.2
745.2
761.1
777.1
793.0
109.0
109.0
109.0
109.0
109.0
109.0
•09.0
•09.0
•09.0
•09.0
•09.0
.I.f9.4,fl0



USTAR M
(M/S)

.3366
.4269
.3363
.3363
.2(74
.4266
.3(20
.3119
.3355
.3534
.3534
.3926
.4712
.4319
.3117
.3354
.2310
.1178
.117*
.09(2
.1171
.1374
.1374
.1171
.I.fl.4.f5



-O LENGTH
(M)

176.1
2S3.7
175.6
175.4
121.1
2(1. •
22S. 3
224.6
172.9
-999.0
-999.0
-999.0
-999.0
-999.0
223.4
172.4
81.7
29.4
29.4
29.4
29.4
29.4
29.4
29.4
.I.i4.f7.2)



Z-0 Zd IPCODE
(M) (M)

.3000 1.5 13
.3000 1.5 0
.3000 1.5 0
.3000 1.5 21
.3000 1.5 21
.3000 1.5 21
.3000 1.5 21
.3000 1.5 21
.3000 1.5 21
.3000 1.5 21
.3000 1.5 21
.3000 1.5 21
.3000 1.5 21
.3000 1.5 21
.3000 1.5 21
.3000 1.5 21
.3000 1.5 21
.3000 1.5 21
.3000 1.5 21
.3000 1.5 21
.3000 1.5 0
.3000 1.5 21
.3000 1.5 0
.3000 1.5 21




PRATE
lem/HR)

.00
.25
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
        STABILITY CLASS 1-A.  24, 3»C.  4-B. 5-B AMD 6-F.
        FLOW VECTOR IS DIRECTION TOWARD WHICH WIND IS BLOWING.
Volume IV
Appendix IV-3
                     IV-3-126
External Review Draft
  Do not cite or quote

-------
                                                                ASBB.W.OOT


 ••* ZSCOMBIP VERSION 94227 •••     •••  HR Fugitive (OUTCC noddling - ASH HMDLXHS/STEAM BLOC              •••
                                   •*•  One Joint *ource; 936 receptor* up to 50m avay; Surface IK.         •*•        20:43:21
                                                                                                                      PAG1    1
  ••• MonEMiio OPTIONS USED:  MDEP   RURAL  ELEV          DFADLT                          .                noon, NBTDPL


                                           • ••     MODEL SETUP OPTIONS SOaetAKY       ••*


 ••Intermediate Terrain proceeding  i* Selected

 ••Model I* Setup Par Calculation of Met DlPo»ition Value*.

   —  SCAVENBIMB/DEPOSrrlON LOGIC  —
 ••Model Uae* DRY DEPLETION.  ODPLETE •  T
 ••Model U*e* MET DEPLETION.  MDPLETE -  T
 ••SCAVENGING Data Provided.  LMGAS.IMPART -  FT
 ••Model U*e* GRIDDED TERRAIN Data  for Depletion Calculation*

 ••Model U*e* mmAL Disperiion.

 ••Model IUM Regulatory DEPADLT Option*:
            1.  Final  Plue» Rise.
            2.  Stack-tip Dovm*h.
            3.  Hjoyancy-intluced pi*per*ion.
            4.  UM CalJM ProccMing Routine.
            S.  Hot Uae Hiuing Data Procening Routine.
            6.  Default Hind Profile Exponent*.
            7.  Default Vertical Potential Teg»erature Gradient*.
            8.  'Upper  Bound* Value* for Superaguat Building*.
            9.  No  Exponential Decay for RUlutL Mode

 ••Model Accept* Receptor* on ELEV Terrain.

 "Model Aaauae* No FLAGPOLE Receptor Height*.

 ••Model Accepting  Teeperature Profile Data.
  Niofeer of  Levvl* :  3
     !• ACM        30.0
     (B AGL)        4S.7
     tm AGL)        152.3999

 ••Model Accepting Hind Profile Data.
  Nunber of  Level* :  5
     (a AGL)       30.0
     tm AGL)        45.7
     (m AGL)        80.8
     (B ACL)        111.3
     (B AOL)       152.3999

 ••Model Calculate*  1 Short Ten Average I*) of:    1-HR
     and Calculate* PERIOD Average*

 •*Thi*  Run Include*:    1 Source(•);      1 Source Group(»); and    936 Receptor!*)

 ••The Model Aaaune* A Pollutant Type of:  FUGITIVE

 ••Model Set To Continue Running After  the Setup Teiting.

 ••Output Option* Selected:
         Model Output* Table* of PERIOD Average* by Receptor
         Model Output* Table* of Higheat Short Term Value* by Receptor IRICTMLE Keyvord)
         Model Output* Table* of Overall Mariana Short Term Value* (MAZTABLZ Keyword)
         Model Output* External  File!*) of  High Value* for Plotting IPLOTPILE Keyword)

 ••NOTE:  Toe Following Flag* May Appear Following  DEPO value*:. c for Calm Hour*
                                                               B for Miuing Hour*
                                                               b for Both Calm and Mixing Hour*

 ••Mi«c. Input*:  Anaa. Hot.  (•)  «    30.00  ;    Decay Coef.  -    .00001*00 ;    Rot. Angle *      .0
                 EBiuion Unit*  • GRAMS/SEC                                ,  EBiMion Rate Unit Factor .    3600.0
                 Output Unit*    » CRAMS/M-'2

 ••Input Rututreaa Pile:  •teaBb.w.ind                            ,   ••output Print Pile: eeeamb w.out
 ••Detailed Error/Meaaage Pile:                                             .
STEAMB_H.ERR
    Volume IV                                                                                     External Review Draft
    Appendix IV-3                                        IV-3-127                                 Do not cite or quote

-------
                                                          ASH»_K.OUT


  ISCCNDEP VERSION 94227 •••    •••  WIT Fugitiv* •ourc* modeling - ASM HANDLING/STEAM BLDG             '"
                               *••  Co* Paint loure*; 936 r«c«ptor« up to SOXM ««y; Surface Ht.        •*•        20:43:21
                                                                                                             PAOI   2
                                      tLKV         DPAOLT                                       DKYDPL WITDPL
                                            ••• POINT SODKCI DATA "•


          NUMBER BCESSICN KATE                  BASE     STACK   STACK   STACK    STACK    BUILDING EKtSSION RATE
 SOURCE    . PART.  (GRAMS/SEC)     X        ¥     BJSV.    HEIGHT  TEMP.   EXIT VEL.  DIAMETER   EXISTS   SCALAR VARY
   ID      CATS.              (METERS) (METERS) (METERS)  (METERS) (DBS.K)  
-------
                                                        ASHB.W.OCT


    XSCOMDSP VBtSIOH 94227 ••«    •••  im rugitiv* »ourc» mottling - ASH RMffiLmS/STBUI BLOC             •••
                               *••  On* Point soura; 936 r«e«ptors up to 50XM any; Surface Mt.        •••       20:43:21
                                                                                                        PAGE  3
            omons QSD: HBCP   ROIIAL  CLBV         DPAOLT                                      ORYDPL. i
   *                                  *** SOOPX9 Zte UEPAMIMG SOURCE GROUPS

OXJOOT ID                                           SOURCE ID*
 ALL      STEAM
  Volume IV                                                                            External Review Draft
  Appendix IV-3                                   IV-3-129                              Do not cite or quote

-------
                                                           ASHB_H.OOT


 ISCOMDEP VERSION 94227  •••    •••  WTI Fuflitiv. .cure, modeling - ASH HANDLING/STEAM BLOC              •••
                               •••  On* Point loura; 936 r«c«ptor« up to 50XM nny;  Surface Ht.        •••       20:43:21
                                                                                                               PAGE   4
           OPTIONS USED:  MDBP   mnuu.  iuv          DFAULT                                         DRYDPL MRDPL


                                          ••• SOURCE PARTICOLATE/aAS DMA *••
      ••• SOURCE ID - STEAM   ; SODKCE TYPE -   POINT  •••

      MASS PIUCTION -
        .00414,   .01301,  .05288.   .10060,  .13832.   .12745,   .16051,  .12038,   .18(40.  .0*631,


      PARTICLE DIAMETER (MICRONS)  -
       2.97000,  1.89000,  .93000.   .55000.  .40000.   .27000,   .18000,  .12000,   .06200,• .03000,

      PARTICLE DENSITY (G/OC**3)  -
       1.00000.  1.00000, 1.00000,  1.00000, 1.00000.  1.00000. 1.00000, 1.00000,  1.00000, 1.00000,

      SCAV COEP  (LIQ] 1/IS-m/HR).
       .21E-03,  .14E-03, .50E-04,  .SOB-04. .60E-04,  .90E-04. .13E-03. .151-03,  .201-03. .22E-03.

      SCAV COEF  [ICE] 1/(S-KM/RR)»
       .70E-04.  .47E-04. .17E-04.  .17E-04, .20B-04,  .30E-04. .431-04, .501-04,  .671-04, .731-04,
Volume IV                                                                                    External Review Draft
Appendix IV-3                                       IV-3-130                                Do not cite or quote

-------
    ISCOMDKP VBtSION 94227 •••
                                *•  MR Fugitive •oure* nod*ling - ASH HANDLING/STEAK BLDG
                                •••  on* Point toure*; 936 r«c«pcor» up to 50KM my; Surface Ht.

                                KOMI.  CUV         DPADLT


                                     ••• DxncrxoH SPECIFIC BOXUXMC DIMENSIONS •••
                                                                                                         20:43:21
                                                                                                         PAGI  5
                                                                                             DRYDPL ME'IVPL
SOURCE ID: STEAM
 IFV  BH    BH
     29.1.  25.9
      6.7.  16.4
     25.8,  24.8
     29.1,  25.9
     14.9,  65.3
     25.8,  24.8
 1
 7
13
19
25
31
HAK IFV BH
0 2 29.1
0 8 25.8
0 14 25.8
0 20 29.1
0 26 25.8
0 32 25.8
BH
24.7
24.8
22.4
24.7
24.8
22.4
HAX IFV BR
0 3 29.1
0 9 25. 8
0 IS 25.8
0 21 29.1
. 0 27 25.8
0 33 25.8
BH HAK IFV BH
21.8, 0 4 24.4
26.4, 0 10 25.8
20.1, 0 16 29.1
21.8, 0 22 24.4
26.4, 0 28 25.8
20.1. 0 34 29.1
BH
28.9
27.3
2S.9
28.9
27.3
25.9
HAK IFV BR
0 5 24.
0 11 25.
0 17 29.
0 23 24.
0 29 25.
< 0 35 29.
BH HAK IFV BR
27.0. 0 6 24.4
27.3. 0 12 25.8
25.9. 0 18 29.1
27.0. 0 24 24.4
27.3. 0 30 25.8
25.9, 0 36 29.1
BH
24.
26.
25.
24.
26.
25.
HAX
0
0
0
0
0
0
   Volume IV
   Appendix IV-3
                                                      IV-3-131
External Review Draft
  Do not-cite or quote

-------
                                                           ASHB.W.OOT


•••  ISCCHDEF VERSION 94237 ••*    •••  WIT Fugitive source Modeling - ASK HANDLING/STEAM BUG              •>•
                                 *••  Cn* Point source; 936 receptor* up to SOKM any;  Surfeee wt.        •••        20:43:21
                                                                                                               not  17
                                 RURAL  SLEV         OTAOLT                                        DRXDPL WTTDM,


                           • SOORCE-RECErfUR COMBXMKTXCHS LESS THAU 1.0 HRIR OK J*ZL*  •
                                 W DISTMK3.  CALCDLATiaMS MAY MOT BE HRFCIRmU.


                            SODRCI         - - RECEPTOR LOCATION - -        DISTANCE
                              10          XR (METERS!    TO (METERS)        (METERSI
                                                17.4         »8.5           49.9}
                            STEAK                34.2         94.0           46.16
                            STEAM                50.0         86.6           45.80
                            STEAM                64.3         76.6           48.93
                            STEAM                86.6         50.0           62.72
                                                94.0         34.2           71.62
                                               -34.2         94.0           73.48
                                               -17.4         98.5           64.44
                                                  .0        100.0           56.34
   Volume IV                                                                                  External Review Draft
   Appendix IV-3                                     IV-3-132                               Do not cite or quote

-------
                                                           ASHB.M.OOT
          VERSION 94227  •••


           OPTIONS USB):  HDD
      ••  MR Pugieiv* »ourc» Bodcling - ASH HANDLING/STEAM BtDG
      •••  On* Point aourc«; 936 r«c«pton up to 50XM avay; Surface Ht.

       KOML  1UV         DFADLT
                                                                                                    DRIEDPL
                                                                         20:43:21
                                                                         PACT  18
(1-YES,- 0-HO>



                                i DATA ACTUALLY PROCESSED KILL ALSO DEPEND OH WAT IS mCUTOKD IN HOI DATA PHI.
                                       BOUND OP MUST THROOGB PIPTH MIHD SPUD CAT
                                                       iMems/sK)

                                            1.S4,   3.09.   5.14.   8.23.   10.SO.
                                                 NIMD
                                                WXMD SPEtD CATEGORY
           CATEGORY
              A
              B
              C
              D
              B
              P
.70000E-01
.70000E-01
.100001*00
.1SOOOS*00
.3SOOO(+00
.550001*00
.700001-01
.70000E-01
.100001+00
.15000E+00
.350001*00
.550001*00
.700008-01
.700001-01
.100001*00
.150001*00
.350001*00
.550001*00
.700001-01
.700001-01
.100001*00
.15000«»00
.350001*00
.550001*00
. 700001-01
.700001-01
.100001*00
.150001*00
.350001*00
.550001*00
.700001-01
.70000S-01
.100001*00
.150001*00
.350001*00
.550001*00
                                     *•• VERTICAL POTENTIAL TEMPERATURE GRADIENTS
                                                (IHBP.E1S KELVTN PER HKTER)
           STABXLZT3T
           CATEGORY
              A
              B
              C
              D
              E
              P
.000001*00
.OOOOOE*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.OOOOOE*00
.000001*00
.000001*00
.20000E-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
   C
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
Volume IV
Appendix IV-3
                                 IV-3-133
                                                           External Review Draft
                                                              Do not cite or quote

-------
                                                        ASHB_W.OUT
 ISCCMDEP VERSION 94227 •••
                                 WT1 Fugitive nmrc* Bodaling - ASH HANDLING/STEAM BLCG
                                  On* Point •ourcc; 936 r«c«pcor» up to 50RM nmy;  Surface Ht.
                                                                                               DRYDPL ME'IUPL
                                                                                                            20:43:21
                                                                                                            PAGE  19
                    THE FIRST  24 BOORS OF METEOROLOGICAL DATA
       PILE: d«pbin.H«t
       SDRPACE STATION NO. :   94823
                     NAME:  WTI
                     YEAR:    1993
FORMAT:  (4I2.2P9.4.P6.1,I2,2F7.1,f9.4.£10.1.ft.4.£5.1,i4.f7.2)
UPPER AIR STATION NO. :  94823
                NAME: tfTI
                YEAR:   1993
YEAR
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
MONTH
1
1
1
•1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DAY
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
HOUR
1
2
3
4
5
6
7
6
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
FLOW SPEED
VECTOR . (M/S)
104.0 4.47
112.0 5.36
106.0 .47
115.0 .47
120.0 .02
123.0 .36
130.0 .92
124.0 .92
115.0 .47
107.0 .02
113.0 .02
108.0 .47
114.0 .36
107.0 .92
120.0 .92
119.0 .47
116.0 3.58
124.0 2.68
124.0 2.68
113.0 2.23
97.0 2.68
113.0 3.13
117.0 3.13
152.0 2.68
TEMP STAB MIXING HEIGHT (M)
(K) CLASS RURAL URBAN
275.
274.
274.
273.
273.
273.
272.
271.
271.
270.
270.
270.
271.
271.
270.
270.
270.
270.
270.1
270.3
270.3
270.3
270.4
269.9
601.6
617.6
633.5
649.5
665.4
661.4
697.3
713.3
729.2
745.2
761.1
777.1
793.0
809.0
809.0
609.0
809.0
809.0
809.0
809.0
609.0
809.0
809.0
809.0
601.6
617.6
633.5
649.5
665.4
681.4
697.3
713.3
729.2
745.2
761.1
777.1
793.0
809.0
809.0
809.0
809.0
809.0
609.0
609.0
809.0
809.0
809.0
809.0
USTAR
(M/SI
.3366
.4269
.3363
.3363
.2874
.4266
.3820
.3819
.3355
.3534
.3534
.3926
.4712
.4319
.3817
.3354
.2310
.1178
.1176
.0982
.1178
.1374
.1374
.1178
M-0 LENGTH
(M)
176.8
283.7
175.
175.
128.
281.
225.
224.
172.
-999.0
-999.0
-999.0
-999.0
-999.0
223.
172.
81.
29.
29.
29.
29.
29.
29.4
29.4
Z-0 Zd IPCODE
 (M)
.3000 l.S 13
.3000 l.S 0
.3000 l.S 0
.3000 l.S 28
.3000 l.S 28
.3000 1.5 28
.3000 l.S 28
.3000 1.5 28
.3000 l.S 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 l.S 28
.3000 l.S 28
.3000 l.S 28
.3000 1.5 28
.3000 l.S 28
.3000 l.S 28
.3000 1.5 28
.3000 1.5 28
.3000 l.S 0
.3000 1.5 28
.3000 1.5 0
.3000 1.5 28
PRATE
Im/HR)
.00
.25
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
        STABILITY CLASS 1-A. 2-B, 3-C,  4-D. 5>E AND 6"P
        PLOW VECTOR IS DIRECTION TOWARD WHICH WIND IS
Volume IV
Appendix IV-3
    IV-3-134
External Review Draft
  Do not cite or quote

-------
                                                                ASHB.D.OUT


 ••• IsemnKP VBtSION 94227  **•     •**  HTI Fugitive *ource modeling -  ASH HANDLING/STEAM SLUG              ••*        01/25/95
     lauwju- »~»                 M>  QM ^iBt .ource; 936 receptor* up to 50XK away; Surface Mt.        •••        18:S5:3«
                                                                                                                     PAGE   1
 ••• MODILIIIO omcMS USED:  ODEP   RURAL  ILEV          DFAULT                                          ORYDPL WETDPL


                                          •••     MOB. SETUP OPTICHS  SUMMARY       •••


••intermediate Terrain Procuring  is Selected

.•Model It Setup Par Calculation of Dry DEPoaition Value*.

  —  SCAVENSTOB/DBPOSITICH  LOGIC  —
••Model Dies DRY DEPLETION.  DDPLZTE .  T
••Model Uae* WET DEPLETION.  WOPLETE •  T
••SCAVENGING D«t« Provided.  LWGAS.LWFART -  P T         .   -
••Model Ueea GKIOOED TEMUON EMU  for Depletion Calculation*

••Model Uaea RDIUkL Diaperaion.

••Model Uses Itegulatory DBPAOLT Options:
           1. Final Hue* Rise.
           2. Stack-tip Dowimeah.
           3. luoyancy-induced Diaperaion.
           4. we Calaw Proceaaing Routine.
           5. Not uae Miaaing Data Proceaaing Routine.
           6. Default Mind Profile bponenta.
           7. Default Vertical Potential Tecperature Gradient*.
           8. 'Upper Bound*  Value* for Super*guat Building*.
           9. No Exponential Decay for RURAL Mode

••Model Accept* Receptora on ELEV  Terrain.

••Model Auune* No FLAGPOLE  Receptor Height*.

••Model Accepting Tannrature Profile Data.
  Hunter of Level* :            3
    <• AGL)          30.0000
    (• AGL)          45.7000
    (• AGL)          152.400

••Model Accepting Hind Profile Data.
  NuBber of Level* :            5
     n AGL)          30.0000
     at AGL)          45.7000
     m AGL)          80.8000
     m AGL)          111.300
     m AGL)          152.400

••Model Calculatea  1 Short  Term Aver age la) of:   1-HR
    and Calculate* PERIOD Average*

•Thia Run Include*:     1 Source!*);      1 Source Group!*); and    93« Receptor!*)

••The Model A»UBM* A Pollutant Type of:  POSITIVE

••Model Set To Continue ROHning After the Setup Tea tins

••Output Option* Selected:
         Model Output* Table* of PERIOD Average* by Receptor
         Model Output* Table* of Bigheat Short Term Value* by Receptor  (RBCTABLE Keyword)
         Model Output* Table* of Overall Mawieimi Snort Term Value* (MATTABLE Keyvord)
         Model Output* External Pile I*) of High Value* for Plotting (PLOTFILE Reyoerd)

••NOTE:  The Following Flag* May Appear Following DEPO Value*:  e for Cain Hour*
                                                               m for Miaaing Hour*
                                                               b for Both Calm and MiMiag Hour*

"Miac. Input*:  Anem. Hgt.  (m) -    30.00 ;    Decay Coef. -   0.0000      ;    Rot. Angle »     0.0
                 Emiaaion Unit* -  GRAMS/SEC       "                         ;  Emiaaion Rate Unit Factor •    3600.0
                 Output Unita   -  GRAMS/M>*>2

••Input RunatreeB File: *teamb d.ind                            ;  ••Output Print File: *teaejp_d.out
••Detailed Error/MeaMge File:'  STIAMB_D.ERR
     Volume IV                                                                                      External Review Draft
     Appendix IV-3                                        IV-3-135                                  Do not cite or quote

-------
                                                           ASHB.D.OOT


   ISCCHDCF VERSION 94227 •••    ••• WI Fugitive mure* VXfeliag - ASH HANDLING/STEAM BLDC             •••       01/25/95
                               ••• On* Point »ourc«; 936 rccnton up to 5DIM away; Surfac* Ht.        •••       16:55:36
                                                                                                        	  PACE   2
   MOTTTiTV? OPTICMS DSID:  DOEP   RDItkli  KLIV         DFAULT                                        EMDPL NRDPL
                                            "• POINT SOORCB DM* •••


          NUMBER HUSSION RATE                   BASE     STACK  STACK    STACK     STACK   BOIU3DK: EKESSION KATE
 SOURCE     PART   (GRAMS/SEC)     X       Y      ELEV.    HEIGHT TEMP.   EXIT VEL. OIAMETER  EXISTS   SCALAR VARY
   ID      CATS.              (METERS)  (METERS)  (METERS) (METERS)  IDEC.K)  (M/SEC)  (METERS)                BY


STEAM       10-  0.10000E»01      23.9      49.0    212.1     6.71  310.00     0.10     0.10     YES
   Volume IV                                                                                  External Review Draft
   Appendix IV-3                                      IV-3-136                                Do not cite or quote

-------
                                                         ASH»_D.OUT


    ISCONDEP VERSION 94227 •••    •••  HTI  Fugitive source Modeling - ASH HAKDLJM3/STKAM BLDG            •••       01/25/95
                               •••  do*  Point »ourc«; 936 r*c«ptor« up to 50KM any; Surface Ht.       •••       18:55:36
                                                                                                         PACE  3
    MODEUMS OPTIONS USED:  tOEP  KJML ILEV         DFAULT                                      EHYDPL HBTDPL
                                        SODXCE ID* DEF1MIM6 SOURCE GROUPS

                                                  SOURCE UK
ALL      STEAM
   Volume IV                                                                              External Review Draft
   Appendix W-3                                    IV-3-137                              Do not cite or quote

-------
                                                          ASBB_D.OOr


 ISCONDE* VERSION 94227 •••    •••  tm Fugitiv* coura mod*lino - ASH HANDLING/STEAK BLDC             •••        01/25/9S
                              •••  One Point •ourra;  936 r«c«ptor» up to SOKM my; surftc* wt.        •••        18:55:36

         OFTIOMS USED:  EOEP   KORAL  EUV         DPAOLT                                         EHYDFL HE1DPL


                                         •" SOORCE
     ••• SOORCE ID - STEAM   ;  SOURCE TYPE -   POINT  •••

     MASS nULCTION'-
      0.00414. 0.01301. 0.0528B.  0.10060. 0.13832.  0.13745, 0.16051,  0.12038, 0.18640, 0.09631,


     PARTICLE DIAMETER (MICRONS)  -
      2.97000. 1.89000, 0.93000.  0.5SOOO, 0.40000,  0.27000, 0.18000,  0.12000, 0.06200, 0.03000.


     PARTICLE DENSITY (G/CM"3) •
      1.00000, 1.00000, 1.00000.  1.00000, 1.00000.  1.00000. 1.00000,  1.00000, 1.00000. 1.00000.


     SOW COW (LXO)  1/IS-IM/HR).
     0.21E-03.0.14E-03.0.SOB-04.0.SOE-04.0.601-04,0.SOB-04.0.13E-03,0.151-03,0.20E-03,0.221-03,


     SCAV COEP [ICE)  1/IS-KM/HR).
     0.70E-04,0.47B-04,0.17E-04.0.17E-04.0.20B-04,0.30B-04.0.43B-04,0.SOE-04.0.67E-04.0.73S-04,
Volume IV                                                                                   External Review  Draft
Appendix IV-3                                       IV-3-138                                Do not cite or quote

-------
            VERSION 94227 •••
SOURCE ID: STUM
                          ASHB_D.OCT


•••  HR Fugitive eource modeling - ASH HANDLme/STEAM BUG
•••  On* Joint eource; 936 receptor* up to SOXM eny; Surface Nt.

 •DUAL  BUV         DFAULT


     ••• onuenoB sTtciric Bonoac oamsxaKs •••
                                                                                                       01/25/95
                                                                                                       18:55:36
                                                                                                       FAQI   5
                                                                                           DR.YDPI* METUVL
IPV BH BM MM IFV BH
1 29.1, 25. 9, 0 2 29.1
7 6.7. 16.4, 0 8 25.8
13 25.8, 24.8, 0 14 25.8
19 29.1, 25.9, 0 20 29.1
25 14.9, 65.3. 0 26 25.8
31 25.8, 24.8, 0 32 25.8
BN
24.7
24.8
22.4
24.7
24.8
22.4
HAK IFV BH
0 3 29.1
0 9 25.8
0 15 25.8
0 21 29.1
0 27 25.8
0 '33 25.8
BH MAX IFV BH
21.8, 0 4 24.4
26.4, 0 10 25.8
20.1, 0 16 29.1
21.8, 0 22 24.4
26.4. 0 28 25.8
20.1, 0 34 29.1
BH
28.
27.
25.
28.
87.
25.
HAK IFV BH
0 5 24.4
0 11 25.8
0 17 29.1
0 23 24.4
0 29 25.8
0 35 29.1
BH HAK IFV BH
27.0, 0 6 24.4
27.3, 0 12 25.8
25.9, 0 18 29.1
27.0, 0 24 24.4
27.3, 0 30 25.8
25.9. 0 36 29.1
BH HAK
24.6, 0
26.4, 0
25.9, 0
24.6, 0
26.4, 0
25.9, 0
   Volume IV
   Appendix IV-3
                        IV-3-139
External Review Draft
  Do not cite or quote

-------
                                                        ASHB.D.OOT


 XSCOMEBP VERSION 94227 •••    •••  MTI Fugitive •ourec BOdeling - ASH HANDLING/STEAM BLDG             •••       01/25/95
                             *••  Om Point (OUTCB;  936 receptors up to SOKM «ny; Surface wt.        •••       18:55:36
                                                                                                          PAGE  17
 MOOEUMB OPTXOMS USD:  BMP  KUML  BLSV         DPJUH.T                                        BRYDPL NKDPL


                       • SOOUCC-MCBFTOR COHBIXKTICMS LXSS TUMI 1.0  HRIR OR 3*IL» •
                             ZH OISTJWCB.  CALCDIATIOMS MY HOT BE  PntPOMIED.


                        SODRCE         	RECEPTOR LOCATION	        DISTANCE
                          ID           XR (KRERS)    YR (METERS)        (METERS I
                                            17.4         9S.5           49.93
                                            34.2         94.0           4C.16
                        STEAK                SO.O         86.6           45.80
                        STEAM                S4.3      .   76.6           48.93
                                            86.6         SO.O           62.72
                                            94.0         34.2           71.62
                        STEAM               -34.2         94.0           73.48
                        STEAM               -17.4         91.5           64.44
                                             0.0        100.0           S6.34
Volume IV                                                                                  External Review Draft
Appendix IV-3                                     IV-3-140                               Do not cite or quote

-------
                                                             ASHB.D.OOT
•• ISCOXDEP VERSION 94227


•• ttrflrETrTtffr OPTIONS USED:
           HTI Pugitiv« •eure* «od«linO  - ASH HAKDUHG/STEAIf BLDG
           On* Point iaure«;  936  receptor* up Co 50KM tray; Surface WE.
                          DDKP   KQXAL  XLIV
                                                                                                     DRYDPL MEIVPL
                                                                          01/25/95
                                                                          18:55:36
                                                                          PACE  18
         1111111111
         1111111111
         1111111111
         1111111111
         1111111111
         1111111111
         1111111111
         1111111111
                                            METEOROLOGICAL ours SELECTED POR PROCESSINQ
                                                           (l-YES; 0*410)
    1111111111
    1111111111
    1111111111
    1111111111
    1111111111
    1111111111
    llllllllll
    111111
           llllllllll
           llllllllll
           llllllllll
           llllllllll
           llllllllll
           llllllllll
                  llllllllll
                  llllllllll
                  llllllllll
                  llllllllll
                  llllllllll
                  llllllllll
                         llllllllll
                         llllllllll
                         llllllllll
                         llllllllll
                         llllllllll
                         llllllllll
           llllllllll   llllllllll   llllllllll
            NOTE:  MERORaUJGXCAL DATA ACTUALLY PROCESSED HHJ. ALSO DSPB1D ON HBAT IS OKUIDCD IN TOE DATA FILE.
                                        BOUND OF PntST TBROOOH FIP1H MIHD SPUD CA1TOO1UES
                                                        (METRS/SK)
                                             1.54.   3.OS,   3.14,   S.23,  10.tO.


