United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park, NC 27711
April 2000
AIR
&EPA
Final Report
Manual Testing and Continuous
Emissions Monitoring
Vertical Lime Kiln
Baghouse Inlet and Outlet
Chemical Lime Company
Marble Falls, Texas
'«&
°f7 \ ^
yvi \^AA
Clean
U.S. Environmental Protection Agency
Region 5, Library (PL-12J)
-------
FINAL REPORT
MANUAL TESTING AND CONTINUOUS EMISSIONS MONITORING
VERTICAL LIME KILN BAGHOUSE INLET AND OUTLET
CHEMICAL LIME COMPANY
MARBLE FALLS, TEXAS
EPA Contract No. 68-D98-004
Work Assignment No. 3-03
Prepared for:
Mr. Michael L. Toney (MD-19)
Work Assignment Manager
SMTG, EMC, OAQPS
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
April 2000
P:\S523\FINRPTS\TEXAS\MARBFALL\REPORTVCL_MF.WPD
Submitted by
PACIFIC ENVIRONMENTAL SERVICES, INC.
5001 S. Miami Blvd., Suite 300
Post Office Box 12077
Research Triangle Park, NC 27709-2077
(919) 941-0333
FAX (919) 941-0234
-------
DISCLAIMER
This document was prepared by Pacific Environmental Services, Inc. (PES) under EPA
Contract No. 68-D98-004, Work Assignment No. 3-03. This document has been reviewed
following PES' internal quality assurance procedures and has been approved for distribution.
The contents of this document do not necessarily reflect the views and policies of the U.S.
Environmental Protection Agency (EPA). Mention of trade names does not constitute
endorsement by the EPA or PES.
-------
TABLE OF CONTENTS
1.0 INTRODUCTION 1-1
2.0 SUMMARY OF RESULTS 2-1
2.1 PCDDs/PCDFs MEASUREMENTS 2-1
2.2 CEM MEASUREMENTS 2-3
3.0 PROCESS DESCRIPTION 3-1
4.0 SAMPLING LOCATIONS 4-1
4.1 VERTICAL KILN BAGHOUSE INLET SAMPLING LOCATION ... 4-1
4.2 VERTICAL KILN BAGHOUSE OUTLET SAMPLING
LOCATIONS 4-2
5.0 SAMPLING AND ANALYTICAL PROCEDURES 5-1
5.1 LOCATION OF MEASUREMENT SITES AND
SAMPLE/VELOCITY TRAVERSE POINTS 5-1
5.2 DETERMINATION OF EXHAUST GAS VOLUMETRIC
FLOW RATE 5-1
5.3 DETERMINATION OF EXHAUST GAS MOISTURE CONTENT ... 5-1
5.4 DETERMINATION OF PCDDs/PCDFs 5-4
5.5 DETERMINATION OF HYDROGEN CHLORIDE 5-4
5.6 DETERMINATION OF CARBON DIOXIDE, OXYGEN, AND
TOTAL HYDROCARBONS 5-7
5.7 CEMs DATA ACQUISITION AND HANDLING 5-9
6.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) PROCEDURES
AND RESULTS 6-1
6.1 CALIBRATION AND PREPARATION OF APPARATUS 6-1
6.2 REAGENTS AND GLASSWARE PREPARATION 6-3
6.3 ON-SITE SAMPLING 6-5
6.4 LABORATORY ANALYTICAL QA/QC PROCEDURES 6-9
m
-------
TABLE OF CONTENTS (Concluded)
APPENDICES
APPENDIX A - RAW FIELD DATA
APPENDIX B - METHOD 23 LABORATORY ANALYTICAL DATA
APPENDIX C - CALCULATIONS & COMPUTER SUMMARY
APPENDIX D - EXAMPLE EQUATIONS
APPENDIX E - QA/QCDATA
APPENDIX F - PROCESS DATA
APPENDIX G - SAMPLING & ANALYSIS METHODS
APPENDIX H - PROJECT PARTICIPANTS
IV
-------
LIST OF TABLES
Page
Table 2.1 Emissions Test Log, Chemical Lime Company - Marble Falls, Texas 2-2
Table 2.2 PCDDs/PCDFs Sampling and Exhaust Gas Parameters, Vertical Kiln
Baghouse Inlet and Stack, Chemical Lime Company -
Marble Falls, Texas 2-4
Table 2.3 PCDDs/PCDFs Concentrations and Emission Rates, Vertical Kiln
Baghouse Inlet and Stack, Chemical Lime Company -
Marble Falls, Texas 2-5
Table 2.4 PCDDs/PCDFs Concentrations and 2378-TCDD Toxic Equivalent
Concentrations Adjusted to 7 Percent Oxygen, Vertical Kiln Baghouse
Inlet and Stack, Chemical Lime Company - Marble Falls, Texas 2-6
Table 2.5 HC1 and THC Concentrations and Emission Rates, Vertical Kiln Baghouse
Inlet and Stack, Chemical Lime Company - Marble Falls, Texas 2-7
Table 5.1 Summary of Sampling and Analysis Methods, Chemical Lime Company -
Marble Falls, Texas 5-2
Table 5.2 Summary of Sampling Locations, Test Parameters, Sampling Methods,
and Number and Duration of Tests, Chemical Lime Company -
Marble Falls, Texas 5-3
Table 6.1 Summary of Temperature Sensor Calibration Data 6-2
Table 6.2 Summary of Pitot Tube Dimensional Data 6-4
Table 6.3 Summary of Dry Gas Meter and Orifice Calibration Data 6-4
Table 6.4 Summary of EPA Methods 23 Field Sampling QA/QC Data 6-7
Table 6.5 Summary of Calibration Gas Cylinders 6-7
Table 6.6 Summary of Method 322 HC1 In Situ Spiking Data 6-8
Table 6.7 Summary of EPA Method 23 Blanks and Sample Catches 6-10
Table 6.8 Summary of EPA Method 23 Standards Recovery Efficiencies 6-11
-------
LIST OF FIGURES
Page
Figure 1.1 Project Organization - US EPA Texas Lime Kiln Screening, Chemical
Lime Company - Marble Falls, Texas 1-3
Figure 4.1 Vertical Kiln Process Exhaust Gas Schematic, Chemical Lime
Company - Marble Falls, Texas 4-3
Figure 4.2 Vertical Kiln Baghouse Inlet Sample Port and Sample Point Locations,
Chemical Lime Company - Marble Falls, Texas 4-4
Figure 4.3 Vertical Kiln Baghouse Outlet Sample Ports and Sample Point Locations
For Isokinetic Testing, Chemical Lime Company - Marble Falls, Texas .... 4-5
Figure 5.1 Sampling Train Schematic for EPA Method 23 5-5
Figure 5.2 Sampling Train Schematic for Proposed EPA Method 322 5-6
Figure 5.3 Sampling Train Schematic for EPA Methods 3A and 25A 5-8
VI
-------
1.0 INTRODUCTION
The U.S. Environmental Protection Agency (EPA) Office of Air Quality Planning and
Standards (OAQPS) Emission Standards Division (ESD) is investigating the lime
manufacturing industry to identify and quantify hazardous air pollutants (HAPs) emitted from
lime kilns. ESD requested that EPA OAQPS Emissions, Monitoring and Analysis Division
(EMAD) conduct the required testing. EMAD issued a work assignment to Pacific
Environmental Services, Inc. (PES) to conduct a "screening" test to collect air emissions data
as specified in the ESD test request. Initial planning, pre-test site survey, and preparation
activities were conducted under EPA Contract No. 68-D7-0002, Work Assignment No. 0/005.
Remaining preparation and field mobilization were conducted under EPA Contract No.
68-D7-0002, Work Assignment No. 1/007. The draft final report was completed under EPA
Contract No. 68-D98-004, Work Assignment No. 2-04. Generation of the Final Report,
incorporating EPA's comments on the Draft Final Report, was completed under EPA Contract
No. 68-D98-004, Work Assignment No. 3-03.
The primary objective was to characterize the uncontrolled and controlled emissions of
selected HAPs from a vertical kiln located at Chemical Lime Company's Marble Falls, Texas
facility. The "screening" tests were conducted to quantify the air emissions of hydrogen
chloride (HC1), total hydrocarbons (THC), and polychlorinated dibenzo-p-dioxins and
polychlorinated dibenzofurans (PCDDs/PCDFs). The basic test methods that were employed
were US EPA Test Methods 1 (sample point location), 2 (effluent gas velocity), 3 A (oxygen
and carbon dioxide content), 4 (moisture content), 23 (PCDDs/PCDFs content) with proposed
revisions, 25A (total hydrocarbon content), and Proposed Method 322 (HC1 content). Testing
at the facility was conducted on June 25, 1998. One 3-hour test, comprised of the sampling
methods mentioned previously, was conducted at the baghouse inlet and baghouse outlet; inlet
and outlet sampling were performed simultaneously. During testing, Research Triangle
Institute (RTI), an ESD contractor, monitored and recorded process and emission control
system operating parameters.
PES used three subcontractors for this effort: Air Pollution Characterization and
Control Inc. (APCC), Paradigm Analytical Laboratories, Inc. (PAL), and Atlantic Technical
Services, Inc. (ATS). APCC provided field testing support for measurement of oxygen (O2),
carbon dioxide (CO2), total hydrocarbon (THC) and hydrogen chloride (HC1) concentrations
using Continuous Emission Monitors (CEMs); PAL prepared the XAD®-2 sorbent resin traps
and performed the analysis of the Method 23 sample fractions to determine catch weights of
PCDD/PCDF congeners; and ATS provided support during preparation of the Quality
Assurance Project Plan (QAPP), Site Specific Test Plan (SSTP), field testing and field data
reduction, reduction of laboratory analytical data, and preparation of the Draft Final Report.
1-1
-------
The PES test crew consisted of Michael D. Maret (who served as the Task Manager
and Field Team Leader), Troy Abernathy, Gary Gay, Dennis D. Holzschuh, and Paul Siegel.
APCC was represented by John Powell, Eric Dithrich, and Peter Day, and ATS was
represented by Emil Stewart. Also present during the testing was Michael L. Toney, the EPA
Work Assignment Manager, Joseph P. Wood, EPA, OAQPS, BSD, and Cybele M. Brockmann
of RTI. Chemical Lime Company was represented by Rick L. Hohman, Plant Manager, and
David R Christiansen, Environmental, Health and Safety Manager.
Figure 1.1 presents the project organization and major lines of communication.
Section 2.0 presents the results of the testing; Section 3.0 is reserved for a process description
and operational data; Section 4.0 presents descriptions of the sampling locations; Section 5.0
presents descriptions of the sampling and analysis procedures; and Section 6.0 presents the
Quality Assurance/Quality Control procedures that were employed during the testing program,
and the results of calibrations and analytical QA data. Copies of all field data generated during
the testing, the subcontracting laboratory analytical report, computer calculations and example
calculations, calibration data and compressed gas certifications of analysis, reprints of the EPA
Test Methods, and project participants are presented in the appendices to this document.
Appendix F is reserved for process and operational data.
1-2
-------
Chemical Lime Company
Environmental, Health & Safety Manager
David R. Christiansen
(817)732-8164
I
EPA/EMC
Work Assignment Manager
Michael L. Toney
(919) 541-5247
PES
Program Manager
John T. Chehaske
(919) 941-0333
PES
Corporate QA/QC Officer
Jeffrey L. Van Atten
(703)471-8383
i
U)
PES
Project Manager
Franklin Meadows
(919) 941-0333
PES
Task Manager
Michael D.Maret
(919) 941-0333
EPA/ESD
Joseph P. Wood
(919) 541-5446
Research Triangle Institute
BSD Contractor
Cybele M Brockmarm
(919)990-8654
Pretest
Site Survey
PES
Quality Assurance
Project Plan
PES
Site Specific
Test Plan
PES
Subcontractor
Atlantic Technical
Services, Inc.
Field
Testing
PES
Subcontractor
Atlantic Technical
Services, Inc.
Sample
Analysis
PES
Subcontractor
Air Pollution Characterization
and Control, Ltd.
Subcontractor
Atlantic Technical
Services, Inc.
Draft Final
Report
PES
Subcontractor
Paradigm Analytical
Laboratories, Inc.
Subcontractor
Atlantic Technical
Services Inc.
Figure 1.1 Project Organization - US EPA Texas Lime Kiln Screening, Chemical Lime Company - Marble Falls, Texas
-------
2.0 SUMMARY OF RESULTS
This section summarizes the results of the testing that was conducted on the vertical
kiln at Chemical Lime Company's facility at Marble Falls, Texas. Testing was conducted at the
inlet to the baghouse and at the main stack. Table 2.1 presents the Emissions Test Log, which
summarizes the sample ran designators, test dates and times, target pollutants, and downtimes
for port changes and other stoppages. Flue gas parameters, pollutant concentrations, and
pollutant mass emission rates are summarized in Tables 2.2 through 2.5.
2.1 PCDDs/PCDFs MEASUREMENTS
Table 2.2 presents the Method 23 sampling parameters and parameters of the baghouse
inlet and outlet airstreams. One Method 23 sampling run was performed at the baghouse inlet
location, and one Method 23 sampling run was performed at the outlet location. Both runs
were conducted simultaneously, and both sample runs were within the isokinetic sampling ratio
criterion of 100 ± 10 percent(%); the isokinetic sampling ratio for the inlet ran (M23-I-1) was
102.2% and the isokinetic sampling ratio for the outlet ran (M23-O-1) was 101.6%. For
purposes of the calculation of the volumetric flow rates, O2 and CO2 data were determined
from the Method 3 A CEM data, and moisture content was determined using the mass of
condensate collected in the impinger trains during the runs.
From time to time during the Method 23 analyses, a peak elutes at the position
expected for a particular congener, but the peak fails validation based on the theoretical split of
chlorine isotopes. That is to say that the number of Cl35 isotopes and the number of Cl37
isotopes attached to the PCDDs/PCDFs congeners should agree with the C135/C137 ratio found
in nature. For each congener, this ratio must agree within fifteen percent. If the mass ratio of
chlorine isotopes does not agree with the natural chlorine isotope ratio then the peak is flagged
as an Estimated Maximum Possible Concentration, or "EMPC".
In-stack concentrations and associated mass emission rates of the PCDDs/PCDFs
congeners are presented in Table 2.3 for the inlet and outlet sampling runs. The values
presented as "Total PCDDs" are the sum of the "12346789 OCDD" polychlorinated dibenzo-
p-dioxin and all of the dioxins labeled "Total"; "Total PCDFs" values are the sum of the
"12346789 OCDF" polychlorinated dibenzofuran and all of the furans labeled "Total". "Total
PCDDs + Total PCDFs" values are the sum of the "Total PCDDs" and "Total PCDFs" values.
Values that have been qualified as being EMPC have been included in the sums.
Concentrations and emission rates based on or including EMPC values are denoted by braces
2-1
-------
TABLE 2.1
EMISSIONS TEST LOG
CHEMICAL LIME COMPANY - MARBLE FALLS, TEXAS
Run No.
Date
Vertical Kiln Baehouse Inlet
M23-I-1
M3A-I-1
M25A-I-1
M322-I-1
06/25/98
06/25/98
06/25/98
06/25/98
Vertical Kiln Baehouse Stack
M23-O-1
M3A-O-1
M25A-O-1
M322-O-1
06/25/98
06/25/98
06/25/98
06/25/98
Pollutant
Run Time
Downtime,
Minutes *
PCDDs/PCDFs
C02 / 02
THC
HC1
1520-1857
1543-1826
1543-1826
1543-1826
37
87
87
87
PCDDs/PCDFs
C02 / 02
THC
HC1
1518-1855
1519-1850
1519-1850
1519-1850
37
116
116
116
The CEMs sample acquisition system operated on a time-shared basis, switching between
the baghouse inlet and stack locations. This applies to Methods 3A, 25A, and 322.
2-2
-------
Table 2.4 presents two PCDDs/PCDFs concentration-based measurements for both the
inlet and the outlet sampling locations. In the second and third columns of the table, the
in-stack concentrations of the 2378-PCDDs/PCDFs congeners as well as the homologues (i.e.,
PCDDs and PCDFs groups that have the same degree of chlorination) are presented adjusted
to 7% O2. The fourth and fifth columns of the table present the 2378 tetra-chloro dibenzo-
dioxin (TCDD) toxic equivalent values for those congeners chlorinated at the 2, 3, 7, and 8
positions. These columns represent the in-stack concentrations of the 2378 congeners after
being adjusted for toxicity relative to 2378-TCDDs. PCDDs/PCDFs congeners that are not
chlorinated at the 2,3,7, and 8 positions have a relative toxicity of zero and therefore the total
homologues (e.g., Total TCDD) are not presented in the Toxic Equivalency columns.
2.2 CEM MEASUREMENTS
Measurements were conducted at the baghouse inlet and the outlet to determine the
concentrations of O2, CO2, THC, and HC1. These measurements were conducted using CEMs.
The CEMs were housed in a trailer supplied by APCC. Table 2.5 presents the average THC
and HC1 concentrations and mass emission rates.
O2 and CO2 concentrations have been corrected for observed calibration and bias errors
using Equation 6C-1, as required in Method 3 A, and HC1 concentrations have been corrected
using Equation 1 in Proposed Method 322. THC concentrations are presented uncorrected, as
required in Method 25 A; the uncorrected O2, CO2, and HC1 concentrations are given in
Appendix A. 3. Refer to Appendix D for example equations.
The CEMs collected data from the inlet and the outlet locations on a time-sharing basis.
The system was switched from inlet to outlet and back again every twenty-four minutes. The
first five minutes of data from each 24-minute period were excluded from the calculation of
average responses to allow for the time necessary to purge the CEMs system of the stack gases
from the previous sampling location and for the responses to stabilize.
2-3
-------
TABLE 2.2
PCDDs/PCDFs SAMPLING AND EXHAUST GAS PARAMETERS
VERTICAL KILN BAGHOUSE INLET AND STACK
CHEMICAL LIME COMPANY - MARBLE FALLS, TEXAS
Run No.
Date
Time
Total Sampling Time, minutes
Average Sampling Rate, dscfm "
Sample Volume:
dscfb
dscm"
Average Exhaust Gas Temperature, °F
O2 Concentration, % by Volume
CO2 Concentration, % by Volume
Moisture, % by Volume
Exhaust Gas Volumetric Flow Rate:
acfmd
dscfin"
dscmme
Isokinetic Sampling Ratio, %
M23-I-1
06/25/98
1520-1857
180
0.710
127.849
3.620
254
9.8
24.6
10.0
50,900
33,300
943
102.2
M23-O-1
06/25/98
1518-1855
180
0.740
133.265
3.774
231
13.6
15.7
9.9
52,400
35,400
1,000
101.6
* Dry standard cubic feet per minute at 68° F (20° C) and 1 atm.
b Dry standard cubic feet at 68° F (20° C) and 1 atm.
c Dry standard cubic meters at 68° F (20° C) and 1 atm.
d Actual cubic feet per minute at exhaust gas conditions.
' Dry standard cubic meters per minute at 68° F (20° C) and 1 atm.
2-4
-------
TABLE 2.3
PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES
VERTICAL KILN BAGHOUSE INLET AND STACK
CHEMICAL LIME COMPANY - MARBLE FALLS, TEXAS
CONGENER
DIOXINS:
2378 TCDD
Total TCDD
12378PeCDD
Total PeCDD
123478HxCDD
123678 HxCDD
123789HxCDD
Total HxCDD
1 234678 HpCDD
Total HpCDD
1 2346789 OCDD
Total PCDDs
FURANS:
2378 TCDF
Total TCDF
12378 PeCDF
23478 PeCDF
Total PeCDF
1 23478 HxCDF
1 23678 HxCDF
234678 HxCDF
123789 HxCDF
Total HxCDF
1 234678 HpCDF
1 234789 HpCDF
Total HpCDF
12346789 OCDF
Total PCDFs
Total PCDDs + PCDFs
CONCENTRATION *
(ng/dscm, as measured)
M23-I-1
{0.00472}
0.375
{0.00594}
0.152
{0.00348}
{0.00576}
0.00696
0.145
0.0141
0.0266
0.0156
0.715
0.0520
2.85
0.0356
0.0436
0.749
0.0446
0.0169
0.0126
0.00351
0.157
0.0189
{0.00199}
0.0238
{0.00267}
{3.78}
{4.50}
M23-0-1
0.00318
0.292
0.00238
0.0700
0.000795
0.00132
0.00106
0.0307
0.00185
0.00344
0.00636
0.403
0.0424
2.42
0.0231
0.0228
0.421
0.0125
0.00450
0.00291
0.00106
0.0440
0.00450
0.000530
0.00609
0.00265
2.89
3.29
EMISSION RATE *
(Hg/hr)
M23-I-1
{0.267}
21.2
{0.336}
8.62
{0.197}
{0.326}
0.394
8.23
0.795
1.51
0.881
40.4
2.94
161
2.01
2.47
42.4
2.52
0.956
0.714
0.198
8.87
1.07
{0.113}
1.34
{0.151}
{214}
{254}
M23-0-1
0.192
17.6
0.144
4.21
0.0479
0.0798
0.0638
1.85
0.112
0.207
0.383
24.2
2.55
146
1.39
1.37
25.4
0.750
0.271
0.176
0.064
2.65
0.271
0.0319
0.367
0.160
174
198
1 Nanograms per dry standard cubic meter at 20°C and 1 atm.
b Micrograms per hour.
{ } Estimated Maximum Possible Concentration. EMPC values are included in totals.
2-5
-------
TABLE 2.4
PCDDs/PCDFs CONCENTRATIONS AND 2378-TCDD TOXIC EQUIVALENT CONCENTRATIONS
ADJUSTED TO 7 PERCENT OXYGEN
VERTICAL KILN BAGHOUSE INLET AND STACK
CHEMICAL LIME COMPANY - MARBLE FALLS, TEXAS
CONGENER
DIOXINS:
2378 TCDD
Total TCDD
12378 PeCDD
Total PeCDD
123478 HxCDD
123678 HxCDD
123789 HxCDD
Total HxCDD
1234678 HpCDD
Total HpCDD
12346789 OCDD
Total PCDDs
FURANS:
2378 TCDF
Total TCDF
12378 PeCDF
23478 PeCDF
Total PeCDF
123478 HxCDF
123678 HxCDF
234678 HxCDF
123789 HxCDF
Total HxCDF
1234678 HpCDF
1234789 HpCDF
Total HpCDF
12346789 OCDF
Total PCDFs
Total PCDDs + PCDFs
CONCENTRATION '
(ng/dscm, adjusted to 7 percent O2)
M23-I-1
{0.00591}
0.469
{0.00744}
0.191
{0.00436}
{0.00722}
0.00872
0.182
0.0176
0.0333
0.0195
0.895
0.0652
3.57
0.0446
0.0547
0.938
0.0558
0.0212
0.0158
0.00439
0.196
0.0237
{0.00250}
0.0297
{0.00335}
{4.74}
{5.63}
M23-O-1
0.00605
0.556
0.00454
0.133
0.00151
0.00252
0.00202
0.0585
0.00353
0.00656
0.0121
0.766
0.0807
4.60
0.0439
0.0434
0.802
0.0237
0.00858
0.00555
0.00202
0.0838
0.00858
0.00101
0.0116
0.00505
5.50
6.27
2378-TCDD "
Toricity
Equivalency
Factor
1.000
0.500
0.100
0.100
0.100
0.010
0.001
Total PCDDs TEQ
0.100
0.050
0.500
0.100
0.100
0.100
0.100
0.010
0.010
0.001
Total PCDFs TEQ
Total TEQ
2378 TOXIC EQUIVALENCIES
(ng/dscm, adjusted to 7 percent Oj)
M23-I-1
{0.00591}
{0.00372}
{0.000436}
{0.000722}
0.000872
0.000176
0.0000195
{0.0119}
0.00652
0.00223
0.0273
0.00558
0.00212
0.00158
0.000439
0.000237
{0.0000250}
{0.00000335}
{0.0461}
{0.0579}
M23-0-1
0.00605
0.00227
0.000151
0.000252
0.000202
0.0000353
0.0000121
0.00898
0.00807
0.00219
0.0217
0.00237
0.000858
0.000555
0.000202
0.0000858
0.0000101
0.00000505
0.0361
0.0450
" Nanograms per dry Stanford cubic meter at 20°C and 1 atm and corrected to 7 percent oxygen.
b North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot study on Information
Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk
Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.
{ } Estimated Maximum Possible Concentration. EMPC values are included in totals.
2-6
-------
TABLE 2.5
HCL AND THC CONCENTRATIONS AND EMISSION RATES
VERTICAL KILN BAGHOUSE INLET AND STACK
CHEMICAL LIME COMPANY - MARBLE FALLS, TEXAS
Run No.
Date
Sampling Location
Total Sampling Time, minutes
O2 Concentration, % by Volume
Moisture, % by Volume
Volumetric Flow Rate, dscfin "
HC1:
Formula Weight, Ib/lb-mole
Concentration, ppmvw b
Concentration, ppmvd °
Concentration, ppmvd @ 7%O2 d
Emission Rate, Ib/hr e
THC (as propane):
Formula Weight, Ib/lb-mole
Concentration, ppmvw b
Concentration, ppmvd c
Concentration, ppmvd @ 7%O2 d
Emission Rate, Ib/hr e
M322-I-1
06/25/98
Inlet
76
9.8
10.0
33,300
36.47
22.7
25.2
31.6
4.77
44.11
17.8
19.8
24.8
4.52
M322-O-1
06/25/98
Stack
95
13.6
9.9
35,400
36.47
15.8
17.5
33.4
3.53
44.11
10.2
11.3
21.6
2.76
Dry standard cubic feet per minute at 68° F (20° C) and 1 atm.
Parts per million by volume wet basis.
Parts per million by volume dry basis.
Parts per million by volume dry basis corrected to 7% oxygen.
Pounds per hour.
2-7
-------
3.0 PROCESS DESCRIPTION
The process description is considered confidential business information (CBI) and is not
discussed in this report. During the testing, however, an ESD contractor, Research Triangle
Institute, monitored and recorded process operational data which will be supplied to EPA EMC
under a separate EPA contract.
3-1
-------
4.0 SAMPLING LOCATIONS
As stated previously, source sampling was conducted to determine uncontrolled and
controlled emissions of HCI, PCDDs/PCDFs, and THC from the vertical kiln located at Chemical
Lime Company's Marble Falls, Texas facility. Testing was conducted at the inlet of the baghouse
and at two locations on the baghouse outlet. Figure 4.1 presents a simplified process flow
schematic depicting the sampling locations. Descriptions of the sampling locations are presented
in the following text; additional figures showing details of the sampling locations are also
presented.
4.1 VERTICAL KILN BAGHOUSE INLET SAMPLING LOCATION
The baghouse inlet was a 47.5-inch inside diameter (ID) round duct which leads from the
kiln to baghouse. Due to geometric constraints, only one portion of the duct was accessible for
isokinetic sampling. The location used was previously occupied by an auxiliary air preheater
which was retired from service prior to the testing program. The air preheater interface was a
14-inch square duct which was joined to the baghouse inlet duct. A square plate with a 3-inch
sample port was fabricated and attached to the preheater duct; it was through this port that the
PCDDs/PCDFs sampling was conducted. Two additional ports were installed on the baghouse
inlet duct approximately fifteen inches downstream of the PCDDs/PCDFs sampling port, and it
was through these ports that CEM samples were extracted.
A schematic diagram of the inlet sampling location is presented in Figure 4.2. The nearest
upstream disturbance was a bend 1080 inches (22.7 equivalent duct diameters) from the sample
port. The nearest downstream disturbance was an elbow 128 inches (2.7 equivalent duct
diameters) downstream of the sample port. Method 1 specifies a 12 point sample matrix for this
test location. Due to space constraints at the sampling location, only one traverse axis was
available for isokinetic sampling. Therefore, with approval of the WAM, PES conducted
isokinetic testing for PCDDs/PCDFs using one sample port and a six point traverse on a single
traverse line. Figure 4.2 also shows the sample points within the duct that were used for
isokinetic testing.
A check for the presence of non-parallel or cyclonic flow, as outlined in Section 2.4 of
EPA Method 1, was performed prior to testing. The results of the cyclonic flow test indicated an
average yaw angle (a), of 6.8°. Since the average yaw angle was less than 20°, which is the
maximum allowed by Method 1, the location was considered suitable for isokinetic sampling and
required no adjustment to the alignment of the nozzle direction.
4-1
-------
4.2 VERTICAL KILN BAGHOUSE OUTLET SAMPLING LOCATIONS
Sampling at the vertical kiln outlet was conducted at two locations. Isokinetic sampling
was conducted using existing sample ports located close to the stack exhaust. In order to
decrease the amount of heated sample line required for the CEMs testing, additional sample ports
were installed approximately 34 feet upstream of the PCDDs/PCDFs sampling ports.
4.2.1 PCDDS/PCDFS Sampling Location
The baghouse stack at the top of the kiln is a 47.84-inch average ID round stack (47.1875
inches on the A axis and 48.5 inches on the B axis) which exhausts emissions to the atmosphere.
An induced draft fan located at ground level pulls kiln exhaust gases through the baghouse; the
gases are transported through approximately 200 feet of ductwork prior to release. A sampling
platform located at the top of the kiln provided access to the sample ports. A schematic diagram
of the sample ports and sample point locations is presented in Figure 4.3. The nearest
downstream disturbance was the opening to the atmosphere which was 209 inches (4.4 equivalent
duct diameters) from the sample ports. The nearest upstream disturbance was a 45° bend located
128 inches (2.7 equivalent duct diameters) upstream of the sample ports. PES conducted
isokinetic testing for PCDDs/PCDFs using a 24 point traverse matrix consisting of 12 traverse
points on each of two perpendicular traverse lines.
A check for the presence of non-parallel or cyclonic flow, as outlined in Section 2.4 of
EPA Method 1, was performed prior to testing. The results of the cyclonic flow test indicated an
average yaw angle (a), of 7.3°. Since the average yaw angle was less than 20°, which is the
maximum allowed by Method 1, the location was considered suitable for isokinetic sampling and
required no adjustment to the alignment of the nozzle direction.
4.2.2 CEM Sampling Location
The CEM sampling location was located approximately 34 feet upstream of the outlet
isokinetic sampling ports. Two ports were installed at this location to facilitate the extraction of
samples for analysis of O2, CO2, THC, and HC1 using CEMs. The nearest disturbances were
bends in the duct, located approximately 8 feet downstream and 25 feet upstream from the
location of the ports.
4-2
-------
Combustion Air
Fan
Combustion Air
Fan
Combustion Air
Fan
Combustion Air
Fan
Combustion Air
Fan
Atmosphere
t
Stack
Fan
Baghouse
Baghouse Stack
Sampling Location
Double Shaft Vertical Kiln
t
t
Baghouse Inlet
Sampling Location
Cooling Air Fan
Cooling Air Fan
Cooling Air Fan
Figure 4.1 Vertical Kiln Process Exhaust Gas Schematic, Chemical Lime
Company - Marble Falls, Texas
4-3
-------
Cross Sectional View
From Vertical
Kiln ~
1080"
128"
=0
47.5 "
Traverse Points
(Distance from Inside Wall, in.)
1
2
3
4
5
6
2 1/8
67/8
14
33 1/2
40 5/8
45 3/8
To Baghouse
Figure 4.2 Vertical Kiln Baghouse Inlet Sample Port and Sample Point Locations,
Chemical Lime Company - Marble Falls, Texas
4-4
-------
Cross Sectional View
48.5"
47.1875"
P PortB
Port A
Traverse Points
(Distance from Inside Wall, in.)
1
2
3
4
5
6
7
8
9
10
11
12
PORT A
1
3 1/8
5 5/8
8 3/8
11 3/4
163/4
303/8
353/8
387/8
41 5/8
44
46 1/4
PORTB
1
3 1/4
5 3/4
8 5/8
121/8
171/4
31 1/4
36 3/8
397/8
42 3/4
45 1/4
47 1/2
209"
128"
From
Fan
Figure 4.3 Vertical Kiln Baghouse Outlet Sample Ports and Sample Point Locations for
Isokinetic Testing, Chemical Lime Company - Marble Falls, Texas
4-5
-------
5.0 SAMPLING AND ANALYSIS PROCEDURES
Source sampling was performed at the baghouse inlet and baghouse stack to determine the
concentrations and mass emission rates of PCDDs/PCDFs, THC, and HC1. One test run was
performed at each location, with each run having a net sampling time of three hours. The
sampling and analytical methods that were used are summarized in Table 5.1. In Table 5.2, the
parameters measured, the sampling method, the number of tests performed, and the duration of
each test are summarized. Brief descriptions of the sampling and analysis procedures used are
presented below. Copies of all the methods that were used are presented in Appendix G.
5.1 LOCATION OF MEASUREMENT SITES AND SAMPLE/VELOCITY
TRAVERSE POINTS
EPA Method 1, "Sample and Velocity Traverses for Stationary Sources," was used to
establish velocity and sample traverse point locations. The process ductwork and the locations of
measurement sites and traverse points, are discussed in Section 4.0 of this document.
5.2 DETERMINATION OF EXHAUST GAS VOLUMETRIC FLOW RATE
EPA Method 2, "Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S
Pitot Tube)," was used in conjunction with EPA Method 23 to determine exhaust gas velocity. A
Type S Pitot tube, constructed according to Method 2 criteria and having an assigned coefficient
of 0.84, was connected to an inclined-vertical manometer. The pitot tube was inserted into the
duct and the velocity pressure (Ap) was recorded at each traverse point. The effluent gas
temperature was also recorded at each traverse point using a Type K thermocouple. The average
exhaust gas velocity was calculated from the average square roots of the velocity pressure,
average exhaust gas temperature, exhaust gas molecular weight, and absolute stack pressure. The
volumetric flow rate is the product of velocity and the stack cross-sectional area of the duct at the
sampling location.
5.3 DETERMINATION OF EXHAUST GAS MOISTURE CONTENT
EPA Method 4, "Determination of Moisture Content in Stack Gases," was used to
determine the exhaust gas moisture content. EPA Method 4 was performed in conjunction with
each EPA Method 23 test run. Integrated, multi-point, isokinetic sampling was performed.
Condensed moisture was determined by recording pre-test and post-test weights of the impingers,
XAD® sorbent module, and silica gel.
5-1
-------
TABLE 5.1
SUMMARY OF SAMPLING AND ANALYSIS METHODS,
CHEMICAL LIME COMPANY - MARBLE FALLS, TEXAS
Sampling Method
Parameter or Target
Measurement Principle
EPA Method 1
EPA Method 2
EPA Method 3 A
EPA Method 4
EPA Method 23 (Proposed
Revisions)
EPA Method 25A
EPA Proposed Method 322
Traverse Point Locations
Velocity and Flow Rate
CO, and O, Content
Moisture Content
PCDDs/PCDFs
THC
HC1
Linear Measurement
Differential Pressure,
Thermocouple
Micro-Fuel Cell, FINOR
Gravimetric
Gas Chromatography / Mass
Spectrometry (GC/MS)
Flame lonization Detector
Gas Filter Correlation /
Infrared (GFC/IR)
5-2
-------
TABLE 5.2
SUMMARY OF SAMPLING LOCATIONS, TEST PARAMETERS,
SAMPLING METHODS, AND NUMBER AND DURATION OF TESTS,
CHEMICAL LIME COMPANY - MARBLE FALLS, TEXAS
Sampling
Location
Baghouse
Inlet
Baghouse
Stack
Test Parameter
Exhaust Gas Flow Rate
CO2 & O2 Content
Moisture Content
PCDDs/PCDFs
THC
HC1
Exhaust Gas Flow Rate
CO2 & O2 Content
Moisture Content
PCDDs/PCDFs
THC
HC1
Sampling Methods
EPA Method 2
EPA Method 3 A
EPA Method 4
EPA Method 23 (Proposed
Revisions)
EPA Method 25A
EPA Proposed Method 322
EPA Method 2
EPA Method 3 A
EPA Method 4
EPA Method 23 (Proposed
Revisions)
EPA Method 25 A
EPA Proposed Method 322
Number
of Tests
1
1
1
1
1
1
1
1
1
1
1
1
Duration,
(minutes)
180
76
180
180
76
76
180
95
180
180
95
95
5-3
-------
5.4 DETERMINATION OF PCDDs/PCDFs
EPA Method 23, "Determination of Polychlorinated Dibenzo-P-Dioxins and
Polychlorinated Dibenzofurans from Stationary Sources," was used to collect dioxins and furans
at each location. In addition, the proposed rules amending Method 23 as published in the Federal
Register, Volume 60, No. 104, May 31, 1995 were employed. These proposed rules correct
existing errors in the method, eliminate the methylene chloride rinse, and clarify the quality
assurance requirements of the method. A multi-point integrated sample was extracted
isokinetically from the six (at the baghouse inlet) or 24 (at the baghouse stack) traverse points
shown in Section 4.0. At each traverse point, sampling was performed for 15 (at the baghouse
inlet, with each point traversed twice), or 7.5 (at the baghouse stack) minutes for a total run time
of 180 minutes per test. The EPA Method 23 samples were extracted through a glass nozzle, a
heated glass-lined probe, a precleaned and heated glass fiber filter, a water-cooled condenser coil,
and a sorbent trap containing approximately 40 g of XAD®-2 sorbent resin. The EPA Method 23
sampling train is shown in Figure 5.1.
The samples were extracted and analyzed according to EPA Method 23 and the above
mentioned proposed rules amendment. The sample components (filter, XAD®, and rinses) were
Soxhlet extracted and combined. The sample was then split with half being archived and the other
half analyzed. For the inlet sample analysis, an additional separate "loose" particulate fraction
was also Soxhlet extracted and analyzed; results of the two inlet analyses were added to get a
single inlet catch weight. Refer to Appendix B for a tabulation of the inlet sample catches.
Analysis was performed on a high resolution Gas Chromatograph with a high resolution Mass
Spectrometer (GC/MS) detector.
5.5 DETERMINATION OF HYDROGEN CHLORIDE
EPA Proposed Method 322, "Measurement of Hydrogen Chloride Emissions from
Portland Cement Kilns by GFGTR," was used to monitor HC1 emissions at each location. Stack
gas samples were extracted from each duct or stack and transported through a heated sample
probe, sample conditioning system, heated sample line, and a heated sample pump into the
analyzer containing the gas filter correlation infrared spectrometer (GFC/IR). Sampling
components were maintained at a minimum temperature of 375 °F. A heated three-way valve was
attached to the probe assembly to allow for sampling of stack gas or for the introduction of HC1
calibration standards.
HC1 in the sample cell attenuates an infrared light source. The intensity of the attenuated
beam is measured by a detector positioned at the end of the cell. The amount of HC1 in the
sample gas stream is related to the amount of light attenuated. A schematic of this system is
presented in Figure 5.2.
5-4
-------
Temperature
Condenser
Button Hook
Nozzle
Gas
Exit
Stack
Wall
Temperature
Sensor
Adsorbent Resin Trap
Empty 100 ml HPLC Water Empty Silica Gel
Vacuum
Line
Inclined
Manometer
Vacuum
Pump
Figure 5.1 Sampling Train Schematic for EPA Method 23
-------
Heated Probe Three-way
(mln. 37«*F) Heated Fitter Box I
PM-10
Cyclon
Sample UM HMtad 8ampl«/C«Ubr«tlon Urn
In-SHu MUttta
ThrM-way Spiking Nm
v«lv«
P»rkln-Elm«r
Uleroproe*«tor
DDDD DDDDD
GM Filter Correlation
Infrared Analyzer
Infrared
Detector
Figure 5.2 Sampling Train Schematic for Proposed EPA Method 322
5-6
-------
5.6 DETERMINATION OF CARBON DIOXIDE, OXYGEN, AND
TOTAL HYDROCARBONS
Continuous emission monitoring (CEM) was performed at the baghouse inlet and stack.
All CEM data was recorded using a Tracor/Westronics 3000 automatic digital data logger. The
CEMs were housed in the APCC Envkonmental Monitoring Laboratory positioned at the base of
the stack. Stack gas was drawn from the stack through a heated Teflon® sample line which is
maintained at a temperature of approximately 375°F. A portion of the extracted sample was
conditioned to remove moisture and directed to the O2 and CO2 analyzers to determine diluent
concentrations on a dry basis. The remaining portion of the stack gas sample was directed to the
THC analyzer. Figure 5.3 shows a schematic of the sampling system.
5.6.1 Carbon Dioxide and Oxygen
EPA Method 3 A, "Determination of Oxygen and Carbon Dioxide Concentrations in
Emissions from Stationary Sources," was used to determine the O2 and CO2 concentrations at the
inlet and outlet test locations.
A Westinghouse/Maihak FINOR CO2 analyzer was used to monitor CO2 concentrations.
The measurement principle for CO2 is IR absorption. Radiation absorbed by CO2 in the sample
cell produces a capacitance change in the detector which is proportional to the CO2 concentration.
A Teledyne Analytical Instruments Model 326 O2 analyzer was utilized to measure the
percentage concentration of 02 in the gas stream. The analyzer utilizes a unique micro-fuel cell to
measure the concentration of O2. The output signal is linear over the specified ranges of analysis.
5.6.2 Total Hydrocarbons
EPA Method 25 A, "Determination of Total Gaseous Organic Concentration using a Flame
lonization Analyzer," was used to determine the THC concentrations at both test locations. A
VIG Industries THC analyzer (or equivalent), which utilizes a flame ionization detector (FED) to
measure THC, was calibrated with propane. Approximately 5.0 liters per minute (1pm) of sample
gas is drawn from the source through a heated Teflon® sample line. The sample gas is drawn
through a heated filter and valves by a heated pump. The sample gas is introduced into the FID
chamber and THCs in the sample are ionized by a hydrogen flame. The flame is positioned
between two charged plates, and the associated electric field induces the migration of the ions
towards the charged plates. The ion migration results in the generation of a current, which is
directly proportional to the amount of THCs present in the sample.
5-7
-------
Stack
Wall
Heated Filter
Sample By-Pass
Vent
oo
By-Pass Flow
Control Valve
Figure 5.3 Sampling Train Schematic for EPA Methods 3A and 25A
-------
5.7 CEMs DATA ACQUISITION AND HANDLING
Analyzer responses were recorded by a Tracor/Westronics 3000 digital data logger which
recorded the O2, C02, HC1 and THC concentrations using its integral color printer. Trends were
monitored using the strip chart mode with averages printed digitally at 19 minute intervals and at
the conclusion of the test period. Analyzer responses were recorded by the data logger at 5
second intervals.
5-9
-------
6.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)
PROCEDURES AND RESULTS
For any environmental measurement, a degree of uncertainty exists in the data generated
due to the inherent limitations of the measurement system employed. The goals of a QA/QC
program are to ensure, to the highest degree possible, the accuracy of the data collected. This
section summarizes the QA/QC procedures that were employed by PES in the performance of this
test program. The procedures contained in the reference test methods and in the "Quality
Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source
Specific Methods," EPA/600/R-94/038c, served as the basis for performance for all testing and
related work activities in this project.
6.1 CALIBRATION AND PREPARATION OF APPARATUS
The preparation and calibration of source sampling equipment is essential in maintaining
data quality. Brief descriptions of the calibration procedures used by PES are presented below.
The results of equipment and sensor calibrations may be found in Appendix E. Detailed
procedures as presented in the EPA test methods are presented in Appendix G.
6.1.1 Barometers
PES used aneroid barometers which were calibrated against a barometric pressure value
reported by a nearby National Weather Service station.
6.1.2 Temperature Sensors
Bimetallic dial thermometers and Type K thermocouples were calibrated using the
procedure described in Calibration Procedure 2e of EPA/600/R-94/038c. Each temperature
sensor was calibrated over the expected range of use against an ASTM 3C or 3F thermometer.
Table 6.1 summarizes the type of calibrations performed, the acceptable levels of variance, and
the results. Digital thermocouple displays were calibrated using a thermocouple simulator having
arangeofO-2400°F.
6.1.3 Pitot Tubes
PES used Type S pitot tubes constructed according to EPA Method 2 specifications.
Each pitot tube was inspected for conformance to the geometric specifications by the application
of Calibration Procedure 2 of EPA/600/R-94/038c. Pitot tubes that meet these
6-1
-------
TABLE 6.1
SUMMARY OF TEMPERATURE SENSOR CALIBRATION DATA
Temp.
Sensor
I.D.
T5A
T6F
MB-10
RMB-15
Usage
Stack Gas
Stack Gas
Meter Box
Inlet
Outlet
Meter Box
Inlet
Outlet
Temperature, °R
Reference
532
504
664
860
534
494
632
809
493
536
666
492
536
666
493
534
668
493
534
668
Sensor
532
504
664
860
534
493
632
810
494
536
665
494
537
665
495
534
670
493
535
668
Temperature
Difference
0.0%
0.0%
0.0%
0.0%
0.0%
-0.20%
0.0%
0.12%
0.20%
0.0%
-0.15%
0.40%
0.19%
-0.15%
0.40%
0.0%
0.30%
0.00%
0.19%
0.00%
Tolerances
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
6-2
-------
requirements are assigned a pitot coefficient, Cp, of 0.84. The dimensional criteria and results for
each pitot tube used are presented in Table 6.2.
6.1.4 Differential Pressure Gauges
PES used Dwyer inclined/vertical manometers to measure differential pressures. The
differential pressure measurements included velocity pressure, static pressure, and meter orifice
pressure. Manometers were selected with sufficient sensitivity to accurately measure pressures
over the entire range of expected values. Manometers are primary standards and require no
calibration.
6.1.5 EPA Method 23 Pry Gas Meters and Orifices
The EPA Method 23 dry gas meters and orifices were calibrated in accordance with
Sections 5.3.1 and 5.3.2 of EPA Method 5. This procedure involves direct comparison of the
metered volume passed through the dry gas meter to a reference dry test meter. The reference
dry test meter is calibrated annually using a wet test meter. Before its initial use in the field and
annually thereafter, the metering system is calibrated over the entire range of operation as
specified in EPA Method 5. Acceptable tolerances for the individual dry gas meter correction
factor (y) and orifice calibration factor (AH@) during initial or annual calibrations are ± 0.02 and
± 0.20 from the average, respectively. After field use, a calibration check of the metering system
was performed at a single intermediate setting based on the previous field test. The post-test
calibration check of the dry gas meter correction factor must agree within 5% of the correction
factor generated during the initial or annual calibration. The results for the gas meters and orifices
used in this test program are summarized in Table 6.3.
6.2 REAGENTS AND GLASSWARE PREPARATION
Sample reagents consisted of pesticide (or better) grade acetone and toluene for glassware
preparation and sample recoveries, and pesticide (or better) grade hexane for glassware
preparation. Sample filters and the XAD®-2 sorbent resin traps were prepared by PAL according
to the procedures outlined in Method 23. Water used in the impinger trains was HPLC-grade
reagent water.
After preparation of the XAD®-2 sorbent resin traps by PAL, each trap was spiked with a
mixture of PCDDs/PCDFs surrogates, and capped with glass balls and sockets until used in the
field.
Prior to the field testing portion of the program, all sampling train components and sample
recovery apparatus were prepared according to the following procedure.
1. Wash in hot soapy water (Alconox®).
2. Rinse three times with tap water.
3. Rinse three times with distilled/deionized water.
6-3
-------
TABLE 6.2
SUMMARY OF PITOT TUBE DIMENSIONAL DATA
Measurement
«,
02
Pi
P2
Y
e
A
z
w
Dt
(A/2)/Dt
Criteria
<10°
<10°
<5°
<5°
-
-
-
< 0.125"
< 0.0313"
0.1875" £ Dts
0.375"
1.05 < (A/2)/D,s
1.50
Acceptable
Assigned Coefficient
Results
Pitot Tube Identification
5H
0.7
1.6
4
3.3
0.6
0.4
0.956
0.010
0.0067
0.375
1.27
Yes
0.84
6A
1
0.2
0.2
0.8
2.2
1.1
1.006
0.039
0.019
0.375
1.34
Yes
0.84
TABLE 6.3
SUMMARY OF DRY GAS METER AND ORIFICE CALIBRATION DATA
Meter
No.
MB-10
RMB-15
Dry Gas Meter Correction Factor, y
Pre-test
1.021
1.000
Post-test
1.020
0.995
% Diff.
-0.2
-0.5
EPA Criteria
±5%
±5%
Orifice Coefficient, AH@
Average
1.92
1.90
Range
1.73 - 2.44
1.86 - 1.92
EPA Criteria
1.72-2.12
1.70-2.10
6-4
-------
4. Rinse with pesticide-grade acetone.
5. Rinse with pesticide-grade-toluene.
6. Rinse with pesticide-grade hexane.
7. Allow to air dry.
8. Cap all openings with hexane-rinsed aluminum foil.
6.3 ON-SITE SAMPLING
The on-site QA/QC activities included:
6.3.1 Measurement Sites
Prior to sampling, the stack and inlet duct were checked dimensionally to determine
measurement site locations, location of velocity and sample test ports, inside stack/duct
dimensions, and sample traverse point locations. Inside stack/duct dimensions were checked
through both traverse axes to confirm uniformity of the stack/duct inside diameter. The baghouse
outlet stack was found to be out-of-round; therefore, two sets of sample traverse points were
calculated. The inside stack/duct dimensions, wall thickness, and sample port depths were
measured to the nearest 1/16 inch.
6.3.2 Velocity Measurements
All velocity measurement apparatus were assembled, leveled, zeroed, and leak-checked
prior to use and at the end of each determination. The static pressure was determined at a single
point near the center of the stack or duct cross-section.
6.3.3 Moisture
The Method 23 trains were used to determine stack gas moisture. During sampling, the
exit gas of the last impinger was maintained below 68°F to ensure adequate condensation of the
exhaust gas water vapor. The total moisture was determined on-site gravimetrically using an
electronic platform balance with 0.1 gram sensitivity. The amount of moisture collected by the
XAD® trap was also measured.
6.3.4 EPA Method 23
The field sampling QA/QC for EPA Method 23 began in the sample recovery area. The
sample trains were set up and leak-checked to verify sample train integrity before transport to the
sampling sites. At the sampling sites, the sample trains were leak checked a second time. Leaks
found in excess of 0.02 cubic feet per minute (cfin) were corrected prior to beginning the test
runs. Leak checks were also conducted before and after any sample train component changes,
between sample ports, and upon completion of the test runs. Sampling was conducted within the
isokinetic sampling criteria of 100 ± 10%. Table 6.4 summarizes the EPA Method 23 field
sampling QA/QC measurements and EPA's acceptability criteria.
6-5
-------
In addition to the inlet and outlet samples, one field blank sample was collected. A
Method 23 sampling train was assembled and transported to the outlet sampling location, and
leak-checked twice. The sample train was then recovered using the same procedures employed
during the recovery of the sample trains used during actual sample runs. The collected fractions
were transferred to labeled, pre-cleaned sample bottles, transported to the subcontract laboratory,
and analyzed in the same manner as the collected samples.
PES also collected samples of the reagents that were used during the program as blanks.
Samples were collected of the acetone and toluene; an unused filter and XAD*-2 sorbent module
were also collected. These reagent blank samples were transported to the subcontract laboratory
and analyzed for PCDDs/PCDFs using the same procedures as during the analysis of the collected
samples.
6.3.5 Continuous Emission Monitors
CEMs were used to quantify the in-stack concentrations of O2, CO2, THC, and HC1 using
EPA Methods 3 A, 25A and Proposed Method 322, respectively. QA/QC checks performed
included direct calibrations, bias checks, and drift checks; matrix spikes were also performed on
the Method 322 HC1 CEMs sampling system. Table 6.5 summarizes the compressed gas
standards that were used during the test program.
6.3.5.1 EPA Method 3A
Prior to the start of each day of testing, the 02 and CO2 analyzers were calibrated with a
zero gas standard and two upscale standards corresponding to approximately 55 and 85% of the
instrument measurement ranges. The calibration error of the analyzers on direct calibration was
less than or equal to 2% of span. The sampling line bias was then checked with the zero gas and
one upscale gas for each analyzer. The sampling line bias was less than or equal to 5% of the
response of the analyzer to the calibration standard when injected directly into the analyzer. At
the conclusion of the sampling run, the sampling system was again checked by introducing the
zero and upscale standard into the system at the probe end. The sampling system drift was less
than 3% of the instrument span for both the zero and upscale calibration gases. The true
concentration of the gases measured was then calculated from the average instrument response
and the results of the calibration responses using Equation 6C-1 as found in Method 6C, which is
the procedure specified in Method 3 A. The gases used for calibrations were certified by the
manufacturer, and prepared according to the procedures in "EPA Traceability Protocol for Assay
and Certification of Gaseous Calibration Standards (September 1993)." Results of the above
mentioned QC checks are tabulated in Appendix E.
6.3.5.2 EPA Method 25A
Prior to the start of each day of testing, the THC sampling system was calibrated with a
zero gas standard and three upscale propane standards corresponding to approximately 25, 50,
and 85% of the instrument measurement range. The calibration errors of the THC system
6-6
-------
TABLE 6.4
SUMMARY OF EPA METHOD 23 FIELD SAMPLING QA/QC DATA
Run No.
Site
Date
Pre-Test Leak Rate, acfin
Post-Test Leak Rate, acfin
EPA Criteria, acftn
Percent Isokinetic
EPA Criteria
M23-I-1
Vertical Kiln
Baghouse Inlet
06/25/98
0.001 @ 15" Hg
0.001 @ 15" Hg
0.02
102.2
90-110%
M23-O-1
Vertical Kiln
Baghouse Stack
06/25/98
0.004 @ 15" Hg
0.004 @10"Hg
0.02
101.6
90-110%
TABLE 6.5
SUMMARY OF CALIBRATION GAS CYLINDERS
Cylinder Number
CC88470
1836637Y
AAL-13302
SG9128557BAL
SG9128479BAL
CC84329
CC84329
CC86922
CC86922
Contents
46.0 ppm HC1 in nitrogen
303.0 ppm HC1 in nitrogen
30.0 ppm C3Hg in air
58.3 ppm C3Hg in air
92.4 ppm C3Hg in air
11.03%CO2inN2/02/C02
11.04%O2inN2/O2/CO2
19.01 %CO2 in N2/O2/CO2
19.17%O2inN2/O2/CO2
Expiration Date
Certified on 6/1 2/98
Certified on 6/12/98
5/01/01
9/27/99
2/18/01
3/02/01
3/02/01
3/02/01
3/02/01
6-7
-------
were less than 5% of the instrument operating range. At the conclusion of the sampling run, the
sampling system was again checked by introducing the zero and one upscale standard into the
system at the probe. The sampling system drift was less than 3% of the instrument span for both
the zero and upscale calibration gases. The THC results are reported as the average of the
instrument responses over the period of the sampling run. The gases used for calibration were
certified by the manufacturer, and prepared according to the procedures in "EPA Traceability
Protocol for Assay and Certification of Gaseous Calibration Standards (September 1993)."
Results of the above mentioned QC checks are tabulated in Appendix E.
6.3.5.3 Proposed Method 322
Prior to the start of each day of testing, the HC1 analyzer was calibrated with a zero gas
standard and two upscale standards corresponding to approximately 25 and 85% of the
instrument measurement ranges. The calibration error of the analyzers on direct calibration was
less than or equal to 5% of span or 1 ppm, whichever was greater. The sampling line bias was
then checked with the zero gas and one upscale gas. The sampling line bias was less than or equal
to 7.5% (or 1.5 ppm, whichever was greater) of the response of the analyzer to the calibration
standard when injected directly into the analyzer. Results of the above mentioned QC checks are
tabulated in Appendix E.
Following the direct calibration and bias checks, a matrix spike for HC1 was conducted so
that the integrity of the sampling and analysis system for HC1 could be ascertained. The flue gas
was sampled to determine the baseline concentration of the HC1, and after the baseline
concentration was established, a known quantity of HC1 was injected into the sampling system.
The analyzer response must report the concentration of the HC1 in the effluent stream plus the
contribution of the HC1 from the matrix spike injection. The allowable tolerance for the matrix
spike is ± 30% from the predicted value. During the matrix spike procedures conducted on the
sampling system at Chemical Lime Company, the matrix spikes were within the ± 30% tolerance.
The results of the matrix spikes are presented in Table 6.6 and Appendix E.
TABLE 6.6
SUMMARY OF METHOD 322 HC1IN-SITU SPIKING DATA
Test
Location
Inlet
Stack
HC1 Spike Recovery Efficiencies, %
Pre-test
109
106
Post-test
122
106
Average
116
106
EPA
Criteria
70-130
70-130
6-8
-------
6.4 LABORATORY ANALYTICAL QA/QC PROCEDURES
6.4.1 Analysis of Blank Samples
The Method 23 blank samples were analyzed following the procedures of EPA
Method 23. Field blanks (FB), reagent blanks (RB), and laboratory blanks were used to evaluate
the effectiveness of the sample train clean-up procedures and to check for contamination of the
reagent materials. In addition, the subcontract laboratory conducted the Laboratory Method
Blank (LMB) to evaluate the presence of contamination of the samples during analysis. The
results of these blank analyses and the actual run sample catches are presented in Table 6.7.
6.4.2 Standards Recovery Efficiencies
Prior to shipment of the XAD®-2 sorbent modules by PAL, each module was spiked with
a mixture of surrogate (sampling) standards. The modules were then sent to Marble Falls, Texas,
via Federal Express for use in the sampling program. Upon analysis, the recoveries of the
surrogate standards provide a measure of the capture and holding efficiency of the XAD®-2
sorbent traps for the sampled PCDDs/PCDFs. A low recovery efficiency may indicate the loss of
PCDDs/PCDFs congeners from the XAD®-2 sorbent module after its recovery from the sampling
train. A special "cleanup" standard was added to the separate particulate sample fraction of the
inlet Method 23 sample train sample (recovered separately due to the excessively large amount of
the particulate). The recovery efficiency of these standards are presented in lieu of the non-
existent surrogate standard recoveries. Table 6.8 presents the results of the surrogate and
"cleanup" standards recoveries.
Four of the five M23-I-1 sampling standards were below 70%; the laboratory case
narrative states "No simple explanation can be offered for this observation." The sampling
standards are an indication of the efficiency of the sample recovery effort. When the sampling
standards are less than 100%, the sample catches may be under-reported. Since the samples in
question are from the inlet location, the removal efficiency of the baghouse would be biased high.
The inlet concentration may be biassed low by 25 to 67%; note that Method 23 accepts a low bias
of 30%.
Upon receipt of the XAD®-2 sorbent modules by the laboratory after sampling, the
XAD®-2 sorbent resin modules are spiked with a mixture of internal (extraction) standards. The
purpose of these standards is to evaluate the efficiency of the extraction of the PCDDs/PCDFs
congeners from the sample fractions. The results of these recoveries are presented in Table 6.8.
6-9
-------
TABLE 6.7
SUMMARY OF EPA METHOD 23 BLANKS AND SAMPLE CATCHES
PAL Lab Report Page
Numbers in Appendix B
Analvte
2378-TCDD
12378-PeCDD
123478-HxCDD
123678-HxCDD
123789-HxCDD
1234678-HpCDD
OCDD
2378-TCDF b
12378-PeCDF
23478-PeCDF
123478-HxCDF
123678-HxCDF
234678-HxCDF
123789-HxCDF
1234678-HpCDF
1234789-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fs c
Catch, ng Per Sample
PAL
LMB
003 / 025
{0.00094}
{0.00052}
(0.0007)
(0.0006)
(0.0006)
0.0032
0.0093
{0.00104}
(0.0004)
(0.0004)
{0.00112}
0.0006
(0.0003)
(0.0004)
0.0027
(0.0007)
0.0021
{0.0009}
{0.0004}
{0.0016}
0.0032
0.0012
(0.0004)
0.0004
0.0028
0.019
M23-
RB-1
003/112
0.0011
(0.0004)
(0.0006)
{0.00096}
0.0014
0.0031
0.0096
(0.0006)
(0.0004)
(0.0004)
0.0008
(0.0003)
(0.0003)
(0.0004)
0.0030
(0.0006)
0.0028
0.0011
(0.0004)
0.0024
0.0032
(0.0006)
(0.0004)
0.0008
0.0032
0.023
M23-
FB-1
003 / 093
{0.00095}
(0.0003)
(0.0005)
{0.00092}
{0.00088}
0.0045
0.0162
0.0030
(0.0005)
(0.0004)
0.0014
{0.00044}
(0.0002)
(0.0003)
0.0071
(0.0008)
0.0059
0.0016
0.0016
0.0040
0.0080
0.0108
{0.0016}
0.0024
0.0072
0.058
M23-I-
1 + FH"
0 / 043 /
129
{0.0171}
{0.0215}
{0.0126}
{0.0209}
0.0252
0.0509
0.0564
0.1884
0.1288
0.158
0.1613
0.0612
0.0457
0.0127
0.0684
{0.00722}
{0.00968}
1.3562
0.5514
0.5264
0.0964
10.3236
2.7118
0.5676
0.0860
16.3
M23-
O-l
068
0.0124
0.0087
0.0027
0.0049
0.0043
0.0073
0.0243
0.160
0.0874
0.0864
0.0474
0.0171
0.0114
0.0037
0.0170
0.0016
0.0103
1.102
0.264
0.116
0.0132
9.12
1.59
0.166
0.0228
12.4
a Result obtained by summing the two inlet sample fractions analyzed.
b Result obtained from the DB-225 analysis.
0 Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dibenzofurans.
() Denotes a non-detect value using the detection limit.
{ } Denotes an EMPC value.
6-10
-------
TABLE 6.8
SUMMARY OF EPA METHOD 23 STANDARDS RECOVERY EFFICIENCIES
FULL SCREEN ANALYSIS
PAL Lab Report Page Number
Internal (Extraction) Standards
2378-TCDD
12378-PeCDD
123678-HxCDD
1234678-HpCDD
OCDD
2378-TCDF
12378-PeCDF
123678-HxCDF
1234678-HpCDF
Surrogate (Sampling) Standards
2378-TCDD
23478-PeCDF
123478-HxCDD
123478-HxCDF
1234789-HpCDF
Percent Recoven
PAL
LMB
026
94.6
101.9
96.3
91.8
86.2
91.4
88.1
100.8
74.5
104.4
109.4
103.0
95.8
97.7
M23-
1-1
044
94.8
108.8
88.6
93.7
84.0
95.4
95.9
80.6
78.8
69.2
61.0
75.3
56.2
33.2
M23-
I-1FH
130
74.4
83.9
76.8
78.3
66.5
69.2
63.3
61.2
53.5
100.2 a
107.0 a
110.73
103.7 a
109.1 a
M23-
O-l
069
97.4
113.1
93.8
102.1
92.4
98.6
101.2
94.2
82.9
95.3
98.5
109.6
96.3
92.0
M23-
FB-1
094
87.4
100.9
94.6
95.6
87.1
88.2
87.1
94.8
75.2
94.4
97.8
90.2
79.6
77.8
M23-
RB-1
113
86.4
94.1
87.4
92.3
83.6
87.7
81.5
91.8
73.7
96.4
98.2
110.1
88.2
81.6
QC
Limits
40-130%
40-130%
40-130%
40-130%
40-130%
40-130%
25-130%
25-130%
25-130%
70-130%
70-130%
70-130%
70-130%
70-130%
The "Surrogate" recoveries presented for Sample "M23-I-1 FH" are actually recoveries for the "cleanup"
standards which were added to the separate paniculate phase of the inlet sample only.
6-11
-------
APPENDIX A
RAW FIELD DATA
-------
Appendix A. 1
Raw Field Data
Vertical Kiln Baghouse Inlet
-------
TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS-^
Plant.
Date:
Sampling Location:.
1*1 el
Inside of Far Wall to Outside of Nipple: * ? Vlf
Inside of Near Wall to Outside of Nipple (Nipple Length):.
Stack I.D.:
Dbtance Downstream from Flow Disturbance (Dbtance B):
inches / Stack I.D. -
c
Dbtance Upstream from Ftew Disturbance (Distance A):
12? inches / Stack I.D. « _£
Calculated By:_
dd
Schematic of
Sampling Location
Traverse
Point
Number
/
2
3
4
5"
fr
Fraction
of
Length
O.PW
0.1W
O.llb
fi^oi
o.zsi
0.1M
Length
Onches)
H7,5
Product of
Columns 2&3
(To nearest 1/8")
2.01
£.?35
(1.'(,
*3.vy
4^ 5^^
•if.il
**
b7'*
'•/
33 >t
^•^
v*il
Nipple
Length
(inches)
10.1$
\
}
Traverse Point
Location
(Sum of Col. 4 & 5)
/a.^ 'Z-^
/7.^5 /7-fg
^y.^/ ^i34
4*/,/^ 4f tytt
j/.s/5 s-/ H
Zt.lt, S6, Vo
-------
Duct Diameters Upstream From Row Disturbance* (Distance A)
0.5 1.0 1.5 2.0 2.5
50
40
30
20
10
I
I
T
r
T
24
16
20
I
J_
I
16
Velocity (Non-Particulate) [ 12[
I
_L
I
I
12
8 ~"
I
I
2 3 4 56 7 8 9 10
Duct Diameters Downstream From Flow Disturbance* (Distance B)
• Rom Pbhrtof Any Typ« el DMutbwtM (Band, Expmton. Contracted. *to)
LOCATION OF TRAVERSE POINTS IN CIRCULAR DUCTS
(Fraction of Stack Diameter from Inside Wall to Traverse Point)
Traverse
Point
Number
on a
Diameter
1
2
3
4
5
6
7
8
9
10
11
12
Number of Traverse Points on a Diameter
4
0.067
0.250
0.750
0.933
•>
6
0.044
0.146
0.296
0.704
0.854
0.956
*
8
0.032
0.105
0.194
0.323
0.677
0.806
0.895
0.966
10
0.026
0.082
0.146
0.226
0.342
0.658
0.774
0.854
0.918
0.974
12
0.021
0.067
0.118^
0.177
0.250
0.356
0.644
0.750
0.823
0.882
0.933
0.979
-------
GAS VELOCITY .CYCLONIC, AND VOLUMETRIC FLOW RATE
Plant:
Sample Location: &a"*iyO'J*
Run No.: C».t.Wu. *\
Pbar, in. Hg: eS^ , ^
Moist, %: 3 q •*
Stack Dimension, in. Dia. 1 :
Wet Bulb. °F:
,0. Xfv\<£\ Clock Time: /«3C*P
JMI-X ^-«U»tcVC. Operators: ^S^Y^
Static Pressure, in. H2O: ~«^O
r.O <2.*A Pilot Tube, Cp: . gj*f
y?*Zt " Dia- 2: " — '
Dry Bulb. °F:
Traverse
Point
Number
ft 1
^
3
4
5
^
Velocity
Head, in.
H,O
. "*»cr>
/.GO
^t>fc>
->
-------
Plant!
GAS VELOCITY AND VOLUMETRIC FLOW RATE
Date:
Sampling Location:.
Clock Time:
Barometric Pressure.Tn. Hg: JS.^Q Static Pressure, in. H^O:
Moisture, %:_^_s_2o_ Molecular wt, Dry^.T'
Stack Dimension, in. Diameter or Side 1: ^ ~? £
Wet Buib.o* - Dry Bulb,°F:_iIZ
PitotTube,Cp:.
Side 2:.
A-Wx,
T
Point
Numbw
/ O '. O I
/o : o 3
. DC*
/o /-?
/. .2
/••id
^SF-
Stock
Twnp.
T«-
Md - (OaxXCOj) -I- (OJ2X%0^) + (O^axXNj)
Md-(044x ) + (OJ2X )4-(02BX
Md- CD
100
too
TS
V»-65.48 X(
w-
Q«-V«xA«xeo«/m
QB-
lxt
xeo
p. %H.O
Qi ..-Qtx 17*47x x(1 -A-)
•» Tt 100
^rti-
X 17.647 X-
•X(1-
100
-------
GAS VELOCITY AND VOLUMETRIC FLOW RATE
Plant ^ov---"-^ u.x»^e- ^luie^v^ J Date: Ce-^av-*?s?
Sampling Lo
Barometric F
Moisture, %:
Stack Dimer
Wet Bulb, °F
TfWWM
Point
NUTMMT
yC5/S?
/<^ f «V
//*\ i ^i * I ^>
;o iVio
i^K.-qS
to
ICJO • &
iru^- *^
/o^v
10 J- -L
IO J-^>
cafion: ^r^=.Vs«L3*^ ii^v=.«r. ~^ Clock Time: c^ -5S - ia>~
;^vv^~ -fV^v-SVorV. Onerators: "NCSXS. f^c^*^
'ressure.lh. 1
3-$
Ha: ^CT.^O Static Pressure, in. I-UO: -^C5
Molecular wt.Drv! ?^.o^ PitotTube. CD: . S*^
ision, in. Diameter or Sid
r. rjjv
Hud
1 . t£ O
/ . ^zo
. -go
.-Q,.
.C.,-5
. -?f^
. -a,^
-5^0
1 . .i
1 ^
1. Ji
£F-
Stack
Twnp.
°F
^S9"^
•5.0CN
^&>0
J?^}^
J)^J
-3JiO
ji^^
^ O "7
:> /e>
A/G
^ i~>
T«-
9 1 : Ll~? ^ Side 2: —
Buibt°F:
Md - (QA4xXCOy) -I- (OJSZK%02) +
-------
Ptant dU&uLic^l
Sampling Ijocation
Run Number:
FIELD DATA SHEET
Operator:
Sample Type:
Pbar:
Pretest Uak Rate:
Pretest Uak Check: i
cfmi
•'
is" In. Hg.
Orsaf:
Probe Length/Type: 5'
Stack Diameter:
Pilot *:
Nozzle ID: sm - .Ji"7Thermocouple
Assumed Bws: ~] Filter #: _
Meter Box #: mfo ID Y: l.tO\
Post-Test Uak Rate: .aen cfm
Post-Test Uak Check: Pilot:
in. Hg.
-------
SAMPLE RECOVERY DATA
PLANT
DATE
Sample Box No.
Run No. tAl3~ 1 ~
-$* Job No. ^^ • OO3
SAMPLE LOCATION
Filter No.
TRAIN PREPARER C-C-/ 1> H
SAMPLE RECOVERY PERSON
COMMENTS
FRONT HALF
Acetone
Container No.
Filter
Container No.
Description of Filter
Liquid
Level Marked
Sealed
Sealed
Samples Stored and Locked
BACK HALF/MOISTURE
Container No.
Liquid Level Marked
Sealed
IMP. NO.
CONTENTS
INITIAL VOL
(ml)
WEIGHT (grams)
INITIAL
FINAL
NET
\0 -0
725,1
PT f
M. 1
522.9
5/6-
325-^
TOTAL
Description of Impinger Catch:
-------
Appendix A. 2
Raw Field Data
Vertical Kiln Baghouse Outlet
-------
Plant:.
Date:
TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS
Co
Sampling Location: ^
Inside of Far Wall to Outside of Nipple:.
Inside of Near Wall to Outside of Nipple (Nipple Length):,
Stack I.D.: «9* V (
rtm"t?
Distance Downstream
w Disturbance (Distance B): -
inches/StackI.D.- ^»l dd
Distance Upstream from Flow Disturbance (Distance A): ^ -*,
"^ >^* inches / Stack I.D. - &a&1 dd
Calculated By:_
&
3
Schematic of
Sampling Location
Traverse
Point
Number
i
3
s
^i
5
\c
7
^
1
10
n
U
Fraction
of
Length
, Cu I
. (h/^*7
, //S
» /•>*»
• JSC5
S5^
. f/2/
• 75O
.«^S
.W
.^55
.^7^1
Length
(inches)
-^^^
^ «-5
^'^
1^
4*^
'/?^
*l8b
^^
«rt5
^^
^^
^^
Product of
Columns 2 & 3
(To nearest 1/8")
/•o^ i"
3,-J-S 3^'
S . 73 5%
g.S'g 2%
O. / "5 /j-^
/7. P-7 ,7^
3 ; • P 3 3i^
3fo.3^ y^
39. ^^ J?^
-/2^¥^
^5^^ ^
-«/7.-f PV7-
Nipple
Length
(inches)
L
\
/
V
V
i
Traverse Point
Location
(Sum of Col. 4 & 5)
*/"
fa-h
s%
//•%
/5^
^o^t
3*1 ^ '
17 ^^g
33~^
4€ ^?
tz^
50^"
-------
TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS
Plant.
Date:
Co
.,r e
Sampling Location: /fi I ^ BA C ,
Inside of Far Wall to Outside of Nipple:.
Inside of Near Wall to Outside of Nipple (Nipple Length):
Stack I.D.:
Dbtance Downstream from Flow Disturbance (Distance B):
Inches / Stack 1.0. - f-3/ dd
Dbtance Upstream from Flow Disturbance (Distance /^:
l>^ Inches / Stack I.D. - 7.fef dd
Calculated By: _
Schematic of
Sampling Location
Traverse
Point
Number
I
•a,
3
4-
/
C
7
?
• #s t
, ^33
\ °ll°i
Length
(inches)
4- "7 Vfc
Product of
Columns 2 & 3
(To nearest 1/8^
/
3 *'»
s fy
% >4
n 3Ai
\y3^
10%
3S%
2£7/&
*ll*b
W
uyn
Nipple
Length
(inches)
Z.
Traverse Point
Location
(Sum of Col. 4 & 5)
3
5'/£
7f%
/***
13 ^
l&3*+
zzty
37**
w ^
wty
^
Hb*\
-------
GAS VELOCITY .CYCLONIC. AND VOLUMETRIC FLOW RATE
Plant:
Sample Location:
Run No.:
Pbar, in. Hg:
Moist, %:
Stack Dimension, in. Dia. 1:
Wet Bulb. °F:
Date:
Clock Time:
Operators:
Static Pressure, in. HjO:
Pilot Tube, Cp:
Dia 2: •
Dry Bulb. °F: -
Traverse
Point
Number
fi ,
J
3
«
Jfo
/C^
3,
^
~J
o
o
<^5
r~5
-6s
-o?
o
o
3>
r^>
<*^
n
~«o
r"^
"Co
%3o
-3o
•^JX
Directon
of Angle
sq.rt. dp Stack Temp Angle,'
Average |
Md - (0.44 x %C02) + (0.32 X %02) -t- (0.28 X %^)
Md - (0.44X ) •»• (0.32X ) + (0.28X )
Md-
% H,0 % H20
_._, + 18(-j55-)
13.6
Pa . in. Hg
13.6
Vs - 85.49 x i
Vt - 85.49 X (
.49 x Cp x <]& x U pj1
Pax Ms
Q«-VtxAax00a/m
Qt-
Qi-
xOO
aefm
Pa
p, %H,0
x1.-
Xl7.e47x-
oacffn
too
-------
GAS VELOCITY AND VOLUMETRIC FLOW RATE
Plant
»
Sampling Lo
Barometric F
Moisture, %:
Stack Dimen
Wet Bulb, °F
TrawtM
Point
Numb*
/^\ »
j
•$
^,
5
C,
7
^
Cj
/to
/ i
t*
/V |
iT^ 1
j
3
V
s
r«
7
2
^
/t?
/ i
U
^MMMH^HMHM^MM
cation: P^c.W^<^ r>. iv v j^ s-^c^t Clock Time: OQ y<^
\.-.^v.^.^0 -f\^,.^>L.., A^V? Oneraters: ^^x\\ ^lJL^-^
'ressure, in. 1
Hen^ JIA ,-s ° static Pressure, in. K^O: - . ?»«^
y_ Molecular wt. Drv: 3^.o-> PftotTube.CD: .**,
sion, in. Diameter or Sid
'- Dry
HMd
1.4^
/ /.r
/ ^
/.•So
/.^^
/ ^O
/./<^
/. J?O
/^^
.^0
•_^
^^-
1 * / ^-v
/.^r-»
(. -^r-s
/ . .3.O
;.Jir-.
/. IO
>.Jo
/.JJO
J.^o
/. 20
i>2o
/. <5O
^SF-
Stack
Twnp.
°F
*AO
^s\
1 \*1
UlF
;M->
J /&
«=? 1?
<5>J\
^5)
PJ?<
^0^
=2 / J
^J^
32V
224
££S
^<20
T«-
e1: ^/7.2^ Side 2: —
BuIb.°F:
Md-(O44x ) • LM vM. 1+HI/ 1
.., 100 100
'Co
*^ 100 100
5 Ms-
-^ oo
o - _. IP.
o ' «- . « .
o P«- In-Hg
^ fip-
" ~ ~ / T«f*R)
^ y— ^^*V p-«-i
C^ ^^^^"^^"*
^ ( V
0 Vb- ft*
o
o *•• *
o
..^ 0»« x xeo
"do Q»» «dm
-30 p. %K.O
-ov> Q"— " Q»X17*47X x(1 -*- )
ef& ««B TB 100
•to too
-------
GAS VELOCITY AND VOLUMETRIC FLOW RATE
Plant* i_K«?"» ."tr.v v VVJL>^«- £,,., *x£>e>-*. <. /HtrLu /•**& Date: ( a ~*3 *-/ "^y
Sampling Lo
Run#: f^i.
Barometric F
Moisture, %:
Stack Dimen
Wet Bulb, °F
TnvtfM
Point
Numb*
fl ^
O
cation: R^-W^-^ f^rr*-^ :5-fe^t_ Clock Time: /fS<> -j
.^.~. r. iiti«r;K. £V, «.^.. Onerstors! r^>fc>Vk fctO":^
•ressure, in. i
to: Ip^.,300 Static Pressure, in. HUO: --So
Molecular wL. Drv: 3p . o ^ pftot TubeTCo: - &/
sion, in. Diameter or Sid
•i r^nf
e1:
jx ; 7
-3> 7
J>/~?
J i \.
^ 1 1
J M
bl ll
^ 1 1
J 1 0
J.II
4 /4
J/^
J/L
, J^0
J)6!
*J / "7
y^
Tt- ^,^
Md-(044x )-f(O32X ) + (0i8x )
Md-
%H.jO %H2O
kto-
^_ o o» o ^
PB • kv MQ
»
£F-
— / T«^fl)
V* - «s.40xCpx JSF x y — ptxut
Vs»65.48x( )X( )Xll
A*- ft2
Ot» x xeo
Q»» aefen
no 100
-------
FIELD DATA SHEET
Plant C V^
Coi»if*»-<
Sampling Location Bt\k
Run NumtwPoA Date
GUI Ml
Sample Type:
Pbar: >0\ ^
CO2:
Operator: C^/f 3 Nozzle ID:
><•
Ps: ~ .
O2:
Thermocouple #: ~T
Assumed Bws: £ Filter #: — — - >JQ
Meter Box #: £oig/S Y: (,QO AH@: t.f
Pretest Leak Rate:
cftn @ \5 in. Hg.
Pretest Leak Check: Pitot: y/ Orsa|L W
Probe Length/Type: (,
Slack Diameter:
Pilot #: 6
As:
Post-Test Leak Rate: ,QQ<|^ cfm @ J_Q_ in. Hg.
Post-Test Leak Check: Pitot: \/ Orsat:
Traverse
Point
Number
Samplng
Tim.
(mln)
CkxJdlnw
(24-hour
Gas Meter
Reading
(Vm)ft3
Velocity
Head (Ap)
inH2O
Orifice Pressure Differential
(AH) in H2O
Desired
Actual
Stack
Temp.
(Ts)
Temperature
°F
Probe
Filter
knpinger
Temp.
°F
Dry Gas Meter Temp.
Inlet
(Tmln0F)
Outlet
(Tmout°F:)
Pump
Vacuum
(in.Hg)
0
y////////////////////////// //'/////////////////////////////
15
1
cy
10
7
IS
.0
\A
4-7-
7
•v,
f /
-Z
7
37
\ A
osc.
•17.
3-
\±:
_2L
I.-1!
JL
'0
VVfc
:JL_
- 3
2 J
£7.
ITT
2-1
^"3
ss
7
-H-
io.
ji_
13
ULL
°\o\.\
l.i-
(fO
14-a.s
^4-
\So o
i-
>S
ts
*\\
D
J"
e\\
AVm»\MAVV
Tm=
-------
SAMPLE RECOVERY DATA
PLANT
DATE
Run No.
- Q - \
Sample Box No.
<0 Job No.
. QO5
SAMPLE LOCATION
TRAIN PREPARER
Oint
VO
-16*1.1
3m
TOTAL
Description of Impinger Catch:
-------
FIELD DATA SHEET
Plant: t,^« w\xC»^ Vv^
Sampling Location ^^
Run Number: "C ^>— \
Pretest Leak Rate : r^ o ^
Pretest Leak Check: PHot:
«_ t rt*P*-'A r\Mfc^
\X«i^ -^.<\\
cfm @ \S in- Hg.
\MYN Orsat: .IN A
^v Sample Type: Wi-"1}
Pbar: VvVO Ps:
CO2: rJ (\ O2:
Probe LengbYType: ^' C
Stack Diameter:
Operator: v
— .T»t>
fVn,
Lvw, P'tot *
As:
tS^b.
':U
Thermocouple #: T 4
Assumed Bws: \o Filter #: K>0
Meter Box *:t»«n.S Y:
Post-Test Leak Rate:
cfm
in. Hg.
Post-Test Leak Check: Pilot: ^ Orsat:
Point
Number
Samplng
Time
(mln)
CtockTime
(24-hour
dock)
Gas Meter
Reading
(Vm)ft3
°\ V4 . TO 0
Velocity
Head (Ap)
inH20
Orifice Pressure Differential
(AH) in H2O
Desired
Actual
Stack
Temp.
(Ts)
Temperature
°F
Probe
//////////////////////////// '//'///.
...
1
Filter
'//////
#
)
r
knpinger
Temp.
Y////
Dry Gas Meter Temp.
Inlet
(Tmbi°F)
Y/////
Outlet
(Tmout°F)
t J S J f S
Y/////
Pump
Vacuum
On.Hg)
,*»
AVm=
AH=
Tm=
-------
SAMPLE RECOVERY DATA
PLANT
DATE
Run No. M3.3-
SAMPLE LOCATION
TRAIN PREPARER
Sample Box No.
a/> K
Job No. RO)2
Filter No.
T.
J
SAMPLE RECOVERY PERSON T,
COMMENTS
FRONT HALF
Acetone
Container No.
Filter
Container No.
Description of Filter
Liquid
Level Marked
Sealed
Sealed
Samples Stored and Locked
BACK HALF/MOISTURE
Container No.
Sealed
IMP. NO.
t
2
3
4
S
TZ^/.I,
•6/7//
73^^?
~3^/
NET
(9
^>
0
0
O
O
O
Description of Impinger Catch:
-------
Appendix A.3
Raw Field Data
CEMs Summaries & Strip Charts
-------
HCI Correction Worksheet
Marble Falls
Chemical Lime
25-June-98
OUTLET
|| Actual value
zero
siid
; tJtgr*
0
46
303
3 Point Cal
1.1
47.4
300.8
slope (m) 0.988
Y-lntercept (b) 1.49
Avgconc: 15.5
Actual Cone: 15.8
Pre Bias
1.1
300.8
0.989
1.10
Post Bias
2.1
308.4
1.011
2.10
INLET
Actual value 3 Point Cal Pre Bias Post Bias
zero
sift
r»gfc
0
46
303
1.9
44
299.4
slope (m) 0.986
Y-lntercept (b) 0.41
Avg cone: 20.9
Actual Cone: 22.7
1.9
299.4
0.982
1.90
3
296.9
0.970
3.00
-------
HCI Emission Measurements from a Vertical Kiln
Chemical LimeMarble Falls Plant
Marble Falls, Texas
6/25/98
Time
Date
Inlet/Outlet
HCI
ppm
THC
ppm
02
%
CO2
%
15:19-15:38
16:07-16:26
16:55-17:14
17:43-18:02
18:31-18:50
6/25/98
Outlet
Average
16.1
13.8
18.8
14.9
14.0
15.5
10.0
10.1
10.7
10.5
9.8
10.2
13.6
13.9
13.7
13.5
14.0
13.7
15.8
15.1
15.7
15.8
15.0
15.5
15:43-16:02
16:31-16:50
17:19-17:38
18:07-18:26
6/25/98
Inlet
Average
20.5
7.0
16.6
39.3
20.9
18.6
17.4
17.9
17.4
17.8
9.8
9.8
9.8
9.8
9.8
24.0
24.0
23.9
23.8
23.9
-------
c
f
»•» fEET flVEWCE U IS 61 >- 11. 1 -^n
'•» fElT AWWE :: u .Ji .2 17 1 FCT
/ _, ,, ,,;Uo 4
I J . , - * ,-•
*»« RESET RVEKflGE 12-12 8^ 24 - 1 RFII
1 *** RE?T AVERflGE 12 12.86 22 17 9 PCT
| - - - ' 1 1
1 , «** RESET AVERAGE 12 11.45 24-4 PWt
Ii , • ( ,...« i .--•"•
' ! F j ' «** RESET AVERAGE 12.11j8» 21 O Pljfl
. ! | «*» RESET AVERAGE 12 18:li 22 23 7 PtfT
! j ' m RESET fiVWflDE 12-18 84 23 -59|5 PCI
1 , *** RESET AVERAGE 12 18:84 21-8.5 PW-
«** RESET AVEROGE 12 «9.44 21-1 PW1
, , *** RESqr flVERflGE 12:87 83 24-3119.8 PP*
! ' ' ' •*» RESET AVERAGE 12 97:85 22-3119.8 PCT.
'
**•»» SVSTEM RESTRRT<32>
!
CO >T-ij «•
rc.-. M ir. r. ^o. o i:.. ^ :c; "• -" . • •
co avii »*«
oznvp *•» ; «
! '
C0fl« **»
; NKCIjVfi • • ! *«f ' i r
n- ,),-----! ~~T~™ " ' " Ui"1 ' T ri 4 ' -
. , i . . , i . i . i . . , ,.,.•.,, ,.,,F,]~ t~-£- ?J*^--.
1 i)2 flVC ***
' ' ' i • i
NOXIJVG **f i ' ' . '•
' ' ' '! ' ' •' li •!? i? *5 2
NOXffVG **» , : !
! : ' j 12 87 i4 a I
; '• , ' ! U «? « 22 1
CO flVS **« : i
02 (WG **» ' i i
•••-;-- -.-...--. - - li « 24 02 4
12:06:20 JUN 25/98 *** . /
! ' ' 12 •>» :» at 2
12*00 02 '
.us ~eJ e
25. e
i-5.. e
175.. O
200. o
225. 8
en
9 PFM
.1
«« RESET ftVERfCE 12.46 88 24 I B8E+:8 Frit
«« RESET ilVOftl 12 4* X 22 L 88E+38 PCT
: 11 54 *•» >W :
COflVO
02 flVC
•»-»•» SYSTEM RESTflRT<32> 12:45:25 JU^4 25/98
-------
-L U
-air
IB
««* RES£T flffRffi^ 12.;« 82j 24 18(5 PF*
*»* RESET fWRMfc 12 36:4 23 6.6 PPM
»*. RES^T (WERflCE 12:36 82) 22 14J8 PCT
**« REjIBVERftGE 12 16:9? 21 14.2 KT
THC,fMI
CKffJG
02 R
25.
!/:•::
i .'•' i
: «« RESET fWRflCg 12:24.8t
12:24.91
• m REST flVTOtt 12 24:9^ 21 11.2 P>:T
38. j 0 I
'--f
35., i
i -4Q.I0
Yi !
24 8.1
PPM
ret
i • I
***;
*»»
45. i
*** LOO ORP 1 *** UNIT 81
«.. «. jnL^-J-i. .......
*** STRUTS flT 12:23:13 *** ENDS flT 12 : 23 : 14 JUN 25,99
* mm
50. 0 PPM
-
Hgy ;PT MTB UN^S__ST _JJI*__
-------
B
13 88 87 —
34
I. *
• • -t.i M.cN.i i. :: i? _. ', i t»\
• H i^ET rtilix/S. L ;i -J. ^ : 3 Pi'T
•«« ?£."£' rtVEFWE II i: 02 a I.1 -" FCT
_"t.. y
.n. Aj
V£. IWG
02 flVD
IM
Kt
• • , •• — — — . ~,
_ — - • • • •*•* *
r7 -•;, /
'I
, \
1 i
l
tl
ej
'f
it
i*
PT
*
il
i. e
1
*-
EL
i.-ii
* itr""i~.— ~- .*-^~" '
" ' — •"*& . V~
; «*« RESET fiVERflCE: 13:08 831 24 5 ? PFU
«*« UESET RVEPftt 13 98 -8J 23 1^5 PFtt
! *** KSET RVERflGFJ 13.89.631 22 U.4 PCI
i • «* RESET ftVEBtt 13 98:8^ 21 1< 4 PCT
l :-. 5 Pt o 7pt~~~-1 — u^^rigr1 12i "H"
\8BR 8Z-C, , : !
•P ~ -----?. : • , >•'
/ ' : • \ : y
' "• •- , t=t — '
h *™:u 1':K-' J—
i -r— — r" ^P^»H s*fHBfr
i
: i
»=*= LOI3 GRP 1 *** UNIT 01 *** STRRTS RT 12; 48
OfiTR UNITS ST LEGENJ PT CflTFl UNITS ST LEGEW .PT
21 5: ;: oa 92 2 PCT coz [83
1 25. 0 70. 0 IttSi 0 " ' 140. 0 175. 0
*** RESET RVERFCE 12.48. 8S 24 5.3 PF1
«** RESET RVERflCE 12 48:82 23 43 5 PPM
«« K£ET RVEffiGE U'.48.82J 22 5 8 KT
»» RESET HVEKflGE 12.48. 9Z ^. 19 3 FtjT
»•* LOG ORP 1 *** UNIT 01 *** 5TRRTS RT 12:46
OflTR 'JNITS n LEGEND PI DWfl WITS 5T LEGOIi PT
»* LOG ORP 1 *•»* UNIT 01 *•»••»= STRPTS RT 12.44;
VTM UNITS ;T UljEMQ FT ^Tfl UNITS JT UCflff >r Ff
M ,'"••'' ",t>'' " i " • -n" ' 'i A ^-
'•— - — .-- s ;
HCLfflfc ' «**i i
THCA'G • «** , .
C02flVC *«| ' i
i32 RVC *^ ; i
" •- iL5. 0 17. 5 2Oj O 22. 5 25J 8 PCT
J . , • : l
t f .1
, ., , , L, '
i : ''• i
;4-2 *** ENDS RT '12:48:48 !JUN 25,98 *** ,
WTft UNITS SJ LEGEM) PT MT8 UNITS 5T , UKBSl
3Z? PPh THC ' 84 2.9 PPN *L
210; 0 245. 0 280] 0 ^ 215.' 0 350; 0 PPM
naw ***
THC ftVG •*» , ,
C02 RVG *<*
02 RVG >*»
•^ , ',
. 42 *** ENDS RT 12 : 46 : 42 JUN £5, 98! ***
CflTfl '.HITS ST LEGE* F'T WT» UNIT? ST LEGEND
9 PF'H THC 94 3 2 Ff« HCL
-------
«i. LUIJ • '!-("• L «•' uriir yL »••••> irnFis HI" i-^^X"*!
•fl* j^r _,.,,, ,WIt, -[ LOTS fi t+iTrt _ WIT: JT LEGEND ...QjT MT*
4* >A .1 . •; 02:; £ - f'-f -^ \^ja
;/
'/ .... - - -
,jf- —"
*** LOG "3RP 1 •»•** UNIT 01 *** STRRTS flT 13 : 44 38
^ PT DflTft UNITS ST LflGENO PT DflTfi UNITS ST LEGEHP . .FT WTft
.*& ^^ ri unin UHIIJ -M _„, _ ,™Sssfls.rl.— .-- — — . — >• - - — — *- — — • * — ,
v ^P V : ;: "" W, 83-
' '! '
i
r ;
- 1R 01 0
t 1
1
1
*•"•' ' '
!
1
1,1 •
25 51 & T, 5 10i 0 , 12. 5
, '
! '
i 1 *
i • ' ! «*RB^T flVKflGE 13.36. B8J 24 91 ' Pff •
! , *«* RESET flVERflGE 13.36:8f 23 S,2 PPM
tw RO6T HVERflGEi 13:34.81' 22 6 PCT .
! *** RESET flVERflct 13:3S:8* 21 ^4 PCT
! : ' i
m M
'i
!l
r
ri
|
Jlr
• ' X.
-ID 01 0/' '
! L
; J
, /^
• /r
KJL
1 • • _ j ; 1
1 :•!'''! '•;'•' i
1 ' ; . ' ' , !
; , | ' ' j ' ! j '
i | ! . ! ' ' '
i i
i • i ' • ' ' ! ' '
\> i | , 1 - i
^ . : ! ! : i . • : I ;
35J 0 ' 7-01 0 1 105 0. . 140J 0 175, 0
| • ' ! ! ;
j i ! i : ', j
1 ' * , i i
i .1 .
1 1 • i 1 :
" ' •«* RES^T RVEKfXS 13 24:88! 24 5 4 PfH
*«» RESET OVERflGE 13.24:0f 23 3.5 Pf* i
«« KSET (NERflGEi 13:24 881 22 7 5 PCt
, «* REStT fWMGE 13:24:98 21 U8 WjT
'4 ^ '
•l\ U '•'..''
li ; ' : ; ' '
an: 4i *' ' £ "" I*:-* ^*. * ^i* -41*' * 31SJ 0 i 3?
1 ':j";' ' ' ! )i '• ' •
•• >:'••. i M
. . ; : ' \ i
!;••:»•
i !• \| '
i : '.
Han* **1
DC f»1J «** ' ; ,
coemp **«i
02 »* *** :
! y ;
' i ' ' V ; '
t
i ' ..-••'
.«MB. ~3Wr* ^SB."* »»;* i>*
PCT
0 PPM
-------
I « « V t. V •
£L
u.
CL
LL
CD
-------
t
t
16
b (Ufa. -§'
1
i
L
r--^
\ *"'~z
/ 5.1 0
/ ' '
/
!
I '
;
,
i !
TV,
\ t*~*^
\ ..r* — ' —
\ «*— »4- , ^
•^7 ~;5
9f ;
/ !
/
; ' '
L
i* — ,
r- — f — . -I--.*
sC
™
** LOG GPP 1
MM UNIT- ^
iifli. * m t- ( 4Mt. *
..>
w* RESET AVERAGE 14-:9 63 24 It 8
«** RESET AVERAGE 14 39.83 23 7 7
*** RESET RVERflGE 14 '39 83 11 15.9
*«« RESET AVERAGE 14.39.93 21 141
.I'""*
/''"
V
r7~r^r^r^~>-, -— — ^
10. 0 15. 0 <£ 28. 0
42*-
^
'^
H -*i
'"
i w RESET WERAGEj 14'27 93J 24 12. S
»»* RESET AVERAGE 14.27.8} 23 7 '«
m RfSfiT flVERAGE 14-27.83; 22 15il
**» RESET AVERAGE 14 27:93 21 13.9
' ''^ '
8i> .
i 1 '
"-—• " , ' • T ' |
. - •»- .—••-- =* i i ^^
--,nL (^ ^Jjft^-l 'III! j^pi Q
?' ;
•
i |
ifc^_
' "if
«** RESET ftYEtflCE 14:15 85 24 7 1
*** RESET AVERAGE 14:15:94 23 2 1
*** RESET AVERAGE 14:15 83. 22 17. 2
«* RESET AVERAGE 14 15:83 21 13.1
I
l : «** RESET AVWflGE 14 12:li 23 11.5
»*» RESET AVERAGE 14.12 84i 22 12.4
»* PEiET AVERAGE 14 12:94 21 6.9
*** UNIT 01 •**•* STflPTS flT
LEGEtl? FT MTfl iJHITS 5T LD30jL^
VI.. t> •»•*• *: T1*' -B' 9**. *' ;?•*' 1' i.4«fc. i' f*'C ""
C ^
Pffl HCL ftVG *««
KM TUT >U1 **k
rrn iff- n»'j *T*
PCI DIE (WG ***
PCT 02 (WE ***
-..
t
'( ' '
. _._, — '*
25. 0 30. 0 35.: 0 40. 0 45. 0 50. 0 PPM
N. '
81? i
S . • . ' • 1
1 _, L 4. i , : ' ^ • i
-*- -- 1" ^ 1 — v — , (
FTT? HCL rpy TT» ^ ,
FBH THC'fll'Q «* ' . i
PC| C02AK ' ««l ' i
FCT 02 AVC «*
. »_^ -01"* *H? mjf^
\
; 1
14:11:26 *** ENDS flT 14 : 11 : 27 jJUN 25, 9S ***
^»* '
1* il M|lil lljll'l "' , ^TT JL. M{ -JM.il . ?. . . ... JM* ^_
-------
u.j«- 'fc 'l»ifr P '8. 'it*
0
13d 0 ;S
Wdd 0 '
0 '
.§ :ttfi
Ifl' 'III!
••> '<»•?'
idd >Tt W 68 TS'« 30SBW 13S33 **
J'll
414
»*»
««
»M»
aw zo
DWJJDD
t*OHl
DAHTDH
1W 8 O T? W-ST tT 33ftQi« il-3S **•
13d ?'41 2c 'te ST'ST 39HHAM 1331 •*'
Hdd S J C7 2S tT'tT 3i»d3.\W 13S1S *«
*U KH t-c ^8 £T'« 30M13AH 13SM •«
,.^
^
ll
\
•it- 1
OT-
-------
Ct
rl
i
3
-------
) TJH
Hdd SST t? 1'? J* ?1 3BW1W .I3d •«'
HJd S 6! *•? T8 ?e ?T 3ftrflW 13K3S »»
t?e -t'
a*
Hdd 0
0
i i
1M 1 7T TZ M-^e'PT 3£«flM( 1IJJ **»
iDd 5^1 Jt ?878'9T 33WI1W 13S33 *«
M|U i T C2 JS^e ST 39(ftB\U 135M **»
Hdd T7T »E C8«-9T 3MBW .
PI "fit-
f
-------
• • !
4
. «fe <,' ' *2f
**» RES8T AVERAGE 1? 14 89
-j - »< PEIT AVERAGE 17 14.09
$F%f *** RESET AVERAGE 17:14 85
0*^S «*« RESET AVERAGE 17 14:86
\ * : .3'
i V. : ^
i e 0, e I ^•"<^~~^-^-J!^^_ -t<5-' e <£ ^^
; *\-r; :—::;:,;;." "r : ^
? :
j ? • • '
:T""1 ' • ' "L :
- ID 0. fJJja?" 35. 0 <*0- 0 105i 0 .r — ~£4BT
»w RESET AVERAGE 16 58 88'
«** KSET AVERAGE 16 58:86
-jQ^ *** RESET AVERAGE 16:58 83
C*2%» *** rc2T ftVtffll3E 16 w-9?
\V ' *^
\ ^.w. '-
>!*. ai?11---^^. tMH"-..
'.. — -•»- ._^ •'•>)_
!»
u
j;4 A !1)
- ir *i * V ii*. * a*. •>' ^*. * '•> •**•
>
---— -HE.:' •
24 18.3 PPH HaAW *w
23 18 7 PPH THC Ofli *•«
22 15. T PCT C02 ATG *
\ , • , .
; *"•''•— ~-H,..,
==«— ' ' 1 : _— i— i1"^'
•, ^ ' :" : :l | I :
24 16|J PPjl, ' HO. At> i *M
23 3.18 Flm . THC flVG «*
22 17i9 PCt OB Afc •*<(
21 119 PltT 02AVJ!' . **»
«AJ ' ' •
..-^ , :
•BT-s-=CTi.S5i 0 210. 0 245; 0 280. 0
24 78 PPtl ' HIAVG «*
23 1? 4 FPM THC flVG «*
22 24:e PCT C02AVG •"
a 58 FCT 02AVG ***
/
«( •
i__. . '"""•>••__,
. .rrfr— -^-^ .
f
•^ ^«. .
* ^. * **• * TV; * 9t. *
45. 0 50. 0 PPM
1
1
: i : i
; i
i
22. 'D 25j 0 PCT
i
i
! . i
i
i
i
i
315. 0 350; 0 PPM
'9fi. V JldM)! » fROT
-------
tw
*M
•*>
ft* 'JHL
aw T3H
Mi: 3 3 tf 56 61 J
133J ••«
OT
tit
g
-------
f
r
1t:
-ifl
-10
-j. *jj; ' •:>. y
i-i.. -:< j 2*.. O j(
II1 Ji-
»»* PESST AVWflGE 18.11 85 24 11 o
«* PEIT -r-'ERAGE 13 U 85 23 J *
«t RESET HVERAGE IS.:i 65 22 11 -J
.*» ff±T AVERAGE 13 31 04 21 11 8
i \
5. y
FFH
FW
POT
FCT
}>*., iJ
Ha ftYG
THC AVG
C'32 flVG
02 ft*
. it
»*
*«*
V\.'
0
J
*.
!('
*i
•« RESET AVERAGE 18:26 63
**» RESJT flVERflGE 18:2S:8B 23 17.4" PfH
*« RESET AVERAGE 18:2« 83 22 23; 8 PCT
«** RESET flVTOBE 18.26:88 2l 9.8 . F«|T
un aw*
tiLL n|y
THClfrt
C02RVG
20 £»
! ' ;,-1'1
h •'" '
LI W
l'\ i
I
.
; }i i !
! eij ' i
i !: '
i. * sat.
*« RESET OVERAGE 18:9? 93 24 27.1
*** PEJET AVEPAiX 18 97:8? 23 2 5
w* RESET flVWflGE 18.9? 93 22 24.5
' RESET AVERAGE 18.97:8J 21 ?.8
..ilt
>« PEET AVERAGE 18:62 K 24 14 3
»«* ht;-ET AVERAGE 13 82 83 23 19 5
«»» FEET flVEWCE 18 92 02 22 15.8
3ft. * ' . ~M). *
PFfl
PPH
PCT
PCT
C02 AVG
02 (WG
*»*
i
PfK
FPM
PCT
FCT
Ha AVG
THC *'G
C02flVG
f&«K
«*•
»«*
B. *
•a*.*
4'>. y
-MB,*
22! 5 25J 0 PCT
350 0 PPM
. * mm
-------
wdd e less , e 'STS
0 ;
'33
-4-ri:::
e '083
...-},._
""v
.,
SWTJH
iJd 8H T< W'K 8T 3W»W 13531! *«
13d 651 Z? W KW 33WQAH 13S3JI *«
Hdd 8'6 CJ 98:tt-8T 39*fl\H 1IU »«
I »»»
DW ?OJ
ft>l ^? M H'cT 3*»W 1BS3JJ »"
M H l
Wd (< It JK IB «'€T 3SW1W 13S3JI «•«
am -
a i
•
«
"V.
-------
i~-.. "J aM. W / \'i-'
*« ttSti flVERRGE 19.52 01 14 IM3) PP«
«* KIT AVKflGE 19 52:91 23M£5 PW
RESET flVTOR 19:52.88 22 19! : PCT
m REST flVEROCE 19 52:98 21 8.1 PCT
Ha WG
THCfW
C02RTG
02 fNG
**» RES8T DVERflGB 19:33.6^ J4
*** REST AVERBGE 19:33i9l 23^^:5" PW,
RE58T flVERflGE 19;33:8ll 221 231,8 PCT
' «**• RESET AVERfiGE 19:33:81 21 9.3 «f
THCffyO
C02W
02 (ME
.ac
5K>., O r'F'M
PCI
315J 0 350J 0 PPM
-------
t
I
{
r
r
r
r
i
i
10
^\Y \
n Wft iJNITS 5T LEGE\ I FT WTrt IJNIT3 ST LEGEND \ FT WTO
'•a 19; •: oi j "V j: ii-
*UT* **( ••*!,
•V *•
*** LOG QRP 1 *** .UNIT '01
\ MTft UNITSi ST LEGENJ. PT WTf
X 29 s ;: ~o$x , 92 :
L '...• -i.__._l
PCT I'M ~J K 3 1
J
\ UNITS; sj UWB PT MTH .
PCT C02 ^^^-iJfiW 3
10 35. o • — — fer-8 103; o — rror^j : — rrsi 0
• • : i
*** LOG CJRP 1 **>»= UNIT 01 *** STRRTS RT 28 ill: 2*9
>T WTfl| UNITSJ ST LEGEtf PT CflTfl WITS ST ' LEGEIf iPT MTI
a i ' ;: , 02x . 92 .3 > PCT etc ' »3 .2 ;
* '• ' ' ' i ,
*** RESqr (WERflCE1 28:11 81 24 196.3 PF1I
j 1 • *** RESET flVERflGE 29 11:81 23 .4 Pf|H
: »*»RE3fj|flVEWCB2e:11.88( 22 3 J 'PCT
m. RESET (NERflGE 29:11:* a 1.1 P«JT ;
i , ; i ' I i
•"»-•»• ENDS HT 20 . ie i? TUN 25,9© *+«
IJNIT? ST LE'II|' PT CfiTfi IJNITS ST LEGEND
PPH
— ds
UNIT!
PPH!
210
*:*>!
IM|T<|
PPH
Haff
THCf
CGSffl
02 RV
TO >M Ij i PPH HCL
1
H ENDS RT 20:14.16 JUN 25,98 * •«•* i
S^T 1 '
ST^^^EIpl) PT CflTR iJNITS ST LEGEND
THC ^*N 94 84. J PPM HCL
->••- — •-..: -" • i . — '—- iff'
0 245! 0 L2SCj •»— , 315,' & 350) 0 PPM
' !
