United States
            Environmental Protection
            Agency
Great Lakes National
Program Office
536 South Clark Street
Chicago, Illinois 60605
EPA-905/4-79-029-D
            Volume 4
           The IJC Menomonee
           River Watershed Study
           Description And Calibration
           Of A Pollutant Loading
           Model - Landrun
Menomonee River

-------
                                   FOREWORD
The Environmental Protection Agency was established to coordinate adminis-
tration of the major Federal programs designed to protect the quality of our
environment.

An important part of the Agency's effort involves the search for information
about environmental problems, management techniques, and new technologies
through which optimum use of the nation's land and water resources can be
assured and the threat pollution poses to the welfare of the American people
can be minimized.

The Great Lakes National Program Office (GLNPO) of the U.S.  EPA, was
established in Region V, Chicago to provide a specific focus on the water
quality concerns of the Great Lakes.  GLNPO also provides funding and
personnel support to the International Joint Commission activities under
the U.S.- Canada Great Lakes Water Quality Agreement.

Several land use water quality studies have been funded to support the
pollution from Land Use Activities Reference Group (PLUARG)  under the
Agreement to address specific objectives related to land use pollution to
the Great Lakes.  This report describes some of the work supported by this
Office to carry out PLUARG study objectives.

We hope that the information and data contained herein will  help planners
and managers of pollution control agencies make better decisions for
carrying forward their pollution control responsibilities.

                              Madonna F. McGrath
                              Director
                              Great Lakes National  Program Office

-------
                                                          EPA-905/4-79-029D
                                                          December 1979
           DESCRIPTION AND CALIBRATION OF A POLLUTANT LOADING
                             MODEL-LANDRUN
                               Volume IV
                               V. Novotny
                               M.A. Chin
                                H. Tran
                    Department of Civil Engineering
                          Marquette University
                          Milwaukee, Wisconsin

                    Edited by G. Chesters, Director
                      and J. Diamantis, Specialist
                       UW-Water Resources Center

                                   for
                   U.S. Environmental Protection Agency
                            Chicago, Illinois


                          Grant Number R005142
                             Grants Officer
                          Ralph G.  Christensen
                  Great Lakes National Program Office
This study, funded by a Great Lakes Program grant from the U.S.  EPA,
was conducted as part of the TASK C-Pilot Watershed Program for  the
International Joint Commission's Reference Group on Pollution from
Land Use Activities.
                  Great Lakes National  Program Office
             U.S.  Environmental  Protection Agency, Region V
                    536 South Clark Street, Room 932
                    Chicago, Illinois  60605

-------
                                   DISCLAIMER


              This report has been reviewed by the Great Lakes National
         Program Office of the U.S. Environmental Protection Agency,
         Region V Chicago, and approved for publication.  Mention of
         trade names or commercial products does not constitute endorse-
         ment or recommendation for use.
4
'•*
                                         ii

-------
                               PREFACE
     A complex model was developed to predict overland flow of polluants
utilizing such input information as meteorology; soils, land use and
other land characteristics; dust and dirt accumulation and management
practices in the watershed.   The details required to mount the
computer program are provided together with information on calibration
and verification of the model.
                                  iii

-------
                           CONTENTS
 Title Page
 Disclaimer
 Preface
 Contents
  *Part  I  -  Description of the Model  ..............   I-i
  *Part  II -  Calibration and Verification of the Model   .....  Il-i
*Detailed contents are presented at the beginning of each part

                              iv

-------
         PART I

DESCRIPTION OF THE MODEL



            by
       V.  NOVOTNY
       M.  A. CHIN
         H.  TRAN
           I-i

-------
                            ABSTRACT

     LANDRUN is a method of analysis developed to estimate the quantity
and composition of runoff water and eroded particulates emanating from
watersheds having mixed land uses.   The model simulates the overland
hydrologic transport of pollutants and takes into account several
facets of land use, local meteorology and pollutant inputs.  The model
is capable of estimating storm water runoff volume, sediment transport
from pervious and impervious areas, volatile suspended solids and
soil adsorbed pollutants contained in runoff.  It is a continuous
simulation model which also may be used to analyze single storm events.
                                I-Ii

-------
                           CONTENTS - Part I
Title  Page	    I-i
Abstract	    I-ii
Contents	    I-iii
Figures   	    I-iv
Tables    	    I-v

     1-1  Introduction	    1-1
            Purpose of LANDRUN	    1-1
            Hardware and Software Requirements  	    1-3
     1-2  Description of the Program and its Parameters	    1-4
            Components of the Watershed Hydrologic Transport Model.    1-4
              The snow pack-snow melt subsystem	    1-5
              Rain data manipulation	    1-8
              RAINMX determination    	    1-8
              Main computation loop for each observation day, NDAYS    1-8
              Interception and surface depression storage 	    1-9
              Infiltration  	    1-10
                Holtan model  	    1-10
                Philip model	,	    1-13
              Evapotranspiration  	    1-15
              Excess rain from impervious areas 	    1-20
            Overland Flow Routing	    1-20
              Instantaneous unit hydrograph 	    1-25
            Soil Washload	    1-26
              The universal soil loss equation	    1-28
                Rainfall factor, R	    1-29
                Soil factor, K	    1-30
                Slope-length factor, LS  	    1-30
                Cropping management factor,  C 	    1-33
                Erosion control practice factor, P  	    1-33
            Sediment Washout from Urban Impervious Areas  	    1-33
     1-3  Operation of Program	    1-39
            Computational Procedure 	    1-39
            Input-output Unit Assignments 	    1-39

References	    1-40
Bibliography  	    1-43
Appendices
    I-A  LANDRUN Flow Chart	    1-45
    I-B  Input Data Tables and Format	    1-49
    I-C  Computer Program Listing for LANDRUN 	    1-55
    I-D  Examples of Input and Output Data	    1-94
                                  I-iii

-------
                                  FIGURES


Number                                                                   Page

  1-1    A schematic representation of pollutant transport 	     1-2

  1-2    Rainfall-runoff transformation  	 . 	     1-6

  1-3    Degree-day factor 	     1-7

  1-4    Depression storage capacities in relation to degree of
         land slope	     1-11

  1-5    Soil conductivity computation 	     1-16

  1-6    Relationship between soil permeability and soil texture .  .     1-18

  1-7    Soil moisture characteristics 	     1-19

  1-8    Fraction of impervious areas not connected directly to
         a channel	     1-22

  1-9    Unit hydrograph method	     1-24

  1-10   Determination of soil K factor	     1-31

  I-A-1  LANDRUN flow chart	     1-45

  I-B-1  Input data tables and format	     1-49
                                    I-iv

-------
                                    TABLES
Number                                                                    Page

 1-1      Soil texture, representative particle size composition
          and mean diameters	    1-17

 1-2      Crop use coefficients for evaporation-index method 	    1-21

 1-3      Typical values of the Manning's roughness factor for
          overland flow	    1-27

 1-4      Computed K values for soils	    1-32

 1-5      C values and slope-length limits for no seeding or for
          first six weeks of growing period	    1-34

 1-6      Conservation practice factor P for agricultural lands  .  .  .    1-35

 1-7      Erosion control factor P for construction sites  	    1-36

 I-C-1    Computer program listing for LANDRUN 	    1-55

 I-D-1    Examples of input and output data	    1-94
                                     I- v

-------
                             1-1.   INTRODUCTION


                              Purpose of LANDRUN


      "LANDRUN" represents a method of analysis to estimate and control the
quantity and quality of runoff and surface erosion from watershed areas in dif-
ferent land uses.  It simulates the overland portion of the hydrologic transport
of pollutants (Fig. 1-1).   The model takes into consideration several parame-
ters:

      a.  Land Use

          i.  Extent of pervious and impervious areas.

         ii.  Surface characteristics:  roughness, slope, depression storage
              and interception storage.

        iii.  Soil characteristics:  permeability, porosity, 15-bar moisture,
              0.3-bar moisture, depth of the A-horizon, erosion characteristics
              and soil composition.

      b.  Meteorological

          i.  Rainfall.

         ii.  Snow melt parameters.

        iii.  Temperature.

         iv.  Evaporation and evapotranspiration.

      c.  Pollutants Input

          i.  Dust and dirt fallout in urban areas.

         ii.  Adsorbed pollutants in the soil.

      The computer model is capable of estimating:

          a.  Storm water runoff volume.
                                       1-1

-------
                                                         RAIN (SNOW)
I
ho
AREAL SOURCES
  SURFACE RUNOFF
  INTERFLOW
  BASE FLOW
POINT SOURCES
  SEWAGE OUTFALLS
                              Fig.  1-1.   A schematic representation of  pollutant  transport.

-------
          b.  Sediment transport from pervious areas.

          c.  Dust and dirt washout from urban impervious areas.

          d.  Volatile suspended solids in the runoff.

          e.  Soil adsorbed pollutants in the runoff.

      The present form of  LANDRUN  is designed for use with several days of
continuous precipitation sampling (variable time increments) records for the
watershed or subwatershed under study.  It is a continuous simulation model but
also may be used to analyze single precipitation events.


                      Hardware and Software Requirements


       LANDRUN  was designed on the Xerox Sigma-9 version computer system, and
may be adapted to other computer systems using the FORTRAN-IV compiler and
language.  Input of data is done through a data file stored on disk in the com-
puter.  However, data entry may be accomplished through magnetic tapes, paper
tapes, card reader, or teletype peripheral input devices.  The program requires
approximately 25,000 words of core storage on the computer.

      It utilizes one temporary disk file storage, which is released by the
computer after computations cease, for the storage and manipulation of precipi-
tation data for later use in the program's calculations.  Output is formatted
for 132 character positions on the line printer or teletype terminals having
such available width.  Computation of the GAMMA function, utilized in the
Instantaneous Unit Hydrograph (IUH)  section,  is done using an external subrou-
tine in the numerical library (NUMLIB on the Xerox Sigma-9 system).  This can
be modified easily for any other computer.
                                    1-3

-------
             1-2.  DESCRIPTION OF THE PROGRAM AND ITS PARAMETERS
            Components of the Watershed Hydrologic Transport Model


      In a classical water pollution analysis, engineers and scientists have
been interested mostly in the channel portion of the water movement.  Most of
the pollution sources of organic wastes were considered to be identifiable
point sources discharging directly into channel reaches of streams.   Unlike the
organic industrial and municipal pollution, most non-point pollution enters the
hydrologic cycle at an early stage of the rainfall-runoff transformation, mostly
during overland flow.  Thus, to understand pollution pick-up and movement
through the environment, the engineer or scientist must begin with an analysis
of the watershed's entire hydrology.

      The overall flow chart of the model is presented in Appendix I-A.  The
model requires a division of the watershed into subareas of uniform land use
and soil characteristics.  The hydrological balance for pervious areas is per-
formed for each subwatershed.  Impervious areas are lumped together by the
model and treated as one additional subarea.

      The basic components of the hydrologic cycle are shown in Fig. 1-1 and it
can be seen that the rainfall-runoff transformation is a rather complex system.
Although runoff results from precipitation it is not directly proportional to
it.  A simple statistical correlation of runoff with precipitation for a given
watershed usually fails.  Runoff is a residual phenomenon which takes place
only after certain demands and losses are satisfied.  The most important losses
are evaporation from land surfaces and interception which refers to precipita-
tion intercepted by vegetation and not reaching the ground, and transpiration
which refers to the water drawn by plants from the soil and released through
their pores to the atmosphere.  A simple mathematical formula would describe
the runoff as:
                                 R = P - ET                              Eq. (1)
where R is volume of runoff, P is precipitation and ET is evaporation.  The
total runoff can be divided into several components; namely, a.  surface
runoff—the water flow on the ground surface reaching channels in the shortest
time, b.  interflow—the water moving laterally in the soil zone caused by a
lower permeability of subsoils and c.  groundwater runoff or base flow—
groundwater flow recoverable by springs and wells.  The movement of ground-
water is very slow and sometimes the storage retention time in the ground-
water zone is several years.

      The process of transformation of precipitation into runoff can be best
                                       1-4

-------
illustrated on a flow chart (Fig. 1-2).  The components of the system and the
major system parameters are listed as follows:


                      The snow pack-snow melt subsystem


      This subsystem determines whether the precipitation will be in a liquid
or a solid phase.  Snow pack is stored on the ground surface until it is trans-
formed into snow melt.  The major parameters of the subsystem are meteoro-
logical factors such as temperature, solar radiation, wind velocity and others.
The model used for LANDRUN is the "Temperature Index" or "Degree-day Method",
in which air temperature is the only variable.  The formula was presented by
Gray (1) as follows:

                                AP  = C(T  - T, )
                                  s      a    b
                           for P  > 0.0 and T  > T,                      Eq.  (2)
                                sab
                           and AP  = P for T  < T,
                                 s          a -  b
where
      P  is the water content of the snow pack, cm              (PACK)
       S
      AP  is the change of snow pack, cm/hr                    (AMELT)
        S
      T  is the mean or maximum daily air temperature, °C,      (TEMP)
       Si
      Tb is the base temperature close to 0°C, and             (TMELT)

      C is the coefficient determined by trial and error,
        assuming lower values in the early melt season
        and higher values at a later time, cm/°C-day           (CMELT)
        (Fig. 1-3, N.B. units are in mm/°C-day).

      When the average daily temperature is below the freezing temperature,
precipitation becomes snowfall and accumulates as snow pack and runoff is a
minimum.  Conversely, when the average daily temperature is above freezing, the
snow melt is added to rainfall runoff (if any) for that period.  The resulting
snow melt and rainfall record (XZ) replaces the original precipitation record
as input to the remaining computations.  Since snow pack reduces rainfall
energy, an appropriate flag is included in the programming.  If PACK is > 1 cm,
or the resulting value of XZ < 0.0001 or zero, no soil erosion is assumed.  The
value of XZ, the combined snow melt and rainfall value, is given by:

                       XZ = AMELT + ZRAIN  cm/hr                        Eq.  (3)

where

      ZRAIN is the rainfall record in cm/hr
                                      1-5

-------
                               RAIN (SNOW MELT)
                    i         I          i         1
PERVIOUS AREAS
^
r
EVAPORATION INTERCEPTION
^ STORAGE
1
r

IMPERVIOUS AREAS
1
EVAPORATION
r/
     EVAPORATION
                      DEPRESSION
                       STORAGE
                           OVERLAND
                         FLOW  STORAGE
                             INFILTRATION
                                                                       SURFACE
                                                                       RUNOFF
EVAPOTRANSPIRATIOH
ZONE A FLOW
    AND
  STORAGE
                                      INTERFLOW
                                                             RUNOFF WITHDRAWAL
                                                             TO ANOTHER AREA
                                                              OR TO SEWAGE
                      ZONE  B  FLOW
                         AND
                        STORAGE
                      GROUNDWATER
                       FLOW AND
                        STORAGE
           GROUNDWATER
           WITHDRAWAL TO
           OTHER AREAS
           OR TO SEWAGE
                                          GROUNDWATER  (BASE)
                                               RUNOFF
                   GEOLOGICAL
                   WATER LOSS
                 Fig.  1-2.   Rainfall-runoff transformation.
                                       1-6

-------
O
4-1
O
n)
   n)
   -a

   o
n) o
Q  --

01
0)
M
OD
01
Q
        7  I
        6  -
3  -
        2  -
        1  _
                       I          I          I           I          I          I

               NOV.       DEC.       JAN.      FEB.       MAR.       APR.       MAY
                                                                                 JUNE
                                           Fig.  1-3.  Degree-day factor.

-------
                           Rain data manipulation
      Depending on the units of the input data, a unit conversion section may
be necessary which is automatically provided by the program and controlled by
the variable assigned to the ISWITCH data card.  Defaulting values of various
data variables are incorporated in the program.

      The rain input contains only actual rain data starting with STHOUR and
terminated by 99.99.  This section manipulates, whenever rain data are missing,
the input rain data by inserting zero rainfall values into the data to make the
number of sampling data/day equal to the value of 24/SAMP.  For example, the
rainfall input data contains only 20 values and the sampling period, SAMP is
0.25 hr.  Therefore, the number of sampling periods/day is 24/0.25 or 96.  How-
ever, the input data has only 20 values, whereas the program required 96
values.  Thus, this section simply inserts in the appropriate locations zero
values to bring the number of rainfall data to 96.
                             RAINMX determination
      The average 30 min rain intensity—a moving average—is stored as a nega-
tive value at the first encountered zero rain location in the data after a rain-
fall event.  The manipulation and computation process is repeated for further
rainfall events.  Storage of the average 30 min rain intensity value as a nega-
tive quantity is to allow it to be easily located within the rain data.  This
value is referred to as RAINMX.  The computed RAINMX values are used in the
universal soil loss equation in the soil loss section of the program for deter-
mination of maximum rainfall energy and soil erosion values.

      The rain data manipulated in this way is stored on a temporary disc or
tape file for recall and use in computations.

      If the rain sampling period SAMP is different from 30 min intervals, the
following equation is used in converting RAINMX to the 30 min rain intensity
value:
                                                                        Eq.  (4)


where IOAVTP -*-s RAINMX and AAX is an empirical coefficient with a default value


              Main computation loop for each observation day, NDAYS


      This loop consists of the following sections:

         i.  Day of the year computation LDAY.  This section also compensates
             for leap years.  The information derived is used to determine the
             temperature function parameters.

        ii.  Determination of the temperature function parameter, DELTA:


                                      1-8

-------
              DELTA = 0.40631 * Cos (0.01721 * LDAY + 0.164)            Eq.  (5)

      ill.  Determination of the sundown hour of the day; SDHOUR:

   SDHOUR = 12 + ABS (3.82 * ARCOS (TAN(WLATIT/57.296) * TAN(DELTA)))   Eq.  (6)

      The value of SDHOUR influences the temperature for that day of observation
thereby influencing evaporation of moisture from the land surface.  The actual
temperatures within the IRA sampling loop are approximately a Cosine function.

       iv.  Evaporation integral, solution for evaporation value XEP

                                 XEP = 0.0                              Eq.  (7)

                              DO 121 IA = 1, 24                         Eq.  (8)

          „_   ,             .  Max. Temp. - Min. Temp. . „  ,_ •,,-,,•-, *
          XT = Average temp. + 	c—	*-  * Cos(0.26167 *  E    ,^

          (IA = 0.5) - SDHOUR)

                       121 XEP = XEP + EXP(0.0625 * XT)                 Eq.  (10)

where SDHQUR is sundown hour.  The evaporation integral is used  for computa-
tion of hourly evaporation value.

        v.  Determination of the average 30 days temperature, AVT30X, which
            approximates the soil layer temperature for corrections of per-
            meability during freezing.


                  Interception and surface depression storage


      If the surface is covered by vegetation, part of the precipitation will be
intercepted on the vegetation surfaces.  Based on field measurements, oak  trees
can intercept up to 20% of rainfall (2).  Linsley, Kohler and Paulhus (3)  report
interception storage for evergreens up to 59%.  Many of the existing empirical
equations used to estimate interception during a particular storm event are  of
the form described by Gray (1).

                                 I = a + bPm                            Eq.  (11)

where I is the interception loss; a, b, and m are constants.  The values of  the
constants can be found in Gray  (1).

      Pondage or surface storage effects—during overland flow—will intercept
precipitation when it reaches the ground surface.  On any surface, there are
many small depressions that must be filled before surface runoff begins.
Depression storage may be related closely to land use character and to slope of
the basin, however, an accurate estimation of depression storage is not pos-
sible.  Tholin and Keifer (4) estimated surface storage for Chicago's urban
area as being 6.25 mm (1/4 in) for pervious areas and 1.5 mm  (1/16 in) for
impervious areas.  Hiemstra (5) related depression storage to slope.  The
                                      1-9

-------
suggested relationships for various agricultural land uses are given in Fig.
1-4.

      The depression and interception storage is inputted for pervious and
impervious areas for each land use.  Default values equating to Chicago char-
acteristics are substituted if the input is missing.

      The rain intercepted by vegetation or by surface storage is removed by
evaporation and infiltration after precipitation ceases.
                                 Infiltration
      Water enters the soil due to the combined effects of gravity and capil-
lary forces.  When the process continues, the capillary pore spaces are filled.
As water percolates to greater depths, the gravitational water normally encoun-
ters increased resistance to flow due to increase in the length of the channels,
decrease of the pore size from swelling of clay particles, or due to the pres-
sure of a permeable barrier such as rock or clay.  When excess water is applied
to a soil, infiltration decreases with the time from commencement of the storm.
The rate of decrease also is reduced with time as the infiltration rate
approaches a minimum value.

      Infiltration rates of most soils are characterized by extreme variability.
The actual value at any time at a particular location is a combined effect of
many interacting factors.  Some factors cause infiltration capacity to differ
from one location to another, whereas others produce variations from time to
time at a single location.  Depending on the intensity and duration-of rainfall,
at any given time, infiltration may be limited by:

      a.  The rainfall rate;

      b.  the ability of soil to conduct water through the soil in its unsatu-
          rated condition; and

      c.  the soil permeability under saturated conditions.

These three conditions are considered in the infiltration model proposed by
Holtan (6).
Holtan model


      The Holtan infiltration model is of the form

                               f = aF n + fc                            Eq. (12)
                                     P
where

      f is the infiltration rate when precipitation is not the limiting factor,
                                      1-10

-------
01
00
n)
c
o
•H
CO
CO

-------
      fc is a constant infiltration rate which is the saturation permeability
      of the soil,
      Fp is the total volume which can be infiltrated before a constant rate of
      infiltration is reached,
      a and n are constants.
      The recommended values for a and n (in U.S. units) are 0.62 and 1.387,
respectively.  Fp is a measure of the voids remaining in the soil column at any
time.
      Holtan's equation for infiltration solved by Heun's method
                              F = a(A - X)b + C               cm/hr     Eq. (13)
where
      a is coefficient Cl SOIL,
      b is coefficient C2 SOIL,
      C is saturation permeability SATPRM                     cm/hr
                                                                    i2
      X is current water moisture of the soil, USZ            cm3/ cm2
      and F is infiltration rate                              cm/hr
Heun's solution method:
      A is maximum water content of soil,                     cm3/cm*
                       X ,, = X- +  (F  + F ^ )                         Eq. (14)
                        n+1    n   2V n    n+1
where
      n = time index
      h = time interval between n and n+1
      Fn = a (A + Xn)b + C
      Fn+l = a
-------
      USZ is the current volume of water in the upper zone, cm3/cm2

      SATPRM is the saturated permeability of the upper zone, cm/hr

      The coefficient Cl can be inputted seasonally or defaulted, the default
value is approximately 0.17 cm.


Philip model


      The model is based on the partial area or source area concept.  It des-
cribes a physically-based infiltration capacity calculation for developing the
precipitation excess.  The contributing area is taken as a subwatershed the
dimensions of which expand in time and space subject to soil infiltration capa-
city.  The model was developed by Philip (7) as a function of time for different
soil series in the watershed.

      The general theory of infiltration was summarized by Philip (7) and
approximations were published by Parlange (8).  In this simulation model, the
parameter infiltration equation is

                               VQ = hSt~Q'5 +A                        Eq. (16)

where S is sorptivity LT

      t is time (min)

      A is conductivity Ke at the wetting front

      In this problem A = Ke - Ks  (9)                                 Eq. (17)

where Ks is the saturation permeability (same as SATPRM in the Holtan model)

      Sorptivity S was defined by Philip (7) as :
                                 S = I   $ (0) d9                      Eq.  (18)



where

      y(0, t) =09=0.

      t>0y=00=0i

      by utilizing  a similarity substitution  = yt~°'5               Eq.  (21)
                                     1-13

-------
      However, Parlange  (8) suggested another method for finding the sorptivity
S, using
     ri
= [2     (0 - 0.) D dG]°-5
                                                                       Eq.  (22)
where 0.  is the initial water content of the soil,

      Q! is the water content at the soil surface during infiltration,

      D(0) is soil water diffusivity, defined as the product of the hydraulic
      conductivity K, and the slope of moisture characteristic curve
                  (
      D(0) = K(0) ~                                                    Eq. (23)

      The computation of infiltration capacity is subject to several simplifying
assumptions.  Infiltration is assumed to occur only during a storm event, verti-
cally and at a rate less than or equal to that given by Eq. (16).

      The "less than" rate is taken to be exactly equal to the average rain
intensity.  The parameters that went into computation of sorptivity, S(0) were
averaged over the top soil and subsoil materials.  To retain physical signifi-
cance, the A in Equation 16 was set equal to the conductivity at air entry, Ke.

      This model is for only one layer, i.e., the "A" horizon.  When the wetting
front reaches the "B" horizon then if


      KSB * KSA                                                         E"' (24)
the infiltration rate becomes

      1 = KSB                                                           Eq. (25)

where I is infiltration.

      The model selected for the estimation of the soil moisture characteristic
and hydraulic conductivity is the ASR model (9).  For the solution of Parlange' s
approximation, Rogowski suggested a generalized estimate of moisture character-
istic given by
      G! = 0  + X  log  (V - *  + 1); V > V                             Eq. (26)
            G    S    G       c         ™~  c

      0, = 0 ; f < Y                                                    „   ,07v
       1    e    -  e                                                   Eq. (27)

X  is determined thus :
 s

      Xs =  <915 - Qe)/loge   ^15 - *e + D                              E1-

The subscripts used above have the following meanings:

      f  is air entry pressure and

      0   is the 15 bar water content


                                     1-14

-------
The numeral 1 in parentheses represents the unit of centimeters as does pressure,
f.

      The hydraulic conductivity model calculation is illustrated in Fig. 1-5 on
a hypothetical moisture characteristic divided into five pore classes.  The sum-
mation index j is associated with midpoint pressure values within each pore
class, and the intrinsic resistivity values, w(^) cm- , denote the summation
terms of the product of pressure heads and coefficients.  The conductivity at
a constant temperature may be written

      K± = Ke (wi/we)                                                   Eq. (29)

or directly from Fig. 1-5, for i = 2

      K._2 - Ke  l/^._2 + 3/1,2 ._3
            ._1        ._2        ._3        ._4        ._


      It is sometimes very difficult to determine all input characteristics
necessary for computation.  At a minimum, the model requires four basic soil
infiltration and moisture characteristics:  saturation permeability (SATPRM) ,
porosity (FOR), 0.3 bar moisture content  (SMMIN) , and 15-bar moisture content
(C1SOIL) .  All of these characteristics can be related to soil texture.  Rough
estimations can be made using the available soil data shown in Table 1-1 and
Figs. 1-6 and 1-7.  With ISWITCH(3)  the user is given the option to use either
the Holtan or Philip infiltration models.
                             Evapotranspiration


      Since major weather stations provide evaporation data, average daily
evaporation is inputted along with the rest of the meteorological data.  If
evaporation is not known, it can be computed using for example the Lake Hefner
formula (10) .

      E  = 0.01 U. (e  - e.)                                            Eq. (31)
       v         A   w    A                                              M  >•  /

where

      E  is evaporation cm/ day

      U. is wind velocity measured 7.2m above the surface, m/sec

      e  is saturation vapor pressure at the air temperature, m-bars

      e. is vapor pressure of the air.
       A

      Evapotranspiration in the model is obtained by the evaporation index
method described by McDaniel (11) .

