&EPA United States Environmental Protection Agency Solid Waste And Emergency Response (OS-240) Priorities List Sites: EPA/540/8-91/050 September 1991 PB92-963221 OKLAHOMA 1991 Printed on Recycled Paper ------- Publication #9200.5-736A September 1991 NATIONAL PRIORITIES LIST SITES: Oklahoma Agency - 121h Floor Chicago, IL 60604-3590 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Office of Emergency & Remedial Response Office of Program Management Washington, DC 20460 ------- If you wish to purchase copies of any additional State volumes contact: National Technical Information Service (NTIS) U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650 The National Overview volume, Superfund: Focusing on the Nation at Large (1991), may be ordered as PB92-963253. The complete set of the overview documents, plus the 49 state reports may be ordered as PB92-963253. ------- TABLE OF CONTENTS Page Introduction: A Brief Overview 1 Superfund: How Does the Program Work to Clean Up Sites? 5 The Volume: How to Use the State Book 13 NPL Sites: In the State of Oklahoma 17 The NPL Report: Progress to Date 19 The NPL Fact Sheets: Summary of Site Activities 21 Appendix A: Glossary: Terms Used in the Fact Sheets 43 Appendix B: Repositories of Site Information 59 ------- INTRODUCTION WHY THE SUPERFUND PROGRAM? As the 1970s came to a close, a series of headline stories gave Americans a look at the dangers of dumping indus- trial and urban wastes on the land. First there was New York's Love Canal. Hazardous waste buried there over a 25-year period contaminated streams and soil, and endangered the health of nearby residents. The result: evacuation of several hundred people. Then the leaking barrels at the Valley of the Drums in Kentucky attracted public attention, as did the dioxin-tainted land and water in Times Beach, Missouri. In all these cases, human health and the envi- ronment were threatened, lives were disrupted, and property values were reduced. It became increasingly clear that there were large num- bers of serious hazardous waste problems that were falling through the cracks of existing environmental laws. The magnitude of these emerging problems moved Congress to enact the Comprehensive Environmental Response, Compensation, and Liability Act in 1980. CERCLA commonly known as Superfund was the first Federal law established to deal with the dangers posed by the Nation's hazard- ous waste sites. After Discovery, the Problem Intensified Few realized the size of the problem until the Environmental Protection Agency (EPA) began the process of site discovery and site evaluation. Not hundreds, but thousands of potential hazardous waste sites existed, and they presented the Nation with some of the most complex pollution problems it had ever faced. Since the Superfund program began, hazard- A Brief Overview ous waste has surfaced as a major environ- mental concern in every part of the United States. It wasn't just the land that was con- taminated by past disposal practices. Chemi- cals in the soil were spreading into the ground- water (a source of drinking water for many) and into streams, lakes, bays, and wetlands. Toxic vapors contaminated the air at some sites, while improperly disposed or stored wastes threatened the health of the surrounding community and the environment at others. The EPA Identified More than 1,200 Serious Sites The EPA has identified 1,245 hazardous waste sites as the most serious in the Nation. These sites comprise the National Priorities List; sites targeted for cleanup under Super-fund. But site discoveries continue, and the EPA esti- mates that, while some will be deleted after lengthy cleanups, this list, commonly cabled the NPL, will continue to grow by approxi- mately 50 to 100 sites per year, potentially reaching 2,100 sites by the year 2000. THE NATIONAL CLEANUP EFFORT IS MUCH MORE THAN THE NPL From the beginning of the program, Congress recognized that the Federal government could ------- INTRODUCTION not and should not address all environmental problems stemming from past disposal prac- tices. Therefore, the EPA was directed to set priorities and establish a list of sites to target. Sites on the NPL (1,245) thus are a relatively small subset of a larger inventory of potential hazardous waste sites, but they do comprise the most complex and compelling cases. The EPA has logged more than 35,000 sites on its national inventory of potentially hazardous waste sites and assesses each site within one year of being logged. THE EPA IS MAKING PROGRESS ON SITE CLEANUP The goal of the Superfund program is to tackle immediate dangers first and then move through the progressive steps necessary to eliminate any long-term risks to public health and the environment. Superfund responds immediately to sites posing imminent threats to human health and the environment at both NPL sites and sites not on the NPL. The purpose is to stabilize, prevent, or temper the effects of a release of hazardous substances, or the threat of one, into the environment. These might include tire fires or transportation accidents involving the spill of hazardous chemicals. Because they reduce the threat a site poses to human health and the environment, immediate cleanup actions are an integral part of the Superfund program. Immediate response to imminent threats is one of Superfund's most noted achievements. Where imminent threats to the public or environment were evident, the EPA has initi- ated or completed emergency actions that attacked the most serious threats of toxic exposure in more than 2,700 cases. The ultimate goal for a hazardous waste site on the NPL is a permanent solution to an environ- mental problem that presents a serious threat to the public or the environment. This often requires a long-term effort. The EPA has aggressively accelerated its efforts to perform these long-term cleanups of NPL sites. More cleanups were started in 1987, when the Superfund law was amended, than in any previous year. By 1991, construction had started at more than four times as many sites as in 1986! Of the sites currently on the NPL, more than 500 nearly half have had construction cleanup activity. In addition, more than 400 more sites presently are in the investigation stage to determine the extent of site contamination and to identify appropriate cleanup remedies. Many other sites with cleanup remedies selected are poised for the start of cleanup construction activity. In measuring success by "progress through the cleanup pipeline," the EPA clearly is gaining momentum. THE EPA MAKES SURE CLEANUP WORKS The EPA has gained enough experience in cleanup construction to understand that envi- ronmental protection does not end when the remedy is in place. Many complex technolo- gies like those designed to clean up ground- water must operate for many years in order to accomplish their objectives. The EPA's hazardous waste site managers are committed to proper operation and mainte- nance of every remedy constructed. No matter who has been delegated responsibility for monitoring the cleanup work, the EPA will assure that the remedy is carefully followed and that it continues to do its job. Likewise, the EPA does not abandon a site even after the cleanup work is done. Every five years, the Agency reviews each site where residues from hazardous waste cleanup still remain to ensure that public and environmental ------- INTRODUCTION health are being safeguarded. The EPA will correct any deficiencies discovered and will report to the public annually on all five-year reviews conducted that year. CITIZENS HELP SHAPE DECISIONS Superfund activities also depend upon local citizen participation. The EPA's job is to analyze the hazards and to deploy the experts, but the Agency needs citizen input as it makes choices for affected communities. Because the people in a community where a Superfund site is located will be those most directly affected by hazardous waste problems and cleanup processes, the EPA encourages citizens to get involved in cleanup decisions. Public involvement and comment does influ- ence EPA cleanup plans by providing valuable information about site conditions, community concerns, and preferences. The State and U.S. Territories volumes and the companion National overview volume provide general Superfund background information and descriptions of activities at each NPL site. These volumes clearly describe what the problems are, what the EPA and others partici- pating in site cleanups are doing, and how we, as a Nation, can move ahead in solving these serious problems. USING THE STATE AND NATIONAL VOLUMES TOGETHER To understand the big picture on hazardous waste cleanup, citizens need to hear about both environmental progress across the country and the cleanup accomplishments closer to home. Citizens also should understand the challenges involved in hazardous waste cleanup and the decisions we must make, as a Nation, in finding the best solutions. The National overview, Superfund: Focusing on the Nation at Large (1991), contains impor- tant information to help you understand the magnitude and challenges facing the Superfund program, as well as an overview of the National cleanup effort. The sections describe the nature of the hazardous waste problem nationwide, threats and contaminants at NPL sites and their potential effects on human health and the environment, vital roles of the various participants in the cleanup process, the Superfund program's successes in cleaning up the Nation's serious hazardous waste sites, and the current status of the NPL. If you did not receive this overview volume, ordering information is provided in the front of this book. This volume compiles site summary fact sheets on each State or Territorial site being cleaned up under the Superfund program. These sites represent the most serious hazardous waste problems in the Nation and require the most complicated and costly site solutions yet encountered. Each book gives a "snapshot" of the conditions and cleanup progress that has been made at each NPL site. Information presented for each site is current as of April 1991. Conditions change as our cleanup efforts continue, so these site summaries will be updated annually to include information on new progress being made. To help you understand the cleanup accom- plishments made at these sites, this volume includes a description of the process for site discovery, threat evaluation, and long-term cleanup of Superfund sites. This description, How Does the Program Work to Clean Up Sites?, will serve as a reference point from which to review the cleanup status at specific sites. A glossary defining key terms as they apply to hazardous waste management and site cleanup is included as Appendix A in the back of this book. ------- SUPERFUND The diverse problems posed by hazard- ous waste sites have provided the EPA with the challenge to establish a consis- tent approach for evaluating and cleaning up the Nation's most serious sites. To do this, the EPA has had to step beyond its traditional role as a regulatory agency to develop processes and guidelines for each step in these techni- cally complex site cleanups. The EPA has established procedures to coordinate the efforts of its Washington, D.C. Headquarters program offices and its front-line staff in ten Regional Offices, with the State and local governments, contractors, and private parties who are participating in site cleanup. An important part of the process is that any time How Does the Program Work to Clean Up Sites? THREE-STEP SUPERFUND PROCESS STEP1 Discover site and determine whether an emergency exists * STEP 2 Evaluate whether a site is a serious threat to public health or environment STEP 3 Perform long-term cleanup actions on the most serious hazardous waste sites in the Nation * Emergency actions are performed whenever needed in Ms three-step process. during cleanup, work can be led by the EPA or the State or, under their monitoring, by private parties who are potentially responsible for site contamination. The process for discovery of the site, evalu- ation of threat, and the long-term cleanup of Superfund sites is summarized in the follow- ing pages. The phases of each of these steps are highlighted within the description. The flow diagram above provides a summary of the three-step process. Although this book provides a current "snap- shot" of site progress made only by emergency actions and long-term cleanup actions at Superfund sites, it is important to understand the discovery and evaluation process that leads to identifying and cleaning up these most serious uncontrolled or abandoned hazardous ------- SUPERFUND waste sites in the Nation. The discovery and evaluation process is the starting point for this summary description of Superfund involve- ment at hazardous waste sites. STEP 1: SITE DISCOVERY AND EMERGENCY EVALUATION How does the EPA learn about potential hazardous waste sites? Site discovery occurs in a number of ways. Information comes from concerned citizens. People may notice an odd taste or foul odor in their drinking water or see half-buried leaking barrels; a hunter may come across a field where waste was dumped illegally. There may be an explosion or fire, which alerts the State or local authorities to a problem. Routine investigations by State and local governments and required reporting and inspection of facilities that generate, treat, store, or dispose of hazardous waste also help keep the EPA informed about actual or potential threats of hazardous substance releases. All reported sites or spills are recorded in the Superfund inventory (CERCLIS) for further investigation to determine whether they will require cleanup. What happens If there is an imminent danger? As soon as a potential hazardous waste site is reported, the EPA determines whether there is an emergency requiring an immediate cleanup action. If there is, they act as quickly as possible to remove or stabilize the imminent threat. These short-term emergency actions range from building a fence around the con- taminated area to keep people away, or tempo- rarily relocating residents until the danger is addressed, to providing bottled water to resi- dents while their local drinking water supply is being cleaned up or physically removing wastes for safe disposal. However, emergency actions can happen at any time an imminent threat or emergency warrants them. For example, if leaking barrels are found when cleanup crews start digging in the ground or if samples of contaminated soils or air show that there may be a threat of fire or explosion, an immediate action is taken. STEP 2: SITE THREAT EVALUATION if there isn't an imminent danger, how does the EPA determine what, If any, cleanup actions should be taken? Even after any imminent dangers are taken care of, in most cases, contamination may remain at the site. For example, residents may have been supplied with bottled water to take care of their immediate problem of contami- nated well water, but now it's time to deter- mine what is contaminating the drinking water supply and the best way to clean it up. The EPA may determine that there is no imminent danger from a site, so any long-term threats need to be evaluated. In either case, a more comprehensive investigation is needed to determine if a site poses a serious, but not imminent, danger and whether it requires a long-term cleanup action. Once a site is discovered and any needed emergency actions are taken, the EPA or the State collects all available background infor- mation not only from their own files, but also from local records