-------
INDEPENDENCE
STATION
(Canal Roa WALTON HILLS
STATION 1
(Glenwillcn
Figure 30. Tributary Sampling Program.
73
-------
SIMULATION RUN DATA
A variety of simulation runs were made. These runs took into account
variations in waste load allocations where input values were altered to
reflect changes in waste load conditions (BOD and flow). The simulation
runs were used to assess the influence of alternate waste quality control
measures on the overall dissolved oxygen quality in the system.
The program is written so that the values for cross-sectional area,
flow, and BOD must be input with each simulation run. Photosynthesis, if
significant can also be input. Cross-sectional areas at the interface of
adjacent sections, where dispersion is considered, were obtained from U.S.
Army Corps of Engineers' dredging maps. Where necessary, water levels were
adjusted to late-summer, early-fall depths.
Flow within the navigation channel is relatively constant with respect
to distance. Small increases in flow occur near the upper end of the
channel due to the Ohio Canal return and, to a much lesser degree,
Morgan Run and Burke Brook. Flow data utiliz-ed in the simulations conducted
within the navigation channel are averages obtained from Havens and Emerson
(1968) and from the United States Geological Survey Water Resources Data for
Ohio (1973 and 1974). A low flow of 345 cfs and an average flow of 850 cfs
are used.
Photosynthesis, a major biological source of DO, is considered to
be insignificant within the navigation channel. Here water is turbid and it
is doubtful that any significant photosynthesis occurs except at the
surface. Chlorophyll analyses of both surface and bottom water within the
lower channel indicated no measurable chlorphyll.
BOD loadings were determined from 1970 waste load permit applications
and Ohio EPA records. All records indicated that most of the industries
within the navigation channel which discharge significant amounts of waste
were located above section 10 (m.p. 3.15). Simulation runs utilized
data from both sources. The results of these runs are presented and
compared in the following section.
The industrial loading data for the channel which are utilized in the
runs are outlined in Tables (5), (6), and (7).
74
-------
TABLE 5
Data collected from the 1970 Waste Load Permit Application Forms.
(U.S. EPA - Fairview Park, Ohio)
SECTION
1
2
4
5
MILE POINT
5.7
5.5
5.1
4.8
WASTE LOADING
(Ibs/day)
530
560
160
8540
SOURCE
J & L Steel
J & L Steel
Morgan & Burke Brooks
Republic Steel
TABLE 6
1973 Summer-Fall loading data obtained from Ohio EPA (B.Clymer - Ohio
EPA - Columbus, Ohio)
SECTION
2
4
5
8
MILE POINT
5.5
5.1
4.7
3.7
WASTE LOADING
(Ibs/day)
1437
510
9990
1602
SOURCE
J & L Steel
Morgan & Burke Brooks
Republic Steel
U.S. Steel
75
-------
TABLE 7
1978 PROJECTED SUMMER-FALL LOADINGS (B. CLYMER - OHIO EPA - COLUMBUS, OHIO)
MILE POINT* SOURCE LOADING (BOD-LB/DAY)
57.8 Lake Rockwell 124
56.8 Breakneck Creek 245
54.0 Kent STP 319
53.8 Plum Creek 49
52.3 Fish Creek 87
42.0 Little Cuyahoga 909
39.5 Mud Creek and Sand Run 438
37.2 Akron STP 6780
37.0 Yellow Creek 288
33.1 Furnace Run 89
24.2 Brandywine Creek 386
21.2 Chippewa Creek 55
19.1 Brecksville STP 425
18.5 Sagamore Creek 87
16.8 Tinkers Creek 482
15.5 Swan Creek 99
11.4 Mill Creek 139
10.8 Cleveland Southerly STP 5747
8.1 U.S. Steel 840
7.1 Big Creek 761
6.4 Republic Steel 2928
5.6 J & L Steel 1437
5.1 Morgan-Burke Brooks 300
4.7 Republic Steel 5878
3.9 U. S. Steel 1602
*Exact mile point location of outfalls and confluences may vary slightly
from source to source. -,c
/b
-------
SECTION X
RESULTS
Public Law 92-500 (Federal Water Pollution Control Act Amendments
of 1972) calls for the achievement of the best practical treatment of
waste by 1978, the achievement of the best available treatment by 1983,
and the possible elimination of all waste containing pollutants by
1985. Reduction of these waste containing pollutants should result in
improved water quality within waterways.
Although the exact extent of improvement can only be determined
subsequent to the discontinuation of discharging pollutants, a model,
such as the EMCSM-CR, is a systematic and reliable alternative to
speculating what changes and improvements might occur.
The following disucssion outlines procedures for planning a manage-
ment program tailored to the physical, hydrological, and economic cir-
cumstances of the Cuyahoga River. It also provides guidelines to promote
river water quality management techniques.
In utilizing the EMCSM-CR in a management program three questions
must be addressed:
1. How can the EMCSM-CR determine the upstream water quality
required to achieve the water quality standards set for the Cuyahoga River's
navigation channel?
2. How can the EMCSM-CR be utilized to determine the best physical
system for achieving that quality?
3. How can the EMCSM-CR assist in determining the most optimal
system for administering and managing water quality?
To answer the above questions seven (7) basic simulation runs were
made. Additional simulation runs can, of course, be made as needed.
77
-------
SIMULATION 1
The first simulation illustrates the effect of present municipal and in-
dustrial discharges on water quality during low flow conditions. It was
assumed that if all other water quality parameters remained constant or im-
proved, this simulation would represent the poorest expected water quality
profile for the navigation channel.
Section 402 of Public Law 92-500 established a National Pollutant
Discharge Elimination System (NPDES) which requires all municipalities and
industries to obtain a permit to discharge waste into waterways. A review
of the 1970 NPDES application forms established the Ibs/day waste load inputs
listed in column W on Table (8). Depth, area, flow, dispersion (DISP), waste
loads (W), benthal uptake (Sb), deoxygenation coefficient (K), and temperature
(°C) are listed for each section in Table 8. An upstream (above m.p. 6.0)
BOD of 8.0 mg/1 and DO of 3.0 mg/1 were taken from data supplied by the Ohio
EPA. A Lake BOD and DO of 6.0 mg/1 were used.
The results (figure 31) of this simulation show that discharges into
Section 2, 4, and 5 degrade water quality until the DO reaches zero in
Section 5 (m.p. 4.65). More waste is discharged into Section 8 (m.p. 3.75)
but its effect is not observed since DO has already reached zero. Based
upon this simulation run one expects the river to be anoxic from Section 5
to Section 19 (m.p. .45). At Section 19 water quality improves slightly
because of lake water intrusion.
The following simulation runs manipulate flow, BOD, and DO to illus-
strate how the model can be used as a management tool. A summary of simula-
tion runs and the variables manipulated is given in Table 9.
SIMULATION 2
Because water quality data varied from source to source a simulation
run utilizing data from another source was conducted. For this simulation
1973 Summer-Fall waste load monitoring data utilized by the Ohio EPA (Columbus)
for the navigation channel was input into our model. Table 10, column W,
shows slightly higher waste loads entering at Section 2,4, and 5. A low
flow of 345 cfs, upstream BOD of 8.0 mg/1, DO of 3.0 mg/1, lake BOD of 6.0
mg/1, and lake DO of 6.0 mg/1 were again utilized.
The results (Figure 32) of this simulation run are essentially the same
as those of Simulation (1). The DO again decreases rapidly to zero in Section
5 and remains there until the effect of lake water intrustion is felt in Section
19. There is thus little difference in water quality due to the slightly
different loadings.
78
-------
SECTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
DEPTH
0.200E+02
0.200E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
.250E+02
.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.0
0.
0.
TABLE 8
SYSTEM PARAMETERS FOR THE NAVIGATION CHANNEL
(Loading data obtained from available 1970 permit application)
AREA FLOW DISP W Sb
0.300E+04
0.350E+04
0.420E+04
0.440E+04
0.430E+04
0.900E+04
0.470E+04
0.510E+04
0.490E+04
0.550E+04
0.740E+04
0.420E+04
0.900E+04
0.620E+04
0.620E+04
0.650E+04
0.650E+04
0.450E+04
0.700E+04
0.750E+04
0.820E+04
315
315
315
345
345
345
345
345
345
345
345
345
345
345
345
345
345
345
345
345
345
0.250E+00
0.220E+00
0.220E+06
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.400E+00
0.600E+00
0.800E+00
0.100E+01
0.100E+01
0.120E+01
530
560
0
160
8540
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TEMP.
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.0
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.0
0.286E+02
0.295E+02
0.305E+02
0.307E+02
0.309E+02
0.311E+02
0.314E+02
0.313E+02
0.312E+02
0.311E+02
0.309E+02
0.306E+02
0.304E+02
0.302E+02
0.302E+02
0.295E+02
0.289E+02
0.286E+02
0.283E+02
0.280E+02
0.0
SIMULATION RUN NO. 1
-------
DISSOLVED OXYGEN (mg/1)
en
00
o
to
n>
oo
CO
3'
c
o
3
c
3
00
on
m
o
_i _j
•—i O
o
co
ro
o
I I
-------
TABLE 9
SUMMARY OF PARAMETERS MANIPULATED IN SIMULATION RUNS
SIMULATION FLOW LOADING BOUNDARY CONDITIONS*
Upstream Downstream
BOD DO BOD DO
1
2
3
4
5
6
7
*Runs 1,2,3 and 6 were conducted for the navigation channel only. Boundary
conditions were obtained from Ohio EPA. Runs 4 and 5 were conducted for the
river from mile pt. 58 to the mouth using Ohio EPA projected loadings and flow.
345
345
850
345
345
345
850
1970-permits
1973-OEPA
1973-OEPA
1978-OEPA
50% 1973
1973-OPEA
1978-OEPA
8
8
8
-
8
8
8
3
3
3
3.5
4
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
81
-------
00
ro
SECTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
DEPTH
TABLE 10
SYSTEM PARAMETERS FOR THE NAVIGATION CHANNEL
(1973 Summer - Fall Data Obtained From Ohio EPA).
AREA
FLOW
0.200E+02
0.200E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.0
0.300E+04
0.350E+04
0.420E+04
0.440E+04
0.430E+04
0.900E+04
0.470E+04
0.510E+04
0.490E+04
0.550E+04
0.740E+04
0.420E+04
0.900E+04
0.620E+04
0.620E+04
0.650E+04
0.650E+04
0.450E+04
0.700E+04
0.750E+04
0.820E+04
315
315
315
345
345
345
345
345
345
345
345
345
345
345
345
345
345
345
345
345
345
DISP
0.250E+00
0.220E+00
0.220E+03
0.220E+00
0.200E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.400E+00
0.600E+00
0.800E+00
0.100E+00
0.100E+00
0.120E+01
0
1437
0
510
9990
0
0
1602
0
0
0
0
0
0
0
0
0
0
0
0
0
Sb
TEMP
0.500E+01
0.500E+01
0.500E+01
0.500E+00
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.0
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.510E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.0
0.286E+02
01295E+02
0.305E+02
0.307E+02
0.309E+02
0.311E+02
0.314E+02
0.313E+02
0.312E+02
0.311E+02
0.309E+02
0.306E+02
0.304E+02
0.302E+02
0.302E+02
0.295E+02
0.289E+02
0.286E+02
0.283E+02
0.280E+02
0.0
SIMULATION RUN NO. 2
-------
en
X
o
o
LU
a
on
8 10 12
SECTION
o o
I I I I I I I I I I I
14 16 18 20
Figure 32. Simulation Run #2.
83
-------
SIMULATION 3
The effect of flow upon DO was tested in Simulation (3). The data used
(Table 11) were the same as those used in Simulation 2 with the exception of
flow. An average flow of 850 cfs was used as the flow in the navigation
channel. Figure (33) shows that DO begins to drop slowly until zero DO is
reached in Section 10 (m.p. 3.15).
When comparing Simulations (2) and (3), it is apparent that for identical
conditions, river water quality during low flow is greatly reduced. This is
primarily due to the low velocity and high holding time in each section during
low flow. In general, it could then be assumed that water quality in the
Cuyahoga River could be improved if the concentration of waste being dis-
charged during low flow periods is reduced. This could be accomplished by
temporarily storing the waste and releasing it when river flow is high or
by storing water in large reservoirs and releasing it as dilution water when
river flow is low.
SIMULATION 4
If the best practical treatment guidelines are met by 1978 it is ex-
pected that the DO in the navigation channel will improve. Projected 1978
waste load reductions were obtained from the Ohio EPA in Columbus for the
River from mile point 58 to the mouth. These values were input to illustrate
the degree of improvement which could be anticipated.
The same conditions were used as for Simulation 2 (flow=345 cfs) with the
exception of using OEPA projected 1978 Summer-Fall waste load data
(See Table 7).
Results are shown in Figure (34). Since all other conditions are identical
to Run #2 the trend in DO is expected to be similar. As expected, zero DO
occurs in Section 5. While water quality improves slightly as Ib/day of waste
load decreases the improvement does not appear to be very significant.
SIMULATION 5
Simulation (5) was conducted to observe how dissolved oxygen is affected
when all waste loads are decreased to 50% of 1973 values. The conditions used
for Simulation (5) were thus the same as those used for Simulation (4) with
the exception of waste loads. The results of this simulation are compared
in Figure 35 with those of Simulation 2 and 4.