      ET = E  * KU                                                      Eq. (32)


                                   1-15

-------
o
0)
t-l

en
en

-------
Table 1-1.  Soil texture, representative particle size composition and
mean diameters
Textural class (USDA)
(1)
Sand
Loamy sand
Sandy clay loam
Sandy loam
Sandy clay
Loam
Clay loam
Clay (fine)


Silt loam


Silty clay loam
Clay (very fine)


Silt
Silty clay
Sand, %
(2)
95
83
58
55
52
40
33
(a) 40
(b) 25
(c) 10
(a) 34
(b) 22
(c) 7
10
(a) 22
(b) 10
(c) 1
5
6
Silt, %
(3)
3
10
15
25
6
40
33
10
25
40
53
65
80
55
1
13
22
90
47
Clay, %
(4)
2
7
27
10
42
20
34
50
50
50
13
13
13
35
77
77
77
5
47
Mean diameter, mm
(5)
0.285
0.250
0.176
0.167
0.157
0.124
0.103
0.122
0.0785
0.035
0.107
0.0726
0.029
0.0362
0.067
0.0328
0.007
0.0240
0.0236
 Note:   b  describes  central  point; a and  c describe  the range.
                                   1-17

-------
 I
(-•
00
           Textural  Class
              USDA-SCS
           Sand
           Loamy Sand
           Sandy Clay  Loam
           Sandy Loam
           Sandy Clay
           Loam
           Clay Loam
           Clay (Fine)
           Silt Loam
           Silty Clay  Loam
           Clay (Very  Fine)

           Silt
           Silty Clay
Mean Particle
 Diameter, mm
                                                         1.0
   0.285
   0.250
   0.176
   0. 167
   0.157
   0.124
   0.103
   0.0785
   0.0726
   0.0362
   0.0328

   0.0240
   0.0236
w
a
He
                                                      41
                                                      S
                                                         0.6  -
                                                         0.3  -
                                                         o.oi—
                                                         0.006-
                                                         0.003-
                                                          0.001-
                                Soils with high  exchangeable
                                sodium percent,  highly dispersed
                                swelling clays.
Theoretical
as function
size.
                                                            Puddled soils,  poor
                                                            structure, highly
                                                            compacted.
permeability
of particle
                                                                                                               I
                                                                                     ' ^ Soils wit!
                                                                                      good struc-
                                                                                      ture, highly
                                                                                      flocculated
                                                                                      due to high
                                                                                      C ++ organic

                                                                                      matter, iron
                                                                                      oxides, non-
                                                                                      compacted,
                                                                                      non-swelling
                                                                                      clays.	
                                                             0.01
                                      0.03   0.06  0.1   ,,    0.3    0.6  1.0
                                                        m/day
                                                                                                                                     10
1 '
04.
1 1 M|
0.
1
I ' 1
0.
4
'" '1
1.
0
i i | •
4
' " '1
10.
0
i i |
4(
                                                                                                 cm/hr
                          Fig.  1-6.   Relationship  between soil permeability and soil texture.

-------
50 -I
40 _
10
  0.002
                                        Particle Diameter, mm
                                                 OJ CD
                                                 c o
                                                •H ^J
ctj   C  C G
O   crj  nj crj
nJ   CO co co
                                                                               6 -0
                                                                               M C
                                                                               O CO
       Fig.  1-7.   Soil moisture characteristics.

-------
where

      ET is evapotranspiration

      KU is crop-use coefficient which reflects the growth of the crops.
Average values of KU for a variety of crops are presented in Table 1-2.

      Evapotranspiration rate is a primary factor determining water loss  of the
rainfall-runoff balance.  The water lost by infiltration is only a temporal loss
since most of the groundwater runoff eventually appears on the surface as base
flow.  The evapotranspiration lost is considered permanent in all watershed
models.  Water lost by evaporation has no salinity, therefore it may cause salt
build-up in the soil if the leaching rate is not sufficient to remove the excess
salt from the soil.
                       Excess rain from impervious areas


      Infiltration and interception storage for impervious areas are zero.  Only
depression storage is available to prevent runoff from impervious areas.  How-
ever, only a fraction of impervious areas which are directly connected with
stream channels will contribute to surface runoff.  Rock outcrops, buildings,
or roads that are so located that runoff from them must flow over soil or drain
into the soil should not be counted as impervious areas.

      A parameter DC is used by the model to assign a fraction of the imper-
vious area within the subwatershed which is not directly connected to the
channel.  The runoff from this portion is assumed to overflow onto adjacent
pervious areas.  Fig. 1-8 shows an approximate relationship of DC to the portion
of the area of a subwatershed that is impervious.


                             Overland Flow Routing


      After all losses are satisfied, excess rain is routed towards the water-
shed outlet and becomes the surface runoff.  Chow and Kulandaiswamy (14) state
that most of the hydrological models, which were developed for certain specific
hydrologic problems, can be considered a special case of a general hydrologic
process if the phenomenon is analyzed by a systems approach.  All major hydro-
logical problems (and similarly, water quality problems) are described by the
equation of continuity, which in the most general form is:

      (Flow in) - (Flow out) = dS/dt                                    Eq.  (33)

where

      S is the storage of water in the system.

The second basic equation of hydrology and hydraulics is the equation of motion
based on Newton's Second Law.  For most of the overland and channel flow prob-
lems the continuity equation and equation of motion can be expressed in the
                                     1-20

-------
Table 1-2.  Crop use coefficients for evaporation-index method
Average
Crop
Jan.
Feb.
Mar.
Apr.
Perennial
Alfalfa
Grass pasture
Grapes
Citrus orchards
Deciduous orchards
Sugar cane
0.83
1.16

0.58

0.65
0.90
1.23

0.53

0.50
0.96
1.19
0.15
0.65

0.80
1.02
1.09
0.50
0.74
0.60
1.17
May
Crops
1.08
0.95
0.80
0.73
0.80
1.21
KU values at
Crop
0
10
20
30
40
KU values by month
June
(Northern
1.14
0.83
0.70
0.70
0.90
1.22
listed %
50
July Aug.
Hemisphere)
1.20 1.25
0.79 0.80
0.45
0.81 0.96
0.90 0.80
1.23 1.24
Sept.

1.22
0.91

1.08
0.50
1.26
Oct.

1.18
0.91

1.03
0.20
1.27
Nov.

1.12
0.83

0.82
0.20
1.28
Dec.

'0.86
0.69

0.65

0.80
of growing season
60 70
80
90
100

Annual Crops
Field corn
Grain sorghum
Winter wheat*
Cotton
Sugar beets
Cantaloupes
Potatoes (Irish)
Papago peas
Beans
Rice**
0.45
0.30
1.08
0.40
0.30
0.30
0.30
0.30
0.30
1.00
0.51
0.40
1.19
0.45
0.35
0.30
0.40
0.40
0.35
1.06
0.58
0.65
1.29
0.56
0.41
0.32
0.62
0.66
0.58
1.13
0.66
0.90
1.35
0.76
0.56
0.35
0.87
0.89
1.05
1.24
0.75
1.10
1.40
1.00
0.73
0.46
1.06
1.04
1.07
1.38
0.85
1.20
1.38
1.14
0.90
0.70
1.24
1.16
0.94
1.55
0.96 1.08
1.10 0.95
1.36 1.23
1.19 1.11
1.08 1.26
1.05 1.22
1.40 1.50
1.26 1.25
0.80 0.66
1.58 1.57
1.20
0.80
1.10
0.83
1.44
1.13
1.50
0.63
0.53
1.47
1.08
0.65
0.75
0.58
1.30
0.82
1.40
0.28
0.43
1.27
0.70
0.50
0.40
0.40
1.10
0.44
1.26
0.16
0.36
1.00










  *Data given only  for  springtime  season  of  70  days  prior  to  harvest  (after last frost) .
 **Evapotranspiration only.

 (Reprinted from David  and  Sorensen  (12)  with permission of McGraw-Hill,  Co., New York.)

-------
     1.0
     0.8
 o
 •U
 O
 n)
 Pn

 u
 Q
     0.6
     0.4
                                             \
     0.2
                                                   \
                                                     \
                                                        \
         0        20        40       60        80


                       Total Impervious Area, %
100
Fig. 1-8.  Fractionof impervious areas not connected directly

           to a channel (13) .
                         1-22

-------
kinematic wave form:


      fr + H= qiand Q = aym                                          Eq-  (34)

where

      A is the wetted cross-sectional area of flow

      Q is discharge

      q£ is the lateral inflow or distributed inflow rate

      y is depth of flow or stage

      x is flow ordinate or direction

The above differential equations are non-linear and may be solved numerically or
by a systems analysis approach.  It has been shown (15, 16, 17) that the kine-
matic wave approximation may be applied to overland flow and to channels and
streams of various discharge rates provided that the Froude number F is < 2.0.

      Using the systems analysis approach, runoff can be considered as a res-
ponse of the watershed system to the precipitation input.  Similarly, downstream
flow is a response of the channel system to an upstream and/or lateral flow
input.  The input-output relationship for a linear system can be expressed by
the following convolution integral:
              rt
      Y(t) =    h(y)X(t - Y)dY                                          E1'  (35)
where h(y) is the ordinate of the transform function and

      Y is the lag time

The transform function of the system is the system response to a unit pulse
input, which in the case of watershed hydrology, would be a runoff response to
a short duration unit volume excess rain input.  A function of this type was
first proposed by Sherman (18) and is known as the Unit Hydrograph Method (Fig.
I--9) .  The major drawback of the above input-output relationship is the assump-
tion of linearity.  It means that the exponent m in Eq. (35) would have to be
close to unity.  It also implies that the response of a watershed would be similar
to all rains with the same duration regardless of the rain intensity.  The prin-
ciple of linearity has long been questioned.  Horton (19) and Izzard (20) showed
the dependence of the Unit Hydrograph function on the intensity of the excess
rainfall.  This deficiency of the Unit Hydrograph Method was overcome by assum-
ing a non-linear system (21 or 22) for which the input-output relationship be-
comes :        t

      Y(t) =    X(t - Y)  h(X(t - Y);  Y)  dY                            Eq. (36)
             J o
The routing is performed separately for pervious and impervious areas.   After
excess rain has been determined all pervious areas are lumped together, rain is


                                    1-23

-------
                               tt-I
                         Excess  Rain
         H

         H-


         (D
00
H
S
S
H
O
OQ
B
ro
                       Unit Hydrograph
         (TO


         H

         H-

         3
1-1
0>
(1)
O

Cu
                          Runoff

-------
averaged over the entire area (AVERA = average rain), contributing areas are
determined and an average unit hydrograph is computed according to the average
characteristics of the contributing areas (H is the hydrograph for pervious
contributing areas).

      The hydrograph is also determined for impervious areas (HIM is the
graph for impervious areas) and runoff from impervious areas is routed sepa-
rately.


                        Instantaneous unit hydrograph


      A watershed behaves like a retention system which can be represented by
several basins in a series.  Nash (23) proposed a model consisting of a cascade
of n identical reservoirs for which:


              *  •'"'-I •  ^
in which K  is the reservoir constant, and F (n) is the gamma function on n.
          n

      If n approaches 1.0 the above hydrograph function can be replaced by a
single reservoir model given by
      h(t) =    e-tK                                                   Eq. (38)
             K

where K is the reservoir constant.  Both constants can be related to the time
of travel of the water from the most remote point on the watershed to the water-
shed outlet.  On the runoff hydrograph this time represents the time distance,
t , between the centre id of the rain pulse and the peak of the hydrograph (Fig.
1-9).  Then according to Rao, Delleur and Sarma (24):

      t  = K = n x K^                                                   Eq. (39)

      By numerically solving the kinematic wave equations for the overland flow
portion of the rainfall-runoff transformation, Henderson and Wooding (17)
developed an equation for t  which converted to metric units is:
t  = 6.9
               T 0. 6 nO. 6                                                T7   /•/ n\
               L    %                                                  Eq. (40)
                     - -
                  .i* S0.3
where t  is the peak lag time in minutes

      L is length of the overland flow in meters

      i is rain intensity in mm/hour

      S is slope in m/m

      n  is the Manning roughness factor


                                   1-25

-------
An almost identical formula was independently published by Morgali and Linsley
(16).  Table 1-3 reports Manning's roughness factor for the overland flow.

      Rao, Delleur and Sarma (24) statistically analyzed the hydrograph curves
for several urbanizing watersheds.  The authors analyzed the effect of many
variables on the shape of the runoff hydrograph.  Only statistically signifi-
cant variables were included in their formulae.  Based on the above investiga-
tion, t  and n can be estimated as follows:

               (AW)0.458(TR)0.104
      S = 3   n j. m1'662/ x°'269
       p       (1 + U)     (i)                                          Eq.  (41)

and

           2.64  (AW)0-069
      n ' (1 + U) x (1)0.155                                            Eq.  (42)


where t  is lag time in hours

      AW is watershed area in km2

      i is the rain intensity in mm/hour

      U is the fraction of impervious areas contained in the total watershed
      area

      TR is rain duration in hours

The user of the program has an option to use either kinematic wave routing or
the empirical formula of Rao, Delleur and Sarma (24).  The option selection is
again controlled by ISWITCH(3).


                                Soil Washload
      Washload is a part of the total sediment load and contains most of the
fine particles.  Some of the nutrients and pollutants can be adsorbed readily
on fine soil particles and be carried by them to the receiving body of water.
In addition, sediment itself is a serious pollutant of waterways.  The wash-
load magnitude can be related to the available supply of solid particles in the
watershed.  Washload is usually caused by land erosion and is defined as that
part of the sediment load which is composed of particles smaller than those
found in appreciable quantities in the shifting portion of the streambed
(American Geophysical Union definition).  The bedload portion is composed mostly
of larger particles—sand and gravel—which originates from gulley and river
bank erosion.  It does not possess the high adsorptive capacity of clay and
fine soil particles and may not be a significant nutrient or pollutant carrier.

      Due to the nature of the process, the sediment washload can be estimated
only roughly using an empirical model.  Presently, the best known and most used
models are:
                                   1-26

-------
Table 1-3.  Typical values of the Manning's  rough-
            ness factor for overland flow (25)
                                    Manning's n,, for
      Ground cover                   overland flow
Smooth asphalt                           0.012

Street pavement                          0.013

Asphalt or concrete paving               0.014

Packed clay                              0.03

Light turf                               0.20

Dense turf                               0.35

Dense shrubbery or forest
  litter                                 0.40
                         1-27

-------
      1.  The Universal Soil Loss Equation (26,27) developed by analyzing
          field data from agricultural experimental lots, and

      2.  A method which uses sediment rating curves applied mainly in
          hydrology.

The sediment rating does not account for the effective component of the pre-
cipitation.


                      The universal soil loss equation


      The Universal Soil Loss Equation (USLE) is useful for predicting soil
losses.  According to Wischmeier and Smith (27), the primary purpose of the
soil-loss prediction is to provide specific and reliable guides to help select
adequate soil and water conservation practices for farms.  The procedure may be
used for predicting sediment yield.

      The USLE, though developed for areas east of the Rocky Mountains, has in
fact been applied to the entire United States and to urban areas.

      The USLE is written:

      A = (R) (K) (LS) (C) (P)                                          Eq. (43)

where A is the computed soil loss in tons/ha for a given storm

      R is the rainfall factor

      K is the soil erodibility factor

     LS is the slope length gradient factor

      C is the cropping management factor

      P is the erosion control practice factor

The equation as quoted above expresses the area soil loss due to erosion by rain.
It does not include wind erosion and it does not give a direct sediment content
of the runoff at the outlet point.  The soil loss must be multiplied by a  deliv-
ery ratio factor (DR) to account for resettling of the particulate matter  after
or during the overland flow.

      Thus,

      AR = (DR) (A)                                                     Eq. (44)

where AR is the runoff of sediment at the outlet point.
                                    1-28

-------
Rainfall factor, R

      The rainfall factor, R, reflects the energy of the rain droplet falling
on the surface and detaching soil particles available for pick-up by surface
water runoff, during periods of overland flow.  For a single storm it was
defined by Wischmeier and Smith (27) as follows:

      Rr =                                                              Eq. (45)
in which E is total kinetic energy

         I is the maximum 30 min rainfall intensity of the storm (cm/hr) .

The kinetic energy of rain is a logarithmic function of the rainfall intensity.
After conversion into SI units the rainfall factor becomes:

      R  = El = I  [(2.29 + 1.15 log Xi)Di] I                           Eq. (46)


where X. is rainfall intensity in cm/hr

      i is the rainfall hyetograph time interval

      D. is rainfall during time interval i

The fact that both rain energy and detachment of soil particles by runoff con-
tribute to soil loss has long been recognized and has led to some reservations
about the USLE.  Williams (28) developed a sheet erosion factor which related
R to the runoff hydrograph characteristics.  Foster, Meyer and Onstad (29) com-
bined the original rainfall factor with Williams' (28) sheet erosion factor by
the equation:

      R = aR  + bcQq1/3                                                 Eq. (47)

where a and b are weighting parameters (a + b = 1.0)

      c is an equality coefficient

      R  is the rainfall factor
       r
      Q is the runoff volume in cm

      q  is maximal runoff rate in cm/hr

The weighting factor compares the relative amounts of erosion by rainfall and
runoff under unit conditions.  Free, Onstad and Holtan (30) have indicated that
the detachment of particles by runoff and rain energy is almost evenly divided
(i.e., a = b = 0.5).  The equality coefficient in SI units is 19.26.  Substitu-
ting the values-of a, b, and c into the USLE, the equation for the rainfall
factor becomes:

      R = 0.5R  + 9.63 QqT/3                                            Eq. (48)
                                    1-29

-------
 As  indicated  by  the  authors, the  coefficients a, b, and c must be used with
 caution  since they can  change  from storm to storm and watershed to watershed.
 The above  equation is approximated by LANDRUN as follows:

       RIX  =  (RI  + RISM)  *  (1 - PACK)                                    Eq.  (49)

 where

       RIX  is  the rainfall  factor  R

       RISM is  4.30 (ANRAIN(LA) *  SAMP * ABS(RISMX) ** 0.333)

       RI is  (1.21 +  0.51 * log    (ZRAIN))*(ZRAIN * SAMP * RAINMX) * 0.5

 where  RI approximates the  effect  of rain energy on sediment erosion

       RISMX approximates the maximum runoff rate for sheet erosion

       RISM is  the sheet erosion effect due to runoff

       ZRAIN is rainfall intensity during the sampling interval

       SAMP is  the sampling interval

       RAINMX  is  the maximum 30 min rainfall intensity.


 Soil factor, K


       The  soil factor is a measure of the potential erodibility of a soil and
 has units  of tons/unit of the erosion index.  The soil erodibility nomograph
 shown  on Fig.  1-10 is used to find the value once five soil parameters have been
 estimated.  These are:  % silt plus very fine sand (0.05 to 0.1 mm), % sand >
 0.1 mm, organic matter content, structure,  and permeability.  Table 1-4 lists
 soil factor values as suggested or determined by Wischmeier and Smith (27).


 Slope-length factor,  LS


       The  slope-length-gradient ratio is a function of runoff length and slope
 and is given by the following equation:

      LS = L1/2  (0.0138 + 0.00974 S + 0.00138 S2                        Eq. (50)

where L is the length from the point of origin of overland flow to the point
      where the slope decreases to the extent that deposition begins or to
      the point at which runoff enters a defined channel and is expressed in
      meters.

       S is the average percent slope over the given runoff length.

If the average percent slope is used in calculating the LS factor,  the predicted

                                    1-30

-------
•a
c
CO
en

a;
c
 01


+
0)

CM
                                                                                         Soil Structure
                                                                                    1-Very Fine Granular


                                                                                    2-Fine Granular


                                                                                    3-Med. or Coarse Granular
                                                                                    4-Blocky, Platy or

                                                                                      Massive
                                                                                                             Permeability
                                                                                                            6-Very Slow


                                                                                                            5-S low


                                                                                                            4-Slow to Mod.


                                                                                                            3-Moderate


                                                                                                            2-Mod. to Rapid


                                                                                                            1-Rapid
100
          Fig.  1-10.   Determination of soil K factor.

-------
 Table  1-4.   Computed K values  for  soils  (27)*
                                         Computed k  tons/ha
                Soil                   rainfall energy  unit
Dunkirk silt loam                               0.69
Keene silt loam                                 0.48
Shelby loam                                     0.41
Flodi loam                                      0.39
Fayette silt loam                               0.39
Cecil sandy clay loam                           0.36
Marshall silt loam                              0.33
Ide silt loam                                   0.33
Mansic clay loam                                0.32
Hagerstown silty clay loam                      0.31
Austin clay                                     0.29
Mexico silt loam                                0.28
Honesye silt loam                               0.28
Cecil sandy loam                                0.28
Ontario loam                                    0.28
Cecil sandy clay loam                           0.26
Cecil sandy loam                                0.23
Zaneis fine sandy loam                          0.22
Tifton loamy sand                               0.10
Freehold loamy sand                             0.08
Bath flaggy silt loam with
  surface stones > 5 cm removed                 0.05
Albia gravelly loam                             0.03

*Reprinted with permission of U.S. Department of Agriculture,
                           1-32

-------
erosion will be different from the actual erosion when the slope is not uniform.
The equation for LS factor shows that when the actual slope is convex the
average slope predicted will underestimate the total erosion, whereas for a
concave slope, the prediction equation will overestimate the actual erosion.
If possible, to minimize these errors, large eroding sites should be broken up
into areas of fairly uniform slopes.
Cropping management factor, C

      The cropping management factor estimates the effects of the ground cover
condition of the soil and the general management practice of the area of con-
cern.  For urban areas the C factor is referred to as the cover factor (31).
The areas with continuous fallow ground, which is defined as land that has been
filled and kept free of vegetation and surface crusting, are assumed to have a
C-factor of 1.  Values for the cropping management factor are given in Table
1-5 (31).
Erosion control practice factor, P


      The P-factor accounts for the erosion-control effectiveness of various
practices such as contouring, terracing, compacting, sedimentation basins and
control structures.

      Terracing does not affect the P factor because soil loss reduction from
terracing is reflected by changes in the LS factor.  Values of the factor P,
for various farm erosion control practices, are given in Table 1-6, and those
for urban erosion control are presented in Table 1-7.  The sediment liberated
by rain and runoff on pervious areas is summed up and routed by the corre-
sponding unit hydrograph for pervious areas.

      The sediment can carry adsorbed pollutants.  If organic materials (ORGC)
and adsorbed pollutant fractions of the sediment (AP7 and AP2) are known they
will be routed in the same way as the sediment.


                Sediment Washout From Urban Impervious Areas


      In urban areas a substantial part of the sediment washload consists of
dust and dirt particles from deposits on streets, gutters and other impervious
areas.  The pollutants accumulated on the urban land surface originate from air
pollution particulates from coal-burning industrial and household furnaces,
wastes and dirt from construction and renovation, residues from automobile
exhausts and tires, solid waste deposits by individuals or dropped by col-
lection vehicles or scattered by animals.  These particulate pollutants, which
contain a substantial amount of nutrients, generally are classified into one of
the following categories of street litter:  rags, paper, dust and dirt, vegeta-
tion and inorganics.  The major portion of the street litter comes from dust
and dirt fallout except during the fall season when vegetation is dominant.  The


                                   1-33

-------
Table 1-5.  C-values and slope length limits  for  no  seeding  or  for  first  6
weeks of growing period (31)
Type of
seeding*
None
None











None





None








Temporary
(grain or
fast grow-
ing grass)






Permanent
seeding,
second
year
Sod
Type and amount
of mulch, Tonnes/ha
None
Straw or hay 2
tied down by
anchoring** with
tracking equip- 3
ment used on
slope
4





Crushed stone 270



480

Wood chips 14

24


50



None

Straw 2
3
4
Stone 270
48
Wood chips 14
24
50





Slope,
%
All
< 5
6 to

< 5
6 to

< 5
6 to
11 to
16 to
21 to
26 to
< 15
16 to
21 to
34 to
< 20
21 to
< 15
16 to
< 15
16 to
21 to
< 15
16 to
21 to

—

—
—
—
	
—
—
—
—
—



—
Maximum
C-value length, m
1.0
0.20
10 0.20

0.12
10 0.12

0.06
10 0.06
15 0.07
20 0.11
25 0.14
50 0.18
0.05
20 0.05
33 0.05
50 0.05
0.02
33 0.02
0.08
20 0.08
0.05
20 0.05
33 0.05
0.02
20 0.02
33 0.02
+ -H-
0.70 — 0.10

0.20 — 0.07
0.12 — 0.05
* — 0.05
0.05 — 0.05
0.02 — 0.02
0.08 — 0.05
0.05 — 0.02
0.02 — 0.02
0.01



0.01 — 0.01
—
61.0
30.5

91.5
45.8

122
61.0
45.8
30.5
27.9
10.7
61.0
45.8
30.5
27.9
91.5
61.0
27.9
15.3
45.8
30.5
2"7.9
61.0
45.8
30.5

—

—
—
—
	
—
	
—
—
—



—
 *If seeding is in late fall these values will extend into following spring.
**If straw is not anchored to soil, rilling may occur beneath mulch.  C-values
  on moderate or steep slopes with K > 0.3 should be doubled.
  Through first 6 weeks of growing period.
  After 6 weeks of growing period.
  Use values for no seeding for appropriate slope steepness.

                               1-34

-------
  Table 1-6.  Conservation practice factor  P for agricultural lands (27)
Slope, %
1.1 to 2.0
2.1 to 7.0
7.1 to 12.0
12.1 to 18.0
18.1 to 24.0
> 24.0
Contouring
0.6
0.5
0.6
0.8
0.9
1.0
Contour strip cropping,
alternate grain-and-
meadow strip system*
0,3
0.25
0.30
0.40
0.45

*The conservation practice factor for terracing should equal the contour
 practice factor.
                                  1-35

-------
Table 1-7.  Erosion control practice factor P for construction sites  (32)
         Erosion control practice                              Factor P
                    Surface Condition with No Cover

Compact, smooth, scraped with bulldozer or scraper
up and down hill                                                 1.30

Same as above, except raked with bulldozer root
raked up and down hill                                           1.20

Compact, smooth, scraped with bulldozer or scraper
across the slope                                                 1.20

Same as above, except raked with bulldozer root
raked across slope                                               0.90

Loose as a disced plow layer                                     1.00

Rough irregular surface, equipment tracks in all
directions                                                       0.90

Loose with rough surface > 0.3 m depth                           0.80

Loose with smooth surface > 0.3 m depth                          0.90

                             Structures

Small sediment basins:

1 basin for 25 acres                                             0.50
1 basin for 15 acres                                             0.30

Downstream sediment basins:

with chemical flocculants                                        0.10
without chemical flocculants                                     0.20

Erosion control structures:

normal rate usage                                                0.50
high rate usage                                                  0.40

Strip building                                                   0.75
                                1-36

-------
magnitude of the dust and dirt fallout may not be just a simple function of the
amount of particulate matter (fly ash) emitted by coal burning industrial and
household furnaces.  In many areas wind erosion of soil particulates may be
important which is, of course, a function of environmental and meteorological
factors such as solar radiation and length of the dry period, wind speed, type
and density of vegetation cover, street cleaning practices, etc.  These factors,
in addition to traffic density, will most likely affect the magnitude of the
dust and dirt cumulation.  A formula has been proposed for dust and dirt cumu-
lation by Novotny* which was statistically evaluated by Brady (33).

