United States
Environmental Protection
Agency
vvEPA
Office of Air Quality
Planning and Standards
Research Triangle Park, NC 27711
EPA-454/R-99-011 l^
April 1993
Air
1992 Nonmethane Organic
Compounds
And
Speciated Nonmethane
Organic Compounds
Monitoring Program
-------
DCN No. 93-298-017-70-13
Radian No. 298-017-70
EPA No. 68D80014
1992 NONMETHANE ORGANIC COMPOUNDS
AND
SPECIATED NONMETHANE ORGANIC COMPOUNDS
MONITORING PROGRAM
FINAL REPORT
Prepared for:
Neil J. Berg, Jr.
Office of Air Quality Planning and Standards
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
Prepared by:
Phyllis L O'Hara
Raymond G. Merrill, Jr.
Theresa L. Sampson
' Dave-Paul Dayton
Joann Rice
Judi E. McCartney
Joseph Y. Martin
Radian Corporation
3200 E. Chapel Hill Road
Post Office Box 13000
Research Triangle Park, North Carolina 27709
...... U.S. Envtronm§ntBt
U.S. Environmental Protection Agency April 1993 Region 5,
77
-------
TABLE OF CONTENTS
Page
LIST OF FIGURES ix
LIST OF TABLES xi
SYMBOLS AND ABBREVIATIONS xvi
1.0 BACKGROUND AND SUMMARY 1-1
1.1 NMOC Monitoring Program 1-3
1.1.1 Introduction and Data Summary 1-3
1.1.2 Calibration and Drift 1-4
1.1.3 NMOC Precision 1-4
1.1.4 Accuracy 1-7
1.1.5 Other Quality Assurance Measurements 1-13
1.2 Three-Hour Air Toxics Monitoring Program 1-15
1.2.1 Overall Data Summary 1-15
1.2.2 Site Results 1-15
1.2.3 Gas Chromatography/Mass Spectrometry (GC/MS)
Confirmation Results 1-16
1.2.4 Precision 1-16
1.2.5 External Audit 1-18
1.3 Carbonyl 1-18
1.4 SNMOC 1-19
1.4.1 Introduction and Data Summary 1-19
1.4.2 Calibration 1-19
1.4.3 SNMOC Precision 1-23
1.4,4 Accuracy 1-23
2.0 NMOC DATA SUMMARY 2-1
298-017-70/cah.117op
NMOC Final Report jjj
-------
Table of Contents (Continued)
Page
3.0 NMOC TECHNICAL NOTES 3-1
3.1 NMOC Field Sampling Equipment 3-1
3.1.1 Installation 3-1
3.1.2 Operation 3-3
3.1.3 Troubleshooting Instructions 3-6
3.1.4 Sampler Performance for 1992 3-8
3.1.5 Field Documentation 3-9
3.2 NMOC Analysis 3-9
3.2.1 Instrumentation 3-11
3.2.2 Hewlett-Packard, Model 5880, Gas Chromatograph Operating
Conditions 3-11
3.2.3 NMOC Analytical Technique 3-11
3.3 Canister Cleanup System 3-12
3.3.1 Canister Cleanup Equipment 3-14
3.3.2 Canister Cleanup Procedures 3-16
4.0 NMOC QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES 4-1
4.1 Introduction and Conclusions 4-1
4.2 Calibration and Instrument Peformance 4-2
4.2.1 Performance Assessment 4-2
4.2.2 Calibration Zero, Span, and Drift 4-4
4.2.3 Calibration Drift 4-21
4.3 In-House QC Samples 4-24
4.4 Repeated Analysis 4-33
4.5 Duplicate Sample Results 4-39
4.6 Canister Pressure Results 4-48
4.7 Canister Cleanup Results 4-48
4.8 External Audit Results 4-50
4.9 Data Validation 4-54
298-017-70/cah.117op
NMOC Final Report IV
-------
Table of Contents (Continued)
Page
4.10 NMOC Monitoring Program Records 4-55
4.10.1 Archives 4-55
4.10.2 Magnetic Disks 4-56
5.0 NMOC DATA ANALYSIS AND CHARACTERIZATION 5-1
5.1 Overall Characterization 5-1
5.2 Monthly Variations, 1992 5-7
6.0 THREE-HOUR AIR TOXICS DATA SUMMARY 6-1
6.1 Overall Results 6-3
6.2 Site Results 6-6
7.0 THREE-HOUR AIR TOXICS TECHNICAL NOTES 7-1
7.1 Sampling Equipment and Gas Chromatograph/Multiple
Detector Analytical System 7-1
7.2 Three-Hour Air Toxics Sampling Systems Certification 7-5
7.2.1 Sampler Certification Blanks - Humidified Zero Air 7-5
7.2.2 Sampler Certification Challenge - Selected
Target Compound 7-6
7.3 Calibration Standard Preparation 7-6
7.3.1 Calibration Standard Generation 7-6
7.3.2 GC/MD Calibration 7-7
7.4 Daily Calibration Check 7-8
7.5 Gas Chromatograph/Mass Spectrometer Analysis and
Compound Identification Confirmation 7-8
7.6 QA/QC Data 7-9
7.6.1 GC/MS Confirmation Results 7-15
7.6.2 External Audits 7-15
7.7 Data Records 7-15
298-017-70/cah.117op
NMOC Final Report
-------
Table of Contents (Continued)
Page
8.0 CARBONYL SAMPLING, ANALYSIS, AND QUALITY ASSURANCE
PROCEDURES 8-1
8.1 Sampling Equipment and Procedures 8-1
8.2 Analytical Procedures 8-3
8.3 Quality Assurance Procedures 8-4
8.4 Calibration Procedures 8-6
8.4.1 Daily Quality Control Procedures 8-6
8.4.2 Duplicate Samples 8-6
8.4.3 Trip Blanks 8-6
8.4.4 Instrument Detection Limits 8-8
8.5 Results 8-8
8.5.1 Sample Results 8-8
8.5.2 Sampling Precision 8-17
8.5.3 Analytical Precision 8-17
8.5.4 Quality Control Standards 8-28
9.0 SNMOC DATA SUMMARY 9-1
9.1 Sample Collection Summary 9-1
9.2 Site Specific Summary Statistics 9-1
9.3 Overall Data Summary 9-64
9.4 Individual Sample Results 9-71
10.0 SNMOC TECHNICAL NOTES 10-1
10.1 Sampling Equipment and Procedure 10-1
10.2 Analytical System 10-1
11.0 SNMOC QUALITY ASSURANCE AND CONTROL PROCEDURES 11-1
11.1 Standards Preparation 11-1
11.2 Target Compounds Database 11-1
11.3 GC/FID Monthly Calibration 11-2
11.4 Daily Quality Control Check ' 11-5
11.5 Daily Analytical System Blank 11-5
11.6 Precision of Sampling and Analysis 11-6
298-017-70/cah.117op
NMOC Final Report VJ
-------
Table of Contents (Continued)
Page
11.6.1 Duplicate Samples 11-6
11.6.2 Replicate Samples 11-10
11.7 Accuracy 11-10
11.8 Comparative Analysis 11-21
11.9 Data Acquisition and Reduction Procedures 11-25
12.0 RECOMMENDATIONS 12-1
12.1 General 12-1
12.1.1 Vertical Stratification Study 12-1
12.1.2 Seasonal NMOC Studies 12-1
12.1.3 Field Audit 12-2
12.2 Equipment 12-2
12.2.1 Multiple Episode Sample Collection Equipment 12-2
12.2.2 Current Sampling Equipment 12-2
12.2.3 Cleaning and Analytical Equipment 12-2
12.3 SNMOC 12-3
12.3.1 Expansion of Target Compound List 12-3
12.4 Air Toxics 12-3
12.4.1 Compound Stability Study 12-3
12.4.2 Expansion of Target Compound List 12-4
12.5 Carbonyls 12-4
12.5.1 Use of Ozone Scrubber 12-4
. 12.5.2 Life of Ozone Scrubber . '. 12-4
13.0 REFERENCES 13-1
298-017-70/cah.117op
NMOC Final Report
-------
Table of Contents (Continued)
Page
APPENDICES
A SAMPLING SITES FOR 1992 NMOC MONITORING PROGRAM
B CRYOGENIC PRECONCENTRATION AND DIRECT FLAME IONIZATION
DETECTION (PDFID) METHOD
C 1992 NMOC MONITORING PROGRAM SITE DATA
D 1992 NMOC MONITORING PROGRAM INVALIDATED AND MISSING
SAMPLES
E PDFID INTEGRATOR PROGRAMMING INSRUCTIONS
F 1992 NMOC DAILY CALIBRATION DATA
G 1992 NMOC IN-HOUSE QUALITY CONTROL SAMPLES
H 1992 MULTIPLE DETECTOR SPECIATED THREE-HOUR SITE DATA
SUMMARIES
I 1992 EXTERNAL AUDIT RESULTS LETTER
J SPECIATED NMOC ANALYSIS METHOD
K 1992 SPECIATED NMOC ANALYTICAL RESULTS (Obtain from Neil Berg,
U.S. EPA)
298-017-70/cah.117op
NMOC Final Report VJII
-------
LIST OF FIGURES
Page
1-1 In-House Quality Control Results, Channel A 1-8
1-2 In-House Quality Control Results, Channel B 1-9
1-3 In-House Quality Control Results, Channel C 1-10
1-4 In-House Quality Control Results, Channel D 1-11
3-1 Style A Sampling System for Collecting 3-Hour Integrated Ambient Air
Samples 3-2
3-2 Style B Sampling System for Collecting 3-Hour Integrated Ambient Air
Samples 3-2
3-3 NMOC Sampling Field Data Form 3-7
3-4 NMOC Invalid Sample Form 3-10
3-5 NMOC Analytical Equipment 3-13
3-6 Canister Cleaning Apparatus 3-15
4-1 NMOC Performance Results, Channel A 4-5
4-2 NMOC Performance Results, Channel B 4-6
4-3 NMOC Performance Results, Channel C 4-7
4-4 NMOC Performance Results, Channel D 4-8
4-5 Daily Calibration Zero, Channel A 4-9
4-6 Daily Calibration Zero, Channel B 4-10
4-7 Daily Calibration Zero, Channel C 4-11
4-8 Daily Calibration Zero, Channel D 4-12
4-9 Daily Calibration Span, Channel A 4-13
4-10 Daily Calibration Span, Channel B 4-14
298-017-70/cah.117op
NMOC Final Report JX
-------
LIST OF FIGURES - Continued
Page
4-11 Daily Calibration Span, Channel C 4-15
4-12 Daily Calibration Span, Channel D 4-16
4-13 Daily Calibration Percent Drift, Channel A 4-17
4-14 Daily Calibration Percent Drift, Channel B 4-18
4-15 Daily Calibration Percent Drift, Channel C 4-19
4-16 Daily Calibration Percent Drift, Channel D 4-20
4-17 In-House Quality Control Results, Channel A 4-26
4-18 In-House Quality Control Results, Channel B 4-27
4-19 In-House Quality Control Results, Channel C 4-28
4-20 In-House Quality Control Results, Channel D 4-29
5-1 Stem-and-leaf Plot of the 1992 NMOC Data 5-2
5-2 Stem-and-leaf Plot of In(NMOC) Data 5-4
5-3 Cumulative Frequency Distribution for the 1992 NMOC Data 5-5
5-4 Cumulative Frequency Distribution for 1992 In(NMOC) Data 5-6
7-1 Gas Chromatographic Multidetector Interface System 7-2
7^2 Gas Chromatographic Multidetector System with Data Aquisition System . . 7-3
8-1 3-Hour Carbonyl Sampling Subsystem 8-2
8-2 Field Data and Custody Form 8-5
10-1 Hydrocarbon Analysis System . 10-2
10-2 Radian Sample Interface in Sample Load Mode 10-3
10-3 Radian Sample Interface in Sample Inject Mode 10-4
298-017-70/caM17op
NMOC Final Report X
-------
LIST OF TABLES
Page
1-1 1992 NMOC Completeness Results 1-5
1-2 NMOC Overall Statistics, by Site 1-6
1-3 Linear Regression Parameters for In-House Quality Control Data 1-12
1-4 External NMOC Audit Samples 1-14
1-5 Compound Identification Confirmation 1-17
1-6 Samples Analyzed for 1992 SNMOC Program Sites 1-20
1-7 Samples Analyzed for 1992 SNMOC Option Sites 1-20
1-8 1992 Ambient Air Hydrocarbon Program Target List 1-2.1
1-9 Summary of Monthly Propane Calibration Curves 1-22
2-1 1992 NMOC Completeness Results 2-2
2-2 NMOC Overall Statistics, by Site 2-4
2-3 1992 LNMOC Overall Statistics, by Site 2-5
4-1 1992 Performance Assessment Summary, Radian Channels 4-3
4-2 Summary NMOC Calibration Factor Drift Results 4-22
4-3 Linear Regression Parameters for In-House Quality Control Data 4-30
4-4 In-House Quality Control Statistics, by Radian Channel 4-31
4-5 Overall In-House Quality Control Statistics 4-32
4-6 Replicate Samples for the 1992 NMOC Program 4-34
4-7 Duplicate Samples for the 1992 NMOC Program 4-40
4-8 NMOC Pressure Statistics 4-49
4-9 External NMOC Audit Samples 4-51
298-017-70/cah.117op
NMOC Final Report XJ
-------
LIST OF TABLES - Continued
Page
4-10 Bias of Audit Samples from Theoretical Concentrations 4-52
4-11 NMOC External Audits for 1992 4-53
5-1 Summary Statistics for 1992 NMOC Sites, by Month 5-8
6-1 Three-Hour Ambient Air Samples and Analyses 6-2
6-2 Air Toxics Compound Identifications Summary for All Sites -1992 6-4
6-3 1992 Air Toxic Compound Frequency of Occurrence 6-5
6-4 Air Toxics Compound Identifications for Birmingham, Alabama (B1AL) .... 6-7
6-5 Air Toxics Compound Identifications for Birmingham, Alabama (B2AL) .... 6-8
6-6 Air Toxics Compound Identifications for Birmingham, Alabama (B3AL) .... 6-9
6-7 Air Toxics Compound Identifications for Newark, New Jersey (NWNJ) ... 6-10
6-8 Air Toxics Compound Identifications for Plainfield, New Jersey (PLNJ) ... 6-11
7-1 Three-hour Air Toxics Target Compounds 7-4
7-2 1992 NMOC 3-Hour Replicates and Duplicates, ppbv 7-10
7-3 Compound Identification Confirmation 7-16
7-4 Three-hour Toxics External Audit Results 7-17
8-1 1992 NMOC Calibration Curve 8-7
8-2 Detection pmits for Targeted Carbonyl Compounds 8-9
8-3 NMOC 1992 Plainfield, New Jersey (PLNJ) Site Carbonyl Results 8-10
8-4 NMOC 1992 Newark, New Jersey (NWNJ) Site Carbonyl Results 8-13
8-5 NMOC 1992 Daily QC Standards Recoveries 8-16
8-6 NMOC 1992 Plainfield, New Jersey (PLNJ) Site Summary 8-18
298-017-70/cah.117op
NMOC Final Report XII
-------
LIST OF TABLES - Continued
Page
8-7 NMOC 1992 Newark, New Jersey (NWNJ) Site Summary 8-19
8-8 NMOC 1992 Plainfield, New Jersey (PLNJ) Sampling Precision Statistics . 8-20
8-9 NMOC 1992 Newark, New Jersey (NWNJ) Sampling Precision Statistics . 8-21
8-10 NMOC 1992 Plainfield, New Jersey (PLNJ) Analytical Precision Statistics . 8-22
8-11 NMOC 1992 Newark, New Jersey (NWNJ) Analytical Precision Statistics . 8-25
8-12 NMOC 1992 Daily QC Standards Statistics 8-29
9-1 1992 Ambient Air Hydrocarbon Program Target List 9-2
9-2 Samples Collected and Analyzed for 1992 SNMOC Program Sites 9-3
9-3 Samples Collected and Analyzed for 1992 SNMOC Option Sites 9-3
9-4 June - July Sampling Frequency 9-4
9-5 August Sampling Frequency 9-5
9-6 September Sampling Frequency 9-6
9-7 1992 Summary Statistics for Birmingham, AL (B1AL) 9-7
9-8 1992 Summary Statistics for Birmingham, AL (B2AL) 9-10
9-9 1992 Summary Statistics for Birmingham, AL (B3AL) 9-13
9-10 1992 Summary Statistics for Beaumont, TX (BMTX) 9-16
9-11 1992 Summary Statistics for Baton Rouge, LA (BRLA) 9-19
9-12 1992 Summary Statistics for Charlotte, NC (CHNC) 9-22
9-13 1992 Summary Statistics for Dallas, TX (DLTX) 9-25
9-14 1992 Summary Statistics for El Paso, TX (EPTX) 9-28
9-15 1992 Summary Statistics for Fort Worth, TX (FWTX) 9-31
298-017-70/cah.117op
NMOC Final Report XHJ
-------
LIST OF TABLES - Continued
Page
9-16 1992 Summary Statistics for Juarez, Mexico (JUMX) 9-34
9-17 1992 Summary Statistics for Long Island, NY (LINY) 9-37
9-18 1992 Summary Statistics for Miami, FL (MIFL) 9-40
9-19 1992 Summary Statistics for Manhattan, NY (MNY) 9-43
9-20 1992 Summary Statistics for Newark, NJ (NWNJ) 9-46
9-21 1992 Summary Statistics for Plainfield, NJ (PLNJ) 9-49
9-22 1992 Summary Statistics for Raleigh, NC (R1NC) 9-52
9-23 1992 Summary Statistics for Salt Lake City, UT (S2UT) 9-55
9-24 1992 Summary Statistics for Salt Lake City, UT (S3UT) 9-58
9-25 1992 Summary Statistics for Winston-Salem, NC (WSNC) 9-61
9-26 1992 Summary Statistics for All Program Sites 9-65
9-27 1992 Summary Statistics for All Option Sites 9-68
10-1 1992 Hydrocarbon Analysis GC/FID Operating Conditions 10-6
11-1 1992 Ambient Air Hydrocarbon Program Target List 11-3
11-2 Summary of Monthly Propane Calibration Curves 11-4
11-3 1992 Duplicate Statistics for All Program Sites 11-7
11-4 1992 Duplicate Statistics for All Option Sites 11-11
11-5 1992 Replicate Statistics for All Program Sites 11-14
11-6 1992 Replicate Statistics for All Option Sites 11-17
11-7 Summary of External Audit Results 11-20
11-8 Results of EPA Comparative Analysis 11-22
298-017-70/cah.117op
NMOC Final Report XIV
-------
LIST OF TABLES - Continued
Page
11-9 Percent Bias Results of EPA Comparison Analysis 11-23
11-10 Absolute Percent Bias Results of EPA Comparison Analysis 11-24
29fl-017-70/cah.117op
NMOC Final Report XV
-------
SYMBOLS AND ABBREVIATIONS
a.c. area counts, generated from a gas chromatograph
ADIFF absolute value of DIFF
AIRS Aerometric Information Retrieval System
AL Alabama
a.m. ante meridiem
APCDIFF absolute value of PCDIFF
APR April
AREAL Atmospheric Research and Exposure Assessment Laboratory
ASTM American Society for Testing Materials
Aug August
B1AL Birmingham, AL (Tarrant City) - AIRS No. 01-073-6002
B2AL Birmingham, AL (Pinsun) - AIRS No. 01-073-5002
B3AL Birmingham, AL (Helena) - AIRS No. 01-117-0004
BMTX Beaumont, TX - AIRS No. 48-245-0009
BRLA Baton Rouge, LA - AIRS No. 22-033-0006
Calib. calibration
Cone. concentration
cm centimeter
CRM Certified Reference Material
CH State of Chihuahua, Mexico
CHNC Charlotte, NC - AIRS No. 37-119-0034
CV coefficient of variation
DIFF measured NMOC concentration - calculated NMOC concentration
Diff. ppmC for in-house quality control samples; (NMOC concentration for
the second channel) - (NMOC concentration for the first channel)
DLTX Dallas, TX - AIRS No. 48-113-0069
DNPH 2,4-dinitrophenyl hydrazine
Dup. duplicate
e
ECD
ELTX
EPA
base of natural logarithm, 2.71828...
electron capture detector
El Paso, TX - AIRS No. 48-141-0027
United States Environmental Protection Agency
298-017-70/cah.117op
NMOC Final Report
XVI
-------
SYMBOLS AND ABBREVIATIONS - Continued
F Friday
F the F-statistic
FID flame ionization detector
FL Florida
FWTX Fort Worth, TX - AIRS No. 48-439-1002
GC gas chromatograph
GC/FID gas chromatography flame ionization detector
GC/MD gas chromatography multidetector
GC/MS gas chromatography mass spectrometry
H Thursday
H hinge (25th percentile or 75th percentile)
He helium
hg mercury
HP-5880 Hewlett-Packard Model 5880
HPLC high performance liquid chromatography
i.d.
ID
Inj.
inside diameter
identification
injection
JUMX
Juarez-CH, Mexico - AIRS No. 80-006-0001
Kl
potassium iodide
L
LA
LCL
LINY
liter
Louisiana
lower control limit
Hempstead, NY (Long Island) - AIRS No. 36-059-0005
m
M
M
Max
MDL
MIFL
meter
Monday
median
maximum
method detection limit
Miami, FL - AIRS No. 12-025-4002
298-017-70/catl.117op
NMOC Final Report
XVII
-------
SYMBOLS AND ABBREVIATIONS - Continued
Min
min
mL
mm
MNY
MU
minimum
minute
milliiiter
millimeter
New York, NY - AIRS No. 36-061-0010
mean of In (NMOC)
NAAQS National Ambient Air Quality Standards
NC North Carolina
NCAR National Center for Atmospheric Research
NIST National Institute of Standards and Technology
nl nanoliter
NMOC Nonmethane organic compound
NOX oxides of nitrogen
NWNJ Newark, NJ - AIRS No. 34-013-0011
NJ New Jersey
NY New York
o.d.
outside diameter
PCDIFF percent difference = DIFF/calculated NMOC concentration x 100,
for in-house QC samples
PDFID preconcentration, direct flame ionization detection
PLNJ Plainfield, NJ - AIRS No. 34-039-5001 (formerly 34-035-1001)
ppbC parts per billion by volume as carbon
ppbv parts per billion by volume
ppm parts per million
ppmC parts per million by volume as carbon
ppmv parts per million by volume
psig pounds (force) per square inch gauge
QA quality assurance
QAD Quality Assurance Division (EPA)
QAPP Quality Assurance Project Plan
QC quality control
298-017-70/cah.117op
NMOC Final Report
XVIII
-------
SYMBOLS AND ABBREVIATIONS - Continued
R1NC Raleigh, NC - AIRS No. 37-183-0015
R response factor range, (RFi+1 - RFj)
RF response factor
RPIP Radian Peak Identification Program
RTP Research Triangle Park
S2UT Salt Lake City, UT - AIRS No. 49-035-3001
S3UT Salt Lake City, UT (Bountiful) - AIRS No. 49-011-0001
S standard deviation
S, sample i
SAROAD Storage and Retrieval of Aerometric Data
SOP standard operating procedure
SOx oxides of sulfur
SIGMA standard deviation of In(NMOC)
SNMOC Speciated nonmethane organic compounds
Std Dev standard deviation
T
TX
THC
Tuesday
Texas
total hydrocarbon
UATMP Urban Air Toxics Monitoring Program
UCL upper control limit
U.S. United States
UT Utah
UTM Universal Transverse Mercator
VOC
vs.
volatile organic compound
versus
W Wednesday
W Shapiro-Wilk statistic
WSNC Winston-Salem, NC - AIRS No. 37-067-0022
XBAR
estimate of the sample mean
298-017-70/cah.117op
NMOC Final Report
XIX
-------
SYMBOLS AND ABBREVIATIONS - Continued
inch(es)
°C degrees Celsius
€|(ijk) residual (or error, assumed to be due to analysis) I from aliquot k,
duplicate canister j, and air sample i
F degrees Fahrenheit
%CV percent coefficient of variation
fj micron
/L/ population mean
/i/g microgram
/jm micrometer
o
298-017-70/cah.117op
NMOC Final Report XX
-------
1.0 BACKGROUND AND SUMMARY
In certain areas of the country where the National Ambient Air Quality
Standard (NAAQS) for ozone is being exceeded, additional measurements of
ambient nonmethane organic compounds (NMOC) are needed to assist the affected
states in developing revised ozone control strategies. Because of previous
difficulty in obtaining accurate NMOC measurements, the U.S. Environmental
Protection Agency (EPA) has provided monitoring and analytical assistance to
these states through Radian Corporation. This assistance began in 1984 and
continues through the 1992 NMOC Monitoring Program.
Between 22 June and 30 September, 1992, Radian analyzed 566 ambient
air samples, including 70 duplicate samples, collected in SUMMA® polished
stainless steel canisters at 8 sites. These NMOC analyses were performed by the
cryogenic preconcentration, direct flame ionization detection (PDFID) method.1
Based on the 1984 through 1991 studies, the method was shown to be precise,
accurate, and cost effective relative to the capillary column gas chromatographic,
flame ionization detection (GC/FID) method. The 1992 study confirmed these
findings and supported the conclusion that the PDFID method is the method of
choice to measure total NMOC concentration in ambient air.
In 1987 Radian Corporation developed a gas chromatographic multidetector
(GC/MD) method to determine the concentration of 38 selected toxic organic
compounds in ambient air. In 1992, air toxic analyses were conducted on 3-hour
ambient air samples taken at five sites at which NMOC samples were taken. Air
toxics monitoring was also a component of the 1987, 1988, 1989, 1990, and
1991 programs.
Beginning with the 1989 monitoring season, selected carbonyls were
measured and reported. In 1989, 3-hour samples were collected and analyzed for
selected carbonyls -- formaldehyde, acetaldehyde, and acetone. In the 1990
28B-017-70/c«h.ll7op
NMOC Final R«port 1 - 1
-------
monitoring season, ozone scrubbers were added to the sampling assemblies to
scavenge any ozone present in the ambient air sampled, prior to its being drawn
through the 2,4-dinitrophenylhydrazine (DNPH) cartridges. In the 1992 monitoring
season, Radian Corporation prepared the DNPH cartridges, supervised the ambient
air sampling, and performed the analyses. During the 1992 program, ten 3-hour
carbonyl samples were collected from 6:00 a.m. to 9:00 a.m. at two sites and
analyzed for 14 carbonyls -- formaldehyde, acetaldehyde, acrolein, acetone,
propionaldehyde, crotonaldehyde, butyr/isobutyraldehyde, benzaldehyde,
isovaleraldehyde, valeraldehyde, tolualdehyde, hexanaldehyde, and
2,5-dimethylbenzaldehyde.
Beginning in 1991, speciated nonmethane organic compound (SNMOC)
concentrations were measured at several sites. This continued in 1992.
Seventy-seven hydrocarbons are speciated and quantitated in this analysis.
Chlorinated and oxygenated species in the ambient air are not identified in the
SNMOC procedure. The SNMOC sampling apparatus is identical to the NMOC
sampling apparatus. Three-hour samples are collected in cleaned, evacuated
stainless steel canisters from 6:00 to 9:00 a.m. under final pressures of about two
atmospheres absolute pressure. Each sample is cryogenically preconcentrated.
The concentrated sample aliquot is then transferred through two gas
chromatographic columns to separate flame ionization detectors (FIDs). One
column separates the ethane, ethene, and acetylene (the C2-hydrocarbons). The
other column separates the remaining 74 target hydrocarbons.
The Final Report for the 1992 Nonmethane Organic Compound Monitoring
Programs are included in Sections 1.0 through 13.0 of this report. Sections 2.0
through 5.0 report the data, procedures/ and assessment of the NMOC portion of
the monitoring program. Sections 6.0 through 7.0 report the data, procedures,
and assessment of the 3-hour air toxics portion of the monitoring program.
298-017-70/cih.117op - _
NMOC Fin* Report 1-2
-------
Section 8.0 reports the 3-hour carbonyl portion of the monitoring program.
Sections 9.0 through 11.0 report the SNMOC portion of the monitoring program.
Section 12.0 lists recommendations and section 13.0 lists references.
The sampling sites for the 1992 NMOC Monitoring Program are listed in
Appendix A. Appendix A also gives the EPA Regions for each site, the Radian Site
Code, the Aerometric Information Retrieval System (AIRS) site code and site
information, and indicates which base program it participated in, whether or not
3-hour air toxics analyses or SNMOC analyses were performed on selected ambient
air samples from the site and whether or not carbonyl samples were collected and
analyzed.
Appendix B contains the detailed procedures on the PDFID method.
Appendix C lists the 1992 NMOC Monitoring Program site data. Appendix D lists
the 1992 NMOC and SNMOC Monitoring Program Invalidated and Missing Samples
information. Appendix E gives PDFID Integrator Programming Instructions.
Appendix F gives 1992 NMOC Daily Calibration Data. Appendix G gives 1992
NMOC In-House Quality Control Samples, and Appendix H gives Multiple Detector
Speciated Three-Hour Site Data Summaries. Appendix I contains the external audit
results for the NMOC, 3-hour toxics, and SNMOC programs. The SNMOC analysis
method is detailed in Appendix J. Appendix K lists the SNMOC site data and can
be obtained from Neil Berg, U.S. EPA.
1.1 NMOC Monitoring Program
1.1.1 Introduction and Data Summary
The sampling schedule is given in the 1992 NMOC Quality Assurance
Project Plan (QAPP).2 For all the sites in the 1992 NMOC Monitoring Program,
sampling occurred from 6:00 a.m. to 9:00 a.m. local time, Monday through Friday
from 22 June through 30 September, 1992. Site codes for the 1992 NMOC
298-017-70/c»h.117op _
NMOC Firwl R«port 1-
-------
Monitoring Program are listed in Appendix A. Table 1-1 gives details of the sample
completeness results. Percent completeness, a quality measure, is shown in
Table 1-1. Completeness, which ratios the number of valid samples to the number
of scheduled samples, averaged 90.7% in 1992 compared to 94.1% in 1991,
95.8% in 1990, 95.5% in 1989, 93.4% in 1988, 95.0% in 1987, 96.8% in
1986, 95.8% in 1985, and 90.6% in 1984. Percent completeness for 1992
ranged from 80.0 at New York, NY (MNY), to 101.3 for New York, NY (LINY).
Statistics for the NMOC concentrations in parts per million carbon (ppmC) by
volume are listed in Table 1-2. This table also includes all duplicate sample
concentration statistics.
1.1.2 Calibration and Drift
Each PDFID analysis channel was calibrated, using propane standards
referenced to the National Institute of Science and Technology (NIST) Reference
Material No. 1666B propane. Daily, before zero and calibration checks were
performed, the analytical systems were purged with cleaned, dried air that had
been humidified. Zero readings were determined with cleaned, dried air. Daily
percent drift of the calibration factor ranged from -5.1 % to +2.2 percent. The
absolute value of the percent drift of the daily calibration factors ranged from 0.0
to +5.1 percent.
1.1.3 NMOC Precision
Analytical precision was determined by repeated analyses of 50 site
samples. Percent differences between the second and the first analysis averaged
+ 8.74 percent. The average of the absolute values of the percent difference was
21.61 % with a standard deviation of 20.9 ppmC. The analytical precision includes
the variability between Radian analytical measurement channels and within Radian
analytical measurement channels. The data quality objective for the percent
298-017-70/c«h.117op
NMOC Fin* Fteport I "4
-------
Table 1-1
1992 NMOC Completeness Results
'•' > • :' • •••t
• -• . '•{•:•. •• ;' ' / : ' -;:'. :'
- ; ,= -;^ SfteM! ... ' :
:.:: -;.I:t£aatiOtt-4h---:-
Long Island, NY
New York, NY
Newark, NJ
Plainfield, NJ
Raleigh, NC
Salt Lake City, UT
Salt Lake City, UT
Winston-Salem, NC
OVERALL
Radian
Site
Code
LINY
MNY
NWNJ
PLNJ
R1NC
S2UT
S3UT
WSNC
Scheduled
Sampling
Days
67
66
69
70
70
69
71
71
553
Total
Scheduled
Duplicate
Sample*
9
9
9
9
9
9
9
9
72
Total
Scheduled
Canister
Analyses
76
75
78
79
79
78
80
80
625
Total
Valid
Duplicate
Samples
10
8
8
9
9
8
9
9
70
Total
•:: Valid,
Samples
77
60
64
77
74
65
72
78
567
Percent
Complete
101.32
80.00
82.05
97.47
93.67
83.33
90.00
97.50
90.72
288-O17-70/c«h.117op
NMOC Find Report
-------
Table 1-2
NMOC Overall Statistics, by Site
Sit*
LINY
lyiNY
NWNJ
PLNJ
R1NC
S2UT
S3UT
WSNC
OVERALL
*«
€**«*
77
60
64
77
74
65
72
78
567
Concentration, ppmC
Min
0.071
0.128
0.188
0.070
0.055
0.193
0.114
0.047
0.047
Max
1.168
3.730
4.780
3.347
0.692
1.648
1.090
1.220
4.780
Median
0.227
0.448
0.520
0.420
0.186
0.662
0.453
0.208
0.388
Mean
0.315
0.637
0.952
0.563
0.219
0.742
0.488
0.264
0.506
Sid
0.225
0.663
0.980
0.559
0.131
0.313
0.228
0.207
0.531
Skew*
ness
1.269
3.141
2.081
2.953
1.560
0.586
0.735
1.970
3.685
Kurt-
1.633
10.694
3.952
10.932
2.695
-0.207
0.112
5.258
18.304
W"
0.866
0.605
0.686
0.705
0.858
0.953
0.937
0.817
0.655
•Shapiro-Wilk statistic to test normality of data.
298O17-7
-------
difference as published in the QAPP2 was ±15%, based on previous NMOC
program experience3-4-5'8-7-8'9'10 with this measurement.
Overall precision, including sampling and analysis variability, was determined
by analysis of 70 duplicate site samples, simultaneously collected in two canisters
from a common sampling system (a total of 140 canister samples). Percent
difference for Radian's analyses of the duplicates averaged +3.050 percent. The
average absolute percent difference was 15.6% with a standard deviation of 18.9
ppmC. The data quality objectives for this measurement was ±20%, based on
previous experience.3-4-5'6'7'8'9'10
1.1.4 Accuracy
Because the NMOC measurements encompass a range of mixtures of
organic compounds whose individual concentrations are unknown, it was not
possible to define absolute accuracy. Instead, accuracy was determined relative to
propane standards with internal and external audit samples.
Accuracy was monitored internally throughout the program by the use of
in-house propane standards. Periodically an in-house propane quality control (QC)
sample was prepared with a flow dilution apparatus and analyzed by the PDFID
method. The propane used to prepare the in-house QC standards was referenced
to NIST propane Certified Reference Material (CRM) No. 1666B.
Figures 1-1 through 1-4 show the in-house quality control results for Radian
Channels A, B, C, and D. Measured propane values are plotted against calculated
propane standards. Table 1-3 shows the linear regression parameters for the
Radian in-house quality control data. Quality control samples of propane were
mixed from a propane standard certified-by referencing to NIST propane Certified
Reference Material (CRM) 1666B_. The regression used the propane concentration
calcufated from the blending operation as the independent variable and
288-017-70/c«h.117op
NMOC Firwl R«pon 1 - /
-------
12
*• o
31 o
I *
03
IN-HOUSE PROPANE QC RESULTS
Channel A
1.60
0.00
0.00
0.20
0.40 0.60 0.80 1.00 1.20
Calculated NMOC Concentration, ppmC
1.40
1.60
-------
Is
p
f
CO
o
E
Q.
Q.
C
g
-------
i1 ^
2 "•*
«. o
IN-HOUSE PROPANE QC RESULTS
Channel C
1.60
0.00
0.00
0.20
0.40 0.60 0.80 1.00 1.20
Calculated NMOC Concentration, ppmC
1.40
1.60
-------
o
o °
31 -j
I?
•*J
*
T3
Q)
03
0)
IN-HOUSE PROPANE QC RESULTS
Channel D
1.60
O 1-40-
E
Q.
^ 1.20
g
to
~ 1.00
-------
Table 1-3
Linear Regression Parameters for In-House Quality Control Data
'•*f- ft •%•>•..
Channel
A
B
C
D
. • -•'•.•::• ^:;;jrf:-v'.; •',• .
o.':':;.;VCam^:':.
21
17
22
22
liS&l
^SSwife^i
0.023610
0.010933
0.011661
0.017274
ftV^Sil
r:/rir;-^|f2^
1.01588
1.04250
1 .000672
0.988924
lilts1*!
Correlation
0.983298
0.989858
0.995431
0.990747
2«8-017-70/c«h.117op
NMOC Firul Report
1-12
-------
concentration determined by each Radian analytical measurement channel as the
dependent variable. The concentration range of the in-house quality control
samples was 0.000 to 1.411 ppmC. Table 1-3 indicates excellent quality control
for each channel. As expected, the intercepts are all near zero, and the slopes and
coefficients of correlation are all near 1.0.
External propane audit samples were provided by U.S. EPA through their QA
contractor. The propane samples were referenced to NIST propane Certified
Reference Material (CRM) 1667B or 1665B. The audit samples were given Radian
ID Numbers upon receipt. The average percent bias for the Radian channels was
-(-5.0%, ranging from -3.4 to +24.0 percent. Table 1-4 shows the external audit
results.
1.1.5 Other Quality Assurance Measurements
Canister cleanup studies established that there was little carryover of NMOC
from one sample to the next, using the canister cleanup apparatus and procedure
developed for this study. In over 115 separate determinations, percent cleanup
averaged 98.79 percent. Cleanliness was defined in terms of the percent of the
NMOC concentration that was removed from each canister considered during the
cleanup procedure.
Ten percent (10%) of the NMOC data base was validated by checking data
transcriptions from original data sheets to the computerized data for 36 entries per
sample. The errors found equal a data base error rate of 0.080 percent. All errors
that were identified were corrected.
298-017-70/c»h.117op
NMOC Final Report 1-13
-------
Table 1-4
External NMOC Audit Samples
Canister
No.
2186
2267
2402
2474
i Concentration, ppmC
Theoretical
1.970
0.450
0.450
1.980
Analysis
Reference
1.910
0.450
0.520
1.900
Radian j
A
1.936
0.555
0.472
1.956
Ratfian
B
1.933
0.558
0.492
1.934
Radian
e
1.918
0.543
0.447
1.930
Radian
0
1.902
0.533
0.440
1.930
298-017-70/e«h.117op
NMOC Firwl Report
1-14
-------
1.2 Three-Hour Air Toxics Monitoring Program
At five sites, NWNJ, PLNJ, B1AL, B2AL, and B3AL, 3-hour NMOC samples
were speciated by a GC/MD analytical system for 38 air toxic target compounds
for a total of 40 NMOC ambient air samples. After NMOC analysis, the NMOC
sample canisters were bled to atmospheric pressure, allowed to equilibrate for at
least 18 hours, and then analyzed by GC/MD. Duplicate samples were collected at
the sites and analyzed individually by GC/MD. Replicate analyses were performed
on one duplicate sample per site. A total of 50 GC/MD analyses were performed,
including analysis of duplicate samples and replicate analyses. These data
summaries are presented in Appendix H.
1.2.1 Overall Data Summary
Twenty-eight target compounds were identified in the 50 analyses.
Chloroform, 1,1,1-trichloroethane, benzene, carbon tetrachloride, toluene,
tetrachloroethylene, ethylbenzene, m/p-xylene/bromoform, and o-xylene/
1,1,2,2-tetrachloroethane were identified in every sample. Concentrations of the
target compounds identified ranged from 0.01 ppbv for trichloroethylene to
253.06 ppbv for 1,1,1-trichloroethane. The overall average concentration of the
target compounds identified was 1.40 ppbv, averaged over all sites and target
compounds. The air toxics data are tabulated in Section 7.0. Results presented
include numbers of cases identified, minima, maxima, and means for all target
compounds.
1.2.2 Site Resujts
Overall site mean concentrations were 15.35 ppbv for B1AL, 4.46 ppbv for
B2AL, 6.88 ppbv for B3AL, 48.64 ppbv-for NWNJ, and 39.531 ppbv for PLNJ
averaged over all target compounds identified. These air toxic data are presented
in Section 7.0.
288-017-70/c«h.1l7op 1 1C
NMOC Firnl Report 1 - 1 D
-------
1.2.3 Gas Chromatography/Mass Spectrometry {GC/MS) Confirmation Results
Confirmation of compounds identified was based on five GC/MS analyses of
the 3-hour air toxics samples, one from each site location. The GC/MS analyses
confirmed 86.66% of the GC/MD identifications. The results are summarized in
Table 1-5, showing 16.36% positive GC/MD-positive GC/MS confirmation,
11.52% positive GC/MD-negative GC/MS confirmation, 1.82% negative GC/MD-
positive GC/MS comparison, and 70.30% negative GC/MD-negative GC/MS
comparisons. Comparisons labeled "negative GC/MD-positive GC/MS" refer to
specific samples in which a compound was not identified by GC/MD but positively
identified by GC/MS analysis. Comparisons labeled "positive GC/MD-negative
GC/MS" indicate specific samples in which a compound was positively identified
by GC/MD but not identified by GC/MS analysis. Because GC/MD is more
sensitive than GC/MS, this last comparison is of limited value. There were 39
cases where the GC/MD identified a compound at a concentration below the
detection limit of the GC/MS.
1.2.4 Precision
Sampling and analytical precision of 3-hour air toxics samples was estimated
by analyzing duplicate samples. In terms of overall average absolute percent
difference, the sampling and analysis precision was 16.01 percent.
Analytical precision was estimated based on the results of one repeated
analysis from one of the duplicate sample canisters from each site. The analytical
precision measured by the overall average absolute percent difference was
18.73 percent. Both the sampling and analytical precision results are excellent in
view of the low concentration range found in this study.
Both the duplicate sample and repeated analyses results are discussed in
Section 7.6.
288-017-70/c«h.117op 1 1C
NMOC Final R«pon 1 - I O
-------
Table 1-5
Compound Identification Confirmation
GC/MD versus GO/MS Comparison*:
Positive GC/MD - Positive GC/MS
Positive GC/MD - Negative GC/MS
Negative GC/MD - Positive GC/MS
Negative GC/MD - Negative GC/MS
Total
Cases
27
19
3
116
165
Percentage
16.36
11.52
1.82
70.30
100.00
Total compound identification confirmation = 16.36% + 70.30% = 86.66%
There were 39 cases where the GC/MD identified a compound at a concentration
below the detection limit of the GC/MS.
298-017-70/Mh.117op
NMOC Fintl FUpert
1-17
-------
1.2.5 External Audit
In the past years, the external audit for the 3-hour air toxics compounds was
conducted in conjunction with the Urban Air Toxics Program (UATMP). Because
the UATMP was not being conducted during the 1992 NMOC program, the
external audit sample for the 3-hour air toxics program was an external audit
sample for the SNMOC program.
The external audit sample contained 7 compounds, five of which were target
compounds for the 3-hour air toxic analyses. For these five compounds, percent
differences range from -46.47% (for toluene) to +22.16% (for o-xylene/1,1,2,2-
tetrachloroethane) with an average of -19.63 percent.
1.3 Carbonvl
Carbonyl samples were taken at two sites, NWNJ, and PLNJ, for the 1992
monitoring season. Three-hour samples were taken from 6:00 a.m. to 9:00 a.m.
simultaneously with the NMOC samples at the two sites. Samples were collected
in duplicate during September 1992. The carbonyl sampler has its own inlet
manifold, capillary, critical orifice and separate Metal-Bellows® pump. The inlet
manifold leads into an ozone scrubber and then splits into duplicate 2,4-
dinitrophenylhydrazine (DNPH) coated parallel cartridges.
Carbonyl concentrations ranged from 0.72 ppbv for valeraldehyde at NWNJ
to 38.93 ppbv for acetone at PLNJ. Of the 16 targeted carbonyl analytes, only
2,5-dimethylbenzaldehyde was not detected in any of the samples.
298-017-70/«h.117op 1 1Q
NMOC fimt Report 1 - I O
-------
1.4 SNMOC
1.4.1 Introduction and Data Summary
Eleven sites participated in the 1992 SNMOC Monitoring Program. Samples
were collected from 6:00 a.m. to 9:00 a.m. local time, Monday through Friday
from 22 June through 30 September 1992. Eight sites that participated in the
NMOC Monitoring Program also had speciation analysis performed on ten randomly
selected samples. Site codes are listed in Appendix A. Table 1-6 and 1-7 give the
details of the sample completeness results for the program and option sites,
respectively. Table 1-8 lists the 77 target compounds for the SNMOC program.
1.4.2 Calibration
Certified standards from Scott® Speciality Gases were used to prepare
analytical calibration standards. Gas-tight syringes were used to inject aliquots of
the certified standard into cleaned, evacuated SUMMA® canisters. The canisters
were then filled to ambient pressure with cleaned, humidified air using a standards
preparation flow dilution system. The canister was then pressurized with nitrogen
to approximately 35 psig using a precision canister dilution system.
The analytical system was calibrated monthly by analyzing three propane
standards and a system blank of cleaned, humidified air. The calibration was
considered valid if the coefficient of correlation of the four points was at least
0.995. At least squares linear regression calculation was performed for the data
from each detector. The resulting slopes were used as the propane response
factors. Table 1-9 summarizes the monthly propane calibration information.
Prior to Sample analysis, a quality control standard was analyzed to ensure
the validity of the current monthly response factors. A propane concentration bias
of no more than 30% was considered acceptable. For the 1992 SNMOC program,
298-017-70/c«h.117op
NMOC Final Report 1-19
-------
Table 1-6
Samples Analyzed for 1992 SNMOC Program Sites
Sits
B1AL
B2AL
B3AL
BMTX
BRLA
CHNC
DLTX
EPTX
FWTX
JUMX
MIFL
Total
Duplicate
Samples
16
20
14
20
18
18
18
18
20
14
16
Total
Replicate
Analyses :
12
12
10
10
12
10
10
10
10
8
10
Total
Single
Samptea
60
61
42
58
38
44
60
61
58
55
48
Total
Valid
Sampling
Events
68
71
49
68
47
53
69
70
68
62
56
Total
Valid
Samples
76
81
56
78
56
62
78
79
78
69
64
Total
Analyses
Reported
88
93
66
88
68
72
88
89
88
77
74
Table 1-7
Samples Analyzed for 1992 SNMOC Option Sites
Site
L1NY
MNY
NWNJ
PLNJ
R1NC
S2UT
S3UT
WSNC
Total
Duplicate
Samples
2
2
4
2
2
2
2
2
Total
Replicate
analyses
1
1
2
1
1
1
1
1
Totaih:-" ;
Stftglsr
Samples
7
6
5
7
7
7
7
7
ToWVaJfcf
* Sample*:
9
8
9
9
9
9
9
9
^fjfdttt
?: Analyses
'••'. Reported
10
9
11
10
10
10
10
10
208-017-7O/C*). 117op
NMOC fin* Report
1-20
-------
Table 1-8
1992 Ambient Air Hydrocarbon Program Target List
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1-Butene
1,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1-Butene
Isopentane
1-Pentene
2-Methyl-1-Butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-Butene
2,2-Dimethylbutane (Neohexane)
Cyclopentene
4-Methyl-1-Pentene
2,3-Dimethylbutane
Cyclopentane
2-Methylpentane (Isohexane)
3-Methylpentane
2-Methyi-1-Pentene
1-Hexene
2-Ethyl-1-Butene
• n-Hexane
t-2-Hexene
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
2-Methylhexane (Isoheptane)
2,3-Dimethylpentane
3-Methylhexane
1 -Heptene
2,2,4-Trimethylpentane
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1 -Octene
n-Octane
Ethylbenzene
p,m-Xylene
Styrene
o-Xylene
1-Nonene
n-Nonane
Isopropylbenzene
n-Propylbenzene
o-Pinene
m-Ethyltoluene
p-Ethyltoluene
1,3,5-Trimethylbenzene
o-Ethyltoluene
1,2,4-Trimethylbenzene
1-Decene
n-Decane
1,2,3-Trimethylbenzene
p-Oiethylbenzene
1 -Undecene
n-Undecane
Dodecene
n-Dodecane
Tridecene
n-Tridecane
298-017-70/c«h. 11 Top
NMOC Find R*part
1-21
-------
Table 1-9
Summary of Monthly Propane Calibration Curves
Calibration •
'.' ..:--Datfr:--.';<;v-:
6-23-92
7-23-92
8-23-92
9-25-92
10-23-92
Coi#i
Correlation
Coaffeeiant
0.9996
1 .0000
1 .0000
1 .0000
1 .0000
tt£ 4
Raspons*
Factor
(AC/n1-C>
1776.6
1803.7
2017.5
1937.6
1813.5
Cotyi
Correlatior*
Coeffecient
0.9987
1 .0000
1.0000
1 .0000
1 .0000
ttfi B
Response
Factor
lAC/n'J-Ci
1421.2
1435.9
1628.1
1566.5
1415.7
288-0 t7-70/e«h.H7op
NMOC Final Report
1-22
-------
the 30% criteria was met on the first standard analysis for every sample analysis
day.
Following the analysis of the QC standard, a sample of cleaned humidified
air was analyzed to assess the presence of any potential contamination.
1.4.3 SNMOC Precision
Analytical precision was determined by repeated analysis of 123 samples.
These samples were a single canister of a duplicate collection. For those
concentrations above the detection limit, the average concentration ranged from
0.60 ppbC (for isopropylbenzene) to 70.78 ppbC (for n-undecane).
Overall precision, including sampling and analysis variability, was determined
by analysis of 105 duplicate site samples, simultaneously collected in two
canisters from a common sampling system (a total of 210 canister samples).
Average concentrations ranged from 0.71 ppbC for 1-tridecene to 63.86 ppbC for
isopentane.
1.4.4 Accuracy
Three external audit samples were provided by U.S. EPA through their QA
contractor. Percent bias ranged from -38.5% to 10.0 percent. Radian participated
in the National Center for Atmospheric Research (NCAR) International Hydrocarbon
Intercomparison Experiment. The audit results reported by NCAR showed a
percent bias of tess than 15% for all 16 compounds included in the audit.
2»8-017-70/c«h.117op
NMOC final Ripen 1-23
-------
2.0 NMOC DATA SUMMARY
This section presents the data summary for the 1992 NMOC Monitoring
Program conducted during June, July, August, and September. Daily NMOC
concentrations and other pertinent monitoring data are given by site in Appendix C.
The majority of the data presented in this section summarize the NMOC
concentrations measured for samples collected at eight sites throughout the
continental United States. Sites were selected in urban and/or industrial locations;
they are described in Appendix A. The site codes for the 1992 NMOC Monitoring
Program are listed in Appendix A and are used throughout the report to identify the
sites. Samples were collected in 6-liter (L) stainless steel canisters by local site
operators trained on-site by Radian Corporation personnel. The sampling procedure
was described in detailed written instructions and provided to the site operators.
The sampling procedure instructions also appear in Section 3.1.2. Analytical
measurements of the samples collected were made in the Radian Corporation
Research Triangle Park (North Carolina) laboratory according to the PDFID method
TO-121. The complete PDFID methodology is presented in Appendix B.
The concentration of oxides of nitrogen (NOJ, site temperature, barometric
pressure, wind direction, and weather conditions were provided on the field
sampling forms by site personnel at the time of sampling. These data were
recorded in the 1992 NMOC data base, but are not presented in this report
because they were not measured by Radian equipment or personnel, nor were the
data subjected to project quality assurance procedures.
Table 2-1Jists the NMOC Monitoring Program completeness results by site
code. The scheduling of sample days and the scheduling of duplicate analyses is
given in the QAPP2. For the 1992 NMOC sites, completeness was 90 percent. A
complete listing of invalid samples and the reasons for the invalidation are given in
Appendix D.
298-017-70/c«h.117op
NMOC find R»pcft 2-1
-------
Table 2-1
1992 NMOC Completeness Results
* ' :
..
Site
Location ,
Long Island, NY
New York, NY
Newark, NJ
Plainfield, NJ
Raleigh, NC
Salt Lake City, UT
Salt Lake City, UT
Winston-Salem, NC
OVERALL
Radian
Site
Code
LINY
MNY
NWNJ
PLNJ
R1NC
S2UT
S3UT
WSNC
Scheduled
Sampling
: Days
67
66
69
70
70
69
71
71
553
Total
Scheduled
Duplicate
Sample*
9
9
9
9
9
9
9
9
72
Total
Scheduled
Canister
Analyses
76
75
78
79
79
78
80
80
625
Total
Valid >
Duplicate
Samples/
10
8
8
9
9
8
9
9
70
: •-'• ..:.- •_:'...
b'::'Totai-;Y
j^lfe.
Samples
77
60
64
77
74
65
72
78
567
Pe«J«nt
Complete
101.32
80.00
82.05
97.47
93.67
83.33
90.00
97.50
90.72
NJ
298-01 7-70/c»h 1 17op
-------
Overall completeness figures for the 1992 NMOC Program show 90.7%
complete. This compares with 94.1% in 1991, 95.8% in 1990, 95.5% in 1989,
93.4% in 1988, 95.0% complete in 1987, 96.8% complete in 1986, 95.8%
complete in 1985 and 90.6% complete in 1984.3A5-6-78-9-10
Completeness was defined as the percentage of samples, scheduled in the
QAPP2, that were collected and analyzed as valid samples, beginning with the first
valid sample and ending with the last scheduled sample.
Table 2-2 summarizes statistics by sites. All sites collected an integrated
sample from 6:00 a.m. to 9:00 a.m. The overall average of the NMOC
concentration is seen to be 0.490 ppmC.
In Table 2-2, the means presented are the arithmetic averages of the NMOC
concentrations at each site. The numbers given for standard deviation, skewness,
and kurtosis are the second, third, and fourth moments, respectively about the
arithmetic means. A skewness value greater than zero applies to distributions
having a longer tail to the right. A distribution that is normally distributed would
have a kurtosis of 3.0. A distribution more peaked (or pointed) than a normal
distribution, having the same variance, would have a kurtosis greater than 3.0. All
the kurtosis figures listed in this report are zero centered, which means that 3.0
has been subtracted from the fourth moment to give a reported kurtosis of 0.0 for
a symmetrical distribution. The Shapiro-Wilk statistic (W) tests the normality of
the data and ranges from zero to one. The closer the statistic is to one, the better
the fit of the data to normality. Comparing W for a site in Tables 2-2 and 2-3
shows that the Jjogarithmic transformation of the NMOC data make the logarithm
of NMOC concentrations to be a more nearly normal distribution.
NMOC monitoring data can, therefore, be better characterized by a
lognormal distribution than by a normal distribution, considering the findings of this
and previous NMOC programs.3'4'5<8i7<8'9'10 Table 2-3 summarizes the 1992 NMOC
298-017-?0/c«h.117op
NMOC Fm.1 FWport 2~3
-------
Table 2-2
NMOC Overall Statistics, by Site
> ,.
Site
LINY
IVfNY
NWNJ
PLNJ
R1NC
S2UT
S3UT
WSNC
OVERALL
%
4<
Cases
77
60
64
77
74
65
72
78
567
Concentration, ppmC >
.»
Milt
0.071
0.128
0.188
0.070
0.055
0.193
0.114
0.047
0.047
Max
1.168
3.730
4.780
3.347
0.692
1.648
1.090
1.220
4.780
Median
0.227
0.448
0.520
0.420
0.186
0.662
0.453
0.208
0.388
Mean
0.315
0.637
0.952
0.563
0.219
0.742
0.488
0.264
0.506
Std
P*v
0.225
0.663
0.980
0.559
0.131
0.313
0.228
0.207
0.531
Skew-
ness
1.269
3.141
2.081
2.953
1.560
0.586
0.735
1.970
3.685
Kurt-
0*i$
1.633
10.694
3.952
10.932
2.695
-0.207
0.112
5.258
18.304
'•••'virt-V
0.866
0.605
0.686
0.705
0.858
0.953
0.937
0.817
0.655
NJ
"Shapiro-Wilk statistic to test normality of data.
•>»B-f>17.7O/c«h 117oo
-------
Table 2-3
1992 LNMOC' Overall Statistics, by Site
' "
^ Sit*
LINY
MNY
NWNJ
PLNJ
R1NC
S2UT
S3UT
WSNC
OVERALL
i
Cases
77
60
64
77
74
65
72
78
567
Concentration, ppmC
Min
0.071
0.128
0.188
0.070
0.055
0.193
0.114
0.047
0.047
li*"
1.168
3.730
4.780
3.347
0.692
1.648
1.090
1.220
4.780
Median
0.227
0.448
0.520
0.420
0.186
0.662
0.453
0.208
0.388
Mean*
0.317
0.605
0.907
0.562
0.219
0.747
0.492
0.264
0.498
Mode
0.098
0.370
0.465
0.099
0.101
0.457
0.362
0.106
0.106
•Concentration, In(ppmC)
Mw*
-1.395
-0.738
-0.403
-0.915
-1.670
-0.391
-0.830
-1.580
-1.023
SCgma*
0.702
0.687
0.782
0.823
0.546
0.445
0.491
0.703
0.808
0.948
0.932
0.893
0.977
0.980
0.972
0.972
0.977
0.976
Ni
•LNMOC = In(NMOC), when NMOC is in ppmC.
bMean - exp (Mu + Sigma2/2).
cMu is the mean of In(NMOC). eMU is the geometric mean.
dSigma is the standard deviation of In(NMOC). eSIGMA is called the geometric standard deviation.
"Shapiro-Wilk statistic to test normality of data.
298-O17-70/c»h.117op
NMOC Find Riper!
-------
data using the definitions that characterize a lognormal distribution overall and for
each site. MU and SIGMA are the mean and standard deviation, respectively, of
the logarithm of NMOC to the Napierian base e. The geometric mean is e raised to
the power MU; the geometric standard deviation is e raised to the power SIGMA.
The mode is the most frequently occurring NMOC value for a continuous
probability distribution function.
Information listed in Appendix A includes the location of the site, street
address as well as the Universal Transverse Mercator (UTM) coordinates for the
site, the site code used throughout this report, and the AIRS Number. Appendix A
gives the AIRS printouts for all the sites that are in the system for 1992.
Appendix C gives the daily NMOC concentration data listed chronologically
for the entire sampling season. In addition, figures are given for each site in which
NMOC concentrations in ppmC are plotted versus the 1992 Julian date on which
the sample was taken. Data tables for each site include the following:
• calendar date sampled;
• Julian date samples;
• weekday sample (M, T, W, H, F);
• sample ID number, assigned consecutively upon receipt of the sample;
• sample canister number;
• Radian analytical measurement channel; and
• NMOC concentration in ppmC.
Appendix D lists invalidated or missing samples. Table D-1 lists these data
chronologically for the sites participating.in the NMOC program, while Table D-2
lists these data for the sites participating in the SNMOC program. For each
28e-017-70/cth.117op _ _
NMOC Final fUporl £.- D
-------
sample, the tables list the site code, the date of the missing or invalid sample, a
brief description of the possible cause of the invalid or missing sample, and the
assigned cause for the failure.
288-017-70/e*i.117op
NMOC Rrwl Report 2-7
-------
3.0 NMOC TECHNICAL NOTES
This section summarizes descriptions of the installation and operation of the
field sampling equipment, a summary of the analytical equipment and procedures
for NMOC measurement, and a description of the canister cleanup equipment and
procedures.
3.1 NMOC Field Sampling Equipment
Two types (A and B) of field sampling equipment were used to collect
ambient air samples for NMOC measurement. In Type A, ambient air is drawn
through a sintered stainless steel filter (2 micron) and critical orifice by a Metal
Bellows® pump and delivered to a SUMMA® canister. In Type B, the ambient air is
drawn through a sintered stainless steel filter then through a fine adjust
micrometering valve, a glass rotameter, a pump, and delivered to a SUMMA®
canister. Both the samplers' components are made of stainless steel. Figures 3-1
and 3-2 are schematic diagrams of the NMOC sampling systems.
3.1.1 Installation
NMOC sampler installation configurations were site dependent. All field
sites were installed by or under the direction of Radian personnel. Installation
requirements included a temperature-controlled environment (70° to 86°F), close
proximity to the atmosphere to be sampled, and noncontaminating sampler
connections. Glass tubing or gas-chromatographic-grade stainless steel tubing and
stainless steel fittings are the preferred materials of construction for all connections
contacting the sample. Typical sampler installations involved three configurations
including slip stream connection off of a constant flow glass manifold, a slipstream
connection (prior to the air monitoring station's NOX analyzer) off of a stainless
steei manifold with a bypass pump, or separate but collocated NMOC and NOX
sample inlet lines. For sites where the distance between the sample inlet and the
298-O17-70/Mh.117op
NMOC Find Report 3" 1
-------
Sample T
Inlet Tee
Vent
Programmable
Timer
Filter
Critical
Orifice
c
:iapsec
Timer
o
Pressure
Gauge
Latching
Solenoid
Valve
Auxiliary
Pump
Metal Bellows
PumpMB-151
Canister(s)
Figure 3-1. Style A Sampling System
for Collecting 3-hour Integrated Ambient Air Samples
Sample T •
Inlet 'ee -r
Vent
Programmable
Timer
c
:iapsec
Timer
O
Adjustable
Needle Valve
In-line
Pressure/Vac
Gauge
Rotameter
Latching
Solenoid
Valve
Auxiliary
Pump
Metal Bellows
Pump MB-41
u u
Canister(s)
Figure 3-2. Style B Sampling System
for Collecting 3-hour Integrated Ambient Air Samples
298-017-70/uh. 11 Top
NMOC final R*pert
3-2
-------
stainless steel probe was greater than eight feet, an auxiliary (by-pass) pump, as
shown in Figures 3-1 and 3-2, was used. The auxiliary pump ensures that the air
in the sample line is representative of the ambient air being sampled by pulling an
excess of sample air past in slipstream connection.
The critical orifice in the Style A sampler (Figure 3-1) was sized to maintain
a constant collection flow rate that allowed a 6-L stainless steel canister to be
taken from 0.5 mm Hg vacuum (initial pressure) to about 15 psig (final pressure) in
three hours. When duplicate samples were taken, the critical orifice used for single
sample collection was replaced with an orifice sized to accommodate two 6-L
canisters during the 3-hour sampling period.
For the Style B sampling system (Figure 3-2), the adjustable micro-metering
valve was used to set a collection flow rate as indicated on the rotameter that
allowed a 6-L stainless steel canister to be taken from the 0.5 mm Hg vacuum to
about 15 psig in three hours. For duplicate samples, the indicated flow rate was
doubled in order to accommodate two 6-L canisters during the sampling period.
The rotameter settings for single and duplicate samples were determined in the lab
using a bubble flow meter and were provided to the operators at installation.
3.1.2 Operation
3.1.2.1 Presampling - Style A System
The following instructions pertain to the sampling operation prior to
collection of the,field sample.
1. Verify timer program (see timer instructions). Set to MANUAL
position to leak check sampling system. Once the system passes the
leak check, turn timer to AUTO position.
2. With no canisters connected to the sampling system, turn the timer
switch to the MANUAL position.
298-017-70/c»h.117op
NMOC Rrwl fepwt 3"3
-------
3. Disconnect the sample inlet from the top of the orifice/filter assembly
mounted on the pump inlet. Connect the rotameter to the top of the
orifice/filter assembly. Tighten Swagelok® (1/4") fitting securely with
a wrench. Do not over-tighten.
4. Turn timer switch ON. Do not turn the power off and on rapidly.
Wait 20 seconds between cycles to prevent premature timer/solenoid
failure. The pump should run and the latching valve should open.
Verify that the rotameter reading is approximately the same (±15%)
as the reading obtained during installation as recommended on the
orifice tag. If the rotameter reading is not correct, see the
troubleshooting instructions.
5. Allow the pump to run for at least 20 seconds, then press the timer
OFF button.
6. Connect a cleaned, evacuated canister to the sampling system. If
duplicate samples are to be collected, remove the plug from the
second port of the tee and connect a second canister to the sampling
system. Remove the orifice assembly marked with an "S," denoting a
single orifice. Install the orifice assembly marked with a "D," denoting
a double orifice. Replace the filter holder on the "D" orifice. After
obtaining scheduled duplicate samples, replace the plug and the "S"
orifice assembly to return to single sample collection status.
7. With the pump off, open completely the valve on the canister (or on
one of the canisters if two are connected) and verify that no flow is
registered on the rotameter. If any flow is detected by the rotameter,
immediately close the canister valve and see the troubleshooting
instructions.
8. If no flow is observed, disconnect the rotameter and reconnect the
inlet sample line to the filter assembly. If two canisters are
connected, completely open the valve on the second canister.
9. Reverify that the canister valve(s) is (are) completely open and the
timer is properly set for sampling from 6 a.m. to 9 a.m. the next
weekday. Set timer to AUTO mode.
10. Reset the elapsed time counter.
298-017-70/c«h.t!7op
NMOC Firwl Report 3~4
-------
3.1.2.2 Presampling - Style B System
The following instructions pertain to the sampling operation prior to
collection of the field sample.
1. Verify timer program (see timer instructions). Set to MANUAL
position to leak check sampling system. Once the system passes the
leak check, turn timer to AUTO position.
2. With no canisters connected to the sampling system, turn the timer
switch to the MANUAL position.
3. Turn timer switch ON. Do not turn the power off and on rapidly.
Wait 20 seconds between cycles to prevent premature timer/ solenoid
failure. The pump should run and the latching valve should open
(audible click with 2 to 5 seconds delay). Verify that the rotameter
reading is approximately the same (±15%) as the reading obtained
during installation as recommended in the installation instructions. If
the duplicate samples are to be collected set the rotameter to the
duplicate flow rate. If the rotameter reading is not correct, see the
troubleshooting instructions.
5. Allow the pump to run for at least 20 seconds, then press the timer
OFF button.
6. Connect a cleaned, evacuated canister to the sampling system. If
duplicate samples are to be collected, remove the plug from the
second port of the tee and connect a second canister to the sampling
system.
7. With the pump off, open completely the valve on the canister (or on
one of the canisters if two are connected) and verify that a 29"
vacuum exists. Close the can and observe the vacuum gauge. If the
vacuum begins to drop see the troubleshooting instructions, a leak
probably exists.
8. If two canisters are connected, completely open the valve on the
second canister.
9. Reverify that the canister valve(s) is (are) completely open and the
timer is properly set for sampling from 6 a.m. to 9 a.m. the next
weekday. Set timer to AUTO mode.
10. Reset the elapsed time counter.
298-017-70/c«h.117ep _ .
NMOC Ftn«l R»port O~D
-------
3.1.2.3 Postsampling
The instructions that follow outline the NMOC postsampling operation
procedures in the field.
1. Close the canister valve(s) firmly.
2. Record the pressure reading(s) on the data sheet(s). Disconnect the
canister(s). If the pressure reading is not at least 11 psig, see the
troubleshooting instructions.
3. Fill in the required information on the NMOC SAMPLING FIELD DATA
FORM. PLEASE PRESS HARD AND WRITE WITH A BALLPOINT PEN;
YOU ARE MAKING THREE COPIES, (see Figure 3-3).
4. Verify elapsed time counter reading equals 3 hours.
5. Verify that the timer shows the correct time setting. If not, note that
fact on the sample form along with any information pertaining to the
possible cause. Reset the timer to the correct time, if necessary.
6. Verify that the canister valves are closed firmly. Do not over-tighten
them. Put the protective cap(s) on the valve(s) and prepare the
canister(s) for shipment to the Radian, RTP laboratory.
3.1.3 Troubleshooting Instructions
A list of troubleshooting instructions was given to each field site during the
site installation and operator training. Typical problems encountered with the field
sampling apparatus included: loose fittings, misprogrammed timer, or clogged
orifices. To minimize downtime, field site operators were encouraged to relay
sampling problems to the Radian laboratory daily by telephone. Most sampling
problems were addressed promptly through these telephone discussions.
298-017-70/e«h.117op
NMOC Find Report 3*6
-------
RADIAN
CORPORATION
NMOC SAMPLING FIELD DATA FORM
Site Code : SAROAD # : • •
Site Location : City: State:
Sample Collection Date : Sampling Period :
Operator : Elapsed Time :
Final Canister Pressure (psig) :
Sample Canister Number : Side:
Sample Duplicate for this Date : YesG NoD
If yes, Duplicate Canister Number :
NOx Analyzer Operating? YesD NoD
If yes, Average Reading (ppmv as NOx) :
Average Wind Speed : Average Wind Direction : _
Rotameter Indicated Flow Rate : Orifice Number :
Average Barometric Pressure (mm Hg or inches Hg) :
Ambient Temperature (°F) : Relative Humidity :
THC Model (if available) : Average THC: _
Sky/Weather Conditions :
Site Conditions/Remarks :.
Canister Number :
Initial Canister Vacuum :
Received By :
Date :
Sample Validity : 2
If Invalid, Reason :
-------
3.1.4 Sampler Performance for 1992
The NMOC sampler was modified in 1989 to improve performance. This
modification involved replacing the mechanical timer previously used with an
electronic version. The electronic timer improves sample integration. An elapsed
time meter was added to the sampler to verify sample collection duration. This
system was used as the Style A sampler during the 1992 program. The NMOC
sampling system was also modified for the 1992 season. The Style B system
eliminated the use of orifices and instead used an adjustable micro-metering valve
and in-line rotameter.
In addition to the modifications, all samplers and canisters were subjected to
a preseason QC check to ensure field performance. All orifices were checked
against the removable rotameter provided with each Style A sampling system, and
referenced to a primary standard (bubble flowmeter). For the Style B sampler, the
in-line rotameters were also calibrated against a primary standard (bubble
flowmeter). Prior to field installation, each sampler was operated in the laboratory
to establish an expected final sample pressure range. For the Style A samplers,
two single orifices and one double orifice were tested for each sampler kit.
Due to the preseason checks and modifications, the NMOC sampler
performance was improved for the 1992 sampling season. This assessment is
based on the consistency of the final sample pressures on a site-specific basis (see
Section 4.6). The sampler performance in terms of successful sample collection
(i.e., completeness) was comparable to previous years. Overall completeness from
all sites averaged 90.7 percent. The site-specific completeness ranged from
80.0% for MNY to 101.3% for LINY.
Invalidated samples were primarily due to operator error and equipment
malfunctions. Completeness can be improved at all sites through greater attention
to sampling procedure, and by ensuring that trained site personnel are available. A
298-017-70/c«h.117o|>
NMOC Find Report 3-8
-------
further improvement in completeness may be possible as site operators gain
familiarity with the electronic timer. Revised sampler operating instructions will
focus additional attention on timer programming and operation, and will include a
daily checklist to eliminate common operator errors.
A total of 114 invalidated/missing samples were recorded in the 1992
NMOC Monitoring Program (this included 62 samples for NMOC and 52 samples
for SNMOC). Appendix D lists the invalidated/missing samples in chronological
order, along with the reason for invalidation. Avoidable operator error accounts for
13% and equipment problems account for 73% of the invalidated samples.
Thirteen percent were missed sample collections for unknown reasons. The
remaining 1% reflects missed sample collections due to site inaccessibility.
3.1.5 Field Documentation
The field sample collection information was documented by the site operator
on pre-printed multiple part forms. Figure 3-3 is an example NMOC Sampling Field
Data Form. Each canister sent to the field was accompanied by this form. A copy
of the field data form was retained by the site operator for the site notebook.
Figure 3-4 is the Invalid Sample Form. This form was completed by the site
operator to document the reasons for a missed sample or an invalid field sample
collection.
3.2 NMOC Analysis
The NMQC analysis equipment and the analysis procedure are described in
detail in Appendix B. A brief description of the equipment and operating procedure
used in this study follows.
298-017-70/c«h.117op
NMOC Fin* Report 3-9
-------
CORPORATION
V-
NMOC INVALID SAMPLE FORM
Site Code : SAROAD # :
City:
State:.
Sample Collection Date:
Operator:
Sample Canister Number:
Sample Duplicate for this Date : Yes D No D
If Yes, Duplicate Canister Number:
Reason for Invalid or Missed Sample :.
Average NOx Analyzer Reading for this Collection Date :
Wind Speed : Wind Direction :
Rotameter Indicated Flow Rate :
Orifice Number:
Average Barometric Pressure (mm Hg or inches Hg):
Ambient Temperature (°F): Relative Humidity :
Sky/Weather Conditions:
Received By:
Date:
Action Taken:
Resolution:
Field Invalid or In-house Invalid
Figure 3-4. NMOC Invalid Sample Form
298-017-70/c>h. 11 7op
NMOC Find R«port
3-10
-------
3.2.1 Instrumentation
Two gas chromatographs were used by Radian. Each was a dual-channel
Hewlett-Packard Model 5880 (HP-5880) using flame ionization detection (FID).
NMOC instrument Channels A and B refer to the two FIDs on one HP-5880 unit,
and Channels C and D refer to the two FIDs on the other HP-5880 unit. These
chromatographs were configured for PDFID analysis, consistent with the reference
system (EPA-QAD instrument), described in Appendix B.
3.2.2 Hewlett-Packard, Model 5880, Gas Chromatograph Operating Conditions
The sample trap consisted of 30 cm of 1/8-inch outside diameter (o.d.)
stainless steel tubing, packed with 60/80 mesh glass beads.
Three support gases were used for PDFID analysis: helium, hydrogen, and
hydrocarbon-free air.
The operating temperatures of the HP-5880 were controlled for the PDFID
analysis. The FID and auxiliary area were controlled at 250°C and 90°C,
respectively. The oven temperature was programmed from 30°C to 90°C at a
rate of 30°C per minute for 4 minutes, holding at 90°C for the fourth minute.
Oven and integration parameters were controlled by Hewlett-Packard HP Level 4
programmable integrators. A complete listing of the integrator programming
sequence for NMOC measurement by the PDFID method is given in Appendix E.
3.2.3 NMOC Analytical Technique
The modified HP-5880, dual-FID chromatographs were operated during the
1992 study according to a project specific Standard Operating Procedure (SOP).
Further description is given below to help explain the analytical apparatus and
procedure.
288-017-70/c«h.117op O 1 •»
NMOC Find Report O" I I
-------
The six-port valve shown in Figure 3-5 was installed in the auxiliary heated
zone of the HP-5880 and was pneumatically actuated using chromatographic valve
control signals to apply either compressed air or vacuum to the valve. The sample
trap itself was located inside the chromatograph's column oven. A section of
1/8-inch o.d. stainless steel tubing was sized to a length that prevented pressure
surges from extinguishing the FID flame. This length was determined
experimentally and differs for each chromatograph and for each channel within
chromatographs. Although the length of tubing effectively substitutes for the
pressure restriction provided by a column, it does not perform the separation
function of a column.
During sample trapping, an excess of sample gas flow from the canister was
maintained to ensure back diffusion of room air into the trap did not occur. A
pressure change of 80 mm Hg in a 1.7-L vacuum reservoir was used to gauge and
control the volume of sample gas cryogenically trapped. After the trapping cycle
was complete, the HP-5880 program shown in Appendix B was initiated. When
the program triggered a horn emitting an audible beep, the cryogen was removed
from the trap and the oven door was closed. The chromatographic program then
assumed control of raising the oven temperature, at the preset rate, to release the
trapped sample to the FID, and set up the integration parameters.
3.3 Canister Cleanup System
A cleanup cycle consisted of first pulling a vacuum of 0.5 mm Hg absolute
pressure in the canister, followed by pressurizing the canister to 20 psig with
cleaned, dried afr that had been humidified. This cycle was repeated two more
times during the canister cleanup procedure. The cleanness of the canister was
qualified by PDFID analysis. Upon meeting the cleanness criterion of 20 ppbC, the
canister was evacuated to 0.5 mm Hg absolute pressure a fourth time, in
preparation for shipment to the sjte.
298-017-70/c«h.117op _
NMOC Find fUport 3" I 2
-------
«
s?
1?
2 •**
i. o
ll
oo
_i
00
Absolute
Pressure Gauge
Vacuum
Valve
Vacuum Pump
Canister Valve
Low Pressure
Regulator
Sample
Metering Valve
Vent
I
Sample Injection
By-pass
Rotameter
He
Glass Beads
FID
Cryogenic
Sample Trap
Air
Hydrogen
Liquid Argon
Sample Canister
a.
in
Figure 3-5. NMOC analytical equipment.
-------
3.3.1 Canister Cleanup Equipment
A canister cleanup system was developed and used to prepare sample
canisters for reuse after analysis. A diagram of the system is shown in Figure 3-6.
An oil-free compressor with a 12-gallon reservoir provided source air for the
system. The oil-free compressor was chosen to minimize hydrocarbon
contamination. A coalescing filter provided water mist and paniculate matter
removal down to a particle size of one micron. Permeation dryers removed water
vapor from the compressor source air. These permeation dryers were followed by
moisture indicators to show detectable moisture in the air leaving the dryer. The
moisture indicators never showed any water, indicating that the permeation dryers
effectively removed all of the water vapor.
Air was then passed through catalytic oxidizers to destroy residual
hydrocarbons. The oxidizers were followed by in-line filters for secondary
particulate matter removal, and by a cryogenic trap to condense any water formed
in the catalytic oxidizers and any organic compound not destroyed by the catalytic
oxidizer. A single-stage regulator controlled the final air pressure in the canisters
and a metering valve was used to control the flow rate at which the canisters were
filled during each cleanup cycle. The flow was indicated by a rotameter installed in
the clean, dried air line. There was a shutoff valve between the rotameters and
the humidifier system. The humidifier system consisted of a SUMMA® treated 6-L
canister partially filled with high performance liquid chromatographic-grade (HPLC-
grade) water. One flowmeter and flow-control valve routed the cleaned, dried air
into the 6-L canister where it was bubbled through the HPLC-grade water. A
second flow-control valve and flowmeter allowed air to bypass the
canister/bubbler. By setting the flow-control valves separately, the downstream
relative humidity was regulated. Since the 1990 study, 80% relative humidity has
been used for canister cleaning. There was another shutoff valve between the
humidifier and the 8-port manifold where the canisters were connected for
cleanup.
298-017-70/c«h.117op
NMOC Firwl R«pan 3-14
-------
J2
*• o
fi
«
OJ
01
Coalescing
Filter
Permapure Dryers
Filter
Assembly
Air Compressor
Pressure
Regulator
Air Flow
Rotametere
Wet Rotameter
Dry Rotameter
Air Bypass
Air Cryotrap
Purge Valves
Air
Cryotrap
Absolute
Pressure
Gauge
O
Vacuum Source
Selector Valve
&B|
C
-C*3—
Catalytic
Oxidizers
Cryotrap Purge Valve
Vacuum
Cryotrap
Tu
rbomolecular
Pump
^X-BJ
*A * '
Roughing
Pump
DDDDODDD
DDODDDDD
8-Port
Manifold
To Certification System
A. Manifold Air Pressure Valve
B. Manifold Vacuum Valve
C. Manifold Pressure Release Valve
D. Manifold Port for Connecting Canisters to be Cleaned
Figure 3-6. Canister Cleanup Apparatus
-------
The vacuum system consisted of a Precision Model DD-310 turfoomoleciJter
vacuum pump, a cryogenic trap, an absolute pressure gauge, and a bellows va^Ve
connected as shown in Figure 3-6. The cryogenic trap prevented the sample
canisters from being contaminated by back diffusion of hydrocarbons from the
vacuum pump into the cleanup system. The bellows valves enabled isolation oft
the vacuum pump from the system without shutting off the vacuum pump.
3.3.2 Canister Cleanup Procedures
After NMOC analyses were completed, a bank of eight canisters was
connected to each manifold shown in Figure 3-6. The valve on each canister was
opened, with the shutoff valves and the bellows valves closed. The vacuum pnjmp
was started and one of the bellows valves was opened, drawing a vacuum on she
canisters connected to the corresponding manifold. After reaching 0.5 mm Hg
absolute pressure as indicated by the absolute pressure gauge, the vacuum was
maintained for 30 minutes on the eight canisters connected to the manifold, fine
bellows valve was then closed and the cleaned, dried air that had been humidified
was introduced into the evacuated canisters until the pressure reached 20 psig.
The canisters were filled from the clean air system at the rate of 7.0 L/min. Tims
flow rate was recommended by the manufacturer as the highest flow rate at which
the catalytic oxidizers could handle elimination of hydrocarbons with a minimum
99.7% efficiency.
When the first manifold had completed the evacuation phase and was feeing
pressurized, the second manifold was then subjected to vacuum by opening its
bellows valve. After 30 minutes, the second manifold was isolated from the
vacuum and connected to the clean, dried air that had been humidified. The fftrst
manifold of canisters was then taken through a second cycle of evacuation ainrd
pressurization. Each manifold bank of eight canisters was subjected; to three
cleanup cycles.
298-017-70/c«h.117op
NMOC Find R«pact 3- 1 6
-------
During the third cleanup cycle, the canisters were pressurized to 20 psig
with clean, dried air that had been humidified. For each bank of eight canisters,
the canister having the highest pre-cleanup NMOC concentration was selected for
NMOC analysis to determine potential hydrocarbon residues. If the analysis
measured less than 0.020 ppmC, then the eight canisters on the manifold were
considered to be clean. Finally the canisters were again evacuated to 0.5 mm Hg
pressure absolute; they were capped under vacuum and then packed in the
containers used for shipping to the field sites.
298-017-70/c«h. 117op
NMOC fin* Report 3-17
-------
4.0 NMOC QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES
This section details the steps taken in the 1992 NMOC Monitoring Program
to ensure that the data taken were of known quality and were well documented.
Analysis results are given in terms of precision, completeness, and accuracy.
Repeated analyses provided analytical precision. Duplicate samples provided
sampling and analysis precision. Completeness was measured in terms of percent
•
of scheduled samples that resulted in valid samples, beginning with the first valid
site-specific sample collected and ending with the last scheduled site-specific
sample. Accuracy of NMOC concentrations was reported as percent bias of audit
samples of or referenced to an NIST SRM propane by a U.S. EPA contractor.
4.1 Introduction and Conclusions
Completeness for the 1992 NMOC study was 90.72 percent. This value
indicates that good communication and planning were maintained between the site
personnel and the laboratory personnel. Precision for the 1992 NMOC study
averaged 21.61% absolute percent difference of repeated analysis and compared
to 14.2% for the 1991 study, 7.6% for the 1990 study, 14.2% for the 1989
study, 10.1% for the 1988 study, 9.61% for the 1987 study, 9.01% for the 1986
study, and 10% for the 1985 study.
Bias of the Radian channels for the 1992 audit results ranged from -3.4% to
+ 24.0 percent. In 1991 the accuracy determined from the external audit samples
ranged from +1.9% to +8.9%, from -3.2% to +6.2% in 1990, from +1.3% to
+ 4.5% in 1989-; from 1.3% to 4.5% in 1988, and. from -2.9% to -0.06% in
1987. In 1986 bias ranged from -0.52% to -3.3% and in 1985 bias ranged from
-2.3% to +5.2 percent.
An initial multipoint performance evaluation was conducted using the
propane responses for each of the four analytical measurement channels. Daily
288-017-70/e«h. 117 op
NMOC Find R«port A- 1
-------
calibration checks and in-house propane QC samples monitored instrument and
operator performance. Duplicate site samples showed good overall sampling and
analysis precision.
Data validation was performed on 10% of the 1992 NMOC data base, as
described later in this section.
Calibration and drift determinations showed that the instrumentation was
stable and that the calibration procedures were consistent. Canister cleanup
results showed there was negligible carryover from one sample to the next. In-
house QC samples of propane demonstrated that the analytical systems were in
control.
Precision, accuracy, and completeness results for 1992 are comparable to
results from previous years and indicate that the data quality are good and meet
the data quality objectives of the QAPP2.
4.2 Calibration and instrument Performance
Initial performance assessments for NMOC were conducted with propane.
Daily calibrations were checked with about 3.0 ppmC propane for the NMOC
measurements.
4.2.1 Performance Assessment
An initial multipoint performance evaluation was conducted on each
analytical measurement channel, using propane referenced to an NIST propane
CRM No. 1666B. The concentration of the propane used in the performance
assessment ranged from 2.965 to 19.073 ppmC. The "zero" value was
determined using cleaned, dried air from the canister cleanup system described in
Section 3.0. Table 4-1 summarizes the performance assessments below. The FID
298-017-70/e«h.l17op
NMOC fm* fUpcrt 4-2
-------
Table 4-1
1992 Performance Assessment Summary, Radian Channels
Ma*
•'•• ': Channel '"•.••.'•.
A
B
C
D
Cases
20
20
20
20
linear Regression Results'
Intercept
321.317
418.233
235.217
901.824
Slope
3593.725
3594.239
3569.628
3434.886
Coefficient
of Correlation
0.999905
0.999671
0.999964
0.998908
•Figures 4-1 through 4-4 plot propane area counts vs. concentration in ppmC.
298-017-70/c«h.l17op
NMOC Fin* Ftoport
4-3
-------
responses for multiple concentration propane standards were linear, having
coefficients of correlation from 0.998908 to 0.999964. Figures 4-1 through 4-4
show plots of the NMOC performance results for Radian Channels A, B, C, and D,
respectively. The plots show the regression line.
4.2.2 Calibration Zero, Span, and Drift
Radian PDFID channels were tested daily for zero and span. Zero readings
were measured using cleaned, dried air. The zero air was supplied by the same
system that cleans air for the canister cleanup system. Span readings used a
mixture of about 3.0 ppmC propane in dry air. Calibration factors were calculated
from the span and zero readings for each measurement channel. Initial calibration
factors were determined in the morning before any site samples were analyzed and
final calibration factors were determined in the afternoon on randomly selected
days after all the ambient air samples had been analyzed. Percent calibration
factor drifts were determined based on the initial calibration factor. The data for
zeros, calibration factors, and calibration factor drifts are given in Appendix F for
each Radian channel and each calendar day of the analysis season. Figures 4-5
through 4-8 show plots for daily calibration zeros for Radian Channels A, B, C, and
D. Figures 4-9 through 4-12 show the daily calibration span data as a function of
the 1992 Julian date. The figures show an adjustment that was made to the
calibration factor data. This adjustment is explained in Section 4.2.3.
Figures 4-13 through 4-16 show the daily percent drift data for Radian Channels A,
B, C, and D. Inspection of the percent drift figures shows that the maximum
percent drift was 2.17. The average absolute percent drift ranged from 0.292%
for Channel D to 0.366% for Channel C.
298O17-70/c§h.117op - .
NMOC Find R«port 4-4
-------
o 5?
o 5
Four-Point Calibration -1992
Channel A
70.0
60.0
en
D
O
O
(0
(D "D
CO CO
Q. CO
O 3
^— ^5
Q- ^i
£
CD
CO
c
o
Q.
CO
CD
DC
50.0
40.0
30.0
20.0
10.0
0.0^
0
T~
2
~r
4
~r
6
T~
8
10 12 14
Propane Concentration, ppmC
16
18
20
Figure 4-1. NMOC performance results, Channel A.
-------
l!
• o
fl
-pk
CD
O
O
CO
2
< ^
- CO
CD T3
C C
CO CO
Q. CO
O 3
CL _c
£
CD
CO
c
o
Q.
CO
Four-Point Calibration -1992
Channel B
70.0
60.0
50.0
40.0
30.0
20.0
10.0
0.0
0
~r
6
8 10 12 14
Propane Concentration, ppmC
—i—
16
18
20
-------
is
3 -i
\ •*
*- o
CO
£
D
O
O
(0
CD
- CO
CD ~O
OJ CO
Q. CO
O 3
*— O
Q- _c
h_
O
•»—
CD
CO
C
o
CL
CO
CD
or
Four-Point Calibration -1992
Channel C
70.0
60.0
50.0
40.0
30.0
20.0
10.0
0.0
0
T
6
T~
8
10 12 14
Propane Concentration, ppmC
—\—
16
18
20
Figure 4-3. NMOC performance results, Channel C.
-------
Four-Point Calibration -1992
Channel D
70.0
c
D
O
O
CO
CD
60.0
50.0
_ CO
o -o 40.0
CO CO
Q. CO
0.
k_
O
«*—
CD
CO
C
o
Q.
CO
CD
DC
30.0
20.0
10.0
0
T~
2
T~
4
T
6
—i—
10
—i—
12
8 10 12 14
Propane Concentration, ppmC
16
18
20
-------
O
o 2
31 ^i
2 ^
*- o
0.03-
DAILY CALIBRATION - ZERO
Radian Channel A
0.02-
0.01
o
*• 9-
(b Q-
O
O
0.00-
-0.01
-0.02-
-0.03-
100
150
200 250
Julian Date, 1992
300
350
Figure 4-5. Daily calibration zero, Channel A
-------
x S
8?
0.03
-0.03
100
DAILY CALIBRATION - ZERO
Radian Channel B
150
200 250
Julian Date, 1992
300
350
-------
a -J
is
0.03-
0.02-
DAILY CALIBRATION - ZERO
Radian Channel C
0.01
o
Q.
Q.
o
O
0.00-
******
-0.01
-0.02-
-0.03-
100
150
200 250
Julian Date, 1992
300
350
Figure 4-7. Daily Calibration zero, Channel C.
-------
0.03-
0.02-
O.Q1
o
-
Q.
- 0.00-
-0.01
-0.02-
-0.03
100
DAILY CALIBRATION - ZERO
Radian Channel D
150
200 250
Julian Date, 1992
300
350
-------
IS
•si
*
0.00050
0.00045-
^ 0.00040
c
13
o
O
a, 0.00035
o>
<
O 0.00030-
Q.
Q.
0.00025-
0.00020-
0.00015
0.00010
100
DAILY CALIBRATION - SPAN
Radian Channel A
Adjusted span
A-
150
200 250
Julian Date, 1992
300
350
Figure 4-9. Daily calibration span, Channel A.
-------
«
I?
o 2
0.00050
0.00015
0.00010
100
DAILY CALIBRATION - SPAN
Radian Channel B
150
200 250
Julian Date, 1992
300
350
-------
Z M
2 ,j,
O £
31 *J
o
3* o"
I *
«
0.0005
0.0005
^ 0.0004-
c
0.0004-
03
<
Q 0.0003
Q.
Q.
^ 0.0003
O
^
2 0.0002
0.0002
0.0001
100
DAILY CALIBRATION - SPAN
Radian Channel C
Adjusted Span
-A-
150
200 250
Julian Date, 1991
300
350
Figure 4-11. Daily calibration span, Channel C.
-------
o 2
0.00050
0.00045
0.00040
o
O
0)
<
0.00035
05 O 0.00030
o.
o.
O
O
- 0.00025
0.00020
0.00015
0.00010
100
DAILY CALIBRATION - SPAN
Radian Channel D
150
Adjusted Span
A-
'^^'T^WVfPP^'
200 250
Julian Date, 1992
300
350
-------
r <0
Is
30.00
20.00
10.00
£
£
e
0>
Q_
0.00
-10.00
-20.00
-30.00
100
DAILY CALIBRATION - PERCENT DRIFT
Radian Channel A
°*^ "*%(&f'*#
*
150
200 250
Julian Date, 1992
300
350
Figure 4-13. Daily calibration percent drift, Channel A.
-------
4.2.3 Calibration Drift
Summary calibration factor drift data are given in Table 4-2. The table
presents calibration factor drift, percent calibration factor drift, and absolute
percent calibration factor drift. Calibration factors were calculated from an analysis
of a propane-air mixture whose concentration was known and was referenced by
the EPA-QAD to an NIST propane CRM No. 1666B reference standard as follows:
calibration _ concentration of propane standard (ppm) x 3 ppmC/ppm
factor (propane standard response (area counts) - zero response (area counts))
Daily calibration factors ranged from 0.000263 ppmC/area count to
0.000288 ppmC/area count, depending on the channel. Maxima, minima, and
mean values are given in Table 4-2 for calibration factor drift and percent
calibration factor drift. If drift and percent drift are random variables and normally
distributed, the mean values would be expected to be zero. The means shown in
Table 4-2 for the drift and percent drift are approximately zero, showing little bias
overall, or for any channel. The overall mean values shown in Table 4-2 were
weighted according to the number of calibration drift data for each channel. The
last two columns of Table 4-2 show the means and standard deviations of the
absolute percent calibration factor drifts. The fact that the standard deviations are
the same order of magnitude as the means indicates that the mean calibration
factor drifts are not significantly different from zero.
Calibration factor drift was defined as final calibration factor for the day,
minus initial calibration factor. Percent calibration factor drift was defined as the
calibration factor drift divided by the initial calibration factor, expressed as a
percentage. The absolute percent calibration factor drift is a measure of the
calibration drift variability and averaged 0.328% overall. The mean absolute
percent calibration drift ranged from 0.292% for Radian Channel D to 0.366% for
Radian Channel C.
298-017-70/c«h.l17op
NMOC Fin* R*port 4-2 1
-------
Table 4-2
Summary NMOC Calibration Factor Drift Results
Radian
Channel
A
i
B
C
D
Overall
t -
Cases
85
81
96
96
358
Calibration Factor Drift
ppmC/Area Count x 10*
Mfrt
-8.6
-14.1
-6.7
-3.8
-14.1
Mean
-0.5
-0.5
-0.8
-0.5
-0.6
Max
6.0
3.1
4.4
3.7
6.0
Percent
Factor Drift
Win
-3.119
-5.114
-2.498
-1.738
-5.114
Mean
-0.192
-0.192
-0.312
-0.209
-0.229
Max
2.169
1.134
1.591
1.333
2.169
Absolute JP0rc0nt
Factor Drift
Mean
0.331
0.324
0.366
0.292
0.328
Standard
Deviation
0.629
0.790
0.571
0.448
0.612
ro
10
oofl-T>1 7-7O/r*h 1 1 700
-------
Upon review of the calibration data, Radian identified a problem with the
propane calibration standard (#60220) that was used from 31 July to 24 August
1992. Daily calibration factors are generated with a propane standard (typically
3.0 ppmC). Because the calibration factors are calculated as ppmC/Area Counts,
they generally do not vary greatly from day-to-day or from calibration standard to
calibration standard provided the propane concentration is approximately the same.
During the past 7 years there has been very little fluctuation in the daily calibration
factors used to quantitate sample concentrations. The calibration factors that
were generated using the propane standard contained in Cylinder #60220 (used
from 31 July to 24 August 1992) dropped significantly in comparison to the
calibration factors generated before and after its use. Cylinder #60220 was
prepared by the same vendor as the other cylinders used and was supposed to be
at the same concentration level. Lower response factors were observed on the
first day of the new cylinder's use and continued through the last day of use. The
calibration factors generated after its use (from a new and different cylinder)
returned to the value of calibration factors generated prior to 31 July 1992 (also
from a different cylinder).
The NMOC program routinely prepares and analyzes in-house QC samples to
check the bias of the instruments. The samples are generated as a mixture of air
and propane. The air is prepared by Radian and certified clean. A propane
standard different from the calibration standard is used for the preparation of the
QC check samples. The propane standard used to prepare QC samples is
approximately 18.0 ppmC. During the period from 31 July to 24 August 1992,
ten in-house QC samples were prepared and analyzed. The difference (measured-
calculated) and percent difference ((measured- calculated)/calculated * 100) of
each of those QC samples showed a significant change in response toward the
negative direction (i.e., the measured concentration is less than the calculated
concentration) using the new calibration standard. This data supports the
conclusion that the calibration factors generated with the propane in Cylinder
#60220 were lower than expected.
29e-017-70/c«h.117o9
NMOC Find Report 4"23
-------
Due to this apparent problem with the propane calibration standard
certification for Cylinder #80220, the calibration factors for the period from
31 July to 24 August have been recalculated. The average calibration factors prior
to 31 July and after 24 August were:
Before
0.000275
0.000278
0.000272
0.000274
After
0.000274
0.000276
0.000270
0.000272
During
0.000207
0.000209
0.000205
0.000206
Channel
A
B
C
D
As is indicated, there is very little change in the calibration factors before and after
(a maximum of 1 % from the information above). New calibration factors for each
of the four channels have been calculated as the average of the calibration factors
before and after the period in question. The calculations indicate that the new
calibration factors used from 31 July to 24 August will be:
• 0.000275 - Channel A;
• 0.000277 - Channel B;
• 0.000271 - Channel C; and
• 0.000273 - Channel D.
All NMOC Program PDFID analyses (site samples and QC check samples) that were
performed from 31 July to 24 August have been recalculated using the above
calibration factors.
4.3 In-House QC Samples
In-house quality control samples were prepared by Radian personnel. Local
ambient sample results are presented and discussed in Section 4.4.2. In-house
quality control samples were prepared by diluting dry propane with cleaned, dried
air using calibrated flowmeters. The propane used for the in-house quality control
samples was certified against an NIST Reference Standard. The concentration of
2»8-017-70/c«h.117op
NMOC final R«port 4 - ,
-------
the in-house standard ranged from about 0.000 ppmC to 1.411 ppmC, but was set
to average near the concentration levels that were being analyzed. The analyst did
not know the concentration of the in-house standard prior to analysis.