* FNf^ RT ?«V 11J>3_. JUN 2Sj_^l — "* i
ST LEGDfe^- — PI 1/HIH — ONTtT~ST* LETiBl>
THC XT 94 296.? PPN I»X fj
V6 **»
i ***
*** LOG ORP 1 *** UNIT 01
LEGEND
?L_Mia_ J-«JTS^_ST
91 9 :: OK
JUS): 49
FT. CflJJ__JJNITS JT
"92" "3 PCT "
*** STRRTS RT £0:02.43 *** ENDS RT 20:02.44 JUN 25, S>8 ***
LEGEty
C02
,PT MTfl UNIT? 5T l|Gg6. PJ_ JfiE-JgSIL. J! , LD?*
93 9.9 FPH TK . 94 3.9; PPH HCL
. *
. *
HTTT
1
;« M as _
•-»:** LOG GRP 1 *** UNIT 01
-*** STRRTS RT 20 : 01 : 43 *** ENDS RT 20 : 01 : 44 JUN 25, 98 ***
LEGE1C'
FT Cfljfl J..WH SJ _LEGE(f. FT CflTfl UNITS iT LJGDC'__ PT MTL._a!IIl_S7 LBSW PT__MTB. IJNITS
-------
1
1
t
t
t
* ^
*m
r «
r
' B^
1 V?
I 4
r
*•»-+ F'RINTEP OFF 20 42 44 JUN 25-98 **•*
. . /j - - - - • - - . ,~ .
w PEST flVEFRGE 29 38 14 22 -16 : PCT COC itf, **»
*«* PEIT SVERDGE 29. 38:84 22 -7 » PCT C02 HVC ***
afc^T^ ; , . ^ _^ ..-a^ "' """" ll
vr •, ./ , i
•*** LOG GRP 1 *** UNIT '01 *** STRRTS RT 20 32.27 **| ENDS RT 20 : j2 33 JUN 25,98 *** •
fL\Otf &!» WITSj ST^^*4^GM X^^^T 'JN'TS1 IT T^*>lL PT _ DftTR W$ _ ST LEGEND PT WITf . UHITS SI • LEGE» !
"Ikfcw1); :| <& ^jff 82 18.8 PCT Cp? "X K 1 8 FPH; THC ! 84 44. 4 PPH Ifl
l^V^ '*"*'—•# ~ • -T V ' ' ' '"'*•- -
il8" , '; — ' ---u . . ; ; ..,- JV . ^; !
: • ; . j ,
4-**= 1 DO fJRP 1 **=*•• UNIT fll '• *** STPPT*: flT .?g • -ZR • -1,^ i»*fFMt>g OT j ?0 : •?« : 2"L JI.IN ^S, 9fl *** j
LUX pl -Wfl- """^ ST : LiG9* PI ^ *IT^ ST ' L^GW X**^*^*" ^'T? 5T^>>ua»to PT MTp WITS ST , LEGED
Ir^'K* 2881 X 02X 82 .3 ! PCT | C02 ( : K 923 PF« THC -^ , M 185,3 PPH' !«.
S^* ' i «« RESET flVEROGE 29 38:8? 24 1115 . HH HLLff5 —I-*'»** ;
: *** (fSET flVKflGE 28.78:06 23 2» 6 PffM THC fG «* 1 ' i - :
*** RESET flVBWE 28:^8 M 22 16 PCT C(E RtG H | ' i
i ; *** RESET (WERflGE 29 38:81 21 T. 5 PCT 02 WG **» : i '
li^_^ „ . : — •; • • ! " • - , • !
0.
.«.**• LOG GRP 1 *** UNIT 01 *** STftPTS flT 20:28.31 **»= ENC-S RT ,20:28:31 1
K : ?CT cc: «3 8 8 PPM "THC
A/^i El_^TS ...WIT_S__iT. LEGO* II _ WTI} ...«1ITS_|T LEGE»_ PT. J'flTfl . _UNJTI_1L
^r\
*.t.+. LOG GRP 1 *•+•*• UNIT 01 *"** STftPTS RT 20."24. OS **» ENDb- RT 20:24.08 JUN 2"5, S& **•• »•
fT c«rfl...i.wn5_iT.... '.£.!•< .PJ_. WM.j.wiT;. r ..EXT PT. _MTB_.'JNITS,. r. LEGEX.
PPM
?CT
.:o:
K 8 8 FFtl
, c; i' , ; i
TK
W 2.1 Ptl
HO.
-------
h
f-H«
I ! ;
!
I I
I I
II
i
et
EI
RV
?,'
ME)
a EE
«:
9tU < >
cO
M
itm
n
-1
IMlMiltfl
U
j
:j
I*
«t:
i -•
:j
<
H
• )
iM ir
4' I • I •
•' • I i • •>
i M
6 f i
i«c
, \
*
JH
IK ui
P:-U
frt
i i
i. •
r
A
t
!
JT-
ae 28
•
•
t
•
t
-------
T;
M I'-j *-
,'--»- i.
-S.T-
fs:
±Si
—s-
A. -—
is:
e^
~E
flL
9
~"-- -.
-* »- « - ' i~4.. '/' » » f * 5 — * £-=» — '-> — -
- — 4- -, i ' • M , y-'" 'ff1 ^£ lit.; f 'r : —
f !/•-»• "-H. «* r? ' ' ' ' "Jj f ff' / -r - R K 7! '• \
i ^ r- \ i
' " r '_," '.^ \r
. / i •*--.« -«*.
__«5 I ' r r i * ' -' - - * - • •- r- i -
/ * . i ' / * T5 rt> •" " - / , « - «
fi' 3. ... ! [ .1 X ''«," ^ f
...•.•-.." 1 / ..--..:' st- a . . , J . - - -
U J k, • .v £
J L_U » £.iu.K-o.Ju .— : ,+
~KT
*B -^-^^.-^
•*\^**~' ^
tf
B ,
r \
a 1
I
i
•
^L L/
l
r ' '
/ i;
-' ;f , '-' B •
t, -~- » *•
f -- 3 1
-^•3-U1' • - -• ' N ' 3 '- -J J
* j. - ;•« j -_ -> ^ '
• i J
' ' -•» i
j - • - t-
-• S P ?i j ' • .. , W T- -- ? .
3 ij 3 ... j jf ^«
ul r jn ! ^. . *
. - .', rf 1 '
,; ... i
" * ' .
•• .* .'
-i—fr-
i i •
I j
•
[ '
^ l ' *
SL . „ .. ... ... -
- .,.„..
^7$
L f
•y
r— J
'Z /
t — ^/"
%
£k
*•
_ _ • - - -- -
«
"sr
SB
•5-
-------
i IX
; I • s
' I ^
f r
- . i
/ 3 • f
; /
'-"1 ' / " i
i
IV
l\
\ 1
' V^^A
rt
*.
O
w"
a
**\
\
S-.
&
--'-•/
•1
i
" A>
,
^|L
t
'
ai±f
" 8
S
•^t 3
-
tl
^ ( ']
f
r |V
1
'.
i
f.'
/ ...,^ . ^— '-S5'" '
i *"«"tgu^ff~ ' — =
-------
/: • \
3E
1 \
- •••' - • \ 1
I § S-- — -/
. 1 / r
"3J — » o V
iA *n
Sj '.'
p— • r-
J j; \
£ ^ 3-—
L_j 881— — 1 >
—Hsr
tfl
£
-B—*•
rfw ' '*
±
r
-SJ
-¥-
Si(^ T.
I
^^F
•-19--*
r^j^
-------
* ^ r -;•
i
; ' ! '
t : ; "r, .. •
'• ,.r Vf ' '
: .,_
/' "I -
s
--: =!^_-._- J^l\ =^^r^ 9-ff-, - - -
"i T .-» \ t
• * »
-
r-- -t
3 "
•
STT
. • ^
1 -i
-
j " * _j . .
i 1 . . .
• t *
/ j
i
, &T
------ . - - .
- - ~— •
- - J . -
. . . rs, .
£1
i _.
-------
... £.-.*_ i . Cfe
~"~ »?
_ i.
^-5-—--.—ss/w
-AV-
f
-JLa.1-
i - i T
it
-------
.- -& ^
ny
-------
I --- -— -_ -: "~~c! ""Jl~_""1". "r
- / ,. - - -
S—.».,,
3
X
W ~ « i _ .
-------
APPENDIX B
METHOD 23 LABORATORY ANALYTICAL DATA
-------
-------
LabData
Summary of Method 23 Analytical Results
Air Emissions Screening Test
Chemical Lime Company - Marble Falls, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Vertical Kiln Baghouse Inlet - Run M23-1-1
Congeners
DIOXINS:
2378 TCDD
Total TCDD
12378 PeCDD
Total PeCDD
123478 HxCDD
123678 HxCDD
123789 HxCDD
Total HxCDD
1234678 HpCDD
Total HpCDD
12346789 OCDD
OCDD+Totals PCDDs
Back Half
0.0146
1.247
0.0181
0.477
{0.0098}
0.0155
0.018
0.388
0.0301
0.0588
0.0364
2.2072
Catches, ng/sample
Front Half
{0.0025}
0.1092
{0.0034}
0.0744
0.0028
{0.00536}
0.0072
0.1384
0.0208
0.0376
0.02
0.3796
Total
{0.0171}
1.3562
{0.0215}
0.5514
{0.0126}
{0.0209}
0.0252
0.5264
0.0509
0.0964
0.0564
2.5868
FURANS:
2378 TCDF
Total TCDF
12378 PeCDF
23478 PeCDF
Total PeCDF
123478 HxCDF
123678 HxCDF
234678 HxCDF
123789 HxCDF
Total HxCDF
1234678 HpCDF
1 234789 HpCDF
Total HpCDF
12346789 OCDF
OCDF+Totals PCDFs
Total of Totals
0.17
9.696
0.109
0.134
2.391
0.129
0.048
0.0343
0.0096
0.460
0.0469
{0.0049}
0.0616
0.0066
12.6152
14.8224
0.0184
0.6276
0.0198
0.024
0.3208
0.0323
0.0132
0.0114
0.0031
0.1076
0.0215
{0.00232}
0.0244
{0.00308}
{1.0835}
{1.4631}
0.1884
10.3236
0.1288
0.158
2.7118
0.1613
0.0612
0.0457
0.0127
0.5676
0.0684
{0.00722}
0.0860
{0.00968}
{13.6987}
{16.2855}
{ } Estimated Maximum Possible Concentration. EMPC values are included in totals.
ooo
-------
PARADIGM ANALYTICAL LABORATORIES, INC.
2627 Northchase Parkway S.E.
Wilmington, North Carolina 28405
(910) 350-1903
Fax (910) 350-1557
24 July 1998
Michael Maret
Pacific Environmental Services, Inc.
5001 S. Miami Blvd
Research Triangle Park, NC 27709-2077
Contract- 68D70002
Sub-Contract: R012-002
Work Assignment: 1-007
Subject: Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans Measurements (PAL Project No. L-1070'i
Dear Mike;
Enclosed are the final results for the flue gas samples under your Project R012.003 Texas Lime
Kiln. As you requested, we divided up the set of 17 samples into three separate projects (L-1070, L-1071,
and L-1072). This report covers the first set under PAL L-1070. The analytical procedures conformed or
exceeded the ones described in Method 23 using isotope-dilution high-resolution gas chromatography
combined with high-resolution mass spectrometry. The Level n reporting format is described on the next
page. A general summary of the analytical results is presented in Table 1. Tables 2 and 3 summarize the
results for the front-halve of the four inlet samples, expressed in absolute amount "ng" per sample,
and in relative concentrations "part-per-trillion" based on the weight of dust collected. Figures land
2 show the TEQs and total homologues corresponding to Table 1 data.
No. of Samples Received: 4
No. of Samples Analyzed: 5
No. of Lab. Method Blanks: 1
Your Project Number: R012.003 Texas Lime Kiln
PAL Project No.: L-1070
Remarks:
• Data meet QA/QC requirements with the exception of sample M23-I-1 for which the sampling
standards recoveries for four out of five standards are lower than the 70 percent limit. No simple
explanation can be offered here for this observation.
• The FH of sample M23-I-1 contained 15.6 g of dust, and was processed as a separate sample. The
results are reported in two ways:
a) Absolute amount in "ng" per sample,
b) Relative concentration in parts-per-trillion (ppt) based on the weight of dust.
• No analytical difficulties to be reported.
We wanted to thank you for the opportunity to serve you. Please, feel free to contact us if you
have questions or should you need additional technical support.
Sincerely,
Yves Tondeur, Ph.D.
TOO O
North Carolina Wastewater Certification #481
-------
Project No. R012.003; Project Name: US EPA Lime Kiln Screening, Texas Lime;
Sample and Project Identifications.
PES Sample ID
PAL Sample ED
PAL Project No.
M23-I-1
M23-O-1
M23-FB-1
M23-RB
1070-1
1070-2
1070-3
1070-4
M23-I-1-FH (DUST & FILTER) 1070-5
M23-I-2 1071-1
M23-O-2 1071-2
M23-FB-2 1071-3
M23-I-2-FH (DUST & FILTER) 1071-4
M23-I-3 1072-1
M23-0-3 1072-2
M23-FB-3 1072-3
M23-I-3-FH (DUST & FILTER) 1072-7
M23-I-4 1072-4
M23-O-4 1072-5
M23-FB-4 1072-6
M23-I-4-FH (DUST & FILTER) 1072-8
L-1070
L-1070
L-1070
L-1070
T-1070
L-1071
L-1071
L-1071
1-1071
L-1072
L-1072
L-1072
L-1072
L-1072
L-1072
L-1072
L-1072
Level II Report
Section 1: Cover Letter, contains a brief description of the project, the client and PAL Project
Numbers, the number and type of samples, the methodology used to process the
samples, QC remarks where any analytical difficulties are discussed and the impact on
the quality of the data presented, a summary table with the analyte concentrations,
detection limits, the client sample identification numbers, units to report the
concentrations, and a graphical representation of the TEQs and totals.
Section 2: Project Synopsis, contains the Sample Tracking & Management Forms,
Communications Form, any correspondence, chain-of-custody and the last page is
always a copy of the sample injection log(s). This section is designed to help the
laboratory and the data reviewer with an overall view of the entire analytical
procedure, the initials and dates of who did what when on which sample. Spiking
solution IDs are recorded along with the batch numbers of the supplies and reagents
used.
Section 3: Analytical Results, contains the sample results topsheets (one set of two per sample),
the raw data (i.e., the selected ion current profiles, the areas, heights, ion abundance
ratios, signal-to-noise ratios, and retention times of the GC peaks).
Section 4: System Performance, contains the documentation on the GC/MS system performance.
In particular, the mass resolution checks, GC column performance checks, initial and
continuing calibration summary tables and, when applicable, associated raw data for
both column types.
f' 002
-------
Table 1: Analyte Concentrations in "ng" per Sampling Train
(FH of the inlet sample shown in Tables 2 and 3).
•*^#^ '^"^^^^^^^^^pjl^^B
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF"
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fsb
TEQ (ND=0)C
TEQ (ND=l/2)d
TEQ EMPC(ND=0)e
TEQ EMPC (ND=l/2)
[0.00094]
[0.00052]
(0.001)
(0.001)
(0.001)
0.003
0.009
[0.00104]
(0.000)
(0.000)
[0.00112]
0.001
(0.000)
(0.000)
0.003
(0.001)
0.002
[0.0009]
[0.0004]
[0.0016]
0.003
0.001
(0.000)
0.000
0.003
0.019
0.000
0.001
0.002
0.002
•1
0.015
0.018
[0.00976]
0.016
0.018
0.030
0.036
0.170
0.109
0.134
0.129
0.048
0.034
0.010
0.047
[0.00492]
0.007
1.247
0.477
0.388
0.059
9.696
2.391
0.460
0.062
14.822
0.139
0.139
0.140
0.140
|if|||9Hj
BB
0.012
0.009
0.003
0.005
0.004
0.007
0.024
0.160
0.087
0.086
0.047
0.017
0.011
0.004
0.017
0.002
0.010
1.102
0.264
0.116
0.013
9.120
1.590
0.166
0.023
12.428
0.090
0.090
0.090
0.090
H
[0.00095]
(0.000)
(0.001)
[0.00092]
[0.00088]
0.004
0.016
0.003
(0.000)
(0.000)
0.001
[0.00044]
(0.000)
(0.000)
0.007
(0.001)
0.006
0.002
0.002
0.004
0.008
0.011
[0.0016]
0.002
0.007
0.058
0.001
0.001
0.002
0.002
M^^^^^^BIwH
0.001
(0.000)
(0.001)
[0.00096]
0.001
0.003
0.010
(0.001)
(0.000)
(0.000)
0.001
(0.000)
(0.000)
(0.000)
0.003
(0.001)
0.003
0.001
(0.000)
0.002
0.003
(0.001)
(0.000)
0.001
0.003
0.023
0.001
0.002
0.002
0.002
a) Result obtained from the DB-225 analysis.
b) Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dibenzofurans.
c) TEQ computed using ITEF and setting non detected analytes with a "Zero" concentration.
d) TEQ computed using ITEF and setting non detected analytes with a concentration half the
calculated detection limit.
e) TEQ computed using ITEF and setting the concentration of EMPC analytes to the EMPC value.
NOTE:
( ) = ND using DL value.
[ ] = EMPC value.
06 AUG 98 Revision
-------
Table 2: Analyte Concentrations in "ng" per Front-Half Sampling Train (i.e., filter and dust) for aJl runs.
2,3,-7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF"
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fs"
TEQ (ND=0)C
TEQ (ND=l/2)d
TEQ EMPC(ND=0)'
TEQ EMPC (ND=l/2)
mmmimmam
E9HBnn|HKg5SH
^3sR9flH|H^HBEiH^^H
Bp^B^HKgM^^^^^BBB^^^^^B
[0.0025]
[0.0034]
0.0028
[0.00536]
0.0072
0.0208
0.0200
0.0184
0.0198
0.0240
0.0323
0.0132
0.0114
0.0031
0.0215
[0.00232]
[0.00308]
0.1092
0.0744
0.1384
0.0376
0.6276
0.3208
0.1076
0.0244
1.4600
0.0220
0.0230
0.0270
0.0270
[0.00156]
(0.0003)
(0.0007)
0.0010
0.0016
0.0028
0.0060
0.0180
0.0184
0.0124
0.0102
0.0066
[0.00376]
(0.0008)
0.0061
[0.00176]
(0.0008)
0.0348
0.0060
0.0024
0.0028
0.3548
0.1644
0.0348
0.0092
0.6152
0.0110
0.0110
0.0130
0.0130
••
[0.00099]
(0.0003)
(0.0005)
(0.0004)
[0.00088]
[0.00168]
0.0051
[0.00124]
(0.0004)
[0.00064]
[0.0008]
[0.00032]
(0.0003)
(0.0003)
0.0006
(0.0006)
(0.0006)
[0.003]
(0.0003)
0.0016
0.0008
[0.001]
[0.001]
[0.001]
0.0008
0.0083
0.0000
0.0010
0.0020
0.0020
••••••BBjraHBBHI
[0.00108]
(0.0004)
(0.0007)
(0.0005)
[0.00108]
0.0018
0.0046
0.0126
[0.0044]
0.0052
0.0024
[0.00084]
(0.0004)
(0.0004)
0.0012
(0.0006)
(0.0008)
0.0012
[0.002]
0.0056
0.0016
0.0948
0.0280
0.0040
0.0012
0.1410
0.0040
0.0050
0.0060
0.0060
a) Result obtained from the DB-225 analysis.
b) Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dibenzofurans.
c) TEQ computed using ITEF and setting non detected analytes with a "Zero" concentration.
d) TEQ computed using ITEF and setting non detected analytes with a concentration half the
calculated detection limit
e) TEQ computed using ITEF and setting the concentration of EMPC analytes to the EMPC value.
NOTE;
() = ND using DL value.
[ ] = EMPC value.
06 AUG 98 Revision
-------
Table 3: Analyte Concentrations in "parts-per-trillion" for the Front-Half Sampling Trains (i.e., filter and
dust).
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF*
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fs"
TEQ (ND=0)C
TEQ (ND=l/2)d
TEQ EMPC(ND=0)e
TEQ EMPC (ND=l/2)
jswtmsMiam^^m
mntSnmwmtotNlfm
gflHE&HMaMjaiBSflj^^^R
[0.16055]
[0.21809]
0.180
[0.34381]
0.464
1.332
1.280
1.178
1.270
1.539
2.073
0.849
0.731
0.198
1.380
[0.14881]
[0.19756]
7.004
4.772
8.877
2.412
40.257
20.577
6.902
1.565
93.647
1.429
1.457
1.735
1.735
BBBi
IBi
[0.04808]
(0.009)
(0.021)
0.030
0.049
0.085
0.186
0.553
0.568
0.382
0.314
0.204
[0.11576]
(0.024)
0.187
[0.05419]
(0.026)
1.071
0.185
0.074
0.086
10.924
5.062
1.071
0.283
18.942
0.337
0.352
0.397
0.402
mu^mat
IBR
[0.07707]
(0.026)
(0.038)
(0.027)
[0.06843]
[0.13064]
0.395
[0.09642]
(0.031)
[0.04977]
[0.06221]
[0.02488]
(0.021)
(0.025)
0.050
(0.049)
(0.045)
[0.249]
(0.026)
0.124
0.062
[0.093]
[0.062]
[0.093]
0.062
0.644
0.001
0.042
0.129
0.142
«__-|
BB
PBBB8BBI
[0.03639]
(0.014)
(0.023)
(0.016)
[0.03645]
0.059
0.154
0.424
[0.1485]
0.176
0.080
[0.02835]
(0.013)
(0.015)
0.042
(0.020)
(0.025)
0.041
[0.054]
0.189
0.054
3.199
0.945
0.135
0.041
4.757
0.139
0.156
0.190
0.197
a) Result obtained from the DB-225 analysis.
b) Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dibenzofurans.
c) TEQ computed using ITEF and setting non detected analytes with a "Zero" concentration.
d) TEQ computed using ITEF and setting non detected analytes with a concentration half the
calculated detection limit.
e) TEQ computed using ITEF and setting the concentration of EMPC analytes to the EMPC value.
NOTE:
() = ND using DL value.
[ ] = EMPC value.
06 AUG 98 Revision
-------
TEQ Summary Results
0.140 -f
0.120 -'
0.100 -'
0.080 -'
Amount in ng per train
0.060 -'
0.040 -'
0.020 -'
0.000
LMB1 M23-I-1 M23-O-1 M23-FB-1 M23-RB-1
R023-002 R023-002 R023-002 R023-002 R023-002
Sample
Figure 1: Graphical representation of the TEQs
OTEQ (ND=0)C
HTEQ (ND=1/2)d
0TEQ EMPC(ND=0)e
BTEQ EMPC (ND=1/2)
OCG
-------
Total PCDD/Fs Summary
16.000 -r
Amount in ng per train 8.000 -
6.000 -
2.000 -
0.000
LMB1
R023-002
M23-I-1
R023-002
M23-O-1
R023-002
Sample
M23-FB-1
R023-002
M23-RB-1
R023-002
Figure 2: Graphical representation of the totals (terra- through octachlorinated congeners)
r ccv
-------
PAL Project No.: L-1070
12. -
Section 2
Project Overview
&
Sample Tracking & Communication Forms
o
o
00
-------
Project Overview for the Analysis of Polychlorinated Dibenzo-/i-Dioxins & Dibenzofurans
No. of Field Samples: H_
No. of Billable Samples: _Y -/* /
PAL Project No.: L-1070
Date Received: 08 JUL 98
Due Date: 29 JUL 98
Client Project ID: R012.003 TX
LIME KILN
o
o
«fv # '*?T • . >yf
.^j&o*X\ >*
Concentration sopsp-N-02
Spike Profile
ES: 23
SS: 23
JS: 23
4 ng (1-2)
4 ng (1-1)
2ng(l)/x
tethM23
XAD
Sampling Modules Prep. Project No.:^~
Add M23-ES-^^fTSOt- H
Vol.: 40 n L; Cone.: 0.1 ng/ n L
SOPSP-S-OJ
Tridecane batch No.:
Thimbles batch No.:
Toluene batch No.:
Pre-Soxhlet:
Others:
Soxhlet 16 H Toluene
SOPSP-E-01
Concentration & Solvent Exchange
SOPSP-N-01
Split Extract
I
SOPSP-D-01
Hexane batch No.:
CH2C12 batch No.:
Silica batch No.:
Alumina batch No.:
PCU-F batch No.:
NajSO4 batch No.:
/J
96
SOPSP-D-01
Special Instructions:
fatd £6
Fractionation SOPSP-U-OS
Concentration
J
$t> 7-
Add M23-JS-W7fc$Qr-_
Vol.: 20 \i L; Cone.; 0.1 ng/ |i L
SOPSP-N-01
SOPSP-S-01
HRGC - HRMS I sQPSP-A-Ol
-------
Project Overview for the Analysis of Polychlorinated Dibenzo-/>-Dioxins & Dibenzofurans
No. of Field Samples: _
No. of Billable Samples:
o
p
O
Special Instructions:
^f^v \0'±o-$-l
PAL Project No.: L-1070
tod 23
SOPSP-A-01
Date Received: 08 JUL 98
Due Date: 29 JUL 98
Client Project ID: R012.003 TX
LIME KILN
"••"»!"""
dtfi£ t*
Method
Sample Extract
Fortified with JSJ
Reporting Level; I ( H) III 11+ III+
T
SOPRP-G-01
Data Package
Assembly
SOPSH-A-01
Archive Data
SOPRP-A-01
SOPSH-D-01
1
i
8A.
r
ro
la
k
M.
^
^
CrC
^
r PH *•
Calibration
^
T>
LJ
1 L-l fc
laukj ^
1
oalllplcS ~
J
p PI
i^oncai
81
.
.
>M
ro
Li5
•
Instrument ID: HlU'^')!
HP-5MS batch No.:
DB225 batch No.:
ICal:
ConCal:
-,
t?
-------
Sample Tracking for the Analysis of Polychlorinated Dibenzo-/i-Dioxins & Dibenzofurans
No. of Field Samples:
PAL Project No.: L-1070
Date Received: 08 JUL 98
Due Date: 29 JUL 98
Client Project ID: R012.003 TX
LIME KILN
-------
o
Communication Exchanges Form for the Analysis of PCDD/PCDFs
No. of Field Samples:
Page _/_ of _/_
PAL Project No.: L-1070
.1$ t**.~MAttUn>*i »•«* ^
Date Received: 08 JUL 98
Due Date: 29 JUL 98
Client Project ID: R012.003 TX
LIME KILN
id
*1,. ft
.^^ ^
l»^^^
-------
Contract No.: 68D70002
Subcontract No.: R012-002
Work Assignment: 1-007
08 July 1998
Michael Maret
Pacific Environmental Services, Inc.
5001 S. Miami Blvd
P.O. Box 12077
Research Triangle Park, NC 27709-2077
Reference: Project No. R012.003; Project Name: US EPA Lime Kiln Screening, Texas Lime
Subject: Inlet Samples Heavy Particulate Load
Dear Mike:
The thirteen Method 23 samples were received in good condition and no discrepancies were noted
between the sample labels and the chain-of-custody. As we discussed, we organized the samples into three
separate projects, each assigned a specific PAL Project No. Table 1 summarizes the sample identification
and their associated PAL Project Nos.
The object of this letter is to bring to your attention the following concerns. Following a
description of the issues, possible solutions are discussed for your consideration.
The issue pertains to the "inlet" samples. Each of the four inlet samples shows relatively high
levels of dust (particulates). Depending on the sample, we estimated the amount of solids to range from
10 g to 35 g.
The first concern is a practical one. Indeed, the capacity of a normal Soxhlet extraction set up is
exceeded if we want to combine the front- and back-halves of the sampling train (FH & BH). Two separate
extractions would be required for each of the inlet samples. This leads to the following two options:
1. Combine the two extracts and process the FH and BH as a single sample.
> The question remains as to where the Method 23 internal standards are added.
2. Treat the FH and BH as two separate samples.
> Each sample receives a normal dose of Method 23 internal standards before the extraction.
> This option resembles Method 0023A's and results in four additional samples.
The second concern is related to generating "meaningful" results for your client's study.
Reporting PCDD/F results in "ng /dscm" in the flue gas in such circumstances — where particulate levels
are so high - may be of no value to your client. We recommend Option 2 above and propose to report the
analytical results for the inlet samples in two ways: a) absolute amount (e.g., ng per FH) of the PCDD/Fs
and, b) relative concentrations of PCDD/Fs expressed in parts-per-trillion (ppt) or picogram per gram of
"dust" recovered in the inlet sample. Note that this approach can only be achieved if Option 2 is selected,
which amounts to treating the inlet FH as a solid sample rather than as a flue gas sample.
Please, let us know if you have questions and we are waiting for a decision on how you would like
us to handle these particular inlet samples. I can be reached at 910-350-2839.
Sincerely,
t?
fvesTondeur, Ph.D.
-------
Table 1: Project No. R012.003; Project Name: US EPA Lime Kiln Screening, Texas Lime;
Sample and Project Identification.
PES Sample ID
PAL Sample ID
PAL Project No.
M23-I-1
M23-0-1
M23-FB-1
M23-RB
1070-1
' 1070-2
1070-3
' 1070^4
L-1070
L-1070
M23-I-2
M23-O-2
M23-FB-2
M23-I-3
M23-0-3
M23-FB-3
M23-I-4
M23-O-4
M23-FB-4
1071-1
1071-2
1071-3
1072-1
1072-2
1072-3
1072-4
1072-5
1072-6
L-1071
L-1071
L-1071
L-1072
L-1072
L-1072
L-1072
L-1072
L-1072
L-1072
014
-------
PACIF1C ENVIRONMENTAL SERVICES, INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Chain of Custody Record
7/7/98
Uk
Page 1 of 3 Pages
-------
ENVIRONMENTAL SERVICES, INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Chain of Custody Record
Project Num project Name
R012.003
US EPA Lime Kiln Screening - Texas Lime
Samplers:
Abemathy, Gay, Maret, O.D Holzschuh, Siegal, Stewart
Date
Time
Sample Description
Analysis Requested
Remarks
6/25/98
6/28/98
6/28/98
6/28/98
6/28/98
6/30/98
6/30/98
6/30/98
6/30/98
7/1/98
7/1/98
7/1/98
7/1/98
6/25/98
1518
1414
1414
1414
1414
M23-O-4-1
M23-O-4-2
M23-O-4-3
M23-O-4-4
M23-FB-1-1
Container No. 4 - XAD Sorbent Resin
ntainer No. 1 - Filter
Container No. 2 - Train Acetone Rinse
ontainer No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
ontainer No. 1 - Filter
ontainer No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
mtainer No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
- 2.
FIELD BLANK 1
6/25/98
M23-FB-1-2
Container No. 2 - Train Acetone Rinse
FIELD BLANK 1
- J
6/25/98
M23-FB-1-3
Container No. 3 - Train Toluene Rinse
FIELD BLANK 1
6/25/98
6/27/98
6/27/98
M23-FB-1-4
Container No. 4 - XAD Sorbent Resin
mtainer No. 1 - Filter
liner No. 2 - Train Acetone Rinse
FIELD BLANK 1 //?»,?- 3
FIELD BLANK 2
FIELD BLANK 2
7/7/98
Page 2 of 3 Pages
-------
PACIFIC ENVIRONMENTAL SERVICES, INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Chain of Custody Record
'reject Num
R012.003
Project Name
US EPA Lime Kiln Screening - Texas Lime
Samplers:
Abemathy, Gay, Maret, D.D Holzschuh, Siegal, Stewart
Date
6/27/98
6/27/98
6/30/98
6/30/98
6/30/98
6/30/98
7/1/98
7/1/98
7/1/98
7/1/98
7/7/98
7/7/98
7/7/98
7/7/98
Time
Field Sample ID
Sample Description
Analysis Requested
^•••••••••MLContainer No. 3 - Train Toluene Rinse •• L *
^^^L^^^^^^Hn Container No. 4 - XAD Sorbent Resin I ^^B •
mam^
Container No. 1 - Filter
•
«
•
•JL^HBL^L^L^HPrContainer No. 2 - Train Acetone Rinse {^•V '
^^•^•^•^•^•BContainer No. 3 - Train Toluene Rinse Utt •
aamm
M23-FB-4-2
M23-FB-4-3
M23-FB-4^
M23-RB-1
M23-RB-2
M23-RB-3
M23-RB-4
Relinquished by: (Signature)
/)
RSDrbufsfwa by: ffinnature)
*~-^yJ*-y /up wMer
Date/Time
Date/Time
| \&^
bontainer No. 4 - XAD Sorbent Resin 4flE *
Container No. 1 - Filter
•
Container No. 2 - Train Acetone Rinse lAH
•
I * '
Container No. 3 - Train Toluene Rinse ^^Epj *
Container No. 4 - XAD Sorbent Resin *
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No, 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Received by: (Signature)
Received tor lab by: (Signature)
^ ""
=^^Tro^z»ew»#- otMi-W
•
•
•
•
EH •
•
-
•
Relinquished by: (Signature)
Date/Time
Remarks
FIELD BLANK 2 /^ ?/-3
FIELD BLANK 2 /0J/' 2
FIELD BLANK 3 i&Z -_?
FIELD BLANK 3 /^2-J
FIELD BLANK 3 /^2-J
FIELD BLANK 3 f^Z^3,
FIELD BLANK 4 //?7/^"
FIELD BLANK 4 /0fef
FIELD BLANK 4 fO?2'6*
FIELD BLANK 4 /O^Z ^T
REAGENT BLANK fafr-tj
REAGENT BLANK /^ --/
REAGENT BLANK /^>^ ^
Received by: (Signature)
REMARKS
7/7/98
Page 3 of 3 Pages
-------
•5
P
GO
Preparation of the XAD-2 Resin for Method 23 Sampling Session
No. Sampling Modules: 15
No. Filters: 25
PAL Project No.: L-1043
PES.
Order Received: 04 JUN 98
Due Date: 22 JUN 98
Client Project ID: T\ Lime Kilns
P.O. No.:
Ph.: (512)-693-5122
to ensure proper handling of the samples, please return this form with the field samples to:
Paradigm Analytical Labs
2627 Northchase Pkwy S.E.
Wilmington, NC 28405
Thank you for your cooperation. Our phone number is 910-350-2839. (Fax: 910-350-1557)
f a.
,
ethod2$ Sampling
Mailing Address:
Special Instructions:
Best western
Attn.: Mike Maret
1403 Hiway 281 N
Marble Falls, TX 78654-4505
Ph.: (512)693-5122
Note: An amount of resin equal to one module was fortified as
described above, retained by the laboratory and kept at 4°C. ^ — •
Upon return of the field samples, this aliquot will be^ '
used to process the Laboratory Method Blanjs^-''"*'^
Filters
Batch No.:
Size:
83 mm diameter
Type: CGlassFibej) Quartz
XAD-2 Resin Modules
3-7
QC sample.
Batch No.:
Type: Ball/Socket (6-Ring Ball/Socket^ Screw Cap
Add M23-SS-M*M-SOz.- K
Vol.: 40 n L ; Cone.: 0.1 ng/ n L
Preparation Date:
[Two-week holding time]
Analyst:
-------
Paradigm
Sample Receipt Checklist
1027
Client:
Client Project ID: R012.003
Lab Project: L1070
No
1
/
2 V
3
n
4 (
5
£
i
8 /
i
9
Check
YES/JJpX
'-^ESjp'NO
oXES-Y^no— v
YES (/NOx
YES A NOx
YEijxy NU
A-"c
; YES^ / Nu
YES / NO
YES / NO
^^
/ YE?^/ Nn
YES /NO ^x
Description
Shipped
Hand Delivered
COC Present on Receipt
Additional Transmittal Form
COC Tape on Shipping Container
Samples Intact
Temperature
umcien~ Jdiujjj.t; dUDmirteci
Nc3__ELreservative Noted
/^N/A J^ione recommeded)
Rpceiv^d within Holding time
N/A
1
^Discrepancies between COC & Label
N/A (no COC Received)
Notes
Note : Use this form to record, comment and report any damages, observations (be specific) of
signficance or potentially important for the resolution of downstream problems.
Additional Comments:
Inspected & Logged in by
Date:
Time:
019
-------
Paradigm Analytical Ub»
Login Report (h*01)
Jut. 08, 1998
10:01 AM
Login Number: L1070
Account: 1027 Pacific Environmental Services,
Project: R012.003 Texas Lime Kiln Page: 1 of 1
Laboratory
Sample Number
L1 070-1
StackAir -fr M0010
L1 070-2
L1 070-3
L1 070-4
Client
Sample
M23-I-1
0270>AS j^
M23-O-1
M23-FB-1
M23-RB-1
Collect
Number Date
25-JUN-98
^jHold: 09-JUL-98
25-JUN-98
25-JUN-98
25-JUN-98
Receive
Date
08-JUL-98
08-JUL-98
08-JUL-98
08-JUL-98
Due
PR Date
29-JUL-98
29-JUL-98
29-JUL-98
29-JUL-98
Comments
^ f~tf*
1
1 XT
\y otoot f f
Date :
— CZQ
-------
Paradigm Analytical Labs
Login Report (In01)
Jul. 13, 1998
11:42 AM
Login Number: L1070
Account: 1027
Project:
R012.003
Pacific Environmental Services, It
Texas Lime Kiln Page: 1 of 1
Laboratory
Sample Number
Client Collect Receive
Sample Number Date Date
PR
Due
Date
Comments
L1070-1
M23-I-1
25-JUN-98
08-JUL-98
StackAir P 23-TO
StackAir C 8290-TO-FT
StackAir C 8290-TO-SL
Hold:
Hold: 02-JUL-98 4 oz. Glass
Hold: 02-JUL-98 4 oz. Glass
29-JUL-98
1 Bottles
1 Bottles
L1070-2
M23-O-1
25-JUN-98
08-JUL-98
StackAir P 23-TO
StackAir C 8290-TO-FT
StackAir C 8290-TO-SL
Hold:
Hold: 02-JUL-98 4 oz. Glass
Hold: 02-JUL-98 4 oz. Glass
29-JUL-98
1 Bottles
1 Bottles
L1070-3
M23-FB-1
25-JUN-98
08-JUL-98
StackAir P 23-TO
StackAir C 8290-TO-FT
StackAir C 8290-TO-SL
Hold:
Hold: 02-JUL-98 4 oz. Glass
Hold: 02-JUL-98 4 oz. Glass
29-JUL-98
1 Bottles
1 Bottles
L1070-4
M23-RB-1
25-JUN-98
08-JUL-98
StackAir P 23-TO
StackAir C 8290-TO-FT
StackAir C 8290-TO-SL
Hold:
Hold: 02-JUL-98 4 oz. Glass
Hold: 02-JUL-98 4 oz. Glass
29-JUL-98
1 Bottles
1 Bottles
Signature: vU4 iVxJL
Date:
JC21
-------
OPUSquan 20-JUL-1998 Paqe 1
Paradigm Sample Log
Data File S Sample ID .
\/
a!7ju!98b 1 DB-5 Retchk ' I
al7ju!98b 2 FE CS3 • v
a!7ju!98b 3 098-M23 xl/2
a!7ju!98b 4 598-M23 xl/2
al7ju!98b 5 SB
a!7ju!98b 6 fHUKfiSiSf •
a!7ju!98b 7 1072-0 xl/2
al7ju!98b 8 1072-2 xl/2
a!7ju!98b 9 1072-3 xl/2
al7jul98b 14
a!7ju!98b 15 " BE CS3 * — •V^/
Page 1 of 1
Acq. Date Time
17-JUL-98 16:45:56^£r^-
17-J0L-98 17:31:00 ^^
17-JUL-98 18:16:05
17-JUL-98 19:01:10
17-JUL-98 19:46:16
17-JUL-98 20:31:20
17-JUL-98 21:16:26
17-JUL-98 22:01:31
17-JUL-98 22:46:36
17-JUL-98 23:31:42
18-JUL-98 00:16:48
18-JUL-98 01:01:55
18-JUL-98 01:47:01
18-JUL-98 02:32:07
18-JUL-98 03:17:11'^
-------
'V
OPUSquan 22-JUL-1998
Paradigm Sample
Data File
A21JUL98A
A21JUL98B
A21JUL98C
A21JUL98C
A21JUL98C
A21JUL98D
A21JUL98E
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A210UL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
' A21JUL98F
Log
S
1
1
1
2
3
1
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Page 1
Sample ID
Sand QC
B-225 Retchk
B-225 Retchk
CS3
sb
B-225 Retchk
B-225 Retchk
B-225 Retchk
CS3
sb
mmnHRHff —
T^^SBSRwiPBpis^
1072-2 xl/2
1068-1 xl/2
1069-1 xl/2
1069-2 xl/2
1069-3 xl/2
1072-1 xl/2
1071-2 xl/2
1072-4 xl/2
1072-5 xl/2
1072-8 xl/2
CS3
Acq. Date
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
22-JUL-98
22-JUL-98
22-JUL-98
22-JUL-98
22-JUL-98
22-JUL-98
22-JUL-98
22-JUL-98
22-JUL-98
22-JUL-98
Page 1 of 1
Time
11:08:47
16:44:01
17:52:30
18:29:30
19:06:30
19:59:35
20:01:06
20:06:58 <==~
20:43:56 4r"
21:20:54
21:57:56
22:34:59
23:12:05
23:49:03
00:26:13
01:03:12
01:40:19
02:17:20
02:54:34
03:31:35
04:08:35
04:46:12
05:23:13
06:01:17 £-
CO
-------
Section 3
Analytical Results
Documentation for the Analysis
of
Polychlorinated Dibenzo-/;-Dioxins & Dibenzofurans
"»
'•\
-------
Paradigm Analytical Labs
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total IfctCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
- .9&'--V%
EMPC
EMPC
ND
ND
ND
0.0032
0.0093
EMPC
ND
NDr£;.?A
EMPC
0.0006
ND
'ND ;\,
0.0027
ND
0.0021
ND
ND
ND
0.0032
0.0012
ND
0.0004
0.0028
0.0001
0.0007
0.0004
0.0007
0.0006
0.0006
0.0003
0.0008
0.0006
0.0004
0.0004
0.0003
0.0003
0.0003
Q.oqo4
0.0006
0.0007
0.0007
0.0004
0.0003
0.0006
0.0003
0.0006
0.0004
0.0003
0.0006
•pratfc .-•
:;;-}.-«OT;^
0.0009
0.0010
0.0011
0.0009
0.0004
0.0016
0.0056
0.0024
0.0020
0.0015
0.0018
'•& ;JHC._ -\
28:28
i-r-3S3?F-|
34:42
34:45
34:59
37:10
40:03
27:29
.''•-,32:^
34:11
34:15
34:38
36:22
40:10
* ",-
;;-.»SI : =
1.25
"ill
;5J^3
2.76
1.14
0.86
1.06
f-;;3.69
1.63
; 1.3
0.95
1.00
0.84
Qualifier
,-*
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
tf"*V^]1 A/*£^nn T^O^A.
v/ouecuon uaie.
,Re«!JptJ>^te:,._; , '; ,,,^:
Extraction Date:
Analysis Date: , *
Texas Lime Kiln
LMB
L1070
1070-0
, ^S'A1' ' "-'' : ~ ~ .
f *%<' .'--W" ^ ' ^ At.'
•--„.. • ,ll^,i);t;4r^;y.>,-4«i£;v?p-'';
-..^•-•'tjSfc^^H.-": ft.-p-
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
„ -n - f_Llii1_'
- Kfiten86;s,
^•(&5gwi^SM:^ . -
•;;; EMCoii^r '
Air
- ' 1
0.0 °,
al7jul98b-6
« 1 o * snoL i
8l7jul98b-l
Al7jul98b-2
al7ju!98b-15
' ;jn8290-s23j0';
1/2
C2
-------
Method 23
Paradigm Analytical Labs
Analytical Data Summary Sheet
Labeled
Standard s:^r%r
Extraction Standards
13C12-2,3,7,8-TCDD
13Cl2-U,3,7,8-PeCDD
*C12-1, 2,3,6,1, S-HxCDD
13Cl2-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2,3J,8-TCDF
I3C,2-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
I3Cu-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
"Cirl,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13C12-1,2,3,4,7,8,9-HPCDF
Injection Standards
13C12-1,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
•
4
4
4
4
8
4
4
4
4
4 '
4
4
4
4
Measured
3.79
-;;'}4:d8'rCl
3.85
3.67
6.90
3.65
3.53
4.03
2.98
4,17
4.38
4.12
3.83
3.91
percent °
^Recovery;
{*/.)
94.6
101:9;
96.3
91.8
86.2
91.4
88.1
100.8
74.5
104.4
109.4
103.0
95.8
97.7
tlg|:|
28:27
32:37
34:45
37:10
40:01
27:25
31:56
34:15
36:21
28:28
32:24
34:42
34:10
37:31
28:09
34:58
>;'Ratio ,
0.78
1.56
1.26
1.05
0.88
0.78
1.57
0.52
0.44
1.57
1.25
0.52
0.44
0.78
1.24
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Texas Lime Kiln
LMB • •?•;*./• \
Lld70 9 ,';•'•-' '.' '';*l?-
IQJQ-Q ""•„' - .;,-i
-••."> . '• "'" ;•''•.&
, , NA. . - - -i>if_ •.,
'"' •'• '-NJi":" " - '; "----''
10-JaI-98
17-Ju|-S8 , k
Sample Information
Matrix:,,
;; Wei^i^VoIurae:
Mo&ttoB/14nds:
•;';", -. -.-^^A^:'_ _.. .
:y^;\;\,'";;^'V' '
/-%' -Fiileaante:,., ••
Recite
-'..'' •" "'.'Bei^p^tM:
BndpoaCal:
'-; , \r3n^®&.:
Air
1
0.0
al7ju!98b-6
al7ju!98b-l
al7jul98b-2
al7ju!98b-15
',*#>&&&
Reviewed by:
%
Date Reviewed:
2/2
r
026
-------
O
OPUSquan 20-JUL-1998
Filename al7ju!98b
Sample 6
Acquired 17-JUL-98 20
Processed 20-JUL-98 09
Sample ID 1070-0 xl/2
Page 1
:31:20
:03:15
Cal Table m8290-23-071798
Results Table M8290-23-071798B
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
SS
Name;
2,3,7,8-TCDD; 3
1,2,3,7,8-PeCDD; 4
1,2,3,4,7,8-HxCDD; 4
1,2,3,6,7,8-HxCDD; 8
1,2,3,7,8,9-HxCDD; 6
1,2,3,4,6,7,8-HpCDD; 1
OCDD; 4
2,3,7,8-TCDF; 1
1, 2,3,7, 8-PeCDF;
2,3,4,7,8-PeCDF; 8
1,2,3,4,7,8-HxCDF; 1
1,2,3,6,7,8-HxCDF; 7
2,3,4, 6,7, 8-HxCDF; 1
1,2,3,7,8,9-HxCDF;
1,2,3,4,6,7,8-HpCDF; 1
1,2,3,4,7,8,9-HpCDF;
OCDF; 1
13C-2,3,7,8-TCDD; 4
13C-l,2,3,7,8-PeCDD; 3
13C-1,2,3, 6,7,8-HxCDD; 3
13C-l,2,3,4,6,7,8-HpCDD; 2
13C-OCDD; 3
13C-2,3,7,8-TCDF; 5
13C-l,2,3,7,8-PeCDF; 4
13C-l,2,3,6,7,8-HxCDF; 4
13C-l,2,3,4,6,7,8-HpCDF; 1
13C-1,2,3,4-TCDD; 4
13C-l,2,3,7,8,9-HxCDD; 3
37Cl-2,3,7,8-TCDD; 4
13C-2,3,4,7,8-PeCDF; 4
13C-l,2,3,4,7,8-HxCDD; 2
13C-l,2,3,4,7,8-HxCDF; 3
13C-1,2,3,4,7,8, 9-HpCDF; 1
37Cl-2,3,7,8-TCDD; 4
13C-2,3,4,7,8-PeCDF; 4
13C-l,2,3,4,7,8-HxCDD; 2
13C-l,2,3,4,7,8-HxCDF; 3
13C-1,2, 3,4,7,8,9-HpCDF; 1
Resp;
.64e+05;
.85e+04;
.63e+04;
.08e+04;
.156+04;
.83e+05;
.55e+05;
.336+05;
* .
.21e+04;
.07e+05;
.03e+04;
.94e+04;
* .
.70e+05;
* .
.09e+05;
.43e+08;
.33e+08;
.65e+08;
.58e+08;
.90e+08;
.37e+08;
.516+08;
.41e+08;
.98e+08;
.27e+08;
.53e+08;
.24e+08;
.826+08;
.53e+08;
.32e+08;
. 51e+08;
.24e+08;
.82e+08;
.53e+08;
.326+08;
.51e+08;
Ion 1;
5.69e+04;
2.56e+04;
3.41e+04;
4.46e+04;
4.516+04;
9.756+04;
2.116+05;
6.856+04;
* .
5.98e+04;
6.626+04;
3.97e+04;
9.41e+03;
* .
8.546+04;
* .
5.006+04;
1.94e+08;
2.03e+08;
2.03e+08;
1.32e+08;
1.83e+08;
2.36e+08;
2.756+08;
1. 51e+08 ;
6.08e+07;
1.886+08;
1.96e+08;
4.246+08;
2.946+08;
1.41e+08;
1.13e+08;
4.606+07;
4.24e+08;
2.94e+08;
1.416+08;
1.13e+08;
4.606+07;
Ion 2;
3.07e+05;
2.29e+04;
1.22e+04;
3.626+04;
1.63e+04;
8.536+04;
2.446+05;
6.466+04;
* .
2.236+04;
4.066+04;
3.066+04;
9.96e+03;
* .
8.516+04;
* .
5.916+04;
2.506+08;
1.30e+08;
1.61e+08;
1.26e+08;
2.07e+08;
3.01e+08;
1.76e+08;
2.90e+08;
1.37e+08;
2.396+08;
1.57e+08;
-;
1.886+08;
1.13e+08;
2.19e+08;
1. 056+08; ;
1.886+08;
1.136+08;
2.19e+08;
1.05e+08;
RA; ?;
0.18;n;
1.12;n;
2.81;n;
1.23,-y;
2.76;n;
1.14,-y;
0.86;y;
1.06;n;
*;n;
2.69;n;
1.63;n;
1.30;y;
0.95;n;
*;n;
1.00;y;
*;n;
0.84;y;
0.78;y;
1.56,-y;
1.26;y;
1.05;y;
0.88;y;
0.78;y;
1.57;y;
0.52;y;
0.44;y;
0.78;y;
1.24;y;
- ; - ;
1.57;y;
1.25,-y;
0.52;y;
0.44;y;
1.57,-y;
1.25;y;
0.52,-y;
0.44;y;
RT;
28:28;
32:37;
34:42;
34:46;
34:59;
37:10;
40:03;
27:29;
NotFnd;
32:24;
34:11;
34:15;
34:38;
NotFnd;
36:22;
NotFnd;
40:10;
28:27;
32:37;
34:45;
37:10;
40:01;
27:25;
31:56;
34:15;
36:21;
28:09;
34:58;
28:28;
32:24;
34:42;
34:10;
37:31;
28:28;
32:24;
34:42;
34:10;
37:31;
Cone ;
0.084;
0.013;
0.019;
0.026;
0.020;
0.079;
0.233;
0.026;
* .
0.020;
0.028;
0.015;
0.005;
* .
0.068;
* .
0.052;
94.630;
101.898;
96.241;
91.828;
172.398;
91.338;
88.116;
100.761;
74.472;
88.482;
89.034;
98.685;
96.355;
99.268;
97.332;
72.753;
104.344;
109.389;
103.011;
95.831;
97.728;
DL;
0.0098;
0.0069;
0.0180;
0.0142;
0.0140;
0.0085;
0.0204;
0.0137;
0.0100;
0.0097;
0.0082;
0.0065;
0.0076;
0.0087;
0.0140;
0.0170;
0.0163;
0.0335;
0.0317;
0.0417;
0.0319;
0.0143;
0.0215;
0.0082;
0.2929;
0.1413;
-;
- ;
0.0239;
0.0084;
0.0619;
0.3759;
0.1805;
0.0259;
0.0059;
0.0577;
0.3311;
0.2918;
S/N1;?;
10;y;
5;y;
4;y;
6;y;
6;y;
35;y;
25, -y;
8;y;
*;n;
22;y;
8;y;
5,-y;
2;n;
*;n;
11; y;
*;n;
10;y;
5479,-y;
14436;y;
7530;y;
6744;y;
17487; ;y;
12736;y;
88252, -y;
1214;y;
2809, -y;
5439 ;y;
6617 ; y;
12073 ;y;
98823, -y;
6521;y;
1069 ;y;
1869;y;
12073 ;y;
98823;y;
6521;y;
1069;y;
1869;y;
S/N2;?
39 ;y
7;y
l;n
3;n
2;n
26;y
63, -y
3;y
*;n
3;n
9;y
6;y
3;n
*;n
22 ;y
*;n
10, -y
13615;y
19123;y
7892, -y
6370 ;y
34203;y
12195;y
31811;y
1122, -y
1065;y
13386;y
6801;y
-; -
35003 ;y
6558;y
1008 ;y
720, -y
_ . _
35003, -y
6558;y
1008;y
720, -y
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 11
-------
OPUSquan 20-JUL-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:3
Run: 11 File: al7ju!98b S:6 Acq:17-JUL-98 20:31:20 Proc:20-JUL-98 09:03:15
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-0 xl/2
Amount: 0.05
Cone: 0.05
Tox #1: -
Name
of which 0.03
of which 0.03
Tox #2: -
# RT Respnse
named and 0.03
named and 0.03
Tox #3: -
RA
2,3,7,8-TCDF
1 24:51 1.66+04 0.45 n
1.6e+04
2 25:46 1.3e+05 0.80 y
1.3e+05
3 27:29 1.3e+05 1.06 n
1.3e+05
Cone
0.00
4
1
0.03
C
0.03
unnamed
unnamed
Area Height
S/N Mod?
4.8e+03 1.4e+03 l.le+00 n n
l.le+04 2.8e+03 8.1e-01 n n
3
5.7e+04 1.2e+04 9.2e+00 y n
7.1e+04 1.6e+04 4.6e+00 y n
3
6.9e+04 l.le+04 8.4e+00 y n
6.5e+04 l.le+04 3.4e+00 y n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:2
Run: 11 File: al7ju!98b S:6 Acq:17-JUL-98 20:31:20 Proc:20-JUL-98 09:03:15
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-0 xl/2
Amount: 0.09
Cone: 0.09
Tox #1: -
Name
2,3,7,8-TCDD
of which 0.08
of which 0.08
Tox #2: -
# RT Respnse
named and 0.01
named and 0.01
Tox #3: -
RA
1 25:16 3.6e+04 1.29 n
3.6e+04
2 28:28 3.6e+05 0.18 n
3.6e+05
Cone
0.01
]
0.08
unnamed
unnamed
Area Height S/N Mod?
2.0e+04 3.8e+03 3.1e+00 y n
1.6e+04 3.7e+03 2.3e+00 n n
5.7e+04 1.2e+04 9.6e+00 y n
3.1e+05 6.5e+04 3.9e+01 y n
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:l
Run: 11 File: a!7ju!98b S:6 Acq:17-JUL-98 20:31:20 Proc:20-JUL-98 09:03:15
Tables: Run: al7jul98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-0 xl/2
Amount: 0.02
Cone: 0.02
Tox #1: -
Name
2,3,4,7,8-PeCDF
of which 0.02
of which 0.02
Tox #2: -
# RT Respnse
named and *
named and *
Tox #3: -
RA
1 32:24 8.2e+04 2.69 n
8.2e+04
Cone
0.02
unnamed
unnamed
Area Height
S/N Mod?
6.0e+04 2.0e+04 2.2e+01 y n
2.2e+04 8.8e+03 2.6e+00 n n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:5
Run: 11 File: a!7ju!98b S:6 Acq:17-JUL-98 20:31:20 Proc:20-JUL-98 09:03:15
f 028
-------
OPUSguan 20-JUL-1998
Page 2
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results:
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-0 xl/2
M8290-23»
Amount: 0.05
Cone: 0.05
Tox #1: -
Name
1,2,3,7,8-PeCDD
of which 0.01
of which 0.01
Tox #2: -
# RT Respnse
named and 0.03
named and 0.03
Tox #3: -
RA
1 31:30 2.1e+04 0.79 n
2.1e+04
2 31:57 6.4e+04 10.28n
6.4e+04
3 32:04 1.3e+04 0.81 n
1.3e+04
4 32:37 4.8e+04 1.12 n
4.8e+04
5 32:55 2.46+04 2.71 n
2.4e+04
Cone
0.01
S
]
0.02
c
c
0.00
c
1
0.01
0.01
unnamed
unnamed
Area Height
9.1e+03 3.8e+03 2.
1.2e+04 4.4e+03 4.
5.8e+04 1.6e+04 8.
5.7e+03 1.6e+03 1.
D
5.9e+03 2.5e+03 1.
7.3e+03 3.0e+03 2.
I
2.6e+04 9.2e+03 4.
2.36+04 7.5e+03 7.
L
1.8e+04 6.06+03 3,
6.6e+03 2.26+03 2,
S/N Mod?
,Oe+00 n n
,3e+00 y n
,4e+00 y n
,6e+00 n n
.3e+00 n n
.9e+00 n n
.9e+00 y n
.3e+00 y n
2e+00 y n
2e+00 n n
029
-------
OPUSguan 20-JUL-1998
Page 3
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:9
Run: 11 File: al7ju!98b S:6 Acg:17-JUL-98 20:31:20 Proc:20-JUL-98 09:03:15
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-0 xl/2
Amount: 0.08
Cone: 0.08
Tox #1: -
of which 0.05
of which 0.05
Tox #2: -
named and 0.03
named and 0.03
Tox #3: -
Name
RT Respnse
RA
33:31 2.1e+04 1.85 n
2.1e+04
2 33:38 5.2e+04 1.58 n
5.26+04
1,2,3,4,7,8-HxCDF 3 34:11 l.le+05 1.63 n
l.le+05
1,2,3,6,7,8-HxCDF 4 34:15 7.0e+04 1.30 y
7.0e+04
2,3,4,6,7,8-HxCDF 5 34:38 1.9e+04 0.95 n
1.9e+04
6 34:44 l.le+04 0.42 n
l.le+04
7 34:46 2.1e+04 1.68 n
2.1e+04
8 34:56 2.6e+03 1.41 y
2.6e+03
9 34:59 l.Oe+04 2.12 n
l.Oe+04
Cone
0.01
3
0.01
0.03
e
4
0.01
4
0.00
c
]
0.00
0.01
3
0.00
1
1
0.00
unnamed
unnamed
Area Height S/N Mod?
1.4e+04 5.4e+03 2.1e+00 n n
7.46+03 3.0e+03 2.0e+00 n n
I
3.2e+04 9.6e+03 3.8e+00 y n
2.06+04 6.5e+03 4.3e+00 y n
3
6.6e+04 2.1e+04 8.3e+00 y n
4.1e+04 1.4e+04 8.9e+00 y n
4.0e+04 1.4e+04 5.5e+00 y n
3.1e+04 9.0e+03 5.9e+00 y n
3
9.4e+03 4.2e+03 1.6e+00 n n
l.Oe+04 4.1e+03 2.7e+00 n n
3.3e+03 1.3e+03 5.2e-01 n n
7.8e+03 1.7e+03 l.le+00 n n
1.3e+04 2.9e+03 l.le+00 n n
7.8e+03 1.7e+03 l.le+00 n n
3
l.Se+03 8.9e+02 3.5e-01 n n
l.le+03 5.1e+02 3.4e-01 n n
3
7.1e+03 2.2e+03 8.8e-01 n n
3.3e+03 1.36+03 8.7e-01 n n
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no ttHom:10
Run: 11 File: al7ju!98b S:6 Acq:17-JUL-98 20:31:20 Proc:20-JUL-98 09:03:15
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-0 xl/2
Amount: 0.19
Cone: 0.19
Tox #1: -
Name
of which 0.06
of which 0.06
Tox #2: -
# RT Respnse
named and 0.12
named and 0.12
Tox #3: -
RA
1 33:52 3.0e+04 1.27 y
3.0e+04
2 33:56 3.8e+03 0.47 n
3.8e+03
3 34:03 1.3e+04 1.02 n
1.3e+04
4 34:10 1.2e+05 2.49 n
1.2e+05
5 34:15 9.8e+04 3.07 n
9.8e+04
Cone
0.01
1
1
0.00
1
0.00
e
e
0.04
£
0.03
unnamed
unnamed
Area Height S/N Mod?
1.7e+04 7.4e+03 3.4e+00 y n
1.3e+04 4.9e+03 1.4e+00 n n
3
1.2e+03 6.0e+02 2.8e-01 n n
2.6e+03 l.le+03 3.2e-01 n n
3
6.3e+03 1.9e+03 8.8e-01 n n
6.2e+03 2.2e+03 6.3e-01 n n
\
8.3e+04 2.6e+04 1.2e+01 y n
3.3e+04 1.2e+04 3.3e+00 y n
3
7.4e+04 2.3e+04 l.le+01 y n
r\
339
-------
OPUSguan 20-JUL-1998
Page 4
6 34:20 8.1e+04 1.35 y 0.03
S.le+04
7 34:32 1.2e+04 2.22 n 0.00
1.2e+04
1,2,3,4,7,8-HxCDD 8 34:42 4.6e+04 2.81 n 0.02
4.6e+04
1,2,3,6,7,8-HxCDD 9 34:46 8.1e+04 1.23 y 0.03
8.1e+04
1,2,3,7,8,9-HxCDD 10 34:59 6.1e+04 2.76 n 0.02
6.1e+04
2.4e+04 7.6e+03 2.2e+00 n n
3
4.6e+04 1.3e+04 6.0e+00 y n
3.4e+04 9.5e+03 2.7e+00 n n
S.le+03 2.1e+03 9.6e-01 n n
3.6e+03 1.4e+03 4.1e-01 n n
2
3.4e+04 9.6e+03 4.4e+00 y n
1.2e+04 5.1e+03 l.Se+00 n n
3
4.5e+04 1.4e+04 6.3e+00 y n
3.6e+04 9.5e+03 2.7e+00 n n
4.5e+04 1.4e+04 6.5e+00 y n
1.6e+04 7.1e+03 2.0e+00 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:l
Run: 11 File: al7ju!98b S:6 Acg:17-JUL-98 20:31:20 Proc:20-JUL-98 09:03:15
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-0 xl/2
Amount: 0.07
Cone: 0.07
Tox #1: -
of which 0.07 named and * unnamed
of which 0.07 named and * unnamed
Tox #2: - Tox #3: -
Name
RT Respnse
RA
Cone Area Height S/N Mod?
1,2,3,4,6,7,8-HpCDFl 36:22 1.7e+05 l.OOy 0.07
1.7e+05 8.56+04 2.4e+04 l.le+01 y n
8.5e+04 2.86+04 2.2e+01 y n
-------
OFUSguan 20-JUL-1998 Page 5
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:3
Run: 11 File: a!7ju!98b S:6 Acq:17-JUL-98 20:31:20 Proc:20-JUL-98 09:03:15
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-0 xl/2
Amount: 0.14 of which 0.08 named and 0.06 unnamed
Cone: 0.14 of which 0.08 named and 0.06 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name tt RT Respnse RA Cone Area Height S/N Mod?
1 36:21 6.56+04 2.78 n 0.03
6.5e+04 4.8e+04 1.46+04 1.9e+01 y n
1.7e+04 5.4e+03 5.5e+00 y n
2 36:35 7.0e+04 1.28 n 0.03
7.0e+04 3.9e+04 1.3e+04 1.7e+01 y n
3.1e+04 8.8e+03 9.06+00 y n
1,2,3 4,6,7,8-HpCDD3 37:10 1.8e+05 1.14 y 0.08
1.8e+05 9.8e+04 2.6e+04 3.5e+01 y n
8.5e+04 2.6e+04 2.6e+01 y n
Q3Z
-------
File: A17JUL98B Acq: 17-JUL-1999 20:31:20 Exp : EXP_M23
Sample #6 Text: 1070-0 xl/2
319.8965 S:6 SMO(1,3) BSUB(128
100%,
"
50 j
:
ol
A4.59E3
_x—s^v~-\-r\/X— ^^* — ^^Xv^v^-x/^-^/i 'V--
24 loo'
321.8936 S:6 SMO(1,3) BSUB(128
100%
50 j
24!oo'
331.9368 S:6 SMO(1,3) BSUB(128
100%,
50J
o"
24 loo'
333.9339 S:6 SMO(1,3) BSUB(128
100%
50 J
o:
24 loo'
327.8847 S:6 SMO(1,3) BSUB(128
lOOSj
50J
0 '
w— ' — i 1 1 1 1 1 1 1 1 1—
24:00
316.9824 S:6 SMO(1,3) PKD(3,3,
1004 23:27 24:04 24
50 j
o:
1 1 1 1 1 1 1 1 1 1 —
24:00
ALS #6
,15, -3.0) PKD(3,3,3,0.10%,
A2.02E4 A5.41E3
^~^^-^_/\A/_^~x-^X\yx ^V_ ^_
25:00 26:00
,15, -3.0) PKD(3,3,3,0.10%,
A1.56E4
25 loo' ' ' ' 26 loo'
,15, -3.0) PKD(3,3,3,0.10%,
25 100 26 loo'
,15, -3.0) PKD(3,3,3,0.10%,
25 100 26100
,15, -3.0) PKD(3,3,3,0.10%,
— T "I 1 "I" "I~VT ! 1 1 1 1
25100 26:00
3, 100. 00%, 0.0,1. 00%, F,F)
:44 25:14 25i49 26U
— r— ] 1 1 1 i i | i 1 —
25:00 26:00
_DB5_OVATION Voltage SIR EI + GC Autospec-UltimaE Paradigm
1224. 0,1. 00%, F,F)
A7.76E4 ,_1.7E4
A A5.69E4
/ 1 A
/ \ A9.47E3/ \
~> — x-^y~A — ^\^~v/vyV^J^vA^^^^Sp~-~^i'Clt-^ — V/-^-^x~Vy\-^^^^yx ^^^-r^~^f^
_8.7E3
O.OEO
"""'" ' 27 loo' ' ' 28:00 29loO 3oloO Time
1644. 0,1. 00%, F,F)
A3.07E5
ft
Jv
6.8E4
L3.4E4
27 100 28 100 29 100 3oloO Time
7104. 0,1. 00%, F,F)
A1.94E8
A A
n
/ W V
3.9E7
_1.9E7
O.OEO
27100 28100 29100 3oloO Time
3696. 0,1. 00%, F,F)
A2.50E8
A A
ft
/v
5.0E7
.2 . 5E7
O.OEO
27100 28100 29100 3oloO Time
7056. 0,1. 00%, F,F)
A4.24E8
A
f[
_8.5E7
_4.3E7
O.OEO
27loO 28loO 29:00 30:00 Time
9 26:51 27:16 27:45 28:25 28:52 7.4R7
\T
_3.7E7
O.OEO
27 100 28 100 ' 29 100 ' 3oloO Time
o
CO
CO
-------
File: A17JUL98B Acq: 17-JUL-1998
Sample #6 Text: 1070-0 xl/2 ALS
355.8546 S:6 F:2 SMO(1,3) BSUB (128
100%,
50
0
\^_— ^-v ^/— V>~— -v—
20:31:20 Exp: EXP M23 DBS OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
#6
,15, -3.0) PKD(3,3,3,0.10%,1888.0,1.00%,F,F)
c O-.T-,,, A4.67E4 2.0E4
A5.82E4 n
A 1
\\ \ A2.56E4
A9 10E3 \ A A1.79E4
_^_^^A__^J-te^J4_A^ vCLx^v-
1.0E4
n DRO
1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 'I-T-I 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 V 1 Y- 1 | | l-l | 1 | ,' - '
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32ll2 32:24 32136 32U8 33:00 33:12 Time
357.8517 S:6 F:2 SMO(1,3) BSUB(128
100S
50J
-
0"
A3.71E3
f\^\
-—Ny^ ^Vx~------~v/-l-X-x-/V^V-~-
30:12 30:24 30:36 30:48 31
367.8949 S:6 F:2 SMO(1,3) BSUB(128
100%
so:
0-
3b!i2 30124 3bl36 3ol48 31
369.8919 S:6 F:2 SMO(1,3) BSUB(128
100%.
50J
0"
30112 30124 3b:r36 3ol48 31
,15, -3.0) PKD(3,3,3,0.10%,1032.0,1.00%,F,F)
A2.29E4 7.8E3
A1.16E4 A
A A7.35E3 \ A6.6QE3
/ \ A. A A4..50E3I \ A
^x^--^^^-^"^^/^^^^^ W^XX/J^=:>^V^^ ^\^L_--^-A y^/vv\^^\y^
13.9E3
.
' O.OEO
:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
,15, -3.0) PKD(3,3,3,0.10%,4788.0,1.00%,F,F)
A2.03E8
A
A
i\.
6.9E7
L3.5E7
" O.OEO
166 3ill2 31124 31136 31:48 32166 32112 32124 32136 32\48 33166 33112 Time
,15, -3.0) PKD(3,3,3,0.10%,2320.0,1.00%,F,F)
A1.30E8
A
f\
l\.
4.4E7
L2.2E7
' O.OEO
166 31:12 31124 3ll36 31:48 32166 32:12 32: 24 32:36 32148 33166 33ll2 Time
366.9792 S:6 F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
lOOi 30:15 30:44
so:
0'
31:14 31:25 31:52 32:03 32:25 32:37 32:49 33:10 8. 3E7
V
3bll2 36124 3ol36 30:48 31
_4.2E7
O.OEO
:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
-------
File: A17JUL98BAcq: 17-JUL-1998 20:31:20Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaEParadigm
Sample #6 Text: 1070-0 xl/2 ALS #6
389.8156 S:6 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,5,2,0.10%,2180.0,1.00%,F,F)
100$ A8.32E4 2.7E4
so:
0
A1.69E4
A6.32E3
J A4.62E4
y V9.53E3
A4.46E4 A4.51E4
11.4E4
O.OEO
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
391.8127 S:6 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,5,2,0.10%,3516.0,1.00%,F,F)
A3.35E4
A3.43E4
A3.62E4 A1.63E4
33 24 33:36 33 48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
401.8559 S:6 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,10300.0,1.00%,F,F)
100% A2.Q3E8
50J
A1.96E8
33:24 33:36 33.:48 34:00 34:12 34:24 34:36 34:48 35:00
403.8530 S:6 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,8084.0 ,1.00%,F,F)
lOOi A1.61E8
35:12 35:24
35:36
50J
0.
A1.57E8
'33:24'
34:00 34:12 34:24
380.9760 S:6 F:3 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 33jJ38 33:50 34:10 34:23 34:35
50J
35^04 35:13 35:24 35:34
r_7.8E7
.3.9E7
.O.OEO
35:48 Time
6.4E7
.3.2E7
10.0EO
T34UV ' '35 loo' ' '35! 12' ' 's'sbV ' YshV ' '35:48 Time
1.8E8
r— i — | — r -T
33:24
i — i — i — i — i
33:36
L9.1E7
.O.OEO
i — r
35:48 Time
i — I — i — i
33:48
r~ T — I — i — i
34:00
i — i — I — i — i
34:12
i — i — I — i — \
34:24
i — i — | — i — i — i — i — i — I — i — i
34:36 34:48
i
35:00 35:12 35:24 35:36
-------
File
Samp
423.
100S
50J
0 "
425.
iooa
50^
0 "
435.
100%
so:
0"
437.
100%
so:
0 '
430.
100%
so:
o;
: A17JUL98B Acq: 17-JUL-1998 20:31:
le #6 Text: 1070-0 xl/2 ALS #6
7767 S:6 F:4 SMO(1,3) BSUB (128 , 15 , -3
A4.79E4 A3.93E4
. - A. A..
36:00 36:12 36:24 36:36 36:48
7737 S:6 F:4 SMO(1,3) BSUB (128, 15, -3
A3.08E4
A1.72E4 A
^—^ r^^J\*~^^
36:00 36:12 36:24 36:36 36:48
8169 S:6 F:4 SMO(1,3) BSUB (128, 15, -3
1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 I I I I I"T'T 1 I 1 1 1 | 1 1
36:00 36:12 36:24 36:36 36:48
8140 S:6 F:4 SMO(1,3) BSUB(128, 15, -3
36:00 36:12 36:24 36:36 36:48
9728 S:6 F:4 SMO(1,3) PKD(3 , 3 , 3 , 100 .
35:57 36:14 36:27 36:41
f~
36:00 36:12 36:24 36:36 36:48
20 Exp: EXP_M23_DB5_OVATION Voltage SIR EI + GC Autospec-UltimaE Parad
.0) PKD(3,3,3,0.10%,752.0,1.00%,F,F)
A9 . 7 5E4
/ 1 A3.45E4
/ V /\ A6.16E3
1 \ / \ f~^^~~^/~\ - f~\ r- ^— .-•=»
37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:
.0) PKD(3,3,3,0.10%,972.0,1.00%,F,F)
A8 . 53E4
_/ \3^24E3 ^ ^ ^^
37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:
.0) PKD(3,3,3,0.10%,5188.0,1.00%,F,F)
A1.32E8
' 37!6d 37I12 ' 37I24 ' 37I36 37I48 SsloO 38112 38I24 Ssls'e 38I48 39!
.0) PKD(3,3,3,0.10%,5216.0,1.00%,F,F)
A1.26E8
igm
2.6E4
L1.3E4
' O.OEO
00 Time
2.6E4
L1.3E4
' O.OEO
00 Time
3.5E7
.1.8E7
O.OEO
00 Time
3.3E7
L1.7E7
'O.OEO
37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
00%, 0.0,1. 00%, F,F)
36:59 37:10 37:32 37:4337:52 38j_D838:17 38:29 38:45 rl.!E8
L5.7E7
"O.OEO
37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
o
co
-------
File
Saim:
457.
lOOi
so:
OJ
459.
1001
50J
469.
100%
so:
0"
471.
1002
so;
0"
454.
100%
so:
0"
:: A17JUL98B Acq: 17-JUL-1998 20:31:20 Exp: EXP_M23 DBS OVATION Voltage SIR EH- GC Autospec-UltimaE Paradigm
)le #6 Text: 1070-0 xl/2 ALS #6
7377 S:6 F:5 SMO(1,3) BSUB (128, 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 2084 . 0 , 1 . 00%, F, F)
A2.11E5 5.5E4
yy
39ll2 39124 39136 39148 4o!ob 4o!l2 ' 4ol24 ' ' ' 4o!36 ' ' ' 4ol48 41:
7348 S-.6 F:5 SMO(1,3) BSUB ( 128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 936 . 0, 1 . 00%, F, F)
A2.44E5
J\__
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
7780 S:6 F:5 SMO(1,3) BSUB(128, 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2372 . 0, 1 . 00%, F, F)
Al . 83E8
/V^
39ll2 39124 39136 39\48 4o!ob 4o!l2 4ol24 4o!36 4ol48 41 !
7750 S:6 F:5 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1376 . 0, 1 . 00%, F, F)
A2.07E8
f\_
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
9728 S:6 F:5 SMO(1,3) PKD(3 , 3 , 3, 100 . 00%, 0 . 0, 1 . 00%, F, F)
39:05 39^21 39:42 39:52 40:03 40:13iQjJ9 40i42 40:48 40:55
1
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
_2.8E4
_O.OEO
00 Time
6.0E4
.3.0E4
.O.OEO
00 Time
4.2E7
'.2 . 1E7
.O.OEO
00 Time
_4.7E7
_2 . 4E7
O.OEO
00 Time
1.3E8
.6.4E7
O.OEO
DO Time
o
CO
-------
File: A17JUL98B Acq:
17-JUL-1998 20:31
20 Exp: EXP_M23_DB5_OVATION Voltage SIR EI + GC Autospec-UltimaE Paradigm
Sample #6 Text: 1070-0 xl/2 ALS #6
303.9016 S:6 SMO(1,3)
100%
50 1
Q-
A1.26E4
-A-\ /v\
'~v"/V^s£jv^J-J--X-^-»'v/\_-'^
" 1 1 1 1 r 1 r
24:00
305.8987 S:6 SMO(1,3)
100%,
:
50 1
;
o:
-^vAswN-v^-^^Vx/V/VV
\ 1 1 1 1 1 r
24:00
315.9419 S:6 SMO(1,3)
100%
50 j
0 :
"-1 1 1 1 1 1 1 r
24:00
317.9389 S:6 SMO(1,3)
100%
50 j
0 '
"— ' 1 1 1 i 1 1 r
24:00
375.8364 S:6 SMO(1,3)
100%
-
C A •
50_
0 '
23:24
A /^3:47
U ' '!"' "V--1 1 ' f "i
24:00
316.9824 S:6 SMO(1,3)
BSUB(128,15,-3.0)
A4.80E3
^_^/~-/\S^s-J^~^J**^
25 !00
BSUB(128,15,-3.0)
A1.08E4 r
^-^/vA^y^-^
25 loo'
BSUB(128,15,-3.0)
— i 1 1 1 1 1
25:00
BSUB(128,15,-3.0)
— i 1 \ 1 1 1
25:00
BSUB(128,15,-3.0)
_. _. 24:46 25:
24:24 A A
_^/V-^_~/ UA_A/W \
25 loo'
PKD(3,3,3,100.00%
100% 23:27 24:04 24:44 25:1
50 j
0 '
'
U-" 1 1 1 1 r—, r
24:00
— i > 1 1 1 1
25:00
PKD(3,3,3,0.10%,1292.0,1.00%,F,F)
A5.68E4 c 01o. 1.3E4
rt A6.91E4
/ 1 A
l\ A1.34E4 (\ ,-„. ,., T)^A A A1.99E4
/ \ A3 77E3A/\ AA7'05E3/ \ Al.b/E4 A±./^t.4l AA /-i
^V-^-^^-J-vJ1-/^ rJ V/^/-J--\\./X^/\/ WYV\ .-y/^A/ \/v^vV'S. /-y / \ ^ / V^'VV^'^v^v^
L6.7E3
: O.OEO
26:00 27 I 00 28:00 29loO 30:00 Time
PKD(3,3,3,0.10%,3424.0/1.00%,F,F)
A7.11E4 2.0E4
A A6.46E4
l\ A2.78E4 A
/ \ A /V\ L\ A A^\ AA
^\A^ N^yA^^^-^A^^A /^ X/\x-~^\V/A^^/^^^^^^~N^V^yv/ ^W ^^\AX VY
L1.0E4
1 O.OEO
26loO 27loO 28100 29loO 3oloO Time
PKD(3,3,3,0.10%,3712.0,1.00%,F(F)
A2.36E8
A
/v
_4.7E7
12.4E7
: O.OEO
26100 27100 28:00 29:00 30:00 Time
PKD(3,3,3,0.10%,5000.0,1.00%,F,F)
A3.01E8
A
/ V
6.1E7
_3.1E7
O.OEO
26loO 27100 28IOO 29:00 30:00 Time
PKD(3,3,3,100.00%,808.0,1.00%,F,F)
29:45 r!.3E4
?fl • 53 A
27:29 28:27 A L
^ 25^26^ ^34 ^^nJ\^^J\J\^\^J\ 2J\rA J \/u
_6.3E3
O.OEO
26100 27100 28100 29:00 30:00 Time
0.0,1.00%,F,F)
4 25:49 26:19 26:51 27:16 27:45 _ 28:25 28:52 ,_7.4E7
" ' V
L3.7E7
: O.OEO
26100 27100 28100 29loO 30:00 Time
O
CO
00
-------
File: A17JUL98BAcq: 17-JUL-1998 20:31:20Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaE—Paradigm
Sample #6 Text: 1070-0 xl/2 ALS #6
339.8597 S:6 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,944.0,1.00%,F,F)
100%, A5.98E4 2.1E4
Al.08E4
A2.25E3
A4.70E4
I.66E3
A2.86E4
A2.86E4 A A1.97E4
A8.76E3,
11.0E4
.O.OEO
I ' i i i i I i i i i i | i i i i i | i i i i i | i i"-l i i | | i i i i i | | i i i i i | i i i i i | I i i i i i I i i I 'i fl~f r iT i PIT i is T~? i i
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
341.8568 S:6 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,3456.0,1.00%,F,F)
100%, A2.23E4 1.3E4
50J
0.
3C)!i2 ' 30124 ' 36!36
_6.7E3
O.OEO
! 12 ' 3il24 ' 31\36 ' 31 Us ' 32!6d ' 32!l2 ' 32124 ' 32136 ' 32U8 ' 33166 ' 33112 Time
351.9000 S:6 F:2 SMO(1,3) BSUB{128,15,-3.0) PKD(3,3,3,0.10%,1040.0,1.00%,F,F)
100% A2.75E8 A2.94E8
50J
Oj
1.0E8
_5.1E7
O.OEO
T'T'TT T 1 I I -r-r-r I | | I I T I I I' pT" 1 I I' T' I I T I—I—I—|~T—I—I I 1 I I T"T l—I j 1" I l—I"T"T I 1 "1"~T—1 [I I I 1 I I 1 1—I "I"*T 1 1 I*T""T' I^F"! I I " I "I 1 I I I I I I 1 " I I |"T'I I I
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
353.8970 S:6 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1860.0,1.00%,F,F)
100*. A1.76E8 A1.JJ8E8
OJ
6.5E7
.3.3E7
O.OEO
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
409.7974 S:6 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,4384.0,1.00%,F,F)
31:48
30:30 „, „
50 J
32:37
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
366.9792 S:6 F:2 SMO(1,3) PKD(3,3,3,100.00%,0.0,1. 00%, F, F)
100% 30:15 30:44 31:14 31j25
50J
ol
31:52 32:03
32:19 32:32
32:49
33:10
.8.3E7
_4.2E7
O.OEO
"T i I ' i i T—i—|—i i i—i—i—| i i—i—i—i—|—i—i—i—i—i—|—i—i—r-T—i—i—i—i—i—i—i—I—i—i—i—i—i—i—i—i—i—i—i—I—i—i—ri—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—|—i—i—i—i—i—i—I—T
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
o
CO
-------
"*1
"•*'
File: A17JUL98B Acq: 17-JUL-1998
Sample #6 Text: 1070-0 xl/2 ALS
373.8207 S: 6 F:3 SMO(1,3) BSUB(128
1003
50_
0
A3.21E4
A1.37E4A
/\7 V A1.62E3
i i | I i i I i -| i T— r i t— p i i— T--I i
33:24 33:36 33:48 34:
375.8178 S:6 F:3 SMO(1,3) BSUB(128
1003
sol
-
o-
A2.03E4
— ^\/\~-^
33!24 33!36 33\48 34!
383.8639 S:6 F:3 BSUB (128, 15, -3 . 0)
lOOi
50.:
ol
33-124 33-136 33! 48 34-1
385.8610 S:6 F:3 BSUB(128, 15, -3 . 0)
100%
50J
o:
33!24 33!36 33!48 34?
445.7555 S:6 F:3 SMO(1,3) BSUB(128
lOOSi
50J
-
0"
33:3933:46
/"Xx1 y^-^-\>\/X^-^
'33:2'4' ' VsbV ' YsUV ' '34!
20:31:20 Exp: EXP M23 DBS OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
#6
,15, -3.0) PKD(3,5,2,0.10%,2524.0
A6.62E4
/ \f\ A9.41E3
r i i i i | 1-1 i i 'T | i i ••! i r | i i i i
00 34:12 34:24 34:36
,15, -3.0) PKD{ 3, 5, 2, 0.10%, 1524.0
A4.06E4
/ VA A9.96E3
J 1 Y A6.69E3 ^C\ A7
00 34!l2 34?24 34!36
,1.00%,F,F)
^x__^_^ _x^_^^ /A — '^_ - __— -_^~^^_^-~
2.2E4
L1.1E4
: O.OEO
34:48 35!oO 35:12 3S.-24 35:36 35 48 Time
,1.00%,F,F)
/75E3 A3.33E3 -^ ^
~S| .1 r *•• -v -^ " \ . ^_s • _S" ^~^J
1.5E4
_7.4E3
O.OEO
34!48 35!oO 35!l2 35!24 3s!36 3s!48 Time
PKD(3,5,2,0.10%,48684.0,1.00%,F,F)
A1.51E8
A A
J ] ^^
00 34-1 12 34-124 34-136
PKD (3, 5, 2, 0.10%, 100276. 0,1. 00%,
A2.90E8
\ n
AA
/ Y v
00 34!l2 34!24 34!36
,15, -3.0) PKD(3,3,3,100.00%,1444
34-1!
7v
— ^ y^* ^ — '~\_/ \ /^~^
| i i r i i | , , i , . 1 . , , .
00 34:12 34:24 34:36
5 . 9E7
.3 . OE7
.O.OEO
34-148 35! 00 35-1 12 35-124 35-136 35-148 Time
F,F)
1.1E8
.5.6E7
_O.OEO
34!48 35!oO 35!l2 3s!24 3s!36 3s!48 Time
.0,1.00%,F,F)
;45 34:59
V~A / ^-^x 35-14 r~\
1.0E4
L5.2E3
LO.OEO
34! 48' ' '35! 00 35! 12' 35! 24 '35! 36' ' 3s!48 Time
380.9760 S:6 F:3 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
lOOSj 33^38 33:50
50 j
o"
y
33:24 33:36 33!48 34:
o
o
_34_il° 34:23 34:35
o'o' ' '34! 12' ' '34! 24' ' '34 be'
35^04 35:13 35:24 35:34 1 . 8E8
L9.1E7
: O.OEO
34:48 35:00 35:12 35:24 35:36 35:48 Time
-------
File: A17JUL98BAcq: 17-JUL-1998 20:31:20Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaEParadigm
Sample #6 Text: 1070-0 xl/2 ALS #6
407.7818 S:6 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2088.0,1.00%,F,F)
100% A8.54E4 * _2. 5E4
50J
OJ
1.3E4
.O.OEO
36166 ' 36!i2 ' 36124 ' 36!36 ' 36U8 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00
409.7788 S:6 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3,0.10%,1292.0,1. 00%, F, F)
100% A8.51E4
2
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00
417.8253 S:6 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,6268 . 0,1. 00%, F, F)
100%, A6.^8E7
A4.60E7
50J M A t-8
o
36:00 36:12 36i24
37:00
419.8220 S:6 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,37392.0,1.00%,F,F)
100%, A1.37E8
A1.05E8
I I
50J
OJ
37I24 ' 37136 ' 37:48 38:00 38:12 38:24 38:36 38:48 39:00
T
i i i i i i i i I i i < i i i n i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i .......
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00
479.7165 S:6 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,3672.0,1.00%,F,F)
100% 36:20 37-10
1C .
50J
Time
.9E4
.5E4
OEO
Til
.8E7
.8E6
.OEO
Time
.OE7
.OE7
.OEO
Time
T—I—I—I—I—I—I—I—I—I—1—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—f
36:00 36:12 36:24 36:36 36:48 37iOO 37il2 37i24
430.9728 S:6 F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 35:57 36:14 36:27 36:41 36:5_9 37:10 37:23
38:00 38il2 38i24 38i36 38i48 39iOO
OJ
J37:4337:52 38-L_0838:17 38:29
38:45
i i i i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i i i i i i i i i | i i i i i | [ i i i i i | i i i i i | i i i i i | i i i i i
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00
.OEO
Time
.1E8
.7E7
.OEO
Time
-------
File: A17JUL98B
Sample #6 Text:
441.7427 S:6 F:5
100%
50 j
•
0 " "" — — — -v^
39:12
443.7398 S:6 F:5
100%,
Acq: 17-JUL-1998 20:31:20 — ExpT~
1070-0 xl/2 ALS #6
SMO(1,3) BSUB(128,15,-3.0) PKD(3
^- — — ~
39!24 39!36 39548
SMO(1,3) BSUB(128,15,-3.0) PKD(3
EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
,3, 3, 0.10%, 1160.
A5
/
A5.12E3/
40:00
,3, 3, 0.10%, 1416.
0,1.00%,F,F)
• &OE4 1.3E4
\\
\ _6.7E3
__3^~ ^
— " ' ^-^ -— ^ _^ — ^_^~ — . — n OTTO
— i — p"1 — ' — ' — ' — ' — i — ' — ' — ' — r— ' — i — ' — i — ' — i — ' — i — ' — i — i — i — i — r -uljU
40:12 40:24 40:36 40:48 41 00 Time
0, 1.00%,F,F)
A6.75E4 2.1E4
: A5.91E4 /\ r - -
50J
0:— — •
39:12
469.7780 S:6 F:5
100S
50.
o:
39ll2
471.7750 S:6 F:5
100%
501
0:
39:12
513.6775 S:6 F:5
100%
50J
: 39:09
n: (^^ ^-^
39!l2
454.9728 S:6 F:5
100%39:05
50j
o.: ,
39:12
A5.12E3
39524 39536 39548
SMO(1,3) BSUB(128,15,-3.0) PKD(3
39524 39536 39548
SMO(1,3) BSUB(128,15,-3.0) PKD(3
39524 39536 39548
SMO(1,3) BSUB(128,15,-3.0) PKD(3
39:23 J-\ 39:39
39:24 39536 39548
SMO(1,3) PKD(3,3,3,100.00%,0.0,1
39:21 39:42 39:
39524 39536 39548
—^-——^L
40:00
,3, 3, 0.10%, 2372.
Al . 83E8
/\
J V___
4o5ob
,3, 3, 0.10%, 1376.
A2 . 07E8
/\
J V__
1 1 1 -1 1 1 1 1 1
40:00
,3, 3, 100. 00%, 88.
40:01
/ \
/ V
J \
4o!ob
.00%,F,F)
52 40:03
' 1 'T '!• | 1 1 II'
40:00
f\/\ i-124
V \ _^ ^A1.89E3 ^ /^ „ npn
— i — | — i — i — i — i — i — | — i — i — i — i — i 7^1 — i — i — , < — TTT i^< i 7 '
40:12 40:24 40:36 40:48 41 00 Time
0, 1.00%,F,F)
4.2E7
_2.1E7
n npn
40:12 40!24 ' 4ol36 ' ' ' 40:48 41 00 Time
0,1.00%,F,F)
4.7E7
L2.4E7
•
i | I i i 'i "i1--] — r i i i i | i — i — i — i — i i i — i — i — i — i — C-U . UEU
40:12 40:24 40:36 40:48 41 00 Time
0,1.00%,F,F)
8.5E3
_4.3E3
40^15 ^A7 _/~\_ 4/^\ n nc-n
i 1 i i i r r T^-I — T \ i '< 1 — i — i * i ' i i 1 i i ' i — i — ^-C-U.lmU
40:12 40:24 40:36 40:48 41 00 Time
40:1340_:19 40:42 40:48 40:55 1.3E8
_6.4E7
0 OF.O
•i (•— i T""i " i i | "t'-'T — i r-r- i 1 1 1 1 1 1— — i 1 1 1 1 f— '•' • u'-'"
40:12 40:24 40:36 40:48 41:00 Time
O
^
to
-------
Paradigm Analytical Labs
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
0.0146
0.0181
EMPC
0.0155
0.0180
0.0364
•010CT"!''-'
0.109
' 0:i34 *.$#
0.129
0.0480 :::':
0.0343
0.0096
0.0469
EMPC
0.0066
1.25
0.477
0.388
0.0588
9.70 .
2.39
0.460,
0.0616
0.139
0.139
lillP
0.0005
0.0004
0.0016
O.OQJ2
0.0012
0.0006
' "'$&&&.. :
0.0018
i/Jpjta:;?
0.0013
"0.0011
0.0012
0.0014
0.0011
0.0013
0.0008
0.0005
0.0004
0.0012
0.0007
0.0018
0.0018
0.0011
0.0011
r?8&*j
'•':\
0.0098
"'•'• '--'^
A/-: -^
0.0049
1.26
0.499
0.406
9.73
0.0664
0.140
0.140
JIT
- ' i'*f?:<"vJ
28:28
32:37
34:43
34*46
J"?»"»V
34:59
37:11
40:03
27^9
31:57
•>, 32:24^;-
34:11
34:15
34:38
35:12
36:22
37:32
40:10
ffiHy
0.83
1.49
1 67
A ,\J 1
1 I1?
1*U
1 28
JL >^O
1.13
0.87
0.77
L63
1.55
1.23
1.24
1.31
1.26
1.02
1.24
0.95
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
SamplelD:
CoBecHonCate:
Texas Lime Kiln
M23-I-1
L1070
Sample Information
Matrix:
Weight/Volume:
Moisture / Lipids:
ite:
Air
1
0.0 %
al7ju!98b-10
•: ' •**
1-;--.''-^
al
^ > -,;?.;ip$29Q-23-071798
1/2
043
-------
Paradigm Analytical Labs
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13CI2-2,3,7,8-ircDD
13Cl2-U,3,7i8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13C12-OCDD
0Cir2,3,7,8-TCDF
13C,2-l,2,3,7,8-PeCDF
uC,2-l,2,3,6,7,8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3)7,8-TCDD
13C12-2,3,4,7,8-PeCDF
'3C12-l,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
Injection Standards
BCu-lA3t4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected 1 :
Amount i
(.«&)
4
..,4^.
4
"4,..*."r
8
•4..'::.^
4
4
4
4
4
4
4
4
Measured
3.79
••Jip;,
3.54
.•;. -.3,75"
6.72
'"'^te ••:••
3.84
3.22
3.15
2.77
2.44
3.01
2.25
1.33
"»;;^j •
94.8
108.8
88.6
93.7
84.0
'\. 95^ V
95.9
80.6
78.8
693
61.0
75.3
56.2
33.2
(mid.)
28:27
32:37
34:46
37: tO
40:02
,27:26
31:57
34:15
36:22
28:28
32:24
34:42
34:11
37:32
28:09
34:59
0.78
1.56
1.25
1.04
0.89
0.79
1.56
0.52
0.44
1.56
1.24
0.52
0.43
0.79
1.25
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Bate;
Extraction Date:
Analysis Date:
^ -> 7 ->* f ** \ *•
Reviewed by; *^>TI
Texas Lime Kiln
M23-I-1
L1070
1070-1
25-Jun-98
Sample Information
Matrix:
Weight/Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
EndConCaL
Air
1
0.0
al7ju!98b-10
al7jul98b-l
al7ju!98b-15
Date Reviewed: 2
212
-------
o
^
en
OPUSquan 20-JUL-1998
Filename a!7ju!98b
Sample 10
Acquired 17-JUL-98
Processed 20-JUL-98
Sample ID 1070-1 xl/2
Page 1
23:31:42
09:06:13
-^
f
t\,»*
ft 4>
,ii
^v^\
w
Cal Table m8290-23-071798 Vjv
Results Table M8290-23-071798B
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
SS
Name;
2,3,7,8-TCDD;
1, 2,3,7, 8-PeCDD;
1,2,3,4,7, 8-HxCDD;
1,2,3,6,7,8-HxCDD;
1,2,3,7,8,9-HxCDD;
1,2,3,4,6,7,8-HpCDD;
OCDD;
2,3,7,8-TCDF;
1, 2,3,7, 8-PeCDF;
2,3,4,7,8-PeCDF;
1,2,3,4,7,8-HxCDF;
1,2,3,6,7,8-HxCDF;
2,3,4,6,7,8-HxCDF;
1,2,3,7,8,9-HxCDF;
1,2,3,4,6,7, 8-HpCDF;
1,2,3,4,7,8,9-HpCDF;
OCDF;
13C-2,3,7,8-TCDD;
130-1, 2,3,7, 8-PeCDD;
130-1, 2, 3,6,7, 8-HxCDD;
13C-1 ,2,3,4,6,7, 8-HpCDD;
13C-OCDD;
130-2, 3,7, 8-TCDF;
130-1 ,2,3,7, 8-PeCDF;
13C-l,2,3,6,7,8-HxCDF;
13C-l,2,3,4,6,7,8-HpCDF;
130-1,2,3,4-TCDD;
13C-l,2,3,7,8,9-HxCDD;
37Cl-2,3,7,8-TCDD;
13C-2 ,3,4,7, 8-PeCDF;
130-1, 2, 3,4,7, 8-HxCDD;
130-1,2,3,4,7,8-HxCDF;
13C-l,2,3,4,7,8,9-HpCDF;
3701-2, 3,7, 8-TCDD;
130-2 ,3,4,7, 8-PeCDF;
130-1 , 2,3,4,7, 8-HxCDD;
13C-l,2,3,4,7,8-HxCDF;
13C-1,2,3,4, 7,8,9-HpCDF;
Resp;
1. 80e+06;
1.82e+06;
6.60e+05;
1.336+06;
1.56e+06;
2.126+06;
2.07e+06;
1.536+08;
1.196+07;
1. 51e+07, •
1. 18e+07 , •
5.51e+06;
3.386+06;
8.23e+05;
3.71e+06;
3.21e+05;
4.03e+05;
4.526+08;
3.616+08;
4.02e+08;
3.156+08;
4.55e+08;
5.71e+08;
4.99e+08;
4.22e+08;
2.51e+08;
4.34e+08;
4.23e+08;
2.86e+08;
2.986+08;
2.046+08;
1.86e+08;
6.52e+07;
2.86e+08;
2.986+08;
2.04e+08;
1.866+08;
6.52e+07;
Ion 1;
7.37e+05;
1.09e+06;
4.13e+05;
7.06e+05;
8.77e+05;
1.12e+06;
9.62e+05;
6.666+07;
7.35e+06;
9.17e+06;
6.496+06;
3.05e+06;
1.926+06;
4.596+05;
1.87e+06;
1.77e+05;
1.976+05;
1.986+08;
2.206+08;
2.246+08;
1.616+08;
2.14e+08;
2.52e+08;
3.04e+08;
1.456+08;
7.68e+07;
1.92e+08;
2.356+08;
2.86e+08;
1.81e+08;
1.13e+08;
6.346+07;
1.976+07;
2.866+08;
1.81e+08;
1.13e+08;
6.346+07;
1.976+07;
Ion 2;
1.06e+06;
7.336+05;
2.486+05;
6.246+05;
6.82e+05;
l.OOe+06;
l.lle+06-
8.656+07;
4.52e+06;
5.926+06;
5.266+06;
2.46e+06;
1.47e+06;
3.64e+05;
1.846+06;
1.436+05;
2.066+05;
2.546+08;
1.416+08;
1.786+08;
1.546+08;
2.406+08;
3.19e+08;
1.95e+08;
2.776+08;
1.74e+08;
2.43e+08;
1.886+08;
-;
1.16e+08;
9.12e+07;
1.23e+08;
4.556+07;
_ .
1.16e+08;
9.12e+07;
1.23e+08;
4.55e+07;
RA;?;
0.69;y;
1.49;y;
1.67;n;
1.13;y;
1.28;y;
1.13,-y;
0.87;y;
0.77;y;
1.63;y;
1.55;y;
1.23;y;
1.24;y;
1.31;y;
1.26;y;
1.02;y;
1.24;n;
0.95;y;
0.78;y;
1.56;y;
1.25;y;
1.04;y;
0.89;y;
0.79;y;
1.56,-y;
0.52;y;
0.44;y;
0.79;y;
1.25;y;
- ; - ;
1.56;y;
1.24;y;
0.52;y;
0.43;y;
_ . _ .
1.56;y;
1.24;y;
0.52;y;
0.43;y;
RT;
28:28;
32:37;
34:43;
34:46;
34:59;
37:11;
40:03;
27:29;
31:57;
32:24;
34:11;
34:15;
34:38;
35:12;
36:22;
37:32;
40:10;
28:27;
32:37;
34:46;
37:10;
40 : 02 ;
27:26;
31:57;
34:15;
36:22;
28:09;
34:59;
28:28;
32:24;
34:42;
34:11;
37:32;
28:28;
32:24;
34:42;
34:11;
37:32;
Cone;
0.405;
0.452;
0.244;
0.388;
0.451;
0.752;
0.909;
^ZTTZQ]
3.351;
3.233;
1.200;
0.858;
0.240;
1.173;
0.123;
0.166;
94.746;
108.756;
88.602;
93.683;
167.968;
95.373;
95.901;
80.565;
78.818;
90.053;
106.614;
65.473;
58.436;
66.782;
45.629;
26.175;
69.143;
60.955;
75.275;
56.187;
33.221;
DL;
0.0122;
0.0095;
0.0389;
0.0307;
0.0304;
0.0171;
0.0144;
0.0443;
0.0457;
0.0442;
0.0333;
0.0264;
0.0307;
0.0353;
0.0271;
0.0328;
0.0195;
0.0328;
0.0242;
0.0333;
0.0230;
0.0112;
0.0222;
0.0144;
0.0990;
0.0384;
-;
-;
0.0117;
0.0147;
0.0494;
0.1270;
0.0491;
0.0127;
0.0093;
0.0577;
0.1359;
0.0838;
S/N1;?;
89;y;
143;y;
23;y;
36, -y;
35;y;
207;y;
165;y;
1176;y;
216;y;
235;y;
210;y;
104;y;
52, -y;
13 ;y;
12 1 * v *
10;y;
33;y;
5611;y;
26720;y;
7648;y;
5707;y;
20398;y;
9170;y;
48034;y;
4022 ;y;
3554;y;
5603;y;
8240;y;
16203 ; ;y;
30676;y;
4987 ;y;
1736, -y, •
839;y;
16203 ;y;
30676;y;
4987 ;y;
173 6; y;
839;y;
S/N2;?
107 ;y
156;y
16;y
27;y
25;y
94 ;y
233;y
1732 ;y
239;y
258;y
188;y
94 ;y
48;y
12,-y
142, -y
11, -y
25;y
13814;y
18804;y
7795;y
17845;y
34679,-y
18445;y
22227;y
2424 ;y
5227 ;y
13533;y
8615;y
-; -
13931;y
5246;y
1050 ;y
1229;y
-; -
13931;y
5246;y
1050;y
1229;y
mod?
no
no
no
no
no
no
no
no /./.
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 15
-------
OPUSquan 20-JUL-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:25
Run: 15 File: a!7ju!98b S:10 Acq:17-JUL-98 23:31:42 Proc:20-JUL-98 09:06:13
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*.
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-1 xl/2
Amount: 243.37 of which 28.16
Cone: 243.37 of which 28.16
Tox #2: -
Tox #1: -
Name
named and 215.22 unnamed
named and 215.22 unnamed
Tox #3: -
2,3,7,8-TCDF
RT Respnse
RA
1 23:41 9.8e+07 0.76 y
9.8e+07
2 24:15 4.8e+07 0.76 y
4.8e+07
3 24:34 4.4e+07 0.77 y
4.4e+07
4 24:52 2.0e+08 0.76 y
2.0e+08
5 24:59 5.1e+07 0.76 y
5.1e+07
6 25:11 4.7e+07 0.76 y
4.7e+07
7 25:17 1.46+08 0.77 y
1.4e+08
8 25:41 4.2e+07 0.75 y
4.2e+07
9 25:45 7.3e+07 0.77 y
7.3e+07
10 26:01 3.7e+07 0.76 y
3.7e+07
11 26:09 5.8e+07 0.77 y
5.8e+07
Cone
18.08
<
C
8.82
8.12
]
36.88
£
1
9.31
8.58
24.92
C
7.79
]
13.47
t
6.76
1
2
10.76
Area Height
S/N Mod?
12 26:26 l.le+08 0.76 y 19.64
l.le+08
13 26:34 9.2e+07 0.76 y 16.96
9.2e+07
14 26:51 5.3e+07 0.76 y 9.70
5.3e+07
15 27:04 2.9e+06 0.76 y 0.53
2.9e+06
16 27:11 2.5e+07 0.76 y 4.60
2.5e+07
17 27:29 1.5e+08 0.77 y 28.16
1.5e+08
18 28:03 3.0e+07 0.76 y 5.45
3.0e+07
19 28:20 1.7e+07 0.74 y 3.19
1.7e+07
.3e+07 9.1e+06 l.le+03 y n
5.6e+07 1.2e+07 1.6e+03 y n
2
2.1e+07 4.5e+06 5.2e+02 y n
2.7e+07 6.1e+06 8.0e+02 y n
.9e+07 4.2e+06 4.8e+02 y n
2.5e+07 5.4e+06 7.1e+02 y n
J.7e+07 1.7e+07 2.0e+03 y n
l.le+08 2.2e+07 2.9e+03 y n
1
2.2e+07 3.3e+06 3.8e+02 y n
2.9e+07 4.36+06 5.7e+02 y n
3
2.0e+07 4.5e+06 5.2e+02 y n
2.7e+07 5.8e+06 7.7e+02 y n
2
5.96+07 7.96+06 9.1e+02 y n
7.7e+07 l.Oe+07 1.4e+03 y n
.8e+07 4.9e+06 5.6e+02 y n
2.4e+07 6.4e+06 8.4e+02 y n
7
3.2e+07 6.36+06 7.3e+02 y n
4.1e+07 8.26+06 l.le+03 y n
1.6e+07 3.4e+06 4.0e+02 y n
2.1e+07 4.5e+06 5.9e+02 y n
5
2.56+07 5.4e+06 6.3e+02 y n
3.36+07 7.0e+06 9.2e+02 y n
1
4.6e+07 9.0e+06 l.Oe+03 y n
6.1e+07 1.2e+07 1.6e+03 y n
5
4.0e+07 8.3e+06 9.6e+02 y n
5.2e+07 l.le+07 1.4e+03 y n
3
2.3e+07 4.6e+06 5.3e+02 y n
3.0e+07 6.0e+06 7.8e+02 y n
3
1.2e+06 3.3e+05 3.8e+01 y n
1.6e+06 4.1e+05 5.4e+01 y n
l.le+07 2.3e+06 2.6e+02 y n
1.4e+07 3.0e+06 3.9e+02 y n
6.7e+07 l.Oe+07 1.2e+03 y n
8.7e+07 1.36+07 1.7e+03 y n
1.3e+07 2.6e+06 3.0e+02 y n
1.7e+07 3.4e+06 4.4e+02 y n
?