PC = 3.44 * TD + 31.1   ~ (POA)||+ 162 * (RD) - 75.1e~0-5(H)  f(TS)     _
      1               i  ^      )                              (         t-q.
+ (WS)  + B

where

      PC is pollutant cumulation in g/m of curb/day

      WS is wind velocity, km/hr

      POA is % open area

      SW is the width of the road, m

      RD is residential density, units/100 ha

      H is curb height, m

      TD is traffic density, axles/hr

      TS is traffic speed, km/hr

      B is average minimal magnitude of dust and dirt fallout, kg/day x m

      i.e., dust and dirt fallout on a calm windless day with no traffic

      The multiple correlation coefficient for the above relationship was r =
0.74.  The dust and dirt washout function describes the pick-up and transfer of
the accumulated particulates by overland flow.  Not all of the pollutants,
accumulated during a period preceding a rainfall, will be washed off the imper-
vious surfaces during the first moments of the runoff event.  It is expected
that the amount of pollutants washed off will generally follow the equation:

      py = 4^- = -K P
           dt     p

where

      PW is pollutant washout rate

      P is the amount of pollutants present on the surface

      K  is a coefficient dependent on rain intensity
*Proposed by Novotny in Brady (33).
                                   1-37

-------
Assuming a steady rain intensity, Eq. (53) can be integrated to yield the
typical "decay" formula:

      AP = P0[l - e"V]                                              Eq.  (53)


where AP is the amount of pollutants washed out of the surface during the  time
      period t

      P0 is the initial amount of pollutants present on the surface.

The coefficient, Kp, is a function of the runoff rate and in most urban runoff
quantity-quality models it is approximated as K^ = EUR, where Eu is the urban
washoff coefficient and R is the runoff rate from impervious surfaces.  The
value of the washout coefficient has been reported as EU = 1.81 cm"1  (34).

      Not all of the deposited litter is available for transport.  Thus, the
sediment washout rate should be multiplied by the availability factor (34).
                       1. 1
      Ag = 0.057 + 0.5R                                               Eq.  (54)


R is the surface runoff rate in cm/hr.  It is obvious, that with increasing
runoff rate a limit must be placed on the availability factor.  A suggested
maximum value for Ag is 0.75 which implies that about 25% of the urban litter is
not available for transport.

      The dust and dirt cumulated on impervious areas will be routed using the
hydrograph for impervious areas, HIM.  If the organic content (DDORG) or
adsorbed pollutant fractions (DDAP1 and DDAP2)  are known,  these will'be routed
in the same way as the dust and dirt sediment.
                       Overland Transport of Phosphorus


    A subroutine describing the overland transport of phosphorus has been
incorporated into the LANDRUN model (35).  The subroutine has been tested by
comparing observed and simulated P loadings from pilot (1 to 22 km2) watersheds
located in the Menomonee River basin.   The data for phosphorus indicates that
good agreement is possible between measured and computed values.  The model is
being calibrated for simulating pesticide and toxic metal loading and routing.
                                   1-38

-------
                          1-3.  OPERATION OF PROGRAM


                            Computational Procedure


      A summary of the computational procedure is shown in Appendix A.   Some of
the computations may be bypassed depending upon the program options specified
(ISWITCH control data).   The data required for the input to the program is
given in the input data variables listing in Appendix B and the order of their
input is given in the input data Tables in Appendix B.

      The order of input may be summarized as follows:

           Title of job, specifications

           Area specifications

           Land use data

           Pollutants and washoff,  sweeping data

           Date and meteorological data

           Precipitation record—daily precipitation record is terminated by
              the digits 99.00
                        Input-Output Unit Assignments


      Prior to running the program the following unit assignments are necessary.

      FORTRAN Logical Unit	Option     	

         IN (Value 10)             Working storage for precipi-
                                   tation data manipulation.

            105                    Input precipitation record from
                                   disk, card or tape

            108                    Output analysis file report
                                      1-39

-------
                                 REFERENCES - I
 1.  Gray, D. M.  (ed.).  Handbook on the Principles of Hydrology.
     Information  Center, Port Washington, New York, 1970.  1 Vol.

 2.  Dub, 0. and  J. Nemec.  Hydrologie.  SNTL, Prague, Czechoslovakia, 1969.
     378 pp.

 3.  Linsley, R.  K. Jr., M. A. Kohler  and J.  L. H.  Paulhus.  Hydrology for
     Engineers.   McGraw-Hill Book Co.,  New York.   1975.

 4.  Tholin, A.  L. and C. S. Keefer.  Hydrology of Urban Runoff.  Trans. Am.  Soc.
     Civil Engineers,  1960.  pp.  1308-1355.

 5.  Hiemstra, L.  Frequencies of Runoff for Small Basins.  Ph.D. Thesis,
     Colorado State University, Fort Collins, 1968.  151 pp.

 6.  Holtan, H.  N.  A Concept for Infiltration Estimates in Watershed Engineer-
     ing.  U.S.  Dept.  of Agriculture, ARS 41-51, Washington D.C., 1961.  25 pp.

 7.  Philip, J.  R.  Theory of Infiltration.   In: Advances in Hydroscience, V. T.
     Chow, ed.,  Academic Press, New York, 1969.   305 pp.

 8.  Parlange, J. Y.  Theory of Water Movement in Soils.  Soil Sci.  111:170-174,
     1971.

 9.  Rogowski, A. S.  Estimation of the Soil Moisture Characteristics and
     Hydraulic Conductivity Comparison of Models.   Soil Sci.   114:423-429, 1972.

10.  Edinger, J. E. and J.  C.  Geyer.  Heat Exchange in the Environment.  Johns
     Hopkins University, Baltimore,  Maryland, for the Edison Electric  Institute,
     1965.

11.  McDaniel, L. L. Consumptive Use of Water by Major Crops in Texas.  Texas
     Water Development Board Bull.   No. 6019, Austin,  Texas.

12.  Davis,  C. V. and  K. E. Sorensen.  Handbook of Applied Hydraulics.  McGraw-
     Hill Book Co., New York,  1969.   1 Vol.

13.  Hydrocomp International.   Hydrocomp Simulation Programming Operation
     Manual.  Hydrocomp International, Palo Alto,  California, 1972.

14.  Chow, V. T. and V. C.  Kulandaiswamy.  General Hydrologie Models.  J.
     Hydraulics Div.,  Proc. Am. Soc. Civil Engineers 97:791-804, 1971.

15.  Wooding, R. A. Hydraulic Model, for the Catchment-Stream Model.  J.
     Hydrol. 3:254-282, 1965.

16.  Morgali, J. R. and R.  K.  Linsley.   Computer Analysis of Overland Flow.  J.
     Hydraulics  Div.,  Proc. Am. Soc. Civil Engineers 91:81-100,  1965.
                                    1-40

-------
17.   Henderson,  F.  M.  and R.  A.  Wooding.   Overland Flow and Groundwater Flow
     from a Steady  Rainfall of Finite Duration.   J. Geograph.  Res.
     69:1531-1540,  1964.

18.   Sherman,  L. K.   Streamflow from Rainfall by Unit-Graph Method.
     Engineering News  Record, p. 531, 1932.

19.   Horton, R.  E.   The Interpretation and Application of Runoff Plot
     Experiments with  Reference to Soil Erosion Problems.  Soil Sci.  Soc.
     Am.  Proc.  3:340-349, 1938.

20.   Izzard, C.  F.   Hydraulics of Runoff from Developed Surfaces.  Proc.
     Highway Res. Board 26:129-150,  1946.

21.   Amorocho,  J. and  A.  Branstetter.  Determinations of Non-Linear
     Functional Response Function in Rainfall-Runoff Process.   Water  Resources
     Res. 7:1087-1101, 1971.

22.   Ding,  J.  T. Variable Unit Hydrograph.   J.  Hydrology 22:53-69,  1974.

23.   Nash,  J.  E. The  Form of the Instantaneous Unit Hydrograph.  Bull.
     Intern. Assoc.  Scientific Hydrol.  111:114-121, 1957.

24.   Rao, R. A., J.  W. Delleur and B. S.  P.  Sarma.  Conceptual Hydrologic
     Model for Urbanizing Basins.  J. Hydraulics Div., Proc.  Am. Soc. Civil
     Engineers 98:1205-1220,  1972.

25.   Crawford,  N. H. and R. K. Linsley.  Digital Simulation in Hydrology,
     Stanford Watershed Model IV.  Tech.  Report No. 39, Dept.  of Civil
     Engineering, Stanford University,  Palo Alto, California,  1966.

26.   Wischmeier, W.  H. and D. D. Smith.  A Universal Soil-Loss Equation to
     Guide Conservation Farm Planning.   7th Intern. Congr. Soil Sci., Madison,
     Wisconsin,  1960.   Vol. 7, No. 1, pp. 418-425.

27.   Wischmeier, W.  H. and D. D. Smith.  Predicting Rainfall-Erosion  Losses
     from Cropland  East of the Rocky Mountains.   U.S. Dept. of Agriculture
     Handbook 282,  Washington, D.C., 1965.  47 pp.

28.   Williams,  J. R.  Sediment Yield Prediction with Universal Equation Using
     Runoff Energy  Factor.  Unpubl.  Paper Presented at Interagency Sediment
     Yield Conference, Oxford, Mississippi,  1972.

29.   Foster, G.  R.,  L. D. Meyer and C.  A. Onstad.  Erosion Equation Derived
     from Modeling  Principles.  Paper 73-2550 Winter Meeting ASAE,  Chicago,
     Illinois,  1973.

30.   Free,  M.  H., C. A. Onstad and H. M.  Holtan.  ACTMO, An Agricultural
     Chemical Transport Model.  U.S. Dept. of Agriculture Report No.  ARS-H-3,
     1975.

31.   Ports, M.  A.  Use of the Universal Soil Loss Equation as  a Design
     Standard.   Water  Resources Engineering Meeting, Am. Soc.  Civil.
     Engineers,  Washington, D.C., 1973.
                                   1-41

-------
32.   Ports,  M.  A.   Urban Sediment  Control Design Criteria  and  Procedures.
     Paper Presented at Winter Meeting of Am.  Soc.  Ag.  Engineers,  Chicago,
     Illinois,  1975.

33.   Brady,  D.  H.   Development of  a Mathematical Model  for Street  Surface
     Pollutant  Accumulation.   M.S.  Thesis,  Marquette  University, Milwaukee,
     Wisconsin, 1976.   76 pp.

34.   Hydrologic Engineering Center.  Urban Storm Water  Runoff  "STORM."
     U.S.  Army  Corps of Engineers,  Davis, California, 1975.

35.   Novotny, V.,  H. Tran,  G.  Simsiman and G.  Chesters.  Mathematical Modeling
     of Land Runoff Contaminated by Phosphorus.   J. Water  Pollution Control
     Fed.  50(1):101-112, 1978.
                                   1-42

-------
                              BIBLIOGRAPHY -  1
Agnew, R. W., T. L. Meinholz and V. Novotny.  1975.  A Preliminary Predictive
     Model for Determining the Water Quality Impact of Highway Systems.
     Unpublished Report, ENVIREX, Inc., Milwaukee, Wisconsin.

American Society Civil Engineers, V. A. Vanoni, ed. 1976.   Sedimentation
     Engineering.  ASCE Manuals and Reports on Engineering  Practice, No.  54.
     745 pp.

Brandstetter, A. and J. Amorocho.  1970.  Generalized Analysis of Small Water-
     shed Responses.  Water Sci. and Eng. Paper No. 1035, Department of Water
     Science and Engineering, University of California, Davis, California.
     204 pp.

Chin, M. A.  1976.  Urbanized Watersheds Stormwater Analysis - LANDRUN.   M.S.
     Thesis, Marquette University, Milwaukee, Wisconsin.  115 pp.

Chow, V. T.  1964.  Runoff.  Handbook of Applied Hydrology, Sec. 14,
     McGraw-Hill Co., New York.  pp. 1-54.

Dooge, J. C. and B. M. Parley.  1967.  Linear Routing in Uniform Open Channels.
     Proc. Intern. Hydrol. Symposium, Fort Collins, Colorado,  pp. 1-8.

Eagleson, P. S.  1970.  Dynamic Hydrology.  McGraw-Hill Book Co., Inc. New
     York.  462 pp.

Engman, E. T.  1974.  Partial Area Hydrology Application to Water Resources.
     Water Resources Bulletin 10:512-521.

Harbeck, G. E., Jr.  1962.  A Practical Field Technique for Measuring Reservoir
     Evaporation Utilizing Mass-Transfer Theory.  USGS Prof. Paper 272-E,
     Washington, D.C.  pp. 101-105.

Horn, M. E.  1971.  Estimating Soil Permeability Rates.  J. Irrigation and
     Drainage Div. Proc.  ASCE, Vol.  97, No. IR2.  pp. 263-274.

Horton, R. E.  1919.  Rainfall Interception.  U.S. Monthly Weather Rev.,  47.

Horton, R. E. 1940.  An Approach to the Physical Infiltration of Infiltration
     Capacity.  Proc. Soil Sci. Soc. Amer., 5:399-417.

Reefer, T. N. and R. S. McQuivey.  1974.  Multiple Linearization Flow Routing
     Model.  J. Hydraulic Div., Proc. ASCE, 100:1031-1046.
                                     1-43

-------
Kostiakov, A. N. 1932.  On the Dynamics of the Coefficient of Water  Per-
     colation in Soils and the Necessity of Studying  it from Dynamic Point
     of View for Purposes of Amelioration.  Trans. Sixth Comm. Ant.  Soc.
     Soil Sci., Russian part A15-21.

Lager, J. A., E. E. Pyatt and R. P. Shubinsky.  1971.  Storm Water Manage-
     ment Model.  U.S. Environmental Protection Agency Report Nos. 11024 DOC
     07/71, 11024 DOC 08/71, 11024 DOC 09/71, 11024 DOC 10/71.  Superintendent
     of Documents, Washington, D.C. 4 Vols.

Nordin, F., Jr.  1964.  Study of Channel Erosion and  Sediment Transport.
     J. Hydraulics Div., Proc. ASCE, 90:173-191.

Novotny, V., J. Goodrich-Mahoney and J. Konrad.  1976.  Land-use Effect on
     Water Quality: An Overland Non-point Continuous Model.  Paper presented
     at ASCE-E.E. National Conf. on Environ. Eng. Res. and Design, Seattle,
     Washington.

Patterson, M. R., T. K. Munro, D. E. Fields, R. D. Ellison, A. A. Brooks and
     D. D. Huff.  1974.  A Users Manual for the Fortran IV Version of the
     Wisconsin Hydrologic Transport Model.  ORNL-NSF-EAT C-7, Oak Ridge
     National Lab., Oak Ridge, Tennessee.  252 pp.

Ragan, R. M. and J. 0. Duru.  1972.  Kinematic Wave Nomograph for Times of
     Concentration.  J. Hydraulics Div., Proc. ASCE,  93:1765-1772.

Richards, L.S.  1931.  Capillary Conduction through Porous Mediums.  Physics
     1:318-333.

Ryden, J. C., J. K. Syers and R. F. Harris.  1972.  Potential of an  Eroding
     Urban Soil for the Phosphorus Enrichment of Streams.  J. Environ.
     Quality 1:430-438.

U.S. Army Corps of Engineers.  1956.  Snow Hydrology.  U.S. Army Corps of
     Engineers,  North Pacific Div., Portland, Oregon.

Williams, J. R.  and H. D.  Berndt.  1972.  Sediment Yield Computed with Univer-
     sal Equation.   J. Hydraulics Div., Proc. ASCE, 98:2087-2098.

Wischmeier,  W.  H.,  C. B.  Johnson and B. U. Cross.   1971.  A Soil Erodibility
     Nomograph for Farm Land and Construction Sites.   J. Soil and Water
     Conserv. 26(5):189-193.
                                      1-44

-------
               APPENDIX I-A
             LANDRUN FLOW CHART
          Set Variables Dimensions
           Declare Real Variables
            Write Program Heading
    Read Three Data Description Title Cards
         Cards Al, A2, A3  80 Characters per Card

    Bead Control Card:  1SWITCH CD  thru (5)
         Card Bl
    Read NLAND  = No. of Land Areas Observed
         TAREA  = Total Area Sq. Km (Sq. Mi.)
         WLATTT = Latitude of Watershed Degrees
         NSCM  = No. of Seasons
         Card B2
 Corments:  Explanation of Variables in Input Data
Page numbers  in
flow chart  refer
to  page  numbers
In  a different
publication.
Read  Land and Soil Data-  Area, Maximum Depression
     Storage, Porosity, Control Depth, Soil Moisture
     Minimum, Porosity of Impervious Area, etc	
     Cards  Cl, C2

Defaulting Values of Variables, Conversion Unit for
Crop  use Coefficients KU
Values for KU Inputted or Defaulted Depending on
ISWITCH (2)
     Input on Cards C3, CM

Read SC:  Crop Use Management Factor for Each Season
     Cards  C5, C6

Read LES:  Length of Each  Season
     Card  D

Read Sediment and Dust and Dirt Cumulation Data
      Cards  El, E2

Read No.  of Days of Observation., Temperature and
      Evaporation, Sundown Data
      Card P
                     O
                   1-45

-------
Read Fain Data
                              Cards R
Write Headings and Input Data
Data Uaits Conversion Depending on Value of
    ISWITCH (1)
 Computation of  Values Associated with the
 Impervious Areas  of  the Total Area Under
 Observation
 Initialization of Variable Values to be Used
 in the Infiltration and Runoff Models
   Manipulation of Rain Data.
   Determination of Maximum Average 30 Minute
    Rain Intensity and its Storage as Negative
    Valued on Temporary File.
       Days  Loop  Computations Begins.
       Do 16   14 =  1,  Nt&YS
    Temperature Conversion According to Control
      ISWITCH CD-
    Day of the Year Determination and Corresponding
      Temperature "Function Parameters.
    Determination of Solution for Evaporation
      Integral  XEP.
    Determination of Average 30 Days Temperature
      AVT30 and Average Evaporation Value
      AVEVAP.
                   1-46

-------
©-•
                 Compensation for CMELT According to ttonth
                 of Rainfall Occurrance.
B )—From Page (8) Loop-
                     Sampling Loop Computations Begins
                     Do 17  IRA = 1, NI3
               Computation of Temperature, Evaporation Values
              Initialization of Variables for Snowraelt and Pack
              Computations.
 0-
C  )	From Page (6) Loop -
                    Land Use Cycle Computations Begins
                    Do 19  LA = 1, K
                  Where K = NLAND + 1  For Impervious Area
                               Selection of
                           Holton's or Philip's
                            Infiltration Model
                                ISWITCH (3)
               Initialization of Variables Used in Computations
               Computation of Average Rainfall on the Impervious
               Area Impending on Snowmelt, Tenperature,  Sweeping
               etc	
 ©
     b Page  (5)
                Return Loop-
                                   ©
                                     1-47

-------
              Do 22  II = 1, K
              Summation of Contributing Areas, Manning
              Coefficient, Average Rainfall, etc...
                22 Continue
          Instantaneous Unit Hydrograph Computation to Compute
          Runoff.  Input to the Section is AVERA the Average Rain.
          Calculation of the Urbanization Factor and Gaima Function
          (External Program).
         YES
Linear Single Reservoir
 IUH bbdel
 Set KR = 1
                                Set KR = 2
                                 Cascaded Mash IUH
                                 ftodel
                         Computation of IUH for
                            Impervious Areas,  HB1
                  Compute Total Value HTotdl of Runoff.
                  Locate Stored Negative 30 Minute Rain Intensity.
                   Routing
                   Conputation of Soil Erosion
                   Computation of Total  Sediment Flow, TOTSED
                   Compute SEDTOT
                   SEDTOT = H x TOTSED + SEDTOT
                   Dust and Dirt Accumulation Determination, DDLOST,
                   and Runoff Values, RUNOF
                   SEDTOT = SEDTOT + DDLOST * HIM (Routing)
           0-
To Page (5)  Return
                   Write Daily Summary of Values Corrputed,  Total
                   Precipitation, Runoff, Sediment Accumulated,  Sediment
                   Flow, Total Dust and Dirt Accumulated
                   Return to Page C+j
                                    Format Statements
                                 	1	
                                f   STOP     J
                                1-48

-------
          APPENDIX I-B
          PHILIP'S INFILTRATION MODEL
Read

0g =  0.3 bar water moisture

0,5 = 15 bar water moisture

KA  = permeability of A horizon

Kg  = permeability of B horizon

DA  = depth of A horizon

P   = porosity of A horizon


 SMMIN   =  0g

 C1SOIL  =  015



  log1Q  (ye/300) = Iog10 (|

  CZDEP   = DA
                            = .1.632023
                                         VARIABLES IDENTIFI-
                                         CATIOM FOR USE "IN
                                         MfflEL.
                                         ALL VARIABLES
                                         SPECIFIED AS
                                         REAL
                                       This portion is
                                       located in
                                       [DO 15 I = 1,K3 LOOP
     -No
                   Yes
    SMMIN -  0.5911 x C1SOIL
            0.4089
X =
      10g10
                             [*e/300.0]
      8n  = Oe    (Initialize)
      Z   = 0.0
      0u  = Og    KS = KA
              1-49

-------
       This portion is located immediately [DO 17 IRA = 1,NI3] loop
            DO  IA = 1, NLAND
            KS (IA) = KA (IA) = SATPRM (IA)
            KS  (IA) = SATPRM (IA) + 0.09 j, AUT30X
This portion of tha model is located in the [DO 19 LA = 1, K] loop
       =  (en * DA +  Z t.  (Ou  -   9n»  / HA
       =   ee
       =  (Se -  On)  / 6.0
       -   Sn
       =  (Te - 1) +  (15001 -  e)  **
       = ((15001 -  e)  ft*

                                   * doge (15001 -  fa))  /  (615  -  Se)
 Kl    = 0.5 * KS * (Ve I VII  M-. \
TINF
ST
Dl
XP1
Z
       = 0.0
       = 0.0
       = ABS (Dl i Kl)
       = (81 - 8n) ft Dl
       = 0.0

-------
        PARLANCE'S APPROXIMATION FOR THE
        SORPTIVITY S
        DO    I = 1, 5
        02 = 0i + A0/2.0
        03 = 01 + A0
      (*e - 1) + (15001 - fe) **(•
       (fe - 1) + (15001 - *e) ** (
       0.5 * KS * (fe/f2) ft*  X
       0.5 * JS * (fe/Y3) **  X
      Dl * (15001 -
*3 =


K3 =
D2 =
 D3 = Dl *  (15001 - *e) ftft
                                 015- 9
                                     "

                                      ft K3
                              c
                            olo •"
XP2  =  (02 - 0n) * D2
XP3 =  ( 83 - 0n> * D3
  ST  =  ST + (0.166666 ft (XP1 + XP3) + 0.666666 ft XP2) * 00
  Ql  =  63
XP1  =  XP3
     »n =  Cfe  - 1) +  (15001 - Ye)
    ADIFIL =  0.0

    ₯n     =  (*e - 1) +  (15001 - ₯e) ftft
                                         015 - 0e
    KP     =  0.5 * KSAB  ft  (ye/fn) ft* X
    AZ     =  SAMP ft  (KP  +  0.5 * KS ft (9u - On))
                          * r
                        G
                         1-51

-------
        Yes
                         No
        ST = 0.0
        KP = KP  ft (1.0 + (an - 6e) /  (FOR - Be))
AINFIL = (ST/(0.5 * SAMP))  ft ((TINF + SAMP) ft* 0.5 - TINF **0.5)+ KP
TINF   =  TINF + SAMP
           AZ  = SAMP •:, AINFILAeu) - Qn)
                       1-52

-------

XPSI - e.o + ms
Kan: - o.s * KS


31*f
• (7


.Ou - ee
015 - <>e
.0/XPSIH-. X

X
+
i
K1OT = 0.5 s KS

HOT = 0.5 * KS * (1.0 + t^R " ^»



1-53

-------
                     XP      = SQRT (AREA ft TAREA)
                     OINTER = KINT * SLOPE * Z * XP/360,000.
                     QXINT  = QXINT + QINTER
                     Ow      = Ou  - QINTER * O.Q036/XP so, 2
                       ANRAIN = XZ - DS/SAMP - ABIFIL
                                - EVAP
  I     ANRAIN = 0.0
         i
[PS = PS - SAMP a (XZ - AINFIL - EVAP)
                          ANRAIN = ANRAIN - (SWARE * AMELT/100.0)  +  ((SWARE - SLARE)
                                    * AMELT1/20.0 + (SLARE * AMELT2/100.0)
                                     1-54

-------
                                 APPENDIX I-C

               COMPUTER PROGRAM LISTING  FOR LANDRUN
c
C
c
c
c
c
c
c
c
c
c
c
c
c.
c
c.
c
c
c
c
c
c
         t»itt>l»«IM>ttf»ll»»«*»»t»Jt»ft»«I»ilti»»««>ltlt»t

           r-HOGHAM ,F"DSMP(30).XUC30,1?).SLOPE(30),
      UN MI Pi 30) ,At,"1PE(30) ,HTOTAL( 300' ,H(3fl")  , A SIM I ',(30) , DS(30) ,
      • JS7(30' ,TPS(30) ,AINFI!.('I3) ,G1 liFILC 3«> . AN HA: ',( 30) , ,5L( 30) ,SC( 3?,  1?) , VLENf 30^ .
      '3LS( 3.1) ,S'-:Du'1T<300) ,.->LOS5; }0) ,?•>( 30) .:iU'IOr\ ^0) ,C5:FAC( 12) ,
      •TOTALS,300),ALSTDP( 100) .SiDTOLi100),ANOUT( -M),
      I-A'-IP:-;, 30) ,C>30IL( T, 1J) ,DC( 30) .AH1( 'O) ,At'. C  iO) ,R\D1( 30n) ,
      ', 1A.L',?! ; -0) ,AP1( 30D1 ,A')?( 3?T) ,03  •?( 30,-)  ,A'',F- -T( 30! ,
      irnKTA^. 30) ,T;>: TAK; ;.T) ,?.(;  i) ,\s; TO) ,T !=:IAF( <•!,<:;•, = ;30),
      ol'( 3ri,'linn "!i .OS ;ci o^ ,C-I.AYC> ~,T) . r (30).;  ;MIC( ; M> ,o-~'i(3~'i
                                        1-55

