United States
Environmental Protection
Agency
Office of Mobile Source Air
Pollution Control
Emission Control Technology Division
2565 Plymouth Road
Ann Arbor, Michigan 48105
EPA-460/3-81-015
April 1981
vvEPA
Air
Characterization of Diesel Emission!
as a Function of Fuel Variables
-------
EPA-460/3-81-015
Characterization of Diesel Emissions as a
Function of Fuel Variables
by
Bruce B. Bykowski
Southwest Research Institute
6220 Culebra Road
San Antonio, Texas 78284
Contract No. 68-03-2707
EPA Project Officer: Thomas M. Baines
Prepared for
ENVIRONMENTAL PROTECTION AGENCY
Office of Air, Noise, and Radiation
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
Ann Arbor, Michigan 48105
April 1981
U.S.
Kcr-'o-
£50 ;:,
., ~
"
-------
This report is issued by the Environmental Protection Agency to report
technical data of interest to a limited number of readers. Copies are
available free of charge to Federal employees, current contractors and
grantees, and nonprofit organization - in limited quantities - from the
Library Services Office (MD-35), Research Triangle Park, North Carolina
22771; or, for a fee, from the National Technical Information Service,
5285 Port Royal Road, Springfield, Virginia 22161.
This report was furnished to the Environmental Protection Agency by
Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas,
in fulfillment of Contract No. 68-03-2707. The contents of this
report are reproduced herein as received from Southwest Research
Institute. The opinions, findings, and conclusions expressed are
those of the author and not necessarily those of the Environmental
Protection Agency. Mention of company or product names is not to
be considered as an endorsement by the Environmental Protection
Agency.
Publication No. EPA-460/3-81-015
ii
-------
ABSTRACT
This report describes the laboratory testing of several diesel fuel
blends in a 1975 Mercedes 240D. A narrow-cut base fuel's properties were
altered to study the effects of fuel composition on gaseous and particulate
emissions. Eleven fuel blends were investigated, representing changes in
nitrogen content, aromatic level, boiling point distribution, olefin content,
cetane number, and other properties.
Vehicle operating procedures used for test purposes included both
those specified in Federal Regulations (FTP)'-'-'* and occasionally an
85 km/h cruise simulation. Both regulated and unregulated gaseous and
particulate emissions were measured using a CVS-PDP and dilution tunnel
operating on the entire exhaust stream of the engine. The majority of
the sampling and analytical procedures used were developed during earlier
EPA Contracts 68-02-2497(2), 68-02-1230(3'4), and 68-02-1777. 5) A
statistical analysis, similar to that performed under Contract 68-03-2440 ,
was conducted on the gaseous and particulate emissions as a function of
fuel properties.
*Numbers in parentheses designate references at the end of this report.
111
-------
FOREWORD
This project was conducted for the U.S. Environmental Protection Agency
by the Department of Emissions Research, Southwest Research Institute. The
laboratory testing phase of the project began in September 1979, and was
completed in March 1981. This project was conducted under EPA Contract No.
68-03-2707, and was identified within Southwest Research Institute as
Project 11-5423-001. The EPA Project Officer was Thomas M. Baines of the
Emission Control Technology Division, Environmental Protection Agency, 2565
Plymouth Road, Ann Arbor, Michigan. The Southwest Research Institute Project
Manager was Charles T. Hare, and Principal Investigator was Bruce B. Bykowski.
Karl J. Springer was overall supervisor of the effort.
IV
-------
TABLE OF CONTENTS
Page
ABSTRACT iii
FOREWORD iv
LIST OF FIGURES vii
LIST OF TABLES viii
I. INTRODUCTION 1
II. SUMMARY AND CONCLUSIONS 3
III. TEST VEHICLES AND FUELS 7
A. Test Vehicle 7
B. Test Fuels 8
IV. INSTRUMENT AND ANALYTICAL PROCEDURES 23
A. Vehicle Operation and Smoke Measurements 23
B. Regulated and Unregulated Gaseous Emissions Measurement 23
C. Particulate Mass Rate, Concentration, and Aerodynamic
Sizing 26
D. Analysis of Particulate Composition 33
E. Analysis of the Soluble Fraction of Particulate Matter 33
V. TEST PLAN, OPERATING SCHEDULE AND DATA REDUCTION 35
A. Test Plan 35
B. Data Reduction 38
VI. GASEOUS EMISSION AND ODOR RESULTS 39
A. Regulated Gaseous Emission Results 39
B. Individual Hydrocarbon Results 39
C. Aldehyde Results 39
D. Phenol Results 46
E. Results of Odor Analysis 47
VII. SMOKE AND PARTICULATE EMISSION RESULTS 49
A. Visible Smoke Emissions 49
B. Particulate Mass Emissions and Concentrations 50
C. Particulate Size Distribution 50
D. Analysis of Particulate Composition 54
E. Composition of Organic Solubles in Particulate Matter 59
F. Mutagenic Activity of Organic Solubles 61
v
-------
TABLE OF CONTENTS (Cont'd)
VIII. STATISTICAL ANALYSIS OF FUEL AND EMISSIONS DATA
A. Statistical Methodology
B. Data Input and Numbering of Variables
C. Analysis of Fuel Variables
D. Analysis of Emission Variables
E. Relationships Between Fuel and Emission Variables
REFERENCES 87
APPENDICES
A. Contract 68-03-2707 Scope of Work
B. Fuel Additive Information
C. Test Plan and Data Reduction Information
D. Gaseous Emissions Data
E. Smoke and Particulate Emissions Data
F. Statistical Data
VI
-------
LIST OF FIGURES
Figure Page
1 Determination of the Pure Aromatic Compound
Distribution 13
2 Determination of the Pure Heavy Paraffin Compound
Distribution 17
3 Determination of the Pure Light Paraffin Compound
Distribution 19
4 Heated Hydrocarbon Analyzer System 24
5 Schematic Diagram of DOAS Sampling System 25
6 Schematic Diagram of Exhaust Dilution Tunnel 29
7 Mercedes 240D During Test 30
8 Dilution Tunnel Configuration 30
9 Location of Particulate Sampling Probes on Tunnel 31
10 Loading of 20x20 Filter into Holder 31
11 Particle Sizing Impactor Dissassembled 32
12 Weight Percentage of Particulate Matter Collected by
Impactor stages During the FTP 57
VI1
-------
LIST OF TABLES
Table Page
1 Description of Test Vehicle 7
2 Fuel Properties 11
3 Pure Mono-Aromatic Package Composition 14
4 Heavy-End Paraffin Additive Composition 16
5 Original Light-End Paraffin Additive Package Composition 18
6 Final Light-End Paraffin Package Composition 20
7 Ranges in Properties of Test Fuels 21
8 Heated Hydrocarbon Analyzer Overflow Calibration and
Sample Flow Schematic Component Description 25
9 Outline of Chemical and Physical Exhaust Evaluations 36
10 Test Plan for Each Fuel 37
11 Regulated Gaseous Emissions Data 40
12 Individual Hydrocarbon Emissions 41
13 Aldehyde and Phenol Emissions Data 42
14 DOAS Odor Results 48
15 Summary of Visible Smoke Data 49
16 Particulate Mass Emissions 51
17 Time-Based Particulate Emissions 53
18 Particulate Concentrations 53
19 Base Fuel Particulate Size Distribution During a Combined
Cold and Hot FTP 55
20 Particle Size Distribution of Particulate Collected with
Impactor 56
21 Carbon, Hydrogen, and Nitrogen in Exhaust Particulate
Matter 58
22 Composition of Organic Solubles from Particulate Matter 60
Vlll
-------
LIST OF TABLES (Cont'd)
Table Page
23 BaP Present in Organic Solubles 62
24 Chromatograph Analysis of Organic Solubes in Particulate
Matter 63
25 Summary of Ames Bioassay Analysis of Organic Solubles
From Particulate Matter Collected During FTP 64
26 Ames Bioassay Analysis Results in Revertants Per
Distance During FTP 64
27 Coding of Fuel and Emission Variables 68
28 Basic Statistics for Fuel Variables (V1-V38) 70
29 Correlation Between Boiling Percentiles Obtained by
Two Analysis Methods 72
30 Varimax Rotated Factor Matrix for Remaining Fuel
Variables 73
31 Correlation Coefficients Between Selected Fuel
Variables (r>0.85) 75
32 Correlations Between Filtered and Unfiltered Phenols 76
33 Summary of Selected Emission - Emission Correlation
Coefficients 78
34 Multiple Comparisons of Pairwise Correlations Between
Important Emission Variables and Fuel Variables 79
35 Condensed Comparison of Pariwise Correlations Between
Important Emission Variables and Fuel Variables 79
36 Summary of the Stepwise Linear Regression Analysis 80
37 Ranking of Test Fuels Against Major Emissions 86
IX
-------
I. INTRODUCTION
Light-duty diesel-powered vehicles are increasing in numbers, as an
energy-conscious public turns to more fuel-efficient vehicles. Predictions
of 20 percent diesel car market penetration in the U.S. by 1990 are not
uncommon, so diesel cars are increasingly important as a pollution source.
The world's supply of crude oil is also being depleted, creating incentives
for discovery and utilization of alternate sources of fuel. These con-
ditions also contribute to pressure for widening of present diesel fuel
specifications, to make the most of available crude oil.
A number of studies have been performed to investigate the effects of
commercially-available diesel fuels on exhaust emissions. A wide range
of diesel vehicles, operated on both transient and steady-state cycles,
have been researched by the scientific community. With the advent of
alternate-source fuels (shale oil, coal, etc.) and the loosening of diesel
fuel specifications, however, the need exists for data to determine what
effects on exhaust emissions, if any, can be expected from altering fuel
composition beyond normal specifications. The project reported here was
one attempt to gather such data, utilizing a base fuel which was high in
quality and petroleum-derived, with other materials added to determine
their effects individually.
Selection of compounds and mixtures added to the base fuel was made
on the basis of changes in emissions attributed to fuel properties in
previous research. Substances added included nitrogen (two forms),
aromatics (two forms), olefins, paraffins (to extend both lower and upper
ends of the boiling range independently), and a nitrate-type cetane improver.
A second fuel, without the above additives, was also tried, having gross
properties similar to those of the base fuel, but having undergone drastically
different refining and blending processes.
-------
II. SUMMARY AND CONCLUSIONS
The major objective of this project was to study the effects of fuel
composition on exhaust emissions from one diesel vehicle, a 1975 Mercedes-
Benz 240D, operated mainly on the FTP schedule. A base fuel whose composi-
tion was altered by adding various materials produced fuel blends for
test. Eleven test blends were used to study the effects of aromatics,
olefins, nitrogen, light ends, heavy ends, and cetane number.
One of the major challenges in performing this work was acquisition
of a clean, narrow-boiling-range diesel fuel to serve as a base, and the
development of a technique to prepare desired blends using readily available
compounds. In some cases, refinery products satisfied blending component
needs; while in other cases, pure chemicals had to be used. The latter
situation made it essential to maximize test efficiency because of the
high cost of pure compounds. Best efficiency was achieved by integrating
a number of sampling procedures into each test, and by reviewing data
carefully before proceeding.
The test format was designed to provide the maximum amount of emissions
characterization information with as many fuel blend variations as possible.
Gaseous and particulate emissions collection and analyses were performed
using techniques developed in earlier work. The experimental design
permitted limited statistical analysis of fuel effects on emissions, but
more levels of some of the variables would have been desirable for this
purpose.
The most important observations and conclusions reached as a result
of this project (not necessarily in order) are as follows:
1. An approximation of changes in boiling range of a distillate
fuel due to the addition of specific hydrocarbons can be made
mathematically with reasonably good precision, yielding the
ability to blend to a detailed boiling range specification.
2. To get the most accurate assessment of a diesel fuel boiling
range, especially .at the extremes, it should be determined
by ASTM-2887 (G.C.-simulated distillation) rather than
ASTM-D86.
3. Regulated gaseous emissions were not strongly affected by the
fuel variables studied. Hydrocarbon and CO emissions increased
slightly with the pure aromatic and cetane-improved aromatic
blends. The cetane-improved aromatic blend also resulted in
a small NOX increase.
-------
4. A "heavy aromatic" blend, EM-434-F, reduced individual (low
molecular weight) hydrocarbon emissions, most notably ethane.
The other aromatic blends, EM-460-F and EM-463-F, resulted in
increased individual hydrocarbons of lower molecular weight.
5. Aldehyde emissions were largely unaffected by fuel changes,
with the exception of fuel EM-405-F (base + isoquinoline at
0.1% N). The increase in aldehydes was substantial, but not
completely understood. The light-end and heavy-end blends
also resulted in slight aldehyde increases, but not of the
magnitude observed with EM-405-F.
6. Phenol emissions were strongly affected by the shale oil blend,
EM-430-F. They increased to over 60 times the level observed
with base fuel EM-395-F. The only other pronounced increase in
phenols occurred while testing EM-405-F, base + isoquinoline.
7. Experimental application of instrumental odor evaluations to
dilute exhaust and transient cycles indicated low odor intensity
for all the blends. Slight increases in odor intensity occurred
with the "heavy-aromatic," olefin, and extended light-end blends.
8. Visible smoke production was both increased and decreased by
the use of various fuel blends, as compared to baseline smoke.
The olefin blend, EM-438-F, reduced smoke levels during five
portions of the cold-start FTP. "Heavy aromatics" (in EM-434-F)
caused the greatest smoke increase. Addition of a cetane improver
to EM-434-F produced fuel EM-463-F, and it reduced initial cold-
start smoke levels below those for base fuel. This same blend
exhibited the highest smoke level, however, at the "164 second"
acceleration. This result helps make sense of other results
observed when the cetane improver was used showing that it
enhanced starting and cold combustion, but probably degraded
emissions performance under other conditions.
9. Particulate rates were reduced with the light-end blend and the
olefin blend, by 14 percent and 6 percent, respectively. The two
blends containing aromatics, EM-434-F and EM-460-F, were associated
with increases in particulate emissions of about 27 percent. The
cetane-improved aromatic fuel blend, EM-463-F, increased parti-
culate emissions about 68 percent over those observed with base
fuel EM-395-F. Heavy ends fuel EM-461-F apparently did not cause
an increase in particulate emissions, as might have been expected.
10. Impactor data indicated that the majority of the particulate mass
was under 0.08 ym in diameter. The portion of particulate matter
larger than 0.08 ym was distributed in uneven fashion among the
calibrated impactor plates with no trends apparent due to fuel
changes.
-------
11. Trace elements accounted for 0.6% to 2% of the particulate mass.
The most interesting finding was the detection of silicon in
the particulate matter (possibly finely-divided mineral impurity
carried through refining) when shale oil blend EM-430-F was used.
12. Blends containing aromatics resulted in slightly less organic
solubles extracted from particulate matter. Olefins, light ends,
and heavy ends were associated with increases in amount of organic
solubles.
13. No apparent increase in the nitrogen content of the organic
solubles was observed with any of the blends compared to base
fuel. It was initially supposed that the fuel blends containing
nitrogen might increase nitrogen levels in the organic solubles,
but the results did not support that-supposition.
14. BaP emissions were generally low for the fuel blends tested,
ranging from 0.25 to 0.96 yg/km. A slight reduction was associated
with the olefin blend, EM-438-F. A significant increase, 3 times,
was exhibited by the shale oil blend EM-430-F when compared to
the base fuel EM-395-F.
15. Statistical analysis led to condensing the large number of fuel
and emission variables to five orthogonal fuel variables and
nine "most important" emission variables. The five fuel variables
were aromatics, olefins, nitrogen, ASTM-D2887 end point, and gum
levels. Emission variables included HC, CO, NO, fuel consumption,
particulate mass, solubles, BaP, phenols, and aldehydes. Aldehydes,
HC, CO, NOX, fuel consumption, and phenols were not strongly
related (in the linear sense) to these five fuel variables.
Particulate mass, BaP, CO, and solubles could be estimated by
linear equations whose R values were between 0.79 and 0.85.
These equations were marginal in that they did not represent a
true population dispersion of "real world" variability in fuel
composition.
16. Rank-ordering of nine selected emission variables and corresponding
fuels revealed no clear trends. No one fuel blend consistently
caused greatest emissions degradation, nor did any blend consis-
tently improve emissions more than the others. Some of the fuel
blends were associated with reductions in several of the selected
emissions and with increases in others. For example, the olefin
blend resulted in particulate mass, BaP, phenol, aldehyde, and
CO reductions, but increased fuel consumption and HC emissions.
-------
III. TEST VEHICLES AND FUELS
The major criteria used for selection of a test vehicle were avail-
ability, and the potential to utilize a data base acquired on the vehicle
during previous studies. Fuel consumption criteria were variety in
variables so as to be most orthogonal to each other, and maximum projected
effect on particulate emissions and Ames bioassay results.
A.
Test Vehicle
The vehicle chosen was a 1975 Mercedes 240D. A description of the
vehicle is provided in Table 1. This Mercedes was supplied to the Con-
tractor by EPA for test purposes and was used in earlier EPA Contracts
68-03-1777(5), 68-03-2440<6> and 68-02-2116.(7>
TABLE 1. DESCRIPTION OF TEST VEHICLE
Vehicle nodel
Engine model
Model year
V.I.N.
Engine no.
Body type
Loaded weight, kg (lbm)a
Inertia equivalent, kg (lbm)
Transmission
Displacement £(in3)
Cylinders
Power, kW (hp) @ rpm
Injection system
Combustion chamber
Compression ratio
Distance on vehicle, km
Mercedes 240D
OM616
1975
11511710066208
616916-10-052895
4 door sedan
1492 (3289)
1588 (3500)
4 speed manual
2.40 (146.7)
4
46.2 (62) @ 4350
Bosch
prechamber
21.0
14991
curb weight plus 136 kg (300 lbm)
at end of project
-------
B. Test Fuels
Criteria used for selection of a base diesel fuel were high paraffin
content, low sulfur, low nitrogen, narrow boiling range, and ready avail-
ability. The original base fuel candidate was a JP-7 material, which is
a highly-hydrotreated fuel designed for use in high-altitude reconnaissance
aircraft. The JP-7 approximated a No. 1 diesel or Jet A in boiling range,
and analyses indicated that this fuel met the criteria. Although the
specifications of the JP-7 fuel were not classified, the fuel itself was
restricted in its distribution and use to approved military customers
in tank car (114,000 &) lots. Efforts were redirected to find a com-
mercially available substitute.
A local refiner and supplier of technical fuel, Howell Hydrocarbons,
had some fuels available which were normally used as blending components.
One such material, their code H320, was comparable to the JP-7. Approxi-
mately 1100 liters was obtained for use as base fuel. Contact with Mr.
Art Churchill at Wright Patterson AFB resulted in procurement of 1100 liters
of JP-7 with the proper paper work. The JP-7 was coded at SwRI as EM-401-F
and was set aside for testing as an alternate base fuel. The Howell
material, H320, was coded EM-395-F, and was chosen as the base fuel
because of its narrower boiling range and lack of additives (which the
JP-7 was permitted to contain). An additional 10,000 liters of Howell H320
was obtained after analysis was complete.
The initial fuel compositions were to be a "clean" base fuel, and
base fuel with two added levels of three materials having substantial
nitrogen content. Results from Contract 68-03-2440^) indicated that fuel
nitrogen was a good place to start in observing quantitative effects,
especially on particulate mass and Ames bioassay results. Nitrogen was
also quite well adapted to control as a variable, since it was not detected
in the base fuel. Substantial changes in fuel nitrogen content were to be
made with only very small corresponding changes in other variables. The
planned initial fuel compositions containing nitrogen are listed below:
Fuel
1
2
3
4
5
6
7
Composition
base,
base -
base -
base -
base -
base -
base -
N level approximately 0.005%
H refinery bottoms, N level 0.04%
t- refinery bottoms, N level 0.1%
f acridine, N level 0.04%
I- acridine, N level 0.1%
f- benzoquinoline, N level 0.04%
^ benzoquinoline, N level 0.1%
Later review of the fuels above resulted in dropping mixtures using
benzoquinoline, because of the unlikelihood that benzoquinoline is present
in diesel fuel and the hazards of handling a known mutagen as a fuel
component. Small test blends of base fuel (EM-395-F) and acridine were
-------
prepared to determine its suitability. All the test blends incorporating
acridine were somewhat turbid, had a yellow color, and blends with 0.1
percent nitrogen or more crystallized at about 5°C. Potential substitutes
for acridine were tetradecylamine and carbazole. Both substitutes had
similar solubility problems. A number of other compounds were studied for
potential use, but isoquinoline had the best combination of properties.
Isoquinoline mixed clearly throughout the required ranges and had a low
molecular weight similar to the base fuel. The 2-ring structure of iso-
quinoline is identical to quinoline (a compound suggested by the Project
Officer based on discussion with DOE-BETC personnel) except for the
position of the N substituent in the ring.
Test blends containing refinery bottoms also posed problems. Due to
the extreme turbidity and partial insolubility of refinery bottoms, it was
appropriate to set target nitrogen levels somewhat lower (0.004 to 0.01
percent N) than originally planned. In addition, a filtration step was
added subsequent to fuel blending, but prior to fuel analyses. The
analyses of initial refinery bottoms blends indicated extremely high gum
values. Because of the likely detrimental effects and subsequent shifting
of engine performance, the intended employment of refinery bottoms as a
source of petrochemical nitrogen was in doubt.
A search was conducted to obtain a nitrogen compound similar to what
might be present in refinery products, yet compatible with the base fuel.
A gas chromatograph equipped with both a FID (flame-ionization detector)
and a NPD (nitrogen-phosphorous detector) was incorporated to locate
nitrogen compounds in various refinery products in relation to number
of carbon atoms and subsequent boiling range. If the nitrogen was located
in a relatively narrow boiling range, then the nitrogen-containing
compounds could be concentrated by fractional distillation and used as
an additive.
The initial candidate was a No. 2 diesel fuel used in a previous
study.(6) This fuel contained 84 ppm nitrogen. The results indicated
that a significant amount of nitrogen was not located in a very narrow
cut. The nitrogen in this diesel fuel was located in the highest-boiling
20 percent "cut" and its distribution appeared to increase logarithmically
with increasing carbon numbers and boiling temperatures. The refinery
bottoms contained 1800 ppm nitrogen. Based on the finding of the No. 2
diesel fuel, an attempt was made to fractionally distill the first 80
percent of the refinery bottoms, leaving a remaining 20 percent that would
contain the bulk of the nitrogen.
When attempting to vacuum-distill a 0-80 percent cut, it was noted
that the boiling temperature reached 450°C after only 24 percent was dis-
tilled. This finding contradicted the ASTM-D86 boiling point distribution
data of the refinery bottoms. The ASTM-D86 data indicated a boiling
range for refinery bottoms of 300-404°C, with 10 percent residue. Dis-
tillation was halted at 450°C because the gum analytical procedure
-------
(ASTM-D381) considers compounds remaining after 450°C is reached as gum.
Apparently the boiling point distribution based on ASTM-D86 is not valid
for high boiling materials, because this method can cause thermocracking
of heavier constituents. This problem caused liquid materials to be
collected that were not actually present in the initial sample. The gas
chromatograph method of determining boiling points (ASTM-D2887) should
therefore be used instead of ASTM-D86. In the 24 percent cut, very little
nitrogen was detected. The use of refinery bottoms as a source of petro-
chemical nitrogen was not possible.
Discussion with Frank Newman of SwRI's Division 05 revealed that the
nitrogen distribution increased logarithmically with increasing carbon
numbers and boiling temperatures for most fuels that were subjected to
various refinery processes (thermocracking, hydrogenation, etc.). Fuels
that were essentially straight runs probably contain several low boiling
point nitrogen compounds. A sample of straight run shale oil containing
1.44 percent nitrogen was acquired and injected into the gas chromatograph
equipped with the FID-NPD detectors. The resulting chromatogram is
located in Appendix B, page B-2. The results indicated that the nitrogen
was distributed quite evenly in this wide-boiling range («125 to 600°C)
material. A fractional cut of this oil, with a boiling range of 250 to
275°C, was obtained by vacuum distillation to prevent thermocracking. This
fractional cut approximated the boiling range of the base fuel, and
analysis indicated that it contained 0.92 percent (9200 ppm) nitrogen.
The additive was soluble in the base fuel, and therefore a cut of shale
oil became the source of petrochemical nitrogen, replacing refinery
bottoms.
Because of the uncertainty of success and the high cost of a large
volume distillation, only a small amount of the shale oil cut was produced.
This was sufficient to prepare one blend containing approximately 500 ppm
nitrogen, which was coded EM-430-F. The isoquinoline was used to prepare
two fuel blends containing approximately 500 ppm (EM-404-F) and 1000 ppm
(EM-405-F) nitrogen. The analyses of these fuels and that of the base
fuel, EM-395-F are listed in Table 2.
Fuel blending and several analyses were shared among the Department
of Emissions Research, the Mobile Energy Division, and the Division of
Engines, Fuels, and Lubricants of SwRI. Blends representing each fuel
composition were made up in batches of about 30 liters each, assuming
that enough fuel was available for vehicle fuel system purging, vehicle
operation, fuel analyses, and extra fuel on hand for possible retests.
Only in cases where the fuel additive was extremely costly or available
in limited quantities were smaller batches blended.
The fuels containing nitrogen were blended and tested to satisfy
the requirements of the "initial study". The "main study" proposed pre-
paring fuel blends on an "as needed" basis to incorporate the experience
and findings of fuel blends which have completed testing. The fuel
10
-------
TABLE 2. FUEL PROPERTIES
Substance
Code (EM-
Cetane No. (D613)
Cetane Index (D976)
50% point, °F
Gravity, "API @ 60°F
Density, g/m£ @ 60°F
Carbon , wt . %
Hydrogen, wt. %
Oxygen, wt. %
Nitrogen, ppm (oxid. pyrolysis)
Calculated H/C, numeric
Carbon No. range (G.C.)
Aromatics, vol. %
Olefins, vol. % (D1319)
Paraffins, vol. %
Viscosity, cs @ 100°F (D445)
Gum, mg/100 mj, (D481)
Boiling Range, °C (IBP-EP, D86)
10% point, °C
20% point, °C
30% point, °C
40% point, °C
50% point, °C
60% point, °C
70% point, °C
80% point, °C
90% point, °C
95% point, °C
Residue, wt. % (D86)
Boiling Range, °C (IBP-EP, D2887)
10% point, °C
20% point, °C
30% point, °C
40% point, °C
50% point, °C
60% point, °C
7O% point, °C
80% point, °C
90% point, °C
95% point, °C
Residue, wt. % (D2887)
H320
base fuel
395-F
62
58
420
47.0
0.793
85.10
14.66
—
2.05
10-14
5.8
1.5
92.7
1.59
0.2
203-252
211
212
213
214
216
217
218
221
224
228
0.8
140-269
197
202
208
213
217
222
229
234
239
247
0
JP-7
401-F
55
56
430
45.3
0.800
85.91
13.81
—
1.92
9-15
2.7
1.9
95.4
1.69
0.5
193-261
206
210
213
217
221
224
228
233
239
244
1.0
138-278
184
198
207
215
223
231
239
247
255
262
0
395-F +
isoquinoline
404-F
62b
57a
4146.7a
0.794
85.103
14.633
—
479
2.04
10-14
6 la
l'.53
92. 4a
1.593
0.3b
194-253b
211b
212b
21 3b
214b
215b
217h
218b
221.
224b
228b
—
146-279*3
19 7b
20 3b
209b
214b
218b
223b
230b
235b
240b
248b
—
395-F +
isoquinoline
405-F
61
56
418
46.4
0.795
85.093
14.583
—
930
2.05
10-14
6.63
1.5
91. 8a
1.58
0.6
194-255
210
211
212
213
214
216
218
220
224
229
0.5
154-294
198
204
210
215
219
225
231
237
243
250
0.5
395-F +
shale oil
cut
«0.05%N
430-F
63
56
418
46.2
0.796
86.02
13.80
<0.5
493
1.91
11-15
8.8
1.8
89.4
1.59
14.3
200-249
210
211
212
213
214
217
219
222
228
233
1.5
145-265
200
208
213
217
220
224
231
236
240
251
0
395-F + «
31% Exxon
"HAN" heavy
aromatics
434-F
44
44
421
40.1
0.825
86.65
13.11
—
5
1.80
10-16
31.5
2.9
65.6
1.51
2.4
191-266
206
209
211
213
216
218
222
226
234
244
1.0
194-283
207
215
220
225
228
235
240
244
258
269
0
395-F + »
6% Chevron
alpha
olefins
438-F
64
58
418
47.0
0.793
84.56
13.81
—
1.95
11-14
6.8
6.6
86.6
1.55
1.1
203-252
210
211
212
213
214
217
219
221
224
229
1.0
184-270
203
210
216
222
226
230
237
242
247
256
0
395-F +
light ends
448-F
56
61
409
49.3
0.783
85.12
14.57
—
2.04
9-14
4.9
1.8
93.3
1.40
0.8
175-249
189
195
201
206
209
213
21C
219
223
227
1.0
147-265
164
181
203
211
218
224
230
237
244
249
0
395-F +
30% pure
aromatics
460-F
46
48
418
42.1
0.815
86.42
13.37
—
1.84
10-15
32.1
1.0
66.9
1.47
1.4
203-255
209
211
212
213
214
216
218
221
224
228
0.5
179-264
198
206
210
216
219
226
231
235
239
247
0
395-F +
heavy ends
461-F
68
62
434
47.5
0.791
85.18
14.47
—
2.02
11-17
5.1
1.0
93.9
1.74
1.4
207-286
216
218
219
221
223
227
231
238
251
260
1.0
183-303
202
211
216
219
225
233
238
255
272
286
0
434-F +
0.7 vol. %
DII-3
463-F
60
44
421
40.0
0.826
86.38a
a
13. 08^
0.21
718
1.80
10-16
30.8
1.2
68.0
1.5ia
2.4a
190-266a
206a
a
209
211a
a
213
a
216
a
218
a
222
a
226
234a
a
244
__
192-283a
20 7a
a
215
a
220
-,-,,-a
225
__ a
228
a
235
a
240
a
244
a
258
a
269
calculated
extrapolated from measured values
-------
variables that were likely candidates were paraffin/aromatic ratio, olefin
content, presence of light ends, presence of heavy ends, and cetane number.
It should be noted that the descriptions of the fuels that follow were
prepared throughout the project and not at the project initiation.
Procurement of various additives was of major concern. It was
felt that refinery products were both cost-effective and representative
of compounds which were present in various fuels. On the other hand,
many refinery packages contain a large number of various compounds, and
it would be difficult to pinpoint the effects of individual compounds.
It was decided to use both refinery packages, where applicable, and pure
compounds from chemical supply firms in other cases. A source of refinery
specialty products was obtained from Dr. George P. Gross of Exxon Research
and Engineering Company. Dr. Gross and others discussed fuel effects at
the 1979 Detroit SAE meeting. His responding letter and attachment
describing specialty products available from Exxon are included in
Appendix B, pages B-3 through B-5. Follow-up material concerning Exxon
specialty products along with other refiner products are also located
in Appendix B, pages B-6 through B-13.
The aromatic content was studied using two approaches. The first
additive source was an Exxon specialty product (Exxon "HAN"), which
contains 88 percent "heavy aromatics". The product was chosen because
it was derived from a refinery stream. The second additive source was
originally to be a normal alkylbenzene aromatic package. The only packages
that were offered consisted of normal alkylbenzene aromatics whose total
carbon numbers were between C17 and C2i, which boil higher than the base
fuel. A mono-aromatic package with a boiling range similar to the base
fuel was formulated using individual compounds available from various
suppliers.
The boiling point distribution of the base fuel, SwRI code EM-395-F,
was plotted to determine the distribution of individual compounds by over-
laying a step function representing the individual compounds such that the
fuel curve bisects each step. This procedure enabled the pure aromatic fuel
blend to exhibit a boiling point curve similar to that of the base fuel.
Figure 1 illustrates this method. Criteria for individual compound selec-
tion were availability, boiling point, and cost. The large step that
occurred in the middle of the boiling range was due to the unavailability
of a mono-aromatic compound. A di-aromatic compound, napthalene, boiling
at 218°C, would have smoothed the step function, but it was considered
important to use only mono-aromatics in this blend. The pure mono-aromatic
package consisted of the compounds listed in Table 3.
The fuel blend containing the Exxon "HAN" was prepared by blending
enough Exxon "HAN" into 25 liters of base fuel, EM-395-F, to raise the
aromatic content to approximately 30 percent. The "HAN" fuel blend was
coded EM-434-F. Similarly, the pure mono-aromatic package was used with
an additional 25 liters of base fuel to raise its aromatic content to
about 30 percent. The mono-aromatic blend was coded EM-460-F. The
properties of each fuel blend are listed in Table 2.
12
-------
100
-p
c
0)
o
-p
•&
•H
0)
S
80
60
40
20
120 140 160 180 200 220 240 260 280 300
Boiling Temperature, °C
Figure 1. Determination of the Pure Aromatic
Compound Distribution
13
-------
TABLE 3. PURE MONO-AROMATIC PACKAGE COMPOSITION
Compound
diethy Ibenzene, m-,o-,p-
4 -tert-butyl toluene
diisopropylbenzene,m-,o-,p-
n-hexy Ibenzene
pent ame thy Ibenzene
n-heptylbenzene
n-octy Ibenzene
Structure
o_ PH2CH3
CH3
©
CH3CCH3
AlTT
3 CH3CHCH5
m— ji
toUcH2,5CH3CH3
spisi
(or'^'^
tsr1^',^
Boiling
Point, °C
184
193
203
226
232
246
265
Percent in Pkg.
3.0
9.5
31.5
28.0
17.0
9.0
2.0
The effects of olefin content in the fuel were studied using a pure
alpha olefin package, purchased from Chevron. The carbon number range
for this package was C^ to C]^, and it had a boiling range between 198
and 257°C. Enough of this package was blended with base fuel to raise
the olefin content from 1.5 to approximately 6.5 percent. This olefin
fuel blend was coded EM-438-F, and its properties are listed in Table 2.
Investigation of suitable additives to study light and heavy
ends, i.e., expanding the boiling point distribution of the base fuel
towards lower boiling points and then higher points, was somewhat difficult.
It was originally intended to use refinery cuts of materials boiling just
below and just above the initial and end point temperatures of the base
fuel, EM-395-F. Possible candidates for the presence of low ends included
cuts from a JP-4 or typical unleaded gasoline. A high-end cut of unleaded
gasoline seemed to be the best candidate. The presence of heavy ends
was to be accomplished similarly by using a low-end cut of a No. 6D boiler
fuel or addition of "cat-cracker-gas" (gas oil).
A problem developed when the proposed blends were reviewed. If the
blends at the target boiling point distribution were made using refinery
14
-------
products, then the boiling range of the blends would be similar to some
of the fuels previously examined during prior EPA Contract No. 68-30-2440.
Since the base fuel, EM-395-F, had a very narrow boiling range, it would
not be possible to extend the boiling range beyond the fuels previously
tested without creating an essentially new fuel.
Base fuel EM-395-F had a boiling point range that was overlapped
by fuels studied under the previous contract.(6) By using either refinery
paraffin packages or mixtures of pure paraffins representative of what
may constitute the low and high ends, the effects were investigated with-
out duplicating fuels previously tested. The addition of paraffins was
such as to represent a smooth increase (for low ends) or decrease (for
high ends) of the individual compound concentrations in order to represent
a refinery cut distribution. The target range for low-end addition was
30 percent by weight boiling under 200°C, and for the high-end addition,
30 percent by weight boiling over 240°C, both by ASTM-D2887.
It was hoped that pure paraffin packages in the appropriate boiling
ranges could be obtained from refineries. An investigation revealed that
many specialty products, including mixtures of pure compounds in the same
class, were no longer available. The few that were available would not
create a boiling curve as smooth as desired. An alternative was to use
a mixture of pure paraffins whose combined boiling points would simulate
the boiling range desired. It was planned to prepare an additive package
from pure compounds that were probably present in the refinery stream,
with concentrations that would cause the initial boiling and end points
of the base fuel to increase or decrease logarithmically.
(8)
An Exxon essay report discussing the properties of Prudhoe Bay
Alaskan crude was obtained from Norm Sefer of SwRI's Division 05. An
analysis of a crude cut, between 100 and 150°C, was used as a guideline
to determine candidate compounds and the distribution of paraffins,
isoparaffins, and naphthenes. This table is located in Appendix B, page
B-14. Several of the compounds were chosen for use, and were to be blended
such that the ratio of paraffins, isoparaffins and naphthenes were similar
to the Prudhoe Bay distribution. Unfortunately, this approach could not
be used due to unavailability of several compounds from suppliers, or their
extremely high cost. It was decided to use compounds that were readily
available at a reasonable cost, and which had the desired boiling points.
An attempt was made to prepare blends such that they contained paraffins,
isoparaffins, and naphthenes.
The pure compounds available for the heavy-end paraffin additive
package are shown in Table 4. Isoparaffins in the desired boiling range
were not commercially available. The target range was to extend the
heavy end to 30 percent boiling over 240°C. The concentration of the
additive package required was determined by calculating the quantity of
this package (boiling over 240°C) needed to reduce the base fuel's weight
percent distilled from 90 percent to 70 percent at 240°C. The following
calculation took into account weight percent contributions from both the
additive package and the base fuel. Thus, the heavy-end extended blend
15
-------
\ /fraction \ /fraction^
% additive I (additive j + / % fuel 1 [ fuel I
over 240°C/ \in mix / lover 240°C/ 1 in mix I
or 100% (A) + 10% (1-A) = 30%
/ % mix '
over 240°C;
A = 0.22
was mixed at 78 percent base fuel and 22 percent paraffin compounds boiling
over 240°C.
TABLE 4. HEAVY-END PARAFFIN ADDITIVE COMPOSITION
Compound
n-tetradecane
n-octylcyclohexane
n -pe ntade cane
nony Icy clone xane
n-hexadecane
n-heptadecane
Structure
CH3(CH2)12CH3
QXCH2)7CH2
CH3(CH2)13CH3
_- / /"ITT \ l^TT
rr~^ *-*•" O / Q^^ "^
CH -^ ( CH o / i A CH T
OH o ( CHp ) \ 5^ 3
Boiling Point, °C
254
264
270
282
286
302
Percent in Pkg.
31.8
18.2
13.6
12.7
12.3
11.4
Since the additive package did not boil under 254°C, several points
for the blended fuel's curve were calculated by using 78 percent of the
base fuel's weight percent values under 254°C. A curve was then drawn
through the calculated points up to 254°C. The curve was extended
logarithmically to 100 percent to represent the desired high-end distri-
bution. A step function characteristic of the mixture of pure compounds
was drawn on the curve such that each step was bisected by the curve. This
procedure is illustrated in Figure 2t The percent of each pure compound
required was determined by measuring the height of each step, and dividing
by the total percent of the entire paraffin package. For example,
n-octylcyclohexane boils at 264°C. The height of the step at 240°C is
4 percent (see Figure 2). Since the entire paraffin package constitutes
22 percent of the blend, the percent of n-octylcyclohexane in the package
is 18.2 percent (4/22 x 100). The heavy-end blend was coded EM-461-F,
and its properties are listed in Table 2.
A similar procedure was used to determine the light-end addition
using the pure compounds listed in Table 5. At the proposed light-end
range of 30 percent boiling under 200°C, all the additives would have
16
-------
100
-p
c
0)
o
01
-H
I
80
60
40
20
120 140 "160
"ISO 200 "220 240" 260"
Boiling Temperature, °C
280 300
Figure 2. Determination of the Individual Heavy
Paraffin Compound Distribution
17
-------
TABLE 5. ORIGINAL LIGHT-END PARAFFIN ADDITIVE PACKAGE COMPOSITION
Compound
Structure
Boiling
Point, °C
Percent in
Package
2,2 dimethyIheptane
4-methyloctane
n-nonane
n-propylcyclohexane
3-methylnonane
tert-butylcyclohexane
n-de cane
n-butylcyclohexane
9*3
CH3C(CH2)4CH3
CH3
CH3
CH3(CH2)2CH(CH2)3CH3
CH3(CH2)7CH3
-CH2CH2CH3
H
CH3CH2CH(CH2)5CH2
CH3
'•^CH-,
CH3(CH2)8CH3
133
143
151
157
167
167
174
180
4.7
8.2
10.6
16.5
9.4
9.4
17.6
23.5
vaporized. The equation used to determine the ratio of additive to base
fuel is shown below:
, . /fraction\ / \ /fraction\ /
/ % additive j I additive + / % fuel \ fuel = / % mix
|under 200°C/ \in mix / hinder 200°CJ^ in mix j \under 200°Cj
\
/ \ / \
or 100% (A) + 16% (1-A) = 30%
A = 0,17
The ratio of the light-end extended blend would be 83 percent base fuel and
17 percent pure compounds. The fuel curve and additive step function are
shown in Figure 3.
18
-------
Weight Percent
8
S
STB1
rt p.
o &
3 §
•s-
rt
-------
A problem developed when attempting to purchase the compounds in
Table 5. Some compounds originally available from suppliers were dis-
continued. The cost of pure compounds is generally high, but several
of the chosen compounds were prohibitive. An alternate approach adopted
was to replace several of the pure compounds with a readily available
isoparaffin package from Exxon. This specialty product, Isopar G, had
a boiling range between 157 and 176°C (see Appendix B, pages B-7 and B-8
for specifications). To complete the smooth boiling point distribution,
n-nonane and 4-methyloctane were also used. The actual light-end package
composition used is listed in Table 6. The light-end blend was coded
TABLE 6. FINAL LIGHT-END PARAFFIN PACKAGE COMPOSITION
Compound
Isopar G
n-nonane
4-methyloctane
Structure
mixed isoparaffins
CH3(CH2)7CH3
9H3
CH3(CH2) 2CH(CH2) 3CH3
Boiling Point, °C
157-176
151
143
Percent in
Package
15.2
4.4
1.0
EM-448-F, and its properties are listed in Table 2.
The effect of cetane number was studied by using a commercially
available cetane improver. The cetane improver was essentially ethyl
hexyl nitrate. When the Exxon "HAN" heavy aromatics were added to the
base fuel to create fuel blend EM-434-F, the cetane number dropped from
61 (EM-395-F, base fuel) to 44 (EM-434-F). Enough cetane improver
was added to EM-434-F to bring the cetane number up to 60. This new
fuel blend was coded EM-463-F. It was hoped that this blend would help
separate the effects of aromatic content and cetane number. The fuel
properties of EM-463-F are given in Table 2.
Comparing the eleven test fuels to each other shows that relatively
large ranges of properties are present, as shown in Table 7. These
ranges are expressed as percentages above and below property values for
the base fuel coded EM-395-F. For calculation purposes, the nitrogen
concentration of the base fuel was assigned a value of 1 ppm. The
properties were varied so as to be most orthogonal to each other, and
in most cases this goal was accomplished.
20
-------
TABLE 7. RANGES IN PROPERTIES OF TEST FUELS
Property
Density, g/m£
Cetane Number (D613)
Paraffins, vol. %
Olefins, vol. %
Aromatics, vol. %
IBP, °Kb (D2887)
50% point, °K
EP, °K
Carbon, wt. %
Hydrogen, wt. %
Nitrogen, wt. %
Gum, mg/100 mH
Range in
+4.2
+10.2
+2.9
+ 340.
+450.
+1.1
+2.1
+8.0
+1.8
+0
+93000.
+7100.
Test Fuels, %a
, -1.3
, -28.3
, -29.2
, -33.3
, -53.4
, -2.7
, -1.5
, -0.7
, -0.1
, -10.8
, -o
, -o
expressed as percentages above and below properties
of EM-395-F
21
-------
IV. INSTRUMENT AND ANALYTICAL PROCEDURES
Exhaust emissions were measured and samples collected applying pro-
cedures set forth in the Federal Register^), earlier EPA contracts (2,3 4,5)^
and those developed for use during this project. This section describes
the equipment and procedures used to evaluate fuel effects on gaseous and
particulate exhaust emissions.
A. Vehicle Operation and Smoke Measurements
The Mercedes 240D was operated to simulate road experience on a 2-roll
Model ECE-50 Clayton light-duty chassis dynamometer, of the type qualified
for Federal light-duty certification. Inertia and power absorption
settings used for all test work on this dynamometer followed EPA guidelines.(
Exhaust smoke measurements were made using an optical light-extinction
smokemeter, of the type specified in Federal regulations for heavy-duty
diesel engine smoke certification.(10) The smokemeter was mounted on a
51 mm (2 in.) O.D. tailpipe extension when in use. The control/readout
unit for the smokemeter was mounted remote from the vehicle under test,
and continuous recordings of smoke opacity were made concurrently with
vehicle speed traces. Smoke measurements were made over the first 505
seconds of the cold-start FTP cycle, while the vehicle was operated on the
chassis dynamometer. This procedure was developed for research purposes
on an earlier EPA Contract, No. 68-03-2417.(11^
B. Regulated and Unregulated Gaseous Emissions Measurements
Regulated gaseous emissions of hydrocarbons (HC), carbon monoxide (CO),
and oxides of nitrogen (NOX) were collected and analyzed using procedures
and equipment described in the Federal Register.(9^ The method of hydro-
carbon analysis was an updated version of that proposed, and eventually
adopted, for the 1980 Federal Register.(12) The method of hydrocarbon
analysis is shown schematically in Figure 4, and the components are de-
scribed in Table 8.
The unregulated gaseous emissions measured were aldehydes, phenols,
odor, and eight individual hydrocarbons. Aldehydes were measured using
the 2,4-dinitrophenylhydrazine (DNPH) method.(2) The method consists of
withdrawing a continuous sample of dilute exhaust at a rate of 0.24 m3/h,
and bubbling the sample through glass impingers containing DNPH in hydro-
chloric acid. This process forms the aldehydes1 phenylhydrazone derivatives,
which are eventually injected into a gas chromatograph equipped with a
flame ionization detector, for separation and identification.
23
-------
QC's
Air Zero
HC Span 1
HC Span 2
HC Span 3
Bag
Sample
Dilution
Tunnel
Headed Probe
(5/8" SS)
wm
$4
VI
Denotes sample line components
heated to 375°F
I V8
Y-^^-i
FL1
FL2
FL3
T\
QC
Beckman 402 HFID OR
SwRI Build with 402 Detector
Vent
LV10
Gl
Vent
M""> ^L-l^l—
^^^ ^*
(S)G3
R3VY/r^T~V7
vrAM-CBk)
•FID Fuel
FID Air
HFID
Detector
Figure 4. Heated hydrocarbon analyzer system.
-------
TABLE 8. HEATED HYDROCARBON ANALYZER OVERFLOW CALIBRATION
AND SAMPLE FLOW SCHEMATIC COMPONENT DESCRIPTION
Component^
Valve
Valve
Valve
Valve
Valve
Valve
Valve
Valve
Valve
Valve
Designation
VI
V2
V3
V4
V5
V6
V7
V8
V9
V10
Description of Function
regulating valve for zero air
regulating valve for HC span gas
regulating valve for bag sample
span/zero selector valve in HFID (not used)
sample backpressure regulator
FID fuel pressure regulator
FID air pressure regulator
HC span selector valve
HC span/zero/bag sample selector valve
leak check flow diverter valve
Restrictor
Restrictor
Restrictor
Rl
R2
R3
sample capillary
FID fuel restrictor
FID air restrictor
Gage
Gage
Gage
Filter
Filter
Pump
Pump
Flowmeter
Flowmeter
Flowmeter
Gl
G2
G3
Fl
F2
PI
P2
FL1
FL2
FL3
sample backpressure gage
FID fuel pressure gage
FID air pressure gage
heated 7.0 cm filter (probe)
heated 7.0 cm filter (oven)
bag sample pump
FID heated sample pump
overflow flowmeter
FID bypass flowmeter
leak check flowmeter
25
-------
The term "individual hydrocarbons" is used to denote the collection
and analysis of the following compounds: methane, ethane, ethylene,
acetylene, propane, propylene, benzene, and toluene. The individual hydro-
carbon (IHC) procedure(2) consists of collecting a dilute sample in a Tedlar
(DuPont Co.) bag, and injecting a sample from the bag into a four-column
gas chromatograph for separation and identification. Samples for IHC were
withdrawn from the same bags used to collect dilute exhaust samples for
measurement of regulated emissions.
Phenols were measured using the ether extraction procedure.^' The
first step was to collect dilute exhaust in impingers containing aqueous
potassium hydroxide, at a rate of 1.02 nt-Vhr. The contents of the impingers
are acidified and extracted with ethyl ether, and are eventually injected
into a gas chromatograph equipped with a flame ionization detector. At
the time of project initiation, the phenol sample filtering requirements
had yet to be finalized. Phenol samples were therefore collected from
both filtered and unfiltered dilute exhaust.
Exhaust odor was evaluated by incorporating the A. D. Little "Diesel
Odorant Analytical System" (DOAS). The procedure used in this study varied
from the normal procedure^ in two ways. First, the vehicle was operated
on a transient cycle rather than at steady-state. Second, the exhaust
sample taken was dilute rather than raw. The principal reasons for
adopting the two modifications were to make optimum use of test cycle and
test time. The sample system is shown schematically in Figure 5. Sample
flowrate through the Chromosorb 102 traps was 0.43 m^/hr. Taking into
account sampling time during the cycle and dilution ratio of the exhaust,
the average amount of undiluted exhaust collected was 36 liters. This
volume is within the requirements of the normal procedure.^ ' The LCD
(liquid column oxygenate) and LCA (liquid column aromatic) results were
corrected to undiluted exhaust values by applying the dilution factor.
This correction was performed such that the TIA (total intensity of aroma)
values could be compared to existing data bases throughout the literature.
The TIA values are defined by either TIA = 1 + logig (LCO, H<3/H) or
TIA = 0.4 + 0.7 Iog10 (LCA, yg/£), whichever generates the highest value.
C. Particulate Mass Rate, Concentration, and Aerodynamic Sizing
Particulate collection for this project was performed using a 457 mm
(18 inch) diameter by 5 m (16 feet) long dilution tunnel operating on
total vehicle exhaust. Other associated equipment included probes, pumps,
and filter holders to withdraw and collect the particulate on filters,
and a balance to determine the mass of particulate collected.
The dilution tunnel is similar to that used in a previous study^',
but modified by installing an additional 114 mm (4.5 inch) probe at the
downstream end of the tunnel. This large probe was used to withdraw a
dilute exhaust sample at a rate of 3.4 m3/hr (120 SCFM) through a 500 x
500 mm (20x20 inch) Pallflex filter (Pall Corporation). The dilution
26
-------
PROBE
/
/
r
A
i
-<5<
*o
v
L_L.J~II\ v»iii-\*ix vf-ik_vt_
T — THERMOCOUPLE
\
\
> I
F I LTER
1 L f ^\
PUMP
OVEN
T
1
J
"*"
HEATED
SAMPLE /
LINE /
-------
tunnel used is shown schematically in Figure 6. Some of the equipment
necessary for collecting particulate and relating it to undiluted vehicle
emissions is not shown in the schematic. It includes a constant volume
sampler (CVS) operating at a nominal capacity of 12.6 m^/hr (450 CFM) to
withdraw and measure unsampled air/exhaust mixture, and the positive-
displacement pump (capacity 3.4 m3/hr) used for the 500 x 500 mm filter
system.
Figures 7, 8, and 9 show the dilution tunnel as set up with the vehicle.
The vehicle's exhaust entered the tunnel horizontally near the upstream
end, and sampling took place near the downstream end. Four probes and
holders used to collect particulate on 47 mm filters are shown protruding
from the top of the tunnel in Figure 8. The lines from the holders lead
to pumps, flowmeters, and dry gas meters to control flowrate and record
sample volumes. At the end of the tunnel, the 114 mm probe led to a filter
holder capable of securing a 500 x 500 mm filter, heat exchanger, adjustable
valve for flow control, and a 3.4 m-^/hr positive displacement pump. Constant
flowrate was accomplished by maintaining temperature and pressure constant
at the pump inlet. It should be noted that the net flowrate through the
tunnel was affected considerably by the presence of the 500 x 500 mm sample
system. Figure 9 shows the 500 x 500 mm filter holder at the right of the
tunnel. Figure 10 also shows placement of the 500 x 500 mm filter into
its holder.
Particle sizing was accomplished using a radial-slot impactor. The
impactor system contained stainless steel stages on which particulate mat-
ter was supposedly fractionated by size, and a final Pallflex backup filter.
The impactor was located at the downstream end of the dilution tunnel.
Figure 9 shows the impactor system protruding on the left side of the
tunnel. Figure 11 shows the impactor system disassembled with the stages,
plates, and filter removed from their holder for clarity. In operation,
each stage was placed on a plate such that the slots in each stage de-
creased in width from sample entrance down to the filter. Each stage was
rotated 45 degrees so the particulate matter passing through the slots
impacted on a solid portion of the following stage. Particle retention
characteristics were related to the slot size and flowrate through the
impactor. The flowrate was controlled using a metal bellows vacuum
pump, pressure gauge, and flowmeter. The flowrate was maintained at
0.47 £/min (0.1 CFM) to achieve particle sizing down to 0.1 micron.
The mass of particulate matter collected on sample filters and impactor
discs was determined on a microbalance. This balance is enclosed in a
vibration-resistant, temperature- and humidity-controlled chamber to
minimize outside interferences. Filters and other materials for weighing
were allowed to stabilize in the chamber for a minimum of 12 hours before
they were weighed. The sensitivity of the balance is 1 yg. Air to
the chamber flows at about 17 m /hr on a one-pass basis, and keeps the
chamber pressure at about 2.5 kPa above atmospheric. The control system
28
-------
Y
610mm
(24in)
610mm
(— (24in)
840mm (33in)
I
450mm
(17.7in)
J
DILUTION AIR
FILTER ENCLOSURE
76mm (3ln) RAW
EXHAUST TRANSFER TUBE
230mm (9in)
MIXING ORIFICE
TO CVS
114mm
(4-1/2in)DIA
r
700mm (27.5in)—
SAMPLE
/ ^ —
u
EXH.
n
4EA1/2inlD
SAMPLING PROBE
114mm
(4-1/2in)DIA
500 x 500mm
(20in x 20in)
FILTER HOLDER
Figure 6. Schematic diagram of exhaust dilution tunnel.
-------
Figure 7. Mercedes 240D during test.
Figure 8. Dilution tunnel configuration.
30
-------
Figure 9. Location of particulate sampling probes on tunnel.
Figure 10. Loading of 20x20 filter into holder.
31
-------
CONE & SUPPORT
STAGES
PLATES
Figure 11. Particle sizing impactor dissassembled.
32
-------
keeps chamber conditions at 22.2 ± 0.6°C and 63 ± 2 percent relative
humidity, and air entering the chamber is filtered through a 99.99 percent
OOP-efficient filter.
D. Analysis of Particulate Composition
Particulate samples were acquired by several methods for various
analyses. After determining particulate matter weights, the samples were
subjected to analysis for major elements and trace elements. Some parti-
culate samples were collected in order to obtain the soluble fraction of
particulate matter. Analysis of the soluble fraction is discussed in the
next section.
1. Trace Elements
Analysis for trace elements (metals and sulfur) in the particulate
matter was performed on 47 mm Fluoropore filter samples. As provided in
the contract agreement, these determinations were made at EPA's Research
Triangle Park laboratories as part of the EPA in-house measurement program.
The instrumentation used for these analysis was a Siemens MRS-3 x-ray
fluorescence spectrometer.
2. Major Elements
Samples collected on 47 mm glass fiber filters were sent to
Galbraith Laboratories and analyzed for carbon, hydrogen, and nitrogen
content by combustion and subsequent gas analysis. The equipment used
was a Perkin-Elmer Model 240B automated thermal conductivity CHN analyzer.
Results of this analysis were reported in percent of submitted mass and
weight of element detected on the filter. These results make the filter
weighing accuracy very important.
Oxygen analysis was available from Galbraith using the same
instrumentation described above. Samples collected on glass fiber filters
could not be used, since glass fiber contains oxygen. Fluoropore filters
were unacceptable collection media, because fluorine present in fluoropore
causes interference. Silver membrane filters were used to collect parti-
culate matter for oxygen analysis. This medium was not used for carbon,
hydrogen, and nitrogen analysis because of the uncertainty of success.
In both cases, blank filters were submitted to permit blank corrections.
E. Analysis of the Soluble Fraction of Particulate Matter
The soluble fraction of particulate matter was obtained by extraction
from the 500 x 500 mm (20x20 inch) Pallflex filters. This large filter
enabled enough soluble material to be extracted so that the total amount
could be divided into smaller aliquots, then analyzed for a variety of
constituents.
33
-------
1. Total Soluble Organics
The 500 x 500 mm filters were weighed before and after test to
determine the weight of particulate matter. Each filter was extracted
using methylene chloride in a Soxhlet apparatus. The solvent volume was
reduced at low temperature and under vacuum. The remaining solvent/
solubles were transferred to a preweighed container, and the solvent was
evaporated by nitrogen purging. The total mass of solubles was determined
gravimetrically, and the percent of solubles in the particulate matter
calculated.
2. Major Elements
One aliquot of the dried, weighed soluble extract was submitted
to Galbraith Laboratories and analyzed for carbon, hydrogen, oxygen, and
sulfur by the technique and instrumentation described in Section IV, D. 2
(Perkin-Elmer 240B). An additional aliquot of soluble extract was sub-
mitted to SwRI's Mobile Energy Division for nitrogen analysis by oxidative
pyrolysis and chemiluminescence.
3. Solubles Boiling Range and Individual n-Paraffin Analysis
Another aliquot of soluble extract was submitted to SwRI's
Mobile Energy Division for determination of the boiling range and
reference to normal paraffins. The procedure is a high-temperature
variation of ASTM D2887-73. Each aliquot was dissolved in carbon
disulfide, and an internal standard (Cg and GH compound) was added for
quantitative results. The maximum temperature that this column reached
was 450°C, eluting compounds boiling up to 650°C.
4. Benzo(a)pyrene (BaP) and Ames Bioassay
An additional 500 x 500 mm (20x20 inch) filter was extracted,
and the extract was divided into eleven aliquots. One aliquot was used
to determine the BaP content of the soluble extract. This analysis was
performed by SwRI's Department of Emissions Research. The procedure,
developed by others ^^ , is based on high-performance liquid chromatography
to separate BaP from other organic solubles in particulate matter; and it
incorporated fluorescence detection to measure BaP. The instrument used
was a Perkin-Elmer 3B liquid chromatograph equipped with a MPF-44 fluorescence
spectrophotometer. Excitation was at a wavelength of 383 nm, and emission
was read at 430 nm. The remaining ten aliquots were shipped on dry ice to
EG&G for Ames bioassay testing.
34
-------
V. TEST PLAN, OPERATING SCHEDULE AND DATA REDUCTION
The following sections describe the test plan, sequence, and schedule.
Procedures used for data reduction to meet the requirements of the scope
of work are also outlined.
A. Test Plan
The major problem to overcome in structuring this project was to
evaluate as many emissions as possible during vehicle operation. Devel-
oping' a test plan on this basis allowed a large amount of information to
be collected with a minimum repetitive testing effort, and enabled a
variety of test fuels to be evaluated. An outline of exhaust constituents
analyzed and their corresponding methods is presented in Table 9.
/q\
The vehicle followed the "4-bag" FTPv ' cycle during most sample
collection and measurement runs, except those for smoke. Smoke evaluations
were performed separately during the cold transient portion of the FTP
(first 505 seconds). The cold transient portion incorporates all of the
most interesting modes from a smoke standpoint, including engine start,
first idle, first acceleration, second idle, and second acceleration. FTP
cycle description is well documented in other works.(5,6,9) An 85 ^/^
cruise condition was periodically used on a few of the more "interesting"
fuels. This cruise condition was originally used in a previous study^>,
and was carried over into this study for continuity. Ideally, a 20-minute
continuous cruise was to be run. However, due to temperature requirements
of the filter sample, the cruise schedule was divided into two ten-minute
periods. A description of the 85 km/h cruise procedure is located in
Appendix C, page C-2.
The test plan incorporating the cycles and evaluations for each test
fuel is shown in Table 10. Most samples were taken over each 2-bag FTP,
defined as a "cold FTP" or a "hot FTP". Testing for each fuel required
three days. After the first day of testing, the results were reviewed
to determine whether or not replicate analysis would be required on the
second day of testing. It was important to determine the validity of the
test as early as possible to avoid costly reruns and depletion of limited
quantities of test fuel to repurge the fuel system. Duplicate filter
samples were collected on Day 2, and retained for possible replicate
analyses.
Utilizing this test plan on eleven test fuels yielded a total of 45
runs, including baseline repeats and additional runs to replace erroneous
data or supply missing information. The first three digits of the test
number are the same as the fuel code, and the remaining letters and
digits relate to run numbers. For example, test 395-A,l means testing
of fuel EM-395-F; "A" represents analyses of day 1; and "1" is the run
number.
35
-------
TABLE 9. OUTLINE OF CHEMICAL AND PHYSICAL EXHAUST EVALUATIONS
Exhaust component
under study
Constituent (s) analyzed for
Collection
Method
Analysis technique(s)
smoke
smoke (visible)
EPA smokemeter (continuous)
gases
HC, CO, C02, NOX
aldehydes
individual hydrocarbons
odor
phenols
sample bag
wet impinger
sample bag
DOAS traps
wet impingera
constant volume sampler
DNPH
injection, GC
DOAS analyzer
extraction, GC
particulate
to
total mass
size distribution
sulfur & trace elements
carbon, hydrogen in
particulate
oxygen in particulate
organic extractable substances
BaP in organic solubles
molecular weight range of
organic solubles
carbon, hydrogen, sulfur,
oxygen in solubles
nitrogen in solubles
biological response of
solubles
Pallflex filters
impactor-filter
filter, 47 mm
Fluoropore
filter, 47 mm
glass filter
47 mm silver
filter
"20x20" filter
gravimetric
gravimetric
x-ray fluorescence
combustion (commercial)
combustion (commercial)
soxhlet extraction
LC, fluorescence detection
GC
combustion (commercial)
oxidation pyrolysis
Ames bioassay
two sets of samples before and after filtration
-------
TABLE 10. TEST PLAN FOR EACH FUEL
Analysis or Sample
gaseous HC, CO, NOX, CO2
aldehydes
individual hydrocarbons
phenols
total part, mass
sulfur & trace metals
C, H, N in part.
oxygen in part.
organic extractables
BaP and Ames bioassay
smoke
Day 1
Cold FTP
X
X
xc
X
X
X
X
X
X
-
-
(A)
Hot FTP
X
X
-
X
d .........
i
X
d
X
X
X
X
-
-
DC
Cold FTP
X
-
-
-
X
X
X
X
-
X
-
iv 2 (B)a
Hot FTP
X
-
-
-
X
X
X
X
-
X
-
85 km/hb
X
X
X
X
X
X
X
X
X
-
-
Day 3 (C)
cold transient
(505 seconds)
-
-
-
-
-
-
-
-
-
-
X
U)
o
repeat samples optional
run occasionally
uses first bag (505) of gaseous HC, CO, NOX/ CO2 collection
one sample collected for entire 4-bag FTP
-------
At the Project Officer's request, the technical direction of this
project was altered somewhat to permit acquisition of extra samples for
nitroaromatic analysis by Battelle (via HERL-EMSL contract). These
extra fuels and samples were run in lieu of other possible candidate fuel
blends that might have been tested under the scope of the fuel variable
study.
B. Data Reduction
Most data reduction was straightforward and required no special
efforts. Calculations for regulated gaseous emissions were performed
using computer programs which employed computational methods given in
Emissions Certification Regulations for light-duty diesel vehicles.(9)
The computer programs were fully documented in a previous report.^'
An example of a computer printout is located in Appendix C, Page C-3.
Particulate mass rate and concentration calculations followed the
guidelines given in the Federal Register. ' The particulate rate
for record was based on collection by 47 mm Pallflex filters. The
particulate mass rate was also calculated on the basis of collection by
the large "20x20" Pallflex filters, other 47 mm filter media, and the
impactor system. These calculations were performed for comparison
purposes.
The unregulated emission calculations were performed by applying
previously-derived formulae, recorded supplementary data, and conversion
factors to the results generated by the analytical procedures.^} Many
small calculator programs were written to streamline data reduction into
units most widely accepted (e.g., mass/distance, percent, etc.). A copy
of the principal calculator program and data reduction form are located
in Appendix C, pages C-4 through C-7.
38
-------
VI. GASEOUS EMISSION AND ODOR RESULTS
This report section includes presentation and discussion of results
on regulated gaseous emissions, aldehydes, individual hydrocarbons (IHC),
phenols, and exhaust odor. Replicate regulated gaseous and total parti-
culate emissions varied approximately 6 percent from initial run values.
Where applicable, minimum detection limits (in mass/distance) were
calculated to place results in perspective. The minimum detection limits
were calculated on the basis of analytical (concentration) minimum detection
limits, total dilute sample volume and distance traveled over the cycle.
A. Regulated Gaseous Emission Results
Data on regulated gaseous emissions, including CO2 and fuel con-
sumption, were obtained by analysis of bag samples collected from the
CVS-diluted exhaust. These results are summarized in Table 11. The
results are reported for each individual bag, a calculated 3-bag FTP,
and a calculated 4-bag FTP. The computer printouts for each test are
located in Appendix D, pages D-2 through D-35.
Regulated gaseous emissions from the Mercedes 240D test vehicle are
quite low, and most of the trends weak. The highest hydrocarbon and CO
values appeared for the pure aromatic and cetane-improved aromatic blends
(EM-460-F and EM-463-F). Fuel blend EM-463-F also exhibited the highest
NOX emissions.
B. Individual Hydrocarbon Results
Individual hydrocarbon (IHC) results are presented in Table 12. The
minimum detection limit for the IHC's was 0.85 mg/km. It appeared that
the "heavy aromatic" blend (EM-434-F) was associated with a reduction in
these specific hydrocarbons, most notably ethane. This result is
surprising when compared to the results of the other fuel blends containing
aromatics (EM-460-F and EM-463-F). These latter aromatic blends were
associated with increases in all individual hydrocarbons as compared with
the base fuel, EM-395-F.
C. Aldehyde Results
Concentrations of a number of individual low-molecular weight
aldehydes were determined in CVS-diluted exhaust. The results for each
aldehyde species and their sums are presented in Table 13. It should be
noted that "acetone" includes acrolein and propanol, and that the
isobutyraldehyde values were attributed to a column artifact. The
39
-------
TABLE 11. REGULATED GASEOUS EMISSIONS DATA
Fuel
EM-395-F
base
EM-404-F
+ ISO.
EM- 40 5 -F
+•4- ISO.
EM-430-F
shale
EM-434-F
heavy
aro.
EM-438-F
olefins
EM-448-F
light end
EM-401-F
alt. base
EM-460-F
pure aro.
EM-461-F
heavy end
EM-395-F
base
EM-463-F
+ cetane
improver
Item
HC
CO
CO2
NOX
Fuel
HC
CO
C02
NOX
Fuel
HC
CO
C02
NOX
Fuel
HC
CO
C02
NOX
Fuel
HC
CO
CO2
NOX
Fuel
HC
CO
C02
NOX
Fuel
HC
CO
co2
NOX
Fuel
HC
CO
CO2
NOX
Fuel
HC
CO
co2
NOX
Fuel
HC
CO
co2
NOX
Fuel
HC
CO
C02
NOX
Fuel
HC
CO
co2
NOX
Fuel
Emissions (g/km) and fuel usage (&/100 km) by Driving Schedule
FTP Bag Number
1
0.10
0.51
254.9
0.74
10.26
0.08
0.47
256.0
0.75
10.39
0.09
0.47
260.8
0.91
10.56
0.09
0.52
255.3
0.82
10.22
0.12
0.55
259.6
0.85
9.97
0.09
0.47
260.9
0.83
10.66
0.11
0.48
248.4
0.82
10.22
0.11
0.49
258.7
0.86
10.32
0.14
0.57
259.4
0.94
10.11
0.09
0.47
256.1
0.83
10.42
0.10
0.53
252.6
0.82
10.27
0.13
0.63
266.2
1.05
10.25
2
0.10
0.56
239.2
0.78
9.52
0.08
0.49
231.9
0.78
9.41
0.08
0.48
233.8
G .C'l
9.47
0.09
0.55
246.2
0.87
9.86
0.13
0.65
254.4
0.93
9.78
0.09
0.52
241.0
0.88
9.86
0.12
0.51
232.1
0.84
9.55
0. 12
0.53
238.3
0.86
9.51
0.13
0.67
248.0
0.93
9.67
0.09
0.50
236.1
0.89
9.62
0.09
0.58
243.9
0.82
9.52
0.14
0.73
250.6
1.06
9.66
3
0.09
0.45
220.6
0.70
8.76
0.07
0.42
22.14
0.72
8.98
0.08
0.41
224.3
0.86
8.95
0.08
0.46
229.8
0.79
9.20
0.10
0.50
226.3
0.82
8.69
0.08
0.43
225.0
0.80
9.20
0.10
0.43
216.7
0.78
8.91
0.09
0.45
226.1
0.80
9.02
0.10
0.49
229.6
0.89
8.94
0.07
0.42
222.8
0.81
9.07
0.08
0.47
223.5
0.81
9.08
0.10
0.56
235.8
1.03
9.08
4
0.10
0.56
231.8
0.76
9.37
0.09
0.51
232.9
0.80
9.45
0.09
0.50
227.4
0.88
9.22
0.11
0.56
241.7
0.83
9.69
0.14
0.67
248.7
0.92
9.56
0.10
0.54
233.0
0.87
9.54
0.12
0.54
228.2
0.81
9.39
0.13
0.57
239.9
0.84
9.58
0.14
0.64
231.2
0.91
9.02
0.08
0,50
2J7.6
0.89
9.27
0.11
0.58
226.8
0.84
9.22
0.14
0.74
245.5
1.07
9.47
(Calculated)
3-bag FrP
0.09
0.52
237.3
0.75
9.46
0.08
0.47
234.0
0.76
9.50
0.08
0.46
236.7
0.89
9.59
0.09
0.52
243.7
0.84
9.76
0.12
0.59
247.7
0.88
9.52
0.09
0.48
240.8
0.85
9.84
0.11
0.48
231.3
0.82
9.51
0.11
0.50
239.2
0.85
9.55
0.13
0.60
245.3
0.92
9.56
0.08
0.47
236.6
0.86
9.63
0.09
0.54
235.1
0.82
9.C5
0.13
0.66
249.7
1.04
9.62
(Calculated)
4-bag FTP
0.10
0.52
235.1
0.74
9.42
0.08
0.48
234.3
0.76
9.61
0.09
0.47
234.9
o.ae
9.51
0.09
0.52
242.3
0.83
9.70
0.12
0.60
246.1
0.88
9.45
0.09
0.49
238.4
0.85
9.75
0.11
0.49
230.1
0.81
9.46
0.11
0.51
239.6
0.84
9.57
0.13
0.59
240.3
0.91
9.37
0.08
0.48
234.1
0.86
9.53
0.09
0.54
232.9
0.82
9.47
0.13
0.67
248.2
1.05
9.57
Steady-State
85 km/h
0.10
0.40
184.6
0.72
7.72
— —
0.08
0.30
188.0
C.7.,
7.61
— -
0.08
0.44
197.5
0.85
7.58
...
0.09
0.34
192.2
0.84
7.67
___
0.09
0.38
194.3
0.72
7.89
""
40
-------
TABLE 12. INDIVIDUAL HYDROCARBON EMISSIONS
Fuel Code
EM-395-F
EM-404-F
EM-405-F
EM-430-F
EM-434-F
EM-438-F
EM-448-F
EM-401-F
EM-460-F
EM-461-F
EM-395-F
EM-463-F
Individual Hydrocarbons,3 mg/km
Methane
6.17
5.06
8.56
—
0.00
7.71
6.36
7.26
0.00
0.00
8.00
8.00
Etlu.ne
16.77
14.89
18.36
—
5.81
16.58
15.38
17.62
21.38
11.16
19.84
21.51
Ethyl er,e
0.65
0.34
0.35
—
0.23
0.00
0.00
1.18
0.94
0.00
1.25
0.70
Acetylene
4.50
3.27
3.19
—
1.50
4.62
3.71
4.24
5.31
0.00
4.34
3.51
Propane-
0.00
0.00
0.00
—
0.34
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Propylene
4.49
3.84
4.10
—
0.32
4.31
4.93
4.97
5.87
5.64
4.67
6.75
Benzene
3.66
3.42
2.74
—
0.00
0. 30
1.05
2.11
4.85
0.00
0.00
0.00
Toluene
0.00
0.00
1.23
—
0.00
0.00
0.00
0.00
0.00
0.00
0.00
4.01
Detected in the first 505 seconds of a cold FTP
-------
TABLE 13. ALDEHYDE AND PHENOL EMISSIONS DATA
Fuel Type
Fuel Code, EM -
Cycle
7,ldehydes, mg/km
Formaldehyde
Acetaldehyde
Acetone a
Isobutyraldfhyde
Crontonaldehyde
Hexanaldehyde
Benzaldehyde
"TotalC"
Phenols, mg/km
Filtered Samples
Phenol
Salic/laldehyde
m-Cresol+p-Cresol
Group Five1'
2, 3,5-trimethylphenol
2 , 3, 5 ,6-tetramethylphenol
2-n-propylphenol
"Total"
Unfiltered Samples
Phenol
Salicylaldehyde
m-Cresol+p-Cresol
Group Fived
2,3, 5-trimethylphenol
2, 3,5,6-tetramethylphenol
2-n-propylphenol
"Total"
H 320 BASE STOCK
395-F
Cold FTP
1.19
0.24
0.00
9.8^
0.00
0.00
—
1.43
0.46
0.84
O.Ol.
