United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park, NC 27711
EPA-454/R-00-011
April 2000
AIR
&EPA
Final Report
Manual Testing and
Continuous Emissions Monitoring
Rotary Lime Kiln
Scrubber Inlet and Stack
Redland Stone Products Company
San Antonio, Texas
Cteaft
-------
"x>
\
CY\
FINAL REPORT
MANUAL TESTING AND CONTINUOUS EMISSIONS MONITORING
ROTARY LIME KILN SCRUBBER INLET AND STACK
REDLAND STONE PRODUCTS COMPANY
SAN ANTONIO, TEXAS
EPA Contract No. 68-D98-004
Work Assignment No. 3-03
Prepared for:
Mr. Michael L. Toney (MD-19)
Work Assignment Manager
SMTG, EMC, OAQPS
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
April 2000
P:\S523\FINRPTS\TEXAS\REDLAND\REPORTRS\RS-RPT.WPD
Submitted by
PACIFIC ENVIRONMENTAL SERVICES, INC.
5001 S. Miami Blvd., Suite 300
Post Office Box 12077
Research Triangle Park, NC 27709-2077
(919)941-0333
FAX (919) 941-0234
U.S. Environmental Protection Agency
Region 5, Library (PL-12J)
77 West Jackson Boulevard, 12tl» float
Chicago.il 60604-3590
-------
DISCLAIMER
This document was prepared by Pacific Environmental Services, Inc. (PES) under EPA
Contract No. 68-D98-004, Work Assignment No. 3-03. This document has been reviewed
following PES' internal quality assurance procedures and has been approved for distribution. The
contents of this document do not necessarily reflect the views and policies of the U.S.
Environmental Protection Agency (EPA). Mention of trade names does not constitute
endorsement by the EPA or PES.
u
-------
TABLE OF CONTENTS
1.0 INTRODUCTION 1-1
2.0 SUMMARY OF RESULTS 2-1
2.1 PCDDs/PCDFs MEASUREMENTS 2-1
2.2 CEM MEASUREMENTS 2-3
3.0 PROCESS DESCRIPTION 3-1
4.0 SAMPLING LOCATIONS 4-1
4.1 ROTARY KILN SCRUBBER INLET SAMPLING LOCATION 4-1
4.2 ROTARY KILN SCRUBBER STACK SAMPLING LOCATION 4-1
5.0 SAMPLING AND ANALYSIS PROCEDURES 5-1
5.1 LOCATION OF MEASUREMENT SITES AND
SAMPLE/VELOCITY TRAVERSE POINTS 5-1
5.2 DETERMINATION OF EXHAUST GAS VOLUMETRIC
FLOW RATE 5-1
5.3 DETERMINATION OF CYCLONIC EXHAUST GAS
VOLUMETRIC FLOW RATE 5-1
5.4 DETERMINATION OF EXHAUST GAS MOISTURE CONTENT 5-4
5.5 DETERMINATION OF PCDDs/PCDFs 5-4
5.6 . DETERMINATION OF HYDROGEN CHLORIDE 5-5
5.7 DETERMINATION OF CARBON DIOXIDE, OXYGEN, AND
TOTAL HYDROCARBONS 5-5
5.8 CEMs DATA ACQUISITION AND HANDLING 5-8
6.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) PROCEDURES
AND RESULTS 6-1
6.1 CALIBRATION AND PREPARATION OF APPARATUS 6-1
6.2 REAGENTS AND GLASSWARE PREPARATION 6-3
6.3 ON-SITE SAMPLING 6-5
6.4 LABORATORY ANALYTICAL QA/QC PROCEDURES 6-9
hi
-------
TABLE OF CONTENTS (Concluded)
APPENDICES
APPENDIX A
APPENDIX B
APPENDIX C
APPENDDt D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H
-RAW FIELD DATA
- METHOD 23 LABORATORY ANALYTICAL DATA
- CALCULATIONS & COMPUTER SUMMARIES
- EXAMPLE EQUATIONS
- QA/QC DATA
- PROCESS DATA
- SAMPLING & ANALYSIS METHODS
- PROJECT PARTICIPANTS
IV
-------
LIST OF TABLES
Page
Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 5.1
Table 5.2
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 6.7
Table 6.8
Emissions Test Log, Redland Stone Products Company -
San Antonio, Texas
PCDDs/PCDFs Sampling and Exhaust Gas Parameters, Rotary Kiln
Scrubber Inlet and Stack, Redland Stone Products Company -
San Antonio, Texas
PCDDs/PCDFs Concentrations and Emission Rates, Rotary Kiln
Scrubber Inlet and Stack, Redland Stone Products Company -
San Antonio, Texas
PCDDs/PCDFs Concentrations and 2378-TCDD Toxic Equivalent
Concentrations Adjusted to 7 Percent Oxygen, Rotary Kiln Scrubber
Inlet and Stack, Redland Stone Products Company - San Antonio, Texas
HC1 and THC Concentrations and Emission Rates, Rotary Kiln Scrubber
Inlet and Stack, Redland Stone Products Company - San Antonio, Texas
Summary of Sampling and Analysis Methods,
Redland Stone Products Company - San Antonio, Texas
Summary of Sampling Locations, Test Parameters, Sampling Methods,
and Number and Duration of Tests, Redland Stone Products Company -
San Antonio, Texas
2-2
2-4
2-5
. 2-6
. 2-7
. 5-2
5-3
Summary of Temperature Sensor Calibration Data 6-2
Summary of Pitot Tube Dimensional Data 6-4