and U.S. Geological Survey maps. This information is used to identify the site and to perform a preliminary assessment of its potential hazards. This is a quick review of readily available information to answer the questions: Are hazardous substances likely to be present? ------- SUPERFUND How are they contained? How might contaminants spread? How close is the nearest well, home, or natural resource area such as a wetland or animal sanctuary? What may be harmed the land, water, air, people, plants, or animals? Some sites do not require further action be- cause the preliminary assessment shows that they do not threaten public health or the envi- ronment. But even in these cases, the sites remain listed in the Superfund inventory for record-keeping purposes and future reference. Currently, there are more than 35,000 sites maintained in this inventory. If the preliminary assessment shows a serious threat may exist, what's the next step? Inspectors go to the site to collect additional information to evaluate its hazard potential. During this site inspection, they look for evidence of hazardous waste, such as leaking drums and dead or discolored vegetation. They may take some samples of soil, well water, river water, and air. Inspectors analyze the ways hazardous materials could be pollut- ing the environment, such as runoff into nearby streams. They also check to see if people (especially children) have access to the site. How does the EPA use the results of the site inspection? Information collected during the site inspection is used to identify the sites posing the most serious threats to human health and the envi- ronment. This way, the EPA can meet the requirement that Congress gave them to use Superfund monies only on the worst hazardous waste sites in the Nation. To identify the most serious sites, the EPA developed the Hazard Ranking System (HRS). The HRS is the scoring system the EPA uses to assess the relative threat from a release or a potential release of hazardous substances from a site to surrounding groundwater, surface water, air, and soil. A site score is based on the likelihood that a hazardous substance will be released from the site, the toxicity and amount of hazardous substances at the site, and the people and sensitive environments poten- tially affected by contamination at the site. Only sites with high enough health and envi- ronmental risk scores are proposed to be added to the NPL. That's why 1,245 sites are on the NPL, but there are more than 35,000 sites in the Superfund inventory. Only NPL sites can have a long-term cleanup paid for from Superfund, the national hazardous waste trust fund. Superfund can, and does, pay for emer- gency actions performed at any site, whether or not it's on the NPL. Why are sites proposed to the NPL? Sites proposed to the NPL have been evaluated through the scoring process as the most serious problems among uncontrolled or abandoned hazardous waste sites in the U.S. In addition, a site will be proposed to the NPL if the Agency for Toxic Substances and Disease Registry issues a health advisory recommending that people be moved away from the site. The NPL is updated at least once a year, and it's only after public comments are considered that these proposed worst sites officially are added to the list. Listing on the NPL does not set the order in which sites will be cleaned up. The order is influenced by the relative priority of the site's health and environmental threats compared to other sites, and such factors as State priorities, engineering capabilities, and available tech- ------- SUPERFUND. nologies. Many States also have their own list of sites that require cleanup; these often contain sites that are not on the NPL and are scheduled to be cleaned up with State money. And, it should be noted again that any emergency action needed at a site can be performed by the Superfund, whether or not a site is on the NPL. A detailed description of the current progress in cleaning up NPL sites is found in the section of the 1991 National overview volume entitled Cleanup Successes: Measuring Progress. How do people find out whether the EPA considers a site a national priority for cleanup under the Superfund Program? All NPL sites, where Superfund is responsible for cleanup, are described in the State and Territorial volumes. The public also can find out whether other sites, not on the NPL, are being addressed by the Superfund program by calling their Regional EPA office or the Super- fund Hotline at the numbers listed in this book. STEP 3: LONG-TERM CLEANUP ACTIONS After a site Is added to the NPL, what are the steps to cleanup? The ultimate goal for a hazardous waste site on the NPL is a permanent, long-term cleanup. Since every site presents a unique set of chal- lenges, there is no single all-purpose solution. A five-phase "remedial response" process is used to develop consistent and workable solutions to hazardous waste problems across the Nation: 1. Remedial Investigation: investigate in detail the extent of the site contamination 2. Feasibility Study: study the range of possible cleanup remedies 3. Record of Decision or ROD: decide which remedy to use 4. Remedial Design: plan the remedy 5. Remedial Action: carry out the remedy This remedial response process is a long-term effort to provide a permanent solution to an environmental problem that presents a serious threat to the public or environment. The first two phases of a long-term cleanup are a combined remedial investigation and feasibil- ity study (RI/FS) that determine the nature and extent of contamination at the site and identify and evaluate cleanup alternatives. These studies may be conducted by the EPA or the State or, under their monitoring, by private parties. Like the initial site inspection described earlier, a remedial investigation involves an examina- tion of site data in order to better define the problem. However, the remedial investigation is much more detailed and comprehensive than the initial site inspection. A remedial investigation can best be described as a carefully designed field study. It includes extensive sampling and laboratory analyses to generate more precise data on the types and quantities of wastes present at the site, the type of soil and water drainage patterns, and specific human health and environmental risks. The result of the remedial investigation is information that allows the EPA to select the cleanup strategy that is best suited to a particu- lar site or to determine that no cleanup is needed. Placing a site on the NPL does not necessarily mean that cleanup is needed. It is possible for ------- SUPERFUND a site to receive an MRS score high enough to be added to the NPL, but not ultimately require cleanup actions. Keep in mind that the purpose of the scoring process is to provide a prelimi- nary and conservative assessment of potential risk. During subsequent site investigations, the EPA may find either that there is no real threat or that the site does not pose significant human health or environmental risks. How are cleanup alternatives identified and evaluated? The EPA or the State or, under their monitor- ing, private parties identify and analyze spe- cific site cleanup needs based on the extensive information collected during the remedial investigation. This analysis of cleanup alterna- tives is called & feasibility study. Since cleanup actions must be tailored exactly to the needs of each individual site, more than one possible cleanup alternative is always considered. After making sure that all potential cleanup remedies fully protect human health and the environment and comply with Federal and State laws, the advantages and disadvan- tages of each cleanup alternative are compared carefully. These comparisons are made to determine their effectiveness in the short and long term, their use of permanent treatment solutions, and their technical feasibility and cost. To the maximum extent practicable, the rem- edy must be a permanent solution and must use treatment technologies to destroy principal site contaminants. Remedies such as containing the waste on site or removing the source of the problem (like leaking barrels) often are consid- ered effective. Often, special pilot studies are conducted to determine the effectiveness and feasibility of using a particular technology to clean up a site. Therefore, the combined remedial investigation and feasibility study can take between 10 and 30 months to complete, depending on the size and complexity of the problem. Does the public have a say in the final cleanup decision? Yes. The Superfund law requires that the public be given the opportunity to comment on the proposed cleanup plan. Their concerns are considered carefully before a final decision is made. The results of the remedial investigation and feasibility study, which also point out the recommended cleanup choice, are published in a report for public review and comment. The EPA or the State encourages the public to review the information and take an active role in the final cleanup decision. Fact sheets and announcements in local papers let the commu- nity know where they can get copies of the study and other reference documents concern- ing the site. Local information repositories, such as libraries or other public buildings, are established in cities and towns near each NPL site to ensure that the public has an opportunity to review all relevant information and the proposed cleanup plans. Locations of informa- tion repositories for each NPL site described in this volume are given in Appendix B. The public has a minimum of 30 days to comment on the proposed cleanup plan after it is published. These comments can be written or given verbally at public meetings that the EPA or the State are required to hold. Neither the EPA nor the State can select the final cleanup remedy without evaluating and provid- ing written answers to specific community comments and concerns. This "responsiveness summary" is part of the EPA's write-up of the final remedy decision, called the Record of Decision, or ROD. The ROD is a public document that explains the cleanup remedy chosen and the reason it ------- SUPERFUND. was selected. Since sites frequently are large and must be cleaned up in stages, a ROD may be necessary for each contaminated resource or area of the site. This may be necessary when contaminants have spread into the soil, water, and air and affect such sensitive areas as wetlands, or when the site is large and cleaned up in stages. This often means that a number of remedies, using different cleanup technolo- gies, are needed to clean up a single site. If every cleanup action needs to be tailored to a site, does the design ofthe remedy need to be tailored, too? Yes. Before a specific cleanup action is carried out, it must be designed in detail to meet specific site needs. This stage of the cleanup is called the remedial design. The design phase provides the details on how the selected rem- edy will be engineered and constructed. Projects to clean up a hazardous waste site may appear to be like any other major construction project but, in fact, the likely presence of combinations of dangerous chemicals demands special construction planning and procedures. Therefore, the design of the remedy can take anywhere from six months to two years to complete. This blueprint for site cleanup includes not only the details on every aspect of the construction work, but a description of the types of hazardous wastes expected at the site, special plans for environmental protection, worker safety, regulatory compliance, and equipment decontamination. Once the design is completed, how long does it take to actually clean up the site, and how much does it cost? The time and cost for performing the site cleanup, called the remedial action, are as varied as the remedies themselves. In a few cases, the only action needed may be to remove drums of hazardous waste and to decontami- nate them, an action that takes limited time and money. In most cases, however, a remedial action may involve different and expensive cleanup measures that can take a long time. For example, cleaning polluted groundwater or dredging contaminated river bottoms can take several years of complex engineering work before contamination is reduced to safe levels. Sometimes the selected cleanup remedy de- scribed in the ROD may need to be modified because of new contaminant information discovered or difficulties that were faced during the early cleanup activities. Taking into account these differences, each remedial cleanup action takes an average of 18 months to complete and ultimately costs an average of $26 million to complete all necessary cleanup actions at a site . Once the cleanup action is completed, is the site automatically "deleted" from the NPL? No. The deletion of a site from the NPL is anything but automatic. For example, cleanup of contaminated groundwater may take up to 20 years or longer. Also, in some cases, long- term monitoring of the remedy is required to ensure that it is effective. After construction of certain remedies, operation and maintenance (e.g., maintenance of ground cover, groundwa- ter monitoring, etc.), or continued pumping and treating of groundwater may be required to ensure that the remedy continues to prevent future health hazards or environmental damage and ultimately meets the cleanup goals speci- fied in the ROD. Sites in this final monitoring or operational stage of the cleanup process are designated as "construction complete." It's not until a site cleanup meets all the goals and monitoring requirements of the selected 10 ------- SUPERFUND remedy that the EPA can officially propose the site for deletion from the NPL, and it's not until public comments are taken into consid- eration that a site actually can be deleted from the NPL. All sites deleted from the NPL and sites with completed construction are included in the progress report found later in this book. Can a site be taken off the NPL if no cleanup has taken place? Yes. But only if further site investigation reveals that there are no threats present at the site and that cleanup activities are not neces- sary. In these cases, the EPA will select a "no action" remedy and may move to delete the site when monitoring confirms that the site does not pose a threat to human health or the environment. In other cases, sites may be "removed" from the NPL if new information concerning site cleanup or threats show that the site does not warrant Superfund activities. A site may be removed if a revised HRS scoring, based on updated information, results in a score below the minimum for NPL sites. A site also may be removed from the NPL by transferring it to other appropriate Federal cleanup authorities, such as RCRA, for further cleanup actions. Removing sites for technical reasons or trans- ferring sites to other cleanup programs pre- serves Superfund monies for the Nation's most pressing hazardous waste problems where no other cleanup authority is applicable. Can the EPA make parties responsible for the contamination pay? Yes. Based on the belief that "the polluters should pay," after a site is placed on the NPL, the EPA makes a thorough effort to identify and find those responsible for causing con- tamination problems at a site. Although the EPA is willing to negotiate with these private parties and encourages voluntary cleanup, it has the authority under the Superfund law to legally force those potentially responsible for site hazards to take specific cleanup actions. All work performed by these parties is closely guided and monitored by the EPA and must meet the same standards required for actions financed through the Superfund. Because these enforcement actions can be lengthy, the EPA may decide to use Superfund monies to make sure a site is cleaned up without unnecessary delay. For example, if a site presents an imminent threat to public health and the environment or if conditions at a site may worsen, it could be necessary to start the cleanup right away. Those responsible for causing site contamination are liable under the law (CERCLA) for repaying the money the EPA spends in cleaning up the site. Whenever possible, the EPA and the Depart- ment of Justice use their legal enforcement authorities to require responsible parties to pay for site cleanups, thereby preserving Superfund resources for emergency actions and for sites where no responsible parties can be identified. 