The daily in-house QC data for each Radian channel are given in Appendix G,
and include:
• Calendar date analyzed;
• Julian date for 1992;
• Radian ID Number;
• Calculated NMOC concentration in ppmC;
• Measured NMOC concentration in ppmC;
• Bias (measured NMOC-calculated NMOC); and
• % Bias (Bias * 100 / calculated NMOC).
Measured versus calculated NMOC concentrations in Figures 4-17 through
4-20 show excellent agreement. Table 4-3 summarizes the results of the linear
regressions for the Radian in-house quality control data, showing regression
intercepts near zero, and slopes and coefficients of correlation all near 1.0.
Tables 4-4 and 4-5 give statistics for in-house quality control measurements.
DIFF is the ppmC difference between the measured and the calculated NMOC
concentrations, and PCDIFF is the percentage of the difference relative to the
calculated value. Both DIFF and PCDIFF may be considered to be bias terms,
assuming that the calculated value is the correct NMOC concentration for the in-
house QC sampJe. Overall, PCDIFF shows a mean bias of +2.85%, and ranges
from +1.05% for Channel D to +5.20% for Channel B. ADIFF and APCDIFF,
absolute values of DiFF and PCDIFF, respectively, were used as measures of
precision. The absolute percent difference ranged from 2.64% for Channel C to
5.30% for Channel B and averaged 3.85 percent. These figures show excellent
agreement and consistency for the in-house quality control data and include
2»B-017-70/c«h.117op A tc
NMOC Find Report A- 2 5
-------
Z M
*S
O A
O °
3> -J
?
* §
« S
O
o
0.20
0.00J
0.00
In-house Propane QC Results
Channel A
0.20
0.40 0.60 0.80 1.00 1.20
Calculated NMOC Concentration, ppmC
1.40
1.60
-------
o 2
3! -J
is
f I
-•j
8
1.60
1.40
O
Q.
0- 1.20
I
S 1.00
c
-------
U
-------
7 ID
Si
II
O
O
1.60
1
o
Q.
CL 1
c"
O
!••
Q>
f- o
rv) C
<° ,9 o.
.40
.20
00
80
0.60
TJ
2
3 0.40
CO
(D
0.20
O.OO^f
0.00
In-house Propane QC Results
Channel D
0.20 0.40 0.60 0.80 1.00 1.20
Calculated NMOC Concentration, ppmC
Figure 4-20. In-house quality control results, Channel D.
1.40
1.60
-------
Table 4-3
Linear Regression Parameters for In-House Quality Control Data
Radian
Channel
A
B
C
D
Cases
21
17
22
22
Intercept
0.023610
0.010933
0.011661
0.017274
Sfopa
1.01588
1 .04250
1 .00067
0.98892
Coefficient
of Correlation
0.983291
0.989858
0.995431
0.990747
298-017-70/c«*i
NMOC Find A*po
4-30
-------
Table 4-4
In-House Quality Control Statistics, by Radian Channel
VwiabJM
Channel
A
B
C
D
Statistic*
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
Cases
Minimum
Maximum
Mean
Std. Dev.
Std. Error
Skewness
Kurtosis
OfiFP
21
-0.031000
0.223000
0.037190
0.053035
0.011573
2.275026
7.094455
17
-0.005000
0.203000
0.046000
0.045489
0.011033
2.781125
9.502701
22
-0.019000
0.083000
0.012227
0.026403
0.005629
1.137660
1.142899
22
-0.029000
0.123000
0.007864
0.037386
0.007971
1.720565
3.262660
PCD1FF*
20
-2.197000
20.706000
4.317250
5.415677
1.210982
1.526859
3.146327
16
-0.824000
18.849000
5.195188
4.645217
1.161304
1.875253
4.400949
21
-2.832000
8.716000
1 .479905
3.297612
0.719598
0.952545
0.286723
21
-3.121000
11.421000
1.051571
4.334670
0.945903
1.429178
1.143788
ADIFP
21
0.005000
0.223000
0.041762
0.049332
0.010765
2.730435
9.016235
17
0.005000
0.203000
0.046588
0.044848
0.010877
2.907450
9.984509
22
0.003000
0.083000
0.021227
0.019537
0.004165
2.058736
4.176068
22
0.003000
0.123000
0.025409
0.028039
0.005978
2.382495
6.546126
ApCOtFr
20
0.745000
20.706000
4.801250
4.968292
1.110944
1.925201
4.459474
16
0.824000
18.849000
5.298188
4.519421
1.129855
2.069150
4.864647
21
0.336000
8.716000
2.635143
2.425426
0.529271
1 .688759
1.862462
21
0.345000
11.421000
3.040429
3.200631
0.698435
1.841137
2.447298
•DIFF
"PCDIFF
CADIFF
dAPCDIFF
Measured NMOC concentration - Calculated NMOC concentration,
ppmC.
DIFF/calculated NMOC concentration x 100.
Absolute value of DIFF.
Absolute value of PCDIFF.
298-017-70/c«h.117op
NMOC Fin* Report
4-31
-------
Table 4-5
Overall In-House Quality Control Statistics
^ V: -Vjyjfi^^
Cases
Minimum
Maximum
Mean
Standard Deviation
Standard Error
Skewness
Kurtosis
82
-0.031000
0.223000
0.024451
0.043603
0.004815
2.185725
7.246736
78
-3.121000
20.706000
2.854218
4.716095
0.533993
1.425603
2.717929
82
0.003000
0.223000
0.032866
0.037589
0.004151
3.078324
1 1 .957000
78
0.336000
20.706000
3.845936
3.938349
0.445930
2.148632
5.525017
'DIFF = Measured NMOC concentration - Calculated NMOC concentration,
ppmC.
bPCDIFF = DIFF/calculated NMOC concentration x 100.
CADIFF = Absolute value of DIFF.
dAPCDIFF = Absolute value of PCDIFF.
288-017-70/c«h.117op
NMOC Firwl Report
4-32
-------
variability not only in the instrumental analysis but also in the apparatus and
method used to generate the QC samples.
4.4 Repeated Analyses
Replicate (or repeated) analyses results are listed in Table 4-6. Repeated
analyses from the contents of a canister are used to estimate analytical precision.
The first analysis is performed at the Radian laboratory on the day the canister is
received from the sample site, and is designated by an I. The second analysis from
the canister, designated by an R in the sample identification (ID) number (See
Table 4-6), was performed at least 24 hours after the first analysis. This
procedure was followed to ensure that sufficient time had elapsed between
removal of an aliquot for analysis to allow the canister contents to equilibrate with
the solid surfaces and to allow any concentration gradients within the canister to
disperse.
Sample number; site code; date sampled; sample ID number; measured
concentrations for injections 1 and 2; mean NMOC concentration; Radian
instrument channel; canister mean; difference between replicate analyses; percent
difference between replicate analyses; and absolute percent difference are given in
Table 4-6. The mean concentration in Column 7, in parts per million carbon by
volume (ppmC), is the arithmetic average of the NMOC concentrations for the two
analyses shown in Columns 5 and 6, headed "Inj 1 and Inj 2." Column 8, labeled
"Canister Mean" is the concentration for each sample number and is the average of
the mean concentrations for each analysis.
298-017-70/c>h.117op
NMOC Find Rwort 4-33
-------
Table 4-6. Replicate Samples for the 1992 NMOC Program
R1NC 01-JUI-92 183 1080 I 0.069' 0.066 0.068 0.087 0.038 43.678 43.678
R1NC 01-JUI-92 183 1080 R 0.095 0.118 0.106
MNY
MNY
NWNJ
NWNJ
WSNC
WSNC
UNY
LINY
S3UT
S3UT
LINY
UNY
NWNJ
NWNJ
PLNJ
PLNJ
MNY
MNY
MNY
MNY
OI-Jul-92
01-Jul-92
30-Jun-92
30-Jun-92
07-JUI-92
07-Jul-92
OS-Jul-92
08-JUI-92
10-JUI-92
10-JUI-92
13-JUI-92
13-JUI-92
14-Jul-92
14-JUI-92
15-JUI-92
15-JUI-92
14-Jul-92
14-Jul-92
17-JUI-92
17-JUI-92
183
183
182
182
189
189
190
190
192
192
195
195
196
196
197
197
196
196
199
199
1110
1110
1121
1121
1133
1133
1166
1166
1201
1201
1207
1207
1255
1255
1275
1275
1304
1304
1322
1322
I
R
I
R
I
R
I
R
I
R
I
R
I
R
I
R
I
R
I
R
0.610
0.652
0.488
0.481
0.104
0.104
0.400
0.592
0.728
0.621
0.204
0.281
0.781
0.835
0.503
0.684
0.305
0.258
0.159
0.148
0.595
0.641
0.497
0.493
0.125
0.125
0.406
0.586
0.713
0.640
0.206
0.287
0.793
0.810
0.523
0.693
0.326
0.256
0.164
' 0.159
0.602
0.647
0.492
0.486
0.115
0.115
0.403
0.589
0.720
0.630
0.205
0.284
0.787
0.823
0.513
0.688
0.316
0.257
0.162
0.154
0.625
0.490
0.115
0.676
0.245
0.805
0.601
0.045
7.206
-0.006 -1.227
0.000
0.000
0.036
4.472
0.158 -0.008 -5.063
7.206
1.227
0.000
0.496 0.186 37.500 37.500
-0.090 -13.333 13.333
0.079 32.311 32.311
4.472
0.175 29.142 29.142
0.286 -0.059 -20.593 20.593
5.063
298-017-70/Cih.117op
NMOC Final R*wt
-------
Is
II
T) TJ
n
it
to ro
z z
0 0
8 8
> i.
CO (0
o o
co co
o> -*-* roro
ro ro
8 8
en en
8 8
ro to
O> O)
—A «t
•ft. A
en
en
co
en en
g §
ro to
S
CO CO
±
3D
P P
ro co
0 0
P P
8"1 ^ 01
O -s|
P P
in in
ro oo
p p
ro o
en
CO
P P
co co
Sen
ro
P P
2 i
p P
£ en
(O CO
to
P P
in co
ro cp
co o
0>
2
co
8
ro
to
at
en
8
§
CO
co
1
P
to
8
ro
tn
en
co
ro
O)
0>
8
o
en
8
co
-------
Table 4-6. (Continued)
WSNC 06-Aug-92 219 1670 I 0.066 0.062 0.064 0.087 0.045 52.023 52.023
WSNC 06-Aug-92 219 1670 R 0.110 0.108 0.109
MNY 06-Aug-92 219 1712 I 0.554 0.570 0.562 0.572 0.019 3.325 3.325
MNY 06-Aug-92 219 1712 R 0.595 0.567 0.581
S2UT 06-Aug-92
S2UT 06-Aug-92
219 1717 I 0.566 0.566 0.566 0.568 0.004 0.704 0.704
219 1717 R 0.568 0.573 0.570
UNY 11-Aug-92 224 1760 I 0.249 0.250 0.250 0.267 0.034 12.734 12.734
LINY 11-Aug-92 224 1760 R 0.276 0.291 0.284
S3UT 12-Aug-92
S3UT 12-Aug-92
225 1781 I 0.273 0.270 0.271 0.273
225 1781 R 0.276 0.272 0.274
0.003
1.101
1.101
UNY 13-Aug-92
UNY 13-Aug-92
226 1801 I 0.168 0.142 0.155 0.158
226 1801 R 0.157 0.164 0.161
0.006
3.797 3.797
MNY 14-Aug-92
MNY 14-Aug-92
NWNJ 14-Aug-92
NWNJ 14-Aug-92
S3UT 18-Aug-92
S3UT 18-Aug-92
R1NC 17-Aug-92
R1NC 17-Aug-92
MNY
MNY
20-Aug-92
20-Aug-92
227 1837 I 0.333 0.342 0.338 0.268 -0.140 -52.239 52.239
227 1837 R 0.195 0.201 0.198
227 1854 I 0.230 0.257 0.244 0.311 0.135 43.339 43.339
227 1854 R 0.371 0.387 0.379
231 1886 I 0.611 0.640 0.625 0.625 -0.001 -0.160 0.160
231 1886 R 0.636 0.611 0.624
230 1916 I 0.093 0.110 0.101 0.157 0.112 71.338 71.338
230 1916 R 0.213 0.213 0.213
233 1946 I 0.245 0.243 0.244 0.240 -0.009 -3.758 3.758
233 1946 R 0.235 0.235 0.235
298-O17-70/e«h.117op
NMOC Fin* Report
4-36
-------
ze-t
SEfr'O d 9292 692
t99'H 199'H- 890'0- Z9fr'0 109'0 98t'0 919'0 I 9292 692
26-d8S-92
26-d8S-92 1TI2S
W8'62 EEO'O IU'0
on-o
LZVQ
fr60'0
Ott'O
OOBO
BEl'O
960'0
660'0
Qtt'Q
669'0 019'0 889'0 d U*2 992
681 '0- t>69'0 88Z'0 IQL'O 96Z'0 I 11^2 992
fr26'0 966"0 216'0 U OH'g 992
OOE'B OOE'B- IBO'O- OWO 996'0 196'0 096'0 I Otfr2 992
ANl^l
90E'0
d 98E2
I 98B2
d 8LE2
I 8I.B2
992
992
992
992
26-des-lS
26-dss-U ON Id
26-deS-U ON Id
26-des-U ANIN
26-des-U ANI^I
628'9
600'0
628'9- Of I'D-
BLB'O
66E'0
96B'0
090'2
169'0
1 CO"f\ 7CP'fi
I-3O U O3C/ U
982'0 Z82'0
Ofr2'0 992'0
699'0 t>Z9'0
66E'0 EtE'O
OEE'O BIB'O
O86'l O96'l
021'2 021'2
9WO 969'0
Z19'0 9t9'0
09E'0
E22'0
9BB'0
ZfrB'O
000'2
02 1 '2
999'0
619'0
y yg22
1 ZE22
d 9222
1 9222
d LQZZ
\ LQZZ
d t^02
1 *902
d 9t02
1 9t02
8t2
9t2
9t2
Ofr2
662
662
8B2
8E2
26-des-W ANPI
26-des-frO ANI1
26-des-20 TNld
26-d8S-20 TNld
26-6nv-Z2 ON Id
26-Bnv-Z2 ON Id
26-Bnv92 AN^
26-Bny-92 XNW
26-Bnv-92 1H2S
26-6nv-92 J/12S
619'8€ 619-8C 802'0
999'0 BE9'0 d 21.02
OBfr'O 2frt'0 I 21-02
U2'0 6B2'0 d
980'0 OSt'O ZEl'O B2t'0 191'0 I
TNMN
PNMN
26-6nv-l2 ONSM
2 ONSM
(penu|;uoo) '
-------
CO
00
-Q
5
c_
8
I
to
2
2
CO
3)
p
CO
p
s
CO > O
°- ® c °
D a 3 •£
2? *§ ii 5
p p
-* o en
CD -g o
o o
b b
to
00 00
8 *! en
O CO O
10 IO
o -»
bo in
cp — * 01
S co o
TJ
£
'-
0
I
10
ro
CO
w
O
8
co
o
b
o>
p
§
p
o
en
o
§
-^
i
^
O
l^j
*^j
-^i
TJ
5
c_
8
1
I
to
to
en
IO
3)
p
5
p
g
p
CO
O)
TJ
5
C-
B
CO
(D
1
to
4k
s
.4
to
"•"
p
0
00
p
1
p
§
p
^
CO
p
1
co
1
o
w
00
CO
z
c_
1
CD
10
10
to
en
8
3)
O
co
o
CO
CO
to
o
CO
00
CO
Z
c_
ro
*\rt'
'b
•N>
C-
K
8
«••
0
!
o
1
p
CO
p
CO
**
6
1
1
CO
8
-^
CO
'•ft*
z
z
^
CO
(D
"O
C^
N>
Ol
S
3)
0
£
o
CO
O)
0
CO
00
z
Z
^
CO
CD
I
to
a
to
s
^~
p
i
p
8
P
3
P
ro
p
§
to
co
en
00
ro
P
L_t
en
00
c: c
£S
CO CO
CD CD
7 ?
CO CD
ro ro
N> IN)
->l ->l
w co
O O
cn ro
*.
01
P P
en -••
ro ro
p p
oo oo
p
b
to
00
00
0>
2
CD
c?
S
§.
-------
Percent differences are calculated by the following equation:
X2 -X,
(X, + X2) / 2
% Diff = —*2 "Xl— • 100 (4-1)
where:
X, = The mean NMOC concentration for the first analysis; and
X2 = The mean NMOC concentration for the second (or repeated)
analysis.
A total of 100 analyses on 50 canister samples are shown in Table 4-6. The
percent difference ranged from -79.850 to + 76.777 and averaged +8.743
overall. The small value of the overall average percent difference indicated that
there was an insignificant average bias between the second and the first analyses.
The final column in Table 4-6 is absolute percent difference. The overall
absolute percent difference was 21.61 for 1992. In 1991, the average absolute
percent difference was 14.29, in 1990 was 7.59, and in 1989 was 8.24.
Experience has shown that in general the lower the concentration, the higher the
percent difference, and especially the absolute percent difference.
4.5 Duplicate Sample Results
Duplicate analysis results are given in Table 4-7. Percent differences
(between the canister means) ranged from -74.424 to +77.858 and averaged
+ 3.050 overall. The small overall average percent difference indicates that there
was no systematic bias between samples. The absolute percent difference
averaged 15.626. Absolute percent differences averaged 15.768 in 1991, 7.594
in 1990, and 10.621 in 1989.
298-017-70/c«h.117op
NMOC Fm«l Report 4~39
-------
Table 4-7. Duplicate Samples for the 1992 NMOC Program
% ..jwj^l^i.
* ^m~-
:^s
* OolS
WSNC
WSNC
WSNC
R1NC
R1NC
UNY
UNY
UNY
MNY
MNY
S3UT
S3UT
S3UT
LINY
UNY
UNY
MNY
MNY
R1NC
R1NC
PLNJ
PLNJ
PLNJ
WSNC
WSNC
IB D$ttMi&&^ I
07-Jul-92
07-Jul-92
07-JUI-92
06-JUI-92
06-JUI-92
OS-Jul-92
08-Jul-92
08-JUI-92
08-Jul-92
OS-Jul-92
10-Jul-92
10-Jul-92
10-Jul-92
13-Jul-92
13-JUI-92
13-JUI-92
13-JUI-92
13-JUI-92
15-Jul-92
15-JUI-92
15-JUI-92
15-JUI-92
15-Jul-92
16-Jul-92
16-Jul-92
JF^ /
iirattt^
Date'."
189
189
189
188
188
190
190
190
190
190
192
192
192
195
195
195
195
195
197
197
197
197
197
198
198
ft.' ••x.t-^q
"J^
1132
1133
1133
1154
1155
1165
1166
1166
1178
1182
1191
1201
1201
1207
1207
1208
1226
1227
1252
1253
1275
1275
1276
1287
1291
0.112
I 0.104
R 0.104
0.108
0.133
0.576
I 0.400
R 0.592
1.120
0.619
0.716
I 0.728
R 0.621
1 0.204
R 0.281
0.292
0.479
0.500
0.090
0.110
I 0.503
R 0.684
0.666
0.166
0.188
2»8-017-70/«h.117op
NMOC find Report
f^f '•" ' s %,
f^ff* SyHJ'f f <
M*:*
ggoq£';'i
0.099
0.125
0.125
0.130
0.140
0.571
0.406
0.586
1.130
0.638
0.733
0.713
0.640
0.206
0.287
0.261
0.511
0.518
0.111
0.116
0.523
0.693
0.675
0.165
0.170
40
<%'^^^S
' ^HHII
"SB
rfgjjg
PcmC*:;::;
0.106
0.115
0.115
0.119
0.136
0.573
0.403
0.589
1.120
0.628
0.725
0.720
0.630
0.205
0.284
0.276
0.495
0.509
0.101
0.113
0.513
0.688
0.671
0.165
0.179
lFt""<*<«$l'< fKt»^
w'PIJfSBCfc- -£ D«f. ,'§
0.106 0.009
0.115
0.119 0.018
0.137
0.574 -0.077
0.496
1.125 -0.496
0.629
0.725 -0.049
0.676
0.245 0.032
0.277
0.495 0.014
0.509
0.101 0.012
0.113
0.601 0.070
0.671
0.166 0.013
0.179
7.993 7.993
13.699 13.699
-14.493 14.493
-56.630 56.630
-7.000 7.000
0.123 0.123
2.789 2.789
11.710 11.710
0.110 0.110
7.837 7.837
-------
s
in
8
CM
m
S
CM
O
CO
ct
CO
CD
CO
CD
CD
in
o
m
CM
i
CM
CM
8
£
CO
O
9
CM
CM
o
o
p
9
s
p
CD
S
CD
8
CD
S
9
8
p
9
CO ^t
in co
fv. -
•* co
CD CD
O) *fr
CM r>-
Tt CO
O CD
» $
CM CM
CD CD
CD CD
in CM
en m
•
CM CM CM
CO CO CO
Z Z Z
^ -t -3
O O
Z Z
CO CO
co co
CO
CO
CM CM CM
CO CO CO
a. a.
II
Z Z
Z Z
o O
li
-------
p
o 2
31 -J
JS
f n
I*
8
i
.&.
WWW
CO CO CO
ro ro ro
iii
tb tb tb
ro ro ro
ro ro ro
ro ro ro
en en tn
00 00 00
-» -» o
3) —
O O 0
ro ro co
O) CO O)
•
o o p
ro ro co
->i ->i ro
ro o en
o o o
ro ro co
o o
M CO
->j ro
CO O)
6
o
1
^J
23
_^
-vj
-g
S3
WWW
ro ro ro
555
$ % $
c? c? c?
!
3)
pop
i S §
o o o
co en en
— * CO O)
pop
8 § 8
p p
i s
6
^
00
6
co
p
CO
w w
co co
5 5
§ 8
II
eb eb
ro ro
ro ro
to to
O> en
p p
§ro
O)
p p
ro ro
en ro
p p
ro ro
p p
c! §
o
b
2
8
bo
&
ro
CO
bo
en
§ $ ^
WWW
z z z
000
Co Co 25
c c c
(Q (Q (Q
eb tb tb
ro ro ro
ro ro ro
co eo eo
O) O) O>
ij ^ ^
o o o
31 —
pop
ro o en
pop
ro o o>
co oo ro
pop
ro o en
oo to Jk
p p
ro oo
00 -J
o
b
£
o
co
8
o
CO
8
? ? ?
555
c_ c_ c_
? ? ?
(Q (Q (Q
to to to
ro ro ro
ro ro ro
§ § §
3) ~
pop
ro co co
*j ro en
oo ro eo
pop
ro co co
Sro O)
o to
pop
ro co co
g !^ 2
o o
co co
2 2
6
b
8
i
CD
b
CO
o
_l
co
b
CO
o
Z Z
1 1
II
c c
9 9
tb tb
ro ro
ro ro
2 8
p p
to en
p p
§ §
P P
§ §
p p
§ §
6
b
(b
1^
tp
1^,
8
3) 3)
Z Z
0 0
CO CO
^ cT
S 18
ro ro
CO CO
o to
p p
oo en
p p
Sro
en
p p
3 §
p p
co en
o
b
8
ro
b)
ui
ro
tfi
en
3J 31 3J
Z Z Z
o o o
O o O
en en en
c c c
(Q (Q (Q
18 18 18
ro ro ro
00 00 00
o o> en
en *. *>.
31 —
pop
O) O O
pop
co ro o
o en ro
pop
CO CO §
p p
00 CD
o
b
8
o
b
^
o
b
3
C C
Z Z
co co
(Q (Q
tb tb
ro ro
ro ro
en o>
•>i en
P P
5 8
p P
2 8
p P
ro 4>
to en
P P
8 5
6
b
00
i
ro
1^1
°
_t
ro
1^1
2
o:'^iF^
•wES-l !J8JjJi$jef ?x
If
IK-1
m:
yp
l'v^^i|''
»^ll^%,i
^\|Sf''•
-i
cr
t
^^
^
S
3
I
-------
Table 4-7. (Continued)
, -% ' - "&&
\ ^sM
x '"•^jjl
S2UT
S2UT
UNY
UNY
LINY
NWNJ
NWNJ
NWNJ
WSNC
WSNC
S2UT
S2UT
S3UT
S3UT
S3UT
R1NC
R1NC
R1NC
PLNJ
PLNJ
NWNJ
NWNJ
UNY
LINY
12-Aug-92
12-Aug-92
13-Aug-92
13-Aug-92
13-Aug-92
14-Aug-92
14-Aug-92
14-Aug-92
18-Aug-92
18-Aug-92
18-Aug-92
18-Aug-92
18-Aug-92
18-Aug-92
18-Aug-92
17-Aug-92
17-Aug-92
17-Aug-92
14-Aug-92
14-Aug-92
26-Aug-92
26-Aug-92
25-Aug-92
25-Aug-92
EpftwSji&Lvwi«5^^
fifc?*iw
225 1784
225 1785
226 1801
226 1801
226 1802
227 1854
227 1854
227 1855
231 1881
231 1882
231 1884
231 1885
231 1886
231 1886
231 1887
230 1915
230 1916
230 1916
227 1922
227 1923
239 2063
239 2070
238 2106
238 2107
^K'^ vVf^fir'"
1.129
1.126
1 0.168
R 0.157
0.114
1 0.230
R 0.371
0.294
0.108
0.236
1.179
1.232
I 0.61 1
R 0.636
0.647
0.125
I 0.093
R 0.213
2.394
2.754
3.020
3.003
0.734
0.704
298-0 17-TO/c«h. 11 Top
NMOC Find .Report
sgfK&:&b&£&c$c> <•
«*»S^g^S3i^^
1.104
1.110
0.142
0.164
0.106
0.257
0.387
0.318
0.103
0.244
1.207
1.228
0.640
0.611
0.681
0.110
0.110
0.213
2.390
2.770
3.040
2.972
0.719
0.694
4-43
•* ''piiilllll
1.117
1.118
0.155
0.161
0.110
0.244
0.379
0.306
0.106
0.240
1.193
1.230
0.625
0.624
0.664
0.118
0.101
0.213
2.392
2.762
3.030
2.987
0.727
0.699
1.117 0.001 0.134 0.134
1.118
0.158 -0.048 -0.357 0.357
0.110
0.311 -0.005 -0.017 0.017
0.306
0.106 0.135 77.858 77.858
0.240
1.193 0.037 3.054 3.054
1.230
0.625 0.039 0.061 0.061
0.664
0.118 0.040 28.935 28.935
0.157
2.392 0.370 14.358 14.358
2.762
3.030 -0.043 -1.413 1.413
2.988
0.727 -0.027 -3.858 3.858
0.699
-------
Table 4-7. (Continued)
WSNC 28-Aug-92
WSNC 28-Aug-92
241 2109
241 2110
0.045
0.099
R1NC 27-Aug-92 240 2206 0.251
R1NC 27-AUQ-92 240 2207 I 0.347
R1NC 27-Aug-92 240 2207 R 0.335
0.050 0.047 0.047 0.048 67.602 67.602
0.092 0.095 0.095
0.258 0.254 0.255 0.080 27.165 27.165
0.313 0.330 0.335
0.343 0.339
LINY
LINY
UNY
WSNC
WSNC
MNY
MNY
PLNJ
PLNJ
MNY
MNY
MNY
NWNJ
NWNJ
NWNJ
NWNJ
MNY
MNY
04-Sep-92
04-Sep-92
04-Sep-92
09-Sep-92
09-Sep-92
09-Sep-92
09-Sep-92
10-Sep-92
10-Sep-92
11-Sep-92
H-Sep-92
11-Sep-92
10-Sep-92
10-Sep-92
14-Sep-92 :
14-Sep-92
16-Sep-92
16-Sep-92
248
248
248
253
253
253
253
254
254
255
255
255
254
254
258
258
260
260
2237 I
2237 R
2238
2268
2276
2270
2271
2311
2312
2318 I
2318 R
2322
2326
2327
2366
2367
2373
2390
0.284
0.350
0.346
0.696
0.806
0.499
0.356
0.154
0.182
0.294
0.448
0.491
1.800
2.000
3.543
3.570
0.867
0.984
0.287
0.352
0.342
0.678
0.816
0.489
0.382
0.171
0.170
0.305
0.432
0.462
1.812
1.970
3.530
3.565
0.861
' 0.984
0.285
0.351
0.344
0.687
0.811
0.494
0.369
0.162
0.176
0.300
0.440
0.476
1.806
1.990
3.537
3.567
0.864
0.984
0.318 0.026
0.344
0.687 0.124
0.811
0.494 -0.125
0.369
0.163 0.013
0.176
0.370 0.107
0.477
1.806 0.179
1.985
3.537 0.031
3.568
0.864 0.120
0.984
0.078 0.078
16.555 16.555
-28.969 28.969
7.976 7.976
0.252 0.252
9.443 9.443
0.873 0.873
12.987 12.987
288-017-70/cih.117op
NMOC Find R«pon
4-44
-------
Table 4-7. (Continued)
s\ v>'
\uiJtM,
&&%&* »>' *"• <* } «*xS*xW
ffiMSrV** '^'miiiim
Wwwftw^
^^^>1^^^
1»O>
SSiS^*
^pfe4fc
fjj$x&
" ^nni
"•' i $ sin
^^J/^P?
^^^S^^S^^s. *>* ^*s
^^^lS^:Wii«^,41
^^WlflW^T^^^^pSSeSSSSS^ggssg
_.C8lf!Wj2si(Ww*^vy>«s^
PLNJ
PLNJ
R1NC
R1NC
R1NC
UNY
UNY
S2UT
S2UT
S3UT
S3UT
WSNC
WSNC
MNY
MNY
MNY
MNY
S2UT
S2UT
S3UT
S3UT
R1NC
R1NC
15-Sep-92
15-Sep-92
11-Sep-92
11-Sep-92
H-Sep-92
16-Sep-92
16-Sep-92
17-Sep-92
17-Sep-92
17-Sep-92
17-Sep-92
18-Sep-92
18-Sep-92
21-Sep-92
21-Sep-92
21-Sep-92
21-Sep-92
22-Sep-92
22-Sep-92
22-Sep-92 ,
22-Sep-92
17-Sep-92
17-Sep-92
259
259
255
255
255
260
260
261
261
261
261
262
262
265
265
265
265
266
266
266
266
261
261
2377
2381
2385 I
2385 R
2387
2392
2396
2406
2410
2407
2409
2427
2430
2440 I
2440 R
2441 I
2441 R
2457
2458
2463
2464
2496
2497
1.027
1.048
0.093
0.121
0.164
0.460
0.553
0.509
0.499
0.501
0.477
0.382
0.408
0.950
0.912
0.796
0.588
0.989
1.001
1.060
1.020
0.183
0.225
298-017-70/cah.117op
NMOC Final Raport
1.048
1.055
0.095
0.133
0.146
0.476
0.560
0.492
0.501
0.487
0.482
0.371
0.404
0.961
0.935
0.781
0.610
0.996
0.983
1.050
1.030
0.158
0.225
4-45
1.038
1.051
0.094
0.127
0.155
0.468
0.557
0.500
0.500
0.494
0.480
0.377
0.406
0.955
0.924
0.788
0.599
0.993
0.992
1.060
1.030
0.171
0.225
1.038 0.014
1.052
0.111 0.045
0.155
0.468 0.089
0.557
0.501 -0.000
0.500
0.494 -0.015
0.480
0.377 0.030
0.406
0.940 -0.246
0.694
0.993 -0.000
0.992
1.055 -0.030
1.025
0.171 0.055
0.225
1.340 1.340
0.335 0.335
17.277 17.277
-0.100 0.100
-2.979 2.979
7.540 7.540
-30.093 30.093
-0.050 0.050
-2.885 2.885
27.560 27.560
-------
Z Z
T) TJ
"• o
II
4^
O)
CO
o
30-Sep-92
ro
ro
§
o
8
p
00
0
1^
ro
on
p
§
CO
o
26-des-oe
ro
ro
1
o
8
o
1
o
b
o
b
o
b
4k
CO
&
ki
s
£
lg
s
z
0
25-Sep-92
i
ro
3
ro
-4
O
§
0
5
O
'_!,
CO
p
CO
z
0
ro
V
CO
CD
1
ro
S
ro
2
o
b
p
o
en
o
b
8
o
b
8
o
b
0
eo
OJ
fo
CO
en
ro
^
2
29-Sep-92
ro
2
ro
en
8
3D
p
£
o
co
S
o
CO
8
<
2
29-S6P-92
ro
e^
ro
en
~~
p
I
o
s
o
4k
CO
o
6
<
2
29-Sep-92
ro
S
ro
8
.*
p
8
o
co
OJ
o
CO
3J
<
*
CD
ro
ro
c^
ro
en
** *
p
§
o
4k
8
o
4k
3
O
4k
ro
p
p
Cj
*"
o
00
5)
o
00
Cn
z
c_
29-Sep-92
ro
CO
8
8
o
b
2
0
b
Ol
O)
o
b
°
0
b
Z
C—
29-Sep-92
ro
w
ro
en
23
p
CO
o
b
2
0
b
8
o
b
8
6
b
ro
CO
6
CO
CO
ro
00
8
CO
ro
00
TJ TJ
28-Sep-92
28-Se
ro ro
ro ro
ro ro
CCC
p p
p p
•** £
oo on
ro en
p p
oo 55
ro Co
p p
00 O)
ro eo
p
co
en
co
&
en
co
&
CO CO CO
O (D (D
•9-9-9
{8 18 IS
ro ro ro
->l -J -N|
co eo eo
ro ro ro
en en en
~-i en en
en -vi -si
o o p
ro
en
ro en ro
->i *>.
pop
^ en ^
oo ro ro
pop
ro en -»
ro oo oo
p p
s i
l
p p
'-L fo
ro co
-* ro
p p
^ io
co -vi
00 4k
p p
^ ro
co co
o co
p p
'-' ro
8 8
6
en
JJ
6
ro
ro ro
en en
ro
en
CO CO CO
(D (D (D
7 7 7
(O (O (O
ro ro ro
ro ro
8 S
ro ro
en en
ro
en
ro ro ro
o> en en
pop
en f* en
en oo on
pop
pop
en
on
en
o
CO CO
CD CD
^3 ^3
eb (D
ro ro
ro
CD
ro
en
p p
en -si
p p
p p
CO 4k
0 O
•3!
D)
2
CD
O
8.
CO
CD
-------
Table 4-7. (Continued)
•^^"^W- v.,
PLNJ
PLNJ
PLNJ
PLNJ
UNY
LINY
30-Sep-92
30-Sep-92
30-Sep-92
30-Sep-92
30-Sep-92
30-Sep-92
wwv«r .
274
274
274
274
274
274
2612 I
2612 R
2619 I
2619 R
2613
2614
0.108
0.121
0.053
0.149
0.093
0.152
0.084
0.150
0.076
0.143
0.086
0.144
0.096
0.136
0.065
0.146
0.090
0.148
-^-^^rao.....^.....-.....-.^
0.116 -0.010
0.105
0.090 0.059
0.148
-9.502 9.502
49.263 49.263
Count =140 70
Average 0.557 0.009
StdDev 0.633 0.111
70 70
3.050 15.626
24.405 18.903
298-017-70/c«h.117op
NMOC Fintl Ftopon
4-47
-------
4.6 Canister Pressure Results
Canister pressure results for the NMOC Monitoring Program are an important
gauge to assess whether the ambient air samples obtained are representative. The
NMOC sampling systems are designed to obtain an integrated ambient air sample
between 6:00 a.m. and 9:00 a.m., or at other programmed intervals. Canister
pressures are measured to obtain a better understanding of the range and
magnitude of pressures being generated by the NMOC sampling systems. Canister
pressure data are given in Table 4-8 for both single canister samples and duplicate
samples. The pressures reported in Table 4-8 are the canister sampling pressures
measured immediately before analysis in the laboratory. A significant decrease
between the field sampling pressure and the laboratory value might indicate a leak.
Table 4-8 gives statistics for single and duplicate samples. All sample
canisters averaged 12.5 psig, while duplicate samples averaged 14.5 psig. The
column entitled "All Samples" includes pressures from both single samples and
duplicate samples. Standard deviations were 3.0 and 2.9 psig, respectively.
4.7 Canister Cleanup Results
Prior to the start of the 1992 NMOC Sampling and Analysis Program all of
the canisters were cleaned and analyzed for their NMOC content to establish
canister initial conditions. The resulting analysis with cleaned, dried air that had
been humidified averaged 0.0027 ppmC, ranging from 0.0000 to 0.0093 ppmC.
Any canisters that produced more than 0.020 ppmC were recleaned.
Continual monitoring of the cleanup was important to ensure that there was
negligible carryover from one site sample to the next. The daily canister cleanup
298-017-70,,-- "7op
NMOC Fm» * 4-48
-------
Table 4-8
NMOC Pressure* Statistics
Statistics
Number of Cases
Minimum Pressure, psig
Maximum Pressure, psig
Mean Pressure, psig
Median Pressure, psig
Standard Deviation, psig
Skewness, psig
Kurtosis, psig
All Samples
566
5.0
22.0
12.5
12.0
3.0
0.29
0.30
Duplicate
Sampte
Canisters
140
7.0
22.0
14.5
14.0
2.9
0.09
-0.001
'Measured immediately prior to analysis.
293-017-70/oh.117op
NMOC fin* Ripen
4-49
-------
procedure is described in detail in Section 3.4. Because the NMOC content was
below 0.020 ppmC, cleanup was considered to be satisfactory.
Average percent recoveries, or average percent cleanup, in 1992 averaged
98.79% (99.747% in 1991, 99.747% in 1990, 99.742% in 1989, 99.689% in
1988, 99.374% in 1987, 99.891% in 1986, and 99.898% in 1985). The
reported average percent recovery is based on average NMOC concentration and
average cleanup concentration. The reported percent cleanup figures should be
considered minimum values. The actual percent cleanup was greater than the
reported values because, after the percent cleanup was measured, the canister
was evacuated a third time before being shipped to the site.
4.8 External Audit Results
Primary measures of accuracy for the NMOC monitoring data were
calculated from the results of the analysis of propane audit samples provided by
U.S. EPA. Results are reported in terms of percent bias relative to the EPA
concentration spiked.
Four audit samples, ID# 2186, 2267, 2402, and 2474 were analyzed during
the NMOC program. The EPA Audit Report is given in Appendix I. Table 4-9 gives
the concentrations reported by the EPA Auditor and by the four Radian channels.
The theoretical concentration reported in Table 4-9 was calculated using dilution
factors estimated when the audit samples were prepared. The column labeled
Reference is the concentration measured by the EPA Audit Laboratory. The
percent bias results are presented in Table 4-10 and were calculated relative to the
theoretical values. The Radian bias ranged from -3.452% to +24.000%, and
averaged +4.969% for the audit canisters. Table 4-11 shows the bias of the
audit samples to the reference measured concentrations.
298-017-70/r.*
NMOC Fin* '•
-------
Table 4-9
External NMOC Audit Samples
Canister I
No,
2186
2267
2402
2474
Concentration, ppmC
Theoretical
1.970
0.450
0.450
1.980
", _^
Reference
1.91
0.45
0.52
1.90
Radian
A
1.936
0.555
0.472
1.956
< "-.|^j,-
Aii«iy»is<-
^ ftadian '\
- B
1.933
0.558
0.492
1.934
""
> fiadfan
C
1.918
0.543
0.447
1.930
T
1.902
0.533
0.440
1.930
298-017-70/e*. 117«p
NMOC Rrnl fUport
4-51
-------
Table 4-10
Bias of Audit Samples from Theoretical Concentrations
Canister
No,
2186
2267
2402
2474
Concentration,
ppmC
1.97
0.45
0.45
1.98
Percent Difference from Theoretical
Reference
-3.046
0.000
15.556
-4.040
Radian
A
-1.726
23.333
4.889
-1.212
Radian •
B
-1.878
24.000
9.333
-2.323
Radian
I C
-2.640
20.667
-0.667
-2.525
Radian
D
-3.452
18.444
-2.222
-2.525
Percent Diff = (Analysis Channel - Theoretical) / Theoretical * 100
298"017-70/e«K117op
NMOC Find Report
4-52
-------
Table 4-11
NMOC External Audits for 1992
Canister
No,
2186
2267
2402
2474
Conc>,
ppmC
Raferenee
1.91
0.45
0.52
1.90
lucent 8fa* tefativ* to Reference Analyst
* • !
Theoretical ,
3.141
0.000
-13.462
4.211
Radian
: A -
1.361
23.333
-9.231
2.947
Radian
-,B :..
1.204
24.000
-5.385
1.789
f
Radian
0
0.419
20.667
-14.038
1.579
Radian
D
-0.419
18.444
-15.385
1.579
Bias = (Channel - Reference)/Reference * 100
29S-017-70/e4t.117o»
NMOC fin* Report
4-53
-------
Based on these findings, the overall bias for the Radian channels for the
1992 NMOC Monitoring Program will be reported at +5.0%, with a range from
-3.4 to -I-24.0 percent.
4.9 Data Validation
The secondary backup disks were updated daily on 20 megabyte hard disks.
At the completion of the sampling and analysis phase, 10% of the data base was
checked to verify its validity. Items checked included original data sheets, checks
of all the calculations, and data transfers. In making the calculations for the final
report and other reports, corrections were made to the data base as errors or
omissions were encountered.
A total of 714 NMOC concentration measurements were performed by
Radian in June through October 1992. This included 566 sample analyses, 50
repeated analyses, 82 in-house QC analyses (on 22 in-house QC samples), and 4
audit samples (x 4 analyses each).
Ten percent of the data base was validated according to the procedure
outlined below.
A. Calibration factors were checked.
1. The area count from the strip chart that was used to determine
the calibration factor was examined to verify that the data had
been properly transferred to the calibration form.
2. _• The calibration form was examined to verify that the calcula-
tions had been correctly made.
3. Each datum on the disk was compared to the corresponding
datum on the calibration sheet for accuracy.
B. Analysis data were checked.
1. Area counts were verified from the appropriate strip chart.
298-017-70/cih 1 (
NMOC Find R**)' --54
-------
2. Calculations were reverified on the analysis forms.
3. Each datum on the disk was compared to the corresponding
item on the analysis form.
C. Field data sheet was checked.
1. Each datum on the disk was compared to the corresponding
datum on the field data sheet.
The error rate was calculated in terms of the number of items transferred from the
original data sources. For each NMOC value in the 1992 data set, 36 items were
transferred from original sources to the magnetic disks. In the data validation
study each item on the disk was compared with the corresponding value on the
original source of data. Sixteen errors were found (and corrected) for an expected
error percentage of 0.080 percent.
Each time the data file was opened and a suspected error found, the error
was checked against the original archived documents, and corrected where
appropriate.
4.10 NMOC Monitoring Program Records
The quality assurance records developed by Radian for this project are
extensive and will be preserved as archives. One of the most important objectives
of the study was to develop a data base that is well planned and documented and
contains NMOC data of known and verifiable quality. Achieving that objective has
involved keeping and preserving a number of records that trace the project from
planning through reporting.
4.10.1 Archives
In order to keep detailed records that document the quality of the
measurements made, Radian developed the following original material:
298-017-70/eih.117op _
NMOC find FUpoct 4*55
-------
• Quality Assurance Project Plan (QAPP);
• Notebooks;
• Field Data Sheets;
• Laboratory Calibration Sheets;
• Laboratory Analysis Sheets;
• Chromatographic Strip Charts;
• Bi-weekly, Monthly Reports to EPA;
• Memoranda and Correspondence; and
• Final Report.
In addition to the above items, several papers to be presented at technical
meetings and symposia and published in technical journals will be added to the
archives.
The QAPP2 was the Quality Assurance Project Plan and the workplan. The
QAPP was designed according to the EPA Quality Assurance Guidelines, and set
the pattern of steps necessary to document and control the quality of the data
obtained throughout the study.
Several notebooks were necessary to maintain day-to-day records of the
project. Field and laboratory data sheets were designed in advance, so that the
data recorded appeared in a logical sequence and filled in blanks on the sheet.
Additional space was provided for other comments. Each NMOC analysis was
assigned a unique Radian Identification Number. Field data sheets and shipping
records accompanied the canisters in transit.
4.10.2 Magnetic Disks
In order to manage the data base for report generation and data analysis,
pertinent data from the various data sheets and notebooks were transferred to
20 megabyte magnetic disks. Tht -cflowing software was used in the
298-017.70,^
NMOC Final i- H- 0 O
-------
construction of the data base: Paradox 3.5®, QUATTRO®, and Freelance®.
Statistical calculations were performed using SYSTAT® and SAS® software. The
data access is rapid and in a convenient form. The primary 20 megabyte magnetic
disk has three backup disks.
298-017-70/0*1.117op
NMOC firul (Upart 4-57
-------
5.0 NMOC DATA ANALYSIS AND CHARACTERIZATION
The purpose of this section is to characterize the NMOC data qualitatively as
well as quantitatively. The NMOC data are shown to fit a two-parameter
lognormal distribution better than a normal Gaussian distribution. The summary
NMOC data for the sites of the 1992 study are given in Appendix C.
5.1 Overall Characterization
Figure 5-1 gives a stem-and-leaf plot of the 1992 NMOC data along with
statistics for NMOC. The stem-and-leaf plots show the actual NMOC
concentrations truncated to two or three decimal points. The digits to the left of
the vertical open space are called stems and the digits to the right of the open
space are the leaves. The data are sorted from the smallest at the top of the graph
to the largest at the bottom of the graph. The minimum NMOC value measured
was 0.047 ppmC and is shown as "0 4" on the first row at the top of the plot.
The maximum NMOC concentration measured was 4.780 shown as "47 8" in the
bottom row of the chart. The plot shows 567 leaves, one for each NMOC site
datum in the 1992 program. The H's in the open vertical space locate the stem
and leaf for the upper and lower hinges, and the M locates the stem and leaf for
the median. The median separates the sorted NMOC concentrations into two
equal halves; the hinges (or quartiles) separate each half into quarters. The
"H spread" or interquartile range is the difference between the NMOC values of the
two hinges.
Statistics, shown for NMOC are number of cases, minimum, maximum,
mean, median, standard deviation, standard error, skewness, kurtosis, and the two
hinges. Each NMOC determination is the average of two or three injections of the
site samples. In the case of replicates,-each NMOC determination is the average of
the original and repeated analysis concentrations.
288-017-70/c«h.«?7«i*
NMOC Find Rcpctt 5-1
-------
0
0
1
1 H
2
2
3
3 M
4
4
5
5
6 H
6
7
7
8
8
9
9
10
10
11
11
12
13
14
15
16
17
18
19
20
23
26
27
29
30
31
33
35
37
47
44
56777 77788 88888 88999 99999 9999
000000000000011 11111 11111 11112222222222223333
55555 55556 66666 66667 //777 77777 77888 88888 88889
0000001111 11111 122222222223333333334444444
55555 56666 66666 67777 77888 88999 999
0000001111 11111 11111 11222223333333344444
55556 66666 67777 77888 88889 99999 99
000000000011222222222233333333444444
55555 56666 66666 66777 78888 88888 99999 99999 99
0000001111 11111 22222333334444
55555 55666 67777 88899 9999
00001 11122222222233344
56666 66777 88889 999
0001222334
55555 66668
01111 22222234
56688 99
00011 3444
88899 9
2333
569
01 1 1 1 222
689
22347
8
5
7
479
6
0
679
55
9
7
6
68
3
4
4
36
3
8
NMOC,
Cases
Minimum
Maximum
Mean
333333444444444
99999 99999
ppmC
567
0.047
4.780
0.506
Standard Deviation 0.531
Standard Error
Skewness
Kutosis
Lower Hinge (H)
Median (M)
Upper Hinge (H)
0.022
3.685
18.304
0.195
0.388
0.601
Figure 5-1. Stem-and-leaf plot of the 1992 NMOC data.
2M-017-70/clh.117op
NMOC Final R«pcrt
5-2
-------
The standard error is the standard deviation divided by the square root of the
number of cases. Positive skewness is a third moment about the mean value, and
characterizes a tail to the right of the mean value. A normal Gaussian distribution
has a skewness of zero. The skewness of 3.685 for the 1992 NMOC data
suggests a lognormal frequency distribution; that is by the fact that for the
logarithm of the NMOC value (In(NMOQ) (see Figure 5-2), skewness equals 0.163,
which is close to zero. Kurtosis is the fourth moment about the mean and relates
to the pointedness of the distribution. A distribution more pointed than a normal
distribution, having the same standard deviation, has a kurtosis greater than 3.0.
The numerical values of kurtosis listed in this report are zero centered. That is, 3.0
has been subtracted from the fourth moment to give 0.0 for a distribution shaped
similar to a normal distribution.
Figure 5-2 is a stem-and-leaf plot of the 1992 In(NMOC) data. The plot
shows an approximately symmetrical distribution (skewness = 0.163). The
kurtosis equal to 0.009 indicates the In(NMOC) distribution to be no more pointed
than a normal distribution.
The shape of the stem-and-leaf plots suggests a lognormal distribution.
Figures 5-3 and 5-4 support the lognormal distribution hypothesis for NMOC. The
vertical scales in Figures 5-3 and 5-4 are arranged so that if the cumulative
frequency of occurrence of NMOC were normally distributed, the numbers would
plot into a straight line. The line in Figure 5-3 has a noticeable concave downward
trend, indicating that the data do not fit a normal distribution well. Figure 5-4 plots
the logarithm of NMOC on the same vertical scale. The fact that the digits on the
graph plot into approximately a straight line supports the hypothesis that the
NMOC data are approximately lognormally distributed. An asterisk on the graph
indicates the location of a single datum. Integers, such as 2, 4, or 9, show the
location of the corresponding number of data points. The number 999 shows the
288-017-70/e«h.117op _
NMOC Firwl Report 5-3
-------
-30 54
-29 0
•28 1
-27
-26 543
-25 76321 1
-24 8644310
-23 887664221110
-22 99888544444100
-21 98876 55333 32221 000
-20 777755444411000
-19 988544322211
-18 987655444200000
-17 88886 66544 33222 21110
-16 H 99777 77665 44333 3221
-15 888776555443321100
-14 99988 87766 65443 32222
-13 98777 65444 43322 210
-12 998887655433321100
-11 98877 66666 55554 44444
-10 99998876655432211111
-9 M 99998 77766 55444 32222
-8 99876 66665 54444 33333
-7 98888 87777 66666 55554
-6 99999 98877 77766 55555
-5 H 99998 88776 65554 43222
-4 99877 77777 66666 54332
-3 99987 77665 55543 22100
-2 88777 77764 10000
-1 9999887654421110
-0 99986555211000
0 1233458
1 00011 11256799
2 014
3 27
4 59
5 1269
6 778
7 12
8 7
9 8
10 189
11 04
12 067
13 1
15 6
100
32221 00
1111000000
22111 000
4333322211
4433322221
2111000
110000
0
00000000
100
In(NMOC)
Cases 567
Minimum -3.053
Maximum 1.564
Mean -1.023
Standard Deviation 0.808
Standard Error 0.034
Skewness 0.163
Kutosis 0.009
Lower Hinge (H) -1.635
Median (M) -0.947
Upper Hinge (H) -0.509
Figure 5-2. Stem-and-leaf plot of In(NMOC) data.
298-017-70/c«h.117op
NMOC Final Report
5-4
-------
09
"5
•o
OJ
0
03
Q.
x
Ltl
4-
2-
0-
-4 _
* *
445 2 *3**
79996
5999
99
999
99
99
9
9
2
*
3+=
NMOC
Figure 5-3. Cumulative frequency distribution for the 1992 NMOC data.
288-017-70/cih.117op
NMOC Find Rtport
5-5
-------
T3
0
•5
a
a.
x
HI
4-
2-
0-
-4-
58**4 24
69995
9999
9995
*999992
99999
9999
299
**44
I
-4
I
-3
I
-2
i
2
In(NMOC)
Figure 5-4. Cumulative frequency distribution for 1992 In(NMOC) data.
298-017-70/c«h.117op
NMOC Find Report
5-6
-------
approximate location of either 27 data points or 99 + 9 data points. The results,
although qualitative, show a dramatic difference between the normal and
lognormalhypotheses, and suggest that the latter more nearly describes the NMOC
data.
5.2 Monthly Variations. 1992
Table 5-1 partitions the NMOC data for the summer of 1992 into groups
that correspond to monthly intervals. For the summer of 1992, the monthly
means and medians of the NMOC sites for June, July, August, and September
parallel one another. That is, the NMOC mean and median concentrations for July
1992 are less than the mean and median for June 1992. Means and median for
August show dramatic increases compared to July 1992. The mean and median
for September are approximately the same as August 1992. Arithmetic means are
used in Table 5-1 in spite of the observations given in Section 5.1 which conclude
that the frequency distribution of NMOC concentrations in ambient air are
approximately logarithmic normal distributed. Table 5-1 also gives monthly
minima, medians, and maxima. These latter three statistics are independent of the
probability distribution from which they derive.
298-017-70/cih.117op
NMOC Final Report 5 - I
-------
Table 5-1
Summary Statistics for 1992 NMOC Sites, by Month
Sample
Month
1991
June
July
August
September
October
NMOC Concentration, ppmC
Minimum
0.085
0.071
0.047
0.048
0.060
Median
0.443
0.318
0.422
0.413
0.121
Mean
0.435
0.379
0.578
0.577
0.381
Maximu
m
0.829
2.670
3.730
4.780
1.648
Standard
Deviation
0.210
0.289
0.612
0.632
0.543
Cases
30
172
178
177
10
298-017-70/c«h.117op
NMOC Final Report
5-8
-------
6.0 THREE-HOUR AIR TOXICS DATA SUMMARY
The 1992 NMOC Program included 3-hour air toxics sample collection at five
NMOC sites (see Table 6-1) located in the contiguous United States. Overall
concentration results were reported in parts per billion by volume (ppbv) in
Section 6.1, and site-specific results are given in Section 6.2.
Analyses were performed using a GC/MD system incorporating a flame
ionization detection (FID), photoionization detection (PID), and electron capture
detection (ECD). Compound identification was made using a combination of
retention time ratios of PID/FID and/or ECD/FID responses, and analyst's
experience and judgement. Quantitation was done using the FID response, with
the exception of halogenated compounds that were quantitated using the ECD.
Propylene, vinyl chloride, 1,3-butadiene, trans-1,2-dichloroethylene, and
chloroprene are quantitated from the PID (the FID has interference peaks that
coelute with these compounds). If there was an indication that the quantitation
detector response for the target compound had interference from an unknown
source, quantitation was performed on one of the alternate detectors if applicable.
Table 6-1 indicates the number of 3-hour samples taken for GC/MD analyses to
speciate for 38 air toxic compounds. Ten analyses were performed on samples
from a given site. One duplicate sample was collected from each site, and the
analysis of one of the samples, from each site was replicated. One of the samples
from each site was analyzed by GC/MS for confirmation of compound
identification.
Three-hour air toxics samples were regular NMOC or SNMOC Monitoring
Program samples that were collected in 6-L stainless steel canisters from 6:00 a.m.
to 9:00 a.m. The final canister pressure was about 15 psig. The NMOC samples
that were speciated by GC/MD were selected at random during the summer. Each
selected sample was first analyzed by the PDFID method for its total NMOC
concentration or by the SNMOC method for its speciated target compound
288-017-70/c«h.117op _
NMOC Fin* Ftopart D" 1
-------
Table 6-1
Three-Hour Ambient Air Samples and Analyses
Site Code
B1AL
B2AL
B3AL
NWNJ
PLNH
Total
Ambient
Air
Samples
8
8
8
7
8
39
GC/MD Analyses
Duplicate
Canister
1
1
1
2
1
6
Replicate
Analysis
1
1
1
1
1
5
Total
10
10
10
10
10
50
GC/MS
Analyses
1
1
1
1
1
5
298-0 !7-70/c«h.117op
NMOC Find Report
6-2
-------
concentrations. Then the canister pressure was bled to atmospheric pressure and
the canister bellows valve was closed. The canister was allowed to equilibrate at
least 18 hours before the GC/MD analysis was performed.
6.1 Overall Results
Concentration of the air toxic compounds detected are summarized in
Table 6-2 for the 1992 3-hour ambient air samples that were speciated. The table
shows the number of cases (samples), the percent of cases in which the
compound was identified, the minimum, maximum, and mean (arithmetic average)
concentration of the compound in ppbv. In cases where duplicate samples were
taken, or replicate analyses were performed, the results of all the analyses were
averaged for each sample. The mean refers to the daily sample averages, not the
averages of all the analyses. The frequency of occurrence of target compounds
fall into four prominent percentile categories at concentration above their detection
limits:
• Those occurring in more that 95% of the samples tested;
• Those occurring in more from 50% to 75% of the samples tested;
• Those occurring in less than 20% of the samples tested; and
• Those not identified in any of the 3-hour air samples.
These results are summarized in Table 6-3.
Overall concentration ranged from 0.01 ppbv for trichloroethylene to 253.06
ppbv for 1,1,1 -trichloroethane.
MtiOC firorf Ftapvrt
6~3
-------
Table 6-2. Air Toxics Compound Identifications Summary for All Sites -1992
Cases (a)
Compound
Propylene
Chloromethane
1 ,3-Butadiene
Chloroethane
Methylene chloride
trans-1 ,2-Dichloroethylene
1,1-Dichioroethane
Chloroform
1 ,2-Dichloroethane
1,1,1 -Trichloroethane
Benzene
Carbon tetrachloride
1 ,2-Dichloropropane
Trichloroethylene
Toluene
n-Octane
Tetrachloroethyiene
Chlorobenzene
Ethyl benzene
m/p-Xylene/Bromoform
Styrene
o-Xylene/1 ,1 ,2,2-Tetrachloroethane
m-Dichlorobenzene
p-Dichlorobenzene
o-Dichlorobenzene
Percent Minimum Maximum Mean (c) Mean (c) Mean (d) Mean (e)
No. Frequency ppbv ppbv ppbv ug/m3 ppbv ppbv
39
24
3
1
8
2
24
40
21
40
40
40
2
38
40
1
40
23
40
40
39
40
17
30
23
97.50
60.00
7.50
2.50
20.00
5;00
60.00
100.00
52.50
100.00
100.00
100.00
5.00
95.00
100.00
2.50
100.00
57.50
100.00
100.00
97.50
100.00
42.50
75.00
57.50
0.27
0.22
0.09
0.10
0.44
0.12
0.12
0.04
0.08
0.29
0.12
0.09
1.14
0.01
0.14
0.31
0.01
0.02
0.02
0.10
0.02
0.03
0.03
0.02
0.04
8.96
1.44
0.41
0.10
4.52
0.38
1.89
0.76
5.23
253.06
4.09
0.28
1.34
0.79
17.40
0.31
0.92
0.52
3.62
19.22
0.81
10.12
3.08
0.36
0.23
2.50
0.74
0.20
0.10
2.24
0.25
0.60
0.19
1.38
8.47
1.03
0.13
1.24
0.14
3.10
0.31
0.20
0.10
0.54
2.68
0.27
1.35
0.28
0.11
0.13
4.37
1.56
0.46
0.27
7.90
1.01
2.48
0.95
5.68
46.95
3.33
0.83
5.82
0.78
11.87
1.47
1.36
0.45
2.38
51.77
1.17
15.41
0.00
0.00
0.00
2.44
0.49
0.06
0.05
0.49
0.03
0.37
0.19
0.73
8.47
1.03
0.13
0.08
0.14
3.10
0.02
0.20
0.06
0.54
2.68
0.26
1.35
0.00
0.00
0.00
2.44
0.45
0.02
0.00
0.45
0.01
0.36
0.19
0.72
8.47
1.03
0.13
0.06
0.14
3.10
0.01
0.20
0.06
0.54
2.68
0.26
1.35
0.00
0.00
0.00
a A total of 40 samples were collected and analyzed by GC/MD.
b The percent of the total In which the compound was identified.
c The arithmetic average concentration of all the compound identification cases.
d The arithmetic average concentration of all the sample cases using half the
MDL values for compounds not detected.
e The arithmetic average concentration of all the sample cases using zero
for compounds not detected.
298-017-70/c«h.117op
NMOC Ftrul Report
6-4
-------
Table 6-3
1992 Air Toxic Compounds Frequency of Occurance
Range for Frequency
of Occurance
Target Compounds
95 to 100%
Propylene
Chloroform
1,1,1 -Trichloroethane
Benzene
Carbon tetrachloride
Trichloroethylene
Toluene
Tetrachloroethylene
Ethylbenzene
m/p-Xylene/Bromoform
Styrene
o-Xylene/1,1,2,2-
Tetrachloroethane
50 to 75%
Chloromethane
1,1-Dichloroethane
1,2-Dichloroethane
Chlorobenzene
m-Dichlorobenzene
p-Dichlorobenzene
o-Dichlorobenzene
>0to 20%
1,3-Butadiene
Chloromethane
Methylene chloride
t-1,2-Dichloroethylene
1,2-Dichloropropane
n-Octane
Zero
Acetylene
Vinyl chloride
Bromomethane
Chloroprene
Bromochloromethane
Bromodichloromethane
cis-1,3-Dichloropropylene
trans-1,3-
Dichloropropylene
1,1,2-Trichloroethane
Dibromochloromethane
288-017-70/e*U 17op
NMOC Find fUport
6-5
-------
6.2 Site Results
Tables 6-4 through 6-8 give 3-hour ambient air concentrations by site code
for the 38 air toxics target compounds. The overall site means range from 2.056
ppbv for PLNJ to 3.169 for NWNJ. Appendix H tabulates the complete analytical
results and included the NMOC concentrations for each of the 3-hour air toxics
samples.
298-017-70/c«h.117oo
NMOC Find Report
6-6
-------
Table 6-4. Air Toxics Compound Identifications for Birmingham, Alabama (B1AL)
Compound Cases (a)
ropylene
hloromethane
lethylene chloride
1 -Dichloroethane
hloroform
2-Dfchloroethane
1 , 1 -Trichloroethane
enzene
arbon tetrachlorlde
2-Dichloropropane
•ichloroethylene
Dluene
strachloroethylene
hlorobenzene
thy) benzene
i/p-Xylene/Bromoform
tyrene
-Xylene/1 ,1 ,2,2-Tetrachloroethane
i-Dichlorobenzene
•Dichlorobenzene
•Dichlorobenzene
8
2
2
8
8
5
8
8
8
1
8
8
8
6
8
8
8
8
6
7
6
Minimum Maximum
ppbv ppbv
0.56
0.42
1.22
0.12
0.07
0.39
0.47
0.36
0.12
1.14
0.04
0.77
0.03
0.02
0.12
0.55
0.04
0.30
0.09
0.02
0.08
4.82
0.89
4.52
1.08
0.27
4.71
1.47
2.24
0.14
1.14
0.13
5.58
0.68
0.11
1.03
5.17
0.69
2.66
0.14
0.14
0.15
Mean (b)
ppbv
2.38
0.66
2.87
0.55
0.17
1.53
0.89
1.12
0.13
1.14
0.09
2.80
0.17
0.06
0.56
2.75
0.33
1.32
0.12
0.08
0.11
Mean (b)
ug/m3
4.16
1.37
10.13
2.27
0.84
6.29
4.96
3.65
0.82
5.35
0.48
10.74
1.18
0.30
2.46
53.22
1.41
15.02
0.72
0.48
0.69
Mean (c)
ppbv
2.38
0.24
0.76
0.55
0.17
0.96
0.89
1.12
0.13
0.16
0.09
2.80
0.17
0.05
0.56
2.75
0.33
1.32
0.09
0.07
0.09
Mean (d)
ppbv
2.38
0.16
0.72
0.55
0.17
0.96
0.89
1.12
0.13
0.14
0.09
2.80
0.17
0.05
0.56
2.75
0.33
1.32
0.09
0.07
0.09
A total of 8 samples were collected and analyzed by GC/MD.
The arithmetic average concentration of all the compound identification cases.
The arithmetic average concentration of all the sample cases using half the
MDL values for compounds not detected.
The arithmetic average concentration of all the sample cases using zero
6-7
:M-Ol7-70/c«h.117op
NMOC Find R«part
-------
Table 6-5. Air Toxics Compound Identifications for Birmingham, Alabama (B2AL)
Compound
Propylene
Chloromethane
Methylene chloride
1,1-Dichloroethane
Chloroform
1 ,2-Dichloroethane
1,1,1-Trichloroethane
Benzene
Carbon tetrachloride
Trichloroethylene
Toluene
Tetrachloroethytene
Chlorobenzene
Ethyl benzene
m/p-Xylene/Bromoform
Styrene
o-Xylene/1 ,1 ,2,2-Tetrachloroethane
m-Dichlorobenzene
p-Dichlorobenzene
o-Dichlorobenzene
Cases (a)
7
2
2
2
8
5
8
8
8
8
8
8
3
8
8
8
8
6
7
6
Minimum
ppbv
0.27
0.45
0.44
0.14
0.05
0.08
0.29
0.15
0.09
0.01
0.14
0.01
0.02
0.02
0.11
0.03
0.03
0.03
0.03
0.04
Maximum
ppbv
2.62
0.78
1.02
0.32
0.10
0.55
0.50
0.56
0.13
0.04
0.91
0.04
0.02
0.16
0.80
0.12
0.38
0.08
0.04
0.11
Mean (b)
ppbv
1.05
0.62
0.73
0.23
0.08
0.33
0.40
0.30
0.11
0.02
0.56
0.02
0.02
0.09
0.43
0.08
0.18
0.05
0.04
0.07
Mean (b)
ug/m3
1.84
1.29
2.58
0.95
0.39
1.37
2.24
0.97
0.71
0.12
2.14
0.10
0.09
0.39
8.27
0.34
2.02
0.33
0.22
0.45
Mean (c)
ppbv
0.93
0.23
0.22
0.07
0.08
0.22
0.40
0.30
0.11
0.02
0.56
0.02
0.01
0.09
0.43
0.08
0.18
0.04
0.04
0.06
Mean
PPl
C
C
C
0
C
C
0
C
c
c
c
c
c
c
c
c
c
c
(
(
a A total of 8 samples were collected and analyzed by GC/MD.
b The arithmetic average concentration of all the compound identification cases.
c The arithmetic average concentration of all the sample cases using half the
MDL values for compounds not detected.
d The arithmetic average concentration of all the sample cases using zero
6-8
298-017-70/c«h.n7op
NMOC Find R«port
-------
Table 6-6. Air Toxics Compound Identifications for Birmingham, Alabama (B3AL)
Compound Cases (a)
•opylene
hloromethane
hloroethane
ethylene chloride
1-Dichloroethane
hloroform
2-Dichloroethane
1 ,1 -Trichloroethane
enzene
arbon tetrachloride
Ichloroethylene
Dluene
atrachloroethylene
hlorobenzene
thyl benzene
i/p-Xylene/Bromoform
tyrene
-Xylene/1 ,1 ,2,2-Tetrachloroethane
i-DicNorobenzene
-Dichlorobenzene
•Dichlorobenzene
8
7
1
1
3
8
1
8
8
8
6
8
8
1
8
8
8
8
2
3
3
Minimum Maximum Mean (b)
ppbv ppbv ppbv
0.34
0.22
0.10
3.79
0.23
0.04
0.99
0.32
0.12
0.10
0.01
0.17
0.01
0.04
0.02
0.10
0.02
0.07
0.08
0.02
0.07
1.93
1.44
0.10
3.79
0.38
0.23
0.99
1.29
0.73
0.14
0.09
1.68
0.30
0.04
0.29
1.29
0.19
0.55
0.08
0.07
0.22
1.03
0.74
0.10
3.79
0.32
0.12
0.99
0.68
0.42
0.11
0.04
0.84
0.11
0.04
0.11
0.53
0.08
0.27
0.08
0.04
0.16
Mean (b)
ug/m3
1.80
1.55
0.27
13.38
1.30
0.60
4.07
3.77
1.35
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Mean (c)
ppbv
1.03
0.66
0.06
0.52
0.13
0.12
0.14
0.68
0.42
0.11
0.03
0.84
0.11
0.01
0.11
0.53
0.08
0.27
0.02
0.02
0.06
Mean (d)
ppbv
1.03
0.65
0.01
0.47
0.12
0.12
0.12
0.68
0.42
0.11
0.03
0.84
0.11
0.01
0.11
0.53
0.08
0.27
0.02
0.02
0.06
A total of 8 samples were collected and analyzed by GC/MD,
The arithmetic average concentration of all the compound identification cases.
The arithmetic average concentration of all the sample cases using half the
MDL values for compounds not detected.
The arithmetic average concentration of all the sample cases using zero
298-017-70/c«h. 117o*
NMOC fin* FtcpoiT
6-9
-------
Table 6-7. Air Toxics Compound Identifications for Newark, New Jersey (NWNJ)
Compound
Propylene
Chloromethane
Methytene chloride
trans- 1 ,2-Dichloroethylene
1,1-Dichloroethane
Chloroform
1 ,2-Dichloroethane
1,1,1 -Trichloroethane
Benzene
Carbon tetrachloride
1 ,2-Dichloropropane
Trichloroethylene
Toluene
n-Octane
Tetrachloroethylene
Chlorobenzene
Ethyl benzene
m/p-Xylene/Bromoform
Styrene
o-Xylene/1 ,1 ,2,2-Tetrachloroethane
m-Dichlorobenzene
p-Dichlorobenzene
o-Oichlorobenzene
Cases (a)
8
7
2
2
4
8
7
8
8
8
1
8
8
1
8
7
8
8
8
8
2
7
4
Minimum
ppbv
1.30
0.57
2.86
0.12
0.27
0.14
0.95
4.42
0.75
0.14
1.34
0.10
2.14
0.31
0.07
0.07
0.36
1.77
0.24
0.90
0.20
0.11
0.17
Maximum
ppbv
3.60
1.19
3.03
0.38
0.48
0.38
1.76
253.06
1.37
0.16
1.34
0.79
6.01
0.31
0.92
0.18
0.97
4.59
0.74
2.19
0.21
0.20
0.23
Mean (b)
ppbv
2.57
0.89
2.95
0.25
0.37
0.25
1.36
37.87
1.01
0.14
1.34
0.34
3.83
0.31
0.38
0.11
0.63
3.00
0.47
1.44
0.21
0.15
0.21
Mean (b)
ug/m3
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Mean (c) Meai
ppbv pp
2.57
0.78
0.74 i
0.06
0.19 i
0.25 i
1.19
37.87 3
1.01
0.14
0.17
0.34
3.83
0.04
0.38
0.09
0.63
3.00
0.47
1.44
0.05
0.13
0.10
a A total of 8 samples were collected and analyzed by GC/MD.
b The arithmetic average concentration of all the compound identification cases.
c The arithmetic average concentration of all the sample cases using half the
MDL values for compounds not detected.
d The arithmetic average concentration of all the sample cases using zero
298-017-70/c«h.117op
NMOC Final Report
6-10
-------
Table 6-8. Air Toxics Compound Identifications for Plainfleld, New Jersey (PLNJ)
Compound
ropyiene
hloromethane
3-Butadiene
lethylene chloride
,1-Dichloroethane
hloroform
2-Dichloroethane
,1,1-Trichloroethane
enzene
arbon tetrachloride
rlchloroethytene
oluene
etrachloroethylene
Morobenzene
thy) benzene
i/p-Xylene/Bromoform
tyrene
-Xylene/1 ,1 ,2,2-Tetrachloroethane
vDichforobenzene
-Dichlorobenzene
^Dichlorobenzene
Cases (a)
8
6
3
1
7
8
3
8
8
8
8
8
8
6
8
8
7
8
1
6
4
Minimum
ppbv
1.38
0.51
0.09
1.02
0.16
0.11
0.54
0.84
0.60
0.13
0.05
1.50
0.14
0.05
0.22
1.20
0.19
0.61
3.08
0.09
0.13
Maximum
ppbv
8.96
1.02
0.41
1.02
1.89
0.76
5.23
4.67
4.09
0.28
0.58
17.40
0.58
0.52
3.62
19.22
0.81
10.12
3.08
0.36
0.21
Mean (b)
ppbv
5.29
0.65
0.20
1.02
1.02
0.34
3.06
2.49
2.28
0.15
0.20
7.46
0.31
0.16
1.31
6.68
0.41
3.56
3.08
0.22
0.16
Mean (b)
ug/m3
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Mean (c)
ppbv
5.29
0.49
0.08
0.13
0.90
0.34
1.15
2.49
2.28
0.15
0.20
7.46
0.31
0.12
1.31
6.68
0.36
3.56
0.39
0.17
0.08
Mean (d)
ppbv
5.29
0.49
0.08
0.13
0.90
0.34
1.15
2.49
2.28
0.15
0.20
7.46
0.31
0.12
1.31
6.68
0.36
3.56
0.39
0.17
0.08
A total of 8 samples were collected and analyzed by GC/MD.
i The arithmetic average concentration of all the compound identification cases.
The arithmetic average concentration of all the sample cases using half the
MDL values for compounds not detected.
I The arithmetic average concentration of all the sample cases using zero
288-017-70/cih.117op
NMOC Final fepert
6-11
-------OCR error (C:\Conversion\JobRoot\00000407\tiff\2000D6RB.tif): Saving image to "C:\Conversion\JobRoot\00000407\tiff\2000D6RB.T$F.T$F" failed.
-------OCR error (C:\Conversion\JobRoot\00000407\tiff\2000D6RC.tif): Unspecified error
-------
C*i
Electrolytic
Conductivity Detector
Photoionization
Detector
Flame lonization
Detector
Electron Capture
Detector
Cryogenic Liquid
Nitrogen Inlet
PE Nelson Analytical
A/D Interfaces (Series 900)
J & W DB 1 Capillary Columns
1(i film thickness
60m x 0.32 mm
Hewlett Packard
5890 Series II
Gas Chromatograph
Figure 7-2. Gas Chromatographic Multidetector System with Data Acquisition System
2-93-35918
-------
Table 7-1
Three-hour Air Toxics Target Compounds
Actylene
Propylene
Chloromethane
Vinyl Chloride
1,3-Butadiene
Bromomethane
Ch'—oethane
Meuiylene Chloride
trans-1,2-Dichloroethylene
1,1 -Dichloroethylene
Chloroprene
Bromochloromethane
Chloroform
1,2-Dichloroethane
Chloroprene
1,2-Dichloroethane
1,1,1 -Trichloroethane
Benzene
Carbon tetrachloride
1,2-Dichloropropane
Bromodichloromethane
Trichloroethylene
cis-1,3-Dichloropropylene
trans-1,3-Dichloropropylene
1,1,2-Trichloroethane
Toluene
Dibromochloromethane
n-Octane
Tetrachloroethylene
Chlorobenzene
Ethylbenzene
m/p-Xylene/Bromoform
Styrene
o-Xylene/1,1,2,2-Tetrachloroethane
m-Dichlorobenzene
p-Dichlorobenzene
o-Dichlorobenzene
298-017-70/cih.117op _ .
NMOC firwl R«port 7-4
-------
The Hewlett Packard® 5890 gas chromatograph system consists of a FID,
PID, and ECD. The system uses one column (J & W DB-1®, 60M x 0.32mm, and
1//m film thickness) which is split by a 1:10 splitter before the PID. The one-tenth
portion of the splitter goes to the ECD. The nine-tenth portion of the splitter goes
to the PID and then to the FID. Compound identification is made using a
combination of retention time, ratios of PID/FID and/or ECD/FID responses, and
analyst experience and judgment. Quantitation is performed using the FID
response, with the exception of halogenated compounds that are quantitated using
the ECD. Propylene, vinyl chloride, 1,3-butadiene, trans-1,2-dichloroethylene, and
chloroprene are quantitated from the PID as the FID has interference peaks with
these compounds. The sample concentrations are calculated by using the monthly
calibration curve and daily standards' response factors times the samples' area
counts of each target compound.
7.2 Three-Hour Air Toxics Sampling Systems Certification
The sampling systems used to collect 3-hour air toxics samples were
certified for use per the specifications described in U.S. EPA Compendium of
•Methods TO-14.13
7.2.1 Sampler Certification Blanks-Humidified Zero Air
Zero certification consisted of purging the sampler with cleaned, humidified
air, followed by collection a sample of the cleaned,dried air that had been
humidified through the purged NMOC samplers for GC/MD analysis. The purpose
of the wet purge was to help remove any adherent contaminant from the sampler.
The chromatograms from these certification sample analyses were archived for
each sampler. Results showed a range of 0.005 ppmC to 0.0098 ppmC of NMOC,
with an average of 0.0067 ppmC. The sampling systems were determined to be
clean and showed no characteristics of additive bias.
298-017-70/eth,117op
NMOC Firwl Report 7-5
-------
7.2.2 Sampler Certification Challenge - Selected Target Compound
Following the NMOC sampler blank certification, a challenge gas containing
five selected target compounds was passed through the samplers. The average
concentration of the compounds in the challenge gas was 10.31 ppbv/species.
Average percent recoveries ranged from 102.14% to 104.29% with an overall
average of 103.53 percent.
7.3 Calibration Standard Preparation
Calibration curves for the multi-detector include a 5-point calibration initially,
and daily calibration checks at an average 5 ppbv concentration for the target
compounds. The origin of the calibration curve will be used as on of the
calibration points.
7.3.1 Calibration Standard Generation
A monthly calibration of the target compounds is performed by analyzing
humidified standards prepared at levels of about 0.5, 1, 3, 5, and 10 ppbv from
Scott Specialty Gases certified standards. A standard prepared at a level of about
3 ppbv from a Scott Specialty Gases certified standard was used for daily
calibration. These standards were prepared by using the dynamic flow dilution
system. The gases from Scott are mixed in a SUMMA®-treated mixing sphere and
bled into evacuated canisters. One dilution air stream is routed through a
SUMMA®-treated bubbler containing HPLC-grade water to humidify, and the other
stream is not humidified. The dilution air streams are brought together for mixing
with the streams for the Scott certified cylinders. Flow rates from all five streams
(four from the certified cylinders and from the dilution cylinder) are gauged and
controlled by mass flow controllers. The split air dilution streams are metered by
"wet" and "dry" rotameters from the humidified and unhumidified dilutions air
streams respectively. The system is evacuated with a vacuum pump while the
298-017-70/c«h.117op
NMOC Find Report
7-6
-------
closed canister is connected. A precision absolute pressure gauge measures the
canister pressure before and after filling. The lines leading to the canister and to
the mixing sphere are flushed for at least 15 minutes with standard gas before
being connected to the canister for filling.
7.3.2 GC/MD Calibration
Initial calibration curve standards are made at 0.5, 1, 3, 5, and 10 ppbv for
each of the target compounds. In addition, the point at 0, 0 is considered to be a
calibration point. A linear regression is done for each of the compounds and the
linear regression coefficient is expected to be 0.995 or better for selected
compounds on the detector used for quantitation. The zero air used for canister
cleaning and for standards dilution is analyzed at the time of calibration but the
results are not used in the calibration curve. Daily calibration is done with in-house
standards made from Scott certified gases with an average concentration of
5 ppbv.
All daily calibration data are used to calculated calibration factors for each
compound on each detector. Minima, means, maxima, and standard deviations are
recorded and tabulated for each detector. The FID calibration factors are used for
quantitation for the majority of compounds except some of the halocarbons. The
ECD calibration factors are used in most cases of halogenated compound
quantitation because of the greater sensitivity of the ECD at low concentrations.
Propylene, vinyl chloride, 1,3-butadiene, trans-1,2-dichloroethylene, and
chloroprene are quantitated from the PID as the FID has interference peaks with
these compounds.
298-017-70/e«h.117op
NMOC Firwl R»port /-/
-------
7.4 Daily Calibration Check
Prior to sample analysis, a 5 ppbv standard was analyzed to assure the
validity of the current monthly response factor. This daily check was at the middle
range of the calibration curve to show consistency with the monthly calibration
curve. The daily standard concentrations and area counts for each compound
were entered into a spreadsheet. The result response factors of each compound
were compared to the monthly calibration curve's response factors. An absolute
valve of the of less than or equal to 30% was acceptable for the quantitated
compounds. If the first check doesn't meet this criterion, a second standard may
be analyzed, if it passes wet zero analysis may proceed. If the second check
doesn't pass, a leak check and system maintenance should be done. If the system
maintenance is completed and another standard analysis meets the criterion then
analyses may proceed. If the maintenance has caused too great a change in the
system response, a new calibration curve will be analyzed and a carbon response
factors established before sample analyses will proceed. After acceptance of the
daily standard, a wet zero was analyzed. Less than 0.2 ppbv was acceptable
except for known detector interferences and the samples would be analyzed. If
more than 0.2 ppbv concentration was found, a second wet zero would be run. If
a second wet zero failed, system maintenance would be done. A wet zero would
be run again and if it passed, the samples would be analyzed.
7.5 Gas Chromatograph/Mass Spectrometer Analysis and Compound
Identification Confirmation
Five of the 3-hour air toxics samples were analyzed by GC/MS for compound
identification confirmation following completion of the GC/MD analyses. So that
the sensitivity of the GC/MS compared favorably with that of the GC/MD, the
GC/MS was operated in the multiple ion detection (MID) mode, and the sample
volume was about 500-mL (compared to 250-MI for the GC/MD analyses).
298-017-70/c«h.117op
NMOC Final (topert
-------
No comparison of the quantitative results for GC/MD and GC/MS was made
because the purpose of the GC/MS analyses was compound identification
confirmation only. This comparison is discussed below in Section 7.6.1.
7.6 QA/QC Data
Precision was estimated from duplicate samples and repeated analysis.
Table 7-2 summarizes the duplicate and replicate analyses performed on the five
3-hour air toxics samples. Columns headed D1, D2, and R2 were taken from the
tables in Appendix H. D1 and D2 show the results of the samples in duplicate
canisters 1 and 2, respectively. R2 shows the results of the second analysis of
duplicate canister D2. From the replicate analyses, R2 and D2, the analytical
precision may be estimated, and from the duplicate canister analyses, the sampling
and analytical precisions may be estimated.
In the columns under "Replicate Analyses", Replicate Average, Standard
Deviation, %CV, and Abs %Diff represent the average concentrations (in
analyses D2 and R2), the standard deviation (between analyses D2 and R2), %CV
(Standard Deviation/Average * 100), and the absolute percent difference,
respectively. Note that average concentrations range between less than detection
limit « 0.004) to 20.79 ppbv. Percent CV for replicates ranges from 0.00 to
117.85 %, and absolute percent difference ranges from 0.00 to 117.85 percent.
The pooled %CV is 16.42 while the average absolute percent difference is 18.73.
These are excellent results, considering the small number of samples involved, and
compare favorably with previous 3-hour air toxics replicate analysis results.
Duplicate sample statistics are shown in the last four columns of Table 7-2.
Duplicate average represents the best estimate of the sample mean. It was
calculated first by average D2 and R2 analyses in the first duplicate canister and
then averaging the first average with D1. The duplicate standard deviation was
calculated using the average of D2 and R2 and comparing it with D1. The %CV
298-017-70/Mh. 117op
NMOC Firnl R»port 7~9
-------
Table 7-2. 1992 NMOC 3-Hour Replicates and Duplicates, ppbv
Site Compound
B1AL Propylene
B1 AL 1,1 -Dichloroethane
B1AL Chloroform
B1 AL 1 ,2-Dichloroethane
B1AL 1,1,1-Trichloroethane
B1AL Benzene
B 1 AL Carbon tetrachloride
B 1 AL 1 , 2-Dichloropropane
B1AL Trichloroethylene
B1AL Toluene
B1AL Tetrachloroethylene
B 1 AL Chlorobenzene
B1AL Ethylbenzene
B 1 AL m/p-Xy lene/Bromof orm
B1AL Styrene
B1AL o-Xylene/1,1,2,2-Tetrach!oroethane
B1AL m-Oichlorobenzene
B 1 AL p-Dichlorobenzene
B1AL o-Dichlorobenzene
B2AL Propylene
B2AL Chloromethane
B2AL Methylene Chloride
B2AL 1,1 -Dichloroethane
B2AL Chloroform
D1
2.30
0.44
0.26
<0.04
0.95
1.03
0.14
<0.04
0.14
2.61
0.11
0.07
0.72
3.28
0.30
1.43
0.14
0.10
0.11
1.03
<0.20
<0.11
0.14
0.09
D2
2.45
0.44
0.22
<0.04
0.92
1.00
0.13
<0.04
<0.004
2.63
0.10
<0.02
0.70
3.24
0.27
1.39
<0.02
0.05
0.08
0.92
0.62
<0.11
0.14
0.08
R2
2.20
0.44
0.21
3.06
0.83
0.98
0.11
1.14
0.10
2.45
0.09
<0.02
0.65
3.01
0.24
1.27
0.09
0.06
<0.02
1.19
0.94
0.44
<0.04
0.07
Replicate Analyses
Replicate
Avg
2.325
0.440
0.215
0.875
0.990
0.120
2.540
0.095
0.675
3.125
0.255
1.330
0.055
1.055
0.780
0.075
Standard
Deviation
0.177
0.000
0.007
0.064
0.014
0.014
0.127
0.007
0.035
0.163
0.021
0.085
0.007
0.191
0.226
0.007
%CV
7.603
0.000
3.289
7.273
1.428
1 1 .785
5.011
7.443
5.238
5.204
8.319
6.380
12.856
18.097
29.010
9.428
Abs
%Diff
10.753
0.000
4.651
10.286
2.020
16.667
7.087
10.526
7.407
7.360
11.765
9.023
18.182
25.592
41 .026
13.333
Duplicate
Avg
2.313
0.440
0.238
0.913
1.010
0.130
2.575
0.103
0.698
3.203
0.278
1.380
0.078
1.043
0.083
Duplicate
Standard
Deviation
0.018
0.000
0.032
0.053
0.028
0.014
0.049
0.011
0.032
0.110
0.032
0.071
0.032
0.018
0.011
Analyses
%CV
0.764
0.000
13.398
5.812
2.800
10.879
1.922
10.348
4.562
3.422
11.467
5.124
41.058
1.696
12.856
Abs
%Diff
1.081
0.000
18.947
8.219
3.960
15.385
2.718
14.634
6.452
4.840
16.216
7.246
58.065
2.398
18.182
-------
Table 7-2. Continued
Site Compound
B2AL 1,2-Dichloroethane
B2AL 1,1,1 -Trichloroethane
B2AL Benzene
B2AL Carbon tetrachlonde
B2AL Trichloroethylene
B2AL Toluene
B2AL Tetrachloroethylene
B2AL Ethylbenzene '
B2AL m/p-Xylene/Bromoform
B2AL Styrene
B2AL o-Xylene/1,1,2,2-Tetrachloroethane
B2AL m-Dichlorobenzene
B2AL p-Dichlorobenzene
B2AL o-Dichlorobenzene
B3AL Propylene
B3AL Chloromethane
B3AL Chloroethane
B3 AL 1 , 1 -Dichloroethane
B3AL Chloroform
B3AL 1 ,2-Dichloroethane
B3AL 1,1,1 -Trichloroethane
B3AL Benzene
B3AL Carbon tetrachloride
B3AL Trichloroethylene
D1
0.56
0.47
0.40
0.13
0.03
0.74
0.01
0.14
0.66
0.12
0.28
0.07
0.04
0.07
2.37
1.34
0.10
0.35
0.26
1.00
1.32
0.78
0.15
0.11
D2
0.53
0.38
0.38
0.14
0.03
0.93
0.02
0.14
0.70
0.13
0.30
0.06
0.04
0.12
1.20
0.85
<0.10
0.34
0.23
1.00
1.34
0.66
0.13
0.09
R2
0.55
0.36
0.38
0.12
0.02
0.92
0.01
0.12
0.61
0.10
0.28
0.04
0.04
0.10
2.23
<0.20
<0.10
0.34
0.20
0.97
1.21
0.75
0.14
0.07
Replicate
Avg
0.540
0.370
0.380
0.130
0.025
0.925
0.015
0.130
0.655
0.115
0.290
0.050
0.040
0.110
1.715
0.340
0.215
0.985
1.275
0.705
0.135
0.080
Replicate
Standard
Deviation
0.014
0.014
0.000
0.014
0.007
0.007
0.007
0.014
0.064
0.021
0.014
0.014
0.000
0.014
0.728
0.000
0.021
0.021
0.092
0.064
0.007
0.014
Analyses
%CV
2.619
3.822
0.000
10.879
28.284
0.764
47.140
10.879
9.716
18.446
4.877
28.284
0.000
12.856
42.468
0.000
9.867
2.154
7.210
9.027
5.238
17.678
Abs
%Diff
3.704
5.405
0.000
15.385
40.000
1.081
66.667
15.385
13.740
26.087
6.897
40.000
0.000
18.182
60.058
0.000
13.953
3.046
10.196
12.766
7.407
25.000
Duplicate
Avg
0.550
0.420
0.390
0.130
0.028
0.833
0.013
0.135
0.658
0.118
0.285
0.060
0.040
0.090
2.043
0.345
0.238
0.993
1.298
0.743
0.143
0.095
Duplicate
Standard
Deviation
0.014
0.071
0.014
0.000
0.004
0.131
0.004
0.007
0.004
0.004
0.007
0.014
0.000
0.028
0.463
0.007
0.032
0.011
0.032
0.053
0.011
0.021
Analyses
%CV
2.571
16.836
3.626
0.000
12.856
15.713
28.284
5.238
0.538
3.009
2.481
23.570
0.000
31.427
22.676
2.050
13.398
1.069
2.452
7.142
7.443
22.330
Abs
%Diff
3.636
23.810
5.128
0.000
18.182
22.222
40.000
7.407
0.760
4.255
3.509
33.333
0.000
44.444
32.069
2.899
18.947
1.511
3.468
10.101
10.526
31 .579
-------
Table 7-2. Continued
Site Compound
B3AL Toluene
B3AL Tetrachloroethylene
B3AL Chlorobenzene
B3AL Ethylbenzene
B3AL m/p-Xylene/Bromoform
B3AL Styrene
B3AL o-Xylene/1 ,1 ,2.2-Tetrachloroethane
B3AL m-Dichlorobenzene
B3AL p-Dichlorobenzene
B3AL o-Dichlorobenzene
j
A NWNJ Propylene
0 NWNJ Chloromethane
NWNJ 1 , 1 -Dichloroethane
NWNJ Chloroform
NWNJ 1,2-Dichloroethane
NWNJ 1,1,1-Trichloroethane
NWNJ Benzene
NWNJ Carbon tetrachloride
NWNJ Trichloroethylene
NWNJ Toluene
NWNJ Tetrachloroethylene
NWNJ Chlorobenzene
NWNJ Ethylbenzene
NWNJ m/p-Xylene/Bromoform
D1
1.87
0.30
<0.02
0.34
1.47
0.22
0.60
0.11
0.09
0.33
2.12
0.92
<0.04
0.38
1.73
7.44
1.32
0.14
0.37
5.64
0.90
0.10
0.92
4.44
D2 R2
1.40 1.76
0.25 0.26
0.04 <0.02
0.22 0.30
1.06 1.35
0.18 0.18
0.54 0.52
0.08 0.05
0.06 0.05
0.18 0.06
2.29
1.17
0.48
0.38
1.76
7.65
1.37
0.14
0.39
6.01
0.92
0.13
0.97
4.59
Replicate Analyses
Replicate Standard
Avg Deviation
1.580 0.255
0.255 0.007
0.260 0.057
1.205 0.205
0.180 0.000
0.530 0.014
0.065 0.021
0.055 0.007
0.120 0.085
Abs
%CV % Diff
16.111 22.785
2.773 3.922
21.757 30.769
17.018 24.066
0.000 0.000
2.668 3.774
32.636 46.154
12.856 18.182
70.711 100.000
Duplicate Analyses
Duplicate
Avg
1.725
0.278
0.300
1.338
0.200
0.565
0.088
0.073
0.225
2.205
1.045
0.380
1.745
7.545
1.345
0.140
0.380
5.825
0.910
0.115
0.945
4.515
Standard
Deviation
0.205
0.032
0.057
0.187
0.028
0.049
0.032
0.025
0.148
0.120
0.177
0.000
0.021
0.148
0.035
0.000
0.014
0.262
0.014
0.021
0.035
0.106
%CV
11.888
11.467
18.856
14.010
14.142
8.761
36.365
34.136
65.997
5.452
16.916
0.000
1.216
1.968
2.629
0.000
3.722
4.491
1.554
18.446
3.741
2.349
Abs
%Diff
16.812
16.216
26.667
19.813
20.000
12.389
51.429
48.276
93.333
7.710
23.923
0.000
1.719
2.783
3.717
0.000
5.263
6.352
2.198
26.087
5.291
3.322
-------
Table 7-2. Continued
Site Compound
NWNJ Styrene
NWNJ o-Xylene/1,1.2,2-Tetrachloroethane
NWNJ p-Dichlorobenzene
NWNJ o-Oichlorobenzene
NWNJ Propylene
NWNJ Chloromethane
NWNJ 1 , 1 -Dichloroethane
NWNJ Chloroform
NWNJ 1,2-Dichloroethane
*H NWNJ 1,1,1-Trichloroethane
CO NWNJ Benzene
NWNJ Carbon tetrachloride
NWNJ Trichloroethylene
NWNJ Toluene
i
NWNJ Tetrachloroethylene
NWNJ Chlorobenzene
NWNJ Ethylbenzene
NWNJ m/p-Xylene/Bromoform
NWNJ Styrene
NWNJ o-Xylene/1 , 1 ,2,2-Tetrachloroethane
NWNJ m-Dichlorobenzene
NWNJ p-Dichlorobenzene
NWNJ o-Dichlorobenzene
PLNJ Propylene
D1
0.74
2.14
0.18
0.23
3.21 .
0.72
<0.04
0.15
1.01
5.36
0.96
0.15
0.20
3.28
0.08
0.14
0.71
3.75
0.43
1.59
<0.02
0.13
0.22
0.98
D2
0.47
2.19
0.20
<0.02
3.25
0.63
<0.04
0.15
0.92
5.20
0.93
0.15
1.98
2.80
0.07
0.13
0.75
3.86
0.52
1.56
<0.02
0.12
0.22
1.68
R2
3.13
0.93
0.31
0.13
0.94
4.77
0.72
0.13
0.18
2.02
0.05
0.10
0.59
3.08
0.35
1.40
0.20
0.14
0.15
1.47
Replicate Analyses
Replicate
Avg
3.190
0.780
0.140
0.980
4.985
0.825
0.140
1.080
2.410
0.060
0.115
0.670
3.470
0.435
1.480
0.130
0.185
1.575
Standard
Deviation
0.085
0.212
0.014
0.014
0.304
0.148
0.014
1.273
0.552
0.014
0.021
0.113
0.552
0.120
0.113
0.014
0.049
0.148
%CV
2.660
27.196
10.102
1.521
6.099
17.999
10.102
117.851
22.886
23.570
18.446
16.886
15.895
27.634
7.644
10.879
26.755
9.428
Abs
%Diff
3.762
38.462
14.286
2.151
8.626
25.455
14.286
166.667
32.365
33.333
26.087
23.881
22.478
39.080
10.811
15.385
37.838
13.333
Duplicate Analyses
Duplicate
Avg
0.605
2.165
0.190
3.200
0.750
0.145
0.970
5.173
0.893
0.145
0.640
2.845
0.070
0.128
0.690
3.610
0.433
1.535
0.130
0.203
1.278
Standard
Deviation
0.191
0.035
0.014
0.014
0.042
0.007
0.057
0.265
0.095
0.007
0.622
0.615
0.014
0.018
0.028
0.198
0.004
0.078
0.000
0.025
0.421
%CV
31.557
1.633
7.443
0.442
5.657
4.877
5.832
5.126
10.696
4.877
97.227
21.623
20.203
13.865
4.099
5.484
0.817
5.067
0.000
12.222
32.934
Abs
%Diff
44.628
2.309
10.526
0.625
8.000
6.897
8.247
7.250
15.126
6.897
137.500
30.580
28.571
19.608
5.797
7.756
1.156
7.166
0.000
17.284
46.575
-------
Table 7-2. Continued
Site Compound
PLNJ Chloromethane
PLNJ 1 , 1 -Dichloroethane
PLNJ Chloroform
PLNJ 1 .1 ,1 -Trichloroethane
PLNJ Benzene
PLNJ Carbon tetrachloride
PLNJ Trichloroethylene
PLNJ Toluene
PLNJ Tetrachloroethylene
PLNJ Ethylbenzene
PLNJ m/p-Xylene/Bromoform
PLNJ o-Xylene/1 , 1 ,2,2-Tetrachloroethane
Average
Median
Cases
Pooled Standard Deviation
Pooled % CV
D1
0.68
<0.04
<0.006
1.06
3.84
0.12
<0.004
16.25
0.57
3.07
16.41
9.13
•
D2
0.55
<0.04
0.12
1.20
4.33
0.13
0.08
17.69
0.60
3.95
20.79
11.26
_
=
=
=
=
R2
0.60
7.19
0.14
1.14
4.11
0.14
0.08
18.26
0.58
3.83
20.46
9.98
Replicate
Avg
0.575
0.130
1.170
4.220
0.135
0.080
17.975
0.590
3.890
20.625
10.620
1.461
0.485
76
Replicate
Standard
Deviation
0.035
0.014
0.042
0.156
0.007
0.000
0.403
0.014
0.065
0.233
0.905
0.240
Analyses
%CV
6.149
10.879
3.626
3.686
5.238
0.000
2.242
2.397
2.181
1.131
8.523
16.423
Abs
%Diff
8.696
15.385
5.128
5.213
7.407
0.000
3.171
3.390
3.085
1.600
12.053
18.733
Duplicate Analyses
Duplicate
Avg
0.628
1.115
4.030
0.128
17.113
0.580
3.480
18.518
9.875
1.542
0.485
89
Standard
Deviation
0.074
0.078
0.269
0.011
1.220
0.014
0.580
2.980
1.054
0.390
%CV
11.832
6.976
6.668
8.319
7.128
2.438
16.662
16.095
10.669
25.294
Abs
%Diff
16.733
9.865
9.429
11.765
10.080
3.448
23.563
22.762
15.089
16.008
-------
for duplicates was calculated as the quotient of the standard deviation and the
average, multiplied by 100. Finally the absolute percent difference was calculated
from the difference between the average concentrations of the duplicate canisters,
divided by the average concentration in the duplicate canisters, expressed as a
percentage. The statistic %CV ranged from 0.00 to 97.23. The pooled %CV was
25.29. Absolute percent difference ranged from 0.00 to 137.50. The average
absolute percent difference for duplicates was 16.87, which is an excellent result.