Summary of Dry Gas Meter and Orifice Calibration Data 6-4
Summary of EPA Methods 23 Field Sampling QA/QC Data 6-7
Summary of Calibration Gas Cylinders 6-7
Summary of Method 322 HC1 In Situ Spiking Data 6-8
Summary of EPA Method 23 Blanks and Sample Catches 6-10
Summary of EPA Method 23 Standards Recovery Efficiencies 6-11
-------
LIST OF FIGURES
Figure 1.1 Project Organization - US EPA Texas Lime Kiln Screening, Redland
Stone Products Company - San Antonio, Texas 1-3
Figure 4.1 Rotary Kiln Process Exhaust Gas Schematic, Redland Stone Products
Company - San Antonio, Texas 4-3
Figure 4.2 Rotary Kiln Scrubber Inlet Sample Ports and Sample Point Locations,
Redland Stone Products Company - San Antonio, Texas 4-4
Figure 4.3 Rotary Kiln Scrubber Stack Sample Ports and Sample Point Locations,
Redland Stone Products Company - San Antonio, Texas 4-5
Figure 5.1 Sampling Train Schematic for EPA Method 23 5-6
Figure 5.2 Sampling Train Schematic for Proposed EPA Method 322 5-7
Figure 5.3 Sampling Train Schematic for EPA Methods 3A and 25A 5-9
VI
-------
1.0 INTRODUCTION
The U.S. Environmental Protection Agency (EPA) Office of Air Quality Planning and
Standards (OAQPS) Emission Standards Division (ESD) is investigating the lime manufacturing
industry to identify and quantify hazardous air pollutants (HAPs) emitted from lime kilns. ESD
requested that EPA OAQPS Emissions, Monitoring and Analysis Division (EMAD) conduct the
required testing. EMAD issued a work assignment to Pacific Environmental Services, Inc. (PES)
to conduct "screening" tests to collect air emissions data as specified in the ESD test request.
Initial planning, pre-test site survey, and preparation activities were conducted under EPA
Contract No. 68-D7-0002, Work Assignment No. 0/005. Remaining preparation and the field
mobilization were conducted under EPA Contract No. 68-D7-0002, Work Assignment No.
1/007. The draft final report was completed under EPA Contract No. 68-D7-004, Work
Assignment No. 2-04. Generation of the Final Report, incorporating EPA's comments on the
Draft Final Report, was completed under EPA Contract No. 68-D98-004, Work Assignment
No. 3-03.
The primary objective was to characterize the uncontrolled and controlled emissions of
selected HAPs from a rotary kiln located at Redland Stone Products Company's San Antonio,
Texas facility. The "screening" tests were conducted to quantify the air emissions of hydrogen
chloride (HC1), total hydrocarbons (THC), and polychlorinated dibenzo-/?-dioxins and
polychlorinated dibenzofurans (PCDDs/PCDFs). The basic test methods that were employed
were US EPA Test Methods 1 (sample point location), 2 (effluent gas velocity), 3 A (oxygen and
carbon dioxide content), 4 (moisture content), 23 (PCDDs/PCDFs content) with proposed
revisions, 25A (THC content), and Proposed Method 322 (HC1 content). Testing at the facility
was conducted on June 28, 1998. One 3-hour test, comprised of the sampling methods
mentioned previously, was conducted at the scrubber inlet and scrubber outlet (stack); inlet and
outlet sampling was performed simultaneously.
PES used three subcontractors for this effort: Air Pollution Characterization and Control
Inc. (APCC), Paradigm Analytical Laboratories, Inc. (PAL), and Atlantic Technical Services, Inc.
(ATS). APCC provided field testing support for measurement of oxygen (O2), carbon dioxide
(CO2), THC, and HC1 concentrations using Continuous Emission Monitors (CEMs); PAL
prepared the XAD®-2 sorbent resin traps and performed the analysis of the Method 23 sample
fractions to determine catch weights of PCDDs/PCDFs congeners; and ATS provided support
during preparation of the Quality Assurance Project Plan (QAPP), Site Specific Test Plan (SSTP),
field testing and field data reduction, reduction of laboratory analytical data, and preparation of
the Draft Final Report.
The PES test crew consisted of Michael D. Maret (who served as the Task Manager and
Field Team Leader), Troy Aberaathy, Gary Gay, Dennis D. Holzschuh, and Paul Siegel. APCC
1-1
-------
was represented by Eric Dithrich, and Peter Day, and ATS was represented by Emil Stewart.