7.4e+06 1.4e+06 1.7e+02 y n
l.Oe+07 1.9e+06 2.5e+02 y n
Of/ 046
-------
3PUSquan 20-JUL-1998
Page 2
20 28:33 3.1e+06 0.75 y 0.58
3.1e+06
21 28:53 5.7e+05 1.04 n 0.11
5.7e+05
22 29:05 2.4e+05 0.74 y 0.04
2.4e+05
23 29:18 5.0e+05 0.82 y 0.09
5.0e+05
24 29:48 4.2e+06 1.19 n 0.77
4.2e+06
25 30:00 3.1e+05 1.12 n 0.06
3.1e+05
1.4e+06 2.
1.8e+06 3.
L
2.9e+05 5.
2.86+05 5.
1
l.Oe+05 3.
1.4e+05 4.
9
2.2e+05 6.
2.7e+05 7.
7
2.3e+06 4.
1.9e+06 3.
1.7e+05 3,
1.5e+05 3.
6e+05 3.0e+01 y n
5e+05 4.6e+01 y n
9e+04 6.86+00 y n
7e+04 7.56+00 y n
, Oe+04 3.5e+00 y n
,le+04 5.3e+00 y n
.Oe+04 6.9e+00 y n
.Oe+04 9.26+00 y n
.le+05 4.8e+01 y n
.6e+05 4.7e+01 y n
.8e+04 4.4e+00 y n
8e+04 5.0e+00 y n
-------
OPUSguan 20-JUL-1998
Page 3
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:15
Run: 15 File: al7ju!98b S:10 Acq:17-JUL-98 23:31:42 Proc:20-JUL-98 09:06:13
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3 . 5 17-APR-1997 11:14:34 Sample text: 1070-1 xl/2
Amount: 31.42
Cone: 31.42
Tox #1: -
Name
2,3,7,8-TCDD
of which 0.41
of which 0.41
Tox #2: -
# RT Respnse
named and 31.01
named and 31.01
Tox #3: -
RA
1 25:16 5.6e-t-07 0.77 y
5.6e+07
2 25:41 2.8e+07 0.77 y
2.86+07
3 26:04 4.9e+06 0.80 y
4.9e+06
4 26:55 1.8e+07 0.78 y
1.8e+07
5 27:08 3.5e+06 0.81 y
3.5e+06
6 27:17 4.6e+06 0.79 y
4.6e+06
7 27:24 9.1e+05 1.02 n
9.1e+05
8 27:46 3.9e+06 0.81 y
3.9e+06
9 28:11 4.8e+06 0.77 y
4.8e+06
10 28:20 8.3e+06 0.77 y
8.3e+06
11 28:28 1.8e+06 0.69 y
1.8e+06
12 28:40 1.7e+06 0.79 y
1.7e+06
13 28:58 1.8e+06 0.80 y
1.8e+06
14 29:18 5.8e+05 0.77 y
5.8e+05
15 29:54 4.7e+05 0.69 y
4.7e+05
Cone
12.69
2
3
6.40
1
1
1.09
2
2
3.95
1
S
0.79
3
]
1.03
0.21
O.I
1.09
1.87
4
0.41
1
1
0.37
1
9
0.40
£
c
0.13
0.11
unnamed
unnamed
Area Height
S/N Mod?
2.5e+07 5.3e+06 3.3e+03 y n
3.2e+07 6.8e+06 3.4e+03 y n
3
1.2e+07 2.6e+06 1.6e+03 y n
1.6e+07 3.4e+06 1.7e+03 y n
3
2.2e+06 4.5e+05 2.8e+02 y n
2.7e+06 5.7e+05 2.9e+02 y n
7.7e+06 1.4e+06 8.5e+02 y n
9.8e+06 1.8e+06 8.9e+02 y n
9
1.6e+06 2.4e+05 1.5e+02 y n
1.9e+06 3.1e+05 1.5e+02 y n
2.0e+06 4.0e+05 2.5e+02 y n
2.6e+06 5.1e+05 2.6e+02 y n
1
4.6e+05 l.Oe+05 6.4e+01 y n
4.5e+05 l.le+05 5.3e+01 y n
3
1.7e+06 3.6e+05 2.2e+02 y n
2.2e+06 4.5e+05 2.3e+02 y n
3
2.1e+06 4.3e+05 2.7e+02 y n
2.7e+06 5.4e+05 2.7e+02 y n
7
3.6e+06 6.9e+05 4.3e+02 y n
.7e+06 8.7e+05 4.4e+02 y n
7.4e+05 1.4e+05 8.9e+01 y n
l.le+06 2.1e+05 l.le+02 y n
7
7.3e+05 1.4e+05 8.9e+01 y n
9.3e+05 1.9e+05 9.3e+01 y n
8.06+05 1.6e+05 9.9e+01 y n
9.9e+05 2.0e+05 l.Oe+02 y n
3
2.5e+05 5.5e+04 3.4e+01 y n
3.3e+05 6.7e+04 3.4e+01 y n
L
1.96+05 3.96+04 2.4e+01 y n
2.8e+05 5.9e+04 3.0e+01 y n
frf048
-------
OPUSguan 20-JUL-1998
Page 4
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:16
Run: 15 File: al7ju!98b S:10 Acq:17-JUL-98 23:31:42 Proc:20-JUL-98 09:06:13
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-1 xl/2
Amount: 59.75
Cone: 59.75
Tox #1: -
Name
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
of which 6.08
of which 6.08
Tox #2: -
# RT Respnse
named and 53.67
named and 53.67
Tox t3: -
RA
1 30:17 3.3e+07 1.52 y
3.3e+07
2 31:16 1.8e+07 1.57 y
1.8e+07
3 31:22 7.7e+07 1.53 y
7.7e+07
4 31:30 1.26+07 1.53 y
1.2e+07
5 31:36 1.7e+06 1.43 y
1.7e+06
6 31:39 1.7e+06 1.77 y
1.7e+06
7 31:45 3.7e+07 1.50 y
3.7e+07
8 31:55 1.7e+07 1.47 y
1.7e+07
9 31:57 1.2e+07 1.63 y
1.26+07
10 32:04 6.9e+06 1.48 y
6.9e+06
11 32:08 1.56+07
1.56+07
1.53 y
12 32:24 1.5e+07 1.55 y
1.56+07
13 32:30 1.4e+07 1.46 y
1.46+07
14 32:36 7.5e+05 1.47 y
7.5e+05
15 32:39 1.7e+06 1.49 y
1.7e+06
16 32:58 l.Oe+06 1.52 y
l.Oe+06
Cone
7.40
2
1
4.08
1
1
17.38
4
3
2.77
1
4
0.38
c
e
0.39
1
e
8.33
3
3.94
1
1
2.73
<
1.57
4
3.44
c
6
3.35
S
C
3.23
£
c
0.17
<
0.38
1
e
0.23
unnamed
unnamed
Area Height
S/N Mod?
2.0e+07 3.8e+06 2.7e+02 y n
1.3e+07 2.5e+06 3.0e+02 y n
3
l.le+07 3.8e+06 2.7e+02 y n
7.0e+06 2.4e+06 2.9e+02 y n
3
4.6e+07 1.4e+07 1.Oe+03 y n
3.0e+07 9.4e+06 l.le+03 y n
7
7.4e+06 2.1e+06 1.5e+02 y n
4.8e+06 1.4e+06 1.7e+02 y n
9.8e+05 3.9e+05 2.8e+01 y n
6.8e+05 2.66+05 3.1e+01 y n
l.le+06 3.86+05 2.7e+01 y n
6.3e+05 2.26+05 2.6e+01 y n
}
2.2e+07 7.1e+06 5.0e+02 y n
1.5e+07 4.8e+06 5.8e+02 y n
l.Oe+07 3.5e+06 2.5e+02 y n
7.1e+06 2.3e+06 2.86+02 y n
J
7.3e+06 3.16+06 2.2e+02 y n
4.5e+06 2.0e+06 2.4e+02 y n
4.1e+06 l.Se+06 l.le+02 y n
2.8e+06 l.Oe+06 1.2e+02 y n
1
9.2e+06 3.36+06 2.3e+02 y n
6.0e+06 2.2e+06 2.6e+02 y n
9.2e+06 3.3e+06 2.4e+02 y n
5.9e+06 2.26+06 2.6e+02 y n
8.56+06 2.9e+06 2.1e+02 y n
5.8e+06 2.06+06 2.3e+02 y n
4.5e+05 1.7e+05 1.2e+01 y n
3.0e+05 l.le+05 1.3e+01 y n
l.Oe+06 3.5e+05 2.5e+01 y n
6.86+05 2.36+05 2.86+01 y n
5
6.0e+05 2.26+05 1.5e+01 y n
4.0e+05 l.Se+05 1.7e+01 y n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:ll
Run: 15 File: al7ju!98b S:10 Acq:17-JUL-98 23:31:42 Proc:20-JUL-98 09:06:13
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-1 xl/2
rr ' 049
-------
OPUSguan 20-JUL-1998
Amount: 12.48 of
Cone: 12.48 of
Tox #1: -
Name f
1
2
3
4
5
6
7
8
1,2,3,7,8-PeCDD 9
10
11
which 0 .
which 0 .
Tox #2
45
45
: -
RT Respnse
31:30 1.
1.
31:49 1.
1.
32:00 1.
1.
32:04 1.
1.
32:10 7.
7.
32:20 2.
2.
32:26 3.
3.
32:30 1.
1.
32:37 1.
1.
32:43 9.
9.
32:54 7.
7.
6e+07
6e+07
Oe+06
Oe+06
3e+07
3e+07
8e+06
8e+06
8e+06
8e+06
2e+06
2e+06
8e+06
8e+06
6e+06
6e+06
8e+06
8e+06
3e+05
3e+05
4e+05
4e+05
Page 5
named and
named and
Tox
RA
1.51 y
1.53 y
1.54 y
1.43 y
1.49 y
1.10 n
1.60 y
1.67 y
1.49 y
1.62 y
1.42 y
12
12
#3
.03
.03
: -
Cone
3
0
3
0
1
0
0
0
0
0
0
.88
9
6
.25
6
4
.21
7
5
.44
1
7
.95
4
3
.55
1
1
.94
2
1
.39
9
6
.45
1
7
.23
5
3
.18
4
3
unnamed
unnamed
Area
.4e+06
.2e+06
.le+05
.Oe+05
.9e+06
.le+06
.Oe+06
.3e+05
.7e+06
.2e+06
.2e+06
.le+06
.3e+06
.5e+06
.9e+05
.Oe+05
.le+06
.3e+05
.7e+05
.5e+05
.3e+05
.le+05
Height
3.1e+06
2.06+06
2.2e+05
l.Se+05
2.8e+06
1.8e+06
3.8e+05
2.6e+05
1.7e+06
1. le+06
3.66+05
2.3e+05
8.5e+05
5.4e+05
3.6e+05
2.2e+05
4.0e+05
2.7e+05
2. Oe+05
1.2e+05
1.6e+05
1. le+05
1
1
8
8
1
1
1
1
6
6
1
1
3
3
1
1
1
1
7
7
5
6
S/N
.16+03
.2e+03
.le+01
.6e+01
.Oe+03
.le+03
.4e+02
.5e+02
.le+02
.7e+02
.3e+02
.3e+02
.le+02
.2e+02
.3e+02
.3e+02
.4e+02
.6e+02
.2e+01
.Oe+01
.9e+01
.4e+01
Mod?
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
050
-------
OPUSquan 20-JUL-1998
Page 6
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:12
Run: 15 File: a!7ju!98b S:10 Acq:17-JUL-98 23:31:42 Proc:20-JUL-98 09:06:13
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-1 xl/2
Amount: 11.52
Cone: 11.52
Tox #1: -
Name
of which 5.53
of which 5.53
Tox #2: -
# RT Respnse
named and 5.99
named and 5.99
Tox #3: -
RA
1 33:32 5.5e+06 1.18 y
5.56+06
2 33:38 1.3e+07 1.24 y
1.3e+07
3 33:43 8.3e+05 1.32 y
8.36+05
33:49 9.8e+05
9.8e+05
1.33 y
5 33:55 5.3e+05 1.33 y
5.3e+05
34:03 2.36+04
2.36+04
1.73 n
1,2,3,4,7,8-HxCDF 7 34:11 1.2e+07 1.23 y
1.2e+07
1,2,3,6,7,8-HxCDF 8 34:15 5.5e+06 1.24 y
5.5e+06
9 34:20 l.le+06 1.38 y
l.le+06
10 34:28 1.2e+06 1.39 y
1.2e+06
2,3,4,6,7.8-HxCDF 11 34:38 3.4e+06 1.31 y
3.4e+06
1,2,3,7,8,9-HxCDF 12 35:12 8.2e+05 1.26 y
8.2e+05
Cone
1.41
3.37
C
0.21
i
0.25
c
4
0.14
0.01
3
£
3.23
e
c
1.20
0.29
f
<
0.31
C
0.86
3
:
0.24
unnamed
unnamed
Area Height
S/N Mod?
3.0e+06 l.le+06 l.le+02 y n
2.5e+06 9.2e+05 l.le+02 y n
7
7.3e+06 2.6e+06 2.7e+02 y n
5.9e+06 2.0e+06 2.4e+02 y n
L
4.7e+05 1.5e+05 1.5e+01 y n
3.6e+05 l.le+05 1.3e+01 y n
5.6e+05 1.9e+05 1.9e+01 y n
4.2e+05 1.4e+05 1.7e+01 y n
1
3.1e+05 l.Oe+05 l.le+01 y n
2.3e+05 8.7e+04 l.Oe+01 y n
L
1.5e+04 5.9e+03 6.2e-01 n n
8.5e+03 3.3e+03 3.8e-01 n n
.5e+06 2.0e+06 2.1e+02 y n
5.3e+06 1.6e+06 1.9e+02 y n
D
3.1e+06 l.Oe+06 l.Oe+02 y n
2.5e+06 8.1e+05 9.4e+01 y n
.56+05 2.1e+05 2-le+Ol y n
.7e+05 1.6e+05 1.8e+01 y n
7.1e+05 1.7e+05 l.Se+01 y n
5.1e+05 1.2e+05 1.4e+01 y n
1.96+06 4.9e+05 5.26+01 y n
1.56+06 4.1e+05 4.86+01 y n
4.6e+05 1.3e+05 1.3e+01 y n
3.66+05 l.Oe+05 1.2e+01 y n
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:10
Run: 15 File: al7ju!98b S:10 Acq:17-JUL-98 23:31:42 Proc:20-JUL-98 09:06:13
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-1 xl/2
Amount: 10.16
Cone: 10.16
Tox #1: -
Name
of which 1.08
of which 1.08
Tox #2: -
# RT Respnse
named and 9.08
named and 9.08
Tox #3: -
RA
1 33:52 2.0e+06 1.21 y
2.0e+06
2 34:11 2.3e+07 1.25 y
2.3e+07
Cone
0.63
]
t
7.08
unnamed
unnamed
Area Height
S/N Mod?
l.le+06 3.9e+05 6.1e+01 y n
9.1e+05 3.2e+05 4.7e+01 y n
3
1.3e+07 4.3e+06 6.7e+02 y n
' os:
-------
OPUSquan 20-JUL-1998
Page 1
3 34:20 3.7e+06
3.7e+06
4 34:26 6.7e+05
6.7e+05
1,2,3,4,7,8-HxCDD 5 34:43 6.66+05
6.66+05
1,2,3,6,7,8-HxCDD 6
1,2,3,7,8,9-HxCDD 7
34:46 1.3e+06
1.3e+06
34:59 1.6e+06
1.6e+06
8 35:06 3.8e+04
3.8e+04
9 35:12 6.56+03
6.5e+03
10 35:16 l.le+04
l.le+04
1.23 y
1.48 n
1.67 n
1.13 y
1.28 y
0.58 n
0.31 n
2.70 n
l.Oe+07 3.5e+06 5.1e+02 y n
1.15
0.21
0.24
0.39
0.45
0.01
2.06+06
1.6e+06
L
4.0e+05
2.7e+05
4
4.1e+05
2.56+05
3
7.1e+05
6.2e+05
5
8.86+05
6.86+05
L
1.46+04
2.46+04
0.00
0.00
l.Se+03
4.96+03
D
7.96+03
2.9e+03
6.5e+05 l.Oe+02 y n
5.26+05 7.66+01 y n
l.le+05 1.7e+01 y n
8.4e+04 1.2e+01 y n
1.5e+05 2.3e+01 y n
l.le+05 1.6e+01 y n
2.3e+05 3.6e+01 y n
1.9e+05 2.7e+01 y n
2.2e+05 3.5e+01 y n
1.7e+05 2.5e+01 y n
5.9e+03 9.2e-01 n n
6.5e+03 9.66-01 n n
S.le+02 1.36-01 n n
1.86+03 2.76-01 n n
2.2e+03 3.4e-01 n
1.66+03 2.46-01 n
-------
OPUSguan 20-JUL-1998
Page 8
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:4
Run: 15 File: a!7jul98b S:10 Acq:17-JUL-98 23:31:42 Proc:20-JUL-98 09:06:13
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-1 xl/2
Amount: 1.67
Cone: 1.67
Tox #1: -
Name
of which 1.30
of which 1.30
Tox #2: -
# RT Respnse
named and 0.37
named and 0.37
Tox #3: -
RA
1,2,3,4,6,7,8-HpCDFl 36:22 3.7e+06 1.02 y
3.7e+06
2 36:34 5.7e+05 0.97 y
5.7e+05
3 36:40 5.0e+05 1.08 y
5.0e+05
1,2,3,4,7,8,9-HpCDF4 37:32 3.2e+05 1.24 n
3.2e+05
Cone
1.17
]
1
0.20
0.17
0.12
unnamed
unnamed
Area Height
S/N Mod?
1.9e+06 5.4e+05 1.2e+02 y n
l.Se+06 5.5e+05 1.4e+02 y n
D
2.8e+05 8.0e+04 1.8e+01 y n
2.9e+05 8.3e+04 2.2e+01 y n
7
2.6e+05 6.8e+04 1.5e+01 y n
2.4e+05 6.9e+04 1.8e+01 y n
2
1.8e+05 4.5e+04 l.Oe+01 y n
1.4e+05 4.1e+04 l.le+01 y n
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:4
Run: 15 File: a!7ju!98b S:10 Acq:17-JUL-98 23:31:42 Proc:20-JUL-98 09:06:13
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-1 xl/2
Amount: 1.51
Cone: 1.51
Tox #1: -
Name
of which 0.75
of which 0.75
Tox #2: -
# RT Respnse
named and 0.76
named and 0.76
Tox #3: -
RA
1 36:22 7.7e+04 4.63 n
7.7e+04
2 36:35 2.0e+06 0.99 y
2.0e+06
3 36:49 2.9e+04 0.81 n
2.9e+04
l,2,3,4,6,7,8-HpCDD4 37:11 2.1e+06 1.13 y
2.1e+06
Cone
0.03
e
3
0.72
3
3
0.01
]
]
0.75
unnamed
unnamed
Area Height
S/N Mod?
6.3e+04 1.9e+04 1.2e+01 y n
1.4e+04 5.2e+03 1.8e+00 n n
I
l.Oe+06 3.0e+05 2.0e+02 y n
l.Oe+06 3.0e+05 l.Oe+02 y n
.3e+04 4.3e+03 2.8e+00 n n
.6e+04 4.0e+03 1.4e+00 n n
l.le+06 3.1e+05 2.1e+02 y n
l.Oe+06 2.7e+05 9.4e+01 y n
053
-------
File: A17JUL98B Acq: 17-JUL-1998 23:31:42 Exp: EXP M23
Sample #10 Text: 1070-1 xl/2 ALS #10
319.8965 S:10 SMO(1,3) BSUB ( 128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10% ,
100% A2.45E7
n
50J M A1.24E7
0; ]\ J\A2.I6E6
24loO ' ' 25100
321.8936 S:10 SMO(1,3) BSUB (128, 15, -3
100% A3
50 1
o:
24:00 25:00
331.9368 S:10 SMO(1,3) BSUB (128, 15, -3
100%
sol
1 ' ' ' ' | i '
24:00 25:00
333.9339 S:10 SMO(1,3) BSUB (128, 15 , -3
100%
50 j
0:
24 100 25 loo'
327.8847 S:10 SMO(1,3) BSUB(128, 15, -3
100%
50 j
26:00
.0) PKD(3,3,3,0.10%,
.19E7
11 A1.60E7
/ \ /\ A2.69E6
/ V J V ^x\
26:00
.0) PKD(3,3,3,0.10%,
26:00
.0) PKD(3,3,3,0.10%,
26 loo'
.0) PKD(3,3,3,0.10%,
24:00 25:00 26:00
316.9824 S:10 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00% , F, F)
100% 23:42 24:26 24:51 25:40 26:07 26
:/ — "
50j
1 o:
24:00 25:00
26:00
_DB5_OVATION Voltage SIR EI + GC Autospec-UltimaE Paradigm
1616. 0,1. 00%, F,F)
5.3E6
-2.6E6
A7.71E6 , ^ „
A A2 . 02E6 A3 • 62E6 .
27 loo' ' ' 28 100 29:00 3oloO Time
1992. 0,1. 00%, F,F)
6.8E6
L3.4E6
A9.84E6 ;
-/ \ >>- — - ^/~\ — r _, - n . OF.O
27:00 28:00 29:00 30:00 Time
7012. 0,1. 00%, F,F)
A1.92E8 3.9E7
ll /I L2.0E7
-/ v 7 V • 0 . OEO
1 1 1 1 ' t 1 1 1 "L'"
27:00 28:00 29:00 30:00 Time
3672. 0,1. 00%, F,F)
A2.54E8 5.1E7
|\ ^
/ V / V_ -0 .OEO
27 100 28 loo 29 loo' ' ' ' 3oloO Time
3496. 0,1. 00%, F,F)
A2.86E8 5.7E7
/I _2 . 8E7
7 V_ 0 . OF.O
27:00 ' 28 100 29loO ' 3oloO Time
:31 26:56 27_L25 27:57 28:2328:45 29:11 6.7E7
V L3.3E7
0 .OEO
27100 28100 29100 3oloO Time
O
C/l
-------
File: A17JUL98B Acq: 17-JUL-1998 23:31:42 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Parad
Sample #10 Text: 1070-1 xl/2 ALS #10
355.8546 S:10 F:2 SMO(1,3) BSUB (128 , 15, -3 . 0) PKD (3 , 3 , 3 , 0 . 10%, 2768 . 0 , 1 . 00%, F, F)
100% A9.42E6 A7.86E6
" l\ l\ A4.69E6
50- A
\ \ \ A2.32E6
/ \ A6 10E5 MM A A1.09E6
0- / V Ab^bby \^J ^^^J \^ /^^ ^
30li2 36124 3bl36 sbUs 31166 3ill2 3ll24
357.8517 S:10 F:2 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD(3,
1004 A6.
/
o- /
3bli2 30124 30136 sbUs 3ll66 3ill2 31124
367.8949 S:10 F:2 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3,
lOOi
so:
0'
" 'l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T-T"I | 1 1 1 1 1 1 1 1 1 1 1 1 1 1
30ll2 30124 30136 30:48 31:00 31:12 31:24
369.8919 S:10 F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3,
1004
so:
n '
" 'i i i i i i i i i i i i i i i i i i i i i i i i i i i i i 1-T-r i r i i i i i ] i i
301l2 30:24 30:36 30:48 31:00 31:12 31:24
366.9792 S:10 F:2 SMO(1,3) PKD (3 , 3 , 3 , 100 . 00%, 0 . 0, 1 .
1004 30:18 31:18
so:
^ 30:12 30:24 30:36 30:48 31:00 31:12 31:24
31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
3, 3, 0.10%, 1712. 0,1. 00%, F,F)
32E6 A5.09E6
'\ l\ A3.16E6
\ A Al 45E6
V A4.00E5/ \sJ \^_^ A^^^ ^
' 31136 ' SlUs 32166 32112 32 124 ' 32 \36 ' 32 Us ' 33 1 66 ' 33 1 12
3, 3, 0.10%, 2868. 0,1. 00%, F,F)
A2 . 20E8
3ll36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
3, 3, 0.10%, 2632. 0,1. 00%, F,F)
A1.41E8
igm
3.1E6
_1.5E6
O.OEO
Time
2.0E6
_1.0E6
O.OEO
Time
7.7E7
_3.8E7
.O.OEO
Time
_5.0E7
12 . 5E7
"O.OEO
' 31 1 36 ' 31148 32166 32112 32124 32136 32148 33166 33112 Time
00%,F,F)
31:36 31:52 32:04 32j23 32:33 32^53 33:J.2 7.4E7
_3.7E7
_O.OEO
3ll36 3ll48 32100 32ll2 32:24 32:36 32:48 33:00 33:12 Time
O
Cfl
en
-------
File
Samp
389.
100%
50J
0."
391.
100%
so.:
0"
401.
100S
501
0"
403.
100%
50:
o:
380.
100%
50_
•v :
^0"
?>
: A17JUL98B Acq: 17-.JUL-l99fi 23:31:42 Exp : EXP M23 DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Parad
le #10 Text: 1070-1 xl/2 ALS #10
8156 S:10 F:3 SMO(1,3) BSUB ( 128 , 15, -3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 6412 . 0 , 1 . 00% , F, F)
Al . 2 6E7
A
/ \
A1.10E6 / \A2.02E6
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35
8127 S:10 F:3 SMO(1,3) BSUB (128, 15 , -3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 6832 . 0, 1 . 00%, F, F)
A1.00E7
A
A
/ \
A9.JLOE5 1 ^Al^Ee
33124 33136 33Us 34!oO 34ll2 34:24 34!36 34Us 35loO 3s!l2 3s!24 35I36 3s!
8559 S.-10 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 11192 . 0 , 1 . 00%, F, F)
A2.24E8 A2.35E8
A A
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:
8530 S:10 F:3 BSUB(128, 15 , -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 8556 . 0 , 1 . 00%, F, F)
A1.78E8 A1.88E8
/A /I
*— i — i — i — i— i — i — i — i — l — l — i — i — i — i — | — i — i — l — i — i — I — r -T — r 7 t r- i i l 1 i i i i i i i l i V i 'i l I l T 1 i i | I i T~ 1 1 | l l 1 1 i | |
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:
9760 S:10 F:3 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
33-27 33-40 33:55 31^0334:10 34^21 34^3534^42 35:00 35:16 35:29 35:37
^
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:
igm
4.3E6
_2.1E6
O.OEO
48 Time
3.5E6
L1.7E6
" O.OEO
48 Time
9.2E7
14 . 6E7
' O.OEO
48 Time
7.4E7
_3.7E7
O.OEO
48 Time
1.7E8
18.4E7
O.OEO
48 Time
-------
File
Samj
423
1003
50.
0
425.
1003
50_
435.
10035
50J
0"
437.
100S
so:
430.
100%
so:
-: A17JUL98B Acq: 17-JUL-1998 23:31:42 Exp: EXP_M23 DBS OVATION Voltage SIR EI+ GC Autospec-UltimaE — Paradiom ~~1
xle #10 Text: 1070-1 xl/2 ALS #10 y
7767 S:10 F:4 SMO(1,3) BSUB(128, 15 , -3 . 0) PKD (3 , 3 , 3 , 0 . 10%, 1508 . 0 , 1 . 00%, F, F)
A1.01E6 A1.12E6 3 . 1E5
A6.34E4
36:66 36:12 36124
7737 S:10 F:4 SMO(1,3)
36166 36!l2 36124
8169 S:10 F:4 SMO(1,3)
36:00 36:12 36:24
8140 S:10 F:4 SMO(1,3)
36166 36ll2 36124
9728 S:10 F:4 SMO(1,3)
36:11 36:22
/
>, 36166 36ll2 36124
IV 1 ^
36:36 36:48 37.00 37ll2 37124 37136 37148 38166 38ll2 38 124 ' 38 1 3 6 ' 38 • 48 ' 39
BSUB(128,15,-3.0) PKD (3 , 3 , 3 , 0 . 10%, 2900 . 0 , 1 . 00% , F, F)
ALQ3E6 A1.00E6
A A
A A
36136 36-48 37166 37ll2 37124 37136 37148 38166 38 1 12 ' 38J24' ' 38 J36 ' 38 !48 ' 39
BSUB(128,15,-3.0) PKD (3 , 3 , 3 , 0 . 10%, 7732 . 0 , 1 . 00%, F,F)
A1.61E8
A
36136 36148 37166 37112 37124 37136 37148 SsloO 38 1 12 ' 38 124 ' 38 lie ' 38 J48 ' 39
BSUB(128,15,-3.0) PKD (3 , 3 , 3 , 0 . 10%, 2368 . 0 , 1 . 00%, F, F)
A1.54E8
A
1 ' I | i i i i i | i i r i i i i IIT-I "1 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i I-T i i i i i i i i i i i i i -I
36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38124 38136 38148 39
PKD (3, 3, 3, 100. 00%, 0.0,1. 00%, F,F)
Hu3i_ 37:00 37:16 3ii42 38:02 38:16 38:31 38-50
i i | > i i i i | i i i i i | i i i i i | i i i i i | i i i i i i i i i i i | i i i i i i r i i i T-rr-r t— r i I i i i i i i i i i i i i i i i i , i '
36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38124 38136 38148 39l(
-1.6E5
^O.OEO
00 Time
3.0E5
-1.5E5
LO.OEO
00 Time
4.4E7
.2.2E7
.O.OEO
00 Time
_4.2E7
_2.1E7
.O.OEO
00 Time
.5.5E7
.O.OEO
)0 Time
o
en
-------
File
Samp
457.
1002
so:
OJ
459.
100S
so:
0H
469.
100%
so:
0"
471.
100%
so:
0"
454.
100%
so:
^ol
: A17JUL98B Acq: 17-JUL-1998 23:31:42 Exp: EXP M23 DBS OVATION Voltage SIR EI+ GC Autospec-UltimaE Parad
le #10 Text: 1070-1 xl/2 ALS #10
7377 S:10 F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD (3 , 3 , 3 , 0 . 10% , 1416 . 0 , 1 . 00%, F, F)
A9 . 62E5
39ll2 ' 39124 ' ' 39:
7348 S:10 F:5 SMO(1,3) BSUB(128
39ll2 39124 39!
7780 S:10 F:5 SMO(1,3) BSUB(128
39:12 39:24 39:
7750 S:10 F:5 SMO(1,3) BSUB(128
igm
2.4E5
L1.2E5
• n nw.n
36 39:48 40:00 40:12 40:24 40:36 40:48 41 00 Time
,15, -3 .0) PKD (3, 3, 3, 0.10%,1064.0,1.00%,F,F)
A1.11E6
36 39:48 40:00 40:12 40:24 40:36 40:48 41
,15, -3.0) PKD (3, 3, 3, 0.10%, 2396. 0,1. 00%, F,F)
A2.14E8
36 39:48 40:00 40:12 40:24 40:36 40:48 41:
,15, -3.0) PKD (3, 3, 3, 0.10%, 1564. 0,1. 00%, F,F)
A2.40E8
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41
9728 S:10 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
39:19 __19_i42__ 39:58 4JLO8 40:36
r
^ 39:12 39:24 39:
2 . 5E5
.1.2E5
" O.OEO
00 Time
4 . 9E7
_2.4E7
O.OEO
00 Time
5.4E7
L2.7E7
" O.OEO
00 Time
_1.2E8
_5.8E7
O.OEO
36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 Time
o
en
00
-------
File: A17JUL98B Acq: 17-JUL-1998 23:31:42 Exp: EXP M23 DBS OVATION Voltage SIR EI + GC Autospec-UltimaE Paradigm
Sample #10 Text: 1070-1 xl/2 ALS #10
303.9016 S:10 SMO(1,3) BSUB (128 , 15, -3 . 0) PKD (3, 3 , 3 , 0 . 10%, 8648 . 0, 1 . 00%, F, F)
100% A8.67E7 1.7E7
50 ; A4.26E7 A A5.89E7 A4.60E7 A6 . 66E7 g _ ^
; A A2.07E7 M A A A2.55E7A AA2.27E7 /\ _„_„
/\ A A / V-N H \ /\\ /\ A / Y \ A / \ A1.28E7
o- J \ /\ /\ J rvi v /I \ yvv y i \ y\ /\ J \^ /^ ^ _ o OEO
24 loO ' 25:00 2eloo'
305.8987 S:10 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 7600
100% A1.14E8
50 1 A5.57E7 A A7.66E7 A6.08E7
A A2.73E7 M A « A3.30E7A /\A3
A A A /VW\ /i\ AA /Yv
24 loo 25 loo
315.9419 S:10 SMO(1,3) BSUB (128, 15, -3 . 0)
100% ^+ y
: f^^6f*_ —
50J xi> _ \_^^"^ V , -
/ «_4-^St->v' ^""" — /" x-> <• 9 ^
-------
File: A17JUL98BAcq: 17-JUL-1998 23:31:42Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaEParadigm
Sample #10 Text: 1070-1 xl/2 ALS #10 I
339.8597 S:10 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,14124.0,1.00%,F,F) ,
100%, A4.65E7 I I 1.4E7
50J
A1.98E7
.7.42E6
A2 . 2 ]iE7
A1.04E7
A9.I17E6
T-f"i—r—i—i f i i—i—i—r—i—r f r f i—r—i—i—i—r~r 'i—j—i—r—i—n—T^T—i—r^r—r r r i—i—^ r~]r''r""^'ir f r r~*r f i f' t 7**f i T i—i ~*i r n r~1 ••;—i "~r~i—r t [ f" t" f i f r i i i t' ( [ i r ~T~I—r~i—r~r
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31.:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
_7.2E6
O.OEO
341.8568 S:10 F:2 SMO(1,3) BSUB (128,15 ,-3 . 0 ) PKD(3 , 3 , 3 , 0 .10% , ^344 . 0 ,'1. 00%, F, F)
100*. A3.Q4E7 | r
A1.30E7
.4.84E6
A1.47E7
A7.06E6
A5.92E6
y\/v
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
351.9000 S:10 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2140.0,1.00%,F,F)
10°*. /• ( ,-* S*\ ^L U n A3.04E8
/\, .-^/> j. C4?/rf> / f- Y/w n
A1.81E8
^l.
30:12 30:24 3b:3aft-3():48 3l!oO 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
353.8970 S:10 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2984.0,1.00%,F,F)
100%. ^lJL(\i ft. //2r-.~'x) A1.25E8 ,-6
50J
0.
,
Ovt
A1.16E8
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I'T T I7l I I I I I I I I I I I 1 I I I I I I I "I I I I I I 'I I I 1 I I I I I I I I I I I I I I I I I I I
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
409.7974 S:10 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,2604.0,1.00%,F,F)
100%
Time
.4E6
.7E6
.OEO
Time
. OE8
,1E7
,OEO
Time
. 6E7
.OEO
Time
'I I I i I I I I I i I I I I I i I I ll I i L-t T i i i i I I i i li i" I I I i i I I I I I i I ri i T I' I i i i i I i I 1 1 i 1 I | I I I I 'I | T*l i i I I I I I I i I I I I i I I I I I I I I
30:12 30:24 30:36-^315148 31:00u31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
366.9792 S:10 F:2 SMO(1,3) f>KD (3 ,3 , 3<, 100 . 00% , 0 . 0 ,1. 00%, F, F)
100%, 30:18 I „ 1& vo* 31:18 31:36 31:52 32; 04 32:23 32:33 22^3 3J_O2_7
1 30:12 30:24 30:36 30:
31:48 32:00 32:12 32:24 32:36 32148 ' 33:66 ' 33ll2
.OEO
Time
.4E7
.7E7
.OEO
Time
-\
O
-------
File: A17JUL98B Acq: 17-JUL-199S 2J:J1:42 Exp
Sample #10 Text: 1070-1 xl/2 ALS #10
: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
373.8207 S:10 F:3 SMO(1,3) BSUB (128 , 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10% , 9596 . 0, 1 . 00%, F, F)
100% A7.28E6 1 r
50J
.
•
Oj
A TAT6
A2 . 97E6 \ , / \.
/ \l \ A5.59E5 I/ irAlS.
J V x ^ ^=^L V II r
33124 33136 33Us 34^00 1 341J12
,_2.6E6
..,_,,. A1.92E6
51E5 ^/^
_1.3E6
0 . OEO
34:24 34!36 34Us 3s!oO 3s!l2 3sl24 3s!36 35:48 Time
375.8178 S:10 F:3 SMO(1,3) BSUB (128, 15, '-3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 8608 . 0 , 1 . 00%, F, F)
100% A5.87E6
50 J
'.
0"
A A5.26E6
A2 . 52E6 \ / \|
/ \J \ A4.22E5 / VA4\,
33124 33136 33Us 34loO 34 12
383.8639 S:10 F:3 BSUB(128, 15, -3 . 0) PKD(3,5,2,0
100%
50J
o"
A2J.45E
A
' f\ \^
«-»— i — i i i i — 1—1 — i 1 l l — l — l — i — l — r-'T-r iiiiiiiijiii
33:24 33:36 33:48 34:00 34:12
385.8610 S:10 F:3 BSUB(128, 15, -3 . 0) PKQ(3,5-,2,0
100%. 1 A2,-77E
'.
50-
0'
1 /
' A A
,N V
"-1— i — i — i — i — i — r— l — i 1 i — i — i — i — i — | — i — r-t i i i i i ii i i |. i i i
33:24 33:36 33:48 34:00 34:12
^_2 . OE6
72E5 Al^Ee
.
L1.0E6
LO.OEO
34124 34136 34148 3s!oO 3s!l2 3sl24 3s!36 35 48 Time
.10%, 16288. 0,1. 00%, F,F)
8 r
1
6.6E7
.3.3E7
•O.OEO
34! 24 34136 34!48 3s!oO 3s!l2 3sl24 3s!36 35 48 Time
.10%, 51504. 0,1. 00%, F,F)
8 1.2E8
'
1
-
L6.2E7
LO.OEO
34124 34l3B 34Us 3s!oO 3s!l2 35J24 3s!36 35 48 Time
445.7555 S:10 F:3 SMO{1,3) BSUB (128, 15 J -3 .00 PKD(3 , 3 , 3 , 100 . 00%, 4356 . 0 , 1 . 00%, F, F)
100% . 34^13
50 J
0 "
34,07 / \
/ V L
"-*— , — i i i i i i i i — i — i — r- 1— r— rMr i i i i l i i i i i i i i
33:24 33:36 33:48 34:00 34 12
34:39" —
-^ 3^32/7\_yANV/^X^i4-^8 33^22_35ji6
3.7E5
_1.8E5
O.OEO
34124 34l3B 34^8 3s!o'o 3s!l2 3s!24 3s!36 3S.-48 Time
380.9760 S:10 F:3 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F) 1
100% 33:27 33:40 33:55 3J^03 34j_10 3
50J
;
7
> 33:24 33:36 33:48 34:00 34 12
4_i21 3Jj^5 34_L42__ 35_iOO 35:16 35:29 35:37 1.7E8
_8.4E7
1 O.OEO
'34:2'4' ' 's^hV ' 34148 3s!oO 3s!l2 35I24 3s!36 SsUs Time
-------
I
File: A17JUL98B
Sample #10
407.7818
100%
50 1
'_
o-
S
Text
:10 F:
Acq: 17-JUL-1998 23:31:42
Exp: EXP_M23_DB5_OVATION Voltage SIR EI + GC Autospec-UltimaE Paradigm
: 1070-1 xI/2 ALS #10
4 SMO(1,3)
Al . 87E6
A
BSUB(128,15,-3.0)
PKD (3,3,3
/ \ A2.79E5
36
409.7788
100%
sol
.
Oj
1
S
00 36
:10 F:
J X
Il2 ' 36124
4 SMO(1,3)
Al . 84E6
A
r ^s— ^^^^
36\36 36l48 37 1
BSUB(128,15,-3.0)
66 37112
PKD (3,3,3
/ V A2.88E5
/ \ ^-^
36
417.8253
100%
50 j
.
o"
36
419.8220
100%
sol
:
0'
" ' 1 1 1 1
36
479.7165
100%
50 1
1
S
5
S
T
S
00 36
:10 F:
00 36
:10 F:
00 36
:10 F:
J X
Il2 36124
4 SMO(1,3)
A7.68E7
A
/ \
/ v
1 i i f i i | n-
:12 36:24
4 SMO(1,3)
Al -74E8
A
/ \
/ V_
•12 36:24
4 SMO(1,3)
35:57
36
430.9728
100%
50 j
0"
/
M 36
1
S
1
00 36
:10 F:
36:
00 36
:12 36:24
4 SMO(1,3)
11 36:22
| I . i i i | i r
:12 36:24
_/ ^+^mtS X^.
36\36 36 Us 37l
BSUB(128,15,-3.0)
36:36 36:48 37:
BSUB(128,15,-3.0)
36:36 36:48 37:
BSUB(128,15,-3.0)
37:
f
36:38 y
36:36 36:48 37:
PKD(3,3,3,100.00%
36_Li5_ 37:
i i i I I ' ' ' ' ' I
36:36 36:48 37:
66 37:12
PKD(3,3,3
66 ' 37:12 '
PKD (3,3,3
66 37112'
PKD (3,3,3
37:10
00 / \
•v . / \
x^ w
66 37! 12
,0.0,1.00%
00 37:1
66 ' 37! 12
,0.10%,
Al.
37! 24
,0.10%,
Al.
37124
,0.10%,
Al.
y
37124
,0.10%,
A4.
y
37124
4480. 0,1. 00%, F,F)
77E5
- — -^__
r5'
12.
" 0 .
37136 37148 38166 38112 38124 Sslie SsUs 39loO
3860. 0,1. 00%, F,F)
43E5
^5-
_2.
0 .
37: 36 37:48 3sl6o 3sll2 38l24 38\36 38:48 39loO
6348. 0,1. 00%, F,F)
97E7
"V^
2.
Li.
' 0 .
37 3' 6 37148 38166 38112 38124 38:36 38:48 39loO
9656. 0,1. 00%, F,F)
55E7
'V
5.
_2.
0.
37:36 37148 38166 38:12 38124 3s!36 SsUs 39loO
, 100. 00%, 5320. 0,1. 00%, F,F)
^N3Jjj2j5
37l24
,F,F)
6
37124
r
Ll.
•o
37136 37:48 38166 38:12 38124 bslie SsUs 39:00
37i_42 38:02 38:16 38:31 38:50 rl .
_5.
0.
37136 37148 38166 38112 38124 38l36 38: 48 39loO
5E5
7E5
OEO
Time
5E5
8E5
OEO
Time
3E7
1E7
OEO
Time
1E7
5E7
OEO
Time
3E5
1E5
OEO
Time
1E8
5E7
OEO
Time
•N
O
-------
File: A17JUL98B Acq: 17-JUL-1998 23:31:42 Exp: EXP M23 DBS OVATION Voltage SIR EI + GC Autospec-UltimaE Paradigm
Sample #10 Text: 1070-1 xl/2 ALS #10
441.7427 S:10 F:5 SMO(1,3) BSUB( 128, 15, -3 . 0) PKD (3 , 3 , 3 , 0 . 10%, 1324 . 0, 1 . 00%, F, F)
lOOi A1.97E5 4.4E4
50 j
o:
443.
1002
50 j
o:
469.
100%
sol
o:
471.
100%
50 j
o;
513.
100%.
50J
o:
454.
100%
50 j
o-
39ll2
7398 S:10 F:
39ll2
7780 S:10 F:
39!l2
7750 S:10 F:
39ll2
6775 S:10 F:
39:
39:12
9728 S:10 F:
/
39!l2
39124
5 SMO(1,3)
39124
5 SMO(1,3)
39124
5 SMO(1,3)
39124
5 SMO(1,3)
15
^/ v . r^
39124
5 SMO(1,3)
39:19
39124
39136
BSUB(128, 15
39!36
BSUB(128,15
39136
BSUB(128,15
39^36
BSUB(128,15
dy^Siai
39U8
,-3.0) PKD(3,3,3
39l48
,-3.0) PKD (3, 3, 3
s'gUs
,-3.0) PKD (3, 3, 3
39148
,-3.0) PKD (3, 3, 3
39:52
39136 39148
PKD (3 ,3, 3, 100. 00%, 0.0, 1.00%
39:42 39
39136
39 Us
/v..
4o!ob 4o!i2
, 0.10%, 2256. 0,1. 00%, F,
A2.06E5
6 44E3
4o!24 ' ' ' 4ol36 ' ' ' 4'oUs 41.
F)
/ \ A1.07E5
y v\
4oToO 4o!l2
,0. 10%, 2396. 0,1. 00%, F,
A2 J-4E8
J\_
4o!ob 4o!i2
,0. 10%, 1564. 0,1. 00%, F,
A2 . 40E8
y\_
4o!ob 4o!i2
,100. 00%, 1040. 0,1. 00%,
40:02
/ \ 40:1140:17
J WY/V
4o!ob 4o!i2
,F,F)
4o!ob 4o!i2
4ol24 •' ' ' 4ol36 ' ' ' 4o!48 41 !
F)
_2.2E4
_O.OEO
00 Time
5.8E4
L2.9E4
LO.OEO
00 Time
4.9E7
12.4E7
lO.OEO
40:24 40:36 40:48 41 00 Time
F)
5.4E7
L2.7E7
:O.OEO
40!24 4ol36 4o!48 41 00 Time
F,F)
8.1E3
40:25
L4.1E3
:O.OEO
40:24 40:36 40:48 41:00 Time
40:36 1.2E8
_5.8E7
.O.OEO
4ol24 4o!36 4ol48 4l!oO Time
>
o
-------
OPUSguan 22-JUL-1998
Page 1
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ
Unk
ES/RT
Total
DPE
LMC
Page 9
a21jul98f
4
21-JUL-98 21:57:
22-JUL-98 08:31:
1070-1 xl/2
07feb-m23conf
M8290-23-072198F
56
58
Name; Resp;
2,3,7,8-TCDF; 5.65e+07;
13C-2,3,7,8-TCDF; 1.40e+09;
Tetra Furans; 2.82e+09;
HxCDPE; *;
QC CHK ION (Tetra); * ;
Ion 1;
2.476+07;
6.14e+08;
l.OOe+08;
Ion 2;
3.18e+07;
7.84e+08;
1.31e+08;
RA; ?;
0.78;y;
0.78;y;
0.76;y;
RT;
:56;
:53;
Conc; DL
4.254; 0.0271
342.587;
212.616; 0.0271
;NotFnd;
;NotFnd;
S/N1;?;
486;y;
3149;y;
3216;y;
*;n
DivO;n
S/N2;?
543 ;y
2895,-y
3579;y
mod?
no
no
no
no
no
-;-; 27:56
-;-; 27:56
>
o
-------
OPUSquan 22-JUL-1998
Page 1
Ent: 3 Name: Tetra Furans
Page 1 of 1
F:l Mass: 303.902 305.899 Mod? no #Hom:30
Run: 9 File: a21jul98f S:4 Acq:21-JUL-98 21:57:56 Proc:22-JUL-98 08:31:58
Tables: Run: a21ju!98b Analyte: m23_conf Cal: 07feb-m23»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-1 xl/2
Amount: 212.62 of which 4.25
Cone: 212.62 of which 4.25
Tox #2: -
Tox #1: -
Name
named and 208.36 unnamed
named and 208.36 unnamed
Tox #3: -
RT Respnse
RA
1 18:12 2.36+08 0.76 y
2.3e+08
2 19:52 1.96+08 0.77 y
1.96+08
3 20:06 1.5e+08 0.77 y
1.5e+08
4 20:21 2.5e+08 0.76 y
2.56+08
5 20:40 l.Oe+08 0.76 y
l.Oe+08
6 21:13 1.5e+08 0.75 y
1.5e+08
7 21:32 1.76+08 0.73 y
1.7e+08
8 21:50 1.6e+07 0.48 n
1.6e+07
9 21:59 3.0e+07 0.55 n
3.06+07
10 22:10 1.5e+08 0.71 y
1.5e+08
11 22:35 7.56+07 0.73 y
7.5e+07
12 22:55 2.4e+05 1.26 n
2.46+05
13 23:17 2.76+08 0.76 y
2.7e+08
14 23:27 l.Se+08 0.77 y
1.5e+08
15 24:19 1.2e+08 0.76 y
1.26+08
16 24:32 9.2e+06 0.74 y
9.2e+06
17 25:01 1.4e+08 0.76 y
1.4e+08
18 25:27 7.4e+07 0.77 y
7.4e+07
19 25:59 7.4e+06 0.73 y
7.46+06
Cone
17.41
1
1
14.65
£
]
11.58
e
£
18.61
1
1
7.85
4
C
10.96
6
£
12.83
c
1.22
C
3
2.29
1
11.34
€
8
5.66
4
0.02
]
]
20.06
1
]
11.58
6
£
9.24
C
0.69
3
C
10.60
C
£
5.59
i
4
0.56
Area Height
S/N Mod?
l.Oe+08 1.9e+07 3.2e+03 y n
1.3e+08 2.5e+07 3.6e+03 y n
8.5e+07 l.Se+07 2.5e+03 y n
l.le+08 2.06+07 2.8e+03 y n
.7e+07 l.le+07 1.7e+03 y n
8.7e+07 1.4e+07 2.0e+03 y n
1
l.le+08 1.8e+07 3.Oe+03 y n
1.4e+08 2.3e+07 3.3e+03 y n
5
4.5e+07 7.6e+06 1.3e+03 y n
5.9e+07 l.Oe+07 1.4e+03 y n
.2e+07 l.le+07 1.8e+03 y n
8.3e+07 1.4e+07 2.Oe+03 y n
3
7.2e+07 9.8e+06 1.6e+03 y n
9.9e+07 1.3e+07 1.9e+03 y n
2
5.36+06 1.66+06 2.6e+02 y n
l.le+07 2.7e+06 3.8e+02 y n
3
l.le+07 2.8e+06 4.7e+02 y n
2.0e+07 4.5e+06 6.3e+02 y n
6.3e+07 l.le+07 1.9e+03 y n
8.8e+07 1.6e+07 2.2e+03 y n
5
3.2e+07 5.7e+06 9.4e+02 y n
4.3e+07 7.6e+06 l.le+03 y n
.4e+05 6.1e+04 l.Oe+01 y n
.le+05 5.96+04 8.3e+00 y n
1.2e+08 1.5e+07 2.4e+03 y n
1.5e+08 1.9e+07 2.7e+03 y n
6.7e+07 9.5e+06 1.6e+03 y n
8.7e+07 1.3e+07 1.8e+03 y n
1
5.3e+07 6.9e+06 l.le+03 y n
7.0e+07 9.1e+06 1.3e+03 y n
9
3.9e+06 5.6e+05 9.2e+01 y n
5.3e+06 7.4e+05 l.Oe+02 y n
D
6.1e+07 7.7e+06 1.3e+03 y n
8.0e+07 l.Oe+07 1.4e+03 y n
3
3.2e+07 3.9e+06 6.4e+02 y n
4.2e+07 5.1e+06 7.3e+02 y n
3.1e+06 4.3e+05 7.0e+01 y n
4.3e+06 5.6e+05 7.9e+01 y n
065
-------
OPUSquan 22-JUL-1998 Page 2
20 26:32 l.le+08 0.76 y
l.le+08
21 27:35 l.le+08 0.77 y
l.le+08
2, 3, 7, 8-TCDF 22 27:56 5.7e+07 0.78 y
5.76+07
23 28:12 2.3e+06 0.90 n
2.3e+06
24 28:33 9.66+07 0.77 y
9.66+07
25 29:02 4.3e+05 0.29 n
4.36+05
26 29:18 5 . 5e+07 0.78 y
5.56+07
27 29:38 6.8e+07 0.77 y
6.8e+07
28 31:52 3.2e+07 0.78 y
3.2e+07
29 33:45 2.2e+06 0.20 n
2.2e+06
30 33:48 2.6e+06 0.45 n
2.6e+06
8.24
4.76+07
6.2e+07
7.92
4.6e+07
5.9e+07
4.25
2.56+07
3.26+07
0.17
1. le+06
1.2e+06
7.21
4.2e+07
5.46+07
0.03
9.7e+04
3.3e+05
4.16
2.46+07
3.16+07
5.14
3.06+07
3.9e+07
2.38
1.4e+07
l.Se+07
0.16
3.7e+05
1.8e+06
0.20
S.le+05
1.8e+06
5.
7.
5.
6.
2.
3.
1.
2.
4.
6.
3.
7.
2.
3.
3
4
1
1
1
2
1
2
7e+06
4e+06
2e+06
7e+06
9e+06
8e+06
8e+05
2e+05
7e+06
le+06
le+04
6e+04
6e+06
4e+06
le+06
le+06
3e+06
7e+06
2e+05
Oe+05
5e+05
Oe+05
9.
1.
8.
9.
4.
5.
2.
3.
7.
8.
5.
1.
4.
4
5
5
2
2
2
2
2
2
3e+02
le+03
7e+02
6e+02
9e+02
4e+02
9e+01
le+01
8e+02
7e+02
Oe+00
le+01
4e+02
8e+02
2e+02
8e+02
2e+02
4e+02
Oe+01
9e+01
4e+01
9e+01
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
r r
066
-------
File: A2UUL98F Acq: 21-JUL-199B 21:b7:56 Exp:
M23_DB225 Voltage SIR
~^TT
GC Autospec-UltimaE
Paradigm
Sample #4 Text: 1070-1 xl/2 ALS #4
303.9016 S:4
100%
-
50 j
SMO (1,3)
Al.
BSUB(128,15,-3.0) PKD(3,3,3
,0.10%,
6048. 0,1. 00%, F
,F)
OOE8 A1.07E8
1
1 . II A1.15E8
i i | i
16:00
305.8987 S:4
100%
-
50 j
o:
ieSob
315.9419 S:4
100%
50 j
o:
'I 1 ' T" T I'
is!
A
1 Ml
iA6.23E7 . f
K . n t
A LL
00 20:00 22:00
SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3
Al.
~I 1 ' 1 I T1
18:
SMO (1,3)
A
ft A
24:00
,0.10%,
5.08E7 A4-74E7
AA T A
26:00
7044. 0,1. 00%, F
A4.17E7
AA A AA A1.JL8E7
'28S
,F)
00 30:00 32:
11E8 A1.40E8
.
ft
Ml
_9
0
00 34:00
_2
A1.51E8
A8.33E7 , /
A A A
AJA /
00 20:00 22:00
BSUB(128,15,-3.0) PKD(3,3,3
kA8 - OOE7 . ,
,,A.
24:00
,0.10%,
AAb.^lli/
A A
26:00
21256.0,1.00%,
A5.41E7
.A/) A A A A1'X8E7
' 28!
F,F)
00 30:00 32:
_1
0
00 34:00
A6.14E8
A
— ' — ' — 1 — 1~
16:00
317.9389 S:4
100%
50 J
o:
-i — i — i — i — r
18:
SMO (1,3)
-"T "T 1 1 '"T" 'I 1 1 ! 1 1 [ ' ' ' \
00 20:00 22:00
BSUB(128,15,-3.0) PKD(3,3,3
24SOO
,0.10%,
' 26!ob
29544.0,1.00%,
l\
2s!
F,F)
ob s'oSob 32!
6
13
• o
00 34!ob
A7 . 84E8
A
— ' — ' — 1 — "~
ie!oo
375.8364 S:4
1002
50-
0-
\16:03
316.9824 S:4
100%15:30
50 J
o:
ieSob
T — i — i — i — r
SMO (1,3)
— i — i — i — i — i — i — i — i — i — i — i — i — i i i i
00 20:00 22:00
BSUB(128,15,-3.0) PKD(3,3,3
20
/
/
17:2518:25 l?jJ52
1 ' ' is!
SMO (1,3)
i23
V
\^]^20___23j
— I 1 1 1 1 1 1 1 1 1 1 1 1 1 r— t
00 20:00 22:00
PKD (3, 3, 3, 100. 00%, 0.0, 1.00%
17:03 18; 17 19_i_47
21:16 22:43
-I 1 1 1 1 1— 1 1 1 1 1 1 1 r — 1 1 1 1 1 1 r
18:00 20:00 22:00
24SOO
2'eSob
281
,100. 00%, 161372. 0,1. 00%, F
19 ^j
24!ob
,F,F)
^_26J27_
26:00
24jJL5_ 25:30 27 1
24!ob
i 1 r — i 1 1 i i
26:00
-_— •-v.
'28S
12
28!
00 30 Sob 32S
F)
8
U
:o
ob 34!ob
6 28:49 3 0^5 1^32^04 34:17
ob 30 Sob 32!
_5
12
- o
00 34!ob
29:05 30:2731:2532:2433:26 _7
ob 3o!ob 32!
_3
'o
ob 34!ob
.9E7
.7E6
.OEO
Time
.5E7
.3E7
.OEO
Time
.7E7
.4E7
.OEO
Time
.6E7
.3E7
.OEO
Time
.1E5
.5E5
.OEO
Time
.7E7
.9E7
.OEO
Time
-------
Method 23
M23=O-1
Paradigm Analytical Labs
Analytical Data Summary Sheet
^^Anali^ .•;,;> -.
2,3,7,8-TCDD
1237 8-PeODO
9999" !S\JsM*A , ^. _ .
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
TotafPeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
0.0124
' ' IVflftJtl?^"'^*
•f „,-£? ~'f'^$$j&, ; rl^' *'"' :7$
0.0027
0.0049
0.0043
0:0073
0.0243
0.160
0.0874
0.0864
0.0474
0.0171
0.0114
0-0037
0.0170
0.0103
4.10
0.264
0.116
0.0132
9.12
1.59
0.166
0.0228
0.0897
0.0897
0.0007
0.0006
0.0005
0.0004
0.0013
0.0010
0.0022
0.0021
0.0006
0.0005
0.0005
r 0.0006
0.0005
0$PM
0.0007
?.. 0^0007^*
0.0005
0.0005
0.0004
0.0010
0.0021
0.0005
0.0005
^-^\;^. >-° '-ff>
^^"^J^' ' ' '*^
- i--;|,,l;.
f
i'-'i'n-,^.
"
0.0144
9.15
0.170
0.0897
0.0897
28:27
'••/*" v^t$'$3i*7 "
\C0^^lp^^K ^
34:42
34:46
34:58
37:10
40:02
27:29
31:57
32:24
34-10
J~ • 1 V
34-15
—IT. L^f
34-37
«J^.»/ /
36-22
J \Jt4t4f
37:32
40:10
> .
0.74
; - ^ ;£^f
, -, ,;<« 'ir»3sl
1 "31
1 ,J 1
• i M-
Jl*Ar«'
1.20
1.12
0.84
0S?7
1.58
1.51
1 24
A >^*T
1 I1?
1 . 1 .J
1 00
1 •V/v
0.9,1
0.78
Qualifier
-l^*>"i ^
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID: -?-
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Texas Lime Kiln
Samle Information
Air
25-lun-98
oMii^g
10-Jul-98
18-Jul-98
al7ju!98b-ll
initial Ca!:
1/2
068
-------
Paradigm Analytical Labs
Analytical Data Summary Sheet
Labeled
-Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13Cu-U,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
"CirlA3,4,6,7,8-I^>CI>D
13C12-OCDD
13C12-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
Sampling Standards
37Cl4-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
t3CI2- 1 ,2,3,4,7,8-HxCDD
13Cirl,2,3,4,7)8-HxCDF
13C,rl,2,3,4,7&9-HpCDF
Injection Standards
13C12-1,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Am«BK*||
<**» '
4
4 - "';•;
4
4
8
4
4
4
4
;' 4? * ;g
4
•-'-41-!.— -
4
4
Measured
3.89
"'f452'
3.75
4.09
7.40
3.94
4.05
3.77
3.32
-..v n.
3.94
.„;•, ^-^jp-w-.
3.85
3.68
97.4
113.1
93.8
102.1
92.4
98.6
101.2
94.2
82.9
$jj$3'-:
98.5
'""TOOf"
96.3
92,0
(fflta^ "1
28:27
32:37
34:45
37:09
40:01
27:25
31:56
34:14
36:21
28:27
32:24
34:41
34:10
37:31
28:09
34:58
Ratio
0.77
1.55
1.27
1.03
0.88
0.78
1.57
0.52
0.45
1.58
. 1.26
0.52
0.45
0.79
1.26
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project n>:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Reviewed by: y.T-
Texas Lime Kiln
M23-O-1
Sample Information
Ma:
.W«j^^r<^ijpae:;
, ,.,
->^-'X^-- /' >'.*$• • ? C '•::
08-Jil-98
io;y^a
18-Jul-98
Air
I
0,0
al7jui9Sb-2
al7juI98b-15
Date Reviewed:
C/ ^ 069
2/2
-------
O
-------
OPUSquan 20-JUL-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:21
Run: 16 File: a!7ju!98b S:ll Acq:18-JUL-98 00:16:48 Proc:20-JUL-98 09:06:58
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-2 xl/2
Amount: 228.67 of which 25.77
Cone: 228.67 of which 25.77
Tox #2: -
Tox #1: -
Name
2,3,7,8-TCDF
named and 202.89 unnamed
named and 202.89 unnamed
Tox #3: -
RT Respnse
RA
1 23:39 8.46+07 0.77 y
8.4e+07
2 24:14 4.06+07 0.77 y
4.0e+07
3 24:34 3.7e+07 0.76 y
3.7e+07
4 24:51 1.8e+08 0.77 y
1.8e+08
5 24:59 4.5e+07 0.79 y
4.56+07
6 25:10 3.9e+07 0.72 y
3.96+07
7 25:16 1.26+08 0.77 y
1.2et-08
8 25:40 4.1e+07 0.75 y
4.1e+07
9 25:44 5.6e+07 0.78 y
5.66+07
10 26:01 3.26+07 0.79 y
3.26+07
11 26:09 5.0e+07 0.75 y
S.Oe+07
12 26:26 8.56+07 0.76 y
8.5e+07
13 26:34 8.1e+07 0.77 y
8.1e+07
14 26:51 4.26+07 0.76 y
4.26+07
15 27:03 2.76+06 0.77 y
2.7e+06
16 27:11 2.0e+07 0.77 y
2.0e+07
17 27:29 1.3e+08 0.77 y
1.3e+08
18 28:03 2.3e+07 0.79 y
2.3e+07
19 28:20 1.2e+07 0.79 y
1.2e+07
Cone
17.18
Area Height S/N Mod?
7.63
36.11
3.7e+07 8.0e+06 l.Se+03 y n
4.8e+07 l.le+07 3.1e+03 y n
J
1.7e+07 3.9e+06 7.3e+02 y n
2.3e+07 S.le+06 1.5e+03 y n
5
1.6e+07 3.56+06 6.6e+02 y n
2.1e+07 4.6e+06 1.3e+03 y n
I
7.7e+07 l.Se+07 2.8e+03 y n
l.Oe+08 1.9e+07 5.6e+03 y n
9.14
7.91
24.45
2.06+07 2.9e+06 5.4e+02 y n
2.5e+07 3.7e+06 l.le+03 y n
L
1.6e+07 3.9e+06 7.36+-02 y n
2.3e+07 5.2e+06 1.5e+03 y n
5.2e+07 6.8e+06 1.3e+03 y n
6.8e+07 9.0e+06 2.6e+03 y n
8.29
1.7e+07 4.2e+06 7.96+02 y n
2.3e+07 5.5e+06 1.6e+03 y n
11.49
6.54
10.28
2.5e+07 5.2e+06 9.8e+02 y n
3.2e+07 6.8e+06 2.0e+03 y n
1
1.4e+07 3.0e+06 5.6e+02 y n
1.8e+07 3.9e+06 l.le+03 y n
3
2.2e+07 4.6e+06 8.6e+02 y n
2.9e+07 5.9e+06 1.7e+03 y n
17.40
3.7e+07 7.5e+06 1.4e+03 y n
4.8e+07 9.6e+06 2.8e+03 y n
16.53
8.65
0.56
3.5e+07 7.0e+06 1.36+03 y n
4.6e+07 9.1e+06 2.7e+03 y n
1.8e+07 3.6e+06 6.8e+02 y n
2.4e+07 4.8e+06 1.4e+03 y n
1.2e+06 2.7e+05 5.1e+01 y n
1.5e+06 3.4e+05 l.Oe+02 y n
4.17
25.77
4.77
2.52
8.9e+06 1.8e+06 3.4e+02 y n
1.2e+07 2.4e+06 6.9e+02 y n
7
5.5e+07 8.5e+06 1.6e+03 y n
7.16+07 l.le+07 3.2e+03 y n
7
l.Oe+07 2.1e+06 4.0e+02 y n
1.3e+07 2.7e+06 7.7e+02 y n
2
5.4e+06 l.le+06 2.0e+02 y n
6.9e+06 1.4e+06 4.0e+02 y n
071
-------
OPUSquan 20-JUL-1998 Page 2
20 28:33 2.le+06 0.81 y 0.42
2.1e+06 9.3e+05 2.2e+05 4.2e+01 y n
1.le+06 2.6e+05 7.5e+01 y n
21 29:47 3.3e+06 1.25 n 0.67
3.3e+06 1.8e+06 3.3e+05 6.1e+01 y n
1.5e+06 2.8e+05 8.1e+01 y n
£'' 072
-------
OPUSquan 20-OUL-1998
Page 3
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:15
Run: 16 File: a!7ju!98b S:ll Acq:18-JUL-98 00:16:48 Proc:20-JUL-98 09:06:58
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-2 xl/2
Amount: 27.85
Cone: 27.85
Tox #1: -
Name
2,3,7,8-TCDD
of which 0.36
of which 0.36
Tox #2: -
# RT Respnse
named and 27.49
named and 27.49
Tox #3: -
RA
1 25:15 4.7e+07 0.78 y
4.7e+07
2 25:41 2.2e+07 0.77 y
2.26+07
3 26:03 3.8e+06 0.78 y
3.8e+06
4 26:54 1.4e+07 0.78 y
1.4e+07
5 27:07 2.7e+06 0.77 y
2.76+06
6 27:17 3.46+06 0.79 y
3.4e+06
7 27:23 7.3e+05 0.98 n
7.3e+05
8 27:45 2.7e+06 0.77 y
2.7e+06
9 28:10 4.26+06 0.78 y
4.2e+06
10 28:19 5.8e+06 0.78 y
5.86+06
11 28:27 l.Se+06 0.56 n
1.5e+06
12 28:40 l.le+06 0.77 y
l.le+06
13 28:57 1.3e+06 0.80 y
1.36+06
14 29:18 4.6e+05 0.80 y
4.66+05
15 29:54 2.4e+05 0.94 n
2.46+05
Cone
11.90
5.59
c
]
0.95
]
3.41
«
0.67
]
]
0.84
]
]
0.18
T
0.67
]
:
1.05
]
1.45
0.36
c
C
0.28
4
6
0.31
C
1
0.12
0.06
unnamed
unnamed
Area Height
S/N Mod?
2.1e+07 4.5e+06 1.6e+03 y n
2.7e+07 5.8e+06 3.0e+03 y n
3
9.7e+06 2.1e+06 7.5e+02 y n
1.3e+07 2.6e+06 1.4e+03 y n
1.7e+06 3.46+05 1.2e+02 y n
2.1e+06 4.6e+05 2.4e+02 y n
.0e+06 l.le+06 4.0e+02 y n
7.6e+06 1.4e+06 7.5e+02 y n
.2e+06 1.7e+05 6.1e+01 y n
.5e+06 2.3e+05 1.2e+02 y n
.5e+06 3.0e+05 l.le+02 y n
.9e+06 3.86+05 2.0e+02 y n
3.6e+05 7.6e+04 2.8e+01 y n
3.7e+05 8.2e+04 4.3e+01 y n
.2e+06 2.46+05 8.76+01 y n
.5e+06 3.26+05 1.7e+02 y n
1.8e+06 3.86+05 1.46+02 y n
2.4e+06 4.8e+05 2.5e+02 y n
2.5e+06 4.8e+05 1.7e+02 y n
3.2e+06 6.1e+05 3.2e+02 y n
5.2e+05 l.le+05 4.0e+01 y n
9.3e+05 1.9e+05 l.Oe+02 y n
4.8e+05 l.Oe+05 3.6e+01 y n
6.2e+05 1.2e+05 6.5e+01 y n
L
5.66+05 1.26+05 4.2e+01 y n
7.0e+05 1.4e+05 7.5e+01 y n
2
2.06+05 4.26+04 1.5e+01 y n
2.5e+05 6.0e+04 3.1e+01 y n
l.le+05 2.4e+04 8.6e+00 y n
1.2e+05 2.96+04 1.5e+01 y n
C < 072
-------
OPUSquan 20-JUL-1998
Page 4
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:15
Run: 16 File: al7ju!98b S:ll Acq:18-JUL-98 00:16:48 Proc:20-JUL-98 09:06:58
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-2 xl/2
Amount: 39.73
Cone: 39.73
Tox #1: -
Name
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
of which 4.35
of which 4.35
Tox #2: -
# RT Respnse
named and 35.39
named and 35.39
Tox #3: -
RA
1 30:16 2.1e+07 1.52 y
2.1e+07
2 31:15 1.2e+07 1.60 y
1.26+07
3 31:21 4.4e+07 1.51 y
4.4e+07
4 31:29 7.9e+06 1.56 y
7.9e+06
5 31:36 2.2e+06 1.51 y
2.2e+06
6 31:45 2.4e+07 1.51 y
2.46+07
7 31:54 9.9e+06 1.44 y
9.9e+06
8 31:57 8.7e+06 1.58 y
8.7e+06
9 32:04 4.4e+06 1.46 y
4.46+06
10 32:08 9.36+06 1.43 y
9.36+06
11 32:24 9.06+06
9.0e+06
1.51 y
12 32:29 6.7e+06 1.53 y
6.7e+06
13 32:35 4.6e+05 1.47 y
4.66+05
14 32:39 1.2e+06 1.55 y
1.26+06
15 32:57 6.16+05
6.16+05
1.74 y
Cone
5.17
unnamed
unnamed
Area Height
S/N Mod?
1.36+07 2.6e+06 1.7e+02 y n
8.4e+06 1.7e+06 1.6e+02 y n
3.04
7.6e+06 2.5e+06 1.7e+02 y n
4.8e+06 1.7e+06 1.6e+02 y n
10.90
2.7e+07 7.26+06 4.7e+02 y n
1.8e+07 4.8e+06 4.6e+02 y n
1.94
4.8e+06 1.4e+06 9.1e+01 y n
3.1e+06 8.96+05 8.5e+01 y n
0.55
1.3e+06 2.8e+05 1.8e+01 y n
8.9e+05 1.96+05 1.8e+01 y n
5.82
1.4e+07 4.8e+06 3.2e+02 y n
9.5e+06 3.1e+06 3.0e+02 y n
2.43
5.8e+06 2.3e+06 1.5e+02 y n
4.1e+06 1.5e+06 1.5e+02 y n
2.19
5.4e+06 1.9e+06 1.3e+02 y n
3.4e+06 1.2e+06 1.2e+02 y n
1.08
2.6e+06 9.3e+05 6.1e+01 y n
1.8e+06 6.0e+05 5.7e+01 y n
2.27
5.5e+06 2.1e+06 1.4e+02 y n
3.8e+06 1.4e+06 1.4e+02 y n
2.16
5.4e+06 1.9e+06 1.3e+02 y n
3.6e+06 1.36+06 1.2e+02 y n
1.64
4.0e+06 1.46+06 9.2e+01 y n
2.6e+06 9.4e+05 9.0e+01 y n
0.11
2.8e+05 l.Oe+05 6.8e+00 y n
1.9e+05 7.3e+04 7.0e+00 y n
0.29
'7.2e+05 2.6e+05 1.7e+01 y n
4.6e+05 1.7e+05 1.6e+01 y n
0.15
3.9e+05 1.4e+05 9.2e+00 y n
2.2e+05 8.8e+04 8.4e+00 y n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:12
Run: 16 File: al7ju!98b S:ll Acq:18-JUL-98 00:16:48 Proc:20-JUL-98 09:06:58
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-2 xl/2
Amount: 6.59
Cone: 6.59
of which 0.22
of which 0.22
named and 6.37
named and 6.37
unnamed
unnamed
074
-------
OPUSquan 20-JUL-1998 Page 5
Tox #1: - Tox #2: - Tox
Name # RT Respnse RA
1 31:29 8.06+06 1.54 y
S.Oe+06
2 31:49 3.66+05 1.49 y
3.66+05
3 31:59 6.5e+06 1.56 y
6.5e+06
4 32:04 8.8e+05 1.59 y
8.8e+05
5 32:10 3.56+06 1.57 y
3.56+06
6 32:16 3.8e+05 1.43 y
3.8e+05
7 32:20 7.4e+05 1.64 y
7.4e+05
8 32:26 1.8e+06 1.62 y
1.8e+06
9 32:30 5.9e+05 1.46 y
5.9e+05
1, 2,3,7, 8-PeCDD 10 32:37 8.0e+05 1.56 y
8.0e+05
11 32:42 4.0e+05 1.47 y
4.0e+05
12 32:54 2.56+05 1.37 y
2.5e+05
#3: -
Cone
2.19
4
3
0.10
2
1
1.77
3
2
0.24
5
3
0.95
2
1
0.10
2
1
0.20
4
2
0.49
1
6
0.16
3
2
0.22
4
3
0.11
2
1
0.07
1
1
Area
.8e+06
.2e+06
.le+05
.4e+05
.9e+06
. 5e+06
.4e+05
.4e+05
.le+06
.3e+06
.2e+05
.6e+05
. 6e+05
.8e+05
.le+06
. 9e+05
.5e+05
.4e+05
.9e+05
.le+05
.4e+05
.6e+05
.4e+05
.le+05
Height
1
1
8
5
1
9
1
1
7
5
9
6
1
8
4
2
1
9
1
1
7
5
5
3
.6e+06
.Oe+06
.Oe+04
.3e+04
.4e+06
.4e+05
. 9e+05
.2e+05
.7e+05
.Oe+05
.4e+04
. 8e+04
.5e+05
. 6e+04
.Oe+05
.5e+05
.3e+05
.3e+04
.8e+05
.2e+05
.6e+04
.7e+04
.2e+04
.8e+04
4
5
2
2
4
4
5
6
2
2
2
3
4
4
1
1
3
4
5
6
2
2
1
1
S/N
.3e+02
.2e+02
.2e+01
.7e+01
.Oe+02
.7e+02
.3e+01
.Oe+01
. le+02
.5e+02
.6e+01
.4e+01
. le+01
.3e+01
.le+02
.2e+02
.6e+01
.7e+01
.le+01
.Oe+01
.le+01
.9e+01
.4e+01
.9e+01
Mod?
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
Of < 071
-------
OPUSquan 20-JUL-1998
Page 6
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:17
Run: 16 File: a!7jul98b S:ll Acq:18-JUL-98 00:16:48 Proc:20-JUL-98 09:06:58
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-2 xl/2
Amount: 4.28
Cone: 4.28
Tox #1: -
Name
of which 1.99
of which 1.99
Tox #2: -
# RT Respnse
named and 2.30
named and 2.30
Tox #3: -
RA
1 33:31 2.1e+06 1.21 y
2.1e+06
2 33:37 4.5e+06 1.15 y
4.5e+06
3 33:43 3.1e+05 1.20 y
3.16+05
4 33:48 4.1e+05 1.16 y
4.1e+05
5 33:55 1.8e+05 1.09 y
1.8e+05
34:01 1.46+04
1.4e+04
0.39 n
1,2,3,4,7,8-HxCDF 7 34:10 4.1e+06 1.24 y
4.1e+06
1,2,3,6,7,8-HxCDF 8 34:15 1.9e+06 1.28 y
1.9e+06
9 34:19 4.36+05 1.00 n
4.3e+05
10 34:27 5.2e+05 1.13 y
5.26+05
2,3,4, 6,7,8-HxCDF 11 34:37 l.le+06 1.13 y
l.le+06
1,2,3,7,8,9-HxCDF 12 35:12 3.0e+05 1.32 y
3.06+05
13 35:23 3.8e+03
3.86+03
0.71 n
14 35:27 4.0e+03 0.15 n
4.06+03
15 35:31 1.76+04 0.29 n
1.7e+04
16 35:39 l.le+04 0.67 n
l.le+04
17 35:46 6.9e+03 0.46 n
6.9e+03
Cone
0.56
]
c
1.22
0.08
1
1
0.11
1
0.05
s
E
0.00
]
1.18
1
0.43
]
I
0.12
0.14
0.28
C
C
0.09
]
]
0.00
:
o.oo
unnamed
unnamed
Area Height S/N Mod?
l.le+06 4.2e+05 9.8e+01 y n
9.4e+05 3.6e+05 l.le+02 y n
2
2.4e+06 8.6e+05 2.0e+02 y n
2.1e+06 7.4e+05 2.4e+02 y n
3
1.7e+05 5.8e+04 1.4e+01 y n
1.4e+05 4.9e+04 1.5e+01 y n
I
2.2e+05 7.2e+04 1.7e+01 y n
1.9e+05 6.4e+04 2.0e+01 y n
9.2e+04 3.5e+04 8.3e+00 y n
8.5e+04 2.8e+04 9.0e+00 y n
D
3.9e+03 2.1e+03 4.9e-01 n n
l.Oe+04 3.4e+03 l.le+00 n n
2.3e+06 6.7e+05 1.6e+02 y n
1.8e+06 5.3e+05 1.7e+02 y n
l.Oe+06 3.7e+05 8.7e+01 y n
8.2e+05 3.0e+05 9.7e+01 y n
2
2.2e+05 8.1e+04 1.9e+01 y n
2.1e+05 7.0e+04 2.2e+01 y n
1
2.7e+05 7.06+04 1.7e+01 y n
2.4e+05 5.6e+04 1.8e+01 y n
3
5.7e+05 1.6e+05 3.7e+01 y n
5.0e+05 1.3e+05 4.0e+01 y n
.7e+05 4.7e+04 l.le+01 y n
.3e+05 3.6e+04 1.2e+01 y n
1.6e+03 7.26+02 1.7e-01 n n
2.2e+03 l.le+03 3.5e-01 n n
0.00
0.00
0.00
5.1e+02 4.36+02 l.Oe-01 n n
3.5e+03 1.4e+03 4.66-01 n n
D
3.7e+03 1.9e+03 4.56-01 n n
1.3e+04 3.46+03 l.le+00 n n
3
4.6e+03 2.2e+03 5.1e-01 n n
6.9e+03 2.7e+03 8.6e-01 n n
}
2.2e+03 6.66+02 1.6e-01 n n
4.7e+03 1.9e+03 6.0e-01 n n
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:12
C(( 076
-------
OPUSquan 20-JUL-1998
Page 7
Run: 16 File: al7ju!98b S:ll Acq:18-JUL-98 00:16:48 Proc:20-JUL-98 09:06:58
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-2 xl/2
Amount: 2.92
Cone: 2.92
Tox #1: -
Name
of which 0.30
of which 0.30
Tox #2: -
# RT Respnse
named and 2. 62
named and 2.62
Tox #3: -
RA
1 33:52 5.26+05 1.20 y
5.2e+05
2 34:11 5.5e+06 1.28 y
5.5e+06
3 34:20 9.3e+05 1.38 y
9.36+05
4 34:26 1.5e+05 1.34 y
1.5e+05
5 34:36 6.8e+03 0.39 n
6.8e+03
1,2,3,4,7,8-HxCDD 6
34:42 1.6e+05 1.31 y
1.66+05
1,2,3,6,7,8-HxCDD 7 34:46 3.6e+05 1.22 y
3.6e+05
1,2,3,7,8,9-HxCDD 8 34:58 3.2e+05 1.20 y
3.26+05
9 35:04 2.66+04 1.01 n
2.66+04
10 35:12 5.86+03 1.19 y
5.8e+03
11 35:17 8.4e+03 1.40 y
8.46+03
12 35:23 l.le+04 4.00 n
l.le+04
Cone
0.19
2.02
0.34
C
0.05
£
6
0.00
3
4
0.07
c
(.
0.12
3
0.11
1
]
0.01
]
1
0.00
0.00
4
0.00
unnamed
unnamed
Area Height S/N Mod?
2.9e+05 l.le+05 3.5e+01 y n
2.4e+05 8.4e+04 4.6e+01 y n
2
3.16+06 l.Oe+06 3.4e+02 y n
2.4e+06 8.2e+05 4.5e+02 y n
1
5.4e+05 1.76+05 5.5e+01 y n
3.9e+05 1.26+05 6.7e+01 y n
8.6e+04 2.5e+04 8.2e+00 y n
6.5e+04 1.8e+04 9.9e+00 y n
3
1.9e+03 8.5e+02 2.8e-01 n n
4.9e+03 2.0e+03 l.le+00 n n
7
9.0e+04 3.4e+04 l.le+01 y n
.9e+04 2.7e+04 1.5e+01 y n
2.0e+05 6.0e+04 2.0e+01 y n
1.6e+05 5.3e+04 2.9e+01 y n
1
1.7e+05 4.1e+04 1.46+01 y n
1.4e+05 3.86+04 2.1e+01 y n
1.3e+04 2.7e+03 9-Oe-Ol n n
1.3e+04 4.6e+03 2.56+00 n n
D
3.1e+03 1.46+03 4.7e-01 n n
2.6e+03 8.6e+02 4.7e-01 n n
4.9e+03 1.46+03 4.6e-01 n n
3.5e+03 1.3e+03 7.0e-01 n n
3
9.0e+03 2.96+03 9.5e-01 n n
2.2e+03 1.26+03 6.5e-01 n n
rr
07
-------
OPUSquan 20-JUL-1998
Page 8
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:4
Run: 16 File: al7ju!98b S:ll Acq:18-JUL-98 00:16:48 Proc:20-JUL-98 09:06:58
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-2 xl/2
Amount: 0.57
Cone: 0.57
Tox #1: -
Name
of which 0.46
of which 0.46
Tox #2: -
# RT Respnse
named and 0.11
named and 0.11
Tox #3: -
RA
1,2,3,4,6,7,8-HpCDFl 36:22 l.le+06 1.00 y
l.le+06
2 36:34 1.3e+05 0.92 y
1.36+05
3 36:40 1.4e+05 1.02 y
1.4e+05
l,2,3,4,7,8,9-HpCDF4 37:32 8.8e+04 0.91 y
8.8e+04
Cone
0.42
c
c
0.05
e
(.
0.06
0.04
unnamed
unnamed
Area Height S/N Mod?
5.7e+05 1.8e+05 9.5e+01 y n
5.7e+05 1.7e+05 1.3e+02 y n
6.2e+04 2.2e+04 1.2e+01 y n
i.7e+04 2.1e+04 1.6e+01 y n
7.1e+04 2.1e+04 l.le+01 y n
7.0e+04 2.1e+04 1.6e+01 y n
1
4.2e+04 l.le+04 5.9e+00 y n
4.6e+04 1.3e+04 l.Oe+01 y n
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:4
Run: 16 File: al7ju!98b S:ll Acq:18-JUL-98 00:16:48 Proc:20-JUL-98 09:06:58
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-2 xl/2
Amount: 0.38
Cone: 0.38
TOX #1: -
Name
of which 0.18
of which 0.18
Tox #2: -
# RT Respnse
named and 0.19
named and 0.19
Tox #3: -
RA
1 36:21 7.0e+04 3.06 n
7.Oe+04
2 36:35 3.7e+05 1.04 y
3.7e+05
1,2,3,4,6,7,8-HpCDD3 37:10 4.6e+05 1.12 y
4.6e+05
4 37:31 4.5e+04 3.93 n
4.5e+04
Cone
0.03
C
1
0.15
1
1
0.18
0.02
unnamed
unnamed
Area Height S/N Mod?
5.3e+04 1.8e+04 1.5e+01 y n
1.7e+04 5.8e+03 6.4e+00 y n
1.9e+05 5.4e+04 4.5e+01 y n
1.8e+05 5.56+04 6-Oe+Ol y n
3
2.4e+05 6.5e+04 5.3e+01 y n
2.2e+05 5.96+04 6.4e+01 y n
I
3.6e+04 9.16+03 7.5e+00 y n
9.2e+03 2.46+03 2.6e+00 n n
J 078
-------
File: A17JUL98B Acq: 18-JUL-1999
Sample #11 Text: 1070-2 xl/2 ALS
319.8965 S:ll SMO(1,3) BSUB(128,15
100%
50 j
•
0 '
— \ 1 1 1 1 1 1 1 1 1 1 —
24:00 25
321.8936 S:ll SMO(1,3) BSUB(128,15
100%
50J
-
".
0 H
— • 1 i 1 1 1 1 1 1 1 1 1 —
24:00 25
331.9368 S:ll SMO(1,3) BSUB(128,15
100%
50 1
o:
24:00 25
333.9339 S:ll SMO(1,3) BSUB(128,15
100%
50 j
0'
w— ' — i 1 1 i 1 1 1 1 1 1 1 —
24:00 25
327.8847 S:ll SMO(1,3) BSUB(128,15
100%
50 j
o •
u— ' — i 1 1 1 1 1 1 1 1 1 1 —
24:00 25
00:
16:48 Exp: EXP_M23
_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
#11
,-3
A2
loo
,-3
A2
loo
,-3
loo
,-3
loo
,-3
loo
316.9824 S:ll SMO(1,3) PKD(3 , 3 , 3 , 100 .
100%
50 J
o:
23:35 24:06 24jJ13 _25
— ' 1 1 1 1 1 1 1 r— — I 1 1
24:00 25
•00
loo
.0) PKD(3,3,3,0.10%
.07E7
A
/\ A9.72E6
A
/ \ / \ A1.66E6
/ y_. J \^ ^/~*^
26\00
.0) PKD(3,3,3,0.10%
.67E7
A
l\ A1.25E7
A
/ \ /\ A2.13E6
1 v j v ^
26:00
.0) PKD(3,3,3,0.10%
26100
.0) PKD(3,3,3,0.10%
26100
.0) PKD(3,3,3,0.10%
2eloo
00%, 0.0,1. 00%, F,F)
25:47 26j_l
26 loo'
,2764.0,1.00%,F,F)
A5.97E6 „ rn r
A A1.49E6 A2.52E6
J \__ _^ , ^--^^ __lf-^^ jS~*****s^
4.5E6
_2.3E6
O.OEO
27:00 28100 29loO 30:00 Time
,1916.0,1.00%,F,F)
A7.61E6
y\AlJ37E6 ^ 3^^ES
5.8E6
L2.9E6
•
0 . OEO
27:00 28:00 29:00 30:00 Time
,7088.0,1.00%,F,F)
A1.77E8
A A
A A
A/V
3.6E7
-1.8E7
O.OEO
27:00 28:00 29:00 30:00 Time
,3568.0,1.00%,F,F)
A2.28E8
A A
ft
/ y
4.6E7
L2.3E7
: O.OEO
27100 28:00 29:00 30:00 Time
,5900.0,1.00%,F,F)
A3.53E8
A
ft
A
7.3E7
_3.6E7
O.OEO
27:00 28:00 29:00 30:00 Time
0 ?c ; R4 ?7 ; 1 6 27 : 36 28:07 28:32 28:58 29 :28 29 : 51 ,_6 . 4E7
V
_3.2E7
O.OEO
27:00 28 loo 29:00 30:00 Time
o
^1
cp
-------
' *""»
-^s
o
00
o
File
Samp
355.
1001
50_
357.
iooa
50J
0'
367.
100%
so:
0'
369.
lOOi
50J
o:
i: A17JUL98B Acg: 18-JUL-1998 00:16:48 Exp: EXP M23 DBS OVATION Voltage SIR EI + GC Autospec-UltimaE Parad
)le #11 Text: 1070-2 xl/2 ALS #11
8546 S:ll F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD (3 , 3 , 3 , 0 . 10%, 3608 . 0 , 1 . 00% , F, F)
A4.84E6 A3.94E6
M / 1 A2.11E6
/ \ MA A1.11E6
/ \ / I xx / \ A A4.87E5
y N r-^T -/ r^J \^^-r^\ J \^^ /^
3b!l2 3b!24 36136 30:48 Sllod 3i!i2 3il24 3ll36 31 -48' 32:
8517 S:ll F:2 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1988 . 0 , 1
A3.15E6 2 5
A t\£j • ^J
l\ j>
36!i2 36I24 3o!36 30:48 3l!6d 3i!i2 3l!24 3ll36 31\48 32\
8949 S:ll F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 5140 . 0, 1
3b!i2 30124 3b!36 3()!48 Sllod 31112 3l!24 3ll36 sil-Js'1^!
8919 S:ll F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 3660 . 0 , 1
3bli2 36!24 30136 30:48 3lS6d 31 ! 12 ' 31 124 ' 31 ! 36 ' 31 \48 ' 32 !
366.9792 S:ll F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
100*30:1030:20 30:50 31:07 31:19 31:35 31:55
50J
o:
361l2 36124 30:36 ' 30 Us 31:00 31 \ 12 ' 31 124 ' 31 lie ' 31 :48 ' 32 !
i i ' i i [ r-r i' r-T i i i i i i i i r i r i i i r i 'i i i i i i i i i i i
00 32:12 32:24 32:36 32:48 33:00 33:12
.00%,F,F)
2E6
A1.34E6
, A A6.85E5
\ / \ A A3.11E5
\s\J \-^~r-~^ y V~v s^ ^-^
I i i ri i |i i'i i T*I i i1 i > i "| i ^T^, ri|i r^r*i i 1 i i i i i I i r
00 32:12 32:24 32:36 32:48 33:00 33:12
.00%,F,F)
A1.99E8
00 32:12 32:24 32:36 32:48 33:00 33:12
.00%,F,F)
A1.28E8
igm
1.6E6
_7.8E5
0 OEO
Time
1.0E6
-5.2E5
' 0 OEO
Time
7.2E7
L3.6E7
O.OEO
Time
4.7E7
_2.3E7
O.OEO
00 32:12 32:24 32:36 32:48 33:00 33:12 Time
32:0532:1532:24 32:41 33:0033:09 7.2E7
_3.6E7
O.OFO
00 ' 32!l2 ' 32I24 ' 32I36 ' 32148 ' 33l6d ' 33112 Time
-------
File: A17JUL98B Acq: 1«-JUL-1998 00:16:48 Exp: EXP_M23_
Sample #11 Text: 1070-2 xl/2 ALS #11
389.8156 S:ll F:3 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3,5,2,0.
100%
50J
-
o J
A3.11E6
A
A2.86E5 / \ A5^9E5
33!24 33136 33!48 34!oO 34! 12 34!24
391.8127 S:ll F:3 SMO(1,3) BSUB{128 , 15 , -3 . 0) PKD(3,5,2,0.
100%
50.
-
n
a-r
A
A2.39E5 / \ A3.90E5
>^~N^ / ^-~—^S ^^
" 1 1 1 1 1 1 l l 1 — i li — i — l — r— i — T — r— r'l-1 — r i i ••! i i i i i i i i i i i
33-24 33!36 33:48 34:00 34:12 34:24
401.8559 S:ll F:3 BSUB(128, 15 , -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 10960
100%
50J
n "
" ' i i — 1 — i — r— i — i — i 1 i — i — i— i — i — 1 — r— T— T — r i i i i i i i i i i i i i i i > i
33!24 33!36 33:48 34:00 34:12 34:24
403.8530 S:ll F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 9688 .
100%
so:
n •
" ' 1 1 1 1 1 1— 1 1 1 1 1 1 1 1 I—I — ' T1 T" 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
33!24 33!36 33:48 34:00 34:12 34:24
380.9760 S:ll F:3 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F,
100% TT.9T 34:0934:16
so:
0"
7
Dl '33! 24' ' '33\ 36' ' '33: 48* ' '34\ Of)' ' '34! 12' ' '34! 24'
DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
10%, 3040. 0,1. 00%, F,F)
A1.97E5
1.0E6
L5.2E5
•
_O.OEO
34!36 34148 3s!oO 3s!l2 3s!24 35:36 35 48 Time
10%, 1840. 0,1. 00%, F,F)
A1.62E5
8.2E5
L4.1E5
O.OEO
34:36 34:48 35:00 35:12 35:24 35:36 35 48 Time
.0,1.00%,F,F)
A1'?3E8 A1.92E8
A A
M A
j]\^ j\^
8.4E7
_4.2E7
' O.OEO
34!36 34!48 35!oO 3s!l2 3s!24 3s!36 3s!48 Time
0,1.00%,F,F)
Al'f3E8 A1.52E8
A A
M A
n^]^
6.6E7
L3.3E7
' O.OEO
34! 36 34!48 35.!00 3s!l2 35^24 3s!36 35:48 Time
F)
34:36 34:48 34:58 35jJL6 35:29 1 . 6E8
_7.8E7
"O.OEO
34\36' ' 's^U's' 35!oO 3s!l2 3s!24 3s!36 3s!48 Time
O
00
-------
File
Saim:
423.
1003
50_
0
425.
100S
50J
0'
435.
100%
50J
0'
437.
100%
so:
0"
430.
100%
so:
0"
->'
>: A17JUL98B Acq: 18-JUL-1998 00:16:48
)le #11 Text: 1070-2 xl/2 ALS #11
7767 S:ll F:4 SMO(1,3) BSUB(128, 15, -3 . 0 )
A1.89E5
A
A5.29E4 / \
/Y J v_
36166 36112 ' 36124 ' 36136 ' 36! 48' ' 37:
7737 S:ll F:4 SMO(1,3) BSUB(128, 15, -3 . 0 )
A1.82E5
n
A
A1.73E4 / \
s^\ y » —
36166 36ll2 36124 36136 36148 37l
8169 S:ll F:4 SMO(1,3) BSUB (128, 15, -3 . 0)
36166 36112 36124 36:36 36! 48 37 1
8140 S:ll F:4 SMO(1,3) BSUB(128, 15, -3 . 0)
36:00 36:12 36:24 36:36 36:48 37:
9728 S:ll F:4 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%
36:19 36:31 36:47
Exp: EXP_M23_DB5
PKD(3,3,3,0.10%
A2.41E5
A
/V,
66 37ll2 37124
PKD(3,3,3,0.10%
A2.16E5
A
A
/i_
66 37li2' 37124
PKD(3,3,3,0.10%
Al . 42E8
/I
66 37li2 37124
PKD(3,3,3,0.10%
A1.37E8
j\^
00 37:12 37:24
,0.0,1.00%,F,F)
37:05
_OVATION Voltage SIR EI+ GC Autospec-UltimaE Parad
,1208.0,1.00%,F,F)
.60E4
/X_ ^
37136' 37148 38166 38:12 38124 Sslie SsUs 39
,912.0,1.00%,F,F)
37136 37148 38166 3s!l2 38124 Sslie 38!48 39!
,5764.0,1.00%,F,F)
37!36 37148 38166 38112 38124 38136 SsUs 39!
,2924.0,1.00%,F,F)
igm
L3.3E4
LO.OEO
0 0 Time
6.0E4
L3.0E4
LO.OEO
00 Time
3.8E7
L1.9E7
' O.OEO
00 Time
3.7E7
.1.8E7
O.OEO
37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
37:38 37:57 38:12 38i24 38:52 1 . OE8
36166 36112 36124 36136 36l48 37 1
00 37:12 37:24
15.1E7
10.0EO
37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
o
00
-------
File
Samp
457.
1003
50J
0'
459.
100S
501
OJ
469.
100%
50J
0'
471.
1002
50J
0"
454.
1004
501
0'
O1
O
00
: A17JUL98B Acq: 18-JUL-1998 00:16:48 Exp : EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Parad
le #11 Text: 1070-2 xl/2 ALS #11
7377 S:ll F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 3376 . 0, 1 . 00%, F, F)
A5 -65E5
A
j \^
39ll2 39i24 39136 39148 4o!ob 4o!l2 40-124 4ol36 4oU8 41:
7348 S:ll F:5 SMO(1,3) BSUB (128 , 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1668 . 0 , 1 . 00%, F, F)
A6 - 76E5
A
/ V
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
7780 S:ll F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 2452 . 0, 1 . 00%, F, F)
Al . 91E8
A
J V
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
7750 S:ll F:5 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2040 . 0, 1 . 00%, F, F)
A2 .16E8
A
J V
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
9728 S:ll F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00% , 0 . 0 , 1 . 00%, F, F)
39:06 39il9 3_9j30 39:37 39:50 39:59 40:13 40:24 40:34 40:4640:51
7
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
igm
1.4E5
.7.1E4
00 Time
1.6E5
_8.0E4
.O.OEO
00 Time
4.4E7
12.2E7
' O.OEO
00 Time
_4 . 9E7
12 . 5E7
_O.OEO
00 Time
1.1E8
.5.5E7
.O.OEO
00 Time
-------
File: A17JUL98B Acq: 18-JUL-1998 00:16:48 Exp: EXP M23 DB5
Sample #11 Text: 1070-2 xl/2 ALS #11
303.9016 S:ll SMO(1,3) BSUB(128 , 15, -3 . 0 ) PKD(3 , 3 , 3 , 0 . 10%, 5320
100% A7.70E7
50j A3.66E7 M A5.20E7 A3.69E7
24 100
305.8987 S:ll SMO(1,3) BSUB(128
100% Al
5Q: A4.76E7
: A A2.27E7
0: A /\ A
24 100
315.9419 S:ll SMO(1,3) BSUB(128
100%
o:
24:00
317.9389 S:ll SMO{1,3) BSUB(128
100%
sol
24:00
375.8364 S:ll SMO(1,3) BSUB(128
100%
50 1
24:00
316.9824 S.-ll SMO(1,3) PKD(3,3,
100% 23_i35 24:06 24:33
50 j
|Q] 24:00
25 loo' ' ' ' 26 loo'
,15, -3.0) PKD(3, 3,3, 0.10%, 3436
. OOE8
l\ A6.78E7 A4.84E7
\ J\ ~A A2-S9E7AAA2
/ VVT \ /i\ AA /YV
25 loo' ' 26 loo'
,15, -3.0) PKD(3,3,3,0.10%,5408
25:00 26:00
,15, -3.0) PKD(3,3,3,0.10%,2728
25:00 26:00
,15, -3.0) PKD(3,3,3,100.00%,76
25:00 26:00
3,100.00%,0.0,1.00%,F,F)
_25jLOO 25:47 26:19
25:00 26100
OVATION Voltage SIR EI+ GC Autospec-UltimaE Parad
.0,1.00%,F,F)
A5.50E7
27 loo 28 loo' ' ' ' 29 loo' ' ' ' 30 !(
.0,1.00%,F,F)
y\
•AOE7 / \ A1.27E7
/ v ^\ / v rx ^-^
igm
1.5E7
L7.5E6
)0 Time
1.9E7
1.9. 7E6
: O.OEO
27 loo' ' ' ' 28 loo' ' ' ' 29 100 30:00 Time
.0,1.00%,F,F)
A2.26E8
27:00 28:00 29:00 30:(
.0,1.00%,F,F)
A2.89E8
27 loo' ' ' 28 Too 29 100 30 !(
.0,1.00%,F,F)
27:37
/! 27:58
27:11 /I A 28:27 29:35
_ _ _ _ ^— ^^ S*-S \ ^/ ^^^ _/X_ — S-S-^^^r" S^s. J ^V/V ^— N^
4.7E7
1.2. 4E7
i-O.OEO
)0 Time
6.0E7
_3.0E7
_O.OEO
JO Time
5.4E4
_2.7E4
O.OEO
27:00 28:00 29:00 30:00 Time
26:5427:1627:36 28:07 28:32 28:58 29 :28 29 : 51 6 . 4E7
_3.2E7
-O.OEO
27 loo' ' ' 28 100 29 100 '30:00 Time
-------
O
00
en
File: A17JUL98BAcq: 18-JUL-1998 00:16:48Exp: EXP_M23_DB5_OVATION Voltage SIR EI +GC Autospec-UltimaE—Paradigm
Sample #11 Text: 1070-2 xl/2 ALS #11
339.8597 S:ll F:2 SMO(1,3) BSUB (128,15,-3 . 0) PKD(3 , 3 , 3 , 0 .10%, 1|5232 . 0,1. 00%, F, F)
1004
A2 . 67E7
A A]
A1.27E7 / \
/\ A / 44.81E6
y v / \/ y\ , ,
Tn.io in . o^ i n . -jc in ! /i o 11 . nn -31.10 1 1 . o* 11 ! i c
A5.46E6
/ V /TV^X/V
•511^0 i^.rtn "» o . 1 o
A5.39E6
/Vx
i i *i i r i i i* i i V I i i i i i i i i i i i i i i i i i 1 1
7.2E6
_3.6E6
_0 . OEO
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31 48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
341.8568 S:ll F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,10444.0,1.00%,F,F)
1004
A1.77E7
A A9.46E6
"'A'6 A/\3.09E6 AA4'^
/ \ J\J V\1 ,/V/l\
•jnlio "Jnlo^ inl-jc in ! /i o Tilnn 1 1 ! i o 11 ! o ji 1 1 ! or -n!/io T>!
A3.81E6
^J\^
nn '-> •-> ' 1' ->
A3.56E6
y\x\
i 1 1 I iyi i T i I *n i i i i i i i i "i i i i i i i j i i1
4.8E6
_2.4E6
" 0 OEO
351.9000 S:ll F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1080.0,1.00%,F,F)
1004
33:12 Time
A2.81E8 A2.71E8
A A
/I A
o n . 1 o "3r».o>i •^n.'^^' *5A.>io "51. nn 11.10 i-i.n^ -ii_-i/- oi.jin •» *^ : /% n -»^io •* ^ ^ A o^'-ix- t n ' j n -i -^ ' « « ——',.—
1.0E8
L5.0E7
-O.OEO
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
353.8970 S:ll F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1676.0,1.00%,F,F)
1004 A1.79E8 A1.72E8 6. 4E7
_3.2E7
_O.OEO
Time
409.7974 S:ll F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,5556.0,1.00%,F,F)
1004 31^47 | _1.5E6
A A
O
31^58
31:39
32:24
_7.3E5
O.OEO
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 ' 33166 ' 33112 Time
366.
1004
50 j
o:
9792 S:ll F:2
^0:10 30:20
SMO(1,3) PKD(3,3,3,100.00%,0.0,1
30:50 31:07 31:19
00%,F,F)
31:35 31:5532:0532:1532:24 32:41 33:003J:09 7.2E7
L3.6E7
" O.OEO
Time
-------
rv
^-N
File: A17JUL98B
Sample #11 Text:
373.8207 S:ll F:3
100% A2.
-
50 1
_
o-
A1.14E9
A 1
]
/
' i i — iii"i — i — r— r
33:24 33:
375.8178 S:ll F:3
100%, A2 .
.
50^
0 '
/
A9.43E9
A/
33:24 33:
383.8639 S:ll F:3
100%
50 j
o"
Acer:
18-JUL-1998 00:16:
48 Exp: EXP_M23 DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
1070-2 xl/2 ALS #11
SMO(1,3) BSUB(128, 15,-
43E6
A
\
\
V_-
— i — rn-
36
A2
A2.18E5 /
33:48 34:00
3.0)
.27E6
A
' V
1
34:12
SMO(1,3) BSUB(128,15,-3.0)
11E6
A
\
\
36
Al
A1.87E5 J
33:48 34:00
.82E6
A
/v
1 1 'l
34:12
BSUB(128,15,-3.0) PKD (3, 5, 2
PKD ( 3 ,
2v.l5E5
T~~^
34
PKD ( 3 ,
X-14E5
34
,0.10%
5, 2, 0.10%, 4220. 0,1. 00%, F,F)
A5.£
/•
!24' ' '34!;
5,2,0.10%,
A4.9
:2^~ 34!:
,37080.0,1
8.
^5 Al^UES
14.
U •
6 ' 's^UV ' '35 loo 35!l2 35124 3s!36 35 48
3152. 0,1. 00%, F,F)
7.
8E5
13.
-o
6 34:48 35:00 35:12 35:24 35:36 35:48
.00%,F,F)
A1.38E8
]\
"— '—i — i — i — i — i i i i i
33:24 33:
385.8610 S:ll F:3
100%
50 j
o"
"-1— i — i — i — i — i — r— i — r— T
33:24 33:
445.7555 S:ll F:3
100%
-
~
0 "
~i — i — r
36
>
1 1 | 1 1 1 1 1 | 1 1 1 •*!
33:48 34:00
A/1
34 1 12
BSUB(128,15,-3.0) PKD(3,5,2
34
,0.10%
_5.
13.
^0.
:2'4' ' '34136 ' 34!48 35^00 3s!l2 35I24 35136 35 48
,64524.0,1
.00%,F,F)
A2.63E8
i\
36
J
33:48 34:00
M\
34:12
SMO(1,3) BSUB(128,15,-3.0)
V
34
PKD ( 3 ,
1.
.5.
0.
!24' 34136 34148 35!oO 35ll2 35I24 35I36 35 48
7E5
3E5
Time
5E5
7E5
OEO
Time
9E7
OE7
OEO
Time
1E8
7E7
OEO
Time
3, 3, 100. 00%, 4240. 0,1. 00%, F,F)
34:12
A
34:06 \
s\ 1 \
u ' i i | i r i-r-i-T
33:24 33:
380.9760 S:ll F:3
100% 33:23
50J
-
o"
J
i i l i i i i i 1
33:24 33:
O
00
36
/\
y \
33:48 34 00
SMO(1,3) PKD(3,3,3,100
—I—I 1-
36
34
-l — i — | — i — i — i — l — i — | — i — i i r
33:48 34:00
/ \
J \
34 ! 12
.00%,
:0934
34ll2
34
0.0,1.