0.31
0.00
0.00
0.00
1.67
0.04
0.00
0.0}
0.04
0.00
0.00
0.03
0.1.'
Hot FTP
0.00
0.00
0.00
11. 2213
0.00
0.00
—
0.00
0.00
o.oc
0.00
0.00
0.00
0.00
1.1"
1.10
0.25
0.00
0.00
0.16
0.00
0.00
0.3<:
0.75
Calculated
1981 FTP
0.51
0.10
0.00
10. 63b
0.00
0.00
0.61
0.20
0.3h
0.02
0.13
0.00
0.00
0.6J
1.34
0.16
0.00
0.00
O.U
0.00
0.00
0.20
0.47
85 km/h
0.22
0.00
3.57
0.14*
0.00
0.01
3.80
0.00
4.38
0.00
3.37
0.00
O.OC
0.00
7.75
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
395-F + iaoquinoline ^ 0.04 %N
404-F
Cold FTP
0.00
0.02
0.00
9.35b
0.00
0.08
~~
0.10
1.41
2.6'.'
0.3J
0.00
0.00
0.00
0.73
5.16
0.00
0.01
0.00
0.62
0.00
0.19
0.00
0. '2
Hot FTP
0.06
0.00
0.00
21.49b
0.20
0.40
""
0.66
0.00
2.16
0.16
0.00
0.00
0.54
0.84
3.70
0.00
0.89
0.00
0.00
0.00
0.00
1.49
2.3B
iJali-'ilated
1981 FTP
0.03
0.00
0.00
16.27b
O.I/
0.27
"~
0.31
0.61
2.39
0.23
0.00
0.00
0.31
0.79
4.33
0.00
0.51
0.00
0.27
0.00
0.08
0.85
1.71
395-F + Isoquinoline ^ 0.1 %N
405-F
Cold FTT
22.33
11.27
0.00
6.70b
0.00
1.19
34.79
5.90
23.66
2.10
0.00
3.82
22.43
6.69
64.60
0.00
0.19
0.00
0.00
0.00
8.85
0.2,?
9.?u
Hot FTP
0.09
0.19
0.00
6.20b
0.00
0.17
0.45
0.00
2.00
0.00
0.00
0.00
0.00
0.87
2.87
0.00
0.62
0.00
0.00
0.00
0.27
0.00
0.' 9
Calculated
1981 FTP
9.66
4.9tr
0.00
6.42b
0.00
0.61
15.22
2.5«
11.31
0.90
0.00
1.64
9.64
3.37
29.40
0.00
0.44
0.00
0.00
0.00
3.9f
0.09
4.. IV
85 km/h
0.24
0.00
0.00
0.00
0.00
0.15
0.39
0.00
O.li
0.00
0.00
0.00
0.00
0.06
0.1"
0.00
0.00
0.00
0.00
0.00
0.09
0.08
0.17
Includes acrolein and propanol
b
Artifact
CDoes not include isobutyraldehyde and crontanaldehyde
dGroup five consists of p-ethylphcr.ol, 2-ifopropylphenol, '. "«, -xyl °l ,
nl , 2,4, fi-tri mpfhyl nh
-------
TABLE 13 (Cont'd). ALDEHYDE AND PHENOL EMISSION DATA
Fuel Type
Fuel Code, EM -
Cycle
Aldehydes, mg/km
Formaldehyde
Acetaldehyde
Acetone3
Isobutyraldohyde
Croton aldehyde
Hexarvldehyde
Benzaldehyde
"Total0 "
Phenols, mg/km
Filtered Samples
Phenol
Salicylaldehyde
m-Cresol +p-Cre sol
Group FJ.VIG ^
2 , 3, 5-trime thylphenol
2,3,4, 5, -tetrame thylphenol
2-n-propylphenol
"Total"
Unfiltered Samples
Phenol
Salicylaldehyde
m-Cresol+p-Cresol
Group Fivec
2, 3, 5-trime thylphenol
2,3,5, 6-tetrame thylphenol
2-n-propylphenol
"Total"
395-F + Shale Oil Cut '1.0.05%N
A1d~f
Cold FTP
0.00
0.00
0.00
12.68b
0.00
0.00
—
0.00
0.00
223. 2J
0.00
0.00
0.00
0.00
12.19
235.40
0.00
0.78
0.00
0.00
0.00
0.00
12.19
12.97
Hot FTP
0.00
0.00
0.00
13.78b
6.07
0.00
—
0.00
0.00
37.28
0.00
0.00
0.00
0.00
2. OH
39.36
0.13
0.00
0.00
0.00
0.00
0.00
0.00
0.13
Calculated
1981 FTP
0.00
0.00
0.00
13.31b
3.46
0.00
—
0.00
0.00
121.53
0.00
0.00
0.00
0.00
6.43
127.96
0.0>>
0.34
0.00
0.00
0.00
0.00
5.24
5.6l?
395-F +Exxon "HAN", 30% Aromatic
Cold FTP
2.08
0.00
0.00
0.00
0.00
0.00
—
2. OH
0.00
0.77
0.00
0.00
0.00
0.00
0.00
0.77
0.00
0.00
0.00
0.03
0.00
0.00
0.00
0.0 j
Hot FTP
3.34
O.OC
0.00
0.00
0.00
0.00
--
3.34
0.00
0.39
0.00
0.00
0.08
0.11
0.00
0.5H
0.00
0.00
0.00
0.14
0.00
0.22
0.00
0.31".
1981 FTP
2. HP
0.00
0.00
0.00
0.00
0.00
—
2.79
0.00
0.55
0.00
0.00
0.05
0.06
0.00
0.66
0.00
0.00
0.00
0.09
0.00
0.13
0.00
0.22
85 \m/h
__
—
—
—
—
—
0.00
0.2i
0.00
0.00
0.00
0.05
0.00
0.20
—
—
—
—
—
—
—
395-F + olefin pkq., ^7% olefin^
CoJJ FTP
0.00
0.00
0.00
0.00
0.00
0.00
—
0.00
0.00
0.00
0.00
o..'u
0.00
0.00
0.00
0.2i1
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
II. .1 FTP
0.00
0.00
0.00
0.00
0.00
0.00
—
0.00
0.00
0.00
0.00
0.14
0.00
0.00
0.00
0.14
0.00
0.00
0.00
0.00
O.OC
0.00
0.00
0.00
1 ''I* I 1 'IV
0.00
0.00
0.00
0.00
0.00
0.00
—
0.00
0.00
0.00
0.00
0.1'
0.00
0.00
0.00
o.n
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Includes acrolein and propanol
b
Artifact
c
Does not include isobutyraldehyde and crontanaldehyde
Group five consists of p-ethylphenol, 2-isopropylphenol, 2,3-xylenol, 3,5-xylenol, 2,4,6-trimethylphenol
-------
TABLE 13 (Cont'd). ALDEHYDE AND PHENOL EMISSIONS DATA
Fuel Type
Fuel Code, EM-
Cycle
Aldehydes, ing/km
Formaldehyde
Acetaldehyde
Acetone3
Isobutyraldehyde
Crotonaldehyde
Hexanaldehyde
Benzaldehyde
"Totalc "
Phenols, mg/km
Filtered Samples
Phenol
Salicylaldehyde
m-Cresol+p-Cresol
Group Fived
2,3, 5-trimethy Iphenol
2,3,5 ,6-tetramethy Iphenol
2-n-propy Iphenol
"Total"
Unfiltered Samples
Phenol
Salicylaldehyde
m-Cresol+p-Cresol
Group Fived
2,3,5 -trimethy Iphenol
2,3,5 ,6-tetramethy Iphenol
2-n-propy Iphenol
"Total"
395-F + light ends
448-F
Cold FTP
7.66
0.97
0.00
0.00
0.00
0.00
—
8.63
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Hot FTP
2.76
5.07
0.00
0.89
0.17
0.00
—
7.83
0.00
0.00
0.00
0.36
0.00
0.00
0.00
0.36
0.00
0.00
0.00
o.oo
0.00
5.25
0.00
5.25
Calculated
1981 FTP
4.87
3.31
0.00
0.51
0.10
0.00
—
8.18
0.00
0.00
0.00
0.21
0.00
0.00
0.00
0.21
0.00
0.00
0.00
0.00
0.00
2.99
0.00
2.99
JP-7
Cold FTP
3.27
0.00
0.00
0.00
0.00
0.00
—
3.27
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.13
0.00
1.13
40
Hot FTP
4.71
1.41
0.00
0.00
0.00
0.00
—
6.12
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
-F
Calculated
1981 FTP
4.09
0.80
0.00
0.00
0.00
0.00
—
4.89
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.49
0.00
0.49
85 km/h
3.57
0.46
0.83
0.00
0.00
0.00
—
4.86
0.00
0.00
0.00
Trace
0.00
0.00
0.00
Trace
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
395-F + 30% pure aromatics
460 -F
Calculated
Cold FTP Hot FTP 1981 FTP
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
o.oo o.oo o.oo
0.00 0.00 0.00
— — —
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.20 0.11
0.00 0.00 0.00
0.00 0.08 0.05
0.00 0.00 0.00
1.02 1.20 1.14
0.00 0.00 0.00
1.02 1.48 1.30
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.28 0.56 0.44
0.00 0.00 0.00
0.28 0.56 0.44
aincludes acrolein and propanol
Artifact
cDoes not include isobutyraldehyde and crotanaldehyde
Group five consists of p-ethyIphenol, 2-isopropyIphenol, 2,3-xylenol, 3,5-xylenol, 2,4,6-trimethylphenol
-------
TABLE 13 (Cont'd). ALHDEYDE AND PHENOL EMISSIONS DATA
Fuel Type
Fuel Code, EM-
Cycle
Aldehydes, mg/km
Formaldehyde
Acetaldehyde
Acetone3
Isobutyraldehyde
Crotonaldehyde
Hexan aldehyde
Benzaldehyde
"Total0"
Phenols, mg/km
Filtered Samples
Phenol
Salicylaldehyde
m-Cresol+p-Cresol
Group Fivea
2, 3,5-trimethylphenol
2, 3, 5, 6-tetramethylphenol
2-n-propylphenol
"Total "
Unfiltered Samples
Phenol
Salicylaldehyde
m-Cresol+p-Cresol
Group Five**
2,3,5, -trimethylphenol
2, 3, 5, 6-tetramethylphenol
2-n-propylphenol
"Total"
395-F + heavy ends
461-F
Cold FTP
5.51
0.00
1.72
0.00
0.00
0.00
—
7.23
0.00
0.00
0.00
0.33
0.00
0.95
0.00
1.28
0.00
0.00
0.00
0.00
0.00
8.21
0.00
8.21
Hot FTP
7.75
0.00
2.29
0.00
0.00
0.00
—
10.04
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.44
0.00
0.25
0.00
0.00
0.00
0.69
Calculated
1981 FTP
6.79
0.00
2.04
0.00
0.00
0.00
—
8.83
0.00
0.00
0.00
0.14
0.00
0.41
0.00
0.55
0.00
0.25
0.00
0.14
0.00
3.52
0.00
3.91
H320 Base Stock
395-F
Cold FTP
0.00
0.00
0.00
0.00
0.00
0.00
—
0.00
0.00
0.00
0.00
0.00
0.00
4.18
0.00
4.18
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Hot FTP
0.00
0.00
0.00
0.00
0.00
0.00
—
0.00
0.00
0.00
0.19
0.22
0.00
0.00
0.00
0.41
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Calculated
1981 FTP
0.00
0.00
0.00
0.00
0.00
0.00
—
0.00
0.00
0.00
0.11
0.13
0.00
1.80
0.00
2.04
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
85 km/h
0.00
0.00
0.00
0.00
0.00
0.00
—
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
434-F +0.7% DII-3
463-F
Cold FTP
0.00
0.00
0.00
0.00
0.00
0.00
—
0.00
0.00
0.00
0.00
0.41
0.00
0.00
0.00
0.41
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Hot FTP
0.00
0.00
0.00
0.00
0.00
0.00
—
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Calculated
1981 FTP
0.00
o.oo
0.00
0.00
0.00
0.00
—
0.00
0.00
0.00
0.00
0.18
0.00
0.00
0.00
0.18
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Includes acrolein and propanol
Artifact
Does not include isobutyraldehyde and crontanaldehyde
Group five consists of p-ethylphenol, 2-isopropylphenol, 2,3-xylenol, 3,5-xylenol, 2,4,6-trimethylphenol
d
-------
minimum detection limit for each of the aldehydes is listed below:
formaldehyde 0.18 mg/km
acetaldehyde 0.25 mg/km
acetone 0.30 mg/km
isobutyraldehyde 0.36 mg/km
crotonaldehyde 0.35 mg/km
hexanaldehyde 0.45 mg/km
benzaldehyde 0.46 mg/km
The minimum detection limit for "total" aldehydes must be determined for
each case, by summing limits for individual aldehydes whose concentrations
were summed to represent the total.
The aldehyde data are somewhat scattered, with few trends apparant.
When aldehydes were detected, they were usually in the form of formaldehyde
and/or acetaldehyde. Of some interest are the high formaldehyde and
acetaldehyde observed with fuel EM-405-F (base + isoquinoline at 0.1%N)
during the cold FTP. Values of this magnitude were not detected on any
of the other fuels. During the hot FTP, these aldehyde emissions were
absent. One possibility is that during cold start-up, a substantial
amount of raw fuel entered the DNPH impingers and reacted in such a way
as to create an artifact. Another possibility is that in the cold combustion
chamber, isoquinoline, present in the fuel, caused incomplete oxidation
of fuel constituents. The light-end and heavy-end blends also exhibited
increases in aldehydes.
D. Phenol Results
Phenols as measured in filtered and unfiltered dilute exhaust are
presented in Table 13. The phenol species were analyzed for having molecular
weights very near each other. Their minimum detection limits therefore
are represented by one value, namely 0.10 mg/km. As discussed earlier
in the report, filtered and unfiltered samples were collected because
procedural qualification was not complete at project initiation.
In most cases, the filtered phenols exhibited higher values than
unfiltered phenols. Exactly why this phenomenon occurred remains
speculative. One possibility is that phenols were being absorbed by
the particulate in the exhaust, and were later released from the trapped
particulate on the heated filter. It was not within the scope of this
project to investigate this phenomenon.
The most obvious variation in results was the very high (223 mg/km)
emission of salicylaldehyde in the cold FTP filtered sample indicated for
the shale oil blend, EM-430-F. This value is over 60 times the phenol
emissions of the base fuel. The only other pronounced increase in phenols
occurred while testing EM-405-F. This blend, containing isoquinoline,
exhibited high filtered phenols during the cold FTP, but not the hot FTP.
This trend for that fuel also occurred in its aldehyde emissions. The
remaining fuels exhibited slight changes from the base fuel, EM-395-F.
46
-------
E. Results of Odor Analysis
This subsection contains results from instrumental odor evaluations.
It should be noted that application of DOAS to dilute exhaust and transient
cycles is experimental at this time. Relationships between steady-state
operation and transient cycles are not adequately defined. The application
of DOAS in the study was to determine trends between test fuels.
A previous study(7) included an attempt to correlate DOAS odor analysis
with a trained odor evaluation panel. In that study, five vehicles were
operated on 7 steady-state modes sampling raw exhaust for the DOAS instrument
and dilute exhaust for the panel. One vehicle was the same Mercedes 240D
used in this study. The study indicated that the Mercedes 240D odor
(71
intensity was unaffected by speed and load changes. That studyw' also
indicated that TIA of 1.5 to 2.5 related somewhat to Turk "D" ratings of
"D"-2.0 to "D"-4.5.
The DOAS odor results are presented in Table 14. TIA values calculated
from both LCO and LCA concentrations are listed for reference. Odor
intensity is represented by the higher TIA value for each fuel. The TIA
values (LCO-based) for the base fuel EM-395-F are less than 1.0. The earlier
study''' indicated that a TIA (LCO-based) of less than 1 would be rated by
a trained panel at less than "D"-1.0. A perceived odor intensity of "D"-1.0
by the Turk method is considered a light (barely perceptible) odor, and one
which to most people would have low objectionability. The test blends there-
fore resulted in low odor intensity with the possible exceptions of EM-434-F,
EM-438-F, and EM-448-F. Even these fuels indicated TIA values that approached
the limits of detectability. The base fuel EM-395-F exhibited the lowest
odor intensity.
47
-------
TABLE 14 . DOAS ODOR RESULTS
Order of Test
1
2
3
4
5
6
7
8
9
10
11
12
Fuel Code
EM-395-F
EM-404-F
EM-405-F
EM-430-F
EM-434-F
EM-438-F
EM-448-F
EM-401-F
EM-460-F
EM-46 1-F
EM-395-F
EM-46 3-F
Fuel Description
H320 base fuel
395-F + isoquinoline
395-F ++ isoquinoline
395-F + shale oil cut
395-F + heavy aromatics
395-F + olefins
395-F + light ends
JP-7
395-F + pure aromatics
395-F + heavy ends
H320 base fuel
434-F + cetane improver
LCO, yg/£
0.02
0.01
0.95
0.02
2.02
2.84
2.23
0.00
0.77
1.23
0.37
1.13
LCA, yg/£
1.73
2.56
6.28
1.73
3.35
5.76
3.81
2.62
5.68
4.48
2.84
4.40
TIA
LCO
0
0
0.98
0
1.31
1.45
1.35
0
0.89
1.09
0.57
1.05
LCA
0.57
0.69
0.96
0.57
0.77
0.93
0.81
0.69
0.93
0.86
0.72
0.85
oo
-------
VII. SMOKE AND PARTICULATE EMISSION RESULTS
This section of the report presents summary data and discussion on
visible smoke, total particulate mass emissions, particle size distribution,
and particulate matter elemental analysis. In addition, it includes infor-
mation on organic solubles in particulate matter, elemental analysis of the
solubles, BaP in solubles, and boiling range of organic solubles by gas
chromatograph analysis.
A.
Visible Smoke Emissions
Visible smoke was measured using an EPA-type smokemeter over the
first 505 seconds (the "cold transient phase") of the FTP. Data, taken
on a 2-pen strip chart recorder, consisted of vehicle speed and smoke
opacity versus time. The traces, which were analyzed manually, are
located in Appendix E, Pages E-2 through E-ll. The results are summarized
in Table 15.
TABLE 15. SUMMARY OF VISIBLE SMOKE DATA
Condition
Cold start peak
Cold idle O.K.
(after start)
1st accel- peak
Idle at 125 sec. ,
O.K.
Accel at 164 sec. ,
peak
Smoke, PHS %, by fuel
395
21.7
6.0
26.1
2.1
5.0
401
12.3
6.1
18.8
1.1
8.8
404
31,5
8.0
20.8
1.0
5.1
405
21.2
6.0
19.6
1.2
6.0
430
434
42.8
6.3
14.4
2.0
9.1
438
14.5
5.5
16.0
1.2
4.8
448
26.7
5.6
28.9
0.7
5.0
460
22.4
6.8
46.7
2.4
12.7
461
27.0
6.2
29.2
2.4
8.9
463
17.6
7.4
23.8
2.6
21.0
The data indicate that some fuel blends increased, and some decreased
visible smoke production compared to base fuel. The olefin blend, EM-438-F,
exhibited smoke reductions for all five cycle portions analyzed. The greatest
smoke increase occurred with EM-434-F, heavy aromatics. It is interesting
that with addition of cetane improver to the heavy aromatic blend (EM-463-F)
the smoke level was reduced during the cold-start peak to below that of the
base fuel, EM-395-F. On the other hand, the cetane-improved blend exhibited
the highest smoke levels of all test fuels at the 164 second acceleration.
49
-------
B. Particulate Mass Emissions and Concentrations
Total particulate emissions were measured by six different filtering
systems. Only the 47 mm Pallflex filter was used strictly for particulate
mass rate determinations. The remaining five types of filters were used
primarily for other analyses. These five types were also used to calculate
particulate mass rates for comparison of various filter media on mass
results, and where an identical medium was used, to give support. The
particulate mass rates determined using the 47 mm Pallflex filters are
those which represent rates as prescribed by Federal Procedures.(D
Particulate mass rates in mg/km are presented in Table 16. These
results show that the rates as determined by Fluoropore (Teflon membrane)
filters are noticeably lower than those determined by the other filtering
systems. This difference reflects the relatively low exhaust particulate
collection efficiency of Fluoropore filters. The remaining media tend to
exhibit rates in the same "ballpark".
Results in Table 16 indicate that the light-ends fuel blend, EM-448-F,
reduced particulate emissions by approximately 14 percent as compared with
the base fuel, EM-395-F. The two blends containing aromatics, EM-434-F
and EM-460-F, were associated with increases in particulate emissions of
about 27 percent. The addition of the cetane improver to EM-434-F (EM-463-F)
increased the particulate emissions even more, to about 68 percent over base
fuel EM-395-F. It is also of some interest that the heavy-end blend,
EM-461-F, apparently did not cause an increase in particulate emissions, as
might have been expected.
In order to give another perspective, Tables 17 and 18 present the
particulate emissions in units of g/hr and mg/m^, respectively. These
data help to bring out those values that are significant, and to suppress
those that indicate very little change. It should be noted that the olefin
blend, EM-434-F, did reduce particulate emissions approximately 15 percent.
Other than the aromatic blends previously discussed, the remaining fuel
blends apparently did not affect the particulate mass emission rate as
compared to EM-395-F.
1. Samples Collected for Nitroaromatic Analysis
Gaseous emission results, particulate mass weights, and other
information regarding the acquisition of "20x20" filters for nitroaromatic
analysis by Battelle (via HERL-EMSL contract) are located in Appendix E,
pages E-20 through E-26. Sample treatment and results obtained by Battelle
were not intended to be included in this report.
C. Particulate Size Distributions
Data from the impactor runs were analyzed, including individual run
and average percentages of particulate mass by stage, and cumulative per-
centages of particulate by stage. Basic statistics were computed for each
data set.
50
-------
TABLE 16.- PARTICULATE MASS EMISSIONS
Sampling Medium
47 mm Pallflex
47 mm Glass Fiber
47 mm Fluoropore
Fuel
EM-395-F
EM-404-F
EM-405-F
EM-430-F
EM-434-F
EM- 4 38 -F
EM-448-F
EM-401-F
EM-460-F
EM-461-F
EM-395-F
EM-463-F
EM-395-F
EM-404-F
EM-405-F
EM-430-F
EM-434-F
EM-438-F
EM-448-F
EM-401-F
EM-460-F
EM-461-F
EM-395-F
EM-463-F
EM-395-F
EM-404-F
EM-405-F
EM-430-F
EM-434-F
EM-438-F
EM-448-F
EM-401-F
EM-460-F
EM-461-F
EM-395-F
EM-463-F
Milligrams Particulate per Kilometer
Cold FTP
174
173
175
206
205
161
155
159
233
172
178
285
176
173
186
198
—
182
150
180
235
172
171
298
124
106
106
—
154
—
--
90
160
109
99
154
Hot FTP
158
153
153
160
218
151
133
144
208
150
175
288
157
158
165
171
246
146
134
166
226
168
163
301
116
79
98
69
154
—
—
87
113
84
86
148
(Calculated)
1981 FTP
165
162
162
180
212
155
142
151
219
159
176
287
165
165
174
182
—
167
143
174
230
170
166
300
119
91
101
—
154
—
—
89
133
95
92
151
Steady-State
85 km/h
100
—
81
—
163
—
—
86
.._
—
99
—
104
—
86
—
152
—
—
90
—
—
109
—
71
—
55
—
60
—
—
46
—
—
52
— —
51
-------
TABLE 16 (CONT'D). PARTICULATE MASS EMISSIONS
Sampling Medium
47 mm Silver
Impactor Set
20 x 20 Pallflex
Fuel
EM-395-F
EM-404-F
EM-405-F
EM-430-F
EM-434-F
EM-438-F
EM-448-F
EM- 4 01 -F
EM-460-F
EM-461-F
EM-395-F
EM- 46 3 -F
EM-395-F
EM-404-F
EM-405-F
EM-430-F
EM-434-F
EM-438-F
EM-448-F
EM-401-F
EM-460-F
EM-461-F
EM-395-F
EM-463-F
EM-395-F
EM-404-F
EM-405-F
EM-430-F
EM-434-F
EM-438-F
EM-448-F
EM-401-F
EM-460-F
EM-461-F
EM-395-F
EM-463-F
Milligrams Particulate per Kilometer
Cold FTP
196
—
—
—
222
168
147
181
237
177
176
287
Hot FTP
144
—
—
158
166
140
134
180
206
145
152
278
(Calculated)
1981 FTP
167
—
—
—
190
152
140
180
219
159
162
282
> 1 °?
. 1 AO
, 1 AC
. 1 QR
. 1 TQ
. 119
. 137
r 137
. °6Q
, 153
• 185
. ?85
185
176
182
202
222
166
155
178
242
180
187
295
166
156
157
185
224
152
139
153
225
157
168
284
175
164
168
192
223
158
146
164
232
167
176
289
Steady-State
85 km/h
—
—
—
157
—
—
101
—
—
105
—
97
88
100
74
—
102
—
98
—
153
—
—
93
—
—
97
—
52
-------
TABLE 17. TIME-BASED PARTICULATE EMISSIONS
Fuel
EM- 39 5 -F
EM-404.F
EM-405-F
EM-430-F
EM-434-F
EM-438-F
EM-448-F
EM-401-F
EM-460-F
EM-461-F
EM-395-F
EM-463-F
Grams Particulate per hour
Cold FTP
5.87
5.35
5.85
6.63
6.79
4.93
4.77
5.03
6.76
5.32
5.53
8.86
Hot FTP
5.17
4.98
5.19
5.06
6.92
4.40
4.14
4.38
6.66
4.72
5.43
8.86
(Calculated)
1981 FTP
5.47
5.14
5.47
5.74
6.87
4.63
4.41
4.66
6.70
4.98
5.47
8.86
85 km/h
9.33
—
7.35
—
11.07
—
—
6.69
—
—
8.22
—
based on data from 47 mm Pallflex filter samples
TABLE 18. PARTICULATE CONCENTRATIONS
Fuel
EM- 39 5 -F
EM-404-F
EM-405-F
EM-430-F
EM-434-F
EM-438-F
EM-448-F
EM-401-F
EM-460-F
EM-461-F
EM-395-F
EM-463-F
Particulate Concentration in mg/m^
Cold FTP
58.0
52.8
57.8
65.5
67.1
48.7
47.2
49.7
66.8
52.6
54.7
87.6
Hot FTP
51.8
50.0
52.1
50.8
69.5
44.2
41.6
43 9
66.8
47.4
54.5
87.6
(Calculated)
1981 FTP
54.4
51.2
54.5
57.1
68.5
46.1
44.0
46.4
66.8
49.6
54.6
87.6
85 km/h
57.9
—
45.6
—
68.7
—
—
41.5
37.8
—
51.0
—
based on data from 47 mm Pallflex filter samples
at 101.3 kPa and 21°C
53
-------
One impactor data set was collected per test fuel, with the exception
of the base fuel runs. The impactor was run on each of four base fuel runs
to evaluate the "new" impactor system and for statistical purposes. Table
19 lists the impactor results for the four base fuel runs and shows the
type of repeatability and variability that can be applied to the indivi-
dual runs on each test.
Table 20 lists the particle size distribution as percent of the total
particulate mass for each test, and Figure 12 presents these data graphically.
In most cases, the majority of the particulate mass was under 0.08 urn diameter
because the backup filter collected the largest percent of the particulate
mass. Figure 12 shows that the combined distribution of all test blends
is very similar to the base fuel (EM-395-F) four-run average. This
observation is interesting in that each fuel blend exhibited a unique
particle distribution. Probable cause for this observation is the large
variability at each stage, as seen in Table 19. It is interesting to note
that although EM-463-F (base + H.A.N. + cetane improver) was associated
with higher particulate mass emissions, it generated more small particles
than the same fuel without cetane improver (EM-434-F).
Data such as those presented in Table 20 can also be expressed in
cumulative mass percent of particulate smaller than stage cutoff diameter,
beginning with the filter and working up through the sampler toward larger
agglomerate diameters. The table in Appendix E, Page E-12, lists such
data and associated statistics. Data presented in this form reflect
the total percent particulate collected at and below a particular cutoff
diameter.
D. Analysis of Particulate Composition
This subsection includes data on major elements and trace elements.
Carbon, hydrogen, and nitrogen analysis was performed on particulate
collected using 47 mm glass fiber filters. Oxygen analysis was performed
on particulate collected using 47 mm silver membrane filters. Particulate
collected on 47 mm Fluoropore filters was analyzed for trace elements.
A summary of the carbon, hydrogen, and nitrogen content of the parti-
culate matter is given in Table 21. The elemental data show fairly high
carbon content, indicative of "dry" or soot-like particulate material
rather than oily material. Nevertheless, the particulate carbon content
did vary among the test blends used. Fuel blend EM-448-F (light ends)
exhibited the highest carbon percentage on the cold FTP. This result was
unexpected because of the ease with which light paraffins burn. For the
most part, the data are scattered, with no clear trends.
A previous study indicated, as does this one, that a large fraction
of particulate matter is unaccounted for by the sum of carbon, hydrogen,
and nitrogen. A logical element to "look for" was oxygen. At project
initiation, it was planned to attempt analysis of particulate matter for
oxygen. The method used has been discussed earlier in the report. Oxygen
54
-------
TABLE 19. BASE FUEL PARTICULATE SIZE DISTRIBUTION DURING A COMBINED COLD AND HOT FTP
Run
1
2
3
4
Percent of Total Particulate Mass
Stage 3
6.6 yma
3.533
1.041
1.719
2.786
Stage 4
4.1 ym
1.536
3.892
3.582
2.089
Stage 5
2.6 ym
2.304
4.801
1.289
3.203
Stage 6
1.1 ym
1.536
4.020
3.152
8.217
Average
Vmax
Vmin
S.D.
Range
Vari . , %
2.270
3.533
1.041
1.107
2.492
48.766
2.775
3.892
1.536
1.141
2.356
41.116
2.899
4.801
1.289
1.490
3.512
51.377
4.231
8.217
1.536
2.850
6.681
67.346
Stage 7
0 . 85 ym
4.455
2.980
4.441
4.178
Stage 8
0.54 ym
2.611
2.724
2.865
7.382
Stage 9
0 . 34 ym
1.997
2.982
4.298
11.003
Stage 10
0.08 ym
4.608
3.632
7.880
10.306
Filter
77.419
66.151
70.774
50.836
Vehcile Total
Particulate, g^
4.014
4.104
3.723
4.282
4.014
4.455
2.980
0.701
1.475
17.458
3.896
7.382
2.865
2.327
4.517
59.727
5.070
11.003
1.997
4.066
9.006
80.199
6.607
10 . 306
3.632
3.063
6.674
46.367
66.295
77.419
50.836
11.296
26.583
17.039
4.031
4.282
3.723
0.233
0.559
5.791
effective cutoff diameter
based on 47 mm Pallflex
-------
TABLE 20. PARTICLE SIZE DISTRIBUTION OF PARTICULATE COLLECTED WITH IMPACTOR
Ul
CTi
Fuel Code
EM-
395-F
395-F
395-F
395-F
404-F
404-F
405-F
405-F
430-F
434-F
438-F
448-F
401-F
401-F
460-F
461-F
395-F
395-F
463-F
ode
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
-F
Cycle
FTP
85 km/h
85 km/h
FTP
FTP
FTP
FTP
85 km/h
FTP
FTP
FTP
FTP
FTP
85 km/h
FTP
FTP
FTP
FTP
FTP
Percent of Total Particulate
Stage 3
6.6 vima
3.533
0.204
0.000
1.041
0.000
0.155
0.648
0.000
3.383
0.000
0.000
2.772
1.718
0.000
1.252
0.000
1.719
2.786
2.041
Staye 4
4.1 ym
1.536
0.409
0.000
3.892
0.000
0.000
0.324
0.388
3.800
1.393
2.978
1.188
0.000
0.000
0.096
3.731
3.582
2.089
1.952
St.i.jc 5
2.6 ym
2.304
2.454
0.000
4.801
0.193
2.009
0.000
0.581
5.283
1.084
3.762
6.535
3.626
0.000
1.541
2.425
1.289
3.203
1.413
Sta<;e 6
1.1 Urn
1.536
0.204
0.209
4.020
0.387
0.000
4.862
0.581
5.706
7.743
5.486
1.386
1.908
1.734
0.385
0.933
3.152
8.217
7.064
S-cage 7
0.85 vim
4.455
0.818
0.418
2.980
1.161
6.646
4.862
1.357
6.230
0.000
4.702
5.545
2.863
0.000
0.289
2.799
4.441
4.178
0.628
Staje 8
0.54 pm
2.611
0.613
0.626
2.724
1.934
3.709
3.079
2.326
4.861
7.592
3.135
4.356
1.527
4.348
4.528
1.119
2.865
7.382
1.727
Stage 9
0. 34 pm
1.997
0.818
0.835
2.982
2.708
1.855
1.945
4.457
3.170
10.372
4.389
3.168
4.771
1.449
4.624
2.799
4.298
11.003
2.512
Stage 10
0.08 pro
4.608
2.863
2.923
3.632
2.515
4.791
2.755
0.000
4.651
12.384
5.643
8.515
6.107
4.348
9.152
0.373
7.880
10.306
1.727
Filter
77.419
84.663
95.198
66.151
91.683
80.835
81.524
90.310
62.942
59.443
69.906
66.535
77.481
88.116
77.938
85.821
70.77
50.84
80.926
Vehicle Total
Particulate
g/cycleb
4.01
2.79
2.96
4.10
3.74
4.10
4.30
2.31
4.45
5.21
3.89
2.99
3.62
2.22
5.21
3.82
3.72
4.28
6.76
effective cutoff diameter
based on 47 mm Pallflex
-------
12-
10-
oP
8-
Weight,
; F-J t, 0^
All Fuels 12-
10-
(#p
8-
— I , , -H 4-
| | | | 0)
EM-395-F 12-
10-
0\°
. 8-
TMn] f^i
EM-404-F
U n
10 9876543 10 987 6 543 10 9876543
Stage Stage Stage
12-
* 10-
- 8-
-P
•C (,.
tn D
S 4.
EM-405-F 12-|
* 10"
8-
J 6.
"^
•H 4-
~~| 1 S 2-
1 t— 1 1 n
EM-430-F 12'
* 10'
. 8-
r~i— -c 6-
— | I— |~1_^ ? 4-
n 1 n~i * '"
— | EM-434-F
,
-n
10 9876543 10 9 87 6 543 10 9876543
Stage Stage Stage
12
10-
* 8-
-u 6.
£
31 „
H 4-
0)
S 2-
EM-438-F 12"
*o 10-
4-1
XI (T.
[ [ 1 1 -
•H
1 tu 4-
s ,
^-run
EM-461-F )2n
* 1 0-
f-
-P
•& W
TU^^ *'
EM-463-F
-n- T-m
10 9 876 5 43
Stage
10 9 8 7^ 5 5 3
Stage
10 9 8 7
Stage
Figure 12. Weight percentage of particulate matter collected by impactors stage during an FTP.
-------
TABLE 21. CARBON, HYDROGEN, AND NITROGEN IN EXHAUST PARTICULATE MATTER
Fuel
EM-395-F
EM-404-F
EM-405-F
EM-430-F
EM-434-F
EM-438-F
EM-448-F
EM-401-F
EM-460-F
EM-461-F
EM-463-F
Cycle
FTPC
FTPh
85 km/h
FTPC
FTPh
FTPC
FTPh
85 km/h
FTPC
FTPh
FTPC
FTPh
85 km/h
FTPC
FTPh
FTPC
FTPh
FTPC
FTPh
85 km/h
FTPC
FTPh
FTPC
FTPh
FTPC
FTPh
Percent
Carbon
85.8
89.6
77.2
86.0
87.9
84.5
87.1
84.8
79.7
80.3
84.0
78.5
85.1
81.1
77.2
95.8
76.6
85.3
73.9
82.7
86.0
84.0
82.7
76.3
82.9
82.7
Hydrogen
3.7
4.7
5.9
5.0
5.6
5.4
5.0
6.5
2.5
2.6
2.8
2.2
2.6
6.1
6.1
3.7
2.9
2.6
2.6
4.7
2.1
2.1
2.4
2.4
1.5
1.5
Nitrogen
0.28
0.26
0.26
<0.10
<0.10
-------
analysis for particulate generated using each fuel is located in Appendix E,
page E-13, along with other analyses. In some cases the oxygen appears to
account for the "missing" material. In other cases, the oxygen analysis
would account for far too much of the elemental composition (i.e., C + H +
N + 0 percentage greater than 100). Additional work is needed to qualify
oxygen analysis of particulate matter, because all the widely used bulk
analysis techniques have difficulties with particulate matter.
Data on trace elements are given in Appendix E, pages E-15 through
E-17. As a whole, these elements made up from about 0.6% to 2% of the
particulate mass. The trace elements found most commonly in particulate
matter were iron, sulfur, calcium, and zinc; and to a lesser degree alu-
minum and magnesium. Possible sources of iron and aluminum are wear
products from engine and exhaust systems. Sulfur, calcium, and zinc are
probably attributable to fuel sulfur and lubricating oil additives. An
interesting observation is the increase of silicon during operation with
the shale oil additive blend, EM-430-F. The increase may be related to
contaminants introduced during shale oil extraction.
E. Composition of Organic Solubles in Particulate Matter
The amounts of organic solubles extracted from particulate matter
collected on "20x20" filters are listed in Table 22. All blends containing
aromatics resulted in slightly less organic soluble matter than the base
fuel. Solubles were about the same for the fuel containing aromatics and
cetane improver (EM-463-F) as they were for the fuel with these same
aromatics only (EM-434-F). Olefins, light ends, and heavy ends were
associated with increases in the amount of organic solubles. The 85 km/h
results are also of some interest. The amount of organic solubles doubled
(as compared to base fuel) on the three of the four blends tested. The
three blends exhibiting high organic solubles at 85 km/h all had high
paraffin content. The other blend, EM-434-F, contained 30 percent aromatics.
Previous work(6) On this vehicle, using commercially available fuels,
indicated about the same organic soluble content of the particulate matter
on either an FTP or an 85 km/h cruise. All the fuels in that study
contained over 12 percent aromatics. It is possible that highly paraffinic
fuels create more variability in soluble fraction due to operating schedule
variations than fuels with more aromatics.
1. Major elements in organic solubles
A portion of the organic soluble material was analyzed for carbon,
hydrogen, nitrogen, sulfur, and oxygen. The results are given in Table 22.
All the elemental data are indicative of hydrocarbon-like materials (numeric
H/C ratio between 1.31 and 1.72). Sulfur and nitrogen are low. No apparent
increase in nitrogen was seen as result of isoquinoline addition to the
fuel. The oxygen levels varied somewhat, but with no clear trends detected.
59
-------
TABLE 22. COMPOSITION OF ORGANIC SOLUBLES FROM PARTICULATE MATTER
Fuel
EM-395-F
EM-404-F
base + iso.
EM-405-F
base ++
iso.
EM-434-F
heavy
aro.
EM-438-F
olefins
EM-448-F
light-ends
EM-401-F
alt base
EM-460-F
pure aro.
EM-461-F
heavy-ends
EM-463-F
434+cet.
Cycle
FTPC
FTPh
85 km/h
FTPC
FTPh
FTPC
FTPh
85 km/h
FTPC
FTPh
85 km/h
FTPC
FTPh
FTPC
; FTPh
FTPC
FTPh
85 km/h
FTPC
FTPh
FTPC
5 FTPh
FTPC
FTPh
Percent
Carbon
78.6
77.3
79.0
78.5
74.5
74.9
83.7
84.5
72.0
71.4
75.7
74.5
75.9
73.0
76.6
80.1
78.3
74.6
82.1
82.6
83.0
82.4
82.8
81.7
Hydrogen
10.9
10.5
10.7
10.8
9.9
10.4
12.8
13.1
8.5
8.5
9.9
9.4
10.0
9.1
10.6
11.5
11.1
9.0
12.0
12.2
12.3
12.5
12.4
12.3
Nitrogen
0.37
0.70
0.81
0.70
1.02
0.75
1.00
1.35
1.30
1.45
0.73
1.35
1.32
0.97
1.63
1.02
1.39
1.56
0.23
0.21
0.20
0.25
0.23
0.25
Sulfur
0.88
0.75
0.60
0.32
0.32
0.37
0.38
0.73
1.64
0.44
0.92
0.66
0.67
0.58
0.62
0.51
0.51
0.75
0.40
0.39
0.43
0.45
0.44
0.55
Oxygen
6.7
8.5
8.3
8.2
—
—
—
—
12.3
13.0
8.9
13.1
12.6
14.7
9.1
5.7
7.0
11.5
—
5.5
4.3
5.1
4.3
5.5
Vehicle Total
Solubles
g/testa
0.314
0.334
0.857
0.268
0.274
0.251
0.182
0.708
0.332
0.345
0.707
0.331
0.316
0.388
0.325
0.265
0.286
0.693
0.333
0.363
0.337
0.297
0.402
0.412
% of Total
Particulate
14.8
15.8
30.1
13.0
13.7
11.5
9.7
28.9
12.8
13.1
16.4
17.6
18.8
18.4
19.1
13.8
17.1
31.2
12.9
14.4
16.6
16.5
11.9
12.2
Based on 47 mm Pallflex filter rate
60
-------
2. Benzo-a-pyrene (BaP) in Organic Solubles
BaP in organic solubles was determined initially by EPA's Research
Triangle Park laboratories as part of its in-house measurement program.
Originally, each filter extract representing an FTP (either cold or hot)
was analyzed separately for BaP. At the Project Officer's request, the
filter extracts from a cold FTP and a hot FTP from each fuel were combined,
and the analysis was performed by SwRI's Department of Emissions Research.
The results of these analyses are shown in Table 23. Other, related data
are also shown. The lowest BaP emissions occurred with the olefin blend,
EM-438-F, and the highest level was observed with the shale oil blend, EM-
430-F. The shale oil blend increased the BaP emissions by a factor of 3.
This emission rate (0.96 lag/km) is not considered significant.
3. Gas Chromatograph "boiling range" Analysis of Organic Solubles
An additional aliquot of organic soluble material was submitted
for boiling range determination by gas chromatography. The procedure was
plagued with hardware problems for over a year during the conduct of this
program. The delays have resulted in some apparent polymerization of the
organic soluble material. Table 24 lists the results of the analysis.
A previous study'6) indicated that the recovery of the material should be
between 60 and 90 percent. Due to apparent polymerization, not all the
organic soluble material could be re-dissolved in the G.C. solvent.
Therefore, the weight of actual sample injected was not known accurately,
invalidating the quantitative analysis. An example of a crude oil
("Altamont") and an organic extract chromatogram are located in Appendix E,
Figures E-l and E-2. It is obvious from this experience that boiling
range determination by gas chromatography should be performed as soon as
possible after extraction.
F. Mutagenic Activity of Organic Solubles
Organic soluble extracts representing the fuels tested were subjected
to a complete series of Ames testing with five tester strains, in triplicate,
with and without metabolic activation. The results, in revertants per micro-
gram of extract, are summarized in Table 25. Two strains, TA-98 and TA-100,
were fairly sensitive to particulate organic extractables, while the remaining
three strains responded to a lesser degree. All of the responses were relatively
low which was probably due to the clean base fuel. There appeared to be a trend
towards higher activities with the aromatic blends. The trends with the iso-
quinoline blends were inconclusive. The heavy-end extended blend appeared to
have increased the activity somewhat.
A comparison of distance-specific Ames activity is shown in Table 26.
Table 26 takes into account the particulate rate and percent organic extract-
ables of each fuel blend, resulting in Ames activity as revertants per kilo-
meter. The largest increase in Ames response was associated with the heavy
aromatic naptha (HAN)-cetane improver blend (EM-463-F) on strain TA-100 without
activation. Greater than a threefold increase occurred as compared to the base
61
-------
TABLE 23. BaP PRESENT IN ORGANIC SOLUBLES
CABS
Sample No.
-79-700
-79-710
-79-20
-79-730
-79-740
-79-750
-80-761
-80-781
-80-931
-80-940
-80-961
i
-80-4101
-80-4111
-80-4121
-80-4131
-80-4141
-80-4151
-80-4161
-80-4171
-80-4181
-80-4191
Filter No.
PL-1507
PL-1508
PL-1510
PL-1511
PL-1517
PL-1518
PL-1522,-1524
PL-1525,-1526
PL-1529,-1530
PL-1535
PL-1536,-1537
5423-P20-30,-31
5423-P20-9,-10
5423-P20-61,-62
5423-P20-63,-64
5423-P20-7,-8
5423-P20-27,-28
5423-P20-26,-29
5423-P20-38,-39
5434-P20-32
5423-P20-11
Cycle
FTPC
FTPh
FTPC
FTPh
FTPC
FTPh
FTPC + FTPh
FTPC + FTPjj
FTPr + FTP,
'- f:
85 km/h
FTPC + FTPh
FTPC + FTPh
FTPC + FTPh
FTPC + FTPh
FTPC + FTPh
FTPC + FTPh
FTPC + FTPh
FTPC + FTPh
FTPC + FTPh
85 km/h
85 km/h
Fuel
EM-
395-F
395-F
404-F
404-F
405-F
405-F
430-F
395-F
434-F
434-F
438-F
395-F
401-F
404-F
405-F
448-F
460-F
461-F
463-F
395-F
401-F
Particulatc
Rate , mg/km
174
158
173
153
* 175
153
180
165
212
163
155
176
151
171
172
142
219
159
287
99
86
% Organic
Extractables
18.6
18.3
14.9
16.4
16.1
16.0
12.7
12.1
11.8
15.2
13.9
20.6
17.0
14.4
16.3
19.9
11.7
17.5
10.8
41.4
32.2
% BaP
in Extract
0.0014
0.0019
0.0010
0.0011
0.0013
0.0013
0.0042
0.0033
0.0015
0.0017
0.0010
0.0015
0.0028
0.0030
0.0022
0.0029
0.0033
0.0027
0.0015
0.0006
0.0014
BaP Rate
yg/km
0.47
0.58
0.25
0.26
0.37
0.33
0.96
0.65
0.37
0.41
0.21
0.27
0.42
0.52
0.37
0.51
0.73
0.43
0.43
0.06
0.12
en
tSJ
-------
TABLE 24. CHROMATOGRAPH ANALYSIS OF ORGANIC SOLUBLES IN PARTICULATE MATTER
Distillation Point
IBP
10% point
20% point
30% point
40% point
50% point
60% point
70% point
80% point
90% point
EP
Recovery, %,
Boiling Temperature at Distillation Point by Fuel, °C, During Cold FTPa
EM-395-F
280
376
398
419
441
462
486
533
-
-
—
74.5
EM-404-F
290
405
437
465
502
-
-
-
-
-
—
47.1
EM-405-F
288
384
407
429
450
469
493
536
-
-
—
74.4
EM-434-F
282
377
399
420
441
462
484
523
-
-
—
75.4
EM-438-F
282
378
399
419
437
456
474
498
551
-
—
82.6
EM-448-F
300
471
-
-
-
-
-
-
-
-
—
14.0
EM-401-F
280
383
408
431
454
477
515
-
-
-
—
66.2
EM-460-F
280
375
395
414
432
449
466
487
526
-
—
83.2
EM-461-F
289
404
449
511
-
-
-
-
-
-
—
33.7
EM-463-F
266
354
377
398
422
447
472
506
597
-
~~
80.0
Distillation Point
IBP
10% point
20% point
30% point
40% point
50% point
60% point
70% point
80% point
90% point
EP
Recovery, %,
Boiling Temperature at Distillation Point by Fuel, °C, During Hot FTP
EM- 39 5 -F
266
375
396
415
435
452
472
497
547
-
—
57.6
EM-404-F
287
403
432
457
481
519
-
-
-
-
—
56.3
EM-405-F
272
445
543
-
-
-
-
-
-
-
—
22.9
EM-434-F
277
379
402
424
446
467
493
545
-
-
—
73.0
EM-438-F
285
380
401
421
441
460
480
511
-
-
—
77.4
EM-448-F
274
458
-
-
-
-
-
-
-
-
—
15.4
EM-401-F
276
378
401
425
448
470
498
566
-
-
—
70.7
EM-460-F
280
374
395
414
433
451
469
490
530
-
—
82.8
EM-461-F
235
467
-
-
-
-
-
-
-
-
—
13.1
EM-463-F
274
374
397
419
442
464
488
530
-
-
—
75.4
possible quantitative inaccuracies due to sample storage
-------
TABLE 25. SUMMARY OF AMES BIOASSAY ANALYSIS OF ORGANIC SOLUBLES FROM
PARTICULATE MATTER COLLECTED DURING FTP
Fuel Code
EM-395-F
EM-404-F
EM-405-F
EM-430-F
EM-434-F
EM-438-F
EM-448-F
EM-401-F
EM-460-F
EM-461-F
EM-463-F
Description
base
base + isoquinoline
(0.05% N)
base + isoquinoline
(0.10% N)
base + shale
oil cut
base + "HAN"
base + olefins
base + light ends
JP-7
base + individual
aromatics
base + heavy ends
EM-434-F +
cetane improver
RLI-16
Activation
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
Model Predicted
Mean Slope, revertants/pg extract
TA-1535
0.0
0.0
0.0
0.1
0.0
0.2
0.3
0.0
0.0
0.1
0.0
0.0
0.0
0.1
0.0
0.1
0.0
0.1
0.0
0.1
0.0
0.1
TA-1537
0.2
0.3
0.7
0.5
0.1
1.1
0.2
0.2
0.7
0.5
0.1
0.2
0.4
1.3
0.2
0.3
0.7
0.4
0.3
0.5
0.7
0.6
TA-1538
0.7
0.4
1.7
1.0
0.5
0.9
0.6
0.7
1.7
1.1
0.3
0.5
0.9
0.7
1.4
0.9
1.7
0.9
1.2
1.0
1.7
0.9
TA-98
3.2
0.9
3.3
3.0
1.9
0.8
1.3
1.0
3.7
1.1
0.8
1.3
4.1
0.9
3.0
3.3
3.5
2.9
3.6
2.7
5.7
2.5
TA-100
3.9
1.9
5.1
1.9
5.5
1.3
4.9
1.9
6.9
2.2
3.0
1.2
3.3
1.4
—
1.4
8.7
2.6
6.6
2.3
14.0
2.4
64
-------
TABLE 26. AMES BIOASSAY ANALYSIS RESULTS IN REVERTANTS PER
DISTANCE DURING FTP
Fuel Code
EM-395-F
EM-404-F
EM-405-F
EM-430-F
EM-434-F
EM-438-F
EM-448-F
EM-401-F
EM-460-F
EM-461-F
EM-463-F
Description
base
base + isoquinoline
(0.05% N)
base + isoquinoline
(0.10% N)
base + shale
oil cut
base + "HAN"
base + olefins
base + light
ends
JP-7
base + individual
aromatics
base + heavy
ends
EM-434-F +
cetane improver
RLI-16
Activation
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
Model Predicted
Mean Slope, 103 revertants/kma
TA-1535
0.0
0.0
0.0
2.
0.0
5.
7.
0.0
0.0
3.
0.0
0.0
0.0
3.
0.0
3.
0.0
3.
0.0
3.
0.0
3.
TA-1537
7.
11.
16.
12.
3.
29.
5.
5.
18.
13.
2.
4.
11.
37.
5.
8.
18.
10.
8.
14.
22.
19.
TA-1538
25.
14.
40.
23.
13.
24.
14.
16.
43.
28.
6.
11.
25.
20.
36.
23.
44.
23.
33.
28.
53.
28.
TA-98
112.
32.
77.
70.
50.
21.
30.
23.
93.
28.
17.
28.
116.
25.
77.
85.
90.
74.
100.
75.
176.
77.
TA-100
137.
67.
119.
44.
145.
34.
112.
43.
173.
55.
65.
26.
93.
40.
__
36.
223.
67.
184.
64.
433.
74.
calculation incorporates particulate mass rates based on
percent organic solubles extracted from Pallflex "20x20"
47 mm Pallflex filters,
filters, and data in Table 23.
65
-------
fuel, EM-395-F. It is interesting to note that both these fuels, EM-463-F
and EM-395-F, exhibited similar response on TA-100 with activation. Olefin
blend EM-438-F gave the lowest response on all 5 strains with and without
activation. For strain TA-100 without activation, fuel blends associated
with the highest Ames responses were the three containing aromatics, and
the heavy-end extended blend. In the majority of cases, metabolic activa-
tion reduced Ames activity on all 5 strains. This trend was much more
pronounced for strains TA-1538, TA-100, and TA-98 than for the other two
strains.
66
-------
VIII. STATISTICAL ANALYSIS OF FUEL AND EMISSIONS DATA
This report section discusses the application of several statistical
computer programs to fuel and emission variables. The principal goal was
to determine linear relationships between intentionally-varied fuel
variables and important emission variables.
A. Statistical Methodology
The statistical packages used for analysis of the data were SPSS
(Statistical Package for the Social Sciences)(15^ and BMDP (Biomedical
Computer Programs). ' Various programs from each of these packages
were used to evaluate the data.
There are 38 fuel variables and 82 emission variables representing
the 11 fuel blends tested. Pearson's correlation coefficients were cal-
culated for these data, using a bivariate correlation procedure in order
to determine the strengths of the association between all pairs of variables.
This technique was used to reduce the number of variables so that regression
analysis could be applied to the strong correlators between fuel and emission
variables. Factor analysis also was applied to reduce the number of fuel
variables to ones which are orthogonal to each other, yet retain physical
meaning. Using both the bivariate correlation procedure and factor analysis,
the fuel variables were reduced from 38 to 5, while the emission variables
were reduced from 82 to 9. These reduced lists are considered to include
the most important emissions and fuel variables.
A forward stepwise regression analysis was performed to determine the
number of significant fuel variables to incorporate in a prediction equation
for each emission variable. Included in the output from this analysis were
the fuel variable coefficients as well as a variety of two-variable plots
of fuel variables, emission variables, and residuals.
B. Data Input and Numbering of Variables
The raw data were stored in the computer as a data file which was
"called up" as needed by various programs. All fuel and emission variables
were assigned unique numerical variable codes to streamline computer for-
matting for the statistical packages. Table 27 is a list of these codes
for reference. A brief summary of code intervals is as follows:
Codes
VI - V38
V101 - V141
V201 - V241
Variable Class
fuel variables
gaseous emission variables
particulate emission variables
67
-------
TABLE 27. CODING OF FUEL AND EMISSION VARIABLES
CD
Code Variable
VI fuel cetane number
V2 fuel cetane index
V3 fuel gravity
V4 fuel density
V5 carbon in fuel
V6 hydrogen in fuel
V7 oxygen in fuel
V8 nitrogen in fuel
V9 H/C ratio in fuel
V10 aromatics in fuel
Vll olefins in fuel
V12 paraffins in fuel
V13 fuel viscosity
V14 fuel gum
V15 IBP by D86
V16 10% point by D86
V17 20% point by D86
V18 30% point by D86
V19 40% point by D86
V20 50% point by D86
V21 60% point by D86
V22 70% point by D86
V23 80% point by D86
V24 90% point by D86
V25 EP by D86
V26 residue by D86
V27 IBP by D2887
V28 10% point by D2887
V29 20% point by D2887
V30 30% point by D2887
V31 40% point by D2887
V32 50% point by D2887
Code
Variable
Code
Variable
V33
V34
V35
V36
V37
V38
V101
V102
V103
V104
V105
V106
V107
VI 08
V109
V110
Vlll
V112
V113
V114
V115
VI 16
V117
V118
V119
V120
V121
V122
V123
V124
V125
60% point by D2887
70% point by D2887
80% point by D2887
90% point by D2887
EP by D2887
residue by D2887
HC
CO
NOX
C02
fuel consumption
formaldehyde
acetaldehyde
acetone3
i sobutyra Idehyde
crotonaldehyde
hexanaldehyde
benzaldehyde
total aldehydes
methane
ethane
ethylene
acetylene
propane
propylene
benzene
toluene
total IHC (V114-V121)
odor LCA
odor LCD
odor intensity, TIA
V126
V127
VI 28
V129
V130
V131
V132
V133
V134
V135
V136
V137
V138
V139
V140
V141
V201
V202
V203
V204
V205
V206
V207
V208
V209
V210
V211
V212
V213
V214
V215
phenol, filtered (f)
salicylaldehyde, f
m-cresol + p-cresol, f
group 5b , f
2,3,5- trimethylphenol, f
2, 3, 5, 6-tetramethylphenol, f
2-n-propylphenol , f
sum of filtered phenols (V126-V132)
phenol, unfiltered (u)
salicylaldehyde, u
m-cresol + p=cresol, u
group 5b, u
2,3,5-triinethylphenol, u
2, 3, 5, 6-tetramethylphenol, u
2-n-propylphenol , u
sum of unfiltered phenol (V134-V140)
total particualte mass rate
solubles in particulate matter
particulate carbon rate
particulate hydrogen rate
particulate nitrogen rate
BaP in solubles
Na in particulate matter
Mg in particulate matter
Al in particulate matter
Si in particulate matter
P in particulate matter
S in particulate matter
Cl in particulate matter
Ca in particulate matter
Ti in particulate matter
Code Variable
V216 Zn in particulate matter
V217 Sn in particulate matter
V218 Ba in particulate matter
V219 Fe in particulate matter
V220 Pb in particulate matter
V221 Br in particulate matter
V222 Cd in particulate matter
V223 K in particulate matter
V224 Ni in particulate matter
V225 V in particulate matter
V226 Sb in particulate matter
V227 total trace elements (V207-V226)
V228 cold start peak smoke
V229 cold idle average smoke
V230 1st acceleration peak smoke
V231 idle @ 125 sees, avg. smoke
V232 acceleration @ 164 sees, peak smoke
V233 carbon in solubles
V234 hydrogen in solubles
V235 nitrogen in solubles
V236 sulfur in solubles
V237 oxygen in solubles
V238 carbon in particualte
V239 hydrogen in particulate
V240 nitrogen in particualte
V241 100-(CHNS in particulate)
plus acrolein and proponal
group 5 represents p-ethylphenol + 2-isopropylphenol + 2,3-Xylenol + 3,5-Xylenol +• 2,4,6-trimethylphenol
-------
The computer data file was duplicated and additional information was
added to serve as a reference listing. This listing is located in
Appendix F, pages F-2 through F-7. The listing includes all the raw data
values, variable code assignments, variable titles, and information con-
cerning the column location of the data on computer data cards. The data
stored in the data file are in units which are normally used when describing
a particulate variable (e.g., density in g/m£, CO in g/km).
C. Analysis of Fuel Variables
Basic statistics were performed on fuel variables to provide a method
for interpreting the distributions and magnitude of variations. Pearson
correlation coefficients were calculated in order to study and compare
the strength of association between pairs of fuel variables. This compu-
tation was performed to reduce the number of fuel variables to a few highly
significant ones, by removing redundant and/or interrelated variables,
Basic statistics for the fuel variables are presented in Table 28.
The data represent 11 fuels, 10 of which were modifications of a base
fuel (with various compounds added). The most significant variability
occurred among those properties which were intentionally modified for
study in this project. The cetane number, nitrogen, aromatic, olefin and
paraffin values reflect these changes. Both boiling point determinations
show little variation, due to the magnitude of the means and the fact that
only one test fuel contained lighter ends and one other test fuel contained
heavier ends. Even with this information considered, the table shows that
the variation increases slightly from the middle of the boiling points to
higher end. The high coefficient of variation for gum reflects the uninten-
tional increase of the gum level in the test fuel that contained a shale
oil fraction. This coefficient is high because the gum level of the fuel
containing shale oil, EM-430-F, was about 7 times as high as the other
test fuels.
The skewness column in Table 28 lists the degree to which the distribu-
tion of variable values deviates from a normal curve for the 11 test fuels
used. Skewness measures deviations from symmetry. The measure of skewness
will be zero when the distribution is a completely symmetric bell-shaped
curve. Positive values of skewness indicate that most of the variable
values are clustered to the left or lower than the mean, with the extreme
values to the right or higher than the mean. The opposite is true for
negative skewness. The high positive skewness of the higher boiling points
reflect the addition of the heavy-ends fuel EM-461-F, while the other fuels
remained fairly constant. The same holds true for the negative skewness
reflecting value for the light-ends fuel EM-448-F. Similar marked changes
in skewness demonstrate the effect of altering the composition of the base
fuel EM-395-F in other ways.
Kurtosis is a measure of the relative peakedness or flatness of the
curve defined by a variable for the 11 test fuels used. A normal distri-
bution will have a kurtosis of zero. If the kurtosis value is positive,
69
-------
TABLE 28. BASIC STATISTICS FOR FUEL VARIABLES (V1-V38)
Fuel Variable
No.
VI
V2
V3
V4
V5
V6
V8
V9
V10
Vll
VI 2
VI 3
V14
V15
V16
VI 7
VI 8
V19
V20
V21
V22
V23
V24
V25
V27
V28
V29
V30
V31
V32
V33
V34
V35
V36
V37
Name
cetane number
cetane index
gravity
density
carbon , %
hydrogen , %
nitrogen, ppm
H/C
aromatics
olefins
paraffins
viscosity
gum
IBP (D86)
10% (D86)
20% (D86)
30% (D86)
40% (D86)
50% (D86)
60% (D86)
70% (D86)
80% (D86)
90% (D86)
EP (D86)
IBP (D2887)
10% (D2887)
20% (D2887)
30% (D2887)
40% (D2887)
50% (D2887)
60% (D2887)
70% (D2887)
80% (D2887)
90% (D2887)
EP (D2887)
Mean
58.109
54.345
45.236
0.801
85.600
13.945
238.636
1.947
13.836
2.064
85.091
1.565
2.309
195.727
207.636
209.090
211.727
213.636
215.636
218.182
220.818
224.364
229.909
258.545
163.818
196.091
204.818
212.000
217.455
221.909
228.000
234.182
240.545
248.636
277.545
Standard
deviation
7.406
6.220
3.097
0.014
0.700
0.670
350.217
0.100
12.059
1.594
11.964
0.095
4.048
8.956
6.830
5.504
4.174
3.557
3.722
3.920
4.687
6.038
8.871
10.930
22.351
12.333
9.537
5.477
4.741
4.206
4.919
4.535
6.532
10.736
12.684
Coefficient
of variation
0.1274
0.1145
0.0685
0.0179
0.0082
0.0480
1.4676
0.0515
0.9394
0.7724
0.1406
0.0609
1.7531
0.0458
0.0329
0.0262
0.0197
0.0166
0.0173
0.0180
0.0212
0.0269
0.0386
0.0423
0.1364
0.0689
0.0466
0.0258
0.0218
0.0190
0.0216
0.0194
0.0272
0.0432
0.0457
Yi =
skevmess
-0.976
-0.931
-0.883
0.978
0.314
-0.142
1.072
-0.430
1.133
2.726
-1.061
0.219
3.112
-1.117
-2.218
-2.025
-1.419
-0.026
0.578
1.453
1.444
1.547
1.559
1.776
0.218
-2.060
-1.597
0.143
0.603
0.423
0.351
0.264
1.127
1.115
0.826
Y2 =
kurtosis
0.170
-0.556
- 0.441
- 0.329
- 1.423
- 1.991
- 0.374
- 1.497
- 0.795
7.973
- 0.859
0.231
9.991
1.846
6.437
6.571
5.531
3.240
1.312
2.021
1.239
1.612
2.159
3.487
-2.039
4.663
3.541
-0.854
-0.803
-1.630
-1.645
-2.109
0.882
0.592
-0.011
70
-------
then the distribution is more peaked (narrow) than would be true for a normal
distribution; while a negative value means that it is flatter. The high
kurtosis values of gum and olefins represent the "jump" in one value
causing a high peak for each respective variable. The negative values
such as carbon and the middle boiling points of D2887 indicate a relatively
flat distribution of data points. For the most part, the fuel variables
exhibit a wide range of curve formations.
In order to reach the point at which a meaningful linear regression
analysis could be performed, the number of fuel variables was reduced. Of
the 38 fuel variables, 5 were determined to be unrelated to each other and
representative of the fuel variables intentionally modified. The method
used to determine the five variables incorporated both bivariate correlation
analysis and factor analysis.
The bivariate correlation matrix for all fuel and emission variables
is given in Appendix F, pages F-8 through F-31. The correlation coefficients
for the two boiling point methods were extracted from this large matrix,
and they are presented in Table 29. With the exception of a few pairwise
correlations at the upper boiling percentages, the coefficients are very
small. If the coefficients for corresponding boiling percentages (e.g.,
D86 20% pt. vs D2887 20% pt.) were high (r > 0,95), then the methods would
be interchangeable. This would have allowed one method to be dropped
because of redundancy. One possible explanation for the lack of correlation
between these two methods is the lack of variability of the data. Nine of
eleven test fuels were controlled to exhibit similar boiling ranges. With
such a small variability in the boiling points, the procedural error became
a strong influence in the variability of the results. The ASTM D86 method
is more sensitive to human error and does not contain computer analysis as
ASTM D2887 (gas chromatograph).
The fuel/emission variables correlation matrix in Appendix F indicated
that D2887 generally exhibited higher correlation coefficients for "major"
emissions than D86. Emissions that were considered "major" were particulate,
HC, CO, NOX, fuel consumption, BaP, total aldehydes, total phenols, and
organic solubles. A brief scan of the other emissions also supported this
finding. On this basis, ASTM D2887 was selected to represent the boiling
points of the test fuels.
A factor analysis was performed on the remaining 26 fuel variables to
determine those variables that are most orthogonal to each other, and to
characterize the fuel variability mathematically. All the factor analysis
data are located in Appendix F, pages F-32 through F-34.
Table 30 represents the "varimax rotated factor matrix", which is a
small part of the entire factor analysis. This table is the terminal solution
or orthogonally rotated factors. The numbers in a given row represent
coefficients of factors to describe a given variable. A factor is a
hypothetical parameter that is developed to describe a variable. For
example, the most important determinant of density is Factor 1 (0.94593).
71
-------
TABLE 29. CORRELATIONS BETWEEN BOILING PERCENTILES OBTAINED BY TWO ANALYSIS METHODS
ASTM D86
(thermal distillation)
boiling range
IBP (var.15)
10% (var.16)
20% (var.17)
30% (var.18)
40% (var.19)
50% (var.20)
60% (var.21)
70% (var.22)
80% (var.23)
90% (var.24)
EP (var.25)
Resi. (var.26)
Correlation coefficient
IBP [ ' '
var.27
0.1911
0.1842
0.2202
0.2074
0.1588
0.1530
0.1499
0.2479
0.2466
0.3308
0.5494
-0.3187
10%
var.28
0.6639
0.7958
0.7736
0.7039
0.5137
0.3820
0.2499
0.2045
0.1754
0.2231
0.3668
-0.1956
20%
var.29
0.6081
0.7326
0.7350
0.6870
0.5431
0.4515
0.3460
0.3348
0 . 3069
0.3603
0.4749
-0.1523
30%
var. 30
0.3262
0.4384
0.4578
0.4331
0.3490
0.3286
0.2841
0.3467
0.3296
0.4240
0.5412
-0.0941
(r) by AS
40%
var. 31
0.1822
0.2712
0.3007
0.2849
0.2361
0.2653
0.2319
0.3282
0.3046
0.3816
0.4772
-0.1262
rM D2887 (gas chromatograph simulated) boiling range
50%
var. 32
0.0683
0.1449
0.2156
0.2548
0.3184
0.4193
0.4378
0.5571
0.5330
0.5840
0.6124
-0.0393
60%
var. 33
0.0250
0.1101
0.2105
0.2776
0.3943
0.5297
0.5497
0.6810
0.6666
0.7058
0.7383
-0.1356
70%
var. 34
0.0358
0.1250
0.2251
0.2988
0.4322
0.5790
0.5999
0.7169
0.6913
0.7040
0.6757
-0.0407
80%
var. 35
0.1737
0.2268
0.3492
0.4682
0.6635
0.7739
0.8589
0.9280
0.9224
0.9345
0.8932
0.1055
90%
var . 36
0.0831
0.1753
0.2973
0.4105
0.5932
0.7196
0.7859
0.8771
0.8847
0.9279
0.9367
0.0118
EP
var. 37
0.1661
0.4354
0.5007
0.5642
0.6343
0.6380
0.6354
0.6462
0.6383
0.6804
0 . 7990
-0.2412
Resi.
var. 38
-0.0640
0.1148
0.0657
0.0217
-0.0593
-0.1458
-0.1846
-0.1994
-0.2397
-0.2209
-0.1076
-0.3566
-------
TABLE 30. VARIMAX ROTATED FACTOR MATRIX FOR REMAINING FUEL VARIABLES
Fuel Variable
Cetane No. (VI)
Centane Index (V2)
Gravity (V3)
Density (V4)
C (V5)
H (V6)
N (V8)
H/C (V9)
Aromatics (VlO)
Olefins (Vll)
Paraffins (V12)
Viscosity (V13)
Gum (V14)
IBP3 (V27)
10% (V28)
20% (V29)
30% (V30)
40% (V31)
50% (V32)
60% (V33)
70% (V34)
80% (V35)
90% (V36)
EP (V37)
Residue (V38)
Factor I
-0.75248
-0.97866
-0.94593
0.94674
0.88092
-0.72097
0.06332
-0.87870
0.97137
-0.12041
-0.96071
-0.48394
0.06430
0.56895
0.34588
0.41297
0.46239
0.55013
0.39906
0.44312
0.34124
-0.07278
0.05736
-0.13636
-0.13813
Factor 2
0.15970
-0.05976
-0.22712
0.23824
0.14900
-0.21143
-0.12663
-0.21323
0.05098
0.03498
-0.05157
0.55881
-0.16577
0.50087
0.31575
0.44891
0.56382
0.56195
0.76333
0.85317
0.84680
0.98589
0.98487
0.75946
-0.10490
Factor 3
0.13826
-0.07934
-0.02729
0.03866
-0.33911
-0.47595
-0.10120
-0.13330
0.09942
0.77621
-0.22671
-0.21885
-0.04057
0.50750
0.34642
0.33883
0.46674
0.53509
0.44849
0.23411
0.24792
0.00912
-0.02988
-0.13814
-0.07623
Factor 4
0.27294
-0.10583
-0.09619
0.09042
-0.16595
0.27025
0.72318
0.24785
0.05366
-0.22141
-0.02436
0.11275
-0.09366
0.09857
0.42507
0.32564
0.20516
0.08045
-0.08691
-0.08738
-0.16203
-0.14523
-0.05929
0.58977
0.73422
Factor 5
0.30353
-0.10205
-0.15418
0.14058
0.26529
-0.24104
0.23858
-0.27880
0.02536
-0.00175
-0.01973
0.35796
0.61046
-0.03155
0.58673
0.59192
0.42473
0.28648
0.11781
-0.01912
0.04010
-0.01735
-0.05230
-0.08859
-0.17898
ASTM D2887
73
-------
The remaining four factor coefficients are not as large. Therefore, the
linear composition of density is controlled by Factor 1. Similarly, olefins
are controlled by Factor 3. Since the matrix represents orthogonally
rotated factors, density and olefins are statistically independent of one
another. Those variables which are controlled by more than one factor
measure more than one theoretical dimension, and therefore the compositions
of those variables are complex.
Fuel variables selected from Table 30 were those controlled by one
factor, preferably different for each variable. It was also important to
select, if possible, those fuel variables whose levels were intentionally
changed for study. Factor 3 was represented by olefins. The low boiling
percentiles are spread across all five factors, and therefore their com-
position is too complex. Nitrogen was the choice from Factor 4 because
the only other candidate, residue, does not contain the desired variability
in the raw data. The only viable candidate in Factor 5 was gum. Although
gum levels were not intentionally changed, they varied as a result of
developing the test fuels for study. Factors 1 and 2 control several
fuel variables. Those candidates and their bivariate correlation coefficients
are presented in Table 29. Paraffins were omitted because they are inversely
proportional to aromatics. This table shows the strong dependencies of
cetane index, gravity, density, H/C, and aromatics on each other.