-------
     1 , .-.Lftl 3 J,'.) , vi.Al }0,'i) ,C i';LA( ;0,'i i ,',_!  LA( ?'>,<; > ,M)I.»( JO,".) ,
     1KOO01 ,<;) ,<•,•*'.*( 30,«),
     ic •/( •!) ,APS:J(  30'i,i) .Arcot jO'),'4> ,."A( j3' jD',, -.; ,fi'"r.';noa,«),
     1TO! •'I,': "I) ,1'iTPS3( 'i) ,K','.!'•'..Am, "4; , K.f'I IP' <0 , 4 ) .<-?&-( 30 ,'!) .
     isoi'To'K t) .s^psu'Ki) .soff.'Wi),r,:?. ';•. C.)," ':C'..OH(K) ,:oi-!.ow(a),
     IS'JM'VT,3) ,XI'£(9) .AI'T'EnC -T) , CL?r-')( 3') ,.H"L: T( j'J , «) , PI. IT (10) ,
     ir>LCU( iO) ,MO'ITltF(30) , MAY r ( 3D) , S'.'Miy ( "JU) ,O.H"LIT( jO; ^'..S^ACC
       REAL  K'i ,K.<:,^:A,•
        WRITE(6,505)
        WRITE(6,512)
       KFWIND III
     PJT  IUTA BLOCK
                       LItiES' 1*3-333 .
C . . .R
C
916?
n 0,1
inn
     READ(5,91S2)CALFAC,DELIVR,(DSCr AC(K) ,K=1 ,12)
   EADS THREE  TITLE CARDS  IN  ALPHANUME RTOS .. .CARDS A1-A?
     MAX.  CHARACTERS PER CARD = 80
     FORVAT{?F5.2,12F5.2)
    WhlTE(6,555)
    DO  1 103  !1C=1 ,3
    SEAD(-;, 10;»(AL(K) ,K:1 ,20)
    WRITKl IDS, 100) (Al.(K) ,K=1 ,20)
    WMTFC6, H)0)(A1 (K) ,X = 1 .20)
c*»»»»i«If.r'iT CN CARD  ni"""'"""1""*1"1""'*""
       hi..\.X'^, n io)(svni:!i;i), iii ,8)
1110   rV!i'UV(!!( IX. I<>) )
        U (S«I1CII(8) .uT.OlKKfiiHS, I 110){SVITCH(J) ,,1 = 1
C. . .'it A'JU.TU'f A,WLA;iT,NSv'>1. . . .  I'.f'JT  i".  CA,.;i T
       KFAn;s, i n i)(,; A'in.TAK' n, ~i.fiTiT.fisr i.-up.nx
1111   rvi'fAr; 'ix, n..-( 'ix,r t- ..M ,«\, i-\«x, n ,ix,r^..>)
                                         1-56

-------
       VRm(6,5?0)
       WR1TE(6,S1P)
       WKITF(6,50f>)
       1K(  SWITCH(I)  .F.Q.  1  )  WRITE (6,r>10)
       IF(  SWITCH 1)  .NE.  1)  WRITE (6,r.15)
       WRITF(6,'>1?)
       WRITE(6,517)  TAREA,  NLAKD
      WRITE(6,M2>
      WRITF(fa,5?0)
      WRITE(6,512)
C
C
C   SWITCHES  NAD  INPUT VARIi«LES
C" •*•••»•••«••• ..... «t«»««i..«.»f«ti««
C
C   SWITC'Hl)          SI  UNITS... 0,   US UNITS... 1
C   SVITCIU2)          CROP  USB" FACTOR 0 . . CrFA'JLTtD, 1 . . PiP.iTE J
C   FWITCH(3)          IUH FORMULA SELECTION
C                              0,10 = RAO, DLL' EL'R.SARMA  METHOD.
C                              1,11 r KINrMATI'. \'AV.".
C                      LESS  THAN 10 = HOl.TOVS  I'if ILT? S.TIGN  MOr'EL
C      GREATER  THAN  OR EQUAL TO 10 r PHILIP'S  MODEL.
C
C   SWITCH(H)          00= PRINT ALL OUTPUTS  AND  PLOTS  FOR  EACH  DAY,
C                      01= PRINT DAILY SUMMAF1  A'.D  LAST  DU  PLOT.
C   SWITCIK5)          =0  ....... COMPLETE COGITATION
c                       =1 ....... KYJROLOCYtRU'JOFF)  ONLY
C                       =2 ....... HYDROLOGY  Ai;D  SFDIVEHT  INCLl,"I!.'3
C                                  ADSORBED POLLUTE 'JTS  (XAX  2)
C                                  AND VOLATILL SUSPFf.i'F.)  SOLIDS
C                       =3 ....... DYIJAMIC SOIL AOSJCPTIOS'  "OjrL
C   SWITCHC6)          =0 ........ UNIFOR1. DU.~T AKD DIRT  ON  ALL
C                                IMPERVIOUS AFEA3
C                      =1 ........ DETAILFD LIT.F.R  CUMULATION
C                                ANALYSIS ON'  EAC'i LAND'JSE
C       SWITCH(B)   =1. . .INDICATES SVITCHd-O)  MUSI  BE  INPUT
C   HLAHD  = NO  Of LAND USE  AHEAS MODELLED
C   TAREA  = TOTAL AREA OF TnE WATERSHED  SOKK  (SO'TIT JTF3
        WRITE(6,S20)
        WRITE(6,511) (GWITCIICUM'1) ,'-'",!i=l ,3)
                                           1-57

-------
                r'..<   M .: :-'•, •.;:•!.  •, , i . • ; f
i. . .K'tij:. •"-:••<• i'ii -,":•;•!  ',TVI,'. ,>•  <'.>>•  IM--  /:',•••" A.. -A" , ;.T,"'I.T-.O. i<>  CM
c. .;,•,!;•'• = "."., n: ,•;  :<  /,:.•;' '.r,  ••A':;;,TI  - /i  i;"-,L >/i', j-,  A-irA1;,
:. . u.-.fAji.:  VJ,L','!: = '  .D< j
o     PC      =  r:,/ik,iu:i  o." i'^rR; rc'jr;  ;.-"-'A 'tc, r uiiiu'-ri.Y
C               (,•; ".1C;'.',  iO C^A'i'i1- L. .L'.f.'iLl Zf-.ij
:. . A-i'pf.r' A -u,1 IMC-S  ^L'j'iH'iK^'j  <=•»(,. '.h  ^-i  i'r-. ? = 20
       1)J 10 I = 1,MLAND
 ---- INPUT O'l  CARD C1,C2
       ."KdDiS, 1 1 12)AL('IK1) ,AL('.<2) ,*L(liX-|) .A,F,F ,C,S,PI ,C1 ,C2,APX1 ,APX2
       RFAD(S,1 113JXI.S.- /JCA.SA.F.'IO.A1! 'I , Alt'1? , A 12 , A 1 J , A 1 'I , A 15 , A I 6 , A 17
1112   TOR •:.-;(3A'*,s(ix,[r6.?) ,?; ix,.-5. j))
1113   R'K"W(2f6.3,7( IX, Ff> .2) ,3(1X,K5.2))
       l^(5JITCii( = ) .,,E.3)GO TO  200
       DO 2'M  IAP=1 , NAP
       B F.KDCi, ',5 V.A20. \?1 , \P2.A23.A2M, ;25,A26,A27I A, ?3,A27
 550   FOrraT(.rr.,.>.Fr.5,?r7.3,2F7.5,3f~7.?,F7.5>
       OLAi I , IAr)rA20
       1LA(I , IAP)=A21
       ;i\'_,i=( I , HP)-A27
       PLA'.TI'CI ,IAP) = A23
 201   C'VIU'UE
 20;   wni.sjE
c      SOIL KROSION  AM  jon. AD.SORI TI,)-I  INPUT VARIAIU.K.I
c
c
C      A1? = S'Il  fHO^ILIiJTY KACTOH.
C      A13=  Ul  !.rt').',IC\  ; )'i7R''l  FiV:T^t.
C      At"-:"l'p'-: Oh  1. ''I!' 'IM'1  K  Oc ^FPYAn^N .
(.      AIO .-.u'i;.: u.'\ .-•,. •(!••. ;'i '•;)  rr  r--  -.ML,;
                                          1-58

-------
c
C               IF  SWITCH Cj> = 3 THE FOLLOrfltK'  INPl'TS W'.LL P>F. Fr.\! '
C        ( SWITCfUS)  NF  3 ro NOT SUHSTirjTF.  A  PLA'.X :;RJ)
C
C     OLA      =  MAX  SOU  ATSORPTIO'l, UG/G
C     BLA      s  SOIL  APSCSPTIPN PARTITION  COFFF 1C , Ml AM
C                THE  AHOVt KOF Till LA'iGMuIR  AOSO'iFl ! I11; ISOTHFRV
C     CUOLA    r  1S1T.S011, 1.ATF.R CO'K:.Or  THE  POLL!! I A'. .' . ft/I
c     SUOLA    r  iNi7.A:'s.ro:.i.uT»s7 co.-jc.o1;  SOIL,  -C./G
C     KOLA     =  DECAY COFF.KOR THE T 01 LUTANT , 1 /I'U  AT ?r> PI-O.C
C     KSUB     =  SUIiLIMATluN RATK FOK T'iE POLI.'JT;1 \l , {'• WCM?/t)AY  AT
C     PLAHTP   r  IMI7.CONC.Or THf. FOLLU7AUT  11  PLA'HS .U3/C".?
C     PLAN7U   =  MAX  UPTAKE OF 7-iE POLLUTANT  PY  PI A'iTS , UJ/CM2/DAY
C     KSWLA    =  KINETIC  AI'oCRPTION COEFFICI FfJ F .  1/HO')R
C    .........  IT IS  RSCC^EfcDfD THAT THE  FHOSP^IORUf-  Ar?JKPTIC\'  15
C              COMPUTED FIh37(IAFs1) 7HF.N QLA , BLA , A','3 .LT.O. 000001 )C2SOIL(!)rSA
      XLSFAC(I)=XLSF
C ..... CALC.OF I  IMPERVIOUS AREA OF THF. AREA  CONSIDERED.
C
               = AREA(I)'PIXPF.R(I)/100.0
            ) = AREA(X)*PIMPF.h(I)«DC(I)
      XIKPER = XIKPr R+ PIVPKP(I)
      AREA(I)=AREA(I)-PIMHES(I)
      IF(A'J",ID(n .LT.
      IFOWPEU) .LT.0.001) V1MPKI>=0.25
      XHHsAHHIP(I)«PIMFEV(I)+XMN
      XSLO = X3LOtSLOPF.(I)*PI'JPER(I)
      IF(FMAXDS(I).I.T.O.C01)F:!AX:,S(I) = 0.62
      IF(FHDSHP(I).LT.O.OO))FHDSMP(I)=0.16

C     A16=Ptl  OF  THE  SOU.
C     A17= CLAY  COMTF.tiT OF THE SOIL,*
C     AP1X = SOIL  ADSOHT.ED PCLLU'iAMT  \  ,%  OF  3;JSPtM.;.& lOLII/'j-: « II :>i ( x>>--
C     AP2X = SOIL  ADSORriEO POLLUTA'i72  ,JOF  SUSPEf,1.';^^ S J! inS-HWITC'if 5)r?
                                            1-59

-------
             OH  ?fi.66'){ I'tC'i'S.
      IF("VITC'U5) .HF.3)GO TO 260
      DO  -">1  IAP=1 ,'iAP
      PLA'.TUd.IAPjsPLANT'Jd , IAP)/CZDEP( I)
 261  CONTINUE
 ?60  CONTINUE
      SATri-'!(I) = SATPR''!( D'CO'iVER
C       IF(  SJI7C.K3)  .LT. 1C ) CO  TO 2601
        Cir/)II.(I)  =  CISOIL(I) / 100.
        CPSIILd)  =  C230IL(I> • CONVER
2601    CONTINUE
      IK(r*'ITCII(2).E0.1 )GO TO 11
      DO  12  MT!!=1,12
12    KU(I,HTH)= 1 .0
      GO  TO  513
C	INPUT  ON  CARD  C3	
 11   CONTINUE
C
C  READING  CROP  USE FACTORS FOF EVAPOTRANSPIR s.TIGN ,KU
C
      READ( 5,1 03 MKUd,MONTH) .MONTHrl, 12)
 103  FOR^'.K 12( 1X.F5.2))
C
C
C..KL' IS  THE  CROP  USE COEFFICIENT.
C« *»»» uiPuT  ON  CARD C»*»•*•»»*»>*•>*»»
C""*»CROPPING  lAIIACEyENT FACTOR FOR THE  SEASON FOR 1:iE LAND USE AND  IMF
C       LTC'i  COEF.*»                                         "	0000
513     CONTINUE
      REAE(5,103)(SC(I,J),J=1,12)
      IF(5«ITCH(5).:;E.3)GO TO 202
      REAr(5.551)MONTHFd) .HDAYFd) .AMFERTd) ,CFRT(I,1) ,CFRTd,2)
     1 ,CFS7d ,3) ,CFHT(I ,'l)
      IFCSmCHC 1) .E0.1 )A'1FFRr(I)rAVFERId)"1 .121
 551  KOR'UTd2,2X,I2,F8.2,1Fa.-»)
 202  CONTINUE
      IF(S.-ITCiK6).EQ.1)READ(5,1010)PLIT(I) , ORGLITt I) , f APLITd , IAP)
     1 , IAP=1 ,'l) .CURBDd)
 1013 FOR'IATCTFIO.H)
C
C
C     DETAILED  DUST AND DIRT(LITTER) CUMULATION DATA
C                      SWITCH)b)=1
C
C     PLIT=	LITTER CUMULATION AT  THE  fJHB G 'M-PAYt LDS/'-l II E/r AY^
c     OII.;LIT=	ORGANIC PORTION  CF  i.rn>'R  AS FRACTION
C     APl.ITr	FRACTION Or l.ITTF?  WHICH  IS POIL'ITANT
C                   'I  F05SIBL- FtU.L'ITA'irS
C     CURD3=	CUilll PFNSITY M/ttF,: 1'AiiFt FT/AC:!1'.)
C                      PEFAUI.T COMPITS3 F!>0'1  [-'^'liV IOU5NFSS
C
c    ;TMD?PHFRTC  r"AM,o''T ASSUMFD USIH^M  OVFR  VM;: fNIIIU: ASEA
C     AND 17  IS  IMI'llTMi ON OMil'.S El.A'II)  F,1
ri«i»i»»»i>»»>i»»i»<»»»«> »»»»<»*»•>•>»««»•*>»•»»•>

              r i (11, H •>. i) r1.17(i) -1':. 1711) • t '• '••. i '• •• ,^ •.
                                      1-60

-------
C      'iDAYF   =  t'AY Or Till-" ".O'llH  »'r!i.'i  M ft'! II. 1 ''-./:  'I1:'" V !,.- r  :1)
C      A'IKI.'ir  -  A-'ri!;;iT <,r Til-. f-.HTTI.I7i   J .'• ;  I.  '.V i >\( I.'1.. ;/•'.'. -F. )
c      t.n!,'.c;iv; oh in:-. hE'ini:/.^  •> :K i  ir,
C                  PGLLUiAtif  1-<4,  J
C
      IF(?*nCil< ';) .Of . 10)CO  TJ  10')
      :  J = 1 , ;r:cM.
      Lr (C3SOIHI ,J) .Lr.0.00001)CjSOI!.(I,J) = 0. 17
 ?(,   c'rniMuc
 10'l  L'JNTIHUE
      5Lo:;::(i) = o.o
10    CONTINUE
       WRITK(f>,513)
       WHITE(6,519)
       «RITE(6,520)

       NK3=20
       DO  1023  I=1,NLAHD
                ( I)»100.0
      W:UTE(6,52m,AL(N
     CFMAXDS(I) ,FMbS'-1P( I) ,A1H
 1023  PIIPERCD^ARFA (!) + (!.- DC (I))»PIMPER(I)
       WRITE(6,520)
       WRITF(6,r>12)
       »'RITE(6,522)
       WIITE(5,520)
       iVRITE(6,523)
       WRITE(6,520)
C
       DO  1024  I=1,NLAHD
10214   WRITEC6,52U)I,POR(I),SATPR'HI),C2SOIL(I),CZDEP(I) ,SMMI!HI) ,
      CAIIMPCd) ,ANMIP(I)
C
       WRITE(6,520)
       WRITEC6.512)
       WRITE(6,526)
       WRITE(6,520)
       WRITE(6,527)(N,H=1 ,12)
       WRITK(6,S20)
       IF(SWITCH(2) .FQ.1)  GO TO  95
       WRITE(6,96)
96     FOR-HTf/// , '   KU  VALUES  DEFAULTED TO t.OO   ',//)
       GO  TO 97
95     DO  3  1=1 ."LAND
       IMsI
3      WRITE(6,523)IM,(KU(I,N) ,N=1, 12)
97     WRI1E(6,520)
       WRITF(6,5'2)
       WRTTE(6,512)
       IF(ABSCXAR-IOO.O) .LE. 1 .0)GO  TO 13

       PLIT(I)=PLIT(I)/2U.
       IK(CUHni)( I ). LT. 0.0001) CUR P?( I)r1^.»! cSIHt 130 /( H > .PTM,..-,
C      ---- FERTILI7KR USK CARD  ( SW I TJ'I ( ". ) = 3 )             "' '     '
C      MOSTHF  =  MONTH -HEN THF  FF.HTII.tK  IS  USF^
                                   1-61

-------
'- o
i^ O

       O


—    o o

LT)    r-> •<

                                                        O -— —1 —1
                                         - ~    -J-'    O '
                                                                            - zr ui ,—
                                                                            - O 'J~> K-
                                  I r^ r: f—    (A.
                                                        LO "-• o_ ^— _j *_^  c/; zr  &
                                                                                                                                                                                                                                   CSl
                                                                                                                                                                                                                                   o
                                                                                                                                                                                                                                     I
                                                                                               O  O O  O C  -
                                                                                 >~ L±J  ;
                                                                              — O O -c O *i  t: •--  ^c  «  -'-c  <  «; -c  :
                                                                              o a, a. u. a. u.  u. 'i-     ti  «r L:     <  •
                                                                                            _i o  —
                                                                                            •< cc  a.
                                                                                            u, q  -c
                                              O (J> O     «~ O
                                                                                                                 003: oo  •


                                                                                     OOUUOUUCJO'-JOU!
                                                                                                                   j t/:  L-' ^  t,-. ^  o c.

                                                                                                                   > u  u 'J  o ;_>  rj o

-------
                                                                                                                                                                                               1 _*       o O -•
                                                                          o

                                                                          z  tp  *»!  -n

                                                                          M  '-'I  (y:  a: H
                                                                          >  >
                                                                          H  :-
                                                                          »~i  r"
                                                                          O  N
                                                                          iS  C
                                                                          o  x  o  o
 i
OS
Lo




>
H

;•
f"

O
-^

t:































ro V *=
o o
C3 CO
O
*; o »-i o cj »-< (/> a; aCc?
»• u "j: u c **! »i s" >- :c 33 >_ »! =r. :c ai: y; x* 3" »_ i_ *c ». ^ o *
^^'0^fVLOI-ltHt-t.U'-Hr--.e---«»--tM^h-«t--t'-JIVI-

ii r""t-H*— «txt— irnrnr*!-" *~^ m m r*i m ro m r^; en *"*! in m PI •"• ,""
5 § x 3 5 Off » ^^.^ .'Tf.Tf .T.T.0^ T-°
"•s. c- k-^ t j — • «*^ ijioiv- ^roo-^^jo^so '«iJ o cw ro o *-^ '-•' c
o * n -o z: =t rj u ^- r* a»
^OO^-S- ^ 3>T1 [— .=

rr '^o o a> <»*i co r" c/» t/)

-J O — O > - V^ -™»
— O X O P" 17 C- X

•H O H - f J
o TI o 01 ^j ?•; t.
-^ r" ro r- -" n
o r* o H ^ — c.

Ci z — —
>• r-H ro
r- — t v^ _*
*-$ 'JQ l\>

0 0


O
K
n
"
-o


o
o
TJ
r\j
•
3*
1C
1— i
0
ro ^
o

. »' a' ar a.' s: sn a T T. m -<
, >-, hn H-t >-. H-. — j i ':< -^ c: -

j "n m m m n ~ m -i " ui 2>

!^o^wof.S x -x
i~" "*1 CJ O

-i • •< n~

H -~ ^ -!

^* *"»• >» "V

(1 X T3 *•>
j: - >*. •%
ii cr- i> -H


"i «-' - i —


(j~" **! H^
5" r- o


X "O *-<
- »• .
P < - •
tf .^ :
•H — •

T3 C~ O
3> Mr-
0 -33
S\ 1Z CJ
— } o ~o
:r a: -
m -<; •
H "
;
c 1*0 o
— o o
_. -J U1


o ^-t.- t- i" o c- T;
^ ^ c£ r^, -p ^ ^ -.

-; x-oj ^ — -< -i -o
T, u n n t. »-. jr j~
co r^ c o r? *»•-»-?
r ^ ^ ^ r, i f 2
O\ *. WJ i\) -* -^ j»- ...
— * -»_•_-»
X TI X f
- . *~^

CO O. -
• • C"1


-. ^
x ^-- '--•

-n "i



«— • • -*•*

5.
TJ

.
•^
^;
^^



j>
TJ
„

^
T
_^




r"
^

^"
0
C
j
-J»

p,


y.


*"
T_.





,»

L1".


>
t"
-
C
C~

T
^
-
h

'"
*-r
i




•"'•
™

a
o
^
5)
-^

L 	





'-*
"


~i»


,

^*


f\>
-
C




_ —
r'
^

>-
r"
.N
*

^

C

co
^
^
cr
**-

[•-



,
C :

r"



L—


O

















j

-------
17 C'.KLI  IS  THE  2!iO.J",EI.7 COPTIC I :-;:lT  I 'I  Ck!/D'.Y.UC C ( I'./f,Af /I^G  F)
0 IKrA'.'LT VALUE Of CT-.LT I" T.'J'/H CI/M'-i . ;/~r, C.
'. PAG."  I.» THE  INITIAL .,ATFi< CO'.T-l'iT  'Jr  7!(£  r,'.".W  PACK, AND
•: TMF.LT  IS  THE  S'.uV.MiLl 1 !!'i HMPh RATU'-E , DEFAULT V'.LiJEr, Or PACK  AND  THELT
C     S                                                      "0""OOOI
        inrwiTC'U i > ,EO .o)co TO  122
      CMELTsC IKLI«Cj:iVER«1 .3
       TM^LT=THELT/1 .8
 1?2   C-ELTjCHELT/?*.
       IK TMELT . I.T . - 1 0 . 0 . OR . TMELT . 07 . 10 . 0 ) TMEL7 = 0 . 0
      fH5.yDS(K):FHAXDS(K)/XIHPER
      XA'JIiO.O
      DO  15  1=1, K
        DSC J)=FMAXPS(I)»DSCFAC(1)
      IFCI .EQ.K)GO TO 15
C
C   EDIT  JAN  12  MOi:
      POR(I)=PCR(I)/100.0
      5MMIKCI)=SMMIN(I)/100.
      ZCDsO.
      C2= 1.337
      IF(THETAECI) . G7 . POSC I ) )TH£TAE( I) :POR( I)
      THETANCI)=SM1IU(I)
      IF(SWITCH(3).CF..10)CO  TO  30
             = POi!(I)»C2DEP(I)
      GO TO  31
 30   CONTINUE
      LAV.P.DACniCALOGIOCCSjnl.'Un-ClSOILtm/CTHETAECn-CISOILtl))))
     C/C-1 .632023)
      LAM-DA (I)=2»3»LAM3DA( I)
      TIIF.rA*l(I)zTHETA!UI)
31
C
C
C
15
C
C
C
C
C01TINUE
EDIT JAN 12
CONTINUE
.... INITIAL
DO 111 1=
SKl'TOfC
HON "
IZATION OF ALL ARRAYS
1,300
I) -0.0
      RAD1C I)=0.
      RAD:( n=o.
      IF(S«irC!i(5).NL.3)GO TO  21?
      p*'  :n  ifiR-1 ,n
      AKI^C I ,IAP) = 0.
      KAP:':.( [ ,IAP) = H.
      i;.u.' )'. i ,IAP)=O.
                                          1-64

-------
1
X
o
^-


r\

o


IT

~f


H
LO
0 =

4>
p —
,_,

(_•> >-J
Q 2-

o • •'**

• CN. v-'

• >- U
a- ;r 	 i
C ^ -2
• d —>


•_LJ -— — t


-** |- .
- • • -^ _J O
o o o :r: a- •
ii M ii U ii >-tiJ

P) ^ .1 e —• . i1-*

t- H- (- U. ._' U. 0

J^
o

S: c> £ •
i c— o io •
»-• =r i •
-i no O oe
O 1 (\J O
*- ii Ii Q
* ^^ x^ ^-» FT! •

r^ . ^_, •. (— | Mi •


c*> *x ^- *c o c •

•— c? * o o •— t~*

•— o o • -.1 o »-•

C t"^ • • • ^-» X CO •
• O (". -X «~ Q --^ >-

U «J 4- • + ^ — . « O
^- • -^ -~* ^ *-* *-* ^
^_^ !_-(»_> 	 .^ _J 7" * [jj

v---_- ;r >- b. >* i.-) -y _i
-f ^ -^ °^ Ij ri 2j ^ co S ^ •

CM x-^^^W^AO^-* O Q. H
•- L; •< u-i • •- o a. M — x
O o * • o — re o «s oar na,
f- o c"' -- • o . o •-< • rs ?: o




r*"> • o • x-% • »— < • J oif-« z;OO 3C

it-1 ^ • • -^. * ^^ •in-J«^^ Qi—i — *^-~ h-< (X. • Z U UZ~< K • O-.
• -J * -j — • _j o. ^j i ^-. * H * io c c y u.

n: ii -t - o »* - o ^ -i u. • • n n * CK • a. o 3 *—

« •— *-^ ^J > — _J kO . l Oj i/~, ;•- "j, >— » *-i ; -i j" oo o r»"* 13 «£ ii -^ ii ^ ii

— — • -^ .»—*— v^m*^ orrr-. cj^-^QOf—> n»-'5!rorO »J OtO
^- «- T- z U.
oj m =r • a
{— ^ T- O
oj ry cv oo

VQ
t-

oo
o


a.
UJ
to


o


[jj
I—
a:
u:
CO
7i


X
^

«t
OS




o
O
PC
a.
f
C^

CO
UJ
t-H
u.

o

CC
H1


O
1-
t/>
•
UJ


CO

f— 1




f J


ir
UJ


t-H
__
^

C^
n

5-

o







<;
2T

U,
6
t-


J
ce
UJ
t-
UJ


O
n;
CL.

^
t— t

r— i
or
^E

UJ
*~* 3~
-^. f-*
•
-^N U)
•• O"
* O
[A.