                                               •*• KIND PROPXLI npONWtS •••
            STABILITY
            CATBGORY
               A
               B
               C
               D
               I
               P
                                                 NINO SPEED CATEGORY
.70000E-01
.70000E-01
.10000E4-00
.15000E+00
.3SOOOE+00
.550001*00
.70000S-01
.700001-01
.lOOOOEfOO
.15000E+00
.35000E+00
.55000E»00
.70000E-01
.70000E-01
.lOOOOBtOO
.ISOOOEtOO
.35000E»00
.590001*00
.70000E-01
.70000E-01
.lOOOOEtOO
.1SOOOE*00
.35000E+00
.55000E»00
.70000S-01
.70000E-01
.10000E+00
.15000E»00
.35000E+00
.S5000E»00
.70000E-01
.700001-01
.lOOOOEtOO
.15000E*00
.35000E«00
.5SOOOB+00
                                         VEXTICA1< POTEWTXAL TEMPERATURE
                                                 (DECREES KELVIN PER METER)
            STABILITY
            CATBGORY
               A
               B
               C
               D
               E
               P
                                                 MZMD SPEED CATEGORY
.OOOOOE»00
.OOOOOE+00
.OOOOOE»00
.OOOOOB*00
.20000E-01
.3SOOOE-01
.OOOOOE»00
,00000«»00
.OOOOOE+00
.OOOOOE+00
.JOOOOE-01
.35000E-01
.OOOOOEtOO
.OOOOOE*00
.OOOOOE«00
.OOOOOE*00
.JOOOOE-01
.35000E-01
.OOOOOE+00
.OOOOOEtOO
.OOOOOE+00
.OOOOOEtOO
.20000E-01
.3SOOOE-01
.OOOOOE+00
.OOOOOEtOO
.OOOOOEtOO
.OOOOOEtOO
.20000E-01
.350001-01
.OOOOOEtOO
.OOOOOEtOO
.OOOOOEtOO
.OOOOOEtOO
.200001-01
.350001-01
  Volume IV
  Appendix IV-3
                                  IV-3-141
                                                             External Review Draft
                                                               Do not cite or quote

-------
                                                         ASB»_C,OUT
 ISCOMDET VERSION 94227
wn Fugitiv* aoure* modeling - ASH HANDLINB/STEAM BUG
On* Point •oure*; 936 nevptors up to  SOKM away;  Surface Mt.
 MODELING OPTIONS USED:  DDEF  RURAL  ELEV
                                                  DFAULT
                                                                                                DRYDFL ME'IDFL
                                                                                                            01/25/95
                                                                                                            18:55:36
                                                                                                            PAGE  19
                    THE FIRST 24 HOOKS OP METEOROLOGICAL DMA
       FILE: dapbin.Mt
       SURFACE STATION MO.:   94823
                     NAME: WIT
                     YEAR:    1993
                 FORMAT:  (4I2.2F9.4,F«.1,I2,2F7.1.f9.4,fl0.1.(8.4.fS.l,i4.f7.2)
                 OFFER AIR STATION MO.:  94823
                                 HAKE: WIT
                                 YEAR:   1993
YEAR
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
MONTH
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DAY
1
1 '
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
HOUR
1
2
3
4
5
6
f
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
FLOW SPEED
VECTOR (M/S)
104.0 4.47
112.0 5.36
106.0 .47
115.0 .47
120.0 .02
123.0 .36
130.0 .92
124.0 .92
115.0 .47
107.0 .02
113.0 .02
108.0 .47
114.0 .36
107.0 .92
120.0 .92
119.0 .47
118.0 .58
124.0 .68
124.0 .68
113.0 .23
97.0 2.68
113.0 3.13
117.0 3.13
152.0 2.68
flMF ST
IK) CLI
275.
274.
274.
273.
273.
273.
272.
271.
271.
270.
270.
270.
271.
271.
270.
270.
270.
270.
270.
270.
270.
270.
270.
269.
IB MTTPT? n
ISS RURAL
601.
617.
633.
649.
665.
681.
697.3
713.3
729.2
745.2
761.1
777.1
793.0
809.0
809.0
809.0
809.0
809.0
809.0
809.
809.
809.
809.
809.
UOHT (M)
URBAN
601.6
617.6
633.5
649.5
665.4
681.4
697.3
713.3
729.2
745.2
761.1
777.1
793.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
609.0
809.0
809.0
609.0
USTAR
IM/S)
0.3366
0.4269
0.3363
0.3363
0.2874
0.4266
0.3120
0.3819
0.3355
0.3534
0.3534
0.3926
0.4712
0.4319
0.3817
0.3354
0.2310
0.1178
0.1178
0.0982
0.1176
0.1374
0.1374
0.1178
M-0 LEND1
(M)
176.
283.
175.
175.
128.
281.
225.
224.
172.
-999.
-999.
-999.
-999.
-999.
223.
172.
81.
29.
29.
29.
29.
29.
29.
29.
IH Z-0 Zd IPCODE
(M) (M)
! 0.3000 1.5 13
7 0.3000 1.5 0
0.3000 1.5 0
0.3000 1. 28
0.3000 1. 28
0.3000 1. 28
0.3000 1. 28
0.3000 1. 28
0.3000 1. 28
3 0.3000 1.5 28
3 0.3000 1.5 28
3 0.3000 1.5 28
3 0.3000 1.5 28
3 0.3000 1.5 28
0.3000 1.5 28
0.3000 1.5 28
0.3000 1.5 28
0.3000 1.5 28
0.3000 1.5 28
0.3000 1.5 28
0.3000 1.5 0
0.3000 1.5 28
0.3000 1.5 0
0.3000 1.5 28
PRATE
0.00
0.25
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
NOTES:
        STABILITY CLASS 1»A, 2-B, 3-C.  4»D. 5-E AND 6-F.
        FLOW VECTOR IS DIRECTION TOMARD WHICH MOD IS BLOWING.
 Volume IV
 Appendix IV-3
                       IV-3-142
External Review Draft
   Do not cite or quote

-------
                                                                    L.2.00T


 ••• XSCOMDEP VERSION 9422'' •••    •••  MTI Fugitive source Modeling - ASH KAKDLXMS/STIAJf BUG              •••
                                    •••  On*  Point source; 936 receptors up to SOKM my; Surface Mt.        •••        16:37:51
                                                                                                                      PACE   1
  ••• MODELING OPTIONS USB):   DEPOS RURAL  ELEV          DFAULT                                          DKYDFL METDPL


                                           •••     MODEL soar omoHS SUMMARY      •••


 "Intermediate Terrain proceeding is Selected

 ••Model Is Setup For Calculation  of Total DEPOSition Value*.

   —  SCAVBCnC/DEPOSmON  LOGIC —
 ••Model U*es DRY DEPLETION.   DDPLETE •  T
 ••Model Use* WET DEPLETION.   WDPLETE -  T
 ••SCAVBCINS Data Provided.   LNGAS.LHPART .-FT
 ••Model Uaea GRIDDED TERRAIN Data for Depletion Calculation*

 ••Model Uaea RURAL Dispersion.

 ••Model Oeea Regulatory DEFAULT Option*:
            1.  Final Plus*)  Rile.
            2.  Stack-tip Dovn*uh.
            3.  Buoyancy-induced Diapercion.
            4.  Uae Calav Froeeaaing Routine.
            5.  Mot Uae aliaaing Data Proeeaaina Routine.
            6.  Default Mind Profile Exponent*.
            7.  Default Vertical Potential Teaperature Gradient*.
            8.  'Upper Bound* Value* for Superaguat Building*.
            9.  Mo  Exponential  Decay for RURAL Mode

 ••Model Accept* Receptor*  on  ELBV Terrain.

 ••Model Aaiune* No FLAGPOLE Receptor Heights.

 ••Model Accepting  Temperature Profile Data.
  Nuaber of  Level* :   3
     (•  AGLI        30.0
     (m  AOL)        45.7
     (•ACL)        152.3999

 ••Model Accepting Mind Profile Data.
  Number of  Level*  :   5
     (•  AGL)        30.0
     IB  ACL)        45.7
     (a  AGL)        10.8
     (B  ACL)        111.3
     (B  AGL)        152.3999

 ••Model Calculates  '1 Short Term Average(s) of:   1-HR
    and Calculate* PERIOD Averages

 ••This  Run Include*:    1 Source (•);      1 Source Oroupls) ; end    93C Receptor!*)

 •The Model Assuaes A Pollutant Type of:  FDOmVE

 ••Model  Set To Continue Running After the Setup Testing.

 ••Output Options Selected:
         Model Outputs Tables of PERIOD Averages by Receptor
         Model Outputs Table* of Highest Short Ten Value* by Receptor (MCTABLE Keyword)
         Model Outputs Table* of Overall "-»'—— Short Term Value* (MAXTABLE Keyvord)
         Model Outputs External File(s) of High Values for Plotting (PLOTFTLS Keyword)

 ••NOTE:   The Following Fleg*  May Appear Following OEPO Values:  c for Calm Hour*
                                                               a for Missing Hour*
                                                               b for Both Calm and Miaaing Hour*

 "Misc.  Input*:  Anea. Hot. la)  -    30.00 ;    Decay Cocf. -    . 00001*00 ;     Rot Angle «       0

                                                                          '   E"iMion
                                                                           Print File: st«-,_dw.out

STEAMt_DH.IRR
    Volume IV                                                                                      External Review Draft
    Appendix IV-3                                        IV-3-143                                 Do not cite or quote

-------
                                                           AS8B_2.0OT


•• ISCOMDEP VBISICN 94227 •••    •••  tm Fugitive loure* Modeling - ASH HAKOLXMS/STEAM BLDG             •••
                                •••  On* Point •oure*; 936 r«c«pcor« up Co 50KH «wmy; Surf«c* Ht.        •••        16:37:5i
                                                                                                         	  PAGE   2
••• MOPEr/P" OPTIONS USED:  DEPOS  RURAL  SLEV         OPAOLT                                        DRVDPL NRDPL
  ,                                           ••• POXHT SOOXCE DATA *••


           HUMBER EMISSION RATE                   BASE     STACK  STACK    STACK     STACK    BUILDING EMISSION RATE
  SOURCE     PART.  (GRAMS/SEC)     X       Y      EUCV.    HEIGHT TEMP.   EXIT VEL. DIAMETER   EXISTS   SCALAR VARY
    ID       CATS.              (METERS)  IMETERSI  (METERS) (METERS) (DEG.K)  (M/SEC)  (METERS)                BY


 STEAM        10    .100001*01      23.9      49.0   212.1     C.71  310.00      .10      .10     YES
  Volume IV                                                                                  External Review Draft
  Appendix FV-3                                      rV-3-144                                Do not cite or quote

-------
                                                        ASHB.3.0OT


    iscaaar VERSION 1422?	wr Puvitiv* mire* Bodaiing - ASH HMIDIJNO/STIAK BLDG             •••
                               •••  On* Point wnirc*: 93S r«c«ptor« up te SORM »«y; Surface Kt.        •••       16:37:51
                   	                                                                      	      MCB  3
            OfTXOMS U&ILJ:  OBTOS  RURAL  KLXV         CVAULT                                      OMYDPL
                                     **• SOORCE ZM OEPDIZMG SOOltCX CWOUP5

GROUP ID                                           SOORCE XD>
  Volume IV                                                                            External Review Draft
  Appendix IV-3                                   IV-3-145                              Do not cite or quote

-------
                                                          ASHB_2.0UT


 ISCOMDEF VBRSIOH 94227 •••    •••   HTI Fugitive «ourc« BOdcling - ASH KAKDLDIS/STEAM BLOC
                               •••   On* Point aourev; 936 r*c*ptors up to SOXM may; Surfae* Ht.        •••        16:37:51
                                                                                                          	   PAGE   4
• MODELING OPTTCN5 DSD:  DEPOS  KJUO.  ILEV          DFADLT                                         DRYOPL MRDPL


                                          •» SOOKCT PAKTICDIATI/GKS DKIA •••
      ••- SODRCE ID « STEAM   ;  SOORCE TYPE -   POINT  •••

      •nee FRACTION •
        .00414,  .01301,  .05288,   -100SO,  .13832,   .12745,   .16051,  .12038.   .18640,   .0*631.


      PARTICLE DIAMETER (MICRONS)  -
       2.97000, 1.89000,  .93000,   .55000,  .40000,   .27000,   .18000,  .12000,   .06200,   .03000,


      PARTICLE. DENSITY -
       .21E-03, .14E-03, .SOE-04,  .501-04, .60E-04.  .90E-04,  .131-03, .151-03,  .20E-03, .22E-03,


      SCAV COEP [ICE] 1/IS-MM/HR)-
       .70E-04, .47E-04, .17E-04,  .178-04, .20E-04,  .30E-04,  .43E-04, .SOE-04,  .67E-04, .73E-04,
 Volume IV                                                                                    External Review Draft
 Appendix IV-3                                       IV-3-146                                 Do not cite or quote

-------
         VERSION 9*227 •••


          OVTXOHS USB):
                         ASn_2.0OT


•• WIT Fugitive wnize* •edcling - ASH HAMDLIKi/STEAII BLDC
•••  On* Point 
-------
                                                         XSHB_2.OOT


 ISCOMDEP VERSION 94227  •••    •••  HTI Pugitiv* •euxe* Bodeliag - ASH KANDLINa/STEAM BLDG             • ••
                              •••  On* Point •cure*;  936  receptors up to SOKM n«y; Surface Ht.        •••        16:37:51
                                                                                                             PAGE  17
• MODELING OPTIONS USB):  DBPOS  RURAL  ILBV          DFAULT                                         DRYDPL NETDPL


                        • SOOIICI-MCBPTOIt COMBIHHTaiS LESS IBM 1.0 HflBl OR 3*ZL» •
                               XH DISTMRI.  CALCUIATIOKS HKY NOT U PBtfOIUIlD.


                         SOORCB        - - USCEPTOR LOCATION	        DISTURB
                           ID          XR (HBTIRS)    VR  (METERS)        (METERS)
                         STEAM                17.4         98.5           49.93
                         STEAM                34.2         94.0           46.16
                         STEAM                50.0         16.6           45.80
                         STEAM                64.3         76.6           48.93
                         STEAM                86.6         50.0           62.72
                         STEM!                94.0         34.2           71.62
                         STEAM               -34.2         94.0           73.48
                         STEAM               -17.4         98.5           64.44
                         STEAM                  .0        100.0           56.34
 Volume IV                                                                                   External Review Draft
 Appendix IV-3                                       F/-3-148                                Do not cite or quote

-------
                                                          ASRB_2.00T
        ' VXKSION 94227 ••


 MODELHB OPTIONS USED
          MIT  Fugitive retire •odcling - ASH HANDLING/STEAM BUG
           On* Point »ourc«; 936 r*c«ptor« up to SOKM wray; Surface Ht.
                         DCPOS  RBRAL  ELEV
                           DPAHLT
                                                                         16:37:51
                                                                         PAGE   it
                                                                          DRYDPL NE'lUVL
                                          METEOROLOGICAL DAYS SELECTED POK PROCESSING
                                                         ll'YES; 0-HO)
1
1
1
1
1
1
1
111
111
111
111
111
111
111
1111
1111
1111
1111
1111
1111
1111
1 1
1 1
1 1
1 1
1 1
1 1
1 1
111
111
111
111
111
111
111
111
111
111
111
111
111
111
1111
1111
1111
1111
1111
111-1
1111
1111111111 1111111111
1111111111 1111111111
1111111111 1111111111
1111111111 1111111111
1111111111 1111111111
1111111111 1111111111
1111111111 1111111111
11111
11111
11111
11111
11111
11111
.11111
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1
1
1
1
1
1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
           DOTS:  METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND OH WHAT IS  INCLUDED IN THE DATA PILE.



                            ••* OPPER MONO OP FIRST THRUUOH PUTS WHO SPEED CATEGORIES  •*•
                                                      (METEES/SK)

                                           1.54,    3.09,   5.14.   S.23,  10.10,


                                             •••  WIND PROFILE EXPONENTS •••
           STABILITY
           CATEGORY
              A
              B
              C
              D
              E
              F
.70000B-01
.70000E-01
.100001*00
.15000E*00
.350001*00
.550001*00
WHO) SPEED CATEGORY
2 3
.70000E-01 .70000E-01
.70000E-01 .70000E-01
.10000E»00 .10000E*00
.15000E*00 .150001*00
.350001*00 .350001*00
.550001*00 .550001*00
4
.70000E-01
.70000E-01
.100001*00
.150001*00
.350001*00
.550001*00
                                            .70000E-01
                                            .700001-01
                                            .100001*00
                                            .150001*00
                                            .350001*00
                                            .550001*00
                                            .700001-01
                                            .70000E-01
                                            .100001*00
                                            .15000E*00
                                            .350001*00
                                            .55000E»00
                                       ' VERTICAL POTKmlAL 'I'EMPUtATllkB GRADIENTS
                                               (DECREES KELVIN PER METER)
           STABILITY
           CATEGORY
              A
              B
              C
              D
              E
              P
                                                WIND SPEED CATEGORY
.OOOOOE*00
.OOOOOE*00
.000001*00
.000001*00
.20000S-01
.350001-01
.OOOOOE+00
.OOOOOE+00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.OOOOOE*00
.000001*00
.000001*00
.000001*00
.20000E-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.35000E-01
Volume IV
Appendix IV-3
                                 IV-3-149
                                                           External Review Draft
                                                              Do not cite or quote

-------
 ISCGNBEF VBtSICN 94227 •••


• MODELING OFTIGNS USKD
                                                           I_2.ODT
WTI Fugitive lource nodaling - ASK KMIDLINS/STIAM 8LDG
 Oo« Point BOUTC*; 936 r«c«ptors up to 50XM Mny; Surfac* Wt.
                        DEPOS  RURAL  ELIV
                                                                                             DRYDPL WETDPL
                                                                         16:37:51
                                                                         PAGE  19
                    TSt FIRST  24 HOCUS OF METEOROLOGICAL DATA
SURFACE STATION NO. : 94823
NAME: HTI
YEAR: 1993
FLOW SPEED
YEAR MONTH DAY HOUR VECTOR (M/S)

93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
93
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 1
1 2
3





1
1 10
1 11
1 12
1 13
1 14
1 15
1 16
1 17
1 18
1 19
1 20
1 21
1 22
1 23
1 24
104.0
112.0
106.0
115.0
120.0
123.0
130.0
124.0
115.0
107.0
113.0
108.0
114.0
107.0
120.0
119.0
.47
.36
.47
.47
.02
.36
.92
.92
.47
.02
.02
.47
.36
.92
.92
.47
118.0 3.58
124.0 2.68
124.0 2.68
113.0 2.23
97.0 2.68
113.0 3.13
117.0 3.13
152.0 2.68
UPPER AIR STATION NO.: 94823
NAME: HTI
YEAR: 1993
TEMP STAB MIXING HEIGHT (M)
(X) CLASS RURAL URBAN
275.4
274.8
274.0
273.9
273.
273.
272.
271.
271.
270.
270.
270.
271.
271.
270.
270.
270.
270.
270.
270.
270.
270.
270.
269.
601.6
617.6
633.5
649.5
C6S.4
681.4
697.3
713.3
729.2
745.2
761.1
777.1
793.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
601.6
617.6
633.5
649.5
665.4
681.4
697.3
713.3
729.2
745.2
761.1
777.1
793.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
809.0
USTAR
(M/S)
.3366
.4269
.3363
.3363
.2874
.4266
.3820
.3819
.3355
.3534
.3534
.3926
.4712
.4319
.3817
.3354
.2310
.1178
.1178
.0982
.1178
.1374
.1374
.1178
M-O LENGTH
(M)
176.8
283.7
175.6
175.4
128.1
281.8
225.3
224.6
172.9
-999.0
-999.0
-999.0
-999.0
-999.0
223.4
172.4
81.7
29.4
29.4
29.4
29.4
29.4
29.4
29.4
Z-0 Zd IPCODE
(M) (M)
.3000 1.5 13
.3000 1.5 0
.3000 1.5 0
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 28
.3000 1.5 0
.3000 1.5 28
.3000 1.5 0
.3000 1.5 28
PRATE
(nm/KR)
.00
.25
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
        STABILITY CLASS 1-A, 2-B,  3-C, 4-D,  5-E AND 6-F.
        FLOW VECTOR IS DIRECTION TOWARD WHICH WIND IS BLOWING.
Volume IV
Appendix IV-3
                      IV-3-150
External Review Draft
   Do not cite or quote

-------
                                                                 ASK. OUT


 ••• ZSCOMDIP VERSION 94237 —    *••   NTT Fugitive »ourc« modeling - ASH HANDLING/STEAM BUX!              •••        12/27/94
                                   •••   Cm Point aource; 936 receptor* up to 5 OHM away;  vapor.             •••        IT: 14; 25
                                                                                                                     PACE   1
 *•• MODELING OmtXS USK>:  COHC   RURAL  SUV         DPAULT


                                           •••     MODBL snap OPTIONS SUMMARY       •••


 ••Intermediate Terrain Proeeaaiag i* Selected

        IB setup For calculation of Average Concentration Value*.
  —  SCAVENSING/DEPOSITIOH LOGIC —
 ••Model Uaea HO DRY CEPLCTICN.   DDPLETS -   P
 ••Model Uaea HO VIET DEPLETION.   NDPLETE -   P
 ••HO MET SCAVENGING Dete Provided.
 ••Model Uaea GRXDDED TERRAIN Data for Depletion Caleulationa

 ••Model Uaea RURAL Diaper • ion.

 ••Model Usea Regulatory DEFAULT Options :
           1. Final PluM Riae.
           3. Stack-tip Downwaah.
           3. Buoyancy-induced Diaperaion.
           4. Uae Calm* Processing Routine.
           5. Hat Uae Mi** ing Data Proceaaing Routine.
           6. Default Wind Profile Exponent*.
           7. Default Vertical Potential Temperature Gradient*.
           8. 'Upper Bound* Value* for Super aguat Building*.
           9. Ho Exponential Decay for RURAL Mode

 ••Model Accept* Receptor* on ELEV Terrain.

 ••Model Aaauna Ho FLAGPOLE Receptor Height*.

 ••Model Accepting Temperature Profile Data.
  Number of Level* :             3
    (• ACL)          30.0000
    (• ACL)          45.7000
    <• ACL)          152.400

 ••Model Accepting Mind Profile  Data.
  Nuaber of Level* :             5
     u AGL)          30.0000
     u AGL)          45.7000
     B ACL)          80.1000
     B AGL)          111.300
     B AGL)          152.400

 ••Model Calculate*  1 Short Ten Averege(a) of:   1-HR
    and Calculate* PERIOD Average*

 "This Run Include*:     1 Source!*);      1 Source. Croup (a); and    936 Receptor (a)

••The Model Aaauaea A Pollutant Type  of:  FUGITIVE

 ••Model Set To Continue Running After the Setup Testing.

 ••Output Option* Selected:
         Model Output* Table* of PERIOD Average* by Receptor
         Model Output* Table* of Higheat Short Term Value* by Receptor  (RCCTABU Keyword)
         Model Output* Table* of Overall "—•— — Short Tana Value* (MAXTABLI Keyword)
         Model Output* External File(a) of High Value* for Plotting (PLOTFILE Keyword)

••NOTE:   The following Flaga May Appear Following COHC Value*:   c for Cala Hour*
                                                               B for Muaing Hour*
                                                               b for Both CalB and Mia* ing Hours

••Miac.  Input*:   Ane*>.  Hgt.  IB)  •     30.00  ;    Decay Coef .  -   0.0000     ;    Rot. Angle -     0.0
                 EBiaaion Unit* • CRAMS/SEC                               ;  (Biaaion Rate Unit Factor -   0.100001*07
                 Output Unite   • KXCRaGRAMS/M"3

••Input RunatreeB File:  eteeB.inc                               ;   ••output Print File: eteeo.out
••Detailed Srror/Meeaage Pile:   STBAM.BRR
     Volume IV                                                                                      External Review Draft
     Appendix IV-3                                        IV-3-151                                 Do not cite or quote

-------
   ISCOHMP VERSION 94227 •••    •••  WTI Fuaitiv* Source •od.ling - ASH HANDLING/STEAK BLOC             •••        12/27/94
                               •••  Om Point •oura; 936 rwMptori up to 50XM nray;  Vapor.            •••        17:14:25
                                                                                                             PACE   2
           OPTICHS USD:  COHC   RURAL  SUV         DFABLT
                                            ••• POINT SOURCE DATA •••


          NUMBER EMISSION RATE                  BASE     STACK   STACK    STACK    STACK    BUILDING EKISSIOH RATE
 SOURCE     PART.  (GRAMS/SEC)     X        Y     ELEV.    HEIGHT  TEMP.   EXIT VEL. DIAMETER   EXISTS   SCALAR VARY
   ID      CATS.              (METERS) (METERS) (METERS)  (METERS) (DEG.K)  IM/SEC)   (METERS)               BY


STEAM        0   0.10000E»01     23.9      49.0   212.1    C.71   310.00     0.10     0.10     YES
  Volume IV                                                                                  External Review Draft
  Appendix IV-3                                     IV-3-152                               Do not cite or quote

-------
                                                              .OOT
   ' ISCOKMP VERSION 94227 •••    •••  WTI Fugitiv* »ourc» modeling - ASH KAKDUMS/STEAM BLDC             "•        12/27/94
                               •••  On* Point »ourc»; 936 receptor* up to SORM ***y: Vapor.            •••        17:14:2!
                                                                                                         ?ACB   3
   ' HODELOB OmONS USED:  CONC   RORAL  ELCV         DPAULT
GROUP ID                                           SOURCE ID*
 ALL       STEAK
    Volume IV                                                                             External Review Draft
    Appendix IV-3                                    IV-3-153                              Do not cite or quote

-------
XSCOHDEP VERSION 94227 •••    ••*  HTI Pugitiv* source BOdcling - ASH HANDLING/STEAM BLOC             •••        12/27/94
                            •••  On* Point »ourc«;  936 r«c«pcor« up to 5OHM avay; Vapor.             •••        17:14:25
                                                                                                         PAGE   4
MODELING OPTIONS TJSID:  CCNC   RURAL.  ILEV         OPAIILT


                                       ••• S0011CI PAKTICDIATI/QAS DATA •••
    ••• SOURCE ID -  STEAM   ;  SOURCE TYPE «   POINT

    SCAV COEF [LIQ1  1/(S-MM/HR>-
    O.OOE»00,

    SCAV COEP IICE1  1/(S-MK/HR>-
    O.OOEtOO,
Volume IV                                                                                 External Review Draft
Appendix IV-3                                      IV-3-154                               Do not cite or quote

-------
                                              ASHC.OCT


VERSION 94227  •••
                   •••  On* Point «ource;

OPTICNS USED:  cose   RORAL  BLEV         DFAOLT


                        ••* DIRECTION SPECIFIC BUXU>m6 D1MEMSIONS
                            •••  WTI Fugitive sourn Modeling - ASK HAHDLHK/STEAM BLDG
                            •••  On* Point 
-------
 ISCCHDIP VERSION 94227  •••    •••  HTI Fuaitiv* mouic* modeling - ASH HMJDUM5/STEAM BLDC             •••        12/27/94
                             •••  On* Point •cure*;  936 nccptori up to 5OHM «ray; Vapor.            •••        17:14:25
                 	                                                                                        PACK  17
 MODELING OPTIONS OSED:  COHC   RURAL ELEV         DFAOLT


                       • SOORCE-RECEPTOR COMBIHATTOHS LZ5S THAW 1.0 METER OR 3«XLB •
                              IN DISTANCE.  CALCULATIONS HAT NOT BE PERFORMED.


