-------
Table 1-1. Soil texture, representative particle size composition and
mean diameters
Textural class (USDA)
(1)
Sand
Loamy sand
Sandy clay loam
Sandy loam
Sandy clay
Loam
Clay loam
Clay (fine)
Silt loam
Silty clay loam
Clay (very fine)
Silt
Silty clay
Sand, %
(2)
95
83
58
55
52
40
33
(a) 40
(b) 25
(c) 10
(a) 34
(b) 22
(c) 7
10
(a) 22
(b) 10
(c) 1
5
6
Silt, %
(3)
3
10
15
25
6
40
33
10
25
40
53
65
80
55
1
13
22
90
47
Clay, %
(4)
2
7
27
10
42
20
34
50
50
50
13
13
13
35
77
77
77
5
47
Mean diameter, mm
(5)
0.285
0.250
0.176
0.167
0.157
0.124
0.103
0.122
0.0785
0.035
0.107
0.0726
0.029
0.0362
0.067
0.0328
0.007
0.0240
0.0236
Note: b describes central point; a and c describe the range.
1-17
-------
I
(-
00
Textural Class
USDA-SCS
Sand
Loamy Sand
Sandy Clay Loam
Sandy Loam
Sandy Clay
Loam
Clay Loam
Clay (Fine)
Silt Loam
Silty Clay Loam
Clay (Very Fine)
Silt
Silty Clay
Mean Particle
Diameter, mm
1.0
0.285
0.250
0.176
0. 167
0.157
0.124
0.103
0.0785
0.0726
0.0362
0.0328
0.0240
0.0236
w
a
He
41
S
0.6 -
0.3 -
o.oi
0.006-
0.003-
0.001-
Soils with high exchangeable
sodium percent, highly dispersed
swelling clays.
Theoretical
as function
size.
Puddled soils, poor
structure, highly
compacted.
permeability
of particle
I
' ^ Soils wit!
good struc-
ture, highly
flocculated
due to high
C ++ organic
matter, iron
oxides, non-
compacted,
non-swelling
clays.
0.01
0.03 0.06 0.1 ,, 0.3 0.6 1.0
m/day
10
1 '
04.
1 1 M|
0.
1
I ' 1
0.
4
'" '1
1.
0
i i |
4
' " '1
10.
0
i i |
4(
cm/hr
Fig. 1-6. Relationship between soil permeability and soil texture.
-------
50 -I
40 _
10
0.002
Particle Diameter, mm
OJ CD
c o
H ^J
ctj C C G
O crj nj crj
nJ CO co co
6 -0
M C
O CO
Fig. 1-7. Soil moisture characteristics.
-------
where
ET is evapotranspiration
KU is crop-use coefficient which reflects the growth of the crops.
Average values of KU for a variety of crops are presented in Table 1-2.
Evapotranspiration rate is a primary factor determining water loss of the
rainfall-runoff balance. The water lost by infiltration is only a temporal loss
since most of the groundwater runoff eventually appears on the surface as base
flow. The evapotranspiration lost is considered permanent in all watershed
models. Water lost by evaporation has no salinity, therefore it may cause salt
build-up in the soil if the leaching rate is not sufficient to remove the excess
salt from the soil.
Excess rain from impervious areas
Infiltration and interception storage for impervious areas are zero. Only
depression storage is available to prevent runoff from impervious areas. How-
ever, only a fraction of impervious areas which are directly connected with
stream channels will contribute to surface runoff. Rock outcrops, buildings,
or roads that are so located that runoff from them must flow over soil or drain
into the soil should not be counted as impervious areas.
A parameter DC is used by the model to assign a fraction of the imper-
vious area within the subwatershed which is not directly connected to the
channel. The runoff from this portion is assumed to overflow onto adjacent
pervious areas. Fig. 1-8 shows an approximate relationship of DC to the portion
of the area of a subwatershed that is impervious.
Overland Flow Routing
After all losses are satisfied, excess rain is routed towards the water-
shed outlet and becomes the surface runoff. Chow and Kulandaiswamy (14) state
that most of the hydrological models, which were developed for certain specific
hydrologic problems, can be considered a special case of a general hydrologic
process if the phenomenon is analyzed by a systems approach. All major hydro-
logical problems (and similarly, water quality problems) are described by the
equation of continuity, which in the most general form is:
(Flow in) - (Flow out) = dS/dt Eq. (33)
where
S is the storage of water in the system.
The second basic equation of hydrology and hydraulics is the equation of motion
based on Newton's Second Law. For most of the overland and channel flow prob-
lems the continuity equation and equation of motion can be expressed in the
1-20
-------
Table 1-2. Crop use coefficients for evaporation-index method
Average
Crop
Jan.
Feb.
Mar.
Apr.
Perennial
Alfalfa
Grass pasture
Grapes
Citrus orchards
Deciduous orchards
Sugar cane
0.83
1.16
0.58
0.65
0.90
1.23
0.53
0.50
0.96
1.19
0.15
0.65
0.80
1.02
1.09
0.50
0.74
0.60
1.17
May
Crops
1.08
0.95
0.80
0.73
0.80
1.21
KU values at
Crop
0
10
20
30
40
KU values by month
June
(Northern
1.14
0.83
0.70
0.70
0.90
1.22
listed %
50
July Aug.
Hemisphere)
1.20 1.25
0.79 0.80
0.45
0.81 0.96
0.90 0.80
1.23 1.24
Sept.
1.22
0.91
1.08
0.50
1.26
Oct.
1.18
0.91
1.03
0.20
1.27
Nov.
1.12
0.83
0.82
0.20
1.28
Dec.
'0.86
0.69
0.65
0.80
of growing season
60 70
80
90
100
Annual Crops
Field corn
Grain sorghum
Winter wheat*
Cotton
Sugar beets
Cantaloupes
Potatoes (Irish)
Papago peas
Beans
Rice**
0.45
0.30
1.08
0.40
0.30
0.30
0.30
0.30
0.30
1.00
0.51
0.40
1.19
0.45
0.35
0.30
0.40
0.40
0.35
1.06
0.58
0.65
1.29
0.56
0.41
0.32
0.62
0.66
0.58
1.13
0.66
0.90
1.35
0.76
0.56
0.35
0.87
0.89
1.05
1.24
0.75
1.10
1.40
1.00
0.73
0.46
1.06
1.04
1.07
1.38
0.85
1.20
1.38
1.14
0.90
0.70
1.24
1.16
0.94
1.55
0.96 1.08
1.10 0.95
1.36 1.23
1.19 1.11
1.08 1.26
1.05 1.22
1.40 1.50
1.26 1.25
0.80 0.66
1.58 1.57
1.20
0.80
1.10
0.83
1.44
1.13
1.50
0.63
0.53
1.47
1.08
0.65
0.75
0.58
1.30
0.82
1.40
0.28
0.43
1.27
0.70
0.50
0.40
0.40
1.10
0.44
1.26
0.16
0.36
1.00
*Data given only for springtime season of 70 days prior to harvest (after last frost) .
**Evapotranspiration only.
(Reprinted from David and Sorensen (12) with permission of McGraw-Hill, Co., New York.)
-------
1.0
0.8
o
U
O
n)
Pn
u
Q
0.6
0.4
\
0.2
\
\
\
0 20 40 60 80
Total Impervious Area, %
100
Fig. 1-8. Fractionof impervious areas not connected directly
to a channel (13) .
1-22
-------
kinematic wave form:
fr + H= qiand Q = aym Eq- (34)
where
A is the wetted cross-sectional area of flow
Q is discharge
q£ is the lateral inflow or distributed inflow rate
y is depth of flow or stage
x is flow ordinate or direction
The above differential equations are non-linear and may be solved numerically or
by a systems analysis approach. It has been shown (15, 16, 17) that the kine-
matic wave approximation may be applied to overland flow and to channels and
streams of various discharge rates provided that the Froude number F is < 2.0.
Using the systems analysis approach, runoff can be considered as a res-
ponse of the watershed system to the precipitation input. Similarly, downstream
flow is a response of the channel system to an upstream and/or lateral flow
input. The input-output relationship for a linear system can be expressed by
the following convolution integral:
rt
Y(t) = h(y)X(t - Y)dY E1' (35)
where h(y) is the ordinate of the transform function and
Y is the lag time
The transform function of the system is the system response to a unit pulse
input, which in the case of watershed hydrology, would be a runoff response to
a short duration unit volume excess rain input. A function of this type was
first proposed by Sherman (18) and is known as the Unit Hydrograph Method (Fig.
I--9) . The major drawback of the above input-output relationship is the assump-
tion of linearity. It means that the exponent m in Eq. (35) would have to be
close to unity. It also implies that the response of a watershed would be similar
to all rains with the same duration regardless of the rain intensity. The prin-
ciple of linearity has long been questioned. Horton (19) and Izzard (20) showed
the dependence of the Unit Hydrograph function on the intensity of the excess
rainfall. This deficiency of the Unit Hydrograph Method was overcome by assum-
ing a non-linear system (21 or 22) for which the input-output relationship be-
comes : t
Y(t) = X(t - Y) h(X(t - Y); Y) dY Eq. (36)
J o
The routing is performed separately for pervious and impervious areas. After
excess rain has been determined all pervious areas are lumped together, rain is
1-23
-------
tt-I
Excess Rain
H
H-
(D
00
H
S
S
H
O
OQ
B
ro
Unit Hydrograph
(TO
H
H-
3
1-1
0>
(1)
O
Cu
Runoff
-------
averaged over the entire area (AVERA = average rain), contributing areas are
determined and an average unit hydrograph is computed according to the average
characteristics of the contributing areas (H is the hydrograph for pervious
contributing areas).
The hydrograph is also determined for impervious areas (HIM is the
graph for impervious areas) and runoff from impervious areas is routed sepa-
rately.
Instantaneous unit hydrograph
A watershed behaves like a retention system which can be represented by
several basins in a series. Nash (23) proposed a model consisting of a cascade
of n identical reservoirs for which:
* '"'-I ^
in which K is the reservoir constant, and F (n) is the gamma function on n.
n
If n approaches 1.0 the above hydrograph function can be replaced by a
single reservoir model given by
h(t) = e-tK Eq. (38)
K
where K is the reservoir constant. Both constants can be related to the time
of travel of the water from the most remote point on the watershed to the water-
shed outlet. On the runoff hydrograph this time represents the time distance,
t , between the centre id of the rain pulse and the peak of the hydrograph (Fig.
1-9). Then according to Rao, Delleur and Sarma (24):
t = K = n x K^ Eq. (39)
By numerically solving the kinematic wave equations for the overland flow
portion of the rainfall-runoff transformation, Henderson and Wooding (17)
developed an equation for t which converted to metric units is:
t = 6.9
T 0. 6 nO. 6 T7 // n\
L % Eq. (40)
- -
.i* S0.3
where t is the peak lag time in minutes
L is length of the overland flow in meters
i is rain intensity in mm/hour
S is slope in m/m
n is the Manning roughness factor
1-25
-------
An almost identical formula was independently published by Morgali and Linsley
(16). Table 1-3 reports Manning's roughness factor for the overland flow.
Rao, Delleur and Sarma (24) statistically analyzed the hydrograph curves
for several urbanizing watersheds. The authors analyzed the effect of many
variables on the shape of the runoff hydrograph. Only statistically signifi-
cant variables were included in their formulae. Based on the above investiga-
tion, t and n can be estimated as follows:
(AW)0.458(TR)0.104
S = 3 n j. m1'662/ x°'269
p (1 + U) (i) Eq. (41)
and
2.64 (AW)0-069
n ' (1 + U) x (1)0.155 Eq. (42)
where t is lag time in hours
AW is watershed area in km2
i is the rain intensity in mm/hour
U is the fraction of impervious areas contained in the total watershed
area
TR is rain duration in hours
The user of the program has an option to use either kinematic wave routing or
the empirical formula of Rao, Delleur and Sarma (24). The option selection is
again controlled by ISWITCH(3).
Soil Washload
Washload is a part of the total sediment load and contains most of the
fine particles. Some of the nutrients and pollutants can be adsorbed readily
on fine soil particles and be carried by them to the receiving body of water.
In addition, sediment itself is a serious pollutant of waterways. The wash-
load magnitude can be related to the available supply of solid particles in the
watershed. Washload is usually caused by land erosion and is defined as that
part of the sediment load which is composed of particles smaller than those
found in appreciable quantities in the shifting portion of the streambed
(American Geophysical Union definition). The bedload portion is composed mostly
of larger particlessand and gravelwhich originates from gulley and river
bank erosion. It does not possess the high adsorptive capacity of clay and
fine soil particles and may not be a significant nutrient or pollutant carrier.
Due to the nature of the process, the sediment washload can be estimated
only roughly using an empirical model. Presently, the best known and most used
models are:
1-26
-------
Table 1-3. Typical values of the Manning's rough-
ness factor for overland flow (25)
Manning's n,, for
Ground cover overland flow
Smooth asphalt 0.012
Street pavement 0.013
Asphalt or concrete paving 0.014
Packed clay 0.03
Light turf 0.20
Dense turf 0.35
Dense shrubbery or forest
litter 0.40
1-27
-------
1. The Universal Soil Loss Equation (26,27) developed by analyzing
field data from agricultural experimental lots, and
2. A method which uses sediment rating curves applied mainly in
hydrology.
The sediment rating does not account for the effective component of the pre-
cipitation.
The universal soil loss equation
The Universal Soil Loss Equation (USLE) is useful for predicting soil
losses. According to Wischmeier and Smith (27), the primary purpose of the
soil-loss prediction is to provide specific and reliable guides to help select
adequate soil and water conservation practices for farms. The procedure may be
used for predicting sediment yield.
The USLE, though developed for areas east of the Rocky Mountains, has in
fact been applied to the entire United States and to urban areas.
The USLE is written:
A = (R) (K) (LS) (C) (P) Eq. (43)
where A is the computed soil loss in tons/ha for a given storm
R is the rainfall factor
K is the soil erodibility factor
LS is the slope length gradient factor
C is the cropping management factor
P is the erosion control practice factor
The equation as quoted above expresses the area soil loss due to erosion by rain.
It does not include wind erosion and it does not give a direct sediment content
of the runoff at the outlet point. The soil loss must be multiplied by a deliv-
ery ratio factor (DR) to account for resettling of the particulate matter after
or during the overland flow.
Thus,
AR = (DR) (A) Eq. (44)
where AR is the runoff of sediment at the outlet point.
1-28
-------
Rainfall factor, R
The rainfall factor, R, reflects the energy of the rain droplet falling
on the surface and detaching soil particles available for pick-up by surface
water runoff, during periods of overland flow. For a single storm it was
defined by Wischmeier and Smith (27) as follows:
Rr = Eq. (45)
in which E is total kinetic energy
I is the maximum 30 min rainfall intensity of the storm (cm/hr) .
The kinetic energy of rain is a logarithmic function of the rainfall intensity.
After conversion into SI units the rainfall factor becomes:
R = El = I [(2.29 + 1.15 log Xi)Di] I Eq. (46)
where X. is rainfall intensity in cm/hr
i is the rainfall hyetograph time interval
D. is rainfall during time interval i
The fact that both rain energy and detachment of soil particles by runoff con-
tribute to soil loss has long been recognized and has led to some reservations
about the USLE. Williams (28) developed a sheet erosion factor which related
R to the runoff hydrograph characteristics. Foster, Meyer and Onstad (29) com-
bined the original rainfall factor with Williams' (28) sheet erosion factor by
the equation:
R = aR + bcQq1/3 Eq. (47)
where a and b are weighting parameters (a + b = 1.0)
c is an equality coefficient
R is the rainfall factor
r
Q is the runoff volume in cm
q is maximal runoff rate in cm/hr
The weighting factor compares the relative amounts of erosion by rainfall and
runoff under unit conditions. Free, Onstad and Holtan (30) have indicated that
the detachment of particles by runoff and rain energy is almost evenly divided
(i.e., a = b = 0.5). The equality coefficient in SI units is 19.26. Substitu-
ting the values-of a, b, and c into the USLE, the equation for the rainfall
factor becomes:
R = 0.5R + 9.63 QqT/3 Eq. (48)
1-29
-------
As indicated by the authors, the coefficients a, b, and c must be used with
caution since they can change from storm to storm and watershed to watershed.
The above equation is approximated by LANDRUN as follows:
RIX = (RI + RISM) * (1 - PACK) Eq. (49)
where
RIX is the rainfall factor R
RISM is 4.30 (ANRAIN(LA) * SAMP * ABS(RISMX) ** 0.333)
RI is (1.21 + 0.51 * log (ZRAIN))*(ZRAIN * SAMP * RAINMX) * 0.5
where RI approximates the effect of rain energy on sediment erosion
RISMX approximates the maximum runoff rate for sheet erosion
RISM is the sheet erosion effect due to runoff
ZRAIN is rainfall intensity during the sampling interval
SAMP is the sampling interval
RAINMX is the maximum 30 min rainfall intensity.
Soil factor, K
The soil factor is a measure of the potential erodibility of a soil and
has units of tons/unit of the erosion index. The soil erodibility nomograph
shown on Fig. 1-10 is used to find the value once five soil parameters have been
estimated. These are: % silt plus very fine sand (0.05 to 0.1 mm), % sand >
0.1 mm, organic matter content, structure, and permeability. Table 1-4 lists
soil factor values as suggested or determined by Wischmeier and Smith (27).
Slope-length factor, LS
The slope-length-gradient ratio is a function of runoff length and slope
and is given by the following equation:
LS = L1/2 (0.0138 + 0.00974 S + 0.00138 S2 Eq. (50)
where L is the length from the point of origin of overland flow to the point
where the slope decreases to the extent that deposition begins or to
the point at which runoff enters a defined channel and is expressed in
meters.
S is the average percent slope over the given runoff length.
If the average percent slope is used in calculating the LS factor, the predicted
1-30
-------
a
c
CO
en
a;
c
01
+
0)
CM
Soil Structure
1-Very Fine Granular
2-Fine Granular
3-Med. or Coarse Granular
4-Blocky, Platy or
Massive
Permeability
6-Very Slow
5-S low
4-Slow to Mod.
3-Moderate
2-Mod. to Rapid
1-Rapid
100
Fig. 1-10. Determination of soil K factor.
-------
Table 1-4. Computed K values for soils (27)*
Computed k tons/ha
Soil rainfall energy unit
Dunkirk silt loam 0.69
Keene silt loam 0.48
Shelby loam 0.41
Flodi loam 0.39
Fayette silt loam 0.39
Cecil sandy clay loam 0.36
Marshall silt loam 0.33
Ide silt loam 0.33
Mansic clay loam 0.32
Hagerstown silty clay loam 0.31
Austin clay 0.29
Mexico silt loam 0.28
Honesye silt loam 0.28
Cecil sandy loam 0.28
Ontario loam 0.28
Cecil sandy clay loam 0.26
Cecil sandy loam 0.23
Zaneis fine sandy loam 0.22
Tifton loamy sand 0.10
Freehold loamy sand 0.08
Bath flaggy silt loam with
surface stones > 5 cm removed 0.05
Albia gravelly loam 0.03
*Reprinted with permission of U.S. Department of Agriculture,
1-32
-------
erosion will be different from the actual erosion when the slope is not uniform.
The equation for LS factor shows that when the actual slope is convex the
average slope predicted will underestimate the total erosion, whereas for a
concave slope, the prediction equation will overestimate the actual erosion.
If possible, to minimize these errors, large eroding sites should be broken up
into areas of fairly uniform slopes.
Cropping management factor, C
The cropping management factor estimates the effects of the ground cover
condition of the soil and the general management practice of the area of con-
cern. For urban areas the C factor is referred to as the cover factor (31).
The areas with continuous fallow ground, which is defined as land that has been
filled and kept free of vegetation and surface crusting, are assumed to have a
C-factor of 1. Values for the cropping management factor are given in Table
1-5 (31).
Erosion control practice factor, P
The P-factor accounts for the erosion-control effectiveness of various
practices such as contouring, terracing, compacting, sedimentation basins and
control structures.
Terracing does not affect the P factor because soil loss reduction from
terracing is reflected by changes in the LS factor. Values of the factor P,
for various farm erosion control practices, are given in Table 1-6, and those
for urban erosion control are presented in Table 1-7. The sediment liberated
by rain and runoff on pervious areas is summed up and routed by the corre-
sponding unit hydrograph for pervious areas.
The sediment can carry adsorbed pollutants. If organic materials (ORGC)
and adsorbed pollutant fractions of the sediment (AP7 and AP2) are known they
will be routed in the same way as the sediment.
