-------
TABLE C-8 (Continued)
154
155
156
157
158
159
221
160
161
162
163
164
165
166
167
168
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
BOAT CONSTITUENT
Metals Total Composition
Antimony
Arsenic
Barium
Beryllium
Cadmium
Chromium
Hexavalent Chromium (mg/l)
Copper
Lead
Mercury
Nickel
Selenium
Stiver
Thallium
Vanadium
Zinc
Metals - TCUP (mg/l)
Antimony
Arsenic
Barium
Beryllium
Cadmi urn
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Vanadium
Zinc
Untreated
Waste to
Incinerator
(mg/kg)
1.5
1.0
0.2
0.1
0.5
0.5
0.01
0.4
0.5
0.1
0.9
0.5
0.7
1.0
0.4
0.2
NOT
,
ANALYZED
Treated
Waste
(Kiln Ash)
(mg/kg)
1.5
1.0
0.2
0.1
0.5
0.5
0.01
0.4
0.5
0.1
0.9
0.5
0.7
1.0
0.4
0.2
0.015
0.010
0.002
0.001
0.005
0.007+
0.004
0.005
0.0002+
0.009
9.005
0.007+
0.200+
0.004+
0.002
Scrubber
Wastewater
(mg/l)
0.015
0.010
0.002
0.001
0.005
0.005
0.010
0.004
0.005
0.0002
0.220**
0.005
0.005
0.010
0.003
0.002
NOT
ANALYZED
Appendix C-40
-------
TABLE C-8 (Continued)
Untreated Treated
Waste to Waste Scrubber
BOAT CONSTITUENT ' Incinerator (Kiln Ash) Uastewater
(mg/kg) (rag/kg) (mg/l)
Inorganics
169 Cyanide - - 0.01
170 Flouride - - 0.2
171 Sulfide - - 0.5
Other Parameters
Chlorides - - 1
Sulfates - - 5
(1) - Cannot be separated from N-Nitrosodipenylamine.
NA - The standard is not available; compound was searched using an NBS library of 42,000 compounds.
NO - Not detected, estimated detection limit has not been determined.
** - Detection limit for sample set 3 for Nickel is 0.110 mg/l. .
+ - Detection limits for sample set 3 for Chromium, Mercury, Silver, and Vanadium were 0.007,
0.0004, 0.006, 0.01Q, and 0.006 mg/l, respectively.
- No detection limits have been established.
Appendix C-41
-------
TABLE C-9 DETECTION LIMITS FOR K102 SAMPLE SETS #4 AND
222
1
2
3
4
5
6
223
7
8
9
10
11
12
13
U
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
224
225
226
30
227
31
214
32
33
228
34
229
35
BOAT CONSTITUENT
Volatile Organics
Acetone
Acetom'trile
Acrolein
Acrylonitrile
Benzene
Bromodichlocomethane
Bromomethane
n-Butyl Alcohol
Carbon Tetrachloride
Carbon Disulfide
Chlorobenzene
2- Ch I oro- 1,3- Butadiene
Ch 1 orodi bromomethane
Chloroethane
2-Chloroethy I vinyl ether
Chloroform
Chloromethane
3-Chloropropene f
1,2-Dibromo-3-Chloropropane
1,2-Dibromoethane
Oi bromomethane
Trans-1, 4-0 ichloro- 2- Butene
Dichlorodi f luoromethane
1 , 1 -0 ich I oroethane
1,2-Oichloroethane
1,1-Dichloroethene
Trans-1 ,2-Dichloro«thene
1 ,2-Dichloropropane
Trans-1, 3-Oichloropropene
cis-1,3,Dichloropropene
1,4-Dioxane
2-Ethoxyethanol
Ethyl Acetate
Ethyl benzene
Ethyl Cyanide
Ethyl Ether
Ethyl Methacrylate
Ethylene Oxide
lodomethane
Isobutyl Alcohol
Hethanol
Methyl butyl ketone
Methyl ethyl ketone
Methyl isobutyl ketone
Methyl Methacrylate
Untreated
Waste to
Incinerator
(mg/kg)
3
30
30
30
1.5
1.5
3
NA
1.5
1.5
1.5
30
1.5
3
3
1.5
3
30
3
1.5
1.5
30
3
1.5
1.5
1.5
1.5
1.5
1.5
.1.5
60
NA
NA
1.5
30
NA
30
NA
15
60
NA
3
3
3
30
Treated
Waste
(Kiln Ash)*
(mg/kg)
3
30
30
30
1.5
1.5
3
NA
1.5
1.5
1.5
30
1.5
3
3
1.5
3
30
3
1.5
1.5
30
3
1.5
1.5
1.5
1.5
1.5
1.5
1.5
60
NA
NA
1.5
30
NA
30
NA
15
60
MA
3
3
3
30
Scrubber
Wastewater
(ing/ 1)
0.010
0.100
0.100
0.100
0.005
0.005
0.010
HA
0.005
0.005
0.005
0.100
0.005
0.010
0.010
0.005
0.010
0.100
0.010
0.005
0.005
0.100
0.010
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.200
NA
NA
0.005
0.100
NA
0.100
NA
0.050
0.200
NA
0.010
0.010
0.010
0.100
Appendix C-42
-------
TABLE C-9 (Continued)
37
38
230
39
40
41
42
43
44
45
46
47
48
49
231
50
51
52
53
54
55
56
57
58
59
218
60
61
62
63
64
65
66
67
68
69
70
71
BOAT CONSTITUENT
Volatile Organ ics (cont.)
Methacrylonitrile
Hethylene Chloride
2-Nitropropane
Pyridine
Styrene
1,1,1 ,2-Tetrachloroethane
1 , 1 ,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
Tribromomethane(bromoform)
1 , 1 ,1-Trichloroethane
1 , 1 ,2-Trichloroethane
Trichloroethene
Trichloromonof luoromethane
1,2,3-Trichloropcopane
1 ,1 , 2-T r i chloro- 1,2, 2- trif luoroethane
Vinyl Acetate
Vinyl Chloride
Xylene'J1
Semivolati le Organics
Acenaphthalene
Acenaphthene
Acetophenone
2-Acetylaminof luorene
4-Aminobiphenyl
Aniline
Anthracene
Aramite
Benzo(a)anthracene
Benzal Chloride
Benzenethiol
Benzidine
Benzoic Acid
Benzo(a)pycene
Benzo(b)f luoranthene
Benzo(g,h,i) perylene
Benzo( k) f I uoranthene
p-Benzoquinone
Benzyl Alcohol
Bis(2-Chloroethoxy) methane
Bis(2-Chloroethyl) Ether
Bis(2-chloroisopropyl) ether
Bis(2-ethylhexyl) phthalate
4-Bromophenyl phenyl ether
Untreated
Waste to
Incinerator
(mg/kg)
30
1.5
NA
120
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
NA
3
3
1.5
194
194
388
388
388
194
194
NA
194
NA
NO
970
980
194
194
194
194
NO
194
194
194
194
194
194
Treated
Waste
(Kiln Ash)*
(mg/kg)
30
1.5
NA
120
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
NA
3
3
1.5
1
1
2
2
2
1
1
NA
1
NA
NO
5
5
1
1
1
1
NO
1
1
1
1
1
1
Scrubber
Wastewater
(mg/l)
0.100
0.005
NA
0.400
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
NA
0.010
0.010
0.005
0.010
0.010
0.020
0.020
0.020
0.010
0.010
NA
0.010
NA
NO
0.050
0.010
0.010
0.010
0.010
0.010
NO
0.010
0.010
0.010
0.010
0.010
0.010
Appendix C-43
-------
TABLE C-9 (Continued)
72
73
74
75
76
77
78
79
80
81
32
232
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
BOAT CONSTITUENT
Semivolatile Organics (cont.)
Butyl benzyl phthalate
2-S«c-Butyl-4,6-Oinitrophenol
p-Chloroaniline
Chlorobenzi late
p-Chloro-m-cresol
2-Chloronaphthalene
2-Chlorophenol
4-Chlorophenyl-phenyl ether
3-Chloropropiom'trile
Chrysene
Ortho-cresol
para-cresol
Cyclohexanone
Dibenz(a,h)anthracene
Oibenzofuran
Oibenzo
1
2
1
NO
1
1
2
NO
1
1
1
5
5
5
1
1
1
1
2
5
1
1
1
1
1
1
NA
Scrubber
Uastewater
(mg/l)
0.010
0.050
0.010
NA
0.010
0.010
0.010
0.010
NA
0.010
0.010
0.010
NO
0.010
0.010
NA
NA
0.010
0.010
0.010
0.020
0.010
NO
0.010
0.010
0.020
NO
0.010
0.010
0.010
0.050
0.050
0.050
0.010
0.010
0.010
0.010
0.020
0.050
0.010
0.010
0.010
0.010
0.010
0.010
NA
Appendix C-44
-------
TABLE C-9 (Continued)
115
116
117
118
119
120
36
121
122
123
124
125
126
127
128
129
130
219
131
132
133
134
135
136
137
138
139
140
141
142
220
143
144
145
146
147
148
149
150
151
152
153
BOAT CONSTITUENT
Semivolatile Organies (cont.-)
Hexach I oropropene
Indeno(1,2,3,-cd) Pyrene
Isosafrole
Isophorone
Methapyrilene
3-Methylcholanthrene
4,4'-Kpthylene-bis-(2-chloroamline}
Methyl Methanesulfonate
2-Methyt naphthalene
Naphthalene
1 ,4-Naphthoquinone
1-Naphthylamine
2-Naphthylamine
2-Nitroaniline
3-Nitroaniline
p-Nitroani line
Nitrobenzene
2-Nitrophenol (
4-Nitrophenol
N-Nitrosodi-n-butylamine
N-Nitrosodiethylami'ne
N-Nitrosodimethytamine
N-Nitrosodiphenylamine (1)
N-Nitrosomethylethylamine
H-Ni trosomorphol ine
1-Nitrosopiperidine
N-Nitrosopyrrolidine
2-Methyl -5-ni troani 1 ine
Pentachlorobenzene
Pentachloroethane
Pentach I oroni trobenzene
Pentachlorophenol
Phenacetin
Phenanthrene
Phenol
Phthalic Anhydride
2-Picoline
Pronamide
Pyrene
Resorcinol
Safrole
1,2,4,5-Tetrachlorobenzene
2,3,4 , 6- Tet rach I oropheno I
1,2,4-Trichlorobenzene
2,4,5-Trichlorophenol
2,4,&-Trichlorophenol
Tris(2v'3-dibromopropyl) phosphate
Untreated
Waste to
Incinerator
(mgAg)
NO
194
388
194
NA
388
388
NO
194
194
NA
970
970
980
980
980
194
194
980
NO
NO
194
194
194
388
194
970
388
NO
NA
1940
980
388
194
194
NO
194
NO
194
NA
970
388
NO
194
980
194
NO
Treated
Waste
(Kiln Ash)*
(mg/kg)
NO
1
2
1
NA
2
2
NO
1
1
NA
5
5
5
5
5
1
1
5
NO
NO
1
1
1
2
1
5
2
NO
NA
1
5
2
1
1
NO
1
NO
1
NA
5
2
NO
1
5
1
NO
Scrubber
Uastewater
(nig/ 1)
NO
0.010
0.020
0.010
NA
0.020
0.020
NO
0.010
0.010
NA
0.050
0.050
0.050
0.050
0.050
0.010
0.010
0.050
NO
NO
0.010
0.010
0.020
0.010
0.010
0.050
0.020
NO
NA :
0.100
0.050
0.020
0.010
0.010
NO
0.010
NO
0.010
NA
0.050
0.020
NO
0.010
0.050
0.010
NO
Appendix C-45
-------
TABLE C-9 (Continued)
154
155
156
157
158
159
221
160
161
162
163
164
165
166
167
168
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
BOAT CONSTITUENT
Metals - Total Composition
Antimony
Arsenic
Barium
Beryllium
Cadmium
Chromium
Hexavalent Chrwnium (mg/lV
Copper
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Vanadium
Zinc
Metals - TCLP (mg/l)
Antimony
Arsenic
Barium
Beryllium
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Vanadium
Zinc
Untreated
Waste to
Incinerator
(mg/kg)
1
1
0
0
0
0
0
0
0
0
1.