34X3834-45
34^3^7
\_/X/— ^_i>
-------
•">
— s
File: A17JUL98B Acq: 18-JUL-1998 00:16:48
Exp : EXP_M2 3 _DB 5
JDVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #11 Text: 1070-2 xl/2 ALS #11
407.7818 Sill F:4 SMO(1,3)
1008
50_
A5.73E5
A
A
BSUB(128,15,-3.0)
/ \ A6.15E4
/ \ -s~^- -"••-
36166 36112 36T24
409.7788 S:ll F:4 SMO(1,3)
lOOi
50 J
".
0
A5.73E5
A
A
/ \»6
J ^
36 T66 36ll2r ' 36T24 "
417.8253 S:ll F:4 SMO(1,3)
100S
-
50^
OJ
A6.66E7
A
A
A
/ v_
36166 36112 36124
419.8220 S:ll F:4 SMO(1,3)
100%
•
50 J
o:
A1.48E8
A
A
\
J v_
36166 36112 36124
479.7165 S:ll F:4 SMO(1,3)
100%
50 j
-
0.-
35:57
/\_ 36 :08 36
~— — -' s — ^"N, — . .-•'* ' . _.-
36.:00 36:12 36^24
430.9728 S:ll F:4 SMO(1,3)
100%^ 36:19 36:
:
50J
o:
/
j--|--T — r— j — | — [ -T — (- — i — -| — j — i — | — j — i — j — | — [—
36:00 36:12 36:24
o
00
•si
36l:36 36 Us 37
BSUB(128,15,-3.0)
.71E4
f^^^l f^^^
36:36 36:48 37:
BSUB (128, 15, -3.0)
36\36 36! 48 37!
BSUB(128,15,-3.0)
36:36 36:48 37l
BSUB(128,15,-3.0)
37:
/
•z^j^i^^y
1 > i ' ' ' ' ' i ' ' ' ' ' i
36:36 36:48 37:
PKD(3,3,3,100.00%
31 36:47
i' i — i — i i ' i 'i 'i ' i i T i r i r~
36:36 36:48 37:
PKD(3,3,3,0.10%
A4
66 37ll2 37124'
PKD(3,3,3,0.10%
A4.
66 37! 12 ' 37124
PKD(3,3,3,0.10%
A4.
y
J
66 37li2' 37124
PKD(3,3,3,0.10%
Al.
1
J
66 37112 37124
,1884. 0,1. 00%, F,F)
.19E4
1.8E5
19.1E4
• n r>Rfi
37:36 37:48 38:00 38:12 38124 38136 38148 39:00 Time
,1336.0,1.00%,F,F)
63E4
1.8E5
_8.8E4
n DRD
37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
,12880. 0,1. 00%, F,F)
r2.0E7
76E7
^\
V
_1.0E7
O.OEO
37136' 37148' 3s!66 38112 38124 Sslie SsUs 39 00 Time
6908. 0,1. 00%, F,F)
4.5E7
07E8
\
v
.2.2E7
O.OEO
37136 37148 38166 38112 38124 38l36 38:48 39 00 Time
PKD(3,3,3,100.00%,4704.0,1.00%,F,F)
37:09
00 / \
V-/ V_^37:21
\ j^~\.
\^^
1 i i ? i i 1 i i
00 37:12 37:24
, 0.0,1. 00%, F,F)
31^9 37:56 38:11 38:22 38:41 38:53
— -^~V_^^ X- — • — — ^s~—*s s , — • s — ***^_ • • •«
_5.8E4
12 . 9E4
O.OEO
37:36 37:48 38:00 38:12 38:24 38:36 38148 39:00 Time
37:05 37:33 37:47 37:57 38:12 38:24 38:52 1 . OEfi
1 1 1 1 1 I | — | — | — | — I — I — I — i — i
00 37:12 37:24
1 i i i i i i > | ' ' ' i ' | i i ' ' i | | | i i i 'i i | i i i i i |'
.5.1E7
O.OEO
37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
-------
File: A17JUL98B
Sample #11 Text
441.7427 S:ll F:
100%
sol
39:12
443.7398 S:ll F:
100%
50J
39:12
469.7780 S:ll F:
100%
50 j
0 '
39:12
471.7750 S:ll F:
100%
50J:
o •
39:12
513.6775 S:ll F:
100%
50J
o •
^ 39:09
"-1 — i' i -r — e— i — i —
39:12
454.9728 S:ll F:
100% 39:06
50 j
o"
/
39:12
Acer: 18-JUL-1998 00:16
: 10'70-2 xl/2 ALS #11
5 SMO(1,3) BSUB(128,15,
39:24 39:36
5 SMO(1,3) BSUB(128,15,
39:24 39:36
5 SMO(1,3) BSUB(128,15,
T 1 1 1 1 1 1 1 1 1 1 1 r
39:24 39:36
5 SMO(1,3) BSUB(128,15,
T 1 1 1 1 1 1 1 1 1 1 < r
39:24 39:36
5 SMO(1,3) BSUB(128,15,
:48 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec UltimaE Paradigm
-3.0) PKD(3,
s'gUs
-3.0) PKD(3,
39:48
-3.0) PKD(3,
39U8
-3.0) PKD(3,
39148
-3.0) PKD(3,
*» f\ r* r\
/-\ 3jL^° 3?j-42 ^^\
39124 ' ' ' 39\36
s'gUs
5 SMO(1,3) PKD{3,3,3,100.00%,0.0,1.
39:19 39:30 39:37 39:50
T 1 1 1 1 1 p 1 1 1 1 1 r
39:24 39:36
39:48
3, 3, 0.10%, 1028. 0,1. 00%, F,F)
A2 -46E5
/\
_b .bE4
12.8E4
: O.OEO
40:00 40:12 40:24 40:36 40:48 41:00 Time
3, 3, 0.10%, 2008. 0,1. 00%, F,F)
A3 J-4E5
A
y A4.22E4
_7 .8E4
L3.9E4
- O.OEO
40:00 40:12 40:24 40:36 40:48 41:00 Time
3, 3, 0.10%, 2452. 0,1. 00%, F,F)
Al . 91E8
/\
y v_
..4.4E/
_2.2E7
-O.OEO
4o!ob 4o!l2 40^24 4ol36 4oUs 41:00 Time
3, 3, 0.10%, 2040. 0,1. 00%, F,F)
A2 . 16E8
/\
y V
_4 . yE i
_2 . 5E7
" O.OEO
40:00 40:12 40:24 40:36 40:48 41:00 Time
3, 3, 100. 00%, 48. 0,1. 00%, F,F)
40:02
/ \ 40:10
^-J V^-^^^V^AH-^ 40^_44_^ ^ f~^
/ . /JiJ
_3.8E3
O.OEO
4o!ob 40:12 40:24 40:36 40:48 41:00 Time
00%,F,F)
39:59 40:13 40:27 40:34 40:4640:51 1 . 1E8
.5.5E7
O.OEO
40:00 40:12 40:24 40:36 40:48 4l!oO Time
O
00
00
-------
0
o
OPUSquan 22-JUL-1998 Page 1
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ
Unk 2
ES/RT 13C-2
a21ju!98f
5
21-JUL-98 22:34:59
22-JUL-98 08:32:14
1070-2 xl/2
07feb-m23conf
M8290-23-072198F
Name; Resp; Ion 1; Ion 2; RA;?; RT; Cone; DL; S/N1;?; S/N2;? mod?
,3,7,8-TCDF; 5.42e+07; 2.36e+07; 3.06e+07; 0.77;y; 27:55; 3.995; 0.0156; 711;y; 877;y no
,3,7,8-TCDF; 1.43e+09; 6.27e+08; 8.01e+08; 0.78;y; 27:53; 350.023; -; 3005;y; 4676;y no
Total Tetra Furans; 2.81e+09; 1.02e+08; 1.33e+08; 0.77;y; 18:12; 206.789; 0.0156; 5256;y; 6445;y no
DPE
LMC QC CHK
00
CO
HxCDPE; *; * ;NotFnd; *; -; *;n no
ION (Tetra); *; * ;NotFnd; *; -; DivO;n no
-;-; 27:55
-;-; 27:55 ; -; -; no
Page 1
-------
OPUSquan 22-JUL-1998
Page 1
Ent: 3 Name: Tetra Furans
Page 1 of 1
F:l Mass: 303.902 305.899 Mod? no #Hom:30
Run: 10 File: a21ju!98f S:5 Acq:21-JUL-98 22:34:59 Proc:22-JUL-98 08:32:14
Tables: Run: a21ju!98b Analyte: m23_conf Cal: 07feb-m23»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-2 xl/2
Amount: 206.79 of which 3.99
Cone: 206.79 of which 3.99
Tox #2: -
Tox #1: -
Name
named and 202.79 unnamed
named and 202.79 unnamed
Tox #3: -
RT Respnse
RA
1 18:12 2.4e+08 0.77 y
'2.4e+08
2 19:52 2.0e+08 0.77 y
2.0e+08
3 20:06 l.Se+08 0.77 y
l.Se+08
4 20:22 2.5e+08 0.77 y
2.5e+08
5 20:40 l.le+08 0.77 y
l.le+08
6 21:13 l.Se+08 0.76 y
1.5e+08
7 21:33 1.7e+08 0.76 y
1.7e+08
8 21:50 2.0e+07 0.71 y
2.0e+07
9 21:59 3.76+07 0.74 y
3.7e+07
10 22:10 1.5e+08 0.75 y
l.Se+08
11 22:35 7.7e+07 0.75 y
7.7e+07
12 22:56 1.4e+05 0.80 y
1.4e+05
13 23:18 2.7e+08 0.76 y
2.7e+08
14 23:28 1.5e+08 0.77 y
l.Se+08
15 24:19 1.26+08 0.77 y
1.2e+08
16 24:33 8.9e+06 0.75 y
8.9e+06
17 25:01 1.4e+08 0.76 y
1.4e+08
18 25:27 7.3e+07 0.77 y
7.3e+07
19 26:00 7.5e+06 0.76 y
7.5e+06
Cone
17.32
]
]
14.40
£
1
11.39
6
8
18.40
1
1
7.90
4
e
10.87
e
£
12.60
c
1.47
£
]
2.72
]
11.22
€
£
5.64
i
4
0.01
e
19.55
]
]
11.13
e
£
8.83
Area Height S/N Mod?
.Oe+08 2.1e+07 5.3e+03 y n
.3e+08 2.7e+07 6.4e+03 y n
8.56+07 1.5e+07 3.7e+03 y n
l.le+08 1.9e+07 4.5e+03 y n
3
6.7e+07 l.le+07 2.7e+03 y n
8.7e+07 1.4e+07 3.3e+03 y n
3
l.le+08 1.8e+07 4.6e+03 y n
1.4e+08 2.4e+07 5.6e+03 y n
.7e+07 7.8e+06 2.0e+03 y n
6.1e+07 l.Oe+07 2.4e+03 y n
7
6.4e+07 l.le+07 2.8e+03 y n
8.4e+07 1.4e+07 3.4e+03 y n
D
7.46+07 9.8e+06 2.5e+03 y n
9.7e+07 1.3e+07 3.0e+03 y n
.3e+06 2.0e+06 5.0e+02 y n
.2e+07 2.7e+06 6.5e+02 y n
.66+07 3.56+06 8.9e+02 y n
2.1e+07 4.7e+06 l.le+03 y n
I
6.56+07 1.2e+07 3.0e+03 y n
8.7e+07 1.6e+07 3.7e+03 y n
3.3e+07 5.8e+06 1.5e+03 y n
4.4e+07 7.76+06 1.8e+03 y n
6.36+04 3.96+04 9.8e+00 y n
7.8e+04 4.86+04 l.le+01 y n
l.le+08 1.4e+07 3.6e+03 y n
l.Se+08 1.9e+07 4.5e+03 y n
6.66+07 9.2e+06 2.3e+03 y n
8.56+07 1.26+07 2.96+03 y n
0.66
10.04
5.35
0.55
5.2e+07 6.9e+06 1.8e+03 y n
6.8e+07 9.2e+06 2.26+03 y n
S
3.8e+06 5.4e+05 1.4e+02 y n
S.le+06 7.2e+05 1.7e+02 y n
1
5.9e+07 7.8e+06 2.0e+03 y n
7.7e+07 l.Oe+07 2.4e+03 y n
3.1e+07 3.8e+06 9.7e+02 y n
4.1e+07 5.0e+06 1.26+03 y n
3.2e+06 4.4e+05 l.le+02 y n
4.2e+06 5.7e+05 1.3e+02 y n
r
090
-------
OPUSquan 22-JUL-1998 Page 2
20 26:33 l.Oe+08 0.76 y 7.43
l.Oe+08 4.4e+07 5.4e+06 1.4e+03 y n
5.7e+07 7.1e+06 1.7e+03 y n
21 27:34 l.Oe+08 0.78 y 7.50
l.Oe+08 4.4e+07 5.2e+06 1.3e+03 y n
5.7e+07 6.8e+06 1.6e+03 y n
2,3,7,8-TCDF 22 27:55 5.4e+07 0.77 y 3.99
5.4e+07 2.4e+07 2.8e+06 7.1e+02 y n
3.16+07 3.7e+06 8.8e+02 y'n
23 28:13 2.5e+06 1.57 n .0.18
2.5e+06 l.Se+06 2.3e+05 5.8e+01 y n
9.7e+05 2.86+05 6.7e+01 y n
24 28:32 9.3e+07 0.76 y 6.87
9.3e+07 4.0e+07 4.5e+06 l.le+03 y n
5.3e+07 5.9e+06 1.4e+03 y n
25 29:03 l.Oe+06 0.39 n 0.08
l.Oe+06 2.9e+05 6.7e+04 1.7e+01 y n
7.4e+05 1.7e+05 4.1e+01 y n
26 29:18 5.3e+07 0.70 y 3.91
5.3e+07 2.2e+07 2.5e+06 6.4e+02 y n
3.1e+07 3.46+06 8.1e+02 y n
27 29:37 6.3e+07 0.75 y 4.63
6.3e+07 2.7e+07 2.9e+06 7.2e+02 y n
3.6e+07 3.8e+06 8.9e+02 y n
28 31:51 2.7e+07 0.80 y 2.01
2.7e+07 1.2e+07 1.2e+06 3.Oe+02 y n
1.5e+07 1.5e+06 3.5e+02 y n
29 33:46 7.6e+05 0.95 n 0.06
7.6e+05 3.7e+05 l.Oe+05 2.5e+01 y n
3.9e+05 1.26+05 3.0e+01 y n
30 33:48 1.2e+06 0.80 y 0.09
1.2e+06 5.2e+05 l.le+05 2.7e+01 y n
6.5e+05 1.4e+05 3.2e+01 y n
091
-------
File: A21JUL98F Acq: 21-JUL-1998 22:34:59 Exp: M23_DB225 Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #5 Text: 1070-2 xl/2 ALS #5
303.9016 S:5 SMO(1,3) BSUB (128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 3956 . 0 , 1 . 00% , F, F)
100% A1.Q2E8 M.08E8
A1.15E8
A6.36E7
O
2.1E7
_1.0E7
AA '
A. A A A
T >' '—'—>r '" r
26:00 28:00
/\
.O.OEO
Time
I
50_
OJ
16:00 18iOO 20iOO 22iOO 24iOO
305.8987 S:5 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,4208.0,1.00%,F,F)
100% A1.33E8 A1.41E8
A1.51E8
A8.40E7 .
A7'74E7 A5.72E7 A5.24E7
-r'-'r—i—i—i—i' ) vr"i' i' V 'i IT|" 'i ' I—i ' i1 'i—| ' .'"i 'i' I 'i—T / >—i—J \f\—/H—r^r^
16:00 18:00 20:00 22:00 24:00 26:00 28:00
315.9419 S:5 SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3,3,0.10%,24212.0,1.00%,F,F)
100% A6.27E8
50J
OJ
30:00 ' ' ' 32:00 ' '
2.7E7
L1.4E7
A1.51E7
—r-T—i—i—c—i i i—i—i—r
32:00 34:00
LO.OEO
Time
7.3E7
_3.6E7
.O.OEO
Time
.9.3E7
.4.7E7
.O.OEO
Time
16:00 18:00 20:00 22:00 24:00 26:00 28:00
317.9389 S:5 SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3,3,0.10%,19864.0,1. 00%, F, F)
100% A8.01E8
50
0
soo
32o
34-o
T
T
T
T
-l 1—I r
-i—|—i—r
26:00
r—i—i—i-
28:00
16:00 18iOO 20.;00 22.:00 24^00
375.8364 S:5 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,15960.0,1.00%,F,F)
100% 19.; 10
24:28
50J
—\—i—i—i 1—i—i—i—r—i—r
30:00 32:00
I i r—r r
34:00
27:53 29:14 30:50 32:28 33:48
26iOO
28:00
30:00
32:00
16:00 18iOO 20iOO 22100 24iOO
16.9824 S:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
16:35 18:20 ^20:04 21:39. 23;30 __ 25:11 27; 00 28 :Q1 29: 02 30^20 32:04
50_
o
33:57
18:00
.O.OEO
Time
.7.3E7
.3.7E7
.O.OEO
Time
20! ob
24 lob
26 lob
28:00
3o!ob
32? 00
•• r —-1 1 1 r r~
34:00
-------
Paradigm Analytical Labs
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
Wft..
EMPC
ND
ND
EMPC
EMPC
0.0162
0.0030
ND
"tax-'' ' ••
0.0014
EMPC
ND
ND
0.0071
ND
0.0059
0.0016
0.0016
0.0040
0.0080
0.0108
ND
0.0024
0.0072
0.0006
0.0011
BJ,
tt*J
0.0005
0.0003
0.0005
^.0004
0.0004
0.060*
0.0010
&OOQ5
0.0005
,r 0,0004 -».
0.0003
OJ0002
0.0002
0.0003
0.0007
0.0008
0.0008
0,0005
"0.0003
0.0004
0.0004
.0.0005
0.0004
0;0002
0.0007
JWUQ&
^.•.4W-'^
0.0010
0.0069
0.0009
0.0004
0.0034
0.0024
0.0080
0.0092
0.0132
0.0016
0.0032
0.0080
0.0017
0.0020
:.-? »T -. •
_:*j^yia4,..^
28:29
34:43
34:47
35:00
37:11
40:03
27:28
34:11
34:16
34:38
35:10
36:23
40:11
Ratio
1.40
0.29
0,98
0.87
1.1
0.90
0.7
1.39
1.85
1.67
0.78
1.04
1.01
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Texas Lime Kiln
M23-FB-1
L1070
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Analysis Date:
Air
I
0,0
al7jul98b-12
al7jul98b-l
1/2
QLf. 093
-------
Paradigm Analytical Labs
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C,2-2,3,7,8-TCDD
13Cl2-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13C12-1 ,2,3,4,6,7,8-HpCDD
13C12-OCDD
13Ci2-2,3,7,8-TCDF
I3C12-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
13Ci2-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3,7,8-TCDD
'3C12-2,3,4,7,8-PeCDF
"Cu-l,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13C12-l)2,3,4,7,8,9-HpCDF
Injection Standards
uCu-lA3,4-TC3)D
l3C12-l,2,3,7,8,9-HxCDD
Expected
Amount" • •
(»B)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured
Amount
(ng)
3.50
4.04
3.78
3.82
6.97
3,53
3.48
3.79
3.01
3.78
3.91
3.61
3.19
3.11
Percent
Recovery
(%)
87.4
100.9
94.6
95.6
87.1
88.2
87.1
94.8
75.2
94.4
97.8
90.2
79.6
77.8
RT
(min.)
28:27
32:37
34:46
37:10
40:02
27:25
31:57
34:15
36:22
28:29
32:25
34:42
34:11
37:32
28:10
34:59
Ratio
0.77
1.56
1.26
1.05
0.89
0.78
1.55
0.52
0.44
1.56
1.24
0.52
0.44
0.79
1.26
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Texas Lime Kiln
M23-FB-1
Sample Information
Matrix:
Weight /Volume:
Moisture /Lipids:
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date: .
, " • ,,*. >v
Reviewed by: j
L1070
1070-3
25-Jun-98
08-JW-98
10-Jal-98
;. ;,. 1H$M?8-
\ .17 '' • - '' '^: .->?.$';;
Filename:
Retchk:
Begin ConCal;
EndConCal:
.,,;,,%,-irr. -'- 'Nti4Cal:
.%-&"Wji?:t:. '.^,-° ' .-
Air
1
0.0
a!7juI98b-12
al7juB8b-l
al7ju!98b-2
a!7jul98b-15
m829fl-23-071798
Date Reviewed:
2/2
094
-------
o
C£
C/7
OPUSquan 20-JUL-1998 Page 1
Filename al7ju!98b
Sample 12
Acquired 18-JUL-98 01:01:55
Processed 20-JUL-98 09:07:42
Sample ID 1070-3 xl/2
Cal Table m8290-23-071798
Results Table M8290-23-071798B
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
SS
Name; Resp; Ion 1; Ion 2; RA;?; RT;
2,3,7,8-TCDD; 2.94e+05; 5.23e+04; 2.41e+05; 0.22;n; 28:29;
1,2,3,7,8-PeCDD; *; *; * ; *;n;NotFnd;
1,2,3,4,7,8-HxCDD; 1.76e+04; 3.94e+03; 1.36e+04; 0.29;n; 34:43;
1,2,3,6,7,8-HxCDD; 6.966+04; 3.44e+04; 3.52e+04; 0.98;n; 34:47;
1,2,3,7,8,9-HxCDD; 6.67e+04; 3.10e+04; 3.57e+04; 0.87;n; 35:00;
1,2,3,4,6,7,8-HpCDD; 2.61e+05; 1.37e+05; 1.24e+05; 1.10;y; 37:11;
OCDD; 7.766+05; 3.67e+05; 4.08e+05; 0.90;y; 40:03;
2,3,7,8-TCDF; 3.466+05; 1.42e+05; 2.04e+05; 0.70;y; 27:28;
1,2,3,7,8-PeCDF; * ; * ; *; *;n,-NotFnd;
2,3,4,7,8-PeCDF; * ; * ; *; *;n;NotFnd;
1,2,3,4,7,8-HxCDF; 1.18e+05; 6.83e+04; 4.936+04; 1.39,-y; 34:11;
1,2,3,6,7,8-HxCDF; 4.65e+04; 3.02e+04; 1.636+04; 1.85;n; 34:16;
2,3,4, 6,7, 8-HxCDF; 2.31e+04; 1.45e+04; 8.66e+03; 1.67,-n; 34:38;
1,2,3,7,8,9-HxCDF; 1.06e+04; 4.62e+03; 5.94e+03; 0.78;n; 35:10;
1,2,3,4, 6,7, 8-HpCDF; 4.37e+05; 2.22e+05; 2.14e+05; 1.04;y; 36:23;
1,2,3,4,7,8,9-HpCDF; *; * ; *; *;n;NotFnd;
OCDF; 3.03e+05; 1.526+05; 1.51e+05; 1.01,-y; 40:11;
13C-2,3,7,8-TCDD; 3.82e+08; 1.67e+08; 2.15e+08; 0.77;y; 28:27;
13C-l,2,3,7,8-PeCDD; 3.07e+08; 1.87e+08; 1.20e+08; 1.56;y; 32:37;
13C-l,2,3,6,7,8-HxCDD; 3.48e+08; 1.94e+08; 1.54e+08; 1.26;y; 34:46;
13C-l,2,3,4,6,7,8-HpCDD; 2.61e+08; 1.34e+08; 1.27e+08; 1.05;y; 37:10;
13C-OCDD; 3.82e+08; 1.80e+08; 2.02e+08; 0.89;y; 40:02;
13C-2,3,7,8-TCDF; 4.83e+08; 2.12e+08; 2.71e+08; 0.78;y; 27:25;
13C-l,2,3,7,8-PeCDF; 4,15e+08; 2.53e+08; 1.63e+08; 1.55;y; 31:57;
13C-l,2,3,6,7,8-HxCDF; 4.03e+08; 1.37e+08; 2.66e+08; 0.52;y; 34:15;
13C-l,2,3,4,6,7,8-HpCDF; 1.94e+08; 5.97e+07; 1.35e+08; 0.44;y; 36:22;
13C-1,2,3,4-TCDD; 3.98e+08; 1.756+08; 2.22e+08; 0.79;y; 28:10;
13C-l,2,3,7,8,9-HxCDD; 3.43e+08; 1.91e+08; 1.52e+08; 1.26;y; 34:59;
37Cl-2,3,7,8-TCDD; 3.306+08; 3.306+08; -; -;-; 28:29;
13C-2,3,4,7,8-PeCDF; 3.97e+08; 2.42e+08; 1.55e+08; 1.56;y; 32:25;
13C-l,2,3,4,7,8-HxCDD; 2.126+08; 1.176+08; 9.47e+07; 1.24;y; 34:42;
13C-l,2,3,4,7,8-HxCDF; 2.52e+08; 8.586+07; 1.66e+08; 0.52;y; 34:11;
13C-1,2,3,4, 7,8,9-HpCDF; 1.186+08; 3.606+07; 8.226+07; 0 44;y; 37:32;
37Cl-2,3,7,8-TCDD; 3.30e+08; 3.30e+08; -; -,--; 28:29;
13C-2,3,4,7,8-PeCDF; 3.97e+08; 2.426+08; 1.55e+08; 1.56,-y; 32:25;
13C-1.2, 3 , 4, 7, 8-HxCDD; 2.12e+08; 1.17e+08; 9.47e+07- 1 24-y 34-42-
13C-l,2,3,4,7,8-HxCDF; 2.52e+08; 8.58e+07; 1.66e+08; 0.52,-y; 34:11;
13C-l,2,3,4,7,8,9-HpCDF; 1.18e+08; 3.60e+07; 8.22e+07; 0.44;y; 37:32;
Cone ;
0.078;
* .
0.008;
0.023;
0.022;
0.112;
0.404;
0.075;
* .
* .
0.034;
0.011;
0.006;
0.003;
0.178;
it .
0.148;
87.423;
100.876;
94.602;
95.601;
174.250;
88.212;
87.104;
94.834;
75.219;
82.464;
86.455;
82.479;
85.112;
85.426;
76.121;
58.518;
94.398;
97.746;
90.183;
79.631;
77.826;
DL;
0.0122;
0.0080;
0.0125;
0.0099;
0.0098;
0.0105;
0.0240;
0.0122;
0.0115;
0.0111;
0.0064;
0.0051;
0.0059;
0.0068;
0.0169;
0.0204;
0.0200;
0.0457;
0.0268;
0.0316;
0.0291;
0.2296;
0.0225;
0.0111;
0.1568;
0.0536;
-;
0.0219;
0.0113;
0.0469;
0.2012;
0.0685;
0.0261;
0.0077;
0.0490;
0.1787;
0.1170;
S/N1;?;
7,-y;
*;n;
l;n;
7;y;
6;y;
29;y;
36;y;
12; y;
*;n;
*;n;
10;y;
5;y;
2;n;
l;n;
26;y;
*;n;
45;y;
3515;y;
17251;y;
8162 ;y ;
6834;y;
637;y;
11770;y;
46692 ;y;
1653;y;
2222;y;
3867;y;
7930;y;
11127;y;
47310;y;
6286;y;
1118;y;
1187;y;
11127 ;y;
47310;y;
6286;y;
1118;y;
1187;y;
-
S/N2;?
39, -y
*,-n
2;n
5-v
-* ' Jr
4;y
40 ;y
105 ;y
15 ;y
*;n
*;n
H;y
•*• ^ / jr
5;y
2;n
2;n
46;y
^ V 1 Jf
*;n
17, -y
9897,-y
22604;y
10571;y
7219 ;y
30364;y
11292;y
32634;y
2517;y
4153;y
1057 5, -y
10371;y
-< -
33089 ;y
8406;y
1681;y
2232;y
~ 7 ~"
33089;y
8406;y
1681,-y
2232;y
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 17
-------
OPUSquan 20-JUL-1998
Page 1
Page 1 of 8
Ent 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:17
Run: 17 File: a!7ju!98b S:12 Acq:18-JUL-98 01:01:55 Proc:20-JUL-98 09:07:42
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-3 xl/2
Amount: 0.36
Cone: 0.36
Tox #1: -
Name
2,3,7,8-TCDF
of which 0.08
of which 0.08
Tox #2: -
named and 0.28
named and 0.28
Tox #3: -
tt RT Respnse RA
1 23:41 8.3e+04 0.92 n
8.3e+04
2 24:34 9.6e+04 0.44 n
9.6e+04
3 24:53 1.5e+05 0.69 y
1.5e+05
4 25:00 l.le+04 0.60 n
l.le+04
25:03 1.7e+04
1.7e+04
25:09 2.6e+04
2.6e+04
1.60 n
0.38 n
7 25:20 1.le+05 0.74 y
l.le+05
8 25:42 8.2e+04 0.75 y
8.2e+04
25:46 8.36+04
8.3e+04
0.95 n
10 26:00 2.7e+04 0.46 n
2.7e+04
11 26:09 1.46+05 0.75 y
1.4e+05
12 26:27 1.4e+05 0.66 y
1.4e+05
13 26:35 9.8e+04 0.88 y
9.8e+04
14 26:52 1.8e+05 0.73 y
1.86+05
15 27:28 3.5e+05 0.70 y
3.5e+05
16 28:03 4.2e+04 0.41 n
4.2e+04
17 29:49 2.1e+04
2.1e+04
0.56 n
Cone
0.02
4
t
0.02
{
0.03
e
6
0.00
4
6
0.00
1
e
0.01
]
0.02
4
(
0.02
4
0.02
4
$
0.01
E
1
0.03
c
£
0.03
C
J
0.02
4
C
0.04
]
0.08
1
0.01
1
i
0.00
unnamed
unnamed
Area Height
S/N Mod?
4.0e+04 9.5e+03 5.1e+00 y n
4.3e+04 l.Oe+04 5.4e+00 y n
2.9e+04 6.9e+03 3.8e+00 y n
6.7e+04 1.4e+04 7.1e+00 y n
6.1e+04 1.6e+04 8.5e+00 y n
8.8e+04 1.9e+04 9.9e+00 y n
4.0e+03 2.1e+03 1.2e+00 n n
6.6e+03 1.9e+03 l.Oe+00 n n
3
l.le+04 2.5e+03 1.3e+00 n n
6.6e+03 1.9e+03 l.Oe+00 n n
I
7.3e+03 3.1e+03 1.76+00 n n
1.9e+04 4.8e+03 2.4e+00 n n
.5e+04 9.2e+03 S.Oe+00 y n
.1e+04 9.0e+03 4.6e+00 y n
3.5e+04 7.6e+03 4.1e+00 y n
4.7e+04 l.Oe+04 5.3e+00 y n
4.0e+04 9.3e+03 5.0e+00 y n
4.3e+04 l.Oe+04 5.3e+00 y n
8.66+03 2.5e+03 1.3e+00 n n
1.96+04 5.0e+03 2.6e+00 n n
3
5.96+04 1.2e+04 6.3e+00 y n
8.0e+04 1.9e+04 9.6e+00 y n
3
5.4e+04 l.Oe+04 5.5e+00 y n
8.2e+04 1.26+04 6.2e+00 y n
4.6e+04 9.0e+03 4.9e+00 y n
5.2e+04 1.2e+04 6.2e+00 y n
4
7.6e+04 1.4e+04 7.5e+00 y n
l.Oe+05 2.1e+04 l.le+01 y n
1.4e+05 2.36+04 1.2e+01 y n
2.06+05 2.9e+04 1.5e+01 y n
L
1.2e+04 4.0e+03 2.2e+00 n n
3.0e+04 6.1e+03 3.1e+00 y n
7.6e+03 1.7e+03 9.1e-01 n n
1.3e+04 5.0e+03 2.6e+00 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:4
096
-------
OPUSquan 20-JUL-1998
Page 2
Run: 17 File: al?jul98b S:12 Acq:18-JUL-98 01:01:55 Proc:20-JUL-98 09:07:42
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-3 xl/2
Amount: 0.14
Cone: 0.14
Tox #1: -
Name
of which 0.08
of which 0.08
Tox #2: -
# RT Respnse
named and 0.06
named and 0.06
Tox #3: -
RA
2,3,7,8-TCDD
1 25:16 1.46+05 0.83 y
1.4e+05
2 25:41 5.8e+04 0.56 n
5.8e+04
3 28:11 2.56+04 1.30 n
2.5e+04
4 28:29 2.9e+05 0.22 n
2.9e+05
Cone
0.04
e
0.02
0.01
1
1
0.08
unnamed
unnamed
Area Height
S/N Mod?
6.1e+04 1.4e+04 8.16+00 y n
7.4e+04 1.6e+04 1.2e+01 y n
2
2.1e+04 5.8e+03 3.56+00 y n
3.7e+04 7.2e+03 5.3e+00 y n
L
1.4e+04 3.5e+03 2.16+00 n n
l.le+04 3.3e+03 2.46+00 n n
3
5.2e+04 l.le+04 6.6e+00 y n
2.4e+05 5.3e+04 3.9e+01 y n
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:3
Run: 17 File: a!7ju!98b S:12 Acq:18-JUL-98 01:01:55 Proc:20-JUL-98 09:07:42
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-3 xl/2
Amount: 0.06
Cone: 0.06
Tox #1: -
Name
of which *
of which *
Tox #2: -
# RT Respnse
named and 0.06
named and 0.06
Tox #3: -
RA
1 31:22 1.66+05 1.86 n
1.6e+05
2 31:46 4.7e+04 2.68 n
4.7e+04
3 32:30 2.9e+04 0.78 n
2.96+04
Cone
0.04
]
C
0.01
]
0.01
unnamed
unnamed
Area Height
S/N Mod?
l.Oe+05 2.8e+04 2.56+01 y n
5.4e+04 1.6e+04 4.3e+00 y n
L
3.4e+04 l.Oe+04 9.2e+00 y n
1.3e+04 4.9e+03 1.3e+00 n n
1.3e+04 4.6e+03 4.1e+00 y n
1.6e+04 5.0e+03 1.3e+00 n n
r c
' 097
-------
OPUSquan
20-JUL-1998
Page 3
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:5
Run: 17 File: a!7ju!98b S:12 Acq:18-JUL-98 01:01:55 Proc:20-JUL-98 09:07:42
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-3 xl/2
Amount: 0.07
Cone: 0.07
Tox #1: -
Name
of which *
of which *
Tox #2: -
# RT Respnse
named and 0.07
named and 0.07
Tox #3: -
RA
1 31:30 1.2e+05 1.64 y
1.2e+05
2 32:05 2.2e+04 0.76 n
2.2e+04
3 32:12 2.56+04 1.15 n
2.5e+04
4 32:20 2.4e+04 0.76 n
2.4e+04
5 32:25 5.2e+04 2.69 n
5.2e+04
Cone
0.04
-
4
0.01
c
]
0.01
1
1
0.01
]
]
0.02
unnamed
unnamed
Area Height
S/N Mod?
7.5e+04 2.6e+04 1.3e+01 y n
4.6e+04 1.7e+04 1.4e+01 y n
L
9.3e+03 4.1e+03 2.1e+00 n n
1.2e+04 4.5e+03 3.7e+00 y n
1.3e+04 4.9e+03 2.5e+00 n n
1.2e+04 4.0e+03 3.3e+00 y n
.le+04 4.4e+03 2.2e+00 n n
.4e+04 4.3e+03 3.5e+00 y n
3.8e+04 1.3e+04 6.8e+00 y n
1.4e+04 3.9e+03 3.2e+00 y n
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:15
Run: 17 File: a!7ju!98b S:12 Acq:18-JUL-98 01:01:55 Proc:20-JUL-98 09:07:42
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-3 xl/2
Amount: 0.12
Cone: 0.12
Tox #1: -
Name
of which 0.05
of which 0.05
Tox #2: -
# RT Respnse
named and 0.07
named and 0.07
Tox #3: -
RA
1 33:32 4.56+04 0.97 n
4.56+04
2 33:38 l.le+05 1.30 y
l.le+05
3 33:55 2.4e+04 2.83 n
2.46+04
1,2,3,4,7,8-HxCDF
34:11 1.26+05
1.26+05
1.39 y
1,2,3,6,7,8-HxCDF 5
34:16 4.66+04 1.85 n
4.6e+04
34:21 5.56+03 4.41 n
5.56+03
7 34:36 1.9e+04 1.25 y
1.9e+04
2,3,4,6,7,8-HxCDF 8 34:38 2.36+04 1.67 n
2.3e+04
9 34:44 9.7e+03 5.13 n
9.7e+03
Cone
0.01
0.03
(
<
0.01
]
e
0.03
£
4
0.01
]
0.00
4
]
0.01
]
£
0.01
1
6
0.00
unnamed
unnamed
Area Height
S/N Mod?
2.2e+04 8.6e+03 4.5e+00 y n
2.3e+04 9.0e+03 6.1e+00 y n
j.le+04 2.1e+04 l.le+01 y n
l.7e+04 1.8e+04 1.2e+01 y n
1.7e+04 6.3e+03 3.3e+00 y n
6.16+03 2.46+03 1.66+00 n n
j.8e+04 2.0e+04 l.Oe+01 y n
1.96+04 1.6e+04 l.le+01 y n
3.06+04 9.6e+03 S.Oe+00 y n
1.6e+04 6.9e+03 4.6e+00 y n
l.5e+03 1.8e+03 9.2e-01 n n
L.Oe+03 7.3e+02 4.9e-01 n n
l.le+04 3.0e+03 1.6e+00 n n
8.7e+03 3.3e+03 2.3e+00 n n
L
1.46+04 4.4e+03 2.3e+00 n n
8.7e+03 3.36+03 2.3e+00 n n
8.1e+03 2.26+03 1.2e+00 n n
098
-------
OPUSquan 20-JUL-1998
Page 4
1.6e+03 5.3e+02 3.6e-01 n n
10 34:47 9.56+03 1.48 n 0.00
9.5e+03
11 35:01 1.2e+04 2.17 n 0.00
1.2e+04
12 35:06 7.8e+03 0.73 n 0.00
7.8e+03
1,2,3,7,8,9-HxCDF 13 35:10 l.le+04 0.78 n 0.00
l.le+04
14 35:13 l.Se+04 1.65 n 0.00
1.6e+04
15 35:22 7.0e+03 0.65 n 0.00
7.0e+03
5.7e+03
3.8e+03
3
8.36+03
3.8e+03
D
3.36+03
4.56+03
3
4.6e+03
5.96+03
3
9.86+03
5.96+03
3
2.8e+03
4.26+03
2.16+03
7.56+02
1.56+03
l.Oe+03
1.3e+03
l.Se+03
2.06+03
2.36+03
3.2e+03
2.3e+03
1.2e+03
l.le+03
l.le+00 n n
S.le-01 n n
7.76-01 n n
6.9e-01 n n
7.0e-01 n n
9.9e-01 n n
l.Oe+00 n n
1.6e+00 n n
1.7e+00 n n
1.6e+00 n n
6-le-Ol n n
7.3e-01 n n
C< 099
-------
OPUSquan 20-JUL-1998
Page 5
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:ll
Run: 17 File: al7ju!98b S:12 Acg:18-JUL-98 01:01:55 Proc:20-JUL-98 09:07:42
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-3 xl/2
Amount: 0.24
Cone: 0.24
Tox #1: -
Name
of which 0.05
of which 0.05
Tox #2: -
# RT Respnse
named and 0.18
named and 0.18
Tox #3: -
RA
1 33:53 1.5e+05 1.39 y
1.5e+05
2 34:04 4.9e+03
4.9e+03
0.52 n
3 34:11 1.6e+05 1.50 n
1.6e+05
34:20 1.5e+05
1.5e+05
1.33 y
5 34:26 2.2e+04 0.77 n
2.2e+04
34:30 6.1e+03
6.1e+03
0.59 n
7 34:33 8.5e+03 1.20 y
8.5e+03
1,2,3,4,7,8-HxCDD 8 34:43 1.8e+04 0.29 n
1.8e+04
1,2,3,6,7,8-HxCDD 9
34:47 7.0e+04 0.98 n
7.0e+04
1,2,3,7,8,9-HxCDD 10 35:00 6.7e+04 0.87 n
6.7e+04
11 35:07 4.2e+03 0.59 n
4.2e+03
Cone
0.05
6
C
0.00
3
0.06
c
£
0.05
£
e
0.01
c
3
0.00
T
0.00
t
0.01
1
3
0.02
0.02
0.00
unnamed
unnamed
Area Height
S/N Mod?
8.8e+04 3.0e+04 1.9e+01 y n
6.3e+04 2.4e+04 l.le+01 y n
3
1.7e+03 6.4e+02 4.1e-01 n n
3.2e+03 1.2e+03 5.4e-01 n n
9.3e+04 3.1e+04 2.0e+01 y n
6.2e+04 1.5e+04 6.6e+00 y n
8.6e+04 2.7e+04 1.7e+01 y n
6.5e+04 2.0e+04 8.8e+00 y n
9.5e+03 3.3e+03 2.1e-t-00 n n
1.2e+04 3.4e+03 1.5e+00 n n
D
2.3e+03 8.7e+02 5.5e-01 n n
3.8e+03 2.0e+03 9.1e-01 n n
4.6e+03 1.5e+03 9.4e-01 n n
3.8e+03 2.0e+03 9.1e-01 n n
L
3.9e+03 1.9e+03 1.2e+00 n n
1.4e+04 4.0e+03 1.8e+00 n n
2
3.4e+04 1.2e+04 7.4e+00 y n
3.5e+04 l.Oe+04 4.6e+00 y n
2
3.1e+04 9.0e+03 5.7e+00 y n
3.6e+04 9.9e+03 4.4e+00 y n
1.6e+03 7.0e+02 4.4e-01 n n
2.7e+03 l.le+03 4.7e-01 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:3
Run: 17 File: a!7ju!98b S:12 Acq:18-JUL-98 01:01:55 Proc:20-JUL-98 09:07:42
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-3 xl/2
Amount: 0.21
Cone: 0.21
Tox #1: -
Name
of which 0.18
of which 0.18
Tox #2: -
# RT Respnse
named and 0.03
named and 0.03
Tox #3: -
RA
1,2,3,4,6,7,8-HpCDFl 36:23 4.4e+05 1.04 y
4.4e+05
2 36:34 1.8e+04 2.78 n
1.8e+04
3 36:41 4.4e+04 2.59 n
4.4e+04
Cone
0.18
0.01
3
4
0.02
unnamed
unnamed
Area Height
S/N Mod?
2.2e+05 7.0e+04 2.6e+01 y n
2.1e+05 6.7e+04 4.6e+01 y n
L
1.3e+04 5.0e+03 1.9e+00 n n
4.7e+03 1.8e+03 1.3e+00 n n
3.2e+04 8.9e+03 3.3e+00 y n
<~ff 100
-------
OPUSquan 20-JUL-1998 Page 6
1.2e+04 4.7e+03 3.3e+00 y n
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no fHom:3
Run: 17 File: al7ju!98b S:12 Acq:18-JUL-98 01:01:55 Proc:20-JUL-98 09:07:42
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-3 xl/2
Amount: 0.23 of which 0.11 named and 0.12 unnamed
Cone: 0.23 of which 0.11 named and 0.12 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1 36:22 6.5e+04 3.80 n 0.03
6.5e+04 5.1e+04 1.6e+04 1.26+01 y n
1.4e+04 4.3e+03 5.0e+00 y n
2 36:36 2.1e+05 1.02 y 0.09
2.1e+05 l.le+05 3.le+04 2.3e+01 y n
l.Oe+05 3.0e+04 3.5e+01 y n
l,2,3,4,6,7,8-HpCDD3 37:112.6e+05 l.lOy 0.11
2.6e+05 1.4e+05 4.0e+04 2.9e+01 y n
1.2e+05 3.5e+04 4.0e+01 y n
101
-------
o
10
File: A17JUL98B Acq:
18-JUL-1998 01:01:55 Exp : EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #12 Text: 1070-3 xl/2 ALS #12
319.8965 S:12 SMO(1,3)
100S
50J
o:
^v_~^_~_ ^^-~J\
i IT -• ~i 1 1 r
24:00
321.8936 S:12 SMO(1.3)
1001
50 j
.
-
o •
*-
1111(11
24:00
331.9368 S:12 SMO(1,3)
100%
50J
o:
24 loo'
333.9339 S:12 SMO(1,3)
100%
50^
o:
24:00
327.8847 S:12 SMO(1,3)
100%
50 1
o:
24 loo'
316.9824 S: 12 SMO(1,3)
100% 23:44 24
50J
0_i
1 1 1 " i • i 1 r
24:00
BSUB(128,15,-3.0) PKD (3 , 3 , 3 , 0 . 10% , 1676 . 0 , 1 . 00%, F, F)
A6.13E4 A6.04E4 ,,- ,-,„,
M i .M.J . Z, O £jfz
j\ A2.09E4 A A
/ 1 A / \ A1.43E4/ 1
,^-^'X-~--x^~VNyvJ_X^^A^
1.5E4
.7.5E3
' O.OEO
'25-00' 26 loo' ' ' 27 100 ' ' 28 loo' ' ' ' 29! 00 3o!oO Time
BSUB(128, 15, -3 .0) PKD (3, 3, 3, 0.10%,1360.0,1.00%,F,F)
A2.41E5
A
A7.40E4 / \
yy A3^72E4 ^ A1.10E4 A1.10E^_\
5.5E4
_2.7E4
O.OEO
1 1 I I | J 1 r i i I i I i I t J i i 1 i i | i i i i 1 V i , i i T i
25:00 26:00 27:00 28:00 29:00 30:00 Time
BSUB(128,15,-3.0) PKD (3 , 3 , 3 , 0 . 10%, 9432 . 0 , 1 . 00%, F, F)
A1.75E8
A A
A A
A/V
3.7E7
.1.8E7
O.OEO
25100 26100 27100 28loO 29loO 3oloO Time
BSUB(128,15,-3.0) PKD (3 , 3 , 3 , 0 . 10%, 4344 . 0 , 1 . 00%, F, F)
A2.22E8
A A
AA
4 . 6E7
.2.3E7
O.OEO
25:00 26:00 27:00 28:00 29:00 30:00 Time
BSUB(128,15,-3.0) PKD (3 , 3 , 3 , 0 . 10%, 6064 . 0, 1 . 00%,F,F)
A3.30E8
A
A
A
6.8E7
L3.4E7
: O.OEO
25:00' ' 26loO 27loO 2sloO 29loO 3oloO Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
:1324:34 25:03 25^37 26:10 26:3827:0227^23 27:52 28:26 29:14 29:40 6.3E7
.3 . 1E7
O.OEO
25:00 26:00 27:00 28:00 29:00 30:00 Time
-------
!;
o
co
File: A17JUL98B Acq: 18-JUL-1998 01:01:55 Exp : EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #12 Text: 1070-3 xl/2 ALS #12
355.8546 S:12 F:2 SMO(1,3) BSUB(128, 15 , -3 . 0) PKD{3 , 3 , 3 , 0 . 10%, 1960 . 0, 1 . 00% , F, F)
100% A7.52E4 r_2.8E4
50:
oj
357.
1002
so:
0-
367.
100%
so:
o:
369.
100%
so:
OJ
366.
100%
so:
0'
AA6.92E4 A3.82E4
A A
A8.80E3/ \ -^y V A1.17E4 A1.24E4
361l2 36124 Solie 36148 3ll66 3lll2 31124 31\36 31\48 32166 32112 32124 32136 32l48 33166 33:12
8517 S:12 F:2 SMO(1,3) BSUB(128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1208 . 0 , 1 . 00% , F, F)
A4.58E4
/ \ A2.47E4
/ \ A A1.38E4
36112 36124 36136 36148 3ll66 3ill2 3ll24 31\36 SlUs 32166 32112 32124 32136 32148 33166 33112
8949 S:12 F:2 SMO(1,3) BSUB(128, 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 3792 . 0, 1 . 00%, F, F)
A1.87E8
f[
36112 36124 36136 36148 3ll66 31112 3ll24 3ll36 31 Us 32166 32ll2 32124 32136 32148 33166 33112
8919 S:12 F:2 SMO(1,3) BSUB(128, 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1840 . 0 , 1 . 00%, F, F)
A1.20E8
j[
i i i I i i i i i I i i i i i 1 i i i i i I i i i i -i— i— r- 1 • i • i i i i i i i i i i i i i i i i i i i i i i i i i i 1 i i i i i 1 i i i i i I i i i i r I i i i~ni 1 I I I I i I i i i i I I i i
3oll2 30124 30136 3oUs 31:00 3lll2 31:24 3ll36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
9792 S:12 F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
30-27 30:47 31:03 31:24 31:37 31:51 32:04 32j25 32:42 32:59
30ll2 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
L1.4E4
O.OEO
Time
1.8E4
19.0E3
O.OEO
Time
6.5E7
L3.3E7
' 0 . OEO
Time
12.1E7
' O.OEO
Time
7.0E7
_3.5E7
O.OEO
Time
-------
File: A17JUL98B Acq: 18-JUL-1998 01:01:bb
Sample #12 Text: 1070-3 xl/2 ALS #12
Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
389.8156 S:12 F:3 SMO(1,3) BSUB (128 , 15 , -3 . 0 ) PKD(3 , 5, 2 , 0 . 10%, 1572 . 0, 1 . 00%, F,F)
100% A8.79E4 A9.31E4 r_3.2E4
50J
A A
A
/ L /
/ ^ V J
A8.62E4
A A
A A
\ / \ . 4l4Hit4t -* -3 1 OT^A
\ / \ y-\ f\J . J.UIL'i
V \ /\ /\
_1.6E4
O.OEO
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
391.8127 S:12 F:3 SMO(1,3) BSUB (128 , 15 , -3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 2244 . 0 , 1 . 00% , F, F)
100%, A6.31E4
502
2.6E4
A6.50E4
A6.20E4 A
A
^ /
/ \ A3.52E4 A3.57E4
/ \ /\ f\
_1.3E4
O.OEO
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
401.8559 S:12 F:3 BSUB(128, 15 , -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 9328 . 0 , 1 . 00%, F, F)
100%
50J
0 "
33:24 33:36 33:48 34:00 34:
403.8530 S:12 F:3 BSUB(128, 15, -3 . 0) PKD(3,5
100%
so:
0 '
A1.94E8 A1.91E8
A A
M A
I\V / v_
7.6E7
.3.8E7
'O.OEO
L2' ' '34! 24' 34136 34148 3s!oO 3s!l2 35124 35^36 35148 Time
2, 0.10%, 5660. 0,1. 00%, F,F)
f3 A1.52E8
A
A
/ v.
6.0E7
_3.0E7
O.OEO
'33S 24' ' VaSaV ' VsUV ' 's^Sdo' 34ll2 34124 34136 34U'8 35100 35!l2 35J24 35^36 35:48 Time
380.9760 S:12 F:3 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
100% 33:26 33:51 34:10
so:
0"
r
34-29 34j54_ 35:16 35:24 35_ii7 1 . 5E8
•
_7.3E7
O.OEO
'33! 24' ' '33:36' ' ' 33:48' ' '34:0'o' ' '34ll2 ' 34:24' 34136 34:48 35:00 35^12 35:24 35:36 35:48 Time
-------
File: A17JUL98B Acq: 18-JUL-1998 01:01:55
Sample #12 Text: 1070-3 xl/2 ALS #12
423.7767 S:12 F:4 SMO(1,3) BSUB(128, 15, -3 . 0)
lOOi
: A1.05E5
50^ A5.15E4 A
• /v ;V
36166 36112 36124 36136 SeUs 37!
425.7737 S:12 F:4 SMO(1,3) BSUB(128, 15, -3 . 0)
100%
A1.03E5
A
A1.35E4 / \
n- ] ^V 7 V_
36166 36112 36124 36136 36 Us 37!
435.8169 S:12 F:4 SMO(1,3) BSUB(128, 15 , -3 . 0)
100%
so:
0"
36166 36112 36124 36136 36 Us 37 1
437.8140 S:12 F:4 SMO(1,3) BSUB(128, 15, -3 . 0)
100%
so:
0" t
36166 36112 36124 36136 36148 37!
430.9728 S:12 F:4 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%
100% 36:03 36:29 36:56
;/
so:
Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Parad
PKD(3,3,3,0.10%,1372.0,1.00%,F,F)
A1.37E5
/ \ A2.50E4
/-A^^^^/x^ ,
00 37:12 37:24 37:36 37:48 38:00 3s!l2 38124 38136 3sl48 39!
PKD(3,3,3,0.10%,872.0,1.00%,F,F)
A1.24E5
00 37:12 37:24 37:36 37:48 38100 3s!l2 3sl24 3sl36 3s!48 39
PKD(3,3,3,0.10%,5352.0,1.00%,F,F)
A1.34E8
i i f i i I i iT1^ i 1 l l i i i | i i i i i 1 i i i i i 1 i i i i i 1 i i i i i 1" r~r- 1 i i 1 i i i i i 1 i i i i i '
00 37:12 37:24 37:36 37:48 38:00 38ll2 38124 38136 38148 39
PKD(3,3,3,0.10%,4872.0,1.00%,F,F)
A1.27E8
igm
4.2E4
L2.1E4
00 Time
3 . 6E4
_1.8E4
00 Time
3.7E7
.1.8E7
0 OEO
00 Time
3.5E7
11.8E7
' O.OEO
66 37112 37124 37\36 31^8 38:66 38112 Ss!^ 38136 38!48 39loO Time
,0.0,1. 00%, F,F)
37:18 37:36 37:52 38:22 38:39 38:51 9.7F7
_4.9E7
0 . OF.O
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37136 37:48 38:00 38:12 38:24 38:36 38148 39loO Time
o
C/1
-------
10!
p,
O
File: A17JUL98B Acg: 18-JUL-1998 01:01:55 Exp : EXP M23 DBS OVATION Voltage SIR EI+ GC Autospec-UltimaE Parad
Sample #12 Text: 1070-3 xl/2 ALS #12
457.7377 S:12 F:5 SMO(1,3) BSUB (128, 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 2524 . 0 , 1 . 00%, F, F)
100% A3 . 67E5
so:
o:
459.
100%
50J
o:
469.
100%
so:
0'
471.
100%,
50J
OJ
454.
100%^
so:
OJ
39ll2 39
7348 S:12 F:5 SMO(1,
39:12 39:
7780 S:12 F:5 SMO(1,
39ll2 ' ' ' 39:
7750 S:12 F:5 SMO(1,
39:12 39:
9728 S:12 F:5 SMO(1,
39:07 39:16
'
39:12 39:
JV
24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%, 912 . 0 , 1 . 00%, F, F)
A4.08E5
y\
24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41
3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%, 63476 . 0, 1 . 00%, F, F)
Al . 80E8
f\^
24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%, 1492 . 0 , 1 . 00%, F, F)
A2 . 02E8
f\_
— i — i — i — i — i — 1 — i — i — i — r- • i • i i i i i *i i i i i i i 1 1 i 1 I I I i i i I r | i i i i i | i '•• '
24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
39:27 39:54 40:02 40:13 40:24 40:47
24 39:36 ' ' 39:48 ' 40:00 ' 40:12 40:24 40s36 40:48 41:
igm
9.3E4
L4.7E4
LO.OEO
00 Time
9.8E4
_4.9E4
O.OEO
00 Time
4 . OE7
_2.0E7
_O.OEO
00 Time
4.5E7
.2.3E7
O.OEO
00 Time
.1.1E8
_5.4E7
O.OEO
00 Time
-------
File: A17JUL98B Acq:
18-JUL-1998 01:01:
55 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #12 Text: 1070-3 xl/2 ALS #12
303.9016 S:12 SMO(1,3)
100%,
•
-
50j
I
o-
A4.00E4
*
A
/\
f^/^^^~^-J^^-^r J*-^ f-s* — —
24100
305.8987 S:12 SMO(1,3)
1004
-
50 j
'.
o:
A4.33E4
A A2
^— ~^s^-t\^s^^^
24!oo'
315.9419 S:12 SMO(1,3)
1004
50J
OJ
24:00
317.9389 S:12 SMO(1,3)
1004
50 1
o"
24 loo'
375.8364 S:12 SMO(1,3)
1003i
I
o"
23:24 23:48
oAnA/W^V^V^
24 loo'
316.9824 S:12 SMo'(l,3)
100% 23:44 24
50J
o:
r
24 loo'
BSUB(128,15,-3.0)
A6.10E4
A
PKD(3,3,3,0.10%,1840.0,1.00%,F,F)
A1.42E5 2.5E4
A
AC Q/IU/I A7.56E4 / \
A2 91E4l\ A4.52E4 ""'A"* A /\
t\£t • -7 JLiJT± It _ „ / \ /\ / \ f\ •. * ri ii n *
* I \ r
y\ A /JW^ATT
/\_^A-\Cv_y--Aa:^a-L
25:00
BSUB(128,15,-3.0)
A8.80E4
A
A6.68E4 A
.75E4A \ ^
\^J_\sJ-^j££-,
25!oo'~r
BSUB(128,15,-3.0)
i l i i | i r
25:00
BSUB(128,15,-3.0)
i i i i | i i
25:,00
BSUB(128,15,-3.0)
24:28
fl 25:03
l:iefl A 25
A /'W) ^A^yV/v^
25 loo'
PKD(3,3,3,100.00%
: 13 24: 34 25:03
25 loo'
y/\ / \ / \ A 1 1 / \ Al *54l&4
\ /\\ £j\ jy\ \ s\ L \ Ai'i\^ A7.57E3
1= — CLA_>^---L~/-Lk, / V^^^^ — ^ — A — ^^^^~^^^__v>^^^r^^_^L^x~^
L1.3E4
: O.ORO
26:00 27:00 2s!oO 29loO 3oloO Time
PKD(3,3,3,0.10%,1952.0,1.00%,F,F)
A2.04E5 2.9E4
A7.96E4 A1.03E5 A
A4 65E4 A A8.19E4 /\ / \
'm /\ /^Y\ \ / \ A3'01E4 A1.34E4
\^ ^LA\^_J^L\^J ] \ ^.X-X^^xOky \_ /"^V^^^VVV^^^^^^^^V^^^-N^V^V^^X/
L1.5E4
• n ORO
26 100 27:00 28loO ' 29: 00 ' 30:00 Time
PKD(3,3,3,0.10%,3640.0,1.00%,F,F)
A2.12E8
j[
4.3E7
.2 . 1E7
O.OEO
26:00 27:00 28:00 29:00 30:00 Time
PKD(3,3,3,0.10%,4892.0,1.00%,F,F)
A2.71E8
A
/v
r5.5E7
12.8E7
- O.OEO
I I I | I I i I P | i i i > i | i i i i I | i i i i r i
26:00 27:00 28:00 29:00 30:00 Time
PKD(3,3,3,100.00%,72.0,1.00%,F,F)
28:09 7.0E3
A ^28:37
25:50 26:34 27,J04 27:26 11 /\fl 29:02
_3 .5E3
O.OEO
26 loo 27 loo 28 loo 29! 00 ' ' 30:00 Time
, 0.0,1. 00%, F,F)
25j_37 26:10 26jJ8 27i02 27_L23 27;52 28:26 29_:14 29:40 6.3E7
.3.1E7
O.OEO
26 100 27 100 28 loo' ' ' ' 29loo' ' ' ' 3oloO Time
-------
File: A17JUL98BAcq: 18-JUL-1998 01:01:55Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaEParadigm
Sample f!2 Text: 1070-3 xl/2 ALS #12
339.8597 S:12 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1132.0,1.00%,F,F)
_3.0E4
UU3
50 j
OJ
rt_L . y_LE.D
A5.36E4 / \ A4.09E4
Z\ _ J \7A8EL, /V//Y_y\
A2.73E4
/V/\ A4.55E3
i.1. 5E4
LO.OEO
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
341.8568 S:12 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,3732.0,1.00%,F,F)
100% A5.43E4
50 J
OJ
i i I i i i i i I i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i | i i i i i | i i i i i | i i i i i | i i i i i | i i i i i | i i i i i | i i i i i | i i i i i | i i
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
351.9000 S:12 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1896.0,1.00%,F,F)
100% A2.53E8 A2.42E8
50 j
Time
.1E4
.1E4
.OEO
Time
OE7
.5E7
.OEO
Time
.8E7
.9E7
.OEO
Time
.OE4
.2E3
.OEO
Time
'.OE7
.5E7
i. OEO
Time
0.
9.
I I I I I I I I I I I | I I I I I I I I I I I I I I I TT~| I I I I i I I I I I I I I I f I I I 'I I I I I I I I I I 1 I I 1*1 I I | I I I I I | I I I I I | I I I I I | I I
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
353.8970 S:12 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1744.0,1.00%,F,F)
100%, A1.63E8 A1.55E8
50J
OJ
A
T
T
T
T
3b!i2 ' 3b!24 ' 30 !36 ' 30 Us' ' 31166 ' 3i!i2 ' n!24 ' 31 lie ' 31 Us 32 loo 32ll2 32124 32i36 32i48 33iOO 33112
409.7974 S:12 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,3668.0,1.00%,F,F)
100%, 31^48 „.„
50J
30:29
3b!24 '
' 3l!6d
3l24 3l36 3l48 32o 3
366.9792 S:12 F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
100% 30:27 30:47 31:03 _ 31:24 _ 31:51 32:04
32124 ' 32136 ' 32I48 ' 33166 ' 33il2
50J
32:25
32:42 32_L59
i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i ' i i i i i i i i i i i i i i i i i i i i i i | i ' i i i | | , , , , i | i i i , , | . i , i i | • .
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
O
00
-------
'Pile: A17JUL98B—Acq: 18-JUL-1998 01:01:55 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE—Paradigm
Sample #12 Text: 1070-3 xl/2 ALS #12
373.8207 S:12 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,5,2,0.10%,1912.0,1.00%,F,F)
1004 A6.14E4 A6.83E4
50J
OJ
2.2E4
A2.21E
A1.74E4
A7.32E
33:24 33^36 33148 34iOO 34il2 34i24 34i36 34i48 35iOO
375.8178 S:12 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,5,2,0.10%,1480.0,1.00%,F,F)
100%, A4.72E4 A4.93E4
50J ^.28E/\
A8.66E3
/^xi coin A4 t
f\ J / \ i »—. - / \ /_ i •*i-Bv ^"-"-•~' s<^nj. . JOCiJ n.1* . •
O.OEO
Time
1.9E4
_9.6E3
A2.33E3
.O.OEO
T
T
34! 36 ' '34 Us'
33:24 33:36 33:48 34:00 34:12 34:24
383.8639 S.-12 F:3 BSUB(128,15,-3 .0) PKD(3 , 5 , 2 , 0 .10%, 37812 . 0 ,1. 00%, F, F)
100% A1.37E8
50J
ol
I I I I I
T
i r I i"*i i i 'i-i i "i i* i*1 TT 1*1 i f* ijiPiii|
35:00 35:12 35:24 35:36 35:48 Time
6.3E7
_3.1E7
i i -i i—r—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i
34112 34:24 34:36 34:48 35:00
.O.OEO
-i—i—i—i—i—i—i—i—i—i—i—i—i—. i ,
35:12 35:24 35:36 35:48 Time
1.2E8
_6.1E7
T
T
33:24 33:36 33:48 34:00
385.8610 S:12 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,48108.0,1.00%,F,F)
100% A2.66E8
50
0. OEO
35:12 35:24 35:36 35:48 Time
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00
445.7555 S:12 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,1392.0,1.00%,F,F)
100% 34;46
50J
_ ! , , , , 1 , , ,, . r—, .
33:24 33:36 33:48
34:00 34:12 34:24
380.9760 S:12 F:3 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100%, 33_i26__ _ _ 33:51 34:10 34:29
I 1 1 T~T 1 1 1 1 1 TT p
34:36 34:48 35:00
OJ
34:54
O.OEO
35!12' ' '35!24' ' '35!36' '35148 Time
35:16 35:24 35:37 1 . 5E8
r "r" i—i—r—i—i—i—i—i—r~i—r—T—i—r—i—i—r—i—j—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r—r—i—i—i—i—i—i—i—r—r—i—i
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00
_7.3E7
.O.OEO
35:12 35:24 35:36 35:48 Time
-------
File: A17JUL98BAcq: 18-JUL-1998 01:01:5bExp: EXP_M23_DB5_OVATION Voltage SIR EI +GC Autospec-UltimaEParadigm
Sample #12 Text: 1070-3 xl/2 ALS #12
407.7818 S:12 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 .10% , 2700.0 , 1.00%,F,F)
1004 A2.22E5
50J
0.
7.3E4
_3.7E4
A3.17E4
r~T i ' i "i i i "l*i i 'i i' i ii i I i i~T I i 1 I i i I i I i r~i i i I i- r i" i i I i i i i i [ (T\ i i I i i i r- i ji i i i "i I IT*
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
409.7788 S:12 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1444.0,1. 00%, F, F)
100% A2.J.4E5
O.OEO
50J
Oj
38:12 38:24 38:36 38:48 39:00 Time
6.8E4
_3.4E4
A1.22E4
A8.20E3
O.OEO
36!6o ' 36:12 ' 36124 ' 36136 36:48 37:00 37:12 37:24 37:36 37:48 38:00
417.8253 S:12 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,8096 . 0,1. 00% , F, F)
1004 A5.97E7
50J
OJ
A3.60E7
38:12 38:24 38:36 38:48 39:00 Time
1.8E7
_9.0E6
i i i i i i i i i i i f i i i n i i i i i i i i i i i i i i i i i i i i i i i i T i i i | ~ i i i i i | i i i i i | T i
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
419.8220 S:12 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,9748.0,1. 00%, F, F)
1004 A1.35E8
50J
OJ
A8.22E7
38:12 38:24 38:36 38:48 39:00 Time
4.1E7
_2 . OE7
I I l l I l l l l l I I I f I l I T~T I I I I I I l l l I I i i i i i i i I i I I I I T I I I I I I I I I I I I I I I I I I
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
479.7165 S:12 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD{3,3,3,100.00%,4556.0,1.00%,F,F)
1004 37:11 37;49
36:43
50 J
36:20 36:31
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
38:12 ' 38:24 38:36 38:48 ' 39:00 Time
1.0E4
L5.2E3
F0.OEO
38:12 38:24 38:36 38:48 39:00 Time
430.9728 S:12 F:4 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00% , 0 . 0 , 1 . 00%, F, F)
1004 36:03 ___3fil5 _ 36:48 37:13 37:2737:36 37:52
50:
38:22
38:39 38:51
i i I i i i i i I i i i—i i i i i i i i i i i i i i i i i i i i i i i i i i i i i | | i i
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
.9.7E7
L4.9E7
.O.OEO
38112 ' 38124 ' 38136 ' 38I48 ' 39iOO Time
O
-------
101
File: A17JUL98B AcqrTS"-"JUL-"T998 01. -01
Sample #12 Text: 1070-3 xl/2 ALS #12
441.7427 S:12 F:5 SMO(1,3) BSUB(128,15,
100%
50J
n: ,
39ll2 39i24 39136
443.7398 S:12 F:5 SMO(1,3) BSUB(128,15,
100%
sol
0:
39!l2 39124 39136
469.7780 S:12 F:5 SMO(1,3) BSUB(128,15,
100%
50J
0:
39ll2 39124 39136
471.7750 S.-12 F:5 SMO(1,3) BSUB(128,15,
100%
50 j
0:
39.1 12 39.1 24 39! 36
513.6775 S:12 F:5 SMO(1,3) BSUB(128,15,
100%
sol
\ 39-06 39:16 39:27 39:33
:55 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-ttttimaE Parad
-3.0) PKD(3,3,3,0.10%,804.0,1.00%,F,F)
Al -52 E 5
/ VA1.28E4
39:48 40:00 40:12 40:24 40:36 40:48 41
-3.0) PKD(3,3,3,0.10%,2248.0,1.00%,F,F)
Al . 51E5
39:48 40:00 40:12 40:24 40:36 40:48 41:
-3.0) PKD(3,3,3,0.10%,63476.0,1.00%,F,F)
Al . 80E8
i i i | i i i i *i | r i i l " l | " 1 1 -T ' 1 T~1 1~~ T— -riMi '1 — | p 1 i — i 1 1 1 1 1 1 1
39:48 40:00 40:12 40:24 40:36 40:48 41
-3.0) PKD(3,3,3,0.10%,1492.0,1.00%,F,F)
A2 .02E8
39U8 40.-00 40.-12 40:24 40:36 40.-48 41
-3.0) PKD(3,3,3,100.00%,84.0,1.00%,F,F)
40:01
39:53 / \
A / \
^ /\V V ^ ^^^T^^^ J^A7 40^l_^46 ^£t
igm
3.7E4
Ll.9E4
00 Time
4.2E4
L2.1E4
00 Time
4.0E7
~^$ uEO
00 Time
4.5E7
L2.3E7
: O.OEO
00 Time
_7.0E3
_3 . 5E3
n nwn
T^T""! P | 1 i i r P | 1 i f>—i i p I 1 • i i i i i i i i i i i i i i r | i I r i I 1 i i I' I l— T-'i — i 1 1 1 — T— T 1 1 — T* I • ' •""
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41 00 Time
454.9728 S:12 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
100% 39:07 39:16 39:27 39:54 40:02 40:13 40:24 40:47 1 1R«
50J
o:
39.' 12 39124 ' ' 39!36
.5.4E7
n DT?n
1 1 1 | 1 l i i 1 1 1 1 P t 1 | 1 1 1 1 1 1 •!' 1 T— T1"! 1 1 1 T 1 1 1 1 1 1 1 1 f—~ • - — -
39:48 40:00 40:12 40:24 40:36 40:48 41:00 Time
-------
Paradigm Analytical Labs
M23-HB-1
PBS
Analytical Data Summary Sheet
. ,/- \ :, Analyte .,,,>,-.« ,
2,3,7,8-TCDD
1,2,3,7,8-PeODD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1A3,4,7»8,9-%CDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ (ND=0)
TEQ (ND=l/2)
0.001 1
;; .._._.:
ND
EMFC
0.0014
0.0031
0.0096
ND
ND
ND
0.0008
ND
ND
ND
0.0030
- , M> ; : - -
0.0028
0.0011
ND
0.0024
0.0032
ND
ND
0.0008
0.0032
0.0014
0.0018
jJlJI$&^tt
0.0005
6.0006
0.0005
0.0005
"6.0605
0.0014
0.0006
0.0004
0.0004
0.0004
0.0003
0.0003
0.0004
0.0005
0.0006
0.0008
o:oo05
0.0004
0.0005
0.0005
0.0006
0.0004
0.0003
0.0005
O.Q048
0.0048
0.0015
0.0018
• , RT -tl
-,'-- (mln.) 'i2
28:28
»~ "32*38,
34:43
"34:4? ";
35:00
37:11
40:03
27:27
34:11
34:15
36:23
40:10
,~
^.-..^i^ftv •
*&••"•••• • ~
0.78
1.41
3.28
"tfcgS;:,
1.11
1.05
0.93
1.08
1.15
1.32
1.00
0.91
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID;
Laboratory Information
Project ID:
Sample ID:
CollectiefcDate;
Receipt Date:
Extraction Date:
Analysis Date:
Texas Lime Kiln
'M23-RB4???:-
Sample Information
Air
1
L1070/^> "''",' -''.,: ^l^'f'^'''.'^-^^.
Pfe;^':V'§v^%%^'. '"f'/i
07^98 ' .:' .
10-M-98
18-M-98
al7ju!98b-13
Initial Cal:
m829-23-071798
1/2
112
-------
Paradigm Analytical Labs
Method 23
M23-RB-1
Analytical Data Summary Sheet
^"^^y Labeled ^
•«-'?^ii.^W^" -
Extraction Standards
13Ci2-2,3,7,8-TCDD
I3C,2-l,2,3,7,8-PeCDD
13Cl2-l,2,3,6,7,8-HxCDD
13Ci2- 1,2,3,4,6,7,8-HpCDD
13C,2-OCDD
l3C,2-2,3,7,8-TCDF
l3C,2-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
I3C12-l,2,3,4,6,7,8-HpCDF
Sampling Standards
3W2^7,8^CDD
13C12-2,3,4,7,8-PeCDF
SC/rl;24A7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
Injection Standards
13Ci2-l,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
(ng)
4
^? -.$:,. B';.;4
4
4
8
4
4
4
4
-': *'-'4 :;
4
. --^--.w j
4
4
^Jtfeasiired:*
/ 198b-15
Date Reviewed:
2/2
-------
OPUSquan 20-JUL-1998 Page
Filename al7ju!98b
Sample 13
Acquired 18-JUL-98 01:47:01
Processed 20-JUL-98 09:08:26
Sample ID 1070-4 xl/2
Cal Table m8290-23-071798
Results Table M8290-23-071798B
Comments
TVD Name: Resp;
A j f
Unk
Onk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
cs
cs
cs
cs
cs
ss
ss
ss
ss
ss
2,3,7,8-TCDD; 2.83e+05;
1,2,3,7,8-PeCDD; 1.92e+04;
1,2,3,4,7,8-HxCDD; 2.77e+04;
1,2,3, 6,7, 8-HxCDD; 5.81e+04;
1,2,3,7,8,9-HxCDD; 8.43e+04;
1,2,3,4, 6,7, 8-HpCDD; 1.53e+05;
OCDD; 3.906+05;
2,3,7,8-TCDF; 6.34e+04;
1,2,3,7,8-PeCDF; * ;
2,3,4,7,8-PeCDF; * ;
1,2,3,4,7,8-HxCDF; 6.12e+04;
1,2,3,6,7,8-HxCDF; 3.75e+04;
2,3,4,6,7,8-HxCDF; *;
1,2,3,7,8,9-HxCDF; *;
1,2,3,4,6,7,8-HpCDF; 1.61e+05;
1,2,3,4,7,8,9-HpCDF; *;
OCDF; 1.20e+05;
13C-2,3,7,8-TCDD; 3.44e+08;
13C-1,2,3,7, 8-PeCDD; 2.61e+08;
13C-1 , 2,3,6,7, 8-HxCDD; 2 . 83e+08 ;
13C-l,2,3,4,6,7,8-HpCDD; 2.22e+08;
13C-OCDD; 3.23e+08;
13C-2,3,7,8-TCDF; 4.38e+08;
13C-l,2,3,7,8-PeCDF; 3.54e+08;
13C-l,2,3,6,7,8-HxCDF; 3.43e+08;
13C-1 , 2,3,4,6,7, 8-HpCDF; 1 . 67e+08 ;
13C-1,2,3,4-TCDD; 3.63e+08;
13C-l,2,3,7,8,9-HxCDD; 3.02e+08;
37Cl-2,3,7,8-TCDD; 3.04e+08;
13C-2,3,4,7,8-PeCDF; 3.40e+08;
13C-1 , 2,3,4,7, 8-HxCDD; 2 . 10e+08 ;
13C-1 , 2,3,4,7, 8-HxCDF; 2 . 38e+08 ;
13C-1, 2,3,4,7,8, 9-HpCDF; 1 . 07e+08 ;
37Cl-2,3,7,8-TCDD; 3.04e+08;
13C-2,3,4,7,8-PeCDF; 3.40e+08;
13C-1 , 2,3,4,7, 8-HxCDD; 2 . 10e+08 ;
13C-l,2,3,4,7,8-HxCDF; 2.38e+08;
13C-l,2,3,4,7,8,9-HpCDF; 1.07e+08;
1
4.
1.
2.
3.
4.
7.
1.
3.
3.
2.
8.
5.
1.
1.
1.
1.
1.
1.
2.
1.
5.
1.
1.
3.
2.
1.
8.
3.
3.
2.
1.
8.
3.
Ion 1;
15e+04;
12e+04;
13e+04;
62e+04;
44e+04;
85e+04;
87e+05;
30e+04;
+ .
* .
27e+04;
14e+04;
* .
* .
Ole+04;
* .
69e+04;
51e+08;
59e+08;
58e+08;
14e+08;
51e+08;
92e+08;
16e+08;
18e+08;
13e+07;
60e+08;
68e+08;
04e+08;
08e+08;
16e+08;
10e+07;
26e+07;
04e+08;
08e+08;
16e+08;
10e+07;
266+07;
2.
7
6.
2
3
7
2
3
2
1
8
6
1
1
1
1
1
2
1
2
1
2
1
1
9
1
7
1
9
1
7
Ion 2;
41e+05;
97e+03;
48e+03;
19e+04;
99e+04;
44e+04;
02e+05;
04e+04;
* .
* .
85e+04;
61e+04;
* .
it .
05e+04;
* .
28e+04;
93e+08;
02e+08;
25e+08;
08e+08;
72e+08;
46e+08;
386+08;
25e+08;
16e+08;
03e+08;
34e+08;
33e+08;
41e+07;
57e+08;
43e+07;
33e+08;
416+07;
57e+08;
43e+07;
RA;?; RT;
0.17,-n; 28:28;
1.41;y; 32:38;
3.28;n; 34:43;
1.65;n; 34:47;
l.ll;y; 35:00;
1.05;y; 37:11;
0.93;y; 40:03;
1.08;n; 27:27;
* ;n;NotFnd;
*;n;NotFnd;
1.15;y; 34:11;
1.32;y; 34:15;
*;n;NotFnd;
*,-n;NotFnd;
1.00;y; 36:23;
*;n;NotFnd;
0.91;y; 40:10;
0.78;y; 28:27;
1.56;y; 32:37;
1.26;y; 34:46;
1.06;y; 37:10;
0.88,-y; 40:02;
0.78;y; 27:26;
1.56;y; 31:57;
0.52;y; 34:15;
0.44;y; 36:22;
0.79;y; 28:10;
1.25;y; 34:59;
-;-; 28:28;
1.57,-y; 32:24;
1.23;y; 34:42;
0.52;y; 34:11;
0.44,-y; 37:32;
-,--; 28:28;
1.57,-y; 32:24;
1.23;y; 34:42;
0.52;y; 34:11;
0.44;y; 37:32;
Cone ;
0.084;
0.007;
0.015;
0.024;
0.035;
0.077;
0.241;
0.015;
* .
* .
0.021;
0.010;
* .
* .
0.076;
* .
0.069;
86.342;
94.107;
87.419;
92.327;
167.134;
87.672;
81.511;
91.739;
73.664;
75.191;
76.109;
83.199;
79.976;
96.382;
81.509;
60.110;
96.414;
98.151;
110.111;
88.145;
81.631;
DL;
0.0114;
0.0105;
0.0156;
0.0123;
0.0122;
0.0112;
0.0351;
0.0152;
0.0091;
0.0088;
0.0089;
0.0070;
0.0082;
0.0094;
0.0126;
0.0152;
0.0190;
0.0487;
0.0273;
0.0430;
0.0276;
0.0208;
0.0241;
0.0144;
0.1787;
0.0977;
-;
~ /
0.0202;
0.0148;
0.0639;
0.2293;
0.1249;
0.0238;
0.0105;
0.0670;
0.2151;
0.2158;
S/N1;?;
6;y;
2;n;
3;n;
5;y;
5;y;
19;y;
14, -y;
5;y;
*;n;
*;n;
4;y;
4;y;
*;n;
*;n;
15;y;
*;n;
15, -y, •
3589;y;
17216;y;
6066;y;
5293;y;
13121;y;
8853;y;
43021;y;
1389;y;
3242;y;
3900;y;
5940;y;
12478;y;
42528;y;
4471;y;
1039;y;
1790;y;
12478;y;
42528;y;
4471;y;
1039;y;
1790;y;
S/N2 ; ?
34, -y
3;n
2;n
4;y
6;y
28;y
46 ;y
3;n
*;n
*;n
7;y
3;n
*;n
*;n
27,-y
*;n
10 ;y
8202 ;y
19494;y
7523 ;y
10514 ;y
15246;y
13263;y
19577;y
2083 ;y
1476;y
8653;y
7373 ;y
-; -
19472 ;y
5760;y
1526;y
827, -y
-; -
19472,-y
5760;y
1526 ;y
827, -y
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 18
-------
OPUSquan 20-JUL-1998 Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:l
Run: 18 File: al7ju!98b S:13 Acq:18-JUL-98 01:47:01 Proc:20-JUL-98 09:08:26
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-4 xl/2
Amount: 0.02 of which 0.02 named and * unnamed
Cone: 0.02 of which 0.02 named and * unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
2,3,7,8-TCDF 1 27:27 6.36+04 1.08 n 0.02
6.36+04 3.36+04 7.7e+03 4.7e+00 y n
3.0e+04 7.7e+03 2.9e+00 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:2
Run: 18 File: a!7ju!98b S:13 Acq:18-JUL-98 01:47:01 Proc:20-JUL-98 09:08:26
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-4 xl/2
Amount: 0.09 of which 0.08 named and 0.01 unnamed
Cone: 0.09 of which 0.08 named and 0.01 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1 25:16 2.4e+04 1.67 n 0.01
2.4e+04 1.5e+04 3.3e+03 2.6e+00 n n
8.8e+03 2.7e+03 2.0e+00 n n
2,3,7,8-TCDD 2 28:28 2.8e+05 0.17 n 0.08
2.8e+05 4.1e+04 6.9e+03 5.6e+00 y n
2.4e+05 4.5e+04 3.4e+01 y n
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:4
Run: 18 File: a!7ju!98b S:13 Acq:18-JUL-98 01:47:01 Proc:20-JUL-98 09:08:26
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-4 xl/2
Amount: 0.02 of which * named and 0.02 unnamed
Cone: 0.02 of which * named and 0.02 unnamed
Tox #1: - Tox t2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1 31:23 2.2e+04 1.35 y 0.01
2.2e+04 1.3e+04 3.6e+03 3.7e+00 y n
9.4e+03 2.8e+03 1.2e+00 n n
2 32:31 1.7e+04 1.13 n 0.01
1.7e+04 9.06+03 2.9e+03 3.0e+00 n n
7.9e+03 2.06+03 8.56-01 n n
3 32:57 1.3e+04 0.27 n 0.00
1.3e+04 2.8e+03 1.2e+03 1.2e+00 n n
l.Oe+04 4.3e+03 1.9e+00 n n
4 33:01 1.3e+04 0.28 n 0.00
1.3e+04 2.96+03 l.le+03 l.le+00 n n
l.Oe+04 4.36+03 1.9e+00 n n
Page 4 of 8
us
-------
OPUSguan 20-JUL-1998
Page 2
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:3
Run: 18 File: al7ju!98b S:13 Acq:18-JUL-98 01:47:01 Proc:20-JUL-98 09:08:26
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-4 xl/2
Amount: 0.03
Cone: 0.03
Tox #1: -
Name
1,2,3,7,8-PeCDD
of which 0.01
of which 0.01
Tox #2: -
named and 0.03
named and 0.03
Tox #3: -
RT Respnse
RA
31:57 3.8e+04 3.76 n
3.8e+04
32:24 4.1e+04 7.00 n
4.le+04
3 32:38 1.9e+04 1.41 y
1.9e+04
Cone
0.01
£
0.01
c
0.01
unnamed
unnamed
Area Height S/N Mod?
3.0e+04 9.3e+03 4.0e+00 y n
8.16+03 3.5e+03 2.7e+00 n n
L
3.6e+04 1.2e+04 5.3e+00 y n
5.1e+03 2.0e+03 1.5e+00 n n
1
1.le+04 3.7e+03 1.6e+00 n n
8.0e+03 3.8e+03 2.9e+00 n n
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:3
Run: 18 File: a!7ju!98b S:13 Acq:18-JUL-98 01:47:01 Proc:20-JUL-98 09:08:26
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-4 xl/2
Amount: 0.04
Cone: 0.04
Tox #1: -
of which 0.03
of which 0.03
Tox #2: -
named and 0.01
named and 0.01
Tox #3: -
unnamed
unnamed
Name
RT Respnse
RA
1 33:38 2.0e+04 1.23 y
2.0e+04
1,2,3,4,7,8-HxCDF 2 34:11 6.le+04 1.15 y
6.le+04
1,2,3, 6,7,8-HxCDF 3 34:15 3.8e+04 1.32 y
3.8e+04
Cone
0.01
]
c
0.02
0.01
Area Height
S/N Mod?
1.le+04 4.3e+03 1.8e+00 n n
9.1e+03 4.06+03 2.6e+00 n n
I
3.3e+04 l.Oe+04 4.5e+00 y n
2.8e+04 l.Oe+04 6.6e+00 y n
1
2.le+04 8.3e+03 3.6e+00 y n
1.66+04 4.4e+03 2.8e+00 n n
C< 116
-------
OPUSquan 20-JUL-1998
Page 3
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:12
Run: 18 File: al7ju!98b 3:13 Acq:18-JUL-98 01:47:01 Proc:20-JUL-98 09:08:26
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-4 xl/2
Amount: 0.21
Cone: 0.21
Tox #1: -
of which 0.07
of which 0.07
Tox #2: -
named and 0.14
named and 0.14
Tox #3: -
Name
RT Respnse RA
0.90 n
33:53 3.6e+04
3.6e+04
2 33:59 2.16+03
2.1e+03
0.40 n
3 34:06 6.1e+03 4.17 n
6.1e+03
4 34:11 9.4e+04 2.47 n
9.4e+04
5 34:15 6.8e+04 5.10 n
6.86+04
6 34:20 7.06+04 1.35 y
7.0e+04
7 34:24 9.1e+03
9.1e+03
0.81 n
8 34:28 l.le+04 1.03 n
l.le+04
9 34:31 l.le+04 1.07 y
l.le+04
1,2,3,4,7,8-HxCDD 10 34:43 2.86+04 3.28 n
2.8e+04
1,2,3,6,7,8-HxCDD 11 34:47 5.8e+04 1.65 n
5.86+04
1,2, 3,7,8,9-HxCDD 12 35:00 8.46+04 1.11 y
8.4e+04
Cone
0.02
]
1
0.00
I
1
0.00
c
1
0.04
£
0.03
c
]
0.03
t,
0.00
4
C
0.00
c
c
0.00
c
c
0.01
6
0.02
0.03
unnamed
unnamed
Area Height
S/N Mod?
.7e+04 6.6e+03 2.9e+00 n n
.9e+04 7.3e+03 4.0e+00 y n
6.16+02 3.6e+02 1.6e-01 n n
1.5e+03 6.2e+02 3.4e-01 n n
5.06+03 1.26+03 5.1e-01 n n
1.2e+03 7.2e+02 3.9e-01 n n
1
6.7e+04 2.36+04 9.8e+00 y n
2.7e+04 9.1e+03 5.0e+00 y n
3
5.7e+04 1.9e+04 8.4e+00 y n
l.le+04 4.0e+03 2.2e+00 n n
3
4.0e+04 1.26+04 5.4e+00 y n
3.0e+04 8.9e+03 4.9e+00 y n
4.1e+03 1.8e+03 8.0e-01 n n
S.Oe+03 1.6e+03 8.7e-01 n n
D
5.3e+03 2.0e+03 8.7e-01 n n
5.2e+03 1.7e+03 9.6e-01 n n
D
5.6e+03 1.9e+03 8.4e-01 n n
5.2e+03 1.76+03 9.6e-01 n n
1
2.1e+04 5.8e+03 2.5e+00 n n
6.5e+03 3.1e+03 1.7e+00 n n
2
3.6e+04 l.le+04 4.7e+00 y n
2.2e+04 7.0e+03 3.9e+00 y n
3
4.4e+04 l.le+04 4.7e+00 y n
4.0e+04 l.le+04 5.8e+00 y n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:l
Run: 18 File: al7jul98b S:13 Acq:18-JUL-98 01:47:01 Proc:20-JUL-98 09:08:26
Tables: Run: al7ju!98b Analyte: ro8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-4 xl/2
Amount: 0.08
Cone: 0.08
Tox #1: -
Name
of which 0.08
of which 0.08
Tox #2: -
# RT Respnse
named and *
named and *
Tox #3: -
RA
1,2,3,4,6,7,8-HpCDFl 36:23 1.6e+05 1.00 y
1.6e+05
Cone
0.08
unnamed
unnamed
Area Height S/N Mod?
8.0e+04 2.6e+04 1.5e+01 y n
S.Oe+04 2.6e+04 2.7e+01 y n
117
-------
OPUSquan 20-JUL-1998
Page 4
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:5
Run: 18 File: a!7ju!98b S:13 Acq:18-JUL-98 01:47:01 Proc:20-JUL-98 09:08:26
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3 . 5 17-APR-1997 11:14:34 Sample text: 1070-4 xl/2
Amount: 0.15
Cone: 0.15
Tox #1: -
Name
of which 0.08
of which 0.08
Tox #2: -
# RT Respnse
named and 0.07
named and 0.07
Tox #3: -
RA
1 36:22 3.4e+04 6.09 n
3.4e+04
2 36:35 7.7e+04 1.21 n
7.7e+04
3 36:42 8.1e+03 0.74 n
8.1e+03
l,2,3,4,6,7,8-HpCDD4 37:11 1.5e+05 1.05 y
1.5e+05
5 37:32 3.0e+04 4.70 n
3.0e+04
Cone
0.02
4
0.04
t,
0.00
4
0.08
0.02
unnamed
unnamed
Area Height
S/N Mod?
2.9e+04 9.1e+03 7.7e+00 y n
4.8e+03 1.8e+03 2.3e+00 n n
4.2e+04 1.2e+04 l.Oe+01 y n
3.5e+04 l.Oe+04 1.3e+01 y n
3
3.4e+03 1.3e+03 l.le+00 n n
4.7e+03 1.3e+03 1.6e+00 n n
3
7.9e+04 2.3e+04 1.96+01 y n
7.4e+04 2.2e+04 2.8e+01 y n
2
2.5e+04 6.1e+03 5.1e+00 y n
5.2e+03 2.1e+03 2.6e+00 n n
118
-------
File: A17JUL98B Acq: 18-JUL-199«
Sample #13 Text: 1070-4 xl/2 ALS
319.8965 S:13 SMO{1,3) BSUB(128,15
100%
50 J
-
o-
^^^^~s^^^^^~^^~^^v
"-1 — i 1 1 1 1 1 1 1 1 r— — i —
24:00 25
321.8936 S:13 SMO(1,3) BSUB(128,15
100%
50 1
'•
0
24:00 25
331.9368 S:13 SMO(1,3) BSUB(128,15
100S
50 1
o"
24:00 25
333.9339 S:13 SMO(1,3) BSUB(128,15
100%
50J
o •
"— ' — i 1 1 1 1 1 1 1 1 1 1 —
24:00 25
327.8847 S:13 SMO(1,3) BSUB(128,15
100%
50 j
0 '
u— ' — i 1 1 1 1 1 1 1 1 1 1 —
24:00 25
01:47:01 Exp: EXP M23
#13
,-3.0) PKD(3,3,3,0.10%
A1.47E4
A ^,.
100 26:00
,-3.0) PKD(3,3,3,0.10%
A8.80E3
loO ' 26:00
,-3.0) PKD(3,3,3,0.10%
loo' ' ' 2eloo
,-3.0) PKD(3,3,3,0.10%
1 1 1 1 1 1 1 1 r—
:00 26:00
,-3.0) PKD(3,3,3,0.10%
100 26:00
_DB5_OVATION Voltage SIR EI + GC Autospec-UltimaE Paradigm
,1248.0,1.00%,F,F)
A6.60E4
A
\ A4.15E4
/ \ r\
r^^-s^-s^xJ----^^^ ^-v^~~__^-~^~W~\~
1.5E4
_7.7E3
O.OEO
27loO 28loO 29100 3oloO Time
,1328.0,1.00%,F,F)
A2.41E5
A
A
/ \
, _. - ' V
4.6E4
_2.3E4
O.OEO
27loO 28loO 29loO 30:00 Time
,8376.0,1.00%,F,F)
A1.60E8
A A
A A
A A
3.3E7
11.6E7
•O.OEO
27:00 28:00 29:00 30:00 Time
,4732.0,1.00%,F,F)
A2.03E8
A A
A
A A
4.1E7
L2.1E7
VO.OEO
27loO 28100 29IOO 30:00 Time
,4996.0,1.00%,F,F)
A3.04E8
A
A
A
6.2E7
L3.1E7
O.OEO
27:00 28:00 29:00 30:00 Time
316.9824 S:13 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
100% 23:26 23:55 24:3724
50J
o-
24 !00 25
:5925:20 25:43
loo' ' ' ' 26 loo'
26:3626^56 27^27 27:51 28:2728^47 29_Lll 29:39 6 . 1E7
_3.0E7
O.OEO
27loO 28100 29:00 3oloO Time
CD
-------
File: A17JUL98B Acq: 18-JUL-1998 01:47:01Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaEParadigm
Sample #13 Text: 1070-4 xl/2 ALS #13
355.8546 S:13 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2324.0,1.00%,F,F)
100% A3.5.5E4 1.5E4
so:
7.4E3
| i i i ' i | i i i i i i | i i i i i i i i i i i i i i i i i i i i i—i i i i 'i i i i i i i i i i i i i i1 " • UJ1U
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
357.8517 S:13 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1280.0,1.00%,F,F)
100%.
A1.38E4
so:
A7 .97E3
6.0E3
_3.0E3
O.OEO
~i—i—|—i—i—i—i—i—1—i—i—i—i—i—|—i—i—i—i—i—|—i—i—r—i—i—i—i—i—r—i—i—r—r—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r~r~|—i—i—m—
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
367.8949 S:13 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,3272.0,1.00%,F,F)
100%
50J
A1.59E8
12.8E7
.O.OEO
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 ' 32148 ' 33166 ' 33112 Time
369.8919 S:13 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1856.0,1.00%,F,F)
100%
so:
0.
Al.02E8
30:12 30:24 30:36 30:48 31:00 31:12 31:24
,_3 . 6E7
_1.8E7
JLO.OEO
32: 32!i2 ' 32!24 ' 32S361 ' 32:48 33:00 33:12 Time
366.9792 S:13 F:2 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100%, 30:20 30:42 31:00 31:19 31j32_U^J7___3!jL04 32_l25_
so:
6.6E7
.3.3E7
.O.OEO
~i~t i—i—i—i—i—i—i—i—i—i—r "T • i—r r -1—i—i—i—i—i—i—i—i—i—i—i—r—i—i—|—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r -T -i1 'i—i—i—r—i—r—i—i—i—i—i—i—i—i—(—i—i—i—i—i—r-i—i—i—r—i—i—i—i—i—i—t T i i i i—r—T—i—i—r
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
-------
10
File: A17JUL98BAcq: 18-JUL-1998 01:47:01Exp: EXP_M23_DB5_OVATION Voltage SIR EI +GC Autospec-UltimaEParadigm
Sample #13 Text: 1070-4 xl/2 ALS #13
389.8156 S:13 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,5,2,0.10%,2304.0,1.00%,F,F)
100%, A6.70E4
so:
2.3E4
L1.2E4
O.OEO
33:24 33:36 33:48 34:00 34il2 34i24 34:36 34i48 35:00 35:12 35:24 35:36 35:48 Time
391.8127 S:13 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,5,2,0.10%,1824.0,1.00%,F,F)
100%,
so:
A3.99E4
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00
35:12
401.8559 S:13 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,10884.0,1.00%,F,F)
100% A1.58E8 A1.68E8
50J
1.1E4
_5.7E3
O.OEO
35124 35136 35i48 Time
,.6. 6E7
_3.3E7
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00
403.8530 S:13 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,6960.0,1.00%,F,F)
lOOi A1.25E8 A1.34E8
50J
35:12 35:24 35:36
33:24 33:36 33:48 34:00 34:12 34:24 34:36
380.9760 S:13 F:3 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 33:23 33:47 3j:19 34:38 34_:47
34:48 35:00
35:12 35:24 35:36
so:
35^2
.O.OEO
35:48 Time
5.2E7
_2.6E7
O.OEO
35:48 Time
T I ] 1—1 1—I 1 1 1 1 1 1 1 1 1 1 1 1 1 1™1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 F
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00
'35! 12
_7.2E7
O.OEO
i i I i i i i i I I
35:24 35:36 35:48 Time
-------
File: A17JUL98B
Sample #13 Text
423.7767 S:13 F:
100%
so:
o:
425.
100%:
so:
o:
435.
100%|
so:
o:
437.
so:
o:
430.
100%
50J
01
36:00 36
7737 S:13 F:
36:00 36
8169 S:13 F:
36:00 36
8140 S:13 F:
Aca: 18-JUL-1998 01:47:01 Exp : EXP M23 DBS
: 1070-4 xl/2 ALS #13
4 SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%
A7 . 85E4
A4.21E4
^L\_ y v_^ _
:12 36:24 36:36 36:48 37:
4 SMO(1,3) BSUB(128,15,-3.0)
A3.47E4
.65E3 _
..^^•^•N, / \ ^-—^^f
•12 36124 36:36 36:48 37:
4 SMO(1,3) BSUB(128,15,-3.0)
1 1 1 1 1 1 1 1 1 1 1 ' T \- 1 I I I 1 I 1 1 I 1 1 |
!l2 36124 36:36 36:48 37:
4 SMO(1,3) BSUB(128,15,-3.0)
1 l 1 l l 1 1 1 1 1 1 1 1 l l 1 l 1 1 1 l l *I~f l r I I I | I I i I I |
36lOD 36ll2 36:24 36:36 36:48 37:
9728 S:13 F:4 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%
35:56 36:09 36:19 36:31 36:46 36:55
y
36166 ' 36
i i i i i i i i i i T-T i l ' ' ' ' ' I
!l2 36124 36:36 36:48 37:
\ A2
/ W.15E3 .
00 37:12 37:24
PKD(3,3,3,0.10%
A7 . 44E4
A
/ V A5
00 37:12 37:24
PKD(3,3,3,0.10%
Al . 14E8
/I
i i i' i i 1 i i i i i 1 i i
00 37:12 37:24
PKD(3,3,3,0.10%
Al . 08E8
j[
00 37:12 37:24
, 0.0,1. 00%, F,F)
37:11 37
00 37112 37124
_OVATION Voltage SIR EI+ GC Autospec-UltimaE Parada
, 1184.0, 1.00%,F,F)
.46E4
/ \^ ^ ^
37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:
,796.0,1.00%,F,F)
.24E3
' 37136 37148 38!6d 38112 38124 38:36 SsUs 391
,5712.0,1.00%,F,F)
37l36 37:48 Sslod 38112 38124 38\36 SsUs 39!
,2768.0,1.00%,F,F)
.gm
_2.4E4
_1.2E4
" O.OEO
00 Time
_2.3E4
_1.1E4
' O.OEO
00 Time
_3.0E7
_1.5E7
O.OEO
00 Time
2 . 9E7
_1.5E7
_O.OEO
37136 37:48 Sslod 38112 38124 38:36 38:48 39:00 Time
:29 37i40 37:50 38:02 38:13 38:26 38:47 p9.4E7
_4.7E7
.O.OEO
37136 37148 38l6d 38:12 38:24 38:36 38:48 39:00 Time
JO
-------
101
File
Samp
457.
1002
so:
0"
459.
100S
so:
469.
100%
so:
0"
471.
lOOi
so:
0"
454.
100%
so:
0'
>: A17JUL98B Acq: 18-JUL-1998 01:47:01 Exp: EXP M23 DBS OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
>le #13 Text: 1070-4 xl/2 ALS #13
7377 S:13 F:5 SMO(1,3) BSUB (128, 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 3224 . 0 , 1 . 00% , F, F)
A1.87E5
39ll2 39124 39136 39U8 4o!ob 4o!l2 4o!24 ' ' ' 4ol36 ' ' ' 4o!48 41
7348 S:13 F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD (3 , 3 , 3 , 0 . 10%, 1048 . 0, 1 . 00%, F, F)
A2 . 02E5
J \ A5_.J9E3
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41
7780 S:13 F:5 SMO(1,3) BSUB(128, 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 2608 . 0, 1 . 00%, F, F)
Al -51 E 8
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41
7750 S:13 F:5 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 2528 . 0, 1 . 00%, F, F)
Al . 72E8
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
9728 S:13 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
39:09 39:18 39:24 39:33 39:44 40:0540:10 40:25 40:3540:41 40:49 40:56
r
5.0E4
_2.5E4
00 Time
4.9E4
_2.4E4
00 Time
3.4E7
_1.7E7
O.OEO
00 Time
_3.9E7
_1.9E7
O.OEO
00 Time
_1.0E8
.5.2E7
-O.OEO
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 Time
r.a
-------
File: A17JUL98BAcq: 18-JUL-1998 01:47:01Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaE Paradigm
Sample #13 Text: 1070-4 xl/2 ALS #13
303.9016 S:13 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1628.0,1.00%,F,F)
100% A3.30E4 9.5E3
24:00 25:00 26:00 27:00
305.8987 S:13 SMO(1,3) BSUB(128,15,-3.0 ) PKD(3,3,3,0.10%,2644.0,1.00%,F,F)
100% A3.04E4
24:00 25:00 26:00 27:00
315.9419 S:13 SMO(1,3) BSUB(128,15,-3 . 0) PKD(3,3,3,0.10%,4384.0,1.00%,F, F)
100% A1.92E8
28:00
29:00
O
30:00 Time
3.9E7
L1.9E7
.O.OEO
24:00 25:00 26:00 27:00 28:00
317.9389 S:13 SMO(1,3) BSUB(128 . 15 ,-3 . 0) PKD(3,3,3,0.10%,3748.0,1.00%,F,F)
100% A2.46E8
50_
29:00
Oj
30:00 Time
5.0E7
L2.5E7
I. OEO
24:00 25:00 26:00 27:00 28:00 29:00
375.8364 S:13 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,44.0,1.00%,F,F)
100%, 28;27
28:10
50J
OJ
2323
23:58
25:00
Wn.
25:55
AA
26:35 27:20 27:
1:55
*h
29:03
28:501
29:43
30:00 Time
7.4E3
L3.7E3
O.OEO
24:00 25:00 26:00 27:00 28:00 29:00 30:00 Time
316.9824 S:13 SMO(1,3) PKD(3,3,3,100.00%, 0.0,1.00%,F,F)
100% 23:26 23:55 24:3724:5925:2025:43 _ 26:3626^56_ 27:27 27i51 28:2728j,47 29_;_11 _ 29:39 _6.1E7
10'
• X^v
p,
24:00 25:00 26:00 27:00 28:00 29:00 30:C
_3.0E7
O.OEO
)0 Time
-------
File: A17JUL98B — Acq: 18-JUL-1998 01:47:01 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE
Sample #13 Text: 1070-4 xl/2 ALS #13
339.8597 S:13 F:2 SMO(1,3) BSUB(128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 976 . 0 , 1 . 00%, F, F)
Paradigm
100%
50 j
A2.20E4
Oj
A1.26E4
A1.10E4
5.24E3
9.6E3
_4.8E3
A2.80E3
.O.OEO
Time
30il2 30i24 30i36 30148 31100 31:12 31:24 31:36
341.8568 S:13 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2320.0,1.00%,F,F)
100%
A9.39E3
50J
32166 32112 32124 32136 32148 33166
A1.03E4
3l!o6 ' 3l!l2 3l!24 31:36
30ll2 30124 30136 30l48 31:00 31-12 31i24 31i36 31148 32:00 32:12 32:24 32:36 32:48 33:00
351.9000 S:13 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1768.0,1.00%,F,F)
100% A2.16E8 A2.08E8
50J
O.OEO
33!12 Time
7 . 6E7
L3.8E7
31:48 32166 32!i2 ' 32:24 32:36 32:48 33:66
, .PP. OEO
33:12 Time
3b!i2 ' 3b!24 ' 3b!36 ' 3o!48 ' 3llo6 ' 3lll2 3ll24
353.8970 S:13 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2480.0,1.00%,F,F)
10Q% A1.38E8 A1.3.3E8
50J
0.