11 ------- THE VOLUME The site fact sheets presented in this book are comprehensive summaries that cover a broad range of information. The fact sheets describe hazardous waste sites on the NPL and their locations, as well as the conditions leading to their listing ("Site Description"). The summaries list the types of contaminants that have been discov- ered and related threats to public and ecologi- cal health ("Threats and Contaminants"). "Cleanup Approach" presents an overview of the cleanup activities completed, underway, or planned. The fact sheets conclude with a brief synopsis of how much progress has been made in protecting public health and the environ- ment. The summaries also pinpoint other actions, such as legal efforts to involve pollut- ers responsible for site contamination and community concerns. The fact sheets are arranged in alphabetical order by site name. Because site cleanup is a dynamic and gradual process, all site informa- tion is accurate as of the date shown on the bottom of each page. Progress always is being made at NPL sites, and the EPA periodically will update the site fact sheets to reflect recent actions and will publish updated State vol- umes. The following two pages show a ge- neric fact sheet and briefly describe the infor- mation under each section. HOW CAN YOU USE THIS STATE BOOK? You can use this book to keep informed about the sites that concern you, particularly ones close to home. The EPA is committed to involving the public in the decision making process associated with hazardous waste cleanup. The Agency solicits input from area residents in communities affected by Super- fund sites. Citizens are likely to be affected not only by hazardous site conditions, but also by the remedies that combat them. Site clean- How to Use the State Book ups take many forms and can affect communi- ties in different ways. Local traffic may be rerouted, residents may be relocated, tempo- rary water supplies may be necessary. Definitive information on a site can help citizens sift through alternatives and make decisions. To make good choices, you must know what the threats are and how the EPA intends to clean up the site. You must under- stand the cleanup alternatives being proposed for site cleanup and how residents may be affected by each one. You also need to have some idea of how your community intends to use the site in the future, and you need to know what the community can realistically expect once the cleanup is complete. The EPA wants to develop cleanup methods that meet community needs, but the Agency only can take local concerns into account if it understands what they are. Information must travel both ways in order for cleanups to be effective and satisfactory. Please take this opportunity to learn more, become involved, and assure that hazardous waste cleanup at "your" site considers your community's concerns. 13 ------- THE VOLUME NPL LISTING HISTORY Dates when the site was Proposed, made Final, and Deleted from the NPL. SITE RESPONSIBILITY Identifies the Federal, State, and/or potentially respon- sible parties that are taking responsibility for cleanup actions at the site. SITE NAME STATE EPA ID# ABCOOOOOOO *~>StteJDescrlption EPA REGION XX CONGRESSIONAL DIST XX COUNTY NAME LOCATION Other Names: Site Responsibility: NPL Listing History Proposed: xxftxtt Flmt Threats and Contaminants Cleanup Approach Response Action Status © ^ N D Site Facts:, Environmental Progress ENVIRONMENTAL PROGRESS A summary of the actions to reduce the threats to nearby residents and the surrounding environment; progress towards cleaning up the site and goals of the cleanup plan are given here. 14 ------- THE VOLUME SITE DESCRIPTION This section describes the location and history of the site. It includes descrip- tions of the most recent activities and past actions at the site that have con- tributed to the contamination. Population estimates, land usages, and nearby resources give readers background on the local setting surrounding the site. THREATS AND CONTAMINANTS The major chemical categories of site contamination are noted, as well as which environmental resources are affected. Icons representing each of the affected resources (may include air, groundwater, surface water, soil, and contamination to environmentally sensitive areas) are included in the margins of this section. Potential threats to residents and the surrounding environ- ments arising from the site contamination also are described. CLEANUP APPROACH This section contains a brief overview of how the site is being cleaned up. RESPONSE ACTION STATUS Specific actions that have been accomplished or will be undertaken to clean up the site are described here. Cleanup activities at NPL sites are divided into separate phases, depending on the complexity and required actions at the site. Two major types of cleanup activities often are described: initial, immediate, or emergency actions to quickly remove or reduce imminent threats to the community and surrounding areas; and long-term remedial phases directed at final cleanup at the site. Each stage of the cleanup strategy is presented in this section of the summary. Icons representing the stage of the cleanup process (initial actions, site investigations, EPA selection of the cleanup remedy, engineering design phase, cleanup activities underway, and completed cleanup) are located in the margin next to each activity descrip- tion. SITE FACTS Additional information on activities and events at the site are included in this section. Often details on legal or administrative actions taken by the EPA to achieve site cleanup or other facts pertaining to community involvement with the site cleanup process are reported here. ------- THE VOLUME The "icons," or symbols, accompanying the text allow the reader to see at a glance which envi- ronmental resources are affected and the status of cleanup activities at the site. Icons in the Threats and Contaminants Section Contaminated Groundwater resources in the Contaminated Groundwater in the vicinity or underlying the site. (Groundwater is often used as a drinking water source.) Contaminated Surface Water and Sediments on or near the site. (These include lakes, ponds, streams, and rivers.) Contaminated Air in the vicinity of the site. (Air pollution usually is periodic and involves contaminated dust particles or hazardous gas emis- sions.) Contaminated Soil and Sludges on or near the site. (This contamination category may include bulk or other surface hazardous wastes found on the site.) Threatened or contaminated Environ- mentally Sensitive Areas in the vicin- ity of the site. (Examples include wetlands and coastal areas or critical habitats.) Icons in the Response Action Status Section Initial Actions have been taken or are underway to eliminate immediate threats at the site. Site Studies at the site to determine the nature and extent of contamination are planned or underway. Remedy Selected indicates that site investigations have been concluded, and the EPA has selected a final cleanup remedy for the site or part of the site. Remedy Design means that engineers are preparing specifications and drawings for the selected cleanup technologies. Cleanup Ongoing indicates that the selected cleanup remedies for the contaminated site, or part of the site, currently are underway. Cleanup Complete shows that all cleanup goals have been achieved for the contaminated site or part of the site. Environmental Progress summa- rizes the activities taken to date to protect human health and to clean up site contamination. 16 ------- NPL SITES The State of Oklahoma Oklahoma is located within EPA Region 6, which includes five states in the south central United States. Oklahoma covers 69,919 square miles, with topography consisting of high plains, hills and small mountains, the Arkansas River Basin, and the Red River Plains. According to the 1990 Census, Oklahoma experienced a 4% increase in population between 1980 and 1990. The state currently has approximately 3,746,000 residents and ranks 28th in U.S. populations. Princi- pal industries include manufacturing, mineral and energy exploration and production, agricul- ture, and printing and publishing. Oklahoma manufacturers produce food products, non-electri- cal machinery, fabricated metal products, lumber, and petroleum. How Many NPL Sites Are in the State of Oklahoma? Proposed Final Deleted 0 10 Jl 10 Where Are the NPL Sites Located? Congresiional District 1 2 sites Congressional District 2 1 site Congressional District 4 2 sites Congressional District 5 5 sites What Type of Sites Are on the NPL in the State of Oklahoma? * of sites 4 3 1 1 1 type of sites Municipal & Industrial Landfill Petroleum Refining & Related Industries Mining Facility Federal Facility Manufacturer 17 April 1991 ------- NPL SITES How Are Sites Contaminated and What Are the Principal* Chemicals? 10-- 8-- 86- 4^ 'Si *« -- 2 -- Soil GW SW Sed Solid Waste Contamination Area Groundwater: Heavy metals (inorganics), volatile organic com- pounds (VOCs), polychlorinated biphenyls (PCBs), and pesticides. Soil and Solid Waste: Heavy metals (inorganics), volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), pesticides, radiation, and acids. Surface Water and Sediments: Heavy metals (inorganics),volatile organic compounds (VOCs), and acids. *Appear at 20% or more sites Where Are the Sites in the Super-fund Cleanup Process?1 4 Sites with ^ Studies Underway Sites ^ with Remedy Selected 3 Sites ^ with Remedy Design 2 Sites ^ with Cleanup Ongoing 1 N Site ^ with Construction Complete Deleted Sites In addition to activities described above, initial actions have been taken at 9 sites as interim cleanup measures. 'Cleanup status reflects phases of site activities rather than administrative accomplishments. April 1991 18 ------- THE NPL REPORT The following Progress Report lists all sites currently on, or deleted from, the NPL and briefly summarizes the status of activities for each site at the time this report was prepared. The steps in the Super- fund cleanup process are arrayed across the top of the chart, and each site's progress through these steps is represented by an arrow indicating the current stage of cleanup. Progress To Date Large and complex sites often are organized into several cleanup stages. For example, separate cleanup efforts may be required to address the source of the contamination, hazardous substances in the groundwater, and surface water pollution, or to clean up differ- ent areas of a large site. In such cases, the chart portrays cleanup progress at the site's most advanced stage, reflecting the status of site activities rather than administrative accomplishments. An arrow in the "Initial Response" cate- gory indicates that an emergency cleanup or initial action has been completed or currently is underway. Emergency or initial actions are taken as an interim measure to provide im- mediate relief from exposure to hazardous site conditions or to stabilize a site to prevent further contamination. A final arrow in the "Site Studies" category indicates that an investigation to determine the nature and extent of the contamination at the site currently is ongoing. « A final arrow in the "Remedy Selection" category means that the EPA has selected the final cleanup strategy for the site. At the few sites where the EPA has determined that initial response actions have eliminated site contamination, or that any remaining contamination will be naturally dispersed without further cleanup activities, a "No Action" remedy is selected. In these cases, the arrows are discontinued at the "Remedy Selection" step and resume in the "Construction Complete" category. A final arrow at the "Remedial Design" stage indicates that engineers currently are designing the technical specifications for the selected cleanup remedies and technologies. A final arrow in the "Cleanup Ongoing" column means that final cleanup actions have been started at the site and currently are underway. A final arrow in the "Construction Complete" category is used only when all phases of the site cleanup plan have been performed, and the EPA has determined that no additional construction actions are required at the site. Some sites in this category currently may be undergoing long-term operation and maintenance or monitoring to ensure that the cleanup actions continue to protect human health and the environment. A check in the "Deleted" category indicates that the site cleanup has met all human health and environmental goals and that the EPA has deleted the site from the NPL. Further information on the activities and progress at each site is given in the site "Fact Sheets" published in this volume. 19 April 1991 ------- Progress Toward Cleanup at NPL Sites in the State of Oklahoma CO CO Page Site Name 23 COMPASS INDUSTRIES (AVERY DRIVE) 25 DOUBLE EAGLE REFINERY COMPANY 27 FOURTH ST. ABANDONED REFINERY 29 HARDAGE/CRINER 31 MOSLEY ROAD SANITARY LANDFILL 33 OKLAHOMA REFINING COMPANY 35 SAND SPRINGS PETROCHEMICAL CO. 37 TAR CREEK (OTTAWA COUNTY) 39 TENTH STREET DUMP/JUNKYARD 41 TINKER AIR FORCE BASE County TULSA OKLAHOMA OKLAHOMA MCCLAIN OKLAHOMA CADDO TULSA OTTAWA OKLAHOMA OKLAHOMA NPL Final Final Final Final Final Final Final Final Final Final Date 09/21/84 03/31/89 03/31/89 09/08/83 02/21/90 02/21/90 06/10/86 09/08/83 07/22/87 07/22/87 Response O i S' c=> i *> O c=> o o O Studies O O O O O o o c> O O Seled c> i=> i=> 0 c=> O Initial Site Remedy Remedy Cleanup Construction Design Ongoing Complete Deleted o o O ------- THE NPL FACT SHEETS Summary of Site Activities EPA REGION 6 21 April 1991 ------- Who Do I Call with Questions? The following pages describe each NPL site in Oklahoma, providing specific information on threats and contaminants, cleanup activities, and environmen- tal progress. Should you have questions, please call the EPA's Region 6 Office in Dallas, Texas or one of the other offices listed below: EPA Region 6 Superfund Community Relations Office (214) 655-2240 EPA Region 6 Superfund Office (214) 655-6664 EPA Superfund Hotline (800) 424-9346 EPA Headquarters Public Information Center (202) 260-2080 Oklahoma Superfund Office (405) 271-7157 April! 