0
0
1
0
0
.5
.0
.2
.1
.5
.5
.01
.4
.5
.1
1+
.5
.7
.0
.4
.2
NOT
ANALYZED
Treated
Waste
(Kiln Ash)*
(mg/kg)
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0.
0.
0.
0.
0.
0.
0.
0.
9.
0.
0.
0.
0.
0.
0.
.5
.0
.2
.10
.5
.5
.01
.4
.5
.1
.9
.5
.7
.0
.3
.2
015
010
002
001
005
005
004
005
0002
009
005
007
100
004
002
Scrubber
Wastewater
(mg/l)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.015
.010
.002
.001
.005
.005
.010
.004
.005
.0002
.009
.005
.005
.010
.003
.002
NOT
ANALYZED
Appendix C-46
-------
TABLE C-9 (Continued)
Untreated Treated
Waste to Uaste Scrubber
BOAT CONSTITUENT Incinerator (Kiln Ash)* Wasteviater
(mg/kg) (mg/kg) (mg/t)
Inorganics
169 Cyanide - - 0.01
170 Flouride - - 0.2
171 Sulfide - 0.5
Other Parameters
Chlorides 1
Sulfates - - 5
* - Mo samples were taken for Sample Set #5.
(1) - Cannot be separated from N-Nitrosodipenylamine.
NA - The standard is not available; compound was searched using an NBS library of 42,000 compounds.
NO - Not detected, estimated detection limit has not been determined.
+ - The detection limit'for sample set 5 for Nickel is 11 mg/kg.
- - No detection limit has been established.
Appendix C-47
-------
TABLE C-10 DETECTION LIMITS FOR K102 SAMPLE SET #6
222
1
2
3
4
5
6
223
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
224
225
226
30
227
31
214
32
33
228
34
229
35
BOAT CONSTITUENT
Volatile Organ ics
Acetone
AcetonitrUe
Acrolein
Acrylonitrile
Benzene
Bromodichloromethane
Bromomethane
n-Butyl Alcohol
Carbon Tetrachloride
Carbon Disulfide
Chlorobenzene
2-Chloro-1,3-Butadiene
Ch 1 orodi bromomethane
Chloroethane
2-Chloroethylvinylether
Chloroform
Chloromethane
3-Chloropropene
1 ,2-Oibromo-3-Chloropropane
1,2-Dibromoe thane
Of bromomethane
Trans-1, 4-0 ichloro-2-Butene
0 ich lorodi f 1 uoromethane
1 , 1 -D i ch I oroethane
1 ,2-Oichloroethane
1,1-Dichloroethene
Trans- 1,2-0 ich I oroethene
1 , 2 - D i ch I oropropane
Trans-1 ,3-Oichloropropene
cis-1,3,Dichloropropene
1,4-Oioxane
2-Ethoxyethanol
Ethyl Acetate
Ethylbenzene
Ethyl Cyanide
Ethyl Ether
Ethyl Methacrylate
Ethylene Oxide
lodomethane
Isobutyl Alcohol
Methanol
Methyl butyl ketone
Methyl ethyl ketone
Methyl isobutyl ketone
Methyl Methacrylate
Untreated Treated
Waste to Waste
Incinerator (Kiln Ash)
(mg/kg) (nig/kg)
3
30
30
30
1.5
1.5 NO
3
NA
1.5
1.5
1.5 SAMPLES
30
1.5
3
3 TAKEN
1.5
3
30
3
1.5
1.5
30
3
1.5
1.5
1.5
1.5
1.5
1.5
1.5
60
NA
NA
1.5
30
NA
30
NA
15
60
NA
3
3
3
30
Scrubber
Wasteuater
Ong/l)
0.010
0.100
0.100
0.100
0.005
0.005
0.010
NA
0.005
0.005
0.005
0.100
0.005
0.010
0.010
0.005
0.010
0.100
0.010
0.005
0.005
0.100
0.010
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.200
NA
NA
0.005
0.100
NA
0.100
NA
0.050
0.200
NA
0.010
0.010
0.010
0.100
Appendix C-48
-------
TABLE C-10 (Continued)
37
38
230
39
40
41
42
43
44
45
46
47
43
49
231
50
51
52
53
54
55
56
57
53
59
218
60
61
62
63
64
65
66
67
68
69
70
71
BOAT CONSTITUENT
Volatile Organics (cont.)
Methacrylonitrile
Methylene Chloride
2-Nitropropane
Pyridine
Styrene
1,1, 1 ,2-Tetrachloroethane
1 , 1 ,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
Tnbromomethane(bromofonn)
1,1,1-Trichloroethane
1 ,1,2-Trichloroe thane
Trichloroethene
Trich loromonofluoromethane
1,2,3-Trich-loropropane
1, 1,2-Trichloro- 1,2, 2- trif luoroethane
Vinyl Acetate
Vinyl Chloride .
Xylenes &
Semivotatile Organi'es
Acenaphthalene
Acenaphthene
Acetophenone
2-Acetylaminof luorene
4-Aminobiphenyl
Ani line
Anthracene
Aramite
Benzo(a)anthracene
Benzal Chloride
Benzenethiol
Benzidine
Benzoic Acid
Benzo(a)pyrene
Benzo(b)f luoranthene
Benzo(g,h,i) perylene
Benzo< k } f luoranthene
p-Benzoquinone
Benzyl Alcohol
Bis(2-Chloro«thoxy) methane
Bis(2-Chloroethyl) Ether
Bis(2-chloroisopropyl) ether
Bis(2-ethylhexyl) phthalate
4-Bromophenyl phenyl ether
Untreated Treated
Waste to Waste
Incinerator (Kiln Ash)
(mg/kg) (mg/kg)
30
1.5
MA
120
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
MA
3 NO
3
1.5
SAMPLES
184
184
368 TAKEN
368
368
184
184
NA
184
NA
NO
920
918
184
184
184
1840
NO
184
184
184
184
184
184
Scrubber
Uastewater
(mg/l)
0.100
0.005
NA
0.400
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
NA
0.010
0.010
0.005
10
10
20
20
20
10
10
NA
10
NA
NO
50
10
10
10
10
10
NO
10
10
10
10
10
10
Appendix C-49
-------
TABLE C-10 (Continued)
72
73
74
75
76
77
78
79
80
81
82
232
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
BOAT CONSTITUENT
Semivolatile Orgam'cs (cont.)
Butyl benzyl phthalate
2-Sec-Butyl-4,6-Oinitrophenol
p-Chloroaniline
Chlorobenzilate
p- Ch I oro- m- creso I
2-Chloronaph thai ene
2-Chlorophenol
4-Chlorophenyl-phenyl ether
3-Chloropcopionitrile
Chrysene
Ortho-cresol
para-cresol
Cyclohexanone
Dibenz(a,h)anthracene
Dibenzofuran
Dibenzo(a,e,) Pyrene
Dibenzo(a,i) Pyrene
1 , 3-D i ch lorobenzene
1, 2- Dich lorobenzene
1,4-Dich lorobenzene
3,3'Dichlorobenzidine
2,4-Dichlorophenol
2,6-Dichlorophenol
Diethyl phthalate
3,3'-Dimethoxybenzidine
p-D imethylaminoazobenzene
3,3'-Dimethylbenzidine
2,4-Dimethylphenol
Dimethyl Phthalate
Di-n-butyl phthalate
1 , 4 - D i n i t robenzene
4,6-dinitro-o-cresol
2,4-Dinitrophenol
2,4-Oinitrotoluene
2,6-Dini trotoluene
Di-n-octyl phthalate
Oi-n-propylnitrosoaraine
Diphenylamine (1)
1,2,-Oiphenylhydrazine
Fluoranthene
Fluor ene
Hexach lorobenzene
Hexach lorobutadi ene
Hexach I orocyc I open Cadi ene
Hexach I oroe thane
Hexach I oroph ene
Untreated Treated
Waste to Waste
Incinerator (Kiln Ash)
(rag/kg) (mg/kg)
184
920
184
NA
184
184
184
184
NA
184
184
184
NO
184
184
NA
NA
184
184
184
366
184 NO
NO
184
184
368 SAMPLES
NO
184
184
184 TAKEN
920
918
918
184
184
184
184
368
920
184
184
184
184
184
184
NA
Scrubber
Wastewater
(mg/l)
10
50
10
NA
10
10
10
10
NA
10
10
10
NO
10
10
NA
NA
10
^0
10
20
10
NO
10
10
20
ND
10
10
10
50
50
50
10
10
10 .
10
20
50
10
10
10
10
10
10
NA
Appendix C-50
-------
TABLE C-10 (Continued)
115
116
117
118
119
120
36
121
122
123
124
125
126
127
128
1-Vl
130
219
131
132
133
134
135
136
137
138
139
140
141
142
220
143
144
145
146
ur
148
149
150
151
152
153
BOAT CONSTITUENT
Semi volatile Organ ies (cont.)