Sediment Washout From Urban Impervious Areas
In urban areas a substantial part of the sediment washload consists of
dust and dirt particles from deposits on streets, gutters and other impervious
areas. The pollutants accumulated on the urban land surface originate from air
pollution particulates from coal-burning industrial and household furnaces,
wastes and dirt from construction and renovation, residues from automobile
exhausts and tires, solid waste deposits by individuals or dropped by col-
lection vehicles or scattered by animals. These particulate pollutants, which
contain a substantial amount of nutrients, generally are classified into one of
the following categories of street litter: rags, paper, dust and dirt, vegeta-
tion and inorganics. The major portion of the street litter comes from dust
and dirt fallout except during the fall season when vegetation is dominant. The
1-33
-------
Table 1-5. C-values and slope length limits for no seeding or for first 6
weeks of growing period (31)
Type of
seeding*
None
None
None
None
Temporary
(grain or
fast grow-
ing grass)
Permanent
seeding,
second
year
Sod
Type and amount
of mulch, Tonnes/ha
None
Straw or hay 2
tied down by
anchoring** with
tracking equip- 3
ment used on
slope
4
Crushed stone 270
480
Wood chips 14
24
50
None
Straw 2
3
4
Stone 270
48
Wood chips 14
24
50
Slope,
%
All
< 5
6 to
< 5
6 to
< 5
6 to
11 to
16 to
21 to
26 to
< 15
16 to
21 to
34 to
< 20
21 to
< 15
16 to
< 15
16 to
21 to
< 15
16 to
21 to
Maximum
C-value length, m
1.0
0.20
10 0.20
0.12
10 0.12
0.06
10 0.06
15 0.07
20 0.11
25 0.14
50 0.18
0.05
20 0.05
33 0.05
50 0.05
0.02
33 0.02
0.08
20 0.08
0.05
20 0.05
33 0.05
0.02
20 0.02
33 0.02
+ -H-
0.70 0.10
0.20 0.07
0.12 0.05
* 0.05
0.05 0.05
0.02 0.02
0.08 0.05
0.05 0.02
0.02 0.02
0.01
0.01 0.01
61.0
30.5
91.5
45.8
122
61.0
45.8
30.5
27.9
10.7
61.0
45.8
30.5
27.9
91.5
61.0
27.9
15.3
45.8
30.5
2"7.9
61.0
45.8
30.5
*If seeding is in late fall these values will extend into following spring.
**If straw is not anchored to soil, rilling may occur beneath mulch. C-values
on moderate or steep slopes with K > 0.3 should be doubled.
Through first 6 weeks of growing period.
After 6 weeks of growing period.
Use values for no seeding for appropriate slope steepness.
1-34
-------
Table 1-6. Conservation practice factor P for agricultural lands (27)
Slope, %
1.1 to 2.0
2.1 to 7.0
7.1 to 12.0
12.1 to 18.0
18.1 to 24.0
> 24.0
Contouring
0.6
0.5
0.6
0.8
0.9
1.0
Contour strip cropping,
alternate grain-and-
meadow strip system*
0,3
0.25
0.30
0.40
0.45
*The conservation practice factor for terracing should equal the contour
practice factor.
1-35
-------
Table 1-7. Erosion control practice factor P for construction sites (32)
Erosion control practice Factor P
Surface Condition with No Cover
Compact, smooth, scraped with bulldozer or scraper
up and down hill 1.30
Same as above, except raked with bulldozer root
raked up and down hill 1.20
Compact, smooth, scraped with bulldozer or scraper
across the slope 1.20
Same as above, except raked with bulldozer root
raked across slope 0.90
Loose as a disced plow layer 1.00
Rough irregular surface, equipment tracks in all
directions 0.90
Loose with rough surface > 0.3 m depth 0.80
Loose with smooth surface > 0.3 m depth 0.90
Structures
Small sediment basins:
1 basin for 25 acres 0.50
1 basin for 15 acres 0.30
Downstream sediment basins:
with chemical flocculants 0.10
without chemical flocculants 0.20
Erosion control structures:
normal rate usage 0.50
high rate usage 0.40
Strip building 0.75
1-36
-------
magnitude of the dust and dirt fallout may not be just a simple function of the
amount of particulate matter (fly ash) emitted by coal burning industrial and
household furnaces. In many areas wind erosion of soil particulates may be
important which is, of course, a function of environmental and meteorological
factors such as solar radiation and length of the dry period, wind speed, type
and density of vegetation cover, street cleaning practices, etc. These factors,
in addition to traffic density, will most likely affect the magnitude of the
dust and dirt cumulation. A formula has been proposed for dust and dirt cumu-
lation by Novotny* which was statistically evaluated by Brady (33).
PC = 3.44 * TD + 31.1 ~ (POA)||+ 162 * (RD) - 75.1e~0-5(H) f(TS) _
1 i ^ ) ( t-q.
+ (WS) + B
where
PC is pollutant cumulation in g/m of curb/day
WS is wind velocity, km/hr
POA is % open area
SW is the width of the road, m
RD is residential density, units/100 ha
H is curb height, m
TD is traffic density, axles/hr
TS is traffic speed, km/hr
B is average minimal magnitude of dust and dirt fallout, kg/day x m
i.e., dust and dirt fallout on a calm windless day with no traffic
The multiple correlation coefficient for the above relationship was r =
0.74. The dust and dirt washout function describes the pick-up and transfer of
the accumulated particulates by overland flow. Not all of the pollutants,
accumulated during a period preceding a rainfall, will be washed off the imper-
vious surfaces during the first moments of the runoff event. It is expected
that the amount of pollutants washed off will generally follow the equation:
py = 4^- = -K P
dt p
where
PW is pollutant washout rate
P is the amount of pollutants present on the surface
K is a coefficient dependent on rain intensity
*Proposed by Novotny in Brady (33).
1-37
-------
Assuming a steady rain intensity, Eq. (53) can be integrated to yield the
typical "decay" formula:
AP = P0[l - e"V] Eq. (53)
where AP is the amount of pollutants washed out of the surface during the time
period t
P0 is the initial amount of pollutants present on the surface.
The coefficient, Kp, is a function of the runoff rate and in most urban runoff
quantity-quality models it is approximated as K^ = EUR, where Eu is the urban
washoff coefficient and R is the runoff rate from impervious surfaces. The
value of the washout coefficient has been reported as EU = 1.81 cm"1 (34).
Not all of the deposited litter is available for transport. Thus, the
sediment washout rate should be multiplied by the availability factor (34).
1. 1
Ag = 0.057 + 0.5R Eq. (54)
R is the surface runoff rate in cm/hr. It is obvious, that with increasing
runoff rate a limit must be placed on the availability factor. A suggested
maximum value for Ag is 0.75 which implies that about 25% of the urban litter is
not available for transport.
The dust and dirt cumulated on impervious areas will be routed using the
hydrograph for impervious areas, HIM. If the organic content (DDORG) or
adsorbed pollutant fractions (DDAP1 and DDAP2) are known, these will'be routed
in the same way as the dust and dirt sediment.
Overland Transport of Phosphorus
A subroutine describing the overland transport of phosphorus has been
incorporated into the LANDRUN model (35). The subroutine has been tested by
comparing observed and simulated P loadings from pilot (1 to 22 km2) watersheds
located in the Menomonee River basin. The data for phosphorus indicates that
good agreement is possible between measured and computed values. The model is
being calibrated for simulating pesticide and toxic metal loading and routing.
1-38
-------
1-3. OPERATION OF PROGRAM
Computational Procedure
A summary of the computational procedure is shown in Appendix A. Some of
the computations may be bypassed depending upon the program options specified
(ISWITCH control data). The data required for the input to the program is
given in the input data variables listing in Appendix B and the order of their
input is given in the input data Tables in Appendix B.
The order of input may be summarized as follows:
Title of job, specifications
Area specifications
Land use data
Pollutants and washoff, sweeping data
Date and meteorological data
Precipitation recorddaily precipitation record is terminated by
the digits 99.00
Input-Output Unit Assignments
Prior to running the program the following unit assignments are necessary.
FORTRAN Logical Unit Option
IN (Value 10) Working storage for precipi-
tation data manipulation.
105 Input precipitation record from
disk, card or tape
108 Output analysis file report
1-39
-------
REFERENCES - I
1. Gray, D. M. (ed.). Handbook on the Principles of Hydrology.
Information Center, Port Washington, New York, 1970. 1 Vol.
2. Dub, 0. and J. Nemec. Hydrologie. SNTL, Prague, Czechoslovakia, 1969.
378 pp.
3. Linsley, R. K. Jr., M. A. Kohler and J. L. H. Paulhus. Hydrology for
Engineers. McGraw-Hill Book Co., New York. 1975.
4. Tholin, A. L. and C. S. Keefer. Hydrology of Urban Runoff. Trans. Am. Soc.
Civil Engineers, 1960. pp. 1308-1355.
5. Hiemstra, L. Frequencies of Runoff for Small Basins. Ph.D. Thesis,
Colorado State University, Fort Collins, 1968. 151 pp.
6. Holtan, H. N. A Concept for Infiltration Estimates in Watershed Engineer-
ing. U.S. Dept. of Agriculture, ARS 41-51, Washington D.C., 1961. 25 pp.
7. Philip, J. R. Theory of Infiltration. In: Advances in Hydroscience, V. T.
Chow, ed., Academic Press, New York, 1969. 305 pp.
8. Parlange, J. Y. Theory of Water Movement in Soils. Soil Sci. 111:170-174,
1971.
9. Rogowski, A. S. Estimation of the Soil Moisture Characteristics and
Hydraulic Conductivity Comparison of Models. Soil Sci. 114:423-429, 1972.
10. Edinger, J. E. and J. C. Geyer. Heat Exchange in the Environment. Johns
Hopkins University, Baltimore, Maryland, for the Edison Electric Institute,
1965.
11. McDaniel, L. L. Consumptive Use of Water by Major Crops in Texas. Texas
Water Development Board Bull. No. 6019, Austin, Texas.
12. Davis, C. V. and K. E. Sorensen. Handbook of Applied Hydraulics. McGraw-
Hill Book Co., New York, 1969. 1 Vol.
13. Hydrocomp International. Hydrocomp Simulation Programming Operation
Manual. Hydrocomp International, Palo Alto, California, 1972.
14. Chow, V. T. and V. C. Kulandaiswamy. General Hydrologie Models. J.
Hydraulics Div., Proc. Am. Soc. Civil Engineers 97:791-804, 1971.
15. Wooding, R. A. Hydraulic Model, for the Catchment-Stream Model. J.
Hydrol. 3:254-282, 1965.
16. Morgali, J. R. and R. K. Linsley. Computer Analysis of Overland Flow. J.
Hydraulics Div., Proc. Am. Soc. Civil Engineers 91:81-100, 1965.
1-40
-------
17. Henderson, F. M. and R. A. Wooding. Overland Flow and Groundwater Flow
from a Steady Rainfall of Finite Duration. J. Geograph. Res.
69:1531-1540, 1964.
18. Sherman, L. K. Streamflow from Rainfall by Unit-Graph Method.
Engineering News Record, p. 531, 1932.
19. Horton, R. E. The Interpretation and Application of Runoff Plot
Experiments with Reference to Soil Erosion Problems. Soil Sci. Soc.
Am. Proc. 3:340-349, 1938.
20. Izzard, C. F. Hydraulics of Runoff from Developed Surfaces. Proc.
Highway Res. Board 26:129-150, 1946.
21. Amorocho, J. and A. Branstetter. Determinations of Non-Linear
Functional Response Function in Rainfall-Runoff Process. Water Resources
Res. 7:1087-1101, 1971.
22. Ding, J. T. Variable Unit Hydrograph. J. Hydrology 22:53-69, 1974.
23. Nash, J. E. The Form of the Instantaneous Unit Hydrograph. Bull.
Intern. Assoc. Scientific Hydrol. 111:114-121, 1957.
24. Rao, R. A., J. W. Delleur and B. S. P. Sarma. Conceptual Hydrologic
Model for Urbanizing Basins. J. Hydraulics Div., Proc. Am. Soc. Civil
Engineers 98:1205-1220, 1972.
25. Crawford, N. H. and R. K. Linsley. Digital Simulation in Hydrology,
Stanford Watershed Model IV. Tech. Report No. 39, Dept. of Civil
Engineering, Stanford University, Palo Alto, California, 1966.
26. Wischmeier, W. H. and D. D. Smith. A Universal Soil-Loss Equation to
Guide Conservation Farm Planning. 7th Intern. Congr. Soil Sci., Madison,
Wisconsin, 1960. Vol. 7, No. 1, pp. 418-425.
27. Wischmeier, W. H. and D. D. Smith. Predicting Rainfall-Erosion Losses
from Cropland East of the Rocky Mountains. U.S. Dept. of Agriculture
Handbook 282, Washington, D.C., 1965. 47 pp.
28. Williams, J. R. Sediment Yield Prediction with Universal Equation Using
Runoff Energy Factor. Unpubl. Paper Presented at Interagency Sediment
Yield Conference, Oxford, Mississippi, 1972.
29. Foster, G. R., L. D. Meyer and C. A. Onstad. Erosion Equation Derived
from Modeling Principles. Paper 73-2550 Winter Meeting ASAE, Chicago,
Illinois, 1973.
30. Free, M. H., C. A. Onstad and H. M. Holtan. ACTMO, An Agricultural
Chemical Transport Model. U.S. Dept. of Agriculture Report No. ARS-H-3,
1975.
31. Ports, M. A. Use of the Universal Soil Loss Equation as a Design
Standard. Water Resources Engineering Meeting, Am. Soc. Civil.
Engineers, Washington, D.C., 1973.
1-41
-------
32. Ports, M. A. Urban Sediment Control Design Criteria and Procedures.
Paper Presented at Winter Meeting of Am. Soc. Ag. Engineers, Chicago,
Illinois, 1975.
33. Brady, D. H. Development of a Mathematical Model for Street Surface
Pollutant Accumulation. M.S. Thesis, Marquette University, Milwaukee,
Wisconsin, 1976. 76 pp.
34. Hydrologic Engineering Center. Urban Storm Water Runoff "STORM."
U.S. Army Corps of Engineers, Davis, California, 1975.
35. Novotny, V., H. Tran, G. Simsiman and G. Chesters. Mathematical Modeling
of Land Runoff Contaminated by Phosphorus. J. Water Pollution Control
Fed. 50(1):101-112, 1978.
1-42
-------
BIBLIOGRAPHY - 1
Agnew, R. W., T. L. Meinholz and V. Novotny. 1975. A Preliminary Predictive
Model for Determining the Water Quality Impact of Highway Systems.
Unpublished Report, ENVIREX, Inc., Milwaukee, Wisconsin.
American Society Civil Engineers, V. A. Vanoni, ed. 1976. Sedimentation
Engineering. ASCE Manuals and Reports on Engineering Practice, No. 54.
745 pp.
Brandstetter, A. and J. Amorocho. 1970. Generalized Analysis of Small Water-
shed Responses. Water Sci. and Eng. Paper No. 1035, Department of Water
Science and Engineering, University of California, Davis, California.
204 pp.
Chin, M. A. 1976. Urbanized Watersheds Stormwater Analysis - LANDRUN. M.S.
Thesis, Marquette University, Milwaukee, Wisconsin. 115 pp.
Chow, V. T. 1964. Runoff. Handbook of Applied Hydrology, Sec. 14,
McGraw-Hill Co., New York. pp. 1-54.
Dooge, J. C. and B. M. Parley. 1967. Linear Routing in Uniform Open Channels.
Proc. Intern. Hydrol. Symposium, Fort Collins, Colorado, pp. 1-8.
Eagleson, P. S. 1970. Dynamic Hydrology. McGraw-Hill Book Co., Inc. New
York. 462 pp.
Engman, E. T. 1974. Partial Area Hydrology Application to Water Resources.
Water Resources Bulletin 10:512-521.
Harbeck, G. E., Jr. 1962. A Practical Field Technique for Measuring Reservoir
Evaporation Utilizing Mass-Transfer Theory. USGS Prof. Paper 272-E,
Washington, D.C. pp. 101-105.
Horn, M. E. 1971. Estimating Soil Permeability Rates. J. Irrigation and
Drainage Div. Proc. ASCE, Vol. 97, No. IR2. pp. 263-274.
Horton, R. E. 1919. Rainfall Interception. U.S. Monthly Weather Rev., 47.
Horton, R. E. 1940. An Approach to the Physical Infiltration of Infiltration
Capacity. Proc. Soil Sci. Soc. Amer., 5:399-417.
Reefer, T. N. and R. S. McQuivey. 1974. Multiple Linearization Flow Routing
Model. J. Hydraulic Div., Proc. ASCE, 100:1031-1046.
1-43
-------
Kostiakov, A. N. 1932. On the Dynamics of the Coefficient of Water Per-
colation in Soils and the Necessity of Studying it from Dynamic Point
of View for Purposes of Amelioration. Trans. Sixth Comm. Ant. Soc.
Soil Sci., Russian part A15-21.
Lager, J. A., E. E. Pyatt and R. P. Shubinsky. 1971. Storm Water Manage-
ment Model. U.S. Environmental Protection Agency Report Nos. 11024 DOC
07/71, 11024 DOC 08/71, 11024 DOC 09/71, 11024 DOC 10/71. Superintendent
of Documents, Washington, D.C. 4 Vols.
Nordin, F., Jr. 1964. Study of Channel Erosion and Sediment Transport.
J. Hydraulics Div., Proc. ASCE, 90:173-191.
Novotny, V., J. Goodrich-Mahoney and J. Konrad. 1976. Land-use Effect on
Water Quality: An Overland Non-point Continuous Model. Paper presented
at ASCE-E.E. National Conf. on Environ. Eng. Res. and Design, Seattle,
Washington.
Patterson, M. R., T. K. Munro, D. E. Fields, R. D. Ellison, A. A. Brooks and
D. D. Huff. 1974. A Users Manual for the Fortran IV Version of the
Wisconsin Hydrologic Transport Model. ORNL-NSF-EAT C-7, Oak Ridge
National Lab., Oak Ridge, Tennessee. 252 pp.
Ragan, R. M. and J. 0. Duru. 1972. Kinematic Wave Nomograph for Times of
Concentration. J. Hydraulics Div., Proc. ASCE, 93:1765-1772.
Richards, L.S. 1931. Capillary Conduction through Porous Mediums. Physics
1:318-333.
Ryden, J. C., J. K. Syers and R. F. Harris. 1972. Potential of an Eroding
Urban Soil for the Phosphorus Enrichment of Streams. J. Environ.
Quality 1:430-438.
U.S. Army Corps of Engineers. 1956. Snow Hydrology. U.S. Army Corps of
Engineers, North Pacific Div., Portland, Oregon.
Williams, J. R. and H. D. Berndt. 1972. Sediment Yield Computed with Univer-
sal Equation. J. Hydraulics Div., Proc. ASCE, 98:2087-2098.
Wischmeier, W. H., C. B. Johnson and B. U. Cross. 1971. A Soil Erodibility
Nomograph for Farm Land and Construction Sites. J. Soil and Water
Conserv. 26(5):189-193.
1-44
-------
APPENDIX I-A
LANDRUN FLOW CHART
Set Variables Dimensions
Declare Real Variables
Write Program Heading
Read Three Data Description Title Cards
Cards Al, A2, A3 80 Characters per Card
Bead Control Card: 1SWITCH CD thru (5)
Card Bl
Read NLAND = No. of Land Areas Observed
TAREA = Total Area Sq. Km (Sq. Mi.)
WLATTT = Latitude of Watershed Degrees
NSCM = No. of Seasons
Card B2
Corments: Explanation of Variables in Input Data
Page numbers in
flow chart refer
to page numbers
In a different
publication.
Read Land and Soil Data- Area, Maximum Depression
Storage, Porosity, Control Depth, Soil Moisture
Minimum, Porosity of Impervious Area, etc
Cards Cl, C2
Defaulting Values of Variables, Conversion Unit for
Crop use Coefficients KU
Values for KU Inputted or Defaulted Depending on
ISWITCH (2)
Input on Cards C3, CM
Read SC: Crop Use Management Factor for Each Season
Cards C5, C6
Read LES: Length of Each Season
Card D
Read Sediment and Dust and Dirt Cumulation Data
Cards El, E2
Read No. of Days of Observation., Temperature and
Evaporation, Sundown Data
Card P
O
1-45
-------
Read Fain Data
Cards R
Write Headings and Input Data
Data Uaits Conversion Depending on Value of
ISWITCH (1)
Computation of Values Associated with the
Impervious Areas of the Total Area Under
Observation
Initialization of Variable Values to be Used
in the Infiltration and Runoff Models
Manipulation of Rain Data.
Determination of Maximum Average 30 Minute
Rain Intensity and its Storage as Negative
Valued on Temporary File.
Days Loop Computations Begins.
Do 16 14 = 1, Nt&YS
Temperature Conversion According to Control
ISWITCH CD-
Day of the Year Determination and Corresponding
Temperature "Function Parameters.
Determination of Solution for Evaporation
Integral XEP.
Determination of Average 30 Days Temperature
AVT30 and Average Evaporation Value
AVEVAP.
1-46
-------
©-
Compensation for CMELT According to ttonth
of Rainfall Occurrance.
B )From Page (8) Loop-
Sampling Loop Computations Begins
Do 17 IRA = 1, NI3
Computation of Temperature, Evaporation Values
Initialization of Variables for Snowraelt and Pack
Computations.
0-
C ) From Page (6) Loop -
Land Use Cycle Computations Begins
Do 19 LA = 1, K
Where K = NLAND + 1 For Impervious Area
Selection of
Holton's or Philip's
Infiltration Model
ISWITCH (3)
Initialization of Variables Used in Computations
Computation of Average Rainfall on the Impervious
Area Impending on Snowmelt, Tenperature, Sweeping
etc
©
b Page (5)
Return Loop-
©
1-47
-------
Do 22 II = 1, K
Summation of Contributing Areas, Manning
Coefficient, Average Rainfall, etc...
22 Continue
Instantaneous Unit Hydrograph Computation to Compute
Runoff. Input to the Section is AVERA the Average Rain.
Calculation of the Urbanization Factor and Gaima Function
(External Program).
YES
Linear Single Reservoir
IUH bbdel
Set KR = 1
Set KR = 2
Cascaded Mash IUH
ftodel
Computation of IUH for
Impervious Areas, HB1
Compute Total Value HTotdl of Runoff.
Locate Stored Negative 30 Minute Rain Intensity.