                                      - - RECEPTOR  LOCATION - -        DISTANCE
                                      XR (METERS)   YR (METERS)         (METERS)
                        STEAM                17.4          98.5            49.93
                        STEAM                34.2          94.0            46.16
                        STEAM                SO.O          S6.6            45.SO
                        STEAM                64.3          76.6            48.93
                        STEAM                86.6          SO.O            62.72
                        STEAM                94.0          34.2            71.62
                        STEAM               -34.2          94.0            73.48
                        STEAM               -17.4          91.5            64.44
                        STEAM                 0.0         100.0            56.34
Volume IV                                                                                  External Review Draft
Appendix IV-3                                      IV-3-156                                Do not cite or quote

-------
         VnSION 94227 •••


         OPTIONS
           NTX Pueitiv* mure* vxteliag - ASH HMmLXMG/STUX BLDG
           On* Faint moaiem; 936 necpcon  up to 50KM my; vapor.
                        COMC   KDRAL ELEV
                                                                         12/27/94
                                                                         17:14:25
                                                                         PACE   IB
                                         METEOROLOGICAL DAYS SELECTED FOR PROCESSING •••
                                                        U-YES; 0-HOI
11111111
11111111
11111111

1 1
1 1
1 1

1
1
1

1 ]
1 1
1 I

111
111
111

1111
1111
1111

1111111
1111111
1111111

111
111
111

111
111
111

1 1
1 1
1 1

11111
11111
11111

1111111111
1111111111
1111111111

          NOTE:  METEOROLOGICAL DATA ACTUALLY PROCESSED MILL ALSO DEPEND ON NRAT IS INCLUDED IN THE DATA FILE.
                                     MONO OF FIRST TBROOSH FIFTH HDB> SPEED CATBOORHS
                                                     (METERS/SEC)

                                          1.54.   3.09.    5.14,   1.23,  10.10,
                                                WIND PROFILE EXPONENTS
          STABILITY
          CATESORY
             A
             B
             C
             D
             E
             F
.70000E-01
.70000E-01
.100001*00
.ISOOOEtOO
.350001*00
.550001*00
HIND SPEED CATEGORY
2 3
.700001-01 .700001-01
.700001-01 .700001-01
'.100001*00 .100001*00
.150001*00 .150001*00
.350001*00 .350001*00
.550001*00 .550001*00
4
.700001-01
.700001-01
.100001*00
.150001*00
.350001*00
.550001*00
                                           .700001-01
                                           .700001-01
                                           .100001*00
                                           .150001*00
                                           .350001*00
                                           .550001*00
                                            .700001-01
                                            .700001-01
                                            .100001*00
                                            .150001*00
                                            .350001*00
                                            .550001*00
                                       VERTICAL POTENTIAL TEMPERATURE GRADIENTS
                                              (DEGREES KELVIN PER METER)
          STABILITY
          CATEGORY
             A
             B
             C
             D
             E
             F
                                               NIND SPEED CATEGORY
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.35000E-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.OOOOOE*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.350001-01
.000001*00
.000001*00
.000001*00
.000001*00
.200001-01
.35000E-01
Volume  IV
Appendix IV-3
                                 IV-3-157
                                                            External Review Draft
                                                               Do not cite or quote

-------
       ' VERSION 94227 •••


MODELING OPTIONS USED:  CONC
•»• WTI Fugitive source Bodeline - ASH HANDLING/STEAK BLDG
•*• One Point source;  936 receptors up to 50KN wmy; Vapor.

 RURAL  ELEV         DPAULT
                                                                                                                 12/27/94
                                                                                                                 17:14:25
                                                                                                                 PAGI  19
                        THE FIRST  24 BOORS OP METEOROLOGICAL DATA
           PILE: depbin.aet
           SURFACE STATION HO.:  94823
                         NAME: MTI
                         YEAR:   1993
         YEAR  MONTH  DAY  HOUR
                                   FLOW
                                  VECTOR
                                                  FORMAT:  <4I2.2F9.4.P6.1,I2.2P7.1.f9.4,fl0.1.f8.4,fS.l.i4.f7.2)
                                                  UPPER AIR STATION NO.:  94823
                                                                  HAKE: MTI
                                                                  YEAR:   1993
                                      SPEED
                                      .(M/S)
                                                   (X)
                         STAB
                         CLASS
MIXING HEIGHT (M)
 RURAL   URBAN
USTAR
(M/S)
M-0 LENGTH
   (M)
Z-0
(M)
 Zd IPCODE PRATE
(M)        m/HR)
93 1
93 1
93 1
93 1 •
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
93 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 .
1
1
1
2
3
4
S
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
104.0 4.47 275.4 601. 601.6 0.0000 0.0 0.0000 0.0 0 0.00
112.0 5.36 274.8 617. S17.6 0.0000 0.0 0.0000 0.0 0 0.00
106.0 .47 274.0 633. 633. 5 0.0000 0.0 0.0000 0.0 0 0.00
115.0 .47 273.9 649. 649.5 0.0000 0.0 0.0000 0.0 0 0.00
120.0 .02 273.1 «65. C65.4 0.0000 0.0 0.0000 0.0 0 0.00
123.0 .36 273.3 681. C81.4 0.0000 0.0 0.0000 0.0 0 0.00
130.0 .92 272.5 697. 697.3 0.0000 0.0 0.0000 0.0 0 0.00
124.0 .92 271.9 713. 713.3 0.0000 0.0 0.0000 0.0 0 0.00
115.0 .47 271.0 729.2 729.2 0.0000 0.0 0.0000 0.0 0 0.00
107.0 .02 270.9 745.2 745.2 0.0000 0.0 0.0000 0.0 0 0.00
113.0 .02 270.6 761.1 761.1 0.0000 0.0 0.0000 0.0 0 0.00
108.0 .47 270.9 777.1 777.1 0.0000 0.0 0.0000 0.0 0 0.00
114.0 .36 271.1 793.0 793.0 0.0000 0.0 0.0000 0.0 0 0.00
107.0 .92 271.0 809.0 109.0 0.0000 0.0 0.0000 0.0 0 0.00
120.0 .92 270.8 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
119.0 .47 270. S 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
118.0 .58 270.4 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
124.0 2.68 270.4 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
124.0 2.68 270.1 809.0 109.0 0.0000 0.0 0.0000 0.0 0 0.00
113.0 2.23 270.3 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
97.0 2.68 270.3 809.0 109.0 0.0000 0.0 0.0000 0.0 0 0.00
113.0 3.13 270.3 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
117.0 3.13 270.4 809.0 809. 0 0.0000 0.0 0.0000 0.0 0 0.00
152.0 2.68 269. » 809.0 809.0 0.0000 0.0 0.0000 0.0 0 0.00
••• NOTES:
           STABILITY CLASS 1-A, 2»B, 3"C,  4»D, 5»E AND 6-P.
           FLOW VECTOR IS DIRECTION TOWARD WHICH HIND IS BLOWING.
    Volume IV
    Appendix IV-3
                                                        IV-3-158
                                                                    External Review Draft
                                                                      Do not cite or quote

-------
                                       APPENDIX IV-4

                                 ISC-COMPDEP Contour Plots


       Main Incinerator Stack - Base Case Simulations

              IV-4-1 to IV-4-8 -     Mass-weighted pollutant distribution.

              FV-4-9 to FV-4-16 -    Surface area-weighted pollutant distribution.

              IV-4-17 to IV-4-18 -   Vapor pollutant.

       Fugitive Emission Sources

              IV-4-19 to IV-4-20 -   Truck wash

              IV-4-21 to IV-4-22 -   Organic waste tank farm stacks

              IV-4-23 to IV-4-24 -   Open wastewater tank

              IV-4-25 to IV-4-26 -   Carbon adsorption bed stack

              IV-4-27 to IV-4-44 -   Ash handling stack

                                    IV-4-27 to IV-4-34: mass-weighted pollutant distribution
                                    FV-4-35 to IV-4-42: surface area-weighted distribution
                                    FV-4-43 to IV-4-44: vapor distribution
Volume IV                                                              External Review Draft
Appendix IV-4                              IV-4-1                         Do not cite or quote

-------

-------
   50000
   40000
    30000
   20000
    10000
I
D
2
   -10000
   -20000
   -30000
   -40000
   -50000
                      Annual Concentrations (Mg/m 3)
                       WT1 Stack (Mass Distribution)
                                                                  0.005
                                                       0.010
                                 0.010
                                                                    0-005
                                        —11.000

                                           0.500

                                           0.200

                                           0100

                                           0.075
                                        I
                  -\ 0.050

                  -J 0.020

                   10.010

                   10.005

                    0.000
      -50000 -40000 -30000  -20000  -10000    0    10000  20000  30000  40000   50000
                                       EAST (m)

       Figure IV-4-1.  Annual average concentrations (ug/m3) for the incinerator stack - Run la
                   (ISC-COMPDEP, base case, mass-weighted pollutant distribution). Modeling domain
                   out to 50 km is displayed.
     Volume IV
     Appendix IV-4
IV-4-2
External Review Draft
  Do not cite or quote

-------

-------
                  Annual Concentrations (fig/m 3
                   WT1 Stack  (Mass Distribution)
 1500
                                                                            —: 1.000

                                                                              • 0 500

                                                                            —(0200
                                                                              I
                                                                            — 0 100

                                                                            — 0.075

                                                                            — 0.050

                                                                              0.020

                                                                              0010

                                                                              0.005

                                                                              0000
-1500
   -1500
   Figure
      -1000        -500         0          500         1000        1500
                          EAST (m)
IV-4-2. Annual  average concentrations  (ug/m3) for  the incinerator stack - Run  la
      (ISC-COMPDEP, base case, mass-weighted pollutant distribution). Modeling domain
      out to 1.5 km is displayed.
  Volume IV
  Appendix IV-4
                           IV-4-3
External Review Draft
  Do not cite or quote

-------

-------
 50000
                    Annual Wet Deposition (g/m 2)
                    WTI Stack  (Mass Distribution)
 40000
 30000
 20000 i
 10000
-10000
-20000
-30000
-40000
                               0.0002
                                            O.OOOS
                  - 0 1000

                  - 0.0500

                  - 0.0200

                  - 0.0100

                  - 0.0050

                  - 0.0020

                  •H 0.0010

                '   i 0.0005

                |    0.0002

                |   10.0001

                ;   ! o.oooo
-50000        ,.  .  . .
   -50000 -40000 -30000 -20000  -10000    0
                                             10000  20000  30000  40000  50000
                                    EAST (m)

    Figure IV-4-3.  Annual wet  deposition  fluxes (g/m2) for the  incinerator stack -  Run la
                (ISC-COMPDEP, base case, mass-weighted pollutant distribution). Modeling domain
                out to 50 km is displayed.
  Volume IV
  Appendix IV-4
                                      IV-4-4
External Review Draft
  Do not cite or quote

-------

-------
                     Annual  Wet Deposition (g/m 2)
                     WTI  Stack (Mass Distribution)
    1500
    1000
    500
JE
I
h-
OL
o
    -500
   -1000
   -1500
      -1500
                                                   ! 0.0002

                                                   0.0001

                                                   0.0000
-500
500
1000
1500
                                      EAST (m)
      Figure IV-4-4. Annual  wet  deposition  fluxes (g/m2)  for  the incinerator stack - Run  la
                 (ISC-COMPDEP, base case, mass-weighted pollutant distribution). Modeling domain
                 out to 1.5 km is displayed.
    Volume IV
    Appendix IV-4
          IV-4-5
          External Review Draft
           Do not cite or quote

-------

-------
    50000
    40000
    30000 ,
    20000
    10000
o:
o
   -10000
   -20000
   -30000
   -40000-
   -50000-r
                       Annual  Dry Deposition (g/m 2)
                       WTI Stack (Mass Distribution)
                                      ,0.00005
                                                    0.00005
                                                                                     0.1000!
                                             0.0200S
                                             0.01001
                                             0.00501
                                             0.0020i
                                             o.ooiot
                                             0.00051
                                          '   !0.0002(
                                          i   10.0001 C
                                          i
                                          ;   lO.OOOOf
                                             i o.ooooc
       -50000  -40000  -30000  -20000  -10000    0     10000   20000   30000   40000   50000
                                        EAST (m)

     Figure IV-4-5. Annual  dry  deposition  fluxes  (g/m2) for  the  incinerator  stack  - Run  la
                 (ISC-COMPDEP, base case, mass-weighted pollutant distribution). Modeling domain
                 out to 50 km is displayed.
   Volume IV
   Appendix IV-4
IV-4-6
External Review Draft
  Do not cite or quote

-------

-------
                   Annual Dry Deposition (g/m 2)
                   WTI Stack (Mass Distribution)
 1500
     r
 1000
  500
 -500
-1000
-1500
   -1500
              -1000
-500
1000
1500
                                   EAST (m)
    Figure IV-4-6.  Annual dry  deposition  fluxes  (g/m2)  for the  incinerator stack -  Run la
                (ISC-COMPDEP, base case, mass- weighted pollutant distribution). Modeling domain
                out to 1 .5 km is displayed.
                                                     0.1000

                                                     0.'
                                                     0.0100

                                                     0.0050


                                                      .0010

                                                    -^ 0.0005

                                                     i 0.0002

                                                     i 0.0001
                                                     l
                                                     J 0.0000
  Volume IV
  Appendix IV-4
           IV-4-7
External Review Draft
  Do not cite or quote

-------

-------
    50000
                      Total Annual  Deposition (g/m 2)
                       WTI  Stack (Mass Distribution)
IT
O
    40000
    30000
    20000
    10000
        0
   -10000
   -20000
   -30000
   -40000
                  0.0001
                                0.000*
                                                                    0-'
                                            0.1000

                                            0.0500

                                            0.0200

                                            0.0100

                                            0.0050

                                            0.0020

                                            0.0010
                                           i  -
                                           10.0005

                                           10.0002

                                           | 0.0001

                                           '0.0000
   -50000 t
       -50000  -40000  -30000 -20000 -10000
    0    10000  20000  30000   40000   50000
EAST(m)
      Figure IV-4-7. Annual  total deposition fluxes  (g/m2)  for  the incinerator  stack  -  Run  la
                  (ISC-COMPDEP, base case, mass-weighted pollutant distribution). Modeling domain
                  out to 50 km is displayed.
    Volume IV
    Appendix IV-4
IV-4-8
External Review Draft
  Do not cite or quote

-------

-------
                     Total Annual Deposition (g/m 2)
                      WTI Stack (Mass Distribution)
    1500
    1000
     500
tr
g
    -500
   -1000-
   -1500
      -1500
                                                                                  -iD.1000
                                                                 0.0500

                                                                 0.0200

                                                                 0.0100

                                                                 0.0050

                                                                 0.0020
                                                                 j
                                                                 )
                                                                 0.0010
                                                              I—iQ.0005

                                                                 i 0.0002

                                                                H 0.0001
                                                                 !
                                                                 i o.oooo
-1000
-500
500
1000
1500
                                      EAST (m)
        Figure IV-4-8. Annual  total  deposition fluxes (g/m2) for  the incinerator  stack  -  Run la
                   (ISC-COMPDEP, base case, mass-weighted pollutant distribution). Modeling domain
                   out to 1.5 km is displayed.
      Volume IV
      Appendix IV-4
                       IV-4-9
                                   External Review Draft
                                     Do not cite or quote

-------

-------
 50000-
40000-
 30000-
20000-
 10000-
-10000-1
-20000-
-30000-
-40000-
-50000^
                   Annual Concentrations (ptg/m)
                  WTI Stack (Surface Distribution)
                                                               &005
                                           1.000

                                           0.500

                                           0.200

                                           0.100

                                           0.075
                                           i 0.050

                                           j 0.020
                                           !
                                           0.010

                                         —10.005

                                           i o.ooo
    -50000  -40000 -30000 -20000 -10000   0     10000  20000  30000  40000  50000
                                     EAST (m)

     Figure IV-4-9.  Annual average concentrations (ug/m3) for  the  incinerator  stack  -  Run Ib
                 (ISC-COMPDEP, base case, surface area-weighted pollutant distribution). Modeling
                 domain out to 50 km is displayed.
   Volume IV
   Appendix IV-4
IV-4-10
External Review Draft
  Do not cite or quote

-------

-------
    1500
    1000
     500
JE
o
z
    -500
   -1000-
                     Annual Concentrations (ng/m 3)
                    WTI Stack (Surface Distribution)
   -1500
      -1500
-1000
-500
500
1000
1500
                                     EAST (m)
     Figure IV-4-10.
     Annual average concentrations (ug/m3) for the incinerator stack - Run Ib
     (ISC-COMPDEP, base case,  surface area-weighted pollutant distribution).
     Modeling domain out to 1.5 km is displayed.
    Volume IV
    Appendix IV-4
                    IV-4-11
                               External Review Draft
                                 Do not cite or quote

-------

-------
    50000-T
    40000
    30000
    20000
    10000
E,
I
K
cc
o
                       Annual Wet Deposition (g/m 2)
                      WTI Stack (Surface Distribution)
   -10000-
   -20000 t
   -30000
   -40000 \
   _5QQQQ_L		r	r.	
       -50000  -40000  -30000  -20000  -10000
                   0.0001
                                                         —] 0.1000

                                                            0.0500

                                                         —10.0200

                                                            0.0100

                                                            0.0050

                                                            0.0020
                        10000  20000  30000  40000  50000
       Figure IV-4-11.
               EAST (m)

Annual wet deposition fluxes (g/m2) for the incinerator stack - Run Ib
(ISC-COMPDEP, base case, surface area-weighted pollutant distribution).
Modeling domain out to 50 km is displayed.
                                                           10.0010

                                                           '0.0005

                                                            0.0002

                                                           : 0.0001

                                                            0.0000
     Volume IV
     Appendix IV-4
                IV-4-12
External Review Draft
  Do not cite or quote

-------

-------
                     Annual Wet Deposition (g/m 2)

                    WTI Stack (Surface Distribution)
    1500
    1000
    500
E

I
I—
tr
o
z:
   -1000
   -1500
      -1500       -1000
       -500
500
1000
1500
                                      EAST (m)
     Figure IV-4-12.
Annual wet  deposition fluxes (g/m2) for the incinerator stack - Run Ib

(ISC-COMPDEP, base case, surface area-weighted pollutant distribution).

Modeling domain out to 1.5 km is displayed.
   Volume IV

   Appendix IV-4
               IV-4-13
         External Review Draft

           Do not cite or quote

-------

-------
    50000
                       Annual Dry  Deposition (g/m 2)
                      WTI Stack (Surface Distribution)
    40000
    30000
    20000
    10000
rr
o
z
   -10000
   -20000
   -30000
   -40000
                                                                  J,.
                                                           i 0.10000
                                                           I
                                                           !
                                                            0.05000

                                                            0.02000
                                                        r—10.01000
                                                           0.00500
                                                           0.00200
                                                           0.00100
                                                        	i 0.00050

                                                           i 0.00020

                                                        I- i 0.00010
                                                        I   J
                                                        r—} 0.00005

                                                         -'0.00000
   -50000 •*	
       -50000  -40000  -30000  -20000  -10000    0    10000  20000  30000   40000   50000
                                        EAST (m)
      Figure IV-4-13.
Annual dry deposition fluxes (g/m2) for the incinerator stack - Run  Ib
(ISC-COMPDEP, base case, surface area-weighted pollutant distribution).
Modeling domain out to 50 km is displayed.
    Volume IV
    Appendix IV-4
                IV-4-14
External Review Draft
  Do not cite or quote

-------

-------
                     Annual  Dry Deposition (g/m 2)
                    WTI  Stack (Surface Distribution)
    1500	
    1000
a:
O
       Figure IV-4-14.
              EAST(m)

Annual dry deposition fluxes (g/m2) for the incinerator stack - Run Ib
(ISC-COMPDEP, base case, surface area-weighted pollutant distribution).
Modeling domain out to 1.5 km is displayed.
     Volume IV
     Appendix IV-4
               IV-4-15
External Review Draft
  Do not cite or quote

-------

-------
 50000-
 40000-
 30000-
 20000-
 10000
                   Total Annual Deposition (g/m2)
                   WTI Stack (Surface Distribution)
                                                 0.0005
-10000-
-20000
-30000-
-40000
-5000QJ	,	-	1	T
    -50000  -40000 -30000 -20000 -10000   0
                       10000  20000  30000  40000  50000
     Figure IV-4-15.
              EAST (m)

Annual total deposition fluxes (g/m2) for the incinerator stack - Run Ib
(ISC-COMPDEP, base case,  surface area-weighted pollutant distribution).
Modeling domain out to 50 km is displayed.
                                                           0.1000

                                                           0.0500

                                                           0.0200

                                                           0.0100

                                                           0.0050

                                                           0.0020

                                                           0.0010

                                                           0.0005

                                                           0.0002

                                                           0.0001

                                                           0.0000
   Volume IV
   Appendix IV-4
                IV-4-16
External Review Draft
  Do not cite or quote

-------

-------
E,
X
h-
o:
o
                     Total Annual Deposition (g/m 2)
                     WTI Stack (Surface Distribution)
    1500 R
    1000
     500
   -1000
                                                                 0.1000

                                                                 0.0500

                                                                 0.0200

                                                                 0.0100

                                                                 0.0050

                                                                 0.0020

                                                                 0.0010

                                                                 0.0005

                                                                i 0.0002

                                                              '-—10.0001
                                                                 0.0000
   -1500
      -1500
-1000
-500
500
1000
1500
                                       EAST (m)
      Figure IV-4-16.
      Annual total deposition fluxes (g/m2)  for the incinerator stack - Run Ib
      (ISC-COMPDEP, base case,  surface area-weighted pollutant distribution).
      Modeling domain out to 1.5 km is displayed.
    Volume IV
    Appendix IV-4
                      IV-4-17
                                  External Review Draft
                                   Do not cite or quote

-------

-------
                   Annual Concentrations (Mg/m3)
                            WTI Stack (Vapor)
                                                                 0.005
 5000T>T
 40000-
 30000-
20000
 10000-
    0-
-10000
-20000-
-30000-
-40000-
-500004	r	1— —;  ~   ~ ~~— — r~     T--  '""i	i	1	
    -50000 -40000 -30000 -20000 -10000    0    10000   20000   30000   40000  50000
                                     EAST(m)
                                                          H 1.000

                                                           0.500

                                                           0.200

                                                           0.100

                                                           0.075

                                                           0.050

                                                           0.020

                                                           0.010

                                                           0.005
                                                                                 '0.000
     Figure IV-4-17.
Annual average concentrations (ug/m3) for the incinerator stack - Run Ic
(ISC-COMPDEP, base case, vapor pollutant). Modeling domain out to 50 km
is displayed.
   Volume IV
   Appendix FV-4
               IV-4-18
External Review Draft
  Do not cite or quote

-------

-------
    1500
    1000
     500
CL
O
2
    -500
   -1000  r:;^
                     Annual Concentrations (jig/m 3)
                               WTI Stack (Vapor)
   -1500
      -1500
     Figure IV-4-18.
        -500
500
1000
1500
                                       EAST (m)
Annual average concentrations (ug/m3) for the incinerator stack - Run Ic
(ISC-COMPDEP, base case, vapor pollutant). Modeling domain out to 1.5 km
is displayed.
                                                            - 100C

                                                            -0.5CK

                                                            -0.20C

                                                            -0.10C

                                                            - 0.07f
                                                            "|
                                                            40.05C

                                                            J0.02C

                                                             J0.01C

                                                             lO.OOf

                                                              000(
   Volume IV
   Appendix IV-4
               IV-4-19
        External Review Draft
         Do not cite or quote

-------

-------
c
c
                                                I
                                                /*
                                                $ •$

                                                g £
I

-------

-------
                    Annual Concentrations (ng/m 3)
                                  Truck Wash
   1500 r-
    1000
    500
H
o
z
    -500
   -1000
   -1500
      -1500
       Figure IV-4-20.
                                                  1500
Annual average concentrations (ng/m3) for the track wash (ISC-COMPDEP,
vapor pollutant). Modeling domain out to 1.5 km is displayed.
     Volume IV
     Appendix IV-4
               IV-4-21
External Review Draft
  Do not cite or quote

-------

-------

-------

-------
                    Annual Concentrations (/Jg/m J

                        Organic Waste Tank Farm
    1500 h
    1000
    500
I

tr
o
z
                                                       H^^®^^n^;% t'?.-8?l-!
      -1500
      Figure IV-4-22.
                                                  1500
Annual average concentrations (ug/m3) for the organic waste tank farm

(ISC-COMPDEP, vapor pollutant).  Modeling domain out to 1.5 km is

displayed.
    Volume IV

    Appendix IV-4
               IV-4-23
External Review Draft

  Do not cite .or quote

-------

-------
    50000
                  Annual Concentrations (jig/m 3)
                        Open Wastewater Tank
    40000

o
z
    30000 '
    20000-
    ioooa
       0
   -10000
   -20000
   -30000
   -40000
               0.005
                                                                   0.010
                                                            H1.0C

                                                             0.5C

                                                             0.2C

                                                             0.1C

                                                             0.07
                                                            H O.OS

                                                             io.o:

                                                             10.01

                                                             lO.OC

                                                            Jo.oc
   -50000
       -50000 -40000 -30000  -20000  -10000    0    10000  20000  30000  40000  50000
                                       EAST (m)
     Figure IV-4-23.
Annual average concentrations  (ug/m3) for the  open  wastewater tank
(ISC-COMPDEP,  vapor  pollutant). Modeling domain out to 50 km  is
displayed.
   Volume IV
   Appendix IV-4
               IV-4-24
External Review Draft
  Do not cite or quote

-------

-------
                 Annual Concentrations (jug/m  '
                       Open  Wastewater Tank
    1500
    1000
    500
I
rr
o
z
    -500
   -1000
   -1500
      -1500
                                                                       1500
      Figure IV-4-24.
Annual average  concentrations  (ug/m3)  for the open wastewater  tank
(ISC-COMPDEP, vapor pollutant).  Modeling domain out to 1.5 km is
displayed.
     Volume IV
     Appendix IV-4
               IV-4-25
External Review Draft
  Do not cite or quote

-------

-------
    50000
                     Annual Concentrations (Mg/m3)
                           Carbon Adsorption Bed
    40000
    30000
    20000
    10000
X
a:
o
   -10000
   -20000
   -30000
   -4000&
               0.005
                                                             0.020
                                                                f.
                                           0.005
                                                          i 1.000
                                                          0500

                                                          0.200

                                                          0.100

                                                          0.075
                 —10.050
                   l

                  -i 0.020

                   i 0.010


                   i 0.005


                   10.000
   -50000 '	•	•	-	
       -50000 -40000 -30000  -20000  -10000
       Figure IV-4-25.
                   0    10000   20000   30000  40000  50000

               EAST (m)

Annual average concentrations (ng/m3) for the  carbon  adsorption  bed
(ISC-COMPDEP,  vapor pollutant). Modeling domain  out to  50  km is
displayed.
     Volume IV
     Appendix IV-4
               IV-4-26
External Review Draft
  Do not cite or quote

-------

-------
                    Annual Concentrations (/xg/m 3)
                          Carbon Adsorption Bed
    1500
    1000
     500 -j
I
(T
O
    -500-
   -1000
   -1500
      -1500
-1000
-500
500
                                                               1000
                                      EAST(m)
                                                                 1.000

                                                                 0.500

                                                                 0.200

                                                                 0.100

                                                                 0.075

                                                                 0.050
                                                                i
                                                                10.020

                                                                 0.010

                                                                .0.005

                                                                 0.000
                                                         1500
       Figure IV-4-26.
      Annual  average concentrations  (ng/m3) for the  carbon  adsorption bed
      (ISC-COMPDEP, vapor pollutant).  Modeling domain  out to 1.5 km  is
      displayed.
     Volume IV
     Appendix IV-4
                     IV-4-27
                                 External Review Draft
                                  Do not cite or quote

-------

-------
                     Annual Concentrations (fxg/m 3)
                    Ash Handling (Mass Distribution)
    50000
   4000O
   3000CH
    10000-
r
o
z
   -10000
   -20000-
   -3000O
   -40000-
   -soooa-



• ? r

Jj
™fe;


___
1.000
0.500
0.200
0.100
0.075
0.050
0.020
0.010
0.005
0.000
      -50000  -40000 -30000  -20000  -10000    0    10000  20000  30000  40000  50000
                                      EAST (m)
        Figure IV-4-27.      Annual  average  concentrations  (ug/m3)  for  the  ash  handling stack
                        (ISC-COMPDEP, mass-weighted pollutant distribution). Modeling domain out
                        to 50 km is displayed.
      Volume IV
      Appendix IV-4
IV-4-28
External Review Draft
  Do not cite or quote