Also present during the testing was Michael L. Toney, the EPA Work Assignment Manager, and
Cybele M. Brockmann of RTI. Redland Stone Products Company was represented by Mr. Tom
Singley, Risk Assessment Manager.
Figure 1.1 presents the project organization and major lines of communication.
Section 2.0 presents the results of the testing; Section 3.0 is reserved for a process description
and operational data; Section 4.0 presents descriptions of the sampling locations; Section 5.0
presents descriptions of the sampling and analysis procedures; and Section 6.0 presents the
Quality Assurance/Quality Control procedures that were employed during the testing program,
and the results of calibrations and analytical QA data. Copies of all field data generated during
the testing, the subcontracting laboratory analytical report, computer calculations and example
calculations, calibration data and compressed gas certifications of analysis, project participants,
and reprints of the EPA Test Methods are presented in the appendices to this document.
Appendix F is reserved for process and operational data.
1-2
-------
I
Redland Stone Products Company
Risk Assessment Manager
Tom Singley
(210)208-4324
EPA/EMC
Work Assignment Manager
Michael L. Toney
(919)541-5247
I
F.PA/F.SD
Joseph P. Wood
(919)541-5446
PES
Program Manager
John T. Chehaske
(919)941-0333
PES
Corporate QA/QC Officer
Jeffrey L. Van Atten
(703)471-8383
Research Triangle Institute
ESD Contractor
Cynele M. Brockmann
(919)990-8654
PES
Project Manager
Franklin Meadows
(919)941-0333
U>
PES
Task Manager
Michael D. Maret
(919)941-0333
1
Pretest
Site Survey
PES
1
Quality Assurance
Project Plan
PES
Site Specific
Test Plan
PES
1
Subcontractor
Atlantic Technical
Services, Inc.
Subcontractor
Atlantic Technical
Services, Inc.
1
Field
Testing
PES
Subcontractor
Air Pollution Characterization
and Control
Subcontractor
Atlantic Technical
Services, Inc.
Sample
Analysis
PES
Draft Final
Report
PES
Subcontractor
Paradigm Analytical
Laboratories, Inc.
Subcontractor
Atlantic Technical
Services Inc.
Figure 1.1 Project Organization - US EPA Texas Lime Kiln Screening, Redland Stone Products Company -
San Antonio, Texas
-------
2.0 SUMMARY OF RESULTS
This section summarizes the results of the testing that was conducted on the rotary kiln at
Redland Stone Products Company's facility at San Antonio, Texas. Testing was conducted at
the inlet to the scrubber and at the scrubber stack. Table 2.1 presents the Emissions Test Log,
which summarizes the sample run designators, test dates and times, target pollutants, and
downtimes for port changes and other stoppages. Exhaust gas parameters, pollutant
concentrations, and pollutant mass emission rates are summarized in Tables 2.2 through 2.5.
2.1 PCDDs/PCDFs MEASUREMENTS
Table 2.2 presents the Method 23 sampling parameters and parameters of the scrubber
inlet and stack (outlet) exhaust gases. One Method 23 sampling run was performed at the
scrubber inlet location, and one Method 23 sampling run was performed at the stack location.
Both runs were conducted simultaneously, and both sample runs were within the isokinetic
sampling ratio criterion of 100 ± 10 percent (%); the isokinetic sampling ratio for the inlet run
(M23-I-2) was 104.6% and the isokinetic sampling ratio for the stack run (M23-O-2) was
100.2%. Due to the presence of cyclonic flow conditions at the outlet, the direction of the
nozzle was adjusted at each sample point to maintain isokinetic sampling conditions.
For purposes of the calculation of the volumetric flow rates, O2 and CO2 data were
determined from the Method 3A CEM data, and moisture content was determined by calculating
the mass of condensate collected in the impinger trains during the runs.
From time to time during the Method 23 analyses, a peak elutes at the position expected
for a particular congener, but the peak fails validation based on the theoretical split of chlorine
isotopes. That is to say that the number of Cl35 isotopes and the number of Cl37 isotopes
attached to the PCDDs/PCDFs congeners should agree with the C135/C137 ratio found in nature.
For each congener, this ratio must agree within fifteen percent. If the mass ratio of chlorine
isotopes does not agree with the natural chlorine isotope ratio then the peak is flagged as an
Estimated Maximum Possible Concentration, or "EMPC".
In-stack concentrations and associated mass emission rates of the PCDDs/PCDFs
congeners are presented in Table 2.3 for the inlet and outlet sampling runs. The values presented
as "Total PCDDs" are the sum of the "12346789 OCDD" polychlorinated dibenzo-p-dioxin and
all of the dioxins labeled "Total"; "Total PCDFs" is the sum of the "12346789 OCDF"
polychlorinated dibenzofuran and all of the furans labeled "Total". "Total PCDDs +
2-1
-------
TABLE 2.1
EMISSIONS TEST LOG
REDLAND STONE PRODUCTS COMPANY - SAN ANTONIO, TEXAS
Run No.
