-------
The results of the performance evaluation are quantitatively summarized by" Table 7-4.
The most notable points to be drawn from this table are the following:
1) The CFB suggest that the ADOM 2, ADOM 3 and GARB 0 models are the most
accurate models for small particles however the GARB model variants do
perform poorer for intermediate sized particles due to significant
underpredictions.
2) The overall most accurate model with the smallest CFB for larger particles seems
to be the UAM 2 and ADOM 1 models which seem to treat larger particles
considerably better than small ones.
3) All measures indicate that the ISC model consistently performs the worst of all of
the models with significant underpredictions of the deposition velocity.
Table 7-4 indicates that no single model does well for both small and larger particles. The
ADOM 3 model appears to do best for small particle diameters, while UAM 2 does the best for
larger particles. Both models provide significantly small fractional biases for both the average
and standard deviation. All models underpredict all measures of bias. The ISC model cannot
predict deposition for particles smaller than 0.1 microns since the deposition velocity is basically
set equal to zero by setting the reflection coefficient equal to 1. This effect results in the
extremely large CFB in Table 7-4 for the ISC model.
7.13 Stratification by Roughness Length
The roughness length figures prominently in most of the deposition models undergoing
evaluation. For small roughness lengths where a complex canopy is not present the models
would be expected to perform at their best The fractional and composite performance statistics
which are presented in Table 7-5 indicate the following points:
1) According to the CFB, the UAM 2 model performs in a superior manner
regardless of the underlying surface. The model produces underpredictions on
the average.
2) The statistical measures indicate that all models perform poorer over rough
surfaces than smooth ones as might be expected.
7-14
-------
Table 7-4
The first row is for particle diameters less than 0.1 microns, the second
0.1 to 20 microns. The rank is by CFB and the particle distribution is
Model Name Sanroles PBA FBSD
GARB 0
GARB 1
GARB 2
GARB 3
ADOM 1
ADOM 2
ADOM 3
UAM 1
UAM 2
ISC
13
155
13
155
13
155
13
155
13
155
13
155
13
155
13
155
13
155
13
155
0.100
1.042
0.899
1.077
0.641
0.991
1.186
0.787
0.971
1.006
0.925
1.156
0.443
0.916
1.673
0.970
1.500
0.583
1.998
1.849
1.435
0.846
1.827
0.839
1.669
0.756
1.591
0.815
1.622
0.439
0.856
0.942
0.232
0.895
1.895
0.601
1.761
0.542
2.000
1.717
is for particles in the range
for a uniform distribution.
CFB. Rank
0.768
0.944
1.363
0.958
1.155
0.874
1.388
0.801
1.297
0.723
0.891
1.049
0.337
0.905
1.784
0.786
1.630
0.562
1.999
1.783
2
7
6
8
4
5
7
4
5
2
3
9
1
6
9
3
8
1
10
10
7-15
-------
Table 7-5
A summary of the fractional and composite statistical measures for each of the models examined.
The first row is for roughness lengths less than 0.25 m, the second is for roughness lengths greater
than 0.25 m. The rank is by CFB and the particle size distribution is for a uniform distribution.
Model Name Samples FBA FBSD CFB.. Rank
GARB 0
GARB 1
GARB 2
GARB 3
ADOM 1
ADOM 2
ADOM 3
UAM 1
UAM 2
ISC
97
71
97
71
97
71
97
71
97
71
97
71
97
71
97
71
97
71
97
71
0.902
1.196
0.902
1.490
0.813
1.385
0.800
0.800
0.732
1.795
0.916
1.766
• 0.687
1.453
0.725
1.761
0.571,
0.691
1.789
1.999
0.846
1.263
0.846
1.765
0.763
1.631
0.793
1.356
0.446
1.614
0.970
1.747
0.925
1.700
0.616
1.920
0.521
1.068
1.720
2.000
0.874
1.229
0.874
1.628
0.788
1.508
0.796
1.078
0.589
1.705
0.943
1.756
0.806
1.577
0.671
1.840
0.546
0.879
1.754
1.999
3
3
7
6
4
4
5
2
2
7
9
8
6
5
3
9
1
1
10
10
7-16
-------
3) All measures indicate that the ISC model consistently performs poorest of all
models, regardless of surface, and always produces significant underpredictions as
noted from the large positive FB's.
The average deposition velocity for both rough and smooth surfaces is predicted best by UAM
2. The UAM 2 also predicts the variance of the deposition velocities under rough surfaces the
best, while ADOM 1 does this best for smooth surfaces. All models underpredict all measures.
7.1.4 Stratification by Leaf Area Index
Several hybrid models possess an explicit dependence of deposition velocity on Leaf
Area Index (LAI). The LAI for each observation was separated into complex surfaces (e.g.,
forests) where the LAI is 3 or greater and simple surface ceases where the LAI is less than 3
(e.g., grass). If LAI represents an appropriate increase in collection area, then adding a
adjustment for LAI should, in principle, improve model predictions. The normalized
performance measures summarized in Table 7-6.
From Table 7-6 we can note the following:
1) The UAM 2 model produces superior composite performance according to the
CFB regardless of LAI.
•
2) The CFB indicates that all models tend to perform poorer under
large LAI situations with a consequent increase in the average
magnitude of model residuals (e.g., FBA). -
3) The ISC model consistently performs the worst of all of the models regardless of
LAI
Both the average and standard deviations of the deposition velocity distribution are
underpredicted by all models. The UAM and ADOM family of models exhibit an improvement
for both small and large LAI samples. The results for the CARB family is mixed, with there
being no improvement for small LAI samples, but for large LAI samples the improvement is
dramatic.
7-17
-------
Table 7-6
The first row is for leaf area index (LAI) less than 3.0, the second is for LAI greater than 3.0. The
rank is by CFB and the particle size distribution is for a uniform distribution-
Model Name Samel es FBA FBSD CFB,. Rank
GARB 0
GARB 1
GARB 2
GARB 3
ADOM 1
ADOM 2
ADOM 3 '
UAM 1
UAM 2
ISC
105
63
105
63
105
63
105
63
105
63
105
63
105
63
105
63
105
63
105
63
0.844
1.422
0.902
1.572
0.304
1.499
0.326
0.738
0.743
1.915
0.935
1.817
0.711
1.469
0.760
1.765
0.609
0.610
1.798
1.999
0.856
1.800
0.350
1.867
0.769
1.847
0.790
1.552
0.449
1.979
0.963
1.861
0.918
1.616
0.612
1.912
0.515
1.237
1.719
2.000
0.850
1.611
0.876
1.720
0.787
1.673
0.308
1.145
0.596
1.947
0.951
1.839
0.814
1.543
0.686
1.838
0.562
0.923
1.759
1.999
7
4
3
6
4
5
5
2
2
9
9
8
6
3
3
7
1
1
10
10
7-18
-------
7.1.5 Stratification by Day vs Night
The particle deposition velocity is dependent on the degree of atmospheric turbulence
which in turn is dependent on the atmospheric stability. Atmospheric stability generally
undergoes a significant diurnal variation. At night turbulent transport is generally conducted
under neutral or stable conditions. Any day-night difference in performance is likely to be
directly connected with the aerodynamic resistance formulation utilized. From Table 7-7 which
summarizes the normalized and composite performance statistics, the following points can be
noted:
1) The CFB indicates that during the night the ADOM 1 model is the best
performing model while during the day the ADOM 3 model is best.
2) Models tend to perform better during the night than during the day. During the
day even typically good performing models such as UAM 2 perform markedly
poorer.
The fractional bias measures compiled in Table 7-7 suggests that ADOM 1 does quite
well for night samples for both the average and the standard deviation. During the day the
GARB 0 model has the smallest bias in the standard deviation, while the ADOM 3 model has
the smallest bias in the average. The ISC model performed the worst, and during the day
essentially showed no predictive skill
7.1.6 Stratification by Friction Velocity
Friction velocity is related directly to the vertical turbulent transport of momentum. In
addition, the friction velocity plays a role in determining the laminar boundary layer near the
surface. Consequently the friction velocity is a relatively important determinant of deposition
velocity. We have stratified the small particle cases into high and low friction velocity sets with
a threshold set to divide the sample into halves. The model performance statistics are presented
in Table 7-8. From this table we can make the following observations;
1) Based on CFB the UAM 2 model is the best performing model
regardless of friction velocity while ISC is the worst
2) CARB 3 is the next best performing model with its best
performance occurring under low friction velocity conditions.
7-19
-------
Table 7-7
A summary of the fractional and composite statistical measures for each of the models examined.
The first row is for night, the second is for day. The rank is by CFB and the particle size
distribution is for a uniform distribution.
Model Name Samples FBA FBSD CFB, Rank
GARB 0
GARB 1
GARB 2
GARB 3
ADOM 1
ADOM 2
ADOM 3
UAM 1
UAM 2
ISC
42
51
42
51
42
51
42
51
42
51
42
51
42
51
42
51
42
51
42
51
0.987
1.001
0.987
1.380
0.893
1.243
1.014
1.272
0.665
1.558
0.946
1.069
0.853
0.481
0.787
1.739
0.741
1.493
1.766
1.998
0.994
0.703
0.994
1.410
0.904
1.207
1.087
1.717
0.493
1.396
1.021
1.648
1.041
1.067
0.779
1.876
0.759
1.729
1.737
2.000
=*^c
0.991
0.852
0.991
1.395
0.899
1.225
1.051
1.495
0.579
1.477
0.984
1.358
0.947
0.774
0.783
1.808
0.750
1.611
1.752
1.999
8
2
7
5
4
3
9
7
1
6
6
4
5
1
3
9
2
8
10
10
7-20
-------
Table 7-8
The first row is for friction velocity less than 0.25 m/s, the second is
than OJ25 m/s. The rank is by CFB and the particle size distribution is
Model Name Samoles FBA FBSD
GARB 0
GARB 1
CARS 2
GARB 3
ADOM 1
ADOM 2
ADOM 3
UAM 1
UAM 2
ISC
58
110
58
110
58
110
58
110
58
110
58
110
58
110
58
110
58
110
58
110
1.116
0.966
1.135
1.056
1.036
0.964
0.806
0.799
1.522
0.914
1.103
1.155
0.770
0.923
1.151
0.960
0.801
0.572
1.933
1.838
0.773
0.859
0.772
0.843
0.670
0.764
0,769
0.821
1.047
0.406
1.001
0.925
1.011
0.867
0.604
0.590
0.511
0.550
1.798
1.709
for friction velocity greatei
for a uniform distribution.
CFB. Rank
0.944
0.913
0.954
0.949
0.853
0.864
0.787
0.810
1.285
0.660
1.052
1.040
0.890
0.895
0.878
0.775
0.656
0.561
1.865
1.774
6
7
7
8
3
5
2
4
9
2
3
9
5
6
4
3
1
1
10
10
7-21
-------
Of the core models ADOM 1 performs rather well under large friction velocity conditions, but is
the next to worst performer under small friction velocity conditions. The UAM 2 fractional bias
for both the average and standard deviation was the smallest of all models evaluated.
7.1.7 Stratification by Temperature-
The dependence of deposition velocity model performance on temperature was
examined. The observed data was broken up into 'hot' and 'cold' subsets based on a 17° C
threshold which was applied to split the overall data set up into two large subsets. While most
particle deposition algorithm do not have an explicit temperature dependence, the original
GARB formulation (GARB 1) does. The resulting model normalized performance statistics and
performance scores are summarized in Table 7-9. The resulting fractional bias and composite
performance measures indicate that:
1) The CFB indicates that the UAM 2 model is the best performer under warm
temperatures and is the second best performer under cool temperatures. The
model always underpredicted the observed deposition velocities.
2) The CFB indicates that the ADOM 1 model is the best performer under cool
temperatures, while the GARB 3 model is the second best performer under warm
temperatures.
3) All measures consistently show the ISC model as the worst performing model
regardless of temperature.
Under warm temperatures the UAM 2 shows significantly smaller fractional bias measures for
both the average and the standard deviation. Under cool temperatures the ADOM 1 model
produces the smallest fractional biases for both the average and the standard deviation.
The results of the findings or each model and for each subset is summarized by the
model specific bar chart of CFB in Figure 7-4. This figure shows the composite fractional bias
averaged over the high low categories. This figure indicates that the UAM 2 is the best
performing model (smallest CFB) over.many of the stratifications while the ISC model is the
worst performed over all stratifications. The runners up for best performance are the ADOM 3
and the CARB 3 models. The performance of these two models alternate in ranking from
subset to subset. For example from Figure 7-4 for the two stratifications that UAM 2 does
poorly on, namely the particle size and day/night stratifications, the best performing model was
ADOM 3 in both cases.
7-22
-------
Table 7-9
A summary of the fractional and composite statistical measures for each of the models examined
The first row is for temperatures less than 290.0 deg K, the second is for temperatures greater than
290.0 deg K. The rank is by CFB and the particle size distribution is for a uniform distribution.
Model Name Samples FBA FBSD CFB.. Rank
GARB 0
CARB 1
GARB 2
CARB 3
ADOM 1
ADOM 2
ADOM 3
UAM 1
UAM 2
ISC
62
106
62
106
62
106
62
106
. 62
106
62
106
62
106
62
106
62
106
62
106
0.987
0.994
1.115
1.045
0.972
0.979
1.091
0.659
0.811
1.127
0.972
1.253
0.796
0.953
0.999
0.988
0.932
0.457
1.820
1.874
1.064
0.661
1.067
0.648
0.952
0.587
1.116
0.595
0.481
0.411
1.014
0.870
1.012
0.757
0.817
0.410
0.793
0.340
1.737
1.697
K
1.025
0.827
1.091
0.847
0.962
0.783
1.104
0.627
0.646
0.769
0.993
1.062
0.904
0.855
0.908
0.699
0.863
0.398
1.779
1.786
7
6
8
7
5
5
9
2
1
4
6
9
3
3
4
3
2
1
10
10
7-23
-------
Composite Fractional Bias
3 -
0
2g =
1 =
1 li
•*• •a =
CARB 1 CARB 2 CARB 3 CARB 0 ADOM 1 ADOM 2 ADOM 3 UAM 1 UAM 2 ISC
Deposition Model
Particle Size
Day/Night
Roughness
Friction Velocity
Leaf Area Index
,riTY,...,,,;..
P:: •'' 1 Temperature
Figure 7-4. A summary of the total CFB for the six types of data subsets. The total represents a
sum over both high and low categories for each subdividing variable.
-------
7.1.8 Estimation of CPM from Tables
The estimate of a CPM can be conducted from the statistics presented in the tables.
The CFB's for CARB 1 will serve as an illustrative example. Table 7-10 illustrates how one can
extract fractional bias information from the tables to estimate the CPM.
72 Discussion of Model Performance
The composite performance measure (CPM) defined by Equation (5-11) was used to
rank the models. The model with the smallest CPM is ranked highest The 95 percent
confidence interval indicates how much the estimated CPM might vary if measurements and
predictions of deposition velocity were repeated under identical meteorological and site
conditions. Model performance was determined using the reported size distribution except for
the experiments involving sulfates where size distribution were not reported. In those cases, two
different particle distributions assumed for those data sets involving sulfate: a predicted
distribution with most of the mass between 0.16 to 0.29 \im diameter (Richards et aL, 1989) and
a second distribution with the sulfate uniformly distributed between 0.1 -1.0 um diameter. In
the following sections the results of the statistical analysis is summarized.
7.2.1 Uniform Size Distribution
Figure 7-5 illustrates the top to bottom ranking for the 10 models assuming a uniform
size distribution. With the exception of ISC all models fall within a narrow range of CPM. The
three top ranked models are UAM 2, CARB 3, and ADOM 1. The first two models represent a
hybrid variant of core models'with an LAI adjustment The only core model in the top three
ranked models is the ADOM 1 model The confidence intervals suggest that none of the three
models has any obvious performance advantages. The other core models themselves appear to
have essentially the same composite performance. The only exception is ISC which appears as
an outlier with a confidence interval that is narrowed by the many zero predictions it produces.
The overlap of the confidence intervals on the CPM in Figure 7-5 suggests that most
models have performance indistinguishable from their ranked neighbors. The model comparison
measure (MCM) defined by Equation 5-12 is an appropriate measure to compare one model
versus another. If the difference is not significant from zero at the 95% confidence level the
two models can be said to be statistically identical Figure 7-6 ranks the MCM for all unique
model pairings. The MCM's reveal that over 50% of the MCM confidence intervals cross zero
thereby indicating a lack of significant difference in performance. There is no significant
difference among UAM 2, CARB 3, and ADOM 1 regardless of pairing. There are significant
7-25
-------
Table 7-10
Summary of Composite Statistical Measures that Illustrate how the CFM
Arises for the CARB 1 Model
Stratification
Source
CFB
Particle Size
small
large
Roughness Length
< 25
> 25
Leaf Area Index
< 3
> 3
Sunlight
night
day
Friction Velocity
< 25cm/s
• > 25'cm/s
Temperature
< 290°K
> 290°K
Average
CPM0
CPM
Table
Table 7-5
Table 7-6
Table 7-7
Table 7-8
Table 7-9
Table 7-3
1.01
1.01
1.53
0.99
1.56
125
1.41
0.99
1.00
1.06
0.93
1.17
0.99
1.08 (Table 7-3
1.08)
7-26
-------
Deposition Model
UAM 2
CARB 3
ADOM 1
CARB 2
ADOM 3
CARB 0
UAM 1
ADOM 2
CARB 1
ISC
-
-
-
-
-
-
-
-
-
-
* +- *
* -f *
\|^ _|_ S|X
xpt ™|"T /y^
¥ + ^
* +
\j/ |
yyt ~|
Nj/ 1
/T\ ~|
^x 1
*
X
^
K
*
*
*
4- *
•
*
0 0.5 1 1.5
Composite Performance Measure (CPM)
95% low
+ Mean
95% high
Figure 7-5. A ranking of the models by CPM estimated from Equation 5-11. The smallest CPM represents the best performance.
The CPM is for a uniform particle size distribution.
-------
Model Names
£
oo
VAU I-CAU a
AMU a-CAU a
UAtI I-ADOU 1
A>au a-CAU a
AMU I-CAU a
AMU I-CAU a
AMU a-CAU a
VAU i-AMy a
Aaoy a-AMy i
CAU a-CAU a
AMU a-CAU 1
VAU I-CAU a
CAU a-CAU a
VAU I-CAU 1
AMU a-CAU a
AMU a-CAU a
AMU I-CAU a
CAU a-CAU i
VAU I-ADOU |
AOOU a-ABou i
ABOU a-CAU 1
UAU I-CAU a
CAAA a— CAU i
AMU a-CAu a
VAU a-CAU a
ABOU I-CAU I
UAU a-AMy i
CAU a-CAU i
VAU a-CAu a
VAU a-AMy a
VAU a-CAU a
UAU a-UAU i
UAU a-AMy a
UAU a-CAU i
ISC-CAU 1
ISC-UAU 1
ISC-CAU a
isc-ABay a
ISC-ABOy 1
UC-CAU a
uc- UAU a
• -
— •
— •
— •
— •
— •
— •
— •
— •
— •
— •
— •
•
r
- •
- •
— •
- •
- •
-
~ *,
- •
-
—
— i
—
~
—
—
—
—
-
—
—
—
_
—
—
_ .
•
~ g
- •
•
- •
- •
- •
— m
•
- •
- •
•
j_ " „
— ' •
— •
— •
— •
~ 7 *
T * ,
it B"
IT *
i-J— •
— J-- •
IT "
• -U— •
• i|j- •
• -U— •
• -Ur- •
• 11— •
• —I— •
••$+•'.
• + •
• 4-*"
• ~l *
• -jy
",TL
• L
".
— •
' + '
*
-0.5
0 0.5 1 1.5
Model Comparison Measure (MCM)
Figure 7-6. A summary of the MCM for each unique model pair. The MCM was computed using
predictions made assuming a uniform particle size distribution.
-------
differences among ISC and the other models and certain model pairs, usually involving one of
the core (unmodified) models (e.g., GARB 1, ADOM 1, UAM 1).
122. Sulfate Particle Distribution
The performance evaluation exercise was repeated using a more realistic distribution for
the experiment data sets where sulfate particle deposition was observed Aerosol observations
such as those reported by Hidy (1984) and Richards et aL (1989) generally exhibit a multi-
peaked mass distribution as a function of mean particle diameter. Peaks have been observed in
the mass fraction at 0.2, 1-2, and 6-10 microns. Each of these peaks are associated with a
particular pathway of particle emission and/or formation. Many of the particle experiments
observed aged sulfate aerosol with a mass fraction peak at 0.2 microns. The model performance
evaluation statistics may be sensitive to changing assumptions of the size distribution of the
particle mass fraction. To address this concern the model performance evaluation exercise was
repeated with a size distribution taken from Richards et al. (1989) and which is summarized in
Table 7-11. The mass fraction peak occurs at 0.2 microns and is nearly twice the value of the
uniform distribution for a 0.1 micron size range.
The CPM for the sulfate particle distribution case is illustrated in Figure 7-7. The model
results are presented in top to bottom ranking by CPM with the highest ranked (most favored)
model having the smallest CPM. The ranking indicates that the top three models, CARS 3,
UAM 2, and ADOM 1 identified previously remain as the top ranked models. Figure 7-8 shows
that the MCM and its confidence interval indicates that there is in fact no statistically significant
difference between any combination of the top three models. The results of the performance
evaluation and selection exercises are relatively unaffected by the changes tested in particle
distribution.
123 Model Performance When Zeroes are Included
A test that was performed was to examine the model performance statistics if negative or
zero observed deposition velocities were retained in the data base as small positive values. Five
such cases out of 173 observations with valid meteorological data were noted. The effects of
these five cases were examined by setting the deposition velocity equal to a minimum of 0.005
cm/s. Figure 7-9 illustrates the results of ranking the models top-to-bottom by CPM. The
sulfate particle distribution was used for this exercise due to its greater realism. Two of the
•same models CARB 3 and UAM 2 remain as the top ranked models and are separated by
relatively small differences in CPM. The only notable change is that the hybrid ADOM 3 model
succeeds the core model ADOM 1 as the third best performer.
7-29
-------
Table 7-11
Aerosol Mass Fraction as a Function of Size Distribution for Two
Assumed Aged Sulfate Distributions
Diameter
(Microns)
0.10
0.13
0.16
0.19
0.23
029
036
0.44
0.54
0.66
0.81
1.00
Mass Fraction
(Uniform)
0.083
0.083
0.083
0.083
0.083
0.083
0.083
0.083
0.083
0.083
0.083
0.083
Mass Fraction
(Richards et ai 1989)
0.053
0.095
0.144
0.189
0.161
0.111
0.053
0.046
0.053
0.062
0.035
0.000
7-30
-------
Deposition Model
UAM 2
CARB 3
ADOM 1
ADOM 3
CARB 2
ADOM 2
CARB 0
UAM 1
CARB 1
ISC
-
-
-
-
r
O/ 1 yi/
i*l\ ~~| <^\
* + *
sJ/ ) ^ >J/
^x "~f~ ^r\
* + ^
\L^ 1
^T^ i
^Jx I
^^ 1
"/J^
\^x
^|Ni
*
*
-*
+ \|,/
/|N
/ J__ NJX
C" | ^N
NXW/
TTllv
0 0.5 1 1.5
Composite Performance Measure (CPM)
95% low
+ Mean
95% high
Figure 7-7. A ranking of the models by CPM. The smallest CPM represents the best performance.
The CPM is for a peaked particle size distribution.
-------
Model Names
ADOU a-ABOU I
ABOH a-CAU a
uui I-CAII a
ADOtl I —CiH 1
luti a-ciu a
UAH 1-CiBB I
AAOIt 1—C
UUI 1-1
ABOU a-c
ABOU J-ABOH a
ABoy I-CABB a
UUI a-ABOU I
ABOH a-ABOH I
ABOU a-CAaa a
ABOU a-CABB I
uuia-A
CABB a-CAU I
ABOU I-CAU a
•|4
Ni
ABOII a-CAU a
UAH I-ABOM I
UAH a-CAU a
CAU a-CAU a
uui a-ABou a
uui I-CAU a
ABdU I-CAU I
UAH a-CAU a
uui a-UAU
CAU a-CAU
UC-CAU
ISC-UAH
ISC-CAU t
ISC-ABOH a
ISC-CAU a
ISC-ABOH a
ISC-ABOH I
ISC-CAU a
ISC-UAH a
+-
-
~L
-0.5
0 0.5 1 1.5
Model Comparison Measure (MCM)
Figure 7-8. A summary of the MCM for each unique model pair. The MCM was computed using
predictions made assuming a peaked particle size distribution.
-------
Deposition Model
£
U)
UAM 2
ADOM 1
CARB 3
CARB 2
APOM 3
CARB 0
UAM 1
ADOM 2
CARB 1
ISC
-
-
-
-
* 4- *
* + *
* +
* + *
yi/ _ 1 _
\^/ 1
^^ l~
* 4
¥
^
5K
*
*
1- *
c 4- *
m
0 0.5 1 1.5
Composite Performance Measure (CPM) .
95% low
+ Mean * 95% higji
Figure 7-9. A ranking of the models by CPM. The smallest CPM represents the best performance.
The CPM is for a uniform particle size distribution with the observed zeros set to 0.005 cm/s.
-------
This result was not unexpected since ADOM 1 previously performed the best for the
smallest deposition velocities, and the larger range of observations due to the small deposition
cutoff enables ADOM 3 to predict the standard deviation better. The similarity of the ranking
of models and the magnitude of the CPM for each model suggests that the presence of the five
cases of minimal deposition velocity does not result in a major change in the results presented in
previous sections.
7.2.4 Cumulative Distribution Results
The Cumulative Distribution Function (CDF) plots presented in Appendix B illustrate
how the models tend to perform over the range of deposition velocities. Figure B-2a in the
appendix shows the performance of the core models. The curves indicate that all models
underpredict deposition velocities less than 0.2 cm/s, but did much better for larger deposition
velocities. The ISC model is the notable exception. The CDF of the CARS series of models
are illustrated in Figure B-2b. For small deposition velocities the CARB 3 hybrid model
appears to track the observed CDF most closely. However for deposition velocities greater than
0.5 cm/s there seems to be no appreciable difference between the model variants. Figure B-2c
shows the closely matching CDPs of the observations and UAM 2 and the poor match obtained
with ISC. The improvement in UAM due to the addition of the LAI influence is best illustrated
by Figure B-2c. The overprediction tendency of the UAM 1 model is significantly lessened in
the UAM 2 model, although both models perform similarly for the largest deposition velocities.