-------

-------
                   Annual Concentrations (/%/m 3)
                  Ash Handling (Mass Distribution)
   1500
   1000
    500
E,
X
   -500
   -1000-
-1500 —
   -1500
                                                                             20.000
                                                                          HK 10.000
                -1000
      -500
500
1000
1500
                                    EAST (m)
      Figure IV-4-28.
Annual average  concentrations (ug/m3)  for the  ash handling  stack
(ISC-COMPDEP, mass-weighted pollutant distribution). Modeling domain out
to 1.5 km is displayed.
    Volume IV
    Appendix IV-4
               IV-4-29
          External Review Draft
           Do not cite or quote

-------

-------
    50000
    40000
    30000
    20000
    10000
X
h-
   -10000
   -20000
   -30000
   -40000
                      Annual  Wet Deposition (g/m 2)
                    Ash Handling (Mass Distribution)
   -50000
                                                          0.1000

                                                          0.0500

                                                          0.0200

                                                          0.0100

                                                          0.0050

                                                          0.0020

                                                          0.0010
                                                         I
                                                         10.0005

                                                         ^ 0.0002

                                                         10.0001

                                                          0.0000
      -50000  -40000  -30000  -20000 -10000
                      10000  20000  30000   40000  50000
        Figure IV-4-29.
              EAST(m)

Annual  wet  deposition  fluxes  (g/m2)  for  the  ash  handling  stack
(ISC-COMPDEP, mass-weighted pollutant distribution). Modeling domain out
to 50 km is displayed.
      Volume IV
      Appendix IV-4
               IV-4-30
External Review Draft
  Do not cite or quote

-------

-------
   1500
   1000
    500
§

I
o
    -500
   -1000
                    Annual  Wet Deposition (g/m 2 )
                   Ash Handling (Mass Distribution)
   -150O
                                                                0.3000

                                                                0.1000

                                                                0.0500

                                                                0.0200

                                                                0.0100

                                                                0.0050

                                                                0.0020

                                                             —^0.0010
                                                               i
                                                             —j 0.0005
                                                               i
                                                            .(0.0002
                                                            i
                                                                0.0001

                                                                0.0000
      -1500
-1000
-500
500
1000
1500
                                     EAST (m)
       Figure IV-4-30.
       Annual  wet  deposition fluxes (g/m2)  for  the  ash  handling stack
       (ISC-COMPDEP, mass-weighted pollutant distribution). Modeling domain out
       to 1.5 km is displayed.
     Volume IV
     Appendix IV-4
                      IV-4-31
                                 External Review Draft
                                   Do not cite or quote

-------

-------
                      Annual  Dry Deposition  (g/m 2)
                    Ash Handling (Mass Distribution)
    50000
    40000
I
f-
    30000
    20000
    10000
0
   -10000
   -20000
   -30000
   -40000
    cnnnn         	 		 __         _             >
   -OUUUU 1	__ ,	    __.,.      . -
       -50000 -40000 -30000  -20000  -10000    0    10000  20000  30000  40000  50000
                                       EAST (m)

                   0.1000
                   0.
                   OJ
                   o.c
                   0.0050


                   0.0010
                   0.0005
                   0.0002
                   0.0001
                   0.0000
       Figure F/-4-31.
                 Annual  dry  deposition  fluxes  (g/m2) for  the  ash  handling  stack
                 (ISC-COMPDEP, mass-weighted pollutant distribution). Modeling domain out
                 to 50 km is displayed.
     Volume IV
     Appendix IV-4
                                 IV-4-32
External Review Draft
  Do not cite or quote

-------

-------
                    Annual  Dry Deposition (g/m 2)
                   Ash Handling (Mass Distribution)
    1500
    1000-
    5oa
i
o
    -500
   -1000-
   -1500-
      -1500
-1000
-500
500
1000
1500
                                     EAST(m)
      Figure IV-4-32.
      Annual  dry  deposition  fluxes (g/m2)  for  the ash handling  stack
      (ISC-COMPDEP, mass-weigh ted pollutant distribution). Modeling domain out
      to 1.5 km is displayed.
    Volume IV
    Appendix IV-4
                    IV-4-33
                                External Review Draft
                                 Do not cite or quote

-------

-------
                     	                                        x%
                     Total Annual Deposition (g/m   )
                    Ash  Handling (Mass Distribution)
    50000
    40000
    30000
    20000-
    10000-
E,
I
   -10000-
   -20000^
   -30000-
   -40000-
   -50000
                                           0.1000

                                           0.0500

                                           0.0200

                                           0.0100

                                           0.0050

                                           0.0020

                                           0.0010

                                           0.0005

                                        —! 0.0002

                                           0.0001

                                           0.0000
      -50000 -40000  -30000  -20000  -10000    0    10000  20000  30000  40000  50000
                                       EAST (m)

      Figure IV-4-33.      Annual  total deposition fluxes  (g/m2)  for  the  ash  handling  stack
                        (ISC-COMPDEP, mass-weighted pollutant distribution). Modeling domain out
                        to 50 km is displayed.
     Volume IV
     Appendix IV-4
IV-4-34
External Review Draft
  Do not cite or quote

-------

-------
                    Total Annual Deposition (g/m 2)
                   Ash Handling (Mass Distribution)
    1500
    1000
     50&
IE
O
z
    -500
   -1000-
   -150O
      -1500
-1000
-500         0
         EAST(m)
500
1000
1500
       Figure IV-4-34.
       Annual  total  deposition fluxes  (g/m2)  for  the ash  handling  stack
       (ISC-COMPDEP, mass-weighted pollutant distribution). Modeling domain out
       to 1.5 km is displayed.
                                                                               10.3000
                                                                                0.1000
                                                                                0.0500
                                                               0.0200
                                                                                0.0100
                                                                                0.0050
                                                                                0.0020
     Volume IV
     Appendix IV-4
                     IV-4-35
                                 External Review Draft
                                  Do not cite or quote

-------

-------
                      Annual Concentrations ((ig/m 3)
                   Ash Handling (Surface Distribution)
    50000
    40000
    30000
    20000
    10000
I
K
O
z
   -10000-
   -20000
   -300CX>;
               0.005
   .0.020
                                           0.005
                   -1.000
                   I
                   -10.500
                   I
                   -0.200

                    0.100

                    0.075
                   !
                   ^0.050

                   J 0.020

                   -. 0.010

                   i 0.005

                   ! 0.000
   -40000-
   -50000T      T  	-T      -   .  -   .    .  ,.    ,_,...,..,             i
       -50000 -40000 -30000 -20000  -10000    0     10000  20000  30000  40000  50000
       Figure IV-4-35.
               EAST (m)
Annual  average  concentrations  ((Jg/m3)  for the  ash  handling  stack
(ISC-COMPDEP,  surface area-weighted pollutant distribution).  Modeling
domain out to 50 km is displayed.
     Volume IV
     Appendix IV-4
               IV-4-36
External Review Draft
  Do not cite or quote

-------

-------
                     Annual Concentrations Og/m 3)
                  Ash Handling (Surface Distribution)
    1500
    1000
     500
i
o
    -500-
   -1000-
   -150O
      -1500
                                                                                20.000
                  l.^~^^-L--~tt^^K&-i«['SSF3vl$-l
                  $/^:'^^?§r&&3j^*^£?^'4&8tf"
                   '^^•rff'-^v>^^»&S^f^&:^^
-1000
-500
500
                                                              1000
1500
                                     EAST(m)
      Figure IV-4-36.
     Annual  average  concentrations  (ug/m3) for  the  ash handling  stack
     (ISC-COMPDEP, surface area-weighted pollutant distribution).  Modeling
     domain out to 1.5 km is displayed.
    Volume IV
    Appendix IV-4
                    IV-4-37
                                External Review Draft
                                  Do not cite or quote

-------

-------
                      Annual  Wet Deposition (g/m 2)
                   Ash Handling (Surface Distribution)
    50000
    40000
    30000
    20000
    10000
ce
o
   -10000-
   -20000-
   -30000
   -40000
   -50000
                                                         -|0. 1000

                                                         -| 0.0500

                                                          0.0200
                                                          0.0100
                                                                                 0.0050
                                                         J 0.0020
                                                         !
                                                         I0.0010

                                                          0.0005

                                                          0.0002

                                                          0.0001

                                                          0.0000
       -50000 -40000  -30000  -20000  -10000    0     10000  20000  30000  40000   50000
                                       EAST (m)
      Figure IV-4-37.
Annual  wet  deposition  fluxes  (g/m2)  for  the  ash  handling  stack
(ISC-COMPDEP,  surface area-weighted pollutant distribution).  Modeling
domain out to 50 km is displayed.
    Volume IV
    Appendix IV-4
               IV-4-38
External Review Draft
  Do not cite or quote

-------

-------
150&
                Annual Wet Deposition (g/m 2)
              Ash Handling (Surface Distribution)
-1500       -1000
  Figure IV-4-38.
-500         0         500
       NORTH (m)
                                                        1000
                                                 1500
Annual wet deposition  fluxes  (g/m2) for  the ash handling  stack
(ISC-COMPDEP, surface area-weighted pollutant distribution).  Modeling
domain out to 1.5 km is displayed.
Volume IV
Appendix IV-4
              IV-4-39
                                                     External Review Draft
                                                       Do not cite or quote

-------

-------
                      Annual  Dry Deposition (g/m 2)
                   Ash Handling (Surface Distribution)
   50000
   40000
   30000
   20000-
    10000
E
I
H-
CC
o
   -10000
   -20000
   -30000-
   -40000-
                                                                                   0.1000

                                                                                   0.0500
                                                         -: 0.0200
                                                          i
                                                         q 0.0100

                                                          0.0050
                                                       |—10.0020

                                                         -0.0010
                                                                                L.
                                                         -i 0.0005

                                                           0.0002

                                                           0.0001

                                                           0.0000
   -50000
       -50000  -40000 -30000 -20000  -10000    0    10000  20000  30000   40000   50000
                                       EAST(m)
       Figure IV-4-39.
Annual  dry  deposition  fluxes  (g/m2)  for  the  ash  handling  stack
(ISC-COMPDEP, surface area-weighted pollutant distribution).  Modeling
domain out to 50 km is displayed.
     Volume IV
     Appendix FV-4
               IV-4-40
External Review Draft
  Do not cite or quote

-------

-------
                    Annual  Dry Deposition (g/m ")
                  Ash Handling (Surface Distribution)
    1500 ;
    1000
    500
CC
O
    -500
   -1000
   -1500
      -1500
-1000
-500
    0
EAST (m)
500
1000
1500
      Figure IV-4-40.
      Annual  dry deposition  fluxes  (g/m2)  for the  ash  handling  stack
      (ISC-COMPDEP, surface area-weighted pollutant distribution).  Modeling
      domain out to 1.5 km is displayed.
    Volume IV
    Appendix IV-4
                     IV-4-41
                                External Review Draft
                                  Do not cite or quote

-------

-------
                     Total  Annual  Deposition (g/m ~)
                   Ash Handling (Surface  Distribution)
   50000 .
   40000
   30000
   20000
    10000
E
i~
cc
a:
   -10000
   -20000
   -30000
   -40000
   -50000
      -50000  -40000  -30000  -20000  -10000    0     10000  20000  30000  40000  50000
                                       EAST  (m)
                                                         -0.1000

                                                         -^ 0 0500

                                                         -J 0.0200

                                                         -0.0100

                                                         - 0.0050

                                                         - 0.0020

                                                         -^00010

                                                           0.0005

                                                           00002

                                                           0.0001

                                                           0.0000
       Figure IV-4-41.
Annual  total  deposition  fluxes  (g/m2)  for the  ash  handling  stack
(ISC-COMPDEP, surface area-weighted  pollutant  distribution).  Modeling
domain out to 50 km is displayed.
      Volume IV
      Appendix IV-4
               IV-4-42
External Review Draft
  Do not cite or quote

-------

-------
                    	                 	                      •"»
                    Total Annual Deposition (g/m  ")
                  Ash Handling (Surface  Distribution)
    1500
    1000
     500
g
I
o:
o
z
    -500
   -1000
   -1500
      -1500
       Figure IV-4-42.
                                                 1500
Annual  total deposition  fluxes  (g/m2) for  the  ash  handling stack
(ISC-COMPDEP, surface area-weighted  pollutant distribution).  Modeling
domain out to 1.5 km is displayed.
                                                                                  010C
                                                          0.05C
                                                                                 0.02C
                                                         •001C
                                                                                -0.005
                                                                                 0.002
     Volume IV
     Appendix IV-4
               IV-4-43
External Review Draft
  Do not cite or quote

-------

-------
                          An"
       50000 ,
                                               ing (Vapor)
      40000
      30000
     20000 !
                                                                  0.010
-50000 \
    -50000
   Rgure IV-4-43.
                 -30CXX,  .,0000  .
Volume IV
Appendix IV-4
                                  IV-4-44
External Review Draft
 D° not cite or quote

-------

-------
1500
              Hgure IV-4-44-
                                   displayed-
                                                                                   External Review Draft
                                                                                     Do not cite or quote
              Volume W
             • Appendix W-4

-------

-------
                                    APPENDIX IV-5

                Overview of the CALPUFF Non-Steady-State Dispersion Model
Volume IV                                                          External Review Draft
Appendix IV-5                            IV-5-1                       Do not cite or quote

-------

-------
                                                                      For Presentation  at  the  Seventh
                                                                      Joint  AMS-AWMA Conference  on
                                                                      Application of Air Pollution
                                                                      Meteorology,  New  Orleans,  LA
                                                                      January  13-17, 1991.

                       DEVELOPMENT OF THE CALPUFF NON-STEADY-STATE MODELING SYSTEM

                                            Joseph S. Selre
                                          David G. StrlMltls
                                           Robert J.  Yamartlno

                                       Sigma Research Corporation
                            234  Littleton Road. Suite 2E. Uestford.  MA  01886
  1.
        INTRODUCTION
        Due to Increased concerns over the effects
 of toxic pollutants,  the California Air Resources
 Board (ARB)  has sponsored the development of a
 generalized  non-steady-state Modeling system for
 toxic air pollutants.   The Model was Intended for
 application  to Individual sources or entire air
 basins.   The design criteria of the Modeling
 system specified the following capabilities:  (1)
 •odellng of  relevant processes on scales fro* tens
 of meters to hundreds of kilometers.  (2)
 applicability to rough or complex terrain
 situations,  (3)  predictions for averaging times
 from  one hour to one year,  (4)  point and area
 source capabilities,  and (S) applicability to
 Inert pollutants or those subject to-linear
 conversion mechanisms.

        In order  to  meet these objectives,  a
 modeling system  was designed which consists of
 three basic  components:  a meteorological modeling
 package  with both diagnostic and prognostic wind
 field generators, a Gaussian puff dispersion model
 containing algorithms  for building downwash.
 subgrld  scale complex  terrain,  overwater transport
 and coastal  interaction effects,  chemical
 transformation,  wet removal,  and dry  deposition.
 and postprocessing  programs  for the manipulation,
 time-averaging,  and display  of  the meteorological
 data,   concentrations,  and deposition  fluxes
 produced  by  the  models.


       The CALPUFF  modeling  system consists of a
 total  of  twelve models and processor  programs.   In
 this abstract, an overview of the  modeling system
 is presented with a brief description of the major
components of  the dispersion model, CALPUFF.  The
meteorological and  postprocessing  components of
 the modeling system are also compatible with a new
photochemical  model. CALGRID. developed for ARB
under a separate contract  (YaMrtlno  et al.,  1989:
Sclre et al..  1989).
 2.
METEOROLOGICAL MODELING
       The Meteorological component of the
modeling system consists of several meteorological
data preprocessing programs, a diagnostic wind
field and boundary layer Model (CALMET). and a
version of the Colorado State University Mesoscale
Meteorological Model (CSUHM).

       The meteorological preprocessors extract
and process surface meteorological data, upper air
observations and precipitation data in the
standard formats available from  the National
Climatic Data Center (NCDC)  (I.e.. CD144 for
surface data. TD-5600 or TD-6201 for upper air
data, and TD-3240 formats for precipitation data).
The programs perform selected quality
assurance/missing value checks and prepare  the
data Inputs for the meteorological models.  These
programs allow large periods of routinely
available data to be used by the modeling system.
Alternative data formats, more convenient for short
simulations or for use with specialized data sets.
are also allowed.

       The diagnostic wind field module of  CALMET
was developed by Douglas and Kessler (1988).  It
computes three-dimensional gridded fields of
horizontal and vertical wind components. _ The
model contains parameterization* of slope flow
effects, kinematic terrain Influences,  terrain
blocking effects, three-dimensional divergence
minimization, and an objective analysis scheme  for
including observational data in the generation  of
the wind fields.


       The diagnostic model uses a two-step
approach in developing the wind fields.  In the
first step, a domain-mean wind field is adjusted
to account for the effects of terrain and  is
subjected to a divergence minimization procedure
to produce a diagnostic Step 1 wind field.   As  an
alternative. CALMET provides the option to  use  an
externally generated gridded wind field (e.g..  as
produced by a prognostic wind field model)  as a
replacement for  the diagnostic Step 1 winds.  The
replacement gridded field need not use the  same
grid resolution  as the CALMET simulation.   The
Step 2 procedure involves the introduction of
observations into the Step 1 wind field (either
diagnostic or prognostic) through an objective
analysis procedure followed by smoothing,  and
re-mlnlmlzatlon  of divergence.  Observational data
are weighted heavily by  the objective analysis
scheme  in data rich areas of the modeling domain.
In data sparse areas, the final wind field  Is
determined primarily by  the Step 1 wind field.

       The option to use the prognostic wind field
as the Step  1 winds provides a mechanism for
Introducing some of the  features of the prognostic
model simulations, such  as a lake or sea breeze
circulation with the return flow aloft, without
the need for expensive fine grid execution of  the
prognostic Model.  In addition. It provides a
simple  method for adjusting the prognostic wind
field predictions to reflect observations.

        CALMET also contains boundary layer modules
which compute surface heat and momentum fluxes
over land and water surfaces.  The overland
boundary  layer module Is based on the energy
balance method of Holtslag and van Ulden (1983).
The aerodynamic  and thermal properties of water

-------
surfaces require that different methods be used In
the narine environment.  Over water, a profile
method, using air-sea temperature differences. Is
used to compute the micrometeorologlcal parameters
In the marine boundary layer.  A detailed
description of CALMET Is provided in Sclre et al.
(1990).


       The prognostic wind field nodel  Included  In
the CALPUFF modeling system  is the  version of the
CSUHH  model most recently modified  by Kessler
(1989).  CSUHH  Is a three-dimensional,  hydro-
static. Incompressible primitive equation model
originally developed by Pielke (1974).  CSUMM can
simulate mesoscale wind flow patterns with
horizontal scales of 10 to 300 km generated by
differential surface heating such as sea breeze
circulations as well as terrain influences such  as
slope  flows and terrain blocking effects (Kessler,
1989).  The Model contains paraneterlzatlons for
the atmospheric surface layer, planetary boundary
layer, and a soil layer.
 3.
CALPUFF DISPERSION MODEL
       CALPUFF  is a multi-layer, multi-species
non-steady-state puff dispersion model which can
simulate the effects of  time- and space-varying
meteorological  conditions on pollutant transport,
chemical transformation, and plume depletion.
CALPUFF contains algorithms for near-source
effects such as building downwash, transitional
plume rise, subgrld scale terrain Interactions as
well as processes Important on larger scales such
as pollutant removal  (wet scavenging and dry
deposition), chemical transformation, overwater
transport and coastal Interaction effects.  It can
accomnodate arbitrarily-varying emissions  from
point sources and grldded or discrete area
sources.  Most  of the algorithms contain options
to treat the physical processes at different
levels of detail depending on the model
application.  Sclre et al. (1990) contains a
complete description of  the formulation, options
and data requirements of CALPUFF.

 3.1   CALPUFF  Sampling  Functions

       Puff models represent a continuous  plume as
a number of discrete packets of pollutant  material
which can be Independently subjected to advectlon,
dispersion, transformation, and depletion.  Many
puff models evaluate the contribution of a puff to
the concentration at a receptor by a snapshot
approach.  Each puff is  frozen at particular time
Intervals (sampling steps) and the concentration
due to the frozen puff is computed (or sampled).
The puff is then allowed to move, evolving In
size,  strength, etc., until the next sampling
step.   The total concentration at a receptor Is
the sum of the  contributions of all nearby puffs
averaged over all sampling steps within the basic
time step.


       A traditional drawback of the puff  approach
has been the need for the release of many  puffs to
adequately represent a continuous plume close  to a
source.  Ludwig et al. (1977) have shown that  if
the distance between adjacent puffs exceeds about
2 
-------
 are constrained  to regain connected, which ensures
 continuity of a  simulated plume without  the gaps
 or duplicate overlap which can occur with
 segmented plume  Models.  The factor  (u/u') allows
 low wind speed and calm conditions to be properly
 treated.

        To Illustrate the slug sampling function.
 the Isopletha of the Instantaneous concentrations
 of a slug at two tines are plotted In Figure  1.
 The distribution at the left represents  the slug
 at the beginning of a time step, whereas the
 distribution on  the right Is at the end  of the
 tine step.   The  slug sampling function Integrates
 the concentrations over the time step to produce
 the tine averaged concentration shown In Figure 2,
 which Is smooth and free of spurious gaps or
 peaks.
 3.1.2  Integrated  Puff Sampling Function

        As a  slug grows,  the Initial  along-wlnd
stretching of  the  slug becomes less  Important.
Eventually,  when *  » u AT,  the slug can be

replaced with  a circular puff.   For  puffs,  CALPUFF
employs the  Integrated sampling function used In
the MESOPUFF II model  (Sclre  et ml.,  1984):
                      Current Wind Direction
         s  * As
          o
             q(s)
                    g(s)  exp
ds  (3)
Fig. 1.  Illustration of the transport and growth
of a slug after a 90* shift In wind direction.
Shown are the Instantaneous concentration
isopleths of the slug at the beginning and ending
of a time step.  The slug on the left represents
the distribution of time. t.  The slug on the
right is the distribution at time t + At.  During
the time step, the slug experienced advection.
diffusion, and some along-slug stretching due  to
wind shear.
where Q  is  the pollutant mass  in  the puff.  R is
the distance from  the puff center to the receptor,  s
is the distance  traveled by  the puff,  s  is the value
                                        o
of s at  the beginning of the time step,  and As Is the
distance traveled^ during the time step.

       If it Is  assumed that the  most significant s
dependencies during  the sampling  step are in the R(s)
and Q(s) terms,  an analytic  solution to the Integral
can be obtained  In terms of  exponentials and error
functions.  In evaluating Eqn. (3),  the horizontal
dispersion  coefficient, v ,  and the  vertical term,  g,

are evaluated at the receptor  and held constant over
the sampling step.

       Results of  tests with the  integrated puff
sampling function  show the ability to reproduce
continuous  plume results under steady-state
conditions  without gaps or peaks  in  the distribution.
Because the integrated puff  equations can be solved
analytically. Its  solution tends  to  be more efficient
than numerical integration of  the slug equations.
However,  the slug  sampling can be more efficient in
handling complex situations  such  as  advection of a
plume segment perpendicular  its long axis (e.g..  as
produced by a 90  wind shift from one hour to the
next — see Fig. 1 and 2).   Therefore,  CALPUFF
contains the option  to perform slug  sampling In the
near-field  of a  source, with an Internal transition
to the Integrated  puff approach as the puff size
grows into  a more  circular shape.
                      Current Wind Direction
                Fig.  2.   Time averaged concentration resulting
                from the transport and evolution of the slug
                depicted in Figure 1.

-------
  3.2   Dispersion Coefficients

        CALPUFF contains several  options for computing
 the  dispersion coefficients,  o-  and «r .  Involving
 different  levels of  data lnputy       z

   (1)  Use of  direct Measurements  of the turbulence
 parameters v  and f  .
    (2}  Internal computation of o-  and f  using

similarity  theory  (Well.  1985; Brlggs. 1985)  and  the
the grldded mlcrometeorologlcal variables computed  by
the CALMET model (surface friction velocity,
Monln-Obukhov length, convective velocity scale)

   (3) Use of Pasquill-Glfford (PC) coefficients
In rural grid cells and McElroy-Pooler (HP)
coefficients In urban grid cells

     The general forms of »y and 
-------
   3. 4    Overwater and Coastal  Dispersion

         There are Important  differences In the
  structure  of the Marine and continental boundary
  layers  which can have significant effects on pluMe
  dispersion.   The sensible heat  flux over water Is
  typically  More  than an order  of Magnitude less
  than over  land.   The absence  of a strong sensible
  heat flux  to drive  the Marine Mixed-layer and the
  SMall surface roughness of  the  water surface
  result  In  relatively low Mixing heights that offer
  potential  for significant pluMe trapping effects.

         Another  difference Is  that diurnal and annual
  variations of stability over  water are completely
  unrelated  to the typical overland behavior.   For
  example, temperature Inversions persisting Most  of
  the day can  occur during the  suMMer,  while unstable
  conditions May  persist all  day  In the winter Months.
  During  other periods,  the overwater diurnal  stability
  cycle can  be out of  phase with  the overland  cycle
  (I.e.,  stable over water during the day and  unstable
  at night).   The CALMET Meteorological Model  contains
  separate boundary layer Modules for computing
  stability  and turbulence levels In the overland  and
  overwater  boundary layers.

       CALPUFT allows rapid  changes In the
dispersion  characteristics along the coastal
boundary.   The land-sea Interface is resolved on
the scale of  the computational grid in the Model.
CALMET provides  the  turbulence and dispersion
characteristics  of the overwater as well as
overland boundary layers.  The transition from
marine to continental dispersion rates is assumed
to occur at the  coastal boundary determined from  a
grldded  field of land use data entered Into the
model.    Once  a puff embedded In  a Marine layer
encounters  the overland boundary layer height,  the
puff growth is changed from  that appropriate  for
the marine  layer 'to  that for the overland boundary
layer.

  3. 5   Dry  Deposition

       CALPUFF provides three  options for treating
dry deposition of gases and  partlculate Matter in
the Model.

   (1)   Full  treatment of spatially and temporally
varying  gas/particle  deposition  rates predicted by a
detailed resistance-based deposition Model.

   (2)  User-specified 24-hour cycles of deposition
velocities  for each pollutant.    This option allows
the diurnal time variation of  deposition to be
incorporated,   but does not allow any spatial
dependencies.

   (3)  No dry deposition.  A switch Is provided to
bypass all dry deposition and  dry flux calculations
in order to provide for faster Model execution for
screening runs or for pollutants not experiencing
significant deposition.

 3.6   Wet Removal

       Wet scavenging of  soluble or reactive
pollutants can lead to high  depletion rates (  of
the order of  tens  of  percent per hour)  during
precipitation events  (e.g..  Barrle.  1981;  SIinn et
al.,  1978).    Gaseous  pollutants  are scavenged by
dissolution into cloud droplets  and precipitation.
 For SO-,  aqueous phase oxidation can be an
 Important removal pathway.   Over source-receptor
 distances of tens of kilometers,  wet scavenging
 can deplete a significant fraction of the
 pollutant Material from a puff.
       CALPUFF uses  the simple, empirically-based
scavenging coefficient approach to estimate wet
deposition and wet removal effects.  The depletion of
a pollutant Is represented as:
   *t+At " *t exp  -
                                         (6)


                                         (7)
where x is the concentration at time t and t+At. A  is
the scavenging ratio. X  is the scavenging
coefficient. R Is  the precipitation rate, and R  is a

reference precipitation  rate of 1 mm/hr.  The user  may
specify different  values X as a function of
precipitation type (i.e, liquid vs. frozen
precipitation) for each  pollutant.  The precipitation
rate used to compute depletion for a particular puff
Is based on the value at the nearest grid point to
the puff.  CALMET  produces grldded fields of
precipitation rates using routinely-available
observations of hourly precipitation rates.

 3.7   Chemical Transformation

       One of the  design criteria of the CALPUFF
Model required the capability to Model linear
chemical transformation  effects in a Manner
consistent with the puff formulation of the Model.
The CALPUFF cheaical Module contains three options
for dealing with chemical processes:

   (DA pseudo-first order reaction mechanism for
the conversion of  SO, to sulfate and NO  (NO * NO,)
                    •*                  X         Z
to HMO. and partlculate  nitrate.  This MechanisM

allows for up to five pollutants (S02> SOj. N0x>
HN0
   3.
and NO*). .
                 It is based on the transformation
scheme used In the MESOPUFF II Model and
incorporates the Most significant spatially and
temporally varying environmental variables on the
transformation rates.

   (2) User-specified 24-hour cycles of trans-
formation rates.   This option allows siMulatlon
of the diurnal, time-dependent variation In the
chemical transformation rates, but precludes any
spatial variability.

   (3) No chemical transformation.  The Model will
bypass the cheaical transformation calculations if
inert pollutants are being Modeled.
  4.
 POSTPROCESSING CAPABILITIES
        The CALPUFF Modeling systea contains two
 postprocessing programs,  PRTMET and POSTPRO.   The
 PRTMET program reads the Meteorological data file
 produced by the CALMET Model and displays
 user-selected portions of the various wind.
 stability,  mlcrometeorologlcal fields,  and
 geophysical fields in the file.   The POSTPRO
 program computes time averaged concentrations and
 wet/dry deposition fluxes at grldded and discrete
 receptors,  lists peak concentrations, and performs
 linear scaling operations.