4 . 9E7
.2.4E7
-O.OEO
33:12 Time
' 3b!i2 ' 30l24 ' 36136
3ll24 ' 3l!36
31100 31112 31124 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00
409.7974 S:13 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,3692.0,1.00%,F,F)
3 £* \ 4 U
33:01
31.,3 31:23 31:40 32:07 32:28
30:59 J-1---1--3 A-
100S
50J
30:47
30:38
33:12
_1.2E4
L5.9E3
O.OEO
33:12 Time
' 30112 ' 3b!24 ' 30136
3l!66 ' 3l!l2 ' 3ll24
366.9792 S:13 F:2 SMO(1,3) PKD( 3 , 3 , 3,100.00%,0.0,1.00%,F,F)
100% 30:20 J0:42 3_iiP_0 31L19__H:32_. 31:47
50j
OJ
!:00 32:12 32:24 32:36
31^04 32^15
_6.6E7
L3.3E7
.O.OEO
33:12 Time
30ll2 30S24 30136 30148 3l!6o 3lSl2 3ll24 3l!36 3lUs 32IOO 32^12 32124 32-136 32i48 33iOO
-------
File: A17JUL98BAcq: 18-JUL-1998 01:47:01Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaE
Sample #13 Text: 1070-4 xl/2 ALS #13
373.8207 S:13 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,5,2,0.10%,2336.0,1.00%,F,F)
100%, A3.27E4
A1.12E4
O
Paradigm
1.3E4
L6.3E3
.O.OEO
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36
375.8178 S:13 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,5,2,0.10%,1532.0,1.00%,F,F)
100% A2.I
50J
ol
5E4
A9.13E3
.90E3
A3.01E3
A2.15E3
i—l—i—r—T—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r—i—i—i—i—r—i—i—i—i—i—i—i—i—r—r—i—i—i—i—i—i—i—i—i—|—i—i—i—i—r—[—i—i—i—i—i—|—l—i—i—i—i—i—i—r
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36
383.8639 S:13 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,37376.0,1.00%,F,F)
100% A1.18E8
O
35:48 Time
1.1E4
_5.6E3
35:48
5
12
10
Time
,2E7
. 6E7
, OEO
Time
,OE8
,OE7
.OEO
Time
.1E3
,1E3
.OEO
Time
4E8
2E7
OEO
Time:
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48
385.8610 S:13 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,48152.0,1.00%,F,F)
100% A2.25E8
35:00 35:12 35:24 35:36
T—i—|—i—i i I i—I • I i i—i—i—|—i—i—i—i—i—|—i—i—i—f—i—r-*n—i—i~i I I l l I—l—l—I—l—i—i—l—i—|—i—i—i—i—i—|—i—r
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00
445.7555 S:13 F:3 SMO(1,3) BSUB{128,15,-3.0) PKD(3,3,3,100.00%,1852.0,1.00%,F,F)
1004 33;37 34:46 34:59
50.:
'35! 12 '
35 124' ' '35
35:32
35:48
1
L5
JLo
35:48
8
L4
•O
OJ
l—l—I—l—i—r—i—i—r—T—i—i—p—i—i—i—i—i—i—i—i—i—i—i—i—i—|—i—i—i—i—r—T—i—r—i—i—i—i—i—i—i—l—i—I—i—i—i—i—i—l—i—r—i—i—i—i—i—i—i—i—i—i—I—i—I—i—I—|—i—r
33124 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36
35:48
1
380.9760 S:13 F:3 SMO(1,3) PKD(3 , 3,3,100.00%,0.0,1.00%,F,F)
100%. 33:23 33:47 34:19 34:38 34j_47
50J
35:03 35:16
35:32
\7
i—i—i—i—i—i—i—i—i—r—T—r—I—i—l—i—i—i—i—i—I—i—i—i—r—i—i—i—i—p—i—i—i—i—i—i—i—i—i—i—i—r—i—i—|—i—i—i—i—i—I—i i i i i I i—l—l—i—i I—i—l—i—r—i—I—r—T
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36
L7
LO
75:48
-------
File: A17JUL98B—Acq: 18-JUL-1998 01:47:01Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaEParadigm
Sample #13 Text: 1070-4 xl/2 ALS #13
407.7818 S:13 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1688.0,1.00%,F,F)
100% A8.Q1E4
OJ
2.8E4
_1.4E4
.O.OEO
I I I I I I I I | I I I I I I I— Ill i i"TI I I I I I I I I I I I I | | I I I I I | I I I 1 I | I I
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
409.7788 S:13 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,980.0,1. 00%, F, F)
100% A8.Q5E4
50J
Oj
38:24 38:36 38:48 39:00 Time
2.7E4
_1.4E4
A6.05E3
O.OEO
iT'i i I i I i I i I i 'i i i i i i ill i i i " |-|iT r i" iji i i'l i | i i i I i~| r ii i i | i i i I I | i I ill | TT i TTip-i—r-
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
417.8253 S:13 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,4796.0,1.00%,F,F)
100% A5.13E7
OJ
A3.26E7
38:24 38:36 38:48 39:00 Time
1.6E7
L7.8E6
|
.O.OEO
38124 ' 38136 ' 38.-48 ' 39loO Time
3 . 5E7
.1.7E7
i i i i i i i i i i i i r i i i i t \ i i i i i i i i i
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
419.8220 S:13 F:4 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 23640 . 0 , 1 . 00%, F, F)
100% A1.16E8
50J
OJ
A7.43E7
i i i i i i i i i i i K i i i T~i i i i i i i i i i i i i i i i i i i i i i i i i T i i i i i i i i i | i i i i i | | ' •
36:00 36112 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
479.7165 S:13 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,2348.0,1.00%,F,F)
100%, 37^10 37-21
36.09 36:30 36:58
50J
38124 ' 38!36 ' SsUs ' 39!oO Time
38:25
38:43
36166 ' 36!l2 ' 36124 ' 36I36 ' 36! 48 ' 37!
37I24 ' 37136 37148 38\00 38!l2
7.7E3
L3.9E3
LO.OEO
430.9728 S:13 F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00% , F,F)
100% 35:56 36:09 36j_19 36:31 36:41 36:55 37:11 37:34
50J
OJ
38:24 38:36 38:48 39:00 Time
37:50 38:02 38:13 38^26 38:47 ,_9. 4E7
i i i i i i i i i i i i I i—i i i i i i i i i i i i i i i i i i i i i i i i i i—' i i | ' ' ' ' ' i ' ' ' ' ' i ' ' ' ' ' i ' '
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
_4.7E7
O.OEO
38124 ' 38136 ' 38!48 ' 39100 Time
10
-------
File: A17JUL98B
Sample #13 Text:
441.7427 3:13 F:5
100S
50_
0
A2 . 09E3
39ll2
443.7398 S:13 F:5
1002
50_
o:
^-^_— ^— -
39ll2
469.7780 S:13 F:5
100%
50 J
OJ
39ll2
471.7750 S:13 F:5
100%
50 j
o:
39ll2
513.6775 S:13 F:5
100%
50 :
o:
3
39ll2
454.9728 S:13 F:5
Acq: 18-JUL-1998 01:4
1070-4 xl/2 ALS #13
SMO(1,3) BSUB(128,15
39:24 39:36
SMO(1,3) BSUB(128,15
"""^ -^^^^ — -_ _^. •
39:24 39:36
SMO(1,3) BSUB(128,15
39124 39136
SMO(1,3) BSUB(128,15
39124 39136
SMO(1,3) BSUB(128,15
9 = 19 39:25 39:33
A ^\ /^
39124 39136
7:01 Exp: EXP M23 DB5 OVATION Voltage SIR EI+ . GC Autospec-UltimaE Paradigm
,-3.0) PKD( 3, 3, 3, 0.10%, 800. 0,1. 00%,
A5.69E4
/ \
— _-^__ ~_— _-— - *^—~±
39:48 40:00 40:12
,-3.0) PKD(3, 3, 3, 0.10%, 1660. 0,1. 00%
A6 . 28E4
/\
/ \^,
i i i i i i i "r'-T— i — i — i 1 — i — i — i — i — i — r —
39:48 40:00 40:12
,-3.0) PKD( 3, 3, 3, 0.10%, 2608. 0,1. 00%
Al . 51E8
f\
J \^_
igUs 4o!ob 4o!i2
,-3.0) PKD( 3, 3, 3, 0.10%, 2528. 0,1. 00%
Al . 72E8
f\
J \^__
39148 4o!ob 4o!l2
,-3.0) PKD (3, 3, 3, 100. 00%, 88. 0,1. 00%
40:02
/ \
39:42 39:53 / \,
39:48 40:00 40:12
'
F,F)
A329.79 A2.86E3
1.3E4
_6.7E3
n mm
' ' ' i | i i r i r— T ^i -"TV^,' -
40:24 40:36 40:48 41 00 Time
,F,F)
^___^^_ _^_^^-^ - -. ,
1.9E4
L9.5E3
• n own
T r — i 1 1 1 1 1 r — ] 1 1 1 1 1 1 1 1 1 1 1 — ._-•- — -
40:24 40:36 40:48 41 00 Time
,F,F)
3.4E7
_1.7E7
O.OEO
40!24 40!36 4'oUs 4l!oO Time
,F,F)
3.9E7
.1.9E7
.O.OEO
4o!24 ' ' ' 4ol36 ' ' ' 4o!48 ' ' ' 4l!oO Time
,F,F)
4U:zU /m.Tc
/\ ^32/^i__ «Jii*8
5.5E3
:2.8E3
_O.OEO
4ol24 40!36 4o!48 4l!oO Time
SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 39:09 39:18 39:24 39^33
50J
Oj
/
39!l2
39124 39136
39:44 40:0540:10
39148 4o!ob 4o!l2
40:25 40:3540:41 40:49 40:56 1 . OE8
_5.2E7
O.OEO
40124 4o!36 4ol48 41 00 Time
JO
00
-------
Paradigm Analytical Labs
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6.,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDI
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF .
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
EMPC
EMPC
0.0028
EMPC
0.0072
0.0200
' olol^P
0.0198
0.02403?«P
0.0323
0.0132^
0.0114
0.0031 V.*!
0.0215
EMPC
EMPC
0.109
0.0744
0.138
0.0376
0.628
0.321
0.108 .
0.0244
Q.0223 „.
0.0227
0.0006
0.000f ; ^
0.0007
0.0006
0.0006
;p.OQ08 ,
0.0008
©ioofe^
0.0006
**^^)J6 '.
"oboos"
E 0,0004
0.0004
0.0009
0;OQ10
0.0010
« 0^006
0.0004
0,0006
0.0008
0.0009
0.0006
; 0.0004
0.0009
f\" -£'-» \-.".
0.0025
^'0,01J1J>S::
0.0054
'•' •"^'2*-V
" 1^5;
• ; '-,-*" Ji,^
0.0023
0.0031
1 £r 0.123;--
0.0*840
0.147
0.714
0.326
0.109
0.0300
0.027^0
0.0270
^JKE.;
28:27
•• 3^r3f>,:
34:42
34:46
34:58
37:10
40:02
27:29
31:57
32:25
34:10
34:15
34:37
~ 35:12
36:22
37:32
40:11
Ratio
0.62
, \4.*».
1.34
1.55
1.39
0.98
0.95
0.78
1.59
1.52
1.25
1.22:
1.28
1.26
0.95
1.47
0.67
Qualifier
FIEF
ITEF
Client Information
Project Name: Texas lam
Sample ID: M23-I4IW
Laboratory Information
Project ID: L1070
Sample ID: 1070-5
Collection Date:
Receipt Date:
Sample Information
Atf
Grams
HA
Filename:
al7ju!98b-14
al7ji098b-l
Analysis pi|e
al7jul9Sb-15
mg290-23-071798
1/2
c'r" 129
-------
Paradigm Analytical Labs
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C,2-2,3,7,8-TCDD
13Ci2-l,2,3,7,8-PeCDD
13C12-U,3,6,7,8-HxCDD
13Ci2-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
13Ci2-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13Cu-l 2367 8-HxCDF
l3C12-l,2,3,4,6,7,8-HpCDF
Cleanup Standards
"CU-W.g-TCDD
13C12-2,3,4,7,8-PeCDF
I3C12-l,2,3,4,7,8-HxCDD
13Cirl,2,3,4,7,8-HxCDF
13Cirl,2,3,4,7,8,9-HpCDF
Injection Standards
13c12-i,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected ^
Amount :
(ng)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured
'Amount
tig)
2.98
3.36
3.07
3.13
5.32
2.77
2.53
2.45
2.14
4.01
4.28
4.43
4.15
4.37
Pe«*Bt
Recovery
74.4
83.9
76.8
78.3
66.5
69.2
63.3
61.2
53.5
100.2
107.0
110.7
103.7
109.1
RT ;
(nun.)
28:27
32:37
34:45
37:09
40:01
27:25
31:56
"- 34:14
36:21
28:27
32:24
34:42
34:10
37:31
28:09
34:58
.Ratio
0.78
1.57
1.25
1.05
0.88
0.79
1.55
052
V«***»
0.45
1.57
1.25
0.52
0.44
0.79
1.25
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
I?A\)'UKCk^0'/i*hfcf* "'* "*~lt * *
rvCV-lwlfirUU^U'lr-* i"'""^ ~^s •
Texas Lime Kiln
M23-I-1FH
L1070
1070-5
25-Jun-98
08-Jul-98
10-Jul-98
^-•ff^-r '-'lit' ' ' -^ "'-
-. -—^ >>»%-" ' • '"'•"? • " "
£••'-;'?-<&> . *$-' : >' ^.,"
Sample Information
Matrix:
Weight 7 Volume:
Moisture / Lipids:
Original pH :
Filename:
Retchk:
Begin ConCal:
EndConCal:
•"" . "*'\ "%<*K '
Air
1 Grams
0.0 %
NA
al7ju!98b-14
a!7jul98b-l
al7juI98b-2
a!7jul98b-15
m8290-23-071798
Date Reviewed: 2Z^
2/2
' 13C
-------
Paradigm Analytical Labs
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
O "^J A. *7 fi ¥j^**1»|"\?5^- ,
j^ j .*r- / sO**jtr^3x>JL/" " - .'
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-flxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND*=0)
TEQ (ND=l/2)
•
^,
. >. .
^0,149
Oil 98
7.90
5.36
9.42
45.8
20.9
6.98
1.92
1.73
1.73
'*&$$$.: *
f^gii^p,', ~
28:27
. .''32^7?,"
34:42
34:58
37:10
40:02
-'' 27:2? , •
31:57
ii-pii's-'
~ 34:10
" 34:15
34:37
35:12 , :
36:22
37:32
40:11
;. JB&JJ& ...
•c-.g.; !-i«^ter;
0.62
-- J*|?i -
1.34
1.55
1.39
0.98
0.95
0.78
1.59
1-52
1.25
1,22
1.28
. 1.26
0.95
1.47
0.67
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Texas Lime Kiln
M23-MFJa
L1070
1070-5
Sample Information
Grams
ExtractoojLDate:
Aaalysisl
r: r'' *i$5P!|g$
1/2
r r
-------
Paradigm Analytical Labs
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13Ci2-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13C12-l,2>3,4)6)7,8-HpCDD
13C12-OCDD
13C,2-2,3,7,8-TCDF
13C,rl,2,3,7,8-PeCDF
13Ci2-l,2,3,6,7,8-HxCDF
l3CI2-l,2,3,4,6,7,8-HpCDF
Cleanup Standards
37Cl4-2,3,7,8-TCDD
'3C12-2,3,4,7,8-PeCDF
I3C12-l,2,3,4,7,8-HxCDD
13CI2-l,2,3,4,7,8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
Injection Standards
13C12-1,2,3,4-TCDD
I3Cirl,2,3,7,8,9-HxCDD
Expected
Amount
(ng)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured
(ngJ
2.98
3.36
3.07
3.13
5.32
2.77
2.53
2.45
2.14
4.01
4.28
4.43
4.15
4.37
; • . o«i^
74.4
83.9
76.8
78.3
66.5
69.2
63.3
61.2
53.5
100.2
107.0
110.7
103.7
109.1
RT :
? Until.)
28:27
32:37
34:45
37:09
40:01
27:25
31:56
; 34:14
36:21
28:27
32:24
34:42
34:10
37:31
28:09
34:58
Ratio
0.78
1.57
1.25
1 05
Jl »W*/
0.88
0.79
1.55
0.52
0.45
1.57
1.25
0.52
0.44
0.79
1.25
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Texas Lime Kiln
M23-I-1FH
L1070
1070-5
25-Jun-98
08-M-98
10-Jal-98
If-Jul-tS
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Original pH:
Filename:
Retook:
Begin ConCal:
EndConCal:
;IniiiaJjCal:
Air
15.59 Grams
0.0 %
NA
a!7jul98b-14
a!7jul98b-l
a!7jul98b-2
al7ju!9Sb-15
m8290-23-071798
2/2
-------
CO
CO
OPUSguan 20-JUL-1998 Page 1
Filename al7ju!98b
Sample 14
Acquired 18-JUL-98 02:32:07
Processed 20-JUL-98 09:09:09
Sample ID 1070-5 xl/2
Cal Table m8290-23-071798
Results Table M8290-23-071798B
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
S3
SS
SS
SS
Name; Resp; Ion 1; Ion 2; RA;?; RT;
2,3,7,8-TCDD; 4.16e+05; 7.15e+04; 3.44e+05; 0.21;n; 28:27;
1,2,3,7,8-PeCDD; 2.24e+05; 1.44e+05; 8.01e+04; 1.79,-n; 32:37;
1,2,3,4,7,8-HxCDD; 1.24e+05; 7.09e+04; 5.28e+04; 1.34;y; 34:42;
1,2,3,6,7,8-HxCDD; 3.02e+05; 1.83e+05; 1.18e+05; 1.55;n; 34:46;
1,2,3,7,8,9-HxCDD; 4.10e+05; 2.38e+05; 1.72e+05; 1.39;y; 34:58;
1,2,3,4,6,7,8-HpCDD; 9.28e+05; 4.59e+05; 4.70e+05; 0.98;y; 37:10;
OCDD; 6.83e+05; 3.34e+05; 3.50e+05; 0.95;y; 40:02;
2,3,7,8-TCDF; 8.75e+06; 3.84e+06; 4.91e+06; 0.78;y; 27:29;
1,2,3,7,8-PeCDF; 1.21e+06; 7.39e+05; 4.66e+05; 1.59;y; 31:57;
2,3,4,7,8-PeCDF; 1.51e+06; 9.12e+05; 6.00e+05; 1.52;y; 32:25;
1,2,3,4,7,8-HxCDF; 1.69e+06; 9.38e+05; 7.51e+05; 1.25;y; 34:10;
1,2,3,6,7,8-HxCDF; 8.73e+05; 4.80e+05; 3.93e+05; 1.22;y; 34:15;
2,3,4,6,7,8-HxCDF; 6.46e+05; 3.62e+05; 2.84e+05; 1.28;y; 34:37;
1,2,3,7,8,9-HxCDF; 1.51e+05; 8.43e+04; 6.68e+04; 1.26;y; 35:12;
1,2,3,4,6,7,8-HpCDF; 8.74e+05; 4.26e+05; 4.48e+05; 0.95;y; 36:22;
1,2,3,4,7,8,9-HpCDF; 7.79e+04; 4.64e+04; 3.15e+04; 1.47;n; 37:32;
OCDF; 1.12e+05; 4.48e+04; 6.70e+04; 0.67;n; 40:11;
13C-2,3,7,8-TCDD; 3.01e+08; 1.31e+08; 1.70e+08; 0.78;y; 28:27;
13C-l,2,3,7,8-PeCDD; 2.37e+08; 1.45e+08; 9.20e+07; 1.57;y; 32:37;
13C-l,2,3,6,7,8-HxCDD; 2.64e+08; 1.47e+08; 1.17e+08; 1.25;y; 34:45;
13C-l,2,3,4,6,7,8-HpCDD; 1.99e+08; 1.02e+08; 9.75e+07; 1.05;y; 37:09;
13C-OCDD; 2.73e+08; 1.28e+08; 1.45e+08; 0.88;y; 40:01;
13C-2,3,7,8-TCDF; 3.51e+08; 1.55e+08; 1.97e+08; 0.79;y; 27:25;
13C-l,2,3.7,8-PeCDF; 2.80e+08; 1.70e+08; 1.10e+08; 1.55;y; 31:56;
13C-l,2,3,6,7,8-HxCDF; 2.43e+08; 8.35e+07; 1.59e+08; 0.52;y; 34:14;
13C-l,2,3,4,6,7,8-HpCDF; 1.29e+08; 4.01e+07; 8.88e+07; 0.45,-y; 36:21;
13C-1,2,3,4-TCDD; 3.69e+08; 1.62e+08; 2.06e+08; 0.79;y; 28:09;
13C-l,2,3,7,8,9-HxCDD; 3.20e+08; 1.78e+08; 1.42e+08; 1.25;y; 34:58;
3701-2,3, 7, 8-TCDD; 3.72e+08; 3.72e+08; -; -;-; 28:27;
13C-2,3,4,7,8-PeCDF; 4.63e+08; 2.83e+08; 1.80e+08; 1.57;y; 32:24;
13C-l,2,3,4,7,8-HxCDD; 2.57e+08; 1.43e+08; 1.14e+08; 1.25;y; 34:42;
13C-l,2,3,4,7,8-HxCDF; 3.21e+08; 1.09e+08; 2.11e+08; 0.52;y; 34:10;
13C-l,2,3,4,7,8,9-HpCDF; 2.06e+08; 6.28e+07; 1.43e+08; 0.44,-y; 37:31;
37Cl-2,3,7,8-TCDD; 3.72e+08; 3.72e+08; -; -;-; 28:27;
13C-2,3,4,7,8-PeCDF; 4.63e+08; 2.83et08; 1.80e+08; 1.57;y; 32:24;
13C-l,2,3,4,7,8-HxCDD; 2.57e+08; 1.43e+08; 1.14e+08; 1.25,-y; 34:42;
13C-l,2,3,4,7,8-HxCDF; 3.21e+08; 1.09e+08; 2.11e+08; 0 52;y; 34-10;
13C-l,2,3,4,7,8,9-HpCDF; 2.06e+08; 6.28e+07; 1.43e+08; 0.44,-y; 37:31;
*** ^
<&'
Cone ;
0.140;
0.085;
0.070;
0.134;
0.181;
0.519;
0.499;
2.613;
0.495;
0.600;
0.808;
0.331;
0.285;
0.077;
0.538;
0.058;
0.077;
74.379;
83.935;
76.811;
78.297;
133.080;
69.167;
63.264;
61.146;
53.443;
76.468;
80.780;
100.214;
107.006;
110.726;
103.709;
109.124;
134.810;
169.200;
143.966;
168.265;
204.264;
uO
V\ \J
DL;
0.0147;
0.0105;
0.0182;
0.0144;
0.0142;
0.0193;
0.0207;
0.0225;
0.0159;
0.0154;
0.0120;
0.0095;
0.0111;
0.0127;
0.0213;
0.0258;
0.0248;
0.0426;
0.0205;
0.0339;
0.0124;
0.0155;
0.0215;
0.0099;
0.1718;
0.1030;
-;
_ .
0.0153;
0.0101;
0.0504;
0.2204;
0.1317;
0.0215;
0.0095;
0.0623;
0.3181;
0.3148;
S/N1;?;
10;y;
25;y;
ll;y;
22;y;
26;y;
55;y;
88;y;
315,-y;
115;y;
142;y;
144;y;
72;y;
53, -y;
11 ;y;
66 ;y;
8;y;
ll;y;
3338;y;
23082 ;y;
9483 ;y;
10663 ;y;
11857 ,-y;
8595;y;
34158;y;
1381,-y;
1537,-y;
4328;y;
10837,-y;
19251, -y;
58412 , -y;
9289;y;
2048;y;
2152, -y;
19251;y;
584 12 ,-y;
9289;y;
2048;y;
2152;y;
S/N2 ; ?
56 ;y
24 ;y
ll;y
21;y
25;y
163, -y
63, -y
243, -y
75;y
96 ;y
133 ;y
68, -y
45;y
10 ;y
89, -y
6;y
10;y
8191,-y
17838;y
5440,-y
17074, -y
19215;y
10041;y
30128;y
1132 ;y
1118;y
10379;y
6346;y
51435, -y
5383;y
1644;y
1580;y
-; -
51435;y
5383;y
1644 ;y
1580;y
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 1!
-------
OPUSguan 20-JUL-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:22
Run: 19 File: al7ju!98b S:14 Acq:18-JUL-98 02:32:07 Proc:20-JUL-98 09:09:09
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-5 xl/2
Amount: 17.84
Cone: 17.84
Tox #1: -
Name
2,3,7,8-TCDF
of which 2.61
of which 2.61
Tox #2: -
# RT Respnse
named and 15.23
named and 15.23
Tox #3: -
RA
1 23:39 3.4e+06 0.77 y
3.4e+06
2 24:14 1.9e+06 0.75 y
1.9e+06
3 24:34 2.2e+06 0.76 y
2.2e+06
4 24:52 7.8e+06 0.80 y
7.86+06
5 24:58 1.8e+06 0.38 n
1.8e+06
6 25:10 1.8e+06 0.74 y
1.8e+06
7 25:17 5.4e+06 0.75 y
5.46+06
8 25:40 1.9e+06 0.63 n
1.96+06
9 25:44 3.1e+06
3.1e+06
0.92 n
10 26:01 1.5e+06 0.78 y
l.Se+06
11 26:09 3.1e+06 0.78 y
3.1e+06
12 26:26 5.5e+06 0.81 y
5.5e+06
13 26:34 4.1e+06 0.74 y
4.1e+06
14 26:50 2.5e+06 0.83 y
2.5e+06
15 27:03 1.3e+05 2.14 n
1.3e+05
16 27:11 1.2e+06 0.78 y
1.2e+06
17 27:29 8.8e+06 0.78 y
8.8e+06
18 27:41 1.3e+04 0.52 n
1.3e+04
19 28:03 1.9e+06 0.81 y
1.9e+06
Cone
1.03
]
}
0.58
£
1
0.65
c
1
2.34
4
0.53
4
a
0.54
"
3
1.63
0.57
]
0.92
:
i
0.46
e
£
0.92
]
1
1.64
1.22
3
0.75
3
]
0.04
6
4
0.36
C
6
2.61
t
0.00
<
£
0.56
unnamed
unnamed
Area Height
S/N Mod?
.5e+06 3.2e+05 1.6e+02 y n
.9e+06 4.2e+05 1.3e+02 y n
8.3e+05 1.8e+05 9.4e+01 y n
l.le+06 2.4e+05 7.8e+01 y n
9.4e+05 1.9e+05 9.9e+01 y n
1.2e+06 2.6e+05 8.3e+01 y n
1
3.5e+06 6.76+05 3.4e+02 y n
.4e+06 8.4e+05 2.7e+02 y n
.9e+05 1.5e+05 7.7e+01 y n
1.3e+06 1.9e+05 6.1e+01 y n
9
7.7e+05 l.Se+05 9.1e+01 y n
l.Oe+06 2.3e+05 7.4e+01 y n
2.3e+06 3.06+05 1.6e+02 y n
3.1e+06 4.16+05 1.3e+02 y n
7
7.4e+05 2.16+05 l.le+02 y n
.2e+06 2.7e+05 8.6e+01 y n
.5e+06 2.76+05 1.4e+02 y n
.6e+06 3.46+05 l.le+02 y n
6.7e+05 l.Se+OS 7.5e+01 y n
8.6e+05 l.Se+05 5.7e+01 y n
1.3e+06 2.86+05 1.4e+02 y n
1.7e+06 3.56+05 l.le+02 y n
1
2.5e+06 4.76+05 2 . 4e-t-02 y n
3.0e+06 5.96+05 1.96+02 y n
2
1.7e+06 3.66+05 1.9e+02 y n
2.3e+06 4.76+05 1.5e+02 y n
l.le+06 2.3e+05 1.2e+02 y n
.4e+06 2.9e+05 9.1e+01 y n
8.6e+04 1.7e+04 8.5e+00 y n
4.0e+04 l.Se+04 4.7e+00 y n
5.3e+05 l.le+05 5.5e+01 y n
6.8e+05 1.3e+05 4.'3e+01 y n
1
3.8e+06 6.16+05 3.1e-i-02 y n
4.9e+06 7.66+05 2.4e+02 y n
4.5e+03 1.96+03 9.8e-01 n n
8.7e+03 2.06+03 6.4e-01 n n
8.3e+05 1.7e+05 8.6e+01 y n
l.Oe+06 2.1e+05 6.7e+01 y n
5C' 134
-------
OPUSquan 20-JUL-1998 Page 2
20 28:19 1.3e+06 0.83 y 0.40
1.3e+06 6.le+05 1.le+05 5.8e+01 y n
7.3e+05 1.4e+05 4.6e+01 y n
21 28:33 1.3e+05 1.35 n 0.04
1.3e+05 7.7e+04 1.4e+04 7.0e+00 y n
5.7e+04 1.3e+04 4.0e+00 y n
22 29:46 2.5e+05 1.60 n 0.07
2.5e+05 l.Se+05 2.6e+04 1.3e+01 y n
9.5e+04 1.9e+04 6.0e+00 y n
Of' 135
-------
OPUSquan 20-JUL-1998
Page 3
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no fHorn:15
Run: 19 File: a!7ju!98b S:14 Acq:18-JUL-98 02:32:07 Proc:20-JUL-98 09:09:09
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3 .5 17-APR-1997 11:14:34 Sample text: 1070-5 xl/2
Amount: 3.10
Cone: 3.10
Tox #1: -
Name
2,3,7,8-TCDD
of which 0.14
of which 0.14
Tox #2: -
# RT Respnse
named and 2.96
named and 2.96
Tox #3: -
RA
1 25:15 3.5e+06 0.79 y
3.5e+06
2 25:41 2.0e+06 0.73 y
2.0e+06
3 26:04 3.1e+05 0.86 y
3.1e+05
4 26:54 9.5e+05 0.78 y
9.5e+05
5 27:08 2.1e+05 0.85 y
2.1e+05
6 27:17 2.9e+05 0.87 y
2.9e+05
27:25 l.le+05
l.le+05
1.84 n
8 27:45 2.8e+05 0.72 y
2.8e+05
9 28:10 3.4e+05 0.67 y
3.4e+05
10 28:20 4.9e+05 0.94 n
4.9e+05
11 28:27 4.2e+05 0.21 n
4.2e+05
12 28:40 l.Oe+05 0.67 y
l.Oe+05
13 28:57 1.2e+05 0.82 y
1.2e+05
14 29:18 4.2e+04 1.69 n
4.2e+04
15 29:54 4.8e+04 0.48 n
4.86+04
Cone
1.19
1
2
0.66
£
1
0.10
1
1
0.32
A
C
0.07
c
1
0.10
]
]
0.04
0.09
]
]
0.12
]
0.17
0.14
0.04
<
f
0.04
C
(.
0.01
]
0.02
unnamed
unnamed
Area Height
S/N Mod?
1.6e+06 3.4e+05 2.1e+02 y n
2.0e+06 4.26+05 3.4e+02 y n
8.3e+05 1.7e+05 l.Oe+02 y n
l.le+06 2.3e+05 1.9e+02 y n
)
1.4e+05 2.9e+04 1.8e+01 y n
1.76+05 3.1e+04 2.5e+01 y n
4.1e+05 7.7e+04 4.6e+01 y n
5.3e+05 9.8e+04 7.8e+01 y n
7
9.5e+04 l.Se+04 9.0e+00 y n
l.le+05 1.8e+04 1.4e+01 y n
.3e+05 2.4e+04 1.5e+01 y n
.5e+05 3.0e+04 2.4e+01 y n
7.36+04 1.6e+04 9.76+00 y n
3.9e+04 8.8e+03 7.0e+00 y n
.2e+05 2.66+04 1.5e+01 y n
.6e+05 3.3e+04 2.6e+01 y n
1.4e+05 2.8e+04 1.7e+01 y n
2.06+05 4.2e+04 3.3e+01 y n
7
2.4e+05 4.8e+04 2.9e+01 y n
2.6e+05 5.2e+04 4.1e+01 y n
4
7.2e+04 1.6e+04 9.5e+00 y n
3.4e+05 6.9e+04 5.6e+01 y n
.2e+04 l.Oe+04 6.3e+00 y n
6.2e+04 1.4e+04 l.le+01 y n
1
5.3e+04 1.3e+04 7.9e+00 y n
6.5e+04 1.5e+04 1.2e+01 y n
2.7e+04 6.0e+03 3.7e+00 y n
1.6e+04 5.26+03 4.1e+00 y n
1.6e+04 4.86+03 2.9e+00 n n
3.3e+04 5.9e+03 4.7e+00 y n
136
-------
OPUSquan 20-JUL-1998
Page 4
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:15
Run: 19 File: a!7ju!98b S:14 Acq:18-JUL-98 02:32:07 Proc:20-JUL-98 09:09:09
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-5 xl/2
Amount: 8.16
Cone: 8.16
Tox #1: -
Name
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
of which 1.09
of which 1.09
Tox #2: -
named and 7.07
named and 7.07
Tox #3: -
# RT Respnse RA Cone
1 30:15 2.3e+06 1.54 y 0.93
2.3e+06
2 31:15 1.2e+06 1.56 y 0.47
1.2e+06
3 31:21 5.0e+06 1.57 y 2.03
5.0e+06
4 31:29 8.9e+05 1.39 y 0.36
8.9e+05
5 31:36 2.5e+05 1.43 y 0.10
2.5e+05
6 31:45 3.1e+06 1.51 y 1.24
3.1e+06
7 31:54 1.2e+06 1.49 y 0.47
1.2e+06
8 31:57 1.2e+06 1.59 y 0.49
1.2e+06
9 32:04 5.6e+05 1.69 y 0.22
5.6e+05
10 32:08 1.3e+06 1.54 y 0.52
1.3e+06
11 32:25 l.Se+06 1.52 y 0.60
1.5e+06
12 32:29 1.5e+06 1.56 y 0.59
1.5e+06
unnamed
unnamed
Area Height
S/N Mod?
1.4e+06 2.9e+05 1.3e+02 y n
9.1e+05 1.9e+05 8.4e+01 y n
7
7.1e+05 2.4e+05 l.Oe+02 y n
4.5e+05 l.Se+05 6.7e+01 y n
3
3.16+06 8.1e+05 3.6e+02 y n
2.0e+06 5.4e+05 2.4e+02 y n
5
5.2e+05 1.6e+05 7.0e+01 y n
3.7e+05 l.le+05 4.96+01 y n
13 32:35 6.0e+04 2.37 n 0.02
6.06+04
14 32:38 1.6e+05 1.22 n 0.06
1.6e+05
15 32:57 1.3e+05 1.25 n 0.05
1.3e+05
l.Se+05 2.7e+04 1.2e+01 y n
l.Oe+05 1.9e+04 8.2e+00 y n
J
l.Se+06 6.16+05 2.7e+02 y n
1.2e+06 4.0e+05 1.7e+02 y n
7
6.9e+05 2.6e+05 l.le+02 y n
4.66+05 1.7e+05 7.3e+01 y n
3
7.46+05 2.6e+05 l.le+02 y n
4.7e+05 1.7e+05 7.5e+01 y n
2
3.5e+05 1.2e+05 5.2e+01 y n
2.1e+05 7.06+04 3.16+01 y n
2
7.86+05 2.86+05 1.26+02 y n
S.le+05 1.86+05 7.86+01 y n
D
9.1e+05 3.3e+05 1.4e+02 y n
6.06+05 2.2e+05 9.6e+01 y n
3
9.06+05 3.16+05 1.46+02 y n
5.76+05 2.0e+05 9.06+01 y n
2
4.2e+04 1.66+04 6.8e+00 y n
1.8e+04 9.1e+03 4.0e+00 y n
8.86+04 2.96+04 1.3e+01 y n
7.2e+04 2.0e+04 8.6e+00 y n
5
7.2e+04 2.7e+04 1.2e+01 y n
5.8e+04 1.8e+04 7.9e+00 y n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:ll
Run: 19 File: a!7ju!98b S:14 Acq:18-JUL-98 02:32:07 Proc:20-JUL-98 09:09:09
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-5 xl/2
Amount: 2.10
Cone: 2.10
of which 0.08
of which 0.08
named and 2.01
named and 2.01
unnamed
unnamed
137
-------
OPUSguan 20-JUL-1998
Page 5
Tox #1: -
Name
1,2,3,7,8-PeCDD
Tox #2: -
# RT Respnse
1 31:29 1.7e+06
1.7e+06
2 31:59 1.4e+06
1.4e+06
3 32:04 1.5e+05
l.Se+05
4 32:10 l.le+06
l.le+06
5 32:16 9.4e+04
9.4e+04
6 32:20 1.8e+05
l.Se+05
7 32:26 4.0e+05
4.0e+05
8 32:30 1.4e+05
1.4e+05
9 32:37 2.2e+05
2.2e+05
10 32:43 9.6e+04
9.6e+04
11 32:54 1.2e+05
1.26+05
Tox #3: -
RA Cone
1.57 y 0.65
]
£
1.59 y 0.51
£
C
1.68 y 0.06
c
c
1.51 y 0.40
£
4
2.03 n 0.04
6
1.79 n 0.07
]
6
1.62 y 0.15
2
1
1.68 y 0.05
E
C
1.79 n 0.08
1
£
1.39 y 0.04
C
4
2.18 n 0.04
Area Height
S/N Mod?
3.
,le+06 3.36+05 1.66+02 y n
,7e+05 2.2e+05 1.8e+02 y n
4e+05 3.06+05 1.5e+02 y n
2e+05 2.0e+05 1.7e+02 y n
,6e+04 3.16+04 1.56+01 y n
,7e+04 2.0e+04 1.7e+01 y n
.46+05 2.36+05 l.le+02 y n
,2e+05 1.56+05 1.3e+02 y n
,3e+04 2.9e+04 1.4e+01 y n
le+04 1.2e+04 l.Oe+01 y n
,2e+05 3.3e+04 1.6e+01 y n
,5e+04 2.2e+04 1.8e+01 y n
.5e+05 7.56+04 3.6e+01 y n
.5e+05 5.5e+04 4.6e+01 y n
.9e+04 3.2e+04 1.6e+01 y n
.3e+04 2.1e+04 1.8e+01 y n
.4e+05 5.le+04 2.5e+01 y n
.Oe+04 2.9e+04 2.4e+01 y n
.6e+04 1.7e+04 8.1e+00 y n
.Oe+04 1.3e+04 l.le+01 y n
.Oe+04 2.5e+04 1.26+01 y n
.7e+04 1.2e+04 l.Oe+01 y n
< 138
-------
OPUSquan 20-JUL-1998
Page 6
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:12
Run: 19 File: al7ju!98b S:14 Acq:18-JUL-98 02:32:07 Proc:20-JUL-98 09:09:09
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-5 xl/2
Amount: 2.73
Cone: 2.73
Tox #1: -
Name
of which 1.50
of which 1.50
Tox #2: -
# RT Respnse
named and 1.23
named and 1.23
Tox #3: -
RA
1 33:31 6.7e+05 1.32 y
6.7e+05
33:37 1.6e+06
1.66+06
1.25 y
3 33:43 8.9e+04 1.21 y
8.9e+04
4 33:49 1.26+05 1.36 y
1.2e+05
5 33:55 7.7e+04
7.7e+04
0.98 n
1,2,3,4,7,8-HxCDF 6 34:10 1.7e+06 1.25 y
1.7e+06
1,2,3,6,7,8-HxCDF 7
2,3,4,6,7,8-HxCDF 9
34:15 8.7e+05 1.22 y
8.7e+05
34:27 1.7e+05 1.23 y
1.7e+05
34:37 6.5e+05 1.28 y
6.5e+05
10 34:47 2.6e+04
2.66+04
1.02 n
1,2,3,7,8,9-HxCDF 11 35:12 l.Se+05 1.26 y
1.56+05
12 35:19 6.0e+03
6.0e+03
1.14 y
Cone
0.30
•a
0.71
£
0.04
4
4
0.06
C
0.03
0.81
c
0.33
4
0.08
c
0.28
0.01
3
:
0.08
£
e
0.00
unnamed
unnamed
Area Height
S/N Mod?
3.86+05 1.4e+05 7.06+01 y n
2.9e+05 l.le+05 6.5e+01 y n
I
8.9e+05 3.26+05 1.6e+02 y n
7.1e+05 2.5e+05 1.5e+02 y n
.9e+04 1.5e+04 7.7e+00 y n
4.0e+04 1.3e+04 7.8e+00 y n
S
7.2e+04 2.36+04 1.2e+01 y n
5.36+04 1.8e+04 l.Oe+01 y n
3
3.8e+04 1.3e+04 6.8e+00 y n
3.9e+04 1.2e+04 7.le+00 y n
9.46+05 2.8e+05 1.4e+02 y n
7.5e+05 2.2e+05 1.3e+02 y n
3
4.8e+05 1.4e+05 7.2e+01 y n
3.9e+05 1.2e+05 6.8e+01 y n
3
9.5e+04 2.4e+04 1.2e+01 y n
7.76+04 l.Se+04 l.le+01 y n
3
3.6e+05 l.Oe+05 5.3e+01 y n
2.8e+05 7.6e+04 4.5e+01 y n
L
1.36+04 3.96+03 2.06+00 n n
1.36+04 3.3e+03 2.06+00 n n
8.46+04 2.1e+04 l.le+01 y n
6.7e+04 1.6e+04 9.5e+00 y n
3.2e+03 9.9e+02 5.1e-01 n n
2.8e+03 1.5e+03 8.86-01 n n
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:10
Run: 19 File: a!7ju!98b S:14 Acq:18-JUL-98 02:32:07 Proc:20-JUL-98 09:09:09
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-5 xl/2
Amount: 3.69
Cone: 3.69
Tox #1: -
Name
of which 0.38
of which 0.38
Tox #2: -
# RT Respnse
named and 3.30
named and 3.30
Tox #3: -
RA
1 33:52 3.7e+05 1.19 y
3.7e+05
2 34:11 5.6e+06 1.28 y
5.6e+06
Cone
0.18
]
2.68
unnamed
unnamed
Area Height
S/N Mod?
2.0e+05 7.5e+04 2.9e+01 y n
1.7e+05 5.9e+04 3.2e+01 y n
3.2e+06 l.le+06 4.2e+02 y n
-------
I--
§>
(d
CM
CO
en
en
rH
1
5
PD
0
CN
rt
&
D
cu
O
c a d an a a
>, >,> », »
o o o o o o o
0) 0)0) a) a> Q) a)
VO O ^> Cn i-l rH rH
TJ« in in Cn rH rH rH
O O O O O O O
0) (DO) 0) i C >t
CO rH ^Jt
m CT\ m
rH O rH
m in in in in in
O O 00 O O
Q)Q) QJ Q) (D Q)
mm r- i-- CN CN
r* C^ rH rH rH rH
O \O CN
CN CN ^
<3« TJI ^
m m m
m ^r in
D
Q
U
)
CO
i>
•^
.-;
CN
rH
GC CG CC CG CC
>i>i >t>t CG GG GG
oo oo oo oo oo
0)0) QJQJ d)0) 0)0)
CNtH fin ^"rH CNm C^-rO
CNCN CNCN rHCN O\ •*$ ^O *#
OO OO OO OO OO
0)0) 0)0) 0)0) (DO) 0)0)
in ro \o ^ rn m CN c~- rH [**
in in in in m ^ ro m ro m
oo oo oo oo oo
0)0) Q) Q) 0)0) 0) d) 0)0)
COCN ^"1*^ COfO rOCO ^D 00
rHrH CNrH COH inCN mCN
m CO rH O O
rH c-H O O 0
O O O O O
G >i G G >i
in en co r* co
in ro ȣ> co CN
t-H rH O rH rH
inin inin ^^j* mm mm
oo oo oo oo oo
• co en i-H
Q Q
Q Q
CJ O
S S
l l
co en
r- co
vo r~
ro m
CN CN
rH rH
-------
OPUSquan 20-JUL-1998
Page 8
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:4
Run: 19 File: a!7ju!98b S:14 Acq:18-JUL-98 02:32:07 Proc:20-JUL-98 09:09:09
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-5 xl/2
Amount: 0.75
Cone: 0.75
Tox #1: -
Name
of which 0.60
of which 0.60
Tox #2: -
# RT Respnse
named and 0.15
named and 0.15
Tox #3: -
RA
1,2,3,4,6,7,8-HpCDFl 36:22 8.7e+05 0.95y
8.7e+05
2 36:34 l.le+05 1.00 y
l.le+05
3 36:40 1.2e+05 1.42 n
1.26+05
l,2,3,4,7,8,9-HpCDF4 37:32 7.8e+04 1.47 n
7.8e+04
Cone
0.54
4
4
0.07
C
c
0.08
e
4
0.06
unnamed
unnamed
Area Height
S/N Mod?
.3e+05 1.3e+05 6.6e+01 y n
.5e+05 1.4e+05 8.9e+01 y n
5.56+04 1.4e+04 7.26+00 y n
5.5e+04 1.6e+04 l.le+01 y n
3
6.9e+04 1.9e+04 9.8e+00 y n
4.8e+04 1.5e+04 9.9e+00 y n
4.6e+04 l.Se+04 7.8e+00 y n
3.16+04 8.6e+03 5.6e+00 y n
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:3
Run: 19 File: a!7ju!98b S:14 Acq:18-JUL-98 02:32:07 Proc:20-JUL-98 09:09:09
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-5 xl/2
Amount: 0.96
Cone: 0.96
Tox #1: -
Name
of which 0.52
of which 0.52
Tox #2: -
# RT Respnse
named and 0.44
named and 0.44
Tox #3: -
RA
1 36:21 3.7e+04 3.10 n
3.7e+04
2 36:35 7.56+05 0.98 y
7.56+05
l,2,3,4,6,7,8-HpCDD3 37:109.3e+05 0.98y
9.3e+05
Cone
0.02
c
0.42
0.52
unnamed
unnamed
Area Height
S/N Mod?
2.8e+04 9.16+03 4.0e+00 y n
9.1e+03 2.0e+03 2.6e+00 n n
2
3.76+05 l.le+05 4.8e+01 y n
3.86+05 l.le+05 1.5e+02 y n
2
4.6e+05 1.3e+05 5.5e+01 y n
4.7e+05 1.3e+05 1.6e+02 y n
r
-------
File: A17JUL98B Acq: 18-JUL-1998 02:32:07 Exp : EXP M23 DBS OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #14 Text: 1070-5 xl/2 ALS #14
319.8965 S:14 SMO(1,3)
1008
50_
0
24100
321.8936 S:14 SMO(1,3)
100S
50J
0-
24100
331.9368 S:14 SMO(1,3)
100%,
-
50J
0:
24 : 00
333.9339 S:14 SMO(1,3)
100%
50J
o:
24:00
327.8847 S:14 SMO(1,3)
100%
50 1
o:
T 1 1 1 | | |
24:00
316.9824 S:14 SMO(1,3)
100% 23^2123:42
50 j
o:
i i < i i i i ~
24:00
BSUB (128, 15, -3
Al
2s!oo
BSUB (128, 15, -3
Al
25:00
BSUB (128, 15, -3
25IOO
BSUB (128, 15, -3
25:00
BSUB(128,15,-3
i i i i | i
25:00
.0) PKD (3, 3, 3, 0.10%, 1652. 0,1. 00%, F,F)
.56E6
A
/ A8.29E5
A
/I A«
26
.0) PKD (3, 3, 3
.98E6
A
\ A1.13E6
A
I /W
' V / V
26:
.0) PKD (3, 3, 3
' ' ' 26!
. 0) PKD (3, 3, 3
26:
.0) PKD (3, 3, 3
1 I T 1 1
26:
PKD (3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%
3.
43E5 A4.14E5 A2.39E5
Ll.
- n
^•*~i 1 1 1 ' r — f * i"""^!""1 \ r*^ 1 — <~TV|^ \*~f T" i ^> ' i -*i 1 1 1— i ' - •
00 27:00 28:00 29:00 30:00
, 0.10%, 1248. 0,1. 00%, F,F)
4.
66E5 A5-33E5 A3 . 44E5
_2.
n
°~i i 1 r "1 ] "i"^ 1 — i r*— =*i 1 * i Y i^ — r — f 1 — «=i 1 1 i 1 1 i •
00 27:00 28:00 29:00 30:00
, 0.10%, 7832. 0,1. 00%, F,F)
A1.62E8 3.
A A1.31E8
A
/I /v
_1.
0.
00 27:00 28:00 29:0o' ' ' 30:00
, 0.10%, 4152. 0,1. 00%, F,F)
A2.06E8 4.
AA1.70E8
/ 1 n
A
l\ A
:2.
'• o.
00 27:00 28:00 29:00 30:00
,0.10%,3952.0,1.00%,F,F)
A3.72E8
A
A
A
7.
_3.
0.
i f P i r i i i i i i | i i i i i i i i i i i i
00 27:00 28:00 29:00 30:00
,F,F)
24:26 25jQ3 25:3225:54 26:42 27:11 27:40 28:04 28:27 29:03 29:51 5.
' '! 1 1 1 t""~~'""~"T"
25:00
i -i i i |-
26:
_2.
" 0.
00 27 loO 28 100 29! 00 3o!oO
5E5
7E5
OEO
Time
2E5
1E5
OEO
Time
4E7
7E7
OEO
Time
3E7
2E7
OEO
Time
6E7
8E7
OEO
Time
7E7
9E7
OEO
Time
-------
File: A17JUL98B Acq: 18-JUL-1998 02:32:07 Exp : EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #14 Text: 1070-5 xl/2 ALS #14
355.8546 S:14 F:2 SMO(1,3) BSUB (128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2060 . 0 , 1 . 00%, F, F)
1002
-
so:
-
0'
A1'95E6 A8.35E5
\ A A6.35E5
A
I A
1 V _ J w7 U
3bli2 30124 3ol36 3ol48 3ll6d 31:12 31\24 3ll36 33.1 48 32l6d 32112
357.8517 S:14 F:2 SMO(1,3) BSUB(128, 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 1200 . 0 , 1 . 00%, F, F)
1002
-
so:
"
~
0
A6.69E5 A5.25E5
A .
/\ A A4.20E5
A
/ /\ ,
y \ — ^ y \^j vj-
' 3bll2 ' 30124 ' sbls'e ' SoUs" " Sllod ' 3l! 12 ' 33.124 ' 3l] 3 6 ' 31 Us "32l6d " 32Tl2~
367.8949 S:14 F:2 SMO(1,3) BSUB (128, 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2212 . 0, 1 . 00%, F, F)
100*
50J
0"
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12
369.8919 S:14 F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1820 . 0 , 1 . 00%, F, F)
100*
50J
OJ
3bli2 30124 30136 3o!48 3i!6o 3i!l2 3l!24 3l!36 3l!48 32:00 32^12
366.9792 S:14 F:2 SMO(1,3) PKD (3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
lOOi 30:27 30:49 31:04 31:30 31:56
so:
0'
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12
A2.47E5
T— vyv~v_/\__^^ A8 .04^E4
3.3E5
-
11.7E5
' O.OEO
32124 32136 32U8 33l6d 33ll2 Time
r2.2E5
A1.52E5
.jl6E4/\^A8^0lE4 A3 ^ 68E4
_1.1E5
O.OEO
32124 32i36 32148 33l6d 33112 Time
A1.45E8
A
/ v_
5.1E7
L2 . 6E7
' O.OEO
32:24 32:36 32:48 33:00 33:12 Time
A9.20E7
A
ft
/ L
_3.2E7
11.6E7
"O.OEO
32124 32136 32148 33l6d 33112 Time
32^24 33:10 6.4E7
_3.2E7
.O.OEO
32124 32136 32148 33l6d 33112 Time
CO
-------
File
Samp
389.
1003
50_
0
391.
1002
50J
0"
401.
1002;
so:
0"
403.
100%,
so:
0'
380.
100%;
so:
o:
>: A17JUL98B Acq: 18-JUL-1998 02:32:07 Exp : EXP M23 DBS OVATION Voltage SIR EI+ GC Autospec-UltimaE Parad
)le #14 Text: 1070-5 xl/2 ALS #14
8156 S:14 F:3 SMO(1,3) BSUB (128, 15 , -3 . 0) PKD(3 , 5, 2 , 0 . 10% , 2580 . 0 , 1 . 00% , F, F)
A3.16E6
A
/I...,.
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34 48 35:00 35:12 35:24 35:36 35:
8127 S:14 F:3 SMO(1,3) BSUB (128 , 15, -3 . 0 ) PKD (3 , 5, 2 , 0 . 10%, 1804 . 0 , 1 . 00%, F, F)
A2.47E6
A
/ \
ai imy^. / \ A3 . 06E5
f\J. m 1 \J Cl J / \ ^~^
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35
8559 S:14 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 6340 . 0 , 1 . 00%, F, F)
A1.47E8 'I E
A A A
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35
8530 S:14 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 8728 . 0 , 1 . 00%, F, F)
A1.42E8
A1.17E8 A
AV IV
33J24 33136 33!48 34loO 34!l2 34!24 34136 34148 35!oO 3s!l2 35!24 3s!36 35!
9760 S:14 F:3 SMO(1,3) PKD (3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
33:33 33:54 34^LD 34:18 34:36 35:00 35U6 35:24 35:33
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:
igm
1.1E6
L5.4E5
" 0 OEO
48 Time
8.3E5
_4.1E5
O.OEO
48 Time
6.9E7
L3.4E7
" 0 . OEO
48 Time
5.5E7
12 . 8E7
O.OEO
48 Time
1.3E8
16.7E7
O.OEO
48 Time
-------
File: A17JUL98B Acq: 18-JUL-1998 02:32:07
Sample #14 Text: 1070-5 xl/2 ALS #14
423.7767 S:14 F:4 SMO(1,3) BSUB (128, 15, -3 . 0 )
10°^ A3.71E5
/I
' A2.83E4 / V
36:00 36:12 36!24 36!36 36:48 37:
425.7737 S:14 F:4 SMO(1,3) BSUB (128, 15 , -3 . 0)
100^ A3.77E5
/I
°" i / ^
36!6d 36!l2 36!24 36!36 SeUs 37!
435.8169 S.-14 F:4 SMO(1,3) BSUB(128, 15, -3 . 0)
100S
so:
36:00 36:12 36:24 36:36 36:48 37:
437.8140 S:14 F:4 SMO(1,3) BSUB (128, 15, -3 . 0)
100%
so:
0" r
Exp: EXP_M23_DB5_OVATION Voltage SIR EH- GC Autospec-UltimaE Parad
PKD (3, 3, 3, 0.10%, 2292. 0,1. 00%, F,F)
A4 . 59E5
/ y A3.26E4
00 37:12 37:24 37:36 37:48 38:00 38:12 3s!24 3s!36 38!48 39
PKD (3, 3, 3, 0.10%, 780. 0,1. 00%, F,F)
A4.70E5
66 37!i2 37!24 37!36 37!48 38!66 38!l2 38!24 38!36 38!48 39!
PKD(3,3,3,0.10%,2544.0,1.00%,F,F)
Al . 02 E8
00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39
PKD (3, 3, 3, 0.10%, 1524. 0,1. 00%, F,F)
A9 . 7 5E7
igm
1.3E5
L6.5E4
00 Time
1.3E5
_6.4E4
_O.OEO
00 Time
2.7E7
-1.4E7
0 OEO
00 Time
_2.6E7
_1.3E7
O-OFO
" ' i i i i i i i i i i i i i i i i i i i i iri 7 i i i i i -r i i i-i i i i r- 1 i i -I- 1 i i i -T i i i v i i | ri— rT-v'i i i- i i— i -T i i -i r t i -r-t i i i— TTT i i i i r i i i i i i i i i i i -
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
430.9728 S:14 F:4 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
lOOi 36:1236:22 36:46 37:03 37:21 37:3337:43 38:07 38:22 38:39 38:53 R . 9F.7
so;
36!6d 36!i2 36!24 36 ! 36 ' 36 ! 48 ' 37 !
_4.4E7
^O.OEO
00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
en
-------
File
Samj
457
1003
50.
0
459.
100S
50:
0'
469.
iooa
so:
0"
471.
1002
so:
0
454.
100%
so:
0."
?: A17.JUL98B Acq: 18-JUL-1998 02:32:07 Exp : EXP M23 DB5 OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
3le #14 Text: 1070-5 xl/2 ALS #14
7377 S:14 F:5 SMO(1,3) BSUB(128, 15, -3 . 0 ) PKD(3 , 3 , 3 , 0 . 10% , 872 . 0 , 1 . 00% , F, F)
\ A3 . 34E5 7 . 8E4
J\_
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41
7348 S:14 F:5 SMO(1,3) BSUB(128 , 15, -3 . 0 ) PKD(3 , 3 , 3 , 0 . 10%, 1248 . 0 , 1 . 00%, F, F)
A3 . 50E5
/V_
39!l2 ' 39!24 ' ' ' 39136 ' ' 39^8 ' ' ' 4o!ob ' ' ' 4o!l2 ' ' ' 40^24 ' ' ' 4ol36 ' ' ' 4'oUs 41
7780 S:14 F:5 SMO(1,3) BSUB(128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2420 . 0 , 1 . 00%, F, F)
A1.28E8
J\_
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 4ol48 41
7750 S:14 F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1688 . 0 , 1 . 00%, F, F)
Al . 45E8
J\_
39\12 39124 39136 39!48 4o!ob 4o!l2 4o!24 4o!36 4o!48 4l!
9728 S:14 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
39:08 39:16 39^23 39^40 39:48 40:04 40:33 40:54
/
39!l2 39124 39136 39.-48 4o!ob ' 4o!l2 4ol24 ' 4o!36 ' ' ' 4ol48 41
_3.9E4
_O.OEO
00 Time
8 . OE4
_4.0E4
_O.OEO
00 Time
2 . 9E7
11.4E7
•Q.OEO
00 Time
_3.2E7
11.6E7
"O.OEO
00 Time
9.8E7
_4 . 9E7
O.OEO
00 Time
-------
File: A17JUL98B Acq: 18-JUL-199« 02:32:07 Exp: EXP M23
Sample #14 Text: 1070-5 xl/2 ALS #14
303.9016 S.-14 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%
100% A3.47E6
: A A2-
^ Ai-r6 A9.36E5 A2A4E6 ^ Ai-/n
0: A /\ A / WT V /r\ A/V 1
24100 25:00 26loO
305.8987 S:14 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%
100% A4.36E6
' A A3-
50" A1.94E6 A3.11E6 A1 7opfi
A A1.23E6/ f\ ~ A1-'^bl
„; A A A /VvA /f\ AA /
24:00 25:00 26:00
315.9419 S:14 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%
1001
50J
o;
24:00 25:00 26:00
317.9389 S:14 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%
100%
0:
_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Parad
,1948.0,1.00%,F,F)
A3.84E6
47E6 A
(W.UE^ A A8.35E5
27:00 28:00 29:00 30
,3132. 0,1. 00%, F,F)
A4.91E6
Cl 37- A
TV A|6-AOE5/ I A1A3E
-------
File: A17JUL98B Acer: 18-JUL-1998 02:32:07 Exp : EXP M23 DB5 OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #14 Text: 1070-5 xl/2 ALS #14
339.8597 S:14 F:2 SMO(1,3) BSUB(128 , 15 , -3 . 0) PKD ( 3 , 3 , 3 , 0 . 10%,
1002
50J
0_
A3.07E6
A A1.8
A1.39E6 / \ A
y^ /V tA8E5 /
3oli2 36124 36136 36148 31.166 33.112 31.124 3ll36 31
341.8568 S:14 F:2 SMO(1,3) BSUB(128 , 15 , -3 . 0 ) PKD(3 , 3 , 3 , 0 . 10%,
1002
50J
o:
A1.96E6
A A1.2
A9.07E5 / \ A
S\ A/ t^E5 / }
30il2 30124 30i36 30:48 31iOO 31:12 31:24 31:36 31,
351.9000 S:14 F:2 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%,
100%
~
50J
OJ
36112 36124 3Q\36 SoUs 33.166 33.112 31.24 33.136 31
353.8970 S:14 F:2 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10% ,
100%
50J
o"
301l2 30:24 30136 30:48 31:00 31:12 31:24 31:36 31
409.7974 S:14 F:2 SMO(1,3) BSUB(128, 15 , -3 . 0) PKD(3 , 3 , 3 , 100 . 00
100%
-
50J
-
o •
31
/
31:39 /
S\ J
"'i 1 i | i i i 1 1 1 1 1 i i 1 1 1 i 1 1 1 1 1 i 1 1 i 1 -r 1 1 I-T'T-I I 11-r-r I1 i i T-T— r t i I i T
30:12 30:24 30136 30:48 31:00 31:12 31:24 31:36 33
366.9792 S:14 F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
100%
50 j
o"
30:27 30:49 31:04 31:30
292.0,
E6
^ /r
Us 3
1276.0,
!E6
v /T
:48 3
.756.0,
Al .7
A
/
Us 3:
284.0,
Al.li
A
,.,/.
Us 3:
,3932.
47
1 31
V /-/
^^/
:48 3:
31:5
30:12 30:24 30:36 30:48 ,31:00 31:12 31:24 31:36 31 48 31
1.00%,F,F)
A7.80E5 A9.12E5
vVv A/V ^
8.2E5
L4.1E5
: O.OEO
2166 32:12 32124 32l36 32l48 33166 33ll2 Time
1.00%,F,F)
AC n OT^C Ao . 0 OE5
v ™ AA _
5.4E5
_2.7E5
_O.OEO
2:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
1.00%,F,F)
A2.83E8
A
3E8 /I
v / I
1.0E8
_5.1E7
O.OEO
2166 32li2 32124 32136 32148 33166 33112 Time
1.00%,F,F)
Al . 80E8
3E8 /\
^ / V
6.6E7
_3.3E7
- O.OEO
1:66 ' 32112 ' 32124 ' 32136 ' 32148 33166 33112 Time
0,1.00%,F,F)
58
\
\ 32-29
1.8E5
;
_9.2E4
O.OEO
!-loO 32:12 32:24 32:36 32:48 33:00 33:12 Time
6 ^12-L24 33:10
6.4E7
L3.2E7
-O.OEO
166 32112 32124 32: 36 32 Us ' 33 1 66 ' 33 1 12 Time
on
-------
File: A17JUL98B Acq: 18-JUL-1998 02:32:07
Sample #14 Text: 1070-5 xl/2 ALS tt!4
373.8207 S:14 F:3 SMO(1,3) BSUB(128 , 15 , -3 . C
lOOi A8.89E5 A9 3g
A ' f\
50.
o:
375.
1002
50_
0
383.
lOOi
50J
o:
385.
100*
50 j
o:
445.
100%
o:
380.
100%
50J
o:
A3.82E3 \
A / \
33:24 33:36 33:48 ' 34:00
8178 S:14 F:3 SMO(1,3) BSUB(128,15
A7.14E5
A2.90E3 \
J\J \V___A5.27E4
33!24 33136 33Us 34loO
8639 S:14 F:3 BSUB(128, 15, -3 . 0) PK
33:24 33:36 33:48 34:00
8610 S:14 F:3 BSUB (128, 15 , -3 . 0) PK
33! 24 33:36 3s! 48 34^00
7555 S:14 F:3 SMO(1,3) BSUB (128, 15
34
y
33.1 24 33136 33 .-48 34. -00
9760 S:14 F:3 SMO(1,3) PKD(3,3,3,1
33:33 33:54
/
/
34
-3.(
7.51
i\
A
/
34!
(3 c
1.09
A
A
34
2f
A
34
-3.(
34
\J
Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
) PKD (3, 5 ,2, 0.10%, 1956. 0,1. 00%, F,F)
C5 3.2E5
A A3'
12 34:24 34:
} PKD (3, 5, 2, 0.10%
55
A A2-
f \ A7.70E4 /
— r 1 r —
12 34i24 34!
,2, 0.10%, 25996.0,:
E8
/V ,
12 34:24 34:
,2,0.10%,62072.0,:
/v
12' ' '34 124' ' '34!
) PKD(3,3,3,100.0(
12
v_ /
34 12 34:24 34 !
52E5
\_ A8.43E4
' — r-T" r-T— T- i T — i — r i — i — i — i — i- i T f~*l — i — i — i — i — i — r— r — i — i — i — i — i — r— 1 — i — l —
36 34:48 35:00 35:12 35:24 35:36 35
1692. 0,1. 00%, F,F)
)4E5
\ Ao . oc?E4
r i 1 I 1 I l l i i '1 1 l l 1 1 i i i 1 i ' i -T-'l — i i l l i i i — i i i i
36 34:48 35:00 35:12 35:24 35:36 35
.00%,F,F)
36 34:48 35:00 35:12 35:24 35:36 35
.00%,F,F)
^6 34148 3s!oO 35!l2 3s!24 35:36 35
%,2460.0,1.00%,F,F)
-^7 34:45 34:57
^-^^/^ J^iL- 35-40
L1.6E5
i.O.OEO
48 Time
2.5E5
_1.3E5
.O.OEO
48 Time
5.3E7
-2.7E7
O.OEO
48 Time
1.0E8
-5.1E7
O.OEO
48 Time
_9.3E4
_4.6E4
O.OEO
6 34:48 35:00 35:12 35:24 35:36 35:48 Time
0.00%,0.0,1.00%,F,F)
34J.O 34:18 34:36 35:00 35:16 35:24 35:33
/^
33:24 33:36 33:48 34:00 34 12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:'
1.3E8
-6.7E7
O.OEO
J8 Time
-------
'File: A17JUL98BAcq: 18-JUL-1998 02:32:07Exp: EXP_M23_DB5_OVATION Voltage SIR EI +GC Autospec-UltimaEParadigm
Sample #14 Text: 1070-5 xl/2 ALS #14
407.7818 S:14 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3 , 0.10%, 1964.0 ,1.00%,F,F)
100%, A4.26E5 1.3E5
50J
OJ
A6.89E4
A4.64E4
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36
409.7788 S:14 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1532.0,1.00%,F,F)
100% A4.48E5
_6.5E4
O.OEO
50J
OJ
39:00
1
_6
.48E4
A3.15E4
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38136 ' 38 Us ' 3gloO
417.8253 S:14 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,7868.0,1.00%,F,F)
100% A6.28E7
- A4.01E7
501
OJ_
1.
_8.
0,
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00
419.8220 S:14 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,24240.0,1. 00%, F, F)
100%, A1.43E8
A8.88E7
Oj
3 .
.1
i i i i I i i i i i I i i f i i | i" i i i i I i i i i i i i i i i i I i i i i i I i i i i i I r i i i i ii I I i I I i i i i i I iii—i i i I i i i i i | i i i i i I i i i i i I
36:00 36ll2 36124 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00
479.7165 S:14 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,2940.0,1.00%,F,F)
100% 37;10
50
o
35:58
3643
3720
1
16,
Lo.
36166 ' 36 lid ' 36124 ' 36136 ' 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00
Time
.4E5
. 9E4
.OEO
Time
.7E7
,5E6
,OEO
Time
,8E7
,9E7
,OEO
Time
,2E5
OE4
OEO
Time
430.9728 S:14 F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100%, 36_LJ.2 36:22 3_6j_46 37:03 37:2JL_37:33 37:43 38:01
50J
o
38:22
18:39 38:53 8.9E7
_4.4E7
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
38124 38136 38 Us 39loO
OEO
Time
c/r
O
-------
File: A17JUL98B Acq: 18-JUL-1998 02:J2:0
Sample #14 Text: 1070-5 xl/2 ALS #14
441.7427 S:14 F:5 SMO(1,3) BSUB (128, 15 , -3
100%
50 J
0 '
^^^
— I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 r — r
39:12 39:24 39:36
443.7398 S:14 F:5 SMO(1,3) BSUB (128, 15 , -3
100%
50 j
o'
• — — • — — -~ — - -
39:12 39:24 39:36
469.7780 S:14 F:5 SMO(1,3) BSUB(128, 15, -3
100%
50 j
0 '
39:12 39:24 39:36
471.7750 S:14 F:5 SMO(1,3) BSUB(128, 15, -3
100%
50 j
n •
" ' i — i — i T i i r— i — i — i — | 1 — i — i — T " i | i i i
39:12 39:24 39:36
513.6775 S:14 F:5 SMO(1,3) BSUB (128, 15, -3
100%,
-
50 j
0 '
3^_ /^^39:34 3/^
u-j — i — i — i — i — i — i — i — i — i — i—i • i i i i i | i i i
39:12 39:24 39:36
7 Exp: EXP_M23_DB5_OVATION Voltage
SIR EI+ GC Autospec-UltimaE Paradigm
.0) PKD(3,3,3,0.10%,960.0,1.00%,F,F)
A4.48E4
/ \
/ \4_,J55E3
•r-r [-T-^r^T^rT | 1 1 I I 1 | 1 1 1 i
39:48 40:00 40:12
.0) PKD (3, 3, 3, 0.10%, 1744. 0,1. 00%, F,
A6 . 70E4
/\
_ _ / ^^/^
39:48 4o!ob 4o!l2
.0) PKD (3, 3 ,3, 0.10%, 2420. 0,1. 00%, F,
Al . 28E8
/\
J \^__
39:48 40:00 40:12
.0) PKD (3, 3, 3, 0.10%, 1688. 0,1. 00%, F,
Al . 4 5E8
/\
39 Us 40!00 40ll2
.0) PKD (3, 3, 3, 100. 00%, 1016. 0,1. 00%,
40:16
40:01 40:08 A
_/^vV\y
39:48 40:00 40:12
454.9728 S:14 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
1004 TO-no TQ.tfi TQ.9T 39:40 39:48 40:04
50J
n -
r
U— ' 1 1 1 1 1 1 1 1 1 1 T' - I | 1 1 I | 1 1 1
39:12 39:24 39:36
39U8 4o!ob 4o!l2
_^____^--^_
1.3E4
i_6.3E3
: O.OEO
40:24 40:36 40:48 41 00 Time
F)
• — - — - — s s^ — ^ — ••• — _^ — . . v
1.8E4
_9.0E3
O.OEO
40:24 40:36 40:48 41 00 Time
F)
2.9E7
_1.4E7
.O.OEO
40:24 40:36 40:48 41 00 Time
F)
3.2E7
L1.6E7
: 0 . OEO
40:24 40:36 40:48 41:00 Time
F,F)
40 • 39
A
\2^\^J ^^-^^-^^r^
b.4EJ
L3.2E3
_O.OEO
40:24 40:36 40:48 41:00 Time
40:33 40:54 _9.8E7
L4.9E7
: O.OEO
40:24 40:36 40:48 41:00 Time
-------
cn
OPUSquan 22-JUL-1998
Page 1
Page 11
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ
Unk
ES/RT
a21ju!98f
6
21-JUL-98 23:12:05
22-JUL-98 08:32:29
1070-5 xl/2
07feb-m23conf
M8290-23-072198F
Total
DPE
LMC
2,3,7
13C-2,3,7
Tetra
HxCDPE;
QC CHK ION (Tetra);
Name;
,8-TCDF;
,8-TCDF;
Furans;
Resp;
3.73e+06;
8.56e+08;
1.306+08;
Ion 1;
1.67e+06;
3.75e+08;
3.54e+06;
Ion 2;
2.06e+06;
4.81e+08;
4.59e+06;
RA;?;
0.81;y;
0.78;y;
0.77;y;
RT;
27:56;
27:53;
18:11;
Cone; DL;
0.459; 0.0259;
209.890;
15.967; 0.0259;
;NotFnd;
;NotFnd;
S/N1;?;
94,-y ;
1215,-y;
315;y;
*;n
DivO;n
S/N2;?
45,-y
1959,-y
165;y
mod?
no
no
no
no
no
-;-; 27:56
-;-; 27:56
-------
OPUSquan 22-JUL-1998
Page 1
Ent: 3 Name: Tetra Furans
Page 1 of 1
F:l Mass: 303.902 305.899 Mod? no #Hom:28
Run: 11 File: a21ju!98f S:6 Acq:21-JUL-98 23:12:05 Proc:22-JUL-98 08:32:29
Tables: Run: a21ju!98b Analyte: m23_conf Cal: 07feb-m23»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-5 xl/2
Amount: 15.97
Cone: 15.97
Tox #1: -
Name
of which 0.46
of which 0.46
Tox #2: -
# RT Respnse
named and 15.51
named and 15.51
Tox §3: -
RA
1 18:11 S.le+06 0.77 y
S.le+06
2 18:20 1.9e+04 1.95 n
1.9e+04
3 19:51 7.6e+06 0.78 y
7.6e+06
4 20:06 5.9e+06 0.81 y
5.9e+06
5 20:21 l.Oe+07 0.79 y
l.Oe+07
6 20:39 4.5e+06 0.84 y
4.5e+06
7 21:12 5.4e+06 0.79 y
5.4e+06
8 21:32 6.8e+06 0.78 y
6.8e+06
9 21:49 5.0e+05 0.70 y
5.0e+05
10 21:58 9.3e+05 0.84 y
9.3e+05
11 22:09 6.0e+06 0.79 y
6.0e+06
12 22:34 3.8e+06 0.77 y
3.8e+06
13 23:17 1.2e+07 0.76 y
1.2e+07
14 23:27 6.6e+06 0.82 y
6.6e+06
15 24:19 6.2e+06 0.78 y
6.2e+06
16 24:31 4.2e+05 0.47 n
4.2e+05
17 25:00 7.4e+06 0.77 y
7.4e+06
18 25:27 3.7e+06 0.81 y
3.7e+06
19 26:33 4.9e+06 1.54 n
4.9e+06
Cone
1.00
T
4
0.00
]
e
0.94
4
0.72
1.22
4
C
0.55
0.67
0.83
0.06
0.11
<
C
0.74
0.47
]
1.47
C
(
0.81
0.76
2
3
0.05
unnamed
unnamed
Area Height
S/N Mod?
3.5e+06 7.0e+05 3.1e+02 y n
.6e+06 9.2e+05 1.6e+02 y n
1.3e+04 5.8e+03 2.6e+00 n n
6.6e+03 3.8e+03 6.9e-01 n n
1
3.3e+06 5.8e+05 2.6e+02 y n
4.3e+06 7.4e+05 1.3e+02 y n
2.6e+06 4.2e+05 1.9e+02 y n
3.2e+06 5.5e+05 9.8e+01 y n
4.4e+06 7.4e+05 3.4e+02 y n
5.6e+06 9.7e+05 1.7e+02 y n
2.0e+06 3.2e+05 1.4e+02 y n
2.4e+06 3.9e+05 7.0e+01 y n
7
2.4e+06 4.2e+05 1.9e+02 y n
3.06+06 5.46+05 9.6e+01 y n
3.06+06 4.16+05 1.8e+02 y n
3.8e+06 5.2e+05 9.3e+01 y n
5
2.0e+05 6.4e+04 2.9e+01 y n
2.9e+05 9.0e+04 1.6e+01 y n
4.2e+05 l.le+05 5.0e+01 y n
5.1e+05 1.3e+05 2.3e+01 y n
1
2.6e+06 4.8e+05 2.2e+02 y n
3.3e+06 6.16+05 l.le+02 y n
1.7e+06 2.8e+05 1.3e+02 y n
2.2e+06 3.96+05 6.9e+01 y n
7
5.2e+06 6.7e+05 3.Oe+02 y n
6.86+06 8.76+05 1.6e+02 y n
3.0e+06 4.2e+05 1.96+02 y n
3.6e+06 5.4e+05 9.6e+01 y n
2.76+06 3.7e+05 1.7e+02 y n
3.56+06 4.66+05 8.3e+01 y n
1.3e+05 3.2e+04 1.5e+01 y n
2.96+05 4.46+04 7.8e+00 y n
0.91
3.26+06 4.1e+05 1.9e+02 y n
•4.2e+06 5.4e+05 9.7e+01 y n
0.46
1.7e+06 2.16+05 9.46+01 y n
2.1e+06 2.6e+05 4.7e+01 y n
0.60
2.9e+06 3.6e+05 1.6e+02 y n
1.96+06 4.5e+05 B.le+Ol y n
-------
OPUSquan 22-JUL-1998
Page 2
20 27:33 6.2e+06 0.78 y 0.76
6.26+06
2,3,7,8-TCDF 21 27:56 3.7e+06 0.81 y 0.46
3.7e+06
22 28:14 5.2e+04 2.15 n 0.01
5.26+04
23 28:32 5.3e+06 0.81 y 0.65
5.3e+06
24 29:17 3.8e+06 0.87 y 0.47
3.8e+06
25 29:36 3.5e+06 0.40 n 0.43
3.56+06
26 29:38 3.4e+06 0.35 n 0.41
3.4e+06 8
27 31:24 4.4e+04 7.94 n 0.01
4.4e+04
28 31:51 3.2e+06 1.15 n 0.39
3.26+06
,7e+06 3.2e+05 1.
,5e+06 3.9e+05 7.
.7e+06 2.1e+05 9.
.le+06 2.5e+05 4.
.5e+04 1.3e+04 6,
,7e+04 9.1e+03 1,
,4e+06 2.7e+05 1.
,9e+06 3.3e+05 5.
,8e+06 1.9e+05 8.
.Oe+06 2.3e+05 4,
,9e+05 2.0e+05 9,
,5e+06 2.7e+05 4,
,7e+05 1.9e+05 8,
5e+06 2.7e+05 4,
.9e+04 l.le+04 5,
,9e+03 4.7e+03 8,
.7e+06 1.66+05 7
,5e+06 1.6e+05 2
5e+02 y n
Oe+01 y n
4e+01 y n
5e+01 y n
Oe+00 y n
6e+00 n n
2e+02 y n
9e+01 y n
5e+01 y n
2e+01 y n
2e+01 y n
9e+01 y n
6e+01 y n
9e+01 y n
le+00 y n
4e-01 n n
le+01 y n
8e+01 y n
i< 154
-------
File: A21JUL98F Acq: 21-JUL-1998
Sample #6 Text: 1070-5 xl/2 ALS
303.9016
100S
50 1
o:
16
305.8987
100S
50 j
o:
16
315.9419
100%
50J
oj
16
317.9389
100%
50J
o:
16
375.8364
1002
50 j
o:
JkJ .
r/fffV
16
316.9824
S:6
lob
S:6
:00
S:6
loo
S:6
lob
S:6
16
1
w>
T — I —
loo
S:6
SMO(1,3) BSUB{128,15
A3.54E6
i
11
isloo
A4.4
y
P
20:00
SMO(1,3) BSUB(128,15
A4.59E6
18:00
A5.5
ii
1 A
20:00
SMO(1,3) BSUB(128,15
islob
2olob
23:
#6
,-3.
1E6
A2.
J\
—3
5E6
A3.
*
A
-3.
SMO(1,3) BSUB(128,15,-3.
' islob
2olob
SMO(1,3) BSUB(128,15,-3.
:38
ll 18:15
v i A, i\ J «k,
18:00
SMO(1,3) PKD(3
100% 16:17 18:34
50 j
o:
16
1 >
loo
T 1 1 1 1 1 1 1
18:00
20
. IjL .1 i ,V
N^VVf
20:00
i1
12:05 Exp
0) PKD(3,3
A5
40E6 .
A A ft
H/IJU
22:00
0) PKD(3,3
A6
12E6 .
A > n
A A .
HA J i\
22 lob
0) PKD(3,3
' 22100
0) PKD(3,3
22lob
0) PKD(3,3
22:24
ii flL 111 1 L.
jyH^AvHWV^
22:00
: M23_DB225 Voltage SIR EI+ GC Autospec-UltimaE Paradigm
,3,0.10%,
.17E6
i
2212. 0,1. 00%, FrF)
A3.23E6 A2.95E6
I rl A 'I A
III A™
24lob
,3,0.10%,
.83E6
t
AA T A
26-00
7
, A2.37E6
AA A AA S1^9E6
1.3
: o
28lob 30:00 32:00 34lob
.5E5
.7E5
.OEO
Time
5592. 0,1. 00%, F,F)
A4.17E6 A1.91E6
y\ A
'Ii ,A-
24lob
,3,0.10%,
24lob
,3,0.10%,
24lob
U A
AA . 1
26:00
34324.0,1.00%,
26100
27188.0,1.00%,
26100
9
. A2 . 94E6
A A A A A A1.48E6
/\AJ\ AA r A
_4
0
28:00 30:00 32:00 34:00
F,F)
A3.75E8
A
I
A
4
_2
0
28:00 30:00 32:00 34:00
F,F)
A4.81E8
A
I
S\
5
_2
:o
islob s'olob 32lob 34lob
.8E5
.9E5
.OEO
Time
.2E7
.1E7
.OEO
Time
.3E7
.7E7
.OEO
Time
, 3, 100. 00%, 11560. 0,1. 00%, F,F)
24:03
Ai
MW V
24:00
26:15
(
JV
kiL 1 /\L ^
26:00
5
32:23
27k,5, 28:56 29:59 31:41 f 33.58
1 1 IT .1 L. *• J i A kl fill 1 1 ulh 1 IJillAl ii u. UnllLhJ t > lJ.1 J ui
\w WV^WVMW
~
_2
0
28:00 30:00 32:00 34:00
.7E4
. 8E4
.OEO
Time
, 3, 3, 100. 00%, 0.0,1. 00%, F,F)
19:46
T 1 1 I—
20:00
21:3.0 22:4923:47
— i i i i r— r
22:00
r i i 1 1
24:00
25:09 26:18_
• 1 1 1 ] 1 1 1
26:00
27:49 29:05 30:1631^.13 32:4933:48 6
_3
0
28:00 30:00 32:00 34:00
.9E7
.4E7
OEO
Time
tn
c/i
-------
Section 4
Svstein PerfoKmanc
Section 4-1
Mass Spectrometer Performance Check
Mass Resolution
Documentation for the Analysis
of
Polychlorinated Dibenzo-/i-Dioxins & Dibenzofurans
cn
-------
Peak Locate Examination:17-JUL-1998:16:42 File:A17JUL98B
Experiment:EXP_M23_DB5_OVATION Function:! Reference:PFK317
PPM
200
Volts
2.3390
292.95315 292.98245 293.01175
Volts
1.1178
304.95195 304.98245 305.01295
Volts
0.7482
316.95075 316.98245 317.01415
Volts
2.9977
330.94615 330.97925 331.01235
Volts
0.9412
366^.94255 366.97925 367.01595
Volts
2.6891
342.94495 342.97925 343.01355
Volts
2.1965
380.93795 380.97604 381.01414
Volts
1.3903
354.94375 354.97925 355.01475
C/l
-------
Peak Locate Examination:18-JUL-1998:04:00 File:A17JUL98B
Experiment:EXP_M23_DB5_OVATION Function:! Reference:PFK317
292.95315 292.98245 293.01175
Volts
2.3195
330.94615 330.97925 331.01235
Volts
0.8423
304.95195 304.98245 305.01295
Volts
1.9680
342.94495 342.97925 343.01355
Volts
0.5709
316.95075 316.98245 317.01415
Volts
1.0102
354.94375 354.97925 355.01475
Volts
0.6985
Volts
1.6313
366.94255 366.97925 367.01595
380.93795 380.97604 381.01414
C/l
-------
Peak Locate Examination:21-JUL-1998:20:06 File:A21JUL98F
Experiment:M23_DB225 Function:! Reference:PFK317
PPM
200
Volts
4.2302
292.95315 292.98245 293.01175
Volts
1.8577
304.95195 304.98245 305.01295
Volts
1.1518
316.95075 316.98245 317.01*415
Volts
5.6745
330.94615 330.97925 331.01235
Volts
4.8040
342.94495 342.97925 343.01355
Volts
2.4566
354.94375 354.97925 355.01475
PPM
200
Volts
1.5610
366.94255 366.97925 367.01595
Volts
4.6436
380.93795 380.97604 381.01414
tn
-------
Peak Locate Examination:22-JUL-1998:08:11 File:A21JUL98S
Experiment:M23_DB225 Function:! Reference:PFK317
Volts
0.8568
292.95315 292.98245 293.01175
Volts
0.4258
304.95195 304.98245 305.01295
PPM
200
Volts
0.2889
316.95075 316.98245 317.01415
Volts
1.0522
Volts
0.9891
Volts
0.6053
330.94615 330.97925 331.01235
342.94495 342.97925 343.01355
354.94375 354.97925 355.01475
Volts
0.3802
Volts
0.9007
366.94255 366.97925 367.01595
- =»: -
380.93795 380.97604 381.01414
m
-------
Section 4
System Perfor<
Section 4-2
Gas Chromatography Performance Check
•— — ^— — — — — — — — — — •— — — — <^ "~ ~ jp11""— •• ^ •" ^™ •" "^ ~ "^— " " ~ ~^ — ^ — — i— — ^ ^_^^__^__
Isomer Specificity 4& Retention Time Windows
Documentation for the Analysis
of
Polychlorinated Dibenzo-/;-Dioxins & Dibenzofurans
-------
File: A17JUL98B Acq: 17-JUL-1998 16:45:56 Exp: EXP_M23 DB5 OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #1 Text: DB-5 Retchk ALS #1
303.9016,319.8965 -*£-
100% _ k ' 27
80J:
60 j
40 j
20 j
0;
r
23:39
n
A
/
A 1
V 7
24:00 25:00 26:00 27:00
F:2 339.8597,355.8546 ^_-
100% r
80 J
60J
40 j
20J
n •
30:14 / A
A
A
\ \
/ \^ / ^
U T| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t 1 1 1 1 1 1 1 1 1 ' 1 | 1 1 1 1 1 1 1 1 1 T 1 | 1 1
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00
F:3 373.8207,389.8156
100% 33i32n » F~
80J
60 j
40J
20J
0:
A '
\ \
) \^ 1 \^
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48
F:4 407.7818,423.7767 f^ "& .
100% 36j22l t ' < — - L-
80 j
60 J
40 j
20J
OJ
A A 37:32
A A A
\ \ /\ A
/ V / V r^ / V
j \ — / x — j ^ — / x —
36:00 36:12 36:24 36:36 36 48 37:00 37:12 37:24 37:36 37
319.8965,331.9368
100% 25 14
80 J
60J
40 j
20J
o;
j
^
24:00 25:00 26:00 27:00
A27
A A /I
m-i
IY\I
/U IV
V / VAA
28:00
32!l2 32124 32!:
L <-
^ 35:12
A
\
1 ^
35:00 35:12
fl
i
1
29:00
1
)6 32:48
35:24
48 38!66 38:12 38124 38
. 28
(A
A III
/111
lv\\
J / \l
28100
:39
A
1
v
29:00
J (_f.
29:fl\8
Al 1
Ml
/ AV
_
-
-
30:00 Time
7 {
i A
i / 1
\i I
y i
r~~^~~«
'-
r
'-
~r
33166 33:12 Time
r
-
-
-
-
35136 35 48 Time
36 ijsUe 39
r-
-
-
-
-
00 Time
_
29:53
/i
A
\
j \
-
-
-
:.
30:00 Time
-------
File: A17JUL98BAcq: 17-JUL-1998 16:45:56Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaE
Sample #1 Text: DB-5 Retchk ALS #1
319.8965
28:39
Paradigm
10
. .-I i i i i i I i i i i i I i i i i i I i i i i r\ I i i i i i I i i i i i 1 I i i i i i | i i i i i | i i i i i | i i i i i | i i i i i'|
27:48 27:54 28:00 28:06 28:12 28:18 28:24 28:30 28:36 28:42 28:48 28:54 29:00 29:06 29:12
29:18
Time
-------
10
£
File: A21JULy8F Acq: 21-JUL-1998 20:06:58Exp: M23_DB225 Voltage SIR EI+—GC Autospec-UltimaE—Paradigm
_Qamr\1 o Jt 1 Td-vi- - r\n_OOt; n,-»*-,-ii-»v TIT o -1*1
Sample #1 Text: DB-225 Retchk ALS il
303.9016
100%
I ' ' ' ' ' I ' ' ' ' ' _ I
27:00 27:12 27:24 27:36 27:48 28:00 28:12 28:24 28:36 28:48
29:00 Time
27:00 27:12 27:24 27:36 27:48 28:00 28:12 28:24 28:36 28 48
O.OEO
29:00 Time
-------
Section 4
System Perfonmanc
Section 4-3
Initial Calibrations
(HP-5MS & DB-225 Columns)
Documentation for the Analysis
of
Polychlorinated Dibenzo-/;-Dio\ins & Dibenzofurans
-------
OPUSquan 20-JUL-1998
Page 1
Run: 0716crv Analyte: m8290-23-» Cal: m8290-23-» Results:
Page 1 of
Version: V3.5 17 APR-1997 11:14:34
'7/
Name Mean RRF
S. D.
%RSD
17jul98a S3 17jul98a S4 17jul98a S5 17jul98a S6 17jul98a S7
RRFttl SD RRF#2 SD RRF#3 SD RRF#4 SD RRF#5 SD
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7, 8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
13C-2,3,7,8-TCDD
13C-l,2,3,7,8-PeCDD
13C-1 , 2,3,6,7, 8-HxCDD
13C-l,2,3,4,6,7,8-HpCDD
13C-OCDD
13C-2,3,7,8-TCDF
13C-l,2,3,7,8-PeCDF
13C-1 , 2 , 3 , 6 , 7 , 8-HxCDF
13C-1 , 2 , 3 , 4 , 6 , 7 , 8-HpCDF
1301,2, 3, 4-TCDD
1301,2,3,7,8,9-HxCDD
37Cl-2,3,7,8-TCDD
1302,3,4,7,8-PeCDF
13C-1, 2 ,3,4,7, 8-HxCDD
13C-1, 2 ,3,4,7, 8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
3701-2,3, 7, 8-TCDD
13C-2,3,4,7,8-PeCDF
13C-1 , 2 , 3 , 4 , 7 , 8-HxCDD
13C-1 ,2,3,4,7, 8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
Total Tetra-Furans
Total Tetra-Dioxins
Total Penta-Furans
0.
1.
0.
0.
0.
0.
1.
0.
0.
0.
0.
1.
0.
0.
1.
1.
1.
1.
0.
1.
0.
0.
1.
1.
1.
0.
1.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9843
1157
6718
8518
8597
8965
0033
9531
8711
9020
8611
0877
9347
8123
2600
0402
0684
0970
7648
0729
7951
6399
3772
1987
2388
7529
-
-
0062
1724
7230
9654
5892
9166
9777
6747
7855
7823
9531
9843
8866
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
Oil
016
023
119
115
Oil
004
008
009
023
047
183
129
082
040
103
040
024
056
161
020
032
039
086
206
010
-
-
058
095
114
104
084
035
025
056
054
109
008
Oil
012
1
1
3
13
13
1
0
0
1
2
5
16
13
10
3
9
3
2
7
14
2
5
2
7
16
1
5
8
15
10
14
3
2
8
6
13
0
1
1
.14
.46
.35
.96
.32
.21
.40
.86
.04
.50
.49
.79
.85
.14
.1$
.89
.72
.18
.28
.99
.49 !
.03
.82
.14
.62
.36
.74
.13
.80
.79
.34
.84
.55
.32
.85
.97 s
.86 <
.14 1
.31 '
fc 1.
i 1.
* 0.
i 0.
4 •— 0.
i 0.
fc 1.
fc 0.
t 0.
* 0.
fc 0.
*>" 1.
I/ 1.
i ' 0.
i 1.
k 0.
k 1.
i 1.
k y 0.
\r o.
t 0.
k 0.
k 1.
k / 1.
* ' 1.
k 0.
*
t
k 0.
k 1.
* 0.
fc 0.
fc 0.
k 0.
fc 1.
i 0.
fc 0.
k 0.
fc 0.
I 1.
k 0.
00
14
67
96
95
89
00
96
87
88
87
25
03
87
23
93
03
07
71
95
78
63
36
13
08
76
-
-
92
13
64
90
53
86
01
67
83
69
96
00
87
1.
1.
-0.
0.
0.
-0.
0.
1.
-0.
-0.
0.
0.
0.
0.
-0.
-1.
-0.
-1.
-1.
-0.
-0.
-0.
-0.
-0.
-0.
0.
-1.
-0.
-0.
-0.
-0.
-1.
1.
0.
0.
-0.
1.
1.
-1.
1
2
1
9
8
1
1
4
3
9
1
9
7
8
9
1
8
2
0
8
6
4
5
8
8
6
-
-
5
4
7
6
8
7
2
0
8
8
4
1
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
1
0
1
1
0
0
0
0
1
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
.97
.11
.68
.94
.95
.88
.00
.95
.87
.87
.89
.20
.04
.88
.22
.96
.02
.08
.73
.95
.78
.61
.34
.14
.07
.74
-
-
.99
.08
.58
.84
.49
.91
.95
.62
.79
.66
.95
.97
.87
-1.
-0.
0.
0.
0.
-1.
-1.
-0.
0.
-1.
0.
0.
0.
0.
-1.
-0.
-1.
-0.
-0.
-0.
-0.
-0.
-1.
-0.
-0.
-1.
-0.
-0.
-1.
-1.
-1.
-0.
-1.
_ T
0.
-1.
-0.
-1.
-1.
2
2
3
7
8
6
0
9
3
2
6
6
8
8
0
7
2
6
6
8
9
9
1
6
8
0
-
-
3
9
2
2
1
2
3
1
0
1
9
2
0
0.
1.
0.
0.
0.
0.
1.
0.
0.
0.
0.
1.
1.
0.
1.
1.
1.
1.
0.
0.
0.
0.
1.
1.
1.
0.
1.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
97
13
70
91
93
90
00
95
88
91
92
20
02
86
25
01
08
09
74
98
78
61
36
14
11
75
-
-
01
10
73
95
58
93
96
75
85
77
95
97
90
-0
0
1
0
0
0
-1
-0
1
0
1
0
0
0
-0
-0
0
-0
-0
-0
-0
-0
-0
-0
-0
-0
0
-0
0
-0
-0
0
-0
1
1
-0
-0
-0
0
.9
.6
.4
.5
.6
.2
.0
.5
.1
.3
.2
.6
.7
.6
.2
.3
.2
.4
.5
.6
.6
.8
.6
.7
.6
.4
-
-
.1
.8
.1
.2
.1
.4
.7
.4
.2
.1
.5
.9
.7
0
1
0
0
0
0
1
0
0
0
0
0
0
0
1
1
1
1
0
1
0
0
1
1
1
0
1
1
0
1
0
0
1
0
0
0
0
0
0
.99
.11
.64
.71
.72
.90
.01
.96
.87
.93
.83
.90
.80
.73
.28
.12
.10
.12
.81
.27
.82
.68
.42
.26
.45
.77
-
-
.06
.26
.80
.06
.67
.94
.00
.63
.73
.87
.96
.99
.90
0
-0
-1
-1
-1
0
1
0
0
1
-0
-1
-1
-1
0
0
0
0
0
1
1
1
1
0
1
1
0
0
0
0
1
0
0
-0
-1
0
0
0
1
.6
.2
.4
.2
.2
.7
.0
.7
.4
.0
.8
.0
.0
.0
.6
.8
.8
.9
.9
.2
.0
.2
.1
.8
.0
.4
-
-
.8
.9
.6
.9
.0
.7
.7
.8
.0
.8
.7
.6
.2
0
1
0
0
0
0
1
0
0
0
0
0
0
0
1
1
1
1
0
1
0
0
1
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
.99
.09
.67
.74
.75
.91
.01
.95
.86
.92
.80
.88
.78
.72
.32
.17
.11
.12
.83
.23
.82
.67
.42
.32
.48
.75
-
-
.06
.29
.86
.09
.68
.94
.98
.70
.73
.91
.95
.99
.89
0.3
-1.4
-0.2
-1.0
-1.0
0.9
0.9
-0.7
-1.5
0.8
-1.2
-1.2
-1.2
-1.1
1.4
1.3
1.1
1.2
1.3
1.0
1.2
1.0
1.1
1.4
1.2
-0.7
-
-
0.9
1.2
1.2
1.2
1.1
0.7
0.1
0.5
-1.0
1.2
-0.7
0.3
0.2
-------
OPUSguan ll-FEB-1998 Page 1
Page 1 of 1
Run: 07FEB98 Analyte: M23_CONF Cal: 225-07feb Results: Version: V3.5 17-APR-1997 11:14:34
07feb98d S4 07feb98d S5 07feb98d S6 07feb98d S7 07feb98d S8
Name Mean RRF S. D. %RSD RRF#1 SD RRF#2 SD RRF#3 SD RRF#4 SD RRF#5 SD
2,3,7,8-TCDF 0.9472 0.033 3.49 % 1.00 1.5 0.91 -1.3 0.94 -0.4 0.95 0.0 0.95 0.1
13C-2,3,7,8-TCDF - - -% _- . - _ - -_ _ _
HxCDPE - - -% -- -- -- -- --
QC CHK ION (Tetra) - - - % - - -- -- - - - -
-------
Section 4
Sstem Perfor<
Section 4-4
Documentation for the Analysis
of
Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans
00
-------
OPUSquan 20-JUL-1998
Page 1
Page 1 of 2
CT5
Run #6 Filename al7ju!98b S: 2 1:1 Acquired: 17-JUL-98 17:31:00 Processed: 20-JUL-98 08:49:43
Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-» Results: m8290-23-» Quan : V3.5 17-APR-1997 11:14:34
Sample text: FE CS3 Comments: ^t-\n4l. , OPUS : A3.6/8X 18-MAR-1998 16:12:42
Typ
Name
Resp
RA
RT
Cone
Dev'n
Mod?
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
SS
DPE
DPE
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3, 6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
13C-2,3,7,8-TCDD
13C-1 ,2,3,7, 8-PeCDD
13C-1,2,3,6,7, 8-HxCDD
13C-1,2,3,4, 6,7,8-HpCDD
13C-OCDD
13C-2,3,7,8-TCDF
13C-1 , 2,3,7, 8-PeCDF
13C-l,2,3,6,7,8-HxCDF
13C-l,2,3,4,6,7,8-HpCDF
13C-1,2,3,4-TCDD
13C-l,2,3,7,8,9-HxCDD
37Cl-2,3,7,8-TCDD
13C-2 ,3,4,7, 8-PeCDF
13C-l,2,3,4,7,8-HxCDD
13C-l,2,3,4,7,8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
37Cl-2,3,7,8-TCDD
13C-2,3,4,7,8-PeCDF
13C-l,2,3,4,7,8-HxCDD
13C-1 , 2,3,4,7,8 -HxCDF
13C-1,2,3, 4,7,8, 9-HpCDF
HxCDPE
HpCDPE
2
8
5
7
7
5
1
2
1
1
8
1
9
8
7
6
1
4
3
3
2
3
6
4
3
2
4
3
2
1
5
7
4
2
1
5
7
4
.4e+07
.6e+07
.9e+07
.3e+07
.7e+07
,8e+07
.Oe+08
.9e+07
.le+08
.le+08
.2e+07
.2e+08
.6e+07
.le+07
.7e+07
.2e+07
.le+08
.8e+08
.Oe+08
.3e+08
. 6e+08
.9e+08
.Oe+08
. 8e+08
.8e+08
.5e+08
.5e+08
. 4e+08
.2e+07
.le+08
.le+07
.2e+07
.8e+07
.2e+07
.le+08
.le+07
.2e+07
8e+07
*
*
0
1
1
1.
1.
1.
0.
0.
1.
1.
1.
1.
1.
1.
1.
1.
0.
0.
1.
1.
1.
0.
0.
1.
0.
0.
0.
1.
1.
1.
0.
0.
1.
1.
0.
0.
77
54
26
24
23
06
90
77
52
52
38
14
23
24
01
02
90
77
54
26
04
89
78
57
52
44
79
26
57
24
52
45
57
24
52
45
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
28:27
32:37
34:42
34:46
34:59
37:11
40:02
27:26
31:57
32:24
34:11
34:15
34:37
35:08
36:22
37:32
40:10
28:26
32:36
34:45
37:10
40:01
27:25
31:56
34:14
36:21
28:09
34:58
28:27
32:24
34:42
34:10
37:31
28:27
32:24
34:42
34:10
37:31
NotFnd
NotFnd
5.00
25.5
26.0
25.6
26.6
25.0
51.2
5.07
25.8
24.8
24.7
27.6
26.8
26.1
24.6
24.1
51.5
98.2
88.9
92.7
96.3
182
97.6
89.1
92.0
98.1
92.6
84.9
4.91
21.8
20.8
22.0
24.3
5.01
24.5
22.5
23.7
24.8
*
*
0
2
4
2
6
-0
2
1
3
-0
-1
10
7
4
-1
-3
3
-1
-11
-7
-3
-9
-2
-10
-8
-1
-1
-12
-16
-12
-2
0
-2
-10
-5
-0
.0
.1
.1
.6
.5 .
.1 //}
.3 /A,
.3 j
.3 1
.7
.2
.5
.2
.6
.6
.8
.0
.8
.1
.3
.7
.0
.4
.9
.0
.9
_
-
.7
7
.6
0
9
1
0
2
0
9
-
n
n
y? itA-Tii^vit0^'
S — Jj * -* (t\I
f n
./I n
"y n
n
n
n
n
n
_
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
-------
•Y
File: A17JUL98B Acq: 17-JUL-1998 17:31:00 Exp: EXP M23 DBS OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #2 Text: FE CS3 ALS #2
319.8965 S:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 1564 . 0 , 1 . 00%, F, F)
100% A1.03E7 2.0E6
50 j
o:
321.
100%
50 j
o:
331.
100%
50J
o:
333.
100%
50 J
OJ
327.
100%
50J
o:
316.
100*
50^
o:
_1.0E6
O.OEO
24:00 25:00 26:00 27:00 28:00 29:00 30:00 Time
8936 S:2 SMO ( 1 , 3 ) BSUB(128, 15 , -3 . 0 ) PKD(3 , 3 , 3 , 0 . 10%, 1824 . 0 , 1 . 00%, F, F)
A1.33E7 2.7E6
A F
A
_1.3E6
O.OEO
24100 25100 26:00 27loO 2sloO 29loO 30:00 Time
9368"S:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 11164 . 0 , 1 . 00%, F, F)
A2.10E8 4.1E7
AA
i.2 . 1E7
LO.OEO
24 loo 25 100 26:00 27loO 28:00 29:00 30:00 Time
9339 S:2 SMO(1,3) BSUB(128, 15, -3 .0) PKD(3 , 3 , 3 , 0 . 10%, 3908 . 0 , 1 .00%,F,F)
A2.71E8 ,_5.3E7
A A F
24:00 25100 26loO 27:00 28:00 29:00 30:(
8847 S:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 7592 .0, 1 .00%,F,F)
A2.21E7
A
_2.7E7
:O.OEO
10 Time
4.4E6
_2.2E6
LO.OEO
24100 25100 26:00 27:00 28:00 29:00 30:00 Time
9824 S:2 SMO(1,3) PKD(3 , 3 , 3 , 100 .00%, 0 . 0, 1 . 00%, F, F)
23:30 24:17 24:4625;08 25:43 26^07 26:48 27:19 28:02 28^44 29:1029:32 7.8E7
L3.9B7
LO.OEO
24,00 25100 26:00 27;00 28:00 29:00 30:00 Time
-------
File: A17JDL98B Acq: 17-JUL-1998 17:31:00 Exp: EXP_M23_DB5_OVATION Voltage SIR EI + GC Autospec-UltimaE Parad:
Sample #2 Text: FE CS3 ALS #2
355.8546 S:2 F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2136 . 0 , 1 . 00%, F, F)
100% A5.24E7
so:
o:
357.
100%
so:
o:
367.
100%
50J
o:
369.
100%
50-
o:
366.
looi
50J
o:
|^
i i i 1 i i i i i 1 i i i i I 1 i i i i i 1 i i i i i 1 r r i i i i i i i i i i i i i i i i i i i i i i i i i i i I i r i i i | i i i i i 1 i i i i r | i i if T| 1 i I I I I i i i i i | i i
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
8517 S:2 F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD (3 , 3 , 3 , 0 . 10%, 692 . 0, 1 . 00%, F, F)
A3.41E7
A
3b!l2 ' 30:24 ' 30l36 ' 3bl48 ' 31:66 ' 3iSl2 3il24 31\36 3i!48 32166 32112 32-124 32136 32J48 33166 33li2
8949 S:2 F:2 SMO(1,3) BSUBU28, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 4016 . 0 , 1 . 00%, F, F)
A1.84E8
1L
' 3bli2" 30124" 30l36" 30148" 3ll66 ' 3lll2 3ll24 3ll36 3ll48 32l6o 32ll2 32:24 32:36 32148 33loO 33ll2
8919 S:2 F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2840 . 0, 1 . 00%, F, F)
A1.20E8
IL
"30112" 36124" 36136" 30148" 3llo6 ' 3lll2 3ll24 3ll36 3ll48 32166 32! 12 32124 32136 32:48 33:00 33:12
9792 S:2 F:2 SMO(1,3) PKD(3 , 3 . 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
30-14 30:47 31:05 31:22 31:39 31=57 32:11 32:36 3ii33
' 361l2" 36124" 36136" 36148" 3ll6o '3lll2 3ll24 3lS36 3ll48 32100 32ll2 32?24 32136 32J48 33:00 33:12
Lgm
_1.8E7
_8.8E6
O.OEO
Time
_1.1E7
_5.7E6
O.OEO
Time
6.5E7
.3.3E7
0 . OEO
Time
4.3E7
_2 . 1E7
O.OEO
Time
8.7E7
_4.3E7
O.OEO
Time
-------
File
Samp
389.
100§
50_
n
391.
1002
50_
o-
401.
100%
so:
0"
403.
100%
so:
0
380.
100%
so:
0"
:: A17JUL98B Acq: 17-JUL-19W
>le #2 Text: FE CS3 ALS #2
8156 S:2 F:3 SMO(1,3) BSUB(128
33J24 33136 33 Us 34:
8127 S:2 F:3 SMO(1,3) BSUB(128
33124 33136 33:48 34!
8559 S:2 F:3 BSUB(128, 15, -3 . 0)
33124 33136 33:48 34!
8530 S:2 F:3 BSUB(128, 15, -3 . 0)
17:31:00 Exp : EXP_M23_DB5_OVATION Voltage SIR EI + GC Autospec-UltimaE Paradigm
,15, -3.0) PKD(3,5,2,0.10%,1860.0.1.00%.F.F)
A4
f
00 34!l2 34!24 34:36
,15, -3.0) PKD(3,5,2,0.10%,2388.0
A3
1}
i i i i i | i i i i i | i i i i i | i "i i i
00 34:12 34!24 34:36
PKD(3,5/2,0.10%,11648.0,1.00%,F
Al.
rJ
00 34!l2 34?24 34!36
PKD( 3, 5, 2, 0.10%, 10004. 0,1. 00%, F
Al.
J
•5?5E7 A4.24E7
"i I r— r7TTT— r~ j -i — r-i— i — i — i 1 1 1 1 I — i — i — i — i — i — i — i — i — 7 — i — i — ,
34:48 35:00 35:12 35!24 3s!36 35
,1.00%,F,F)
•PE1 A3.43E7
u
"I I t I i'-r i IT—T i — i — i — i" "1 1 1 1 I i I i i i i — i— i — i — i — i — i — J
34:48 35:00 35!l2 3s!24 3s!36 35
,F)
?6E8 A1.88E8
34548 35!oO 35!l2 3sl24 3sl36 3s!
,F)
J8E8 A1.49E8
U
1.2E7
-6.1E6
0 OEO
48 Time
9.8E6
.4.9E6
0 OEO
48 Time
6.8E7
.3.4E7
.O.OEO
48 Time
5.5E7
_2.7E7
.O.OEO
33?24 33!36 33!48 34^00 34!l2 34!24 34!36 34!48 35!oO 35!l2 3s!24 3s!36 35 48 Time
9760 5:2 F:3 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
33:42 33:56 34:08 34:18 34:31 34:43 34:53 35:14 35:43 1 . 8E8
/
33.!24 33:36 33:48 34?
i i i i i | i i i i i i i i r i i i i i i i
00 34:12 34:24 34:36
19.1E7
O.ORO
34:48 35:00 35:12 35:24 35:36 35:48 Time
-------
File
Samp
423.