Aromatics were chosen to characterize this group. Cetane number does not
exhibit strong correlations with those variables in Factor 1. Factor 1
representatives were cetane number and aromatics. The upper boiling
percentiles describe Factor 2. Table 31 again shows that the 50% to 90%
points can be characterized by the 90% point. The end point does not
exhibit high correlations. Factor 2 selections were the 90% point and
end point.
D. Analysis of Emission Variables
The bivariate correlation matrix of all emission variables against
one another is given in Appendix F, pages F-35 through F-70. There are two
sets of phenol emissions. As discussed earlier in the report, the major
difference in the two sets of phenol results was the filtering or non-
filtering of the dilute exhaust gas sample. The correlation coefficients
for these two methods were extracted from the larger matrix, and are
presented in Table 32. With the exception of 2-n-propylphenol (V132 and
V140), the two sets of phenol results do not exhibit a linear relationship.
It would have been desirable to represent all the phenol data with one set
or the other, but this simplification was not feasible.
The symmetric emission-emission correlation matrix contains over 6500
(82x82) elements. Analyzing such a large matrix for linear relationships
would be extremely time-consuming. It was decided to select a set of ten
emission variables considered most important. They included: total par-
ticulate, HC, CO, NOX, fuel consumption, BaP, solubles, total aldehydes,
total filtered phenols, and total unfiltered phenols. The correlation
coefficients for these ten variables against each other are summarized
74
-------
TABLE 31. CORRELATION COEFFICIENTS BETWEEN SELECTED FUEL VARIABLES (r>0.85)
Fue 1 Vari ab 1 <=>. s
cetane number (VI)
cetane index (V2)
gravity (V3)
density (V4)
H/C (V9)
aromatics (V10)
50% pt. (V32)
60% pt. (V33)
70% pt. (V34)
80% pt. (V35)
90% pt. (V36)
EP (V37)
cet.no.
(V.I)
1.0000
cet.ind.
(V2)
a
1.0000
0.9806
-0.9807
0.8894
-0.9479
grav.
(V3)
a
a
1.0000
-0.9993
0.9042
-0.9232
dens.
(V4)
a
a
a
1.0000
-0.9037
0.9281
H/C
(V9)
a
a
a
a
1.0000
-0.8546
aro.
(V10)
a
a
a
a
a
1.0000
50%
(V32)
a
a
a
a
a
a
1.0000
0.9618
0.9552
60%
(V33)
a
a
a
a
a
a
a
1.0000
0.9772
0.8596
70%
(V34)
a
a
a
a
a
a
a
a
1.0000
80%
(V35)
a
a
a
a
a
a
a
a
a
1.0000
0.9713
90%
(V36)
a
a
— — —
a
a
a
a
a
a
a
a
1.0000
EP
(V37)
a
a
a
a
a
a
a
a
a
a
a
1.0000
redundant values omitted
-j
Ln
-------
TABLE 32„ CORRELATIONS BETWEEN FILTERED AND UNFILTERED PHENOLS
Filtered
Phenols
V126
V127
V128
V129
VI 30
V131
V132
VI 33
Correlation Coefficient (r)
Unfiltered Phenols
VI 34
-0.1583
0.6594
-0.1349
-0.0862
-0.1540
-0.1185
0.5708
0.6399
V135
0.6228
0.3835
0.6235
-0.5026
0.4820
0.4744
0.6042
0.4530
VI 36
una
un
un
un
un
un
un
un
V137
0.0079
-0.1967
0.0221
-0.2325
-0.1900
-0.1750
-0.1798
-0.2115
VI 38
un
un
un
un
un
un
un
un
VI 39
0.5487
-0.1709
0.5373
0.1566
0.6023
0.5967
0.0578
-0.0914
V140
-0.0914
0.9856
-0.943
-0.3626
-0.1056
-0.1318
0.8792
0.9661
V141
0.4099
0.6543
0.6543
0.4000
-0.2146
0.4181
0.7698
0.7063
un = uncomputable
Variable Definition
V126, V134 = phenol
V127, V135 = salicylaldehyde
V128, V136 = m-cresol + p-cresol
V129, V137 = p-ethylphenol + 2-isopropylphenol +
2,3-xylenol + 3,5-xylenol + 2,4,6-
trimethylphenol
V130, V138 = 2,3,5-trimethylphenol
V131, V139 •= 2T3,5,,6-tetramethylphenol
V132, V140 = 2-n-propylphenol
V133, V141 = sum of phenols
76
-------
in Table 33. Particulate correlates strongly with CO and moderately with
NOX. Hydrocarbons correlate moderately with CO. The remaining emission
variables in Table 33 indicate linear independence of each other.
E. Relationships Between Fuel and Emission Variables
The previous sections have described reduction of the large number of
fuel-emissions variables from 38 and 82 to 7 and 10, respectively. To
construct linear regressions predicting emissions from fuel variables,
Table 34 was assembled to determine which fuel variables are highly
correlated to the ten selected emission variables. The total unfiltered
phenols have the poorest correlation coefficients. It was felt that there
would not be a good chance of unfiltered phenols being linearly related
to fuel composition. Since phenols are represented by the filtered phenols,
the unfiltered phenols were dropped from consideration in linear regression
analysis.
Table 35 is a condensed version of Table 34. It was constructed by
dropping unfiltered phenols and those fuel variables which are highly related
to each other. For example, paraffins were dropped when aromatics appeared,
because they are inversely proportional to each other. Of the fuel variables
in Table 35, five of the seven selected in Section C are represented. The
two that are absent, cetane number and 90% point, are not linearly related
to the selected emission variables. Cetane number and 90% point were,
therefore, dropped from consideration in linear regression analysis,
A stepwise linear regression analysis was conducted between each
of the emissions variables versus the five fuel variables. For a particular
emission variable, the stepwise linear regression analysis inserted the fuel
variable or combination of fuel variables which exhibited the highest
correlation with that emission variable. The output at each step included
multiple R, multiple R-squared, standard error of the estimate, the constant
term and the fuel variable regression coefficients. The criteria for
determining the set of fuel variables to use for a particular emission
variable were R-square value, standard error of estimate, and percent
increase in R-square value. The R-square value reflects the strength of
association between the two variables. The standard error of estimate
describes the magnitude of the standard deviation for a given equation.
An abbreviated example of the computer-output for one such analysis is given
in Appendix F, pages F-71 through F-77.
A summary of the stepwise linear regression analysis is presented in
Table 36. Those cases in which the regression coefficients were calculated
as 0.000 indicate that the coefficients require more than three decimal
places. In most cases the cutoff points for choosing fuel variables were
determined where the standard error of estimate rose between steps. This
rise reflected an increase in the standard deviation of predicted values,
and therefore greater unpredictability. In other cases, the cutoff point
was defined by an increase in the R-square of less than 0.01. A multiple
linear regression analysis was performed on each emission variable based on
the findings of the stepwise regression analysis.
77
-------
TABLE 33. SUMMARY OF SELECTED EMISSION - EMISSION CORRELATION COEFFICIENTS
Emission Variables
HC (V101)
CO (V102)
NOX (V103)
fuel (V105)
tot. aid. (V113)
3.
tot. phenols f (VI 33)
tot. phenols un (V141)
particulate (V201)
solubles (V202)
BaP (V206)
Correlation Coefficients r
HC
(V101)
1.0000
0.8393
0.6514
-0.2343
-0.3387
-0.2740
-0.5556
0.6937
-0.0773
0.1996
CO
(V102)
a
1.0000
0.7439
-0.1074
-0.5219
-0.0967
-0.5148
0.9440
-0.3722
0.2752
NOX
(V103)
a
a
1.0000
0.1743
-0.0168
-0.0962
0.2182
-0.8349
0.4112
0.0489
fuel
(V105)
a
a
a.
1.0000
-0.1987
0.4655
0.2080
-0.0199
0.1283
0.0963
tot. aid.
(V113)
a
a
a.
a
1.0000
-0.0799
0.5373
-0.4185
-0.0770
-0.2449
tot.phen. ,
fa, (V133)
a
a
a.
a
a
1.0000
0.7063
-0.0526
-0.3639
0.6904
tot.phen. /
unb (V141)
a
a
a.
a
a
a.
1.0000
-0.3819
-0.2036
0.3943
part.
(V201)
a
a
a.
a
a
a
a.
1.0000
-0.5285
1.1611
solubles
(V202)
a
a
a.
a
a
a.
a
a
1.0000
-0.1590
BaP
(V206)
a
a
a
a
a
a
a
a
a
1.0000
filtered
^unfiltered
rredundant values omitted
-------
TABLE 34. MULTIPLE COMPARISONS OF PAIRWISE CORRELATIONS BETWEEN IMPORTANT
EMISSION VARIABLES AND FUEL VARIABLES
Emission Variable
part. (V201)
BaP (V206)
HC (V101)
CO (V102)
NOX (V103)
fuel (V105)
solubles (V202)
tot. aid (V113)
phenols, fc (V133)
phenols, und(V141)
Mean Value
of variable
181.8182
0.4773
0.1009
0 . 52 36
0 . 86 36
9.5991
14.6000
3.6827
15.1355
1.8327
Pairwise correlations between fuel variables and indicated emission variables
highest
dens. (V4)
gum (V14)
H/C (V9)
cet. in. (V2)
dens. (V4)
ole. (Vll)
N (V8)
resi.a (V38)
gum (V14)
gum ' (V14)
r
0.8888
0.7300
-0.8073
-0.9050
0.7388
0.6367
-0.7753
0.7511
0.9456
0.5587
2nd hiahest
cet. in. (V2)
EPa (V37)
aro. (V10)
aro. (V10)
grav. (V3)
gum (V14)
cet. in. (V2)
EPa (V37)
resi.b (V26)
dens. (V4)
r
-0 . 8850
-0.4853
0.7965
0.9038
-0.7314
0.5083
0.5633
0.6007
0.5648
-0.5079
3rd highest
grav. (V3)
ole. (Vll)
para. (V12)
dens. (V4)
aro. (V10)
cet. ft (VI)
grav. (V3)
H (V6)
N (V8)
H (V6)
r
-0.8804
-0.4258
-0.7856
0.9015
0.7094
0.4692
0.5602
0.5152
0.3934
0.5074
4th highest
aro. (V10)
C (V5)
cet. in. (V2)
grav. (V3)
cet. in. (V2)
IBP2 (V15)
dens. (V4)
H/C (V9)
60% pta (V33)
grav. (V3)
r
0.8740
0.4043
-0.7771
-0.8938
-0.7100
0.4336
-0.5428
0.4853
-0.3316
0.5005
5th highest
para. (V12)
70% pta (V34)
C (V5)
H/C (V9)
H/C (V9)
H (V6)
10% pta (V28)
para (V12)
EPb (V25)
cet. in. (V2)
r
-0.8495
-0.3883
0.7749
-0.8537
-0.7037
-0.4128
-0.5338
0.4064
-0.3210
0.4936
"ASTM D-2887
CASTM D-86
jtotal filtered
"total unfiltered
TABLE 35. CONDENSED COMPARISON OF PAIRWISE CORRELATIONS BETWEEN IMPORTANT
EMISSION VARIABLES AND FUEL VARIABLES3
Emission Variable
part. (V201)
BaP (V206)
HC (V101)
CO (V102)
NOX (V103)
fuel (V105)
solubles (V202)
tot. aid. (V113)
phenols, fd (V133)
Mean Value
of variable
181.8182
0.4773
0.1009
0.5236
0 . 86 36
9.5991
14.6000
3.6827
15.1355
PairwiRP rorrf,iaH"n= hoi-ween fuel variables and indicated emission variables
highest
dens . (V4 )
gum (V14)
H/C (V9)
cet. in. (V2)
dens. (V4)
ole. (Vll)
N (V8)
resi.b (V38)
gum (V14)
r
0.8888
0.7300
-0.8073
-0.9050
0.7388
0.6367
-0.7753
0.7511
0.9456
2nd highest
cet. in. (V2)
EPb (V37)
aro. (V10)
aro. (V10)
aro. (V10)
gum (V14)
cet. in. (V2)
EPb (V37)
resi.c (V26)
r
0.8850
-0.4853
-0.7965
0.9038
0.7094
0.5083
0.5633
0.6007
0.5648
3rd highest
aro. (V10)
ale. (Vll)
cet. in. (V2)
dens. (V4)
cet. in.. (V2)
cet. # (VI)
10% ptb (V28)
H (V6)
N (V8)
r
0.8740
-0.4258
-0.7771
0.9015
-0.7100
0.4692
-0.5388
0.5152
0.3934
aThis table removed those values in Table 32 that are related to one another, e.g., for density and gravity
only density was used.
ASTM D-2887
^ASTM D-86
total filtered
-------
TABLE 36. SUMMARY OF THE STEPWISE LINEAR REGRESSION ANALYSIS
Emission
Variable
HC
CO
N°x
Fuel
Particulate
Step
1
2
3
4
5
1
2
3
4
1
2
3
4
1
2
3
4
5
1
2
3
4
Fuel Variable
Entered
Aromatics
EP
Gum
Olefins
Nitrogen
Aromatics
EP
Olefins
Gum
Aromatics
Nitrogen
EP
Olefins
Olefins
Gum
EP
Nitrogen
Aromatics
Aromatics
Nitrogen
Olefins
Gum
Multiple
R-squared
0.6344
0.7088
0.7417
0.7549
0.7706
0.8169
0.8307
0.8447
0.8461
0.5033
0.6030
0.6374
0.6434
0.4054
0.6924
0.7439
0.7511
0.7534
0.7639
0.8392
0.8423
0.8431
Increase
in R-squared
0.6344
0.0744
0.0330
0.0132
0.0157
0.8169
0.0138
0.0140
0.0014
0.5033
0.0997
0.0344
0.0059
0.4054
0.2871
0.0515
0.0072
0.0023
0.7639
0.0753
0.0030
0.0008
Std. Error
of Estimate
0.0126
0.0119
0.0120
0.0126
0.0134
0.0296
0.0302
0.0309
0.0332
0.0547
0.0519
0.0530
0.0568
0.0895
0.0683
0.0666
0.0709
0.0773
21.7520
19.0394
20.1608
21.7216
Y-Intercept
0.084
0.203
0.228
0.245
0.244
0.461
0.630
0.684
0.665
0.808
0.793
0.479
0.447
9.508
9.471
8.870
8.948
8.970
142.305
134.935
138.846
138.447
Regression Coefficients
Aromatics
0.001
0.001
0.001
0.001
0.001
0.005
0.005
0.005
0.005
0.004
0.004
0.004
0.004
—
—
—
-0.000
3.078
3.033
3.011
3.007
Nitrogen
—
—
—
-0.000
__
—
—
—
__
0.000
0.000
0.000
—
—
0.000
0.000
0.033
0.031
0.031
Gum
—
-0.001
-0.001
-0.001
__
0.001
__
—
—
0.015
0.017
0.016
0.016
__
—
—
0.304
Olefins
—
-0.001
-0.002
-0.005
-0.005
__
—
0.004
0.044
0.046
0.050
0.051
0.050
__
-1.538
-1.561
EP
-0.000
-0.001
-0.001
-0.000
-0.001
-0.001
-0.001
__
0.001
0.001
__
0.002
0.002
0.002
—
co
o
-------
TABLE 36 (Cont'd). SUMMARY OF THE STEPWISE LINEAR REGRESSION ANALYSIS
Emission
Variable
BaP
Solubles
Tot. Aid.
Tot. Phen.
Step
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
Fuel Variable
Entered
Gum
Olefins
EP
Nitrogen
Aromatics
Nitrogen
Aromatics
Olefins
Gum
EP
EP
Aromatics
Olefins
Gum
Nitrogen
Gum
Aromatics
Nitrogen
EP
Olefins
Multiple
R-squared
0.5329
0.6891
0.8496
0.8910
0.8925
0.6011
0.7634
0.7956
0.8038
0.8170
0 . 3609
0.4688
0.4909
0.5045
0.5189
0.8941
0.9316
0.9631
0.9659
0.9671
Increase
in R-squared
0.5329
0.1'562
0.1605
0.0414
0.0015
0.6011
0.1622
0.0322
0.0082
0.0132
0.3609
0.1079
0.0221
0.0136
0.0144
0.8941
0.0375
0.0315
0.0028
0.0012
Std. Error
of Estimate
0.1560
0.1350
0.1004
0.0923
0.1004
1.7474
1.4276
1.4186
1.5010
1.5881
4.2859
4.1445
4.3375
4.6219
4.9887
13.1753
11.2270
8.8170
9.1569
9.8477
Y-Intercept
0.387
0.500
2.590
2.221
2.187
15.987
17.080
16.293
16.372
24.142
-63.176
-58.535
-53.326
-48.664
-43.442
-5.581
2.165
-1.388
49.533
57.616
Regression Coefficients
Aromatics
—
—
—
—
0.001
—
-0.088
-0.083
-0.083
-0.085
—
-0.139
-0.148
-0.148
-0.150
—
-0.618
-0.639
-0.654
-0.669
Nitrogen
—
—
—
-0.000
-0.000
-0.006
-0.006
-0.005
-0.005
-0.005
—
—
—
—
0.002
—
—
0.020
0.023
0.022
Gum
0.039
0.038
0.031
0.036
0.036
—
—
—
-0.061
-0.093
—
—
—
-0.154
-0.213
8.972
9.051
8.635
8.417
8.403
Olefins
—
-0.054
-0.068
-0.073
-0.073
—
—
0.309
0.314
0.280
—
—
-0.492
-0.536
-0.460
—
—
—
—
-0 . 900
EP
—
—
-0.007
-0.006
-0.006
—
—
—
—
-0.028
0.241
0.231
0.216
0.201
0.180
—
—
—
-0.183
-0.204
00
-------
TABLE 36 (Cont'd). SUMMARY OF THE STEPWISE LINEAR REGRESSION ANALYSIS
Emission
Variable
BaP
Solubles
Tot. Aid.
Tot. Phen.
Step
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
Fuel Variable
Entered
Gum
Olefins
EP
Nitrogen
Aromatics
Nitrogen
Aromatics
Olefins
Gum
EP
EP
Aromatics
Olefins
Gum
Nitrogen
Gum
Aromatics
Nitrogen
EP
Olefins
Multiple
R-squared
0.5329
0.6891
0.8496
0.8910
0.8925
0.6011
0.7634
0.7956
0.8038
0.8170
0 . 3609
0.4688
0.4909
0.5045
0.5189
0.8941
0.9316
0.9631
0.9659
0.9671
Increase
in R-squared
0.5329
0.1562
0.1605
0.0414
0.0015
0.6011
0.1622
0.0322
0.0082
0.0132
0.3609
0.1079
0.0221
0.0136
0.0144
0.8941
0.0375
0.0315
0.0028
0.0012
Std. Error
of Estimate
0.1560
0.1350
0.1004
0.0923
0.1004
1.7474
1.4276
1.4186
1.5010
1.5881
4.2859
4.1445
4.3375
4.6219
4.9887
13.1753
11.2270
8.8170
9.1569
9.8477
Y-Intercept
0.387
0.500
2.590
2.221
•2.187
15.987
17.080
16.293
16.372
24.142
-63.176
-58.535
-53.326
-48.664
-43.442
-5.581
2.165
-1.388
49.533
57.616
Regression Coefficients
Aromatics
—
—
—
0.001
—
-0.088
-0.083
-0.083
-0.085
—
-0.139
-0.148
-0.148
-0.150
-0.618
-0.639
-0.654
-0.669
Nitrogen
—
—
—
-0.000
-0.000
-0.006
-0.006
-0.005
-0.005
-0.005
—
—
—
—
0.002
—
0.020
0.023
0.022
Gum
0.039
0.038
0.031
0.036
0.036
—
—
—
-0.061
-0.093
—
—
—
-0.154
-0.213
8.972
9.051
8.635
8.417
8.403
Olefins
-0.054
-0.068
-0.073
-0.073
—
—
0.309
0.314
0.280
—
—
-0.492
-0.536
-0.460
—
—
—
-0.900
EP
—
-0.007
-0.006
-0.006
—
—
—
—
-0.028
0.241
0.231
0.216
0.201
0.180
—
—
-0.183
-0.204
oo
-------
TABLE 36 (Cont'd). SUMMARY OF THE STEPWISE LINEAR REGRESSION ANALYSIS
Emission
Variable
BaP
Solubles
Tot. Aid.
Tot. Phen.
Step
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
Fuel Variable
Entered
Gum
Olefins
EP
Nitrogen
Aromatics
Nitrogen
Aromatics
Olefins
Gum
EP
EP
Aromati cs
Olefins
Gum
Nitrogen
Gum
Aromatics
Nitrogen
EP
Olefins
Multiple
R-squared
0.5329
0.6891
0.8496
0.8910
0.8925
0.6011
0.7634
0.7956
0.8038
0.8170
0.3609
0.4688
0.4909
0.5045
0.5189
0.8941
0.9316
0.9631
0.9659
0.9671
Increase
in R-squared
0.5329
0.1562
0.1605
0.0414
0.0015
0.6011
0.1622
0.0322
0.0082
0.0132
0.3609
0.1079
0.0221
0.0136
0.0144
0.8941
0.0375
0.0315
0.0028
0.0012
Std. Error
of Estimate
0.1560
0.1350
0 . 1004
0.0923
0.1004
1.7474
1.4276
1.4186
1.5010
1.5881
4.2859
4.1445
4.3375
4.6219
4.9887
13.1753
11.2270
8.8170
9.1569
9.8477
Y-Intercept
0.387
0.500
2.590
2.221
2.187
15.987
17.080
16.293
16.372
24.142
-63.176
-58.535
-53.326
-48.664
-43.442
-5.581
2.165
-1.388
49.533
57.616
Regression Coefficients
Aromatics
—
—
—
—
0.001
—
-0.088
-0.083
-0.083
-0.085
-0.139
-0.148
-0.148
-0.150
—
-0.618
-0.639
-0.654
-0.669
Nitrogen
—
—
—
-0.000
-0.000
-0.006
-0 . 006
-0.005
-0.005
-0.005
—
—
—
—
0.002
—
—
0.020
0.023
0.022
Gum
0.039
0.038
0.031
0.036
0.036
—
—
—
-0.061
-0.093
—
—
—
-0.154
-0.213
8.972
9.051
8.635
8.417
8.403
Olefins
—
-0.054
-0.068
-0.073
-0.073
—
—
0.309
0.314
0.280
—
—
-0.492
-0.536
-0.460
—
—
—
—
-0.900
EP
—
—
-0.007
-0.006
-0.006
—
—
—
—
-0.028
0.241
0.231
0.216
0.201
0.180
—
—
—
-0.183
-0.204
03
W
-------
The resulting prediction equations are as follows:
-2
V201 particulate (mgAm) = 135 + 3.03 (% aromatics) + 3.33 x 10 (ppm N)
R2 = 0.839
V206 BaP (UgAm) = 2.59 - 6.78 x icT2 (% olefins) + 3.14 x icT2 (gum, mg/100m£)
- 7.37 x 10~3 (EP,' °C) R2 = 0.850
V101 HC (gAm) = 0.08 + 1.30 x io~3 (% aromatics)
R2 = 0.634
/\
V102 CO (gAm) = 0.46 + 4.92 x 1CT3 (% aromatics)
V103 NO
R = 0.817
= 0-79 + 0.07 x 1CT3 (ppm N) + 4.24 x io~3 (% aromatics)
R2 = 0.603
s\
V105 fuel (VlOO km) = 8.87 + 4.96 x ICT2 (% olefins) + 1.66 10~2 (gum,
mg/100m£) + 2.21 x 1Q-3 (EP, °C) R2 = 0.744
/^
V202 solubles (%) = 16.3 - 5.29 x- io~3 (ppm N) - 8.33 x 1CT2 (% aromatics)
+ 0.31 (% olefiins) R2 = 0.796
A
V133 total phenols (mgAm) =-1.39 + 0.02 (ppm N) - 0.64 (% aromatics)
+ 8.63 (gum, mg/100m£) R2 = 0.963
A
V113 total aldehydes (mgAm) =-58.54 + 0.23 (EP, °C) - 0.14 (% aromatics)
R2 = 0.469
In reviewing the equations, it is obvious that total aldehydes, HC, NOX,
and fuel consumption have low R-square values and therefore are not strongly
related (in the linear sense) to the five fuel variables chosen for study.
The total phenol equation is misleading in that it contains a negative
constant term. This outcome implies that fuels with low gum and nitrogen
would emit a negative amount of phenols. The R-square value is high
(0.963) implying a good linear fit. Review of the raw data indicates that
in most cases the phenol levels were clustered together. In one case,
however, the phenol level was very high. The multiple linear regression
analysis essentially took the clustered cases as one point, and the high
value as another. This situation would explain the small variance seen
on phenols, but does not accurately explain those cases clustered on the
low end.
An additional statistical program, "Scattergram" , was also run to
present the relationships between fuel and emission variables visually.
A scattergram is a plot of two variables. Cetane number, aromatics,
olefins, gum, nitrogen, and end point were plotted against HC, CO, NOX,
fuel consumption, particulate, solubles, BaP, total aldehydes, and total
phenols. All fifty-four plots are located in Appendix F, pages F-78 through
F--104. The scattergrams show, in many cases, a clustering of data points
84
-------
and a lone point considerably distant from the cluster. As previously
stated, this condition may result in deceptively high R-square values for
the linear regression equations. This pattern is present in the BaP vs
olefins and BaP vs gum plots. The BaP vs end point plot shows a random
scatter of points. These types of trends could explain the large R-square
and small regression coefficients of the linear equations. With the possible
exception of particulate, most of the regression equations contain constant
terms close to the mean of the respective emission variables. The major
weaknesses of these equations is that they do not represent a true
population dispersion of "real world" variability in fuel composition.
It also should be noted that they define emissions for only one vehicle
over one driving cycle (FTP). They do, however, show that certain trends
can be seen and that relationships other than linear may exist.
The eleven test fuel blends were ranked according to their effect
on each of the nine selected emissions. The fuel blend which exhibited
the highest value for a particular emission was ranked number one and the
blends which exhibited the lowest value was ranked number 11. Equal values
were ranked equally. The ranking by this method is given in Table 37,
The rank values were summed to express the typical frequency with which
each fuel blend ranked high. Fuel blend EM-460-F (30% pure aromatics)
indicated the lowest total rank value, and therefore exhibited higher
emissions. The fuel blend containing heavy aromatics and a cetane improver,
EM-463-F, ranked second highest. The base fuel, EM-395-F, was ranked fifth.
The scatter of individual rankings for various emissions reflect the effects
of modifying the base fuel EM-395-F. Test fuel EM-404-F, which was the base
fuel + isoquinoline to 0.04% N, was associated with the lowest typical
emission values.
85
-------
TABLE 37. RANKING OF TEST FUELS AGAINST MAJOR EMISSIONS
Emissions
Parti culate
BaP
HC
CO
NOX
Fuel Consumption
Solubles
Total Aldehydes
Total Phenols
Z Rank Value
Test Fuels EM-XXX-F
395
5
3
6
. 4
10
9
4
6
4
51
401
10
7
4
6
6
7
5
4
11
60
404
6
10
9
9
11
11
7
7
3
73
405
6
9
9
11
3
5
11
1
2
57
430
4
1
6
5
8
2
9
8
1
44
434
3
8
3
3
4
8
8
5
6
48
438
9
11
6
7
6
1
2
8
10
60
448
11
4
4
7
9
9
1
3
8
56
460
2
2
1
2
2
6
6
8
5
34
461
8
5
9
9
5
3
3
2
7
51
463
1
5
1
1
1
4
10
8
9
40
86
-------
REFERENCES
1. Federal Register, Vol. 44, No. 23, Part IV, Thursday, February 1, 1979.
2. Smith, L. R., Parness, M. A., Fanick, E. R., and Dietzmann, H. E.,
"Analytical Procedures for Characterizing Unregulated Emissions from
Vehicles Using Middle-Distillate Fuels." Interim Report, Contract
68-02-2497, U.S. Environmental Protection Agency, Office of Research
and Development, April 1980.
3. Hare Charles T., "Methodology for Determining Fuel Effects on Diesel
Particulate Emissions." EPA-650/2-75-056, U.S. Environmental Protection
Agency, Office of Research and Development, March 1975.
4. Hare, Charles, T., Springer, Karl J., and Bradow, Ronald L. , "Fuel and
Additive Effects on Diesel Particulate-Development and Demonstration
of Methodology." SAE Paper No. 760130, Detroit, Michigan, February 1976.
5. Hare, Charles T., "Characterization of Diesel Gaseous and Particulate
Emissions." Draft Final Report of Tasks 1, 2, 4 and 6, Contract No.
68-02-1777, U.S. Environmental Protection Agency, September 1977.
6. Hare, Charles T., "Characterization of Gaseous and Particulate Emissions
From Light-Duty Diesels Operated on Various Fuels." Final Report,
Contract 68-03-2440, U.S. Environmental Protection Agency, July 1979.
7. Springer, Karl J., "Investigation of Diesel-Powered Vehicle Emissions
VII." Interim Report, Contract 68-03-2116, U.S. Environmental Protection
Agency, Office of Mobile Source Air Pollution Control February 1977.
8. Williams, Gary N., "Prudho^ Bay", Lab Assay No. A2142, Exxon Research
& Engineering Co., Florham Park, N.J., May 1977.
9. Federal Register, Vol. 42, No. 124, Tuesday, June 28, 1977.
10. Federal Register, Vol. 40, No. 126, June 30, 1975. Subparts I S J.
11. Springer, Karl J., and Baines, Thomas M., "Emissions from Diesel Versions
of Production Passenger Cars." SAE Paper No. 770818, Detroit, Michigan,
September 1977.
12. Federal Register, Vol. 45, No. 45, Wednesday, March 5, 1980.
13. Levins, P. L., and Kendall, D. A., "Application of Odor Technology
to Mobile Source Emission Instrumentation." CRC Project CAPE 7-68
under Contract No. 68-03-0561, September 1973.
87
-------
REFERENCES (Cont'd)
14. Swarin, Stephen J., and Williams, Ronald L. , "Liquid Chromatographic
Determination of Benzo(a)pyrene in Diesel Exhaust Particulate:
Verification of the Collection and Analytical Methods", Research
Publication GMR-3127, General Motors Research Laboratories, Warren,
Michigan, October 23, 1979.
15. Nie, Norman H., Hull, C. Hadlai, Jenkins, Jean G., Steinbrenner, Karin,
and Bent, Dale H., "SPSS", McGraw-Hill, New York, New York, 1975.
16. Health Sciences Computing Facility, "BMpP Biomedical Computer Programs,
P-Series 1979", University of California Press, Los Angeles, California,
1979.
88
-------
APPENDIX A
Contract 68-03-2707
SCOPE OF WORK
-------
6r-G:-2707 Page 1 of /4
Exhibit A
Scope of Work
Objective: The objective of this work is to investigate the influence
of fuel characteristics on the emissions of various pollutants from
diesel engines.
Plan to acni^ve objective: The plan to meet this objective shall con-
sist of a systematic study of diesel fuel characteristics and how these
characteristics affect diesel emissions. The general orientation of
this work will be towards those fuels and fuel composition variables
that are currently judged to be important in future fuel makeup. Light-
duty diesel vehicles will be tested at this time and the results extra-
polated to other diesel engines. The validity of these extrapolations
will be tested at a later date.
Task 1: Fuel Variable Selection and Acquisition
A list of fuel variables shall be proposed by the contractor for
study under this phase of the contract. This list of variables will
be used by the Project Officer to select, in conjunction with the Con-
tractor, approximately 18 fuels variables for use in this program.
A. Fuel Variables
The variables of interest can include, but must not be limited to,
the following fuel characteristics:
1. Carbon/hydrogen ratio
2. Aromatic level
3. Density
4. Boiling range
5. Boiling point distribution
6. Sulfur level
7. Sulfur form
8. Metals content
9. Diesel fuel - ethanol blends
10. Diesel fuel - water emulsions
11. Cetane number
12. Residue level (steam jet gum)
13. Presence of a standard additive package (such as pour
point depressant, cloudiness eliminator, etc.)
14. Nitrogen content
The fuel variables listed may include: 1) various levels of a
given fuel characteristic and 2) where appropriate, a combination
of nominally independent fuel characteristics. The variables
selected will represent an optimization for the following three
objectives: 1) particulate emission rate, 2} soluble organics
emission rate, and 3) bioassay (McCann/Ames) activity results.
A-2
-------
66-03-2707
Scope of" Work
Page 2 of 4
B. Data Sources
The contractor shall use as input to the fuel variable list;studies
which discuss the expected makeup of future fuels. Also, full
utilization should be made of the preliminary data concerning the
influence of fuel variables on diesel emissions that has been
developed at Southwest Research Institute under EPA Contracts' #68-
02-1777 and //68-03-24AC. Such utilization should include appropriate
use of the computer-stored and manipulated data from these contracts.
The selection of the candidate fuel variables shall be done with all
meaningful statistical considerations being included.
C. Acquisition of Fuels
The contractor shall acquire sufficient quantities of fuel that
possesses the fuel characteristics that are selected as fuel
variables.
Task II: Emissions Testing
A. Vehicle Selection
One diesel vehicle shall be tested for emissions as a function of
the above selected fuel variables. This vehicle shall be repre-
sentative of the "average" type of diesel light-duty vehicle
expected to be in use in the near-term to medium-term future.
Present thought is to use the Mercedes 240D (which would give
continuity with work done under EPA Contract //68-03-2440) or the
Oldsmobile diesel. The Volkswagen diesel may also be selected.
Final vehicle selection will be made by the Project Officer with
Contractor input.
B. Test Cycle and Replicates
[,
The test cycles employed shall be:
1. 1975 FTP (modified by running two complete LA-4's) - 3 replicates
2. 85 kph steady state - 2 replicates
3. The first 505 seconds of the LA-4 for smoke emissions data.
C. Emissions For Which Analyses shallBe Made
1. HC, CO, NOx and C09 shallbe analyzed using test pro-
cedures outlined in the Federal Register pursuant to
light-duty diesel vehicle testing. Aldehydes, phenols and
individual HC shall also be measured.
A-3
-------
f,ST0:-:'70: Page 3 of 4
Scope of Work
2. Particulate
a. Mass rate of particulate emissions shallbe determined
under both the transient and steady state test cycles.
specified above.
b. Size distribution shaUbe determined on the YTP cycle for
1 . each fuel variable. Series filtration techniques (or
equivalent If.vel of effort) should be employed.
c. Metal content of total particulate shall be determined.
The specific metals for which analyses shall be made will
be determined by the Project Officer with contractor
input. This selection will be made such that continuity
is maintained with previous related projects (EPA Contracts
//68-02-1777 and 68-03-2440). Selection will also be made
such that the appropriate metals are measured in certain
experiments, such as experiments using metal-based fuel
additives.
3. Organics: A methodology should be employed for the rapid
collection of quantities of particulate that are sufficient
for organics analyses. The following analyses shall be
performed:
a. Total mass emissions of soluble organics.
b. Boiling range of soluble organics.
c. Carbon, hydrogen, nitrogen and sulfur content. Also,
selected oxygen content analyses shall be performed.
d. Polycyclic organic matter (POM) - An indication of the
POM emissions shallbe made by analyses of the benzo-a-
pyrene (BaP) content of the particulate emissions. This
will be achieved by obtaining filter samples and sending
them to Dr. Robert Jungers, EPA/RTP.
4. Odor: Odor measurements shall be made using the CRC Cape-7
odor measuring instrument. The specific fuel variables over
which these measurements are to be made will be determined by
the Project Officer, with contractor input. The selection
will be based on previous results (Contracts #68-02-1777 and
//68-03-2440) as well as considering the variables selected.
5. Smoke: Smoke emissions shallbe determined for all fuel
variables over the first 505 seconds of the LA-4 driving
cycle. The PHS smoke meter shall be employed as well as an
in-line smoke meter.
A-4
-------
•68->03-2707 Page 4 of 4
Scope of Work
6. Ames Test Samples: The Contractor shall obtain one sample
over the FTP for each fuel variable, prepare the sample and
send the sample to the designated laboratory performing the
Ames test. The exact details of sample preparation will be
determined at a later date by the Project Officer. At the
present it appears that the sample will have to be extracted
and taken to dryness. A total of 50 mg of extracted organic
material will probably be needed for each sample. The con-
tractor shall gatter the resultant data and include it in the
Final Report.
D. System Check-Out
The sampling and analysis systems and procedures shallbe checked
"out to assure their proper functioning. Also, appropriate check-
out procedures shallbe employed to assure minimal influence of
uncontrolled variables on the experimental design. This shall
include the influence of lubricating oil on resultant emissions
data.
A-5
-------
APPENDIX B
FUEL ADDITIVE INFORMATION
-------
1
,
— - , - --
"— ^""-.
I— \ — -- - ^ - 1- - - j - - -j
I'll
J.._ ._ „ , __ 1 !
~ f -
i
,_
_ ,__
' -
t I , i
'_
l i-
7
t
h '•', '• 1 i "" " "F
t - ': ' ' • 4-
1 - ••• ' ;
u . l }. { ; - - . . . -.(. - _ l
^ »- I « - i L L
- 1 i f -- [ - —
. .. , ; : J • !
t - : : i
! I ' !
1
: I
' - i i .
i i
I ....
— _ . _
1
- -
-
-- -[
i
f- -
.. j _
-^r- j"
:iPwt:t^
.1
r
i
-^--3---— -:—-L-f-
j.:.:»::.: . .. : |
• i -y • t ••/•••«/ v • • ' ' • • '
Uv > t •-• kv \:\: i ;v
;-.!-- _i '. ; « v«t,--
: • ••- -. - i ; J 1
f - - , -• - , i ^
' " T '
; " -1 i : ' -
l ;:.:.; *;-.::
If!-: i ' :>/
W}:::; ;-/!::
; l :ji . ::;
V- ~\ • -i
.
_ ,
•
-
- - .
-.,--.. I \ --- -\-:---
'-- \ . ' } " :-'- \- - ----
- ii- - -i - -- -lr
r: ii "rt .---:.! :::-:--b-.-£-r.
-• f-- i"! - - - -f- - 1
! ] rp.--ip :. f : f-~l:_:
- •-
-' : j
j-_:~ _. I
i 1 1
- - - -- -+ -
!
A A
; - : 1 . - . ,
].: :1; .- ..;
• ; i.n .. ,,
•v.v|i - i;
I : 'V
t
;
i
=1-
. IVi
-I!
rr-- -
t *~ ~
;r -
_ LL .
' ! L
"" !
..
r* - -
r;;-": :
- -i - •- - H -- -- 4 -
: --_-_:. - . ___:_- -.
\r--.-\-. - .r -.-.-,.
- 'i - --- i • • -f „.--- i -
- 1 - -r - i -
i - "- . i _ _ ;
U
\
••
'• x' .y r :
^Li--i
" i-W
- j
l
i
: j i PID
-
-
,
i
- i
-:-" t
t
Figure B-l. Chromatogram of Staight Rim Shale Oil
-------
RESEARCH AND ENGINEERING COMPANY
P.O. BOX 51. LINDEN, N.J. 07036
PRODUCTS RESEARCH DIVISION
L.S. BERNSTEIN
Director
Fuels Research Laboratory
July 17, 1979
Components for Diesel
Fuel Research
Ref. No.: 79PR 802
Mr. Charles T. Hare
Dept. of Emissions Research
Southwest Research Institute
P. 0. Box 28510
San Antonio, Texas 78284
Dear Mr. Hare:
When you and Mr. Thomas Baines of EPA (Ann Arbor) met with Eric
Wigg, Mort Beltzer, and the writer at tfie Detroit SAE meeting, we agreed
to suggest a list of Exxon specialty products (lubricants, chemical feed-
stocks, solvents, etc.) that you might blend into experimental diesel
fuels to vary properties such as cetane number, aromatics, and volatility
in order to study systematically the effects of these properties on
diesel engine gaseous and particulate emissions.
The list is attached as Table I, with the materials grouped
tn low-, mid-, and high-aromatic classes and in order of increasing boiling
range i,n each class. The Norpars are almost entirely straight-chain
paraffins of Cn-Cf2 and Ci3~Ci4 chain lengths respectively. They should
impart high cetane numbers to blends. Isopar M and Telura 705 are made up
of highly branched paraffins of relatively lower cetane quality. Telura
705 has a bromine number around 20 eg Bro/g, indicating a little olefinicity;
all other products have little or no olefins. Marco! 52 is intermediate in
branching between the Norpars and Isopar M/Telura 705 extremes. Unfortunately,
we do not have a high-aromatic product with boiling temperature and viscosity
values between those for the last two products in the table. High-boiling
aromatics should be handled with precautions against skin contact.
All of these products are presently on allocation, which means
that normally they can be supplied only to customers already having
contracts for their purchase, and new orders can not be accepted by Exxon
Co., U.S.A. However, you may be able to arrange the purchase of so called
B-3
-------
Mr. Charles T. Hare - 2 - 79PR 802
"samples" on the order of, say, a barrel or two by calling the Industrial
and Consumer Business Sales Office of Exxon Co., U.S.A., at (713) 680-5712
in Houston. For any such samples, you will be specifically advised by
letter that providing them does not constitute an offer to sell any
additional quantities in the future. Also, some minor variation from
listed inspections should be expected.
Please let us know if we can supply further information on these
products, or if we can be of any assistance in their procurement. Some
properties of blends made from different petroleum products are not easy
to predict in advance without using a variety of empirical relationships.
We would, therefore, strongly recommend that you prepare trial blends and
evaluate their properties before making large blends for engine testing
that may fail to meet your blending targets and will exhaust your supplies
of components. We would also suggest that you avoid, as being unrealistic,
blends of only low- and high-boiling components without an adequate mid-
fill component also present.
Very truly yours,
G. P. GROSS
Research Associate
GPG:jk
cc: Messrs. T. M. Baines
T. G. Lipscomb
Attachment
B-4
-------
TABLE I
Exxon Specialty Products Potentially Useful for Studying
Diesel Fuel Composition Effects on Engine Emissions
Typical' ' Inspections
Product Name
Norpar
Norpar
Isopar
Telura
Marcol
12
13
M
705
52
Base
cd 3146 Hydraulic Oil
ui Mentor 28
Telura 607
Necton 37
Exxon HAN (Hvy. Ar. Naphtha)
Nuso 38
Aroma tics
<2
<2
19
24
16
16
84
67
Gravity,
°API
57.0
53.8
49.0
41.2
38.7
36.0
36.0
37.0
29.5
27.1
16.3
D 86 Distillation, °F
IBP
370
443
394
511
569
394
487
570
590
348
613
10%
380
451
412
523
593
444
528
590
620
386
632
393
457
429
538
623
484
564
620
655
435
662
412
471
470
569
686
536
594
685
704
494
718
TB?
428
486
497
599
>700
578
602
>700
721
528
^770
Kin. Vise.,
cstk at 100°F.
1.4
1.9
2.4
7.6
7.4
2.9
4.3
7.5
14.4
1.54
29
(TjAromatics contents listed
high-viscosity materials.
or GC distillations. The
boiling below the initial
GC "distillation".
may be by MS, silica gel separation, or FIA; FIA is not useful for high-boiling or
Some distillation data are converted to estimated ASTM-D 86 results from vacuum
D 86 is a standardized method, but gives very poor (1-plate) separations; materials
and above the final boiling points are always present and can be better-detected by
G. P. Gross
July 17, 1979
-------
Chevron _, *»,..«
Chevron Chemical Company
One Crossroads of Commerce - Suite 1000
Rolling Meadows, IL 60008
January 29, 1980
Mr. Bruce Bykowski
Southwest Research Inst.
P.O. Drawer 28510
San Antonio, TX 78284
Dear Bruce:
Enclosed you will find Chevron Alpha Olefin data sheets and current
pricing information. I also included some idea sheets which I
thought might be of interest to you.
I hope this information can be of some benefit. Please don't hesitate
to call if you need any further assistance.
Very truly yours,
Glenn R. Weckerlin
Technical Sales Representative
PETROCHEMICALS DIVISION
GRW/nn
Encl.
B-6
100 Years Helping to Create the Future
-------
EXXON PETROLEUM SOLVENTS
Test Method
HEXANE
HEPTANE
LAKTANE
SOLVENT No. 5
VM&P NAPHTHA
VARSOL 1
VARSOL 3
VARSOL 18
Low ODOR PARAFFIN
SOLVENT
TOLUENE
XYLENE
AROMATIC 100
AROMATIC 150*
HAN*
ISOPAR C
ISOPAR E
ISOPAR G
ISOPAR H
ISOPAR K
ISOPAR L
ISOPAR M
NORPAR 12
NORPAR 13
Aniline
Point
»c
°F
ASTM
D611
62
53
33
59
49
54
54
63
76
8.8<5>
10.4(5>
13.4<5>
15.4<5>
29<5>
79
76
81
84
84
86
88
82
87
143
127
92
139
120
130
130
146
169
47.8
50.7(5>
56.1<5'
59.7
84<5>
174
168
177
184
184
186
190
180
189
Kaurl-
Butanol
Number
ASTM
D 1133
31
38
51
37
40
37
38
32
29
105
98
91
92
78
27
29
28
27
27
27
27
23
22
Flash Point
TCC
°C
°F
ASTM
D56
018
~-8
~-6
<-18
7
42
41
41
66
~7
27
42
66
57<6>
— 7
~7
40
53
53
61
77(6)
69(6)
>79<6>
<0
~18
~21
<0
44
108
105
106
150
~45
80
108
150
135(6)
~19
~45
104
127
127
142
170<6>
156<6>
>175<6>
Distillation
IBP
«c
°F
50%
°C
°F
Dry Point
°C
•F
(a) ASTM 0 86
(b) ASTM 0 1076
(C) ASTM D 850
65(b>
94
101"»
71(a)
118
156(a)
154(8)
156(a)
191
155(a'
183
171(a)
98(b>
116(a>
157
176(a>
177(a)
188
207
188
149
201
214
160
244
313
310
313
375
230.4
280.4
311
362
340
208
240
315
348
350
370
405
370
443
-
96
103
103
122
175
164
176
216
-
-
160
193
223
99
121
164
182
184
194
223
201
236
-
204
218
218
252
347
327
348
420
-
-
320
380
434
211
250
328
360
363
382
434
393
457
69
99
106
133
139
202
176
199
244
111.0
140.0
173
210
277 <7>
106
139
176
191
197
206
254
219
248
157
210
223
272
282
395
348
390
472(7>
231.8
284.0
344
410
530<7>
222
283
348
375
386
403
490
426
479
* Note. All solvents test 30 Saybolt color except HAN (0 5
ASTM) and AROMATIC 150 (+ 27 Saybolt)
(1 (Excluding ethylbenzene.
(2JTLV is a registered trademark o( the American Conference of
Governmental Industrial Hygienists. It is the threshold limit
value or occupational exposure limit - the time weighted aver-
age concentration for a normal 8-hour workday, 40-hour work-
week, to which nearly all workers may be exposed repeatedly
without adverse effect. Refer to the most recent Material Safety
Data Sheet for the latest recommended maximum exposure
limit lor each solvent.
(3)A TLV has not been established for this product The value
shown has been recommended by Exxon Corporation Medical
Research based on consideration of available toxicological
B-7
-------
Typical Inspections — The values shown here are representative of current production. Some are controlled by
manufacturing specifications, while others are not. All of them may vary within modest ranges.
*
Evaporation Rate-Seconds
25
Vol%
SO
Vol%
75
Vol%
95
Vol%
Wetlaufer-Gregor
(modified)
21
75
102
27
196
2200
1620
2050
-
205
590
1620
7200
-
69
162
1280
2750
2900
5400
10 800
9600
-
45
150
220
250
404
5600
3600
4950
-
428
1200
3600
16400
-
141
360
2700
5900
6200
12000
32400
22800
-
77
227
360
475
624
10900
6000
9300
-
676
1895
5650
28800
-
225
580
4440
9800
10500
20100
-
-
-
110
300
540
700
856
19200
9600
14900
-
970
2580
8500
43200
-
295
835
6400
13800
15200
28600
-
-
-
Rule 102
{formerly
66)
Exempt
Yes
Yes
Yes
Yes
Yes
No
No
Yes
Yes
No
No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Composition, Vol%
Total
Satu-
rates
Total
Aro-
matlcs
Ci and
HlgherO)
100
96.0
82.0
95.3
87.0
82.0
81.5
92.3
97.0
0.03
0.1
2.8
2.6
20
100
100
100
100
100
99.9
99.7
99.4
99.3
0.05
4.0
18.0
4.7
13.0
18.0
18.5
7.7
3.0
99.97
99.9
97.2
97.4
80
0.02
0.02
0.03
0.04
0.03
0.06
0.3
0.6
0.7
-
-
-
4.4
7.2
18.0
18.5
7.5
3.0
0.02
75.0
97.2
97.4
80
-
-
-
-
-
-
-
-
-
Sulfur
ppm
Mlcro-
coul-
ometer
1
1
2
5
5
1
2
2
2
2
4
3
1
0.3<8>
1
1
1
1
1
1
1
<1
<1
Bromine
Index
ASTM
D2710
100
60
60
120
100
200
200
200
50
-
-
-
-
600
6
8
12
20
20
8
150
-
-
Specific
Gravity
@15.6°C
(60° F)
ASTM
01250
0.682
0.731
0.772
0.722
0.759
0.791
0.780
0.780
0.790
0.872
0.870
0.872
0.902
0.893
0.700
0.721
0.750
0.760
0.761
0.767
0.783
0.751
0.764
API
Gravity
ASTM
D 287
76.0
62.0
51.8
64.6
54.9
47.5
50.0
49.9
47.7
30.8
31.2
30.7
25.4
26.9
70.8
64.7
57.2
54.6
54.5
53.0
49.2
57.0
53.8
Viscosity
cp at
25° C
ASTM
O445
0.32
0.47
0.54
0.45
0.56
0.95
0.83
0.90
2.06<«>
0.57
0.62
0.78
1.20
2.0
0.48
0.62
1.19«>
1.58<4>
1.41'4'
1.99<4>
2.46
1.26
1.84
Inhalation
TLV<2)
ppm
100
400
400<3>
400 (3)
400
100
200<3>
200<3>
200 (3)
100
100
50<3>
100<3>
100<3>
400<3>
400<3>
300(3)
300<3>
300(3)
300 (3>
300<3>
300<3>
300<3>
data. Additional data are being obtained to help define a recom-
mended occupational exposure limit more conclusively.
(4) Viscosity, cp@ 155C
(5)Mixed aniline point.
(6)pensky-Martens method, ASTM D 93
(7)Fmal Boiling Point.
(8) Mass %.
B-8
-------
Chevron Chsmicai Company
Pslroohe.'nicsl Division
ImiiioiriHl Chemicals
b/5 Mir'-.ci Sirofd, San Francisco CA 91105
Technical Data Sheet
CHEVRON ALPHA OLEFIN C15-C18
CHEVRON ALPHA OLEFINS have a highly reactive double bond in
the alpha position of long straight chains. They contain both odd
and even number carbon atoms which alter their properties and
differentiate them from olefins obtained from fats or ethylene poly-
merization. These ALPHA OLEFINS are now available in twelve
versatile fractions.
CH3-(CH2)n-CH = CH2
alpha olefin
where n varies from 3 to 17
The C15-C18 ALPHA OLEFIN fraction is used in the production of surfactants, particularly AOS, as a partial
sperm oil substitute for leather treating, in metal working and gear oil additives, as a synthetic rosin substitute,
and in epoxidation reactions. Other possible applications include specialty chemicals, polymers, resins, and
various chemical intermediates.
Chevron's manufacturing control specifications and typical tests are:
Condition at 70°F
Color, Saybolt
Paraffin Content, Wt. %
Diolef in Content, Wt. %
Straight Chain Mono Alpha Olefins, Wt.
Peroxide Content, meq/l
Sulfur Content, ppm
Carbon No. Distribution, Wt. %
Average Molecular Wt.
Distillation at 760 mm Hg, °F
Start
5%
95%
End Point
Density at 20°C, g/ml
Density at 60°F, Ibs/gal
Flash Point, TOC, °F
'Subject to change without notice.
Specifications*
Test Method
SM 60-15
ASTM D-156
SM 100-25
SM 100-25
SM 1 00-25
SM80-16
SM 205-27
SM 100-25 C14
C,5
C-16
C17
C1S
C19
SM 100-25
ASTM D-86
ASTM D-941
—
ASTM D-1310
Minimum
Clear and
-5
—
—
87
—
—
26
25
23
8
226
Maximum
Bright, Free
—
3
6
—
5
20
5
12
3
231
Typical Tests*
of Sediment
7
2
6
89
1
15
2
30
30
28
10
0.1
226
508
523
558
584
0.789
6.59
260
CHEVRON ALPHA OLEFIN C15-C18 is shipped in drums, tank trucks, tank cars and ocean-going vessels. All
bulk movements are inhibited with 25 ppm ditertiary butyl paracresol unless specified otherwise by customer.
B-9
4/76
C. ti\1 404-10-OC
-------
Chevron Chsmicai Company
PatrG^hemicci! Division
lud'jsina! Chemicals
5/5 Mar^; S;;an San Franc.sco. CA 94105
mica! Data Sheet
Chevror
CHEVRON ALPHA OLEFIN C15-C20
CHEVRON ALPHA OLEFINS have a highly reactive double bond in
the alpha position of long straight chains. They contain both odd
and even number carbon atoms which alter their properties and
differentiate them from olefins obtained from fats or ethylene poly-
merization. These ALPHA OLEFINS are now available in twelve
versatile fractions.
CH3 -(CH2)n -CH = CH2
alpha olefin
where n varies from 3 to 17
The C15-C20 ALPHA OLEFIN fraction is used in the production of gasoline additives and high molecular weight
sulfonates, alkenyl succinic anhydride (ASA), metal working and gear oil additives, synthetic heavy alkylate, and
as a synthetic rosin substitute. Other possible applications include polymers and various chemical intermediates.
Chevron's manufacturing control specifications and typical tests are:
Condition at 70°F
Color, Saybott
Paraffin Content, Wt. %
Diolefin Content, Wt. %
Straight Chain Mono Alpha Olefins, Wt. %
Peroxide Content, meq/l
Carbon No. Distribution, Wt. %
Average Molecular Wt.
Distillation at 10 mm Hg, °F
Start
5%
95%
End Point
Density at 20°C, g/ml
Density at 60°F, Ibs/gal
Flash Point, TOC, °F
'Subject to change without notice.
Specifications*
Test Method
SM 60-15
ASTM D-1 56
SM 100-25
SM 100-25
SM 100-25
SM80-16
SM 100-25 C14
C15
C,6
d 7
C18
C19
C2o
C21
SM 100-25
ASTM D-1 160
ASTM D-941
-
ASTM D-1 310
Minimum
Clear and
-16
—
—
87
—
15
14
13
12
10
240
Maximum
Bright, Free
—
6
6
—
5
3
19
5
250
Typical Tests*
of Sediment
-12
5
5
88
1
1
17
18
17
17
15
12
3
244
288
295
367
406
0.787
6.60
280
CHEVRON ALPHA OLEFIN C15-C20 is shipped in drums, tank trucks, tank cars and ocean-going vessels. All
bulk movements are inhibited with 25 ppm ditertiary butyl paracresol unless specified otherwise by customer.
B-10
4/76
' ' •'
-------
Chevron Chemical Company
Petrochamics! Division
Industrial Chemicals
575 Market Street. San Francisco, CA 94105
Technical Data Sheet
Chevron
CHEVRON ALPHA OLEFIN C13-C14
CHEVRON ALPHA OLEFINS have a highly reactive double bond in
the alpha position of long straight chains. They contain both odd
and even number carbon atoms which alter their properties and
differentiate them from olefins obtained from fats or ethylene poly-
merization. These ALPHA OLEFINS are now available in twelve
versatile fractions.
CH3-(CH2)n -CH = CH2
alpha olefin
where n varies from 3 to 17
The C13-C14 ALPHA OLEFIN fraction is used primarily in the production of oxo alcohols for detergent
manufacture. Other possible applications include lubricants, alkylbenzene feedstock for detergent manufacture,
specialty chemicals, polymers, resins, and various chemical intermediates.
Chevron's manufacturing control specifications and typical tests are:
Test Method
Condition at 70°F SM60-15
Color, Saybolt ASTM D-156
Paraffin Content, Wt. % SM 100-25
Diolefin Content, Wt. % SM 100-25
Straight Chain Mono Alpha Olefins, Wt. % SM 100-25
Peroxide Content, meq/l SM80-16
Sulfur Content, ppm SM 205-27
Carbon No. Distribution, Wt. % SM 100-25 <
12
,4
Average Molecular Wt. SM 100-25
Distillation at 760 mm Hg, °F ASTM D-86
Start
5%
95%
End Point
Density at 20°C,g/ml ASTM D-941
Density at 60°F, Ibs/gal -
Flash Point, TOC, °F ASTM D-1310
"Subject to change without notice.
Specifications*
Minimum
Clear and
8
-
—
87
-
—
40
40
Maximum
Bright, Free
—
3
6
-
5
20
3
4
Typical Tests1
of Sediment
11
2
5
88
2
10
2
47
48
3
189
420
449
472
494
0.776
6.46
210
CHEVRON ALPHA OLEFIN C13-C14 is shipped in drums, tank trucks, tank cars and ocean-going vessels. All
bulk movements are inhibited with 25 ppm ditertiary butyl paracresol unless specified otherwise by customer.
B-ll
4/76
CflM 404 10-OC
-------
Chevron Chemical Company
Petrochemical Division
Industrial Chemicals
575 Market Street, San Francisco, CA 94105
inical Data Sheet
Chevroi
CHEVRON ALPHA OLEFIN C11-C14
CHEVRON ALPHA OLEFINS have a highly reactive double bond in
the alpha position of long straight chains. They contain both odd
and even number carbon atoms which alter their properties and
differentiate them from olefins obtained from fats or ethylene poly-
merization. These ALPHA OLEFINS are now available in twelve
versatile fractions.
CH3-(CH2)n -CH = CH2
alpha olefin
where n varies from 3 to 17
The Cn-C14 ALPHA OLEFIN fraction is used primarily as alkylbenzene feedstock for detergent manufacture
and in gasoline additives. Other possible applications include amine oxides, alkylamines, specialty chemicals,
polymers, resins and various chemical intermediates.
Chevron's manufacturing control specifications and typical tests are:
Condition at 70°F
Color, Saybolt
Paraffin Content, Wt. %
Diolefin Content, Wt. %
Straight Chain Mono Alpha Olefins, Wt. %
Peroxide Content, meq/l
Sulfur Content, ppm
Carbon No. Distribution, Wt. %
Average Molecular Wt.
Distillation at 760 mm Hg, °F
Start
5%
95%
End Point
Density at 20°C, g/ml
Density at 60°F, Ibs/gal
Flash Point, TOC, °F
* Subject to change without notice.
Test Method
SM60-15
ASTM D-156
SM 100-25
SM 100-25
SM 100-25
SM 80-16
SM 205-27
SM 100-25
SM 100-25
ASTM D-86
C,3
C,4
C,5
ASTM D-941
ASTM D-1310
Specifications*
Minimum
Clear
10
—
—
87
-
—
20
20
20
20
170
Maximum
and Bright, Free of
—
3
6
—
5
35
4
4
176
Typical Tests*
Sediment
14
2
5
89
1
10
1
27
24
24
23
1
174
388
398
480
494
0.770
6.42
162
CHEVRON ALPHA OLEFIN C^-C^ is shipped in drums, tank trucks, tank cars and ocean-going vessels. All
bulk movements are inhibited with 25 ppm ditertiary butyl paracresol unless specified otherwise by customer.
B-12
4/76
-------
Chsvrcn Chemical Company
Petrochemical Division
Industrial Chemicals
575 Market Street, San Francisco. CA 94105
inical Data Sheet
Chevron
CHEVRON ALPHA OLEFIN C11-C12
CHEVRON ALPHA OLEFINS have a highly reactive double bond in
the alpha position of long straight chains. They contain both odd
and even number carbon atoms which alter their properties and
differentiate them from olefins obtained from fats or ethylene poly-
merization. These ALPHA OLEFfNS are now available in twelve
versatile fractions.
CH3-(CH2)n -CH = CH2
alpha olefin
where n varies from 3 to 17
The Cii-Ci2 ALPHA OLEFIN fraction is used primarily in the production of oxo alcohols for detergent
manufacture. Other possible applications include lubricants, alkylbenzene feedstock for detergent manufacture,
specialty chemicals, polymers, resins, and various chemical intermediates.
Chevron's manufacturing control specifications and typical tests are:
Test Method
Condition at 70°F SM 60-15
Color, Saybolt ASTM D-156
Paraffin Content, Wt. % SM 100-25
Diolefin Content, Wt. % SM 100-25
Straight Chain Mono Alpha Olefins, Wt. % SM 100-25
Peroxide Content, meq/l SM 80-16
Sulfur Content, ppm SM 205-27
Carbon No. Distribution, Wt. % SM 100-25 i
,2
Average Molecular Wt. SM 100-25
Distillation at 760 mm Hg, °F ASTM D-86
Start
5%
95%
End Point
Density at 20°C, g/ml ASTM D-941
Density at 60°F, Ibs/gal -
Flash Point, TOC, °F ASTM D-1310
*Subject to change without notice.
Specifications*
Minimum
Clear and
10
-
—
87
—
-
40
40
Maximum
Bright, Free
—
3
6
—
5
20
2
3
Typical Tests*
of Sediment
12
2
5
88
2
10
2
51
45
2
161
365
385
410
427
0.762
6.35.
160
CHEVRON ALPHA OLEFIN C^-C^ is shipped in drums, tank trucks, tank cars and ocean-going vessels. All
bulk movements are inhibited with 25 ppm ditertiary butyl paracresol unless specified otherwise by customer.
B-13
4/76
ci''-' J04 in oc
-------
PRUUHUL bAY
V^/b LUT POINT DEC, F VT
l'j/5 LUT POINT DLG C VT
C L't.T.'JNUJl
2,:.-(JlMt THYLPCNTANE
;',3 , J-IRIMLTHYLPINTANU
c ,3,'.-lKlMt.THYLPLNTANc
i-CTllYLPtfHANE
<"-Mi1lNL
•.-KLIIIfl-HlXANt
3-MF. IIIYLMtXANE '
. ,
O.41
O.«il
0.43
0.19
0.2I>
0.<;4
1 .00
0.73
l.wi
l.uU
O.«_b
0.04
o.?2
0.43
0.02
YULD CU1 KAUGt VOL X C
YIELD ON CP.UUL- VPL 1, 7
LD£3£ilN.l.lJl
2f ->-DlML IhYLHr-.xANI.
tt't-DlMu THYLHI. X/lll:
2i5-rjlMfcTHYLHLXANt
3»?-LlIME1HYLM!:X AUh
Jr-t-fJlMCTMYLIiLX ANE
t THYLHtXAin
CYCLOhUXANL
MtlHYLCYLLOHLXANl.
1 tClS-?-01ML fHYLCYCLOIII.XANL
iiClS-^-l'JMLlHYLLYCI.l HI XANC
liClS-4-l-lMLIHYLf YCLUMt XANL
It TKANS-i-DlMLTHYLCYCLOMjXArJb
l.TRAN^-'.-DlMLTHYLCYCLUHLXANL
L1HYLCYCLUHLXANI
IKIMt fHYLCYCLUHLXANl S
N-HtF'TANI-
^-MLIHYLHIPTANL
3-HtlHYLHtPlANt
4-MLTI-lYLHi \> IAUI.
2|4-DIMfclHYLHtPT^Ut
2,6-DlMLTHYLHtP UNL
• ** ^*
. 1 i
ili
„
(.'
0
(i
o
U
0
b
1
1
o
<
'l
?>
:>
s
3
<.
1
0
]
ID
if— i
.SO
.'.7
..li.
.09
.4
.11
.10
.7;
.57
.•Jb
.7L
.16
.Ib
.41'
.U
.36
.i>7
.'j9
.o7
.38
.C/l
^
b'i.
0
u
li
o
I
u
O
0
1
1
0
ir
'<
i(
j
3
3
^
u
0
1
.,7
.37
» * t _
.LV
.00
.73
.10
.1 u
.79
.( 4
.00
.7'.
.cO
.It.
. t/3
. 1.)
. V3
.'/I
,',(.
.99
..>t>
.40
Yl LI?.' CUT f AI.OL rtl,l V
i.i.!itlIJiL.J
3-E TliYLh-i: HTANU
N-CtlAHL
A -Hi TilYLOLTANt
--HL 1HYLC.LT AfiL
'.-Mt-ThYLUCT ANL
iX ^flLjli /tN c
( pAL/jf-l-lMV.
C9 NAf|illit.,ti
C 1U N/-(- 111 iiLNv i
L fcNttUt
L1HYLR..N21.NL
1 Sl'PKOf'YLbi-N/'. Nfc
N-FHl rYLI.ertii HL
1 -ML IHYLf^-tTIIYLbiNiLiU
l-^,L lllYLi j-L lhYLi-L\ti Ni
l-Mt:TilYL » s-'. lliYLhLNi' He
TULJCNi.
UhTF-UXYLLNL
PAKAXYLLNc
Mhl AXYi.f.Nt
4.'.^ IL
« . t.i
KL.i
l>.. i
" . . o
<:./<:
l . VI
l .?i
(.. *i
D .ilS
'i.i't'
^.OV
tl . .1 1
. .11-
U . ? i.
O. JJ
.j.l)(/
t . 19
<• .us
7." /
«.'• 1 C
l.'.O
U.7y
\\.\j
hU_l
,...-!
u . :.•!
«• . j «i
i .L i
I., s
'- . ( ^
r .us
'• .^ 1
. i- «.
). .j
^ .<.(
(, ..,;,
0. J /
V . •' i'
I. .. 1
'.10
i. >00
-* • • tr
1 . ( "
f . ^ I
N-liL.tANL
3-.ir IIIYLMtXANE '
. ,AKAFF INS
I v'I'AKAf 1 INS
I U AL PAKAf-FINS
'. iCLDPlNl ANLS
; jl t.L t:,' PH rilfcNLS
1L"AI1CU
. 1 '. L
0.01. 0.04 3-HtlHYLHtPlANt
O.'/.'j 0.?2 4-MLTI-lYLHi \> IAUI.
0.4U 0.43 2|4-DIMfclHYLHtPT^Ut
0.02 0.02 2,6-DlMLTHYLHtP UNL
C6
,0-j
.05
.20
.2b
.03
.32
C6
.04
.Oi
;??
.03
.3^
17 Cu
4.311 9.26
.91 y.ji
i.34 4.36
b.7i' li.il
11.06 17.47
7.97 12.<:5
24. Jj 40.30
L7 ' (.ii
.0^ U.60
4./^ 17.14
i.^ 4.3^
11. li 17.6V
9. do 1?..93
.'4.9, MU76
C9 L 10
(..11
V.V2
9.V7 2.09
.9b
24.97 2.09
CV CIO
7.4:-.
13.lt)
V.o9 « ,(v
1.09
23. 9t /.vl,
I.'j9 2,',t TULJCNi. 7."/ -.00
I.o7 u.99 UhTF-UXYLLNL / . i c
0.3H 0..>6 PAKAXYLLNc 1.1,0 l.("
].r^l 1.40 MhTAXYi-LNt 'j.lj c-.^l
Lll TOTAL
IV.bC
1 ii . 1 i>
37.96
6.71)
34.00
40. B3
?1.21
Kl.,00
Cll TOTAL
lo.bl
3b. 11
6.74
"o'.7t
iCM . 1 I
1 L'O . Oo
-------
APPENDIX C
TEST PLAN AND DATA REDUCTION INFORMATION
-------
85 KM/H Cruise Conditions
1. Before beginning a days run, set room air to 68°F.
2. CVS heater box should be off.
3. Run 15 minutes after last FTP.
4. Start vehicle and sampling systems. Start roll counter.
5. Accelerate to and hold vehicle to 85 km/h cruise condition for 10 minutes.
6. At 10 minute mark, stop sampling. Stop roll counter.
7. After sampling has stopped, stop vehicle and shut-off engine.
8. Soak for 10 minutes.
9. Start vehicle and bring vehicle to 85 km/h.
10. Begin additional 10 minutes of sampling. Start roll counter.
11. Stop sampling. Stop roll counter.
12. Stop vehicle. Test Complete.
13. After test, reset room air temperature.
C-2
-------
FTP
'' RESULTS
wn
ueQtri'F'Mnnr'
'"
R"N 1
M 240D
PARO"ETER 740.16 MM HO (2°. 14 IN HG?
RELATVE "HUM'IPTTY ""•**'" PCT
'""
o
I
U)
DESCRIPTION
Bl n!-!ER DIP P MM: H20(IN. H20)
prni.JFp TN! FIT p MM ~u/'~u;>n)
INLET TEMP. PEG. C'DEO" F?
RFTini IITTQWC
fnf pi 'nU~QfS7 rfi, "MFTPFC ( err >
ur' CAMPI ^''"'
ur prVhpr
rn CAMP' F MFTFpVpAMRF/PPM
rn prKJRpri MFTFP/PAMRF/PPM
Fno qAMpi'F MFTF'pYpAMRFV'pr'f
rfn prVRpn MCTFP'/PAMRF /prj
MOV CAMPi F MFTFP/PANRF/PPM
kinv prjfhpri MFTFP'/PAWRF'/PPM
rifi'nTTHiTi"FArfhp ........
"^""^MrFWTPAfTnK! PPM
CO CONCEN'tRfttlON PPM
C02 CONCENTR*tlON PCT
wn rnMrFMTPATTniq PPM
CO MASS GRAMS
C02 MASS GRAMS
MACC RPAMQ
HC GRAMS/KM
rn RpAMc'/i^M
/kM
FUELCOhSUMPTIOM PY CP L/100KM
PUN TTMF
~
. .FT
un
cAfi
rnwciMPTnM i
COMPOSITE RESULTS
"" TEST~NUMPER "
""
TFMPFPATIIPF
MM UR 70.2
G/KG" 12!!
fiFR'r 07 T.
ppn IFPT 1 i_«;vn7-ftfti
iiFUTri F wn 1
ftATF o/iii/pri
PAO~CART~NO. "i
riYwn'kjh 2
cOs'NO" 3
PRY PULP TEMP
ARC.'uUMTfiTTY 1
1
COLD TF:AMSIENT
622.3 (24. 5)
Apo'Z /To ' n\
'7p" 7 MAI " /U
1 T^~? V ~.MI i ^
i/i"i7ii/i^
" A ' 5V~TV " /i
29!4/13/ 26!
""" A/?7/ ~1
Al.T/'l-' 7T
T R V 7/ ftdi
9A ! SV 5V 04 '
~ 7/ 5V- ~1
1 P~/)O
" I i .
5JS
~AR
07~7
~~ 77
3! 53
1 r;^7~*;
"5.?5
. 17
ZT
O*7~Z
~1 ft''
io!io
=:AA
^"oo
o=;o
1 Ann
.....
TFCT UFTRUT 1 ^P
arf HAI "pnAfi i nSfi
nTFCFi_ EM-463
nfinMFTFP 1 5^717"
17 7 riFR rt~7A ft HFR F\
P. KR/ 7Sftft IPO
p"i PiJ/ "i i~o~HPi
Mp
icwr POOO. MTI FC>
T'I'RM/PR" wnv UIIMTPTTY mppFrrrnw FArrnc- 1 ns
0 7
STABILIZED HOT TRANSIENT
*"»o 7 '2a 5) 622.3 (24.5)
452.6 '!l?";OJ 4B2! 6 (T9!o?
77.0 f"o6"ft^ 77 o i b^.ft^
••)7o7c; i T7oE;
215~§ ("7619. ) 125^6 (~4435. )
Tft'^/i 1 1/ "i i !' ift Q/11 / TT.
"i'o'/'TV "7! "T'O'/'I'/ 7
9ft!5'/i7/ 10! 25.6/13/ 23;
"/1/17/ ft. 7/17/ ft
°* 6/"3/ :44 3S!2/~3/ :64
~7 ft V T"/ ! ft1^ " 2 9 ' 3 x : 04
1^ ' iV o'/ i^~ oAinV 7/ "ii
~".i'/ 5V "i ~ !7/ 2/ ~l!
7A~^7 ~ *>ft"~AO
"77" ~"sT
IQ! 22!
*70 . Aft
iA~7 23*5
~ ' ' bo . ^A
\ 4!43 3!2!
\ 15^"=;. 2 1354:9
^"6"37 "5.93
• i"> .09
! 71 "lA
1A*.A ^75"6
~l"ft9 ~1~ftT
9! 50 9: 04
PAP. 5ft5.
Z"o7 §!§9
/ 070^ "'"' OA1 /
1 07A> 1 ftftft I
TXft.P
77~ Aft
12! 09
"9! 59
A
STAPILIZEP
622.3 (24.5)
APT .A MO ft \
'7Ai7 /"bp'ftl
21966:
•71 A . ft f 7625 . *
~6~67ii /' "Tft
T.*»V"lV ~\\
22:5/13/ 20:
. A/17/ 1 .