-------
Acknowledgement:  The  development of the CALPUFF
•odellng  system was  sponsored by the California Air
Resources Board under  contract AS-194-74.   Systems
Applications,  Inc. served  as  a subcontractor In the
project and developed  the  wind field components of
the Modeling  system.

REFERENCES

Barrle, L. A..  1981:  The prediction of rain
   acidity and SO. scavenging in eastern North
   America.   Ataos.  Environ., 15, 31-41.

Briggs, G.A..  1985:  Analytical parameterlzatlons
   of  diffusion:  The  convectlve boundary layer.
   J.  dim.  and Appl.  Meteor.. 24, 1167-1186.

Douglas,  S.  and R. Kessler,  1988:  User's guide to
   the diagnostic wind model.  California Air
   Resources  Board,  Sacramento,  CA.

Hanna, S.R..  G.A. Briggs.  J.  Deardorff,  B.A. Egan.
   F.A. Glfford and  F.  Pasqulll.  1977:   AHS
   workshop  on stability classification schemes
   and sigma  curves  -  Summary of recommendations.
   Bull.  AMI.  Meteor. Soc.,  58, 1305-1309.

Heffter,  J.L.. 1965:   The  variations of horizontal
   diffusion  parameters with  time for travel
   periods of one hour or  longer.  J. Appl.
   Meteor.. 4. 153-156.

Holtslag,  A.A.M.  and A.P.  van Ulden,  1983:   A
   simple scheme  for daytime  estimates of the
   surface fluxes from routine weather data.
   J.  Cllm. and Appl.  Meteor., 22, 517-529.

Irwin. J.S.,  1983:   Estimating plume dispersion -
   A comparison of several slgma schemes.
   J.  Clim. and Appl.  Meteor., 22, 92-114.

Kessler,  R.C.. 1989:   User's  guide to the SAI
   version of the Colorado State University
   Mesoscale  Model.  California Air Resources
   Board,  Sacramento,  CA.

Ludwlg, F.L.,  L.S. Gaslorek and R.E.  Ruff,  1977:
   Simplification of a Gaussian puff model for
   real-time  minicomputer  use.  Atmos.  Environ.,
   11. 431-436.

Pasquill,  F.,  1976:  Atmospheric dispersion
   parameters In  Gaussian  plume modeling:   Part
   II.  Possible  requirements for change in the
   Turner workbook values.  EPA-600/4-76-003b.
   U.S. Environmental  Protection Agency, Research
   Triangle Park, NC.

Pielke. R.A.,  1974:  A three  dimensional numerical
   model  of the sea  breezes over surface Florida.
   Won. Vea.  Rev., 102,  115-139.
Sclre. J.S.. E.  Insley and R.J. Yamartlno.  1990:
   Model formulation and user's guide for  the
   CALMET meteorological model.  Prepared  for  the
   California Air Resources Board.  Sigma  Researcl
   Corporation, Westford. MA.

Scire, J.S.. D.G. Strlmaltls and R.J. Yamartlno.
   1990:  Model formulation and user's guide for
   the CALPUFF dispersion model.  Prepared for thi
   California Air Resources Board.  Sigma  Researcl
   Corporation, Westford. MA.

Sllnn. W.G.N.. L. Basse, B.B. Hicks. A.W.  Hogan,
   D. Lai. P.S. Llss. K.O. Munnlch. G.A. Sehmel
   and 0. Vlttori, 1978:  Some aspects of  the
   transfer of atmospheric trace constituents  pas
   the air-sea Interface.  Atmos. Environ., 12,
   2055-2087.

Well. J.C., 1985:  Updating applied diffusion
   models.  J. Cllm. Appl. Meteor., 24,  1111-1130

Yamartlno, R.J.. J.S. Sclre, S.R. Hanna. G.R.
   Carmlchael and Y.S. Chang, 1989:  CALGRID:   A
   mesoscale photochemical grid model.   Volume I:
   Model formulation document.  California Air
   Resources Board, Sacramento, CA.
Sclre. J.S.. F.V. Lurmann.  A.  Bass  and S.R.  Hanna.
   1984:  User's guide  to  the  MESOPUFF II  model
   and related processor programs.
   EPA-600/8-84-013.  U.S.  Environmental
   Protection Agency. Research Triangle Park,  NC.

Sclre. J.S., R.J. Yamartlno. G.R. Carmlchael and
   Y.S. Chang. 1989:  CALGRID:  A mesoscale
   photochemical/grid model.   Volume  II:   User's
   guide.  California Air  Resources Board,
   Sacramento, CA.

-------
                                    APPENDIX IV-6
                       Wind Tunnel Study of Terrain Downwash Effects
Volume IV                                                           External Review Draft
Appendix IV-6                           IV-6-1                       Do not cite or quote

-------

-------
                                                            WTIEXEC.WP6
 Wind-Tunnel Simulation to Assess Terrain Downwash Effects
  at the WTI Hazardous Waste Incinerator:  Project Summary
                         William H. Snyder1"
                     Chief, Fluid Modeling Branch
                Atmospheric Sciences Modeling Division
             National Oceanic and Atmospheric Administration
                   Research Triangle Park, NC 27711
                                and
                         Roger S. Thompson
                              Engineer
            Atmospheric Characterization and Modeling Division
                 U.S. Environmental Protection Agency
                   Research Triangle Park, NC 27711

                           December 1994
        assignment to the Atmospheric Research and Exposure Assessment
            Laboratory, U.S. Environmental Protection Agency.
                    FOR INTERNAL USE ONLY
                                                         External Review Draft
Volume IV                                                    Do not cite or quote
Appendix FV-6

-------

-------
  1.    INTRODUCTION

         A  peer-review workshop  organized  by EPA's Risk Assessment Forum  was held  in
  Washington, DC on December 8 and 9, 1993, for the purpose of evaluating a draft project plan
  prepared by EPA Region 5 for assessing risk at an incinerator operated by Waste Technologies
  Industries (WTI) in East Liverpool, Ohio.  One of the concerns of the peer-review panel was
  expressed: "terrain-induced downwash is expected to be a serious problem at the WTI site (at least
  for moderate- and high-wind cases)", and "none of the EPA Guideline dispersion models is able to
  simulate these effects". This panel recommended that "a wind-tunnel study... be undertaken for this
  purpose in the case of the WTI risk assessment."  It further cited "additional benefits of such
  modeling are the quantification of the near- and mid-field three-dimensional wind flow within and
  downwind of the river valley and the quantification of the combined effects of terrain and buildings
  on the near-field dispersion."  As a result of these recommendations, EPA Region 5 and the Office
  of Solid Waste and Emergency Response requested that the Fluid Modeling Facility conduct  such a
  wind-tunnel study. This report summarizes that wind-tunnel study — conducted to examine possible
  terrain-downwash effects and to  assess the resulting values  and  patterns of  ground-level
  concentration.

         We took  as our primary charge the recommendation of the peer-review panel, that is, to
  conduct a wind-tunnel study to examine terrain effects at the WTI site under moderate and high-wind
  conditions. With regard to the additional benefits, we did make measurements to quantify the wind
  field within the river valley, but we did not perform a full assessment of building-dovmvtash effects.
  Proper wind-tunnel modeling procedures,  even in a relatively large tunnel,  require that terrain-
  downwash and building-dovmwzsh studies be conducted at quite different scales.

         A model of the terrain was constructed at a scale ratio of 1:480, representing  a full-scale
  section approximately 1 mile wide and 3 miles long. The wind direction chosen was that expected
  to produce the most severe terrain-downwash effects, i.e., with the most prominent hill directly
  upwind of the stack. This model, centered on the incinerator stack, was placed in the meteorological
  wind tunnel, with a simulated atmospheric boundary layer approaching it.  The flow  structure of the
  approaching boundary layer and that within the valley was measured with hot-wire and pulsed-wire
  anemometry.

         Methane was metered from the model stack as a  tracer to simulate the buoyant effluent, and
  flame ionization detectors were used to measure time-averaged concentrations, primarily ground-level
  values, downwind. Three stack heights were examined, including the existing stack height of 45.7m,
  the calculated "good-engineering-practice" (GEP) stack height of 72.7m, and an arbitrarily chosen
  "tall" stack height of 120m. (This tall stack was approximately 80% of the valley depth.) At each
  stack height, ground-level concentration (glc) patterns were measured over a range of wind speeds
  to ascertain the maximum possible glc's.  The model was then turned around by 180°  and a similar
  set of measurements was performed.  Finally, we replaced the terrain model by a flat-terrain model
  with equivalent surface roughness in order that terrain effects could be determined with reference to
  those in flat terrain.
Volume IV
Appendix IV-6                                                                External Review Draft
                                                                           Do not cite or quote

-------
       A companion data report provides a full description of the experimental details and compiles
the data collected.  A five-minute videotape provides an overview of the project.
2.   DESIGN DETAILS

       The WTI Site and Climatology

       The WTI hazardous waste incinerator is located adjacent to the Ohio River in East Liverpool,
Ohio.   It is across-river from West Virginia and down-river  (by 1V£ miles  or 2,5km) from
Pennsylvania.  A topographical map of the site is shown in Figure 1.  The area  in the immediate
vicinity of the facility is mixed residential and commercial with light industrial activity. The terrain
is quite rugged, and in the immediate vicinity of the site, the south bank of the river rises quite steeply
to 520ft (155m) above the river level.

       Meteorological data are collected by WTI at three sites on or near the facility grounds. Wind
roses from these sites clearly show  strong channeling by the river valley, and are clearly not
representative of the transport conditions in the terrain above and adjacent to the WTI site.
Fortunately, more appropriate wind data were available from a 500ft (152m) meteorological tower
at the Beaver Valley Power Station (BVPS), which is located near Shippingport, PA, about 8 miles
east of the WTI site. The terrain surrounding this site is very  similar to that at the WTI site, with
comparable hill heights, valley depth,  and river orientation.  The 500-ft level of the tower, 1235ft
(376m) above sea level, is at or above the terrain surrounding the river valley. Measurements from
the 500-ft level  at this tower are mostly free of channeling effects and were used to represent
transport conditions above and adjacent to the Ohio River Valley at East Liverpool.

       Since our primary goal was to examine terrain-downwash effects, we chose the wind direction
(125°) that put the most prominent hill upwind of the stack.  Fortuitously, this direction resulted in
the most prominent hill in the opposite direction being directly downwind from the stack. We rotated
the model by 180° and thereby also studied terrain-downwash effects at a wind direction of 305°.
Because model construction to enable simulations at  other wind directions would have required
substantial additional effort and because we believed other wind directions would result in less severe
downwash effects, only the 125° and 305° simulations were conducted. In future discussions, these
wind directions will frequently be referred to as SE (from 125°) and NW (from 305°) winds.

       Analysis of the wind speeds in 20° sectors surrounding 125° and 305° at the BVPS (5-year
record) suggested that SE winds occur a total of 4% of the time, with speeds between 9 and lOm/s
being quite rare (0.01% of the time). NW winds were observed 6.4% of the time, with speeds
between 12 and 15m/s being observed 0.03% of the time.  Of these two sets of directionally specific
winds, the 98th percentile values were 8m/s for SE wind and lOm/s for NW winds.

       Similarity Criteria

       Because of the large scale reduction required to  fit the terrain model into the wind tunnel as
well as the requirement to simulate the buoyancy of the exhaust gas from the WTI stack, some
compromises had to be made in order to insure a realistic simulation. We chose to exaggerate the
stack diameter and the density difference between the exhaust gas and ambient air  in such a manner
                                                                           External Review Draft
  Volume IV                                                                    _
                                                                             Do not ate or quote
  Appendix IV-6

-------
 as to match momentum and buoyancy length scales of the exhaust; this assures that the full-scale
 trajectory of the plume will be matched in the wind-tunnel model. This "distorted scaling" is a
 compromise that allowed us to proceed with a realistic simulation, but it is not without sacrifice.  The
 stack diameter was doubled, so that the plume width at the stack exit was also doubled, and the
 requirement of geometric similarity was clearly violated close to the stack. Thus, we cannot expect
 to match the concentration pattern in the near field but, beyond a few tens of stack diameters, where
 ambient turbulence dominates the dispersion process, we may expect a reasonable simulation of the
 concentration fields.

         As will be shown later, building influences were clearly observed with the existing stack at
 the higher wind speeds, but we do not claim to have done a full and proper simulation of building-
 downwash effects; those results should perhaps be viewed as qualitatively but not quantitatively
 correct. A proper simulation of building-downwash effects would have been  conducted at a much
 larger scale, perhaps in the neighborhood of 1:100. At the scale of the present study, 1:480, building
 influences cannot be expected to be simulated correctly.  Therefore, concentration measurements at
 distances less than about lOH^, (250m) from the stack should not be considered as truly representative
 of those that would occur under building downwash conditions.

        A simulated neutral (high wind speed) atmospheric boundary layer was generated using spires
 at the entrance to the test section and roughness on the floor of the tunnel. The boundary-layer depth
 was scaled down from  the full-scale value (600m) using the geometrical scale ratio of 1:480.  The
 wind profile approaching the model terrain was chosen to match  that typical over forested terrain,
 and sufficient upwind terrain was included in the model to properly shape the approach-flow profile.

        Research Plan

        As mentioned above, our primary goal was to simulate worst-case terrain-downwash effects.
 First, we chose the area to  be modeled such that the largest and most prominent hill was directly
 upstream of the stack.  It was not known a priori what wind speed would produce the maximum
 ground-level concentration.  At low wind speed the buoyancy and momentum of the exhaust will
 carry the plume to high elevations, so that the location of the maximum glc will be far downwind and
 its value will be relatively small.  At some intermediate wind speed, the plume will be strongly bent
 over so that effluent will diffuse to ground level a short distance downwind, with a higher maximum
 glc. At even larger wind speeds, the plume cannot be bent over much farther, thus the wind stretches
 the plume farther and farther, with greater dilution at the source and a smaller maximum glc. Hence,
 a critical wind speed exists at which the glc is an absolute maximum. The worst terrain-downwash
 effects will occur at the critical wind speed, which may vary with  stack height and wind direction.

        Because the critical wind speeds were not known a priori, each model simulation was done
 over a range of wind speeds in an attempt to ascertain the critical value.  The overall plan, then, was
 to run the simulations with the terrain model at the two wind directions of 125° and 305°. At each
 of these wind directions, we measured glc patterns for each of the 3 stack heights. For each stack
 height, we made measurements over a range of wind speeds in an attempt to ascertain the critical
 wind speed and, hence, the maximum terrain-downwash effect. We then removed the terrain model
 from  the wind tunnel and replaced it with flat terrain with equivalent roughness characteristics.
 Measurements were again made of the glc patterns resulting from the same three stacks and over

                                             3                             External Review Draft
Volume IV                                                                     Do not cite or quote
Appendix FV-6

-------
ranges of wind speeds to ascertain the critical values. The purpose of these latter measurements was,
of course, to establish a flat-terrain basis with which the complex-terrain measurements could be
compared — so that effects of the surrounding terrain could be isolated and quantified.

       Various supplemental measurements were made to verify the adequacy of our simulation and
to aid in understanding of the transport and dispersion processes.  These included:

       (1) Hot-wire anemometry measurements to characterize the flow structure of the boundary
       layer in terms of mean velocity and turbulence intensities,
       (2)  Pulsed-wire anemometry measurements to characterize the three-dimensional, highly
       turbulent and recirculating flow within the Ohio River valley.
       (3) Vertical profiles of concentration at various downwind distances in both flat and complex
       terrain and at various wind speeds to characterize the plume rise and structure, and
       (4) Concentration measurements from a "point source" in our flat-terrain boundary layer to
       show that the  dispersion properties  match those of a comparable  full-scale atmospheric
       boundary layer.
3.    APPARATUS AND INSTRUMENTATION

       Wind Tunnel and Model Construction

       Figure 2 provides a schematic diagram of the wind-tunnel setup. Because of the large height
of the model, blockage of the test section was too large; we therefore modified the wind tunnel by
lowering a large section of the floor by 7in (18cm) to accommodate the river valley. Even so, ramps
were necessary to provide smooth transitions from the flat wind-tunnel floor to the terrain at the
upwind edge of the model.

       A simulated atmospheric boundary layer was generated using  a  system of "spires" and
roughness on the floor downwind.  For the terrain models, the block roughness covered the tunnel
floor from the spires to the edge of the terrain model. For the flat-terrain model, the block roughness
covered the entire floor of the test section of the tunnel. This roughness was intended to match the
roughness of the full-scale terrain, which is densely forested over a large majority of the model area.

       A terraced model was constructed from Y* in plywood sheets, with each thickness of plywood
corresponding to a 20ft elevation interval of the U.S. Geological Survey (USGS) topographic maps.
The overall size of the model in the tunnel was 12 * 38ft, corresponding to 1.1 * 3.5mi at full scale.
A photograph of the model installed in the tunnel is provided in Figure 3. Note that the terrain steps
were not smoothed, but were purposely left terraced.  These steps plus  the house/building blocks
distributed over the model surface, provided an adequate simulation of the full-scale roughness.

       A site map of the WTI facility was also enlarged appropriately and  cemented onto the terrain
model. Major structures on the facility grounds were reproduced to scale.  Dimensions of other
major buildings in the vicinity of the site were estimated  from aerial photographs. A group of six
prominent buildings nearest the stack was removed for some measurements with  northwest winds to
examine possible building-downwash effects. This same group of buildings was  included in the flat-

                                                                           Extemal Review Draft
 VolumeIV                                   4                                Do not cite or quote
 Appendix IV-6

-------
 terrain model (and also removed for examination of building-downwash effects).

       Velocity and Concentration Measurements

       A hot-wire anemometer was used to measure the mean wind and turbulence intensities at
 various positions over the model terrain as well as over the flat terrain. These were supplemented
 with pulsed-wire measurements within the highly turbulent, reversing flows within the river valley.

       High purity methane was emitted from the model stack.  It served as a tracer so that
 concentration fields downwind could be measured with flame ionization detectors; its low density
 permitted the simulation of the buoyancy of the full-scale exhaust.  The prescribed stack/effluent
 conditions for the WIT incinerator were an effluent speed of 15.8m/s, temperature of 361°K, and
 stack diameter of 1.83m  Concentration measurements were made by drawing samples through sets
 of small brass tubes comprising sampling rakes.

       The results are presented in terms of normalized full-scale units, C/Qf (^usec/m3), where Cf
 is the full-scale concentration of the contaminant (^g/m3) and Qf is the emission rate (g/sec) of the
 contaminant.  Full-scale concentrations are thus easily obtained by multiplying our value of C/Qf by
 the full-scale emission rate of the contaminant, Qf.


 4.   PRESENTATION AND DISCUSSION OF RESULTS

       Velocity Measurements and Atmospheric Dispersion Comparability Tests

       The hot-wire anemometry  measurements showed that the flow structure of the flat-terrain
 boundary layer was representative of an atmospheric boundary layer over rough terrain; it could be
 characterized in the surface layer by a logarithmic velocity profile with a roughness length of 0.6m
 (full scale) or over the full depth by a power-law profile with an exponent of 0.21.

       Measurements over the terrain showed quite strong reductions of wind speed induced by the
 hills upwind of the river valley. Thus, the plumes released within the valley are quite effectively
 shielded by the upwind terrain and thus may tend to rise to greater heights within the valley.  This
 effect had rather unexpected consequences on the concentration fields to  be observed.

       Pulsed-wire measurements were made of the wind velocity components in the centerplane of
 the valley for the 125° wind direction.  These were used  to construct the flow vectors  shown in
 Figure 4.  The three-dimensional nature of the flow is clearly seen near the upstream valley wall,
 where the vectors indicate that the flow is directly along the valley axis and up the slope. Note also
 that there is a significant downward component of the flow as it approaches  the location of the stack.

       Observation of these features of the flow within the valley were also made using smoke
visualization. When the smoke source was placed at low levels near the upwind edge of the valley,
a small region of recirculating flow was observed that was quite consistent with the vector field of
Figure 4.  The smoke would follow helical trajectories along the valley axis as it moved to the
 southwest (positive y direction) until it dispersed and was swept downwind.

 Volume IV                                   5                             Extend  Review Draft
 Appendix IV-6                                                                 Do not cite or quote

-------
       As a demonstration of how well dispersion in the atmospheric boundary layer is simulated in
the wind-tunnel,  concentration measurements were made downwind  of a non-buoyant, low-
momentum release from a point source.   These  measurements  showed that the dispersion
characteristics of the flat-terrain boundary layer were representative of a neutral atmospheric flow
over a surface with a roughness length of approximately 60cm.

       Concentration Measurements

       The concentration measurements were conducted in three phases. The process proceeded
as follows. First, the model was installed at a wind direction of 125° (SE).  The existing stack was
installed, the wind  speed corresponding to the full-scale value at the 500-ft level  was set to a
particular value (e.g., 6.8m/s), and surface concentration measurements were made, with the primary
emphasis being to determine the location and value of the maximum ground-level concentration (glc).
The wind speed was then increased and/or decreased in steps, each time measuring the surface
concentrations to ascertain the location and value of the maximum glc.  The maximum value at each
wind speed was then plotted to determine the critical wind speed, as discussed in Section 2.

       Having determined the critical wind speed (and,  of course, the location and value of the
maximum glc at this critical wind speed),  the stack height was then raised to the good-engineering-
practice (GEP) value, and a similar procedure was followed to obtain another value for the critical
wind speed — at the GEP stack height   A similar procedure was followed for each terrain
configuration (including the wind direction of northwest or 305° and flat terrain) and for each stack
height. A large number (461) of concentration files was collected, the majority of which represent
surface concentrations.

       Each surface concentration map was given a case identifier consisting of two letters and a
number. The first letter indicates the terrain setup: S  for Southeast winds, N for Northwest winds,
or F for Flat terrain.  The second letter indicates the stack height:  E  for Existing stack height
(45.7m), G for Good-engineering-practice stack  height  (72.7m), or H for Highest stack height
(120m).  The number indicates the SOOft-level wind speed in m/s.  An example is case SE6.8,
indicating the terrain model with winds from the southeast, existing stack height, and 500ft wind
speed of 6.8m/s.

            Southeast wind direction

       Table 1 provides an example list of all relevant full-scale and model parameters used in the
tests to ascertain the critical wind speeds and values and locations of the maximum concentrations
on  the surface of the terrain, in this case, with the existing stack  (45.7m) and winds from the
southeast (125°). A total of 18 cases was studied at this wind direction, including 7 cases (7 different
wind speeds) with the existing stack, 6 with the GEP stack, and 5 with the highest stack.

       Some explanations are in  order  concerning  the values in Table  1.  It is a  printout of a
spreadsheet file in which were entered values of the full-scale parameters such as effluent speed and
temperature, pertinent dimensions, and the wind speed at the 500ft elevation.  The spreadsheet was
programmed to calculate the momentum and buoyancy length scales and wind speeds at other

                                                                            External Review Draft
  VohuBeIV                                   6                                 Doooeciteorquou
  Appendix IV-6

-------
    Table 1. Test Parameters for Concentration Measurements over Terrain with SE Winds.

                 03-Oct-94           Pg. 1: 45.7m STACK            WTI-SCL1.WB1

 CASE                        SE3.4     SE5.0     SE6.8     SE9.0    SE10.4    SE12.0    SE13.5

 FULL SCALE VALUES
 Stk top wind spd (m/s)«
 Temp, ambient (oK) =
 Temp, stack (oK)=
 Stack diameter (m)«
 Effluent speed (m/s) •
 Gravity (m/s**2)
 Bldg height (m) =

 Stk dcn/amb den =
 Lm(m) =
 Lb(m) =
 Froude No. (based on Ta) =

 Stack height (m) =
 500-ft wind speed (m/s) -
 Free-stnn wind spd (m/s) =
 Wnd spd @ 10m (m/s) =

 MODEL SCALE VALUES
 Scale ratio =
 Exaggeration

 Lm(cm) =
 Lb (cm) =
 Stack exagg. factor =
 Stack diameter (cm) =
 Stack height (cm)=
 Stk den / amb den »
 Density exagg. factor =
 Stk top wind spd (m/s) =
 Effluent speed (m/s) =
 Effl. spd/Wind spd =
 Volume flow (cc/min) •
 Froude No. (based on Ta) =
 Effl. viscosity (cm2/s) «
 Stk Reynolds no. =

 For 45.7-m stack:
 500-ft wind speed (m/s) =
 Free-sum wind spd (m/s) =
 Wnd spd (a), 10m (m/s) =
 Tach

 Bldg height (cm) =
 Bldg ht wnd spd (m/s) *
 Bldg Reynolds no. =

 Note: Properties of methane: rhos/rhoa=0.561  & nu=0.1654 cm2/s.

                                                 7
Volume IV
Appendix IV-6
2.84
293
361
1.83
15.8
9.8
25.9
0.812
4.58
1.063
60.0
45.7
3.40
5.07
2.64
480
Dens&D
0.95
0.221
2.08
0.793
9.5
0.561
2.33
0.31
1.01
3.21
2984
16.7
0.165
483
0.37
0.56
0.29
66
5.4
0.30
1087
4.18
293
361
1.83
15.8
9.8
25.9
0.812
3.12
0.334
60.0
45.7
5:00
7.46
3.88
480
Dens&D
0.65
0.070
2.08
0.793
9.5
0.561
2.33
0.46
1.01
2.19
2984
16.7
0.165
483
0.55
0.82
0.43
92
5.4
0.44
1598
5.64
293
361
1.83
15.8
9.8
25.9
0.812
2.31
0.136
60.0
45.7
6.75
10.07
5.24
480
Dens&D
0.48
0.028
2.08
0.793
9.5
0.561
2.33
0.62
1.01
1.62
2984
16.7
0.165
483
0.74
1.11
0.58
121
5.4
0.60
2158
7.53
293
361
1.83
15.8
9.8
25.9
0.812
1.73
0.057
60.0
45.7
9.00
13.43
6.99
480
Dens&D
0.36
0.012
2.08
0.793
9.5
0.561
2.33
0.83
1.01
1.21
2984
16.7
0.165
483
0.99
1.48
0.77
158
5.4
0.80
2877
8.70
293
361
1.83
15.8
9.8
25.9
0.812
1.50
0.037
60.0
45.7
10.40
15.52
8.07
480
Dens&D
0.31
0.008
2.08
0.793
9.5
0.561
2.33
0.96
1.01
1.05
2984
16.7
0.165
483
1.15
1.71
0.89
181
5.4
0.92
3324
10.03
293
361
1.83
15.8
9.8
25.9
0.812
1.30
0.024
60.0
45.7
12.00
17.91
9.31
480
Dens&D
0.27
0.005
2.08
0.793
9.5
0.561
2.33
1.11
1.01
0.91
2984
16.7
0.165
483
1.32
1.97
1.03
208
5.4
1.07
3836
11.29
293
361
1.83
15.8
9.8
25.9
0.812
1.15
0.017
60.0
45.7
13.50
20.15
10.48
480
Dens&D
0.24
0.004
2.08
0.793
9.5
0.561
2.33
1.24
1.01
0.81
2984
16.7
0.165
483
1.49
2.22
1.16
232
5.4
1.20
4315
Extern*I Review Draft
 Do not cite or quote

-------
pertinent elevations such as at the stack top, the 10m elevation, the building elevation, and in the
freestream above the boundary layer. These various speeds were calculated on the basis of the
assumption that the full-scale wind profile matched the measured model profile.

       The model values of momentum and buoyancy length scales were matched to the full-scale
values, i.e., the model values were set equal to the full-scale values divided by the geometric scaling
ratio of 480.  Recall that we chose to exaggerate the stack diameter (by a factor of 2.08) and the
density difference  ratio  (by a factor of 2.33) in order to  satisfy minimum Reynolds-number
requirements.  With all these considerations in mind, the spreadsheet was programmed to calculate
the various model-scale values for each case, including the volume flow rate of methane from the
stack, the required fan speed (TACH), the model wind speeds at the various elevations, and several
nondimensional parameters.

       A typical surface concentration map is shown in Figure 5.  We have underlined the values of
the maximum glc at each downwind distance and circled the overall maximum.  In this case (SE6.8),
the maximum glc is located at the upwind base of the first hill directly downwind of the stack. It has
a value (C/Qf) of 5.17/zsec/m3.  We  have drawn isocohcentration lines so that the  set of
measurements is more readily understood. There is a slight indication of the plume being diverted
around the south side of this first hill.