991 22 ------- COMPASS INDUSTRIES (AVERY DRIVE) OKLAHOMA EPA ID# OKD980620983 Site Description EPA REGION 6 CONGRESSIONAL DIST. 01 Tulsa County Chandler Park Other Names: Tulsa Refining, Inc. Chandler Landfill Compass Industries (Avery Drive) is a 30-acre abandoned landfill situated on a bluff that overlooks the Arkansas River to the west of Tulsa. Licensed for operations from 1972 to 1976, it served as one of the major municipal and industrial landfills in the Tulsa area. Unknown wastes have been dumped at the site since the mid-1950s. The limited records kept indicate that several types of hazardous wastes were dumped there, including toxic chemicals, metals, and carcinogenic materials. Prior to that, the site was used for limestone quarrying and oil and gas exploration. During the 1970s, poor operating practices and open burning resulted in several fires at the landfill. The most recent fire burned underground for several years, occasionally breaking out into the open. The waste is piled approximately 20 feet deep. The State Health Department began to study air and water quality in 1983, when residents complained about odors at the site. The site is in a rural area, but is immediately west of Chandler Park, a recreational area. The nearest residence is 1/4 mile from the site, and the nearest drinking water well is 1/2 mile away, although it is upgradient from the site and currently is not in use. Site Responsibility: The site is being addressed through Federal, State, and potentially responsible parties' actions. NPL LISTING HISTORY Proposed Date: 09/08/83 Final Date: 09/21/84 Threats and Contaminants The groundwater is contaminated with toxic metals and organic compounds. Contaminants include oily sludges, jet fuel, solvents, acids, caustics, bleaches, benzene, polychlorinated biphenyls (PCBs), and pesticides. In the past, the site has been troubled by recurrent fires. Toxic air emissions from burning material could reach nearby residences. In addition, trespassers from the nearby recreational area may come in contact with contaminated materials; people have used the site for target practice. The area near the site is a habitat for the endangered bald eagle. 23 AnriM991 ------- Cleanup Approach The site is being addressed in two stages: immediate actions to limit access to the site and a long- term remedial phase to clean up the groundwater and to control the spread of contamination. Response Action Status Immediate Actions: The EPA installed a fence around the site and put warning signs around its perimeter in mid-1988. Source Control and Groundwater Cleanup: The EPA selected the following remedies: (1) installing an EPA-approved cap over the landfill area to isolate contaminated materials and reduce the amount of water seeping into and through the landfill; (2) diverting surface water to reduce overland flows and reduce infiltration; (3) grading of the site to encourage site runoff and prevent erosion; and (4) collecting and treating contaminated shallow groundwater before discharge into the Arkansas River. The construction phase began in 1989. The clay cap was completed in 1990. Final seeding of the site will take place in 1991. Site Facts: The parties potentially responsible for the site contamination are performing the cleanup, pursuant to an Administrative Order. Environmental Progress The construction of a fence to limit access to the site has reduced the exposure potential of the Compass Industries (Avery Drive) site, making it safer during cleanup activities. Completion of the clay cap has contained material on site and will help keep pollutants from migrating off site via water and air. April 1991 24 COMPASS INDUSTRIES (AVERY DRIVE) ------- DOUBLED REFINERY COMPANY OKLAHOMA EPAID#OKD007188717 EPA REGION 6 CONGRESSIONAL DIST. 05 Oklahoma County Oklahoma City Site Description The Double Eagle Refinery Company, located southeast of the intersection of 4th Street NE and Eastern Avenue, has been in operation since 1929. Until around 1980, this 12-acre facility refined used motor oils by acidulation, distillation, and filtration. The operation now stores, dehydrates, and sells waste oils. About 2,500 cubic yards of waste oils contaminated with heavy metals are in a surface impoundment and four ponds, some of which are unlined or leaking. According to the company, the oils come from truck fleets, garages, automobile dealers, industries, and City, State, and Federal agencies throughout the State. In addition, waste solvents and other products were collected from major industrial companies in Oklahoma. The refinery is bordered by three waste pits on the west, five ponds on the east, and a sludge lagoon to the south. In 1986, the EPA detected barium, lead, and zinc in soil in drainage paths to the east and west of the site and in one of the ponds to the east. These contaminants probably are the result of spills from the lagoon. About 28,500 people in Del City and Smith Village get drinking water from public and private wells within 3 miles of the site. An on-site well serves company employees. The site is located 1/2 mile from a school and 1/4 mile from a residential area. Surface waters within 3 miles of the site are used for recreational activities. The North Canadian river is located approximately 1/2 mile south of the site. Site Responsibility: This site is being addressed through Federal and potentially responsible parties' actions. NPL USTING HISTORY Proposed Date: 06/24/88 Final Date: 03/31/89 Threats and Contaminants Sediments from the ponds and drainage areas, the surrounding soil areas, and surface water are contaminated with barium, lead, zinc, acid base-neutral compounds, and volatile organic compounds (VOCs). Groundwater in the area is shallow (10 to 25 feet in some cases) and soils are permeable, conditions that help contaminants move into groundwater. There is a health risk from direct contact with the materials, but this has been lessened since the area was fenced. 25 April 1991 ------- Cleanup Approach This site is being addressed in two stages: immediate actions and a long-term remedial phase focusing on the entire site. Response Action Status Immediate Actions: In 1988, the EPA ordered the site owner to fence the northern side of the site, so that people and animals could not come into direct contact with hazardous substances. The fence was erected in 1989. Entire Site: In 1988, the EPA evaluated the site and determined that emergency cleanup actions are not warranted at this time. The EPA began conducting a site investigation of groundwater, soil, and surface water in 1990. The study is expected to conclude in 1992, at which point the EPA will select the technologies to clean up the site. Environmental Progress Fencing of the Double Eagle Refinery site has reduced the potential of exposure to hazardous substances, making the area safer while investigations are taking place. April 1991 26 DOUBLE EAGLE REFINERY COMPANY ------- FOURTH STREET REFINERY OKLAHOMA EPA ID# OKD980696470 EPA REGION 6 CONGRESSIONAL DIST. 05 Oklahoma County Oklahoma City Site Description The Fourth Street Refinery is an abandoned 28-acre facility that operated from 1940 to 1968, and the firm created numerous oil and sludge pits during this time. More recent dumping has occurred in the form of old concrete and building materials and government surplus supplies. An inactive oil well and a gas well are on site. Elevated levels of several pesticides, acid based-neutral compounds, and volatile organic compounds (VOCs) have been identified in the soils, sediment, and sludge. Approximately 32,500 people live within 3 miles of the abandoned refinery. They obtain their water from the two interconnected aquifers that are 15 feet beneath the site. Douglas High School is 1/2 mile south of the site. The nearest surface water is the North Canadian River, which is approximately 1/2 mile south of the site. Site Responsibility: The site is being addressed through a combination of Federal and State actions. NPL USTING HISTORY Proposed Date: 06/24/88 Final Date: 03/31/89 Threats and Contaminants Soil samples contain barium, lead, chlordane, and crude oil constituents. Sludge from the site is contaminated with nickel, benzene, and numerous VOCs. Given the hydrogeology of the site, there is significant potential for groundwater contamination to the two aquifers. The land drains to the south and east, thus threatening the North Canadian River. Also, the site was not completely fenced, making it possible for people and animals to come into direct contact with hazardous substances. Cleanup Approach This site is being addressed in two stages: initial actions and a long-term remedial phase focusing on the entire site. 27 April 1991 ------- Response Action Status Initial Actions: In 1985, the State decontaminated junk autos, stored two drums of benzene, and capped and seeded the area. The EPA fenced the site and posted warning signs in 1989. Entire Site: Between 1985 and 1987, the EPA performed surveys and field sampling at the site. The EPA currently is conducting an investigation to determine the extent of contamination to groundwater, surface water, sediment, soil, sludge and tar areas, as well as to chart the movement of contaminants through the air. The investigation will recommend alternatives for the cleanup and is scheduled to be completed in 1992. Further studies of specific aspects of the site may be proposed in the future. Environmental Progress The initial cleanup actions described above have reduced the actual exposure potential at the Fourth Street Refinery site, making it safer while awaiting further cleanup activities. April 1991 28 FOURTH STREET ABANDONED REFINERY ------- OKLAHOMA EPA ID# OKD000400093 EPA REGION 6 CONGRESSIONAL DIST. 04 McClain County 3/4 mile west of Criner on Hwy. 122 Other Names: Hardage Landfill Criner Landfill Criner/Hardage Waste Disposal Site Description The 60-acre Hardage/Criner site was licensed by the State of Oklahoma from 1972 to 1980 to accept industrial and hazardous wastes such as asbestos, cyanides, and flammable sludges. Pits excavated to receive wastes filled rapidly, and wastes were then transferred to two temporary ponds. In the west pond, liquid wastes were slurried with soil and transferred to the south pond. When the south pond filled, wastes were stacked 15 to 20 feet above the ground, becoming a sludge mound. In the mid-1970s, drums were no longer emptied but were piled at the northern end of the main pit, called the drum mound. These practices resulted in pesticides, solvents, acids, and metal sludges contaminating surface water, groundwater, and surface soil. The nearest residence in this rural area is at the southwestern site boundary. Adjacent to the North Criner Creek flood plain, the site is surrounded by cattle grazing land. Shallow groundwater from the site has moved into the North Criner Creek alluvium. Site Responsibility: This site is being addressed through a combination of Federal, State, and potentially responsible parties' actions. NPL LISTING HISTORY Proposed Date: 10/15/81 Final Date: 09/08/83 Threats and Contaminants The soil, groundwater, and surface waters are contaminated with volatile organic compounds (VOCs), heavy metals, solvents, pesticides, polychlorinated biphenyls (PCBs), oils, methylene chloride, paint sludge, and inks. Inhalation of dusts and vapors generated from the soils on site poses a potential risk for workers or trespassers. Fugitive dusts and vapors from on-site soil disruption could be inhaled off site. There is no known current use of the groundwater, but any use of contaminated groundwater would be hazardous. 29 April 1991 ------- Cleanup Approach The site is being addressed in three stages: an initial action and two long-term remedial phases focusing on groundwater treatment and cleanup of the entire site. Response Action Status Initial Actions: In 1982, the potentially responsible parties started decontaminating the site by mixing pit fluids with soil, excavating visibly contaminated soils from mixing areas and temporary ponds, capping the source areas with a soil cover, and consolidating wastes in source areas. The parties potentially responsible for contamination fenced the site in 1987. In 1988, heavy rains caused slope damage to the western face of the barrel mound. The potentially responsible parties performed the repair, restored the other eroded mound areas, and provided a new water supply for 12 residences. Groundwater: The EPA's selected remedy, which was reviewed by the public in 1989, is to build a V-shaped trench to intercept contaminated groundwater over most of the site. Another interceptor trench will catch groundwater that is moving into the alluvium located under North Criner Creek. The captured groundwater will be pumped to an on-site treatment unit, and then the treated water will be discharged to North Criner Creek. The groundwater and surface water will be monitored, surface drainage controlled, and the use of contaminated groundwater will be prevented through institutional controls. Source Area: In 1986, the EPA chose the following remedies for cleaning up the source of contamination to be carried out by the potentially responsible parties: (1) excavation of approximately 180,000 cubic yards from the principal source areas (the drum mound, main pit, and sludge mound) to the bedrock; (2) separation of wastes; (3) treatment and disposal of solids in an on-site approved landfill; (4) incineration of organic liquids; and (5) treatment and disposal of inorganic liquids. A public comment period was held in 1989 to explore options other than those listed. In 1989, the EPA revised the 1986 remedy selection. The revised cleanup remedy calls for soil vapor extraction of the source areas, consolidation of contaminated soils, and removal of contaminated liquids followed by off-site incineration and capping of the source areas. Site Facts: In 1978, the State of Oklahoma filed complaints against the facility for suspected lead poisoning of the air around the site. A ruling in 1982 found that the potentially responsible parties are liable for all costs of removal or remedial actions. A complaint was filed against 36 generators and transporters in 1986. A partial Consent Decree was signed by the potentially responsible parties in 1987 for the groundwater cleanup. In August 1990, the Federal District Court selected the cleanup remedy proposed by the potentially responsible parties. Environmental Progress The initial actions taken by the potentially responsible parties to decontaminate the soil, to excavate, and to cap the source areas as described above have reduced the potential exposure of nearby residents to the waste at the Hardage/Criner site, making it safer while it awaits further remedial activities. April 1991 30 HARDAGE/CRINER ------- MOSLEY SANITAR OKLAHOMA EPA ID# OKD980620868 Site Description EPA REGION 6 CONGRESSIONAL DIST. 05 Oklahoma County 3 miles east of Oklahoma City The Mosley Road Landfill covers 72 acres and was used from 1975 to 1987 as a commercial, residential, and industrial landfill. In 1976, the landfill accepted approximately 2 million gallons of hazardous substances under a Temporary Emergency Waiver for Hazardous Waste Disposal issued by the Oklahoma State Department of Health. According to the permit application, pesticides, industrial solvents, sludges, waste chemicals, and emulsions were deposited in two unlined pits. Since then, the pits have been buried under as much as 20 feet of solid refuse and fill. Concerns about groundwater contamination brought the site to the EPA's attention. The hazardous wastes were disposed of near the base of the landfill, and a potential long-term risk could exist if wastes are leaking into the groundwater. The landfill lies above the Garber-Wellington Formation, an aquifer that serves as a high-quality drinking water source for many Oklahoma City residents. The area is residential and commercial. An estimated 57,000 people obtain drinking water from public and private wells within a 3-mile radius of the site. Six homes