IT r:.
^~
u:
rr ««

O
to

oO •* ce
*O t- UJ
< u.
o cs u.
ii r^
X ^- »J 03
<£ 0 _J
«C O «* ce
•^*> • *- t*, O
— o H r: u.
0 + Q i-t
O ^. *S - ^
• to • o ox ^.t-<* vO^Ti OtO
Jtn-Joo -m ==•-•
xoo>-:o ^-•(- •--"

-Slll-'^O F-r" >*t-H
U.«CU.*ZOC O^Q Qw^
t— 4
*t
0 DC
o
o •
_) O O O O


































o
c
o
C CO
• :•£ — * •
0 -— 0 C

jir^1~tfiT
5 2 ^ M S

H- O C ~ n
-r ci e, « 10
-- o
T— ^~


m
vo
 I

-------
C  OF T;iE FINAL  MANIPULATED F-AIN ^ATA .
C
      KMCil
      DO  159  KN= 1 , HDAYS1
C
C..IF KMC IS  CHEATER Ti'A'l 1, READ THE 'ihXI DAY  DATA..
C
      IF(KHC.GT.1)GO TO 9
C
C..TIIE FIRST  DAY DATA DATE..
C
      liEAD(5,531>NY£Art,KO'.'TH,NDAY,TE'1P,T£:iP:1X,TEUP'tI,F.VAP,STH3UR
     1 ,(CRX( IPA) , IPA= 1 ,''AP)
531   FOR;tAT(3I1,'tF>.2,UF7.1)
      'JO  216  IAP=1 ,HAP
      IF(CKXCIAP) .GT. 0.000001 .OR .K!i . EQ . 1 )CP.( 1A?) :C1X( UP)
 216  CO NT I HUE
      J21=S1I!GUR/SAMP
      GO  TO  7
C
C. .NEXT DAY  DATA. .
  9   IF(KN.EQ.NDAYS)CO TO  3?
      READ(5,S31 XiYEARI .MO'IT'II ,NDAY1 , TEMPI ,THPMX1 ,TMPMI1 ,EVAP1 ,
     CS'JUURI , (CRXKIPA) , IPArl.'lAP)
      DO  6050 IAPr1 , NAP
      IF(CRXKIAP) .GT. 0.000001 .OR.KN.Eg.1)CR1(IAP) = C
 6060  CONTINUE
7     II1:J2U1
155   112=111+11
C
C..IF KMC  =  1,  READ XKAI.'K 1 , !•'! 3) FC t  7IRST  HAY  RAI'i TATA..
C..IF KMC  \  1,  R£AD X!iAIN(2,M3) FC^  'inXT DHY  SAIN •) \TA . . .
C
      IFCKMC.GT. DGO TO 1
      KNC=1
C
C.. READING DAY1  RAIN D\TA..
C
        DO  9020 IATII1.II2
       IF(XRAKi(KtlC,IIl) .l,h. 99.0. AND. Ill . EO . 1 ) >
902    FOHMAK 12F5.2)
       GO  TO 5
 32    CONTINUE
       DO  36 IA=1,!1I3
       XRAIH(2, IA)=0.0
 36    CONTINUE
       GO  TO 69
C
C.. REAPING  NEXT DAY MAPI DATA..
C
H      K N C = ?
         ii A 1 1. (\".c , !Ai = AS vi'i IK:..', ;A) • i o.
                 ;C, III) .,,v .<;*. V V,T. Ill .FO. D'iYl AS 1 ;-', VF AS1
C.. FILLING IN ,'EHOS INTO RAIN  PATA..
C
6      MO ?r,r, I A: III . I I,.'
                KIi:.. IA) .'IF. 09. i'.V,0  TO
                                      1-66

-------
       IF! I/I .'.;K.Ul3)ii'J 70 '(01
^b5    CONTINUE
       111=112*1
       00  TO  1-55
301    DO  510  IAUIA.NI3
[j30    XRAI'HKHC.i; 1) = 0.00
101    IF(J21-0)151,"51,23
23     DO  301  IA2=1,J21
801    XR4IN(XHC,IA2;=0.00
151    COi'lTIIiUE
C
C. .CHECiCINj THAT  2  KAlii DAYS  HAVE  DEE.'J  READ (AT LEAST)..
C
       IF«MC.HE.1)GO  TO 69
       KMC = 2
       GO  TO 9
C
C
C..CONTINUING  WITH  DATA MANIPULATION..
C
C
69     KC=0
303    IF
-------
      xz=o.o

c
      XHAINt 1 ,NI3)=XKAIN(2, I)
C
C.. SHIFTING  NEXT DAY RAIN DATA, AMD INSERTING A ZEKO  i'l THE
C   '113  POSITION. .
C
        'II 13  =  HI 3  -  1
        DO  66  KNN  =  1 ,  HII3
65    XRAIN(2,KNN)=XRAIN(2,KNIU1)
C
C. .INSERTION  OF  ZERO IN NI3 POSITION..
C
      XKAIH(2,HI3)=0.00
C
C.. CHECKING  FOR  HI3  I.E.  THE  END OF THE DAY'S RAIH DATA..
C
      IF(KC.GE.NI3)GO  TO  63
      GO TO  303
C
C..tEVAP,STHOUR
S59   FORMAT t 1X.5HDATE' , II , 1 H/ , ID , 1 >!/ , II . 2X ,5HTt.'!P ' ,
     1 1F8.2,2X,7I!TE'lP;-tX' , 1 F3 . 2 , 2X ,7HTE'1PMI ' , 1F3 .2,2X ,5MIVAP' ,
     11F8.2,2X,7HSTHOUR' , 1F6.2,//)
      WRITECN)(RAIN(IA) ,IA=1,NI3)
      IF(SVITCH( 1) .EQ.O)
     CWFITE ( 6,851 )( RAI N ( IA) ,IA=1 ,KI3)
351   FORMAT(5X,20F6.2)
      IF(Kil.EQ.HDAYS)GO TO 150
      NYEAK=NYEAR1
      NOAY=NDAY1
      TEMP=TEMP1
      TE'1P'II =
      KVAP=EVAP1
      DO 6650  IPA=1,NAP
6660  CRX(IPA)rCRXKIPA)
C
150   CONTINUE
C
C..WRITING THE LAST  DAY'S  DATE  AND RAIN DATA..
C
C
C>.»ll.!>•••!...t	 I >•>..•.» I If 1111 111! »lf>
C END.
(- < « » » i » • . • . . • I I • 1 I » »• . I « I I » I • »	I .!..,. I ...»,»... I «... I .,
C
•:     wr, I TK( 103.555)

C     WHlTr ( 103 |si|?M>L>FAI L!D!IV)SC , I ?M 1 ,i. PnV''l. X \'' 1 , irA11? . WASHu .SWI'iT .
C    lS»AHK,?»Ef K.I'SA, SLAKE, SALT .SALT PO
C     WSi :K( 103 ,55r>)
      REMIND IN
                                          1-68

-------
      DO 16 114=1 .NDAYr,
      mU.NE.1 )CO  TO  163
      hEAU! I!l)!lYEAR,K'JHTH,NLAY,TKM?,TiC'1P"j(,TErlPMI , EVAP .STIIOUR
     1 ,(CH(IAP) ,IAP=1 ,NAP)
      HEAL/! IN) (HAI MO:21> ,K21=1,MI3)
163   IF(I-.EO.KDAYS)'JO TO  162
      KtAUt IinilYKAill ,;iO:ini1.'ILAYl .TEMPI .TrMHMl .TFMPM2,
     •JKVAP1 ,S'!OU:il,(Cni(IAP) ,IAP=1,!IAP)
       K2 1x11 1 3*1
      NI31=2»HI3
      RE AIM IN )( RAIN (K2 1) ,K21xK21 ,»I3D
162   CONTINUE
C
c
C
c
      NI3=NI3X
      IF(NYEAR.CE.O)GO TO 295
      NI3 = 2
      SAMP=12.
 295  CONTINUE
      AVTE!'? = TEMP
      AVF.VA?-.EVAP«COriVER/2'4.
      IF(S« I •l!l«i<>
C
      LDAY=(MONTH-1)»31 - ("ONTM-1 )/2 * NDAY
      IF(MO'ITH.GE.3)LDAY  r LDAY-2
      PYEAR s NYEAR/M.
      NYAR = NYEAR/4
      XP=PYEAR-NYAR
      IFUP.LT. 0.001 .AND.HO;JTH.CE.3)UDAY = LDAY +
C LDAY IS THE DAY  OF THE  YEAR
C
C
C   TEMPERATURE FUNCTION  PARAMETERS
C
       DELT!U-0. U063 1 * COS( 0.01 72 1»LDAY+0. 161)
        SD!-OURi-TAN(WLATIT/57. 296)* TAN (DELTA)
       SDHOJR=ACOS(SDHOUR)
C SDSIJUR  IS  THE SUNDOWN HOUR OF THE DAY
C
C INTEGRAL FOR  EVAPORATION
C
        XEPsO.
        DO IT!  U=l.?»
        XT=AVTEMP»((TFMPMX-TEMPMI)/3. ) »COS( 0 .25 1 6V * ( ( 1 A-0 .S 1-5DHOUR) )
  121    XKP =  XtP > EXP(O.Of;?5«XT)
C
C. . . .AVERAf,-  30 DAYS Tt.MPEHATURE ..........
C
                                        1-69

-------


o
".-.
5 T;
p. -i
tl -•
r* r
m
»- •»':


i rr~
o _•;
• ~~Z


"x. .r*


ii :'



"


r-j
^
[—





i—'

U,'
i*


0




5 ^ -^ c

— :: c/) —
"j — U v-*
£* SO I-H >
X ^ > _.


>• . o •-«

*
0
o
.:


^v

• <_»J v/i O ^J O^

'^ 0
C~) O ii ^ 0"- "*! t/5 C O C ... O -i

ir «-};*"-?» »-i > i-t ^j ?^ H r~ H r~
- ??c^^7r^ w c " ^
M^3>XS>H tT1U10U1
•n ^-- ;*: -o <_o u - x x
• w » ^ 30 i: o O
w r- •— j: - 2 r- 3z:
j* i— j ^^ f-^ i_o ••"* ^« rn rn

T3 C^S-- 3-^J -H-H


O ^". O

-c a> o
^N, ip
>— i s-
OJ
UT-


O -i
n-.
-i r-
O "-)
n
0>J1
X
r>

en
r-
-i






L*J Uo UO ^' OJ
jr ^A,) r\J — * o


0 -< O .^ O -S 0 _C O ^
m m fT) m (Tj
Hr-Hr-Mr-^ir-^-ir*
O *•! O *-) O *H O *") O *-i
n n n n it
ovjiouio^ouio^:
x x r- x r-
o o -i n -H
IT 3: ^ *
mm mo
r- r- r1
H M —J U>






o o


m
o a
O O H
z:
•H — i i]
Ln o m
w2
- n
— o

O P3
- m



- o


rvj o
- *n




•< 11

«=: x
•o <;
.c.
< -H

-C O
*«s. •
X 0
tTl Ul

»> X



TJ




m
<:

H
0
^
o

_,-
•H



OJ



CO



ii O

^3 —
^ t-H

^r*


"~1 t*>

O

O

o
o
z




C -s; -)

1^. tO Oil
•— » o o
C ii c.
0 <*-
1— j II
o -c

<— n:
uo TZ
-a






CO CO
i-o ro


•<: o s>
H O <
^>j it — l
>»-=!'
3^ <
O i^kJ
o
+ •«•
S» -H
< •-)

m o

*B t«



                                                                                                                                                                                                                                      --N * a> o *.
                                                          1? f O  O
 I
-~J
o

-------
c
c
C KAVED AMD OUTPUTTED . . .
C
      I FtZKAIII.GT. 0.000000 1)EVAP = 0
C SNOWMELT  AND  PACK

C
       IF(TE'1P.GE.TMELT)GO TO 125
       PACK = PACKt-ZRAIN
       ZRAIIUO.
       AMEI.T-O.
       AKF.LTIrO.
       PACK1=PACK»((SWARE-SLARE)/100.)/0.2
       GO TO  126
 125   A'1ELT = CHELT'(TEMP-TMELT)
       XP = PACK-AM£t.T
       XP1=PACK1-AMELT
       IF(XP.LT.O.)XP=0.
       AHELT=PACK-XP
       IFUP1 .LT.O.)XP1=0.
       AMELT1=PACK1-XP1
       PACK=XP
       PACK1=XP1
 125   CONTINUE
C
C. . .LAND USE  CYCLE.
      OXINT=0.0
C  EDIT JAN  12 MON
      XZ1:XZ
      XZ=ZRAIN+AMELT
      IF( XZ.GT. 0.0001. AN D.XZ1.LT.O. 000 1)TINF:0.0
C
C EDIT JAN  12 MOM
C
      DO 19 LA=1,K
      IF(LA.EQ.K)GO  TO  20
      AKPP=C2SOIL(LA)
      IF(SWITCH(3).GE.10)GO TO 10
      X1=USZ(LA)
      C1=CjSOIL(LA,JSC)
      A=TPS(LA)-C1SOIL(LA)«CZDEP(LA)
      C3 = KS(1.A)
C     IF(C3.LT.C230ILUA))C3 = C2SOIL(LA)
      IF(SWITC!I(5).GE.3)GO TO '10
C

C. .IIOI.TO'JS  t-'OU.FOR  INFILTRATION r.OLV'i 1.«>.•> i. i> nt >..••.. ....... >»ti«»»i>i>«»i»t»
C
      DO LM IKll: 1 , ^
      F = C1»(A-X1)*»C2+C?
       1F(  X1 .Or.  A)  PRINT 611
611    f-OPMAIX'  rKROK..  AT IK'l.TOM;, F'.'HA FION . ')
       [>.">•. VAl =Ml?,Xn.S(l.A)«l)r^-; AC(J:nM-iiS(l A)
                                         1-71

-------
      K1=0.5*KS(I.H)M f .G/PSm
      Dl -A»fj(U1»K1 )
      STf LA)=0.0
      XP1 = ( ri1E1-THETA!i(l.A))*D1
      P :<•' 0 D Y :: X Z + 1.3 AVAL /SAX p
      IKF.LT.CDCO TO ft 1
      XUX1 + (3A'1P/"i.O)»(F-C3*C1'(A-(XUrA"!P«(F-C3)/3.0))i"lC2)
      GO TO  62
61     X1=XU(F-C3)»SAMP/3.0
62    IF(X1.GT.TP3(H))X1=TPS(LA)
C       IFCXI.LT.SMMI'HLA) . Aii3 . ( ZRAI 1UAMFLT) .07 . 0 . 0000 1 ) X 1 = SM1 UK I.A )
21    IFCX1 .LF..C1SOIL([.A)":ZCr-:?CL.A))X1=C1SOIL(LA)"CZ'J£:P(LA)
      X1 = X1-KVAP»SAMP»Ki'( LA, MOUTH)
      XP=100.0»S3RT(ARf-(LA)«TAHEA)
      Or.'TER(LA) = SATPF'-l(l.A)«SLOPK(LO*(X1-3f^ri{LA)*CZnEP(LA))/10000.
      IF(OIMER(LA) .LT.C.Or,01 JOIIITEIi (LA) = 0 .0
      X1 = X1-0.01*3I!;T£'((!.A)»SAMP/XP
      IF(X1.LE.C1SOIL(LA)"CZDEP(LA))X1=C1SOIL(I.A)«CZDEP(H)
C
C
C
C

C
C
C
      USZ(LA)=X1
C
C  EDIT JAN  16  FRI  BLOCK 'IB
C  PHILIP'S  INFILTRATION MODEL. (Srf ITC:I( 3) = 0 1 0 OR  11).
C
C
      IFCAINFII.(LA) . LT. 0. 00000 DAIMFILf LA) = 0.0
      FREDDY; XZ + DSAVAL/S VI?
      IF(AINflLUA) .GT.FtiEDDY)AIHFIL(LA) = XZ + DSAVAL/SAMP
      GIHFII.CLA) = C3
      IF (XZ.LT. 0.001 .AND. XI . t.T.SM"INUA) *C7DEPUA) )G!NFI!.(LA)s
     1C3«X1/(SMMIN(LA)»CZDEP(LA))
      GO TO  20
10    IFtXZ. CT. 0.001 .AND. XZ1 .LT.O.OODGO TO  'II
      GO TO  U3
C
Ml    THETAN(LA) = (THETAH(LA)«CZDEP(LA) + (THF. FAW(LA) - DIET AN ( LA ) )
     c"2(LA) )/CZD:P(LA>
        IF( swrrcH(3)  .«T. i)  GO TO uioi
        THETAHCLA)  =  USZ( LA)/CZDEP( LA)
        GO TO  43
M 1 0 1    CO '! fl H U E
      Z ([.?,) =0.0
      PTI!L:=( r;i!"TAE(LA)-T!IETAN(LA))/5.0
      TME1=T!1tTAN(LA)
C
      PS 1 1 = 6.0 + ( 11 t)9M.r>)»»( (THF1-T'!ETAF(H))/(C1SOIL(I.A)-TM^T\E(LA)
      1))
C
C
C
     c • 9 . 6 1 y i / ( c > s o 1 1. ( i . A ) - r 1 1 K r A F ( i » ) )
                                          1-72

-------
C     OJTI'Jf  '••»«»»»»»»»»«»«»»»»«««»««»»'li«s»»«""»"'Ji"*'
      CO '12 1=1 ,5
      THf?:THF.UDniF./2.0
      TlirjrTHEUDTHi.
         ? = h.O+1199M.O«»((TIIF2-TH-.TAK(I.A) ) / ( C1 SOIL ( I. A ) -'! F'ETA? ( LA )
     1))
      K2 = 0.5*KSUA)»(7.0/P:>I2)'"U1'30AaA)
      K3 = 0.b»KS(LA)»(7.0/P3I3>'*LAl!R-)A(i.A)
C
      D2=DI»11991.0*»( (THE2-T!IE1)/(C1SOILO.A)-T!IETAE'LA)))
      D3 = D1»T499'4.01»({THf.3-T!;E1)/(C1SOIU(LA)-TllFTAE(LA)))
      D2=D2»K2
      D3=D?»K3
      XP2=(T!!E2-THETANUA))*D2
      XP3=(THE3-THETANUA))»D3
      ST( LA ) = ST( LA )<•( 0.1 66655 "(XPUXP3)+0. 666666 »XP?)»DTH£
C
C
C
C
      THE1=THE3
142    XPUXP3
C     OUTPUT ••««»•««••*»»»»»«»•»*«»•*»»•««»»»»•*»•••«"«••'
      ST(LA) = SQ[(T(2.0«ABS(ST(LA)))
      PSIt. = 6.0+1't99t.O»»((T:iETAN(LA)-THETAE(LA))/(C1SOIL(LA)-
     1THETAE(LA»)
C
C
143    If (XZ-0. 0001)11, 15, 15
11    AItlFIL(LA) = 0.0
      PSIll = 6.0t11991.0»«((THETAri(LA)-TI]ETAE(LA))/(C1SOIL
-------
         ^^ «:
                                                                                  d             =.                53
                                                                                  3             -i                r-          —
                                                                                  «:             >-i                t—          •• ii] [— •  -


^ --'
^
r\j oo UJ #
f- =3 LT
M ^:
0 •-• --
(- (- f • M

•- o c ;~
u; o o *-H




(4.

t-

^^
•=•


" •'
^ :c
*C «S
_j *_•
-— ' f--
C. f



~ a_
5

*!'
_J
^
C.


-w
t-i


V
,-.
a.
_J
*^-




i— t




^
C
•>-

-
^


4
ir
1- 4
X
0




>
                                                                                                                                                                                               -d-
                                                                                                                                                                                               r~.
                                                                                                                                                                                                 I
c                                   c
                                                                                         —    -r in          \£>
OjrT~^T                    iT       O O~>                                      t-    r*- t—          P^f-

-------
              LA )iTHETA«( I.A ) -01 'IT-.'UU) •'•?•'). '".-Wf *P «'P . »Z( L.'.))
   95  IKC;., ITCH (3). I E. 1 ) U:,/.< LA ) = U3Z{ LA)-31'i !•(.!•'lTCHn) .E0.1 .OR.SWITCIK 1) .KJ .
      HO .V 11=1,KKK
      AVf  fiF--AVKltlK.flKrACIl>«,;t':Fll.(Il)
                                              1-75

-------
       !•• ( ANI ',! '. i I ' ) .Li- . ..(.';'/,! )'.•'.'
       <.. = ;.  i-Ar;(i i PA.-EAUI)
       AVK-
       CON/.
              Lrr/;!i + 0.5*'-3Rr(AI:tA( I 1) »TA:X5

           L = CC'IARU'.hEA(Il)
22    CO'iriNUE
C...LAND USE DO LOOP  ENDS.
C
      XP=100.0
      I F(."WITCH (3) .EQ.1 .OR.SWITC1H3) .EO . 1 1) XP = XP-X1MPEH
C
      IF(AVERA.LT.0.00000001)GO  TO  23
      ELO=SLO/AVERA
       AL'I'j I'lirAL'iGTH/AVERA
       AVEPA=AVE3A/XP
       CONAPE:CCNARE*TAREA«10000.0
       AVEIUFsAVEINF/IOO.
23     CONTINUE
C
C. .I'JH. .PROGRAM  TO  COMPUTE RUNOFF VALUES  (INPUT AVEPA).

C
      TRrSAMP
      NT=250

      HFIX=6.
      HFIMrO.
      HE'lAXiO.
      XIA=0.
      ZIPrO.
       IFtAVERA.LT.O.OOOOOOODGO TO 67
      ZIP=1.
      XIArTAREA/2.5856
C...CALC.CF LAG  TIME,NASH  CONSTANT,RESERVOIR CONSTANT.
      IF(SWITCHC3).EQ.O.OR.SWITCH(3).EQ.10)GO TO 50
      TP1=0.047775'ALHGTH»«0.593«A>riAN»«0.605/SLO»»0.38
      XIAzJOSARE/2585600.
      GO TO 51
50    COriTIHUE
      TP1=.831»XIA»».«5S1(1.+U)»»(-1.662)»TR*»0.10M
51    A
-------
c.. .CAi.';.Or'  <,,vt-;f ,-u'it.; ic'i., j ,1','j  . xiticiAi. ~i|.. .^.
C OODOI;'10''00'V)00'J jCliJOO'j'lOG'JOO'-.'.H/J jOOOf/^COo'^';'."/, ,'.
      IF(AN .I.E. 1 . 1 )CO  ft) 0
      Ii"(T.<.GT.lP)GO TO 5
C      CM.L  GA'MA ( A'l ,CAMX, IE)
C        UoE  MACC  GIM'U r'J'ICTIO'l  OF  0'ILV Q'lE PA'^ETtCR. . . .
C
      GAMX  =  GAl1MAF(DPLE(A:i))
C
      GO  TO  55
C
C.<»»»«>»»<»I»»»»I»II»»I»1!»«!I»I><»«*1»<1
C...CAI.C.OF  SINGLE LINEAR  RrSFRVOIR  MODEL IUH.
C»i»««»»»<»*i»it«<»*»»»»»«i»i»i<*>i<»»
C
5     DO  3  12=1,NT
       AMI=I2-1
      H(I2)=(1.-EXP(-TR/TP))»EXP(-TR»AMI/TP)
      HFIX=HKIX+H(I2)
8     CONTINUE
      GO  TO  56
C

C...CALC.OF  CASCADED NASH  RESERVOIR  MODEL IUH.
£»«»»»»»*>«»1»»»«»*»*»»!»<»<*»»«1»»<<*»)<»»»»»!
C
55    H1=0.0
      AKN=TP/AH
      DO  57  I2=1,IIT

      H2=(1 ./AKN)»((EXP(-(AMI*0.5)ITB/Al'.iO)/GAMX)»
     C((AMI + 0.5)»TR/AKN)«»(Atl-1 . )
      H3=(1./AKN)!I((EXP(-(AMI+1.0)»TR/AKN))/GAMX)»
     CCCAMI+1.0)*TR/AKH)»»(AK-1.)
      h(I2)=H(I2)»TR»0.3333*0.6656S»TR»H2
      HFIX=HFIX+H(I2)
57    H1=H3
55    CONTINUE
      IF  (NT.EQ.250)GO TO 85
       NTP1  =  NT+1
       DO  81  J1 i NTP1,250
 81   H(J1)=0.
 85   CONTINUE
C
C     COMPUTATION OF IUH FOR  IMPERVIOUS AREAS
C    FOR  KINEMATIC WAVE MODEL.
C
 67    CONTINUE
      XHI1=0.
       IF(ANRAIN(K).LT.0.000001)00  TO 60
     C*AN'1PK(K)«»0.()Or>/( AN KHiriU )"",). 3 ?i?»SLOrE(\' ) » *0 . 3? )
      NT IM= ( 1 0 . » TP I HP/?- V.P + O . f) )
      IFCiTlM.LT. 1 )MTIH= 1
      IF(NT.LT.NTri)NT = fKI
      00  h4  I?r 1 ,NT
      AM I = 1,^-1
                                       1-77

-------
iooo   (.'/; i ITJE

       iil'X !?) = ( 1 .0-(.XF( -TR/THi1>P)>«r. '•''. -7- > "'-I/7I-IMP)

 63    co.rriuE

        IF ("/.'  rC:l( 3) .1.0. 1 .OR.i. JI fC-(3) .EO. 1 1 )X'in-1!IRAIf
      C»A;'E4(K)»1'ARLA»0.12778
 C
 C    F.'ID  01  IUH FOR IMPEPVIUUS  AREAS.
 C
 C
 C   REMOVE COMX-MT C FOR  IUH  VALUES.
 C     WPITF(6,5'46)(H(I) ,1=1 ,-IT)
 C...CA1.C.OF  RO'lOFF ATTR^l  ilti I'lTFRVALS.
  60     co'jnriuE
       IF(AVERA. LT. 0.001 .ADD. AliHAIIHK) . I.'I .0.001)00  fO 39
        IF(5WITCH(3) .EQ.O.OR.SJIiC'U j) . EO . 1 0) XH 1 = AVEPA«2 ,778'TAREA
        Hc.".!iX=0.
        IF(AVERA.LT.0.00001)XHI=0.
        DO  5S  'At 1 , NT
        IF ( Mr I X . GT . 0 . 0 000 1 ) H ( M ) ~- H ( M ) / HF I X
        IF ( "F1 1 . GT . 0 . 0000 ' ) !l 1 X ( 1 > = ••' IM ( M ) / 'ir IM
 5S     lr
  89    CONTINUE
        KR=1
 C
 C
        TOTORG-0.
        TOTSEDrO .0
        TOPAP2=0.
        IF(S\I!I( Jl) .',E.O.O)CO TO 10^0
        RiiI.VIX = -RAI!!( J 1 )/10.0
        GO  TO 10'I5
 10'IO   J1 = J1 + 1
        CO  70 1030
        CONTINUE
      .i»«tiii«t««t«f:';D  -;o  MI'J''Th  RAIN  I!JTF -iSIT1! »«'»«•
      . ...ALU rOLU'JTA'.fS  r.LCC<^
 C» »ll»» •»«»=; rji^ tP'lSIO •;•••*•"
        i; I = o. o
        in .•.-itiN .LT.o.nr ii)no ro