Routing
Conputation of Soil Erosion
Computation of Total Sediment Flow, TOTSED
Compute SEDTOT
SEDTOT = H x TOTSED + SEDTOT
Dust and Dirt Accumulation Determination, DDLOST,
and Runoff Values, RUNOF
SEDTOT = SEDTOT + DDLOST * HIM (Routing)
0-
To Page (5) Return
Write Daily Summary of Values Corrputed, Total
Precipitation, Runoff, Sediment Accumulated, Sediment
Flow, Total Dust and Dirt Accumulated
Return to Page C+j
Format Statements
1
f STOP J
1-48
-------
APPENDIX I-B
PHILIP'S INFILTRATION MODEL
Read
0g = 0.3 bar water moisture
0,5 = 15 bar water moisture
KA = permeability of A horizon
Kg = permeability of B horizon
DA = depth of A horizon
P = porosity of A horizon
SMMIN = 0g
C1SOIL = 015
log1Q (ye/300) = Iog10 (|
CZDEP = DA
= .1.632023
VARIABLES IDENTIFI-
CATIOM FOR USE "IN
MfflEL.
ALL VARIABLES
SPECIFIED AS
REAL
This portion is
located in
[DO 15 I = 1,K3 LOOP
-No
Yes
SMMIN - 0.5911 x C1SOIL
0.4089
X =
10g10
[*e/300.0]
8n = Oe (Initialize)
Z = 0.0
0u = Og KS = KA
1-49
-------
This portion is located immediately [DO 17 IRA = 1,NI3] loop
DO IA = 1, NLAND
KS (IA) = KA (IA) = SATPRM (IA)
KS (IA) = SATPRM (IA) + 0.09 j, AUT30X
This portion of tha model is located in the [DO 19 LA = 1, K] loop
= (en * DA + Z t. (Ou - 9n» / HA
= ee
= (Se - On) / 6.0
- Sn
= (Te - 1) + (15001 - e) **
= ((15001 - e) ft*
* doge (15001 - fa)) / (615 - Se)
Kl = 0.5 * KS * (Ve I VII M-. \
TINF
ST
Dl
XP1
Z
= 0.0
= 0.0
= ABS (Dl i Kl)
= (81 - 8n) ft Dl
= 0.0
-------
PARLANCE'S APPROXIMATION FOR THE
SORPTIVITY S
DO I = 1, 5
02 = 0i + A0/2.0
03 = 01 + A0
(*e - 1) + (15001 - fe) **(
(fe - 1) + (15001 - *e) ** (
0.5 * KS * (fe/f2) ft* X
0.5 * JS * (fe/Y3) ** X
Dl * (15001 -
*3 =
K3 =
D2 =
D3 = Dl * (15001 - *e) ftft
015- 9
"
ft K3
c
olo "
XP2 = (02 - 0n) * D2
XP3 = ( 83 - 0n> * D3
ST = ST + (0.166666 ft (XP1 + XP3) + 0.666666 ft XP2) * 00
Ql = 63
XP1 = XP3
»n = Cfe - 1) + (15001 - Ye)
ADIFIL = 0.0
₯n = (*e - 1) + (15001 - ₯e) ftft
015 - 0e
KP = 0.5 * KSAB ft (ye/fn) ft* X
AZ = SAMP ft (KP + 0.5 * KS ft (9u - On))
* r
G
1-51
-------
Yes
No
ST = 0.0
KP = KP ft (1.0 + (an - 6e) / (FOR - Be))
AINFIL = (ST/(0.5 * SAMP)) ft ((TINF + SAMP) ft* 0.5 - TINF **0.5)+ KP
TINF = TINF + SAMP
AZ = SAMP :, AINFILAeu) - Qn)
1-52
-------
XPSI - e.o + ms
Kan: - o.s * KS
31*f
(7
.Ou - ee
015 - <>e
.0/XPSIH-. X
X
+
i
K1OT = 0.5 s KS
HOT = 0.5 * KS * (1.0 + t^R " ^»
1-53
-------
XP = SQRT (AREA ft TAREA)
OINTER = KINT * SLOPE * Z * XP/360,000.
QXINT = QXINT + QINTER
Ow = Ou - QINTER * O.Q036/XP so, 2
ANRAIN = XZ - DS/SAMP - ABIFIL
- EVAP
I ANRAIN = 0.0
i
[PS = PS - SAMP a (XZ - AINFIL - EVAP)
ANRAIN = ANRAIN - (SWARE * AMELT/100.0) + ((SWARE - SLARE)
* AMELT1/20.0 + (SLARE * AMELT2/100.0)
1-54
-------
APPENDIX I-C
COMPUTER PROGRAM LISTING FOR LANDRUN
c
C
c
c
c
c
c
c
c
c
c
c
c
c.
c
c.
c
c
c
c
c
c
t»itt>l»«IM>ttf»ll»»«*»»t»Jt»ft»«I»ilti»»««>ltlt»t
r-HOGHAM ,F"DSMP(30).XUC30,1?).SLOPE(30),
UN MI Pi 30) ,At,"1PE(30) ,HTOTAL( 300' ,H(3fl") , A SIM I ',(30) , DS(30) ,
JS7(30' ,TPS(30) ,AINFI!.('I3) ,G1 liFILC 3«> . AN HA: ',( 30) , ,5L( 30) ,SC( 3?, 1?) , VLENf 30^ .
'3LS( 3.1) ,S'-:Du'1T<300) ,.->LOS5; }0) ,?>( 30) .:iU'IOr\ ^0) ,C5:FAC( 12) ,
TOTALS,300),ALSTDP( 100) .SiDTOLi100),ANOUT( -M),
I-A'-IP:-;, 30) ,C>30IL( T, 1J) ,DC( 30) .AH1( 'O) ,At'. C iO) ,R\D1( 30n) ,
', 1A.L',?! ; -0) ,AP1( 30D1 ,A')?( 3?T) ,03 ?( 30,-) ,A'',F- -T( 30! ,
irnKTA^. 30) ,T;>: TAK; ;.T) ,?.(; i) ,\s; TO) ,T !=:IAF( <!,<:;, = ;30),
ol'( 3ri,'linn "!i .OS ;ci o^ ,C-I.AYC> ~,T) . r (30).; ;MIC( ; M> ,o-~'i(3~'i
1-55
-------
1 , .-.Lftl 3 J,'.) , vi.Al }0,'i) ,C i';LA( ;0,'i i ,',_! LA( ?'>,<; > ,M)I.»( JO,".) ,
1KOO01 ,<):;< 3'J,'i),PLA'.7U(30,'.) ,;) ,<,*'.*( 30,«),
ic /( !) ,APS:J( 30'i,i) .Arcot jO'),'4> ,."A( j3' jD',, -.; ,fi'"r.';noa,«),
1TO! 'I,': "I) ,1'iTPS3( 'i) ,K','.!''..Am, "4; , K.f'I IP' <0 , 4 ) .<-?&-( 30 ,'!) .
isoi'To'K t) .s^psu'Ki) .soff.'Wi),r,:?. ';. C.)," ':C'..OH(K) ,:oi-!.ow(a),
IS'JM'VT,3) ,XI'£(9) .AI'T'EnC -T) , CL?r-')( 3') ,.H"L: T( j'J , «) , PI. IT (10) ,
ir>LCU( iO) ,MO'ITltF(30) , MAY r ( 3D) , S'.'Miy ( "JU) ,O.H"LIT( jO; ^'..S^ACC
REAL K'i ,K.<:,^:A,
WRITE(6,505)
WRITE(6,512)
KFWIND III
PJT IUTA BLOCK
LItiES' 1*3-333 .
C . . .R
C
916?
n 0,1
inn
READ(5,91S2)CALFAC,DELIVR,(DSCr AC(K) ,K=1 ,12)
EADS THREE TITLE CARDS IN ALPHANUME RTOS .. .CARDS A1-A?
MAX. CHARACTERS PER CARD = 80
FORVAT{?F5.2,12F5.2)
WhlTE(6,555)
DO 1 103 !1C=1 ,3
SEAD(-;, 10;»(AL(K) ,K:1 ,20)
WRITKl IDS, 100) (Al.(K) ,K=1 ,20)
WMTFC6, H)0)(A1 (K) ,X = 1 .20)
c*»»»»i«If.r'iT CN CARD ni"""'"""1""*1"1""'*""
hi..\.X'^, n io)(svni:!i;i), iii ,8)
1110 rV!i'UV(!!( IX. I<>) )
U (S«I1CII(8) .uT.OlKKfiiHS, I 110){SVITCH(J) ,,1 = 1
C. . .'it A'JU.TU'f A,WLA;iT,NSv'>1. . . . I'.f'JT i". CA,.;i T
KFAn;s, i n i)(,; A'in.TAK' n, ~i.fiTiT.fisr i.-up.nx
1111 rvi'fAr; 'ix, n..-( 'ix,r t- ..M ,«\, i-\«x, n ,ix,r^..>)
1-56
-------
VRm(6,5?0)
WR1TE(6,S1P)
WKITF(6,50f>)
1K( SWITCH(I) .F.Q. 1 ) WRITE (6,r>10)
IF( SWITCH 1) .NE. 1) WRITE (6,r.15)
WRITF(6,'>1?)
WRITE(6,517) TAREA, NLAKD
WRITE(6,M2>
WRITF(fa,5?0)
WRITE(6,512)
C
C
C SWITCHES NAD INPUT VARIi«LES
C" *»« ..... «t«»««i..«.»f«ti««
C
C SWITC'Hl) SI UNITS... 0, US UNITS... 1
C SVITCIU2) CROP USB" FACTOR 0 . . CrFA'JLTtD, 1 . . PiP.iTE J
C FWITCH(3) IUH FORMULA SELECTION
C 0,10 = RAO, DLL' EL'R.SARMA METHOD.
C 1,11 r KINrMATI'. \'AV.".
C LESS THAN 10 = HOl.TOVS I'if ILT? S.TIGN MOr'EL
C GREATER THAN OR EQUAL TO 10 r PHILIP'S MODEL.
C
C SWITCH(H) 00= PRINT ALL OUTPUTS AND PLOTS FOR EACH DAY,
C 01= PRINT DAILY SUMMAF1 A'.D LAST DU PLOT.
C SWITCIK5) =0 ....... COMPLETE COGITATION
c =1 ....... KYJROLOCYtRU'JOFF) ONLY
C =2 ....... HYDROLOGY Ai;D SFDIVEHT INCLl,"I!.'3
C ADSORBED POLLUTE 'JTS (XAX 2)
C AND VOLATILL SUSPFf.i'F.) SOLIDS
C =3 ....... DYIJAMIC SOIL AOSJCPTIOS' "OjrL
C SWITCHC6) =0 ........ UNIFOR1. DU.~T AKD DIRT ON ALL
C IMPERVIOUS AFEA3
C =1 ........ DETAILFD LIT.F.R CUMULATION
C ANALYSIS ON' EAC'i LAND'JSE
C SWITCH(B) =1. . .INDICATES SVITCHd-O) MUSI BE INPUT
C HLAHD = NO Of LAND USE AHEAS MODELLED
C TAREA = TOTAL AREA OF TnE WATERSHED SOKK (SO'TIT JTF3
WRITE(6,S20)
WRITE(6,511) (GWITCIICUM'1) ,'-'",!i=l ,3)
1-57
-------
r'..< M .: :-', .;:!. , , i . ; f
i. . .K'tij:. "-:< i'ii -,":;! ',TVI,'. ,> <'.>> IM-- /:'," A.. -A" , ;.T,"'I.T-.O. i<> CM
c. .;,,!;' = "."., n: ,; :< /,:.;' '.r, A':;;,TI - /i i;"-,L >/i', j-, A-irA1;,
:. . u.-.fAji.: VJ,L','!: = ' .D< j
o PC = r:,/ik,iu:i o." i'^rR; rc'jr; ;.-"-'A 'tc, r uiiiu'-ri.Y
C (,; ".1C;'.', iO C^A'i'i1- L. .L'.f.'iLl Zf-.ij
:. . A-i'pf.r' A -u,1 IMC-S ^L'j'iH'iK^'j <=»(,. '.h ^-i i'r-. ? = 20
1)J 10 I = 1,MLAND
---- INPUT O'l CARD C1,C2
."KdDiS, 1 1 12)AL('IK1) ,AL('.<2) ,*L(liX-|) .A,F,F ,C,S,PI ,C1 ,C2,APX1 ,APX2
RFAD(S,1 113JXI.S.- /JCA.SA.F.'IO.A1! 'I , Alt'1? , A 12 , A 1 J , A 1 'I , A 15 , A I 6 , A 17
1112 TOR :.-;(3A'*,s(ix,[r6.?) ,?; ix,.-5. j))
1113 R'K"W(2f6.3,7( IX, Ff> .2) ,3(1X,K5.2))
l^(5JITCii( = ) .,,E.3)GO TO 200
DO 2'M IAP=1 , NAP
B F.KDCi, ',5 V.A20. \?1 , \P2.A23.A2M, ;25,A26,A27I A, ?3,A27
550 FOrraT(.rr.,.>.Fr.5,?r7.3,2F7.5,3f~7.?,F7.5>
OLAi I , IAr)rA20
1LA(I , IAP)=A21
;i\'_,i=( I , HP)-A27
PLA'.TI'CI ,IAP) = A23
201 C'VIU'UE
20; wni.sjE
c SOIL KROSION AM jon. AD.SORI TI,)-I INPUT VARIAIU.K.I
c
c
C A1? = S'Il fHO^ILIiJTY KACTOH.
C A13= Ul !.rt').',IC\ ; )'i7R''l FiV:T^t.
C At"-:"l'p'-: Oh 1. ''I!' 'IM'1 K Oc ^FPYAn^N .
(. AIO .-.u'i;.: u.'\ .-,. (!. ;'i ';) rr r-- -.ML,;
1-58
-------
c
C IF SWITCH Cj> = 3 THE FOLLOrfltK' INPl'TS W'.LL P>F. Fr.\! '
C ( SWITCfUS) NF 3 ro NOT SUHSTirjTF. A PLA'.X :;RJ)
C
C OLA = MAX SOU ATSORPTIO'l, UG/G
C BLA s SOIL APSCSPTIPN PARTITION COFFF 1C , Ml AM
C THE AHOVt KOF Till LA'iGMuIR AOSO'iFl ! I11; ISOTHFRV
C CUOLA r 1S1T.S011, 1.ATF.R CO'K:.Or THE POLL!! I A'. .' . ft/I
c SUOLA r iNi7.A:'s.ro:.i.uT»s7 co.-jc.o1; SOIL, -C./G
C KOLA = DECAY COFF.KOR THE T 01 LUTANT , 1 /I'U AT ?r> PI-O.C
C KSUB = SUIiLIMATluN RATK FOK T'iE POLI.'JT;1 \l , {' WCM?/t)AY AT
C PLAHTP r IMI7.CONC.Or THf. FOLLU7AUT 11 PLA'HS .U3/C".?
C PLAN7U = MAX UPTAKE OF 7-iE POLLUTANT PY PI A'iTS , UJ/CM2/DAY
C KSWLA = KINETIC AI'oCRPTION COEFFICI FfJ F . 1/HO')R
C ......... IT IS RSCC^EfcDfD THAT THE FHOSP^IORUf- Ar?JKPTIC\' 15
C COMPUTED FIh37(IAFs1) 7HF.N QLA , BLA , A','3 .LT.O. 000001 )C2SOIL(!)rSA
XLSFAC(I)=XLSF
C ..... CALC.OF I IMPERVIOUS AREA OF THF. AREA CONSIDERED.
C
= AREA(I)'PIXPF.R(I)/100.0
) = AREA(X)*PIMPF.h(I)«DC(I)
XIKPER = XIKPr R+ PIVPKP(I)
AREA(I)=AREA(I)-PIMHES(I)
IF(A'J",ID(n .LT.
IFOWPEU) .LT.0.001) V1MPKI>=0.25
XHHsAHHIP(I)«PIMFEV(I)+XMN
XSLO = X3LOtSLOPF.(I)*PI'JPER(I)
IF(FMAXDS(I).I.T.O.C01)F:!AX:,S(I) = 0.62
IF(FHDSHP(I).LT.O.OO))FHDSMP(I)=0.16
C A16=Ptl OF THE SOU.
C A17= CLAY COMTF.tiT OF THE SOIL,*
C AP1X = SOIL ADSOHT.ED PCLLU'iAMT \ ,% OF 3;JSPtM.;.& lOLII/'j-: « II :>i ( x>>--
C AP2X = SOIL ADSORriEO POLLUTA'i72 ,JOF SUSPEf,1.';^^ S J! inS-HWITC'if 5)r?
1-59
-------
OH ?fi.66'){ I'tC'i'S.
IF("VITC'U5) .HF.3)GO TO 260
DO -">1 IAP=1 ,'iAP
PLA'.TUd.IAPjsPLANT'Jd , IAP)/CZDEP( I)
261 CONTINUE
?60 CONTINUE
SATri-'!(I) = SATPR''!( D'CO'iVER
C IF( SJI7C.K3) .LT. 1C ) CO TO 2601
Cir/)II.(I) = CISOIL(I) / 100.
CPSIILd) = C230IL(I> CONVER
2601 CONTINUE
IK(r*'ITCII(2).E0.1 )GO TO 11
DO 12 MT!!=1,12
12 KU(I,HTH)= 1 .0
GO TO 513
C INPUT ON CARD C3
11 CONTINUE
C
C READING CROP USE FACTORS FOF EVAPOTRANSPIR s.TIGN ,KU
C
READ( 5,1 03 MKUd,MONTH) .MONTHrl, 12)
103 FOR^'.K 12( 1X.F5.2))
C
C
C..KL' IS THE CROP USE COEFFICIENT.
C« *»»» uiPuT ON CARD C»*»*»»*»>*>*»»
C""*»CROPPING lAIIACEyENT FACTOR FOR THE SEASON FOR 1:iE LAND USE AND IMF
C LTC'i COEF.*» " 0000
513 CONTINUE
REAE(5,103)(SC(I,J),J=1,12)
IF(5«ITCH(5).:;E.3)GO TO 202
REAr(5.551)MONTHFd) .HDAYFd) .AMFERTd) ,CFRT(I,1) ,CFRTd,2)
1 ,CFS7d ,3) ,CFHT(I ,'l)
IFCSmCHC 1) .E0.1 )A'1FFRr(I)rAVFERId)"1 .121
551 KOR'UTd2,2X,I2,F8.2,1Fa.-»)
202 CONTINUE
IF(S.-ITCiK6).EQ.1)READ(5,1010)PLIT(I) , ORGLITt I) , f APLITd , IAP)
1 , IAP=1 ,'l) .CURBDd)
1013 FOR'IATCTFIO.H)
C
C
C DETAILED DUST AND DIRT(LITTER) CUMULATION DATA
C SWITCH)b)=1
C
C PLIT= LITTER CUMULATION AT THE fJHB G 'M-PAYt LDS/'-l II E/r AY^
c OII.;LIT= ORGANIC PORTION CF i.rn>'R AS FRACTION
C APl.ITr FRACTION Or l.ITTF? WHICH IS POIL'ITANT
C 'I F05SIBL- FtU.L'ITA'irS
C CURD3= CUilll PFNSITY M/ttF,: 1'AiiFt FT/AC:!1'.)
C PEFAUI.T COMPITS3 F!>0'1 [-'^'liV IOU5NFSS
C
c ;TMD?PHFRTC r"AM,o''T ASSUMFD USIH^M OVFR VM;: fNIIIU: ASEA
C AND 17 IS IMI'llTMi ON OMil'.S El.A'II) F,1
ri«i»i»»»i>»»>i»»i»<»»»«> »»»»<»*»>>»««»*>»»»>
r i (11, H >. i) r1.17(i) -1':. 1711) t ' '. i ' ,^ .
1-60
-------
C 'iDAYF = t'AY Or Till-" ".O'llH »'r!i.'i M ft'! II. 1 ''-./: 'I1:'" V !,.- r :1)
C A'IKI.'ir - A-'ri!;;iT <,r Til-. f-.HTTI.I7i J .' ; I. '.V i >\( I.'1.. ;/'.'. -F. )
c t.n!,'.c;iv; oh in:-. hE'ini:/.^ > :K i ir,
C PGLLUiAtif 1-<4, J
C
IF(?*nCil< ';) .Of . 10)CO TJ 10')
: J = 1 , ;r:cM.
Lr (C3SOIHI ,J) .Lr.0.00001)CjSOI!.(I,J) = 0. 17
?(, c'rniMuc
10'l L'JNTIHUE
5Lo:;::(i) = o.o
10 CONTINUE
WRITK(f>,513)
WHITE(6,519)
«RITE(6,520)
NK3=20
DO 1023 I=1,NLAHD
( I)»100.0
W:UTE(6,52m,AL(N
CFMAXDS(I) ,FMbS'-1P( I) ,A1H
1023 PIIPERCD^ARFA (!) + (!.- DC (I))»PIMPER(I)
WRITE(6,520)
WRITF(6,r>12)
»'RITE(6,522)
WIITE(5,520)
iVRITE(6,523)
WRITE(6,520)
C
DO 1024 I=1,NLAHD
10214 WRITEC6,52U)I,POR(I),SATPR'HI),C2SOIL(I),CZDEP(I) ,SMMI!HI) ,
CAIIMPCd) ,ANMIP(I)
C
WRITE(6,520)
WRITEC6.512)
WRITE(6,526)
WRITE(6,520)
WRITE(6,527)(N,H=1 ,12)
WRITK(6,S20)
IF(SWITCH(2) .FQ.1) GO TO 95
WRITE(6,96)
96 FOR-HTf/// , ' KU VALUES DEFAULTED TO t.OO ',//)
GO TO 97
95 DO 3 1=1 ."LAND
IMsI
3 WRITE(6,523)IM,(KU(I,N) ,N=1, 12)
97 WRI1E(6,520)
WRITF(6,5'2)
WRTTE(6,512)
IF(ABSCXAR-IOO.O) .LE. 1 .0)GO TO 13
PLIT(I)=PLIT(I)/2U.