12J5 Selection of Best Performing Deposition Models
The results indicate that two hybrid models with an LAI adjustment perform best. Three
models, CARB 3, UAM 2, and ADOM 1 have approximately the same overall composite
performance. Although any of the three best performing models is a substantial improvement in
the predictive ability over the current scheme in ISC, each of the new methods has drawbacks
and limitations. For example, the CARB formulation is empirical which raises questions on its
generality outside the limits of particle size and surface roughness on which it is based. The
UAM 2 formulation is based on the assumed equivalence of the Schmidt number term and the
Stokes number term in the resistance equation for particles of 03 urn diameter, which is an
assumption not fully supported or documented with data. Finally, ADOM 1 shows a distinct
trend for underpredicting deposition velocities for particle size ranges which may be important
for many combustion sources. However, although additional improvements in modeling
deposition will undoubtedly be made in the future, a significant benefit can be realized by
replacing the scheme in ISC now with one of the best performing schemes (CARB 3, UAM 2,
or ADOM 1).
7-34
-------
8. Summary and Conclusions
Hie purpose of this study was to review, refine, and test dry deposition techniques that
are suitable for use in regulatory models such as the Industrial Source Complex (ISC) model
Dry deposition is the process by which particulate matter and gaseous pollutants are transferred
from the air to land, water, and vegetative surfaces through "dry" (Le^ non-precipitation)
mechanisms. Because indirect risk assessment pathways such as fish, food chain, and water
ingestion, commonly dominate total intake and exposure to many pollutants, an accurate
estimate of dry deposition is an important element of many regulatory analyses. Dry deposition
may also be important for a refined estimate of air quality concentrations for sources subject to
significant plume depletion.
The dry deposition flux can be written as F = x vd> where F is the flux (g/m2/s), x is the
ambient pollutant concentration (g/m3), and vd is the deposition velocity (m/s), all defined at a
reference height. Standard procedures can be used for estimating the concentration term of the
flux equation, with appropriate modifications made to account for plume depletion effects. The
main focus of this study was the testing and evaluation of various methods for computing the
deposition velocity.
A review of the technical literature identified several models that are suitable for
predicting the dry deposition velocity within the framework of a regulatory model These
models are listed in Section 1 and described in more detail in Section 2. Three resistance-based
particle deposition models were identified which fit the required criteria of this study (i.e.,
methods of sound technical basis that are suitable for regulatory use for both large and small
particles). The technical literature suggested that certain parameterizations in these models
could be improved. Therefore, several modifications and enhancements to the core models were
developed and tested in this study. As a result, a total of ten deposition velocity models were
evaluated (see Section 7).
A second literature review identified observational data sets which could be used to test
deposition velocity algorithms. Based on this review, eight datasets for particulate matter and
fourteen datasets for gases were assembled in a database. Although the ultimate goal is to
evaluate dry deposition for both particulate matter and gases, only particulate matter deposition
was evaluated in this study. Appendix C lists the observational particle deposition velocity
datasets. One of the recommendations of the study is that additional evaluation efforts be
conducted to test the dry deposition models for gases (see Section 2.2) with the datasets listed in
Section 7.
8-1
-------
As explained in Section 2.1, large particles (Le., above - 20 |im diameter for unit density
particles) tend to be dominated by gravitational settling effects. The concept of gravitational
settling is incorporated into the deposition velocity relationship described in Section 2.13 as well
as the reflection coefficient scheme used in the current ISC model Particles in the size range
from 1.0 to 20.0 nm diameter are significantly influenced by inertial effects, which enhance the
rate of deposition over that obtained by considering gravitational settling alone. The deposition
of very small particles ( < ~ 0.1 jim diameter) are dominated by Brownian diffusion. This
process increases in importance as the size of the particles decreases. Particles in the size range
from 0.1 to 1.0 urn diameter show a minimum in the deposition velocity because they are not
efficiently deposited by any of the processes described above. Although the deposition velocity
database consists of particles in the range from 0.1 to 20 urn diameter sizes, the resistance-based
modeling techniques tested in this study apply to larger particle as well For all of the models,
the deposition velocity approaches the same gravitational settling velocity as the size of the
particle becomes large. Therefore, the recommended deposition model is considered to be
applicable to the full range of particle sizes of interest as might be encountered in typical
regulatory studies.
Two related components necessary for a complete deposition model are (1) a method for
tracking mass conservation and plume depletion, and (2) a meteorological module for estimating
the micrometeorologicai parameters required by the deposition model In Section 3, four
algorithms for computing plume depletion (source depletion, surface depletion, K-theory
method, and modified source depletion) were reviewed. As discussed in Section 3, the modified
source depletion model of Horst (1983) is recommended as the overall best approach for use in
a regulatory model Although evaluations of plume depletion algorithms in the literature against
field data are very limited, one such study (the dual tracer study of Doran and Horst, 1985) and
intercomparisons of the various techniques with the reference surface depletion method support
the use of the modified source depletion technique. This algorithm is computationally efficient,
conserves mass, and can account for gravitational settling effects. In Appendix E,
implementation issues associated with the use of the modified source depletion method are
discussed.
Methods suitable for estimating the necessary micrometeorologicai parameters for the
dry deposition model are outlined in Section 4. As required for regulatory applications, these
data must be obtained from routinely available observations. In particular, the dry deposition
models require an estimate of the surface friction velocity (u.) and the Monin-Obukhov length
(L). The meteorological literature contains several techniques for estimating these input
parameters. The techniques selected here have been shown to produce reasonable results.
Although other mathematical relationships may eventually be used when the deposition
8-2
-------
algorithm is incorporated in the ISC model, the. effects of the change are likely to be minimal
since experience shows that differences among the most commonly-used techniques are small for
most conditions.
An objective model evaluation methodology Was used to distinguish between the
performance of the various models for predicting particle deposition velocities. Only those
models deemed from the scientific review to parameterize the major known processes affecting
deposition of small and large particles, as discussed in Section 2, were considered for
recommendation as the preferred model. The model evaluation approach, discussed in Section
5, is based on the EPA's statistical model evaluation protocol. This approach was used because
it has been successfully demonstrated for many other regulatory model evaluation studies.
The results of the model evaluation exercise described in section 7 was inconclusive in
picking a single model with statistically significant (e.g. at the 95% confidence level) superior
overall performance. Three models (UAM 2, ADOM 1, and GARB 3 described in section 2)
appeared to have one or more performance characteristics that were superior to the rest of the
models. The addition of a factor to account for increased deposition area due to leaf area index
(LAI) appears to consistently improve core model performance.
The recommended procedures for computing the deposition velocity, plume depletion,
and meteorological variables have been implemented in a revised version of the ISC2 dispersion
model and a companion meteorological processor. Modified versions of both the short term
(ISC2ST) and long term (ISG2LT) models and the meteorological processor will be made
available through the EPA's SCRAM bulletin board system. Draft revisions to the user's guide
and model formulation documents will also be made available for the purposes of public review
and comment
In future work, it is recommended that an analysis be made to compare the revised
version of the ISC model to the previous version of the model to determine likely changes in
modeled design concentrations. It is also recommended that some additional analysis be
conducted to examine the combined sensitivity of the recommended deposition velocity model
and the modified source depletion model to various input variables. This can be done within
the new ISC model, since both models have been included in the revised code. For example,
the relative sensitivity of the deposition fluxes to the particle size distribution, particle density,
surface characteristics (e.g., surface roughness) and meteorological conditions should be
assessed.
8-3
-------
9. References
Auer, AJH. Jr., 1978: Correlation of land use and cover with meteorological anomalies. /. AppL
Meteor^ 17, 636-643.
Baldocchi, D.D., B.B. Hicks and P. Camara, 1987: A canopy stomatal resistance model for
gaseous deposition to vegetated surfaces. Atmos. Environ., 21, 91-101.
Bowers, JJF., J.R. Bjorklund and CS. Cheney, 1979: Industrial Source Complex (ISC)
Dispersion Model User's Guide. Volume L EPA-450/4-79-030, U.S. Environmental
Protection Agency, Research Triangle Park, NC.
Businger, J_A., J.C. Wyngaard, Y. Izumi and E.F. Bradley, 1971: Flux-profile relationships in the
atmospheric surface layer. /. Atmos. Sd, 28, 181-189.
Chamberlain, A.C., 1953: Aspects of travel and deposition of aerosol and vapor clouds. Atomic
Energy Research Establishment, HP/R 1261.
Cleveland, W.S. and R. McGill, 1984: Graphical Perception: Theory, Experimentation, and
Application to the Development of Graphical Methods. /. Am. Stat. Assoc., 79, 531-444.
Cox, W.M. and J.A. Tikvart, 1990: A Statistical Procedure for Determining the Best Performing
Air Quality Simulation Model. Atmos. Environ., 24, 2387-2395.
Davies, T.D. and J.R. Mitchell, 1982: Dry deposition of sulfur dioxide onto grass in rural
eastern England (with some comparisons with other forms of sulfur deposition).
Proceedings of the Fourth International Conference on Precipitation Scavenging, Dry
Deposition, and Resuspension, Volume 2, Santa Monica, CA, 29 November-3 December.
DeBruin, ELA.R. and A-A.M, Holtslag, 1982: A simple parameterization of the surface fluxes of
sensible and latent heat during daytime compared with the Penman-Monteith concept. /.
Clim. AppL Meteor., 21, 1610-1621.
Doran J.C. and T.W. Horst, 1985: An evaluation of Gaussian plume-depletion models with
dual-tracer field measurements. Atmos. Environ., 19, 939-951.
9-1
-------
Dumbauld, ILK., J.E. Rafferty and H.E. Cramer, 1976: Dispersion-deposition from aerial spray
releases. Proceedings of the Third Symposium on Atmospheric Turbulence, Diffusion, and
Air Quality, October 19-22, Raleigh, NC
Fowler, D. and J.N. Cape, 1982: Dry deposition of SO2 onto a Scots pine forest. Proceedings of
the Fourth International Conference on Precipitation Scavenging, Dry Deposition, and
Resuspension, Volume 2, Santa Monica, CA, 29 November-3 December.
Garland, J.A^ 1982: Dry deposition of small particles to grass in field conditions. Proceedings of
the Fourth International Conference on Precipitation Scavenging, Dry Deposition, and
Resuspension, Volume 2, Santa Monica, CA, 29 November-3 December.
Godowitcfa, J.M., 1990: Vertical ozone fluxes and related deposition parameters over
agricultural and forested landscapes. Boundary-Layer MeteoroL, 50, 375-404.
Gray, HLA., M.P. Ligocki, G.E. Moore, CA. Emery, R.C. Kessler, J.P. Cohen, C.C. Chang, S.L
Balestrini, S.G. Douglas, R.R. Schulhof, J.P. Killus, OS. Burton, 1991: Deterministic
Modeling in the Navajo Generating Station Visibility Study. Volume EL Appendix E
(Description of deposition algorithms). Systems Applications, International, San Rafael,
CA.
Hanna, S.R. and J.C. Chang, 1990: Modification of the Hybrid Plume Dispersion Model
(HPDM) for urban conditions and its evaluation using the Indianapolis data set. Vol.
in. Analysis of urban boundary layer data. Sigma Research Corp., Concord, MA.
Hanna, S.R and J.C. Chang, 199 la: Modification of the Hybrid Plume Dispersion Model
(HPDM) for urban conditions and its evaluation using the Indianapolis data set. Vol. I.
User's guide for HPDM-Urban. Sigma Research Corp., Concord, MA.
Hanna, S.R. and J:C. Chang, 1991b: SIGPRO - A meteorological preprocessor for dispersion
model applications to stack plumes in urban areas. Seventh Joint AMS-AWMA Conf.
on AppL of Air Poll Meteor., New Orleans, LA, Jan., 1991.
Hanna, S.R. and J.C. Chang, 1992: Boundary-layer parameterizations for applied dispersion
modeling over urban areas. Boundary-Layer Meteorology, 58, 229-259.
9-2
-------
Harrison, R.M, S. Rapsomanikis and A. Turnbull, 1989: Land-surface exchange in a
chemically-reactive system: Surface fluxes of HNO^ HO and NH^ Atmos. Environ., 23,
1795-1800.
Hicks, B.B., 1982: Critical assessment document on acid deposition. ATDL Contrib. File No.
81/24, Atmos. Turb. and Diff. Laboratory, Oak Ridge, TN.
Hicks, B.B., D.D. Baldocchi, T.P. Meyers, R.P. Hosker, Jr. and D.R. Matt, 1987: A preliminary
multiple resistance routine for deriving dry deposition velocities from measured
quantities. Water, Air, and Soil Poll, 36, 311-330.
Hicks, B.B., D.R. Matt and R.T. McMillen, 1989: A micrometeorological investigation of
surface exchange of trace gases: A case study. NOAA Tech. Memo. ERL ARL-172, Air
Resources Laboratory, Silver Spring, MD.
Hicks, B.B., M.L. Wesely, R.L. Coulter, R.L. Hart, J.L. Durham, R. Speer and D.H. Stedman,
1986: An experimental study of sulfur and NOX fluxes over grassland. Boundary-Layer
MeteoroL, 34, 103-121.
Hidy, G.M., 1984: Aerosols: An Industrial and Environmental Science. Academic Press, Inc.,
New York, NY.
Hjelmfelt, M.R., 1982: Numerical simulation of the effects of St. Louis on mesoscale
boundary-layer airflow and vertical air motion: Simulations of urban vs. non-urban
effects. /. AppL Meteor., 21, 1239-1257.
Holtslag A-A.M. and A.P. van Ulden, 1983: A simple scheme for daytime estimates of the
surface fluxes from routine weather data. /. dim. and AppL Meteor., 22, 517-529.
Horst, T.W., 1977: A surface depletion model for deposition from a Gaussian plume. Atmos.
Environ., 11, 41-46.
Horst, T.W., 1983: A correction to the Gaussian source-depletion model. In Precipitation
Scavenging, Dry Deposition and Resuspension, H.R. Pruppacher, R.G. Semonin, W.G.N.
Slinn, eds., Elsevier, NY.
Horst, T.W., 1984: The modification of plume models to account for dry deposition. Boundary-
Layer Meteor., 30, 413-430.
9-3
-------
Hosker, RJ*. and S.E. Undberg, 1982: Review: Atmospheric Deposition and Plant Assimilation
of Gases and Particles. Atmos. Environ., 16, 889-910.
Huebert, BJ., 1982; Measurements of the dry-deposition flux of nitric acid vapor to grasslands
and forest. Proceedings of the Fourth International Conference on Precipitation Scavenging,
Dry Deposition, and Resuspension, Volume 2, Santa Monica, CA, 29 Nov.-3 Dec.
Lorenz, R, and CE. Murphy, Jr., 1989: Dry deposition of particles to a pine plantation.
Boundary-Layer MeteoroL, 46, 355-366.
McDonald, J.E., 1960: An aid to computation of terminal fall velocities of spheres. /. Met, 17,
463.
McMillen R.T., D.R. Matt, BJB. Hicks and J.D. Womack, 1987: Dry deposition measurements
of sulfur dioxide to a spruce-fir forest in the Black Forest: A data report. NOAA Tech.
Memo. ERL ARL-152, Air Resources Laboratory, Silver Spring, MD.
Meyers, T.P., 1987: The sensitivity of modeled SO2 fluxes and profiles to stomatal and boundary
layer resistances. Water, Air, and Soil PolL, 35, 261-278.
Meyers, T.P. and D.D. Baldocchi, 1988: A comparison of models for deriving dry deposition
fluxes of O3 and SO2 to a forest canopy. Tellus, 40B, 270-284.
Meyers, T.P., BJ. Huebert, and B.B. Hicks, 1989: HNO3 deposition to a deciduous forest.
Boundary-Layer MeteoroL, 49, 395-410.
MoJler U. and G. Schumann, 1970: Mechanisms of transport from the atmosphere to the
earth's surface. /. Geophy. Res., 75, 3013-3019.
Nicholson, K.W. and TD. Davies, 1987: Field Measurements of die dry deposition of
particulate sulphate. Atmos. Environ., 21, 1561-1571.
Oke, T.R., 1978: Boundary Layer Climates. John Wiley & Sons, New York, NY.
Oke, T.R., 1982: The energetic basis of the urban heat island. Quart. J.R. Meteor. Soc., 108,
1-24.
9-4
-------
Overcamp, TJ., 1976: A general Gaussian diffusion-deposition model for elevated point
sources. J.AppL Meteor., 15, 1167-117L
Padro, J., G. den Hartog, and H.H. Neumann, 1991: An investigation of the ADOM dry
deposition module using summertime O3 measurements above a deciduous forest.
Atmos. Environ., 25A, 1689-1704.
Plate, E. and AA. Quraishi, 1965: Modeling of velocity distribution inside and above tall crops.
/. AppL MeteoroL, 4, 400-408.
Pleim, J., A. Venkatram and R. Yamartino, 1984: ADOM/TADAP model development
program. Volume 4. The dry deposition module. Ontario Ministry of the Environment,
Rexdale, Ontario.
Rao, K. S., 1981: Analytical solutions of a gradient-transfer model for plume deposition and
sedimentation. NOAA Tech. Memo. ERL ARL-109, Air Resources Laboratory, Silver
Spring, MD.
Richards, L.W., JA. Anderson, D.L. Blumenthal, JA. McDonald, P.S. Bhardwaja, R.B.
Candelaria and D.W. Moon, 1989: Nitrogen and sulfur chemistry and aerosol formation
in a western coal-fired power plant plume. AWMA/EPA International Specialty
Conference. Ester Park, CO, October, 1989. *
Scire J.S., F.W. Lurmann, P. Karamchandani, A. Venkatram, R. Yamartino, J. Young and J.
Pleim, 1986: ADOM/TADAP model development program. Volume 9. ADOM/TADAP
User's Guide. Ontario Ministry of the Environment, Rexdale, Ontario, Canada.
Scire, J.S., D.G. Strimaitis and RJ. Yamartino, 1990: Model formulation and user's guide for
the CALPUFF dispersion model Sigma Research Corp., Concord, MA.
Scire, J.S. and D.L. Wojichowski, 1987: Modeling deposition and dispersion in an urban
environment MA.S.S.-APCA 33rd Anniv. Technical Conference, November 3-6,
Atlantic City, NJ.
Sehmel, GA., 1980: Particle and gas dry deposition: A review. Atmos. Environ., 14, 983-1011.
Sehmel, G A., 1984: Deposition and Resuspension. Chapter 12 in Atmospheric Science and
Power Production, DOE/TIC-27601. U.S. Department of Energy, D. Randerson, Ed.
9-5
-------
Sehmei, G-A. and W.H. Hodgson, 1978: A model for predicting dry deposition of particles and
gases to environmental surfaces. PNL-SA-6721, Battelle Pacific Northwest Laboratory.
Sehmei, G.A. and S.L. Sutter, 1974: Particle deposition rates on a water surface as a function of
particle diameter and air velocity. /. Rechs. Atmos., in, 911-918.
Shieh, CM., MJL Weseiy and CJ. Walcek, 1986: A dry deposition module for regional acid
deposition. EPA/600/3-86/037, U.S. Environmental Protection Agency, Research
Triangle Park, NC.
Slinn, W.G.N., L. Hasse, B.B. Hicks, A.W. Hogan, D. Lai, P.S. Uss, K.O. Munnich, G.A. Sehmei
and O. Vittori, 1978: Some aspects of the transfer of atmospheric trace constituents past
the air-sea interface. Atmos. Environ., 12, 2055-2087.
Slinn, S.A. and W.G.N. Slinn, 1980: Predictions for particle deposition on natural waters.
Atmos. Environ., 14, 1013-1016.
Slinn, W.GJN., 1982: Predictions for particle deposition to vegetative canopies. Atmos. Environ.,
16, 1785-1794.
van Ulden, A.P. and A.A.M. Holtslag, 1985: Estimation of atmospheric boundary layer
parameters for diffusion applicati6ns. /. AppL Meteor., 24, 1196-1207.
Walcek, CJ., RA. Brost, J.S. Chang and ML. Weseiy, 1986: SO^ sulfate, and HNO3 deposition
velocities computed using regional land use and meteorological data. Atmos. Environ.,
20, 949-964.
Wang, LT. and P.C. Chen, 1980: Estimations of .heat and momentum fluxes near the ground.
Proc. 2nd Joint Conf. on Applications of Air Pott. Meteor., American Meteorological
Society, Boston, MA, 764-769.
Weil, J.C. and R.P. Brower, 1983: Estimating Convective Boundary Layer Parameters for Diffusion
Application. Draft Report prepared by Environmental Center, Martin Marietta Corp.,
for Maryland Dept of Natural Resources.
Weseiy, ML., 1989: Parameterization of surface resistances to gaseous dry deposition in
regional-scale numerical models. Atmos. Environ., 23, 1293-1304.
9-6
-------
Wesely, MJL, D.R. Cook, and R.M. Williams, 1981: Field measurement of small ozone fluxes to
snow, wet bare soil, and lake water. Boundary-Layer MeteoroL, 20, 459-471.
Wesely, MJL, D.R. Cook and RJL Hart, 1983: Fluxes of gases and particles above a deciduous
forest in wintertime. Boundary-Layer MeieoroL, 27, 237-255.
Wesley, MJL, D.R. Cook, RJL Hart, B.B. Hicks, J.L. Durham, R.E. Speer, D.H. Stedman and
RJ. Tropp, 1982: Eddy-correlation measurements of the dry deposition of particulate
sulfur and submicron particles. Proceedings of the Fourth International Conference on
Precipitation Scavenging, Dry Deposition, and Resuspension, Volume 2, Santa Monica, CA,
29 November-3 December.
Wesely, MX., JA. Eastman, D.R. Cook and B.B. Hicks, 1978: Daytime variations of ozone
eddy fluxes to maize. Boundary-Layer MeteoroL, 15, 361-373.
Wesely, M.L. and B.B. Hicks, 1977: Some factors that affect the deposition rates of sulfur
dioxide and similar gases on vegetation. /. Air PolL Control Assoc., 27, 1110-1116.
Winges, KD., 1990: User's guide for the Fugitive Dust Model (FDM) (revised). Volume 1:
User's Instructions. EPA-910/9-88-202R. U.S. EPA, Region 10, Seattle, WA.
Winges, K.D., 1992: Personal communication to J. Scire.
Yamartino, RJ., J.S. Scire, S.R. Hanna, G.R. Carmichael and Y.S. Chang, 1992: The
CALGRID mesoscale photochemical grid model. Volume I. Model formulation.
Atmos. Environ., 26A, 1493-1512.
9-7
-------
Appendix A
Estimation of ISC Deposition Velocity
-------
Estimation of ISC Deposition Velocity
The basis for the present ISC deposition algorithm is found in Dumbauld et aL (1976)
and in Overeamp (1976). In this approach the particles are assumed to move towards the
ground with a total velocity equal to the sum of the gravitational settling velocity and an average
turbulent velocity which determines the rate of plume spreading. This turbulent velocity is given
by
v, = (uHt - v^c)
bM>
(A-l)
where u is the stack height wind speed, H,. is the effective plume height, vg is the gravitational
settling velocity, x is the downwind distance, and the vertical dispersion coefficient, av is given
by the relation:
B
(A-2)
The coefficients A and B are stability dependent, and are treated as average values in the ISC
deposition model By differentiating Equation A-2 and substituting into Equation A-l we have:
(A-3)'
The turbulent velocity is thus a function of the ratio of the plume centeriine height to the
downwind distance. For small particles, the uH,./x term is much larger than the settling velocity
which can be ignored.
In nearly all of the small particle experiments there is no specific plume-receptor
information in order to directly estimate an He/x. Furthermore, in some experiments it is
possible that several sources may be contributing to the deposition fluxes. How then does one
estimate an He/x that will be appropriate and consistent with the information provided to the
other deposition velocity models?
The other deposition models estimate a turbulent velocity near the surface as being
equal to the inverse of the aerodynamic resistance, rr Thus the He/x term can be estimated
from the relation:
A-l
-------
(A-4)
where the aerodynamic resistance is given by:
(A-5)
which is a formulation common to the ADOM and UAM models. Using the information on
Pasquill Gifford Turner stability class and the friction velocity and Monin-Obukhov length, and
assuming a reference height of 10 m, a displacement plane height of zero and using the given
surface roughness length and wind speed we estimated the equivalent H,./x needed by the ISC
model
The actual deposition velocity used in the ISC model is, following Overcamp (1976),
equal to:
(A-6)
The settling velocity used in ISC, vp is given by the Stokes relation:
v<
(A-7)
where p is the particle density, g is the acceleration due to gravity, d is the panicle diameter,
and u is the absolute viscosity of air (p. • 1.83 x 10"* g cm"1 s"1).
The reflection coefficient, «, in Equation A-6 is the fraction of the image plume source
remaining. In the limit of a fully reflecting plume the image plume experiences no depletion
and cc approaches-one. The Dumbauld et aL (1976) paper indicates that when the settling
velocity drops below 0.1 cm/s the reflection coefficient is set equal to 1. As a result, ISC will
predict a zero deposition velocity for many of the cases in the small particle dataset. This limit
on deposition velocity especially affects sulfate paniculate matter since the size range for such
paniculate matter peaks in the submicron diameter range.
A-2
-------
Appendix B
Supplemental Graphics
-------
Series 1: Scatter plots of Observed Versus Model
Predicted Deposition Velocities
-------
Key
3 GARB 0
1E-4
1E-3 1E-2
Observations
1E-1
Figure B-la. Scatter plot of observed deposition velocity (cm/s) versus model predicted
deposition velocity (cm/s) for the complete small particle data set
B-l
-------
1E-4
Key
CD GARB 1
1E-3 1E-2
Observations
1E-1
1EO
1E1
Figure B-lb. Scatter plot of observed deposition velocity (cm/s) versus model predicted
deposition velocity (cm/s) for the complete small particle data set.
B-2
-------
Key
Z] CARS 2
1E-4
1E-3 IE
Observations
1E-1
1EO
1E1
Figure B-lc. Scatter plot of observed deposition velocity (cm/s) versus model predicted
deposition velocity (cm/s) for the complete small particle data set
B-3
-------
Key
CARS 3
IE-4
1E-3 1E-2
Observations
1E-1
1EO
Figure B-ld. Scatter plot of observed deposition velocity (cm/s) versus model predicted
deposition velocity (cm/s) for the complete small particle data set.
B-4
-------
Key
Zl ADOM 1
1E-4
1E-3 1E-2
Observations
1E-1
1EO
1E1
Figure B-le. Scatter plot of observed deposition velocity (cm/s) versus model predicted
deposition velocity (cm/s) for the complete small particle data set.
B-5
-------
Key
ADOM 2
1E-4
1E-3 1E-2
Observations
1EO
1E1
Figure B-lf. Scatter plot of observed deposition velocity (cm/s) versus model predicted
deposition velocity (cm/s) for the complete small particle data set
B-6
-------
Key
H ADOM 3
1E-4
1E-3 1E-2
Observations
1E-1
1EO
1E1
Figure B-lg. Scatter plot of observed deposition velocity (cm/s) versus model predicted
deposition velocity (cm/s) for the complete small particle data set.
B-7
-------
Key
H UAM 1
1E-4
1E-3 1E-2
Observations
1E-1
1EO
1E1
Figure B-lh. Scatter plot of observed deposition velocity (cm/s) versus model predicted
deposition velocity (cm/s) for the complete small particle data set.