SIMULATION 6
Improving water quality in the navigation channel by further improving
upstream water quality was examined in Simulation 6. Entering BOD was 8.0
mg/1 as before; however, DO concentration entering the channel was assumed to
84
-------
00
en
SECTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
DEPTH
0.200E+02
0.200E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.250E+02
0.0
TABLE 11
SYSTEM PARAMETERS FOR THE NAVIGATION CHANNEL
(1973 Summer - Fall Data Obtained From Ohio EPA).
AREA
FLOW
0.300E+04 820
0.350E+04 820
0.420E+04 820
0.440E+04 820
0.430E+04 850
0.900E+04 850
0.470E+04 850
0.510E+04 850
0.490E+04 850
0.550E+04 850
0.740E+04 850
0.420E+04 850
0.900E+04 850
0.620E+04 850
0.620E+04 850
0.650E+04 850
0.650E+04 850
0.450E+04 850
0.700E+04 850
0.750E+04 850
0.820E+04 850
DISP
0.250E+00
0.220E+00
0.220E+03
0.220E+00
0.200E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.400E+00
0.600E+00
0.800E+00
0.100E+00
0.100E+00
0.120E+01
W
0
1437
0
510
9990
0
0
1602
0
0
0
0
0
0
0
0
0
0
0
0
0
Sb
TEMP
0.500E+01
0.500E+01
0.500E+01
0.500E+00
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.500E+01
0.0
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.510E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.150E+00
0.0
0.286E+02
01295E+02
0.305E+02
0.307E+02
0.309E+02
0.311E+02
0.314E+02
0.313E+02
0.312E+02
0.311E+02
0.309E+02
0.306E+02
0.304E+02
0.302E+02
0.302E+02
0.295E+02
0.289E+02
0.286E+02
0.283E+02
0.280E+02
0.0
SIMULATION RUN NO. 3
-------
DISSOLVED OXYGEN (mg/1)
00
id
c:
(D
GO
CO
oo
3'
c
CU
<-h
«j.
O
3
73
3
OO
ro
oo
oo
m
o
HH O
O
ro
oo
ro
O
ro
CTi
-------
CO
to
n>
oo
i"
3
=tfc
ro
CO
00
m
o
DISSOLVED OXYGEN (mg/1)
ro
I I I
ro
CTl
oo
ro
o
-------
DISSOLVED OXYGEN (mg/1)
ro
CO
cn
CT)
00
00
Id
ro
CO
cn
o
o
TD
QJ
-I
CO
_j,
3
o>
70
c
3
=t*=
cn
rt-
3"
co
«J.
3
o
3
3
in
o>
3
Q.
ro
00
CO
m
o
HH O
O
ro
00
ro
o
~-J CO
O I I
-h O O
m m
— < -o -o
i£> 3> 3>
•-j
CO "O I —
I -5 O
O O Q)
m c_i. Q.
~O 05 -".
3= O 3
O O
DJ 3
Q. CO
CO
3
=«:
=4fc
=*fc
cn
-------
be 5 mg/1. With a low flow of 345 cfs in the channel, DO drops to zero in
Section 7 (mile point 4.05) and remains there until intruding lake water
causes it to rise in sections 19 and 20 (see Figure 36). From the results of
this simulation it is estimated that upstream water with greater then 9 mg/1
DO would be required to prevent a sag to zero within the navigation channel
at^ low flow.
SIMULATION 7
Simulation 7 was run to test the combined effects of improved upstream
water quality (entering DO = 5 mg/1, BOD = 8 mg/1), reduced loadings (1978
projections), and augmented flow (850 cfs). Under these combined conditions DO
drops slowly reaching a low of 0.35 mg/1 at mile point 1.35 (Section 16)
(See Figure 37). Thus a combination of improved upstream water quality, re-
duced waste loading, and increased flow produce a significant improvement in
DO concentrations within the channel.
UTILIZING THE TRANSFER MARTIX
As Model II calculates the DO deficit response for each section, the DO
drop for each section is computed and listed in a tabular format (See Table 12).
The changes in DO from one section to another resulting from variations in
waste load allocations can thus be directly and quickly determined from the
matrix shown in Table 12 (The complete Tranfer Matrix is illustrated in the
User's Guide - Appendix C).
As an example in the use of this matrix consider the DO profile for the
channel shown on Figure 38 as "1973 channel loadings". This profile results
from a flow of 900 cfs in the channel, a DO of 4.4 mg/1 and a BOD of 8.0 mg/1
for water entering the channel, and the waste loadings shown in Table 8.
Suppose that Republic Steel and U. S. Steel were to reduce their waste
loadings to zero. This would result in a removal of approximately 10,000 Ibs/
days of waste from Section 5 (Republic Steel) and a removal of approximately
1,600 Ibs/day from Section 8 (U.S. Steel).
Table 12 indicates the decease in DO (Sections 1-20) resulting from waste
inputs to Sections 1-10. It also can be interpreted to read the increase in
DO in Sections 1-20 resulting from waste reductions in Sections 1-10. Thus
a 10,000 Ib/day waste removal from Section 5 would result in the increases
in DO shown in Column 2 of Table 13 (taken directly from Table 12). A
removal of 1600 Ibs./day of waste from Section 8 would produce the response
shown in Column 3 of Table 13 (obtained by taking the values from Table 12
and multiplying each by 1600/10000 = .16).
The total response is shown as the sum of the two responses in Column 4
89
-------
10
CD
=fl=
CO
m
o
00
00
t\>
o
DISSOLVED OXYGEN (mg/1)
CO
£=
CD
oo
00
3'
{=
.^
DJ
r+
_i.
O
3
70
-------
X
o
o
LU
3 2
o
c/o
I—I
a
I I I I I I I I I I I
8 10 12
SECTION
14
16
18
20
Figure 37, Simulation Run #7.
91
-------
TABLE 12
(Transfer Matrix)
DROP IN DO (mg/1) FOR SECTIONS 1-20 WHEN A WASTE LOAD OF 10,000 LBS/DAY OF BOD
IS DISCHARGED INTO ANY ONE SECTION BETWEEN 1 AND 10
Section
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
LAKE
1
-
-
-
0.12
0.15
0.17
0.19
0.22
0.24
0.27
0.28
0.31
0.32
0.34
0.36
0.36
0.34
0.26
0.18
-
6.0
2
-
-
-
0.11
0.15
0.17
0.20
0.23
0.26
0.29
0.31
0.34
0.36
0.38
0.40
0.41
0.39
0.29
0.20
0.10
6.0
3
-
-
-
-
0.13
0.15
0.19
0.22
0.26
0.29
0.32
0.35
0.37
0.40
0.42
0.43
0.41
0.31
0.22
0.11
6.0
4
-
-
-
0.04
0.09
0.12
0.16
0.19
0.23
0.26
0.29
0.32
0.35
0.38
0.40
0.41
0.40
0.30
0.21
0.10
6.0
5
-
-
-
-
0.08
0.12
0.18
0.24
0.29
0.35
0.39
0.45
0.49
0.53
0.57
0.59
0.57
0.44
0.30
0.15
6.0
6
-
-
-
-
0.03
0.08
0.14
0.20
0.26
0.32
0.37
0.43
0.46
0.51
0.56
0.58
0.56
0.43
0.30
0.15
6.0
7
-
-
-
-
-
-
0.05
0.09
0.14
0.18
0.22
0.26
0.29
0.32
0.36
0.58
0.37
0.28
0.20
0.10
6.0
8
-
-
-
-
-
-
-
0.05
0.09
0.14
0.18
0.23
0.26
0.30
0.34
0.36
0.35
0.27
0.19
0.09
6.0
9
-
-
-
-
-
-
-
-
0.05
0.10
0.14
0.19
0.23
0.27
0.31
0.33
0.33
0.26
0.18
0.09
6.0
10
-
-
-
-
-
-
-
-
-
0.07
0.12
0.19
9.23
0.28
0.34
0.37
0.37
0.29
0.20
0.10
6.0
92
-------
DISSOLVED OXYGEN (mg/1)
en
CO
IQ
CO
oo
0) (/>
CU
_u
— • o
O -h
o
CU —i
rt -S
-j. CU
O 3
3 tn
CD
O
O
-s
C -"•
T3 X
-S
n>
EU
.0 O
C rt
P) 3-
— ' fD
<< o
o n>
S >
II r+
co n>
en
o —•
o
o cu
-h CL
t/l
en
"O CO
O
rv>
O
rt
I o
O O
-+>
co
rt —'
fD O
n> o
3 CU
Q. (
•ff
co —«
• o
CU
CO Q.
rt
fD -S
CD fD
—• Q.
• c
o
rt-
-------
TABLE 13
Section
1
2
3
4
5
6
7
8
10
11
12
13
14
15
16
17
18
19
20
Increase in DO due to
removing 10,000 Ibs/day
waste from Section 5
-
-
-
-
0.08
0.12
0.18
0.29
0.35
0.39
0.45
0.49
0.53
0.57
0.59
0.57
0.44
0.30
0.15
Increase in DO due to
removing 1,600 165 Ibs/day
from Section 8
-
-
-
-
-
-
-
0.022
0.029
0.034
0.042
0.046
0.052
0.058
0.061
0.059
0.045
0.031
_
Total
increase
-
-
-
-
0.08
0.12
0.18
0.24
0.38
0.43
0.49
0.53
0.58
0.63
0.65
0.63
0.48
0.33
0.15
94
-------
of Table 13 and as the line Tabled improved conditions in Figure 38.
These operations allow a decision maker to immediately assess the results
of a hypothetical waste load allocation without running the model. In addition
the matrix immediately indicates that Section 16 is the most sensitive region
of the channel and will receive its maximum effect (a drop in DO of 0.59 mg/1)
when 10,000 Ibs/day of waste is discharged into Section 5.
UTILIZING SIMULATIONS 1-7 AS A MANAGEMENT TOOL
By Utilizing Simulations 1-7 it is possible to answer the three questions
presented on page 77.
Question 1: How can the EMCSM-CR determine the upstream water quality
required to achieve the water quality standards set for
the Cuyahoga River's navigation channel?
Answer 1: In order to maintain the standards set for the river, water
quality in sections 14-16 must be controlled. Therefore, up-
stream flow, BOD, DO, and waste inputs must be manipulated
until an acceptable DO is obtained in Sections 14-16. Simulations
1-7 demonstrate the expected changes which would occur when
manipulating each of these parameters. Additional manipulations
require only changing the input data.
Question 2: How can the EMCSM-CR be utilized to determine the best
physical system for achieving that water quality?
Answer 2: Once the desired DO level is obtained in Sections 14-16, one must
simple determine the most economic or most efficient means for
effectuating the required changes. For example, if flow is
doubled and BOD is decreased by half then one must decide how
to double the flow and decrease the BOD. Such alternatives
as storing dilution water to augment flow, eliminating all dis-
charges, and etc. must be approached from an economical point of
view, however, the response to using combinations of the different
alternatives can be observed from the model.
Question 3: How can the EMSCM-CR assist in determining the most optimal
system for administering and managing water quality?
Answer 3: The Transfer Matrix (Table 12) provides an excellent tool for
determining the most optimal locations for outfalls and the
most optimal waste load inputs because this matrix points out
the sections which can least tolerate and most tolerate a
waste load. With the assistance of the Transfer Matrix many
management decision can be made.
95
-------
COMPARING MODEL II (STEADY-STATE) OUTPUT WITH A TIME-VARIANT MODEL OF THE
NAVIGATION CHANNEL.
A comparison of the results from the steady-state model simulation with
the five day results from a time-variant model simulation (Ramm 1975) is
illustrated in Table (14). System parameters used for these simulations were
the same as those used to simulate Figure (29), with the exception of flow
which was 700 cfs.
The simulated results of the time-variant model answered two important
questions which could not have been answered by the simulated results of the
steady-state model. These questions were:
1. How long does it take the Cuyahoga River to achieve an approximate
steady-state under constant waste loading?
2. What effect does the inability of the model to simulate the absence
of BOD at zero DO have upon the system output?
To answer the above questions simulations ulitizing the system parameters
from Table 10 were made. Results of a five day simulation are shown in the
column labeled "Standard Run" in Table (14). From this Table it can be seen
that the system essentially reaches steady-state in five days. This time
period is short enough to justify the use of steady-state values in the in-
terpretation of water quality in the lower Cuyahoga River.
An additional time-variant simulation run was conducted in which the de-
oxygentation coefficient (K-j = 0.15/day; base) was set to zero whenever DO reached
zero and was reset to 0.15/day when DO returned to a positive value. The
results of this run are shown in the column labeled "Feedback Included" (See
Table 14). In general, it was found that the effect of including feedback did
not significantly change the five-day profile. Including feedback did result
in a positive DO value near m.p. 1.0 rather than m.p. 0.5. The "Feedback
Included" values are therefore in slightly closer agreement with the measurements
made in the lower one mile of the navigation channel than are values resulting
from the steady-state simulation. However, the run time for the five day
simulation is approximately eight minutes on an IBM 370 computer (approximately
$40.00). This compares with a run time of approximately 30 seconds ($2.50) for
the steady-state model. In the Cuyahoga River application it is clear that
the marginal gain in information is far outweighed by the considerable increase
in cost.