IK(CUHni)( I ). LT. 0.0001) CUR P?( I)r1^.»! cSIHt 130 /( H > .PTM,..-,
C ---- FERTILI7KR USK CARD ( SW I TJ'I ( ". ) = 3 ) "' ' '
C MOSTHF = MONTH -HEN THF FF.HTII.tK IS USF^
1-61
-------
'- o
i^ O
O
o o
LT) r-> <
O - 1 1
- ~ -J-' O '
- zr ui ,
- O 'J~> K-
I r^ r: f (A.
LO "- o_ ^ _j *_^ c/; zr &
CSl
o
I
O O O O C -
>~ L±J ;
O O -c O *i t: -- ^c « -'-c < «; -c :
o a, a. u. a. u. u. 'i- ti «r L: <
_i o
< cc a.
u, q -c
O (J> O «~ O
003: oo
OOUUOUUCJO'-JOU!
j t/: L-' ^ t,-. ^ o c.
> u u 'J o ;_> rj o
-------
1 _* o O -
o
z tp *»! -n
M '-'I (y: a: H
> >
H :-
»~i r"
O N
iS C
o x o o
i
OS
Lo
>
H
;
f"
O
-^
t:
ro V *=
o o
C3 CO
O
*; o »-i o cj »-< (/> a; aCc?
» u "j: u c **! »i s" >- :c 33 >_ »! =r. :c ai: y; x* 3" »_ i_ *c ». ^ o *
^^'0^fVLOI-ltHt-t.U'-Hr--.e---«»--tM^h-«t--t'-JIVI-
ii r""t-H* «txt irnrnr*!-" *~^ m m r*i m ro m r^; en *"*! in m PI " ,""
5 § x 3 5 Off » ^^.^ .'Tf.Tf .T.T.0^ T-°
"s. c- k-^ t j «*^ ijioiv- ^roo-^^jo^so '«iJ o cw ro o *-^ '-' c
o * n -o z: =t rj u ^- r* a»
^OO^-S- ^ 3>T1 [ .=
rr '^o o a> <»*i co r" c/» t/)
-J O O > - V^ -»
O X O P" 17 C- X
H O H - f J
o TI o 01 ^j ?; t.
-^ r" ro r- -" n
o r* o H ^ c.
Ci z
> r-H ro
r- t v^ _*
*-$ 'JQ l\>
0 0
O
K
n
"
-o
o
o
TJ
r\j
3*
1C
1 i
0
ro ^
o
. »' a' ar a.' s: sn a T T. m -<
, >-, hn H-t >-. H-. j i ':< -^ c: -
j "n m m m n ~ m -i " ui 2>
!^o^wof.S x -x
i~" "*1 CJ O
-i < n~
H -~ ^ -!
^* *"» >» "V
(1 X T3 *>
j: - >*. %
ii cr- i> -H
"i «-' - i
(j~" **! H^
5" r- o
X "O *-<
- » .
P < -
tf .^ :
H
T3 C~ O
3> Mr-
0 -33
S\ 1Z CJ
} o ~o
:r a: -
m -<;
H "
;
c 1*0 o
o o
_. -J U1
o ^-t.- t- i" o c- T;
^ ^ c£ r^, -p ^ ^ -.
-; x-oj ^ -< -i -o
T, u n n t. »-. jr j~
co r^ c o r? *»-»-?
r ^ ^ ^ r, i f 2
O\ *. WJ i\) -* -^ j»- ...
* -»__-»
X TI X f
- . *~^
CO O. -
C"1
-. ^
x ^-- '--
-n "i
« -**
5.
TJ
.
^
^;
^^
j>
TJ
^
T
_^
r"
^
^"
0
C
j
-J»
p,
y.
*"
T_.
,»
L1".
>
t"
-
C
C~
T
^
-
h
'"
*-r
i
"'
a
o
^
5)
-^
L
'-*
"
~i»
,
^*
f\>
-
C
_
r'
^
>-
r"
.N
*
^
C
co
^
^
cr
**-
[-
,
C :
r"
L
O
j
-------
17 C'.KLI IS THE 2!iO.J",EI.7 COPTIC I :-;:lT I 'I Ck!/D'.Y.UC C ( I'./f,Af /I^G F)
0 IKrA'.'LT VALUE Of CT-.LT I" T.'J'/H CI/M'-i . ;/~r, C.
'. PAG." I.» THE INITIAL .,ATFi< CO'.T-l'iT 'Jr 7!(£ r,'.".W PACK, AND
: TMF.LT IS THE S'.uV.MiLl 1 !!'i HMPh RATU'-E , DEFAULT V'.LiJEr, Or PACK AND THELT
C S "0""OOOI
inrwiTC'U i > ,EO .o)co TO 122
CMELTsC IKLI«Cj:iVER«1 .3
TM^LT=THELT/1 .8
1?2 C-ELTjCHELT/?*.
IK TMELT . I.T . - 1 0 . 0 . OR . TMELT . 07 . 10 . 0 ) TMEL7 = 0 . 0
fH5.yDS(K):FHAXDS(K)/XIHPER
XA'JIiO.O
DO 15 1=1, K
DSC J)=FMAXPS(I)»DSCFAC(1)
IFCI .EQ.K)GO TO 15
C
C EDIT JAN 12 MOi:
POR(I)=PCR(I)/100.0
5MMIKCI)=SMMIN(I)/100.
ZCDsO.
C2= 1.337
IF(THETAECI) . G7 . POSC I ) )TH£TAE( I) :POR( I)
THETANCI)=SM1IU(I)
IF(SWITCH(3).CF..10)CO TO 30
= POi!(I)»C2DEP(I)
GO TO 31
30 CONTINUE
LAV.P.DACniCALOGIOCCSjnl.'Un-ClSOILtm/CTHETAECn-CISOILtl))))
C/C-1 .632023)
LAM-DA (I)=2»3»LAM3DA( I)
TIIF.rA*l(I)zTHETA!UI)
31
C
C
C
15
C
C
C
C
C01TINUE
EDIT JAN 12
CONTINUE
.... INITIAL
DO 111 1=
SKl'TOfC
HON "
IZATION OF ALL ARRAYS
1,300
I) -0.0
RAD1C I)=0.
RAD:( n=o.
IF(S«irC!i(5).NL.3)GO TO 21?
p*' :n ifiR-1 ,n
AKI^C I ,IAP) = 0.
KAP:':.( [ ,IAP) = H.
i;.u.' )'. i ,IAP)=O.
1-64
-------
1
X
o
^-
r\
o
IT
~f
H
LO
0 =
4>
p
,_,
(_> >-J
Q 2-
o '**
CN. v-'
>- U
a- ;r i
C ^ -2
d >
_LJ - t
-** |- .
- -^ _J O
o o o :r: a-
ii M ii U ii >-tiJ
P) ^ .1 e . i1-*
t- H- (- U. ._' U. 0
J^
o
S: c> £
i c o io
»- =r i
-i no O oe
O 1 (\J O
*- ii Ii Q
* ^^ x^ ^-» FT!
r^ . ^_, . ( | Mi
c*> *x ^- *c o c
c? * o o t~*
o o -.1 o »-
C t"^ ^-» X CO
O (". -X «~ Q --^ >-
U «J 4- + ^ . « O
^- -^ -~* ^ *-* *-* ^
^_^ !_-(»_> .^ _J 7" * [jj
v---_- ;r >- b. >* i.-) -y _i
-f ^ -^ °^ Ij ri 2j ^ co S ^
CM x-^^^W^AO^-* O Q. H
- L; < u-i - o a. M x
O o * o re o «s oar na,
f- o c"' -- o . o -< rs ?: o
r*"> o x-% » < J oif-« z;OO 3C
it-1 ^ -^. * ^^ in-J«^^ Qii *^-~ h-< (X. Z U UZ~< K O-.
-J * -j _j o. ^j i ^-. * H * io c c y u.
n: ii -t - o »* - o ^ -i u. n n * CK a. o 3 *
« *-^ ^J > _J kO . l Oj i/~, ;- "j, > » *-i ; -i j" oo o r»"* 13 «£ ii -^ ii ^ ii
-^ .»* v^m*^ orrr-. cj^-^QOf> n»-'5!rorO »J OtO
^- «- T- z U.
oj m =r a
{ ^ T- O
oj ry cv oo
VQ
t-
oo
o
a.
UJ
to
o
[jj
I
a:
u:
CO
7i
X
^
«t
OS
o
O
PC
a.
f
C^
CO
UJ
t-H
u.
o
CC
H1
O
1-
t/>
UJ
CO
f 1
f J
ir
UJ
t-H
__
^
C^
n
5-
o
<;
2T
U,
6
t-
J
ce
UJ
t-
UJ
O
n;
CL.
^
t t
r i
or
^E
UJ
*~* 3~
-^. f-*
-^N U)
O"
* O
[A.
IT r:.
^~
u:
rr ««
O
to
oO * ce
*O t- UJ
< u.
o cs u.
ii r^
X ^- »J 03
<£ 0 _J
«C O «* ce
^*> *- t*, O
o H r: u.
0 + Q i-t
O ^. *S - ^
to o ox ^.t-<* vO^Ti OtO
Jtn-Joo -m ==-
xoo>-:o ^-(- --"
-Slll-'^O F-r" >*t-H
U.«CU.*ZOC O^Q Qw^
t 4
*t
0 DC
o
o
_) O O O O
o
c
o
C CO
:£ *
0 - 0 C
jir^1~tfiT
5 2 ^ M S
H- O C ~ n
-r ci e, « 10
-- o
T ^~
m
vo
I
-------
C OF T;iE FINAL MANIPULATED F-AIN ^ATA .
C
KMCil
DO 159 KN= 1 , HDAYS1
C
C..IF KMC IS CHEATER Ti'A'l 1, READ THE 'ihXI DAY DATA..
C
IF(KHC.GT.1)GO TO 9
C
C..TIIE FIRST DAY DATA DATE..
C
liEAD(5,531>NY£Art,KO'.'TH,NDAY,TE'1P,T£:iP:1X,TEUP'tI,F.VAP,STH3UR
1 ,(CRX( IPA) , IPA= 1 ,''AP)
531 FOR;tAT(3I1,'tF>.2,UF7.1)
'JO 216 IAP=1 ,HAP
IF(CKXCIAP) .GT. 0.000001 .OR .K!i . EQ . 1 )CP.( 1A?) :C1X( UP)
216 CO NT I HUE
J21=S1I!GUR/SAMP
GO TO 7
C
C. .NEXT DAY DATA. .
9 IF(KN.EQ.NDAYS)CO TO 3?
READ(5,S31 XiYEARI .MO'IT'II ,NDAY1 , TEMPI ,THPMX1 ,TMPMI1 ,EVAP1 ,
CS'JUURI , (CRXKIPA) , IPArl.'lAP)
DO 6050 IAPr1 , NAP
IF(CRXKIAP) .GT. 0.000001 .OR.KN.Eg.1)CR1(IAP) = C
6060 CONTINUE
7 II1:J2U1
155 112=111+11
C
C..IF KMC = 1, READ XKAI.'K 1 , !'! 3) FC t 7IRST HAY RAI'i TATA..
C..IF KMC \ 1, R£AD X!iAIN(2,M3) FC^ 'inXT DHY SAIN ) \TA . . .
C
IFCKMC.GT. DGO TO 1
KNC=1
C
C.. READING DAY1 RAIN D\TA..
C
DO 9020 IATII1.II2
IF(XRAKi(KtlC,IIl) .l,h. 99.0. AND. Ill . EO . 1 ) >
902 FOHMAK 12F5.2)
GO TO 5
32 CONTINUE
DO 36 IA=1,!1I3
XRAIH(2, IA)=0.0
36 CONTINUE
GO TO 69
C
C.. REAPING NEXT DAY MAPI DATA..
C
H K N C = ?
ii A 1 1. (\".c , !Ai = AS vi'i IK:..', ;A) i o.
;C, III) .,,v .<;*. V V,T. Ill .FO. D'iYl AS 1 ;-', VF AS1
C.. FILLING IN ,'EHOS INTO RAIN PATA..
C
6 MO ?r,r, I A: III . I I,.'
KIi:.. IA) .'IF. 09. i'.V,0 TO
1-66
-------
IF! I/I .'.;K.Ul3)ii'J 70 '(01
^b5 CONTINUE
111=112*1
00 TO 1-55
301 DO 510 IAUIA.NI3
[j30 XRAI'HKHC.i; 1) = 0.00
101 IF(J21-0)151,"51,23
23 DO 301 IA2=1,J21
801 XR4IN(XHC,IA2;=0.00
151 COi'lTIIiUE
C
C. .CHECiCINj THAT 2 KAlii DAYS HAVE DEE.'J READ (AT LEAST)..
C
IF«MC.HE.1)GO TO 69
KMC = 2
GO TO 9
C
C
C..CONTINUING WITH DATA MANIPULATION..
C
C
69 KC=0
303 IF
-------
xz=o.o
c
XHAINt 1 ,NI3)=XKAIN(2, I)
C
C.. SHIFTING NEXT DAY RAIN DATA, AMD INSERTING A ZEKO i'l THE
C '113 POSITION. .
C
'II 13 = HI 3 - 1
DO 66 KNN = 1 , HII3
65 XRAIN(2,KNN)=XRAIN(2,KNIU1)
C
C. .INSERTION OF ZERO IN NI3 POSITION..
C
XKAIH(2,HI3)=0.00
C
C.. CHECKING FOR HI3 I.E. THE END OF THE DAY'S RAIH DATA..
C
IF(KC.GE.NI3)GO TO 63
GO TO 303
C
C..tEVAP,STHOUR
S59 FORMAT t 1X.5HDATE' , II , 1 H/ , ID , 1 >!/ , II . 2X ,5HTt.'!P ' ,
1 1F8.2,2X,7I!TE'lP;-tX' , 1 F3 . 2 , 2X ,7HTE'1PMI ' , 1F3 .2,2X ,5MIVAP' ,
11F8.2,2X,7HSTHOUR' , 1F6.2,//)
WRITECN)(RAIN(IA) ,IA=1,NI3)
IF(SVITCH( 1) .EQ.O)
CWFITE ( 6,851 )( RAI N ( IA) ,IA=1 ,KI3)
351 FORMAT(5X,20F6.2)
IF(Kil.EQ.HDAYS)GO TO 150
NYEAK=NYEAR1
NOAY=NDAY1
TEMP=TEMP1
TE'1P'II =
KVAP=EVAP1
DO 6650 IPA=1,NAP
6660 CRX(IPA)rCRXKIPA)
C
150 CONTINUE
C
C..WRITING THE LAST DAY'S DATE AND RAIN DATA..
C
C
C>.»ll.!>!...t I >>...» I If 1111 111! »lf>
C END.
(- < « » » i » . . . I I 1 I » » . I « I I » I » I .!..,. I ...»,»... I «... I .,
C
: wr, I TK( 103.555)
C WHlTr ( 103 |si|?M>L>FAI L!D!IV)SC , I ?M 1 ,i. PnV''l. X \'' 1 , irA11? . WASHu .SWI'iT .
C lS»AHK,?»Ef K.I'SA, SLAKE, SALT .SALT PO
C WSi :K( 103 ,55r>)
REMIND IN
1-68
-------
DO 16 114=1 .NDAYr,
mU.NE.1 )CO TO 163
hEAU! I!l)!lYEAR,K'JHTH,NLAY,TKM?,TiC'1P"j(,TErlPMI , EVAP .STIIOUR
1 ,(CH(IAP) ,IAP=1 ,NAP)
HEAL/! IN) (HAI MO:21> ,K21=1,MI3)
163 IF(I-.EO.KDAYS)'JO TO 162
KtAUt IinilYKAill ,;iO:ini1.'ILAYl .TEMPI .TrMHMl .TFMPM2,
JKVAP1 ,S'!OU:il,(Cni(IAP) ,IAP=1,!IAP)
K2 1x11 1 3*1
NI31=2»HI3
RE AIM IN )( RAIN (K2 1) ,K21xK21 ,»I3D
162 CONTINUE
C
c
C
c
NI3=NI3X
IF(NYEAR.CE.O)GO TO 295
NI3 = 2
SAMP=12.
295 CONTINUE
AVTE!'? = TEMP
AVF.VA?-.EVAP«COriVER/2'4.
IF(S« I l!l«i<>
C
LDAY=(MONTH-1)»31 - ("ONTM-1 )/2 * NDAY
IF(MO'ITH.GE.3)LDAY r LDAY-2
PYEAR s NYEAR/M.
NYAR = NYEAR/4
XP=PYEAR-NYAR
IFUP.LT. 0.001 .AND.HO;JTH.CE.3)UDAY = LDAY +
C LDAY IS THE DAY OF THE YEAR
C
C
C TEMPERATURE FUNCTION PARAMETERS
C
DELT!U-0. U063 1 * COS( 0.01 72 1»LDAY+0. 161)
SD!-OURi-TAN(WLATIT/57. 296)* TAN (DELTA)
SDHOJR=ACOS(SDHOUR)
C SDSIJUR IS THE SUNDOWN HOUR OF THE DAY
C
C INTEGRAL FOR EVAPORATION
C
XEPsO.
DO IT! U=l.?»
XT=AVTEMP»((TFMPMX-TEMPMI)/3. ) »COS( 0 .25 1 6V * ( ( 1 A-0 .S 1-5DHOUR) )
121 XKP = XtP > EXP(O.Of;?5«XT)
C
C. . . .AVERAf,- 30 DAYS Tt.MPEHATURE ..........
C
1-69
-------
o
".-.
5 T;
p. -i
tl -
r* r
m
»- »':
i rr~
o _;
~~Z
"x. .r*
ii :'
"
r-j
^
[
i'
U,'
i*
0
5 ^ -^ c
:: c/)
"j U v-*
£* SO I-H >
X ^ > _.
> . o -«
*
0
o
.:
^v
<_»J v/i O ^J O^
'^ 0
C~) O ii ^ 0"- "*! t/5 C O C ... O -i
ir «-};*"-?» »-i > i-t ^j ?^ H r~ H r~
- ??c^^7r^ w c " ^
M^3>XS>H tT1U10U1
n ^-- ;*: -o <_o u - x x
w » ^ 30 i: o O
w r- j: - 2 r- 3z:
j* i j ^^ f-^ i_o "* ^« rn rn
T3 C^S-- 3-^J -H-H
O ^". O
-c a> o
^N, ip
> i s-
OJ
UT-
O -i
n-.
-i r-
O "-)
n
0>J1
X
r>
en
r-
-i
L*J Uo UO ^' OJ
jr ^A,) r\J * o
0 -< O .^ O -S 0 _C O ^
m m fT) m (Tj
Hr-Hr-Mr-^ir-^-ir*
O *! O *-) O *H O *") O *-i
n n n n it
ovjiouio^ouio^:
x x r- x r-
o o -i n -H
IT 3: ^ *
mm mo
r- r- r1
H M J U>
o o
m
o a
O O H
z:
H i i]
Ln o m
w2
- n
o
O P3
- m
- o
rvj o
- *n
< 11
«=: x
o <;
.c.
< -H
-C O
*«s.
X 0
tTl Ul
»> X
TJ
m
<:
H
0
^
o
_,-
H
OJ
CO
ii O
^3
^ t-H
^r*
"~1 t*>
O
O
o
o
z
C -s; -)
1^. tO Oil
» o o
C ii c.
0 <*-
1 j II
o -c
< n:
uo TZ
-a
CO CO
i-o ro
<: o s>
H O <
^>j it l
>»-=!'
3^ <
O i^kJ
o
+ «
S» -H
< -)
m o
*B t«
--N * a> o *.
1? f O O
I
-~J
o
-------
c
c
C KAVED AMD OUTPUTTED . . .
C
I FtZKAIII.GT. 0.000000 1)EVAP = 0
C SNOWMELT AND PACK
C
IF(TE'1P.GE.TMELT)GO TO 125
PACK = PACKt-ZRAIN
ZRAIIUO.
AMEI.T-O.
AKF.LTIrO.
PACK1=PACK»((SWARE-SLARE)/100.)/0.2
GO TO 126
125 A'1ELT = CHELT'(TEMP-TMELT)
XP = PACK-AM£t.T
XP1=PACK1-AMELT
IF(XP.LT.O.)XP=0.
AHELT=PACK-XP
IFUP1 .LT.O.)XP1=0.
AMELT1=PACK1-XP1
PACK=XP
PACK1=XP1
125 CONTINUE
C
C. . .LAND USE CYCLE.
OXINT=0.0
C EDIT JAN 12 MON
XZ1:XZ
XZ=ZRAIN+AMELT
IF( XZ.GT. 0.0001. AN D.XZ1.LT.O. 000 1)TINF:0.0
C
C EDIT JAN 12 MOM
C
DO 19 LA=1,K
IF(LA.EQ.K)GO TO 20
AKPP=C2SOIL(LA)
IF(SWITCH(3).GE.10)GO TO 10
X1=USZ(LA)
C1=CjSOIL(LA,JSC)
A=TPS(LA)-C1SOIL(LA)«CZDEP(LA)
C3 = KS(1.A)
C IF(C3.LT.C230ILUA))C3 = C2SOIL(LA)
IF(SWITC!I(5).GE.3)GO TO '10
C
C. .IIOI.TO'JS t-'OU.FOR INFILTRATION r.OLV'i 1.«>.> i. i> nt >.... ....... >»ti«»»i>i>«»i»t»
C
DO LM IKll: 1 , ^
F = C1»(A-X1)*»C2+C?