7.6.1 GC/MS Confirmation Results
Based on five GC/MS analyses of the 3-hour air toxics samples, one from
each site location, the following results were obtained. The GC/MS analyses
confirmed 86.66% of the GC/MD analyses. The results are summarized in
Table 7-3, showing 16.36% positive GC/MD-positive GC/MS confirmation,
11.52% positive GC/MD-negative GC/MS comparisons 1.82% negative GC/MD-
positive GC/MS comparisons, and 70.30% negative GC/MD-negative GC/MS
confirmation.
7.6.2 External Audits
The external audit for the 3-hour air toxics compounds was conducted with
the SNMOC external audit. Table 7-4 presents the results from the external audit.
The external audit sample was provided by a U.S. EPA contractor.
7.7 Data Records
Data records for the 3-hour air toxics samples include:
• NMOC concentration of the sample;
• Copies of the gas chromatographic trace for FID, PID, and ECD;
• Response data on removable hard disk;
288-017-70/c«h.!17op -fie
NMOC Fin* Report /- I 5
-------
Table 7-3
Compound Identification Confirmation
GCWD vemw GC/MS Comparison* ;:
Positive GC/MD - Positive GC/MS
Positive GC/MD - Negative GC/MS
Negative GC/MD - Positive GC/MS
Negative GC/MD - Negative GC/MS
Total
\:;:^:;:-Ca«fit-; '..,•-
27
19
3
116
165
Percentage
16.36
11.52
1.82
70.30
100.00
Total compound identification confirmation = 16.36% + 70.30% = 86.66%
There were 39 cases where the GC/MD identified a compound at a
concentration below the detection limit of the GC/MS.
298-017-70/e«h. 11 Top
NMOC Find Report
7-16
-------
Table 7-4
Three-hour Toxics External Audit Results
Compound
Isopentane
3-Methylpentane
Benzene
Toluene
m-Xylene
p-Xylene
o-Xylene
Spiked
5.0
4.8
5.0
4.7
5.0
4.6
4.9
Reported
__»
__a
2.832
2.516
9.6b
5.986
% Difference
—
—
-43.36
-46.47
0.00
22.16
•Isopentane and 3-Methylpentane are not on the three-hour target compound
list.
bm-Xylene and p-Xylene coelute on the GC/MD.
298-017-70/c«h.117op
NMOC Find Report
7-17
-------
• Retention times for each compound; and
• Area counts for each detector.
In addition, daily calibration response factors are recorded on magnetic disk
along with the retention time and area counts for each compound in the standard.
288-017-70/e«h.117op
NMOC Final ftaport
7-18
-------
8.0 CARBONYL SAMPLING, ANALYSIS, AND
QUALITY ASSURANCE PROCEDURES
Carbonyl sampling and analysis procedures and quality assurance procedures
used to quantify data quality are described in this section.
8.1 Sampling Equipment and Procedures
A schematic diagram of the 3-hour carbonyl sampling sub-system is shown
in Figure 8-1. The 3-hour carbonyl sampling subsystem collects a discrete sample
concurrent with the collection of the NMOC canister sample through the use of a
common control system.
Ambient air was drawn from a glass manifold, through an ozone scrubber,
and then through the carbonyl sample cartridges. The ozone scrubber was
maintained at 200*F to prevent moisture condensation. The carbonyl samples are
collected in duplicate parallel cartridges during each sample collection period. The
carbonyl cartridges used were commercially available (Waters Co.) silica gel Sep-
Pak® cartridge that are coated with DNPH. The carbonyl cartridges are prepared in
batches by the Radian laboratory and stored under refrigeration until shipped to the
field.
The carbonyl cartridges are installed in the sampling sub-system one day
prior to scheduled sample collection. A 3-hour sample collection period, concurrent
with the NMOC canister collection, was utilized. In addition to the carbonyl
cartridges installed in the sampling sub-system, a third cartridge is transported to
the site as a trip blank or spare cartridge.
The flow rates through each of the duplicate carbonyl sample was controlled
by flow restrictors (or critical orifices). The collection flow rates were quantified
and the rotometers were calibrated before the sampling sub-systems were shipped
298-017-70/c«h.117op
NMOC Final Report 8*1
-------
ToNMOC
Collection System
Manifold
-TO
3y-Pas» V7
Pump r~^
iMranjr*
OzorwSc
SeruoMr
Pregrammacl*
Sftctronic
Tlm«r
i
Ur
Ch*M«/l lou>mg
V«nt
Figure 8-1. 3-Hour Carbonyl Sampling Subsystem
298-017-70/c«h.117op
NMOC Find Report
8-2
-------
to the sites. The volume of ambient air sampled through each cartridge was
calculated in the Radian laboratory based on the field-recorded sampling duration
and flow rate information.
8.2 Analytical Procedures
The analytical procedures for carbonyls are given below. Sample preparation
and analyses are performed at the Radian PPK laboratory. The preparation
procedures of the cartridge samples are as follows:
1. Remove cartridge from its shipping container.
2. Attach cartridge to the end of a 10-mL glass syringe.
3. Add four (4) milliliters of acetonitrile to the syringe and catch drainage
in a graduated centrifuge tube.
4. After the syringe has finished draining, add acetonitrile to the
graduated centrifuge tube until the total volume is four (4) milliliters,
and mix the solution.
5. Transfer the solution in the graduated centrifuge tube to a 4-mL
sample vial fitted with a Teflon®-lined self-sealing septum.
6. Store the solution in a refrigerator until analysis.
The U.S. EPA Method TO-11 high pressure liquid chromatography (HPLC) column
and elution solvents used for this analysis were modified to decrease analysis time,
as shown in the following gradient elution at a flow rate of 0.9 ml/min:
Time (Min.)
0.0
12.5
.28.0
35.0
% Water
40
25
15
40
% Acetonitrile
20
5
5
20
% Methanol
40
70
80
40
29*-Ot7-70/c«h.117op
NMOC Final Report 8~3
-------
For the analysis, 24-^/1 samples are injected with an automatic sampling injector.
Compound separation is accomplished using a 25 cm x 4.6 mm C18 5-micron
particle size analytical column. Output signals from a multi-wavelength detector
are collected for 35 minutes at 360 nanometers (nm).
Chromatographic peaks for targeted compounds were determined by
retention time, the area of the integrated peak, and concentrations calculated using
calibration curves.
Targeted carbonyl compounds reported were formaldehyde, acetone,
acetaldehyde, acrolein, propionaldehyde, crotonaldehyde, butyraldehyde,
isobutyraldehyde, benzaldehyde, isovaleraldehyde, valeraldehyde, o-, m-, and p-
tolualdehyde, hexanaldehyde and dimethylbenzaldehyde. All measured
concentrations were reported in parts per billion by volume (ppbv). The results for
the field blanks were also reported in ppbv, assuming the same sample volume as
the accompanying samples.
8.3 Quality Assurance Procedures
Quality assurance procedures relative to calibration data for all of the
analytes and daily quality control procedures are discussed below. Sampling and
analysis precision was determined from the analysis of duplicate field samples and
replicate laboratory analyses. Sample custody records were maintained throughout
the program. Figure 8-2 shows the multipage field data and custody sheet used
for carbonyl sampling documentation. The site operator's task involved
recognizing problems with sampling equipment and procedures, and notifying
Radian personnel at Research Triangle Park so that appropriate corrective action
might be taken. All Radian reported analyses were identified by the unique tube
numbers which were recorded on the preformatted field data sheets.
298-017-70/c«h.117op
NMOC Find Rtport O~4
-------
CORPORATION
Aldehyde Data Sheet
City
SAROAD No. • • • A05
Sample Date
Sampler No.
Cartridge Port A (red) Port B (green)
Tube No.
Lot No.
Rotameter No.
Rotameter Reading1 / (before) Flow Rate2
Rotameter Reading1 / (after* Before
Sampling Time/Duration (hours) After
Sampling Volume3 , (liters) Average
Average Ambient Temperature (C°orF°)
Average Barometric Pressure (mm Hgl
Site Operator
Comments/Remarks
(blank)
>»
Q,
0
o
1
LPM 0
O
o>
a
e
(0
-------
8.4 Calibration Procedures
The instrument was calibrated from 0.5 to 20 /yg/ml nominal concentration
of the derivatized targeted compounds contained in a solution of acetonitrile. The
calibration curve consisted of five (5) concentration levels between 0.5 to
20 //g/ml, and each was analyzed in replicate. A standard linear regression
analysis was performed on the data for each analyte with the acceptance criteria
being that the correlation coefficient must be greater than or equal to 0.995.
Table 8-1 presents the calibration curve summary results. As is indicated, the
correlation coefficients for all compounds met the acceptance criteria.
8.4.1 Daily Quality Control Procedures
Daily calibration checks were used to assure that the analytical procedures
were in control. Daily QC checks were performed after every 10 samples on each
day that samples were analyzed.
8.4.2 Duplicate Samples
Duplicate field samples were collected in duplicate cartridges during each
sampling episode, as shown in Figure 8-1. One set of field duplicates from each
site was prepared and analyzed in replicate to determine both the sampling and
analytical precision.
8.4.3 Trip Blanks
Each carbonyl cartridge was issued a unique serial number for identification
purposes. A total of three cartridges were shipped to a site. Two cartridges were
used to collect the sample, the third tube was called a trip blank and was used to
assess the potential for field contamination. The trip blank cartridge was a
288-017-70/eih.117op
NMOC Final Report 8*6
-------
Table 8-1
1992 NMOC Calibration Curve
Analyte
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
Slope
110853.25
130255.89
95890.10
84338.02
111590.50
126762.08
111917.92
39031.09
111871.46
105984.88
105205.32
88450.37
111555.47
Intercept
-1686.77
-7109.94
-6905.54
-7583.19
-16017.88
-8230.62
-30272.60
-1430.22
-5712.10
-4702.80
-22476.42
-10403.76
-7693.18
R
0.9999
0.9998
0.9998
0.9995
0.9996
0.9997
0.9998
0.9992
0.9996
0.9998
0.9994
0.9998
0.9995
RA2
0.9999
0.9996
0.9997
0.9990
0.9993
0.9994
0.9996
0.9984
0.9992
0.9996
0.9988
0.9995
0.9989
Relative Error
0.5 ug/mL
1.41%
-4.42%
6.28%
5.70%
6.35%
-0.42%
3.37%
-28.76%
-4.47%
-5.26%
-5.98%
3.33%
-8.86%
1.0ug/mL
-5.38%
-9.08%
-10.58%
-16.67%
-17.82%
-10.49%
-16.00%
-3.82%
-4.94%
-8.23%
-7.05%
-13.43%
-6.30%
6.0 uq/mL
-0.17%
0.54%
0.02%
0.56%
0.77%
0.59%
1.00%
0.80%
-1.30%
0.28%
-2.13%
0.25%
-0.71%
12ug/mi_
1.09%
1.73%
1.35%
1.95%
1.87%
1.56%
1.72%
2.31%
2.51%
1.87%
3.68%
1.96%
2.65%
20 ug/mL
-0.37%
-0.66%
-0.47%
-0.73%
-0.72%
-0.60%
-0.69%
-0.91%
-0.80%
-0.69%
-1.18%
-0.71%
-0.90%
00
-------
standardly prepared DNPH-cartridge. The blank cartridge accompanied the
duplicate sample cartridges, but at no time was exposed to ambient air.
One trip blank cartridge from each site was analyzed for the target carbonyl
analytes. The carbonyl sample results presented in this report are not blank
corrected.
8.4.4 Instrument Detection Limits
Instrument detection limits are given in Table 8-2 for the targeted carbonyl
compounds in this study. The detection limits were determined by performing nine
replicate analyses of a standard that was half the concentration of the lowest
calibration standard and following the method listed in the Federal Register,
Appendix B, Part 136.
8.5 Results
The analytical results for the sample analyses, replicate analyses, duplicate
analyses and quality control standards are discussed below.
8.5.1 Sample Results
Analytical results of ambient air samples and trip blanks for carbonyl
compounds at Plainfield, NJ (PLNJ); and Newark, NJ (NWNJ) are given in
Table 8-3 and Table 8-4, respectively. The quality control standards analyzed
during the program indicate that the analyses remained in control throughout the
program as is indicated in Table 8-5. There was a total of four (4) quality control
standards. One quality control standard yielded lowest recoveries, but were within
298-017-70/c«h.117ep
NMOC find Report 8-8
-------
Table 8-2
Detection Limits for Targeted Carbonyl Compounds
Carbonyl
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
Detection Limit tppbv)'
0.25
0.50
0.39
0.35
0.37
0.22
0.27
0.18
0.18
0.19
0.40
0.12
0.20
•Detection limit is based upon an average 150L sample.
NMOC Ftrul Report
8-9
-------
Table 8-3
NMOC 1992 Plainfield, New Jersey Site Carbonyl Results
Radian Sample ID
Sample Volume (L)
Data File ID
Date Sampled
Date Extracted
Date Analyzed
Dilution Factor
Concentrations (ppbv)
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
PLNJ R-2224
158.63
RC232937
9/1/92
11/24/92
11/25/92
1.00
1.32
ND
ND
ND
2.73
ND
ND
ND
ND
0.89
ND
ND
ND
PLNJ G-2244
125.71
RC232936
9/3/92
11/24/92
11/25/92
1.00
11.41
16.43
ND
24.89
4.93
3.79
4.14
1.86
ND
ND
1.69
ND
ND
PLNJ R-2310
158.63
RC232938
9/9/92
11/24/92
11/25/92
1.00
5.10
7.64
2.21
ND
5.57
3.64
4.00
1.41
1.45
ND
1.44
ND
ND
PLNJR-2311
158.63
RC232940
9/10/92
11/24/92
11/25/92
1.00
2.23
6.85
ND
7.14
2.57
ND
3.07
ND
0.73
ND
4.19
ND
ND
PLNJ G-2376
125.71
RC232935
9/11/92
11/24/92
11/25/92
1.00
1.21
ND
2.49
ND
7.85
1.84
ND
ND
ND
ND
ND
ND
ND
00
Q - Estimated concentration is less than the detection limit for the given sample volume
§ - Sample volume is assumed to be the same as the accompanying samples for blank samples
-------
Table 8-3
Continued
Radian Sample ID
Sample Volume (L)
Data File ID
Date Sampled
Date Extracted
Date Analyzed
Dilution Factor
Concentrations (ppbv)
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
PLNJ G-2377
125.71
RC232934
9/15/92
1 1/24/92
1 1/25/92
1.00
1.96
3.85
ND
ND
4.18
ND
ND
ND
ND
ND
ND
ND
ND
PLNJ G-2438
125.71
RC232933
9/18/92
11/24/92
11/25/92
1.00
5.88
10.68
ND
38.93
4.47
1.87
ND
3.40
ND
ND
ND
ND
ND
PLNJ R-2513
158.63
RC232939
9/21/92
11/24/92
11/25/92
1.00
5.20
ND
ND
ND
ND
ND
ND
ND
1.30
ND
ND
ND
ND
PLNJ G-2514
125.71
RC23504
9/22/92
11/24/92
12/15/92
1.00
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
PLNJ B-2587 1
158.63
RC232941
9/29/92
11/24/92
11/25/92
1.00
0.68 §
2.26 §
ND
9.08 §
ND
ND
ND
ND
ND
ND
ND
ND
ND
00
@ - Estimated concentration is less than the detection limit for the given sample volume
§ - Sample volume is assumed to be the same as the accompanying samples for blank samples
-------
Table 8-3
Continued
Radian Sample ID
Sample Volume (L)
Data File ID
Date Sampled
Date Extracted
Date Analyzed
Dilution Factor
Concentrations (ppbv)
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
PLNJ B-2587 2
158.63
RC232942
9/29/92
11/24/92
11/25/92
1.00
0.80 §
3.24 §
ND
8.28 §
ND
ND
ND
ND
ND
ND
ND
ND
ND
PLNJ G-2587 1
125.71
RC232945
9/29/92
11/24/92
11/25/92
1.00
4.04
1.50
ND
ND
6.42
1.99
ND
ND
ND
ND
ND
ND
ND
PLNJ G-2587 2
125.71
RC232946
9/29/92
1 1/24/92
11/25/92
1.00
3.95
2.21
ND
ND
5.96
2.28
ND
ND
ND
ND
ND
ND
ND
PLNJ R-2587 1
158.63
RC232943
9/29/92
11/24/92
11/25/92
1.00
2.91
5.59
ND
9.55
2.58
ND
2.90
ND
ND
ND
ND
ND
ND
PLNJ R-2587 2
158.63
RC232944
9/29/92
11/24/92
11/25/92
1.00
2.68
6.60
ND
10.00
2.81
ND
2.79
ND
ND
ND
ND
ND
ND
00
I
ro
@ - Estimated concentration is less than the detection limit (or the given sample volume
§ - Sample volume is assumed to be the same as the accompanying samples for blank samples
-------
Table 8-4
NMOC 1992 Newark, New Jersey Site Carbonyl Results
Radian Sample ID
Sample Volume (L)
Data File ID
Date Sampled
Date Extracted
Date Analyzed
Dilution Factor
Concentrations (ppbv)
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
NWNJG-2187
157.88
RC232917
9/1/92
11/24/92
11/24/92
1.00
4.59
10.20
ND
15.74
3.33
ND
ND
ND
0.80
0.93
ND
ND
ND
NWNJ B-2239 1
142.29
RC232924
9/3/92
11/24/92
11/24/92
1.00
ND
4.34 §
ND
ND
5.31 §
ND
ND
ND
ND
ND
ND
2.89 §
ND
NWNJ B-2239 2
142.29
RC232925
9/3/92
11/24/92
11/24/92
1.00
ND
3.21 §
ND
ND
6.02 §
ND
ND
ND
ND
0.93 §
ND
2.61 §
ND
NWNJ G-2239 1
157.88
RC232928
9/3/92
11/24/92
1 1/24/92
1.00
6.39
11.44
ND
22.25
3.55
ND
ND
ND
0.85
0.72
ND
3.46
ND
NWNJ G-2239 2
157.88
RC232929
9/3/92
11/24/92
1 1/25/92
1.00
6.55
13.12
ND
22.17
2.94
ND
ND
ND
0.76
0.89
ND
3.67
ND
00
Q - Estimated concentration is less than the detection limit for the given sample volume
§ - Sample volume is assumed to be the same as the accompanying samples for blank samples
-------
Table 8-4
Continued
Radian Sample ID
Sample Volume (L)
Data File ID
Date Sampled
Date Extracted
Date Analyzed
Dilution Factor
Concentrations (ppbv)
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2 , 5-Dimethylbenzaldehyde
NWNJ R-2239 1
142.29
RC232926
9/3/92
11/24/92
11/24/92
1.00
7.26
11.70
ND
20.31
3.21
ND
ND
ND
1.27
1.12
ND
3.31
ND
NWNJ R-2239 2
142.29
RC232927
9/3/92
11/24/92
11/24/92
1.00
7.37
14.93
ND
21.20
3.66
ND
ND
ND
0.97
1.02
ND
3.55
ND
NWNJ R-2326
142.29
RC232921
9/10/92
11/24/92
11/24/92
1.00
3.56
8.39
ND
ND
3.09
1.28
3.08
ND
ND
ND
ND
ND
ND
NWNJ R-2367
142.29
RC232922
9/14/92
11/24/92
11/24/92
1.00
1.50
ND
ND
ND
ND
ND
ND
ND
1.03
1.01
ND
ND
ND
NWNJ G-2397
157.88
RC232916
9/15/92
11/24/92
11/24/92
1.00
1.70
ND
2.73
3.98
ND
1.53
ND
1.57
ND
1.19
ND
ND
ND
00
@ - Estimated concentration is less than the detection limit (or the given sample volume
§ - Sample volume is assumed to be the same as the accompanying samples for blank samples
-------
Table 8-4
Continued
Radian Sample ID
Sample Volume (L)
Data File ID
Date Sampled
Date Extracted
Date Analyzed
Dilution Factor
Concentrations (ppbv)
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
NWNJ R-2491
142.29
RC232920
9/22/92
11/24/92
11/24/92
1.00
3.14
1.25
ND
2.28
ND
1.54
ND
ND
0.83
1.21
ND
ND
ND
NWNJ G-2536
157.88
RC232918
9/23/92
11/24/92
11/24/92
1.00
0.95
ND
ND
ND
3.59
ND
ND
ND
ND
ND
ND
ND
ND
NWNJ G-2579
157.88
RC232915
9/24/92
11/24/92
11/24/92
1.00
2.05
2.91
ND
ND
3.94
1.73
ND
ND
ND
ND
ND
ND
ND
NWNJ R-2551
142.29
RC232919
9/28/92
11/24/92
11/24/92
1.00
2.21
2.20
ND
3.14
4.71
ND
ND
ND
0.91
0.89
ND
ND
ND
NWNJ R-2588
142.29
RC232923
9/29/92
11/24/92
11/24/92
1.00
1.62
ND
ND
ND
4.13
ND
ND
ND
ND
ND
ND
ND
ND
00
I
Ul
@ - Estimated concentration is less than the detection limit for the given sample volume
§ - Sample volume is assumed to be the same as the accompanying samples for blank samples
-------
Table 8-5
NMOC 1992 Daily QC Standards Recoveries
Sample ID
File ID
Date Analyzed
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
QC
RC232914
11/24/92
84.24%
83.60%
83.77%
82.99%
84.00%
83.93%
84.82%
81.74%
82.11%
82.25%
87.70%
75.08%
81.02%
QC
RC232932
11/25/92
55.11%
56.07%
55.93%
57.26%
58.41%
56.70%
56.39%
49.04%
54.93%
55.93%
61.75%
57.39%
56.46%
QC
RC232949
11/25/92
105.04%
105.03%
107.19%
105.71%
106.78%
108.45%
106.30%
107.34%
106.41%
104.10%
110.35%
96.90%
105.15%
QC
RC23501
12/15/92
112.92%
111.44%
107.47%
108.16%
110.03%
107.58%
115.85%
108.21%
107.51%
112.63%
118.33%
105.16%
101.33%
8-16
-------
two standard deviations of the average percent recovery. The concentrations of
targeted carbonyl compounds in the trip blanks were calculated assuming the
sample volume calculated for the accompanying samples. In cases where
duplicate samples were taken, or replicate analyses were performed, the results of
all the analyses were averaged for each sample. The mean refers to the daily
sample averages, not the averages of all the analyses. The concentrations given
for the samples were not blank corrected. Table 8-6 gives the average, maximum
and minimum carbonyl concentration as well as the standard deviation and
frequency of occurrence for each of the targeted carbonyl compounds for the
Plainfield site. Table 8-7 gives the same statistical values listed above for the
Newark site. For Plainfield, NJ, the average of those compounds identified ranged
from 0.089 ppbv for valeraldehyde to 7.585 ppbv for acetone. For Newark, NJ,
the average of those compounds identified ranged from 0.157 ppbv for
benzaldehyde to 4.662 ppbv for acetone.
8.5.2 Sampling Precision
The sampling precision was measured as the average standard deviation for
the results from the field duplicate samples which were analyzed in replicate. The
sampling precision results for the Plainfield site are given in Table 8-8. The
sampling precision results for the Newark site are given in Table 8-9. The
duplicate analyses were performed on 10% of the samples from each site. The
average standard deviation was 1.51 ppbv for the Plainfield site and 0.48 ppbv for
the Newark site.
8.5.3 Analytical Precision
The analytical precision was measured as the average standard deviation of
the replicate analyses performed on the paired duplicate samples. The analytical
precision results for the Plainfield site are given in Table 8-10. The analytical
precision results for the Newark site are given in Table 8-11. The replicate
8" 1 7
HM13C Rat Report
-------
Table 8-6
NMOC 1992 Plainfield, New Jersey Site Summary
Analyte
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
Average
Concentration
(ppbv)
3.770
4.944
0.471
7.585
3.675
1.220
1.263
0.667
0.348
0.089
0.732
0.000
0.000
Maximum
Concentration
(ppbv)
11.408
16.431
2.494
38.933
7.854
3.786
4.136
3.396
1.451
0.886
4.191
0.000
0.000
Minimum
Concentration
(ppbv)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Standard
Deviation
3.149
5.251
0.944
12.785
2.307
1.438
1.692
1.120
0.559
0.266
1.309
0.000
0.000
Frequency
90.0%
60.0%
20.0%
40.0%
80.0%
50.0%
40.0%
30.0%
30.0%
10.0%
30.0%
0.0%
0.0%
00
I
00
-------
Table 8-7
NMOC 1992 Newark, New Jersey Site Summary
00
I
,_l
CO
Analyte
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
Average
Concentration
(ppbv)
2.822
3.775
0.273
4.662
2.613
0.608
0.308
0.157
0.453
0.618
0.000
0.350
0.000
Maximum
Concentration
(ppbv)
6.894
12.796
2.734
21.483
4.713
1.734
3.076
1.574
1.029
1.212
0.000
3.500
0.000
Minimum
Concentration
(ppbv)
0.950
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Standard
Deviation
(ppbv)
1.711
4.589
0.820
7.231
1.765
0.751
0.923
0.472
0.457
0.514
0.000
1.050
0.000
Frequency
100.0%
60.0%
10.0%
50.0%
70.0%
40.0%
10.0%
10.0%
50.0%
60.0%
0.0%
10.0%
0.0%
-------
Table 8-8
NMOC 1992 Plainfield, New Jersey Sampling Precision Statistics
Dl Factor
Sample ID
File ID
Date Sampled
Date Extracted
Date Analyzed
1
PLNJ R-2587 1
RC232943
9/29/92
11/24/92
11/25/92
1
PLNJ R-2587 2
RC232944
9/29/92
11/24/92
11/25/92
1
PLNJ G-2587 1
RC232945
9/29/92
11/24/92
11/25/92
1
PLNJ G-2587 2
RC232946
9/29/92
11/24/92
11/25/92
Average
Standard
Deviation
(ppbv)
Relative
Standard
Deviation
(%)
Concentrations (ppbv)
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
2.91
5.59
0.00
9.55
2.58
0.00
2.90
0.00
0.00
0.00
0.00
0.00
0.00
2.68
6.60
0.00
10.00
2.81
0.00
2.79
0.00
0.00
0.00
0.00
0.00
0.00
4.04
1.50
0.00
0.00
6.42
1.99
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.95
2.21
0.00
0.00
5.96
2.28
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.40
3.97
NA
NA
4.44
NA
NA
NA
NA
NA
NA
NA
NA
Average
0.60
2.16
NA
NA
1.76
NA
NA
NA
NA
NA
NA
NA
NA
1.51
17.80%
54.45%
NA
NA
39.56%
NA
NA
NA
NA
NA
NA
NA
NA
37.27%
00
I
to
o
-------
Table 8-9
NMOC 1992 Newark, New Jersey Sampling Precision Statistics
Dl Factor
Sample ID
File ID
Sampled
Extracted
Analyzed
1
NWNJ R-2239 1
RC232926
9/3/92
11/24/92
11/24/92
1
NWNJ R-2239 2
RC232927
9/3/92
11/24/92
11/24/92
1
NWNJ G-2239 1
RC232928
9/3/92
11/24/92
11/24/92
1
NWNJ G-2239 2
RC232929
9/3/92
11/24/92
11/25/92
Average
Standard
Deviation
Relative
Standard
Deviation
(%)
Concentrations (ppbv)
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
7.26
11.70
0.00
20.31
3.21
0.00
0.00
0.00
1.27
1.12
0.00
3.31
0.00
7.37
14.93
0.00
21.20
3.66
0.00
0.00
0.00
0.97
1.02
0.00
3.55
0.00
6.39
11.44
0.00
22.25
3.55
0.00
0.00
0.00
0.85
0.72
0.00
3.46
0.00
6.55
13.12
0.00
22.17
2.94
0.00
0.00
0.00
0.76
0.89
0.00
3.67
0.00
6.89
12.80
NA
21.48
3.34
NA
NA
NA
0.96
0.94
NA
3.50
NA
Average
0.43
1.39
NA
0.80
0.28
NA
NA
NA
0.19
0.15
NA
0.13
NA
0.48
6.23%
10.84%
NA
3.71%
8.43%
NA
NA
NA
19.80%
15.75%
NA
3.71%
NA
9.78%
00
10
-------
Table 8-10
NMOC 1992 Plainfield, New Jersey Analytical Precision Statistics
00
I
N>
NJ
Dl Factor
Sample ID
File ID
Date Sampled
Date Extracted
Date Analyzed
1
PLNJ R-2587 1
RC232943
9/29/92
11/24/92
11/25/92
1
PLNJ R-2587 2
RC232944
9/29/92
11/24/92
11/25/92
Average
Absolute
Percent
Difference
(%)
Standard
Deviation
Relative
Standard
Deviation
(%)
Concentrations (ppbv)
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
2.91
5.59
0.00
9.55
2.58
0.00
2.90
0.00
0.00
0.00
0.00
0.00
0.00
2.68
6.60
0.00
10.00
2.81
0.00
2.79
0.00
0.00
0.00
0.00
0.00
0.00
2.80
6.09
NA
9.78
2.69
NA
2.85
NA
NA
NA
NA
NA
NA
Average
8.3%
16.5%
NA
4.7%
8.4%
NA
3.9%
NA
NA
NA
NA
NA
NA
8.3%
0.12
0.50
NA
0.23
0.11
NA
0.06
NA
NA
NA
NA
NA
NA
0.20
4.1%
8.2%
NA
2.3%
4.2%
NA
1.9%
NA
NA
NA
NA
NA
NA
4.2%
-------
Table 8-10
Continued
00
I
s>
CO
Dl Factor
Sample ID
File ID
Date Sampled
Date Extracted
Date Analyzed
1
PLNJ G-2587 1
RC232945
9/29/92
11/24/92
11/25/92
1
PLNJ G-2587 2
RC232946
9/29/92
11/24/92
11/25/92
Average
Absolute
Percent
Difference
(%)
Standard
Deviation
Relative
Standard
Deviation
(%)
Concentrations (ppbv)
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
4.04
1.50
0.00
0.00
6.42
1.99
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.95
2.21
0.00
0.00
5.96
2.28
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.99
1.85
NA
NA
6.19
2.13
NA
NA
NA
NA
NA
NA
NA
Average
2.4%
37.9%
NA
NA
7.6%
13.8%
NA
NA
NA
NA
NA
NA
NA
15.4%
0.05
0.35
NA
NA
0.23
0.15
NA
NA
NA
NA
NA
NA
NA
0.20
1.2%
18.9%
NA
NA
3.8%
6.9%
NA
NA
NA
NA
NA
NA
NA
7.7%
-------
Table 8-10
Continued
00
I
10
Dl Factor
Sample ID
File ID
Date Sampled
Date Extracted
Date Analyzed
1
PLNJ B-2587 1
RC232941
9/29/92
11/24/92
11/25/92
1
PLNJ B-2587 2
RC232942
9/29/92
11/24/92
11/25/92
Average
Absolute
Percent
Difference
(%)
Standard
Deviation
Relative
Standard
Deviation
(%)
Concentrations (ppbv)
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
0.68
2.26
0.00
9.08
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.80
3.24
0.00
8.28
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.74
2.75
NA
8.68
NA
NA
NA
NA
NA
NA
NA
NA
NA
Average
16.2%
35.6%
NA
9.2%
NA
NA
NA
NA
NA
NA
NA
NA
NA
20.4%
0.06
0.49
NA
0.40
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.32
8.1%
17.8%
NA
4.6%
NA
NA
NA
NA
NA
NA
NA
NA
NA
10.2%
-------
Table 8-11
NMOC 1992 Newark, New Jersey Analytical Precision Statistics
Dl Factor
Sample ID
File ID
Date Sampled
Date Extracted
Date Analyzed
1
NWNJ R-2239 1
RC232926
9/3/92
11/24/92
11/24/92
1
NWNJ R-2239 2
RC232927
9/3/92
11/24/92
11/24/92
Average
Absolute
Percent
Difference
(%)
Standard
Deviation
(ppbv)
Relative
Standard
Deviation
(%)
Concentrations (ppbv)
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
7.26
11.70
0.00
20.31
3.21
0.00
0.00
0.00
1.27
1.12
0.00
3.31
0.00
7.37
14.93
0.00
21.20
3.66
0.00
0.00
0.00
0.97
1.02
0.00 -
3.55
0.00
7.32
13.31
NA
20.75
3.44
NA
NA
NA
1.12
1.07
NA
3.43
NA
Average
1.4%
24.3%
NA
4.3%
13.0%
NA
NA
NA
26.4%
9.1%
NA
7.0%
NA
12.2%
0.05
1.62
NA
0.45
0.22
NA
NA
NA
0.15
0.05
NA
0.12
NA
0.38
0.7%
12.1%
NA
2.1%
6.5%
NA
NA
NA
13.2%
4.5%
NA
3.5%
NA
6.1%
00
I
N)
CJ1
-------
Table 8-11
Continued
00
I
N)
O>
Dl Factor
Sample ID
File ID
Sampled
Extracted
Analyzed
1
NWNJ G-2239 1
RC232928
9/3/92
11/24/92
11/24/92
1
NWNJ G-2239 2
RC232929
9/3/92
11/24/92
11/25/92
Average
Absolute
Percent
Difference
(%)
Standard
Deviation
(ppbv)
Relative
Standard
Deviation
(%)
Concentrations (ppbv)
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
6.39
11.44
0.00
22.25
3.55
0.00
0.00
0.00
0.85
0.72
0.00
3.46
0.00
6.55
13.12
0.00
22.17
2.94
0.00
0.00
0.00
0.76
0.89
0.00
3.67
0.00
6.47
12.28
NA
22.21
3.25
NA
NA
NA
0.81
0.81
NA
3.57
NA
Average
2.4%
13.7%
NA
0.4%
18.6%
NA
NA
NA
10.2%
20.7%
NA
5.7%
NA
10.2%
0.08
0.84
NA
0.04
0.30
NA
NA
NA
0.04
0.08
NA
0.10
NA
0.21
1.2%
6.8%
NA
0.2%
9.3%
NA
NA
NA
5.1%
10.3%
NA
2.9%
NA
5.1%
-------
Table 8-11
Continued
Dl Factor
Sample ID
File ID
Sampled
Extracted
Analyzed
1
NWNJ B-2239 1
RC232924
9/3/92
11/24/92
11/24/92
1
NWNJ B-2239 2
RC232925
9/3/92
11/24/92
1 1/24/92
Average
Absolute
Percent
Difference
(%)
Standard
Deviation
(ppbv)
Relative
Standard
Deviation
(%)
Concentrations (ppbv)
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
0.00
4.34
0.00
0.00
5.31
0.00
0.00
0.00
0.00
0.00
0.00
2.89
0.00
0.00
3.21
0.00
0.00
6.02
0.00
0.00
0.00
0.00
0.93
0.00
2.61
0.00
NA
3.78
NA
NA
5.67
NA
NA
NA
NA
NA
NA
2.75
NA
Average
NA
29.9%
NA
NA
12.5%
NA
NA
NA
NA
NA
NA
10.2%
NA
17.5%
NA
0.57
NA
NA
0.36
NA
NA
NA
NA
NA
NA
0.14
NA
0.35
NA
15.0%
NA
NA
6.3%
NA
NA
NA
NA
NA
NA
5.1%
NA
8.8%
00
I
10
•vl
-------
analyses were performed on 10% of the samples from each site. The overall
average standard deviation for all of the replicate analyses was 0.27 ppbv.
8.5.4 Quality Control Standards
As a quality control (QC) procedure on the analytical results for all of the
quantitated analytes, a solution containing all targeted carbonyl compounds at a
known concentration was prepared. QC samples were analyzed after every ten
samples. Table 8-5 gives the percent recoveries for the quality control standards
that were analyzed during this program. Shown in Table 8-12 are the average,
maximum and minimum percent recovery and two standard deviations about the
average percent recovery for each targeted carbonyl analyte. These results show
that the analyses remained in control. The overall average percent recovery ranged
from 83.63% for hexanaldehyde to 94.53% for tolualdehydes.
298-017-70/Mh.117op
NMOC Firwl R«pon
-------
Table 8-12
NMOC 1992 Daily QC Standards Statistics
00
s>
u>
Analyte
Formaldehyde
Acetaldehyde
Acrolein
Acetone
Propionaldehyde
Crotonaldehyde
Butyr/lsobutyraldehyde
Benzaldehyde
Isovaleraldehyde
Valeraldehyde
Tolualdehydes
Hexanaldehyde
2,5-Dimethylbenzaldehyde
Average
89.33%
89.04%
88.59%
88.53%
89.81%
89.16%
90.84%
86.58%
87.74%
88.73%
94.53%
83.63%
85.99%
Standard
Deviation
22.36%
21.65%
21.17%
20.55%
20.72%
21.17%
22.85%
24.14%
21.49%
21.94%
22.01%
18.72%
19.36%
Maximum
112.92%
111.44%
107.47%
108.16%
110.03%
108.45%
115.85%
108.21%
107.51%
112.63%
118.33%
105.16%
105.15%
Minimum
55.11%
56.07%
55.93%
57.26%
58.41%
56.70%
56.39%
49.04%
54.93%
55.93%
61 .75%
57.39%
56.46%
Avg + 2 * STD
134.05%
132.33%
130.93%
129.63%
131.24%
131.50%
136.53%
134.86%
130.72%
132.61%
138.55%
121.06%
124.71%
Avg - 2 * STD
44.60%
45.74%
46.25%
47.43%
48.38%
46.83%
45.15%
38.30%
44.76%
44.85%
50.51%
46.20%
47.27%
-------
9.0 SNMOC DATA SUMMARY
This section presents information on the number of samples collected, summary
statistics, and individual sample results. For the 1992 SNMOC Monitoring Program
848 valid ambient air samples were received; 971 sample analyses were performed
including 123 replicate analyses. The samples were analyzed by gas chromatography
using dual flame ionization detectors to determine concentrations of 77 target
hydrocarbons. Table 9-1 presents the target compounds. The samples were
collected from nineteen sites that participated in the 1992 SNMOC program. Eleven of
these sites conducted daily (Monday-Friday) sampling from 22 June to 30 September
1992. Eight sites participated in an optional analysis for which ten samples from each
site collected for NMOC analysis were randomly selected to receive analysis by the
speciation method. Appendix A presents the sites and the site codes used throughout
this report.
9.1 Sample Collection Summary
Tables 9-2 and 9-3 summarize sample collection information for program and
option sites, respectively. Program sites collected samples from 22 June to
30 September 1992. The B3AL and BRLA sites started later due to sampler problems,
and the MIFL site missed several sampling days due to meteorological conditions (i.e.,
Hurricane Andrew). Tables 9-4 through 9-6 give information for the program sites on
scheduled collection did not occur, the frequency of duplicate sample collection, and
frequency of duplicate samples chosen for replicate analyses.
9.2 Site Specific Summary Statistics
Site specific statistics are given in Tables 9-7 through 9-25. Duplicate and
duplicate/replicate results were averaged into single compound specific values for the
298-017-70/cah.117op
NMOC Final Report 9-1
-------
Table 9-1
1992 Ambient Air Hydrocarbon Program Target List
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1-Butene
1,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1-Butene
Isopentane
1-Pentene
2-Methyl-1-Butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-Butene
2,2-Dimethylbutane (Neohexane)
Cyclopentene
4-Methyl-1-Pentene
2,3-Dimethylbutane
Cyclopentane
2-Methylpentane (Isohexane)
3-Methylpentane
2-Methyl-1-Pentene
1-Hexene
2-Ethyl-1-Butene
n-Hexane
t-2-Hexene
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cvclohexane
2-Methylhexane (Isoheptane)
2,3-Dimethylpentane
3-Methylhexane
1-Heptene
2,2,4-Trimethylpentane
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1-Octene
n-Octane
Ethylbenzene
p,m-Xylene
Styrene
o-Xylene
1-Nonene
n-Nonane
Isopropylbenzene
n-Propylbenzene
a-Pinene
m-Ethyltoluene
p-Ethyltoluene
1,3,5-Trimethylbenzene
o-Ethyltoluene
1,2,4-Trimethylbenzene
1-Decene
n-Decane
1,2,3-Trimethylbenzene
p-Diethylbenzene
1-Undecene
n-Undecane
Dodecene
n-Dodecane
Tridecene
n-Tridecane
298-017-70/cah.117op
NMOC Final Report
9-2
-------
Table 9-2
Samples Collected and Analyzed for 1992 SNMOC Program Sites
Site
B1AL
B2AL
B3AL
BMTX
BRLA
CHNC
DLTX
EPTX
FWTX
JUMX
MIFL
Total
Duplicate
• Samples
16
20
14
20
18
18
18
18
20
14
16
;••••• /Total
Replicate
Analyses
12
12
10
10
12
10
10
10
10
8
10
Total
Single
Samples
60
61
42
58
38
44
60
61
58
55
48
Total
Vafld
Sampling
Events
68
71
49
68
47
53
69
70
68
62
56
--,T<».
Fr^Vaiia^
Samples
76
81
56
78
56
62
78
79
78
69
64
*LTbtt*
Analyses
Reported
88
93
66
88
68
72
88
89
88
77
74
Table 9-3
Samples Collected and Analyzed for 1992 SNMOC Option Sites
• "'star",:V:
L1NY
MNY
NWNJ
PLNJ
R1NC
S2UT
S3UT
WSNC
•'".,,• Tatar Y-.:.'
Duplicate
' -Sample^
2
2
4
2
2
2
2
2
•W..Total-
l/'Repfieate"
analyses ''
1
1
2
1
1
1
1
1
Total Single
Samples
7
6
5
7
7
7
7
7
TotalVali
Samples
9
8
9
9
9
9
9
9
Total
Analyses
Reported
10
9
11
10
10
10
10
10
296-017-70/ca»x, 117op
NMOC Final Report
9-3
-------
Table 9-4. June-July Sampling Frequency
June July
22 23 24 25 26 29 30 1 2 3 6 7 8 9 10 13 14 15 16 17 20 21 22 23 24 27 28 29 30 31
CO
B1AL
B2AL
B3AL
BMTX
BRLA
CHNC
DLTX
EPTX
FWTX
JUMX
MiFL
I
= Single Sample
= Duplicate Sample
= Duplicate/Replicate Sample
-------
Table 9-5. August Sampling Frequency
28
1°
CO
B1AL
B2AL
B3AL
BMTX
BRLA
CHNC
DLTX
EPTX
FWTX
JUMX
MIFL
August
3 4 5 6 1 10 II \2 13 14 11 l& 19 20 2\ 24 25 26 27 2K 31
= Single Sample
= Duplicate Sample
= Duplicate/Replicate Sample
-------
Table 9-6. September Sampling Frequency
September
October
CD
B1AL
B2AL
B3AL
BMTX
BRLA
CHNC
DLTX
EPTX
FWTX
JUMX
MIFL
1 2 3 4 7 t 9 10 11 14 15 16 17 18 21 22 23 24 25 2* 29 30 1 2 5 6 7 S 9
= Single Sample
= Duplicate Sample
= Duplicate/Replicate Sample
-------
Table 9-7. 1992 Summary Statistics for Birmingham, AL (B1AL)
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1-Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-l-butene
Isopentane
1 -Pentene
2-Methyl-l-butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cyclopentene
4-Methyl-1 -pentene
2,3-Dimethylbutane
Cyclopentane
Isohexane
3-Methylpentane
1-Hexene
2-Methyl-l -pentene
2-Ethyl-1-butene
n-Hexane
t-2-Hexene
298-017-70/cah.117op
NMOC Final Report
Cases
68
66
67
66
68
0
66
0
66
44
68
42
31
26
68
25
56
68
61
61
49
63
68
30
50
41
67
68
67
1
40
0
67
32
Frequency Minimum
100.00%
97.06%
98.53%
97.06%
100.00%
0.00%
97.06%
0.00%
97.06%
64.71%
100.00%
61.76%
45.59%
38.24%
100.00%
36.76%
82.35%
100.00%
89.71%
89.71%
72.06%
92.65%
100.00%
44.12%
73.53%
60.29%
98.53%
100.00%
98.53%
1.47%
58.82%
0.00%
98.53%
47.06%
2.07
1.37
1.48
0.82
1.12
0.68
0.53
0.55
1.26
0.49
0.51
0.52
2.35
0.54
0.52
0.72
0.48
0.47
0.55
0.34
2.40
0.46
0.46
0.51
0.54
0.55
0.86
2.48
0.48
0.96
0.55
Maximum
42.67
40.27
35.15
14.99
47.48
18.39
.
8.21
4.25
67.49
4.54
8.55
2.71
163.33
7.41
11.64
55.21
19.14
13.77
16.71
16.57
27.40
2.45
3.21
4.25
11.94
35.34
25.91
2.48
4.34
37.85
2.85
9-7
Median
12.84
13.18
11.89
4.97
14.21
4.12
2.81
1.76
10.67
1.56
1.13
1.03
21.25
1.63
2.00
8.43
2.86
1.98
1.58
2.38
12.45
0.87
1.31
1.59
2.54
5.62
5.94
2.48
1.71
.
5.20
1.16
Standard
Average Deviation Skewness
17.14
14.56
12.95
6.13
15.66
5.14
3.38
1.75
12.49
1.59
1.40
1.08
29.10
2.26
2.38
11.98
3.93
2.58
2.13
3.00
12.72
0.89
1.34
1.58
3.45
9.82
8.25
2.48
1.65
,
8.98
1.19
11.50
10.95
8.15
4.40
11.38
3.87
2.19
0.90
9.94
0.92
1.49
0.50
26.09
1.74
1.92
9.89
3.60
2.27
2.45
2.68
5.17
0.37
0.58
0.76
2.48
7.71
6.61
0.80
,
7.79
0.48
0.73
0.63
0.85
0.51
0.94
1.29
0.55
0.46
2.62
1.34
4.07
1.72
2.23
2.09
2.14
1.48
1.92
2.21
4.80
2.33
0.63
2.63
0.85
0.91
0.86
0.88
0.66
0.83
1.02
1.24
Kurtosis
-0.76
-0.89
0.04
-1.20
0.37
.
1.85
-0.99
-0.24
12.73
2.51
18.72
3.88
8.96
4.56
8.38
3.77
4.61
8.38
27.31
9.29
0.58
10.64
0.84
2.08
0.40
0.14
-0.60
1.64
1.11
328
-------
Table 9-7. Continued
ppbC
Standard
Compound Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtos
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cydohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1 -Heptene
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1-Nonene
n-Nonane
I sopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyltoluene
p-Ethyltoluene
1 ,3,5-Trimethylbenzene
o-Ethyltoluene
1 -Decene
1 ,2,4-Trimethylbenzene
298-0 17-70/cah.117op
NMOC Rnal Report
28
65
61
68
60
62
18
68
66
33
64
53
47
65
68
61
56
41
47
67
68
47
67
26
54
22
58
59
66
44
63
65
0
67
41.18%
95.59%
89.71%
100.00%
88.24%
91.18%
26.47%
100.00%
97.06%
48.53%
94.12%
77.94%
69.12%
95.59%
100.00%
89.71%
82.35%
60.29%
69.12%
98.53%
100.00%
69.12%
98.53%
38.24%
79.41%
32.35%
85.29%
86.76%
97.06%
64.71%
92.65%
95.59%
0.00%
98.53%
0.51
0.60
0.52
1.92
0.63
0.69
0.51
0.83
0.53
0.58
0.54
0.60
0.52
0.56
1.84
0.55
0.52
0.53
0.54
0.49
0.79
0.52
0.66
0.55
0.50
0.48
0.66
0.53
0.58
0.54
0.50
0.53
.
1.02
1.73
12.47
6.12
43.04
35.92
16.96
2.19
10.01
19.15
4.58
7.67
4.67
2.83
6.67
68.58
4.94
4.11
2.72
4.84
13.31
46.38
2.81
14.32
1.24
5.15
2.86
12.88
3.37
15.33
2.84
5.81
6.77
17.50
9-8
0.83
2.44
2.29
9.58
3.47
3.09
1.57
4.16
5.28
1.46
2.59
1.92
1.51
2.42
20.99
1.60
1.49
1.83
1.35
4.77
15.77
1.48
5.41
0.91
1.82
0.72
2.12
1.56
4.20
1.61
2.17
2.32
.
5.25
0.85
4.63
2.42
12.11
6.40
4.80
1.52
4.47
7.48
1.54
2.54
1.90
1.58
2.87
26.71
1.94
1.79
1.69
1.64
5.41
18.22
1.52
5.95
0.88
2.02
0.81
2.99
1.67
4.72
1.55
2.35
2.95
•
7.22
0.24
3.51
1.62
9.45
6.80
4.14
0.54
2.57
5.55
0.80
1.72
1.10
0.79
2.04
18.56
1.23
1.06
0.72
1.00
3.86
13.34
0.69
4.38
0.18
1.30
0.47
2.67
0.98
3.34
0.71
1.60
1.89
•
5.16
1.91
0.53
0.36
1.25
2.08
1.19
-0.32
0.39
0.54
2.60
0.59
0.34
0.08
0.51
0.51
0.60
0.49
-0.23
1.27
0.41
0.43
0.11
0.44
-0.14
0.77
4.21
2.13
0.36
0.73
0.03
0.62
0.49
0.48
6.'
-1.
-1.;
1.;
5.:
0.:
-1.
-1.
-1.
8.
-0.
-1.
-1.
-1.
-1.
-0.
-1.
-1
1
-1
-1
-1
-1
-0
-0
18
4
-1
-C
-1
-C
-1
"'
-------
Table 9-7. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
n-Decane
1 ,2,3-Trimethyl benzene
p-Diethyl benzene
1-Undecene
n-Undecane
1 -Dodecene
n-Dodecane
1 -Tridecene
n-Tridecane
41
68
49
63
66
63
61
13
48
60.29%
100.00%
72.06%
92.65%
97.06%
92.65%
89.71%
19.12%
70.59%
0.50
0.76
0.60
0.48
0.55
0.51
0.59
0.55
0.53
7.59
7.16
4.40
6.07
17.91
4.45
17.60
1.69
11.95
1.77
3.28
1.32
1.31
2.89
1.00
1.93
0.85
1.06
2.19
3.49
1.43
1.53
3.78
1.13
2.82
0.90
1.61
1.54
1.78
0.73
0.91
3.41
0.62
2.96
0.35
1.80
1.82
0.35
1.95
2.54
1.88
2.91
2.79
1.04
4.40
4.04
-1.11
5.39
9.50
4.19
12.83
10.17
0.44
23.58
298-017-70/cAfS7op
NMOC final Rep
-------
Table 9-8. 1992 Summary Statistics for Birmingham, AL (B2AL)
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1-Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1-butene
Isopentane
1-Pentene
2-Methyl-l -butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cyclopentene
4-Methyl-1 -pentene
2,3-Dimethyl butane
Cyclopentane
Isohexane
3-Methylpentane
1 -Hexene
2-Methyl-1 -pentene
2-EthyM -butene
n-Hexane
t-2-Hexene
298-017-70/cah.117op
NMOC Final Report
Cases Frequency Minimum Maximum Median
70
65
71
65
71
0
64
0
64
31
70
24
9
7
69
7
41
70
56
37
20
51
71
6
41
18
51
69
65
0
17
0
66
5
98.59%
91.55%
100.00%
91.55%
100.00%
0.00%
90.14%
0.00%
90.14%
43.66%
98.59%
33.80%
12.68%
9.86%
97.18%
9.86%
57.75%
98.59%
78.87%
52.11%
28.17%
71.83%
100.00%
8.45%
57.75%
25.35%
71.83%
97.18%
91.55%
0.00%
23.94%
0.00%
92.96%
7.04%
0.89
0.96
0.76
0.60
1.30
0.59
0.53
0.52
0.74
0.51
0.52
0.44
0.92
0.50
0.50
0.56
0.51
0.51
0.52
0.51
1.88
0.46
0.48
0.43
0.55
0.51
0.52
.
0.50
0.50
0.62
19.96
11.16
12.72
6.65
17.44
21.45
6.46
1.70
84.13
3.59
2.92
2.11
137.73
6.26
9.28
66.22
20.27
10.24
5.43
14.03
8.90
1.71
2.32
4.77
10.13
29.10
17.56
.
3.42
15.24
4.33
9-10
7.85
3.78
4.43
2.36
5.85
1.46
.
1.98
0.75
3.71
0.80
0.92
0.75
8.46
0.80
0.88
3.42
2.85
0.83
0.81
1.09
3.70
0.80
0.78
0.80
1.40
2.67
1.86
.
0.85
.
1.93
0.96
Standard
Average Deviation Skewness
8.73
4.16
4.73
2.57
6.56
2.63
2.05
0.84
6.37
0.97
1.11
0.98
13.93
1.65
1.34
5.30
3.68
1.46
1.20
1.59
4.14
0.89
0.96
1.18
1.65
3.43
2.61
.
1.03
2.64
1.70
4.10
2.23
2.42
1.37
3.61
.
3.78
1.13
0-27
10.56
0.65
0.76
0.60
21.94
2.07
1.51
8.67
3.34
1.80
1.17
2.06
1.69
0.48
0.47
1.16
1.42
3.74
2.68
.
0.69
2.64
1.54
0.63
0.84
0.93
0.84
0.81
3.85
1.54
1.47
6.08
3.20
1.98
1.43
4.42
2.48
4.14
5.66
2.53
3.92
2.96
5.01
1.12
1.14
1.22
2.62
4.53
5.02
3.50
2.90
3.02
1.76
Kurtosi!
0.1C
0.31
1.1J
0.4<
0.2'
15.6(
3.8*
23:
43.5
11.8
4.2
1.2
21.2
6.2
19.8
37.0
10.1
15:9
9.4
28.2
O.E
0£
O.f
62
26.1
32.S
15.1
9.'
10;
3i
-------
Table 9-8. Continued
ppbC
Compound Cases Frequency Minimum
c-2-Hexene
Methylcydopentane
2,4-Dimethyl pentane
Benzene
Cydohexane
Isoheptane
2,3-Dimethyl pentane
3-Methylhexane
2,2,4-Trimethyl pentane
1 -Heptene
n-Heptane
Methylcydohexane
2,2,3-Trimethyl pentane
2,3,4-Trimethyl pentane
Toluene
2-Methyl heptane
3-Methyl heptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
I sopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyltoluene
p-Ethyltoluene
1 ,3,5-Trimethylbenzene
o-Ethyltoluene
1-Decene
1 ,2,4-Trimethylbenzene
298-01 7-70/cah.1 1 Top
NMOC Rnal Report
3
56
42
71
62
49
8
71
67
6
48
27
22
48
71
35
26
15
13
60
70
38
59
1
18
1
69
27
61
10
45
61
0
66
4.23%
78.87%
59.15%
100.00%
87.32%
69.01%
11.27%
100.00%
94.37%
8.45%
67.61%
38.03%
30.99%
67.61%
100.00%
49.30%
36.62%
21.13%
18.31%
84.51%
98.59%
53.52%
83.10%
1.41%
25.35%
1.41%
97.18%
38.03%
85.92%
14.08%
63.38%
85.92%
0.00%
92.96%
0.49
0.57
0.59
1.38
0.54
0.52
0.49
0.72
0.52
0.52
0.53
0.50
0.47
0.48
1.08
0.51
0.50
0.51
0.45
0.58
0.57
0.52
0.53
1.52
0.50
0.65
0.71
0.49
0.59
0.42
0.53
0.50
.
0.54
Standard
Maximum Median Average Deviation Skewness
1.14
6.78
4.61
18.89
14.97
4.76
9.42
8.35
12.28
2.19
3.83
1.49
1.63
3.83
53.99
1.65
1.43
1.25
1.94
5.78
22.20
4.46
7.84
1.52
3.82
0.65
7.45
2.22
6.35
1.78
7.57
3.35
7.32
9-11
0.60
1.36
0.91
4.32
1.49
1.52
0.63
1.75
2.16
0.63
0.80
0.70
0.63
1.03
7.41
0.75
0.65
0.65
0.73
1.55
4.70
0.69
1.80
1.52
0.65
0.65 -
2.64
0.62
1.87
0.66
0.94
1.17
.
2.13
0.74
1.73
1.08
5.09
2.22
1.81
2.10
2.02
2.48
0.95
1.03
0.80
0.70
1.13
8.56
0.83
0.78
0.73
0.84
1.77
5.20
0.87
1.99
1.52
0.92
0.65
2.89
0.78
2.09
0.84
1.10
1.27
.
2.29
0.35
1.26
0.71
3.28
2.55
1.02
3.06
1.25
1.79
0.66
0.70
0.26
0.24
0.57
7.35
0.29
0.26
0.22
0.38
1.06
3.91
0.63
1.30
0.79
1.63
0.41
1.15
0.44
1.04
0.59
.
1.32
1.54
2.55
3.52
2.07
3.66
0.89
2.51
2.69
2.63
1.81
3.01
1.18
2.98
2.39
3.83
1.65
1.29
1.27
2.27
1.85
2.03
5.18
2.20
.
3.24
0.86
2.41
1.32
1.39
5.75
1.09
.
1.25
Kurtosis
7.22
15.47
5.46
14.57
0.35
6.54
9.98
12.40
2.99
9.12
0.94
11.11
9.75
20.98
2.46
0.80
0.93
6.23
3.94
5.76
29.53
6.64
11.48
0.20
5.97
2.21
1.20
36.18
1.49
2.37
-------
Table 9-8. Continued
ppbC
Standard
Compound Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosl
n-Decane
1 ,2,3-Trimethylbenzene
p-Diethyl benzene
1-Undecene
n-Undecane
1-Dodecene
n-Oodecane
1 -Tridecene
n-TrkJecane
9
71
36
69
62
60
61
5
28
12.68%
100.00%
50.70%
97.18%
87.32%
84.51%
85.92%
7.04%
39.44%
0.50
1.16
0.47
0.48
0.54
0.54
0.53
0.51
0.47
20.63
10.12
1.74
4.99
89.40
3.07
104.86
2.77
41.76
1.54
2.82
0.74
1.50
1.46
0.93
1.06
0.54
0.81
3.85
3.46
0.85
1.67
3.22
1.06
2.97
0.99
2.41
6.46
1.93
0.29
0.81
11.19
0.46
13.29
1.00
7.73
2.73
1.97
1.27
1.67
7.73
2.12
7.77
2.23
5.26
7.6
3.7
1.5
3.&
60.4;
6.0:
60.5
4.9
27.7
298-017-70/cah.117op
NMOC Final Report
9-12
-------
Table 9-9. 1992 Summary Statistics for Birmingham, AL (B3AL)
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1-butene
Isopentane
1-Pentene
2-Methyl-1-butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cydopentene
4-Methyl-l-pentene
2, 3-Dimethyl butane
Cyclopentane
Isohexane
3-Methylpentane
1-Hexene
2-Methyl-1 -pentene
2-Ethyl-l-butene
n-Hexane
t-2-Hexene
29frO17-70/cah.117op
NMOC Final Report
Cases Frequency Minimum Maximum
47
45
48
44
49
0
46
0
48
13
49
15
8
3
49
11
20
48
41
16
14
22
49
2
35
11
40
46
42
0
13
0
44
3
95.92%
91.84%
97.96%
89.80%
100.00%
0.00%
93.88%
0.00%
97.96%
26.53%
100.00%
30.61%
16.33%
6.12%
100.00%
22.45%
40.82%
97.96%
83.67%
32.65%
28.57%
44.90%
100.00%
4.08%
71.43%
22.45%
81.63%
93.88%
85.71%
0.00%
26.53%
0.00%
89.80%
6.12%
1.66
0.85
0.75
0,65
0.99
0.64
0.55
0.50
0.66
0.51
0.56
0.74
1.58
0.59
0.56
0.62
0.55
0.56
0.55
0.36
2.65
0.53
0.54
0.54
0.58
0.58
0.53
.
0.59
0.55
0.61
17.12
6.48
11.86
6.00
10.35
•
7.76
.
3.88
1.39
34.02
3.39
1.63
0.86
76.78
2.53
3.77
41.78
13.52
3.80
2.06
4.89
76.61
0.62
2.64
7.96
4.71
13.60
8.93
.
1.49
•
6.91
0.72
9-13
Median
6.38
2.02
4.67
1.52
5.32
1.66
1.28
0.69
4.39
0.74
0.76
0.75
8.65
0.75
1.26
3.71
5.30
0.98
0.77
1.30
. 21.85
0.58
0.97
0.74
1.14
2.34
_" 2.09
0.74
1.43
0.70
ppbC
Standard
Average Deviation Skewness
7.21
2.64
4.84
2.03
5.39
2.07
1.46
0.77
6.12
1.09
0.90
0.78
12.39
0.93
1.48
5.79
5.99
1.33
0.89
1.55
23.42
0.58
1.07
1.52
1.47
3.01
2.57
.
0.87
•
1.91
0.68
3.74
1.62
2.40
1.26
2.25
•
1.36
0.83
0.25
5.71
0.77
0.42
0.07
13.24
0.55
1.01
7.08
4.44
0.96
0.44
1.20
16.16
0.06
0.47
2.18
0.86
2.56
1.89
0.28
1.26
0.06
0.72
0.83
0.41
1.21
0.31
2.11
1.34
1.34
3.06
2.25
1.16
1.69
3.06
3.01
1.46
3.40
0.30
1.95
2.17
1.90
1.40
1.64
3.08
1.79
2.22
1.74
.
0.94
•
1.88
-1.51
Kurtosis
-0.17
-0.49
0.28
0.96
-0.35
5.84
•
1.28
2.04
12.00
5.40
-0.19
•
12.07
9.52
1.10
14.40
-1.34
3.13
3.94
3.60
2.37
3.33
9.75
4.22
6.49
3.60
0.1t
•
4.95
•
-------
Table 9-9. Continued
ppbC
Standard
Compound Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1 -Heptene
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1-Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
Isopropyl benzene
n-Propylbenzene
alpha-Pinene
m-Ethyltoluene
p-Ethyltoluene
1 ,3,5-Trimethylbenzene .
o-Ethyltoluene
1-Decene
1 ,2,4-Trimethylbenzene
298-017-70/cah.117op
NMOC Final Report
1
40
24
49
44
16
26
49
47
4
30
14
13
29
49
12
11
9
13
40
49
23
42
1
20
5
42
22
42
5
28
47
0
48
2.04%
81.63%
48.98%
100.00%
89.80%
32.65%
53.06%
100.00%
95.92%
8.16%
61.22%
28.57%
26.53%
59.18%
100.00%
24.49%
22.45%
18.37%
26.53%
81.63%
100.00%
46.94%
85.71%
2.04%
40.82%
10.20%
85.71%
44.90%
85.71%
10.20%
57.14%
95.92%
0.00%
97.96%
0.55
0.51
0.52
1.01
0.56
0.63
0.60
0.62
0.56
0.50
0.47
0.53
0.56
0.48
2.07
0.53
0.43
0.51
0.53
0.63
0.88
0.50
0.66
0.58
0.51
0.50
0.59
0.55
0.52
0.45
0.50
0.50
0.51
0.55
4.58
4.75
9.09
29.01
2.47
13.34
14.98
8.95
0.84
7.20
4.20
1.11
2.74
98.15
0.98
1.02
0.98
5.89
7.44
47.77
3.50
22.37
0.58
6.10
2.95
182.16
6.76
18.29
5.58
. 8.05
6.11
22.40
9-14
0.55
1.55
1.00
3.35
1.88
1.03
1.42
2.06
1.90
0.59
0.77
0.77
0.66
0.90
13.62
0.72
0.60
0.69
0.73
1.58
5.03
0.77
2.04
0.58
0.82
0.66
5.58
0.75
2.27
0.55
0.84
1.27
•
1.70
0.55
1.74
1.22
3.76
3.02
1.14
2.10
2.72
2.40
0.63
1.07
1.04
0.71
1.07
18.51
0.72
0.64
0.70
1.14
1.77
6.05
0.89
2.48
0.58
1.38
1.08
14.77
1.17
2.69
1.53
1.11
1.52
•
2.38
0.94
0.90
1.99
4.38
0.50
2.44
2.30
1.73
0.15
1.20
0.93
0.16
0.56
18.23
0.15
0.15
0.14
1.44
1.18
6.81
0.59
3.32
•
1.64
1.04
29.15
1.39
3.09
2.27
1.38
1.08
•
3.18
1.04
3.05
0.86
5.11
1.37
4.17
3.50
1.62
1.46
4.91
3.41
1.40
1.30
2.28
0.31
1.40
1.01
3.53
2.95
4.96
4.22
5.50
2.70
2.20
4.88
3.63
3.90
2.23
5.08
2.89
5.56
1.02
10.67
-0.09
29.96
1.93
19.40
16.52
3.32
2.37
25.5J
12.2C
1.91
1.K
7.0C
-1.1!
3.2'
1.9*
12.5!
13.2
30.1:
19.21
33.2
6.2
4.8
27.5
13.6
17.3
4.S
26.4
10.2
•
35.C
-------
Table 9-9. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
n-Decane
1 ,2,3-Trimethyl benzene
p-Dlethyt benzene
1 -Undecene
n-Undecane
1 -Dodecene
n-Dodecane
1 -Tridecene
n-Tridecane
15
46
26
47
48
47
41
7
35
30.61%
93.88%
53.06%
95.92%
97.96%
95.92%
83.67%
14.29%
71.43%
0.55
0.86
0.56
0.75
0.50
0.67
0.51
0.58
0.51
17.88
17.49
2.86
22.50
37.94
9.50
26.96
1.81
22.52
2.25
1.66
0.83
1.63
1.67
1.25
1.66
0.77
1.25
3.30
2.33
0.97
3.01
4.46
1.70
4.25
0.88
2.66
4.21
2.55
0.46
3.64
6.62
1.39
5.32
0.42
3.90
3.36
4.97
2.90
3.76
3.22
4.19
2.42
2.45
4.16
12.16
28.57
11.13
17.71
13.40
22.08
7.36
6.28
20.53
298-017-70/cah.117op
NMOC Final Report
9-15
-------
Table 9-10. 1992 Summary Statistics for Beaumont, TX (BMTX)
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1-butene
Isopentane
1 -Pentene
2-Methyl-1-butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cyclopentene
4-Methyl-1-pentene
2,3-Dimethylbutane
Cyclopentane
Isohexane
3-Methylpentane
1-Hexene
2-Methyl-1-pentene
2-Ethyl-1-butene
n-Hexane
t-2-Hexene
298-017-70/cah.117op
NMOC Final Report
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
67
53
68
67
68
0
68
0
67
41
68
43
32
36
66
34
59
68
62
57
51
66
67
25
53
64
66
68
68
1
40
1
68
22
98.53%
77.94%
100.00%
98.53%
100.00%
0.00%
100.00%
0.00%
98.53%
60.29%
100.00%
63.24%
47.06%
52.94%
97.06%
50.00%
86.76%
100.00%
91.18%
83.82%
75.00%
97.06%
98.53%
36.76%
77.94%
94.12%
97.06%
100.00%
100.00%
1.47%
58.82%
1.47%
100.00%
32.35%
1.62
1.18
8.62
0.71
6.09
3.08
0.87
0.51
6.01
0.54
0.55
0.55
6.58
0.62
0.53
2.29
0.52
0.54
0.69
0.53
5.38
0.40
0.51
0.55
0.82
1.69
1.79
2.93
0.52
0.59
1.15
0.53
484.61
15.39
235.60
158.65
97.74
120.63
.
19.98
30.78
66.12
7.41
8.64
3.51
135.35
9.62
6.12
58.20
21.38
8.18
4.19
9.08
38.69
1.40
1.75
4.37
9.79
49.15
23.16
2.93
3.43
0.59
50.40
2.59
9-16
15.99
5.03
31.36
4.01
30.68
16.70
2.59
1.33
23.17
1.31
1.12
1.17
30.22
1.83
1.83
11.87
1.65
2.14
1.53
2.40
15.05
0.87
0.75
1.49
2.59
7.09
6.38
2.93
1.04
0.59
7.71
0.75
41.46
5.17
40.94
14.03
33.50
20.11
3.45
2.96
26.21
1.75
1.71
1.32
37.14
2.54
2.22
15.40
2.55
2.72
1.68
2.88
16.61
0.85
0.84
1.82
2.84
9.72
7.27
2.93
1.21
0.59
10.54
0.91
78.16
3.32
41.05
30.75
19.21
17.37
3.43
5.06
13.86
1.57
1.80
0.71
26.47
2.05
1.52
10.88
2.93
1.96
0.87
2.07
6.60
0.23
0.30
1.07
1.65
8.40
4.23
0.67
8.48
0.46
4.10
1.09
3.54
3.21
1.07
3.55
3.19
4.49
0.99
2.44
2.83
1.48
1.21
2.06
0.90
1.78
4.60
1.03
0.92
1.06
0.91
0.39
1.42
1.03
1.60
2.47
1.27
•
1.84
•
2.03
2.45
18.77
1.07
14.04
9.87
1.3S
17.04
•
11. 3S
23.4J
0.7C
5.9C
8.1-
2.2*
1.K
4.5(
O.OC
4.1*
27.8:
0.3J
0.1:
o.a
1.2
0.2:
1.7:
0.1:
3.9
7.8
2.1
33
6.4
7.6
-------
Table 9-10. Continued
ppbC
Compound
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1-Heptene
n-Heptane
Methytcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1-Octene
n-Octane
Ethyl benzene
p-Xyfene + m-Xyfene
Styrene
o-Xylene
1-Nonene
n-Nonane
Isopropyl benzene
n-Propytbenzene
alpha-Pinene
m-Ethyttduene
p-Ethyftoluene
1 ,3,5-Trimethylbenzene
o-Ethyftoluene
1-Decene
1 ,2.4-Trimethylbenzene
296-01 7-70/cah.117op
NMCC Bna) Report
Cases Frequency Minimum Maximum
15
68
53
68
67
64
6
68
67
39
67
67
45
59
68
66
58
28
57
68
68
51
67
8
53
3
58
55
66
34
59
68
2
68
22.06%
100.00%
77.94%
100.00%
98.53%
94.12%
8.82%
100.00%
98.53%
57.35%
98.53%
98.53%
66.18%
86.76%
100.00%
97.06%
85.29%
41.18%
83.82%
100.00%
100.00%
75.00%
98.53%
11.76%
77.94%
4.41%
85.29%
80.88%
97.06%
50.00%
86.76%
100.00%
2.94%
100.00%
0.44
0.73
0.56
2.45
1.38
0.66
0.50
1.22
0.57
0.44
0.67
0.78
0.37
0.49
3.14
0.55
0.50
0.50
0.54
0.81
2.16
0.53
0.73
0.37
0.49
0.62
0.55
0.51
0.64
0.52
0.49
0.79
1.95
0.82
2.15
14.09
3.81
55.97
18.85
14.27
3.67
11.97
15.41
2.70
18.88
16.23
2.44
5.73
71.93
8.83
4.85
1.43
10.88
9.51
30.04
3.56
10.40
1.97
9.30
0.68
10.66
4.76
6.86
2.61
4.01
5.77
4.04
12.57
9-17
Median
0.64
4.58
1.11
6.60
3.78
3.52
2.97
3.38
3.36
0.84
2.30
2.75
0.91
1.49
13.38
1.38
1.10
0.70
0.94
2.59
7.98
0.98
2.75
0.96
0.96
0.65
1.82
0.96
2.25
0.92
1.07
1.56
2.99
3.50
Standard
Average Deviation Skewness
0.79
5.14
1.29
9.53
4.85
4.14
2.36
3.96
4.14
1.06
3.34
3.59
1.02
1.77
17.22
1.78
1.40
0.76
1.68
2.94
9.29
1.18
3.11
1.14
1.94
0.65
2.38
1.18
2.64
1.05
1.32
1.89
2.99
4.24
0.41
3.08
0.66
9.87
3.68
2.87
1.40
2.30
3.25
0.60
3.37
2.84
0.47
1.12
13.33
1.52
0.92
0.24
2.06
1.76
5.74
0.68
1.91
0.62
2.25
0.03
1.87
0.76
1.47
0.50
0.79
0.95
1.47
2.62
2.88
1.05
1.79
3.12
2.04
1.55
-0.77
1.61
1.37
1.73
3.22
2.81
1.21
1.62
1.79
3.02
1.96
1.14
3.24
1.44
1.55
1.64
1.54
0.40
2.23
0.00
2.08
2.48
1.21
1.50
1.69
1.68
1.49
KurtOSis
9.45
0.74
4.04
10.62
4.26
2.61
-1.86
2.64
1.74
2.38
11.54
9.05
1.19
2.71
3.79
10.51
4.07
0.81
10.81
2.61
2.65
2.69
2.91
-1.56
4.13
5.93
8.36
1.11
1.98
2.73
3.55
2.40
-------
Table 9-10. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
n-Decane
1 ,2,3-Trimethylbenzene
p-Diethylbenzene
1 -Undecene
n-Undecane
1 -Dodecene
n-Dodecane
1-Tridecene
n-Tridecane
41
68
44
67
68
67
68
21
50
60.29%
100.00%
64.71%
98.53%
100.00%
98.53%
100.00%
30.88%
73.53%
0.54
1.17
0.54
0.80
0.75
0.56
0.51
0.50
0.43
15.12
18.55
3.33
5.05
21.62
3.23
8.77
2.14
6.51
1.53
2.44
0.96
1.36
2.41
0.93
1.65
0.90
0.88
2.74
3.04
1.11
1.67
3.37
1.14
2.07
1.02
1.17
2.90
2.29
0.57
0.87
3.21
0.61
1.56
0.42
1.02
2.56
4.97
1.90
2.05
3.41
1.97
2.32
0.99
3.90
8.07
31.88
4.54
4.30
15.93
3.75
6.95
1.01
17.36
298-017-70/cah.117op
NMOC Final Report
9-18
-------
Table 9-11. 1992 Summary Statistics for Baton Rouge, LA (BRLA)
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1 -butene
Isopentane
1-Pentene
2-Methyl-1 -butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cydopentene
4-Methyl-l -pentene
2,3-Dimethylbutane
Cyclopentane
Isohexane
3-Methylpentane
1-Hexene
2-Methyl-1 -pentene
2-Ethyl-1 -butene
n-Hexane
t-2-Hexene
298-017-70/cah.117op
NMOC Final Report
Cases Frequency Minimum
47
42
47
47
47
0
47
0
47
28
47
40
28
13
46
15
45
47
40
45
35
46
47
16
37
37
47
. 47
47
3
26
0
47
20
100.00%
89.36%
100.00%
100.00%
100.00%
0.00%
100.00%
0.00%
100.00%
59.57%
100.00%
85.11%
59.57%
27.66%
97.87%
31.91%
95.74%
100.00%
85.11%
95.74%
74.47%
97.87%
100.00%
34.04%
78.72%
78.72%
100.00%
100.00%
100.00%
6.38%
55.32%
0.00%
100.00%
42.55%
3.78
1.08
4.25
1.74
7.90
2.90
1.29
0.39
7.00
0.51
0.53
0.45
6.84
0.70
0.52
2.59
0.54
0.49
0.44
0.64
2.70
0.59
0.51
0.50
1.08
2.12
1.08
0.71
0.56
.
1.65
0.49
Maximum
40.47
20.89
95.48
40.59
1851.76
73.78
.
11.80
5.25
126.81
12.10
11.63
3.78
141.25
8.06
13.31
52.13
6.32
15.76
8.65
21.14
34.70
2.50
2.46
3.54
8.62
30.22
24.46
1.04
4.59
•
45.44
2.66
9-19
Standard
Median Average Deviation Skewness
10.33
4.78
24.02
5.10
26.95
12.01
2.76
1.19
21.15
1.05
0.89
0.80
24.13
1.77
1.19
10.73
1.70
1.39
1.19
1.73
8.47
0.78
0.90
0.92
2.14
6.25
4.98
0.76
1.52
•
4.98
1.10
12.82
5.96
27.28
7.72
87.86
•
13.60
3.29
1.35
25.53
1.59
1.43
1.09
31.33
2.65
2.05
13.18
2.03
2.39
1.61
2.73
10.15
0.97
0.97
1.15
2.96
8.29
6.74
0.84
1.72
•
8.02
1.17
7.44
4.67
18.75
7.51
271.04
11.78
•
1.95
0.99
20.82
1.89
2.10
0.86
26.32
2.22
2.33
10.46
1.45
2.96
1.49
3.37
6.94
0.53
0.39
0.72
1.94
6.42
5.22
0.18
1.15
7.87
0.68
1.95
1.68
1.15
2.53
6.27
3.22
2.21
2.56
3.07
4.68
4.61
2.86
2.54
1.64
3.18
2.30
1.46
3.23
3.43
4.03
1.89
2.13
1.70
2.18
1.44
2.04
1.72
1.58
1.12
•
2.88
1.16
Kurtosis
4.50
3.06
2.10
7.81
41.25
14.56
7.08
8.45
12.31
25.38
22.70
9.10
7.80
1.89
12.35
6.32
1.93
11.48
14.76
20.06
3.58
4.33
4.43
4.88
1.37
4.23
3.09
0.52
10.84
0.66
-------
Table 9-11. Continued
ppbC
Standard
Compound Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosij
c-2-Hexene
Methytcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1-Heptene
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
Isopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyltoluene
p-Ethyltoluene
1 ,3,5-Trimethylbenzene
o-Ethyltoluene
1-Decene
1 ,2,4-Trimethyl benzene
298-01 7-70/cah.117op
NMOC Final Report
12
47
45
47
47
47
7
47
47
20
47
46
38
47
47
47
42
31
43
47
47
32
47
22
45
14
46
40
45
22
39
47
0
47
25.53%
100.00%
95.74%
100.00%
100.00%
100.00%
14.89%
100.00%
100.00%
42.55%
100.00%
97.87%
80.85%
100.00%
100.00%
100.00%
89.36%
65.96%
91.49%
100.00%
100.00%
68.09%
100.00%
46.81%
95.74%
29.79%
97.87%
85.11%
95.74%
46.81%
82.98%
100.00%
0.00%
100.00%
0.58
0.92
0.56
2.95
0.56
1.08
0.56
1.85
1.41
0.53
0.65
0.54
0.55
0.68
6.07
0.51
0.58
0.52
0.50
1.41
3.36
0.45
0.93
0.54
0.64
0.57
0.51
0.52
0.66
0.40
0.52
0.63
.
1.09
1.64
21.03
4.87
33.95
7.56
15.33
2.44
13.23
23.45
2.21
6.84
6.35
3.76
8.84
65.19
4.73
4.07
3.99
3.31
13.84
37.04
3.42
12.26
1.23
3.68
2.63
10.68
3.34
8.89
2.32
4.20
5.24
.
15.25
9-20
0.69
3.17
1.18
5.45
2.68
3.30
0.71
3.80
4.58
0.77
1.77
1.82
1.01
1.58
15.60
1.25
0.94
1.09
1.03
3.58
8.98
0.94
2.75
0.59
1.59
0.94
2.20
0.80
2.08
1.01
1.01
1.38
.
3.07
0.80
4.20
1.54
7.81
3.15
4.14
0.99
4.49
6.23
0.97
2.30
2.06
1.22
2.21
19.23
1.58
1.31
1.33
1.23
4.46
10.79
1.21
3.38
0.70
1.66
1.09
2.96
1.06
2.58
1.04
1.37
1.65
•
3.89
0.31
3.56
1.04
5.83
1.59
3.05
0.67
2.26
4.49
0.52
1.42
1.30
0.69
1.63
11.74
1.00
0.79
0.81
0.68
2.60
6.69
0.69
2.36
0.18
0.70
0.56
2.43
0.57
1.62
0.53
0.91
0.93
•
2.82
2.19
2.71
1.56
2.70
1.02
1.67
2.16
1.65
1.62
1.44
1.46
1.38
1.66
1.86
1.63
1.69
1.58
1.44
1.62
1.76
1.73
1.22
1.70
1.58
0.97
2.08
1.74
2.05
1.79
1.16
1.65
1.76
1.90
4.71
10.17
2.0£
8.9£
0.9£
s.oe
4.77
3.7'
3.36
1.3C
2.2:
2.4(
3.5'
4.6!
3.6!
2.6!
2.3!
2.2'
2.3i
3.7:
3.9
1.6
3.3
2.4
1.4
4.3
2.7
5.4
4.1
1.2
2.3
3.7
4.6
-------
Table 9-11. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
n-Decane
1 ,2,3-Trimethyl benzene
p-Diethyl benzene
1-Undecene
n-Undecane
1 -Dodecene
n-Dodecane
1-Tridecene
n-Tridecane
31
47
40
44
47
44
47
13
31
65.96%
100.00%
85.11%
93.62%
100.00%
93.62%
100.00%
27.66%
65.96%
0.43
1.19
0.49
1.52
0.57
1.54
0.55
0.48
0.51
3.72
10.60
2.01
15.65
4.10
13.45
9.84
1.69
1.66
0.91
2.59
0.98
7.42
1.36
4.69
1.22
0.66
0.78
1.20
3.00
1.02
7.93
1.68
5.16
1.55
0.84
0.85
0.78
1.66
0.39
3.66
0.91
2.70
1.56
0.39
0.29
1.73
2.75
0.76
0.28
0.95
1.11
4.19
1.27
1.40
3.29
9.83
-0.08
-0.44
-0.05
1.48
19.53
0.68
1.75
. 117op
WWICC Final Report
9-21
-------
Table 9-12. 1992 Summary Statistics for Charlotte, NC (CHNC)
*
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyf-1-butene
Isopentane
1 -Pentene
2-Methyl-1-butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cyclopentene
4-Methyl-1 -pentene
2,3-Dimethylbutane
Cyclopentane
Isohexane
3-Methylpentane
1-Hexene
2-Methyl-1 -pentene
2-Ethyl-1-butene
n-Hexane
t-2-Hexene
298-01 7-70/cah. 11 Top
NMOC Final Report
Cases Frequency Minimum
52
46
52
52
52
0
53
0
53
30
53
28
19
16
53
16
37
52
48
39
34
41
41
15
42
31
51
53
52
0
24
0
53
17
98.11%
86.79%
98.11%
98.11%
98.11%
0.00%
100.00%
0.00%
100.00%
56.60%
100.00%
52.83%
35.85%
30.19%
100.00%
30.19%
69.81%
98.11%
90.57%
73.58%
64.15%
77.36%
77.36%
28.30%
79.25%
58.49%
96.23%
100.00%
98.11%
0.00%
45.28%
0.00%
100.00%
32.08%
1.18
0.59
1.26
0.69
1.37
.
0.69
0.53
0.53
1.03
0.54
0.48
0.51
2.63
0.60
0.54
0.89
0.48
0.62
0.50
0.62
0.57
0.51
0.52
0.51
0.56
0.72
0.76
.
0.65
.
0.52
0.49
Maximum
35.92
23.52
15.81
13.63
33.68
12.23
7.79
3.79
26.20
2.54
39.63
2.16
65.29
6.01
5.46
65.49
19.19
6.66
3.73
8.61
16.54
1.33
3.42
2.46
6.98
18.63
13.41
5.65
.
9.93
1.90
9-22
Standard
Median Average Deviation Skewness
9.85
6.39
5.01
3.49
6.24
.
2.18
.
2.39
1.20
5.95
1.09
0.83
0.80
13.92
1.34
1.39
4.93
3.13
1.54
1.09
1.44
5.20
0.66
1.08
0.88
1.74
4.37
3.61
.
1.21
.
2.69
0.76
11.25
7.23
5.90
4.02
7.31
3.65
.
2.73
1.47
7.53
1.23
3.02
1.06
19.87
1.76
1.82
7.55
4.14
2.13
1.37
2.30
5.42
0.78
1.22
1.04
2.39
5.48
4.19
.
1.63
.
3.27
0.98
7.36
4.85
3.21
3.12
6.00
3.11
1.80
0.91
5.73
0.61
8.88
0.53
16.16
1.35
1.35
9.81
3.87
1.60
0.88
1.97
3.70
0.30
0.67
0.56
1.67
4.39
2.96
.
1.15
2.44
0.50
1.30
1.43
0.94
1.67
2.61
1.40
1.42
1.19
1.36
0.85
4.33
0.82
1.48
2.28
1.57
4.36
1.90
1.65
1.67
1.97
0.95
1.14
1.64
1.41
1.45
1.74
1.65
2.07
1.34
1.11
Kurtosis
2.06
2.31
0.73
2.65
8.22
1.27
1.58
0.41
1.56
-0.18
18.85
-0.59
1.58
6.33
1.93
24.04
4.75
2.32
2.30
3.74
1.27
-0.20
2.90
0.94
1 58
2.88
2.84
5.47
1 3S
-0.46
-------
Table 9-12. Continued
ppbC
Compound
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1-Heptene
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
Isopropylbenzene
n-Propyl benzene
alpha-Plnene
m-Ethyltoluene
p-Ethyttoluene
1 ,3,5-Trimethylbenzene
o-Ethyttoluene
1 -Decene
1 ,2,4-Trimethylbenzene
Cases Frequency Minimum
7
50
43
53
51
40
30
53
53
16
48
42
39
45
53
44
34
34
36
52
53
39
53
15
38
7
49
41
52
29
43
53
2
53
13.21%
94.34%
81.13%
100.00%
96.23%
75.47%
56.60%
100.00%
100.00%
30.19%
90.57%
79.25%
73.58%
84.91%
100.00%
83.02%
64.15%
64.15%
67.92%
98.11%
100.00%
73.58%
100.00%
28.30%
71.70%
13.21%
92.45%
77.36%
98.11%
54.72%
81.13%
100.00%
3.77%
100.00%
0.46
0.59
0.52
1.75
0.64
0.55
0.55
0.54
0.95
0.50
0.48
0.52
0.49
0.59
4.05
0.56
0.50
0.53
0.48
0.66
1.73
0.50
0.59
0.50
0.48
0.60
0.58
0.53
0.65
0.50
0.53
0.68
0.81
1.03
Maximum
1.13
7.20
5.56
20.06
4.64
11.59
14.24
7.58
20.38
1.79
4.63
3.35
2.87
7.36
159.74
3.37
2.84
3.00
2.11
8.66
29.77
4.66
11.07
1.12
5.99
1.99
18.90
4.08
9.99
2.18
5.19
7.05
1.04
15.10
Median
0.99
1.85
1.35
6.25
1.83
1.37
1.36
2.55
4.77
0.74
1.43
1.20
0.85
1.77
17.40
1.22
1.01
0.98
0.73
2.61
7.70
1.34
2.73
0.62
0.89
0.69
2.45
0.98
2.52
0.89
1.19
1.84
0.93
3.69
Standard
Average Deviation Skewness
0.83
2.32
1.78
6.83
1.97
1.91
2.31
3.12
5.76
0.90
1.66
1.39
1.12
2.24
21.61
1.36
1.23
1.15
0.95
2.98
9.29
1.52
3.24
0.70
1.09
0.87
4.62
1.27
3.23
1.07
1.63
2.31
0.93
4.62
0.30
1.74
1.25
4.30
0.93
1.84
2.75
1.76
4.70
0.44
1.00
0.77
0.65
1.73
23.04
0.73
0.64
0.65
0.46
1.97
6.79
0.95
2.54
0.21
0.89
0.50
5.06
0.74
2.29
0.51
1.13
1.58
0.16
3.38
-0.32
1.57
1.72
1.48
0.73
3.98
3.29
1.09
1.74
1.37
1.35
1.34
1.72
1.83
4.37
1.42
1.52
1.56
0.97
1.53
1.65
1.26
1.67
1.15
4.72
2.51
1.64
1.87
1.42
1.08
1.75
1.66
1.56
Kurtosis
-2.56
2.14
2.65
2.24
0.30
19.86
12.51
0.43
3.00
0.51
1.46
1.13
2.29
3.18
24.98
1.81
1.53
1.74
0.03
2.32
2.55
1.60
2.75
0.07
25.86
6.42
1.77
4.10
1.64
0.16
287
236
242
MMOC Final fl«port
9-23
-------
Table 9-12. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosi
n-Decane
1 ,2.3-Trimethylbenzene
p-Diethylbenzene
1 -Undecene
n-Undecane
1 -Dodecene
n-Dodecane
1-Tridecene
n-Tridecane
19
53
31
52
53
52
53
20
41
35.85%
100.00%
58.49%
98.11%
100.00%
98.11%
100.00%
37.74%
77.36%
0.51
1.28
0.58
0.85
0.65
0.52
0.52
0.47
0.50
10.77
6.79
5.37
9.80
51.62
7.47
103.12
1.73
24.82
4.59
2.71
1.01
2.70
1.85
1.64
1.49
0.71
0.87
4.69
3.19
1.23
3.17
3.85
1.96
4.46
0.78
1.74
2.98
1.40
0.94
1.72
7.73
1.30
14.29
0.29
3.86
0.54
0.95
3.41
1.75
5.27
2.28
6.61
2.1-
5.68
-0.4
0.2
13.3
3.6
30.1
6.4
45.8
5.5
33.S
298-017-70/cah.117op
NMOC Final Report
9-24
-------
Table 9-13. 1992 Summary Statistics for Dallas, TX (DLTX)
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
tsobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1-butene
Isopentane
1-Pentene
2-Methyl-1-butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cyclopentene
4-Methyl-l-pentene
2,3-Dimethyl butane
Cyclopentane
Isohexane
3-Methylpentane
1 -Hexene
2-Methyl-1 -pentene
2-Ethyl-1-butene
n-Hexane
t-2-Hexene
298-017-70/cah.117op
NMOC Final Report
Cases Frequency Minimum Maximum
69
66
69
68
69
0
67
0
68
48
69
42
21
23
69
21
64
68
61
67
51
68
69
15
53
46
67
69
69
1
40
0
69
23
100.00%
95.65%
100.00%
98.55%
100.00%
0.00%
97.10%
0.00%
98.55%
69.57%
100.00%
60.87%
30.43%
33.33%
100.00%
30.43%
92.75%
98.55%
88.41%
97.10%
73.91%
98.55%
100.00%
21.74%
76.81%
66.67%
97.10%
100.00%
100.00%
1.45%
57.97%
0.00%
100.00%
33.33%
3.38
0.90
3.68
1.23
4.94
1.31
0.71
0.52
0.99
0.54
0.45
0.48
6.01
0.61
0.54
2.44
0.50
0.52
0.56
0.65
5.67
0.46
0.54
0.51
0.58
1.95
0.54
0.76
0.51
•
1.21
0.46
85.80
28.46
69.50
19.09
66.11
•
18.46
10.42
4.11
40.56
3.76
5.63
2.35
127.33
5.83
9.65
37.15
6.29
8.45
5.93
13.80
85.75
2.17
2.38
4.54
13.60
33.71
20.27
0.76
4.31
20.02
5.91
9-25
Standard
Median Average Deviation Skewness Kurtosis
11.35
6.52
13.45
3.58
14.50
•
4.58
2.24
0.96
9.46
0.80
0.67
0.64
16.76
1.25
1.24
7.49
0.89
1.48
1.03
1.75
19.64
0.61
0.94
0.87
1.89
5.43
4.94
0.76
0.81
•
3.83
0.68
13.16
7.27
16.28
3.99
16.06
4.82
2.54
1.19
10.62
1.00
1.04
0.80
21.62
1.79
1.58
8.34
1.25
1.82
1.26
2.14
24.55
0.75
1.08
1.14
2.62
6.43
5.56
0.76
0.95
•
4.49
1.16
11.08
5.42
11.62
2.61
10.85
3.02
1.45
0.70
6.92
0.59
1.17
0.41
17.74
1.42
1.32
5.58
1.03
1.37
0.86
1.85
16.58
0.45
0.43
0.86
2.41
4.63
3.83
0.65
•
3.00
1.28
4.69
1.67
2.31
3.15
2.46
2.14
2.88
2.08
2.27
3.28
3.47
2.65
3.87
2.09
4.25
2.86
3.39
2.75
3.79
4.37
1.82
2.70
1.28
2.89
2.78
3.67
1.86
•
4.01
2.90
2.84
28.16
3.38
7.28
15.98
8.25
6.72
•
12.82
5.48
7.46
12.62
12.72
8.62
19.75
3.93
23.19
11.53
13.42
9.34
17.83
24.55
3.63
7.47
1.38
8.16
8.86
18.68
4.48
•
19.07
•
11.37
8.65
-------
Table 9-13. Continued
*
ppbC
Standard
Compound Cases Frequency Minimum Maximum Median Average Deviation Skewness
c-2-Hexene
Methylcyclopentane
2,4-Dimethytpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1-Heptene
n-Heptane
Methyfcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methyl heptane
3-Methylheptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
Isopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyltoluene
p-Ethyltoluene
1 ,3,5-Trimethyl benzene
o-Ethyltoluene
1 -Decene
1 ,2,4-Trimethytbenzene
298-017-70/cah.117op
NMOC Final Report
7
69
57
69
65
68
2
69
69
29
68
66
53
68
69
67
64
41
59
69
69
45
68
7
64
9
65
63
68
59
68
68
0
69
10.14%
100.00%
82.61%
100.00%
94.20%
98.55%
2.90%
100.00%
100.00%
42.03%
98.55%
95.65%
76.81%
98.55%
100.00%
97.10%
92.75%
59.42%
85.51%
100.00%
100.00%
65.22%
98.55%
10.14%
92.75%
13.04%
94.20%
91.30%
98.55%
85.51%
98.55%
98.55%
0.00%
100.00%
0.52
0.73
0.46
2.61
0.65
0.82
0.70
1.34
1.53
0.51
0.84
0.60
0.47
0.63
5.15
0.51
0.54
0.49
0.52
0.95
3.00
0.52
1.11
0.53
0.52
0.57
0.50
0.52
1.02
0.51
0.47
0.77
1.84
1.67
10.02
6.20
27.42
6.09
19.43
2.13
12.75
30.39
1.68
10.35
4.07
4.48
11.46
90.33
6.86
8.12
3.51
5.11
25.04
91.09
2.59
28.10
0.90
6.80
0.97
5.55
6.05
16.62
5.54
7.97
9.70
28.81
9-26
0.72
2.34
1.05
5.65
1.71
3.37
1.42
2.99
4.71
0.75
1.77
1.16
0.92
1.81
16.54
1.27
1.09
0.78
0.87
2.82
9.72
0.80
3.33
0.64
1.11
0.61
1.82
1.05
2.89
0.93
1.44
1.84
5.08
0.87
2.64
1.31
6.63
1.82
4.07
1.42
3.64
5.46
0.78
2.33
1.25
1.08
2.10
20.64
1.50
1.39
0.89
1.13
3.60
12.64
0.89
4.27
0.66
1.63
0.64
1.96
1.34
3.48
1.14
1.67
2.26
5.92
0.42
1.57
0.91
3.74
0.85
3.09
1.01
2.04
3.99
0.23
1.81
0.58
0.62
1.51
14.61
0.92
1.17
0.51
0.71
3.27
11.97
0.40
3.70
0.13
1.22
0.13
0.84
0.88
2.38
0.75
1.08
1.35
3.87
1.50
2.49
3.43
2.96
2.54
2.82
2.41
3.89
2.33
2.57
2.14
3.60
3.88
2.38
3.35
4.14
3.82
3.26
4.50
4.54
2.37
4.35
1.22
2.01
2.72
1.70
3.14
3.13
3.88
3.44
3.09
3.49
Kurtosi
1.5!