96
-------
TABLE 14
COMPARISON OF RESULTS FROM THE STEADY-STATE MODEL SIMULATION
WITH FIVE DAY RESULTS FROM THE TIME-VARIANT MODEL SIMULATION
(NUMBERS REPRESENT MG/L DISSOLVED OXYGEN)
TIME-VARIANT
MILE POINT
5.85
5.55
5.25
4.95
4.65
4.35
4.05
3.75
3.45
3.15
2.85
2.55
2.25
1.95
1.65
1.35
1.05
0.75
0.45
0.15
STEADY-STATE
4.14
3.74
3.04
2.73
2.06
1.71
1.32
1.00
0.64
0.17
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.25
1.03
STANDARD RUN
4.10
3.67
2.99
2.71
2.15
1.85
1.44
1.11
0.76
0.38
0.10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.66
1.44
FEEDBACK I!
4.14
3.74
3.04
2.73
2.06
1.71
1.32
1.01
0.65
0.22
0.00
0.00
0.00
0.00
0.00
0.00
0.07
0.42
0.82
1.30
97
-------
SECTION XI
SUMMARY
Through an understanding of the many complex physical, chemical,
and biological events occurring simultaneously within the system, the
EMCSM-CR has demonstrated its ability to simulate the dissolved oxygen
profile in the river by using mathematical procedures. The oxygen
profiles resulting from use of the EMCSM-CR, when compared with field
measurements, provided a reasonable fit and gave reliable estimates of
the dynamic behavior of the discharged wastes and the stream (See Figure 29),
The EMCSM-CR, therefore, allows a water planner to assess the im-
pact of alternate water quality control measures on the river system
by varying the treatment levels at each discharge point and the water
quality conditions in Lake Erie at its mouth. By increasing flow while
holding discharge constant the model can also estimate the volume of
dilution water required to meet dissolved oxygen standards in the
river.
99
-------
SECTION XII
REFERENCES CITED
Bella, D.A. and W. Dobbins. Difference Modeling of Stream Pollution.
J. San. Eng. Dtv. ASCE, 94:955. 1968.
Cleveland Daily Plain Dealer. Vol. XXIV, #110. Wednesday, May 5, 1868.
p. 3.
Cooke, G.D. The Cuyahoga River Watershed. (Proceeding of a Symposium
held at Kent State University, Kent, Ohio. November 1, 1968.) p. 83-
85.
Cuyahoga River Stream Pollution Survey. (Field notebook found in G.
Garrett's file cabinet at OEPA, Columbus, Ohio. 1947.)
Da,Hon, Dal ton & Little. Industrial Waste Survey Program for the Lower
Cuyahoga Rtver. Cleveland, Ohio. January 1971,
Fischer, H.B. A Lagrangian Method for Predicting Pollutant Disposal in
Boljnas Lagoon, California. Biological Survey - Water Resources
Division, Menlo Park, California. 1969.
Garlauskas, A.B. Water Quality Baseline Assessment for Cleveland Area-
Lake Erie. Volume I-Synthesis. U.S. Environmental Protection Agency,
Chicago, Illinois. Publication Number EPA - 905/9 r. 74 - 005. May 30,
1974. 158 p.
Garrett, G. Cuyahoga River Model. Ohio Environmental Protection Agency,
Columbus, Ohio. 1974 (unpublished edition).
Great Lakes Water Quality Board. Great Lakes Water Quality <- Annual
Report to the International Joint Commission, April 1973. 315 p.
Grenney, W.J, and D.A. Bella. Field Study and Mathematical Model of the
Slack-Water Buildup of a Pollutant in a Tidal River. Limnology and
Oceanography. 17(2):229. 1972.
Havens & Emerson, Master Plan for Pollution Abatement. City of
Cleveland, Ohio. July 1968.
101
-------
Havens & Emerson. A Plan for Water Quality Management in the Central
Cuyahoga Basin. Three Rivers Watershed District, Clevelan, Ohio. 1970.
Havens & Emerson. Water Quality Assessment and Basin Modeling - Rocky
River and Tinker's Creek. Three Rivers Watershed District, Cleveland,
Ohio. February 1974.
Hetling, L. J. and R. L. O'Connell. A Study of Tidal Dispersion in the
Potomac River. Water Resources Research 2 (4):825. 1966.
Northington, C. W. Lake Erie - Sick, Dying, or Well. Lake Erie Field
Station Report. March 28, 1965. 16 p.
O'Connor, D. J. Estuarine Distribution of Non - Conservative Substances.
Jour. San. Eng. Div. ASCE. Vol 91. No. SA 1. February 1965. p.23.
O'Connor, D. J. et al. Dynamic Water Quality Forecasting and Management.
Environmental Protection Agency. Publication Number 600/3 - 73 - 009.
August 1973.
Ohio Dept. of Health. Report of Water Pollution - Study of Cuyahoga
River Basin 1954 - 1956. Sewage and Waste Unit, Columbus, Ohio. August
1960.
Ohio Dept. of Health. Deoxygentation Study - Cuyahoga River. Columbus,
Ohio. 1965.
Ohio Enironmental Protection Agency. Ohio Surface Water Monitoring
Program. Division of Surveillance, Twinsburg, Ohio. 1974.
Ramm
, A. E. A Time-Variant Model of the Cuyahoga River. 1975 (Unpublished)
Schroeder, M.E. and C. R. Collier. Water Quality Variations in the
Cuyahoga River at Cleveland, Ohio. U.S. Geological Survey Prof. Paper
Number 550 - C. 1966. p. C251 - C255.
Stanley Engineering Company. Report on Water Quality and Use. Three
Rivers Watershed District, Cleveland, Ohio 1966.
Streeter, H.D. and E. B. Phelps. U.S. Public Health Service, Washington,
D. C. Public Health Bulletin 146. 1925.
Thomann, R. V. System Analysis and Water Quality Management. New York.
Environmental Science Services Division, 1972. 286 p.
U. S. Army Corps of Engineers. A Pilot Wastewater Management Program
for Chicago, Cleveland, Detorit, San Francisco, and Merrimack Basin.
Office, Chief of Engineers. March 1971.
102
-------
U. S. Army Corps of Engineers. Wastewater Management Study: 1970. Corps
of Engineers, Buffalo, New York. August 1973. 207 p.
U. S. Department of Interior, Lake Erie Report - A Plan for Water
Pollution Control. Federal Water Pollution Control Administration,
Great Lakes Region. Publication Number GPO - 808 - 895 - 6. August
1968. 107 p.
U. S. Department of Interior, Water Resources Data for Ohio. 1973.
U. S. Department of Interior, Water Resources Data for Ohio. Part 1.
Surface Water Records. 1974.
Winslow, J. D., G. D. White, and E. E. Webber. The Water Resources of
Cuyahoga County Ohio. U.S. Geological Survey Water Resources Divison,
Columbus, Ohio. Bulletin Number 26. August 1953.
103
-------
APPENDIX A
Ohio EPA - Regulation EP-1- Water Quality Standards
(Dissolved Oxygen Standards which apply to the Cuyahoga River)
EP-1-02 General Standard
Except as other regulations in this Chapter, EP-1, establish different
standards, the water quality standards of the state shall be as follows.
(C) Dissolved oxygen shall not be less than a daily average of
5.0 mg/1 nor less than 4.0 mg/1 at any time.
FOR AQUATIC LIFE (WARM WATER FISHERY)
The following criteria are for evaluation of conditions for the maintenance
of a well-balanced, warm-water fish population. They are applicable at any point
in the stream except for the minimum area necessary for the admixture of waste
effluents with stream water:
1. Dissolved Oxygen: Not less than an average of 5.0 mg/1 per
calendar day and not less than 4.0 mg/1 at any time.
EP-1-09 Lower Cuyahoga River-
(A) The water quality standards in the Lower Cuyahoga River shall
be the the water quality standards in regulation EP-1-02,
except that, to the extent that subsequent provisions of this
regulation, EP-1-09, established different standards, the
latter standards shall apply:
(1) In that portion of the Cuyahoga River extending
from the confluence of the Cuyahoga River and Big
Creek to the mouth of the Cuyahoga River,
(a) The dissolved oxygen standards in EP-1-02 (C)
need not be met during the months of July,
August, September, and October.
105
-------
-------
APPENDIX B
ANALYTICAL RESULTS: CUYAHOGA RIVER SAMPLING
CUYAHCXA RIVER
CHEMICAL ANALYSES
DATE
Station 1 Station 2
Surface 8m. Surface 8m.
Station 3
Surface
Depth (feet)
Station 4 Station 5 Station 6
Surface 8m. Surface 8m. Surface 8m.
9/05/73
9/12/73
9/19/73
9/28/73
10/11/73
10/18/73
10/25/73
—
35
35
33
35
—
34
—
35
35
33
35
—
34
—
35
27
33
32
—
25
—
35
27
33
32
—
25
—
32
27
25
25
30
32
9/05/73
9/12/73 6-10 6-10 6rlO 6-10
9/19/73 10-12 10-12 15-19 15-19
9/28/73 4-6 4-6 1-3 1-3
10/11/73 8-10 8-10 0-2 0-2
10/18/73
10/25/73
Wind (mph)
4-8
6-8
4-6
2-4
25
28
28
26
30
25
2-6
2-8
2-4
4-6
25
28
28
26
30
25
2-6
2-8
2-4
4-6
20
25
36
26
25
25
6-10
6-10
2-4
2-4
20
25
36
26
25
25
6-10
6-10
2-4
2-4
27
30
30
30
23
29
0-2
3-4
2-4
2-4
27
30
30
30
23
29
0-2
3-4
2-4
2-4
Chemical Oxygen Demand (mg/1)
9/05/73
9/12/73
9/19/73
9/28/73
10/11/73
10/18/73
10/25/73
17
52
15
7
6
23
20
38
13
7
14
27
16
49
22
10
17
24
30
27
38
42
10
12
30
13
38
42
20
21
32
30
Water Tanperature
9/05/73
9/12/73
9/19/73
9/28/73
10/11/73
10/18/73
10/25/73
28.0
22.5
23.0
23.0
23.0
—
19.0
23.0
22.5
21.5
20.5
19.5
—
16.0
28.0
25.0
25.0
27.0
23.0
18.0
19.0
23.0
23.0
22.0
24.0
20.0
18.0
16.0
24.0
23.0
21.0
26.0
22.0
18.0
18.0
77
56
48
13
19
20
16
27.0
25.5
25.0
29.0
23.5
19.0
66
49
55
13
22
7
27
23.0
23.5
22.0
25.0
21.0
17.5
28
38
110
20
24
26
16
27.5
25.5
29.0
24.0
21.0
77
59
48
0
28
19
30
26.0
23.0
26.0
23.0
20.0
63
45
48
0
36
22
16
28.0
26.0
30.0
24.0
22.0
70
45
75
129
29
19
23
29.0
25.0
23.0
26.0
23.0
21.0
21.0 16.5 22.0 17.5 22.5 18.0
107
-------
DATE
CUYAHOGA RIVER
CHEMICAL ANALYSES
Station 1 Station 2 Station 3
Surface 8m. Surface 8m. Surface
Station 4 Station 5 Station 6
Surface 8m. Surface 8m. Surface 8m.
Suspended Solids (mg/1)
9/05/73
9/12/73
9/19/73
9/28/73
10/11/73
10/18/73
10/25/73
17
17
17
14
26
—
6
22
27
6
22
21
—
12
14
23
14
19
18
12
36
16
27
14
64
25
—
104
11
18
11
71
50
19
7
22
14
10
23
32
11
5
21
22
13
121
45
32
26
18
15
61
31
24
12
5
33
91
23
29
95
41
12
—
20
16
33
57
9
12
34
19
27
23
57
21
17
Total Solids (mg/1)
9/05/73
9/12/73
9/19/73
9/28/73
10/11/73
10/18/73
10/25/73
499
454
433
467
531
537
299
380
398
545
552
543
520
498
523
612
550
473
512
282
454
475
429
381
532
343
493
445
811
592
1035
743
403
507
550
588
555
505
600
471
434
519
601
533
463
627
541
583
562
636
534
503
600
377
618
554
540
555
497
585
708
589
607
608
590
535
612
428
558
608
708
564
512
608
Nitrate (mg/1)
9/05/73
9/12/73
9/19/73
9/28/73
10/11/73
10/18/73
10/25/73
7.5
6.5
2.8
3.3
23.5
5.4
3.0
7.0
21.0
3.5
7.3
4.6
5.5
5.8
2.3
5.3
23.0
4.8
5.9
2.0
23.0
2.8
3.8
10.8
5.3
Dissolved
9/05/73
9/12/73
9/19/73
9/28/73
10/11/73
10/18/73
10/25/73
2.4
3.6
3.2
1.4
3.6
5.8
6.5
5.2
11.4
4.8
7.2
3.7
.6
1.5
1.4
1.0
4.8
4.2
4.8
2.0
5.0
4.8
5.2
4.2
5.4
4.5
7.0
2.8
5.3
23.8
3.8
7.2
Oxygen - Field
3.5
4.2
5.6
1.8
1.0
2.6
1.6
4.5
7.5
3.5
5.3
23.0
4.6
9.2
(mg/1)
_^_
1.0
1.4
1.2
1.2
3.4
1.0
5.0
7.5
3.8
3.0
21.5
5.4
8.6
___
1.3
4.4
3.6
3.0
6.4
4.2
26.5
9.0
4.0
29.5
5.5
5.3
8.7
r
.6
.9
1.4
1.0
2.2
1.0
5.0
9.5
3.4
2.9
21.8
5.8
7.1
___
1.0
2.2
3.8
0.9
2.8
4.0
8.5
11.0
3.8
5.4
5.3
7.0
0.6
3.2
0.5
1.0
1.0
1.6
0.8
7.0
30.5
2.9
3.5
30.5
5.9
8.7
_»_
3.0
3.2
2.6
1.0
2.2
3.6
108
-------
RIVER
CHEMICAL ANALYSES
DA1E
9/05/73
9/12/73
9/19/73
9/28/73
10/11/73
10/18/73
10/25/73
9/05/73
9/12/73
9/19/73
9/28/73
10/11/73
10/18/73
10/25/73
Station 1
Surface 8m.