27 : !/ 3/ .44
"9 ' 5V 7/ ftA
i Z ' i'/ 5V i Z
p'/ 5V ~ T
2°~96
~ ' 7 ' "
19
" Aft
15.5
" !§5
4 .66
1 ^R7 . 9
"6:72
17
!73
9A A . P
~iTo5
9.52
PAR.
A AT,
'. ;941)
' 07A >
741 A
77737
12:32
9:29
3-PAG (4-PAG)
rAppnw nTnYTnr R/K'M
FIIFI rnMCIIMPTTnW 1 /IftftlCM
UYnpnrAPPnwc rrur\ R/k'M
rAppnw wnMnvTriF R/h'M
247:6 ( 247
~6.s5 i o
! 13 ( !
: 6 4 (
o^
^^^
13)
f I-''
-------
6C.
f/.Q fe.S. 2t>
jSTCf
INSTRUCTIONS
INPUT
DAT*. UNITS
OUTPUT
DATA/UNITS
OEV)S.nY
I/loo V^
1 1 c- 1
| [ D |
OtSTA/UCE.
DFC ,
ICO
IC.ATJ
CsIDQD
L«5J L£_l
47 ~-
.-J
i — ir
£
*-( . t.l
Hi lt_'l
i
b»c ^ » ^-»M.i«
REPfAT a.'^ Tf 8
r~irn
cm ci'
REPFAT a>tt \Q\\\
Ii
JJ
.14 A i
i » ir i
dDCZD
RSPE-AT
u,
FOt fJCU)
O(VH\
PPOC.66D
L_1JL_U
tzucin
CZICZ]
TO S.TE-P i.
^1UU•.
KCL 1
L _ IL_I
1 __ IL_J
J. ITC. ,r rrft
C-4
-------
i>;rfiTRr KLY CODS CC.VMENtS STiP KEY £NTH» KEY CODE COMMENTS STEP
. r.
.
^
i -\
i L
UIO
j;j
-X.JJ
wo
jSO
>•!••.. e.
a
i<.
0
H
»
KCl. C-
—
t C-'-B S
<
'.10 I
KCl. ?
—
EFX
C»\£.
V
f tiiil
C /^
£ LtL °
PCU A-
_
i tit 1
X
•-V) \
R-tc 9
-4-
tc A
i
C- C-E. 3
c/s
S LCL C
f CIBi
090
100
no
z.
4
4.
f o:e i
«lt.
( C-iB i
5
4
1
.
4.
CISC 3
R./S
SyB 2
Q,
\
0
•
fc
9 USB 3
t/S
$ CS(Z
s
g
a
.
T
f Wii
H/b
t tst 2
S
4
I
4.
4 OSS 3
R./S
t c-sgz
s
Of
7
f Ci6i
f*-/s
t LSt D
EE«
3>
X
v* «. -ci y
E6x
3
X
•(- tlBA.
(iys
*• iau E
« »CTy
->t»*Vi
-clH.
->CjH»
~-Cirtt
-*Cllii
•^ ctrtt
-»Ctl\v
— C.T ttj
„.,„ ..»,. vu~.a
REGISTERS
' iitfC 'vjSFD 'USED 3-*y~T-
31 32 33
-:.-'r-"'VA N^ ,-^ c K.
4 N 1AM
54
"»a
MOlL^Mt ^^ ^ DR1 4^
Si So S7
D FUEL co/vj^,
i/.oo \ —
8t,Pt -.1- 9 *??"•*-
38 S3
'If-ur,) ll-v t I1
—
—
_-. •—
iJO
to
>1
— ' 1.-.
1 l»
—
~- l_
_
• — .
_.
"*
D •
r — -
C-5
-------
S1EP KEY tMRV KEY CODE
?• c:-4
R/i
f UL 1
C.U S
RU 4
•1-
R.CL 1
•l-
li RTO
^<-£>- i
(tci. B
*.
—
f C'.i 1
K.
Ret. )
-^
E£l<.
-i,
-r
^ RTJ
4 IfcLl
!<
^>TO Z.
t - «-
tcl. *.
-^
an. o
+
.
\
*
( -*•-
KtL Z
R-CC G.
-V
R.CL 1
A.
J
(.
?.
h BTM
? ILL a
CCL fc
A
v, -C-y
RtL i
X
—
< C^t i
•<
fta 5
-i-
EEH
tH'
• t.i.'\y«-«..^«it«'-i<«
oli. 4.M
+..».l -•!., -*
ry-rX^-jnc
^...,i.Jt )v
\
. V~Ht/t_4
. />«rtl ft..
- » — «/l^ wv
- » ^^-** /K*!*-^
-N
twu. .< — n/u-
£•*• ^U«o«ti t»^
»(.A«U,H.t,li.» W ,»•'
,-.,.l..UI,}
70
bO
90
200
210
220
LABELS
a c o E
3 C CJ U
'*vj6R i 2 Sod:, i 3 luni- i 4 I'lie. 4-
i,tr. G ° ' " 9
3
r c--t j
1\ RT»J
{.i-ri ff
^Tt) 0
•f WO 1
V> RTJ
]
FLAGS SET STATUS
° FLAGS TRIG DISP
i on Off
o D H
•! 1 D 0
2 D CJ
3 3 D B
DEO 0 FIX ?
GRAD D SCI C
RAD D ENG Q
C-6
-------
,
- 001
DA1E g
1EIT
FUEL
FUEL
TU/WfcL OPE.
SAMPLING- OPR- 7T Q
COMPUTER. OUTPUT
i* H, (FUEL co^s. WU«Vyl« r V
£>.
D.///
0
D
O
V)
0.085
0
I
0
o
0
O
J
z
D.O//
a A
/
C-7
-------
APPENDIX D
GASEOUS EMISSIONS DATA
-------
CO
I—
en
LJlM
OiO
O
L"' •
LJCJ
_JLU
—
HO
-r- £-•
ix
CN
oin-ooixco
~
:ct—
LUt-H
i—o
h-H
cdx:
:~«
cc«
oo -
00 -a
.— ^ O- U1IX M3
to en ca
ooao«x
-------
r>
to
LU—i
ceo
o
tn .•
3!fO
or-4
Hi-q-
tnin
tn i
I—I—1
;EI-<
LU
i—
U40
_JLU
HO
3: Li
LUCu
CL.
H-
U.
CNi-KNM
r~,
•s,
—ICO «
•>i-(O
O'-sZ
2:0
i~lH- .
LU ceo .
_j -0:2:0
o o 2:
i—i LU O
rcH- 02: to
:>l=lCC|l=lO
o
o
ce
o
o
2;
o
o
LU
Ce
ce
o
o
1=1
I—1
=3
X
o
2:
to
ui
•T
IX
o
to
OLti
LJX
os:
o
KJ
.sQ
M .
r-4O
arH-
LUM
ma:
_J^3
rDZ
o r-4-o 1-1-T r-4
-X .|-O
r-4
-•o •
co-o
to
. in co CN i
Mr-4
lilO
soo
CKO
cocoiii .
1-1 »~o r-4i-ii*i
I-H r-4
• r-4
I-H CO O
r-4
r-4
LU
:zx o
OH- LUO
0-4-tnLuciUjoLUQLUoij_
- " td.OCuOCL.OCl.tD2:
acarn-a:
Cl.CL.LJCl.
CL.O.O.CU
2:2:2:2:
oooo
HI— II— IM
I— H- H- H- tO LO tO tO
OOOOH- r-4r-4xx_i
» » OS P5 H- Z X LJ LJ O LJ 2: X d
ce ce ce ce to •*£. u.
to
13 LU
cea:
-------
33W o— irn-c— i
003: -n -HXW-H 332:oox2:oox 02:2:0000x3: -HWWWW -H i>o
X3>-< ezomc:i>m croooooooo Mooooooooor-r-r-r- mso -H3:
M33O m3>3:3:33cn 2:xKj XKJ r-xxroro — 10000 torn Mm 4s»3:mr— 2:
ow33 r-33-OMO— i c scace — ten <:— i XJM mo
moo wmo3: —13:3:3:3:0000 — iwtnwenwcowen-nmmmm e= mm wenro •
tn2:o oo33Mm2: 5«;en<:enoi-i3>3>3>a>oooo MO3>O3>o3>O3>f—33333333 or- 73 • en- a:
T> 02:3>-4-ic: 3:a>oo-n3:enenenen2:2:2:2: o?!:3:x3:7;3:7i:3:o -<-< x
03:70 2: — i--ic3 oen czvi
-now enwer- ajw - - mmmm ajr— sen— ?sr"»r— mz:2:i-i r- 3:^
2:0 cn-tyj •• m x-sWx-> 010002:2:2:2: ~nc3rnt>mc3mc3men<:r-i — n m MM — • — r-cn
2:02: 3:om a? 3:r-ens:«i x>?3X>xt-t-i-i-i a> -iomm o* asi-* i>i>i>33Xipci3? 03:3:3:3:3:3:3:3:0!— -H—I-O MVI c*i*.4i. i
-HHH-. -in 3> 3:-H-H 3:3:3:3:3>i>3>2> -Hmmmmmmmm* cz -10 t-j -^s to
?3t3 MO en->--- tnenenen— I-H— i— 4 o— i— i— i— i— i— I-H— i —1—1-03; -f oa •>• ^
om om cen —"•* >-n-ii-«t-i wmmmmmmmmoi-im 3; 3: m e.n
CT>- 2:-« 33O OO OOOO ^J3O 33 33 30333533 CO 3: 3:* 3: - O
m - ms: 33:33 2:2:2:2: N.V.N.X-WXV.* 2:tJ3: tn
Z O-— -<-< 3333333333333333 en* » X 4*3: f—
•• %^ ^>w "O-TJTO-ij 3>3>3>3>^3>3>3>3: M » O W
-OO-OTJ 2:2:2:2:2:2:2:2^ oxo -> en ^.
3;— 13:3: OOOOOCOOO-H mro'-- -ofo — r~m
ocncn r- 003: tn mmrnmmmmm33 OOM o-o i »
m •xtx\^~v.-v\\m * "-2: — 1» -t»m
o -OTJ-o-o-o"o-o-oen M. M en*
. CTX O -O-OOO-O"O-O-O-~ O2: 4*
03:0 cn x. 3:3:— <— 13:3; 3: 3: en •~» x
?«: o n o M M M
3: en -n mxo z: 4>
^-- oro«— o
- o x o
CO
tn
:*:
3:
V
3>o oowo«c x
o--o •.».»»»»«o e>4ro>o
ohjt-' tn jb.>oo*.i-'xicoco« w* • * tn-< en2:o— ix <:
co co co o 4^ K) M H* !-•• e»4 i-'X,s-sX.sx\\\ ^co^oe^CNOs co • o PIHH -om
COU4S5M I . . -c OO4».Or-JvJ. Wi-' t»J i— i— •— VJ tn W 2: O O 33X
» w H*ex» ^-s--,o» M» • » sa>-tn • r-jroeKiwt»4eMi-'*-'-N'vi— •— ^ 7^ ace O2:n> r- OM
» WNBVI vje>-co • w» t-Jtntxvi- » t-'"v,-N.x,-v.-xv.-x.v,^vii_i.(_»f.j 3; cr- - o?3 m e_o
tn • • wja-uw o o* i-'>O4> 3:w • —it— mi—
•o-o >-» wo-» »H O2:om
vjo e*i- • w MW - oo o— i 2:^0 -H
e>jco »-'soooi— wwvitn o--"— Mm ot-*- m
i cn
tntn
f-jo
w i tn
cn o
3:0 033
. cn
cn ez
o r~
— —i
vj tn
4»
. I
O
rn
cn
2:
o
X
o
o
33
33
m
o
o
2:
o
o
33
co
-------
o.
•—CM
to *
en
LU
CO
cc
O
t—
cj
i
n T-t
x:-— i
LU
H-
LU CJ
4 r-4 t^s
-r-^o
ox. 2:
2:0
Cu >-
x:f—
LUI-I
i— d
—i -0:2:0
CJ U 2:
MLU O
3TH-co2:cri
>-tn
C3
fx
CS .
r-4 •«»• ro -o eno r-t o co
^H»»*
o-cario.
r-j'rn ro in
in
co
i=t
o
C'4
to
3:
2:
o -
— r-4 CQ
O3TLU
C-4 d
3: »-^
2: cj
LL.
CJ
o_ o_ u_ D_CJ cj a. CL.
too. a. a. a. a. a. a. e_
. . .
MO CO CCLJ LU LU LULU LU LU LU
^-r-4LU t-tD co co coo o co co
03c« ^2:2:2:2:2:2:2:2:
04 x:->- — p
ccra: X:LU
oo oct
— •— tnn
'-><— tn
LU
«-2:
LUO
OM
tOCOCO
LU
»-co
LUO
.
LULUOH- tnu40Luoujoujou.
cc
Sou.
COI—
LUM uico
X:H- ceui
O
oooof- r-ir-txx-s
_j_i _i _j oo cj o oo o o OM
«j«i oa « t— ac re cj cjo u 2: 2:0
r-4X C-4X2:
oooocjopop
3= cjcj 2: z: cjo 2: ce:
K- O t-HO. CC _l
tnce:x:x:
-------
CM
oo
ca ••-10003 CD*
to x:
h-LUO
1— CJ 1-11=4
tO -TOO
LU
CJ
-
^>.
1-4
Cl
*— 1
x:
3:
x
o
^gz
J
^* fr^
m
^>—
en
i—
21
LU
I— I
en
y^
M«I
a:
i—
H-
a
x
^-.^.O Os-OCM*i-l*O*O'-4
om • If) IH
* *O
i-4in CH
i-* » -coo in CM •&• oin
• intor*) • » »IN •
i-« 1-4 »in row*
»CM
mini*) oo
MCK* o«oi-4in
>o* CM 1-1
CM
»«o
• • IVCM
c*. »o «
CDOSMCOIV*
*-l-OOCM*-«
Oin » CO -r-i • »CM
CM
»CMO-H
mood* • - »
CNO.CMIVCMO-
CMO
-OO
ONO
i CMO-
MCM
-ocoin
CM
»r»
cMOO'
CM
CM
CM
oo
moo
o •
inin
.O.CMi-l
CO CM * -CM
r-j
o 0 2
i-4Lu o
in o o
rj 1-4 inin
u-
LU-J *-*
2O CO
-~- at
—
x:i-i
o -
in CN
iv . co
-
cst-
COM
.ca 2
roi-i ceo
MX: LUI-I
iv=3tooaH-
:ci-x:cu
a:
o -
--NDJCD <-•
ozui u.
r-4 ca o
a: .— tnx:x:x:x:i-i-x:x
ZCJ -^O- d-d. C_tJtJCl.Ct.
->-< coa.CL.o_ixo-O-O-O-
2-— . LUXXXXXXXX
i-iot3 ct: LULU LULU LULU LULU
«--C-4LU I— OOOtDOOtOtD
OX 1=1 LU22222222
CM s:cnLuoujcaujcaLucau.
HH22LU _icc:_io±_ja£_ia:
ca 1-11-10:3 o_o 0.100.00. to 2
XTXZt— XI
Q-O-CJO-
0.0.0.0.
2222
oooo
i-n-ini-i
t— h-t— >— cncncncn
-
m
o
1-4
i—
x:x:x:x:a.
^^£^:^x:
xxxx=>
enentntnen
xx:x:x:z
cn^u.
i— =>
to
2
ccx:ui>-»-
xrcauj
>-4l— Oi-iO-
cntoo:x:x:
-
x:
o
_
D-6
-------
I
1,1
ZD
in
LJ—I
tKC>
1--*
U'l '
SHJ
or-4
M-r
u'i in
l-T '
LJ
LJLJ
-JLU
LJ—l
i-iO
Ldil.
:r>
_
t—
L-
r-4
CO
LJ
t»4
O
ra
-r-4
r-4 .
r-4-rr
—i t""J «
--HO
_
VEI—
LUM
1—1=1
LJ
_j
LJ o
MLU o
:rf-La:2:c
LJ -
H-
f-H
f^
HH
ac
^
x
o
2:
o
LU
M
_l
m
H-
2:
LU
M
to
2:
ing
1—
1—
0
2C
CNP-.O-CO
o
-H -in rocoin
oin -coin
to
C-4
co-o
in r-4 in
—i r-4 1-1
uicoco
-oor-4
CDOS3CO-OCO
-
r-4 UT i—
inn
o 2:
0:0
OLU
r-4 era r-4
LTI a: o
i— i— t— az LU
LETS:
a: OLU
D-7
-
o
u
-------
-M i
I— -O^ CM i-l r-4 TH MI~>.CM
CJ
ui
ce:
ct:
o
cj
, , , , ,
CS l-t » -CO M CD_ICOCDCO
•
CD LU S: 2: CMi-ii-l-O •^,^.-N,^'Xv-,X>-xOO » -ONCOM^ -00 O^ -COC-4 -111
__ i • »oo • » IITFX ^~. ^
UKruiui a: ce: in — i ^-II-H o -H «rs c*j»-i«r r-j cs o • cj ui
''-'--'' CM min 2:3: o
x * * •"-< •«=rr^»H--HO'*: oco-* i-H-OMLT -OKIM rv.TH -ITICO—I
o CD
co i •=»•
2: M -rv
o CM
M -f
co UT o- I-H r-4 r*i 1-1
co i ix - oo
1— I i-l "v, Q_ >- •"• >OO
a: —4 1-no - ann- t— -^ .... *-r*\rt - » o-o
ui -c-4O
i- ov:z h-o ui oo
Ul CJ xEi-H M 1-4 -"-O
_i ui i-4i— * ajx: en
cj ~> ui ceo - _i:=> 2: CM IH 1-1 1-1 V.>X'N.X.VSS \\cv- - --oo-'sroo -1-4 OUT -o-oo --o
o
-o o o
LiJ D_ HHUI O - t— -OS3i-ir-4ll"i\^s--."v.V.-v. v.x.i-4 »H >f r-4 i-4
(=t
_j
o
CJ
.- u_
CD •--
(=i I o * y:
o -^r-4O •— is: a:
•«r 2: oa:ui u. o co is:
r-4 HH r-4 d cj o o o
3: »•— coa:a:s:a:i—i—x:az -42: o
UT 2:0 ---Q_Ci_u.CL.cjoa.ci- *x o IH
-rHCO i-l *i—i CO O. CL. O_ 0_ ii_ O_ u- il. _l CJ X. - ^->^~. ,-.1-4
ii:ui« _i a=-«f a: - -co ii:a:a:ct 11:0:11:11: « >->- ^01— CD o
S:H-I rx aza.2: -x.x.x.x.-v.x.x.x. 2:2:2:2: uio±cc: aiuiis. :ECD
u - a: -araioractQiCiiOiOiOicece: oooo z cjo« ucea: -
in &. a: ac UIMCJUILUUIUIUI LULU LUCE: H-IMMI-I o z——• corazj
ix - co >- aro.1— t— t— i— >— i— i— H-(— i— o i—H-t—H- coco coco I-H <: -•%-— coco
ce: ui
_j— ^- on ce:o L—i_jr>cnuiouiouioLiJau. 2:2:2:^0000 xxi^xiS o ~m~ Loul S
•-t—
o-«rHH n:t-a:cu oariiaziiariiaziso 2:2:2:2:01 coco en coii:u_ ui2:uiH-ice
r-4cor-4 uiuir32:ce uiuiuiuiu.co05 CJ 3333 =) _l CO H-41— OH-lCl.
2:_iui:c- nut OUKEIDLU
H-H-IHH2: o
-------
o
o
3:3:50 co co
me
i>
CO
I-— < — ic:
-H -cms: 33
cr 33wm
33 mm
m
003:
mx.3:
.
03;
o CT
XIO
i— enen
COO-i— I
• • . w
c=3:3> o o-n m 3:
rn 3:1—noon
~ w-— o
03:1—cos: SIM
am 33 o mm en
2:a> 3:—i—I—)
coco-—•— x>
czerto •"—-•2:
3:330 tsoo
Tim 3: 3333m
o
o
3:m
o
o
2:
CO
coooo
mxro
-
en en en en
O 33 33 33 33
2:3:3:3:3:
CO CO CO CO CO
-03:3:3:3:
o
2:
o
w
x,
o
o
6-a
2: oo a: 2: oo re
o oo o o oo o
x r-j x ro
3c 3:3; 3; o oo o
3> T>3> J> O OO O
co toto to 2:2:2:2:
to toco to o oo o
mmm m
o cno en as2:2:2:
33333333-H-H-H-H
I» 3>3> 3> 33 3333 33
3; 3:3:3:3> »-a> 3>
to coco co —i —1-4 —i
MMI—IH
oooo
2:2:2:2:
02:2: ooo o a: 3:—i w w ww
r—xxroro -HOOOO
— iw to w to w co w to"n m rn mm
MO 3> O 3>0 3> O 3>r- 33 33 3333
2:emj en T7O TJ en -TJE: 33 M MO
33r-33i~33r-33r- rn2:2:M
-nomomomomco-cr-i — n
03: 3; 3: 3:3; 3: 3: 3:0 r- -< -H-CI
— in mm mm mmm- cr ^
33mm mmm mm mo Mm "3:
33 33 333333 33 33 33C O 3C 3>
-
OCTOtnooCTCT—i
mmmmmmmm33 OOM
•n-13-13-0-13-0-0-oto M.
-D-DOOT313-CIT3-~- 02:
3:3:—i—13:3:3:3:co ---» 3:
o o ro
01 en
• o
xi t.n
ro
ut
WCD
o
o
33
W33
CO-<
o
2: o o
~
CO
m
2:
> 033 m
*-L 2:
2:x.o
urn o ro«
—13: » cot—
TJ rn
333:
OM
OCN
XI
"-O
_b. CO-fc>-
» OCD
i-' ro
ro
M33MfT|33
O W33I—W
moo o
co 2: 002:
ON H* oro
OLicncoxi. M. . .
"".".".H-'M- xicn
H-*- H* en
-—en ---'--~-
XI* COO>-'
o- co» .
i— . . H-I .*. diro
ot.nowororoxi-<3 o— •-•
CO
en
3:0
xrn
w
uro
M
m
.
en
_
mt~
om
m
>- 3:
l-t M
i co
en to
J»M
ro o
w 2:
i CO
o
O 33
M m
co
en
4>
O
m
en
03: 33 2:0
TIOWCOM
2:0 co
MXCOT3M
Mm
om— 10
en X2:
m o
en en en i—a
cnui
• o
ro
ui*
co
-ooo.
O-b-OOO-
OCN
om
l-'XJW" •
CO^CO-b-O-O
... UIOOLH
oo
ro» . t-^ co » mro
owotnoo-wcoco o—--^
tnxi
wroo
o- M oro
2:
to
M
m
o-co ro w !-•
« cs co ro en cow *.. H*
Us0 ..H*.. .o»-» wwen
w. -oca* -t>^ w- oo--oen. .
>o xi xi-co
to
a>
>-»»-» j-' en w
*^ row r~
Xl» ^OOH* HH
ON O- * M
,_t» . »_•• w » enrj m
oenowowroxiH-1 o^—• o
2:
o
X
X
3:
M
1=1
o
o
33
33
m
o
o
3>
o
-H
O
33
co
XI
xi en o t
-------
o
CO
li-
re
•—r-4 to
to * LU
«!*-« _l
-J-rt I-H
x:
*--^
O3
Oi£ O
in «*•
KIT t-l
CO
•~-co
to —
ii LUX:
1 --JC.
-dlil
co-
1—
*— 1
1=4
*— i
x:
3:
x
p
*£:
LJ
O
r-.
to
LU vH
0:0
o
CO I
O r-4
to in
to !
LUCJ
_JLU
~
to
cox
LU '
o- -
ix
r-4 M
to
r-4 ro
*r-4O
LUM
LC: o •
-
oc _jcj
LULU 3
COH-
Luto
tox:x:x:x:t-H-x:x:
2:0 ---CL.ij_CLCuCJtja.CL
.M too. a. a. 1x0.0.0. a.
2:— *
MOCO
>--r-4Lu
oaco
r-4
1 * -co
x:a.2: .,
-x:x: 0^10:0: 0:0:0:0:0:0:
x: LUH-IOLU LULU LULU LULULUOC
x:o.t— H— >— i— H-H-H-H-I— *— o
ri -LULUUJLUUJLULUUJI—
O>-H-_I«X:X:X:X:X:X:X:X:CJ
LULUOK- tOLUi=iLUCiLUCiLUCiLi_
_io:_ja:— loc—ia:
x:x:h-x:
0.0.00.
0.0,0.0.
to
o
cj
LU
co
to cjx:o
2: to
x: co
--•-••-•
oooo
X:LU
coo:
ton
t— \—\— t— to coco co •--^•to
•«
-------
tn
-J
CO
UJ-i-i
Li: o
c=
co i
raro
or 4
hH-r?-
ton
CO i
LU
I—
UK-J
-JUJ
CJ~J
1—Ip
UJCu
to
LU
0:3
LuST
U-i-CTLULU
O
H-
CJ
I—
CJ
LU
ce
ce
o
CJ
n
a:
•x
o
» - »
fM
COM
>o »
COO
CD r-s -o ON r-4
i-i.i '~ \
ci s:
to
ro
...
a .-• - -~. o ro co M i/i
LU mo o- TH
i-i LTOO -M".
..J CMCM-i-H-tH XXX
s- T-I rj x s-^ x
i— * - -CM -coc4rx
<*- t"j J^t"J T^ p'^. }M"J -fcQ
•~13 Lr5 r-4 TH
OTOM3r4
* * TH
r--. coo*?- r-4
^s,^^xrO » "OCKUTliT -l!T
T-i o TH.CJ
we*.
ts
s:
Cud-CJO.
» s: s: o r> CD: cc: cc: CK a: ct: ct: ii:
3: LUl-HOUJUJ LULU LULU LULU ut:
STlXI—I— f— (~f— t~f-(— H-f—O
• LU LU LU LU UJ LU LU UJ I—
oooo
1-^ I—I H t-H
K-l— t— H-COCOCOtO
o
o
CJ
O
2 5Z Z 3E CD CD CD CD
LULU LULU
cj cj cj cj co co cn to
3:2:2:3: co cococo
a o o o
i uTr-~.ro
o *r r-4
-------
1
tn
rs
tn
LU TH
ct:o
o
cn I
a r-4
cn in
cn i
LU
LUCJ
-JLU
l-lO
LlJCl_
I.L.
I—
LU
CL.
3:
cn
O3
CD
-co
cn
LU
in
o
C-4
CO
I 'X.
-OUT
LQ_I I O
TH arc-4
CD
LU -X LU LU
3:3 ens;
h—LUO
r- C.J 1-1»
LU
LU
0-.
CO
O
an c-4
LU
0:0 -
•0:2:0
002:
o
o
oo
ct:
o
2:
o
o
LU
ct:
a:
o
o
X
CD
tn
t-U
o
o
rn
r--
C-J
r-3;-'
""' en
r-4 -
C'41-O
LU «x - :> cc f»
LU
M
C--41
(Ci
h-
tn
;i->(
xx:2:o3:
0=302:
racn o 3333 ra
LUhHLUCDCO OOOOH" C-4C-4XX—J
SH-Cti-tTLU _l_l_l_IOOOOOOOOOl-H
o cn ie: li-
2:
-------
I
to
t~-
ra
to
UJ 1-i
u; o
o
tf> \
:3TI"0
OCM
M
LU iX
IX
re
^CM co
to • LU
CCli-l _J
o:*: o
in CM
CM
oo
— CO
tn
-OUT
00 -
i—o
a: a; cc:
CD UJ
n-J.Jh-
LU-XLUUJ
3=3 to an
I— LUO
I— Oi-<«
to-
aci—
UJH
CDCNf-JO-COT-l
(Xl TJ- -.
i roo-
LU OO - O
M - -.tO «T
—i r-4r-4 IH -X.-V.V.-NX'^X.'^-^T • »i~-«ooi-i *r
•o—•i-n-iMror*ji>ncMCM »inroro « •» »rs
i-l T-4 Will
CM
-cs
rxr-4
S3 »
co-o
* in -oca eo
I MOK
M »-!<• CO O -O O CK ,-1
2: —--NO
LU OO »
l-l - -CO
tn moo- »
z r-4 eg o
M
o MOM r-4o->ro -00-403
rn oiiT 1-1 t-i c-4 ro -^<
•TO
•oo
CKO
oooor*>T-i
r-4
CM
o »
into
ta_icDCDta
CJ LU
2:2: ta
01— LUO
UJM-- CSuK
0-3;
:00
o QOLU
LU O O »
M - »LO
M ITJOO
_j c-4c-4
41-1 •—•—•—co
ou.:i:cja
tj
CMO-
03
sn
s:
' O. Ll- O- O. CO O O- O-
nQtO O: LULU LULU LULU LULU
— CMLU I—CD O CD t3 CD CD CD CO ._
ozro 012:2:2:2:2:2:2:2: 0.0.00.
r-4 2n. r-4 r-4h-
Cl--.J---__ N-- OM Oi O _. .
g c5s co -^ u.
i— =3
co
ZDUJ
-------
en-
m
—
o 3:1— to s: JEM
om33ommto
wens: co
on:
o en
to
cncoco i
OO- J»
3:33 112:003:
rncr troooo
3>z rnxro
to r-
ez—i cncncncn
T1?tCn<:COt333>-i O33333333
2:3:3:3:3:
to to to en to
133:3:3:3:
o
z
o
w
o
o
zoo re 2:00 art-i 2:2:0000 rcm-
oooooooonooooooe-joor-r-f-r-
xto xrj r~xxtofo
3>X"3> 3>OOO Ol-iO3> O3>O3> O3>l~ 33 333333
to co to 102:2:2: 2:0— 3; 3^:3:^3; ^rzo
to to to to o o o o z: en 13 cms entj cn t> e 33 M n o
mmmm 33f-3.ir-33r-33r- m2:2:n
en en en cnz z 2: 2: -n « m e? m wm f mto<: r~r~ "n
33333333—1 — I — I — 13> — lOPim
3> 3> 3> 3> 33 33 33 33 O 3: 3: 3: 3: 3: 3= 3: 3: ti r~ -I -t T3
3:3:3;3:i«3>3>3>— immmmrnmrnm* cr
tncimi-im
o tn<:-"i
wascrmm
i-ic:r~ 37
133:— in:
O33
2:
OOOO
2:2:2:2:
TJOT3T3
3333333333313333 co-
X-3>0>3>3>X-3>3>3:
2: 2: 2: 2: 2: iZ 2: 2: m
rj
r"
o
o
rzm
o
o
z
«
to
3;
3;
* tn
13 ro
OSQ
o
vj
m
W
CO
mo
» 3C
i -e»o
o
03;
r~m
i t?
-t>rn
O"
I
t/lC/l
« O
t:3
-O O1
» » •si* •
coco- cni-
-OJa.CNJs.i-
OCN
OO
- - » COCO4S.
COOLT* f-»vj
to
tn
moo o
to 2:002:
co
—i
i>
w
M
m
om— 10
en 3:2:
m o
2: ---
cncntnr~en
cnai
» o co
com - »
OCN
C/IW
- x»
cocDWMtocn
C0»
GO -«>O •*».*>.
tO J>
• • • » ow
oocm-'to-
W33
cn-<
W— 1
co to
- t.n
ft- "
o
m
G'J
om— i
r~cn
-------
o
o
—i a: w-J -T3
3: 3: 33 en tn
"Oi— 10 — It— i
me? 3:
3>— i— icr
-n
er
3:33
mcz eroooo
x»s: mxro
en f~
CD CD en CD
O 33 33 33 33
si-a
2:ooa:2:oorct=i3:2:ooooa:a:~iwwitc'w o
ooaoooao»~ioaoooooooi"r~r-r"
xro xro r~xxroro -HOOCDO
3:3;3:3:oooo-Hwenwcnttjenwcn-nmmmm
E-Q
m
men
33 cz
r~
-H
en
3cr--no»rn 2:3:3:3:3;
en en en en en
en en en en •z. •z. ~z. :E o ye. 3; ~ 3: P^ 3; :*: 3: o
3oooo-
mmmrn
orn33omrncn
en re
en en
rrcrcn •-•--- •x.
WOO
3333m
-<-<.
ro C-4-t>
r-oo-w i
tn
o
2:
o
o
7*: en
o
o
2:
»
IB
"03:3:3:3:
o
o
to
o
o
3:3:3:3; 3>i>x-x>-— i mm mmmm rnrn*
enenenen— i— i— i
er
— 1-^•^33:
rs:
X..X.,.
-n-CI-O-13 TIT?-13-I3CO
13 -TJ O O TJ T3 -O T3 —
cen
o
02:
•--<- a:
cs rj
rnrco
cnr.} —
» o
c.1 n:
* en
rc
CD
e»
-o
r~
ti?
en
r-rn
i i~?
o» rn
w
m
•n
e.ne/i »-* ro
» O O CK
coe.ii » » i-**
»-••• oco»
C.1
o* roe>-j*xj»
•-••COO-O
OC/!
• • » --JCOJS-
•-ooe-n* -
OCO *OO v
ro
oca
+ o*
r-.3 co
ro
xjcoxje*jocooro* ro-
, t-».oc»JO
o ore -no
moo o
en 2: 002:
03:332:0
-nowent-i
2:02; six
-
— in —ii-i
33 t.i'-- urn
orn— 10
m o
en CD CD i—CD
c/icn ro
• o co e*i
cne.n
o-o
-ccn i
> tlj
3>
» --JCOC/I
ja.*
•vi rococo-
o-co
• CN
C*4CQ
-O
to
CT
CO *
w
rrc:
i.'J
3r tn
-'-.. rn
rn
en
o
o
33
33
m
o
o
x>
o
o
33
LI?:?. CD —i:n
o rni-i
2: o o
O3
CufOt-'-O
orn—i
:K en ere;
---ir-i—n
m c=s
O— 1
ro I ,r~c.n
. e>4X>co
CD
co
ro
XJ
m
en
co
C.1
s:o
en
~n rn
31 T
O !-i
t, o
m r-
o m
—i
rn
I Cj™
tn co
.£»• HH
ro o
rv4 ~'
i tn
o
en
er
-oci i
» . . » f-»w
coo-i-4-e»>» I,-
e»
-------
CO
cm
O
o
«x
o
LU
££
ce
o
o
X
o
03
LU
en
i~-
_j
TD
cn
LU «•<
a: o
o
CO 1
2: r*3
O CM
n •«?
en ir)
in i
1— i T-I
LU
} —
IU £-3
_J UJ
O ~3
n O
tT'
en
K^.
'"-•.H
Ov-x
s:rn
UJ
LU O_ l-l UJ
.
CD
cr>
»CK
L'J »
uu .."
i-Un
._ j ^3 x:
TO i?3
« CO
>- to
.-•**-*. o omr-4-o-»-iooo-r-!
Olf3 * ^Ot-H hO » -1/3
» «00 M •"-!
»o
coo-o
(c, » » -
I t-i«»-UTO- »
o«s-co
LU
Pj
T-I en
LU_I
CO
T4
s: -en *
•> c--4 cnr-4
QLU
en -
T
C-4
u.
a •
CM
3:
a
.. . . . ..... .
Ci^LU LULU LULU LULU LU
•— eoeneDericDoeD co
LUX: 2: 2: 2: 2: 2: z 2: a.ixejLi-
c-j H:.vsv^»x*xi>x.v.N» 2:2:2:3:
«x:x:or3Cc:ct:ci:ct:ci:ct:ct:ct: oooo
LUi-lOLULULULULUUILULUClil-ll-ll-ll-l
ci_i~i~-j«acx:x:x;x:x:x:x:oii:ct:£r: &:<:<:<:<:
LULUOI—
cn
2:
o
LU
en
X:LU
ct:
r»
CD en en
UJ O UJ O
csi—i ctii:
HI-- ^.hHF-
LUOX: 2:02:
o x: i=: x: it: x: is: x: ^: a 2:2:2:2: en en en en x: u. e j ca cni«:
UJUJZJ LULULULUu-enTOcnTOcnTOcnTOi—ejocjox:x:x:x:i~
O-T !--
OOOO I— r-JC-4XX_J C-4X
. J_l _l _J OCJ CJO OO OO OHH CJO OO CJ O OO Z3
TOTO « TO i— a: a:cj ejej 02: 2:« 3:ej ox: azcj CJ2: a:
TOOU-
ZLUnCiioo oz:cn
x:p)LUTO oauj
ena:x:x:
-------
CD
1
to
1—
1
1
en
LU -.--I
fr* £2
O
en i
O C'J
1—1 *r
O) L-T
tn i
1— 1 •»-!
LU
LU CJ
..i Ui
CJ T
M p
LU £l_
:>
?•
JE
175
CO
---CM en
en » uj
OJ-rH _J
jg;
»•*'
oi^: co
UT T-4
r*5*5~ 1*0
* CO
tD •—
'*••" U- 3C
_ ' ^
CO-OZM •>
CDO^M
ljT_J 1 O
eaujro
uU *^!_ *i, ^^ --•*
LE:
o
CJ
- ~s
H^S oS^ ^^r'4?°'^CJiS'r~I
i~i •* -O UT t-t
(Jj "3£ jj"J Qx O * O
_jiD x; c'4-^-rfxOrH-v^^ v^^s^^v^
I^O UT rO *rH -r-t i-^
* CO O t*3 OO O CO "x-. -^x ^ "x \ x^. "^ \
5-cn • - »ro »roocoT-HUT~o-f-4O
S3: rotCft &«a-r-4C4 or-4
r-jr-4
T-H CO
r-4T-in
rx
o-oo »co
1^5 » * *O ^O
i mtooo »
o«reo
CKO
M
2:
LU
05
«
3"
o -
^CMCD
T4
3:
(=,
l-lOt!3 tt:UJLiJLULUlULULUlU
'C-4LU I—CD CD CD tDC3 tD CD CD
LUS!:2:2: ;Z2:2: 2: 2:
cn
d
2:
o
CJ
LU
cn
LUO
tDtDCD
LUO
.
LUOS:
— _
1-12:2:01
UJLULULU
otntnenenujou __ iac
cnxi-i
2:02:
02:
«OLl_
_
LU LU LU LU u. to » en PS to « en « i~ cj o cj o acac aca: t—
C.100C3I— r-4r-4xx_j CMX r-4X2:
_i_j _!_i o cj oo oo o o o MOO o ooo oozs
» M i» «i i— ;n a: o c J cj cj zs. -z: o a: o o as a:cj 02: a:
D-17
rat— i— •0:2:0
OOLU
H- « 3: i—
-------
H33GJ
•TJ — i re w —t
c; o m c: 3> rn
1—33-13 M
8T-Q
33 s: o o a: 2: o o re w 2:2: o o o o qr. a: —i w w w tg
2:xro xro r~xxroro" —foooo
cr sztsrers:
—13:3:3:3:0000—iwtowtottitowto-nmrnrnm
0333
-
2:0
2:02:
TOO
om
OT-
rn
crjcncn
"13 X"
—in
33
mmmm
2:2:2:2:
33333333— t—i— i— ia>
r~-n
—10 mm
om
2:-
crto
330
WO
3333
—I-HT33C
•im :x
33 33 33 33 33 33 33 33 c: O 3: 3C »
O3CO
tn
rn
o
o
o
to
mmmmmmrnm33
T3 TJ TJ TJ "13 13-1313 tO
TJ T3OOTJ -DTJ-O-~
3: 3: -H -H 3: 3:3C 3: CO
O
-n
mro--
OOi—i
02:
t? ro
m:r:o
o
t» r<3 MI
j>rn j>
—ito<:-H
crmrn
OI~ 33
otntrvj
f 3C J>
rn
V-l-vj
ro
wn:
» «
O--O
0-
i—i
•z.
a:
G3
c;3 -i m f.-- —i
mo
rotoro «•
- to- 3:
t>4.6».£»
ro --J
co
to
en
us;
turn 33
i—rn
i '.:->
tor.)
rj
J:.
tO-fa-O
vj Ultra
en o- •£> v-'ro -t»o
wwo t-'roj>-o woj*.
..»»»»»» oa --jro^j
vjo-cnwr-oor-o*.* t*i» » -
CO
cr-xl
CO
tn 31 'C -< -•:> 3> m
to -< to y G'J ~j x
o rn M
w 2: o o
:i:r: crssrs- r-
c:r— - C333 rn
~^ ^ * — i
M " OJ 2;
I-H rn or-.i «
—jrs: » i-'i-j.
"" t" ciB
c>jro HL o<
ti-4 r>3
» !-••
°" J-'
tn
-< r~i
5; '"^
C3
O
C]
O
m
tn
<_"
-13 rn
333:
O t-t
L-C'3
rnr"
om
tn
i-»rK
I tO
C.1 !Si
J.> 1 — I
ro o
I to
o
0 33
t-^rn
CO
cr
r-
to
i
o
o
33
33
rn
o
o
2:
o
o
m
'.si—iO--'J
rnmi>m
rn a?
7-0 33 :c
o—"
J5. '^. ^•'•
-•J i 1—01
r-..i J=»OCD
i*O*
:••«: i
en
c.n
co
Ul
rn - to
o) ro -^
CO
-------
I
co
LU --<
LlTO
O
CO !
QC4
05 I
UJ
I—
UJCJ
_ j LU
LUCu
O.
a:
CO
Mi
O3
in'
en
ui
_i
co
o
00
CD
• oco
COO«Ti-l
o<
ClD
l C-4 tO
- C-4 O
0X2:
L«:CD -
"2:
UI
_J
CJ cj
MLU O
re H- CD 2: co
C3
LU
a
o
LUX
«:*:
CD co «r o- -*-i -o
- OUICD
c-4to
-OO
o-o
ro 2:
ej ui
2:rn en
Oh-UJCD
LU
Nl
t—
in
i—i
CO
•|o
c>>ro -o-cam
•«rcoo • • *
'- --> o ix a- ro o
OtO » CM C-4
» -o •«•
O •"«*•
C-4 --H i-l i-l
« ^o o r-4 »
* »eN
i-tO
•-OO
o-o
-cn-o
*o
CM
o *
tiTLT
O
C4
i-l CO
1=1 i
LU-J
2:0
13 a:-—
en ui o LU o ui o LU o u. 2 2: 2: 2: CD co co CD
LULULULLI
o s: i=: ac i*: x: i«: s: i£ o 2: 2: z 2: en en en en
i — i— it— 12:
eo a: ea ui i— CD
a:_ico
-
2:
o
en en en en en
x:x:x:x:2:
-------
o
o
02-a
3: 3; 33 en tn
•<3HO-Ht~l
3:33
mcr
xi w en ~i n i <:-H
— I-<|T|3:33
33
m
en
er— i
-n 3c. en <: eo ts 33 n
en 3; 3> o ern m 3:
m 3:1 — noom
~
coooo
mxro
cncnoGJ
O33333333
mv.3;
rnto
33 tr
to
cnrc
en
vi w
ro -t. to
cnvio i
• » * m
Ct-o-b-
o o a o o o o o M o o o o o o r m o r* r~ r~ r~
xro xro r~xxr.jro -HCJOOO
er eErers:
3: 3: 3; 3: o o o o — i w en tu en w to w en -n m m m rn
3>3»I»3>OOOOi-iCn2>O3>oa>O3>r--33333333
to en to en z: z: 2: 2: o 5s; 3; ?? 3: ?\ 3: ~ 3; o
to en tn en o o o o s: en 13 en 13 o 13 en 13 s: 33 n M «
mmmrn 33r-33r~33r-?.jr- mz:x.i-i
en en tn en 3S z s: 3: -n o m ti m w m w m tn <: r- r- -11
33333333— 1— I— I -"O -HOmm
3> 3> 3> 2> 33 33 33 P3 O 3: 3C 3: 3C 3K 3C 3C 3C W l~ — I —I T?
3:3:3:3:z>i>3>3>— frnrnmrnmrnmrn- c:
"
OOOO
33 33 33 33 33 33 33 33 CO 3T3C
s^---,v-o-..s^s^vv.'x. -
3333333333333333
3:~i3:rs:
GP en en en en en en en— i
mmmrnmmmmaj
eoenrni— im
en tn a: tn
2: i~i t~<— i
-o>-< mo
t-j to r-J »
» to » 3!
I— i-S»O
en 2: r- rn -s»
--• — . r~ o-i
--a m
r"
w
en
r~m
i «
w
m
G3
o
j» ro (-»•-* JS-CK o
wcoo r~
t.n CNKJ-O ti
cne.n
• o
M
e>«
w-
o-o
oo-
Oi-*
• * » o co c.n
co ro vi co-----'
O-CD
* o-
ro
5 • » VI
vi co»
O1 VI t*l
e«J» oe.ne.iivi*
(-••viCKcn
- - c/io
i-'O-WC.'! J>C»JVI1~'
»»»»»»»» CJl
o- o o o. w J> t-* vi»
W^^v^.1
wcoo
VIM^O
rnto o
ZIOS: 3CX
33 <=!'
om—to
en a:2r
m o
entncir-en
3:3:3:03:
o
C-HLH
* o
O-C.1
N)
.VI
ro
co-'Ot.ni-'-ca
» e.n tt- o-»
cowtj-icoe>4 0*-*^
» - tflo- » » » » —•
Nl
COJ*OO~- 3>
C>JO--J3t.TOCn
Z-tJ
W33
0*3 -™1''
-•~rn
~. en
en
m
o
o
X
rr:
rs
-H
n
o
33
33
m
o
—i
o
•z.
o
o
era
o t? w w -c
co s: ci'j ^ nr
o rn M
;K e"J t")
e~j 2:3> r-
» ts 33 m
CO
l,i t 3 h-' O
rn
ot-'X'to
orn-n
rK u'j c:: E;
m m :> m
-H r- r" M
m en
3? ron:
O -H
i"*-*1 31 *•
c/13: i-»
vi i r~cn
- OJ3>CO
co e'-
e.n
en
M »-»r~
m
tn
ro-
•x.
•n
en
-n
~i
rn r"
rjm
—t
m
*""• r-.z.
*-*• f-i
i tn
.01—i
roo
i t*o
o
OP3
en
a
r"
—4
(.11
-------
LO
—J
CI3
LU i-H
ft: o
o
en i
CD CM
t« in
U4 CJ
_JUJ
n O
re LCI
LU u_
li-
en
ua
o :e
wi=: ix
CD » CO
co i :*:
COOCB
_i i ix
tno
LU UJ
3-.J-JI—
-to
• e>~u")
1 CMO-
en O-CMNO CM
«rwr-4
o»in »
Oi-l
LU oo • r^-rH 1-1 • »CM
i—i » *cn M
to «rcKO. •••'"^ r^% or-4o-«r csrMO>ioo>
CT: r-s i-* IH -rH CM -*-i * co CM CM "^* 1—1 co o *
(•- ••o-or^r-jroxx.xx.xxxxc^J »-i CM CM in in
l~ CSCM-O W"*»»"***»
o otnro tMOMo^ li-ii-oo^
„-, .. « .. - »o«r » -'
LU OO » iH »H » »i-l
M • -!X LO
i—i *ro^Cf- "ix 1-1 r-tww c-ji-ifor-jr-j
.J CMT-1 CO X. X. X X. X X. X, X. <*• • * •« r^- IX i-l -O r-lL'T -CDM »f*3
co o> 1-1 i-i T-I M -r-i -c-j wcoin r-4 o- -a »
Crt CNCM--O CM ..».--- - -
c I> CO f«1 T-I O- M -«3- •«*• CM f3
-O-r- CM T-<
1™ --S •*
UJ Cac^i •* ^O -t-i -rH •»• * CM
i-i - *CO t'1
CO <."CNO~ -•«»• CM CQIXf-irv OIX-! -o-^ CMr-^'a* <*• o- o -
. - - ^ ^ r^ era tS -^ in o co o ' 1-1
« O-CM-O ro >«»»'»»••
„! OO3M CMi-im-t-l COt-OOn
O -O«4- i-l i-i l~a |<) r-4
O
fC,0 -
I CMO>
mo
-oo
L^
CJ UJ
: a: CD
Oh-UIO
0:302:
C3 C3OUJ
IXCMO--3-
-C-JIX--O
•"rr-.-o
wo
CV-O
I— I
o
IT-J
i-i tn
co T-IX;
-r -j —
en
ujK-iLu
s:i— ce: --
ra-c;
ct: .J CD
o •>
— CM CD
lu
CJ
en x: x: in s: i— i— ac s:
•— ru o- a. cu ej cj a. a.
cn a, a. cu Cu ix Q_ cu a.
UJ X X. X. X. X. X. X. X.
ui la J UJ LU LU UJ IU LU U4
2:3:1— s:
oooo
icJUJiuLuujLUuJUJUj!a:i-ii-H)-Hi— i
t— i — i — i — H-I — i — t— oi~i— 1~ K— encoenen
o
o
CCi
CJ
o
tn
G
2:
O
tJ
O
o
o
•-- oiiariir
en LU o LU « uj o ui cj u. 2: 2: s: as en CD CD CD
UJUJUJLU
CJCJO
^:^----
tn ii u_
ra
en
LU sro
!— h-
D-21
o
CJ
-------
to
I—
CO
LU TH
ceo
o
aj> i
CD C-4
com
en i
LUt-J
_JLlJ
no
LUiX
a.
tO •--
ffi C-4 CO
O
O-
in
c-4
CD
CQ I •*£
CDCnO)
-O
H-OUJ-O
:r- C-4 CO
ix oo * -*?• CN c-4
«rixca » «• *
o-1>- in ix TH o-
CDIXCOTHCUro
osun
i roc*
x-,^o inc-4ir)COTHU~3Ot>-o
OO * Cf-TH fH * *TH
ro
t>-o
OCOIXO
ct:
O OCOM
~r. -o "T
s~. » . .. . -CMin •• -
o ------o •«roij-jroo'^ror<5O
LU O"--> > C4TH -.H • »TH
N4 • >O LO
i-H -«T O- O * IX C3CI
-J C-4-.HtHT-l X,X.X.^%X.X,^SX,CO
»M
IX - » <3-|X
TH CO O «
C-4 IT) ID
CD _J CD CD CD
CJ UJ
O t— UJ O
i~t a. to x n
en _D CD s:
I~H to m o u.
ra
CJ
;X| O- TH tH iH t
TH
LOCO
•rix
0-0-
* * t*3IX
C-4O
-00
Cr-O
•q- c-4 o o- c-4 to «r c-4 in
o
I— M3»OC-4C-4-rH-
^* - ->TH »OCMC4C-4COO«r«r
OO3M
C-4
O O •
f-4 1")
o
«r
D4
C4CO
LU«5-
« I
LU-J
•SK-1
rjcr:-—
a: UJCT
at:n
C3
ti'j
ix »
to ej
o-o:
u: _j CD
i f rj fr^ j-i^ rn
o
o
to
«
2:
O
tJ
iXtXCu Cu
2:2:2:2:
ooora
UJnCJIxlUIUIUJUJUJUJUJLi:MnnM
au Cu l~ H~ t— t— I— I— I— H-1~ I— O I— I— h- I— tO tO tO tO
r3 J-LULUUJUJUJUJUJUII— :_i cix c-tx
-J —I-J _1OCJCJOO O OCDO n OOO O CJ QO O
tD CD CD CD
_J
C4XUJ
to
2: LU n &:
l!,l 2u CT LLl
h-l— On a.
pi—
LU
D-22
-------
•0-
en
»CM
o
O-
in
ui
ro:*: ro
-o
•— T in
CD » CO
iiCO
» U.K.
00 I iu
m~ i o
•t-i +
C'J O
TH
>-to
«3--OT~imroro
CM i-l C4 T-t
2:
LU
to
2:
cc:
O CKC'4-O
_.j ocoro
O -vO«l-
CJ
»toro
.ro - »
ro t>-
r-4
en r-4
~o *
COM3
*-* -x to -o -o r-.
en LU » LU cs LU a LU « u. JE 2: a: 2: to CD ea CD
(-12:2:1x1 _icc:_4£t:_ict:_jC£: LULULULU
«1-11-1 cc: 3 a, CD a. CD a. to a. CD 2: o o o o en en en tn
CJ
Uli-ILUCDtO
ce CK ce cc. _j i— o cj cj tj sz ac ac s:
_
C— i CNX T-4X
_J_J_J_JOCJtJOCJOCTC3Oi~itJOOOtJOaO
« « m « i— a: a: o o o o 2: 2: o a: o o 2: a: o o 2:
D-23
tD CD CD CD
_l
CMXUJ
-
M ce « en r> tn ii u.
I—Z3
CO
2:
-------
cz
O
o
-
x:
=3
X
o
o
LJ
to
CO ~
2: o »
cs ^ rgo -~-
o z orcu u. en a:
•^r I-H c-4 Q o o i;
CM z •*- tox:x:x:x:h-i-a:x: a: CD cjx:o
-cuO-ia-Q-tJOa.Q- o 2:0 iio x:x:x:
'
.. Ul .. ...
CSCJ i-iOO CSUILJLJLJLJLiJLjLJ CO XTC3O —I CDCDCD
LU_J r-4c_ --^r-4UJ t— toocaooooo x:xr»— x:
^ 03:« LJZZXZZZxCZ C.CLOC_
C3 » C-4 X->- ^C5 z
MB x:a.z -XX.X.X.X.X.X.X. zzzz cea; X:LJ ^ LJ
u x: >x:x:o=3C£C£ce:a:c<££i£a:c£ oooa na occ >-z *CD
in X: X: LjMCJLJLlJLJLJLjLJLJLJCe»-l>-il-!l-i •~--~' cn=) LUO LJp
CLI— i— _jiax:x:x:x:x:x:x:x:cji5SQio;Q; ~xa. cnxi-<
LULJOI- tnLjaLJOLjOLJi=!Li.ZZZZC3COOC3 *-»>^ LJ ^ C£i-i3 O Z
• •• «ce «-=racn CQOU.
a o ixrjcnu oi-ii-ia:3CLoe_ocLOCi-ozocjoocncncocnLucju — ix: X:LU>-I— z o^x:o
o«»i-< :rh->- ox:^x:ie:xiix:-*:ozzzztncncotnx:u-cjo-iocnr>cni: ZLJMCCOCJ ozcn
. c-tv) LjLun LJLULULuu.cocac>^i2scniXicnosh-ouocjx:x:x:x:i- X:QUICD OOLJ
OLJ i-i I— Z>en>- 3333 3 I— Qt-iC-£i£_J OiOaO
z:— JLJX: LJI-ILJW oooo»~ O4r-4x:x_j CMX c-vixz encex:x:-
-------
•o
ON
O
O
tj ca
>-co
cr»
« 33cn_ja:o
_
LUd>-O|j __ 13; uj
a: ui cc u. o o
2:
-------
03
fr-
LL.
— z
trj .-»
CO CM CO
_J * LU
»-! _l
* f4 I—H
o a:
O'-'
H-J3
t*)i£ ro
03
•~-v •«
o * 03
ii£C3
- L_:C
00 : ^
O3O-TH
m-
1—
I-H
O
1 — 1
a:
S
X
0
z:
u_
y
o
tn
f—
_j
n
- to
LU-=> C<£a
Z> OO5QCJ 1=1
01*503
i-l CM O CM S3 CM
CSO
CD
ru
a
2:
o
o
UJ
c'4
CN O i-lOO iKUJLULuUJLUUJLUUJ
c-4 a. -^^uj i-oooooocao
~ O^CQ bJ2j2^2:2:2:2^2:2:
=:co
in
x:
>-
Kll—
O~-l-!
*C=i
1—t 1—t I-'!
•«r ar _i
§t-^>? ^5a:^a:ia:ia:io2:z2:zc-jtiicricna:L.cjo C3OOOH-
x:i—ce:uj
o
-------
one:
to
ocn
to
cr—i
-n^:tf5<:tooi=i33M
c:3:i>oo-n;om3
n 3i--no-
2:
O
m
cooo o
mxw
CTCTOCTJ
o3>a>-3> x>
3:3:3:3:3:
totocototo
a 7 _,-,
L. c -u
2:oo:r2:oo:z:?=i2:2:oooo:r x— i www w
oooooooot~iooooooooor-r-i~ r-
xw xw r-xxwro — 10000
c: ec:*: c
3:3:3:3:0000— iwtowtowcnwwinmpi m
i>3>3>3>oooot-iO3>oa>O3>O3>r-?333^3 33
CD en coto 2: 2: 2:2: 0^3:^. ^xz*. 3: ^3:0
totoc,oeooooo2:co--jcn -00-5 cm? SITS M
mmmn ~ ~ - —
o
na>?3— 13;
— I m <: -H
313 2: n n
to-e — i
m
33
-DSC -Ha:
— iracne-o
urn 3;*.
3cnr—;a:
1-1 no
om33omm
3E3>
crcco
3I33O
-
— 1 13
O
a:
o
o
5353
3:3:3:3:3>3>3>-3>— immrrinrnmrnrn
to* 3:
M-
o
O
3:m
O
2:
tn
o
w
.
3> 3> 3> 3> 3> 3> 3> 3> 3: f-J
-i30-!3T" 2:2:2:2:2:2:2:2:^1 0=0
3:— 13:3:00000000— ) mw -~
nmrnmnmrnmaj coo >-H
TJ O O "O TJ TO "~
3:3:— i— 13:3:3:3:05
O2:
~n mz:
-? w
o •<>
2:
CT
02:
r-m
ro
js.
o
O
-n
—i
~3
OO.
oo
i to
c/i to
CO "-J -4*
XIC*4
ro o
t>42:
i to
O
»n
eo
en
r~
— i
en
xa>-
noo o
0:12:002:
3>O
— 11-1 —to
on — 10
o 3:2:
m o
2: •— •
out
>-*Xlf*l*
>oen i ocow* cocs
t-'VJ- 3>
-fe.erUO-b.r-0 CT
i-'*.- 3>
CO
W f i-* J» CS
<• - « -b> COW W _ _
i-* cncNtn.b.i-'-xitnca*!-'-**- th-< a: co —i :i:
en en H* ro en w t-*xxxxxxxxtn woes >-* —\ « o PIM
* p o cs en w w t*j * w ^ co H-1- H-*- H-* &* 713 w o o ^? ^
wo - en '-•• en*ovJi-i'x»J**^oxxxxxxxx >j i-* »-* M 2: cz r~ o?3 n c_o
. _. — .-.__. — ._ .. o^o-b-co 3: o * —i rni—
w* M M xi 2: on
- o i-* n O-H 2:xo —i
o*—1 ^^-^ 2: K-I n o * n
•^ ^ -H -13 - Wt- H-3:
i-* W O
i-» W X
o-* o
-b- <:
w j^ CN o eo
-b- ow ~-o x Fi 2:
>-» cs cs. xi en "-•• o-en en * w* * * —i ?;o o
- o-co w en >-* t»ixxxxxxxxw>-'Oi>-ci~. a> en *
•*o*CK-^oen en-b-t*4-b--i™fcO I-*>-*H-*SO 133 o
enji._t»H^ r-j -owcsen w xi* oo-b i—i o-
en -b* » M *
»—-» i-* o. • o o rn o
i-* en o *. o i> w co w o^----- o
n
WWW H* -b.CN ZZ.
wwxi ow>oro WCOH* o 2: oo3>-<
.».».».»tn xienxi —i o cjMon
•-* xixioco*.xienco- >-• » - x om—ito
» encfl w ew w wxxxxxxxxwwwi-'W —t 3:toc:—H
NQ'O-ow tncsww-i-'O >-*h-ii-*xi ^" 2: nn3>
xixien - * co* * * i-** * » tncoxi* w w w wwui >-••»-••.--. en-^^•••^ 3>w c: —ir—r—s:
CNW* w>o* 4ko t>j» enenoo- * -oxxxxxxxx w i-*w 2: 3 n n
J» sO* * M O "' OCT
ro • • *-"• t—w -(-'•wn >-i •-* 3>s:
i—WOCKOCOWOCN O^-^- 2 -I 4fcn»-H
« - enj>» » • » • -^ —i -< 03
•^ NO i r-
O tkl-b-O*-*
o » csa>en
73 ooco
33 7? I CO
m 3-n *
l-'W*-* W JkCN —i CO?5
JkUJk XIWCO*-* WCOI-1 »—t CO » O
----**-* oj ^oen w co o xi -&• •"""
i^b xj tij s^ co ro H-t e>4 o^ — w * * * —H 2: en
* Cf-CO W -6> i-* t«4XXXXXXXXXI»-'4>.i-»i-' 3> xl x^W
-o* o- co w enow w* f* w »-*i-* f co w -n - ^-tJ
coxi* co^o* tn I-* CN* csxicf-cs- * oxxxxxxxx o'-^'-'W r~ o 3 o
^^ ------- >J» O^O* H-I —I M f*
t/i w* M o r- i-*
4». . (-11-* m ?3 ri » r-
o—••— o 01 ww
•^ ^-- to
. T1
o ~
-------
o
o
3;
-13
mca>rnen
3:3:3? en 1-1
Til— IO — H — I
rn
— i-z mxro
-en r~
c;-) cncacao
. _ _ . . .. 03>3>3>3>
3:1—no-a>3>:i>ooooi-ioa>o:i>.O3>o:i>!— :=333;s 33
en en en en z z z 2: 0^:3: ^ 3: ^a: 3^3:0
--
—irn-c:— i
(j-> CT m >-<
o en<:—i
2ZH1-H — t
eoSEO
3:mr-2:
M mo
en ro «
en
O3:r-cn«:e:
omioornm
Z3> 3:— i— i
CTX
O CD
*
XI CN
ro >-* * o
ezcen *^-~
3:330 00
2:
O
CSXI*
O
O
.
3:m
D
o
Z
O
en
....
o
o
o
mmmn
)2:z2:z-
3333PO3J— i— i— i— 13>
3:3:3:3:3>3>a>3>—immmmmmmm- cr
- •-•-•-•- _, _H-O 3;
)i-im 3:
oooo
TJ3:—IX i
—ttaencxi o o
— 3:* zr-m*
o
i
m
3:
o
en
ro
zzzzzzzzm oxo
3C—13:3: CTocncnenooo—i mro —•
mmmmmrnmrn33 cno 1-1
•~- z
'^ 02:
xo
^73 er
02:
r-m
ro
4»
o
X
CD
ro
• encn
»o» o
xi xi en
en
o
csicnc»i
• cn»
i-" j».cor-j-*>-
XI U XI I-1
o-o
OCN
i-i h* e>-co
ro
-*O * 0s **O "fr*
xi ro co » » tn«
OOX-TIO
X3>-
moo o
en 2:002:
3>0
O3C 73 ZC3
"rlowcr>t-i
2:02: 3:x
— IM — 10
om— 10
en xz
m o
» enen
•o* o
xi xi en
CO
ro
ro
OS3
oc*
o-u
o
X
row
cot _ _ _
... oxi*
03S3CN* CKCJ1
OW COXICKO-^^
.1* 3>
S3J».W~J*CD • O-CO
S3* O- S3
xiroco »
XI H»* I-»S3» CKt-- t/l* OJCOXIXI
*OtOs3* CD Oi-'CO
ro
e>4
en en* ro
ro ro * o-
oro s31-1 u co •-*
.........b. coxi* to
oxio*en*coco* rot
W
ro*.
saw i
» xi w
3>
o
o
73
33
m
o
3>
O
O
XI
-------
o
o
3:
-o
— cr «— i o
rn c: o> m co
3: 3: 33 to M
~ni— i
m
one:
i3>
co
33
— i-
o
m
3:3:3:3:0000— iwtowtnwtowco"nimmmm
3>3>»-a>OOOOHHO3>O3>OX>O»r-333333 33
to co cn to 2: 2: 2: 2: o3c 3::*: 3: ^3::*: 3:0
wcococooooo2:cm3OT'C)fC2Tjc:33Mi::ia
rnmrnrn 33 r~ PD i~ 33 r~ 33 r- 012:2:1-1
--
3>2§§33 33 333o3:3:3:3:3:3:3:3:01^-1-4
3:3!3:3:3>»-3>i'—imrnmmmmmm* c:
OOOO 3333333333333333C:O3:3:*
zzzz xxxxxxxx* ZTJS:
3333333333333333 CO* * Z
!>3>3>3>3>3>a>I>.3: ro
. .. . _ zzzzzzzzm oxo
3:—i3:3: CTOCTCTOOOGJ—i mro
o
o
co
- o
W33 W
3>f'T3>
cor—33
OW 3>O
rn 3> 33 —13:
to o m M m
o to<:—t
332:cpim
-v:x.-4-2z''
—iwcocrxi
c-im 3:4»
O33 i-iljj
21 2ro
-3Z
« CJ
-rjro
o--o
-ro
o-
o
532:m m
3>CTX 00
2 MM -H
tnzo
3:rnr- z
1-1 mo
co ro
co* 3:
1-14*0
o o
2:t—rn 4»
—•r~ ON
3:*™*1 *~*
xi o>
* xi
cn
o
1-13:
om 33
-^33 CZ
O Z
r-rn
i o
4>m
co •-••
M
^>
o
o
n
moo o
co 2:002:
3>O
03:332:0
-nowtni-i
2:ocro
2:02: 3:x
o
n
— IH-I -HO
33O'--i-in
om— 10
o 3:2:
rn o
M •-» -*«. O-
OO400W WCOW
cn coxjro
* cncn
o
ro
ro
4k NJ M
CO • i-» M
. . oj- • • xi» - » cnxic/i*
I—CO* 4»O O-* 4>O44>.CN» *
cnxicoxi
OS3
Z
o
x
c:
3:
OO3>— I
oi-< o n
om— ico
3:coc:— i
mm 3>
-
-< Hf-
4»mo— i
co
O-4>
» CS
ro
•~o w
. O-.CD
xi«-*oo
XI 00*
ro*.
•-OUI
o
o
33
33
o ^
CO
NJ
* 4» o cn- otncocn
wrocwro
cno
ocococno CD
o
2:
3>
o
o
33
o
c.n
CO » O
CO 4»~-
cn
*
a:
m » r-
w row
— co
"T* •**'
"T3
-------
CD »-(iHeorv>o
-
ins _
foi<£ ro -< OC3I>O -r-4 _
iiCO t— S3 «
x:cj >-
t~OUT t— ._ _ _ _ .
— <£ ,_! i_i LUOi-i.C-4 1-4 • »CJ
coo ."•. . _
H-I Ci iii i—i CO^OO*^" O
Ul UJ X: 3E
o 1-1
eni— LUO x . »
ujoi-io o i— cMnco in
i—- ii:d a _ . .. .
r>i=liXii=l i=i•
into *
co _i CD CD co
CJ UJ
- (3
Ot— UIO
1-1 — O Oi
l-Hl—
1-4 c. en x 1-1
0=303:
t-4 CO » O Ls-
o
OOS3 .
O> <>>•«• IV i-l O
1-4O
-oo
cso
o
•tr
C-4
lCJ
UJ_J
2:0
uiLJO
x:n
CJ
in
iv .
co iv
C-4
a
X
21
CSCJ
C-40-
ini—
rose uji-< 1-1
rvzscnajt— ~~
o .
c-j CD
co x: x: x: x: t-H-x: x:
~ Cj_ d. 0- O. CJ CJ fs- C.
x: »t
» c-4 en
O UJ
1-41-12:
— CO-I—
0£
LU
en uj
-------
u-
~:r
CO -~~
as CM eo
_j * LU
o ac
O'-'
103
m'xz f-i
i-4
^••sr o-
o • co
:*:co
CO
o •"*••*-!
ta 1-1 • •••-<
0
LU
cs:
o
iv IVOD. . . . . . ,
. » .CM »--oroi'Oi«rc»i*jivi>.
•«• iviv «>.»•»•».•»
i-4cot<> ocororv
C-4 i-4 CM
- •
i-l O t*J C-4 <-l
acM >~ j- ~
H-CSLJ^T I— Z •"-« -~O
3E <
lilCJUd O .
h-. *iv OD _, _ _
co cj iv —i c-41-1 iv v. v. v v. v w v.w - »roi*3inm .o o in
i i^^ ^.j 1—4 >_f **^ ^_^ [j~3 s«^ 1—4 i—1_ CO 1*3 f*"J t*3 C^4 CM * in 1^"51*3 * » * ^N * * * in * . CD 1—1 r
i f ^ (y% 1^5 ^—i ^—11^ C-4 1—4 » CM f*3 ^^ tn ho &* *-O * C
LJi-4 Z UjV. CO'ST-^UIO********
So Cjac i-icor*j ,-icoi*jiv UTCJM inco *ineoco
eoi:>--o OCM*JIV,
z 1*3 o »f-4
o CM in ^ ^ ^
OUT O C^ '4i-4
to ! C3i-4 » C-4O
K-IT-l V L>- ^ . gO
S'"' ^ CD LU*-> 2: ^.— o or--4-^rc-4i4-ooo-rH » .
H- O V Z t— •—l LU C-4 C-4 . 1-11-4 CJ •» »C-4 1-4
LUCJ zca i—i 1-4 » .ex •«»•
~ LU C£O _J=D Z Cv|i-i O •VVVV.V.V.VV.C9.»l*jOinO»-^D t-Hlri»Ct3C-4
(y (^ i".-] i-v -«o i-4 -»-4 -»H C^ C-4 »C*^ tO f*3 ^t" In O C5 * C^
LJQ^h-lLUO * H— IVIVC^C^eSV.V'VV.VV.VV.-rH i-l -^ C-4i-linin»
z> :xh-cDZ>-co .**i-4»-*ooc3oiv-rHU"3m 1-4
uu^ ozts o -4
i— :>en cj
LU1-4LJCDCO
zzzz
oooo
. >-iCJLJLULJUJLJUJl-iJLjCt:i--iZZLu _i ce _i ii: _) ii: —i u: LULULULU
Q t-i 1-4 Oi 3 0_ CD C- CD u- CO O_ CD Z CJ CJ CJ CJ CO CO CO CO
o as: se: ac i«: a= i; a= i<£ o z z z z co en co w
cc «a:e:_j
z
-------
.
a
CJ
-
a~t— •->
o in uji-i .-,.-.0
o -V2: i— ca oca
2:0 1-1
» • ro
LU cso - —1=3 x: ^N.x,\x.-rH i-i^r i-i^-cM'->iiv
>-w • » -CM *o-rjr'jO3-«»-o-«rcs in ---i
oscci -^1x^3 rx-.»»»»«.. txo
ca cj »-->- r;o 2:
x:i— in 3EO-2: -v.v.v.v.x.'w.'x 2:2:2:2: ceo* acui ^ LU
cj ag »acx:a;rni;O£ii:ix:cs:o£ceCs: oooo oca CJQ; »2: »-o
in S ac uiMCjLuLJUjujLULJLuujcet-xa. tox«-i
in »--icE:3Q-OO-CDCLOCL.O2:cjtjocjtotococoLLitJLi — iac acLu>-i— z ciaco
o-c-i-f a:t->- ox:se:x:iix:iix:ie:o2:2:2:2:wtocotox:u.cjocoi— 3333 13 t— o •-« a. a: _i cefloca
2: -JLJX: uji-iLjto oocoi— tviCMxx_j CMX (NX2: co&:x:ac Lj-LU>- oaceoa D-32
-------
0.
en
CClCJ
o
ON--
in 3
t*)ie:
en
UJ
NO
ON
C3
CD »
"a; CO
N^
ij_x:
co ; ^
coo in
in-i
coo
MCS o;
aci
a .-..-NO 1-1 ra in in o •wow i-i
LU mo » NQ *•« - »*H
os
N, o m .tnc-4
O
inin
_! OO3M
O NQ If T^
o
C-4
OI*5CN
LL.
" '"" iij
01—1»3:»—
c.
o
o
-------
en .-x
«CM en
in
o
CE?
O
cci rx
-~ . . .__.. _ •.«—...,.. f**3 r*3 ON m cj
IO3 LU O) ~x^x^_ x^ n _. . .rs, . - --«
W^ CM - t- _~ ~^ . . .^-^ . . 5o
x ro
21-3 CJ . CJ
QCJ M .
1-1 -«r x. cj c J ._ ^^
coin o cj 1-1
si nS" fef: H. ^ ^ . ^
j— CDXZ i—o LU ino . T-II-I cj™ . -cj1"1
LUCJ 2CO *-* f-i . »»-i —i LJ o . i— f*3s3r«}cji-ix.xsx\xxxxx,T-i ^ cji-iinin.
—• XI— CD 2 >- C'S ...i-i.s3cMi!»-^3i-)o37 ceco o CJC-JO3 in* .......
O S3 -rH
t*)CM
Ol— UJO
0=302
O-i
. CM CO LU UI =3 2 l3i
O LJ l-l I— Z> CO CJ
2 -JLUX: UIMl • •
cj2to :i.: :
t-i-'.i-iz oLUI— O5C££a
LULUOH- ......