9.2-
15.4<
13.7!
10.0!
10.7f
7.4)
22.1:
7.&
8.0
7.7
17.3
21.8
7.8
16.8
20.2
18.3
15.9
27.1
27.2
7.2
25.6
1.4
4.E
7.7
4.7
13.1
13.£
20.f
16.£
13.£
17.<
-------
Table 9-13. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness KurtosJs
n-Decane
1 ,2,3-Trimethylbenzene
p-Diethyl benzene
1-Undecene
n-Undecane
1-Dodecene
n-Dodecane
1-Tridecene
n-Tridecane
60
69
52
66
68
64
69
25
57
86.96%
100.00%
75.36%
95.65%
98.55%
92.75%
100.00%
36.23%
82.61%
0.54
1.47
0.47
0.54
1.01
0.51
0.67
0.54
0.46
9.90
10.76
6.43
4.55
46.02
7.22
27.79
4.32
7.68
1.23
2.81
1.05
1.38
2.48
0.96
1.45
0.85
0.86
2.07
3.40
1.30
1.65
3.69
1.31
2.53
1.29
1.27
1.90
1.68
1.04
0.90
5.54
1.13
3.61
0.95
1.17
2.18
2.21
3.07
1.56
6.93
3.75
5.52
1.95
3.47
5.16
5.85
11.83
2.08
52.80
16.24
36.28
3.59
15.69
298X)17-70/cah.117op
NMOC Final Report
9-27
-------
Table 9-14. 1992 Summary Statistics for El Paso, TX (EPTX)
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-l -butene
Isopentane
1 -Pentene
2-Methyl-1 -butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cyclopentene
4-MethyM-pentene
2,3-Dimethylbutane
Cyclopentane
Isohexane
3-Methylpentane
1 -Hexene
2-Methyl-1-pentene
2-Ethyl-1 -butene
n-Hexane
t-2-Hexene
298-017-70/cah.117op
NMOC Final Report
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosi:
70
70
70
70
70
0
70
0
70
66
70
67
63
42
69
38
69
70
62
69
65
70
70
40
62
69
70
70
70
0
67
0
70
57
100.00%
100.00%
100.00%
100.00%
100.00%
0.00%
100.00%
0.00%
100.00%
94.29%
100.00%
95.71%
90.00%
60.00%
98.57%
54.29%
98.57%
100.00%
88.57%
98.57%
92.86%
100.00%
100.00%
57.14%
88.57%
98.57%
100.00%
100.00%
100.00%
0.00%
95.71%
0.00%
100.00%
81.43%
8.48
5.41
3.39
2.78
3.58
1.18
.
1.60
0.90
4.31
0.58
0.51
0.52
6.80
0.60
0.77
3.61
0.52
0.58
0.55
0.71
11.36
0.42
0.56
0.65
1.29
2.72
1.80
0.56
2.58
0.53
52.92
52.58
68.23
23.22
235.92
30.95
22.51
4.04
88.13
10.77
11.66
2.35
126.92
10.22
11.27
72.53
1.94
12.62
6.00
14.50
97.97
2.05
2.22
6.56
11.49
37.80
27.02
.
4.03
•
30.86
2.95
9-28
21.76
15.92
14.21
8.92
20.51
•
6.39
.
5.51
1.83
17.30
1.73
1.27
0.88
28.96
1.69
2.42
15.12
0.96
2.54
1.65
3.55
28.84
0.76
0.92
1.69
4.43
10.47
7.76
•
1.11
•
8.58
0.86
23.00
17.01
18.08
9.40
33.83
8.80
6.16
1.93
21.25
2.10
1.75
1.02
35.80
2.20
3.03
19.68
1.05
3.27
1.85
4.15
33.01
0.85
0.96
2.02
4.66
12.19
9.00
1.33
9.87
1.01
8.84
7.73
12.60
3.95
40.66
7.10
2.88
0.67
16.92
1.42
1.87
0.48
21.95
1.77
1.91
12.48
0.35
2.38
0.92
2.37
17.84
0.36
0.33
1.19
2.11
6.67
4.93
0.66
5.20
0.47
1.23
1.71
1.79
1.11
3.07
1.71
2.91
0.84
1.98
3.68
3.89
1.18
1.71
2.89
2.03
1.81
0.85
2.34
2.04
2.01
1.39
1.81
1.55
1.90
0.91
1.66
1.24
1.74
1.68
2.27
2.K
5.«
3.4:
1.8J
11.5]
2.8f
143:
1.1!
4.3
20.4*
16.4
0.6
3.8
10.9
5.3
4.3
0.1
6.0
6.2
5.5
2.0
s.e
3.C
4.2
1.C
3.4
1.5
3.6
3.1
6.
-------
Table 9-14. Continued
ppbC
Compound
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methythexane
2,2,4-Trimethylpentane
1-Heptene
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methytheptane
3-Methytheptane
1-Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1-Nonene
n-Nonane
I sopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyttoluene
p-Ethyttoluene
1,3,5-Trimethylbenzene .
o-Ethyttoluene
1-Decene
1 ,2,4-Trimethylbenzene
298-01 7-70/cah.117op
NMOC Final Report
Cases Frequency Minimum
32
70
70
70
69
63
69
70
70
61
70
70
68
70
70
70
70
70
69
70
70
69
70
59
70
34
68
69
70
61
70
70
1
70
45.71%
100.00%
100.00%
100.00%
98.57%
90.00%
98.57%
100.00%
100.00%
87.14%
100.00%
100.00%
97.14%
100.00%
100.00%
100.00%
100.00%
100.00%
98.57%
100.00%
100.00%
98.57%
100.00%
84.29%
100.00%
48.57%
97.14%
98.57%
100.00%
87.14%
100.00%
100.00%
1.43%
100.00%
0.49
1.55
1.23
4.78
0.84
0.59
0.69
1.57
3.14
0.50
0.80
0.63
0.70
1.16
9.94
0.74
0.65
0.68
0.61
1.47
5.12
0.62
1.52
0.49
0.60
0.38
0.78
0.54
1.20
0.61
0.78
0.52
2.34
1.37
Maximum Median
1.58
21.52
12.40
37.75
9.04
5.16
14.32
12.98
26.23
4.51
9.83
6.97
4.33
10.89
115.43
6.99
5.96
4.01
4.83
16.47
48.59
15.83
15.61
2.58
7.83
1.23
7.50
4.67
10.38
3.09
6.34
6.43
2.34
21.90
9-29
0.73
6.15
4.54
15.81
3.35
1.73
5.11
5.10
10.44
1.01
3.30
2.05
1.62
3.86
37.50
2.35
2.13
1.65
1.44
6.54
19.71
1.29
6.38
1.03
2.65
0.69
3.05
1.81
4.72
1.51
2.22
3.15
2.34
8.23
Standard
Average Deviation Skewness
0.81
7.07
5.06
16.88
3.67
1.90
5.67
5.69
11.01
1.27
3.60
2.25
1.82
4.24
40.81
2.65
2.36
1.79
1.66
7.05
21.21
1.61
6.84
1.14
2.73
0.74
3.14
1.92
5.11
1.52
2.38
3.18
2.34
8.67
0.28
3.59
2.35
6.49
1.49
1.02
2.71
2.40
4.72
0.81
1.76
1.11
0.79
1.96
18.56
1.19
1.05
0.72
0.89
3.06
8.86
1.85
2.92
0.43
1.47
0.20
1.30
0.82
2.01
0.56
1.01
1.21
3.76
1.29
1.57
1.10
0.97
1.10
1.24
1.02
1.05
1.02
2.35
1.27
1.70
1.28
1.19
1.50
1.30
1.26
0.94
1.69
1.00
0.98
6.98
0.96
1.26
1.24
0.95
0.63
1.11
0.60
0.60
1.52
0.41
.
1.08
Kurtosis
1.18
3.58
1.55
1.42
2.01
1.53
1.36
1.30
1.28
6.17
2.11
4.61
1.74
1.90
3.58
2.44
2.10
1.09
3.25
1.39
1.37
53.61
1.35
1.86
2.17
0.43
1.06
1.62
0.14
0.16
3.81
0.24
2.08
-------
Table 9-14. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosi
n-Decane
1 ,2,3-Trimethylbenzene
p-Diethyl benzene
1-Undecene
n-Undecane
1 -Dodecene
n-Dodecane
1-Tridecene
n-Tridecane
67
70
65
66
70
62
70
18
65
95.71%
100.00%
92.86%
94.29%
100.00%
88.57%
100.00%
25.71%
92.86%
0.52
1.33
0.53
0.65
1.10
0.49
0.79
0.51
0.50
16.47
11.62
4.24
3.31
76.41
3.40
60.45
3.45
17.94
2.04
3.64
1.73
1.61
3.18
0.85
1.71
1.10
0.92
3.31
3.82
1.64
1.66
4.73
0.99
3.62
1.33
1.56
3.30
1.62
0.75
0.65
9.95
0.46
9.73
0.80
2.75
2.01
1.91
0.81
0.77
6.39
2.75
5.68
1.29
5.27
4.1
7.0
0.9
0.1
42.7
11.2
31.5
1.4
28.1
298-017-70/cah.117op
NMOC Final Report
9-30
-------
Table 9-15. 1992 Summary Statistics for Ft. Worth, TX (FWTX)
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1-butene
Isopentane
1 -Pentene
2-Methyl-1-butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyt-2-butene
Neohexane
Cyclopentene
4-Methyl-l -pentene
2,3-Dimethyibutane
Cyclopentane
Isohexane
3-Methylpentane
1-Hexene
2-Methyl-l -pentene
2-Ethyl-1-butene
n-Hexane
t-2-Hexene
29fl-0ir-70/cah.117op
NMOC Final Report
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness
68
63
68
68
68
0
68
0
64
31
68
33
20
18
68
24
55
68
44
62
44
61
67
14
52
46
66
68
67
0
32
0
68
21
100.00%
92.65%
100.00%
100.00%
100.00%
0.00%
100.00%
0.00%
94.12%
45.59%
100.00%
48.53%
29.41%
26.47%
100.00%
35.29%
80.88%
100.00%
64.71%
91.18%
64.71%
89.71%
98.53%
20.59%
76.47%
67.65%
97.06%
100.00%
98.53%
0.00%
47.06%
0.00%
100.00%
30.88%
3.24
0.86
1.05
0.85
2.43
•
1.22
.
0.67
0.48
2.34
0.52
0.53
0.53
6.09
0.50
0.51
2.13
0.54
0.53
0.50
0.65
3.70
0.51
0.52
0.52
0.59
1.55
0.99
.
0.48
•
1.09
0.57
32.37
27.47
129.85
12.34
123.20
•
24.87
6.82
2.33
57.38
3.43
13.81
4.07
157.30
9.71
11.93
59.03
4.05
13.35
7.14
17.70
51.41
2.49
2.17
6.09
9.83
33.93
21.87
.
3.77
•
20.24
3.95
9-31
8.42
4.54
14.64
2.58
12.45
•
4.40
1.83
0.81
12.02
0.93
0.84
0.87
16.30
1.53
1.20
7.34
0.85
1.30
1.14
1.61
8.37
0.70
0.85
1.00
1.74
4.93
3.67
.
1.00
•
3.63
0.94
9.93
5.98
18.09
3.24
16.07
5.62
2.35
1.02
14.87
1.17
1.65
1.19
23.23
2.54
1.84
10.45
1.14
1.99
1.45
2.49
10.28
0.90
0.98
1.31
2.35
6.68
5.36
•
1.19
•
4.66
1.44
5.54
4.46
18.34
2.15
16.60
•
4.11
•
1.44
0.53
11.12
0.74
2.92
0.92
22.89
2.68
1.85
10.13
0.76
1.95
1.18
2.74
7.51
0.53
0.39
1.04
1.81
5.56
4.44
•
0.82
•
3.48
0.99
1.69
2.27
3.88
1.78
4.49
2.13
1.45
1.41
2.12
1.72
4.22
2.36
3.66
1.53
3.55
3.05
2.63
3.81
2.99
3.59
3.18
2.41
1.11
3.01
2.17
2.59
1.95
•
1.86
•
2.09
1.29
Kurtosis
3.69
8.05
20.58
4.50
26.30
6.61
•
1.53
1.18
5.52
2.40
18.31
5.64
18.10
1.22
16.51
11.53
7.47
19.06
11.99
16.26
13.50
6.40
0.76
10.82
5.69
9.02
4.34
•
3.28
•
5.78
0.96
-------
Table 9-15. Continued
ppbC
Standard
Compound Cases Frequency Minimum Maximum Median Average Deviation Skewness
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cydohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1-Heptene
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methyl heptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
Isopropyl benzene
n-Propylbenzene
alpha-Pinene
m-Ethyltoluene
p-Ethyltoluene
1 ,3,5-Trimethylbenzene
o-Ethyltoluene
1-Decene
1 ,2,4-Trimethylbenzene
298-01 7-70/cah.117op
NMOC Final Report
10
68
55
68
62
65
3
68
68
28
68
63
53
67
68
60
56
32
46
68
68
41
67
3
41
9
66
51
67
41
61
66
1
68
14.71%
100.00%
80.88%
100.00%
91.18%
95.59%
4.41%
100.00%
100.00%
41.18%
100.00%
92.65%
77.94%
98.53%
100.00%
88.24%
82.35%
47.06%
67.65%
100.00%
100.00%
60.29%
98.53%
4.41%
60.29%
13.24%
97.06%
75.00%
98.53%
60.29%
89.71%
97.06%
1.47%
100.00%
0.50
0.83
0.52
1.89
0.53
0.64
0.81
1.01
1.09
0.45
0.65
0.54
0.49
0.61
2.78
0.53
0.49
0.47
0.51
0.60
0.97
0.50
0.60
0.50
0.52
0.47
0.57
0.52
0.64
0.44
0.55
0.60
1.83
0.56
1.92
11.51
5.07
18.35
5.92
13.95
1.27
9.98
28.35
2.17
6.67
6.53
4.54
10.01
218.21
5.56
4.78
3.04
26.34
10.29
35.75
4.32
12.95
0.90
2.30
0.99
8.39
3.26
10.43
2.97
5.42
5.75
1.83
18.66
9-32
0.68
2.23
1.06
5.03
1.93
2.69
1.01
2.63
4.69
0.78
1.36
1.14
0.83
1.63
13.31
1.18
1.08
0.80
0.94
2.25
8.08
0.76
2.86
0.61
0.83
0.71
1.97
0.94
2.35
0.94
1.38
1.50
1.83
4.09
0.84
2.98
1.38
6.02
2.06
3.62
1.03
3.28
5.92
0.86
1.81
1.42
1.14
2.16
26.32
1.42
1.30
0.97
2.06
2.85
10.12
0.98
3.50
0.67
0.94
0.72
2.00
1.17
2.91
1.10
1.66
1.80
1.83
4.91
0.46
2.33
0.91
3.59
0.97
2.75
0.23
1.90
4.55
0.43
1.23
1.01
0.72
1.61
39.43
0.92
0.82
0.53
4.26
1.96
7.01
0.65
2.54
0.21
0.39
0.18
1.18
0.61
1.90
0.55
1.09
1.04
3.47
1.88
2.16
2.16
1.58
1.61
1.96
0.39
1.65
2.35
1.90
1.72
2.83
2.59
2.39
3.18
2.12
2.01
2.47
4.86
1.60
1.54
3.73
1.62
1.20
1.48
0.24
2.90
1.51
1.76
1.68
1.81
1.67
1.75
Kurtosis
3.19
5.00
5.62
2.65
4.33
4.17
2.79
8.25
3.32
3.15
10.56
9.31
8.10
10.47
6.2C
5.18
7.54
25.32
2-.8E
2.4£
17.8^
2.7*
2.4;
-1.1;
13.7;
2.1!
3.8'
3.1
3.5
3.2
3.7
-------
Table 9-15. Continued
ppbC
Standard
Compound Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
n-Decane
1 ,2,3-Trimethylbenzene
p-Diethyl benzene
1-Undecene
n-Undecane
1-Dodecene
n-Dodecane
1-Tridecene
n-Tridecane
33
68
45
63
65
63
62
11
36
48.53%
100.00%
66.18%
92.65%
95.59%
92.65%
91.18%
16.18%
52.94%
0.50
1.33
0.52
0.52
0.65
0.50
0.59
0.51
0.51
34.23
8.23
2.39
6.53
9.65
4.60
7.70
1.70
5.96
0.90
2.97
0.94
1.34
1.91
0.91
1.08
0.58
0.76
2.03
3.37
1.08
1.68
2.28
1.22
1.69
0.69
1.14
5.81
1.41
0.48
1.03
1.67
0.78
1.60
0.35
1.09
5.66
1.23
1.05
2.28
2.19
2.23
2.77
2.96
3.32
32.31
1.56
0.31
7.19
6.28
6.12
7.63
9.08
11.91
Sae-017-70/ohT17cp 9-33
NMOC Final Fteport
-------
Table 9-16. 1992 Summary Statistics for Juarez, Mexico (JUMX)
ppbC
Compound
Ethyiene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1-Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-MethyM -butene
Isopentane
1-Pentene
2-Methyl-1 -butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cyclopentene
4-Methyl-1-pentene
2,3-Dimethylbutane
Cyclopentane
Isohexane
3-Methylpentane
1 -Hexene
2-Methyl-1-pentene
2-Ethyl-1 -butene
n-Hexane
t-2-Hexene
29fl-017-70/cah.117op
NMOC Final Report
Cases Frequency Minimum
62
62
62
62
62
0
62
0
61
42
62
44
30
22
62
37
54
62
60
47
42
53
62
10
41
53
61
61
62
1
36
0
62
20
100.00%
100.00%
100.00%
100.00%
100.00%
0.00%
100.00%
0.00%
98.39%
67.74%
100.00%
70.97%
48.39%
35.48%
100.00%
59.68%
87.10%
100.00%
96.77%
75.81%
67.74%
85.48%
100.00%
16.13%
66.13%
85.48%
98.39%
98.39%
100.00%
1.61%
58.06%
0.00%
100.00%
32.26%
1.15
0.74
2.06
0.75
10.08
2.04
0.53
0.52
1.21
0.50
0.53
0.53
3.45
0.56
0.49
2.47
1.18
0.56
0.51
0.61
11.40
0.55
0.52
0.44
0.78
1.02
1.14
1.74
0.55
.
0.95
0.49
Maximum
213.71
38.02
36.92
13.71
188.55
.
36.17
9.54
3.56
62.54
4.20
14.24
2.83
81.55
2.85
5.54
49.78
23.91
9.16
2.85
11.82
131.26
2.48
1.77
4.50
8.02
24.76
16.47
1.74
2.62
19.14
1.76
904.
W*T
Median
13.97
9.87
13.12
5.15
40.68
6.54
3.02
1.18
19.28
1.25
0.87
0.75
18.32
1.06
1.59
11.17
5.65
1.54
1.04
1.86
32.28
0.91
0.81
1.33
2.78
7.58
6.23
1.74
0.98
.
6.57
0.66
Standard
Average Deviation Skewness
17.58
11.30
14.81
5.45
53.14
.
8.52
3.43
1.37
21.90
1.41
1.54
0.97
23.18
1.19
1.79
14.65
7.26
1.99
1.12
2.27
40.16
1.19
0.87
1.48
3.12
8.82
7.04
1.74
1.06
.
7.21
0.72
26.55
7.52
8.58
3.11
43.20
6.42
t
1.92
0.65
13.94
0.83
2.54
0.56
16.74
0.58
1.01
10.47
5.05
1.74
0.50
1.77
24.69
0.77
0.33
0.84
1.73
5.68
3.65
.
0.45
.
4.10
0.27
6.81
1.04
0.75
0.58
1.26
2.13
0.94
1.54
1.01
2.04
4.67
2.18
1.78
1.51
1.37
1.54
1.53
2.58
1.49
3.30
1.36
1.01
1.29
1.54
0.97
1.09
0.44
,
1.71
0.85
3.10
Kurtosii
50.72
1.4.'
-0.1'
-0.4«
o.«
5.7!
0.9I
2.7!
0.6
4.7
23.3
5.0
3.7
2.1
2.7
2.6
2.1
7:4
3.0
15.6
2.1
-o.e
1.2
2.£
0.£
0.£
-0.-
3.f
O.f
11.-
-------
Table 9-16. Continued
ppbC
Compound
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1 -Heptene
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-M ethyl heptane
3-Methytheptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
I sopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyttoluene
p-Ethyltoluene
1 ,3,5-Trimethylbenzene
o-Ethyttoluene
1-Decene
1 ,2,4-Trimethylbenzene
298-017-70/cah.1l7Bp
MUSK Final Report,
Cases Frequency Minimum Maximum
9
62
60
62
61
56
59
62
61
37
61
57
52
58
62
58
57
43
53
62
62
41
61
32
59
15
58
55
59
44
55
61
1
62
14.52%
100.00%
96.77%
100.00%
98.39%
90.32%
95.16%
100.00%
98.39%
59.68%
98.39%
91.94%
83.87%
93.55%
100.00%
93.55%
91.94%
69.35%
85.48%
100.00%
100.00%
66.13%
98.39%
51.61%
95.16%
24.19%
93.55%
88.71%
95.16%
70.97%
88.71%
98.39%
1.61%
100.00%
0.51
0.55
0.62
1.81
0.83
0.52
0.55
1.54
0.71
0.49
0.63
0.59
0.54
0.47
4.27
0.53
0.46
0.49
0.50
0.50
1.40
0.50
0.58
0.52
0.56
0.55
0.52
0.52
0.77
0.50
0.53
0.45
3.69
0.65
0.85
13.21
6.25
23.82
10.92
4.39
7.19
10.57
12.39
13.20
10.12
5.18
2.10
5.27
71.11
4.73
4.16
2.42
22.98
18.55
70.38
6.39
22.49
1.72
4.87
0.89
18.53
3.22
7.75
2.26
3.51
5.02
3.69
13.06
9-35
Median
0.59
3.66
2.63
8.47
3.42
1.40
2.84
4.12
5.45
1.02
2.39
1.26
1.07
2.23
24.81
1.78
1.43
1.10
1.39
4.69
14.94
1.06
4.71
0.84
1.64
0.71
2.01
1.39
2.81
1.03
1.34
1.86
3.69
4.71
Standard
Average Deviation Skewness
0.64
4.53
2.91
9.92
3.59
1.54
3.12
4.48
5.79
1.85
2.84
1.60
1.15
2.34
27.40
1.88
1.61
1.13
1.99
5.89
19.25
1.65
6.06
0.92
1.69
0.70
2.48
1.40
3.15
1.06
1.43
2.06
3.69
4.96
0.12
2.72
1.53
5.19
1.94
0.83
1.67
1.99
3.04
2.47
1.69
1.04
0.44
1.21
15.60
0.91
0.79
0.44
3.06
4.26
15.35
1.43
4.74
0.30
0.89
0.10
2.50
0.61
1.69
0.42
0.67
0.97
.
2.72
0.92
0.95
0.49
0.50
1.46
1.34
0.48
0.73
0.34
3.41
1.51
1.90
0.42
0.47
0.82
0.64
0.68
0.62
6.42
1.22
1.57
2.15
1.61
0.82
1.03
0.21
4.97
0.71
0.89
0.91
1.26
0.60
0.65
Kurtosis
-0.59
0.81
-0.85
-0.50
3.08
2.05
-0.67
0.03
-0.98
12.91
4.24
3.80
-0.84
-0.77
0.46
0.08
0.33
0.14
44.35
1.07
2.23
4.25
2.51
0.19
1.36
-0.33
30.40
0.22
0.39
0.76
1.70
0.14
0.18
-------
Table 9-16. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosi
n-Decane
1 ,2,3-Trimethylbenzene
p-Diethyl benzene
1-Undecene
n-Undecane
1-Dod scene
n-Dodecane
1 -Tridecene
n-Tridecane
31
62
48
62
62
54
60
13
49
50.00%
100.00%
77.42%
100.00%
100.00%
87.10%
96.77%
20.97%
79.03%
0.52
1.10
0.52
0.77
0.57
0.57
0.49
0.52
0.56
33.14
24.20
3.14
5.67
6.49
5.18
5.21
11.15
3.76
1.10
2.38
1.07
2.18
2.28
1.33
1.54
0.86
1.06
3.31
3.17
1.18
2.12
2.45
1.56
1.87
1.89
1.19
6.66
3.14
0.53
0.97
1.28
0.98
0.97
2.92
0.65
3.61
5.33
1.17
0.98
1.22
2.11
1.15
3.12
2.47
14.11
34.0'
2.3;
1.81
1.9)
5.1
1.5
10.1
7.6
298-017-70/cah.117op
NMOC Final Report
9-36
-------
Table 9-17. 1992 Summary Statistics for Long Island, NY (LINY)
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1-butene
Isopentane
1 -Pentene
2-Methyl-1-butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cyclopentene
4-Methyl-1 -pentene
2,3-Dimethylbutane
Cyclopentane
Isohexane
3-Methylpentane
1-Hexene
2-Methyl-l -pentene
2-Ethyt-1-butene
n-Hexane
t-2-Hexene
298-017-70/cah.117op
NMOC Final Report
Cases Frequency Minimum Maximum
8
7
8
8
8
0
8
0
8
5
8
5
5
4
8
3
5
8
5
6
5
6
5
3
4
4
6
8
8
0
3
0
8
3
100.00%
87.50%
100.00%
100.00%
100.00%
0.00%
100.00%
0.00%
100.00%
62.50%
100.00%
62.50%
62.50%
50.00%
100.00%
37.50%
62.50%
100.00%
62.50%
75.00%
62.50%
75.00%
62.50%
37.50%
50.00%
50.00%
75.00%
100.00%
100.00%
0.00%
37.50%
0.00%
100.00%
37.50%
3.28
1.94
2.44
1.20
2.08
0.77
0.77
0.69
2.05
0.70
0.56
0.47
3.70
1.18
0.74
1.34
0.49
0.55
0.52
0.41
0.60
0.56
0.68
0.67
0.45
0.80
0.62
.
0.98
•
0.63
0.73
25.69
12.01
26.93
9.99
15.67
•
10.62
6.61
1.92
20.57
2.57
2.16
0.81
38.67
1.70
2.88
13.83
2.31
3.10
1.63
3.72
1.09
0.69
1.01
1.28
6.04
10.66
7.58
1.23
5.99
0.86
9-37
Standard
Median Average Deviation Skewness
12.92
3.63
7.05
3.59
5.29
3.22
3.01
1.84
7.03
2.03
1.53
0.67
14.89
1.28
2.13
4.68
1.35
1.68
1.11
2.52
0.92
0.58
0.87
1.06
1.68
3.45
2.24
.
1.22
•
2.10
0.78
14.47
5.95
10.75
4.75
6.83
4.59
3.42
1.48
9.61
1.72
1.33
0.65
18.32
1.39
1.90
6.22
1.41
1.70
1.06
2.28
0.85
0.61
0.86
1.02
2.64
4.77
3.28
1.14
2.70
0.79
8.60
4.44
9.60
3.49
5.30
3.77
.
2.39
0.56
7.57
0.82
0.67
0.15
14.41
0.28
0.90
4.93
0.66
1.11
0.47
1.27
0.20
0.07
0.18
0.27
2.36
3.96
2.84
.
0.14
2.15
0.07
0.17
0.77
0.73
0.55
0.82
0.72
0.24
-0.88
0.46
-0.45
-0.08
-0.43
0.46
1.50
-0.39
0.60
-0.04
0.11
-0.02
-0.47
-0.23
1.63
-0.07
-0.67
0.81
0.65
0.78
-1.73
0.61
0.59
Kurtosts
-1.84
-1.55
-1.05
-1.64
-0.85
-1.14
-2.05
-1.70
-1.86
-2.50
-2.05
-0.98
-1.70
-2.06
-1.41
0.94
-2.44
-2.21
-1.24
-1.57
-5.57
-1.38
-1.56
-1.42
-1.19
-1.41
-------
Table 9-17. Continued
ppbC
Compound Cases Frequency Minimum Maximum Median
c-2-Hexene
Methylcyclopentane
2,4-Dimethyipentane
Benzene
Cydohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethyl pentane
1 -Heptene
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
I sopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyrtoluene
p-Ethyttoluene
1 ,3,5-Trimethylbenzene
o-Ethyltoluene
1-Decene
1 ,2,4-Trimethyl benzene
296-017-70/cah.117op
NMOC Final Report
3
6
5
8
6
5
2
8
8
3
6
4
4
7
8
5
4
3
4
8
8
4
8
3
4
2
8
. 5
8
5
7
8
0
8
37.50%
75.00%
62.50%
100.00%
75.00%
62.50%
25.00%
100.00%
100.00%
37.50%
75.00%
50.00%
50.00%
87.50%
100.00%
62.50%
50.00%
37.50%
50.00%
100.00%
100.00%
50.00%
100.00%
37.50%
50.00%
25.00%
100.00%
62.50%
100.00%
62.50%
87.50%
100.00%
0.00%
100.00%
0.46
0.63
0.65
2.83
0.49
0.80
1.81
1.14
0.90
0.69
0.66
0.78
0.72
0.45
4.68
0.59
1.02
0.81
0.69
0.77
2.37
0.69
0.68
0.47
0.65
0.54
0.75
0.56
0.61
0.55
0.55
0.52
.
1.13
0.63
4.39
2.91
13.53
2.28
16.84
4.88
12.93
8.24
1.01
10.01
2.95
1.45
3.04
72.65
2.14
1.83
1.05
1.47
6.47
22.34
1.28
7.53
0.77
2.04
0.64
4.70
1.91
5.48
1.52
2.73
- 3.49
.
9.26
9-38
0.46
2.33
1.74
6.90
1.20
1.28
3.35
2.38
3.70
0.71
1.30
1.38
1.27
1.61
14.96
1.47
1.45
1.01
0.81
2.41
8.84
1.17
3.02
0.60
1.25
0.59
1.11
1.26
2.37
1.14
1.41
1.45
.
4.07
Standard
Average Deviation Skewness
0.52
2.44
1.71
7.63
1.28
5.59
3.35
3.78
4.28
0.80
3.78
1.62
1.18
1.75
23.18
1.46
1.44
0.96
0.95
3.06
10.74
1.08
3.59
0.61
1.30
0.59
1.54
1.29
2.80
1.08
1.66
1.68
4.73
0.10
1.50
0.89
4.49
0.65
7.01
2.17
3.96
3.14
0.18
4.20
0.96
0.34
1.13
23.32
0.64
0.36
0.13
0.36
2.28
8.00
0.26
2.79
0.15
0.60
0.07
1.31
0.54
1.85
0.41
0.95
1.15
t
3.36
1.73
0.16
0.22
0.23
0.50
1.39
2.22
0.28
1.71
1.03
1.23
-1.05
0.04
1.60
-0.35
-0.15
-1.51
1.82
0.53
0.46
-1.72
0.40
0.40
0.36
2.58
•0.26
0.37
-0.33
0.03
0.57
.
0.35
Kurtos
-1.7
-1.0
-2.0
-0.4
1.C
5.1
-2.C
-1.<
1.J
-o.:
-2.:
2.'
-1.!
-2.I
3..
-1.
-1.
3.
-1.
-1.
6.
-1.
-1
-2
-2
-1
-1
-------
Table 9-17. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
n-Decane
1 ,2,3-Trimethylbenzene
p-Diethyl benzene
1-Undecene
n-Undecane
1-Dodecene
n-Dodecane
1 -Tridecene
n-Tridecane
2
8
5
8
8
8
6
0
5
25.00%
100.00%
62.50%
100.00%
100.00%
100.00%
75.00%
0.00%
62.50%
1.48
0.88
0.76
1.00
0.61
0.69
0.64
0.52
5.94
4.04
1.96
3.75
5.42
2.05
1.47
0.95
3.71
2.29
1.05
2.49
1.17
0.94
1.25
0.73
3.71
2.41
1.26
2.34
1.78
1.07
1.13
0.77
3.16
1.21
0.57
0.92
1.62
0.44
0.34
0.19
0.14
0.48
-0.03
1.98
1.91
-0.76
-0.18
-1.79
-2.85
•0.89
4.14
4.12
-1.44
-1.69
298-017-70/cah.117op
NMOC Final Report
9-39
-------
TaWe 9-18. 1992 Summary Statistics for Miami, FL (MIFL)
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1-Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-MethyM -butene
Isopentane
1-Pentene
2-Methyl-1 -butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cydopentene
4-Methyt-1 -pentene
2,3-Dimethylbutane
Cyclopentane
Isohexane
3-Methylpentane
1-Hexene
2-Methyl-1 -pentene
2-Ethyl-1 -butene
n-Hexane
t-2-Hexene
298-01 7-70/cah.117op
NMOC Final Report
Cases Frequency Minimum
56
56
55
56
56
0
56
0
56
54
56
54
49
37
56
29
55
56
55
56
54
56
56
39
48
54
56
56
56
0
54
0
56
48
100.00%
100.00%
98.21%
100.00%
100.00%
0.00%
100.00%
0.00%
100.00%
96.43%
100.00%
96.43%
87.50%
66.07%
100.00%
51.79%
98.21%
100.00%
98.21%
100.00%
96.43%
100.00%
100.00%
69.64%
85.71%
96.43%
100.00%
100.00%
100.00%
0.00%
96.43%
0.00%
100.00%
85.71%
5.23
3.97
0.78
1.06
2.47
.
1.53
2.02
0.58
3.14
0.62
0.55
0.45
9.30
0.59
1.02
3.04
0.71
0.93
0.71
1.66
3.86
0.53
0.43
0.55
1.30
2.76
1.72
.
0.54
.
1.91
0.55
Maximum
46.16
33.50
23.32
19.77
186.07
26.48
12.49
4.40
34.73
7.94
4.82
1.88
165.71
10.73
8.64
55.71
3.64
15.78
5.24
12.90
105.35
2.09
2.29
4.39
13.48
35.94
23.73
4.09
.
17.15
3.67
9-40
Median
15.45
10.27
4.56
5.66
14.59
4.04
,
5.01
1.34
10.60
1.45
0.89
0.86
33.80
2.32
2.45
9.87
1.22
2.75
1.59
3.54
21.26
0.92
0.87
1.13
4.12
9.51
6.30
.
1.27
.
5.01
0.90
Standard
Average Deviation Skewness
19.12
12.18
5.76
7.52
34.65
5.96
5.75
1.72
13.25
1.85
1.26
0.98
44.57
2.44
3.20
13.34
1.53
4.02
1.97
4.93
25.39
1.09
0.97
1.45
4.63
11.83
7.40
1.61
.
5.85
1.22
9.67
6.43
4.23
4.56
42.28
5.29
2.76
0.92
7.49
1.26
0.82
0.42
31.31
1.98
1.91
10.10
0.71
3.27
1.08
2.97
17.64
0.48
0.39
0.90
2.57
7.60
4.51
0.97
.
3.48
0.76
1.38
1.03
2.21
1.08
1.89
2.05
1.01
1.36
1.02
2.47
2.24
0.77
1.66
2.67
1.14
2.02
1.30
2.01
1.13
1.14
2.44
0.62
1.12
1.47
1.26
1.27
1.22
.
1.05
.
1.27
1.68
Kurtos
1.J
O.f
5.£
O.G
3.J
4.",
o.-
i.i
o.;
9.:
6.!
-o..
3.:
10.'
0.:
5.
1.
4.
0.
0.
8.
-0.
1.
2.
1.
1
1
-0
1
2
-------
Table 9-18. Continued
ppbC
Compound
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1 -Heptene
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methyl heptane
3-Methyl heptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
I sopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyltoluene
p-Ethyltoluene
1 ,3.5-Trimethylbenzene
o-Ethyltoluene
1-Decene
1 ,2,4-Trimethylbenzene
298-017-70/cah.117op
NMOC Final Report
Cases Frequency Minimum Maximum Median
37
56
56
56
51
41
56
56
56
41
55
55
53
56
56
55
55
54
51
56
56
55
55
31
55
27
56
56
56
53
56
55
0
56
66.07%
100.00%
100.00%
100.00%
91.07%
73.21%
100.00%
100.00%
100.00%
73.21%
98.21%
98.21%
94.64%
100.00%
100.00%
98.21%
98.21%
96.43%
91.07%
100.00%
100.00%
98.21%
98.21%
55.36%
98.21%
48.21%
100.00%
100.00%
100.00%
94.64%
100.00%
98.21%
0.00%
100.00%
0.44
1.24
0.96
4.51
0.57
0.66
0.80
1.56
4.43
0.49
0.76
0.70
0.73
1.42
12.49
0.80
0.69
0.67
0.55
1.62
6.62
0.66
2.39
0.44
0.68
0.51
0.51
0.86
2.05
0.69
1.11
1.68
.
3.84
1.88
12.16
11.13
29.04
10.94
4.69
10.17
15.21
46.03
2.58
6.01
5.26
5.99
15.12
115.96
5.89
5.21
5.88
5.11
16.09
56.95
8.90
21.59
1.94
5.07
1.70
15.13
7.15
19.35
5.49
9.44
' 11.25
.
34.96
9-41
0.82
3.47
3.04
9.27
1.75
1.34
2.59
4.11
13.92
0.96
1.61
1.32
1.96
4.67
33.07
1.76
1.54
1.71
1.14
4.91
17.48
1.54
6.22
0.84
1.51
0.72
2.40
2.09
5.60
1.66
3.16
3.94
.
10.00
Standard
Average Deviation Skewness
0.97
4.12
3.84
11.62
2.25
1.75
3.31
4.67
16.59
1.16
1.99
1.75
2.33
5.54
40.66
2.16
1.87
2.20
1.44
6.00
21.00
2.15
7.64
0.95
1.84
0.82
2.83
2.47
6.95
2.00
3.78
4.42
.
12.42
0.46
2.25
2.34
5.95
1.61
1.08
2.34
2.54
9.98
0.56
1.30
1.08
1.34
3.34
24.11
1.21
1.04
1.38
0.93
3.37
11.33
1.74
4.30
0.38
1.04
0.30
2.29
1.37
3.86
1.09
2.04
2.19
,
6.82
0.71
1.30
1.29
1.14
3.57
1.13
1.20
1.69
1.20
0.70
1.63
1.60
1.05
1.16
1.34
1.26
1.23
1.19
2.13
1.21
1.30
2.27
1.33
0.90
1.57
1.29
3.37
1.41
1.23
1.22
1.04
1.34
1.29
Kurtosis
-0.73
1.74
1.16
0.46
16.95
0.49
0.98
4.28
0.63
-0.57
2.35
2.40
0.09
0.50
1.50
1.02
1.01
0.43
5.53
0.93
1.30
5.92
1.45
0.40
2.30
1.32
15.51
1.94
1.01
0.91
0.29
1.59
1.25
-------
Table 9-18. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kudos
n-Decane
1 ,2,3-Trimethyl benzene
p-Diethyl benzene
1 -Undecene
n-Undecane
1 -Dodecene
n-Dodecane
1-Tridecene
n-Tridecane
56
56
55
52
56
54
56
28
52
100.00%
100.00%
98.21%
92.86%
100.00%
96.43%
100.00%
50.00%
92.86%
0.80
2.12
0.59
0.92
1.79
0.59
0.93
0.46
0.57
14.91
10.47
3.80
10.63
43.14
8.27
27.51
2.20
5.52
1.91
4.69
1.27
1.80
4.35
1.03
1.78
0.70
1.03
3.03
5.13
1.49
2.27
5.71
1.53
2.57
0.85
1.22
3.07
2.08
0.72
1.72
5.57
1.44
3.57
0.46
0.78
2.21
0.93
1.08
3.02
5.73
3.34
6.46
2.25
3.74
4.<
0.1
Q:>
11.5
38.'
12.;
45.;
4.:
17.1
298-017-70/cah.t 1 Top
NMOC Final Report
9-42
-------
Table 9-19. 1992 Summary Statistics for Manhattan, NY (MNY)
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1 -butene
Isopentane
1 -Pentene
2-MethyM -butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methy1-2-butene
Neohexane
Cyclopentene
4-Methyl-1-pentene
2,3-Dimethylbutane
Cyclopentane
Isohexane
3-Methylpentane
1-Hexene
2-Methyl-1-pentene
2-Ethyl-l -butene
n-Hexane
t-2-Hexene
298-017-70/cah.117op
NMOC Final Report
Cases Frequency Minimum
7
6
7
7
7
0
7
0
7
6
7
7
6
3
7
4
6
7
5
6
5
5
4
2
4
4
7
7
7
0
5
0
7
4
100.00%
85.71%
100.00%
100.00%
100.00%
0.00%
100.00%
0.00%
100.00%
85.71%
100.00%
100.00%
85.71%
42.86%
100.00%
57.14%
85.71%
100.00%
71.43%
85.71%
71.43%
71.43%
57.14%
28.57%
57.14%
57.14%
100.00%
100.00%
100.00%
0.00%
71.43%
0.00%
100.00%
57.14%
9.02
4.21
5.25
2.93
3.91
3.47
1.76
0.73
4.07
0.85
0.57
0.96
7.18
0.81
0.76
2.46
0.61
0.57
0.68
0.56
0.62
0.79
0.54
0.60
0.75
1.97
1.09
.
0.71
1.30
0.50
Maximum
32.62
9.45
80.52
14.57
42.15
32.79
11.44
2.55
60.42
6.89
11.33
1.91
194.43
4.45
7.03
42.62
9.03
6.50
3.89
4.38
1.50
1.36
1.17
2.42
8.27
25.15
11.72
.
2.73
•
13.04
2.82
9-43
Standard
Median Average Deviation Skewness Kurtosis
14.48
7.43
13.41
6.02
8.99
9.17
5.88
1.01
15.04
1.75
1.94
1.09
18.90
1.95
2.12
13.37
0.99
2.51
1.42
1.98
0.78
1.08
0.73
1.25
3.33
4.32
5.58
.
1.17
3.37
0.92
16.42
6.96
23.85
6.64
14.19
12.71
5.90
1.26
23.45
2.68
3.85
1.32
51.93
2.29
2.81
15.14
2.52
2.93
1.77
2.07
0.92
1.08
0.79
1.38
3.74
8.69
5.26
•
1.38
4.88
1.29
8.10
2.46
26.66
3.87
13.49
10.23
3.63
0.67
19.90
2.15
4.14
0.52
66.68
1.58
2.36
14.31
3.65
2.34
1.31
1.49
0.40
0.40
0.28
0.77
2.71
8.30
3.83
•
0.83
•
4.13
1.08
1.62
-0.20
2.06
1.69
1.87
1.41
0.55
1.87
1.12
1.50
1.53
1.60
2.08
1.09
1.36
1.37
2.21
0.62
1.35
0.99
1.76
•
0.91
0.96
0.65
1.59
0.60
1.36
1.53
1.41
2.61
-2.75
4.38
3.47
3.57
2.19
-1.01
3.62
0.94
2.03
1.73
4.58
1.01
1.64
1.61
4.89
-1.02
1.57
0.95
3.29
•
-0.58
1.56
-0.52
2.26
-0.40
1.65
2.26
1.50
-------
Table 9-19. Continued
ppbC
Standard
Compound Cases Frequency Minimum Maximum Median Average Deviation Skewness Kudos
c-2-Hexene
Methytcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethytpentane
1-Heptene
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1 -Octene
n-Octane
Ethylbenzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
Isopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyltoluene
p-Ethyttoluene
1 ,3,5-Trimethylbenzene
o-Ethyltoluene
1 -Decene
1 ,2,4-Trimethyl benzene
298-017-70/cah.117op
NMCX: Rnal Report
2
7
6
7
5
6
6
7
7
3
7
7
6
7
7
7
6
5
6
7
7
6
7
4
7
4
7
7
7
7
7
7
0
7
28.57%
100.00%
85.71%
100.00%
71.43%
85.71%
85.71%
100.00%
100.00%
42.86%
100.00%
100.00%
85.71%
100.00%
100.00%
100.00%
85.71%
71.43%
85.71%
100.00%
100.00%
85.71%.
100.00%
57.14%
100.00%
57.14%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
0.00%
100.00%
0.64
1.00
0.82
3.97
1.20
0.57
0.65
1.35
2.27
0.53
0.61
0.56
0.60
0.84
10.28
0.62
0.60
0.65
0.67
1.61
5.60
0.54
1.85
0.86
1.02
0.57
1.28
0.96
2.08
0.74
1.15
1.60
3.84
0.93
6.29
4.70
20.68
9.92
4.76
3.53
21.14
16.29
1.45
8.91
3.60
2.45
5.31
89.49
4.82
3.79
2.16
7.53
18.65
71.60
8.42
27.27
13.04
40.77
5.80
29.31
37.54
38.63
19.25
19.55
'30.30
.
57.18
9-44
0.79
1.92
1.80
7.72
3.46
1.19
1.94
6.26
5.12
0.59
2.28
1.00
1.23
1.86
22.11
1.64
1.29
0.99
5.09
4.17
13.99
1.48
4.58
2.61
4.58
2.27
6.68
3.50
4.62
2.13
2.25
5.19
9.08
0.79
2.57
2.28
9.64
4.69
1.91
1.91
7.58
6.91
0.86
3.12
1.37
1.30
2.33
33.52
1.92
1.67
1.13
4.27
6.51
26.04
2.48
9.71
4.78
11.18
2.72
8.89
11.44
15.36
6.48
8.08
12.00
22.37
0.21
1.90
1.50
5.68
3.57
1.60
1.09
7.31
4.80
0.52
3.01
1.07
0.65
1.51
28.23
1.46
1.17
0.62
2.92
6.17
24.24
2.99
9.37
5.66
14.47
2.35
9.99
13.80
15.86
7.28
8.31
12.06
21.91
1.43
0.93
1.47
0.84
1.46
0.29
1.24
1.49
1.71
1.43
1.93
1.14
1.52
1.63
1.53
1.48
1.53
-0.50
1.62
1.32
2.16
1.28
1.70
1.74
0.82
1.70
1.29
0.59
0.98
0.51
0.59
0.72
2.(
-o.;
1.J
•O.f
1.<
-o.:
0.!
2.(
1.!
3.!
1.
2.
2.
2,
2.
2.
-1.
2.
1.
4.
0.
2.
3.
-0.
3.
1.
-1.
-0
-2
-1
-1
-------
Table 9-19. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
n-Decane
1 ,2,3-Trimethylbenzene
p-Dlethyl benzene
1-Undecene
n-Undecane
1-Dodecene
n-Dodecane
1-Tridecene
n-Tridecane
7
7
5
5
7
6
7
4
7
100.00%
100.00%
71.43%
71.43%
100.00%
85.71%
100.00%
57.14%
100.00%
1.24
2.19
2.04
0.91
4.11
0.52
1.79
1.25
0.66
59.05
17.81
4.64
49.40
131.67
3.32
25.03
1.62
3.60
3.23
5.95
2.70
6.21
8.73
1.35
2.99
1.33
0.94
12.58
8.15
2.88
18.56
44.97
1.58
9.48
1.38
1.61
20.82
6.35
1.06
20.88
51.64
1.01
10.04
0.17
1.21
2.48
0.73
1.53
0.99
0.84
1.09
0.93
1.29
1.17
6.30
-1.29
2.48
-0.90
-0.88
1.03
-1.16
0.93
-0.57
298-017-70/cah.117op
NMOC Rnal Report
9-45
-------
Table 9-20. 1992 Summary Statistics for Newark, NJ (NWNJ)
ppbC
Compound
Ethyfene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1-butene
Isopentane
1 -Pentene
2-Methyl-1 -butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cyclopentene
4-Methy|-1-pentene
2,3-Dimethytbutane
Cyclopentane
Isohexane
3-Methytpentane
1-Hexene
2-Methyl-l-pentene
2-Ethyl-1 -butene
n-Hexane
t-2-Hexene
29fl-017-70/cah.117op
NMOC Final Report
Cases Frequency Minimum Maximum Median
7
7
7
7
7
0
7
0
7
4
7
7
4
4
7
7
7
7
7
5
7
6
6
1
4
6
. 7
7
7
0
6
0
7
4
100.00%
100.00%
100.00%
100.00%
100.00%
0.00%
100.00%
0.00%
100.00%
57.14%
100.00%
100.00%
57.14%
57.14%
100.00%
100.00%
100.00%
100.00%
100.00%
71.43%
100.00%
85.71%
85.71%
14.29%
57.14%
85.71%
100.00%
100.00%
100.00%
0.00%
85.71%
0.00%
100.00%
57.14%
6.06
4.85
9.33
3.24
13.41
4.93
2.58
0.70
11.53
1.32
1.05
0.50
15.99
0.67
1.29
6.07
0.59
1.33
0.66
0.89
0.55
1.05
0.49
0.68
1.25
4.39
2.64
.
0.56
.
2.43
0.55
20.17
8.27
24.00
11.68
32.24
.
22.92
.
5.33
1.05
16.57
2.16
6.28
0.62
35.49
1.28
2.45
22.26
3.73
4.19
1.19
2.53
0.87
1.05
1.70
1.67
5.06
9.71
8.88
2.86
.
6.55
4.04
9-46
14.93
7.14
18.47
8.29
17.73
9.06
3.78
0.85
16.17
1.42
1.54
0.59
28.61
1.18
1.74
8.83
0.91
1.45
0.90
1.50
0.67
1.05
1.17
0.84
2.81
6.48
5.48
.
0.91
.
3.45
1.97
Standard
Average Deviation Skewness
14.73
6.86
17.11
7.94
20.43
9.88
.
3.81
0.86
15.29
1.56
2.60
0.57
28.02
1.00
1.77
10.80
1.29
2.06
0.95
1.57
0.69
1.05
1.13
0.96
2.88
6.56
5.49
1.16
.
4.02
2.13
4.70
1.41
5.09
2.71
7.40
6.10
0.95
0.17
1.86
0.32
2.48
0.05
7.38
0.29
0.39
5.42
1.11
1.21
0.18
0.57
0.12
0.50
0.38
1.39
1.82
2.22
.
0.85
.
1.58
1.44
-0.95
-0.68
-0.45
-0.56
1.01
2.05
0.40
0.21
-1.78
1.47
1.86
-1.17
-0.55
-0.33
0.50
1.99
2.33
2.04
-0.22
0.87
0.53
.
-0.42
1.77
0.47
0.79
0.22
2.20
0.95
0.67
Kurtosis
1.16
-1.20
-0.55
0.67
-0.74
4.72
-0.51
-4.3;
2.6C
1.0C
3.4T
1.0J
-o.«
-2.7'
0.5"
4.3-
s.a
4.2(
-0.7
1.1;
-0.7
1.5
3.2
-0.9
0.1
-0.9
.
5.1
-0.7
1.7
-------
Table 9-20. Continued
ppbC
Standard
Compound Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1-Heptene
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
I sopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyttoluene
p-Ethyltduene
1 ,3,5-Trimethylbenzene
o-Ethyltoluene
1 -Decene
1 ,2,4-Trimethyl benzene
238-01 7-70/cah.117op
NMOC f*wl Report
1
7
7
7
7
7
5
7
7
3
7
6
7
7
7
7
7
6
7
7
7
7
7
5
7
4
7
7
7
6
7
7
0
7
14.29%
100.00%
100.00%
100.00%
100.00%
100.00%
71.43%
100.00%
100.00%
42.86%
100.00%
85.71%
100.00%
100.00%
100.00%
100.00%
100.00%
85.71%
100.00%
100.00%
100.00%
100.00%
100.00%
71.43%
100.00%
57.14%
100.00%
100.00%
100.00%
85.71%
100.00%
100.00%
0.00%
100.00%
0.48
2.18
1.01
5.05
1.44
1.58
0.63
3.71
4.77
0.58
1.23
0.94
0.64
1.33
17.09
1.05
0.78
0.54
0.59
2.91
10.61
1.38
3.85
0.53
1.23
0.69
1.05
1.28
2.95
0.65
1.37
1.87
,
4.73
0.48
4.13
2.07
10.55
40.45
4.50
1.59
10.01
9.15
0.63
5.00
1.51
1.26
2.57
61.88
2.25
1.88
1.06
1.63
7.87
29.10
2.58
8.92
1.91
3.09
0.85
7.38
2.46
5.66
1.78
2.64
4.10
.
9.83
9-47
0.48
3.38
1.23
7.27
6.58
2.93
1.34
6.64
6.78
0.62
2.11
1.14
1.04
1.90
29.75
1.36
1.12
0.66
0.85
4.24
14.84
1.68
4.84
0.60
1.67
0.74
3.76
1.56
3.14
0.97
1.47
2.96
.
5.60
0.48
3.31
1.45
7.30
10.38
2.69
1.21
6.60
6.90
0.61
2.43
1.16
0.99
1.97
33.39
1.44
1.18
0.76
0.99
4.99
18.09
1.76
5.69
0.94
1.82
0.76
3.87
1.65
3.86
1.04
1.71
2.86
.
6.31
0.62
0.40
1.86
13.40
1.02
0.37
2.46
1.56
0.03
1.24
0.20
0.23
0.44
15.60
0.38
0.35
0.21
0.45
1.64
6.40
0.40
1.73
0.59
0.61
0.07
2.50
0.42
1.09
0.40
0,46
0.80
•
1.77
-0.76
0.61
0.80
2.52
0.76
-1.19
0.20
0.09
-1.23
1.80
1.15
-0.35
-0.05
1.16
1.94
1.52
0.83
0.96
0.76
0.78
1.65
1.15
1.54
1.78
1.07
0.24
1.38
0.91
1.52
1.75
0.41
•
1.54
1.27
-1.35
0.30
6.54
0.27
1.52
-1.77
-1.19
3.78
1.80
-1.51
-1.12
0.76
4.70
3.37
-1.52
-1.01
0.41
-0.17
3.25
1.05
1.84
3.77
0.88
-1.69
1.75
-0.91
2.74
2.62
-0.87
•
2.45
-------
Table 9-20. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtos
n-Decane
1 ,2,3-Trimethylbenzene
p-Diethyl benzene
1-Undecene
n-Undecane
1-Dodecene
n-Dodecane
1 -Tridecene
n-Tridecane
7
7
6
7
7
5
7
2
7
100.00%
100.00%
85.71%
100.00%
100.00%
71.43%
100.00%
28.57%
100.00%
1.50
1.38
0.50
1.41
3.31
0.59
2.32
0.56
0.83
27.46
7.17
4.90
5.92
326.10
2.75
107.74
1.53
26.78
3.88
2.57
1.06
2.30
12.27
0.86
8.17
1.05
2.39
7.89
3.05
1.67
3.18
58.40
1.27
29.31
1.05
6.90
9.10
2.04
1.63
1.87
118.69
0.87
38.61
0.69
9.86
2.14
1.68
2.13
0.58
2.59
1.73
1.72
1.79
4.7
2.S
4.7
-1.7
6.7
2.E
2.J
2.f
298-017-70/cah.117op
NMOC Final Report
9-48
-------
Table 9-21. 1992 Summary Statistics for Plainfield, NJ (PLNJ)
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1-butene
Isopentane
1 -Pentene
2-MethyM-butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyf-2-butene
Neohexane
Cydopentene
4-Methyl-1 -pentene
2,3-Dimethylbutane
Cydopentane
Isohexane
3-Methylpentane
1-Hexene
2-Methyl-1 -pentene
2-Ethyi-1-butene
n-Hexane
t-2-Hexene
298-017-70/cah.117op
NMOC Final Report
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
8
8
8
8
8
0
8
0
8
6
8
8
7
7
8
7
8
8
7
8
7
8
7
7
7
7
8
8
8
0
7
0
8
7
100.00%
100.00%
100.00%
100.00%
100.00%
0.00%
100.00%
0.00%
100.00%
75.00% '
100.00%
100.00%
87.50%
87.50%
100.00%
87.50%
100.00%
100.00%
87.50%
100.00%
87.50%
100.00%
87.50%
87.50%
87.50%
87.50%
100.00%
100.00%
100.00%
0.00%
87.50%
0.00%
100.00%
87.50%
13.24
3.81
10.08
3.39
5.55
3.27
1.99
0.56
4.57
0.78
3.29
1.09
9.32
2.05
0.65
2.95
1.68
1.02
1.11
1.10
0.80
0.90
0.98
1.71
1.30
2.72
1.54
.
1.84
•
1.45
1.33
105.06
47.23
115.23
23.59
465.52
28.40
12.48
2.85
54.69
8.22
7.54
4.28
247.17
14.42
25.78
106.50
4.37
35.37
19.48
51.48
3.91
7.25
5.77
15.76
29.09
105.04
55.83
.
17.01
28.83
15.11
9-49
58.09
13.57
61.10
17.16
24.83
20.19
9.44
2.45
30.90
4.72
3.61
1.24
67.12
3.23
4.96
21.29
2.70
6.03
3.41
7.77
1.71
1.35
1.16
2.49
6.05
22.21
11.68
2.42
•
12.27
3.37
52.43
18.40
55.54
15.67
80.27
•
19.31
•
8.65
2.18
30.47
4.95
4.23
1.77
93.40
4.71
7.56
33.50
2.72
10.48
5.79
13.37
2.00
2.27
1.86
4.46
8.70
30.17
16.71
4.74
•
13.44
6.00
31.96
15.53
37.96
7.50
156.33
7.88
3.59
0.86
14.19
2.11
1.51
1.15
75.03
4.39
7.74
33.03
0.96
11.24
6.24
15.95
1.11
2.24
1.74
5.10
8.58
31.29
16.80
•
5.47
•
8.74
6.19
0.21
1.10
0.28
-0.96
2.78
-1.17
-0.89
-1.68
-0.21
-0.70
2.35
2.32
1.41
2.40
2.30
1.89
0.80
1.95
2.32
2.46
0.99
2.45
2.56
2.41
2.38
2.45
2.22
•
2.54
0.66
1.11
-0.81
0.19
-1.06
-0.39
7.80
1.90
0.13
2.92
1.87
2.37
5.75
5.53
1.94
5.95
5.85
3.66
-0.16
3,68
5.64
6.43
. -0.03
6.15
6.65
5.96
6.25
6.57
5.46
6.53
0.16
-094
-------
Table 9-21. Continued
ppbC
Standard
Compound Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosi:
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1-Heptene
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
Isopropylbenzene
n-Propyl benzene
alpha-Pinene
m-Ethyltoluene
p-Ethyitoluene
1 ,3,5-Trimethylbenzene
o-Ethyltduene
1-Decene
1 ,2,4-Trimethylbenzene
298-017-70/cah.117op
NMOC Final Report
7
8
8
8
8
7
4
8
8
7
8
8
8
8
8
8
8
8
7
8
8
7
8
7
8
7
. 8
8
8
8
8
8
0
8
87.50%
100.00%
100.00%
100.00%
100.00%
87.50%
50.00%
100.00%
100.00%
87.50%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
87.50%
100.00%
100.00%
87.50%
100.00%
87.50%
100.00%
87.50%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
0.00%
100.00%
0.75
1.35
0.80
4.94
0.76
3.05
2.22
1.69
4.01
0.82
0.62
0.65
0.66
2.18
11.57
0.78
0.78
1.61
0.58
2.01
7.15
1.42
2.50
0.83
0.67
0.61
0.62
0.59
1.84
0.63
1.36
1.27
3.24
9.48
22.99
8.38
31.19
8.02
15.59
18.46
18.10
21.47
8.34
6.42
12.42
8.54
16.81
187.39
20.71
16.59
4.64
6.65
30.84
114.81
5.20
39.30
5.43
3.79
35.26
4.61
7.19
21.75
6.65
14.80
11.74
.
39.37
9-50
1.04
8.87
4.03
19.22
2.58
10.10
2.81
7.33
13.96
1.41
4.47
2.77
2.42
5.91
72.49
3.40
2.96
2.03
1.75
9.89
36.16
1.75
12.68
1.08
1.86
1.07
1.98
2.90
8.53
2.48
4.58
5.05
•
15.35
2.46
9.42
4.41
18.47
3.30
8.42
6.58
8.56
13.77
2.38
4.18
3.71
3.04
7.05
75.96
5.27
4.43
2.55
2.29
11.47
42.01
2.25
14.63
1.70
2.04
6.51
2.14
3.25
9.46
2.74
5.77
5.38
•
16.96
3.16
6.31
2.18
7.67
2.56
4.58
7.93
5.15
4.92
2.65
2.08
3.63
2.34
4.31
50.95
6.34
4.99
1.11
1.99
8.38
31.39
1.32
10.72
1.66
0.97
12.78
1.55
1.91
5.67
1.72
3.97
2.98
10.29
2.45
1.44
0.31
-0.16
0.98
0.24
1.99
0.91
-0.73
2.57
-0.57
2.47
2.24
1.91
1.56
2.66
2.64
1.09
2.29
2.06
2.09
2.50
2.02
2.54
0.58
2.56
0.39
1.19
1.46
1.86
1.96
1.31
•
1.50
6.1'
3.4C
1.5;
1.11
0.0£
-0.9-
3.91
0.71
2.5:
6.7:
-0.7
6.6
5.9
4.6
3.8
7.3
7.2
0.1
5.7
5.4
5.5
6.4
5.2
6.£
O.E
e.e
-1.6
2.1
3.£
5.C
4.(
3.-
3.',
-------
Table 9-21. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
n-Decane
1 ,2,3-Trimethyl benzene
p-Diethy) benzene
1-Undecene
n-Undecane
1 -Dodecene
n-Dodecane
1-Tridecene
n-Tridecane
4
8
7
7
7
6
7
0
7
50.00%
100.00%
87.50%
87.50%
87.50%
75.00%
87.50%
0.00%
87.50%
0.93
1.90
1.40
1.05
2.42
0.53
1.05
0.55
35.38
9.33
5.18
2.14
404.04
2.22
308.21
35.78
5.46
5.15
1.69
1.30
3.38
0.84
1.98
0.75
11.81
5.28
2.18
1.39
65.23
1.07
51.45
10.75
16.10
2.11
1.33
0.40
149.91
0.62
114.29
.
16.95
1.74
0.56
2.54
1.26
2.61
1.68
2.55
1.23
2.97
2.04
6.57
1.21
6.85
2.87
6.57
•
-0.84
29fr81-7-70/cah.117op
Rnal Report
9-51
-------
Table 9-22. 1992 Summary Statistics for Raleigh, NC (R1NC)
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1-Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1-butene
Isopentane
1-Pentene
2-Methyl-1 -butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyf-2-butene
Neohexane
Cyclopentene
4-Methyl-1-pentene
2,3-Dimethytbutane
Cyclopentane
Isohexane
3-Methylpentane
1-Hexene
2-Methyl-1 -pentene
2-Ethyl-1 -butene
n-Hexane
t-2-Hexene
298-017-70/cah.117op
NMOC Final Report
Cases Frequency Minimum Maximum
8
8
8
8
8
0
8
0
8
3
8
4
0
0
8
2
6
8
5
5
4
6
2
0
5
2
7
8
7
0
4
0
8
0
100.00%
100.00%
100.00%
100.00%
100.00%
0.00%
100.00%
0.00%
100.00%
37.50%
100.00%
50.00%
0.00%
0.00%
100.00%
25.00%
75.00%
100.00%
62.50%
62.50%
50.00%
75.00%
25.00%
0.00%
62.50%
25.00%
87.50%
100.00%
87.50%
0.00%
50.00%
0.00%
100.00%
0.00%
5.23
1.07
2.29
0.77
3.58
0.83
.
0.64
0.57
2.21
0.50
.
.
4.31
0.88
0.93
1.51
0.78
1.09
0.69
0.70
0.53
.
0.56
0.55
0.58
1.27
0.74
0.61
•
0.72
•
14.35
8.48
13.64
3.61
14.30
4.43
2.77
0.89
10.16
0.60
.
.
23.85
1.04
1.59
9.07
9.24
1.54
0.79
1.94
1.61
1.78
0.79
2.19
6.43
5.16
.
0.74
•
4.23
•
9-52
Standard
Median Average Deviation Skewness Kurtos
9.54
4.60
5.26
2.97
8.28
2.52
1.90
0.62
5.41
0.58
•
12.47
0.96
1.20
4.25
2.37
1.26
0.75
1.51
1.07
•
0.68
0.67
1.39
3.81
2.64
.
0.65
•
2.56
•
9.17
4.21
5.79
2.41
8.15
2.42
1.58
0.69
5.33
0.56
.
12.07
0.96
1.20
4.15
3.50
1.27
0.75
1.41
1.07
0.86
0.67
1.37
3.44
2.52
0.66
•
2.38
•
3.32
2.40
3.38
1.12
3.93
1.24
.
0.80
0.17
2.90
0.04
•
7.11
0.11
0.26
2.61
3.34
0.19
0.05
0.42
0.76
•
0.52
0.17
0.69
1.91
1.57
0.06
1.47
•
0.25
0.37
2.12
-0.59
0.22
0.23
-0.10
1.57
0.39
-1.50
•
0.35
0.46
0.77
1.83
0.72
-0.12
-0.84
2.16
0.09
0.16
0.53
0.73
0.02
-1.1
o.:
5.<
-1.1
-1.J
-0.<
-1.J
-1.1
2.1
-O.l
-0.
0,
3.
-0.
-5.
1.
4.
-2.
-1.
-0.
-1.
-1
-------
Table 9-22. Continued
ppbC
Compound Cases Frequency Minimum Maximum
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1 -Heptene
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methyl heptane
3-Methylheptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
I sopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyttoluene
p-Ethyttoiuene
1 ,3,5-Trimethylbenzene
o-Ethyttoiuene
1 -Decene
1 ,2,4-Trimethylbenzene
298-01 7-70/cah.117op
NMOC Final Report
0
6
5
8
7
7
4
8
8
0
6
4
5
5
8
5
5
4
2
7
8
5
8
0
3
0
7
5
8
0
5
8
0
8
0.00%
75.00%
62.50%
100.00%
87.50%
87.50%
50.00%
100.00%
100.00%
0.00%
75.00%
50.00%
62.50%
62.50%
100.00%
62.50%
62.50%
50.00%
25.00%
87.50%
100.00%
62.50%
100.00%
0.00%
37.50%
0.00%
87.50%
62.50%
100.00%
0.00%
62.50%
100.00%
0.00%
100.00%
0.56
0.89
2.24
0.51
0.65
0.52
1.05
1.07
.
0.57
0.59
0.59
1.29
4.31
0.73
0.61
0.55
1.03
0.59
1.79
0.58
0.53
.
0.59
0.76
0.56
0.61
.
0.87
0.57
0.96
2.51
1.49
8.15
3.11
4.95
0.79
5.11
6.34
.
1.94
0.97
0.94
2.13
19.81
1.18
0.99
0.85
2.54
2.99
10.53
0.77
3.72
.
0.98
.
11.92
1.29
7.56
1.49
' 2.83
.
5.41
9-53
Median
1.87
1.05
4.97
1.25
0.82
0.58
2.42
3.76
.
1.27
0.65
0.63
1.46
11.82
0.76
0.62
0.56
1.79
2.11
6.68
0.61
2.11
0.67
.
5.54
0.64
2.08
.
0.97
1.51
.
3.00
Standard
Average Deviation Skewness
1.70
1.11
4.64
1.43
1.58
0.62
2.63
3.24
1.27
0.71
0.68
1.57
10.72
0.84
0.70
0.63
1.79
1.92
5.77
0.66
1.94
0.75
5.29
0.77
2.74
.
1.07
1.39
.
2.66
0.66
0.23
2.01
0.92
1.59
0.12
1.45
1.89
0.58
0.18
0.15
0.33
5.56
0.19
0.16
0.15
1.07
0.93
3.18
0.09
1.22
0.21
3.74
0.30
2.29
0.25
0.78
,
1.53
-0.94
1.34
0.42
1.05
2.06
1.57
0.66
0.17
-0.03
1.74
2.10
1.69
0.20
2.17
2.16
1.99
-0.68
-0.07
0.58
0.09
1.44
0.69
2.01
1.48
.
1.90
0.67
.
0.50
Kurtosis
1.44
1.90
-0.41
0.65
4.14
2.61
-0.59
-0.87
-2.15
3.00
4.53
3.12
-0.92
4.77
4.72
3.98
-1.'10
-1.38
-2.78
-1.49
0.71
4.19
2.47
3.87
0.30
,
-0.07
-------
Table 9-22. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
n-Decane
1 ,2,3-Trimethylbenzene
p-Diethyl benzene
1-Undecene
n-Undecane
1 -Dodecene
n-Dodecane
1-Tridecene
n-Tridecane
0
8
3
8
8
8
8
2
3
0.00%
100.00%
37.50%
100.00%
100.00%
100.00%
100.00%
25.00%
37.50%
0.76
0.49
1.74
0.75
0.96
0.59
0.52
0.55
2.58
1.23
5.36
2.18
2.95
1.44
0.77
0.96
1.95
0.71
2.89
1.06
1.81
0.91
0.65
0.66
1.78
0.81
3.21
1.24
1.82
0.97
0.65
0.72
0.64
0.38
1.40
0.56
0.66
0.33
0.18
0.21
-0.41
1.10
0.79
1.16
0.40
0.58
1.22
-0.95
•0.73
-0.28
-0.13
-1.25
298-017-70/cah.117op
NMOC Final Report
9-54
-------
Table 9-23. 1992 Summary Statistics for Salt Lake City, UT (S2UT)
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1 -butene
Isopentane
1 -Pentene
2-Methyl-l -butene
n-Pentane
isoprene
t-2-Pentene
c-2-Pentene
2-Methyt-2-butene
Neohexane
Cydopentene
4-Methyi-1-pentene
2,3-Dimethylbutane
Cyclopentane
Isohexane
3-Methylpentane
1-Hexene
2-Methyl-1-pentene
2-Ethyl-1 -butene
n-Hexane
t-2-Hexene
298-01 7-70/cah.117op
NMOC Final Report
Cases Frequency Minimum Maximum
8
8
8
8
8
0
8
0
8
8
8
7
7
7
8
7
8
8
8
8
8
8
7
7
6
8
8
8
8
0
7
0
8
7
100.00%
100.00%
100.00%
100.00%
100.00%
0.00%
100.00%
0.00%
100.00%
100.00%
100.00%
87.50%
87.50%
87.50%
100.00%
87.50%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
87.50%
87.50%
75.00%
100.00%
100.00%
100.00%
100.00%
0.00%
87.50%
0.00%
100.00%
87.50%
11.63
6.84
7.21
3.50
6.23
2.86
2.01
0.54
9.20
2.11
0.81
0.93
15.67
1.85
0.97
8.37
0.76
1.13
0.60
1.40
1.28
0.64
0.56
0.59
2.10
6.06
3.26
.
1.95
.
5.58
0.89
51.54
34.22
61.51
21.61
39.23
18.71
.
10.70
3.91
53.95
3.86
3.38
1.52
163.79
3.16
6.01
46.22
2.24
8.20
3.51
8.72
1.84
1.28
1.60
3.15
10.18
32.79
24.53
.
3.10
29.11
1.74
9-55
Standard
Median Average Deviation Skewness Kurtosis
39.82
23.75
38.52
15.42
28.39
13.03
7.91
2.62
35.99
2.92
1.87
1.25
73.21
2.20
4.45
35.33
1.82
5.14
2.46
6.36
1.72
0.90
1.19
2.42
7.93
24.58
19.01
.
2.35
•
22.80
1.37
35.49
22.95
39.74
14.24
28.65
•
12.34
7.24
2.49
33.66
2.98
1.99
1.21
82.13
2.39
4.25
33.91
1.74
5.30
2.42
5.90
1.59
0.93
1.19
2.31
7.65
23.80
18.44
•
2.44
•
21.54
1.33
12.56
9.08
17.85
5.27
10.59
•
4.70
.
2.53
0.98
13.35
0.55
0.93
0.20
45.04
0.48
1.57
11.85
0.44
2.23
0.90
2.28
0.22
0.22
0.37
0.79
2.49
8.27
6.81
•
0.39
7.29
0.27
-0.94
-0.59
-0.59
-1.10
-1.41
-1.05
-1.17
-0.88
-0.51
0.14
0.52
0.11
0.54
0.80
-1.34
-1.53
-1.83
-0.63
-1.13
-1.06
-0.43
0.55
-0.87
-1.59
-1.79
-1.49
-1.80
0.67
-1.64
-0.22
0.76
-0.14
0.15
2.41
2.67
•
2.05
2.59
1.98
0.94
0.97
-0.89
-0.37
0.65
-0.73
2.42
3.18
4.53
0.69
1.78
1.44
-2.03
-0.4T
1.15
3.48
4.09
3.1 1
4.01
O.t2
3.60
0.55
-------
Table 9-23. Continued
ppbC
Standard
Compound Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurto:
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cydohexane
Isoheptane
2,3-Dimethytpentane
3-Methylhexane
2,2,4-Trimethylpentane
1-Heptene
n-Heptane
Methylcydohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
Isopropyl benzene
n-Propylbenzene
alpha-Pinene
m-Ethyltoluene
p-Ethyltoluene
1 ,3,5-Trimethylbenzene
o-Ethyltoluene
1-Decene
1 ,2,4-Trimethylbenzene
298-017-70/cah.117op
NMCC Final Report
7
8
8
8
8
7
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
7
8
7
8
7
8
8
8
7
8
8
0
8
87.50%
100.00%
100.00%
100.00%
100.00%
87.50%
87.50%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
87.50%
100.00%
87.50%
100.00%
87.50%
100.00%
100.00%
100.00%
87.50%
100.00%
100.00%
0.00%
100.00%
0.62
1.91
1.67
7.94
4.03
4.58
4.04
5.59
4.86
0.66
3.87
1.65
0.91
1.69
20.55
1.51
1.23
0.55
0.94
2.95
12.42
1.13
3.52
1.09
1.10
0.50
2.03
0.79
2.08
1.85
1.11
1.53
.
4.10
1.31
14.63
9.10
40.90
7.89
7.35
27.80
15.73
25.02
2.55
13.28
7.86
4.07
9.40
107.00
8.01
7.01
2.97
9.13
15.06
65.81
3.56
20.09
1.63
4.71
0.61
3.60
3.32
11.23
3.07
6.84
5.73
.
20.82
9-56
0.94
11.46
7.12
30.81
6.59
5.59
6.48
12.55
21.26
2.01
10.05
5.96
3.37
7.45
83.65
5.73
5.19
2.49
5.20
11.10
47.86
2.23
14.70
1.24
3.25
0.57
3.12
2.51
8.25
2.32
4.62
4.20
.
15.02
0.97
9.87
6.62
29.59
6.42
6.05
9.13
12.18
18.85
1.90
9.96
5.64
3.04
6.68
79.04
5.66
4.98
2.17
5.33
10.64
46.04
2.26
13.99
1.34
3.24
0.55
2.97
2.43
7.73
2.40
4.67
4.06
•
14.27
0.23
4.74
2.32
9.76
1.23
1.11
8.35
3.40
6.54
0.59
3.13
2.04
1.01
2.43
27.11
2.11
1.81
0.79
2.60
3.64
16.01
0.76
4.94
0.20
1.12
0.05
0.55
0.78
2.69
0.38
1.74
1.21
4.91
•0.06
-1.09
-1.52
-1.69
-1.04
0.09
2.49
-1.03
-1.62
-1.37
-0.98
-1.11
-1.51
-1.36
-1.56
-1.04
-1.34
-1.43
-0.19
-1.36
-1.30
0.37
-1.36
0.38
-0.72
-0.17
•0.67
-1.40
-1.28
0.57
-1.09
-1.20
•
-1.16
O.I
-o.:
2.1
4.
1.1
-1.!
6.-
0.;
2.
2.
0.
1.
2.
1.
3.
1.
2.
1.
0.
2.
2
1
3
-1
1
-2
-0
2
2
1
2
3
2
-------
Table 9-23. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
n-Decane 6 75.00% 1.50 2.37 1.98 1.94 0.34 -0.18 -1.55
1,2,3-Trimethylbenzene 8 100.00% 3.86 6.36 4.29 4.61 0.86 1.50 1.71
p-Diethylbenzene 7 87.50% 1.16 2.67 1.61 1.72 0.60 0.77 -1.01
1-Undecene 7 87.50% 0.56 3.35 0.85 1.21 0.96 2.44 6.16
n-Undecane 8 100.00% 3.28 5.15 4.00 4.19 0.67 0.26 -1.47
1-Dodecene 3 37.50% 0.55 1.68 0.86 1.03 0.58 1.20
n-Dodecane 8 100.00% 1.88 3.64 2.50 2.53 0.66 0.49 -1.13
1-Tridecene 0 0.00% .......
n-Tridecane 8 100.00% 0.81 1.88 1.16 1.25 0.39 0.77 -0.74
298-017-70/cah.117op
NMOC Final Report
9-57
-------
Table 9-24. 1992 Summary Statistics for Salt Lake City, UT (S3irn
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1-Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1-butene
Isopentane
1 -Pentene
2-Methyl-1 -butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cydopentene
4-Methyl-1 -pentene
2,3-Dimethylbutane
Cyclopentane
Isohexane
3-Methylpentane
1 -Hexene
2-MethyM -pentene
2-Ethyl-1 -butene
n-Hexane
t-2-Hexene
298-017-70/cah.117op
NMOC Final Report
Cases Frequency Minimum Maximum
8
8
8
8
8
0
8
0
8
5
8
7
6
5
8
6
7
8
7
7
6
8
7
5
6
7
8
8
8
0
6
0
8
6
100.00%
100.00%
100.00%
100.00%
100.00%
0.00%
100.00%
0.00%
100.00%
62.50%
100.00%
87.50%
75.00%
62.50%
100.00%
75.00%
87.50%
100.00%
87.50%
87.50%
75.00%
100.00%
87.50%
62.50%
75.00%
87.50%
100.00%
100.00%
100.00%
0.00%
75.00%
0.00%
100.00%
75.00%
5.10
1.87
5.01
1.03
2.89
.
0.81
0.74
0.63
2.75
0.81
1.16
0.72
4.90
1.94
1.10
2.18
0.56
1.27
0.69
0.86
0.57
0.56
0.93
0.55
0.73
1.76
0.99
.
0.64
.
1.41
0.62
35.83
30.14
42.55
19.39
109.29
.
40.00
.
9.03
2.15
61.82
3.78
2.30
1.13
81.44
4.75
5.10
48.01
3.36
5.50
2.98
8.25
2.59
0.96
1.43
2.81
8.54
27.14
17.91
.
2.65
_
22.49
1.67
9-58
Median
28.83
20.09
30.46
11.93
42.57
18.45
.
6.14
1.89
39.18
2.38
1.79
0.94
66.03
2.33
3.60
35.39
1.23
3.84
2.14
3.91
1.22
0.70
1.12
2.50
6.19
19.78
12.55
.
1.97
17.87
1.19
Standard
Average Deviation Skewness
23.45
16.97
26.18
10.40
40.07
.
18.07
.
5.48
1.53
33.27
2.35
1.73
0.94
53.49
2.69
3.34
28.82
1.49
3.55
2.03
4.03
1.36
0.73
1.16
2.12
5.55
17.75
11.32
.
1.84
.
15.27
1.15
11.62
11.24
12.45
6.79
34.51
14.00
2.97
0.72
21.61
0.97
0.45
0.18
28.76
1.04
1.25
16.46
0.88
1.34
0.83
2.55
0.64
0.15
0.19
0.80
2.61
8.98
5.91
.
0.66
.
7.70
0.35
-0.63
-0.27
-0.64
-0.23
1.06
0.20
-0.53
-0.60
-0.21
-0.20
-0.15
-0.13
-0.98
2.10
-0.70
-0.76
1.97
-0.52
-0.70
0.39
1.24
1.01
0.42
-1.53
-1.06
-1.06
-0.90
.
-1.20
-1.16
-0.02
Kurtosis
-1.50
-1.70
-0.45
-1.62
1.55
-1.19
-1.08
-2.82
-1.32
0.04
-1.73
-2.37
-0.61
4.61
1.42
-0.85
4.91
0.79
0.02
-0.99
2.34
1.90
-1.32
2.10
0.36
-0.01
-0.12
2.81
0.01
i.ie
-------
Table 9-24. Continued
ppbC
Compound Cases Frequency Minimum Maximum
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1 -Heptene
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1-Nonene
n-Nonane
Isopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyltoluene
p-Ethyttduene
1 ,3.5-Trimethylbenzene
o-Ethyltoluene
1-Decene
1 ,2,4-Trimethylbenzene
298-01 7-70/cah.117op
NMOC Final Report
5
8
7
8
8
5
6
8
8
7
8
7
7
8
8
7
7
7
7
8
8
6
8
6
6
2
8
7
7
7
7
8
0
8
62.50%
100.00%
87.50%
100.00%
100.00%
62.50%
75.00%
100.00%
100.00%
87.50%
100.00%
87.50%
87.50%
100.00%
100.00%
87.50%
87.50%
87.50%
87.50%
100.00%
100.00%
75.00%
100.00%
75.00%
75.00%
25.00%
100.00%
87.50%
87.50%
87.50%
87.50%
100.00%
0.00%
100.00%
0.65
0.55
0.95
2.81
0.66
1.34
1.96
1.56
1.51
0.59
0.57
1.86
1.12
0.53
5.09
1.69
1.53
0.84
1.10
0.75
3.19
0.70
0.77
1.00
2.47
0.57
0.91
0.69
1.75
0.67
1.30
0.63
1.09
1.13
11.76
8.06
28.54
8.63
13.64
20.03
12.62
23.47
2.10
13.33
13.42
3.67
7.54
85.69
15.33
9.36
2.94
28.68
12.53
52.99
3.11
14.93
2.40
9.34
0.78
3.47
2.52
7.94
6.33
4.83
4.37
.
14.74
9-59
Median
0.86
8.57
4.90
21.05
5.15
4.94
8.82
8.71
15.64
1.43
8.32
7.76
2.55
5.74
53.99
4.73
4.10
1.82
4.66
7.17
32.18
1.32
9.48
1.38
4.22
0.67
2.36
1.75
4.75
1.40
2.58
2.80
.
9.84
Standard
Average Deviation Skewness
0.84
7.60
4.38
17.81
5.11
5.78
10.24
7.98
13.90
1.47
7.67
7.44
2.48
4.68
46.62
6.04
4.40
1.68
7.24
6.64
29.45
1.55
8.78
1.49
4.72
0.67
2.26
1.72
4.45
2.05
2.95
2.63
,
8.47
0.19
3.85
2.40
8.74
2.59
4.68
7.53
3.65
7.15
0.49
4.25
3.63
0.90
2.36
25.77
4.38
2.53
0.77
9.55
3.95
17.06
0.83
4.91
0.52
2.40
0.15
0.85
0.59
2.30
1.95
1.55
1.18
.
4.57
0.95
-1.11
-0.01
-0.71
-0.48
1.57
0.30
-0.81
-0.60
-0.71
-0.58
0.16
-0.39
-0.76
-0.26
1.96
1.34
0.55
2.54
-0.04
-0.19
1.64
-0.38
1.24
1.82
-0.42
-0.57
0.26
2.29
0.18
-0.55
,
-0.40
Kurtosis
0.99
0.26
-0.36
-0.57
-0.04
3.07
-2.19
0.03
-0.22
0.89
-0.39
0.81
-0.80
-0.47
-0.37
4.59
2.38
-0.68
6.58
-0.87
-1.00
3.41
-0.78
1.42
3.91
-0.44
0.98
-1.32
5.56
-2.43
0.27
.
-0.87
-------
Table 9-24. Continued
Compound
n-Decane
1 ,2,3-Trimethylbenzene
p-Diethyl benzene
1-Undecene
n-Undecane
1-Dodecene
n-Dodecane
1 -Tridecene
n-Tridecane
Cases
7
8
5
6
8
4
8
1
7
Frequency
87.50%
100.00%
62.50%
75.00%
100.00%
50.00%
100.00%
12.50%
87.50%
Minimum
0.68
1.22
0.97
0.55
1.45
0.61
0.94
0.26
0.55
Maximum
3.35
4.71
1.60
4.19
5.07
3.44
4.17
0.26
1.71
Median
2.96
3.45
1.17
0.90
3.05
0.99
1.73
0.26
1.19
ppbC
Average
2.45
3.24
1.26
1.47
3.17
1.50
2.21
0.26
1.16
Standard
Deviation
0.95
1.13
0.31
1.37
1.25
1.32
1.19
0.35
Skewness
-1.26
-0.71
0.36
2.16
0.00
1.79
0.73
•
-0.32
Kurtosi
0.9
0.1
-3.0
4.8
-0.8
3.2
-0.9
1.6
298-017-70/cah.117op
NMOC Final Report
9-60
-------
Table 9-25. 1992 Summary Statistics for Winston Salem, IMC (WSNC)
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1 -butene
Isopentane
1 -Pentene
2-Methyl-1 -butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cyclopentene
4-Methyl-1-pentene
2,3-Dimethyl butane
Cyclopentane
Isohexane
3-Methylpentane
1 -Hexene
2-MethyM-pentene
2-Ethyl-1 -butene
n-Hexane
t-2-Hexene
296-017-70/cah.117op
WfetOC Ffewf Report
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
8
7
8
7
8
0
8
0
8
2
8
2
1
2
8
1
2
8
3
4
2
4
4
2
1
2
6
8
8
0
2
0
8
2
100.00%
87.50%
100.00%
87.50%
100.00%
0.00%
100.00%
0.00%
100.00%
25.00%
100.00%
25.00%
12.50%
25.00%
100.00%
12.50%
25.00%
100.00%
37.50%
50.00%
25.00%
50.00%
50.00%
25.00%
12.50%
25.00%
75.00%
100.00%
100.00%
0.00%
25.00%
0.00%
100.00%
25.00%
3.97
1.79
3.75
1.10
2.65
•
0.81
0.59
1.13
1.37
1.50
0.75
0.83
3.61
1.23
2.65
1.21
0.60
0.49
1.49
0.48
0.60
0.64
1.05
1.12
0.68
1.19
0.73
1.28
0.69
1.48
21.97
16.03
18.10
6.67
23.54
6.83
4.71
1.84
11.97
1.57
0.75
0.91
42.16
1.23
3.15
14.75
5.61
3.12
1.93
5.01
1.17
0.86
1.05
1.29
4.29
11.87
10.91
.
1.65
•
6.34
2.82
9-61
6.78
3.17
6.16
1.30
5.48
1.76
0.92
1.49
2.80
1.54
0.75
0.87
6.31
1.23
2.90
2.10
2.55
1.71
1.71
1.95
0.90
0.75
1.05
1.21
1.05
1.87
1.13
1.47
•
1.01
2.15
9.72
6.15
7.74
2.77
9.23
2.75
1.68
1.49
4.87
1.54
0.75
0.87
13.41
1.23
2.90
4.84
2.92
1.76
1.71
2.35
0.89
0.75
1.05
1.21
1.92
4.08
3.26
.
1.47
•
2.20
2.15
6.91
5.71
4.83
2.33
8.49
•
2.34
1.61
0.50
4.08
0.05
0.06
15.28
•
0.35
5.51
2.53
1.39
0.31
2.21
0.32
0.16
0.12
1.59
4.51
4.26
0.26
•
2.37
0.95
1.34
1.27
1.64
1.22
1.27
1.30
•
1.49
1.28
•
1.51
1.45
0.65
0.04
0.48
-0.01
•
•
1.01
1.42
1.47
•
•
1.43
0.10
-0.13
2.79
-0.45
-0.19
-0.05
0.60
-0.08
0.60
0.24
-s!68
-3.28
-5.92
-1.38
0.06
0.26
0.10
-------
Table 9-25. Continued
ppbC
Compound Cases Frequency Minimum Maximum Median
c-2-Hexene
Methytcyclopentane
2,4-Dimethylpentane
Benzene
Cydohexane
Isoheptane
2.3-Dimethylpentane
3-Methythexane
2,2,4-Trimethylpentane
1-Heptene
n-Heptane
Methylcydohexane
2,2,3-Trimethylpentane
2,3,4-Trimethyipentane
Toluene
2-Methylheptane
3-Methyl heptane
1-Octene
n-Octane
Ethyl benzene
p-XyJene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
I sopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyttoluene
p-Ethyftoluene
1 ,3,5-Trimethyl benzene
o-Ethyttoluene
1 -Decene
1 ,2,4-Trimethylbenzene
298-01 7-70/can.117op
NMOC Final Report
2
6
4
8
6
3
4
8
8
1
5
3
3
6
8
3
2
3
3
8
8
2
8
2
3
0
8
. 2
7
2
4
6
0
8
25.00%
75.00%
50.00%
100.00%
75.00%
37.50%
50.00%
100.00%
100.00%
12.50%
62.50%
37.50%
37.50%
75.00%
100.00%
37.50%
25.00%
37.50%
37.50%
100.00%
100.00%
25.00%
100.00%
25.00%
37.50%
0.00%
100.00%
25.00%
87.50%
25.00%
50.00%
75.00%
0.00%
100.00%
0.69
0.54
0.77
2.21
0.58
1.27
0.68
1.07
1.19
1.15
0.60
0.48
0.53
0.58
4.36
0.50
1.77
0.46
0.67
0.57
1.70
1.11
0.54
0.75
0.58
0.51
2.18
0.66
1.38
0.56
0.59
.
0.84
0.79
4.38
3.31
12.60
3.01
2.32
2.10
5.12
11.80
1.15
9.95
2.36
1.82
4.63
51.13
2.32
2.05
1.59
1.47
5.73
19.05
1.22
6.90
0.87
3.30
.
6.88
2.44
5.77
1.60
2.80
4.41
10.18
9-62
0.74
0.82
1.98
3.01
0.79
1.95
1.34
1.52
2.24
1.15
0.96
1.67
1.73
1.06
7.75
2.08
1.91
1.56
1.18
1.05
3.37
1.17
0.88
0.81
1.58
.
1.45
2.31
1.07
1.49
1.59
0.80
1.47
Standard
Average Deviation Skewness
0.74
1.84
2.01
5.13
1.23
1.85
1.36
2.34
4.41
1.15
4.11
1.50
1.36
2.04
17.04
1.63
1.91
1.20
1.11
2.09
6.77
1.17
2.25
0.81
1.82
1.89
2.31
2.28
1.49
1.64
1.77
.
3.38
0.07
1.79
1.39
4.27
0.94
0.53
0.65
1.68
4.49
.
4.54
0.95
0.72
1.86
19.55
0.99
0.20
0.64
0.41
2.25
7.56
0.08
2.77
0.09
1.38
2.06
0.18
2.32
0.16
1.23
1.70
,
3.88
0.98
0.02
1.41
1.83
-0.84
0.15
1.31
1.33
f
0.70
-0.76
-1.70
0.94
1.43
-1.62
-1.73
-0.79
1.40
1.40
.
1.43
.
0.76
,
2.60
1.22
.
0.02
1.08
1.44
Kurtosii
-1.K
-5.K
O.OJ
3.K
-3.2C
-O.K
-0.1!
-2.9
t
-1.7
0.1
t
-o.c
-o.c
o.c
,
7.(
-O.I
-5;
-1.1
0.
-------
Table 9-25. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
n-Decane
1 ,2,3-Trimethylbenzene
p-Diethyl benzene
1-Undecene
n-Undecane
1 -Dodecene
n-Dodecane
1 -Tridecene
n-Tridecane
3
8
5
8
8
7
8
1
8
37.50%
100.00%
62.50%
100.00%
100.00%
87.50%
100.00%
12.50%
100.00%
0.54
1.02
1.05
1.04
0.73
1.14
0.82
0.52
0.57
5.57
4.91
1.44
6.39
4.90
2.25
3.79
0.52
4.86
3.79
2.25
1.41
3.58
1.44
1.49
1.56
0.52
0.87
3.30
2.49
1.28
3.68
2.16
1.60
1.96
0.52
1.41
2.55
1.30
0.20
1.53
1.50
0.35
1.16
•
1.43
-0.83
1.07
-0.60
0.16
1.04
0.99
1.02
2.57
0.48
-3.28
1.64
-0.17
1.69
-0.56
6.83
298-017-70/cah.117op
NMOC Final Report
9-63
-------
sample date and considered as one sample for the summary statistics. The target
compounds for the 1992 monitoring season are given in the first column of the
summary statistics tables. The cases columns denote the number of samples the
compound was identified in for the 1992 monitoring season. The third column in the
tables records the percent of the samples in which a particular compound was
identified. The minimum, maximum, median, average, standard deviation, skewness,
and kurtosis of the measured concentrations in ppbC are also listed in each table for
each target compound.
9.3 Overall Data Summary
Table 9-26 presents the overall summary statistics for all daily monitoring sites
in the 1992 monitoring program. The analysis results of 681 samples were considered
for these statistics. Duplicate and duplicate/replicate data for a given sample date
were averaged and considered as one sample. Average concentrations ranged from
0.59 ppbC for 2-ethyl-1-butene to 27.04 ppbC for propane. The largest standard
deviation of concentration, 77.63 ppbC, was observed for propane.
Table 9-27 contains overall summary statistics for all optional analysis sties in
the 1992 monitoring program. A total of 62 samples were considered, and statistics
are reported in the same manner as the daily monitoring summary statistics. Average
concentrations ranged from 0.97 ppbC for 1-tridecene to 44.23 ppbC for isopentane.
The largest standard deviation was 67.90 ppbC for n-undecane.
298-017-70/cah.117op _ _
NMOC Final Report cJ-04
-------
Table 9-26. 1992 Summary Statistics for All Program Sites
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1 -butene
Isopentane
1 -Pentene
2-Methyl-1 -butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cyclopentene
4-Methvt-1 -pentene
2,3-Dimethylbutane
Cyclopentane
Isohexane
3-Methylpentane
1-Hexene
2-Methyl-1 -pentene
2-Ethyl-1 -butene
n-Hexane
t-2-Hexene
Cases Frequency Minimum
676
634
677
665
680
0
667
0
664
428
680
432
310
243
675
257
555
677
590
556
459
597
667
212
514
470
642
675
665
7
389
1
670
268
99.27%
93.10%
99.41%
97.65%
99.85%
0.00%
97.94%
0.00%
97.50%
62.85%
99.85%
63.44%
45.52%
35.68%
99.12%
37.74%
81.50%
99.41%
86.64%
81.64%
67.40%
87.67%
97.94%
31.13%
75.48%
69.02%
94.27%
99.12%
97.65%
1.03%
57.12%
0.15%
98.38%
39.35%
0.89
0.59
0.75
0.60
0.99
•
0.59
0.53
0.39
0.66
0.49
0.45
0.44
0.92
0.50
0.49
0.56
0.48
0.47
0.44
0.34
0.57
0.40
0.43
0.43
0.54
0.51
0.52
0.71
0.48
0.59
0.50
0.46
Maximum
484.61
52.58
235.60
158.65
1851.76
120.63
22.51
30.78
126.81
12.10
39.63
4.07
165.71
10.73
13.31
72.53
23.91
15.78
16.71
21.14
131.26
2.50
3.42
7.96
13.60
49.15
27.02
2.93
5.65
0.59
50.40
5.91
Standard
Median Average Deviation Skewness
11.78
6.44
10.02
3.84
13.10
•
4.66
2.66
1.21
10.99
1.22
0.96
0.86
19.36
1.39
1.64
8.26
1.61
1.72
1.28
2.04
13.88
0.79
0.90
1.16
2.30
5.69
4.77
1.04
1.07
0.59
4.25
0.83
16.92
8.89
15.75
6.14
27.04
7.47
3.37
1.60
15.16
1.53
1.57
1.05
26.62
2.06
2.15
11.57
3.12
2.46
1.59
2.84
19.07
0.92
1.02
1.50
3.00
7.90
6.14
1.49
1.33
0.59
6.30
1.10
28.34
7.60
19.55
10.86
77.63
9.17
2.55
1.79
13.84
1.22
2.78
0.59
24.26
1.82
1.77
10.63
3.56
2.29
1.26
2.56
17.36
0.44
0.46
1.03
2.19
6.70
4.76
0.91
0.83
•
5.85
0.72
10.71
1.64
5.65
8.91
19.47
4.99
2.27
10.90
2.48
3.78
9.45
2.10
2.27
2.37
2.37
2.22
2.54
2.69
5.09
2.58
2.18
1.74
1.61
2.15
1.56
1.93
1.40
0.81
1.81
2.44
2.65
Kurtosis
146.61
3.19
51.29
96.86
451.25
43.94
9.13
167.01
10.19
23.03
116.57
5.81
7.07
6.29
8.14
6.52
7.95
9.50
48.01
9.77
6.44
2.98
3.52
6.46
2.86
4.90
2.03
-1.18
3.69
9.89
9.91
NMOC Fir*
9-65
-------
Table 9-26. Continued
ppbC
Compound
c-2-Hexene
Methytcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1 -Heptane
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
Isopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyltoluene
p-Ethyltoluene
1 ,3,5-Trimethylbenzene
o-Ethyltduene
1-Decene
1 ,2,4-Trimethylbenzene
29S-017-70/cah.117op
NMOC Final Report
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness
161
651
566
681
639
571
284
681
671
314
626
560
483
612
681
575
529
398
487
659
680
481
656
205
517
146
635
538
652
402
587
661
7
674
23.64%
95.59%
83.11%
100.00%
93.83%
83.85%
41.70%
100.00%
98.53%
46.11%
91.92%
82.23%
70.93%
89.87%
100.00%
84.43%
77.68%
58.44%
71.51%
96.77%
99.85%
70.63%
96.33%
30.10%
75.92%
21.44%
93.25%
79.00%
95.74%
59.03%
86.20%
97.06%
1.03%
98.97%
0.44
0.51
0.46
1.01
0.53
0.52
0.49
0.54
0.52
0.44
0.47
0.50
0.37
0.47
1.08
0.51
0.43
0.47
0.45
0.49
0.57
0.45
0.53
0.37
0.48
0.38
0.50
0.49
0.52
0.40
0.47
0.45
0.81
0.51
2.15
21.52
12.40
55.97
35.92
19.43
14.32
15.21
46.03
13.20
18.88
16.23
5.99
15.12
218.21
8.83
8.12
5.88
26.34
25.04
91.09
15.83
28.10
2.58
9.30
2.95
182.16
7.15
19.35
5.58
9.44
11.25
4.04
34.96
9-66
0.73
2.83
1.58
6.64
2.31
2.18
2.59
3.18
4.77
0.91
1.76
1.44
1.11
1.94
17.94
1.39
1.21
1.10
1.08
3.08
9.60
1.01
3.27
0.87
1.26
0.69
2.22
1.15
2.80
1.13
1.42
1.79
1.95
4.13
0.84
3.87
2.35
8.90
3.23
3.03
3.37
3.87
6.68
1.19
2.35
1.87
1.36
2.63
24.37
1.75
1.56
1.38
1.52
4.16
13.15
1.37
4.50
0.94
1.76
0.80
3.57
1.48
3.64
1.32
1.88
2.32
2.24
5.66
0.35
3.05
1.98
7.02
3.27
2.76
2.66
2.36
6.08
1.07
1.92
1.53
0.87
2.16
22.31
1.16
1.01
0.89
1.94
3.29
11.08
1.20
3.71
0.38
1.36
0.38
8.32
0.97
2.72
0.78
1.42
1.57
1.23
4.66
1.52
1.70
1.79
2.12
4.35
2.41
1.53
1.38
2.28
6.21
3.07
3.93
1.95
2.07
2.88
1.88
1.81
1.90
8.32
1.72
1.98
5.43
1.94
1.39
2.19
3.61
16.37
2.02
1.97
2.08
2.07
1.80
0.51
1.96
Kurtos
2.C
4.C
3.£
6.C
28.C
7.C
2.7
2.C
7.(
57.C
17.!