210
660
680
520
7.1
6.9
7.8
7.4
6.7
7.0
170
545
660
810
7.6
7.2
7.6
7.5
6.7
7.3
Station 2 Station 3 Station 4
Surface 8m. Surface Surface 8m.
Conductivity - Field (Micromhos)
750
850
890
780
600
7.4
6.8
7.5
7.3
6.8
7.6
7.5
565
710
250
440
700
ph-
7.6
6.9
7.6
7.6
7.1
6.9
12
740
950
850
170
Laboratory
7.4
6.9
7.6
7.3
6.6
7.6
6.9
___
800
860
950
800
800
6.9
6.7
7.5
7.2
6.9
7.5
6.8
690
840
750
760
750
7.0
7.0
7.5
7.4
6.9
6.8
7.0
Station 5
Surface 8m.
900
930
950
790
710
7.2
6.6
7.5
7.2
6.7
7.5
6.9
___
775
900
590
800
600
7.0
6.7
7.5
7.4
6.8
6.4
6.8
Station 6
Surface 8m,
950
960
520
680
800
7.5
6.7
7.5
7.2
6.8
7.5
6.9
___
850
950
380
800
710
7.2
7.5
7.5
7.3
6.5
6.7
7.0
Chloride (mg/1)
9/05/73
9/12/73
9/19/73
9/28/73
10/11/73
10/18/73
10/25/73
9/05/73
9/12/73
9/19/73
9/28/73
10/11/73
10/18/73
10/25/73
110
89
68
89
77
—
99
491
435
431
424
530
506
52
76
58
76
81
—
98
279
394
400
439
570
511
111
98
86
104
81
61
86
490
499
504
569
564
430
461
51
89
74
63
51
—
94
Dissolved
264
456
459
369
375
484
81
109
74
165
84
283
177
Solids (mg/D
365
517
464
717
564
965
704
76
117
84
99
81
63
108
401
506
545
600
544
444
581
101
98
86
87
81
55
103
463
448
534
473
549
390
587
116
114
92
97
77
68
103
502
511
572
634
553
477
592
79
117
92
106
77
64
106
326
490
537
525
553
420
586
96
122
96
93
73
73
97
552
586
574
557
593
605
81
118
92
110
72
64
104
410
528
603
567
576
458
605
109
-------
CDYAHOGA RIVER
CHEMICAL ANALYSES
DATE
Station 1 Station 2 Station 3
Surface 8m. Surface 8m. Surface
Station 4 Station 5 Station 6
Surface Surface 8m. Surface 8m.
9/05/73
9/12/73
9/19/73
9/28/73
10/11/73
10/18/73
10/25/73
9/05/73
9/12/73
9/19/73
9/28/73
10/11/73
10/18/73
10/25/73
9/05/73
9/12/73
9/19/73
9/28/73
10/11/73
10/18/73
10/25/73
7
9
10
50
10
-
34
13
12
59
62
49
-
105
0
1.34
1.34
0.70
1.96
-
0
5
13
38
54
6
-
120
15
13
59
51
83
-
85
.32
0.67
3.17
0
1.68
-
0
5
10
58
56
21
0
24
9
13
60
57
77
9
125
0.72
1.68
1.19
0
2.66
1.79
.69
5
7
44
56
5
-
140
7
15
62
59
87
-
186
0.48
5.82
1.23
0
1.68
-
.96
5
14
41
55
13
4
28
BOD-, (mg/1)
8
15
61
59
94
14
184
ORGANIC NITROGEN
0.56
0
0.90
0.07
2.80
2.46
.72
6
14
57
55
8
3
70
14
14
64
59
79
16
135
5
13
48
58
6
4
6
13
15
62
60
65
15
183
10
12
53
57
16
2
6
13
10
60
54
78
15
160
5
11
42
38
6
2
5
13
14
61
59
75
19
123
90
11
44
66
15
2
7
.2
13
55
68
80
15
112
4
10
53
44
15
3
113
14
15
61
59
77
17
171
(mg/1)
0.64
0
0.90
0
1.26
.11
1.44
1.34
0
2.46
0.05
1.05
2.13
2.24
0.77
0
3.02
0
.44
2.46
0
0.90
0
0
0.14
4.69
1.79
0
1.18
1.52
0
5.10
.22
0
0
1.01
0.70
0
3.29
2.66
0
0
AMCNIA NITROGEN (mg/1)
9/05/73
9/12/73
9/19/73
9/28/73
10/11/73
10/18/73
10/25/73
3.92
3.58
2.02
.77
.70
-
1.32
.16
.90
.84
.35
.90
-
1.84
1.6
3.47
3.09
1.75
3.22
0
3.20
.24
8.06
1.23
1.40
4.70
-
3.20
.56
.56
1.34
.42
2.59
2.13
4.24
110
3.84
2.35
2.46
.14
3.01
.67
5.76
5.66
1.01
1.46
.49
3.85
.45
4.16
3.85
3.02
2.80
.21
2.69
6.16
4.80
2.24
.11
2.91
1.40
3.64
.90
4.48
2.91
4.70
6.38
1.40
2.69
6.07
4.27
2.91
2.45
6.80
1.05
4.55
1.19
1.89
-------
APPENDIX C
USER'S MANUAL - STEADY STATE MODELS
PURPOSE
The function of the steady state model package is to provide a means
for assessing the effect of waste loadings of CBOD to the Cuyahoga River
upon the coupled CBOD - DO system in the river. The package has been designed to
utilize a Streeter-Phelps non-dispersive approach above the navigation channel
and a dispersive approach within the navigation channel. The model's output
provides a transfer matrix table for the navigation channel which is useful
in making decisions regarding waste load allocations.
This manual is designed to aid the user in inputing data to and inter-
preting output from the model. The mode is written to be compatible with all
computers utilizing fortian IV (level G) language.
Ill
-------
TABLE OF CONTENTS
Program Abstract 113
Proaram Description 114
Program Flowchart 115
Input Format 117
Program Listing with Documentation 122
Output Interpretation 129
Program Output 132
Restrictions 141
112
-------
PROGRAM ABSTRACT
Title: CUYAHOGA RIVER STEADY STATE WATER QUALITY MODEL
Author Organization:
Direct Inquiries to:
Summary Information:
ECO-LABS, INC.
1836 Euclid Avenue
Cleveland, Ohio 44115
Dr. Eugene M. Bentley, III
ECO-LABS, INC.
1836 Euclid Avenue
Cleveland, Ohio 44115
Input - Card
Output - Printed Report
Run Frequency - Upon Request
Storage Requirement - 20K
Language: Fortran IV-G Level
Original System: IBM 360/70
113
-------
PROGRAM DESCRIPTION
The Cuyahoga River Steady State Water Quality Model was developed
specifically for the United States Environmental Protection Agency. It
provides management information concerning dissolved oxygen levels in
the river under varying conditions of flow and CBOD. The model's program
is divided into two sections.
Section One, which is optional, permits input of waste loadings and
associated river parameters at any point or series of points downstream
from the river's source (m.p. 100.1) to the head of the river's
navigation channel Cm.p. 6.0). Utilizing a Streeter-Phelps equation set,
the program evaluates the CBOD and DO deficit concentrations downstream
from the waste outfall.
Section Two utilizes a finite - difference approach to simulate
the CBOD - DO deficit concentrations within the navigation channel.
Longitudinal dispersion is included in this section.
Output is in the form of tables and charts.
114
-------
PROGRAM FLOWCHART
115
-------
PROGRAM FLOWCHART
Calculate BOD & DO
Deficit Distribu-
tion Using Streeter
-Phelps Equations.
Are
here Any
Inputs Above
M.P. 6.0?
Input
Upstream
Parameters
Start
Calculate
Values Entering
Mile Point 6.0
NO
/Input Stream 1
Parameters forl
M.P. 6.0 to I
Mouth I
Calculate The Tri-
Diagonal Transfer
Matrices for BOD (A
And DO Deficit (B).
/Print Out \
U) And (B) I
Calculate Inverse
Matrices (A)-1 And
(B)~1 And Compound
Steady-State Trans-
fer Matrix.
/ Print Out\
/(A)"1 And tBJ'H
/And Steady-State!
/ Matrix. \
Calculate Steady-
State Profiles For
BOD And DO Deficit
Print
Out
Profiles
116
-------
-------
INPUT FORMAT
Input
I RUN:
START:
ALO:
DO:
ALL:
DOL:
TEMPI!:
TEMPL:
I NUMB:
ASTART:
ASTOP:
AR:
GR:
W:
QW:
AKW:
AKA:
RTEMP:
WDO:
Number of runs desired
Option Selector. If zero, program begins at mile point 6.
If non-zero, program begins above mile point 6.
The upstream CBOD concentration (mg/1)
The upstream dissolved oxygen concentration (mg/1)
The lake CBOD concentration (mg/1)
The lake dissolved oxygen concentration (mg/1)
The upstream water temperature (°C)
The lake water temperature (°C)
The number of waste outfalls (and/or tributaries) above
mile point 6.
Mile point of outfall (miles)
Mile point of next outfall (miles)
Average ccoss sectional area of River between ASTART and
ASTOP (ft/)
Average flow of river between ASTART and ASTOP (million
gallons per day - MGD)
Waste loading form outfall (Ib/day)
Flow from waste outfall (MGD)
Deoxygenation coefficient (K]-base e) of waste per day
Reaeration coefficient between ASTART and ASTOP per day
Temperature of the river through reach
Oxygen concentrate from tributary (mg/1)
118
-------
WTEMP: Temperature of the tributary/outfall
H: Average depth of a section within the navigation channel (ft)
AREA: Cross sectional area of upper face of section (ft^)
FLOW: Flow at upper section face (cfs)
D: Longitudinal dispersion coefficient at upper section face
(miles2/day)
WI: Waste Loading into a section (Ibs/day)
W2: Benthic oxygen demand within a section (gm/irr/day)
AK1: Deoxygenation coefficient (K^-base e) of waste within
a section (per day)
TEMP: Average water temperature within a Section (°C)
ALLOW: CBOD concentration of waste outfall (mg/1)
DEFW: Oxygen deficit from waste outfall (mg/1)
AH: Average depth of river above mile point 6 (ft)
119
-------
PUNCHED CARD AND DATA SEQUENCE
CARD #
1
2
2
2
2
2
3
4
5
6
COLUMNS
TO
5
10
20
30
40
50
5
10
20
30
40
50
60
70
80
10
20
30
10
20
COLUMNS
FROM
1
1
11
21
31
41
1
1
11
21
31
41
51
61
71
1
11
21
1
11
FIELD
NAME
I RUN
START
ALO
DEF
ALL
DEFL
I NUMB
ASTART
ASTOP
AR
QR
ALO
QW
AKW
AH
RTEMP
WDO
WTEMP
H
AREA
COMMENTS
Right oriented
Column 5
REQUIRED
REQUIRED
REQUIRED
REQUIRED
REQUIRED
OPTIONAL*
Right oriented
Column 5
OPTIONAL*
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
REQUIRED
REQUIRED
TYPE
INTEGER
REAL +
REAL +
REAL +
REAL +
REAL +
INTEGER
REAL +
REAL +
REAL +
REAL +
REAL +
REAL +
REAL +
REAL +
REAL +
REAL +
REAL +
120
-------
COLUMNS
CARD # TO
30
40
50
60
70
80
COLUMNS
FROM
21
31
41
51
61
71
FIELD
NAME
FLOW
D
HI
W2
AK1
TEMP
COMMENTS
REQUIRED
REQUIRED
REQUIRED
REQUIRED
REQUIRED
REQUIRED
TYPE
REAL +
REAL +
REAL +
REAL +
REAL +
REAL +
* Omit if Astart = 0
+ All real numbers must contain a decimal point
Repeat card six for each section
121
-------
l/J
to
o
o
o
CM
CM
-------An error occurred while trying to OCR this image.
-------
400
c
c
c
c
c
c
50
777
100
C
C
C
C
C
C
C
C
C
c
3
17
C
C
C
4
C
C
e
i
Q(T.J)»0.
Ed. J)»0.
Cd. J)»0.
or.nx(i»j)«o.