Rotary Kiln Scrubber Ijlel
M23-I-2
M3A-I-2
M25A-I-2
M322-I-2
Date
Pollutant
06/28/98
06/28/98
06/28/98
06/28/98
PCDDs/PCDFs
CO2 / O2
THC
HC1
Run Time
1035-1344
1105-1325
1105-1325
1105-1325
Downtime,
Minutes "
9
80
80
80
Rotarv Kiln Scrubber Stack
M23-O-2
M3A-O-2
M25A-O-2
M322-O-2
06/28/98
06/28/98
06/28/98
06/28/98
PCDDs/PCDFs
CO2 / O2
THC
HC1
1033-1348
1035-1255
1035-1255
1035-1255
16
80
80
80
The CEMs sample acquisition system operated on a time-shared basis, switching between the
scrubber inlet and stack locations. This applies to Methods 3A, 25A, and 322.
2-2
-------
Total PCDFs" values are the sum of the "Total PCDDs" and the "Total PCDFs" values. Values
that have been qualified as EMPC have been included in the sums; concentrations and emission
rates based on or including EMPC values are denoted by braces ( { } ). Concentrations and
emission rates based on values that have been qualified as being below the detection limit (Not
Detected), or ND, are denoted by parentheses ( ()).
Table 2.4 presents two PCDDs/PCDFs concentration-based measurements for both the
inlet and the outlet sampling locations. In the second and third columns of the table, the in-stack
concentrations of the 2378-PCDDs/PCDFs congeners as well as the homologues (i.e., PCDDs
and PCDFs groups that have the same degree of chlorination) are presented adjusted to 7%
oxygen. The fourth and fifth columns of the table present the 2378 tetra-chloro dibenzodioxin
(TCDD) toxic equivalent values for those congeners chlorinated at the 2, 3, 7, and 8 positions.
These columns represent the in-stack concentrations of the 2378 congeners after being adjusted
for toxicity relative to 2378-TCDDs. PCDDs/PCDFs congeners that are not chlorinated at the 2,
3, 7, and 8 positions have a relative toxicity of zero and therefore the total homologues (e.g.,
Total TCDD) are not presented in the Toxic Equivalency columns.
2.2 CEM MEASUREMENTS
Measurements were conducted at the scrubber inlet and the outlet to determine the
concentrations of O2, CO2, THC, and HC1. These measurements were conducted using CEMs.
The CEMs were housed in a trailer supplied by APCC. Table 2.5 presents the average THC and
HC1 concentrations and emission rates.
O2 and CO2 concentrations have been corrected for observed calibration and bias errors
using Equation 6C-1, as required in Method 3 A, and HC1 concentrations have been corrected
using Equation 1 in Proposed Method 322. THC concentrations are presented uncorrected, as
required in Method 2 5 A; the uncorrected 02, CO2 and HC1 concentrations are given in Appendix
A.3. Refer to Appendix D for example equations.
The CEMs collected data from the inlet and the outlet locations on a time-sharing basis.
The system was switched from inlet to outlet and back again every 30 minutes. The first 10
minutes of data from each 30 minute period were excluded from the calculation of average
responses to allow for the time necessary to purge the CEMs system of the exhaust gases from
the previous sampling location and for the responses to stabilize.
2-3
-------
TABLE 2.2
PCDDs/PCDFs SAMPLING AND EXHAUST GAS PARAMETERS
ROTARY KILN SCRUBBER INLET AND STACK
REDLAND STONE PRODUCTS COMPANY - SAN ANTONIO, TEXAS
Run No.
Date
Sampling Location
Time
Total Sampling Time, minutes
Average Sampling Rate, dscfin *
Sample Volume:
dscfb
dscm c .
Average Exhaust Gas Temperature, °F
O2 Concentration, % by Volume
CO2 Concentration, % by Volume
Moisture, % by Volume
As Measured
At Saturation
Exhaust Gas Volumetric Flow Rate:
acfmd
dscfm'
dscmm e
Isokinetic Sampling Ratio, %
M23-I-2
06/28/98
Inlet
1035-1344
180
0.606
109.154
3.091
438
10.3
19.5
5.6
NA
38,200
20,200
571
104.6
M23-O-2
06/28/98
Stack
1033-1348
180
0.647
116.545
3.300
114
12.2
15.7
10.5
10.1
33,000
26,600
753
100.2
' Dry standard cubic feet per minute at 68' F (20° C) and 1 atm (atmosphere).
b Dry standard cubic feet at 68° F (20° C) and 1 atm.
c Dry standard cubic meters at 68° F (20° C) and 1 atm.
d Actual cubic feet per minute at exhaust gas conditions.
' Dry standard cubic meters per minute at 68' F (20° C) and 1 atm.