26.:
4.f
5.'
14.1
5.;
5.i
4.
90.
4.
6.
49.
5.
2.
6.
15.
337.
5
5
6
5
4
-1
5
-------
Table 9-26. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtosis
n-Decane
1 ,2,3-Trimethylbenzene
p-Diethyl benzene
1-Undecene
n-Undecane
1-Dodecene
n-Dodecane
1-Tridecene
n-Tridecane
403
678
491
651
665
630
648
174
492
59.18%
99.56%
72.10%
95.59%
97.65%
92.51%
95.15%
25.55%
72.25%
0.43
0.76
0.47
0.48
0.50
0.49
0.49
0.46
0.43
34.23
24.20
6.43
22.50
89.40
13.45
104.86
11.15
41.76
1.51
2.86
1.04
1.65
2.35
1.10
1.48
0.77
0.92
2.72
3.42
1.25
2.38
3.58
1.60
2.73
1.05
1.49
3.63
2.09
0.71
2.31
6.25
1.54
7.03
1.00
2.74
4.50
3.34
2.35
3.52
8.68
3.45
11.19
6.66
9.58
28.86
21.83
9.25
16.73
94.45
15.18
145.44
61.52
115.34
HMOC Rnei' Report
9-67
-------
Table 9-27. 1992 Summary Statistics for All Option Sites
ppbC
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1 -butene
Isopentane
1 -Pentene
2-Methyl-1 -butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cyclopentene
4-Methyl-l-pentene
2, 3-Dimethyl butane
Cyclopentane
Isohexane
3-Methylpentane
1-Hexene
2-Methyl-1-pentene
2-Ethyl-1 -butene
n-Hexane
t-2-Hexene
298-017-70/cah.117op
NMOC Final Report
Cases Frequency Minimum Maximum
62
59
62
61
62
0
62
0
62
39
62
47
36
32
62
37
49
62
47
49
44
51
42
27
37
40
57
62
61
0
40
0
62
33
100.00%
95.16%
100.00%
98.39%
100.00%
0.00%
100.00%
0.00%
100.00%
62.90%
100.00%
75.81%
58.06%
51.61%
100.00%
59.68%
79.03%
100.00%
75.81%
79.03%
70.97%
82.26%
67.74%
43.55%
59.68%
64.52%
91.94%
100.00%
98.39%
0.00% .
64.52%
0.00% .
100.00%
53.23%
3.28
1.07
2.29
0.77
2.08
0.77
0.59
0.54
1.37
0.50
0.56
0.47
3.61
0.67
0.65
1.21
0.49
0.49
0.52
0.41
0.53
0.56
0.49
0.55
0.45
0.80
0.62
0.56
0.63
0.50
105.06
47.23
115.23
23.59
465.52
40.00
.
12.48
3.91
61.82
8.22
11.33
4.28
247.17
14.42
25.78
106.50
9.24
35.37
19.48
51.48
3.91
7.25
5.77
15.76
29.09
105.04
55.83
.
17.01
•
29.11
15.11
9-68
Median
14.57
7.48
16.12
6.32
13.73
6.69
.
3.90
1.84
15.44
2.11
1.93
1.07
27.73
2.05
2.65
9.44
1.66
3.10
1.51
2.53
1.17
0.90
1.08
1.69
3.59
6.57
5.58
.
1.79
4.54
1.37
Standard
Average Deviation Skewness Kurtosis
22.19
11.43
23.43
8.21
26.26
•
10.23
.
4.72
1.64
19.50
2.56
2.63
1.13
44.23
2.41
3.46
17.31
2.09
4.13
2.25
4.66
1.25
1.20
1.18
2.09
4.53
12.56
8.47
2.10
•
8.43
2.38
19.46
10.45
24.01
6.50
59.58
9.39
.
3.40
0.89
16.85
1.78
2.22
0.68
48.73
2.30
3.78
18.84
1.85
5.48
2.93
7.39
0.70
1.27
0.85
2.41
4.41
15.36
9.20
•
2.58
8.65
3.37
2.04
1.44
1.82
0.73
6.82
1.15
0.59
0.50
0.92
1.27
2.25
3.39
2.13
4.17
4.52
2.13
2.61
4.35
4.99
5.34
1.86
4.49
4.58
4.90
3.19
3.76
2.59
5.20
1.06
3.40
5.09
1.56
3.52
-0.66
50.36
•
0.74
-0.71
-0.68
-0.09
1.50
6.15
15.04
5.40
21.24
25.86
6.94
7.7£
22.95
28.9E
33.31
4.6C
21.7C
24.95
27. 7{
16.3(
20. 9(
10.61
30.3'
-02
11 2
-------
Table 9-27. Continued
ppbC
Compound Cases Frequency Minimum Maximum
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1 -Heptene
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
Isopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyttoluene
p-Ethyttoluene
1 ,3,5-Trimethylbenzene
o-Ethyttoluene
1 -Decene
1 ,2,4-Trimethylfaenizefie
27
56
50
62
55
47
38
62
62
32
55
47
48
56
62
50
47
44
44
61
62
44
62
34
46
26
61
49
60
42
53
60
0
62
43.55%
90.32%
80.65%
100.00%
88.71%
75.81%
61.29%
100.00%
100.00%
51.61%
88.71%
75.81%
77.42%
90.32%
100.00%
80.65%
75.81%
70.97%
70.97%
98.39%
100.00%
70.97%
100.00%
54.84%
74.19%
41.94%
98.39%
79.03%
96.77%
67.74%
85.48%
96.77%
0.00% .
100.00%
0.46
0.54
0.65
2.21
0.49
0.57
0.52
1.05
0.90
0.53
0.57
0.48
0.53
0.45
4.31
0.50
0.60
0.46
0.58
0.57
1.70
0.54
0.53
0.47
0.58
0.50
0.51
0.56
0.61
0.55
0.55
0.52
0.84
9.48
22.99
9.10
40.90
40.45
16.84
27.80
21.14
25.02
8.34
13.33
13.42
8.54
16.81
187.39
20.71
16.59
4.64
28.68
30.84
114.81
8.42
39.30
13.04
40.77
35.26
29.31
37.54
38.63
19.25
19.55
30.30
.
57.18
Standard
Median Average Deviation Skewness
0.86
3.31
2.20
8.29
3.01
3.06
2.16
5.32
6.86
1.41
2.84
1.81
1.48
2.59
27.29
2.11
1.88
1.38
1.69
4.24
15.48
1.51
5.17
1.14
2.04
0.68
2.31
1.89
4.11
1.69
2.50
2.82
.
6.30
1.23
5.22
3.30
12.66
4.36
4.36
4.84
6.44
9.10
1.57
4.80
3.35
1.93
3.75
40.14
3.39
2.92
1.56
3.47
5.99
23.15
1.77
7.57
1.69
3.79
2.53
3.49
3.35
6.06
2.69
3.70
3.93
.
9.75
1.70
4.70
2.50
10.19
5.65
3.99
6.28
4.95
7.06
1.37
4.05
3.23
1.43
3.07
35.70
3.68
2.87
0.96
4.56
5.40
21.73
1.35
7.25
2.22
6.35
6.82
4.27
6.02
7.09
3.49
4.07
5.21
10.62
4.75
1.40
0.86
1.02
4.98
1.53
2.26
0.90
0.72
4.07
0.68
1.47
2.27
1.66
1.43
2.94
2.76
1.07
4.14
1.96
1.63
3.24
1.82
4.44
4.82
4.78
4.10
4.56
2.96
3.39
2.49
3.62
.
2.48
Kurtosis
23.56
2.26
-0.47
0.02
31.47
2.08
4.89
0.12
-0.67
20.14
-0.90
1.66
8.52
4.44
3.18
10.86
10.60
1.01
21.89
6.33
3.94
13.70
5.11
21.82
26.54
23.60
22.25
23.02
9.87
12.90
6.33
14.25
7.46
JMOCFiraf Report
9-69
-------
Table 9-27. Continued
ppbC
Compound
Standard
Cases Frequency Minimum Maximum Median Average Deviation Skewness Kurtos
n-Decane
1 ,2,3-Trimethyl benzene
p-Diethyl benzene
1 -Undecene
n-Undecane
1 -Dodecene
n-Dodecane
1-Tridecene
n-Tridecane
36
62
43
56
61
47
59
10
52
58.06%
100.00%
69.35%
90.32%
98.39%
75.81%
95.16%
16.13%
83.87%
0.54
0.76
0.49
0.55
0.61
0.52
0.59
0.26
0.52
59.05
17.81
5.18
49.40
404.04
3.44
308.21
1.62
35.78
2.95
3.45
1.44
2.22
3.31
1.20
1.88
1.01
0.97
6.58
3.82
1.70
3.86
20.99
1.40
11.86
0.97
3.27
11.43
3.03
1.05
7.45
67.90
0.74
42.54
0.49
7.64
3.55
2.74
2.03
5.20
4.74
1.10
6.25
-0.04
3.69
13.J
9.6
4.C
28.1
23.1
0.1
42.:
-1.(
12.<
298-017-70/cah.117op
9-70
-------
9.4 Individual Sample Results
Appendix K contains the results from individual sample analyses. For each site
sample, all target compounds are listed along with the concentration reported for each
sample. There is also an unidentified compound sum concentration reported for each
sample, labeled Unidentified VOC (Volatile Organic Compounds). The unidentified
VOC total does not include the targeted compounds.
For daily monitoring program sites, the results are presented in a weekly report
format (Monday to Friday). For days when duplicate samples were taken, the results
for one of the duplicate samples was chosen to appear on the weekly report. The
duplicate sample date can be used to reference a duplicate or duplicate/replicate
report. The duplicate reports appear after the weekly reports for each site, and show
a comparison of the results for a duplicate sample pair, or a duplicate pair with
replicate analyses when done. For the optional analysis sites the five column report
format is used, and the analytical results are presented in chronological order based
on the sample collection date.
298-017-70/cah.117op
NMOC final Report 9-71
-------
10.0 SNMOC TECHNICAL NOTES
This section describes the sampling and analytical equipment and procedures
used for the 1992 SNMOC Monitoring Program. The sample collection method follows
the general guidelines of EPA's Compendium of Methods TO-12. The analysis method
follows the general guidelines of EPA's "Research Protocol Method for Analysis of C2-
C12 Hydrocarbons in Ambient Air by Gas Chromatography with Cryogenic
Concentration" given in Appendix J.
10.1 Sampling Equipment and Procedure
The 1992 SNMOC monitoring program was scheduled to begin 22 June 1992,
and end 30 September 1992. Integrated ambient air samples for program sites were
collected from 6:00 a.m. to 9:00 a.m. (local civil time), Monday through Friday. The
sampling equipment and sampling procedures used to collect these samples were the
same as those used for the NMOC monitoring program described in Section 3.1.
10.2 Analytical System
Figure 10-2 presents the schematic of the analytical system used to perform the
hydrocarbon analysis. The analytical system consists of a Radian Sample Interface
System, a dual FID GC, and a data acquisition system.
Figures 10-2 and 10-3 show the flow paths of the valve located in the Radian
Sample Interface System during the sample loading and sample injecting mode,
respectively. When the six-port valve is in the sample load mode (see Figure 10-2),
the sample interface cryogenically concentrates a predetermined repeated aliquot of
sample. In the sample inject mode (see Figure 10-3), the cryogenically focused
sample aliquot is thermally desorbed and the sample is swept by helium carrier gas to
the head of the GC column. The GC oven temperature is programmed so the sample
298-017-7SVcaft.-n?op
NMOC FinaJ Report 10-1
-------
Sample Interface System
Analytical System
Data System
Hetse Absolute
Pressure/Vacuum
Combination Gauge
Helium
Make-Up-
Gas
Column B.
J&W OBI Capillary Column
Sfj Film Thickness
60m X 0 32mm
Column A:
J&W DB1 Capillary Column
1p Film Thickness
60m X 0.32mm
J&W 3-Way Glass Union
Megabore/0 32mnVO 32mm
Valve Oven /•
Temerature Cont,ol.er| /
1/8- Stainless Steel
Transfer Una /
Temperature Controller),
Digital Temperature I
Readout |
Trap
Temperature
Controller
Temperature
Rotary
Selector
CornpuAdd 2B6
Personal Computer System
Temperature
Controlled 1/16*
Stainless Steel
Transfer Una
llJilu i — g
00
grapr
D
i
Fie
C
Ht
Nelson Analytical
20MB
movable
Cartridge
Hard Drive
Unit
A/D Interface
Figure 10-1. Hydrocarbon Analysis System
-------
Reservoir Vacuum
Gauge
Vacuum
Pump
Sample
Valve
(evacuate)
System Pressure Gauge
Absolute
Pressure
Gauge
Inject
Carrier'
Flow
Control
Valve
Isolation
Valve
Mass Flow
Controller
A/Sample Valve
V±
Stainless Steel
Canister
Sample Vessel
Analytical Cojumns
(located in
gas chromatograph)
-•-Hydrogen
--Air
Trapping/
I Desorption
-" Assembly
Cryogen
Source
Integrator
Recorder
Sfl-017-70/cah.117op
WOC Final Report
Figure 10-2. Radian Sample Interface in Sample Load Mode
10-3
-------
Reservoir Vacuum
Gauge
Vacuum
Pump
Sample
Valve
(evacuate)
System Pressure Gauge
Helium
Displacement
vessel
Carrier/
Flow
Control
Valve
Vacuum
Reservoir
Mass Flow
Controller
3-way
Routing
Valve
Absolute
Pressure
Gauge
6-Port
Gas
Valve
Analytical Columns
(located in
gas chromatograph)
Cryogen
Source
Integrator
Recorder
Trapping
Desorptio
Assembly
Stainless Steel
Canister
Sample Vessel
oc
a
298-017-70/cah.117op
NMOC Final Report
Rgure 10-3. Radian Sample Interface in Sample Inject Mode
10-4
-------
is refocused on the column at subambient conditions. The temperature is then
increased to chromatographically separate the target compounds.
The GC contains two fused silica capillary columns each connected to a FID.
The sample is split between the columns in a 1:1 ratio with a J&W precision splitter.
Each column has a J&W DB-1® phase. One column has a phase thickness of 1 yum,
to separate C3 to C13 hydrocarbons effectively. The other has a phase thickness of
5 jL/m, to separate C2 hydrocarbons consistently, and provide back-up capabilities for
C3 separation and quantitation. The chromatography for propylene and propane was
better on the 5 fjm column than the 1 ^m column, so quantitation was performed from
the secondary column data. Table 10-1 gives the operating conditions for the
analytical system used for the 1992 SNMOC Monitoring Program.
296-017-70/cah.117op
NMOC Final Report 1 Q.-5
-------
Table 10-1
1992 Hydrocarbon Analysis GC/RD Operating Conditions
Parameter
Operating Value
Sample Volume
800 mL
J&W DB-1® Capillary Columns
Column A:
Film Thickness
Length
Inside Diameter
Column B:
Film Thickness
Length
Inside Diameter
1 /urn
60 m
0.32 mm
5/jm
60 m
0.32 mm
Oven Temperature Program
-60° for 5 min.
Then:
6°C/min. to 150°C, then
20°C/min. to 180°C.
Analysis Time
45 min.
Detector Temperatures
2 FIDS
300°C
Gas Flow Rates
Helium Carrier Gas
Helium Make-Up
H2 to FID
Air to FID
3 mL/min.
30 mL/min.
30 mL/min.
300 mL/min.
298-017-70/cah.117op
NMOC Final Report
10-6
-------
11.0 SNMOC QUALITY ASSURANCE AND CONTROL PROCEDURES
This section details the steps incorporated into the 1992 SNMOC Monitoring
Program to ensure the data were of high and known quality. Procedures for
standard preparation, database set-up, GC calibration, and daily analytical system
checks are described. Duplicate samples and repeated analyses (replicates)
provided information on sampling and analytical precision. Accuracy is assessed
as the percent bias calculated from the analysis of external audit samples. An
interlaboratory comparison with EPA provided information on the equivalency of
the data reported for this program to data resulting from a comparable program.
11.1 Standards Preparation
Certified high pressure stock standards from Scott® Specialty Gases were
used to prepare analytical calibration standards across the measurement range of
the analytical system. Standards used to establish retention time information were
prepared from stock standards prepared using neat liquid compounds injected into
cleaned, evacuated canisters, and from certified gaseous stock standards.
All calibration and daily calibration check standards were made from certified
standard gases. Gas-tight syringes were used to inject aliquots of the certified
standard into cleaned, evacuated SUMMA® canisters. The canisters were then
filled to ambient pressure with cleaned, humidified air using a standards
preparation flow dilution system, then pressurized with nitrogen to approximately
35 psig using a precision canister dilution system.
11.2 Target Compounds Database
Standards used to gather retention time information and to set up a
reference database using relative retention times referenced to toluene were
prepared and analyzed. These relative retention times were used to identify the
298-017-70/c«h.117op
NMOC Final Report 11-1
-------
target compounds in the ambient air samples. These standards were prepared,
encompassing the list of target hydrocarbons found in Table 11-1, by using gas-
tight syringes to inject aliquots of stock standards into clean, evacuated SUMMA®
canisters.
11.3 GC/FID Monthly Calibration
The analytical system was calibrated monthly by analyzing three propane
standards and a system blank of cleaned, humidified air. Three calibration
standards were prepared from a Scott® Specialty Gases certified high pressure
gaseous standard. The three levels prepared were 45, 150, 360 ppbC. The
calibration range was based on the expected typical levels of target compound
concentrations based on historical information.
The calibration standards were analyzed in order of increasing concentration.
This was followed by the system blank to ensure no carryover after analysis of the
high level standard. The area count recorded by each FID for each calibration
standard was correlated to the nanoliters (nl) of propane, and the calibration was
considered representative if the coefficient of correlation for the four points was
greater than or equal to 0.995.
A least squares linear regression calculation was performed for the data from
each detector, and the resulting slopes were used as the propane response factors.
These response factors were divided by 3 (carbons/molecule of propane) to
calculate a per carbon response factor for each detector. This value was used to
calculate sample concentrations for the following month. Monthly propane
calibration information is summarized in Table 11-2.
298-017-70/e»h.117op 1 1
NMOC Fin* Report \ \ -
-------
Table 11-1
1992 Ambient Air Hydrocarbon Program Target List
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1-Butene
1,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1-Butene
Isopentane
1-Pentene
2-Methyl-1-Butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-Butene
2,2-Dimethylbutane (Neohexane)
Cyclopentene
4-Methyl-1-Pentene
2,3-Dimethylbutane
Cyclopentane
2-Methylpentane (Isohexane)
3-Methylpentane
2-Methyl-1-Pentene
1-Hexene
2-Ethyl-1-Butene
n-Hexane
t-2-Hexene
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
2-Methylhexane (Isoheptane)
2,3-Dimethylpentane
3-Methylhexane
1-Heptene
2,2,4-Trimethylpentane
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1-Octene
n-Octane
Ethylbenzene
p,m-Xylene
Styrene
o-Xylene
1-Nonene
n-Nonane
Isopropylbenzene
n-Propylbenzene
a-Pinene
m-Ethyltoluene
p-Ethyltoluene
1,3,5-Trimethylbenzene
o-Ethyltoluene
1,2,4-Trimethylbenzene
1-Decene
n-Decane
1,2,3-Trimethylbenzene
p-Diethylbenzene
1-Undecene
n-Undecane
Dodecene
n-Dodecane
Tridecene
n-Tridecane
288-017-70/0^1.117op
NMOC Find Rtport
11-3
-------
Table 11-2
Summary of Monthly Propane Calibration Curves
Calibration
Date
6-23-92
7-23-92
8-23-92
9-25-92
10-23-92
Column A
Correlation
Coefficient
0.9996
1 .0000
1 .0000
1.0000
1 .0000
Response
Factor
(AC/n1-C)
1776.6
1803.7
2017.5
1937.6
1813.5
Column 8
Correlation
Coefficient
0.9987
1 .0000
1 .0000
1 .0000
1 .0000
Response
-:->, Factor
fACMI-C*
1421.2
1435.9
1628.1
1566.5
1415.7
298-017-70/e«h.117op
NMOC Final Report
11-4
-------
11.4 Daily Quality Control Check
Daily, prior to sample analysis, a quality control standard, prepared from a
Scott® Specialty Gases certified high pressure gaseous standard, was analyzed to
ensure the validity of the current monthly response factors. This standard had an
approximate propane concentration of 45 ppbC. This level was considered
representative of the majority of concentrations expected in the monitoring
ambient air samples.
The load volume (in liters) and the propane area count from each detector
were entered into a computer spreadsheet and the current monthly response
factors were used to calculate propane concentrations. These concentrations were
compared to the calculated theoretical propane concentration of the quality control
standard. A propane concentration percent bias of less than or equal to 30% was
considered to be acceptable and that the analytical system was in control.
For the SNMOC Monitoring Program, if the daily QC standard did not meet
the 30% criterion a second QC standard was prepared and analyzed. If the second
QC standard met the criterion, the analytical system was considered in control. If
the second QC check did not pass, a leak test and system maintenance were
performed, and a third QC standard analysis was performed. If the criterion was
met by the third analysis, the analytical system was considered in control. If the
maintenance caused a change in system response a new calibration curve would
be required. For the 1992 program the 30% criterion was met on the first
standard analysis for every sample analysis day.
11.5 Daily Analytical System Blank
A dedicated cleaned, evacuated SUMMA® canister was reserved for system
blank use during this analytical program. This canister was periodically pressurized
with clean, humidified air from the canister cleaning system (described in
288-017-70ftih.117op i < e
NMOC Fin* Report 11-5
-------
Section 3.3). A sample from this canister was analyzed after the daily QC
standard analysis and prior to sample analysis. This allowed the presence of
contamination to be assessed. The results from these analyses were filed with the
daily QC checks and were used as a reference should questions arise concerning
analytical interferences and results.
One interference was noted consistently from the system blank data. A
peak occurring near the retention time of ethylene on the column used to
quantitate ethylene was present in every blank analyzed. From data gathered this
peak most commonly occurred at levels of 2-3.5 ppbC.
As a check for this possible interference, a nitrogen cylinder was connected
to the analytical system and a normal sample volume analyzed, after a daily system
canister blank had been analyzed. The interfering peak was present in the system
canister blank at a concentration of 2.7 ppbC. The nitrogen analysis had no peak
occurring at this time. This information indicated that the source of this peak was
not the analytical system.
11.6 Precision of Sampling and Analysis
The precision of the sampling and analytical methods used for the 1992
SNMOC Monitoring Program was assessed using data from duplicate sample
collections and replicate analyses.
11.6.1 Duplicate Samples
For each program site nine duplicate sample pairs were scheduled to be
collected and analyzed. The actual number of sample pairs collected ranged from
seven to ten. For the option sites one duplicate pair was randomly chosen for
analysis. Pooled standard deviations for the duplicate samples were calculated as
an indication of sampling precision. Table 11-3 presents the data for all program
298-017-70/c«h.1!7oo
NMOC Find Report
11-6
-------
Table 11-3. 1992 Duplicate Statistics for All Program Sites
Duplicate Pair Statistics
Concentration
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1-butene
Isopentane
1-Pentene
2-Methyl-l-butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cydopentene
4-Methyl-1 -pentene
2,3-Dimethyl butane
Cydopentane
Isohexane
3-Methylpentane
1-Hexene
2-Methyl-1 -pentene
2-EthyM-butene
n-Hexane
t-2-Hexene
298-01 7-70/e«h.117op
NMOC Fin«l fUport
Cases
96
84
93
95
96
0
95
0
94
52
96
57
39
27
96
25
77
96
77
72
58
86
95
25
68
60
93
96
94
1
41
0
95
30
Median
12.27
5.86
9.23
3.82
12.48
4.30
.
2.51
1.26
11.36
1.17
1.01
1.05
17.40
1.53
1.43
7.83
1.18
1.52
1.18
1.72
7.58
0.75
0.87
1.18
2.04
5.57
4.52
2.48
1.01
•
4.11
0.78
Average
22.43
8.35
17.25
7.33
20.97
7.72
3.40
2.24
14.73
1.45
1.28
1.13
25.12
2.15
2.09
10.74
2.41
2.43
1.53
2.52
^.47
0.88
0.95
1.52
2.78
7.54
6.12
2.48
1.33
5.96
1.09
11-7
Average
Absolute %
Difference
14.05
18.77
14.19
8.63
5.72
•
10.20
14.67
25.31
14.50
13.34
11.24
16.65
3.91
24.36
7.18
2.40
8.81
11.93
13.38
13.46
8.67
4.95
13.34
3.94
12.10
3.39
16.63
20.97
11.31
•
3.35
6.37
Pooled
Standard
Deviation
1.96
1.38
1.44
1.06
1.41
•
0.90
.
0.79
0.97
1.69
0.24
0.36
0.20
1.36
0.88
0.21
0.32
0.58
0.51
0.20
0.21
1.15
0.03
0.16
0.06
0.59
0.33
0.87
0.37
0.52
0.15
0.07
-------
Table 11-3. Continued
Duplicate Pair Statistics
Compound
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1 -Heptene
n-Heptane
Methylcydohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methyl heptane
1-Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xyiene
Styrene
o-Xylene
1-Nonene
n-Nonane
I sopropyl benzene
n-Propylbenzene
alpha-Pinene
m-Ethyltoluene
p-Ethyltoluene
1 ,3,5-Trimethylbenzene
o-Ethyltoluene
1 -Decene
1 ,2,4-Trimethylbenzene
288-0 1 7 -70/eth. 11 7 op
NMOC Find Report
Cases
14
94
76
96
90
77
31
95
96
41
89
73
61
88
96
80
70
51
59
95
96
54
94
23
70
15
84
71
95
49
83
95
2
96
Concentration
Average Pooled
Absolute % Standard
Median Average Difference Deviation
0.81
2.53
1.50
5.84
2.44
2.17
2.57
3.36
4.31
0.87
1.66
1.40
1.09
1.68
16.12
1.33
1.10
1.06
1.18
2.70
8.34
0.99
2.75
0.90
1.06
0.79
2.04
1.13
2.39
1.10
1.16
1.56
3.86
3.31
11-8
0.98
3.66
2.19
8.76
3.26
3.20
3.26
3.99
6.24
1.20
2.38
2.14
1.37
2.42
20.88
1.76
1.52
1.33
1.97
3.77
12.29
1.30
4.06
1.01
1.72
0.95
2.85
1.50
3.42
1.40
1.81
2.18
3.86
5.27
6.21
7.46
16.38
5.84
27.74
22.44
34.46
19.80
4.85
5.55
11.50
9.35
5.59
3.77
3.13
8.39
4.80
5.57
13.14
9.39
5.02
12.35
6.95
5.95
9.85
6.28
31.70
11.12
14.65
5.92
11.77
10.07
3.83
9.49
0.05
0.26
0.25
0.74
0.87
0.86
1.08
0.77
0.24
0.08
0.24
0.58
0.05
0.08
0.70
0.25
0.04
0.04
0.22
0.46
1.68
0.27
0.58
0.07
0.11
0.05
1.66
0.15
0.68
0.10
0.19
0.28
0.11
0.35
-------
Table 11-3. Continued
Duplicate Pair Statistics
Concentration
Compound
Cases
Median
Average
Average
Absolute %
Difference
Pooled
Standard
Deviation
n-Decane 48
1,2,3-Trimethylbenzene 96
p-Diethylbenzene 58
1-Undecene 91
n-Undecane 91
1-Dodecene 87
n-Dodecane 86
1-Tridecene 13
n-Tridecane 60
2.03
2.69
1.09
1.92
2.12
1.23
1.36
0.66
0.90
2.67
3.38
1.27
2.68
2.73
1.79
1.97
0.71
1.16
31.11
31.56
36.70
33.63
28.79
36.67
34.59
25.16
36.90
1.08
3.54
0.46
1.28
0.81
1.09
1.17
0.16
0.65
298-017-70/ofe.Wa*
NMOC find **M
11-9
-------
sites. Table 11-4 presents the data for all optional analysis sites. The duplicate
pooled standard deviations show similar results for each compound. This indicates
that the sampling procedure for duplicates provided representative ambient air
samples.
11.6.2 Replicate Analyses
For each program site half of a duplicate sample pair (a single canister of a
duplicate collection) was scheduled to be analyzed in replicate to measure
analytical precision. For the option sites, half of the duplicate sample pair was also
selected to be analyzed in replicate. Tables 11-5 and 11-6 summarize the
statistics for the replicate analyses of the program sites and option sites,
respectively, in terms of average concentrations, average absolute percent
differences, and pooled standard deviations. The results show excellent results for
analytical precision.
11.7 Accuracy
Three external audits were supplied by the EPA's QA contractor. Table 11-7
summarizes the results of these audits. The results show good analytical
accuracy. The percent bias for propane in the first audit (ID #2185) is higher than
expected. It is unusual that propane showed the greatest percent bias. The
system is calibrated with propane, and the response factor used to calculate all
other concentrations for these reports is based on the propane calibration. The
daily calibration checks for the days this audit was analyzed showed a propane
bias of -13.9% and -6.0%, so the analytical system was operating within the
expected limits, particularly for propane. If the true bias for propane was -38.5%,
then this amount of bias would also be expected for all other compounds reported
for Audit #2185. Unfortunately the contractor's analysis check did not include
298-O17-70/c«h.117op
NMOC Finil Rwoit 11-10
-------
Table 11-4. 1992 Duplicate Statistics for All Option Sites
Duplicate Pair Statistics
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1-Butene
1,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-MetnyM-butene
Isopentane
1 -Pentene
2-Methyl-1-butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Perrtene
2-Methyi-2-butene
Neohexane
Cydopentene
4-Methyl-1 -pentene
2,3-Dimethyl butane
Cydopentane
Isohexane
3-Methyipentane
1-Hexene
2-Methyl-1 -pentene
2-Ethyl-l-butene
n-Hexane
t-2-Hexene
'»»O17-70/e«»».117op
IMOC KM) Rtport
Cases
9
9
9
9
9
0
9
0
8
5
9
7
7
5
9
7
8
9
8
8
8
a
5
4
6
7
9
9
9
0
8
0
9
6
Concentration
Average Pooled
Absolute % Standard
Median Average Difference Deviation
17.04
8.62
16.53
6.44
15.69
13.39
.
5.98
1.81
20.86
2.73
2.21
1.12
36.85
1.44
2.71
13.72
1.43
4.15
1.41
2.78
0.93
0.93
1.15
1.19
4.76
9.68
6.69
.
1.17
5.38
1.55
11-11
20.04
11.51
18.37
8.21
18.70
.
12.03
.
5.30
1.83
25.45
3.17
3.41
1.67
63.86
3.58
5.74
25.97
1.36
7.37
3.86
9.63
1.19
2.43
1.87
3.52
7.23
21.87
13.21
.
3.35
.
10.78
3.57
6.45
13.15
8.25
6.54
5.18
4.08
,
11.21
13.46
9.47
4.52
28.97
10.63
2.74
16.35
3.51
1.75
5.90
12.58
5.55
9.25
9.89
2.55
10.22
2.68
8.36
2.87
18.86
11.43
.
3.39
12.00
0.89
2.96
1.39
0.33
0.76
0.17
.
0.82
0.32
1.58
0.10
1.43
0.11
1.61
0.83
0.16
0.36
0.05
0.79
0.18
0.35
0.08
0.11
0.09
0.06
0.24
0.43
1.67
.
0.17
.
0.20
0.31
-------
Table 11-4. Continued
Duplicate Pair Statistics
Compound Cases
c-2-Hexene
Methylcyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1 -Heptene
n-Heptane
Methvlcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methyiheptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
Isopropylbenzene
n-Propytbenzene .
alpha-Pinene
m-Ethyltoluene
p-Ethyttoluene
1 ,3,5-Trimethylbenzene
o-Ethyltoluene
1-Decene
1 ,2,4-Trimethylbenzene
298-01 7-70/c«h.117op
NMOC Final Report
4
9
9
9
8
8
6
9
9
5
9
8
8
9
9
8
8
8
7
9
9
8
9
5
8
5
9
7
9
7
9
9
0
9
Concentration
Average Pooled
Absolute % Standard
Median Average Difference Deviation
1.06
3.85
2.19
10.58
5.58
3.17
4.35
6.66
8.15
1.86
5.00
1.58
1.34
2.57
38.76
2.13
1.77
1.00
1.62
5.99
22.82
1.70
7.02
1.22
2.99
0.64
2.98
2.37
4.99
2.15
2.63
4.18
.
9.15
11-12
3.03
6.94
3.70
15.19
4.81
3.90
6.78
8.18
10.48
2.87
5.24
4.07
2.62
4.76
58.20
5.11
4.23
1.76
3.02
8.81
34.30
1.56
11.07
1.87
2.85
7.57
3.36
3.08
6.90
2.53
4.00
'4.19
12.35
10.29
4.43
5.36
3.17
8.61
23.38
30.00
18.49
8.13
11.39
6.89
7.81
5.92
8.73
1.95
4.06
6.19
6.75
8.15
4.46
4.52
6.96
5.81
3.38
6.33
39.43
44.50
9.63
14.83
11.97
11.41
9.70
7.02
0.15
0.28
0.09
0.19
0.37
0.70
2.41
1.27
1.74
0.25
0.17
0.15
0.15
0.95
2.12
0.16
0.16
0.36
0.19
0.55
4.21
0.07
1.81
0.03
0.15
19.90
1.59
1.10
2.25
0.72
1.89
1.03
4.59
-------
Table 11-4. Continued
Duplicate Pair Statistics
Concentration
Compound
Cases
Median
Average
Average
Absolute %
Difference
Pooled
Standard
Deviation
n-Decane 6
1,2,3-Trimethylbenzene 9
p-Diethylbenzene 8
1-Undecene 9
n-Undecane 9
1 -Dodecene 7
n-Dodecane 9
1 -Tridecene 0
n-Tridecane 8
4.85
4.07
1.79
1.56
4.43
0.83
3.00
1.13
8.86
4.12
2.14
2.14
39.15
1.32
32.77
6.56
44.68
16.31
51.10
35.30
54.88
38.06
68.87
62.90
14.45
1.21
0.88
1.49
140.68
0.94
109.89
15.28
288-017-70/ejh. 117op
NMOC Find Report
11-13
-------
Table 11-5. 1992 Replicate Statistics for All Program Sites
Replicate Pair Statistics
Concentration
Compound
Ethylene
Acetylene
Etriane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1-butene
Isopentane
1 -Pentene
2-Methyl-l-butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methyl-2-butene
Neohexane
Cyclopentene
4-Methyl-1 -pentene
2,3-Dimethylbutane
Cyclopentane
Isohexane
3-Methylpentane
1-Hexene
2-MethyM -pentene
2-Ethyl-1-butene
n-Hexane
t-2-Hexene
298-01 7-70/c«h.117oe
NMOC Find R»p«rt
Cases
114
95
112
109
114
0
110
0
110
40
114
60
43
27
113
28
86
110
84
83
63
90
110
25
78
68
108
114
111
0
41
0
114
28
Median
12.47
5.54
9.29
3.82
10.94
•
4.05
2.59
1.73
10.35
1.21
1.06
1.09
16.40
1.96
1.45
8.10
1.25
1.53
1.22
2.02
7.82
0.91
0.92
1.22
2.11
5.54
4.10
.
1.25
.
4.08
1.01
Average
24.05
8.73
17.25
7.29
21.46
7.24
3.35
2.31
14.74
1.48
1.50
1.19
25.09
2.53
2.21
10.85
2.55
2.51
1.64
2.77
9.21
1.02
1.01
1.63
2.90
7.61
5.91
.
1.53
•
5.96
1.27
11-14
Average
Absolute %
Difference
21.65
23.97
18.54
10.58
7.69
•
12.11
13.03
20.36
14.80
13.16
17.37
27.24
4.92
14.34
4.35
3.68
6.46
10.78
13.74
11.80
3.70
6.30
7.55
5.03
12.31
4.15
15.37
.
16.00
•
5.16
7.66
Pooled
Standard
Deviation
3.01
1.84
3.07
0.66
1.60
•
1.22
.
0.83
0.39
2.47
0.17
1.50
0.45
1.76
0.22
0.10
0.50
0.22
0.59
0.20
0.23
0.65
0.05
0.19
0.07
0.35
0.45
1.14
.
1.10
0.33
0.08
-------
Table 11-5. Continued
Replicate Pair Statistics
Average Pooled
Concentration Absolute % Standard
Compound
c-2-Hexene
Methylcydopentane
2,4-Dimethytpentane
Benzene
Cyclohexane
Isoheptane
2,3-Dimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1 -Heptene
n-Heptane
Methytcydohexane
2,2,3-Trimethylpentane
2,3,4-Trimethylpentane
Toluene
2-Methylheptane
3-Methylheptane
1 -Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xylene
Styrene
o-Xylene
1 -Nonene
n-Nonane
Isopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyltoluene
p-Ethyttoluene
1 ,3,5-Trimethylbenzene
o-Ethyttoluene
1-Decene
1 ,2,4-Trimethyibenzene
298-0 17-70/Mh. 117op
NMOC Find R«p«rt
Cases
17
111
94
114
98
82
35
114
113
41
99
82
68
99
114
86
72
56
69
113
114
55
114
26
76
19
99
71
111
46
94
113
0
113
Median
0.99
2.77
1.66
5.63
2.64
2.09
2.63
3.58
4.16
1.00
1.67
1.44
1.17
1.69
16.30
1.36
1.30
1.14
1.16
2.52
8.18
1.14
2.49
0.90
1.18
0.79
2.13
1.32
2.22
1.33
1.22
1.45
.
3.19
Average Difference Deviation
1.12
3.77
2.30
8.95
3.58
3.46
3.24
4.20
6.56
1.50
2.51
2.28
1.48
2.59
21.19
1.87
1.69
1.45
1.58
3.88
12.73
1.49
4.11
1.02
1.77
1.06
3.22
1.78
3.68
1.71
2.00
2.24
5.49
11-15
9.56
5.94
5.68
6.79
14.53
23.38
18.87
4.53
6.33
15.47
11.77
5.02
5.64
4.15
3.08
5.32
5.30
5.16
13.47
7.22
3.48
5.61
7.21
9.72
12.08
5.62
17.25
8.02
12.15
7.69
11.05
7.09
8.69
0.09
0.20
0.19
0.59
0.45
1.47
1.43
0.18
0.39
0.34
0.30
0.12
0.08
0.12
0.99
0.12
0.08
0.07
0.43
0.27
0.88
0.08
0.33
0.15
0.20
0.07
0.92
0.14
0.81
0.18
0.29
0.13
0.48
-------
Table 11-5. Continued
Replicate Pair Statistics
Concentration
Compound
n-Decane
1 ,2,3-Trimethylbenzene
p-Diethyl benzene
1-Undecene
n-Undecane
1-Dodecene
n-Dodecane
1 -Tridecene
n-Tridecane
Cases
47
114
62
111
105
100
97
10
62
Median
1.54
2.66
1.08
1.85
2.00
1.37
1.32
0.70
0.90
Average
2.82
3.75
1.35
2.87
2.85
1.93
2.18
0.75
1.37
Average
Absolute %
Difference
14.82
14.14
34.97
20.50
27.88
29.40
23.59
18.74
19.42
Pooled
Standard
Deviation
0.99
0.39
0.66
0.69
1.12
0.51
0.59
0.22
0.30
298-017-70/c«h.117op
NMOC Find Report
11-16
-------
Table 11-6. 1992 Replicate Statistics for AM Option Sites
Replicate Pair Statistics
Average Pooled
Concentration Absolute % Standard
Compound
Ethylene
Acetylene
Ethane
Propylene
Propane
Propyne
Isobutane
Isobutene
1 -Butene
1 ,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Methyl-1-butene
Isopentane
1 -Pentene
2-Methyl-1-butene
n-Pentane
Isoprene
t-2-Pentene
c-2-Pentene
2-Methy)-2-butene
Neohexane
Cyclopentene
4-Methyl-1 -pentene
2,3-Dimethylbutane
Cyclopentane
Isohexane
3-Methylpentane
1 -Hexene
2-MethyM -pentene
2-Ethyl-1-butene
n-Hexane
t-2-Hexene
298-017-70/c«h.117op
NMOC Find FUeort
Cases
9
9
9
9
9
0
8
0
8
6
9
7
6
5
9
5
8
9
7
8
8
8
6
4
6
7
9
9
9
0
7
0
9
6
Median
17.15
7.56
16.53
6.51
15.65
•
11.95
.
6.81
1.41
20.00
2.59
2.00
1.06
36.76
1.66
2.67
13.65
1.47
4.41
1.39
2.71
0.91
0.94
1.23
1.19
4.95
9.77
5.01
.
1.28
5.39
1.55
Average Difference Deviation
20.07
12.01
18.99
8.30
18.95
11.52
.
5.48
1.53
25.58
3.16
2.76
1.61
63.76
3.98
5.67
25.95
1.35
7.52
3.83
9.49
1.10
2.40
1.90
3.51
7.20
21.78
12.69
.
3.73
•
10.80
3.60
11 17
I I - I /
15.72
12.01
7.24
3.78
3.54
3.79
4.22
19.74
9.49
6.67
12.12
7.58
4.58
8.97
2.35
2.17
2.57
8.22
18.66
15.80
15.39
4.22
7.28
2.75
11.30
2.88
10.59
.
4.11
•
2.24
11.91
2.26
0.83
0.79
0.23
0.38
0.20
0.19
0.35
1.36
0.16
0.19
0.09
2.93
0.14
0.14
0.69
0.03
0.32
0.30
0.41
0.15
0.05
0.06
0.09
0.27
0.61
0.62
•
0.11
0.25
0.37
-------
Table 11-6. Continued
Replicate Pair Statistics
Average Pooled
Concentration Absolute % Standard
Compound Cases
c-2-Hexene
Methyicyclopentane
2,4-Dimethylpentane
Benzene
Cyclohexane
Isoheptane
2,3-Oimethylpentane
3-Methylhexane
2,2,4-Trimethylpentane
1 -Heptene
n-Heptane
Methylcyclohexane
2,2,3-Trimethylpentane
2,3,4-Trimethyipentane
Toluene
2-Methyl heptane
3-Methytheptane
1-Octene
n-Octane
Ethyl benzene
p-Xylene + m-Xyiene
Styrene
o-Xylene
1-Nonene
n-Nonane
I sopropyl benzene
n-Propyl benzene
alpha-Pinene
m-Ethyltoluene
p-Ethyltoluene
1 ,3,5-Trimethylbenzene
o-Ethyltoluene
1-Decene
1 ,2,4-Trimethylbenzene
298-017-70/c«h.117op
NMOC Find Report
3
9
9
9
8
7
6
9
9
5
9
8
8
9
9
8
8
8
7
9
9
8
9
6
8
2
9
6
9
7
9
9
0
9
Median
1.09
3.77
2.17
10.51
5.52
3.07
4.92
8.15
8.15
1.87
5.01
1.58
1.40
2.56
38.66
2.11
1.75
0.99
1.63
5.79
21.92
1.66
7.04
1.29
2.96
0.60
2.98
2.29
4.94
2.08
2.65
3.96
8.94
Average Difference Deviation
3.77
6.86
3.70
15.22
4.85
3.73
7.56
8.56
10.10
2.89
5.27
4.03
2.62
4.50
57.70
5.09
4.18
1.67
2.97
8.66
33.09
1.53
10.59
1.87
2.84
0.60
2.98
2.81.
6.48
2.34
3.61
3.97
11.26
11-18
7.55
10.76
5.62
3.29
9.32
22.15
27.20
3.30
17.08
3.70
5.58
18.47
2.06
21.12
1.97
1.93
1.49
11.67
27.22
3.49
1.57
1.91
2.18
3.57
3.23
2.45
23.96
2.01
2.01
5.97
8.24
2.59
.
2.74
0.10
0.56
0.15
0.25
0.36
0.85
5.33
0.23
3.35
0.14
0.12
0.28
0.10
1.80
1.23
0.10
0.08
0.55
0.38
0.27
0.65
0.03
0.21
0.04
0.08
0.00
1.43
0.05
0.23
0.17
0.60
0.05
•
0.34
-------
Table 11-6. Continued
Compound
Cases
Replicate Pair Statistics
Concentration
Median
Average
Average
Absolute %
Difference
Pooled
Standard
Deviation
n-Decane 7
1,2,3-Trimethylbenzene 9
p-Diethylbenzene 7
1-Undecene 9
n-Undecane 9
1 -Dodecene 7
n-Dodecane 9
1 -Tridecene 2
n-Tridecane 7
3.25
3.98
1.48
1.47
4.03
0.95
2.54
1.02
1.02
11.65
3.98
1.96
2.51
70.78
1.64
53.76
1.02
8.78
37.88
13.11
63.13
8.27
37.02
19.12
38.39
4.19
56.12
26.37
0.39
1.30
0.20
273.75
0.21
204.27
0.03
27.99
298-017-70/c«h.117op
NMOC Find R«port
11-19
-------
i is
7 *^
-4
%
Table 11-7. Summary of External Audit Results
-™. •--'.'"-", .iJiii'i'T"'
*
ID*
2185
2403
2580
•
Csunpoumt
Ethane
Propane
Isobutane
n-Butane
Isopentane
n-Pentane
3-Methylpentane
n-Hexane
Benzene
• n-Heptane
Toluene
n-Octane
o-Xylene
Isopentane
3-Methylpentane
Benzene
Toluene
m-Xylene
p-Xylene
o-Xylene
Isobutane
n-Butane
Isopentane
n-Pentane
n-Hexane
n-Heptane
n-Octane
Spike
ievetppbv
18.9
20.5
20.4
20.9
20.3
20.4
20.0
20.0
20.7
20.0
19.9
19.8
19.3
5.0
4.8
5.0
4.7
5.0
4.6
4.9
5.0"
5.0"
5.0"
5.0b
5.0"
5.0"
5.0"
Analysis Result* ppbv
ManTecft
NA
NA
NA
NA
21.6
NA
19
NA
18.6
NA
NA
17.4
18.7
5.0
4.9
5.8
6.5
4.6
4.5
4.9
5.0
4.9
5.8
6.5
4.6
4.5
4.9
Radian
15.1
12.6
18.4
19.4
19.6
19.8
19.4
19.4
19.8
19.7
19.3
19.3
17.8
5.2
5.0
5.5
5.3
9.3'
—
4.5
4.6
4.7
4.9
4.6
4.7
4.6
4.0
Pwcont B'a» KesuK* fixative to
Theoretical
ManTech
6.4
-5.0
-10.1
-12.1
-3.1
0.0
2.1
16.0
38.3
-8.0
-2.2
0.0
0.0
-2.0
16.0
30.0
-8.0
-10.0
-2.0
Radian
-20.1
-38.5
9rt
.8
-7.2
-3.4
2 A
.9
-3.0
-3.0
-4.3
-1.5
-3.0
-2.5
-7.8
4.0
4.2
10.0
12.8
-3.1
""
-8.2
-8.0
-6.0
-2.0
-8.0
-6.0
-8.0
-20.0
Percent Bias
ftosuttt
Relative to
Radian
-9.3
2.1
6.5
10.9
-4.8
4.0
2^
.0
-5.2
-18.5
2.2
-8.2
-8.0
-4.1
-15.5
-29.2
2.2
2.2
-18.4
NA = Not Analyzed
• = m-Xylene and p-Xylene reported as coeluting compounds
-------
propane, so there are not additional analytical data to support any conclusions.
The daily calibration checks and the results for all other compounds indicate the
true bias may have been a function of the theoretical spike level reported. This
conclusion is supported further by the additional study described below.
During the 1992 analysis season the same analytical system also
participated in the National Center for Atmospheric Research (NCAR) International
Hydrocarbon Intercomparison Experiment. An audit canister containing 16
hydrocarbons was prepared by NCAR and analyzed in replicate using the same
analysis procedures as applied to the previous audits. The percent bias reported by
NCAR was less than 15% for all 16 compounds, the propane percent bias reported
was 1.92% and 6.82% for the analyses.
The results from the EPA contractor audits and the NCAR experiment show
good analytical accuracy. It was difficult to draw a conclusion about the large
percent bias for propane in contractor Audit #2185. This percent bias is not
considered a reasonable indication of the system accuracy for propane during this
program since the results for all the other compounds reported are within
reasonable percent bias expectations, the daily calibration check is within required
limits, and all depend on the propane response factor in effect. In addition, results
from a supporting experiment show good accuracy for propane and other
compounds.
11.8 Comparative Analysis
Nine samples were supplied to the EPA's Atmospheric Research and
Exposure Assessment Laboratory (AREAL) at Research Triangle Park, North
Carolina, for comparative analyses. Fifty-one compounds chosen by the EPA
AREAL were compared. Results of this comparison are given in Tables 11-8, 11-9,
and 11-10. Table 11-8 displays the comparison data in ppbC units of
concentration. Table 11-9 shows results expressed as a percent bias, using the
298-017-70/;«h.117op -^ _ ..
NMOC Final R«port
-------
Table 11-8. Results of EPA Comparison Analysis
SITE ID B1AL
SAMPLE ID 2141
Radian EPA
COMPOUND
Ethylene 1.1.5 9.8
Acetylene -4.2 5.0
Eihane 8.9 8.7
Propyleiw 2.8 3.2
Propane 12.4 13.6
Iiobuuine 1.7 1.8
1-Butene 1.7 1.9
1.3-Butadiene ND 06
n-Butane 3.4 3.6
i-2-Butene ND 0.4
c-2-Butene ND 0.3
3-Meihyl-l-buiene ND 0 1
Isopeniane 7.7 7.9
1-Penune ND 0.3
2'Mctiiyl-l.butcnc ND 0.4
n-Pentane 3 4 3.6
e-2-Pentene 06 06
c-2-Penlene ND 04
2-Methyl-2-butene 0.7 0.8
Cydopentene ND 0.2
Cydopentane 1.2 0.4
13-Diroeihylbutane ND 1.2
Iwhexane (a) 3.0 19
3-Methylpenune l.S 3.3
2-MethyM-pemene ND 0.3
n-H«ane 1.9 11
l-2-Hexene ND 0.3
Methylcyclopentane 1.5 1.3
14-Diraethylpentane 0.7 1.1
Benzene 16.0 16.0
Cydohexane 14 0.3
Isoheptane (b) 1.9 1.1
13-Dim«hylpeniane ND 1.4
3-Metnylhexane 10 14
114-Tnmethylpentane 17 3.2
n-Heptane 1.3 08
Melhylcyclohe*ane 0.1 1.1
13,4-Tnmelbylpeniane 1.0 1.1
Toluene 11.1 113
2-Methylheptane 0.6 0.6
3-Methylheptane ND 0.5
n-Octane ND 0.6
Ethylbenzene 1.4 1.7
m/p-Xylene 6.1 6.2
Slyrene 0.6 f 7
o-Xylene 1.7 13
n-Nonane 0.6 0.5
1,3.5-TriinethylbenzeiK 0.7 0.1
1,2,4-Trimetnylbeiuent 14 7.1
n-Decane ND 0.6
1,13-TnnKthyibenzen* 1.3 0.8
TOTAL NMOC (c) 257 239
B2AL
2190
Radian EPA
mi 10.1
6.2 8.5
3.4 4.4
3.7 4.6
&9 11.2
1.1 1.3
12 18
0.8 1.1
4.1 3.7
as oj
ND 0.4
ND 0.3
10.2 110
ND 05
0.9 1 0
39 48
1.0 12
0.5 07
1.3 1.6
1.1 0.2
ND 0.4
ND 1.3
3.5 4.0
12 3.4
ND 0.3
1.3 13
ND 0.4
1.3 1.5
0.7 1.3
5.6 6.0
0.8 0.3
12 1.5
ND 1.7
!.8 15
18 4.1
0.7 0.8
as 1.1
1.1 1.3
8.9 107
0.6 0.6
0.5 0.6
ND 0.5
10 12
56 6.8
0.6 1.6
1.8 18
ND 0.4
LO 1.5
18 7.2
ND tt9
15 1.3
226 248
B3AL
2154
Radian EPA
116 10.2
6.5 73
77 75
4.3 47
103 6.4
5.3 5.8
3.6 41
0.8 08
20.9 215
1.9 1.6
1.6 1.7
0.7 0.9
51.5 512
ND 2.0
^ 4 1 1>
15 7 10.9
3.8 J »
17 13
4.9 5.2
0.5 06
3.5 1.3
1.3 3.6
IttS 11.9
8.4 &4
1.2 1.5
5.0 5.4
0.7 08
3.7 3.5
1.8 10
7.1 8.0
1.7 09
1.2 12
1.0 18
3.1 3.5
6.1 7.2
1.3 1.6
11 1.7
11 12
183 19.1
0.9 0.9
0.8 09
ND 06
16 31
9.7 10.0
0.8 18
3.3 3 8
0.7 05
ND 1.4
4.1 7.0
ND 0.9
3.3 1.8
438 437
BMTX
2435
Radian EPA
7.2 16
1.9 1.8
97 a 4
1.1 1.4
109 11.9
9.3 10.3
1.9 12
ND 0.2
21.0 219
1.4 1.2
1.7 1.7
1.2 12
36.9 36.6
SD 17
1 7 ' S
13 1 14 0
19 3.2
13 16
39 4.1
NO 04
14 11
10 13
4.3 11.8
5.3 0.8
0.5 0.2
5.7 6.1
ND 04
3.3 3.3
0.8 1.5
4.2 3.7
18 17
19 11
ND 18
.10 33
1.6 4.2
12 10
11 15
1.0 1.1
6.4 6.7
0.9 07
06 07
05 0.9
17 1.8
44 44
ND 1.3
1.4 1.7
tt6 0.5
06 0.1
10 94
ND 0.9
1.7 09
376 419
CHNC
2453
Radian EPA
189 21.9
110 109
4.1 o.S
0.0 5.4
11.6 11.6
o.O 5.8
3.8 3.7
1.3 1.2
9.0 11.1
1.3 1.2
0.8 0.8
tt6 0.5
29.0 26.2
ND 12
"* J •> T
— H _J
97 »5
32 32
19 1 5
42 3.7
0.7 0.7
3.4 1 0
1.1 3.0
9.1 &2
5.8 6.2
1.2 0.7
4.8 4.9
0.9 0.7
34 19
14 16
102 &9
31 04
16 3.0
1.3 3.3
39 42
93 «1
11 13
18 10
3.3 18
27 5 24.2
1.6 1.0
1.3 1.2
07 1.0
4 1 40
144 118
18 32
5.2 52
0.9 0.8
12 0.5
74 4«.l
ND 1.2
4.4 3.1
537 508
DLTX
2314
Radian EPA
115 9.6
7.0 8.1
13.6 14.6
3.9 4.2
16.2 17.7
4.8 5.4
13 16
ND 0.9
13.2 10.7
ND 0.5
ND 0.4
ND 0.3
16.8 19.1
ND 0.7
1 > 11
l._ I .'
75 8.4
14 10
09 09
19 12
ND 03
1.6 1.0
as 11
5.6 6.5
5.6 5.0
0.6 0.9
3.8 4.4
ND 07
IS 16
1.0 18
52 6.0
18 09
14 12
ND 18
35 44
44 SO
16 19
1.4 14
16 1.8
15.2 10.3
1.1 1.0
0.9 1.0
07 1.0
12 19
a3 as
05 3.1
18 37
07 0.8
1.5 1.8
4.3 8.2
ND 1.0
3.0 1.5
343 365
EPTX
2583
Radian EPA
519 55.0
516 64.4
41.3 4a4
23.2 24.4
876 91.0
309 319
215 21 8
4.0 3.7
69.8 692
10.8 10.8
8.7 7.6
14 14
127.0 117.7
5 2 5.7
715 718
115 a9
6.0 49
145 1.1
1.9 1 1
11.5 6.9
6.6 11.5
37.8 35.7
27.0 24.5
40 1.0
3tt9 31.0
16 15
21.5 21.0
110 113
377 372
90 95
5.2 114
14.3 15 2
13.0 13.7
26.2 29.7
98 112
7.0 8.5
109 104
85.0 818
7.0 5.4
6.0 5.9
4.8 6.4
10.5 16 6
47 2 45 6
18 4.1
15 4 10.0
58 4.6
6.3 6.2
iao 19 4
8.5 5.6
7.0 5.1
1720 1496
FWTX
2581
Radian EPA
152 14.7
9.6 115
20.3 211
5.6 6.0
17.6 19.6
6.5 7.1
3.5 3.9
1.3 1.5
1&3 20.0
L4 1.4
0.8 0.9
0.7 0.8
34.2 39.0
ND 1.7
13.7 14.9
15 18
1.8 15
18 3.2
ND as
37 1.7
1.3 40
9.4 11.0
56 8.1
1.1 0.7
6.0 6.4
0.6 08
4.0 3.8
1.8 15
ai 90
15 05
5.3 3.7
ND 15
4.0 48
10.3 11.7
11 15
1.4 16
3.7 37
20.2 20.7
17 15
15 17
1.4 1.3
4.6 49
is 5 10 :
10 1(1
53 6.1
1.0 09
14 15
6.7 8.9
0.6 1.3
17 11
4S4 458
JUMX
2622
Radian EPA
24.6 25 5
20 5 27 2
26.6 29 3
9.3 116
401 48.7
112 115
5.7 6 5
19 13
2&2 28.2
18 0.4
08 1.2
0.6 06
314 34 3
1.2 1«
19 5 J9 3
11 10
14 17
36 42
Oo 07
4o 14
10 52
119 146
72 93
1.4 09
113 13.1
06 1 1
71 73
53 b3
166 18.4
39 34
10 58
6.6 114
65 77
114 144
46 5 4
11 30
50 52
647 652
19 i.l
16 IS
13 IS
140 !J2
48.9 JM :
4t> (.4
144 159
17 14
ll 00
as 21 '
12 33
3.4 i 1
839 377
All concentrations given in ppbC
ND not detected
(a) 2-Methylpentane • Isohexane
(b) 2-Methylbexane » lioheplane
(c) NMOC - Nonmethane Organic Compounds
298-017-70/c«h.117op
NMOC Find Report
11-22
-------
Table 11-9. Percent Bias Results of EPA Comparison Analysis
RESULTS OF EPA COMPARISON ANALYSIS
Percent difference between Radian analysis and EPA analysis.
All concentrauoni given in ppbC
SITE ID
SAMPLE ID
COMPOUND
Ethylene
Acetylene
Ethane
Propylene
Propane
Isobutane
1-Butene
1,3-Butadiene
n-Butane
i-2-Butene
c-2-Butene
3-Methyl-l-butene
Isopentane
1-Pentane
2-Metnyl-l-butene
n-Pentane
t-2-Pentene
c-2-Pentene
2-Metbyl-2-butene
Cydopentene
Cyclopentane
13-Diroetbylbutane
Isobeiane (b)
3-Methylpentane
2-Methyi-l-pentene
n-Hexane
t-2-Hexane
Methylcyclopentane
14-Diraetbylpenuine
Benzene
Cydobexane
Iioheptane (c)
13-Dimethylpentane
3-Methylbexane
12,4-Trioietbylpentane
n-Heptane
Methylcyclohexane
2.3,4-Tnmethylpentane
Toluene
2-Methylbeptane
3-Metbylbeptane
n-Octane
Ethylbenzene
m/p-Xylene
Styrene
o-Xylene
n-Nonane
1,3,5-Trimethylbenzene
l,2,4-Trimetbylben«ne
n-Decaoe
1,13-Tnmecbyi benzene
B1AL
2141
378
• 16.0
13
-us
.as
-5.6
-10.5
(a)
•5.6
(a)
(a)
(a)
-15
(a)
(a)
-5.6
0.0
(a)
-115
(a)
200.0
(a)
3.4
-45.5
(a)
-9.5
(a)
15.4
-344
0.0
700.0
717
(a)
-16.7
-15.6
615
•36.4
-9.1
-1.8
0.0
(a)
(a)
-176
-1.6
-64.7
-26.1
20.0
600.0
-66.2
(a)
615
B2AL
2190
ao
•271
-217
-19.6
-20.5
-15.4
-21.4
-27.3
10.8
-28.6
(a)
(a)
-15.0
(a)
-10.0
-18.8
-16.7
-28.6
-18.8
450.0
(a)
(a)
• 115
•35.3
(a)
-43.5
(a)
-13.3
-46.2
-47
166.7
447
(a)
-28.0
•31.7
-115
-545
-15.4
-16.8
ao
-147
(a)
-91
• 17.6
-415
-35. 7
(a)
-33.3
-61.1
(a)
913
B3AL
2154
23.5
-11.0
17
•8.5
60.9
-8.6
•112
0.0
•7.1
18.7
•5.9
-212
-1.3
(a)
•5.6
•71
•174
•26.1
•5.8
-16.7
169.2
-63.9
•11.8
00
•20.0
-7.4
•115
5.7
-10.0
-11.3
88.9
-45.5
•64.3
•11.4
•153
-18.8
-35.3
-4.5
-1.2
0.0
•1U
(a)
-16.1
-3.0
-55.6
-13.2
40.0
(a)
-41.4
(a)
83.3
BMTX
2435
176.9
5.6
15.5
-21.4
-8.4
•9.7
-136
(a)
•8.3
147
ao
0.0
0.8
(»)
-36
-44
-94
-188
•4.9
(a)
14.3
•13.0
•41.6
-211
isao
-6.6
(a)
00
-447
135
64.7
38.1
(a)
-9.1
•14.3
10.0
-16.0
•9.1
' -4.5
28,6
•14.3
-44.4
•5.6
0.0
(a)
•176
20.0
500.0
•78.7
(a)
88.9
CHNC
2453
•13.7
10.1
-349
111
0.0
3.4
17
8.3
•ia9
8.3
ao
200
10.7
(a)
4.3
11
00
247
13.5
00
2400
•63.3
11.0
-45
71.4
-10
28.6
17.2
-7.7
14.6
6750
-447
-60.6
-7.1
12
-8,7
-10.0
17.9
13,6
6ao
83
•30.0
15
115
-43.8
ao
115
340.0
-83.9
(a)
41.9
DLTX
2314
3tt2
-13.6
-48
-71
-8.5
•11.1
-115
(a)
23.4
(a)
(a)
(a)
•110
(a)
-7.7
-107
•300
0.0
-13.6
(a)
60.0
•61.9
-13.8
110
•33.3
•136
(a)
-3.8
-44,4
-13.3
100.0
91
(a)
-20.5
-110
-15.8
-41.7
-11.1
-47
100
-10.0
•300
•24.1
-5.7
-83.9
-24.3
-115
-16.7
-47.6
(a)
100.0
EPTX
2583
-3.8
-18.3
-14.7
-49
•4.4
•41
3.2
&i
0,9
0.0
14.5
0.0
79
-8.8
151.1
-04
40.4
214
12182
717
647
-426
5.9
10.2
3000
-0.3
4.0
14
-14
13
-5.3
-58.1
-43.3
-5.1
•118
-115
-176
4.8
17
296
1.7
-250
-0.6
35
-31.7
•7.2
241
1.6
•7.2
51.8
37.3
FWTX
2581
3.4
-232
-8.1
-152
-HX2
-as
-10.3
-133
-8.5
ao
•U.I
•115
-113
(a)
-7.7
-8.1
•10.7
20.0
•115
(a)
117.6
-
-76
•233
•a?
•1.9
•515
-143
142
204.7
-513
-21.9
60.5
Average for sample
37.5
-3.0
15.3
25.5
-RO
34.4
-22
• 1.5
(a) No percent difference since compound response was below detection limit for Radian analysis.
(b) 2-Metbylpenune - Uobexane
(c) 2-Mctbylbcxanc • Isobcptane
(d) Average of aocumalated compound averages.
97 (d)
298-01 7-70/c«h.117oo
KM0C Rn* Report
11-23
-------
Table 11-10. Absolute Percent Bias Results of EPA Comparison Analysis
Absolute percent difference between Radian analysts and EPA analysis.
All concentration* given in ppbC
SITE ID
SAMPLE ID
COMPOUND
Eihylene
Ac«tyl«ne
Ethane
Propylene
Propane
Isobutane
1-Butene
1,3-Butadiene
n-Butane
t-2-Butene
c-2-Butene
3-Metbyl-l-buiene
Isopentane
1-Pentane
2-Meihyl-l-butene
n-Pentane
t-2-Pentene
c-2-Penlene
2-Methyl-2-butene
Cyciopentenc
Cyclopentane
13-Dimethylbutane
Isohexane (b)
3-Methytpenlane
2-Meihyi-l-pemene
n-Hexane
c-2-Hexene
Methylcydopcnune
14-Dimcthytpentanc
Benzene
Cyclobexane
Isobeptane (c)
13-Dimethylpentane
3-Methylhexane
114-Trimelhylpentane
n-Heptane
Methylcyclohexane
2,3, 4-Tnmelby)peniane
Toluene
2-Methylheptane
3-Methylheptane
n-Octane
Ethylbenzene
m/p-Xylene
Slyrene
o-Xylene
n-Nonane
1,3,5-Tnmemylbenzene
1.14-Tnmeitoylben2ene
n-Decane
1.13-Tnmelhylbenzene
B1AL
2141
31.8
17.4
13
13.3
9.2
5.7
11.1
(")
5.7
(a)
(a)
(a)
2.6
(al
(a)
57
0.0
(a)
13.3
(a)
100.0
(a)
3.4
58.8
(a)
10.0
(a)
14.3
444
00
155.6
533
(a)
18.2
16.9
476
444
95
1.8
0.0
('>
(a)
19.4
1.6
95.7
30.0
18.2
1500
0&9
(a)
476
B2AL
2190
00
31.3
256
21.7
22.9
16.7
24.0
31.6
10.3
33.3
(a)
(a)
16.2
(a)
10.5
20.7
18.2
33.3
20.7
13a5
(a)
(a)
13.3
419
(a)
556
W
14.3
60.0
6.9
909
37.8
(a)
32.6
377
133
750
16.7
ia4
0.0
18.2
(a)
9.5
19.4
90.9
43.5
<")
40.0
s&o
(a)
63.2
B3AL
2154
21.1
11.6
16
8,9
46.7
9.0
13.0
0.0
7.4
171
6.1
25.0
1.4
(a)
57
7.4
19.0
30.0
5.9
18.2
91.7
939
115
0.0
•>•> 1
7.7
13,3
5,6
ms
11.9
61.5
58.8
94,7
111
16.5
20.7
419
4.7
4.3
0.0
11.8
(»
17.5
3.0
76.9
14.1
33.3
(a)
513
(a)
sas
BMTX
2435
93.9
5.4
14.4
24.0
as
10.2
146
(3)
S.1
15.4
0.0
0.0
0.8
(a)
3.6
66
9.8
20.7
5.0
(a)
133
14.0
932
248
857
0.8
(a)
0.0
609
117
4a9
310
(a)
9.5
154
95
174
• 95
46
250
15.4
57.1
5.7
0.0
(a)
19.4
iai
1419
1298
(a)
ol.5
CHNC
2453
147
9.6
45.3
105
00
3.4
17
ao
209
ao
0.0
ia2
101
(a)
4.3
11
0.0
23.5
117
00
1091
917
104
67
516
2.1
yo
159
ao
13.6
1543
00.9
870
74
2.2
91
105
16.4
118
46.2
ao
35.3
15
11.8
560
ao
11.8
li<.9
1447
W
347
DLTX
1M4
26.2
14.6
71
7.4
as
118
112
(a)
20.9
(a)
(3)
(a)
118
(a)
ao
113
35.3
0.0
14.6
(a)
40.2
8».7
149
113
40.0
146
(a)
39
571
143
66.7
a?
(a)
218
118
17.1
516
118
70
9.5
105
35.3
275
5.8
144.4
27.7
133
ia2
614
(a)
66.7
EPTX
383
39
20.2
15.8
50
4.5
63
3.2
7.S
09
0.0
13.5
0.0
76
92
86.1
04
336
20.2
171.8
533
500
54 1
57
97
120.0
0.3
3.9
14
15
13
5.4
81.8
55.2
5 2
115
13.3
194
47
16
25.8
1.7
2S.6
06
3.4
37.7
75
13.1
1.6
7.5
41 1
314
BVTX
2581
3.3
26.2
as
16.4
10.8
as
10.8
!4.3
a9
0.0
11.8
133
131
(a)
ao
a4
11.3
ia2
133
(a)
741
1019
157
36.5
444
6.5
28.6
5 1
316
10.5
1000
35.0
la)
ia2
117
174
000
0.0
19
115
115
7.4
63
44
66.7
140
10.5
41
2a2
737
25.0
JUMX
2622
3.6
2ai
9.7
210
194
110
13.1
19.0
0.0
127.3
400
0.0
88
2ao
10.5
673
353
19.4
154
154
619
8&9
114
255
435
(v3
-------
AREAL results as the reference. Table 11-10 gives the absolute percent
differences.
The comparison results seen in Table 11-9 do not show an overall positive
or negative bias tendency, and as a result the overall percent difference is low
(< 10%). The majority of percent differences show good comparisons « 50%).
There are several very high positive percent differences (> 100%) caused by very
low reported concentrations {< 1 ppbC), that are considered at or below detection
limits for the SNMOC analysis method. The percent differences in Table 11-9
range from -83.9% to 1218.2%, with an overall average of 9.7 percent.
Table 11-10 compares the data on an absolute percent difference basis.
The overall absolute percent difference is 28.3 percent. These are considered
excellent results, showing comparable procedures and results between both
laboratories. Because of a tendency for some compounds to have higher
differences for all samples, it appears there may have been coelution problems for
different compounds in each laboratory.
11.9 Data Acquisition and Reduction Procedures
A PE Nelson 2600 Chromatography Data System consisting of a 900 Series
Intelligent Interface and a PC system containing the 2600 software was used to
acquire, integrate and store the analytical data. A chromatogram and area count
report from each detector are printed for each analysis. Electronic copies of the
data were stored on 20 Mb flexible disk cartridges, and a compressed backup disk
was also made.
The data was processed using Radian Peak Identification Program (RPIP)
software. The RPIP used a database containing relative retention time information
for all compounds of interest and applicable response factors to process the data
files. A preliminary report was generated containing possible peak identifications
298-017-70/c*.i;i7«>
NMOC fin«t R*pwt 1 1 -25
-------
and quantitations based on the carbon response factor in effect at the time of
analysis.
A data reviewer compared the RPIP report to the chromatogram to determine
proper peak identifications. A second data review was performed to check for
items which may have been overlooked on the first pass. After the data was
reviewed twice, a final RPIP report was processed and reviewed for completeness.
Final report versions containing information on all quantitated peaks were printed
and filed with the analysis chromatogram printout and preliminary RPIP report.
Electronic copies of all RPIP reports were also kept on file.
298-017-70/c«h.11 Top 1 1 „_
NMOC Final topon I I • t D
-------
12.0 RECOMMENDATIONS
12.1 General
12.1.1 Vertical Stratification Study
In 1987, 1988, and 1989 ambient air samples were taken at ground level
(3 to 10 meters) and at the 1197-foot (364.9-meter) level at one site. In 1988, an
additional site was located on top of the World Trade Center in New York, a height
of over 1000 feet. It is recommended that further study be performed at these
sampling heights and that at least one more level (at 100 meters or some other
appropirate height above ground level) be sampled at the same location. Upper
atmospheric meteorological characterization measurements need to be made using
a Wind Profiling system. Subsequent NMOC and meteorological data should be
correlated. These samples should be analyzed for NMOC content as well as for the
air toxics compound concentrations. It is also recommended that ozone
concentrations and NOX concentrations be monitored at the same locations and
altitudes. The information gained from such a study would be useful in validating
various atmospheric model predicitions.
12.1.2 Seasonal NMOC Studies
Data derived in a study qualifying NMOC and NOX in seasons other than
summer could be useful in understanding the relationship of NMOC to NOX and
meteorological conditions. Currently a year-round study"for 24-hour air toxics
ambient air samples is being conducted. Na study is currently in progress to
determine seasonal NMOC concentration changes.
298-017-70/c»h.117op _
NMOC Fin«l teport 12*1
-------
12.1.3 Field Audit
It is recommended that a field audit be designed and conducted at several
NMOC/SNMOC sites during the 1993 Monitoring Program. One field audit per
month should be performed at an NMOC/SNMOC site during June, July, August,
and September 1993. the field audit should use at least one standard of known
NMOC/SNMOC concentration and should collect duplicate samples plus a zero-air
blank for each site. The audit samples should use both dry and humid standards.
12.2 Equipment
12.2.1 Multiple Episode Sample Collection Equipment
A design for a multiple episode sampler has been completed. It is
recommended that a prototype instrument be built according to the design. The
prototype sampler should then be checked out and tested.
12.2.2 Current Sampling Equipment
The NMOC Program began in 1984. Some of the sampling equipment has
been in used since 1984. Prior to the beginning of the 1992 sampling season,
approximately 10 sampling systems were rebuilt using a new chassis-design (See
Section 3.0). As the current sampling equipment fails, it is recommended to
rebuild the samplers according to the more user-friendly chassis-design system
(Style B) or the above mentioned multiple episode sampler.
12.2.3 Cleaning and Analytical Equipment
Much of the current cleanup system has been in operation since 1984,
The original intended use of the equipment has been expanded to include year-
round use. As components fail, provisions need to be made for replacements.
298-017-70/c«h.117op
NMOC Find R«port 1 2-
-------
The GCs used for the PDFID method are also beginning to show signs of
wear and tear. Maintenance of these systems must be maintained. And as with
the cleanup system components, provisions need to be made for replacement parts
as the need arises.
12.3 SNMOC
12.3.1 Expansion of Target Compound List
With the approval of the Clean Air Act Amendments (CAAA) compounds,
it is recommended to expand the list of the current target compounds to include
the appropriate ozone precursor CAAA compounds.
12.4 Air Toxics
12.4.1 Compound Stability Study
Depending on the intended use of the data collected under this option of
the NMOC Program, further study may be needed to determine the compound
stability in canisters. If health risk assessment is the intended use of this data, a
compound stability study is recommended. Compound stability in this context
refers to whether the apparent concentration of a compound in a sample taken
from a canister is changing over time. The apparent change in concentration may
result from a chemical reaction of the compound while it is in the canister, or result
from a change in the gas phase concentration caused by adsorption of the
compound on the interior canister surfaces.
A study needed to investigate this phenomenon would take several
canisters--at least three from each initial concentration-ranging in target compound
concentration from 0.0 to 20 ppbv. The canisters would be analyzed 24 hours
after mixing, 72 hours after mixing, 30 days after mixing, and 60 days after mixing
298-017-70/Mh. 117x»
WMOC Fin* R«ix>ft 12-3
-------
to determine any concentration changes. It is also recommended that the same
concentration be mixed in canisters, but that equilibration time of 7 days and
30 days be assigned before the first samples are drawn from the canisters to
determine the effect of equilibration time on the concentration sample withdrawn
from the canisters.
12.4.2 Expansion of Target Compound List
With the approval of the Clean Air Act Amendments compounds, it is
recommended to expand the list of the current target 38 air toxic compounds to
include the appropriate airborne toxic compounds.
12.5 Carbonvls
12.5.1 Use of Ozone Scrubber
Previous studies showed that the ozone scrubber was needed to accurately
measure the carbonyl concentration in ambient air when sampling occurs with
silica gel media. It is recommended to continue using the carbonyl ozone scrubber
when sampling for carbonyl compounds.
12.5.2 Life of Ozone Scrubber
It is recommended to determine the life of the effectiveness of the ozone
scrubbers. Some preliminary studies performed by the US EPA indicated that the
effective life was approximately 6000 sample-hours. These results need to be
checked and more definitively defined with field studies that extend over several
years.
298-017-70/c«h.117op
NMOC Rn* Report 1 2-4
-------
13.0 REFERENCES
1. Compendium Method TO-12, "Determination of Non-Methane Organic
Compounds (NMOC) in Ambient Air Using Cryogenic Pre-Concentration and
Direct Flame lonization Detection (PDFID)," Quality Assurance Division,
Environmental Monitoring Systems Laboratory, U.S. Environmental
Protection Agency, Research Triangle Park, NC, 27711, May 1988.
2. Radian Corporation. 1991 Nonmethane Organic Compound, Speciated
Nonmethane Organic Compound, and Three-Hour Urban Air Toxics
Monitoring Programs, Work Plan and Quality Assurance Project Plan. DCN
No. 91-262-045-56. Prepared for the U.S. Environmental Protection
Agency, Research Triangle Park, NC. EPA Contract No. 68D80014.
3. Radian Corporation. 1990 Nonmethane Organic Compound and Three-Hour
Air Toxics Monitoring Program. Final Report. Prepared for U. S.
Environmental Protection Agency, Research Triangle Park, NC, 27711, DCN
No. 91-262-045-04. January 1991.
4. Radian Corporation. 1989 Nonmethane Organic Compound and Three-Hour
Air Toxics Monitoring Program. Final Report. Prepared for U. S.
Environmental Protection Agency, Research Triangle Park, NC, 27711,
EPA-450/4-90-011. May 1990.
5. Radian Corporation. 1988 Nonmethane Organic Compound and Urban Air
Toxics Monitoring Program. Final Report. Volume I. U. S. Environmental
Protection Agency, Research Triangle Park, NC, 27711, EPA-450/4-89-003.
December 1988.
6. Radian Corporation, 1987 Nonmethane Organic Compound and Air Toxics
Monitoring Programs. Final Report Volume 1 - Hydrocarbons, U. S.
Environmental Protection Agency, Research Triangle Park, NC.
EPA-450/4-88-011. August 19, 1988.
7. McAllister, R. A., R. F. Jongleux, D-P. Dayton, P. L. O'Hara, and
D. E. Wagoner (Radian Corporation). Nonmethane Organic Compound
Monitoring. Final Report. Prepared for U.S. Environmental Protection
Agency, Research Triangle Park, NC. EPA Contract No. 68-02-3889,
July 1987.
8. McAllister, R. A., D-P. Dayton, and D. E. Wagoner (Radian Corporation).
Nonmethane Organic Compound Monitoring. Final Project Report. Prepared
for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA
Contract No. No. 68-02-3889, January 1986.
298-017-70/cah.117op
NMOC find R«mt 13-1
-------
Radian Corporation. Nonmethane Organic Compounds Monitoring
Assistance for Certain States in EPA Regions III, IV, V, VI, and VII, Phase II.
Final Project Report. Prepared for the U.S. Environmental Protection
Agency, Research Triangle Park, NC. EPA Contract [fslo. 38-02-3513,
February 1985.
288-017-70/e«h. 117op
NMOC Fmti Rwort I 3" 2
-------
APPENDIX A
SAMPLING SITES FOR 1992 NMOC MONITORING PROGRAM
-------
TABLE A-1
1992 NMOC Monitoring Program Sites
US EPA
Region
II
II
II
II
IV
IV
IV
IV
IV
IV
IV
VI
VI
VI
VI
VI
VI
XIII
XIII
Site
Code
MNY
LINY
NWNJ
PLNJ
B1AL
B2AL
B3AL
CHNC
R1NC
WSNC
MIFL
BRLA
DLTX
BMTX
FWTX
ELTX
JUMX
S2UT
S3UT
City
New York, NY
Long Island, NY
Newark, NJ
Plainfield, NJ
Birmingham, AL
Birmingham, AL
Birmingham, AL
Charlotte, NC
Raleigh, NC
Winston Salem, NC
Dade County, FL
Baton Rouge, LA
Dallas, TX
Beaumont TX
Ft. Worth, TX
El Paso, TX
Juarez, Mexico
Salt Lake City, UT
Salt Lake City, UT
AIRS
Number
36-061-0010
36-059-0005
34-013-0011
34-039-5001
01-073-6002
01-073-5002
01-117-0004
37-119-0034
37-183-0015
37-067-0022
12-025-4002
22-033-0006
48-113-0069
48-245-0009
48-439-1002
48-141-0027
80-006-0001
49-035-3001
49-011-0001
Base
Program
NMOC
NMOC
NMOC
NMOC
Speciated NMOC
Speciated NMOC
Speciated NMOC
Speciated NMOC
NMOC
NMOC
Speciated NMOC
Speciated NMOC
Speciated NMOC
Speciated NMOC
Speciated NMOC
Speciated NMOC
Speciated NMOC
NMOC
NMOC
Speciated
NMOC
Option
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
3-Hour
Air Tox Carbonyl
Option Option
Yes Yes
Yes Yes
Yes
Yes
Yes
The site at Ciudad Juarez, State of Chihuahua, Mexico, is sponsored by U.S. EPA Region VI
-------
DATE 11/25/92
AMP380
ERA-REGION: 04
EPA AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS)
AIR QUALITY SUBSYSTEM
SITE DESCRIPTION INVENTORY
STATE 101): ALABAMA
PAGE
SITE 10
CITY POPULATION
AQCR POPULATION
DATE ESTABLISHED
DATE TERMINATED
01-073-5002 CITY (00000):
1 COUNTY (073):
1,168,098 AQCR (004):
/ / LAND USE (1):
NOT IN A CITY
JEFFERSON CO
METROPOLITAN BIRMINGHAM
RESIDENTIAL
/ / LOCATION SETTING (3): RURAL
SITE AODR: PINSON, HIGH SCH., BOX 360 HHY 75 NORTH
URBAN AREA (1000): BIRMINGHAM, AL
SUPPORTING AGENCY (012): JEFFERSON COUNTY DEPARTMENT Of HEALTH
COMMENTS: PINSON VALLEY HIGH SCHOOL BY TENNIS COURTS IN FRONT OF SCHOOL
SITE-USER-INFO: NAMS OZONE
LATITUDE :
LONGITUDE:
UTM ZONE
UTM NORTHING:
UTM EASTING :
DISTANCE CITY:
HC IND: Y
MSA (1000): BIRMINGHAM,
33:42:16 N
86:40:08 N
16
3729242
530684
032
HQ EVAL DATE
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
AL
80/07/17
06
201 M
92/06/22
/ /
NE
N
1,168,098
/ /
/ /
01-073-6002 CITY (75000): TARRANT CITY
8,148 COUNTY (073): JEFFERSON CO
AQCR (004): METROPOLITAN BIRMINGHAM
LAND USE (1): RESIDENTIAL
LOCATION SETTING (2): SUBURBAN
,, 1269 PORTLAND STREE
URBAN AREA (1000): BIRMINGHAM, AL
SUPPORTING AGENCY (012): JEFFERSON COUNTY DEPARTMENT OF HEALTH
COMMENTS: TARRANT ELEM. SCH. NEAR TENNIS COURTS BEHIND SCHOOL
SITE-USER-INFO: NAMS TSP AND OZONE
SITE ID :
CITY POPULATION :
AQCR POPULATION :
DATE ESTABLISHED:
DATE TERMINATED :
SITE ADDR: TARRANT, ELEM. SCH.
LATITUDE :
LONGITUDE:
UTM ZONE :
UTM NORTHING:
UTM EASTING
DISTANCE CITY
HC IND: Y
MSA (1000):
33:34:42 N
86:46:26 N
16
G: 3715234
: 520984
TY: 013
BIRMINGHAM,
HQ EVAL DATE
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
AL
80/07/17
06
171 M
92/05/18
NE
N
01-117-0004 CITY (00000): NOT IN A CITY
1 COUNTY (117): SHELBY CO
1,168,098 AQCR 1004): METROPOLITAN BIRMINGHAM
83/01/01 LAND USE (4): AGRICULTURAL
/ / LOCATION SETTING (3): RURAL
SITE ADDR: BEARDEN FARM
URBAN AREA (1000): BIRMINGHAM, AL
SUPPORTING AGENCY (Oil): AL DEPT. OF ENV. MGT.
COMMENTS:
SITE ID
CITY POPULATION
AQCR POPULATION
DATE ESTABLISHED
DATE TERMINATED
LATITUDE :
LONGITUDE:
UTM ZONE :
UTM NORTHING:
UTM EASTING :
DISTANCE CITY:
HC IND: Y
MSA 11000): BIRMINGHAM
33:19:01 N
86:49:30 N
16
3686270
516280
HQ EVAL DATE
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
AL
600 M
92/09/17
-------
AMP380
ERA-REGION: 04
MCKUI-ICIK.LI. iriru
AIR QUALITY SUBSYSTEM
SITE DESCRIPTION INVENTORY
STATE (12): FLORIDA
SITE ID
12-025-4002 CITY (45000): MIAMI
LATITUDE
25:47:52 N HQ EVAL DATE
CITY POPULATION :
AQCR POPULATION :
DATE ESTABLISHED:
DATE TERMINATED :
346,865 COUNTY (025): DADE CO
3,515,388 AQCR (050): SOUTHEAST FLORIDA
/ / LAND USE (2): COMMERCIAL
/ / LOCATION SETTING (1): URBAN AND CENTER CITY
SITE ADDR: METRO ANNEX 864 NH 3RD STREET
URBAN AREA (5000): MIAMI, FL
SUPPORTING AGENCY (018): DADE COUNTY DEPARTMENT ENVIRONMENTAL RESOURCES MANA MSA (5000): MIAMI-HIALEAH
COMMENTS: DCPC *1
LONGITUDE: 80:12:37 M
UTM ZONE : 17
UTM NORTHING: 2853365
UTM EASTING :
DISTANCE CITY:
HC IND: Y
579171
029
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
FL
05
5 M
92/08/03
-------
DATE 11/25/9Z
AMP380
EPA-REGION: 06
EPA AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS)
AIR QUALITY SUBSYSTEM
SITE DESCRIPTION INVENTORY
STATE (22): LOUISIANA
PAGE
22-033-0006 CITY (05000): BATON ROUGE
219,419 COUNTY (033): EAST BATON ROUGE PAR
AQCR (106): SOUTHERN LOUISIANA-SOUTHEAST 7
LAND USE (2): COMMERCIAL
LOCATION SETTING (1): URBAN AND CENTER CITY
SITE ID
CITY POPULATION
AQCR POPULATION : 3,921,588
DATE ESTABLISHED: 90/01/03
DATE TERMINATED : / /
SITE ADDR: 1600 RIVERSIDE RD
URBAN AREA (0760): BATON ROUGE, LA
SUPPORTING AGENCY (001): STATE OF LOUISIANA
COMMENTS: CAPITOL SITE - RELOCATION FOR 22033000**
LATITUDE :
LONGITUDE:
UTM ZONE :
UTM NORTHING:
UTM EASTING :
DISTANCE CITY
HC IND: N
30:27:52 N
91:11:17 H
15
3371464
673956
HQ EVAL DATE
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
06
62 M
92/03/11
MSA (0760): BATON ROUGE, LA
-------
DATE 11/25/92
AMP380
EPA-REGION: 02
EPA AEROMETRIC INFORMATION KtlHItVAL SYi>ltn I AJ.Ki J
AIR QUALITY SUBSYSTEM
SITE DESCRIPTION INVENTORY
STATE 134): NEW JERSEY
SITE ID :
CITY POPULATION :
AQCR POPULATION :
DATE ESTABLISHED:
34-013-0011 CITY (51000):
329,248 COUNTY (013):
16,525,701 AQCR (043):
85/01/01 LAND USE (3):
NENARK
ESSEX CO
NEM JERSEY-NEW YORK-CONNECTICU
INDUSTRIAL
DATE
SITE
TERMINATED :
/ LOCATION SETTING (1): URBAN AND CENTER CITY
ADDR: ST. CHARLES BETWEEN KOSSUTH 8 KAMERON ST
URBAN AREA (5601): NEW YORK, NY-NORTHEASTERN NJ
SUPPORTING AGENCY 1001): NEW JERSEY STATE DEPARTMENT OF ENVIRONMENTAL PROTEC
COMMENTS: NJ 807142,START 1/1/85,RELOC.FROM 340130008, SITTING CRITERIA?
SITE-USER-INFO: PM10.DICHOT,START 3/15/86,ELEV.16'>03 DOWN 5/16/86-3/25/87
LATITUDE : 40:43:37 N
LONGITUDE: 74:08:39 W
UTM ZONE : 18
UTM NORTHING: 4508570
UTM EASTING : 572280
DISTANCE CITY: 015
HC IND: Y
MSA (5640 ): NEWARK, NJ
HQ EVAL DATE
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
05
3 M
92/05/14
86/05/06
SW
N
SITE ID
: 34-039-5001 CITY (59190): PLAINFIELD
CITY POPULATION :
45,555 COUNTY (039): UNION CO
LATITUDE : 40:36:03 N HQ EVAL DATE
LONGITUDE: 74:26:31 W OIFF. GMT
AQCR POPULATION : 16,525,701 AQCR (043): NEW JERSEY-NEW YORK-CONNECTICU
DATE ESTABLISHED: 80/05/01 LAND USE (1): RESIDENTIAL
DATE TERMINATED : / / LOCATION SETTING (2): SUBURBAN
SITE ADDR: WEST THIRD AND BERGEN STREETS
URBAN AREA (5601): NEM YORK, NY-NORTHEASTERN NJ
SUPPORTING AGENCY (001): NEM JERSEY STATE DEPARTMENT OF ENVIRONMENTAL PROTEC MSA (5640): NEWARK, NJ
COMMENTS: NJ S20121, SLAMS-N02,03 1980 NE OXIDANT STUDY>03,S02,NOX
SITE-USER-INFO: FORMERLY CODED 340351001
UTM ZONE : 18
UTM NORTHING: 4494399
UTM EASTING : 547218
DISTANCE CITY: 042
HC IND: Y
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
05
18 M
91/04/10
90/07/06
SW
N
-------
DA IE 11/25/92
AMP380
ERA-REGION: 02
EPA AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS)
AIR QUALITY SUBSYSTEM
SITE DESCRIPTION INVENTORY
STATE 136): NEW YORK
PAGE
SITE ID :
CITY POPULATION :
AQCR POPULATION :
DATE ESTABLISHED:
DATE TERMINATED :
N
W
36-059-0005 CITY (00000): NOT IN A CITY
1 COUNTY (059): NASSAU CO
16,525,701 AQCR (043 ): NEW JERSEY-NEW YORK-CONNECTICU
71/01/01 LAND USE (2): COMMERCIAL
/ / LOCATION SETTING 12): SUBURBAN
SITE ADDR: EISENHOWER PARK,MERRICK AV&OLD COUNTRY R
URBAN AREA (5601): NEW YORK, NY-NORTHEASTERN NJ
SUPPORTING AGENCY (001): NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVA MSA (5380): NASSAU-SUFFOLK, NY
COMMENTS: NYS *2950-10 START S02,CO,03,NO2,TSP'71,PB172jNECRMP'80,NO,N02,03
SITE-USER-INFO: 03-*334105002F01 12/82,MIDDLE SCALE,MEETS SITING,N02-2-025 - 12/86
LATITUDE : 40 :44:43
LONGITUDE: 73:35:13
UTM ZONE : 18
UTM NORTHING: 4511200
UTM EASTING : 619300
DISTANCE CITY: 033
HC INO:
HQ EVAL DATE
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
05
27 M
92/11/04
/ /
E
Y
SITE ID
CITY POPULATION
AQCR POPULATION
DATE ESTABLISHED:
DATE TERMINATED :
36-061-0010 CITY (51000): NEW YORK CITY
7,071,639 COUNTY (061): NEW YORK CO
16,525,701 AQCR (043): NEW JERSEY-NEW YORK-CONNECTICU
/ / LAND USE (1): RESIDENTIAL
/ / LOCATION SETTING (1): URBAN AND CENTER CITY
SITE ADDR: MABEL DEAN HIGH SCH.ANNEX, 240 2ND AVE.
URBAN AREA (5601): NEW YORK, NY-NORTHEASTERN NJ
SUPPORTING AGENCY (001): NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVA MSA (5600):
COMMENTS: NYSt7093-05,START N02,O3 11/18/76,TSP 10/10,CO 10/3/77,502 2/5/78
SITE-USER-INFO: 1980 NECRMP,DISC.CO,02 5/25,RESTART 03 9/24/82JELEV.TSP 102'
LATITUDE : 40:44:22
LONGITUDE: 73:59:10
UTM ZONE : 18
UTM NORTHING: 4510116
UTM EASTING : 585607
DISTANCE CITY: 003
HC IND: Y
NEW YORK, NY
N HQ EVAL DATE
W DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
7 LAST REG EVAL
COMPASS SECTOR
MET DATA
80/09/23
05
38 M
92/09/30
80/09/22
S
Y
-------
AMP3SO
£PA-REGION: 04
AIR QUALITY SUBSYSTEM
SITE DESCRIPTION INVENTORY
STATE (37): NORTH CAROLINA
SITi ID
em POPULATION
AQCR POPULATION
DATE ESTABLISHED
DATE TERMINATED
37-067-0022 CITY (75000):
131,885 COUNTY (067):
1,114,750 AQCR (136):
/ / LAND USE (1):
HINSTON-SALEM
FORSYTH CO
NORTHERN PIEDMONT
RESIDENTIAL
/ / LOCATION SETTING <1): URBAN AND CENTER CITY
SITE ADOR: 1300 BLK. HATTIE AVENUE
URBAN AREA (9220): HINSTON-SALEM, NC
SUPPORTING AGENCY (002): FORSYTH COUNTY ENVIRONMENTAL AFFAIRS DEPARTMENT
COMMENTS! NEXT TO CHURCH SCHOOL. POP EXPOSURE.
SITE-USER-INFO: RJR BAILEY POHER PLANT PT MAX.