Hexach I oropropene
Indeno(1,2,3,-cd) Pyrene
Isosafrole
Isophorone
Hethapyn' lene
3-Methylcholanthrene
4,4'-Methylene-bis-(2-chloroaniline)
Methyl Methanesulfonate
2-Methylnaphthalene
Naphthalene
1 ,4-Naphthoquinone
1-Naphthylamirw
2-Naphthylamine
2-Nitroani t ine
3-Nitroaniline
p-N it roam 1 ine
Nitrobenzene
2-Nitrophenol '
4-Nitrophenol
N-Nitrosodi-n-butylamine
!!.!'« < -JJ--U..I .'_
N-Nitrosodimethylamine
N-Nitrosodiphenylamine (1)
N-Nitrosomethylethylamine
N-Nitrosomorpholine
1-Nitrosopiperidine
N-Nitrosopyrrolidine
5-Nitro-o-toluidine
Pentach I orobenzene
Pentach I oroethane
Pent ach I or on i t robenzene
Pentach 1 orophenol
Phenacetin
Phenanthrene
Phenol
Phthalic Anhydride
2-Picoline
Pronamide
Pyrene
Resorcinol
lafrate
1 ,2,4,5-Tetrachlorobenzene
2,3,4,6-Tetrachlorophenol
1, 2 ,4-Trich I orobenzene
2,4,5-Trichlorophenol
2,4,6-Trichlorophenol
Tris(2,3-dibromopropyl) phosphate
Untreated Treated
Waste to Waste
Incinerator (Kiln Ash)
(mg/kg) (mg/kg)'
ND
184
368
184
NA
368
368
NO
184
184
NA
920
920
918
918
918
184
184
918
ND
ur»
184
184
184 NO
363
184
920
368 SAMPLES
NO
NA
1840
918 TAKEN
368
184
184
NO
184
ND
184
NA
920
368
NO
184
918
184
NO
Scrubber
Wasteuater
(ing/ 1)
ND
10
20
10
NA
20
20
NO
10
10
NA
50
50
50
50
50
10
10
50
NO
itn
10
10
10
20
10
50
20
NO
NA
100
50
20
10
10
ND
10
ND
10
NA
90
20
NO
10
50
10
NO
Appendix C-51
-------
TABLE C-10 (Continued)
BOAT CONSTITUENT
Metals - Total Composition
154 Antimony
155 Arsenic
156 Barium
157 Beryllium
153 Cadmium
159 Chromium
221 Hexavalent Chromium (mg/l)
160 Copper
161 Lead
162 Mercury
163 Nickel
164 Selenium
165 Silver
166 Thallium
167 Vanadium
168 Zinc
Metals - TCLP
-------
APPENDIX D
Calculation of Treatment Standards for K101 Nonwastewaters
Constituent: Acetone
1
Kiln Ash
Sample Set Concentration
(mg/kg)
1 0.010
2 0.010
3 0.010
2+
Percent
Recovery
106
106
106
3* 4
Accuracy Corrected
Correction Concentration
Factor (mg/kg)
1.0 0.010
1.0 0.010
1.0 0.010
x = 0.010
5
Log
Transform
-4.605
-4.605
-4.605
y = -4.605
s = 0.000
1 - Obtained from the Onsite Engineering Report, John Zink Company for K101, Table 5-7.
2 - Obtained from the Onsite Engineering Report, John Zink Company for K101, Table 6-15.
+ - Values^re actually the average of all volatiles.
3 - Accuracy Correction Factor = 100 / Percent Recovery.
* - Corrected concentration cannot be below the detection limit;
therefore, the accuracy factor is adjusted to 1.0.
4 - Corrected Concentration = Kiln Ash Concentration X Accuracy Correction Factor.
5 - Log Transform using the natural logarithm, In,- of the Corrected Concentration.
Treatment Standard = Corrected Kiln Ash Mean X VF
VF = 2.8 (as explained in Appendix A)
Treatment Standard = Corrected KiIn Ash Mean X VF
= 0.010 X 2.8
= 0.028 mg/kg
Appendix D - 1
-------
APPENDIX D
Calculation of Treatment Standards for K101 Nonwastewaters
Constituent: Toluene
1
Kiln Ash
Sample Set Concentration
-------
APPENDIX D
Calculation of Treatment Standards for K101 Nonwastewaters
Consti tuent: AniIine
1
Kiln Ash
Sample Set Concentration
(mg/kg)
1 0.420
2 0.420
3 0.420
2+
Percent
Recovery
40
40
40
3 4
Accuracy Corrected
Correction Concentration
Factor (mg/kg)
2.5 1.05
2.5 1.05
2.5 1.05
x = 1.05
5
Log
Transform
0.049
0.049
0.049
y = 0.049
s = 0.000
1 - Obtained from the Onsite Engineering Report, John Zink Company for K101, Table 5-7.
2 - Obtained from the Onsite Engineering Report, John Zink Company for K101, Table 6-16.
+ - Values,are actually the average of all semivolatiles.
3 - Accuracy Correction Factor = 100 / Percent Recovery.
4 - Corrected Concentration = Kiln Ash Concentration X Accuracy Correction Factor.
5 - Log Transform using the natural logarithm, In, of the Corrected Concentration.
Treatment Standard = Corrected Kiln Ash Mean X VF
VF = 2.8 (as explained in Appendix A)
Treatment Standard = Corrected Kiln Ash Mean X VF
= 1.05 X 2.8
= 2.940 mg/kg
Appendix D - 3
-------
APPENDIX 0
Calculation of Treatment Standards for K101 Nonuastewaters
Constituent: 2-Nitroaniline
Kiln Ash 1
Sample Set Concentration
(nig/kg)
1 2.0
2 2.0
3 2.0
Percent 2+
Recovery
40
40
40
Accuracy 3 Corrected'
Correction Concentration
Factor (mg/kg)
2.50 5.000
2.50 5.000
2.50 . 5.000
x = 5.000
4
Log 5
Transform
1.609
1.609
1.609
y = 1.609
s = 0.000
1 - Obtained from the Onsite Engineering Report for John Zink Company for K101, Table 5-7.
2 - Obtained from the Onsite Engineering Report for John Zink Company for K101, Table 6-16.
+ - Valuesfare actually the average of all semivolatiles.
3 - Accuracy Correction Factor = 100 / Percent Recovery.
4 - Corrected Concentration = Kiln Ash Concentration X Accuracy Correction Factor.
5 - Log Transform using the natural logarithm, In, of the Corrected Concentration.
Treatment Standard = Corrected KiIn Ash Mean X VF
VF = 2.8 (as explained in Appendix A)
Treatment Standard = Corrected Kiln Ash Mean X VF
= 5.000 X 2.80
= 14.000 mg/kg
Appendix D 4
-------
APPENDIX D
Calculation of Treatment Standards for K102 Nonwastewaters
Constituent: Toluene
Sample Set
1
2
3
4
1
Kiln Ash
Concentration
(nig/kg)
1.5
1.5
1.5
1.5
2
Percent
Recovery
112
112
112
112
3*
Accuracy
Correction
Factor
1.0
1.0
1.0
1.0
X
4
Corrected
Concentration
(mg/kg)
1.500
1.500
1.500
1.500
1.500
5
Log
Transform
0.405
0.405
0.405
0.405
y = 0.405
s = 0.000
1 - Obtained from the Onsite Engineering Report, John Zink Company for K102, Table 5-7.
2 - Obtained1 from the Onsite Engineering Report, John Zink Company for K102, Table 6-15.
3 - Accuracy Correction Factor = 100 / Percent Recovery.
* - Corrected concentration cannot be below the detection limit;
therefore, the accuracy factor is adjusted to 1.0.
4 - Corrected Concentration = Kiln Ash Concentration X Accuracy Correction Factor.
5 - Log Transform using the natural logarithm, In, of the Corrected Concentration.
Treatment Standard = Corrected Kiln Ash Mean X VF
VF = 2.8 (as explained in Appendix A)
Treatment Standard = Corrected Kiln Ash Mean X VF
= 1.500 X 2.8
= 4.200 mg/kg
Appendix D - 5
-------
APPENDIX D
Calculation of Treatment Standards for K102 Nonwastewaters
Constituent: Total Xylenes
Sample Set
1
2
3
4
1
Kiln Ash
Concentration
(mg/kg)
1.5
1.5
1.5
1.5
2+
Percent
Recovery
112
112
112
112
3*
Accuracy
Correction
Factor
1.0
1.0
1.0
1.0
4
Corrected
Concentration
(mg/kg)
1.500
1.500
1.500
1.500
5
Log
Transform
0.405
0.405
0.405
0.405
X =
1.500
y = 0.405
s = 0.000
1 - Obtained from the Onsite Engineering Report, John Zinc Company for K102, Table 5-7.
2 - Obtained from the Onsite Engineering Report, John Zinc Company for K102, Table 6-t5.
+ - Values are actually the average of all volatiles.
3 - Accuracy Correction Factor = 100 / Percent Recovery.
* - Corrected concentration cannot be below the detection limit;
therefore, the accuracy factor is adjusted to 1.0.
4 - Corrected Concentration = Kiln Ash Concentration X Accuracy Correction Factor.
5 - Log Transform using the natural logarithm. In, of the Corrected Concentration.
Treatment Standard = Corrected Kiln Ash Mean X VF
VF = 2.8 (as explained in Appendix A)
Treatment Standard = Corrected kiln Ash Mean X VF
= 1.500 X 2.8
= 4.200 mg/kg
Appendix 0-6
-------
APPENDIX D
Calculation of Treatment Standards for K102 Nonwastewaters
Constituent: 2-Nitrophenol
Kiln Ash 1
Sample Set Concentration
(mg/kg)
1 1.0
2 1.0
3 1.0
4 1.0
Percent 2+
Recovery
21
21
21
21
Accuracy 3
Correction
Factor
4.76
4.76
4.76
4.76
X
Corrected
Concentration
(mg/kg)
4.760
4.760
4.760
4.760
= 4.760
4
Log 5
Transform
1.560
1.560
1.560
1.560
y = 1.560
s = 0.000
1 - Obtained from the Onsite Engineering Report for John Zink Company for K102, Table 5-3
through 5-6.
2 - Obtained from the Onsite Engineering Report for John Zink Company for K102, Table 6-16.
+ - Values are actually the value for the isomer 4-Mitrophenol.
3 - Accuracy Correction Factor = 100 / Percent Recovery.
4 - Corrected'Concentration = Kiln Ash Concentration X Accuracy Correction Factor.
5 - Log Transform using the natural logarithm. In, of the Corrected Concentration.