2-4
-------
TABLE 2.3
PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES
ROTARY KILN SCRUBBER INLET AND STACK
REDLAND STONE PRODUCTS COMPANY - SAN ANTONIO, TEXAS
CONGENER
DIOXINS:
2378 TCDD
Total TCDD
12378PeCDD
Total PeCDD
123478 HxCDD
1 23678 HxCDD
123789 HxCDD
Total HxCDD
1 234678 HpCDD
Total HpCDD
12346789 OCDD
Total PCDDs
FURANS:
2378 TCDF
Total TCDF
12378PeCDF
23478 PeCDF
Total PeCDF
1 23478 HxCDF
1 23678 HxCDF
234678 HxCDF
123789 HxCDF
Total HxCDF
1 234678 HpCDF
1 234789 HpCDF
Total HpCDF
12346789 OCDF
Total PCDFs
Total PCDDs + PCDFs
CONCENTRATION *
(ng/dscm, as measured)
M23-I-2 Inlet
{0.000764}
0.0132
(0.000194)
0.00220
(0.000226)
{0.000880}
{000116}
0.00518
{0.00290}
0.00285
0.00773
0.0312
{0.00874}
0.124
{0.00661}
{0.00463}
0.0553
0.00421
{0.00259}
{0.00122}
(0.000259)
0.0137
0.00556
{0.000569}
0.00660
0.00142
0.201
0.232
M23-O-2 Stack
{0.000551}
0.00448
{0.000182}
0.00170
{0.000739}
{0.000533}
0.000485
0.00606
0.00606
0.0120
0.0136
0.0378
0.00167
0.0261
0.00203
0.00118
0.0173
{0.000958}
0.000606
(0.000182)
(0.000212)
0.00267
0.00348
(0.000303)
0.00351
{0.00137}
{0.0509}
{0.0888}
EMISSION RATE b
Gig/hr)
M23-I-2 Inlet
•{0.0262}
0.453
(0.00666)
0.0754
(0.00777)
{0.0302}
{0.0399}
0.177
{0.0994}
0.0976
0.265
1.07
{0.300}
4.25
{0.227}
{0.159}
1.89
0.144
{0.0887}
{0.0417}
(0.00887)
0.470
0.191
{0.0195}
0.226
0.0488
6.89
7.96
M23-O-2 Stack
{0.0249}
0.203
{0.00822}
0.0767
{0.0334}
{0.0241}
0.0219
0.274
0.274
0.542
0.615
1.71
0.0753
1.18
0.0918
0.0534
0.783
{0.0433}
0.0274
(0.00822)
(0.00959)
0.121
0.158
(0.0137)
0.159
{0.0619}
{2.30}
{4.01}
" Nanograms per dry standard cubic meter at 20°C and 1 atm.
b Micrograms per hour.
() Not Detected. Value shown is based on the detection limit.
{ } Estimated Maximum Possible Concentration. EMPC values are included in totals.
2-5
-------
TABLE 2.4
PCDDs/PCDFs CONCENTRATIONS AND 2378-TCDD TOXIC EQUIVALENT
CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN
ROTARY KILN SCRUBBER INLET AND STACK
REDLAND STONE PRODUCTS COMPANY - SAN ANTONIO, TEXAS
1
CONGENER
1
[DIOXINS:
2378 TCDD
Total TCDD
12378PeCDD
Total PeCDD
1 23478 HxCDD
1 23678 HxCDD
123789 HxCDD
Total HxCDD
1234678 HpCDD
[Total HpCDD
12346789 OCDD
[Total PCDDs
FURANS:
2378 TCDF
Total TCDF
12378PeCDF
23478 PeCDF
Total PeCDF
123478 HxCDF
1 23678 HxCDF
234678 HxCDF
123789 HxCDF
[Total HxCDF
1234678 HpCDF
1 234789 HpCDF
[Total HpCDF
12346789 OCDF
||Total PCDFs
||Total PCDDs + PCDF
CONCENTRATION "
ng/dscm, adjusted to 7 percent O2)
M23-I-2 Inlet
{0.00100}
0.0173
(0.000255)
0.00288
(0.000297)
{0.00115}
{0.00153}
0.00679
{0.00380}
0.00373
0.0101
0.0409
{0.0115}
0.162
{0.00867}
{0.00608}
0.0725
0.00552
{0.00339}
{0.00160}
(0.000339)
0.0180
0.00730
{0.000747}
0.00865
0.00187
0.263
0.304
M23-O-2 Stack
{0.000881}
0.00717
{0.000290}
0.00271
{0.00118}
{0.000852}
0.000775
0.00968
0.00968
0.0192
0.0217
0.0605
0.00266
0.0416
0.00324
0.00189
0.0277
{0.00153}
0.000968
(0.000290)
(0.000339)
0.00426
0.00557
(0.000484)
0.00562
{0.00219}
{0.0814}
{0.142}
2378-TCDD b
Toriciry
Equivalency Factor
1.000
0.500
0.100
0.100
0.100
0.010
0.001
Total PCDDs TEQ
0.100
0.050
0.500
0.100
0.100
0.100
0.100
0.010
0.010
0.001
Total PCDFs TEQ
Total TEQ
2378 TOXIC EQUIVALENCIES II
ng/dscm, adjusted to 7 percent O2)||
M23-I-2 Inlet
{0.00100}
(0 000127)
(0.0000297)
{0.000115}
{0.000153}
{0.0000380}
0.0000101
(0.00147)
{0.00115}
{0.000434}
{0.00304}
0.000552
{0.000339}
{0.000160}
(0.0000339)
0.0000730
{0.00000747}
0.00000187
(0.00578)
(0.00726)
M23-O-2 Stack ||
{0.000881}
{0.000145}
{0.000118}
{0.0000852}
0.0000775
0.0000968
0.0000217
{0.00143} |
0.000266
0.000162
0.000944
{0.000153}
0.0000968
(0.0000290)
(0.0000339)
0.0000557
(0.00000484)
{0.00000219}
(0.00175)
(0.00317)
Nanograms per dry standard cubic meter at 20°C and 1 atm and corrected to 7 percent oxygen.