1F( X1 .Or. A) PRINT 611
611 f-OPMAIX' rKROK.. AT IK'l.TOM;, F'.'HA FION . ')
[>.">. VAl =Ml?,Xn.S(l.A)«l)r^-; AC(J:nM-iiS(l A)
1-71
-------
K1=0.5*KS(I.H)M f .G/PSm
Dl -A»fj(U1»K1 )
STf LA)=0.0
XP1 = ( ri1E1-THETA!i(l.A))*D1
P :<' 0 D Y :: X Z + 1.3 AVAL /SAX p
IKF.LT.CDCO TO ft 1
XUX1 + (3A'1P/"i.O)»(F-C3*C1'(A-(XUrA"!P«(F-C3)/3.0))i"lC2)
GO TO 62
61 X1=XU(F-C3)»SAMP/3.0
62 IF(X1.GT.TP3(H))X1=TPS(LA)
C IFCXI.LT.SMMI'HLA) . Aii3 . ( ZRAI 1UAMFLT) .07 . 0 . 0000 1 ) X 1 = SM1 UK I.A )
21 IFCX1 .LF..C1SOIL([.A)":ZCr-:?CL.A))X1=C1SOIL(LA)"CZ'J£:P(LA)
X1 = X1-KVAP»SAMP»Ki'( LA, MOUTH)
XP=100.0»S3RT(ARf-(LA)«TAHEA)
Or.'TER(LA) = SATPF'-l(l.A)«SLOPK(LO*(X1-3f^ri{LA)*CZnEP(LA))/10000.
IF(OIMER(LA) .LT.C.Or,01 JOIIITEIi (LA) = 0 .0
X1 = X1-0.01*3I!;T£'((!.A)»SAMP/XP
IF(X1.LE.C1SOIL(LA)"CZDEP(LA))X1=C1SOIL(I.A)«CZDEP(H)
C
C
C
C
C
C
C
USZ(LA)=X1
C
C EDIT JAN 16 FRI BLOCK 'IB
C PHILIP'S INFILTRATION MODEL. (Srf ITC:I( 3) = 0 1 0 OR 11).
C
C
IFCAINFII.(LA) . LT. 0. 00000 DAIMFILf LA) = 0.0
FREDDY; XZ + DSAVAL/S VI?
IF(AINflLUA) .GT.FtiEDDY)AIHFIL(LA) = XZ + DSAVAL/SAMP
GIHFII.CLA) = C3
IF (XZ.LT. 0.001 .AND. XI . t.T.SM"INUA) *C7DEPUA) )G!NFI!.(LA)s
1C3«X1/(SMMIN(LA)»CZDEP(LA))
GO TO 20
10 IFtXZ. CT. 0.001 .AND. XZ1 .LT.O.OODGO TO 'II
GO TO U3
C
Ml THETAN(LA) = (THETAH(LA)«CZDEP(LA) + (THF. FAW(LA) - DIET AN ( LA ) )
c"2(LA) )/CZD:P(LA>
IF( swrrcH(3) .«T. i) GO TO uioi
THETAHCLA) = USZ( LA)/CZDEP( LA)
GO TO 43
M 1 0 1 CO '! fl H U E
Z ([.?,) =0.0
PTI!L:=( r;i!"TAE(LA)-T!IETAN(LA))/5.0
TME1=T!1tTAN(LA)
C
PS 1 1 = 6.0 + ( 11 t)9M.r>)»»( (THF1-T'!ETAF(H))/(C1SOIL(I.A)-TM^T\E(LA)
1))
C
C
C
c 9 . 6 1 y i / ( c > s o 1 1. ( i . A ) - r 1 1 K r A F ( i » ) )
1-72
-------
C OJTI'Jf '»«»»»»»»»»«»«»»»»«««»««»»'li«s»»«""»"'Ji"*'
CO '12 1=1 ,5
THf?:THF.UDniF./2.0
TlirjrTHEUDTHi.
? = h.O+1199M.O«»((TIIF2-TH-.TAK(I.A) ) / ( C1 SOIL ( I. A ) -'! F'ETA? ( LA )
1))
K2 = 0.5*KSUA)»(7.0/P:>I2)'"U1'30AaA)
K3 = 0.b»KS(LA)»(7.0/P3I3>'*LAl!R-)A(i.A)
C
D2=DI»11991.0*»( (THE2-T!IE1)/(C1SOILO.A)-T!IETAE'LA)))
D3 = D1»T499'4.01»({THf.3-T!;E1)/(C1SOIU(LA)-TllFTAE(LA)))
D2=D2»K2
D3=D?»K3
XP2=(T!!E2-THETANUA))*D2
XP3=(THE3-THETANUA))»D3
ST( LA ) = ST( LA )<( 0.1 66655 "(XPUXP3)+0. 666666 »XP?)»DTH£
C
C
C
C
THE1=THE3
142 XPUXP3
C OUTPUT ««»««*»»»»»«»»*«»*»»««»»»»*»«"«'
ST(LA) = SQ[(T(2.0«ABS(ST(LA)))
PSIt. = 6.0+1't99t.O»»((T:iETAN(LA)-THETAE(LA))/(C1SOIL(LA)-
1THETAE(LA»)
C
C
143 If (XZ-0. 0001)11, 15, 15
11 AItlFIL(LA) = 0.0
PSIll = 6.0t11991.0»«((THETAri(LA)-TI]ETAE(LA))/(C1SOIL
-------
^^ «:
d =. 53
3 -i r-
«: >-i t ii] [ -
^ --'
^
r\j oo UJ #
f- =3 LT
M ^:
0 - --
(- (- f M
- o c ;~
u; o o *-H
(4.
t-
^^
=
" '
^ :c
*C «S
_j *_
- ' f--
C. f
~ a_
5
*!'
_J
^
C.
-w
t-i
V
,-.
a.
_J
*^-
i t
^
C
>-
-
^
4
ir
1- 4
X
0
>
-d-
r~.
I
c c
-r in \£>
OjrT~^T iT O O~> t- r*- t P^f-
-------
LA )iTHETA«( I.A ) -01 'IT-.'UU) '?'). '".-Wf *P «'P . »Z( L.'.))
95 IKC;., ITCH (3). I E. 1 ) U:,/.< LA ) = U3Z{ LA)-31'i !(.!'lTCHn) .E0.1 .OR.SWITCIK 1) .KJ .
HO .V 11=1,KKK
AVf fiF--AVKltlK.flKrACIl>«,;t':Fll.(Il)
1-75
-------
! ( ANI ',! '. i I ' ) .Li- . ..(.';'/,! )'.'.'
<.. = ;. i-Ar;(i i PA.-EAUI)
AVK-
CON/.
Lrr/;!i + 0.5*'-3Rr(AI:tA( I 1) »TA:X5
L = CC'IARU'.hEA(Il)
22 CO'iriNUE
C...LAND USE DO LOOP ENDS.
C
XP=100.0
I F(."WITCH (3) .EQ.1 .OR.SWITC1H3) .EO . 1 1) XP = XP-X1MPEH
C
IF(AVERA.LT.0.00000001)GO TO 23
ELO=SLO/AVERA
AL'I'j I'lirAL'iGTH/AVERA
AVEPA=AVE3A/XP
CONAPE:CCNARE*TAREA«10000.0
AVEIUFsAVEINF/IOO.
23 CONTINUE
C
C. .I'JH. .PROGRAM TO COMPUTE RUNOFF VALUES (INPUT AVEPA).
C
TRrSAMP
NT=250
HFIX=6.
HFIMrO.
HE'lAXiO.
XIA=0.
ZIPrO.
IFtAVERA.LT.O.OOOOOOODGO TO 67
ZIP=1.
XIArTAREA/2.5856
C...CALC.CF LAG TIME,NASH CONSTANT,RESERVOIR CONSTANT.
IF(SWITCHC3).EQ.O.OR.SWITCH(3).EQ.10)GO TO 50
TP1=0.047775'ALHGTH»«0.593«A>riAN»«0.605/SLO»»0.38
XIAzJOSARE/2585600.
GO TO 51
50 COriTIHUE
TP1=.831»XIA»».«5S1(1.+U)»»(-1.662)»TR*»0.10M
51 A
-------
c.. .CAi.';.Or' <,,vt-;f ,-u'it.; ic'i., j ,1','j . xiticiAi. ~i|.. .^.
C OODOI;'10''00'V)00'J jCliJOO'j'lOG'JOO'-.'.H/J jOOOf/^COo'^';'."/, ,'.
IF(AN .I.E. 1 . 1 )CO ft) 0
Ii"(T.<.GT.lP)GO TO 5
C CM.L GA'MA ( A'l ,CAMX, IE)
C UoE MACC GIM'U r'J'ICTIO'l OF 0'ILV Q'lE PA'^ETtCR. . . .
C
GAMX = GAl1MAF(DPLE(A:i))
C
GO TO 55
C
C.<»»»«>»»<»I»»»»I»II»»I»1!»«!I»I><»«*1»<1
C...CAI.C.OF SINGLE LINEAR RrSFRVOIR MODEL IUH.
C»i»««»»»<»*i»it«<»*»»»»»«i»i»i<*>i<»»
C
5 DO 3 12=1,NT
AMI=I2-1
H(I2)=(1.-EXP(-TR/TP))»EXP(-TR»AMI/TP)
HFIX=HKIX+H(I2)
8 CONTINUE
GO TO 56
C
C...CALC.OF CASCADED NASH RESERVOIR MODEL IUH.
£»«»»»»»*>«»1»»»«»*»*»»!»<»<*»»«1»»<<*»)<»»»»»!
C
55 H1=0.0
AKN=TP/AH
DO 57 I2=1,IIT
H2=(1 ./AKN)»((EXP(-(AMI*0.5)ITB/Al'.iO)/GAMX)»
C((AMI + 0.5)»TR/AKN)«»(Atl-1 . )
H3=(1./AKN)!I((EXP(-(AMI+1.0)»TR/AKN))/GAMX)»
CCCAMI+1.0)*TR/AKH)»»(AK-1.)
h(I2)=H(I2)»TR»0.3333*0.6656S»TR»H2
HFIX=HFIX+H(I2)
57 H1=H3
55 CONTINUE
IF (NT.EQ.250)GO TO 85
NTP1 = NT+1
DO 81 J1 i NTP1,250
81 H(J1)=0.
85 CONTINUE
C
C COMPUTATION OF IUH FOR IMPERVIOUS AREAS
C FOR KINEMATIC WAVE MODEL.
C
67 CONTINUE
XHI1=0.
IF(ANRAIN(K).LT.0.000001)00 TO 60
C*AN'1PK(K)«»0.()Or>/( AN KHiriU )"",). 3 ?i?»SLOrE(\' ) » *0 . 3? )
NT IM= ( 1 0 . » TP I HP/?- V.P + O . f) )
IFCiTlM.LT. 1 )MTIH= 1
IF(NT.LT.NTri)NT = fKI
00 h4 I?r 1 ,NT
AM I = 1,^-1
1-77
-------
iooo (.'/; i ITJE
iil'X !?) = ( 1 .0-(.XF( -TR/THi1>P)>«r. '''. -7- > "'-I/7I-IMP)
63 co.rriuE
IF ("/.' rC:l( 3) .1.0. 1 .OR.i. JI fC-(3) .EO. 1 1 )X'in-1!IRAIf
C»A;'E4(K)»1'ARLA»0.12778
C
C F.'ID 01 IUH FOR IMPEPVIUUS AREAS.
C
C
C REMOVE COMX-MT C FOR IUH VALUES.
C WPITF(6,5'46)(H(I) ,1=1 ,-IT)
C...CA1.C.OF RO'lOFF ATTR^l ilti I'lTFRVALS.
60 co'jnriuE
IF(AVERA. LT. 0.001 .ADD. AliHAIIHK) . I.'I .0.001)00 fO 39
IF(5WITCH(3) .EQ.O.OR.SJIiC'U j) . EO . 1 0) XH 1 = AVEPA«2 ,778'TAREA
Hc.".!iX=0.
IF(AVERA.LT.0.00001)XHI=0.
DO 5S 'At 1 , NT
IF ( Mr I X . GT . 0 . 0 000 1 ) H ( M ) ~- H ( M ) / HF I X
IF ( "F1 1 . GT . 0 . 0000 ' ) !l 1 X ( 1 > = ' IM ( M ) / 'ir IM
5S lr
89 CONTINUE
KR=1
C
C
TOTORG-0.
TOTSEDrO .0
TOPAP2=0.
IF(S\I!I( Jl) .',E.O.O)CO TO 10^0
RiiI.VIX = -RAI!!( J 1 )/10.0
GO TO 10'I5
10'IO J1 = J1 + 1
CO 70 1030
CONTINUE
.i»«tiii«t««t«f:';D -;o MI'J''Th RAIN I!JTF -iSIT1! »«'»«
. ...ALU rOLU'JTA'.fS r.LCC<^
C» »ll»» »«»=; rji^ tP'lSIO ;*"
i; I = o. o
in ..-itiN .LT.o.nr ii)no ro
I!'( I'l .LE. LI.SO l.OTO
1-78
-------
XI, rC;'?.'/.)/.'''!'!!-
DO 1060 I.AJ 1 ,'iLA'lQ
SOILLf.rO .
IK!Af|KAI>l(LA) .LT.C.OOOOa01)GO TO 271
KIT; '< = ( m;nX»0.&?i|-Ar!FIl.(LA)-'.VM')':IE'i>»»>»»»»»»«»»»»»*><>»<»»»»»»
ANRA-ANRAIN(LA)
271 IF(SWITCii(5) .HE.3)GO TO 231
VrGINFILUA)
1F(.\INFIL(LA) .GT.GISFIL(LA))V =
RHO=RO(LA)
IF(Z(LA) .LT.DX)PTHETA = THETANUA)<-(THETAWUA)-THETA'ULA))
1»Z(!.A)/DX
I)Xr3T'.)X*FMAXDSUA)-DS(LA)
DO 230 IAAP = 1,NAP
IAP = IAAP
Drl)LA(LA,IAP)
O--OH(LA.IAP)
FEIiT-0.
IF('J.)NrH.FO.MOMTHF(LA) . AND.NPAY .EO .MDAYF(l.A) . AND. IRA.F J. DrERT =
ICi- h rd.A , I.\!')/.UM,I-
K r.U' zKS'jr.l.Ad.A, IAP) «1f .'»( 1 ,-.!!? 'I SV -'>3lK)./(27?. «"!( MP))
1-79
-------
rFtXZ.GT.Q. 001)00 TO 1071
DO 1070 I2s1,HLAIIO
C WHE'l OSGREL IS KNOWN Sirr-TITUTF. T'lE A'OVF STATFMEilT
PI.IJPT=PI.A[|TU(LA,:AI')",F) "'!( L? ) »ZIP
232 RAPS JU2,IAP) = RArSOU2,IAPUTOTPSO(lAP>»i!(L2)« ZIP
?33 CONTINUE
1030 CONTINUE
C
ft 1 1*» >i>n»«iiii in in p,;Q jQjL '.O^S** »««« « i » i »»»«<§
C «»»* i » t .. i » i ...... i >,,,,,,,,, ..... .,.,..>,>
C DLir.T AND DIRT CUMULATION
C
199 CONTINUE
1-80
-------
1071
C'J'JTII.'UE
DDCNT =
160
161
109
103
X.U = ANHA1!<(.<)
IF (Xjrf.LT.O. 00001 )XJWiO.
AiUiDrDDA
I F ( ",DA . !.T . 0 . 0000 1 ) A Ri)D = 0 . 057 + C . 5 1 » X JW» » 1 . 1
IF(ARBD.GT.0.75)A'-;D1 = 0.75
XPIL=ARDQ"( 1 .-F.XP(-*'AS'!-<»X<;W»5fiMP)}
DDI.03T = DDCU:-1*XPIL
XPDL=0.
XPOR=0.
DO 160 PAI=1,1
XPDAP(PAI)=0.
IF(SWITCH(6).HE.1)GO TO 103
DO 109 IL=1,NLAND
DLLOST;OLC!J(IL)»XPIL
DLCU(IL) = DLCU(IL) + PLIT(II.)»SAVP-DI.LOS1-KSW»SWEFF«DLCU(IL)
IF(DLCUCIL) .LT.O.OOQ)DLCU(IU = 0.
XPDL:XPDL+XPZZ
XPOR=XPOR*XPZZ»ORGLIT(IL)
DO 161 PAI=1,4
XPDAP(PAI)=XPDAP(PAI)+XPZZ*APLIT(IL,PAI)
SUMIHPC IL) = SUMIMP( ID+XPZZ
CONTINUE
CONTINUE
IFCAMELT1.GT. 0.0301 . AMD . P «CK .GT . 1 .0 ) DD;.05T= I)DLOSTIS'. ARE* 0.01
DDCUH = DDCUHtDDFALL»iA'lP-DDLOST-.DAP(IAP)/XHIl
Dn=B"FLOW(IAP)
ALPMA1= 1 .-TOTP*nB+BF»OQ»SS
CXX:0.5*(-Al.P-!AUSORT( ALP!H
TOTr=(TOTP-CXX)«XMI1
C\\=CXX*XHI1
CO'iTIKUE
DO 112 I A Ps 1,1
SUM(K , IAP-»?)rSUM(K , IAP*3)+X
S'J I(K, ?) = S;''1(K , SJ+XPSUVpro
ro .'10 \,2- 1 , HI
< IAP)
1-81
-------
38-1
0--(XM K\;VM
o=c> yi juiVH
):> ;t :,.-'.
C'0=(\XI )'H JC'iH
?'6iK = xxi <>6.-: i o
i + « I >; = .- 1 ;;
(a VI 1tW)
( d V I ' l.h )C id V h = ( -J V I ' K ) O'.;d '. a
dvu' i = civ i K!LC rn
fc' 01 00(t'3l. ' (5)11311 f'J)JI
I**.;,.*
BIN' I -K 6<; OG
30NI Jt.OD
'nssdva-=(cjv
dv:;' i=dvi 9?.: oa
01 oo(£-
( i
(l)TVIOiH = JJ2Kr .:
ii.8 01 CD
3RHIU03
(dVI 'XXI )f',< M i'.:o-iCG i,:.ri',o>: 01 in.-:;: 3
(?; j'.'7!1' />>* N vi' <-'i)r/' --vJ-r = (-i vi Vi>'/ ,.-/- \i' '
(- i)',,i'». jf,-'-.." 'i i /,-)/!, -;HVI 'n )/'.' vi
r! .".' I--.!V ::, ' ",
-------
IF(r. KOrl.NH
X MI N = NO "SAMf »(>()« 0.0001
M I N = \ ^1 1 N
NilM;1' lll/r-n
1-83
-------
ir (S4 it.; KOJ .1.1 . i.j> !!».:;. 0:0 m..,
c
C IllVt!" A.|./.I".DTIO-| MOf'FL
C IrCV.ITCMCi) .'ill. 3)^0 TO i
C IK(RU', jr(KC) .GE.O.UOCOnCO
C :/) 27') I Apr 1, NAP
C APSO(^D,1AP)=0.
C27fj APS^C.O, IAP) = 0.
C GO TO <.Ti
C275 SG^O.'JOmoT.IRDTOLCKOJ/R'JIi
C DO 274 IAP=1 ,'IAP
C TOTP:(APSS(f;0,IAP)tAP30!'<0,IAP))/Sl,'>IOf(KO)
C 'J'0 = JO.-!.OW(IAP)
C Al.F-Url .-TOTP»B!5+n5»'.)Q*S3
C AFLSC'O, IA?) = (TOTP-CXX) 'KUNOF(KO)
C2M AP33(KO, IAP) = CXX*frUr,'OF(XO)
C273 CONTItJiJE
C
C E'!D CF RIVER ADSORPTION FOUIMBCIUM
11'(P« 3600.0
TOTSL;"--TCTSU1'vTCTALS(KO>lSA'-!P«noO.O
ULST?':--3LSTS':»ALSTrO(KO)»S VP»350J.O
SJTSU ' = S:;r5U"H.SED]0!.(KO)»SAllP»3'''00.0
osGSui-! = ;:R';suv|-i.()R,';N(KO)»5AMp«;i'!00.
A ? 1 S'J '1 = 4 P 1 SI) .".*A D 1 ( KO ) S Av! P* 3 5 00 . 0
Ir(SWIICHC5).'JE.3)GO TO 2't3
DO J«2 IAP=1,'JAP
SSPSUM(IAP)rSSPSUv1CIAPl*(APSS(l<0,IAF)*SA':P)«3603.
213 CONTINUE
IF(S*ITC>IC» .F.Q.1 .OR.RUSOFC<0) .LT . 0 . OOOT )GO TO 25
WRI7E(6,501)MHR,NMIN,RAri(KO) , RJ'.'OFtKO) ,TOT\LS(KO) ,ALSTDD(KO) ,
CSr.DTOL(^0) ,ORGN(KO) ,AD 1 ( KO) , AD2( KO)
C
C
CPLOTS.
C
C.. LOADING TIME VALUF.S INTO AESAY API. f( =,=)..
C.. LOADING PLOT DATA INTO ARSAY DP(=,=)..
C
C
C. . COD II T 11(
C
Dr(Kv'A.?)-i;!i\^r (KO)
net-,. 'A, OrS^rroi CKO)
ITtsv'*. ):(' 'il.'KrCO)
PF(^OA.S)- VM CKd)
1-84
-------
C
CPLC1E.