LI i_i=>couioLucsuicauicau.2:2:3:zcDCDcDO
•—I22UI _J Ce _1 ui-J u£ _J CC UlLUUlUI
O »-i t-i C£ 3 O- CD CL CD Cu O d- CD 2 CJ O CJ O to CO CO CO
Q£ 0£ ££ C£ _J-t 33CO_JX:CJ
LUO>-CJU—ix: ui
XZ\±l to i£ u.
H— =3
en «•
2-I—
D-34
-------
en ~
«CM CO
_J » LU
o ac
O"-'
ins .
l*)ie£ S3
O r-4 CD 03 CN i-( CM i-)
in ........
0031-0 i-ioir»^ mnu7o •w r-41-1 r-4 r-4 1-1
r-4in
l2i i-l •
i ino- 1-1
MO
r-4
r-io* o
CM
0-3
UJi
QC-4
fl
C!
2;
O
O CM
CD
o
CO
CJ
» o CD
CM CM i-l
xD -
i-lO
C1UT
W I
UJ
LUCJ 3EcD
CJ~3 LU
1-10 _j -CO
LU - " •""•
OO
"OO
vQi-lO o
c-4 ft
i-l CO
LU_J
2:0
ar i-i
CJ
in
CD
3-
CD
i-t
C*CJ
r-40-
CD •
~in
SD
a:
rvi-
1-1 «-i
• ea
' .en
TC.ti.-X.
uSUILJUJLJ UJLJLJUJ
H- CD CD CD CD CD CD o CD
1^12:2:2:2:2:2:2:2:
a: 0-3
" "~ LUMLUCDtO
O
o
ca
2:
O
.LULuLULuL!jLL!LULu^--Olj __ iac LU
a: LU a: u. cj o -i 2:
cn 3: CD
-------
APPENDIX E
SMOKE AND PARTICULATE EMISSIONS DATA
-------
fir
\ •
.-4 r
• 4 , -
' i ;
- -, : i ~-f :----_ i.- . -f - -
; - - i ! ; - -- - -t - -
. - _-- i
4 . - - • ^
! •*
:.,. •- ." ^
_. _ J _ ^._
: ;, I
-i -r i !
i 1 - '
_'_ i ;a • r
1
X
w
rl-
M
NJ
I*C7-M ON
Figure E-l. Cold start smoke trace, fuel EM-395-F.
-------
4- • ;-^
"'-KJH-
: ! ' . i . . -
. , , I . . ., r_t
f^kii>tfe
— '-.If-.
-H-tr
- ."-
,f4±f
; r
^:tS
lj - i i
_^ , , ^ , . . , j , . 1_ . j ~
^;:i;i-ii^|~ijr:^F
•i
,j • •
iS4r-:-T
-P^
_^..L!. ~'
1
r •-. M 1 . t i n
riff
- i"— \. :
:*ii:j::..-. s; ;
Figure E-2. Cold start smoke trace, fuel EM-401-F.
-------
— r-nr,-^- u1"**^. lO.
-- p
C.
;s=zT
'ElfflAUST SMOKE
o
TT
-£t-
— 8f
T~""^0 -1 - kM/flS.-JUfe.' JgiO' ^CCEL-—f
-*7—i-
_COLD
IDI£
*>
Figure E-3. Cold start smoke trace, fuel EM-404-F.
-------
_:.! r.: .j—-—t — t- - -' -
Figure E-4. Cold start smoke trace, fuel EM-405-F.
-------
M
(Ti
'^*-^pniwwi
V^f"
JT^-V
EXHAUST SMOKE
tr-
>l
,0^_. - ..
-. D .
,&+**
Vfr
i ~~r
I
1 L -
1
,
^-s'
\
•
:;,-
-
-
--
. ..
,-. . :]
:3
~ •' '
~rS^
.
I
i "T O
••
IT '
""i?
- •**
• ':r
in i
»tH-±
O
•~B
— i
-: ~
n
. .
i
• --o
^7*r
• - o
; :R
• : •
i -
" .
*™
'" V i H- -
•J... I
; i
— ::.:j , '
.. ., -j : ,
, . . . i
K.M/HK ^56 KLPH)
•! 1 i
r •••r~r i -
;— Vv • '
; \
: ' WY
ITRPETr1! R
': : j 'sPjEEDj \
i .'r . I • ! :.
"i ; . : I • - ' • 1 ' "..i'...
• : } . . i .""",:
i 1
,.:• f
":"i !
' ,rj i
|
,
'* '
'
ACC$1L -
^
t
i
:~j.
1r ::r:"-
\ ' i
H i7
-j ./
.F* '
•
'•
i
,!S1
-4-.
1- 4 -i
i ,--1 J
. , -i- .
i ' 4 i
\\'Jt"
* ' i
^•4
.
r
'
•
0
JC.
' ' * *,
I
i * -J
1 •- *
' :
\ '
\
i
1
'
• ~' ;
• : '
'
•IDL]
. ..
! . i .
;
E
:.;•;
,;
t
i
en
n
m
n
K
p
tb
1 ,
|n
y
V
n
n
/
/
r
•
i
! ;. ,
' ! 1 T
f!i
.t i . :
• ' t r
' 7
:•/
j.
|l J
r ' "
•
••
ii-i!
il
•ijtt
;iiJ]
.i1!
. • ; j
. i i ,
,
•
.
1
J : , I
i:--
H-
^1M
. • *
, . •,
FIRS
1 '
L—.-l
tii.
-l!'
alt
1 1 1 1
? »4 1
. 1 1 1
... j i .
1 iv,
. . 1 ,1
.:H
:
•
$ tt.
.:_
1
--
^!n
• • J i
- , - i
-A^
'
'
! ! .
CEL*.
1 * t
:
.
;!:i
• \ '
i;l!
:]t;
:t i :
;jv
*^^r
:-;
,
. i:
-•
\.
Vs
v
^
' , '. '
1 : :
i
i • •
.
; • '
. . .
s.
A
'
•
.
'
•
it:
-i !
i *- i
1
1 j
j\
r '
/* •
•
.
': '
f- •
. :
\
L\
-VI -
*\
\
. .
L::..
[Q3LI
[IDLE
i
j
. . 4
i
!•
1 ;
t
•
J-l-
3- .
. K
rlS
CO
•gg
H
O
§
O
-------
H
ill!-.
;n
j. , D '_ ' _
Ol
EXHAUST SMOKE ;
I
HR
HJ-.-J_:ii>LE
' I, • '• j :
-g-j—4--j—rr -f-
- FIRJST ACCEL-
• ' ;
'I
CC(LD_
'iaiiE
~r--3r~r-H -J
_li_OJ_. _ .! .
Figure E-6. Cold start smoke trace, fuel EM-438-F.
-------
H
I
00
: ; -: "
i . - .
i
20
SEC
in
Q ;
i . . :
_
- ' W
Figure E-7. Cold start smoke trace, fuel EM-448-F.
-------
a
i
ID
ft KM/HR{--56 fMPH) j
Figure E-8. Cold start smoke trace, fuel EM-460-F.
-------
I
I-1
o
-I
EXHAUST "SMOKE
1!
2
H
-CX
-
-
_i _i
^ i
—u
r^±:
50.1 KM/HR (^56jfl'H)
:."___"T _- J-
i i^ ^
.!-!_£_
Figure E-9. Cold start smoke trace, fuel EM-461-F.
-------
90.1:KM/HRr (56 MPH)
Figure E-10. Cold start smoke trace, EM-463-F.
-------
PARTICLE SIZE DISTRIBUTION DURING COLD AND HOT FTP
Fuel Code
EM-
39 5 -F
404-F
405-F
430-F
434-F
438-F
448-F
401-F
460-F
461-F
463-F
Stage 3
6.6 yma
100.000
100.000
99.999
100.026
100.011
100.001
100.000
100.001
99.805
100.000
99.990
Cumulative Percent of Total Particulate
Stage 4
4.1 ym
97.727
99.845
99.351
96.643
100.011
100.001
97.228
98.283
98.553
100.000
97.949
Stage 5
2.6 ym
94.960
99.845
99.027
92.843
98.618
97.023
96.040
98.283
98.457
96.269
95.997
Stage 6
1.1 ym
92.058
97.836
99.027
87.560
97.534
93.261
89.505
94.657
96.916
93.844
94.584
Average
V max.
V min.
S.D.
Range
Vari.
99.985
100.026
99.805
0.060
0.221
0.060
98.690
100.011
96.643
1.222
3.368
1.238
97.033
99.845
92.843
2.061
7.002
2.123
94.253
99.027
89.505
3.565
9.522
3.782
Stage 7
0 . 85 ym
87.827
97.836
94.165
81.854
89.791
87.775
88.119
92.749
96.531
92.911
87.520
Stage 8
0.54 ym
83.817
91.190
89.303
75.624
89.791
83.073
82.574
89.886
96.242
90.112
86.892
Stage 9
0 . 34 ym
79.944
87.481
86.224
70.763
82.199
79.938
78.218
88.359
91.714
88.993
85.165
Stage 10
0.08 ym
74.873
85.626
84.279
67.593
71.827
75.549
75.050
83.588
87.090
86.194
82.653
Filter
68.264
80.835
81.523
62.942
59.443
69.906
66.535
77.481
77.938
85.821
80.926
Vehicle Total
Particulate, gb
4.014
4.108
4.306
4.451
5.214
3.891
2.990
3.627
5.212
3.821
6.763
90.643
97.836
81.854
4.676
15.982
5.159
87.137
96.242
75.624
5.554
20.618
6.374
83.545
91.714
70.763
6.037
20.951
7.226
79.484
87.090
67.593
6.685
19.497
8.410
73.783
85.821
59.443
8.704
26.378
11.798
4.399
6.763
2.990
1.016
3.773
23.102
td
i
Effective cutoff diameter
Based on 47 mm Pallflex
-------
PARTICULATE ANALYSES
Test No.
395-A, 1
395-B, 1
395-B, 2
404 -A, 1
404-E, 1
405-A, 1
405-B, 1
430-A, 1
395-?.. 2
395-E, 1
434-A, 1
434-B, 1
434-D, 1
434-D, 2
Fuel
EM-395-F
EM-395-F
EM-395-F
EM-404-F
EM-404-F
EM-405-F
EM-404-F
EM-430-F
EM-395-F
EM-395-F
EM-434-F
EM-434-F
EM-434-F
EM-434-F
Cycle
FTPC
FTPh
FTPC
FTPh
85 km/h
85 km/h
FTPC
FTPh
FTPC
FTPh
FTPC
FTPh
FTPC
FTPh
85 km/h
FTPC
FTPh
FTPC
FTPh
FTPC
FTPh
FTPC
FTPh
FTPC
FTPh
85 km/h
85 km/h
85 km/h
Particulate
Percent
Carbon
76.5
88.3
87.2
90.0
80.4
77.9
84.9
91.4
87.0
84.4
82.0
86.1
87.0
88.0
84.8
79.7
80.3
94.8
94.9
—
78.5
84.0
85.8
—
84.4
Hydrogen
5.3
6.6
5.5
6.6
6.8
7.0
4.9
5.9
5.1
5.2
6.0
4.9
4.8
5.1
6.5
2.5
2.6
3.2
3.2
—
3.7
2.2
1.8
2.9
—
2.3
Nitrogen
0.19
0.23
0.27
0.26
0.25
0.23
<0.10
<0.10
<0.10
<0.10
<0.10
<0.10
-------
PARTICULATE ANALYSES (Cont'd).
Test No.
438-A, 1
438-E, 1
448-A, 1
448-A, 2
401-A, 1
401-B, 1
460-A, 1
460-E, 1
461-A, 1
461-B, 1
395-B, 4
395-A, 3
463-A, 1
463-B, 1
Fuel
EM-438-F
EM-438-F
EM-448-F
EM-448-F
EM-401-F
EM-401-F
EM-460-F
EM-460-F
EM-461-F
EM-461-F
EM- 39 5 -F
EM-395-F
EM-463-F
EM-463-F
Cycle
FTPC
FTPh
FTPC
FTPh
FTPC
FTPh
FTPC
FTPh
FTPC
FTPh
85 km/h
FTPC
FTPh
85 km/h
FTPC
FTPh
FTPC
FTPh
FTPC
FTPh
FTPC
LFTPh
FTPC
FTPh
85 km/h
FTPC
FTPh
FTPC
FTPh
FTPC
FTPh
Particulate
Percent
Carbon
77.8
75.6
84.3
78.8
94.0
75.2
97.5
77.9
91.9
74.2
86.0
78.6
73.5
79.3
87.6
80.4
84.3
87.6
85.0
76.6
80.3
75.9
81.8
85.3
73.4
88.6
82.9
82.7
—
Hydrogen
5.7
6.0
6.5
6.2
4.1
3.1
3.3
2.7
3.0
2.9
5.2
2.1
2.3
4.2
2.0
2.1
2.1
2.0
2.3
2.4
2.4
2.4
2.3
2.5
3.8
2.3
1.5
1.5
—
Nitrogen
0.49
0.94
0.45
0.45
0.70
0.39
0.53
0.51
0.46
0.35
0.40
0.39
0.34
0.35
0.32
0.25
0.31
0.32
0.44
0.30
0.36
0.28
0.33
0.29
0.30
0.40
0.27
0.25
—
Oxygen
24.3
22.7
17.2
22.2
4.6
15.7
24.8
31.7
4.8
18.2
9.6
—
25.9
22.2
—
23.5
31.4
27.2
27.1
14.4
30.9
19.0
—
17.8
15.2
—
Total Vehicle
Particulate
g/testa
1.96
1.93
1.88
1.68
2.11
1.70
1.53
1.45
1.85
1.77
2.53
1.92
1.67
2.22
2.77
2.44
2.58
2.52
2.03
1.80
2.07
1.79
2.11
2.07
2.74
2.21
2.08
3.41
3.54
3.38
3.38
Organic Soluble Portion of Particulate
Percent
Carbon
—
74.5
75.9
73.0
76.6
—
E
80.1
78.3
74.6
—
32.1
8?. 6
83.0
82.4
82.9
83.3
82.1
83.0
—
82.8
81.7
Hydrogen
--
9.4
10.0
9.1
10.6
—
—
11.5
11.1
9.0
~
12.0
12.2
12.3
12.5
12.6
12.5
12.0
12.6
—
12.4
12.3
Nitrogen
—
1.35
1.32
0.97
1.63
—
E
1.02
1.39
1.56
—
0.23
0.21
0.20
0.25
0.21
0.25
0.29
0.21
—
0.23
0.25
Sulfur
—
0.66
0.67
0.58
0.62
—
E
0.51
0.51
0.75
—
0.40
0.39
0.43
0.45
—
0.46
0.46
0.51
0.49
—
0.44
0.55
Oxygen
—
13.1
12.6
14.7
9.1
—
--
5.7
7.0
11.5
—
5.5
4.3
5.1
—
4.4
3.9
6.3
4.7
—
4.3
5.5
Vehicle
Total
Solubles,
g/testa
—
0.331
0.316
0.388
0.325
—
0.265
0.286
0.693
—
0.333
0.363
0.337
0.297
—
0.321
0.379
0.789
0,287
0.345
—
0.402
0.412
% of Total
Particulate
—
17.6
18.8
18.4
19.1
—
;;
13.8
17.1
31.2
—
12.9
14.4
16.6
16.5
—
15.2
18.3
28.8
13.0
16.6
—
11.9
12.2
H
I
Based on 47 mm Pallflex filter rate
-------
PERCENT TRACE ELEMENTS IN PARTICULATE 11ATTEH
Fuel
Cycle
Elements , pet
Na
Mg
Al
Si
P
S
Cl
Ca
Ti
Fe
Zn
Sn
Ba
Cr
Pb
Mn
Br
Cd
K
Cu
Ni
V
Sb
Total Percent
of Particulate
Total Vehicle
Particulate,
g/test a
EM-395-F
FTPC
0.0099
0.0254
0.0155
0.0317
0.0641
0.3070
0.0148
0.1275
0.0028
0.7810
0.0803
0 . 0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0014
0.0000
0.0000
0.0000
0.0000
1.4614
2.24
FTPh
0.0140
0.0176
0.0074
0.0221
0.0544
0.2176
0.0118
0.0706
0.0007
0.3309
0.0647
0.0051
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0 . 0000
0.0000
0.0000
0.0000
0.0000
0.8169
1.97
85 tan/hr
0.0231
0.0188
0.0014
0.0082
0.0981
0.2620
0.0072
0.0899
0.0000
0.0389
0.1221
0.0000
0.0000
0 . 0000
0.0000
0.0000
0.0000
0.0000
0.0024
0.0000
0.0000
0 . 0000
0.0000
0.6721
3.11
EM-404-F
FTPc
0.0156
0.0289
0.0211
0.0469
0.0688
0.3773
0.0102
0.1359
0.0039
0.7094
0.0820
0.0070
0.0047
0.0000
0 . 0000
0.0000
0.0000
0.0000
0.0031
0.0000
0.0000
0.0000
0.0000
1.5148
2.04
FTPh
0.0000
0.0208
0.0115
0.0354
0.0635
0.2490
0.0000
0.0917
0.0021
0.3729
0.0813
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0 . 0000
0.9282
1.90
EM-405-F
FTPC
0.0112
0.0280
0.0184
0.0344
0.0664
0.4424
0.0128
0.1280
0.0032
1.8144
0.1104
0 . 0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0024
0.0000
0.0000
0 . 0000
0 . 0000
2.6720
2.23
FTPh
0.0145
0.0205
0.0094
0.0291
0.0564
0.2342
0.0513
0.0761
0.0000
0.6923
0.0829
0 . 0068
0 . 0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.2735
1.98
85 km/hr
0.0282
0.0192
0.0000
0.0051
0.0788
0.2423
0.0000
0.0763
0.0000
0.1269
0.1276
0.0109
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.7153
2.45
EM-430-F
FTPC
~
--
—
~
—
--
—
—
—
—
—
~
—
—
--
—
—
—
—
—
~
—
—
—
—
FTPh
0.0000
0.0286
0.0464
0.0810
0.0750
0.5548
0.0083
0.1643
0.0155
0.9929
0.0905
0.0000
0.0000
0.0000
0.0000
0 . 0000
0.0000
0.0000
0 . 0060
0 . 0000
0.0000
0.0000
0.0000
2.0633
1.93
based on data from 47 mm Pallflex filter data
E-15
-------
PERCENT TRACE ELEMENTS IN PARTICULATE MATTER (CONT'D)
Fuel
Cycle
Elements , pet
Na
Mg
Al
Si
P
S
Cl
Ca
Ti
Fe
Zn
Sn
Ba
Cr
Pb
Mn
Br
Cd
K
Cu
Ni
V
Sb
Total Percent
of Particulate
Total Vehicle
Particulate ,
g/test a
EM-434-F
FTPC
0.0000
0.0081
0.0129
0.0264
0.0490
0.5600
0.0210
0.0893
0.0000
0.4104
0.0543
0.0000
0.0102
0.0000
0.3448
0.0000
0.0785
0.0000
0.0065
0.0000
0.0000
0.0000
0.0000
1.6714
2.59
FTPh
0.0000
0.0178
0.0145
0.0355
0.0484
0.4645
0.0210
0.0829
0.0054
0.3100
0.0673
0.0000
0.0000
0.0000
0.2422
0.0000
0.0651
0.0000
0.0059
0.0000
0.0000
0.0140
0.0000
1.3945
2.64
85 km/hr
0.0000
0.0076
0.0000
0.0123
0.0563
0.4689
0.0158
0.0692
0.0000
0.0651
0.0464
0.0000
0.0000
0.0000
0.0000
0.0000
0 . 0446
0.0000
0.0065
0.0000
0.0000
0.0000
0.0000
0.7927
3.69
EM-438-F
FTP0
0.0000
0.0165
0.0137
0.0261
0.0742
0.3613
0.0206
0.1126
0.0000
0.3709
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0 . 0000
0.0000
0.0137
0.0000
0.0000
0.0000
0.0000
1.0096
1.88
FTPh
0.0000
0.0000
0.0017
0.0000
0.0923
0.1779
0.0017
0.1124
0.0000
0.1309
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0168
0.0000
0.0000
0.0000
0.0000
0.5337
1.68
EM-448-F
FTPf.
0.0000
0.0207
0.0221
0.0318
0.0649
1.0000
0.0180
0.1326
0.0069
0.4751
0.0304
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0097
0.0000
0.0000
0.0000
0.0000
1.8122
1.82
FTPh
0.0000
0.0045
0.0105
0.0331
0.0602
0.1883
0.0090
0.1205
0.0075
0.2169
0.0407
0.0000
0.0090
0.0000
0.0000
0.0000
0.0000
0.0000
0.0075
0.0000
0.0000
0.0000
0.0000
0.7077
1.58
EM-401-F
FTPC
0.0000
0.0196
0.0187
0.0299
0.0541
0.4384
0.0131
0.1203
0.0037
0.8853
0.0774
0.0000
0.0065
0.0000
0.0000
0.0000
0.0000
0.0000
0.0084
0.0000
0.0000
0.0000
0.0000
1.6754
1.92
FTPh
0.0000
0.0173
0.0135
0.0289
0.0423
0.1983
0.0096
0.0799
0.0077
0.3090
0.0645
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0 . 0048
0.0000
0.0000
0.0000
0.0000
0.7758
1.67
85 km/hr
0.0000
0.0141
0.0047
0.0055
0.0578
0.3227
0.0086
0.0664
0.0000
0.2063
0.0945
0.0000
0.0000
0.0000
0.1617
0.0000
0.0000
0.0000
0.0031
0.0000
0 . 0000
0.0000
0.0000
0.9454
2.23
based on data from 47 mm Pallflex filter data
E-16
-------
PERCENT TRACE ELEMENTS IN PARTICULATE MATTER (CONT'D)
Fuel
Cycle
Elements, pet
Na
Mg
Al
Si
P
S
Cl
Ca
Ti
Fe
Zn
Sn
Ba
Cr
Pb
Mn
Br
Cd
K
Cu
Ni
V
Sb
Total Percent
of Particulate
Total Vehicle
Particulate ,
g/testa
EM-460-F
FTPc
0.0053
0.0190
0.0295
0.0380
0.0348
0.2700
0.0105
0.1102
0.0058
0.4051
0.0659
0.0000
0.0000
0 . 0000
0.2062
0.0000
0.0000
0.0000
0.0063
0.0000
0.0000
0.0000
0.0000
1.2066
2.58
FTPh
0.0000
0.0135
0.0135
0.0217
0.0314
0.1704
0.0090
0.0635
0.0037
0.2309
0.0575
0.0000
0.0000
0.0000
0.1764
0.0000
0.0583
0.0000
0.0037
0.0000
0.0000
0.0000
0.0000
0.8535
2.54
EM-461-F
FTPC
0.0000
0.0185
0.0185
0.0371
0.2116
0.3205
0.0131
0.4340
0.0000
0.4571
0.0803
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0039
0.0116
0.0000
0.0409
0.0000
0.0463
1.6934
2.03
FTPh
0.0000
0.0168
0.0089
0.0287
0.2478
0.1804
0.0099
0.4668
0.0000
0.1764
0.0852
0.0000
0.0000
0.0000
0.0000
0.0000
0.0337
0.0030
0.0000
0.0000
0.0000
0.0000
0.0575
1.3151
1.80
EM-395-F
FTPc
0.0059
0.0252
0.0185
0.0353
0.2271
0.2902
0.0151
0.4483
0.0000
0.3936
0.0942
0.0000
0.0008
0.0000
0.0000
0.0000
0.0202
0.0017
0.0101
0.0000
0.0378
0.0000
0.0513
1.6753
2.11
FTPh
0.0066
0.0142
0.0028
0.0245
0.2283
0.1679
0.0104
0.4292
0.0000
0.1425
0.0698
0.0000
0.0000
0.0000
0.0000
0.0000
0.0179
0.0019
0.0028
0.0000
0.0160
0.0000
0.0557
1.1905
2.07
85 km/hr
0.0094
0.0152
0.0023
0.0141
0.1870
0.2673
0.0082
0.2931
0.0000
0.1002
0.1166
0 . 0000
0.0000
0.0000
0.0000
0 . 0000
0.0399
0.0018
0.0029
0.0000
0.0000
0.0000
0.0346
1.0926
2.74
EM-463-F
FTPC
0.0157
0.0141
0.0039
0.0219
0.1648
0.3161
0.0112
0.3487
0.0000
0.2222
0.0636
0.0000
0 . 0000
0.0000
0.0000
0.0000
0.0394
0.0028
0.0073
0.0000
0.0382
0 . 0000
0.0354
1.3053
3.38
FTPh
0.0296
0.0124
0.0054
0.0232
0.1546
0.2606
0.0075
0.3107
0.0000
0.1131
0.0576
0.0000
0.0000
0.0000
0.0000
0 . 0000
0.0000
0.0027
0.0054
0.0000
0.0000
0.0000
0.0355
1.0183
3.38
based on data from 47 mm Pallflex filter data
E-17
-------
I
M
00
Figure E-l. "Altamont" crude oil output from high-temperature gas chromatograph run.
-------
td
i
Figure E-2. Example of a chromatograph of organic solubles from particulate matter,
vehicle operated on EM-463-F fuel.
-------
SOUTHWEST RESEARCH INSTITUTE
POST OFFICE DRAWER 2851O
622O CULEBR A ROAD
SAN ANTONIO. TEX AS 78284
(512)684-5111
Ms . Debra Sklarew
Battelle Avenue
PO Box 9999
Richland WA 99352
Dear Debra:
The enclosed filters have been sent to you at the request of
Tom Baines of the Emission Control Technology Division, EPA, Ann
Arbor, Michigan. These samples are to be used for nitroaromatic
analysis via HERL-EMSL contract. The particulate was collected on
20 x 20 inch Pallflex filters from a 1975 Mercedes 240D vehicle.
The 147 CID diesel engine was fueled with various fuels whose spe-
cifications are summarized in Table 1.
The vehicle was driven through five consecutive Highway Fuel
Economy Tests (HFET's). The vehicle's exhaust was drawn through a
dilution tunnel and a portion of the diluted exhaust was drawn
through the filter. The particulate weights of each filter are
listed in Table 2.
If you have any questions regarding the filters, please call
me at (512) 684-5111, ext. 2937.
Sincerely,
Bruce B. Bykowski
Research Scientist
Department of Emissions Research
BBB : cp
Enclosures
cc: T. M. Baines, EPA-AA
C. T. Hare, SwRI
E-20
SAN ANTONIO, HOU S T ON, TEXAS, AND WASHINGTON. D.C
-------
TABLE 1. FUEL PROPERTIES
Substance
Code (EM-
Cetane No.
Cetane Index (D976)
50% point, °F
Gravity, °API @ 60 °F
Density, g/m£ @ 60 °F
Carbon , wt . %
Hydrogen , wt . %
Oxygen , wt . %
Nitrogen, ppm (oxid. pyrolysis)
Calculated H/C, numeric
Carbon No. Range (G.C.)
Aromatics, vol. %
Olefins, vol. % (D1319)
Paraffins, vol. %
Viscosity, cs @ 100°F (D445)
Gum, mg/100 m£ (D481)
Boiling Range, °C (IBP-EP, D86)
5%
20%
50%
70%
95%
Residue, wt. % (D86)
Boiling Range, °C (IBP-EP, D2887)
5%
20%
50%
70%
95%
Residue, wt. % (D2887)
Base Fuel,
Heavy Aromatics,
151 r- 3
463-F
60 .
44
421
40.0
0.826
86.38
13.08
0.21
718
1.80
10-16
30.8
1.2
68.0
1.51
2.4
202
209
216
222
244
1.0
199
215
228
240
269
0
Minimum
Quality No. 2
241-F
_»
41.8
258
32.8
0.861
87.5
12.3
—
240
1.68
—
34.6
1.0
64.4
2.44
11.8
—
227
258
277
311
0.5
—
—
.-.
—
—
~—
Shale Diesel
Fuel-Marine
453-F
48.6
54.5
—
37.9
0.835
86.3
13.4
—
5
—
—
29.9
1.6
—
2.61
0.3
229
246
—
__
302
—
196
237
__
—
325
— —
Base Fuel +
Isoquinoline
405-F
61
56
418
46.4
0.795
85.09
14.58
—
930
2.05
10-14
6.6
1.5
91.8
1.58
0.6
208
211
214
218
229
0.5
195
204
219
231
251
0.5
M
-------
TABLE 2. FILTER CODES AND WEIGHTS
Fuel Code Filter Code Filter Weight, g
EM-463-F 5423-P20-42 0.6319
5423-P20-43 0.5895
5423-P20-44 0.5736
5423-P20-45 0.5693
5423-P20-46 0.5715
EM-453-F 5423-P20-47 0.4271
5423-P20-48 0.4321
5423-P20-49 0.4538
5423-P20-50 0.4515
5423-P20-51 0.4728
EM-241-F 5423-P20-52 0.6502
5423-P20-53 0.6496
5423-P20-54 0.6873
5423-P20-55 0.6795
5423-P20-56 0.6688
EM-405-F 5423-P20-57 0.3793
5423-P20-58 0.3914
5423-P20-59 0.3961
5423-P20-60 0.4001
E-22
-------
TEST Nn:
i')Fuiri'f '
~
443-
"
R"N
=;
PAROMETER 741:17 MM HO(2? 18 IN HG)
pFi'afTuF'HiiMTTiTTY V?" PPT~~
0 BAG RESULTS
TESf'CYCLE
BLOWER DIP P MM: H20(IN: H20)
BLOWER INLET P MM:~^2Q(iN:~H20)
RI niipp T ijTrf TFMP '. iiFR.' ~r f npR ~ F )
RfnuFp pFunYii
tnf"Fi'ni.r«!fri"
HC SAMPLE METEP./RANOE/PPM "
HP Prjfhpfi MFTFP /PAMRF /PPM
CO SAMPLE METER/RANGE/PPM
rfi prirRpn MFTFP/jJaMRF/PPM
C02 SAMPLE METER/RANGE/PCT
PflO RPKRRT5 MFtpp'/PANRF/pPT
MOV CAMpi'F MFTFP/ifAMRf /PPM
MHY '
HTi'i
m HPPOMPFMTPATTOW PPM
i pn CONCENTRATION PPM
^ pn? pnMPFJaTPATTnN PPT
w N"X CONCENtRAtlON PPM
HC MASS~5RAMS"~
CO MASS GRAMS
rnr> MAR§ RPAMC
WHY MAcq RRAM^
PHM TTMF " "
'npp. UFT
VPF. iJFT
MOL (SCM)
CAM Rl"p /CPM)
KM (MEASURED)
TFCT MUMPER-
PAPHMFFPT"" MM MR
'" G/KG"
nFR P
' P A'psriM' n V n Y T np. R /KM
FUEL"CONSUMPTION• L/100KM
HYTIPnPAPRnMC.
'"MnMnYTnF.
nfMTTPrtRFM. R/KM
VEHICLE EMISSIONS RESULTS
Pp!oJECT~-§43-obl
BAG~CART"NO"
'
MFTRMT 1588: KG( 3500: LPS)
APTIIAI "pnATi inAn" 274 KH("il:2 HP)
FMI4A7-F
^"'7"M( 9030: MILES)
CVSNO 3
DRY PULP TEMP: 27:8 DEG C(82:0 DEG F)
APS : "HUMIDITY 12: 4~GM.~KG~ "
HFET
404:5 (23:8)
- -
NOX HUMIDITY CORRECTION FACTOR 1:04
19779"
""
11- 3/13 x 10-
" "i!
/ 7 n=;
/ ?'/ 17"
'/ 2/ "l-
4*~47
"9."
o!
v24
19. A
-97
1:87
.P7R
1 .000 ( '?*>?')
187:0
4 : '
/7-R
97 'P
"5l~3
7§~
19
-------
TEST NO: 453-T RUN 1
UEHICLE MODEL* 75 MFprpnec
~:4"L7l4?:~rIDY~L-4~
''
HFET MEHICLE EMISSIONS RESULTS
F'F:6jECT~l!-§'*23-001
'.'EHICLE N0:l
DATE ?/23 '80
~' wn" "i
9
TEST '.-.'EIGHT 1598: KG( 3500: LRS)
ACTUA'"p^Ari i "A?1" H"* KM?~ii~'i~Hp}
DIESEL EM-45^-F
liA.Art""k'M/ QIAO. MTI
BAROMETER 73?;?0 MM HG*!29;13
RELATIVE "HUMIDITY 46 ""
0 BAG RESULTS
TEST "YCLE
BLO!-!ER DIP P MM: H20(IN: H.20)
BLOWER INLET P MM: H20(IN: H20!>
BLOi-JER INLET TEMP • DE^ • "^ ( DPR" ' F >
'
DRY BULB TEMP: 25.0 DEO C(77.0 DEG F)
;. "wfiMTflTTY Q~-.~
WHY HIIMTriTTY mPPFPTTOM
. 0=;
HFET
/.
TOT FLOsD~ C1"1 ~ METRES ((?rF}
C MP MN"
MFTFppAMRF/PpM
MEtER/rRANGP/PPM
MFT?p"/iMRF'/rT
MAY SAMPI E METPR'RANR^/PPM
NOX BCKGRD MEtER/RANGE/PPM
DILUTION FACTOR
HCCONCENTRATION PPM
M CO CONCENtRATION PPM
rf^ WHY rnMrFWTP6TTnw PPM
CO MASS GRAMS
rn?
PMM TTMF
DFC? WET (PRY)
SCFr i-JET (DRY?
l"'OL (SCM)
QfiM Rl"p (CPM)
"
TEST NUMBER
TEMPERAtUREr
CARBON DIOXIDEf
FUEL* CONSUMPTION ?
MM HR
R/K'h"
DEG~C
~G/KM
HYDROCARBONS ? G/KM
CARBON MONOXIDE? G/KM
nr MTTprtRnj.
11
57!4/"7> .07
" 7 ! 7/ 7 / ! 0 A
40 '9/ ?/ 41"
i.?/ 2/ 2:
" 1472?
~'~'
so
?l3
"i '. 17
Q7
( • ?77 )
169.'=; .....
4^ 7
'
453-T
779! 9
' "Q'T
.07
37
-------
TEST NO. 241-T
.£ MODEL" ~
9"I" I 7li7.
RUN 1
5 MERCEDES
"rTriY~ri.d~
BAROMETER 737. *2 MM HO (2?. 04 IN HO)
RELATIME HUMIDITY 44* PCt"
0 BAO RESULTS ...... "'
TEST~CYCLE
BLOWER DIP P MM. H20(IN: H20)
BLOWER INLET P MM: H20(IN. H20?
SfnuFp TwTFT TFMP' HFR. "r/TiFn" F>
ni nfJF P "
"'
UP
ur
rn
rn
C02
rn-5
wny
CAMPLE METER/RANBE/PPM
firifRpfi MFTFP"/P"&WRF'/PPM'
CAMpi_F TER 'RANOE /PPM
SAMPLE METER/RANOE/PCT
MFTFP' VP&MRF /prj
"
MOX
iriri
ur
rn
BCKGRD MEER/RANOE/PP
TTnN parfiip .........
rniirFMTp&f TQW PPM
rnMrFMTPATinki PPM
CQNCEMTRAtlQN PCT
PPM
rn MACQ RRAMS
Frb M6QC RRAMC
NOX MASS ORAMS
PMM TTMP " ...... "
'npr. UFT
cj'rp'. WFT
uni '
QFPnwn<5
" SL'RED)
TEST NUMBER f
^ARnMETER~
'
MM HO
"
TFMpFPATl'lpF .
' FipRfiM ' n'f Fiy T HF .
FUEL" CONSUMPTION •
HYDROCARBONS.-
OXIDE-
L/OKM
6/KM
0/KM
HFET VEHICLE EMISSIONS RESULTS
"PROJECT"ii-5423-00i"
VEHICLE NO.1
DATE9/24/90
car;~rAPT' wn "i
' ""'
TCCT IJFTfJUT 1^Rfl. lfR( 3500: LBS)
irTiJ6i'~pniri LOAD" 5*4 K'~!("ii72~HP>
' ~ K'HI QIAO. MTI
DRY BULB TEMP:
ARC "iJUMTriTTV
.
NnX HUMIDITY CORRECTION FACTOR
HFET
62?:? (24:8)
477:5 (18:8)
1879(6f 31
?§'. 7/11 /""20
"?' =:'/"?'/ ~R
1 !S/1 v 36
"
55.-4/3/
" 7 ! ^ / i/
^!s> 5V
'
7 ;
"?'
44 '.•?
' i ! 10
Z!56
1173
.997 ( .914)
!QOO ( '???)
' "i§7;'p
io. 07
241-T
"777! A
"?'§
•?A! i
70A~7
7:15"
•43
FMTTPnRFM. fiKM
-------
Ul
1—
_|
•~l
tri
Ult-i
d: o
C'
Ul 1
2' r* i
CICM
t-i
-(1 •
CM T-I
uii-i ^-.^-.C' «nM'•
a: _ici
x: uii-i
x:a.t— 1~ >-• i— i— t— i— i— i— i— CI
=i -uiuiuiuiuiuiuiuii
Q..H-I— _icix:x:x:x:x:x:x:x:ci
uiutcii— 0:
u. _i_i^-aiuiciuiciuiciuici
>-i2:2:ui _iu:_ia:_ia:_ict:
:2:a..cia.cia. cia.ci2:
ci x: ic: x: ^: x: i=:x: it: ci
K-I— i— i— cri
<:<:<:<:x:x:x:x:
cc:cr:cc:cc:
-------
APPENDIX F
STATISTICAL DATA
-------
COMPUTER DATA FILE OF ALL VARIABLES
8.1/03/09, 15,11,30,
PROGRAM DATALN
1-5
FUEL
CODE:
39501
40103
40401
40501.
43001
43401.
43801
44001
46001
46101
46301
J -5
FUIIL
cone
39bO?
4010?
40402
40502
43002
43402
43802
44802
46002
4610?
46302
6-13
MAR 1
CETANE
NO,
61,5
54,5
61,5
61,2
62,6
44,1
64,2
55,0
46,0
67,3
60,0
6 -.13
VAR 10
ARO.
VOL, 7.
5,f;
2,7
6,1
6,6
8,8
31,5
6,8
4,9
32,1
5,3
30.8
14- -21
VAR 2
CETANE
INDEX
57,8
56,2
56.8
56.2
55,8
44,1
57,5
60,5
47,5
61,5
43,9
14-21
VAR 1.1
QLEFINS
VOL, %
1.5
1.9
1,5
1,5
1,0
2,9
6,6
l.B
1,0
1,0
1,2
22-29
VAR 3
GRAVITY
API
47,0
45,3
46.7
46.4
46.2
40.1
47.0
49,3
42,1
47,5
40,0
22-29
VAR 12
PARA,
VOL, 7.
92,7
95,4
92.4
91.6
89,4
65.6
86.6
93.3
66,9
93.9
68.0
30-37
VAR 4
DENSITY
G/ML
0.793
0,800
0,794
0.795
0.796
0.825
0,793
0,783
0,815
0.791
0,826
30-37
VAR 13
vise.
CS
1,59
1,69
1,59
1,58
1,59
1,51
1.55
1.40
1,47
1,74
1,51
38-45
VAR 5
C
WT, 7.
05,1
35,9
85,1
85.1
86,0
86,7
84,6
85,1
86,4
35,2
86,4
38-45
VAR 14
GUM, MG
/I 00 ML
0,2
0,5
0,3
0,6
14,3
2,4
1,1
0,0
1.4
1,4
2,4
46-53
VAR 6
H
WT, %
14,7
13,8
14,6
14,6
13.8
13,1
13,2
14,6
13,4
14,5
13,1
46-53
VAR 1.5
IBP
DEG, C
203,
193,
194.
194,
200.
191.
203,
175.
203,
207,
190,
54-61
VAR 7
0
WT, '/.
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
0,21
54-61
VAR 16
10% PT,
DEG, C
211,
206.
211.
210,
210.
206.
210,
189.
209.
216.
206,
62-69
VAR 3
N
PPM
0
0
479
930
493
5
0
0
0
0
718
62-69
VAR 17
20% PT.
DEG, C
212,
210.
212.
211.
211,
209,
211,
195,
211,
218,
209,
70-77
VAR 9
H/C
2.05
1,92
2,04
2.05
1,91
1,80
.1,95
2.04
1.84
2,02
1.80
70-77
VAR 18
30X PT.
DEG. C
213.
213,
213,
212.
212,
211,
212,
201,
212,
219,
211.
1-5
FUEL
CODf
39503
40103
40403
40503
43003
43403
43803
4400.}
46003
46io;<,
46303
6 -13
VAR .1.9
40% PT,
DEG, C
214,
217,
214,
213,
2.13,
213,
?13.
206,
2.13,
221,
213,
14- -21
VAR 20
50% PT,
DEG, C
21 A 4
221,
215,
214,
214,
216,
214,
209,
214,
223,
216,
22-29
VAR 21
60% PT.
DEG. C
217,
224,
217,
216,
217,
218,
2.17,
213,
,?16,
227,
218,
30-37
VAR 22
70% PT,
DEG. C
218,
228,
218,
218,
219,
222.
219,
216,
210,
231.
222,
30--45
VAR 23
80% PT.
DEG, C
221,
233,
221.
220.
222,
226,
221,
219,
221,
233,
226,
46-53
VAR 24
90% PT,
DEG. C
224,
239.
224.
224.
228.
234.
224.
223.
224,
251,
234,
54-61
VAR 25
EP
DEG, C
252,
261,
253.
255.
249.
266,
252,
249,
255,
286,
266,
62-69
VAR 26
RESIDUE
WT, 7.
0,0
1,0
0,0
0,5
1,5
1,0
1,0
1,0
0,5
1,0
0,3
70-77
VAR 27
IBP
DEG, C
140,
138,
146,
154,
145,
194,
184,
147,
179,
133,
192,
F-2
-------
COMPUTER DATA FILE OF ALL VARIABLES (Cont'd)
1-5
FIJO.
CODF
39504
40104
40404
40504
43004
43404
43004
44804
46004
46104
46304
6-13
VAR 28
10% PT,
DE6, C
197,
134,
197,
198,
200,
207,
203,
164,
198,
202,
207.
14-21
VAR 29
20% PT,
DEG. C
202,
190,
203,
204.
208,
215,
210,
181,
206,
211,
2.15,
22-29
VAR 30
30% PT.
DEG. C
208.
207,
209.
210.
213,
220,
216,
203.
210.
216,
220.
30-37
MAR 31
40% PT.
DEG. C
213,
215.
214.
215,
217,
225.
222.
211,
216,
219,
225,
38-45
VAR 32
50% PT,
DEG, C
217.
223,
218.
219,
220,
228.
226,
213,
219,
225,
228,
46-53
VAR 33
60% PT.
DEG, C
222,
231,
223,
225,
224,
235,
230.
224.
226.
233,
235,
54-61
MAR 34
70% PT,
DEG. C
229.
239,
230,
231.
231,
240,
237,
230.
231.
238,
240,
62-69
VAR 35
80% PT,
DEG. C
234,
247,
235,
237,
236,
244,
242,
237,
235,
255,
244,
70-77
VAR 36
90% PT,
DCG. C
239.
255.
240,
243.
240.
258,
247,
244.
239,
272.
258,
1-5 6-13 14-21
VAR 37 VAR 38
FUEL EP RESIDUE
CODE PEG, C W1, 7.
"W505
40105
40405
40505
43005
4^405
43805
44805
46005
46105
46305
;?69,
278,
279,
?94,
265,
283,
270,
265,
264,
303,
283,
0
0
0
0,5
0
0
0
0
0
0
0
1-5
FUEL
CODE
39506
40406
40506
43006 .
43406
43306
44B06
40106
46006
46106
46306
6-13
VAR 101
HC
G/KM
0,09
0,08
0,08
0,09
0,12
0,09
0,11
0.11
0,13
0,08
0,13
14-21
VAR 102
CO
G/KM
0,53
0,47
0,46
0,52
0,59
0,48
0,48
0,50
0,60
0,47
0,66
22-29
VAR 103
NQX
G/KM
0,79
0,76
0.89
0.84
0,88
0.85
0.82
0,85
0,92
0,86
1.04
30-37
VAR 104
C02
G/KM
236,
234,
237.
244,
248,
241,
231,
239.
245.
237,
250,
38-45
VAR 105
FUEL
L/100KM
9.51
9.50
9,59
9,76
9,52
9,34
9.51
9.55
9.56
9.63
9,62
46-53
VAR 106
FORMAL,
MG/KM
0,26
0.03
9,66
0.00
2.80
0,00
4,87
4,09
0,00
6.79
0.00
54-61
VAR 107
ACETAL.
MG/KM
0,05
0.00
4.96
0,00
0,00
0,00
3.31
0,30
0,00
0,00
0,00
62-69
VAR 108
ACETONE
MG/KM
0,00
0,00
0.00
0.00
0,00
0,00
0,00
0,00
0.00
2,04
0,00
70-77
VAR 109
IGOBUT,
MG/KM
5,32
16.3
6.42
13,3
0,00
0,00
0,51
0,00
0,00
0,00
0,00
F-3
-------
COMPUTER DATA FILE OF ALL VARIABLES (Cont'd)
1-5 6-13 14-21 22-2? 30-37 30-45 46-53 54-61
UAR 110 VAR 111 VAR 112 VAR 113 VAR 114 WAR 115 VAR 116
FUFL CROTQN, HEXAN, BENZAL. TOT.ALB METHANE ETHANE ETHYL,
ROUE MO/KM MG/KM MG/KM MG/KH MG/KM MG/KM MG/KM
195(1?
40407
40"i 07
43007
47407
43807
44807
40307
4-4007
461 ''7
46307
0,00
0,1?
0,00
3,46
0,00
o.oo
0,10
0,00
0,00
0,00
0,00
0,00
0,27
0,61
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
-0
-0
-0
-0
-0
-0
-0
••0
-0
-0
-0
0,31
0,30
15,2
0,00
2.80
0,00
8,18
4,3?
0,00
0,33
0,00
7,09
5,06
8,56
-0
0,00
7,71
6,36
7,26
0,00
0,00
8,00
18,3
14,?
16,4
-0
5,81
16,6
15,4
17,6
21,4
11,2
21,5
0,95
0,34
0,35
-0
0,23
0,00
0,00
1,18
0,94
0.00
0,70
1-5
run
CGBF
39508
404 OC
40508
43008
43403
43800
44008
4010C
46000
461 08
463C8
6- 13
VAR 317
Acr.m,
MGAM
4,42
3,27
3.19
-0
t , 50
4.62
3,71
5,24
5,31
0,00
3,51
34-2.1
VAR 118
PROPANE
MG/KM
0,00
0,00
0,00
-0
0,34
0,00
0.00
0,00
0,00
0,00
0,00
22-29
VAR 11?
PROPYI. ,
MG/KM
4,53
3,84
4,10
-0
0,32
4,31
4,93
4,97
5,37
5,64
6 , 75
30-37
VAR 120
BENZENE
MG/KM
t,83
3,42
2,74
-0
0,00
0,30
1,05
?,11
4,85
0,00
0,00
38-45
VAR 121
TOLUENE
MG/KM
0,00
0,00
1 , 23
-0
0.00
0,00
0,00
0,00
0,00
0,00
4,01
46-53
VAR 122
TOT.IHC
MG/KM
37,2
30,8
33,5
-0
3.2
33,5
31,4
37,4
38.4
25,6
44,5
54-61
VAR 123
LCA
UG/L
6,67
9,25
5,64
2,71
7,14
6.92
1,9?
4,42
10,44
4,65
4,65
62-69
VAR 124
LCD
UG/L
1,1?
1.46
0.553
0,017
2,42
3,62
2,53
1.70
3,66
2.15
2,15
70-77
VAR 125
TIA
1,08
1,16
0,?3
0,70
1,38
1,56
1.40
1 .23
1.56
1. . 33
1.33
.1 5 6-13 14-21 22--2? 30-37 38-45 46-53 54-61 62-69 70-77
VAR 126 VAR 127 VAR 128 VAR 129 VAR 130 VAR 131 VAR 132 VAR 133 VAR 134
fiJQ PHEN..F SALI,»r CRES.rF GRP.5>F TR.I.yF TET.yF PRO,»F TOTAL»F HCN.jlJ
COD;: fiO/Krt MG/KH MO/KM MG/KM MG/KM MG/KM MG/KM MG/KM MG/KM
3750'?
4040V
4050?
43009
4340?
43809
4400?
4010V
4600?
46 1 Of'
0,10
0,63
?,54
0,00
0,00
0,00
0,00
0,00
0,00
0,00
o.to
?i3?
ii,3
122.
0,55
0,00
0,00
0,00
0,11
0,00
0,07
0,23
0,70
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,13
0,00
0,00
0,00
0,00
0,17
0,21
0,00
0,05
0,14
0,00
0,00
1.64
0.00
0.05
0,00
0.00
0,00
0,00
0,00
0,90
0,31
7,64
0,00
0,06
0,00
0,00
0,00
1,14
0,41
0.32
0,79
3,37
6,43
0,00
0,00
0,00
0,00
0,00
0,00
1,69
4,33 -
2?, 4
128,
0,66
0,1.7
0,21
0,00
1,30
0,55
0,08
0,00
0,00
0,08
0,00
0,00
0,00
0,00
0.00
0,00
4630? 0,00 0,00 0,00 0,13 0,00 0,00 0,00 0,18 0,00
F-4
-------
COMPUTER DATA FILE OF ALL"VARIABLES (Cont'd)
1-5 6-13 14-21
VAR 135 VAR 136
22-29 30-37 38-45 46-53 54-61
MAR 137 VAR 138 VAR 139 VAR 140 VAR 141
FUEL
CODF.
39510
40410
4051.0
430.10
43430
43010
4-1010
40150
46010
46110
4.5,310
SALI,»U
MG/KM
0,00
0,51
0,44
0,34
0,00
0,00
0,00
0,00
0,00
0,25
0,00
CRES,»U
MG/KM
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
GRP,5»U
MG/KM
0.06
0.27
0,00
0,00
0,09
0,00
0,00
0,00
0,00
0,14
0,00
TRI.rU
MG/KM
0.00
0,00
0.00
0,00
0.00
0.00
0,00
0,00
0,00
0,00
0,00
TET,»U
MG/KM
0,00
0.08
3.96
0,00
0.13
0,00
2.99
0.49
0.44
3,52
0,00
PRO. >U
MG/KM
0,10
0,85
0.09
5.24
0.00
0.00
0,00
0,00
0,00
0,00
0,00
TOTALS
MG/KM
0.24
1,71
4,49
5,66
0.22
0.00
2.99
0.49
0,44
3.92
0.00
1- 5
FIJI:!.
CODE
39511
40433
4051.1.
43033
4341 J
4;?/>
0,022
0,023
VAR 211
P
PCT
0.14
0,066
0,061
0,075
0,049
0,085
0,062
0,047
0.033
0,23
0,16
VAR 212
S
PCT
0,24
0,30
0,32
0.55
0,51
0,27
0,54
0,27
0,21
0,24
0,28
VAR 213
CL
PCT
0,013
0,0044
0,035
0,0083
0,021
0,0098
0.013
0,011
0,0096
0,011
0,0091
VAR 214
CA
PCT
0,27
0,11
0,098
0,16
0,086
0,11
0,13
0,097
0,084
0.45
0,33
VAR 215
TI
PCT
0,0008
0.0029
0.0014
0,016
0,0031
0
0,0072
0,0060
0,0046
0
0
F-5
-------
COMPUTER DATA FILE OF ALL VARIABLES (Cont'd)
1-5
FUEL
CODE
39513
40413
4051.3
43013
434 1. 3
43813
44013
40113
46013
46113
46313
6~ 33
VAR 216
ZN
PCT
0,076
0,002
0,095
0.09.1
0.062
0
0,036
0,070
0,0-51
0,083
0,060
14-21
VAR 2.17
SN
PCT
0,0015
0,0030
0,0039
0
0
0
0
0
0
0
0
22-29
VAR 218
BA
PCT
0,0002
0,0020
0
0
0,0044
0
0,0051
0.0028
0
0
0
30-37
VAR 219
FE
PCT
0,39
0,52
1,17
0,99
0,35
0.23
0,33
0.56
0,31
0.30
0,16
38- 45
VAR 220
PB
PCT
0
0
0
0
0.29
0
0
0
0,19
0
0
46-53
VAR 221
BR
PCT
0,0094
0
0
0
0,071
0
0
0
0,033
0,019
0,017
54-61
VAR 222
CD
PCT
0,0009
0
0
0
0
0
0
0
0
0,0034
0,0027
62-69
VAR 223
K
PCT
0,0011
0,0013
0,0010
0.0060
0.0062
0,016
0.0084
0,0063
0.004D
0,0050
0.0062
70-77
VAR 224
NI
PCT
0,013
0
0
0
0
0
0
0
0
0,018
0,016
1--5 .'.--13 14-21 22-29
VAR 225 VAR 226 VAR 227
PtJt:!
CODE
39514
40414
4 05 34
41014
4341.4
4-W14
44814
401.. 14
460.14
46134
46334
V
PCT
0
0
0
0
0,0080
0
0
0
0
0
0
SB
PCT
0,027
0
0
0
0
0
0
0
0
0,053
0.036
TOT ELI
PCT
1,25
0,70
1,87
2,06
1,51
0,74
1,18
1,16
1,01
1,48
1,14
1-5
FUEL
CODE
395.1.5
40415
40515
4301.5
43415
43015
44615
40115
46015
46. U 5
463.15
6-1.3
VAR 228
CS
PEAK %
.?.! « 7
31,5
23 .2
•0
42,8
14,5
26,7
12,3
22,4
27,0
17,6
3.4-23.
VAR 229
CI
AVG 7.
6,0
0,0
6,0
•0
6-3
5,5
5,6
6.1
6,8
6,2
7,4
22-29
VAR 230
1ST ACC
PEAK %
26,1
20,8
19,6
-0
14.4
16,0
28,9
18,8
46,7
29,2
23,8
30-37
VAR 231
IDLE 125
AVG %
2,1
1,0
1,2
-0
2,0
1,2
0,7
1,1
2,4
2,4
2,6
38-
VAR
ACC,
45
232
.164
PEAK X
5
5
6
9
4
5
0
12
8
21
,0
,1
,0
--0
,3.
,8
,0
,8
.7
,9
,0
46-53
VAR 233
SOL, C
PCT
77,9
76,2
79,9
-0
71.7
75,3
75,1
79,0
82,4
82,7
82,3
54-61
VAR 234
SOL. H
PCT
10,7
10,3
11,8
-0
8,5
9,7
10,0
11,3
12,1
12,4
12.3
62
VAR
SOL
-69
235
, N
PCT
0
0
0
1
1
1
1
0
0
0
,56
,80
,89
-0
,39
,33
,35
,23
,22
,23
,24
70-77
VAR 236
SOL, S
PCT
0,81
0,32
0.38
-0
0,96
0,67
0.60
0.51
0.39
0,44
0,50
F-6
-------
COMPUTER DATA FILE OF ALL VARIABLES (Cont'd)
1-5
FUEL
CODE
39516
404 if.
40516
43016
4341'.
4 381 A
4401 ,'•
401 s »
46016
46116
4o3.16
6-13
VAR 237
SOL. 0
PCT
7,7
8,2
~0
-0
12,7
12,8
11,5
6,4
5,5
4,8
5,0
14-21
VAR 233
C
PCT
88.0
87,1
36,0
00,0
30,9
78,9
34,9
78,8
34,9
79,1
32,8
22-19
VAR 239
H
PCT
4.3
5,3
•5.2
2,6
2,6
6.1
3.2
2,6
2.1
2.4
. 1,5
30-37
VAR 240
N
PCT
0,27
0.10
0,10
0,19
0,42
0,60
0,52
0,38
0.30
0,36
0.31
38-45
VAR 241
100-CHNG
PCT
7.2
7,2
3.4
16,7
15.6
14,1
10.8
18,0
12,5
17,9
15,1
READY,
F-7
-------
BIVARIATE CORRELATION NATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES
1
FILE
VI
V2
V3
V4
V5
7 V6
00
V7
V8
V9
V10
vii
V12
V13
V14
V15
V16
Yi7
V18
V19
81/02/23, 18,37.52.
FUEL (CREATION DAT
._ _ .. .. ... n r A r>
VI
1.0000
.6656
.6189
-.6122
-.7063
.4605
99.0000
.3084
.6060
-.6737
.0958
.6659
.5211
.1279
,3104
.3725
.3420
.3511
.3266
i L. n r\
V2
,6656
1,0000
,9806
--,9807
-.8404
.7636
99.0000
-.1806
,0894
-.9479
.0782
,9448
,4003
-.0658
,0957
,0042
-.0086
,0417
,1242
E = 01/02/23,) VARIABLES STUDY
SON CORRELATION COEF
V3 V4 V5 V6
,6189
,9806
1.0000
-.9993
-.8690
,7703
99,0000
• ,1408
,9042
••,9232
.1083
,9158
,2364
-,0449
-.0079
-.1142
-.1482
-.1175
-.0622
-.6122
• . 9807
-.9993
1.0000
,8639
-.7707
99.0000
.1327
•-.9037
.9281
-.1049
-.9212
-.2485
.0356
-.0054
,0989
,1342
,1052
,0529
-.7063
•-.0484
-.8690
.8639
1.0000
-.6355
99.0000
.0296
• .8773
.8146
•-.3504
- . 7738
-.2068
.3155
-.1021
-.0523
.0026
,0034
.0201
,4605
,7636
,7703
••,7707
•-,6355
1,0000
99,0000
.1020
.9247
-.7205
--,4347
.7833
,2635
-.2122
-.0811
-.0244
-.0449
-.0130
.0286
F I C I E
V7
99,0000
99,0000
99,0000
99,0000
99,0000
99,0000
99.0000
99.0000
99.0000
99,0000
99,0000
99.0000
99,0000
99.0000
99.0000
99.0000
99.0000
99.0000
99,0000
NTS--
V8
.3084
-.1806
-.1400
.1327
.0296
.1020
99,0000
1.0000
.0430
.0468
-.2759
-,0120
-.0081
,2416
-,1423
,1585
,0934
,0323
-.0956
V9
,6060
.8894
.9042
-,9037
-.8773
.9247
99.0000
.0430
1.0000
-.8546
• .0782
.8709
,2705
-.2745
.0002
.0115
-.0295
-.0115
.0054
V10
-.6737
-.9479
-.9232
.9281
.8146
-.7205
99.0000
.0468
-.8546
1.0000
-.1220
-.9913
-.4875
,0432
-.0333
-.0228
-.0061
--.0544
-.1414
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
1
FILE FUEL (CREATION DATE = 81/02/23,) VARIABLES STUDY
- -----PEARSON CORRELATION C 0 E T
VI V2
V20
V21
V22
V23
V24
7 V25
10 V26
V27
V2C
V29
V30
V31
V32
V33
V34
V35
M36
V37
V38
.2156
,2679
,1631
,1495
.1623
,1200
,1668
-,2227
.1001
,0416
,0094
-,1249
-,0038
-.1814
-.1233
,1793
.1122
.3156
,1384
,0630
,1813
,0724
.0738
,0249
-.0957
.4560
-.5967
-.4954
-.5537
• .5832
-,6583
-.4887
•-,4984
-.4180
,0375
•-.0899
,0610
,0989
V3 V4 V5 V6
-.1323
••.0130
-.1159
-.1120
,1524
-.2576
.4395
-.6339
-.5651
-.6396
-.6502
.7137
-.5778
• .6091
••.5374
-.1251
.2402
-.0678
.1246
.1273
,0107
.1174
.1154
.1594
.2696
• .4437
,6499
,5604
,6370
,6602
,7246
,5914
,6218
,5470
,1365
,2564
,0720
-,1386
.1267
.0620
.1760
.1940
.2383
.2143
-.1343
.3765
.2908
.3969
,4147
,4671
,3830
,4646
,4001
,1006
.2009
•-,0721
•-,2369
-.0208
,0042
-.1022
-.0713
•-.0901
-.0911
.0027
-.6853
•-.4678
-.5824
-.6759
•-,8039
-.7331
••,6585
••.6515
-.2142
•-,2186
,1969
,3241
81/02/23, 18
F I C I E N T S
V7 VG
99,0000
99,0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99,0000
99.0000
99,0000
99,0000
99.0000
-.1810
--.2411
• .2445
• .2673
-.2031
-.1377
-.3768
• .0030
.2784
.2185
.1554
.0779
-.0757
-.1217
-.1464
-.2490
-.1826
,3097
.6547
.37,52.
... .. _. ._
V9 V10
.0779
-.0317
-.1543
-.1468
• .1835
-.1809
.1440
-.6260
-.4355
-.5587
-.6316
•-.7332
• .6477
-.6424
•-.6012
--.1913
-.2490
,1506
,3397
-.1080
•• . 1967
-.0878
.0713
-.0027
.1721
-.4615
.7093
.4613
.5209
.5727
.6242
.4439
,4706
.3418
-.0182
,1195
-,0779
-,1715
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
1
81/02/23, 1C, 37, 52,
FILE FUEL (CREATION DATE = 01/02/23.) VARIABLES CTUDY
— _ .. _ ... „, D r* A D o n u r n r» n r i A T T n u p n i- r-
VI
V2
V3
V4
V5
V6
V7
V8
V9
V10
Vll
V12
V13
V14
V15
V16
V17
V18
V19
Vll
,0958
,0702
.1003
-.1049
-.3504
-.4347
99.0000
-.2759
-.0782
-.1220
1.0000
-.0099
-.1131
-.0424
.1103
-.0013
-.0472
-.0873
-.1489
t u n i\
V12
,6659
,9448
.9158
• .9212
-.7738
,7033
99.0000
•-,0120
,8709
-.9913
-.0099
1.0000
,5063
-,0376
,0100
,0228
.0123
.0664
.1625
\J U 11 Lr
V13
,5211
,4083
,2364
-,2485
.2068
.2635
99.0000
-.0081
.2705
-.4875
- ,1131
.5063
1.0000
.0335
,5911
,7083
,7654
.8361
,9147
U IX U C. U
V14
,1279
-.0658
-.0449
.0356
,3155
-.2122
99.0000
,2416
- ,2745
.0432
-.0424
•-.0376
.0335
1,0000
,1432
,1068
,0678
,0244
-,0560
n i j. u ft
V15
.3184
.0957
-.0079
-.0054
-.1021
••,0811
99,0000
-.1423
,0002
-.0333
,1103
.0180
.5911
.1432
1.0000
,9054
.8921
,8566
,7216
U 11 U 1
VI 6
.3725
,0042
••,1142
.0989
-.0523
• ,0244
99.0000
,1585
,0115
--,0223
,0013
,0220
,7083
,1068
,9054
1,0000
,9806
.9538
,8130
r T r* T r
1 1 L i t
V17
,3420
-.0086
-.1482
.1342
.0026
-.0449
99.0000
,0904
• ,0295
•-.0061
-.0472
.0123
.7654
.0678
,8921
.9886
1,0000
.9871
.8869
NT f*
1 b •• ••
V10
.3511
,0417
-.1175
,1052
.0034
-.0130
99.0000
.0323
-.0115
-.0544
-.0073
,0664
,8361
.0244
.8566
.9530
.9071
1.0000
,9491
V19
.3266
,1242
-.0622
.0529
.0201
.0286
99.0000
-.0956
.0054
-.1414
-.1489
,1625
,9147
-.0560
.7216
.8130
.8869
,9491
1,0000
V20
.2156
.0630
-.1323
.1273
.1267
-.0208
99.0000
-.1818
-.0779
-,1030
•-,1879
,1342
.8798
-.1272
.5337
.6315
,7353
.8298
.9557
-------
1
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
01/02/23. 10.37.52.
PAGE
FILE FUEL
(CREATION DATE = 81/02/23.) VARIABLES STUDY
V20
V21
V22
V23
V24
V25
V26
V27
V28
V29
V30
V31
V32
V33
V34
V35
V36
V37
U38
Vll
-.1879
-.1461
-.1442
-.2011
-.2230
-.2404
,2877
,2766
.1528
,1646
.2726
.3756
,3903
,1939
.2791
.0664
-.0371
-.2265
-.1173
r. r A |J
1 L. H 11
V12
,1342
,2182
,1082
.0993
,0336
-.1411
,4278
-,7514
-.4854
-,5469
-.6133
-.6787
-.4988
-.4997
-.3811
,0099
-.1151
,1077
,1860
c n Kl P
U U Pf w
V13
,8798
.8696
,7635
,7381
,6782
.5477
,2600
-,1741
,2981
,3081
.1207
,0050
.1385
.1877
,2820
,5745
.4692
,5903
,0506
n u P F i
u rv rv L. L-
V14
-.1272
-.0814
-.0811
-.0799
-.0011
•-,1943
.6042
-.1117
,1937
,2236
,2133
,1306
,0012
-.1175
- . 1020
•-.1477
-.1601
-.2845
• ,1400
A T I 0 N
n i x u IT
V15
.5337
,4573
.3108
.2849
.2476
.2826
.0766
.1911
.6639
.6081
.3262
.1822
.0683
,0250
.0358
,1737
,0831
,1661
-.0640
C 0 E F
V16
,6315
.5219
.3788
.3478
,3245
,3847
-.0392
,1842
,7958
.7326
,4384
.2712
.1449
,1101
,1250
.2268
,1753
.4354
.1148
F I C I E
Y17
,7353
,6359
,5072
,4796
,4525
,4996
- ,0411
.2202
.7736
,7350
,4578
.3007
.2156
.2105
.2251
,3492
,2973
,5007
,0657
N T S -
vie
.8298
,7491
,6312
,6075
,5746
.5977
•-.0099
,2074
.7039
.6870
,4331
,2849
,2548
,2776
,2988
,4682
,4105
,5642
,0217
V19
.9557
,9160
,8294
,8122
.7657
,7309
.0527
.1588
.5137
.5431
.3490
.2361
.3184
.3943
.4322
.6635
.5932
.6343
• .0593
V20
1.0000
.9714
.9302
.9187
.3631
,7944
.0504
.1530
.3820
.4515
.3286
.2653
,4193
,5297
,5790
.7739
.7196
.6380
-.1458
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
1
FILE
-
VI
V2
V3
V4
V5
V6
V7
V8
V9
V10
VI 1
V12
V13
V14
V15
V16
V17
V18
V19
FUEL (CREATION DATE = 01/02/23.) VARIABLES STUDY
- . •- -
V21
,2679
.1813
-.0130
,0107
,0620
.0042
99,0000
-,2411
--,0317
-.1967
-.1461
.2182
.8696
-.0814
,4573
.5219
,6359
,7491
,9160
• PEAR
V22
,1631
,0724
-.1159
.1174
,1768
••.1022
99.0000
-.2445
-.1543
-.0878
• ,1442
.1082
,7635
-.0811
.3108
.3708
.5072
.6312
.8294
SON C
V23
,1495
,0738
-.1120
.1154
,1940
-.0713
99.0000
-.2673
-.1468
••.0713
-.2011
,0993
,7381
• ,0799
,2849
,3478
,4796
,6075
,8122
0 R R E L
V24
.1623
,0249
-.1524
.1594
,2383
-.0901
99,0000
•-,2031
•-,1335
-.0027
• .2280
.0336
.6782
• ,0011
.2476
,3245
,4525
,5746
,7657
A T I 0 N
V25
,1200
••,0957
-.2576
,2696
.2143
-.0911
99.0000
-.1377
-.1809
.1721
-.2404
••,1411
.5477
•-.1943
,2826
,3847
,4996
,5977
,7309
C 0 L f
V26
.1668
.4560
.4395
•-.4437
-.1343
.0827
99,0000
• ,3768
.1440
•-.4615
.2877
.4278
,2600
,6042
,0766
• ,0392
-.0411
-,0099
.0527
81/02/23. 18.37.52.
F I C I E
V27
-.2227
- .5967
-.6339
,6499
,3765
-.6853
99.0000
-,0838
-••6260
,7093
.2766
-.7514
-.1741
-.1117
.1911
,1042
,2202
,2074
.1588
NTS
V28
.1001
-.4954
-.5651
.5604
,2908
-.4678
99.0000
.2784
•-.4355
.4613
,1528
-.4854
,2981
.1937
,6639
,7958
,7736
,7039
,5137
V29
.0416
-.5537
-,6396
,6370
,3969
-.5824
99,0000
.2185
-.5587
,5209
,1646
• ,5469
,3081
.2236
,6081
.7326
,7350
,6870
.5431
V30
.0094
-.5832
-.6502
.6602
,4147
-.6759
99.0000
.1554
-.6316
.5727
.2726
-.6133
.1207
,2133
,3262
.4384
.4578
.4331
.3490
-------
FILE
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
81/02/23, 18.37,52.
FUEL (CREATION DATE = 01/02/23.) VARIABLES STUDY
V20
V21
V22
V23
V24
V25
2 V26
00
V27
V28
V29
V30
V31
V32
V33
V34
V35
V36
V37
V38
V21
.9714
1.0000
.9764
.9688
.9266
.8214
.1695
.1499
,2499
,3460
,2841
,2319
,4378
,5497
.5999
.8589
.7859
.6354
-.1846
- r L H K
V22
,9302
,9764
1,0000
,9956
,9713
.8669
,1430
.2479
.2045
.3348
.3467
.3282
.5571
,6810
,7169
,9280
.8771
,6462
-.1994
a U N L
V23
,9187
,9688
.9956
1.0000
.9328
.8846
.1448
,2466
,1754
,3069
,3296
,3046
.5330
,6666
.6913
,9224
,8847
,6383
-•,2397
U K K L L
V24
.8681
,9266
.9713
.9828
1.0000
.9267
,1523
,3308
,2231
,3603
,4240
.3816
.5840
.7058
.7040
,9345
.9279
.6804
-.2209
fl 1 J. U N
V25
.7944
,8214
.8669
.8846
.9267
1.0000
-.1117
.5494
,3668
.4749
.5412
.4772
.6124
.7383
.6757
.8932
.9367
.7990
.1076
L U t 1
V26
.0504
.1695
,1430
,1448
,1523
-.1117
1,0000
-.3187
-.1956
-.1523
-.0941
-,1262
-.0393
-.1356
-.0407
.1055
.0118
-.2421
--.3566
1 1 L 1 t
V27
,1530
.1499
,2479
,2466
,3308
,5494
• .3187
1,0000
,5950
.6847
.8365
,8607
.7891
.7649
,6476
,4740
.5544
,3175
-.1457
N 1 if - -
V28
,3820
,2499
,2045
,1754
,2231
.3668
-.1956
,5950
1.0000
,9779
,8364
.7279
.5111
.4170
.3788
.1992
.2442
,3609
.0513
V29
.4515
.3460
.3348
.3069
.3603
.4749
•-,1523
.6847
,9779
1.0000
.9112
,8292
.6577
.5797
.5419
.3500
.3929
.3944
-.0285
V30
.3286
.2841
.3467
.3296
.4240
,5412
-.0941
.8365
,8364
.9112
1.0000
.9667
,3551
,7645
,7086
.4891
.5663
.4045
- .1211
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
FILE FUEL
81/02/23. IS,37,52.