" North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot study on Information
Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk
Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.
() Not Detected. Value shown is based on or includes values based on the detection limit.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
2-6
-------
TABLE 2.5
HCL AND THC CONCENTRATIONS AND EMISSION RATES
ROTARY KILN SCRUBBER INLET AND STACK
REDLAND STONE PRODUCTS COMPANY - SAN ANTONIO, TEXAS
Run No.
Date
Sampling Location
Total Sampling Time, minutes
O2 Concentration, % by Volume
Moisture, % by Volume
Volumetric Flow Rate, dscfm b
HC1:
Formula Weight, Ib/lb-mole
Concentration, ppmvw c
Concentration, ppmvd d
Concentration, ppmvd @ 7%O2 e
Emission Rate, Ib/hr f
THC (as propane):
Formula Weight, Ib/lb-mole
Concentration, ppmvw c
Concentration, ppmvd d
Concentration, ppmvd @ 7%O2 e
Emission Rate, Ib/hr f
M322-I-2
06/28/98
Inlet
60
10.3
5.6
20,200
36.47
18.7
19.8
26.0
2.27
44.11
0.0
0.0
0.0
0.0
M322-O-2
06/28/98
Stack
60
12.2
10.1 a
26,600
36.47
2.0
2.22
3.55
0.336
44.11
0.4
0.445
0.711
0.0813
Moisture is saturation value.
Dry standard cubic feet per minute at 68' F (20° C) and 1 atmosphere.
Parts per million by volume wet basis.
Parts per million by volume dry basis.
Parts per million by volume dry basis corrected to 7% oxygen.
Pounds per hour.
2-7
-------
3.0 PROCESS DESCRIPTION
The process description is considered confidential business information (CBI) and is not
discussed in this report. During the testing, however, an BSD contractor, Research Triangle
Institute, monitored and recorded process operational data which will be supplied to EPA
under a separate EPA contract.
3-1
-------
4.0 SAMPLING LOCATIONS
Source sampling was conducted to determine uncontrolled and controlled emissions of
HC1, PCDDs/PCDFs, and THCs from the rotary kiln located at Redland Stone Products
Company's San Antonio, Texas facility. Testing was conducted at the inlet of the scrubber and
at the scrubber stack. Figure 4.1 presents a simplified process flow schematic depicting the
sampling locations. Descriptions of the sampling locations are presented in the following text;
additional figures showing details of the sampling locations are also presented.
4.1 ROTARY KILN SCRUBBER INLET SAMPLING LOCATION
The scrubber inlet was a 35.625-inch inside diameter (ID) round duct which led from the
kiln to a cyclone and a fan before entering the scrubber. As shown in Figure 4.2, the two
sampling ports used for the PCDDs/PCDFs testing were positioned approximately 360 inches
(10.1 equivalent duct diameters) downstream from an elbow and approximately 41 inches
(1.1 equivalent duct diameters) upstream from the split in the duct leading to the fan before the
scrubber. For the isokinetic testing and as specified by Method 1, a 24 point traverse matrix
consisting of 12 traverse points on each of the two perpendicular traverse axes were used. The
ports used for the CEMs testing were approximately five feet upstream from the
PCDDs/PCDFs sampling ports.
A check for the presence of non-parallel or cyclonic flow, as outlined in Section 2.4 of
EPA Method 1, was performed prior to testing. The results of the cyclonic flow test indicated
an average yaw angle (a), of 7°. Since the average yaw angle was less than 20°, which is the
maximum allowed by Method 1, the location was considered suitable for isokinetic sampling
and required no adjustment to the alignment of the nozzle direction.
4.2 ROTARY KILN SCRUBBER STACK SAMPLING LOCATION
The scrubber stack was 54.75 inches in diameter and exhausted emissions to the
atmosphere. As shown in Figure 4.3, the two sampling ports used for the PCDDs/PCDFs
testing were positioned approximately 565 inches (10.3 equivalent duct diameters) downstream
from the scrubber-to-stack transition duct at the top of the scrubber and approximately 129
inches (2.4 equivalent duct diameters) upstream from the stack opening to the atmosphere. As
specified by Method 1, the isokinetic testing used a 12 point traverse matrix consisting of six
traverse points on each of the two perpendicular traverse axes. The ports used for the CEMs
testing were approximately four feet upstream from the PCDDs/PCDFs sampling ports.