B-8
-------
Key
UAM 2
1E-4
1E-3 1E-2
Observations
1E-1
1EO
1E1
Figure B-1L Scatter plot of observed deposition velocity (cm/s) versus model predicted
deposition velocity, (cm/s) for the complete small particle data set
B-9
-------
Cd
1
tl
o C*.
a n
g:-1
§u
* s
^« w
•S-8"
^•3
09 0)
>-X O-
5J>
° 8-
S-'S
&8
§i:
1°
Sii
i!
S.J
S" s?
p p
8
r|
t
"S
(D
I
a
Predictions
1E-3 1E-2
1E-1
1EO
o ^
u W
n> I"
3 co
o
e
W -
M -
I '
W-
o
W-
iiti mi
-e-
t i i i mi
i _ i t i mi
1E1
i _ i i i mi
i _ i i HIM
(D
W
o
s
-------
Series 2: Cumulative Distribution Function (CDF) Plots for Observations
and Model Predictions of Deposition Velocity
-------
Key
D OBSERVED
O CARB 1
A ADOM 1
+ UAM 1
X ISC
I I I I I 11
1E-2
Deposition Velocity
Figure B-2a. Cumulative probability plot of deposition velocity (cm/s) using
the complete small particle data set.
-------
KJ
X
Key
OBSERVED
GARB 1
CARB 2
CARB 3
CARB 0
TTTT
1E-2 1E-1
Deposition Velocity
Figure B-2b. Cumulative probability plot of deposition velocity (cm/s) using
-------
Key
(3 OBSERVED
(D ADOM 1
A ADOM 2
+ ADOM 3
X ISC
Figure B-2c. Cumulative probability plot of deposition velocity (cm/s) using
the complete small particle data set.
-------
Key
E) OBSERVED
(D UAM 1
A UAM 2
* ISC
?E-3
TIT 1 1 I I I I II
IE1-2 1E-1
Deposition Velocity
Figure B-2d. Cumulative probability plot of deposition velocity (cm/s) using
the complete small particle data set.
-------
Appendix C
Observational Particle Deposition Velocity Data Sets
-------
Technical Note
Description of Particle Deposition Velocity Data Sets
There are 24 original data sets altogether which are used in the data analysis. These data sets
are read into the fortran program PARTVD and are analyzed and processed in the manner shown
schematically in Figure C-l. The PARTVD software reads in each observed deposition velocity case
in one of two formats. If the global roughness length zO is present it is used for the entire data set and
data on Richardson number (Ri) and nondimensional fluxes of heat and momentum are assumed to NOT
be present. If the global roughness length is set to -999.7 then this data is assumed to be present for
each observed deposition velocity present in the sample. One can note this difference when comparing
sample sets numbers 1 and 2. If the reference height for wind speed is missing a default value of 10
m is used which is typical of the assumptions made in applications of the deposition models. If the leaf
area index is missing a value is assigned based on the the land use type (vegetation state), or whether
is is a special wind tunnel study. The effects of nonuniform particle size distributions is input as a
fractional mass weight for each size range. Presently this is done for only the sulfate particle samples.
In cases where case specific Ri, phim, and phih are assigned -999.9 there is NOT sufficient information
to generate deposition velocity estimates for all models and these cases are dropped. For example the
fifth case in sample set number 3 would be dropped. Only samples with positive deposition velocities
are kept.
The PARTVD program produces a set of 173 predictions for 9 models. In addition to the 9
model predictions, a number of additional meteorological variables are also output so as to provide a
means of stratifying the deposition velocity data. This data set is read in and used to produce estimates
of deposition velocity for ISC which becomes the 1 Oth model prediction set and is added to the input
data set and written out. These data sets are displayed in Table C-l for the uniform particle size
distribution and Table C-2 for the sulfate peaked particle distribution. Footnotes provide definitions for
each column in the tables.
-------
PARTVD.FOR
model deposition
velocity
ISCDEP.FOR
Estimate ISC
deposition
>PERFSTAT.FOR
Does CPM
estimation
printed
output.
EVALSTAT.INP
EVALSTAT.FOR/
Plots various ^
statistics
Figure C-1.
Schematic diagram of
data processing
-------
Table C-1. The data making up the overall dataset for a uniform particle distribution. The data set contains 173 data points including observed
zero deposition velocities which have been set to a lower limit of 0.005 cm/s. The footnotes define the variable A thru X.
Deposit ion Modol
OBS CAM 1 CAM 2 CAM 3 CAM 0 ADOM 1 ADOM 2 ADOM 3 UAH 1 UAM 2 ISC ABCD E F G H
!:11H S:iiiS Hill l:S!!i 111! l:i!Sl lilii !:H?1 H1!1 1'«" °:"" l a « a » s » » z.» «:s
j:Sjj ifi jijjjj j:5ij iisB liiiS s.sjl sIH, lillli iHi! sisll i 11 II i I3 » H 1! Hi |i:i
1./4O0 O.BQ16 0.1)5 96 0.7043 0.6016 0.9154 0.6852 0.7050 0 $724 0057 0 1169 5 26 fl5 Tn*; 11 5J ot «i i 01 ia CA
3.1400 0.7904 0.8774 0.7165 0.7904 1.0436 0.7185 0.7409 1.0131 !o496 t.ltM 6 5 83 SI 22 10 22 40 111 ll il
3.0100 0.7904 0.8771 0.7165 0.7904 1.0436 0.7185 0.7409 1.0131 .0496 0.1490 6 5 83 Si 22 10 22 40 540 ij'lo
2.8400 0.7904 0.8774 0.7165 0.7904 1.0436 0.7185 0.7409 1.0131 .0196 0.1490 6 5 83 Ss 22 10 22 40 632 1750
1.7500 0.6808 0.7706 0.6434 0.6808 0.4911 0.5564 0.5663 0.6207 .8119 0.0822 6 12 83 SI 22 43 23 13 300 it'll
1.6200 0.6808 0.7706 0.6131 0.6808 0.4911 0.5564 0.5663 0 8207 0 8449 0 0822 6 12 83 ZnS 22 13 23 13 1 14 11 M
1.3100 0.6808 0.7706 0.6434 O.(808 0.1911 0.5561 0.5663 0.8207 0 8419 I'.llll ( 11 11 Si 22 43 23 13 I'll It'll
1.5(00 0.7357 0.8606 0.7018 0.7357 0.9218 0.6887 0.7089 0.9787 1.0129 0.1314 6 21 83 SI 23 6 23 28 307 14 10
1.4700 0.7357 0.8606 0.7048 0.7357 0.9248 0.6887 0.7089 0 9787 1 0129 0 1314 6 24 83 Ss 21 f. 31 >l 1 °I i! i«
1.1100 0.7357 0.8606 0.7048 0.7357 0.9248 0.6887 0.7089 0 9787 I'.llll i.lllt 1 " " Ss 23 6 23 28 3 t( It 11
1.1700 0.8752 0.9275 0.7524 0.8752 1.3838 0.8085 0.8371 1.0860 1 1266 01601 6 27 83 SI 21 31 22 1 3 17 3050
1.1500 0.8752 0.9275 0.7524 0.8752 1.3838 0 8085 0.8371 1.0860 1 1266 0 1601 6 27 83 SI 21 31 22 1 '380 3050
1.1000 0.8752 0.9275 0.7524 0.8752 1.3838 0.8085 0.8371 1 0860 1 1266 01601 6 27 83 Ss 21 31 33 i I'll ll'll
0.0400 0.0190 0.0243 0.0732 0.0190 0.0054 0.0370 0.0948 oioOTO I'.llll I'.llll 6 " 79 £5 " 0 0 0 ill li"
I'llll S'S!« J J199 °-°691 °-°136 '•°OS1 °-°353 °-0858 °-00" 0.0183 0.0001 6 21 79 S04 2 36 0 0 I tl ill
S'S SJ J-°197 0'0213 °-0550 O-0197 0-OU2 O-0752 O-2120 0.0151 0.0481 0.0001 6 21 79 SO4 0040 253 21 20
S^SS S'SHl S S2" 0'0943 0-°m 0-0°" ° 02« 0.0173 0.0014 0.0109 0.0001 6 21 79 S04 3 55 0 0 1(4 830
0.3300 0.0220 0.0287 0.0563 0.0220 0.0121 0.0815 0.2306 0.0164 0 0526 0 0001 7 18 79 SGI 003 13 269 1410
0.0200 0.0125 0.0210 0.0327 0.0125 0.0075 0.0512 0.0865 0.0100 0.0183 0 0001 2 19 80 £1 1? 23 0 0 2 'if 1'"
0.2000 0.0086 0.0140 0.0326 0.0086 0.0115 0.0773 0 135J 0.0155 0.0291 0.0001 2 20 80 S04 0 0 4 40 373 5 ' 90
0-0900 0.0083 0.0137 J-0319 0.0083 0.0086 0.0578 0.0980 0.0114 0.0210 0.0001 2 21 80 S04 9 55 0 0 3^13 i.ll
J'SJSJ i!'?.1!5 i!'0261 °-0592 o!oi65 o!oi37 0!0923 0^625 0^0187 o!o603 oioOOl 10 17 79 SO4 6 54 0 " I'll I'll
l'l,ll J'JJ!4 S-0.31?. °-°585 °-0194 °-0064 O-0441 0-UO2 0.0085 0.0252 0.0001 10 18 79 SO4 7000 153 5 10
S'JJSS S'Si 1 0.0237 0.0600 0.0174 0 0143 0.0954 0.2722 0.0195 0.0628 0.0001 10 19 79 SO4 004 38 381 1300
0.0800 0.0216 0.0370 0.0550 0.0246 0.0080 0.0545 0.1467 0.0106 0 0328 0 0001 10 19 79 SC4 6 58 0 0 1 50 S BO
0.1000 0.0173 0.0303 0.0264 0.0173 0.0064 0.0444 0.0596 0.0085 0.0119 0 0001 11 21 79 »4 10 50 0 0 I'll I'll
0.0700 0.0105 0.0177 0.0244 0.0105 0.0082 0.0562 0.0768 0.0110 0.0157 0 0001 li 22 79 M4 1 1 1 si 1 30 ill
S'lISS 2-°jS29 S'01!1 °-0249 0-0108 O'OO" O'0509 0-°«84 0.0100 0.0141 0.0001 11 27 79 S04 10 53 0 0 252 ill
0.0500 0.0091 0.0152 0.0211 0.0091 0.0097 0.0651 0.0894 0.0129 0.0185 0.0001 11 29 79 SO4 00 4 7 2 31 520
0.0200 0 0108 0.0188 0.0258 0.0108 0.0068 0.0458 0.0611 0.0089 0 0126 0.0001 11 29 79 iol 11 1 0 0 2 41 3 10
0.3200 0.0086 0.0152 0.0241 0.0086 0.0096 0.0647 0.0888 0.0129 0 0184 0.0001 12 3 79 iol 11 9 0 0 345 290
0.0700 0.0163 0.0250 0.0273 0.0163 0.0061 0.0418 0.0555 0.0080 0 0112 0 0001 12 6 79 SOI 11 12 0 0 1 ?« 7 so
0.2300 0.0099 0.0152 0.0242 0.0099 0.0087 0.0584 0.0798 O.Olis I.lllt I'.llll 11 7 79 ISJ J " 2 35 I'll , 00
1 ,,ll I'ltl', l'llll S-0254 °-0078 °-01" °-0837 o-1164 o-0170 o-0246 o-oooi " « 79 =°4 11 20 o o 4 72 in
!'J1SS S'*1M 0-°l" °-0296 O-O"2 0.0162 0.1077 0 1514 0.0221 0.0322 0.0001 1 22 80 SO4 0 0 3 18 6 03 770
2'24°.S S 222! 2-21'8 "-02" °-009S °-0053 O-0364 0 0473 0.0068 0.009J 0.0001 1 23 80 SOI 10 59 0 4 207 1 70
J'SJSJ 2-2°!' "-0119 "•"" O'0068 O'0050 O'0340 O-0438 0-0063 0 0087 0.0001 1 24 80 Iol ll 3 0 0 2 19 1 40
0 2100 0 0054 0.0096 0.0253 0.0054 0.0071 0.0481 0.0646 0.0093 0.0132 0.0001 1 28 80 SOI 0054 275 1 20
0.2200 0.0076 0.0118 0.0241 0.0076 0.0094 0.0629 0 0861 0.0125 0.0179 0.0001- 1 29 80 Sot 10 42 0 0 3 17 7 30
2-?.222 2-2°" °-0099 "'O"4 0-0065 0.0126 0.0838 0.1163 0.0171 0.0217 0.0001 1 30 80 S04 0047 502 820
S'2J?J 2 2J?1 °-°159 0-02" ff-0101 O-0072 O-0488 0-06« O-0094 0 0133 0 0001 1 30 So SOI 10 49 0 0 2 40 670
0.0050 0.0073 0.0118 0.0241 0.0073 0.0093 0.0627 0.0859 0.0121 0 0178 0.0001 2 14 80 SOI 11 22 0 0 3 46 590
0.2800 0.0069 0.0119 0.0319 0.0069 0.0086 0.0578 0 0986 0 0114 0 0209 0 0001 3 i 80 »4 9 59 0 0 3 12 I'M
S'5!SS S-S522 °-0118 °-0318 O-0072 0-0»90 ° °«01 0.1036 0.0119 0 0220 0.0001 3 6 80 SO4 00 4 36 323 5 30
0.0400 0.0074 0.0121 0.0327 0.0074 0.0075 0.0509 0.0853 0.0099 0.0180 0.0001 3 6 80 S04 9 56 00 270 1 70
0.0200 0.0113 0.0188 0.0321 0.0113 0.0083 0.0560 0.0956 0.0110 0.0203 0 0001 3 11 80 S04 10 3 0 0 2 52 ill
0.0800 0.0069 0.0120 0.0183 0.0069 0.0079 0.0535 0.0574 0.0101 0.0113 0.0001 1 25 80 SO4 004 56 253 I'll
S'^SS S'SS'l °-0093 °-°l82 0-°°" O-0083 0-0555 00596 0.0110 00119 0.0001 2 15 80 SO4 0 0 S 39 310 710
0.0100 0.0087 0.0143 0.0188 0.0087 0.0072 0.0191 0 0527 0.0094 0 0102 0 0001 2 27 80 SOI 004 52 206 S 10
0 3800 0.0076 0.0121 0.0186 0.0076 0.0075 0.0515 0.0552 0.0100 0.0108 0.0001 2 29 80 SO 4 004 4 230 I'M
0 2500 0.0094 0.0165 0.0180 0.0094 0.0100 0 0676 0.0728 0 0135 0 0117 0.0001 3 lo 80 io! 9 59 0 0 3 01 360
I'llll S'SJS? J-S?1? S'Sff2 "'"'""' 0-°°50 0.0311 0 0768 0.0064 0.0181 0.0001 10 21 79 So* 6 52 0 0 l'?7 ill
S'JISJ !'°101 °-<)1*1 O-0630 0.0101 0.0076 0.0515 0.1466 0.0100 0.0338 0 0001 6 9 80 S04 5 11 0 0 2 15 11 20
I SJSJ S J ' 0.0139 0.0629 0.0109 0.0113 0.0759 0.2313 0.0153 0 0539 0.0001 6 10 80 SOI 0055 3 58 14 70
! IJ2J J-"08 "-01" °-°"0 0-0108 0-0076 0 0516 0.1183 0 0100 0 0318 0.0001 6 12 80 S04 5 12 0 0 2 28 1000
0.6100 0.0617 0 0622 0.0571 0.0617 0.0056 0 0393 0.0923 0 0073 0 0189 0.0001 9 17 79 S !5 5 15 30 1 83 23 60
!'?2SS S °495 °-°S27 0-0499 0.0195 0 0071 0.0193 0.1209 0.0091 0 02S1 0.0001 9 25 79 I 11 3! 11 I ill ll'll
0.4100 0 0501 0.0526 0.0499 0.0501 0 0071 0 0493 0 1207 0 0091 0.0251 0 0001 9 25 79 S ll I 12 30 1 44 2200
S ,1™ S'"!08 0-°S26 °-0499 O'0508 0.0071 0 0191 0 1208 0 0091 0 0251 0.0001 9 25 79 S 12 35 13 0 1 34 2250
J'J^J ° °500 ° OSn O-0489 0 0500 0.0075 0 0517 0 1268 0 0099 0 0266 0 0001 9 25 79 S 13 5 11 30 1 29 22 90
S'SSIS °-OS13 °-"26 °-0498 O-0513 0-00n O-0493 0.1204 0.0094 0.0251 O.OOOi 92579! It 35 ll 1 ill llll
?'2^S °-°512 0-°5" °-0198 0 0512 0.0071 0 0191 0 1188 0 0091 0.0250 0 0001 9 25 79 S IS 35 16 0 1 S3 22 90
?'?SSS * '289 l'7923 2'1277 !-6989 2'1279 i-1775 1 6611 2 1015 2 1131 0 2S20 0 0 0 Pb 00 0 0-999'90 20 00
J'iSSS J'J04J J'J9" 1'7508 1 3043 1 3767 O-6268 ° 9671 l-«'24 2 0935 0.1158 0 0 0 Pb 000 0-99990 2000
l'°J^ S l,,l i-°i5° l'"S1 °'93" °-4l28 0 3031 0 1725 1 2507 1 7111 0 0809 0 0 0 Pb 000 0-999 90 2000
1 ,111 S «5f J 5"2 °-8"° °-5418 °-0800 0 122° 0 U51 0 7195 1 2381 0 0001 0 0 0 Pb 000 0-999 90 2000
J'J5JS S 1 0.1563 0.2726 0 0316 0 0615 0 1037 0 3724 0 72S7 0 0001 0 0 0 Pb 000 0-999 90 2000
0.0100 0 0896 0.0991 0 1517 0 0886 0 0122 0 0116 0 0967 0 1060 0 2376 0 0001 0 0 0 Pb 000 0-999 9° 20 00
I
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999 90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999 90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999 90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999 90
-999.90
-999.90
-999.90
-999.90
-999.90
-999.90
-999 90
-999.90
-999 90
J K
0.40 0.166E>03
0.40 0.1((E*03
0.40 0.166E»03
0.26 0.440E«02
0.26 0.440E*02
0.26 0.440E<02
0.27 0.770£»02
0.27 0.770E*02
0.27 0.770E+02
0.20 0.340E*02
0.20 0.340E.02
0.20 0.340E>02
0.26 0.590E.02
0.26 0.590E«02
0.26 0.590E<02
0.30 0.710E.02
0.30 0.710E»02
0.30 0.710E*02
0.11 0.141E<02
0.10-0.183E»02
0.26-0.237E>02
0.06 O.S57E.01
0.29 0.900E.10
0.17 0.573E+02
0.28-0.101E+03
0.20 0.38SE«02
0.25 0.900E.10
0.34 0.245E«03
0.14 0.204E»02
0.35-0.333E*03
0.18 0.913E.02
0.14 0.858E.02
0.19-0.167E«03
0.17 0.243E«02
0.23 0.661E«02
0.15 0.17SE«02
0.23 0.116E»02
0.13 0.211E.02
0.20 0.120E+03
0.31 0.120E«03
0.41 0.215E*03
0 11 0.152E.02
0.10 0.176E.02
0.16 0.8S8£<02
0.22 0.215E«03
0.31 0.900E*10
0.16 0.505Et02
0.22 0.162E<03
0.20 0.191E403
0.21 0.900E+10
0.17 0.779E»02
0.19 0.952E.02
0.18-0.(30E*02
0.19 0.120E.03
0.16-0.118E«02
0.17-0.289E>02
0.21 0.245E.03
0.10 0.886E»01
0.17 0.162E403
0.27-0 988E.02
0.17 0 900E*10
0 11-0.256E<01
0 1S-0.373E»01
0.1S-0.470E+01
0 15-0.471E+01
0.16-0 977E+01
0.15-0 622E<01
0.15-0.150E+02
0.35 0.900E«10
0.35 0.900E.10
0.35 0.900E+10
0 35 0.900E+10
0 35 0 900E»10
0 35 0 900E.10
L
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999 900
-999 900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999 900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
-999.900
51.000
88 000
70.000
70.000
11 000
53 000
22.000
-999 900
-999 900
-999 900
-999 900
-999 900
-999 900
H N
3.00 1
3.00 1
3.00 1
3.00 1
3.00 1
3.00 1
3.00 1
3.00 1
3.00 1
3.00 1
3.00 1
3.00 1
3.00 1
3.00 1
3.00 1
3.00 1
3.00 1
3.00 1
0.80 10
0.40 10
1.00 -10
0.30 10
2.20 10
0.90 10
0.30 10
0.30 10
0.20 10
1.50 10
2.30 10
1.10 10
4.30 10
2.00 10
0.60 10
0.60 10
0.40 10
0.60 10
0.40 10
1.10 10
0.40 10
0.20 10
0.30 10
0.30 10
0.10 10
0.10 10
0.20 10
0.10 10
0.40 10
0.20 10
0.20 10
0.20 10
0.20 10
0.70 10
0 20 10
0.10 10
0 . 30 10
0.20 10
0.50 10
1.30 10
0.30 10
0.30 10
0.40 10
9.40 10
9.40 10
9.10 10
9.10 10
9.10 10
9.40 10
9.40 10
2 00 1
2.00 1
2.00 1
2 00 1
2.00 1
2.00 1
O
(.00
(.00
(.00
6.00
(.00
6.00
(.00
6.00
(.00
(.00
(.00
(.00
6.00
(.00
(.00
(.00
6.00
6.00
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
13.00
10.00
7.50
5 00
3.20
1 60
F
6.00
(.00
(.00
6.00
(.00
(.00
(.00
(.00
(.00
(.00
(.00
(.00
(.00
(.00
6.00
(.00
(.00
(.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
13.00
10.00
7.50
5.00
3 20
1.60
at era
V
4. 00-999.90 0.1 1.0 11
4.00-999.90 .1 l.a 11
4.00-99
4.00-19
4.04-99
4.00-99
4.00-99
4.00-99
4.00-99
1.00-91
4.00-99
4.00-99
4.00-99
4.00-99
4.00-99
4.00-99
4.00-99
4.00-99
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
i.oo
1.00
1.00
1.00
1.00
1 00
1.00
1.00
1.00
1.00
1.00
1. 00-99!
1.00-99!
1.00-99!
1.00-99!
1 00-99!
1.00-99!
1.10
1.10
1.10
1.10
9.90-
9.94
1.90
1.10
1.14
9.90
9.94
1.94
9.14
9.94
9.14
1.14
1.40
.00
.44
.44
.44
.04
.44
.04
.1
.1
.1
.1
.1
i!
9.
9.
9.
9.
9.
9.
9.
9.1
.1
.4
.5
.5
.5
.S
.4
.4
.0
.44 .4
.44 .5
.04 .5
.04 .S
.04 .%
.44 .S
.44 .5
.44 .S
.44 .5
.44 .S
.44 .5
.44
.44 4.
.44 4.
.44 4.
.44 4.
.40 4.
.40 0.
.40 4.
.40 .5
.40 .S
.00 .5
.00 .4
.04 .4
.44 .4
.44 1.0
.04 4.1
.44 4.1
.40 4.1
.40 4.1
.44 4.1
.44 2.5
.00 3.0
.00 3.0
.00 3.0
.00 2.0
.04 2.4
.44 2.4
.40 2.0
.40 2.4
.40 2.0
.40 2.0
.90 1.5
.90 15
.90 1.5
.90 1.5
.90 1.5
.90 1.5 1
L.4 11
1.4 11
1.4 11
L.4 11
1.4 11
1.4 11
1.4 11
1.4 11
L.4 11
.4 11
.4 11
.4 11
.4 11
.4 11
.4 11
.4 11
.4 2
.4 14
.4 14
.4 14
.0 14
.4 3
.4 3
.0 ?