       A complete set of these surface glc maps for the southeast wind direction is provided in the
data report.  From each of these surface maps, we picked off the maximum glcs at each downwind
location (e.g., the underlined values on Figures 5).  These data were then plotted graphically, a hand-
drawn curve was faired through the data points, and the location x^ and value of the maximum glc
was determined from this hand-drawn curve.  Figure 6 shows a typical example; in this case, the
maximum concentration was determined to be 5.65Asec/m3, and its location was 500m downwind
of the source. Note that the C^ and x^ values are  not measured values per se; we believe this
method to be the most reasonable in view of the inherent variability in the data and the finite distance
between measurement points. The C^ and x^ values were determined for each wind speed and
entered into files so that critical wind speeds  and locations of absolute maximum concentrations (at
the critical wind speeds could be determined.

       (Cf/Qf)mx is plotted as a function of wind  speed  in Figure 7.  Critical wind speeds (those
resulting in the highest glcs) are observed for the GEP and highest stacks, but not for the existing
stack.  For the highest stack, the critical wind speed (500ft level) is in the neighborhood of 7m/s. For
the GEP stack, it is around 1 Im/s. A critical wind speed certainly exists for the shortest stack height
(45.7m), but if exceeds the highest speed tested (13.5m/s); testing at even higher wind speeds was
deemed pointless, as such are very rarely, if ever, observed at this site (cf., Sect. 2). The values of
the maximum concentrations at the critical wind speeds are 2.0 at the highest stack height, 4.2 at the
GEP  stack height, and greater than 10.5 at the existing stack height.  Hence, very considerable
reductions in maximum glcs are observed as the stack  height is increased.

       Figure 8 shows  the location x^ of the maximum glc as a function of wind speed.  As
expected, the distance to the maximum glc increases as the stack height increases, and decreases as
the wind speed increases.

  Volume IV                                                                   External Review Draft
  Appendix IV-6                                8                                 Do not cite or quote

-------
       As an aid to further understanding transport and dispersion of the plumes in this complex
terrain, two series of vertical concentration profiles were measured downwind of the stacks. In the
first series, the stack height was maintained constant and vertical profiles were measured at each of
6 downwind positions (x = 240, 480, 960, 1440, 1920 and 2400m) at each of 3 wind speeds (4.5, 9.0
and 15.0m/s). In the second series, the wind speed was maintained constant at 9m/s, and profiles
were measured at each of the 6 downwind positions for each of the 3 stack heights. The interested
reader should consult the full data report for more details and results.

            Northwest -wind direction

       A total of 16 cases was studied at the northwest wind direction, including 6 cases (6 different
wind speeds) with the existing stack and 5 each with the GEP and highest stacks. Two additional
cases included measurements with the buildings removed.
       The results are summarized in Figure 9, which shows (C/Qf)^ plotted as a function of wind
speed for the northwest wind direction. As for the southeast wind case, critical wind speeds were
observed for the GEP and highest stacks, but, within the range of observed winds near the site, not
for the existing stack.  As a matter of academic interest, we extended the wind speed range to verify
that one did indeed exist;  it was found to be in the neighborhood of 18m/s, a value far in excess of
the highest value observed at the 500ft level during the 5-year period analyzed (c/, Sect. 2). For the
GEP and highest stacks, the critical wind speeds were approximately 7 and 6m/s, respectively,
although the maximum glcs vary little as the wind speed ranges between about 5 and lOm/s. The
values of the maximum glcs at the critical wind speeds are about 7.5 with the existing stack, 3.0 with
the GEP stack, and 1.9 with the highest stack.  These values are somewhat smaller than observed
with southeast winds, presumably because with southeast winds the higher hill is upwind.

       Notice also from Figure 9 that we have plotted two points labelled "no buildings".  Because
we felt the tallest buildings in the vicinity of the stack were exerting substantial downwash influence
on the plumes, we removed them and remeasured the surface concentrations (at one wind speed only,
13.5m/s). The maximum value in the presence of the buildings was found to be substantially higher
than that in the absence of the  buildings (Cg/C^ = 1.57) with the existing stack. With  the GEP
stack, the maximum was marginally higher (Cg/C^ = 1 . 14). (Note that a GEP stack height study
would establish the GEP stack height as that which resulted in an excessive concentration of 40%,
or CB/CNB = 1.40.) As mentioned in Section 2, a proper building downwash study would have been
done at a much larger scale. Hence, we believe the building-downwash observations are indicative
of problems at full scale, but are perhaps not quantitatively valid.

       The downwash distances x^ to the maximum glcs (not shown) increased as the stack height
increased, of course, and decreased as the wind  speed increased. The x^ values for the two cases
without the buildings were substantially larger than those in the absence of the buildings, again
indicating serious building-downwash effects.                   Pfe-<>cthvt-

            Flat terrain

       The flat-terrain measurements were made to form the basis with which the measurements in
the presence of the terrain could  be compared.  A total of 14 cases with buildings was studied,

Volume IV                                     9                             External Review Draft
Appendix TV-6                                                                  Do not cite or quote

-------
including 5 cases each with the existing and GEP stacks, and 4 cases with the highest stack. Three
cases were done without buildings, FE9.0N, FE13.5N and FG13.5N (the suffix N indicates No
buildings). The "building" model used for most of the flat-terrain measurements consisted of the
group of six buildings closest to the stack.

       A note on matching  of wind speeds:  the  conceptual  design  of this study included
measurements in fiat terrain,  and the question to be answered was phrased  as "what is the effect of
the terrain on the plume behavior and resulting concentration patterns?" or, asked another way, u if
the terrain were  flat, how would the concentration patterns differ?"  The question that arose
immediately was what wind speed should be used in the fiat-terrain simulations.  Obviously, the wind
speed at the stack top should not be set equal to its value in the presence of the terrain; the shielding
by the upwind terrain greatly reduces the speed at the stack top from what  would have existed had
the upwind terrain been flat.  Even the 500ft-level wind speed is influence by the terrain, as this
elevation is just above the tops of the hills surrounding the river valley. We chose instead to match
the wind speed above the boundary layer — the freestream wind speed. In other words, we will
compare concentration patterns measured in the presence of the complex terrain with those measured
in flat terrain where the freestream wind speeds are the same in both cases.

       The wind speed profile in fiat terrain was markedly different from the in-terrain profiles,
having much higher speeds at the lower levels. Note that, for the same freestream wind speeds, the
stack-top wind speeds are substantially higher than those in the complex terrain.
                is plotted as a function of wind speed in the fiat-terrain case in Figure 10. Again,
critical wind speeds are found for the GEP and highest stacks, but not for the existing stack. For the
GEP stack the critical wind speed is approximately lOm/s; for the highest stack, the glc is practically
independent of wind speed over the range tested, but a very slight maximum appears around 7m/s.
The data for the existing stack appear to be leveling off at the higher wind speeds tested, and we may
speculate that the critical wind speed is around 16m/s, with a maximum glc around  10/zsec/m .
Hence, the maximum concentrations at the critical wind speeds are -10 with the existing stack, 3.2
with the GEP stack, and 1.2 with the highest stack; very considerable reductions are observed as the
stack height is increased.

       Three additional data points are included on Figure 10; these represent measurements in the
absence of the buildings.  Comparisons with the measurements in the presence of the buildings show
very strong building-downwash effects — more  so than were observed in the presence of terrain;
presumably, this is because the higher wind speed at stack top in the fiat-terrain case reduced the
plume rise — the plume was therefore more readily downwashed into the building wake.  Also, the
data suggest (and other studies support) that building downwash is less severe at the lower wind
speeds - the plume rise is much more substantial, so that the plume escapes the building wake.  Note
finally that the data of Figure 10 (also Fig. 9 for northwest winds) suggest that critical wind speeds
are increased^ the presence of the buildings.

       Finally as an aid to further understanding, we measured four sets of vertical concentration
profiles at each of six downwind positions in the fiat-terrain case.  The interested reader is referred
to the data report.

                                                                            External Review Draft
 Volume IV                                                                     Do not cite or quote
 Appendix FV-6                                 ' "

-------
        Analysis of Terrain Effects

        In this section, we compare and contrast the plume behavior, patterns, critical wind speeds,
 and locations and values of the maximum glcs, with the primary goal being to deduce the effects of
 the terrain. (C/Qf)^ is plotted as a function of wind speed in Figure 11 for both wind directions in
 complex terrain as well as for flat terrain.  In all cases shown in this figure, all buildings on the WTI
 site were present.  In spite of all the extra measurements that were made, we find it difficult to
 provide satisfactory explanations for some of the detailed results shown in  this figure. The broad
 features shown are understandable:

        (1) Maximum glcs clearly and substantially decrease as the stack height increases in each of
        the three terrain types; this is also generally true when taken by groups, i.e., the curves in the
        short-stack group are generally above the curves in the GEP-stack group, which are generally
        above the curves in the highest stack group. Hence, the differences due to changes in stack
        height are much more significant than changes in terrain type or wind direction.

        (2) Critical wind speeds are observed with the GEP arid highest stacks, but are not observed
        for the shortest stack within the normal range of wind speeds observed near the site.  These
        critical wind speeds consistently decrease as the stack height is increased.

        When trying to differentiate  between the three terrain types, however, the results appear
 somewhat inconsistent and are, perhaps, indefinable. The curve for the short stack in flat terrain is
 quite similar to that for the southeast wind direction,  but both these curves show substantially higher
 glcs than observed with the northwest wind. Perhaps most surprising, at first, is that neither complex
 terrain case exhibits higher glcs than does flat terrain. This may be partially explained as a result of
 the increased plume rise in the complex terrain; recall that we matched freestream wind speeds, so
 that the complex terrain provided a shielding or reduction of wind speeds at the stack top, which
 would enhance the plume rise and reduce the glcs. As is well known from previous studies, however,
 the centerline of a plume may approach the surface of a three-dimensional hill much more closely than
 it may a two-dimensional hill;  and, of course, the same plume will approach the surface of a two-
 dimensional hill more closely than it  will  a flat underlying surface.  Hence, the effect of the larger
 plume rise in the complex terrain (smaller glcs) may be counteracted by the effect of the closer
 approach of the plume centerline to the surface in complex terrain (larger glcs). In the present case,
 we may speculate that these counteracting effects were balanced with the short stack  and southeast
 winds, resulting in glcs approximately equal to those in flat terrain.

       Many other factors are involved in the transport and  dispersion process, however, and the
 above explanation is a gross oversimplification. Two other very important factors include the high-
 intensity, large-scale turbulence generated  by the terrain features and, especially, the distorted mean
 streamline patterns. The primary factor causing the glcs with  the southeast winds to be higher than
 those with the northwest winds is almost  certainly the more strongly descending streamlines in the
 southeast wind  case.  Our  pulsed-wire and  hot-wire measurements in this case showed strong
 downwash from the higher, more nearly two-dimensional hill upwind of the stack.  We did not make
 such measurements under northwest  winds, but streamline descent would surely be less steep; the
 upwind hill in this case is substantially lower and substantially narrower in the crosswind  direction
 ("less two-dimensional"). Hence, we might expect glcs to be lower with northwest winds, which was,

      „,                                    11                             External Review Drift
Volume IV                                    l *
                                                                             Do not cite or quote
Appendix rV-6

-------
in fact, observed.

       Critical wind speeds and maximum glcs observed at those critical wind speeds for each terrain
configuration and stack height are collected in Tables 2 and 3.

                              Table 2. Critical wind speed, m/s.

Configuration
125°
305°
Flat
Stack height, m
45.7 72.7
>13.5 11
18 7
-16 10
120
7
6
7
Table 3.  Maximum concentrations
                                                    psec/m3, at critical wind speeds.

Configuration
125°
305°
Rat
Stack height, m
45.7 72.7
>10.5 4.2
7.5 3
-10 3.2
120
2.0
1.9
1.2
       Figure 12 shows the location x^ of the maximum glc as a function of wind speed for both
wind directions in complex terrain and in flat terrain. Again, the broad features are understandable:

       (1) the distances to the maximum glcs increase as the stack height increases in each of the
       three terrain types.  This is also true, at least for the higher wind speeds, when taken by
       groups, i.e., the curves in the high-stack group are above those of the GEP-stack group,
       which are above those of the existing-stack group. Again, the differences due to changes in
       stack height appear to be more significant than the changes in terrain type or wind direction.

       (2) the largest distances to the maximum glcs occur by wide margins with the highest stack
       in the flat terrain. The shortest distances occur consistently with the existing stack in complex
       terrain; of the two wind  directions, the southeast one  (largest hill upwind) results in the
       maximum glcs closest to the source.

       Comparisons of the vertical concentration profiles in the presence of terrain with those over
flat terrain suggest that our earlier arguments concerning the differences in plume rise because of the
shielding by the complex terrain are highly oversimplified; the data, in fact, suggested that the plume-
rise values a short distance downwind were virtually identical with the two taller stacks. These data
suggest that the higher level of turbulence induced by the terrain increases the lateral and vertical
 Volume IV
 Appendix IV-6
                                             12
                                                                     External Review Draft
                                                                      Do not cite or quote

-------
widths of the plumes by substantial amounts (25 to 35%) and decreases the maximum concentrations
within the plumes (by about 30%).  On the other hand, it is exceedingly difficult to interpret these
observations and show how they translate to the observations of Figure 11. For example, the two
plumes from the lowest stack were of different elevation (7m out of 45.7m), yet resulted in virtually
the same maximum glcs. The plumes from the taller stacks were at essentially identical elevations at
x= 240m, yet the maximum glcs were substantially different in the two cases.

      We must conclude that the terrain effects are so complex as to defy satisfactory detailed
explanations. The distortion of mean streamline patterns by the terrain, enhancement of turbulence,
shielding and reduction of wind speeds, and plume rise and building-downwash effects combine in
what appear to be mysterious ways - a large number of additional measurements would be required
to fully  understand and interpret the results. Nevertheless, the broad features of the results are
reasonably consistent and understandable.
5. SUMMARY AND CONCLUSIONS

       A wind-tunnel study of transport and dispersion of plumes from the Waste Technologies
Industries smokestack was performed in the EPA Meteorological Wind Tunnel to examine terrain
downwash effects and to assess the resulting values and patterns of ground-level concentrations. An
atmospheric boundary layer that simulated the velocity and dispersion characteristics in a forested,
hilly region was generated using spires and roughness blocks.  A 1:480 scale model of the area
surrounding the WTI facility was installed in the wind tunnel for two wind directions, 125° and 305°;
these directions put the largest nearby hills directly upwind and downwind of the stack, with the wind
blowing across the river valley.  This scale is suitable for the terrain-downwash study, and uses
distorted stack diameter modeling. Dispersion near the buildings, in particular building-downwash
effects, are not strictly modeled.  Building-downwash observations are therefore regarded as
qualitatively indicative of problems at the full-scale site, but are not to be taken as strictly valid
quantitatively.

       For each wind direction, three stack heights were used; the existing stack (45.7m), the good-
engineering-practice stack (72.7m) and a higher stack (120m). For each stack and wind direction,
ground-level concentrations (glcs) of the tracer released from the stack were measured at distances
from 240 to 2400m downwind for a range of wind speeds. The terrain model was replaced with a
suitably-roughened flat surface and the glcs for conditions equivalent to those with the terrain were
measured.  For several cases, vertical profiles  of concentration were obtained  at six downwind
distances.  In addition, for the 125° wind direction, all three components of the wind vector were
measured in the centerplane of the valley with a pulsed-wire anemometer.

       Based  upon the  velocity measurements and observations using a smoke tracer, a small
recirculation region was found at the base of the upwind hill. The stack,  located farther downwind,
was in an area of downward-directed mean flow.  The equivalent approach flow for flat-terrain
comparisons was based on matching the freestream speeds.  At a given freestream speed, the wind
speeds at stack-top elevation were considerably lower with the complex terrain present.
Volume IV                                                                   Extenul Review Draft
Appendix IV-6                                  I3                              Do not cite or quote

-------
       For each combination of wind direction ( or flat terrain), stack height, and wind speed, a map
of the measured glcs was drawn.  By plotting the maximum concentration at each distance against
the distance from the source and hand-fitting a smooth curve, the maximum expected concentration
and its distance from the source was determined for each case.  Comparison of these maxima for the
actual site with those in flat terrain enabled evaluation of the influence  of the nearby terrain on
dispersion from the stack.

       Many interacting factors contribute to the differences in the glc patterns observed as a result
of emissions from the WIT she and those observed from the same source in flat terrain. For the two
wind directions studied, large hills reach their peak elevations approximately 1000m upwind and
1000m downwind of the stack.  An upwind hill tends to reduce the wind speed at stack top, which
should increase the plume rise and reduce the maximum ground-level concentrations. On the other
hand, the upwind hill tends to produce a downward component of wind velocity at stack top and to
increase the intensity of the ambient turbulence; both these effects tend to bring the plume to ground
level more rapidly and to increase the ground-level concentrations.  A downwind hill will also tend
to increase glcs, the degree of which depends upon the hill shape; maximum glcs on three-dimensional
hills tend to be larger than those on two-dimensional hills when the sources are upstream.  In the
present case, one of the hills might be classified as ridge (very roughly two-dimensional), whereas the
other is more of a knob (fully three-dimensional).  Further complicating  our understanding is the
presence of building influences for the shorter stacks and higher wind speeds.  The concentrations as
measured and presented herein are influenced by all these factors; to quantify the influences of each
factor would require many additional measurements.

       In spite of our inability to isolate and  describe in detail the specific causes of the results, the
broad picture is understood and the concentration patterns and values should be eminently usable for
the intended purpose.  Given emission rates of passive containments from the WTT stack, the user
may simply and easily apply the surface maps contained herein to calculate concentration levels and
areas of exposure for each of the wind speeds, directions, and stack heights tested.  With some
interpolation, he may use the results for wide ranges of wind speeds and stack heights under what we
believe to be the most serious terrain-downwash conditions.

       This  data set should be complemented by a meteorological analysis that assesses the relative
frequencies  of occurrence of those conditions which result in the maximum glcs.  A further risk
assessment  must be made by health specialists as to whether those values of concentration and
frequencies of occurrence are acceptable. These results will assist EPA's Regional Office in assessing
the impacts of the surrounding topography as it relates to the overall risks associated with operation
of the WTI hazardous waste  incinerator.
ACKNOWLEDGEMENTS

       The authors express their appreciation to Ms. Donna Schwede, Atmospheric Sciences
Modeling Division (ASMD), National Oceanic and Atmospheric Administration (NOAA), for her
help in processing the wind records from the Beaver Valley Power Station, to Messrs. G. Leonard
Marsh, Mantech Environmental Technology (MET),  and  GuWei Zhu,  North Carolina State
University, for their help in collecting the wind-tunnel data, to the latter two plus Messrs. Paul

  ., ,    ...                                                                   External Review Draft
  Volume IV                                   14
       .. _,,                                                                 Do not eite or quote
  Appendix P/-6

-------
 Bookman, MET, Van Hursey, MET, and Lewis A. Knight, ASMD, NOAA, for help in preparing the
 wind tunnel and constructing and installing the terrain model, to Mr. Michael S. Shipman, MET, for
 developing specialized software, tp Mr. Robert E. Lawson, Jr., ASMD, NOAA for help with the
 pulsed-wire measurements, and to Ms. Pamela Bagley, ASMD, NOAA, for typing this report. We
 also wish  to thank Mr.  Virgil Reynolds, East Liverpool, OH, for  supplying numerous aerial
 photographs and videotapes of the site and surrounding areas; these were especially useful in
 construction of the model.  Finally we thank Ms. Pamela Blakley, Region 5, EPA, who supplied many
 maps, facts, and figures useful to the study.
 DISCLAIMER

 This document is intended for internal Agency use only.  Mention of trade names or commercial
 products does not constitute endorsement or recommendation for use.
Volume IV                                                                External Review Draft
Appendix FV-6                                  * 3                            Do not cite or quote

-------

-------
s?
§
§
                                        1000    0    1000   2000    3000   4000    MOO   MOO    tOOO flEl
                                                     CONTOUR INTERVAL 20 FEET
Figure 1.  Topographical map showing terrain surrounding WTI site. Rectangle shows boundaries of wind-tunnel

          model,  x is location of stack. WTI buildings not shown.

-------
                                                               FIG2.DRW
      ENTRANCE
    CONTRACTION
                    CEILING
                    WINDOWS
HEIGHT
 2.1m
                               TEST SECTION LENGTH
                                     18.3m
         WIDTH
          3.7m
                   SPIRES    », ~M    MODEL
                            BLOCK
                          ROUGHNESS
DIFFUSER
 SECTION
         SOUNDPROOF ENCLOSURE
           FOR FAN AND MOTOR
  .
8
•e o
§ a
                Figure 2. Schematic diagram of the EPA Meteorological Wind Tunnel

-------
Figure 3. View of WTI terrain model in meteorological wind tunnel - looking upstream.
Volume IV
Appendix IV-6
External Review Draft
 Do not cite or quote

-------
R-


As
 ft

 8
 JO
                                          Valley axis
                       Figure 4. Flow vectors in centerplane of river valley

-------
                                                                               .-o
         Figure 5. Surface concentration map for case SE6.8.  Hs = 45.7m, wind
                   direction = 125°, U500 = 6.8m/s.
Volume IV
Appendix IV-6
External Review Draft
 Do not cite or quote

-------
   _ SE6-8MX 001 (1 2i  Max gic vs aownw.nd distance  WD=i25deg. U=6 8m/s Hs=45 7m

        06-25-94
          4.5 • •
     I
     0>
     U)
     a
     o
            3 •
          1.5  •
                                             CTO = 5.65
                                                    \
                                    = 500
                        400
800
1200
1600
2000
2400
                                              x, m
          Figure 6.  Maximum concentration versus downwind distance for case

                    SE6.8.  Hs = 45.7m, wind direction = 125°, U500 = 6.8m/s.
Volume IV

Appendix IV-6
                                       External Review Draft

                                        Do not cite or quote

-------
     /J>  WTISEMX.001 (1,2)  Max concentration ana distance vs wma speed. WD=125aeg. Hs-45 7m
           06-15-94

     D  WTISGMX 001 (1.2)  Max concentration and distance vs wind speed. WD=125deg. Hs-72.7m
           06-16-94

     O  WTISHMX.001 (1,2)  Max concentration and distance vs wind speed, WD=125deg, Hs=120m
           06-20-94
       rt

       1
        
-------
  £A WTISEMX 001 (V3)  Max concentration ana distance vs wind speed WD=l25deg Hs=45 7m
        06-15-94
  C WTISGMX 001 (1 3)  Max concentration and distance vs wind speed. WD=l25deg. Hs=72 7m
        06-16-94
  O WTISHMX.001 (1.3)  Max concentration and distance vs wind speed. WD=125deg. Hs=12Dm
        06-20-94
         1800
      x
         1600  •
         1400  •
         1200  •
         1000  .
          800  .
          600  ••
          400  -.
          200  ••
                                      O
Stack Height, m

-£r  45.7
O  72.7
-O  120
                        -4-
                         2
            -H
            4
   8

U,m/s
10
12
14
16
      Figure 8.  Distance to maximum glc versus wind speed for SE wind direction.
Volume IV
Appendix IV-6
                                                             External Review Draft
                                                              Do not cite or quote

-------
     A  WTINEMX.001 (1,2)  Max concantration and datanc* v» wind apaad. WD»305dag. H«-45.7m
           07-13-94

     Q  WDNGMX.001 (1.2)  Max concantration and dwtanea v« nwnd spaad. WD«305dao. H««72.7m
           07-13-94

     O  WTINHMX001 (1.2)  Maxc
           07-1344
                         rtntion and dNUno* v» wind «pMd. WD«306(too. H^120m
     A WDNENM.001 (1,2)  Max canoanmton and diatanca v» nmd apa«i. WD-305d«g. Ha-45.7m
           07-1344         wfeUdga
                                       and dManea v» wind apa«d. WOOOSdag, Ha«72.7m


                                       I   i  i   i   I  i  i  i  I   i  i   i  I  i   i  i
WTINGNM.001 (1^)   Max
  07-1344
       8
               6 ••
               5 •
       a
       o
               3  •
              2  •
              1  •
-H
                                   D
                                                                   Stack Height, m
                                                               45.7
                                                               72.7
                                                          O-  120
                                                        _ NO buildings
                                                    D
                              o-o—o
                          o                     o
                                                           No buildings
              0  I  '   '  '   I  '  '
                                                12
                                                  16
                                         20
24
                                                   U, m/s
28
                Figure 9.  Maximum glc versus wind speed for NW wind direction.
Volume IV
Appendix IV-6
                                                                        External Review Draft
                                                                          Do not cite or quote

-------
   £.  WTIFEMX.001 (1,2)   Max concentration and distance vs wind speed tor flat terrain, w/ bids
          07-26-94         Hs=45.7m
   3  WTIFGMX.001 (1.2)   Max concentration and distance vs wind speed for flat terrain, w/ bids
          07-26-94         Hs=72.7m
   O  WTIFHMX.001 (1.2)   Max concentration and distance vs wind speed for flat terrain, w/ bids
          07-27-94         Hs«120m
   A  WTIFENMX.001 (1,2)   Max concentration and distance vs wind speed for flat terrain, w/o bids
          07-27-94          Hs«45.7m
   •  WTIFGNMX.001 (1.2)   Max concentration and distance vs wind spead for flat terrain, w/o bids
          07-27-94          Hs«72.7m
      I
       Q>
       W
      g
      o
             10
              8  ••
              7  ..
              6  .-
              5  -.
              4  .-
              3  .-
              2  -.
             .1  ..
Stack Height, m

A  45.7
D  72.7
O  120
Filled symbols, without  buildings
                                                                        10
                                                                           15
                                                       U,  m/s
                        Figure 10.  Maximum glc versus wind speed in flat terrain.
Volume IV
Appendix W-6
                                                                   External Review Draft
                                                                     Do not cite or quote

-------
            12
      I
       0)
       CO
      o
            10 .  •
             8 .
             4 .
             2 •
                    A  H$ = 45.7 m
                    D  H5 = 72.7m
                    O  H
                    OPEN SYMBOLS: WIND DIR. = 305°
                    FILLED SYMBOLS: WIND DIR. = 125°
                    HALF-FILLED SYMBOLS: FLAT TERRAIN
                                               •4-
                                               8

                                             U, m/s
12
16
     Figure 11. Maximum glc versus wind speed for all configurations with buildings.
Volume IV
Appendix IV-6
        External Review Draft
         Do not cite or quote

-------
       3000
       2500  ••
       2000  • •
     -x 1500
       1000 .
        500 -
t
\
                                              I	1	1

                                             A   H,» 45.7m
                                             D   H, = 72.7 m
                                             O   H
      \    OPEN SYMBOLS: WIND DIR. = 305°
       3  FILLED SYMBOLS: WIND DIR. = 125°
           HALF-FILLED SYMBOLS: FLAT TERRAIN
                                                              12
                                             16
                                           U, m/s

    Figure 12.  Distance to maximum glc versus wind speed for all configurations
               with buildings.
Volume IV
Appendix IV-6
                                        External Review Draft
                                         Do not cite or quote

-------
                          APPENDIX IV-7
                   PEER REVIEW COMMENTS
Appendix IV-7                                             External Review Draft
                                                      Do Not Cite or Quote

-------

-------
                          COMMENTS

                    D. Bruce Turner, C.C.M.
Appendix IV-7                                            External Review Draft
                                                     Do Not Cite or Quote

-------

-------
 From the desk of D. Bruce Turner, C. C. M.
       PO Box 2099,  Chapel ffill, NC 27515-2099


 June 27,1995


                        Review of the ISC-COMPDEP Model


 Background  •

 A review of the ISC-COMPDEP Model was made based upon the following materials:

 In hard copy:

       "Development of the ISC-COMPDEP and User Instructions" Submitted by: A. T.
       Kearney, Inc.; Submitted to: Bemie Orcnstein, US EPA, Region V. In response to : EPA
       Contract No. 68-W9-0040, Work Assignment No. R05-32-01. December 1993.

       "Summary of ISC-COMPDEP Model" Submitted by: A. T. Kearney, Inc.: Submitted to
       Pam Blakley, EPA Region  V.  EPA Work Assignment No. R05001, Contract No.
       68-W4-0006. August 16, 1994.

       "User Instructions for a New Area Source Algorithm" U. S. EPA, August 1993.

       "Appendix A, Integration Approach" (no further identification)


 In electronic form:

       ISC2 Users Guide (Vol. 1, Vol. 2, and Appendices)

       ISCOMDEPexecutable code and test data.


 Action Taken

 The furnished materials were reviewed. (Some pages that were missing from one of the
 documents were sent to me by fax.)  The tests included with the materials furnished were run and
 verified to produce proper results. A number of additional tests were devised and run to examine
 specific features of the model. These are described and discussed in the last section of this
 review.


 Comments on the Appropriateness of the Methods Used to Develop the Model

The EPA undertook a multi-million dollar effort to develop a refined model for use in complex
 terrain. The CTDMPLUS is a result of that effort and is designated by EPA as a refined model
for use in complex terrain.