          I!'( I'l  .LE.  LI.SO  l.OTO
                                      1-78

-------
      XI, rC;'?.'/.)/.'''!'!!-
         DO  1060  I.AJ 1 ,'iLA'lQ
      SOILLf.rO .
      IK!Af|KAI>l(LA) .LT.C.OOOOa01)GO TO  271
      KIT; '< = ( m;nX»0.&?i|-Ar!FIl.(LA)-'.VM')':IE'i>»»>»»»»»»«»»»»»*><>»<»»»»»»
      ANRA-ANRAIN(LA)
 271  IF(SWITCii(5) .HE.3)GO TO 231
      VrGINFILUA)
      1F(.\INFIL(LA) .GT.GISFIL(LA))V =
      RHO=RO(LA)
      IF(Z(LA) .LT.DX)PTHETA = THETANUA)<-(THETAWUA)-THETA'ULA))
     1»Z(!.A)/DX
      I)Xr3T'.)X*FMAXDSUA)-DS(LA)
       DO 230  IAAP = 1,NAP
       IAP =  IAAP
      Drl)LA(LA,IAP)
      O--OH(LA.IAP)
      FEIiT-0.
      IF('J.)NrH.FO.MOMTHF(LA) . AND.NPAY .EO .MDAYF(l.A) . AND. IRA.F J. DrERT =
     ICi- h rd.A , I.\!')/.UM,I-
      K r.U' zKS'jr.l.Ad.A, IAP) «1f .'»( 1 •,-.!!? 'I SV -'>3lK)./(27?. «•"!( MP))
                                    1-79

-------
       rFtXZ.GT.Q. 001)00  TO 1071
       DO 1070 I2s1,HLAIIO


 C  WHE'l OSGREL IS KNOWN Sirr-TITUTF. T'lE A'OVF STATFMEilT
       PI.IJPT=PI.A[|TU(LA,:AI')",F) "'!( L? ) »ZIP
 232  RAPS JU2,IAP) = RArSOU2,IAPUTOTPSO(lAP>»i!(L2)« ZIP
 ?33  CONTINUE
1030  CONTINUE
C
ft 1 1*» >i>n»«iiii in in p,;Q jQjL  '.O^S** • »««« •«•• i » i »»»«•<§
C •••• • «»••»•* i » t • ..• i » i ...... i >,,,,,,,,, ..... .,„.,..>,•>
C       DLir.T  AND  DIRT CUMULATION
C
 199    CONTINUE
                                     1-80

-------
1071
      C'J'JTII.'UE
       DDCNT =
160
161

109
103
       X.U = ANHA1!<(.<)
       IF (Xjrf.LT.O. 00001 )XJWiO.
       AiUiDrDDA
        I F ( ",DA . !.T . 0 . 0000 1 ) A Ri)D = 0 . 057 + C . 5 1 » X JW» » 1 . 1
      IF(ARBD.GT.0.75)A'-;D1 = 0.75
      XPIL=ARDQ"( 1 .-F.XP(-*'AS'!-<»X<;W»5fiMP)}
      DDI.03T = DDCU:-1*XPIL
      XPDL=0.
      XPOR=0.
      DO 160 PAI=1,1
      XPDAP(PAI)=0.
      IF(SWITCH(6).HE.1)GO  TO 103
      DO 109 IL=1,NLAND
      DLLOST;OLC!J(IL)»XPIL
      DLCU(IL) = DLCU(IL) + PLIT(II.)»SAVP-DI.LOS1-KSW»SWEFF«DLCU(IL)
      IF(DLCUCIL) .LT.O.OOQ)DLCU(IU = 0.
      XPDL:XPDL+XPZZ
      XPOR=XPOR*XPZZ»ORGLIT(IL)
      DO 161 PAI=1,4
      XPDAP(PAI)=XPDAP(PAI)+XPZZ*APLIT(IL,PAI)
      SUMIHPC IL) = SUMIMP( ID+XPZZ
      CONTINUE
      CONTINUE
       IFCAMELT1.GT. 0.0301 . AMD . P «CK .GT . 1 .0 ) DD;.05T= I)DLOSTIS'. ARE* 0.01
       DDCUH = DDCUHtDDFALL»iA'lP-DDLOST-.DAP(IAP)/XHIl
      Dn=B"FLOW(IAP)
     ALPMA1= 1 .-TOTP*nB+BF»OQ»SS
     CXX:0.5*(-Al.P-!AUSORT( ALP!H
     TOTr=(TOTP-CXX)«XMI1
     C\\=CXX*XHI1
     CO'iTIKUE
     DO 112 I A Ps 1,1
     SUM(K , IAP-»?)rSUM(K , IAP*3)+X
     S'J I(K, ?) = S;''1(K , SJ+XPSUVpro
      ro .'10 \,2- 1 , HI
                                           < IAP)
                                  1-81

-------
            38-1
                                •0--(XM K\;VM
                                •o=c> yi juiVH
                                     ):> ;t :,.-'.
                            C'0=(\XI )'H JC'iH
                           ?'6iK = xxi <>6.-:  i o
                                   i + « I >; = .- 1 ;;
                (a VI 1tW)
                ( d V I ' l.h )C id V h = ( -J V I ' K ) O'.;d '. a
                           dvu' i = civ i   K!LC  rn
                fc'  01 00(t'3l. ' (5)11311 f'J)JI
                                      I**.;,.*
                              BIN' I -K 6<;  OG
                                    30NI Jt.OD
                    'nssdva-=(cjv
                           dv:;' i=dvi 9?.:  oa
                   01 oo(£-
                           ( i
                           (l)TVIOiH = JJ2Kr .:
                                   ii.8 01  CD
                                    3RHIU03
              (dVI 'XXI )f•',< M  i'.:o-iCG   i,:.ri',o>:  01  in.-:;:	3



 (•?•; j'.'7!1' />•>* N vi' <-'i)r/' --vJ-r = (-i vi Vi>'/ ,.-/-•  \i' •'
(-  i)',,i'». jf,•-'-.." 'i i /••,-)•/!, -;HVI 'n )•/'.' vi
                           r! .".'  I--.!V  :•:,  ' ",

-------
       IF(r.()« 0.0001
      M I N = \ ^1 1 N
      NilM;1' lll/r-n
                                1-83

-------
       ir (S4 it.; KOJ .1.1 . i.j> !!».:;. 0:0 m..,
c
C IllVt!"  A.|./.I".DTIO-|  MOf'FL
C      IrCV.ITCMCi) .'ill. 3)^0 TO i
C      IK(RU', jr(KC) .GE.O.UOCOnCO
C      :/)  27') I Apr 1, NAP
C      APSO(^D,1AP)=0.
C27fj   APS^C.O, IAP) = 0.
C      GO  TO <.Ti
C275   SG^O.'JOmoT.IRDTOLCKOJ/R'JIi
C      DO  274 IAP=1 ,'IAP
C      TOTP:(APSS(f;0,IAP)tAP30!'<0,IAP))/Sl,'>IOf(KO)
C      'J'0 = JO.-!.OW(IAP)
C      Al.F-Url .-TOTP»B!5+n5»'.)Q*S3
C      AFLSC'O, IA?) = (TOTP-CXX) 'KUNOF(KO)
C2M   AP33(KO, IAP) = CXX*frUr,'OF(XO)
C273   CONTItJiJE
C
C E'!D  CF  RIVER ADSORPTION FOUIMBCIUM
                                 11'(P« 3600.0
       TOTSL;"--TCTSU1'vTCTALS(KO>lSA'-!P«noO.O
       ULST?':--3LSTS':»ALSTrO(KO)»S VP»350J.O
       SJTSU ' = S:;r5U"H.SED]0!.(KO)»SAllP»3'''00.0
       osGSui-! = ;:R';suv|-i.()R,';N(KO)»5AMp«;i'!00.
       A ? 1 S'J '1 = 4 P 1 SI) .".*A D 1 ( KO ) • S Av! P* 3 5 00 . 0
       Ir(SWIICHC5).'JE.3)GO TO 2't3
       DO  J«2 IAP=1,'JAP
       SSPSUM(IAP)rSSPSUv1CIAPl*(APSS(l<0,IAF)*SA':P)«3603.
 213   CONTINUE
        IF(S*ITC>IC» .F.Q.1 .OR.RUSOFC<0) .LT . 0 . OOOT )GO TO  25
       WRI7E(6,501)MHR,NMIN,RAri(KO) , RJ'.'OFtKO) ,TOT\LS(KO) ,ALSTDD(KO) ,
      CSr.DTOL(^0) ,ORGN(KO) ,AD 1 ( KO) , AD2( KO)
C
C
CPLOTS.
C
C.. LOADING TIME VALUF.S  INTO AESAY API. f( =,=)..
C.. LOADING PLOT DATA  INTO  ARSAY DP(=,=)..
C
C
C. . COD II T 11(
C
       Dr(Kv'A.?)-i;!i\^r (KO)
       net-,. 'A, OrS^rroi CKO)
       ITtsv'*. ••):(' 'il.'KrCO)
       PF(^OA.S)- VM CKd)
                                  1-84

-------
C
CPLC1E.
C
      [••C. VI IOH<>) .fO.O)',;»IT!V6 ' ?0)
      u Cirt'KOK'..) .:.(•:. 3.o'i. :;*r! CM co .EO. nco
      irff. LTE
      WMTE(6,601)
      WHTr.(6,520)
      IPP1=1
      IPP3=3
      WHITE(6,GO?)IPP1,IPP1,IPP2,IPP2,I?P3,IPP3, IPPI.IPP'I
      '.,'RITF(6,520)
      DO  305  K0=1 , N13
      XKIM-KO«SAMP»60t0.001
      MIM=XMIN
      NI!rt = MIK/60
      N'-;iN = Min-NHR»60
      IF(RUNOr(KO) .LT.O.OODGO TO  305
      WhITE(6,503)N!IR,H'1Ili , ( C APSSt KO , IAP) , A ?SC( KO , IAP) ) , IAP=1 ,'O
 305  CO'iriNUE
      WRITE(6,520)
C
C    CONVERTING TO  TONS..
£
 30U  TOTON=TOTSUM/ 1000000.
      ALSTON :DLST3M/ 1000003.0
      SEI)TOtl = SnTSUM/ 1000000.0
      ORGTO'lrORGSUM/ 1000000.
      APITOIir API SUM/ 1000000.
      AP2 TON = A P2 SUM/ 1000000.
      IF(.T/JITCH(5) .:JE.3)GO TO 2M?
      DO  2M6  IAH:1 ,!IAP
      SSPIOHd' ?) = SSPSUM( IAP)/ 1000000.
 2^6  SOPTOfK IAP) = SOPSUM( IAP)/ 1000000.
 2t7  CONTINUE
        AVCONC=0.0
        IFCFOFSU.-1.GT.0.0001 ) AVCONC = TOTS'JM/ROFSUM
      IF(S\'ITCH(2) .EQ.O)WRITF.(6,5'<5)
515   FO^IAT(/,35X, 'DAILY  SUi'MARlf1 ,/ , 3'jX , 13( ' * ' »
      IF(SVITCK(3) . E0.1) WRITE (12, 3000)'! PAY. MO'iTH , RAINSM , iWSUM, TOTSUM,
     CAVCONC
      IFCSVITCH(^) .F(J.O)WRITE(6,S37)RAriS«. ,ROFSU!1. FOT$U*1 , TOTON ,
     CDLSTS1'!, ALSTON .SDTSUM , SEDTON .ORGSHM , OHGTON . API SUX, API TON ,
     CAP2SUM.AP2TON
        T'n'KSUMiTWKSUIUROFS'JM
        TDDTSMsTDHTSM+ULSTSM
       IF(SV«ITC.H5) ..'<£. 3)GO TO  306
       WRITE(6,60«)(( IAP,SSPSUM(IAP) , SSPTO.Nt I AD .IAP.SOPSUM
      HIAP) ,SOPTON(IAP) ),IAP=1,NAP)
 306   CONTINUE
537    FO,-i^1AT(/, 'TOTAL' ,/, 'PRECIPITATION  = ' ,F 15 .2 , IX , '  MM ( ! SOI ES) ' , / ,
      C'RUN'OFF VOLUME = ' . F 18 . ? , 1 X , '  CJ.ViTKR  ( C' .FEET) ' , / ,
      C'TOTAL  Sb'DIMENTs1 ,F13.^, 'X, '  rh'A^>  ( L'lS ) • , -i\ , • = ' . f° . .•• . '   TO'IS',/.
      C'DL'Sr  + DIRf   =' .F1* .2, IX, '  G'-AM-J  ( LI'S) ' , "!X , ' = ' ,K5 . ; , '   TC'IS1,/,
      0'Sb.niMENT  h'-OW = ' , F IS .? . 1 X . '  GKV:'-  (LPS)1.
      CJX. ' = ' ,F9.2, '   TONS' ,/, 'i)|\,AN. (CAHliCN)  H >).,'  =',
      CF1.-:.,?, 1X, '  GRAMS (LP3) '

      r'I'«OA,6):AR2(KO)
                                1-85

-------
                                                                                                                                             -*     -•    o  o r, -* n     n o n
                                                               '/J V, -J. -x, ^ -^ ^— -
                                                                                                         =u    O O C O C  i j J C-  O ^
                                                                                                         ,-c       "    =r     i.-.    ^:
                                                                                                                                                             •-.    *-\    I''.


                                                                                                                         f\j     —•    CJ     Ci;    -J —•     io
                                                                                                                                                              <
                                                                                                                         ^1     H    >H     -H    -1 -*     *•
                                                                                                                         O     O    O     O    O '-n     -1
                                                                                                                   (/>    07     CO    00
                                                                                                                                             -1

                                                                                                                                             ^i

                                                                                                                                                                                 O     ^= -^ v
M

OO
                                                                                    • if)    -a ^  ru

-------
c
C..PLOTTING DATA..
      Ms 101
      M=1
      NGRID-5
C     CALL PLOT(APLE,N,M,NGR[D)
C
110   CONTINUE
107   CONTINUE
C
C
c
c
CPLOTE.
C
      IFUli.EQ.NDAYSJGO TO  16
      HYEAR=NYEAR1
      NDAYrllDAYI
      MONTH=MONTHI
      TEMP=TEMP1
      TtlPKXsTEMPMI
      TEMP«I=TEMPM2
      EVAPzEVAPI
      STHOUR=SHOUR1
      DO 1531 IHIsl.HAP
1531  CR(IHI)rCRUIHI)
C
      DO 152 IA=1,NI3
      JX=IA+HI3
152   HAIlKIA)sRAIN(JX)
C
16    CONTINUE
C
C
      WRITE(5,5«7)
C     U3ITE(103,517)
      WSITF:(6,506)
C     WRITEt103,506)
      NK3=20
      DO 113 1=1 .NLA'ID
      X?A=(AREA(I)+AIMPER(I))"TAREA
      XPI=AIMPER(I)»DC(I)/AREA(K)
      XPS(1)zSUK(I,1)/XPA
      XPS(2):SUM(K,1)«XPI/XPA
      XPS(3)=SUM(I,?)»0.001/XPA
      XPS(«)=0.001«(SUM(K,2)»XPI+SUMIMP(I))/XPA
      DO 11'i  IP = H,7
 1 m  XPS( IP + 2) = 0.001»(SUM(I , IF')+S'JM(K. II') »XPI*SU1IMP( I) • APL IT( I ,
     1IP-3))/XP»
      XPS(5) = 0.001"(SUM(I , 3)*SUM(K,3)"XPUSUHIMP( H »()RGLIT( U )/XPA
      N\lsN<3+1
                            1-87

-------
      WiITf. (6,
  113 CONTINUE
                    H ,Ai.(;;,697)
       WHI7F(6,506)
      NK3=20
       TWRSUX=O.
      DO (,',')  1=1 , tILAND
      XPI = M'-!PER(I)"OC(I)/AREA(K)
      XPTS1=-IJH(I,1)
      XPTS3=SUM(I,2)»0.001
         S-J = 0.001»(SUM(K,2)»XPI*SUMISP(I))
 599


696
C
597
698
505
553
506
C
507
508
509
510
511
512
513
•M8
">17
      WRITE(6,693)I,AL(NX1) ,AL(NK2) ,AL(HK3) ,XP1\S1 , XPTS2 ,XPTS3 ,XPTSt
       TSDDDXiTSDSUM+TDDTSM
       WRITE(6,696)TWRSUM,TWRS1JX,TSDSUM,TnDTSM,TSDDDX
       FOFnATt////'  TOTAL DAILY RUNOFF =',F20.0,
     X 10X,'  TOTAL  WATER (MO IWERFLOW) =',F20.0/
     X ' TOTAL SEDIMENT  ='.F13.0,'    TOTAL DUST AND DIRT =',
     X K18.0,'
                   TOTAL SED + DD =',F20.0)
       FCR'«T(///,50X, 'TOTAL LOADINGS BY LANDUSES1///
     X  '    LAND USE' ,16X, 'RUNOFF M3/KA • ,20X ,' SEDIMENT KG/HA'/
     X 23X, 'PERVIOUS' ,8X, 'IMPERVIOUS' ,3X, 'PERVIOUS1 ,
     X 3X, 'IMPERVIOUS'/)
       FOR':AT(1X,I2, U, 3 At. IF 17. 2)
      FOR»-!AT(20(/))
      FOR'UT(5(/))
      FORHAT(30X,50('«'))
                     ,1KX,'MAROUETTE UNIVERSITY',I1X, •*•)
                     ,13X, """""""""""" ,13X. '••)
                     -,10X,'INTERNATIONAL JOINT COMMISSION ' ,3X ,'•'
                     ,8X,':::  MENOMOMEE RIVER PROGRAM  i^'.gx,'*1
 FORMATOOX, '
 FORMATOOX,'
 FORMATC30X,'
 FCXMATUOX, '
 FOR'tAT(30X, '
 FORMAT(////)
 FORMATdOX,'COMPUTATIONAL  ORGANIZATION')
 FORHATt 10X, -3WITCH(1)  -.  ' , 12 ,5X , ' 0. .SI  UNITS, 1 . . US UHITS
C10X,'SWITC-U2)  =  ',I2,5X,'CROP USt FACTOR,  0..DEFAULTED,'
C'1..INPUTTED.' ,/,
C10X,'SWITC(K3)  =  ',I2,5X,'ICH FORVJI.A SELECTION,  0 OR 10'
C'..  SAO,DELLEUR,SAKHA  IUH.  1 OR 11..  KINEMATIC WAVE IUH.'
C2QX, 'GREATER OR EQUAL  TO 10 . . P!l I!.'..! PS INFILTRATION MODEL.'
C10X,'S.'ITCIKM)  =  ' ,I2,5X,'0. .PRIN1 ALL  OUTPUTS AND PLOT,',
C' 1..PRINT  ONLY DAILY  SUMMARY.',/,
C10X,'SWITC"(5>  =  ',I2,5X,'0..NO ?OIL  ADSORPTION,1,/,
CP"X,'3..SOIL ADSORPTION  ROUTINE.',/,
CIC^X,'SWITCH(6)  =  ' ,12,5X,'0. .UNIFORM  DUST AND DIRT ',
C'OVER  IMPEHVIOIIS  AREAS.',/,
C2-1X, ' 1. , OtTAILED  LITTEH  CUMULATION IN E»C!I  I.ANDU3E.' ,/.
C10X,'SrfITCH(7)  =  ' ,I2,5X,'OPFN Sn'ITCM ...',/,
                             f.VITCH  C\KP  REJ'JIREMEIT TF3T.  . '
                             CO't"l'r\V10NAl.  UNITS...SI USITo.
                             ^•oM^^]T^(•!ON^l.  UNITS...us UNITS.
                            -R At:Al.\^'S,(TA'!V.Al    = • , F7 . 2 ,
                                                                 .1,/,
                                                                 ,/,
                                                                 ',/,
     ci.ix . '.smciKR)  =  •,12,'jX,1
      KlT!-'Vi( S?X, 'S'-LFCTED ItiTuT
      FO'iV\T(3.°X, 'SKI.ECTFD INtVr
      Kc'R-UCffaX, 'TOTAL  ARF*
     C' oJAM  (SQ.MI) ' ,/,26X, 'NUV'oKR OK LAND Ui'FS .••WDF.H.FD , ' ,
     C' (NL'iND)  =' , IH)
                               1-88

-------
     C'(NLAHD)  =',11)
51-3   FOR:',AT( 10X, ' INDIVIDUAL  LA'ID II3E DATA.',/)
519   FOHM/.K "' ,3X, 'LAIII/ USE      ' , ' * ' ,r.X , • D':r,CrS(,M  • l.b'S(^)  • LFS(U)   •',
     C' I.Kf-Cj)   *  t.ES(t.)   •  l.ES(/)  •  LfS(S)   • LES(«)   » l.fS(JO)  •',
     0' I.FS( 11)  *  t.FiHI?) •' )
                           1-89

-------
•3 '(0
      FOi-MATC*
                 IJAY3
                                      ' ) )
y;i
C
012
      FOi"!AT(5X, 'DUST  A'iD  DIRT  CUT-nLA HON  DATA.')
 517
 518
 519
 559
 600

 601
 602

 603
 601
9999
      FU'< :AT(5X, 'DDF ALL   -'.f).?.,'  = :;UST
     C'K".UAY' , '  (TO!i:;/AChE/a:.Y) ' ,/,')/,
                                            DIRT FALLOUT IN TO'IS/SO.1,
C'DOOfC
C'Dl'UTR
C'DL^O'I
C'DDAPI
CM/DAP2
c ' n'ar.HK
C ' S», INT
C' ASEAS.
C' SWA RE
= ' ,F9.2,
= ' ,F9.2,
= ' ,F9.2,
= ' ,F9.1,
= ' ,F9 .1 ,
=' ,F9.2,
=' ,F9.2,
, ' ,/,5X,
=' ,F9.2,
                         -  PO»TI')'i OF L^FALL WHICH IS OPOAN 1C , I . ' ./ , 5X ,
                                                  IS HIThOGE'l , S  ',/,5X.
                                                  13 PHOSPHORUS, J  ',/,rjX
                                                   If, POLLU7 A'lTI ,%',/, "jX
                                                   POLL .2 , 1 ' ,/ , 5X .
                           PO'uiVi
                           POXTIO'i  OF    ..     .
                           PCmiO'!  OF     ......
                           POmO'i  OF   ........
                           WA3'K).)T  COIFF . ' ,/ ,5X
                           SWEEPING I'iTFfVAL  I'l  DAYS Otl IMPERVIOUS
                         =  AREA  AFFECTED  BY  SWEEPING,  J ',
     C'OF IMPERVIOUS AREAS .',/, 5X ,
     C'SWEKF  -',F9.2,'  =  SWEEPING  EFFICIENCY  (DEFAULT =0.7)',/,5X,
     C'DDA    =',F9.2,'  =  AVAILABILITY FACTOR , DEFAULT COMPUTED ',
     C'FPOM RAIH INTENSITY. ' ,/,5X,
     C'SLARE  =',F9.2,'  =  AREA  AFFECTED  BY  SALTING III 1 OF TOTAL1,
     C1 TIPERVIOUS AKF.A. ' ,/,5X,
     C'SALT   3',F9.2,'  =  AMOUNT OF  SALT APPLIED DURING SNOWFALL ',
     C'TO'.S/SQ.KM.DAY  ( TONS/SO .''.I /DAY) . ' ,/,5X,
     C'SALTPO =',F9-2,'  =  PORTION OF SALT WMICH  IS PHOSPHORUS.')
      FOF,'-1.AT(3(/) ,5dX,31HSU 1MARY OF  LOADINGS BY  L 4NDUSES , 3( /) , 3X ,
     18HLPND U3E.1 IX, 134RUNOFF  M3/HA , 1 CX , 1 H H3EDIMENT KG/MA,6X,
     18HORGAI1ICS, 13X, 17HPOLLUTANTS   KG/HA,/, 13X , 8HPERVIOUS , 3X ,
     1 1 OH I MPERVIOUS,3X,BHPER VIOLS ,3X,1 OH IMPERVIOUS, 5X,5MKG/HA,8X,
     1 1H1 ,12X,1H2,12X, 1H3,12X,1H1)
      FO 'HAT (IX, 12, IX, 3^1,1^12.3^12.1. IF 12. 7)
      FOK'-:AT(20(/) ,30X, 'DETAILED IITTER  CU"ULATION DATA',3(/),
     1 130( '»'),/,' LAND  USE  CURB DENSITY LITTER  CUM.  ORG . CONTENT' ,
     110X, 'POLLUTANTS  CONTENT ',/, 9X ,' M/HA( FT/AC)  (J/M-DAY ' ,7X ,
     T       GRA"S/GRAMS  OF  SOLIDS' ,/ ,24X ,' L3/M-DAY' , 15X , 1H1 , 12X,
     11112. 13X,1H3,13X,1H1,/,130('"))
      FOR'1AT(1X,I8,7(F12.7,1X))
      FOR'IATC//// , 10X, 'SOIL  ADSORPTION MODEL ',/, 1 OX ,
     , 21 H« »»»»»»»»»«»»»»»»»«»•,///)
      FOR'IATC 10X, 'UNITS   ............. GMS/SEC ( LBS/SEC) ' // )
      FOV-UTC/,  'HOUR 'UN  ' .1 (' 'ADSORB . POLL .', 12 ,' »DISSOL.POLL .', 12) ,/,
     19X.2( '"(PHOSPHORUS)  '),/)
      FOR'IATC 1H» ,13,  IH1 ,13,1 X, 1H»,8(F 13.3, IX, 1H«))
      FOR".AT(1(  19HADSORDED  POLLUTANT , 1 1 , F15 . 2 , 13HGRAHS( LBS)  =,
     1F10.3.5H  TON'S, /,20:IDISSOLVED  POLLUTANT ,11, Fit. 2,
     113HGRAMSCLDS)  =,F10.3,5H TONS,/))
      STOP
       END
                           1-90

-------
Inputs Required
Card Format
A1.A2.A3 20A4

Bl 7<4X,I2)
















B2 4X,I3
4X]F6.
4XiF6.
4X,I2
4XiIl

4X,F5.

Cl 3A4

1X!F6.
IX, F6.
!XiF6.

1X,F6.
!XiF6.
1X]F6.
!XiF6.
!XiF5.
IXiFS.