within 1/2 mile obtain drinking water from private wells. Site Responsibility: This site is being addressed by a combination of Federal and potentially responsible parties' actions. NPL LISTING HISTORY Proposed Date: 06724/88 Final Date: 02/21/90 Threats and Contaminants The soil is contaminated with pesticides, industrial solvents, sludges, waste chemicals, emulsions, and other substances disposed of in the landfills. Potential contamination of groundwater supplying the public drinking water system may pose a threat to human health. Cleanup Approach The site is being addressed in a single long-term remedial phase focusing on cleanup of the entire site. 31 April 1991 ------- Response Action Status Entire Site: Under an agreement with the EPA, Waste Management of Oklahoma, Inc. and Mobile Waste Controls, Inc. are performing the study that will determine the nature and extent of site contamination and will identify and evaluate potential remedies for site problems. The investigation is scheduled for completion in 1992, with the EPA selecting the final remedy, and the actual site cleanup is planned for 1993. Site Facts: Waste Management of Oklahoma signed an Administrative Order with the EPA in 1989 to conduct an investigation into the nature and extent of site contaminants. Environmental Progress The investigation into a permanent solution is being carried out, and the EPA will decide on a final remedy soon. Meanwhile, the EPA assessed conditions at the Mosley Road Sanitary Landfill site and determined that the site does not warrant immediate cleanup actions. April 1991 32 MOSLEY ROAD SANITARY LANDFILL ------- OKLAHQ REFININ COMPAN OKLAHOMA EPAID#OKD09159| Site Description EPA REGION 6 CONGRESSIONAL DIST. 04 Caddo County South Baskett Street in Cyril The 160-acre Oklahoma Refining Company site is an abandoned oil refinery that was active from 1908 to 1984. The operator at the site placed process wastes, some reactive or flammable, into approximately 50 impoundments, many of which were unlined. Other wastes were tilled into the soil or placed in a waste pile. In 1981, the EPA observed leachate coming from the site, threatening nearby Gladys and Chetonia Creeks, which are used for recreational activities. In 1984, the owner declared bankruptcy and abandoned the facility. In 1986, the EPA found an on-site monitoring well to be contaminated with heavy metals. Approximately 1,600 people obtain drinking water from public and private wells within 3 miles of the site. One private well is located within 1,000 feet of the site. Site Responsibility: This site is being addressed through Federal and State actions. NPL LISTING HISTORY Proposed Date: 06/24/88 Final Date: 02/21/90 Threats and Contaminants The groundwater is contaminated with heavy metals, including arsenic and lead. Process wastes from oil refining were tilled into the soil through a landfarming operation, but the soil contaminants are unspecified. Many of the wastes remaining on site are flammable or reactive and pose the threat of fire or explosion. The site is unfenced, making it accessible to people and animals. Two creeks have been shown to be affected by contamination from the site. Cleanup Approach This site is being addressed in two stages: initial actions and a long-term remedial phase focusing on cleanup of the entire site. 33 April 1991 ------- Response Action Status Initial Actions: In 1989, the EPA surveyed the site to determine the nature of emergency actions required. As a result of the survey, a fence was erected to limit access to the site in 1990. Netting was placed over the impoundments, further reducing the risk of direct contact with the hazardous waste. Additionally, the drums on the site are slated for disposal in 1991. Entire Site: In 1989, the Oklahoma State Department of Health began an investigation to assess the extent of contamination in soil, groundwater, and surface waters and to identify appropriate cleanup strategies. The cleanup remedy is expected to be selected by the EPA in 1991. Additional studies of specific aspects of the site may be undertaken in 1991. Site Facts: The EPA issued an Administrative Order in 1980, requiring the potentially responsible parties to reduce site discharge to Gladys Creek. Environmental Progress Initial cleanup actions to control contamination and to fence the Oklahoma Refining Company site have reduced the potential for direct exposure to hazardous substances, making the area safer while investigations are taking place. April 1991 34 OKLAHOMA REFINING COMPANY ------- SAND SPRINGS PETROCH COMPLEX OKLAHOMA EPA ID# OKD980748446 Site Description EPA REGION 6 CONGRESSIONAL DIST. 01 Tulsa County Sand Springs, adjacent to Arkansas River The 235-acre Sand Springs Petrochemical Complex site, approximately 3 miles west of the Tulsa city limits, operated as a refinery from the turn of the century through the late 1940s. It was later developed as an industrial area consisting of chemical manufacturers, solvent and waste oil recovery operations, transformer salvaging and recycling, and various other industries. The site contains acid sludge pits, a surface impoundment, spray ponds, and solvent and waste oil lagoons. The refinery left two unlined pits about 10 feet deep, containing sulfuric acid sludge and heavy metals. Over the years, sludge seeped into the Arkansas River levee, releasing contaminants to the river. Other industries stored or disposed of hazardous substances in drums, tanks, and unlined pits, or simply buried them on the site. These substances included volatile organic compounds (VOCs), acids, caustics, chlorinated solvents, and sludges containing heavy metals. The nearest residence is located on site. Drinking water wells are in use within 1/2 mile, although they are upgradient of the contaminated site. Poor operations have contaminated local groundwater, and the pollutants also may leave the site in runoff. Site Responsibility: This site is being addressed by Federal, State, and potentially responsible parties' actions. NPL LISTING HISTORY Proposed Date: 09/08/83 Final Date: 06710/86 Threats and Contaminants II The primary contaminants of concern affecting the soil, shallow groundwater, sediments and sludge are VOCs and heavy metals such as lead and chromium. The Arkansas River has been shown to be contaminated by past seepage of sulfuric acid sludges and heavy metals through the levee. People are at risk from direct contact with or accidental ingestion of contaminated soil, groundwater, or sludges. 35 April 1991 ------- Cleanup Approach The site is being addressed in three stages: immediate actions and two long-term remedial phases focusing on control of the sources of contamination and the groundwater. Response Action Status Immediate Actions: Under orders from the EPA, some of the parties potentially responsible for the contamination removed drums and tanks from the site. The EPA also removed 400 drums of hazardous material, repaired the fence, and sampled and analyzed the pits, on-site soil, and the on-site monitoring wells. Source Control: In September 1987, the EPA determined that incineration of the contaminated soil and sludges would be the most efficient remedy for this site. However, the remedy of solidification or stabilization of wastes that was proposed during the public comment period would be allowed if the responsible parties could demonstrate that these techniques would provide comparable protection of human health and environment in a specific time period. ARCO started the engineering design for the remedy in 1988, including a bench-scale pilot test to determine the most appropriate solidification technique. Cleanup activities are scheduled to be completed in 1996. Groundwater: In 1988, following a study by the State, the EPA selected a "no action" cleanup remedy for the groundwater phase. This approach features monitoring of groundwater and Arkansas River water for 30 years. The EPA believes that once the sources of contamination are removed, groundwater pollution will dissipate naturally over time, via the natural flushing action of the aquifer. In addition to monitoring, signs will be posted, warning residents of the dangers of coming into direct contact with site contamination. Groundwater monitoring began in 1990. Site Facts: In 1984, the EPA issued two Administrative Orders for drum and tank removal. In 1987, an Administrative Order was issued to the parties potentially responsible for site contamination, who conducted on-site incineration and solidification treatability studies. A Consent Decree was signed in 1990 by ARCO, the State, and the EPA for design and cleanup of site contaminants. Environmental Progress The immediate actions undertaken to remove contaminated drums and tanks and to repair the fence surrounding the site have reduced the exposure potential at the Sand Springs Petrochemical Complex site, making it safer while cleanup activites are taking place. April! 991 36 SAND SPRINGS PETROCHEMICAL COMPLEX ------- TAR CREEK (OTTAWA OKLAHOMA EPA ID# OKD980629844 EPA REGION 6 CONGRESSIONAL DIST. 02 Ottawa County Through the towns of Miami, Richer, Cardin, Quapaw, and Commerce Site Description The Tar Creek (Ottawa County) site covers a 40-square mile portion of the Tri-State Mining District (Picher Mine Field), which covers 100 square miles. The area produced significant quantities of lead and zinc in the 1920s and 1930s. When major mining operations ceased in the early 1970s, groundwater accumulated in the mines. The acid water reacted with the surrounding rock, causing many of the metals present to dissolve and resulted in high concentrations of zinc, lead, and cadmium in the water. In 1979, acid mine water with high concentrations of heavy metals began to discharge to the surface from boreholes and the abandoned mine shafts, contaminating the surface water in Tar Creek. This problem, along with the potential for contaminating the drinking water source under the mining area, prompted the U.S. Geological Survey and the State to investigate the site. In 1981, the State declared the site its number one pollution problem. In 1985, the Oklahoma Water Resources Board notified the EPA of elevated levels of metals in the Picher town water well. The towns of Miami, Picher, Cardin, Quapaw, and Commerce are located within the site area boundary. The nearby population of approximately 21,000 receive their drinking water from the Robidoux Aquifer. Site Responsibility: This site is being addressed through Federal and State actions. NPL USTING HISTORY Proposed Date: 10/23/81 Final Date: 09/08/83 Threats and Contaminants The groundwater, sediments, and surface water were contaminated with heavy metals including lead, zinc, and cadmium. The upper aquifer was contaminated with heavy metals. Several people use the upper aquifer as a source of drinking water. The lower aquifer was threatened due to several boreholes and leaking abandoned wells connecting the aquifers. The lower aquifer serves several towns and rural communities including the towns of Miami and Picher. Because the Picher town water well passes through a highly mineralized rock formation, the high levels of heavy metal contaminants indicated major casing failure in the well. Runoff of surface waters had degraded Tar Creek. Wetlands are found on the site and also were subject to contamination. 37 April 1991 ------- Cleanup Approach The site is being addressed in two stages: an initial action and a long-term remedial phase focusing on contamination at the entire site. Response Action Status Initial Action: In 1985, an emergency water supply was put in place by the National Guard. The EPA plugged the contaminated well using sand and corrosion-resistant concrete. Backup wells were used to flush the city lines. Subsequently, water quality in these two wells returned to normal and the National Guard discontinued water delivery. The EPA drilled the new well, connected it to the water system, and the water was re-tested. Entire Site: The selected remedies included diverting and diking the two major inflow areas in Kansas and a third in Oklahoma, plugging aquifer wells, and developing a monitoring plan. A total of 83 wells were plugged. All remedial cleanup activities have been completed since 1986. The State currently is monitoring the effectiveness of the remedy. A report was prepared by the State to assess the effectiveness of the remedy and is being reviewed by the EPA. Site Facts: In 1982, the EPA awarded a Cooperative Agreement to the State for a site investigation and a study of alternative cleanup strategies. Environmental Progress Actions by the State of Oklahoma and the EPA have reduced the potential for contaminants in the shallow groundwater to migrate to deeper drinking water aquifers and have achieved the groundwater cleanup standards established for the site. The State also has completed all other cleanup activities at the Tar Creek (Ottawa County) site for surface water improvement. April 1991 38 TAR CREEK (OTTAWA COUNTY) ------- TENTH STREE JUNKYARD OKLAHOMA EPA ID# OKD980620967 REGION 6 CONGRESSIONAL DIST. 05 Oklahoma County Oklahoma City Other Names: FrazierPK Site Description The 3 1/2-acre Tenth Street Dump/Junkyard site in Oklahoma City was used as a municipal landfill before 1959. It housed a private salvage yard from 1959 to 1979, after which it became a private automobile junkyard. During the salvage of electrical equipment, large amounts of polychlorinated biphenyl (PCB) oil had been spilled on the ground. A fire at the site destroyed 1,000 old tires, which may have contributed to a black tar-like substance on ruined soil. Workers indiscriminately bulldozed drums of benzene and methylene chloride onto sections of the site along with other debris. About 30,000 people draw drinking water from public and private wells within 3 miles of the site, the nearest within 1/4 mile. Residential property is adjacent to the site. Site Responsibility: The site is being addressed through Federal and potentially responsible parties' actions. NPL LISTING HISTORY Proposed Date: 01/22/87 Final Date: 07/22/87 Threats and Contaminants The soils have high levels of PCB s. Residents, trespassers, and children are threatened by direct exposure to contaminated soils and waste left on the site. The North Canadian River is threatened by contaminated runoff from the site. Contaminants from the soil may also threaten nearby groundwater. Cleanup Approach This site is being addressed in two stages: initial actions and a long-term remedial phase focusing on contamination at the entire site. 39 April!991 ------- Response Action Status Initial Actions: The first phase of the initial action started in 1985 and included decontamination of the automobiles, spare parts, office building, and tire repair machine shop. After decontamination, workers backfilled the wash pit. Because contamination was widespread, the entire site was capped to prevent rainfall and erosion from spreading pollutants in a second cleanup phase. An 18-inch clay layer was placed on the site. The entire area was fenced and posted. The cap was seeded in 1986. Workers moved the hazardous waste drums and left them on site, pending disposal arrangements. Entire Site: In 1990, the EPA selected a remedy for cleanup of the site, which includes excavation, on-site chemical dechlorination, and on-site disposal of contaminated soils. Engineering designs for the cleanup activities began in 1991 and are expected to be completed in 1992. Site Facts: In 1985, the EPA issued an Administrative Order to the potentially responsible