LATITUDE : 36:06:38 N
LONGITUDE: 80:13:36 W
UTM ZONE : 17
UTM NORTHING: 3996287
UTM EASTING : 569604
DISTANCE CITY:
HC IND:
HQ EVAL DATE
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
05
287 M
90/03/29
MSA (3120): GREENSBORO-WINSTON-SALEM-HIGH POIN
SITE ID :
CITY POPULATION :
AQCR POPULATION :
DATE ESTABLISHED:
DATE TERMINATED :
37-183-0015 CITY (55000): RALEIGH
150,255 COUNTY (1831: HAKE CO
1,082,284 AQCR (166): EASTERN PIEDMONT
91/06/06 LAND USE (1): RESIDENTIAL
/ / LOCATION SETTING (1): URBAN AND CENTER CITY
SITE ADDR: 808 NORTH STATE STREET
URBAN AREA (6639): RALEIGH, NC
LATITUDE : 35:47:18 N
LONGITUDE: 78:37:20 W
UTM ZONE : 17
UTM NORTHING: 3962881
UTM EASTING : 714899
DISTANCE CITY: 002
HC IND: Y
HQ EVAL DATE
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
05
127 M
92/07/17
SUPPORTING AGENCY
COMMENTS:
(001): NORTH CAROLINA DEPT NATURAL RESOURCESSCOMMUNITY DEV MSA (6640): RALEIGH-DURHAM, NC
-------
DATE 11/25/92
AMP380
EPA-REGION: 04
EPA AEROHETRIC INFORMATION RETRIEVAL SYSTEM (AIRS)
AIR QUALITY SUBSYSTEM
SITE DESCRIPTION INVENTORY
STATE (37): NORTH CAROLINA
PAGE
SITE ID
CITY POPULATION :
AQCR POPULATION :
DATE ESTABLISHED:
DATE TERMINATED :
37-119-0034 CITY (12000): CHARLOTTE
314,447 COUNTY (119): MECKLENBURG CO
1,216,719 AQCR (167): METROPOLITAN CHARLOTTE
/ / LAND USE (1): RESIDENTIAL
/ / LOCATION SETTING (2): SUBURBAN
SITE ADDR: PLAZA ROAD AND LAKEDELL
URBAN AREA (1519): CHARLOTTE, NC
SUPPORTING AGENCY (003): MECKLENBURG COUNTY DEPARTMENT OF ENVIRONMENTAL HEAL
COMMENTS: NEH SITE-OZONE CARBON MONOXIDE AND NO 2 CONTINUOUS
SITE-USER-INFO: NEIGHBORHOOD SCALE POPULATION ORIENTED FOR CO ft OZONE
LATITUDE : 35:14:50 N
LONGITUDE: 80:45:50 H
UTM ZONE : 17
UTM NORTHING: 3900287
UTM EASTING : 521481
DISTANCE CITY: 010
HC IND: Y
HP EVAL DATE
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
83/07/22
05
239 M
92/07/17
MSA (1520): CHARLOTTE-GASTONIA-ROCK HILL, NC-S
-------
BATE 11/25/92
AMP380
EPA-REGION: 06
EPA AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS)
AIR QUALITY SUBSYSTEM
SITE DESCRIPTION INVENTORY
STATE (48): TEXAS
PAGE
SITE ID
CITY POPULATION
AQCR POPULATION
48-113-0069 CITY (19000): DALLAS
904,078 COUNTY (113): DALLAS CO
3,257,903 AQCR (215): METROPOLITAN DALLAS-FORT WORTH
DATE ESTABLISHED: 86/01/01
DATE TERMINATED :
LAND USE (2): COMMERCIAL
/ / LOCATION SETTING (1): URBAN AND CENTER CITY
SITE ADDR: 1415 HINTON STREET
URBAN AREA (1920): DALLAS-FORT WORTH, TX
SUPPORTING AGENCY (002): CITY OF DALLAS AIR POLLUTION CONTROL SECTION
COMMENTS: FORMERLY MOCKINGBIRD SITE 451310044H01
SITE-USER-INFO: OFFICES MOVED, NEW SITE NEEDED
LATITUDE : 32:49:34 N
LONGITUDE: 96:51:50 W
UTM ZONE : 14
UTM NORTHING: 3633840
UTM EASTING : 699960
DISTANCE CITY:
HC IND: Y
MSA (1920): DALLAS, TX
HQ EVAL DATE
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
06
125 M
92/10/29
86/12/11
SITE ID :
CITY POPULATION !
AQCR POPULATION ;
DATE ESTABLISHED!
DATE TERMINATED :
48-141-0027 CITY (24000):
425,259 COUNTY (141):
660,806 AQCR (153):
73/01/01 LAND USE (2):
EL PASO
EL PASO CO
EL PASO-LAS CRUCES-ALAMOGORDO
COMMERCIAL
i
o
/ / LOCATION SETTING (1): URBAN AND CENTER CITY
SITE ADDR: 500 NORTH CAMPBELL ST.
URBAN AREA (2320): EL PASO, TX
SUPPORTING AGENCY (001): TEXAS AIR CONTROL BOARD
COMMENTS: SIP MONITOR
SITE-USER-INFO: ACTIVE 11/73
LATITUDE : 31:45:45 N
LONGITUDE: 106:29:13 W
UTM ZONE : 13
UTM NORTHING: 3514886
UTM EASTING : 359179
DISTANCE CITY:
HC IND: Y
MSA 12320): EL PASO, TX
HQ EVAL DATE
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
07
1140 M
92/08/05
SITE ID
CITY POPULATION
AQCR POPULATION
DATE ESTABLISHED
DATE TERMINATED
48-245-0009 CITY (07000): BEAUMONT
118,102 COUNTY (245): JEFFERSON CO
3,921,588 AQCR (106): SOUTHERN LOUISIANA-SOUTHEAST T
60/01/01 LAND USE (1): RESIDENTIAL
/ / LOCATION SETTING (2): SUBURBAN
SITE ADDR: GEORGIA AT CUNNINGHAM, BEAUMONT, TX
URBAN AREA (0839): BEAUMONT, TX
SUPPORTING AGENCY (001): TEXAS AIR CONTROL BOARD
COMMENTS: MOVED FROM VIRGINIA ST
SITE-USER-INFO: LAMAR UNIVERSITY CAMPUS
LATITUDE : 30:02:22 N
LONGITUDE: 94:04:29 W
UTM ZONE : 15
UTM NORTHING: 3323462
UTM EASTING : 396381
DISTANCE CITY:
HC IND:
HQ EVAL DATE
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
MSA (0840): BEAUMONT-PORT ARTHUR, TX
06
13 M
92/08/05
SITE ID
CITY POPULATION
AQCR POPULATION
DATE ESTABLISHED
DATE TERMINATED
48-439-1002 CITY (27000): FORT WORTH
385,164 COUNTY (439): TARRANT CO
3,257,903 AQCR 1215): METROPOLITAN DALLAS-FORT WORTH
75/01/01 LAND USE (2): COMMERCIAL
/ / LOCATION SETTING (1): URBAN AND CENTER CITY
SITE ADDR: ROSS AVE BETWEEN LONG AND 34TH ST
URBAN AREA 11920): DALLAS-FORT WORTH, TX
SUPPORTING AGENCY (001): TEXAS AIR CONTROL BOARD
COMMENTS: CONTINUOUS MONITRING STATION
LATITUDE : 32:48:19 N
LONGITUDE: 97:21:26 W
UTM ZONE : 14
UTM NORTHING: 3630705
UTM EASTING : 653810
DISTANCE CITY: 006
HC IND: Y
HQ EVAL DATE
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
80/10/28
06
204 M
92/08/05
80/08/01
N
Y
MSA (2800): FORT WORTH-ARLINGTON, TX
-------
DATE 11/25/92
AMP380
ERA-REGION: 08
EPA AEROHETRIC INFORMATION RETRIEVAL SYSTEM (AIRS)
AIR QUALITY SUBSYSTEM
SITE DESCRIPTION INVENTORY
STATE (49): UTAH
PAGE
49-011-0001 CITY (07690): BOUNTIFUL
32,877 COUNTY (011J: DAVIS CO
1,154,361 AQCR (220): WASATCH FRONT
/ / LAND USE (2): COMMERCIAL
/ / LOCATION SETTING (2): SUBURBAN
SITE ADDR: 65H 300S BOUNTIFUL UTAH
URBAN AREA (7159): SALT LAKE CITY, UT
SUPPORTING AGENCY (001): UTAH DEPARTMENT OF HEALTH
COMMENTS: COMPLETE MONITORING STATION BEGAN 9-13-74
SITE ID :
CITY POPULATION :
AQCR POPULATION :
DATE ESTABLISHED:
DATE TERMINATED :
LATITUDE : 40:53:44 N
LONGITUDE: 111:52:55 H
UTM ZONE : 12
UTM NORTHING: 4527325
UTM EASTING : 425708
DISTANCE CITY: 015
HC IND: Y
HQ EVAL DATE
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
MSA (7160): SALT LAKE CITY-OGDEN, UT
81/10/28
07
1335 M
92/04/30
81/10/28
N
Y
49-035-3001 CITY 167000): SALT LAKE CITY
163,697 COUNTY (035): SALT LAKE CO
1,154,361 AQCR (220): HASATCH FRONT
62/01/01 LAND USE (2): COMMERCIAL
/ / LOCATION SETTING (1): URBAN AND CENTER CITY
SITE ADDR: HEALTH DEPT BLDG 610 SOUTH 2ND EAST
URBAN AREA (7159): SALT LAKE CITY, UT
SUPPORTING AGENCY (001): UTAH DEPARTMENT OF HEALTH
COMMENTS:
SITE ID :
CITY POPULATION :
AQCR POPULATION :
DATE ESTABLISHED:
DATE TERMINATED :
LATITUDE : 40:45:21 N HQ EVAL DATE
LONGITUDE: 111:53:06 H
UTM ZONE : 12
UTM NORTHING: 4511818
UTM EASTING : 425294
DISTANCE CITY: 002
HC IND: Y
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
MSA (7160): SALT LAKE CITY-OGDEN, UT
81/10/27
07
1305 M
92/04/30
81/10/27
S
Y
-------
>
I
DA it
AMP380
ERA-REGION: 06
AIR QUALITY SUBSYSTEM
SITE DESCRIPTION INVENTORY
STATE (80): COUNTRY OF MEXICO
SITE ID :
CITY POPULATION :
AQCR POPULATION :
DATE ESTABLISHED:
DATE TERMINATED :
80-006-0001 CITY (01150): CIUDAD-JUAREZ
355,555 COUNTY 1006): CHIHUAHUA STATE
34,923,129 AQCR 1250): COUNTRY OF MEXICO
90/06/04 LAND USE (2): COMMERCIAL
/ / LOCATION SETTING (1): URBAN AND CENTER CITY
SITE ADDR: TECHNICAL INSTITUTE
URBAN AREA (2320): EL PASO, TX
SUPPORTING AGENCY (002): SEDUE
COMMENTS: SPECIAL EL PASO/JUAREZ MONITORING SITE.
LATITUDE :
LONGITUDE:
UTM ZONE :
UTM NORTHING:
UTM EASTING :
DISTANCE CITY:
HC IND: N
MSA (2320): EL PASO, TX
HQ EVAL DATE
DIFF. GMT
ELEVATION ABOVE MSL
RECORD LAST UPDATED
LAST REG EVAL
COMPASS SECTOR
MET DATA
92/04/02
/ /
-------
APPENDIX B
CRYOGENIC PRECONCENTRATION AND DIRECT FU\ME IONIZATION
DETECTION (PDFID) METHOD
-------
COMPENDIUM METHOD TO-12
DETERMINATION OF NON-METHANE- ORGANIC
COMPOUNDS (NMOC) IN AMBIENT AIR USING
CRYOGENIC PRE-CONCENTRATION AND
DIRECT FLAME IONIZATION DETECTION
(PDFID)
QUALITY ASSURANCE DIVISION
ENVIRONMENTAL MONITORING SYSTEMS LABORATORY
U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711
MAY, 1988
-------
Revision 1
June, 1987
METHOD T012
METHOD FOR THE DETERMINATION OF NON-METHANE ORGANIC COMPOUNDS (NMOC)
IN AMBIENT AIR USING CRYOGENIC PRECONCENTRATION AND DIRECT FLAME
IONIZATION DETECTION (PDFID)
1. Scope
1.1 In recent years, the relationship between ambient concentrations
of precursor organic compounds and subsequent downwind concentra
tions of ozone has been described by a variety of photochemical
dispersion models. The most important application of sucn model
is to determine the degree of control of precursor organic com-
pounds that is necessary in an urban area to acnieve compliance
with applicable ambient air quality standards for ozone (1,2).
1.2 The more elaborate theoretical models generally require detailec
organic species data obtained by multicomponent gas chromatogra;
The Empirical Kinetic Modeling Approach (EKMA), however, requirt
only the total non-methane organic compound (NMOC) concentrator
data; specifically, the average total NMOC concentration from 6
a.m. to 9 a.m. daily at the sampling location. The use of tota'
NMOC concentration data in the EKMA substantially reduces the
cost and complexity of the sampling and analysis system by not
requiring qualitative and quantitative species identification.
1.3 Method T01. "Method for The Determination of Volatile Organic
Compounds in Ambient Air Using Tenax* Adsorption and Gas
Chromatography/Mass Spectrometry (GC/MS)", employs collection
.of certain volatile organic compounds on Tenax* GC with subse-
-quent analysis by thermal desorption/cryogenic preconcentration
and GC/MS identification. This method (T012) comoines the same
type of cryogenic concentration technique used in Method T01
for high sensitivity with the simple flame ioniration detector
(FID) of the GC for total NMOC measurements, without the GC
columns and complex procedures necessary for species separation
-------
T012-2
1.4 In a flame ionization detector, the sample is injectea into a
hydrogen-rich flame where the organic vaoors burn producing
ionized molecular fragments, The resulting ion fragments are
then collected and detected. The FID .» nearly a univer
detector. However, the detector response varies with t species
of [functional group in] the organic compound in an oxy i atmos-
phere. Because this method employs a helium or argon carrier
gas, the detector response is nearly one for all compounds.
Thus, the historical short-coming of the FID involving varying
detector response to different organic functional groups is
minimized.
1.5 The method can be used either for direct, in situ amoient
measurements or (more commonly) for analysis of integrated
samples collected in specially treated stainless steel canisters,
EKMA models generally require 3-hour integrated NMOC measurements
over the 6 a.m. to 9 a.m. period and are used by State or local
ager.cias to prepare Sta^e Implementation Plans (SIPs) for ozone
control to achieve compliance with the National /ambient Air
Quality Standards (NAAQS) for ozone. For direct, illilH. amoieat
measurements, the analyst must be presen* ring the 6 a.m. to
9 a.m. period, and repeat measurements (a oximately six per
hour) must be taken to obtain the 6 a.m. to 9 a.m. average
NMOC -ancentration. The use of sample canisters allows the
col" :ion of integrated air samples over the 6 a.m. to 9 a.m.
period by unattended, automated samplers. This method has
incorporated both sampling approaches.
Applicable Documents
2*1 ASTM Standards
D1356 - Definition of Terms Related to Atmospheric
Sampling and Analysis
E260 - Recommended Practice for General Gas Chromato-
graphy Procedures
£355 - Practice for Gas Chromatography Terms and
Relationships
-------
T012-3
2.2 Other Documents
U. S. Environmental Protection Agency Technical Assistance
Documents (4,5)
Laboratory and Ambient Air Studies (6-10)
3. Summary of Method
3.1 A whole air sample is either extracted directly from the ambier
air and analyzed on site by the GC system or collected into a
precleaned sample canister and analyzed off site.
3.2 The analysis requires drawing a fixed-volume portion of the
sample air at a low flow rate through a glass-bead filled trap
that is cooled to approximately -186°C with liquid argon. The
cryogenic trap simultaneously collects and concentrates the
NMOC (either via condensation or adsorption) while allowing
the methane, nitrogen, oxygen, etc. to pass through the trap
without retention. The system is dynamically calibrated so
that the volume of sample passing through the trao does not
have to be quantitatively measured, but must be precisely
repeatable between the calibration and the analytical phases.
3.3 After the fixed-volume air sample has been drawn through the
trap, a helium carrier gas flow is diverted to pass through
the trap, in the opposite direction to the sample flow, and
into an FID. When the residual air and methane have been
flushed from the trap and the FID baseline restabilizes,
the cryogen is removed and the temperature of the trap is
raised to approximately 90°C.
3.4 The organic compounds previously collected in the trap revol-
atilize due to the increase in temperature and are carried int
the FID, resulting in a response peak or peaks from the FID.
The area of the peak or peaks is integrated, and the integrate
value is translated to concentration units via a previously-
obtained calibration curve relating integrated pea* areas with
known concentrations of propane.
3.5 By convention, concentrations of NMOC are reported in units ot
parts per million carbon (ppmC), which, for a specific compour
is the concentration by volume (ppmV) multiplied by the numoei
of carbon atoms in the compound.
-------
TQ12-4
3.6 The cryogenic trap simultaneously concentrates the NMOC wnile
separating and removing the methane from air samples. The
technique is thus direct reading for NMOC and, because of
the concentration step, is '-ire sensitive than conventional
continuous NMOC analyzers.
Significance
4.1 .Accurate measurements of ambient concentrations of NMOC
are important for the control of photochemical smog because
these organic compounds are primary precursors of atmospheric
ozone and other oxidants. Achieving and maintaining compliance
with the NAAQS for ozone thus depends largely on control of
amoient levels of NMOC.
4.2 The NMOC concentrations typically found at uroan sites may
range up to 5-7 ppmC or higher. In order to determine transport
of precursors into an area, measurement of NMOC upwind of the
area may be necessary. Upwind N..JC concentrations are likely
to be less than a few tenths of 1 pom.
4.3 Conventional methods that depenu on gas chromatography and
qualitative and quantitative species evaluation are excessively
difficult and expensive to operate and maintain wnen speciated
measurements are not needed. The method described here involves
a simple, cryogenic preconcentration procedure with subsequent,
direct, flame ionization detection. The method is sensitive and
provides accurate measurements of ambient NMOC concentrations
where speciated data are not required as applicable to the
EKMA.
Definitions
[Note: Definitions used in this document and in any user-prepared
Standard Operating Procedures (SOPs) should be consistent with ASTM
Methods D1356 and £355. All abbreviations and symbols are defined
within this document at point of use.]
-------
T012-5
5.1 Absolute pressure - Pressure measured with reference to absolute
zero pressure (as opposed to atmospheric pressure), usually ex-
pressed as pounds-force per square inch absolute (psia).
5.2 Cryogen - A substance used to obtain very low trap temperatures
in the NMOC analysis system. Typical cryogens are liquid argon
(bp -185.7) and liquid oxygen (bp-183.0).
5.3 Dynamic calibration - Calibration of an analytical system with
pollutant concentrations that are generated in a dynamic, flow-
ing system, such as by quantitative, flow-rate dilution of a
high concentration gas standard with zero gas.
5.4 EKMA - Empirical Kinetics Modeling Approach; an empirical model
that attempts to relate morning ambient concentrations of non-
methane organic compounds (NMOC) and NOX with subsequent peak,
downwind ambient ozone concentrations; used by pollution control
agencies to estimate the degree of hydrocarbon emission reductio
needed to achieve compliance with national ambient air quality
standards for ozone.
5.5 Gauge pressure - Pressure measured with reference to atmospheric
pressure (as opposed to absolute pressure). Zero gauge pressure
(0 psig) is equal to atmospheric pressure, or 14.7 psia (101 kPa
5.6 in situ - In place; in situ measurements are obtained by direct
on-the-spot analysis, as opposed to subsequent, remote analysis.
of a collected sample.
5.7 Integrated sample - A sample obtained uniformly over a specifiec
time period and representative of the average levels of pollutar
during the time period.
5.8 NMOC - Nonmethane organic compounds; total organic compounds as
measured by a flame lonization detector, excluding methane.
5.9 ppmC - Concentration unit of parts per million carbon; for a sp<
cific compound, ppmC is equivalent to parts per million by volur
(ppmv) multiplied by the number of carbon atoms in the compound
5.10 Sampling - The process of withdrawing or isolating a representa1
Portion of an ambient- atmosphere, with or without the simultane'
isolation of selected components for subsequent analysis.
-------
T012-6
Interferences
6.1 In field and laboratory evaluation, water was found to cause a
positive shift in the FID baseline. The effect of this shift
is minimi zed by carefully selecting the integration »rmination
point and adjusted baseline used for calculating the area of
the NMOC peak(s)
6.2 When using heliui. .s a carr is, FID response is quite
uniform for most hydrocarboi. „..npounds, but the response can
vary considerably for other types of organic compounds.
Apparatus
7.1 Di.act Air Sampling (Figure 1)
7.1.1 Sample manifold or sample inlet line - to bring
sample air into the analytical system.
7.1.2 Vacuum pumo or blower - to draw sample air through a
sample r ifold or long inlet line to reduce inlet
residence time. Maximum residence time should oe no
greater than 1 minute.
7.2 Remote Sample Collection in Pressurized Canisters (Figure 2)
7.2.1 Sample can- 'er(s) - stainless steel, Summa«-polished
vessel(s) or 4-6 L capacity (Scientific Instrumentation
Specialists, Inc., P.O. Box 8941, Moscow, ID 83843), used
for automatic collection of 3-hour integrated field
air samples. Each canister should have a unique identi-
fication number stamped on its frame.
7.2.2 Sample pump - stain-.:ss steel, metal bellows type
(Model MB-151, Metal Bellows Corp., 1075 Providence
Highway, Sharon, MA 02067) capable of 2 atmospheres
minimum output pressure. Pump must be free of leaks,
clean, and uncontaminated by oil or organic compounds.
7.2.3 Pressure gauge - 0-30 psig (0-240 kPa).
7.2.4 Solenoid ;valve - special electrically-operated, bistable
solenoid valve (Skinner Magnelatch Valve, New Britain,
-------
T012-7
CT), to control sample flow to the canister with negligi-
ble temperature rise (Figure 3). The use of the Skinner
Magnelatch valve avoids any substantial temperature rise
that would occur with a conventional, normally closed
solenoid valve, which would have to be^ energized during
the entire sample period. This temperature rise in the
valve could cause outgasing of organics from the Viton
valve seat material. The Skinner Magnelatch valve
requires only a brief electrical pulse to open or close
at the appropriate start and stop times and therefore
experiences no temperature increase. The pulses may
be obtained with an electronic timer that can be pro-
grammed for short (5 to 60 seconds) ON periods or with
a conventional mechanical timer and a special pulse
circuit. Figure 3 [a] illustrates a simple electrical
pulse circuit for operating the Skinner Magnelatch
solenoid valve with a conventional mechanical timer.
However, with this simple circuit, the valve may
operate unpredictably during brief power interruptions
or if the timer is manually switched on and off too
fast. A better circuit incorporating a time-delay
relay to provide more reliable valve operation is
shown in Figure 3[b].
7.2.5 Stainless steel orifice (or short capillary) - capable
of maintaining a substantially constant flow over the
sampling period (see Figure 4).
7.2.5 Particulate matter filter - 2 micron stainless steel
sintered In-line type (see Figure 4).
7.2.7 Timer - used for unattended sample collection. Capabli
of controlling pump(s) and solenoid valve.
7.3 Sample Canister Cleaning (Figure 5)
7.3.1 Vacuum pump - capable of evacuating sample canister(s)
to an absolute pressure of <5 mm Hg.
7.3.2 Manifold - stainless steel manifold with connections
for simultaneously cleaning several canisters.
7.3.3 Shut off valve(s) - seven required.
7.3.4 Vacuum gauge - capable of measuring vacuum in the nani
to an absolute pressure of 5 mm Hg or less.
-------
T012-8
7.3.5 Cryogenic trap (2 required) - U-snapea open tuoular trap
cooled with liquid nitrogen or argon used to prevent con-
tamination from back diffusion of oil from vacuum pump,
and to provide clean, zero air to sample canister(s).
7.3.6 Pressure gauge - 0-50 psig (0-345 kPa),-to monitor
zero air pressure.
7.3.7 Flow control valve - to regulate flow of zero air into
.iister(s).
7.3.8 Humidifier - water bubbler or other system capable of
providing moisture to the zero air supply.
7.4 Analytical System (Figure 1)
7.4.1 FID detector system - including flow controls for the
FID fuel and air, temperature control for the FID, and
signal processing electronics. The FID burner air,
hydrogen, and helium carrier flow rates should be set
according to the manufacturer's instructions to obtain an
adequate FID response while maintaining as stable a flame
as possible through t all phases of the analyt* al cycle.
7.4,2 Chart recorder • c itible the outpu: ignal,
to record FID respo..ie.
7.4.3 Electronic integrator - capable of integrating the area
of one or more FID response peaks and calculating peak
area corrected for baseline drift. If a separate inte-
grator and chart recorder are used, care must be exer-
cised to be sure the . these components do not interfere
with each other electrically. Range selector controls
on both the integrator and the FID analyzer may not pro-
vide accurate range ratios, so individual calibration
curves should be prepared for each -ange to be used.
The integrator should be capable ot narking the beginning
and ending of peaks, constructing the appropriate base-
line between the start and end of the integration period,
and calculating the peak area.
-------
T012-9
Note: The FID (7.4.1), chart recorder (7.4.2), inte-
grator (7.4.3), valve heater (7.4.5), and a trap heat-
ing system are conveniently provided by a standard lab-
oratory chromatograph and associated integrator. EPA
has adapted two such systems for the WFID method: a
Hewlett-Packard model 5880 (Hewlett-Packard Corp., Avon-
dale, PA) and a Shimadzu model GC8APF (Shimadzu Scientif
Instruments Inc., Columbia, MD; see Reference 5). Other
similar systems may also be applicable.
7.4.4 Trap - the trap should be carefully constructed from a
single piece of chromatographic-grade stainless steel
tubing (0.32 cm O.D, 0.21 cm I.D.) as shown in Figure 6
The central portion of the trap (7-10 cm) is packed wit
60/80 mesh glass beads, with small glass wool (dimethyl
chlorosilane-treated) plugs to retain the beads. The
trap must fit conveniently into the Dewar flask (7.4.9)
and the arms must be of an appropriate length to allow
the beaded portion of the trap to be submerged below
the level of liquid cryogen in the Dewar. The trap sh<
connect directly to the six-port valve, if possible,
to minimize line length between the trap and the FID.
trap must be mounted to allow the Dewar to be slipped
conveniently on and off the trap and also to facilitat
heating of the trap (see 7.4.13).
7.4.5 Six-port chromatographic valve - Seiscor Model VIII
(Seismograph Service Corp., Tulsa, OK), Valco Model 9]
(Valco Instruments Co., Houston, TX), or equivalent.
The six-port valve and as much of the interconnecting
tubing as practical should be located inside an oven
otherwise heated to 80 - 90°C to minimize wall losses
or adsorption/desorption in the connecting tubing, ft
lines should be as short as practical.
7.4.6 Multistage pressure regulators - standard two-stage,
stainless steel diaphram regulators with pressure gai
for helium, air, and hydrogen cylinders.
7.4.7 Pressure regulators - optional single stage, stainle
steel, with pressure gauge, if needed, to maintain
constant helium carrier and hydrogen flow rates.
-------
T012-10
7.4.8 Fine needle valve - to adjust sample flow rate througn
trap.
7.4.9 awar flask - to h<- liquid cryogen to cool the trap,
sized to contain suomerged portion of^trap.
7.4.10 Absolute pressure gauge - 0-AC0 mm Hg,(2 mm Hg [scale
divisions indicating units]), o monitor repeataole
volumes of sample air through cryogenic trap (Wallace
and Tiernan, Model 61C-ID-0410, 25 Main Street, Belle-
ville, NO).
7.4.11 Vacuum reservoir - 1-2 I capacity, typically 1 L.
7.4.12 Gas purifiers - gas scrubbers containing Orierite^ or
silica gel and 5A molecular sieve to remove moisture
and organic impurities in the helium, air, and hydrogen
gas flows (Alltech Associates, Deerfield, IL). Note:
Check -ity of gas purifiers prior to use by passing
zero-o.. through the unit and analyzing according to
Section 11.4. Gas purifiers are clean if produce
[contain] less than 0.02 ppmC hydrocarbons.
7.4.13 Trap heating system - chromatoc .phic oven, hot water,
or other means to heat the trap to 80° to 90°C. A simple
heating source for the trap is a beaker or Dewar filled
with water maintained at 80-90°C. More repeata^.e types
of heat sources are recommended, including a temperature-
programmed chromatograph oven, electrical heating of
the trap itself, or any type of heater that brings the
temperature of the trap up to 80-90°C in 1-2 minutes.
7.4.14 Toggle shut-off valves (2) - leak free, for vacuum valve
and sample valve.
7.4.15 Vacuum pump - general purpose laboratory pump capable
of evacuating the vacuum reservoir to an appropriate
vacuum that allows the desired sample volume to be
drawn through the trap.
7.4.16 Vent - to keep the trap at atmospheric pressure during
trapping when using pressurized canisters.
7.4.17 Rotameter - to verify vent flow.
-------
7012-11
7.4.18 Fine needle valve (optional) - to adjust flow rate of
sample from canister during analysis.
7.4.19 Chromatographic-grade stainless steel tubing (Alltecn
Applied Science, 2051 Waukegan Road, Deerfield, IL, 6001
(312) 948-8600) and stainless steel plumbing fittings -
for interconnections. All such materials in contact
with the sample, analyte, or support gases prior to
analysis should be stainless steel or other inert
metal. Do not use plastic or Teflon* tubing or fitting;
7.5 Commercially Available PDFIO System (5)
7.5.1 A convenient and cost-effective modular PDFID system sui
able for use with a conventional laboratory chromatograp
is commercially available (NuTech Corporation, Model 854
2806 Cheek Road, Durham, NC, 27704, (919) 682-0402).
7.5.2 This modular system contains almost all of the apparatus
Items needed to convert the chromatograph into a PDFID
analytical system and has been designed to be readily
available and easy to assemble.
Reagents and Materials
8.1 Gas cylinders of helium and hydrogen - ultrahigh purity grade.
8.2 Combustion air - cylinder containing less than 0.02 ppm hydro-
carbons, or equivalent air source.
8.3 Propane calibration standard - cylinder containing 1-100 ppm
(3-300 ppmC) propane in air. The cylinder assay should be
traceable to a National Bureau of Standards (NBS) Standard Ref<
ence Material (SRM) or to a NBS/EPA-approved Certified Referem
' Material (CRM).
8.4 Zero air - cylinder containing less than 0.02 ppmC hydrocar-
bons. Zero air may be obtained from a cylinder of zero-grade
compressed air scrubbed with Drierite* or silica gel and 5A
molecular sieve or activated charcoal, or by catalytic cleanup
-------
T012-12
of amoient air. All zero air should be passed througn a liquid
argon cold trap for final cleanup, then passed througn a hyrdo-
carbon-free water bubbler (or other device) for humidification.
8.5 Liquid cryogen - liquid argon (bp -185.7°C) or, liquid oxygen,
(bp -183°C) may be used as the cryogen. Experiments have shown
no differences in trapping efficiency between liquid ar-;n and
liquid oxygen. However, appropriate safety precautions must be
taken if liquid oxygen is used. Liquid nitrogen (bp -195°C)
should not be used because it causes condensation of oxygen and
methane in the trap.
9. Direct Sampling
9.1 For direct ambient air sampling, the cryogenic trapping system
draws the air sample directly from a pump-ventilatect distribution
manifold or sample line (see Figure 1). The connecting line snould
be of small diameter (1/8" 0.0.) stainless steel tubing and as
short as possible to minimize its dead volume.
9.2 Multiple analyses over the sampling period must be made to estab-
" sh hourly or 3-hour NMOC concentration averages.
10. Sample Collection in Pressurized Canister(s)
For integrated pressurized canister sampling, ambient air is sampled
by a metal bellows pump through a critical orifice (to maintain
constant flow), and pressurized into a clean, evacuated, Summa4-
polished sample canister. The critical orifice size is chosen so
that the canister is pressurized to approximately one atmosphere above
ambient pressure, at a constant flow rate over the desired sample
period. Two canisters are connected in parallel for duplicate samples.
The canister(s) are then returned to the laboratory for analysis,
using the POFID analytical system. Collection of ambient air samples
in pressurized canisters provides the following advantages:
o Convenient integration of ambient samples over a ecific
time period
o Capability of remote sampling with subsequent cei .ral
laboratory analysis
o Ability to ship and store samples, if necessary
-------
7012-13
o Unattended sample collection
o Analysis of samples from multiple sites with one analytical
system
o Collection of replicate samples for assessment of measurement
precision
With canister sampling, however, great care must be exercised in
selecting, cleaning, and handling the sample canister(s) and sampling
apparatus to avoid losses or contamination of the samples.
10.1 Canister Cleanup and Preparation
10.1.1 All canisters must be clean and free of any contaminant!
before sample collection.
10.1.2 Leak test all canisters by pressurizing them to approxi-
mately 30 psig [200 kP? (gauge)] with zero air. The
use of the canister cleaning system (see Figure 5) nay
be adequate for this task. Measure the final pressure
close the canister valve, then check the pressure after
24 hours. If leak tight, the pressure should not vary
more than +_ 2 psig over the 24-hour period. Note leak
check result on sampling data sheet, Figure 7.
10.1.3 Assemble a canister cleaning system, as illustrated in
Figure 5. Add cryogen to both the vacuum pump and zero
air supply traps. Connect the canister(s) to the mam-
fold. Open the vent shut off valve and the canister
valve(s) to release any remaining pressure in the cam;
ter. Now close the vent shut off valve and open the
vacuum shut off valve. Start the vacuum pump and evaci
the canister(s) to <_ 5.0 mm Hg (for at least one hour)
[Note: On a daily basis or more often if necessary, bl<
out the cryogenic traps with zero air to remove any
trapped water from previous canister cleaning cycles.]
10.1.4 Close the vacuum and vacuum gauge shut off valves and
open the zero air shut off valve to pressurize trte can
ter(s) with moist zero air to approximately 30 psig [2
kPa (gauge)]. If a zero gas generator system is jsed,
-------
T012-14
the flow rate may need to be limited to maintain the
zero air quality.
10.1.5 Close the zero .hut off valve and allow canisters) to
vent down to atmospheric pressure tnrougn the vent shut
off valve. Close the vent shut off valve. Rep - -teps
10.1.3 through 10.1.5 two additional times for total of
three (3) evacuation/pressurization cycles for each set of
canisters.
10.1.6 As a "blank" check of the canister(s) and cleanup proce-
dure, analyze the final zero-air fill of 100% of the
canisters until the cleanup systan and canisters are
proven reliable. The check can then be reduced to a
lower percentage of canisters. Any nster that does
not test clean (compared to direct . jlysis of humidified
zero air of less than 0.02 ppmC) should not be utilized.
10.1.7 The canister is then re-evacuated to <_ 5.0 mm Hg, using
the canister cleaning system, and remains in this con-
dition until use. Close the canister valve, remove the
canister from the canister cleaning system and ci.
canister connection with a stainless steel fitting. The
canister is now ready for collection of an air sample.
Attach an identification tag to the neck of each
canister for field notes and chain-of-custody purposes.
10.2 Collection of Integrated Whole-Air Samples
10.2.1 Assemble the sampling apparatus as shown in Figure 2.
The connectl -3 lines between the sample pump and the
canister(s) should be as short as possible to minimize
their volume. A second canister is used when a duplicate
sample is desired for quality assurance (QA) purposes
(see Section 12.2.4). The small auxiliary vacuum pump
purges the inlet manifold or lines with a flow of
several L/min to minimize the sample residence time.
The larger metal bellows pump takes a small portion of
this sample to fill and pressurize the sample canister(s)
Both pumps should be shock-mounted to minimize viQration.
Prior to field use, each sampling system should be leak
-------
7012-15
tested. The outlet side of the metal bellows pump can
be checked for leaks by attaching the 0-30 psig pressure
gauge to the canister(s) inlet via connecting tubing and
pressurizing to 2 atmospheres or approximately 29.4 psig.
If pump and connecting lines are leak free pressure should
remain at ^2 psig for 15 minutes. To check the inlet
side, plug the sample inlet and insure that there is no
flow at the outlet of the pump.
10.2.2 Calculate the flow rate needed so that the canister(s)
are pressurized to approximately one atmosphere above
ambient pressure (2 atmospheres absolute pressure)
over the desired sample period, utilizing the following
equation:
(T)(60)
where:
F » flow rate (cm3/min)
P » final canister pressure (atmospheres absolute)
» (Pg/Pa) + 1
V - volume of the canister (cm3)
N * number of canisters connected together for
simultaneous sample collection
T - sample period (hours)
Pg = gauge pressure in canister, psig (kPa)
Pa « standard atmospheric pressure, 14.7 psig (101 k
For example, if one 6-L canister is to be filled to 2
atmospheres absolute pressure (14.7 psig) in 3 hours,
the flow rate would be calculated as follows:
F « 2 x 6000 x 1 « 67 cm3/min
3 x 60
10.2.3 Select a critical orifice or hypodermic needle suitable
to maintain a'substantially constant flow at the cal-
culated flow rate into the canister(s) over the desired
sample period. A 30-gauge hypodermic needle, 2.5 cm
-------
T012-16
long, provides a flow of approximately 65 on^/min with
the Metal Bellows Model MBV-151 pump (see Figure 4).
Such a needle will maintain approximately constant flow
up to a canister pressure of aoout 10-psig (71 kPa),
after which the flow drops with increasing pressure.
At 14.7 psig (2 atmospheres absolute pressure), the
flow is about 10% below the original flow.
'10.2.4 Assemble the 2.0 micron stainless steel in-line particu-
late filter and position it in front of the critical
orifice. A suggested filter-hypodermic needle assembly
can be fabricated as illustrated in Figure 4.
10.2.5 Check the sampling system for contamination by filling
two evacuated, cleaned canister(s) (See Section 10.1)
with humidified zero air througn the sampling system.
Analyze the canisters according to Section 11.4. The
sampling system is free of contamination if the canisters
contain less than 0.02 ppmC hydrocs-sons, similar to
that of humidified zero air.
10.2.6 During the system contamination check procedure, check
the critical orifice flow rate on the sampling system
to insure that sample flow rate remains relatively con-
stant (+101) up to about 2 atmospheres absolute pressure
(101 kPa). Note: A drop in the flow rate may occur
near the end of the sampling period as the canister
pressure approaches two atmospheres.
10.2.7 Reassemble the sampling system. If the inlet sample line
is longer than 3 meters, install an auxiliary pump to
ventilate the sample Hne, as illustrated in Figure 2.
10.2.8 Verify that the timer, pump(s) and solenoid valve are
connected and operating properly.
10.2.9 Verify that the timer is correctly set for the desired
sample period, and that the solenoid valve is closed.
10.2.10 Connep't a cleaned, evacuated camster(s) (Section 10.1)
to the non-contaminated sampling system, by way of the
solenoid valve, for sample collection.
-------
T012-17
10.2.11 Make sure the solenoid valve is closed. Open the
canister valve(s). Temporarily connect a small rotamet
to the sample inlet to verify that there is no flow.
Note: Flow detection would indicate a leaking (or open
solenoid valve. Remove the rotameter after leak de-
tection procedure.
10.2.12 Fill out the necessary information on the Field Data
Sheet (Figure 7).
10.2.13 Set the automatic timer to start and stop the pump
or pumps to open and close the solenoid valve at the
appropriate time for the intended sample period.
Sampling will begin at the pre-determined time.
10.2.14 After the sample period, close the canister valve(s) a
disconnect the canister(s) from the sampling system.
Connect a pressure gauge to the canister(s) and briefl
open and close the canister valve. Note the canister
pressure on the Field Data Sheet (see Figure 7). The
canister pressure should be approximately 2 atmosphere
absolute [1 atmosphere or 101 kPa (gauge)]. Note: I'
the canister pressure is not approximately 2 atmosphei
absolute (14.7 psig), determine and correct the cause
fore next sample. Re-cap canister valve.
10.2.15 Fill out the identification tag on the sample caniste
and complete the Field Data Sheet as necessary. Note
any activities or special conditions in the area (rai
smoke, etc.) that may affect the sample contents on t
sampling data sheet.
10.2.16 Return the canister(s) to the analytical system for
analysis.
11. Sample Analysis
11.1 Analytical System Leak Check
11.1.1 Before sample analysis, the analytical system is ass
(see Figure 1) and leak checked.
-------
T012-18
11.1.2 To leak check the analytical system, place the six-port
gas valve in the trapping position. Disconnect and cap
the absolute pressure gauge. Insert a pressure gauge
capaole of recording up to 60 psig at the vacuum valve
outlet.
11.1.3 Attach a valve and a zero air supply to the sample
inlet port. Pressurize the system to about 50 psig
(350 kPa) and close the valve.
11.1.4 Wait approximately 3 hrs. and re-check pressure. If
the pressure did not vary more than +_ 2 psig, the
system is con dered lean f.^nt.
11.1.5 If the system is leak free, de-pressurize and reconnect
absolute pressure gauge.
11.1.6 The analytical system leak check procedure needs to
be performec :uring the system checkoi. , during a series
of analysis or if leaks are suspected. This should b
part of the user-prepared SOP manual (see Section 12..
11.2 Sample Volume Determination
11.2.1 The vacuum reservoir and absolute pressure gauge are
used to meter a precisely repeatable volume of sample
air through the cryogemcally- -oled • ap, as follows:
With the sample valve closed and the vacuum valve ooen,
the reservoir is first evacuated with the vacuum pump
to a predetermined pressure (e.g., 100 mm Hg). Then
the vacuum valve is closed and the sample valve is
opened to allow sample air to be drawn through the
cryogenic trap and into the evacuated reservoir until
a second predttermined reservoir pressure is reached
(e.g., 300 mm Hg). The (fixed) volume of air thus
sampled is determined by the pressure rise
-------
T012-19
11.2.2 The sample volume can be calculated by:
V = ( AP)(Vr)
5 (PS)
where:
V$ = volume of air sampled (standard on^)
AP = pressure difference measured by gauge (mm Hg)
Vr = volume of vacuum reservoir (on^)
usually 1 L
Ps » standard pressure (760 mm Hg)
For example, with a vacuum reservoir of 1000 cm? and a
pressure change of 200 mm Hg (100 to 300 mm Hg), the volum
sampled would be 263 cm^. [Note: Typical sample volume
using this procedure is between 200-300 cra^.]
11.2.3 The sample volume determination need only be performed one
during the system check-out and shall be part of the
user-prepared SOP Manual (see Section 12.1).
11.3 Analytical System Dynamic Calibration
11.3.1 Before sample analysis, a complete dynamic calibration
of the analytical system should be carried out at five or
more concentrations on each range to define the calibra-
tion curve. This should be carried out initially and
periodically thereafter [may be done only once during
a series of analyses]. This should be part of the
user-prepared SOP Manual (See Section 12.1). The
calibration should be verified with two or three-point
calibration checks (including zero) each day the analyt-
ical system is used to analyze samples.
11.3.2 Concentration standards of propane are used to calibrate
the analytical system. Propane calibration standards
may be obtained directly from low concentration cylinder
standards or by dilution of high concentration cylinder
-------
T012-20
standards with zero air (see Section 8.3). Dilution
flow rates must be measured accurately, and the comoined
gas straam must be mixed thoroughly for successful cali-
bration of the analyzer. Calibration standards snould
be sampled directly from a vented manifold or tee. Note:
Remember that a propane NMOC concentration in ppmC is
three times the volumetric concentration in ppm.
11.3.3 Select one or more combinations of the fol" ing parameters
to provide the desired range or ranges (e.g., 0-1.0 ppmC
or 0-5.0 ppmC): F 0 attsnuator setting, output voltage
setting, integrator resolution (if applicable), and sample
volume. Each individual range should be calibrated sep-
arately and should have a separate calibration curve.
Note: Modern GC integrators may provide automatic >.nging
such that sev -il decades of concentration y be wered
in a single rai.je. The user-prepared SOP manual should
address variations applicable to a specific system design
(see Section 12.1).
11.3.4 Analyze each calibration standard three times according
to the procedure in Section 11.4. Insure that flow
rates, pressure gauge irt • stop readings, initial
cryogen liquid level in the ar, timing, heating, inte-
grator settings, and other variables are the same as
those that will be used during analysis of amoient
samples. Typical flow rates for the gases are: hydrogen,
30 cm^/minute; helium carrier, 30 cm^/minute; burner
air, 400 cm3/minute.
11.3.5 Average the three analyses for each concentration standard
and plot the calibration curve(s) as average integrated peai
area reading versus concentration in ppmC. The relative
standard deviation for the three analyses should be less
-------
T012-21
than 3; (except for zero concentration). Linearity should
be expected; points that appear to deviate abnormally
should be repeated. Resoonse has been shown to be linear
over a wide range (0-10,000 ppoC). If nonlinearity is
observed, an effort should be made to identify and correci
the problem. If the problem cannot be corrected, addi-
tional points in the nonlinear region may be needed to
define the calibration curve adequately.
11.4 Analysis Procedure
11.4.1 Insure the analytical system has been assemoled properly,
leaked checked, and properly calibrated through a dynamic
standard calibration. Light the FID detector and allow t
stabilize.
11.4.2 Check and adjust the helium carrier pressure to provide 1
correct carrier flow rate for the system. Helium is use<
to purge residual air and methane from the trap at the
end of the sampling phase and to carry the re-volatilize
NMOC from the trap into the FID. A single-stage auxilia
regulator between the cylinder and the analyzer may not
be necessary, but is recommended to regulate the helium
pressure better than the multistage cylinder regulator.
When an auxiliary regulator is used, the secondary stage
of the two-stage regulator must be set at a pressure
higher than the pressure setting of the single-stage
regulator. Also check the FID hydrogen and burner air
flow rates (see 11.3.4).
LI.4.3 Close the sample valve and open the vacuum valve to
evacuate the vacuum reservoir to a specific predetermin
value (e.g., 100 mm Hg).
11.4.4 With the trap at room temperature, place the six-port
valve in the inject position.
11.4.5 Open the sample valve and adjust the sample flow rate
needle valve for an appropriate trap flow of 50-100
cm3/min. Note: The flow will be lower later, when the
trap is cold.
-------
T012-22
11.4.6 Check the sample canister pressure before attaching it
to the analytical system and record on Field Data
Sheet (see Figure 7). Connect the sample canister or
direct sample inlet to the six-port valv«, as shown in
Figure 1. For a canister, either the canister valve
or an optional fine needle valve installed between the
canister and the vent is used to adjust the canister
flow rate to a value slightly higher than the trap
flow rate set by the sample flow rate needle valve.
The excess flow exhausts through the vent, which
assures that the sample air flowing through the trap
is at atmospheric pressure. The vent is connected to
a flow indicator such as a rotameter as an indication of
vent flow to assist in adjusting the flow control
valve. Open the canister valve and adjust the canister
valve or the sample flow needle valve to obtain a
moderate vent flow as indicdted by the rctanetar. The
sample flow rate will be lower (and hence the vent
flow rate will be higher) when the the trap is cold.
11.4.7 Close the sample valve and open the vacuum valve (if
t a1 •'y op * to evacuate the vacuum reservoir.
h t ,ix-p-, . vai«e in the inject position and the
dcuum valve open, open the sampie valve for 2-3 minutes
[with both valves open, the pressure reading won't
change] to flush and condition the inlet lines.
11.4.8 Close the sample valve and evacuate the reservoir to
the predetermined sample starting pressure (typically
100 mm Hg) as indicated by the absolute pressure gauge.
11.4.9 Switch the six-port valve to the sample position.
11.4.10 Submerge the trap in the cryogen. Allow a few minutes
for the trap to cool completely (indicated when the
cryogen stops boiling). Add cryogen to the initial
level used during system dynamic calibration. The level
of the cryogenic liquid should remain constant with
respect to the trap and should completely cover the
beaded portion of the trap.
-------
T012-23
11.4.11 Open the sample valve.and observe the increasing pressure
on the pressure gauge. When it reaches the specific pre-
determined pressure (typically 300 mm Hg) representative
of the desired sample volume (Section 11.2), close the
sample valve.
11.4.12 Add a little cryogen or elevate the Oewar to raise the
liquid level to a point slightly higher (3-15 mm) than
the initial level at the beginning of the trapping.
Note: This insures that organics do not bleed from the
trap and are counted as part of the NMOC peak(s).
11.4.13 Switch the 6-port valve to the inject position, keeping
the cryogenic liquid on the trap until the methane and
upset peaks have deminished (10-20 seconds). Now close
the canister valve to conserve the remaining sample in
the canister.
11.4.14 Start the integrator and remove the Dewar flask containir
the cryogenic liquid from the trap.
11.4.15 Close the GC oven door and allow the GC oven (or alter-
nate trap heating system) to heat the trap at a predeter-
mined rate (typically, 30°C/m1n) to 90°. Heating the tr,
volatilizes the concentrated NHOC such that the FID pro-
duces integrated peaks. A uniform trap t'snperature rise
rate (above 0°C) helps to reduce variability and facili-
tates more accurate correction for the moisture-shifted
baseline. With a chromatograph oven to heat the trap,
the following parameters have been found to be acceptabl
initial temperature, 30°C; initial time, 0.20 minutes
(following start of the integrator); heat rate, 30°/mini.
final temperature, 90°C.
11.4.16 Use the same heating process and temperatures for both
calibration and sample analysis. Heating the trap too
quickly may cause an initial negative response that
could hamper accurate integration. Some initial exper-
imentation may be necessary to determine the optimal
heating procedure for each system. Once established,
the procedure should be consistent for each analysis
as outlined in the user-prepared SOP Manual.
-------
T012-24
11.4.17 Continue the integration (generally, in the range of
1-2 minutes is adequate) only long enougn to include
all of the organic compound peans and to establish the
end point FID baseline, as illustrated in Figure 8.
The integrator should be capable of marking the begin-
ning and ending of peaks, constructing the appropriate
operational baseline between the start and end of the
integration period, and calculating the resulting
corrected peak area. This ability is necessary because
the moisture in the sample, which is also concentrated
in the trap, will cause a slight positive baseline
shift. This baseline shift starts as the trap warms
and continues until all of the moisture is swept from
the trap, at which time the baselin* "turns to its
normal level. The shift always continues longer than
the ambient organic peak(s). The integrator should be
programmed to correct ~ir this shifted udieline u/
ending the integrati it a pc;nt after the last NMOC
peak and prior to the return of the shifted baseline to
normal (see Figure 8) so that the calculated operational
baseline effectively compensates for the water-shifted
baseline. Electronic integrators either do this auto-
matically or they should be programmed to make this cor-
rection. Alternatively, analyses of humidified zero air
prior to sample analyses should be performed to determine
the water envelope and the proper blank value for
correcting the ambient air concentration measurements
accordingly. Heating and flushing of the trap should
continue after the integration period has ended to
insure all water has been removed to prevent buildup of
water in the trap. Therefore, be sure tnat the 6-port
valve remains in the inject position until all moisture
has purged from the trap (3 minutes or longer).
-------
T012-25
11.4.18 Use the dynamic calibration curve (see Section 11.3)
to convert the Integrated peak area reading into
concentration units (ppmC). Note that the NMOC peak
shape may not be precisely reproducible due to vari-
ations in heating the trap, but the total NMOC peak
area should be reproducible.
11.4.19 Analyze each canister sample at least twice and report
the average NMOC concentration. Problems during an
analysis occasionally will cause erratic or incon-
sistent results. If the first two analyses do not
agree within+_ 51 relative standard deviation (RSO),
additional analyses should be made to identify in-
accurate measurements and produce a more accurate
average (see also Section 12.2.).
12. Performance Criteria and Quality Assurance
This section summarizes required quality assurance measures and pro-
vides guidance concerning performance criteria that should be achieved
within each laboratory.
12.1 Standard Operating Procedures (SOPs)
12.1.1 Users should generate SOPs describing and documenting
the following activities in their laboratory: (1)
assembly, calibration, leak check, and operation of the
specific sampling system and equipment used; (2) prepara-
tion, storage, shipment, and handling of samples; (3)
assemoly, leak-check, calibration, and operation of the
analytical system, addressing the specific equipment use
(4) canister storage and cleaning; and (5) all aspects o
of data recording and processing, including lists of
computer hardware and software used.
12.1.2 SOPs should provide specific stepwise instructions and
should be readily available to, and understood by, the
laboratory personnel conducting the work.
-------
T012-25
12.2 Method Sensitivity, Accuracy, "-ecision and Linearity
12.2.1 The sensitivity and precision of the method is proportional
to the sample volume. uowever. ice formation in the
trap may reduce or s~ .he svple :* during trapping
if the sample volume ,jeds .0 cm-. Sample volumes
below about 100-150 c...- may cause increased measurement
variability due to dead volume in lines and valves. For
most typica ambient NMOC concentrations, sample voi -as
in the range of 200-400 cm^ appear to be appropriate.
If a response peak obtained with a 400 on3 sample is
off scale or exceeds the calibration range, a second
analysis can be carr* • out with a smaller volume. The
actual sample volume cd need not be accurately known
if it is precisely repeatable during both calibration
and analysis. Similarly, the actual volume of the
vacuum reservoir need not be accurately known. But the
reservoir volume should be matched to the pressure
range and resolution of the absolute pressure gauge so
that the measurement of the pressure change in the reser-
voir, hence the sample volume, is repeatable within II.
A 1000 cm^ vacuum reservoir and a pressure change of
200 mm Hg, measured with the specified pressure gauge,
have provided a sampling precision of _+ 1.31 cm^. A
smaller volume reservoir may be used with a greater
pressure change to accommodate aosolute pressure gauges
with lower resolution, and vice versa.
12.2.2 Some FID detector systems associated with laboratory
chromatographs may have autoranging. Others may
provide attenuator control and internal full-scale
output voltage selectors. An appropriate combination
should be chosen so that an adequate output level for
accurate integration is obtained down to the detection
limit; however, the electrometer or Integrator must not
be driven into saturation at the upper end of the
calibration. Saturation of the electrometer may be
indicated by flattening of the calibration curve at
-------
T012-27
high concentrations. Additional adjustments of range
and sensitivity can be provided by adjusting the sample
volume used, as discussed in Section 12.2.1.
12.2.3 System linearity has been documented (6) from 0 to 10,000
••*
ppbC.
12.2.4 Some organic compounds contained in ambient air are
"sticky" and may require repeated analyses before they
fully appear 1n the FID output. Also, some adjustment
may have to be made in the integrator off time setting
to accommodate compounds that reach the FID late in the
analysis cycle. Similarly, "sticky" compounds from
ambient samples or from contaminated propane standards
may temporarily contaminate the analytical system and
can affect subsequent analyses. Such temporary contam-
ination can usually be removed by repeated analyses of
humidified zero air.
12.2.5 Simultaneous collection of duplicate samples decreases
the possibility of lost measurement data from samples
lost due to leakage or contamination 1n either of the
canisters. Two (or more) canisters can be filled simul-
taneously by connecting them in parallel (see Figure 2(a))
and selecting an appropriate flow rate to accommodate
the number of canisters (Section 10.2.2). Duplicate (or
replicate) samples also allow assessment of measurement
precision based on the differences between duplicate samp
(or the standard deviations among replicate samples).
13. Method Modification
13.1 Sample Metering System
13.1.1 Although the vacuum reservoir and absolute pressure gauge
technique for metering the sample volume during analysis
efficient and convenient, other techniques should work al
13.1.2 A constant sample flow could be established with a vacuun
pump and a critical orifice, with the six-port valve beii
switched to the sample position for a measured time peri<
-------
T012-28
A gas volume meter, such as a wet test meter, could
also be used to measure the total volume of sample air
drawn through the trap. These alternative techniques
should be tested and evaluated as part of-a user-prepared
SOP manual.
13.2 FID Detector System
13.2.1 A variety of FID detector systems should be adaotable to
the method.
13.2.2 The specific flow rates and necessary modifications for
the helium carrier for any alternative FID instrument
should be evaluated prior to use as part of the user-
prepared SOP manual.
13.3 Range
13.3.1 It may be possible to increase the sensitivity of the
method by increasing the sample volume. However,
limitations may arise such as plugging or tne trap oy ice.
13.3.2 Any attempt to increase sensitivity should be evaluated
as part of the user-prepared SOP manual.
13.4 Sub-Atmospheric Pressure Canister Sampling
13.4.1 Collection and analysis of canister air samples at suo-
atmospheric pressure is also possible with minor modifi-
cations to the sampling and analytical procedures.
13.4.2 Method TO-14, "Integrated Canister Sampling for Selective
Organics: Pressurized and Sub-atmospheric Collection
Mechanism," addresses sub-atmospheric pressure canister
sampling. Additional information can be found in the
literature (11-17).
-------
T012-29
1. Uses. Limitations, and Technical Basis of Procedures for Quantifying
ReUtiqnsmps Between Photochemical Oxidants and Precursors.. EPA-
450/2-77-21a, U.S. Environmental Protection Agency, Research Triangle
Park, NC, Novemoer 1977.
2. Guidance for Collection of Ambient Non-Methane Organic Compound
(NMOC) Data for Use in 1982 Ozone SIP Development, £PA-450/4-80-011.
U.S. Environmental Protection Agency, Researcn Triangle Park, NC,
June 1980.
3. H. B. Singh, Guidance for the Collection and Use of AmDie"t Hydrocarbons
Species Data in Development of Ozone Control Strategies, EPA-45Q/480-008.
U.S. Environmental Protection Agency. Research Triangle Park, NC,
April 1980.
4. R. M. Riggin, Technical Assistance Document for Samp)ing_ana' Analysis
of Toxic QrganTcTbmpounds in Ambient Air, EPA-6QU/483-OZ7, U.S.
Environmental Protection Agency, Researcn Triangle Park, NC, 1983.
5. M. J. Jackson, e^^U, Technical Assistance Document for Assembly and
Operation of the Suggested Preconcentration Direct Flame lonization ~
Detection (PDFID) Analytical System, publication scheduled for late
1987; currently available in draft form from the Qualilty Assurance
Division, MD-77, U.S. Environmental Protection Agency, Research
Triangle Park, NC 27711.
6. R. K. M. Jayanty, et.aU, Laboratory Evaluation of Non-Methane Organic
Carbon Determination in Ambient Air by Cryogenic Preconcentration and
Flame lonization Detection. EPA-60Q/54-82-019, U.S. Evironmental Protec-
tion Agency, Research Triangle Park, NC, July 1982.
7. R. D. Cox, el.aj_., "Determination of Low Levels of Total Non-Methane
Hydrocarbon Content in Ambient Air", Environ. Sci. Technol.. _16_ U):57,
1982.
8. F. F. McElroy, et. aK, A Cryogenic Preconcentration - Direct FID (PDFID)
Method for Measurement of NMOC in the Ambient Air. EPA-600/4-85-063,
U.S. Environmental Protection Agency, Research Triangle Park, NC,
August 1985.
9. F. W. Sexton, et_ aU, A Comparative Evaluation erf Seven Automated
Ambient Non-Methane Organic Compound Analyzers, EPA-600/5482-Q46,
U.S. Environmental Protection Agency, Research Triangle Park, NC,
August 1982.
10. H. G. Richter, Analysis of Organic Compound Data Gathered During 1980
in Northeast Corridor Cities, EPA-450/4-83-017, U.S. Environmental
Protection Agency, Researcn Triangle Park, NC, April 1983.
-------
T012-30
11. Cox, R. D. "Sample Collection and Analytical Techniques for Volatile
Organics in Air," presented at APCA Speci-lity Conference, Chicago, II,
March 22-24, 1983.
12. Rasmussen, R. A. and Khalil, M.A.K. " Atmosp- ric Halocarbons:
Measurements and Analyses of Selected Trace cases," Proc. NATO AS I on
Atmospheric Ozone, 1980, 209-231.
13. Oliver, K. D., Pleil J.D. and McClenny, W.A. "Sample Intergrity of
Trace Level Volatile Or- lie Compounds in Amb: :nt Air Stored in
"SUMMA«" Polished •* nir s," accepted for puc i cation in Atmospheric
Environment as of .nus 1986. Draft available from W. A. McClenny,
MD-44, EMSL, EPA, Researcn Triangle Park, NC 27711.
14. McClenny, W. A. Pleil J.D. Holdren, J.W.; and Smith, R.N.; 1984.
" Automated Cryogenic Preconcentration and Gas Chromatographic
Determination of Volatile Organic Compounds," Anal. Chem. 56:2947.
15. Pleil, J. 3. and Oliver. K. D., 1985, "Evaluation of Various Config-
uratic- :f Nafion Or -; Water Remova1 from Air Samples Prior to
Gas C. .-atographic i-. /sis". EPA Contract No. 68-02-4035.
16. Olive: >. D.; Pleil, id McClenny, W. A.; 1986. "Sample Integrity
of Trace Level Volatile Organic Compounds in Ambient Air Stored in
Summa* Polished Canisters," Atmospheric Environ. 20:1403.
17. Oliver, K. D. Pleil, J. D., 1985, "Automated Cryogenic Sampling and
Gas Chromatographic Analysis of Ambient Vapor-Phase Organic Compounds:
Procedures and Comparison Tests," EPA Contract No. 68-02-4035,
Research Triangle Park, NC, Northrop Services, Inc. - Environmental
Sciences.
-------
T012-31
ABSOLUTE
PRESSURE GAUGE
PRESSURE
REGULATOR
VACUUM
VALVE
VACUUM
PUMP
VEWT
PBESSURIZED (EXCESS)
CANISTER
SAMPLE
CANISTER
VALVE
CANSTTER
(OPTIONAL FINE
NEEDLE VALVE)
DIRECT AIR SAMPLING
/>—•»
POTAMETER
l^fTEGRATOR
RECORDER
OEWAR
FLASK
GLASS
BEADS
CRYOGENIC
TRAP COOLER
(LIQUID ARGON)
PRESSURE
GAS REGULATOR
PURIFIER
FIGURE 1. SCHEMATIC OF ANALYTICAL SYSTEM FOR
NMOC—TWO SAMPLING MODES
-------
roiz-32
SAMPLE
IN
TIMER
AUXILIARY
VACUUM
PUMP
SOLENOID
VALVE
METAL
BELLOWS
PUMP
PRESSURE
GAUGE
CANISTER(S)
FIGURE 2. SAMPLE SYSTEM FOR AUTOMATIC COLLECTION
OF 3-HOUR INTEGRATED AIR SAMPLES
-------
T012-33
TIMER
SWITCH
«i
100K
RED
it?
115 VAC
40nfd, 450 V DC
R2 100K DI
BLACK
Q 40utd,450VDC 07
WHTTE
Ci v* C| - 40 ut 490 VOC I
Oi M 07 . WOO P*t. U A (*CA. «C i
• TVA 1TI1 or«
UAGNCLATCX
SOLZNOIO
VALVE
FIGURE 3[a]. SIMPLE CIRCUIT FOR OPERATING MAGNELATCH VALVE
TIMER
SWITCH
115 VAC
e>«9* n*aM» • no mv u A IMCA. IK not «r n» aim
Ch •<• Oi • 1000 MV. tl A (NCA. IK JOH «r in i i n |
• »00 U. 130 VOC Itm^a At^» TVA 1«t «r mf**lti*
t C) • »«A 400 WC mi »I»I>H ••••w A«M» TWMl 1MI «r i
oxMcw.«• — ****• *—— —- •—n-i rrr i. •• m> ••
Oi
RED
<**
c
(PU
b)
AC
8MOGE
AC
12-TK Z7K
•^
^200uf S
- 200 von
CflUMMBMn
/! '
/
7
^ BLACK
i
2
\( WMfTS
^
MAONELATCH
SOLENOID
VALVE
20 ut
400 V«t
FIGURE 3[b]. IMPROVED CIRCUIT DESIGNED TO HANDLE POWER INTERRUPTIONS
FIGURE 3. ELECTRICAL PULSE CIRCUITS FOR DRIVING
SKINNER MAGNELATCH SOLENOID VALVE
WITH A MECHANICAL TIMER
-------
T012-34
T SERIES COMPACT, INLINE FILTER
W/2 ,im SS SINTERED ELEMENT
FEMALE CONNECTOR. 0.25 in O.D. TUBE TO
0.25 in FEMALE NPT
HEX NIPPLE. 0.25 in MALE NPT BOTH ENDS
30 GAUGE x 1.0 in LONG HYPODERMIC
NEEDLE (ORIFICE)
FEMALE CONNECTOR, 0 " in O.D. TUBE T
0.25 in FEMALE Hi T
THERMOQREEN LBI 6 mm (0.25 in)
SEPTUM (LOW BLEED)
0.25 in PORT CONNECTOR W/TWO 0.25 in NUTS
FIGURE 4. FILTER AND HYPODERMIC NEEDLE
ASSEMBLY FOR SAMPLE INLE~ FLOW
CONTROL
-------
T012-35
ZERO AIR
SUPPLY
3-PORT
GAS
VALVE
VENT VALVE
CHECK VALVE
CRYOGENIC
/TRAP
VACUUM VACUUM PUMP
PUMP SHUT OFF VALVE VENT VALVE
VENT SHUT OFF
VALVE
ZERO AIR
SUPPLY
CRYOGENIC
TRAP
VENT SHUT OFF
VALVE
HUMIDIFIER
— PRESSURE
GAUGE
VACUUM SHUT OFF
VALVE
VENT
&
ZERO SHUT OFF
VALVE
VACUUM
GAUGE
VACUUM GAUGE
SHUT OFF VALVE
FLOW
(CONTROL
.VALVE
VENT SHUT OFF
VALVE
A
A
MANIFOLD
Jjj CANISTER VALVE
X"^ "Si
SAMPLE CANISTERS
FIGURE 5. CANISTER CLEANING SYSTEM
-------
T012-36
TUBE LENGTH: -30cm
O.D.: 0.32 cm
I.D.: 021 cm
CRYOGENIC LIQUID LEVEL1
60/80 MESH GLASS BEADS
t
•GLASS WOOL-
~13 cm
(TO FPT DEWAR)
FIGURE 6. CRYOGENIC SAMPLE TRAP DIMENSIONS
-------
PRESSURIZED CANISTER SAMPLING DATA SHEET
GENERAL INFORMATION:
PROJECT:
SITE:
LOCATION: ~^
MONITOR STATION NUMBER:
PUMP SERIAL NUMBER:
OPERATOR:
ORIFICE IDENTIFICATION:
FLOW RATE: ;
CALI BRATED~BTT~
LEAK CHECK
Pass
Fall
FIELD DATA:
Date
Canister
Serial
Number
Sample
Number
Sample Time
Start
Stop
Average Atmospheric Conditions
Temperature
Pressure
Relative Humidity
Canister pressure
Final, Laboratory
Comments
o
•-*
I
Date
title
Signature
-------
Toiz-r
NMOC
PEAK
LLI
to
c
c.
crj
LLI
CE
Q
START
INTEGRATION
END
INTEGRATION
CONTINUED HEATING
OF TRAP
WATER-SHIFTED
BASELINE
1
\
OPERATIONAL BASELINE
CONSTRUCTED BY INTEGRATOR
TO DETERMINE CORRECTED AREA
t
NORMAL BASELINE
TIME (MINUTES)
FIGURE 8. CONSTRUCTION OF OPERATIONAL BASELINE
AND CORRESPONDING CORRECTION OF
PEAK 1EA
-------
APPENDIX C
1992 NMOC MONITORING PROGRAM SITE DATA
-------
APPENDIX C
TABLE OF CONTENTS
Summary Results for Long Island, NY (LINY) C-2
Summary Results for Manhattan, NY (MNY) C-6
Summary Results for Newark, NJ (NWNJ) C-10
Summary Results for Plainfield, NJ (PLNJ) C-14
Summary Results for Raleigh, NC (R1NC) C-18
Summary Results for Salt Lake City, Utah (S2UT) C-22
Summary Results for Salt Lake City, Utah (S3UT) C-26
Summary Results for Winston Salem, NC (WSNC) C-30
C-i
-------
O
I
5.0
4.5
4.0-
3.5
O 3.0
Q.
d
O
O
,- 2.5
2.0-
1.5-
1.0-
160
Long Island, NY (LINY)
1992 NMOC Program (AIRS# 36-059-0005)
180
200
220
Julian Dfltp 1992
240
260
280
-------
TABLE C-1. SUMMARY OF THE 1992 NMOC DATA FOR LONG ISLAND, NY (LINY)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
26-Jun-ga
29-Jun-92
30-Jun-92
01-Jul-92
02-Jul-92
03-Jul-92
06-Jul-92
07-Jul-92
08-Jul-92
OS-Jul-92
08-Jul-92
09-Jul-92
10-Jul-92
13-Jul-92
13-Jul-92
13-Jul-92
14-Jul-92
15-Jul-92
16-Jul-92
17-Jul-92
20-Jul-92
20-Jul-92
21-Jul-92
22-Jul-92
23-Jul-92
23-Jul-92
23-Jul-92
24-Jul-92
27-Jul-92
27-Jul-92
28-Jul-92
29-vW-SC
Julian
Date
Sampled
178
181
182
183
184
185
188
189
190
190
190
191
192
195
195
195
196
197
198
199
202
202
203
204
205
205
205
206
209
209
210
211
Sample
ID
Number
1119
1114
1098
1096
1099
1163
1169
1153
1165
1166
1166
1218
1216
1207
1207
1208
1284
1285
1286
1355
1341
1341
1356
1389
1400
1401
1401
1469
1483
1483
1468
1548
Sample
Canister
Number
48
188
140
711
789
401
153
788
193
680
680
929
914
717
717
927
638
166
109
143
153
153
172
186
178
105
105
770
823
823
789
674
Sample
Pressure
(psig)
12.0
11.5
12.0
12.0
12.0
12.0
12.0
12.5
14.0
14.0
14.0
12.0
12.0
13.5
13.5
13.5
12.5
12.0
15.0
13.0
14.0
14.0
12.0
12.5
13.5
13.5
13.5
13.0
12.0
12.0
13.0
13.0
Analysis
Pressure
(psig)
14.0
13.0
14.0
14.0
14.0
12.0
10.0
13.0
14.0
14.0
14.0
12.0
13.0
14.0
14.0
14.0
13.0
13.0
12.0
12.0
14.0
14.0
12.0
13.0
14.0
14.0
14.0
14.0
12.0
12.0
14.0
14.0
Radian
Channel
A
D
A
C
B
C
C
D
C
C
C
B
A
D
D
D
C
D
D
C
C
C
D
D
C
C
C
D
D
D
C
A
Mean
NMOC
ppmC
0.536
0.829
0.223
0.502
0.129
0.590
0.318
0.092
0.573
0.403
0.589
0.204
0.395
0.205
0.284
0.276
0.193
0.264
1.168
0.098
0.518
0.584
0.487
0.098
0.122
0.059
0.083
0.088
0.192
0.183
0.102
0.592
C-3
-------
TABLE C-1. SUMMARY OF THE 1992 NMOC DATA FOR LONG ISLAND, NY (UNY)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
30-Jul-92
31-Jul-92
03-Aug-92
03-Aug-92
04-Aug-92
05-Aug-92
06-Aug-92
07-Aug-92
10-Aug-92
11-Aug-92
11-Aug-92
12-Aug-92
13-Aug-92
13-Aug-92
13-Aug-92
14-Aug-92
17-Aug-92
18-Aug-92
19-Aug-92
20-Aug-92
21-Aug-92
24-Aug-92
25-Aug-92
25-Aug-92
2S-Aug-92
27-Aug-92
28-Aug-92
31-Aug-92
01-Sep-92
02-Sep-92
03-Sep-92
04-Sep-92
Julian
Date
Sampled
212
213
216
216
217
218
219
220
223
224
224
225
226
226
226
227
230
231
232
233
234
237
238
238
239
240
241
244
245
246
247
248
Sample
ID
Number
1550
1549
1605
1607
1629
1665
1675
1734
1737
1760
1760
1807
1801
1801
1802
1865
1856
1911
1929
1998
2004
2008
2106
2107
2116
2114
2104
2197
2198
2199
2232
2237
Sample
Canister
Number
840
178
705
36
164
49
910
837
48
113
113
799
104
104
146
783
179
130
137
113
883
151
662
707
885
842
685
175
8
304
583
51
Sample
Pressure
(psig)
12.0
12.0
13.5
13.5
5.0
12.0
12.0
12.0
14.0
12.0
12.0
12.5
13.0
13.0
13.0
13.0
12.0
12.0
12.0
12.0
13.0
12.0
14.0
14.0
12.0
12.0
13.0
12.0
12.0
12.5
12.0
13.5
Analysis
Pressure
(psig)
13.0
13.0
14.0
14.0
5.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0
13.0
14.0
14.0
13.0
15.0
15.0
13.0
13.0
14.0
14.0
14.0
15.0
15.0
16.0
Radian
Channel
D
C
D
D
B
B
C
B
A
C
C
A
D
D
C
D
D
B
A
C
D
D
D
B
D
C
C
C
D
D
D
C
Mean
NMOC
ppmC
0.164
0.168
0.146
0.129
0.837
0.178
0.356
0.556
0.340
0.250
0.284
0.273
0.155
0.161
0.110
0.119
0.172
0.174
0.396
0.240
0.359
0.752
0.727
0.699
0.399
0.471
0.138
0.227
0.167
0.176
0.119
0.285
C-4
-------
TABLE C-1. SUMMARY OF THE 1992 NMOC DATA FOR LONG ISLAND, NY (LINY)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
04-Sep-92
04-Sep-92
08-Sep-92
09-Sep-92
10-Sep-92
11-Sep-92
15-Sep-92
16-Sep-92
16-Sep-92
17-Sep-92
IS-Sep-92
21-Sep-92
22-Sep-92
23-Sep-92
24-Sep-92
25-Sep-92
28-Sep-92
29-Sep-92
29-Sep-92
29-Sep-92
30-Sep-92
30-Sep-92
Julian
Date
Sampled
248
248
252
253
254
255
259
260
260
261
262
265
266
267
268
269
272
273
273
273
274
274
Sample
ID
Number
2237
2238
2297
2300
2299
2325
2356
2392
2396
2405
2437
2439
2456
2498
2503
2570
2578
2567
2567
2575
2613
2614
Sample
Canister
Number
51
707
872
627
788
762
680
706
853
11
983
100
807
815
84
889
569
822
822
137
102
761
Sample
Pressure
(psig)
13.5
13.5
12.0
13.0
13.0
13.0
13.0
14.0
14.0
12.0
13.0
12.0
12.0
12.0
12.0
13.0
12.0
13.0
13.0
13.0
13.5
13.5
Analysis
Pressure
(psig)
16.0
16.0
14.0
15.0
15.0
15.0
15.0
16.0
16.0
14.0
14.0
15.0
15.0
12.0
12.0
12.0
13.0
15.0
15.0
14.0
14.0
14.0
Radian
Channel
C
B
C
B
D
D
A
D
C
D
B
B
A
A
A
A
B
C
C
D
B
C
Mean
NMOC
ppmC
0.351
0.344
0.081
0.435
0.158
0.199
0.665
0.468
0.557
0.405
0.569
0.441
0.181
0.094
0.092
0.100
0.209
0.118
0.158
0.122
0.090
0.148
C-5
-------
0.0
New York, NY (MNY)
1992 NMOC Program (AIRS # 36-061-0010)
180
200
220
lulian Date*
240
260
280
-------
TABLE C-2. SUMMARY OF THE 1992 NMOC DATA FOR MANHATTEN, NY (MNY)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
29-Jun-92
3CXJun-92
01-Jul-92
01-Jul-92
02-Jul-92
08-Jul-92
OS-Jul-92
09-Jul-92
13-Jul-92
13-Jul-92
14-Jul-92
14-Jul-92
15-Jul-92
17-Jul-92
17-Jul-92
21-Jul-92
22-Jul-92
24-Jul-92
27-Jul-92
28-Jul-92
29-Jul-92
29-Jul-92
30-Jul-92
30-Jul-92
31-Jul-92
31-Jul-92
03-Aug-92
04-Aug-92
OS-Aug-92
06-Aug-92
06-Aug-92
Julian
Date
Sampled
181
182
183
183
184
190
190
191
195
195
196
196
197
199
199
203
204
206
209
210
211
211
212
212
213
213
216
217
218
219
219
Sample
ID
Number
1122
1101
1110
1110
1109
1178
1182
1203
1226
1227
1304
1304
1303
1322
1322
1372
1408
1434
1459
1470
1502
1502
1522
1522
1557
1558
1595
1623
1631
1712
1712
Sample
Canister
Number
704
921
107
107
649
772
165
656
-188
140
197
197
764
407
407
821
766
82
855
771
679
679
875
875
624
711
50
137
15
816
816
Sample
Pressure
(psig)
16.0
15.0
15.0
15.0
15.0
12.0
17.5
15.0
19.0
19.0
22.0
22.0
15.0
15.0
15.0
14.5
15.0
15.0
14.5
15.5
15.0
15.0
14.0
14.0
17.0
17.0
14.0
14.0
14.5
14.5
14.5
Analysis
Pressure
(psig)
14.0
15.0
16.0
16.0
16.0
12.0
17.0
16.0
19.0
19.0
22.0
22.0
15.0
15.0
15.0
15.0
15.0
15.0
14.0
16.0
16.0
16.0
15.0
15.0
17.0
17.0
15.0
14.0
16.0
16.0
16.0
Radian
Channel
D
A
D
D
C
A
B
D
B
B
D
D
A
C
C
D
C
B
D
C
D
D
C
C
B
A
C
D
D
D
D
Mean
NMOC
ppmC
0.619
0.396
0.602
0.647
0.128
1.120
0.628
0.626
0.495
0.509
0.316
0.257
0.517
0.162
0.154
0.346
0.175
0.983
0.359
0.167
0.358
0.382
0.349
0.255
0.676
0.596
0.376
0.290
0.227
0.562
0.581
07
-------
TABLE C-2. SUMMARY OF THE 1992 NMOC DATA FOR MANHATTEN, NY (MNY)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
07-Aug-92
10-Aug-92
1 1-Aug-92
12-Aug-92
14-Aug-92
14-Aug-92
17-Aug-92
18-Aug-92
20-Aug-92
20-Aug-92
21-Aug-92
24-Aug-92
26-Aug-92
26-Aug-92
27-Aug-92
28-Aug-92
31-Aug-92
01-Sep-92
02-S«p-92
03-Sep-92
09-Sep-92
09-Sep-92
11-S6D-92
11-Sep-92
11-Sep-92
14-Sep-92
15-Sep-92
16-Sep-92
16-Sep-92
17-Sep-92
18-Sep-92
Julian
Date
Sampled
220
223
224
225
227
227
230
231
233
233
234
237
239
239
240
241
244
245
246
247
253
253
255
255
255
258
259
260
260
261
262
Sample
ID
Number
1703
1736
1754
1779
1837
1837
1861
1879
1946
1946
1983
2001
2064
2064
2097
2121
2143
2161
2200
2257
2270
2271
2318
2318
2322
2334
2350
2373
2390
2416
2422
Sample
Canister
Number
902
889
872
50
626
626
697
50
843
843
921
121
782
782
670
4
301
154
171
974
662
853
105
105
708
815
130
183
720
623
800
Sample
Pressure
(psig)
15.0
14.0
14.5
14.5
15.0
15.0
15.0
14.5
14.5
14.5
15.0
15.0
21.0
21.0
20.0
11.0
11.0
12.0
11.5
11.0
16.0
16.0
19.0
19.0
18.5
12.0
12.0
17.0
9.0
12.0
12.0
Analysis
Pressure
(psig)
17.0
16.0
16.0
16.0
15.0
15.0
16.0
16.0
16.0
16.0
16.0
15.0
21.0
21.0
20.0
11.0
12.0
13.0
13.0
14.0
18.0
18.0
20.0
19.0
20.0
13.0
14.0
20.0
10.0
14.0
13.0
Radian
Channel
A
B
B
D
C
C
C
B
C
C
D
C
A
A
D
D
C
A
A
A
A
D
D
D
A
A
C
B
D
C
A
Mean
NMOC
pprnC
3.140
0.437
2.057
0.205
0.338
0.198
0.267
0.452
0.244
0.235
0.444
0.602
2.120
1.980
3.730
0.480
0.471
0.407
0.362
0.552
0.494
0.369
0.300
0.440
0.476
0.399
0.434
0.864
0.984
0.509
0.381
C-8
-------
TABLE C-2. SUMMARY OF THE 1992 NMOC DATA FOR MANHATTEN, NY (MNY)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
21-Sep-92
21-Sep-92
21-Sep-92
21-Sep-92
22-Sep-92
23-Sep-92
24-Sep-92
24-Sep-92
25-Sep-92
28-Sep-92
Julian
Date
Sampled
265
265
265
265
266
267
268
268
269
272
Sample
ID
Number
2440
2440
2441
2441
2454
2490
2506
2507
2524
2617
Sample
Canister
Number
2
2
79
79
723
130
36
659
51
983
Sample
Pressure
(psig)
16.0
16.0
16.0
16.0
12.0
11.5
16.5
16.5
11.0
12.0
Analysis
Pressure
(psig)
18.0
18.0
18.0
18.0
12.0
12.0
15.0
15.0
11.0
12.0
Radian
Channel
C
C
C
C
A
C
C
C
C
D
Mean
NMOC
ppmC
0.955
0.924
0.788
0.599
1.964
0.236
0.484
0.398
0.189
0.301
C-9
-------
n
h-'
o
0.0
160
Newark, NJ (NWNJ)
1992 NMOC Program (AIRS #34-013-0011)
180
200
220
240
260
280
:*^.-> rv^+« -i noo
-------
TABLE C-3. SUMMARY OF THE NMOC DATA FOR NEWARK. NJ (NWNJ)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
24-Jun-92
25-Jun-92
26-Jun-92
30-Jun-92
30-Jun-92
01-Jul-92
02-Jul-92
06-Jul-92
07-Jul-92
08-Jul-92
09-Jul-92
14-Jul-92
14-Jul-92
21-Jul-92
22-Jul-92
23-Jul-92
24-Jul-92
24-Jul-92
27-Jul-92
28-Jul-92
29-Jul-92
29-Jul-92
29-Jul-92
30-Jul-92
31-Jul-92
03-Aug-92
04-Aug-92
04-Aug-92
OS-Aug-92
06-AUQ-92
07-Aug-92
Julian
Date
Sampled
176
177
178
182
182
183
184
188
189
190
191
196
196
203
204
205
206
206
209
210
211
211
211
212
213
216
217
217
218
219
220
Sample
ID
Number
1051
1053
1064
1121
1121
1117
1130
1139
1177
1181
1217
1255
1255
1404
1395
1444
1445
1446
1494
1495
1553
1553
1554
1564
1569
1609
1637
1642
1647
1711
1709
Sample
Canister
Number
680
815
780
764
764
607
20
84
186
663
43
878
878
157
767
52
1
35
796
308
14
14
631
849
914
406
632
794
852
74
713
Sample
Pressure
(psig)
15.0
14.0
12.4
12.0
12.0
14.1
13.9
11.2
10.0
10.1
10.0
15.5
15.5
18.5
18.5
14.0
16.4
16.4
15.0
14.1
15.4
15.4
15.4
14.4
14.5
16.3
15.1
15.1
16.0
14.3
16.2
Analysis
Pressure
(p»g)
15.0
14.0
12.0
13.0
13.0
13.0
13.0
12.0
9.5
10.0
9.0
15.5
15.5
18.0
18.0
14.0
16.0
16.0
14.0
14.0
1.0
14.0
14.0
14.0
14.0
16.0
11.0
16.0
16.0
16.0
17.0
Radian
Channel
D
C
D
B
B
B
C
D
A
A
B
C
C
D
D
A
C
C
B
C
D
D
A
D
B
A
D
C
D
A
C
Mean
NMOC
ppmC
0.536
0.563
0.768
0.492
0.486
0.388
0.205
0.465
0.319
0.493
0.409
0.787
0.823
2.670
0.533
0.406
0.421
0.374
0.625
0.197
0.506
0.528
0.481
0.347
0.498
0.422
0.668
0.609
0.194
0.515
0.998
C-ll
-------
TABLE C-3. SUMMARY OF THE NMOC DATA FOR NEWARK, NJ (NWNJ)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
10-Aug-92
11-Aug-92
12-Aug-92
13-Aug-92
14-Aug-92
14-Aug-92
14-Aug-92
17-Aug-92
19-Aug-92
20-Aug-92
21-Aug-92
21-Aug-92
24-Aug-92
25-Aug-92
26-Aug-92
26-Aug-92
27-Aug-92
28-Aug-92
31-Aug-92
01-Sep-92
02-Sep-92
03-Sep-92
04-Sep-92
08-Sep-92
09-Sep-92
10-Sep-92
10-Sep-92
11-Sep-92
14-Sep-92
14-Sep-92
15-Sep-92
Julian
Date
Sampled
223
224
225
226
227
227
227
230
232
233
234
234
237
238
239
239
240
241
244
245
246
247
248
252
253
254
254
255
258
258
259
Sample
ID
Number
1799
1800
1820
1838
1854
1854
1855
1942
1943
1935
2012
2012
2075
2072
2063
2070
2095
2118
2187
2211
2213
2239
2243
2285
2317
2326
2327
2328
2366
2367
2397
Sample
Canister
Number
657
690
815
197
140
140
915
837
198
38
848
848
838
83
649
832
770
137
784
72
644
57
305
852
56
823
112
551
684
114
659
Sample
Pressure
(p»g)
15.8
15.4
15.0
10.0
15.8
15.8
15.8
16.2
14.1
14.0
14.1
14.1
14.4
15.4
16.2
16.2
15.8
14.0
17.2
15.0
15.9
14.3
15.0
18.0
14.1
15.8
15.8
17.0
20.1
20.1
19.9
Analysis
Pressure
(psiQ)
14.0
14.0
14.0
10.0
16.0
16.0
16.0
20.0
15.0
14.0
14.0
14.0
14.0
15.0
16.0
15.0
15.0
14.0
18.0
16.0
16.0
16.0
16.0
19.0
15.0
16.0
16.0
18.0
20.0
21.0
20.0
Radian
Channel
C
C
C
C
C
C
C
C
D
D
C
C
B
A
C
0
D
B
B
B
C
A
B
B
B
C
B
C
D
C
D
Mean
NMOC
ppmC
0.405
0.816
0.382
0.188
0.244
0.379
0.306
0.498
0.740
0.523
0.436
0.644
0.712
0.577
3.030
2.987
1.670
0.533
0.338
1.760
0.465
1.690
0.906
0.378
0.517
1.806
1.990
0.484
3.537
3.567
1.579
C-12
-------
TABLE C-3. SUMMARY OF THE NMOC DATA FOR NEWARK, NJ (NWNJ)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
16-Sep-92
22-Sep-92
23-Sep-92
28-Sep-92
29-Sep-92
29-Sep-92
29-Sep-92
29-Sep-92
30-Sep-92
Julian
Date
Sampled
260
266
267
272
273
273
273
273
274
Sample
ID
Number
2399
2491
2536
2551
2588
2588
2590
2590
2616
Sample
Canister
Number
889
39
184
33
114
114
8
8
905
Sample
Pressure
(psig)
21.0
14.9
15.0
14.3
16.0
16.0
16.0
16.0
20.6
Analysis
Pressure
(psig)
20.0
14.0
12.0
13.0
16.0
16.0
16.0
16.0
20.0
Radian
Channel
C
B
D
A
C
C
D
D
A
Mean
NMOC
ppmC
0.855
2.960
1.970
4.780
0.477
0.378
0.473
0.389
0.353
C-13
-------
Plainfield, NJ (PLNJ)
1992 NMOC Program (AIRS # 34-039-5001)
180
200
220
240
260
280
ooo
-------
TABLE C^t. SUMMARY OF THE 1992 NMOC DATA FOR PLAINFIELD, NJ (PLNJ)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
23-Jun-92
24-Jun-92
25-Jun-92
26-Jun-92
29-Jun-92
01-Jul-92
02-Jul-92
06-Jul-92
07-Jul-92
OS-Jul-92
09-Jul-92
10-Jul-92
13-Jul-92
14-Jul-92
15-Jul-92
15-Jul-92
IS-Jul-92
16-Jul-92
17-Jul-92
20-Jul-92
21-Jul-92
22-Jul-92
23-Jul-92
24-Jul-92
27-Jul-92
27-Jul-92
28-Jul-92
29-Jul-92
SO-Jul-92
31-Jul-92
03-Aug-92
03-*ufr®2
Julian
Date
Sampled
175
176
177
178
181
183
184
188
189
190
191
192
195
196
197
197
197
198
199
202
203
204
205
206
209
209
210
211
212
213
216
216
Sample
ID
Number
1048 v
1056
1063
1058
1060
1097
1116
1148
1168
1239
1236
1224
1235
1279
1275
1275
1276
1282
1340
1351
1393
1402
1463
1466
1464
1465
1531
1529
1525
1593
1585
1585
Sample
Canister
Number
148
686
648
100
928
151
77
56
707
97
762
837
796
649
130
130
921
8
104
929
724
164
171
129
140
28
889
154
782
. 799
704
704
Sample
Pressure
(psig)
13.5
13.0
13.0
12.2
15.1
12.0
12.2
12.0
13.4
12.2
12.6
12.0
13.5
12.8
16.2
16.2
16.2
12.0
12.2
13.8
13.0
12.3
12.3
12.2
16.2
16.2
12.1
12.2
13.0
12.8
13.8
13.8
Analysis
Pressure
(psig)
14.0
13.0
12.0
12.0
14.0
13.0
12.0
14.0
13.0
12.0
12.5
12.0
13.0
12.5
16.0
16.0
16.0
12.0
12.0
14.0
13.0
13.0
12.0
12.0
16.0
16.0
12.0
12.0
13.0
13.0
14.0
14.0
Radian
Channel
C
C
A
D
C
B
C
A
D
C
B
A
A
D
C
C
D
C
C
C
C
C
D
D
D
B
C
D
A
D
C
C
Mean
NMOC
ppmC
0.465
0.428
0.400
0.623
0.620
0.503
0.188
0.294
0.147
0.829
0.285
0.394
0.232
0.264
0.513
0.688
0.671
0.099
0.102
0.707
0.260
0.126
0.164
0.212
0.326
0.386
0.106
0.197
0.280
0.432
0.458
0.463
C-15
-------
TABLE C-4. SUMMARY OF THE 1992 NMOC DATA FOR PLAINFIELD, NJ (PLNJ)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
04-Aug-92
04-Aug-92
04-Aug-92
05-Aug-92
06-Aug-92
07-Aug-92
10-Aug-92
11-Aug-92
13-Aug-92
14-Aug-92
14-Aug-92
17-Aug-92
18-Aug-92
19-Aug-92
20-Aug-92
21-Aug-92
24-Aug-92
25-Aug-92
26-Aug-92
27-Aug-92
28-Aug-92
31-Aug-92
01-Sep-92
02-Sep-92
02-Sep-92
03-Sep-92
04-Sep-92
OS-Sep-92
09-Sep-92
10-Sep-92
10-Sep-92
11-Sep-92
Julian
Date
Sampled
217
217
217
218
219
220
223
224
226
227
227
230
231
232
233
234
237
238
239
240
241
244
245
246
246
247
248
rq2
1-3
254
254
255
Sample
ID
Number
1632
1650
1650
1639
1708
1702
1819
1804
1809
1922
1923
1931
1926
1938
1932
2005
2071
2065
2150
2151
2117
2160
2224
2225
2225
2241
2269
2275
2310
2311
2312
2376
Sample
Canister
Number
638
618
618
730
54
883
675
868
36
677
704
165
882
724
657
178
854
633
50
130
825
631
406
49
49
500
104
706
148
716
979
406
Sample
Pressure
(psig)
16.9
16.9
16.9
13.4
12.4
12.5
14.0
12.1
12.2
17.2
17.2
13.0
12.1
13.1
13.0
13.0
20.5
12.0
12.0
12.0
13.8
12.8
12.3
12.3
12.3
12.2
12.9
12.6
10.1
10.1
12.3
Analysis
Pressure
(psig)
18.0
18.0
18.0
15.0
14.0
14.0
14.0
12.0
12.0
18.0
17.0
12.5
12.0
14.0
13.0
12.0
14.0
11.0
13.0
13.0
12.0
15.0
14.0
14.0
14.0
14.0
15.0
14.0
14.0
11.0
10.5
14.0
Radian
Channel
C
C
C
D
D
C
D
D
C
B
B
A
A
D
D
C
A
C
A
B
A
C
C
B
B
A
C
B
A
D
C
A
Mean
NMOC
ppmC
0.364
0.321
0.280
0.133
0.611
0.648
0.526
0.724
0.165
2.392
2.762
0.880
0.824
0.553
0.318
0.907
1.180
3.347
0.980
1.120
0.336
0.449
0.420
0.559
0.240
0.892
0.918
0.309
0.492
0.162
0.176
0.180
016
-------
TABLE C-4. SUMMARY OF THE 1992 NMOC DATA FOR PLAINFIELD, NJ (PLNJ)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
14-Sep-92
15-Sep-92
15-Sep-92
16-Sep-92
17-Sep-92
18-Sep-92
21-Sep-92
22-Sep-92
23-Sep-92
24-Sep-92
25-Sep-92
28-Sep-92
28-Sep-92
29-Sep-92
30-Sep-92
30-Sep-92
30-Sep-92
30-Sep-92
Julian
Date
Sampled
258
259
259
260
261
262
265
266
267
268
269
272
273
273
274
274
274
274
Sample
ID
Number
2400
2377
2381
2401
2438
2445
2513
2514
2502
2518
2566
2564
2569
2587
2612
2612
2619
2619
Sample
Canister
Number
631
641
304
978
653
798
989
695
917
301
129
304
645
923
72
72
657
657
Sample
Pressure
(psig)
14.7
12.2
12.2
13.0
13.2
13.1
13.8
13.2
12.7
13.0
12.9
17.4
17.2
17.2
17.0
17.0
17.0
17.0
Analysis
Pressure
(psig)
16.0
, 12.0
12.0
14.0
15.0
16.0
13.0
11.0
13.0
13.0
12.0
18.0
16.0
17.0
17.0
17.0
17.0
17.0
Radian
Channel
D
C
C
C
A
C
D
A
C
A
C
A
C
C
B
B
B
B
Mean
NMOC
ppmC
1.457
1.038
1.051
0.573
0.606
0.383
0.847
0.944
0.179
0.190
0.214
0.782
0.070
0.099
0.096
0.136
0.065
0.146
C-17
-------
n
i
00
5.0
4.5
4.0
3.5
O 3.0
Q.