READ IN (1) AVERAGE DEPTH IN FEETCH). (2) CROSS-SECTIONAL
AREA IN SQUARE FEET(AREA), (3) FLOW IN CFS. (4) DISPERSION
LBS PE"R OAY(«1). AMI (6) BENTHAL DEMAND
( IN GR«MS PER M*«? BEH QAY(H2)
READC5.50) (Hd). ARtAC D.FLnWCI). U( I 1 . « 1 ( I >» W2{ I ) . A* 1 d ) • TEMP
1(1). 1*1.21)
FQBMAT(6Eln.3)
PRINT 777
FORMAT("l",4X>"H'<,l?X»"A>',12X."«".l2X,"0<'»12X.">'l't.HXi"K2".llX
1"K1".9X,"TFMP",///)
PRINT 100. CH( I ). AREACI ).FLOW( I }•[)( D'«t CI ).«2( I ).AK1( I ).TEMP
1(1). I « 1 * ?1)
FORMAT(8(3X.E10.3)1
CALCULATE V1LUXE (V) FOS EACH SECTIONdN MILLIONS OF GALLONS),
Do 3 I«1.2i
CALCULATE AVERAGE VFLOCITY(U) FnK EACH SECTION(IN FT PER SEC)
U(I)*tFLOW(n/AREA(I)*FLO»i(I»l)/ARFA(Ul))*0.5
CALCULATE REAE^ATION COEFF 1C IENT (AK2 ) FOR EACH SECTION
AK?d)»12.9*U(I)**O.S/HiI)**1.5
00 17 I«l.?0
"?(!)» (N2{I}/(H(I)*0.30»8))»V(I)*«.3«
00004000 R 0226 1
00004100 R 0229
00004200 R 0231
00004300 R 0234 <
00004400 R 023» ) •
00004500 R 0240 * "
00004600 R 0240
00004700 R 0240 . ! •
00004600 R 0240'
00004900 R 0240
00005000 R 0240
00005100 R 0241
00005200 R 0268
00005300 R 0280
00005400 R 0280
00005500 R 028«
00005600 R 0284
00005700 R 0284
00005800 R 0310
_00_OQ5900 R 0322
00006000 R 0322
00006100 R 0322
00006200 R 0322
00006300 R 0322
00006400 R 0322
00006500 R 0327
00006600 R 0334
00006700 R 0334
OOQQ6800 R Q334
00006900 R 0336
00007000 R 0343
00007100 H 0343 ,
00007200 R 0343
00007300 R 0347
00007400 R 0359
00007500 R 0365
00007600 R 0371
CALCULATE FLOWdN MOD) AND BULK DISPERSION COEFF IClENTSdN M30)00007700 R 0371
00 4 I»l. 19
8f T,I + 1 ) « FLO«d»l )* 0.646
E(I.I + 1)» DCI + 1) »AREAd + l)*0.1317
801« FLU«I(1)*0.64»
82021" FLOW(21)*0.646
E01« D(1)*4REA (1 )• 0.1317
E2021* D(21 )*AREA(?1 >*0.1317
CALCULATE TRANSFER MATRICES FOR BOO(A) AND DO OEFIClTfB>
DO 1 I«2.19
A(I.I-l)»-o.5*Q(!»l.I)*t(I-l»I)
8(1.1-1 )» Ad.I-1)
A(I.I)« 0.5*0(1. 1*1 )-0.b*Od-l.I)»Ed-l. I )*E(I.I + 1) + V(I)*AK1(I)
S(I,I + l)»At!.I + n
A( 1 . 1 )*0»5*8( 1 »2}*0.5*QOI*F.01 + Cd . ?T+V( 1 )* AK 1(1)
B(1.1)»Ot5*Q(l«2)-0.5*801+E01+E(l»2)*V(l)*»K2(l)
A(l,2)« O.S*0(t.2)-Ed.2)
8(1, 2)« A(1.2)
A(70.19)«-0.5«IJ(19.20> -E(19.20)
B(20.1'»)«A(20.19)
00007800 R 0371
00007900 R 0375
00005000 R 03gO
00006100 R 0386
00008200 R 0397
00006300 R 0400
00008400 R 0403
00008500 R 0407
00008600 R 0409
00008700 R 0409
00008800 R 0409
00008900 R 0411
00009000 R 0417
00009100 R 0428
00009200 R 0433
00009300 R 0454
00009400 R 0475
00009500 R 0486
00009600 R 0492
00009700 R 0502
00009800 R 0512
00009900 R 0517
00010000 R 0518
00010100 R 0523
-------
ro
en
AC?0,20)« 0.5*82021-0.5*8(19.20)»E(l».20)+E2021+V(70)*AKl(20)
B(?0,20)«0.5*92021-0.5*aC19,20)tE(19,20)+E2021*V(20)«AK2(20)
CALCULATE DIAGDNAL TRANSFER MATRIX FHR DEOXYGENATI ON(DEOX)
DO 2 1-1,20
2 OEnxd. I)'V( I )*AK1(!)
PRINT OUT THE (A) MAIRIX
PRINT 150
PRINT 200
DnM«l,20
5 PRINT 201» !•
PRINT 202
DO*I»1.20
« PRINT 201.t. (AC I,j>.j=i1.201
PRINT 151
PRINT OUT THE (R) MATRIX
PRINT 200
D07J»1.20
r PRINT 201, i»(Bd» j).j = i» 10)
PRINT 202
00 8I«1»20
8 PRINT 2oi»i»(BU»j).j = ii»2oj
PRINT OUT THE (iKox) MATRIX
PRINT 152
PRINT 200
D09I»1,20
9 PRINT 201M» (DEDXCI. J), J = l. 105
PRINT 202
omoi«i.2o
10 PRINT ?oi»i»coEox(i,j),j=n,?oi
NORDER«20
INVERT THE (A) MATRIX
CALL MIN(A.NQROER)
INVERT THE (B5
CALL
PRINT OUT THE INVERSE U/AJ
PRINT 153
PRINT ?oo
DQ11I«1>20
11 PRINT 201.T»tAC I.J).Jclf101
PRINT 202
B012I«1»20
1? PRINT 2oi.i.cAci.j).J«ii»?n>
PRINT Dili THE INVERSE. (1/8)
PRINT 156
PRINT 200
D[)13I»1»20
00010200 fi
00010300 R
00010400 R
OOOlObOO R
00010600 R
00010700 R
00010800 R
00010900 K
00011000 R
0001 t 100 H
00011200 R
00011300 H
00011400 R
OOOllbOO R
00011600 R
00011700 R
oooiteoo R
00011900 R
00012000 R
00012100 R
0001?200 R
00012300 H
00012400 R
00012500 R
00012600 R
00012700 R
00012800 R
00012900 R
00013000 R
00013100 H
00013200 R
00013300 R
00013400 H
00013500 R
00013600 R
00013700 R
00013800 R
00013900 R
00014000 R
00011100 R
0001(1200 R
00011300 R
00014400 R
OOOlObOO R
00014600 R
00014700 R
00014600 R
00014900 R
00015000 R
00015100 R
00015200 R
00015300 K
00015400 R
00015500 R
00015600 R
00015700 R
00015800 R
00015900 R
00016000 R
00016100 R
00016200 R
00016300 R
0524
0531
0542
0542
0542
0544
0550
0553
0553
0555
055*
056?
056«
0588
0592
Ob9«
06 IS
0618
0618
061«
0622
0625
0631
0651
0655
06*1
0677
0677
0677
0681
0685
0688
069U
071 J
071*
0724
0744
0744
0744
0744
0745
0746
0746
0746
0746
0747
0748
0748
0748
0752
0752
0755
0762
0782
0786
0792
0808
0808
OSOfl
0812
0816
0819
-------
0013I«1»20
.JO R
0819
13
14
C
C
C
C
C
C
C
C
C
600
C
C
C
15
16
C
C
C
410
C
C
C
PRINT zoi»!>(B(ItJ)>J«l>10)
PRINT 202
0014I«1»20
PRINT 201«I>(B( !• J>> J»ll»20}
BOUND*RY CORRECTION ROUTINE
Hl(l)c Nl(l)»(0.5*001+E01>*ALO*8.34b
N2<1 >• Vl2{l)*<0.5*90I*ITUl>»DEF*8.345
Wl(2Q)*W1(?0)+(-0.5*J20*l+E?021)*ALL*8,345
H2C20>« H2(20) + (-D,b*a?021*.E 2021 )*OEFL*8. 345
CALCULATE THE COMPOUND STEADY STATE TRANSFER MATRIX (C)
NC1LM»20
CALL MMULT(»»B.C»NaRQER.NORnER»NcnLM>
CALL MMULT(C»DEOX,Cl«NO^OER,NORDER,NcnLM)
PRINT 155
PRINT 200
TRANSFORM UNITS TO 10.000 LHS PER [UY INPUT/MS oER LIT[R
00600I>1>20
QQAOOJK 1*20
C2(I« J)»C1 (Ii J)*l 199.
PRINT OUT (C)
D015I«1»20
PRINT 20l« i»(C2( I. j>» J«i» in)
PRINT 202
001 6I»1»20
PRINT 201. I» (C2( I. J)» Jill»?U)
NcnLM»t
CALCULATE STE4JY STAIE RUO PROFlLE(XL) IN UNITS OF MG/L
CALL MMULTCA««l»X^.MOHnlR.NORDER«NcDLM>
D0410I.1.20
XLf I)»XL( 11*0.119?
CALCULATE STEADY STATE 00 DEFICIT PROFILE (oOX)IN UNITS
CALL MMULT(Cl»*l'«3.NORDER.NORDER«NC0L«O
CALL MMULT(H»w2»«(4.(vURnER>^(IRriER«ivcOLM)
10016400
00016500
00016600
00016700
00016600
00016900
00017000
00017100
00017200
00017300
0001/400
00017bOO
00017600
00017700
00017800
00017900
00018000
00018100
00018200
00018300
OUTPUT00018400
00018500
00018600
00018700
00018800
00018900
00019000
00019100
00019200
00019300
00019400
00019500
00019600
00019700
00019800
00019900
00020000
00020100
00020200
00020300
00020400
OF MG/L00020500
00020600
00020700
00020800
SEGMENT
C
C
C
1
411
?on
1
-3 r H n i u r oc.u>*ic.l*i
00020900
PRINT OUT STEADY STAU PROFILES
PRINT 154
PRINT 203
D0411I.1.20
DQXB(N3CI)+N4(I3}*0.1199
CS«1 4.652-0. 41 022* TEMP(1)+0. 007991 o*TEMP( I )**2. -0.000077774
|TEMPU)**3.
CACTiCS-OOX
AOIIT«(6. 0-1*0. 3) + D. 15
PRINT 101,AOUT.XL(I)»Dn»,CACT
FORMATS 1H »"SECTIJ«(">8X»"1«,1 IX»"2"»11X»"3"»11X*"4»»1 lX/"5"
"6"»llX»"7"»llX»"S»»MX»«9"fl1X»"l'>"»//)
00021000
00021100
00021200
00021300
00021400
00021500
* 00021600
00021700
00021800
00021900
00022000
•11X, 00022100
00022200
SEGMENT
R
R
H
R
R
R
R
R
R
H
R
R
R
R
R
H
H
R
R
R
R
R
R
R
R
R
R
R
K
R
R
R
R
R
R
R
R
R
H
R
R
R
R
R
R
1
R
R
R
R
R
R
R
R
R
R
R
R
R
R
3
0825
0«4b
0849
OB55
0871
0871
0871
0875
0884
0892
0900
0904
0904
0904
0908
0908
0913
0917
0920
0920
0920
0920
0924
0929
0936
0940
0940
0940
0943
0950
0970
0974
0980
1000
1000
1000
1 000
1001
lOOb
101 1
101 J
1013
1013
1016
1020
IS 1023
0002
0002
0002
0002
0006
0009
0015
0020
0'034
0037
0038
0047
0064
0064
IS 26
LONr,
LONG
-------
CM UJ
O X
o e
O UJ
0
o
X
o
o
CM
CM
O
O
C
"""
"]
CM
U)
o
X
m
, x
X
ft
o
u-
V.
o
CM
m
•O B
X X
CM —
X *
" *
o —
X X
~z
t •
* X
X «,
•-*
X X
X —
X X
x «c
X
X *
^< X
X t
ft IT
o —
U, X
CM
o
CM
0>
CM
1 *J * O «
(/I O O O O
—1 o o o o
,
ft, QC CC X
o o o o
j O O O 0
Z CM CM CM! a
-
iXS O O
•-O O
CC X
o o
o o
Z1 *n 1*1
UJ CM CM CMl CM UJ tV CM
xoooo xoo
C O C O O QTC'O
U O C O C Ui C O
! x
• X
t X
O X
x r
K 4
* ***
x e-
i H- O
M CD
•o
' •- a:
u. c
UJ U.
a
o
*
; x
X t
J
X
(9
1 M
C
X
X
*-
UJ
x
X
X
—
t—
X
ft
o
cc
*~
X
o:
U'
u.
I/)
ft
*—
»—
IX-
tXJ
•—
T
X
X
o
t
X
t—
4
X
ft
c
U. *"> U. U.
tf
o *• o
CX. O IT
« >•
*"*
*•"
u.
UI
Q
o
o
Or
c
u.
X X
ft. X
»- •
I >-
cc o
u, x
- tS)
X )
* UJ
x cr
o a.
• U'
X
X X
*-* 4
>-
4 (XI
X UJ
ft ^
o _t
U. 4
m
-
*o o o
t- O O
x a
o o
o o
Z Ocri
UJ CM CM
XOO
0 O C
UJ O C
vO U.
UJ
c
"
0 X
*-H X
1— »
z >-
UI 4
13 C
>- X
X 15
C I
UJ
o u.
o
a
c \r.
u. *—
X Z
ft
*~ z
X
—1 UI
O UJ
4 a.