The CTDMPLUS, however, does not include effects of building downwash, the calculation of
 wet/dry deposition, or the ability to calculate concentration or deposition from an area source.

-------
Review - ISC-COMPDEP
page 2     -       June 27,1995

Therefore if a given source configuration includes both considerations of complex terrain, as well
as some of the features mentioned in the above paragraph, to analyze impacts for this source it
must be determined if there are dominant features to be considered that make selection of an
existing model possible in spite of limitations or if it necessary to create a new model that will
have the necessary features combined that will  allow the proper analysis of the situation.

Apparently, the decision was made to create a new model with the desired features.

It would seem that if complex terrain were of significant importance that the CTDMPLUS would
be the base model with which to start and to add necessary features to that model. In this case
this was not done. There is no information in the material furnished as to whether this  was
considered or not. Also there is no information furnished to determine the importance  of
complex terrain in relation to other desired modeling features.

The screening procedure for complex terrain situations that includes use of both ISCST2 and
COMPLEX! that was in common use as a screening technique prior to the adoption of
CTDMPLUS  as a refined model for complex terrain has formed the basis of handling complex
terrain for the model being reviewed. The way in which the results from these two models are
combined is as follows: ISCST2 is used for receptors below stack top elevation; COMPLEXI is
used for receptors above plume centerime; both models are evaluated for receptors whose
elevations are between stack top and plume centerline and the larger value chosen as the
appropriate concentration.
Appropriateness of Dispersion Modeling Algorithms and Techniques to Regulatory
Modeling
1) Treatment of Terrain

The treatment of terrain for receptor elevations that are between stack-top elevation and plume
centerline elevation by using the largest value from the two techniques COMPLEXI or ISCST2
with chopped terrain are following regulatory guidance issued by EPA. Each of these techniques
have little technical basis and are not compatible with each other.  The COMPLEX-I is a 22.5°
sector averaged technique which may be quite reasonable for long-term (monthly to annual or
longer) concentration but has little relevance to one-hour plumes to which it is being applied here.
One-hour plumes are much more likely to have higher concentrations near the centerline of the
plume and drop to lower concentrations to the side. They may not have an exact Gaussian or
normal distribution crosswind but are more  likely to have a distribution not greatly differing from
Gaussian than they are to have a uniform distribution crosswind across a 22.5° width.

The chopped ISCST2 calculations although assuming a normal distribution crosswind (and thus
not very compatible with the COMPLEX-I technique) drops the elevation of the receptor
regardless of its actual  elevation to that of the stack top. This procedure is likely to underestimate
the concentration at the receptor due to removing the receptor vertically away from the plume
centerline. This underestimation of concentrations is probably compensated for by the dispersion
parameters (oy and'b~z, the spreading parameters in the horizontal and the vertical) that are used.
The parameters used as functions of the Pasquill stability class and downwind distance from the
source are those commonly used over flat or rolling terrain.  These are likely to be smaller than
the dispersion that actually takes place in a terrain situation primarily due to the additional
roughness of the terrain situation and the consequent generation of additional mechanical
turbulence which increases the spreading. The effects of this additional spreading in the
horizontal are easily understood as the additional spreading will reduce concentrations at all
downwind locations. The effect of additional vertical spreading is not as easily explained as it
will cause additional parts of the plume to be spread to a receptor beneath the plume centerline
position and will increase concentrations. At greater distances the additional vertical spreading

D. Brace Turner. CCM • P. O. Box 2099. Chapel Hill. NC 27515-2099 U.S.A. • Voice and Fax: (919) 967-0325

-------
 Review - ISC-COMPDEP
 page 3     -       June 27,1995

 will decrease-concentrations just as is done in the horizontal. In summary, the chopped ISCST2
 treatment likely causes the underestimation by the treatment of the vertical receptor position to be
 compensated, at least partially, by the overestimation resulting from using dispersion parameter
 values that are likely to be too small.

 Since the larger value from the two techniques is chosen, this value frequently comes from the
 ISCST2 because of its narrower plume.

 The preceding paragraphs are just commenting on the technical aspects of the two techniques
 adopted by guidance of EPA. It is expedient to include in ISC-COMPDEP those techniques
 which previously have been approved. Deviation from these techniques would need to be
 accompanied by considerable volumes of evaluation data; data which is not readily available.
2) Use of Wind and Temperature Data for Multiple Levels

The use of available onsite data is to encouraged. In fact, the use of multiple-level
meteorological data is required by EPA in order to use the CTDMPLUS, the only refined
complex terrain model approved (by Supplement B to the Guidelines) for regulatory use. The
approximation of the direction of flow of the plume  by the wind direction for the height of the
leveied-off plume is much more likely to result in die plume being oriented toward the proper
direction.

The calculation of the rise of the plume (and its resulting final height) is also likely to be more
correct by considering the wind speed and temperature structure of the air through which the
plume rises.

However, the model uses the wind speed at final plume height for dilution. This is incorrect
since the dilution by the wind or stretching of the plume in the downwind direction is something
that takes place by the horizontal wind as the effluent exits the stack. Therefore, the wind speed
estimated to occur at stack top is the correct wind speed to use as a dilution wind.
3) The Building Downwash Techniques

Here as in the treatment of terrain the standard treatment in guidance is adopted in the model.
This is appropriate since without substantiating data there is little basis to propose alternate
techniques.

However, it needs to be pointed out that the current techniques make the assumptions that the size
of the zone and the effects of downwash are not altered by either wind speed or stability.  This
results in the highest concentrations occurring downwind of buildings occurring with light winds
and stable conditions.  One expects the maximum sized zone of building generated turbulence to
occur with moderate to strong wind speeds when the maximum degree  of mechanically
turbulence is generated.  Under such wind speeds the atmosphere is driven to neutral. The actual
effects that would be expected under light-wind stable conditions would be the drift of winds
around buildings without the generation of much additional turbulence, thus having considerably
less distortion of the flow and effect upon emissions from roof-top and higher heights. The use of
the current downwash techniques endorsed by guidelines will tend to greatly overestimate the
close-to-the-source concentrations that are calculated under light-wind  stable conditions for
sources that are calculated to be affected by building downwash.
D. Bruce Turner. CCM • P. O. Box 2099. Chapel Hill. NC 27515-2099 U.SA. • Voice and Fax: (919) 967-0325

-------
 Review - ISC-COMPDEP
 page 4    -       June 27, 1995

 4) The Area Source Algorithm

 Although not particularly important for assessing effects from a hazardous waste incinerator, the
 inclusion of an improved area source algorithm is a welcome substitution to the base model.  The
 problems of the simulation of an area source by a single finite line source that is located too close
 to the upwind side of the source (the technique used by ISC2) has been known for some time.
 Some calculations using the area source algorithm have been included in the examination of the
 model for this review (see 8) and 9) below). On the plus side the addition of the substitute
 algorithm not only allows much better calculation of concentrations at receptor distances at
 downwind locations near the source, but also allows more appropriate calculation of
 concentrations for receptors within the area source. The capabilities of this algorithm to properly
 estimate concentrations are especially important for the use of these concentrations to calculate
 deposition such as from an area source with paniculate emissions raised by the movement of
 vehicles and the loading, unloading, and redistributing of paniculate material throughout the area.

 On the negative side, the proper calculation of effects from area sources using this technique is
 very consuming of computer time and will lengthen the time significantly for simulations
 involving area sources. This could be reduced by using the exacting procedures of this area-
 source algorithm only for receptor positions near or within the area, and using more approximate
 techniques as the source-receptor downwind distance increases.


 5) Dry Deposition, Depletion of Particles, Wet Scavanging

 Specific runs of the model (see 15) through 18) below) were made to examine deposition and
depletion. The directions of change for both concentrations and deposition wen; as expected for
the modifications made to the input for each run.

It is not possible with the limited time allowed for this review to do as complete an analysis as is
desired of the features of the deposition and depletion that is now included in the model. From
the description in the text, there is a good attempt to meld the features of treatment of terrain and
deposition and depletion.  A comparison that would be useful would be to examine deposition
and depletion with this model and the FDM (Fugitive Dust Model) for both point and area
sources.
Comments on Use of Model for Evaluation of Impact of a Hazardous Waste Incinerator in a
Valley

It is my opinion that the use of this model for the evaluation of the impact of a hazardous waste
incinerator in a valley is likely to result in estimates of concentration and deposition that more
closely simulate what occurs in the atmosphere than the use of a model such as ISCST2.

The use of onsite data should result in improved results. If data from a nearby location but not
onsite are used, it is likely that the topographic influences may be slightly altered resulting in
increased simulation of cross-valley flow which will result in high calculated impacts. The use of
onsite data will be expected to more properly simulate the  frequencies of wind direction that
actually occur which will probably include high frequencies of along-valley flow but not very
high frequencies of cross-valley flow.

If sufficient data are available to apply the CTDMPLUS model, that model may better simulate
the resulting concentrations. Of course, since deposition and depletion are not addressed by the
CTDMPLUS, it could not do any of the simulation of the behaviour of paniculate matter that
would be different from assumptions that the panicles are transported and dispersed similar to a
gas.
D. Bruce Turner. CCM • P.O. Box 2099. ChapeJ Hill. NC 27515-2099 U.S A. •  Voice and Fax: (919)967-0325

-------
 Review - ISC-COMPDEP
 page 5     -       June 27,1995


 Modeling Runs to Examine Features of Model and Results

 The following modeling runs were accomplished with the indicated results.

 1) The test input for both concentration and deposition runs were executed with results as
 expected.

 2) Abbreviated data for MET, WND, and TMP were created consisting of only two days and a
 runstream TEMP.INC to execute for just one day was formulated and executed. Results given in
 the plot file appeared to be OK.

 3) Remove access to the special terrain file WTI100K.OUT creating input runstream TEM1.INC
 and run again. Output in the plot file appears reasonable.

 4) Create new .met, .wnd, and .tmp files called area.xxx with same hourly data repeated for each
 of 48 hours. Create new receptor array, access new files TEM2.INC. and run for flat terrain.
 Output in the plot file appears reasonable.

 5) Remove building dimensions TEM3.INC and run again. Concentrations are considerably less
 as they should be.

 6) Change from ten particle size fractions to three panicle size fractions TEM4.INC and run
 again. Concentrations given in the plot file are very slightly greater.

 7) Lower stack height, decrease diameter, exit velocity, and exit temperature TEM5.INC and run.
 Concentrations are greatly increased.

 8) Create 100 meter by 100 meter area source of height 0.5 meters TEM6.INC and run.
 Concentrations increase with downwind distance to downwind edge of area source. Behaviour
 appears to be reasonable.

 9) Create a runstream TEM6.IND for the area source for deposition and run.  Output appears
 reasonable.

 10) Create new vertical wind data AREA2.WND with no change of wind speed with height.
 Run TEM7.INC and examine output. Expected concentrations to change because of different
 plume rise and dilution. Output is same as for TEM5.INC. It is questionable as to whether the
 calculation of plume rise considering the  wind with height is working!!

 11) Create runstream TEM8.INC with higher source. Run with same met files as TEM7.INC
 (step above). Output is same as running TEM4.INC. Would have expected plume rise to change.

 12) Create a new temperature with height data set AREA2.TMP with temperature increasing
 with height. Create a runstream TEM9.ENC to use this data and run.  With use of this data there
 is no change in concentrations from the previous run. This may be due to the temperatures not
 being used since the stability is 4.

 13) Create a new temperature with height data set AREAS .TMP with the temperatures the same
as in AREA2.TMP except that they are in units of Kelvin.  Create runstream TEM10.INC and
 run. Concentration output is unchanged.

 14) A new met set AREAl.met with stability 5 substituted for stability 4 for all hours was
created. A new runstream TEM1 l.INC which is a duplicate of TEM9.1NC with the exception
that AREA2.MET is accessed. The expectation was that the concentrations would change due to
a variation in the plume rise and due to changed dispersion parameters. The concentrations

D. Brace Turner. CCM • P.O. Box 2099, Chapel HU1.NC 27515-2099 U.S.A. • Voice and Fax: (919)967-0325

-------
Review - ISC-COMPDEP
page  6    -      June 27,1995

decreased greatly, probably due to the decreased oz values that do not allow very much influence
of the plume upon the ground.

Eight additional runs of the model were made to see how changes in inputs related to the
deposition affect concentration and deposition.  Description of these runs follow:

15) Using the stack that was part of the TEM5. run (a shorter stack) particles of just one size, 2
um, were assumed. The runstream for concentration is TEM12.INC; the runstream for deposition
is TEM12.IND.

16) A change in particle density from 1 to 2 was made. Runstreams are TEM13.INC and
TEM13.IND.  Results for concentrations are barely perceptible.  Maximum deposition is about
1.8 times as high as previously. Deposition at the farthest downwind distance, 5000 m, is also
higher (the exact fraction can not be determined as there is only one significant digit given in the
results).

17) The particle size is increased from 2 to 20 u,m. Runstreams are TEM14.INC and
TEM 14.IND.  Peak concentration is decreased to 0.79 of that for 2 ujn particle sizes.
Concentration at 5000 m, the farthest distance calculated, is decreased to 0.23 of that for 2 p.m
panicle sizes.  Maximum deposition is 299 times that for 2 urn particle sizes. Deposition at 5000
m is 94 times that at this distance for 2 |im particle sizes.

18) Runs  for 15) through  17) were over flat terrain. Terrain was added to the runstreams of 17)
resulting in TEM15.INC and TEM15.IND. Both concentrations and deposition were increased
close in and were less at 5000 m. This is the direction of change that would be expected.
D. Bruce Turner. CCM
Senior Consultant
* Certified Consulting Meteorologist

Enclosures:     Listings of: Computer Input Runstreams; Output Plot Files; Data Files
               Diskette with Test Runstreams, Data, and List files.
D. Broce Turner. CCM • P. O. Box 2099. ChapeJ Hffl-NC 27515-2099 U.S.A. •  Voice and Fax: (919) 967-0325

-------
                            COMMENTS

                   Rayford P. Hosker, Jr., Ph.D.
Appendix IV-7                                               External Review Draft
                                                        Do Not Cite or Quote

-------

-------
                                       U. S. DEPARTMENT OF COMMERCE
                                       National Oceanic and Atmospheric Administration
                                       ENVIRONMENTAL RESEARCH LABORATORIES
                                       Atmospheric Turbulence and Diffusion Division
                                       456 South Illinois Avenue
                                       P. O. Box 2456
                                       Oak Ridge, TN 37831 -245

                                        May 11, 1995
 Mr. Daniel A. VaJlero
 Mr. Tom McCurdy
 U. S. Environmental Protection Agency
 Atmospheric Research and Exposure Assessment Laboratory
 Human Exposure and Field Research Division (MD-56)
 Research Triangle Park, NC 27711
 Dear Sirs:

 The following summarizes my review of two documents by W. H. Snyder and R. S. Thompson.
 "Wind-Tunnel Simulation to Assess Terrain  Downwash Effects at the WTI  Hazardous Waste
 Incinerator  Project Summary",  and "Data Report: Wind-Tunnel Simulation  to Assess Terrain
 Downwash Effects at the WTI Hazardous Waste Incinerator". The first of these documents is just
 an abbreviated version of the second, and seems to include all the pertinent materials from the
 main (data) report. I believe it is a very clear and complete summary. I have therefore discussed
 the two reports together rather than separately; the comments below apply  to both reports
 unless stated otherwise.

 You asked me to address the following scientific issues (paraphrased for brevity):

 (a) Are the project goals clearly stated and met?  Could the project have been modified to meet
 any unmet goals? The primary goal, to simulate worst-case terrain-induced downwash effects,
 is clearly stated. The December 1993 peer-review panel convened to evaluate the draft EPA plan
 for assessing risk at the WTI facility is quoted as also being interested in "quantification  of the
 near- and  mid-field three-dimensional wind flow within and downwind of the river valley and the
 quantification of the combined effects of terrain and buildings on the near-field dispersion". The
 project mentions these secondary goals, and points out that the technical requirements for wind
 tunnel  modeling of  such a physically  large  area preclude a strict quantification  of near-field
 phenomena because of necessary scaling distortions.  However, the modeling effort is able to
 provide a qualitative picture of these secondary points of interest.  Given the size of the present
 EPA wind tunnel (already a large facility), it would be impossible to improve this situation. The
 local scale flows presumably could be studied separately, using an appropriate building complex
 and stack  model, although it would  be difficult in my opinion to establish an approach flow that
 simulates the mean wind field distortions and turbulence effects of the upwind terrain obstacles.

 (b)  Are state-of-the-art wind tunnel simulation practices used?  The authors are very well aware
 of the scaling requirements for successful wind tunnel simulations (Dr. Snyder has helped "write
the book" in this area), and have spent considerable effort in meeting these requirements.  Their
 procedures are well  documented in the report, and I see no problems with their effort.
                                      Telephone:      (615)576-1233
                                      FAX:          (615) 576-1327

-------
(c)  Are the QA/QC practices described in the report?  Were scientifically adequate QA/QC
practices  followed  during  the experimental work?   Equipment calibration  procedures  are
described at length, and samples of typical calibration runs are included. The measurement
procedures are documented in great detail.  The computer files are described in detail, so that
interested parties could  utilize the  files without difficulty.   Overall, this is  one of the best
documented wind tunnel studies I have ever read; the level of detail provided inspires a good
deal of confidence in the results.  The procedures followed are pretty much standard (or should
be) in the field. The only possible improvement would be for the authors to demonstrate NIST
or similar traceability in their laboratory standards.

(d)  Do the data meet adequate precision and accuracy requirements?  Yes. Accuracy and
precision of the measurements are described, along with the methods used to evaluate them.
The accuracy and precision achieved are adequate, in my opinion, to determine the flow and
concentration fields of interest.

(e)  Do the summary and conclusion follow logically from the data, and are  they scientifically
valid?  Yes.   In fact,  the  authors seem to be making an effort to avoid "overselling"  the
significance of their results.  They clearly state the limitations of their work, identify continued
areas of uncertainty, and describe the additional work needed to turn this wind tunnel study into
a risk assessment.

(f)   Are  the  documents clear  and  concise,  complete,   and logically organized?   Yes.
Condensation of the text would be possible, but at the expense of the detailed description of the
calibrations and experimental procedures that provide extra credibility for the work.  This is a
judgement call. I'd  leave it alone.
You also asked me to address the following points (paraphrased for brevity) relating to the wind
tunnel simulation of the WTI facility:

(a)  Are the limitations of the project clearly stated? Are the limitations of sufficient magnitude that
they severely reduce the usefulness of the simulations? If so, what mitigative measures should
be taken to improve the situation? The authors clearly and explicitly state the limitations of the
experimental work.  I think the most important  limitations  are: scaling  distortions leading  to
improper scaling in the near field, the restriction  to only two wind directions, and - possibly -
the restriction to windy neutral conditions. As noted above, the scaling distortions are driven  by
the size of the existing EPA wind tunnel, the extent of the terrain to be modeled, and the need
to model buoyant discharges.  This distortion prevents quantitative interpretation of the near field.
If this near field flow and dispersion behavior is important (e.g., for questions related to employee
exposures),  then a separate study should be done at a lesser scale reduction.  But, as stated
earlier, this study will be difficult because of the need to somehow simulate the terrain-influenced
approach  flow and .turbulence. I think the restriction to only two wind directions is probably the
main  shortcoming of the work.  Given the complexity of  the terrain to the west  of the site
(multiple hills), I would have liked to see additional wind directions with a westerly component,
in case  streamline curvatures around these  hills lead to unexpected regions of deflection and
downwash.  But this is perhaps more of a completeness issue than a practical one; I think it is
likely  that  the authors have captured the main downwash effects with their choice of the 125°
and 305°  wind directions because these cover the  largest and closest terrain obstacles.  Given
the width  of the  EPA tunnel and the  extent of the terrain to be modeled, additional wind
directions would probably  require the  construction and testing of additional site  models,  at

-------
 considerable additional expense. The restriction to the windy neutral stability case is addressed
 below.

 (b)  Do the simulations capture the important factors that are expected to generate maximum
 ground-level concentrations near WTI?  The simulations were performed for the windy neutral
 case; are there other meteorological conditions or wind directions which could lead to higher
 ground-level concentrations?  I think the windy neutral terrain downwash case has been covered
 reasonably well by the present study, although I mention again that additional westerly wind
 directions would, probably have been  beneficial.  But there are  other atmospheric  stability
 conditions that are known to occasionally generate very high  ground-level concentrations, and
 these are not explored in the  present study.  Rrst, light wind unstable conditions can generate
 very large scale eddies that can transport even very buoyant elevated plumes down to ground
 level quite close to the source; this results in very high concentrations. This case is very difficult
 to simulate in the laboratory. Also, the high concentrations are of short duration because of the
 nature of convective turbulence, so the actual dose to humans or vegetation is generally small.
 This highly convective  case is probably important only if the  stack effluent  concentrations are
 very large and the toxicrty of the material is high, so that significant dosage can be accumulated
 over very short time scales. Second, stable nocturnal conditions in complex terrain can give rise
 to some very interesting and complicated flow and dispersion phenomena.  Terrain-induced flow
 disturbances (lee waves; hydraulic jumps) can result in significant downward motions in valleys
 behind obstacles; these could transport a normally elevated plume down close to  the surface.
 Because the nocturnal turbulence levels will usually be rather low,  the plume concentrations can
 be high. Another possibility might be the transport of an elevated  plume in the cold air drainage
 within a deep valley at night; the  minimally diluted  plume may travel long distances before
 contacting terrain.  If the nocturnal winds are very light and the airshed is not well drained (not
 clear from the terrain map given) then the effluent may collect within a kind of cold air pool, and
 produce high ground-level concentrations whenever the pool is mixed by a nocturnal turbulence
 outbreak, or during the  morning fumigation and breakup of the valley inversion. These nighttime
 cases may or may not  produce ground-level  concentrations greater than the direct downwash
 case; the only thing I am sure of is that the surface concentration patterns will be different than
 for the windy neutral case.  The nocturnal cases can be studied to  some extent in a stratified tow
 tank, but the cases involving cold air drainages and pooling will be very difficult to simulate.  This
 is one of the main reasons why people continue to perform field  studies in  complex terrain,
 rather than always resorting to laboratory simulations.  In  fact, it may take  a field  study (both
 meteorological fields and tracers) to fully evaluate the nocturnal case at WTI.
Finally, you asked me to:

(a) Evaluate the appropriateness of the approach.  If attention is confined just to the terrain-
induced downwash case, then the approach and methods used by the authors are appropriate.
If strongly convective light wind conditions occur frequently at WTI, and/or rf the nocturnal flow
patterns can lead tb'plume impaction, or to plume trapping in the river valley with subsequent
fumigation, then additional studies are needed.  There is not enough information provided to
determine rf any of these cases warrant attention.

(b) Evaluate the technical and scientific quality of the work and data. This is high  quality work,
suitable for publication in the scientific literature.  What has been  done is done well. What has
not been done can only be the subject of speculation; the authors' opinions as to the benefits
and necessary breadth of additional studies would be a useful addition to the report.

-------
(c) Evaluate the clarity of the presentation.  First rate.  Few journal articles are as clear and well-
written as these reports. I found only one minor discrepancy: in the main (data) report, on p. 49,
the fifth line from the bottom refers to case SG9.0 in Appendix E; I could only find case NG9.0.
Actually,  this sentence would be clearer if the actual Rgure numbers were cited instead.

If you have any questions about my comments and opinions, please contact me.
                                        Rayford P. Hosker, Jr., Ph.D.
                                        Director
                                        Atmospheric Turbulence and Diffusion Division

-------
                           COMMENTS

                       Michael Schatzmann
Appendix IV-7                                             External Review Draft
                                                      Do Not Cite or Quote

-------

-------
                      Review on
        W. H. Snyder an R. S. Thomson (1994)
'Wind Tunnel Simulation to Assess Terrain Downwash
   Effects at the WTI Hazardous Waste Incinerator'
                         by
                   Michael Schatzmann
                  Meteorological Institute
                  University or Hamburg
                    Bundesstrasse 55
                    D-20146 Hamburg
                       Germany
                      June 1995

-------
Work content:
The objective of the study was  to examine terrain-downwash effects on the ground  level
concentration field caused by releases from the WTI hazardous waste incinerator in  East
Liverpool, Ohio.

To achieve the objective, a wind tunnel study was carried out at scale 1:480, under neutral
atmospheric stability conditions, for moderate to high wind speeds, for two wind directions and
for three stack hights. The experiments have been carried out with and without terrain in order
to. isolate terrain effects and  to  better understand the effects of the topography on plume
dispersion.

In modeling the small scale plume,  methane was used to produce the buoyancy. The momentum
and buoyancy length scales of  the exhaust gas were matched.
Comments:


To study plume dispersion in complex  terrain, physical modeling (i. e. the simulation in a wind
tunnel or water tank) is presently the most appropriate way to understand the processes involved
and to achieve reliable data.

The practices used in the study are common and are applied in fluid modeling facilities all over
the world.
Similarity concept:

For exact similarity the densimetric Froude number, the velocity ratio, the density ratio, several
Reynolds numbers and some non-dimensional boundary layer parameters must be matched (see
Data Report, chapter  2.3). Since not all of the similarity  requirements  can be achieved
simultaneously in a small scale simulation, certain compromises have to be made.

The compromise the authors of the study chose was to distort the densimetric Froude number,
the density ratio and the velocity ratio and to match instead of them two bulk parameters, i. e.
the momentum length scale and  the buoyancy length scale. Although the referee follows in his
own work alternative lines of approximate scaling, the authors approach is certainly a possible
solution to the similarity problem. The authors themselves discuss their choice critically and in
detail. They are  aware of the  fact that they will have  discrepancies between  model and
prototype in the  near field of the plume  but get the benefit of obtaining larger Reynolds
numbers and manageable tunnel speeds.

-------
Wind tunnel boundary laver:

The wind tunnel boundary layer was generated using a combination of vortex generators and
roughness elements.  This  is a  common  and recognized procedure.  The boundary  layer
parameters were measured  and compared with field data. The efforts described to adjust the
ceiling above the terrain model give evidence on the care and thoughtfulness with which the
authors prepared their experiments.
Data collection;

The authors used state of the art equipment to measure velocities, turbulence intensities and
mean concentrations. The methods applied have proven to be reliable and accurate.
Quality control;

The authors made  intercomparisons with field data whereever it appeared to be possible
(vertical velocity  and turbulence intensity profiles, dispersion parameters downwind from a
point source etc.) Much more care has been taken to assure the quality of the work as is usually
commen in contract work.
Data processing;

The collection and processing  of data has been  automated to a high degree.  Under  such
conditions, errors in data handling are unlikely to occur. The documentation of the data is very
clear and sets standards for other wind tunnel laboratories
Experimental program;

The number of experiments had to be limited by the authors to a reasonable amount. The
decision by the authors, to concentrate on two wind directions seems to be justified. Although
not proven through further experiments, the assumption of the authors that the wind directions
125° and 305° would lead to the largest increase in ground level concentration maxima due to
terrain effects is quite convincing and in line with the referees experience. The maximum mean
concentration increase due to building effects (likely to be important for the smallest stack)
might be found at another wind direction, but building effects were not the main objective of the
study.

The variation of wind speed (in order to find the worst case wind velocity) leads to plausible
results.

The flat terrain experiments carried out  to isolate the terrain effects were done in an adequate
manner. Although not all of the results from these experiments allowed a clear interpretation of
the findings, the broad features of the results were plausible.

-------
Stability effects:

The study was carried out under neutral ambient stability conditions only. In view of the fact
that the ground level concentration maxima were found in the velocity range (500 feet level)
between 7 m/s (tallest stack) and more than 13.5 m/s (smallest stack), this seems to be justified.
A stability statistic of the WTI site would most likely show that these large wind speeds occur
only in combination with neutral or near-neutral stability classes.
Summary of statements and conclusions;

The conclusions drawn in the summary statement are convincing and a logical interpretation of
the experimental observations.
Written document;

The document is well organised and written in a clear and concise manner.



Limitations:

There are only minor limitations of the study and these are discussed by the authors themselves.
They result mainly from the fact that the whole study was focussed on the quantification of
terrain effects. The investigation of building effects was given only second priority when the
experimental program was designed. This is in line with the objective of the project but leads to
some difficulties in interpreting the results. This does, however, not  significantly  limit the
usefulness of the study.



Conclusion:
The goal of the study was to assess the terrain effects on plume dispersion under the specific
conditions of the WTI-site in East Liverpool, Ohio. The objective of the study has been met.


-------
                              COMMENTS

                            Dr. R.E. Britter
Appendix IV-7                                                  External Review Draft
                                                            Do Not Cite or Quote

-------

-------
         Scientific Peer Review
           of Two Documents
       which report the results of
AREAL's Wind Tunnel Simulation Study
      of Terrain Downwash Effects
at the WTI Harardous Waste Incinerator
               Review by

             Dr R. E. Britter
               Cambridge
                England


                  For

   U.S. Environmental Protection Agency
       Small Purchase Unit (3803 F)
            401M Street, SW
          Washington, DC 20460
                U.S.A.
             June IS, 1995

-------
1. Introduction

The Purpose. Background and Statement of Work of this review are reprinted below.