.4
.0 1
.0 1
.0 1
.4 1
.4 1
.0 1
.4 1
.0 1
.0 1
.4 1
.0 1
.0 1
.4 1
.0 1
.0 1
.0 1
.0 1
.0 1
.0-1
.4 1
.4 1
.4 1
.4 1
.4 1
.0 1
.0
.0
.0
.0
.0
.0 1
.0
.0
.0
.0
!o
.0
.0
.0
.0
.0
.0
.0
.0
1
)
)
)
)
)
>
)
>
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
10
11
12
13
14
15
-------
0.0200 0.0297 0.0333
0.0200 0.0165 0.0184
0.0900 0.1068 0.1167
0.0500 0.1687 0.1862
0.1200 0.1725 0.1911
0.1800 0.1790 0.1988
0.1200 0.1790 0.1988
0.4200 0.2539 0.2779
0.0100 0 1147 0.1676
0.0200 0.0614 0.0991
0.1200 0.0814 0.1007
0.1100 0.0873 0.1133
0.0700 0.0913 0.1133
0.1400 0.0807 0.0986
O.C800 0.0973 0.1481
0.1200 0.1012 0.1504
0.8000 0.0889 0.1310
O.SSOO 0.1010 0.1481
0.2000 0.1047 0.1S05
0.0900 0.0771 0.1089
0.2200 0.0249 0.0211
0.1400 0.02SO 0.0212
0.1100 0.02S1 0.0213
0.1500 0.0263 0.0222
0.2300 0.0250 0.0213
0.2400
0.1SOO
0.1500
0.1900
0. 1500
0.1600
0 . 29*00
0.2000
0.2000
0,2500
0 . 1SOO
0.0700
0.1400
0.1500
0.0200
0.0400
0.1300
0.1300
0.1100
0.1700
0.2200
0.1900
0.1700
0.1400
0.1SOO
0.2400
0.2300
0.3000
0.3400
0.2800
0 . 3200
0.2500
0. 1400
0.1400
.0249 0.0212
.0248 0.0211
.0266 0.0224
.0249 0.0211
.'0252 0.0214
.0266 0.0224
.0268 0.0227
.0263 0.0222
.0250 0.0212
.0252 0.0214
.02S4 0.0215
.0249 0.0212
.0253 0.0216
.0468 0.0554
.0464 0.0551
.0498 0.0596
.0464 0.0550
.0463 0.0550
.0464 0.0551
.0463 0.0550
.0463 0.0550
.0463 0.0550
.0464 0.0552
.0466 0.0554
.0466 0.0554
.0464 0.0552
.0464 0.0552
.0465 0.0553
.0467 0.0555
.0468 0.0557
.0469 0.0559
.0469 0.0559
.0472 0.0563
.01A1 O.0474
0.3&00 0.0471 0.0561
0.3100 0.0472 0.0563
0.2600 0.0473 O.OS64
0.2300 0.0478 0.0571
0.2500 0.0489 0.0584
0.2000 0.0518 0.0620
0.4500 0.0465 O.OS53
0.4400 0.0465 0.0553
0.5200 0 0466 O.OS55
0.4900 0.0467 0.0556
0.5200 0 0472 0.0562
0.4100 0.0472 0.0562
0.3900 0-0474 0.0565
0.3900 0.0475 0.0566
0.4300 0.0478 0.0570
1.1700 0.0464 0.0552
0.4900 0 0484 O.OS78
0.5600 0 0493 0.0589
0.6100 0 0493 0.0590
0.6300 0.0497 0.0595
0.7500 0 0502 0.0600
0.9000 0.0199 0.0597
0.9700 0.0499 0.0596
0.3400 0.0492 0.0588
0.3900 0 OSOO 0.0598
0.4800 0 0505 0.0605
0.3200 0.0515 0.0617
0.3800 0.0524 0.0628
0.4400 0 0510 0.0636
0.4200 0 0538 0.0646
0.3600 0 0541 0.0649
0.4600 0.0552 0 0662
.0501 0.0297 0.0086 0.0667 0.1440 0.0257 0 0603 0.0001 0 0 0 Pb 00 0-999.90 20.00 -999.90 0 35 0.900E*10 -999.900 2.00
.0272 0.0165 0.0116 0.0904 0.2000 0.0097 0.0232 0.0001 0 0 0 Pb 00 0-999.90 20.00 -999.90 0.35 0.900E+10 -999.900
.1546 0.1068 0.1267 0.4353 0.8437 0.0312 0.0812 0 0001
.2642 0.1687 0.0261 0.0172 0.0551 0.1479 0.2861 0.0001
.1175 0.1725 0.0263 0.0399 0.0686 0.1731 0 1841 0.0001
.2907 0.1790 0.0265 A. 0426 0.0682 0.1982 0.3925 0.0001
.2907 0.1790 0.0265 0.0426 0.0682 0.1982 0.3925 0.0001
.4282 0.2539 0.0461 0.0557 0.0758 0.2395 0 4645 0.0001
.0750 0.2835 0.1183 0.0886 0.1398 0.0303 0.0454 0 0001
0412 0.2073 0.0487 0.0375 0.0634 0 0125 0.0187 0.0001
.0421 0.2073 0.0521 0.0402 0.0674 0 0135 0.0201 0.0001
.0484 0.2213 0.0712 0.0539 0.0881 0.0182 0.0273 0.0001
.0484 0.2308 0.0714 0 0541 0.0883 0.0183 0.0274 0.0001
.0409 0.2058 0.0471 0.0362 0.0617 0.0121 0.0181 0.0001
.0655 0.2431 0.1032 0.0774 0.1211 0.0265 0.0396 0.0001
.0666 0.2523 0.1054 0.0790 0.1256 0.0270 0.0404 0.0001
.0571 0.2239 0.0888 0.0668 0 1074 0.0227 0.0340 0.0001
.0655 0.2540 0.1038 0.0779 0 1239 0.0266 0.0398 0.0001
.0666 0.2608 0.1058 0.0793 0 1261 0.0271 0.0405 0.0001
1.0463 0.1969 0.0650 0.0494 0.0811 0.0167 0.0249 0.0001
.0471 0.0249 0.0106 0.0714 0.. 1777 0.0143 0.0394 0.0001
.0473 0.0250 0.0110 0.0738 0 1841 0.0148 0.0409 0.0001
J.0475 0.0251 0.0114 0.0763 0.1911 0.0154 0.0125 0.0001
).0500 0.0263 0.0116 0.0911 0.2307 0.0186 0.0519 0.0001
.0471 0.0250 0.0091 0 0616 0 1514 0.0122 0.0331 0.0001
).0169 0.0249 0.0094 0 0639 0.1572 0.0127 0 0346 0.0001
).0469 0.0248 0.0098 0.0661 0.1617 0.0132 0.0361 0.0001
1.0505 0.0266 0.0140 0.0931 0.2358 0.0191 0.0534 0.0001
.0471 0.0249 0.0106 0.0713 0.1768 0.0143 0.0393 0.0001
1.0478 0.0252 0.0117 0 0785 0.1953 0.0159 0.0439 0.0001
.0505 0.0266 0.0140 0.0931 0.2340 0.0191 0.0533 0.0001
1.0511 0.0268 0.0144 0.0952 0.2388 0.0196 0.0547 0.0001
3.0500 0.0263 0.0136 0.0901 0.2236 0.0185 0.0515 0.0001
1.0472 0.0250 0.0109 0.0725 0.1747 0.0148 0.0404 0.0001
1.0477 0.0252 0.0117 0.0773 0.1874 0.0158 0.0435 0.0001
1.0481 0.02S4 0.0121 0.0799 0.1947 0.0164 0.0451 0.0001
>.0469 0.0249 0.0090 0.0598 0.1388 0.0121 0.0324 0.0001
).0474 0.0253 0.0082 0.0544 0.1230 0.0110 0.0291 0.0001
.00
0 0 Pb 00 0-999.90 20.00 -999.90 0 35 0.900E«10 -999 900 2.00
21 81 FECOH 000 2.50 20.00 -999.90 0.16 0.900CUO 0.000 2.00
23 81 FECOH 000 1.00 20.00 -999.90 0.19 0.900E*10 0.000
1 81 FEOOH 000 3.50 20.00 -999.90 0.23 0.900E*10 0.000
17 91 FECCH 0000 3.50 20.00 -999.90 0.23 0.900EUO 0.000
30 82 FECOH 0000 2.40 20.00 -999.90 0.15 0.900C«10 0.000
26 81 Fin* Prt 10 0 10 30 4.00 9.20 -999.90 0.64-0.499E*03 49.000 10<
26 81 Fin* Prt 17 30 18 0 2.10 15.40 -999.90 0.26 0.105E*03 -16 000 10
26 61 Fin* Prt 18 0 18 30 2.50 14.60 -999.90 0.28 0.104E<03 -20.000 10(
27 81 Fin* Prt 10 30 11 0 2.50 13.20 -999.90 0.38-0.610E«02 85.000 10<
27 81 Fin* Fit 11 30 12 0 2.60 15.00 -999.90 0.38-0 .912E»02 56.000 101
27 81 Fin* Prt 12 30 13 0 1.80 15.20 -999.90 0.25-0 .S72E*02 26.000 101
26 81 Fin* Prt 10 30 11 0 3.60 7.50 -999.90 0.56-0.378E«03 43.000 10
28 81 Flo* Prt 11 30 12 0 2 70 .40 -999.90 0 S7-0.824E»02 209.000 10<
28 81 Fin* Prt 12 0 12 30 2.90 .50 -999.90 0.46-0 .116E*03 69.000 10
28 81 Fin* Prt 12 30 13 0 3.30 .20 -999.90 0.56-0 .709E*02 231.000 10
28 81 fin* Prt 13 0 13 30 2.80 .70 -999.90 O.S7-0.730E>02 237.000 10(
28 61 Fin* Prt 15 0 IS 30 1.50 .70 -999.90 0. 35-0.728E*02 55.000 10
25 78 S 11 18 11 46-999.90 30.00 -999.90 0.24-0 .961E«01 144.000
25 78 S 11 48 12 18-999.90 30.00 -999.90 0.2S-0.116E*02 135.000
25 79 S 12 18 12 48-999.90 30.00 -999.90 0.26-0 .113E*02 1S6.000
25 78 S 12 48 13 18-999.90 30.00 -999.90 0.32-0 .193E*02 170.000
25 78 S 13 16 13 48-999.90 30.00 -999.90 0. 20-0 .463E<01 171.000
25 78 S 13 48 14 16-9"99.90 30.00 -999.90 0.21-0.828E>01 112.000
25 76 S 14 18 14 46-999.90 30.00 -999.90 0.22-0.237E*02 45.000
25 78 S 14 48 IS 18-999.90 10.00 -999.90 0.33-0.3431*02 105.000
25 76 15 18 IS 48-999.90 30.00 -999.90 0. 24-0.136E<02 102.000
25 78 15 48 16 16-999.90 30.00 -999.90 0. 27-0.299E*02 66.000
25 78 16 18 16 48-999.90 30.00 -999.90 0.33-0.692E*02 52.000
25 78 16 46 17 18-999.90 10.00 -999.90 0.34-0.262E*03 15.000
25 78 17 18 17 48-999.90 30.00 -999.90 0.32 0.234E»03 -14.000
25 78 17 48 18 18-999.90 30.00 -999.90 0.25 0.539E*02 -29.000
25 78 16 16 11 48-999.90 30.00 -999.90 0.27 0.481E*02 -41.000
2S 78 18 46 19 18-999.90 30.00 -999.90 0.28 0.610E»02 -36.000
25 76 19 18 19 48-999.90 30.00 -999.90 0.20 0.229E*02 -35.000
25 78 19 48 20 16-999.90 30.00 -999.90 0.18 0.139E+02 -42.000
.1666 0.0670 0.0062 0.0148 0.0382 0.0168 0.1400 0.0001 000 ART 0000 1.84 17.80 -999.90 0.21 0 900E*10 0.000 2
i 1706 0 0662 0 0070 0.0153 0.0436 0.0199 0 1686 0.0001 000 ART 0000 2.22 17.80 -999.90 0.25 0.900E*10 0.000 2
1.1942 0 0705 0.0092 0.0168 0.0579 0.0279 0.2436 0.0001 000 PART 0000 3.22 17.80 -999.90 0.36 O.SOOEHO 0.000 2
1.1686 0.0663 0.0067 0.0151 0.0414 0.0187 0.1573 0.0001 000 PART 0000 2.07 17.80 -999.90 0.21 0.900E«10 0.000 2
1.1698 0.0662 0.0069 0.0152 0.0427 0.0191 0.1641 0.0001 000 PART 0000 2.16 37.80 -999.90 0.24 0.900E*10 0.000 2
1.1713 0.0662 0.0071 0.0154 0.0441 0.0202 0.1716 0.0001 000 PART 0000 2.26 17.80 -999.90 0.25 0.900E*10 0.000 2
1.1690 0.0662 0.0067 0.0152 0.0419 0.0189 0.1595 0.0001 000 PART 0000 2.10 17.80 -999.90 0.24 0.900EtlO 0.000 2
).169« 0.0662 0.0069 0.0152 0.0427 0.0194 0.1641 0 0001 000 PART 0000 2.16 17.80 -999 90 0.24 0.900E«10 0.000 2
1.1699 0.0662 0.0069 0.0153 0.0129 0.0195 0.1648 0.0001 000 PART 0000 2.17 17.80 -999.90 0.24 0.900E»10 .000 2
1.1716 0.0662 0.0071 0.0154 0.0444 0.0203 0.1731 0.0001 000 PART 0000 2.28 17.80 -999 90 0.26 0.900E«10 .000 2
1.1735 0.0664 0.0074 0.0156 0.0460 0.0212 0.1811 0.0001 000 PART 0000 2.39 17.80 -999.90 0.27 O.SOOE.10 .000 2
1.1731 0.0663 0.0073 0.0156 0.0459 0.0211 0.1306 0.0001 000 PART 0000 2.38 17.80 -999.90 0.27 0.900E*10 .000 2
) 1714 0.0662 0 0071 0.0154 0.0443 0.0203 0.1723 0.0001 000 PART 0000 2 27 17.80 -999.90 0.26 0.900EtlO .000 2
1.1721 0.0662 0.0072 0.0155 0.0449 0.0206 0 1753 0 0001 000 PART 0000 2.31 17.80 -999.90 0.26 0.900E*10 000 2
3.1724 0.0663 0.0072 0.0155 0.0451 0.0207 0.1768 0.0001 000 PART 0 0 11 0 2.33 17.80 -999.90 0.26 0.500E.10 .00» 2
3.1743 0.0665 0.0075 0.0156 0.0466 0.0215 0.1843 0.0001 000 PART 0000 2.43 17.80 -999.90 0.27 0.900E«10 .000 2
1.1753 0.0666 0.0076 0.0157 0.0473 0.0219 0.1881 0.0001 000 PART 0000 2.48 17.80 -999.90 0.28 0.900E*10 .000 2
>.1763 0.0667 0.0077 0.0158 0.0480 0.0223 0.1918 0 0001 0 0* 0 PART 0000 2.53 17.80 -999.90 0.28 0.900E*10 .000 2
3.1765 0.0668 0.0077 0.0158 0.0481 0.0224 0.1926 0 0001 000 PART 0000 2.54 17.80 -999.90 0.29 0.900E*10 .000 2
3 1787 0.0671 0.0079 0.0159 0.0496 0.0232 0 2001 0.0001 000 PART 0000 2.64 17.80 -999.90 0.30 0.900E.10 .000 2
1.1843 0.0682 0.0084 0 0163 0.0529 0.0251 0.2173 0.0001 000 PART 0000 2.67 17.80 -999 90 0.32 0.900E*10 0.000 2
1 1776 0.0669 0.0078 0.0159 0.0469 0.0228 0.1963 0.0001 000 PART 0000 2.59 17.80 -999.90 0.29 0.900E»10 0.000 2
1.1787 0.0671 0.0079 0 0159 0.0496 0.0232 0.2001 0.0001 000 PART 0000 2.64 17.80 -999.90 0.30 0.900E*10 0.000 2
>.1791 0.0(72 0.0080 0.0160 0.0499 0 0234 0.2016 0.0001 000 PART 0000 2.66 17.80 -999.90 0.30 0.900E«10 0.000 2
> 1628 0.0679 0.0083 0.0162 0.0520 0 0246 0.2128 0 0001 000 PART 0000 2.91 17.80 -999.90 0.32 0.900EtlO 0.000 2
3.1889 0.0693 0.0088 0.0165 0 0553 0.0264 0 2301 0.0001 0 0 PART 0000 3.04 17.80 -999.90 0.34 0.900E.10 0.000 2
1.2044 0.0731 0.0099 0 0172 0.0625 0.0304 0 2676 0.0001 0 0 PART 0000 3.54 17.80 -999.90 0.40 0.900E+10 0 000 2
».1721 0.0662 0.0072 0.0155 0.0450 0.0207 0 1761 0.0001 0 0 PART '0000 2.32 17.80 -999.90 0.26 0.900E«10 0.000 21
3 1730 0.0661 0.0073 0.0155 0.0456 0 0210 0.1791 0 0001 0 0 PART 0000 2.36 17.80 -999.90 0.27 0.900E*10 0.000 2
3 1739 0.0664 0.0074 0.0156 0.0463 0.0214 0.1828 0.0001 0 0 PART 0000 2.41 17.80 -999.90 0.27 0.900E«10 0.000 2
3 1749 0.0665 0.0075 0.0157 0.0470 0.0218 0.1866 0.0001 0 0 PART 0000 2.46 17.80 -999 90 0.26 0.900E.10 0.000 2
> 1782 0.0671 0.0079 0.0159 0.0493 0.0231 0 1986 0 0001 0 0 PART 0000 2.62 17.80 -999.90 0.29 0.900E«10 0.000 2
1.1765 0.0671 0.0079 0.0159 0 0494 0.0231 0 1993 0.0001 000 PART 0000 2.63 17.60 -999.90 0.30 0.900E+10 0.000 2
1.1801 0 0674 0.0080 0.0160 0.0504 0.0237 0.2046 0.0001 000 PART 0000 2.70 17.80 -999.90 0.30 0.900E+10 0.000 2
1.1806 0.0675 0 OOB1 0 0160 0.0507 0.0239 0.2061 0.0001 000 PART 0000 2 72 17.80 -999.90 0.31 0.900E*10 0.000 2
> 1625 0.0679 0.0083 0.0162 0 0519 0 0245 0 2121 0 0001 000 PART 0000 2.60 17.80 -999.90 0.32 0.900E+10 0.000 2
1 1719 0.0662 0.0072 0 0154 0 0447 0 0205 0.1746 0 0001 000 PART 0000 2.30 17.60 -999 90 0 26 0.900E*10 0.000 2
J.1862 0.0687 0.0086 0.0161 0.0539 0.0256 0.2226 0 0001 000 PART 0000 2.94 17 80 -999.90 0.33 0 900E*10 0.000 2
9 1912 0.0698 0.0090 0 0166 0.0564 0.0271 0 2361 0.0001 000 PART 0000 3.12 17 80 -999.90 0.35 0 900E+10 0.000 2
9.1915 0.0699 0.0090 0.0166 0.0566 0 0271 0.2368 0.0001 000 PART 0000 3.13 17 80 -999.90 0.35 0.900E*10 0.000 2
1 1936 0.0704 0.0091 0.0167 0.0576 0.0277 0.2421 0.0001 000 PART 0000 3.20 17 80 -999 90 0.36 0 900EtlO 0 000 2
1.1960 0.0710 0 0093 0 0169 0 0587 0.0283 0.2481 0 0001 000 PART 0000 .28 17.80 -999 90 0.37 0.900E+10 0.000 2
M94S 0.0706 0.0092 0 0168 0.0580 0.0279 0.2443 0.0001 000 PART 0000 .23 17.60 -999.90 0.36 0.900E+10 0.000 2
1 1942 0 0705 0 0092 0.0168 0.0579 0.0279 0.2436 0 0001 000 PART 0000 .22 17.80 -999 90 0.36 0.900E*10 0 000 2
9.1906 0.0697 0.0089 0.0166 0 0562 0.0269 0.2346 0 0001 000 PART 0000 .10 17.80 -999 90 0 35 0 900E«10 0.000 2
9.1951 0.0707 0.0092 0 0168 0.0583 0.0281 0.2456 0 0001 000 PART 0000 25 17.80 -999.90 0.37 0.900E.10 0.000 2
9.1979 0.0714 0 0094 0 0169 0 0596 0.0288 0 2526 0 0001 000 PART 0000 34 17.80 -999.90 0 38 0.900E.10 0 000 2
9.2031 0.0727 0.0098 0 0172 0 0619 0.0301 0 2616 0 0001 000 PART 0000 50 17.80 -999 90 0 39 0 900E+10 0 000 2
9.2078 0.0740 0.0101 0.0174 0 0639 0.0312 0 2751 0 0001 000 PART 0000 64 17.80 -999 90 0 41 0 900E*10 0,000 2
9.2110 0.0746 0.0103 0 0175 0.0652 0 0319 0.2816 0 0001 000 PART 0000 .73 17 80 -999 90 0 42 0.900E+10 0 000 2
1 2149 0.0758 0.0105 0 0177 0 0666 0 0326 0 2901 0 0001 000 PART 0000 84 17.60 -999.90 0.43 0.900E+10 0 000 2
0 2164 0.0762 0 0106 0 0177 0 0674 0 0331 0 2931 0.0001 000 PART 0000 .86 17.90 -999 90 0 44 0 900E+10 0 000 2
9 2216 0.0776 0.0109 0 0179 0 0694 0.0342 0.3036 0 0001 000 PART 0000 02 17 80 -999.90 0 45 0 900E+10 0 000 2
.00
.00
.00
.00
.00
> 00
).00
.00
>.oo
> 00
1.00
.00
1.00
1.00
>.oo
1.00
.75
.40
.04
.60
.80
.80
.60
.80
.05
.05
.05
.05
.05
.05
.05
.05
.05
.05
.os
.os
.00 10 .10
.00 10 .10
.00 10 .10
.00 10 .10
.00 10 .10
.00 10 .10
.00 10 0.10
.00 10 0.10
.00 10 0.10
.00 10 0.10
.00 10 0.10
.00 10 0.10
.00 10 0.10
.00 10 0.10
.00 10 0.10
.00 10 0.10
.00 10 0.10
.00 10 0.10
.00
1.00
1.00
.00
1.00
1.00
.00
.00
1.00
.00
.00
.00
.00
.00
1.00
.00
.00
.00
.00
.00
.00
1.00
.00
.00
1.00
.00
.00
.00
.00
.00
.00
i.OO
.00
.00
1.00
.00
.00
.00
I 00
00
.00
00
.00
00
.00
.00
.00
) 00
00
00
.00
00
00
0.50
0.50
0.50
o.so
o.so
0.50
o.so ,
0.50
0.50
o.so
0.50
0.50
0.50
o.so
o.so
0.50
o.so
0.50
o.so
o.so
o.so
0.50
o.so
o.so
o.so
o.so
o.so
o.so
o.so
0.50
0.50
o.so
0.50
o.so
o.so
0.50
0.50
0.50
O.JO
o.so
0.50
o.so
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0 SO
0.50
.75 1.00-999.90
.40 1.00-999.90
.04 1.00-9.9}. 90
.80 1.00 10.00
.80 1.00 10.00
.80 1.00 10.00
.60 1.00 10.00
.80 1.00 10.00
.10 1.00 39.00
.10 1.00 39.00
.10 1.00 39.00
.10 1.00 39.00
.10 1.00 31.00
.10 1.00 39.00
.10 1.00 39.00
.10 1.00 39.00
.10 1.00 19.00
.10 1.00 39.00
.10 1.00 39.00
.10 1.00 39.00
.00 1.00 39.00
.00 1.00 39.00
.00 1.00 39.00
.00 1.00 39.00
.00 1.00 39.00
.00 1.00 39.00
.00 1.00 39.00
.00 1.00 39.00
.00 1.00 39.00
.00 1.00 39.00
.00 1.00 39.00
.00 1.00 39.00
.00 1.00 3J.OO
.00 1.00 39.00
.00 1.00 39.00
.00 1.00 39.00
.00 1.00 39.00
.00 1.00 39.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
.00 1.00
0 5900 0.0543 0.0651 0.2171 0.0764 0.0107 0 0178 0 0677 0.0333 0.2946 0 0001 000 PAPT 0000 3.90 17.80 -999 90 0 44 0 900E*10 0 000 28.00 6 0.50 00 1.00
.80
.80
.10
.60
.(0
.10
.60
.60
.10
.10
.10
.60
.60
.60
.to
.60
.60
.10
.60
.80
.10
.60
.80
.80
.80
.60
.60
.80
.60
.60
.80
.60
.60
.80
.10
.60
.80
.60
.60
.80
.80
.80
.80
.80
.80
.60
.60
.80
.80
.80
.8<»
.80
.60
.5
.S
.S
.S
.0
.S
.S
.0
.5
.S
.5
.S
.S
.S
.5
.S
.S
.S
.S
.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.«
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
0
.0
.80 .0
.80 9 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.«
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
_o
.0
.0
,0
.0
.0
.0
.0
.0
.0
.0
.0
.0
o
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
, Q
.0
.0
.»
.0
.0
.0
.0
.0
.0
.0
.a
.<
.0
.0
.0
.0
.0
_o
to
_o
_o
o
'o
.0
1C
17
It
19
19
20
20
21
22
22
22
2]
22
22
22
22
2]
22
22
22
23
21
21
23
23
23
23
13
23
23
23
23
23
23
23
23
23
23
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
14
24
24
14
21
24
24
24
24
24
34
24
24
24
It
24
21
24
.0 S 24
.0 5 24
.0 t 24
.0 5 24
.0 S 24
.0 S 24
.0 S 21
.0 S 24
0 S 24
.0 S 24
.0 S 24
.0 S 24
.0 5 24
0 S 24
.0 5 24
.0 S 24
.0 5 24
-------
p
u
V
11™ S'JHS J'SfS! °-"" 0.0783 0.0111 0.0180 0 0703 0 0347 0.3061 0 0001 000 PART 0000 1.06 17.80 -999.90 0.46 0 900E.10
£M Hill 1 SH? J'«S S-^« S'S'J' °-°185 °-°7" ° "" °-"14 ° °001 ° ° ° PAI!T 0000 4.39 17.80 -999.90 0.49 0.900E.10
i«JJ J Jll? S J™ 0.2153 0.0759 0.0106 0.0177 0 0670 0 0329 0 2908 0.0001 000 PART 0000 3.85 17.80 -999 90 0 43 0 900E»10
JS2J J'S!« J'S'S1 ° "" °-°8" °-0118 °-01" °-0751 °-°"« »•»" 0-«001 0 0 OPART 0000 4.41 17.80 -999?0 0500900E.10
SSIS !'Jf»J !'J!Ji J-1"! "-0"9 °-00" °-0162 °-0520 °-02« °-2128 « 0001 0 0 0 PART 0000 2.81 17 80 -999.90 0.32 0.900E.10
0050 0.0508 0.0608 0.1995 0.0718 0.0096 0.0170 0.0603 0 0292 0.2563 0.0001 000 PART 0000 3.39 17.80 -999.90 oile o!900E*10
•ontb
day
yatr
pollutant
beginning hour
•nding hour
wind ap««4
t**p*ratur*
•oUr radiation
friction valoclty
Honia-Obutthov length
•Ixtng height
roughness length
number of diameter •
•malleat diameter
largest dlaaetar
den*lty
reference height
leaf area index .
LAI correction exponent
land use type
sample aet number
0.000 20.00 € O.SO .00 .00 .80 .0 .0 24
0.000 28.00 « O.SO .00 .00 .80 .0 .0 31
0.000 28 00 < O.SO .00 .00 .80 .0 .0 24
0.000 28.00 € 0.50 .00 .00 .80 .0 .0 24
0.000 28.00 6 O.SO .00 .00 .80 .0 .0 24
0.000 28.00 6 O.SO .00 .00 .80 .0 .0 24
-------
Table C-2. The data making up the overall dataset.for a sulfate peaked particle distribution. The data set contains 173 data points including
observed zero deposition velocities which have been set to a lower limit of 0.005 cm/s. The footnotes define the variable A thru X.