Treatment Standard = Corrected Kiln Ash Mean X VF
VF = 2.8 (as explained in Appendix A)
Treatment Standard = Corrected Kiln Ash Mean X VF
= 4.760 X 2.80
= 13.328 mg/kg
Appendix 0-7
-------
APPENDIX D
Calculation of Treatment Standards for K102 Monwastewaters
Constituent: Phenol
1
Ki In Ash
Sample Set Concentration
(mg/kg)
1 1.0
2 1.0
3 1.0
4 1.0
2
Percent
Recovery
61
61
61
61
3
Accuracy
Correction
Factor
1.64
1.64
1.64
1.64
X
4
Corrected
Concentration
(mg/kg)
1.640
1.640
1.640
1.640
1.640
5
Log
Transform
0.495
0.495
0.495
0.495
y = 0.495
s = 0.000
1 - Obtained from the Onsite Engineering Report, John Zinc Company, Table 5-7.
2 - Obtained from the Onsite Engineering Report, John Zinc Company, Table 6-16.
i
3 - Accuracy Correction Factor = 100 / Percent Recovery.
4 - Corrected Concentration = Kiln Ash Concentration X Accuracy Correction Factor.
5 - Log Transform using the natural logarithm. In, of the Corrected Concentration.
Treatment Standard = Corrected Kiln Ash Mean X VF
VF = 2.8 (as explained in Appendix A)
Treatment Standard = Corrected Effluent Mean X VF
= 1.640 X 2.8
= 4.592 mg/kg
Appendix D - 8
-------
APPENDIX D
Calculation of Treatment Standards for K101 Wastewaters
Constituent: 2-Nitroaniline
Sample Set
1
2
3
4
Effluent 1
Concentration
(mg/l)
0.050
0.050
0.050
0.050
Percent
Recovery
53
53
53
53
Accuracy 3
2+ Correction
Factor
1.89
1.89
1.89
1.89
X
Corrected
Concentration
(mg/l)
0.095
0.095
0.095
0.095
= 0.095
4
Log 5
Transform
-2.354
-2.354
-2.354
-2.354
y = -2.354
s = 0.000
1 - Obtained from the Onsite Engineering Report for John Zink Company, Tables 5-3 to 5-6.
2 - Obtained from the Onsite Engineering Report for John Zink Company, Table 6-19.
+ - Values are actually the average of all semivolatiles.
3 - Accuracy Correction Factor = 100 / Percent Recovery.
4 - Corrected Concentration = Effluent Concentration X Accuracy Correction Factor.
5 - Log Transform using the natural logarithm. In, of the Corrected Concentration.
Treatment Standard = Corrected Effluent Mean X VF
VF = 2.8 (as explained in Appendix A)
Treatment Standard = Corrected Effluent Mean X VF
= 0.095 X 2.8
= 0.266 mg/l
Appendix D - 9
-------
APPENDIX 0
Calculation of Treatment Standards for K102 Wastewaters
Constituent: 2-Nitrophenol
Sample Set
1
2
3
4
5
6
Effluent 1
Concentration
(nig/ 1)
0.010
0.010
0.010
0.010
0.010
0.010
Percent
Recovery
113
113
113
113
113
113
Accuracy 3*
2+ Correction
Factor
1.0
1.0
1.0
1.0
1.0
1.0
Corrected 4
Concentration
(mg/l)
0.010
0.010
0.010
0.010
0.010
0.010
Log 5
Transform
-4.605
4.605
-4.605
-4.605
-4.605
-4.605
0.010 y = -4.605
s = 0
1 - Obtained from the Onsite Engineering Report for John Zink Company, Tables 5-3 to 5-8.
2 - Obtained from the Onsite Engineering Report for John Zink Company, Table 6-19.
+ - Values are actually for the isomer 4-nitrophenol.
3 - Accuracy Correction Factor = 100 / Percent Recovery.
* - Corrected concentration cannot be below the detection limit;
therefore, the accuracy factor is adjusted to 1.0.
4 - Corrected Concentration = Effluent Concentration X Accuracy Correction Factor.
5 - Log Transform using the natural logarithm, In, of the Corrected Concentration.
Treatment Standard = Corrected Effluent Mean X VF
VF = 2.8 (as explained in Appendix A)
Treatment Standard = Corrected Effluent Mean X VF
= 0.010 X 2.80
= 0.028 mg/l
Appendix D - 10
-------
APPENDIX D
Calculation of Treatment Standards for K101 and K102 Uastewaters
Constituent: Arsenic
Effluent
Sample Set Concentration
(mg/l)
1 0.415
2 2.000
3 0.513
4 0.418
5 0.440
I
Percent 2
Recovery
143
143
143
143
143
Accuracy 3
Correction
Factor
0.70
0.70
0.70
0.70
0.70
X
Corrected
Concentration
(mg/l)
0.291
1.400
0.359
0.293
0.308
0.530
4
Log 5
Transform
-1.234
0.336
-1.024
-1.228
-1.178
y = -0.866
s = 0.677
1 - Obtained from the Onsite Engineering Report for 0004, Table 5-15
2 - Obtained from the Onsite Engineering Report for D004, Table 6-14
3 - Accuracy Correction Factor = 100 / Percent Recovery.
4 - Corrected Concentration = Effluent Concentration X Accuracy Correction Factor.
5 - Log Transform using the natural logarithm, In, of the Corrected Concentration.
Treatment Standard = Corrected Effluent Mean X VF
Calculation of Variability Factor (VF):
C = exp (y + 2.33s)
where y = the mean of the log transforms
s = the standard deviation of the log transforms.
Therefore, C = exp (-0.866 + 2.33(0.677))
= exp (0.711)
= 2.036
and VF = C / x
where x = the mean of the corrected effluent concentrations.
Therefore, VF = C / x
= 2.036 / 0.530
= 3.842
Treatment Standard = Corrected Effluent Mean X VF
= 0.530 X 3.842
= 2.036 mg/l
Appendix D - 11
-------
APPENDIX D
Calculation of Treatment Standards for K101 and K102 Wastewaters
Constituent: Cadmium
Sample Set
1
2
3
4
5
Effluent 1
Concentration
(mg/l)
0.080
0.080
0.080
0.080
0.080
Percent 2
Recovery
94
94
94
94
94
Accuracy 3
Correction
Factor
1.06
1.06
1.06
1.06
1.06
Corrected 4
Concentration
(mg/l)
0.085
0.085
0.085
0.085
0.085
Log 5
Transform
2.465
-2.465
-2.465
-2.465
-2.465
X =
0.085 y = -2.465
s = 0.000
1 - Obtained from the Onsite Engineering Report for D004, Table 5-15
2 - Obtained from the Onsite Engineering Report for D004, Table 6-14
3 - Accuracy Correction Factor = 100 / Percent Recovery.
4 - Corrected Concentration = Effluent Concentration X Accuracy Correction Factor.
5 - Log Transform using the natural logarithm, In, of the Corrected Concentration.
Treatment Standard = Corrected Effluent Mean X VF
Calculation of Variability Factor (VF):
C = exp (y + 2.33s)
where y = the mean of the log transforms
s = the standard deviation of the log transforms.
Therefore, C = exp (-2.465 + 2.33(0.0))
: = exp (-2.465)
= 0.085
and VF = C / x
where x = the mean of the corrected effluent concentrations.
Therefore, VF = C / x
= 0?085 / 0.085
= 1.0
A variability factor of one was not used in calculating the treatment standards.
The variability factor of 2.80 was substituted for the value 1.
Treatment Standard = Corrected Effluent Mean X VF
= 0.085 X 2.80
= 0.238 mg/l
Appendix D - 12
-------
APPENDIX D
Calculation of Treatment Standards for K101 and K102 Wastewaters
Constituent: Lead
Effluent 1
Sample Set Concentration
(mg/l)
1 0.005
2 0.029
3 0.025
4 0.010
5 0.025
I
Percent 2
Recovery
84
84
84
84
84
Accuracy 3
Correction
Factor
1.19
1.19
1.19
1.19
1.19
X
Corrected 4
Concentration
(mg/l)
0.006
0.035
0.030
0.012
0.030
0.023 y
s
Log 5
Transform
-5.116
-3.352
-3.507
-4.423
-3.507
= -3.981
= 0.763
1 - Obtained from the Onsite Engineering Report for D004, Table 5-15
2 - Obtained from the Onsite Engineering Report for 0004, Table 6-14
3 - Accuracy Correction Factor = 100 / Percent Recovery.
4 - Corrected Concentration = Effluent Concentration X Accuracy Correction Factor.
5 - Log Transform using the natural logarithm. In, of the Corrected Concentration.
Treatment Standard = Corrected Effluent Mean X VF
Calculation of Variability Factor (VF):
C = exp (y + 2.33s)
where y = the mean of the log transforms
s = the standard deviation of the log transforms.
Therefore, C = exp (-3.981 + 2.33(0.763))
= exp (-2.203)
= 0.110
and VF = C / x
where x = the mean of the corrected effluent concentrations.
Therefore, VF = C / x
= o!l10 / 0.023
= 4.783
Treatment Standard = Corrected Effluent Mean X VF
= 0.023 X 4.783
= 0.110 mg/l
Appendix D - 13
-------
APPENDIX D
Calculation of Treatment Standards for K101 and K102 Wastewaters
Constituent: Mercury
Sample Set
1
2
3
4
5
Effluent 1
Concentration
(mg/l)
0.001
0.004
0.009
0.004
0.006
Percent 2
Recovery
95
95
95
95
95
Accuracy 3
Correction
Factor
1.05
1.05
1.05
1.05
1.05
Corrected 4
Concentration
(mg/l)
0.001
0.004
0.009
0.004
0.006
Log 5
Transform
-6.908
-5.521
-4.711
-5.521
-5.116
0.005 y = -5.555
s = 0.827
1 - Obtained from the Onsite Engineering Report for 0004, Table 5-15
2 - Obtained from the Onsite Engineering Report for 0004, Table 6-14
3 - Accuracy Correction Factor = 100 / Percent Recovery.
4 - Corrected Concentration = Effluent Concentration X Accuracy Correction Factor.
5 - Log Transform using the natural logarithm. In, of the Corrected Concentration.
Treatment Standard = Corrected Effluent Mean X VF
Calculation of Variability Factor
-------
APPENDIX E
THERMAL CONDUCTIVITY
The comparative method of measuring thermal conductivity has
been proposed as an ASTM test method under the name "Guarded,
Comparative, Longitudinal Heat Flow Technique". A thermal heat
flow circuit is used which is the analog of an electrical circuit
with resistances in series. A reference material is chosen to
have a thermal conductivity close to that estimated for the
sample. Reference standards (also known as heat meters) having
the same cross-sectional dimensions as the sample are placed
above and below the sample. An upper heater, a lower heater, and
a heat sink are added to the "stack" to complete the heat flow
circuit. See Figure. 1.
The temperature gradients (analogous to potential
differences) along the stack are measured with type K
(chromel/alumel) thermocouples placed at known separations. The
thermocouples are placed into holes or grooves in the references
and also in the sample whenever the sample is thick enough to
accommodate them.