Q.
o 2-5
o
I 2.0-
1.5-
1.0-
Raleigh, NC(FMNC)
1992 NMOC Program (AIRS # 37-183-0015)
180
200
220
Julian Date. 1992
240
260
280
-------
TABLE C-5. SUMMARY OF THE 1992 NMOC DATA FOR RALEIGH, NO (R1 NO)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
23-Jun-92
24-Jun-92
25-Jun-92
26-Jun-92
29-Jun-92
30-Jun-92
01-Jul-92
01-Jul-92
02-Jul-92
06-Jul-92
06-Jul-92
07-Jul-92
08-Jul-92
09-Jul-92
10-Jul-92
13-Jul-92
14-Jul-92
15-Jul-92
15-Jul-92
16-Jul-92
17-Jul-92
20-Jul-92
21-Jul-92
22-Ju)-92
24-Jul-92
27-Jul-92
28-Jul-92
29-Jul-92
30-Jul-92
31-Jul-92
31-JUI-92
03-Aug-92
Julian
Date
Sampled
175
176
177
178
181
182
183
183
184
188
188
189
190
191
192
195
196
197
197
198
199
202
203
204
206
209
210
211
212
213
213
216
Sample
ID
Number
1023
1024
1025
1076
1078
1084
1080
1080
1077
1154
1155
1161
1158
1256
1257
1244
1247
1252
1253
1371
1373
1385
1379
1388
1518
1520
1515
1519
1517
1619
1620
1630
Sample
Canister
Number
649
308
765
137
304
36
850
850
166
675
653
176
131
870
129
164
77
789
621
704
813
850
894
927
684
33
808
165
6JO
836
831
807
Sample
Pressure
(psig)
10.5
8.0
8.0
10.0
11.0
6.0
10.0
10.0
10.0
8.0
8.0
10.5
10.0
11.0
10.0
10.0
8.0
10.0
10.0
10.0
9.0
11.0
10.5
9.0
9.0
10.0
10.0
10.0
11.0
11.0
12.0
11.5
Analysis
Pressure
(psig)
10.0
6.0
8.0
10.0
10.0
7.0
9.0
9.0
8.0
7.0
7.0
10.0
8.0
10.0
9.0
9.0
8.0
9.0
9.0
9.0
8.0
10.0
10.0
8.0
8.0
10.0
9.0
9.0
10.0
10.0
11.0
14.0
Radian
Channel
D
B
A
B
B
D
C
C
D
B
A
D
B
C
D
D
A
C
C
D
D
D
D
C
B
B
A
B
A
C
B
B
Mean
NMOC
ppmC
0.428
0.085
0.195
0.229
0.511
0.468
0.068
0.106
0.130
0.119
0.136
0.216
0.328
0.122
0.314
0.184
0.647
0.101
0.113
0.101
0.153
0.311
0.225
0.133
0.239
0.188
0.125
0.332
0.290
0.135
0.173
0.520
C-19
-------
TABLE C-5. SUMMARY OF THE 1992 NMOC DATA FOR RALEIGH, NC (R1 NC)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
04-Aug-92
OS-Aug-92
05-Aug-92
05-Aug-92
06-Aug-92
07-Aug-92
10-Aug-92
11-Aug-92
12-Aug-92
13-Aug-92
14-Aug-92
17-Aug-92
17-Aug-92
17-Aug-92
18-Aug-92
19-Aug-92
20-Aug-92
21-Aug-92
24-Aug-92
25-Aug-92
26-Aug-92
27-Aug-92
27-Aug-92
27-Aug-92
02-Sep-92
03-Sep-92
04-Sep-92
09-Sep-92
IO-Sep-92
11-Sep-92
11-Sep-92
11-Sep-92
Julian
Date
Sampled
217
218
218
218
219
220
223
224
225
226
227
230
230
230
231
232
233
234
237
238
239
240
240
240
246
247
248
253
254
255
255
255
Sample
ID
Number
1628
1614
1614
1615
1787
1788
1783
1782
1789
1786
1913
1915
1916
1916
1920
1912
1914
2051
2053
2054
2052
2206
2207
2207
2209
2208
2289
2290
2288
2385
2385
2387
Sample
Canister
Number
171
878
878
911
28
155
80
660
198
162
825
154
149
149
816
166
889
651
667
104
193
915
179
179
653
114
113
552
883
990
990
553
Sample Analysis
Pressure Pressure
(psig) (psig)
6.0
16.0
16.0
17.0
11.0
9.0
10.0
11.0
10.0
10.0
10.0
11.0
11.0
11.0
10.0
10.0
10.5
10.0
10.0
10.0
10.0
12.0
12.0
12.0
9.0
11.0
11.0
10.0
10.0
15.0
15.0
15.0
5.0
15.0
15.0
15.0
11.0
9.0
10.0
10.0
10.0
10.0
10.0
10.0
11.0
11.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
12.0
12.0
12.0
10.0
11.0
11.0
11.0
10.0
18.0
18.0
18.0
Radian
Channel
C
A
A
D
C
C
D
D
A
D
C
D
C
C
D
B
D
A
D
D
B
A
D
D
B
B
D
C
C
D
D
C
Mean
NMOC
ppmC
0.111
0.106
0.113
0.118
0.212
0.227
0.260
0.276
0.311
0.211
0.151
0.118
0.101
0.213
0.146
0.254
0.194
0.231
0.105
0.421
0.418
0.254
0.330
0.339
0.178
0.143
0.248
0.313
0.274
0.094
0.127
0.155
C-20
-------
TABLE C-5. SUMMARY OF THE 1992 NMOC DATA FOR RALEIGH, NC (R1NC)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
14-Sep-92
15-Sep-92
16-Sep-92
17-Sep-92
17-Sep-92
18-Sep-92
21-Sep-92
22-Sep-92
23-Sep-92
24-Sep-92
25-Sep-92
25-Sep-92
28-Sep-92
29-Sep-92
30-Sep-92
Julian
Date
Sampled
258
259
260
261
261
262
265
266
267
268
269
269
272
273
274
Sample
ID
Number
2384
2382
2383
2496
2497
2492
2494
2495
2493
2608
2601
2607
2600
2602
2606
Sample
Canister
Number
635
4
587
648
683
707
102
884
865
922
801
118
987
786
834
Sample
Pressure
(psig)
11.0
12.0
9.0
10.0
10.0
9.0
10.0
10.0
11.0
11.0
9.0
9.0
10.0
9.0
11.0
Analysis
Pressure
(psig)
12.0
12.0
8.0
10.0
10.0
10.0
10.0
10.0
10.0
11.0
10.0
10.0
10.0
10.0
11.0
Radian
Channel
B
D
A
C
D
D
C
B
A
D
B
C
A
B
D
Mean
NMOC
ppmC
0.369
0.188
0.180
0.171
0.225
0.223
0.099
0.145
0.055
0.080
0.093
0.113
0.692
0.134
0.060
C-21
-------
5.0-
4.5
4.0
3.5-
Salt Lake City, Utah (S2UT)
1992 NMOC Program (AIRS # 49-035-3001)
O 3.0-
? 2.5~
o
o
0.0-
160
180
200
220
240
260
280
-------
TABLE C-6. SUMMARY OF THE 1992 NMOC DATA FOR SALT LAKE CITY, UTAH (S2UT)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
24-Jun-92
25-Jun-92
26-Jun-92
01-Jul-92
02-Jul-92
07-Jul-92
08-Jul-92
13-JUI-92
14-Jul-92
15-Jul-92
16-Jul-92
17-Jul-92
20-Jul-92
22-Jul-92
22-Jul-92
22-Jul-92
24-Jul-92
27-Jul-92
27-Jul-92
27-Jul-92
29-Jul-92
31-JUI-92
03-Aug-92
04-Aug-92
06-Aug-92
06-Aug-92
06-Aug-92
07-Aug-92
10-Aug-92
11-Aug-92
12-Aug-92
Julian
Date
Sampled
176
177
178
183
184
189
190
195
196
197
198
199
202
204
204
204
206
209
209
209
211
213
216
217
219
219
219
220
223
224
225
Sample
ID
Number
1016
1027
1067
1082
1104
1140
1162
1205
1229
1259
1277
1296
1487
1377
1377
1378
1460
1455
1456
1456
1505
1568
1622
1626
1717
1717
1718
1707
1735
1758
1784
Sample
Canister
Number
118
138
823
991
998
767
994
996
993
997
992
990
37
994
994
993
992
990
997
997
993
129
855
990
997
997
991
918
165
995
992
Sample
Pressure
(psig)
11.0
11.0
11.0
10.5
11.0
12.0
11.0
12.0
11.0
11.0
11.0
11.0
11.0
15.0
15.0
15.0
11.0
15.0
15.0
15.0
12.0
11.0
12.0
12.0
15.0
15.0
15.0
11.0
11.0
12.0
16.0
Analysis
Pressure
(psig)
11.0
10.0
9.0
9.0
10.0
12.0
10.0
11.0
10.0
10.0
10.0
10.0
10.0
13.0
13.0
13.0
10.0
16.0
16.0
16.0
10.0
10.0
12.0
9.0
15.0
15.0
15.0
10.0
10.0
10.0
14.0
Radian
Channel
A
C
A
B
D
C
B
C
C
A
A
C
C
D
D
C
D
A
D
D
D
B
D
A
C
C
C
D
A
C
B
Mean
NMOC
ppmC
0.763
0.424
0.458
0.232
0.458
0.460
0.317
0.669
0.517
0.460
0,686
0.704
0.193
0.386
0.527
0.528
0.662
0.593
0.665
0.656
1.108
1.037
0.619
0.947
0.566
0.570
0.388
0.348
1.240
0.889
1.117
023
-------
TABLE C-6. SUMMARY OF THE 1992 NMOC DATA FOR SALT LAKE CITY, UTAH (S2UT)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
12-Aug-92
13-Aug-92
14-Aug-92
17-Aug-92
18-Aug-92
1&-Aug-92
19-Aug-92
20-Aug-92
21-Aug-92
24-Aug-92
25-Aug-92
25-Aug-92
26-Aug-92
27-Aug-92
28-Aug-92
31-Aug-92
01-Sep-92
02-Sep-92
03-Sep-92
04-Sep-92
08-Sep-92
09-Sep-92
10-Sep-92
14-Sep-92
15-Sep-92
16-Sep-92
17-Sep-92
17-Sep-92
18-Sep-92
21-Sep-92
22-Sep-92
Julian
Date
Sampled
225
226
227
230
231
231
232
233
234
237
238
238
239
240
241
244
245
246
247
248
252
253
254
258
259
260
261
261
262
265
266
Sample
ID
Number
1785
1821
1842
1858
1884
1885
1944
1947
1987
2017
2046
2046
2062
2094
2102
2135
2159
2201
2215
2245
2255
2281
2307
2344
2359
2370
2406
2410
2420
2433
2457
Sample
Canister
Number
990
998
993
991
996
994
992
766
999
991
994
994
990
992
999
991
994
996
999
991
994
996
990
991
997
999
995
148
996
991
998
Sample
Pressure
(psig)
16.0
11.0
11.0
8.0
16.0
16.0
11.0
11.0
11.0
11.0
11.0
11.0
9.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
16.0
16.0
11.0
11.0
16.0
Analysis
Pressure
(psig)
14.0
10.0
9.0
8.0
15.0
15.0
10.0
10.0
10.0
9.0
10.0
10.0
9.0
9.0
10.0
9.0
10.0
10.0
10.0
12.0
10.0
10.0
10.0
10.0
10.0
10.0
14.0
14.0
10.0
10.0
14.0
Radian
Channel
C
B
D
D
D
C
C
C
C
C
B
B
C
C
C
D
D
A
C
D
A
C
A
A
C
A
A
A
A
A
A
Mean
NMOC
ppmC
1.118
1.277
0.758
0.432
1.193
1.230
0.814
0.655
0.310
0.597
0.617
0.645
0.628
0.861
0.626
0.528
0.548
0.823
0.702
0.890
0.902
1.116
0.912
0.944
0.457
1.383
0.500
0.500
1.220
0.823
0.993
C-24
-------
TABLE C-6. SUMMARY OF THE 1992 NMOC DATA FOR SALT LAKE CITY, UTAH (S2UT)
Sample Period: 6:00 a.m. to 9:00 a.m.
Data
Sampled
22-Sep-92
23-Sep-92
24-Sep-92
25-Sep-92
25-Sep-92
25-Sep-92
29-Sep-92
30-Sep-92
Julian
Date
Sampled
266
267
268
269
269
269
273
274
Sample
ID
Number
2458
2487
2505
2525
2525
2526
2573
2589
Sample
Canister
Number
993
995
800
991
991
994
999
36
Sample
Pressure
(psig)
16.0
16.0
16.0
16.5
16.5
16.5
15.0
12.5
Analysis
Pressure
(psig)
13.0
16.0
12.0
13.0
13.0
12.0
14.0
12.0
Radian
Channel
A
C
A
D
D
C
A
A
Mean
NMOC
ppmC
0.992
1.111
0.436
0.501
0.433
0.561
1.129
1.648
025
-------
5.0-
4.5-
4.0-
3.5-
o
I
to
O 3.0-
Q.
Q.
O 2'5'
o
1 2.0
1.5-
0.0
160
Salt Lake City, UT (S3UT)
1992 NMOC Program (AIRS # 49-011-0001)
180
200
220
240
260
280
ooo
-------
TABLE C-7. SUMMARY OF THE 1992 NMOC DATA FOR SALT LAKE CITY, UTAH (S3UT)
Sample Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure
Sampled Sampled Number Number (psig) (psig)
22-Jun-92
23-Jun-92
24-Jun-92
25-Jun-92
26-Jun-92
29-Jun-92
01-Jul-92
02-Jul-92
06-Jul-92
07-Jul-92
08-Jul-92
09-JUI-92
10-Jul-92
10-Jul-92
10-Jul-92
13-Jul-92
14-Jul-92
15-Jul-92
16-Jul-92
17-Jul-92
20-Jul-92
22-Jul-92
22-Jul-92
23-Jul-92
24-Jul-92
27-Jul-92
27-JUI-92
28-Jul-92
29-Jul-92
30-Jul-92
31-Jul-92
174
175
176
177
178
181
183
184
188
189
190
191
192
192
192
195
196
197
198
199
202
204
204
205
206
209
209
210
211
212
213
1005
1007
1015
1026
1059
1062
1079
1105
1129
1143
1152
1176
1191
1201
1201
1210
1231
1249
1290
1298
1325
1368
1369
1399
1457
1451
1452
1484
1492
1507
1570
874
111
623
635
783
86
990
996
150
162
993
91
137
775
775
998
994
999
995
991
778
844
882
921
995
911
867
998
927
153
994
12.0
12.0
11.0
8.0
9.0
9.0
8.0
7.0
7.0
8.0
8.0
8.0
12.0
12.0
12.0
8.0
8.0
8.0
10.0
9.0
10.0
14.0
14.0
10.0
10.0
14.0
14.0
10.0
12.0
11.0
10.0
13.0
14.0
12.0
10.0
8.0
8.0
8.0
9.0
9.0
8.0
9.0
8.0
13.0
13.0
13.0
8.0
8.0
8.0
8.0
8.0
9.0
13.0
12.0
8.0
8.0
12.0
13.0
8.0
10.0
9.0
8.0
Radian
Channel
B
A
A
C
D
C
A
C
A
A
D
B
A
C
C
D
A
D
A
D
D
C
C
D
D
C
A
C
A
C
A
Mean
NMOC
ppmC
0.311
0.763
0.542
0.497
0.257
0.240
0.229
0.445
0.318
0.698
0.316
0.333
0.725
0.720
0.630
0.245
0.437
0.334
0.332
0.584
0.219
0.756
0.634
0.362
0.165
0.495
0.552
0.580
0.755
0.255
0.449
C-27
-------
TABLE C-7. SUMMARY OF THE 1992 NMOC DATA FOR SALT LAKE CITY, UTAH (S3UT)
Sample Period: 6:00 a.m. to 9:00 a.m.
Julian Sample Sample Sample Analysis
Date Date ID Canister Pressure Pressure
Sampled Sampled Number Number (psig) (psig)
03-Aug-92
04-Aug-92
05-Aug-92
06-Aug-92
06-Aug-92
10-Aug-92
11-Aug-92
12-Aug-92
12-Aug-92
12-Aug-92
13-Aug-92
14-Aug-92
14-Aug-92
17-Aug-92
18-Aug-92
18-Aug-92
18-Aug-92
20-Aug-92
25-Aug-92
26-Aug-92
27-Aug-92
28-Aug-92
31-Aug-92
01-Sep-92
02-Sep-92
03-Sep-92
04-Sep-92
oa-Sep-92
09-Sep-92
10-Sep-92
11-Sep-92
216
217
218
219
219
223
224
225
225
225
226
227
227
230
231
231
231
233
238
239
240
241
244
245
246
247
248
252
253
254
255
1624
1627
1651
1715
1716
1740
1751
1780
1781
1781
1817
1842
1843
1859
1886
1886
1887
1945
2047
2067
2093
2103
2144
2158
2210
2216
2244
2256
2287
2305
2319
992
995
998
60
788
994
303
996
35
35
730
993
74
997
995
995
872
690
997
996
995
51
993
997
990
995
98
993
997
999
992
10.0
10.0
10.0
14,0
14.0
10.0
11.0
14.0
14.0
14.0
10.0
11.0
10.0
10.0
15.0
15.0
15.0
11.0
10.0
9.0
10.0
10.0
8.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
8.0
8.0
10.0
15.0
15.0
10.0
10.0
14.0
13.0
13.0
10.0
9.0
8.0
8.0
14.0
15.0
14.0
10.0
10.0
5.0
9.0
8.0
8.0
10.0
10.0
10.0
10.0
12.0
10.0
10.0
9.5
Radian
Channel
0
B
A
C
B
0
D
C
D
D
D
D
C
D
B
B
A
D
B
B
C
A
C
B
A
D
A
C
A
B
C
Mean
NMOC
ppmC
1.020
0.548
0.457
0.234
0.298
0.323
0.427
0.326
0.271
0.274
0.761
0.758
0.464
0.195
0.625
0.624
0.664
0.492
0.682
0.404
0.758
0.614
0.388
0.511
0.305
0.639
0.315
0.589
0.265
0.403
0.814
C-28
-------
TABLE C-7. SUMMARY OF THE 1992 NMOC DATA FOR SALT LAKE CITY, UTAH (S3UT)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
14-Sep-92
15-Sep-92
16-Sep-92
17-Sep-92
17-Sep-92
18-Sep-92
22-Sep-92
22-Sep-92
23-Sep-92
24-Sep-92
25-Sep-92
25-Sep-92
28-Sep-92
30-Sep-92
Julian
Date
Sampled
258
259
260
261
261
262
266
266
267
268
269
269
272
274
Sample
ID
Number
2343
2362
2371
2407
2409
2418
2463
2464
2483
2512
2527
2528
2568
2591
Sample
Canister
Number
994
883
990
716
189
a
990
992
997
906
685
627
660
904
Sample
Pressure
(psig)
10.0
10.0
10.0
15.0
15.0
10.0
14.0
14.0
10.0
10.0
16.5
16.5
11.0
10.0
Analysis
Pressure
(psig)
9.0
9.5
12.0
14.0
14.0
9.0
12.0
12.0
10.0
6.0
12.0
12.0
11.0
10.0
Radian
Channel
C
C
A
D
D
C
C
A
D
D
A
B
B
C
Mean
NMOC
ppmC
0.413
0.314
0.499
0.494
0.480
0.362
1.060
1.030
0.822
0.114
0.283
0.130
0.736
1.090
C-29
-------
n
Co
O
5.0-
4.5-
4.0-
3.5-
O 3.0-
Q.
Q.
O 2'5'
o
1 2.0-
1.5-
1.0
0.5-
0.0
160
Winston Salem, NC (WSNC)
1992 NMOC Program (AIRS # 37-067-0022)
180
—i r
200 22
220
Julian Date. 1992
240
260
280
-------
TABLE C-8. SUMMARY OF THE 1992 NMOC DATA FOR WINSTON SALEM, NC (WSNC)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
22-Jun-92
23-Jun-92
24-Jun-92
25-Jun-92
26-Jun-92
30-Jun-92
01-Jul-92
02-Jul-92
06-Jul-92
07-Jul-92
07-Jul-92
07-Jul-92
08-Jul-92
09-Jul-92
10-Jul-92
13-Jul-92
15-Jul-92
16-Jul-92
16-Jul-92
17-Jul-92
20-Jul-92
21-Jul-92
22-Jul-92
23-Jul-92
24-Jul-92
27-Jul-92
27-Jul-92
28-Jul-92
29-Jul-92
30-Jul-92
31-Jul-92
03-Aug-92
Julian
Date
Sampled
174
175
176
177
178
182
183
184
188
189
189
189
190
191
192
195
197
198
198
199
202
203
204
205
206
209
209
210
211
212
213
216
Sample
ID
Number
1004
1011
1022
1034
1036
1075
1073
1112
1124
1132
1133
1133
1145
1185
1197
1209
1263
1287
1291
1295
1316
1349
1374
1407
1425
1447
1448
1480
1491
1516
1565
1587
Sample
Canister
Number
632
674
673
788
794
135
115
49
41
833
726
726
146
191
651
626
828
131
193
901
409
692
914
870
878
708
730
901
859
821
894
767
Sample
Pressure
(psig)
11.5
11.5
11.0
14.0
13.0
11.0
13.0
13.0
14.0
24.0
24.0
24.0
12.0
12.0
13.0
13.0
12.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
12.0
12.0
13.0
12.0
11.0
Analysis
Pressure
(psig)
12.0
10.0
10.0
14.0
12.0
9.0
11.0
12.0
12.0
22.0
22.0
22.0
11.0
10.5
12.0
11.0
10.0
12.0
12.0
11.5
12.0
11.0
12.0
12.0
12.0
12.0
12.0
10.0
10.0
10.0
10.0
10.0
Radian
Channel
A
C
C
D
D
C
D
D
C
B
C
C
A
B
C
A
D
D
A
C
C
D
D
D
B
C
C
D
C
B
C
C
Mean
NMOC
ppmC
0.121
0.277
0.089
0.289
0.184
0.125
0.142
0.237
0.208
0.106
0.115
0.115
0.216
0.260
0.474
0.292
0.106
0.165
0.179
1.220
0.444
0.146
0.260
0.143
0.156
0.219
0.297
0.134
0.421
0.483
0.208
0.339
C-31
-------
TABLE C-8. SUMMARY OF THE 1992 NMOC DATA FOR WINSTON SALEM, NC (WSNC)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
04-Aug-92
05-Aug-92
06-Aug-92
06-Aug-92
06-Aug-92
07-Aug-92
10-Aug-92
11-Aug-92
12-Aug-92
13-Aug-92
14-Aug-92
17-Aug-92
18-Aug-92
18-Aug-92
19-Aug-92
20-Aug-92
21-Aug-92
21-Aug-92
24-Aug-92
25-Aug-92
26-Aug-92
27-Au ;-92
28-Aug-92
28-Aug-92
31-Aug-92
01-Sep-92
02-Sep-92
03-Sep-92
04-Sep-92
08-Sep-92
09-S«p-92
09-Sep-92
Julian
Date
Sampled
217
218
219
219
219
220
223
224
225
226
227
230
231
231
232
233
234
234
237
238
239
240
241
241
244
245
246
247
248
252
253
253
Sample
ID
Number
1616
1643
1670
1670
1676
1705
1739
1757
1790
1824
1827
1867
1881
1882
1921
1949
1974
1974
1999
2038
2066
2098
2109
2110
2130
2165
2188
2221
2231
2260
2268
2276
Sample
Canister
Number
35
77
112
112
828
662
166
633
642
150
638
112
707
189
97
80
114
114
640
783
781
97
716
823
148
762
667
723
992
908
154
837
Sample
Pressure
(psig)
12.0
12.0
13.0
13.0
13.0
13.0
13.0
18.0
13.0
12.0
13.0
13.0
20.0
20.0
8.0
8.0
12.0
12.0
12.0
12.0
12.0
11.0
14.0
14.0
11.0
8.0
12.0
13.0
11.0
14.0
17.0
17.0
Analysis
Pressure
(psig)
10.0
12.0
13.0
13.0
12.0
13.0
13.0
12.0
12.0
10.0
11.0
12.0
20.0'
20.0
6.0
7.0
11.0
11.0
10.0
12.0
10.0
9.0
12.0
12.0
8.0
8.0
12.0
12.0
10.0
14.0
19.0
16.0
Radian
Channel
C
C
D
D
A
D
C
A
A
A
C
C
D
A
C
D
D
D
D
A
D
D
C
D
D
C
C
C
C
D
D
B
Mean
NMOC
ppmC
0.224
0.118
0.064
0.109
0.128
0.076
0.325
0.687
0.243
0.238
0.072
0.081
0.106
0.240
0.596
0.168
0.137
0.222
0.118
0.737
0.511
0.532
0.047
0.095
0.405
0.192
0.253
0.102
0.480
0.181
0.687
0.811
C-32
-------
TABLE C-8. SUMMARY OF THE 1992 NMOC DATA FOR WINSTON SALEM, NC (WSNC)
Sample Period: 6:00 a.m. to 9:00 a.m.
Date
Sampled
10-Sep-92
11-Sep-92
14-Sep-92
15-Sep-92
16-Sep-92
17-Sep-92
18-Sep-92
18-Sep-92
21-Sep-92
22-Sep-92
23-Sep-92
24-Sep-92
25-Sep-92
28-Sep-92
29-Sep-92
30-Sep-92
30-Sep-92
Julian
Date
Sampled
254
255
258
259
260
261
262
262
265
266
267
268
269
272
273
274
274
Sample
ID
Number
2308
2329
2345
2352
2394
2413
2427
2430
2442
2468
2482
2520
2523
2558
2572
2604
2605
Sample
Canister
Number
674
915
723
583
993
605
657
651
627
806
621
183
587
911
798
995
829
Sample
Pressure
(psig)
11.0
8.0
11.0
13.0
11.0
11.0
18.0
18.0
10.0
10.0
11.0
10.0
11.0
10.0
10.0
10.0
10.0
Analysis
Pressure
(psig)
11.0
8.0
10.0
12.0
10.0
10.0
17.0
17.0
10.0
7.0
10.0
8.0
7.0
10.0
10.0
10.0
10.0
Radian
Channel
C
A
A
A
D
B
C
A
B
C
A
C
A
D
D
B
A
Mean
NMOC
ppmC
0.116
0.251
0.171
0.152
0.514
0.361
0.377
0.406
0.218
0.559
0.094
0.048
0.079
0.083
0.214
0.077
0.126
033
-------
APPENDIX D
1992 NMOC MONITORING PROGRAM INVALIDATED AND MISSING SAMPLES
-------
APPENDIX D
TABLE 1
1992 NMOC PROGRAM
VOID OR INVAUDATED SAMPLES BY DATE
#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
Site
S2UT
S2UT
NWNJ
S2UT
NWNJ
WSNC
S3UT
S2UT
PLNJ
S2UT
MNY
MNY
S2UT
S2UT
MNY
NWNJ
NWNJ
WSNC
NWNJ
NWNJ
MNY
NWNJ
NWNJ
S2UT
S3UT
MNY
S2UT
MNY
S2UT
S2UT
R1NC
S2UT
S3UT
PLNJ
Date
06/22/92
06/23/92
06/23/92
06/29/92
06/29/92
06/29/92
06/30/92
06/30/92
06/30/92
07/06/92
07/06/92
07/07/92
07/09/92
07/10/92
07/10/92
07/10/92
07/13/92
07/14/92
07/15/92
07/16/92
07/16/92
07/17/92
07/20/92
07/21/92
07/21/92
07/20/92
07/23/92
07/23/92
08/05/92
07/28/92
07/23/92
07/30/92
08/07/92
08/12/92
Description
NO PRESSURE
LOW ORIFICE FLOW
LOW CANISTER PRESSURE
LOW CANISTER PRESSURE
LOW CANISTER PRESSURE
POWER FAILURE
POWER FAILURE
LOW CANISTER PRESSURE
NO PRESSURE
POWER FAILURE
NO PRESSURE
UNKNOWN
TIMER MALFUNCTION
TIMER MALFUNCTION (DUPLICATE)
NO PRESSURE
NO PRESSURE
SYSTEM LEAK
LOW CANISTER PRESSURE
LOW CANISTER PRESSURE
UNKNOWN
UNKNOWN
UNKNOWN
UNKNOWN
SAMPLER SET ON MANUAL
SAMPLER SET ON MANUAL
SAMPLER SET ON MANUAL
SYSTEM LEAK
NO PRESSURE (DUPLICATE)
SYSTEM LEAK
TIMER MALFUNCTION
POWER FAILURE
SAMPLER SET ON MANUAL
INLET NOT ATTACHED
TIMER MALFUNCTION
Assigned
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
UNKNOWN
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
UNKNOWN
UNKNOWN
UNKNOWN
UNKNOWN
OPERATOR
OPERATOR
OPERATOR
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
OPERATOR
OPERATOR
EQUIPMENT
D-l
-------
APPENDIX D
TABLE 1
1992 NMOC PROGRAM
VOID OR INVAUDATED SAMPLES BY DATE
#
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
Site
MNY
MNY
NWNJ
S3UT
S3UT
S3UT
MNY
R1NC
R1NC
R1NC
MNY
MNY
R1NC
MNY
S2UT
NWNJ
NWNJ
NWNJ
S3UT
NWNJ
NWNJ
NWNJ
S2UT
S3UT
MNY
MNY
NWNJ
UNY
Date
08/13/92
08/19/92
08/18/92
08/19/92
08/21/92
08/24/92
08/25/92
08/28/92
08/31/92
09/01/92
09/04/92
09/08/92
09/08/92
09/10/92
09/11/92
09/18/92
09/17/92
09/21/92
09/21/92
09/25/92
09/28/92
09/24/92
09/28/92
09/29/92
09/29/92
„ 09/30/92
09/30/92
09/14/92
Description
UNKNOWN
SAMPLER SET ON MANUAL
CAN RECEIVED UNDER VACUUM
POWER FAILURE
NO PRESSURE
POWER FAILURE
SAMPLER SET ON MANUAL (DUPLICATE)
SAMPLER RAN 9 HOURS
SAMPLER RAN 9 HOURS
SAMPLER RAN 9 HOURS
UNKNOWN
UNKNOWN
TIMER MALFUNCTION (DUPLICATE)
NO PRESSURE
VALVE LEFT CLOSED
NEW SAMPLER PROBLEMS
NO PRESSURE
UNKNOWN
VALVE LEFT CLOSED
UNKNOWN
NO PRESSURE
MOTOR FAILED
UNKNOWN
UNKNOWN
UNKNOWN
UNKNOWN
NO PRESSURE
NO PRESSURE
Assigned
UNKNOWN
OPERATOR
UNKNOWN
EQUIPMENT
EQUIPMENT
EQUIPMENT
OPERATOR
OPERATOR
OPERATOR
OPERATOR
UNKNOWN
UNKNOWN
EQUIPMENT
EQUIPMENT
OPERATOR
EQUIPMENT
EQUIPMENT
UNKNOWN
OPERATOR
UNKNOWN
EQUIPMENT
EQUIPMENT
UNKNOWN
UNKNOWN
UNKNOWN
UNKNOWN
EQUIPMENT
EQUIPMENT
D-2
-------
APPENDIX D
TABLE 2
1992 SPECIATED NMOC PROGRAM
VOID OR INVALIDATED SAMPLES BY DATE
#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Site
CHNC
BRLA
BRLA
CHNC
BRLA
EPTX
FWTX
FWTX
BRLA
B3AL
MIFL
JUMX
DLTX
BRLA
BRLA
B2AL
B3AL
BRLA
JUMX
B1AL
CHNC
CHNC
JUMX
JUMX
B3AL
CHNC
CHNC
CHNC
CHNC
CHNC
CHNC
B3AL
B1AL
CHNC
CHNC
Date
06/23/92
06/22/92
06/23/92
06/24/92
06/24/92
06/25/92
06/29/92
07/01/92
07/06/92
07/06/92
07/02/92
07/08/92
07/09/92
07/09/92
07/17/92
07/17/92
07/17/92
07/18/92
07/27/92
07/24/92
07/29/92
07/31/92
07/31/92
08/03/92
08/03/92
08/04/92
08/06/92
07/23/92
07/24/92
07/27/92
07/28/92
08/04/92
08/07/92
08/10/92
08/12/92
Description
NO PRESSURE
SAMPLER RAN 31 HOURS
NO PRESSURE
NO PRESSURE
FINAL PRESSURE 28
TIMER MALFUNCTION
POWER FAILURE
TIMER MALFUNCTION
PUMP PROBLEMS
LOW CANISTER PRESSURE
SAMPLER RAN 7.5 HOURS
SAMPLER DID NOT RUN (DUPLICATE)
USED WRONG ORIFICE (DUPLICATE)
SAMPLER PROBLEMS
TEST CANISTER FOR NEW SAMPLER
NO PRESSURE
TIMER MALFUNCTION
SAMPLE LINE BLOCKED
CAN RECEIVED UNDER VACUUM
SAMPLER RAN 55 HOURS
FINAL PRESSURE 34.5 (DUPLICATE)
CANISTER VALVE LEFT CLOSED
NO PRESSURE
CAN RECVD UNDER VACUUM (DUPLICATE)
LOW CANISTER PRESSURE
FINAL PRESSURE 38
FINAL PRESSURE 40
FINAL PRESSURE 30.5 ORIFICE LEAK
FINAL PRESSURE 37 SAMPLE LINE BROKE
NO PRESSURE
NO PRESSURE ORIRCE BLOCKED
SAMPLER RAN 7.2 HOURS
CANISTERS LEFT CLOSED (DUPLICATE)
FINAL PRESSURE 32
FINAL PRESSURE 32
Assigned
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
OPERATOR
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
OPERATOR
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
OPERATOR
EQUIPMENT
EQUIPMENT
D-3
-------
APPENDIX D
TABLE 2
1992 SPECIATED NMOC PROGRAM
VOID OR INVAUDATED SAMPLES BY DATE
#
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
Site
JUMX
CHNC
CHNC
BMTX
FWTX
CHNC
BRLA
BMTX
CHNC
MIR.
B1AL
B3AL
JUMX
B3AL
JUMX
CHNC
BRLA
Date
08/12/92
08/13/92
08/18/92
08/24/92
08/27/92
08/26/92
08/26/92
08/28/92
08/31/92
09/02/92
09/04/92
09/09/92
09/18/92
09/21/92
09/18/92
09/14/92
Description
NO PRESSURE
FINAL PRESSURE 32
CANISTER VALVE WOULDN'T OPEN
LEAK IN SWAGELOK (DUPLICATE)
STATE HOLIDAY
NO PRESSURE
SAMPLER RAN 8.3 HOURS
TIMER MALFUNCTION
NO PRESSURE
POWER SHUT OFF-HURRICANE
NO PRESSURE
POWER FAILURE
NO PRESSURE
SAMPLER RAN 6 HOURS
NO PRESSURE
FINAL PRESSURE 34.5 (DUPLICATE)
NO PRESSURE
Assigned
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
HOLIDAY
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
EQUIPMENT
D-4
-------
APPENDIX E
PDFID INTEGRATOR PROGRAMMING INSTRUCTIONS
-------
INTEGRATOR PROGRAMMING INSTRUCTIONS
Instructions for programming the integrators are as foljows,
5e sure to press ENTER after each key sequence.
Control Integrator
Oven Temp 90
Oven Temp Limit 405
Oven Temp ON
Oven Temp OFF
List Oven Temp
(A listing should say OvenTemp X°C Setpt 90 C Limit 405°C)
Oven Temp Initial Time 0.20
Oven Temp Initial Value 90
Oven Temp Pgrm Rate 30.00
Oven Temp Final Value 90.00
Oven Temo Final ~ime 4.00
Oven Temp Equil Time 1.00
Detector A ON
Signal A
Chart speed 4.00
Offset 10
Zero
Attn 2A 4
Run Time Annotation ON
Run Table Annotation ON
Clock Table Annotation OFF
Program Annotation OFF
Oven Temp Annotation OFF
Reoort Annotation OFF
Slave Integrator
Detector B ON
Signal B
Chart speed 4.00
"oOffset 10
Zero
Attn 2A 4
Run Time Annotation ON
Run Table Annotation ON
Clock Table Annotation OFF
Program Annotation OFF
Oven Temp Annotation OFF
(should say ***Warning***Qven Temp now owned by Chnl 2)
Report Annotation OFF
-------
INTEGRATOR PROGRAMMING INSTRUCTIONS (Continuea)
Control Integrator
Oven Temp Annotation OFF
(should say 'r**Warning***Oven Temo now owned by Chnl
Run Time 0.01 Intg OFF
Run Time 0.01 Valve 5 ON
Run Time 0.01 Page
Run Time 0.02 List Attn2A
Run Time 0.04 Oven Temp ON
Run Time 0.20 Valve 2 ON
Run Time 0.21 Valve 2 OFF
Run Time 0.22 Intg ON
Run Time 0.23 Set BL
Run Time 0.23 List Intg
Rum Time 1.87 Set BL
Run Time 1.88 Intg OFF
Aun Time 1.39 List Intg
Run Time 1.90 Chart Sppea 1.5
Run Time 3.44 Valve 2 ON
Run Time 3.45 Valve 2 OFF
Run Time 3.46 Valve 2 ON
Run Time 3.47 Valve 2 OFF
Run Time 3.48 Valve 2 ON
Run Time 3.49 Valve 2 OFF
Run Time 3.50 STOP
Slave Integrator
Run Time 0.01 Intg OFF
Run Time 0.01 Page
Run Time 0.02 List Attn2A
Run Time 0.22 Intg ON
Run Time 0.23 Set BL
Run Time 0.23 List Intg
Rum Time 1.87 Set BL
Run Time 1.88 Intg OFF
Run Time 1.89 List Intg
Run Time 1.90 Chart Spped 1.5
Run Time 3.50 STOP
Control Integrator
Det 1 Temp 250
Det 1 Temp Limit 405
Inj 1 Temp 31
Inj 1 Temp Limit 405
Aux 1 Temp 90
Aux 1 Temp Limit 405
Flow A 30
Flow A Limit 500
-------
INTEGRATOR PROGRAMMING INSTRUCTIONS (Continued)
Slave Integrator
Flow 8 30
Flow 6 Limit 500
Control Integrator
Valve 1 OFF
Valve 2 OFF
Valve 3 OFF
Valve 4 OFF
Valve 5 ON
Valve 6 OFF
Valve 7 OFF
Valve 8 OFF
Valve 9 OFF
Valve iO OFF
Valve il OFF
Valve 12 OFF
Threshold 1
Peak Width 0.04
Slave Integrator
Threshold 1
Peak Width 0.04
Control Integrator
20 Valve 5 OFF
25 List Valve 5
20 Oven Temp Initial Value 30
55 Oven Temp OFF
40 Wait 2
60 Start
70 Oven Temp 90
80 Vale 5 ON
Sync ON
E-J
-------
APPENDIX F
1992 NMOC DAILY CALIBRATION DATA
-------
Table F-1. Daily Calibration Data Summary (Channel A)
Cal
Date
02/92
03/92
04/92
05/92
08/92
09/92
10/92
11/92
12/92
15/92
16/92
17/92
18/92
19/92
22/92
23/92
24/92
25/92
26/92
29/92
30/92
01/92
02/92
06/92
07/92
08/92
09/92
10/92
13/92
Julian
Cal
Date
154
155
156
157
160
161
162
163
164
167
168
169
170
171
174
175
176
177
178
181
182
183
184
188
189
190
191
192
195
Initial
Zero
A.C.
1.01
1.38
0.95
1.25
2.09
1.04
2.70
1.86
0.20
0.61
0.63
0.12
1.10
0.51
0.13
0.29
0.72
1.08
1.93
4.75
4.53
0.33
2.96
0.38
3.32
1.60
6.24
0.55
1.71
Final
Zero
A.C.
1.01
1.38
0.95
1.25
2.09
1.04
2.70
1.86
0.20
0.61
0.63
0.12
1.10
0.51
0.13
0.29
0.72
1.08
1.93
4.75
4.53
0.33
2.96
0.38
3.32
1.60
6.24
0.55
1.71
Initial
Zero
ppmC
0.000281
0.000386
0.000266
0.000347
0.000586
0.000288
0.000736
0.000517
0.000055
0.000170
0.000177
0.000034
0.000307
0.000145
0.000037
0.000080
0.000199
0.000298
0.000532
0.001317
0.001231
0.000089
0.000799
0.000101
0.000897
0.000429
0.001694
0.000147
0.000461
Final
Zero
ppmC
0.000281
0.000386
0.000266
0.000347
0.000586
0.000288
0.000736
0.000517
0.000055
0.000170
0.000177
0.000034
0.000307
0.000145
0.000037
0.000080
0.000199
0.000298
0.000532
0.001317
0.001231
0.000089
0.000799
0.000101
0.000897
0.000429
0.001694
0.000147
0.000461
Initial
Cal
Factor
0.000279
0.000281
0.000280
0.000277
0.000281
0.000277
0.000273
0.000278
0.000277
0.000279
0.000284
0.000287
0.000281
0.000283
0.000281
0.000279
0.000276
0.000277
0.000275
0.000277
0.000272
0.000274
0.000270
0.000266
0.000271
0.000269
0.000272
0.000267
0.000269
Final
Cal
Factor
0.000279
0.000281
0.000280
0.000277
0.000281
0.000277
0.000273
0.000278
0.000277
0.000279
0.000284
0.000287
0.000281
0.000283
0.000281
0.000279
0.000276
0.000277
0.000275
0.000277
0.000272
0.000274
0.000270
0.000266
0.000271
0.000269
0.000272
0.000267
0.000269
Cal
Factor
Drift
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
Cal
Factor
% Drift
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
F-1
-------
Table F-1. Daily Calibration Data Summary (Channel A)
Cal
Date
07/14/92
07/15/92
07/16/92
07/17/92
07/20/92
07/21/92
07/22/92
07/27/92
07/29/92
07/30/92
07/31/92
08/03/92
08/04/92
08/05/92
08/06/92
08/07/92
08/10/92
08/11/92
08/12/92
08/13/92
08/14/92
08/17/92
08/18/92
08/19/92
08/20/92
08/21/92
08/24/92
08/25/92
08/26/92
Julian
Cal
Date
196
197
198
199
202
203
204
209
211
212
213
216
217
218
219
220
223
224
225
226
227
230
231
232
233
234
237
238
239
Initial
Zero
A.C.
3.57
7.93
5.01
4.32
4.25
4.94
5.77
9.42
8.19
6.09
3.48
5.39
7.42
8.85
4.06
5.89
6.98
4.48
5.22
3.41
5.50
4.69
8.98
10.32
5.92
5.15
7.58
3.22
3.75
Final
Zero
A.C.
3.57
7.93
5.01
4.24
6.66
4.94
8.86
9.42
8.19
6.09
3.48
8.04
3.04
8.85
3.40
2.96
6.98
4.80
1.83
2.94
5.71
4.69
8.98
3.93
10.96
4.71
7.58
3.22
6.02
Initial
Zero
ppmC
0.000957
0.002138
0.001336
0.001166
0.001173
0.001337
0.001568
0.002568
0.002210
0.001642
0.000720
0.001129
0.001535
0.001813
0.000838
0.001222
0.001443
0.000912
0.001076
0.000703
0.001123
0.000964
0.001871
0.002128
0.001231
0.001071
0.001580
0.000876
0.001020
Final
Zero
ppmC
0.000957
0.002138
0.001339
0.001156
0.001798
0.001337
0.002412
0.002568
0.002210
0.001642
0.000720
0.001694
0.000626
0.001813
0.000712
0.000617
0.001443
0.001005
0.000375
0.000612
0.001169
0.000964
0.001871
0.000823
0.002266
0.000980
0.001580
0.000876
0.001649
Initial
Cal
Factor
0.000268
0.000270
0.000267
0.000270
0.000276
0.000271
0.000272
0.000273
0.000270
0.000270
0.000207
0.000210
0.000207
0.000205
0.000207
0.000207
0.000207
0.000203
0.000206
0.000206
0.000204
0.000206
0.000208
0.000206
0.000208
0.000208
0.000209
0.000273
0.000272
Final
Cal
Factor
0.000268
0.000270
0.000267
0.000273
0.000270
0.000271
0.000272
0.000273
0.000270
0.000270
0.000207
0.00021 1
0.000206
0.000205
0.000209
0.000209
0.000207
0.000210
0.000206
0.000208
0.000205
0.000206
0.000208
0.000209
0.000207
0.000208
0.000209
0.000273
0.000274
Cal
Factor
Drift
0.000000
0.000000
-0.000000
-0.000002
0.000006
0.000000
-0.000001
0.000000
0.000000
0.000000
0.000000
-0.000001
0.000001
0.000000
-0.000003
-0.000001
0.000000
-0.000006
0.000000
-0.000002
-0.000000
0.000000
0.000000
-0.000003
0.000001
0.000000
0.000000
0.000000
-0.000002
R
%
0
0
-0
-0
2
0
-0
c
c
c
c
-c
c
c
-1
-(
c
t
-*
(
4
4
(
(
-
1
1
1
-
F-2
-------
Table F-1. Daily Calibration Data Summary (Channel A)
Cal
Date ,
27/92
28/92
31/92
31/92
33/92.
34/92
39/92
10/92
11/92
14/92
15/92
16/92
17/92
18/92
21/92
22/92
23/92
24/92
25/92
28/92
29/92
30/92
02/92
06/92
07/92
'08/92
13/92
Julian
Cal
Date
240
241
244
245
247
248
253
254
255
258
259
260
261
262
265
266
267
268
269
272
273
274
276
280
281
282
287
Initial
Zero
A.C.
6.61
2.63
3.79
6.97
5.06
8.83
5.94
3.29
7.10
3.52
4.89
6.04
7.48
5.01
3.39
5.12
7.30
4.28
5.72
4.13
35.49
30.21
8.16
8.88
6.71
6.71
3.17
Final
Zero
A.C.
3.77
3.25
3.79
7.26
5.37
3.26
7.58
9.21
10.81
10.61
2.35
6.04
7.48
5.16
9.02
5.12
7.06
8.83
3.48
4.13
35.49
30.21
3.46
2.71
6.71
6.71
3.17
Initial
Zero
ppmC
0.001797
0.000708
0.001036
0.001908
0.001396
0.002429
0.001633
0.000898
0.001948
0.000966
0.001346
0.001670
0.002012
0.001366
0.000936
0.001408
0.002020
0.001171
0.001576
0.001153
0.009770
0.008300
0.002228
0.002434
0.001831
0.001837
0.000863
Final
Zero
ppmC
0.001026
0.000887
0.001036
0.001979
0.001465
0.000907
0.002096
0.002543
0.003057
0.002926
0.000652
0.001670
0.002012
0.001418
0.002471
0.001408
0.001961
0.002460
0.000963
0.001153
0.009770
0.008300
0.000944
0.000745
0.001831
0.001837
0.000863
Initial
Cal
Factor
0.000272
0.000270
0.000274
0.000274
0.000276
0.000275
0.000275
0.000273
0.000274
0.000275
0.000275
0.000277
0.000269
0.000273
0.000276
0.000275
0.000277
0.000274
0.000276
0.000279
0.000275
0.000275
0.000273
0.000274
0:000273
0.000274
0.000273
Final
Cal
Factor
0.000272
0.000273
0.000274
0.000273
0.000273
0.000279
0.000277
0.000276
0.000283
0.000276
0.000277
0.000277
0.000269
0.000275
0.000274
0.000275
0.000278
0.000279
0.000277
0.000279
0.000275
0.000275
0.000273
0.000275
0.000273
0.000274
0.000273
Cal
Factor
Drift
0.000000
-0.000003
0.000000
0.000001
0.000003
-0.000003
-0.000001
-0.000003
-0.000009
-0.000001
-0.000002
0.000000
0.000000
-0.000002
0.000002
0.000000
-0.000001
-0.000005
-0.000002
0.000000
0.000000
0.000000
-0.000000
-0.000001
0.000000
0.000000
0.000000
Cal
Factor
% Drift
0.020847
-1.249880
0.000000
0.342782
1.237172
-1.252184
-0.514592
-1.039826
-3.119459
-0.301891
-0.664953
0.000000
0.000000
-0.665337
0.754868
0.000000
-0.373181
-1.800275
-0.551584
0.000000
0.000000
0.000000
-0.069122
-0.493879
0.000000
0.000000
0.000000
F-3
-------
Table F-2. Daily Calibration Data Summary (Channel B)
Cal
Date
06/02/92
06/03/92
06/04/92
06/05/92
06/08/92
06/09/92
06/10/92
06/11/92
06/12/92
06/15/92
06/16/92
06/17/92
06/18/92
06/19/92
06/22/92
06/23/92
06/24/92
06/25/92
06/26/92
06/29/92
06/30/92
07/01/92
07/02/92
07/06/92
07/07/92
07/08/92
07/09/92
07/10/92
07/13/92
Julian
Cal
Date
154
155
156
157
160
161
162
163
164
167
168
169
170
171
174
175
176
177
178
181
182
183
184
188
189
190
191
192
195
Initial
Zero
A.C.
4.33
3.67
0.98
1.32
1.18
7.07
4.29
3.24
6.73
4.20
0.79
5.66
4.63
0.93
2.08
3.07
5.56
0.82
4.84
4.40
6.99
4.60
4.33
4.80
1.72
0.97
5.70
10.42
4.55
Final
Zero
A.C.
4.33
3.67
0.98
1.32
1.18
7.07
4.29
3.24
6.73
4.20
0.79
5.66
4.63
0.93
2.08
3.07
5.56
0.82
4.84
4.40
6.99
4.60
4.33
4.80
7.03
0.97
9.85
10.42
4.55
Initial
Zero
ppmC
0.001204
0.001015
0.000273
0.000364
0.000335
0.001976
0.001197
0.000906
0.001852
0.001172
0.000228
0.001590
0.001305
0.000264
0.000584
0.000856
0.001564
0.000231
0.001348
0.001218
0.001944
0.001260
0.001180
0.001328
0.000471
0.000266
0.001545
0.002885
0.001243
Final
Zero
ppmC
0.001204
0.001015
0.000273
0.000364
0.000335
0.001976
0.001197
0.000906
0.001852
0.001172
0.000228
0.001590
0.001305
0.000264
0.000584
0.000856
0.001564
0.000231
0.001348
0.001218
0.001944
0.001260
0.001180
0.001328
0.001935
0.000266
0.002737
0.002885
0.001243
Initial
Cal
Factor
0.000278
0.000277
0.000278
0.000277
0.000284
0.000280
0.000279
0.000280
0.000275
0.000279
0.000288
0.000281
0.000282
0.000285
0.000281
0.000279
0.000281
0.000282
0.000279
0.000277
0.000278
0.000274
0.000273
0.000277
0.000275
0.000276
0.000271
0.000277
0.000274
Final
Cal
Factor
0.000278
0.000277
0.000278
0.000277
0.000284
0.000280
0.000279
0.000280
0.000275
0.000279
0.000288
0.000281
0.000282
0.000285
0.000281
0.000279
0.000281
0.000282
0.000279
0.000277
0.000278
0.000274
0.000273
0.000277
0.000275
0.000276
0.000278
0.000277
0.000274
Cal
Factor
Drift
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
-0.000000
0.000000
-0.000007
0.000000
0.000000
c
Fa
%
0.(
o.c
0.(
0.(
O.I
O.f
0.'
0.
0.
0.
0.
0.
0.
0.
0.
0
0
0
0
0
0
0
0
0
-c
c
-2
c
c
F-4
-------
Table F-2. Daily Calibration Data Summary (Channel B)
Cat
Date *
15/92
16/92
17/92
21/92
27/92
29/92
30/92
31/92
03/92
04/92
05/92
06/92
07/92
10/92
12/92
'13/92
'14/92
'17/92
'19/92
'20/92
'21/92
'24/92
'25/92
'26/92
'27/92
'28/92
'31/92
'01/92
'03/92
Julian
Cal
Date
197
198
199
203
209
211
212
213
216
217
218
219
220
223
225
226
227
230
232
233
234
237
238
239
240
241
244
245
247
Initial
Zero
A.C.
7.29
9.68
10.42
14.78
15.29
14.04
5.81
7.56
8.95
6.47
6.39
3.68
9.38
10.45
5.90
10.06
7.09
10.47
12.00
5.88
6.46
7.63
6.67
4.16
9.36
5.40
11.62
7.09
9.65
Final
Zero
A.C.
7.29
9.68
10.42
14.78
15.29
14.04
5.81
7.56
0.00
9.59
6.93
3.68
5.58
10.45
9.33
10.90
7.09
10.47
12.00
12.05
9.67
7.63
6.67
6.64
6.45
5.17
12.87
5.20
6.67
Initial
Zero
ppmC
0.001990
0.002656
0.002861
0.004028
0.004181
0.003877
0.001602
0.001588
0.001886
0.001352
0.001319
0.000763
0.001958
0.002200
0.001233
0.002086
0.001480
0.002180
0.002551
0.001216
0.001361
0.001595
0.001854
0.001146
0.002543
0.001472
0.003212
0.001943
0.002679
Final
Zero
ppmC
0.001990
0.002656
0.002861
0.004028
0.004181
0.003877
0.001602
0.001588
0.000000
0.002015
0.001449
0.000763
0.001158
0.002200
0.001948
0.002282
0.001480
0.002180
0.002551
0.002494
0.002035
0.001595
0.001854
0.001823
0.001776
0.001395
0.003741
0.001425
0.001834
Initial
Cal
Factor
0.000273
0.000274
0.000275
0.000273
0.000274
0.000276
0.000276
0.000210
0.00021 1
0.000209
0.000207
0.000207
0.000209
0.00021 1
0.000209
0.000207
0.000209
0.000208
0.000213
0.000207
0.000211
0.000209
0.000278
0.000275
0.000272
0.000273
0.000277
0.000274
0.000278
Final
Cal
Factor
0.000273
0.000274
0.000275
0.000273
0.000274
0.000276
0.000276
0.000210
0.000210
0.000210
0.000209
0.000207
0.000208
0.00021 1
0.000209
0.000209
0.000209
0.000208
0.000213
0.000207
0.00021 1
0.000209
0.000278
0.000275
0.000276
0.000270
0.000291
0.000274
0.000275
Cal
Factor
Drift
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000001
-0.000001
-0.000003
0.000000
0.000001
0.000000
0.000000
-0.000002
0.000000
0.000000
0.000000
-0.000000
0.000000
0.000000
0.000000
0.000001
-0.000004
0.000003
-0.000014
-0.000000
0.000002
Cal
Factor
% Drift
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.582858
-0.535905
-1.215426
0.000000
0.469112
0.000000
0.078676
-1.013913
0.000000
0.000000
0.000000
-0.033503
0.117231
0.000000
0.000000
0.219098
-1.442559
1.133507
-5.113906
-0.094796
0.853152
F-5
-------
Table F-2. Daily Calibration Data Summary (Channel B)
Cal
Date
09/04/92
09/08/92
09/09/92
09/10/92
09/11/92
09/14/92
09/15/92
09/16/92
09/17/92
09/18/92
09/21/92
09/22/92
09/23/92
09/24/92
09/25/92
09/28/92
09/29/92
09/30/92
10/02/92
10/06/92
10/07/92
10/08/92
10/13/92
Julian
Cal
Date
248
252
253
254
255
258
259
260
261
262
265
266
267
268
269
272
273
274
276
280
281
282
287
Initial
Zero
A.C.
4.16
6.33
6.02
4.92
6.65
8.60
5.27
6.90
7.67
3.60
9.42
5.79
5.30
3.04
5.77
6.65
42.18
31.47
4.20
6.78
6.03
10.44
1.93
Final
Zero
A.C.
6.72
11.51
5.11
5.97
8.60
5.80
2.02
9.37
7.67
3.60
8.07
5.79
6.06
9.96
12.86
6.65
42.18
31.47
7.10
5.43
6.03
10.44
1.93
Initial
Zero
ppmC
0.001153
0.001745
0.001660
0.001360
0.001840
0.002360
0.001466
0.001908
0.002127
0.000995
0.002577
0.001605
0.001465
0.000840
0.001605
0.001873
0.011795
0.008706
0.001156
0.001851
0.001667
0.002889
0.000521
Final
Zero
ppmC
0.001859
0.003169
0.001402
0.001659
0.002398
0.001604
0.000567
0.002606
0.002127
0.000995
0.002223
0.001605
0.001675
0.002777
0.003547
0.001873
0.011795
0.008706
0.001956
0.001538
0.001667
0.002889
0.000521
Initial
Cal
Factor
0.000278
0.000276
0.000276
0.000276
0.000277
0.000275
0.000278
0.000277
0.000278
0.000276
0.000274
0.000277
0.000277
0.000277
0.000278
0.000282
0.000280
0.000277
0.000275
0.000273
0.000276
0.000277
0.000271
Final
Cal
Factor
0.000277
0.000275
0.000274
0.000278
0.000279
0.000277
0.000282
0.000278
0.000278
0.000276
0.000275
0.000277
0.000277
0.000279
0.000276
0.000282
0.000280
0.000277
0.000276
0.000283
0.000276
0.000277
0.000271
Cal
Factor
Drift
0.000001
0.000000
0.000002
-0.000001
-0.000002
-0.000002
-0.000003
-0.000002
0.000000
0.000000
-0.000002
0.000000
0.000000
-0.000002
0.000002
0.000000
0.000000
0.000000
-0.000000
-0.000010
0.000000
0.000000
0.000000
(
Fa
%
0..
0.
0.
-0.
-0.
-0.
-1.
-0.
0,
0
-0
0
0
-0
0
0
0
0
-0
-3
c
c
c
F-6
-------
Table F-3. Daily Calibration Data Summary (Channel C)
Cal
Date
'02/92
'03/92
'04/92
'05/92
'08/92
'09/92
'10/92
'11/92
'12/92
'15/92
'16/92
'17/92
'18/92
'19/92
'22/92
'23/92
'24/92
'25/92
'26/92
'29/92
'30/92
'01/92
'02/92
'06/92
'07/92
/08/92
'09/92
'10/92
'13/92
Julian
Cal
Date
154
155
156
157
160
161
162
163
164
167
168
169
170
171
174
175
176
177
178
181
182
183
184
188
189
190
191
192
195
Initial
Zero
A.C.
2.08
0.00
0.00
0.00
2.37
0.52
2.74
1.29
0.30
1.50
1.99
0.82
0.00
0.29
4.17
0.40
1.21
0.00
1.78
0.91
1.39
3.90
1.66
0.00
0.94
1.27
1.50
0.36
0.61
Final
Zero
A.C.
2.08
0.00
0.00
0.00
2.37
0.52
2.74
1.29
0.30
1.50
1.99
0.82
0.00
0.29
4.17
0.40
1.21
0.00
1.78
0.91
1.39
3.90
1.66
0.00
0.00
4.89
0.00
0.36
1.16
Initial
Zero
ppmC
0.000568
0.000000
0.000000
0.000000
0.000653
0.000141
0.000746
0.000352
0.000081
0.000408
0.000554
0.000225
0.000000
0.000078
0.001165
0.000110
0.000339
0.000000
0.000492
0.000252
0.000379
0.001057
0.000448
0.000000
0.000253
0.000343
0.000404
0.000096
0.000165
Final
Zero
ppmC
0.000568
0.000000
0.000000
0.000000
0.000653
0.000141
0.000746
0.000352
0.000081
0.000408
0.000554
0.000225
0.000000
0.000078
0.001165
0.000110
0.000339
0.000000
0.000492
0.000252
0.000379
0.001057
0.000448
0.000000
0.000000
0.001328
0.000000
0.000096
0.000313
Initial
Cal
Factor
0.000274
0.000276
0.000274
0.000273
0.000275
0.000274
0.000273
0.000274
0.000271
0.000272
0.000279
0.000276
0.000275
0.000275
0.000279
0.000278
0.000281
0.000280
0.000276
0.000276
0.000273
0.000271
0.000270
0.000269
0.000269
0.000270
0.000270
0.000269
0.000270
Final
Cal
Factor
0.000274
0.000276
0.000274
0.000273
0.000275
0.000274
0.000273
0.000274
0.000271
0.000272
0.000279
0.000276
0.000275
0.000275
0.000279
0.000278
0.000281
0.000280
0.000276
0.000276
0.000273
0.000271
0.000270
0.000269
0.000272
0.000272
0.000273
0.000269
0.000271
Cal
Factor
Drift
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
-0.000003
-0.000002
-0.000003
0.000000
-0.000001
Cal
Factor
% Drift
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
o.oooooo
0.000000
0.000000
0.000000
0.000000
0.000000
-0.963655
-0.769565
-1.262180
0.000000
•0.469840
F-7
-------
Table F-3. Daily Calibration Data Summary (Channel C)
Cal
Date
07/14/92
07/15/92
07/16/92
07/17/92
07/20/92
07/21/92
07/22/92
07/23/92
07/24/92
07/25/92
07/26/92
07/27/92
07/29/92
07/30/92
07/31/92
08/03/92
08/04/92
08/05/92
08/06/92
08/07/92
08/10/92
08/11/92
08/12/92
08/13/92
08/14/92
08/17/92
08/18/92
08/19/92
08/20/92
Julian
Cal
Date
196
197
198
199
202
203
204
205
206
207
208
209
211
212
213
216
217
218
219
220
223
224
225
226
227
230
231
232
233
Initial
Zero
A.C.
0.71
0.62
0.00
0.12
0.92
0.00
0.09
0.53
0.30
0.12
0.00
0.00
1.53
0.00
0.80
6.69
0.00
0.00
0.39
0.00
0.60
0.40
0.29
4.37
1.08
0.00
2.18
0.00
0.45
Final
Zero
A.C.
0.71
0.62
0.00
0.00
4.79
0.00
0.15
0.53
0.30
0.12
0.00
0.00
3.06
0.00
4.53
1.29
0.27
0.00
5.27
0.86
0.60
5.16
3.36
1.92
0.00
0.00
0.00
0.00
0.64
Initial
Zero
ppmC
0.000190
0.000164
0.000000
0.000032
0.000247
0.000000
0.000023
0.000141
0.000081
0.000031
0.000000
0.000000
0.000415
0.000000
0.000166
0.001374
0.000000
0.000000
0.000080
0.000000
0.000125
0.000080
0.000058
0.000887
0.000219
0.000000
0.000445
0.000000
0.000092
Final
Zero
ppmC
0.000190
0.000164
0.000000
0.000000
0.001294
0.000000
0.000039
0.000141
0.000081
0.000031
0.000000
0.000000
0.000829
0.000000
0.000942
0.000269
0.000054
0.000000
0.001090
0.000178
0.000125
0.001062
0.000695
0.000394
0.000000
0.000000
0.000000
0.000000
0.000130
Initial
Cal
Factor
0.000267
0.000267
0.000267
0.000269
0.000268
0.000267
0.000269
0.000269
0.000270
0.000267
0.000271
0.000270
0.000271
0.000267
0.000208
0.000206
0.000203
0.000203
0.000206
0.000207
0.000208
0.000204
0.000204
0.000203
0.000203
0.000206
0.000205
0.000204
0.000205
Final
Cal
Factor
0.000267
0.000267
0.000267
0.000269
0.000270
0.000267
0.000268
0.000269
0.000270
0.000267
0.000271
0.000270
0.000271
0.000271
0.000208
0.000209
0.000205
0.000208
0.000207
0.000207
0.000208
0.000206
0.000207
0.000206
0.000204
0.000206
0.000205
0.000206
0.000205
Cal
Factor F
Drift "X
0.000000 C
0.000000 C
0.000000 C
-0.000000 -C
-0.000002 -C
0.000000 C
0.000002 C
0.000000 C
0.000000 C
0.000000 C
0.000000 (
0.000000 (
0.000001 (
-0.000004
-0.000000 -(
-0.000004
-0.000001 4
-0.000005 -:
-0.000001 4
0.000000 t
0.000000 i
-0.000002
-0.000003
-0.000002
-0.000001
0.000000
-0.000000
-0.000002
-0.000000
F-8
-------
Table F-3. Daily Calibration Data Summary (Channel C)
Cal
Date *
21/92
24/92
25/92
26/92
27/92
28/92
31/92
31/92
32/92
33/92
34/92
38/92
39/92
10/92
11/92
14/92
15/92
16/92
17/92
18/92
21/92
22/92
23/92
24/92
25/92
28/92
29/92
30/92
02/92
Julian
Cal
Date
234
237
238
239
240
241
244
245
246
247
248
252
253
254
255
258
259
260
261
262
265
266
267
268
269
272
273
274
276
Initial
Zero
A.C.
0.49
0.37
0.00
0.00
1.34
0.58
2.29
1.16
0.00
1.44
4.05
1.51
0.00
0.65
0.00
1.20
0.87
0.00
0.00
0.60
1.63
0.58
0.00
0.39
0.99
7.35
21.14
21.65
0.78
Final
Zero
A.C.
0.00
3.38
0.00
4.01
2.36
0.00
1.70
2.63
0.00
1.51
1.05
4.90
2.29
5.20
3.18
0.00
0.00
2.64
0.00
0.00
4.04
3.99
0.39
1.78
1.33
7.35
21.14
21.65
2.23
Initial
Zero
ppmC
0.000099
0.000075
0.000000
0.000000
0.000358
0.000155
0.000614
0.000310
0.000000
0.000386
0.001102
0.000414
0.000000
0.000174
0.000000
0.000320
0.000235
0.000000
0.000000
0.000160
0.000440
0.000157
0.000000
0.000105
0.000270
0.002041
0.005766
0.005835
0.000207
Final
Zero
ppmC
0.000000
0.000694
0.000000
0.001083
0.000636
0.000000
0.000458
0.000709
0.000000
0.00041 1
0.000286
0.001327
0.000621
0.001411
0.000867
0.000000
0.000000
0.000720
0.000000
0.000000
0.001103
0.001093
0.000106
0.000489
0.000363
0.002041
0.005766
0.005835
0.000605
Initial
Cal
Factor
0.000205
0.000204
0.000271
0.000268
0.000268
0.000267
0.000269
0.000268
0.000268
0.000269
0.000272
0.000275
0.000270
0.000269
0.000270
0.000267
0.000271
0.000272
0.000273
0.000269
0.000270
0.000273
0.000273
0.000274
0.000273
0.000278
0.000273
0.000270
0.000267
Final
Cal
Factor
0.000206
0.000205
0.000271
0.000270
0.000269
0.000268
0.000270
0.000270
0.000268
0.000273
0.000273
0.000271
0.000272
0.000272
0.000273
0.000273
0.000272
0.000273
0.000273
0.000272
0.000273
0.000274
0.000273
0.000276
0.000273
0.000278
0.000273
0.000270
0.000271
Cal
Factor
Drift
-0.000001
-0.000001
0.000000
-0.000002
-0.000001
-0.000001
-0.000002
-0.000002
0.000000
-0.000004
-0.000000
0.000004
-0.000002
-0.000002
-0.000003
-0.000007
-0.000000
-0.000001
0.000000
-0.000002
-0.000003
-0.000002
0.000001
-0.000002
-0.000000
0.000000
0.000000
0.000000
-0.000005
Cal
Factor
% Drift
-0.640094
-0.534804
0.000000
-0.784911
-0.407235
-0.190950
-0.567994
-0.771291
0.000000
-1.611639
-0.098368
1.591232
-0.816101
-0.919696
-1.259891
-2.497720
•0.109588
-0.280529
0.000000
-0.852664
-1.251675
-0.637678
0.225410
-0.690368
-0.020065
0.000000
0.000000
0.000000
-1.693554
F-9
-------
Table F-3. Daily Calibration Data Summary (Channel C)
Cal
Date
10/05/92
10/06/92
10/07/92
10/08/92
10/12/92
10/13/92
10/14/92
10/15/92
10/16/92
Julian
Cal
Date
279
280
281
282
286
287
288
289
290
Initial
Zero
A.C.
1.89
1.37
5.15
5.17
0.65
1.05
0.75
0.61
1.63
Final
Zero
A.C.
1.89
1.37
5.15
5.17
0.65
1.05
0.75
0.61
1.63
Initial
Zero
ppmC
0.000502
0.000370
0.001375
0.001385
0.000170
0.000281
0.000201
0.000160
0.000439
Final
Zero
ppmC
0.000502
0.000370
0.001375
0.001385
0.000170
0.000281
0.000201
0.000160
0.000439
Initial
Cal
Factor
0.000266
0.000270
0.000267
0.000268
0.000263
0.000267
0.000268
0.000265
0.000270
Final
Cal
Factor
0.000266
0.000270
0.000267
0.000268
0.000263
0.000267
0.000268
0.000265
0.000270
Cat
Factor
Drift
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
C
Fa
%
o.c
0.(
o.c
o.c
0.(
O.I
O.I
OJ
O.i
F-10
-------
Table F-4. Daily Calibrationa Data Summary (Channel D)
Cal
Date
02/92
03/92
04/92
05/92
08/92
09/92
10/92
11/92
12/92
15/92
16/92
17/92
18/92
19/92
22/92
23/92
24/92
25/92
26/92
29/92
30/92
01/92
02/92
06/92
07/92
08/92
09/92
10/92
13/92
Julian
Cal
Date
154
155
156
157
160
161
162
163
164
167
168
169
170
171
174
175
176
177
178
181
182
183
184
188
189
190
191
192
195
Initial
Zero
A.C.
1.98
1.36
0.89
1.17
4.58
0.00
1.93
2.19
0.00
2.88
0.00
0.87
2.20
0.00
0.81
3.04
2.57
5.65
3.15
0.14
1.97
0.55
0.00
0.00
0.00
1.05
0.00
0.09
0.57
Final
Zero
A.C
1.98
1.36
0.89
1.17
4.58
0.00
1.93
2.19
0.00
2.88
0.00
0.87
2.20
0.00
0.81
3.04
2.57
5.65
3.15
0.14
1.97
0.55
0.00
0.00
0.75
1.72
2.09
0.09
5.52
Initial
Zero
ppmC
0.000542
0.000374
0.000244
0.000318
0.001263
0.000000
0.000527
0.000602
0.000000
0.000788
0.000000
0.000240
0.000608
0.000000
0.000221
0.000829
0.000706
0.001538
0.000881
0.000038
0.000544
0.000152
0.000000
0.000000
0.000000
0.000286
0.000000
0.000025
0.000154
Final
Zero
ppmC
0.000542
0.000374
0.000244
0.000318
0.001263
0.000000
0.000527
0.000602
0.000000
0.000788
0.000000
0.000240
0.000608
0.000000
0.000221
0.000829
0.000706
0.001538
0.000881
0.000038
0.000544
0.000152
0.000000
0.000000
0.000207
0.000476
0.000578
0.000025
0.001497
Initial
Cal
Factor
0.000275
0.000275
0.000274
0.000273
0.000276
0.000275
0.000274
0.000275
0.000271
0.000273
0.000279
0.000277
0.000276
0.000276
0.000274
0.000273
0.000275
0.000273
0.000280
0.000282
0.000276
0.000276
0.000275
0.000271
0.000275
0.000274
0.000275
0.000275
0.000271
Final
Cal
Factor
0.000275
0.000275
0.000274
0.000273
0.000276
0.000275
0.000274
0.000275
0.000271
0.000273
0.000279
0.000277
0.000276
0.000276
0.000274
0.000273
0.000275
0.000273
0.000280
0.000282
0.000276
0.000276
0.000275
0.000271
0.000278
0.000276
0.000276
0.000275
0.000271
Cal
Factor
Drift
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
o.oooooo
0.000000
0.000000
0.000000
0.000000
0.000000
-0.000003
-0.000003
-0.000002
0.000000
-0.000001
Cal
Factor
% Drift
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
-1.092018
-0.935503
-0.554654
0.000000
-0.223776
F-ll
-------
Table F-4. Daily Calibrationa Data Summary (Channel D)
Cal
Date
07/14/92
07/15/92
07/16/92
07/17/92
07/20/92
07/21/92
07/22/92
07/23/92
07/24/92
07/25/92
07/26/92
07/27/92
07/29/92
07/30/92
07/31/92
08/03/92
08/04/92
08/05/92
08/06/92
08/07/92
08/10/92
08/11/92
08/12/92
08/13/92
08/14/92
08/17/92
08/18/92
08/19/92
08/20/92
Julian
Cal
Date
196
197
198
199
202
203
204
205
206
207
208
209
211
212
213
216
217
218
219
220
223
224
225
226
227
230
231
232
233
Initial
Zero
A.C.
2.41
0.00
0.67
0.00
0.00
0.47
0.00
0.00
0.53
0.10
1.13
0.00
1.41
0.00
0.94
4.20
0.60
0.00
0.16
0.29
1.25
2.41
0.00
0.00
1.60
0.97
1.00
3.57
0.00
Final
Zero
A.C
2.41
0.00
0.67
4.50
0.00
0.47
1.32
0.00
0.53
0.10
1.13
0.00
4.19
0.00
0.94
0.00
0.61
0.00
2.08
0.00
1.31
7.15
0.00
0.00
0.00
0.97
2.91
2.56
1.16
Initial
Zero
ppmC
0.000649
0.000000
0.000180
0.000000
0.000000
0.000127
0.000000
0.000000
0.000142
0.000026
0.000322
0.000000
0.000385
0.000000
0.000196
0.000880
0.000125
0.000000
0.000033
0.000060
0.000256
0.000494
0.000000
0.000000
0.000327
0.000197
0.000206
0.000730
0.000000
Final
Zero
ppmC
0.000649
0.000000
0.000180
0.001219
0.000000
0.000127
0.000358
0.000000
0.000142
0.000026
0.000322
0.000000
0.001140
0.000000
0.000196
0.000000
0.000127
0.000000
0.000431
0.000000
0.000273
0.001483
0.000000
0.000000
0.000000
0.000197
0.000605
0.000534
0.000241
Initial
Cal
Factor
0.000270
0.000268
0.000268
0.000271
0.000270
0.000271
0.000272
0.000274
0.000271
0.000274
0.000285
0.000274
0.000273
0.000266
0.000210
0.000209
0.000208
0.000206
0.000208
0.000208
0.000206
0.000205
0.000207
0.000205
0.000205
0.000205
0.000206
0.000205
0.000206
Final
Cal
Factor
0.000270
0.000268
0.000268
0.000271
0.000273
0.000271
0.000272
0.000274
0.000271
0.000274
0.000285
0.000274
0.000272
0.000266
0.000210
0.000210
0.000208
0.000206
0.000208
0.000208
0.000208
0.000208
0.000207
0.000206
0.000205
0.000205
0.000208
0.000208
0.000208
Cal
Factor
Drift
0.000000
0.000000
0.000000
-0.000000
-0.000003
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000001
0.000000
0.000000
-0.000000
0.000000
-0.000000
0.000000
0.000000
-0.000003
-0.000003
-0.000001
-0.000001
0.000000
0.000000
-0.000002
-0.000004
-0.000002
c
Fa
%
0.(
0.(
0.(
-O.I
-1.:
O.I
0.
0.'
0.
0.
0.
0.
0.
0.
0.
-0.
0.
-0.
0
0
-1
-1
-0
-0
0
0
-0
-1
•1
F-12
-------
Table F-4. Daily Calibrationa Data Summary (Channel D)
Cal
Date
21/92
24/92
25/92
26/92
27/92
28/92
31/92
01/92
02/92
'03/92
04/92
'08/92
'09/92
'10/92
'1 1 /92
'14/92
'15/92
'16/92
'17/92
'18/92
'21/92
'22/92
'23/92
'24/92
'25/92
'28/92
'29/92
'30/92
'02/92
Julian
Cal
Date
234
237
238
239
240
241
244
245
246
247
248
252
253
254
255
258
259
260
261
262
265
266
267
268
269
272
273
274
276
Initial
Zero
A.C.
3.57
1.51
3.42
0.81
0.42
3.83
6.00
3.68
2.02
2.21
1.94
7.13
0.00
1.61
5.57
1.74
3.22
0.95
0.61
4.48
2.70
2.64
1.31
4.97
3.98
3.59
21.53
21.63
5.91
Final
Zero
A.C
2.58
0.00
3.42
5.62
0.58
1.29
5.69
7.17
2.02
6.89
0.00
4.67
4.39
7.15
5.36
4.43
0.00
1.49
0.61
0.16
1.79
5.76
3.63
2.60
3.21
3.59
21.53
21.63
3.45
Initial
Zero
ppmC
0.000733
0.000308
0.000937
0.000218
0.000113
0.001029
0.001623
0.000994
0.000546
0.000599
0.000531
0.001964
0.000000
0.000435
0.001506
0.000474
0.000873
0.000259
0.000166
0.001210
0.000736
0.000720
0.000358
0.001365
0.001089
0.000986
0.005904
0.005843
0.001590
Final
Zero
ppmC
0.000536
0.000000
0.000937
0.001529
0.000156
0.000345
0.001551
0.001949
0.000546
0.001899
0.000000
0.001269
0.001194
0.001940
0.001462
0.001201
0.000000
0.000406
0.000166
0.000043
0.000489
0.001587
0.000996
0.000716
0.000884
0.000986
0.005904
0.005843
0.000936
Initial
Cal
Factor
0.000206
0.000205
0.000274
0.000271
0.000272
0.000269
0.000270
0.000271
0.000270
0.000272
0.000274
0.000276
0.000272
0.000270
0.000270
0.000273
0.000271
0.000274
0.000275
0.000270
0.000273
0.000273
0.000273
0.000275
0.000274
0.000275
0.000274
0.000270
0.000269
Final
Cal
Factor
0.000208
0.000207
0.000274
0.000272
0.000271
0.000269
0.000273
0.000272
0.000270
0.000276
0.000277
0.000272
0.000272
0.000272
0.000273
0.000271
0.000272
0.000273
0.000275
0.000271
0.000273
0.000276
0.000274
0.000275
0.000276
0.000275
0.000274
0.000270
0.000272
Cal
Factor
Drift
-0.000003
-0.000002
0.000000
-0.000002
0.000001
-0.000000
-0.000002
-0.000002
0.000000
-0.000004
-0.000003
0.000004
-0.000001
-0.000002
-0.000003
0.000001
-0.000001
0.000002
0.000000
-0.000001
-0.000000
-0.000003
-0.000001
-0.000001
-0.000002
0.000000
0.000000
0.000000
-0.000003
Cal
Factor
% Drift
-1.282082
-1.053166
0.000000
-0.569480
0.523855
-0.021671
-0.892551
-0.576051
0.000000
-1.381388
-0.935248
1.333280
-0.214943
-0.579074
-0.952549
0.545389
-0.514942
0.626497
0.000000
-0.341539
-0.124188
-0.949977
-0.460442
-0.250487
-0.701458
0.000000
0.000000
0.000000
-0.934183
F-13
-------
Table F-4. Daily Calibrationa Data Summary (Channel D)
Cat
Date
10/05/92
10/06/92
10/07/92
10/08/92
10/12/92
10/13/92
10/14/92
10/15/92
10/16/92
Julian
Cat
Date
279
280
281
282
286
287
288
289
290
Initial
Zero
A.C.
2.61
0.17
1.70
4.22
0.71
0.00
0.27
2.05
4.81
Final
Zero
A.C
2.61
0.17
1.70
4.22
0.71
0.00
0.27
2.05
4.81
Initial
Zero
ppmC
0.000699
0.000046
0.000456
0.001136
0.000187
0.000000
0.000072
0.000554
0.001298
Final
Zero
ppmC
0.000699
0.000046
0.000456
0.001136
0.000187
0.000000
0.000072
0.000554
0.001298
Initial
Cal
Factor
0.000268
0.000272
0.000269
0.000269
0.000266
0.000268
0.000267
0.000270
0.000270
Final
Cal
Factor
0.000268
0.000272
0.000269
0.000269
0.000266
0.000268
0.000267
0.000270
0.000270
Cal
Factor
Drift
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
i
0.000000
0.000000
J
Fi
%
0.
0.
0
0
0
0
0
0
0
F-14
-------
APPENDIX G
1992 NMOC IN-HOUSE QUALITY CONTROL SAMPLES
-------
Table G-1. NMOC In-house Quality Control Samples (Channel A)
Date
Analyzed
10-Jul-92
13-Jul-92
14-Jul-92
16-Jul-92
20-JUI-92
21-JUI-92
27-JUI-92
29-JUI-92
04-Aug-92
07-Aug-92
10-Aug-92
11-Aug-92
12-Aug-92
14-Aug-92
17-Aug-92
18-Aug-92
19-Aug-92
24-Aug-92
25-Aug-92
26-Aug-92
04-Sep-92
Julian
Date
Analyzed
192
195
196
198
202
203
209
211
217
220
223
224
225
227
230
231
232
237
238
239
248
QC
ID
Number
1170
1359
1204
1242
1292
1313
1410
1481
1578
1652
1696
1723
1744
1791
1825
1797
1878
1958
2000
2035
• 2212
Calculated
NMOC
ppmC
1.052
0.869
1.111
1.411
0.966
0.985
0.894
0.865
0.767
0.754
0.000
1.157
1.077
1.022
0.974
0.693
0.721
0.654
0.607
0.703
0.671
Measured
NMOC
ppmC
1.064
0.950
1.120
1.380
0.985
1.020
0.973
0.886
0.796
0.772
0.015
1.170
1.300
1.040
1.064
0.732
0.795
0.703
0.597
0.696
0.676
NMOC
Bias
ppmC
0.012
0.081
0.009
-0.031
0.019
0.035
0.079
0.021
0.029
0.018
0.015
0.013
0.223
0.018
0.090
0.039
0.074
0.049
-0.010
-0.007
0.005
NMOC
Percent
Bias
1.141
9.321
0.810
-2.197
1.967
3.553
8.837
2.428
3.781
2.387
1.124
20.706
1.761
9.240
5.628
10.264
7.492
-1.647
-0.996
0.745
G-1
-------
Table G-2. NMOC In-house Quality Control Samples (Channel B)
Date
Analyzed
10-Jul-92
13-JUI-92
16-Jul-92
21-Jul-92
27-Jul-92
29-JUI-92
04-AUQ-92
07-AUQ-92
10-Aug-92
12-Aug-92
14-Aug-92
17-Aug-92
19-Aug-92
24-Aug-92
25-Aug-92
26-Aug-92
04-Sep-92
Julian
Date
Analyzed
192
195
198
203
209
211
217
220
223
225
227
230
232
237
238
239
248
QC Calculated Measured
ID NMOC NMOC
Number ppmC ppmC
1170
1359
1242
1313
1410
1481
1578
1652
1696
1744
1791
1825
1878
1958
2000
2035
2212
1.052
0.869
1.411
0.985
0.894
0.865
0.767
0.754
0.000
1.077
1.022
0.974
0.721
0.654
0.607
0.703
0.671
1.083
0.905
1.466
1.020
0.973
0.887
0.814
0.787
0.034
1.280
1.040
1.010
0.772
0.727
0.602
0.716
0.692
NMOC
Bias
ppmC
0.031
0.036
0.055
0.035
0.079
0.022
0.047
0.033
0.034
0.203
0.018
0.036
0.051
0.073
-0.005
0.013
0.021
NMOC
Percent
Bias
2.947
4.143
3.898
3.553
8.837
2.543
6.128
4.377
18.849
1.761
3.696
7.074
11.162
-0.824
1.849
3.130
G-2
-------
Table G-3. NMOC In-house Quality Control Samples (Channel C)
Date
Analyzed
10-Jul-92
13-JUI-92
14-JUI-92
16-JUI-92
20-Jul-92
21-JUI-92
27-Jul-92
29-JUI-92
30-Jul-92
04-AUQ-92
07-AUQ-92
10-Aug-92
11-Aug-92
12-Aug-92
14-Aug-92
17-Aug-92
18-Aug-92
19-Aug-92
24-Aug-92
25-Aug-92
26-Aug-92
04-Sep-92
Julian
Date
Analyzed
192
195
196
198
202
203
209
211
212
217
220
223
224
225
227
230
231
232
237
238
239
248
QC Calculated Measured
ID NMOC NMOC
Number ppmC ppmC
1170
1359
1204
1242
1292
1313
1410
1481
1506
1578
1652
1696
1723
1744
1791
1825
1797
1878
1958
2000
2035
2212
1.052
0.869
1.111
1.411
0.966
0.985
0.894
0.865
0.755
0.767
0.754
0.000
1.157
1.077
1.022
0.974
0.693
0.721
0.654
0.607
0.703
0.671
1.040
0.904
1.100
1.400
0.955
1.010
0.897
0.881
0.760
0.784
0.747
0.005
1.170
1.160
1.040
0.992
0.746
0.741
0.711
0.592
0.690
0.652
NMOC
Bias
ppmC
-0.012
0.035
-0.011
-0.011
-0.011
0.025
0.003
0.016
0.005
0.017
-0.007
0.005
0.013
0.083
0.018
0.018
0.053
0.020
0.057
-0.015
-0.013
-0.019
NMOC
Percent
Bias
-1.141
4.028
-0.990
-0.780
-1.139
2.538
0.336
1.850
0.662
2.216
-0.928
1.124
7.707
1.761
1.848
7.648
2.774
8.716
-2.471
-1.849
-2.832
G-3
-------
Table G-4. NMOC In-house Quality Control Samples (Channel D)
Date
Analyzed
10-Jul-92
13-Jul-92
14-JUI-92
16-JUI-92
20-JUI-92
21-JUI-92
27-JUI-92
29-JUI-92
SO-Jul-92
04-AUQ-92
07-Aug-92
IO-Aug-92
11-Aug-92
12-Aug-92
14-Aug-92
17-Aug-92
18-Aug-92
19-Aug-92
24-Aug-92
25-Aug-92
26-Aug-92
04-Sep-92
Julian
Date
Analyzed
192
195
196
198
202
203
209
211
212
217
220
223
224
225
227
230
231
232
237
238
239
248
QC Calculated Measured
ID NMOC NMOC
Number ppmC ppmC
1170
1359
1204
1242
1292
1313
1410
1481
1506
1578
1652
1696
1723
1744
1791
1825
1797
1878
1958
2000
2035
2212
1.052
0.869
1.111
1.411
0.966
0.985
0.894
0.865
0.755
0.767
0.754
0.000
1.157
1.077
1.022
0.974
0.693
0.721
0.654
0.607
0.703
0.671
1.030
0.872
1.090
1.382
0.937
1.020
0.888
0.838
0.768
0.764
0.742
0.004
1.150
1.200
1.030
0.998
0.716
0.787
0.721
0.601
0.682
0.661
NMOC
Bias
ppmC
-0.022
0.003
-0.021
-0.029
-0.029
0.035
-0.006
-0.027
0.013
-0.003
-0.012
0.004
-0.007
0.123
0.008
0.024
0.023
0.066
0.067
-0.006
-0.021
-0.010
NMOC
Percent
Bias
-2.091
0.345
-1.890
-2.055
-3.002
3.553
-0.671
-3.121
1.682
-0.391
-1.592
-0.605
11.421
0.783
2.464
3.319
9.154
10.245
-0.988
-2.987
-1.490
G-4
-------
APPENDIX H
1992 MULTIPLE DETECTOR SPECIATED THREE-HOUR SITE DATA SUMMARIES
-------
TABLE H-l. MULTIPLE DETECTOR SPECIATED UATMP DATA SUMMARY FOR B1AL
Sample Date
Sample ID
Compound
Acetylene
Propylene
Chloromethane
Vinyl Chloride
1,3-Butadiene
Bromomethane
Chl oroethane
Methyl ene Chloride
trans-1 ,2-Di chl oroethyl ene
1 , 1-Di chl oroethane
Chloroprene
Bromochl oromethane
Chloroform
1,2-Di chl oroethane
1,1, 1-Trl chl oroethane
Benzene
Carbon tetrachloride
1,2-DI chl oropropane
Bromodi chl oromethane
Tri chl oroethyl ene
c i s-1 , 3-Di chl oropropyl ene
trans-1 ,3-Dichloropropylene
1 , 1 , 2-Tn chl oroethane
Toluene
Di bromochl oromethane
n-Octane
Tetrachl oroethyl ene
Chlorobenzene
Ethyl benzene
ti/p-Xyl ene/Bromof orm
Styrene
o-Xyl ene/ 1,1,2, 2-Tetrachl oroethane
•n-Di chlorobenzene
p-Di chlorobenzene
o-Di chlorobenzene
8/12/92
1977
9/01/92
2192
9/10/92
2320
Concentration,
<1.00
1.08
<0.20
<0.20
<0.10
<0.20
<0.10
1.22
<0.04
0.25
<0.06
<0.003
0.14
1.08
0.54
0.63
0.12
<0.04
<0.001
0.05
<0.04
<0.04
<0.04
1.55
<0.001
<0.03
0.03
0.04
0.24
1.19
0.11
0.57
0.11
0.08
0.08
(H)
(M)
(L)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(L)
(H)
(H)
(L)
(L)
(L)
(H)
(L)
(M)
<1.00
3.64
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
1.05
<0.06
<0.003
0.25
<0.04
1.47
2.11
0.13
<0.04
<0.001
0.13
<0.04
<0.04
<0.04
4.82
<0.001
<0.03
0.10
<0.02
0.96
4.99
0.64
2.53
0.14
0.11
0.15
(L)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(L)
(H)
(L)
(M)
(L)
(M)
(H)
(H)
<1.00
4.36
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
1.08
<0.06
<0.003
0.27
4.71
1.36
2.24
0.14
<0.04
<0.001
0.13
<0.04
<0.04
<0.04
5.58
<0.001
<0.03
0.19
0.09
1.03
5.17
0.69
2.66
0.12
0.14
0.14
ppbv
(H)
(L)
(H)
(L)
(L)
(L)
(L)
(L)
(H)
(H)
(H)
(H)
(L)
(M)
(L)
(M)
(H)
(H)
9/15/92
2378D
<1.00
2.30
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
0.44
<0.06
<0.003
0.26
<0.04
0.95
1.03
0.14
<0.04
<0.001
0.14
<0.04
<0.04
<0.04
2.61
<0.001
<0.03
0.11
0.07
0.72
3.28
0.30
1.43
0.14
0.10
0.11
(H)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(H)
(H)
(H)
(L)
(H)
(L)
(H)
(L)
(L)
9/15/92
2379D
<1.00
2.45
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
0.44
<0.06
<0.003
0.22
<0.04
0.92
1.00
0.13
<0.04
<0.001
<0.004
<0.04
<0.04
<0.04
2.63
<0.001
<0.03
0.10
<0.02
0.70
3.24
0.27
1.39
<0.02
0.05
0.08
(H)
(L)
(L)
(L)
(H)
(L)
(H)
(L)
(H)
(L)
(H)
(L)
(H)
(L)
(H) High confidence level
0 Duplicate sample
(M) Medium confidence level
(L) Low confidence level
(Continued)
H-l
-------
TABLE H-l. B1AL (Continued)
Sample Date
Sample ID
Compound
Acetylene
Propylene
Chloromethane
Vinyl Chloride
1,3-Butadiene
Bromomethane
Chl oroethane
Methyl ene Chloride
trans-1 , 2-Di chl oroethyl ene
1,1-Dichloroethane
Chloroprene
Bromochl oromethane
Chloroform
1, 2-Di chl oroethane
1 , 1 , 1-Tri chl oroethane
Benzene
Carbon tetrachloride
1 , 2-Di chl oropropane
Bromodi chl oromethane
Tri chl oroethyl ene
cis-1, 3-Di chl oropropyl ene
trans-1 , 3-Di chl oropropyl ene
1 , 1 , 2-Tri chl oroethane
Toluene
Di bromochl oromethane
n-Octane
Tetrachl oroethyl ene
Chlorobenzene
Ethyl benzene
m/p-Xyl ene/Bromoform
Styrene
o-Xyl ene/ 1,1,2, 2-Tetracnl oroethane
m-Di chlorobenzene
p-Di chlorobenzene
o-Di chlorobenzene
9/15/92
2379R
9/16/92
1410
9/18/92
2462
9/23/92
2515
9/29/92
2595
Concentration, ppbv
<1.00
2.20
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
0.44
<0.06
<0.003
0.21
3.06
0.83
0.98
0.11
1.14
<0.001
0.10
<0.04
<0.04
<0.04
2.45
<0.001
<0.03
0.09
<0.02
0.65
3.01
0.24
1.27
0.09
0.06
<0.02
(L)
U)
(L)
(L)
(L)
(H)
(L)
(L)
(L)
(H)
(H)
(H)
(L)
(M)
U)
(D
(H)
<1.00
4.82
0.89
<0.20
<0.10
<0.20
<0.10
4.52
<0.04
0.68
<0.06
<0.003
0.17
<0.04
1.11
1.60
0.13
<0.04
<0.001
0.08
<0.04
<0.04
<0.04
4.04
<0.001
<0.03
0.12
0.11
1.00
4.92
0.54
2.26
<0.02
<0.09
<0.02
(L)
(L)
(M)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(L)
(M)
(H)
(L)
(M)
(L)
<1.00
1.41
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
0.64
<0.06
<0.003
0.14
0.82
0.70
0.69
0.13
<0.04
<0.001
0.09
<0.04
<0.04
<0.04
1.80
<0.001
<0.03
0.09
0.05
0.28
1.33
0.20
0.57
0.13
0.08
0.13
(H)
(L)
(L)
(L)
(H)
(H)
(L)
(L)
(H)
(L)
(H)
(H)
(L)
(M)
(L)
(H)
(H)
(M)
<1.00
0.56
0.42
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
0.12
<0.06
<0.003
0.09
0.39
0.60
0.36
0.12
<0.04
<0.001
0.07
<0.04
<0.04
<0.04
1.30
<0.001
<0.03
0.06
0.02
0.14
0.6S
0.11
0.30
0.09
0.05
0.08
(L)
(L)
(L)
(L)
(L)
(M)
(H)
(L)
(L)
(H)
(M)
(H)
(H)
(I)
(M)
(L)
(L)
(M)
(M)
<1.
0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
0.
<0.
<0.
0.
<0.