parties to decontaminate and remove junked cars, remove and properly dispose of electrical equipment and drums containing hazardous substances, install a fence, and build a synthetic liner and clay cap to prevent runoff from spreading contaminants. Environmental Progress The EPA has completed many cleanup activities at the Tenth Street Dump/Junkyard site, including decontamination of hazardous items and fencing and capping the site, making the site safer as cleanup activities are being designed. April 1991 40 TENTH STREET DUMP/JUNKYARD ------- TINKER (SOLDIER CREEK BUILDING 3001) OKLAHOMA EPA ID# OK1571724391 EPA REGION 6 CONGRESSIONAL DIST. 05 Oklahoma County Oklahoma City metropolitan area Other Names: USAF Tinker Air Force Base Site Description The 220-acre Tinker AFB (Soldier Creek/Building 3001) site is located in the northeastern portion of the base, east of the North-South runway. It encompasses Building 3001, the two adjacent underground storage tank areas, adjacent Soldier Creek, and the contaminated groundwater under the base. Tinker AFB was activated in 1942. Its primary mission was to serve as a worldwide repair depot for aircraft and associated equipment and weaponry. The Building 3001 complex used large quantities of industrial solvents in its business of maintaining aircraft and rebuilding jet engines. In the past, waste oils, solvents, paint sludges, and plating waste generated from maintenance activities were disposed in two industrial waste pits, 1 mile south of Soldier Creek and Building 3001. Since 1979, industrial wastes have been disposed of off site. Four landfills and the groundwater are contaminated with chromium and trichloroethylene (TCE). As of 1988, four drinking water wells at the base were polluted. The closest municipal well, 1/2 mile to the northwest, serves approximately 55,400 people. The nearest residences and drinking wells are 300 feet from the site. The base has 19,500 workers and 2,700 residents. Site Responsibility: This site is being addressed through Federal actions. NPL USTING HISTORY Proposed Date: 03/29/85 Final Date: 07/22/87 Threats and Contaminants IT Four potable groundwater wells are contaminated with high concentrations of TCE and cadmium. Soil and sediments are contaminated with TCE and chromium. Surface water is contaminated with nickel and cadmium. Drinking contaminated groundwater poses a threat to residents and workers. Municipal wells for Midwest City are at least 500 feet deep, and therefore are not at great risk of contamination. 41 April 1991 ------- Cleanup Approach This site is being addressed in three stages: emergency actions and two long-term remedial phases focusing on contaminants at the Building 3001 Complex and Soldier's Creek. Response Action Status Emergency Actions: In 1985, the Air Force removed tanks in Building 3001, contaminated soil from on-base streams, and contaminants from the groundwater under one of the site's facility. In addition, a cap was installed at one of the landfills, with additional capping on its Southeastern comer. Two wells were plugged in 1986. In 1990, contaminated liquids were removed from the waste pit. The pit has since been cleaned, backfilled, and capped. Building 3001 Complex: In 1987, the Air Force contracted with the U.S. Army Corps of Engineers to do an 18-month study that is the equivalent of the Superfund investigation into site contaminants and remedies. In 1990, a remedy was selected for the site, which includes the extraction of contaminated groundwater and treatment by air or steam stripping, metals precipitation, and fine filtration. Engineering designs were begun in 1990 and are expected to be completed in 1991. Soldier's Creek: Investigations into the nature and extent of the contamination at Soldier's Creek began in 1990. These studies are expected to be completed and a remedy selection is anticipated in 1993. Site Facts: Tinker Air Force Base is participating in the Installation Restoration Program, a specially funded program established by the Department of Defense (DoD) in 1978 to identify, investigate, and control the migration of hazardous contaminants at military and other DoD facilities. Environmental Progress The removal of contaminated materials and the capping of a landfill by the Air Force has greatly reduced the chances of hazardous exposure at the Tinker AFB (Soldier Creek/Building 3001) site, making it safer while the Air Force completes final investigations and begins cleanup activities. April 1991 42 TINKER AIR FORCE BASE (SOLDIER CREEK/BUILDING 3001) ------- APPENDIX A Glossary: Terms Used in the Fact Sheets 43 ------- GLOSSARY This glossary defines terms used throughout the NPL Volumes. The terms and abbreviations contained in this glossary apply specifically to work performed under the Superfund program in the context of hazardous waste management. These terms may have other meanings when used in a different context. Terms Used in the NPL Book Acids: Substances, characterized by low pH (less than 7.0), that are used in chemical manufacturing. Acids in high concentration can be very corrosive and react with many inorganic and organic substances. These reactions possibly may create toxic com- pounds or release heavy metal contaminants that remain in the environment long after the acid is neutralized. Administrative Order On Consent: A legal and enforceable agreement between the EPA and the parties potentially responsible for site contamination. Under the terms of the Order, the potentially responsible parties (PRPs) agree to perform or pay for site studies or cleanups. It also describes the oversight rules, responsibilities, and enforcement options that the government may exercise in the event of non-compliance by potentially responsible parties. This Order is signed by PRPs and the government; it does not require approval by a judge. Administrative Order [Unilateral]: A legally binding document issued by the EPA, directing the parties potentially responsible to perform site cleanups or studies (generally, the EPA does not issue Unilateral Orders for site studies). Aeration: A process that promotes break- down of contaminants in soil or water by exposing them to air. Agency for Toxic Substances and Disease Registry (ATSDR): The Federal agency within the U.S. Public Health Service charged with carrying out the health-related responsi- bilities of CERCLA. Air Stripping: A process whereby volatile organic chemicals (VOCs) are removed from contaminated material by forcing a stream of air through it in a pressurized vessel. The contaminants are evaporated into the air stream. The air may be further treated before it is released into the atmosphere. Ambient Air: Any unconfined part of the atmosphere. Refers to the air that may be inhaled by workers or residents in the vicinity of contaminated air sources. Aquifer: An underground layer of rock, sand, or gravel capable of storing water within cracks and pore spaces, or between grains. When water contained within an aquifer is of sufficient quantity and quality, it can be tapped and used for drinking or other purposes. The water contained in the aquifer is called groundwater. A sole source aquifer supplies 50% or more of the drinking water of an area. Artesian (Well): A well made by drilling into the earth until water is reached, which, from internal pressure, flows up like a foun- tain. 45 ------- GLOSSARY Attenuation: The naturally occurring pro- cess by which a compound is reduced in concentration over time through adsorption, degradation, dilution, and/or transformation. Background Level: The amount of a sub- stance typically found in the air, water, or soil from natural, as opposed to human, sources. Baghouse Dust: Dust accumulated in remov- ing particulates from the air by passing it through cloth bags in an enclosure. Bases: Substances characterized by high pH (greater than 7.0), which tend to be corrosive in chemical reactions. When bases are mixed with acids, they neutralize each other, form- ing salts. Berm: A ledge, wall, or a mound of earth used to prevent the migration of contami- nants. Bioaccumulate: The process by which some contaminants or toxic chemicals gradually collect and increase in concentration in living tissue, such as in plants, fish, or people, as they breathe contaminated air, drink contami- nated water, or eat contaminated food. Biological Treatment: The use of bacteria or other microbial organisms to break down toxic organic materials into carbon dioxide and water. Bioremediation: A cleanup process using naturally occurring or specially cultivated microorganisms to digest contaminants and break them down into non-hazardous compo- nents. Bog: A type of wetland that is covered with peat moss deposits. Bogs depend primarily on moisture from the air for their water source, are usually acidic, and are rich in plant residue [see Wetland]. Boom: A floating device used to contain oil floating on a body of water or to restrict the potential overflow of waste liquids from containment structures. Borehole: A hole that is drilled into the ground and used to sample soil or ground- water. Borrow Pit: An excavated area where soil, sand, or gravel has been dug up for use elsewhere. Cap: A layer of material, such as clay or a synthetic material, used to prevent rainwater from penetrating and spreading contaminated materials. The surface of the cap generally is mounded or sloped so water will drain off. Carbon Adsorption: A treatment system in which contaminants are removed from groundwater and surface water by forcing water through tanks containing activated carbon, a specially treated material that attracts and holds or retains contaminants. Carbon Disulfide: A degreasing agent formerly used extensively for parts washing. This compound has both inorganic and or- ganic properties, which increase cleaning efficiency. However, these properties also cause chemical reactions that increase the hazard to human health and the environment Carbon Treatment: [see Carbon Adsorp- tion]. Cell: In solid waste disposal, one of a series of holes in a landfill where waste is dumped, compacted, and covered with layers of dirt. CERCLA: [see Comprehensive Environ- mental Response, Compensation, and Liabil- ity Act]. Characterization: The sampling, monitor- ing, and analysis of a site to determine the 46 ------- GLOSSARY extent and nature of toxic releases. Character- ization provides the basis for acquiring the necessary technical information to develop, screen, analyze, and select appropriate cleanup techniques. Chemical Fixation: The use of chemicals to bind contaminants, thereby reducing the potential for leaching or other movement. Chromated Copper Arsenate: An insecti- cide/herbicide formed from salts of three toxic metals: copper, chromium, and arsenic. This salt is used extensively as a wood preservative in pressure-treating operations. It is highly toxic and water-soluble, making it a relatively mobile contaminant in the environment. Cleanup: Actions taken to eliminate a release or threat of release of a hazardous substance. The term "cleanup" sometimes is used interchangeably with the terms remedial action, removal action, response action, or corrective action. Closure: The process by which a landfill stops accepting wastes and is shut down, under Federal guidelines that ensure the protection of the public and the environment. Comment Period: A specific interval during which the public can review and comment on various documents and EPA actions related to site cleanup. For example, a comment period is provided when the EPA proposes to add sites to the NPL. There is minimum 3-week comment period for community members to review and comment on the remedy proposed to clean up a site. Community Relations: The EPA effort to establish and maintain two-way communica- tion with the public. Goals of community relations programs include creating an under- standing of EPA programs and related ac- tions, assuring public input into decision- making processes related to affected commu- nities, and making certain that the Agency is aware of, and responsive to, public concerns. Specific community relations activities are required in relation to Superfund cleanup actions [see Comment Period]. Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA): Congress enacted the CERCLA, known as Superfund, in 1980 to respond directly to hazardous waste problems that may pose a threat to the public health and the environment. The EPA administers the Superfund program. Confluence: The place where two bodies of water, such as streams or rivers, come to- gether. Consent Decree: A legal document, ap- proved and issued by a judge, formalizing an agreement between the EPA and the parties potentially responsible for site contamination. The decree describes cleanup actions that the potentially responsible parties are required to perform and/or the costs incurred by the government that the parties will reimburse, as well as the roles, responsibilities, and enforce- ment options that the government may exer- cise in the event of non-compliance by poten- tially responsible parties. If a settlement between the EPA and a potentially respon- sible party includes cleanup actions, it must be in the form of a Consent Decree. A Con- sent Decree is subject to a public comment period. Consent Order: [see Administrative Order on Consent]. Containment: The process of enclosing or containing hazardous substances in a struc- ture, typically in a pond or a lagoon, to pre- vent the migration of contaminants into the environment. 47 ------- GLOSSARY. Contaminant: Any physical, chemical, biological, or radiological material or sub- stance whose quantity, location, or nature produces undesirable health or environmental effects. Contingency Plan: A document setting out an organized, planned, and coordinated course of action to be followed in case of a fire, explosion, or other accident that releases toxic chemicals, hazardous wastes, or radioactive materials into the environment Cooperative Agreement: A contract be- tween the EPA and the States, wherein a State agrees to manage or monitor certain site cleanup responsibilities and other activities on a cost-sharing basis. Cost Recovery: A legal process by which potentially responsible parties can be required to pay back the Superfund program for money it spends on any cleanup actions [see Poten- tially Responsible Parties]. Cover: Vegetation or other material placed over a landfill or other waste material. It can be designed to reduce movement of water into the waste and to prevent erosion that could cause the movement of contaminants. Creosotes: Chemicals used in wood preserv- ing operations and produced by distillation of tar, including polycyclic aromatic hydrocar- bons and polynuclear aromatic hydrocarbons [see PAHs and PNAs]. Contaminating sediments, soils, and surface water, creosotes may cause skin ulcerations and cancer through prolonged exposure. Culvert: A pipe used for drainage under a road, railroad track, path, or through an embankment. Decommission: To revoke a license to operate and take out of service. Degradation: The process by which a chemical is reduced to a less complex form. Degrease: To remove grease from wastes, soils, or chemicals, usually using solvents. De minimis: This legal phrase pertains to settlements with parties who contributed small amounts of hazardous waste to a site. This process allows the EPA to settle with small, or de minimis contributors, as a single group rather than as individuals, saving time, money, and effort. Dewater: To remove water from wastes, soils, or chemicals. Dike: A low wall that can act as a barrier to prevent a spill from spreading. Disposal: Final placement or destruction of toxic, radioactive, or other wastes; surplus or banned pesticides or other chemicals; polluted soils; and drums containing hazardous materi- als. Disposal may be accomplished through the use of approved secure landfills, surface impoundments, land farming, deep well injection, or incineration. Downgradient: A downward hydrologic slope that causes groundwater to move toward lower elevations. Therefore, wells downgra- dient of a contaminated groundwater source are prone to receiving pollutants. Effluent: Wastewater, treated or untreated, that flows out of a treatment plant, sewer, or industrial outfall. Generally refers to wastes discharged into surface waters. Emission: Pollution discharged into the atmosphere from smokestacks, other vents, and surface areas of commercial or industrial facilities. Emulsifiers: Substances that help in mixing materials that do not normally mix; e.g., oil and water. 