1001
50_
0"
425.
1003
50J
0"
435".
iooa
so:
437.
100%
so:
o:
430.
100%
so:
0'
i: A17JUL98B Acq: 17-JUL-1998 17:31:00 Exp: EXP M23 DBS OVATI6N Voltage SIR EI+ GC Autospec -UlfimaE Paradigm '
>le #2 Text: FE CS3 ALS #2
7767 S:2 F:4 SMO ( 1 , 3 ) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1392 . 0, 1 . 00%, F, F)
A2.96E7 7.1E6
/\
/I
36566 36512' 36-24 36536 36548 37566 37! 12 37! 24 37! 36 37548 38566 38512 38524 38 536 ' 38548 ' 39
7737 S:2 F:4 SMO(1,3) BSUB{128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 3648 . 0, 1 . 00%,F,F)
A2 . 81 E7
l\_
i i i i i i i i i i i i i i i i i i i i r*T~r*i i i i i i i i i i i i i i r\ i i i iii i T 'I I I 1 i i i i i i i i i i i i i i i i i i i i i i i-r"i i—i-i i i i i i i i i i i i i i i i
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 3s!l2 38524 38536 3s!48 39
8169 S:2 F:4 SMO(1,3) BSUB(128, 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2028 . 0, 1 . 00%, F, F)
A1.31E8
j[_
36566 36512 '36:24 36:36 36{48 37566 37!i2 37524' 37536 37548 38566 385l2 38524 38536 38548 39?
8140 S:2 F:4 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 860 . 0, 1 . 00%, F, F)
A1.27E8
j[_
36566 36512 36:24 36536 36548 37566 375l2 37!24 37536 37548 38566 385l2 38524 38:36 38548 39!
9728 S:2 F:4 SMO(1,3) PKD(3,3,3, 100 .00%, 0 .0,1 . 00%,F,F)
35^5936:10 36j22 36:33 36:47 37:1137:21 37:45 38:10 38:33 3R;45
r~
36566 36:12 36:24 36536 36548 37566 37 5 12 ' 37 524 ' 37 536 ' 37 548 ' 38 5 66 38 5 12 ' 38 524 ' 38 5 36 38 5 48 ' 39 5
L3.5E6
LO.OEO
00 Time
6.8E6
.3.4E6
_O.OEO
00 Time
3.2E7
_1.6E7
.O.OEO
00 Time
3 . 1E7
11.5E7
".O.OEO
00 Time
1.2E8
_6.1E7
O.OEO
00 Time
-------
File
Samp
457.
1001
so:
o:
459.
100%
so:
o-
469.
100%
so:
n '
471.
100%
50:
o:
454.
100%
so:
o;
: A17JUL98B Acq: 17-JUL-1998 17:31:00 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC AutOSpec-UltimaE Parad
le #2 Text: FE CS3 ALS #2
7377 S:2 F:5 SMO(1,3) BSUB(128, 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2336 . 0, 1 . 00%, F, F)
A4.77E7
/Y_
39:12 39:24 39:36 39:48 40:00 40:12 4o!24 40:36 40:48 41:
7348 S:2 F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 332 . 0 , 1 . 00% , F, F)
A5.30E7
J\__
39:12 39:24 39:36 39:48 40:00 40:12 4o!24 40:36 40:48 41:
7780 S:2 F:5 SMO(1,3) BSUB(128, 15, -3 .0) PKD(3 , 3 , 3 , 0 . 10%, 3976 . 0 , 1 . 00%, F, F)
A1.84E8
/V_
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
7750 S:2 F:5 SMO(1,3) BSUB(128, 15, -3 .0) PKD(3 , 3 , 3 , 0 . 10%, 1228 . 0 , 1 . 00%, F, F)
A2 . Q8E8
J\__
39:12 39:24 39:36 39:48 40:00 40:12 4o!24 40:36 40:48 41:
9728 S:2 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
39JJJ. 39:2939:35 39:49 40:01 40:08 40:24 40:34 40:54
/
39! 12 39:24 39:36 39148 40:00 40:12 4o!24 40:36 40:48 41
igm
9.9E6
L4.9E6
LO.OEO
00 Time
1.1E7
L5.6E6
.O.OEO
00 Time
3.9E7
.1.9E7
O.OEO
00 Time
4.3E7
.2.2E7
_O.OEO
00 Time
1.4E8
L6.8E7
_O.OEO
00 Time
-------
File: A17JUL98B Acq:
17-JDL-1998 17:31:
00 Exp: EXP_M23_DB5_OVATION Voltage SIR El-t- GC Autospec-UltimaE Paradigm
Sample #2 Text: FE CS3 ALS #2
303.9016 S:2 SMO(1,3)
100%
50 j
o"
305.8987 S:2 SMO{1,3)
100%
50J
0:
i i ii i | i
24:00
315.9419 S:2 SMO{1,3)
100%
50 j
o:
"' i i i i i I i
24:00
317.9389 S:2 SMO(1,3)
100%
50 1
Q-
" ' i 1 1 1 1 1 r
24:00
375.8364 S:2 SMO(1,3)
100%
50_
Q
23:36 24
A A AA Art „,
u ' *"" i ' 'r *~~l ' — r*—^ — ~-f -=t
24:00
316.9824 5:2 SMO(1,3)
BSUB(128,15,-3.0)
25 loo'
BSUB{128,15,-3.0)
25:00
BSUB(128,15,-3.0)
25:00
BSUB(128,15,-3.0)
25:00
BSUB(128,15,-3.0)
PKD(3,3,3,0.10%,1660.0,
26 loo'
PKD(3,3,3,0.10%,3140.0,
1.
27
1.
26:00 27
PKD(3,3,3,0.10%,4980.0,
— i 1 i | i i i i i
26:00
PKD(3,3,3,0.10%,5448.0,
26100
PKD(3,3,3,100.00%,76.0,
1.
27
1.
27
1.
00%,F,F)
A1.26E7
A
/ V
2.5E6
L1.2E6
: O.OEO
100 28100 29100 3oloO Time
00%,F,F)
A1.64E7
A
f[
3.3E6
L1.6E6
: O.OEO
:00 28:00 29:00 30:00 Time
00%,F,F)
A2 . 64E8
A
A
/v
5.3E7
.2 . 6E7
O.OEO
100 28:00 29:00 30:00 Time
00%,F,F)
A3.37E8
A
A
/v
6.7E7
L3.4E7
: O.OEO
loo 28100 29100 30:00 Time
00%,F,F)
26^50 ,_8.7E3
A12 24:51
' S*i ^r — H — r-n*P' i
25:00
PKD(3,3,3,100.00%,
100% 23:30 24:17 24:4625:08
50Ji
ni
24 :00'
25 loo'
25:55
26:00
0.0,1.00%,F,F)
25:43 26-07 26i
— i 1 i | 1 1 i i i
26:00
r>
27
48
27
28:26
27:13 27:39 A A ^ ^ 29;34
:
L4.4E3
: O.OEO
SOO 28100 29100 30:00 Time
27:19 28;02 28:44 29:1029:32 7 . 8E7
L3.9E7
O.OEO
loo' ' 28 100 29 loo 30:00 Time
-------
File: A17JUL98B
Sample #2
339.8597 S:
100%
50 j
o:
' 36112
341.ftSfift S:
100%
50 J
o"
30:12
351.9000 S:
100%
50 J
-
o:
30:12
353.8970 S:
1001
50 j
0 '
" 'i i i i i i
30:12
409.7974 S:
100!
50 J
o:
30
r^;
SJ^
' 3oli2
366.9792 S:
100% 30:14
50:
0'
-V1 i ' i i i r "
30:12
Text
2 F:
i i i |
30!
2 F:
30!
2 F:
30 !
2 F:
301
2 F:
:
2
24
2
24
2
T-T
24
2
24
2
Acq: 17-JUL-1998 1
FE CS3
SMO (1,3)
30:36
SMO (1,3)
i i i 1 i i i
30:36
SMO (1,3)
i i i I i i i
30:36
SMO (1,3)
30:36
SMO (1,3)
ALS #2
BSUB(128,
36148 ' 3ll
BSUB(128,
i ' I ' ' ' ' ' 1
30:48 31:
BSUB(128,
30:48 31:
BSUB(128,
i i I i i i i i i
30:48 31:
BSUB(128,
.18 30=30 30:46 3
^ A 30: 3.3 A A.
iii|
30:
2 F:
3oi
V
24
2
24
w-^^/
i i ' 1 ' ' |
30:36
SMO (1,3)
i i ' I ' ' '
30:36
v ^J^J
' ' 1 ' ' ' ' ' 1
30:48 31:
PKD (3,3,3
30:55
i i i i i i i i i
30:48 31:
7:31:00 Exp:
15, -3.0) PKD (3
00 31:12 31:
15, -3.0) PKD (3
00 31:12 31:
15, -3.0) PKD(3
00 31:12 31:
15, -3.0) PKD(3
00 31:12 31:
15, -3.0) PKD(3
EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
,3,3,0.10%
24 31:36
,3,3,0.10%
24 31:36
,3,3,0.10%
24 31:36
,3,3,0.10%
24 31:36
,1524.0
A6
31:48
,2624 0
A4
31:48
,60.0,1
A2.
j
/
31148
,1568.0
Al.
j
/
siUs
,3, 3, 100. 00%, 3856
1A°3 31:21 31:37
y\ A s\/\.A M
\J \J V
00 31:12 31:
,100. 00%, 0.0,1
v V ^
24 ' 31136
.00%,F,F)
31:05 31:22 31:39
66 ' 31:12 ' 3ll
24 31:36
31
rv
A^^
31:48
,1.00%,F,F)
48E7
A
f[_
32:00 32:12
, 1.00%,F,F)
25E7
A
^
32:00 32:12
.00%,F,F)
91E8
A
'\
\
v^
32:00 32:12
,1.00%,F,F)
86E8
A
<\
\
^
32iOO 32:12
.0,1.00%,F,F)
:56 32:08 32,
A^N A /
^A^W
32 16o 32 112
31:57 32:11
biUs
32:66 32112
A6.44E7
A
/ v^
_2.2E7
.1.1E7
O.OEO
32:24 32:36 32:48 33:00 33:12 Time
A4.24E7
A
/ v_
_1.5E7
_7.3E6
"O.OEO
32:24 32:36 32:48 33:00 33:12 Time
A6.98E7
/v
9.6E7
.4.8E7
O.OEO
32124 32:36 32!48 33:66 33ll2 Time
A4.44E7
/\
6.2E7
.3.1E7
O.OEO
32124 32136 32148 33:66 33112 Time
32:36
A
•18 /\ oicc
"\*f\r\J v\ s^J~\f\ A /A /\
W V V \S^^ V \ J VyV \A^.
1.1E4
.5.7E3
O.OEO
32124 32136' 32148 33:66 33112 Time
32:36 32:59 r8.7E7
1.4. 3E7
: O.OEO
32124 32136 32148 33.!66 33li2 Time
-------
-**>
File: AI7JUL98B Acq: 17-
Sample #2 Text: FE CS3
373.8207
100%
50
OJ
33 1
375.8178
100%
50 j
OJ
S:2 F:3 SMO(1,3)
24 33136 33
S:2 F:3 SMO(1,3)
JUL-1998 17:31:
ALS #2
BSUB(128,15,-3
j
Us 34 loo
BSUB{128,15,-3
inr
.0)
A6
A
M
/
34:
.0)
Exp: EXP_M23_DB5_6VATION
PKD(3,5,2,0.10%,
.13E7
A A5-
/\
1 \
i v^ y
12 34:24 34:
PKD(3,5,2,0.10%,
A5.40E7
* A A4.
33!
383.8639
100%
50J
•
0"
•33!
385.8610
100%
50 j
-
o-
'33:
445.7555
100%
50 :
0
^~\^>
'SSS
380.9760
100%
50 j
OJ
24 33:36 33
S:2 F:3 BSUB(128
24 33:36 33
S:2 F:3 BSUB(128
24 33:36 33
S:2 F:3 SMO(1,3)
33:30 33:39 3
^~V /—^ s^ \/ -'^M
24 33:36 33
S:2 F:3 SMO(1,3)
33:42
j
:48 34100
,15, -3.0) PKD(3
•f
:48 34:00
,15, -3.0) PKD(3
148 34:00
BSUB{128,15,-3
A
1 ,
34:'
-5,
34!
,5,
34.1
.0)
3>50 34:06
s* — \_x — v / \
•48 34100
PKD(3,3,3,100.
33i_56 34:
./
34!
00%
08
J\ 1
v- /
12 34:24 34:
2, 0.10%, 36440. 0,1
32E8
A
v
^
12 34 1 24 34!
2, 0.10%, 79816. 0,1
52E8
J\
A
/ v
v_
12 34. -24 34:
4032.0,1.
31E7
A
'\
V
36 34!
1852.0,1.
30E7
\
v__r_^
36 34?
.00%,F,F)
36 34l
.00%,F,F)
36 34 1
PKD(3,3,3,100.00%,1548.0,
,. 01 34:31
. x— o4:21 /"N. j
12 34:24 34:
, 0.0,1. 00%, F,F)
34:23 34:31
Voltage SIR EI+ GC Autospec-Ul timaE Paradigm
00%,F,F)
1.
A4 . 52E7
A
y v
|
L9.
48 35:00 35:12 35124 35136 35.48
00%,F,F)
1.
A3.63E7
A
y v_
.7.
• n
48 35:00 35:12 35:24 35136 35 48
A2.51E7
y~\^
4.
12.
n
i i i i i 1 i i *i i T1 1 I i i 1 r '[' t -i — i — r— i — i i i — i — i — i — *— - •
48 35:00 35:12 35124 35I36 35 48
A4.80E7
^\_
9.
.4.
0
48 35100 35:12 35124 35:36 35 48
1.00%,F,F)
34:45 34:58
A
-X ^
\/
36 34!
34:43
/ \ 35:09 oc oo TR-T7
v / ^N S^\^/^ AT 35:29 \AT 35:45
^" -^ \-S ^^^ \ / \^ — s^^-^ \—^_f~~^-^'
r1'
5.
0.
48 35loO 35ll2 35?24 35136 35Us
34:53 35:14 35:43 1.
/
'33l
24 33:36 33
:48 34:00
34!
12 34:24 34:
36 34:
.9.
0.
48 35:00 35:12 35:24 3sl36 35Us
8E7
2E6
npn
Time
5E7
5E6
OEO
Time
9E7
5E7
OEO
Time
6E7
8E7
OEO
Time
OE4
2E3
OEO
Time
8E8
1E7
OEO
Time
-------
iFile: A17JULyHB Acq: 17-JUL-1998 17:31:00 Exp: EXP_M23_DB5_OVATION Voltage SIR EH- GC Autospec-UltimaE—Paradigm
Sample #2 Text: FE CS3 ALS #2
407.7818 S:2 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,9768.0,1.00%,F, F)
100% A3.88E7
50J
OJ
A3.14E7
1.1E7
L5.5E6
i i | i—i"i"i i I i i f i mi"YiMr i i i—t11!1 i I "T"T i I i i i i i i—i i i—t—i—i—i—i—i—i—T-J—i f i i i I i i "I I i r"m™i 'i i i i i i i i i—i—r-
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
409.7788 S:2 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3,0.10%,7452.0,1.00%, F, F)
100% A3.83E7
i i i i i i i i i i i i i i i i i i i i i' • UE.U
38:24 38:36 38:48 39:00 Time
50-
A3.08E7
I I ' I I I ' I I I I I f I I I I I I' I I I I I I I I I I I I I I I I I I i i I I i i i I I i T I i i [ I I1 I I I I I I I I I I I I I I I I i i
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
417.8253 S:2 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3,0.10%,14644.0,1.00%, F,F)
100%. A7.60E7
L5.4E6
.O.OEO
I
50J
O
38:24 38:36 38:48 39:00 Time
2.1E7
Ll.OE7
A1.50E7
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37|48 38100 38ll2
419.8220 5:2 F:4 SMO{1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,10404.0,1.00%,F,F)
100% A1.73E8
LO.OEO
50J
38:24 38:36 38J48 39:00 Time
4.7E7
-2.4E7
A3.32E7
O.OEO
36^00 36112 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
479.7165 S:2 F:4 SMO(1,3) BSUBU28,15, -3 . 0) PKD(3 , 3 , 3 ,100 . 00%, 2976.0,1.00%, F, F)
100% 37jlO
: 35:58
50J
ol
38:24 38:36 38:48 39lOO Time
9.6E3
L4.8E3
LO.OEO
36:00 36:12 36:2436:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
430.9728 S:2 F.-4 SMO(1,3) PKD(3,3,3,100. 00%, 0. 0,1. 00%,F,F)
100% 35:5936:10 36:22 36:33 36:47 37:11 37^21
37:45
38:10
38:24 38:36 38:48 39:00 Time
38:33 38:45 1. 2E8
L6.1E7
lO.OEO
36!6d ' 36:12 ' 36:24 ' 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
38:24 38:36 38i48 39:00 Time
-------
File: A17JUL98B
Sample #2 Text:
441.7427 S:2 F-.5
100%
°: .,,,,,
39:12
443.7398 S:2 F:5
100%
50J
o:
39:12
469.7780 S:2 F:5
100%
50J
o:
39:12
471.7750 S:2 F:5
100%
50J
0:
39ll2
513.6775 S:2 F:5
100%
50 1
': 39:10
0 .j_/-\-X>^"S^;
1 11 1 1 1
39:12
454.9728 S:2 F:5
100% 39:11
;/
50J
0:
39:12
Acq: 17-JUL-1998 17:31:00
FE CS3 ALS #2
SMO(1,3) BSUB(128,15,-3.0)
39!24 39136
SMO(1,3) BSUB(128,15,-3.0)
39124 39.'36
SMO(1,3) BSUB (128, 15, -3.0)
39124 39536
SMO(1,3) BSUB (128, 15, -3.0)
39:24 39136
SMO(1,3) BSUB(128,15,-3.0)
3^19 39:31 39:40
/\ ^/V^-vYA ^
iiiiiiiiiiiiii
39:24 39:36
SMO(1,3) PKD(3,3,3,100.00%
39:2939:35 39:
39:24 39136
Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec -Ul timaE Paradigm
PKD(3,3,3,0.10%,772.0,1.00%,F,F)
A5.10E7 1.1E7
T
V
• I i i i i i 1 i i r i i | i i i i i | i i i < i r—r -i — i — i — , — i — | — i — | — , — , — | — .
39:48 40:00 40:12 40:24 40:36 40:48 41
PKD(3,3,3,0.10%,1372.0,1.00%,F,F)
A5 -£9E7
7"
39 .Us 40 lob 40 1
PKD(3,3,3,0.10%,3976.0,1
A1.84E8
J\^__
39148 40 lob 401
PKD(3,3,3,0.10%,1228.0,1
A2.Q8E8
J\_
39148 4olob 401
PKD(3,3,3,100.00%,1228.0
40:02
39:52 / \
- — ^^^ / —
39:48 ' ' 40:00 ' ' 401
,0.0,1.00%,F,F)
44 40:01 40:08
39:48 4olob ' ' 4o!
v_
1 1 1 1 1 | 1 1 1 -T—l 1 1 1 1 1 1 1 1 1 , 1 1 r
12 40:24 40:36 4ol48 41
.00%,F,F)
=-l" 1 i i i — p-i — i — i — i — i — r — r— r — i — i — i — i — , — , — , — i — , — j
12 40:24 40:36 40:48 41
.00%,F,F)
12 40:24 40:36 4ol48 4l!
,1.00%,F,F)
40:27 40:39 40:53
"* >. — f ~** ^ "^- .-.. f > S" S *-••- -^/ "^s. —
12 40:24 4ol36 40:48 4ll
40:24 40:34 40:54
i i i i i | i i i i i | i i i i i • | T— r — i 1 1 11-
12 40:24 40:36 4ol48 4ll
_5.3E6
LO.OEO
00 Time
1.2E7
_6.0E6
LO.OEO
00 Time
3.9E7
L1.9E7
_O.OEO
00 Time
4.3E7
_2.2E7
_O.OEO
00 Time
_8.2E3
_4.1E3
_O.OEO
00 Time
1.4E8
_6.8E7
O.OEO
00 Time
-------
OPUSquan 20-JUL-1998
Page 1
Page 2 of 2
Run #7 Filename ai7jui98b S: 15 1:1 Acquired: 18-JUL-98 03:17;11 Processed: 20-JUL 98 08:49:48
Run: 0716crv Analyte: m8290-23-» Cal: m8290-23-» Results: Quan : V3.5 17-APR-1997 11:14:34
Sample text: BE CS3 Comments: C / OPUS : A3-6/8x 18-MAR-1998 16:12:42
00
o
Typ
Name
Resp
RA
RT
Cone
Dev'n
Mod?
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
ss
ss
ss
ss
ss
DPE
DPE
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
13C-2,3,7,8-TCDD
13C-l,2,3,7,8-PeCDD
13C-l,2,3,6,7,8-HxCDD
13C-l,2,3,4,6,7,8-HpCDD
13C-OCDD
13C-2,3,7,8-TCDF
13C-l,2,3,7,8-PeCDF
13C-l,2,3,6,7,8-HxCDF
13C-1 , 2,3,4,6,7, 8-HpCDF
13C-1,2,3,4-TCDD
13C-l,2,3,7,8,9-HxCDD
37Cl-2,3,7,8-TCDD
13C-2,3,4,7,8-PeCDF
13C-l,2,3,4,7,8-HxCDD
13C-l,2,3,4,7,8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
37Cl-2,3,7,8-TCDD
13C-2,3,4,7,8-PeCDF
13C-1 , 2,3,4,7, 8-HxCDD
13C- 1,2,3,4,7, 8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
HxCDPE
HpCDPE
3
1
7
1
1
8
1
4
1
1
1
1
1
1
1
9
1
6
4
4
3
5
8
6
5
3
6
4
3
1
8
1
7
3
1
8
1
7
.26+07
.2e+08
.8e+07
.le+08
.le+08
.46+07
.5e+08
.Oe+07
.5e+08
.5e+08
.2e+08
.5e+08
.3e+08
.2e+08
.16+08
.5e+07
. 6e+08
.5e+08
.4e+08
.6e+08
. 8e+08
.8e+08
.3e+08
.8e+08
.2e+08
. 6e+08
.2e+08
.7e+08
.le+07
. 6e+08
.3e+07
.le+08
. 4e+07
.le+07
. 6e+08
. 3e+07
.le+08
.4e+07
*
*
0.
1.
1.
1.
1.
1.
0.
0.
1.
1.
1.
1.
1.
1.
1.
1.
0.
0.
1.
1.
1.
0.
0.
1.
0.
0.
0.
1.
1.
1.
0.
0.
1.
1.
0.
0.
78
55
22
27
25
01
88
78
53
53
21
23
21
22
02
03
89
78
56
26
04
89
79
56
52
45
79
26
56
23
52
45
56
23
52
45
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
28:27
32:37
34:42
34:46
34:59
37:10
40:02
27:26
31:57
32:24
34:11
34:15
34:37
35:08
36:22
37:31
40:10
28:26
32:36
34:45
37:09
40:01
27:25
31:56
34:14
36:21
28:09
34:58
28:27
32:24
34:41
34:10
37:31
28:27
32:24
34:41
34:10
37:31
NotFnd
NotFnd
5.04
24.6
25.0
28.2
26.6
24.9
50.3
5.03
26.0
25.1
25.7
27.2
25.8
27.4
25.1
25.3
51.7
96.9
94.4
92.1
101
194
97.9
91.6
89.1
102
128
119
5.01
22.5
24.3
24.3
26.5
5.18
24.6
26.3
27.0
25.9
*
*
0
-1
0
12
6
-0
0
0
4
0
2
8
3
9
0
1
3
-3
-5
-7
0
-2
-2
-8
-10
2
0
-10
-2
-3
6
3
-1
5
8
3
"7 /
•6 In
-1 Jffs
-8 rf\L/
.4 Uf
-3 / -
.6 y
.6
.0
.5
.9
.7
.2
.7
.4
.2
.5
.1
.6
.9
.7
.9
.1
.4
.9
.5
-
-
.3
.1
.9
.0
.2
.5
.8
.3
.0
.6
-
"
/n
n
"
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
-------
File: A17JUL98S Acq: 18-JUL-1998 03: IV:
Sample #15 Text: BE CS3 ALS #2
319.8965 S:15 SMO(1,3) BSUB(128 , 15, -3 . 0)
100%
50:
o:
24:00 25:00
321.8936 S:15 SMO{1,3) BSUB(128, 15, -3 .0)
100%
50:
o:
24:00 25:00
331.9368 S:15 SMO(1,3) BSUB(128, 15, -3 . 0)
100%
50:
o:
" ' i l i l i l l T — r— i i | i i
24:00 25:00
333.9339 S:15 SMO(1,3) BSUB(128, 15, -3 .0)
100%
50:
0
v ' i r" i 1 1 1 1 1 — r i i i i i
24:00 25:00
327.8847 S:15 SMOU.3) BSUB(128, 15, -3 . 0)
100%
50.
0 "
"-* 1 1 1 1 1 1 1 r 1 i "i | i i
24:00 25:00
316.9824 S:15 SMO{1,3) PKD(3, 3, 3, 100. 00%
11 Exp: EXP_M23_DB5_OVATION Voltage SIR El-t- GC Autospec-UltimaE Paradigm
PKD(3,3,3,0.10%,1568.0,1.00%,F,F)
A1.42E7
A
|\
2.9E6
_1.4E6
•O.OEO
26:00 27:00 28:00 29:00 30:00 Time
PKD(3,3,3,0.10%,1024.0,1.00%,F,F)
A1.82E7
3.7E6
_1.9E6
LO.OEO
26!oO 27 [OO 28 loo 29! 00 3o!oO Time
PKD(3,3,3,0.10%,8452.0,1.00%,F,F)
A2.72E8n
A A
n
i\i\
5.7E7
_2.8E7
.O.OEO
26\00 27:00 28\00 29\00 3o!oO Time
PKD(3,3,3,0.10%,3540.0,1.00%,F,F)
A3.69E8
A A
A
i\
7.3E7
.3.7E7
.O.OEO
26!oO 27!00 28!00 29:00 30:00 Time
PKD(3,3,3,0.10%,5376.0,1.00%,F,F)
A3.11E7
A
A
i\
6.4E6
.3.2E6
-O.OEO
26!00 27100 28100 29!00 30IOO Time
, 0.0,1. 00%, F,F)
100% 2^-4« ™:1fi 3A:4fi 3S;1A 25;4526:Q7 26:32 26:59 27:26 28il4 28:58 29:38 ..5.5E7
-
50^
o-
1
V , , , , , 1 -T ,_.,,,., | , ,
24:00 25:00
.2 . 8E7
' 0 . OEO
26!00 27! 00 28!oO 29 5 00 3o!oO Time
00
-------
File
Samp
355.
100%^
so:
0"
357.
100%^
so:
0"
367.
100%
so:
OJ
369.
100%
50:
o:
366.
100%
50:
0'
: A17JUL98B Acq: 18-JUL-1998 03:17:11 Exp: EXP_M2 3_DB5_OVATlON Voltage SIR EI+ GC Autospec-UltimaE Parad:
le #15 Text: BE CS3 ALS #2
8546 S:15 F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1636 . 0 , 1 . 00%, F, F)
A7.42E7
A
l\
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
8517 S:15 F:2 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1152 . 0 , 1 . 00% , F, F)
A4.78E7
A
n
365l2 36524 30:36 30548 31566 3l5i2 31524 31536 31548 32566 325l2 32524 32536 32548 3356o 335l2
8949 S:15 F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 3688 . 0, 1 . 00%, F,F)
A2.71E8
A
t
' 3o!i2 ' 3o!24 ' 30I361 ' 3o!«8 ' nloO ' 3i!l2 ' 3i!24 ' 3i\36 ' nUs ' 32566 ' 325l2 ' 32!24 ' 325^6 ' 32548 ' 33566 ' 335l2
8919 S:15 F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2720 . 0 , 1 . 00%, F, F)
A1.74E8
IL
rt-i^r t n A o *a i rt n 0110 O1O/1 "311C T1./1Q TO«nn T5 • 1 O "%*} • 0 A "^ ^ • "\(\ "^?«4R 1 ^ • fl fl ^"^'15
9792 S:15 F:2 SMO(1,3) PKD (3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
30-26 30-4230-52 31-0831:18 31:4331:53 32:08 32:20 32i37 33^:00 33:12
' 30:12 ' 36S24 ' 30:36 ' 30S48 ' 3iS66 3l5i2 31524 31536 31548 32566 32512 32524 32536 32548 33566 33ll2
igm
_2.7E7
_1.3E7
O.OEO
Time
_1.7E7
18.4E6
" O.OEO
Time
1.0E8
L5.0E7
0 . OEO
Time
6.4E7
.3.2E7
O.OEO
Time
6.2E7
_3.1E7
O.OEO
Time
00
-------
File
Samp
389.
100%
so:
391.
100%
so:
0'
401.
100%
so:
0"
403.
100%
so:
0
380.
100%
so:
0'
: A17JUL98B Acq: 18-JUL-1998 03:17:11 Exp: EXP M23 DB5 OVATION Voltage SIR EI + GC Autospec-Ul timaE "•paradigm" '
le #15 Text: BE CS3 ALS #2
8156 S:15 F:3 SMO(1,3) BSUB(128, 15 , -3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 1552 . 0, 1 . 00%, F, F)
A6.24E7 A5.90E7 1.8E7
A A A F
/i\A
1 1 I 1 1 1 1 1 1 l 1 1 l 1 1 1 1 1 l 1 1 l l 1 l 1 1 l l 1 1 l 1 1 l l i l 1 l ' l l l 1 1 l l T l l i l i l i 1 "f" 1 1 1 1 1 I I — i— 1 — i — l — l — 1 — I — I — I — I —
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35124 35J36 35
8127 S:15 F:3 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 2248 . 0 , 1 . 00%, F, F)
A4.93E7 A4.73E7
n V /V
33:24 33:36 33148 34loO 34!l2 34124 34136 34Us 3s!oO 3s!l2 3sl24 35J36 3s!
8559 S:15 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5, 2, 0 . 10%, 12588.0, 1 . 00%, F, F)
J3 A2.62E8
A
/I
33:24 33:36 33.!48 34.-00 34.-12 34!24 34be 34.U8 35.-00 35.!12 35$24 35.!36 35
8530 S:15 F:3 BSUB(128, 15, -3 .0) PKD(3 , 5, 2 , 0 . 10%, 10808 . 0, 1 .00%,F,F)
A2.J36E8 A2.08E8
A /i
L9.2E6
.O.OEO
48 Time
1.5E7
.7.3E6
.O.OEO
48 Time
1.1E8
.5.5E7
.O.OEO
48 Time
8.7E7
_4.4E7
.O.OEO
33l24 33S36 33Us 34!oO 34^12 34!24 34136 34!48 3s!oO 35:12 35124 35^36 35J48 Time
9760 S:15 F:3 SMO(1,3) PKD{3 , 3 , 3 , 100 . 00%, 0 .0, 1 . 00%, F, F)
33:22 33:30 34:15 34:47 34:58 35:08 35:20 35:32 1.3RB
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35
16.4E7
' O.OEO
48 Time
00
CO
-------
File: A17JUL98B Acq: 18-JUL-1998 03:17:11 Exp: EXP_M23_DB5_OVATION Voltage SIR EI + GC Autospec-UltimaE—Paradigm
Sample #15 Text: BE CS3 ALS #2
423.7767 S:15 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1484.0,1.00%,F, F)
1004 A4.24E7
50J
OJ
_1.2E7
,,5.8E6
O.OEO
36100 36112 36124 36:36 36148 37166 37!l2 37!24 ' 37136 ' 37148 ' 38166 ' 38112 ' 38:24 ' 38^36 ' 38-48 ' S^OO
425.7737 S:15 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3 , 0.10%, 884.0,1.00%,F,F)
A4.17E7 1-1E7
so:
36!66 36!l2 36I24 31136 36148 37166 37:12 3?S24 37.!36 37148 38166 38S12 ' 38124 ' 38136
435.8169 S:15 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,6540.0,1.00%,F,F)
1004 A1.92E8
50J
_5.7E6
O.OEO
39:00 Time
,-5.
_2.5E7
O.OEO
i i I i I I I i i I I i i i i i I i i r l*T"p I i i i i I i i i i i I i i 'i i i i i i i i I I I I I I i I i I I I i I i i i i i I i i i i i I i i i i i | i i i i i I i i i i i I i i i i i
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
437.8140 S:15 F:4 SMOU.3) BSUBU28,15, -3 .0) PKD(3 , 3 , 3 , 0.10%, 3636 .0,1. 00%, F, F)
100% A1.54E8 _4.9E7
50J
OJ
^2.4E7
O.OEO
i I i i i i i i i i i I i I i i i I i i I*T"T I i i i i i i i i i i •! i i *i I i I I I i I I I I I I I i I i I I I i i i I i i I i i i i i i i i i i i i i i I i i I i I i i i i i i i I i I I
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
430.9728 S:15 F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 36j09 36:36_ 36:53 _ 37:07 37il8 3?j_41
50.,
38:06 38:17 38:33 38=45
.8.5E7
_4.2E7
^ ' i i i i i i i i i i i r i i i i I I i i i i I i i i ' i I i i i ' i | ' ' i i i •;' i i i -r I i '' r" i I i i i i i I i i i i i I ' i i i i | i i i i i i i i i i i i i •! i i i i i i i i i i*1 • ^*i"
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
00
-------
File
Samp
457.
iooa
so:
0"
459.
100%
50J
0'
469.
100%
so:
0'
471.
100%
so:
0.'
454.
100%
so:
0'
>: A17JUL98B Acq: 1B-JUL-1998 03:17:11 Exp: EXP_M23_DB5_6vATl6N Voltage SIR EI+ GC Autospec-ultimaE — Paradigm 1
>le #15 Text: BE CS3 ALS #2
7377 S:15 F:5 SMO(1,3) BSUBU28, 15, -3 .0) PKD(3 , 3, 3 , 0 . 10%, 1824 . 0, 1 . 00%, F,F)
A6.91E7 1.6E7
/v
39ll2 39124 39136 39U8 4o!ob 4o!l2 4o!24 4ol36' ' '4'oUs' " '41
7348 S:15 F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 756 . 0, 1 . 00%, F, F)
A7 . 84E7
/v
39ll2 39!24 39!36 39:48 4o!ob 4o!l2 4o!24 4o!36 ' ' 4o!48 ' ' 41
7780 S:15 F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 2176 . 0 , 1 . 00%, F, F)
A2 . 76E8
/Y^
39!l2 39124 39136 39148 4o!ob 4o!l2 40l24 4o!36 ' ' ' 40:48 '''41!
7750 S:15 F:5 SMO(1,3) BSUB(128, 15, -3 .0) PKD(3 , 3 , 3 , 0 . 10% , 1480 . 0 , 1 . 00%, F, F)
A3 . 08E8
J\_
39ll2 39:24 39136 39:48 40:00 4o!l2 4ol24 4o!36 40:48 4l!
9728 S:15 F:5 SMO{1,3) PKD(3,3,3, 100.00%, 0.0, 1.00%,F,F)
39:0739:12 39:18 39:25 39:36 39:49 39:58 40:08 40:14 40:22 40:32 40:44 40:52
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
,8.0E6
LO.OEO
00 Time
1.8E7
_9.0E6
.O.OEO
00 Time
6.4E7
_3.2E7
_O.OEO
00 Time
_7 . 1E7
_3.6E7
_O.OEO
00 Time
9.4E7
_4.7E7
O.OEO
00 Time
00
-------
File: A17JUL98B Acq: 18-JUL-1998 03:17:
Sample #15 Text: BE CS3 ALS #2
303.9016 S:15 SMO(1,3) BSUB(128, 15, -3 . 0)
100%
50 j
24!00 25!oO
305.8987 S:15 SMO(1,3) BSUB(128, 15, -3 . 0)
100%
50 J
°" r-
24SOO 25!oO
315.9419 S:15 SMO(1,3) BSUB(128, 15, -3 . 0)
100%
50 J
o •
" ' i 1 i i i 1 1 r— T i i i i i
24:00 25:00
317.9389 S:15 SMO(1,3) BSUB(128, 15, -3 . 0)
100%
50J
n -
" ' i 1 1 i i 1 i i 1 r— i r • i i
24:00 25:00
375.8364 S:15 SMO(1,3) BSUB(128, 15, -3 .0)
100%
50j 23 :12
'' Jl 23A44 A. 24:26 25:02 25
0 - /* U^ ^ /V\ An vsA _j\ r~ (43-^j-^
11 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Parad
PKD(3,3,3,0.10%,1572.0,1.00%,F,F)
A1.75E7
26!oO '27:00' 28!oO 29! 00 30 :(
PKD(3,3,3,0.10%,2200.0,1.00%,F,F)
A2.23E7
26!oO 27:00' 2s!oO 29:00 30:(
PKD(3,3,3,0.10%,4528.0,1.00%,F,F)
A3.66E8
26:00' ' 27!00 2s!oO 29!oO 3o!(
PKD(3,3,3,0.10%,5308.0,1.00%,F,F)
A4.64E8
/i
2e!oo 27!oo 2s!oo 29loo soli
PKD(3,3,3,100.00%,48.0,1.00%,F,F)
AT
:24 25:58 26;22 A fL A ^7 = 34 27:5B \ / I /. 29:00
igm
_3.6E6
_1.8E6
LO.OEO
)0 Time
4.7E6
_2.3E6
O.OEO
)0 Time
7 . 6E7
.3.8E7
lO.OEO
)0 Time
9.6E7
.4 . 8E7
.O.OEO
30 Time
9.3E3
_4.7E3
.O.OEO
24! 00 25! 00 26!oO 27! 00 28!00 29!00 30 lOO Time
316.9824 S:15 SMO(1,3) PKD{3, 3, 3 , 100 . 00%, 0 . 0, 1 .00%,F,F)
100% 23:48 24:16 24:48 25:14 25:4526:07 26:32 26i59 27:26 2BU4 28:58 29:1S ,_5.5E7
50J
o-
" ' 1 1 1 — 'T 1 " 1 " 1 1 i'.— T.-. -| 1 |
24:00 25:00
L2.8E7
lO.OEO
26:00 27:00 28:00 29!oO 30:00 Time
00
Oi
-------
File: A17JUL98B Acq: 18-JUL-1998 03:17:11
Sample #15 Text: BE CS3 ALS #2
339.8597 S:15 F:2 SMO(1,3) BSUB(128, 15, -3 .0)
100%
50:
30li2 30124 30136 SoUs 31:66 3ill2
341.8568 S:15 F:2 SMO(1,3) BSUB (128 , 15 , -3 . 0)
100%
50:
3bll2 30124 30136 3ol48 SlloO 3ill2
351.9000 S:15 F:2 SMO(1,3) BSUB(128, 15, -3 . 0)
100%
50J
30:12 30 1 24 ' 30 136 3ol48 31:66 ' 31 -12
353.8970 S:15 F:2 SMO(1,3) BSUB(128, 15, -3 . 0)
100%
50.
30:12 30124 30:36 30:48 31:00 31:12
409.7974 S:15 F:2 SMO(1,3) BSUB(128, 15, -3 . 0)
100%
_. ' in . ">Q
50: ,A Vf 30:44 31
ni/ U^^K^Wxxk/v^v^
3bll2 30124 30136 30148 3ll66 31112
366.9792 S:15 F:2 SMO(1,3) PKD(3, 3 , 3, 100 .00%
100% 30:26 30:4230:52 31:04 31
50J
o-
30:12 30:24 30:36 30:48 31:00 31:12
Exp: EXP_M23_DB5_OVATlON Voltage SIR EI+
PKD(3,3,3,0.10%,984.0,1.00%,F,F)
A9.27E7 A9.26E7
A A
3il24 3ll36 biUs 32lo6 32ll2 32124
PKD(3,3,3,0.10%,2800.0,1.00%,F,F)
A6.04E7 A6.06E7
A A
3il24 31\36 3i.!48 32166 32112 32l24
PKD(3,3,3,0.10%,608.0,1.00%,F,F)
A4.12E8
/ \ A9.90E7
31:24 31:36 31:48 32:00 32:12 32:24
PKD(3,3,3,0.10%,1788.0,1.00%,F,F)
A2.64E8
/ \ A6.33E7
31:24 31:36 31:48 32:00 32:12 32:24
PKD(3,3,3,100.00%,3904.0,1.00%,F,F)
.,- 32:12
1^31j26 31:45 31:56 ^/Vv^ 32:26.
31124 31136 blUs 32166 32li2 '32:24
0.0,1.00%,F,F)
:18 31:43 31:53 32:08 32:20
31:24 31:36 3ll48 32:00 32!l2 32?24
3C Autospec-UltimaE Paradigm
3.4E7
.1.7E7
n ORO
' "i | i i i i i i i i i i i i i i i i i i i i1 " • "•E|"
32:36 32:48 33:00 33:12 Time
2 . 2E7
L1.1E7
32:36 32:48 33.;00 33ll2 Time
1.4E8
.7.2E7
32:36 32:48 33100 33:12 Time
9.3E7
.4.6E7
32:36 32:48 33:00 33:12 Time
32:36 1.5E4
/\ 33:07 -7'7E3
V-^^-^Xy«n.«
32136 32148 33166 33ll2 Time
32:37 33:00 33: IP. fi . 2R1
.3.1E7
32:36 32148 33:00 33:12 Time
-------
?ile: A17JUL98B
Sample #15
373.8207
100%
I
50 J
0'
'33!
375.8178
100%
"
sol
0 '
•33!
383.8639
100%
50J
0"
'33!
385.8610
100%
50 J
•
o •
•33!
445.7555
100%
I
50^
o •
33:
'33i
380.9760
S:
24
S:
24
S:
24
S:
24
S:
24
24
S
100% 33 •?.•>.
50 J
o •
y
Vs!
24
Text
Acq:
18-JUL-1998 03: IV
: BE CS3
15 F:3
33
T
15 F:3
33
T
15 F:3
i— i — i i
33
15 F:
33
15 F:
T
3
7
3
33:33
' ' '33!
15 F:
33 :30
r~i — r— r*
33
3
T
SMO (1,3)
36
'33:
SMO (1,3)
i i i
36
'33!
ALS #2
BSUB(128,15,
48 34:00
BSUB(128,15,
48' ' '34:00'
:11 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
-3.0) PKD(3,5,2,0.10%,53560.0,1.00%,F,F)
§7
34:12 34
-3.0) PKD(3,
A6.87E7
A l\
Y \
J 1 V_
34:12 34
BSUB(128,15,-3.0) PKD(3 , 5 , 2 , 0 . 10%
— T — r— r
36
'33!
i i i — i — i i i — r—r
48 34:00
A1.77E8.
f\
A
^ \ \
/v V
'34: 12 34
BSUB(128,15,-3.0) PKD(3 , 5, 2 , 0 . 10%
— i — i — r
36
'33!
SMO(1,3)
33
36
:43
^x^_
Vs!
SMO (1,3)
— 1 IT
36
—r— i — i
331
48 34:00
BSUB(128,15,
33:52
48 34:00
A3.42E8
f\
A
yv / I
/V V.
34^12 34
-3.0) PKD(3,
34:11
34ll2 34
PKD(3, 3,3, 100. 00%, 0.0,1.
48' ' '34:00
34:15
34:12 34
A6 .85E7
A A6.35E7
A A
J V. J ^-
_2.
.1.
0.
1 1 1 1 1 'f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ' ' I ' ' 1 1 1 ' r~l ' I
:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48
5, 2, 0.10%, 42572. 0,1. 00%, F,F)
A5.67E7
A A5.22E7
A A
1 V_ 1 V.
72'
_1.
0.
•241 ' '34136 34148 35100 35ll2 3s!24 35I36 35 48
,40516. 0,1. 00%, F,F)
A3.69E7
^"\_
_7
_3
0
124 34!36 34148 3s!oO 3s!l2 3s!24 35I36 35 48
,49724. 0,1. 00%, F,F)
A6.78E7
1
-7
•
:o
!24 34136 34U8 35:00 35:12 35:24 35:36 35:48
3, 3, 100. 00%, 1832. 0,1. 00%, F,F)
34:45 34:58
1 \ f\
rJ \ 1 V 35:08 , 35-32 35:43
i
_6
0
124 34136 34:48 35:00 35:12 35:24 35:36 35:48
00%,F,F)
34^42 34:58 35_dlfl 35:20 35:32 rl
Le
0
•24 34:36 34:48 35:00 35:12 35:24 35:36 35:48
7E7
3E7
OEO
Time
2E7
1E7
OEO
Time
9E7
9E7
OEO
Time
5E8
.7E7
.OEO
Time
. 4E4
. 9E3
.OEO
Time
. 3E8
.4E7
.OEO
Time
00
00
-------
File: A17JUL98B Acq: 18-JUL-1998 OJ
Sample #15
407.7818 S:l
100%
-
50^
o:
Text: BE CS3
5 F:4 SMO(1,3)
A5.79E7
ALS #2
:17:11
BSUB(128,15,-3.0)
Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
PKD(3,
3,3,0.
10%,
2896.0
,1.00%,F,F)
r-1-
/\ A4.83E7
beloo'
409.7788 S:l
100%
"
50J
OJ
/ v..
3 6! 12 36! 24
5 F:4 SMO(1,3)
A5.68E7
36136 36
148" 37 1
BSUB(128,15,-3.0)
66 37!
PKD ( 3 ,
12 37
3,3,0.
I
, J
•24
10%,
(\
v
37:36
4068.0
•
L8.
"o.
37:48 38:00 38:12 38:24 38:36 38:48 39:00
,1.00%,F,F)
r-1-
/\ A4.71E7
36:66
417.8253 S:l
100%
50J
.
0
"' i i i i 1 i i
36:00
419.8220 S:l
100%
50 1
'.
0 '
"' i i i i 1 i i
36:00
479.7165 S:l
100%
•
50J
o"
rf\
' I — y
" L i i i i i i i
36:00
430.9728 S:l
100%
50J
0 '
/
36166
/ V,
ijelii 36:24
5 F:4 SMO(1,3)
A1.13E8
A
A
/ \
y v^
-T-l 1 | TT V-T-I l"T
36:12 36:24
5 F:4 SMO(1,3)
A2.50E8
A
A
/ \
J v_
i i i | T i *i-r i | i-r
36:12 36:24
5 F:4 SMO(1,3)
36136 36
148 37!
BSUB(128,15,-3.0)
36136 36
1 i i i i i 1
Us 37!
BSUB(128,15,-3.0)
•T 1 1 I 1 1 1 1 1
36:36 36
Us 37!
BSUB(128,15,-3.0)
66 37:
PKD ( 3 ,
66 37!
PKD ( 3 ,
66 37!
PKD ( 3 ,
12 37
3,3,0.
12 37
3,3,0.
12 37
1
J
124
10%,
A2.
124
10%,
A5.
124
/\
v
37:36
6436.0
28E7
37:36
14988.
08E7
37 -.36
3, 3, 100. 00%, 2332
37 A09
36:19
36:11 A
A 1 HA
Aj W ^ V
i i i i ' ' '' ' T ' i
36:12 36:24
5 F:4 SMO(1,3)
36:09
1 1 1 ]-!• I-I-T 1 | 1 1
36:12 36:24
_8.
0
37148 38166 38112 38124 38136 bsUs 39 00
,1.00%,F,F)
3.
.1.
0.
37148 38:66 38112 38124 38136 38:48 39:00
0,1.00%,F,F)
7.
13.
•
0.
37148 38166 38112 38124 38:36 38:48 39.00
.0,1.00%,F,F)
1.
36:58 /\ ^fl-ifi
36:40
-S^J*^
' 36136 ' 36
PKD(3,3,3
36:36
i i ' I — i— i—i— i i
36:36 36
36:5lA
s\ / \
\/\J v
Us 37!
,100.00%
36:53
•48 ' 37!
/ \ ^37:22
/ ^AA A
-^J
66 37:
,0.0,1.
37:07
66 37!
12 37
00%, F,
.izoa-
12 37
^-y
124
F)
124
VA/^-
37136
37
37136
i*, A*r, f\ f~\ l\ r\ 38:45 A
v/v x^y \i i/ v^ v/^-xx^Vyv/
|
.5.
•o.
37148 38166 38112 38124 38136 38:48 39:00
41 38:06 38:17 38:33 38:45 8.
_4.
0.
37148 38166 38!i2 38124 38136 38148 39 00
8E7
8E6
OEO
Time
7E7
5E6
OEO
Time
5E7
7E7
OEO
Time
7E7
8E7
OEO
Time
1E4
5E3
OEO
Time
5E7
2E7
OEO
Time
00
-------
File: A17JUL98B Acq: 18-JUL-1998 03:17:11 Exp: EXP M23 DB5 OVATION Voltage SIR EH- GC Autospec-UltimaE Parad
Sample #15 Text: BE CS3 ALS #2
441.7427 S:15 F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD( 3 , 3 , 3 , 0 . 10%, 540 . 0, 1 . 00%, F, F)
100%. A7.59E7
:l f\^
39ll2 ' ' ' 39124 ' ' ' 39!36 ' ' ' s'gUs
443.7398 S:15 F:5 SMO(1,3) BSUB( 128, 15, -3 . 0) PKD(3
100%
50J
n:
39ll2 ' ' 39!24 ' 39136 ' ' 39U8
469.7780 S:15 F:5 SMO(1,3) BSUB<128 , 15, -3 . 0) PKD(3
100%
50 j
n:
39:12 39:24 39!36 39148
471.7750 S:15 F:5 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD(3
100%
50 j
0:
39!l2 39124 39136 39l48
513.6775 S:15 F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3
100%
50J
: 39:11 39:21 ^\I 39:47
39!l2 39!24 39!36 39148
454.9728 S:15 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 .00%, 0 . 0, 1
100% 39:0739:12 39:18 39:25 39:36 39:49
50 J
o:
39:12 39:24 39136 39U8
40:00 40:12 40:24 40:36 40:48 41
, 3, 3, 0.10%, 1976. 0,1. 00%, F,F)
A8 J?6E7
i i I- 1 v i "i1 i -T i — i I—T r"l 1— "1 I i — i i 1 i — i — i — i — i — 1 — i — i— i — i — i —
40:00 40:12 40:24 40:36 40:48 41
, 3, 3, 0.10%, 2176. 0,1. 00%, F,F)
A2 . 76E8
4o!ob 4o!l2 4o!24 4o!36 4'oUs 4l!
,3,3,0. 10%, 1480 . 0 , 1 . 00% , F, F)
A3 . 08E8
4o!ob 4o!l2 4o!24 4o!36 4o!48 4l!
, 3, 3, 100. 00%, 84. 0,1. 00%, F,F)
40:01
^~J ^^——T\^ 40^22^ 4Jhv294°-\f_ 40^43 40j_51_
igm
1.7E7
L8.5E6
_O.OEO
00 Time
1.9E7
.9.4E6
00 Time
6.4E7
L3.2E7
.O.OEO
00 Time
7 . 1E7
.3 . 6E7
: O.OEO
00 Time
1.3.E4
_6.5E3
_O.OEO
4o!ob 4o!l2 4o!24 4o!36 4o!48 4l!oO Time
.00%,F,F)
39:58 40:08 40:14 40:22 40:32 40:44 40:52 9.4E7
_4.7E7
.O.OEO
4o!ob 40:12 40?24 4o!36 40:48 41:00 Time
-------
OPUSquan 22-JUL-1998
Page 1
Page 2 of 2
Run #7 Filename a21ju!98f
Run: a07feb98f Analyte:
Sample text: CS3
S: 2 I: 1 Acquired: 21-JUL-98 20:43:56 Processed: 22-JUL-98 08:22:02
Cal: 07feb-m23» Results: Quan : V3.5 17-APR-1997 11:14:34
Comments: OPUS : V3.5X 17-APR-1997 11:31:23
Typ
Unk
ES/RT
Total
DPE
LMC
Name
2,3,7,8-TCDF
130-2,3,7,8-TCDF
Tetra Furans
HxCDPE
QC CHK ION {Tetra)
Resp
4.0e+07
8.4e+08
4.7e+07
RA
0.77
0.78
1.74
/ RT
27:53
27:51
19:51
NotFnd
NotFnd
Cone
5.04
205
5.96
Dev'n
0.8
0.8
Mod?
n
n
n
n
n
-------
File: A21JUL.98F Acq: 21-JUL-199« 20:43
Sample #2 Text: CS3 ALS #2
303.9016 S:2 SMO(1,3) BSUB(128 , 15 , -3 . 0)
100%
50 j
o:
' ielob
305.8987 S:2
100%
50 j
0:
ielob
315.9419 S:2
100*
50 j
0:
ielob
317.9389 S:2
1001
50J
0:
islob 2olob
SMO(1,3) BSUB(128,15,-3.0)
islob 2olob
SMO(1,3) BSUB(128,15,-3.0)
islob 2olob
SMO(1,3) BSUB(128,15,-3.0)
16100 18:00 20:00
375.8364 S:2 SMO(1,3) BSUB(128, 15, -3 . 0)
100%
1 16:53 19:57 21:03
5jMrt^^
"''— T 'I- -) 1 1
16100
316.9824 S:2
100% 16:12
50J
0:
ielob
18:00 20:00
SMO(1,3) PKD(3,3,3,100.00%
17:4818:47 20i2_t
18:00 20:00
:56 Exp: M23_DB225 Voltage SIR EI+ GC Autospec-UltimaE Paradigm
PKD (3, 3, 3 ,0.10%, 3488. 0,1. 00%, F,F)
A1.74E7 2.0E6
A F
22:00 24:00 26:00 2
PKD (3, 3, 3, 0.10%, 5344. 0,1. 00%, F,F)
A2.
J
\ Al .J19E6
alob s'olob 32lob 34lob
26E7
\ A7 .J30E5
2T2lob 24100 26lob 28lob 3olob 32lob 34lob
PKD(3,3,3,0.10%,18656.0,1.00%,F,F)
A3 . 67E8
A
)
22:00 24:00 26:00 2
PKD(3,3,3,0.10%,22144.0,1.00%,F,F
A4.
, , ,
3:00 30:00 32:00 34:00
)
68E8
i
1 I 1 1 1 1 1 1 '1 1 1 1 1 1 ' 1 1 "T" 1 1 1 ' ' ' ' ' 1 1 ' ' '
22 100 24 !00 26 100 28:00 30:00 32:00 34:00
PKD (3 ,3, 3, 100. 00%, 11180. 0,1. 00%, F,F)
21:59 27:51
1 22:5823:59 26:34 1 29:1930,2031:2932:30 34:16
m^^^
22lob ' ' ' 24100 ' ' 26lob 28lob 3olob 32lob 34lob
,0.0,1.00%,F,F)
22^0623:0324:01 25:34 27:5129:0029:5730:5932:1033:0934:13
22lob ' ' ' 24100 ' ' ' 26100 ' ' ' 2s!ob 30:00 32lob 34:00
L1.0E6
" O.OEO
Time
r2.5E6
_1.3E6
O.OEO
Time
_4 . 1E7
_2.1E7
O.OEO
Time
_5.2E7
_2 . 6E7
O.OEO
Time
2.9E4
' o .OEO
Time
9.4E7
L4.7E7
O.OEO
Time
CO
w
-------
OPUSquan 22-JUL-1998
Page 1
Page 3 of 3
Run #8 Filename a21ju!98f
Run: a07feb98f Analyte:
Sample text: CS3
S: 17 I: 1 Acquired: 22-JUL-98 06:01:17 Processed: 22-JUL-98 08:24:11
Cal: 07£eb-m23» Results: Quan : V3.5 17-APR-1997 11:14:34
Comments: OPUS : V3.5X 17-APR-1997 11:31:23
Typ
Unk
ES/RT
Total
DPE
LHC
Name
2,3,7,8-TCDF
13C-2,3,7,8-TCDF
Tetra Furans
HxCDPE
QC CHK ION (Tetra)
Resp
3.0e+07
6.6e+08
3.5e+07
RA
0.78
0.78
1.11
/ RT
27:53
27:51
17:59
NotFnd
NotFnd
Cone
4.85
161
5.55
'Dev'n
-3.0 '
-3.0
Mod?
n
n
n
n
n
(D
-------
File: A21JUL98F Acq: 22-JUL-1998 06:01:17 Exp: M23 DB225 Voltage
Sample #17 Text: CS3 ALS #2
303.9016 S:17 SMO(1,3) BSUB(128 , 15, -3 .0) PKD(3 , 3 , 3 , 0 . 10% , 3076 . 0, 1 .
100%
50_
0
305.
1003
50_
o-
315.
100%
50_
o:
317.
100%
50J
o:
375.
100%
50 j
oJ
316.
100%
50.
> OJ
ielob
8987 S:17
ielob
9419 S:17
ielob
9389 S:17
ielob
8364 S:17
islob
SMO (1,3)
ielob
SMO (1,3)
' islob
SMO(1,3)
islob
SMO (1,3)
16:3117:30
r «' i i — JL^O<"
16:00
9824 S:17
16:20
16:00
2olob 22lob 24-100 26:00
BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%, 3112 . 0, 1 .
20100 22100 24100 26lob
BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%, 21212 . 0 , 1
20:00 22:00 24:00 26:00
BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%, 33252 . 0, 1
SIR EI+ GC Autospec-UltimaE Paradigm
00%,F,F)
A1.32E7 ,_1.5E6
fl
1
A A7.^03E5
i i i i | i i r ' — T • i — r -i — i i i — i i i — i — i i — i — r— r
28:00 30:00 32:00 34:00
00%,F,F)
A1.69E7
A
1
/I A9 -1.2E5
I i I i' |X r I i i 'i | i i i •! i — f — i — i — i — i ^ i — i — i — i-l
28:00 30:00 32loO 34loO
.00%,F,F)
A2.87E8
A
28:00 30:00 32:00 34:00
.00%,F,F)
A3.68E8
A
1
20:00 22:00 24:00 26:00 28:00 30:00 32:00 34:00
BSUB(128-15,-3.0) PKD(3 , 3, 3 , 100 . 00%, 6884 . 0, 1 . 00%, F, F)
19:08
JV
/ \ -M^i^lB^^-^^^^^iiJ.L^-^Eiii
islob iolob 22lob 24lob 26lob
SMO (1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
18:23 21:02 22:09 .23 ai_.._. 24j 53. 26
islob
20:00 22:00 24lob 26:00
!L~~^2j2^~~~~^~~~^- 30J^i*^_-^-Jli?° 34:23
28:00 3oloO 32lob 34loO
;3827;34 28;57 30:01 31:08 32:22 33:32
28:00 3olob 32:00 34lob
L7.5E5
LO.OEO
Time
1.9E6
L9.4E5
_O.OEO
Time
3.3E7
i.l.7E7
O.OEO
Time
_4.2E7
.2 . 1E7
O.OEO
Time
_1.9E5
_9.4E4
_O.OEO
Time
3 . 8E7
_1.9E7
O.OEO
Time
-------
file": A21JOL98B—Acq: 21-JUL-1998 16:44:01Exp: M23_DB225 Voltage SIR EI+ GC Autospec-UltimaEParadigm
Sample II Text: DB-225 Retchk ALS #1
TIC (+RP)
100%
95J
90J
85J
80 J
75J
70J
65 J
60J
55J
50 J
45 J
40J
35:
30J
25J
20J
15 J
10 j
28:51
28:27
28:02 28:07
4.7E8
_4.5E8
_4.3E8
-4.0E8
_3.8E8
.3.5E8
L3.3E8
L3.1E8
L2.8E8
12.6E8
.2.4E8
_2.1E8
.1.9E8
L1.7E8
.1.4E8
.1.2E8
L9.5E7
:7.1E7
L4.7E7
_2.4E7
28J66 ' 28-06''28:i2'28li8'28:24'28536'28S36'28S42'28S48'28S54'29S66'29S66'29 1J2'29SJ^
O.OEO
Time
-------
OPUSquan 22-JUL-1998
Page 1
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ
Unk
ES/RT
Total
DPE
LMC
a21ju!98f
3
21-JUL-98
22-JUL-98
sb
07feb-m23conf
M8290-23-072198F
21:20:54
08:31:41
Name;
3,7,8-TCDF;
8-TCDF;
Furans;
HxCDPE;
QC CHK ION (Tetra);
Resp;
2.23e+05;
Ion 1;
1.10e+05;
Ion 2;
1.12e+05; 0
13C-2,3,7,
Tetra
2.67e+06; 2.62e+05; 6.62e+04; 3
RA;?;
98; n;
*;n;
95,-n;
RT;
27:53;
NotFnd;
17:56;
NotFnd;
NotFnd;
Page
Cone ;
DL
S/N1;?;
6;y;
*;n;
14,-y;
*;n
DivO;n
S/N2;?
9,-y
*;n
7;y
mod?
no
no
no
no
no
-;-; 27:53
-;-; 27:53
no
-------
OPUSquan 22-JUL-1998
Page 1
Ent: 3 Name: Tetra Furans
Page 1 of 1
F:l Mass: 303.902 305.899 Mod? no #Hom:8
Run: 8 File: a21ju!98f S:3 Acq:21-JUL-98 21:20:54 Proc:22-JUL-98 08:31:41
Tables: Run: a21ju!98b Analyte: m23_conf Cal: 07feb-m23»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: sb
Amount: *
Cone: *
Tox #1: -
Name
2,3,7,8-TCDF
of which *
of which *
Tox #2: -
# RT Respnse
named and *
named and *
Tox #3: -
unnamed
unnamed
RA
1 17:56 3.3e+05 3.95 n
3.3e+05
2 18:01 5.9e+05 1.63 n
5.9e+05
3 18:02 7.1e+05 2.16 n
7.16+05
4 27:32 2.0e+05 0.76 y
2.0e+05
5 27:35 2.46+05 1.08 n
2.4e+05
6 27:53 2.2e+05 0.98 n
2.2e+05
7 27:55 2.7e+05 0.47 n
2.76+05
8 28:13 l.le+05 2.12 n
l.le+05
Cone Area Height S/N Mod?
2.6e+05 6.3e+04 1.4e+01 y n
6.6e+04 2.8e+04 6.6e+00 y n
*
3.6e+05 S.Oe+04 1.8e+01 y n
2.2e+05 5.56+04 1.3e+01 y n
*
4.8e+05 7.36+04 1.76+01 y n
2.26+05 5.5e+04 1.3e+01 y n
*
8.7e+04 2.5e+04 5.7e+00 y n
l.le+05 3.3e+04 7.8e+00 y n
*
1.2e+05 2.7e+04 6.2e+00 y n
l.le+05 2.8e+04 6.6e+00 y n
*
l.le+05 2.8e+04 6.4e+00 y n
l.le+05 3.8e+04 9.1e+00 y n
*
8.7e+04 2.7e+04 6.1e+00 y n
1.8e+05 4.3e+04 l.Oe+01 y n
•*
7.8e+04 1.6e+04 3.7e+00 y n
3.76+04 1.5e+04 3.56+00 y n
197
-------
File: A21JUL98FAcq: 21-JUL-1998 21:20:54Exp: M23_DB225 Voltage SIR EI+GC Autospec-UltimaEParadigm
Sample #3 Text: sb ALS #3
303.9016 S:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,4352.0,1.00%,F,F)
100% A3.65E5
16:00 18:00 20:00 22:00 24:00 26:00 28:00
305.8987 S:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,4188.0,1.00%,F, F)
100% A2.24E5 A1.85E5
30:00
32:00
34:00
50J
OJ
A8.63E3
-/VpV^v^V^!^
A9.25E3
.MA. ^.J*v'***V<)ly*~VV*^^
— r
30:00
.O.OEO
Time
.5. 6E4
.2. 8E4
.O.OEO
Time
I —
16o so 20:00 22:00 24:00 26:00 28:00
315.9419 S:3 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 19804 . 0, 1 . 00%, F, F)
1004 17-Sfi 27; 53
24:
.. _ __ M u : j j. _ _ _
50J
32iOO
34:00
16IOO 18:00 ' '20:00 22iOO 24:00 26iOO 28iOO
317.9389 S:3 SMO(1,3) BSUB(128,15,-3.0) PKD{3,3 , 3 , 0.10%, 23456.0,1.00%,F,F)
100% 17;58
50J
30:00
32:00
34:00
.O.OEO
Time
16100 18)00 20:00 22iOO 24.:00 26:00 28)00
375.8364 S:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,8900.0,1.00%,F,F)
100% 24;56
50.;
0
30:00
32:00
34:00
.O.OEO
Time
7.2E5
3.6E5
O.OEO
Time
8. 5E7
4.2E7
O.OEO
Time
26:00
28:00
30:00
32:00
34:00
16:00 18:00 20:00 22:00 24:00
316.9824 S:3 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100%19:22 20:42 21:57 23:1524:1525:1626:1427:14 28:28 30:0131:00 32:18 33:3734:34
50_
OJ
ielob
islob
20:00
22! ob
24! ob
26:00
28:00
3o!ob
-i—i—|—i—i—i—i—i—|—i—
32:00 34:00
-------
APPENDIX C
CALCULATIONS & COMPUTER SUMMARIES
-------
Summary of Stack Gas Parameters and Test Results
Air Emissions Screening Test
Chemical Lime Company - Marble Falls, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Vertical Kiln Baghouse Inlet
Page 1 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-1-1
6/25/98
1520-1857
MEASURED DATA
Meter Box Correction Factor 1.021
Avg Meter Orifice Pressure, in. H20 2.12
Barometric Pressure, inches Hg 29.40
Sample Volume, ft3 136.787
Average Meter Temperature, °F 109.5
Stack Static Pressure, inches H2O 0.00
Average Stack Temperature, °F 254
Condensate Collected, ml 301.1
Carbon Dioxide content, % by volume 24.6
Oxygen content, % by volume 9.8
Nitrogen content, % by volume 65.6
Pilot Tube Coefficient 0.84
Average Square Rool Ap, (in. H2O)1/2 1.0831
Sample Run Duration, minutes 180
Nozzle Diameter, inches 0.217
CALCULATED DATA
Nozzle Area, ft2 0.00026
Standard Meter Volume, dscf 127.849
Vm(s,dimS Standard Meter Volume, dscm 3.620
Stack Pressure, inches Hg 29.40
BW, Moisture, % by volume 10.0
Vwshj Standard Water Vapor Volume, ft3 14.173
1-6*8 Dry Mole Fraction 0.9002
Md Molecular Weight (d.b.), Ib/lb-mole 32.33
Ms Molecular Weight (w.b.), lb/lb«mole 30.90
V8 Stack Gas Velocity, ft/s 68.94
A Stack Area, ft2 12.306
Qa Stack Gas Volumetric flow, acfm 50,903
Qs Stack Gas Volumetric flow, dscfrn 33,297
Qs(onm) Stack Gas Volumetric flow, dscmm 943
I Isokinetic Sampling Ratio, % 102.2
Y
AH
Pbar
"static
V,c
CO2
02
N2
Cp
AP1/2
0
An
An(std)
m(std)m3
P,
-------
Summary of Stack Gas Parameters and Test Results
Chemical Lime Company - Marble Falls, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Vertical Kiln Baghouse Inlet
Page 2 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-1
6/25/98
1520-1857
EMISSIONS DATA
DIOXINS:
2378 TCDD
ng Catch, ng {0.0171}
ng/dscm Concentration, ng/dscm, as measured {0.00472}
ug/hr Emission Rate, ug/hr {0.267}
Total TCDD
ng Catch, ng 1.356
ng/dscm Concentration, ng/dscm, as measured 0.375
ug/hr Emission Rate, ug/hr 21.2
12378 PeCDD
ng Catch, ng {0.0215}
ng/dscm Concentration, ng/dscm, as measured {0.00594}
ug/hr Emission Rate, ug/hr {0.336}
Total PeCDD
ng Catch, ng 0.5514
ng/dscm Concentration, ng/dscm, as measured 0.152
ug/hr Emission Rate, ug/hr 8.62
123478 HxCDD
ng Catch, ng {0.0126}
ng/dscm Concentration, ng/dscm, as measured {0.00348}
ug/hr Emission Rate, ug/hr {0.197}
123678 HxCDD
ng Catch, ng {0.02086}
ng/dscm Concentration, ng/dscm. as measured {0.00576}
ug/hr Emission Rate, ug/hr {0.326}
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Chemical Lime Company - Marble Falls, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Vertical Kiln Baghouse Inlet
Page 3 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-1
6/25/98
1520-1857
EMISSIONS DATA -Continued
DIOXINS - Continued
123789 HxCDD
ng Catch, ng 0.0252
ng/dscm Concentration, ng/dscm, as measured 0.00696
ug/hr Emission Rate, ug/hr 0.394
Total HxCDD
ng Catch, ng 0.5264
ng/dscm Concentration, ng/dscm, as measured 0.145
ug/hr Emission Rate, ug/hr 8.23
1234678 HpCDD
ng Catch, ng 0.0509
ng/dscm Concentration, ng/dscm, as measured 0.0141
Mg/hr Emission Rate, ug/hr 0.795
Total HpCDD
ng Catch, ng 0.0964
ng/dscm Concentration, ng/dscm, as measured 0.0266
ug/hr Emission Rate, pg/hr 1.51
OCDD
ng Catch, ng 0.0564
ng/dscm Concentration, ng/dscm, as measured 0.0156
ug/hr Emission Rate, ug/hr 0.881
Total PCDD
ng Catch, ng . 2.587
ng/dscm Concentration, ng/dscm, as measured 0.715
yg/hr Emission Rate, ug/hr 40.4
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Chemical Lime Company - Marble Falls, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Vertical Kiln Baghouse Inlet
Page 4 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-1
6/25/98
1520-1857
EMISSIONS DATA - Continued
FURANS
2378 TCDF
ng Catch, ng 0.1884
ng/dscm Concentration, ng/dscm, as measured 0.0520
ug/hr Emission Rate, ug/hr 2.94
Total TCDF
ng Catch, ng 10.324
ng/dscm Concentration, ng/dscm, as measured 2.85
ug/hr Emission Rate, ug/hr 161
12378 PeCDF
ng Catch, ng 0.129
ng/dscm Concentration, ng/dscm, as measured 0.0356
ug/hr Emission Rate, pg/hr 2.01
23478 PeCDF
ng Catch, ng 0.158
ng/dscm Concentration, ng/dscm, as measured 0.0436
ug/hr Emission Rate, ug/hr 2.47
Total PeCDF
ng Catch, ng 2.712
ng/dscm Concentration, ng/dscm, as measured 0.749
ug/hr Emission Rate, ug/hr 42.4
123478 HxCDF
ng Catch, ng 0.1613
ng/dscm Concentration, ng/dscm, as measured 0.0446
ug/hr Emission Rate, ug/hr 2.52
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Chemical Lime Company - Marble Falls, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Vertical Kiln Baghouse Inlet
Page 5 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-1
6/25/98
1520-1857
EMISSIONS DATA - Continued
Furans - Continued
123678 HxCDF
ng Catch, ng 0.0612
ng/dscm Concentration, ng/dscm, as measured 0.0169
ug/hr Emission Rate, ug/hr 0.956
234678 HxCDF
ng Catch, ng 0.0457
ng/dscm Concentration, ng/dscm, as measured 0.0126
ug/hr Emission Rate, ug/hr 0.714
123789 HxCDF
ng Catch, ng 0.0127
ng/dscm Concentration, ng/dscm, as measured 0.00351
ug/hr Emission Rate, ug/hr 0.198
Total HxCDF
ng Catch, ng 0.5676
ng/dscm Concentration, ng/dscm, as measured 0.157
ug/hr Emission Rate, ug/hr 8.87
1234678 HDCDF
ng Catch, ng 0.0684
ng/dscm Concentration, ng/dscm, as measured 0.0189
pg/hr Emission Rate, ug/hr 1.07
1234789 HoCDF
ng Catch, ng {0.00722}
ng/dscm Concentration, ng/dscm, as measured {0.00199}
Mg/hr Emission Rate, ug/hr {0.113}
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Chemical Lime Company - Marble Falls, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Vertical Kiln Baghouse Inlet
Page 6 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-1
6/25/98
1520-1857
EMISSIONS DATA - Continued
Furans - Continued
Total HpCDF
ng Catch, ng 0.0860
ng/dscm Concentration, ng/dscm, as measured 0.0238
ug/hr Emission Rate, ug/hr 1.34
OCDF
ng Catch, ng {0.00968}
ng/dscm Concentration, ng/dscm, as measured {0.00267}
ug/hr Emission Rate, ug/hr {0.151}
Total PCDF
ng Catch, ng {13.6987}
ng/dscm Concentration, ng/dscm, as measured {3.78}
ug/hr Emission Rate, pg/hr {214}
Total PCDD + PCDF
ng Catch, ng {16.2855}
ng/dscm Concentration, ng/dscm, as measured {4.50}
ug/hr Emission Rate, ug/hr {254}
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Air Emissions Screening Test
Chemical Lime Company - Marble Falls, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Vertical Kiln Baghouse Stack
Page 1 of 6
Y
AH
Pbar
vm
Pstatic
T.
Vte
C02
02
N2
CP
Ap1*
0
An
Vm(std)m3
PS
1-Bw
Md
Ms
V8
A
RUN NUMBER
RUN DATE
RUN TIME
M23-O-1
6/25/98
1518-1855
MEASURED DATA
Meter Box Correction Factor 1.000
Avg Meter Orifice Pressure, in. H20 2.10
Barometric Pressure, inches Hg 29.40
Sample Volume, ft3 141.112
Average Meter Temperature, °F 92.0
Stack Static Pressure, inches H20 -0.30
Average Stack Temperature, °F 231
Condensate Collected, ml 310.9
Carbon Dioxide content, % by volume 15.7
Oxygen content, % by volume 13.6
Nitrogen content, % by volume 70.7
Pitot Tube Coefficient 0.84
Average Square Root Ap, (in. H20)1/2 1.0968
Sample Run Duration, minutes 180.0
Nozzle Diameter, inches 0.217
CALCULATED DATA
Nozzle Area, ft2 0.00026
Standard Meter Volume, dscf 133.265
Standard Meter Volume, dscm 3.774
Stack Pressure, inches Hg 29.38
Moisture, % by volume 9.9
Standard Water Vapor Volume, ft3 14.634
Dry Mole Fraction 0.9011
Molecular Weight (d.b.), Ib/lb-mole 31.06
Molecular Weight (w.b.), Ib/lb-mole 29.76
Stack Gas Velocity, ft/s 70.0
Stack Area, ft2 12.48
Stack Gas Volumetric flow, acfm 52,443
Stack Gas Volumetric flow, dscfm 35,448
Stack Gas Volumetric flow, dscmm 1,004
Isokinetic Sampling Ratio. % 101.6
Q,
Qs
s(cmm)
I
-------
Summary of Stack Gas Parameters and Test Results
Chemical Lime Company - Marble Falls, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Vertical Kiln Baghouse Stack
Page 2 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-1
6/25/98
1518-1855
ng
ng/dscm
ug/hr
EMISSIONS DATA
DIOXINS:
2378 TCDD
Catch, ng
Concentration, ng/dscm, as measured
Emission Rate, ug/hr
0.012
0.00318
0.192
Total TCDD
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
ug/hr Emission Rate, ug/hr
1.102
0.292
17.6
12378 PeCDD
ng Catch, ng 0.009
ng/dscm Concentration, ng/dscm, as measured 0.00238
ug/hr Emission Rate, ug/hr 0.144
Total PeCDD
ng Catch, ng 0.264
ng/dscm Concentration, ng/dscm, as measured 0.0700
ug/hr Emission Rate, ug/hr 4.21
123478 HxCDD
ng Catch, ng 0.003
ng/dscm Concentration, ng/dscm, as measured 0.000795
ug/hr Emission Rate, ug/hr 0.0479
123678 HxCDD
ng Catch, ng 0.005
ng/dscm Concentration, ng/dscm, as measured 0.00132
ug/hr Emission Rate, ug/hr 0.0798
-------
Summary of Stack Gas Parameters and Test Results
Chemical Lime Company - Marble Falls, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Vertical Kiln Baghouse Stack
Page 3 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-1
6/25/98
1518-1855
ng
ng/dscm
pg/hr
EMISSIONS DATA-Continued
DIOXINS - Continued
123789 HxCDD
Catch, ng
Concentration, ng/dscm, as measured
Emission Rate, ug/hr
0.004
0.00106
0.0638
Total HxCDD
ng Catch, ng 0.116
ng/dscm Concentration, ng/dscm, as measured 0.0307
ug/hr Emission Rate, ug/hr 1.85
1234678 HpCDD
ng Catch, ng 0.007
ng/dscm Concentration, ng/dscm, as measured 0.00185
ug/hr Emission Rate, ug/hr 0.112
Total HpCDD
ng Catch, ng 0.013
ng/dscm Concentration, ng/dscm, as measured 0.00344
ug/hr Emission Rate, ug/hr 0.207
OCDD
ng Catch, ng 0.024
ng/dscm Concentration, ng/dscm, as measured 0.00636
Mg/hr Emission Rate, ug/hr 0.383
Total PCDD
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
pg/hr Emission Rate, ug/hr
1.519
0.403
24.2
-------
Summary of Stack Gas Parameters and Test Results
Chemical Lime Company - Marble Falls, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Vertical Kiln Baghouse Stack
Page 4 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-1
6/25/98
1518-1855
ng
ng/dscm
ug/hr
EMISSIONS DATA - Continued
FURANS
2378 TCDF
Catch, ng
Concentration, ng/dscm, as measured
Emission Rate, ug/hr
0.160
0.0424
2.55
Total TCDF
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
ug/hr Emission Rate, ug/hr
9.120
2.42
146
12378 PeCDF
ng Catch, ng 0.087
ng/dscm Concentration, ng/dscm, as measured 0.0231
ug/hr Emission Rate, ug/hr 1.39
23478 PeCDF
ng Catch, ng 0.086
ng/dscm Concentration, ng/dscm, as measured 0.0228
ug/hr Emission Rate, ug/hr 1.37
Total PeCDF
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
ug/hr Emission Rate, ug/hr
1.590
0.421
25.4
ng
ng/dscm
ug/hr
123478 HxCDF
Catch, ng 0.047
Concentration, ng/dscm, as measured 0.0125
Emission Rate, ug/hr 0.750
-------
Summary of Stack Gas Parameters and Test Results
Chemical Lime Company - Marble Falls, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Vertical Kiln Baghouse Stack
Page 5 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-1
6/25/98
1518-1855
ng
ng/dscm
ug/hr
EMISSIONS DATA - Continued
Furans - Continued
123678 HxCDF
Catch, ng
Concentration, ng/dscm, as measured
Emission Rate, ug/hr
0.017
0.00450
0.271
234678 HxCDF
ng Catch, ng 0.011
ng/dscm Concentration, ng/dscm, as measured 0.00291
ug/hr Emission Rate, ug/hr 0.176
123789 HxCDF
ng Catch, ng 0.004
ng/dscm Concentration, ng/dscm, as measured 0.00106
ug/hr Emission Rate, ug/hr 0.064
Total HxCDF
ng Catch, ng 0.166
ng/dscm Concentration, ng/dscm, as measured 0.0440
ug/hr Emission Rate, ug/hr 2.65
1234678 HoCDF
ng Catch, ng 0.017
ng/dscm Concentration, ng/dscm, as measured 0.00450
ug/hr Emission Rate, ug/hr 0.271
1234789 HpCDF
ng Catch, ng 0.002
ng/dscm Concentration, ng/dscm, as measured 0.000530
ug/hr Emission Rate, ug/hr 0.0319
-------
Summary of Stack Gas Parameters and Test Results
Chemical Lime Company - Marble Falls, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Vertical Kiln Baghouse Stack
Page 6 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-0-1
6/25/98
1518-1855
ng
ng/dscm
(jg/hr
EMISSIONS DATA- Continued
Furans - Continued
Total HoCDF
Catch, ng
Concentration, ng/dscm, as measured
Emission Rate, ug/hr
0.023
0.00609
0.367
OCDF
ng Catch, ng 0.010
ng/dscm Concentration, ng/dscm, as measured 0.00265
ug/hr Emission Rate, ug/hr 0.160
Total PCDF
ng Catch, ng 10.909
ng/dscm Concentration, ng/dscm, as measured 2.89
ug/hr Emission Rate, ug/hr 174
Total PCDD + PCDF
ng Catch, ng 12.428
ng/dscm Concentration, ng/dscm, as measured 3.29
ug/hr Emission Rate, ug/hr 198
-------
APPENDIX D
EXAMPLE EQUATIONS
-------
-------
Nomenclature
Y
AH
Pbar
ts
Vic
CO2
02
N2
CP
Api/2
0
Dn
An
Vm(Std)
* m(std)m3
PS
Bws
Vw(std)
l-ljws
Ma
Ms
Vs
A
Qa
Qs(std)
Qs(cmm)
I
ng/dscm
ng/dscm@7%O2
ug/hr
Ib/hr
Meter Box Correction Factor
Avg Meter Orifice Pressure, in. H2O
Barometric Pressure, inches Hg
Sample Volume, ft3
Average Meter Temperature, °F
Stack Static Pressure, inches H2O
Average Stack Temperature, °F
Condensate Collected, ml
Carbon Dioxide content, % by volume
Oxygen content, % by volume
Nitrogen content, % by volume
Pitot Tube Coefficient
Average Square Root Ap, (in. H2O)1/2
Sample Run Duration, minutes
Nozzle Diameter, inches
Nozzle Area, ft2
Standard Meter Volume, dscf
Standard Meter Volume, dscm
Stack Pressure, inches Hg
Moisture, % by volume
Standard Water Vapor Volume, ft3
Dry Mole Fraction
Molecular Weight, dry, lb/lb«mole
Molecular Weight, wet, lb/lb«mole
Stack Gas Velocity, ft/s
Stack Area, ft2
Stack Gas Volumetric flow, acfm
Stack Gas Volumetric flow, dscfm
Stack Gas Volumetric flow, dscmm
Isokinetic Sampling Ratio, %
Concentration, ng/dscm
Concentration, ng/dscm adjusted to 7% oxygen
Emission Rate, ug/hr
Concentration, parts per million, dry
Concentration, parts per million, wet
Emission Rate, pounds per hour
-------
Example Calculations
Chemical Lime Company - Marble Falls, Texas
US EPA Method 23-PCDD/PCDF
(Using Data from Run M23-I-1)
Note: Discrepancies may exist between the computer generated reported results, which use
more significant figures, and the values manually calculated from the displayed values.
1. Volume of dry gas sampled corrected to standard conditions of 68 °F, 29.92 in. Hg, ft3.
v = 17
Vm(std) ll-
AH
13.6
460 + t.
= (17.64)(136.787)(1.021)
29.4 +
2.115
13.6
460 + 109.52
Vm(std) = 127.849 dscf
2. Volume of dry gas sampled corrected to standard conditions of 68°F, 29.92 in. Hg, m3.
Vm(std)m3 = Vm(std)(0.028317)
= (127.849)(0.028317)
Vm(std)m3 = 3.620 dscm
3. Volume of water vapor at standard conditions, ft3.
Vw(std) = 0.04707V1C
Vw(std) = (0.04707)(301.1)
= 14-173 scf
-------
4. Moisture content in stack gas.
v (ioo)
v
m(std) v w(std)
BWS = _ _ (100)
127.849+ 14.173
Bws = 9.98
5. Dry molecular weight of stack gas, Ib/lb-mol.
Md - 0.44(%CO2) + 0.32(%O2) + 0.28(%N2+%CO)
Md = 0.44(24.6) + 0.32(9.8) + 0.28(65.6+0)
Md = 32.33 Ib/lb-mol
6. Molecular weight of stack gas, Ib/lb-mol.
Ms =Md(l-BJ100) + 18(Bws/100)
Ms = 32.33(1-9.98/100) + 18(9.98/100)
Ms = 32.33(0.9002) + 18(0.0998)
M. = 29.1035 + 1.7964
Ms = 30.90 Ib/lb-mol
-------
7. Absolute stack gas pressure, in. Hg.
P = P. +
s bar
static
7i6~
= 29.4 +
13.6
P. = 29.4 inches Hg
8. Stack velocity at stack conditions, fps.
v = 85.49 C.
^
ts+460
M. P.
v = (85.49)(0.84)(1.0831)
^
(253.7 + 460)
(30.90) (29.4)
vs = 68.94 fps
9. Isokinetic Variation.
T „
(17.32)
(vs) (Dn2) (0) f s) (1 -BJ100)
I =
(127.849) (253.7^460) (17.32)
(68.94) (0.217)2 (180) (29.4) (1-9.98/100)
I = 102.2
-------
10. Stack gas volumetric flow rate at stack conditions, acfrn.
Qa = (60) (A) (vs)
Qa = (60) (12.306) (68.94)
Qa = 50,903 acfm
11. Dry stack gas volumetric flow rate at standard conditions, dscfin.
= 17 64 Q-
Q = (17.64) (50,903) — (1-9.98/100)
s(std) V 253.7+460 V ;
Qs(std) = 33,297 dscfm
12. Dry stack gas volumetric flow rate at standard conditions, dscmm.
= Qs(std) 0-028317
= C33'297) (0-028317)
= 943
-------
13. Pollutant (2378 TCDD) concentration, ng/dscm.
ng/dscm = —
*m(std)m3
,, [ 0.0171 ]
ng/dscm = -
3.620
ng/dscm = [ 0.00472 ] ng/dscm
14. Pollutant (2378 TCDD) concentration, ng/dscm adjusted to 7 percent oxygen.
ng/dscm@7%O, = (ng/dscm) -
° 2 (20.9 - %02)
ng/dscm@7%O, = ([0.00472]) —
02 (20.9 - 9.8)
ng/dscm@7%O2 = [0.00591] ng/dscm@7%O2
15. Pollutant (2378 TCDD) emission rate, ng/hr.
(60) (ng) (Q5(5td))
do3) (vm(std))
^hr- (60) ([0.0171]) (33,297)
(103) (127.849)
//g/hr = [0.267] //g/hr
-------
16. CEM Pollutant (HC1) Concentration, ppmd
ppmd = ppmw / (1 -Bws/100)
ppmd = 22.7 / (1-9.98/100)
ppmd = 25.2 ppmd
17. CEM Pollutant (HC1) Emission Rate, Ib/hr.
lb/hr = (60) (ppmd) (Fwt) (Qs(std))
(106) (385.3)
lb/hr = (60) (25.2) (36.47) (33,300)
(106) (385.3)
lb/hr = 4.77 lb/hr
18. Method 3A Calibration Error, %. Values are for the oxygen, high range.
Cal Err % =(100) (Instrument Response-Calibration Gas Concentration)/Span
Cal Err % = (100) (19.0 - 19.2) / 25
Cal Err % = -0.8 %
19. Method 3 A System Bias Check, %. Values are for the oxygen, final upscale check.
Sys Bias % =(100) (Instr. ResponseCALERR-Instr. ResponsesysCAL)/Span
Sys Bias % = (100) (19.0 - 19.3) / 25
Sys Bias % = -1.2 %
-------
20. Method 3 A Drift, %. Values are for the oxygen, upscale check.
Drift % = (100) (Instr. ResponseFINAL sys CAL - Instr. Response^^ SYS CAL ) / Span
Drift % - (100) (19.3 - 18.9) / 25
Drift % = 1.6 %
21. Method 3 A Zero & Upscale Sampling System Check Adjustment. Values are for
oxygen, %.
C
r =(c -c ^ ma
\^ \ ^-s „,,„ V^/-\ I
C =(9.8-0.1)
19.2
19.1-0.1
Cgas = 9.8 %
Where:
C
C
C,
^i
C
avg
O
ma
= Adjusted gas concentration, ppm or %
= Average unadjusted gas concentration from analyzer
= Average of zero gas initial & final system cal. bias check
= Actual concentration of the upscale calibration gas
= Average of upscale initial & final system cal. bias check
-------
22. Method 322 Zero & Upscale System Bias Checks Adjustment To Analyzer HCI Average.
(C -b)
avg °
m
C = - -
gas ~
(0.989 + 1.011) [(2°-49 M9)] +(1.10+2.10)
= _ 0.988
gas
= 22'7
Where: bc = Y-intercept of the calibration least-squares line.
bf = Y-intercept of the final bias check 2-point line.
b; = Y-intercept of the initial bias check 2-point line.
Cgas = Effluent gas concentration, as measured, ppm.
Cavg = Average gas concentration indicated by gas analyzer, as
measured, ppm.
mc = Slope of the calibration least-squares line.
mf = Slope of the final bias check 2-point line.
m, = Slope of the initial bias check 2-point line.
-------
23. Method 322 HCI Matrix Spike Recovery, Pretest
In Situ HCI Expected (Predicted) Spike Concentration, ppm.
CE = (Cs) (Q./QJ +(Su)(l-(Qs/Qtot))
CE = (303) (1.5/14.0) + (7.4)(1-(1.5/14.0))
CE = 39.1 ppm
Where: CE = Recovery efficiency of spiked HCI, %
Cs = Concentration of HCI in spike gas, ppm
Qs = Spike gas (dilution) flow rate, 1pm
Qt = Sample gas (unspiked) flow rate, 1pm
Qtot = (Qs+Qt) Sum of the spike gas and the sample flow rates, 1pm
Sy = Concentration of unspiked (native) sample gas
In Situ HCI Spike Recovery Efficiency. %.
%R = (SM/CE)(100)
%R = (42.6/39.1)(100)
%R = 109 %
Where: %R = Efficiency of recovery of spiked HCI, %
SM = Observed concentration of spiked + sample gas, ppm
CE = Expected or predicted concentration of HCI in spike gas, ppm
-------
APPENDIX E
QA/QC DATA
-------
-------
10f2
ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
£-,;..:.-: . ' •' ' *;^w3K«i^
Date:
Pb., in Hg
9/1/97
30.16
Calibrator Tom McDonald Meter Box No.:
Reference Meter Correction Factor
MB-10
1.0049
(8/28/96)
AH = 0.5
Trial
1
2
3
Trial
Duration
(min)
19
19
19
Dry Gas Meter MB-10
Gas Volume
Initial
(^
994.409
1001.982
1009.513
Final
(ft3)
1001.982
1009.513
1017.050
Net
(ft3)
7.573
7.531
7.537
Meter Temperatures
Initial, Inlet
<°F)
74
77
80
Final, Inlet
CF)
78
80
81
Avg. Inlet
CF)
76
78.5
80.5
Initial, Outlet
CF)
73
75
77
inal, Outle
CF)
75
77
78
Avg. Outlet
CF)
74
76
77.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
600.523
608.185
615.801
Final
(ft3)
608.185
615.801
623.430
Net
(ft3)
7.662
7.616
7.629
Meter Temperature
Initial
CF)
72
74
76
Final
CF)
74
76
77
Avg.
CF)
73
75
76.5
Meter Box
Correction
Factor
y
1.019
1.019
1.021
Reference
Orifice Press
AH0
(in. H2O)
1.71
1.74
1.74
AH = 0.75
Trial
1
2
3
Trial
Duration
(min)
15
15
15
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
17.220
24.350
31.563
Final
(ft3)
24.350
31.563
38.780
Net
^
7.130
7.213
7.217
Meter Temperatures
Initial, Inlet
CF)
80
82
82
Final, Inlet
CF)
82
83
83
Avg. Inlet
CF)
81
82.5
82.5
Initial, Outlet
CF)
78
79
79
inal, Outle
CF)
79
79
81
Avg. Outlet
CF)
78.5
79
80
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
623.622
630.833
638.141
Final
(ft3)
630.833
638.141
645.425
Net
(ft3)
7.211
7.308
7.284
Meter Temperature
Initial
CF)
77
78
78
Final
CF)
77
78
78.5
Avg.
CF)
77
78
78.25
Meter Box
Correction
Factor
T
1.020
1.021
1.018
Reference
Orifice Press
AH0
(in. H2O)
1.82
1.77
1.79
AH= 1.0
Trial
1
2
3
Trial
Duration
(min)
10
10
10
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
38.946
44.490
50.050
Final
(ft3)
44.490
50.050
55.585
Net
(ft3)
5.544
5.560
5.535
Meter Temperatures
Initial, Inlet
CF)
81
83
84
Final, Inlet
CF)
83
84
84
Avg. Inlet
CF)
82
83.5
84
Initial, Outlet
CF)
80
80
80
inal, Outle
CF)
80
80
80
Avg. Outlet
CF)
80
80
80
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
645.614
651.220
656.829
Final
(ft3)
651.22
656.829
662.435
Net
(ft3)
5.606
5.609
5.606
Meter Temperature
Initial
CF)
78
78
78
Final
CF)
78
78
78
Avg.
CF)
78
78
78
Meter Box
Correction
Factor
y
1.019
1.018
1.023
Reference
Orifice Press
AH0
(in. H20)
1.79
1.78
1.78
10 09017.XLS
Printed: 6/11/98
-------
2 of 2
/"/PACIFIC ENVIRONMENTAL SERVICES, INC.
Central Park West
5001 South Miami Boulevard. P.O. Box 12077
Research Triangle Park. North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
AH = 2.0
Trial
1
2
3
Trial
Duration
(min)
10
10
10
Dry Gas Meter MB-10
Gas Volume
Initial
(^
55.868
63.519
71.182
Final
(ft3)
63.519
71.182
78.845
Net
(ft3)
7.651
7.663
7.663
Meter Temperatures
Initial, Inlet
CF)
84
86
86
Final, Inlet
CF)
86
86
87
Avg. Inlet
CF)
85
86
86.5
Initial, Outlet
81
81
81
inal, Outle
CF)
81
81
81
Avg. Outlet
CF)
81
81
81
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
662.729
670.472
678.244
Final
(ft3)
670.472
678.244
686.010
Net
(ft3)
7.743
7.772
7.766
Meter Temperature
Initial
CF)
78
78
78
Final
CF)
78
78
78
Avg.
CF)
78
78
78
Meter Box
Correction
Factor
Y
1.021
1.025
1.024
Reference
Orifice Press
AH0
(in. H20)
1.87
1.86
1.86
AH = 4.0
Trial
1
2
3
Trial
Duration
(min)
8
8
8
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
79.058
86.620
94.185
Final
(ft3)
86.620
94.185
101.754
Net
(ft3)
7.562
7.565
7.569
Meter Temperatures
Initial, Inlet
CF)
85
87
89
Final. Inlet
CF)
88
89
89
Avg. Inlet
CF)
86.5
88
89
Initial, Outlet
CF)
81
82
82
inal, Outle
CF)
82
82
82
Avg. Outlet
CF)
81.5
82
82
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
686.208
693.395
701.558
Final
(ft3)
693.895
701.558
709.244
Net
(ft3)
7.687
7.663
7.686
Meter Temperature
Initial
CF)
78
78
78
Final
CF)
78
78
78
Avg.
CF)
78
78
78
Meter Box
Correction
Factor
T
1.023
1.021
1.025
Reference
Orifice Press
AH0
(in. H20)
2.44
2.45
2.43
Calibration Results
| AH | y | AHe |
0.50
0.75
1.0
2.0
4.0
1.020
1.020
1.020
1.023
1.023
1.73
1.79
1.78
1.86
2.44
Dry Gas Meter MB-10 on 09/01/97
Meter Box Calibration Factor
Meter Box Reference Orifice Pressure
1.021
1.92
10 09017.XLS
Printed: 6/11/98
-------
PACIFIC ENVIRONMENTAL SERVICES, INC.
Posttest Dry Gas Meter Calibration Form (English Units)
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Pretest Calibration Factor
System Vacuum Setting, (in Hg)
Reference Meter Correction Factor
Date: 7/9/98 P^, in Hg
1.021
17
1.0077
29.95 Calibrator:
D. Holzschuh
Meter Box No.
MB-10
AH= 1.53
Trial
1
2
3
Duration
(min)
10
11
10
Dry Gas Meter
Initial
(ft3)
611.3
618.025
625.403
Final
(ft3)
618.025
625.403
632.111
Net
(ft3)
6.725
7.378
6.708
Initial, Inlet
(°F)
79
77
77
Final, Inle
(°F)
77
77
77
Avg. Inlet
(°F)
78
77
77
Initial, Outlet
(°F)
79
78
77
Final, Outlet
(°F)
78
77
77
Avg. Outlet
(°F)
78.5
77.5
77
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
432.055
438.894
446.392
Final
(ft3)
438.894
446.392
453.2
Net
(ft3)
6.839
7.498
6.808
Meter Temperature
Initial
(°F)
77
79
77
Final
(°F)
79
77
77
Avg.
(°F)
78
78
77
Meter Box
Correction
Factor
y
1.021
1.019
1.019
Reference
Orifice Press
AH0
(in. H2O)
1.85
1.87
1.87
10 09017.XLS
PostTest07-09-98
7/10/98
-------
1of2
SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Date:
10/13/97
Calibrator. MMD
Meter Box No.: RMB-15
, in Hg 29.86
Reference Meter Correction Factor 1.0077 (10/5/97)
AH = 0.5
Trial
1
2
3
Trial
Duration
(min)
15
13
12
Dry Gas Meter RMB-15
Gas Volume
Initial
(ft3)
48.833
54.722
59.821
Final
(ft3)
54.722
59.821
64.544
Net
(ft3)
5.889
5.099
4.723
Meter Temperatures
Initial, Inlet
CF)
73
78
80
Final, Inlet
CF)
77
80
83
Avg. Inlet
CF)
75
79
81.5
Initial, Outlet
CF)
72
74
76
inal, Outle
CF)
75
75
77
Avg. Outlet
CF)
73.5
74.5
76.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
34.044
39.829
44.843
Final
(ft3)
39.829
44.843
49.463
Net
(ft3)
5.785
5.014
4.620
Meter Temperature
Initial
CF)
70
71
71
Final
CF)
70
70
71
Avg.
CF)
70
70.5
71
Meter Box
Correction
Factor
y
0.997
1.001
0.999
Reference
Orifice Press
AH0
(in. H20)
1.86
1.86
1.86
AH = 0.75
Trial
1
2
3
Trial
Duration
(min)
8
21
13
Dry Gas Meter RMB-15
Gas Volume
Initial
(ft3)
69.524
73.327
83.322
Final
(ft3)
73.327
83.322
89.571
Net
(ft3)
3.803
9.995
6.249
Meter Temperatures
Initial, Inlet
CF)
74
77
78
Final, Inlet
CF)
74
83
82
Avg. Inlet
CF)
74
80
80
Initial. Outlet
CF)
77
76
78
inal, Outle
CF)
75
77
74
Avg. Outlet
CF)
76
76.5
76
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
54.365
58.108
67.912
Final
(ft3)
58.108
67.912
74.036
Net
(ft3)
3.743
9.804
6.124
Meter Temperature
Initial
CF)
72
72
73
Final
CF)
72
73
73
Avg.
CF)
72
72.5
73
Meter Box
Correction
Factor
T
0.996
0.997
0.995
Reference
Orifice Press
AH0
(in. H2O)
1.91
1.91
1.88
AH= 1.0
Trial
1
2
3
Trial
Duration
(min)
19
8
16
Dry Gas Meter RMB-15
Gas Volume
Initial
(ft3)
89.777
100.214
104.614
Final
(ft3)
100.214
104.614
113.404
Net
(ft3)
10.437
4.400
8.790
Meter Temperatures
Initial, Inlet
CF)
82
85
85
Final, Inlet
CF)
86
87
88
Avg. Inlet
CF)
84
86
86.5
Initial. Outlet
CF)
79
81
82
inal. Outle
CF)
80
81
83
Avg. Outlet
CF)
79.5
81
82.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
74.254
84.440
88.743
Final
(ft3)
84.44
88.743
97.302
Net
(ft3)
10.186
4.303
8.559
Meter Temperature
Initial
CF)
73
73
73
Final
CF)
73
73
73
Avg.
CF)
73
73
73
Meter Box
Correction
Factor
T
0.997
1.002
1.000
Reference
Orifice Press
AH0
(in. H20)
1.92
1.91
1.92
•IK 4MVT Yl
Printed: 6/11/98
-------
2 of 2
J
5 ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
AH = 2.0
Trial
1
2
3
Trial
Duration
(min)
9
7
7
Dry Gas Meter RMB-15
Gas Volume
Initial
(ft3)
13.863
20.884
26.372
Final
(ft3)
20.884
26.372
31.871
Net
(ft3)
7.021
5.488
5.499
Meter Temperatures
Initial, Inlet
(eF)
87
90
90
Final, Inlet
CF)
91
92
93
Avg. Inlet
CF)
89
91
91.5
Initial, Outlet
CF)
83
84
84
inal, Outte
(°F)
83
84
84
Avg. Outlet
CF)
83
84
84
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
97.749
104.591
109.929
Final
(ft3)
104.591
109.929
115.281
Net
(ft3)
6.842
5.338
5.352
Meter Temperature
Initial
(°F)
73
73
73
Final
(°F)
73
73
74
Avg.
(°F)
73
73
73.5
Meter Box
Correction
Factor
y
1.001
1.002
1.002
Reference
Orifice Press
AHC
(in. H20)
1.90
1.89
1.88
AH = 4.0
Trial
1
2
Trial
Duration
(min)
6.5
15.5
Dry Gas Meter RMB-15
Gas Volume
Initial
(ft3)
32.371
39.484
Final
^
39.484
56.484
Net
^
7.113
17.000
Meter Temperatures
Initial, Inlet
CF)
92
93
Final, Inlet
CF)
94
97
Avg. Inlet
CF)
93
95
Initial, Outlet
CF)
85
87
inal, Outle
CF)
85
87
Avg. Outlet
CF)
85
87
Trial
1
2
Reference Meter
Gas Volume
Initial
(ft3)
15.775
22.732
Final
(ft3)
22.732
39.287
Net
(ft3)
6.957
16.555
Meter Temperature
Initial
CF)
73
73
Final
CF)
74
73
Avg.
CF)
73.5
73
Meter Box
Correction
Factor
y
1.004
1.005
Reference
Orifice Press
AH0
(in. H2O)
1.92
1.92
Calibration Results
AH
Y
AH0
0.50
0.75
1.0
2.0
4.0
0.999
0.996
1.000
1.002
1.004
1.86
1.90
1.92
1.89
1.92
Dry Gas Meter RMB-15 on 10/13/97
Meter Box Calibration Factor
Meter Box Reference Orifice Pressure
• Two Trial Average
1.000
1.90
15 10137.XLS
Printed: 6/11/98
-------
€
PACIFIC ENVIRONMENTAL SERVICES, INC.
Posttest Dry Gas Meter Calibration Form (English Units)
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park. North Carolina 27709-2077
(919)941-0333 FAX: (919) 941-0234
Pretest Calibration Factor
System Vacuum Setting, (in Hg)
Reference Meter Correction Factor
Date: 7/9/98 P**, in Hg
1.000
16
1.0077
29.95 Calibrator
DDH
Meter Box No.
RMB-15
AH= 1.39
Trial
1
2
3
Duration
(min)
10
10
10
Dry Gas Meter
Initial
(ft3)
356.55
362.922
369.302
Final
(ft3)
362.922
369.302
375.662
Net
(ft3)
6.372
6.380
6.360
Initial, Inlet
(°F)
77
77
77
Final, Inle
(°F)
77
77
77
Avg. Inlet
(°F)
77
77
77
Initial, Outlet
(°F)
77
77
77
Final, Outlet
(°F)
77
77
77
Avg. Outlet
CF)
77
77
77
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
455.45
461.749
468.028
Final
(ft3)
461.749
468.028
474.295
Net
(ft3)
6.299
6.279
6.267
Meter Temperature
Initial
(°F)
75
74
74
Final
CF)
74
74
74
Avg.
(°F)
74.5
74
74
Meter Box
Correction
Factor
Y
0.997
0.994
0.995
Reference
Orifice Press
AH0
(in. H20)
1.96
1.97
1.98
15 10137
PostTest07-9-98
8/18/98
-------
REFERENCE METER CALIBRATION
ENGLISH REFERENCE METER UNITS
Barometric Pressure 29.82
Meter Yw 1.00000
K ( deg R/inches Hg) 17.64
DGN Serial
Date
6841495
10/5/97
Temperature
Initial Final
(cubic feet) (deg F) (deg F)
Dry Gas Meter (DGM)
Time Pressure Meter Readings Volune
(win) (in. H20) Initial Final .
20.50 -8.000 742.719 768.193 25.474 78.0 79.0
5.00 -8.000 768.193 774.402 6.209 79.0 79.0
13.00 -8.000 774.402 790.575 16.173 79.0 79.0
8.50 -5.400 790.575 798.821
27.50 -5.400 798.821 825.423
26.50 -5.400 825.423 850.983
14.00 -3.800 850.983 861.899
15.50 -3.800 861.899 873.960
12.50 -3.800 953.219 962.970
23.50 -2.400 962.970 976.611
17.50 -2.400 976.611 986.740
15.00 -2.400 986.740 995.413
32.00 -1.600 995.413 1008.596
3S.C'> -1.600 1008.596 1022.986
15.00 -1.600 1022.986 1029.158
8.246
26.602
25.560
10.916
12.061
9.751
13.641
10.129
8.673
13.183
14.390
6.172
79.0
79.0
80.0
81.0
81.0
86.0
86.0
87.0
87.0
88.0
89.0
89.0
79.0
80.0
81.0
81.0
82.0
86.0
87.0
87.0
88.0
89.0
89.0
90.0
Filename: F:\DATAFILE\CALIBRAT\CAL NENU.DSKXDGH REF.