For molten samples, pastes, greases, and other materials
that must be contained, the material is placed into a cell
consisting of a top and bottom of Pyrex 7740 and a containment
ring of marinite. The sample is 2 inch in diameter and .5 inch
Appendix E - 1
-------
GUARD
GRADIENT
STACK
GRADIENT"
THERMOCOUPLE
CLAMP
BOTTOM
REFERENCE
SAMPLE
LOWER; STACK
HEATER
LIQUID COOLED
HEAT ISINK
HEAT FLOW
DIRECTION
UPPER
GUARD
HEATER
K
LOWER
GUARD
HEATER
FIGURE 1 SCHEMATIC DIAGRAM OF THE COMPARATIVE METHOD
Appendix E - 2
-------
thick. Thermocouples are not placed into the sample but rather
the temperatures measured in the Pyrex are extrapolated to give
the temperature at the top and bottom surfaces of the sample
material. The Pyrex disks also serve as the thermal conductivity
reference material.
The stack is clamped with a reproducible load to insure
intimate contact between the components. In order to produce a
linear flow of heat down the stack and reduce the amount of heat
that flows radially, a guard tube is placed around the stack and
the intervening space is filled with insulating grains or powder.
The temperature gradient in the guard is matched to that in the
stack to further reduce radial heat flow.
1
The comparative method is a steady state method of measuring
thermal conductivity. When equilibrium is reached, the first
flux (analogous to current flow) down the stack can be determined
from the references. The heat into the sample is given by
Qin =
and the heat out of the sample is given by
Qout = Abottom
-------
where
A = thermal conductivity
dT/dx = temperature gradient
and top refers to the upper reference while bottom refers to the
lower reference. If the heat was confined to flow just down the
stack, then Q. and Q . would be equal. If Q. and Q ^
in out ^ ~m xout are in
reasonable agreement, the average heat flow is calculated from
Q -
The sample thermal conductivity is then found from
sample = Q/(dT/d*) sample
The result for the K102 Activated Charcoal Waste tested is
given in Table 1. The sample was held at an average temperature
of 42 °C with a 53 °C temperature drop across the sample for
approximately 20 hours before the temperature profile became
steady and the conductivity measured. At the conclusion of the
test, it appeared that some "drying" of the sample had occurred.
The result for the K101 waste tested is given in Table 1.
The sample was held at an average temperature of 39 °C with a 39 "C
temperature drop across the sample for approximately 4 hours
Appendix E - 4
-------
before the temperature profile became steady and the conductivity
measured. At the conclusion of the test, it appeared that some
"drying" of the sample had occurred. Bubbles had formed in the
sample and migrated to the top of the sample in contact with the
upper reference. Approximately 15% of the upper Pyrex reference
was not in contact with the sample when thermal equilibrium was
reached. Thus, the conductivity given in Table 1 may be low by 5
to 10%.
TABLE 1
THE RESULTS OF THE MEAUREMENT .OF THE THERMAL
CONDUCTIVITY USING THE COMPARATIVE METHOD
Sample ( Temperature Thermal
Conductivity
(°C) (W/mK)*
K101 Waste 39
.273
K102 Activated
Charcoal Waste 42 .136
*1 W/mK = 6.933 BTU in/h ft? °F = .5778 BTU/h ft °F
Appendix E - 5
-------
Appendix F
i
.Continuous Emissions Monitoring Report
and
Strip Charts for Engineering Site Visit
-------
Results of Arsenic Emissions Sampling
and Continuous Emissions Monitoring for K101 and K102 Waste Incineration
At
John Zink Company, Tulsa, OK
Prepared By:
Darrell Doerle, Scientist
Process Engineering
Radian Corporation
P.O. Box 13000
Research Triangle Park, NC 27709
February 5, 1988
-------
Arsenic Emissions Sampling and Continuous
Emissions Monitoring At John Zink
1.0 INTRODUCTION
2.0 ARSENIC EMISSIONS SAMPLING
3.0 SAMPLE ANALYSIS
4.0 ARSENIC SAMPLING RESULTS
5.0 CONTINUOUS EMISSIONS MONITORING
APPENDIX: TEST SUMMARIES AND RAW DATA FROM ARSENIC SAMPLING
-------
1.0 INTRODUCTION
Radian Corporation was contracted by Versar, Inc. to provide
arsenic emissions sampling and continuous emissions monitoring at the
John Zink Company's Tulsa, Oklahoma facility during the week of
December 1, 1987. This work was performed in association with the EPA's
program to develop treatment standards for wastes subject to land disposal
restrictions. Radian Corporation's sampling efforts were conducted under the
direction of Darrell Doerle and coordinated with the project manager,
Mr. Robert Morton, of the Jacobs Engineering Group, Inc. The purpose of the
emissions sampling was to monitor arsenic emissions created by incineration of
the arsenic containing hazardous waste K102. The continuous emissions
monitoring provided documentation of CO, C0?, 0?, and total hydrocarbon
emissions from the afterburner during incineration of wastes K102 and K101.
The following is a brief discussion of the sampling and analytical procedures
used as well as presentation of the results.
2.0 ARSENIC EMISSIONS SAMPLING
Three flue gas (emissions) samples were taken during the
incineration of waste K102 for the determination of arsenic emissions. Total
arsenic emissions are reported in the form of arsenic trioxide at the request
of the State of Oklahoma. Samples were taken in accordance with protocols
delineated in EPA Method 108 (Code of Federal Regulations Part 61, Appendix
B).
Pallflex filters (type 2500 QAT-UP) were used for particulate
phase collection of arsenic. These filters were selected for their low metals
content as well as applicability to EPA Method 5 particulate sampling. Filter
temperature was maintained at 248° + 25°F for all samples. An effort was made
to keep filter temperatures at the hotter end of the allowable range due to
the low stack temperature and high moisture content. Figure 1-1 illustrates
the sampling train that was used.
cah.010
-------
Water
Silica Gal
Tharmomatar
Check Valva
Tharmocoupl
Typa Pilot
Thermometer*
Orifice
Stack Waller
Vacuum Llna
Dry Ga» Air-Tight
Matar Pump
Figure 1-1 Components of the EPA Method 108 sampling train
-------
.Feed
Cyclone
After Burner
Ash Basin
CEM
PORT
Fan
Scrubber
I
Mnal Combustion
Chamber
\ /Arsenic
Sampling Location
Exhaust
Figure 1-2. Gas Flow Schematic
-------
Samples were taken in a twelve inch vertical duct located
approximately 30 feet downstream of the scrubber outlet and 12 feet upstream
of the final combustion chamber (Figure 1-2). Access to the gas stream was
through two three inch ports set at 90° to each other and located eight feet
downstream, three feet upstream from the nearest gas flow disturbance. Six
points were sampled per port for five minutes each (60 minute test) for each
of the three emissions samples'that were collected. A schematic of the test
matrix is shown in Figure 1-3.
At the beginning of the incineration test burn, there was a
three hour supply of K102 waste for incinerator feed. In order to allow for
time between collection of emissions samples and possible sampling problems,
collection of the second sample was started halfway through collection of the
first sample (at the port change). Collection of the third emission sample
began following completion of the second sample.
<
After sample collection the sampling train impingers were weighed
for gravimetric moisture determination. The trains were then recovered in the
following three components:
1) 0.1N NaOH rinses of probe, nozzle, and front half glassware;
2) filter;
3) back half impinger catch and 0.1N NaOH rinses of back half
glassware.
Recovery containers were sealed, labeled, and logged into a master
sample log book.
3.0 SAMPLE ANALYSIS
Samples to be analyzed for arsenic were taken to Carl a Lance of
National Analytical Laboratories (NAL) in Tulsa, Oklahoma. Due to the high
amount of arsenic found in the samples, NAL performed inductively coupled
argon plasma spectroscopy (ICAP) to provide higher resolution over a wider
range of concentrations than would be possible by atomic absorption
cah.010
-------
Port
.'A
x 1
Diameter = 12'
* 2
* 3
X
I
tPort
8-
9 ? stance ' to WalT
0.5" ____
3.6"
8.4"
10.25"
11.5"
Figure 1-3. Cross Sectional Schematic
of Emission Sampling Location
-------
spectroscopy. Prior to analysis front half fractions were combined into one
fraction, as were back half fractions. Analysis was then performed to
determine total front half arsenic and total back half arsenic for each of the
three samples collected.
4.0 ARSENIC SAMPLING RESULTS
The results of the arsenic testing can be found in Table 3-1.
Complete test summaries and the raw data are found in the appendix. In
calculating arsenic trioxide emissions from total arsenic emissions, it was
assumed all arsenic was oxidized to As203 in the final combustion chamber. As
shown in the table, the arsenic trioxide emission rate ranged from 0.0067 to
0.0139 kg/hr. The following two factors may have contributed to the apparent
rise in arsenic emissions rates over time:
1) Feed of K102 waste to the incinerator began approximately
2,0 minutes after the stack samplers were instructed to begin
.collection of the first arsenic emissions sample; however,
the emission rates were calculated based on the total time
period for arsenic sample collection;
2) Scrubber water was recycled without addition of make-up
water during the entire emission sampling period for K102
waste.
5.0 CONTINUOUS EMISSIONS MONITORING
Continuous emission monitoring was performed at the afterburner
outlet location for 02, COp, CO, and total hydrocarbons (THC). The sampling
location is shown on Figure 1-2. The continuous monitoring was performed for
the duration of the test burns of K102 waste and K101 waste. The primary
intent of continuous monitoring was to: 1) observe fluctuations in flue gas
parameters, and 2) provide documentation of combustion conditions.
cah.010
-------
Sample acquisition was accomplished using an in-stack ceramic
probe filtered with an out-of-stack Balstron filter. The sample was
D
transported to the mobile laboratory using a heated Teflon sample line,
maintained at a temperature >120°C. Flue gas analyzed for CL, CCL, and CO was
first pumped through a sample conditioner to knock out moisture, providing
analysis on a dry basis. A separate, unconditioned gas sample was supplied to
the THC analyzer for wet basis analysis. The concentrations were continuously
recorded on stripcharts.
and THC:
The following instruments were used to analyze for CO, C0?, 0?,
Carbon Monoxide (CO) Beckman Model 865
Concentration Infrared Analyzer;
Range 0-500 ppm
i
Carbon .Dioxide (CO,,) Beckman Model 865
Concentration Infrared Analyzer;
Range 0-20%
Oxygen (02) Thermox
Concentration WDG AMETEK;
Range 0-25%
Total Hydrocarbon (THC) Beckman Model 402
Concentration Flame lonization Detector
Range 0-100 ppm
Copies of all continuous emission data were given to the EPA work
assignment manager, Mr. Juan Baez-Martinez, prior to leaving the test site.
cah.010
-------
TABLE 3-1. SUMMARY OF RESULTS OF ARSENIC EMISSIONS SAMPLING
Arsenic Emissions
cah.010
Arsenic
Emissions
Flow Total Arsenic As AS90,
Sample % 0, % H,0 ACFM DSCFM #/hr kg/hr #/hr kg/fir
c.