48 ------- GLOSSARY Endangerment Assessment: A study con- ducted to determine the risks posed to public health or the environment by contamination at NPL sites. The EPA or the State conducts the study when a legal action is to be taken to direct the potentially responsible parties to clean up a site or pay for the cleanup. An endangerment assessment supplements an investigation of the site hazards. Enforcement: EPA, State, or local legal actions taken against parties to facilitate settlements; to compel compliance with laws, rules, regulations, or agreements; and/or to obtain penalties or criminal sanctions for violations. Enforcement procedures may vary, depending on the specific requirements of different environmental laws and related regulatory requirements. Under CERCLA, for example, the EPA will seek to require potentially responsible parties to clean up a Superfund site or pay for the cleanup [see Cost Recovery]. Erosion: The wearing away of land surface by wind or water. Erosion occurs naturally from weather or surface runoff, but can be intensified by such land-related practices as fanning, residential or industrial develop- ment, road building, or timber-cutting. Ero- sion may spread surface contamination to off- site locations. Estuary (estuarine): Areas where fresh water from rivers and salt water from nearshore ocean waters are mixed. These areas may include bays, mouths of rivers, salt marshes, and lagoons. These water ecosys- tems shelter and feed marine life, birds, and wildlife. Evaporation Ponds: Areas where sewage sludge or other watery wastes are dumped and allowed to dry out. Feasibility Study: The analysis of the potential cleanup alternatives for a site. The feasibility study usually starts as soon as the remedial investigation is underway; together, they are commonly referred to as the Rl/FS [see Remedial Investigation]. Filtration: A treatment process for removing solid (paniculate) matter from water by passing the water through sand, activated carbon, or a man-made filter. The process is often used to remove particles that contain contaminants. Flood Plain: An area along a river, formed from sediment deposited by floods. Flood plains periodically are innundated by natural floods, which can spread contamination. Flue Gas: The air that is emitted from a chimney after combustion in the burner occurs. The gas can include nitrogen oxides, carbon oxides, water vapor, sulfur oxides, particles, and many chemical pollutants. Fly Ash: Non-combustible residue that results from the combustion of flue gases. It can include nitrogen oxides, carbon oxides, water vapor, sulfur oxides, as well as many other chemical pollutants. French Drain System: A crushed rock drain system constructed of perforated pipes, which is used to drain and disperse wastewater. Gasification (coal): The conversion of soft coal into gas for use as a fuel. Generator: A facility that emits pollutants into the air or releases hazardous wastes into water or soil. Good Faith Offer: A voluntary offer, gener- ally in response to a Special Notice letter, made by a potentially responsible party, consisting of a written proposal demonstrating a potentially responsible party's qualifications 49 ------- GLOSSARY. and willingness to perform a site study or cleanup. Groundwater: Underground water that fills pores in soils or openings in rocks to the point of saturation. In aquifers, groundwater occurs in sufficient quantities for use as drinking and irrigation water and other purposes. Groundwater Quality Assessment: The process of analyzing the chemical characteris- tics of groundwater to determine whether any hazardous materials exist. Halogens: Reactive non-metals, such as chlorine and bromine. Halogens are very good oxidizing agents and, therefore, have many industrial uses. They are rarely found by themselves; however, many chemicals such as polychlorinated biphenyls (PCBs), some volatile organic compounds (VOCs), and dioxin are reactive because of the pres- ence of halogens. Hazard Ranking System (HRS): The principal screening tool used by the EPA to evaluate relative risks to public health and the environment associated with abandoned or uncontrolled hazardous waste sites. The HRS calculates a score based on the potential of hazardous substances spreading from the site through the air, surface water, or groundwater and on other factors such as nearby popula- tion. The HRS score is the primary factor in deciding if the site should be on the NPL. Hazardous Waste: By-products of society that can pose a substantial present or potential hazard to human health and the environment when improperly managed. It possesses at least one of four characteristics (ignitability, corrosivity, reactivity, or toxicity), or appears on special EPA lists. Hot Spot: An area or vicinity of a site con- taining exceptionally high levels of contami- nation. Hydrogeology: The geology of groundwater, with particular emphasis on the chemistry and movement of water. Impoundment: A body of water or sludge confined by a dam, dike, floodgate, or other barrier. Incineration: A group of treatment technolo- gies involving destruction of waste by con- trolled burning at high temperatures, e.g., burning sludge to reduce the remaining residues to a non-burnable ash that can be disposed of safely on land, in some waters, or in underground locations. Infiltration: The movement of water or other liquid down through soil from precipitation (rain or snow) or from application of waste- water to the land surface. Influent: Water, wastewater, or other liquid flowing into a reservoir, basin, or treatment plant. Injection Well: A well into which waste fluids are placed, under pressure, for purposes of disposal. Inorganic Chemicals: Chemical substances of mineral origin, not of basic carbon struc- ture. Installation Restoration Program: The specially funded program established in 1978 under which the Department of Defense has been identifying and evaluating its hazardous waste sites and controlling the migration of hazardous contaminants from those sites. Intake: The source from where a water supply is drawn, such as from a river or water body. Interagency Agreement: A written agree- ment between the EPA and a Federal agency that has the lead for site cleanup activities, 50 ------- GLOSSARY setting forth the roles and responsibilities of the agencies for performing and overseeing the activities. States often are parties to interagency agreements. Interim (Permit) Status: Conditions under which hazardous waste treatment, storage, and disposal facilities, that were operating when regulations under the RCRA became final in 1980, are temporarily allowed by the EPA to continue to operate while awaiting denial or issuance of a permanent permit. The facility must comply with certain regulations to maintain interim status. Lagoon: A shallow pond or liquid waste containment structure. Lagoons typically are used for the storage of wastewaters, sludges, liquid wastes, or spent nuclear fuel. Landfarm: To apply waste to land and/or incorporate waste into the surface soil, such as fertilizer or soil conditioner. This practice commonly is used for disposal of composted wastes and sludges. Landfill: A disposal facility where waste is placed in or on land. Sanitary landfills are disposal sites for non-hazardous solid wastes. The waste is spread in layers, compacted to the smallest practical volume, and covered with soil at the end of each operating day. Secure chemical landfills are disposal sites for hazardous waste. They are designed to minimize the chance of release of hazardous substances into the environment [see Re- source Conservation and Recovery Act]. Leachate [n]: The liquid that trickles through or drains from waste, carrying soluble components from the waste. Leach, Leach- ing [v.t.]: The process by which soluble chemical components are dissolved and carried through soil by water or some other percolating liquid. Leachate Collection System: A system that gathers liquid that has leaked into a landfill or other waste disposal area and pumps it to the surface for treatment. Liner: A relatively impermeable barrier designed to prevent leachate (waste residue) from leaking from a landfill. Liner materials include plastic and dense clay. Long-term Remedial Phase: Distinct, often incremental, steps that are taken to solve site pollution problems. Depending on the com- plexity, site cleanup activities can be sepa- rated into several of these phases. Marsh: A type of wetland that does not contain peat moss deposits and is dominated by vegetation. Marshes may be either fresh or saltwater and tidal or non-tidal [see Wetland]. Migration: The movement of oil, gas, contaminants, water, or other liquids through porous and permeable soils or rock. Mill Tailings: [See Mine Tailings]. Mine Tailings: A fine, sandy residue left from mining operations. Tailings often contain high concentrations of lead, uranium, and arsenic or other heavy metals. Mitigation: Actions taken to improve site conditions by limiting, reducing, or control- ling toxicity and contamination sources. Modeling: A technique using a mathematical or physical representation of a system or theory that tests the effects that changes on system components have on the overall performance of the system. Monitoring Wells: Special wells drilled at specific locations within, or surrounding, a hazardous waste site where groundwater can be sampled at selected depths and studied to obtain such information as the direction in 51 ------- GLOSSARY. which groundwater flows and the types and amounts of contaminants present. National Priorities List (NPL): The EPA's list of the most serious uncontrolled or aban- doned hazardous waste sites identified for possible long-term cleanup under Superfund. The EPA is required to update the NPL at least once a year. Neutrals: Organic compounds that have a relatively neutral pH, complex structure and, due to their organic bases, are easily absorbed into the environment. Naphthalene, pyrene, and trichlorobenzene are examples of neutrals. Nitroaromatics: Common components of explosive materials, which will explode if activated by very high temperatures or pres- sures; 2,4,6-Trinitrotoluene (TNT) is a nitroaromatic. Notice Letter: A General Notice Letter notifies the parties potentially responsible for site contamination of their possible liability. A Special Notice Letter begins a 60-day formal period of negotiation during which the EPA is not allowed to start work at a site or initiate enforcement actions against poten- tially responsible parties, although the EPA may undertake certain investigatory and planning activities. The 60-day period may be extended if the EPA receives a good faith offer within that period. On-Scene Coordinator (OSC): The predesignated EPA, Coast Guard, or Depart- ment of Defense official who coordinates and directs Superfund removal actions or Clean Water Act oil- or hazardous-spill corrective actions. Operation and Maintenance: Activities conducted at a site after a cleanup action is completed to ensure that the cleanup or containment system is functioning properly. Organic Chemicals/Compounds: Chemical substances containing mainly carbon, hydro- gen, and oxygen. Outfall: The place where wastewater is discharged into receiving waters. Overpacking: Process used for isolating large volumes of waste by jacketing or encap- sulating waste to prevent further spread or leakage of contaminating materials. Leaking drums may be contained within oversized barrels as an interim measure prior to removal and final disposal. Pentachlorophenol (PCP): A synthetic, modified petrochemical that is used as a wood preservative because of its toxicity to termites and fungi. It is a common component of creosotes and can cause cancer. Perched (groundwater): Groundwater separated from another underlying body of groundwater by a confining layer, often clay or rock. Percolation: The downward flow or filtering of water or other liquids through subsurface rock or soil layers, usually continuing down- ward to groundwater. Petrochemicals: Chemical substances produced from petroleum in refinery opera- tions and as fuel oil residues. These include fluoranthene, chrysene, mineral spirits, and refined oils. Petrochemicals are the bases from which volatile organic compounds (VOCs), plastics, and many pesticides are made. These chemical substances often are toxic to humans and the environment. Phenols: Organic compounds that are used in plastics manufacturing and are by-products of petroleum refining, tanning, textile, dye, and resin manufacturing. Phenols are highly poisonous. 52 ------- GLOSSARY Physical Chemical Separation: The treat- ment process of adding a chemical to a sub- stance to separate the compounds for further treatment or disposal. Pilot Testing: A small-scale test of a pro- posed treatment system in the field to deter- mine its ability to clean up specific contami- nants. Plugging: The process of stopping the flow of water, oil, or gas into or out of the ground through a borehole or well penetrating the ground. Plume: A body of contaminated groundwater flowing from a specific source. The move- ment of the groundwater is influenced by such factors as local groundwater flow patterns, the character of the aquifer in which groundwater is contained, and the density of contaminants [see Migration]. Pollution: Generally, the presence of matter or energy whose nature, location, or quantity produces undesired health or environmental effects. Polycyclic Aromatic Hydrocarbons or Polyaromatic Hydrocarbons (PAHs): PAHs, such as pyrene, are a group of highly reactive organic compounds found in motor oil. They are a common component of creo- sotes and can cause cancer. Polychlorinated Biphenyls (PCBs): A group of toxic chemicals used for a variety of purposes including electrical applications, carbonless copy paper, adhesives, hydraulic fluids, microscope immersion oils, and caulk- ing compounds. PCBs also are produced in certain combustion processes. PCBs are extremely persistent in the environment because they are very stable, non-reactive, and highly heat resistant. Chronic exposure to PCBs is believed to cause liver damage. It also is known to bioaccumulate in fatty tissues. PCB use and sale was banned in 1979 with the passage of the Toxic Sub- stances Control Act Polynuclear Aromatic Hydrocarbons (PNAs): PNAs, such as naphthalene, and biphenyls, are a group of highly reactive organic compounds that are a common com- ponent of creosotes, which can be carcino- genic. Polyvinyl Chloride (PVC): A plastic made from the gaseous substance vinyl chloride. PVC is used to make pipes, records, raincoats, and floor tiles. Health risks from high con- centrations of vinyl chloride include liver cancer and lung cancer, as well as cancer of the lymphatic and nervous systems. Potable Water: Water that is safe for drink- ing and cooking. Potentially Responsible Parties (PRPs): Parties, including owners, who may have contributed to the contamination at a Su- perfund site and may be liable for costs of response actions. Parties are considered PRPs until they admit liability or a court makes a determination of liability. PRPs may sign a Consent Decree or Administrative Order on Consent to participate in site cleanup activity without admitting liability. Precipitation: The removal of solids from liquid waste so that the solid and liquid portions can be disposed of safely; the re- moval of particles from airborne emissions. Electrochemical precipitation is the use of an anode or cathode to remove the hazardous chemicals. Chemical precipitation involves the addition of some substance to cause the solid portion to separate. Preliminary Assessment: The process of collecting and reviewing available informa- tion about a known or suspected waste site or release to determine if a threat or potential threat exists. 