0 UJ
I QC
t- 4
IT l/-
•- 4
X •
0 O
• c-
« "
X 1X1
*- z
4 UJ
o *-
U. U-
**
CM
m
o
•c x
X
*
t
•
X
•^
tx;
4
Q
Lu
or
z
.-H
4
U.
o
UJ
X
U'
z
I
*"
(X"
X
X
o
X
c
»—
a
0 ^s
U. X
**
IT
CM
•O -O
»XJ O 0
r-* 0 0
tr x
O 0
0 O
^ «n T>
UJ CM CM
XOO
O 0 C
u,' O O
<« X
«
X
-
X
X
t/5
0
Ui
a:
^
f^
a.
o
UJ
t/J
X
u.
~2
X
~
UO
(X)
x
X
o
X
X
z
cr
U- X
^*
in
^
•c «
»X1 0 O
— 0 0
— cr x
0 O
0 O
Z /n *
0 C O C.
O O 0 C
X X X X
coco
O O O 0
s ^ s «
UJ CM CM CM CM CM EX
X 0 O O O O 0
C= C O O O O C
Ui C O C O C C
-•z
* c:
X O
^ UJ
*-lXJ
x ec
X U.
T D
ui *-
4 U
*T U,
U.
0 °
4 O
t- ~*
u^z^
*• UJ
~ «X)
cr z
a n:
T Q
O UJ
u.
•— T
—
4 — wn
X <3
»X3 O X
3 ./) xx
t- C •
U. «-» « X
t- Z * Z
4 uj
X Z (X- _j
— r Q 5
Z Ui tX)
~OtX) UJ Z
0 U. X
a: c -
o Q. x
x u, ^
. i ,
X -• x -
X Ut X ^
* 0 - O
x nr x •—
D « _J t-
U. X X O
—HX1 X IX)
ft »"
c z c;
Uj •— t—
X ui Z
K 1— *- •—
ix: •—
U, 4 U >-
*4 *H — —
?
t/> O C O
»«C O 0
— XXX
0 0
0 0
z * =»
UI CM CM
X 0 0
C C 0
UJC C
«
X
X
*
c
o
4
D
0
CC1
u.
c
^
•—
4
oc.
7
UJ
o
tC.
c
t-
4
J1
UJ
X
o
X
x" U)
O D »—
U- O tXJ
in o
C\( * Jl
— *
CiX)* OOOOOOOOOiX>
O »— * OOOCOOOGC*-
*
f\> * t\(
CE *trxa:3:a:a:xx3:— «
o •— ooooooooo
O ZOOOOOOOOO
«^lyaa«!jnio[r'"O*J^'~
OXUIOOOOOOOOO7
c U. (Xi
X
2
tX)
c
fSJ
* fSI
f\ *
— • rvj »
-1 • f
* • c
^— f\l ^,
^ o +
y r\ «
ui » , . 7 ^
— • a 'u "H M ^i r^
I "s^, r*jpfc~r-t>~*~ ^
-J (XJOOOp*IO»>JCCUJ
®
* -TXXXX3TXXXXXXXXXX
»-OOOOO
ZOOOOO
uj-ON- (OO'O
) O O O O O O O
> o o o o o o o
' iA -C f«- OC t> O -^
.
UJOOOOO
iACOCOO
OCOCC-
OOOO
CCCO
OOCO
o o o o o o o
o o o o o o c
o o c c- c c o
127
-------
ro
oo
XM»»RS(X(J.K))
20 CfWINUt
30 CONTINUE
32
40
42
50
52
60
70
75
80
90
IKK. 3
11(1,1 ) =
IF( IR-IC>3?,42,3?
00 10 IJ*1.N
DUM«X( IR, IJ)
X( tR, IJ)»X( 1C, I J)
X(tC,U>»DllM
P=X(IC,IC)
X( !C,IC)»1
U*1,N
IJ)«X( IC,IJ>/P
70 IK»1.N
( IK-IC>52>70.5?
CsX(IK.lC)
X{ TK,K>'0.
D060I J=1,N
X(TK,IJ)«X(IK,tJ).X(IC.lJ)*C
CONTINUE
DO 90 I»1»N
KsN+l-I
DO
X( 1
DO
IF
DO 80 IJ»1,N
OUU«XC IJ, IR)
X(IJ,IR)»XCIJ«K)
X( IJ, IC)*DUM
CONTINUE
CONTINUE
RETURN
END
00026900
00027000
00027 1 00
00027200
000.27300
00027400
00027500
00027600
00027700
00027600
00027900
00028000
00028100
0002S200
00028300
00028100
00028500
00028600
00028700
00028800
00028900
00029000
00029100
00029200
00029300
00029400
00029500
00029600
00029700
00029800
00029900
00030000
00030050
00030100
00030200
SEGMENT
SEGMENT
SEGMENT
SEGMENT
START OF SEGMENT
__S£GMEJi!
R 0041
R 0045
R 0046
R 0046
R 0049
R 0051
R 0053
R 0056
R 0061
R 0064
R 0071
R 0075
R 0078
R 0081
R 0087
R 0093
R 0098
R 0102
R 0105
R 0108
R 0114
R 0124
R 0125
R 0130
R 01 32
R 0137
R 0138
R 0140
R 0145
R 0148
R 015»
H 0158
R 0159
R 0159
R 0162
13 IS 175
14 IS 78
15 IS 29
16 IS 138
17 IS 11
LONG
LONG
LONG
LONG
1 7
LONG
NUMBfR OF SYNTAX ERRORS OtFEClEO = Oi
PRT SIZE f 881 TOTAL SEGMENT SIZE *
ESTlMATFn CORE STORAGE REaUIRE ME NT = 851? HOROSJ
DISK SIZE = 74 SEGS) NO. PRGM. SEGS * 41.
COMPILATION TIME » 46 SFCSI Nn. CARDS « 319.
f nRT"AN/LlSTTNG
AT 1H2H5« M0ND*Y 08/25/75
TIME
19140
TTME
19133
-------
IN3
73
-o
PO
-------
OUTPUT INTERPRETATION
1. Page 131 contains the table of system parameters and forcings
(labeled) for the navigation channel. This will be page one
of the output.
2. The matrix equations to be solved are:
(L) = [A]"' (W)
(D) = [C] (W) + [B]"1 (Sb)
[C] = [B]"1 (VK,) [A]"1
Where (L) = steady state CBOD concentrations
[A] = transfer matrix for CBOD
Cw) = waste load vector for CBOD
CD) = steady state DO deficit concentrations
[Bj = transfer matrix for DO deficit
(Sb) = benthic uptake vector
(V K ) = deoxygenation diagonal matrix
[C] = compound transfer matrix
Each of the pages of output are identified by a title. The
compound steady state transfer matrix on page 139 can be utilized as
a table for waste load allocation purpose. Note from the table
that a waste load into Section 5 (mile point 4.65) of 10,000 Ibs./
day will produce a minimum DO value of 1.52 mg/1 in section 15.
(Read down column 5 to row 15.)
Page 149 lists the steady state concentrations of CBOD and DO.
130
-------
SYSTEM PARAMETERS FDR THE NAVIGATION CHANNEL
SECTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
DEPTH
(ft.)
200E+02
200E+02
250E+02
250E+02
250E+02
250E+02
250E+02
250E+02
250E+02
250E+02
250E+02
250E+02
250E+02
250E+02
250E+02
250E+02
250E+02
250E+02
250E+02
250E+02
0
AREA
(ft. 2)
0.300E+04
0.350E+04
0.420E+04
0.440E404
0.430E+04
0.900E+04
0.470E+04
0.510E+04
0.490E+04
0.550E+04
0.740E-H34
0.420E-K)4
0.900E+04
0.620E+04
0.620E+04
0.650E-K)4
0. 650E+04
0. 450E+04
0.700E+04
0. 450E+04
0.820E+04
FLOW
(CFS)
0.305E+03
0. 305E+03
0.345E403
0.345E403
0.345E403
0.345E+03
0.345E+03
0.345E+03
0.345E+03
0.345E+03
0.345E+03
0. 345E+03
0. 345E+03
0.345E+03
0.345E+03
0.345E+03
0.345E+03
0.345E+03
0. 345E+03
0. 345E+03
0.345E+03
DISP
(mi2/day)
0.250E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E+00
0.220E-KX)
0.220E+00
0.220E+00
0.400E+00
0.600E+00
0.800E+00
0.100E+01
0.100E+01
0.120E+01
Wl
W2
Kl
TEMP
(Ibs/day) (gm/mVday) (day-1) (°C)
0.0
1440
0.0
300
5880
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.
0.
0.
,0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
500E+01
500E+01
500E-HD1
500E+01
500E+01
500E+01
500E+01
500E+01
500E+01
500E+01
500E+01
500E+01
500E+01
500E+01
500E+01
500E+01
500E+01
500E+01
500E+01
500E+01
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
150E+00
150E+00
150E+00
150E+00
150E+00
150E400
150E+00
150E+00
150E+00
150E+00
150E+00
150E+00
150E+00
150E+00
150E+00
150E+00
150E+00
150E+00
150E+00
150E+00
0
0.286E+Q2
0.295E+02
0.305E+02
0.307E+02
0.309E+02
0. 311E+02
0.314E+02
0.314E+02
0.312E+02
0.311E+02
0.309E402
0.306E+02
0.304E+02
0.302E+02
0.302E+02
0.295E+02
0.289E+02
0.286E+02
0. 283E+02
0.280E+02
0.0
-------
PROGRAM OUTPUT
132
-------
n
CO
o-o
20+308Z*0
ZO+3C8Z*0
ZO+398Z*0
ZO+368Z*D
ZO+3S6Z*0
zo+3zo€*o
ZO+3ZO€*0
Z0+3*0€*0
Z0+390€*0
Z0+360€*0
ZO+311C*0
ZO+3Z1£*0
Z0+3€l€*0
Z0+3*t€*0
Z0+311€*0
ZO+360C*0
ZO+310C*0
ZO+3SO€*0
ZO+3S/Z*0
ZO+39£Z*0
dM31
0*0
00+3051*0
00*3051*0
00*3051*0
00*30SfO
00*30SfO
00*30ST'0
00*3051*0
00*30ST'0
00+3051 -0
00*30S1'0
00+3051 *0
00+3051*0
00+3051*0
00+3051*0
00+3051*0
00+3051*0
00+3051*0
00+3051*0
00+3051*0
00+3051*0
IX
0*0
10+3005*0
10+300S*0
10+3005*0
TO+300S*0
10*3005*0
10+3005*0
10*3005*0
10*3005*0
10*3005*0
10*3005*0
10*3005*0
10*3005*0
10*3005*0
10*3005*0
10*3005*0
10*3005*0
10*3005*0
10*3005*0
10+3005*0
10+3005*0
ZM
O'O
0*0
0*0
0*0
0*0
O'O
O'O
O'O
0*0
0*0
0*0
0*0
0*0
V0+3091*0
O'O
0*0
V0+3666*0
€0+3015*0
0*0
*/0 + 3*/Vl*0
0*0
IN
io+3ozz*o
10+3081 '0
10+30*1*0
10+3001*0
00*3008'0
00*3009*0
00+300**0
00+300VO
00+300VO
00*3065*0
00*300**0
00*301**0
00+309VO
00*305**0
00*308**0
00*300**0
00*30ZS*0
00*306V*0
00*30ZS*0
00+3009*0
00+3001*0
a
£0+3«i06'0
CO+3006'0
CO*3U06'0
eO*3006'0
€0*3006' 0
€0*3006'0
€0+3006*0
€0+3006*0
€0+3006*0
€0+3l>06*0
€0+3006'0
€0+3006*0
€0+3006*0
€0+3006*0
€0+3006*0
€0+3006*0
€0+3006*0
€0+3«,18*0
€0+3Si8*0
€0+30S8'0
€0+3058*0
0
VO+30Z8-0
VO+30SZ.-0
V0*300/*0
^0+305^-0
*0+30S9-0
VO+3059-0
*/0*30Z9-0
*0*30Z9*0
V0*3006*0
*0*30Z**0
*0*30*/*0
*0*30SS*0
VO+306^'0
VO+3015'0
V0+30i*/*0
VO+3006'0
VO+30C»/-0
VO+30WO
VO+30ZVO
vo+aose-o
*0+3SZC*0
»
0*0
ZO+30SZ*0
ZO*30SZ*0
zo+3o«;z*o
ZO+30SZ*0
ZO+30SZ*0
ZO+30SZ*0
ZO+30SZ*0
ZO+30SZ*0
ZO+30SZ*0
ZO+30SZ*0
ZO+30SZ*0
ZO+30SZ*0
ZO*30SZ*0
ZO*30SZ*0
ZO+3QSZ*0
ZO+30SZ*0
ZO+305Z*0
7o+aosz*o
ZO+300Z-0
ZO+300Z*0
H
-------
THIS is THE TRANSFER MATRIX FOR BOCKAJ.
SECTION
10
1
?
3
4
5
f>
7
fl
9
10
n
i?