(CREATION DATE = Si/02/23.) VARIABLES STUDY
VI
V2
V3
V4
V5
^
K V7
vs
V9
V10
Vll
V12
V13
V14
V15
V16
V17
V18
V19
V31
-.1249
-.6583
-.7137
,7246
.4671
-.0039
99,0000
,0779
-.7332
.6242
.3756
-.6787
.0050
.1306
,1822
,2712
.3007
.2849
.2361
- r L ft K
V32
-.0838
• .4887
-.5778
.5914
.3038
-.7331
99,0000
- .0757
-,6477
,4439
,3903
-.4988
,1385
.0012
,0683
.1449
,2156
,2548
,3184
U U N L
V33
-.1814
-.4984
-,6091
,6218
,4646
-,6585
99,0000
-,1217
-.6424
,4706
,1939
-.4997
,1877
-,1175
,0250
,1101
,2105
,2776
,3943
U K 1C t L
V34
••.1233
••.4100
• .5374
.5470
.4001
-.6515
99.0000
• .1464
-.6012
.3418
.2791
-.3811
.2820
• .1020
.0358
.1250
.2251
.2988
.4322
ft 1 i U N
V35
.1793
.0375
-.1251
.1365
,1006
-.2142
99.0000
-.2490
-.1913
-.0182
.0664
.0099
,5745
-.1477
.1737
.2268
.3492
,4682
,6635
L U L 1
V36
,1122
-,0899
-.2402
,2564
.2009
-.2186
99.0000
-.1826
-.2490
,1195
-.0371
-.1151
.4692
-.1601
.0831
,1753
.2973
.4105
.5932
1 1 L i t
V37
,3156
.0610
-.0678
,0720
-.0721
.1969
99.0000
,3097
,1506
-.0779
-.2265
.1077
.5903
-.2845
.1661
.4354
.5007
.5642
.6343
N 1 2
V38
.1384
,0989
.1246
•-.1386
• .2369
,3241
99,0000
.6547
.3397
-.1715
-.1173
.1860
.0506
-.1400
•-.0640
.1148
.0657
,0217
-.0593
V101
-.7592
-.7771
-.7454
.7524
.7749
•-.6770
99,0000
.2006
-.3073
.7965
-.1229
-.7856
-.5666
-.0627
• .3551
-.4500
-.3952
• .3854
• .3226
V102
-.5287
-.9050
-.8938
.9015
.8208
-.6980
99.0000
,0504
-.8537
,9038
-,1965
-.8840
• .4016
,1200
-.0441
-.0548
-.0295
-.0617
-.1137
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
81/02/23. 18.37,52,
FILE FUEL
V20
V21
V22
V23
V24
V25
ha V26
i
K V27
V28
V29
V30
V31
M32
V33
V34
V35
V36
V37
V38
V31
.2653
,2319
.3282
.3046
.3816
,4772
-.1262
.8607
.7279
.8292
,9667
1.0000
.9301
.0448
.8052
,5014
.5675
,3081
-.1717
- 1' L fl K
V32
.4193
,4378
,5571
.5330
.5840
.6124
-.0393
.7891
,5111
,6577
.8551
.9301
1,0000
.9618
,9552
,7372
,7677
,4040
-.2294
i) u N L
V33
,5297
,5497
,6010
,6666
.7058
.7383
-.1356
,7649
.4170
,5797
,7645
,8448
.9618
1.0000
.9772
.8215
.8596
.5000
• ,2023
U K K L L
V34
,5790
.5999
.7169
.6913
.7040
.6757
-.0407
.6476
.3788
.5419
.7086
,8052
.9552
.9772
1,0000
,8301
,8334
,4571
-.2327
ft 1 1 U N
V35
.7739
.8589
.9280
.9224
.9345
.8932
.1055
.4740
,1992
.3500
,4891
,5014
.7372
.8215
,8301
1,0000
.9713
,6804
-,1800
U u L I
V36
,7196
,7859
,0771
.8847
,9279
,9367
.0118
,5544
.2442
.3929
.5663
.5675
,7677
,8596
,0334
,9713
1.0000
.7242
•-.1741
1 I L 1 t
V37
.6380
.6354
,6462
.6383
.6804
.7990
-.2421
.3175
.3609
.3944
,4045
,3081
,4040
.5000
.4571
.6804
,7242
1.0000
,4303
N 1 i> - ~
V38
-,1458
• ,1846
-.1994
• ,2397
-.2209
-.1076
-.3566
-.1457
.0513
-.0285
-.1211
-,1717
-,2294
•-,2023
-,2327
-.1800
-.1741
.4303
1.0000
V101
• .1585
-,1834
-,0305
•-,0114
,0005
,0253
• .3620
.4246
•-.0538
.0594
.1944
.3587
,3506
,4328
,3669
.0190
.1009
-.3339
-.3516
V102
-.0268
-.1311
-,0269
-.0087
,0436
.1294
-.4353
.5412
,4012
.4662
.5148
,5760
.4289
.4492
.3639
-.0144
,1171
-,1877
-,3217
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
1
FILE FUEL (CREATION DATE = 81/02
_ .. .. _ .. .. ... -.--.-PEARSON C
VI
V2
V3
V4
V5
V6
V7
V8
V9
V10
Vll
V12
V13
V14
V15
V16
V17
VIS
V19
V103
-.2149
-.7100
-.7314
.7388
.5877
-.6380
99,0000
.3486
-.7037
,7094
-,1291
-.6982
-.2210
.0374
-.0575
-,0110
,0305
,0231
,0170
V104
-.4008
• ,8723
•-,8977
,8959
,7955
,8884
99,0000
,1457
-.9393
,8252
,0973
-.8443
-.1475
,3618
,2008
,2270
,2436
.1985
.1115
VI 05
,4692
,1266
,1147
-.1170
-.2101
-,4120
99,0000
,0986
• ,1496
-.1235
.6367
,0398
,1567
,5083
,4336
.3106
,2671
,2213
,1241
/23.) VARIABLES GTUDY
ORRELATION C8EF
V106
,1256
,3636
,3136
-.3152
-.2463
.4657
99.0000
,1870
,4263
-.3505
• ,2313
,3823
,2738
-.2765
-.2105
-.0930
-•,0468
.0235
.1561
V107
.0397
.2966
.3694
• .3728
-.3309
,4706
99,0000
.4111
,4711
-.3218
-.1419
,3412
- ,2322
-,2193
-.5212
-.4421
-.4698
-•,4683
-.4273
V108
.4340
.3815
.2424
• .2311
• .1895
,2746
99,0000
.2260
.2405
-.2128
,2213
,2442
.6073
-.0745
.4174
,4061
,4876
,5700
.6865
si/o:
F I C I E
V109
.3447
.2510
.3021
-.3176
-.2153
,4342
99,0000
.4972
.3807
-.3419
-.2053
.3716
.1529
.4314
,0859
,2706
,1807
,1106
-,0406
2/23, 1
NT O
r b - •
V110
.2045
.0921
.1219
-.1339
,1754
-,0517
99,0000
,2436
-,1043
-.1244
-,0608
,1338
,0721
,9785
,1346
,0948
.0444
.0005
• .0792
U.^/«Dif.
VI 11
,1954
,1490
,1843
• ,1998
•-,3240
,4443
99,0000
,7179
,4517
•,2409
• ,1608
.2620
,0840
-,2023
•-,0877
,1778
,1155
,0631
,0421
V112
99,0000
99.0000
99,0000
99.0000
99,0000
99,0000
99,0000
99,0000
99,0000
99,0000
99,0000
99,0000
99.0000
99.0000
99.0000
99,0000
99.0000
99.0000
99,0000
-------
FILE
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
01/02/23. 10.37.52.
fUEL (CREATION DATE = 01/02/23.) VARIABLES STUDY
V20
V21
V22
V23
U24
V25
V26
V27
V28
V29
V30
V31
V32
V33
V34
V35
V36
V37
V38
V103
.0819
,0529
.1846
.1744
,2408
,3476
-.5813
.6589
.3805
.4793
,5825
.6449
.5919
.6347
.5427
.2947
.3762
,2192
,1107
r L 8 l\
V104
.1335
,0539
,1440
.1254
,1832
,2106
-.1881
.6699
,6736
.7616
.7816
.8222
,6686
.6220
.5739
,1790
.2441
-.0199
,1765
i> U N L
V105
-.0033
.0722
,0500
-.0010
,0255
,0552
.3512
.2754
.3704
,4006
.4277
.4108
.3625
.1717
.2226
.1731
.0538
-.0912
-.0274
U K N L L
V106
,1982
.2759
.3180
,3103
,3320
,3652
-.0667
-,0985
-,2795
-.2550
-.1902
-.2176
-.0425
.0943
.0611
.3666
,3610
.6672
.6946
ft 1 i U N
V107
-.4092
-.3524
• .3067
-.3196
-.3011
• ,2570
-.2085
-.3337
-.5097
-.5483
-,4737
-.4453
-.3757
--.3126
• .3392
•-.2215
-.2130
.1865
.8096
U U L h
VI OS
.6561
,7462
.7206
.7491
.7886
,8331
,1463
,2846
.1589
.2150
.2422
,1081
,2437
.3371
.2793
,7339
,7218
.6656
-.1000
!• i U 1 h
V109
-.1993
-,2487
-,3794
• ,3760
-,3692
-.4308
,2655
-,5564
.0922
-.0348
-,2233
-,3731
• ,5437
•-,6428
-,5960
-,5416
-.5415
-.1186
.1460
N T 5 - -
V110
-.1658
-.1168
-.1462
-.1456
-.0870
-.3055
.6551
-.2972
.0815
.0850
.0387
-.0535
-.1711
-.2908
-.2535
-,2471
-.2817
-.3381
• .1069
Vlll
-.1624
-,2175
-.2734
-.3055
-.3029
• .1730
-.3620
-.2497
,0591
-.0536
-.1915
-.2648
• .3476
-.3340
-.3498
• ,2895
- .2777
.4249
.9082
V112
99,0000
99,0000
99,0000
99,0000
99,0000
99.0000
99.0000
99,0000
99,0000
99,0000
99,0000
99.0000
99.0000
99.0000
99.0000
99.0000
99,0000
99.0000
99.0000
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
1 81/02/23, 18.37.52,
FILE FUEL (CREATION DATE = 81/02/23.) VARIABLES STUDY
- PEARSON CORRELATION COEFFICIENTS--- -
VI
V2
V3
V4
V5
V6
^ V7
00
V8
V9
V10
Vll
V12
V13
V14
V15
V16
V17
V18
V19
V113
,1563
,3916
.3671
-.3685
-.3084
.5152
99.0000
.2597
.4853
-.3742
-.2334
.4064
.1810
-.2730
-.2659
-.1531
-.1242
-.0679
.0430
V114
,4518
,2537
,3126
-.3138
-.4569
.1821
99.0000
.4730
.3328
-.4532
,2259
,4261
-.0513
-.4315
-.3061
-.2272
- ,2832
• ,3072
-.3181
V115
.1611
-.0479
-.0014
-.0074
-.0695
• ,0048
99.0000
.3515
,0093
.0195
-.1868
.0049
-.1727
• .2681
.0736
-.0169
-.0555
-.1023
-.1717
V116
-.3278
-.3255
- .3627
.3440
.4462
-.1321
99.0000
-.0055
•-.2931
,1982
-.3974
-.1465
.1354
-.1785
,1683
.1442
.1683
,1684
.1831
M117
-.2155
-.0972
.0066
-.0196
-.0572
-,1699
99.0000
-.0274
••.0724
.0357
.2040
• .0632
• .4406
-.3621
-.0608
-.2445
-.3104
-.3820
-.4716
V118
-.6230
• .5429
-.5453
,5495
.5529
-.4291
99.0000
-.2042
-•.5056
,5079
.1697
-.5349
-.1860
.5691
-.1621
•-,0688
-.0486
-.0559
-,0657
V119
,4244
,1871
,1618
-.1576
-.1370
,1129
99,0000
,1512
,0931
-.1061
-.3311
,1517
,0942
-.1225
,1428
,0226
,0477
,0757
,1239
V120
-,2099
,0029
,0555
-.0826
,0317
,2536
99,0000
.1319
.1560
,0122
-.3706
.0368
-.1127
-.5042
.1395
.1142
.0677
.0106
-.0900
V121
.1554
-.5140
-.5078
.5195
.3346
-.3269
99.0000
.7016
-.3988
.4263
-.2215
-.4009
-.1656
,4937
-.2121
-.0292
-.0259
-.0480
-.0848
V122
,3547
.1062
.1307
-.1377
-.2006
,1185
99.0000
,4070
,1462
-.1555
-.2028
.1835
-.0162
-.3448
,0653
.0150
-.0142
-.0400
• ,0748
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
1
FILE FUEL (CREATION DATE
V20
V21
V22
V23
V24
V25
V26
Y27
V28
V29
V30
V31
V32
V33
V34
V35
V36
V37
V38
V113
.0688
,1482
.1861
.1790
.2044
.2512
-.1091
-.1512
-.3337
-.3276
-.2617
-.2893
-.1365
-.0130
-.0514
.2477
.2463
.6007
.7511
-• r t « N
= 81/02/23.) VARIABLES STUDY
SON C " " " ~ ' ~
UKRELATiriH
r n r r
V114 V115 V116 V117 V118
•-.2863
-.3037
-.3201
-.3654
-.4083
•-.5243
-.2115
-.4810
-.2506
-.3101
• .2927
-.2225
-.1821
-.2845
-.1629
-.2983
-.3542
-.1626
.3490
-.2230
-.2759
-.3195
-.3386
-.3993
-.4229
-.6887
-.2517
-.1072
-.1659
-.3189
-.2837
-.3574
.3533
••,3342
-.4210
-.4805
-,3723
,1699
,2536
.1102
.0744
.0628
-.0433
• .1669
-.3879
-.3385
.0262
.0112
-,2351
-.1874
-.2115
-.1085
-.0457
-.2198
-,2524
-.2959
-.0946
•-.5015
-,5600
-.6015
-.6304
-.7280
• ,8166
-.3085
-.3508
-.2589
-.3278
-.4558
-.3345
• .4214
-.4869
-.4151
-.6854
-.7782
-.8229
• .0418
.0181
-,0256
.0717
.0780
.1469
.2071
.2791
,4395
,3071
.3692
,4939
,5276
,4730
,4644
,4157
.1573
.2738
.1168
-.1111
01/02/23. 18
.37.52.
F I P T F M T Q .- - - ..
V119 V120 V121 V122
.1076
,1516
.1292
.1409
.1120
,0854
-.4581
-.0857
-.1679
-.1549
•-.2025
-.2155
-.1599
-.0948
••.1079
.0756
.0212
-.0634
--,0878
- .2182
.. <2944
-.4016
-.4023
-.4905
-.4835
-.3575
-.4541
-.1620
-.2697
-.5759
-.5999
-.7297
-.6628
-.6648
-.6412
-.7030
-.3484
.2333
-.0315
--,0840
.0057
-.0006
.0755
.1610
-.7597
.3483
.3222
.3592
,4525
,4677
.3917
.3861
.3303
.0918
.2069
.2434
,1931
-.1145
-.1487
-,1996
-.2206
-.2826
-.3309
-.6225
-.3270
-.1427
-.1973
-.3348
-.3157
•-.3380
-.3312
-.2913
-.2992
-.3694
-.2271
,2086
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
4
1
FILE
VI
V2
V3
V4
V5
V6
V7
V8
V9
V10
Vll
V12
V13
V14
V15
V16
V17
V18
V19
FUEL (CR
V123
-.3547
-.3603
-.3548
.3426
.0992
-.1861
99,0000
-,1114
-.1608
,4014
,0770
-,4149
-,0757
-.4025
.4323
.4517
.4176
,3436
,1735
EATION DAT
••TEA R
"124
-,3858
-.2551
• .2452
,2589
.0604
-.4918
99.0000
-.5881
-.3485
,4142
,4225
-.4728
• .3847
-.4851
.0157
• .2012
-.1634
•-,1507
• ,1165
E = 81/02/23.) VARIADLES STUDY
SON CORRELATION COET
V125
• ,3802
-.2489
-.2535
,2703
,0556
-.4269
99,0000
-.5803
.3093
,3918
.3513
-.4408
-.3361
-.6045
-.0680
• .2355
• .1802
-.1468
•-.0744
V126
.1807
,1375
,1696
• ,1846
-.3029
.4163
99.0000
,7000
,4264
-.2235
-.1500
.2428
,0744
-.1862
r.0637
,1603
,1009
,0499
-.0498
V127
,2155
.0874
.1162
-.1300
,1666
-,0375
99,0000
,3068
-.0885
-.1290
-.0681
.1391
.0914
.9734
,1521
,1295
.0749
.0258
-.0649
V120
.1890
.1466
.1793
-.1943
-.3158
.4358
99,0000
,6951
,4443
-.2338
-.1563
.2541
.0790
-,1955
-•,0593
,1692
.1077
,0554
-,0480
81/02/23, 18,37,52,
r i c i E N T s -
VI 29
,3269
.1975
,2252
-.1928
• .3521
.0121
99.0000
-.2681
.1344
-.0476
,2079
,0211
-,2988
-.2737
-.1635
-,3625
- .3485
-.3175
-.2549
V130
,1196
.0024
.1081
-.1221
-.2216
,3121
99,0000
.6497
,3257
-.1563
-.1123
,1700
,0448
-.1402
-.0695
,1126
,0642
,0200
-,0613
V131
.1101
,0918
,1167
-.1318
-.2312
,3535
99,0000
,6153
,3534
• .1415
• .1698
.1628
,0476
-.1769
,0078
,1631
,1119
,0624
-.0339
V132
.2816
,1452
,1852
-.2041
,0230
.1467
99.0000
.5642
,1027
-.2191
• .1283
.2370
.1190
.8267
.1223
.1908
.1145
.0474
-.0794
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
1
FILE
V20
V21
M22
V23
V24
V25
V26
V27
V28
V29
V30
V31
V32
V33
V34
V35
V36
V37
Y38
81/02/23. 10.37.52.
FUEL (CREATION DATE = 81/02/23.) VARIABLES STUDY
V123
,0366
-.1095
-.2017
-.2114
-.2742
-.0561
-.4427
.2725
.4499
,3590
.1189
.0985
-.0863
-.0791
-.1221
-.2725
-.2663
-.0573
-.0287
Pr" A r(
L M r\
VI 24
-.0832
-.0385
,0255
,0299
,0004
.1484
- .2703
.6178
-.0261
,0429
.1738
.3104
.3643
.3840
.3275
,2143
.1932
-.1898
-.4076
G 0 N C
V125
-.0034
.0376
.1135
.1229
.0922
.2497
-.3324
.6118
-.0641
.0130
,1680
,3102
.4041
.4533
.3971
.3039
.3018
-.0690
-.3949
0 R R E L
V126
-.1580
• ,2124
-.2550
-.2911
-.2825
-.1557
-.3717
-.2229
,0581
-.0475
-.1741
-.2419
-.3184
-.2989
-.3209
•-,2605
• .2497
.4303
.9714
A T I 0 N
V127 -
-.1616
-.1204
-.1523
-.1569
-.0967
• .3046
,6202
-.2985
,1126
.1091
.0479
-.0510
-.1778
-.2959
-.2611
• .2549
-.2898
-.2897
-.0101
c o E r
V120
-.1577
-.2179
-.2658
-.3012
-.2945
• .1660
-.3748
-.2407
.0595
-.0522
-.1863
-.2576
-.3382
-.3198
-.3402
-.2777
-.2654
.4225
.9663
r i c i E
V129
-.1905
-.1038
-.0471
• .0193
.0223
.1106
-.1727
,2767
-.2413
-.2109
.0361
.0834
.1714
.1371
.0897
.1815
.2133
-.1063
-.3084
NT C1
1 b * •
V130
-.1452
-.1856
-.1974
-.2376
-.2168
-,1009
-.3531
• ,1324
,0604
-.0177
-.1066
-.1560
-.2153
-.1884
-.2203
-.1751
-.1657
.4357
,9995
V131
-.1364
-.1911
-.2212
-.2574
-.2451
- .1096
- ,4065
-.I486
,0705
-.0239
-.1536
- .2170
-.2950
-.2545
-.2968
-.2255
•-.2175
.4059
,9902
V132
-.2137
-.2010
-,2514
-.2699
-.2116
-.3537
.4253
• .3810
,1280
.0780
-.0350
-.1569
-.3080
-.4107
-.3861
-.3534
-.3810
•-,1024
.3821
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS
NJ
NJ
ALL VARIABLES (Cont'd)
81/02/23, 10,37.52,
FILE
VI
V2
V3
V4
V5
V6
V7
V8
V9
V10
Vll
V12
V13
V14
V15
VIA
V17
V18
V19
FUEL (CREATION DATE = 01/02/23.) VARIABLES STUDY
- - PEARSON CORRELATION C 0 E F
V133
,2346
.1027
,1352
-.1510
,1298
.0141
99.0000
,3934
-.0358
-.1527
-.0891
,1655
,0985
,9456
,1481
.1501
,0882
,0325
-,0710
V134
,2631
,1951
,2177
-.2239
-.0353
.2248
99.0000
.0111
.1613
••.2270
-.1283
.2463
,1273
,6035
,3187
.2073
,1429
.0915
•-.0190
V135
,4659
.3429
.3406
- ,3555
,3074
,5203
99,0000
,6349
,4789
• ,3856
-.2740
,4239
,3646
,2510
,1439
.4055
,3509
,3148
,2108
V136
99.0000
99.0000
99.0000
99.0000
99,0000
99,0000
99,0000
99,0000
99,0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99,0000
99,0000
99,0000
V137
.1885
.1755
.1320
-.1289
-.2003
.3836
99.0000
• .0127
.3223
-•,1567
-.1872
.1834
.3321
-.2238
.1441
,3590
,3636
,3781
,3534
V138
99,0000
99,0000
99.0000
99,0000
99,0000
99,0000
99,0000
99,0000
99,0000
99,0000
99,0000
99,0000
99.0000
99.0000
99.0000
99,0000
99,0000
99,0000
99,0000
F I C I E
V139
.2619
.4828
,4641
-.4587
-.3851
,5765
99,0000
,1710
,5448
-,3669
-.2864
.4065
.1262
-.2476
-.1970
-.1574
-.1282
- ,0701
,0333
NT f*
i If
V140
,2326
,1047
.1353
-.1487
.1435
-.0068
99.0000
,2868
-.0616
-.1487
-.0787
,1607
.1025
,9567
.1530
.1474
.0903
.0407
-.0546
V141
.4349
,4936
.5005
.5079
•-.2258
.5074
99.0000
.4096
.4340
-.4418
• .3159
,4863
,2268
,5587
-.0094
,0498
,0229
,0262
,0205
V201
-.3271
• .8850
-.8804
,8888
.7340
-.6426
99.0000
.3150
.7846
.8740
-.2335
-.8495
-.3201
.1293
-.0093
.0735
.0885
,0460
-,0382
-------
*J
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
1 81/02/23, 18,37.52*
FILE FUEL (CREATION DATE = 01/02/23.) VARIABLES STUDY
V20
V21
M22
V23
V24
V25
V26
V27
M28
V29
V30
V31
Y32
V33
V34
V35
V36
V37
V38
V133
-.1813
-.1474
-.1838
-.1933
-.1317
-.3210
,5640
-.3215
.1206
,1037
.0259
-.0813
-.2180
-.3316
-.3016
-.2862
-.3196
-.2326
,1232
•- r L H i\
Y134
-,0845
-,1491
-.2446
-.2345
-.2179
-.3639
,4430
-.4716
,0966
,0094
-.1354
- .2560
-.4007
-.5025
-.4559
-.4197
-.4208
-.4111
-.1491
o u n L
V135
,0316
.0300
-.0784
-.0836
-.0547
-.0345
.1070
-.3292
.1634
.0689
-.0958
-.2699
-.3671
-.3966
-.3956
-.1741
-.1817
.3896
.4877
U K K L L
V136
99.0000
99.0000
99.0000
99,0000
99,0000
99.0000
99.0000
99.0000
99,0000
99.0000
99.0000
99.0000
99.0000
99,0000
99,0000
99.0000
99,0000
99,0000
99,0000
H i i u n
V137
.2821
.2429
.1476
.1802
.1776
.2760
,0539
-.0431
.1966
.1352
.0483
-.0738
•-.1009
-.0888
-.0968
.0782
.1289
.3566
•-.1941
u u L i-
V138
99,0000
99,0000
99.0000
99.0000
99.0000
99.0000
99,0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
i i L i e.
V139
,0254
,1394
.1677
,1813
,2279
.3124
-.1007
-.0708
-.3635
*" » 3588
-.2677
-.3284
-.1886
-.0658
-.1428
.2600
.2667
.5578
,6067
Ft 1 & ' "
V140
•-.1580
-,1222
-,1694
.1686
-.1160
-.3248
.6376
-.3337
.1112
.0987
.0246
-.0805
-.2134
•-.3379
-.2956
-.2879
-.3210
-.3210
-.1017
V141
-.0855
.0263
-.0041
,0080
,0865
-,0028
.4251
-,3477
-.1681
-.1871
-.1955
-.3457
-.3520
-.3561
-.3826
-.0381
-.0566
,2320
.4249
V201
.0046
• ,1001
-.0062
.0065
.0817
.2152
-.5505
.6074
.5356
.5370
.6289
.6501
.4757
.4801
.3803
,0339
.1779
.0190
•-.1548
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
i
FILE
— .- ... .
VI
V2
V3
V4
V5
V6
V7
V8
V9
V10
Mil
V12
V13
V14
V15
V16
V17
V18
V19
FUEL (CREATION DATE = 01/02/23.) VARIABLES STUDY
_„..*_„„. ._
V202
,1721
.5633
.5602
-.5428
-.5083
.1422
99.0000
-.7753
.3262
-.4386
.4293
.3862
-.0344
-.2830
-.0676
-.3570
-.3240
-.2529
-.1050
-PEA R
V203
-.3309
-.8638
-.8430
.8512
.6875
-.5446
99.0000
.3511
-.7035
.8594
-.3019
-.8257
--.3750
.0672
--.0377
.0508
.0545
.0026
-.0991
SON COR R Ft
w U IT w W l\ l\ L. L_
V204 V205
.3189
.2404
.3097
-.3158
-.6478
.2069
99.0000
.2502
,4571
•-.3148
,5297
.2458
•-.0467
-.2831
.1741
.2561
.1436
.0461
-.1509
-.3489
-.4304
-.4335
.4559
.3068
-.7127
99,0000
-,5002
-.6051
.4991
.4659
-.5639
-.3802
-.1652
-.1603
-.3443
-.2888
-.2577
-.1749
A T T n N
FT 1 4 \J IT
V206
-.1381
-.0687
-.0387
.0289
.4043
•-.0149
99.0000
-.0313
-.2047
,1493
,4258
-.0933
•-,1212
.7300
,1604
-.0332
-.0506
-.0783
-.1234
p n T F
w U L. 1
V207
.1946
-.4009
-.3805
.3882
.1202
-.0314
99.0000
.7106
•-.1115
,3029
•-,3191
-.2636
-.1308
-.1755
-.1252
.0912
,0662
.0218
-.0694
81/02/23. 18,37.52.
r T p T c
\ J. L 1 C
V208
.2432
,2155
,2016
-.2245
,0295
,4901
99,0000
,4972
.3045
-.2977
-.5538
,3730
,4009
.5048
.2110
.3342
.3431
.3130
.2316
NT Q -
I o
V209
-.0261
.1143
.1436
-.1622
,2475
,0445
99,0000
.1056
-.0707
-.1094
-.2145
.1391
,0495
,8779
,0949
,0324
-.0015
-.0306
-.0771
V210
.1017
.1153
.1382
-.1517
.2319
,1762
99,0000
.2728
.0096
-.1377
-.3576
.1866
,1125
,8745
.0210
.0627
,0289
,0050
-.0419
V211
,6450
,2274
,1177
-.0959
-.2116
.2012
99,0000
-.0005
.1836
-.1308
-.1936
.1581
.4790
-.0551
.3728
.3917
,4405
.4966
.5413
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
81/02/23, 10.37.52.
FILE FUEL (CREATION DATE = 81/02/23.) VARIABLES STUDY
-
V20
V21
V22
V23
V24
V25
to V26
U1
V27
V28
V29
V30
V31
V32
M33
V34
V35
V36
V37
V38
- • - •
V202
-.0328
,1040
.1032
.1186
.0644
-.0199
.3755
-.0852
-.5338
-.4921
-.3269
-.2419
-.0226
-.0387
.0168
,2175
.1189
-.2971
-.5180
- PEAR
V203,
-.0677
-.1886
-.1031
-.0903
-.0186
.1418
-.6278
,5367
.4916
,5164
,5347
.5466
,3503
,3626
,2536
-.0818
,0746
-.0136
-.1076
SON C
V204
-.3186
-.3969
-.5144
-.5605
-.5989
-.4594
-.1380
-.1327
,2058
,0494
-.0717
-.1032
-.2403
-.4012
-.3504
-.4414
-.4837
-.0374
,3904
0 R R E L
V205
- .0288
,0215
.1650
.1669
.1945
.2360
-.0731
.6828
.0515
.1850
.4585
.6201
.7014
.6738
.6423
.3972
,4263
• .1710
-.4997
A T I 0 N
V206
• ,1613
-.1513
-.1631
-.1314
-.0928
-.2401
,3285
-.2597
-.0804
-.0777
-.1719
-.2451
-.3647
-.3519
•-.3883
-.3331
-.3286
-.4853
-.1949
C 0 E F
V207
-.0594
-.1860
-.1644
-.1684
-.1259
.0314
-.7653
,1398
.3189
.2673
.2446
.2206
.0913
,0918
,0419
•-,1457
-,0218
,2475
,3403
F I C I E
V208
,1142
,0585
-.0533
• .0480
• ,0410
-.1512
,2399
-.5912
.0992
.0100
-.2454
-.4196
-.5359
-.5194
-.4947
•-,3216
-.3245
,1101
,3301
NTS--
V209
-.1604
-.1029
-.1375
-.1264
-.0946
• ,3129
,6554
-.3904
-.0827
-.0777
-.1713
-.2541
-.3447
-.3900
-.3680
-.2968
-.3441
-.3686
-.0907
V210
-.1115
-.0738
-.1084
• .0863
- .0263
-.2211
.6039
-.4192
-.0241
-.0327
-.1065
-.2288
-.3316
-.3769
-.3644
-.2700
-.2652
-.2046
• .0488
V211
.5374
.5532
.5289
.5556
.6158
.6855
-.0811
.2855
.3138
.3322
.3848
.2524
.3077
,3233
.2792
.5677
.6153
.5389
-,1689
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
i 81/02/23, 10,37,52.
FILE FUEL (CREATION DATE = 01/02/23.) VARIABLES STUDY
VI
V2
V3
V4
V5
V6
V7
V8
V9
V10
Vll
V12
V13
V14
V15
V16
V17
V18
V19
V212
-.2225
-.0295
,0631
-.0574
.2009
-.0343
99.0000
.0576
-.1018
.0103
,0559
-.0177
-.4116
.5711
-.5838
-.5687
-.5937
-.6006
-.5715
•- I'1 L fl K
V213
-.1500
-.0643
-.0460
.0388
-.0382
.1693
99,0000
,3695
,1561
,0085
-,0355
-.0060
-.0579
-.1903
•-.1666
-.0360
-•,0578
-.0811
-.1152
b U N t
V214
,5660
,1660
,0503
-,0370
-,0883
.1937
99,0000
.0017
.1165
-.0619
-.3325
,1072
.4405
.0017
.3231
.3331
.3920
,4548
,5167
U K K U L.
V215
-.1385
,0946
,1496
• .1643
,2751
-.0063
99.0000
.0344
-.1150
-.1222
-.1622
.1453
-.1218
,8137
-.1883
-.2752
-.2982
-.3087
-.2928
fl 1 J. U N
V216
.1053
.0224
•-.0391
,0222
.2339
.4537
99.0000
.4709
.1728
-.0833
-.7830
.1874
.4671
,2742
,1805
,4094
.4194
,4268
.4061
L H L 1-
V217
,2605
,2246
,2640
• ,2775
-.4238
,5955
99,0000
.6170
,5865
-.3226
-.2098
.3513
.1239
• .2767
-.0080
.2518
.1753
.1149
-.0168
1 1 L i L
V218
-.5259
-.0239
,0262
-.0164
.1485
,0513
99.0000
-.3626
-.0232
-.0069
.0205
.0048
-.3680
•-,2125
-,7704
-.7454
••,6975
-.6324
-.4538
V219
,1828
,2417
.2649
-.2911
-.1030
.3676
99.0000
,6039
.3156
-.3682
-.2090
,3972
,2293
,4419
,0181
,1717
,1106
,0660
-.0123
V220
-.8624
-.6893
-.6759
,6728
.6754
-.5227
99,0000
-.3241
-.6313
.7552
,0255
• .7642
-.3603
- .0363
.0012
-.0317
-.0103
-.0383
-.0862
V221
-.7034
-.7034
•-,7304
.7366
.6871
-.5074
99.0000
-.2997
-.6414
,7739
-.0454
-,7735
-.2138
•-,0664
.0454
,0609
,1069
,1036
.0848
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
iy
"fl
1
FILE
- -
V20
V21
V22
V23
V24
V25
V26
V27
V28
V29
V30
V31
V32
V33
V34
V35
V36
V37
U38
OI/Ui/i.O. iU.J'.Ji.*
FUEL (CREATION DATE = 01/02/23.) VARIABLES STUDY
• -- - -
V212
-.5002
-.4005
-.2974
-.2739
-.1711
-.2949
.5863
-.1420
-.3178
-.2660
-.0312
-.0058
-.0187
-,0949
-.1060
-.1922
-.1234
-.2677
-.0492
-PEAR
V213
-.1166
-.1571
-.1124
-.1429
-.1016
.0202
-.2514
.0293
,0433
.0064
.0130
.0025
-.0229
,0218
-.0284
-.0413
,0088
.4268
.8713
SON C
V214
.5332
.5498
.5390
.5755
.6403
.6915
-.0949
.2566
.2624
.2932
.3455
.2151
.2705
.3147
.2587
,5480
.6094
.4950
-.2102
0 R R E L
V215
-.2945
-.2115
•-.1995
-.1870
-.1672
• .4361
.6626
-.4696
-.3287
-.2942
-.2997
-.3057
•-.3305
-.3675
-.3226
-.3245
-,3716
-.5205
-.1690
A T I 0 N
V216
.3576
.2765
,2096
,2285
.2511
.2153
• .0217
-.3686
.1833
.1311
--,0916
--.2631
-.3361
-.2249
-.2498
-.0536
.0035
.4111
.3634
C 0 E F
V217
-.1470
-.2492
• .3568
-.3761
-.3952
-.2603
-.3488
-.4028
,0661
-.0953
--.2940
-.3966
-.5111
-.5126
-,5097
-,4355
-,4102
.3103
.7347
F I C I E
Y218
-.2535
-.1768
-.0597
•-.0286
-.0276
-.1003
.2592
-.1504
-.6125
-.5367
-.2945
-.1554
.0136
.0791
.0944
.0219
.0771
-.1514
-.2239
NTS
V219
-.1178
-.1316
-.1916
-.2248
-.2172
•-.3262
.2218
-.5400
-.0232
-,0961
-.2667
-.3606
-.4358
-.4549
-.4130
-.3323
-.3778
.1199
.7145
... ._ . - ...
V220
- .0554
--.1197
•-.0413
-.0274
.0072
.1367
-.0767
.5226
.2870
.3344
.3555
.4048
.2896
.3367
.2397
•-,0080
.0827
-.0785
• .1453
' • "
V221
.1482
,0794
,1726
,1961
.2614
.4155
-.1179
.6638
.4216
,4890
.5614
.5787
,4891
,5439
,4319
,2325
,3639
.1564
-.2048
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
1 • 81/02/23. 18.37,52,
FILE FUEL (CREATION DATE = 01/02/23.) VARIABLES STUDY
VI
V2
V3
V4
V5
7 V6
to
OD V7
VG
V9
V10
Vll
V12
V13
V14
V15
V16
V17
VIS
V19
V222
.4501
-.0100
-.1271
.I486
,0405
.0341
99.0000
.0621
-.0468
.1067
-.3284
-.0634
.3963
-.0950
,2663
,3211
.3969
.4646
,5390
- r c. H n
V223
.0278
.0231
.0420
-.0304
-.1350
-.5733
99.0000
-.3973
-.2867
.0134
.8210
-.1219
• .2248
.0825
-.0497
-.2648
-.2588
-.2503
• .2054
a u n b
V224
.4537
.0143
-.0877
.1092
-.0174
.1263
99.0000
.0105
.0388
,0635
-.3414
-.0180
,3646
-.1412
.3104
.3324
.3884
.4395
.4825
U It l\ L L.
V225
•-.6273
-.5463
-.5500
,5546
.5212
-.4186
99.0000
-.2213
-.4869
.5133
.1740
-,5403
-,1929
,0074
•-,1751
-,0795
-.0548
-.0578
-.0593
M 1 i U Ft
V226
.4784
.0816
•-.0355
.0565
-.0444
.1518
99.0000
-.0276
.0696
.0204
-.3390
.0251
.4371
-.1324
.3453
,3661
.4327
.4964
,5580
i/ u t. r
V227
.0750
,0207
,0016
-.0109
.2431
.1434
99,0000
,3715
-,0060
-.0472
-.3273
,0900
,1941
,6219
,0415
,1001
,1009
,0953
.0794
I1 i U J. C.
V228
-.3944
-.2364
-.2094
.2180
.2838
.0707
99.0000
-.1056
-.0850
.3175
-.1748
-.2967
-.2109
.3181
-.2001
-.0712
••.0710
-.0805
-.1167
Ft 1 O
V229
-.0598
-.4324
-.4381
.4352
.3677
-.0826
99.0000
.4444
-.2569
.3864
•-.4548
-.3285
.0131
.1642
.0185
.2699
,2665
.2354
.1528
V230
-.2292
-.0558
-.0341
.0327
.2019
.0891
99.0000
-.2240
-.0668
,2915
-.5065
-.2258
-.2537
.0016
.1981
• .0405
-.0271
-.0345
-.0561
V231
-.1137
-.5460
-.6267
.6353
.5579
-.3803
99.0000
-.0394
-.5353
.6557
-.3287
-.6169
,1144
.6185
.5123
.4680
.5073
,4964
,4301
-------
to
FILE
BIVARIATE CORRELATION MATRIX OF FUEL VARIBALES VERSUS ALL VARIABLES (Cont'd)
Ul/Oii/^, 18.3/.52.
FUEL (CREATION DATE = 81/02/23.) VARIABLES DTUHY
V20
V21
V22
V23
V24
V25
V26
V27
V28
V29
V30
V31
V32
V33
V34
V35
V36
V37
V38
V222
,5740
,5802
.6104
.6414
.7079
.7982
-.2587
,4349
.3312
.3909
,4679
.3698
.4345
.5028
.4297
.6528
.7255
.5983
-.1712
- r L H K
V223
-,1689
-.0394
,0365
.0049
,0026
-.0693
.3119
.4001
-.0647
.0336
.2690
.4136
.5162
.3823
,4329
,2807
.1817
-.2982
-.3664
0 u n t
V224
.5192
,4840
,4771
.5098
,5607
.6529
-.2852
,2940
.3206
.3364
,3650
,2582
,2867
.3404
.2813
.4763
.5600
.4625
--,1914
U N K t L
V225
.0324
•-.0154
,0836
.0899
,1530
,2262
.1463
,4479
.2934
.3541
.4844
.5279
.4803
.4719
.4255
.1754
.2893
.1426
-.1000
ft 1 1 U N
V226
.5842
.5759
,5683
,6021
,6559
,7447
-.2191
.3268
.3117
.3411
.3766
.2590
.3135
,3798
,3156
,5750
.6447
.5455
-.1841
U U L f
V227
.0613
.0787
,1080
.1068
,2023
.1120
.3242
-.1352
,1186
.1330
.1232
.0100
-.0442
•-.0326
•-.0684
.0459
,0866
.2577
.4604
1- 1 U 1 h
V228
-.1179
• .1306
-.0930
-.0431
.0548
.1972
,2442
,2424
,1332
.1297
,2230
,1502
,0509
,0645
-.0419
-.0362
.1209
.1839
-.1017
Nib
V229
,1042
,0044
-.0287
-.0031
.0077
.1000
-.5107
.0967
,3561
,3283
,2021
,1392
-,0093
.0180
-.0227
-.1510
-.0573
.1155
-.1733
V230
• .1242
-.1093
-.1321
-.0829
-.0853
-.0026
-.3557
.0429
-.1754
-.1893
-.2951
-.3386
•-,4162
-.2968
-,4164
•-,2304
-.2222
-.3138
-.1821
V231
.4160
,3173
.3348
.3604
.4223
.5827
•-,4416
.6273
.6543
.6878
.6209
.5309
.3971
.4599
.3374
.2971
.4052
.2350
-.2367
-------
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
1 81/02/23, 1C.37,52,
FILE FUEL (CREATION DATE = 81/02/23.) VARIABLES STUDY
VI
V2
V3
V4
V5
V6
V7
V8
V9
V10
Vll
V12
V13
V14
V15
V16
V17
V18
V19
V232
-,2234
-.7397
-.7810
,7894
,7324
-.6002
99,0000
,2897
--,7600
,7358
-.3383
-.6966
-.1286
.7277
•-,0217
.0456
,1028
,1100
,1233
•• r L H iv
V233
,2986
-.0104
-.0942
.0891
,1122
,0778
99,0000
.2880
•-.0374
.0887
-,5452
-.0168
.3442
.0361
.4136
.3928
,4338
,4563
,4685
DUN t
V234
.3341
.0450
•-,0343
,0283
,0669
,1604
99,0000
,3651
,0376
,0136
-.5853
,0641
,3553
• .0271
.3309
,3433
,3835
.4111
.4371
U K K 1- L.
V235
• .2239
.1783
.2418
-.2444
-.2079
-.0636
99.0000
-.2189
.1037
-.3106
,5985
.2331
-.2116
-.1783
-.5080
-.4941
-.5123
-.5012
-.4293
H 1 J. U Ft
V236
-.3268
-.2270
• .2089
,2222
,1826
,3057
99,0000
-.4845
-.2601
,1961
,4175
-,2530
-.2203
.2938
-.0872
-.1971
-.1996
-.2060
• .2058
L U L 1
V237
-.2085
,0642
,1702
•-.1637
-.2542
-.1546
99.0000
-.3383
.0633
-.0942
,7287
-.0036
-.4556
,0162
•-,3668
-.4245
• ,4817
•-.5222
-.5681
r i L i t
V238
••.0750
,0102
.1178
-.1176
-.1952
.5372
99.0000
,2876
.4142
.0163
-.4312
.0403
-.3968
-.3452
-.2104
-.1427
-.2171
-.2855
-.4138
n i s - -
V239
.3983
.4808
.5399
-.5463
•-.797 '4
.3556
99.0000
.1317
.6274
• .5451
.5549
.4746
.0457
-.2929
,1220
,1681
.0686
.0006
-,1351
V240
-.1658
.0425
.0430
-.0229
-.0894
-.4118
99,0000
-.7002
-.2131
.0439
.6303
-.1270
-.2591
.2177
-.1794
-.4386
-,3902
-.3350
-,2007
V241
-.0727
-,1892
-.3057
,3068
.4614
-.5706
99.0000
-.2664
-.5739
.1868
.1312
-.2048
,3452
.3940
.1600
,0959
.1949
.2762
.4291
-------
FILE
BIVARIATE CORRELATION MATRIX OF FUEL VARIABLES VERSUS ALL VARIABLES (Cont'd)
01/02/23, 10,37,52,
FUEL (CREATION DATE = 81/02/23.) VARIABLES GTUDY
V20
V21
V22
V23
V24
V25
V26
V27
V28
V29
V30
V31
U32
V33
V34
V35
V36
V37
V38
V232 i
,2064
.1586
.2677
.2797
.3327
.4011
-.6585
.5671
.3839
.4869
.5433
.5796
.5270
.6059
.5193
.2842
.3861
.1370
-.1834
• 1 t. H l\ i
l>233 i
,4134
.3959
.3608
,3664
.3537
.4037
-.5985
.0899
.1853
.1957
,0342
• ,0503
-.0519
.0772
.0185
.2346
.2113
.3164
.1571
3 U IX L, 1
l>234 i
.3903
,3800
.3475
.3521
.3392
.3762
-.6014
.0039
,1133
,1200
-.0342
-.1179
•-.1022
.0338
-.0176
.2182
.1951
.3576
.2420
j r\ i\ L. u r
l>235 (
-.3386
-.2645
-.2096
-,2420
-.2714
-.4229
,6326
-.2467
-.4074
-.3781
-.2084
-.0660
.0590
-.0313
.0797
-.0902
-.1518
-.2508
.0417
1 1 O, W IT
;236
• .0916
-.1315
-.0677
-.0662
-.0296
-.0508
,4337
.2035
.1016
.1279
.2820
,3431
,3316
.2481
.2633
.0341
.1012
..,2444
-.3062
W W IH. 1 1
V237 i
•-,5642
-.5123
-.4665
-.4912
-.4567
•-,4577
.5686
.0530
-.1777
-.1878
.0115
,1066
.0959
-.0711
-.0348
-.2418
-.2443
-.3643
99.0000
A W * ••• «
l»238 • i
-.4781
-.5966
-.6645
-.6317
-.6346
• ,4474
-,5113
-.3685
-.1883
-.3519
-,4810
-.5410
-.7107
-,6741
-.7427
-.7358
-.6279
-.1862
.3000
l>239 1
-.2844
-.3115
-.4331
-,4784
-.5327
-.4559
,0384
-,2821
-,0013
-.1447
-.2410
-.2650
-.3178
-,4619
-.3851
-.3647
-.4467
-.0314
.3822
i/240 I
• .0695
,0507
.1545
,1507
,1413
,1049
,2308
,3862
• .2667
-.1508
,1281
,2916
.4739
.4356
,4565
.3875
.3363
-.2341
-.4670
,•241
,5318
.6338
.7291
.7173
.7367
.5538
.3931
,4045
,1820
,3677
,4931
,5455
.7021
,7288
.7584
.7499
.6885
.1877
-.3752
(COEFFICIENT / CASES / SIGNFICANCE)
(99.0000 MEANS INCOMPUTABLE)
-------
NO
M I— i-tONCNOCNWIXMCOOOOOOOOOOOOOOOOO
•» CJ • »»••»•»•».«••»»»»•».»»»»
ON 0_ OOlXCONO-rtiniXONONOOOOOOOOOOOOOOOO
O •
•rt a:
X
o i-iaNrgoNca^'irJtnincMoooo ooooooooooo
i i i i i i i i
CO
H-
0
a.
co
iHNOU")NOinini-. ix IN in
U4 =3 IX ON ON ON 00 ON NO ON ON •<*• ON in tO 00 OS ON ON ON CN ON ON ON ON rX NQ
o I
— O
CJ
(—
CO
u
LU
U. LU
ca
LU l-l
F-32
-------
O
o
37
OM
O—I
a:n
a:?3
C3>
Z-H
3>i-i
r-<=
i-im
HH T3
m33
coo
mS
uitxiwtvjuiwcjJojGJroror-j*
'•xocooxenjkCxiro*-*
ms?
mm
PIT?
1
>
N3toen4kVICOCOxoO3xgCNCOOOCOl-'COCOOCOX|xOS3CO4k
i— w w Cxi xi 4k 4k ro c~. vi tn Cxi co co en cxi to xo >-* en Cxi o o 4k i—
Ox OJ 4k xQ 4k M S3 Ox CO *- to xg !-•. 4k l-» 4k O- en I-* Ox to xQ hj xj H»
Cxi xj xj .JQ nj w tn xj xo to xo M> co xg xo xo Cxi en en en •-* o en w w
o
o
ii
4k co Cxi en "O r j en M> vi jk co t-» vi oj t-* co >-•• r o to en ss co Cxi jk o
1 1 1
II
I!
n
T| Oxg vlCn-«k4»--fc-KjC>Jr-O>-ki-"— vl4k»->4kt>4Orj4kCxlCxl4kOx
—i co 4k M o co Cxi Cxi Cxi o en S3 en 4k u vi c> XQ Cxi roo Cxi to Cxi co 04
PI toc*iN»toxixoo»-'>-i-oO3i-»coo4kCxro4kCocxCoeno4ocn
09
m
o
01
m
encxitoc*itow>-'ofO4keno*oi-' owOf
•O Ox Cx| O CO Cxi CO en Cxi 4>. 4k 4^ O Ox W COOx w ^ o o ^ t
Ox XQ Cxi M c»i xo co xo to o en en vi co >-*• •-* to xo w NJ en co *•» i— • to
ox4kt>4encix4kexicoH'Coco 4k
)(-". H*xOCnxj 4k xQxQOxIfO •-*
§
Cx|
i i i i i i
!
i
i
!-»4kCxltOOi-'t-'IOWrOtO>-'tOi-' O C- i-'OOCxlCx! !—>-•»-» Cxi
xo w Cxi 4k vi 4k r j c*« ox en S3 w vi o w co t>4 to vj to cs S3 XQ Cxi o
4k OK en co >-•• Cxi en ^ x^ ^j co ro ^ co en 4k e>4 o Cxi 10 ox o »>• o xi
xi en CN en xo o to 4k 4k 4k 4k 4k CN co o xo en 4k co >-•• xo ro Cxi to en
Cxi Ox C>4 xo CO Ox t-^ XQ Ox Ox U! Ox O Cxi i-1- xQ S3 O CO H^ C>4 M 4k U en
-n
o
o
eo
o
m
rn
o
33
TJ —I
73 HI
a! Z
O
n
n
O
O
C3
O
sz to
I-H X
m
3>
o
to
•c
S3
I—i
W
m
to
co
o
en
en
en
M
n
..... m
•-•XICxICOxO "X.
r—
m
cnotoxioxi
xi en xj co xi
i i iii; i ti
4k M o o o o o o o h->•*• Cxi en c-i ^ M >•*
-n
o
—i
_ _^_ _ o
OH»oioNicooxencoxjoxxocoi-'^>oxoxi4k4kencxicstorj 3?
is) *—4k vi ox. co 4k»-vi H* vi en»—vi xo i-^ co Ox co vi o 4k en 4k en
to co vi to Cxi Cxi en Cxi ui cxi o *-» H* XQ txi o >-» xj >_•. tn xo ro >-ox co
en
S
en
encooto4k
T)
o
T?
3>
CT
-------
FACTOR ANALYSIS OF SELECT FUEL VARIABLES (Cont'd)
1
FILE FUEL (CREATION DATE = 81/02/17.) VARIABLES STUDY
VARIMAX ROTATED FACTOR MATRIX
AFTER ROTATION WITH KAISER NORMALIZATION
FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4 FACTOR 5
VI
V2
V3
V4
V5
V6
V8
V9
V10
Vll
Y12
V13
V14
V27
V28
V29
V30
V31
V32
V33
V34
V35
V36
V37
V38
-, 75284
-.97866
-.94593
.94674
.88092
-.72097
.06332
-.87870
.97137
-.12041
-.96071
-.48394
.06430
.56895
. 34588
.41297
.46239
.55013
.39906
.44312
.34124
-.07278
.05736
-.13636
-.13813
.15970
-.05976
-.22712
.23824
.14900
-.21143
-.12663
-.21323
.05098
.03498
-.05157
.55881
-.16577
.50087
.31575
.44891
.56382
.54195
.76333
.35317
,84680
.98589
,98487
,75946
-.10490
.13826
-.07934
-.02729
.03866
-.33911
-.47595
-.10120
-.13330
.09942
.77621
-.22671
-.21885
-.04057
.50750
,34642
.33833
.46674
.53509
.44849
.23411
.24792
.00912
-.02988
-.13314
-.07623
.27294
-.10583
-.09619
,09042
-.16595
.27025
.72318
.24785
.05366
-.22141
-.02436
.11275
-.09366
.09357
.42507
.32564
,20516
,08045
-.08691
-.08738
-.16203
-.14523
-.05929
.53977
.73422
.30353
-.10205
-.15418
.14058
,26529
-.24104
.23858
-.27880
.02536
-.00175
-.01973
,35796
.61046
•-.03155
.58673
.59192
.42473
.28648
.11781
-.01912
,04010
-.01735
-.05230
-.08859
-.17898
TRANSFORMATION MATRIX
FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4 FACTOR 5
FACTOR
FACTOR
FACTOR
FACTOR
FACTOR
1
2
3
4
5
.79014
-.57240
.02318
-.20826
-.06428
.50650
.79312
-.16587
-.29109
.04671
.27569
.13204
-.09796
,81897
-.47565
.00562
.14755
.88533
-.15869
-.41136
.20761
.06420
.42256
.41952
.77345
FACTOR SCORE COEFFICIENTS ARE INDETERMINATE
F-34
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES
1 81/02/23. 18.31.42.
FILE FUEL (CREATION DATE = 81/02/23.) VARIABLES STUDY
--•• - PEARSON CORRELATION COEFFICIENTS
U)
01
V101
V102
VI 03
Ml 04
V105
V106
V107
V108
V109
V110
Vlll
V112
V113
V114
V115
V116
V117
V118
V119
V120
V101
1.0000
.8393
.6514
.6258
-.2343
-.3192
-.2004
-.3516
-.5746
-.1922
-.4820
99.0000
-.3387
-.2191
.1975
.4047
.3009
.3094
.1037
0
VI 02
.8393
1.0000
.7439
.8366
-.1074
-.4977
-.4311
-.2711
-.3384
-.0343
-.4197
99.0000
-.5219
-.2172
.2126
.4303
.1610
.3353
.1049
-.0870
V103
.6514
.7439
1.0000
.7543
.1743
-.0059
-.0227
-.0164
-.5137
-.1290
-.0835
99.0000
-.0168
-,0040
.3425
.1857
.0001
,0637
,3591
-.2245
V104
,6258
.8366
,7543
1,0000
,3039
-.4026
-,4676
-.1765
-.2739
,1862
-.3119
99.0000
-.4557
-.2578
.0370
,2613
,0060
.4677
-.0747
-,2137
V105
-.2343
-.1074
.1743
.3039
1.0000
•-.2045
-.2059
.0931
--,0081
.4690
-.1515
99.0000
-.1987
.2127
,1343
-.3570
.0822
-.2180
,2025
-.3790
V106
-.3192
-.4977
-.0059
• .4026
-.2045
1.0000
.7648
.4126
-.2097
-.2582
,5542
99.0000
.9879
,0247
-.2518
-.3110
-.5051
-.0051
-.0879
-.1094
V107
-.2004
-.4311
-.0227
-.4676
-,2059
.7648
1.0000
-.1625
-.0090
• ,1549
,7010
99,0000
.8459
,4238
,1374
-.2212
.0369
-,1821
-.0170
.1503
V108
-.3516
-.2711
-.0164
-.1765
.0931
,4126
•-.1625
1,0000
-,2123
-.1069
-.1371
99.0000
.3357
-.4911
-.3645
-.3727
-.7552
-.1111
.2260
-.3426
V109
-.5746
-.3384
-.5137
-.2739
-.0081
-.2097
•-.0090
-.2123
1.0000
.5518
.4320
99,0000
-.1516
,2076
.0276
-.0259
,0369
-.1808
-.1646
.4639
V110
-.1922
-.0343
-.1290
.1862
,4690
-.2582
-.1549
-.1069
.5518
1,0000
-,1305
99,0000
-.2406
.0948
-.1090
-.3362
,0310
• ,1658
-.0595
.2236
-------
1
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
81/02/23, 10.31.42*
FILE FUQ
(CREATION DATE = 01/02/23.) VARIABLES STUDY
V121
V122
V123
V124
V125
V126
V127
V128
V129
V130
V131
V132
V133
V134
V135
V136
V137
V13B
V139
V140
V141
V101
.3607
.0450
.0932
.5033
.5107
-.4429
-.2230
-.4555
.1414
-.3427
-.3418
-.3945
-.2740
-.2734
-.7157
99.0000
-.4376
99,0000
-.3549
-.2518
-.5556
V102
,5837
.0757
.2020
.2728
.2643
-.3852
-.0520
-.3883
.0904
-.3122
-.2970
-.2054
• ,0967
.0103
-.5229
99.0000
-.2739
99.0000
-.5230
-.0677
i • r' "
-.5140
a u iv L,
V103
.8149
.2916
-.0519
.2503
.2557
-.0064
-.1053
-.0263
,2052
.1213
.1046
-.1109
-.0962
-.3265
-,3341
?9,0000
-.4906
99.0000
-.0230
-.1877
-.2182
U K K L L
V104
.5260
-.0804
.1725
,1890
.1358
-.2677
,1920
-.2820
-.1497
-.1637
-.1860
.0616
.1615
-,0150
,3320
99.0000
-.3194
99.0000
-.5180
.1497
• .3299
H i i u n
V105
.1337
.1671
-.2070
.0697
• .0606
-.1095
.4783
-.1245
.1773
-.0347
-.0749
.3947
.4655
,1612
,0352
99,0000
-.3641
99.0000
-.1447
,4336
.2080
L, U L r
VI O/i
-.0767
•-.1369
-.3606
-.2406
-.1526
.6247
-.1972
.6123
-.0940
.6970
.6658
.0631
-.1081
-.3605
.2865
99.0000
-.0765
99.0000
,9143
-.2899
.5007
r i L : c
VI 07
.0650
,1878
-.3461
-.2728
-.2348
.7640
.0925
,7559
-.0192
.8067
,7783
.2200
.0132
-.2349
.2623
99,0000
-,3133
99,0000
,7556
-.1791
.4518
n i o - -
V108
-.1433
-.2436
-.1566
.0584
.1117
-.1279
-.1128
-.1333
.2313
-.1033
•-,0841
-.1594
:.1259
-.1491
.1788
99.0000
.3396
99.0000
.5148
-.1207
.3338
V109
-.1150
.0706
.0932
-.6871
-.7274
.3166
.5604
.3307
• .4987
.1399
,1437
.6540
,5859
.4580
.8084
99.0000
,5009
99.0000
-.1687
.6518
.4712
V110
-.2139
-.0773
-.4089
-.5672
-.6877
-.1275
.9948
-.1327
-.3063
-.1105
-.1397
.8728
.9729
.6650
.3413
99.0000
-.1717
99.0000
•-,2170
,9910
.6201
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
V201
Y202
V203
V204
V205
V206
7 V207
w
-1 U208
V209
V210
V213
V2J2
V213
V214
V215
V216
V217
V21B
Y219
V220
,6937
-.0773
.6716
-,5584
,6670
.1996
.1643
•-.4901
-.1328
-.2271
-.2693
.0713
-.1405
-.1627
.0425
-.2955
-.5752
.2903
-.4803
,5630
.9440
-.3722
.9202
-,4294
,5270
.2752
.4553
-.2648
-.1055
-.0952
,0234
•-.0411
• ,1631
,1157
-.0632
-.0566
-.4301
.0802
-.4228
,5164
,8349
-.4112
,7883
-.3945
,4871
.0489
.5812
,3280
-.2490
-.2503
.1856
-.1643
.1492
,2428
-.2250
-.0763
-.3055
-.2855
-.2128
,2106
,3364
• ,4816
.7576
-.3105
,4882
,2158
.2691
-.1764
,0691
,0308
-.0209
.0197
-.0419
,0216
.0302
-.0546
-.4397
,2478
-,1806
,5342
-.0199
,1283
•-.1160
,1936
,2136
,0963
-.1401
-.1239
.2398
,1251
,1575
,0204
,1554
,0806
,1611
• .3735
-.2991
•-.5374
.0960
-.2767
,4082
-.0672
• .4102
-.0824
,2666
.2603
-.0575
.1212
• .1519
-.1059
.1029
.0669
.7397
.0875
-.1668
.3078
,3430
.1692
.4249
• .1284
-.3552
-.1237
-.2983
,1838
-,3285
-.1536
.1452
,1165
-.0811
•-,0626
• .2783
.2344
.7526
--,2863
,0099
,1224
,5198
,2151
.5483
-.2360
--.1782
,2401
-,2277
-.3261
• .0098
• .0724
-.2146
,0139
-.0907
• ,0296
.7627
•-,2556
•-.0879
,7508
•-,2668
.2176
-.1789
-.2239
-.1900
- .1453
-.2188
-.4015
- , 1588
.4013
-.8093
,1954
,0688
.8055
,5401
.6710
-.1660
.2121
•-,1416
-.1760
,4155
,5274
,5938
• ,1629
.5905
-.3085
-.0287
-.2313
-.0727
-.1955
-.3100
,7325
-.2195
.5996
.9210
.9182
-.1019
.5586
-.2094
-.0509
.8606
.3134
•-,1668
••,2024
.5270
-.1554
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
oo
1
FILE
V221
V222
V223
V224
V225
V226
V227
V228
V229
V230
V231
V232
V233
V234
V235
V236
V237
V238
V239
V240
V?41
FUEL (CR
V101
,5324
-,0097
.2010
-.0361
.3210
-.0948
-.1941
,0089
,1526
,3374
,3865
,7095
.0633
.0118
-.0905
.2193
-.0929
-,0810
-.6807
,3421
.3056
EATION DATE = 81/02/23.) VARIABLES STUDY
•PEARSON CORRELATION COEF
VI 02
,5952
,2367
••,0024
,2674
,3354
,1795
-.0499
.0773
.3848
.2606
.7144
,8479
.1946
.1226
-.3938
,2547
-.2617
.0065
-.6564
.0500
,2380
V103
,3245
,4377
,1433
,3299
.0737
.2978
.1151
-.2314
.1867
.1676
,5970
,9075
.4969
,4682
••,4291
-.0985
-.3659
-.219t
-.5633
.0772
,3965
V 104
,5938
,1617
,2067
,1027
,4336
,0633
,1546
.0395
.2641
-.0057
.6705
,7818
.1412
.0631
-.2451
.2548
-.1231
-,3843
-,5193
.0586
.5173
V105
-.2807
.0599
.6738
•-.0328
-.2382
-.0007
,1299
-.4893
-.3385
• .2161
.0328
.0350
.0980
.0514
.0493
-.0093
.1919
-.6125
,2012
.2751
.4320
V106
-.0765
.1245
-.2347
.0153
.0205
.1034
.4648
.0634
-.4245
-.1500
-.2603
• .2590
.1347
.2263
.1397
-.2100
-.0524
-.0489
,0605
-,0846
,0207
81/02/23, 1
FICIENTS- -
V107
-.3315
-.2760
-.1931
-.3058
-.1625
-.2949
.3461
-.0877
-.3832
-.0920
-.5407
-.3144
-.0284
,0832
.2978
-.2378
,3173
.3294
.2816
-.1526
-.3857
V108
.0817
.7433
-.0521
.6149
-.1000
,7410
,1551
.1278
-.0844
.1798
.3676
.0181
.4237
.4051
-.4325
-.2030
-,401S
-.3581
-.2277
.0781
.3921
8.31.42.
V109
-.3965
• .2981
.4762
-.2492
-.2123
-.2636
.1756
.2356
.5623
-.1773
-.3641
-.3964
-.1490
-.0941
-.0012
-.3748
• .0206
.3864
.3831
-.7453
-.4457
V110
-.2190
-.1830
,0209
-.2047
-.1069
-.1968
.5943
.3277
.3442
.0029
-.6060
-.3716
-.3623
-.3028
.2805
-.2842
.2444
-.2540
-.1726
-.2841
.2751
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
1 81/02/23. 18.31.42,
FILE FUEL (CREATION DATE = 81/02/23.) VARIABLES STUDY
- - - - - - -PEARSON CORRELATION COEFFICIENTS-------
V101
V102
V103
V104
V105
V106
*i
vo
V108
V109
V110
Vlll
V112
V113
V114
V115
V116
VI 17
V118
V119
V120
Vlll
-.4820
-.4197
-.0835
-.3119
-.1515
.5542
.7010
-.1371
,4320
-.1305
1.0000
99,0000
,6209
, 3355
,1242
-.1336
-.0500
-.1530
-.1434
,3817
V112
99,0000
99,0000
99.0000
99,0000
99,0000
99,0000
99,0000
99.0000
99.0000
99,0000
99,0000
99.0000
99.0000
99.0000
99,0000
99.0000
99.0000
99.0000
99.0000
99,0000
V113
-.3387
-.5219
-.0168
-.4557
• .1987
,9879
.8459
.3357
-.1516
-.2406
,6209
99,0000
1,0000
.1112
-.1607
-.3316
-.4169
-.0845
-.0413
-.0496
V114
-,2191
•-.2172
-.0040
-.2578
.2127
,0247
.4238
-.4911
.2076
.0948
,3355
99.0000
,1112
1.0000
.5386
.1509
.4797
•-,4911
,2689
-,0654
V115
.1975
.2126
,3425
,0370
.1343
-.2518
.1374
-.3645
.0276
.1090
,1242
99.0000
-.1607
.5386
1.0000
.5626
.7544
-.7645
.7787
.4820
V116
.4047
.4303
,1857
.2613
-.3570
-.3110
-.2212
-.3727
-.0259
-.3362
-.1336
99,0000
-.3316
,1509
,5626
1,0000
,5415
-.1899
,2948
,4907
V117
,3009
,1610
,0001
.0060
.0822
-.5051
.0369
-.7552
.0369
,0310
-.0500
99,0000
-.4169
,4797
.7544
.5415
1.0000
-.4198
.3071
,5478
V118
,3094
.3353
,0637
.4677
-.2180
-.0051
•-,1821
• .1111
-.1888
-.1658
-.1530
99.0000
-.0845
-.4911
-.7645
-.1899
-.4198
1.0000
-.8583
- .3426
V119
.1037
.1049
.3591
-.0747
.2025
-.0879
--,0170
.2260
-.1646
-.0595
,1434
99.0000
-.0413
.2689
.7787
.2948
.3071
-.8583
1,0000
.1665
VI 20
0
-.0870
-.2245
-.2137
-.3790
-.1094
.1503
-.3426
,4639
.2236
,3817
99.0000
-.0496
-.0654
.4820
.4907
,5478
-.3426
.1665
1.0000
-------
BIVARIATE CORRELATION MATRIC OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
81/02/23. 18,31.42.
FILE FUEL
(CREATION DATE = 81/02/23.) VARIABLES STUDY
V121
V122
VI 23
V124
V125
V126
V127
V128
V129
V130
V131
V132
V133
V134
V135
V136
V137
V138
VI 39
V140
V141
Vlll
.1238
.1732
,1570
-.4475
-.4188
.9803
-.0479
.9804
-.4228
.9064
,9007
.3495
,0778
-.2044
.7165
99,0000
.1669
99.0000
.4908
-.0718
.3955
- 1' t fl K
V112
99.0000
99,0000
99,0000
99,0000
99,0000
99,0000
99.0000
99,0000
99,0000
99,0000
99.0000
99,0000
99,0000
99.0000
99.0000
99.0000
99,0000
99,0000
99.0000
99.0000
99.0000
1} U N t
V113
-.0421
• ,0509
-.3674
-.2597
-.1811
,6889
-.1771
.6773
-.0563
.7512
,7232
,1084
•-,0799
•-,3429
,3255
99,0000
-,1072
99,0000
,9381
-,2691
,5373
U K K t. L
V114
,3960
,6375
-,3949
-.4125
-.4424
.3593
.3280
.3677
.2175
.3350
.2931
.3724
- -.3321
,2047
,0522
99,0000
-.3487
99,0000
-.0232
,0675
-.0215
H 1 1 U N
V115
.4463
,9712
.0831
,0015
-.0750
.1551
.1213
.1601
.2082
.1470
.2133
.1654
,1657
.1625
-.0967
99.0000
•-.4723
99.0000
-.1255
-.0535
-.1609
U U L f
V116
.1526
.4987
.2453
-.1338
-.2079
•-.1044
-.1169
-.0913
-.3386
-.1006
-.0358
-.0829
M -.0882
,3822
-.2909
99,0000
-.2601
99.0000
-.4633
• ,0685
-.4908
r J. u i c.
V117
,0167
.6420
,2773
,2394
.1429
-.0385
-.0600
-.0299
.0530
-.0548
-.0045
-.0255
• .0349
.2333
-.3412
99,0000
-.4780
99,0000
-.4596
• .0009
-.4971
rt i & - -•
V118
-.1433
•-,8536
,1370
,0983
.1470
-.1425
-.0897
-.1487
-.3585
-.0809
-.1400
-.1488
-.1235
-.1111
-.2073
99.0000
.1328
99,0000
-.2219
-.1378
-,2500
V119
,4199
,8329
-.2062
,1063
.0989
-.1216
-.1582
• .1235
.5038
-.1143
,0562
-.1208
-.1106
.0100
-.0839
99,0000
-.2919
99,0000
,1418
-,1511
,0862
V120
-.2676
.3748
.6118
-.0786
-,1766
.3261
,3065
.3339
•-.5259
.2235
.3201
.3278
,3100
.0420
.3248
99.0000
.0890
99.0000
-.0608
.4116
.0485
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
18.31.42.
FILE FUEL
(CREATION DATE = 81/02/23.) VARIABLES STUDY
V201
V202
V203
V204
U205
V206
JL V207
V208
M209
V210
V211
V212
V213
V214
V215
V216
V217
V218
V219
V220
Vlll
-.2122
-.5561
-.1397
.5531
-.6850
-.3315
.3534
.4525
-.0858
.0057
-.2199
-.0892
.6800
-.2744
-.1876
.4318
.9185
-.1640
.6953
-.1991
r L. n r\ '
V112
99.0000.
99.0000
99.0000
99.0000
99,0000
99.0000
99.0000
99.0000
99,0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
a u it ir i
V113
-.4185
-.0770
-.4042
-.0126
-.3126
-.2449
- ,0029
,1375
-.1419
-.0944
,0599
,0882
,7551
,0435
-,1465
.2871
,4126
.1509
.4667
•-.1886
U l\ l\ l_ L. I
V114 '
-.1373
.0122
-.1037
.4402
•-,1695
,3372
,4904
,0189
-.5152
-.3498
-.0733
-.0649
,1443
-,1221
-,0996
•-,1629
,3628
-.1277
.3272
-.7175
11 J. U I*
W15
.2563
-.1345
.3187
.0751
• .1349
.3679
.5384
.0592
-.1445
-.3106
••,0609
-.5713
•-,1515
•-.0156
•-.0210
-.0319
.1371
• .5471
.0852
-.4478
W W fc- 1 '
V116 '
.3051
-.2962
.3373
-.2642
-.1353
.5291
,2730
,2946
,1595
,0304
-.2031
-.4864
-.1437
•-.1088
,2067
.3349
-.0222
-.2022
.0663
.0488
i;i!7 '
.0436
.1001
.1025
.2783
.0388
.2934
.1255
-.1622
.0480
-.3741
--,5478
-.2598
-.1999
-.5304
.2939
-.3772
.0248
-.1463
• .0094
-.1205
V118 '
.2355
-.2342
.1833
-.1315
.3483
-.1348
-.2429
-.1718
.0787
.1480
-.2465
,5933
,2994
-.2485
.0669
-.0064
-.2010
.5167
-.1008
.8184
V119 i
.1857
.1493
.2055
-.2882
-.0064
.3760
.3752
-.0428
-.1596
-.2168
.4179
-.5884
• .3969
,4769
-.0971
-.0071
-.1616
-.5345
-.2005
• .5997
Y120
-.1179
-.3038
-.0207
,1813
-.5996
.4003
-.0285
.5479
.6771
.3790
-.5493
- , 3538
-.0159
-.4969
.3891
,3466
,4526
• ,1711
,4087
,0890
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
M221
-,2807
?9,0000
,1615
-.7452
-,5563
.0209
-.3788
.8679
-,5553
-.1941
V222
V223
V224
V225
V226
V227
7 V228
it*
M V229
V230
V231
V232
V233
V234
V235
V236
V237
V238
V239
V240
V241
-.2346
-.4924
-.2624
-.1371
-.2523
,2460
.0322
.1360
-.2316
-.3685
-.2789
.0675
.1609
,0543
-,4652
-.0102
,4554
,5330
-,6402
-,5552
99,0000
99,0000
99.0000
99.0000
99.0000
99,0000
99.0000
99,0000
99,0000
99,0000
99,0000
99.0000
99.0000
99.0000
99.0000
99.0000
99,0000
99,0000
99.0000
99.0000
,0721
• ,2444
•,0269
-.0576
,0509
.4509
,0296
-.4151
-.1166
-.3233
-.2859
.1343
.2338
,1415
•-.2620
• ,0173
,0507
,1259
•-,1210
-.0876
• ,1708
.0930
-,0608
-.4911
-.1593
-.0950
•-,6399
-.1518
•-,4341
-.4829
-,1168
• .0308
,0451
,2601
-,0947
.1139
.2046
.4610
--.0708
-.3471
,0032
-.0806
.0805
•-.7645
•-.0086
-.2597
• .7822
.1623
,4422
.0732
.3400
.6156
,6220
-.4449
-.5029
-.5031
.3527
.0015
-.2416
-.2771
-.1056
••.3872
.0494
-.1899
-.0454
.0733
-.4246
.2446
.2751
.2725
.3565
.3856
.3698
-.3152
-.0818
-.5532
.1955
-.3438
-.3237
-.0057
• .5624
.1673
-.4164
• .4198
-.5246
•-.5062
•-.5819
-.0347
.2646
-.2373
-.0143
.0250
.0102
.0808
-.0883
,0488
,3386
,2291
,0513
.3717
-.1921
.0450
•-.2156
1.0000
--.2070
.3036
.7532
-.0400
-.3781
.1662
,0320
-.6236
-.6553
,4008
.6915
.5080
-.2232
-.2071
.1843
.2481
.4935
.0134
.4721
-.8583
.4583
-.2270
-.7132
.1426
.5657
.2415
.4343
,8292
.8271
-.6524
-.6162
• ,7164
,0467
-.2766
-.0552
.0819
-.5067
-.4838
-.4583
-.3426
-.4715
-,1901
-.1119
,3365
,5399
-.1538
-.1438
,2591
,2697
-.2188
-,5463
-.3155
.5697
.1502
-.5743
-.5094
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
1
10,31.42,
FILE FUEL
**" *"* " * *
V101
V102
V103
V104
V105
V106
7 V107
w V108
V109
V110
Vlll
V112
V113
V114
VI 15
VI 16
V117
V110
V119
VI 20
"** *" ' "~
V121
,3607
,5837
.8149
,5260
.1337
-.0767
.0650
-.1433
-.1150
-.2139
,1230
99.0000
-.0421
.3960
.4463
.1526
.0167
-.1433
,4199
-,2676
•• PEAR
V122
,0450
.0757
.2916
-.0804
.1671
-.1369
.1878
-,2436
.0706
-.0773
,1732
99,0000
•-,0509
.6375
.9712
.4987
,6420
-.8536
,8329
.3748
SON C
V123
,0932
,2020
-.0519
,1725
-.2070
-.3606
.3461
-.1566
.0932
-.4089
.1570
99.0000
- .3674
- .3949
.0831
.2453
,2773
.1370
-.2062
.6118
0 K R t L
V124
.5083
.2728
.2503
.1890
,0697
-.2406
-.2728
.0584
-.6871
-.5672
-.4475
99.0000
-.2597
• .4125
.0015
-.1838
.2394
,0983
,1063
- ,0786
ft } L U N
V125
.5107
.2643
.2557
.1358
-,0606
-.1526
-.2348
.1117
-.7274
-.6877
-,4188
99,0000
-.1811
-.4424
-.0750
-.2079
,1429
.1470
,0989
-.1766
i; u t i-
V126
•-,4429
-.3852
• .0064
-.2677
-.1095
.6247
.7640
-.1279
,3166
-.1275
.9803
99,0000
.6889
,3593
.1551
• .1044
-.0305
-.1425
• ,1216
,3261
1- 1 L I t
V127
• ,2230
-,0520
-.1053
.1920
.4703
-.1972
-.0925
-.1128
,5604
.9948
-.0479
99,0000
-.1771
,3280
,1213
•-,1169
-.0600
• .0897
-.1582
,3065
Nit)"-
V128
-.4555
-.3883
-.0263
-.2820
-.1245
,6123
.7559
-.1333
.3307
-.1327
.9804
99,0000
,6773
.3677
.1601
• .0913
•-.0299
-.1487
-.1235
,3339
V129
,1414
.0904
,2052
• ,1497
,1773
-.0940
•-.0192
.2313
-.4987
-.3063
-.4220
99.0000
-.0563
.2175
.2082
•-.3306
.0530
-.3585
.5030
-.5259
V130
-.3427
-.3122
.1213
-.1637
-.0347
.6970
.8067
-.1033
,1399
-,1105
,9064
99,0000
,7512
.3350
,1470
-.1006
-.0548
- .0809
-.1143
,2235
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
1 81/02/23, 18.31,42.