1 6.1 53.7 1686 630 .0111 .0050 .0147 .0067
2 6.1 56.0 1736 615 .0181 .0082 .0239 .0108
3 5.7 55.5 1695 060 .0231 .0105 .0305 .0139
-------
APPENDIX
cah.010
-------
SOURCE:
METHOD C2 5
PLANT
PLANT SITE
SAMPLING LOCATION
TEST tt
DATE
TEST PERIOD
JOHN ZINK
TULSA , OK
SCRUBBER OUTLET
BOAT-J Z-I 201-AS-U i
12/01/37
1725-1830
PARAMETER
VALUE
Sampling time (min.)
Barometric Pressure (in.Hg)
Sampling nozzle diameter (in.,1
neter Volume ecu. -ft.)
Meter Pressure (in.H20)
rleter Temperature (F)
S tac k d i mens i on ( sq . i n . .<
Stack Static Pressure (in.H2(J)
3 Lack lloicjturs Collected vqm.>
Absolute stack pressure (in Hg>
Hverage stack temperature (F)
Percent C02
Percent 02
Percent N2,
Delps Subroutine result
DGM Factor
Pi tot Constant
60
29.57
.376
36.337
1.225
/4.B3335
11 3 . 0976
1 . <+
d78.^
29.o7294
IS9.0833
8.5
6. 1
85.4
13.12519
1.0051
.84
* Although Method 108 was used for arsenic sampling, EPA Methods 2-5
were used to calculate gas flow and emission rates as shown in the
sample calculations to follow.
-------
Iftixi SOURCE TEST
METHODS ZZ S
!= I l\lftL_ RESULTS
JOHN ZINK
TULSA , DK
SCRUBBER OUTLET
BDAT-J Z-1201-AS-01
12/01/87
1725-1830
PLANT
PLANT SITE
SAMPLING LOGAT ION
TEST #
DATE
TEST PERIOD
PARAMETER RESULT
Vm(dsct:) 35.74246
Vm(dscm) l.O12226
Vw gas (set.) 41.40713
Vw gas (scm) 1.17265
'/. moi sture 53. 67123
Md .4632877
MWd 29.^04
MW J3..:./399
V3(fpm,' 2147.268
Vs Cmpm) 654.ob5
Flow(acfni) 1686.464
K1 ow (ac mm; 47. 76O6 /
Flowldscfm; 630.3191
Fl aw (.dscrnm) 17.B5064
X I 96.31988
'/. EA 37.09199
Program Revisi on: 1/16/84
-------
r i CLJI
PLANT
PLANT SITE
SAMPLING LOCATION
TEST ₯f
DATE
TEST PERIOD
SOURCE
L-OiQiO I N(3
JOHN ZINK
TULSA , OK
SCRUBBER OUTLET
BDAT-JZ-1201-AS-01
12/01/87
1725-1830
PARAMETER
FRONT-HALF
TRAIN TOTAL
Total Grams
Grams/dsct
Grams/ act
drai ns/dscf
Grai ns/act
'jr.s.ns/ dscm
0. U041SOO
0.0001169
0. O000437
0.001S045
0. OOO6744
0. 00411:94
0.0047580
0 . 000 1 33 1
O.OOOU49S
0.0020540
0.000/0/7
O. 0047004
!-'auna 3.' aact
Paunns,' act
i:aun J s/ Hr
>" i 1 cjqr sins/ Hr
O. '.."JUUOU i
O. 009 7524
0. u0442"J 7
O. '
0. UOUUf'Oi
o. oil lolo
O. 0050351-
Program Revisi on:1/16/84
-------
SOURCE: TEST
< IR
T e m p e r a t ur s ' l~" .'
cl ,i men = i on , 3tj . : n . )
<,in.,'
Meter
Meter
b tack
stack
LH.H20)
pressure(in
ernperatura
Hq;
Static:
Moisture L,O 11 acred '.gm,1
Absolute stacl.
Average stack
Percent C02
Percent 02
Percent N2
Delps Subroutine result
DGM Factor
Pi tot Constant
60
29.57
.375
81.953ot
1. 4
29.67294
191.25
3.5
6. 1
S5.4
13.434t>8
1. 005e>
.84
-------
PLANT
PLANT SITE
SAMPLING LOCATION
TEST tt
DATE
TEST PERIOD
SOURCE
METMODS SS
RESULTS
JOHN ZINK
fULSA , OK
SCRUBBER OUTLET
BDAT-JZ-.L201-AS-02
12/01/87
1802-1905
PARAMETER RESULT
Vm 17.40902
7. I 99.85988
/I EA 37.09199
Program Revisi on:1/16/84
-------
R: *=» r> i ^ N SOURCE:
METHOD 5
ICLJLi^TE L-O^O I
PLANT
PLANT SITE
SAMPLING LOCATION
TEST *
DATE
TEST PERIOD
JOHN ZIMK
TULSA , OK
SCRUBBER OUTLET
BOAT-J Z-1201-AS-02
12/01/87
1302-1905
PARAMETER
FRONT-HALF
TRAIN TOTAL
Total Grams
Srams/dscf
brams/act
Grains/ dsc f
brai ns/ act
i;r ams,' dscm
S-'aunds/ dsc f
Founds /act
Pounds/ Hr
Ki 1 ograms/Hr
0.U0730UO
O.OOU2031
U. (J000719
0. 00-:'131'4
O. i.101 1095
0. '.'071 70o
u.uo253d9
i.'. UOOOOO4
U.OU00002
0.0165157
0.0074915
U.U079850
0.0002221
O.00007S7
'..'. 0034275
0. UO1-1106
O.O07S4J4
'J. UO27771
0.U000005
O.OOOOO02
0.0180655
O.OO81°44
Program Ravi si on:1/16/84
-------
I «^|xl SOURCE TEST-
ER'^ MfcE-TMOD S S
JOHN 2INK
TULSA , OK
SCRUBBER OUTLET
BOAT-J Z-1201-AS-0
12/01/87
1920-2024
PLANT
PLANT SITE
SAMPLING LOCATION
TEST #
DATE
TEST PERIOD
PARAMETER
VALUE
Meter
Meter
5tacK
^ tack
Sampling time (mm.)
Barometric Pressure dn.Hg;
Sampling nozzle diameter nn.)
Meter Volume (cu.tt.)
Pressure (in.H^G)
Temperature ',;-;
dimension , sq.iii./
Static Pressure iin.H^u;
Moisture Lollected (gin)
absolute stack pressure (in Hg;
Average '.r;tack Lemper attire vF)
Percent C02
Percent 02
Percent IM2
Delps Subroutine result
DGM Factor-
Pi tot Constant
60
29.57
.376
35.993
1 . 2208 J.3
71.70333
113. 0'7.'C3
1.3
V42.B
29.66559
190.75
10. 3
5. 7
34
13.16211
1.0051
.84
-------
^M SOUROIEE
METHODS S
PLANT
PLttNT SITE
SAMPLING LOCATION
TEST #
DATE
TEST PERIOD
TEST
JOHN ZINK
TUL3A , OK
SCRUBBER OUTLET
BDAT-JZ-1201-AS-U3
12/01/87
1920-2024
PARAMETER
«ESUL
Vm(dsct)
Vm ( dscm )
Vw gas t set )
Vw gas tscmJ
7. mo i <: t tir e
Md
MWd
nw
Vs(tpm;
Vs (mp.n;
Flow^acfm)
F 1 ow U\c/nm ;
Flow Cdsctrn,'
Flow(dscmm)
7. I
'/. EA
35.61675
1 . 00866
-------
^M SOLJFtOEE
MET"HOE> 5
"TEST
PLANT
PLANT SITE
SAMPLING LOGATION
TEST #
DATE
TEST PERIOD
JOHN ZINK
TULSA , OK
SCRUBBER OUTLET
BDAT-JZ-1201-AS-03
12/01/87
1920-2024
PARAMETER
Total Grams
Grams/dscf
Brams/acf
Gr ains/dscf
Jrai ns/ acf
;.if--iins,- dscm
Ur^ma/ a cm
Pound s/dsc-^
Pounds /acf
Pounds/ Hr
K i 1 oqrams/Hr
FRONT-HALF
0. UOaSOOO
0. OOO23S7
0. OUU0854
O.U036324
o.vOUl/-'
O.o '-..'8 4 26 8
0. o O 00 002
0 . 0 1 9 1 48S
0.0086858
TRAIN TOTAL/A^) /I ^ \
0,010270O
0.0002383
0.0001u32
0.0044492
0.0015911
.'.01O1816
0. 00364.:, i
0. 00000'-.'6
O.OOO0002
0.0231362
0.0104945
.0505"
a 35
Program Rsvisi on: I/l6/t4
-------
PLANT
PLANT SITE
SAMPLING LOCATION
TEST *
DATE
TEST PERIOD
SOURCE TEST
METHOD 3 3
L_CLJI_rtT I ON
JOHN ZINK
TULSA , OK
SCRUBBER OUTLET
BOAT-J Z-1201-AS-03
12/01/87
1920-2024
1; Volume at dry gas sampled at standard conditions (68 dag-F ,29.92 in. Hg)
Y x Vm x CT(std; * 4601 x CPb + (Pm/13.6) ]
ViTR ^ r> L. CJ ) __._ ____«_____.___..__ ___.__
P
-------
T JL
TWO
5;Average Molecular Weight of DRY stack gas :
MWd = (.44 x 7.CC2) + (.32 x 7.02) + (.23 x 7.N2)
MWd = (.44 x 10.3 ) + i . 32 x 5.7 ) + (.28 x 84 ) = 29.876
a.1 average Molecular Weight o-f wee stack gas :
rtW = MWd x Md + 18(1 - Md,<
/iW -= JV.376 ,: .4448215 -f- LBCl -- .44482-15 J - 23.2827
. ; stack gas velocity in t-set-per-nu nute itpnu at stack ,:onaitions :
'a - K.pxCp :: CEQRT (dP) J -CaveJ- :: SORT CTs Lavq>;j x SORT Ci/(Hs:;MW)J x eosec.'.nin
«
Vs = tJ5.4V x .84 x 4?0 x 13.16211 x SQR1 L 1 / ( 29.6od59 X 23.2827 >3
Vs = 2157.385 FPrt
8) Average stack gas dry volumetric flow rate (DSCFM) :
','s x As x Md ;: T(3td) : Ps
, ) -J _ ^^
L*. 3U " -.«-^
144 cu. in./cu.-f t. x ( T<3 -1-460J :: P(std;
2137.885 x 113.0976 x .4448215 x528x 29.6o559
i'"t - -t .