4-1
-------
A check for the presence of non-parallel or cyclonic flow, as outlined in Section 2.4 of
EPA Method 1, was performed prior to testing. The results of the cyclonic flow test indicated
an average yaw angle (a), of 48°. Since the average yaw angle was greater than 20°, sampling
isokinetically required adjustment to the alignment of the nozzle direction to account for
angular flow. Refer to Appendix G. 1 for more details on the use of the "Alignment Approach"
in the presence of cyclonic flow.
4-2
-------
Atmosphere
Stack
Separator
Fan
Scrubber
Fan
Cyclone
I
Preheater
Rotary Kiln
Scrubber Stack
Sampling Location
Scrubber Inlet
Sampling Location
Figure 4.1 Rotary Kiln Process Exhaust Gas Schematic, Redland Stone Products
Company - San Antonio, Texas
4-3
-------
Traverse
Point
Number
1
2
3
4
5
6
7
8
9
10
11
12
Fraction
of
Diameter
0.021
0.067
0.118
0.177
0.250
0.356
0.644
0.750
0.823
0.882
0.933
0.979
Distance
from Inside
Wall (in.)
1
23/8
4 1/4
6 1/4
87/8
125/8
23
263/4
293/8
31 3/8
33 1/4
345/8
Cross Sectional View
f\A
0 »
( ••"•• I
\S *'J
35.625"
From
Cyclone
360"
To Fan \
/MA
Figure 4.2 Rotary Kiln Scrubber Inlet Sample Ports and Sample Point Locations,
Redland Stone Products Company - San Antonio, Texas
4-4
-------
Traverse
Point
Number
1
2
3
4
5
6
Fraction
of
Diameter
0.044
0.146
0.296
0.704
0.854
0.956
Distance
from Inside
Wall (in.)
23/8
8
16 1/4
38 1/2
463/4
523/8
Cross Sectional View
129"
565"
54.75"
Tangential
Inlet From
Fan
Figure 4.3 Rotary Kiln Scrubber Stack Sample Ports and Sample Point
Locations, Redland Stone Products Company - San Antonio, Texas
4-5
-------
-------
5.0 SAMPLING AND ANALYSIS PROCEDURES
Source sampling was performed at the scrubber inlet and scrubber stack to determine the
concentrations and mass emission rates of PCDDs/PCDFs, THC, and HC1. One test run was
performed at each location, with each PCDDs/PCDFs run having a net sampling time of 180
minutes and the THC and HC1 runs having net sampling times of 60 minutes. The sampling and
analytical methods that were used are summarized in Table 5.1. In Table 5.2, the parameters
measured, the sampling methods, the number of tests performed, and the duration of each test are
summarized. Brief descriptions of the sampling and analysis procedures used are presented
below. Copies of all the methods that were used are presented in Appendix G.
5.1 LOCATION OF MEASUREMENT SITES AND SAMPLE/VELOCITY
TRAVERSE POINTS
EPA Method 1, "Sample and Velocity Traverses for Stationary Sources," was used to
establish velocity and sample traverse point locations. The process ductwork, and the locations of
measurement sites and traverse points, are discussed in Section 4.0 of this document.
5.2 DETERMINATION OF EXHAUST GAS VOLUMETRIC FLOW RATE
EPA Method 2, "Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S
Pitot Tube)," was used in conjunction with EPA Method 23 to determine exhaust gas velocity. A
Type S Pitot tube, constructed according to Method 2 criteria and having an assigned coefficient
of 0.84, was connected to an inclined-vertical manometer. The pitot tube was inserted into the
duct and the velocity pressure (Ap) was recorded at each traverse point. The effluent gas
temperature was also recorded at each traverse point using a Type K thermocouple. The average
exhaust gas velocity was calculated from the average square roots of the velocity pressure,
average exhaust gas temperature, exhaust gas molecular weight, and absolute stack pressure. The
volumetric flow rate is the product of velocity and the stack cross-sectional area of the duct at the
sampling location.