Dtpoiltlon Modtl
CARS 1 C«B 2- CARS J CARS 0 ADCH 1 ADOM 2 ACCM 3 U»M 1
.2100 0.9370 1.1215 0.8951 0.9370 2.4105 1.2211 1 2772 1.34S) 1.4027 0.2612 i l» 8} ZnS 22 41 21 11 7 61 14.70 -999.90 0.40 0.166E»01 -999.900 1.00
OSOO 0.9370
.6500 0.9370
.9300 0.8016
.(000 0 BO 16
.7400 0.8016
.1400 0.7901
.0200 0.7904
.1400 0.7904
.7500 0.6B08
.6200 0.6801
.3100 0.6808
.5600 ,0.7157
.4700 0.71S7
.1400 0.7157
.1700 0.87S2
.1500 0.8751
.1000 0.8752
.0400 0.0144
0.1300 0.0102
0.5700 0.0142
0.0300 0.0148
0.1100 0.0162
0.0200 0.0093
0.2000 O.OOS9
0.0900 0.0058
0.0400 0.0051
0.0400 0.0120
0.2400 0.0150
0.3400 0.0124
0.0800 0.0191
0.1000 0.0134
0.0700 0.0076
0.1500 0.0079
O.OSOO 0.0065
0.0200 0.0080
0.1200 0.0061
0.0700 0.0124
0.2300 0.0071
0.1800 0.0053
0.4100 0.0070
0.0400 0.0070
0.0100 0.0048
0.2100 0.0037
0.2200 O.OOS1
0.2200 0.0043
0.0400 0.0073
0.0050 0.0051
0.2800 0.00)8
0.5100 0.0050
0.0400 0.0052
0.0200 0.0083
o.oBoo o.ooie
0.2500 0.0041
0.0100 0.0062
0.3800 0.0053
0.2500 0 0067
0.3500 0.0156
0.0100 0.0072
0.0400 0.0075
0.2100 0 0079
0.6100 0.0498
0.7200 0.0191
0.4400 0.0397
0.3300 0.0402
0.1200 0.0391
0 0050 0.0106
0.0050 0.0405
1.9000 1 6989
1.4000 1.3013
1 0000 0.9363
0.4500 0.5418
0.1500 0.2726
.1215 0.8954 0.9170
.1215 0.89S4 0.9170
.8596 0.7041 0.8016
.8596 0.7041 0.8016
.8596 0.7041 0.8016
.8774 0.7165 0.7904
).8774 0.7165 0.7904
>.8774 0.7165 0.7904
>.7706 0.6414 0.6808
3.7706 0.6414 0.6808
1.7706 0.6434 0.6808
).«<06 .7044 0.7357
).8606 .7048 0.7357
1.8606 .7048 0.7157
).9275 .7524 0.8752
1.1275 .7524 0.8752
.9275 .7524 0.8752
.0182 0.0560 0.0144
.0147 0.0510 0.0102
.0152 0.0195 0.0142
.0211 0.0773 0.0148
.0209 0.0402 0.0162
.0154 0.0238 0 0093
.0096 0.0231 0.0059
.0096 0.0230 O.OOS8
.0081 0.0228 0.0051
.0187 0.0419 0.0120
.0241 0.0418 0.0150
.0168 0.0424 0.0124
.0283 0.0404 0.0191
.0230 0.0194 0.0134
.0127 0.0176 0.0076
.0131 0.0180 0.0079
.0106 0.0172 0.0065
.0137 0.0188 0.0080
.0106 0.0172 0.0061
0187 .0201 0.0124
.0107 .0174 0.0071
.0085 .0178 0.0051
1.0110 .0198 0.0070
1.0122 .022] 0.0070
1.0081 0.021« 0.0048
1.0065 0.0184 0.0017
1.0081 0.0172 0.0051
1.0065 0.0178 0.0043
1.0113 0.0184 0.0073
1.0081 0.0172 0.0051
1.0082 0.0230 0.0048
1.0081 0.0229 0.0050
1.0084 0.0238 0.0052
.0135 0.0232 0.0083
1.0081 0.0111 0.0048
1.0061 0.0130 0.0041
1.0101 0.0136 0.0062
1.0084 0.0133 0.0053
1.0116 0.0127 0.0067
1.0238 0.0525 0.0156
1.0099 0,0166 0.0072
1.0096 0 0152 0.0075
1.0111 0 0466 0.0078
1.0501 0.0434 0 0498
1.0116 0.0369 0 0392
1.0416 0.0369 0.0397
1 0416 0.0369 0.0402
1.0404 0.0360 0.0391
1 0416 0 0369 0.0106
1.0115 0.0369 0.0405
L.7923 2.1277 1.6989
1 3966 1.7S08 1 3011
1 0180 1 3551 0 9361
1.5990 0 8560 0.5418
1 1016 0.4561 0.2726
.4305 1.2241 1.2772 1.1154 .4027 0.2612 5 18 8} ZnS 22 48 21 18 8.53 14.70 -999.90 0.40 0.166E401 -999.900 1.00
.4105 1.2241 1.2772 1.1451 .4027 0.2612 5 18 81 ZnS 22 48 21 18 9.41 14.70 -999.90 0.40 0.166E*03 -999.900 3.00
.9154 0.6852 0.7050 0.9731 .0057 0.1169 5 26 81 ZnS 21 24 2} 54 3.23 19.50 -999.90 0.26 0.440E<02 -999.900 1.00
.9154 0.6852 0.7050 0.9724 .0057 0.1169 5 26 81 ZnS 23 24 21 54 3.59 19.50 -999.90 0.26 0.440E»02 -999.900 3.00
.9151 0.6852 0.7050 0.9721 .0057 0.1169 5 26 83 ZnS 21 24 21 54 1.83 19.50 -999.90 0.26 0.410E402 -999.900 3.00
.0436 0.7185 0.7409 1.0131 .0496 0.1490 6 5 83 ZnS 22 10 22 40 4.74 17.50 -999.90 0.27 0.770E*02 -999.900 3.00
.0116 0.7185 0.7409 1.0131 .0496 0.1490 6 5 83 ZnS 22 10 22 40 5.40 17.50 -999 90 0.27 0.770E«02 -999.900 3.00
0136 0.7185 0.7409 1.0131 .0496 0.1490 6 5 11 ZnS 22 10 22 40 6.32 17.50 -999.90 0.27 0.770E.02 -999.900 3.00
.4911 0 5561 0.5661 0.8207 .8119 0.0822 6 12 83 ZnS 22 43 21 11 1.00 14.90 -999.90 0.20 0.110Ct02 -S99.100 3 00
.4911 0.5561 0.5661 0.8207 .8449 0.0822 6 12 83 ZnS 22 41 21 13 3.39 14.90 -999.90 0.20 0.340E*02 -999.900 1.00
.1911 0.5564 0.5661 0.8207 .8449 0.0822 6 12 81 ZnS 22 11 21 11 1.75 11.90 -999.90 0.20 0.340E<02 -999.900 3.00
.9248 0.6887 0.7089 0.9787 .0129 0.1114 < 24 81 ZnS 21 C 21 28 1.07 14 10 -999.90 0.26 0.590E<02 -999.900 1.00
9248 0.6887 0.7089 0.9787 .0129 0.1114 6 24 81 ZnS 21 6 21 28 3.24 14.10 -999.90 0.26 O.S90E«02 -999.900 3.00
.9248 0.6887 0.7089 0.9787 .0129 0.1314 6 24 81 ZnS 21 6 21 28 1.46 14.10 -999.90 0.26 0.590C<02 -999.900 1.00
.1818 0.8085 0.8171 1.0860 .1266 0.1601 6 27 81 ZnS 21 11 22 1 1.17 20.50 -999.90 0.30 0.710E*02 -999.900 3.00
.3838 0 8085 0 8371 1.0860 1.1266 0.1601 6 27 83 ZnS 21 31 22 1 3.80 20.50 -999.90 0.30 0.710E-02 -999.900 1.00
.1838 0.8085 0.8171 1.0860 1.1266 0.1601 6 27 81 ZnS 21 11 22 1 1.17 20.50 -999.90 0.10 0.710E.02 -999.900 1.00
.0066 0.0160 0.1216 0.0011 0.0118 0.0001 6 1 79 SOI 6000 1.71 14.20 -999.90 0.11 0.144E»02 -999.900 0.80 1
>.0060 0 0118 0 1121 0.0011 0.0094 0.0001 6 21 79 SO4 2 16 0 0 1.21 8.80 -999.90 0.10-0.183E*02 -999.900 0.40 1
1.0151 0.0996 0 2854 0.0075 0 0247 0.0001 6 21 79 SO4 0040 2.53 21.20 -999.90 0.26-0.217E*02 -999 900 1.00 1
1.0037 0.0286 0.0575 0.0020 0.0057 0.0001 6 21 79 SO 4 3 65 0 0 1.64 8.30 -999.90 0.06 O.S57E«01 -999.900 0.30 1
1.0168 0.1084 0.1105 0.0082 0.0271 0.0001 7 18 79 SOI 0 0 3 41 2.69 14.10 -999.90 0.29 0.900E»10 -999.900 2.20 1.
1.0098 0.0660 0.1141 0 0019 0.0092 0.0001 2 19 80 SOI 11 21 0 0 2.15 4.40 -999.90 0.17 0.573E»02 -999.900 0.90 1
1.0158 0.1021 0.1824 0.0077 0.0119 0.0001 2 20 80 SO4 001 40 3.73 5.90 -999.90 0.28-0 .101O01 -999.900 0.30 1
1.0114 0.0750 0.1295 0.0056 0.0107 0.0001 2 21 80 SOI 9 55 0 0 3.11 5 00 -999.90 0.20 0.185E<02 -999.900 0.10 1
1.0142 0.0919 0.1617 0.0069 0 0111 0.0001 2 22 80 SOI 004 20 3.81 6.00 -999.90 0.25 0.900E>10 -999 900 0.20 1
1.0191 0.1235 0.1512 0.0091 0.0311 0.0001 10 17 79 SOI 6 54 0 0 3.51 7.80 -999.90 0.14 0.245E>03 -999.900 1.50 1
1.0081 0.0559 0.1442 0.0041 0.0110 0.0001 10 18 79 SOI 7000 1.53 5.10 -999.90 0.14 0.204E>02 -999.900 2.10 1.
1.0200 0.1279 0.1664 0.0097 0.0124 0.0001 10 19 79 SOI 004 18 1.81 11.00 -999.90 0.15-O.lllEtOl -999.900 1.10 1'
1.0105 0.0708 0.1958 0.0052 0.0168 0.0001 10 19 79 SOI 6 58 0 0 1.50 8.80 -999.90 0.18 0.913E402 -999.900 4.30 1
1.0081 0.0565 0.0775 0.0011 0.0059 0.0001 11 21 79 SOI 10 50 0 0 1.48 2.90 -999.90 0.11 0.8S8E«02 -999.900 2.00 1
1.0109 0.0710 0.1011 0.0051 0.0078 0.0001 11 22 79 SOI 002 55 2.10 4.50 -999.90 0.19-0.167E»01 -999.900 0.60 1.
>.0097 0.0652 0.0892 0.0049 0 0070 0 0001 11 27 79 SOI 10 51 0 0 2 52 4.50 -999 90 0.17 0.241E*02 -999.900 0.60 1
1.0131 0.0852 0.1185 0.0064 0.0091 0 0001 11 29 79 S04 0047 2.31 5.20 -999.90 0.23 0.661E>02 -999.900 0.40 1.
1.0086 0.0583 0.0791 0.0041 0.0062 0.0001 11 29 79 SOI 11 1 0 0 2.41 3.10 -999.90 0.15 0.17SE»02 -999.900 0.60 1.
1.0110 0.0847 0.1176 0.0061 0 0091 0.0001 12 1 79 SO4 11 9 0 0 1.45 2.90 -999.90 0.21 0.416E*02 -999.900 0.40 1
1.0076 0.0527 0.0714 0.0019 0.0055 0 0001 12 6 79 SOI 11 12 0 0 1.78 7.60 -999.90 0.11 0.241E*02 -999.900 1.10 1
1.0115 0.0760 0.1052 0.0057 0.0082 0 0001 12 7 79 SOI 002 35 2.81 8.00 -999.90 0.20 O.UOEiOJ -999.900 0.40 1.
.0175 0.1112 0.1SS7 0.0085 0.0125 0.0001 12 12 79 SOI 11 20 0 0 4.72 6.70 -999.90 0.11 0.120E«01 -999.409 0.20 1'
.0231 0.1447 0.2045 0.0111 0.0161 0 0001 1 22 80 SOI 0 0 1 18 6.01 7.70 -999.90 0.41 0.245E*03 -999.900 0.30 1
.0064 0.0451 0.0599 0.0011 0.0047 0.0001 1 23 80 SOI 10 59 0 0 2.07 1.70 -999.90 0.11 0.1S2E<02 -999.900 0.30 V.
.0059 0.0417 0.0550 0.0010 0.0041 0.0001 1 21 tO SOI 11 1 0 0 2.19 1.40 -999.90 0.10 0.176E«02 -999.900 0.10 13
.0091 0.0615 0.0819 0.0016 0.0066 0.0001 1 28 80 SO4 0 0 5 4 2.75 1.20 -999.90 0.16 0.858E*02 -999.900 0.10 1
.0126 0.0821 0.1139 0.0062 0.0090 0.0001 1 29 80 SCI 10 12 0 0 3.47 7.30 -999 90 0.22 0.215E.03 -999.900 0.20 1.
.0175 0.1112 0.1556 0.0085 0.0125 0.0001 1 30 80 SOI 0047 5.02 8.20 -999.90 0.31 0.9002*10 -999.. 900 0.10 11
1.0091 0.0625 0.0855 0.0016 0.0067 0.0001 1 10 80 SO4 10 49 0 0 2.40 6 70 -999.90 0 16 0.50SE«02 -999.900 0.40 1
1.0125 0.0819 0 1115 0.0062 0.0090 0.0001 2 11 80 SOI 11 22 0 0 1.46 5.90 -999.90 0.22 0.162E*01 -999 900 0.20 1.
1.0111 00751 0.1301 0.0056 0.0107 0.0001 1 5 80 SOI 9 59 0 0 3.12 3. 20- -999. 90 0.20 0.194E«03 -999.900 0.2012
1.0120 0.0798 0.1171 0.0059 0.0112 0.0001 3 6 80 SOI 0 0 4 16 1.21 5.30 -999.90 0.21 0.900E.10 -999.900 0.20 13
.0098 0.0654 0.1120 0.0019 0.0091 0 0001 3 6 80 SOI 9 56 0 0 2.70 4.70 -999 90 0 17 0.779E*02 -999.900 0.20 1.
0109 0.0727 0.1267 0.0051 0.0101 0.0001 1 11 80 SOI 10 3 0 0 2.52 5.20 -999.90 0.19 0.952E*02 -999.900 0.70 12
1 0101 0 0691 0.0745 0.0051 0.0056 0.0001 1 25 80 £31 004 56 2.51 2.90 -999 90 0. 18-0 .630E«02 -999.900 0.20 12
i 0109 0.0718 0.0774 0 0054 0.0059 0.0001 2 IS 80 SOI 0 0 5 39 1.10 7 10 -999 90 0 19 0.120E*03 -999.900 0.10 1.
1.0092 0.0631 0.0680 0.0016 0.0050 0.0001 2 27 80 SOI 0 0 1 52 2.06 5.10 -999.90 0. 16-0 .418E>02 -999 900 0.10 1.
1.0098 0 0664 0 0715 0 0019 0.0053 0.0001 2 29 80 SOI 00142 30 5.90 -999.90 0. 17-0 .289E<02 -999.900 0.20 13
1.0136 0.0888 0 0961 0 0067 0 0073 0.0001 3 10 80 SOI 9 59 0 0 1 01 1 60 -999.90 0 24 0.24SE>03 -999.900 0.50 1
1.0059 0.0119 0.0976 0 0031 0.0091 0 0001 10 21 79 SOI < 52 0 0 1 77 6.60 -999 90 0.10 O.B86E»01 -999 900 1.30 1,
1.0099 0.0663 0.1925 0.0019 0.0178 0.0001 6 9 80 SOI 5 11 0 0 2.45 11.20 -999.90 0.17 0.162E<01 -999.900 0.10 1.
).0156 0.1001 0.3077 0.0076 0.0283 0.0001 6 10 80 SOI 0055 1.58 11.70 -999 90 0.27-0 .988E<02 -999 SO* 0 30 1"
1.0099 0.0665 0.1951 0.0049 0 0177 0.0001 6 12 80 SOI 5 12 0 0 2.28 10.00 -999 90 0 17 0.900E*10 -999 900 0.40 1
.0068 0.0197 0.1236 0.0015 0.0091 0.0001 9 17 79 5 15 5 15 30 1.83 23.60 -999.90 0. 11-0 .256E+01 51.000 9.40 1.
1 0091 0 0617 0 1615 0.0015 0.0126 0.0001 9 25 79 S 11 IS 12 0 1 28 21.50 -999.90 0. 15-0 ,171E*01 88 000 9.40 13
1.0091 0 0617 0 1611 0 0045 0.0126 0.0001 9 25 79 S 12 5 12 30 1 41 22 00 -999.90 0 15-0 470E*01 70.000 9.40 1
1.0091 0 0637 0.1632 0 0045 0 0126 0 0001 9 25 79 S 12 35 13 0 1 31 22 50 -999.90 0. 15-0 -471E.01 70 000 9 40 1.
1.0097 0 0670 0 1713 0.0048 0.0131 0.0001 9 25 79 S 13 5 11 30 1.29 22.90 -999 90 0. 16-0 .977E.01 11.000 9 40 12
> 0091 0 0637 0 1625 0 0045 0 0126 0 0001 9 25 79 S 14 15 15 0 1 57 22 90 -999.90 0. 15-0.622E>01 53 000 9.40 1,
1.0091 0 0633 0.1599 0 0015 0 0126 0 0001 9 25 79 S 15 15 16 0 1 53 22.90 -999.90 0 1S-0-1SOE.02 22.000 9.40 I.
> 1279 1 1775 1 6611 2 1045 2.4431 0 2520 0 0 0 Pb 000 0-999.90 20 00 -999.90 0.35 0 900E«10 -999.900 2.00 1
1.1767 0.6268 0 9671 1 6724 2 0915 0 115B 0 0 0 Pb 000 0-999 90 20.00 -999.90 0 35 O.SOOEtlO -999 900 2 00 1
> 1128 0.1031 0.4725 1.2507 1.7113 0.0809 0 0 0 Pb 000 0-999 90 20.00 -999 90 0.35 0.900E«10 -999.900 2.00
1 0800 0.1220 0.1851 0.7495 1.2183 0 0001 0 0 0 Pb 000 0-999.90 20 00 -999 90 0.3S 0 900E>10 -999 900 2.00
1.0146 0.0615 0 1017 0 1721 0 7257 0 0001 0 0 0 Pb 000 0-999.90 20 00 -999 90 0 35 0 900E«10 -999 900 2 00 1
6.00
6.00
(.00
6.00
6.00
(.00
i.OO
(.00
(.00
6.00
(.00
(.00
(.00
(.00
(.00
(.00
(.00
(.00
o.io
o.io
1 0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0 10
0.10
0.10
0.10
0.10
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
0.10 1.00
0 10 1.00
11.00 13.00
10.00 10.00
7.50 7.50
5.00 S 00
.00-999.90 0.
.00-999.90 0.
.00-999.90 0.
.00-999.90 0.
.00-999.90 0.
.00-999.90 0.
.00-999-90 0.
.00-999.90 0.
.00-999.90 0.
.00-999.90 0.
. 00-999.10 0.
.00-999.10 0.
.00-191.10 0.
.00-111.10 0.
.00-999.90 0.
.00-911.10 0.
.00-199.90 0.
.00-991.10 0.
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.90
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00 J.
.00 1.
.00 2.
.00 2.
.00 2.
.00 1.
.00 1.
.00 1.
.00 1.
.00 2.
.00 2.
.00 2.
.00 2.
.00 0.
.00 0.
.00 0.
.00 0.
.00 0.
.00 o.
.00 o.
.00 0.
.00 0.
.00 0.
.00 0.
.00 0.
.00 0.
.00 0.
.00 0.
.00 0.
.00 0.
.00 1.
.00 1.
.00 1.
.00 1.
.00 0.
.00 0.
.00 o.
.00 0.
1.
1.
1.
1.
1.
1.
I.
1.
1.
t.
1.
1.
I.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
I.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
t.
1.
1.
t.
1.
11 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1<
1<
1<
11
1
11
1(
11
1<
1(
1(
1(
1<
11
11
11
1<
u
1<
u
11
1.0 1(
1.0 1C
1.0 1<
1.0 1<
1.0 1<
1.0 1(
1.0 1C
1.0 11
1.0
1.0
1.0
1.0
.00 0.1 1.0
.00 2.5 1.0 1
.00 3.0 1.0
.00 1.00 1.0 1.0
.00 1.00 1.0 1.0
.00 7.00 2.0 1.0
.00 7.00 2.0 1.0
00 7.00 2.0 1.0
.00 7.00 2.0 1.0
.00 7.00 2.0 1.0
.00 7.00 2.0 1.0
.00 7.00 2.0 1.0
.00-999.90 1.5 1.0
.00-999.90 1.5 1.0
.00-999.90 1.5 1.0
.00-999.90 1 S 1.0
1.20 1.20 1.00-999.90 1.5 1.0
0.0400 0 0886 0 0994 0 1517 0.0886 0.0122 0 0446 0.0967 0 1060 0 2376 0 0001 0 0 0 Pb 000 0-999.90 20 00 -999.90 0.3S 0.900EllO -999 900 2 00 1 1.60 1.60 1.00-999.90 1.5 1.0
I 1
1
L 1
L 1
1
1
L
L
L
L
L
L
>
1
1
1
>
)
I
)
10
11
12
11
14
IS
-------
tz
tz
tz
tz
tz
tt
tt
It
It
tt
tt
tl
tt
tt
tt
tz
IZ
tt
It
It
11
tl
tl
tl
tt
tt
tt
tt
tz
tz
It
It
It
It
It
tt
It
tl
tt
tt
tl
tt
It
11
11
It
tl
tl
11
tl
tl
tl
tl
tt
It
tl
tl
tt
tt
tt
tt
tt
tt
tt
tt
tl
tl
tl
tl
tl
tt
tt
tt
zt
zt
ZI
zt
zt
zt
tt
11
zz
ZI
zt
zt
Tt
ot
ot
6T
61
Bl
tl
n
0'
0'
o;
0-
0-
0-
0-
0*
0'
0'
0'
0'
0'
o-
0"
o-
o-
o-
o-
0*
0'
o-
0'
0'
0'
0'
0'
0'
O'l
O'l
O'l
•1
•
•1
•1
•1
•
0'
0'
0'
0'
O'l
O'l
O'l
O'l
O'l
O'l
O'l
O'l
O'l
O'l
O'l
O'l
O'l
O'l
O'l
O'l
0'
O'l
O'l
O'l
O'l
O'l
O'l
O'l
O'l
0''
O'l
O'T
O'T
O'T
O'T
O'T
O'l
O'l
O'l
O'T
O'T
O'l
0'1
O'l
I 0
I 0
I 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0'
0
0
0
I 0
0
0'
0'
0'
0'
0'
0'
»•
0'
0'
«•
0'
0'
0'
0'
0'
0'
0'
0'
0'
0'
0'
0'
• •
0'
0'
0'
0'
0'
0'
0'
0'
• o-
0'
0'
0'
0'
0'
0'
0'
o-
o-
O'T
O'T
O't
O't
O'T
O'T
O'l
6 oe-
6 OB-
OB'
OB-
OB'
oe
08'
08
OB-
OB'
OB-
OB
OB-
OB'
08
08
os-
os-
OB-
OB'
oe
' OB-
OB'
08
OB'
OB-
OB'
OS-
OB.'