Revised: 06/08/95
Wet Test Meter (UTM) DGM Coefficient Flow
Meter Readings Volume Temp Coefficient Variation Rate
Initial Final (cubic feet) (deg F) Yds Vds-(Avg.Yds) (CFM)
671.890 697.180 25.290 77.0 1.016 0.002 1.208
697.180 703.325 6.145 77.0 1.013 0.000 1.204
703.325 719.309 15.984 77.0 1.012 -0.002 1.204
Max Yds - Min Yds -0.003626886 Must be no greater than 0.030
Average Yds -1.013636253 Nust be between 0.95 to 1.05
8.176 77.0 1.009 0.001 0.942
26.324 77.0 1.008 0.000 0.938
25.216 77.0 1.006 -0.001 0.932
Nax Yds - Min Yds -0.002262496 Nust be no greater than 0.030
Average Yds -1.007525980 Nust be between 0.95 to 1.05
10.795 77.0 1.006 0.001 0.755
11.920 77.0 1.006 0.001 0.753
9.554 78.0 1.004 -0.001 0.747
Max Yds - Min Yds -0.002245979 Must be no greater than 0.030
Average Yds -1.005164785 Nust be between 0.95 to 1.05
13.394 78.0 1.003 -0.001 0.557
9.946 78.0 1.004 0.000 0.556
8.524 78.0 1.006 0.002 0.556
Nax Yds - Nln Yds -0.002785363 Nust be no greater than 0.030
Average Yds -1.004591811 Nust be between 0.95 to 1.05
12.956 78.0 1.006 -0.002 0.396
14.150 78.0 1.007 0.000 0.395
6.080 78.0 1.010 0.002 0.396
Nax Yds - Nin Yds -0.004205886 Must be no greater than 0.030
Average Yds -1.007822494 Nust be between 0.95 to 1.05
Overall Average Yds -1.007748265
719.309 727.485
727.485 753.809
753.809 779.025
779.025 789.820
789.820 801.740
879.651 889.205
889.205 902.599
902.599 912.545
912.545 921.069
921.069 934.025
934.025 948.175
948.175 954.255
I certify that the above Dry Gas Meter was calibrated in accordance with E.P.A. Method 5 , paragraph 7.1 :CFR 40 Part 60,
using the Precision Wet Test Meter * 11AE6, which in turn was calibrated using the American Bell Prover * 3785,
certificate * F107, whJcX is traceable to the National Bureau of Standards (N.I.S.T.).
/IS u
Signature /gL^ M
Date
SO-Sr-
-------
REFERENCE METER CALIBRATION
ENGLISH REFERENCE METER UNITS
Barometric Pressure 29.73
Meter Yw 1.00000
K ( deg R/inches Hg) 17.64
OGM Serial *
Date
6841495
8/28/96
Filename: F:\OATAFILE\CALIBRAT\CAL MENU.OSKXDGM REF.
Revised: 06/08/95
Time Pressure Meter Readings
(min) (in. H20) Initial Final
6.00 -6.60 374.451 381.901
24.00 -6.60 381.901 411.424
8.00 -6.60 411.424 421.233
10.00
35.00
16.50
12.50
14.00
58.50
16.50
42.00
66.50
15.30
13.50
35.30
-4.00 421.233 430.675
-4.00 430.675 464.147
-4.00 464.147 479.992
-2.80 479.992 489.698
-2.80 489.698 500.594
-2.80 500.594 546.063
-1.60 574.496 583.672
-1.60 590.619 614.123
-1.60 614.123 651.520
-1.00 651.520 657.572
-1.30 657.572 663.065
-1.30 663.365 677.274
Dry Gas Meter (DGM) Temperature
Volume Initial Final
(cubic feet) (deg F) (deg F)
Wet Test Meter (UTM)
Meter Readings Volune
Initial Final (cubic feet)
DGM Coefficient Flow
Temp Coefficient Variation Rate
(deg F) Yds Yds-(Avg.Yds) (CFM)
7.415 77.0 1.007 -0.004 1.207
29.484 77.0 1.011 0.000 1.200
9.808 77.0 1.015 0.004 1.197
Max Yds - Hin Yds -0.007489914 Must be no greater than 0.030
Average Yds >1.011058546 Must be between 0.95 to 1.05
9.482 77.0 1.013 0.009 0.926
33.204 77.0 1.002 -0.003 0.926
15.660 77.3 0.999 -0.006 0.927
Max Yds - Nin Yds »0.014197179 Must be no greater than 0.030
Average Yds '1.004786738 Must be between 0.95 to 1.05
9.645 77.0 1.003 0.002 0.754
10.791 77.0 0.999 -0.002 0.753
45.064 77.0 1.001 0.000 0.752
Max Yds - Min Yds • 0.00338145 Must be no greater than 0.030
Average Yds '1.000808891 Must be between 0.95 to 1.35
9.140 77.0 1.004 0.000 0.541
23.356 77.0 1.003 0.000 0.543
37.116 77.0 1.003 0.000 0.545
Max Yds - Min Yds *0.000835063 Must be no greater than 0.030
Average Yds '1.003302205 Must be between 0.95 to 1.35
6.393 78.0 1.016 0.011 0.396
5.406 78.0 0.994 -0.010 0.390
14.115 78.0 1.003 -0.001 0.393
Max 'a* - Hin fds *0.321724294 Must be no greater than 0.030
Average Yds »1.004344616 Must be between 0.95 to 1.35
Overall Average Yds »1.004860199
! certify that the above Ory Gas Meter was calibrated in accordance with s.P.A. Method 5 . paragraoh 7.1 ,-CFR 40 Part 60,
the Precision Wet rest Meter # 11AE6. which in :urn xas calibrated using the American Sell Prover 4 3785,
7.450
29.523
9.809
9.442
33.472
15.845
9.706
10.896
45.469
9.176
23.504
37.397
6.052
5.493
14.209
73.0
74.0
76.0
76.0
77.0
77.0
78.0
78.0
78.0
79.0
80. 3
80.0
81.0
82.0
82.0
76.0 496.572 503.987
76.0 503.987 533.471
76.0 533.471 543.279
77.0 543.279 552.761
77.0 552.761 585.965
78.0 585.965 601.625
78.0 601.625 611.270
78.0 611.270 622.061
79.0 622.061 667.125
79.0 695.390 704.530
80.0 711.429 734.785
31.0 734.785 771.901
32.0 771.901 777.994
32.0 777.994 783.400
32.0 783.400 797.515
certificate 4 ?107. vdijfch is traceable to the National Sureau if Standards (N.i.S.r.;.
Signature
Date
-------
TEMPERATURE SENSOR CALIBRATION FORM
Temperature Sensor No. l\Avb-
Ambient Temp. °F
Sensor Type
Length
**
Barometric Pressure, "Hg
, c/
Reference Temp. Sensor:
Date
b-zo-<^
Test
Sensor
34-
7t
^>5-
,
Temp.
Diff. %
o
Within
Limits
Y/N
Calibrated
By
% Temp. Diff = (Ref' Temp * 4!0) " ( Tegt
^ (Ref. Temp. + 4
460)
460}
x 100 * 1.5 *
-------
(C
TEMPERATURE SENSOR CALIBRATION FORM
Temperature Sensor No.
Ambient Temp. °F
Reference Temp. Sensor:
rNo. K^-io
"1 <•
oisor:
Sensor Type |£-Tc. Length
Barometric Pressure. "Hg Z
i~*
,<*t&/
Date
VZ0-1Y
•*(
»/•
Ref.
Point
No.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Temp.
Source
,
triP-
ftoic-
K«-0
Temp. °F
Ref.
Sensor
3-z-
•7<*
-Z^«pc,
Test
Sensor
3f-
17
'^^"
Temp.
Diff. %
.^•oc,
./ ^Q,
O/S^
Within
Limits
Y/N
y
y
X
Calibrated
By
(1U^
a^
^
C.
% Temp. Diff =
Temp + 460) - ( Test Temp. * 460) x 10Q
(Ref. Temp. + 460)
-------
TEMPERATURE SENSOR CALffiRATION FORM
£K3>~ ^ -r \(
Temperature Sensor No. DG.M - \ P Sensor Type s -TC Length v
Ambient Temp. °F T4 Barometric Pressure, "Hg -*>o
Reference Temp. Sensor:
Date
^ifr-^lr
Cf
tf
Ref.
Point
No.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Temp.
Source
iVio
k~\ C-
^feV<-i
Temp. °F
Ref.
Sensor
33
7t
zov
Test
Sensor
^ o
""7 ^h*
tl O
Temp.
Diff . %
.4ot>
o
.*1T
Within
Limits
Y/N
N|
V
X
Calibrated
By
\(,J^
a^S
\i^
Tenip
c
. Diff = (*ef '
Te8t
46Q)
(Ref. Temp. + 460)
x 100 S 1.5
-------
TEMPERATURE SENSOR CALIBRATION FORM
.
Temperature Sensor No. PC .n-oof Sensor Type K-T^ Length
Ambient Temp. °F 3^ Barometric Pressure, "Eg •sa.'E.V
Reference Temp. Sensor:
Date
,-l*V
'•
.1
Ref.
Point
No.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Temp.
Source
£1
£**
^0
Temp. °F
Ref.
Sensor
&
•7-t
^o'6
Test
Sensor
33
-7^
tcof
•
Temp.
Diff. %
0
.it!
Q
•
Within
Y/N
V
Y
Y
- -
Calibrated
By
f\i^>
7
-------
09/14/98 10:09 ©313 398 3342
PES CINCINNATI -»-»•» DURHAM
121010/012
PACIFIC ENVIRONMENTAL SERVICES.1NC.
4700 Duke Drive,
Suite-ISO
Mason, Ohio
Phone: (513) 398-2556
Fax:(513)3983342
www.pes.com
TEMPERATURE SENSOR CALIBRATION DATA
FOR STACK THERMOCOUPLES
THERMOCOUPLE NUMBER:
T5A
DATE:
12/22/97
BAROMETRIC PRES.(in.Hg):
AMBIENT TEMP. °F:
29.52
72
REFERENCE:
"Mercury-in-glass:
Other:
"CALIBRATOR:
ASTM-3F
J.C.
Reference
point
number
1
2
3
4
Source*
(Specify)
Ambient Air
Cold Bath
Hot Bath
Hot Oil
Reference
Thermometer
Temperature,°F
72
44
204
400
Thermocouple
Potentiometer
Temperature,1^
72
44
204
400
Temperature
Difference,*
%
0.00
0.00
0.00
0.00
"Type of calibration used.
6fref. temp-'F+AeOWtest thermometer temp °F+46Q1
X100
ref temp,°F+460
Comments:
100<1.5%
STACK THERMOCOUPLE CALIBRATION FORM 1998 Yearly Calibration
-------
09/14/98 10:09 C513 398 3342
PES CINCINNATI •»•»•» DURHAM
10012/012:
PACIFIC ENVIRONMENTAL SERV1CES.INC.
4700 Duke Drive,
Suite 150
Mason, Ohio
Phone: (513) 338-2556
Fax: (513)3983342
www.pM.com
TEMPERATURE SENSOR CALIBRATION DATA
FOR STACK THERMOCOUPLES
THERMOCOUPLE NUMBER:
T6F
DATE:
12/23/97
BAROMETRIC PRES-(ln.Hg):
AMBIENT TEMP. °F:
29.52
74
REFERENCE:
'Mercury-in-glaaa:
Other:
'CALIBRATOR:
ASTM-3F
G.Gay
Reference
point
number
1
2
3
4
Source"
(Specify)
Ambient Air
Cold Bath
Hot Bath
Hot OH
Reference
Thermometer
Temperature.'F
74
34
172
349
Thermocouple
Potentiometer
Temperatur»,eF
74
33
172
350
Temperature
Difference,"
%
0.00
0.20
0.00
0.12
Type of calibration used.
bfreL temp.°F+4eOWtest thermomete
reftemp,°F+460
Comments:
X100
100<1.5%
STACK THERMOCOUPLE CALIBRATION FORM 1998 Yearly Calibration
-------
5H
PACIFIC ENVIRONMENTAL SERVICES, INC.
4700 Duke Drive.
Suite ISO
Mason, Ohio 45040
Phone: (513) 398*2526
Fax (513) 398-3342
www.pes.com
Pitot Tube Number: 5H Date:
Effective Length: 59" . Calibrated By:
Pitoc Tube Openings Damaged? YES | NO j
Pitot Tube Assembly Level? | YES j NO
a , = 0.7 '(< 10°) a 2 -
P , - 4 " « 5°) p , =
Y= 0.6 9 = 0.4 A =
z = A sin Y = 0.0100 cm (in.) 0.32 cm ( < 1/8 in.)
w » A sin 9 = 0.0067 cm (in.) 0.08 cm ( < 1/32 in.)
PA = 0.478 cm (in.)
12/22/97
S. Simon
1.6 °(< 10°)
3.3 °«5e)
0.956
Pfl =
0.478
cm (in.)
i e
1A
D,
>\
0.375
A
...-g^^g.-.
cm (in.)
it»X>iiim!!i
The types of face-opening mb alignment snawnaeovo wll not area tha D««»lna v>kJ«or CO(S) ao
long as a, ana «JIB less tnon or equal to 10*. B, ana a, to !«• than or equal to S", i« las* than or
•gualio O.32 cm (1/6 in.), and w » laaa than oraqual toO.OS on(1<»2 in.) (mforencel 1.O m
grtftiCTrt -i B m
Pitot Tube Calibration Form
1998 Yearly Calibration
-------
6A
PACIFIC ENVIRONMENTAL SERVICES, INC.
4700 Duke Drive,
Suite ISO
Mason, Ohio 45040
Phone: (513) 398-2556
Fax (513) 398-3342
www.pes.com
Pitot Tube Number: 6A Date:
Effective Leneth: 75.5' Calibrated By:
Pitot Tube Openings Damaged? YES . | NO |
Pitot Tube Assembly Level? | YES | NO
a , - 1 c(< 10°) a , =
P , « 0.2 *(< 5*) pa -
Y= 2.2 6 = 1.1 A -
z = A sin Y = 0.039 cm (in.) 0.32 cm ( < 1/8 in.)
w = A sin 8 = 0.019 cm (in.) 0.08 cm (< 1/32 in.)
PA = 0.504 cm (in.)
12/23/97
S. Simon
0.2 *(< 10°)
0.8 °(<5°)
1.006
0.505
cm (in.)
Dt =
"vi,,.,
0.375
(•)
cm (in.)
i a rnowt V
" -~.»..j«MfatBg!H!l,.,.H..iti !•«»*>«.«.
."sl^,::
(c)
(fl)
T>* type* or face opening mBaignmenc mown above wil noc eftocx tn« &*««ln» vaiua of Qp(») so
long a a ^anoOji* tees tnftnoroqukl to 1O". B,ona a. to le»*tr»n cr«qu«|to 6", *i« toes thud or
oqu^ to 0.32 cm(i/fi in.), and w « toss than oraqutf toO.06 cm (1/32 In.) (rafaraneaii.o m
rtin^ 1 A O
Pitot Tube Calibration Form
1998 Yearly Calibration
-------
NOZZLE CALIBRATION SHEET
Nozzle
Identification
Number
D 1 , in.
D2,in.
Dg, in.
AD, in.
Davg
Where:
D1 2 3 = nozzle diameter measured on a different diameter, in.
Tolerance = measure within 0.001 in.
AD = maximum difference in any two measurements, in.
Tolerance » 0.004 in.
Davg= average of D1, D2,
-------
c
NOZZLE CALIBRATION SHEET
DATE:
CAUBRATION BY-
Nozzle
Identification
Number
c>urs3;£s;
Dvln.
0,~L\L
D2,in.
o,z^?
D3, in.
-------
Po»t-K»Faxl*Dte .. • ;; 7671
Airqas Specialty Gases
325 McCaaUnd C«t
•" , | •*
Certificate of Analysis: E.K.A. protocol vias Mixture
Red*
Cylinder No:
Cylinder Pressure:
Certification Date
4149
CC84329
I 2000
Reference Standard
Purchase Order*
Expiration Date:
Laboratory:
139680
3/2/01
Cheshire, CT
ation:
Component
GMIS Carbon Dioxide
GMIS Oxygen
Instrumentation:
instrument/ModeUSerial No,
RosemounVNGA20( I0/Rack*l
S»rvomexA244/701 A188 •
Certified Concentrations
Cvl. Number
CC34977
CC10014
Analytical Principle
NDIR
Parmagnetie
Concentration
14.08%
20.98%
Analytical Methodoli >gy does not require correction for analytical Interferences.
Analytical Results:
1st Component:
Certification performed in
procedures listed.
Do not use cylinder below
11.033%
Cone
Cone
Cone 11:627%
AVG: 11484%
Cone
Cone
Cone
AVG:
114367%
it.040%
11.017%
11.040%
Accordance with 'EPA Trsceabitity Pmiepot f.
150pstg.
using the assay
Approve^ for Release
-------
Airgas
Airgas Specialty Gas
325 McCausland Court
Cheshire. CT 06410
FAX: (203)250-6642
Certificate of Analysis: E.P.A. Protocol Gas Mixture
Rec#
Cylinder No:
Cylinder Pressure:
Certification Date
4150
CC86922
2000
3/2/98
Purchase Order*
Expiration Date:
Laboratory:
13980
3/2/01
Cheshire. CT
Reference Standard Information;
Type Component
GMIS
GMIS
Carbon Dioxide
Oxygen
instrumentation:
tnstmment/Model/Serial No.
Rosemount/NGA2000/Rack#1
Servomex/244/701/488
Cvl. Number
CC34977
CC19914
Analytical Principle
NDIR
Parmagnetic
Concentration
14.08 %
20.98%
Analytical Methodology does not require correction for analytical interferences.
Certified Concentrations:
Analytical Results:
1st Component:
2nd Component:
Cone
Cone
Cone
AVG:
19.066%
19.006 %
18.964%
19.012 %
1st Analysis 0**:
R 173.630
S 156-970"
Z 1.800
3/298
S
Z
R
156.890
1.420
173.630
Z
R
S
1.460
ITSTStO
157.030
Cone
Cone
Cone
AVG:
19.175 %
19.165 %
19.158 %
19.168 %
Certification performed in accordance with "EPA Traceabfflty Protocol (Jan. 1998)" using ffie assay
procedures listed. ,/
Do not use cylinder below 150 psig.
Approved for Release
-------
Scott Specialty Gases
pped
From:
1750 EAST CLUB BLVD
DURHAM
Phone: 919-220-0803
NC 27704
Fax: 919-220-0808
CERTIFICATE OF ANALYSIS
PACIFIC ENVIRONMENTAL SER
5001 SOUTH MIAMI
3RD FLOOR, SUITE #300
RESEARCH TRIANGLE PA
NC 27709-2077
PROJECT #: 12-28662-001
PO#: 104-98-0178
ITEM #: 12023411 CAL
DATE: 5/01/98
CYLINDER #: AAL13302
FILL PRESSURE: 1400 PSIG
ANALYTICAL ACCURACY: +-1%
PRODUCT EXPIRATION: 5/01/2001
BLEND TYPE : RECERTIFICATION OF CYLINDER
REQUESTED GAS
COMPONENT CONC HOLES
ANALYSIS
(MOLES)
PROPANE
AIR
30.
PPM
BALANCE
30.0
PPM
BALANCE
ANALYST:
B.M. BECTON
-------
Scott Specialty Gases
1750 EAST CLUB BOULEVARD, DURHAM, NC 27704
(919)2200803 FAX (919) 22DQBQB
CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS
&
':>
Customer
Pacific Environmental Services
Attn: Mr. Frank Meadows
P.O. Box 12077 ;:
Research Triangle Park, NC 27709
.YTICAL INFORMATION
Assay Laboratory
Scott Specialty Gases, lac.
1750 East Club Boulevard
Durham, NC 27704 --
Pordiae Order 104-95-0121
Scott Project* 12-11271
J$4, ' v.'^i;..
STATION
to exceed the minimum specifications of EPA Protocol Procedure #G1, issued September, 1993. - •
Number AAL-13302 Certification Date 04-18-95 Expiratkm Date
Pressure 2000 PSIG Previous Certification None
wkkfc* lent acted* reference
Cylinder Number
ALM-032005
Last Date Calibrated
03-23-95
Analvtica
+/- 1% NIST Directly Traceable
Balaace
Expiration Date
06-%
73400/16804
.YZER READINGS &-Z*nG~ R-Refertac»C» T-TatC«. i^ComfattoaCotflVfaat)
Concentration
95.5 PPM Balance in Air
Analytical Principle
Gas Chromatography
First Triad Analysis
Second Triad Analysis
Calibration Curve
M-1S-93 Ropowi Unto: Ana
STD-1397517 SPL-4M96I
SPL-437952 SPL-43M70
STD-1396973 STO-1395705
sn>-
SPL-
sn>-
SPL-
SPL-
Drte:
STD~
SPL-
SID-
SPL-
5PL-
STD-
SPL-
SII^
SPL-
5PL-
5f&*
DMK
STD- SPL-
SPL- SPL-
STT> STD-
SPL-
SPL- • SPL-
sn>-
-------
SPECIALTY GK. DEPARTMENT
12722 S. WENTWORTH AVENUE
CHICAGO, IL 60628
Certificate of Analysis - EPA Protocol Gas Standard page i of i
PERFORMED ACCORDING TO EPA TEACHABILITY PROTOCOL FOR ASSAY AND CERTIFICATION OP GASEOUS CALIBRATION STANDARDS (PROCEDURE *Q1)
Customer:Order Not314-053317-
ROCHESTER - APCI Batch No: 861-34622
77 DEEP ROCF. RD. Notes i
ROCHESTER NY 14624- Cylinder Not SG91S1288BI
Bar Code No: DDJ496
Cylinder Pressure*: 2000 paig
PO: GALSON Rel: Certification Date: 09/27/96
Expiration Date: 09/27/99
*** Certified Concentration **« ********* Reference standards ********* ************* Analytical Instrumentation *********'
Certified Standard Instrument Serial Last Measurement
Component Concentration Cylinder / Number Concentration Make/Model Number Calibration Principal
PROPANE 58.3 t.28 PPM SG9128557BAL GMIS 50.33 PPM Gow-Mac 750 594050 09/10/96 GC-FID
Balance Gas: AIR
Oxygen Concentration 19.9 % '
* standard should not be used below 150 psig
Analyst: ^^/y ^ J*?f~~~~^ Approved By:
-------
For Technical Information Call
1-800-752-1597
PRODUCTS
Air Produce* and Chemicals, Inc. • 12732 S. Hentworth Avenue, Chicago, IL 60628
ISO CERTIFICATION: 9002
CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS STANDARD
PERFORMED ACCORDING TO EPA 1HACEABILITY PROTOCOL FOR ASSAY ANL CERTIFICATION OF GASEOUS CAUBRATION STANDARDS (PROCEDURE KG1)
Customers
AIR PRODUCTS AND CHEMICALS, INC.
4822 INDUSTRY LANE
UDI BUSINESS PARK
DURHAM NC 27709
Order No: 833-075875-01
Batch No: 861-45269
PO:
Release:
Cylinder No:
Bar Code No:
SG9170173BAL
DDT476
Cylinder Pressure*: 2000 psig
Certification Date: 02/18/98
Expiration Date: 02/18/01
CERTIFIED CONCENTRATION
COBjMTB 0P t
PROPANE
Certified
Concentration
92.4t.C7 PPM
REFERENCE STANDARDS
Cylinder
Muabar
SG9128479BAL
Standard
TVP«
3MIS
Standard
Concentration
100.7 PPM
ANALYTICAL INSTRUMENTATION
XnatruMBt
Kaka/Model
Oow-Mac 750
Serial
Number
S940SU
La>t
Calibration
02/10/98
Maaauraaapt
rriaeipal
GC-PIO
AIR
Contaminant
Oxygen Concentration
Balance Ga*
21.0 %
* STANDARD SHOULD NOT BE USED BELOW 150 PSIQ
Approved By;
Jamet
-------
SPECTRfl BH5ES
277 Colt Street « Irvington. NJ 07111 USA Tel: (973) 372-2060 • (800) 929-2427 • Fax: (973) 372-8551
SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08865 TEL (908) 454-7455
SHIPPED TO:
APCCLTD
60 Industrial Park Road West
Tolland.CT 06084
CERTIFICATE
OF
ANALYSIS
861 ORDER*: 133817
TTERM: 3
CERTIFICATION DATE: 6/12/98
P.OJP: 3426
BLEND TYPE; CERTIFIED
CYLINDER f:CC88470
CYLINDER PRES: 2000 psig
CYLINDER VALVE: CGA330
ANALYTICAL ACCURACY: + / - 6%
COMPONENT
REQUESTED GAS
CONC
ANALYSIS
Hydrogen Chloride
Nitrogen
42.0 ppm
Balance
46.0 ppm
Balance
ANALYST:
-JL
DATE:
6/12/98
Ted Neeme
USA • United Kingdom • Germany • Japan
tea a a a a
-------
SPECTRH ERSES
RECEIVED JUN 1 7
^^B 277 Cott Street • Irvington, NJ 07111 USA Tel: (973) 372-2060 • (800) 929-2427 » Fax: (973) 372-8551
SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08865 TEL (908) 454-7455
SHIPPED TO:
APCCLTD
60 Industrial Park Road West
Toiland,CT 06084
CERTIFICATE
OF
ANALYSIS
SOI ORDER*: 133817
ITEM*: 4
CERTIFICATION DATE: 0/12/98
P.O.*: 3426
BLEND TYPE: CERTIFIED
CYLINDER *: 1836837Y
CYLINDER PRES: 2000 psig
CYLINDER VALVE: CGA330
ANALYTICAL ACCURACY: + / - 8%
COMPONENT
REQUESTED GAS
CONG
ANALYSIS
Hydrogen Chloride
300 ppm
303 ppm
Nitrogen
Balance
ANALYST:
DATE:
6/12/98
Milp-iDoyle
USA • United Kingdom • Germany • Japan
iso eooa
-------
TABLE C-3.2
Chemical Lime Calibration Table
25-June-98
INLET
Marble FallsJX
THC
ZERO GAS
LOW RANGE
MID RANGE
HIGH RANGE
02
ZERO GAS
MID RANGE
HIGH RANGE
CO2
ZERO GAS
MID RANGE
HIGH RANGE
HCI
ZERO GAS
MID RANGE
HIGH RANGE
CALIBRATION ERROR TEST
Range 0 - 100ppm
ACTUAL CONG
0.0
30.0
58.3
92.4
Range 0 - 25%
ACTUAL CONC
0.0
11.04
19.2
Range 0 - 50%
ACTUAL CONC
0.0
11.03
19.0
RESPONSE
0.0
32.7
58.0
90.2
RESPONSE
0.1
11.2
19.0
RESPONSE
0.3
11.3
19.0
PREDICTED
-
29.3
56.9
90.2
DIFFERENCE
0.1
0.2
-0.2
DIFFERENCE
0.3
0.3
0.0
% CAL ERR
-
11.4%
1.9%
0.0%
% SPAN
0.4%
0.6%
-0.8%
% SPAN
0.6%
0.5%
0.0%
Range 0 - 350ppm
ACTUAL CONC
0.0
46.0
303.0
RESPONSE
1.9
44
299.4
DIFFERENCE
1.9
-2.0
-3.6
% SPAN
0.5%
•0.6%
-1.0%
-------
Project Number
Firm Name
Site Location
Test Number
Source
Date
Continuous Emissions Monitoring Data Sheet
EPA Methods 3A, 25A, and 322
98042
PES
Marble Falls
1
Inlet Chemical Lime
6/25/98
Testers
_ Ambient Temp
Time
100
15:43-18:26
Analyzer
Hydrogen Chloride
Total Hydrocarbons
Oxygen
Carbon Dioxide
Range
0-350ppm
0-lOOppm
D-25%
0-50%
:ero
upscale
Rack Cal.
zero
upscale
upscale
zero
upscale
1.9
299.4
n/a
n/a
0.1
19.0
0.3
19.0
PreTest
Sys. Cal.
1.9
299.4
0.0
90.2
0.2
18.9
18.5
Cal. Bias
% of Span
0.0%
0.0%
n/a
n/a
0.4%
-0.4%
0.0%
-1.0%
Post Test
Sys. Cal.
3.0
296.9
0.2
90.3
0.0
19.3
0.3
18.5
Cal. Bias
% of Span
±5%
0.3%
-0.7%
n/a
n/a
-0.4%
1.2%
0.0%
-1.0%
±5%
Drift
% of Span
-0.3%
0.7%
-0.2%
-0.1%
0.8%
-1.6%
0.0%
0.0%
±3%
Avg. Analyzer
Response
20.9
Actual Qas
Cone.
n/a
-------
INLET
HCIIn-SItu Matrix Spike
Recovery Efficiencies
Plant Chem LimeMarble Falls, TX
Date 25-Jun-98
Project No. 98042
Cs-Spike Gas Cone, (ppm) 303
FesM
nitial
Rnal
Su-Native Concentration (ppm)
Qt-Analyzer Flow (Ipm)
Qs-DHution Rate (Ipm)
Sm-Observed Concentration (ppm)
Ce-Expected Concentration (ppm)
Spike Recovery (%)
Su-Native Concentration (ppm)
Qt-Analyzer Row (Ipm)
Qs-Dilution Rate (Ipm)
Sm-Observed Concentration (ppm)
Ce-Expected Concentration (ppm)
Spike Recovery (%)
7.4
12.5
1.5
42.6
39.1
109%
39.3
11.7
1.5
84.3
69.3
122%
-------
TABLE C-3.1
Chemical Lime Calibration Table
25-June-98
OUTLET
Marble FallsJX
THC
ZERO GAS
LOW RANGE
MID RANGE
HIGH RANGE
02
ZERO GAS
MID RANGE
HIGH RANGE
CO2
ZERO GAS
MID RANGE
HIGH RANGE
HCI
ZERO GAS
MID RANGE
HIGH RANGE
CALIBRATION ERROR TEST
Range 0 - 100ppm
ACTUAL CONC
0.0
30.0
58.3
92.4
Range 0 - 25%
ACTUAL CONC
0.0
11.04
19.2
Range 0 - 50%
ACTUAL CONC
0.0
11.03
19.0
RESPONSE
0.0
32.7
58.0
90.7
RESPONSE
0.1
11.2
19.0
RESPONSE
0.3
11.3
19.0
PREDICTED
-
29.4
57.2
90.7
DIFFERENCE
0.1
0.2
-0.2
DIFFERENCE
0.3
0.3
0.0
% CAL ERR
-
10.8%
1.3%
0.0%
% SPAN
0.4%
0.6%
-0.8%
% SPAN
0.6%
0.5%
0.0%
Range 0 - 350ppm
ACTUAL CONC
0.0
46.0
303.0
RESPONSE
1.1
47.4
300.8
DIFFERENCE
1.1
1.4
-2.2
% SPAN
0.3%
0.4%
-0.6%
-------
Project Number
Firm Name
Site Location
Test Number
Source
Date
98042
PES
Marble Falls
1
Continuous Emissions Monitoring Data Sheet
EPA Methods 3A, 25A, and 322
Test era
_ Ambient Temp
Time
Outlet Chemical Lime
6/25/98
100
15:19-18:50
Analyzer
Hydrogen Chloride
Total Hydrocarbons
Oxygen
Carbon Dioxide
Range
0-350ppm
0-100ppm
0-25%
0-50%
zero
upscale
Rack Cal.
zero
upscale
zero
upscale
zero
upscale
1.1
300.8
n/a
n/a
0.1
19.0
0.3
19.0
Pre Test
Sys. Cal.
1.1
300.8
0.0
90.7
0.1
19
0.3
18.7
Cal. Bias
% of Span
0.0%
0.0%
n/a
n/a
0.0%
0.0%
0.0%
-0.6%
±5%
Post Test
Sys. Cal.
2.1
308.4
0.0
92.8
0.1
19.5
0.3
18.8
Cal. Bias
% of Span
0.3%
2.2%
n/a
n/a
0.0%
2.0%
0.0%
-0.4%
±5%
Drift
% of Span
-0.3%
-2.2%
0.0%
•2.1%
0.0%
-2.0%
0.0%
-0.2%
±3%
Avg. Analyzer
Response
15.5
Actual Gas
Cone.
n/a
-------
Outlet
HCI In-SItu Matrix Spike
Recovery Efficiencies
Plant Cham LimeMarbte Falls, TX
Date 25-Jun-98
Project No. 98042
Cs-Spike Gas Cone, (ppm) 303
Festl
nitial
Rnal
Su-Native Concentration (ppm)
Qt-Analyzer Row (Ipm)
OS-Dilution Rate (Ipm)
Sm-Observed Concentration (ppm)
Ce-Expected Concentration (ppm)
Spike Recovery (%)
Su-Native Concentration (ppm)
Qt-Analyzer Row Opm)
Qs-Dilution Rate (Ipm)
Sm-Observed Concentration (ppm)
Ce-Expected Concentration (ppm)
Spike Recovery (%)
6.5
16.25
1.5
33.3
31.5
106%
14.6
16.25
1.5
41.2
39.0
106%
-------
APPENDIX?
PROCESS DATA
Process data to be supplied to EPA EMC by
Research Triangle Institute under a separate work assignment.
-------
-------
APPENDIX G
SAMPLING & ANALYSIS METHODS
(EPA Methods 1, 2, 3 A, 23 and proposed amendments, 25A, 322)
-------
-------
Appendix G.I
Sampling & Analysis Methods
EPA Method 1
-------
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
Method 1 - Sample and Velocity Traverses for Stationary Sources
1. PRINCIPLE AND APPLICABILITY
1.1 Principle. To aid in the representative measurement of
pollutant emissions and/or total volumetric flow rate from a
stationary source, a measurement site where the effluent stream is
flowing in a known direction is selected, and the cross-section of
the stack is divided into a number of equal areas. A traverse
point is then located within each of these equal areas.
1.2 Applicability. This method is applicable to flowing gas
streams in ducts, stacks, and flues. The method cannot be used
when: (1) flow is cyclonic or swirling (see Section 2.4), (2) a
stack is smaller than about 0.30 meter (12 in.) in diameter, or
0.071 m2 (113 in.2) in cross-sectional area, or (3) the measurement
site is less than two stack or duct diameters downstream or less
than a half diameter upstream from a flow disturbance.
The requirements of this method must be considered before
construction of a new facility from which emissions will be
measured; failure to do so may require subsequent alterations to
the stack or deviation from the standard procedure. Cases
involving variants are subject to approval by the Administrator,
U.S. Environmental Protection Agency.
2. PROCEDURE
2.1 Selection of Measurement Site. Sampling or velocity
measurement is performed at a site located at least eight stack or
duct diameters downstream and two diameters upstream from any flow
disturbance such as a bend, expansion, or contraction in the stack,
or from a visible flame. If necessary, an alternative location may
be selected, at a position at least two stack or duct diameters
downstream and a half diameter upstream from any flow disturbance.
For a rectangular cross section, an equivalent diameter (D.) shall
be calculated from the following equation, to determine the
upstream and downstream distances:
Prepared by Emission Measurement Branch EMTIC TM-001
Technical Support Division, OAQPS, EPA
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSFS TEST METHOD
D.=
2LW
(L + W)
Eq. 1-1
Where
Length and W * width.
An alternative procedure is available for determining the
acceptability of a measurement location not meeting the criteria
above. This procedure,
determination of gas flow angles at the sampling points and
comparing the results with acceptability criteria, is described in
Section 2.5.
2.2 Determining the Number of Traverse Points.
2.2.1 Particulate Traverses. When the eight- and two-diameter
criterion can be met, the minimum number of traverse points shall
be: (1) twelve, for circular or rectangular stacks with diameters
(or equivalent diameters) greater than 0.61 meter (24 in.); (2)
eight, for circular stacks with diameters between 0.30 and 0.61
meter (12 and 24 in.); and (3) nine, for rectangular stacks with
equivalent diameters between 0.30 and 0.61 meter (12 and 24 in.).
When the eight- and two-diameter criterion cannot be met, the
minimum number of traverse points is determined from Figure 1-1.
Before referring to the figure, however, determine the distances
from the chosen measurement site to the nearest upstream and
downstream disturbances, and divide each distance by the stack
diameter or equivalent diameter, to determine the distance in terms
of the number of duct diameters. Then, determine from Figure 1-1
the minimum number of traverse points that corresponds: (1) to the
number of duct diameters upstream; and (2) to the number of
diameters downstream. Select the higher of the two minimum numbers
of traverse points, or a greater value, so that for circular stacks
the number is a multiple of 4, and for rectangular stacks, the
number is one of those shown in Table 1-1.
Prepared by Emission Measurement Branch
Technical Support Division, OAQPS, EPA
EMTIC TM-001
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 3
2.2.2 Velocity (Non-Particulate) Traverses. When velocity or
volumetric flow rate is to be determined (but not particulate
matter), the same procedure as that used for particulate traverses
(Section 2.2.1) is followed, except that Figure 1-2 may be used
instead of Figure 1-1.
2.3 Cross-Sectional Layout and Location of Traverse Points.
2.3.1 Circular Stacks. Locate the traverse points on two
perpendicular diameters according to Table 1-2 and the example
shown in Figure 1-3. Any equation (for examples, see Citations 2
and 3 in the Bibliography) that gives the same values as those in
Table 1-2 may be used in lieu of Table 1-2.
For particulate traverses, one of the diameters must be in a plane
containing the greatest expected concentration variation, e.g.,
after bends, one diameter shall be in the plane of the bend. This
requirement becomes less critical as the distance from the
disturbance increases; therefore, other diameter locations may be
used, subject to the approval of the Administrator.
In addition, for stacks having diameters greater than 0.61 m (24
in.), no traverse points shall be within 2.5 centimeters (1.00 in.)
of the stack walls; and for stack diameters equal to or less than
0.61 m (24 in.), no traverse points shall be located within 1.3 cm
(0.50 in.) of the stack walls. To meet these criteria, observe the
procedures given below.
2.3.1.1 Stacks With Diameters Greater Than 0.61 m (24 in.). When
any of the traverse points as located in Section 2.3.1 fall within
2.5 cm (1.00 in.) of the
stack walls, relocate them away from the stack walls to: (1) a
distance of
2.5 cm (1.00 in.); or (2) a distance equal to the nozzle inside
diameter, whichever is larger. These relocated traverse points (on
each end of a diameter) shall be the "adjusted" traverse points.
Whenever two successive traverse points are combined to form a
single adjusted traverse point, treat the adjusted point as two
separate traverse points, both in the sampling (or velocity
measurement) procedure, and in recording the data.
2.3.1.2 Stacks With Diameters Equal To or Less Than 0.61 m (24
in.). Follow the procedure in Section 2.3.1.1, noting only that
any "adjusted" points should be relocated away from the stack walls
to: (1) a distance of 1.3 cm (0.50 in.); or (2) a distance equal to
the nozzle inside diameter, whichever is larger.
2.3.2 Rectangular Stacks. Determine the number of traverse points
as explained in Sections 2.1 and 2.2 of this method. From Table 1-
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 4
1, determine the grid configuration. Divide the stack cross-
section into as many equal rectangular elemental areas as traverse
points, and then locate a traverse point at the centroid of each
equal area according to the example in Figure 1-4.
If the tester desires to use more than the minimum number of
traverse points, expand the "minimum number of traverse points"
matrix (see Table 1-1) by adding the extra traverse points along
one or the other or both legs of the matrix; the final matrix need
not be balanced. For example, if a 4 x 3 "minimum number of
points" matrix were expanded to 36 points, the final matrix could
be 9 x 4 or 12 x 3, and would not necessarily have to be 6 x 6.
After constructing the final matrix, divide the stack cross-section
into as many equal rectangular, elemental areas as traverse points,
and locate a traverse point at the centroid of each equal area. The
situation of traverse points being too close to the stack walls is
not expected to arise with rectangular stacks. If this problem
should ever arise, the Administrator must be contacted for
resolution of the matter.
2.4 Verification of Absence of Cyclonic Flow. In most stationary
sources, the direction of stack gas flow is essentially parallel to
the stack walls. However, cyclonic flow may exist (1) after such
devices as cyclones and inertial demisters following venturi
scrubbers, or (2) in stacks having tangential inlets or other duct
configurations which tend to induce swirling; in these instances,
the presence or absence of cyclonic flow at the sampling location
must be determined. The following techniques are acceptable for
this determination. Level and zero the manometer. Connect a Type
S pitot tube to the manometer. Position the Type S pitot tube at
each traverse point, in succession, so that the planes of the face
openings of the pitot tube are perpendicular to the stack cross-
sectional plane; when the Type S pitot tube is in this position, it
is at "0° reference." Note the differential pressure (Ap) reading
at each traverse point. If a null (zero) pitot reading is obtained
at 0° reference at a given traverse point, an acceptable flow
condition exists at that point. If the pitot reading is not zero
at 0° reference, rotate the pitot tube (up to ±90° yaw angle) ,
until a null reading is obtained. Carefully determine and record
the value of the rotation angle (a) to the nearest degree. After
the null technique
has been applied at each traverse point, calculate the average of
the absolute values of a; assign a values of 0° to those points for
which no rotation was required, and include these in the overall
average. If the average value of a is greater than 20°, the
overall flow condition in the stack is unacceptable, and
alternative methodology, subject to the approval of the
Administrator, must be used to perform accurate sample and velocity
traverses. The alternative procedure described in Section 2.5 may
be used to determine the rotation angles in lieu of the procedure
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 5
described above.
2.5 Alternative Measurement Site Selection Procedure. This
alternative applies to sources where measurement locations are less
than 2 equivalent or duct diameters downstream or less than one-
half duct diameter upstream from a flow disturbance. The
alternative should be limited to ducts larger than 24 in. in
diameter where blockage and wall effects are minimal. A
directional flow-sensing probe is used to measure pitch and yaw
angles of the gas flow at 40 or more traverse points; the resultant
angle is calculated and compared with acceptable criteria for mean
and standard deviation.
NOTE: Both the pitch and yaw angles are measured from a line
passing through the traverse point and parallel to the stack axis.
The pitch angle is the angle of the gas flow component in the plane
that INCLUDES the traverse line and is parallel to the stack axis.
The yaw angle is the angle of the gas flow component in the plane
PERPENDICULAR to the traverse line at the traverse point and is
measured from the line passing through the traverse point and
parallel to the stack axis.
2.5.1 Apparatus.
2.5.1.1 Directional Probe. Any directional probe, such as United
Sensor Type DA Three-Dimensional Directional Probe, capable of
measuring both the pitch and yaw angles of gas flows is acceptable.
(NOTE: Mention of trade name or specific products does not
constitute endorsement by the U.S. Environmental Protection
Agency.) Assign an identification number to the directional probe,
and permanently mark or engrave the number on the body of the
probe. The pressure holes of directional probes are susceptible to
plugging when used in particulate-laden gas streams. Therefore, a
system for cleaning the pressure holes by "back-purging" with
pressurized air is required.
2.5.1.2 Differential Pressure Gauges. Inclined manometers, U-tube
manometers, or other differential pressure gauges (e.g., magnehelic
gauges) that meet the specifications described in Method 2, Section
2.2.
NOTE: If the differential pressure gauge produces both negative
and positive readings, then both negative and positive pressure
readings shall be calibrated at a minimum of three points as
specified in Method 2, Section 2.2.
2.5.2 Traverse Points. Use a minimum of 40 traverse points for
circular ducts and 42 points for rectangular ducts for the gas flow
angle determinations. Follow Section 2.3 and Table 1-1 or 1-2 for
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 6
the location and layout of the traverse points. If the measurement
location is determined to be acceptable
according to the criteria in this alternative procedure, use the
same traverse point number and locations for sampling and velocity
measurements.
2.5.3 Measurement Procedure.
2.5.3.1 Prepare the directional probe and differential pressure
gauges as recommended by the manufacturer. Capillary tubing or
surge tanks may be used to dampen pressure fluctuations. It is
recommended, but not required, that a pretest leak check be
conducted. To perform a leak check, pressurize or use suction on
the impact opening until a reading of at least 7.6 cm (3 in.) H20
registers on the differential pressure gauge, then plug the impact
opening. The pressure of a leak-free system will remain stable for
at least 15 seconds.
2.5.3.2 Level and zero the manometers. Since the manometer level
and zero may drift because of vibrations and temperature changes,
periodically check the level and zero during the traverse.
2.5.3.3 Position the probe at the appropriate locations in the gas
stream, and rotate until zero deflection is indicated for the yaw
angle pressure gauge. Determine and record the yaw angle. Record
the pressure gauge readings for the pitch angle, and determine the
pitch angle from the calibration curve. Repeat this procedure for
each traverse point. Complete a "back-purge" of the pressure lines
and the impact openings prior to measurements of each traverse
point.
A post-test check as described in Section 2.5.3.1 is required. If
the criteria for a leak-free system are not met, repair the
equipment, and repeat the flow angle measurements.
2.5.4 Calculate the resultant angle at each traverse point, the
average resultant angle, and the standard deviation using the
following equations. Complete the calculations retaining at least
one extra significant figure beyond that of the acquired data.
Round the values after the final calculations.
2.5.4.1 Calculate the resultant angle at each traverse point:
R^^ = arc cosine [ (cosineYj) (cosineP^ ]
Eq. 1-2
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 7
Where:
Ri « resultant angle at traverse point i, degree.
Yi = yaw angle at traverse point i, degree.
P4 m pitch angle at traverse point i, degree.
2.5.4.2 Calculate the average resultant for the measurements:
Hj. 1-3
Where:
Ravg » average resultant angle, degree.
n « total number of traverse points.
2.5.4.3 Calculate the standard deviations:
(n-1)
Hj. 1-4
Where:
Sd = standard deviation, degree.
2.5.5 The measurement location is acceptable if Ravg s 20° and S&
£ 10°.
2.5.6 Calibration. Use a flow system as described in Sections
4.1.2.1 and 4.1.2.2 of Method 2. In addition, the flow system
shall have the capacity to generate two test-section velocities:
one between 365 and 730 m/min (1200 and 2400 ft/min) and one
between 730 and 1100 m/min (2400 and 3600 ft/min).
2.5.6.1 Cut two entry ports in the test section. The axes through
the entry ports shall be perpendicular to each other and intersect
in the centroid of the test section. The ports should be elongated
slots parallel to the axis of the test section and of sufficient
length to allow measurement of pitch angles while maintaining the
pitot head position at the test-section centroid. To facilitate
alignment of the directional probe during calibration, the test
section should be constructed of plexiglass or some other
transparent material. All calibration measurements should be made
at the same point in the test section, preferably at the centroid
of the test section.
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 8
2.5.6.2 To ensure that the gas flow is parallel to the central
axis of the test section, follow the procedure in Section 2.4 for
cyclonic flow determination to measure the gas flow angles at the
centroid of the test section from two test ports located 90° apart.
The gas flow angle measured in each port must be ±2° of 0°.
Straightening vanes should be installed, if necessary, to meet this
criterion.
2.5.6.3 Pitch Angle Calibration. Perform a calibration traverse
according to the manufacturer's recommended protocol in 5°
increments for angles from -60° to +60° at one velocity in each of
the two ranges specified above. Average the pressure ratio values
obtained for each angle in the two flow ranges, and plot a
calibration curve with the average values of the pressure ratio (or
other suitable measurement factor as recommended by the
manufacturer) versus the pitch angle. Draw a smooth line through
the data points. Plot also the data values for each traverse
point. Determine the differences between the measured datavalues
and the angle from the calibration curve at the same pressure
ratio. The difference at each comparison must be within 2° for
angles between 0° and 40° and within 3° for angles between 40° and
60°.
2.5.6.4 Yaw Angle Calibration. Mark the three-dimensional probe
to allow the determination of the yaw position of the probe. This
is usually a line extending the length of the probe and aligned
with the impact opening. To determine the accuracy of measurements
of the yaw angle, only the zero or null position need be calibrated
as follows: Place the directional probe in the test section, and
rotate the probe until the zero position is found. With a
protractor or other angle measuring device, measure the angle
indicated by the yaw angle indicator on the three-dimensional
probe. This should be within 2° of 0°. Repeat this measurement
for any other points along the length of the pitot where yaw angle
measurements could be read in order to account for variations in
the pitot markings used to indicate pitot head positions.
BIBLIOGRAPHY
1. Determining Dust Concentration in a Gas Stream, ASME
Performance Test Code No. 27. New York. 1957.
2. DeVorkin, Howard, et al. Air Pollution Source Testing Manual.
Air Pollution Control District. Los Angeles, CA. November
1963.
3. Methods for Determining of Velocity, Volume, Dust and Mist
Content of Gases. Western Precipitation Division of Joy
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 9
Manufacturing Co. Los Angeles, CA. Bulletin WP-50. 1968.
4. Standard Method for Sampling Stacks for Particulate Matter.
In: 1971 Book of ASTM Standards, Part 23. ASTM Designation D
2928-71. Philadelphia, PA. 1971.
5. Hanson, H.A., et al. Particulate Sampling Strategies for
Large Power Plants Including Nonuniform Flow. USEPA, ORD,
ESRL, Research Triangle Park, NC. EPA-600/2-76-170. June
1976.
6. Entropy Environmentalists, Inc. Determination of the Optimum
Number of Sampling Points: An Analysis of Method 1 Criteria.
Environmental Protection Agency. Research Triangle Park, NC.
EPA Contract No. 68-01-3172, Task 7.
7. Hanson, H.A., R.J. Davini, J.K. Morgan, and A.A. Iversen.
Particulate Sampling Strategies for Large Power Plants
Including Nonuniform Flow. USEPA, Research Triangle Park, NC.
Publication No. EPA-600/2-76-170. June 1976. 350 p.
8. Brooks, E.F., and R.L. Williams. Flow and Gas Sampling
Manual. U.S. Environmental Protection Agency. Research
Triangle Park, NC. Publication No. EPA-600/2-76-203. July
1976. 93 p.
9. Entropy Environmentalists, Inc. Traverse Point Study. EPA
Contract No. 68-02-3172. June 1977. 19 p.
10. Brown, J. and K. Yu. Test Report: Particulate Sampling
Strategy in Circular Ducts. Emission Measurement Branch.
Emission Standards and Engineering Division. U.S.
Environmental Protection Agency, Research Triangle Park, NC
27711. July 31, 1980. 12 p.
11. Hawksley, P.G.W., S. Badzioch, and J.H. Blackett. Measurement
of Solids in Flue Gases. Leatherhead, England, The British
Coal Utilisation Research Association. 1961. p. 129-133.
12. Knapp, K.T. The Number of Sampling Points Needed for
Representative Source Sampling. In: Proceedings of the Fourth
National Conference on Energy and Environment. Theodore, L.
et al. (ed). Dayton, Dayton Section of the American Institute
of Chemical Engineers. October 3-7, 1976. p. 563-568.
13. Smith, W.S. and D.J. Grove. A Proposed Extension of EPA
Method 1 Criteria. Pollution Engineering. XV (8):36-37.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 10
August 1983.
14. Gerhart, P.M. and M.J. Dorsey. Investigation of Field Test
Procedures for Large Fans. University of Akron. Akron, OH.
(EPRI Contract CS-1651). Final Report (RP-1649-5). December
1980.
15. Smith, W.S. and D.J. Grove. A New Look at Isokinetic Sampling
- Theory and Applications. Source Evaluation Society
Newsletter. VIII(3):19-24. August 1983.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 11
Table 1-1. CROSS-SECTION LAYOUT FOR
RECTANGULAR STACKS
Number of traverse points
9
12
16
20
25
30
36
42
49
3x3
4x3
4x4
5x4
5x5
6x5
6x6
7x6
7x7
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 12
TABLE 1-2
LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS
(Percent of stack diameter from inside
wall to traverse point)
Traverse
Point
Number on a
Diameter
1
2
3
4
5
6
7
8
9
10 ....
11 ....
.LA • • • •
13 ....
14 ....
Number of traverse points on a diameter
2
14
.6
85
.4
4
6.
7
25
.0
75
.0
93
.3
6
4.
4
14
.6
29
.6
70
.4
85
.4
95
.6
8
3.
2
10
.5
19
.4
32
.3
67
.7
80
.6
89
.5
96
.8
10
2.6
8.2
14.
6
22.
6
34.
2
65.
8
77.
4
85.
4
91.
8
97.
4
12
2.1
6.7
11.
8
17.
7
25.
0
35.
6
64.
4
75.
0
82.
3
88.
2
93.
3
97.
9
14
1.8
5.7
9.9
14.
6
20.
1
26.
9
36.
6
63.
4
73.
1
79.
9
85.
4
90.
1
94.
3
98.
2
16
1.6
4.9
8.5
12.
5
16.
9
22.
0
28.
3
37.
5
62.
5
71.
7
78.
0
83.
1
87.
5
91.
5
18
1.
4
4.
4
7.
5
10
.9
14
.6
18
.8
23
.6
29
.6
38
.2
61
.8
70
.4
76
.4
81
.2
85
.4
20
1.
3
3.
9
6.
7
9.
7
11
2.
9
16
.5
20
.4
25
.0
30
.6
38
.8
61
.2
69
.4
75
.0
79
.6
22
1.1
3.5
6.0
8.7
11.
6
14.
6
18.
0
21.
8
26.
2
31.
5
39.
3
60.
7
68.
5
73.
8
24
1.1
3.2
5.5
7.9
10.
5
13.
2
16.
1
19.
4
23.
0
27.
2
32.
3
39.
8
60.
2
67.
7
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 13
15 ....
16 ....
17 ....
18 ....
19 ....
20 ....
21 ....
22 ....
23 ....
24 ....
95.
1
98.
4
89
.1
92
.5
95
.6
98
.6
83
.5
87
.1
90
.3
93
.3
96
.1
98
.7
78.
2
82.
0
85.
4
88.
4
91.
3
94.
0
96.
5
98.
9
72.
8
77.
0
80.
6
83.
9
86.
8
89.
5
92.
1
94.
5
96.
8
98.
9
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 14
so
40 -
30 -
20 -
10 -
Duet Dtomotore Updraug tram Flow DMufbinco* (D
1.0 1J
A)
1 1 1 1 1 1
•
10 MMkOk
1
1
V
I
\
:
i
\
i
?W»»tn»i
J,-.--
^Otrt»tiiiii
-
•MM>U1a(24M
11
•FimiP(M«fA«Typiof
OkkMkMic* (BMd. tUpvukw. Canine* «. «O
«HkDlMIMli
1 1 1 1 1 1
.„.•
< «OJO to OJIll (11-14 M
1 1
S 4 S t 7 I
Dud Dtamttora Downstraim from Flow DMuibwic** (DManeo B)
10
Figure 1-1. Minimum number of traverse points for
particulate traverses.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 15
so
O.S
40 -
30 -
20 -
10 -
Duct Diameter* Upstream from Flow Dieturbance* (Dlatance A)
1.0 1.S 2.0
2.5
1 1 1 1 1 1 1 1
a
Higher Number Is hr
Rectangular Stacks or Ducts
1* Stack Da
1
T5
T
B
i
^^Disturbance
UeaaiMMient
4
1
—
Disturbance
V - — 1
-
12
— • From Point of Any Type of
Disturbance (Bend. Expansion, Contraction, etc.)
aer.'
Stack Diameter - 0 JO to O.o t n (12-24 to.)
I I I I I I
I
3 4 5 6 7 B
Duct Diameters Downstream from Flow Disturbance* (Distance B)
10
Figure 1-2. Minimum number of traverse points for velocity
(nonparticulate) traverses.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 16
1 4A
* 147
* 2U
4 7*J
S «U
Figure 1-3. Example showing circular stack cross section
divided into 12 equal areas, with location of traverse
points indicated.
-------
EMTIC TM-001
EMTZC NSPS TEST METHOD
Page 17
o
o
o
o
0
o
o
o
o
o
o
o
Figure 1-4. Example showing rectangular stack cross section
divided into 12 equal areas, with a traverse point at centroid
of each area.
-------
-------
Appendix G.2
Sampling & Analysis Methods
EPA Method 2
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
Method 2 - Determination of Stack Gas Velocity and Volumetric
Flow Rate (Type S Pitot Tube)
1. PRINCIPLE AND APPLICABILITY
1.1 Principle. The average gas velocity in a stack is determined from the gas
density and from measurement of the average velocity head with a Type S
(Stausscheibe or reverse type) pitot tube.
1.2 Applicability. This method is applicable for measurement of the average
velocity of a gas stream and for quantifying gas flow.
This procedure is not applicable at measurement sites that fail to meet
criteria of Method 1, Section 2.1. Also, the method cannot be used for direct
measurement in cyclonic or swirling gas streams; Section 2.4 of Method 1 shows
how to determine cyclonic or swirling flow conditions. When unacceptable
conditions exist, alternative procedures, subject to the approval of the
Administrator, U.S. Environmental Protection Agency, must be employed to make
accurate flow rate determinations; examples of such alternative procedures are:
(1) to install straightening vanes; (2) to calculate the total volumetric flow
rate stoichiometrically, or (3) to move to another measurement site at which the
flow is acceptable.
2 . APPARATUS
Specifications for the apparatus are given below. Any other apparatus that has
been demonstrated (subject to approval of the Administrator) to be capable of
meeting the specifications will be considered acceptable.
j*
2.1 Type S Pitot Tube. Pitot tube made of metal tubing (e.g., stainless steel)
as shown in Figure 2-1. It is recommended that the external tubing diameter
(dimension Dt, Figure 2-2b) be between 0.48 and 0.95 cm (3/16 and 3/8 inch).
There shall be an equal distance from the base of each leg of the pitot tube to
its face-opening plane (dimensions P» and Ife , Figure 2-2b) ; it is recommended
that this distance be between 1.05 and 1.50 times the external tubing diameter.
The face openings of the pitot tube shall, preferably, be aligned as shown in
Figure 2-2; however, slight misalignments of the openings are permissible (see
Figure 2-3) .
The Type S pitot tube shall have a known coefficient, determined as outlined in
Section 4. An identification number shall be assigned to the pitot tube; this
Prepared by Emission Measurement Branch EMTIC M-002
Technical Support Division, OAQPS, EPA
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
number shall be permanently marked or engraved on the body of the tube. A
standard pitot tube may be used Instead of a Type S, provided that it meets the
specifications of Sections 2.7 and 4.2; note, however, that the static and impact
pressure holes of standard pitot tubes are susceptible to plugging in
particulate-laden gas streams. Therefore, whenever a standard pitot tube is used
to perform a traverse, adequate proof must be furnished that the openings of the
pitot tube have not plugged up during the traverse period; this can be done by
taking a velocity head (Ap) reading at the final traverse point, cleaning out the
impact and static holes of the standard pitot tube by "back-purging" with
pressurized air, and then taking another Ap reading. If the Ap readings made
before and after the air purge are the same (±5 percent), the traverse is
acceptable. Otherwise, reject- the run. Note that if Ap at the final traverse
point is unsuitably low, another point may be selected. If "back-purging" at
regular intervals is part of the procedure, then comparative Ap readings shall
be taken, as above, for the last two back purges at which suitably high Ap
readings are observed.
2.2 Differential Pressure Gauge. An inclined manometer or equivalent device.
Most sampling trains are equipped with a 10-in. (water column) inclined-vertical
manometer, having 0.01-in. H2O divisions on the 0- to 1-in. inclined scale, and
0.1-in. HjO divisions on the 1- to 10-in. vertical scale. This type of manometer
(or other gauge of equivalent sensitivity) is satisfactory for the measurement
of Ap values as low as 1.3 mm (0.05 in.) H,0. However, a differential pressure
gauge of greater sensitivity shall be used (subject to the approval of the
Administrator), if any of the following is found to be true: (1) the arithmetic
average of all Ap readings at the traverse points in the stack is less than
1.3 mm (0.05 in.) H,0; (2) for traverses of 12 or more points, more than 10
percent of the individual Ap readings are below 1.3 mm (0.05 in.) H20; (3) for
traverses of fewer than 12 points, more than one Ap reading is below 1.3 mm
(0.05 in.) H20. Citation 18 in the Bibliography describes commercially available
instrumentation for the measurement of low-range gas velocities.
As an alternative to criteria (1) through (3) above, the following calculation
may be performed to determine the necessity of using a more sensitive
differential pressure gauge:
Prepared by Emission Measurement Branch EMTZC M-002
Technical Support Division, OAQPS, EPA
-------
EMTIC TM-002 HSPS TEST METHOD Page 3
+ K
Where:
Apt - Individual velocity head reading at a traverse point, mn (in.)
H,0.
n » Total number of traverse points.
K m 0.13 mm H20 when metric units are used and 0.005 in. H20 when
English units are used.
If T is greater than 1.05, the velocity head data are unacceptable and a more
sensitive differential pressure gauge must be used.
NOTE: If differential pressure gauges other than inclined manometers are used
(e.g., magnehelic gauges), their calibration must be checked after each test
series. To check the calibration of a differential pressure gauge,- compare Ap
readings of the gauge with those of a gauge-oil manometer at a minimum of three
points, approximately representing the range of Ap values in the stack. If, at
each point, the values of Ap as read by the differential pressure gauge and
gauge-oil manometer agree to within 5 percent, the differential pressure gauge
shall be considered to be in proper calibration. Otherwise, the test series
shall either be voided, or procedures to adjust the measured Ap values and final
results shall be used, subject to the approval of the Administrator.
2.3 Temperature Gauge. A thermocouple, liquid-filled bulb thermometer,
bimetallic thermometer, mercury-in-glass thermometer, or other gauge capable of
measuring temperature to within 1.5 percent of the minimum absolute stack
temperature. The temperature gauge shall be attached to the pitot tube such that
the sensor tip does not touch any metal; the gauge shall be in an interference-
free arrangement with respect to the pitot tube face openings (see Figure 2-1 and
also Figure 2-7 in Section 4) . Alternative positions may be used if the pitot.
tube-temperature gauge system is calibrated according to the procedure of Section
4. Provided that a difference of not more than 1 percent in the average velocity
measurement is introduced, the temperature gauge need not be attached to the
pitot tube; this alternative is subject to the approval of the Administrator.
2.4 Pressure Probe and Gauge. A piezometer tube and mercury- or water-filled
U-tube manometer capable of measuring stack pressure to within 2.5 mm (0.1 in.)
Kg. The static tap of a standard type pitot tube or one leg of a Type 8 pitot
tube with the face opening planes positioned parallel to the gas flow may also
be used as the pressure probe.
-------
EMTIC TM-002 NSPS TBST MBTROD Page 4
2.5 Barometer. A mercury, aneroid, or other barometer capable of measuring
atmospheric pressure to within 2.5 mm (0.1 in.) Hg. See NOTE in Method 5,
Section 2.1.9.
2.6 Gas Density Determination Equipment. Method 3 equipment, if needed (see
Section 3.6), to determine the stack gas dry molecular weight, and Reference
Method 4 or Method 5 equipment for moisture content determination; other methods
may be used subject to approval of the Administrator.
2.7 Calibration Pitot Tube. When calibration of the Type S pitot tube is
necessary (see Section 4), a standard pitot tube for a reference. The standard
pitot tube shall, preferably, have a known coefficient, obtained either (1)
directly from the National Bureau of Standards, Route 70 8, Quince Orchard Road,
Gaithersburg, Maryland, or (2) by calibration against another standard pitot tube
with an NBS-traceable coefficient. Alternatively, a standard pitot tube designed
according to the criteria given in Sections 2.7.1 through 2.7.5 below and
illustrated in Figure 2-4 (see also Citations 7, 8, and 17 in the Bibliography)
may be used. Pitot tubes designed according to these specifications will have
baseline coefficients of about 0.99 ± 0.01.
2.7.1 Hemispherical (shown in Figure 2-4) ellipsoidal, or conical tip.
2.7.2 A minimum of six diameters straight run (based upon D, the external
diameter of the tube) between the tip and the static pressure holes.
2.7.3 A minimum of eight diameters straight run between the static pressure
holes and the centerline of the external tube, following the 90-degree bend.
2.7.4 Static pressure holes of equal size (approximately 0.1 D), equally spaced
in a piezometer ring configuration.
2.7.5 Ninety-degree bend, with curved or mitered junction.
2.8 Differential Pressure Gauge for Type S Pitot Tube Calibration. An inclined
manometer or equivalent. If the single-velocity calibration technique is
employed (see Section 4.1.2.3), the calibration differential pressure gauge shall
be readable to the nearest 0.13 mm (0.005 in.) H20. For multivelocity
calibrations, the gauge shall be readable to the nearest 0.13 mm (0.005 in.) H20
for Ap values between 1.3 and 25 mm (0.05 and 1.0 in.) H20, and to the nearest
1.3 mm (0.05 in.) H20 for Ap values above 25 mm (1.0 in.) H20. A special, more
sensitive gauge will be required to read Ap values below 1.3 mm (0.05 in.) H20
(see Citation 18 in the Bibliography).
3. PROCEDURE
3.1 Set up the apparatus as shown in Figure 2-1. Capillary tubing or surge
tanks installed between the manometer and pitot tube may be used to dampen Ap
fluctuations. It is recommended, but not required, that a pretest leak-check be
conducted as follows: (1) blow through the pitot impact opening until at least
-------
EMTIC TM-002 NSPS TEST METHOD Page 5
7.6 cm (3 in.) H20 velocity pressure registers on the manometer; then, close off
the impact opening. The pressure shall remain stable for at least 15 seconds.-
(2) do the same for the static pressure side, except using suction to obtain the
minimum of 7.6 cm (3 in.) H20. Other leak-check procedures, subject to the
approval of the Administrator, may be used.
3.2 Level and zero the manometer. Because the manometer level and zero may
drift due to vibrations and temperature changes, make periodic checks during the
traverse. Record all necessary data as shown in the example data sheet
(Figure 2-5).
3.3 Measure the velocity head and temperature at the traverse points specified
by Method 1. Ensure that the proper differential pressure gauge is being used
for the range of Ap values encountered (see Section 2.2) . If it is necessary to
change to a more sensitive gauge, do so, and remeasure the Ap and temperature
readings at each traverse point. Conduct a post-test leak-check (mandatory), as
described in Section 3.1 above, to validate the traverse run.
3.4 Measure the static pressure in the stack. One reading is usually adequate.
3.5 Determine the atmospheric pressure.
3.6 Determine the stack gas dry molecular weight. For combustion processes or
processes that emit essentially C02, 02, CO, and N2, use Method 3. For processes
emitting essentially air, an analysis need not be conducted; use a dry molecular
weight of 29.0. For other processes, other methods, subject to the approval of
the Administrator, must be used.
3.7 Obtain the moisture content from Reference Method 4 (or equivalent) or from
Method 5.
3.8 Determine the cross-sectional area of the stack or duct at the sampling
location. Whenever possible, physically measure the stack dimensions rather than
using blueprints.
4. CALIBRATION
4.1 Type 8 Pitot Tube. Before its initial use, carefully examine the Type S
pi tot tube in top, side, and end views to verify that the face openings of the
tube are aligned within the specifications illustrated in Figure 2-2 or 2-3. The
pitot tube shall not be used if it fails to meet these alignment specifications.
After verifying the face opening alignment, measure and record the following
dimensions of the pitot tube: (a) the external tubing diameter (dimension Dt,
Figure 2-2b) ; and (b) the base-to-opening plane distances (dimensions PA and P,,
Figure 2-2b) . If Dt is between 0.48 and 0.95 cm (3/16 and 3/8 in.), and if %
and P, are equal and between 1.05 and 1.50 £^, there are two possible options:
(1) the pitot tube may be calibrated according to the procedure outlined in
Sections 4.1.2 through 4.1.5 below, or (2) a baseline (isolated tube) coefficient
value of 0.84 may be assigned to the pitot tube. Note, however, that if the
-------
EMTIC TM-002 NSPS TEST METHOD Page 6
pitot tube is part of an assembly, calibration may still be required, despite
knowledge of the baseline coefficient value (see Section 4.1.1).
If De, l)k, and £ are outside the specified limits, the pitot tube must be
calibrated as outlined in Sections 4.1.2 through 4.1.5 below.
4.1.1 Type S Pitot Tube Assemblies. During sample and velocity traverses, the
isolated Type S pitot tube is not always used; in many instances, the pitot tube
is used in combination with other source-sampling components (thermocouple,
sampling probe, nozzle) as part of an "assembly." The presence of other sampling
components can sometimes affect the baseline value of the Type S pitot tube
coefficient (Citation 9 in the Bibliography); therefore an assigned (or otherwise
known) baseline coefficient value may or may not be valid for a given assembly.
The baseline and assembly coefficient values will be identical only when the
relative placement of the components in the assembly is such that aerodynamic
interference effects are eliminated. Figures 2-6 through 2-8 illustrate
interference-free component arrangements for Type S pitot tubes having external
tubing diameters between 0.48 and 0.95 cm (3/16 and 3/8 in.) . Type S pitot tube
assemblies that fail to meet any or all of the specifications of Figures 2-6
through 2-8 shall be calibrated according to the procedure outlined in Sections
4.1.2 through 4.1.5 below, and prior to calibration, the values of the
intercomponent spacings (pitot-nozzle, pitot-thermocouple, pitot-probe sheath)
shall be measured and recorded.
NOTE: Do not use any Type S pitot tube assembly which is constructed such that
the impact pressure opening plane of the pitot tube is below the entry plane of
the nozzle (see Figure 2-6B).
4.1.2 Calibration Setup. If the Type S pitot tube is to be calibrated, one leg
of the tube shall be permanently marked A, and the other, B. Calibration shall
be done in a flow system having the following essential design features:
4.1.2.1 The flowing gas stream must be confined to a duct of definite cross-
sectional area, either circular or rectangular. For circular cross sections, the
minimum duct diameter shall be 30.5 cm (12 in.); for rectangular cross sections,
the width (shorter side) shall be at least 25.4 cm (10 in.).
4.1.2.2 The cross-sectional area of the calibration duct must be constant over
a distance of 10 or more duct diameters. For a rectangular cross section, use
an equivalent diameter, calculated from the following equation, to determine the
number of duct diameters:
D. = 2LM
* (L + W)
Eq. 2-1
Where:
-------
EMTIC TM-002 NSPS TBST METHOD Page 7
D. • Equivalent diameter.
L - Length.
W » Width.
To ensure the presence of stable, fully developed flow patterns at the
calibration site, or "test section," the site must be located at least eight
diameters downstream and two diameters upstream from the nearest disturbances.
NOTB: The eight- and two-diameter criteria are not absolute; other test section
locations may be used (subject to approval of the Administrator), provided that
the flow at the test site is stable and demonstrably parallel to the duct axis.
4.1.2.3 The flow system shall have the capacity to generate a test-section
velocity around 915 m/rain (3,000 ft/min) . This velocity must be constant with
time to guarantee steady flow during calibration. Note that Type S pitot tube
coefficients obtained by single-velocity calibration at 915 m/min (3,000 ft/min)
will generally be valid to ±3 percent for the measurement of velocities above 305
m/min (1,000 ft/min) and to ±5 to 6 percent for the measurement of velocities
between 180 and 305 m/min (600 and 1,000 ft/min) . If a more precise correlation
between Cp and velocity is desired, the flow system shall have the capacity to
generate at least four distinct, time-invariant test-section velocities covering
the velocity range from 180 to 1,525 m/min (600 to 5,000 ft/min), and calibration
data shall be taken at regular velocity intervals over this range (see Citations
9 and 14 in the Bibliography for details).
4.1.2.4 Two entry ports, one each for the standard and Type S pitot tubes, shall
be cut in the test section; the standard pitot entry port shall be located
slightly downstream of the Type S port, so that the standard and Type S impact
openings will lie in the same cross-sectional plane during calibration. To
facilitate alignment of the pitot tubes during calibration, it is advisable that
the test section be constructed of plexiglas or some other transparent material.
4.1.3 Calibration Procedure. Note that this procedure is a general one and must
not be used without first referring to the special considerations presented in
Section 4.1.5. Note also that this procedure applies only to single-velocity
calibration. To obtain calibration data for the A and B sides of the Type S
pitot tube, proceed as follows:
4.1.3.1 Make sure that the manometer is properly filled and that the oil is free
from contamination and is of the proper density. Inspect and leak-check all
pitot lines; repair or replace if necessary.
4.1.3.2 Level and zero the manometer. Turn on the fan, and allow the flow to
stabilize. Seal the Type S entry port.
4.1.3.3 Ensure that the manometer is level and zeroed. Position the standard
pitot tube at the calibration point (determined as outlined in Section 4.1.5.1),
and align the tube so that its tip is pointed directly into the flow. Particular
care should be taken in aligning the tube to avoid yaw and pitch angles. Make
sure that the entry port surrounding the tube is properly sealed.
-------
EMTIC TM-002 NSPS TEST MRTHOD Page 8
4.1.3.4 Read Apstd, and record its value in a data table similar to the one shown
in Figure 2-9. Remove the standard pi tot tube from the duct, and disconnect it
from the manometer. Seal the standard entry port.
4.1.3.5 Connect the Type S pi tot tube to the manometer. Open the Type S entry
port. Check the manometer level and zero. Insert and align the Type S pitot
tube so that its A side impact opening is at the same point as was the standard
pitot tube and is pointed directly into the flow. Make sure that the entry port
surrounding the tube is properly sealed.
4.1.3.6 Read Ap., and enter its value in the data table. Remove the Type S
pitot tube from the duct, and disconnect it from the manometer.
4.1.3.7 Repeat Steps 4.1.3.3 through 4.1.3.6 above until three pairs of Ap
readings have been obtained.
4.1.3.8 Repeat Steps 4.1.3.3 through 4.1.3.7 above for the B side of the Type
S pitot tube.
4.1.3.9 Perform calculations, as described in Section 4.1.4 below.
4.1.4 Calculations.
4.1.4.1 For each of the six pairs of Ap readings (i.e., three from side A and
three from side B) obtained in Section 4.1.3 above, calculate the value of
the Type S pitot tube coefficient as follows:
c -c AP>M
P(a) ^ptstd)
AP,
Bq. 2-2
Where:
Cp(.) - Type S pitot tube coefficient.
Cp(ltd) » Standard pitot tube coefficient; use 0.99 if the
coefficient is unknown and the tube is designed according
to the criteria of Sections 2.7.1 to 2.7.5 of this
method.
Apltd • Velocity head measured by the standard pitot tube, cm
(in.) HjO.
Ap. - Velocity head measured by the Type S pitot tube, cm (in.)
H20.
4.1.4.2 Calculate q, (side A), the mean A-side coefficient, and Cp (side B), the
-------
EMTIC TM-002 NSPS TEST METHOD Page 9
mean B-side coefficient; calculate the difference between these two average
values.
4.1.4.3 Calculate the deviation of each of the three A-side values of
Cp,.> from Cp (side A) , and the deviation of each B-side values of Cp,., from
Cp (side B) . Use the following equation:
Deviation = C -C (A or B)
p p
Eq. 2-3
4.1.4.4 Calculate o, the average deviation from the mean, for both the A and B
sides of the pi tot tube. Use the following equation:
o(side A or B) =
Eg. 2-4
4.1.4.5 Use the Type S pitot tube only if the values of a (side A) and a (side
B) are less than or_ equal to 0.01 and if the absolute value of the difference
between Cp (A) and Cp (B) is 0.01 or less.
4.1.5 Special Considerations.
4.1.5.1 Selection of Calibration Point.
2. 3
4.1.5.1.1 When an isolated Type S pitot tube is calibrated, select a calibration
point at or near the center of the duct, and follow the procedures outlined in
Sections 4.1.3 and 4.1^4 above. The Type S pitot coefficients so obtained,
i.e., Cp (side A) and <; (side B), will be valid, so long as either: (1) the
isolated pitot tube is used; or (2) the pitot tube is used with other components
^nozzle, thermocouple, sample probe) in an arrangement that is free from
aerodynamic interference effects (see Figures 2-6 through 2-8).
4.
4.1.5.1.2 For Type S pitot tube-thermocouple combinations (without sample
probe), select a calibration point at or near the center of the duct, and follow
the procedures outlined in Sections 4.1.3 and 4.1.4 above. The coefficients so
obtained will be valid so long as the pitot tube-thermocouple combination is used
by itself or with other components in an interference-free arrangement (Figures
2-6 and 2-8).
4.1.5.1.3 For assemblies with sample probes, the calibration point should be
-------
EMTIC TM-002 NSPS TEST XBTHOD
Page 10
located at or near the center of the duct; however, insertion of a probe sheath
into a small duct may cause significant cross-sectional area blockage and yield
incorrect coefficient values (Citation 9 in the Bibliography). Therefore, to
minimize the blockage effect, the calibration point nay be a few inches off-
center if necessary. The actual blockage effect will be negligible when the
theoretical blockage, as determined by a projected-area model of the probe
sheath, is 2 percent or less of the duct cross-sectional area for assemblies
without external sheaths (Figure 2-10a), and 3 percent or less for assemblies
with external sheaths (Figure 2-10b).
4.1.5.2 For those probe assemblies in which pitot tube-nozzle interference is
a factor (i.e., those in which the pitot-nozzle separation distance fails to meet
the specification illustrated in Figure 2-6A), the value of Cp,,, depends upon the
amount of free-space between the tube and nozzle, and therefore is a function of
nozzle size. In these instances, separate calibrations shall be performed with
each of the commonly used nozzle sizes in place. Note that the single-velocity
calibration technique is acceptable for this purpose, even though the larger
nozzle sizes (>0.635 cm or 1/4 in.) are not ordinarily used for isokinetic
sampling at velocities around 915 m/min (3,000 f t/min), which is the calibration
velocity; note also that it is not necessary to draw an isokinetic sample during
calibration (see Citation 19 in the Bibliography) .
4.1.5.3 For a probe assembly constructed such that its pitot tube is always used
in the same orientation, only one side of the pitot tube need be calibrated (the
side which will face the flow) . The pitot tube must still meet the alignment
specifications of Figure 2-2 or 2-3, however, and must have an average deviation
(a) value of 0.01 or less (see Section 4.1.4.4.)
4.1.6 Field Use and Recalibration.
4.1.6.1 Field Use.
4.1.6.1.1 When a Type S pitot tube (isolated or in an assembly) is used in the
field, the appropriate coefficient value (whether assigned or obtained by
calibration) shall be used to perform velocity calculations. For calibrated Type
S pitot tubes, the A side coefficient shall be used when the A side of the tube
faces the flow, and the B side coefficient shall be used when the B side faces
the flow; alternatively, the arithmetic average of the A and B side coefficient
values may be used, irrespective of which side faces the flow.
4.1.6.1..2 When a probe assembly is used to sample a small duct, 30.5 to 91.4 cm
(12 to 36 in.) in diameter, the probe sheath sometimes blocks a significant part
of the duct cross-section, causing a reduction in the effective value of Cp,,,.
Consult Citation 9 in the Bibliography for details. Conventional pitot-sampling
probe assemblies are not recommended for use in ducts having inside diameters
smaller than 30.5 cm (12 in.) (see Citation 16 in the Bibliography).
4.1.6.2 Recalibration.
4.1.6.2.1 Isolated Pitot Tubes. After each field use, the pitot tube shall be
-------
EMTIC TM-002 KSPS TEST METHOD Page 11
carefully reexamined in top, side, and end views. If the pitot face openings are
still aligned within the specifications illustrated in Figure 2-2 or 2-3, it can
be assumed that the baseline coefficient of the pitot tube has not changed. If,
however, the tube has been damaged to the extent that it no longer meets the
specifications of the Figure 2-2 or 2-3, the damage shall either be repaired to
restore proper alignment of the face openings, or the tube shall be discarded.
4.1.6.2.2 Pitot Tube Assemblies. After each field use, check the face opening
alignment of the pitot tube, as in Section 4.1.6.2.1;, also, remeasure the
intercomponent spacings of the assembly. If the intercomponent spacings have not
changed and the face opening alignment is acceptable, it can be assumed that the
coefficient of the assembly has not changed. If the face opening alignment is
no longer within the specifications of Figure 2-2 or 2-3, either repair the
damage or replace the pitot tube (calibrating the new assembly, if necessary).
If the intercomponent spacings have changed, restore the original spacings, or
recalibrate the assembly.
4.2 Standard Pitot Tube (if applicable). If a standard pitot tube is used for
the velocity traverse, the tube shall be constructed according to the criteria
of Section 2.7 and shall be assigned a baseline coefficient value of 0.99. If
the standard pitot tube is used as part of an assembly, the tube shall be in an
interference-free arrangement (subject to the approval of the Administrator) .
4.3 Temperature Gauges. After each field use, calibrate dial thermometers,
liquid-filled bulb thermometers, thermocouple-potentiometer systems, and other
gauges at a temperature within 10 percent of the average absolute stack
temperature. For temperatures up to 405°C (761°F), use an ASTM mercury-in-glass
reference thermometer, or equivalent, as a reference; alternatively, either
a reference thermocouple and potentiometer (calibrated by NBS) or thermometric
fixed points, e.g., ice bath and boiling water (corrected for barometric
pressure) may be used. For temperatures above 405°C (761°F), use an NBS-
calibrated reference thermocouple-potentiometer system or an alternative
reference, subject to the approval of the Administrator.
If, during calibration, the absolute temperature measured with the gauge being
calibrated and the reference gauge agree within 1.5 percent, the temperature data
taken in the field shall be considered valid. Qtherwise, the pollutant emission
test shall either be considered invalid or adjustments (if appropriate) of the
test results shall be made, subject to the approval of the Administrator.
4.4 Barometer. Calibrate the barometer used against a mercury barometer.
5. CALCULATIONS
Carry out calculations, retaining at least one extra decimal figure beyond that
of the acquired data. Round off figures after final calculation.
5.1 Nomenclature.
A - Cross-sectional area of stack, m2 (ft2).
-------
EMTIC TM-002
NSPS TEST METHOD
Page 12
Water vapor in the gas stream (from Method 5 or Reference
Method 4), proportion by volume.
Pitot tube coefficient, dimensionless.
Pitot tube constant,
34.97
m
sec
(g/g-mole)(mmHg)
1/2
(°K) (mmH-O)
for the metric system.
85.49
ft
sec
Ib/lb-mole) (in.Hg)
(in.H,0)
1/2
for the English system.
M.
Molecular weight of stack gas, dry basis (see Section 3.6),
g/g—mole (Ib/lb-mole).
Molecular weight of stack gas, wet basis, g/g-mole (Ib/lb-
mole) .
= MH(1-BMJ + 18. OB
ws
ws
'9
P.
Eq. 2-5
Barometric pressure at measurement site, mm Hg (in. Hg)
Stack static pressure, mm Hg (in. Hg) .
Absolute stack pressure, mm Hg (in. Hg),
w
bar
Eq. 2-6
Standard absolute pressure, 760 mm Hg (29.92 in. Hg) .
Dry volumetric stack gas flow rate corrected to standard
conditions, dsmj/hr (dscf/hr) .
t.
Stack temperature, 8C (°F) .
-------
EMTIC TM-002
NSPS TEST METHOD
Page 13
for metric.
Absolute stack temperature, °K (°R)
= 273 + t.
Eq. 2-7
= 460 + t.
for English.
T.td
Ap =
3,600=
18.0 =
Eq. 2-8
Standard absolute temperature, 293°K (528°R).
Average stack gas velocity, m/sec (ft/sec).
Velocity head of stack gas, mm H20 (in. HaO) .
Conversion factor, sec/hr.
Molecular weight of water, g/g-mole (Ib/lb-mole).
5.2 Average Stack Gas Velocity.
— v r* /,/An I
KpCp (V^P)
T
1s(avg)
PsM»
Eq. 2-9
5.3 Average Stack Gaa Dry Volumetric Flow Rate.
T
Qsd = 3,600(l-Bws)vsA
std
s(avg)
•std
BIBLIOGRAPHY
1. Mark, L.S. Mechanical Engineers' Handbook. New York.
Co., Inc. 1951.
2. Perry. J.H. Chemical Engineers' Handbook. New York.
Eq. 2-10
McGraw-Hill Book
McGraw-Hill Book
-------
EMTIC TM-002 NSPS TEST MBTHOD Page 14
Co., Inc. 1960.
3. Shigehara, R.T., W.F. Todd, and W.S. Smith. Significance of Errors in
Stack Sampling Measurements. U.S. Environmental Protection Agency,
Research Triangle Park, N.C. (Presented at the Annual Meeting of the Air
Pollution Control Association, St. Louis, MO., June 14-19, 1970).
4. Standard Method for Sampling Stacks for Particulate Matter. In: 1971 Book
of ASTM Standards, Part 23. Philadelphia, PA. 1971. ASTM Designation
D 2928-71.
5. Vennard, J.K. Elementary Fluid Mechanics. New York. John Wiley and Sons,
Inc. 1947.
6. Fluid Meters - Their Theory and Application. American Society of
Mechanical Engineers, New York, N.Y. 1959.
7. ' ASHRAB Handbook of Fundamentals. 1972. p. 208.
8. Annual Book of ASTM Standards, Part 26. 1974. p. 648.
9. Vollaro, R.F. Guidelines for Type S Pitot Tube Calibration. U.S.
Environmental Protection Agency, Research Triangle Park, N.C. (Presented
at 1st Annual Meeting, Source Evaluation Society, Dayton, OH,
September 18, 1975.)
10. Vollaro, R.F. A Type S Pitot Tube Calibration Study. U.S. Environmental
Protection -Agency, Emission Measurement Branch, Research Triangle Park,
N.C. July 1974.
11. Vollaro, R.F. The Effects of Impact Opening Misalignment on the Value of
the Type S Pitot Tube Coefficient. U.S. Environmental Protection Agency,
Emission Measurement Branch, Research Triangle Park, NC. October 1976.
12. Vollaro, R.F. Establishment of a Baseline Coefficient Value for Properly
Constructed Type S Pitot Tubes. U.S. Environmental Protection Agency,
Emission Measurement Branch, Research Triangle Park, NC. November 1976.
13. Vollaro, R.F. An Evaluation of Single-Velocity Calibration Technique as a
Means of Determining Type S Pitot Tube Coefficients. U.S. Environmental
Protection Agency, Emission Measurement Branch, Research Triangle Park, NC.
August 1975.
14. Vollaro, R.F. The Use of Type S Pitot Tubes for the Measurement of Low
Velocities. U.S. Environmental Protection Agency, Emission Measurement
Branch, Research Triangle Park, NC. November 1976.
15. Smith, Marvin L. Velocity Calibration of EPA Type Source Sampling Probe.
United Technologies Corporation, Pratt and Whitney Aircraft Division, Bast
Hartford, CT. 1975.
-------
EMTIC TM-002 NSPS TEST METHOD Page 15
16. Vollaro, R.F. Recommended Procedure for Sample Traverses in Ducts Smaller
than 12 Inches in Diameter. U.S. Environmental Protection Agency, Emission
Measurement Branch, Research Triangle Park, NC. November 1976.
17. Ower, E. and R.C. Pankhurst. The Measurement of Air Flow, 4th Ed. London,
Pergamon Press. 1966.
18. Vollaro, R.F. A Survey of Commercially Available Instrumentation for the
Measurement of Low-Range Gas Velocities. U.S. Environmental Protection
Agency, Emission Measurement Branch, Research Triangle Park, NC.
November 1976. (Unpublished Paper).
19. Gnyp, A.W., C.C. St. Pierre, D.S. Smith, D. Mozzon, and J. Steiner. An
Experimental Investigation of the Effect of Pitot Tube-Sampling Probe
Configurations on the Magnitude of the S Type Pitot Tube Coefficient for
Commercially Available Source Sampling Probes. Prepared by the University
of Windsor for the Ministry of the Environment, Toronto, Canada.
February 1975.
-------
EMTIC TM-002
NSPS TEST METHOD
Page 16
(Q.7S-1.0kq
.La
7J2cm(lki.)*
I TwMc
V^
T*mp«nhin SMIMT
/ k
Typ*8PKDtTub*
• 8ugg«iM Ontoitcnne* FtM)
PNotlubWrtwrniocoupl* Spadng
Figure 2-1. Type S pitot tube manometer assembly.
-------
EMTIC TM-002
NSPS TEST METHOD
Page 17
TubtAxto
Ungtudlntl
TutaAxh
Fsra
Opening
PtaM
A-SktoPkuM
Note:
M s-
*_/L_.J 1*ll>|« P < 1.»ODt
B-SktoPlMM
_ —^| fyi \j- —3- — — — — -
(e)
(») tnt Htm; fce« •p»
to kuwwiM nfc;
(e) tM« vtow; bom tog* of •**! ktngth vid
FIT-HTI nuifllrlinlTrtin ot
O.M m«y b* tulgiwd to plot Uwt eon.
MnietotfMiwir
Figure 2-2. Properly constructed Type S pi tot tube.
-------
EMTIC TM-002
NSPS TEST METHOD
Page 18
2=37
•-S
~ in "V" 7y
Figure 2-3. Types of face-opening misalignment that can result from field use
or improper construction of Type S pitot tubes. These will not affect the
baseline value of Cp(s) so long as a1 and aj slO°, 31 and p* i5", z iO.32 cm (1/8
in.) and w iO.OB cm (1/32 in.) (citation 11 in Bibliography).
-------
EMTIC TM-002
NSPS TEST METHOD
Page 19
Cwndw
Figure 2-4. Standard pitot tube design specifications.
-------
EMTIC TM-002 NSPS TEST MBTHOD Page 20
-------
EMTIC TM-002
NSPS TEST METHOD
Page 21
PLANT
DATE _
RUN NO.
(in.) __
.STACK DIA. OR
DIMENSIONS, m (in.) BAROMETRIC PRESS., mm Hg
(in. Hg) CROSS SECTIONAL AREA, m2 (ft*)
OPERATORS
PITOT TOBE I.D. NO.
AVG. COEFFICIENT, Cp -
LAST DATE CALIBRATED,
SCHEMATIC OF STACK
CROSS SECTION
Traverse
Pt. No.
Vel. Hd., Ap
mm (in.) H2O
Stack Temperature
T.,
°C (°F)
Average
T.,
°K (°R)
*»
mm Hg
(in.Hg)
Up)1"
Figure 2-5. Velocity traverse data.
-------
EMTIC TM-002
NSPS TKST MBTHOD
Page 22
!*• t
A* Botton vbwi •nowinQ MMMMMH pMol
B. SldaVtnr. k>»nv«n1|>totlulwln>ffllMw1*ikl9wMgu
Dow «™»mSn« ippreichlng VM neijte. Vw Impact pn»ura
opwUnj pten* of *• plot Ink* Mwl t* *VM •*> of akev* ft*
nezzh •nby phiw.
Figure 2-6. Proper pitot tube-sampling nozzle configuration to prevent
aerodynamic interference: button-hook type nozzle; centers of nozzle and
pitot opening aligned; Dt between 0.48 and 0.95 cm (3/16 and 3/8 in.).
-------
EMTIC TM-002
NSPS TEST MJCTHOD
Page 23
I •
fa, T>nirfc
|ot
."»"•". I
• H |
Figure 2-7. Proper thermocouple placement to prevent interference: Dt
between 0.48 and 0.95 cm (3/16 and 3/8 in.).
-------
KMTIC TM-002
NSPS TEST METHOD
Page 24
TypcS Not Tufa* ^
Figure 2-8. Minimum pitot-sample probe separation needed to prevent
interference; Dt between 0.48 and 0.95 cm (3/16 and 3/8 in.).
-------
EMTIC TM-002
NSPS TEST METHOD
Page 25
PITOT TUBE IDENTIFICATION NUMBER:
DATE:
.CALIBRATED BY: _
RUN NO.
1
2
3
"A" SIDE CALIBRATION
AP.td
cm H2O
(in H2O)
AP(.>
cm HjO
(in H2O)
Cp.avg
(SIDE A)
Cp<»>
Deviation
Cp,., - Cp(A)
RUN NO.
1
2
3
"B" SIDE CALIBRATION
AP.td
cm H2O
(in H2O)
AP(.)
cm H2O
(in H,0)
Cp,,v5
(SIDE B)
Cpli)
Deviation
Cp,., - Cp(B)
Average Deviation = a
E
Cp(s) Cp(AorB)
(AorB)
•MustBesO.Ol
Cp(SideA) -Cp(SideB)hMustBes0.01
-------
EMTIC TM-002 NSPS TEST MBTHOD Page 26
Figure 2-9. Pitot tube calibration data.
-------
EMTIC TM-002
NSPS TEST METHOD
Page 27
Figure 2-10. Projected-area models for typical pitot tube assemblies.
-------
Appendix G.3
Sampling & Analysis Methods
EPA Method 3A
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
Method 3A - Determination of Oxygen and Carbon Dioxide Concentrations
1n Emissions from Stationary Sources
(Instrumental Analyzer Procedure)
1. APPLICABILITY AND PRINCIPLE
1.1 Applicability. This method is applicable to the determination of oxygen (02) and
carbon dioxide (C02) concentrations in emissions from stationary sources only when
specified within the regulations.
1.2 Principle. A sample is continuously extracted from the effluent stream: a
portion of the sample stream is conveyed to an instrumental analyzer(s) for
determination of 02 and CQ concentration(s). Performance specifications and test
procedures are provided to ensure reliable data.
2. RANGE AND SENSITIVITY
Same as in Method 6C. Sections 2.1 and 2.2. except that the span of the monitoring
system shall be selected such that the average 02 or C02 concentration is not less than
20 percent of the span.
3. DEFINITIONS
3.1 Measurement System. The total equipment required for the determination of the 02
or C02 concentration. The measurement system consists of the same major subsystems as
defined in Method 6C. Sections 3.1.1. 3.1.2. and 3.1.3.
3.2 Span, Calibration Gas. Analyzer Calibration Error, Sampling System Bias, Zero
Drift. Calibration Drift, Response Time, and Calibration Curve. Same as in Method 6C.
Sections 3.2 through 3.8. and 3.10.
3.3 Interference Response. The output response of the measurement system to a
component in the sample gas. other than the gas component being measured.
4, MEASUREMENT SYSTEM PERFORMANCE SPECIFICATIONS
Same as in Method 6C. Sections 4.1 through 4.4.
Prepared by Emission Measurement Branch EMTIC TM-003A
Technical Support Division. OAQPS. EPA May 6. 1989
-------
EMTIC TM-003A NSPS TEST METHOD Page 2
5. APPARATUS AND REAGENTS
5.1 Measurement System. Any measurement system for 02 or CQ that meets the
specifications of this method. A schematic of an acceptable measurement system 1s
shown in Figure 6C-1 of Method 6C. The essential components of the measurement system
are described below:
5.1.1 Sample Probe. A leak-free probe of sufficient length to traverse the sample
points.
5.1.2 Sample Line. Tubing to transport the sample gas from the probe to the moisture
removal system. A heated sample line is not required for systems that measure the 02
or C02 concentration on a dry basis, or transport dry gases.
5.1.3 Sample Transport Line. Calibration Valve Assembly. Moisture Renoval System.
Part1culate Filter. Sample Pump. Sample Flow Rate Control. Sample Gas Manifold, and
Data Recorder. Same as in Method 6C. Sections 5.1.3 through 5.1.9. and 5.1.11. except
that the requirements to use stainless steel. Teflon, and nonreactlve glass filters do
not apply.
5.1.4 Gas Analyzer. An analyzer to determine continuously the 02 or C02 concentration
in the sample gas stream. The analyzer must meet the applicable performance
specifications of Section 4. A means of controlling the analyzer flow rate and a
device for determining proper sample flow rate (e.g.. precision rotameter. pressure
gauge downstream of all flow controls, etc.) shall be provided at the analyzer. The
requirements for measuring and controlling the analyzer for measuring and controlling
the analyzer flow rate are not applicable if data are presented that demonstrate the
analyzer is insensitive to flow variations over the range encountered during the test.
5.2 Calibration Gases. The calibration gases for C02 analyzers shall be C02 in N2 or
C02 in air. Alternatively. C02/S02, 02/S02. or 02/C02/S02 gas mixtures in N2 may be used.
Three calibration gases, as specified in Sections 5.3.1 through 5.3.4 of Method 6C.
shall be used. For 02 monitors that cannot analyze zero gas. a calibration gas
concentration equivalent to less than 10 percent of the span may be used in place of
zero gas.
6. MEASUREMENT SYSTEM PERFORMANCE TEST PROCEDURES
Perform the following procedures before measurement of emissions (Section 7).
6.1 Calibration Concentration Verification. Follow Section 6.1 of Method 6C. except
if calibration gas analysis is required, use Method 3 and change the acceptance
criteria for agreement among Method 3 results to 5 percent (or 0.2 percent by volume.
whichever 1s greater).
6.2 Interference Response. Conduct an interference response test of the analyzer
prior to its initial use in the field. Thereafter, recheck the measurement system 1f
-------
EMTIC TM-003A NSPS TEST METHOD Page 3
changes are made in the instrumentation that could alter the interference response
(e.g.. changes in the type of gas detector). Conduct the interference response 1n
accordance with Section 5.4 of Method 20.
6.3 Measurement System Preparation. Analyzer Calibration Error, Response Time, and
Sampling System Bias Check. Follow Sections 6.2 through 6.4 of Method 6C.
7. EMISSION TEST PROCEDURE
7.1 Selection of Sampling Site and Sampling Points. Select a measurement site and
sampling points using the same criteria that are applicable to tests performed using
Method 3.
7.2 Sample Collection. Position the sampling probe at the first measurement point.
and begin sampling at the same rate as that used during the response time test.
Maintain constant rate sampling (i.e.. ±10 percent) during the entire run. The
sampling time per run shall be the same as for tests conducted using Method 3 plus
twice the average system response time. For each run. use only those measurements
obtained after twice the response time of the measurement system has elapsed to
determine the average effluent concentration.
7.3 Zero and Calibration Drift Test. Follow Section 7.4 of Method 6C.
8. QUALITY CONTROL PROCEDURES
The following quality control procedures are recommended when the results of this
method are used for an emission rate correction factor, or excess air determination.
The tester should select one of the following options for validating measurement
results:
8.1 If both 02 and CQ are measured using Method 3A. the procedures described in
Section 4.4 of Method 3 should be followed to validate the 02 and CQ measurement
results.
8.2 If only 02 is measured using Method 3A. measurements of the sample stream2CO
concentration should be obtained at the sample by-pass vent discharge using an Orsat
or Fyrite analyzer, or equivalent. Duplicate samples should be obtained concurrent
with at least one run. Average the duplicate Orsat or Fyrite analysis results for
each run. Use the average C02 values for comparison with the2 0 measurements in
accordance with the procedures described in Section 4.4 of Method 3.
8.3 If only C02 is measured using Method 3A. concurrent measurements of the sample
stream C02 concentration should be obtained using an Orsat or Fyrite analyzer as
described in Section 8.2. For each run. differences greater than 0.5 percent between
the Method 3A results and the average of the duplicate Fyrite analysis should be
investigated.
-------
EMTIC TM-003A NSPS TEST METHOD Page 4
9. EMISSION CALCULATION
9.1 For all C02 analyzers, and for 02 analyzers that can be calibrated with zero gas.
follow Section 8 of Method 6C. except express all concentrations as percent, rather
than ppm.
9.2 For QZ analyzers that use a low-level calibration gas in place of a zero gas.
Toil ate the effluent gas concentration using Equation 3A-1.
- C.) + C* Eq. 3A-1
c.-c0
Where:
Cgw ~ Effluent gas concentration, dry basis, percent.
C., - Actual concentration of the upscale calibration gas. percent.
CM - Actual concentration of the low- level calibration gas. percent.
C. - Average of initial and final system calibration bias check
responses for the upscale calibration gas. percent.
C0 - Average of initial and final system calibration bias check
responses for the low level gas. percent.
C - Average gas concentration indicated by the gas analyzer, dry basis.
percent.
10. BIBLIOGRAPHY
Same as in Bibliography of Method 6C.
-------
Appendix G.4
Sampling & Analysis Methods
EPA Method 23
-------
6560-50
ENVIRONMENTAL PROTECTION AGENCY
40 CFR Part 60
[AD-FRL- ]
STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES
Appendix A , Test Method 23
AGENCY: Environmental Protection Agency (EPA).
ACTION: Proposed Rule.
SUMMARY: This rule amends Method 23, entitled
"Determination of Polychlorinated Dibenzo-p-Dioxins and
Polychlorinated Dibenzofurans from Stationary Sources," to
correct existing errors in the method, to eliminate the methylene
chloride rinse of the sampling train, and to clarify the quality
assurance requirements of the method.
DATES: Comments. Comments must be received on or before
(90 days after publication in the FEDERAL
REGISTER].
Public Hearing. If anyone contacts EPA requesting to speak
at a public hearing by (two weeks after
publication in the FEDERAL REGISTER), a public hearing will be
held on (four weeks after publication in the
FEDERAL REGISTER), beginning at 10:00 a.m. Persons interested in
attending the hearing should call Ms. Lala Cheek at
(919) 541-5545 to verify that a hearing will be held.
Request to Speak at Hearing. Persons wishing to present
-------
oral testimony must contact EPA by (two weeks
after publication in the FEDERAL REGISTER).
ADDRESSES: Comments. Comments should be submitted (in duplicate
if possible) to Public Docket No. A-94-2 at the following
address: U. S. Environmental Protection Agency , Air and
Radiation Docket and Information Center, Mail Code: 6102, 401 M
Street, SW, Washington, DC 20460. The Agency requests that a
separate copy also be sent to the contact person listed below.
The docket is located at the above address in Room M-1500
Waterside Mall (ground floor), and may be inspected from
8:30 a.m. to Noon and 1:00 to 3:00 PM, Monday through Friday.
The proposed regulatory text and other materials related to this
rulemaking are available for review in the docket or copies may
be mailed on request from the Air Docket by calling 202-260-7548.
A reasonable fee may be charged for copying docket materials.
Public Hearing. If anyone contacts EPA requesting a public
hearing, it will be held at EPA's Emission Measurement
Laboratory, Research Triangle Park, North Carolina. Persons
interested in attending the hearing or wishing to present oral
testimony should notify Ms. Lala Cheek (MD-19), U.S.
Environmental Protection Agency, Research Triangle Park, North
Carolina 27711, telephone number (919) 541-5545.
-------
Docket: A Docket, A-94-22, containing materials relevant to
this rulemaking, is available for public inspection and copying
between 8:30 a.m. and Noon and 1:00 and 3:00 p.m., Monday through
Friday, in at EPA's Air Docket'Section (LE-131), Room M-1500
Waterside Mall (ground floor) 401 M Street, S.W., Washington,
D.C. 20460. A reasonable fee may be charged for copying.
FOR FURTHER INFORMATION CONTACT: Gary McAlister, Emission
Measurement Branch (MD-19), Emissions, Monitoring, and Analysis
Division, U.S. Environmental Protection Agency, Research Triangle
Park, North Carolina 27711, telephone (919) 541-1062.
SUPPLEMENTARY INFORMATION:
The proposed regulatory text of the proposed rule is not
included in this Federal Register notice, but is available in
Docket No. A-94-22 or by written or telephone request from the
Air Docket (see ADDRESSES). If necessary, a limited number of
copies of the Regulatory Text are available from the EPA contact
persons designated earlier in this notice. This Notice with the
proposed regulatory language is also available on the Technology
Transfer Network (TTN), one of EPA's electronic bulletin boards.
TTN provides information and technology exchange in various areas
of air pollution control. The service is free except for the
cost of the phone call. Dial (919) 541-5742 for up to a 14400
-------
bps modem. If more information on TTN is needed, call the HELP
line at (919) 541-5384.
I. SUMMARY
Method 23 was promulgated along with the New Source
Performance Standard for municipal waste combustors (Subpart Ea).
As promulgated, the method contained some errors. This action
would correct those errors and would clarify some of the existing
quality assurance requirements. In addition, the current
procedure requires rinsing of the sampling train with two
separate solvents which must be analyzed separately. Based on
data the Agency has collected since promulgation of Method 23, we
believe that one of these rinse steps and the resulting sample
fraction can be eliminated. This could save as much as $2000 per
test run in analytical costs.
II. THE RULEMAKING
This rulemaking does not impose emission measurement
requirements beyond those specified in the current regulations
nor does it change any emission standard. Rather, the rulemaking
would simply amend an existing test method associated with
emission measurement requirements in the current regulations that
would apply irrespective of this rulemaking.
III. ADMINISTRATIVE REQUIREMENTS
-------
A. Public Hearing
A public hearing will be held, if requested, to discuss the
proposed amendment in accordance with section 307(d)(5)of the
Clean Air Act. Persons wishing to make oral presentations should
contact EPA at the address given in the ADDRESSES section of this
preamble. Oral presentations will be limited to 15 minutes each.
Any member of the public may file a written statement with EPA
before, during, or within 30 days after the hearing. Written
statements should be addressed to the Air Docket Section address
given in the ADDRESSES section of this preamble.
A verbatim transcript of the hearing and written statements
will be available for public inspection and copying during normal
working hours at EPA's Air Docket Section in Washington, DC (see
ADDRESSES section of this preamble).
B. Docket
The docket is an organized and complete file of all the
information considered by EPA in the development of this
rulemaking. The docket is a dynamic file, since material is
•added throughout the rulemaking development. The docketing
•system is intended to allow members of the public and industries
involved to identify and locate documents readily so that they
may effectively participate in the rulemaking process. Along
-------
with the statement of basis and purpose of the proposed and
promulgated test method revisions and EPA responses to
significant comments, the contents of the docket, except for
interagency review materials, will serve as the record in case of
judicial review [Section 307(d)(7)(A)].
C. Executive Order 12291 Review
Under Executive Order 12291, EPA is required to judge
whether a regulation is a "major rule" and, therefore, subject to
the requirements of a regulatory impact analysis. This
rulemaking does not impose emission measurement requirements
beyond those specified in the current regulations, nor does it
change any emission standard. The Agency has determined that
this regulation would result in none of the adverse economic
effects set forth in Section 1 of the Order as grounds for
finding the regulation to be a "major rule." The Agency has,
therefore, concluded that this regulation is not a "major rule"
under Executive Order 12291.