C2 F12.3

1X^6.
!XiF6.
!XiF6.
1X,F6.
!XiF6.
!XjF6.
!XiF6.
IXiFS.
lXjF5.
1X^5.
C3


F7.2
F7.5

F7.3
F7.3
F7.5
F7.5
F7.2
F7.2
F7.2
F7.5



















2
2



2



2
2
2

2
2
2
2
3
3



2
2
2
2
2
2
2
2
2
2
















TITLE CARDS
Description of Variables

Column
t
CONTROL SWITCHES
SWITCH (1)

SWITCH (2)

SWITCH (3)




SWITCH (4)

SWITCH (5)

SWITCH (6)

SWITCH (7)
NLAND
TAREA
WLATIT
NSCM
NAP

DX

AL
AREA
FMAXDS
FOR
CZDEP

SMMIN
PIMPER
Cl SOIL
C2 SOIL
ADX1
ADX2

DC

SATPRM
FMDSIMP
ANMIP
ANMPE
A12
A13
A14
A15
A16
A17



QLA
BLA

CUOLA
SUOLA
KDLA
KSUB
PLANTP
ORGP
PLANTU
KSWLA


= 0 SI Units
- 1 US Units
= 0 Crop Use Factor Defaulted
= 1 Crop Use Factors Inputted
IUH and Infiltration Formula Selection
- 0 or 10 RAO, DELLEUR, SARMA IUH
= 1 or 11 Kinematic Wave
= 0 or 1 Holtan Infiltration Model
- 10 or 11 Philip Infiltration Model
= 0 Print All Inputs and Plots for Each Day
= 1 Print Daily Summary Only
= 0 Complete Computation Adsorbed Pollutants Only
- 3 Dynamic Soil Adsorption Model
= 0 Uniform Dust and Dirt Cumulation on Impervious Areas
= 1 Detailed Street Litter Analysis for Each Land Use
Open
= No. of Land Use Areas Modelled
= Total Area of the Watershed SQKM (SQMI)
= Latitude of the Watershed in Degrees
= No. of Seasons Modeled
= No. of Adsorbed Pollutants Modelled Default - 1
(Use when SWITCH (5) » 3)
- Thickness of the Upper Soil Adsorption Layer - CM (IN)
Default = 5 cm (Use when SWITCH (5) = 3)
= Description of the land use (alphanumeric)
= % Area of the land use of the total area (TAREA)
= Maximum depression storage of pervious area, default = 0.62 cm, cm (in)
= Porosity of the soil layer, %
= Holton's: Depth of the top soil layer, default = 52. r cm, cm (in)
Philip's: Depth of "A" Horizon
=0.3 Bar Moisture, %
= % Impervious area
= 15 Bar Moisture (plant available), %
= Saturation permeability of "B" Horizon default SATPRM) cm/hr (in/hr)
= Soil absorbed pollutant 1, "/, of suspended solids if ISWITCH (5) •= 3
- Soil absorbed pollutant 2, % of suspended solids if ISWITCH (5) = 3
Cards for each land use modelled.
= Fraction of impervious area not directly connected to channel,
default = 0.0
- Saturation permeability of "A" Horizon, cm/hr (in/hr)
= Depression storage for impervious areas, default = 0.16 cm, cm (in)
= Manning's roughness factor for impervious areas, default = 0.012
= Manning's roughness factor for pervious areas, default = 0.25
= Soil credibility factor
= Slope of land under observation
= Organic content (carbon) of the soil, %
= pH of the soil
= Clay content of the soil, %
If SWITCH (5) - 3 the following inputs will be read: (SWITCH (5) NE 3 DO NOT
SUBSTITUTE A BLANK CARD).
Max 4 pollutants
- Max soil adsorption, ug/g
= Soil adsorption partition coeffic., ml/yg
The above for the Langmuir adsorption isotherm
= Init. soil water cone, of the pollutant, mg/1
= Init. ads. pollutant cone, on soil, yg/g
= Decay coef . for the pollutant, I/day at 20 C
- Sublimation rate for the pollutant, yg/cm2/day at 20
- Init. cone, of the pollutant in plants, yg/cm2
= Organic content of plants (leave blank)
- Max uptake of the pollutant by plants, yg/cm2 /day
= Kinetic adsorption coefficient, 1/hr
It is recommended that the phosphorus adsorption is computed first (IAP=1)
then QLA, BLA, and KSWLA may assume default values and KDLA and KSUB equal
6

12

17-18




24

30

36

42
5-7
10-15
20-25
30-31
36

.41-45

1-12
14-19
21-26
28-33
35-40

42-47
49-54
56-61
63-68
70-74
76-80

1-12

14-19
21-26
28-33
35-40
42-47
49-34
56-61
63-67
69-73
75-79



1-7
8-14

15-21
22-28
29-35
36-42
43-49
50-56
57-63
63-70

zero.
      1-91

-------
               Format
                                                                    Description of Variables
                                                                                                                          Column
C4
             12(1X,F6.3)
C8
                                             Drop use coefficients for evapotranspiration, 12 months when
                                             SWITCH  (2) = 1.  If SWITCH (2) - 0 do not substitute above card
C5

C6






C7






12 (IX F6 3)




12
2XiI2
F8.2
4F8.4

F10.A
F10.4
FlO.it
4F10.4


sc




MONTHF
NDAYF
AMFERT
CFRT (1-4)

PLIT
ORGLIT
APLIT
CURBD



season modeled
If SWITCH (5) - 3 the following inputs will be read (SWITCH (5) ^ 3 DO NOT
SUBSTITUTE BLANK CARD
Fertilizer use card (SWITCH (5) - 3)
- Month when the fertilizer Is used
- Day of the month when fertilizer used (Def. = 1)
= Amount of the fertilizer used in kg/ha (Ibs/acre)
- Fraction of the fertilizer which is pollutant 1-4,
Detailed dust and dirt (litter) cumulation data SWITCH (6) « 1
= Litter cumulation at the curb g/m/day (Ibs/mi/day)
=" Organic portion of litter as fraction
- Fraction of litter which is pollutant, 4 possible pollutants
= Curb density m/ha (ft/acre) default computed from imperviousness
Atmospheric fallout assumed uniform over the entire area and it is inputted
on cards El and E2





1-2
5-6
7-14
15-47

1-10
11-20
21-30
31-70


             12(1X!F5.2)    C3SOIL
                                             Helton's "A" Coef. In the Infiltration formula.   Default = 0.17
                                             A blank card must be substituted for Philip's model if there is
                                             no inputs.  (SWITCH (3)  • 10 or 11)
D
El










E2







E3





F







13,11(11,1:

F8.4
1X1F8.6
lXiF8.6

1X^8.6

1X,F8.6
1X,F8.6
IX, F8. 6
1X,F8.3
F8..4
lXiF8.6
!XiF8.6
lXiF8.6
!XiF8.6
lXiF8.6
!XiF8.6
lXiFS.3
4(F8.4)

lXjF8.2



13
!XiF6.4
lXiF6.2
!XiF6.2

!XiF6.2
1X1F6.2
!XiF6.2
1) LES

DDFALL
DDORG
DDAP1

DDAP2

DDAP3
DDAP4
WASHK
SWINT
SWARE
SWEFF
DBA
SLARE
SALT
SALPO
DDNITRR
DDRR
BBFLOW

QQFLOW



NDAYS
SAMPX
AAX
CMELT

PACK
TMELT
NDDRY
= Length of seasons, max no of seasons 12
Dust and dirt cumulation data
- Dust and dirt fallout in tons/km2/day (tons/acre/day)
3 Portion of DDFALL which is organic
- Portion of DDFALL which is pollutant 1, _ (SWITCH (5) " 0)
Fallout of pollutant 1 tons/km2 /day (tons/acre/day) SWITCH (5) " 3
=• Portion of DDFALL which is pollutant 2, _ (SWITCH (5) - 0)
Fallout of pollutant 2, tons/km2 /day (tons/acre/day) SWITCH (5) - 3
• Fallout of pollutant 3, " "
= Fallout of pollutant 4, " "
- Washout coefficient
= Sweeping interval in days on impervious areas
= Area affected by sweeping in percent of impervious areas
- Sweeping efficiency (Default 7.0)
= Availability factor default computed from rain intensity
= Area affected by salting in percent of total impervious areas
- Amount of salt applied during a snowfall tons/km2/day
» Portion of salt which is phosphorus
= Portion of DDFALL which is nitrogen
» Dust and dirt removal rate by wind and traffic, I/day
= Partition coefficient for dust and dirt adsorption (SWITCH (5) » 3
or for flow suspended solids (SWITCH (3).NE.3)
- Maximal adsorption for dust and dirt (SWITCH (5) - 3) or for flow
suspended solids (SWITCH (3).NE.3)
Card E3 enters if SWITCH (5) - 3 do not substitute blank card of
SWITCH (5) t 3
= No. of days of observation
- Sampling interval (hr)
= Conversion factor used in determining the max. 30 minute rain
= Snowmelt coef. cm/day deg. C (in/day/deg. F)
default - 0.0094 cm/hr deg. C
= Initial water content of the snowpack, default = 0
= Snowmelting temp., default - 0
=• No. of dry days before T - 0, default - 0


1-8
10-17
19-26
28-35
37-44
46-53
55-62
64-71
73-80

1-8
10-17
19-25
28-35
37-44
46-53
55-62
64-70






1-3
5-10
12-17
19-24
26-31
33-38
40-45
47-52
                                                             1-92

-------
  Card        Format                                               Description  of Variables
Gl
14
14
14
F8.2
F8.2
F8.2
F8.2
F6.2
F7.4
F7.4
F7.4
F7.4

NYEAR
MONTH
NDAV
TEMP
TEMP MX
TEMPMI
EVAP
STHOUR
CRX(l)
CRX(2)
CRX(3)
CRX(4)
Cards 6 imputted for
= Year
= Month
= Day
= Average daily
= Maximum daily
= Minimum daily
= Evaporation
= Starting hour
= Contention of
"
"
=
each day of accumulation



temperature
temperature
temperature

of rain fall record
poll. 1, in the rain mg/1
2
3
4 "

1-4
5-8
9-12
13-20
21-28
29-36
37-44
45-50
51-57
58-64
65-72
73-80
G2           12F5.2        XRAIN            -  precipitation in mm/hr (inch/hr)  starting  at STHOUR
                                       12  per card, precipitation ends by 99.99
                                       Snow precipitation in water content
                                                            1-93

-------
APPENDIX IV-D.    EXAMPLES  OF  INPUT  AND  OUTPUT  DATA
         PHEASANT MARCH  SUflUATERSIICD STUDY
         JIM HETTUM.SUMIt.ll.mj
         LANDRUX ANALYSIS
              0     0     1     0      2000
              16    .1467    43.        1
         COMKEG1      6.011    .55  52.00  JO.00  32.00    0.6  10.00    0.6
          TO.          0.6                       0.32   1.0    «.0
          0.54
          .02
         COUKKt02        4.7    .55  52.00  30.00  32.00    0.0  10.00    0.6
          152.         0.6                       0.32   t.O    4.0
          0.54
          .02
         CORNVIR       6.35    .TO  50.00  23.00  30.00    0.0  10.00    0.3
          '52.         0.3                       0.32   1.0    1.0
          0.54
          .02
         CORNORE       J.8T    .05  53.00  13.00  28.00    0.0  10.00    0.6
          152.         0.6                       0.32   1.0   20.0
          0.5«
          .02
         HAYWIR       11.05   0.51  50.00  23.00  30.00    0.0  10.00    0.3
          61.          0.3                       0.32   1.0    0.1
          0.02
          0.27
         HAYUORBA      4.97    .25  55.00  26.00  30.00   0.00  10.00    0.6
          61.          0.6                       0.32   1.0    5.0
          0.02
          0.27
         HOMESTEADW    4.14    .46  50.00  23.00  30.00   9.27  10.00    0.3
          46.  0.90    0.3                       0.32   1.0    1.0
          0.03
          0.27
         MAYEVIR       2.49   0.51  50.00  23.00  30.00   0.00  10.00    O.J
          152.         0.3                       0.32   t.O    O.I
          0.02
          0.27
         IAIEOIBA      8.S3   0.30  55.00  26.00  30.00    0.0  10.00    0.6
          152.         0.6                       0.32   1.0   4.1
          0.02
          0.27
         •AYECHA       12.71   0.35  52.00  13.00  30.00    0.0  10.00    0.5
          152.         0.5                        0.37   1.0    3.5
          0.02
          0.27
         HATEKID       4.14    0.1  55.00  15.00  29.00    0.0  10.00    0.6
          152.         0.6                        0.32   1.0   25.0
          0.02
          0.27
         Hit E BAST      11.88    .20  52.00  24.00  28.OO    0.0  7.00    0.6
          152.         0.6                        0.36   1.0    7.9
          0.02
          0.27
         HAYEKCH       1.38   0.12  52.00  13.00  30.00    0.0   10.00    0.6
          152.         0.6                        0.37   1.0   13.6
          0.02
          0.27
         KOODSSTBA      7.18   0.55  52.00  24.00  29.00    0.0   8.00    0.6
          122.         0.6                        0.35   1.0    8.1
          0.02
          0.27
         KOODSMCH      2.19   0.20  52.00  13.00  30.00    0.0   10.00    0.6
          '22.         0.6                        0.37   1.0   12.5
          0.02
          0.27
         KOOOSSTC      7.73    1.0  52.00  23-00  26.01    0.0   6.00    0.6
          122.         0.6                        0.37   1.0    5.0
          0.02
          0.27
          030
           2  -1657                           0.5
         W»   6  30     25.     30.     20.      .322.833
          .295 .295  .295 .162 .130 .130  .HO
         W*   71     25.     30.     20.      .8   0.00
          .130 .078   0.   0.   0.  0.   0.   0.    0.   0.   0.   0.
            0.  0.  .019 .177 .1!'- .127  .123 .127  .12i  .025   0.   0.
          .0«3 .'01  .103 .021   0.  0.   0.   0.  .077  .129 .06*   0.
          .036 .090  .091 .09' -0V  0.  .022 .027  .027  .OJ«   0.   0.
            ••  "•   0.   0.   0.  0.   0.   0.    0.   0.   0.   0.
            "•  °-   0.   0. .013 .013  .on .013  .013  .00799.00
                                     1-94

-------
                                                Output  Data
                                           MAROUETTE UNIVERSITY

                                       INTERNATIONAL JOINT COMMISSION

                                      ::: MENOMOMEE RIVER PROGRAM :::
HEASA'IT B2ASCH  SUBWATERSHED STUDY
IH METT'JH,SUMMER, 1978
ANDRUN ANALYSIS
         COMPUTATIONAL ORGANIZATION
         SWITCH(I)  >   0     O..SI UNITS, 1..US UNITS.
         SVITCiKZ)  «   0     CROP USE FACTOR, 0..DEFAULTED,1..INPUTTED.
         SWITCH(3>  «   1     IUH FORMULA SELECTION, 0 OR 10..  RAO,DELLEUR.SARMA  IUH.  1 OR 11.. KINEMATIC WAVE IUH.
                           GRCATfK OK EOUAL TO 10..PHILLIPS  INFILTRATION MODEL.
         swiTCHC4)  >   o     o..pniriT ALL OUTPUT.-,  AND PLOT,  i..PRINT  ONLY DAILY  SUMMARY.
         SWITCIK5)  •   0     0..NO SOIL ADSORPTION,
                           3..SOIL ADSORPTION ROUTINE.
         SWITCH(6)  «   0     0..UNIFORM DUST AND DIRT OVER IMPERVIOUS AREAS,
                           1..DETAILED LITTER CUMULATION IN  EACH  LANDJSE.
         svrrciK?)  «   o     OPEN SWITCH...
         SWITCHU)  i   0      SVITCH CARD REQUIREMENT TEST..
                                                     1-95

-------
96-1
ZIV . OW
zic,- , c-,2:
ZI3- > OSZ-
zio- i Giz-
ZIV i 04Z"
zio- • oSz-
zio- i osz-
zio- • osz-
zio- t osz-
ZIO- • 04Z*
ZIO- • OSZ-
ZIO- i 04Z-
zio- i osz-
zto* • osz-
ZIO* • " 04Z'
zio- • osz-
sroiAE3JKt i snoin;
•A3I3I3J303 CnlUBYK '

co-i • 9f '•
OS'Zl i 91- •
Ofl • 91* >
09-tl • 91* •
06-1 • 91* >
00-SZ • 9f •
OS'S • 91- •
Ol'« > 9f i
Of i 9f •
CO-l • 9f >
co-: • 9f i
Of i 9f i
CO-JZ • 9f i
CO-l • 9f •
00" » • 9f •
C0'» • 9f i
3J01S i CnoIASJJUI i
t 1 (CD IO 3-)Y«OIS
• W,'. i
i uirc; i
• oo -c- i
• OO'C*. i
i OO't? i
t 00-t! •
I OO'Ct i
I 00-&J 1
1 OO'OC t
i 00'C.C i
I OO'CC i
• oo-ct •
• 00- K i
• OO'OS .1
• OO'Zt i
• 00 'ft i
U . I •
t 3»nisio« K-aiNI« i

oo- t i oo-
OZ- i OO-
44- • 00-
zi- • oo-
oz- > oo-
Of • 00-
Sf • 00'
of • oo-
is- i oo-
9»- i If
sz* • oo-
is- i oo-
so- • oo-
01' i 00-
ss- i oo-
SS- 1 00'
!.-ivua3^ i si;3hsT,-i.M
K01S?3!ld3a i
OO'tJ
OO'kl
Wti
oo-Ci
oo- •«
oo-Si
OO'Cl
00- 9Z
oo-tz
00'£Z
00- 9Z
oo-tz
oo-ci
oo-cz
oo -oc
00 "OC
(HI) tO
K1430 10dlSC-l

i U-l
i 6fZ
> Sf t
i Sf I
. si-it
. fl-tl
• u-zt
i cg-t
• t»-z
. 9fC
. 1ft
I 40-lt
t U'C
i 4f 9
. cr»
• (0-9
34Kt . 1.10
I JO »1»
1 007"' lli-i- 1 OU'e4 1 -II
f CO',' COV i CO'J4 1 41
1 COV C09* 1 G0'?4 1 >l
1 O'//' C09* , OO'fS 1 El
i 005- 009- f we', t ti
, CO?* OC9* i OC'44 -i II
i oos* cos* i oo-<:4 t oi
I 005' 009* • 00'44 i i
1 CCf OOf t OC-04 I 1
1 Olif COf i 00*04 1 L
• CCf 039- i 00-44 i 9
1 CCf OOf i 00*04 • S
i OC9- 009- i 00 -C4 , »
• OCf COf i 00*04 t t
• 009- 009* i 00-ZS • Z
i OC9- 009- i 00*24 i 1
i UK/SI) 3»io> i z
1 IS1MIS03 I 1
a i 3ritsn CKI jo i -on
T t • !.OUJI»3S3
-------
    EVACOT'AI 'H'-ntO'l CH'IP U'.f r"(CFICIFNT';.-KU                                         ^ .«,„..«•»•••••••••«•«..itn.»»••••.«{
L«'IB  IT=l.       1   •  .     ?  •      3  •      «  •      •,  •      6  «      7  •      •  •      »  •     10  •     11  •      12   j



  KU  VALUES  DtFAULTEO  TO 1.00







    WtATIT • 43.01. LATtTUOE  OF THE  UATE.SIIEO  III OEGHEES
    NSC<<   m      1. IJ3.0F  SEASONS.
    KOAIS  .      2. NO.OF  OBSERVATION  DATS
    SAIP   <    .17. S»-;M.IIC  PSHI03.
    CMELT  .    .fll* S'lOblELT  COEF. C1/DAT.DEG  C SC.                                                     '        J
'	"	..........~...«	.j
LAUD I»I«  3C(1>  •  SC(2)  •   SC(3)  •   SCO)   •  SCI5)   •  SC(6)  '  SC(T)   •  SCO)  «  SCH)   «  SCOO) •  SC(11) •  SC(1Z)  <
   12
   11
              .M •
.02 '
.02 •
• OJ •
.02 •
.02 '
.02 •
.0? «
.02 •
.02 '
.02 «
.OJ •
.02 «
.00 '
.00 •
.00 '
.00 •
.00 •
.00 «
.00 •
.00 '
.00 >
.00 '
.00 •
.00 •
.00 •
.00 '
.00 •
.00 »
.00 •
.00 •
.00 •
.00 •
.00 *
.00 «
.00 *
.00 •
.00 •
.00 •
.00 '
.00 "
.00 '
.00 •
.00 '
.00 '
                                             .00  *      .00 '
                                             .00  "      .00 «
                                             .00  >      .00 •
                                             .00  •
                                             .00  *
                                             .00  '
                                             .00  *
                                             .00  "
.00 •
.00 •
.00 •
.00 *
.00 •
.00 *
.00 •
.00 '
          .00 •
          .00 •
          .00 "
          .00 •
          .00 •
.00 "
.00 '
.00 •
.00 »
.00 •
.00 •
.00 •
.00 '
.00 •
.00 «
.00 •
.00 '
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 .
.00 «
.00 •
.00 *
.00 •
.00 •
.00 '
.00 •
.00 >
.03 •
103 •
.00 «
.00 .
.00 •
.00 '
.00 •     .00 V
.00 '     .00 •
.00 *     .00 '
.00 •     .00 •
.00 •     .00 •
.00 •     .00 •
.00 •     .00 •
.00 *     .00 •
.00 «     .00 •
.00 •     .00 •
.00 •     .00 •
.00 •     .03 •
.00 •     .00 •
.00 •     .00 «
.00 •     .00 *
.00 «.    .00 •
.00 '
.00 '
.00 •
.00 •
.00 >
.00 •
.00 •
.00 *
.00 >
.00 •
.00 •
.00 •
.00 •
.00 •
.00 •
.00 '
.00 •
.00 •
.00 "
.00 •
.00 •
.00 •
.00 *
.00 "
.00 *
.00 •
.00 «
.00 •
.00 I
.00 «,
.00 .
.00 »
.00
.00
.00
.00
.00
.or
.00
.00
.00
.00
.00 <
.00
.00
.00
.03
.02 •
    LENGTH nf urn r-fAson (P»TSI .Lf^,
 SEA.-.OS • LES(I)  • LE5(.'1)  " LE9I1)  • LtStO  • LESCM  • LES(t)   •  LFT.m   •  LfStH)   • LEMO   •  LtMtO)  « LES(II)  •  LESdJl
                          0 «
                                                    1-97

-------












g
111
u
to
X
g
w *•
* U S cc «
r, — u- d *-
"-5SE3-.
= f> « 0
c G —
= • • *
t- * »
Si t •
=1" 't
— o c ^- o w
= r s- =• v r-
•• o c *.) i.- o r-
i_H<^-t--i~i-~-
~ J O O >.• C -t
Q o- O- t. fc o. ,-•
H • V H • M
o
v o e> o o <- «•
• o c o o ."* -r-
00
M
n ^\ r" r\ ?•> * « *
a a-i.}^ ^i • i






.
**
o
;
g
«
• s
|||
- atoi
« »3M
« O '
: sss
22*"
IE « _J
hi C *-^ •
= •* *- H 2 3
TED Itr SWFrPIHC, I C
FFtCU'lCT (OtFUULT
TT FACTO* .DtFA'JLT «
SALT APPLIPO DURIHC
SALT WHICH IS PHOS
a •« ^ * K O
•C hi « « « ft.
« e« o oe O
0 C 0 OOO

«•»•>*>*
o
- .1 u. tt. 1- »~
- -* u •* •« J J
* -« » 1 _»•<««
i .1 ii o n 11 «n


* O*«*l
oraooooo «>» o oo oo
ooooooo- "r-ooooS

* 0>tfk
OOOOOOO 00
|^ 00000000"^ *«^i.- i -»OOO 1- flttoi MMnjtf>voOOOO O M«J £1 I- 1) J
: 5 5 :S 3SS5







g
o


s
£
K •


»- t-
i i
•SOIL •
•SEDIMENT '



i
i
d >•
o o o o o o g
OOOOOOO


ooooooo
ooooooo


ooooooo




S S «5 S S £ 5
u\ •« o «r 

i i I i i i i


S o » w o S e
»••••*»
s : s s : s s
e o *• *- o o o

e- o* o> «o *- r— *•-

• •»••*•
ooooooo
rfv <- «*j «•"! * «•.














oo
OOO Ort«
; 's '°':
u • • • •
u, » •
* ""'SSSSUir
S<~«C^_J^«Ji9B
W1U1 — — — — JJ
UJ 1- w
roirce>-ooo
^lE 2
s s r
* • *
S-~
»- bl !• -•« »• »- t—
O 5C I.I O •"-• =• =>
a. u. * uj . IB tt

-------
0»TE'   I/   7/1971  TtMf   27.0?  IEIIFMI1   30.00  TEHPMI'    20.00  EV»f     .00  STHOUJT   .00
    inns
 MI!i'«.L       .•M/H* (I«/H«)
 •U'I'.'F         .Ml/nEC (CF3)
 SOIL SEDI1E9T t'-.H'Z (UBS)
 OUST :  Ol»T    .-.miS (LBS)
 SmUEVT  FWJ  .I**-;/::^ ILKS/SEC)
3BSEB- •RAInFALL •RUBOFF *SOtL "OUST
HTK\ • KXfHIt • •SEDIHM7 'OUT
01 10 •
Ol 20 •
Or 30 •
0: « •
Oi SO •
It 0 •
11 10 •
11 20 •
1l 30 •
It 40 •
1! 50 •
2: 0 •
is 10 •
2: 20 •
2: 30 •
2l 40 •
2: 50 •
Jt 0 •
3: 10 •
Jl 20 •
3: 30 •
3: 40 •
3! 50 •
• l 0 •
• : 10 «
• t 20 •
• t 30 •
• : «a •
• l 50 •
19.794 •
11.«7» •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
..000 •
.000 •
.000 '
.000 •
.000 •
.000 •
13.557 •
19.374 •
19.494 •
19.374 •
19.194 •
19.374 •
19.494 •
J.959 •
.000 •
.000 •
12.457 •
15.717 •
15.717 •
3.179 •
.000 •
.050 •
.048 •
.037 •
.030 •
.024 •
.011 •
.014 •
.012 •
.010 •
.009 •
.006 •
.005 •
,oo« •
.003 •
.003 •
.002 •
.002 •
.002 •
.003 •
.009 •
.020 •
.022 •
.020 •
.019 •
.017 •
.01* •
.012 •
.009 •
.009 •
•194. 837 •
1092.119 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
511.194 •
1578.636 •
1401.210 •
1481. 545 •
1997.041 •
1979.937 '
20«5.SJ5 •
.000 •
.OflO •
.000 •
3?2. 0*0 •
76S.471 •
79«.J91 •
.000 •
.000 •
: SCOXHUT FLOW •
t •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 *
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000" •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
»479.9«5 •
•292.391 •
3345 -9«» •
2741.900 •
2354.371 •
1439.505 •
KS7.441 •
11M.I42 •
191.555 •
735.950 •
5« 1.904 •
•5«.023 •
337.041 •
284.775 •
212.893 •
2«3.509 •
•0«.739 •
523.971 •
457.7*7 •
1039 .7«1 •
1274.80? •
1231-952 •
1111.605 •
1001.402 •
910.299 •
75*. 214 •
65J.2J6 •
459.30 •
54*. 385 •
OSGMICS* ADS.P3U..1 •
.MO •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 «
.000 •
A03.POLL.2'
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
looo
.000
.000
.003
.000
.000
.000
.000
.000
.003
.003
.OU3
.030
,ooc>
                                            1-99

-------
51
5:
5i
5:
5:
51
6:
6i
6:
61
6:
6:
T:
Tl
Tl
Ti
Tl
Ti
81
1:
it
8:
8:
a:
9:
9:
9:
91
9i
9!
10!
10:
10:
10:
10:
10:
11:
11:
11:
11:
11:
11:
1?:
12:
12:
C7«L
r: a
is:
cri •
FGA-,
r.-o?
0 •
10 •
20 •
31 •
• 0 •
50 •
0 •
10 •
20 •
30 •
•0 •
50 •
0 •
10 •
20 •
30 •
•0 •
50 •
0 •
10 •
20 »
10 •
«o •
53 •
0 •
10 •
20 •
10 •
• 0 •
50 «
0 «
10 •
so •
10 '
• 0 •
50 •
0 •
10 «
so •
10 •
• 0 •
59 •
0 •
10 •
20 •
.00'} •
.010 •
.000 •
II.TM •
19.676 •
9.778 •
.000 •
5. "59 •
13.717 •
13.857 •
11.857 •
12.«7» •
.000 >
3.359 •
«.U9 •
«.I19 •
3.659 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 >
.000 •
,000>
.000 •
.000 •
.000 •
1.9SO •
1.980 •
2.169 •
1.960 •
1.9SO •
1.080 •
.000 •
.000 «
.000 •
.000 •
P1TATII"! i 56.70
!>:i-l !'.Ti I3156III.
. 'IFI .
ill t'-3« . 25600551
,(CAR~?1) FLOW •
1 .HJLL'JTAIT 1 •
e.PDLLi;7«'IT 2 t
,004 •
.005 •
.oo« •
.001 •