L! aU ^ - _._.--____,»._-_________
144 x 650./5 x 29.92
Qsd = 606.4793 dscfm
-------
SAMPLE CALCULATION
Isokinetic sampling rate (%):
Dimensional Constant C = K4 x 144 x [l/(pI/4J]
k4 = .0945 For English Units
1% = C x Vmfstd) x (Ts + 460)
Vs x Tt x Ps x Md x (On) 2
1% = 1039.574 x 35.61675 x 650.75
2157.885 x 60 x 29.66559 x .4448215 x ( .376) 2
1% = 99.75398
Excess air (%):
EA = 100 x %02 100 x 5.7
(.264 x %N2) - %02 (.264 x 84) - 5.7
EA = 34.60
i
Participate concentration:
Cs = (grams As)./Vm(std) = .01027/35.61675
Cs = 0.0002883 Grams/DSCF
Ca = Tfstd) x Md x Ps x Cs
P(std) x Ts
Ca = 528 x .4448215 x 29.66559 x 0.0002883
29.92 x 650.75
Ca = 0.0001032 Grams/ACF
16 As/hr = Cs x 0.002205 x Qsd x 60
16 As/hr = 0.002883 x 0.002205 x 606.5 x 60
16 As/hr = .0231362
16 As9Cu = 16 As x 16 mole As x 16 mole As?0,, x 16 As
* J hr 16 As 2 16 mole AV 16 mol
16 As000 = 0.0231362 x 197.84
74.92 x 2
£.'3
16 As203 = 0.0305
cah.010
-------
PARAMETER
D i *=» N SOLJIRCE TEST
E F" rt MET MOOS S S
I M 1 T I OM OF=' TERMS
DEFINITION
Tt (min. )
Dn u n . )
Ps(in.H2Q)
Vm(cu. ft. )
Vw (gm. )
Pm(in.H20)
Tm(F)
Pb 1 1 n . Hcj . ;
/; LOT:
As isq . i n . ;
i's^F)
VmCdsc-f .'
V'm (dscm)
Vw gas i set)
7. moisture
Md
MWd
MW
Vsttpm)
Fl ow (act (TU
F'low (acmm>
Fl ow (dsctm)
Flaw (dscmm;
7. i
7. EA
DGM
Y
pg
Cp
dH
dP
*** EPA
STANDARD
CONDITIONS
TOTAL SAMPLING TIME
SAMPLING NOZZLE DIAMETER
ABSOLUTE STACK STATIC GAS PRESSURE
ABSOLUTE VOLUME OF GAS SAMPLE MEASURED BY DGM
TOTAL STACK MOISTURE COLLECTED
AVERAGE STATIC PRESSURE OF OGM
AVERAGE TEMPERATURE OF DGM
BAROMETRIC PRESSURE -
CARBON DIOXIDE CONTENT LJF STACK l^AS
OXYGEN CONTENT OF STACK GAS
NITROGEN COlMlfciMT OF STACK bAS
MVE. SQ. ROOT OF S-PITOT DIFF. PRESSURE-TEMP. PRODUCTS
CROSS-SECTIONAL AREA OF STACK(DUCT)
TEMPERATURE OF STACK
STANDARD VOLUME OF GAS SAMPLED ,Vm(std),AS DRY STD. CF
STANDARD VOLUME OF GAS SAMPLED,Vm(std),A3 DRY STD. CM
VOLUME OF WATER VAPOR IN GAS SAMPLE,STD
WATER VAPOR COMPOSITION OF STACK GAS
PROPORTION, BY VOLUME,OF DRY GAS IN GAS SAMPLE
MOLECULAR WEIGHT OF STACK GAS,DRY BASIS LB/LB-MOLE
MOLECULAR WEIGHT OF STACK GAS,WET BASIC LB/LB-MOLE
AVERAGE STACK GAS VELOCITY
STACK bAS FLOW RATE(ACTUAL STACK COND.)
STACK GAS FLOW RATE (ACTUAL. STACK COND.)
STACK GAS VOLUMETRIC FLOW RATE(DRY BASIS)
STACK GAS VOLUMETRIC FLOW RATE(DRY BASIS)
AVERAGE
AVERAGE
AVERAGE
AVERAGE
PERCENT
PERCENT
DRY GAS
DRY GAS
IN STACK GAS
1 SDKINET1C
EXCESS AIR-
METER
METER CORRECTION FACTOR
STACK STATIC GAS PRESSURE
PITOT COEFFICIENT
ORIFICE PLATE DIFF. PRESS. VALUE
PITOT DIFF. PRESS. VALUE
Temperature = 68 deg-F (528 deg-R)
Pressure = 29.92 in. Hg.
-------
NATIONAL ANALYTICAL LABORATORIES
A Division of
U.S.
POLLUTION
CONTROL. INC.
3. SCHWARTZ
VERGAR INC.
P.O. BOX .1549
SPRINGFIELD
UA 22151
REPORT NUMBER: L002008
SAMPLE IDENTIFICATION; 2330-0:1
CUSTOMER IDENTIFICATION: JZ-01 & -02
DATE SAMPLED: 12/01/87
TYPE OF MATERIAL: FILTER/LIQ
DATE RECEIVED: 12/02/87
DATE COMPLETED: 12/03/87
DEJL-LJLtiJLL
BESLiLJ.
ARSENIC (T)
FINAL U EIGHT OF FILTER
J.OC
2 UG
0,0001 GPAri'i
4380 (.!(>
8DL = BELOU DETECTION LIMIT
5324 West 46th Street South P.O. Box 9857 Tulsa. Oklahoma 74157-0857 (918) 446-1162
-------
NATIONAL ANALYTICAL LABORATORIES
A Division of
U.S.
POLLUTION
CONTROL. INC.
S. SCHWARTZ
VERSAR INC.
P.O. BOX 1549
SPRINGFIELD
'-JA 22151
REPORT NUMBER; 1.002008
PAGE
SAMPLE IDENTIFICATION: 2380-02
CUSTOMER IDENTIFICATION: JZ-03 & -04
DATE SAMPLED: 12/01/87
TYPE OF MATERIAL: LIQUID
A8AM£J.£R
B£L_J:iEJJiflfl
DATE RECEIVED: 12/02/87
DATE COMPLETED; 1J/03/37
O.EL.....L.1M.I.I
EESJJiJL
.KGENIC
-------
NATIONAL ANALYTICAL LABORATORIES
A Division of
U.S.
POLLUTION
CONTROL. INC.
B, SCHUARTZ
VERSAR INC.
P.O. BOX 1549
SPRINGFIELD
'v>A
22151
REPORT NUMBER; I..00200S
PAGE
SAMPLE I IDENTIFICATION: 2380-03
CUSTOMER IDENTIFICATION: JZ-05 & -06
DATE SAMPLED: 12/01/87
TYPE OF MATERIAL: FILTER./LIQ
S£F_i_J.*i£T±lQD
DATE RECEIVED: J.2/02/87
DATE COMPLETED; 12/03/87
QEL._.Ll±lLI
5ESIJJL1
(T)
u c-: i G H i' o F r i L r L: R
.03
:: uc-.
O.OOOJ. OR A
7300 Ub
11 \' f-\ n
BUL. = BELOW DETECTION LIMIT
5324 West 46th Street South P.O. Box 9857 Tulsa, Oklahoma 74157-0857 (918) 446-1162
-------
NATIONAL ANALYTICAL LABORATORIES
A Division of
m
U.S.
POLLUTION
CONTROL. INC.
S. SCHWARTZ
VERSAR INC.
P.O. BOX 1549
SPRINGFIELD
2215.1
REPORT NUMBER: L002008
PAGE
SAMPLE IDENTIFICATION: 2330-04
CUSTOMER IDENTIFICATION: JZ-07 & -08
DATE SAMPLED: 12/01/87
TYPE OF MATERIAL: LIQUID
DATE RECEIVED: 12/02/87
DATE COMPLETED: 12/03/87
fiEiUl. i.
2 Ub
ufDL = BC-ILOU DETECTION LIMIT
5324 West 46th Street South P.O. Box 9S57 Tulsa, Oklahoma 74157-0857 (918) 446-1162
-------
NATIONAL ANALYTICAL LABORATORIES
' A Division of
U.S.
POLLUTION
CONTROL. INC.
S. SCHWARTZ
VERSAR INC.
P.O. BOX 1549
SPRINGFIELD MA 22151
REPORT NUMBER; L00200S PAGE 5
SAMPLE IDENTIFICATION: 2:380-05 DATE RECEIVED: 12/02/87
CUSTOMER IDENTIFICATION; JZ-09 & -10 DATE COMPLETED; 12/03/87
DATE SAMPLED; 12/01/87
TYPE OF MATERIAL: FILTER/LIQ
,.aEad£I£R BEL_J:LEJHQD QEX^-UJULI RESULT.
HR;iL"NIC (T) 10(3 :.'' UG £'500 Uf;
rii'Vil. UC-IIGi-ir OF FILTER - 0 , 0001. G R A MS O-o.^i GPi-'-
BDL. = BELOW DETECTION LIMIT
5324 West 46th Street South P.O. Box 9857 Tulsa, Oklahoma 74157-0857 (918) 446-1162
-------
NATIONAL ANALYTICAL LABORATORIES
A Division of
U.S.
POLLUTION
CONTROL. INC.
S.
VERSAR INC.
P.O. BOX 1549
SPRINGFIELD
'.JA 22151
REPORT NUMBER: 1.002003
PAGE
SAMPLE I IDENTIFICATION: 2380-06
CUSTOMER IDENTIFICATION: JZ-11 & -12
DATE SAMPLED: 12/01/87
TYPE OF MATERIAL: LIQUID
JiKAJlETJ-LR
R££J_u£ItlQJl
DATE RECEIVED: 12/02/87
DATE COMPLETED: 12/03/87
RE-SilLI.
10S
1770
8DL = BELGU DETECTION LIMIT
5324 West 46th Street South P.O. Box 9857 Tulsa, Oklahoma 74157-0857 (918) 446-1162
-------
NATIONAL ANALYTICAL LABORATORIES
A Division of
U.S.
POLLUTION
CONTROL. INC.
S. SCHWARTZ
VERSAR INC.