D. Regulatory Flexibility Act
The Regulatory Flexibility Act (RFA) of 1980 requires the
identification of potentially adverse impacts of Federal
regulations upon small business entities. The RFA specifically
requires the completion of an analysis in those instances where
-------
small business impacts are possible. This rulemaking does not
impose emission measurement requirements beyond those specified
in the current regulations, nor does it change any emission
standard. Because this rulemaking imposes no adverse economic
impacts, an analysis has not been conducted.
Pursuant to the provision of 5 U.S.C. 605(b), I hereby
certify that the promulgated rule will not have an impact on
small entities because no additional costs will be incurred.
E. Paperwork Reduction Act
This rule does not change any information collection
requirements subject to Office of Management and Budget review
under the Paperwork Reduction Act of 1980, 44 U.S.C. 3501 et seq.
F. Statutory Authority
The statutory authority for this proposal is provided by
sections 111 and 301(a) of the Clean Air Act, as amended: 42
U.S.C., 7411 and 7601(a).
LIST OF SUBJECTS
Air pollution control, municipal waste combustors,
polychorinated dibenzo-p-dioxins, sources.
-------
Date The Administrator
It is proposed that 40 CFR Part 60 be amended as follows:
1. The authority citation for Part 60 continues to read as
follows: Authority: Clean Air Act (42 U.S.C. 7401 [et seq.], as
amended by Pub. L 101-549).
2. Replace test Method 23 of Appendix A, with the
following:
Method 23 - Determination of Polychlorinated Dibenzo-p-dioxins
and Polychlorinated Dibenzofurans from Municipal Waste Combust or s
1. APPLICABILITY AND PRINCIPLE
1.1 Applicability. This method is applicable to the
determination of emissions of polychlorinated dibenzo-p-dioxins
(PCDD's) and polychlorinated dibenzofurans (PCDF's) from
municipal waste combustors. Calibration standards are selected
for regulated emission levels for municipal waste combustors.
1.2 Principle. A sample is withdrawn isokinetically from the
gas stream and collected in the sample probe, on a glass fiber
filter, and on a packed column of adsorbent material. The sample
cannot be separated into a particle and vapor fraction. The
PCDD's and PCDF's are extracted from the sample, separated by
high resolution gas chromatography (HRGC) , and measured by high
8
-------
resolution mass spectrometry (HRMS).
2. APPARATUS
2.1 Sampling. A schematic of the sampling train is shown in
Figure 23-1. Sealing greases shall not be used in assembling the
train. The train is identical to that described in Section 2.1
of Method 5 of this appendix with the following additions:
-------
itackwtl
X
IwMtd gtou «n«r
tampMM
MDU
I
h«»l
1
1
urn
tr
t
d
OwFtow
•8-Vp.
pltot
Figure 23.1 Sampling Train
10
-------
11
-------
2.1.1 Nozzle. The nozzle shall be made of nickel, nickel-
plated stainless steel, quartz, or borosilicate glass.
2.1.2 Sample Transfer Lines. The sample transfer lines, if
needed, shall be heat traced, heavy walled TFE (1/2 in. OD with
1/8 in. wall) with connecting fittings that are capable of
forming leak-free, vacuum-tight connections without using sealing
greases. The line shall be as short as possible and must be
maintained at £l20°C.
2.1.1 Filter Support. Teflon or Teflon-coated wire.
2.1.2 Condenser. Glass, coil type with compatible fittings.
A schematic diagram is shown in Figure 23-2.
2.1.3 Water Bath. Thermostatically controlled to maintain the
gas temperature exiting the condenser at ^.20°C (68°F) .
2.1.4 Adsorbent Nodule. Glass container to hold up to 40
grams of resin adsorbent. A schematic diagram is shown in Figure
23-2. Other physical configurations of the water-jacketed resin
trap/condenser assembly are acceptable. The connecting fittings
shall form leak-free, vacuum tight seals. A coarse glass frit is
included to retain the adsorbent in the water-jacketed sorbent
module.
2.1.5 Probe Liner. The probe liner shall be made of glass and
a Teflon ferrule or Teflon coated O-ring shall be used to make
the seal at the nozzle end of the probe.
12
-------
2.2 Sample Recovery.
2.2.1 Fitting Caps. Ground glass, Teflon tape, or aluminum
foil (Section 2.2.6) to cap off the sample exposed sections of
the train and sorbent module.
2.2.2 Wash Bottles. Teflon, 500-mL.
13
-------
T
3
to
o
Flue
Gas
Flow
o
h.
O
o
O
8
5
E
E
•o
* 20/15
Sorbent Trap
G)*M Sintered Dick
XAD-2
Water Jacket
Glass Wool Plug
Condenser
Cooling Coil
Water Jacket
* 20/15
Figure 23.2 Condenser and Adsorbent Trap
14
-------
15
-------
2.2.3 Probe Liner, Probe Nozzle, and Filter Holder Brushes.
Inert bristle brushes with precleaned stainless steel or Teflon
handles. The probe brush shall have extensions of stainless
steel or Teflon, at least as long as the probe. The brushes
shall be properly sized and shaped to brush out the nozzle, probe
liner, and transfer line, if used.
2.2.4 Filter Storage Container. Sealed filter holder, wide-
mouth amber glass jar with Teflon-lined cap, glass petri dish, or
Teflon baggie.
2.2.5 Balance. Triple beam.
2.2.6 Aluminum Foil. Heavy duty, hexane-rinsed (Do not use to
wrap or ship filter samples, because it may react with
particulate matter).
2.2.7 Metal Storage Container. Air tight container to store
silica gel.
2.2.8 Graduated Cylinder. Glass, 250-mL with 2-mL
graduations.
2.2.9 Glass Sample Storage Containers. Amber glass bottles
for sample glassware washes, 500- or 1000-tnL, with leak free
Teflon-lined caps.
2.3 Analysis.
2.3.1 Sample Containers. 125- and 250-mL flint glass bottles
with Teflon-lined caps.
16
-------
2.3.2 Test Tubes. Glass.
2.3.3 Soxhlet Extraction Apparatus. Capable of holding 43 x
123 mm extraction thimbles.
2.3.4 Extraction Thimble. Glass, precleaned cellulosic, or
glass fiber.
2.3.5 Pasteur Pipettes. For preparing liquid chromatographic
columns.
2.3.6 Reacti-vials. Amber glass, 2-mL.
2.3.7 Rotary Evaporator. Buchi/Brinkman RF-121 or equivalent.
2.3.8 Kuderna-Danish Concentrator Apparatus.
2.3.9 Nitrogen Evaporative Concentrator. N-Evap Analytical
Evaporator Model III or equivalent.
2.3.10 Separatory Funnels. Glass, 2-liter.
2.3.11 Gas Chromatograph. Consisting of the following
components:
2.3.11.1 Oven. Capable of maintaining the separation column
at the proper operating temperature ±10°C and performing
programmed increases in temperature at rates of at least
,40°C/min.
2.3.11.2 Temperature Gauges. To monitor column oven,
detector, and exhaust temperatures ±1°C.
2.3.11.3 Flow Systems. Gas metering system to measure sample,
fuel, combustion gas, and carrier gas flows.
17
-------
2.3.11.4 Capillary Columns. A fused silica column,
60 x 0.25 mm inside diameter (ID), coated with DB-5 and a fused
silica column, 30 m x 0.25 mm ID coated with DB-225. Other
column systems may be substituted provided that the user is able
to demonstrate, using calibration and performance checks, that
the column system is able to meet the specifications of Section
6.1.2.2.
2.3.12 Mass Spectrometer. Capable of routine operation at a
resolution of 1:10000 with a stability of ±5 ppm.
2.3.13 Data System. Compatible with the mass spectrometer and
capable of monitoring at least five groups of 25 ions.
2.3.14 Analytical Balance. To measure within 0.1 mg.
3. REAGENTS
3.1 Sampling.
3.1.1 Filters. Glass fiber filters, without organic binder,
exhibiting at least 99.95 percent efficiency (<0.05 percent
penetration) on 0.3-micron dioctyl phthalate smoke particles.
The filter efficiency test shall be conducted in accordance with
ASTM Standard Method D 2986-71 (Reapproved 1978) (incorporated by
reference - see §60.17).
3.1.1.1 Precleaning. All filters shall be cleaned before
their initial use. Place a glass extraction thimble and 1 g of
silica gel and a plug of glass wool into a Soxhlet apparatus,
18
-------
charge the apparatus with toluene, and reflux for a minimum of 3
hours. Remove the toluene and discard it, but retain the silica
gel. Place no more than 50 filters in the thimble onto the
silica gel bed and top with the cleaned glass wool. Charge the
Soxhlet with toluene and reflux for 16 hours. After extraction,
allow the Soxhlet to cool, remove the filters, and dry them under
a clean nitrogen (N2) stream. Store the filters in a glass petri
dishes and seal with Teflon tape.
3.1.2 Adsorbent Resin. Amberlite XAD-2 resin. Thoroughly
cleaned before initial use. Do not reuse resin. If precleaned
XAD-2 resin is purchased from the manufacturer, the cleaning
procedure described in Section 3.1.2.1 is not required.
3.1.2.1 Cleaning. Procedure may be carried out in a giant
Soxhlet extractor. An all-glass filter thimble containing an
extra-coarse frit is used for extraction of XAD-2. The frit is
recessed 10-15 mm above a crenelated ring at the bottom of the
thimble to facilitate drainage. The resin must be carefully
retained in the extractor cup with a glass wool plug and a
.stainless steel ring because it floats on methylene chloride.
This process involves sequential extraction in the following
order.
Solvent Procedure
Water Initial Rinse: Place resin in a beaker,
19
-------
rinse once with HPLC water, and discard
water. Refill beaker with water, let
stand overnight, and discard water.
Water Extract with HPLC water for 8 hours.
Methanol Extract with methanol for 22 hours.
Methylene Chloride Extract with methylene chloride for 22
hours.
Methylene Chloride Extract with methylene chloride for 22
hours.
3.1.2.2 Drying.
3.1.2.2.1 Drying Column. Pyrex pipe, 10.2 cm ID by 0.6 m
long, with suitable retainers.
3.1.2.2.2 Procedure. The adsorbent must be dried with clean
inert gas. Liquid nitrogen from a standard commercial liquid
nitrogen cylinder has proven to be a reliable source for large
volumes of gas free from organic contaminants. Connect the
liquid nitrogen cylinder to the column by a length of cleaned
copper tubing, 0.95 cm ID, coiled to pass through a heat source.
A convenient heat source is a water-bath heated from a steam
line. The final nitrogen temperature should only be warm to the
touch and not over 40°C. Continue flowing nitrogen through the
adsorbent until all the residual solvent is removed. The flow
rate should be sufficient to gently agitate the particles, but
20
-------
not so excessive as to cause the particles to fracture.
3.1.2.3 Quality Control Check. The adsorbent must be checked
for residual methylene chloride (MeCl2) as well as PCDDs and
PCDFs prior to use. The analyst may opt to omit this check for
precleaned XAD-2.
3.1.2.3.1 MeCla Residue Extraction. Weigh a 1.0 g sample of
dried resin into a small vial, add 3 mL of toluene, cap the vial,
and shake it well.
3.1.2.3.2 MeCl2 Residue Analysis. Inject a 2 /il sample of the
extract into a gas chromatograph operated under the following
conditions:
Column: 6 ft x 1/8 in stainless steel containing 10 percent
OV-101™ on 100/120 Supelcoport.
Carrier Gas: Helium at a rate of 30 mL/min.
Detector: Flame ionization detector operated at a sensitivity
of 4 x 10 -11 A/mV.
Injection Port Temperature: 250°C.
Detector Temperature: 305°C.
Oven Temperature: 30°C for 4 min; programmed to rise at
40°C/min until it reaches 250°C; return to 30°C after 17
minutes.
Compare the results of the analysis to the results from the
reference solution. Prepare the reference solution by injecting
21
-------
4.0 /il of methylene chloride into 100 raL of toluene. This
corresponds to 100 /KJ of methylene chloride per g of adsorbent.
The maximum acceptable concentration is 1000 pig/g of adsorbent.
If the adsorbent exceeds this level, drying must be continued
until the excess methylene chloride is removed.
3.1.2.3.3 PCDD and PCDF Check. Extract the adsorbent sample
as described in Section 5.1. Analyze the extract as described in
Section 5.3. If any of the PCDDs or PCDFs (tetra through hexa)
are present at concentrations above the target detection limits
(TDLs) , the adsorbent must be recleaned by repeating the last
step of the cleaning procedure. The TDLs for the various
PCDD/PCDF congeners are listed in Table 1.
3.1.2.4 Storage. After cleaning, the adsorbent may be stored
in a wide mouth amber glass container with a Teflon-lined cap or
placed in glass adsorbent modules tightly sealed with glass
stoppers. It must be used within 4 weeks of cleaning. If
precleaned adsorbent is purchased in sealed containers, it must
be used within 4 weeks after the seal is broken.
3.1.3 Glass Wool. Cleaned by sequential immersion in three
aliquots of methylene chloride, dried in a 110°C oven, and stored
in a methylene chloride-washed glass container with a Teflon-
lined screw cap.
3.1.4 Water. Deionized distilled and stored in a methylene
22
-------
chloride-rinsed glass container with a Teflon-lined screw cap.
3.1.5 Silica Gel. Indicating type, 6 to 16 mesh. If
previously used, dry at 175° C (350°F) for two hours. New silica
gel may be used as received. Alternatively, other types of
desiccants (equivalent or better) may be used, subject to the
approval of the Administrator.
3.1.6 Chromic Acid Cleaning Solution. Dissolve 20 g of sodium
dichromate in 15 mL of water, and then carefully add 400 mL of
concentrated sulfuric acid.
3.1.7 HPLC Water.
3.2 Sample Recovery.
3.2.1 Acetone. Pesticide quality.
3.2.2 Toluene. Pesticide quality.
3.3 Analysis.
3.3.1 Potassium Hydroxide. ACS grade, 2-percent
(weight/volume) in water.
3.3.2 Sodium Sulfate. Granulated, reagent grade. Purify
prior to use by rinsing with methylene chloride and oven drying.
Store the cleaned material in a glass container with a Teflon-
lined screw cap.
3.3.3 Sulfuric Acid. Reagent grade.
3.3.4 Sodium Hydroxide. 1.0 N. Weigh 40 g of sodium hydroxide
into a 1-liter volumetric flask. Dilute to 1 liter with water.
23
-------
3.3.5 Hexane. Pesticide grade.
3.3.6 Methylene Chloride. Pesticide grade.
3.3.7 Benzene. Pesticide grade.
3.3.8 Ethyl Acetate.
3.3.9 Methanol. Pesticide grade.
3.3.10 Toluene. Pesticide grade.
3.3.11 Nonane. Pesticide grade.
3.3.12 Cyclohexane. Pesticide Grade.
3.3.13 Basic Alumina. Activity grade 1, 100-200 mesh. Prior
to use, activate the alumina by heating for 16 hours at 130°C.
Store in a desiccator. Pre-activated alumina may be purchased
from a supplier and may be used as received.
3.3.14 Silica Gel. Bio-Sil A, 100-200 mesh. Prior to use,
activate the silica gel by heating for at least 30 minutes at
180°C. After cooling, rinse the silica gel sequentially with
methanol and methylene chloride. Heat the rinsed silica gel at
50°C for 10 minutes, then increase the temperature gradually to
180°C over 25 minutes and maintain it at this temperature for
90 minutes. Cool at room temperature and store in a glass
container with a Teflon-lined screw cap.
3.3.15 Silica Gel Impregnated with Sulfuric Acid. Combine 100
g of silica gel with 44 g of concentrated sulfuric acid in a
screw capped glass bottle and agitate thoroughly. Disperse the
24
-------
solids with a stirring rod until a uniform mixture is obtained.
Store the mixture in a glass container with a Teflon-lined screw
cap.
3.3.16 Silica Gel Impregnated with Sodium Hydroxide. Combine
39 g of 1 N sodium hydroxide with 100 g of silica gel in a screw
capped glass bottle and agitate thoroughly. Disperse solids with
a stirring rod until a uniform mixture is obtained. Store the
mixture in glass container with a Teflon-lined screw cap.
3.3.17 Carbon/Celite. Combine 10.7 g of AX-21 carbon with 124
g of Celite 545 in a 250-mL glass bottle with a Teflon-lined
screw cap. Agitate the mixture thoroughly until a uniform
mixture is obtained. Store in the glass container.
3.3.18 Nitrogen. Ultra high purity.
3.3.19 Hydrogen. Ultra high purity.
3.3.20 Internal Standard Solution. Prepare a stock standard
solution containing the isotopically labelled PCDD's and PCDF's
at the concentrations shown in Table 2 under the heading
"Internal Standards" in 10 mL of nonane.
3.3.21 Surrogate Standard Solution. Prepare a stock standard
solution containing the isotopically labelled PCDD's and PCDF's
at the concentrations shown in Table 2 under the heading
"Surrogate Standards" in 10 mL of nonane.
3.3.22 Recovery Standard Solution. Prepare a stock standard
25
-------
solution containing the isotopically labelled PCDD's and PCDF's
at the concentrations shown in Table 2 under the heading
"Recovery Standards" in 10 mL of nonane.
4. PROCEDURE
4.1 Sampling. The complexity of this method is such that, in
order to obtain reliable results, testers and analysts should be
trained and experienced with the procedures.
4.1.1 Pretest Preparation.
4.1.1.1 Cleaning Glassware. All glass components of the train
upstream of and including the adsorbent module, shall be cleaned
as described in Section 3A of the "Manual of Analytical Methods •
for the Analysis of Pesticides in Human and Environmental
Samples." Special care shall be devoted to the removal of
residual silicone grease sealants on ground glass connections of
used glassware. Any residue shall be removed by soaking the
glassware for several hours in a chromic acid cleaning solution
prior to cleaning as described above.
4.1.1.2 Adsorbent Trap. The traps shall be loaded in a clean
area to avoid contamination. They may not be loaded in the
field. Fill a trap with 20 to 40 g of XAD-2. Follow the XAD-2
with glass wool and tightly cap both ends of the trap. Add 40 jil
of the surrogate standard solution (Section 3.3.21) to each trap
for a sample that will be split prior to analysis or 20 fj.1 of the
26
-------
surrogate standard solution (Section 3.3.21) to each trap for
samples that will not be split for analysis (Section 5.1) . After
addition of the surrogate standard solution, the trap must be
used within 14 days. Keep the spiked sorbent under refrigeration
until use.
4.1.1.3 Sampling Train. It is suggested that all components
be maintained according to the procedure described in APTD-0576.
4.1.1.4 Silica Gel. Weigh several 200 to 300 g portions of
silica gel in air tight containers to the nearest 0.5 g. Record
the total weight of the silica gel plus container, on each
container. As an alternative, the silica gel may be weighed
directly in the fifth impinger just prior to sampling.
4.1.1.5 Filter. Check each filter against light for
irregularities and flaws or pinhole leaks. Pack the filters flat
in a clean glass container or Teflon baggie. Do not mark filter
with ink or any other contaminating substance.
4.1.2 Preliminary Determinations. Same as Section 4.1.2
Method 5.
4.1.3 Preparation of Sampling Train.
4.1.3.1 During preparation and assembly of the sampling train,
keep all train openings where contamination can enter, sealed
until sampling is about to begin. Wrap sorbent module with
aluminum foil to shield from radiant heat of sun light. (NOTE:
27
-------
Do not use sealant grease in assembling the train.)
4.1.3.2 Place approximately 100 mL of water in the second and
third impingers, leave the first and fourth impingers empty, and
transfer approximately 200 to 300 g of preweighed silica gel from
its container to the fifth impinger.
4.1.3.3 Place the silica gel container in a clean place for
later use in the sample recovery. Alternatively, the weight of
the silica gel plus the fifth impinger may be determined to the
nearest 0.5 g and recorded.
4.1.3.4 Assemble the sampling train as shown in Figure 23-1.
4.1.3.5 Turn on the adsorbent module and condenser coil
recirculating pump and begin monitoring the adsorbent module gas
entry temperature. Ensure proper sorbent gas entry temperature
before proceeding and before sampling is initiated. It is
extremely important that the XAD-2 adsorbent resin temperature
never exceed 50°C because thermal decomposition and breakthrough
of surrogate standards will occur. During testing, the XAD-2
temperature must not exceed 20°C for efficient capture of the
PCDD's and PCDF's.
4.1.4 Leak-Check Procedure. Same as Method 5, Section 4.1.4.
4.1.5 Sampling Train Operation. Same as Method 5,
Section 4.1.5.
4.2 Sample Recovery. Proper cleanup procedure begins as soon
28
-------
as the probe is removed from the stack at the end of the sampling
period. Seal the nozzle end of the sampling probe with Teflon
tape or aluminum foil.
When the probe can be safely handled, wipe off all external
particulate matter near the tip of the probe. Remove the probe
from the train and close off both ends with aluminum foil. Seal
off the inlet to the train with Teflon tape, a ground glass cap,
or aluminum foil.
Transfer the probe and impinger assembly to the cleanup area.
This area shall be clean and enclosed so that the chances of
losing or contaminating the sample are minimized. Smoking, which
could contaminate the sample, shall not be allowed in the cleanup
area. Cleanup personnel shall wash their hands prior to sample
recovery.
Inspect the train prior to and during disassembly and note any
abnormal conditions, e.g., broken filters, colored impinger
liquid, etc. Treat the samples as follows:
4.2.1 Container No. 1. Either seal the filter holder or
carefully remove the filter from the filter holder and place it
in its identified container. Do not place the filter in aluminum
foil. Use a pair of cleaned tweezers to handle the filter. If
it is necessary to fold the filter, do so such that the
particulate cake is inside the fold. Carefully transfer to the
29
-------
container any particulate matter and filter fibers which adhere
to the filter holder gasket, by using a dry inert bristle brush
and a sharp-edged blade. Seal.the container with Teflon tape.
4.2.2 Adsorbent Module. Remove the module from the train,
tightly cap both ends, label it, and store it on ice for
transport to the laboratory.
4.2.3 Container No. 2. Quantitatively recover material
deposited in the nozzle, probe transfer lines, the front half of
the filter holder, and the cyclone, if used, first, by brushing
while rinsing three times with acetone and then, by rinsing the
probe three times with toluene. Collect all the rinses in
Container No. 2.
Rinse the back half of the filter holder three times with
acetone. Rinse the connecting line between the filter and the
condenser three times with acetone. Soak the connecting line
with three separate portions of toluene for 5 minutes each. If
using a separate condenser and adsorbent trap, rinse the
condenser in the same manner as the connecting line. Collect all
the rinses in Container No. 2 and mark the level of the liquid on
the container.
4.2.4 Impinger Water. Measure the liquid in the first four
impingers to within 1 mL by using a graduated cylinder or by
weighing it to within 0.5 g by using a balance. Record the
30
-------
volume or weight of liquid present. This information is required
to calculate the moisture content of the effluent gas. Discard
the liquid after measuring and recording the volume or weight.
4.2.5 Silica Gel. Note the color of the indicating silica gel
to determine if it has been completely spent and make a mention
of its condition. Transfer the silica gel from the fifth
impinger to its original container and seal.
5. ANALYSIS
All glassware shall be cleaned as described in Section 3A of
the "Manual of Analytical Methods for the Analysis of Pesticides
in Human and Environmental Samples." All samples must be
extracted within 30 days of collection and analyzed within 45
days of extraction.
5.1 Sample Extraction. The analyst may choose to split the
sample extract after the completion of sample extraction
procedures. One half of the sample can then be archived. Sample
preparation procedures are given for using the entire sample and
for splitting the sample.
5.1.1 Extraction System. Place an extraction thimble (Section
2.3.4), 1 g of silica gel, and a plug of glass wool into the
Soxhlet apparatus, charge the apparatus with toluene, and reflux
for a minimum of 3 hours. Remove the toluene and discard it, but
retain the silica gel. Remove the extraction thimble from the
31
-------
extraction system and place it in a glass beaker to catch the
solvent rinses.
5.1.2 Container No. 1 (Filter). Transfer the contents
directly to the glass thimble of the extraction system and
extract them simultaneously with the XAD-2 resin.
5.1.3 Adsorbent Cartridge. Suspend the adsorbent module
directly over the extraction thimble in the beaker (See Section
5.1.1) . The glass frit of the module should be in the up
position. Using a Teflon squeeze bottle containing toluene,
flush the XAD-2 into the thimble onto the bed of cleaned silica
gel. Thoroughly rinse the glass module catching the rinsings in
the beaker containing the thimble. If the resin is wet,
effective extraction can be accomplished by loosely packing the
resin in the thimble. Add the XAD-2 glass wool plug to the
thimble.
5.1.4 Container No. 2 (Acetone and Toluene). Concentrate the
sample to a volume of about 1-2 mL using a Kuderna-Danish
concentrator apparatus, followed by N2 blow down at a temperature
of less than 37°C. Rinse the sample container three times with
small portions of methylene chloride and add these to the
concentrated solution and concentrate further to near dryness.
This residue contains particulate matter removed in the rinse of
the sampling train probe and nozzle. Add the concentrate to the
32
-------
filter and the XAD-2 resin in the Soxhlet apparatus described in
Section 5.1.1.
5.1.5 Extraction. For samples that are to be split prior to
analysis add 40 /xl of the internal standard solution
(Section 3.3.20) to the extraction thimble containing the
contents of the adsorbent cartridge, the contents of
Container No. 1, and the concentrate from Section 5.1.4.
Alternatively, 20 pil of the internal standard solution
(Section 3.3.20) for samples that are not to be split prior to
analysis. Cover the contents of the extraction thimble with the
cleaned glass wool plug to prevent the XAD-2 resin from floating
into the solvent reservoir of the extractor. Place the thimble
in the extractor, and add the toluene contained in the beaker to
the solvent reservoir. Add additional toluene to fill the
reservoir approximately 2/3 full. Add Teflon boiling chips and
assemble the apparatus. Adjust the heat source to cause the
extractor to cycle three times per hour. Extract the sample for
16 hours. After extraction, allow the Soxhlet to cool. Transfer
the toluene extract and three 10-mL rinses to the rotary
evaporator. Concentrate the extract to approximately 10 mL. If
decided to split the sample, store one half for future use, and
analyze the other half according to the procedures in Sections
5.2 and 5.3. In either case, use a nitrogen evaporative
33
-------
concentrator to reduce the volume of the sample being analyzed to
near dryness. Dissolve the residue in 5 mL of hexane.
5.2 Sample Cleanup and Fractionation.
The following sample cleanup and fractionation procedures are
recommended. Alternative procedures may be utilized providing
acceptable identification criteria (Section 5.3.2.5) and
quantification criteria (Section 5.3.2.6) are met.
5.2.1 Silica Gel Column. Pack one end of a glass column,
20 mm x 230 mm, with glass wool. Add in sequence, 1 g silica
gel, 2 g of sodium hydroxide impregnated silica gel, 1 g silica
gel, 4 g of acid-modified silica gel, and 1 g of silica gel.
Wash the column with 30 mL of hexane and discard. Add the sample
extract, dissolved in 5 mL of hexane to the column with two
additional 5-mL rinses. Elute the column with an additional 90
mL of hexane and retain the entire eluate. Concentrate this
solution to a volume of about 1 mL using the nitrogen evaporative
concentrator (Section 2.3.9).
5.2.2 Basic Alumina Column. Shorten a 25-mL disposable
Pasteur pipette to about 16 mL. Pack the lower section with
glass wool and 12 g of basic alumina. Transfer the concentrated
extract from the silica gel column to the top of the basic
alumina column and elute the column sequentially with 120 mL of
0.5 percent methylene chloride in hexane followed by 120 mL of 35
34
-------
percent methylene chloride in hexane. Discard the first 120 mL
of eluate. Collect the second 120 mL of eluate and concentrate
it to about 0.5 mL using the nitrogen evaporative concentrator.
Transfer this extract with hexane to "13 mL tubes".
5.2.3 AX-21 Carbon/Celite 545 Column. Remove the bottom 0.5
in. from the tip of a 2-mL disposable Pasteur pipette. Insert a
glass fiber filter disk or glass wool plug in the top of the
pipette 2.5 cm from the constriction. Add sufficient
carbon/Gelite™ mixture to form a 2 cm column (the 0.6 mL mark
column. Top with a glass wool plug. In some cases AX-21 carbon
fines may wash through the glass wool plug and enter the sample.
This may be prevented by adding a celite plug to the exit end of
the column. Pre-elute the column with 5 mL toluene, followed by 1
mL of a 50:50 methylene chloride/cyclohexane mixture, followed by
5 mL of hexane. Load in sequence, the sample extract in 1 mL
hexane, 2x0.5 mL rinses in hexane, 2 mL of 50 percent methylene
chloride in hexane and 2 mL of 50 percent benzene in ethyl
acetate and discard the eluates. Invert the column and elute in
the reverse direction with 13 mL of toluene. Collect this
eluate. Concentrate the eluate in a nitrogen evaporator at 45°C
to about 1 mL. Transfer the concentrate to a Reacti-vial using a
toluene rinses and concentrate to near dryness (less than 20
using a stream of N2. Store extracts at room temperature,
35
-------
shielded from light, until the analysis is performed.
5.3 Analysis. Analyze the sample with a gas chromatograph
coupled to a mass spectrometer (GC/MS) using the instrumental
parameters in Sections 5.3.1 and 5.3.2. Immediately prior to
analysis, add a 20 /il aliquot of the recovery standard solution
from Table 2 to each sample. A 2 /zl aliquot of the extract is
injected into the GC. Sample extracts are first analyzed using
the DB-5 capillary column to determine the concentration of each
isomer of PCDD's and PCDF's (tetra-through octa-). If 2,3,7,8-
TCDF is detected in this analysis, then analyze another aliquot
of the sample in a separate run, using the DB-225 column to
measure the 2,3,7,8 tetra-chloro dibenzofuran isomer. Other
column systems may be used, provided that it can be demonstrated
using calibration and performance checks that the column system
is able to meet the specifications of Section 6.1.2.
5.3.1 Gas Chromatograph Operating Conditions. The recommended
conditions are shown in Table 4.
5.3.2 High Resolution Mass Spectrometer.
5.3.2.1 Resolution. 10,000 resolving power or 100 ppm
mass/mass.
5.3.2.2 lonization Mode. Electron impact.
5.3.2.3 Source Temperature 250°C.
5.3.2.4 Monitoring Mode. Selected ion monitoring. A list of
36
-------
the various ions to be monitored is presented in Table 5.
5.3.2.5 Identification Criteria. The following identification
criteria shall be used for the characterization of
polychlorinated dibenzodioxins and dibenzofurans.
1. The integrated ion-abundance ratio (M/M+2 or M+2/M+4) shall
be within 15 percent of the theoretical value. The acceptable
ion-abundance ratio ranges (±15%) for the identification of
chlorine-containing compounds are given in Table 6. If the ion-
abundance ratio ranges are the outside those in Table 6, the
source has the option of using the results if the concentration
is determined using procedures in Section 9.3 or redoing the
analysis to eliminate the unacceptable ion-abundance ratio.
2. The retention time for the analytes must be within 3
seconds of the corresponding 13C-labeled internal standard or
surrogate standard.
3. The monitored ions, shown in Table 5 for a given analyte,
shall reach their maximum within 2 seconds of each other.
4. The identification of specific isomers that do not have
corresponding 13C-labeled standards is done by comparison of the
relative retention time (RRT) of the analyte to the nearest
internal standard retention time with reference (i.e., within
0.005 RRT units) to the comparable RRT's found in the continuing
calibration.
37
-------
5. The signal to noise ratio for all monitored ions must be
greater than 2.5.
6. The confirmation of 2, 3, 7, 8-TCDF shall satisfy all of
the above identification criteria.
7. Any PCDF coeluting (±2 s) with a peak in the corresponding
PCDPE channel, of intensity 10% or greater compared to the
analyte peak is evidence of a positive interference, the source
may opt keep the value to calculate CDD/CDF concentration or
conduct a complete reanalysis in an effort to remove or shift the
interference. If a reanalysis is conducted, all values from the
reanalyzed sample will be used for CDD/CDF concentration
calculations.
8. Set the mass spectrometer lock channels as specified in
Table 5. Monitor the quality control check channels specified in
Table 5 to verify instrument stability during the analysis. If
the signal varies by more than 25 percent from the average
response, results for all isomers at corresponding residence time
shall be invalid. The source has the options of conducting
additional cleanup procedures on the other portion of the sample
for split samples or diluting the original sample or following
other procedures recommended by the Administrator. When a
complete reanalysis is conducted, all concentration calculations
shall be based on the reanalyzed sample.
38
-------
5.3.2.6 Quantification. The peak areas for the two ions
monitored for each analyte are summed to yield the total response
for each analyte. Each internal standard is used to quantify the
indigenous PCDD's or PCDF's in its homologous series. For
example, the 13C12-2,3,7,8-tetra chlorinated dibenzodioxin is used
to calculate the concentrations of all other tetra chlorinated
isomers. Recoveries of the tetra- and penta- internal standards
are calculated using the 13C12-1, 2, 3,4-TCDD. Recoveries of the
hexa- through octa- internal standards are calculated using •13C12-
1,2,3,7,8,9-HxCDD. Recoveries of the surrogate standards are
calculated using the corresponding homolog from the internal
standard. When no peak is detected, the noise level, as measured
by the intensity of the noise in a clear zone of the
chromatogram, is used to calculate the detection limit. Tables
7, 8, and 9 summarize the quantification relationships for the
unlabeled analytes, internal standards and surrogate standards,
respectively.
6. CALIBRATION
Same as Method 5 with the following additions.
6.1 GC/MS System.
6.1.1 Initial Calibration. Calibrate the GC/MS system using
the set of five standards shown in Table 3. The relative
standard deviation for the mean response factor from each of the
39
-------
unlabeled analytes (Table 3) and of the internal and surrogate
standards shall be less than or equal to the values in Table 6.
The signal to noise ratio for the GC signal present in every
selected ion current profile shall be greater than or equal to
10. The ion abundance ratios shall be within the control limits
in Table 5.
6.1.2 Daily Performance Check.
6.1.2.1 Calibration Check. Inject 2 /il of solution Number 3
from Table 3. Calculate the relative response factor (RRF) for
each compound and compare each RRF to the corresponding mean RRF
obtained during the initial calibration. The analyzer
performance is acceptable if the measured RRF's for the labeled
and unlabeled compounds for the daily run are within the limits
of the mean values shown in Table 10. In addition, the ion-
abundance ratios shall be within the allowable control limits
shown in Table 6.
6.1.2.2 Column Separation Check. Inject 2 /zl of a solution of
a mixture of PCDD's and PCDF's that documents resolution between
2,3,7,8-TCDD and other TCDD isomers. Resolution is defined as a
valley between peaks that is less than 25 percent of the lower of
the two peaks. Identify and record the retention time windows
•
for each homologous series. Perform a similar resolution check
on the confirmation column to document the resolution between
40
-------
2,3,7,8 TCDF and other TCDF isomers.
6.2 Lock Channels. Set mass spectrometer lock channels as
specified in Table 5. Monitor the quality control check channels
specified in Table 5 to verify instrument stability during the
analysis.
7. QUALITY CONTROL
7.1 Sampling Train Collection Efficiency Check. Add 40 /xl of
the surrogate standards in Table 2 for samples split for analysis
or 20 //I of the surrogate standards for sample not split for
analysis to the adsorbent cartridge of each train before
collecting the field samples.
7.2 Internal Standard Percent Recoveries. A group of nine
carbon-labeled PCDDs and PCDFs representing the tetra- through
octachlorinated homologues, is added to every sample prior to
extraction. The role of the internal standards is to quantify
the native PCDD's and PCDF's present in the sample as well as to
determine the overall method efficiency. Recoveries of the
internal standards shall be between 40 to 130 percent for the
tetra- through hexachlorinated compounds while the range is 25 to
130 percent for the hepta- and octachlorinated homologues.
7.3 Surrogate Standard Recoveries. The five surrogate
compounds in Table 3 are added to the resin in the adsorbent
sampling cartridge before the sample is collected. The surrogate
41
-------
recoveries are measured relative to the internal standards and
are a measure of the sampling train collection efficiency. They
are not used to measure the native PCDD's and PCDF's. All
surrogate standard recoveries shall be between 70 and
130 percent. Poor recoveries for all the surrogates may be an
indication of breakthrough in the sampling train. If the
recovery of all standards is below 70 percent, the sampling runs
must be repeated. As an alternative, the sampling runs do not
have to be repeated if the final results are divided by the
fraction of surrogate recovery (on a homolog group basis) . Poor
recoveries of isolated surrogate compounds should not be grounds
for rejecting an entire set of samples.
7.4 Toluene QA Rinse. Report the results of the toluene QA
rinse separately from the total sample catch. Do not add it to
the total sample.
7.5 Detection Limits. Calculate the detection limits using
the equation in Section 9.8. If the detection limits meet the
Target Detection Limits (TDLs) in Table 1, then they are
considered acceptable. If the TDLs are not met, the impact of
the detection limits shall be calculated using the procedures in
Section 9.9. If the maximum potential value of the sum of the
summed detection limits is less then 50 percent of the emission
standard, the detection limits are acceptable. If the value is
42
-------
greater than 50 percent of the emission standard, then the
analysis and/or sampling and analysis must be repeated until
acceptable detection limits are obtained.
8. QUALITY ASSURANCE
8.1 Applicability. When the method is used to analyze samples
to demonstrate compliance with a source emission regulation, an
audit sample must be analyzed, subject to availability.
8.2 Audit Procedure. Analyze an audit sample with each set of
compliance samples. The audit sample contains tetra through octa
isomers of PCDD and PCDF. Concurrently analyze the audit sample
and a set of compliance samples in the same manner to evaluate
the technique of the analyst and the standards preparation. The
same analyst, analytical reagents, and analytical system shall be
used both for the compliance samples and the EPA audit sample.
8.3 Audit Sample Availability. Audit samples will be supplied
only to enforcement agencies for compliance tests. Audit samples
may be obtained by writing:
Source Test Audit Coordinator (MD-77B)
Quality Assurance Division
Atmospheric Research and Exposure Assessment Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
or by calling the Source Test Audit Coordinator (STAC) at (919)
43
-------
541-7834. The audit sample request must be made at least 30 days
prior to the scheduled compliance sample analysis.
8.4 Audit Results. Calculate the audit sample concentration
according to the calculation procedure provided in the audit
instructions included with the audit sample. Pill in the audit
sample concentration and the analyst's name on the audit response
form included with the audit instructions. Send one copy to the
EPA Regional Office or the appropriate enforcement agency and a
second copy to the STAC. The EPA Regional office or the
appropriate enforcement agency will report the results of the
audit to the laboratory being audited. Include this response
with the results of the compliance samples in relevant reports to
the EPA Regional Office or the appropriate enforcement agency.
9. CALCULATIONS
Same as Method 5, Section 6 with the following additions.
9.1 Nomenclature.
Aai = Integrated ion current of the noise at the retention time
of the analyte.
Aoij = Integrated ion current of the two ions characteristic of
compound i in the jth calibration standard.
A*cij = Integrated ion current of the two ions characteristic of
the internal standard i in the jth calibration standard.
AcSl = Integrated ion current of the two ions characteristic of
44
-------
surrogate compound i in the calibration standard.
Ai = Integrated ion current of the two ions characteristic of
compound i in the sample.
A\ = Integrated ion current of the two ions characteristic of
internal standard i in the sample.
Aj-g = Integrated ion current of the two ions characteristic of
the recovery standard.
Asi = Integrated ion current of the two ions characteristic of
surrogate compound i in the sample.
Ci = Concentration of PCDD or PCDF i in the sample, pg/M3.
CT = Total concentration of PCDD's or PCDF's in the sample,
pg/M3.
DL = Detection limit, pg/sample.
DLhs = Detection limit for each homologous series, pg/sample.
DLgum = Sum of all isomers times the corresponding detection
limit, ng/m3.
Hai = Summed heights of the noise at the retention time of the
analyte in the two analyte channels.
mci = Mass of compound i in the calibration standard injected
into the analyzer, pg.
m*ci = Mass of labeled compound i in the calibration standard
injected- into the analyzer, pg.
m*i = Mass of internal standard i added to the sample, pg.
45
-------
nirg = Mass of recovery standard in the calibration standard
injected into the analyzer, pg.
tns = Mass of surrogate compound in the sample to be analyzed,
pg.
msi - Mass of surrogate compound i in the calibration standard,
pg.
RRFi = Relative response factor for compound i.
RRFrs = Recovery standard response factor.
RRF8 - Surrogate compound response factor.
vm(std)= Metered volume of sample run, dscm.
1000 = pg per ng.
9.2 Average Relative Response Factor.
A 10.
RRF = - C1J Ci E<3- 23-1
A* m
Clj Ci
9.3 Concentration of the PCDD's and PCDF'a,
A,* RRF. V
•* •* *".
Eq. 23-2
9.4 Recovery Standard Response Factor.
-------
RRF = ci "" Eq. 23-3
rs * ^
Ars md
9.5 Recovery of Internal Standards (R*)
i—££__xiOO% Eq. 23-4
*rs *Frs
9.6 Surrogate Compound Response Factor.
.J m .
Eq. 23-5
^
9.7 Recovery of Surrogate Compounds (R.) .
R = Lf xiQO% Eq. 23-6
3 * •*
9.8 Detection Limit (DL). The detection limit can be
calculated based on either the height of the noise or the area of
47
-------
the noise using one of the two equations.
Detection limit using height for the DB-225 column. Three and
one half times the height has been empirically determined to give
area.
2.5 (3 . 5 x H .) m ,*
DL = Eq. 23-7
Detection limit using height for the DB-5 column. Five times the
height has been empirically determined to give area.
2.5 (5 x H .) n^
DL = Eq. 23-8
*
Detection limit using area of the noise.
2 . 5 Aai m,
DL = Eq. 23-9
9.9 Summed Detection Limits. Calculate the maximum potential
value of the summed detection limits. If the isomer (group of
unresolved isomers) was not detected, use the value calculated
for the detection limit in Section 9.8 above. If the isomer
(group of unresolved isomers) was detected, use the value (target
48
-------
detection limit) from Table 1.
= (13 DLICDD + 16 DLICDF + 12
14 DL+ 7 "J + 12
23 10
+ 2 DL + 4 D£ + DL . 23-10
BpCDD BpCDF OCDD
100°
Note : The number of isomers used to calculate the summed
detection limit represent the total number of isomers typically
separated and not the actual number of isomers for each series.
9.10 Total Concentration of PCDD's and PCDF's in the Sample.
C = c. Eq. 23-11
Any PCDDs or PCDFs that are reported as not detected (below the
DL) shall be counted as zero for the purpose of calculating the
total concentration of PCDDs and PCDFs in the sample.
10. BIBLIOGRAPHY
1. American Society of Mechanical Engineers. Sampling for the
Determination of Chlorinated Organic Compounds in Stack
Emissions. Prepared for U.S. Department of Energy and U.S.
Environmental Protection Agency. Washington DC. December 1984.
25 p.
2. American Society of Mechanical Engineers. Analytical
49
-------
Procedures to Assay Stack Effluent Samples and Residual
Combustion Products for Polychlorinated Dibenzo-p-Dioxins (PCDD)
and Polychlorinated Dibenzofurans (PCDF). Prepared for the U.S.
Department of Energy and U.S. Environmental Protection Agency.
Washington, DC. December 1984. 23 p.
3. Thompson, J. R. (ed.). Analysis of Pesticide Residues in
Human and Environmental Samples. U.S. Environmental Protection
Agency. Research Triangle Park, NC. 1974.
4. Triangle Laboratories. Case Study: Analysis of Samples
for the Presence of Tetra Through Octachloro-p-Dibenzodioxins and
Dibenzofurans. Research Triangle Park, NC. 1988. 26 p.
5. U.S. Environmental Protection Agency. Method 8290 - The
Analysis of Polychlorinated Dibenzo-p-dioxin and Polychlorinated
Dibenzofurans by High-Resolution Gas Chromatography/
High-Resolution Mass Spectrometry. In: Test Methods for
Evaluating Solid Waste. Washington, DC. SW-846.
6. Personnel communications with R. L. Harless of U.S. EPA and
Triangle Laboratory staff.
50
-------
TABLE 23-1. TARGET DETECTION LIMITS (TDLs)
ANALYTE
TCDD/TCDF
PeCDD/PeCDF
HxCDD/HxCDF
HpCDD/HpCDF
OCDD/OCDF
TDL (pg/Sample Train)
50
250
250
250
500
TABLE 23-2. COMPOSITION OF THE SAMPLE FORTIFICATION AND RECOVERY
STANDARDS SOLUTIONS*
ANALYTE
CONCENTRATION (pg//*L)
Internal Standards
13C12-2,3,7,8-TCDD
100
13C12-l,2,3,7,8-PeCDD
100
13
C12-l,2,3,6,7,8-HxCDD
100
13C12-l,2,3,4,6,7,8-HpCDD
100
13Cn,-OCDD
-12
100
13C12-2,3,7,8-TCDF
100
13C12-l,2,3,7,8-PeCDF
100
13
C12-1, 2, 3 , 6 , 7 , 8 -HxCDF
100
13
C12-1,2,3,4,6,7,8- HpCDF
100
Surrogate Standards
37Cl4-2,3,7,8-TCDD
100
13C12-1,2,3,4,7,8 -HxCDD
100
13C12-2,3,4,7,8-PeCDF
100
13C12-l,2,3,4,7,8-HxCDF
100
13C12-l,2,3,4,7,8,9-HpCDF
100
Recovery Standards
51
-------
13C12-1,2,3,4-TCDD
13C12-1, 2 , 3 , 7 , 8 , 9-HxCDD
100
100
"Calibration levels are specific for samples at
the MWC compliance standard level.
52
-------
TABLE 23-3. COMPOSITION OF THE INITIAL CALIBRATION SOLUTIONS
COMPOUND
SOLUTION NO.
CONCENTRATIONS (pg//iD
1
2
3
UNLABELED ANALYTES
2,3,7,8-TCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDD
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8 -HxCDD
1,2,3,4,6,7,8-HpCDD
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDD
OCDF
0.5
0.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
5
5
1
1
5
5
5
5
5
5
5
5
5
5
5
5
5
10
10
5
5
25
25
25
25
25
25
25
25
25
25
25
25
25
50
50
4
5
50
50
250
250
250
250
250
250
250
250
250
250
250
250
250
500
500
100
100
500
500
500
500
500
500
500
500
500
500
500
500
500
1000
1000
INTERNAL STANDARDS
13C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDD
13C12-1 , 2,3,6,7, 8-HxCDD
13C12- 1 ,2,3,4,6,7,8 -HpCDD
13C12-OCDD
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
53
-------
13C12-2/3,7,8-TCDF
13C12-1, 2 ,3,7, 8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
TABLE 23-3. (Continued)
COMPOUND
SOLUTION NO.
CONCENTRATION (pg//xl)
1
2
3
4
5
SURROGATE STANDARDS
37Cl4-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
13C12-l,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
60
60
60
60
60
80
80
80
80
80
100
100
100
100
100
120
120
120
120
120
140
140
140
140
140
RECOVERY STANDARDS
13C12-1,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
100
100
100
100
100
100
100
100
100
100
54
-------
TABLE 23-4. RECOMMENDED GC OPERATING CONDITIONS
Column Type
DB-5
DB-225
Length (m)
i.d. (mm)
Film Thickness (/zm)
Carrier Gas
Carrier Gas Flow (mL/min)
60
0.25
0.25
Helium
1-2
30
0.25
0.25
Helium
1-2
Injection Mode
<-- 'Splitless -->
Valve Time (min)
2.5
2.5
Initial Temperature (o c)
Initial Time (min)
Rate 1 (deg. C/min)
Temperature 2 (deg. C)
Rate 2 (deg. C/min)
Final Temperature (deg. C)
150
0.5
60
170
3
300
130
2.5
50
170
4
250
55
-------
TABLE 23-5. ELEMENTAL COMPOSITIONS AND EXACT MASSES OF THE IONS
MONITORED BY HIGH RESOLUTION MASS SPECTROMETRY FOR PCDD'S AND PCDF'S
DESCRIPTOR
NUMBER
2
3
ACCURATE
MASS
292.9825
303.9016
305.8987
315.9419
317.9389
319.8965
321.8936
327.8847
330.9792
331.9368
333.9339
339.8597
341.8567
351.9000
353.8970
355.8546
357.8516
367.8949
369.8919
375.8364
409.7974
373.8208
375.8178
383.8639
385.8610
389.8157
391.8127
392.9760
ION
TYPE
LOCK
M
M+2
M
M+2
M
M+2
M
QC
M
M+2
M+2
M+4
M+2
M+4
M+2
M+4
M+2
M+4
M+2
M+2
M+2
M+4
M
M+2
M+2
M+4
LOCK
ELEMENTAL COMPOSITION
C,Fu
CuH^C^O
C12H43SC13C137O
13C12H435C140
13C12H435C1337C10
C12H435C1402
C12H435C1337C102
C12H437C1402
C7F13
"C12H435C1402
"C12H43SC137C102
C12H335C1437C10
C12H335C1337C120
13C12H335C1437C10
13C12H335C1337C120
C12H335C1337C102
C12H335C1337C1202
13C12H335C1437C102
13C12H335C1337C1202
C12H43SC1537C10
C12H335C1637C10
C12H235C1537C1O
C12H235C1437C120
"C12H235C160
13C12H235C1537C10
C12H235C1537C1O2
C12H235C1437C1202
C9F15
ANALYTE
PFK
TCDF
TCDF
TCDF(S)
TCDF(S)
TCDD
TCDD
TCDD(S)
PFK
TCDD(S)
TCDD(S)
PeCDF
PeCDF
PeCDF (S)
PeCDF (S)
PeCDD
PeCDD
PeCDD (S)
PeCDD (S)
HxCDPE
HpCPDE
HxCDF
HxCDF
HxCDF (S)
HxCDF (S)
HxCDD
HxCDD
PFK
-------
401.8559
403.8529
445.7555
430.9729
M+2
M+4
M+4
QC
"C12H235C1537C102
13C12H235C1437C120
C12H23SC1637C120
C9F17
HxCDD(S)
HxCDD(S)
OCDPE
PFK
TABLE 23-5. (Continued)
DESCRIPTOR
NUMBER
ACCURATE
MASS
407.7818
409.7789
417.8253
389.8157
391.8127
392.9760
401.8559
403.8529
445.7555
430.9729
407.7818
409.7789
417.8253
419.8220
423.7766
425.7737
435.8169
437.8140
479.7165
430.9729
441.7428
443.7399
457.7377
459.7348
469.7779
ION
TYPE
M+2
M+4
M
M+2
M+4
LOCK
M+2
M+4
M+4
QC
M+2
M+4
M
M+2
M+2
M+4
M+2
M+4
M+4
LOCK
M+2
M+4
M+2
M+4
M+2
ELEMENTAL DESCRIPTION
C12H3SC1637C1O
C12H35C1S37C12O
13C12H3SC170
C12H235C1537C102
C12H235C1437C1202
C9F1S
13C12H23SC1537C102
"C12H235C1437C120
C12H235C1637C120
C9F17
C12H35C1637C1O
C12H35C1537C120
13C12H35C17O
13C12H35C1637C10
C12H35C1637C102
C12H35C1S37C1202
13C12H35C1637C102
13C12H35C1537C1202
C12H35C1737C120
C9F17
C1235C1737C10
C123SC1637C12O
C1235C1737C102
C1235C1637C1202
13C1235C1737C102
ANALYTE
HpCDF
HpCDF
HpCDF (S)
HxCDD
HxCDD
PFK
HxCDD (S)
HxCDD (S)
OCDPE
PFK
HpCDF
HpCDF
HpCDF (S)
HpCDF (S)
HpCDD
HpCDD
HpCDD (S)
HpCDD (S)
NCPDE
PFK
OCDF
OCDF
OCDD
OCDD
OCDD(S)
57
-------
471.7750
513.6775
442.9728
M+4
M+4
QC
13C123SC1637C1202
C1235C1837C1202
^10^*17
OCDD(S)
DCDPE
PFK
35C1 = 34.968853
The following nuclidic masses were used:
H - 1.007825 O = 15.994914 C = 12.000000
"C = 13.003355 37C1 = 36.965903 F = 18.9984
S = Labeled Standard
QC SB ion selected for monitoring instrument stability during the
GC/MS analysis.
58
-------
TABLE 23-6. ACCEPTABLE RANGES FOR ION-ABUNDANCE RATIOS OF PCDD'S AND
PCDF's
Number of
Chlorine
Atoms
4
5
6
6a
7b
7
8
Ion Type
M/M+2
M+2/M+4
M+2/M+4
M/M+2
M7M+2
M+2/M+4
M+2/M+4
Theoretical
Ratio
0.77
1.55
1.24
0.51
0.44
1.04
0.89
Control Limits
Lower
0.65
1.32
1.05
0.43
0.37
0.88
0.76
Upper
0.89
1.78
1.43
0.59
0.51
1.20
1.02
59
-------
TABLE 23-7. UNLABELED ANALYTES QUANTIFICATION RELATIONSHIPS
ANALYTE
2,3,7,8-TCDD
Other TCDD's
INTERNAL STANDARD USED
13C12-2/3,7,8-TCDD
13C12-2,3,7/8-TCDD
1,2,3,7,8-PeCDD
Other PeCDD's
13C12-l,2,3,7,8-PeCDD
13C12-l,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6, 7, 8-HxCDD
1,2,3,7,8,9-HxCDD
Other HxCDD's
13C12-1 , 2 , 3 , 6 , 7 , 8 -HxCDD
13C12-1, 2, 3 , 6, 7, 8-HxCDD
13C12 - 1 , 2 , 3 , 6 , 7 , 8 -HxCDD
13C12-1 , 2 , 3 , 6 , 7 , 8-HxCDD
1,2,3,4,6,7,8-HpCDD
Other HpCDD's
13C12 -1,2,3,4,6,7,8 -HpCDD
13Ci2 - 1 , 2 , 3 , 4 , 6 , 7 , 8 -HpCDD
OCDD
13C12-OCDD
2,3,7,8-TCDF
Other TCDF's
13C12- 2,3,7,8-TCDF
13C12-2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
Other PeCDF ' s
13C12-l,2,3,7,8-PeCDF
13C12-l,2,3,7,8-PeCDF
13C12-l,2,3,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8-HxCDF
Other HxCDF's
13C12-l,2,3,6,7,8-HxCDF
13C12-1, 2 ,3,6,7, 8-HxCDF
13C12-1, 2 , 3 , 6 , 7 , 8-HxCDF
"C12 - 1 , 2 , 3 , 6 , 7 , 8 - HxCDF
13C12-l,2,3,6,7,8-HxCDF
1,2,3,4,6,7,8-HpCDF
"C12-l, 2 , 3 , 4 , 6 , 7 , 8-HpCDF
-------
1,2,3,4,7,8,9-HpCDF
13C12-1, 2,3, 4, 6, 7, 8 -HpCDF
OCDF
"C12-l,2,3,4,6,7,8-HpCDF
61
-------
TABLE 23-8. INTERNAL STANDARDS QUANTIFICATION RELATIONSHIPS
INTERNAL STANDARD
13C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13C12-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13C12 -1,2,3,6,7,8 -HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
STANDARD USED DURING PERCENT
RECOVERY DETERMINATION
13C12-1,2,3,4-TCDD
13C12-1,2,3,4-TCDD
13C12-1 , 2 , 3 , 7 , 8 , 9-HxCDD
13C12-l,2,3,7,8,9-HxCDD
13C12-1 , 2, 3 ,7,8, 9-HxCDD
13C12-1,2,3,4-TCDD
13C12-1,2,3,4-TCDD
13C12-1, 2, 3 ,7,8 , 9-HxCDD
13C12-l,2,3,7,8,9-HxCDD
TABLE 23-9. SURROGATE STANDARDS QUANTIFICATION RELATIONSHIPS
SURROGATE STANDARD
37Cl4-2,3,7,8-TCDD
13C12-2 , 3,4,7, 8-PeCDF
13C12-1 , 2,3,4,7 , 8-HxCDD
13C12 -1,2,3,4,7,8 -HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
STANDARD USED DURING PERCENT
RECOVERY DETERMINATION
13C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDD
13C12-l,2,3,6,7,8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
-------
TABLE 23-10. MINIMUM REQUIREMENTS FOR INITIAL AND DAILY CALIBRATION
RESPONSE FACTORS
COMPOUND
RELATIVE RESPONSE FACTORS
INITIAL
CALIBRATION
(RSD)
DAILY
CALIBRATION
(% DIFFERENCE)
UNLABELED ANALYTES
2,3,7,8-TCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDD
1,2,3,7,8-PeCDF
1,2,4,5, 7, 8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7, 8, 9-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,4,6,7, 8-HpCDD
1,2,3,4,6,7,8-HpCDF
OCDD
OCDF
25
25
25
25
25
25
25
25
25
25
25
25
25
25
30
25
25
25
25
25
25
25
25
25
25
25
25
25
25
30
SURROGATE STANDARDS
37Cl4-2,3,7,8-TCDD
13C12-2 , 3,4,7, 8 -PeCDF
13C12 -1,2,3,4,7,8 -HxCDD
13C12 -1,2,3,4,7,8- HxCDF
13C12- 1 ,2,3,4,7,8, 9 -HpCDF
25
25
63
-------
J\ Thermocouple
U Probe
Filter Holder
Thermocouple Tlwrmocoapte
f Ch«ckV«lv«
X
H
s
XAO-2Trap
Silica Qal
(300 grama)
Manometer ^
100ml HPLC W.,.,
Implngar
Thermocouplee
OHflca
By»Paaa
Yalta
MabiValva
Vacuum Una
Air-Tight
Pump
Figure 5-1. CDD/CDF Sampling Train Configuration
-------
Condenser
Sorbent Trap
Flue GM Flow
H-
•§
l-{
tt>
to
en
ui
•20/16
37cm-
8 mm Glass Cooling Coll
•To Suit-
iiijj jjj i liiiiijp
I HlXil **•• ' ***!
»
/
y
\
7
•20/15
Water Jacket Cooling Coll
Glass Wool Plug Water Jacket XAD - 2
(76 Grams)
OleM Sintered Disk
FIGURE 2. CONDENSER AND SORBENT TRAP FOR COLLECTION OF GASEOUS PCDDs AND
PCDFe
-------
Appendix G.5
Sampling & Analysis Methods
EPA Method 25A
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
METHOD 25A-DBTERMINATION OF TOTAL GASEOUS ORGANIC
CONCENTRATION USING A FLAME IONIZATION ANALYZER
1. Applicability and Principle
1.1 Applicability. This method applies to the measurement of total gaseous
organic concentration of vapors consisting primarily of alkanes, alkenes, and/or
arenes (aromatic hydrocarbons) . The concentration is expressed in terms of
propane (or other appropriate organic calibration gas) or in terms of carbon.
1.2 Principle. A gas sample is extracted from the source through a heated
sample line, if necessary, and glass fiber filter to a flame ionization analyzer
(FIA) . Results are reported as volume concentration equivalents of the
calibration gas or as carbon equivalents.
2. Definitions
2.1 Measurement Systems. The total equipment required for the determination
of the gas concentration. The system consists of the following major subsystems:
2.1.1 Sample Interface. That portion of the system that is used for one or more
of the following: sample acquisition, sample transportation, sample
conditioning, or protection of the analyzer from the effects of the stack
effluent.
2.1.2 Organic Analyzer. That portion of the system that senses organic
concentration and generates an output proportional to the gas concentration.
2.2 Span Value. The upper limit of a gas concentration measurement range that
is specified for affected source categories in the applicable part of the
regulations. The span value is established in the applicable regulation and is
usually 1.5 to 2.5 times the applicable emission limit. If no span value is
provided, use a span value equivalent to 1.5 to 2.5 times the expected
concentration. For convenience, the span value should correspond to 100 percent
of the recorder scale.
2.3 Calibration Gas. A known concentration of a gas in an appropriate diluent
gas.
2.4 Zero Drift. The difference in the measurement system response to a zero
level calibration gas before and after a stated period of operation during which
no unscheduled maintenance, repair, or adjustment took place.
Prepared by Emission Measurement Branch EMTIC TM-25A
Technical Support Division, OAQPS, EPA June 23, 1993
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD Page 2
2.5 Calibration drift. The difference in the measurement system response to
a midlevel calibration gas before and after a stated period of operation during
which no unscheduled maintenance, repair or adjustment took place.
2.6 Response Time. The time interval from a step change in pollutant
concentration at the inlet to the emission measurement system to the time at
which 95 percent of the corresponding final value is reached as displayed on the
recorder.
2.7 Calibration Error. The difference between the gas concentration indicated
by the measurement system and the known concentration of the calibration gas.
3. Apparatus.
A schematic of an acceptable measurement system is shown in Figure 25A-1.
The essential components of the measurement system are described below:
3.1 Organic Concentration Analyzer. A flame ionization analyzer (FIA) capable
of meeting or exceeding the specifications in this method.
3.2 Sample Probe. Stainless steel, or equivalent, three-hole rake type.
Sample holes shall be 4 mm in diameter or smaller and located at 16.7, 50, and
83.3 percent of the equivalent stack diameter. Alternatively, a single opening
probe may be used so that a gas sample is collected from the centrally located
10 percent area of the stack cross-section.
3.3 Sample Line. Stainless steel or Teflon * tubing to transport the sample
gas to the analyzer. The sample line should be heated, if necessary, to prevent
condensation in the line.
3.4 Calibration Valve Assembly. A three way valve assembly to direct the zero
and calibration gases to the analyzers is recommended. Other methods, such as
quick-connect lines, to route calibration gas to the analyzers are applicable.
3.5 Particulate Filter. An in-stack or an' out-of-stack glass fiber filter is
recommended if exhaust gas particulate loading is significant. An out-of-stack
filter should be heated to prevent any condensation.
* Mention of trade names or specific products does not constitute
endorsement by the Environmental Protection Agency.
3.6 Recorder. A strip-chart recorder, analog computer, or digital recorder for
recording measurement data. The minimum data recording requirement is one
measurement value per minute, Note: This method is often applied in highly
explosive areas. Caution and care should be exercised in choice of equipment and
installation.
4. Calibration and Other Gases.
Gases used for calibrations, fuel, and combustion air (if required) are
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD Page 3
contained in compressed gas cylinders. Preparation of calibration gases shall
be done according to the procedure in Protocol No. 1, listed in Citation 2 of
Bibliography. Additionally, the manufacturer of the cylinder should provide a
recommended shelf life for each calibration gas cylinder over which the
concentration does not change more than ±2 percent from the certified value. For
calibration gas values not generally available (i.e., organics between 1 and 10
percent by volume), alternative methods for preparing calibration gas mixtures,
such as dilution systems, may be used with prior approval of the Administrator.
Calibration gases usually consist of propane in air or nitrogen and are
determined in terms of the span value. Organic compounds other than propane can
be used following the above guidelines and making the appropriate corrections for
response factor.
4.1 Fuel. A 40 percent H2/60 percent 1% gas mixture is recommended to avoid
an oxygen synergism effect that reportedly occurs when oxygen concentration
varies significantly from a mean value.
4.2 Zero Gas. High purity air with less than 0.1 parts per million by volume
(ppmv) of organic material (propane or carbon equivalent) or less than 0.1
percent of the span value, whichever is greater.
4.3 Low-level Calibration Gas. An organic calibration gas with a concentration
equivalent to 25 to 35 percent of the applicable span value.
4.4 Mid-level Calibration Gas. An organic calibration gas with a concentration
equivalent to 45 to 55 percent of the applicable span value.
4.5 High-level Calibration Gas. An organic calibration gas with a
concentration equivalent to 80 to 90 percent of the applicable span value.
5. Measurement System Performance Specifications
5.1 Zero Drift. Less than ±3 percent of the span value.
5.2 Calibration Drift. Less than ±3 percent of span value.
5.3 Calibration Error. Less than ±5 percent of the calibration gas value.
6. Pretest Preparations
6.1 Selection of Sampling Site. The location of the sampling site is generally
specified by the applicable regulation or purpose of the test; i.e., exhaust
stack, inlet line, etc. The sample port shall be located at least 1.5 meters or
2 equivalent diameters upstream of the gas discharge to the atmosphere.
6.2 Location of Sample Probe. Install the sample probe so that the probe is
centrally located in the stack, pipe, or duct and is sealed tightly at the stack
port connection.
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD Page 4
6.3 Measurement System Preparation. Prior to the emission test, assemble the
measurement system following the manufacturer's written instructions in preparing
the sample interface and the organic analyzer. Make the system operable.
FIA equipment can be calibrated for almost any range of total organics
concentrations. For high concentrations of organics (>l.O percent by volume as
propane) modifications to most commonly available analyzers are necessary. One
accepted method of equipment modification is to decrease the size of the sample
to the analyzer through the use of a smaller diameter sample capillary. Direct
and continuous measurement of organic concentration is a necessary consideration
when determining any modification design.
6.4 Calibration Error Test. Immediately prior to the test series, (within 2
hours of the start of the test) introduce zero gas and high-level calibration gas
at the calibration valve assembly. Adjust the analyzer output to the appropriate
levels, if necessary. Calculate the predicted response for the low-level and
mid-level gases based on a linear response line between the zero and high-level
responses. Then introduce low-level and mid-level calibration gases successively
to the measurement system. Record the analyzer responses for low-level and mid-
level calibration gases and determine the differences between the measurement
system responses and the predicted responses. These differences must be less
than 5 percent of the respective calibration gas value. If not, the measurement
system is not acceptable and must be replaced or repaired prior to testing. No
adjustments to the measurement system shall be conducted after the calibration
and before the drift check (Section 7.3). If adjustments are necessary before
the completion of the test series, perform the drift checks prior to the required
adjustments and repeat the calibration following the adjustments. If multiple
electronic ranges are to be used, each additional range must be checked with a
mid-level calibration gas to verify the multiplication factor.
6.5 Response Time Test. Introduce Zero gas into the measurement system at the
calibration valve assembly. When the system output has stabilized, switch
quickly to the high-level calibration gas. Record the time from the
concentration change to the measurement system response equivalent to 95 percent
of the step change. Repeat the test three times and average the results.
7. Emission Measurement Test Procedure
7.1 Organic Measurement. Begin sampling at the start of the test period,
recording time and any required process information as appropriate. In
particular, note on the recording chart periods of process interruption or cyclic
operation.
7.2 Drift Determination. Immediately following the completion of the test
period and hourly during the test period, reintroduce the zero and mid-level
calibration gases, one at a time, to the measurement system at the calibration
valve assembly. (Make no adjustments to the measurement system until after both
the zero and calibration drift checks are made.) Record the analyzer response.
If the drift values exceed the specified limits, invalidate the test results
preceding the check and repeat the test following corrections to the measurement
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD Page 5
system. Alternatively, recalibrate the test measurement system as in Section 6.4
and report the results using both sets of calibration data (i.e., data determined
prior to the test period and data determined following the test period) .
8. Organic Concentration calculations
Determine the average organic concentration in terms of pprav as propane or
other calibration gas. The average shall be determined by the integration of the
output recording over the period specified in the applicable regulation. If
results are required in terms of pprav as carbon, adjust measured concentrations
using Equation 25A-1.
Cc=KCmea9 Eq. 25A-1
Where:
Cc * Organic concentration as carbon, ppnrv.
C,..,- Organic concentration as measured, ppnrv.
K » Carbon equivalent correction factor.
K « 2 for ethane.
K - 3 for propane.
K » 4 for butane.
K * Appropriate response factor for other organic calibration
gases.
9. Bibliography
1. Measurement of Volatile Organic Compounds-Guideline Series. U.S.
Environmental Protection Agency. Research Triangle Park, NC.
Publication No. EPA-450/2-78-041. June 1978. p. 46-54.
2. Traceability Protocol for Establishing True Concentrations of Gases
Used for Calibration and Audits of Continuous Source Emission
Monitors (Protocol No. 1). U.S. Environmental Protection Agency,
Environmental Monitoring and Support Laboratory. Research Triangle
Park, NC. June 1978.
3. Gasoline Vapor Emission Laboratory Evaluation-Part 2. U.S.
Environmental Protection Agency, Office of Air Quality Planning and
Standards. Research Triangle Park, NC. EMB Report No. 75-GAS-6.
August 1975.
-------
EMTIC TM-25A
EMTIC NSPS TEST METHOD
Page 6
Prob»
Organic
Analyzer
and
Racordwr
CaUbration
V«lv»
Pump
Slack
Figure 25A-1. Organic Concentration Measurement System.
-------
Appendix G.6
Sampling & Analysis Methods
EPA Proposed Method 322
-------
(PROPOSED) TEST METHOD 322 - MEASUREMENT OF HYDROGEN CHLORIDE
EMISSIONS FROM PORTLAND CEMENT KILNS BY GFCIR
1.0 Applicability and Principle
1.1 Applicability. This method is applicable to the
determination of hydrogen chloride (HC1) concentrations in
emissions from portland cement kilns. This is an instrumental
method for the measurement of HC1 using an extractive sampling
system and an infrared (IR) gas-filter correlation (GFC)
analyzer. This method is intended to provide the cement industry
with a direct interface instrumental method. A procedure for
analyte spiking is included for quality assurance. This method
is considered to be self-validating provided that the
requirements in section 9 of this method are followed.
1.2 Principle. A gas sample is continuously extracted from
a stack or duct over the test period using either a source-level
hot/wet extractive subsystem or a dilution extractive subsystem.
A nondispersive infrared gas filter correlation (NDIR-GFC)
analyzer is specified for the measurement of HC1 in the sample.
The total measurement system is comprised of the extractive
subsystem, the analyzer, and the data acquisition subsystem.
Test system performance specifications are included in this
method to provide for the collection of accurate, reproducible
data.
1.3 Test System Operating Range. The measurement range
(span) of the test system shall include the anticipated HC1
concentrations of the effluent and spiked samples. The range
should be selected so that the average of the effluent
measurements is between 25 and 75 percent of span. If at any
time during a test run, the effluent concentration exceeds the
span value of the test system, the run shall be considered
invalid.
2.0 Summary of Method
2.1 Sampling and Analysis. Kiln gas is continuously
extracted from the stack or duct using either a source level,
hot/wet extractive system, or an in-situ dilution probe or heated
out-of-stack dilution system. The sample is then directed by a
heated sample line maintained above 350°F to a GFC analyzer
having a range appropriate to the type of sampling system. The
gas filter correlation analyzer incorporates a gas cell filled
with HC1. This gas cell is periodically moved into the path of
an infrared measurement beam of the instrument to filter out
essentially all of the HC1 absorption wavelengths. Spectral
filtering provides a reference from which the HC1 concentration
of the sample can be determined. Interferences are minimized in
the analyzer by choosing a spectral band over which compounds
such as CO2 and H2O either do not absorb significantly or do not
match the spectral pattern of the HC1 infrared absorption.
-------
2.2 Operator Requirements. The analyst must be familiar
with the specifications and test procedures of this method and
follow them in order to obtain reproducible and accurate data.
3.0 Definitions
3.1 Measurement System. The total equipment required for
the determination of gas concentration. The measurement system
consists of the following major subsystems:
3.1.1 Sample Interface. That portion of a system used for
one or more of the following: sample acquisition, sample
transport, sample conditioning, or protection of the analyzers
from the effects of the stack gas.
3.1.2 Gas Analyzer. That portion of the system that senses
the gas to be measured and generates an output proportional to
its concentration.
3.1.3 Data Recorder. A strip chart recorder, analog
computer, or digital recorder for recording measurement data from
the analyzer output.
3.2 Span. The upper limit of the gas concentration
measurement range displayed on the data recorder.
3.3 Calibration Gas. A known concentration of a gas in an
appropriate diluent gas (i.e., N2) .
3.4 Analyzer Calibration Error. The difference between the
gas concentration exhibited by the gas analyzer and the known
concentration of the calibration gas when the calibration gas is
introduced directly to the analyzer.
3.5 Sampling System Bias. The sampling system bias is the
difference between the gas concentrations exhibited by the
measurement system when a known concentration gas is introduced
at the outlet of the sampling probe and the known value of the
calibration gas.
3.6 Response Time. The amount of time required for the
measurement system to display 95 percent of a step change in gas
concentration on the data recorder.
3.7 Calibration Curve. A graph or other systematic method
of establishing the relationship between the analyzer response
and the actual gas concentration introduced to the analyzer.
3.8 Linearity. The linear response of the analyzer or test
system to known calibration inputs covering the concentration
range of the system.
3.9 Interference Rejection. The ability of the system to
reject the effect of interferences in the analytical measurement
processes of the test system.
4.0 Interferences
4.1 Sampling System Interferences. An important
consideration in measuring HC1 using an extractive measurement
system is to ensure that a representative kiln gas sample is
delivered to the gas analyzer. A sampling system interferant is
a factor that inhibits an analyte from reaching the analytical
instrumentation. Condensed water vapor is a strong sampling
system interferant for HC1 and other water soluble compounds.
-------
"Cold spots" in the sampling system can allow water vapor in the
sample to condense resulting in removal of HC1 from the sample
stream. The extent of HC1 sampling system bias depends on
concentrations of potential interferants, moisture content of the
gas stream, temperature of the gas stream, temperature of
sampling system components, sample flow rate, and reactivity of
HC1 with other species in the gas stream. For measuring HC1 in a
wet gas stream, the temperatures of the gas stream and sampling
system components and the sample flow rate are of primary
importance. In order to prevent problems with condensation in
the sampling system, these parameters must be closely monitored.
4.1.1 System Calibration Checks. Performing these
calibration checks where HCl calibration gas is injected through
the entire system both before and after each test run
demonstrates the integrity of the sampling system and capability
of the analyzer for measuring this water soluble and otherwise
unstable compound under ideal conditions (i.e., HCl in N2) .
4.1.2 Analyte Spiking Checks. For analyte spiking checks,
HCl calibration gas is quantitatively added to the sample stream
at a point upstream of the particulate filter and all other
sample handling components both before and after each test run.
The volume of HCl spike gas should not exceed 10 percent of the
total sample volume so that the sample matrix is relatively
unaffected. Successfully performing these checks demonstrates
the integrity of the sampling system for measuring this water
soluble and reactive compound under actual sample matrix
conditions. Successfully performing these checks also
demonstrates the adequacy of the interference rejection
capability of the analyzer. (See section 9.3 of this method.)
4.2 Analytical Interferences. Analytical interferences are
reduced by the GFC spectroscopic technique required by the
method. The accuracy of HCl measurements provided by some GFC
analyzers is known to be sensitive to the moisture content of the
sample. This must be taken into account in order to acquire
accurate results. These analyzers must be calibrated for the
specific moisture content of the samples.
5.0 Safety
This method may involve sampling at locations having high
positive or negative pressures, or high concentrations of
hazardous or toxic pollutants, and cannot address all safety
problems encountered under these diverse sampling conditions. It
is the responsibility of the tester(s) to ensure proper safety
and health practices, and to determine the applicability of
regulatory limitations before performing this test method.
Because HCl is a respiratory irritant, it is advisable to limit
exposure to this compound.
6.0 Equipment and Supplies
Note: Mention of company or product names does not
constitute endorsement by the U. S. Environmental Protection
Agency.
-------
6.1 Measurement System. Use any GFC measurement system for
HC1 that meets the specifications of this method. All sampling
system components must be maintained above the kiln gas
temperature, when possible, or at least 350°F. The length of
sample transport line should be minimized and sampling rate
should be as high as possible to minimize adsorption of HC1. The
essential components of the measurement system are described in
sections 6.1.1 through 6.1.12.
6.1.1 Sample Probe. Glass, stainless steel, Hastalloy*", or
equivalent, of sufficient length to traverse the sample points.
The sampling probe shall be heated to a minimum of 350°F to
prevent condensation. Dilution extractive systems must use a
dilution ratio such that the average diluted concentrations are
between 25 to 75 percent of the selected measurement range of the
analyzer.
6.1.2 Calibration Valve Assembly. Use a heated, three-way
valve assembly, or equivalent, for selecting either sample gas or
introducing calibration gases to the measurement system or
introducing analyte spikes into the measurement system at the
outlet of the sampling probe before the primary particulate
filter.
6.1.3 Particulate Filter. A coarse filter or other device
may be placed at the inlet of the probe for removal of large
particulate (10 microns or greater). A heated (Balston® or
equivalent) filter rated at 1 micron is necessary for primary
particulate removal, and shall be placed immediately after the
heated probe. The filter/filter holder shall be maintained at
350°F or a higher temperature. Additional filters at the inlet
of the gas analyzer may be used to prevent accumulation of
particulate material in the measurement system and extend the
useful life of components. All filters shall be fabricated of
materials that are nonreactive with HC1. Some types of glass
filters are known to react with HC1.
6.1.4 Sample Transport Lines. Stainless steel or
polytetrafluoroethylene (PTFE) tubing shall be heated to a
minimum temperature of 350°F (sufficient to prevent condensation
and to prevent HC1 and NH3 from combining into ammonium chloride
in the sampling system) to transport the sample gas to the gas
analyzer.
6.1.5 Sample Pump. Use a leak-free pump to pull the sample
gas through the system at a flow rate sufficient to minimize the
response time of the measurement system. The pump components
that contact the sample must be heated to a temperature greater
than 350°F and must be constructed of a material that is
nonreactive to HC1.
6.1.6 Sample Flow Rate Control. A sample flow rate control
valve and rotameter, or equivalent, must be used to maintain a
constant sampling rate within ±10 percent. These components must
be heated to a temperature greater than 350°F. (Hats.: The
tester may elect to install a back-pressure regulator to maintain
-------
the sample gas manifold at a constant pressure in order to
protect the analyzer(s) from over-pressurization, and to minimize
the need for flow rate adjustments.)
6.1.7 Sample Gas Manifold. A sample gas manifold, heated
to a minimum of 350°F, is used to divert a portion of the sample
gas stream to the analyzer and the remainder to the by-pass
discharge vent. The sample gas manifold should also include
provisions for introducing calibration gases directly to the
analyzer. The manifold must be constructed of material that is
nonreactive to the gas being sampled.
6.1.8 Gas Analyzer. Use a nondispersive infrared analyzer
utilizing the gas filter correlation technique to determine HC1
concentrations. The analyzer shall meet the applicable
performance specifications of section 8.0 of this method. (Note:
Housing the analyzer in a clean, thermally-stable, vibration free
environment will minimize drift in the analyzer calibration.)
The analyzer (system) shall be designed so that the response of a
known calibration input shall not deviate by more than ±3 percent
from the expected value. The analyzer or measurement system
manufacturer may provide documentation that the instrument meets
this design requirement. Alternatively, a known concentration
gas standard and calibration dilution system meeting the
requirements of Method 205 of appendix M to part 51 of this
chapter, "Verification of Gas Dilution Systems for Field
Calibrations" (or equivalent procedure), may be used to develop a
multi-point calibration curve over the measurement range of the
analyzer.
6.1.9 Gas Regulators. Single stage regulator with cross
purge assembly that is used to purge the CGA fitting and
regulator before and after use. (This purge is necessary to
clear the calibration gas delivery system of ambient water vapor
after the initial connection is made, or after cylinder
changeover, and will extend the life of the regulator.) Wetted
parts are 316 stainless steel to handle corrosive gases.
6.1.10 Data Recorder. A strip chart recorder, analog
computer, or digital recorder, for recording measurement data.
The data recorder resolution (i.e., readability) shall be 0.5
percent of span. Alternatively, a digital or analog meter having
a resolution of 0.5 percent of span may be used to obtain the
analyzer responses and the readings may be recorded manually. If
this alternative is used, the readings shall be obtained at
equally-spaced intervals over the duration of the sampling run.
For sampling run durations of less than 1 hour, measurements at
1-minute intervals or a minimum of 30 measurements, whichever is
less restrictive, shall be obtained. For sampling run durations
greater than 1 hour, measurements at 2-minute intervals or a
minimum of 96 measurements, whichever is less restrictive, shall
be obtained.
6.1.11 Mass Flow Meters/Controllers. A mass flow meter
having the appropriate calibrated range and a stated accuracy of
-------
±2 percent of the measurement range is used to measure the HC1
spike flow rate'. This device must be calibrated with the major
component of the calibration spike gas (e.g., nitrogen) using an
NIST traceable bubble meter or equivalent. When spiking HC1, the
mass flow meter/controller should be thoroughly purged before and
after introduction of the gas to prevent corrosion of the
interior parts.
6.1.12 System Flow Measurement. A measurement device or
procedure to determine the total flow rate of sample gas within
the measurement system. A rotameter, or mass flow meter
calibrated relative to a laboratory standard to within ±2 percent
of the measurement value at the actual operating temperature,
moisture content/ and sample composition (molecular weight) is
acceptable. A system which ensures that the total sample flow
rate is constant within ±2 percent and which relies on an
intermittent measurement of the actual flow rate
(e.g., calibrated gas meter) is also acceptable.
6.2 HC1 Calibration Gases. The calibration gases for the
gas analyzer shall be HC1 in N2. Use at least three calibration
gases as specified below:
6.2.1 High-Range Gas. Concentration equivalent to 80 to
100 percent of the span.
6.2.2 Mid-Range Gas. Concentration equivalent to 40 to 60
percent of the span.
6.2.3 Zero Gas. Concentration of less than 0.25 percent of
the span. Purified ambient air may be used for the zero gas by
passing air through a charcoal filter or through one or more
impingers containing a solution of 3 percent H2O2.
6.2.4 Spike Gas. A calibration gas of known concentration
(typically 100 to 200 ppm) used for analyte spikes in accordance
with the requirements of section 9.3 of this method.
7.0 Reagents and Standards
7.1 Hydrogen Chloride. Hydrogen Chloride is a reactive gas
and is available in steel cylinders from various commercial gas
vendors. The stability is such that it is not possible to
purchase a cylinder mixture whose HC1 concentration can be
certified at better than ±5 percent. The stability of the
cylinder may be monitored over time by periodically analyzing
cylinder samples. The cylinder gas concentration must be
verified within 1 month prior to the use of the calibration gas.
Due to the relatively high uncertainty of HC1 calibration gas
values, difficulties may develop in meeting the performance
specificati6ns if the mid-range and high-range calibration gases
are not consistent with each other. Where problems are
encountered, the consistency of the test gas standards may be
determined: (1) by comparing analyzer responses for the test
gases with the responses to additional certified calibration gas
standards, (2) by reanalysis of the calibration gases in
accordance with sections 7.2.1 or 7.2.2 of this method, or (3) by
other procedures subject to the approval of EPA.
-------
7.2 Calibration Gas Concentration Verification. There are
two alternatives for establishing the concentrations of
calibration gases. Alternative No. 1 is preferred.
7.2.1 Alternative No. 1. The value of the calibration
gases may be obtained from the vendor's certified analysis within
1 month prior to the test. Obtain a certification from the gas
manufacturer that identifies the analytical procedures and date
of certification.
7.2.2 Alternative No. 2. Perform triplicate analyses of
the gases using Method 26 of appendix A to part 60 of this
chapter. Obtain gas mixtures with a manufacturer's tolerance not
to exceed ±5 percent of the tag value. Within 1 month of the
field test, analyze each of the calibration gases in triplicate
using Method 26 of appendix A to part 60 of this chapter. The
tester must follow all of the procedures in Method 26 (e.g., use
midget impingers, heated Pallflex TX40H175 filter (TFE-glass
mat), etc. if this analysis is performed. Citation 3 in section
13 of this method describes procedures and techniques that may be
used for this analysis. Record the results on a data sheet.
Each of the individual HC1 analytical results for each
calibration gas shall be within 5 percent (or 5 ppm, whichever is
greater) of the triplicate set average; otherwise, discard the
entire set and repeat the triplicate analyses. If the average of
the triplicate analyses is within 5 percent of the calibration
gas manufacturer's cylinder tag value, use the tag value;
otherwise, conduct at least three additional analyses until the
results of six consecutive runs agree within 5 percent (or 5 ppm,
whichever is greater) of the average. Then use this average for
the cylinder value.
7.3 Calibration Gas Dilution Systems. Sample flow rates of
approximately 15 L/min are typical for extractive HC1 measurement
systems. These flow rates coupled with response times of 15 to
30 minutes will result in consumption of large quantities of
calibration gases. The number of cylinders and amount of
calibration gas can be reduced by the use of a calibration gas
dilution system in accordance with Method 205 of appendix M to
part 51 of this chapter, "Verification of Gas Dilution Systems
for Field Instrument Calibrations." If this option is used, the
tester shall also introduce an undiluted calibration gas
approximating the effluent HC1 concentration during the initial
calibration error test of the measurement system as a quality
assurance check.
8.0 Test System Performance Specifications
8.1 Analyzer Calibration Error. This error shall be less
than ±5 percent of the emission standard concentration or ±1
ppm,(whichever is greater) for zero, mid-, and high-range gases.
8.2 Sampling System Bias. This bias shall be less than
±7.5 percent of the emission standard concentration or ±1.5 ppm
(whichever is greater) for zero and mid-range gases.
8.3 Analyte Spike Recovery. This recovery shall be between
-------
70 to 130 percent of the expected concentration of spiked samples
calculated with the average of the before and after run spikes.
9.0 Sample Collection, Preservation, and Storage
9.1 Pretest. Perform the procedures of sections 9.1.1
through 9.1.3.3 of this method before measurement of emissions
(procedures in section 9.2 of this method). It is important to
note that after a regulator is placed on an HC1 gas cylinder
valve, the regulator should be purged with dry N2 or dry
compressed air for approximately 10 minutes before initiating any
HC1 gas flow through the system. This purge is necessary to
remove any ambient water vapor from within the regulator and
calibration gas transport lines; the HC1 in the calibration gas
may react with this water vapor and increase system response
time. A purge of the system should also be performed at the
conclusion of a test day prior to removing the regulator from the
gas cylinder. Although the regulator wetted parts are corrosion
resistant, this will reduce the possibility of corrosion
developing within the regulator and extend the life of the
equipment.
9.1.1 Measurement System Preparation. Assemble the
measurement system by following the manufacturer's written
instructions for preparing and preconditioning the gas analyzer
and, as applicable, the other system components. Introduce the
calibration gases in any sequence, and make all necessary
adjustments to calibrate the analyzer and the data recorder. If
necessary, adjust the instrument for the specific moisture
content of the samples. Adjust system components to achieve
correct sampling rates.
9.1.2 Analyzer Calibration Error. Conduct the analyzer
calibration error check in the field by introducing calibration
gases to the measurement system at any point upstream of the gas
analyzer in accordance with sections 9.1.2.1 and 9.1.2.2 of this
method.
9.1.2.1 After the measurement system has been prepared for
use, introduce the zero, mid-range, and high-range gases to the
analyzer. During this check, make no adjustments to the system
except those necessary to achieve the correct calibration gas
flow rate at the analyzer. Record the analyzer responses to each
calibration gas. Note: A calibration curve established prior to
the analyzer calibration error check may be used to convert the
analyzer response to the equivalent gas concentration introduced
to the analyzer. However, the same correction procedure shall be
used for all effluent and calibration measurements obtained
during the test.
9.1.2.2 The analyzer calibration error check shall be
considered invalid if the difference in gas concentration
displayed by the analyzer and the concentration of the
calibration gas exceeds ±5 percent of the emission standard
concentration or ±1 ppm, (whichever is greater) for the zero,
mid-, or high-range calibration gases. If an invalid calibration
-------
is exhibited,'cross-check or recertify the calibration gases,
take corrective action, and repeat the analyzer calibration error
check until acceptable performance is achieved.
9.1.3 Sampling System Bias Check. For nondilution
extractive systems, perform the sampling system bias check by
introducing calibration gases either at the probe inlet or at a
calibration valve installed at the outlet of the sampling probe.
For dilution systems, calibration gases for both the analyzer
calibration error check and the sampling system bias check must
be introduced prior to the point of sample dilution. For
dilution and nondilution systems, a zero gas and either a mid-
range or high-range gas (whichever more closely approximates the
effluent concentration) shall be used for the sampling system
bias check.
9.1.3.1 Introduce the upscale calibration gas, and record
the gas concentration displayed by the analyzer. Then introduce
zero gas, and record the gas concentration displayed by the
analyzer. During the sampling system bias check, operate the
system at the normal sampling rate, and make no adjustments to
the measurement system other than those necessary to achieve
proper calibration gas flow rates at the analyzer. Alternately
introduce the zero and upscale gases until a stable response is
achieved. The tester shall determine the measurement system
response time by observing the times required to achieve a stable
response for both the zero and upscale gases. Note the longer of
the two times and note the time required for the measurement
system to reach 95 percent of the step change in the effluent
concentration as the response time.
9.1.3.2 For nondilution systems, where the analyzer
calibration error test is performed by introducing gases directly
to the analyzer, the sampling system bias check shall be
considered invalid if the difference between the gas
concentrations displayed by the measurement system for the
sampling system bias check and the known gas concentration
standard exceeds ±7.5 percent of the emission standard or ±1.5
ppm, (whichever is greater) for either the zero or the upscale
calibration gases. If an invalid calibration is exhibited, take
corrective action, and repeat the sampling system bias check
until acceptable performance is achieved. If adjustment to the
analyzer is required, first repeat the analyzer calibration error
check, then repeat the sampling system bias check.
9.1.3.3 For dilution systems (and nondilution systems where
all calibration gases are introduced at the probe), the
comparison of the analyzer calibration error results and sampling
system bias check results is not meaningful. For these systems,
the sampling system bias check shall be considered invalid if the
difference between the gas concentrations displayed by the
analyzer and the actual gas concentrations exceed ±7.5 percent of
the emission standard or ±1.5 ppm, (whichever is greater) for
either the zero or the upscale calibration gases. If an invalid
-------
calibration is exhibited, take corrective action, and repeat the
sampling system bias check until acceptable performance is
achieved. If adjustment to the analyzer is required, first
repeat the analyzer calibration error check.
9.2 Emission Test Procedures
9.2.1 Selection of Sampling Site and Sampling Points.
Select a measurement site and sampling points using the same
criteria that are applicable to Method 26 of appendix A to part
60 of this chapter.
9.2.2 Sample Collection. Position the sampling probe at
the first measurement point, and begin sampling at the same rate
as used during the sampling system bias check. Maintain constant
rate sampling (i.e., ±10 percent) during the entire run. Field
test experience has shown that conditioning of the sample system
is necessary for approximately 1-hour prior to conducting the
first sample run. This conditioning period should be repeated
after particulate filters are replaced and at the beginning of
each new day or following any period when the sampling system is
inoperative. Experience has also shown that prior to adequate
conditioning of the system, the response to analyte spikes and/or
the change from an upscale calibration gas to a representative
effluent measurement may be delayed by more than twice the normal
measurement system response time. It is recommended that the
analyte spikes (see section 9.3 of this method) be performed to
determine if the system is adequately conditioned. The sampling
system is ready for use when the time required for the
measurement system to equilibrate after a change from a
representative effluent measurement to a representative spiked
sample measurement approximates the calibration gas response time
observed in section 9.1.3.1 of this method.
9.2.3 Sample Duration. After completing the sampling
system bias checks and analyte spikes prior to a test run,
constant rate sampling of the effluent should begin. For each
run, use only those measurements obtained after all residual
response to calibration standards or spikes are eliminated and
representative effluent measurements are displayed to determine
the average effluent concentration. At a minimum, this requires
that the response time of the measurement system has elapsed
before data are recorded for calculation of the average effluent
concentration. Sampling should be continuous for the duration of
the test run. The length of data collection should be at least
as long as required for sample collection by Method 26 of part 60
of this chapter. One hour sampling runs using this method have
provided reliable data for cement kilns.
9.2.4 Validation of Runs. Before and after each run, or if
adjustments are necessary for the measurement system during the
run, repeat the sampling system bias check procedure described in
section 9.1.3 of this method. (Make no adjustments to the
measurement system until after the drift checks are completed.)
-------
Record the analyzer's responses.
9.2.4.1 If the post-run sampling system bias for either the
zero or upscale calibration gas exceeds the sampling system bias
specification, then the run is considered invalid. Take
corrective action, and repeat both the analyzer calibration error
check procedure (section 9.1.2 of this method) and the sampling
system bias check procedure (section 9.1.3 of this method) before
repeating the run. ,
9.2.4.2 If the post-run sampling system bias for both the
zero and upscale calibration gas are within the sampling system
bias specification, then construct two 2-point straight lines,
one using the pre-run zero and upscale check values and the other
using the post-run zero and upscale check values. Use the slopes
and y-intercepts of the two lines to calculate the gas
concentration for the run in accordance with equation 1 of this
method.
9.3 Analyte Spiking—Self-Validating Procedure. Use analyte
spiking to verify the effectiveness of the sampling system for
the target compounds in the actual kiln gas matrix. Quality
assurance (QA) spiking should be performed before and after each
sample run. The spikes may be performed following the sampling
system bias checks (zero and mid-range system calibrations)
before each run in a series and also after the last run. The HC1
spike recovery should be within ±30 percent as calculated using
equations 1 and 2 of this method. Two general approaches are
applicable for the use of analyte spiking to validate a GFC HC1
measurement system: (1) two independent measurement systems can
be operated concurrently with analyte spikes introduced to one of
the systems, or (2) a single measurement system can be used to
analyze consecutively, spiked and unspiked samples in an
alternating fashion. The two-system approach is similar to
Method 301 of this appendix and the measurement bias is
determined from the difference in the paired concurrent
measurements relative to the amount of HC1 spike added to the
spiked system. The two-system approach must employ identical
sampling systems and analyzers and both measurement systems
should be calibrated using the same mid- and high-range
calibration standards. The two-system approach should be largely
unaffected by temporal variations in the effluent concentrations
if both measurement systems achieve the same calibration
responses and both systems have the same response times. (See
Method 301 of this appendix for appropriate calculation
procedures.) The single measurement system approach is
applicable when the concentration of HC1 in the source does not
vary substantially during the period of the test. Since the
approach depends on the comparison of consecutive spiked and
unspiked samples, temporal variations in the effluent HC1
concentrations will introduce errors in determining the expected
concentration of the spiked samples. If the effluent HC1
concentrations vary by more than ±10 percent (or ±5 ppm,
-------
whichever is greater) during the time required to obtain and
equilibrate a new sample (system response time), it may be
necessary to: (I) use a dual sampling system approach,
(2) postpone testing until stable emission concentrations are
achieved, (3) switch to the two-system approach [if possible] or,
(4) rely on alternative QA/QC procedures. The dual-sampling
system alternative uses two sampling lines to convey sample to
the gas distribution manifold. One of the sample lines is used
to continuously extract unspiked kiln gas from the source. The
other sample line serves as the analyte spike line. One GFC
analyzer can be used to alternately measure the HC1 concentration
from the two sampling systems with the need to purge only the
components between the common manifold and the analyzer. This
minimizes the time required to acquire an equilibrated sample of
spiked or unspiked kiln gas. If the source varies by more than
±10 percent or ±5 ppm, (whichever is greater) during the time it
takes to switch from the unspiked sample line to the spiked
sample line, then the dual-sampling system alternative approach
is not applicable. As a last option, (where no other
alternatives can be used) a humidified nitrogen stream may be
generated in the field which approximates the moisture content of
the kiln gas. Analyte spiking into this humidified stream can be
employed to assure that the sampling system is adequate for
transporting the HC1 to the GFC analyzer and that the analyzer's
water interference rejection is adequate.
9.3.1 Spike Gas Concentration and Spike Ratio. The volume
of HC1 spike gas should not exceed 10 percent of the total sample
volume (i.e., spike to total sample ratio of 1:10) to ensure that
the sample matrix is relatively unaffected. An ideal spike
concentration should approximate the native effluent
concentration, thus the spiked sample concentrations would
represent approximately twice the native effluent concentrations.
The ideal spike concentration may not be achieved because the
native HCl concentration cannot be accurately predicted prior to
the field test, and limited calibration gas standards will be
available during the field test. Some flexibility is available
by varying the spike ratio over the range from 1:10 to 1:20.
Practical constraints must be applied to allow the tester to
spike at an anticipated concentration. Thus, the tester may use
a 100 ppm calibration gas and a spike ratio of 1:10 as default
values where information regarding the expected HCl effluent
concentration is not available prior to the tests.
Alternatively, the tester may select another calibration gas
standard and/or lower spike ratio (e.g., 1:20) to more closely
approximate the effluent HCl concentration.
9.3.2 Spike Procedure. Introduce the HCl spike gas mixture
at a constant flow rate (±2 percent) at less than 10 percent of
the total sample flow rate. (For example, introduce the HCl
spike gas at 1 L/min (±20 cc/min) into a total sample flow rate
of 10 L/min). The spike gas must be preheated before
-------
introduction into the sample matrix to prevent a localized
condensation of the gas stream at the spike introduction point.
A heated sample transport line(s) containing multiple transport
tubes within the heated bundle may be used to spike gas up
through the sampling system to the spike introduction point. Use
a calibrated flow device (e.g., mass flow meter/controller) to
monitor the spike flow rate. Use a calibrated flow device {e.g.,
rotameter, mass flow meter, orifice meter, or other method) to
monitor the total sample flow rate. Calculate the spike ratio
from the measurements of spike flow and total flow. (See
equation 2 and 3 in section 10.2 of this method.)
9.3.3 Analyte Spiking. Determine the approximate effluent
HC1 concentrations by examination of preliminary samples. For
single-system approaches, determine whether the HC1 concentration
varies significantly with time by comparing consecutive samples
for the period of time corresponding to at least twice the system
response time. (For analyzers without sample averaging, estimate
average values for two to five minute periods by observing the
instrument display or data recorder output.) If the concentration
of the individual samples varies by more than ±10 percent
relative to the mean value or ±5 ppm, (whichever is greater), an
alternate approach may be needed.
9.3.3.1 Adjust the spike flow rate to the appropriate level
relative to the total flow by metering spike gas through a
calibrated mass flow meter or controller. Allow spike flow to
equilibrate within the sampling system for at least the
measurement system response time and a steady response to the
spike gas is observed before recording response to the spiked gas
sample. Next, terminate the spike gas flow and allow the
measurement system to sample only the effluent. After the
measurement system response time has elapsed and representative
effluent measurements are obtained, record the effluent unspiked
concentration. Immediately calculate the spike recovery.
9.3.3.2 If the spike recovery is not within acceptable
limits and a change in the effluent concentration is suspected as
the cause for exceeding the recovery limit, repeat the analyte
spike procedure without making any adjustments to the analyzer or
sampling system. If the second spike recovery falls within the
recovery limits, disregard the first attempt and record the
results of the second spike.
9.3.3.3 Analyte spikes must be performed before and after
each test run. Sampling system bias checks must also be
performed before and after each test run. Depending on the
particular sampling strategy and other constraints, it may be
necessary to compare effluent data either immediately before or
immediately after the spike sample to determine the spike
recovery. Either method is acceptable provided a consistent
approach is used for the test program. The average spike
recovery for the pre- and post-run spikes shall be used to
determine if spike recovery is between 70 and 130 percent.
-------
(nij + nif )
gas
(Cavg - b
mc
2
Kb. -
-bf)
10.0 Data Analysis and Emission Calculations
The average gas effluent concentration is determined from
the average gas concentration displayed by the gas analyzer and
is adjusted for the zero and upscale sampling system bias checks,
as determined in accordance with section 9.2.3 of this method.
The average gas concentration displayed by the analyzer may be
determined by integration of the area under the curve for chart
recorders, or by averaging all of the effluent measurements.
Alternatively, the average may be calculated from measurements
recorded at equally spaced intervals over the entire duration of
the run. For sampling run durations of less than 1-hour, average
measurements at 2-minute intervals or less, shall be used. For
sampling run durations greater than 1-hour, measurements at 2-
minute intervals or a minimum of 96 measurements, whichever is
less restrictive, shall be used. Calculate the effluent gas
concentration using equation 1.
(Eq. 1)
where:
bc = Y-
intercept of
the
calibration
least-
squares
line.
bf = Y-intercept of the final bias check 2-point line.
bt = Y-intercept of the initial bias check 2-point
line.
Cgas = Effluent gas concentration, as measured, ppm.
Cavg = Average gas concentration indicated by gas
analyzer, as measured, ppm.
mc = Slope of the calibration least-squares line.
mf = Slope of the final bias check 2-point line.
nti . Slope of the initial bias check 2-point line.
The following equations are used to determine the percent
recovery (%R) for analyte spiking:
%R = (SM/CB) x 100 (Eq. 2)
where:
SM = Mean concentration of duplicate analyte spiked
samples (observed).
CE = Expected concentration of analyte spiked samples
(theoretical).
CE = CS(QS/QT) + Sad-Qs/Qr) (Eq. 3)
where:
Cs = Concentration of HC1 spike gas (cylinder tag
value).
Qs = Spike gas flow rate.
-------
QT = Total sample flow rate (effluent sample flow plus
spike flow).
S0 = Native concentration of HC1 in unspiked effluent
samples.
Acceptable recoveries for analyte spiking are ±30 percent.
11.0 Pollution Prevention
Gas extracted from the source and analyzed or vented from
the system manifold shall be either scrubbed, exhausted back into
the stack, or discharged into the atmosphere where suitable
dilution can occur to prevent harm to personnel health and
welfare or plant or personal property.
12.0 Waste Management
Gas standards of HC1 are handled as according to the
instructions enclosed with the materials safety data sheets.
13.0 References
1. Peeler, J.W., Summary Letter Report to Ann Dougherty,
Portland Cement Association, June 20, 1996.
2. Test Protocol, Determination of Hydrogen Chloride
Emissions from Cement Kilns (Instrumental Analyzer Procedure)
Revision 4; June 20, 1996.
3. Westlin, Peter R. and John W. Brown. Methods for
Collecting and Analyzing Gas Cylinder Samples. Source Evaluation
Society Newsletter. 3_(3):5-15. September 1978.
-------
APPENDIX H
PROJECT PARTICIPANTS
-------
1. REPORT NO.
EPA-454/R-00-010
TECHNICAL REPORT DATA
Please read instructions on the reverse before completing
2.
4. TITLE AND SUBTITLE
Final Report
Manual Testing and Continuous Emissions Monitoring
Vertical Lime Kiln Baghouse Inlet and Outlet
Chemical Lime Company
Marble Falls, Texas
7. AUTHOR(S)
Franklin Meadows
Emil W. Stewart
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Pacific Environmental Services, Inc.
Post Office Box 12077
Research Triangle Park, North Carolina 27709-2077
12. SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Emissions, Monitoring and Analysis Division
Research Triangle Park, North Carolina 2771 1
3. RECIPIENT'S ACCESSION NO.
5. REPORT DATE
April 2000
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-D-98004
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
EPA/200/04
15. SUPPLEMENTARY NOTES
16. ABSTRACT
The United States Environmental Protection Agency (EPA) Emission Standards Division (BSD) is investigating the lime manufacturing industry to
identify and quantify hazardous air pollutants (HAPs) emitted from lime kilns. ESD requested that EPA's Emissions, Monitoring and Analysis Division
(EMAD) conduct the required testing. EMAD issued a work assignment to Pacific Environmental Services, Inc. (PES) to conduct a "screening" test to
collect air emissions data as specified in the ESD test request The primary objective of the testing program was to characterize HAP emissions from a
vertical lime kiln at the Chemical Lime Company's facility located in Marble Falls, Texas. Based on the pollutant concentrations and emission rates
calculated from the results of the screening tests, the kiln may be selected by EPA for further testing.
The tests were conducted to quantify the uncontrolled and controlled air emissions of hydrogen chloride (HC1), total hydorcarbons (THC), and
polychlorinated dibenzo-p-dioxins and polyclorinated dibenzofurans (PCDDs/PCDFs). Emissions from the kiln were controlled by a baghouse. Testing
was conducted at the baghouse inlet and outlet. Inlet and outlet runs were conducted simultaneously. Oxygen (O2) and carbon dioxide (CO2) were
also monitored at each location.
During the testing program another EPA contractor monitored and recorded process and emission control system operating parameters, and prepared
Section 3.0 of this report.
17.
a. DESCRIPTIONS
Baghouse
Dioxins/Furans
Hazardous Air Pollutants
Hydrogen Chloride
Total Hydrocarbons
18. DISTRIBUTION STATEMENT
Unlimited ' •»
KEY WORDS AND DOCUMENT ANALYSIS
b. IDENTIFIERS/OPEN ENDED TERMS
19. SECURITY CLASS (This Report)
. Unclassified
20. SECURITY CLASS (This page)
Unclassified
c. COASTI Field/Group
21. NO. OF PAGES
v 528 - --.'..-''
22. PRICE
EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE
F:\U\FMeadows\TRD.Frm\WP 6.1
-------
PROJECT PARTICIPANTS
Affiliation
Name
Responsibility
USEPA
Joe Wood, ESD
Michael L. Toney, EMC
Environmental Engineer
Work Assignment Manager
Pacific Environmental Services,
Inc.
Franklin Meadows
Michael D. Maret
Dennis P Holzschuh
Dennis D. Holzschuh
Gary Gay
Paul Siegel
Troy Abernathy
Project Manager
Task Manager
QA Coordinator
Site Leader/Console Operator
Site Leader/Console Operator
Sampling Technician
Sample Recovery
Atlantic Technical Services
(PES Subcontractor)
Emil Stewart
Alan F. Lowe
Marshall M. Cannon
Sampling Technician/Data
Reduction
Technical Support
Technical Support
APCC, Ltd.
(PES Subcontractor)
John Powell
Eric Dithrich
Peter Day
President
CEM Team Leader
CEM Sampling Technician
Research Triangle Institute
(EPA/ESD Contractor)
Cybele M. Brockmann
Process Coordinator
------- |