C
[C. VI IOH<>) .fO.O)',;»IT!V6 ' ?0)
u Cirt'KOK'..) .:.(:. 3.o'i. :;*r! CM co .EO. nco
irff. LTE
WMTE(6,601)
WHTr.(6,520)
IPP1=1
IPP3=3
WHITE(6,GO?)IPP1,IPP1,IPP2,IPP2,I?P3,IPP3, IPPI.IPP'I
'.,'RITF(6,520)
DO 305 K0=1 , N13
XKIM-KO«SAMP»60t0.001
MIM=XMIN
NI!rt = MIK/60
N'-;iN = Min-NHR»60
IF(RUNOr(KO) .LT.O.OODGO TO 305
WhITE(6,503)N!IR,H'1Ili , ( C APSSt KO , IAP) , A ?SC( KO , IAP) ) , IAP=1 ,'O
305 CO'iriNUE
WRITE(6,520)
C
C CONVERTING TO TONS..
£
30U TOTON=TOTSUM/ 1000000.
ALSTON :DLST3M/ 1000003.0
SEI)TOtl = SnTSUM/ 1000000.0
ORGTO'lrORGSUM/ 1000000.
APITOIir API SUM/ 1000000.
AP2 TON = A P2 SUM/ 1000000.
IF(.T/JITCH(5) .:JE.3)GO TO 2M?
DO 2M6 IAH:1 ,!IAP
SSPIOHd' ?) = SSPSUM( IAP)/ 1000000.
2^6 SOPTOfK IAP) = SOPSUM( IAP)/ 1000000.
2t7 CONTINUE
AVCONC=0.0
IFCFOFSU.-1.GT.0.0001 ) AVCONC = TOTS'JM/ROFSUM
IF(S\'ITCH(2) .EQ.O)WRITF.(6,5'<5)
515 FO^IAT(/,35X, 'DAILY SUi'MARlf1 ,/ , 3'jX , 13( ' * ' »
IF(SVITCK(3) . E0.1) WRITE (12, 3000)'! PAY. MO'iTH , RAINSM , iWSUM, TOTSUM,
CAVCONC
IFCSVITCH(^) .F(J.O)WRITE(6,S37)RAriS«. ,ROFSU!1. FOT$U*1 , TOTON ,
CDLSTS1'!, ALSTON .SDTSUM , SEDTON .ORGSHM , OHGTON . API SUX, API TON ,
CAP2SUM.AP2TON
T'n'KSUMiTWKSUIUROFS'JM
TDDTSMsTDHTSM+ULSTSM
IF(SV«ITC.H5) ..'<£. 3)GO TO 306
WRITE(6,60«)(( IAP,SSPSUM(IAP) , SSPTO.Nt I AD .IAP.SOPSUM
HIAP) ,SOPTON(IAP) ),IAP=1,NAP)
306 CONTINUE
537 FO,-i^1AT(/, 'TOTAL' ,/, 'PRECIPITATION = ' ,F 15 .2 , IX , ' MM ( ! SOI ES) ' , / ,
C'RUN'OFF VOLUME = ' . F 18 . ? , 1 X , ' CJ.ViTKR ( C' .FEET) ' , / ,
C'TOTAL Sb'DIMENTs1 ,F13.^, 'X, ' rh'A^> ( L'lS ) , -i\ , = ' . f° . . . ' TO'IS',/.
C'DL'Sr + DIRf =' .F1* .2, IX, ' G'-AM-J ( LI'S) ' , "!X , ' = ' ,K5 . ; , ' TC'IS1,/,
0'Sb.niMENT h'-OW = ' , F IS .? . 1 X . ' GKV:'- (LPS)1.
CJX. ' = ' ,F9.2, ' TONS' ,/, 'i)|\,AN. (CAHliCN) H >).,' =',
CF1.-:.,?, 1X, ' GRAMS (LP3) '
r'I'«OA,6):AR2(KO)
1-85
-------
-* - o o r, -* n n o n
'/J V, -J. -x, ^ -^ ^ -
=u O O C O C i j J C- O ^
,-c " =r i.-. ^:
-. *-\ I''.
f\j CJ Ci; -J io
<
^1 H >H -H -1 -* *
O O O O O '-n -1
(/> 07 CO 00
-1
^i
O ^= -^ v
M
OO
if) -a ^ ru
-------
c
C..PLOTTING DATA..
Ms 101
M=1
NGRID-5
C CALL PLOT(APLE,N,M,NGR[D)
C
110 CONTINUE
107 CONTINUE
C
C
c
c
CPLOTE.
C
IFUli.EQ.NDAYSJGO TO 16
HYEAR=NYEAR1
NDAYrllDAYI
MONTH=MONTHI
TEMP=TEMP1
TtlPKXsTEMPMI
TEMP«I=TEMPM2
EVAPzEVAPI
STHOUR=SHOUR1
DO 1531 IHIsl.HAP
1531 CR(IHI)rCRUIHI)
C
DO 152 IA=1,NI3
JX=IA+HI3
152 HAIlKIA)sRAIN(JX)
C
16 CONTINUE
C
C
WRITE(5,5«7)
C U3ITE(103,517)
WSITF:(6,506)
C WRITEt103,506)
NK3=20
DO 113 1=1 .NLA'ID
X?A=(AREA(I)+AIMPER(I))"TAREA
XPI=AIMPER(I)»DC(I)/AREA(K)
XPS(1)zSUK(I,1)/XPA
XPS(2):SUM(K,1)«XPI/XPA
XPS(3)=SUM(I,?)»0.001/XPA
XPS(«)=0.001«(SUM(K,2)»XPI+SUMIMP(I))/XPA
DO 11'i IP = H,7
1 m XPS( IP + 2) = 0.001»(SUM(I , IF')+S'JM(K. II') »XPI*SU1IMP( I) APL IT( I ,
1IP-3))/XP»
XPS(5) = 0.001"(SUM(I , 3)*SUM(K,3)"XPUSUHIMP( H »()RGLIT( U )/XPA
N\lsN<3+1
1-87
-------
WiITf. (6,
113 CONTINUE
H ,Ai.(;;,697)
WHI7F(6,506)
NK3=20
TWRSUX=O.
DO (,',') 1=1 , tILAND
XPI = M'-!PER(I)"OC(I)/AREA(K)
XPTS1=-IJH(I,1)
XPTS3=SUM(I,2)»0.001
S-J = 0.001»(SUM(K,2)»XPI*SUMISP(I))
599
696
C
597
698
505
553
506
C
507
508
509
510
511
512
513
M8
">17
WRITE(6,693)I,AL(NX1) ,AL(NK2) ,AL(HK3) ,XP1\S1 , XPTS2 ,XPTS3 ,XPTSt
TSDDDXiTSDSUM+TDDTSM
WRITE(6,696)TWRSUM,TWRS1JX,TSDSUM,TnDTSM,TSDDDX
FOFnATt////' TOTAL DAILY RUNOFF =',F20.0,
X 10X,' TOTAL WATER (MO IWERFLOW) =',F20.0/
X ' TOTAL SEDIMENT ='.F13.0,' TOTAL DUST AND DIRT =',
X K18.0,'
TOTAL SED + DD =',F20.0)
FCR'«T(///,50X, 'TOTAL LOADINGS BY LANDUSES1///
X ' LAND USE' ,16X, 'RUNOFF M3/KA ,20X ,' SEDIMENT KG/HA'/
X 23X, 'PERVIOUS' ,8X, 'IMPERVIOUS' ,3X, 'PERVIOUS1 ,
X 3X, 'IMPERVIOUS'/)
FOR':AT(1X,I2, U, 3 At. IF 17. 2)
FOR»-!AT(20(/))
FOR'UT(5(/))
FORHAT(30X,50('«'))
,1KX,'MAROUETTE UNIVERSITY',I1X, *)
,13X, """""""""""" ,13X. ')
-,10X,'INTERNATIONAL JOINT COMMISSION ' ,3X ,''
,8X,'::: MENOMOMEE RIVER PROGRAM i^'.gx,'*1
FORMATOOX, '
FORMATOOX,'
FORMATC30X,'
FCXMATUOX, '
FOR'tAT(30X, '
FORMAT(////)
FORMATdOX,'COMPUTATIONAL ORGANIZATION')
FORHATt 10X, -3WITCH(1) -. ' , 12 ,5X , ' 0. .SI UNITS, 1 . . US UHITS
C10X,'SWITC-U2) = ',I2,5X,'CROP USt FACTOR, 0..DEFAULTED,'
C'1..INPUTTED.' ,/,
C10X,'SWITC(K3) = ',I2,5X,'ICH FORVJI.A SELECTION, 0 OR 10'
C'.. SAO,DELLEUR,SAKHA IUH. 1 OR 11.. KINEMATIC WAVE IUH.'
C2QX, 'GREATER OR EQUAL TO 10 . . P!l I!.'..! PS INFILTRATION MODEL.'
C10X,'S.'ITCIKM) = ' ,I2,5X,'0. .PRIN1 ALL OUTPUTS AND PLOT,',
C' 1..PRINT ONLY DAILY SUMMARY.',/,
C10X,'SWITC"(5> = ',I2,5X,'0..NO ?OIL ADSORPTION,1,/,
CP"X,'3..SOIL ADSORPTION ROUTINE.',/,
CIC^X,'SWITCH(6) = ' ,12,5X,'0. .UNIFORM DUST AND DIRT ',
C'OVER IMPEHVIOIIS AREAS.',/,
C2-1X, ' 1. , OtTAILED LITTEH CUMULATION IN E»C!I I.ANDU3E.' ,/.
C10X,'SrfITCH(7) = ' ,I2,5X,'OPFN Sn'ITCM ...',/,
f.VITCH C\KP REJ'JIREMEIT TF3T. . '
CO't"l'r\V10NAl. UNITS...SI USITo.
^oM^^]T^(!ON^l. UNITS...us UNITS.
-R At:Al.\^'S,(TA'!V.Al = , F7 . 2 ,
.1,/,
,/,
',/,
ci.ix . '.smciKR) = ,12,'jX,1
KlT!-'Vi( S?X, 'S'-LFCTED ItiTuT
FO'iV\T(3.°X, 'SKI.ECTFD INtVr
Kc'R-UCffaX, 'TOTAL ARF*
C' oJAM (SQ.MI) ' ,/,26X, 'NUV'oKR OK LAND Ui'FS .WDF.H.FD , ' ,
C' (NL'iND) =' , IH)
1-88
-------
C'(NLAHD) =',11)
51-3 FOR:',AT( 10X, ' INDIVIDUAL LA'ID II3E DATA.',/)
519 FOHM/.K "' ,3X, 'LAIII/ USE ' , ' * ' ,r.X , D':r,CrS(,M l.b'S(^) LFS(U) ',
C' I.Kf-Cj) * t.ES(t.) l.ES(/) LfS(S) LES(«) » l.fS(JO) ',
0' I.FS( 11) * t.FiHI?) ' )
1-89
-------
3 '(0
FOi-MATC*
IJAY3
' ) )
y;i
C
012
FOi"!AT(5X, 'DUST A'iD DIRT CUT-nLA HON DATA.')
517
518
519
559
600
601
602
603
601
9999
FU'< :AT(5X, 'DDF ALL -'.f).?.,' = :;UST
C'K".UAY' , ' (TO!i:;/AChE/a:.Y) ' ,/,')/,
DIRT FALLOUT IN TO'IS/SO.1,
C'DOOfC
C'Dl'UTR
C'DL^O'I
C'DDAPI
CM/DAP2
c ' n'ar.HK
C ' S», INT
C' ASEAS.
C' SWA RE
= ' ,F9.2,
= ' ,F9.2,
= ' ,F9.2,
= ' ,F9.1,
= ' ,F9 .1 ,
=' ,F9.2,
=' ,F9.2,
, ' ,/,5X,
=' ,F9.2,
- PO»TI')'i OF L^FALL WHICH IS OPOAN 1C , I . ' ./ , 5X ,
IS HIThOGE'l , S ',/,5X.
13 PHOSPHORUS, J ',/,rjX
If, POLLU7 A'lTI ,%',/, "jX
POLL .2 , 1 ' ,/ , 5X .
PO'uiVi
POXTIO'i OF .. .
PCmiO'! OF ......
POmO'i OF ........
WA3'K).)T COIFF . ' ,/ ,5X
SWEEPING I'iTFfVAL I'l DAYS Otl IMPERVIOUS
= AREA AFFECTED BY SWEEPING, J ',
C'OF IMPERVIOUS AREAS .',/, 5X ,
C'SWEKF -',F9.2,' = SWEEPING EFFICIENCY (DEFAULT =0.7)',/,5X,
C'DDA =',F9.2,' = AVAILABILITY FACTOR , DEFAULT COMPUTED ',
C'FPOM RAIH INTENSITY. ' ,/,5X,
C'SLARE =',F9.2,' = AREA AFFECTED BY SALTING III 1 OF TOTAL1,
C1 TIPERVIOUS AKF.A. ' ,/,5X,
C'SALT 3',F9.2,' = AMOUNT OF SALT APPLIED DURING SNOWFALL ',
C'TO'.S/SQ.KM.DAY ( TONS/SO .''.I /DAY) . ' ,/,5X,
C'SALTPO =',F9-2,' = PORTION OF SALT WMICH IS PHOSPHORUS.')
FOF,'-1.AT(3(/) ,5dX,31HSU 1MARY OF LOADINGS BY L 4NDUSES , 3( /) , 3X ,
18HLPND U3E.1 IX, 134RUNOFF M3/HA , 1 CX , 1 H H3EDIMENT KG/MA,6X,
18HORGAI1ICS, 13X, 17HPOLLUTANTS KG/HA,/, 13X , 8HPERVIOUS , 3X ,
1 1 OH I MPERVIOUS,3X,BHPER VIOLS ,3X,1 OH IMPERVIOUS, 5X,5MKG/HA,8X,
1 1H1 ,12X,1H2,12X, 1H3,12X,1H1)
FO 'HAT (IX, 12, IX, 3^1,1^12.3^12.1. IF 12. 7)
FOK'-:AT(20(/) ,30X, 'DETAILED IITTER CU"ULATION DATA',3(/),
1 130( '»'),/,' LAND USE CURB DENSITY LITTER CUM. ORG . CONTENT' ,
110X, 'POLLUTANTS CONTENT ',/, 9X ,' M/HA( FT/AC) (J/M-DAY ' ,7X ,
T GRA"S/GRAMS OF SOLIDS' ,/ ,24X ,' L3/M-DAY' , 15X , 1H1 , 12X,
11112. 13X,1H3,13X,1H1,/,130('"))
FOR'1AT(1X,I8,7(F12.7,1X))
FOR'IATC//// , 10X, 'SOIL ADSORPTION MODEL ',/, 1 OX ,
, 21 H« »»»»»»»»»«»»»»»»»«»,///)
FOR'IATC 10X, 'UNITS ............. GMS/SEC ( LBS/SEC) ' // )
FOV-UTC/, 'HOUR 'UN ' .1 (' 'ADSORB . POLL .', 12 ,' »DISSOL.POLL .', 12) ,/,
19X.2( '"(PHOSPHORUS) '),/)
FOR'IATC 1H» ,13, IH1 ,13,1 X, 1H»,8(F 13.3, IX, 1H«))
FOR".AT(1( 19HADSORDED POLLUTANT , 1 1 , F15 . 2 , 13HGRAHS( LBS) =,
1F10.3.5H TON'S, /,20:IDISSOLVED POLLUTANT ,11, Fit. 2,
113HGRAMSCLDS) =,F10.3,5H TONS,/))
STOP
END
1-90
-------
Inputs Required
Card Format
A1.A2.A3 20A4
Bl 7<4X,I2)
B2 4X,I3
4X]F6.
4XiF6.
4X,I2
4XiIl
4X,F5.
Cl 3A4
1X!F6.
IX, F6.
!XiF6.
1X,F6.
!XiF6.
1X]F6.
!XiF6.
!XiF5.
IXiFS.
C2 F12.3
1X^6.
!XiF6.
!XiF6.
1X,F6.
!XiF6.
!XjF6.
!XiF6.
IXiFS.
lXjF5.
1X^5.
C3
F7.2
F7.5
F7.3
F7.3
F7.5
F7.5
F7.2
F7.2
F7.2
F7.5
2
2
2
2
2
2
2
2
2
2
3
3
2
2
2
2
2
2
2
2
2
2
TITLE CARDS
Description of Variables
Column
t
CONTROL SWITCHES
SWITCH (1)
SWITCH (2)
SWITCH (3)
SWITCH (4)
SWITCH (5)
SWITCH (6)
SWITCH (7)
NLAND
TAREA
WLATIT
NSCM
NAP
DX
AL
AREA
FMAXDS
FOR
CZDEP
SMMIN
PIMPER
Cl SOIL
C2 SOIL
ADX1
ADX2
DC
SATPRM
FMDSIMP
ANMIP
ANMPE
A12
A13
A14
A15
A16
A17
QLA
BLA
CUOLA
SUOLA
KDLA
KSUB
PLANTP
ORGP
PLANTU
KSWLA
= 0 SI Units
- 1 US Units
= 0 Crop Use Factor Defaulted
= 1 Crop Use Factors Inputted
IUH and Infiltration Formula Selection
- 0 or 10 RAO, DELLEUR, SARMA IUH
= 1 or 11 Kinematic Wave
= 0 or 1 Holtan Infiltration Model
- 10 or 11 Philip Infiltration Model
= 0 Print All Inputs and Plots for Each Day
= 1 Print Daily Summary Only
= 0 Complete Computation Adsorbed Pollutants Only
- 3 Dynamic Soil Adsorption Model
= 0 Uniform Dust and Dirt Cumulation on Impervious Areas
= 1 Detailed Street Litter Analysis for Each Land Use
Open
= No. of Land Use Areas Modelled
= Total Area of the Watershed SQKM (SQMI)
= Latitude of the Watershed in Degrees
= No. of Seasons Modeled
= No. of Adsorbed Pollutants Modelled Default - 1
(Use when SWITCH (5) » 3)
- Thickness of the Upper Soil Adsorption Layer - CM (IN)
Default = 5 cm (Use when SWITCH (5) = 3)
= Description of the land use (alphanumeric)
= % Area of the land use of the total area (TAREA)
= Maximum depression storage of pervious area, default = 0.62 cm, cm (in)
= Porosity of the soil layer, %
= Holton's: Depth of the top soil layer, default = 52. r cm, cm (in)
Philip's: Depth of "A" Horizon
=0.3 Bar Moisture, %
= % Impervious area
= 15 Bar Moisture (plant available), %
= Saturation permeability of "B" Horizon default SATPRM) cm/hr (in/hr)
= Soil absorbed pollutant 1, "/, of suspended solids if ISWITCH (5) = 3
- Soil absorbed pollutant 2, % of suspended solids if ISWITCH (5) = 3
Cards for each land use modelled.
= Fraction of impervious area not directly connected to channel,
default = 0.0
- Saturation permeability of "A" Horizon, cm/hr (in/hr)
= Depression storage for impervious areas, default = 0.16 cm, cm (in)
= Manning's roughness factor for impervious areas, default = 0.012
= Manning's roughness factor for pervious areas, default = 0.25
= Soil credibility factor
= Slope of land under observation
= Organic content (carbon) of the soil, %
= pH of the soil
= Clay content of the soil, %
If SWITCH (5) - 3 the following inputs will be read: (SWITCH (5) NE 3 DO NOT
SUBSTITUTE A BLANK CARD).
Max 4 pollutants
- Max soil adsorption, ug/g
= Soil adsorption partition coeffic., ml/yg
The above for the Langmuir adsorption isotherm
= Init. soil water cone, of the pollutant, mg/1
= Init. ads. pollutant cone, on soil, yg/g
= Decay coef . for the pollutant, I/day at 20 C
- Sublimation rate for the pollutant, yg/cm2/day at 20
- Init. cone, of the pollutant in plants, yg/cm2
= Organic content of plants (leave blank)
- Max uptake of the pollutant by plants, yg/cm2 /day
= Kinetic adsorption coefficient, 1/hr
It is recommended that the phosphorus adsorption is computed first (IAP=1)
then QLA, BLA, and KSWLA may assume default values and KDLA and KSUB equal
6
12
17-18
24
30
36
42
5-7
10-15
20-25
30-31
36
.41-45
1-12
14-19
21-26
28-33
35-40
42-47
49-54
56-61
63-68
70-74
76-80
1-12
14-19
21-26
28-33
35-40
42-47
49-34
56-61
63-67
69-73
75-79
1-7
8-14
15-21
22-28
29-35
36-42
43-49
50-56
57-63
63-70
zero.