08
08
or
OS-
OB
OB-
OB'
Ofl*
OB*
OB-
OB'
« 08
OB-
OB'
• OB-
OB'
OB-
OB'
OB-
OB'
08*
OB-
OB'
OB'
OB-
OB'
00' 1
OO'I
OO'I
OO'I
OO'I
OO'I
OO'I
OO'I
OO'I
OO'I
OO'I
OO'I
oo- 1
t OO'I
I 00'6
t 00'6
t oo- 1
t OO'C
o oo't
0 00' 6
0 OO'C
0 OO'C
0 OO'C
0 OO'C
0 OO'C
0 OO'C
0 OO'C
0 OO'C
> 00'6
S 00*1 00 t 05*0
00 I 00*1 05*0
00*1 00*1 OS 0
00*1 00*1 OS'O
OO'l OO'l OS'O
OO'l OO'l OS'O
. OO'l OO'l OS'O
OO'l OO'I OS 0
OO't OO't 05*0
OO'l OO'l OS'O
OO'l OO'l OS'O
OO'l OO'l OS'O
OO'I OO'l OS'O
OO'I OO'I OS'O
OO'I OO'I OS 0
OO'l OO't 05*0
00*1 OO'l OS'O
OO'T OO'T OS'O
OO'T OO'T OS'O
OO'I OO'I OS'O
OO'T OO'T OS'O
OO'T 00*1 OS'O
•O'T 00*1 OS'O
OO'I OO'I OS'O
00'! OO'I OS'O
OO'T OO'T OS'O
OO'T OO'T OS'O
00 'I 00- 1 OS'O
OO'T OO'T OS'O
00 'I OO'T OS'O
OO'I OO'I OS'O
OO'T OO'I OS'O
OO'T OO'I OS'O
00 I OO't OS 0
OO'l OO't OS 0
OO'T OO'T 05*0
OO'I 00 I OS'O
OO'T 00 t OS'O
OO't OO'I OS'O
OO'T OO'I OS'O
OO'T OO'T OS'O
OO'T OO'T OS'O
OO'T OO'T OS'O
OO'I OO'l OS'O
OO't OO'I OS'O
OO'T OO'T OS'O
OO'I OO'I OS'O
OO'I OO't OS'O
OO't OO'T OS'O
OO'T 00 I OS'O
OO'T OO'T OS'O
OO'T OO'T OS'O
OO'T OO'T OS'O
00-t OO'T OS'O 9
OO'I OO'T OS'O 9
t OO'T OO't OT'O Z
t OO'T OO'I OI'O I
t OO'I OO'T OT'O t
t OO'I OO'T OI'O Z
t OO'I OO'T OI'O Z
t OO'T OO'T OI'O I
t OO'T OO'I OT'O I
t OO'I OO'T OT'O Z
t OO'T OO'T 01*0 Z
t OO'T OO'T OI'O Z
t OO'T OO'T OT'O Z
t OO'T OO'I OT'O Z
t OO'I OO-I OT'O I
t OO't 00-T OfO t
t OO'I OO'l OfO Z
t OO't OO'T OI'O I
t OO'I OO'T OI'O t
t OO'T OO'T OT'O t
t OO'T OI'O SO'O
t OO'T OT'O SO'O
t OO'T OT'O SO'O
t OO't OT'O SO'O
t OO'T OT'O SO'O
t OO't OfO SO'O
t OO't OI'O SO'O
t OO'I OT'O SO'O
t OO'T OT'O SO'O
t OO'I OfO SO'O
t 00 'I OfO SO'O
9 00 8Z 000 0 Ot*3006'0 tt 0 06 666- 08 tt 68 t 0000 iaYd 0 0
9 00 BZ 000 0 01*3006 0 tt'O 06 666- 08 tl 06'E 0 00 idYd 0 0
9 00 BZ 000 0 01*3006 0 St 0 06' 666- 08 tt ZO't 0 00 XdYd 0
9 00 BZ OOO'O 01*3006 0 tl 0 06 666- 08 It 8B C 0 00 XdYd 0 1
9 OO'flt 000 0 Ot*3006'0 tt 0 06'666- 08 tt 18 E 0 00 X8Yd 0
9 00 8Z OOO'O Ot«3006'0 ZfO 06'666- 08 t Et t 0 00 iaYd 0
J 00'8Z 000 0 01*3006 0 TI'O 06*666- Ofl't t9 t 0 00 iaYd 0
9 00 SZ 000 0 01*3006 0 6f 0 06'666- 08*t OS E 0 00 idYd 0
9 00 BZ 000 0 01*3006 0 BE'O 06 666- 08 t tt E 0 00 XdYd 0
9 OO'BZ 000 0 01*3006 0 tE 0 06'666- 08 t SZ t 0 00 XdYd 0
OO'SZ OOO'O Ol'3006'O SfO 06'666- 06'tt 01 t 0 00 X8Yd 0 0
00*et 000*0 01*3006*0 9E 0 06*666- 08 tl ZZ E 0 00 X8Yd 0 0
00 BZ 000*0 01*3006*0 9E*0 06*666- 08 tt Eft 0 00 iBYd 0 0
00 SZ 000 0 01*3006*0 tf 0 06'666- Ofl'tt 9Z t 0000 i8Yd 0 0
OO'SZ 000 0 OI*3006'0 9f 0 06 666- OB'tl OZ t 0000 iaYd 0 0
00 8Z 000 0 01*3006 0 SfO 06 666- OB'tl tt E 0000 XaYd 0 0
00 8Z 000 0 Ot*3006'0 SE'O 06*666- 00 tt Zft 0000 iaYd 0 0
OO'BZ 000*0 01*3006*0 tt'O 06'666- 00 tt t6'Z 0000 iaYd 0 0
00 BZ 000 0 Ol*3006'0 9Z 0 06'666- OB'tl Ot Z 0000 i8Yd 0 0
OO'BZ OOO'O OI*3006'0 ZfO 06'666- OB'tt OB Z 0000 X8Yd 0 0
OO'BZ OOO'O Ot«3006'0 tt'O 06'666- OB'tt Zf Z 0000 iaYd 0 0
OO'BZ OOO'O Ot*3006'0 OfO 06"666- Ofl'tt OfZ 0000 iavd 0 0
OO'flZ OOO'O Ol»3006'0 Ot 0 06'666- 08'tl t9'Z 0000 idYd 0 0
OO'eZ OOO'O 01*3006 0 6fO 06 666- 08 tl Z9 Z 0000 idYd 0 0
00-8Z OOO'O 01*3006 0 BfO 06'666- 08 tt 9fZ 0000 iaYd 0 0
00 BZ 000 0 Ot*3006'0 tt'O 06"666- OB'tt It t 0000 iaYd 0' 0
OO'BZ 000 0 01*3006-0 tZ'O 06'666- OB'tl 9t Z 0000 iaYd 0 0
OO'BZ 000 0 01*3006-0 9fO 06' 666- OB'tl tf Z 0000 iaYd 0 0
OO'Bt OOO'O Ot»3006'0 OfO 06'666- 08 tt IS't 0000 iaYd 0 0
OO'Bt OOO'O Ot*3006'0 tt'O 06 666- 08 tl tO't 0000 iaYd 0 0
OO'St OOO'O Ot*3006"0 tf 0 06'666- 08'tl 18't 0000 i8Vd 0 0
OO'St OOO'O Ol*3006'0 OfO 06 666- OB'tl 99't 0000 i8Yd 0 0
00 8t 000 0 01*3006 0 OfO 06'666- OB'tt 19'Z 0000 i8Yd 0 0
OO'eZ 000 0 01*3006*0 6Z*0 06*666- OB'tt 6S*Z 0000 iaYd 0 0
OO'BZ 000 0 01*3006*0 Zt 0 06 666-1 08*11 1B*Z 0000 i«Yd 0 0
OO'BZ OOO'O 01*3006' 0 OfO 06' 666- 08'tl t9'Z 0000 i8»d 0 0
OO'BZ OOO'O Ot*3006 0 61'0 06 666- 08'tt IS Z 0000 i8Yd 0 0
00 Bt OOO'O 01*3006 0 BZ'O 06*666- 08 tl tS*t 0000 i'dYd 0 0
OO'Bt OOO'O 01*3006 '0 BZ'O 06'666- OB'tl Bt Z 0000 i8YJ 0 0
OO'BZ OOO'O 01*3006 0 tt'O 06'666- OB'tt tft 0000 iaYd 0 0
OO'St 000 0 Ot*3006'0 9fO 06'666- OB'tt tft 0000 i8Yd 0 0
OO'BZ OOO'O OI»3006'0 9Z'0 06'666- OB'tl If Z 0000 i8Yd 0 0
OO'BZ OOO'O 01*3006' 0 9Z'0 06'666- OB'tt IZ'Z 0000 i8Yd 0 0
OO'BZ 000 0 01*3006 '0 tZ'O 06'666- OB'tl Bt t 0000 MYd 0 0
OO'BZ 000*0 01*3006 '0 IZ'O 06'666- OB'll 6fZ 0000 X8Yd 0 0
OO'BZ OOO'O 01*3006*0 9t'0 06*666- OB'tl 8t t 0000 iaYd 0 0
OO'St OOO'O 01*3006 0 tt'O 06'666- OB'tl tft 0000 i»Yd 0 0
OO'SZ OOO'O OI«3006'0 tfO 06*666- 08*11 9ft 0000 i»Yd 0 0
OO'St OOO'O 01*3006'0 tt'O 06'666- OB'tt OI'Z 0000 i8Yd 0 0
00'8Z 000*0 01*3006*0 SZ'O 06'666- OB'tt 9Z'Z 0000 iaYd 0 0
OO'BZ 000 0 01*3006' 0 tZ*0 06'666- 08'tl 9t'Z 0000 iaYd 0 0
OO'BZ OOO'O OI'3006'O EZ'O 06'666- 08 11 tO'Z 0000 iaYd 0 0
OO'flt OOO'O 01*3006 '0 9f 0 06'666- 08'tt Zft 0000 i»Yd 0 0
OO'Bt OOO'O 01*3006-0 5fO 06'666- OB'tl ZZ'Z 0000 iaYd 0 0
OO'BZ OOO'O 01*3006-0 tfO 06'C66- OB'tl tB'T 0000 i»Yd 0 0
I OO'I OOO'tt- 10«36ET'0 81*0 06*666- OO'Ot 06'666-BI OZ 8t 61 S 81 St
I OO'T OOO'Sf- tO*36tt'0 OfO 06'666- OO'Ot 06'666-Bt 61 81 6t S 8t St
T OO'I 000'9t- ZO»30I9'0 8Z'0 06'666- OO'Ot 06'666-flT 61 Bl Bt S Bt SZ
5 22'5 000*11- ZO»3tBt*0 tZ*0 06*666- OO'Ot 06*666-8t Bt 81 Bt S flt St
I 00 I 000*61- tO*36tS'0 SZ'O 06'666- OO'Ot 06*666-«t fll Bt tl S flt SZ
1 00*1 OOO'tl- tO*3ttl'0 ZfO 06'666- OO'Ot 06'666-flt tl 81 tt S 81 SZ
T OO'l OOO'Sl tO*3Z9Z*0-tt*0 06*666- OO'OE 06*666-BT 11 8t 91 S 81 SZ
I OO'l OOO'ZS ZO*3Z69'0-tf 0 06*666- OO'Ot 06'666-Bt 91 81 91 S 8t St
1 OO'I 000'99 tO»366fO-tZ-0 06'666- OO'Ot 06'666-Bt 91 81 St S Bt SZ
1 OO'I OOO'tOl ZO*39tfO-tZ-0 06*666- 00 Ot 06'666-Bt 51 81 '51 S Bt SZ
1 OO'l OOO'SOt tO»3Ett'0-tt'0 06'666- 00 Ot 06'666-Bt St flt II S flt St
I 00*1 000*51 tO»3tEZ*0-tt*0 06'666- OO'Ot 06'666-flt tl Bt tl S flt St
1 OO'l OOO'ttt lO*3fltfl'0-tZ'0 06 666- OO'Ot 06*666-81 tl St El S 81 SZ
I OO't OOO'ttl lO»3E9fO-OZ-0 06*666- OO'Ot 06'666-8t tt 81 tl S Bt St
1 OO'l 000*011 I0»3f6f 0-tf 0 06-666- OO'Ot 06'666-8t tl 81 ZI S Bt SZ
1 OO'l 000-9S1 tO*3tll-0-9t 0 06-666- OO'Ot 06'666-BI tl fll tt S flt St
I OO'I OOO'Stl I0*39lf0-Sf 0 06*666- 00 Of 06'666-BT Zt fll tl S flt SZ
t OO'I OOO'ttl 10+3196-0-lZ-O 06'666- 00' t 06 666-flt 11 Bt tl S flt SZ
OO'OOt OOO'SS ZO*38Zf 0-Sf 0 06'666- Of OS'l Ot St 0 51 Md •UIJ 18 BZ
OO'OOT OOO'ttZ Z0«30tf 0-tS*0 06*666- Of OB'Z Ot ft 0 tt Md •"U 18 BZ
OO'OOT 000 IfZ tO*360f 0-95*0 06*666- Of Oft tl Ot tl Md »uu Ifl flt
00*001 000*68 E0«39ll*0-Bt*0 06'666- OS 06'Z E ZI 0 Zt Md •"IJ 18 8Z
OO'OOT 000'60t ZO»3tZe'0-tS'0 06'666- Of OfZ tl Ot tt Md •»TJ te Bt
OO'OOT OOO'tt tO*38tf O-95'O 06'666- OS' 09' t II Ot 01 MJ •«TJ IB flt
00 001 000'9l tO*attS*0-St*0 06*666- OfST Ofl'I tt Ot ZT Md •"1J IB tt
OO'OOT 000 95 tO*3ZE6'0-8t*0 06'666- OO'ST 0»*t 0 IT Ot IT Vi ""IJ IB It
OO'OOT OOO'SB tO»30I9'0-8t'0 06'666- Oftt OS't 0 Tl Ot 01 Md •"1J 18 tt
00*001 000 Ot- tO*3IOl*0 8Z*0 06*666- 08*11 OS'Z Ot Bt 0 flt Md W1M 18 9Z
00*001 000*91- fO*3SOf 0 9Z*0 06*666- OfSl OfZ 0 BI Ot tl Md •ulj Tn or
l> OO'Ct OO'T OT'O SO'O 00*001 000*61 tO«366t*0-t9*0 06*666- OZ*6 OO't Ot Ot 6 Ot Md -raij IB 9Z
I OO'OT OO'I OB't OB't T OO'Z OOO'O OI»3006'0 SfO 06'666- OO'OZ Oft 0000 HCO3J 18 Ot
t 00-OT OO-I Ofl't 08-Z T OO't OOO'O Ot*3006'0 tt'O 06'666- OO'Ot OS'E 0000 HO03J IS tl
1 00*01 OO'T OB't Ofl't T OO'Z OOO'O 01*3006' 0 EZ'O 06 666- OO'Ot OS't 0000 HOO3J 18 I
: OO'Ot OO'l OB't Ofl't I OO't 000 0 OI*3006'0 61'0 06'666- OO'Ot OO't 0000 H0033 IB ft
OO'OT OO't OB't OB'l I OO't OOO'O Ot«3006'0 91'0 06' 666- OO'Ot OS'Z 0000 HC-33J IB IZ
I 06'666-00'T lO'O tO'O T OO'Z 006 666- OI*3006'0 SfO 06'666- OO'OZ 06'666-0 000 qd 0 0
I 0«'C6C-00'I OfO OfO T OO'l 006'666- Ol*3006'0 SfO 06'666- OO'Ot 06'666-0 000 qd 0 0 0
t 06'666-00'I St'O SfO t OO'Z 006'666- Ot*3006'0 SfO 06*666- OO'OZ 06*666-0 000 qd 0 0 0
0 tOOO 0 6E6Z 0 ZEEO 0 9190 0 ttlO 0 9010 0 E9tO*0 B9IZ 0 0590 0 ZtSO'O 0016*0
0 tOOO 0 9t6Z 0 tttO'O t!90*0 BttO'O tOtO'O I9t0'0 tltZ'O 1590'0 EtSO 0 0065'0
0 1000 0 t£0t 0 EtEO 0 1690 0 6ttO 0 6010 0 91tO*0 tIZZ'O Z990*0 ZSSO 0 0091*0
0 1000 0 IE6Z 0 tEEO 0 1190 0 ttlO 0 9010*0 Z910 0 t9IZ* 6t90*0 ttSO 0 009E*0
0 tOOO 0 t06Z 0 BZEO 0 8990 0 tltO'O SOtO 0 SStO'O 6tIZ' 9t90'0 8tSO 0 OOZt'O
0 1000 0 6I8Z 0 61EO 0 ZS90*0 SttO 0 tOtO'O 8ftO*0 OltZ* 9E90*0 OESO'O OOft'O
0 1000 0 IStZ 0 ZtEO 0 6E90 0 tttO 0 1010*0 0110*0 B10Z* 8Z90*0 tZSO 0 OOBfO
0 1000 0 9t9Z 0 tOtO'O 6190 0 ZIIO'O 8600*0 IZIO'O IEOZ 1190 0 StSO 0 OOZE'O
0 tOOP'O 9Z5Z*0 88ZO*0 9650 0 6910 0 1600'0 tttO'O 6161* 5090 0 5050 0 0081*0
0 1000*0 6SfZ*0 18ZO 0 £850*0 8910 0 Z600*0 tOtO'O tS6f 8650 0 OOSO'O 006f 0
0 tOOO 0 9ttZ 0 69ZO 0 ZSSO'O 9910 0 6800'0 t690'0 906f 0 BBSO'O Z6tO*0 OOtfO
0 tOOO 0 9EIZ 0 6tZO'0 6150 0 8910*0 Z600*0 5010*0 Zt6t*0 9650 0 8610 0 0016 0
0 1000*0 lllZ 0 6tZO 0 OBSO 0 6910 0 Z600*0 9010'0 5161 0 1650 0 66t0'0 0006 0
o tooo o tsiz'o tezo'o easo o 6910-0 teoo*o 0110*0 096fo 0090-0 zoso*o oost* o
0 TOOO 0 IZtZ'O IIZO'O 9150'0 19t0'0 1600'0 tOtO'O 9E61'0 5650*0 1610*0 OOC9*0
0 1000*0 69EZ 0 ttZO 0 99SO 0 9910*0 0600*0 6690*0 SI6f 0 06SO'0 E6tO*0 0019 0
0 1000*0 19EZ 0 ttZO 0 S9SO 0 9910*0 0600*0 B690*0 ZI6t 0 6850*0 £610*0 0095*0
0 1000*0 9ZtZ 0 9SZO 0 6tSO 0 1910 0 9800*0 t890 0 Z98fO 8150 0 1810 0 006fO
0 1000-0 9ttl 0 SOZO 0 ttfO 0 tSlO 0 ZtOO'O Z990*0 6ttl*0 ZSSO 0 I9t0 0 OOtf T
0 tOOO'O IZIZ'O StZO 0 6150 0 Z9tO 0 tSOO'O 6t90'0 SZBf 0 OtSO'O BttO'O OOtl'O
0 lOOO'O 190Z'0 6EZO 0 tOSO'O 0910 0 1600*0 5t90*0 90flt*0 9950*0 SttO 0 006f 0
0 tOOO'O 910Z'0 tEZO'O IOSO'0 0910 0 OBOO'O It90'0 1081 0 9950'0 IttO'O 006fO
2 5222-2 t661'0 "" 0 t6tO 0 65tO*0 6t00'0 tt90'0 SBtl'O Z950'0 ZtlO'O OOlt'O
0 1000 0 9B61 0 IEZO'0 E6t0'0 65t0'0 6100 0 It90'0 EBU'O Z9SO'0 ZtIO 0 OOZS'O
0 lOOO'O 99BfO StZO'O OttO 0 tSIO 0 5100 0 S990'0 6ttfO 9SSO'0 I9t0'0 006fO
0 tOOO'O BZBfO ttZO'O £910 0 9510 0 ttOO'O t990'0 6£tfO SSSO'O 9910'0 OOZS'O
2 5222-2 I6"'" OIZO'O 95t0'0 5510-0 ttOO'O t990'0 OftfO fSSO'O 5910*0 OOtfO
0 1000 0 1911 0 tOZO'O OSIO'O SStO'O ttOO'O t990 0 tZtfO tSSO'O S9f0'0 OOSfO
0 tOOO'O 9t9Z'0 IOEO 0 SZ90 0 ZtIO 0 6600'0 l£tO 0 ttOZ'O 0190'0 BISO'O OOOZ'O
0 lOOO'O tOEfO t9ZO 0 ESSO 0 5910 0 8800 0 f690'0 CeBl'O IBSO'O 68t0'0 OOSZ'O
0 1000-0 6ZtfO 91ZO 0 OZSO 0 t910'0 tSOO'O 6t90'0 SZBfO ItSO'O BttO'O OOtZ'O
0 tOOO 0 9lOf 0 tEZO'O 66tO 0 09t0'0 OSOO'O Z190'0 Z6tf 0 1950 0 fttO'O 009Z'0
0 tOOO'O tOOZ'O ZtZO'O 9610'0 6510*0 6100*0 1190*0 IBll'O f9SO*0 ZtlO'O OOtfO
0 1000 0 t96t 0 BZZO 0 6810*0 6510*0 BtOO'O Ot90'0 9ttf 0 1950'0 IttO'O OOSfO
0 lOOO'O ttlZ'O ISZO 0 6ZSO-0 E9t0'0 IBOO'O tB90'0 tlBI'O ItSO'O letO'O OOII'O
0 1000 0 IOOZ 0 ZEZO 0 96t0'0 6SIO'0 6100'0 tt90'0 tetf 0 E950'0 ZttO'O OOtl'O
0 tOOO'O 9Z6f 0 tZZO 0 1810 0 8510 0 ttOO'O 8990'0 S9tf 0 6550'0 69t0'0 OOSZ'O
0 1000 0 8161 0 EZZO 0 08tO 0 BSIO'O ttOO'O t990'0 t9tf 0 6SSO'0 69tO 0 OOZf 0
0 tOOO'O t88f 0 6tt0'0 fttO'O tStO 0 9t00'0 9990 0 tStl'O tSSO'O 89t0'0 OOSZ'O
0 tOOO 0 E181 0 StZO 0 9910 0 9510 0 StOO'O 5990 0 tttfO 5550*0 I9t0*0 OOlfO
0 1000*0 8911 0 10ZO 0 ZStO 0 SStO'O ZtOO'O t990'0 IZtf 0 tSSO'O S910'0 OOOf 0
0 tOOO'O EStl'O 90ZO'0 6110 0 SStO'O ZtOO'O Z990'0 IZtf 0 ZSSO'O 1910 0 OOfZ'O
! I222'2 tUT'° tOZO'O tltO 0 tSIO'O 1100*0 Z990*0 tltl'O ZSSO'O I9t0*0 OOtZ'O
0 1000 0 9081 0 IIZO 0 6510*0 9510 0 ttOO'O 1990'0 tftl'O tSSO'O 99t0'0 OOSl'O
0 lOOO'O EISI'O ZtZO'O 0910'0 9S10'0 ItOO 0 I990'0 Sttf 0 tSSO'O 99t0'0 OOtfO
0 lOOO'O Ittt 0 EOtO'O ttlO 0 ISIO'O 1100*0 Z990'0 9ltl'0 ZSSO'O I9t0'0 OOtl'O
0 1000 0 8191*0 5610*0 6ZIO*0 ESIO'O 6900*0 1990*0 669f 0 OSSO'O E910'0 0061'0
0 lOOO'O US-I'O t6IO*0 tttO'O tStO'O 6900'0 1990'0 869fO OSSO'O f9tO*0 OOZfO
0 1000*0 9651*0 6810*0 6ttO 0 tStO 0 t900*0 t990*0 0691'0 OSSO'O E9t0'0 OOtl'O
0 lOOO'O 9ttfO tOZO'O ZttO'O tSIO'O HOO'O Z990'0 EttfO ISSO'O I9t0'0 OOII'O
' 522" ° "9r° "lO'O IZtO 0 ZStO'O 6900'0 1990'0 B69fO OSSO'O t9t0'0 OOtfO
0 lOOO'O EtSt 0 tetO 0 tttO'O ISIO'O t900'0 t990'0 9B91'0 OSSO 0 1910 0 OOtfO
1 tOOO'O 9ElfO 6tZO*0 6150*0 6910 0 Z600*0 5010*0 tt6f 0 9650'0 86tO*0 OOtO'O
0 tOOO'O 9691*0 66t0'0 9ttO 0 tStO'O OtOO'O t990'0 90tl'0 tSSO'O I9t0'0 OOZO'O
5222-2 'fl''0 '910'0 tetO 0 etlO'O Z900'0 0190'0 t99l'0 ISSO'O B910'0 OOSl'O
tOOO'O OStO'O tSOO'O 609fO ZOtO'O 6010'0 IBIO'O tttO'O BStO'O IBtO'O OOtfO
lOOO'O 1910-0 0900-0 tfBfO tttO'O OZTO'O OBIO'O TttO'O tSIO'O OBtO'O OOtO'O
tOOO'O ZEZO 0 ZBOO'O S09Z*0 6501*0 t9lO*0 OBIO'O tltO'O tSlO'O OfltO'O OOSl'O
5222-2 JZf0'0 "OO'O "51 '0 ftOfO 1910*0 6110*0 TtfO'O tStO'O 6ttO*0 OOSfO
1000-0 BOZO-0 ttOO'O tttZ'O 9S60'0 OStO'O 8110-0 6tt0'0 ZStO-0 8110-0 OOOZ-0
tOOO'O 59ZO 0 teOO'O 900fO ZOZl'O 06t0'0 SBtO'O IStO'O BStO'O SBtO'O OOOZ'O
tOOO;0 ZBZO 0 B600 0 6ltf 0 91tf 0 1010*0 6810*0 I9t0'0 0910'0 6«t0'0 006Z'0
tOOO'O ttZO'O S600'0 6STE'0 9IZT"0 16TO'0 tfllO'O tStO'O 6S10'0 1810'C 0091'0
1000 0 SttO 0 6tOO*0 ttJZ 0 1101*0 1910*0 6110*0 tttO'O tStO'O SllO'O OOSfO
looo'o tozo'o itoo*o tett o zteo'o ttto'o eno'o etto'o tsto'o Btto o ooei'O
looo'o ttzo o seoo'o eetf o oszfo teto'o tflto'o tsto-o esto-o tBto-o oosf o
I222'2 "no ° S90° ° ttlz'e oteo*o ttto*o Btto-o etto'o tsto'o etio-o oosf o
1000 0 tttO'O £900'0 IIIZ'O OIBO'O tttO'O 6110'0 OlfO'O tSIO'O 6tIO'0 OOlfO
lOOO'O 6910 0 0900'0 IIOZ'O flOBO'O IZIO'O IBIO'O tttO'O SStO'O 1810'0 OOtfO
looo'o 99to'o teoo-0 tztt o eizfo leio-o SBIO'O isto'o ssto'o ssto'O oosfo
tOOO'O IIZO'O 9100'0 ZBSt 0 ftOf 0 9510*0 6tlO*0 OltO'O tStO'O 6ll0'0 OOlfO
tOOO'O 60ZO 0 EtOO'O 9BtZ'0 8160*0 OStO'O BttO'O 6tt0'0 ZStO'O SttO'O OOlfO
1000*0 IOZO'0 ttOO'O 66EZ*0 1160*0 5110*0 BtlO'O 6tt0'0 tSIO'O SttO'O OOZZ'O
1000*0 6tZO'0 19t0'0 tIBO 0 I6t0'0 OS90'0 0161'0 1910'0 060f 0 ZttO'O 0060'0
5222'2 221°'° "':o'° t'"'0 "">'•> >w« 609Z-0 9990-0 sosi-o BIOI-O oooz-o
TOOO o eeto o 99zo-o 6tzi o etto-o etof o TISZ'O 5590-0 zetfo eiof o ooss*o
1000*0 ttfO 0 BZZO'O ttOf 0 6990-0 BBBO'O Ottt'O IISO'O Ittf 0 6880'0 OOOB'O
looo-o toto'o otto-o tstfo teto'0 ssofo ttsfo 9990*0 sosi*o tiofo ootfo
5222'2 ?S52-2 5152'° "" * su" " "ei" ° ««'» 5590*0 teti*o iteo*o oos9-o
5222 2 I ° '"O'O t9EO'0 TttO-0 eSOt'O 6010-0 9860'0 1080 0 OOtfO
TOOO 0 ttZO'O tfltO-0 IBBO'O ttSO'O IIIO'O 60tfO SBtO'O ttll'O tt60'0 OOtO'O
5222'° 5'"'0 "I0'<> T8»0'» 0150*0 ZttO'O lltt'O SBtO-0 tttfO ItBO'O OOtl'O
5222-2 fS52 2 1552-2 J"0'0 ""'" ""'o "ot*o uto-o eooi-o tt8o-o ooti-o
1000 0 1510*0 lOEO'O B6tt Sil£(>.0 1810*0 ItOt'O tllO'O 1660'0 IISO'O OOtO'O
tooo'o imfrt c«rT-n BCIA 2 ""0^0 tBll 0 ttBt 0 0510 0 1191*0 ttll'O OOIO'O
tJo?:o s"t*S "":S lll°-l sU!!-0 "":* •'":• '"*:• ••«'• '"*••' •»"'•
5222-2 5SS5-2 Iti5'l) ""''•' ""''' "«•« sz^'o sttt*o 'T«-O sztt-S oo'i-S
5222 2 5?! "" ° lsso'0 tttO*0 UZO-O tB9I-0 ZI9fO Z98T'0 tB9I'0 OOSO'O
1000 0 ZIBO'O ZttO'O tttS'O fStl'O 19lf 0 8901*0 9151*0 1911*0 8901*0 0060*0
1000 0 ttZO 0 1600 0 OOOZ*0 1060-0 9IWO S910'0 ZtZO'O tSIO'O S910'0 OOtO'O
1000 0 E090 0 IStO 0 Otlf 0 1990'0 9800'0 16ZO'0 tOSO'O tttO'O tJtO'O OOZO'O
-------
0.7200 0 0556 0 0666 0.2240 0 0763 0.0111 0-0180 0.0703 0 0347 0.3082 0.0001 000 PART 0000 4.00 17.80 -999.90 0.46 0.900E+10
0.6900 0.0582 0.06*5 0.2364 0.061? 0.011? 0.0185 0.0746 0.0372 0.3314 0 0001 000 PART 0000 4.39 1? 80 -999 90 0.49 0 900E+10
1.3200 O.OS39 0 064? 0.21S3 0.0759 0.0106 0.0177 0.0670 0.0329 0.2909 0 0001 000 PART 0000 3.85 17.80 -999.90 0.43 0.900C*10
0.9000 0.0583 0.0701 0.2372 0.0819 0.0118 0.0185 0.0751 0.0374 0 3329 0.0001 000 PART 0000 4.41 17.80 -999.90 0.50 0.900E*10
0.0050 0.0478 0.0571 0.1828 0.0679 0.0083 0.0162 0.0520 0.0246 0.2129 0.0001 0 0 0 PART 0000 2 81 17.80 -999.90 0.32 0.900E+10
A Month
B day
C year
D pollutant
beginning hour
ending hour
wind spaed
temperature
solar radiation
friction velocity
Honin- Gbukhov length
i nixing height
roughness length
M number of diameters
0 s«allest diameter
P largest dlajietar
} density
1 reference height
S leaf area index
F LAI correction exponent
J land use type
V sasiple set nu«bar
0.000 28. 00 6 0.50 .00 .00 .80 .0 1. 24
0.000 28.00 6 O.SO .00 .00 .80 .0 1. 24
0.000 28.00 6 O.SO .00 .00 .00 .0 1. 24
0.000 28.00 6 0.50 .00 .00 .00 .01. 24
0.000 28.00 £ 0.50 .00 .00 .00 .01. 24
0 000 28 . 00 6 0. 50 .00 . 00 .00 .0 1. 24
-------
241 Total
zas 18 11
Ooran t Hocst (1993),
DESERT GRASSES, 1-2 •
3.0. 140.0
-999.9. 2.0
-994.9. 2
1 4.