1.1 Purpose

The purpose of this statement of work is to provide assistance to the U.S.•Environmen-
tal Protection Agency (EPA) in requesting the services  of two experts to review two
reports describing  wind-tunnel simulation experiments (the Study) conducted at the
Atmospheric Research and Exposure Assessment Laboratory (AREAL). These reports
are entitled:  1)  Wind-Tunnel Simulation to Assess Terrain Down-wash Effects at the
WTI Hazardous  Waste Incinerator: Project Summary (William H. Snyder and Roger S.
Thompson. December 1994), and  2)  Data Report:  Wind-Tunnel Simulation to Assess
Terrain Downwash Effects at the WTI Hazardous Waste Incinerator (William H. Snyder
and Roger S.  Thompson. December 1994).

1.2 Background

In a December 1993 workshop, a panel of experts reviewed a project plan for conducting
an assessment of the potential risks associated with an incinerator operated by Waste
Technologies  Industries  (WTI) Inc.   The  panel stated that terrain-induced downwash
effects are  likely to be a serious  problem at the WTI site and recommended that  a
wind-tunnel study  should be conducted to investigate these effects.

The goal of the  Study was to address  this recommendation by simulating worst-case
terrain-downwash effects at the WTI incinerator and determining what meteorological
conditions lead to high ground-level pollutant concentrations.

The Study's design is principally denned by the following experimental conditions:

    a. The Study focused on examining terrain effects at the WTI site under moderate
      and high-wind conditions. The Study did not examine building downwash effects.

    h. Due to the  physical and mechanical configuration of the wind-tunnel, only two
      wind directions were simulated, rather than all-possible wind directions.

    c. The Study  applied  scale-reduction parameters, such as  exaggerating the stack
      diameter and increasing the difference in density between exhaust gas and ambient
      air.
    d. Methane was used as a tracer gas in the simulations.

1.3 Statement of Work

In accordance with guidance provided by the project manager, the contractor, hereaftei
called the reviewer, shall review the reports listed above.  The reviewer shall specificall}
address the following scientific issues in his or her review.

    a. The goals of the Study were to examine possible terrain-induced downwash effect!
      and to assess the resulting values and patterns  of ground-level concentration
      Please discuss to  what extent these objectives have been met.

    b. The experimental conditions used are intended to simulate those that occur in thi
      vicinity of the WTI incinerator site.  Provide comments on whether the condition

                                        1

-------
      used in the wind-tunnel experiments are appropriate to simulate conditions at the
      site.  These comments should address the following points:

          * The appropriateness of the wind-tunnel simulation practices that are used
            in the study.
          * The adequacy of the quality assurance/quality control practices that are
            described in the report.
          * The precision and accuracy of data collected during the study, and
          * The extent to which the simulations capture important factors that are
            expected to lead to maximum ground-level concentrations in. the vicinity
            of the WTI plant due to terrain downwash.

    c. The  wind-tunnel simulations were performed for neutral atmospheric stability
      conditions. Please comment on the appropriateness of these conditions.

    d. Evaluate whether the summary statements and conclusions flow logically from the
      data obtained and observations made during the Study.  Also, provide suggestions
      as to how they might be improved to better represent the experimental results.

    e. Provide an evaluation of the written documents. Please address whether they are
      complete, logically organized, and written in a clear and concise manner.

    f. Describe any significant and relevant limitations of the Study that are not ad-
      equately described in the documents.  Please comment  on whether any of the
      Study's limitations (whether described in the document or not) significantly limit
      its usefulness in simulating upwind terrain-induced downwash  from the WTI in-
      cinerator.

Each of the points  within the Statement of Work is addressed in the following sections.
2. The goals of the Study were to examine possible terrain-induced down-
wash effects and to assess the resulting values and patterns of ground-level
concentration. Please discuss to what extent these objectives have been met.

In general the objectives of the study have been met but. as in most scientific investiga-
tions of complex problems, the final conclusions are not completely unqualified.
The logical development of the study was

(i) To recognize the possible importance of terrain-induced downwash at the WTI Haz-
ardous Waste site.

(ii) To note that the importance will be most evident at higher wind speeds when the
plume rise due to momentum and buoyancy effects is reduced, and that these wind speeds
are likely to be met under neutral or near-neutral atmospheric stability conditions.

(iii) To note that the importance will be most evident with two specific wind directions
for which the local terrain is most influential.

(iv) To recognize that a neutrally stratified wind tunnel was an appropriate tool with
which to undertake an investigation.

(v) The investigation was undertaken and the resulting patterns of ground-level concen-
tration presented. These were broadly consistent (qualitatively) with expectations and

-------
with additional experiments taken to determine the velocity and turbulence fields of the
flow in the complex terrain.

(vi) Two summary graphs (reproduced here as Figures 1 and 2) were presented to show
the magnitude and position of the maximum ground-level concentration as  a function
of wind speed, chimney stack height and wind direction.  Figure  1 shows the expected
effects of wind speed and chimney stack height.
The results also show a substantial effect of the complex terrain, producing changes up
to a factor of two in the maximum ground-level concentration compared with fiat terrain.

An alternative view of the same data might be that

   (a) if the stack height of 45.7m is considered the maximum, ground-level  concentra-
      tions were uninfluenced or reduced by the complex terrain:

   (b) if the stack height of 72.7m is considered the maximum, ground-level  concentra-
      tion at the critical wind speed of about  10m/s is increased  by about 20%  for
      complex terrain with the worst wind direction over the flat terrain.   This may
      (with hindsight) not be considered significant.

More detailed analysis of the.data is difficult. The authors have correctly  noted that
there are several competing physical phenomena involved and it is  not obvious which
phenomenon, if any, is most important in which  scenario. The authors' interpretations
are plausible  but further work would be required to provide definitive interpretation oJ
the observations.

(vii) A specific difficulty was encountered and discussed hi the reports.

Large buildings close to the chimney stack are able to deflect the plume towards  the
ground and thereby produce increases in the maximum ground-level concentrations. This
effect was shown to be present for the stack heights of 45.7m where it was significant, anc
72.7m where  it was slight (particularly in the complex terrain scenario).  It is unlikeh
to be of significance for stacks of height 120m. This further physical phenomenon neec
not of itself be a difficulty.
However a  difficulty does arise because the modelling of the flow around the building
leading to the building downwash may not be adequately modelled.  The possibly inad
equate modelling, acknowledged by the authors, arises because of a building Reynold
number limitation and because of the distortion  of geometrical scaling in the near fielc
and the interaction of this distortion with the velocity field near the building.
3. The experimental conditions used are intended to simulate those that oc
cur in the vicinity of the WTI incinerator site. Provide comments on whethe
the conditions used in the wind-tunnel experiments are appropriate to sim
ulate conditions at the  site.  These comments should address the followin
points:

3.1 The appropriateness of the wind-tunnel simulation practices that are use
in the study.

The wind-tunnel simulation practices used in the Fluid Modeling Branch for this stud
are. in general,  appropriate to the study.

-------
      12
     10
1
a
a
      6 ••
      4 . .
      2  .-
A  H, = 45.7m
Q  H,« 72.7m
O  Ht«120m

OPEN SYMBOLS: WIND DIR. = 305°
FILLED SYMBOLS: WIND DIR. = 125°
HALF-FILLED SYMBOLS: FLAT TERRAIN
                                       8

                                    U.m/s
                                         12
16
Figure 11.  Maximum gic versus wind speed for all configurations with buildings.
                           Figure 1

-------
  3000
  2500 ..
  2000 ••
  1500 -.
  1000 ••
   500 -.
                               \
A  H,«45.7m
D  H,« 72.7m
O  H,«120 m

OPEN SYMBOLS: WIND DIR. = 305°
FILLED SYMBOLS: WIND DIR. = 125"
HALF-FILLED SYMBOLS: FLAT TERRAIN
                                       8

                                    U, m/s
                 12
16
Figure 12.  Distance to maximum gic versus wind speed for ail configurations
           with buildings.
                           Figure 2

-------
The relevant dimensioniess parameters are noted and where possible these are modelled
correctly. It is noted in the study that some dimensioniess parameters cannot be modelled
and when this is the case arguments are produced to allow relaxation of strict modelling
conditions provided certain criteria are met.  It is then shown that either those criteria
are met or, if not, some further distortion of strict modelling is argued for, following
accepted modelling procedures.

Pouits which require further explanation follow.

    (i)  I found  the discussion on p. 20 of the Data  Report concerning the approach
       boundary layers a little unclear.

       I would prefer an explicit statement of what u,/C/oo or u./C/io, and ZQ is expected
       or measured at full scale (with ranges), then an explicit statement of what was
       obtained in the model and  how it was obtained.  This could be followed by a
       statement that the  physical modelling was deemed to be satisfactory.

       Two minor points  on the same page are:  On what  basis was  the  'somewhat
       arbitrary' choice  of d — -13mm made?  u,/U is used rather than u./I/oo, and d
       is given  as metres rather than mm.

   (ii)  I found a similar difficulty in the discussion on pp. 24 and 25 of the Data Report
       concerning the concentration measurements  for flat terrain and a comparison of
       these results with atmospheric dispersion correlations. It is not clear what the goal
       is and whether it is attained.  The difficulty is most apparent in the concluding
       two sentences of section 5.2.

       These begin "Overall, if the roughness correction method  of HGS is used...", but
       it is not  explicitly stated that the authors believe this technique to be superior to
       the conventional  PG  technique.  I believe what has been done is appropriate but
       it is incumbent on the authors to say explicitly why they have chosen a particular
       correlation for comparison rather than another more commonly used correlation.

  (iii)  The implications of the observed importance of building downwash and the sig-
       nificance of the inability to correctly model it requires  further comment. As does
       any additional complication arising due to the near field geometrical distortion
       and density distortion.  What, qualitatively, will be the effect of these  matters?
       If no guidance can be offered due to the complexity  of the problem, a specific
       statement should be made that no qualitative guidance can be offered.

  (iv)  The adequacy of the physical modelling in capturing the  marginal separation in
       the  valley near the upwind  topography must be explicitly addressed.  This may
       be of importance for  the conclusions of the study.

 3.2 The adequacy of the quality assurance/quality control practices that are
 described in  the report.

 I am uncertain what is  meant by the quality assurance/quality control procedures that
 are described in the report.  However, my observations that may be relevant are:

    (i)  The laboratory has obviously gone to considerable effort to provide an infras-
       tructure to ensure  that all the data are available,  are documented and have been
       archived in a readily  accessible way.

-------
  (ii) The laboratory undertaking the study is internationally recognised as one in which
      great care is taken in developing formalised procedures in order to  ensure the
      quality of the work coming from the laboratory. Mention  is made in the report
      of Snyder (1979) which describes the wind tunnel, and of Snyder (1981) which
      addresses the scientific basis and appropriate procedures for physical modelling.
      The latter reference is internationally recognised as the definitive document on
      this subject.
      Mention is also made of Lawson (1984) which describes the Standard Operating
      Procedures for the EPA Fluid Modeling Facility and to Shipman (1990) which
      describes the Fluid Modeling Facility Computer User's Guide.

      The existence  of these documents reflects a serious concern by the laboratory
      for an  assurance of quality and accountability in its  activities.  1 know of no
      comparable laboratories that operate with this  level of concern.

  (iii) The instruments and  the calibration procedures used are  described and  appear
      adequate and appropriate to the study.

3.3 The precision and accuracy of data collected during the study.

The instruments and calibration  procedures used are  adequate and appropriate to the
study.
I am uncertain as what is the distinction being drawn between precision and accuracy
in the measurement.
I was unable  to find  a concise, explicit statement of  the accuracy of the observations
made.   Of course this is not a simple matter and discussions on accuracy require a
careful statement of the goals.
The question of natural variability and the choice of averaging time is addressed. The
discussion here and the conclusions are appropriate. For example, a roughly 10% 'error'
(or expected variability) in the concentration measurements is accepted and this allows
for  an operational useful averaging time.
However, an explicit statement that  this is the only  'error' and that such an  error is
of no consequence  for the conclusions that are drawn from the study would have been
helpful to this reviewer.

3.4 The extent to  which  the simulations capture important factors that are
expected to lead to maximum ground-level concentrations in the vicinity of
the WTI plant due to terrain downwash.

The simulations capture most of the important factors but this reviewer would welcome
(justified) reassurance that
    (i)  the inadequacy (or not) of the physical modelling of the flow around the buildings
       would not influence the conclusions drawn from the study. Of course this is easier
       if the critical aspects of the real problem under study were more openly specified;

   (ii)  the simulation correctly captured the marginally separating flow in the valley near
       the upwind terrain or that.the exact capture of this feature of the flow  was not
       critical to the conclusions of the study.

                                       •5

-------
4. The wind-tunnel simulations were performed for neutral atmospheric sta-
bility conditions. Please comment on the appropriateness of these conditions.
The wind-tunnel simulations were intended to model neutral atmospheric conditions.
The simulations have shown that the critical wind speeds (providing the maximum, with
wind speed, of the TT"""™"™ ground-level concentration) are above 6m/s. At these wind
speeds the atmosphere will be neutrally or near-neutrally stratified. Thus the choice to
simulate neutral atmospheric conditions was appropriate, particularly when considering
the difficulties of modelling non-neutral atmospheric conditions.
These comments relate to the objectives of the study: to consider the influence of terrain
downwash. They specifically do not relate to any alternate mechanisms of obtaining high
ground-level concentrations, e.g. plume impingement under highly stable atmospheric
conditions.
5. Evaluate whether the summary statements and conclusions now logically
from the data obtained and observations made during the Study.  Also, pro-
vide suggestions as to how they might be improved to better represent the
experimental results.

5.1 Data Report
The Summary and Conclusions section of the Data Report follow logically from the data
obtained and observations made.

5.2 Project Summary
The Project Summary is an adequate summary of the Data Report. The Summary and
Conclusions section of the Project Summary are the same as those in the Data Report.
and logically follow from the data obtained and observations made.
6. Provide an evaluation of the written documents. Please address whether
they are complete, logically organized,  and written in a clear and  concise
manner.
The documents, in the main, are logically organized and written in a clear and concise
manner.
There are, however, some specific points for which more explanation would be of assis-
tance. These are listed below.
   (i) Very little useful information is provided on the background of the specific prob-
      lem being addressed. It may be intentional to decouple the scientific investigation
      from the decision-making process. This approach does present difficulties in that
      it is not clear to the reviewer  what particular issues are critical.  No scientific
      investigation of a complex problem is completely definitive and various pragmatic
      assumptions and approximations are introduced.  When trying to assess the im-
      portance of these approximations/assumptions, some guidance is required as to
      what use is to be made of the results, e.g. is the downwind extent of certain con-
      centrations the dominant issue  or is the ground area/population exposed? what

-------
      accuracy is required of the data when applied to the real problem? and many
      similar questions which arise in this reviewer's mind.

      There is little point in addressing in great detail issues that are irrelevant for the
      problem under study.  Similarly, if certain issues are critical then they warrant
      detailed scrutiny.

   (ii) On p. 5 of the Data Report the geometrical and density distortion issue is raised.
      Appeal to 'previous experience' is made.  A more specific reference or argument
      is required on this important issue.

  (iii) On p. 9 of the Data Report it is stated that "These steps...we believe, provided
      an adequate simulation of the full-scale roughness".  Some additional support for
      this statement is appropriate.

  (iv) On p. 8 of the Data Report it is stated that "However this adjustment  appeared
      to result in  an unnaturally large dip in the ceiling over the river valley. After
      considerable debate, this dip in the ceiling was removed..."  This action should be
      supported by explicit argument.

Points (ii), (iii) and (iv) are not intended to question the correctness of what has been
stated but are requests for explicit information.

   (v) Sometimes the wind direction is given as 305° and sometimes as NW.  Only one
      form of description is necessary.

  (vi) The units of C/Q are given as /xsec/m3 in the text, and as usec/m3 in several
      graphs. Both seem clumsy.

 (vii) An important issue that needs to be raised in the documents is the adequacy or
      otherwise of the physical modelling of the 'marginally separating' flow that occurs
      in the valley near the upwind topography.

      It would appear that the ground-level concentrations could be quite dependent on
      the precise nature of this flow: steady/unsteady, mean streamline pattern, turbu-
      lence changes etc. If this is the case then the ground-level concentrations could be
      sensitive to the nature of the marginal flow separation. It is not obvious that the
      non-dimensional parameters selected for physical modelling  have captured those
      that may  be relevant for marginally separating flow over 'gently sloping' topog-
      raphy. If my point is not correct then explicitly addressing  this point  will limit
      further argument.
7. Describe any significant and relevant limitations of the Study-that are not
adequately described in the documents. Please comment on whether any 01
the Study's limitations  (whether described in the document or not) signif-
icantly limit its usefulness in simulating upwind terrain-induced downwasl
from the WTI incinerator.

The principal limitation of the study that was not adequately described in the documen
concerns the adequacy or not of the physical modelling of the marginally separating flov
in the valley near the upstream terrain.  This aspect of the flow  should be  explicit!}
addressed.

-------
This aspect, and the implications of the inadequacy of the modelling of building down-
wash, may limit the usefulness of the study in simulating upwind terrain-induced down-
wash from the WTI incinerator.

The authors of the study are in a position to address both these points.

-------

-------
                            COMMENTS

                         J.V. Ramsdell, Jr.
Appendix FV-7                                               External Review Draft
                                                        Do Not Cite or Quote

-------

-------
                                                     OBatteiie
                                                          Pacific Northwest Laboratories
                                                          Battelle Boulevard
                                                          P.O. Box 999  K9-30
                                                          Richlano. Washington 99352
                                                          Telephone (509)  372-6316
June 15, 1995
Tom McCurdy
HEFRD/AREAL/ORD
USEPA MD-56
Research Triangle Park, NC 27711

Dear Tom:

My peer review of the reports sent to me related to dispersion under low wind speed and
calm conditions is enclosed.  I found that both models are technically adequate to evaluate
dispersion under low wind speed and calm conditions.  However, I  do have some
reservations about the manner in which the models were applied and conclusions drawn
from the model results. These concerns are listed in the enclosed review.

If you have any questions, please call.

Sinder^

-------
       Scientific Peer Review of Studies to Simulate Air Concentrations
   and Deposition in the Vicinity of a Hazardous Waste Incinerator under
                                Calm Wind Conditions
                                     J.V. Ramsddl, Jr.
                                  Senior Research Scientist
                            Battelle, Pacific Northwest Laboratories
                                Richland, Washington 99352

                                       June 15, 1995
I have examined the material related to diffusion in low wind speed and calm conditions provided by
the EPA Project Manager. This material included:

1)      pages 40-43 of a draft document Air Dispersion Modeling Waste Technologies Industries dated
       February 9, 1995

2)      A User's Guide for the CALPUFF Dispersion Model dated February 1995

3)      INPUFF 2.0-A Multiple Source Gaussian Puff Dispersion Algorithm User's Guide dated July
       1986

4)      "Effects of Near Calms on Air Concentration and Deposition" dated February 24, 1995.

Conclusions

1)      Both computer models are technically adequate for and capable of evaluating the effects of
       calm and low  wind speed diffusion on 1-hr, 24-hr, and annual average  concentrations.

2)      Both models are capable of treating fumigation.

3)      The comparisons of the 1-hr and 24-hr concentrations presented in pages 40-43 of Air
       Dispersion Modeling are inconclusive because no information is presented to permit isolation
       of the effects of calm and low wind speed  diffusion from differences in concentrations due to
       differences in  model  parameterizations.

4)      The ratios between the highest 1-hr and highest 24-hr concentrations presented in this
       document are  larger than expected.

5)      The use of a Pasquill-Gifford (P-G), distance-based diffusion parameterization with the
       INPUFF code is inconsistent with the purpose of the study.

-------
6)     The results of the INPUFF model are probably correct qualitatively, but the increases in the
       lower 1-yr average concentrations associated with low wind speed diffusion may be
       overestimated due to the use of the P-G diffusion coefficient parameterization rather than a
       time-based parameterization.

7)     Similarly, the increased deposition may be overestimated due to the combination of
       overestimated concentrations and overestimated deposition velocities.

General Comments

1)     Gaussian puff models are one  appropriate means  of addressing atmospheric dispersion under
       low wind speed conditions.  However, the models must be used with appropriate diffusion
       coefficient parameterizations.  Use of diffusion coefficient parameterizations that are based on
       distance travelled is not appropriate for examination of dispersion under low wind speed
       conditions; the diffusion coefficients must be based on time since release.

2)     If Gaussian puff models  are used to evaluate dispersion under low wind speed conditions and
       Gaussian plume models are  used to evaluate dispersion under windy conditions, a great deal
       of care must  be exercised to ensure that the models produce consistent results.  Given a
       common diffusion coefficient parameterization and steady-state, horizontally homogeneous
       meteorological conditions, puff and plume models should give the nearly identical
       concentration estimates.  If  different parameterizations are used for puff and plume models,
       the diffusion  parameterization for the puff model should be  adjusted to give results that are
       the same as the plume model under some standard set of conditions, for example neutral
       stability and 8 m/s wind.

Specific Comments on CALPUFF model

1)     The CALPUFF model treats diffusion in manner that is suitable for evaluation of potential
       concentrations during low wind speed conditions.

2)     Concentrations during fumigation are calculated realistically in the CALPUFF model because
       of the Lagrangian nature of the  model.

3)     The use of the usual PG curves  to estimate cry and az is inconsistent with the intent of the
       study, i.e. calculation of diffusion under  low wind speed conditions.

4)     The use of time-based diffusion coefficients is appropriate.  However, it is not clear from the
       draft report whether the time-based diffusion coefficients were corrected for initial buoyancy-
       enhanced diffusion... they should have been according to the CALPUFF User's Guide.  It is
       also not clear whether the combination of puff movement, puff dimensions and diffusion
       coefficients during low wind speed conditions are sufficiently large to ensure that the
       concentration in the air at any location (summation over all puffs) is always less than the
       concentration in the stack.

-------
5)     What is the purpose of the model? Is it to estimate an ensemble average estimate of the
       concentrations under specific sets of meteorological conditions and find the highest of those
       averages, or is it to estimate the upper bound for concentrations under specific sets of
       meteorological conditions and find the highest upper bound?  Most models seek the highest of
       the ensemble averages rather than the highest upper bound.  If the purpose of the model is to
       seek the highest ensemble average, the mminrnm values used for 
-------
        In the long run deposition flux during transient periods such as fumigation is a minor factor in
        total deposition over period longer than a few hours.  I am not sure what the relevance of a
        short-duration high deposition flux is.

 Comments on the INPUFF model

 1)      The INPUFF model  is an appropriate tool for investigating effects of calm and low wind
        speeds on concentrations.

 2)      Concentrations during periods that include fumigation are calculated naturally in the INPUFF
        model if realistic meteorological data sets are used as model input.

 3)      The generation of random wind components for hours with wind speeds of 1 m/s or less
        appears to  be a more reasonable treatment of low wind speed conditions than neglecting those
        periods or  assuming  wind direction persistence during low wind speed conditions. I'm not
        convinced that the  procedure used for the randomization is better than or more justifiable than
        any other procedure, but the differences are probably more of academic interest than of
        practical interest.

 4)      The treatment of receptors and wind fields in INPUFF is appropriate for the intended
        application.

 5)      The use of PG diffusion coefficient parameterization seems inconsistent with the intended
        model application.  This choice would appear to bias the outcome of the analysis toward high
        concentrations during low wind speed conditions.  There is sufficient information in the
        literature, including experimental data, that would indicate that calms and low winds might
        not be associated with high concentrations that it would be important not to bias the outcome
        of the analysis by selecting the P-G parameterization. The onsite scheme or some other
        scheme based on time would appear to have been more appropriate.

 6)      The model  comparison statistic called percent difference is misleading.  If A is 100% less
        than B then A = 0.

 7)      Figure 4 is much more informative than Figure 3. Figure 4 indicates that the effects of
        including calms are greater where the annual average concentrations are low than where the
        concentrations are high. It also shows that the highest annual average  concentrations with
        calms included are no higher than those without calms included.  I suspect that had a time-
        based diffusion coefficient parameterization been used there would have been less increase in
        the low concentrations than shown in Figure 4.

8)      I am not comfortable with the conclusions drawn with respect to deposition.  My first concern
        is related to the estimates of air concentrations and the choice of diffusion coefficient
       parameterizations.  If, in fact, the choice of diffusion coefficient parameterizations causes the
        concentrations to be biased to the high side,  then much of the increase in area may be
       associated with the concentration bias. The second concern is  related to the unspecified
       relationship between air concentration and deposition assumed  in generating Figures 5 and 6.
       It appears that a  constant deposition velocity has been used to estimate deposition from air
       concentration. More current models of deposition velocity indicate that deposition velocity

-------
       should be directly related to wind speed.  In other words, the low speed conditions that are
       supposed to be associated with the increase in air concentrations should also be associated
       with reduced deposition velocities.  If this is the case, the 500% increase in deposition is
       probably overestimated, even if the air concentrations are correct.

9)     A slightly modified version of the INPUFF model could be used to evaluate the effect of
       calms on the maximum 1-hr and 24 hr concentrations using the two meteorological data sets.
       Comparisons of concentrations computed with the two data sets would be more enlightening
       than comparison of the results of two different models with the same data set.

NOTE ON MODELING DIFFUSION IN LOW WIND SPEED CONDITIONS

       Gaussian puff models are not the only approach to evaluation of dispersion under low wind
       speed and calm conditions.  The assumptions made in the usual derivation of the Gaussian
       plume model eliminates the low wind speed/calm portion of the solution of the diffusion
       equation.  Heat conduction, which is described by the diffusion equation, doesn't depend on
       advection.  Thus, clearly there should be plume models that can estimate concentrations under
       all wind conditions, and there are.

       Frenkiel (1953) derived a plume model that describes low wind speed dispersion as well as
       dispersion under windy conditions.  Frenkiel's model is discussed Kao  (1984) in Equations
       (6.259) and (6.260) et seq.  This model is based on the assumption that the turbulence
       responsible for atmospheric dispersion doesn't become zero when the mean wind vector
       becomes zero.

       Frenkiel's model has the following characteristics.   Under calm conditions, the concentration
       is a function of the turbulence conditions and the distance between the source and receptor.
       The calm wind concentration is a local minimum relative to wind speed.  As the wind speed
       increases; the concentration increases; for wind speeds of a few tenths of a meter per second,
       the concentration is directly proportional to wind speed.  Finally, at high wind speeds, the
       concentration is proportional to 1/U as in the usual Gaussian plume model.   In fact, with
       appropriate assumptions, Frenkiel's model for dispersion under windy conditions becomes
       identical to the usual Gaussian plume model. Thus, there is a wind speed, which we have
       found to be of the order of 1 m/s, that gives the maximum concentration.  This maximum is
       significantly (factor of 2 to 10) lower than the concentration predicted by the usual Gaussian
       plume model for the same wind speed. In general, the concentrations predicted by Frenkiel's
       model are lower than those predicted by the Gaussian plume  model until the wind speed
       approaches 7 or 8 m/s.

       Similar behavior can be induced in the usual Gaussian plume model for wind speeds greater
       than about 0.1 m/s by using time-based diffusion coefficients provided that the turbulence
       statistics are not-permitted to approach zero as the resultant wind speed approaches zero.   One
       alternative along this line is to set a lower limit to av, ?vo, and combine the lower limit with
       formulations for  av proportional to wind speed in a in an interpolation scheme such as

                                   o, -  [0^+ (b,U)a]1/a
                                                       •
       where bv is related to surface roughness and stability.   A similar relationship can be used for

                                              5

-------
References

Frenkiel, F. N. 1953.  "Turbulent Diffusion: Mean Conconcentration Distribution in a Flow Field of
Homogeneous Turbutlence." Advances in Applied Mechanics, Vol. m, Academic Press, Inc., New.
York.

Hanna, S.R.  1990.  "Lateral Dispersion in Light-Wind Stable Conditions."  77 Nuovo Gmento
13<6):889-894.

Hanna, S.R., L.L. Schulman, R.J. Paine, I.E. Pleim, and M. Baer.  1985.  "Development and
Evaluation of the Offshore and Coastal Dispersion Model." /. Air Pollution Control Assoc.
35(10): 1039-1047.

Kao. S. K.  1984. "Theories of Atmospheric Transport and Diffusion." in Atmospheric Science and
Power Production, DOE/TIC-27601.  U.S. Department of Energy, Washington, D.C.

-------
U.S. Environmental Protection Agency
Region 5, Library (PL-12J)
n West Jackson Boulevard, 12th Fte
Chicago, IL  60604-3590

-------