1-91
-------
Format
Description of Variables
Column
C4
12(1X,F6.3)
C8
Drop use coefficients for evapotranspiration, 12 months when
SWITCH (2) = 1. If SWITCH (2) - 0 do not substitute above card
C5
C6
C7
12 (IX F6 3)
12
2XiI2
F8.2
4F8.4
F10.A
F10.4
FlO.it
4F10.4
sc
MONTHF
NDAYF
AMFERT
CFRT (1-4)
PLIT
ORGLIT
APLIT
CURBD
season modeled
If SWITCH (5) - 3 the following inputs will be read (SWITCH (5) ^ 3 DO NOT
SUBSTITUTE BLANK CARD
Fertilizer use card (SWITCH (5) - 3)
- Month when the fertilizer Is used
- Day of the month when fertilizer used (Def. = 1)
= Amount of the fertilizer used in kg/ha (Ibs/acre)
- Fraction of the fertilizer which is pollutant 1-4,
Detailed dust and dirt (litter) cumulation data SWITCH (6) « 1
= Litter cumulation at the curb g/m/day (Ibs/mi/day)
=" Organic portion of litter as fraction
- Fraction of litter which is pollutant, 4 possible pollutants
= Curb density m/ha (ft/acre) default computed from imperviousness
Atmospheric fallout assumed uniform over the entire area and it is inputted
on cards El and E2
1-2
5-6
7-14
15-47
1-10
11-20
21-30
31-70
12(1X!F5.2) C3SOIL
Helton's "A" Coef. In the Infiltration formula. Default = 0.17
A blank card must be substituted for Philip's model if there is
no inputs. (SWITCH (3) 10 or 11)
D
El
E2
E3
F
13,11(11,1:
F8.4
1X1F8.6
lXiF8.6
1X^8.6
1X,F8.6
1X,F8.6
IX, F8. 6
1X,F8.3
F8..4
lXiF8.6
!XiF8.6
lXiF8.6
!XiF8.6
lXiF8.6
!XiF8.6
lXiFS.3
4(F8.4)
lXjF8.2
13
!XiF6.4
lXiF6.2
!XiF6.2
!XiF6.2
1X1F6.2
!XiF6.2
1) LES
DDFALL
DDORG
DDAP1
DDAP2
DDAP3
DDAP4
WASHK
SWINT
SWARE
SWEFF
DBA
SLARE
SALT
SALPO
DDNITRR
DDRR
BBFLOW
QQFLOW
NDAYS
SAMPX
AAX
CMELT
PACK
TMELT
NDDRY
= Length of seasons, max no of seasons 12
Dust and dirt cumulation data
- Dust and dirt fallout in tons/km2/day (tons/acre/day)
3 Portion of DDFALL which is organic
- Portion of DDFALL which is pollutant 1, _ (SWITCH (5) " 0)
Fallout of pollutant 1 tons/km2 /day (tons/acre/day) SWITCH (5) " 3
= Portion of DDFALL which is pollutant 2, _ (SWITCH (5) - 0)
Fallout of pollutant 2, tons/km2 /day (tons/acre/day) SWITCH (5) - 3
Fallout of pollutant 3, " "
= Fallout of pollutant 4, " "
- Washout coefficient
= Sweeping interval in days on impervious areas
= Area affected by sweeping in percent of impervious areas
- Sweeping efficiency (Default 7.0)
= Availability factor default computed from rain intensity
= Area affected by salting in percent of total impervious areas
- Amount of salt applied during a snowfall tons/km2/day
» Portion of salt which is phosphorus
= Portion of DDFALL which is nitrogen
» Dust and dirt removal rate by wind and traffic, I/day
= Partition coefficient for dust and dirt adsorption (SWITCH (5) » 3
or for flow suspended solids (SWITCH (3).NE.3)
- Maximal adsorption for dust and dirt (SWITCH (5) - 3) or for flow
suspended solids (SWITCH (3).NE.3)
Card E3 enters if SWITCH (5) - 3 do not substitute blank card of
SWITCH (5) t 3
= No. of days of observation
- Sampling interval (hr)
= Conversion factor used in determining the max. 30 minute rain
= Snowmelt coef. cm/day deg. C (in/day/deg. F)
default - 0.0094 cm/hr deg. C
= Initial water content of the snowpack, default = 0
= Snowmelting temp., default - 0
= No. of dry days before T - 0, default - 0
1-8
10-17
19-26
28-35
37-44
46-53
55-62
64-71
73-80
1-8
10-17
19-25
28-35
37-44
46-53
55-62
64-70
1-3
5-10
12-17
19-24
26-31
33-38
40-45
47-52
1-92
-------
Card Format Description of Variables
Gl
14
14
14
F8.2
F8.2
F8.2
F8.2
F6.2
F7.4
F7.4
F7.4
F7.4
NYEAR
MONTH
NDAV
TEMP
TEMP MX
TEMPMI
EVAP
STHOUR
CRX(l)
CRX(2)
CRX(3)
CRX(4)
Cards 6 imputted for
= Year
= Month
= Day
= Average daily
= Maximum daily
= Minimum daily
= Evaporation
= Starting hour
= Contention of
"
"
=
each day of accumulation
temperature
temperature
temperature
of rain fall record
poll. 1, in the rain mg/1
2
3
4 "
1-4
5-8
9-12
13-20
21-28
29-36
37-44
45-50
51-57
58-64
65-72
73-80
G2 12F5.2 XRAIN - precipitation in mm/hr (inch/hr) starting at STHOUR
12 per card, precipitation ends by 99.99
Snow precipitation in water content
1-93
-------
APPENDIX IV-D. EXAMPLES OF INPUT AND OUTPUT DATA
PHEASANT MARCH SUflUATERSIICD STUDY
JIM HETTUM.SUMIt.ll.mj
LANDRUX ANALYSIS
0 0 1 0 2000
16 .1467 43. 1
COMKEG1 6.011 .55 52.00 JO.00 32.00 0.6 10.00 0.6
TO. 0.6 0.32 1.0 «.0
0.54
.02
COUKKt02 4.7 .55 52.00 30.00 32.00 0.0 10.00 0.6
152. 0.6 0.32 t.O 4.0
0.54
.02
CORNVIR 6.35 .TO 50.00 23.00 30.00 0.0 10.00 0.3
'52. 0.3 0.32 1.0 1.0
0.54
.02
CORNORE J.8T .05 53.00 13.00 28.00 0.0 10.00 0.6
152. 0.6 0.32 1.0 20.0
0.5«
.02
HAYWIR 11.05 0.51 50.00 23.00 30.00 0.0 10.00 0.3
61. 0.3 0.32 1.0 0.1
0.02
0.27
HAYUORBA 4.97 .25 55.00 26.00 30.00 0.00 10.00 0.6
61. 0.6 0.32 1.0 5.0
0.02
0.27
HOMESTEADW 4.14 .46 50.00 23.00 30.00 9.27 10.00 0.3
46. 0.90 0.3 0.32 1.0 1.0
0.03
0.27
MAYEVIR 2.49 0.51 50.00 23.00 30.00 0.00 10.00 O.J
152. 0.3 0.32 t.O O.I
0.02
0.27
IAIEOIBA 8.S3 0.30 55.00 26.00 30.00 0.0 10.00 0.6
152. 0.6 0.32 1.0 4.1
0.02
0.27
AYECHA 12.71 0.35 52.00 13.00 30.00 0.0 10.00 0.5
152. 0.5 0.37 1.0 3.5
0.02
0.27
HATEKID 4.14 0.1 55.00 15.00 29.00 0.0 10.00 0.6
152. 0.6 0.32 1.0 25.0
0.02
0.27
Hit E BAST 11.88 .20 52.00 24.00 28.OO 0.0 7.00 0.6
152. 0.6 0.36 1.0 7.9
0.02
0.27
HAYEKCH 1.38 0.12 52.00 13.00 30.00 0.0 10.00 0.6
152. 0.6 0.37 1.0 13.6
0.02
0.27
KOODSSTBA 7.18 0.55 52.00 24.00 29.00 0.0 8.00 0.6
122. 0.6 0.35 1.0 8.1
0.02
0.27
KOODSMCH 2.19 0.20 52.00 13.00 30.00 0.0 10.00 0.6
'22. 0.6 0.37 1.0 12.5
0.02
0.27
KOOOSSTC 7.73 1.0 52.00 23-00 26.01 0.0 6.00 0.6
122. 0.6 0.37 1.0 5.0
0.02
0.27
030
2 -1657 0.5
W» 6 30 25. 30. 20. .322.833
.295 .295 .295 .162 .130 .130 .HO
W* 71 25. 30. 20. .8 0.00
.130 .078 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. .019 .177 .1!'- .127 .123 .127 .12i .025 0. 0.
.0«3 .'01 .103 .021 0. 0. 0. 0. .077 .129 .06* 0.
.036 .090 .091 .09' -0V 0. .022 .027 .027 .OJ« 0. 0.
" 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
" °- 0. 0. .013 .013 .on .013 .013 .00799.00
1-94
-------
Output Data
MAROUETTE UNIVERSITY
INTERNATIONAL JOINT COMMISSION
::: MENOMOMEE RIVER PROGRAM :::
HEASA'IT B2ASCH SUBWATERSHED STUDY
IH METT'JH,SUMMER, 1978
ANDRUN ANALYSIS
COMPUTATIONAL ORGANIZATION
SWITCH(I) > 0 O..SI UNITS, 1..US UNITS.
SVITCiKZ) « 0 CROP USE FACTOR, 0..DEFAULTED,1..INPUTTED.
SWITCH(3> « 1 IUH FORMULA SELECTION, 0 OR 10.. RAO,DELLEUR.SARMA IUH. 1 OR 11.. KINEMATIC WAVE IUH.
GRCATfK OK EOUAL TO 10..PHILLIPS INFILTRATION MODEL.
swiTCHC4) > o o..pniriT ALL OUTPUT.-, AND PLOT, i..PRINT ONLY DAILY SUMMARY.
SWITCIK5) 0 0..NO SOIL ADSORPTION,
3..SOIL ADSORPTION ROUTINE.
SWITCH(6) « 0 0..UNIFORM DUST AND DIRT OVER IMPERVIOUS AREAS,
1..DETAILED LITTER CUMULATION IN EACH LANDJSE.
svrrciK?) « o OPEN SWITCH...
SWITCHU) i 0 SVITCH CARD REQUIREMENT TEST..
1-95
-------
96-1
ZIV . OW
zic,- , c-,2:
ZI3- > OSZ-
zio- i Giz-
ZIV i 04Z"
zio- oSz-
zio- i osz-
zio- osz-
zio- t osz-
ZIO- 04Z*
ZIO- OSZ-
ZIO- i 04Z-
zio- i osz-
zto* osz-
ZIO* " 04Z'
zio- osz-
sroiAE3JKt i snoin;
A3I3I3J303 CnlUBYK '
co-i 9f '
OS'Zl i 91-
Ofl 91* >
09-tl 91*
06-1 91* >
00-SZ 9f
OS'S 91-
Ol'« > 9f i
Of i 9f
CO-l 9f >
co-: 9f i
Of i 9f i
CO-JZ 9f i
CO-l 9f
00" » 9f
C0'» 9f i
3J01S i CnoIASJJUI i
t 1 (CD IO 3-)Y«OIS
W,'. i
i uirc; i
oo -c- i
OO'C*. i
i OO't? i
t 00-t!
I OO'Ct i
I 00-&J 1
1 OO'OC t
i 00'C.C i
I OO'CC i
oo-ct
00- K i
OO'OS .1
OO'Zt i
00 'ft i
U . I
t 3»nisio« K-aiNI« i
oo- t i oo-
OZ- i OO-
44- 00-
zi- oo-
oz- > oo-
Of 00-
Sf 00'
of oo-
is- i oo-
9»- i If
sz* oo-
is- i oo-
so- oo-
01' i 00-
ss- i oo-
SS- 1 00'
!.-ivua3^ i si;3hsT,-i.M
K01S?3!ld3a i
OO'tJ
OO'kl
Wti
oo-Ci
oo- «
oo-Si
OO'Cl
00- 9Z
oo-tz
00'£Z
00- 9Z
oo-tz
oo-ci
oo-cz
oo -oc
00 "OC
(HI) tO
K1430 10dlSC-l
i U-l
i 6fZ
> Sf t
i Sf I
. si-it
. fl-tl
u-zt
i cg-t
t»-z
. 9fC
. 1ft
I 40-lt
t U'C
i 4f 9
. cr»
(0-9
34Kt . 1.10
I JO »1»
1 007"' lli-i- 1 OU'e4 1 -II
f CO',' COV i CO'J4 1 41
1 COV C09* 1 G0'?4 1 >l
1 O'//' C09* , OO'fS 1 El
i 005- 009- f we', t ti
, CO?* OC9* i OC'44 -i II
i oos* cos* i oo-<:4 t oi
I 005' 009* 00'44 i i
1 CCf OOf t OC-04 I 1
1 Olif COf i 00*04 1 L
CCf 039- i 00-44 i 9
1 CCf OOf i 00*04 S
i OC9- 009- i 00 -C4 , »
OCf COf i 00*04 t t
009- 009* i 00-ZS Z
i OC9- 009- i 00*24 i 1
i UK/SI) 3»io> i z
1 IS1MIS03 I 1
a i 3ritsn CKI jo i -on
T t !.OUJI»3S3
-------
EVACOT'AI 'H'-ntO'l CH'IP U'.f r"(CFICIFNT';.-KU ^ .«,..«»««..itn.»».«{
L«'IB IT=l. 1 . ? 3 « , 6 « 7 » 10 11 12 j
KU VALUES DtFAULTEO TO 1.00
WtATIT 43.01. LATtTUOE OF THE UATE.SIIEO III OEGHEES
NSC<< m 1. IJ3.0F SEASONS.
KOAIS . 2. NO.OF OBSERVATION DATS
SAIP < .17. S»-;M.IIC PSHI03.
CMELT . .fll* S'lOblELT COEF. C1/DAT.DEG C SC. ' J
' " ..........~...« .j
LAUD I»I« 3C(1> SC(2) SC(3) SCO) SCI5) SC(6) ' SC(T) SCO) « SCH) « SCOO) SC(11) SC(1Z) <
12
11
.M
.02 '
.02
OJ
.02
.02 '
.02
.0? «
.02
.02 '
.02 «
.OJ
.02 «
.00 '
.00
.00 '
.00
.00
.00 «
.00
.00 '
.00 >
.00 '
.00
.00
.00
.00 '
.00
.00 »
.00
.00
.00
.00
.00 *
.00 «
.00 *
.00
.00
.00
.00 '
.00 "
.00 '
.00
.00 '
.00 '
.00 * .00 '
.00 " .00 «
.00 > .00
.00
.00 *
.00 '
.00 *
.00 "
.00
.00
.00
.00 *
.00
.00 *
.00
.00 '
.00
.00
.00 "
.00
.00
.00 "
.00 '
.00
.00 »
.00
.00
.00
.00 '
.00
.00 «
.00
.00 '
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00 .
.00 «
.00
.00 *
.00
.00
.00 '
.00
.00 >
.03
103
.00 «
.00 .
.00
.00 '
.00 .00 V
.00 ' .00
.00 * .00 '
.00 .00
.00 .00
.00 .00
.00 .00
.00 * .00
.00 « .00
.00 .00
.00 .00
.00 .03
.00 .00
.00 .00 «
.00 .00 *
.00 «. .00
.00 '
.00 '
.00
.00
.00 >
.00
.00
.00 *
.00 >
.00
.00
.00
.00
.00
.00
.00 '
.00
.00
.00 "
.00
.00
.00
.00 *
.00 "
.00 *
.00
.00 «
.00
.00 I
.00 «,
.00 .
.00 »
.00
.00
.00
.00
.00
.or
.00
.00
.00
.00
.00 <
.00
.00
.00
.03
.02
LENGTH nf urn r-fAson (P»TSI .Lf^,
SEA.-.OS LES(I) LE5(.'1) " LE9I1) LtStO LESCM LES(t) LFT.m LfStH) LEMO LtMtO) « LES(II) LESdJl
0 «
1-97
-------
g
111
u
to
X
g
w *
* U S cc «
r, u- d *-
"-5SE3-.
= f> « 0
c G
= *
t- * »
Si t
=1" 't
o c ^- o w
= r s- = v r-
o c *.) i.- o r-
i_H<^-t--i~i-~-
~ J O O >. C -t
Q o- O- t. fc o. ,-
H V H M
o
v o e> o o <- «
o c o o ."* -r-
00
M
n ^\ r" r\ ?> * « *
a a-i.}^ ^i i
.
**
o
;
g
«
s
|||
- atoi
« »3M
« O '
: sss
22*"
IE « _J
hi C *-^
= * *- H 2 3
TED Itr SWFrPIHC, I C
FFtCU'lCT (OtFUULT
TT FACTO* .DtFA'JLT «
SALT APPLIPO DURIHC
SALT WHICH IS PHOS
a « ^ * K O
C hi « « « ft.
« e« o oe O
0 C 0 OOO
«»>*>*
o
- .1 u. tt. 1- »~
- -* u * « J J
* -« » 1 _»<««
i .1 ii o n 11 «n
* O*«*l
oraooooo «>» o oo oo
ooooooo- "r-ooooS
* 0>tfk
OOOOOOO 00
|^ 00000000"^ *«^i.- i -»OOO 1- flttoi MMnjtf>voOOOO O M«J £1 I- 1) J
: 5 5 :S 3SS5
g
o
s
£
K
»- t-
i i
SOIL
SEDIMENT '
i
i
d >
o o o o o o g
OOOOOOO
ooooooo
ooooooo
ooooooo
S S «5 S S £ 5
u\ « o «r
i i I i i i i
S o » w o S e
»*»
s : s s : s s
e o * *- o o o
e- o* o> «o *- r *-
»*
ooooooo
rfv <- «*j «"! * «.
oo
OOO Ort«
; 's '°':
u
u, »
* ""'SSSSUir
S<~«C^_J^«Ji9B
W1U1 JJ
UJ 1- w
roirce>-ooo
^lE 2
s s r
* *
S-~
»- bl ! -« » »- t
O 5C I.I O "- = =>
a. u. * uj . IB tt
-------
0»TE' I/ 7/1971 TtMf 27.0? IEIIFMI1 30.00 TEHPMI' 20.00 EV»f .00 STHOUJT .00
inns
MI!i'«.L .M/H* (I«/H«)
U'I'.'F .Ml/nEC (CF3)
SOIL SEDI1E9T t'-.H'Z (UBS)
OUST : Ol»T .-.miS (LBS)
SmUEVT FWJ .I**-;/::^ ILKS/SEC)
3BSEB- RAInFALL RUBOFF *SOtL "OUST
HTK\ KXfHIt SEDIHM7 'OUT
01 10
Ol 20
Or 30
0: «
Oi SO
It 0
11 10
11 20
1l 30
It 40
1! 50
2: 0
is 10
2: 20
2: 30
2l 40
2: 50
Jt 0
3: 10
Jl 20
3: 30
3: 40
3! 50
l 0
: 10 «
t 20
t 30
: «a
l 50
19.794
11.«7»
.000
.000
.000
.000
.000
.000
..000
.000
.000 '
.000
.000
.000
13.557
19.374
19.494
19.374
19.194
19.374
19.494
J.959
.000
.000
12.457
15.717
15.717
3.179
.000
.050
.048
.037
.030
.024
.011
.014
.012
.010
.009
.006
.005
,oo«
.003
.003
.002
.002
.002
.003
.009
.020
.022
.020
.019
.017
.01*
.012
.009
.009
194. 837
1092.119
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
511.194
1578.636
1401.210
1481. 545
1997.041
1979.937 '
20«5.SJ5
.000
.OflO
.000
3?2. 0*0
76S.471
79«.J91
.000
.000
: SCOXHUT FLOW
t
.000
.000
.000
.000
.000
.000
.000
.000 *
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000"
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
»479.9«5
292.391
3345 -9«»
2741.900
2354.371
1439.505
KS7.441
11M.I42
191.555
735.950
5« 1.904
5«.023
337.041
284.775
212.893
2«3.509
0«.739
523.971
457.7*7
1039 .7«1
1274.80?
1231-952
1111.605
1001.402
910.299
75*. 214
65J.2J6
459.30
54*. 385
OSGMICS* ADS.P3U..1
.MO
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000 «
.000
A03.POLL.2'
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
looo
.000
.000
.003
.000
.000
.000
.000
.000
.003
.003
.OU3
.030
,ooc>
1-99
-------
51
5:
5i
5:
5:
51
6:
6i
6:
61
6:
6:
T:
Tl
Tl
Ti
Tl
Ti
81
1:
it
8:
8:
a:
9:
9:
9:
91
9i
9!
10!
10:
10:
10:
10:
10:
11:
11:
11:
11:
11:
11:
1?:
12:
12:
C7«L
r: a
is:
cri
FGA-,
r.-o?
0
10
20
31
0
50
0
10
20
30
0
50
0
10
20
30
0
50
0
10
20 »
10
«o
53
0
10
20
10
0
50 «
0 «
10
so
10 '
0
50
0
10 «
so
10
0
59
0
10
20
.00'}
.010
.000
II.TM
19.676
9.778
.000
5. "59
13.717
13.857
11.857
12.«7»
.000 >
3.359
«.U9
«.I19
3.659
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000 >
.000
,000>
.000
.000
.000
1.9SO
1.980
2.169
1.960
1.9SO
1.080
.000
.000 «
.000
.000
P1TATII"! i 56.70
!>:i-l !'.Ti I3156III.
. 'IFI .
ill t'-3« . 25600551
,(CAR~?1) FLOW
1 .HJLL'JTAIT 1
e.PDLLi;7«'IT 2 t
,004
.005
.oo«
.001
221
.00} 1085
.002
.002
.001
.001
'.001
.002
.001
.005
.006
.005
.00*
. .005
.00«
.00*
.00]
.00}
.003
.001
.002
.002
,002
.001
.001 '
.001
.001 >
.001
.001
.001
.001
.000
.000
.000
.000
.000
,000
.030
.000
.000
.000
.030
OAILT SimA
150
21
531
»36
00
HI
.000
.000
.000
.127
.218
.611
.000
.000
.210
.990
.523
.011
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000,
.000
.01)0
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
«H UIIC1IFS1
.HI CU.**r7EB (CU.FEET)
.00 C'lA'IS (UlS)
.00 CIAM*; XLB1)
.00 GRAMS (IBS)
.00 GBAMS
.00 GM1SUBS) <
,000 '
;ooo
.000 «.