Mutter of Data Sets
ASQV, 19. 939-951.
HIGH SAGEBRUSH
- tO (em), id(cm)
- us measurement ht. (m). temp. meaa.
- LAI (estimated). vegetation state
- no. of diamecara. density(om/cm"3>
- partical diameter(microns I
hi. (m)
MM-OO-YY a HR
(1st)
05-16-63 22:4*
05-18-63 22)41
05-18-63 22:46
05-26-63 23)26
05-26-63 23)24
05-26-63 23)24
06-05-63 22)10
06-05-63 22)10
06-05-63 22)10
06-12-63 22)43
06-12-43 22:43
06-12-63 22:43
06-24-43 23)06
06-24-43 23.06
06-24-83 23:06
06-27-43 21:31
06-27-93 21:31
06-27-93 21:31
ENDDATA
S04 1 2
E HR
(1st)
23)18
23)18
23)18
23)54
23)54
23)54
22)40
22)40
22)40
23)13
23)13
23:13
23)26
23)28
23:21
22:01
22:01
22:01
Nicholson and Oavies
BARLEY
-999.7, 12.0
1.0. 1.0
-999.9. -999.9
10 1.0
MM-OD-YY 3 Hit
(1st)
06-04-79 6:00
ENOOATA
304 6 10
W
(m/s)
7.61
.53
.43
.23
.59
.83
.74
.40
.32
3.00
3.39
3.75
3.07
3.24
3.46
3.17
3.80
4.37
(1967),
TEMP SH RAO USTAR MOM IN HEAT FLUX RA
(C) (N/m"2) lm/i) (ml (H/m>«2) (s/cm)
14.7 -999. 0.4 166. -999.
14.7 -999. 0.4 166. -994.
14.7 -494. 0.4 166. -944.
14.5 -999. 0.26 44. -994.
19.5 -499. 0.26 44. -999.
14.5 -994. 0.26 44. -999.
17.5 -944. 0.27 77. -944.
17.5 -999. 0.27 77. -949.
17.5 -999. 0.27 77. -944.
14.3 -994. 0.20 34. -444.
14.9 -999. 0.20 34. -999.
14.9 -999. 0.20 34. -999.
14.1 -999. 0.26 59. -999.
14.1 -994:9 0.26 59. -999.
14.1 -999.9 0.2< 59. -999.
20.5 -999.9 0.30 71. -999.
20.5 -999.9 0.30 71. -999.
20.3 -999.9 0.30 71. -999.
AEnv. 21. 1561-1571
- 10 (cm), id (en)
-999.
-999.
-994.
-494.
-999.
-999.
-994.
-999.
-999.
-999.
-999.
-999.
-999.
-999.3
-994.3
-999.9
-999.9
-999.9
RD RC
Is/em
(s/cm)
-999.9 -944.9
-999.
-999.
-999.
-999.
-999.
-999.
-999.
-999.
-994.
-999.
-999.
-999.
-999.
-999.
-444.3
-994.3
-944.9
-999.9
-999.9
-999.9
-994.3
-994.9
-999.9
-999.3
-999.3
-994.9
-999.9
-999.3
-999.9 -999.3
-999.9 -999.3
-999.9 -999.9
VD
(em/si
4.21
4.05
3.65
1.33
1.80
1.74
3.14
3.02
2.84
1.75
1.62
1.31
1.5«
1.47
1.14
1.17
1.15
1.10
- v* measurement ht. (ml, tamp. oaas. ht. (m)
- LAI (estimated), vegetation state
- no. of diameters, density (om/cm"3)
E HR
(1st)
Nicr.olson and Davies
ROUGH PASTURE
-999.7, 11.0
1.0, 1.0
-999.9, -999.3
10 1.0
MM-OD-YY 3 HR
(1st)
06-21-79 2:36
06-21-79
06-21-79 3:53
07-19-79
07-19-79
07-19-79 4:07
ENDDATA
SO4 12 3
MS TEMP SH RAD USTAR MONIN HEAT FLUX RA
(B/S)
1.71
(1367).
(C) (H/m"2) (m/s) (ml (H/m"2)
(s/cm)
14.2 -999.9 0.11 -999e9 -999.3 1.49
AEnv. 21. 1561-1571
- tO (eal. zd(en)
RD RC
(s/cm)
Is/cm)
-999.3 -999.3
VD
(cm/si
0.04
ZO
(cal
0.8
Rl
0.051
phia
1.36
phih
1.36
- vs meaaurement ht* (m) , temp. m*as. ht. (m)
E HR
(1st)
4:00
3.43
2:34
Nicholson and Oavies
SHORT CRASS
-999.7, 9.0
1.0. 1.0
-999.9, -999.9
10 1.0
0.1 0.2 0.3
MM-OD-YY 3 HR
(1st)
10-08-79 «:59
10-10-79
10-17-79
2-04-80
2-06-90
2-19-80
2-19-90 11:23
2-20-90
2-20-60 11:22
2-21-60 9)35
2-22-80
2-26-60 9)56
ENDOATA
0.4
E HR
(1st)
5:48
5)20
4:32
4:50
4:40
4:40
4:20
MS
(n/s)
1.23
2.53
1.64
2.69
2.84
2.35
(1987),
0.5 0.
MS
(m/ 1 1
3.09
2.21
2.90
3.90
1.44
4.40
2.15
3.73
2.98
3.13
3.81
1.79
- LAI (esciaated) , vegetation state
- no. of diameters, density (ca/cm"3)
TEMP SH RAD USTAR MONIN HEAT FLUX RA
(C) (»/m"2) (m/s) (m) "(H/m"2)
(s/cm)
6.8 -999.9 0.10 -999*9 -999.9 1.19
21.2 -999. 3 0.26 -999*4 -999.9 0.38
6.3 -999.3 0.06 -499*9 -999.9 4.09
14.4 -999.9 0.29 -999*9 -999.3
-999.9 -999.9 0.27 -999*9 -999.9
9.9 -999.9 0.27 -999*9 -999.3
AEnv, 21, 1561-1571
- <0 (em), td(cm)
- we measurement ht. (m) . temp. meas. ht
- LAI (estimated) . vegetation state
- no. at diameters, density (dm/en*-3)
0.33
0.39
0.32
. (m)
RD RC
(a/cm)
(s/cm)
-999.3 -999.9
-999.9 -994.3
-999.9 -999.3
-999.9 -999.9
-999.3 -999.9
-999.3
-999.9
VD
(cm/s)
0.33
0.57
0.03
0.33
0.23
-0.01
ZO
(cal
0.4
1.0
0.3
2.2
1.3
3.2
Ri
-0.054
-0.042
0.093
0.000
-999.9
0.005
phia
0.86
0.88
1.93
1.00
-999.9
1.02
phih
0.73
0.77
1.33
1.00
-999.9
1.02
6 0.7 0.8 0.3 1.0- particle diamatazs
TEMP SH RAD USTAR MONIN HEAT FLUX
(C) (W/ra"2) (m/sl (m) (W/i»"2)
-999.9 -999.9 0.22 -999*9 -999.9
-999.3 -999.9 0.19 -999e9 -999.9
RA
(S'rcn)
0.61
0.63
- 9.4 -994.9 0.29 -999*9 -999.9 0.35
-949.9 -999.9 0.28 -999*9 -999.3
-999.9 -999.9 0.10 -999e9 -999.3
.5 -999.9 0.33 -999«9 -999.9
0.51
1.41
0.41
.4 -999.3 0.17 -999*9 -999.9 0.73
.9 -999.9 0.28 -999*9 -999.9 0.48
-99 .9 -999.3 0.22 -999*9 -999.3 0.61
.0 -999.9 0.20 -999*9 -999.9 0.80
.0 -999.9 0.25 -999*9 -999.3 0.62
.0 -999.9 0.16 -999*9 -999.9 0.72
RO
O/cn)
-999.9
RC
(i/cm)
-999.3
-999.9 -999.9
-994.9 -494.9
-944.9 -999.9
-999.9 -999.9
-999.9 -999.9
-999.9 -999.9
-999.9 -999.9
-999.9 -999.3
-999.9 -999.3
-999.9 -999.9
-999.9 -994.3
VD
(ca/s)
0.29
0.02
-0.19
0.28
0.13
-0.07
0.02
0.20
-0.10
0.09
0.04
-0.02
ZO
(cm)
0.4
0.8
1.4
0.3
0.3
0.4
0.9
0.3
0.4
0.3
0.2
1.0
Rl
-999.9
-999.9
-0.003
-999.3
-999.9
0.001
0.016
-0.010
-999.3
0.023
0.000
0.002
phia
-999.9
-999.9
• 0.37
-999.3
-999.9
1. 00
1.09
0.9«
-999.9
1.13
1.00
1.01
phih
-999.9
-999.3
. 0.93
-999.9
-999.9
1.00
1-.09
0.93
-999.9
1.13
1.00
1.01
-------
SO4
41 10
t
Hicaolaon and Oaviaa (1987),
A20V, 21.
1S61-IS71
ROUGH PA3TURS
-»99.7,
1.0,
-*»».*.
10 1.
wi-OD-rr
10-12-7*
10-12-7*
1O*1 at^'74
ill" n— ' *
10-17-7*
10-11-7*
10-18-7*
10-19-7*
10-19-7*
11-21-79
11-22-79
11-22-79
11-23-79
11-27-79
11-27-74
11-21-74
11-28-74
11-29-79
11-29-79
11-30-79
12-03-79
12-05-79
12-06-79
12-06-79
12-07-79
12-12-79
12-13-79
1-22-80
1-23-80
1-24-80
1-21-80
1-21-10
1-29-80
1-29-80
1-30-80
1-30-80
1-31-80
2-06-80
2-07-80
2-07-80
2-01-80
2-12-80
2-14-80
2-25-80
3-05-80
3-06-80
3-06-80
3-11-80
3-12-80
CNOOATA
9.0
1.0
-994.9
0
a HR
(lac)
,6,S»
6,54
7:00
6:58
10150
10:50
10:53
11:02
11:01
11:09
11:12
11:20
10:50
10:59
11:03
11:00
10:42
10:49
11:16
llilC
11:22
9:59
9:56
10:03
- 10 (Oil
. xd (oil
- va a*a.aur«unc
- LAI (*»tiaut*d) ,
S HR
Uat)
4:17
3,1*
* if
4:41
4:31
2:55
2:41
3:34
4:02
4:07
3:55
4:31
5:52
2:35
3llt
S;04
3l5l
4:07
6:25
4:00
3:41
5:03
5:16
4:36
7:03
MS
(•/*)
2.55
2.92
3.53
3.27
1.53
3.14
1.50
1.41
2.30
2.22
3.36
2.01
2.52
3.34
2.<2
2.41
2.41
4.30
3.45
4.05
1.47
1.71
2.11
4.72
3.29
6.03
2.07
2.19
2.7S
1.06
2.22
3.47
5.02
2.40
4.11
2.43
3.45
1. 11
4.31
1.33
3.46
1.96
3.12
3.23
2.70
2.52
4.34
- no. of
TSHF
1C) (M
-»*».
-»»».
7.
10.
5.
13.
8.
2.
4.
4.
6.
5.
4.5
6.5
3.1
5.2
3.1
7.0
2.9
-994.9
6.8
7.6
8.0
6.7
6.3
7.7
1.7
1.4
1.2
2.1
7.7
7.3
8.2
6.7
-499.9
-999.9
-999.9
-999.9
-944.9
-949.9
5.9
4.6
3.2
S.3
4.7
5.2
7.4
he. (•), t*ap- i
v*q*tation scat
i*aa. ht.
..
(Ml
diaawc*ra. d*naity (oja/ea**3l
3» RAO
/•"*)
-999.
-999.
-949.
-999.
-999.
-999.
-999.
-999.
-444.
-449.
-494.
-499.
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.3
-999.9
-999.9
-999.3
-999.9
-999.9
-994.9
-99*. 9
-999.9
-944.9
-999.9
-999.9
-999.9
-944.9
-994.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
USTAR NOJUH HEAT flBX «A
(•/a) (•)
0.1* -499*9
0.24 -499*9
0.34 -999*9
0.33 -999*9
0.14 -944*4
0.3S -499*9
0.11 -999*9
0.14 -444*4
0.19 -499*9
0.17 -999*4
0.27 -994*9
0.15 -944*4
9.17 -499*9
9.25 -949*9
0.17 -999*9
9.23 -994.9
0.15 -999*9
0.39 -449*9
9.23 -949*9
0.32 -944*4
0.12 -499*9
9.13 -499*9
0.20 -944*9
0.31 -499*9
9.23 -944*9
0.41 -499*9
9.11 -999*9
9.10 -999*9
9.16 -999.9
9.07 -9*9*9
9.14 -999*9
0.22 -999*9
0.31 -444*9
9.16 -994*4
0.26 -444*9
0.11 -999*9
9.19 -999*9
0.15 -999*9
0.21 -999*9
9.14 -444*9
0.22 -44»*9
0.15 -999*9
.0.20 -999.9
9.21 -444*4
9.17 -994*9
0.19 -999*9
0.35 -999*9
M/B**2)
-»»».»
-»»».*
-9*4.9
-449.9
-4*9.9
-»»».*
'999.9
-999.9
-999.9
-999.9
-49*.*
-999.9
-999.4
-999.9
-999.9
-499.9
-999.9
-999.9
-999.9
-949. 3
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-99*. 9
-949.9
-999.9
-999.9
-999.9
-444.9
-944.9
-444.9
-994.9
-994.9
-444.9
-444.9
-444.9
-99*. 9
(a/ca»
0.67
0.52
0 40
0.31
0.2*
0.13
0.31
0.41
0.71
0.6*
0.74
0.47
0.»7
0.17
0.54
0.93
0.61
1.05
0.21
0.63
0.39
5.97
1.04
0.70
0.49
0.62
9.33
1.72
2.00
1.12
2.21
1.10
0.73
0.53
0.9S
9.63
0.76
0.91
9.86
0.54
1.91
0.72
0.92
9.76
9.73
9.94
9.67
9.41
DO RC VO
(j/ca» (a /can (em/at
-9*9.
-9*9.
~999
-»**.
-999.
-444.
-449.
-9*9.
-999.
-999.
-999.
-«»».
-449.
-9*9.
-999.
-4*9.
-94*.
-99*.
-9*4.
-4*9.
-44*.
-4**.
-499.
-9*9.
-944.
-4*9.
-441,
-999.
-999.
-999.
-999.
-999.
-949.
-994.
-449.
-944.
-449.
-99*.
-999.
-999.
-999.
-999.
-999.
-999.
-444.
-44*.
-44*.
-444.
-4**.
-9*4.
~999
-4**.
-»»*.
-44*.
-4*4.
-4»*.
'999.
'999.
-999.
-999.
-999.
-»»*.
-4»».
'999.
-999.
-4*4.
-44*.
-999.
-94*.
-4*».
-4*9.
-999.
-944.
-499.
-499.
-999.
-999.
-999.
-449.
-999.
-449.
-949.
-999.
-449.
-999.
0.20
0.0*
0 i6
0.04
-0.34
0.24
0.34
9.91
0.10
0.07
-0.96
-0.01
-0.12
0.15
-0.21
-0.03
0.05
0.02
-0.21
9.32
0.94
-0.11
9.07
0.23
0.18
-0.06
0.41
0.04
9.01
0.21
-0.03
-0.12
0.22
0.22
0.04
-9.36
9.92
-944.9 -0.18
-949.9 0.04
-99*.* 0.01
-944.9 0.10
-449.9 0.00
-»»».9 -0.09
-444.9 0.21
-444.9 9.51
-444.9 0.04
-444.9 9.02
-444.9 -0.53
3O4 68
Hicaolaon and Oavl*a
BARE SOIL
-994.7, 10.0
1.0, 1.0
-4»».3, -9»S.9
10 1.0
0.1 0.2
MM-00-Y1f
1-2S-IO
2-15-80
2-27-39
2-29-80
3-10-60
3-13-80
E.NDOATA
(1917), AEnv, 21, 1561-1571
0.3
a HR
(lat)
9:59
9.4
e HR
(lat)
4:5C
5:39
4:52
4:04
4:31
9.5 9.6
MS
(a/al
2. S3
3.19
2.06
2.30
3.04
4.01
0.7
TEH?
1C)
2.S
7.4
5.1
5.9
3.6
4.3
9.1 9.9
SW RAD
(H/n**2)
-999.9
-944.9
-994.9
-999.9
-449.9
-999.9
1.
MI
(mi
t:
a.
0.
9
0
0
ZO (Oil. znfcml
wa m*aaur*a*nc he. («), e*ap. m*a. ht.
LAI (*atimat*d), «*q*tation ita,t*
no. of 4iaaMt*ra, 4*naity (qm/cm**3)
1.0 - partial* dian*c*ri
TAR MOHIN
/a) In)
.11 -4*4*9
0.19 -999*9
0.16 -994*9
9.17 -444*4
0.24 -999*9
0.34 -999*9
Id
0
0
2
I
1
2
1
4
2
0
9
0
0
9
0
9
9
9
1
0
9
1
1
9
0
0
0
9
0
0
0
0
9
0
0
9
0
9
0
0
9
0
0
0
0
0
0
0
10
mi
Ri
-»»9.9
->*». 9
. -999.3
.
.
.3
.1
.3
.0
.6
.7
.4
.3
.6
.5
.6
.4
.6
.3
.4
.6
.4
.1
.4
.2
.5
.3
.3
.1
.1
.6
.4
.2
.1
.4
.1
.4
.1
.5
.2
.3
.2
.4
.2
.2
.2
.7
.3
0
-0
0
-0
0
0
-0
0
0
0
0
0
9
9
0
9
9
.
.
.
.
,
.
.
.
.
.
.
004
014
939
003
010
Oil
006
910
003
000
034
006
042
014
944
007
020
-999.9
9
9
0
9
9
a
9
9
0
9
0
9
a
0
.
.
.
,
.
.
.
.
.
,
023
034
008
008
015
004
049
044
Oil
035
023
004
000
018
-999.9
-999.9
-999.9
-449.9
-994.9
-444.3
0
-0
0
0
0
9
9
.
.
.
.
.
006
009
005
000
012
919
901
phia
-999.9
-999.9
-999
1.
9.
1.
0.
1.
I.
0.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
-999
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
-999
-999
-999
-999
-999
-994
1.
0.
1.
1.
1.
1.
1.
.3
02
95
26
99
06
96
96
06
02
00
21
93
28
08
30
04
12
.9
14
22
04
04
09
92
34
29
96
23
14
02
00
10
.9
.9
.3
.3
.9
.3
03
97
03
00
07
05
01
pain
-949.9
-994.9
-999
1.
0.
1.
0.
1.
1.
0.
1.
1.
I.
1.
1.
1.
1.
1.
I.
1.
-999
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
I.
1.
1.
1.
-999
-999
-999
-999
-994
-999
1.
9.
I.
1.
1.
I.
1.
.9
02
90
26
91
06
06
96
06
02
00
21
03
21
01
30
04
12
.9
14
22
04
04
99
02
34
29
06
23
14
02
90
10
.9
.9
.3
.9
.3
.9
03
94
03
00
07
05
01
T runt
RA
RO RC
VO
/m**2) li/-=al (a/eat (a/cal (ca/a)
-999.9
-944.9
-944.9
-499.9
-999.9
-999.9
0.
9.
0.
0.
9.
9.
74
88
80
78
55
35
-999.
-944.
-444,
-444.
-49*.
-499.
-999.
-444.
-44*.
-4»».
-*»9.
-999.
9
9
0
9
0
-0
.01
.25
.01
.31
.25
.16
ZO
(on)
0.2
9.1
0.3
0.2
0.5
0.7
-0
9
-O
-0
0
-0
Ri
.016
.008
.024
.035
.004
.010
pnira
0.34
1.04
0.92
0.89
1.92
0.96
ptlih
0.89
1.34
3.85
9.80
1.02
9.93
-------
SO4 1 10
Mieholaon and Oaviaa
LONG GRASS
-9M. 7. «.0
1.0. 1.0
-***.». -999.9
10 1
MM-OO-YY
10-21-79
EVOOATA
3O4
.0
B HR
Hat)
«t52
4 2
(19*7).
AEav. 21. 15C1-1571
- zO (oi). zd(CB)
- wa muauraaanc ht. (a), tamp. neaa. ht
- LAX (aatimatad) , v*q*tation itata
. (a)
- no. of d-Umatara. danaicy (OB/OB"])
( HR
(lat)
Micholaoa and Daviaa
M .TEMP SN RAO USTAR MONIX HEAT FlOX
"(a/a)
1.77
(19*7).
(C) (W/B'-J) IB/I) IB) (K/B**2)
f.S -999.9 0.10 -999*9 -999.9
ACnv, 21. 15*1-1571
(a/c
I.
RA
Hi
«2
RO
(1/CBI
-999.9
RC
(a/cm)
-9»9.9
lea
0
VD
i/a)
.35
ZO Ri pniB phia
(CB)
1.3 0.071 1.59 1.59
TALI, BARLEY 77?
-999.7,
1.0,
-999.9.
10 1
0*1 0
MM-OO-YY
<-09-IO
6-10-«0
S-10-«0
6-12-40
ENOOATA
S
Hlcka *t
6.0
1.0
-999.9
.0
a HH
(lat)
5:11
5:10
5:12
8 3
£ HR
(lat)
5:05
MS
(B/a)
2.45
3.5«
1.67
2.21
al (19I«), BLM. 34,
- zO (oi), id (cm)
- wa a*ia*ur*B*nt ht. (a), t*ap. a*aa. ht
- LAI (aatimatad) . v*q*tation Jtata
- no. of dlaa*t*ri, danaity (oa/em**3)
TEMP SH RAO USTAR HONIN HEAT FLUX
(C) (W/B"2) (B/a) (B) (II/B"2)
11.2 -999.9 0.17 -999*9 -999.9
14.7 -999.9 0.27 -999*9 -999.9
10.9 -999.9 0.12 -999*9 -999.9
10.0 -999.9 0.17 -999*9 -999.9
103-121
. (a)
(a/e
0.
0.
1.
0.
RA
HI
>4
51
15
7«
RO
(i/oml
-999.9
-999.9
-999.9
-999.9
RC
(a/ca)
-999.9
-999.9
-999.9
-999.9
VD
(cm/.)
0
0
-0
0
.01
.04
.29
.21
ZO Ri phia phih
(CB)
0.3 0.006 1.03 1.03
0.3 -0.010 0.97 0,93
0.3 -0.010 0.97 0.93
0.4 0.000 1.00 1.00
GRASSLAND
9.4,
7.0.
-999.9.
10 1
01 fl
. -L U
MM-OD-YY
09-17-79
09-17-79
09-25-79
09-25-79
09-25-79
09-25-79
09-25-79
09-25-79
ENODATA
?b
Garland
-999.9
1.0
-999.9
.0
a HR
Hat)
15:05
15:35
11:35
12:05
12:35
13:05
14:35
15:35
1 3
(1912).
S HR
(lat)
15:30
16.00
12:00
12:30
13:00
13:30
15:00
UiOO
MS
(B/at
1.J3
1.40
1.21
1.44
1.34
1.29
1.57
1.53
- ZO (CBl, zdlcn)
- wa m*aauzaa*nt ht. (ml, taap. m*aa. ht
- LAIIaatiaatadl. v*q*tation itat*
- no. of diaancera, danaity (oa/cm**3)
TEMP S* RAO USTAR HONIN HEAT FLUX
(C) (»/«•• 2) (a/a) (a) (Vim--?,:
"23.S -999.9 0.11 -999*9 51.0
23.5 -999.9 0.11 -999*9 19.0
21.5 -999.9 0.15 -999*9 81.0
22.0 -999.9 0.15 -999*9 70.0
22.5 -999.9 0.15 -999*9 70.0
22.9 -999.9 0.16 -999*9 41.0
22.9 -999.9 0.15 -999*9 53.0
22.9 -999.9 0.15 -999*9 22.0
. (a)
(.'•1C
-999
-999
-999
-999
-999
-999
-999
-9«9
RA
al
.9
.9
.9
.3
.9
.9
.9
.9
RD
(a/cm)
-999.9
-999.9
-999.9
-999.9
-99*. 9
-999.9
-999.9
-999.9
RC
(a/cal
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
VD
(ca/a)
0
-0
0
0
0
0
0
0
.61
.01
.72
.44
.33
.12
.00
.00
Confarvnc* Proc**dinqa. 84.9-85*
GRASS - MIND TUNNEL
2.0,
-999.9.
-999. a.
-999.9
-999.9
-999.9
1 1.0
13.
MM-OO-YY
ENDOATA
Pb
Garland
3 HR
(lat)
1 3
(19<2).
E HR
(1st)
MS
(a/ II
-999. 3
- :0 aattaatadleal, zd(ca)
- wa mcaauraaent ht. (a), taap. raaaa. ht
- LAI Katiaatad) , v*q*tation icata
- no. at dlaa*t*ri, danaity (aa/ca"3)
- diaactar (aicrona)
TEMP SW RAO USTAR MOM IN HEAT FLUX
(C) (M/B"2) (m/J) (Bl (M/B"2)
20. -999.9 0.35 9.0*9 -999.9
. (a)
RA
'(s/cal
-999
.9
RO
(a/cat
-999.9
RC
(a/cal
-999.9
VO
(ca/a)
1.90
Confaranc* Proc*«dinqa. 849-aSi
GRASS - MIND TUNNEL
2.0.
-999.9.
-999.8,
-999.9
-999.9
-999.9
1 1.0
10.