0,
0,
0,
<0,
<0
0
<0
<0
<0
0
<0
<0
0
<0
0
0
0
0
<0
0
<0
00
82
20
20
10
20
10
11
04
16
06
003
07
.04
,47
,36
.12
.04
.001
.04
.04
.04
.04
.77
.001
.03
.68
.02
.12
.55
.04
.30
.02
.02
.02
(H)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(U
(H)
(L)
(L)
(L)
(H)
(H) High confidence level
R Replicate analysis
(M) Medium confidence level
(L) Low confidence level
H-2
-------
TABLE H-2. MULTIPLE DETECTOR SPECIATED UATMP DATA SUMMARY FOR B2AL
Sample Date
Sample ID
Compound
Acetylene
Propylene
Chl oromethane
Vinyl Chloride
1,3-Butadiene
3romomethane
Chl oroethane
Methyl ene Chloride
trans-1 , 2-Di chl oroethyl ene
1,1-Dichloroethane
Chloroprene
Bromochl oromethane
Chloroform
1,2-Dichloroethane
1,1,1-Trichloroethane
Benzene
Carbon tetrachloride
1 , 2-Di chl oropropane
Bromodi chl oromethane
Trichloroethylene
ci s-1 , 3-Di chl oropropyl ene
trans-1 , 3-Di chl oropropyl ene
1,1, 2-Tri chl oroethane
Toluene
Di bromochl oromethane
n-Octane
Tetrachl oroethyl ene
Chlorobenzene
Ethyl benzene
m/p-Xy 1 ene/Bromof orm
Styrene
o-Xyl ene/1 ,1,2, 2-Tetrachl oroethane
m-Di chlorobenzene
p-Di chlorobenzene
o-Di chlorobenzene
8/20/92
1976
8/24/92
2039
8/26/92
2061
8/28/92
2139
9/02/92
2223
Concentration, ppbv
<1.00
1.28
<0.20
<0.20
<0.10
<0.20
<0.10
1.02
<0.04
0.32
<0.06
<0.003
0.08
0.37
0.39
0.36
0.10
<0.04
<0.001
0.01
<0.04
<0.04
<0.04
0.71
<0.001
<0.03
0.01
<0.02
0.10
0.52
0.08
0.21
0.04
0.03
<0.02
(L)
(H)
(L)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(L)
(L)
(L)
(H)
(L)
(L)
(L)
<1.00
0.27
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.003
0.10
0.08
0.47
0.17
0.13
<0.04
<0.001
0.02
<0.04
<0.04
<0.04
0.26
<0.001
<0.03
0.01
<0.02
0.05
0.22
0.06
0.03
0.08
0.04
0.06
(L)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(L)
(H)
(L)
(M)
(L)
(L)
(H)
(H)
<1.00
0.53
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.003
0.07
0.11
0.38
0.15
0.11
<0.04
<0.001
0.04
<0.04
<0.04
<0.04
0.33
<0.001
<0.03
0.01
<0.02
0.06
0.25
0.05
0.08
0.07
0.04
0.07
(H)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(H)
(H)
(H)
(H)
(L)
(H)
(H)
(L)
<1.00
<0.10
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.003
0.08
<0.04
0.43
0.19
0.11
<0.04
<0.001
0.02
<0.04
<0.04
<0.04
0.37
<0.001
<0.03
0.02
0.02
0.06
0.26
0.06
0.11
0.03
0.03
0.04
(L)
(L)
(H)
(L)
(L)
(H)
(L)
(L)
(L)
(L)
(L)
(L)
(H)
(H)
(L)
<1.00
1.21
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.003
0.08
0.55
0.37
0.56
0.10
<0.04
<0.001
0.02
<0.04
<0.04
<0.04
0.91
<0.001
<0.03
0.01
0.02
0.16
0.80
0.12
0.38
0.04
0.03
0.11
(L)
(L)
(L)
(L)
(H)
U)
(L)
(H)
(H)
(H)
(H)
(L)
(L)
(L)
(L)
(L)
(L)
(H) High confidence level
(M) Medium confidence level
(L) Low confidence level
(Continued)
H-3
-------
TABLE H-2. B2AL (Continued)
Sample Date
Sample ID
Compound
Acetylene
Propylene
Chloromethane
Vinyl Chloride
1,3-Butadiene
Bromomethane
Chl oroethane
Methyl ene Chloride
trans-l,2-Dichloroethylene
1,1-Di chl oroethane
Chloroprene
Bromochl oromethane
Chloroform
1,2-Di chl oroethane
1,1, 1-Trichl oroethane
Benzene
Carbon tetrachloride
1 , 2-Di chl oropropane
Bromodi chl oromethane
Trichloroethylene
ci s-1 , 3-Di chl oropropyl ene
trans- 1 , 3-Di chl oropropyl ene
1.1, 2-Tri chl oroethane
Toluene
Di bromochl oromethane
n-Octane
Tetrachl oroethyl ene
Chlorobenzene
Ethyl benzene
m/p-Xyl ene/Bromof orm
Styrene
o-Xyl ene/ 1,1,2, 2-Tetrachl oroethane
m-Di Chlorobenzene
p-Di chlorobenzene
o-Di Chlorobenzene
9/03/92
2226D
9/03/92
2227D
9/03/92
2227R
9/17/92
2419
9/29/92
2594
Concentration, ppbv
<1.00
1.03
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
0.14
<0.06
<0.003
0.09
0.56
0.47
0.40
0.13
<0.04
<0.001
0.03
<0.04
<0.04
<0.04
0.74
<0.001
<0.03
0.01
<0.02
0.14
0.66
0.12
0.28
0.07
0.04
0.07
(H)
U)
(L)
(L)
(H)
(H)
(L)
(L)
(H)
(L)
(H)
(L)
(H)
(L)
(M)
(L)
(M)
<1.00
0.92
0.62
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
0.14
<0.06
<0.003
0.08
0.53
0.38
0.38
0.14
<0.04
<0.001
0.03
<0.04
<0.04
<0.04
0.93
<0.001
<0.03
0.02
<0.02
0.14
0.70
0.13
0.30
0.06
0.04
0.12
(L)
(D
(D
(L)
(D
(L)
(H)
(L)
(H)
(H)
(L)
(H)
(L)
(H)
(D
(H)
(H)
(M)
<1.00
1.19
0.94
<0.20
<0.10
<0.20
<0.10
0.44
<0.04
<0.04
<0.06
<0.003
0.07
0.55
0.36
0.38
0.12
<0.04
<0.001
0.02
<0.04
<0.04
<0.04
0.92
<0.001
<0.03
0.01
0.02
0.12
0.61
0.10
0.28
0.04
0.04
0.10
(H)
(H)
(L)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(D
(H)
(H)
(L)
(H)
(M)
(M)
(M)
(M)
<1.00
2.62
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0,003
0.09
<0.04
0.50
0.42
0.12
<0.04
<0.001
0.03
<0.04
<0.04
<0.04
0.89
<0.001
<0.03
0.04
<0.02
0.12
0.60
0.10
0.26
<0.02
0.04
0.06
(D
(L)
(L)
(H)
(L)
(D
(H)
(D
(H)
(D
(H)
(L)
(D
(L)
<1.00
0.39
0.45
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.003
0.05
<0.04
0.29
0.15
0.09
<0.04
<0.001
0.01
<0.04
-------
TABLE H-3. MULTIPLE DETECTOR SPECIATED UATMP DATA SUMMARY FOR B3AL
Sample Date
Sample ID
Compound
:etylene
•opylene
il oromethane
nyl Chloride
3-Butadiene
•omomethane
il oroethane
sthylene Chloride
•ans-1 ,2-Dichloroethylene
1-Dichloroethane
iloroprene
•omochl oromethane
iloroform
,2-Di chl oroethane
,1,1-Trichloroethane
;nzene
irbon tetrachloride
,2-Di chl oropropane
•omodi chl oromethane
•ichloroethylene
is-l,3-Dichl oropropyl ene
-ans-1, 3-Di chl oropropyl ene
, 1 , 2-Tri chl oroethane
sluene
i bromochl oromethane
-Octane
strachl oroethyl ene
il orobenzene
thyl benzene
/p-Xyl ene/Bromoform
tyrene
-Xyl ene/1 , 1,2, 2-Tetrachl oroethane
-Oichlorobenzene
-Dichlorobenzene
-Dichlorobenzene
8/20/92
1951
8/24/92
2011
8/25/92
2045
8/31/92
2132D
8/31/92
2133D
Concentration, ppbv
<1.00
1.11
1.44
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
0.23
<0.06
<0.003
0.13
0.64
0.76
0.47
0.10
<0.04
<0.001
0.02
<0.04
<0.04
<0.04
0.97
<0.001
<0.03
0.09
<0.02
0.12
0.59
0.08
0.33
<0.02
<0.09
<0.02
(M)
(L)
(D
(L)
(D
(L)
(H)
(L)
(D
(H)
(H)
(L)
(D
(L)
(L)
<1.00
0.49
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.003
0.09
<0.04
0.33
0.12
0.10
<0.04
<0.001
0.01
<0.04
<0.04
<0.04
0.17
<0.001
<0.03
0.01
<0.02
0.02
0.10
0.02
0.07
<0.02
<0.09
<0.02
(H)
(L)
(L)
(H)
(H)
(L)
(M)
(L)
(L)
(D
(L)
(L)
<1.00
0.60
0.43
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.003
0.08
<0.04
0.32
0.13
0.10
<0.04
<0.001
<0.004
<0.04
<0.04
<0.04
0.19
<0.001
<0.03
0.01
<0.02
0.02
0.11
0.02
0.07
<6.02
<0.09
<0.02
(M)
(L)
(D
(L)
(H)
(H)
(H)
(D
(L)
U)
(L)
(D
<1.00
2.37
1.34
<0.20
<0.10
<0.20
0.10
<0.11
<0.04
0.35
<0.06
<0.003
0.26
1.00
1.32
0.78
0.15
<0.04
<0.001
0.11
<0.04
<0.04
<0.04
1.87
<0.001
<0.03
0.30
<0.02
0.34
1.47
0.22
0.60
0.11
0.09
0.33
(H)
(L)
(L)
(L)
(L)
(L)
(M)
(H)
(L)
(L)
(H)
(H)
(H)
(L)
(H)
(H)
(L)
(L)
(H)
<1.00
1.20
0.85
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
0.34
<0.06
<0.003
0.23
1.00
1.34
0.66
0.13
<0.04
<0.001
0.09
<0.04
<0.04
<0.04
1.40
<0.001
<0.03
0.25
0.04
0.22
1.06
0.18
0.54
0.08
0.06
0.18
(H)
(D
(L)
(L)
(L)
(M)
(H)
(L)
(L)
(H)
(H)
(M)
(H)
(D
(H)
(L)
(H)
(H)
(L)
•I) High confidence level
Duplicate sample
(M) Medium confidence level
(L) Low confidence level
(Continued)
H-5
-------
TABLE H-3. B3AL (Continued)
Sample Date
Sample ID
Compound
Acetylene
Propylene
Chloromethane
Vinyl Chloride
1,3-Butadiene
Bromomethane
Chl oroethane
Methyl ene Chloride
trans- 1 , 2-Di chl oroethyl ene
1,1-Di chl oroethane
Chloroprene
Bromochl oromethane
Chloroform
1,2-Dichloroethane
1,1,1 -Tri chl oroethane
Benzene
Carbon tetrachloride
1 , 2-Di chl oropropane
Bromodi chl oromethane
Tri chl oroethyl ene
cis-l,3-Dichloropropylene
trans-l,3-Dichloropropylene
1, 1,2- Tri chl oroethane
Toluene
Di bromochl oromethane
n-Octane
Tetrachl oroethyl ene
Chlorobenzene
Ethyl benzene
m/p-Xyl ene/Bromof orm
Styrene
o-Xyl ene/ 1,1,2, 2-Tetrachl oroethane
m-Di chlorobenzene
p-Di chlorobenzene
o-Di chlorobenzene
8/31/92
2132R
9/02/92
2258
9/08/92
2253
Concentration,
<1.00
2.23
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
0.34
<0.06
<0.003
0.20
0.97
1.21
0.75
0.14
<0.04
<0.001
0.07
<0.04
<0.04
<0.04
1.76
<0.001
<0.03
0.26
<0.02
0.30
1.35
0.18
0.52
0.05
0.05
0.06
(H)
U)
(L)
(L)
(D
(H)
(L)
(L)
(H)
(H)
(H)
(L)
(H)
(L)
(L)
(L)
(L)
<1.00
1.72
0.78
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
0.38
<0.06
<0.003
0.16
<0.04
0.87
0.61
0.11
<0.04
<0.001
0.04
<0.04
<0.04
<0.04
1.47
<0.001
<0.03
0.10
<0.02
0.14
0.86
0.13
0.44
<0.02
<0.09
<0.02
(H)
(L)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(L)
(H)
(L)
(L)
(L)
<1.00
1.35
0.65
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.003
0.16
<0.04
0.98
0.66
0.11
<0.04
<0.001
0.03
<0.04
<0.04
<0.04
1.12
<0.001
<0.03
0.29
<0.02
0.15
0.76
0.14
0.40
<0.02
0.02
0.22
ppbv
(M)
(L)
(L)
(L)
(H)
(M)
(L)
(H)
(H)
(H)
(L)
(L)
(L)
(L)
(L)
9/25/92
2530
<1.00
0.34
0.22
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.003
0.04
<0.04
0.34
0.15
0.10
<0.04
<0.001
<0.004
<0.04
<0.04
<0.04
0.19
<0.001
<0.03
0.01
<0.02
0.03
0.11
0.02
0.07
<0.02
<0.09
<0.02
(H)
(L)
(L)
(L)
(H)
(H)
(H)
(L)
(L)
(L)
(L)
(L)
9/29/92
2625
<1.00
0.67
0.54
<0.20
<0.10
<0.20
<0.10
3.79
<0.04
<0.04
«0.06
<0.003
0.08
<0.04
0.55
0.46
0.12
<0.04
<0.001
0.04
<0.04
<0.04
<0.04
0.95
<0.001
<0.03
0.04
<0.02
0.09
0.42
0.07
0.19
0.08
0.04
0.07
(H)
(L)
(H)
(L)
(L)
(H)
(L)
(L)
(H)
(L)
(M)
(L)
(L)
(L)
(L)
(L)
(L)
(H) High confidence level
R Replicate analysis
(M) Medium confidence level
(L) Low confidence level
H-6
-------
TABLE H-4. MULTIPLE DETECTOR SPECIATED UATMP DATA SUMMARY FOR NUNJ
Sample Date
Sample ID
Compound
Acetylene
Propylene
2hl oromethane
Vinyl Chloride
1,3-Butadiene
3romomethane
:hl oroethane
Methyl ene Chloride
trans- 1 , 2-Di chl oroethyl ene
1, 1-Di chl oroethane
Ihloroprene
3romochl oromethane
Ihloroform
1, 2-Di chl oroethane
1,1,1-Trichloroethane
Benzene
Carbon tetrachloride
1 , 2-Oi chl oropropane
Bromodi chl oromethane
Tri chl oroethyl ene
:is-l,3-Dichl oropropyl ene
trans-l,3-Dichloropropylene
1,1, 2-Tri chl oroethane
Toluene
}i bromochl oromethane
i-Octane
fetrachl oroethyl ene
^hlorobenzene
Ethyl benzene
n/p-Xylene/Bromoform
Styrene
3-Xyl ene/1 ,1,2, 2-Tetrachl oroethane
n-Dichlorobenzene
3-Dichlorobenzene
3-Dichlorobenzene
7/21/92
1404
7/27/92
1494
7/31/92
1569
Concentration,
<1.00
2.85
0.73
<0.20
<0.10
<0.20
<0.10
2.86
<0.04
0.42
<0.06
<0.003
0.20
1.33
253.06
0.87
0.16
1.34
<0.001
0.24
<0.04
<0.04
<0.04
2.70
<0.001
<0.03
0.12
<0.02
0.45
1.97
0.26
1.07
<0.02
<0.09
<0.02
(H)
(L)
(H)
(L)
(L)
(H)
(L)
(H)
(M)
(L)
(L)
(H)
(L)
(H)
(L)
(M)
(L)
<1.
3.
0.
<0.
<0.
<0.
<0.
3.
0.
<0.
<0.
<0.
0.
1,
7,
0,
0,
<0.
<0,
0
<0
<0
<0
3
<0
<0
0
0
0
2
0
1
<0
0
0
00
09
90
20
10
20
10
03
38
,04
.06
.003
.20
,18
,49
.92
.14
.04
.001
.26
.04
.04
.04
.24
.001
.03
.26
.07
.48
.24
.24
.12
.02
.15
.17
(H)
(L)
(M)
(L)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(L)
(M)
(H)
(L)
(L)
(L)
(L)
(H)
<1.00
2.12
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.003
0.19
0.95
4.46
0.82
0.14
<0.04
<0.001
0.17
<0.04
<0.04
<0.04
3.14
<0.001
<0.03
0.27
0.18
0.48
2.20
0.48
1.05
0.21
0.11
<0.02
ppbv
(H)
(L)
(L)
(H)
(H)
(L)
(L)
(H)
(L)
(H)
(H)
(L)
(L)
(H)
(H)
(L)
8/26/92
2063D
<1.00
2.12
0.92
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.003
0.38
1.73
7.44
1.32
0.14
<0.04
<0.001
0.37
<0.04
<0.04
<0.04
5.64
<0.001
<0.03
0.90
0.10
0.92
4.44
0.74
2.14
<0.02
0.18
0.23
(H)
(L)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(L)
(M)
(H)
U)
(M)
(L)
U)
(L)
8/26/92
20700
<1.00
2.29
1.17
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
0.48
<0.06
<0.003
0.38
1.76
7.65
1.37
0.14
<0.04
<0.001
0.39
<0.04
<0.04
<0.04
6.01
<0.001
<0.03
0.92
0.13
0.97
4.59
0.47
2.19
<0.02
0.20
<0.02
(H)
(L)
(L)
(L)
(L)
(M)
(H)
EL}
(L)
(H)
(L)
(H)
(H)
(L)
(L)
(I)
(I)
(H) High confidence level
) Duplicate sample
(M) Medium confidence level
(L) Low confidence level
(Continued)
H-7
-------
TABLE H-4. NWNJ (Continued)
Sample Date
Sample ID
Compound
Acetylene
Propylene
Chl oromethane
Vinyl Chloride
1,3-Butadiene
Bromomethane
Chl oroethane
Hethylene Chloride
trans- 1 , 2-Di chl oroethyl ene
1,1-Dichloroethane
Chloroprene
Bromochl oromethane
Chloroform
1, 2-Di chl oroethane
1,1,1-Tri chl oroethane
Benzene
Carbon tetrachloride
1 , 2-Di chl oropropane
Bromodi chl oromethane
Tri chl oroethyl ene
ci s-1 ,3-Dichloropropylene
trans-1 ,3-Dichloropropylene
1,1, 2-Tri chl oroethane
Toluene
Di bromochl oromethane
n-Octane
Tetrachl oroethyl ene
Chlorobenzene
Ethyl benzene
m/p-Xyl ene/Bromof orm
Styrene
o-Xyl ene/1 , 1 , 2 , 2-Tetrachl oroethane
m-Di chl orobenzene
p-Di chl orobenzene
o-Di chl orobenzene
9/03/92
2239
9/10/92
2326D
9/10/92
2327D
9/10/92
2326R
9/28/92
2551
Concentration, ppbv
<1.00
1.30
0.57
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
0.27
<0.06
<0.003
0.17
<0.04
4.42
0.75
0.14
<0.04
<0.001
0.10
<0.04
<0.04
<0.04
2.14
<0.001
0.31
0.13
0.08
0.36
1.77
0.44
0.90
<0.02
0.15
<0.02
(H)
(L)
(L)
(L)
(M)
(H)
(L)
(L)
(H)
(L)
(L)
(H)
(H)
(D
(M)
(D
(L)
<1.00
3.21
0.72
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.003
0.15
1.01
5.36
0.96
0.15
<0.04
<0.001
0.20
<0.04
<0.04
<0.04
3.28
<0.001
<0.03
0.08
0.14
0.71
3.75
0.43
1.59
<0.02
0.13
0.22
(H)
(D
(L)
(L)
(M)
(H)
(L)
(L)
(H)
(L)
(M)
(H)
(L)
(L)
(H)
(D
(H)
<1.00
3.25
0.63
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.003
0.15
0.92
5.20
0.93
0.15
<0.04
<0.001
1.98
<0.04
<0.04
<0.04
2.80
<0.001
<0.03
0.07
0.13
0.75
3.86
0.52
1.56
<0.02
0.12
0.22
(H)
(L)
(L)
(L)
(M)
(H)
(L)
(L)
(H)
(L)
(M)
(H)
(L)
(L)
(H)
(L)
(M)
<1.
3.
0.
<0.
<0.
<0.
<0.
<0.
<0.
0.
<0.
<0.
0.
0.
4.
0.
0.
<0.
<0.
0
<0
<0
<0
2
<0
<0
0
0
0
3
0
1
0
0
0
00
13
93
20
10
20
10
11
04
31
06
003
13
94
77
72
.13
,04
.001
.18
.04
.04
.04
.02
.001
.03
.05
.10
.59
.08
.35
.40
.20
.14
.15
(H)
(L)
(H)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(L)
(H)
(H)
(L)
(L)
(H)
(L)
(D
(H)
<1.00
3.60
1.19
<0.20
<0.10
<0.20
<0.10
<0.11
0.12
<0.04
<0.06
<0.003
0.37
1.61
13.29
1.14
0.15
<0.04
<0.001
0.36
<0.04
<0.04
<0.04
5.04
<0.001
<0.03
0.37
0.07
0.67
3.22
0.71
1.55
<0.02
0.14
0.20
(H)
(L)
(L)
(L)
(L)
(M)
(H)
(M)
(L)
(H)
(D
(H)
(H)
(L)
(H)
(L)
(L)
(L)
(H) High confidence level
R Replicate analysis
(M) Medium confidence level
"D Duplicate sample
(L) Low confidence level
H-8
-------
TABLE H-5. MULTIPLE DETECTOR SPECIATED UATMP DATA SUMMARY FOR PLNJ
Sample Date
Sample ID
Compound
:etylene
ropylene
il oromethane
inyl Chloride
,3-Butadiene
-omomethane
il oroethane
jthylene Chloride
-ans-1 , 2-Dichloroethylene
,1-Dichloroethane
iloroprene
-omochi oromethane
tloroform
, 2-Di chl oroethane
,1,1-Trichloroethane
snzene
arbon tetrachloride
, 2-Di chl oropropane
romodi chl oromethane
richloroethylene
i s-1, 3-Di chl oropropyl ene
rans-1 , 3-Di chl oropropyl ene
, 1 , 2-Tri chl oroethane
sluene
i bromochl oromethane
-Octane
5trachl oroethyl ene
ilorobenzene
thyl benzene
/p-Xyl ene/Bromoform
tyrene
-Xyl ene/ 1,1,2, 2-Tet rachl oroethane
-Dichlorobenzene
-Dichlorobenzene
-Oichlorobenzene
8/14/92
1922D
8/14/92
1923D
8/14/92
1923R
Concentration,
<1.00
0.98
0.68
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.003
<0.006
<0.04
1.06
3.84
0.12
<0.04
<0.001
<0.004
<0.04
<0.04
<0.04
16.25
<0.001
<0.03
0.57
<0.02
3.07
16.41
<0.02
9.13
<0.02
<0.09
<0.02
(L)
(L)
(L)
(M)
(L)
(M)
(L)
(H)
(L)
(L)
<1.00
1.68
0.55
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
<0.04
<0.06
<0.003
0.12
<0.04
1.20
4.33
0.13
<0.04
<0.001
0.08
<0.04
<0.04
<0.04
17.69
<0.001
<0.03
0.60
<0.02
3.95
20.79
<0.02
11.26
<0.02
<0.09
<0.02
(H)
(L)
(L)
(L)
(M)
(L)
(L)
(L)
(L)
(L)
(L)
(L)
<1.00
1.47
0.60
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
7.19
<0.06
<0.003
0.14
<0.04
1.14
4.11
0.14
<0.04
<0.001
0.08
<0.04
<0.04
<0.04
18.26
<0.001
<0.03
0.58
<0.02
3.83
20.46
<0.02
9.98
<0.02
<0.09
<0.02
ppbv
(H)
(L)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(L)
(H)
(L)
(L)
8/25/92
2071
<1.00
7.89
<0.20
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
1.16
<0.06
<0.003
0.33
<0.04
3.49
2.46
0.14
<0.04
<0.001
0.09
<0.04
<0.04
<0.04
7.89
<0.001
<0.03
0.33
0.11
1.21
5.79
0.39
3.12
<0.02
0.36
0.18
8/26/92
2065
(H)
(L)
(L)
(L)
(H)
(L)
(L)
(M)
(L)
(M)
(H)
(L)
(L)
(L)
(H)
(H)
<1
4
1
<0
0
<0
<0
<0
<0
1
<0
<0
0
3
4
1
0
<0
<0
0
<0
<0
<0
6
<0
<0
0
0
0
4
0
2
3
0
.00
.85
.02
.20
.11
.20
.10
.11
.04
.89
.06
.003
.76
.40
.67
.46
.28
.04
.001
.40
.04
.04
.04
.41
.001
.03
.14
.12
.94
.89
.81
.68
.08
.18
(H)
(L)
(L)
(L)
(L)
(H)
(L)
(H)
(L)
(L)
(M)
(L)
(M)
(H)
(L)
(M)
(L)
(L)
(L)
<0.02
High confidence level
Replicate analysis
Medium confidence level
Duplicate sample
(L) Low confidence level
(Continued)
H-9
-------
TABLE H-5. PLNJ (Continued)
Sample Date
Sample ID
Compound
Acetylene
Propylene
Chl oromethane
Vinyl Chloride
1,3-Butadiene
Bromomethane
Chl oroethane
Methyl ene Chloride
trans-1 ,2-Dichloroethylene
1,1-Oichloroethane
Chloroprene
Bromochl oromethane
Chloroform
1,2-Di chl oroethane
1,1,1-Tri chl oroethane
Benzene
Carbon tetrachloride
1,2-Dichloropropane
Bromodi chl oromethane
Tri chl oroethyl ene
cis-1 ,3-Dichloropropylene
trans-1 ,3-Oichloropropylene
1,1,2-Tri chl oroethane
Toluene
Di bromochl oromethane
n-Octane
Tetrachl oroethyl ene
Chlorobenzene
Ethyl benzene
m/p-Xyl ene/Bromof orm
Styrene
o-Xyl ene/ 1,1,2, 2-Tetrachl oroethane
m-D1 chlorobenzene
p-Di chlorobenzene
o-Di chlorobenzene
9/04/92
2269
9/14/92
2400
9/21/92
2513
9/24/92
2518
9/28/92
2569
Concentration, ppbv
<1.00
6.52
0.64
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
0.87
<0.06
<0.003
0.32
<0.04
2.40
2.40
0.15
<0.04
<0.001
0.19
<0.04
<0.04
<0.04
7.05
<0.001
<0.03
0.33
0.52
1.12
5.52
0.35
2.87
<0.02
0.25
<0.02
(H)
(L)
(L)
(L)
(L)
(H)
(L)
(L)
(M)
(L)
(H)
(H)
(L)
(M)
(L)
(H)
<1.00
8.96
0.54
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
1.46
<0.06
<0.003
0.60
5.23
3.78
3.19
0.14
<0.04
<0.001
0.58
<0.04
<0.04
<0.04
9.59
<0.001
<0.03
0.45
<0.02
1.58
7.72
0.50
4.32
<0.02
<0.09
<0.02
(H)
(L)
(L)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(L)
(H)
(L)
(L)
(L)
<1.00
5.58
0.56
<0.20
<0.10
<0.20
<0.10
<0.11
<0.04
0.79
<0.06
<0.003
0.26
<0.04
2.62
1.83
0.13
<0.04
<0.001
0.15
<0.04
<0.04
<0.04
4.79
<0.001
<0.03
0.20
0.09
0.85
4.06
0.25
2.16
<0.02
0.20
0.13
(H)
(L)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(L)
(H)
(H)
(L)
(L)
(L)
(H)
(H)
<1.00
1.39
0.51
<0.20
0.09
<0.20
<0.10
1.02
<0.04
0.16
<0.06
<0.003
0.11
0.54
0.84
0.60
0.13
<0.04
<0.001
0.05
<0.04
<0.04
<0.04
1.50
<0.001
<0.03
0.14
0.05
0.22
1.20
0.19
0.61
<0.02
0.09
0.21
(H)
U)
(L)
U)
(L)
(L)
(L)
(L)
(H)
(L)
(H)
(M)
(L)
(M)
(H)
(L)
(H)
(L)
(L)
(H)
<1.00
5.77
<0.20
<0.20
0.41
<0.20
<0.10
<0.11
<0.04
0.84
<0.06
<0.003
0.17
<0.04
0.97
2.21
0.13
<0.04
<0.001
0.07
<0.04
<0.04
<0.04
5.03
<0.001
<0.03
0.33
0.08
0.97
5.04
0.37
2.60
<0.02
0.25
0.13
(H)
(L)
(L)
(L)
(L)
(H)
(L)
(L)
(H)
(I)
(H)
(H)
(L)
(L)
(L)
(H)
(H)
(H) High confidence level
(H) Medium confidence level
(L) Low confidence level
H-10
-------
APPENDIX I
EXTERNAL AUDIT RESULTS LETTERS
-------
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
ATMOSPHERIC RESEARCH AND EXPOSURE ASSESSMENT LABORATORY
RESEARCH TRIANGLE PARK
NORTH CAROLINA 27711
December 14, 1992
MEMORANDUM
SUBJECT: Propane and Hydrocarbon Analysis Program
FROM: Howard L. Crist
QASB/QATSD/AREAL (MD-77B)
TO: Neil J.Berg, Jr.
OAQPS (MD-14)
The results of the VOCs analyses by Radian Corporation of audit
canisters provided by our contractor (ManTech) is attached. The overall
identification and quantification of the unknowns was excellent.
cc: Phyllis O'Hara - Radian Corporation
Terri Sampson - Radian Corporation
William J. Mitchell (MD-77B)
-------
Propane Audit Canister Results
PPMC
Audit f Spiked Reported Difference. %
2186 1.97 1.92 -2.5
2267 0.45 0.55 22
2402 0.45 0.46 2.2
2474 1.98 1.94 -2.0
-------
Hydrocarbon Program
Audit Canister Results
Audit # 2185
Ethane
Propane
Isobutane
n-Butane
Isopentane
n-Pentane
3-Methylpentane
n-Hexane
Benzene
n-Heptne
Toluene
n-Octane
o-Xylene
Spiked
18.9
20.5
20.
20.
20,
20,
20.3
20.0
20.7
20.0
19.9
19.8
19.3
ppbv
Reported
15.1
12.6
18.
19.
19.
19,
19,
19
19
19
19.8
19.8
17.8
Difference. %
-20
-39
-9.8
-7.2
-3.4
-2.9
-3
-3
0
0
-4.3
-1.5
-3.0
-2.5
-7.8
-------
Hydrocarbon Program
Audit Canister Results
Audit # 2403
Spiked Reported Difference. %
Isopentane 5.0 5.2 4.0
3-methylpentane 4.8 5.0 4.2
Benzene 5.0 5.5 10
Toluene 4.7 5.3 13
m-Xylene 5.0 9.3a -3.1a
p-Xylene 4.6
o-Xylene 4.9 4.5 -8.2
(a) m,p-Xylenes combined
-------
Hydrocarbon Program
Audit Canister Results
Audit # 2580
Spiked Reported Difference. %
Isobutane 5.0 4.6 -8.0
n-Butane 5.2 4.7 -9.6
Isopentane 4.6 4.9 6.5
n-Pentane 5.0 4.6 -8.0
n-Hexane 5.0 4.7 -6.0
n-Heptane 4.8 4.6 -4.2
n-Octane 4.3 4.0 -7.0
-------
MMTM
TEW
r.'.rr1.:
iJj^i
. s s ^. -• s
i i f i t ™i» • am
•'•1=55
To: Phyllis O'Hara
From: Ron Bousquet
Subject: Audit Results
Date: January 13, 1992
Here is the information you requested concerning the NMOC audit results.
Audit # 2186
Audit # 2267
Audit # 2402
Spiked Value
1.97 ppmC
0.45 ppmC
0.45 ppmC
Audit # 2474 1.98 ppmC
Audit #2185
Methane
Ethane
Propane
i-Butane
n-Butane
i-Pentane
n-Pentane
3-Methylpentane
n-Hexane
Benzene
n-Heptane
n-Octane
Toluene
o-Xylene
All concentrations = ppb.
* = Not Analyzed
NA = Not Applicable
Analytical Value
1.91 ppmC
0.45 ppmC
0.52 ppmC
1.90 ppmC
1470
18.9
20.5
20.4
20.9
20.3
20.4
20.0
20.0
20.7
20.0
19.8
19.9
19.3
*
*
*
*
*
21.6
*
19.0
*
18.6
*
*
17.4
18.7
Analytical Bias
- 3.0 %
0.0 %
+ 16%
- 4.0 %
NA
NA
NA
NA
NA
+ 6.4 %
NA
- 5.0 %
NA
- 10 %
NA
NA
- 13 %
-3.1 %
ManTech Environmental Technology, Inc
P.O. Box 12313,2 Triangle Driw, Research Triangle Park, North Carolina 27709 919-5494611 FAX 919-549-4665
-------
Audit # 2403
Spiked Value Analytical Value Analytical Bias
i-Pentane 5.0 5.0 0.6 %
Methylpentane 4.8 4.9 +2.1%
Benzene 5.0 5.8 +16 %
Toluene 4.7 6.5 + 38 %
m-Xylene 5.0 4.6 - 8.0 %
p-Xylene 4.6 4.5 - 2.2 %
o-Xylene 4.9 4.9 0.0 %
The zero air analysis performed during this run of samples contained 0.6 ppb
Benzene and 1.2 ppb Toluene.
Audit # 2380
Methane 1377 * NA
i-Butane 5 5.0 NA
n-Butane 5 5.2 NA
i-Pentane 5 4.6 NA
n-Pentane 5 5.0 NA
n-Hexane 5 5.0 NA
n-Heptane 5 4.8 NA
. n-Octane 5 4.3 NA
All concentrations nominally 5 ppb except methane which is 1377 ppb.
* = Not analyzed
NA = Not Applicable
ManTech Environmental Technology; Inc
-------
„ 3 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
^ ATMOSPHERIC RESEARCH AND EXPOSURE ASSESSMENT LABORATORY
RESEARCH TRIANGLE PARK
NORTH CAROLINA 27711
Mail Drop 84
Phone: (919)541-2829
January 5, 1993
Ms. Terri Sampson
Radian Corporation
3200 E. Chapel Hill Blvd.
P. O. Box 13000
RTP, NC 27709
Dear Terri:
I have completed the analysis of the 10 canister samples delivered to us in November
1992. The results for 52 hydrocarbon compounds along with total nonmethane organic carbon
(NMOC) are provided in Table 1. The compounds included were not selected from any basic
criteria except to represent typical paraffmic, olefmic, and aromatic compounds found in ambient
air. TNMOC represents the sum of all gc peaks including both identified and unidentified
compounds. Atypical compound compositions were observed in a few of the samples. Sample
P-090 contained an extremely large propane peak that contributed about 65% to the TNMOC.
Sample 2453 has a 1,2,4-trimethyl benzene peak that is about a factor of five higher than
expected based upon other aromatic hydrocarbons. In sample 2435 a peak identified as methyl
tertiary butyl ether (MTBE) was observed at a concentration of 74 ppbC. The n-pentane peak
in samples P-090 and 2622 was severely overlapped by a near co-eluting tailing peak.
Consequently the n-pentane concentrations provided in Tables 1 for these two samples must be
considered as estimates.
If you prefer, I can provide print files of all gc peaks measured in the 10 samples. Look
over the Table and contact me if you have any questions.
Sincerely yours,
William A. Lonneman
Research Chemist
Gas Kinetics & Photochemistry Research Branch
cc: N. Berg
-------
TABLE 1 SELECTED HYDROCARBON COMPOUNDS FROM THE ANALYSIS OF 1992 RADIAN SAMPLE CANISTERS, ppbC
y y j y s / s
68 Ethylene
71 Acetylene
00 Ethane
25 Propene
00 Propane
54 isoButane
85 1-Butene
.96 1,3-Butadiene
.00 n-Butane
.62 t-2-Butene
.95 c-2-Butene
,32 3-Methyl-1-Butene
,58 isoPentane
,27 1-Pentene
.14 2-Methyl-1-Butene
.00 n-Pentane
,69 t-2-Pentene
.28 c-2-Pentene
.92 2-Methyl-2-Butene
.41 Cyclopentene
.99 Cyclopentane
.11 2,3-DiMethylButane
.12 2-MethylPentane
.42 3-MethylPentane
.35 2-Methyl-1-Pentene
.00 n-Hexane
.24 t-3 tlexene —1^_
.89 t:2~-Hexene
.70 MethylCycloPentane
.15 2,4-DiMethylPentane
.92 Benzene
.11 CycloHexane
.68 2-MethylHexane
.58 2,3-DiMethylPentane
.21 3-MethylHexane
.57 2,2,4-TriMethylPentane
.GO n-Heptane
.45 MethylCycloHexane
.41 2,3,4-TriMethylPentane
.76 Toluene
.53 2-MethylHeptane
.20 3-MethylHeptane
.00 n-Octane
.84 EthylBenzene
.55 m-4p-Xylene
.29 Styrene
.99 o-Xylene
i.OO n-Nonane
.39 1,3,5-TriMethylBenzene
.00 1,2,4-TriMethylBenzene
I.OO n-Decane
1.93 1,2,3-TriMethylBenzene
TNMOC
B3AL
2154
10.19
7.31
7.49
4.69
6.38
5.85
4.07
0.85
22.52
1.56
1.74
0.86
52.21
1.97
3.56
16.94
4.64
2.29
5.25
0.58
1.32
3.65
11.88
8.35
1.50
5.44
0-68-
0.80
3.50
1.99
7.98
0.93
2.17
2.82
3.51
7.24
1.65
1.66
2.16
19.09
0.88
0.87
0.57
3.14
9.99
1.79
3.84
0*49
1..43
6.95
0.87
1.78
436.66
EPTX
-2538 -
54.96
64.43
48.37
24.41
91.64
32.86
21.78
3.72
69.21
10.85
7.63
2.40
117.70
5.71
4.49
72.77
8.94
4.88
1.08
1.13
6.90
11.53
35.68
24.48
1.03
30.97
•1 62
2.47
21.04
12.30
37.19
9.54
12.40
25.16
13.71
29.74
11.18
8.53
10.36
82.82
5.42
5.90
6.36
16.63
45.58
4.08
16.64
4.65-
6.23-
19.39
5.56
5.08
1496.18
FUTX
2581
14.73
12.54
22.10
6.59
19.56
7.06
3.91
1.50
19.95
1.41
0.91
0.79
39.05
1.72
2.62
14.92
2.77
1.50
3.21
0.52
1.71
3.96
11.01
8.06
0.72
6.37
•- 0' 60
0.77
3.85
2.53
8.97
0.51
3.72
2.49
4.79
11.71
2.S4
2.55
3.74
26.71
1.47
1.67
1.34
4.88
16.23
1.99
6.07
0.86
2.53
8.93
1.29
2.12
458.13
B1AL
2141
9.83
4.95
8.69
3.16
13.63
1.81
1.94
0.58
3.56
0.41
0.33
0.14
7.87
0.29
0.45
3.63
0.64
0.37
0.83
0.16
0.39
1.19
2.92
3.27
0.28
2.09
0 22
0.28
1.28
1.13
15.99
0.29
1.12
1.42
2.42
3.25
O.Su
1.09
1.07
11.32
0.57
0.49
0.64
1.73
6.17
1.67
2.33
0.49
0.10
7.14
0.58
0.81
238.88
NUYK
P-090
8.18
4.02
7.32
56.74
828.27
24.79
3.21
0.51
9.37
0.66
0.51
0.22
10.39
A r i
0.73
17.09
0.51
0.35
0.78
0.15
0.51
0.87
3.13
2.88
4.63
2.68
QTC
0.40
1.26
0.89
4.27
0.55
1.44
1.65
3.11
0.10
1.43
2.25
0.80
9.92
0.77
0.64
1.05
2.20
6.59
1.97
6.24
1.29
0.89
4.67
1.58
1.20
1300.60
B2AL
2190
10.10
8.49
4.43
4.55
11.24
1.28
2.79
1.14
3.72
0.74
0.35
0.27
11.99
r> C /
0.98
4.83
1.19
0.67
1.60
0.24
0.44
1.33
3.99
3.36
0.27
2.33
0 34
0.42
1.47
1.31
6.02
0.26
1.49
1.70
2.49
4.08
0.83
1.06
1.32
10.66
0.59
0.63
0.52
2.22
6.79
1.57
2.80
0.38
1.51
7.17
0.86
1.34
248.52
CHNC
2453
21.89
10.94
6.46
5.38
11.61
5.77
3.73
1.23
11.12
1.15
0.78
0.54
26.16
1.25
2.28
9.48
3.21
1.49
3.69
0.66
0.96
3.02
8.23
6.16
0.71
4.93
0 64
0.71
2.94
2.59
8.89
0.41
3.00
3.30
4.24
9.14
2.34
2.03
2.85
24.20
0.98
1.16
1.03
3.99
12.75
3.15
5.20
0.76
0.46
46.11
1.16
3.07
507.51
DLTX
2314
9.57
8.10
14.64
4.19
17.72
5.45
2.56
0.90
10.67
0.47
0.36
0.34
19.06
U . 1 H
1.34
8.44
1.99
0.86
2.16
0.33
1.02
2.11
6.54
5.02
0.90
4.40
ft 47
0.66
2.59
1.79
6.01
0.91
2.24
1.77
4.43
5.00
1.92
2.37
1.84
16.33
0.95
0.99
1.01
2.89
8.81
3.12
3.66
0.80
1.75
8.21
1.03
1.46
365.00
JUMX
2622
25.54
27.16
29.30
11.57
48.66
12.51
6.48
2.26
28.15
0.35
1.17
0.64
34.29
1.55
3.05
39.27
2.96
1.66
4.16
0.67
2.43
5.18
14.58
9.33
0.88
13.08
n LR
1.06
7.29
6.33
18.43
3.37
5.85
12.40
7.68
14.42
5.44
3.65
5.16
65.19
2.34
2.79
2.80
14.18
49.22
6.35
15.90
2.44
0.55
21.73
3.27
3.06
877.33
BMTX
2435
2.63
1.83
8.39
1.45
11.94
10.27
2.15
0.24
22.90
1.17
1.66
1.16
36.60
* . 70
2.82
14.03
3.18
1.62
4.07
0.39
2.13
2.31
11.83
6.85
0.18
6.08
n 30
0.45
3.34
1.46
3.69
1.66
2.14
1.76
3.34
4.20
2.01
2.54
1.11
6.69
0.74
0.66
0.90
1.83
4.37
1.34
1.70
0.50
0.10
9.40
0.88
0.87
419.28
-------
MEMORANDUM
TO:
Bill Lonneman
FROM: Terri Sampson
COPY: Distribution
DATE: February 15, 1993
SUBJECT: Canister Confirmation Analysis
This is some information for the 10 canisters to be used for hydrocarbon analysis
comparisons by your lab. The first 9 samples were through the NMOC/Speciated
Hydrocarbon Program, the last sample is a New York sample from the PAMS program
containing high fluorocarbon contamination.
Site Code
DLTX
FWTX
EPTX
B1AL
B3AL
BMTX
CHNC
B2AL
JUMX
NWYK
Sample Date
9-10-92
9-30-92
9-30-92
8-28-92
9-01-92
9-21-92
9-22-92
9-01-92
9-28-92
9-27-92
Radian ID Can #
2314
2581
2583
2141
2154
2435
2453
2190
2622
P090
Let me know if you need any further information.
Distribution
Neil Berg (EPA)
Phyllis O'Hara
Ray Merrill
Joann Rice
767
908
552(stamped on bottom rim)
663
140
678
077
810
623
A103086(Bar code ID)
-------
APPENDIX J
SPECIATED NMOC ANALYSIS METHOD
-------
0 6 MAR 193«
RESEARCH PROTOCOL METHOD FOR
ANALYSIS OF C -C HYDROCARBONS IN AMBIENT AIR
BY GAS CHROMATOGRAPHY WITH CRYOGENIC CONCENTRATION
Prepared by
Robert L. Sei la
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
and
Donald A. Cox
Quality Assurance Data Services, Inc.
Boone, North Carolina 26807
Prepared for
U.S. Environmental Protection Agency
Atmospheric Chemistry and Physics Division
Atmospheric Sciences Research Laboratory
Research Triangle Park, North Carolina 27711
SEPTEMBER 1988
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page : 1 of 41
RESEARCH PROTOCOL METHOD FOR
ANALYSIS OF C -C HYDROCARBONS IN AMBIENT AIR
BY GAS CHROMATOGRAPHY WITH CRYOGENIC CONCENTRATION
Approva 1s
Robert L. Seila
Author - User
Date
William A. Lonneman
Author - User
Ronald K. Patterson
ASRL QA Officer
Date
Date
'r*
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page : 2 of 41
DISCLAIMER
The Research Protocol/Method (RPM) described herein should
not be interpreted as a generally accepted standard or
equivalent method or procedure. This RPM was developed for
use within the Atmospheric Sciences Research Laboratory of
EPA and may not be applicable to the needs of other
organizations.
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page:3 of 41
1.0 SCOPE AND APPLICATION
This recommended method is intended for analysis of
C -C _ hydrocarbons (HC) in ambient air. The method's
minimum quantification limit (MQL) is 0.12 ppb carbon; the
method's minimum detection limit (MDL ) is 0.04 ppb caroon.
The MQL and MDL were determined by the method described by
Knoll (reference 1).
2.0 SUMMARY OF METHOD
A known volume of gaseous sample is passed through a
cryogenicaly cooled trap, cooled with liquid oxygen or
liquid argon, cryogenicaly cooling traps out C and heavier
hydrocarbons without trapping methane. The trap containing
the condensed HC's is warmed with hot water and its contents
injected into a gas chromatograph (GC) capillary column
where separation of the C2~C12 hvdrocarbons takes place.
Detection of the hydrocarbon is by flame-ionization detector
(FID), and the resultant peaks are quantified and recorded
by an electronic integrator.
3.0 DEFINITIONS
3.1 Accuracy - The degree of agreement of the measurements
with the true value of the propane Standard
Reference Material (SRM) measured.
3.2 Precision - The repeatability of propane measurements
from the same canister under essentially
the same conditions.
4.0 INTERFERENCES
Any hydrocarbon compound that elutes with the same
retention times as any of the C2~ci2 hydrocarbons and
responds to flame lonization detection will interfere in
this method.
5.0 PERSONNEL REQUIREMENTS
The researcher using this procedure is expected to be
familiar with gas chromatographic practices and able to
operated the instrument following the.manufacturer's manual.
Operator requirements will include daily startup procedures,
instrument sensitivity ad-justment, maintenance schedules,
and other manufacturer's recommendations.
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page:4 of 41
6.0 FACILITIES REQUIREMENTS
No special laboratory facilities are required.
7.0 SAFETY REQUIREMENTS
The calibration standards, collected sample, and most
laboratory reagents used in this method pose no hazard to
the researcher if normal laboratory safety practices are
followed. Eye and hand protection are required when using
liquid nitrogen and argon or other cryogens. Combustion is
possible when using liquid oxygen, and its contact with all
flammable materials must be avoided. In addition, electrical
connections can also pose a hazard.
The American Chemical Society (ACS) guideline regarding
the safe handling of chemicals used in this method is
required.
7.1 EPA Safety Regulations
Information on EPA Safety Regulations are included in
text.
7.2 Vacuum Systems
See page G9 of the EPA/RTP Safety Manual (ref. 2) for
precautions.
7.3 Heated Surfaces
The GC injection ports, column, column oven, and
detectors are maintained at temperatures high enough to
cause burns. The researcher should exercise caution to
avoid contact with these surfaces.
7.4 Immersion Heater
WARNING - The immersion heater must always be immersed
in water, otherwise very high temperatures to be reached
with the possible ignition of combustible materials and
reduction of the operating life.
7.5 Compressed Gases
See pages F14 through F18 of the EPA/RTP Safety Manual
(ref. 2) for safety precautions. The following are specific
safety requirements for this method.
7.5.1 Hydrogen
Hydro-gen gas" cylinders used for FID fuel are not
permitted in the RTF Tech Center. Hydrogen cylinders and
their regulator must be secured outside the building, and a
stainless steel pressure line run into the laboratory.
-------
ASRL-ACPD-RPM-QG2
Revision No. 1
Date: 9/21/88
Page : 5 of 41
7.5.2
See pages F18 through F20 of the EPA/RTP Safety Manual
(reference 2) for precautions.
7.5.2.1 Liquid _Qxygen_^jLf__jj£e_d^_)_
WARNI_N£ -' Strong oxidant. Vigorously promotes
combustion. Avoid contact with all flammable materials.
Containers, lines, valves, and vents must be free of oil and
grease. May cause severe frostbite. Wear eye and hand
protecti on .
7.5.2.2 L iijdi
WAR_NrNG - Cryogenic fluid. May cause severe frostbite.
Wear eye and hand protection. Use with adequate room
ventilation. Keep contact with air to a minimum to avoid
buildup of liquid oxygen (see above).
8.0 APPARATUS AND EQUIPMENT
This section describes the instrument requirements for
this method .
8.1 Gas Chromatograph
The gas chromatogr aph is equipped with a temperature
programmed oven that holds the separation column, flame-
lonization detector (FID), and electronic integrator. This
method uses an HP 5880A Gas Chromatograph with the following
specifications :
8.1.1 Gas Chroma
Type: fused silica capillary column.
Diameter: 0.32 mm ID.
Length : 60m.
Liquid Phase: DB-1 bonded liquid phase (J&W Scientific
Inc., Folsom, Calif.)
Liquid Phase Thickness: 1.0 urn.
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page : 6 of 41
8.1.2 Inlet_S_v_stem
The inlet system is illustrated in Figure 1. The
automatic six-port gas sampling valves (V4 and V5, Figure 1)
are located on an aluminum block which is temperature
regulated. All other valves are at ambient temperature.
3.1.2.1
A 5" length of l/4in. x 0.75 mm OD glass tube
(Supelco,Inc.) is used to connect the gas sampling valve to
the column. At the value end of the glass tube, there is a
1/4-in to 1/16-in Swagelok SS reducing union; at the
column end is a 1/4-in to 1/16-in specially modified
reducing union (Supelco, Inc.). Graphite/Vespel ferrules
are used.
8.1.3
The sampling trap is constructed of clean,
chroma tographi c grade, 3.2 mm (1/8 in) OD stainless steel
tubing, 16 cm in length, which is bent into a U-shape
approximately 7 cm from each end so that the U is approxi-
mately 2.2 cm in width. Clean, untreated 60/80 mesh glass
beads are poured in the U tube to a height of approximately
3 cm. Silanized glass wool is used as a plug to the last cm
of both ends. l/16"-l/8" unions are added to each end for
connection to the gas sampling valve.
8.2 Mass Flow Meter
A thermal conductivity mass flow meter (Ml, Figure 2)
( TYLAN Corp., model FM 360, 0 to 500 standard cm3/min or
equivalent) is used to measure the flow rate through the
cryogenic trap. See the following ASRL-ACPD-RPM- ? ? ? for mass
flow meter operation instructions.
8.3 Pressure Gauge
A precision Bourdon gauge (PI, Figure 1), with a range
of 0 to 200 Torr (absolute), is used. A gauge with a range
of 0 to 400 Torr is also acceptable.
8.4 Vacuum Pump
An oil-less diaphragm pump (such as Thomas model
2106CA13-51 5-2 ) is used to evacuate the inlet system.
CAUT_IjDN: Due to the poss-ibility of contamination,
oil-sealed vacuum pumps should not be used.
8.5 Tubing and Connectors
All
fittings
All tubing is chroma tograph ic grade stainless
connections are stain.less steel compression
steel.
tube
(Swagelok
or equivalent).
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page : 7 of 41
8.6 Regulators for compressed gases
Carrier gas, hydrogen, and air delivery pressures are
controlled by two-stage regulators mounted at the tank.
N£TE_: The H regulator is outside of the building
at RTP. Other gases have regulators on the
inside line.
CAUTION; Due to the possibility of contamination by
organic materials, only regulators with
stainless-steel diaphragms should be used.
8.7 Immersion Heater
An immersion heater is used to heat a water bath that
heats the trap, volatilizing the cryogenica11y trapped
gases.
9.0 REAGENTS/MATERIALS
All gases used to operate the GC system are high
quality grade and may vary in specifications with
manufacture. Instrument calibration gases are obtained from
the National Bureau of Standards (NBS) and are referred to
as Standard Reference Materials (SRM). Use of reagent grade
chemicals for all dilutions and standards materials is
recommended.
9.1 Gases and Cryogens
The following is recommend for use with this method.
9.1.1 He l^um^Ca r r i,e r^Ga s
High purity, minimum purity of 99.995 percent helium
carrier gas is best. Bureau of Mines.
9.1.2 Detector Air
Linde zero grade with total hydrocarbons <1 ppm, or
equi'valent.
9.1.3 Detectgir_Hydrggen
Prepurified grade 99.99 percent pure or equivalent.
9.1.4 Pet e c t. O£_Ma jc e tJp._N ^t^r gg e ri
Prepurified grade 99.99 percent pure (or equivalent).
9.1.5 L_i-ciu-id_I£i^t£0£ie£_j-f^o£_GC__
Commercial grade acceptable
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page : 8 of 41
9.1.6 LiquidOxygen (^gr_tr ao^cool i ng )
Commercial grade acceptable.
9.1.7 Liguid_Arggn _ ( f o r t. r a p c p o 1 . i n g )
Liquid argon may be used instead of liquid oxygen for
trap cooling. Although liquid argon is more expensive,
it is inert, and its use eliminates the oxidant hazard
associated with liquid oxygen. Commercial grade is
acceptable.
9.1.8 Propane_iin Air (for calibration)
NBS SRM 1665, 3 ppm (nominal) propane in air.
9.1.9 In^tjrument Air^Vacuum
The six-port gas sampling valves require clean filtered
air at 350 kPa (35 psig) and a vacuum of approximately
20 in Hg for operation.
10.0 SAMPLE/SAMPLING PROCEDURE
This RPM is generally limited to the laboratory
analysis but could also be used for field analysis. Field
sampling and canister preparation procedures are covered
separately (See reference 3.). Canister containing the
sample are connected into the system as shown in Figure 1.
11.0 CALIBRATION AND STANDARDIZATION
11.1 Mass Flow Meter Calibration
For calibration see ASRL-ACPD-RPM XXX
11.2 Pressure Gauge Calibration
For calibration see ASRL-ACPD-RPM XXX
11.3 Gas Chroma tograph Calibration
To perform a calibration in the parts per billion
carbon ( ppbC ) range, the following procedure is utilized:
11.3.1 ln
A propane in air sample should be first analyzed and
adjustments made to the carrier gas linear velocity such
that the propane peak elutes at 3.105 mm (3 mm 6 sec)
following injection. Using the capillary column and
temperatures specified in this document, these C -C HC
compounds should elute in the order of the retention tines
-------
given in Table 1. (This assumes that
rate is pressure controlled). ' The
should be determined by preparing
samples of each compound and depends
carrier flow rate, column temperature, etc.
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page:9 of 41
the carrier gas flow
actual eluting times
and analyzing known
upon column length ,
The flame-ionization detector and air flow rates
adjusted according to the manufacturer specifications
proper operation and optimum signal
flow-rates for the
400 cm /min for air
HP5880 are 30 cm'
are
for
o noise ratio. These
/mm for hydrogen and
11.3.2 Calibrat ion Using Propane
The response of the FID is assumed to be linear with
respect to the number of carbon atoms present in the
detected compound (reference 3). Thus, it is convenient to
measure compound peak concentration (cone.) in terms of
parts-per-billion-carbon (ppbC) where
Conc.,ppbC = (number of carbon atoms in compound)(Cone.,ppb)
For a fixed sample volume, the concentration is
proportional to the area under the chromatographic peak.
The area under the chromatographic peak is converted to ppbc
concentrations by the integrator by the following
calculation.
Cone., ppbC = (k)(Area)
Area is given in integrator counts and k is an
experimentally determined calibration constant (ppbC/count).
The same value of k is used for all compounds. The
calibration constant k is determined by analysis of an N 3 S
SRM propane in air standard. The value of k is then given
by :
k(ppbC/count) = j^Conc.NBS Standard
Median
Propane , ppm ) ( 100Q._p_P.pC_/p_p_I
Area Count
Three to five concentration levels of the standard are
needed to generate a suitable calibration curve. Two to
three repeated sample injections per calibration level are
made. Averaged values of K are calculated and recorded in
the laboratory notebook, and the mean or median value taken.
Example are given in Exhibit 1. below.
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page:10 of 41
EXHIBIT 1. LABORATORY NOTEBOOK RECORD
Calibration of the HP-5880A GC equipped with J&W DB-1 fused
silica column
Propane SRM: 2.83 + 0.03 umole/mole(ppm)
8490 ppb as carbon
Cylinder Number : FF18831, Sample Number 85-51-E
Sample Volume Equivalent Area of Response Factor
cm „ Propane Cone. Propane Peak Cone/Area
(ppbC)
28014.4 0.303058
Cj O
21191.7 0.300471
la
Ib
Ic
2a
2b
2c
3a
3b
3c
4a
4b
4c
4
4
4
3
3
3
2
2
2
1
1
1
20
20
20
16
^
16
16
10
10
10
05
05
05
f? 8490
•"b
8490
34
6
>
e 6
6
4
y
4
4
2
*°3.52
2
3
90
6
7.
367.
36
24
2
2
1
1
1
4
4
2
2
2
7.
5
5
5
2.
2.
2.
5
5
5
5
5
5
14013.5 0.302922
6361.1 0.309353
For this example: n=4 r2= 1.00 y=-0.139 * 3.328X.
The mean (X) is 0.30395 and 0.30299 is the median and cone.
(ppbc) = 0.30048 x (area) + 0.042
Where Y = cone. (ppbc}, M = 0.30048, X = area, B = 0.042
and Y = M x + B
-------
11.3.3 Ca1ibration Quality Control
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Pagerll of 41
It is assume that the NBS propane standard is reliable
and valid for 2 years from date of purchase. Three to five
different concentrations of the NBS standard and one zero
standard are injected and the response factors are obtained,
as discussed above. _T_he percent difference of the response
factor
from the mean shall o~eno more than 5T7"
d i f f eTe~n c e TS c ale iTlated by: ~ ~"
% Diff. = ((Response - Mean)/Mean) x 100
The percent
For example:
Response Factor Mean
0.303058 0.30395
0.300471 0.30395
0.302922 0.30395
0.309353 0.30395
Difference
0.000892
0.003479
0.001028
0.005403
Difference
0.29
1.14
0.34
1 .78
Problems leading to a failure of the system to meet the
above requirement for the response factors must be corrected
before proceeding with the analysis. Minor variations from
the proper value are probably due to operator error.
However, large variations are probably attributable to
equipment problems.
It is assumed that the response of the FID is linear
with respect to the number of carbon atoms present (i.e., r
should be ± .95). This assumption has been previously
verified (ref. 3) for several hydrocarbon compounds. The
intercept should be not significantly different from zero at
a =0.05. A positive intercept implies propane contamination,
Procedures for least-squares method of fitting a linear
or nonlinear function to the calibration data set are found
in appendix j of reference 4. The calculation for linear
function is:
n(£xy) - (£x)(£xy)
n(£x2) - (£x)2
slope of fitted line
n-l
a intercept of line
Where n » number of points,
* equivalent propane cone;
area of propane peak, and
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page: 12 of 41
11.3.3.1 g
Sta_ndardErrorof
After the calioration curve statistics has been
calculated, the standard error of estimate or ( Se ) can be
calculated using:
Se
Whereas, a = y-intercept, b
in the calibration curve
~ b(£xy))/n-2)
=slope and n= number of points
will show variation in both slope
ana
C i
A calibration
intercept over tine and the SE will become larger. The Se
has properties analogous to those of the standard deviation
and can be used as an indicator of curve degradation. For
data analysis, the SE will be used to compute the upper and
lower limits for a single data observation (xobs) based on
the calibration curve data using:
(a + (b xobs ) )
ta/2 x Se x
!+•=• + n(xobs - x)2
Whereas ta/2 is obtained from the t distribution tanle
at 95 % and the number of degrees of freedom is n-2.
11.3.3.2 E.stab,lihmentof
lWar n
ndgntrgl
After the initial calibration curve has been
constructed according to 11.3.2, reanalyze additional
samples of the low and high concentration standards..
Calculate the concentrations using the previously derived
calibration curve. Repeat this procedure until at least ten
determinations at each concentration level have been made.
These additional high and low concentrations should oe
collected on ten different days to provide a realistic
estimate of the method daily variability. Calculate
standard deviation(s) at each concentration level (i.e.,
highest and lowest standard). Use the mean concentration as
the mean value (X) for determining the control limits. A
warning limit of X ^ 2s (95 %) and a control limit of X ^ 2s
(99 %) should be used.
rl.4 STANDARDIZATION
Information to be supplied at a later date.
-------
ASRL-ACPD-RPM-002
Revis ion no. I
Date: 9/21/68
Page:13 of 41
12.0 ANALYSIS PROCEDURES
The analysis procedure is divided into two stages:
Sample preparation and gas chromatograpnic analysis.
12.1 Preparation Stage
The sample preparation steps are:
A. Adjust instrument gas flow rates.
1) Turn off the FID and FID heater - allow to cool
to room temperature.
2) Attach a soap film flow meter to the detector
chimney (see instrument instruction manual for
an illustration this apparatus.
3) Set the carrier gas (Helium) pressure to 200
kPa
(29 psia).
4) Set the hydrogen pressure to 250 kPa (35 psia'}.
WARNING - Hydrogen delivery pressure should be
less than detector air pressure.
Adjust the hydrogen flow to 28-30 cm /ruin.
5) Set the detector air pressure to 300 kPa L45
psia). Adjust the detector flow to 430 cm /mm
+_ 10 cm /mm.
6) Set the makeup nitrogen pressure to 300 kPa 145
psia). Adjust the nitrogen makeup and carrier
gas flow rate to a total flow of 30 cm /mm.
NOTE:The above flow rates were optimized for the given
column on an HP 5880A gas chromatograph with FID. If
another gas chromatograph is used, adjust tne flow
rates to obtain maximum sensitivity according to trie
manufacturers instructions for that instrument.
B. Adjustment of Carrier Gas Flow Rate
Verify that the carrier gas (Helium) pressure is
at 29 kPa. Refer to Section 1.11.1 for fine tuning cf
the carrier gas flow rate. Flow rate is dependent upon
the column head pressure.
C. Set Up Detector
With the flow rates adjusted as in Step A, remove
the adapter from the FID cnimney and reset the detector
temperature to 250°C. Light the detector witr. th :-
ignitor and checK that comoustion is taking place.
-------
ASRL-ACPD-RPH-002
Revision No. 1
Date: 9/21/88
Page : 14 of 41
D. Column and Value Temperatures
Detector = 250°C.
Initial Oven Temperature = -50 C.
Oven Temperature Programming Rate = 8°C/min
(temperature programming started 2 minutes after
time of injection).
Final Oven Temperature = 200°C.
Six-Port Valve Temperature = 60 C.
12.2 Analysis Stage
Preconcentration and infection of the sample is carried
out as follows. Initial conditions are these: V2 is
closed, vacuum pump is on, valves V3 and V6 are closed, gas
sampling valves V4 and V5 are in the off position (Figure
1). Attacn the canister to be analyzed to the inlet line.
Open valves V3 and V6 to evacuate the system. When the
vacuum gauge (PI) reaches 50 Torr or below, close valve V6.
The system should remain at or very near 50 Torr. A rising
pressure indicates a leak in the system.
The sample concentrating trap is immersed in a Dewar
flask containing liquid oxygen (or liquid argon) sufficient
to cover most of the "U" but placed so that the compression
fittings are neither inside the flask nor touching the
liquid cryogen. If the fittings are inside the flask,
sample will condense in the fittings instead of on the trap.
This could result in either plugged carrier gas flow due to
ice forming in the fitting and/or improper sample plug
injection of the trapped hydrocarbons.
Open valve V2 and adjust valve VI to a flow of 100
cm3/min, using mass flow-meter Ml. When the pressure gauge
(PI, Figure 2) is at 60 Torr, actuate valve V4 (V4 is
switched to one direction, see Figure 2). Adjust flow rate
back to 100 en /mm, using valve VI, if necessary.
When PI reads 140 Torr, inject sample onto column by
actuating valve V5 (Figure 3), removing liquid oxygen flasK
from trap, immersing the U-trap in the hot water bath, and
pressing start button on electronic integrator (and GC, if
needed); deactivate valve V4 (Figure 3).
CAUTION: It is extrerne 1y' important that V5 be closed before
removing the liquid oxygen flask from the trap.
-Failure' to observe this sequence will permit light
hydrocarbons to be vented before injection.
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/86
Page:15 of 41
At a time of 2 minutes into the run, deactivate valve
VS. Stop the run manually or automatically after
approximately 35 minutes or when the last compound of
interest elutes. Identify sample peaks by their retention
times, as determined in Section 11.3.2. An example
chromatogram is shown as Figure 4.
At least one QC sample (Section 18.0) is run routinely.
Upon completion of the sample run, calculate and review the
2C results to determine if there are any significant
differences. Any value falling outside the control limits
is indicative of a system problem and requires corrective
action (Section 15.0) before continuing analysis of samples.
13.0 CALCULATIONS
Using the calibration constant (k) determined in
section 11.3.2, calculate the concentration of each compound
(peak) as follows:
Concentration, ppbC = (kHArea)
where the area is in integrator counts. Most integrators
may be programmed to perform this calculation and present
results directly in units of concentration.
13.1
To calculate the upper and lower limits of the
concentration (i.e., Limits of prediction), the appropriate
formula to calculate the limits of prediction are given in
section 11.3.3.1
14.0 Data Reporting
The concentration of each C2~ci2 hydrocart>on should oe
reported. The integrator chart of sample and calibration
standard should be saved as a record of analysis. Data tape
from the integrator computer system should be identified,
logged in the laboratory notebook, and stored. Sample run
report should be recorded in the laboratory noteboo* in the
following format:
Day Month
Notes: (e.g., QC, Standard, Duplicate, Replicate, etc.)
ID. SI.TE DATE CANff_ PEAK§ DBli l^PE ( COMPARISONS^
Other forms of computer data storage should be noted
when they, occur. It is recommended that ail C„-C ^
hydrocarbon peak data be stored in a computer compatible
format for" ease of reporting and analysis.
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/80
Page:16 of 41
15.0 Corrective Action
Corrective action should be taKen whenever any of the
following are ooserved:
o Internal QC checks exceeding limits.
o Variation of response, as shown by more than a + 15
percent change in calibration constant.
o Variation of +0.2% of retention tines for specific
peaks.
o Poor or ill-shaped peaks (wide or shallow).
o Fused or combined peaks.
o Presence of other peaks wnich elute with the compounds
of interest (C2~ci2 hydrocari3ons ) •
o Integrator failure to correctly recognize start time,
stop time, or to correctly determine baseline and peak
areas.
Determination of the proper corrective action requires
a knowledge of chromatographic principles and instrumenta-
tion beyond the scope of this document.
16.0 METHOD PRECISION
Based on repeated analysis of NBS SRM propane in air
Standards over a one year period, the variation of the
calibration Constant (k) was found to be within ^ 15 percent
of the initial value. Replicate analysis of ambient air
samples for total nonmethane organic compounds (NMOC) using
a similar technique (reference 2) showed an analytical
precision of approximately + 12 percent. The precision for
C -C hydrocarbons should be similar. Method precision
will be determine from replicate analysis of the RTI
canister or duplicate measurements made at concentration
levels representative of the range experienced by routine
samples. Operator and daily instrument precision will be
determined from duplicate analyses of ambient canisters.
17.0 METHOD ACCURACY
Due to the lack of suitable NBS standards for the range
of hydrocarbons, the accuracy for analysis of all hydro-
carnons (C -C ) cannot be directly determined using tne
propane standard." For this method, the propane SRM will be
used to determine the accuracy. External audits are an
essential part of the method ^A program and performance
audits may be used to determine instrument accuracy.
-------
ASRL-ACPD-R Pi-:-002
Revision No. 1
Date: 9/21/88
?age:17 of 41
18.0 DAILY QUALITY CONTROL
This section specifies the daily QC program and discus-
ses responsibilities for evaluation of the QC data.
Calinration QC is discussed in section 11.3. These
procedures require real-time review of analytical
performance by the analyst, and QC review of all data
directly after input to the data base.
13.1 QC Checks and Frequency
One sample of NBS SRM propane in air should be analyzed
at the beginning of each day that a sample is run. One or
more QC canisters will be run during the sampling day.
Duplicates of the QC canisters will be run to detect
procedural or operator bias as part of the real-time
within-day QC review. Replicates will be run to detect
variability in the instrument performance (day to day) and
to determine the instrument precision.
18.1.1 Dupl i c
Positive or negative differences of duplicate measure-
ments are indicative of gross method error or procedural
in-run operator bias. The data obtained from duplicate
measurements will be used to determine when the GC is out of
statistical control. The percent difference of the results
should be no more than 10%.
The standard deviations used to generate the initial QC
control limits (section 11.3.5) can be used to evaluate to
the duplicate differen ces initially. Duplicate measurements
should agree within 2V 2~ s (or 2.83 times the s). After a
reasonaole period of time (i.e., ten or more duplicate mea-
surements), the following procedure for calculating new du-
plicate control limits should be performed.
For duplicate measurements x and y, where x and y arc
the observation in the order obtained, the difference d = x
-y is calculated and recorded. To determine duplicate con-
trol limits after ten to fifteen sets of duplicates, tne
formula for s is:
s =
d2/2k
duplicate
where k is the number of subgroups or pairs of
analyses. The average range (R) for duplicates is:
/k
Contrpl limits can be reestablished based on the number
of duplicates performed over a period of time. Control
charts for differences and ranges can be constructed by +_ 3
V* 2 s with the central line being 0; the limit for the range
can be obtained from D4R (Ref. 4, Section H for D4 value).
-------
18.1.2 Reolicate Measurements
A S RL - A C P D - R Pi: - 0 C 2
Revision ilo. 1
Date: 9/21/b3
Page : 18 of 41
Positive or negative differences of analysis replicate
measurements with respect to the initial value measured are
indicative of a method error or operator day to day bias.
The data obtained from tnese measurements will be use to
determine when the measurement system is out of statistical
control and to determine analytical precision.
Historical replicate data must first be combined as
necessary to develop an assessment of precision that defines
the expected standard deviation of replicates. The standard
deviations used to generate the QC control limits (section
11.3.5) can be used initially. Recent and historical pat-
terns are essential to evaluating the control status using
replicate measurements. The number of replicate measurements
needed for an experiment will be determined on the histori-
cal or recent variability of the system.
( Rl, R2 , Rn ) ,
Given a series of repeated measurements
the formula for s is:
'/2k
where k is the number of replicate pairs and D is difference
between the pair values. It is important that all repli-
cates are determined under identical conditions and that the
distribution of repeated results is approximately "normal"
to establish the control limits. It is recommended that the
standard deviation and range charts be used and the Control
limits are set at 3s and 2s . A ratio greater than 1.3
between-run (replicates) and with in-run (duplicates) should
be considered "statistically significant" and corrective
action taken. Reestablish new control limits whenever
instrumental operation conditions are varied, calibrations
performed, or QC constrictions are changed.
18.1.3 C o n_ t_r_o J. _ £h_a_r_iti__f or _ O C_ C a n j_ s t e r s / S a m pi e s
The measured value of the QC sample is plotted on tne
control charts for the QC sample concentration differences
or as an percent difference. The measured value (ppcC)
should not differ by more than two times the standard devia-
tion of NBS-cert i f led value (ppb). If this occurs, the
systen should be checked for proper operation. If the
condition persists, or if two successive QC measurements are
outside of the + 2s limits, or if the measured value
exceeds the upper or lower control limit (three standard
deviations, section 11.3.5), the detector should be cleaned
and checked for correct operation. If the response rename
outside the upper or lower control limit, then the
instrument should" be recalibrated and/or corrective action
taken. Plot the data obtained from the QC measurements on a
control chart for routine assessment of analytical bias anc
precision.
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/bS
Page:19 of 41
13.1.4 Control ..Cha_rt_lor_Da ily jjBS_SRIl
The measured value of the daily NBS SRM propane sample
is plotted on a control chart. The measured value (ppbC)
snould not differ by more than two tines the standard
deviation of NES-certified value (ppb) If this occurs, the
system should be checked for proper operation. If the
condition persists or the measured value exceeds the upper
or lower control limit (three standard deviations, section
11.3.5), corrective action snould be performed before any
further sample analysis. This includes checking the sample
preconcentration procedure and the GC analysis system for
proper operation. If the response remains outside the upper
or lower control limit), then the instrument snould be
recalibrated.
18.2 Performance Evaluations
Participation in performance evaluation studies is
recommended for this method. The samples used for these
performance audits should contain the species of interest at
concentrations within the normal working range of this
method. The true values should remain unknown to the
analyst until the end of the study to prevent operator bias.
18.3 Systems Audits
This section contains the recommended procedure for
performing an system audit for this method. The need for
and scheduling of systems audits will be determine by the
Project Officer. The basic scope of the system audit will
be:
1 . to verify the adherence to this research
protocol/method; and
2. to verify the data flow and archiving process used
for the computerized data base.
Organizations performing systems audits should review
the following sections and the audit questionnaire (Appendix
A). It is recommended that the independent audit plan se
compared to this document and differences noted. In ail
cases, methods for assessing the data quality for this
method must be approved by the organization being auditeo
prior to starting the audit.
18.3.1 AucUt^Plan
1. Meet with organizational personnel, identify key
personnel, identify the purpose of the audit, a r. u
review audit plan and questionnaire.
2. Collect all QC Documentation (i.e., gc Charts,
forms, notebooks, etc.) and data base print outc.
-------
ASRL-AC?D-P.?.!-CC2
Revision Uo. 1
Date: 9/21/B3
?age:20 of 41
3. Perform audit of sample analysis.
4 . Perform audit of sample data processing
activities.
5. Perform audit of data validation.
6. Perform audit of data oase.
7. Complete audit questionnaire.
8. Hold audit review meeting and critique audit
findings. Make corrections to audit findings or
questionnaire if required. Discuss corrective
action plans, if appropriate.
It is suggested that data quality might be assigned one
of three levels according to the following guidelines:
1. Unknown quality - a vital piece of OC data is
missing or can not be verified.
2. Questionable quality - generally all data and
documents are in good order, but a secondary item
needed to completely characterize the data is
missing, e.g., a control chart to demonstrate that
the method was in control over a given time
interval.
3. Known quality - all documentation is in order,
with data traceable from the final report to the
date and time of the analysis.
18.3.2 D_C;£t£men_t^s_
The following documents will be reviewed at the tine of
the audit:
1. Laboratory notebooks or forms for method.
2 . QC charts for duplicates or replicates
3. ' At least five previous calibration curves.
4. Instruction manuals and related SOP's or RPM's
5. Documents relating to quality of materials used.
6. All documentation for GC computer, data
.validation, and data storage
~l . "All documents related to compliance with ASRL gA
plan requirements.
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page: 21 of 41
19.0 DATA VALIDATION
Data will be critically reviewed to identify and
isolate errors. Data validation occurs at each step of the
measurement process, beginning with the GC electronic
integrator. Once data enters a computerized storage and
retrieval system, a more detailed screening process is
required.
20.0 QUALITY ASSURANCE REPORTS TO MANAGEMENT
Laboratory QC data and audit results are reported
quarterly. A report will be submitted to management anytime
for one or more of the following:
1. When a significant discrepancy is noted and an
examination of the analytical procedure reveals
not apparent reason for the discrepancy;
2. When the analysis comparing the commercial and NBS
standards indicates serious deterioration of the
commercial standard; and
3. When audit results or out-of-control situations
are noted that indicate that the method is
producing data of unknown quality.
21.0 PREVENTIVE MAINTENANCE
To be defined at later date.,...
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page:22 of 41
REFERENCES
1. Knoll, J. E., Journal of Chromatographic analyses,
Vol. 23, p. 422, September 1987.
2. EPA/RTP Safety Manual, Support Services Office,
Environmental Research Center, Research Triangle Park,
NC 27711.
3. Dietz, W. A., Journal of Gas Chromatography, Vol. 5,
pp. 68-71 (1967).
4. Quality Assurance Handbook for Air Pollution
Measurements, Volume 1. Principles (EPA-600/9-76- 005
Dec 1984).
GLOSSARY
BIAS
- An error in a method that systematically distorts results.
REST TO BE DEFINED LATER
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/83
Page:23 of 41
APPENDIX A
TABLE OF
HYDROCARBON IDENTIFICATIONS AND RETENTION TIMES
a
/
-------
TABLE 1.
ASRL-ACPD-RPli-002
Revision No. 1
Date: 9/21/88
Page:24 of 41
HYDROCARBON IDENTIFICATIONS AND RETENTION TIMES
HP5880 Calibration Table
CAL
NO.
0
102
104
106
108
110
112
114
116
118
120
122
124
Ret.
Time
.000
,830
.988
.373
.017
.105
.661
.286
.937
.739
.652
.086
.410
.256
.551
0
1
2
3
4
5
5
6
6
8
9
10
10
126 10.737
128 11.116
130 11
132 11
134 11.994
136 12.486
138 12.631
140 12.848
142 13.031
144 13.369
146 13
148 14
150 14
152 14
154 14
156 14
158
160
162
164 15
166 16.320
163 16.437
170 16.592
172 16.916
174 17.316
176 17
178 17
180 18
182 18.602
184 18.897
186 19.170
188 19.257
190 19.408
192 19.701
.643
.062
.240
.406
.605
.898
15.177
15.523
15.681
.980
,507
,762
.343
CAL
NO.
101
103
105
107
109
111
113
115
117
119
Ret.
Time
2.
1.
3.
3.
4.
Compound
REF Name
0 Uncalibrated
0 ETHYLENE
0 PROPENE
0 Unknown
0 OLEFIN
1 -ISO3UTANE
0 Unknown
0 BUTENE-1
0 t-2-BUTENE
0 C4 OLEFIN
0 C5 OLEFIN
0 C5 OLEFIN
1 n-PENTANE
0 t-2-PENTENE
0 C5 OLEFIN
0 C5 OLEFIN
0 C6 PARAFFIN
0 C6 OLEFIN
0 C6 PARAFFIN
0 CYCLOPENTANE
0 C6 OLEFIN
0 C6 OLEFIN
0 C6 OLEFIN
0 C6 OLEFIN
0 1 n-HEXANE
0 C7 OLEFIN
0 C7 OLEFIN
0 C7 OLEFINN
0 -HETHYLCYCLOPENTANE
0 C7 PARAFFIN
0 C7 OLEFIN
1 -BENZENE
0 CYCLOHEXANE
0 2-METHYLHEXANE"
0 C7 PARAFFIN
0 3-METHYLHEXANE
0 C7 PARAFFIN
0 C8 OLEFIN
0 C8 PARAFFIN
0 C8 OLEFIN
0 C8 PARAFFIN
0 C8_J>ARAFFIN
0 2,3,4-TRIMETHYLPENTANE
0 C8 PARAFFIN 187 19.202
0 C3 PARAFFIN 189 19.361
0 C8 PARAFFIN . 191 19.585
0 -C8 PARAFFIN 193 19.905
194 20.001 0 £8 PARAFFIN
196 20.180 0 C8 PARAFFIN
198 20.330 0"n-OCTANE
200 20.470 0 C9 PARAFFIN
Compound
REF Name
0 ETHANE
0 ACETYLENE -
0 PROPANE
0 PARAFFIN
0 OLEFIN
0 Unknown
0 2-METHYLPROPYLENE
1 n-BUTANE
0 c-2-BUTENE
1 ISOPENTANE
0 -1-PENTENE
0 2-METHYL-l-BUTENE
0 ISOPRENE
0 C5 OLEFIN
0 c-2-PENTENE
0 C6 PARAFFIN
0 2,2-DIMETHYLBUTANE '
0 C6 OLEFIN
0 C6 OLEFIN
0 2,3-DIKETHYLBUTANE
1 2-METHYLPENTANE
0 C6 OLEFIN
0 3-METHYLPENTANE
0 C6 OLEFIN
0 C7 PARAFFIN
0 C7 OLEFIN
0 C7 OLEFIN
0 C7 OLEFIN
0 2,4-DIMETHYLPEIJTANE
0 C7 OLEFIN
0 C7 PARAFFIN
0 3,3-DIMETHYLPEIlTANE- -
0 C7 OLEFIN
0 2,3-DIMETHYLPENTANE
0 C7 OLEFIN
0 C7 PARAFFIN
0 2, 2, 4-TRIMETHYLPINTAiJE
0 n-HEPTANE
0 C8 OLEFIN
0 METHYLCYCLOHEXANE
0 C8 PARAFFIN
0 C8 PARAFFIN
19.022 -1 TOLUENE
0 C8 PARAFFIN
0 C3 PARAFFIN
0 C8 PARAFFIN
0 C8 PARAFFIN
195 20.109 0 C8 PARAFFIN
197 20.250 0 C8 PARAFFIN
199 20.377 0 C9 PARAFFIN
201 20.662 0 C9 PARAFFIN
018
960
105
540
450
5.423
6.115
6.462
7.500
9.398
121 10.000
123 10.272
125 10.560
127 11.008
129 11.172
131 11
133 11
135 12
137 12
139 12
141 12
143 13
145 13
147 13
149 14
151 14
14
14.750
157 15.085
159 15.281
161 15.657
163 15.878
165 16.056
167 16.358
169 16.507
171 16.785
173 17.007
175 17.358
177 17.667
179 17.984
181 18.407
183 18.816
185
153
155
,505
.672
,252
.490
.763
.957
.097
.440
.850
.164
.317
.543
-------
TABLE 1.
CAL. Ret.
NO. Time
202 20.827
204 21.009
206 21
208 21
210 21
21
21
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page:25 of 41
HYDROCARBON IDENTIFICATIONS AND RETENTION TIMES (Continued)
HP5880 Calibration Table
212
214
216 22
218 22
220
222
224
226
228
230 23
232 23
234
236
238
240
242
244
246
248
250
252
254
256
258 25
260 25
262 26
264
266
268
270
272
274
276
278
280
282
284
285 28
286 28
172
277
425
596
842 0
140 0
322
462 0
601 0
733 0
860 0
034 0
243
455
635
23.824
23.940
24.107
212
386
578
694
979
122
320 0
520 0
661
909
043
218
497
710 0
842 0
26.960
27.142
227
421
22
22
22
22
23
23.
24.
24.
24.
24.
24.
25.
25.
25.
26.
26.
26.
26.
Compound CAL Ret.
REF Name NO. Time
0 C9 PflRAFFIN 203 20.949
0 C9 PARAFFIN 205 21.
0 C9 PARAFFIN 207 21.
0 C9 PARAFFIN 209 21,
0 C9 PARAFFIN 211 21.
0 C9 PARAFFIN 213 21.
C9 PARAFFIN 215 21.
C9 PARAFFIN 217 22.
0 C9 PARAFFIN 219 22.
C9 OLEFIN 221 22.
o-XYLENE 223 22,
C9 PARAFFIN 225 22.
C9 PARAFFIN 227 22,
n-NONANE 229 23,
CIO PARAFFIN 231 23,
CIO PARAFFIN 233 23,
CIO PARAFFIN 235 23,
CIO PARAFFIN 237 23,
CIO PARAFFIN 239 24
CIO OLEFIN 241 24
n-PROPYLBENZENE*- 243 24
0 p-ETHYLTOLUENE- 245 24
0 C9 AROMATIC 247 24
CIO PARAFFIN 249 24
C9 AROMATIC 251 25
CIO OLEFIN 253 25
C9 AROMATIC 255 25
n-DECANE-" 257 25
C9 AROMATIC 259 25
1,2,3-TRIMETHYL3EMZENE261 25
Cll PARAFFIN 263 26
CIO AROMATIC 265 26
CIO AROMATIC 267
CIO AROMATIC 269
CIO AROMATIC 271
CIO AROMATIC 273
Cll PARAFFIN 275
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26
26
26
27
27
123
223
369
524
744
973
235
415
518
688
785
940 0
174 0
305 0
540 0
706 0
883 0
007 0
177 0
310 0
447
632
852
,051
,217
,408
,597 0
,770 0
,972 0
,103
.379
,567
,807
.877
,023
.181 0
Compound
REF Name
0 C9 OLEFIN
0 C9 PARAFFIN
C9 PARAFFIN
C9 PARAFFIN
0 C9 PARAFFIN
0 ETHYLBENZENE
1 m&p-XYLENE
0 C9 PARAFFIN
0 C9 PARAFFIN
C9 PARAFFIN
C9 PARAFFIN
C9 PARAFFIN
C9 PARAFFIN
CIO PARAFFIN
CIO PARAFFIN
CIO PARAFFIN
CIO PARAFFIN
CIO PARAFFIN
CIO OLEFIN
CIO PARAFFIN
0 CIO PARAFFIN
0 m-ETHYLTOLUEN£U
0 CIO PARAFFIN
0-ETHYLTOLUENE
CIO PARAFFIN
0 1,2,4-TRIMETHYLBENZENE
0 CIO PARAFFIN
0 C9 AROMATIC
C9 AROMATIC
Cll PARAFFIN
Cll PARAFFIN
CIO. AROMATIC
CIO AROMATIC
0 CIO AROMATIC
0 Cll PARAFFIN
0 Cll PARAFFIN
CIO AROMATIC
0
0
0
0
0
27.
27,
27.
27.
23,
0
0
0'-l,2-DIMETHYL-4-ETHYLBENZENEx277 27.363 0 CIO AROMATIC
0 CIO AROMATIC 279 27.601 0 Cll PARAFFIN
680
809
040
116
193
0 CIO AROMATIC . 281 27.769 0 CIO AROMATIC
0 l,2-DIMETHYL-3-ETHYLBENZEllE-283 27.953 0 CIO AROMATIC
O' 1, 2,_4JL5-TETRAMETHYLBENZENE -
0- 1,2,3,5-TETRAMETHYLBENZENEx
0 Cld'AROMATIC
238 23.360
290 28.623
28.
28.
292
294
296
298
,730
.923
29.120
29.270
0 CIO AROMATIC
0 Cll AROMATIC
0 Cll AROMATIC
0 Cll AROMATIC
0 Cll AROMATIC
0 Cll AROMATIC
287
289
291
293
295
297
28.
20.
28.
28.
29.
29.
,244
,763
,662
,845
,056
.199
0
0
0
0
0
0
299 29.350
Cll PARAFFIN
C9 PARAFFIN
Cll AROMATIC
Cll AROMATIC
Cll AROMATIC
Cll AROMATIC
0 Cll AROJ1ATIC
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page:26 of 41
TABLE 1. HYDROCARBON IDENTIFICATIONS AND RETENTION TIMES (Continued)
HP5880 Calibration Table
CAL.
NO.
300
302
304
306
308
310
312
314
316
318
320
322
324
326
328
330
332
334
336
338
340
342
344
346
348
350
352
354
356
358
360
362
364
366
368
370
372
374
376
378
380
382
334
386
383
390
392
394
396
39S
, Ret.
Time
29.
29.
29.
30.
30.
30.
30.
30.
31.
31.
31.
31.
31.
32.
32.
32.
32.
33.
33.
33.
36.
8.
13.
16.
17.
17.
19.
20.
27.
30.
30.
31.
15.
18.
23.
22.
23.
13.
35.
29.
3.
7.
14.
19.
34.
8.
10.
12.
21.
570
840
939
159
283
598
770
908
162
305
471
667
983
210
380
623
823
060
147
802
057
227
673
156
196
560
472
543
550
307
660
752
617
080
970
150
460
520
220
032
293
206
953
150
410
850
120
150
460
Compound
REF Name
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Cll AROMATIC
Cll AROMATIC
C PARAFFIN
CII AROMATIC
Cll AROMATIC
Cll AROMATIC
C12 PARAFFIN
C12 AROMATIC
C12 AROMATIC
C12 AROMATIC
C12 AROMATIC
C12 AROMATIC
C12 AROMATIC
C12 AROMATIC
C13 PRAFFIN
C12 AROMATIC
C12 AROMATIC
C12 AROilATIC
C12 AROMATIC
C12 AROMATIC
C12 AROMATIC
C4 OLEFIN
C6 OLEFIN
C7 OLEFIN
C7 OLEFIN
C8 OLEFIN
C8 PARAFFIN
C9 OLEFIN
CIO AROMATIC
Cll AROMATIC
Cll AROMATIC
C12 AROMATIC
C7 OLEFIN
C3 PARAFFIN
CIO AROMATIC
C9 PARAFFIN
CIO AROMATIC
CG OLEFIN
C12 AROMATIC
Cll AROMATIC
C3 PARAFFIN
C4 PARAFFIN
C7 PARAFFIN
C8 PARAFFIN
C12 AROMATIC
0 £4 OLEFIN-
0
0
0
C5 OLEFIN
C5 OLEFIN
C9 PARAFFIN
341
343
CAL Ret.
NO. Time
301 29.695
303 29.888
305 30.077
307 30.210
309 30.367
311 30.727
313 30.821
315 31.070
317 31.253
319 31.383
321 31.617
323 31.924
325 32.095
327 32.340
329 32.530
331 32.718
333 32.923
335 33.098
337 33.450
339 33.817
7.340
8.350
345 15.493
347 16.637
349 17.399
351 18.260
353 20.063
355 27.487
357 23.505
359 30.444
361 30.980
363 31.877
365 16.860
367 22.170
369 13.310
371 15.020
373 27.125
375 3.926
377 29.413
379 28.550
381 33.376
383 4.377
385 12.409
387 15.780
389 20.760
391 7.580
393 9.700
395 11.790
397 18.650
399 21.890
Compound
REF Name
0 Cll AROMATIC
0 Cll AROMATIC
0 Cll AROMATIC
0 Cll AROMATIC
0 Cll AROMATIC
0 Cll AROMATIC
0 Cll AROMATIC
0 C12 AROMATIC
0 C12 AROMATIC
0 C12 AROMATIC
0 C12 AROMATIC
0 C12 AROMATIC
0 C12 AROMATIC
0 C12 AROMATIC
0 C12 AROMATIC
0 C12 AROMATIC
0 C12 AROMATIC
0 C13 PARAFFIN
0 C12 AROMATIC
0 C12 AROMATIC
0 C4 OLEFIN
0 C4 OLEFIN
0 C7 OLEFIN
0 C7 PARAFFIN
0 C8 OLEFIN
0 C8 OLEFIN
0 C8 PARAFFIN
0 Cll OLEFIN
0 CIO AROMATIC
0 Cll AROMATIC
0 C12 AROMATIC
0 C12 AROMATIC
0 C7 PARAFFIN
0 C9 PARAFFIN
0 Co PARAFFIN
0 C7 OLEFIN
0 CIO AROMATIC
0 C4 OLEFIN
0 Cll AROHATIC
0 Cll AROMATIC
0 C12 AROMATIC
0 C3 PARAFFIN
0 C6 PARAFFIN
0 C7 OLEFIN
0 C9 PARAFFIN
0 C4 PARAFFIN
0 C5 OLEFIN
0 C5 OLEFIN
0 C8 PARAFFIN
0 C9 PARAFFIN
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page:27 of 41
TABLE 1. HYDROCARBON IDENTIFICATIONS AND RETENTION TIMES (Continued)
HP5880 Calibration Table
CAL. Ret. Compound
NO. Time REF Name
400 23.770 0 CIO PARAFFIN
402 27.310 0 CIO AROMATIC
404 32.460 0 C12 AROMATIC
406 35.870 0 C12 AROMATIC
408 25.830 0 C9 AROMATIC
410 33.270 0 C12 AROMATIC
412 9.580 0 C5 OLEFIN
414 31.710 0 C12 AROMATIC
416 30.280 0 Cll AROMATIC
CAL Ret. Compound
NO. Time REF Name
401 26.630 0 CIO AROMATIC
403 27.850 0 CIO AROMATIC
405 34.590 0 C12 AROMATIC
407 13.140 0 C6 PARAFFIN
409 30.530 0 Cll AROMATIC
411 34.310 0 C12 AROMATIC
413 10.890 0 C5 OLEFIN
415 15.480 0 C7 OLEFIN
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page:28 of 41
APPENDIX B
GAS CHROMATOGRAPY
AUDIT QUESTIONNAIRE
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page:29 of 41
YES NO
1) Does the technician have a current copy of
the RPM at or near the bench?
2) Are gases traceable to, at a minimum.
Research reagent grade gases? _^ _
3) Are calibration results within 5% of the
mean ?
4) Are outlying standards rejected? And is
the rejection:
a ) documented?
b) explained?
c) reviewed?
5) Are daily standards:
a) run immediately following the
calibration?
b) within ^ 10% of known value?
6) Are repeated measurements made of:
a) the highest standard?
b) the lowest standard? ___ -_....-,
7) Have the standard deviations for:
a) the highest standard been computed?
b) . the lowest standard been computed?
8) Have the initial control limits been
computed for:
a) daily standard measurements? _ ^
b) duplicate measurements? _J
c) replicate measurements? ___
9 } Are standards reanalyzed periodically?
10) Are any sampler analyzed in duplicate?
11) Are replicate samples analyzed?
12) Are QC samples analyzed?
-------
ASRL-ACPD-RPM-002
Revision No. 1
Date: 9/21/88
Page:30 of 41
YES NO
13) Are QC sample control charts current?
14) Are blinds analyzed?
15) Are audit samples analyzed periodically?
16) Are the following control samples analyzed:
a) spikes?
b) interlaboratory?
c) intralaboratory?
d) old samples?
e) other QC samples?
17) Are NBS SRM samples analyzed regularly?
18) Are accuracy measurements:
a) made on scheduled basis?
b) within RPM specifications?
19) Are precision measurements:
a) made on scheduled basis?
b) within RPM specifications?
20) Is GC preventive maintenance performed as
required by RPM? ^
21) Were corrective action procedures implemented
as required?
22) Are control charts and other QC records:
a) filled in an organized manner? _.
b) recorded in laboratory notebook?
23) Are computer printouts and reports spot-
checked and validated?
24) Have any of the following audits been
performed in this laboratory?
a) Systems Audit?
b) Performance audit?
25) Are internal QC reports prepared on a
timely basis to management?
-------
ASRL-ACPD-P.PM-002
Revision No. 1
Date: 9/21/88
Page:31 of 41
APPENDIX C
FIGURES, FORMS AND
EXAMPLES
-------
ASRL-ACPD-RPH-002
Revision No. 1
Date: 9/21/88
Page:32 of 41
TABLE 2. LEGEND FOR FIGURES 1. 2, AND 3
VI = stainless steel needle valve
V2' V31 and V6 = shut-off valves (a)
V4 and V5 = 6-port electrically actuated gas
sampling va1ve
(attached to HP 5880A Gas Chromatograph).b)
Ml = 0 to 500 cn3/min mass flow meter
PI = 0 to 200 Torr Wallace and Tierman
Bourdon Gauge
(a) V2 is a stainless steel bellows valve on the
canister. V3 and V6 are toggle valves; they may be
stainless steel or brass.
(b) The gas sampling valve used should be capable of
holding a vacuum down to 10 Torr for proper operation.
-------
TOGO COLUMN
CARRER GAS (He)
TRAP
V1
V2
SAMP.
CANN.
TOGGLE
VALVE
3-WAY
TOGGLE
VALVE
NEEDLE
VALVE
PURGE
He
Ffoura 1. Intet tyrt«m-purf« portion.
VAC. PUMP
•v t/tt/t
«0
0»
at
-------
TO GC COLUMN
CARRER GAS (He)
TRAP
DEWAR FLASK
TOGGLE
3-WAY
TOGGLE
VALVE
•»»£»
to -o *•
to -o
VAC. PUMP
o -i -nc>
-
Figure 2. lnl«t lyilMi-Mnifil* tr*ppln| poilllon.
-------
• I '
TOGO COLUMN
CARRER GAS (He)
TOGGLE
VALVE
DEWAR FLASK
VAC. PUMP
•• i» r» »
«o -o »• 22
*
vw ••»
O t 1|O
•*-a *
*S?.3
-------
I.
60 "C
1 I
0 2
8 "C/mto
1 1
10 20
RETENTION TIME, mln
Hyiire 1. Gas chromalogram of ambient *lr C-2 to C-12 hydrocarbons
S(!|>arale«l on a DO-I fused silica capillary column.
200 °C
i f
30 «S 5 5 £ 70
n r» -t. rt r~
§«* C 1
-*•««:»»
.K U>O 0» -o
M « -*, 3
"^ cr» rt
C3
n
-------
37 of
UJ
I
-15-
40 60 60 j 100
' TIME, day of study
120 140
Figure 5. Deviation of measured NBS propane
sample response from certified
value ( • ) 1984 and (£) 1985.
-------
PROJECT
MEASUREMENT
UNITS
M-l
O
to
n
CATC
MEASUREMENT
UJ
O
0
CJ
t-
_J
UJ
a:
1
2
3
1
2
3
SUM
x
s
AVERAGES, I
—
—
—
—
12 3 4 5 67 0 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
tn
UJ
0
O
t-
i*j
«* >•
«•{ CJ
u a
jr **
gt
>
*
—
—
-
—
—
-------
39 of 4:
comcm
(COBRECWI DflwrC
ACTION. RANGE
ETC.) ^
1
1^^^ ^^
I
1
1
1 1
11
1 1
1
i ji
1!
1 ' ' '
1
,
1
. 1
'S, R
w>
_ _ _ „ _ .^_,, *^
CJ
A
1 -
!
(V3
... _ ro
-1 U ^J
1 f>°
1 INS
! fo
i "" " T "*
i
' ' ' 'V
1 cn
AVERAGE
Z u o
I
i
I! TT
1
I
1
1
1
|i _[
i i
t
i
;
i
j ;
i
1
i
I i
S, I _ »
u> o
i
i
i
1 |
i i
i
H
T
MEASUREMENT
ESULT
^>
NJ
—
CODE
OJ
IS* 1.
i
-------
40 of 41
Jeptnmem of Commtrct
oiul Burwu of Standard*
rn«tt Ambler, Duector
of jltattrlanb
Standard Reference Material 1665b
Propane in Air
(Nominal Concentration 3 ppm)
(Mobile-Source Emission Gas Standard)
This Standard Reference Material is intended for use in the calibration of instruments used for the analysis of
hydrocarbon in mobile-source emissions. It is not intended as a working standard, but rather as a primary
standard to which the concentration of the daily working standards may be related.
Propane concentration: 2.83 ± 0.03 jxmole/mole (ppm)
Cylinder Number: FF-18831 Sample Number 85-51-E
The concentration of propane is relative to all other constituents of the gas. The uncertainty shown is the
estimated upper limit of error of the propane concentration at the 95 percent confidence level. This uncertainty
includes the inaccuracy of the gravimetric primary standard and the imprecision of intercomparison with the
gravimetric standards. This sample is certified only for the concentration of propane. However, representative
samples from the lot have been examined for the presence of other hydrocarbons. The estimated concentration
of other hydrocarbons, expressed as propane, is 0.06 ^mole/mole (ppm).
Each cylinder is individually analyzed and the concentration appearing above applies to the cylinder number
and sample number identified on this certificate.
The original development and evaluation of the Propane in Air Series of these Standard Reference Materials
was performed at the National Bureau of Standards by W. P. Schmidt and W. D. Dorko.
The overall direction and coordination of technical measurements leading to certification were performed in the
Gas and Paniculate Science Division under the chairmanship of E. E. Hughes and H. L. Rook.
The technical and support aspects involved in the preparation, certification, and issuance of this Standard
Reference Material were coordinated through the Office of Standard Reference Materials by T. E. Gills.
Washington, D.C. 20234 George A. Uriano, Chief
January 31, 1980 Office of Standard Reference Materials
(over)
-------
Project No.
. Book No.
41 of 41
9eNo._
i**
ifel
Q
*
^
£
^
^
30
1S
*J>
IS*
/o
s
o
y » -
0 X *f
Pr^po>^«-
ID
To Page Nt
& Understood by m«,
Oat*
Invented by
Recorded bv
Date
-------
APPENDIX K
SPECIATED NMOC ANALYTICAL RESULTS
(Obtain from Neil Berg, U.S. EPA)
-------
TECHNICAL REPORT DATA
(PLEASE READ INSTRUCTIONS ON THE REVERSE BEFORE COMPLETING)
EPORT NO.
PA-454/R-99-011
3. RECIPIENT'S ACCESSION NO.
ITLE AND SUBTITLE
992 Nonmethane Organic Compound And Speciated Nonmethane
>rganic Compound Monitoring Program
5. REPORT DATE
4/1/92
6. PERFORMING ORGANIZATION CODE
UTHOR(S)
tadian Corporation
Research Triangle Park, NC 27709
8. PERFORMING ORGANIZATION REPORT NO.
ERFORMING ORGANIZATION NAME AND ADDRESS
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68D80014
SPONSORING AGENCY NAME AND ADDRESS
>ffice Of Air Quality Planning And Standards
I.S. Environmental Protection Agency
lesearch Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
14. SPONSORING AGENCY CODE
SUPPLEMENTARY NOTES
ABSTRACT
J CERTAIN AREAS OF THE COUNTRY WHERE THE NATIONAL AMBIENT AIR QUALITY STANDARD (NAAQS)
OR OZONE IS BEING EXCEEDED, ADDITIONAL MEASUREMENTS OF AMBIENT NONMETHANE ORGANIC
OMPOUNDS (NMOC) ARE NEEDED TO ASSIST THE AFFECTED STATES IN DEVELOPING REVISED OZONE
ONTROL STRATEGIES. BECAUSE OF PREVIOUS DIFFICULTY IN OBTAINING ACCURATE NMOC
lEASUREMENTS, THE U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) HAS PROVIDED MONITORING
ND ANALYTICAL ASSISTANCE TO THESE STATES, BEGINNING IN 1984 AND CONTINUING THROUGH THE
992 NMOC MONITORING PROGRAM.
KEY WORDS AND DOCUMENT ANALYSIS
ESCRIPTORS
•ZONE CONTROL STATEGIES
ATIONAL AMBIENT AIR QUALITY STANDARDS
ONMETHANE ORGANIC COMPOUND
IONITORING ANALYSIS
992 NMOC MONITORING PROGRAM
DISTRIBUTION STATEMENT
NLIMITED
b. IDENTIFIERS/OPEN ENDED TERMS
c. COSATI FIELD/GROUP
21. NO. OF PAGES
506
22. PRICE
------- |