FILE FUEL, (CREATION DATE = 01/02/23.) VARIABLES STUDY
JS.
V121
V122
V123
VI 24
V125
V126
V127
V128
V129
V130
V131
VI 32
V133
V134
V135
V136
V137
V138
V139
VI 40
V141
V121
1,0000
,4768
-.2376
-.1687
-.1352
,1534
.1537
.1459
,2614
.1893
.1548
,1470
.1594
-.1433
-.0373
99.0000
-.2822
99,0000
-.0643
-.1417
-.1038
• 1 C. H h
V122
.4760
1.0000
-.0692
•-,1314
-,1912
,2008
,1603
,2063
,2564
,1831
,2359
.2112
.2017
.1630
• ,0007
99.0000
-.4138
99,0000
-.0183
-.0204
-.0401
& U N O
V123
••,2376
-.0692
1.0000
.4099
.3764
,0806
-.4032
.0913
••.3112
-.0237
.0607
-,3413
-.3943
-.2258
.0489
99.0000
.4071
99,0000
-.3676
-.3372
-.5183
U l\ IV L L
V124
-.1687
-.1314
,4099
1,0000
,9797
• ,4504
• ,6086
-.4613
,4668
•-,4045
-.3780
••.7573
-.6616
-.5857
-.6347
99.0000
-.1088
99.0000
-.1353
•-.6027
-.6355
HI j. u n
V125
-.1352
••,1912
.3764
.9797
1.0000
-.4275
•• . 7295
-.4371
.4700
-.3905
-.3711
-.8603
-.7803
-.6641
•-,6384
99,0000
•-,0308
99,0000
• ,0735
-.7187
• .6742
L U L f
V126
.1534
,2008
,0806
-.4504
• ,4275
1.0000
-.0363
.9992
,3747
.9700
.9655
.3698
,0961
-.1583
.6228
99.0000
.0079
99.0000
.5487
-.0914
.4099
I1 1 L I t
V127
.1537
.1603
-.4032
-.6086
-.7295
-.0363
1,0000
-.0420
-.3469
-.0134
-.0429
.9146
.9910
.6594
.3835
99.0000
••,1967
99.0000
-.1709
.9856
.6543
N 1 O
V128
.1459
.2063
.0913
-.4613
-.4371
.9992
-.0420
1.0000
-.3721
,9648
.9633
.3653
.0903
-.1349
.6235
99.0000
.0221
99.0000
.5373
-.0943
,4000
V129
.2614
.2564
-.3112
,4668
.4900
-.3747
-.3469
-.3721
1.0000
-.3187
-.3123
-.4681
-.3890
•-.0862
-.5026
99.0000
-.2325
99.0000
.1566
-.3626
-.2146
V130
.1893
.1831
-.0237
-.4045
-.3905
.9700
-.0134
.9648
.3187
1.0000
,9890
.3782
.1197
-.1540
.4820
99.0000
-.1900
99,0000
,6023
-,1056
,4181
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
1 81/02/23, 10,31,42.
FILE FUEL (CREATION HATE = 81/02/23.) VARIABLES CTUDY
£>
V201
V202
V203
V204
V205
V206
V207
V208
V209
V210
V211
0212
V213
V214
V215
V216
(J217
0218
0219
V220
V121
.7662
-.5174
. 7620
-.1581
.1876
-.0524
,9004
-.0873
-.6154
--,2340
,3120
-.1141
.0787
.3509
-.3922
,0949
,0233
-,3276
-.0554
-.2094
• 1 L H l\
V122
.1574
-.0887
.2127
.0831
• .2078
.2486
.5670
.1184
-.2296
-,2908
,0789
-,5920
-,1476
.1113
--,0878
.0246
,1882
-,5636
,1373
-.6348
z> u n L
V123
,1959
-,2244
.2523
,4283
-.0705
• ,2455
,0440
• ,0655
-.2703
-.3488
-.2526
-.5473
-,0841
-.2928
• .4251
,0339
,2894
-.2239
-.2242
.4853
U K IV t. l_
V124
.1723
,5087
.1466
-.0392
.7551
• .3167
• ,2240
-.8680
-.4966
••,6855
-.0663
-.3012
-.2705
-.0944
• .4248
-,7772
•-,5008
,1439
-.7935
.4073
H 1 1 U N
V125
.1738
.5109
.1520
• ,0720
.7569
• .4291
-.1601
-.8914
-.6145
-.7605
,0016
-.3263
-.2347
-.0256
••.5239
-.7341
-.4596
,2318
-.8384
.3853
u u L. r
V126
••.1951
• .5481
-.1291
.5026
-.6248
-.2715
.3644
.4138
-.0976
-.0232
-.1922
•-,0835
.7859
-.2424
-.1926
,4177
.8667
-.2034
.7195
-.1857
1 1 U i t
V127
-.0306
-,2941
•-.0725
-.1605
-.3539
.7197
• .1839
.6348
.9142
.9138
-.1119
,5430
-.1217
• .0653
.8404
.3552
-.1021
-.2423
.5980
-.1589
n i y
V128
• ,2008
-,5448
-.1307
.5178
• .6382
• .2703
,3726
.4236
-.1046
-.0254
-.1842
--,0949
.7805
-.2353
-.2017
,4261
,8817
-.2090
.7166
-.1936
V129
.0895
.6391
.0930
-.0687
.5759
•-,1417
,1825
•-,6689
-,4853
-.4707
.5348
-.1212
-.2622
,5138
-.3708
-.6120
-.3916
-.0375
-.6537
-.3372
Y130
-.1480
-.5256
-.1021
,3881
,4900
-.2004
.3347
.3249
-.0928
-.0498
-.1765
-.0359
.8831
• .2182
-.1710
.3632
.7311
• .2085
.7121
-.1206
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
V221
V222
V223
V224
V225
V226
V227
V228
V229
V230
V231
V232
V233
V234
V235
V236
V237
V238
V239
V240
V241
-,0386
,4836
--,0663
,4464
-.1433
,3672
,1374
-.2719
,3906
-,0786
.3907
.7921
,4283
,4464
-.4072
-.1912
-.3788
.0528
-.3337
-.2131
,0929
•-.6941
.1110
• .0964
,1831
-.8536
.1055
-.2140
•-,8415
,1358
,3316
,0088
,2922
,6533
.6784
• .4364
••,5584
-.5536
,2969
,0464
-.2616
-.2455
.3646
-.2106
••.2048
-.1616
.1652
-.1765
-.5156
,2133
,4852
,2709
,2588
-.0059
,0088
••,0653
-.2542
-.1278
-.0680
,3594
,2716
-.2198
••,3793
,3594
,0382
,6025
• .0366
.1371
• .0126
-.6845
-.0446
-.1416
.3781
.1913
.2067
-.0687
-.1697
,0257
,1449
,2797
-.1886
-.0676
,7185
,1629
.3812
.1215
,5309
,0461
,1750
.0699
-.7113
,0055
-.1129
.3377
,2060
,2593
-.0856
-.1831
.0393
.1723
.2798
-.1599
-.0933
.7126
,1491
•-,2562
•-,2093
-,4625
-.2218
-.1279
-.2168
.3498
-.0315
-.0083
•-.2130
••.3100
.2530
.1092
.2004
,0424
-.3384
-.0215
,4163
,4861
-.5831
-,5069
•-.2254
•-,1927
-.0147
-.2150
-.1078
-.2069
,6484
• ,0022
-.0252
-.2225
•-,2959
-,2375
,0897
.1790
.0617
-.3586
.0883
-.2383
-.1428
-.3325
.2533
-.2619
-.2093
-.4817
-.2098
• .1333
-.2087
.3420
-.0300
-.0040
-.2129
-.3072
-.2668
,1050
,1959
.0354
-.3784
-.0306
.4415
.4997
-.5947
-.5324
-.1776
.4893
.4678
,5228
-,3084
,4974
• ,3539
-.2839
•-,3131
.1922
,1448
.1461
,1225
.0939
-.1669
.1593
.0651
-.0023
-,0405
,6136
••,0085
•-.1788
-.1768
-.3660
-.1977
-.0697
-.1902
.4671
-.0790
-.1750
-.1942
-.2323
-.1829
.1385
,2227
.0540
-.2859
,5080
,2951
,3775
-,4620
• ,3699
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
1 81/02/23. 1C,31,42,
FILE: run. (CREATION DATE = 01/02/23,) VARIABLES STUDY
V101
VI 02
V103
V104
V105
V106
V107
V108
V109
VI 10
Vlll
V112
V113
VI 14
V115
0116
0117
V118
V119
V120
V131
-,3410
-.2970
,1046
-,1860
-.0749
,6658
.7783
-.0841
.1437
-.1397
.9007
99,0000
,7232
,2931
,2133
••,0358
-.0045
-.1400
-.0562
.3201
! U PI !\
V132
-,3945
-.2054
-.1109
.0616
,3947
,0631
,2200
-.1594
,6540
.8728
,3495
99,0000
,1084
,3724
,1654
-.0829
- , 0255
-.1488
-.1208
,3278
o u re i.
V133
• ,2740
-,0967
• ,0962
,1615
,4655
-,1081
.0132
-.1259
.5859
.9729
.0778
99,0000
•-,0799
,3321
,1657
-.0882
- ,0349
• ,1235
-.1106
,3100
U l\ U L I-
V134
-.2734
,0103
-,3265
-.0150
.1612
-.3605
• .2349
•-.1491
.4580
,6650
-,2044
99,0000
-.3429
,2047
,1625
,3822
,2333
-.1111
.0100
,0420
HI J. u n
VI 35
-.7157
• ,5229
-.3341
• ,3320
,0352
,2865
,2623
.1788
,8084
.3413
,7165
99,0000
,3255
,0522
-.0967
--,2909
•-.3412
- .2073
-.0839
.3248
u u u i
V136
99.0000
99,0000
99,0000
99,0000
99.0000
99.0000
99,0000
99.0000
99.0000
99.0000
99,0000
99,0000
99,0000
99,0000
99,0000
99.0000
99,0000
99,0000
99,0000
99,0000
1 I L 0. C.
M137
-.4376
• .2739
-.4906
-.3194
-.3641
' -,0765
-.3133
.3396
.5009
-.1717
.1669
99,0000
• .1072
-,3487
-.4723
-.2601
.4780
,1328
-.2919
.0890
rv i u " •
VI 38
99.0000
99.0000
99.0000
99,0000
99.0000
99.0000
99,0000
99,0000
99,0000
99,0000
99,0000
99,0000
99.0000
99,0000
99.0000
99,0000
99.0000
99.0000
99,0000
99.0000
V139
-.3549
• .5230
-.0230
-.5180
-.1447
.9143
,7556
,5148
-.1687
-.2170
.4908
99,0000
,9381
-.0232
-,1255
-•,4633
•-.4596
-,2219
,1418
-.0608
V140
.2518
-.0677
-.1877
,1497
,4336
-.2899
-.1791
-.1207
.6518
.9910
-.0718
99,0000
-,2691
,0675
-.0535
-.0685
-.0009
-.1378
-.1511
.4116
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
1 81/02/23, 13,31,42*
FILE FUCL (CREATION DATC = 01/02/23.) VARIABLES STUDY
V121
V122
V123
V124
V125
V126
V127
•« M128
i
£>
oo V129
V130
V131
V132
V133
V134
V135
V136
V137
V138
V139
V140
V141
V131
.1548
.2359
.0607
-.3780
-.3711
,9655
-.0429
.9633
-.3123
.9890
1 , 0000
.3513
.0909
-.1185
,4744
99,0000
-.1750
99.0000
.5967
-.1310
,3945
- r t. H K
V132
,1470
,2112
--,3413
• ,7573
-.8603
.3698
.9146
,3653
-.4681
.3782
.3513
1.0000
.9598
.5708
.6042
99,0000
-.1798
99,0000
,0578
,8792
.7698
X U N U
Y133
,1594
,2017
-.3943
• ,6616
• .7803
,0961
,9910
,0903
-,3890
,1197
,0909
,9598
1,0000
,6399
,4530
99,0000
-.2115
99,0000
• ,0914
,9661
,7063
U K IV L. U
V134
-.1433
,1630
-.2258
-.5857
• .6641
•-.1583
.6594
•-.1349
-.0862
-.1540
•-.1185
.5708
,6399
1,0000
,0727
99.0000
-.1188
99.0000
-.3286
,6615
,2663
H I I li N
V135
-.0373
•••0007
,0489
•-,6347
• ,6384
,6228
,3835
,6235
•-,5026
.4820
,4744
,6042
,4530
.0727
1.0000
99.0000
,5313
99,0000
,3204
,4298
,6924
i- u t r
V136
99.0000
99,0000
99,0000
99,0000
99,0000
99,0000
99.0000
99.0000
99,0000
99.0000
99,0000
99.0000
99.0000
99,0000
99.0000
99.0000
99.0000
99.0000
99.0000
99,0000
99,0000
1 i L- i t
V137
•-,2822
• .4138
.4071
-.1088
-.0308
.0079
-.1967
.0221
-.2325
-.1900
-.1750
-.1798
-.2115
-.1188
.5313
99,0000
1,0000
99,0000
••.0470
•-.0617
.0102
N i a - -
V138
99.0000
99,0000
99.0000
99.0000
99.0000
99.0000
99,0000
99,0000
99,0000
99.0000
99,0000
99.0000
99.0000
99.0000
99.0000
99,0000
99,0000
99,0000
99,0000
99,0000
99.0000
V139
-.0643
-.0183
-.3676
-.1353
-.0735
,5487
-.1709
,5373
,1566
.6023
.5967
.0578
.0914
.3286
.3204
99.0000
-.0470
99.0000
1,0000
•-,2490
.6024
V140
-.1417
-.0204
-.3372
-.6027
-.7187
-.0914
,9856
-.0943
-.3626
-.1056
-.1318
,8792
.9661
.6615
.4298
99,0000
-.0617
99.0000
-.2490
1.0000
.6156
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
FILE
31/02/23.
18,31,42,
FUEL (CREATION DATE = 01/02/23.) VARIABLES STUDY
V201
V202
V203
Y204
V205
V206
V207
V208
V209
V210
V211
V212
V213
V214
V215
V216
V217
V218
V219
V220
V131
-.1422
-.5220
-.0824
.3938
-.5259
-.1513
.3422
.3472
-.0993
-.0678
-.1589
-.1264
.8573
-.1945
-•.1999
.3933
.7526
-.2760
.6901
-.1091
r« r A 17
1 L H l\
VI 32
-.1113
-.4909
-,1211
.0611
• ,5888
.5662
-.0173
.7637
.8072
. 8392
-.1731
.4632
.2040
-.1503
.6991
.5045
.2622
-.3160
.8470
-.2315
q fl N p
*J U It w
U133
-.0526
-.3639
-.0859
• .1008
-.4279
.6904
-.1350
.6820
.8967
.9030
• .1334
.5267
• .0084
• ,0926
,8102
.4074
.0056
• .2753
.6904
-.1784
n R R E L
U ! » I\ L* I»
V134
-.0736
-.0659
-.0501
.0104
-.3263
.6795
• .0240
.5314
.5469
.5985
.1304
.2150
-.1519
.1628
.4773
.3334
-.0048
- .3084
.3212
-.2166
A T I 0 N
V135
-.2903
-.4831
-.2520
,3574
-.8542
- .0444
,0880
.7669
.3684
,5074
.0194
.0709
.1706
-.0136
,1709
,6298
.7167
-.2535
.6886
-.3306
C 0 E 1
V136
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99,0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
F I L 1 h
VI 37
-.1753
-.0569
• ,1363
.2584
• .3892
-.3761
-.0663
.2790
-.0999
.0700
.2200
•-.1340
•-,2762
.1764
-.2490
.3137
.3835
.1235
• .1190
,0192
Nib
V138
99.0000
99.0000
99.0000
99.0000
99,0000
99.0000
99,0000
99,0000
99,0000
99,0000
99,0000
99,0000
99.0000
99,0000
99.0000
99,0000
99.0000
99.0000
99.0000
99.0000
V139
-.4067
.0694
-.3852
-.0809
-.2628
-.1516
-.0433
.0797
-.1194
-.0766
.2322
.0513
.5740
.2247
-.1547
,2216
,3033
.0661
.3098
-.2436
V140
-.0439
-.2726
• .0783
-.1234
-.3916
,6874
-.1951
.6597
.9175
.9329
-.1132
.5257
-.2398
-.0689
.8398
.3594
•-,0785
-.2141
,5479
-.1753
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
V221
Y222
V223
V224
V225
V226
V227
a, V228
0
V229
V230
V231
V232
V233
V234
V235
V236
V237
V238
V239
V240
V241
-.1772
-,1629
-.4293
-.1619
-,1249
-.1577
.4345
-.0981
-.1523
-.0778
-.1712
-,1849
,2136
.2895
-.0444
-.3249
-.4356
.3729
.3744
-.5033
-.4302
-.3197
-.2614
-.2119
-.2778
-.1594
• .2713
.7451
-.0380
• .0222
-.2097
-.2973
-.2669
.1090
.1991
.0314
•-.3636
-.0366
• .0384
.0705
-.5503
,0160
-.2535
-.2155
-.0736
-.2379
-,1250
-.2294
,7011
-,0484
-.0762
• .1716
-.2553
-.2242
.1399
.2256
,0196
••,3501
-,0808
• .1848
• ,0855
-.4024
,1901
-.1996
-.0747
-.2475
,1487
- .1491
.0769
,4355
-.0819
• .1733
.0630
.2166
-,2528
•-.0333
-.0571
• ,1954
,4335
• ,0678
.1629
.0015
• .2898
-.1319
-.3602
-.0517
-.5026
-.1377
• ,2276
-.0771
.3195
.2227
.4159
-.1632
-.2866
-.3134
,1174
.1915
-,1123
•-,6130
-.1960
.2312
.3763
• .7666
-.3067
99.0000
99.0000
99.0000
99.0000
99.0000
99,0000
99.0000
99.0000
99,0000
99,0000
99,0000
99,0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99,0000
99,0000
99,0000
,1049
,1619
• .4075
.1408
.1490
.1896
-.3004
.5743
,5881
-,1477
-,0411
-,2677
-.1811
-.1774
-.0945
-,1782
-,0622
,2491
,2488
-.3584
-.2854
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99.0000
99,0000
99.0000
99.0000
99,0000
99,0000
99,0000
99.0000
99.0000
99.0000
99,0000
99,0000
99,0000
99,0000
-,1920
,2339
• ,1935
.1170
-.1933
,2125
,3755
,0523
• ,3803
,1203
-.2108
-.2527
.2574
,3371
•-,0471
-,3528
-.1185
.0789
.0648
-.0589
-.0916
...,2444
•-,2019
-.0426
-.2198
-.1207
-.2131
,5465
.2895
.6860
-.1508
-,3417
-.2992
•-,1850
-.1490
,0161
-,3963
-.0184
-..1934
-.1093
-.3667
,2046
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
1 81/02/23* 18,31.42.
FILE FUEL (CREATION DATE = 81/02/23.) VARIABLES STUDY
V101
V102
VI 03
V104
V105
V106
V107
V108
l>109
V110
Will
V112
V113
V114
V115
V116
V117
VI 18
V119
V120
V141
-.5556
-.5148
-.2102
-.3299
.2080
.5007
,4518
,3338
,4712
.6201
,3955
99,0000
,5373
-.0215
-.1609
-.4908
-.4971
-.2500
.0862
.0485
I-1 L H K
V201
.6937
,9440
.8349
.8364
-.0199
-.4082
-.3552
-.1782
-.2188
-.0287
-.2122
99,0000
• .4185
-.1373
,2563
,3051
.0436
,2355
.1857
••,1179
t> U N L
V202
-.0773
-.3722
••.4112
-.4816
.1283
• .0672
-.1237
.2401
-.4015
-.2313
-.5561
99,0000
-.0770
.0122
•-.1345
-.2962
,1001
-,2342
,1493
-.3038
U l\ K L L
V203
,6716
.9282
,7083
.7576
-.1160
-.4102
-.2983
-.2277
-.1588
-.0727
-.1397
99,0000
-.4042
-.1037
.3187
.3373
.1025
.1833
,2055
-.0207
H I i u n
V204
-.5584
-.4294
.3945
,3105
.1936
-.0824
,1838
-.3261
,4013
-.1955
.5531
99.0000
-.0126
.4402
,0751
-.2642
.2733
-.1315
• .2882
.1813
U U L 1
V205
.6670
.5270
.4871
,4882
.2136
-.2666
-.3285
-.0098
-,8093
••.3100
-,6850
99,0000
-.3126
-.1695
-.1349
-.1353
.0338
.3483
-.0064
• .5996
1 J. U i t
V206
.1996
.2752
.0489
.2158
.0963
-.2603
• ,1536
-.0724
.1954
.7325
-.3315
99,0000
• .2449
-.3372
,3679
.5291
,2934
-.1348
.3760
.4003
N i a • ••
V207
.1643
.4553
.5S12
.2691
-.1401
-.0575
,1452
-,2146
,0680
-,2195
,3534
99,0000
-.0029
.4904
,5384
.2730
.1255
-.2429
,3752
-.0285
V200
• ,4901
-.2648
-.3280
-.1764
• .1239
.1212
.1165
,0139
,8055
,5996
.4525
99,0000
.1375
.0189
.0592
.2946
•.1622
-.1718
-.0428
.5479
V209
-.1328
-.1055
-.2490
,0691
,2398
-,1519
-,0811
-.0907
.5401
.9210
• .0858
99.0000
-.1419
-.5152
-.1445
.1595
,0480
.0787
-.1596
,6771
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
1 81/02/23, 18,31.42.
PILL FUEL (CREATION DATE = 01/02/23.) VARIABLES STUDY
V121
V122
V123
V124
V125
V126
V127
T V128
Ul
10 V129
V130
V131
V132
V133
V134
V135
V136
V137
V13S
V139
V140
V141
V141
-.1038
-.0401
-.5103
-.6355
-.6742
,4099
,6543
.4000
-.2146
.4181
,3945
,7690
.7063
.2663
.6924
99.0000
.0102
99.0000
,6024
,6156
1,0000
'• r L. H K
V201
,7662
,1574
,1959
,1723
.1738
-.1951
• .0306
• ,2008
,OS95
-.1480
-.1422
-.1113
-.0526
-.0736
• ,2903
»
99,0000 .
••,1753
99,0000
-.4067
-,0439
•-,3819
nun u
V202
-.5174
••.0887
-.2244
,5037
.5109
-.5481
-,2941
• ,5448
,6391
••.5256
-.5220
--.4909
-.3639
• .0659
• .4831
99,0000
.0569
99,0000
.0694
••,2726
-.2036
U K K t L
V203
.7620
.2127
,2523
,1466
,1520
• ,1291
-.0725
-.1307
.0930
-.1021
-.0324
-.1211
-.0859
-.0501
-.2520
99,0000
• .1363
99.0000
-.3852
-.0783
-.3857
B 1 1 U N
V204
•-.1501
.0831
.4283
-.0392
•-.0720
.5026
-.1605
.5178
-.0687
,3881
,3938
.0611
•-.1008
.0104
,3574
99.0000
.2584
99.0000
-.0809
••.1234
•-.1096
L U L I-
V205
.1076
-.2078
- ,0705
,7551
,7569
• ,6248
• ,3539
-.6382
,5759
-.4900
-.5259
-.5888
-.4279
• .3263
-.8542
99.0000
-.3892
99.0000
-.2628
-.3916
• .6029
I- 1 L 1 t
V206
.0524
,2486
-.2455
-.3167
• ,4291
-.2715
,7197
-.2703
-.1417
-.2004
••.1513
.5662
,6904
,6795
-,0444
99,0000
••,3761
99,0000
-,1516
,6874
,3943
N 1 IF ' '
V207
,9004
,5670
.0440
-.2240
-.1601
,3644
-.1839
.3726
.1825
.3347
,3422
-.0173
-.1350
-.0240
.0880
99.0000
-.0663
99,0000
• .0433
-.1951
-.1755
V208
-.0873
.1184
-.0655
--,8630
-.8914
.4138
.6348
.4236
-.6689
,3249
.3472
.7637
,6820
.5314
.7669
99.0000
.2790
99.0000
.0797
.6597
,6555
V209
-.6154
-,2296
-.2703
-.4966
-.6145
-.0976
.9142
-.1046
• .4853
-.0928
-.0993
.8072
.8967
.5469
.3684
99.0000
-.0999
99.0000
-.1194
.9175
,6430
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
FILE
81/02/23,
18.31,42.
FUEL (CREATION DATE = 81/02/23.) VARIABLES STUDY
— — ... —
V201
V202
V203
V204
V205
V206
V207
V208
V209
V210
V211
V212
V213
V214
V215
V216
U217
V218
V219
V220
V141
-.3819
-.2036
-.3857
-.1096
-.6029
.3943
-.1755
,6555
,6430
,7091
.1064
.4413
.2608
.1296
.5302
.5222
.2590
-.1362
.7191
-.3544
• P E A R
V201
1,0000
-.5285
,9871
-.3219
,4030
.1611
,6421
-.1756
••.1532
-.0853
.1535
-.1057
-.1019
.2270
-,1637
,0406
-.2544
•-,2392
-.3248
,3738
SON C
V202
-.5285
1,0000
-,5523
• ,0287
,4373
-.1590
-.5493
-.5771
-.2217
-.3418
.1615
-.0276
-.4091
,1164
•-.0840
-.6723
-,4787
.2985
••.5516
-.2356
0 R R L L
V203
,9871
-.5523
1,0000
•-,2597
,3230
,1631
.7017
-.1333
•-,1803
•-.0988
,1290
• ,1373
-.0792
,2055
-,1928
.0804
•-.1481
-.2419
-.3044
.3531
A T I U N
V204
-.3219
•-.0287
-.2597
1.0000
-.3040
-.5194
.1378
,0156
-.2915
-.2779
-.1940
-,2155
.2218
-.3422
-.3722
-.2144
.6703
-.2254
.2040
-.2116
L ; U t !
V205
,4030
,4373
,3230
•-,3040
1.0000
-.1659
-.0772
-.9000
-.4118
•-,5182
,1033
.0425
•-.2010
,0989
--,2563
-,7642
•-,7794
,2395
- . 7733
,3728
1- i U 1 t
V206
,1611
-•,1590
,1631
-,5194
-.1659
1,0000
-.1594
,4611
,7862
,7199
-.0730
.3141
-.1993
.0556
.7488
.3542
,3290
-.2122
,2765
.0784
N 1 i>
V207
.6421
-.5493
.7017
.1378
-.0772
-.1594
1.0000
.0548
-.4177
-.2267
.2964
-.3150
.1798
.3133
-.4217
.2225
.3865
-.3799
.0072
-.2553
V208
-.1756
-.5771
-.1333
.0156
-.9000
.4611
.0548
1.0000
.6651
.7815
•-.0602
.1471
X '1119
•-,0112
.5011
.8835
.5232
• .2602
.7921
-.2254
V209
-.1532
-.2217
-.1803
-.2915
-.4118
,7862
-.4177
.6651
1,0000
.9443
-.3007
.5514
-.1748
-.2229
.9386
.4069
-.1330
-.0452
.5693
,0178
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
7
V221
V222
V223
V224
V225
V226
V227
V228
V229
V230
V231
V232
V233
V234
V235
V236
V237
V238
V239
V240
V241
•.3659
.0280
-.2508
-.0811
-.2579
.0042
.7267
.1489
-,1771
.0648
-.2834
-.3389
,2194
,3087
-.0638
-.4693
-.1478
-.0507
,0141
-.4174
,0410
,4940
,3755
- .0683
.3598
.2357
.2831
-.0084
.0577
.5254
.1921
,7293
,9145
,3190
,2633
-.5067
.0583
• .3434
,0336
• .5735
•-.1119
.1922
--,2340
,0244
,5948
,0504
-.2022
.0864
-.4687
-.2033
-.5650
.0729
-.3109
-,4335
-.2528
-,2810
.3186
.2567
,3951
-,2454
.1596
,7832
,1156
,4591
,3425
-.1694
,3561
.1882
.2672
-.0410
.0725
,5691
,2488
,7074
,8763
,3289
,2794
-.5436
.0195
-.3605
,1918
-,5201
• ,1903
,0421
•-,3118
-.3877
.0336
-,2862
• .1077
-.3234
-.3070
-.0599
-.0218
-.4121
-.4305
• .5686
•-.3665
-.3496
,2946
-.0076
,4967
,3835
,9572
-.1618
•-,6686
,4613
,2068
,7318
.1608
.3607
.1441
-.3389
-.0466
-.2930
-.0151
.3111
.4243
-.1884
-.2687
.1514
.5466
,3613
-.4628
-.3481
,8615
,4839
.0017
-.0700
-.1909
-.0088
-.1642
-.0283
.5252
-.0554
-.0522
.8417
.4739
.2868
,4324
,3892
-,5110
.0074
.4537
,0132
-.5256
-.2315
,1852
-.1052
.3964
-.3702
.4670
-.2146
.3603
-.0175
-.2380
.4790
-.0529
.3464
.5879
.4186
.4475
-.4848
-.2273
-.4379
.4463
-.0558
-.4260
-.3318
-.2722
-.1270
• .7218
-.0893
.1969
-.0798
.5772
.1589
.4072
.0366
-.0736
-.2157
.2572
.3257
.2763
.4531
-.5104
.2654
.0251
-.8764
-.2007
-.1295
-.3405
-.1114
.3850
-.0602
-.3490
,5677
.3275
.0821
.4745
-.2506
-.2826
-.0328
-.0160
.0888
-.2920
-.0802
-.1746
-.2336
• .3358
.2334
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
18,31,42.
FILE FUEL (CREATION DATE = 81/02/23.) VARIABLES STUDY
------PEARSON CORRELATION COEFFICIENTS-
V101
V102
V103
V104
V105
V106
I V107
Ui
V108
U109
yiio
Mill
V112
V113
vii4
V115
V116
V117
V118
U119
V120
V210
-.2271
-.0952
-.2503
.0300
,1251
-.1059
-.0626
-.0296
.6710
.9182
,0057
99.0000
-.0944
-.3498
-.3106
.0304
-.3741
.1430
-.2168
.3790
V211
-.2693
.0234
.1856
-.0209
,1575
.1029
-.2783
.7627
-.1660
-.1019
-.2199
99,0000
,0599
-.0733
-.0609
-.2031
• ,5470
-,2465
,4179
-.5493
V212
,0713
-,0411
-.1643
,0197
,0204
,0669
,2344
-,2556
,2121
,5586
-,0892
99,0000
,0882
-,0649
-,5713
-.4864
-,2598
.5933
-,5884
•-,3538
V213
- , 1405
-,1631
.1492
-.0419
-.1554
.7397
,7526
-.0879
-.1416
-.2094
.6800
99.0000
.7551
.1443
-.1515
-.1437
-,1999
,2994
•-.3969
• .0159
V214
-.1627
.1157
.2428
.0216
.0806
.0875
-.2863
,7508
-.1760
-.0509
-.2744
99.0000
.0435
-.1221
-.0156
•-.1088
-.5304
-•,2435
.4769
-.4969
V215
,0425
-.0632
-.2250
,0302
.1611
-.1668
,0099
-.2668
.4155
.3606
-.1876
99.0000
-.1465
-.0996
-.0210
,2067
,2939
,0669
• .0971
,3891
V216
-.2955
•-.0566
-.0763
-.0546
• .3735
,3078
,1224
,2176
,5274
.3134
.4318
99.0000
,2071
-.1629
-.0319
.3349
-.3772
•-.0064
-.0071
,3466
V217
-.5752
-.4301
-.3055
-.4397
-.2991
.3430
,5198
-,1789
,5938
-.1668
.9185
99.0000
.4126
.3628
.1371
-.0222
.0248
-.2010
•-,1616
,4526
V218
.2903
-.0802
• .2855
-.2478
-.5374
.1692
,2151
•-,2239
••,1629
-.2024
-.1640
99.0000
,1509
•-,1277
••,5471
-.2022
-.1463
.5167
•-.5345
-.1711
V219
-.4883
-.4228
-.2128
-.1806
.0960
.4249
.5483
-.1900
.5905
.5270
.6953
99.0000
.4667
.3272
.0852
.0663
-.0094
-.1008
-.2005
.4087
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
1 81/02/23, 18.31,42.
FILE FUEL (CREATION DATE = 81/02/23.) VARIABLES STUDY
Ul
en
V121
V122
V123
VI 24
V125
V126
V127
V128
V129
V130
V131
V132
V133
V134
V135
V136
V137
V138
V139
V140
V141
V210
-.2340
-.2908
-.3488
-.6855
-.7605
-.0232
.9138
-.0254
-.4707
-.0498
-.0678
.8392
.9030
.5985
.5074
99.0000
.0700
99,0000
-.0766
.9329
.7091
•- r L H i\
V211
,3120
,0789
••.2526
--,0663
,0016
- ,1922
•-,1119
••,1842
.5348
--.1765
-.1589
-.1731
-.1334
.1304
.0194
99,0000
.2200
99.0000
,2322
-.1132
.1064
DUN L
V212
-.1141
-,5920
-,5473
-.3012
•-,3263
-.0835
,5430
-.0949
•-.1212
••,0359
-.1264
,4632
.5267
,2150
,0709
99,0000
•-,1340
99,0000
,0513
,5257
.4413
U K K L L
V213
.0787
•-.1476
•-.0841
-.2705
-.2347
,7859
-,1217
,7805
-.2622
,8831
.8573
.2040
-.0084
-.1519
.1706
99,0000
- .2762
99.0000
,5740
-.2398
.2608
H i i u n
V214
.3509
,1113
-.2928
-.0944
-.0256
•-.2424
-.0653
•-.2353
.5138
-.2182
-.1945
-.1503
-.0926
.1628
-.0136
99.0000
.1764
99.0000
.2247
• ,0689
.1296
b U L 1
V215
-.3922
-.0878
-.4251
-.4248
-.5239
-.1926
,8404
-.2017
-.3708
• .1710
-.1999
.6991
.8102
.4773
.1709
99,0000
-.2490
99,0000
-.1547
.8398
.5302
r i u i c.
V216
,0949
.0246
• .0339
-.7772
-.7341
.4177
.3552
,4261
-.6120
.3632
,3933
.5045
.4074
.3334
.6298
99.0000
.3137
99,0000
.2216
,3594
,5222
« i j>
V217
,0233
,1882
,2894
-.5008
•-,4596
,8667
-.1021
,0817
-,3916
,7311
,7526
.2622
.0056
-.0048
,7167
99.0000
.3835
99.0000
.3033
••,0785
,2590
V218
• ,3276
*" 1 5o3o
-.2239
.1439
.2318
-.2034
-.2423
-,2090
-,0375
-.2085
•-.2760
-.3160
- ,2753
-.3084
-.2535
99,0000
.1235
99.0000
.0661
-.2141
-.1362
V219
-.0554'
.1373
-.2242
-.7935
-.8384
,7195
.5980
,7166
•-,6537
,7121
.6901
.8470
,6904
,3212
,6886
99,0000
-,1190
99.0000
,3098
,5479
,7191
-------
BIVARIATE COLLELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
1 81/02/23, 18.31,42,
FILE FUCL (CREATION DATE = 01/02/23.) VARIABLES STUDY
V201
V202
V203
V204
V205
V206
V207
V208
V209
V210
V211
V212
V213
V214
V215
V216
V217
V218
V219
V220
V210
-.0053
-.3418
-.0988
-.2779
-.5182
.7199
-.2267
,7815
,9443
1,0000
-.1324
,5938
-,1434
-,0535
.8679
.5740
,0046
-,0311
,6000
-.0761
•• r L H K
V211
,1535
.1615
.1290
• .1940
.1033
• .0730
,2964
• ,0602
-.3007
-,1324
1.0000
-.3438
-.1903
.9836
-,4300
,1415
,1454
••,4301
••,3321
•,3921
i> u n u
V212
-.1057
-.0276
• .1373
- .2155
,0425
.3141
.3150
.1471
.5514
.5938
• .3430
1,0000
.1424
-.3048
.6757
•-.0003
-.1070
.5915
.2921
.1955
U K K L L
V213
-.1019
•-.4091
• .0792
.2210
-.2010
-.1993
.1798
,1119
• .1740
-,1434
-.1903
,1424
1.0000
-.2239
•-,2046
.2483
,4964
,0586
.5371
.1909
H i j. u n
V214
.2270
.1164
,2055
-.3422
,0989
,0556
.3133
-.0112
•-.2229
• .0535
.9836
•-,3048
-.2239
1.0000
-.3376
.2167
•-.2051
-.4006
-.3283
-.3561
U U L 1
V215
--.1637
-.0840
-.1928
• .3722
-.2563
.7488
••.4217
.5011
.9386
.8679
-.4300
,6757
-.2046
.3376
1.0000
,2360
,2487
.1916
.4802
-.0126
r J. L i c.
V216
,0406
,6723
.0004
•-.2144
-.7642
.3542
.2225
.8835
.4069
.5740
.1415
• ,0003
.2483
.2167
.2360
1.0000
,4754
• ,2105
,6210
-.0615
n i u - -
V217
••.2544
-.4787
-.1481
.6703
-.7794
-.3290
.3865
.5232
•-.1330
.0046
-.1454
-.1870
.4964
-,2051
-.2407
,4754
1,0000
••.1726
,5874
-.2599
V218
-.2392
.2985
-.2419
.2254
.2395
•-,2122
-.3799
-.2602
-,0452
-.0311
-.4301
.5915
.0586
-.4006
.1916
-.2105
-.1726
1.0000
-.1750
.3306
V219
-.3248
-.5516
-.3044
,2040
-.7733
,2765
,0072
,7921
.5693
.6008
-.3321
.2921
.5371
-.3233
.4802
.6210
.5874
• .1750
1.0000
-.2244
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
en
V221
V222
V223
M224
U225
V226
V227
V228
V229
V230
V231
Y232
V233
V234
V235
V236
V237
V23S
V239
V240
V241
-.1367
-.1814
-.2928
-.2096
-.0296
-.1858
,6374
,6002
.4305
,1669
-.1375
-.1677
-.0357
,0263
-.0764
-.2773
-.2214
-.0632
-.2415
-.4910
.1466
-.0541
,9415
-,0697
.9458
• ,2350
,9709
.0722
• ,0370
.0370
.0444
,5402
,2591
,4734
,4492
••,5908
• ,0317
-.4656
-,1540
-.1978
.0359
.2114
,1434
• ,3694
,1495
•,4220
,4409
• ,4116
,4902
,5996
-.2511
-.3236
-.4140
-.2181
-,7237
•-,6759
,6696
,4653
,6939
-.1334
••,1510
,1147
,1336
,1762
•-,1830
••.2699
-.1755
.3117
-.1710
,5452
.1519
••,4041
•-,2778
-.1274
-.1908
-.1030
-,0382
,2259
,1343
,4729
,1802
.2161
-.1929
-,2284
-.0213
.9606
•-,1382
,9633
• ,2430
.9842
.1245
• ,0756
,0871
,1521
.6078
,3546
.5423
,5186
-.6594
-.0605
-,5645
-.1322
-.3507
• .0056
.2505
• ,1030
.-,4444
,0100
• ,4011
,0502
• ,4672
,4751
,1055
-.1076
,2443
--,5023
.1842
.2674
-.2260
.4357
-.0518
,1663
-.1084
• .2859.
-.1549
,2530
,0003
,1692
-,8820
,1894
-.0376
,2045
,6042
,2425
,4159
,1013
,2312
.0819
.3975
.4513
.4404
• .3529
-.6598
.2705
-.2388
-.8667
-.1026
• .3210
-.2289
-.6370
• .1564
-.1789
-.1787
.0835
.0858
,2606
-.2210
-.3469
,3946
•-,0049
.0776
-.0050
-.3816
•-,0416
,6647
,6349
•-.7215
-.7641
,2732
-.3757
.1026
- .4105
.5234
• .3975
-,1240
.5091
-.1467
-.2616
-.5037
• ,2617
•-,7047
-.6607
.7080
.3058
.5633
-.0000
-.1163
..3685
.0100
• .3556
-.4006
-.4254
-.4089
-.1380
-.3927
,7025
-.0511
- .0978
.2412
• .4283
• .3743
,0429
.1435
.1792
-.3371
.0392
.1243
.2535
-.6565
-.1794
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
1 81/02/23, 18,31*42,
FILE fun. (CREATION DATE = 01/02/23,) VARIABLES STUDY
V101
V.102
V103
V104
V105
V106
7 V107
Ul
^ V108
V109
V110
Vlll
V112
V113
V114
V115
V116
V117
V118
Y119
V120
V220
.5630
,5164
,2106
.5342
-.2767
-.1284
-.2360
-.1453
-.3085
-.1554
-,1991
99.0000
-.1886
-.7175
-.4478
.0488
-.1205
,8184
-.5997
,0890
•• r t. M u
V221
,5324
,5952
.3245
,5938
• ,2807
-.0765
•-.3315
,0817
••,3965
• .2190
• .2807
99,0000
• ,1615
• ,7452
-,5563
-,0209
' -.3788
.8679
• .5553
• .1941
o u n u,
V222
-.0097
,2367
,4377
,1617
,0599
.1245
-.2760
,7433
-.2981
.1830
• .2346
99.0000
,0721
-,1700
-,0032
-.1056
• ,5624
-.1921
,4935
-.5067
U f\ l\ t. i.
V223
,2010
• ,0024
.1433
,2067
,6730
-.2347
- ,1931
• .0521
-.4762
,0209
-.4924
99,0000
...,2444
,0930
- ,0006
-.3872
,1673
.0450
.0134
•-.4038
HI J. u n
V224
• .0361
,2674
,3299
,1027
•-,0328
.0153
-.3058
.6149
-.2492
•-.2047
-.2624
99,0000
• .0269
• .0608
.0805
.0494
•-,4164
-.2156
.4721
• .4583
U U L 1
V225
,3210
,3354
,0737
,4336
-.2382
.0205
-.1625
-.1000
-.2123
-.1069
• .1371
99.0000
-.0576
-.4911
-.7645
-.1099
-.4198
1.0000
• .8583
••,3426
1 J. U, 0. t
V226
.0948
.1795
,2978
.0633
-.0007
,1034
-,2949
.7410
-.2636
•-.I960
-.2523
99,0000
,0509
• .1593
• .0006
•-,0454
-.5246
-.2070
.4503
-.4715
n i it
V227
-.1941
-.0499
,1151
.1546
,1299
.4640
,3461
,1551
.1756
,5943
.2460
99.0000
.4509
-.0950
-.2597
-.0733
-.5062
.3036
-.2270
-.1901
V228
.0009
.0773
-.2314
.0395
-.4893
.0634
• .0077
.1278
.2356
,3277
.0322
99,0000
.0296
• .6399
-.7022
•-,4246
•-.5819
.7532
-.7132
•-.1119
V229
.1526
,3848
,1867
.2641
-.3385
• .4245
-.3832
-.0844
,5623
.3442
.1368
99,0000
-.4151
• ,1518
,1623
.2446
-.0347
-.0400
,1426
,3365
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
01/02/23. 10.31,42,
FILE FUEL (CREATION DATE = 81/02/23.) VARIABLES CTUDY
V121
V122
V123
M124
U125
V126
V127
V120
V129
V130
V131
V132
V133
V134
V135
V136
vi37
V130
V139
V140
V141
V220
-.2094
-.6348
.4853
.4073
.3853
-.1057
-.1589
-.1936
-.3372
.1206
-.1091
-.2315
-.1784
-.2166
-,3306
99.0000
,0192
99.0000
-.2436
-.1753
-.3544
" 1 t- H It
V221
-.0386
,6941
,3646
,3594
.3812
••.2562
-.2254
,2619
• ,1776
-.1788
••.1772
• .3197
••.2535
• .1996
• .3602
99.0000
.1049
99.0000
,1920
••,2444
,3659
If U W L
V222
.4036
.1110
-.2106
.03S2
.1215
- ,2093
-.1927
-.2093
.4093
,1768
• ,1629
-.2614
- ,2155
•-.0747
-.0517
99.0000
.1619
99.0000
.2339
• .2019
,0280
U K K L L
V223
• .0663
--.0964
-.2040
.6025
.5309
-.4625
• .0147
• .4817
.4678
-.3660
-.4293
• .2119
• .0736
-.2475
-.5026
99,0000
-.4075
99.0000
-.1935
-.0426
-.2500
H 1 i U N
Y224
.4464
.1831
-.1616
• .0366
.0461
-.2218
-.2150
• ,2098
.5228
-.1977
,1619
-,2770
-.2379
.1407
-.1377
99,0000
.1408
99.0000
.1170
• .2198
-.0811
L U t 1-
V225
-.1433
-.8536
.1652
.1371
.1750
-.1279
-.1070
-.1333
-.3004
-.0697
-.1249
• .1594
-.1250
• .1491
• .2276
99.0000
,1490
99.0000
• .1933
.1207
-.2579
1 i L 1 t
V226
.3672
.1055
-.1765
• .0126
.0699
• ,2160
-.2069
• .2007
.4974
-.1902
-.1577
• .2713
-.2294
,0769
,0771
99,0000
,1896
99.0000
.2125
-.2131
.0042
N \ Li • ••
V227
.1374
-.2140
•-.5156
••.6845
• .7113
.3498
.6404
.3420
-.3539
.4671
,4345
.7451
.7011
.4355
.3195
99.0000
.3004
99,0000
,3755
,5465
,7267
V228
-.2719
-.3415
.2133
,0446
,0055
• .0315
-.0022
-.0300
•-,2839
-,0790
• .0981
• .0380
• .0484
• .0819
.2227
99.0000
.5743
99.0000
.0523
.2095
.1409
V229
,3906
,1358
.4852
.1416
• .1129
-.0083
-,0252
.0040
• .3131
•-.1750
-.1523
-.0222
,0762
-,1733
,4159
99,0000
.5881
99,0000
•,3803
.6860
• .1771
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
1
FILE FUEL
01/02/23.
(CREATION DATE = £51/02/23.) VARIABLES STUDY
18.31.42.
V201
V202
V203
V204
Y205
U206
V207
V208
V209
V210
V2J1
V212
V213
V214
V215
U216
V217
V218
V219
V220
1'220
.3738
-.2356
.3531
-.2116
.3728
,0784
-.2553
-.2254
.0178
-.0761
-.3921
,1955
.1909
-.3561
-.0126
-.0615
-.2599
.3306
-.2244
1.0000
•- r L ft K
V221
.4948
-.2340
,4591
-.3118
.4613
.0017
-.1052
-.2722
-.1295
-.1367
-.0541
.1434
.1762
-.0213
-.1830
.0003
• ,3210
,2732
-.3556
.9281
: b u N L
V222
.3755
.0244
.3425
- ,3877
,2068
- ,0700
,3964
-.1270
-.3405
-.1014
.9415
-.3694
,1030
,9606
,4444
,1692
,2209
-.3757
-.4006
,2406
U K K -L L
V223
-,0683
,5948
• .1694
.0336
.7310
• .1909
-.3702
-.7218
-.1114
-.2928
• .0697
.1495
-.2699
-.1382
.0188
• ,8820
-.6378
,1026
• ,4254
• ,0020
fl 1 i U N
V224
.3598
.0504
.3561
-.2862
,1600
-.0080
.4670
.0093
,3050
• .2096
,9450
- ,4220
-.1755
.9633
,4011
,1094
• .1564
-.4105
•-.4009
-.2780
L U L 1
V225
,2357
-.2022
,1802
-.1077
.3607
-.1642
-.2146
-.1969
-.0602
-.0296
-.2350
,4409
,3117
• ,2430
-,0502
• ,0376
-,1789
,5234
,1380
,0202
1 i L i C.
V226
,2831
,0864
.2672
• .3234
.1441
-.0283
.3603
-.0798
-.3490
-.1858
.9709
-.4116
• ,1710
,9842
-.4672
.2045
.1787
•-,3975
-.3927
- .2674
" ' J
V227
-.0084
-.4687
-.0410
- .3070
-.3389
.5252
-,0175
.5772
,5677
,6374
.0722
,4902
,5452
,1245
.4751
.6042
.0835
-.1240
.7025
.0344
V228
,0577
-.2033
,0725
• .0599
-.0466
-.0554
-.2380
.1509
.3275
.6002
-.0870
.5996
.1519
-.0756
.1055
.2425
.0858
.5091
• .0511
.6335
V229
.5254
-.5650
.5691
-.0218
-.2930
-.0522
.4790
.4072
.0821
.4305
,0370
• ,2511
-,4041
.0871
-.1076
.4159
,2606
• .1467
- .0978
.0700
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
V221
V222
V223
V224
V225
V226
V227
V228
V229
V230
V231
V232
V233
V234
V235
V236
V237
V238
V239
V240
V241
.9281
,2486
-.0020
-.2780
.8202
-.2674
,0344
,6335
.0700 *
,1518
.3593
.1913
-.3219
-.3913
.0996
.4432
.2646
-.0514
-.3301
,1516
,1558
1.0000
,0081
• .0396
.0601
,8657
,0711
.0889
,6854
,1054
.0622
.5700
.3363
-.2361
-.3102
-.0464
.5306
.1531
• .1244
•-,4458
.1768
.2608
,0881
1.0000
-,0944
,9441
-.1712
.9726
.0502
-.0737
.1898
.1491
.6690
,5314
.6054
.5794
••.6900
-.1406
- ,6126
-.1932
- ,4281
.0230
,3317
• ,0396
-,0944
1,0000
-.2006
,0421
-.1734
• .3133
- ,2855
-.4645
-.2033
• . 1848
-.0098
-.2955
-.3449
.4335
.2896
.5474
••.6529
.0953
,8519
.4771
.0601
.9441
-.2006
1.0000
-.1914
.9847
.0282
•-,1103
.1407
.1517
.6988
.4448
.5517
.5200
-.7071
.0159
-.5956
•-.0061
-.3445
-.0106
.1456
,8657
-.1712
.0421
.1914
1.0000
,1841
,1786
,7532
-.0400
• .3781
.1662
.0320
-.6236
-.6553
.4008
.6915
.5080
• .1864
-.1841
.2040
.2063
,0711
.9726
-.1734
.9847
.1841
1.0000
.0564
• .0679
,1125
,1667
.6777
.4022
.5692
.5387
• .6988
-.0425
• ,5999
• ,0939
• ,3538
,0031
.2223
.0889
,0502
• .3133
,0282
,1786
.0564
1.0000
.2265
• .3445
• ,1108
,1853
.0220
.1434
.1968
• .0628
,1365
-,1267
• ,1571
• ,2791
-.3622
.2388
.6854
-.0737
• .2855
-.1103
.7532
-.0679
.2265
1.0000
.2279
,0878
,0913
-.1538
-.5115
-.5206
.1609
.3424
.3548
.1826
-.1047
-.1257
-.1270
.1054
.1898
-.4645
.1407
-.0400
.1125
-.3445
,2279
1,0000
.1430
.2733
.4737
.2522
.2458
-.4572
- .4623
-.4701
.3328
-.1957
-.6215
- .1774
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
1
ULE
V101
VI 02
V103
VI 04
V105
V106
V107
V100
V109
V110
Vlll
V112
V113
V114
V115
V116
VI 17
V118
V119
V120
81/02/2-5. 1
FUEL (CREATION DATE = 01/02/23.) VARIABLES STUDY
V230
.3374
,2606
.1676
-.0057
-.2161
-,1500
-,0920
,1798
-.1773
,0029
-.2316
99,0000
-,1166
-.4341
,4422
,2751
,2646
-.3781
,5657
,5399
•• r t a K
V231
,3065
,7144
.5978
.6705
.0328
-.2603
-.5407
,3676
-.3641
-.6060
• .3685
99,0000
-.3233
• ,4829
,0732
,2725
-.2373
.1662
.2415
-.1538
!i U N U
V232
.7095
,8479
.9075
,7818
,0350
-.2590
-.3144
,0181
-.3964
-.3716
• .2789
99.0000
.2059
- .1168
.3400
.3565
- ,0143
,0320
,4343
- ,1438
U K K L L
V233
.0633
.1946
.4969
.1412
,0980
.1347
• ,0284
.4237
-.1490
-.3623
.0675
99,0000
.1343
-.0308
.6156
,3856
.0250
-.6236
.8292
.2591
H I i u n
V234
.0118
.1226
.4682
.0631
,0514
.2263
.0832
.4051
-.0941
-.3028
,1609
99,0000
,2338
.0451
.6220
.3698
,0102
-.6553
,8271
,2697
L U L r
V235
• .0905
,3938
• .4291
.2451
.0493
.1397
.2978
• .4325
.0012
,2805
,0543
99,0000
,1415
.2601
-.4449
-.3152
,0808
,4008
-.6524
-.2188
FT f* T IT
I L I E
V236
.2193
,2547
-.0985
.2548
,0093
-.2100
-.2378
••,2030
•-.3748
-.2842
-.4652
99,0000
• ,2620
• ,0947
-.5029
•.0818
.0883
.6915
-.6162
- .5463
T G " "
V237
-.0929
-.2617
-.3659
-.1231
.1919
• .0524
.3173
••.4018
-.0206
.2444
• .0102
99,0000
-,0173
.1139
-.5031
-,5532
,0488
,5080
• ,7164
-.3155
U.61.42.
V238
-,0810
,0065
•-,2191
-.3843
-.6125
-.0489
.3294
• .3581
.3864
-.2540
,4554
99,0000
.0507
.2046
,3527
.1955
.3386
• .2232
.0467
.5697
V239
• .6807
-.6564
-.5633
-,5193
.2012
,0605
.2816
• ,2277
.3831
•-.1726
.5330
99.0000
,1259
.4610
,0015
-.3438
.2291
-,2071
• ,2766
,1502
-------
1
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
01/02/23, 18.31.42,
FILE TUEL
(CREATION DATE = 01/02/23.) VARIABLES STUDY
V121
V122
VI 23
V124
V125
V126
V127
Z V12G
*" V129
V130
V131
VI 32
V133
VI 34
V135
V136
V137
V138
V139
V140
V141
V230
-.0706
,3316
,2709
.3701
,3377
-.2130
•-,2225
-.2129
,1922
-.1942
-.0778
-.2097
-.1716
.0630
-.1632
99,0000
-.1477
99.0000
.1203
-.1508
.0640
- PEA R
V231
,3907
,0008
,2580
.1913
,2060
••,3100
-,2959
•-.3072
,1448
• ,2323
-.1712
•-,2973
• ,2553
,2166
-.2066
99.0000
-.0411
99.0000
• .2100
-.3417
•-.2034
SON C
V232
,7921
.2922
-.0059
,2067
,2593
-.2530
• ,2375
•-,2668
.1461
• ,1029
-.1049
-.2669
-.2242
-.2528
-.3134
99,0000
• .2677
99,0000
-.2527
-.2992
• .3309
0 R R E L
V233
,4203
.6533
.0000
• .0607
-.0056
.1092
.0097
.1050
,1225
,1305
.2136
.1090
.1399
,0333
,1174
99,0000
••.1011
99.0000
.2574
-.1050
,2194
A T I 0 N
V234
.4464
.6704
-.0653
••.1697
• .1031
.2004
,1790
.1959
.0939
,2227
,2895
,1991
,2256
-.0571
.1915
99.0000
•-,1774
99,0000
,3371
-.1490
,3007
C 0 L 1
V235
• ,4072
-.4364
-.2542
.0257
.0393
,0424
.0617
,0354
-.1669
,0540
•-,0444
,0314
.0196
• ,1954
-.1123
99.0000
-.0945
99.0000
-.0471
.0161
-.0638
i 1 L I t
V236
• .1912
• .5504
-.1270
.1449
.1723
-.3884
• .3506
-.3704
,1593
-.2859
•-.3249
,3636
•-.3501
,4335
-.6130
99.0000
-.1782
99.0000
-.3520
• .3963
.4693
Nib""
V237
• .3700
-.5536
-.0680
.2797
,2798
-.0215
.0883
-.0306
.0651
.5000
-.4356
-.0366
-.0888
-.0678
-.1960
99,0000
-.0622
99.0000
-.1185
-.0184
,1478
V238
,0528
,2969
,3594
• .1086
• ,1599
,4163
• ,2383
,4415
-.0023
,2951
,3729
• .0384
-.1848
,1629
,2312
99.0000
.2491
99.0000
.0709
- .1934
,0507
V239
-.3337
.0464
.2716
-.0676
-.0933
.4861
• ,1428
.4997
-.0405
,3775
,3744
.0705
-.0855
,0015
.3763
99,0000
,2488
99.0000
.0648
.1093
,0141
-------
BIVARIATE CORRELATION MATRIX OP EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
1
FILE
V201
V202
V203
V204
V205
V206
c* V207
U1
V208
V209
V210
V211
V212
V213
l>214
V215
V216
V217
U218
M219
V220
FUEL (CR
V230
.1921
,0729
.2400
-.4121
-.0151
,8417
-.0529
.0366
.4745
,1669
,0444
-.3236
-.2778
.1521
.2443
,1013
-.2210
-.2616
-.2412
,1518
CATION DAT
-PEAR
V231
,7293
-.3109
,7074
••,4305
.3111
.4739
,3464
-.0736
-.2506
-.1375
,5482
• .4140
• ,1274
,6070
-.5023
,2312
• .3469
-.5037
• .4203
.3593
E = 01/02/23.) VARIABLES STUDY
CON CORRELATION COEF
V232
.9145
•• . 4335
,0763
• ,5686
.4243
.2868
.5079
-.2157
• ,2826
-,1677
,2591
• .2101
•-.1908
,3546
-•,1842
,0819
• ,3946
-.2617
• .3743
.1913
V233
.3190
• .2528
.3289
-.3665
' .1084
.4324
,4186
.2572
.0328
-.0357
,4734
-,7237
-.1030
,5423
-.2674
,3975
• .0049
• .7047
,0429
• ,3219
M234
.2633
-.2010
,2794
-,3496
- ,2687
,3092
.4475
.3257
- .0160
.0263
.4492
-,6759
-.0382
.5186
-.2260
.4513
,0776
-.6607
.1435
-.3913
V235
-.5067
,3186
-.5436
.2946
.1514
-.5110
,4848
-.2763
.0888
.0764
-.5908
,6696
.2259
-.6594
.4357
• ,4404
,0058
,7000
.1792
.0996
81/0
F I C I E
V236
.0583
.2567
.0195
• .0076
.5466
,0074
• ,2273
-.4531
• .2920
• ,2773
,0317
,4653
,1343
-.0605
-.0518
•-,3529
• ,3816
.3858
-.3371
.4432
2/23. 18.31.42.
NT f*
T S • ••
V237
-.3434
.3951
• .3605
.4967
,3613
•-.4537
• ,4379
-.5104
•-.0802
.2214
-.4656
.6939
.4729
• ,5645
,1663
-.6598
-.0416
.5633
-.0392
,2646
V238
,0336
-.2454
,1918
.3835
• .4628
.0132
,4463
,2654
-.1746
-.0632
-.1540
•-.1334
.1802
• .1322
-.1884
,2705
,6647
• .0000
,1243
•-,0514
V239
-.5735
.1596
-.5201
.9572
-.3481
•-.5256
-,0558
.0251
• .2336
-.2415
-.1978
-.1510
.2161
-.3507
-.2859
-.2388
.6349
-.1163
.2535
-.3301
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
V221
V222
V223
V224
V225
V226
V227
V228
V229
V230
V231
V232
V233
V234
V235
V236
V237
V238
V239
V240
M241
.0622
.1491
-.2033
.1517
-.3781
.1667
-.1108
-.0878
.1430
1.0000
.4118
.2686
.5888
.5389
-.6522
-.3876
-.5317
.3062
-.4363
-.0951
-.0831
.5700
,6690
,1848
.6988
.1662
.6777
.1853
.0913
.2733
.4118
1.0000
.6955
.5327
.4416
-.7789
.1212
-.5627
-.0844
-.6118
-.0917
.3213
,3363
,5314
• ,0098
.4448
,0320
.4022
,0220
-.1530
.4737
.2686
.6955
1.0000
.5484
.5080
-.5734
-.1549
••.5656
• .1820
-.7506
-.0549
.4503
• .2361
,6054
- ,2955
,5517
• .6236
.5692
,1434
••,5115
,2522
,5888
,5327
,5484
1.0000
.9904
-.8606
-.6608
-,9312
.0105
-.4098
-.3583
.1818
• .3102
.5794
• .3449
.5200
• .6553
,5387
.1968
-.5206
,2458
,5389
.4416
.5080
,9904
1.0000
• .8143
•-.7087
. 9428
,0474
-.3757
.4121
,1381
.0464
- .6900
,4335
-.7071
.4008
-.6988
.0628
.1609
-.4572
-.6522
-.7789
-,5734
-.8606
-.8143
1.0000
.4455
.8539
-.2310
.4247
,4356
-,0003
,5306
• ,1406
.2896
.0159
.6915
-.0425
.1365
,3424
• .4623
-,3876
,1212
-.1549
-.6608
-.7087
.4455
1.0000
,6417
•-,1726
-,0305
.5272
.1260
.1531
-.6126
.5474
.5956
.5080
-.5999
-.1267
.3548
-.4701
-.5317
• ,5627
-.5656
-.9312
-.9428
.8539
,6417
1.0000
-.0864
.5483
.5894
-.1762
• .1244
-.1932
•-,6529
-.0061
-,1864
-.0939
-.1571
,1826
.3328
.3062
-.0844
• .1820
,0105
.0474
-.2310
-.1726
•-.0864
1.0000
.2939
-.5163
-.9332
-.4458
• ,4281
.0953
-.3445
-,1841
-.3538
•-.2791
-.1047
• ,1957
--,4363
• ,6118
-.7506
-.4098
-.3757
.4247
• .0305
.5483
.2939
1.0000
.0678
-.6144
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
1 81/02/23, 1C,31,42,
FILE FUEL (CREATION HATE = 01/02/23.) VARIABLES 5TUDY
-PEARSON CORRELATION C 0 E F V I C I E N T C
V101
V102
V103
V104
V105
M106
7 vio7
-1 V108
V109
viio
viii
U112
V113
V114
V115
Vlli
V117
V11B
V119
yi2o
M240
.3421
.0500
.0772
,0506
,2751
• .0046
-.1526
,0701
-.7453
-.2841
-.6402
99*0000
-.1210
-.0700
-.2416
-.3237
,0513
,1043
-,0552
-,5743
••• r c H i
M241
,3056
,2380
,3965
,5173
,4320
,0207
,3857
,3921
-,4457
,2751
-.5552
99,0000
-.0876
-.3471
•-.2771
• .0057
-.3717
,2481
,0819
-.5094
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
81/02/23* 10,31,42.
= 01/02/23.) VARIABLES STUDY
PEARSON CORRELATION C 0 E F F I C I E N T B -
1
FILE
V121
VI 22
V123
V124
V125
V126
V127
I V120
°° V129
V130
V131
V132
V133
V134
V135
VI 36
V137
V138
VI 39
V140
V141
FUEL (CREATION DA
V240
-.2131
-.2616
-.2198
.7105
.7126
-.5031
-.3325
-.5947
.6136
-.4620
-.5033
-.5503
-.4024
-.2098
-.7666
99,0000
-.3504
99,0000
-.0509
-.3667
-.4174
• i L H
V241
,0929
-.2455
• ,3793
.1629
.1491
••.5069
.2533
-.5324
.0085
-.3699
^.4302
,0160
,1901
-.1319
• .3067
99.0000
• .2854
99.0000
-.0916
,2046
.0410
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
1 81/02/23. 18.31.42.
FILE FUEL (CREATION DATC = 01/02/23.) VARIABLES STUDY
- P C A R S 0 N CORRCLATION C 0 E T F I C I E N T S - "
VD
V201
V202
V203
V204
V205
V206
V207
V208
V209
V210
V211
U212
V213
V214
V215
V216
V217
V218
V219
V220
V240
-.1119
.7032
-.1903
-.1618
.8615
-.2315
-.4260
-.8764
-.3358
-.4918
.0359
.1147
-.1929
-.0056
-.1549
-.0667
-.7215
.3605
-.6565
.1516
V241
.1922
.1156
.0421
--.6686
.4839
.1852
-.3318
-.2007
.2334
.1466
.2114
.1336
-.2284
.2505
.2530
• .1026
• .7641
.0100
• .1794
,1558
-------
BIVARIATE CORRELATION MATRIX OF EMISSION VARIABLES VERSUS EMISSION VARIABLES (Cont'd)
V221
V222
V223
V224
V225
V226
V227
V228
hg ^229
i
3 V230
M231
V232
V233
V234
V235
V236
V237
V23G
V239
V240
V241
,1768
,0230
,8519
-.0106
,2040
,0031
-.3622
-.1257
--.6215
-.0951
-.0917
-.0549
-,3583
-.4121
.4356
,5272
,5894
-,5163
-.0678
1.0000
.4170
.2608
,3317
,4771
,1456
.2063
,2223
,2388
• ,1270
-.1774
-.0831
,3213
.4503
.1818
.1381
• ,0003
,1260
• ,1762
• ,9332
-.6144
,4170
1,0000
(COEfTICIENT / CACEC / SIGNflCANCE) (99,0000 MEANS INCOMPUTABLE)
-------
UJ
LJ
-xt in so rv oo ox o-r-i c-4-xt
Ol— Z
Oxtt-l
H-OLJX:_ XLJH-a_c*c_
S«oeoLj3:ejZLi-i~»-a.«
LJ
LJ
LJ
i-tin
oo
t-*z
LJ
OO
t-x:
LJ
SO
in
CBO
w o
o
i_iCD
LJ
tj
-IILJO
ej
ei
=3 -Jl-O
^y >5 li*^ CO
coo LJO
C-4
wrc-j
•
1—
t.-)
LJ
O
Lu
0
I"-*-
•O
acz
LiJ
a.
t— o
e-)>~
e*3
LU
o
z
1— 1
en
>•
Z
,
>-
x^
es
LU
LJ
LU
O
C3CSL-
COWO
L.
O
OUJLJLJOCS: eo
Z_l_ J—ILJCi l-i
e-i
J—
LJ
O
LJH-
_JlX
z o
>- 1-1
F-71
-------
ZL-3.
o j>
™
eo
CO
mm
COC3
crco
o
C5
m
o-t-oc
3:
OS3O
"
r-o
>- SJ
» » » . o
-b-XIXICOjK
1-1 xOO
3> xi KJ co
to to -t>. c>- 53
o—ii— c
CO
r-J r-j
» 0-3;
o- m
r-oxiz:
H--CO
o
r—
m
m
J>
73
m
o
—
m
xixj r?
COO 3>
>-»>-* a:
o
m
1-^X1
f-j en en
m
en
m
oo
-n
71
en-o
en n
OH-I
COO
coo
-n
OO
r-i
m
w
m
i-* o -o co xi &• en j* t>4
i-» rj 73— 13>
o
r~ m
to
o z
r- o
-uxicnxio-b.enoo ^o z z
xj o
enxjto-oenxixiejsjxico
m
JkXIC-OXICO'—
-o -o en j> *o o en r- J
mo
ro o
OOOOOOOC: i-^*-1
m
-------
4*
•8*
o r-
***•, ti
c <:
g P
t? co
n
HH O
o o
en
n
o
2: o
O —.
O
•»<• —I
o
*• r-
n
n
o
o
! ; ; I Ji.1-1
...... o
OC-f-JOO !-••>-«
cocsiocnenr-jz:
a>
co w
o— ir-
-
- co
o
o m I-H
33 S3
cr
a> o
co —i en en ~n
O-f !-•
I O WO
o
en* m
rjroax
•-•• en 2:
xixico-oxi
n
2:
m
33
2:
o
»-*oto
CH-OSD
c:
n
CO m—(TTJW
co sjesmnno
o 9
-n
ocoe-o
m
en c-coco
OXIONQ
t-'CJWO--
oococn
CD
3:
JkCO 31—1
o
<:
n
73
HI j>. r-j
n
3:—t
oo
en'-'-wo
O.O
cno
CO
—i
m
-
en
H
CO
n
jv ^ j >— o ss co -J o~
o *.xiO4fcent-oevi 73 ~ia>
enr-owr-jo-ocoxi »"a>r~
xi two ON co co xi c>i co
—i
o 2:
r- o
-t» f o >-* o - o
C-JPOCDCO J>Jkt-JCOO
r-n
CO
2:
CD
H* I— O-tfcf-JCvll-'t-J
-- 2: 2:
o
n n
3>
O4CNO-OO-NOCOCOCO 2:
cjNOMMcoc>wenco r>
coenejcnenco-fe'r-0'-' n
2:
n
o
2: o
-H— 12:
mo
i-> xi o t- j o NO -N. e-4
oooooooo
-------
c: r~ x« 1
Z— ICT— I3S-
o a: 731-1
O3>
no
->3r~
—in
-b. w r-o >—
o
n
..... o
OtNlOOtJi-l
c--1-1 o o xi m -c
i-' -t». w c.n r-j a: 3>
co
I-H
CO
o
o
CO 3>3 3 co
o
73 70 73 73 TO
0 WOO
f- J o I—-
c- j» -n
v3 NO XI CO
-fa. h* NO to
CJ>
XI *•
coxi
1 CN NO
n
73 -n
n
__ _ . . jrrnco
g> » 3 p cr p o ro-13 c:
mr-
73
* O NQ CO xj ON en -b.
n
13 a>
O73M
NO i—• t-a xi en NO t-i o tn o
r~ n
co
P §
2: 3:
xixicoroxiNotJO4» xi o
ON n n
ED
i-'i-' o ON r-juit—ro xi
a: o
— i — i a:
.. no
t-'r-J 70
Noocoro COO-COCOON
n
n
ooooooooi-' <:
m
-------
EXAMPLE OF STEPWISE LINEAR REGRESSION ANALYSIS (Cont'd)
MULTIPLE R-SQUARE
ADJUSTED R SQUARE
STD, ERROR OF EOT,
ANALYSIS or VARIANCE
REGRESSION
RESIDUAL
,7634
.7042
1,4276
SUM Of SQUARES
52.5950^6
16,304974
MEAN SQUARE
26,29751
2.030122
VARIABLE
(Y -INTERCEPT
NITROGEN 1
AROMATIC 2
VARIABLES IN EQUAt/ON
STB, ERROR CTD REG
COEFFICIENT OF COEFF COEFF
17,000 /
-.006 ,001 -,756
-.008 .037 -.403
' STEP NO. 9
01 VARIABLE REMOVES
OMULTIPLE R
MULTIPLE R SQUARE
ADJUSTED R--SQUARE
STB, ERROR OF EST,
ANALYSIS OF VARIANCE!