1 3
14
15
16
17
1ft
19
20
.585E 03
-.3BBE 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.165E 03
.5751 03
-.399E 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.176C 03
.583E 03
-.395E 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-. 1/3E 03
.590E 03
•.406E 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.lB3r 03
,767f 03
-.586E 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.u
.0
.0
-.363E 03
.790E 03
-.409£ 03
.0
.0
.0
.0
.0
,0
.0
.0
.0
.0
.0
.0
.0
.0
.0
• 0
.0
• 0
-.186E 03
.613E 03
-.414E 03
• 0
.0
.0
.0
,0
.0
.0
.0
.0
.0
.0
.0
.0
.u
.0
.0
.0
.0
-.19lr 03
.613E 01
-.4oSf OS
.0
.0
.0
,0
.0
.0
.0
.0
.0
.0
.0
.0
.0
tO
.0
.0
.0
.0
".185E 03
.608E 03
-,«08E 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
• 0
.0
.0
.0
-.18«E
.704E
-.501E
.0
.0
• u
.0
.0
.0
.0
.0
,0
03
03
03
SECTION
1 1
13
15
18
19
20
1
2
3
a
5
A
7
B
9
10
11
1?
n
14
15
16
17
IB
19
?0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.27SE 03
.699E 03
,405t 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.1B21 03
.ffl5E 03
-.5861 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.363E 03
.821L 01
-.43BL 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.21<>
". 43B
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
E 03 .0
E 03 -.215E 03
E 03 .858E 03
-.625E 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.402E 03
.122E OC
-.796E 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.573E 03
.129E 04
-.704E 03
.0
.0
•
•
•
•
•
t
•
•
•
•
•
,
•
•
•
•
— •
•
" •
•
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
481E OJ
190E 04
140E 04
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
tO
.0
.0
.0
.0
-.118E 04
.309E 04
-.189E 04
.0
.0
.0
.0
.0
.0
.0
.0
.0
,0
.0
.0
.0
.0
.0
.0
.0
.0
-.167E
.418E
04
04
-------
THIS is THE TsA>jsnr>< MATRIX FOR DO OEMCIT m. VALUES ARE EXPRESSED IN UNITS OF M&/DAIT
SECTION
10
3
4
•i
4
7
*
9
10
11
1?
13
14
IS
1A
lr
1«
19
oi SECTION
4
•5
f,
7
8
9
10
11
1?
M
i»
is
i«
17
is
19
?o
.-579E Oi
.38«E 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
11
.0
.0
.0
.0
.0
.0
.0
.0
.0
'.27«E 03
.68AE 03
'.^OSE 03
.0
.0
.0
.0
.0
.0
.0
.0
-.16<5E 0-»
.i67t 03
-.3901 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
,0
.0
1?
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.182t. 03
,77r>E. oj
-.SflAfc 03
.0
.0
.0
.0
.0
.0
.0
.0
-. 17«E 03
.574E 03
-,39St 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
13
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.363E 03
.8o«E 03
-,«38E 03
.0
.0
.0
.0
.0
.0
.0
.0
-.173E 03
,5«U 03
-.AO'SE 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
• 0
14
.0
.0
.0
.0
.0
.0
.0
tO
.0
.0
.0
.0
-.215E 03
.654E 03
-.438E 03
.0
.0
.0
.0
.0
.0
.0
.0
-. 183F 03
.772L 03
-.5B6F 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
15
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.215E 03
.843E 03
-.625E 03
.0
.0
.0
.0
.0
.0
.0
.0
-.363E 03
.774E. 03
-.409E 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
16
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.402E 03
.120E 04
-.796E 03
.0
.0
.0
.0
.0
.0
.0
.0
-.186F 03
.602E 03
-.414E 03
.0
.0
• 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
17
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.573F 03
.1?8E 0«
".704F 03
.0
.0
.0
.0
.0
.0
.0
.0
-.191F Oi
,60?F 01
-.«08f; 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
18
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-,»8ir os
.189F 0*
-.110E 0«
.0
.0
.0
.0
.0
.0
.0
.0
-.185F. 03
,596E 03
-.408E 03
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
19
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
-.use 04
.307E 04
-.189E 04
.0
.0
.0
.0
.0
.0
.0
.0
-.186E
.690E
-.501E
.0
,0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
tO
.0
.0
.0
.0
.0
-.167E
.416E
03
03
03
20
04
04
-------
THfS IS THE DIAGONAL MATRIX FOR DEOXYGENATION COEFFICIENTS (DEOX). VALUES ARE EXPRESSED IN UNITS OF MG/DAY
SECTION
1
2
^
4
5
*
r
S
9
in
it
l?
n
14
15
1*
17
IS
19
?0
SECTION
4
5
*
7
8
9
10
11
1?
n
14
15
16
17
1*
19
?0
10
.921E 01
.0
.0
.0
. o r
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
11
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.15*E 0?
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.me o?
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1?
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.180E 0?
.0
.0
.0
.0
.0
.0
.0
.0
.0
.TT
.117E 02
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
13
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
,2071 02
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.119E 07
.0
.0
.0
.0
.0
.0
.0
.0
,0
.0
.0
.0
.0
.0
.0
.0
14
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.169E 02
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
. 182E 02
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
15
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
,0
.0
.173F 07
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.187E 02
,0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1A
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.177t 0?
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.134E 02
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
• n
17
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
,0
.0
.0
.0
.150E 02
.0
.0
.0
.0
.0
.0
.0
.0
.0
,0
.137F 0?
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
18
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.157F. 0?
.0
.0
.0
.0
.0
.0
.0
.0
,0
.0
.U2E 02
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
19
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.198E 02
.0
.0
.0
.0
.0
.0
.0
tO
.0
.0
.1761
.0
.0
.0
.0
.0
.0
.0
.0
.0
• 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.214E
02
20
02
-------
THIS IS THF INVERSE UF (A). UNITS ARE UAYS/MQ,
SECTION
10
9
10
11
1?
n
it
IT
1*
19
.233L-02
.22PE-02
.210E-07
. 197E-0?
.181E-02
. 163E-0?
.153E-02
.143E-0?
.137F-0?
.111E-0'
.10«E-0?
.973F-03
,17*F.-03
.297L-07
.273E-0?
,260fc-02
.231E'07
.2l*f07
,199£-0»
11*1-0'
,39'JE-03
. 140E-02
.37of02
.346E-07
.3t9e-02
,257fO?
.217F-0?
120E-0?
. 167E.-07
. 135E-07
. llflfO?
.877E-03
.51-SE-03
.310E-03
.140E-03
.16JE-03
.572E-03
. 15JE-07
.379E-0?
.337.E-02
.313E-02
.294E-07
•275E-0?
.237E-0?
.214E-07
. 199E-07
. 147F.-0?
.121F-OP
.563E-03
,33SE-03
.153F-01
.670E-04
.237f03
.627E-03
.37U-0?
.353F-02
.333E-0?
.3l4£-0?
.293E-02
.270F-07
.253E-0?
.228E-0?
.2]?E-0?
.1P9E-0?
.128F-07
.102F-0?
.600E-03
.361E-03
.163F-03
.395E"04
.140E"03
.37QE-03
.219E-07
.371E-0?
.350E-07
.329E-07
.308fO?
.283E-07
.26AE-0?
.240E-07
•223E-0?
.135E-0?
.107L-07
.630E-0?
.600E-04
.397F-03
.938F-03
.3«lf-02
.3S8F"02
.308E-02
.2S9F-02
.243F.-02
.21(SF"02
.179F-02
,147^-02
.171E-01
.412E-03
. 1«
.879f-o5
.149E-04
.35/E-04
.194L-03
.20AE-0?
.351E-0?
.317E-02
.259E-07
.1A1E-02
.99,E-o3
14
.694E-07
.163E-OS
,65?E'05
.!5<,E-Oa
.362E-04
. 191E-03
.377E*03
.903E-03
.153E-07
.340E-0?
.28?E-07
.231E-07
,2«oE-03
.108E-07
'.293E-03
15
.283E-07
.100E-06
.2A5E-06
.663F-06
.157E-05
.266E-05
.63AE-05
.147F-04
.345E-04
,8o7f-04
.153F-03
.368E-03
.625F.-03
.139F-02
.304F-02
.240E-0?
.197E-07
16
. 149E-07
.528E-07
.349E-OA
.335E-05
.777E-05
.182E-04
.425E-04
.809E-04
.194E-03
.329E-01
.730E-01
.160E-07
.2*2E"07
.207£-07
.123E-0?
17
.848E-08
.301E'07
.794E'07
.199E-06
18
.79«E'06
.19U-05
.103E-04
.?42E*04
.4AOF"04
.187F-03
.912E-03
.217E-02
•12SF-02
.121F-07
.321F-07
.804F-OT
.771F-0*
,179r-OS
,757F'0«
13*F-0'
19
.173E-08
.614E-08
.162E-07
.406E-07
.959E-07
.163E-06
.902E-06
.211F.-05
.494F-05
.939E-05
.225E-04
.383F.-04
.848F-04
.186F-03
.305E-03
.443E-03
.686F-03
.3l«E-03
.333E-01
.349E-03
20
.691E-09
.245E-08
.647E-08
.162E-07
649E-07
,360E*06
.8«3E"0«
,197£-05
.375f05
.898E-05
. 338f04
.122E-03
.177E-03
.274E-03
.380E-03
.391E-03
-------
THIS IS THE INi/ERSE OF CB). UNITS ARE OAYS/MG.
v SECTION
A
7
*
9
10
It
1?
11
Id
17
1"
10
20
to
00
SECTION
1
5>
1
a
S
f,
7
*
<9
in
11
1?
n
17
in
19
20
1
.240E-02
.23TE-62
.23SE-02
.23?E-0?
.22«E-02
.22*E'0?
,22flF-0?
.221F-0?
.7HE-0?
.204E-0?
. 1 flsf'-O'
. 1MF-0?
,13f E-0?
. 100E-02
.A5SF-Q3
. 39 7 E- 03
.1ROF-03
11
. 11*1-05
. tOSE-04
.584E-04
.957E-04
.21SE-03
.471E-03
. IOSE'0?
.23-SF-02
.427.E-02
.4! 1F-0?
.401E-02
.37SE-02
.37AF-02
.27SE-0?
.221 E'02
.133E-02
.80AE-03
2
.IOIE'02
. 354E-02
. 35oE'0?
. 34*E~07
. 341 £-0?
, 33 AE™02
( 33 flt -0?
. 330E-0?
. 32'iE'O?
. 319F.-0?
. 314E-0?
. 304r"09
. 29SE-0?
. 27*E"0?
. 24f)E~0?
.207E-07
• 1 A1£-02
.97RE-03
.59JE-03
.2*01-0,
1' .
.5o,E-o«
. 1 f 'St'O'i
. 4b7fc."0'i
. 111E-04
. 41*E'04
.934S.-04
i 4<5P£-Q3
. 10?E'02
in^E*o?
.4loE-0?
,407fO?
. 380fO?
.331E-0?
.279E-07
.224E-02
.135E-0?
.817f01
.371E-03
3
.441E-03
.155E-02
.4Q1E"02
.39AE-0?
.390E-02
.386E-02
, 3s?E-02
.377E-02
.372E-02
.3A5E-0?
.359E-02
.347E-02
.33«E-02
.31SE-0?
.274E-02
.23PE-OP
.18AL-02
.H?E-o2
'. 30«E-0^
13
. 303E-OA
. 104E-05
.27-JE-05
.660E-05
. 1 53t"04
.250E-04
,56?E-04
. 124E-03
. 276E"03
•*14E'03
.11?E-02
.'4ll£-0?
.384E-0?
.334E-02
,28?E-0?
.227E-02
,13*E-02
.825E-01
.375E-01
4
.l'OE'03
.66AE-03
.1?3F"0?
.420E-0?
,4l4t-0?
.410E-02
.405E-02
.401E-0?
.39"SE-09
, 3flBE"0?
.381E-02
. 3A9E-Q?
.358E-02
.33SF-07
.291E-0?
.24AE-0?
.198E-02
« 1 1'E" o?
.720E-03
. 127E-03
14
.139E-OA
. 487E-OA
.126E-05
.307E-05
.702E-05
. 11'5E-04
.258E-01
^ft^f.n*
. 127E-03
,28?E-03
.513E-03
.1UE-02
. 189E-0?
.390E-07
.33QE-09
. 28AE-0?
.230E-02
.13RE-0?
.837E-01
. 380E-01
5
.29TE-03
.767E-03
.187E-02
.4?AE-02
.423F-02
.418E-02
.413F-02
.407E-0?
.400E-07
.393E-02
.3BOF'02
.369E-02
.345F-0?
.300F-02
.253F-02
.204E-02
. 122E-02
.742F-03
.337P-01
15
.593F-07
.208E-06
,539E'Oft
.131E-05
.300E-05
.491E-05
.110F-04
.243F-04
.541F-04
. 1?OE'03
,2l9E-03
.494E-03
.8Q6E-03
.16AF-02
.343E-0?
.290E-02
.233E-02
.140E-02
.848E-03
,386f-03
6
.182E-03
.471E-01*
•115E-0?
,2fi?E-02
.429E-0?
.424E-0?
.410E-0?
.413E-0?
.4Q5E-0?
.39?E"07
.38AE-09
.375F-0?
.350E-0?
.305E-0?
,257E-0?
.207E-0?
.124E-0?
.752E-01
.342E-0,
1A
.322E'07
,11 3i*Qf,
.293E'OA
.713E-OA
.163E-OS
.267E-0-5
.590E-05
. 132E-04
.294E-04
.A54E-04
. 1 19£~03
,2«9E-03
.438E-01
.904E-03
. 187E-09
.292E-0?