MM-DD-tY
a HR
(1st)
E HR
(lit)
ws
(a/31
-999.9
- zO aatiaatad(ca), zd(ca)
- wa auauraaanc ht. la), tamp. maaa. ht,
- LAI (aitimacadl , v«q*tacion itace
- no. at dlaa*c*ri. density (qm/cm"3l
- diaa*t*r (aicronal
TEMP S« RAD USTAR MONIN HEAT FLUX
(C) (W/a"2) (m/ii (al iw/«"2)
20. -999.9 0.35 9.0*9 -999.9
. (al
RA
(a/a
-999
al
.9
no
(a/cai
-999.9
RC
la/cnl
-999.9
VD
(cm/JI
1.40
ENOOATA
-------
?» 13
Oarland (1912). Conference proewdinqa. 144-85*
GRASS) - MIMD TUMNU,
2. a. -999.9 - JO estimated (cml, id (cm)
-999.9. -999.9 - ws BMSureB*nt ht. (Bl, teeta. ma*, tit. (B)
-999.1. -»99.9 - IAI (estimated) . v*o;*tation state
1 1.9 - no. of diameters. density (qa/cm"3)
7.S - ataaweur (micron*)
MH-OO-YY B MB E HR W TEMf SH RAO USTAR HONIH HEAT FLUX RA RO RC VD
* (1st) (lie) (m/») (CT e»/B"2) (m/sl (•) (»/»"2) U/CBI I 3
Garland (1912), Conference Proceedings. 149-451
CRASS - WIND TUNNEL
2.0, -999.9 - 10 estimated (cm), zd(cn)
-999.9. -999.9 - u* measurement. ht. (B) , temp. neas. M. (»)
-999.1. -999.9 - IAI (**tl]ut*4) , v*q*catlon itat*
1 1.0
s.o
MM-OO-YY
ENDOATA
no. off diameters, density (dB/ea**3)
- diam*t*r (microns)
a HR
(1st)
E HR
(1st)
US
(a/a)
-999.9
TEMP S« RAO
(Cl (W/B"«1
20. -999.9
USTAR
(B/sl
0.3S
MONIN
(Bl
9.0*9
HEAT runt
(«/«"2)
-999.9
RA
(I/CM)
-999.9
RO
(s/ern)
-999.9
RC
(S/CB)
-999.3
VD
(CB/S)
0.45
?b 13
Airland (1912), Conf*r«nc* Proc««dinqi, 149-«5I
SKASS - KIND TUNNEL
2.0. -999.9 - tfl estimated (cmi, zd(eB|
-999.9, -999.9 - «• B*a*uxuMat lit. (Bt, C*ap. aus. ht. (Bl
-999. (, -999.9 - UKutiaatM), v*q*tatloa (tat*
1 1.0. - oe. at dlaB*t*r«, d*n*ity (q»/ca"3)
3.2 - dlaB*t« (Kleran*)
MK-OD-n a HR B HR OS TEMP SH RAO VSTAR HONIH HEAT FLDX RA RO RC VD
(1st) (1st) (m/i) 1C) (W/B*«2) (•/*) la) (»/«••*> (J/on( (I/CBI (a/a) ICB/I)
-999.9 20. -999.9 O.J5 9.0*9 -999.9 -999.9 -999.3 -999.9 0.15
ENDDATA
P6 13-
Garland (19*2), Coal*r*nc* Proc«*4inq». «49-tS»
GRASS - WIND TUNNEL
2.0, -999.9 - zO Mtiaatcddax. zd(ca)
-999.9, -999.9 - tr* awa
-------
Pb
Garland
GRAM -
2.0,
-999.9,
-999.1.
1 1
0.04
f 3
(19*2), Confer
NINO TUNHCL
-99».»
-999.9
-999.9
.0
MH-OD-YY S OH
ENOOATA
FEOOH
Garland
GRASS
2.0,
10.0,
-999.9,
1 1
2.1
MH-OD-YY
05-21-11
09-23-81
ENOOATA
FEOOH
Garland
GRASS -
2.0.
10.0,
-999.8,
1 1
2.*
MM-OO-YY
06-91-11
9*-17-ll
SNODATA
FEOOH
Garland
GRASS
2.9.
10.9.
-999.9,
1 1
3.8
MM-OO-YY
09-30-12
ENOOATA
Fin* Prt
Weaely •
LEAFLESS
100.,
39.0.
-999.9.
6 1
0.95 0.
MM-OD-YY
01-24-11
01-26-11
01-2«-ll
01-27-J1
01-27-81
01-27-11
01-21-11
01-28-31
01-21-91
01-2S-81
91-28-11
01-21-11
SNDOATA
(lit)
2 3
(1312).
-999.9
-999.9
-999.9
.0
S HR
(1st)
2 3
(19*2).
E HR
(lat)
Confer
enesi Proceedings, 149-15*
- zO estimated Ccml, id (cm)
- v* measurement ht. (ml, temp. mas. ht
- LAI (estimated) , vegetation atate
- oo. of diameters, density (gm/em"3>
m
(m/sl
-999.9
- diameter (microns)
TEM? SW RAO USTAR NONIM
1C) («/••**) (m/s) (ml
20. -999.9 0.35 9.0*9
HEAT
rune
<»/m"2)
-999.9
(ml
RA
(a/eml
-99».9
RO
(a/em»
-999.9
RC
(a/em)
-999.9
VD
(em/a)
9.09
ence Proceedings, 149-151
- ifl estimated (cm), zd(cm)
- •stlmated us neas. ht. (ml.
temp.
meas
ht. (m)
- LAI (estimated) , v*q*tation atat*
E HR
(1st)
WS
(m/al
2.5
3.0
Conference Pi
- no. of diametera. density
- diameter (microns)
TEKP S* RAO VSTAR MONIN
(C) (W/m"2) (m/sl (ml
20.9 -999.9 -999.9 9.0e9
20.0 -999.9 -999.9 9.0.9
oceedings. 849-15*
HEAT
(N/n
FLUX
l"2)
9.0
0.0
RA
(s/cml
-999.9
-999.9
(a/e
RO
•1
-999.9
-999.9
RC
(s/cml
-999.9
-999.9
VD
(em/a)
0.05
0.12
HIND TUNNEL
-999.9
-999.9
-999.9
.0
B HR
(lat)
1 3
(19*2),
-999.9
-999.9
-999.9
.0
3 HR
(lat)
12 4
- zO estimated (cm), zd(cml
- estimated us meas. ht. (ml.
temp.
meaa.
ht. (ml
- LAI (estimated) , vegetation state
E HR
(1st)
ws
(m/sl
3.5
3.5
-no. of diametara, density
- diameter (microns)
TEMP SW RAO USTAR MONIN
(C) (H/m"2) (m/i) (ml
20.0 -999.9 -999.9 9.0.9
20.9 -999.9 -999.9 9.0.9
HEAT
(W/n
FLUX
l««2)
0.0
0.0
RA
(s/cml
-999.9
-999.9
(1/c
RD
•1
-999.9
-999.9
RC
(a/eml
-999.9
-999.9
VO
(em/a)
0.18
0.12
Conference Proceedings. 149-158
- zO estimated (en), zd(em)
- estimated us neas. ht. (m) ,
temp.
meas. ht. (ml
- LAI (estimated) , vegetation atate
E HR
(lat)
t »1 (19*3), a
MS
(m/sl
2.4
U4. 27,
DECIDUOUS FOREST IN
-999.9
42.0
3.0
.0
0< 0.07
9 HR
(lat)
10:09
17:30
11:00
10:30
11:30
12:30
10:30
11:30
12:00
12:30
13:90
15:00
- no. of diametera, denaity
- diameter (microna)
TEMP SW RAO VSTAR MONIN
(C) (W/m"2) (m/a) (ml
20.9 -999.9 -999.9 9.0e9
237-255.
WINTER (North Carolina)
- zO estimated (en), zd(cm)
- us measurement ht. (m) , temp
HEAT
(W/a
. meaa
FLUX
"2)
0.0
. ht.
RA
(s/eml
-999.9
(m)
(a/e
-999
RO
ml
.9
RC
(a/en)
-99».9
VD
(cm/a)
9.42
- LAI (estimated I, vegetation state
- no. of diametera. density (gm/em**
9.01 0
E HR
(lat)
19:30
11:90
11:30
11:00
12:90
13:00
11:99
12:90
12:30
13:09
13:30
L5:30
.09 0.
MS
(m/al
4.0
2.1
2.5
2.5
1.6
1.8
3.6
2.7
2.9
3.3
2.1
i.:
1 - particle diametera
TEMP SW RAO USTAR MONIN
(C) l»/m*'2) {m/al (m)
9.2 -999.9 9.S4 -999.9
15.4 -999.9 0.26 -999*9
14.1 -999.9 0.21 -999*9
13.2 -999.9 0.31 -999*9
15.0 -999.9 0.31 -999*9
15.2 -999.9 0.25 -999*9
7.S -999.9 O.S6 -999*9
1.4 -999.9 0.57 -999*9
1.5 -999.9 0.41 -999*9
9.2 -999.9 0.5< -999*9
9.7 -999.9 0.57 -999*9
9.7 -999.9 0.35 -999*9
HEAT
(K/m
3)
FLUX
•*2)
4 9-. 9
-16.0
-20.0
15.0
S6.0
26.0
43.0
209.0
C.3.0
231.0
237.9
55.0
RA
(a/eml
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-999.9
-•99.9
-999.9
-999.9
-999.9
(s/e
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
-999
RO
ml
.9
.9
.9
.9
.9
.9
.9
.9
.9
.9
.9
.9
RC
(a/em)
-999.
-999.
-999.
-999.
-999.
-999.
-999.
-999.9
-999.9
-999.9
-999.9
-999.9
VO
•(em/a)
0.919
0.920
9.120
0.110
0.070
9.140
0.610
0.320
0.800
9.550
0.200
0.090
-------
II 3
•c «1 (1S«2), Cent*
SHORT GRASS. TEXAS
1.0. -999.3
19.3. ' 42.0
-944.9. -9**.*
13 1.4
mne* PrecMdlnq*. 443-9S2
- <0 M«*JMt*d(cal. id (c»)
- *• BMiuruwit ht. IB), tup. »•••. ht. (•!
- LAI(MtlBat*dl, vcqvtation stat*
- no. at 4i*B*t*ri. dmuity (q»/eB««3)
MH-OD-YY
01-23-71
01-25-71
01-23-71
01-25-71
01-25-71
01-25-71
01-23-71
01-25-71
01-25-71
01-25-71
01-25-78
01-25-71
08-25-78
08-23-78
08-25-18
88-25-78
08-25-78
38-25-78
BNDDATA
PART
Loc«nr «
a HR
(lit)
lllll
11:48
12:18
12141
13:18
13i48
Mill
14141
15111
15t4l
16:11
16i4>
17:11
17:41
UlL8
18:48
19:18
19:48
61 5
C HR
U*t)
11:48
12:11
12l 41
13 ill
13l4l
14:11
14:41
15:18
15l48
16:11
16:41
17:11
17:48
Ulll
18148
19111
19:48
20:18
MurphyU989l,
MS TENT SH RAO
(B/«
-99*.
-999.
-999.
-9*1.
-991.
-999.
-999.
-499.
-999.
-999.
-999.
-999.
-999.
-911.
-919.
-999.
1C) (N/B"2)
30. -999.9
30. -999.9
30. -999.9
30. -994.9
30. -99*. 9
30. -999.9
30. -999.9
30. -999.9
30. -999.9
30. -999.9
30. -999.9
30. -999.9
30. -999.9
30. -999.9
30. -999.9
30. -999.9
-999.9 30. -999.9
-9*9.9 30. -999.9
BtM.
4«, 353-366.
1.0 - partial
USTAR MOMIM
(»/») (a)
0.24 -944*9
0.25 -999*9
0.2C -999*9
0.32 -94»*»
0.20 -999*9
0.21 -99**9
0.22 -999*9
0.33 -999*9
0.24 -999*9
0.27 -999*9
0.33 -999*9
0.34 -999*9
0.32 -999*9
0.25 -999*9
0.27 -999*9
0.21 -999*9
0.20 -999*9
0.18 -999*9
• dlamt*r«
HEAT rune
(K/B--Z1
144.
133.
15«.
no.
173.
112.
45.
105.
102.
««.
52.
IS.
-14.
-29.
-41.
-36.
-35.
-42.
RA
(1/CBl
-999.9
-999.9
-99*.*
-911.9
-991.9
-999.9
-999.9
-991.9
-991.9
-919.9
-999.9
-999.9
-999.9
-999.9
-9*9.9
-999.9
-999.9
-999.9
RO Re VD
I«/CB
-»»*.
-*9».
-99*.
-9*1.
-91*.
-9*1.
-9*9.
-99*.
-9M.
-419.
-4*1.
-41*.
-411.
-411.
-9*1.
-9*9.
-9*4.
-4*».
(•/smi
-999.
-999.
-191.
-911.
-911.
-111.
-199.
-99*.
-»»*.
-999.
-911.
-911.
-111.
-991.
-111.
-911.
-991.
-999.
(cm/tl
• 0.220
0.140
0.110
.150
.230
.240
.150
.150
.190
0.150
a. no
0.294
0.200
0.200
0.250
3.150
0.070
0.140
PINE PLANTATION
28.0,
9.1.
9.0
6
MM-00-«
790.0
-999.9
-999.9
1.
a HR
(lit)
- zO (oil, zdtca
- w« nuiuruunt
)
ht. (n|, tup.
m*«». Ht.
(B)
- IAI. v*q*tation Jtae*
- no. of dlan*t*n, cUniity (
-------
T T i T T T
i i i i »
0000,0000,3000000
T i i * i i i i i i i i t i i i
H ssssssss sHssi
I 1 I I I I I I I I I I t I I I
-------
Appendix D
Predicted Deposition Velocities vs Particle Diameter
-------
uu
en
_
a
LU
CTJ
a
Q_
Lu
a
1.0E+02
1.0E+01 -
1.0E+00 -
£ 1.0E-01 -
1.0E-02 -
1.0E-03 -
1.0E-04
1.0E-05
0.1
1.0 10.0
PflRTICLE DIflMETER (MICRONS)
100.0
Figure D-1. Predicted deposition velocity for the CARB-based models for u. = 10 cm/s,
za = 10 cm, LAI = 1.0, p = 1.0 g/cm3, and neutral stability. The gravitational
settling velocity is vg.
D-1
-------
100
DEPOSITION VELOCITY (CM/SEC)
i.OOOE-05
0.1
1 10
PARTICLE DIAMETER (MICRONS)
100
ADOM 1
ADOM 2
ADOM 3
V(sed>
Figure D-2. Predicted deposition velocity for the ADOM-based models for u. = 10 cm/s,
20 = 10 cm, LAI = 1.0, p = 1.0 g/cm3, and neutral stability. The gravitational
settling velocity is vf
D-2
-------
o
LU
CO
u
>-
I—
I—I
o
LU
CO
o
a.
LU
a
1.0E+02
1.0E+01 -
1.0E*00 -
1.0E-01 -
1.0E-02 -
1.0E-03 -
1.0E-04
1.0E-05
0.1
1.0 10.0
PflRTICLE DIflMETER (MICRONS)
100.0
Figure D-3. Predicted deposition velocity for the UAM-based models for u. = 10 cm/s,
Zo « 10 cm, LAI = 1.0, p = 1.0 g/cm3, and neutral stability. The gravitational
settling velocity is vf
D-3
-------
APPENDIXE
Implementation of the Modified Source
Depletion Method in ISC2
-------
E.1 Overview of Method
Horst (1983) describes a method for incorporating the effects of deposition on the
vertical distribution of material in a plume, without resorting to a full surface depletion
treatment (see the discussion of plume depletion techniques in Section 3). The method includes
a vertical profile adjustment factor as well as a source depletion factor, so that concentrations in
the lower portion of the plume approximate those produced by the surface depletion model
This adjustment factor is important because deposition is proportional to near-surface
concentrations. The source depletion method by itself overestimates near-surface
concentrations, thereby overpredicting deposition rates which hastens removal of material from
the plume.
Let V(xAh) denote the vertical distribution of plume material in the absence of
deposition. In terms of the notation used by Horst (1983),
u
(E-l)
where D is the crosswind-integrated concentration distribution for a plume at a height h above
the ground, released from a source of unit source strength. Then the vertical distribution factor
that is modified to account for the depletion resulting from deposition, Vd (x^h), is defined to
be:
(E-2)
FQ(x) is the fraction of material that remains in the plume at the downwind distance x (i.e., the
mass that has not yet been deposited on the surface). This factor may be thought of as a source
depletion factor, a ratio of the "current" mass emission rate to the original mass emission rate.
is the vertical profile adjustment factor.
The effect of Equation (E-2) is illustrated in Figures E-l and E-2. Figure (E-l) displays
a depletion factor FQ, and the corresponding profile correction factor P(x^z) for a distance at
which oz is U times the plume height. This assures that the plume has been in contact with the
ground for a long enough time that significant deposition has occurred. The depletion factor is
constant with height, whereas the profile correction shows that most of the material is lost from
the lower portion of the plume. Figure (E-2) compares the vertical profile of concentration both
with and without deposition and the corresponding depletion of material from the plume. The
depleted plume profile is computed using Equation (E-2).
E-l
-------
2.0 n
N 1.5 -
D
•1.0 -
Depletion Factor
Profile Correction
FIGURE E-1. ILLUSTRATION OF THE DEPLETION FACTOR FQ AND THE
CORRESPONDING PROFILE CORRECTION FACTOR
E-2
-------
2.0 -i
N 1.5
O
E
•1.0 -
N
0.0
Original Profile
Depleted Profile
I I I i i I I I i | I i i I I i i i i |*Ti i I i i i i i | i f i i i i i i i |
0.0 0.5 1.0 1.5 2.0
Concentration
FIGURE E-2. VERTICAL PROFILE OF CONCENTRATION BEFORE AND AFTER
APPLYING FQ AND P(x^) SHOWN IN FIGURE E-l.
E-3
-------
FQ(x) is a function of the total deposition velocity (vj, V(x^h), and
EXP
(E-3)
where zd is a height near the surface at which the deposition flux is calculated. This equation
reflects the fact that the material removed from the plume by deposition is just the integral of
the deposition flux over the distance that the plume has traveled. For general forms
and P(x^:), Equation (E-3) is evaluated numerically.
The deposition velocity for particles generally contains a component related to the
settling velocity, vr A "tilted plume" is used to simulate the effect of gravitational settling on the
plume as a whole. This approximation entails replacing the plume height, h, in Equations (E-l)
and (E-2) with
A, =» h - 1 vt (E-4)
u
For large travel-times,, h, can become less than zero. However, the tilted plume approximation
is not a valid approach in this region. Therefore, a minimum value of zero must be imposed on
h,. In effect, this limits the settling of the plume, although the deposition velocity continues to
account for gravitational settling near the surface.
The profile correction factor P(x^) is developed by Horst (1983) for the case in which
reflection of material from the mixing lid is not important. He finds
1-1
(E-5)
where R(z^d) is an atmospheric resistance to vertical transport. When the product vsR(z^a) is
•of order 0.1 or less, the exponential function is approximated (for small argument) to simplify
(E-6)
E-4
-------
This simplification is important, since the integral in Equation (H-6) can be computed using
analytical approximations for many forms of R(z^J that are consistent with the Briggs' formulas
for oz (Gifford, 1976). Typically, only the largest particles may have a settling velocity vs large
enough to require the numerical integration of Equation (E-5).
•The atmospheric resistance is defined as
where K(z) is the vertical eddy diffusivity. Because we will be using empirical expressions for av
K(z) should be consistent with these. Horst (1983) points out that
K - u oz ^ (E-8)
ax
and that
z = V37* az (E-9)
for a Gaussian plume from a ground-level source, where z is the mean height of the
distribution of mass in the plume. Using Equation (E-9) to map z to av Equation (E-7) is
represented by
o
* dx
This allows R(z^J to be evaluated for particular forms of oz. Horst provides solutions for
-------
is derived in Section E-2. (Solutions to Equations (E-7) and (E-6) for each form of oz are listed
in Section E-2).
E2 Extension of Solutions for Urban Classes A and B
The Briggs' curves for oz for urban locations during stability classes A and B have the
form of Equation (E-12). Therefore, Equation (E-10) becomes
*«*L at? yrr&p
jlAin(^|^
(E-13)
The limits are implicit functions obtained from Equation (E-9):
(E-14)
That is, x(z) is the distance at which oz equals z/V2/ii . If both sides are squared, x(z) can be
expressed as the root of a cubic equation. In developing the FORTRAN code to implement
Horst's method, we use an iterative method to solve for the root of Equation (E-14).
Adding Equation (E-13) to the solutions given by Horst for the other forms of ov we
have:
a. = OK
Jl
\ Tt
-Li.
au
(E-15)
(E-16)
-------
o, - afll * ftt);
(E-17)
fee)
*
Jl
I in
au
y/1
- 1
+ 1
+ 1
- 1
(E-18)
The profile correction factor, P(^z), requires the integral of the product of R^J and
the vertical distribution factor V(x,z,h), which is dominated by a series of exponential functions
of height. An analytic solution to this integral is possible for the R(z^,j) terms involving ln(z/zd),
(z-z,j) and (z2^2); but the complex form of Equation (E-18), coupled with the supplementary
relation in Equation (E-14), precludes such a solution. After trying several approximation
techniques, the solution for P(x^zd) with R(z^d) given by Equation (E-18), was approximated as
follows.
First, a program was developed that solves the integral in Equation (E-6) numerically.
This not only allows us to test various approximate results, it can also serve as a numerical
solver if no analytical approximations are found to be adequate. Then, we developed an
approximate expression for R(z^:<1) for small z, which is facilitated by the fact that the constant
b = 0.001 for urban classes A and B:
or
(E-19)
where k
2b [T
a N| 2 '
E-7
-------
This allows Equation (E-18) to be written as
cat
(1 + to)1** + 1 (1
- 1
(E-20)
Further expanding (1 + kz)^4 as 1 + kz/4, the natural log expression in Equation (E-18)
becomes
-l-In
* J
(E-21)
This gives a leading tenn that is the same as Equation (E-15), for oz = ax, and the approximate
result for P is
v? JL/
1C OU
-1
(E-22a)
where
. 2
(E-22b)
Comparing Equation (E-22) with the numerical solution, the approximate form worked
well for small z, but diverged from the correct solution at larger z. Several empirical
adjustments produced a good fit for a full range of heights. The resulting analytic expressions
for P(x^d) for each of the oz functions are:
- v.
ua
In
(E-23)
o? = axf( 1 + bx)lf2:
ua
t\ 1 o i
-1 -I + - I at -
Jt
2
(E-24)
E-8
-------
axl(I * &e):
(E-25)
vf<°'-"1
•» 1 +
ua
^
(E-26)
For the last form, k = — — , and
a N 2
at(l - .0006 aj2
0.6724 a.
300m
300/n
and
1000m
1000m
The approximation to the integral in P(x^J for az = ax(l + bx)1/2 matches the numerical
solution to within 1% for zd = 0.03 m and oz ^ 4000 m, and it matches to within about 2% for
zd » 1 m over the same height range.
E3 Mixing-Lid Treatment
The results presented above do not include the presence of a mixing lid. With such a lid,
the profile correction factor must operate only within the mixed layer, so that the upper limit in
the integral for P(x^d) is z,, not infinity, in Equation (E-6). Furthermore, the standard
formulation of V(xAh) is also a function of z^ since the distribution of material in the plume is
E-9
-------
"reflected" from z = z^ In principle, the additional reflections in the Vfr^Azj just add to the
number of terms in P(x^), since the form of the integral in Equation (E-6) remains the same.
However, most of the emphasis in obtaining P(xrzd) is placed near the ground, because this is
where the depletion correction is most important Therefore, in the interest of streamlining the
implementation of the method, we have adopted an alternate strategy. We solve for P(x^d) for
the case of well-mixed plumes (oz > z,), and compare the results with Equations (E-23) through
(E-26).
In the well-mixed limit,
so that P(x^d) involves the integral of terms involving just ln(z/z,j), (z-zj, and (z2^2), since the
exponentials are not present in Equation (E-27). Performing the integrations yields functions
that are equivalent to Equations (E-23) through (E-25), except oz is replaced by a constant times
z,:
(E-28)
(E-29)
Therefore, the effect of the lid is to limit the size of oz in evaluating P(x£
-------
also performed well when compared to the numerical integration, so this more compact result
was adopted
E.4 Numerical Integration For P(x^d)
Because Equation (E-3), involves the numerical evaluation of an integral over the
distance from the source to each receptor, an analytic representation of P(x^d) is preferred in
order to streamline the computations. As discussed in Section E.I, P(x^d) can be represented
by simple analytic functions so long as v, R(z^,j) £ 0.1. However, larger and denser particles
(greater than 10 urn in diameter) have settling velocities great enough to violate this condition
at times. For these situations, the full expression for P(xrzd) (Equation E-5) must be solved
numerically as well This means that each point evaluated in Equation (E-3) involves a
numerical evaluation of Equation (E-5). This can be time-consuming.
The subroutines developed make use of a general integration routine. It subdivides the
interval into more and more equally-spaced segments until the value of the integral converges to
within an imposed tolerance. Further study is recommended to optimize these integration
procedures. For example, the tolerance level might be too restrictive. Or, an integration
technique might be specifically designed for the integrand. We know the form of V(xAh) and
R(z^,j), and may be able to increase the efficiency of the integration by designing an algorithm
that "knows" where the integrand changes most rapidly, and least rapidly. Fewer points are
needed to integrate across regions in which the variation of the integrand is nearly linear.
There is also a possibility that the solution to Equation (E-5) can be approximated
simply enough to avoid its numerical solution. We have been able to recast the integral in
Equation (E-5) to one of the form:
'"'A e-^D^ * "D*? dz (E-31)
*<
for R(z^d) of the form
*(z^) = A ]n(zlzd) * B(z - zd) * c(z2 - 2<2) (E-32)
With a suitable definition of a new variable of integration, it appears that Equation (E-5) could
be solved to yield a representation made up of the product of a Gamma function, an exponential
function, and a parabolic cylinder function. Such a solution has not been completely worked
out, since it is not clear that such a representation would lead to a more efficient evaluation of
the integrals.
E-ll
-------
References
Giffbrd, RA, Jrn 1976: Turbulent diffusion - Typing schemes: A review. NucL Saf., 17, 68-86.
Horst, T.W., 1983: A correction to the Gaussian source-depletion model In Precipitation
Scavenging, Dry Deposition and Resuspension, H.R. Pruppacher, R.G. Semonin, W.G.N.
Slinn, eds^ Elsevier, NY.
E-12
-------
TECHNICAL REPORT DATA
(Please read Instructions on reverse before completing)
I. RETORT NO.
EPA-454/R-94-015
3. RECIPfENrS ACCESSION NO.
4. TITUS AND SUBTITLE
Development and Testing of Dry Deposition
Algorithms
5. REPORT DATE
April 1994
6. PERFORMING ORGANIZATION CODE
7. AUTHOR®
Joseph S. Scire and Gary E. Moore, Sigma Research
Corporation
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Sigma Research Corporation
196 Baker Avenue
Concord, MA 01742
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-D9007, Work Assignment
3-1
12. SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards, TSD
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final Report
14. SPONSORING AGENCY CODE
13. SUPPLEMENTARY NOTES
This document replaces EPA-454/R-92-017.
EPA Work Assignment Manager: Jawad S. Touma
16. ABSTRACT
This study was designed to identify dry deposition models suitable for routine
use, evaluate and intercompare several techniques, and select the most appropriate
approach for use in the Industrial Source Complex (ISC2) model. Reviews were conducted
of methods for computing dry deposition velocity, plume depletion, and certain
micrometeorological parameters from routinely-available observations. Several
observational data bases were identified from the literature and used in testing and
evaluating ten particle deposition velocity models. Recommendations for computing
particle deposition velocity, plume depletion, and micrometeorological variables were
made. These techniques have been incorporated into a revised version of the ISC2 model
and related processor programs.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b. IDENTIFIERS/OPEN ENDED TERMS
a. COSATI Field/Group
Air Pollution
Dry Deposition
Air Quality Dispersion Modeling
Meteorology
18. DISTRIBUTION STATEMENT
Release Unlimited
19. SECURITY. CLASS (Rtport)
Unclassified
21. NO. OF PAGES
128
20. SECURITY CLASS (Page)
Unclassified
22. PRICE
EPA form 1220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE
-------