REGRESSION
2 AROMATIC
.7753
.6011
.5568
1.7474
41,419069
27,430931
DF MEAN SQUARE
1 41,41907
9 3.0534J7
IN
VARIABLE
(Y • INTERCEPT
NITROGEN 1
COEFFICIENT
15.907 )
-.006
STB. ERROR
OF COEFF
,002
STD REG
COEFF
-, 775
TOLERANCE
1,00000
F RATIO
12,90
VARIABLES NOT IN EQUATION
TOLERANCE
.99701
,99701
(- ffj
REMOVE LEVEL
19.30 1
5.48 1
vfv'nr
OLEFIN
GUM
EP
IIC
CO
NOX
FUEL
TOTALB
TFPIIEN
PART
DAP
PARTIAL
U COKR. TOLERANCE
3 ,36000 ,91195
4 -.17547 ,94060
5 -,20459 ,89551
6 .34003 .30890
7 .14577 ,18306
8 .45217 .39696
9 .31895 ,97382
10 -.07209 .78291
11 -.29102 .81587
12 ,31867 .16077
14 -.25475 ,97624
F TO
ENTER
1,10
.22
.31
.92
.15
l.BO
.79
.04
.65
.79
.49
LEVEL
1
1
1
0
0
0
0
0
0
0
0
F RATIO
13.56
0* * * *
99,000> 99,000) OR TOLERANCE INSUFFICIENT FOR FURTHER STEPPING
F TO
REMOVE LEVEL
13.56 1
VARIABLE
AROMATIC
OLEFIN
GUM
EP
MC
CO
NOX
FUEL
TOTALB
TFPHEN
PART
BAP
\
?
3
4
5
6
7
0
9
10
11
12
14
r ni \ j. nf t- 1_ w
PARTIAL
CORR,
,63772
.35470
- .15609
-.09478
• ,37622
• ,52813
• ,23000
,32583
,20400
-.10140
,47431
- ,29020
ITUI Jklf L.UW
TOLERANCE
.99701
.92309
.94162
.90407
.95977
,99746
,87045
,99020
.93253
.04521
.90070
.99902
n i A UIT
F TO
ENTER
5.40
1,15
.20
,07
1.32
3.09
.48
.95
,35
.08
2,32
,74
LEVEL
1
1
1
t
0
0
0
0
0
0
()
0
-------
cocorvxarvorv-orvco
in CM -«i- •*•«»• -o •* •» «»• CM
u_
ON
e-4 o inin-o in -om in o
x
o
2:
CO
o
rv
1-1 rv r«i o c-4 •*!• f-t o t*j iv
cotsorv^r-vD^rvoo
coinr-icNcaCNCoc-Jroin
co r-i ~o in fv ro rv in-o n
CL
LiJ
X
LJ
(--
•x.
o r--) rv •* rv •««• rv vrv M
c-4 c-g SD ro o rv o r) -o r^
3C orjcNCorvr-jrvcoc'tM
•-o ; J ;
•j*
in o co -o rv rv iv s3 co o
2:
LU
toes
H-lLJ
K-LJ
tr>_J
-o ^-i eg --i r-4 c ^ c-4 •
oooooooooo
2:1-1
in
:c
- -rn rv rv c-4 rv rv 1-1 c~
Minrvoor*5oorvuT
co -o in -o --o c-. ^o --o in -o
LJ
2:0
0
iLJ
CO
H-
LJ
n
o
CS-J
O
1-43
O
u L-J
Q CO
U.I—
CTUJ
I— *-i
2SO
t— O -O C- C-4 C-4 C-4 C-4 C-4 C- -O
2: ocorvc-rv«rrvc>rv co
01-
l-i LJ
l_0
U_O
LJ
O O
ej 3:
LJ
2:
a
CO I— M -^l Crl C J C-4 «N C-4 CJ C-4 •*-<
LJiX OOOOOOOOOO
eoc-
LJ
CiC-4
LJ
C1
.
LJ X
I— iJ_ OOOOOOOOOO
t— i ! I .' i . i ' I
_j c^ co o^ cam co ••TO co
LJ
Cl
O
LJ -rt C--
CD
F-76
i—
01
-------
t->-O
r— ri
COO
O3>
to to
- O--O OVICNLI -b- ui ro
1=1 tO
nn
-
73
•en
3>tO
.. ui
n— <» .»...»»» »
to to co -CKO -o~o •>»-> en ro -o
w coo cocoenr-j co o co
o j> O--C- c~- e>. v*"' ro LJ ex
73 as ui coco co co VKO -b- r-j co
nn
to
l-l to
LL-3.
SE to on:* —i
o —1-ccovlCKenjs.utr-ji—.» ~o3:rj'-'rn
i-* - o ^_^ 3>-_-%-• i
r—to i-i rcon ^<
a>m to n—i —(73
w too n~3 en4>wr-jt-*n —)3:n
P gnl = 5 qgR2;gS »"|
3>w^:i—< ~3:no—zrr3o-—i i—i y> o *~i
»— n
to to
i-icona>-
3> ci-H r—
0:2: >-i
a>
w
-
oo
n
? r-j t,n>-* co cj-oj* o >
r-j
. co
2: e? en t-jo t-j cj vii-- r-j cs o-
co
co— i
c--n
cow
n
COC:
n 3>3:a>nr-jc>i4». en
r-tatoco
c? 3>r-T« 3>oorn
~
3;
o
•C
m
03:
l-l -H
nto
•H-I
o
73
n
re
a>
2:0 »..»»»...
t'J-<3>VICClCOCO-OCOCQCOVl
73 t-ivi<:
3: 3>
O73
73
3; — i»-i
cr 3:a>
r- ow
— i tor—
KH nn
-? to
3>O
n
to
—» ooooooooo o
O OOOOOOOOO O
o ooooooooo o
O
o
o
—i rrto3>- ».•»»»»* con
rr nnwc.-.vivicpcocovivic>-so
n
n
3>-l
1-12:
tore-
tn
ooooooooo o
ooooooooo o
ooooooooo o
vi -b.~o.ii.
t-> xOt»l^|
COOOOOUltJOio-oeo3>
eo ni-t r-jr-jcowuicor-Jr-ji-'GDto
TC 3:2: ro r-j r-j r-j r-j rj r-j r-j t-' n
to oo
—i
n
73
cno
wcz
-
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES
SCATTERORAH OF
45.28 47.65 50.02 52.39 54.76 57.13 59.50 41.87 64.24 66.61
.13 tt ' (*}( * * ^ (*) +'
I t ^*S ^^ . +
i \
.13 t t *
It +
.12 (
.12
.11
.11
.10
.10
.09
.09
t t
t 4
F-V t t
*) 4 **
-/ t *
4 t
t t
t +
* . »
t 4
t t
4 t
t fy (y 4
1 1 + *
t
t+ *
t 4
4 t
t t
.13
.13
.12
.12
.11
.11
.10
t 4 t .10
t t
t t
t t
t t
t ^^. ^^rf ^^.
i 03 C*) ^ CO
J. V«^ ^^ T^
t +
4 *
t <
t t
t + •
< t
J ^MV tx—
.09
.09
[
L
•°8 1 ' t t t 4 t t t t t t W t t t t <4? l08
44.10 T 46^47 ' 40^04 ' 51*21 ' 53^58 ' 55^95 ' 58^32 ' 60 i 6? ' 63^06 ' 6Si43 ' 67.80
SCATTERGRAH OF (DOWN) HC
(ACROSS) AROMATIC
4.17 7.11 10.05 12.99 15.93 10.87 21.81 24.75 27.69 30.63
fi i i i i i * , ..4 i __„_!„„ ..„ l_.. _„ t.. „„. „ i... _ . „ 1 __... _4, ._^« 1 .._„_ -4, .... „_ 4 . 40M. .*
.13 »t 0+Q
i t t
it t
.13 t t ^ + t
I t t
y .13
T
J
.13
I
.12 ? S t* (T)} .12
I t t V-/I
I t t
I t t
I t t
.12 t t t
I t t
I t t
I t t
.11 v^ * l^ J t ^
r™^ ^^ 41 t
I t 4
I t t
I t t
.11 t t
I t 4
I t t
I t t
I t t
.10 t t t
I t t
I t t
I t t
I t t
.10 i t t
I t t
I t t
It t
I 4 t
I V^I^l^l^l ^
I ^^^^T- ^^^ -I
I 4 t
.09 t t t
I t 4
I t t
I 4 4
.00 H * f«Y|»f) + 4
I
I
I
t .12
I
I
I
I
4 .11
I
I
I
t .11
J
I
t .10
I
J
I
4 .10
I
I
t .09
I
I
t .09
I
I
t .08
Hi i^^rn^^^rl. J . 4 4. .4... ..»4 ~— .. .-A.. ....... J ... ..... 1 ..... _4 „ • 4 . J . „_ 4 . , 4- . . 1 4_ _ . 4 __4
t " t"*^^^T •"" ~1 *•"• ™l -— -—f i i T | f i-— i~.. . ^ ..—.-j ... ^. |. ._ ,f ._ ^ . Y t
2.70 5.64 0.58 11.52 14.46 17.40 20.34 23.28 26.22 29.16 32.10
F-78
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERORAH
.13
.13
.12
.12
.11
.11
.10
.10
.09
.09
.00
SCATTERGRAH
.13
.13
.12
.12
'
.11
.10
.10
.09
.09
.00
OF (DOWN) HC
(ACROSS) OLEFIN
1.28 1.04 2.40 2.94 3.52 4.00 4.44 5.20 5.74 4.32
/+\ j^V t — -t f 1 — -t" • — t 1— — •< t- — 4 - - - -4- - —4 - 1 "4 -4 t t t f
t*X*J i *
W^J . *
i S
It t
t t t
It . t
I t 4
I t t
i '•. ©
I 4 t
I t t
I t 1
1 t t
I 4 t
I 4 t
i /7T\ * *
i vSi/ 4 t
i t t
I t 4
I 4 4
4 t
I t 4
I 4 4
I t t
I t t
I t 4
I t 4
I 4 4
I 4 4
t 4 4
I t t
I t t
I t 4
I i t
i ©Q'' '<, <•
1 4 t
I t t
44 4
I 4 t
1.00 1.54 2.12 2.40 3.24 3.80 4.34 4.92 5.48 4.04 4.4
OF (DOWN) HC
(ACROSS) NITROGEN
44.50 139.50 232.50 325.50 410.50 511.50 404.50 497.50 790.50 883.50
(J*J* 0 f*
14 f +
' + * **
'
It t
fi> " S
It t
i +\ t*'*
01 *** X
4 4
I t t
I t 4
i * 4
I 44
I t t
I t 4
4 t 4
I t t ^
I t t
I 4 4
t 4 4
I 4 t
It* t
It 4
04 s-* t
4* © \
I t 4
I 4 ^
4 t t
14 4
It 4
14 t ^
|pi ^T) ft
.13
.13
.12
.11
.11
.10
.10
; .09
,
t
.09
.08
>0
t .13
I
{
4 .13
I
I
t .12
I
4 .12
4 .11
I
I
I
4 .11
I
I
I
4 .10
j
i
.10
1
I
j
t .09
I
I
4 .09
I
I
I
j
T) .08
0 93.00 184.00 279.00 372.00 445.00 558.00 451.00 744.00 037.00 930.00
F-79
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERGRAH OF (DOWN) HC
245.95 249.05
I t
.13 4 4
I 4
.12 4 4
I
.12 4
.11 j Q
I
.11 4
I
I
I
.10 4
I
.10 4-
I
I
.09 ^ 4
I 4
I 4
.00 41
244.00 247.90 271.
SCATTERGRAH OF (DOWN) KC
(ACROSS) CUM
.91 2.32
.13 44 (O CO
I 4 V-' vy
I 4-
I 4
I 4
.13 4 4
I 4
I 4
I 4
.12 4 (^ 4
I
.12 t
I
I
I
.11
.10
.10
.09 >-x s-* ' 4
£) © t*
4
.09 t
t
.00 tfA) (T)
273.75 277.45 201.55 205.45 209.35 293.25 297.15 301.05
ti • _ • 1 ^^A I.,,. . ..1 1 1 _ „ ., .. | 1 .. . , 1 J L L
^-' t I
4 I
t 4
4 I
t I
© #»* j
I
\
\
4 t I
M j
+ 4 I
44, I
4 4 4-
t + I
4 + I
{
4 t I
t t
4 I
t I
4 I
t I
t J
80 275.70 279,40 203.50 287.40 291.30 295.20 299.10 303.00
3.73 5,14 4.55 7.94 9.37 10.78 12.19 13.59
4 I
1* \
t I
4 I
i
t + I
I
** ! -
1
\ «*'
+ t i
4 4 I
4 + I
* t I
i
f S !
4 I
+ 4
*» ! -
4 I
.13
.13
.12
.12
.11
.11
.10
.10
.09
.09
.08
.13
.13
.12
.12
.11
.11
.10
.10
.09
.09
.08
.20 1.41 3.02 4.43 5.04 7.25 8.44 10.07 11.49 12.09 14.30
F-80
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTER6RAH OF (DOWN) CO
(ACROSS) CETANEt
45.20 47, a 30.02 52.39 54.76 57.13 59.50 61.87 64.24 £
. I- ........ f --» - 1 - - - -4 ---- 4 ...... t - — t- — t --- +•• — t --- 4 -- -~4 ----- 1 -- 4*-\-4 ...... • t ...... -4 ---- » ........ 4 ........ 4 ------ 1 .
.66 44
I 4
{ <4
.64
.62
.60 1
.58 4
.56
.54 4
I
.52 I
.50
.48
44
41
,'' t
! « * *
.46 fl
0
0\
.t ........ 1 ..... t ....... + ..... -t ------- i ..... f— - H- ...... | ...... < ....... !-..-< ........ 1 ..... 1- ----- j\_/-4... ..... , ---- ^ ---- f~- .f. --- .
44.10 46.47 40.04 51.21 53.58 55.95 50.32 60.69 63.06 65.43 67.80
.66
.64
.62
.60
.58
.56
.54
.52
.50
.48
.46
SCATTER6KAH OF (DOWN) CO
(ACROSS) AROMATIC
4.17 7.11 10.05 12.99 15.93 18.87 21.81 24.75 27.69 30.63
.4 4 -\ 1 -4 f- f 4 4 4- t 4 -4 4 4 4 4- t 4—>•>*--+.
.66 M (*) 4t
1 4 ^-4 I
14 41
14 41
14 4,1
.64 I 4 44
14 41
14 41
I ^ t I
I + 41
i .62 i t 44
14 41
14 41
' A
.60 4 4 4 ft4J
I 4 4 V-r
I 4 4 >-vI
I 4 4 Vi^l
.58 4 41 -I
I
I
I
.56 4
I
.54 i
I
.52 t
I
I
.50 fr*j
I
©
•" ! 0' '©
I
.46 I ' n,
• 1 4 4-V./J ^ 4 4 1 ^ I -~-4 !•-• -1 4--4- - 1 4 < \ \ 4.
2.70 5.64 8.58 11.52 14.46 17.40 20.34 23.28 26.22 29.16 32.10
I
I
4
I
I
I
I
I
I
I
I
4
1
1
1
I
*'\i
.66
.64
.62
.60
.58
.56
.54
.52
.50
.48
.46
F-81
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERGRAN OF (DOWN) CO
(ACROSS) OLEFIN
1.28 1.84 2.40 2.96 3.52 4.08 4,64 5.20 5.76 6.32
.66 41 ft) ti
I t~/ 4
I 4 4
I 4 4
I 4 4
.64 4 4 4
4 4
4 4
4 4
I 4 4
.62 4 4 4
14 4
I 4 4
I 4 4
.60 ft*") 4 4 *
V' 4 4
I \ if 4
I ^^ 4 4
.58 4 44
I 4 4
4 4
4 4
4 4
.56 -1 4
I 4 4
I 4 4
I 44
I 4 4
.54 i 44
4 4
©4 4
4 4
^^^V • •
.52 1*1 4 4
*-* 4 4
4 4
4 4
S~\ * +
.50 f*jM 4
^^T" t
4 4
4 i
.40 4 4 (7) * 4 (7
L * * ^-!
V^ J ^ C * J 4 !
'^ • X**\ 4 .
•46 44 1*1 4
1.00 1.56 2.12 2.68 3.24 3.80 4.36 4.92 5.48 * 6.0 A ' 6^
SCATTERGRAM OF (DOWN) CO
(ACROSS) NITROGEN
46.50 139,50 232,50 325,30 418.50 511.50 604.50 697.50 790.50 883.50
.66 4+ ft) 4
•f \aS I
4 4 ^
4 4
.64 4 4
4 4
4 4
4 4
4 4
.62 4 4 4
I 4 4
I 4 4
I 4 4
04 4
4 4
4 4
I©
.58 44
4 4
4 4
4 4
4 4
.56 4
4 -1
4 4
4 4
4 4
.54 4 4
4 4
,~v 4 4
.52 4 * (t) * 1
4 • W 4
4 4
4 4
04 4
. * + '
1 f
4 * * 4
x*^. T 41
.40 (2) 4 4
f^ * ^
£}<* © **
V4 V-7 4^.
.46 44 V»
.4 4 \ 1 4 4 4 —\ \ 4 1 -4 4 ( -—4 4 4 -4 4- .. .- 4. . —V&
0 93.00 186.00 279.00 372.00 465.00 558.00 651.00 744.00 837.00 930. <
.66
.64
' .62
.60
.58
t .56
.54
.52
.50
| .48
.46
0
i .66
:
i
[
• .64
[
i
•
.62
:
• .60
:
:
.58
;
1
1- .56
;
;
.54
:
.52
;
;
.50
1
.48
1
) .46
0
F-82
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERORAH or
.66
265.95 269.85 273.75 277*65 281,55 285.45 289.35 293.25 297.15 301.05
+ — t — + ....... t — t — t ....... ^ — > — i — »—/•*••• - -t — * — > — * — * — + — + — + ...... •* ....... f !
« © t *
.66
I *
.44 t t
I
.62 f
I
.60 ft^
I
.58 4
I
.56 I
I
.54 t
.52 { Q
i
.50 4
I
0
4 4
+ t
4 4
4 4
t 4
4 4
4 4
.,.*'*
** ^
4 ft] 4
t* ^
•4c i © t**0
I +
I 4
0
4 1*1
.46
.4 • .4 ...... t ........ 4— -1 ..... I- ...... 4 ....... t----* ------ 4--4 ..... 4 ..... 4 ....... 4 — -4 ..... f^'-t ........ t— -4 ........ + -•--+.
264.00 267.90 271.80 275.70 279.60 283.50 287,40 291.30 295.20 299.10 303.00
.64
.62
.60
.58
.56
.54
.52
.50
.48
.46
SCATTERGRAM Of (DOUN) CO
(ACROSS) CUM
.91 2.32 3.73 5.14 6.55 7.96 9.37 10.78 12.19 13.59
.1 ....... t ....... 4 ....... *•*•-*--—» ....... 4— t- ..... 4- ...... 4 ....... 4 ..... -t ........ 4— -4 ...... -4 ....... t- ....... 4 ...... 4- - f-— 4 ...... 4.
.66 4t CtJ 44
I 4 *>-' 4 I
4 I
+ I
.64
.62
.60
.58
,56
I
.54 4
.52 4
I
.50 j©
I
.48 4
4
0
4 4
4 4
4 4
4 4
4 4
S +f
t 4
4 4
114
'0
4 I
4 4
I
I
I
I
4
I
I
4 I
4 4
4 I
44
.46 441*;
J V^jJx „. ._j _...,_„J.._ _J . „_._ J i. ,._„ _.! .._ _._4._, . _.J __.,.. 1 4- •- -•• 4— -4 J - -—4— —- -J —-• • -•!
'.20 1.61 3.02 4.43 5.84 7.25 8.66 10.07 11.48 12.89 14.30
F-83
.66
.64
.62
.60
.58
.56
.54
.52
.50
.48
.46
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERGRAH OF (DOWN) NOX
(ACROSS) CETANE*
45.28 47.65 50.02 52.39 54.74 57.13 59.50 61.07 64.24 66.61
t f -.,. .. _^.. __.- p_*. .... |. ... ~ ...f ~ ._«Y*-——"T •"•"••"- f - . ~« f •.-. •.— f - — --j— •- __..f .. _ .. ,.j - ..._.. f J^^K1 f— " • — ~-f -""- «~-|.— — f .. «-.- f. .- ... f ,. . . ~f
1.04 t4 I*,) 4
1.01
.98
.96
t ^ f
4 4
t 4
4 4
t 4
ft
t 4
4 4
+ +
4 . 4
t 4
t ,4
4 4
1.04
:
:
:
; 1.01
.98
:
t + 4 .96
t 4
t t
t 4
4 t
•93 t t t t .93
0 *+ **
I V^ +4
.90 { * t *
k '* *' ©
Dt 1 4 t
.87 V' t +
I 4 4
I t 4 —,
0t 1^1 ^*
4. ^N ^-^ •
1 1 * * 4 V*}
i ^ * X-N ^ *
• 02 4 1 C*J ^
I !• V»x j.
I t 4
I t 4
©* * "f
[
.90
.87
.
|
'
.84
.82
4 t .79
"It ' 4 !
I . ' t I
©,
•>:
1 4- J -I 4> 41
.76
44.10 46.47 48.84 51.21 53.58 55.95 58.32 60.69 63.06 65.43 67.00
SCATTERGRAM OF (DOWN) NOX
(ACROSS) ARONATIC
4.17 7.11 10.05 12.99 15.93 18.87 21.81 24.75 27.69 30.63
1.04 1 frj H 1.04
1.01
.98
.96
.93
.90
.87
4- ^^4
•f 4
t 4
•(• J
I
[
I
[
t +4 1.01
4 4
t 4
< 4 *
t \ T
1 + t t
\ 4 +
t + + t *
.98
.96
t t .93
\ 4 + ' G
1 t 4
^
,
•
1 .90
© >**'*
i ,^ ^4 ©I ,7
I 1 t
00 (T) 4* S
^ /-N + t
{ © ^ \
I
[
:
.84
'
It 41
.82 J © ^ 4 \ j .82
I t 4
I
It 41
I .^"i. 4-
.79 t Q 4
It f 4
It 4
I
.79
:
.76 41 (t) * <] .74
.4 4- -4V-«.|. .-.-.< <•— - <.-H -•- 4 4 t- -4 4 4 4- --4 4 4 4 4 +.
2.70 5.64 8.58 11.52 14.46 17,40 20.34 23.28 26.22 29.16 32.10
F-84
-------
SCATTERGRAMS OP SELECTED FUEL AND EMISSION VARIABLES (Conf.'r!)
SCATTERGRAN OF
1.28 1.84 2.40 2.96 3.52 4.08 4.64 5.20 5.76 t,22
1.04 \
]
1.01 i
1
]
j
.90 '
:
:
.96 •
:
;
.93 :
.
"
:
.90
:
.87 :
1
.
(
'
.04
:
.B2 •
:
.79
:
;
.76
:
SCATTERGRAM
1.04
1.01
.90
.96
.93
(
'
.90
:
]
.87 4
;
,
t
.84 '
j
.02 {
1
1
j
.79 1
1
1
1
tt. J
1 £!/ t 4
t <
4 4
4 . +
4 , 4
4 4
4 4
4 4
4 , 4
4 > 4
+ 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
i-v 4 4
T) 4 4
*-S 44
4 4
4
X-\ * 1
(*) 4 4
U © .•' '•.
4 4
•^v + +
* I S^ * * S~
^-J (t) 4 4 (»
r**' + + v-
\*) * *
© *** ^ +
4 4
4 4
© *
4 4
4 4
4 - s*\ +
4 Qj 4J
.00 1.56 2.12 2.68 3.24 3.80 4.36 4.92 5.48 6.04 6.4
)F (DOWN) NOX
(ACROSS) NITROGEN
46.50 139.50 232.50 325.50 418.50 511.50 604.50 697.50 790.50 883.50
4 4 » 4 4 ^ 1
T r
4 4
4 4
4 . 4
4 , 4
4 4
4 4
4 4
4 4
4 y 4
4 4
4, 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
T) ' 4 4 *
-' 44
4 4
0
© •' '• ,
V_/ + + i
4 4 :
-^ 44 :
*0 4 4 ]
«4 4 4
* A"N 4 •
4 f t J 4
4 ^"^ I- '
. + +
<^k 4 4
*) » 4 ;
•^ 4 41
4 4 :
4 4
D x * * <
-^ 4 t ;
+ 4
+ 4 i
. ^ /C\ + ]
1.04
1.01
.98
.96
.93
.90
.87
,
.84
.82
.79
.76
0
; 1.04
1.01
.98
.96
.93
.90
.87
.84
.82
.79
.76
.
0 93.00 186.00 279.00 372.00 465.00 558.00 651.00 744.00 837.00 930.00
F-85
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTCRGRAHOr (<& NOX
245.95 247.05 273.75 277.65 281.55 205.45 289.35 293.25 297.15 301.05
,t t- t f t 4 -+— .f..—.f---•»•"»-1 H-~t-—I— -t H—4 4 * ' 4 Jj
1.04 « t£j +
J i * I
* ' 41
i '.
,,,, . .
I
.96
.93
I
.90 4
I
.87 1
I
.04
4 4
4 4
4 4
,*'©
.82
i©
1©
0 /'©
i 4
i
i
i
i
4
i
I
4 I
0 * 44
H "H " ' ' """* " * *
299.10 303.00
SCATTCRGRAH OF (DOWN) NOX
(ACROSS) CUM
1.04
1.01
.90
.96
.93
.90
.87
.84
.82
.79
.91 2.32
.t- -t 4 ->-V-l
1*4 ©
I 4
I t
f 4
i *,
I 4
I 4
I
I
I
I
I
I
|
•1
i ©
I
©-
! ©
i
i ^•v^'^rt i
I liilVl^"^
\ ^x^^
I
I
I
1 ©
I +
I 4
t*J 4
i*^^ 4
I 1
I ^
i/-\
3.73 5.14 4.55 7.96 9.37 10.78 12.19 13.59
\ j H- -4 — » 4 (• — ^ 4- • - 1 ^ — 4 4 4- 4 4- -4 .
4 I
4 I
1 I
4 I
•f f
,* I
t I
i
4 , 4 I
4 41
4 '4 I
4 4 1
4 t 4
4 4 I
4 4 I
4 4 I
4 4 I
44 4
4 4 I
4 4 I
4 4 I
4 4
4 1 I
4 4 I
4 4 I
4 4 I
4 4 4
4 4 I
4 4 I
4 4 I
4 4 I
i f C ^9
4- •! ^Hr
4 4 I
4 4 I
4 4 4
4 I
4 I
4 I
4 I
4 4
4 I
4 I
+ I
4 I
.74
1.04
1.01
.98
.94
.93
.90
.87
.84
.82
.79
.74
\^y .. i „ ...A. „ _ i. .._)..... .....i... .1 . ... >j L , . j-. ... j.... i I ,±~ - . -.i.- .. . j.... . ..i . ~4.. . -^ -.- -••) • -• —f,
'.20 1.41 3.02 4.43 5.84 7.25 8.44 10.07 11.40 12.0? 14.30
F-86
1.04
1.01
.98
.94
.93
.90
.87
.84
.82
.79
.74
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTEKCRAH OF (DOWN) FUEL
(ACROSS) CETANE*
45.28 47,65 50.02 52.39 54.76 S7.13 59.50 41.07 64.24 66.61
9.84 i
I
1
9.81 1
!
j
9.77 <
]
]
1
9.74 4
I
I
I
I
9.70 4
J
I
I
I
9.67 4
]
1
J
]
9.64 i
1
I
1
9.60 ^
I
I
r
i
9.57 <
1
1
9.53 1
I
JL
S
9.50 4
44
SCATTCRGIMH <
9.84
9.01
9.77
. 9.74
9.70
9.67
9.64
9.60
9.57 \
.
'
9.53
9.50
t - r — •••• t t 1 -i t • t 1 1 1 -t - 1 t t - 1 t - -yv — t- f f
*'* "
4 4
4 4
**
4 4
4*
t X4V :
"f * "m t i ',
•f t1 ^^^
4 4 :
4 4
4 4 :
4 4 :
4 4 :
4 4 :
4 4
4 4 :
4 4
4 4
4 4
4
4 4
4 4
4 4 :
4 4 ]
4 4 f*
4 Qj
4 ft*J
4 4
\ x4^. ]
4 (*) 1
4 4 ]
4 4 \
©4 4 ]
** © 1
4 ^-S 4 I
4 4
4 4 1
?) 4 * + 4 ]
f __ ^ . _ j. . J . . .1 ,!._ _ . I . . ., . 1 .. ... 1 1 J . . r. .1 ,- - |, 1 J 1 \^(f| till]
.10 46.47 40.04 51.21 53.58 55.95 58.32 60.69 63.06 65.43 67.6
F (DOWN) FUEL
(ACROSS) AROMATIC
4.17 7,11 10.05 12.99 15.93 18.87 21.01 24.75 27.69 30.63
4 ft) 4
: 4 v-7 4
4 4
: 4 4
: 4 4
4 4
: 4 4
: i 4
4 4
4 4
4 4
04}
4 ' 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4
4 4
4 4
4 4
4 4
©4 4
4 4
44 ^^
4 4 ft)
4 4 V-'
4 4
04 4
4 4
4 4
4 4
4 4
4 4 x-S
-v 4 4 ft
O 4 4 V-
^ ^ <
4 t
4 4
4 4 x-^
i /Tyjv \D
i ^N-O 4
1. 1,..-.^^.!.. ..A ..J t .1 t. 1 _J ..I 1 i 1 l_ i I... , l l
9.84
9.81
9.77
9.74
9.70
9,67
. 9.64
*
9.60
9.57
9.53
9.50
0
9.84
j
9.81
9.77
9.74
9.70
9.67
9.64
9.60
;
9.57
.
)
'
9.53
9.50
2.70 5.64 8.53 11.52 14.46 17.40 20.34 23.28 26.22 27.16 32.10
F-87
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERGRAH OF (DOWN) FUEL
(ACROSS) OLEFIN
1.28 1.84 2.40 2.76 3.52
» T ' ~ " " r ~ r * " " " F " " ""T~ ' *"" f "" "" r~" "-"-f ~ "- "l "" ~ *T~""''
7.84 44
i \
I 4
""! *'«,
7.77 4 4
0 \
9.74
9.70
4.08 4.64 5.20 5.76 6.32
9.67
9.64
•1 i
9.60
i ©
9,57 4
9,53 4 4
I 4
1 /*«!.
9.50
©
I
I
I
<
4 I
4 I
4t
9.04
I A V^' jf j j. j j 4. j j .J _.4_._.!,-. J— ._J J.,. a.,. 4 _. -4 ... 4 ....... 4... .. —J. •
t I . . .j, ._ ^*^* —i — -•• —f — •- «"t •— - —| - ——T - -i - -^ -—— 'i —| - - - f ••—• i -• i f «••- t'"i i T T»
1.00 1.56 2.12 2.60 3.24 3.80 4.36 4.92 5.48 6.04 6.60
9.74
9.70
9.67
9.64
9.60
9.57
9.53
9.50
SCATTERGRAH Of (DOWN) FUEL
(ACROSS) NITROGEN
46.50 139.50 232.50 325.50 410.50 511.50 604.50 677.50 790.50 003.50
V4
I I
4* i
4 I
x1 !
4 1
9.C4
9.01
9.77
9.74
9.70
9.67
9.64
9.60
9.57 4
9.53
9.50 \*S 1*1 41
.4- I 4 4 4 ^ 4 —-4 1 4 iV-'-J --4 --4 1 4---4 4 4 f 4.
0 93.00 106.00 279.00 372.00 465.00 550.00 651.00 744.00 837.00 930.00
4 4
1 v (~\ *
* 4 ^ 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
**
4 4
4 4
4 4
4 4
4 4
4 4
4 4 '
4 4
< t x-\
4 4 1*1
4 4 v-/
4 4
4 4
4 4
4 4
4 4
4 4
4 'V- J 1 1 J
1 1 ^"^ T T 1
465.(
F-88
9.64
9.01
9.77
9.74
9.70
9.67
9.64
9.60
9.57
9.53
9.50
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERGRAN OF (DOWN) FUEL
(ACROSS) EP
265.95 267.05 273.75 277.65 281.55 285.45 209.35 293.25 297.15 301.05
7.04 *
1
1
7.01
]
7.77 i
]
I
1
1
9.74 -1
]
1
I
9.70 4
]
1
1
7.67 1
I
1
1
9.64 4
I
I
9.60 4
1
I
I
I
9.57 1
>
i
9.53 4
I
I
I
9.50 4
264
SCATTERGRAM
9.04
9.01
9.77
9.74
9.70
9.67
9.64
9.60
9.57
7.53
i
t r t- — yrv " "t T" - •- r r r- r 1 ••— — t — - r 1 1 t t 1 r 1 t .
* CO 44
4 ^^ 4
4 4
4 *
4 4
4 4
4 4
4 . 4
1
© +4 4 * ' '
4 t 1
4 4 i
4 4 * !
4 4 J
4 4 J
4 4
+ < 4
4 4
* t 1
44 f^
< 4 (*]
,,-' © '•,, 1
+ 4 s~\ I
4 41*) I
1 V-' I
+ 4 I
+ 44
-N . + 41
D .' © '«, 1
* 44
4 41
fa CD ©
1 ^^ ^^^ | t J +J
| . | , , | | .... J i i J ^^>n. i ,, L 1 ' J 1 I 1 4 4 4 4 I
.00 267.70 271.00 275.70 279.60 203.50 207.40 271.30 275.20 277.10 303.6
3F (DOWN) FUEL
(ACROSS) OUH
.71 2.32 3.73 5.14 6.55 7.76 7.37 10.78 12.1? 13.5?
tl*^. 1 ± ± L . L— .4 . .!*... ~ „ 1 „, _ L.» «A ,.^..±*. .,_... 1 .. _ __. J. ...,»,. L _.. « « !__„. ,.i_ _J.« -J. L
— K... j. .... _^.^.. .... -^ „.. „- p .„... j.-»^_ ^ ..... ^« j. ._. j. ., _ »^._ «. f. — y T j. r ^— - T T r
HI*) 4
4 ^^ 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4 (*
4 4 V-
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4
: 4 4
: 4* *4
: 4' \
x-x 4 4
CO < +
^ /^v * +
CO * +
**S 4 4
4 4
©
4 4
4 4
/"N. * +
© 0 **
I ^S 4 4
4 4
< 4
7.04
7.81
7.77
7.74
7.70
9.67
. 9.64
9.60
9.57
7.53
9 SO
5
7.04
7.81
7.77
1
'
7.74
7.70
7.67
7.64
7.60
9.57
!• 9.53
9.50
V*- -1 4 4- • - 4 • --• 4 4 4 — ^ 4 4 4 4 4 • •- • 4 - • • 4 4 4 • - - -4 4 4.
.20 1.61 3.02 4.43 5.84 7.25 0.66 10.07 11.40 12.0? 14.30
F-89
9.50
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERGRAM Of (DOWN) PART.
(ACROSS) CETANC*
45.20 47.65 50,02 52.3? 54.76 57,13 59.50 61.07 64.24 44.41
287.00
;
272.50
250.00
243.50
229.00
214.50 ;
200.00
105.50
171.00
156.50
142.00
4
SCATTERGRAM (
207.00
272.50
258.00
243.50
229.00
214.50
200.00
105.50
171.00
154,50
(
142.00
t © ± f
4 >»-' t
t +
4 t
f + t
| 1
t t
t +
t t
t t
4 .*
t v *
t t
*t /
* t f +
t t
t t
t *
t t
t t
©t t
X
£ t * \
t* *«
t t
t 4
4 t
t t
t 4
4 4
4 4 ±
* + /"\
4 4 ^y
T *
t 4
4 S~\ +
© *»
4 /TJv 4
4 If*) 4 f-
4 ^^Z/ /-v 4 (*
© © +4 ^
^ >-/ 4
4 (O *
4.10 46.47 48.84 51.21 53.58 55.95 58.32 60.69 63.06 65.43 67.1
IF (DOWN) PART.
(ACROSS) AROMATIC
4.17 7,11 10.05 12,?? 15.93 10.07 21,01 24.75 27.69 30.63
* " (St *'
1 4 4
4 t
4 t
4 t
4 4
4 4
4 t
4 t
4 t
4 4
4 4 ]
4 4
4 t
4 4
4 t
4 4
4 4
h .44 <
[ 4 4
: 4 4
: 44 f
I 44 f*
4 yV
: 4 4 ft)
44 V^
: 4 4
4 4
4 4
I 4,
04 4
4 4
4 4
©4 4
4 4
4 t
^^^•nj f
1 vj/inS * i
ID t * * +
[ 4 s*\ +
H (7) 4
207.00
272.50
250.00
243.50
229.00
214.50
200.00
105.50
171.00
.
) 156.50
:
[
1
142.00
10
2B7.00
272.50
250.00
243.50
[
229.00
k
1
' 214.50
200.00
1
105.50
t
[
:
: 171.00
:
:
:
156.50
:
142.00
2.70 5.64 0.58 11.52 14.46 17.40 20.34 23.20
F-90
H ------- 1 ........ ^ ----- 1 ----- + .
26.22 29.16 32.10
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTER6RAM Of (DOUN) PART.
(ACROSS) OLCFIN
1.28 1.84 2.40 2.94 3.52 4.08 4.64 5.20 5.76 6.32
287.00
272.50
258.00
243.50
229.00
214.50
200.00
1E5.50
171.00
156.50
142.00
SCATTERGRAM
287.00
272.50
258.00
243.50
229.00
214.50
200.00
1E5.50
171.00
154.50
• T • y— K f T T t t - •- -t ,--.. t t t t 1 - .... t t. . t . . ..t
I 4^^
I 4
I 4
I 4
4 4
I 4 4.
14 + *
I 4 t
14 4
+ 4 *'
I 4 +
I 4 t
I 4 4
I 4 4
t * j +
I 4 4
I 4 4
I 4 4
1 4 4
\ * , *
I 4 4
I 4 4
CD * * ' +
1 (*)<*+
I ^ 4 4
4 4
4- 4.
4 4
4 4
4 4
4 4
I 4 4
' 4 4
© ,,•'
14 4
I © ,*'
I ^v 4 * t
iO ^"^
r 4 + o
I 4 V-/
I 4 x-x
M (*j
,4 -- 1- h **T • -4 - - 1 • 1 - — 4 - - -4 - I— 4- -4- 4- 4— 4- i 4 4
1-00 1.54 2.12 2.48 3.24 3.80 4.34 4.92 5.48 4
Or (BOWN) PART.
(ACROSS) NITROGEN
44.50 139.50 232.50 325.50 418.50 511.50 604.50 697.50 790.50
I4IILIIIIII1LIJI ^K J 1
t r T II f" ' r r T " f T " t * • - •• f •- - • — t " — f — T " --•— TJ^^L T "" ' T" " ~
M ft)
I 4 VX
I 4
4
4
4
4 4
4 4
4 ' 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4 4
I 4 4
I 4 4
y ' j +4
TA *
\ ^ J i i
1^"^ 4 4
I 44
I 4 4
4 4 4
I 4 4
I 4 4
I 4 4
I 4 4
4 4 4
I 4 (T) 4
I 4 Vy t
I 4 4
0+ $
4 4
•} A
14 ,-v t
>->. 4 r«) t
W + ^^
J— \4
44
4 I
4 I
4 I
f i
' !
i
i
i
i
i
i
4
J
I
j
4
I
J
I
j
4
I
I
j
I
I
J
I
4
I
I
I
r
I
4
I
j
* 4 Q
+ * j
.04 6.40
883.50
44
4 I
4 I
4 I
+ I
4 4
I
I
I
I
I
I
I
I
4
I
I
I
I
4
I
I
I
I
4
I
J
I
I
4
I
I
I
I
4
I
I
I
I
4
I
I
t ^ *
207.00
272.50
258.00
243.50
229,00
214.50
200.00
IBS. 50
171,00
154.50
142.00
287.00
272.50
258.00
243.50
229,00
214.50
200.00
185.50
171.00
156.50
142.00 (I*) 4! 142.00
* -\ 4-- -\ 4- I --I - I -I - I -4 I I - I -I I - I I- -4- I - -t,
0 93.00 184.00 279.00 372,00 465,00 558.00 451.00 744,00 837.00 930.00
F-91
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERGRAM OF (DOUN) PART,
(ACROSS) EP
265.75 219.05 273.75 277.45 281.55 285.45 207.35 293.25 297.15 301.05
287.00 4t
.
272.50
258.00
243.50
I
I
227.00 4
I
^— ^
I*
214,50 V
I
I
200,00 4
I
I
I
105.50 4
|(
171.00 4
I
I
156.50 4
I
I
I ;
142.00 4 1 {
264.0
SCATTERGRAM OF
1 ,
287.00 O
I
I
I
I
272.50 4
I
I
I
I
250.00 4
I
I
I
I
243.50 4
I
I
I
I
229.00 4
I
I
I
I
214.50 4
I
I
I
I
200.00 4
I
I
I
r
185.50 4
I
I
I
I
171.00 >>
IT J
I"*
j
1 ex CA j^
I 1
j \
i
142.00 44
• - 1 - 1 t t c -t 1 T T- yv ' ' T r r T r- r r r .
\J 4- I
4 4 I
4 41
4 41
4 4 4
4* 1
4 41
4 4 I
* . * *
4 41
4 41
4 4 I
* 4 4 4
4 4 I
44 I
44 1
44 I
4 4 4
44 I
4 4 I
4 4 I
fit j 4 I
4 * ^^ * I
44 I
44 4
4 4 I
41 t I
4 4 I
4 41
4 4 4
7) ,'. '• 1
J \
©,<'
.'X © © ''. <3
,•' 0 © '>,!
t~v 41
3| 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4"
) 267.70 271.80 275.70 277,60 203.50 207.40 271.30 275.20 299.10 303.6
(DOUN) PART.
(ACROSS) OUH
.91 2.32 3.73 5.14 6.55 7.96 9.37 10.78 12.19 13.57
V*) *
4 V-' 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
04 4
4 4
©4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4 f
4 4 {*
4 4 >•
4 4
1 4 * 4
4 4
J!) X-v4 * * 4
^cr/-' + 4
$ M^r 4
~/4 4
4x-x 4-
287.00
272.50
258.00
243.50
227.00
214.50
200.00
185.50
171.00
1 156.50
142.00
0
287.00
272.50
258.00
243.50
227.00
214.50
200.00
185.50
L
171.00
156,50
142.00
.20 1.61 3.02 4.43
5.84 7.25 8.66 10.07 11,48 12.87 14.30
F-92
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERGRAM OF (DOWN) SOLUBLES
(ACROSS) CETANEt
45.28 47.65 50.02 52.3? 54.76 57.13 59.50 61.07 64.24 66.61
10.80
17.97
17.14
16.31
15.48
14.65
13.02
12.99
12.16
11.32
10.50
4
SCAHERSRAM
18.80
17.97
17.14
16.31
15.40
14.65
13.82
12.99
12.16
11.33
4)
I 4
I
4
j
I
4
I
I
I
I
I
I
4
I
I
I
4
I
I
I
I
I
I
I
I
I
4
I
I
I
I
•f
I
I
I
I I
M
J.. -
14.10
OF
41
I 4
I
I
I
4
I
I
I
I
1
I
I
I
4
I
I
0
i
i
i
j
t
I
i
j
I
4
I
I
4
4
I
i
i
I 4
•*• f r f " "" "f r * r 1 T "-:x™m' f T r " 7 —f- T • • r r • r •?•
^•^ 4 I
4 t I
* 4 (7) t J
t* 1
4 4 I
4 41
I
4 4 I
4 4 I
4 ^ \ ^y
•f "f ^^r
4 4 I
4 4 I
\© ,«* © I
4 4 I
•f -f- I
A. { I
4 4 I
•fr 4 I
4 4 I
4 4 I
A A |
© *** \ ^ i
4 4 (^ I
4 4 4
01
I
4 ' 4 I
4 /r-v 4 4
4 ft) 4 I
4 V-/ 4 I
4 4 I
4 4 I
4 4 4
4 4 I
4 4 I
4 4 I
f t J °H
,, j , , . j i , i i i , j , . i ..i,.,, i , i , ,. t i , p^^* i i ii... i i 4
46.47 48.84 51,21 53.58 55.95 58.32 60.6? 63.06 65.43 67.80
(DOWN) SOLUBLES
(ACROSS) AROMATIC
4,17 7.11 10.05 12.99 15.93 18.07 21.01 24,75 27,69 30,63
. . L,^^, 1. 1 1, _ 1_ .. ,._.± .. _„ . _. ..1 „ t, „„. w^ I J. , A.i-t i L 1 ^
tf v i r r F T r T r T r ° " T ^ •.•-«— ^»~ ""f ......... f»..._ f»- — _ |.- -.-. - ^ . ..._.^(
^ 41
©' 4 I
4 I
4 4
^ 4 I
4 4-1
4 4 I
1 4 i
4 + 4 4
4 4 I
©4 41
4 4 I
4 4 4
4 4 I
4 4 I
©44 I
4 4 I
4 4 4
4 4 I
44, I
44 ' I
44 I
4 4
4 4 I
4 4 I
4 4 1
4 4 I
4 4 (In
©4 4 V_?
4 4 I
©}
© <' ** i
^4 4 I
4 41
A 4 4 x-v 4
.4 4 (t) I
4 4 ^^ I
4 4 I
i
. * 41
4 4 I
/~\ 4 I
10.80
17.97
17.14
16.31
15.48
14.65
13.82
12.99
12.16
11.33
10.50
18.00
17.97
17.14
16.31
15.48
14,65
13.82
12.99
12.16
11.33
2.70 5.64 8.58 11.52 14.46 17.40 20.34 ' 23.2£i ' 26.22 ' 29!l6^ ' 32^0
F-93
10.50
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERGRAH OF (DOWN) SOLUBLES
(ACROSS) OLEFIN
1.28 1,04 2.40 2.94 3,32 4,08 4.64 5,20 5.76 6.32
18.
17.
17-
16.
15.
14.
13.
12.
12.
11.
10.
80
97
14
31
48
65
82
99
16
33
SO
SCATTERGRAN
. t-
44
I
1
I
4
I
I
I
I
I
I
ir*
fi*
I
I
I
4
I
I
I
I
4
I
I
I
I
6?
I
]
I
I
I
I
44
i.c
OF
— r r-~.
4
4
4
4
v
)
f
©
\
)
0
i
©
+
4
4
4
^ ,0
0 1.56
(DOWN)
(ACROSS)
It} 44 18.80
V^ A- J
4 I
4 C$ij *
« ^-f 17.97
4 I
4 4 I
4 44 17.14
4 v 41
4 41
4 41
4 4 I
4 4 4 16.31
4 4 I
4 t I
©4 4 I
44 4 15.48
4 4 I
4 4 I
4 4 I
4 4 I
4 4 14.65
44 I
4 4 I
1 4 I
44' 4 13.82
44 I
,«*
4 (t) 4 4 12.99
Ok 4 ^-S t I
O 4 41
^4 41
4 4 I
*t 4 12.16
4 + 4 I
4 4 11.33
** {
4 I
4 I
44 10.50
2.12 2.68 3.24 3.80 4,36 4.92 5.48 6.04 6.60
SOLUBLES
NITROGEN
46.50 139.50 232.50 325.50 418.50 511.50 604.50 697.50 790.50 883.50
1 I 1 1 I 1 _ _ i L 1 J.. 1. .. t . I .__ - 1 _ _ ...» 1_. . _._l L L 1 1
18.
17.
17.
16.
15.
14.
13.
12.
12.
11.
10.
80
97
14
31
48
65
82
99
16
33
50
4T
^**
I
J—
|«
I
I
I
I
4
I
I
CE
i
T
(£
I
I
1
I
>-
I
Iy
*\
4
) + 4
' 4
4
)
/
)
/
)
f
•v
V J
I
i
4
I
I
I
•)
I
I
I
I
44
^
4
4
4
4
4
4
44 18.80
* I
4
4
4
4
4 4
4 4
4 4
4 4
4 4
4 4
1 4 4 *
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4
4 4
4 4
4 4
4 4
4 4
4 (t) 4
4 ^^ 4
4 ^
4 /-v 4
4 Ct) 4
4 V^ +
17.97
17.14
16.31
15.48
14.65
13.82
12.99
:
4 4 I
4 x-v4 4 12.16
4 (O 4 I
4 V^ 4 J
4 4 I
4 J
4 4 11.33
4 I
4 I
4 I
+S~{
fS4) 10.50
•I 4 4- -4 4 4 4 I --4 ---4 4 4 4- 4 4 4 4 4 4 ' ..
0 93.00 186.00 279.00 372.00 465.00 558.00 651.00 744.00 837.00 930.00
F-94
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
(DOWN) SOLUBLES
(ACROSS) EP
265.75 217.85 273.75 277.65 201.55 285.45 287.35 273.25 277.15 301.05
SCATTERGRAM OF (DOWN) SOLUBLES
(ACROSS) EP
. r -r^v r r r r — — T T r r - r-
18.80 44 (O
17.77
17.14
16.31
15.48
14.65
13.82
'
12.77
12.16
11.33
*'*, ©
A
4
4
4
4
4
4
4
4
4
4-
4
© (l)t
+
•f
4
4
4
J.
.f.
4
k>k 4
*J +
•f f $ J
< ©
© .•' ^
4
©
4
4
4
4
I 4
I t-
10.50 41
1 I 141 1(1411
44
4 I
t 4
+ I
4 I
t I
4 I
t 4
4 I
4 I
•f f JJJ
4} ^^^
4 I
4 I
4 I
4 4
4 I
4 I
4 I
4 . I
4
4 I
4 I
4 I
4 I
4 4
4 I
4 I
4 I
4 I
4 4
+ I
4 I
4 I
4 I
4 4
4 I
4 I
4 I
4 I
4 4
4 I
4 I
+ I
04 I
41
I I t 4 A.
18.80
17.77
17.14
16.31
15.48
14.65
13.82
12.7?
12.16
11.33
10.50
264.00 267.70 271.80 275.70 277.60 283.50 287.40 271.30 275.20 277.10 303.00
SCATTERGRAM OF (DOUN) SOLUBLES
(ACROSS) GUM
.71 2.32 3.73 9,14 6.55
* -ml 1 t i 1 i ™.« A • t -I 1
18.00 -M (tj
4
X^N.
C^ )
17.77 *^/ 4
4
4
4
17.14 4
4
•f
©
14.31 4 VX 4
I 4
I 4
Jf~}f\ t
V^O- J 'f
15.48 >>CX t
I 4
I 4
I 4
I 4
14.65 4 4
I 4
I +
I 4
I 4
13.82 4 s~\ +
I ft) 4
Ix-v ^ 4
1*1 4
Iv-/ X->L 4
12.77 4 (*) 4
i >-' ^
I 4
I 4
•f
12.16 y^v 4
f $ )"
T^
4
•(
11.33 4
4
4
4
*-v
10.50 41 (t)
7,76 7,37 10,78 12,17 13,57
t. » t. L L» 1 1 L t L 1
44
4* i
4 I
4 I
}
4 J
4 I
4 I
+ 4
4 I
4 I
4 I
4 I
4 4
+ I
4 I
4 I
4 I
4 4
4 I
4 I
4 I
4 I
4
4 I
4 I
4 I
4 I
4 4
+ I
4 I
4 I
4 I
4 4
4 (jy
4 I
4 4
4 I
4 I
4 I
4 I
4 4
4 I
4 I
4 I
4 I
44
10.80
17.77
17.14
16.31
15.48
14.65
13.82
12.77
12.16
11.33
10.50
•I 4 1 1- I-• -4 I --4- --4 4 4 4---4 4 ••-• I •-t 4.
.20 1.61 3.02 4.43 5.84 7.25 8.66 10.07 11.48 12.8? 14.30
F-95
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERGRAH OF (OWN) DAP
(ACROSS) CETANE*
45.28 47.43 50.02 S2.39 54.76 57.13 59,50 61.07 £4.24 66.61
.96 •
.89
.01
.74
.66
.59
.51
.44
.36 I
.29
.21
4
SCATTERGRAM !
.96
.09
.01
.74
.66
.59
.51
.44 ,
.36
.29
.21 H
4 1 1 1 t 1 r 1 — * "t 1 T 1 1 T T 1 "/"V T t r- T
H C*J . f
4 V"/ 4
4 4
4 4
4 t
4 t
t 4
4 4
4 4
4 4
4 4
4 4
4 4
+ 4
4 4
©
4 4
4 4
>4
4 4
4 4
4 (T)
4 4 ^S
4 4
4 4
4 /-v 4
4 1*1 4
4 V/ 4
4 4
.4*
©ft J 4 ft
VwX -f Vw
4 ' 4
(~\ * *
O 4 /"v * '
-^ 4 CO *
4 ^^ 4
4 4
4 4
4 4
4 4
* Ox * j.
1 * Q 4
«tlO * 44^.47 ' 4o!o4 + 5K21 53.58 55.95 58.32 60.69 63.06 65.43 67. (
)F (DOWN) BAT
(ACROSS) AROMATIC
4.17 7.11 10.05 12.9? 15.93 18.87 21.81 24.75 27.69 30.63
4 CO *'
4 ^^ 4
4 4
4 4
4 4
4 4 <
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
+ * x-
4 4 1*
44^
4 4
4 4
4 4
4 4
4 4
4 4
©4 4
4
4 4
4 4
4 4
04 f
4 4
4 4
4 4
4 4
©+ < S~\
4 4 (O
4 4 V-/
4 4
4 4 /-v
©4 4 I*)
4 4 ^^
4 4
4 4
4 4
t 4
4 4
* /~\ *
4 CO +
4 V-*K 4
4 CO *
.96
.89
.81
.74
.64
.59
.51
k .44
1
'
h .36
.29
.21
10
.96
.89
.81
\ .74
'
.64
.59
.51
.44
.34
.29
.21
.4 4 ---<->-< 4- • -4 -4 4 4 4- 4 -4- 1 4 -I 4- 4 -4 4 4 4.
2.70 5.44 0.58 11.52 14.46 17.40 20.34 23.28 26.22 29.16 32.10
F-96
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERGRAM OF (DOWN) BAP
(ACROSS) OLEflN
1.28 1.04 2.40 2.96 3.52 4.00 4.64 5.20 5.76 6.32
.96 44 I»J 44
.09
.01
.74
1
.66
.59
.51
.44
.36
4 >^ 4 I
4 4 1
4 4 1
4 4 ]
.96
4 4 4 .89
4 4 I
4 4 I
4 4 ]
4 4 )
4 4
4 4 ]
4 4 ]
4 4 ]
4 4 1
-V 4 44
o + * i
-'44 1
4 4 ]
4 4
4 4 4
4 4 I
4 4 J
4 4 ]
©
V-' 44 I
4 4 ]
4 4 I
© ** '* ' 1
^-^ 4 4 ]
4 4 I
4 4 ]
4 4 J
-y^\ /-"v 4 4 4
«A_X \_/ j j j
4 4 ]
4 /->. 4 I
© ,'* ° \ i
t 4 I
4 4 I
.29 4 4 44
I . T 41
,< © *'J
.21 41 77?
]. . -j- . .( .. .j — . | ., . . _| — ... ^. .. .j ,| .^ j j. . j. .... ... ._ 1441 \-t
.00 1.56 2.12 2.68 3.24 3.80 4.36 4.92 5.48 6.04 6.6
SCATTERGRAH OF (DOWN) BAP
(ACROSS) NITROGEN
46.50 139.50 232.50 325.50 418.50 511.50 604.50 697.50 790.50 883.50
.96 44 ^ * *0+ ' f f {
14 t +
IT 4
... : -,,
It t T
{ * , t
D, ! + 4
.81
.74
.66
.59
.51
.44
.36
,29
1 .21
0
.96
.89
•"' +4 ,* J
14 4
1+ t
'"it* S *' I .74
C*J 4 t ]
r~/ 4 4
I 44 ;
I 44 :
I 44
I 44
/~\ 4 4 ;
.59 (£) f '
! ,•' '•, i
>v 44, ;
Tp* 4 4 j
I x T 4 J
I 4 4 j
M4 I 4 + '
'tZ-X ^ ^ C ^ J i
I 4 ^ \ j
Ix^. 4 +
<3A E> ** \ /d
14 4 VH
14 + ]
14 .4
129 1 4* T i
1 + /"N + t !
Lj * (*) T j
.59
.51
.44
. .36
'
.29
0 93.00 106.00 279.00 372.00 465.00 550.00 651.00 ' 744tbo ' W^OO "* 93o!io
.21
F-97
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTER8RAH OF ^BOgg), BAP
245.75 247.85 273.75 277.45 281.55 285.45 287.35 273.25 29J_.U 201.05
.94 44 (*) . +
!'*, • '' l
.87 4 S / '
14 . f
14 *
14 * •
.81 1
*
-k
0*1 * . '
V/ 4 t 1
I * *
-
I t *
I * *
.57 4 © ».
I >^-/ * *
I < *
I . * " .
.51 4 © * <
I ^^ . * .
I t T
I * T ,
I T T
I 4 >-/ W t f ^-
•» 1 41+ © ©^
4f **
14 +
.29 4 + +.
14 . + f
i 4 ty 4
.21 }H + © 4444444
244.00 247.70 271.80 275.70 279.40 283.50 287.40 271.30 275.20 279.10 303.
SCATTERGRAH OF (DOUN) BAP
(ACROSS) OIW
•94 i* 4 ' £
! \
.87} 4 *
14 *
14 . +
... } ',, ,»' "
It *
14 t
I 4 t
"1 0
.44 4 4 4
I 44
I < t
I t t
f~\ 1 *
I * t
I t 4
-!©
I 4 4
I t <
I 4 t
" {© © © t*1 '*»
14 +
©^ * 4
L 4
i ^ 4 t
14 <
14 +
.27 4 4 t
14. t
S(T>4 + +
r^r x-v t
.21 44 f?\ . <
.74
.87
.81
.74
.44
.57
:
:
:
i
i
i
L .44
r
h .34
[
I
h .27
1
[
1 .21
00
) .74
i
.87
[
! ...
I
[
1
4 .74
I
I
[
[ .44
I
I
4 .57
I
I
I
4 . .51
I
I
I
4 .44
.34
.27
I
I
I
I
4 .21
.20
1.41 3.02 4.43 5.84
L ,.„,._ 1 ... _ ..J J ..... - —i-... J....... «-J -..- ..J... ... - 4.-.-.. —4 — ..—A
7.25 8.44 10.07 11.48 12.87 14.30
F-98
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES '(Cont'd)
SCATTERGRAM Of (DOWN) TOT.ALD.
(ACROSS) CETANE*
15.20 4f
I 4
14
14
14
13.60 I +
12.16
10.64
9.12
7.60
6,oe
45.28 47.65 S0.02 52.3? 54.76 57.13 59.50 61.67 64.24 66.61
i i i i i i „ . i .._ _.. i „, ___ L__._4..~.. . . l_. . -4, ._ ..4.- ____ L __ . -4 .-.i l .. ____ 4. . .. „.. l ...... _ I- _ ..... (._..,. L
...... f »—.. p. ..-. f .. ..-. f ,. —- ^ .... f — f -- p— — i— j.. -|. - .f — |- 'V^^V * * ' * ^ • *
4.56
3.04
1.52
0 14
©
^
•I I 4 -I -4 1-
44
* I
41
I
I
I
I
I
I
I
4
I
I
I
I
I
I
I
I
44
" ~T*
15.20
13.68
12.16
10.64
9.12
7.60
4.08
4.54
3.04
1.52
44.10 46.47 40.84 51.21 53.58 55.95 58.32 60.69 63.06 65.43 67.80
SCATTCRGRAH OF (DOWN) TOT.ALD.
(ACROSS) AROMATIC
15.20
4.17
.4 4- •••
7.11 10.05 12.99 15.93 18.87 21.81 24.75 27.69 30.63
44
15.20
13.60 t
I
I
12.16 I
I
I
10.64 4
I
I
9.12 f
I
I
7.60 I
I
I
6.08 t
I
4.56 V
I
I
3.04 4
I
I
I
1.52 4
I
4 4
©j
I
4 I
4 I
13.68
12.16
10.64
9.12
7.60
6.08
4.56
3.04
1.52
I 4-
I 4
0 14
.1 I-. 4VJfc^ ... .V--I - -4-- f- -I I- -I- -4 |...-..]•• 1 4 1 4 4- ,_ -^.
2.70 5.64 0.50 11.52 14.46 17.40 20.34 23.28 26.22 29.16 32.10
.©.,.-, -.,.
F-99
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERGRAM OF (OOUN) TOT
1.20 1,04 2.40 2.96 3.52 4.08 4. 44 5.20 5.74 4.32
15.20
13.40
12.14
10.44
9.12
7.40
4.00
4.54
3.04
1.52
0
SCATTERGRAM
15.20
13.40
12.14
10.44
9.12
7.60
6.00
4.56
3.04
1.52
0
. f - t •~f~\~ t t 1 ••- — T T 1 r 1 1 1 T 1 1 r 1 -t 1 1
+f CO *
I 4 ^S 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
*» 4*
4 4
4 4
4 4
4 4
4 4
I 4 4
I 4 4
I 4 4
I 4 4
>> + 4
I*) * *
V-' 4 4
I s~\ 4 4
1 CO * *
+ W 4
I 4 4
I 44
I 44
I +1
4 44
I 44
4 4
©
^-S 4 4
* 4 ]
4 4 :
4 4 :
4 4
© X !
+ 4 :
^ 4 1
. * + i
4 4
. + + i
©4 1
(T) W
1.00 1.54 2! 12 ^ 2^.48 f 3! 24 * stob ' 4ts4 * 4*92 * SMS * 4^4 * 4.4
OF (DOWN) TOT. ALB.
(ACROSS) NITROGEN
44.50 139.50 232.50 325.50 418.50 511.50 404.50 697.50 790.50 083.50
i » i i » i i __„ i i i » i • » • 1 J. .1 11 -L-
44 I*
I 4 4>-i
I 4 4
I 4 4
14 4
4T t . 4
14 4
I 4 4
4 4
s
4 4
4 4
4 4
4 4
4 4
I 4 4
I 4 4
I 4 4
I 4 4
04 4
4 4
4 4
>JV 44
T^ f
I 44'
I 4 4
I 4 4
I 4 4
4 44'
I 4 4
I 4 4
J-v 4 4
GO * " *
V/ 4 4
I 4 4
I 4 4
I 4 4
I 4 4
;
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERGRAH OF (DOWN) TOT.ALD.
(ACROSS) EP
15.20
13.68
12.16
10.64
9.12
7.60
6.08
4.56
3.04
1.52
0
2i
SCATTCRGRAM
15.20
13.68
12.16
10.64
9.12
7.60
6.08
4.56
3.04
1.52
0
265.95 269.85 273.75 277.65 281.55 285.45 289.35 293.25 297.15 301.05
t t -f r ~i 1 r — -r r"- r r t T r Vr^\ Ij
.>*>
15.20
13.68
12.16
10.64
. 9.12
1
7.60
6.08
4.56
3.04
:
; 1.52
:
'
0
)0
t 15.20
{
I
I
t 13.68
i
I
t 12.16
I
I
I
i 10.64
I
I
I
I
t 9.12
I
I
I
t 7.60
I
I
I
t 6.08
I
I
I
t 4.56
I
I
I
I
i 3.04
I
I
I
4 1.52
I
I
I
} 0
. *--•!--~j t t i •-•< i i t j ^ -i < - -t •!-- j-'..
.20 1.61 3.02 4.43 5.84 7.25 8.66 10.07 11.48 12.89 14.30
F-101
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERGRAH OF (DOWN) TF.THEN.
(ACROSS) CETANE*
45.20 47.65 50.02 52.3? 54.76 57,13 99.50 61.07 64,24 66.61
. t f t 1 1 r r r r t T -t r 1 r T-JF^T r 1 T T .
120.00 4t 1*1 44
115.20
102.40
89.60
76.80
64.00
51.20
30.40
25.60
12.00
4 ^ 4 I
* . * i
4 41
4 41
S
4 4 I
4 4 I
1
4 4 J
4 4 I
4 4 4
4 4 I
4 4 I
4 4 I
4 4 I
4 4 4
44 I
4 4 I
4 4 I
+ 4 I
4 4
4 4 I
4 4 I
44 I
4 4 I
4 4 4
44 I
!
4 4 I
4 4 I
4 * © S 4
4 4 I
4 4 I
4 4 I
4 4 I
4 4 4
Si
I 4 ^^ 't I
0 ©' © j < 0© 404 Si 404 *($
44.10 * 46%7 * 4al84 * 5K21 * 53^.58 55.95 f Sotsij 60^9 6ii!o6 65M3 * 67.80
SCATTERGRAH OF (DOWN) TF.TICN.
(ACROSS) AROMATIC
4.17 7.11 10.05 12.99 15.93 10.87 21.01 24.75 27.69 30.63
1111 l^b. 1 l.i 1 t M . . t 4 i i 1 1 .1 i i L i
128.00 44 1*1 44
I S w ,M
14 41
14 41
115.20 44 44
IS i
14 4 I
14 '41
102.40 44 44
14 41
14 41
89.60
76.00
64.00
51.20
3B.40
25.60
i
4 4-4
4 4 I
4 4 I
4 4 I
44 4
4 4 I
44' I
44 I
4 4 I
4 4
4 4 I
44 I
4 4 I
4 4 I
4 4 4
4 4 I
4 4 I
4 4 I
4 4 I
4 4 4
4 4 I
4 4 I
Q 4+ }
^4 44
4 4 I
4 41
4 4 I
14 41
12.80 44 44
14 41
14 41
o eTi (f^MPj £OOM)
128.00
115.20
102.40
89.60
76.80
64.00
51.20
38.40
25.60
12.80
0
128.00
115.20
102.40
89.60
76.80
64.00
51.20
38.40
25.60
12.80
0
- -..\ < ....) 4—-.4. i 4 t < i i t~ ^ t- i v
2.70 5.64 0.58 11.52 14.46 17.40 20.34 23,28 26.22 29.16 32.10
F-102
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERGRAI! Of (DOUN) TF.PHEN.
(ACROSS) OLEFIN
1.28 1.84 2.40 2.96 3.52 4.08 4,64 5,20 5.76 6.32
128.00 41 (*1 44
I 4 ^ t I
14 41
I 4 ^ 4 I
115.20 4 4 t
I 4 4
14 41
14 41
102.40 44 +4
14 41
14-41
14- +1
14 41
89.60 44 44
14 41
I 44 I
I 44 I
I 44 I
76.80 4 44 4
I 44 I
I 44 I
I 44 I
I 44 I
64.00 h t 4
I 44 I
I 44 I
I 44 I
I 44 I
51.20 1 44 4
I 44 I
I 44 J
I 44 I
14 41
30.40 +4 44
14 41
If 41
I /-\ 4 4 I
I (*1 4 41
25.60 4 ^^ 4 44
14 41
14 41
14 41
14 41
12.80 44 44
14 41
14 41
I 4 >r-v 4 I
o jgjQ (•£) (J£) ^ (?) f ^ f ^ ^ ^ ^ ( ( t ^ t +(*j)
128.00
115.20
102.40
89.60
76.80
64.00
51.20
38.40
25.60
12.80
0
1.00 1.56 2.12 2.68 3.24 3. DO 4.36 4.92 5.48 6.04 6.60
SCATTERGRAH OF (DOWN) TF.PHEN.
(ACROSS) NITROGEN
46.50 139.50 232.50 325.50 410.50 511.50 604.50 697.50 790.50 883.50
» f- 1" •-••(• "fr~ f -(• + " r1— * fr " I""" """ T'^^tlf""" ——\~ -f-- — t} —4} f -(•" -(•- •( • -- •- f|
128.00 41 1*1 44 120.00
4 V-/ 4 I
115.20
102.40
89.60
76.80
64.00
51.20
38.40
25.60
12.80
4 4
4 4
4 4
4 4
4 +
4 4
4 i
4 4
• 115.20
:
[
4 44 102.40
4 4
4 t
4 4-
4 4
4 4
t 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4
4 4
4 4
4 4
4 4
4 ' 4
4 4
4 4
4 4
4 4
4 4
4 4
89.60
76,80
64.00
51.20
38.40
t
4 4 I
4 4 /-.
4 4 I*
4 4 ^
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 ^*. 4
>»"«*. 1*) /^ +
L
)
25.60
12.80
0 93.00 186.00 279.00 372.00 465.00 558.00 651.00 744.00 837.00 930.00
F-103
-------
SCATTERGRAMS OF SELECTED FUEL AND EMISSION VARIABLES (Cont'd)
SCATTERGRAM OF (DOWN) Tr.PHEN.
(ACROSS) EP
245.95 249.05 273.75 277.65 281.S3 205.45 209.35 293.25 297.15 301.05
120.00 440 +*
i ' + , * *
It +
115.20 t t +
1*4 4
I t *
102.40 t t +
14 t
I t t
I t t
ft 4
89.40 4 4 4
I 4 t
I + *
I 4 t
76.80 4 +4 i
I * *
I + 4
I 4- 4
I ' t t
44.00 4 .4- \
1 ** + i
51.20 4 t 4
I 4 4
I 4 t
I t 4
It t
38.40 t 4 t •
It 4
14 4 :
I t >•%
it 1*9
25.40 4 t v-' 4 ;
it1 4 :
14 4 :
it 4 :
12.80 h t 4
It 4
It 4
T J ^^. 4-
° ^D(DI GD (2^ o ^3
244.00 247!90 27K80 * 275.70 279.40 283.50 207.40 291.30 295.20 299.10 303. C
SCATTERGRAM OF (DOWN) Tr.PHEN.
(ACROSS) OUH
.91 2.32 3.73 5.14 4.55 7.96 9.37 10.70 12.19 13.59
128.00 H f*
t t
t t
t t
115.20 t +
4 t
t t
t t
4 t
102.40 t t
I t 4
I t t
I 4 t
I t 4
89.60 4 t t
I t t
I 4 t
I t t
I 4 t
76.80 t t 4
I t t
I t 4
I t t
I •! •(
64.00 t t
I t t
I t t
I t t
I t 4
51.20 4 t t
I 4 t
I 4 4
I t 4
I 4 t
38.40 t t t
I t t
I t 4
I j~\ t t
I (*} t t
25.60 t ^-^ t t
I t t
I t t
I t t
I 4 t
12.80 t 4 t
I t t
I t 4
I/-^j_ t
AJWOC Y"\ f*\ t
126.00
115.20
102.40
89.60
76.80
64,00
51.20
38.40
25.60
12.80
1 0
0
) 128.00
!
I
I
t 115.20
I
I
102.40
I
I
t 89.40
I
I
t 74.80
I
I
I
t 64.00
I
I
I
4 51.20
I
I
J
t 38.40
I
I
I
t 25.60
I
I
I
4 12.80
I
I
I
>j>iamMW-- -W--4 4 - 4 - - -t t 4 t 4 t 4 - • i 4 - •-1 4 - - 4 -4 — -t!
.20 1.61 3.02 4.43 5.84 7.25 0.64 10.07 11.40 12.89 14.30
F-104
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
i. REPORT NO.
EPA-460/3-81-015
2.
3. RECIPIENT'S ACCESSION>NO.
4. TITLE AND SUBTITLE
Characterization of Diesel Emissions as a
Function of Fuel Variables
5. REPORT DATE
April 1981
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Bruce B. Bykowski
8. PERFORMING ORGANIZATION REPORT NO
9. PERFORMING ORG\NIZATION NAME AND ADDRESS
Southwest Research Institute
6220 Culebra Road
San Antonio, Texas 78284
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-03-2707
12. SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
Ann Arbor, Michigan 48105
13. TYPE OF REPORT AND PERIOD COVERED
Final Report, 9-79 to 4-81
14. SPONSORING AGENCY CODE ~~
15. SUPPLEMENTARY NOTES
16. ABSTRACT
Several properties of a refinery "straight-run kerosene", which had
a narrow boiling range approximating the middle of a No. 1 diesel
fuel, were altered to study their effects on regulated and unregulated
exhaust emissions. Eleven fuel blends, representing changes in
nitrogen content, aromatic level, boiling point distribution, olefin
content, and cetane number, were evaluated in a 1975 Mercedes-Benz 240D.
Statistical analysis, including regression, was performed using selected
fuel properties as independent variables. Higher aromatic levels were
generally associated with increased emissions, while increased olefin
levels were generally associated with decreased emissions.
7.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS c. COSATI Field/Group
Exhaust Emissions
Diesel Engines
Particulate
Diesel Fuel
Nitrogen Oxides
Hydrocarbons
Fuel Effects
Light Duty Vehicles
Emission Test Procedures
Emission Characterizatioi
3. DISTRIBUTION STATEMENT
Release Unlimited
19. SECURITY CLASS (ThisReport)
Unclassified
21. NO. OF PAGES
286
20. SECURITY CLASS (Thispage)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
------- |