.235E-02
.141E-02
,8S6E-03
.3B9E-01
7
.81 AE'O*
•211E'03
.515E-03
.118E-02
.193E-02
.432E-02
.4P7F-02
.4?1E-02
.413E-02
.40AE-02
.393E-02
.3«2F-02
.357F.-02
.31 U-02
,?A2F-02
.211E'02
.127F-02
.767E-03
.349F-03
17
.187E-07
. AS4E"Of
.1A9E-0&
.412E'06
.943E-06
.1S4E-05
.34AE-05
.7A2E-05
.170E"04
.379F-04
.689E-04
.155E-03
.253E-03
.523E-03
.108F-02
.1A9E-02
.237E-02
.U2E-02
,8A3E'03
.392F-03
8
!3f2E-04
.9A4f-Q4
.235E-0?
,53(SF-0^
. 87flF'0^
.197F-0?
.433F-0'
.427F-0'
.420r-0?
.412F-0*
,399r-0'
. 38flp-0'
•3A2F-0?
. 3HF*0'
, 2AAF-0'
.214F-0?
.129F-0'
.779F.-0''
. 354F-01
18
.7AAF-0*
. 269F.-0^
,69AF'0T
.169F-0*
. 387F-0*
,634F~0^
t 14?F«0^
. 31 3F-0S
,69^ F" 0^
. 15AF™04
.283F-0«
. A3«F*0»
. 104F-0'
.215F-0''
. 4 4 3 F" 0*
» 695F* 0^
. 973f -0^
.144F-0?
.87?F-0'i
. 39AF-0'
9
.475E-Q5
.166E~-04
.43U-04
.105E-03
.248E-03
.393E-03
.882F-03
.194F-02
.433F-02
.425E-02
.418F-02
, 404p~02
.393E-02
. 367F-02
.319F-02
.270E-0?
.217E-02
. 1 3oE*02
.789E-03
.358E-03
19
.390E-08
.137E-07
•355E-07
.863E-07
.197E-OA
.323E-OA
.725F-OA
.160E-05
.35AE-05
'.793E"05
.144F-04
.325E-04
.530F-04
.110F-03
.22AF-03
.354F-03
.49AE-03
.733E-03
.87AE-03
.398E-03
10 ,
.212F-05
•T43E-05 n
i l'2E'04
.468E-04
.D7E-03
.175E-03
..393E-03
.8AAF-03
.193E-02
.430E-02
.423E-02
,409E-02
.398E-02
i 371E-02
,323E-02
.273E-02
.219E-02
.132E-02
.798£"03
•363E-03
20
.157E-08
.549E-08
,142E-07
.346E-07
.791E-OT
.130E-06
.291E-06
.640E-OA
.143E-05
,318E-05
.578E-05
,130E-0«
,213E-04
.439E-04
.90AE-04
.142E-03
.199E-03
,29»E-03
.35lE-03
.400E-03
-------
THIS IS THE COMPOUNJ STEADY STATE MATtUX (C)-(I/A)*(1/B1*1OEOX) RELATING THE RESPONSE IN DO D6FICITID) FOR ANY SECTION OF THE RIVER
TO A UNIT WASTfc DISCHARGE INTO ANY StuTlCM. M ASTt DISCHARGE IS tXPRtSSEO IN UNITS OP 10,000 IBS/DAY AND 00 DEFICIT IN MC/L
o RESPONSE
IM ^G/L IN
SfcCT ION
1
2
3
4
5
6
7
8
~i
10
11
12
13
14
Ib
16
17
Ib
is
20
-1
J
stcriO"«
i
2
1
4
t>
6
/
8
-1
10
11
12
13
14
15
16
17
18
19
20
1
0.328S-01
0.634F-01
0.936F-01
0.119H-00
0. 150e+00
0. 169i-+00
o.i94»itoo
0.218I-+03
0.242r»00
0.266I- + UO
0.2&4I-+00
0. 307(-»00
0.320r*00
0.339fc«GO
0.355I-+00
0.35St+00
0.341h+00
0.2!>7b+00
0. 176I-+UO
O.H82I--01
11
0.201fc-lb
J. S24F-16
0.541C-14
0.208h-ll
0.284I--09
0. IU7F-08
0.8 131- -07
0.339t--05
G.246H-03
0. Ib6t--01
0.619F-01
0. 125I-+00
0. I65b«00
O.?13t-+00
0.267r+00
0.2v9h+00
0. J03f tOO
0.2391- tOO
0. 168H+JO
0.847^-01
2
0.2t,rJc-Q3
0. Jd8c-0l
0. 756t-Cl
0. 10Bc»CO
0. 147E + CO
0.1 7Cc+00
0.201t»00
0.231b+00
0.260t+uO
0.2^0c»CO
0. i!2t»00
0. 34lc»00
0. 358t»CG
0. itlL+UO
0.402£*UO
0.407t»00
0. 3b9t+UO
0.294t+C>0
0.202t*oO
0. 101t+&0
12
0. li.i'xi-iO
0.276c-18
O.?b9fc-lo
0. 113E-13
0.lD7t-ll
0.6J3E-11
O.Wit-G9
o.zofie-o/
0. lo 2b-22
0.407b-20
0.43U-18
0.171e-15
0.243b-13
O.^50b-13
0.777b-ll
0.354t-09
0.294t-07
0.232b-05
0. 134E-04
0.236E-02
0.749E-02
0.656t-01
0.133b»00
0.178c+00
0.196E+00
0.165E+00
0.118b*00
0.603b-0l
5
O.l45t-09
0.339c-07.
0.2-)7t-05
0.881E-03
0.761t-01
0.122E+00
0.181E*00
0.237E»00
0.292fc+00
0.350b»00
0.393E+00
U.450b»00
C.485t+00
0.529E+00
0.574E+00
0.5?lb»00
0.571E*00
0.435t+00
0.300t»00
0.150t+00
13
0.-»55fc-24
0.256E-21
0.273E-19
0.109E-16
0.157t-l4
0.620E-14
0.516E-12
0.240t-lO
0.204E-08
0.167fc-06
O.lOOE-Ob
0.191E-03
0.666E-03
0.792fc-02
0.803E-01
0.1306+00
0.154E+00
0.135E+00
0.985t-01
0. 5066-01
6
0.406E-10
0.974E-08
0.894E-06
0.289E-03
0.301E-01
0.766E-01
0.141E»00
0.201E»00
0. 2596+00
0.320E+00
0.366E+00
0.426E+00
0.463E+00
0.510E+00
0.559E+00
0.579E+00
0.561E+00
0.428E+00
0.296E+00
0.148E+00
16
0.273E-24
0.736E-22
0.789E-20
0.318E-17
0.459E-15
0.182E-14
0.153E-12
0.7206-11
0.621E-09
O.S17E-07
0.3186-06
0.632E-04
0.229E-03
0.301E-02
0.370E-01
0.914E-01
0.119E+00
0.1116+00
0.826E-01
0.4286-01
7
0.3646-12
0.898E-10
0. 8586-08
0.296E-05
0. 3476-03
0.1106-02
0.475t-01
0.9176-01
0.1356+00
0.1816+00
0.215E+00
0.261t+00
0.289E+00
0.324E+00
0.3616+00
0.379E+00
0.3696+00
0.2846+00
0.1966+00
0.9866-01
17
0.8896-25
0.2406-22
0.258E-20
0.1046-17
0.1516-15
0.6036-15
0.5106-13
0.2416-11
0.2106-09
0.1776-07
O.llOt-06
0.2236-04
0.622E-04
0.113E-02
0.149E-01
0.408E-01
0.6806-01
0.7046-01
0.5406-01
0.2836-01
U
0.812E-14
0.204fc-ll
0.201E-09
0.7236-07
0.904E-05
0. 3106-04
0.182E-02
0.4836-01
0.938E-01
0.1426+00
0.1796+00
0.2276+00
0.2576+00
0.2956+00
0.3356+00
0.3556+00
0.3486+00
0.2696+00
0.1876+00
0.9386-01
18
0.2396-25
0.6486-23
0.6986-21
0.2836-18
0.4126-16
0.1646-15
0.1406-13
0.6666-12
0.5836-10
0.4956-08
0.3116-07
0. 6406-05
0.2396-04
0.3406-03
0.4686-02
0.1366-01
0.2526-01
0.4076-01
0.3446-01
0.1876-01
9
0.979E-16
0.2506-13
0.2516-11
0.9296-09
0.1216-06
0.4356-06
0.292E-04
0.1026-02
0.4996-01
0.1026+00
0.1416+00
0.1946+00
0.2276+00
0.2676+00
0.3116+00
0.3346+00
0.3316+00
0.258E+00
0.179E+00
0.9026-01
19
0.1316-25
0.3556-23
0.383E-21
0.1556-18
0.2276-16
0. 9076-16
0.774E-14
0.3696-12
0.3246-10
0.276E-08
0.1746-07
0.3606-05
O.V36E-04
0.1946-03
0.2726-02
0.8056-02
0.1546-01
0.2756-01
0.2736-01
0.1576-01
10
0.143E-1T
0.3716-15
0.3796-13
0.1446-10
0.1936-08
0.7166-08
0.522E-06
0.207E-04
0.1366-02
0.690E-01
0.1196+00
0.187E+00
0.229E+00
0.2816+00
0.339E+00
0.371E+00
0.371E+00
0.291E+00
0.203E+00
0.102E+00
20
0.5UE-26
0.1386-23
0. 1506-21
0.607E-19
0.8856-17
0.354E-16
0.303E-14
0.144E-12
0.127E-10
0.108E-08
U.684E-08
0.142E-05
0.536E-05
0.773E-04
0.109E-02
0.325E-02
0.630E-02
0.116E-01
0.122E-01
0.834E-02
-------
STEADY STATE CCNCENTKAT1ONS OF BOD AND D
MILE PT
BODIMG/L)
Uli OtFICIT
DO
5.85
5.55
5.25
4.95
4.65
4.35
4.05
3.75
3.45
3.15
2.85
2.55
2.25
1.95
1.65
1.35
1.05
0.75
0.45
0.15
0.886E+01
0.875E+01
0.857E+01
0.828E+01
0.-J95E + 01
0.971E+01
0.949E+01
0.959E+01
0.936E+01
O.'JObfc + Ol
0.685E+01
O.B51E+01
0.828E+01
0.b04E+01
0.772E+01
0.743E+01
0.718E+01
0.671E+01
0.641E+01
0.617E+01
0.430E+01
0.4 38b+i* 1
0.41>8E + ul
0.463b + ill
0.4>J9b+i
-------
SNOIIDIHISHU
-------
RESTRICTIONS
The major restriction placed upon this model is that for every
section interface the relationship
0.5 Q - E1 < 0
must hold true, where E1 = D *AREA* 0.1317. Where this restriction is
not true, results will not be valid.
Computer time for one simulation on an IBM-360/70 is approximately
30 seconds. This includes compilation and run time.
142
-------
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
REPORT NO.
EPA-905/9-74-012
3. RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTITLE
Water Pollution Investigation:
and Cleveland Area
Cuyahoga River
5. REPORT DATE
December 1975
6. PERFORMING ORGANIZATION CODE
AUTHOR(S)
E, M. Bentley, V.L. Jackson, J. A. Khadye, A.E. Ramm
8. PERFORMING ORGANIZATION REPORT NO.
PERFORMING ORGANIZATION NAME AND ADDRESS
10. PROGRAM ELEMENT NO.
ECO-Labs, Inc.
1836 Euclid Avenue
Cleveland, Ohio 44115
11. CONTRACT/GRANT NO.
EPA 68-01-1568
12. SPONSORING AGENCY NAME AND ADDRESS
13. TYPE OF REPORT AND PERIOD COVERED
U.S. Environmental Protection Agency
Enforcement Division, Region V
230 S. Dearborn
Chicago. Illinois 60604
Final Report
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
EPA Project Officer: Howard Zar
16.ABSTRACT A computef model is dcveloped to rapidly simulate dissolved oxygen content
in the Cuyahoga River under varying conditions of flow and biochemical oxygen demand.
It is composed of three separate models: Model I is based upon Streeter-Phelps
equations (Streeter and Phelps, 1925); Model II is a revised and expanded version
of the Delaware Estuary finite difference model (Thomann, 1972); and Model III is a
time-variant model. These models, which have been used to simulate present and
projected dissolved oxygen levels for the entire length of the Cuyahoga River, show
that the municipal and industrial treatment programs to be implemented by 1978 will
result in improved dissolved oxygen conditions in the Cuyahoga River. However,
run-off and benthic oxygen demand will still result in a severe oxygen sag in the
navigation channel during summer low flows.
Programming is in FORTRAN IV (level G) language and is compatible with the IBM 360/70
system. The program requires 20 K storage. A flow chart and explanations for the
model's routines and detailed in Appendix C.
This report was submitted in fulfillment of Contract Number 68-01-1568 by Eco-Labs,
Inc. under the sponsorship of the Environmental Protection Agency.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFieRS/OPEN ENDED TERMS
COS AT I Field/Group
Water Quality
Water Pollution
Water Quality, Models
Cuyahoga River
Lake Erie
Cleveland
Great Lakes
Chemical Parameters
13B
6F
8H
13. DISTRIBUTION STATEMENT
19. SECURITY CLASS (This Report)
>1. NO. OF PAGES
Limited Number of Copies from
EPA, Region V without charge.
Otherwise from Nat. Tech. Info. Service
20. SECURITY CLASS (Thispage)
22. PRICE
EPA Form 2220-1 (9-73)
AUSGPO: 1976 —650-478/1103 Region 5-1
-------