53 ------- GLOSSARY. Pump and Treat: A groundwater cleanup technique involving the extracting of contami- nated groundwater from the subsurface and the removal of contaminants, using one of several treatment technologies. Radionuclides: Elements, including radium and uranium-235 and -238, which break down and produce radioactive substances due to their unstable atomic structure. Some are man-made, and others are naturally occurring in the environment. Radon, the gaseous form of radium, decays to form alpha particle radiation, which cannot be absorbed through skin. However, it can be inhaled, which allows alpha particles to affect unprotected tissues directly and thus cause cancer. Radia- tion also occurs naturally through the break- down of granite stones. RCRA: [See Resource Conservation and Recovery Act]. Recharge Area: A land area where rainwater saturates the ground and soaks through the earth to reach an aquifer. Record of Decision (ROD): A public docu- ment that explains which cleanup alternative(s) will be used to clean up sites listed on the NPL. It is based on information generated during the remedial investigation and feasibility study and consideration of public comments and community concerns. Recovery Wells: Wells used to withdraw contaminants or contaminated groundwater. Recycle: The process of minimizing waste generation by recovering usable products that might otherwise become waste. Remedial Action (RA): The actual construc- tion or implementation phase of a Superfund site cleanup following the remedial design [see Cleanup]. Remedial Design: A phase of site cleanup, where engineers design the technical specifi- cations for cleanup remedies and technolo- gies. Remedial Investigation: An in-depth study designed to gather the data necessary to determine the nature and extent of contami- nation at a Superfund site, establish the criteria for cleaning up the site, identify the preliminary alternatives for cleanup actions, and support the technical and cost analyses of the alternatives. The remedial investigation is usually done with the feasibility study. Together they are customarily referred to as the RI/FS [see Feasibility Study]. Remedial Project Manager (RPM): The EPA or State official responsible for oversee- ing cleanup actions at a site. Remedy Selection: The selection of the final cleanup strategy for the site. At the few sites where the EPA has determined that initial response actions have eliminated site contamination, or that any remaining con- tamination will be naturally dispersed with- out further cleanup activities, a "No Action" remedy is selected [see Record of Decision]. Removal Action: Short-term immediate actions taken to address releases of hazardous substances [see Cleanup]. Residual: The amount of a pollutant remain- ing in the environment after a natural or technological process has taken place, e.g., the sludge remaining after initial wastewater treatment, or particulates remaining in air after the air passes through a scrubbing, or other, process. Resource Conservation and Recovery Act (RCRA): A Federal law that established a regulatory system to track hazardous sub- stances from the time of generation to dis- posal. The law requires safe and secure 54 ------- GLOSSARY procedures to be used in treating, transport- ing, storing, and disposing of hazardous substances. RCRA is designed to prevent new, uncontrolled hazardous waste sites. Retention Pond: A small body of liquid used for disposing of wastes and containing overflow from production facilities. Some- times retention ponds are used to expand the capacity of such structures as lagoons to store waste. Riparian Habitat: Areas adjacent to rivers and streams that have a high density, diver- sity, and productivity of plant and animal species relative to nearby uplands. Runoff: The discharge of water over land into surface water. It can carry pollutants from the air and land and spread contamina- tion from its source. Scrubber: An air pollution device that uses a spray of water or reactant or a dry process to trap pollutants in emissions. Sediment: The layer of soil, sand, and minerals at the bottom of surface waters, such as streams, lakes, and rivers, that absorbs contaminants. Seeps: Specific points where releases of liquid (usually leachate) form from waste disposal areas, particularly along the lower edges of landfills. Seepage Pits: A hole, shaft, or cavity in the ground used for storage of liquids, usually in the form of leachate, from waste disposal areas. The liquid gradually leaves the pit by moving through the surrounding soil. Septage: Residue remaining in a septic tank after the treatment process. Sinkhole: A hollow depression in the land surface in which drainage collects; associated with underground caves and passages that facilitate the movement of liquids. Site Characterization: The technical pro- cess used to evaluate the nature and extent of environmental contamination, which is necessary for choosing and designing cleanup measures and monitoring their effectiveness. Site Inspection: The collection of informa- tion from a hazardous waste site to determine the extent and severity of hazards posed by the site. It follows, and is more extensive than, a preliminary assessment. The purpose is to gather information necessary to score the site, using the Hazard Ranking System, and to determine if the site presents an immediate threat that requires a prompt removal action. Slag: The fused refuse or dross separated from a metal in the process of smelting. Sludge: Semi-solid residues from industrial or water treatment processes that may be contaminated with hazardous materials. Slurry Wall: Barriers used to contain the flow of contaminated groundwater or subsur- face liquids. Slurry walls are constructed by digging a trench around a contaminated area and filling the trench with an impermeable material that prevents water from passing through it. The groundwater or contaminated liquids trapped within the area surrounded by the slurry wall can be extracted and treated. Smelter: A facility that melts or fuses ore, often with an accompanying chemical change, to separate the metal. Emissions from smelt- ers are known to cause pollution. Soil Gas: Gaseous elements and compounds that occur in the small spaces between par- ticles of soil. Such gases can move through 55 ------- GLOSSARY. or leave the soil or rock, depending on changes in pressure. Soil Vapor Extraction: A treatment process that uses vacuum wells to remove hazardous gases from soil. Soil Washing: A water-based process for mechanically scrubbing soils in-place to remove undesirable materials. There are two approaches: dissolving or suspending them in the wash solution for later treatment by conventional methods, and concentrating them into a smaller volume of soil through simple particle size separation techniques [see Solvent Extraction]. Stabilization: The process of changing an active substance into inert, harmless material, or physical activities at a site that act to limit the further spread of contamination without actual reduction of toxicity. Solidification/Stabilization: A chemical or physical reduction of the mobility of hazard- ous constituents. Mobility is reduced through the binding of hazardous constituents into a solid mass with low permeability and resis- tance to leaching. Solvent: A substance capable of dissolving another substance to form a solution. The primary uses of industrial solvents are as cleaners for degreasing, in paints, and in Pharmaceuticals. Many solvents are flam- mable and toxic to varying degrees. Solvent Extraction: A means of separating hazardous contaminants from soils, sludges, and sediment, thereby reducing the volume of the hazardous waste that must be treated. It generally is used as one in a series of unit operations. An organic chemical is used to dissolve contaminants as opposed to water- based compounds, which usually are used in soil washing. Sorption: The action of soaking up or at- tracting substances. It is used in many pollu- tion control systems. Stillbottom: Residues left over from the process of recovering spent solvents. Stripping: A process used to remove volatile contaminants from a substance [see Air Stripping]. Sumps: A pit or tank that catches liquid runoff for drainage or disposal. Superfund: The program operated under the legislative authority of the CERCLA and Superfund Amendments and Reauthorization Act (SARA) to update and improve environ- mental laws. The program has the authority to respond directly to releases or threatened releases of hazardous substances that may endanger public health, welfare, or the envi- ronment. The "Superfund" is a trust fund that finances cleanup actions at hazardous waste sites. Surge Tanks: A holding structure used to absorb irregularities in flow of liquids, includ- ing liquid waste materials. Swamp: A type of wetland that is dominated by woody vegetation and does not accumulate peat moss deposits. Swamps may be fresh or saltwater and tidal or non-tidal [see Wet- lands]. Thermal Treatment: The use of heat to remove or destroy contaminants from soil. Treatability Studies: Testing a treatment method on contaminated groundwater, soil, etc., to determine whether and how well the method will work. Trichloroethylene (TCE): A stable, color- less liquid with a low boiling point. TCE has many industrial applications, including use as 56 ------- GLOSSARY a solvent and as a metal degreasing agent. TCE may be toxic to people when inhaled, ingested, or through skin contact and can damage vital organs, especially the liver [see Volatile Organic Compounds]. Unilateral [Administrative] Order: [see Administrative Order]. Upgradient: An upward hydrologic slope; demarks areas that are higher than contami- nated areas and, therefore, are not prone to contamination by the movement of polluted groundwater. Vacuum Extraction: A technology used to remove volatile organic compounds (VOCs) from soils. Vacuum pumps are connected to a series of wells drilled to just above the water table. The wells are sealed tightly at the soil surface, and the vacuum established in the soil draws VOC-contaminated air from the soil pores into the well, as fresh air is drawn down from the surface of the soil. Vegetated Soil Cap: A cap constructed with graded soils and seed for vegetative growth, to prevent erosion [see Cap]. Vitrification: The process of electrically melting wastes and soils or sludges to bind the waste in a glassy, solid material more durable than granite or marble and resistant to leaching. Volatile Organic Compounds (VOCs): VOCs are manufactured as secondary petro- chemicals. They include light alcohols, acetone, trichloroethylene, perchloroethylene, dichloroethylene, benzene, vinyl chloride, toluene, and methylene chloride. These potentially toxic chemicals are used as sol- vents, degreasers, paints, thinners, and fuels. Because of their volatile nature, they readily evaporate into the air, increasing the potential exposure to humans. Due to their low water solubility, environmental persistence, and widespread industrial use, they are commonly found in soil and groundwater. Waste Treatment Plant: A facility that uses a series of tanks, screens, filters, and other treatment processes to remove pollutants from water. Wastewater: The spent or used water from individual homes or industries. Watershed: The land area that drains into a stream or other water body. Water Table: The upper surface of the groundwater. Weir: A barrier to divert water or other liquids. Wetland: An area that is regularly saturated by surface or groundwater and, under normal circumstances, is capable of supporting vegetation typically adapted for life in satu- rated soil conditions. Wetlands are critical to sustaining many species of fish and wildlife. Wetlands generally include swamps, marshes, and bogs. Wetlands may be either coastal or inland. Coastal wetlands have salt or brackish (a mixture of salt and fresh) water, and most have tides, while inland wetlands are non- tidal and freshwater. Coastal wetlands are an integral component of estuaries. Wildlife Refuge: An area designated for the protection of wild animals, within which hunting and fishing are either prohibited or strictly controlled. 57 ------- APPENDIX B Information Repositories for NPL Sites in Oklahoma 59 ------- * cr In en ~o r-o CD MD Information Repositories for NPL Sites in the State of Oklahoma Repositories are established for all NPL sites so that the public can obtain additional information related to site activities. Some sites may have more than one repository location, however, the primary site repository is listed below. All public access information pertaining to the site will be on file at these repositories. The quantity and nature of the documentation found in the repositories depends on the extent of activity and cleanup progress for each site and may include some or all of the following: community relations plans, announcements for public meetings, minutes from public meetings, fact sheets detailing activities at sites, documents relating to the selection of cleanup remedies, press releases, locations of other public information centers, and any other documents pertaining to site activities. o> Site Name COMPASS INDUSTRIES (AVERY DRIVE) DOUBLE EAGLE REFINERY COMPANY FOURTH STREET ABANDONED REFINERY HARDAGE/CRINER MOSLEY ROAD SANITARY LANDFILL OKLAHOMA REFINING COMPANY SAND SPRINGS PETROCHEMICAL COMPANY TAR CREEK (OTTAWA COUNTY) TENTH STREET DUMP/JUNKYARD TINKER AIR FORCE BASE Site Repository Page Memorial Library, 6 East Broadway, Sand Springs, OK 74063 Ralph Ellison Library. 2000 Northeast 23, Oklahoma City, OK 73111 Ralph Ellison Library, 2000 Northeast 23, Oklahoma City, OK 73111 Purcell City Library, 919 North 9th Street, Purcell, OK 73080 Crutcho Elementary School, 2401 North Air Depot, Oklahoma City, OK 73141 Cyril City Hall, 202 West Main Stteet, Cyril, OK 73029 Page Memorial Library, 6 East Broadway, Sand Springs, OK 74063 Miami Public Library, 200 North Main Street, Miami, OK 74354 Ralph Ellison Library, 2000 Northeast 23. Oklahoma City. OK 73111 Midwest City Public Library, 8143 West Reno Avenue, Midwest City, OK 73110 ------- |