P.O. BOX 1549
SPRINGFIELD
YA 22151
REPORT NUMBER: LOO 2 00 8
AGE
7
SAMPLE IDENTIFICATION; 2380-07
CUSTOMER IDENTIFICATION: JZ-13 H20 BLANK
DATE SAMPLED: 12/01/87
TYPE OF MATERIAL: LIQUID
DATE RECEIVED: 12/02/87
DATE COMPLETED: 12/03/87
BESilLI
i.RSENIC ', T>
.LOG
E>[iL
BDL = I3ELOU DETECTION LIMIT
5324 West 46th Street South P.O. Box 9857 Tulsa, Oklahoma 74157-0857 (918) 446-1162
-------
NATIONAL ANALYTICAL LABORATORIES
A Divis'ion of
m
U.S.
POLLUTION
CONTROL. INC.
S. SCHWARTZ
VERSAR INC.
P.O. BOX 1549
SPRINGf-TELO VA 22151
REPORT NUMBER; L002008 PAGE 8
SAMPLE IDENTIFICATION: 2380-08 DATE RECEIVED: 12/02/87
CUSTOMER IDENTIFICATION: JZ-J.4 NAOH BLANK DATE COMPLETE!:: 12/03/87
DATE SAMPLED: 12/01/37
TYPE OF MATERIAL: LIQUID
,.-.jJiAJ:i£I£R ELEILttEIfcLQfl LlEL,._LJj.lI.I BJJSLJU
.-ii".;Ci!lL" CT) 100 2 UG BDl LU'5
SELOU DETECTION LIMIT
5324 West 46th Street South P.O. Box 9857 Tulsa, Oklahoma 74157-0857 (918) 446-1162
-------
Date (DDMMYY):
Initials of Calibrator:
Nozzle
Idencificacion
No.
Di
( inches )
D:
(inches)
D3
Average
(inches) Diameter
r
(inches)
,/ $6
3/3
31
Note: The mfy'mvT" acceptable difference between any cvo measurements is
0.004 inches. If this tolerance cannot be met, the nozzle should not
be used.
Figure 5-2. Nozzle calibration sheet.
5-4
-------
Dace (DDMMYY) :
/V 7
Initials of Calibrator:
Note: The maximum acceptable difference between any two measurements is
0.004 inches. If this tolerance cannot be met, the nozzle should noc
be used.
Figure 5-2. Nozzle calibration sheet.
5-4
-------
RADIAN
X
:wL
.»
^1
eM
UJ -
5» j
SfiS8*"
* g » tu «
« ^ o » >- « w
isliiElxc*=
Su
iH
o
^
o ^
^ o
ofl
cr>S fi
Oci ^
Irl
s« --
-------
ORGANIC SAMPLING TRAIN RECOVERY SHEET
AT*
CUMHW
soutn ii«n
SOtWW HUM « «UU. MOM. CTtlM (ITMtS).
nut, fm m.i v HUH
COffAMt
MM:
TMt:
iO»ot* £^
21-0
riMVtt UK « 0*90X1
(SM.VUT IIBI)
KIM TM» (ue-ti
(Wt{): U* 4 UMl
. WINK* «. i
-------
RADIAN
-------
AoWw ^.»
CUM-W __
soivcin (IMS ' r
«IN 01 *mi. MKM. cmom
mat. mi wif or rtittt «JH
ORGANIC SAMPLING TRAIN RECOVERY SHEET
» ~O\
CMV1HT11C
MMH.:-
TA«:
FIMk.
T*K
mi-
'on ma tutniM.
CWAI«t i
OMTtlKI
«T MM
(SM lW>
IK. n, cwri
l-S.o.
r-.s
. 7
TOTAL
CAII Of IWIKCK (trim)
w\t> <
i«*>U Kl MCMIC COIUCTIOI CfUClUCT 1*« II COITtlMI
l*r fwuwr *n«lr-
"* Oncr4»l«>«
SI*)
n*t\
lmt(«r
M. dm
Initial
InltUI
*l. |(l*
MM)
Final
iKltlll
t. (tin'
FlKil
imtur"
« (»'
TOT*
852). J
Slr^rgr-
737.
«M«IU (Tottl ( )
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT_
DATE /.
COMMENTS:
fr 7
SAMPLING TIME (24-hr CLOCK)
SAMPLING LOCATION Ot/rt
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS)
ANALYTICAL METHOD.
AMBIENT TEMPERATURE.
OPERATOR
"\^^ RUN
GAS ^^-^
C02
02 (NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N£ (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
£<-/
/'
Ms'
NET
y.*'
6.0
3
ACTUAL
READING
NET
AVERAGE
NET
VOLUME
? * .
(>, (
MULTIPLIER
44/100
i _:::r
32/100
'." 1
a/100
^/lOO
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib/lb-mole
TOTAL zfl.b^
EPA (Dur) 230
4/72-
-------
VI
o
5
0
H»
O-
O
»
rr
iisii mi
\
-------
ORGANIC SAMPLING TRAIN RECOVERY SHEET
i7-t 01 111
vmt
SMVU Ml *
UUtIT IIRMS
mm
souurr m» OF mint. NOM. CTCIOM
FWM, («*l MHF OF FIlTt* MMCI
TMt:
ttsmrs
FUTCI
FIMH.:
r*K
FIWT NM.F iMTOTM.
nuwtfct u* wi M
tncrlftlxi
^^ J
M. »»(«
inttul
M. uln"
FlMl
ImtUf
FlMl
i«tti«r
M. MIO
FlMi
lnltUf"
M. Hid
tttnltl
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE
COMMENTS:
/
SAMPLING TIME (24 hr CLOCK)
SAMPLING LOCATION
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS).
ANALYTICAL METHOD & rt J <4-f~
AMBIENT TEMPERATURE
OPERATOR
\^ RUN
GAS ^\^
C02
02 - 7
MULTIPLIER
44/100
32/100
'" 1
a/ioo
a/ioo
TOTAL
t
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib/lb-mole
EPA (Dur) 230
4/72/
-------
J J I I I I I I I I I t I I I
-§-
I I i I I I I I I I 1 1
o
^G
-------
: i * i i i f 111 11 i i s
.L i. __ °
._. I . 4 -- -T _1~ ^~
_ -y-- - ->
-------
5 I I I I I I I I
I 1
till
-------
70
l
30'
I r.o
! I
?c
100
-Li
' 1 ,
1 ! !
. ; y
3
.- , i
! i
1 !
i
o ! ' :
01 . , r
I i ' '
MI
\l°
^^^
: ! ' 3
i i i i'
1 !
; | ,
Ml!
^
cj-1
1 ! \
)
0: . .
, , M
M:I
fck
W-
' 9
{ 1
1 ;
I
i
i 1 !
-5~~
1C" '
- T^
^*N(
'
>
o ; !
0 ,
I
;.J_4
L_L
110i°
-------
i i i i i i i i i i : : :
I I I I i t i i i I i i I
i^iV',
-------
.-1- --
T--'f-r.«.-«».f~
i
001
i
i
0
I i ,
001 !
08
02
08
I
oc
I
ov'
Of;
09 i
* Of.
-». '
J 'v.
*
<
:>:: '
H4
>:
oc
-------
-o-
o
-o-;
S I I I I f f
t I I
f t I I I I I I I I I I I I I I
-------
I I J I I
111111
- !
1
, i
; 1
1 1 _
-J
i
i
- ' ;
; o. ^
~~ }- r
i - i
~
'. f 1
: - - | >
i j '. ,
i : ^^b^i
i '.
> o o
"v 's n ui P^IUI
-------
-------
I I I I I I I I I I I I I I I I I I I t I )
-§-
S I I 3
I I I I i
..o..
C3
-------
l I I j ;
-------
-------
I I I
t f I i I I i I I I i i
I I I I I
-------
-------
f I I i I f I I I I I
! i I
-------
I 11 i
-------
I i i
i I t I i I i } I s i I 3
_^_ o _,
-------
Printed i:
4___ j. i
-------
I i i
III) III
-------
-------
-------
-------
-------
-------
100- -
fit 04ft* CO
-------
» t
I I I I I I
t I I I t I
-------
-------
9-c
I I I I MM
-g-o-
i i i i i i : i
_o_o.
o_o
-
o
'-O
'- ~_ir_L,
o o
~
V 'S -n "! pswud
t !*=«:
-------
' 4ir
-------
-------
* * 9 <
Printed in U. S. A
c-5-
1 I f t I f i-
-------
-------
-------
1 I I
N4"
____l_«Mt
-------
*
' ' t I I I I
-------
f I f
I I I I I
-------
__ i
-------
iII I I I J
1 I I t I
-------
Pr irvted in U. S A.
-------
-------
! I I I I I
I I i f I I I I I I I f f I I I
t I I I I M I t
-------
-i-i -"-r f- *--*--I---*--f(--' f t i i-* i i -
-------
( 11 i e c i i i t i i i i i
-------
-------
4 -
-------
r
-------
i ( t 1111111111111111111111 e e i i i t i i i i )
-------
i 11 i i I 11 i I i i 11 s i i 11 t i I I I i i t i a I
-------
111111111111 III Illllllllllllll
-------
I 5
i e i i i
i i e i t i t i 111 11 11
-------
o-o
o
T
-4
> i ;
EE |zi^ir +
i L>i i~
i i ^-'i
,: ,-
mj !|. _7_ L VL/_ '
; I - «. A I < . t«5R^
' ,
,__ " «
_ * . ^.
--;---
:
S
'
. .
»
-i
_
-
i i ; - c
' '' 1*' ""
* !* '
J1 1
;
}
1
1 o
i c
1
i
! '
- - "- ^
".3TZT CJI
*,
c
~c
__ _ c
;
L
3 - - ! - T-L
! 1
. r.^^41..
----'I ^iiA
i " \
%
' C^^*
7^^
c »o " *^ ~
> 0 | ,
1 1
1
!- ~ |~
j
r_
'~. IH i.HCT
L '"" :i r.
j u * <_
= o ,. . ;0*
. j j
R-fe5-^
^ ^;F
x £. \f^ >-
*^.\F:l±r
"^& 1
.-/, ^&
» ^ fr
- I w » 1t
I ' 1
i .J_ .; . ...i ; ..
ii.- .- ---» -
' *^'I, 1
^^k I
v .^-^ J
v_. y^
~cr\ -J'-c° - '
rT -C. - ^
'' 3: -5
>, _F -^.
^_ ..V-
fa C"
-? --^
^ 3--? -.:-
^01 ^
^ -|r -^
^- ~' ~" fi
S- ^ |
fe. !£*'*-
\ o
SL ~ 1 ~ 3
T- i^f-
5 J3 I
(T ^ T
"ii "" . . _. "_:.~ zz *r. | K ; rr >
^ I
, .^_ . , . ~*
> ,- , t «p» , » .
._ , i
r^ ^ ^
* J
U\ ~=±'-
QT
^T ^
Ciftttttitetl :,,::,,:
-------