.000
.000
.000
.000
.000 >
.000
.000
.000
,000
.000 «
.000
.000
.000
.000
.000
.010
.000
.000
.000
.000
.000
.000
' .000 «
.000
^ .000 "
.000
.000
.000
.000 «
.000
.000
.000
.000
.000
,000
.000
.000
.000 '
.000 '
.000
1 .000
.000
11.16 Ton!
.00 TOHS
2». 6n TONS
.00 TOM
.00 TOM
.00 Tons
57.63»
M9.02ff
335.810
j»».m
305.230
328.25?
284.271
269. OK
276.16]
2«1.81T
270. 9« 3
177.317
270.760
276.668
t«1.66l
2H.906
H2.125
VTi.779
173.011
U7.18«
121. «OT
106.210
96.772
85.750
65.612
59.822
51.028
5.186
It. MO
31.556
10.185
21.015
19. <9!
19.215
16.751
12.081
10.771
10.862
8.551
6.616
6.010
5.710
..Ml
1.680
3.575
D
>
1
1
-
ff
ff
ff
«
t
»
ff
.O'JO
.000
.000 «
.000
.000
.000 «
.000
.000
.003
.000
.000
'.000
.000 «
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.033
.000
.000
.000
.030 '
.ooa
.000
.000
.003
.000
.003
.000
.000
.000
.000
.000
.000
.030
.000
.000
.000
.000
.000
.003
.000
.000
.000
.000
.000
.000
.009
.000
.000
.000
.000
.003
.000
.000
.000
.000
.000
.000
.000
.000
.000
-O.-J
.ox- «
.03:
.OTi »
.c:i
. .1 J
.CM
.0:0
.003
.OJ3
.000
.003
.003
.033 «
.003
.00)
. .033
.003 »
.000
,.093
.000
.009 «.
.000
.030
.033
. .010
.003
.000
.003 *
.000
.000
.000
.000
.003
.009
.009 >
.031 «
.090
.000
.000
.003
.000
.003
.000
.000 '
1-100
-------
3UBMI«r OF LO*OI«CS BT LAKDUSES
COINtCGI
COHIKEG2
IIMEVIR
IIAtr^KOA
HAUC'IA
HATEMfl
1 HATEDAST
H>YflCH
WOOMSTBA
li KOOOiStC
HUHOFr H3/HA
MIMMI1 INMEIVIOUl
217.310
247. 3<0
121.660
5U.29S
11.023
.000
8i.6i2
I8.0J3
.000
H5.55?
75.913
.000
U7.027
.000
135. 7<1
.000
.000
.000
.000
.000
.000
.000
8.19?
.000
.000
.000
.000
.000
.000
.000
,000
.000
SEDIMENT KG/HA 0«GA»ICS
KIHOtli 1HPEMIOUJ «0/H»
3313.171
2289^970
T93I».«37
.570
.000
6.677
.A99
.000
92.360
.000
512.269
.000
!ooo
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
1
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0001000
.0000000
.0000000
.0000000
.0000000
! 0000000
POLL'JTAHTS
2
.0000000
.0000000
.0001000
.0000000
.0010100
.0000100
.0001000
.0003000
.0000030
.0000000
.0000100
.ooofmio
.0000000
KG/HA
]
.0000000
.0301000
.0033030
.0000330
.0011130
.O100309
.0010130
.OJ03000
.0003330
.0030C10
.000000')
.5000000
.0333300
.C101300
.0101100
!cO'!cVj3
.0333333
.0031033
.C11V533
.'o3C3009
TOTAL IOAOIKGS BT UKOUSC3
HA
111
EC1A
HA ?
-------
PART II
CALIBRATION AND VERIFICATION OF THE MODEL
V. NOVOTNY
M. A. CHIN
H. TRAN
H-i
-------
ABSTRACT
Following calibration and verification of the model, it can be stated
that LANDRUN is capable of reproducing field data for medium and large
storms with adequate accuracy for such parameters as runoff, sediment,
volatile suspended solids and absorbed phosphate.
Il-ii
-------
CONTENTS - PART II
Title Page Il-i
Abstract Il-ii
Contents II-iii
Figures Il-iv
II-l Introduction II-l
II-2 Calibration Storms and Experimental Watersheds II-2
II-3 Calibration Input Data II-4
Data Sources II-4
II-4 Discussion of Calibration and Verification Results II-6
References II-7
Appendix
II-A Results of Calibration Runs II-8
II-iii
-------
FIGURES
Number Page
II-l The calibration areas II-3
II-A-1 Measured and simulated flow and suspended sediment at
Noyes Creek for a storm on May 5, 1976 II-8
II-A-2 Measured and simulated volatile suspended solids and total-
and absorbed-phosphate at Noyes Creek for a storm on May 5,
1976 II-9
II-A-3 Measured and simulated flow and suspended sediment at
Donges Bay Road for a storm on May 5, 1976 11-10
II-A-4 Measured and simulated total- and absorbed-phosphate
at Donges Bay Road for a storm on May 5, 1976 11-11
II-A-5 Measured and simulated flow at Schoonmaker Creek for a
storm on May 5, 1976 11-12
II-A-6 Measured and simulated flow at Noyes Creek for a storm
on April 24, 1976 11-13
II-A-7 Measured and simulated flow at Donges Bay Road for a
storm on April 24, 1976 11-14
II-A-8 Measured and simulated suspended sediment at Donges Bay
Road for a storm on April 24, 1976 11-15
II-A-9 Measured and simulated flow at Schoonmaker Creek for a
storm on April 24, 1976 11-16
II-A-10 Measured and simulated flow at Noyes Creek for a storm
on May 15, 1976 11-17
II-A-11 Measured and simulated suspended sediment at Noyes Creek
for a storm on May 15, 1976 11-18
II-A-12 Measured and simulated flow at Donges Bay Road for a storm
on May 15, 1976 11-19
II-A-13 Measured and simulated suspended sediment at Donges Bay
Road for a storm on May 15, 1976 11-20
Il-iv
-------
Number Page
II-A-14 Measured and simulated volatile suspended solids at Donges
Bay Road for a storm on May 15, 1976 11-21
II-A-15 Measured and simulated flow at Schoonmaker Creek for a
storm on May 15, 1976 11-22
II-A-16 Measured and simulated suspended sediment at
Schoonmaker Creek for a storm on May 15, 1976 11-23
II-A-17 Measured and simulated volatile suspended solids at
Schoonmaker Creek for a storm on May 15, 1976 11-24
II-A-18 Measured and simulated total- and absorbed-phosphate at
Schoonmaker Creek for a storm on May 15, 1976 11-25
II-v
-------
II-l. INTRODUCTION
Every mathematical model before it is used for production simulation
runs must be calibrated and verified to ensure that the results are
realistic and resemble the. real world situation. Zven rfhen the structure
of the model reflects the real world system closely, many coefficients and
variables used to construct the model are statistical quantities, i.e., no
absolute values are known, only ranges are available. The model is more
sensitive to a few important parameters, less sensitive to others. From
experience with the LANDRUN model and some other similar models, e.g.,
SWMM (1), it was found that the overland flow models are sensitive to degree
of imperviousness connected directly to surface runoff, permeability and
depression and interception storage and for sediment modeling to the cover
factor, and slope of the subwatershed. Other parameters once thought
important, do not show such marked effects on the output of the model.
The procedure for calibration and verification is performed on several
(at least two) storm events for each of the calibration watersheds. The
model should be calibrated on a medium intensity storm. The process of
calibration starts with the hydrological response and is accomplished by
comparing simulated and measured values of the output. The simulated
surface runoff volume can be adjusted by varying the soil permeability and
degree of impervious area directly connected to the channel. The hydrograph
peak can be adjusted by varying the roughness factor of the surface
(horizontal adjustment) or slope. The beginning of runoff can be adjusted
by varying the depression and interception storage. After the hydrological
response of the model is calibrated the process of calibration proceed
the sediment and finally to the adsorbed pollutants. It should be kept in
mind that the hydrology is already calibrated and should net be changed
while calibrating the sediment pollutant loadings.
After the model is calibrated as close as possible on one storm event
it should be verified by simulating one or more additional storm events.
If the simulated hydrographs or pollutographs are close to the measured
ones, the model is verified. Very often this is not the case and the
process of calibration must be repeated until an acceptable fit of the
simulated and measured data is obtained.
II-l
-------
II-2. CALIBRATION STORMS AND EXPERIMENTAL WATERSHEDS
Three subwatersheds were selected for calibration of the model. The
selection was based on availability of field data and on the character of
the land use pattern in the subwatershed (Fig. II-l).
The Donges Bay Road station (463001) collects water quantity and
quality data for the Little Menomonee River. The Watershed is mostly
rural but is slowly urbanizing. The drainage area is 21.4 km2.
The Noyes Creek station (413011) is located on a small (5.4 km2)
tributary of the Little Menomonee River. The prevailing land use in the
Watershed is medium density residential.
Schoonmaker Creek station (413010) is located in a small high-density
residential subwatershed with a drainage area of 2.0 km2.
From the available field data, three storms provided adequate calibra-
tion data:
a. April 24, 1976 StormA medium intensity storm of long duration
preceded by 6 wet days. The amount of rain varied between the stations.
Flow was measured at all three stations but only the Donges Bay Road
station measured quality.
b. May 5, 1976 StormA high intensity, short duration (flushing)
storm which followed 9 days of dry weather. All three stations measured
flow and quality.
c. May 15, 1976 StormA storm of long duration and low intensity.
Calibration of the model was performed on May 5 storm and verification
was achieved with April 24 and May 15 storms.
II-2
-------
Donges Bay Road station
Land use: Agricultural
Drainage area: 2,146 ha
Imperviousness: 5%
Noyes Creek station
Land use: Developing residential
Drainage area: 543 ha
Imperviousness: 35%
Connected: 80%
Schoonmaker Creek station
Land use: Residential
Drainage area: 201 ha
Imperviousness: 54%
Connected: 61%
MILWAUKEE
0 5
10
SCALE KM
Fig. II-l. The calibration areas.
II-3
-------
II-3. CALIBRATION INPUT DATA
The model requires dividing the Watershed into uniform areas based on
the land use and soil characteristics. A land use with two different soil
types must be computed as two sub-areas. For each sub-area the following
input parameters must be furnished:
a. Area description including: Area as % of the total area; impervious-
ness; slope; Manning's roughness coefficients for pervious areas (default
0.025) and for impervious areas (default 0.012); depression and interception
storage values for pervious areas (default 0.65 cm) and for impervious
areas (default 0.16 cm); portion of impervious areas directly connected to
the channel.
b. Soil data including: Saturation permeability of A-horizon; satura-
tion permeability of B-horizon (default = A-horizon); porosity; 0.3 bar
moisture; 15 bar moisture; coefficient for Holtan infiltration equation (if
selected for use) and depth of A-horizon.
c. Erosion data including: Soil erodibility coefficient; erosion
control practice coefficient; conservation practice coefficient.
d. Dust and dirt accumulation data for urban areas including: Dust
and dirt fallout; washout coefficient; sweeping efficiency; dust and dirt
composition.
e. Salting information during winter including: Percent of impervious
areas affected by salting; amount of salt applied during a snow storm; and
salt composition.
f. Meteorological data including: Temperature; evaporation; rain data;
rain contamination.
The above is a complete list of the variables needed to successfully run
the model. Many variables have default values, i.e. a value which is sub-
stituted by the model if the information is not furnished. The default values
are based on the literature or on experience with other models.
Data Sources
The land use data and surface characteristics were obtained from the
Southeastern Wisconsin Regional Planning Commission (SEWRPC). Most of the
information on soil characteristics was taken from U.S. Department of
Agriculture soil maps. Additional information was obtained from University
II-4
-------
of Wisconsin sources.
Dust and dirt data were obtained initially from the Chicago study on
pollution from urban areas (2). These data did not accurately reflect
pollution loads in the upper part of the Watershed and had to be assigned
according to monitored field data.
Meteorological data for each storm were based on information from the
U.S. Weather Bureau at Mitchell Field, Milwaukee, with the exception of rain
data which was furnished by the U.S. Geological Survey rain gauges located
near or at the water quantity and quality monitoring stations.
II-5
-------
II-4. DISCUSSION OF CALIBRATION AND VERIFICATION RESULTS
The results of the calibration runs are shown in Appendix A. The LANDRUN
model was calibrated and debugged for runoff (hydrology), sediment transport,
dust and dirt, volatile suspended solids, and the soil and dust and dirt
absorbed pollutants.
The outputs for the April 24 and May 5 storms adequately follow the
measured data for all three stations. The May 5 storm was the main calibra-
tion storm. Difficulties were encountered with the May 15 storm at the
Noyes Creek station where the hydrograph seems to be shifted by 2 hr. This
time error seems to be unlikely for such a relatively small watershed and was
probably caused by a defective timer in the monitoring system.
The output in urban areas is most sensitive to the assigned variable
which characterizes the portion of impervious areas not directly connected
with the channel. This fraction of impervious areas includes rooftops
draining into subsurface systems, flow from impervious areas overflowing onto
surrounding pervious areas, etc. From the model outputs, it has been
estimated that only a portion of the impervious areas in the Noyes and
Schoonmaker Creek subwatersheds is connected directly to surface runoff.
Also, this parameter obviously affects the amount of pollutants washed off
from impervious areas.
In conclusion, it can be stated that the LANDRUN model is capable of
reproducing field data for medium and large storms with adequate accuracy
for such parameters as runoff, sediment, volatile suspended solids and
absorbed phosphate.
II-6
-------
REFERENCES - II
1. Heaney, J. P. and W. C. Huber. Storm Water Management Model:
Refinements, Testing and Decision-making. Dept. of Environ. Engineer.
Sciences, University of Florida, Gainesville, Florida. 1973.
2. American Public Works Association. Water Pollution Aspect of Urban
Runoff. Water Pollution Control Research Journal WP-20-15, Washington,
D. C. 1969.
II-7
-------
APPENDIX A. RESULTS OF CALIBRATION RUNS
M
fi
4J
H
W
o
cu
en
o
2.0 -
6 1.0.
15 16
Measured
Simulated
Sediment
O o Measured
Simulated
2000
a
a)
CO
60
L.1000
-------
8 S 2
& OQ
fu rt
<; o H
rt M
l_n 113 I
CL
3
B3 (D
cr tu
en CD
O q:
i-l )-!
a4 m
m a-
a.
I 03
o
en en
a H-
rr 3
(S3 C
rt M
(D 63
rt
P3 (D
2! <
O O
v<3 M
ro &3
en rt
H-
n H
rt> en
!V C
en
HI is
o ro
H 3
&.
03 fO
a.
en
rt en
O O
Phosphate, g/sec
Volatile suspended solids, g/sec
o o
_l_
o
o
K>
o
o
Cu
en
-------
I
M
O
10 .
5 -
0.5-
0.4-
0.3-
0.2-
0.1-
12
Fig. II-A-3.
16
Flow
-| (- Measured
Simulated
500
\
-"
lo
\
«
O
1 1 1 1 I 1 1 1 1 T
20
T
24
Sediment
O Measured
__ __ Simulated
O O
T
12
I - 1
16
600
- 100
20
Time
May 5 May 6
Measured and simulated flow and suspended sediment at Donges Bay Road for a storm on May 5, 1976.
-------
0.6 -
0.5 -
0.4 -i
tn
60
01
4->
H a
o, 0.3
0.2 _
0.1 -
0
T 1 T
Measured
O Total
X Absorbed PO^
Simulated total P0i+
Tr
TIiiiiiiiiiiiiiiiiiiir
14 16 18 20 22 24 2 4 68 10 12 14 16 18 20 22
Time
May 5 May 6
Fig. II-A-4. Measured and simulated total- and absorbed-phosphate at Donges Bay Road for a storm
on May 5, 1976.
-------
40 -i
C H
-------
10
Measured + + + 4-
24
1
8
[
12
1
16
20
1
24
1
4
8
12
1
16
20
Time
April 24
April 25
Fig. II-A-6. Measured and simulated flow at Noyes Creek for a storm on
April 24, 1976.
11-13
-------
A0'2 = 1.57 days
April 25
Fig. III-A-7. Measured and simulated flow at Donges Bay Road
for a storm on April 24, 1976.
11-14
-------
o
-------
H
M
Measured
-)- Simulated
22 24 -r \j «_» j-w j-i. j_i-f iL) xo ^/y ^^ ^/^
Time z *
April 24 April 25
Fig. II-A-9. Measured and simulated flow at Schoonmaker Creek for a storm on April 24, 1976.
-------
Simulated
Measured
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 1
Time
Fig. II-A-10. Measured and simulated flow at Noyes Creek for a storm on May 15, 1976.
-------
300 -
o
(!)
w
g
H
<3J
200 -
00
100 -
___ Simulated
O Measured USGS
Measured DNR
Time
Fig. II-A-11. Measured and simulated suspended sediment at Noyes Creek for a storm
on May 15, 1976.
-------
0.6-
0.5-
0.4-
0.3'
0.2-
0.1-
Simulated
Measured
r
12
15
18
21 24
I
9
Time
12
T
15
T
18
[
21
24
Hay 15 May 16
Fig. II-A-12. Measured and simulated flow at Donges Bay Road for a storm on May 15, 1976.
-------
i
S3
o
o
QJ
CD
60
C
QJ
0)
CO
0)
120-
100"
80-
60-
40_
20-
Dust and dirt fallout 0.4 Tonnes/km2/day
O Measured USGS
Measured DNR
Simulated
May 15
May 16
Fig. II-A-13. Measured and simulated suspended sediment at Donges Bay Road
for a storm on May 15, 1976.
-------
OQ
>
ON
2
(D
Pi
CD
l-t
ro
§
CO
H-
ro
a-
O
h->
&>
CO
C
CO
Tl
0)
3
a-
m
a.
CO
o
i-1
H-
P.
CO
a
o
a
OQ
(D
CO
w
Hi
o
CO
It
o
l-i
o
T3-II
Volatile suspended solids, g/sec
O
I
00
o
o
o
K3
o
00
M
o
-i. C^ *
00
I
00
-------
10 -
I
ro
K3
n e
E
C
1.0 -
0.5 -
Fig. II-A-15. Measured and simulated flow at Schoonmaker Creek for a storm on May 15, 1976.
-------
£3-11
Suspended sediment, g/sec
o
o
O
O
O >TJ
3 H-
cro
00
ON
3
(D
B3
cn
e
a.
CD
H-
B
C
CD
c
05
13
(D
fD
0.
CD H
2 H-
O- 3
i
O
O
3
n>
i-t
n
i-t
fD
ro
7?
CD
ct
o
ro
CO
>
)
3
C
M
»
rt
(D
m
1"
CD
c
I-t
PC
2
fD
pi
cn
C
l-(
(D
a.
o
CO
CD
fu
a-
a.
H-
i-!
o
C
H
O
§
fD
CD
5
-------
Volatile suspended solids, g/sec
o
_J_
o
_J
re
CD
3
o.
n>
a.
a
§
a.
m
a.
01
o
a
to
rr
o
o
3
ho
O '
-------
I
K3
Ul
o
OJ
U)
GO
0)
ex
CO
o
0.2 -
0.1 -
I
10
X Total
Absorbed
Simulated
11
I
12
I
13
14
I
15
I
16
Time
I
17
18 19
20 21
22
T
23
I
24
Fig. II-A-18. Measured and simulated total- and absorbed-phosphate at Schoonmaker Creek for a storm on
May 15, 1976.
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-905/4-79-029D
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
Description and Calibration
Model-Landrun Volume iv
of a Pollutant Loading
5. REPORT DATE
December 1979
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
V. Novotny, M.A. Chin and H. Iran
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Wisconsin Department of Natural Resources
P.O. Box 7921. *
Madison, Wisconsin 53701
10. PROGRAM ELEMENT NO.
A42B2A
11. CONTRACT/GRANT NO.
R005142
12. SPONSORING AGENCY NAME AND ADDRESS
Great Lakes National Program Office
U.S. Environmental Protection Agency
536 South Clark Street, Region V
Chicago. Illinois 60605
13. TYPE OF REPORT AND PERIOD COVERED
Final Report 1974-1978
14. SPONSORING AGENCY CODE
U.S. EPA-GLNPO
15. SUPPLEMENTARY NOTES University of Wisconsin System Water Resources Center and
Southeastern Wisconsin Regional Planning Commission
16. ABSTRACT " ' ' '
This project was in support of the U.S./Canada Great Lakes Water Quality Agreement.
The objectives are described under the reference-Pollution from Land Use Activities
Reference Group (PLUARG). This work was done under Task C of the work plan.
"Landrun" represents a method of analysis to estimate and control the quantity
and quality of runoff and surface erosion from watershed areas in different
land uses. Following calibration and verification of the model, it can be
stated that LANDRUN is capable of reproducing field data for medium and large
storms with adequate accuracy for such parameters as runoff, sediment, valatile
suspended solids and absorbed phosphate.
7.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS C. COS AT I Field/Group
Rain Data
Erosion
Hydrograph method
Soil texture
Agricultural lands
Sediment
Model
Transport
8. DISTRIBUTION STATEMENT
Document is available to the public
through the National Technical Information
Qoru-iro ^pyinqfipld. VA 22161
19. SECURITY CLASS (ThisReport)
21. NO. OF PAGES
144
20. SECURITY CLASS (Thispage)
22. PRICE
EPA Form 2220.1 (R«v. 4-77) PREVIOUS EDITION is OBSOLETE
Governrient Printing Office 1983 750-803
-------