221
.00} • 1085
.002 •
.002 •
.001 •
.001 •
'.001 •
.002 •
.001 •
.005 •
.006 •
.005 •
.00* •
. .005 •
.00« •
.00* •
.00] •
.00} •
.003 •
.001 •
.002 •
.002 •
,002 •
.001 •
.001 '
.001 •
.001 >
.001 •
.001 •
.001 •
.001 •
.000 •
.000 •
.000 •
.000 •
.000 •
,000 •
.030 •
.000 •
.000 •
.000 •
.030 •
OAILT SimA
150


• 21
531
»36
•00

































HI
.000
.000
.000
.127
.218
.611
.000
.000
.210
.990
.523
.011
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000,
.000
.01)0
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

«H UIIC1IFS1
.HI CU.**r7EB (CU.FEET)
.00 C'lA'IS (UlS) •
.00 CIAM*; XLB1) •
.00 GRAMS (IBS) •
.00 GBAMS 
.00 GM1SUBS) <
• ,000 •'
• ;ooo •
• .000 «.
• .000 •
• .000 •
• .000 •
• .000 •
• .000 >
• .000 •
• .000 •
• .000 •
• • ,000 •
• .000 «
• .000 •
• .000 •
• .000 •
• .000 •
• .000 •
• .010 •
• .000 •
• .000 •
• .000 •
• .000 •
• .000 •
• .000 •
' .000 «
• .000 •
• ^ .000 "
• .000 •
• .000 •
• .000 •
• .000 «
• .000 •
• .000 •
• .000 •
• .000 •
• .000 •
• ,000 •
• .000 •
• .000 •
• .000 '
• .000 • '
• .000 •
1 .000 •
• .000 •
11.16 Ton!
.00 TOHS
2». 6n TONS
.00 TOM
.00 TOM
.00 Tons
•57.63»
M9.02ff
335.810
j»».m
305.230
328.25?
284.271
269. OK
276.16]
2«1.81T
270. 9« 3
177.317
270.760
276.668
t«1.66l
2H.906
H2.125
VTi.779
173.011
U7.18«
121. «OT
106.210
96.772
85.750
65.612
59.822
51.028
•5.186
It. MO
31.556
10.185
21.015
19. <9!
19.215
16.751
12.081
10.771
10.862
8.551
6.616
6.010
5.710
..Ml
1.680
3.575

D
•
•
>
•
•
1
•
•
1
•
•
• -
ff
•
•
ff
•
•
•
•
•
•
•
•
ff
«
•
•
•
t
•
•
•
•
•
•
•
•
•
•
»
•
ff
•

.O'JO •
.000 •
.000 «
.000 •
.000 •
.000 «
.000 •
.000 •
.003 •
.000 •
.000 •
'.000 •
.000 «
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 ••
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
,000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
,000 •

.033 •
.000 •
.000 •
.000 •
.030 '
.ooa •
.000 •
.000 •
.003 •
.000 •
.003 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.030 •
.000 •
.000 •
.000 •
.000 •
.000 •
.003 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.009 •
.000 •
.000 •
.000 •
.000 •
.003 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •
.000 •

-O.-J •
.ox- «
.03: •
.OTi »
.c:i •
. .1 • J •
.CM •
.0:0 •
.003 •
.OJ3 •
.000 •
.003 •
.003 •
.033 «
.003 •
.00) •
. .033 •
.003 »
.000 •
,.093 •
.000 •
.009 «.
.000 •
.030 •
.033 •
. .010 •
.003 •
.000 •
.003 *
.000 •
.000 •
.000 •
.000 •
.003 •
.009 •
.009 >
.031 «
.090 •
.000 •
.000 •
.003 •
.000 •
.003 •
.000 •
.000 '

1-100

-------
                                                 3UBMI«r OF LO*OI«CS BT  LAKDUSES
    COINtCGI
    COHIKEG2
    IIMEVIR
    IIAtr^KOA
    HAUC'IA
    HATEMfl
 1   HATEDAST
    H>YflCH
    WOOMSTBA

 li KOOOiStC
HUHOFr H3/HA
MIMMI1 INMEIVIOUl
217.310
247. 3<0
121.660
5U.29S
11.023
.000
8i.6i2
I8.0J3
.000
H5.55?
75.913
.000
U7.027
.000
135. 7<1
.000
.000
.000
.000
.000
.000
.000
8.19?
.000
.000
.000
.000
.000
.000
.000
,000
.000
SEDIMENT KG/HA 0«GA»ICS
KIHOtli 1HPEMIOUJ «0/H»
3313.171
2289^970
T93I».«37
.570
.000
6.677
.A99
.000
92.360
.000
512.269
.000
!ooo
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0001000
.0000000
.0000000
.0000000
.0000000
! 0000000
POLL'JTAHTS
2
.0000000
.0000000
.0001000
.0000000
.0010100
.0000100
.0001000
.0003000
.0000030
.0000000
.0000100
.ooofmio
.0000000
KG/HA
]
.0000000
.0301000
.0033030
.0000330
.0011130
.O100309
.0010130
.OJ03000
.0003330
.0030C10
.000000')
.5000000
.0333300
.C101300
.0101100
!cO'!cVj3
.0333333
.0031033
.C11V533
.'o3C3009
                                                 TOTAL IOAOIKGS BT UKOUSC3
    HA
    111
       EC1A
    HA ?
-------
                 PART II

CALIBRATION AND VERIFICATION OF THE MODEL
               V.  NOVOTNY
               M.  A.  CHIN
                 H.  TRAN
                 H-i

-------
                                  ABSTRACT
     Following calibration and verification of the model,  it can be stated
that LANDRUN is capable of reproducing field data for medium and large
storms with adequate accuracy for such parameters as runoff, sediment,
volatile suspended solids and absorbed phosphate.
                                  Il-ii

-------
                             CONTENTS - PART II
Title Page	Il-i
Abstract	Il-ii
Contents 	  II-iii
Figures	Il-iv

   II-l  Introduction	II-l
   II-2  Calibration Storms and Experimental Watersheds  	  II-2
   II-3  Calibration Input Data	II-4
           Data Sources	II-4
   II-4  Discussion of Calibration and Verification Results  	  II-6

References	II-7
Appendix
   II-A  Results of Calibration Runs	II-8
                                   II-iii

-------
                                   FIGURES
Number                                                                  Page

II-l      The calibration areas	II-3

II-A-1    Measured and simulated flow and suspended sediment at
          Noyes Creek for a storm on May 5,  1976	II-8

II-A-2    Measured and simulated volatile suspended solids and total-
          and absorbed-phosphate at Noyes Creek for a storm on May 5,
          1976	II-9

II-A-3    Measured and simulated flow and suspended sediment at
          Donges Bay Road for a storm on May 5, 1976	11-10

II-A-4    Measured and simulated total- and absorbed-phosphate
          at Donges Bay Road for a storm on May 5,  1976	11-11

II-A-5    Measured and simulated flow at Schoonmaker Creek for a
          storm on May 5, 1976	11-12

II-A-6    Measured and simulated flow at Noyes Creek for a storm
          on April 24, 1976	11-13

II-A-7    Measured and simulated flow at Donges Bay Road for a
          storm on April 24, 1976	11-14

II-A-8    Measured and simulated suspended sediment at Donges Bay
          Road for a storm on April 24, 1976	11-15

II-A-9    Measured and simulated flow at Schoonmaker Creek for a
          storm on April 24, 1976	11-16

II-A-10   Measured and simulated flow at Noyes Creek for a storm
          on May 15, 1976   	11-17

II-A-11   Measured and simulated suspended sediment at Noyes Creek
          for a storm on May 15, 1976	11-18

II-A-12   Measured and simulated flow at Donges Bay Road for a storm
          on May 15, 1976	11-19

II-A-13   Measured and simulated suspended sediment at Donges Bay
          Road for a storm on May 15, 1976	11-20

                                     Il-iv

-------
Number                                                                  Page

II-A-14  Measured and simulated volatile suspended solids at Donges
         Bay Road for a storm on May 15, 1976	   11-21

II-A-15  Measured and simulated flow at Schoonmaker Creek for a
         storm on May 15, 1976	   11-22

II-A-16  Measured and simulated suspended sediment at
         Schoonmaker Creek for a storm on May 15, 1976	   11-23

II-A-17  Measured and simulated volatile suspended solids at
         Schoonmaker Creek for a storm on May 15, 1976	   11-24

II-A-18  Measured and simulated total- and absorbed-phosphate at
         Schoonmaker Creek for a storm on May 15, 1976	   11-25
                                    II-v

-------
                             II-l.  INTRODUCTION
     Every mathematical model before it is used for production simulation
runs must be calibrated and verified to ensure that the results are
realistic and resemble the. real world situation.   Zven rfhen the structure
of the model reflects the real world system closely, many coefficients and
variables used to construct the model are statistical quantities, i.e., no
absolute values are known, only ranges are available.  The model is more
sensitive to a few important parameters, less sensitive to others.   From
experience with the LANDRUN model and some other similar models, e.g.,
SWMM (1), it was found that the overland flow models are sensitive to degree
of imperviousness connected directly to surface runoff, permeability and
depression and interception storage and for sediment modeling to the cover
factor, and slope of the subwatershed.  Other parameters once thought
important, do not show such marked effects on the output of the model.

     The procedure for calibration and verification is performed on several
(at least two) storm events for each of the calibration watersheds.  The
model should be calibrated on a medium intensity storm.  The process of
calibration starts with the hydrological response and is accomplished by
comparing simulated and measured values of the output.  The simulated
surface runoff volume can be adjusted by varying the soil permeability and
degree of impervious area directly connected to the channel.  The hydrograph
peak can be adjusted by varying the roughness factor of the surface
(horizontal adjustment) or slope.   The beginning of runoff can be adjusted
by varying the depression and interception storage.  After the hydrological
response of the model is calibrated the process of calibration proceed
the sediment and finally to the adsorbed pollutants.  It should be kept in
mind that the hydrology is already calibrated and should net be changed
while calibrating the sediment pollutant loadings.

     After the model is calibrated as close as possible on one storm event
it should be verified by simulating one or more additional storm events.
If the simulated hydrographs or pollutographs are close to the measured
ones,  the model is verified.  Very often this is not the case and the
process of calibration must be repeated until an acceptable fit of the
simulated and measured data is obtained.
                                     II-l

-------
            II-2.  CALIBRATION STORMS AND EXPERIMENTAL WATERSHEDS
     Three subwatersheds were selected for calibration of the model.  The
selection was based on availability of field data and on the character of
the land use pattern in the subwatershed (Fig. II-l).

     The Donges Bay Road station (463001) collects water quantity and
quality data for the Little Menomonee River.  The Watershed is mostly
rural but is slowly urbanizing.   The drainage area is 21.4 km2.

     The Noyes Creek station (413011) is located on a small (5.4 km2)
tributary of the Little Menomonee River.  The prevailing land use in the
Watershed is medium density residential.

     Schoonmaker Creek station (413010) is located in a small high-density
residential subwatershed with a drainage area of 2.0 km2.

     From the available field data, three storms provided adequate calibra-
tion data:

     a.  April 24, 1976 Storm—A medium intensity storm of long duration
preceded by 6 wet days.  The amount of rain varied between the stations.
Flow was measured at all three stations but only the Donges Bay Road
station measured quality.

     b.  May 5, 1976 Storm—A high intensity, short duration (flushing)
storm which followed 9 days of dry weather.  All three stations measured
flow and quality.

     c.  May 15, 1976 Storm—A storm of long duration and low intensity.

     Calibration of the model was performed on May 5 storm and verification
was achieved with April 24 and May 15 storms.
                                    II-2

-------
                        Donges Bay Road station
                        Land use:   Agricultural
                        Drainage area:   2,146  ha
                        Imperviousness:  5%
                           Noyes Creek station
                           Land use:  Developing residential
                           Drainage area:   543 ha
                           Imperviousness:   35%
                           Connected:  80%
                            Schoonmaker Creek station
                            Land use:  Residential
                            Drainage area:   201 ha
                             Imperviousness:   54%
                                   Connected:  61%
                           MILWAUKEE
                                0             5
10
                                        SCALE   KM
Fig.  II-l.   The  calibration areas.
                   II-3

-------
                        II-3.   CALIBRATION INPUT DATA
     The model requires dividing the Watershed into uniform areas based on
the land use and soil characteristics.   A land use with two different soil
types must be computed as two sub-areas.  For each sub-area the following
input parameters must be furnished:

     a.   Area description including:  Area as % of the total area; impervious-
ness; slope; Manning's roughness coefficients for pervious areas (default
0.025) and for impervious areas (default 0.012); depression and interception
storage values for pervious areas (default 0.65 cm) and for impervious
areas (default 0.16 cm); portion of  impervious areas directly connected to
the channel.

     b.   Soil data including:  Saturation permeability of A-horizon; satura-
tion permeability of B-horizon (default = A-horizon); porosity; 0.3 bar
moisture; 15 bar moisture; coefficient for Holtan infiltration equation (if
selected for use) and depth of A-horizon.

     c.   Erosion data including:  Soil erodibility coefficient; erosion
control practice coefficient; conservation practice coefficient.

     d.   Dust and dirt accumulation  data for urban areas including:  Dust
and dirt fallout; washout coefficient; sweeping efficiency; dust and dirt
composition.

     e.   Salting information during  winter including:  Percent of impervious
areas affected by salting; amount of salt applied during a snow storm; and
salt composition.

     f.   Meteorological data including:  Temperature; evaporation; rain data;
rain contamination.

     The above is a complete list of the variables needed to successfully run
the model.  Many variables have default values, i.e. a value which is sub-
stituted by the model if the information is not furnished.  The default values
are based on the literature or on experience with other models.
                                Data Sources
     The land use data and surface characteristics were obtained from the
Southeastern Wisconsin Regional Planning Commission (SEWRPC).   Most of the
information on soil characteristics was taken from U.S. Department of
Agriculture soil maps.  Additional information was obtained from University
                                    II-4

-------
of Wisconsin sources.

     Dust and dirt data were obtained initially from the Chicago study on
pollution from urban areas  (2).  These data did not accurately reflect
pollution loads in the upper part of the Watershed and had to be assigned
according to monitored field data.

     Meteorological data for each storm were based on information from the
U.S. Weather Bureau at Mitchell Field, Milwaukee, with the exception of rain
data which was furnished by the U.S. Geological Survey rain gauges located
near or at the water quantity and quality monitoring stations.
                                    II-5

-------
          II-4.  DISCUSSION OF CALIBRATION AND VERIFICATION RESULTS
     The results of the calibration runs are shown in Appendix A.   The LANDRUN
model was calibrated and debugged for runoff (hydrology),  sediment transport,
dust and dirt, volatile suspended solids, and the soil and dust and dirt
absorbed pollutants.

     The outputs for the April 24 and May 5 storms adequately follow the
measured data for all three stations.  The May 5 storm was the main calibra-
tion storm.   Difficulties were encountered with the May 15 storm at the
Noyes Creek station where the hydrograph seems to be shifted by 2  hr.   This
time error seems to be unlikely for such a relatively small watershed and was
probably caused by a defective timer in the monitoring system.

     The output in urban areas is most sensitive to the assigned variable
which characterizes the portion of impervious areas not directly connected
with the channel.   This fraction of impervious areas includes rooftops
draining into subsurface systems, flow from impervious areas overflowing onto
surrounding pervious areas, etc.  From the model outputs,  it has been
estimated that only a portion of the impervious areas in the Noyes and
Schoonmaker Creek subwatersheds is connected directly to surface runoff.
Also, this parameter obviously affects the amount of pollutants washed off
from impervious areas.

     In conclusion, it can be stated that the LANDRUN model is capable of
reproducing field data for medium and large storms with adequate accuracy
for such parameters as runoff, sediment, volatile suspended solids and
absorbed phosphate.
                                     II-6

-------
                               REFERENCES - II
1.   Heaney, J.  P.  and W.  C.  Huber.   Storm Water Management Model:
    Refinements,  Testing and Decision-making.  Dept. of Environ. Engineer.
    Sciences,  University of Florida, Gainesville, Florida.  1973.

2.   American Public Works Association.   Water Pollution Aspect of Urban
    Runoff. Water Pollution Control Research Journal WP-20-15, Washington,
    D. C.   1969.
                                     II-7

-------
           APPENDIX A.   RESULTS OF CALIBRATION RUNS
M
fi
4J
•H
W
 o
 cu
 en
 o
   2.0 -
 6  1.0.
        15    16
                            Measured

                            Simulated
                                        Sediment

                                        O o   Measured

                                        	  Simulated
                                                                   2000
                                                                        a
                                                                        a)
                                                                        CO

                                                                        60
                                               L.1000

-------
8 S  2
   &• OQ

fu rt
•<; o  H
   rt M
l_n 113  I
   CL
      3
   B3  (D
   cr tu
   en  CD
   O  q:
   i-l  )-!
   a4 m
   m  a-
   a.
   I  03
   o
   en  en
   •a  H-
   rr 3
   (S3  C
   rt  M
   (D  63
      rt
   P3  (D
   2! <
   O  O
   v<3  M
   ro  &3
   en  rt
      H-
   n H
   rt>  en
   !V C
      en
   HI is
   o  ro
   H  3
      &.
   03  fO
      a.
   en
   rt en
   O  O
Phosphate,  g/sec
Volatile  suspended  solids, g/sec
                              o  o
                             _l_
                                                          o
                                                          o
                                            K>
                                            o
                                            o
      Cu
      en

-------
I
M
O
                     10  .
                      5  -
    0.5-
                      0.4-
                      0.3-
                     0.2-
                     0.1-
                        12
Fig.  II-A-3.
                                    16
                                                                                   Flow

                                                                                     -|	(-   Measured

                                                                                            Simulated
                                                                                                         500
                                                         \
                                           — -" —
                                                lo
                                                                 \
                                                                   «
                                                                O
                               1	1	1	1	I	1	1	1	1	T
                                               20
                                        T
                                         24
                                                                 Sediment

                                                                   O  Measured

                                                                 __ __ Simulated
                                                                               —O	O  —
T
12
I - 1
  16
                                                                                                                           600
                                                                                                                         - 100
                                                                                                                    20
                                                                         Time
                                        May 5                                              May 6

                               Measured and  simulated flow and suspended sediment at Donges Bay Road for a  storm on May  5,  1976.

-------
      0.6 -
      0.5 -
0.4 -i
   tn

   60
   01
   4->
H  a
   o, 0.3
      0.2 _
      0.1 -
        0
             T	1	T
                                                                     Measured
                                                                     O   Total
                                                                     X   Absorbed  PO^
                                                                          Simulated total P0i+
                             T—r
                                     T—I—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r
      14   16    18    20   22    24     2     4      68    10     12     14    16    18   20    22

                                                  Time
                    May 5                                                  May  6

Fig. II-A-4.  Measured and simulated total- and absorbed-phosphate at Donges  Bay Road for a  storm
on May 5, 1976.

-------
      40 -i
C H

-------
   10
                                                   Measured  + +• + 4-
     24
1
8
[
12
1
16
20
1
24
1
4
8
12
1
16
20
                                     Time
                     April 24
April 25
Fig.  II-A-6.   Measured and simulated flow at Noyes Creek for a storm on
April 24, 1976.
                                   11-13

-------
                                                       A0'2 = 1.57 days
                                               April 25
Fig. III-A-7.  Measured and simulated flow at Donges Bay Road
for a storm on April 24, 1976.
                             11-14

-------
o

-------
H
M
                                                                                                      Measured


                                                                                                -)-     Simulated
                      22    24     —     -r     \j     «_»    j-w    j-i.    j_i-f    iL)    xo     ^/y    ^^    ^/^
                                                                       Time                              z      *
                                                            April 24                                    April 25

                       Fig. II-A-9.   Measured and simulated flow at  Schoonmaker Creek for  a  storm on April 24, 1976.

-------
                                                                                   Simulated
                                                                                   Measured
               9    10    11   12     13     14    15     16    17    18    19    20    21   22    23
                                                                                                    24    1
                                                        Time
Fig.  II-A-10.   Measured and simulated flow at Noyes Creek for a storm on May 15, 1976.

-------
        300 -
    o
    (!)
    w
    g


    •H
    <3J
        200 -
00
        100 -
___  Simulated



O    Measured USGS



•    Measured DNR
                                                           Time



             Fig. II-A-11.  Measured and simulated suspended sediment at Noyes Creek  for  a storm

                            on May 15, 1976.

-------
     0.6-
     0.5-
     0.4-
     0.3'
     0.2-
     0.1-
                          Simulated


                          Measured
                    r
                   12
                         15
                               18
                                     21   24
  I
 9
Time
                                                                 12
T
15
T
18
 [
21
                 24
                             Hay 15                                       May 16

Fig.  II-A-12.   Measured and simulated flow at Donges Bay Road for a storm on May  15,  1976.

-------
i
S3
o
         o
         QJ
         CD

         60
         C
         QJ
        0)
        CO
0)
             120-
             100"
              80-
              60-
              40_
              20-
                                                               Dust  and  dirt  fallout 0.4 Tonnes/km2/day
                                                                           O   Measured USGS


                                                                           •   Measured DNR


                                                                          —— Simulated
                                  May 15
                                                                 May  16
                 Fig.  II-A-13.  Measured  and  simulated suspended sediment at Donges Bay Road
                 for a storm on May  15, 1976.

-------
  OQ
   >
ON
   2
   (D
   Pi
   CD

   l-t
   ro
   §
   CO
   H-
   ro
   a-
   O
   h->
   &>
   CO
   C
   CO
  Tl
   0)
   3
   a-
   m
   a.

   CO
   o
   i-1
   H-
   P.
   CO
   a
   o
   a
  OQ
   (D
   CO

   w
  Hi
  o
  CO
  It
  o
  l-i


  o
                                                   T3-II


                                      Volatile suspended  solids,  g/sec
                            O
                              I
                                                                00
                                                                o
                                                                  o
                                                                  o
K3
o
   00
              M
              o
-i.  C^ •*
   00
       I
              00

-------
                              10  -
I
ro
K3
                        •n e
                          E
                        C
                             1.0  -
                             0.5  -
                           Fig. II-A-15.  Measured and simulated flow at Schoonmaker  Creek  for  a  storm on May 15, 1976.

-------
                                               £3-11
                                   Suspended sediment,  g/sec
                                              o
                                              o
                                                                             O
                                                                             O
O  >TJ
3  H-
  cro
        00
ON
   3
   (D
   B3
   cn
   e
   a.

   CD
   H-
   B
   C
   CD
   c
   05
  13
   (D
fD
0.

CD   H
2   H-
O-  3
   i
   O
   O
   3
   n>
   i-t

   n
   i-t
   fD
   ro
   7?
   CD
   ct
   o
      ro
           CO
                 >


                 )
3
C
M
»
rt
(D
                                                            m
                                                            1"
                                                            CD
                                                            c
                                                            I-t
                                                              PC
2
fD
pi
cn
C
l-(
(D
a.
                                                                   o
                                                                   CO
                                                                               CD
          fu
          a-
          a.
          H-
          i-!
                                                                            o
                                                                            C
H
O

§
fD
CD
                                                                              •5

-------
                                 Volatile  suspended  solids, g/sec
                                                                         o

                                                                         _J_
 o

_J
re
CD
3
o.
n>
a.
•a

§
a.
m
a.

01
o
a
to
 rr
 o
 o
 3
        ho

        O '

-------
I
K3
Ul
o
OJ
U)

GO


0)
          ex
          CO
          o
              0.2  -
              0.1  -
                                    I
                                   10
                                                                                   X   Total

                                                                                       Absorbed


                                                                                       Simulated
                               11
 I
12
 I
13
                                                          14
 I
15
    I
   16

Time
I
17
                                                                        18   19
20   21
22
 T
23
 I
24
          Fig.  II-A-18.   Measured and  simulated total- and absorbed-phosphate at Schoonmaker  Creek for a storm on
          May  15,  1976.

-------
                                   TECHNICAL REPORT DATA
                            (Please read Instructions on the reverse before completing)
 1. REPORT NO.
 EPA-905/4-79-029D
                                    3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
 Description and Calibration
 Model-Landrun Volume iv
      of  a  Pollutant Loading
                                                           5. REPORT DATE
                                                            December 1979
                                                            6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)

 V.  Novotny,  M.A. Chin and  H.  Iran
                                    8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS

 Wisconsin  Department of Natural  Resources
 P.O.  Box  7921.  *
 Madison,  Wisconsin  53701
                                    10. PROGRAM ELEMENT NO.

                                    A42B2A
                                    11. CONTRACT/GRANT NO.
                                                             R005142
12. SPONSORING AGENCY NAME AND ADDRESS
 Great  Lakes  National Program  Office
 U.S. Environmental Protection Agency
 536 South  Clark Street, Region V
 Chicago.  Illinois 60605
                                    13. TYPE OF REPORT AND PERIOD COVERED
                                      Final Report  1974-1978
                                    14. SPONSORING AGENCY CODE
                                     U.S. EPA-GLNPO
15. SUPPLEMENTARY NOTES  University of Wisconsin System Water Resources  Center and
 Southeastern Wisconsin Regional  Planning Commission
16. ABSTRACT                                                      "	'	'	'	
 This  project was in support  of the U.S./Canada  Great Lakes Water  Quality Agreement.
 The objectives are described under the reference-Pollution from Land  Use Activities
 Reference  Group (PLUARG).  This work was done under Task C of the work plan.
 "Landrun"  represents a method  of analysis to estimate and control  the quantity
 and quality of runoff and surface erosion from  watershed areas in different
 land  uses.   Following calibration and verification  of the model,  it can be
 stated  that LANDRUN is capable of reproducing field data for medium and large
 storms  with adequate accuracy  for such parameters as runoff, sediment, valatile
 suspended  solids and absorbed  phosphate.
 7.
                                KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                                              b.lDENTIFIERS/OPEN ENDED TERMS  C.  COS AT I Field/Group
 Rain  Data
 Erosion
 Hydrograph  method
 Soil  texture
 Agricultural lands
 Sediment
Model
Transport
 8. DISTRIBUTION STATEMENT
Document is available to the public
through the National  Technical  Information
Qoru-iro  ^pyinqfipld. VA  22161	
                                               19. SECURITY CLASS (ThisReport)
                                                  21. NO. OF PAGES
                                                    144
                                               20. SECURITY CLASS (Thispage)
                                                  22. PRICE
EPA Form 2220.1 (R«v. 4-77)   PREVIOUS EDITION is OBSOLETE
                                                                   Governrient Printing Office  1983  750-803

-------