5.3 DETERMINATION OF CYCLONIC EXHAUST GAS VOLUMETRIC FLOW
RATE
PES conducted cyclonic flow checks according to the procedures described in Section 2.4
of Method 1. When the results of a cyclonic flow check indicated that the flow pattern in the
effluent gas stream was unsuitable for conventional isokinetic sampling (i.e., a > 20°), PES
5-1
-------
TABLE 5.1
SUMMARY OF SAMPLING AND ANALYSIS METHODS,
REDLAND STONE PRODUCTS COMPANY - SAN ANTONIO, TEXAS
Sampling Method
Parameter or Target
Measurement Principle
EPA Method 1
EPA Method 2 with &
without using the alignment
approach
EPA Method 3 A
EPA Method 4
EPA Method 23 (Proposed
Revisions) with & without
using the alignment approach
EPA Method 25A
EPA Proposed Method 322
Traverse Point Locations
Velocity and Flow Rate
CO, and O, Content
Moisture Content
PCDDs/PCDFs
THC
HC1
Linear Measurement
Differential Pressure,
Thermocouple, and
Angular Measurement
Micro-Fuel Cell, FINOR
Gravimetric
Gas Chromatography / Mass
Spectrometry (GC/MS)
Flame lonization Detector
Gas Filter Correlation /
Infrared (GFC/IR)
5-2
-------
TABLE 5.2
SUMMARY OF SAMPLING LOCATIONS, TEST PARAMETERS,
SAMPLING METHODS, AND NUMBER AND DURATION OF TESTS,
REDLAND STONE PRODUCTS COMPANY - SAN ANTONIO, TEXAS
Sampling
Location
Rotary Kiln
Scrubber
Inlet
Rotary Kiln
Scrubber
Stack
Test Parameter
Exhaust Gas Flow Rate
CO2 & O2 Content
Moisture Content
PCDDs/PCDFs
THC
HC1
Exhaust Gas Flow Rate
CO2 & O2 Content
Moisture Content
PCDDs/PCDFs
THC
HC1
Sampling Methods
EPA Method 2
EPA Method 3 A
EPA Method 4
EPA Method 23 (Proposed
Revisions)
EPA Method 25 A
EPA Proposed Method
322
EPA Method 2 with
alignment approach
EPA Method 3A
EPA Method 4
EPA Method 23 (Proposed
Revisions) with alignment
approach
EPA Method 25A
EPA Proposed Method
322
Number
of Tests
1
1
1
1
1
1
1
1
1
1
1
1
Duration,
L (minutes)
180
60
180
180
60
60
180
60
180
180
60
60
5-3
-------
employed a sampling technique known informally as the "alignment approach." For gas streams
where the flow is cyclonic, or non-parallel with the stack walls, conventional isokinetic sampling
would produce results that are potentially biased with respect to the true paniculate matter
concentration, since the direction of the probe nozzle would not be aligned with the direction of
flow of the effluent gas. Application of the alignment approach (which is reprinted in Appendix G
of this document) is one method that can be used to reduce bias in the measurement of particulate
concentration due to non-parallel flow.
In the alignment approach, standard isokinetic sampling procedures are followed, except
that the sampling time at each sample point is adjusted, and the orientation of the phot assembly is
adjusted based upon the flow angles from the cyclonic flow check. PES used a Microsoft Excel
spreadsheet (which is reproduced in Appendix A.2) to calculate the sampling time at each point
and the total time for the sampling run. Using the cyclonic flow check results, an arbitrary base
time is selected that will result in a net run time that meets the criteria. The sampling time at each
sample point is determined by multiplying the base time by the cosine of the flow angle measured
at each sampling point. The base time was adjusted so that a total sample time of approximately
180 minutes was achieved.
In order to calculate the isokinetic sampling ratio during the sample run, the velocity
pressure measured in the direction of flow at each sample point was used, since the isokinetic
sampling ratio is the ratio of the air velocity through the nozzle to the velocity of the exhaust gas
flowing past the nozzle. In order to calculate the volumetric flow rate of the effluent gas through
the duct, the axial component (i.e., the component of the velocity vector parallel to the stack
walls) must be determined. At each sampling point, the axial component of the velocity is directly
proportional to the square root of the velocity pressure multiplied by the cosine of the flow angle.
The axial velocity of the gas stream was calculated from the average of these products, and the
effluent gas volumetric flow was calculated by multiplying the resultant velocity by the cross-
sectional area of the duct.
5.4 DETERMINATION OF EXHAUST GAS MOISTURE CONTENT
EPA Method 4, "Determination of Moisture Content in Stack Gases," was used to
determine the exhaust gas moisture content. EPA Method 4 was performed in conjunction with
each EPA Method 23 test run. Integrated, multi-point, isokinetic sampling was performed.
Condensed moisture was determined by recording pre-test and post-test weights of the impingers,
XAD* sorbent module, and silica gel.
5.5 DETERMINATION OF PCDDs/PCDFs
EPA Method 23, "Determination of Polychlorinated Dibenzo-P-Dioxins and
Polychlorinated Dibenzofurans from Stationary Sources," was used to collect dioxins and furans
at each location The proposed rules amending Method 23 as published in the Federal Register,
Volume 60, No. 104, May 31, 1995, correct existing errors in the method, eliminate the
methylene chloride rinse, and clarify the quality assurance requirements of the method. Multi-
5-4
-------
point integrated samples were extracted isokinetically from the 24 traverse points at the scrubber
inlet and the 12 traverse points at the scrubber stack as shown in Section 4.0. At each traverse
point at the scrubber inlet, sampling was performed for 7.5 minutes. Due to the presence of
cyclonic flow, each traverse point at the scrubber stack was sampled for a different time interval
based upon the flow angle at the traverse point; the time per point varied from 4.5 to 21.6
minutes. At both locations, the total sampling or run time was 180 minutes per test.
The EPA Method 23 samples were pulled through a quartz or borosilicate glass nozzle, a
heated glass-lined probe, a precleaned and heated glass fiber filter without organic binder, a
water-cooled condenser coil, and a sorbent trap containing approximately 40 g of XAD®-2
sorbent resin. The EPA Method 23 sampling tram is shown hi Figure 5.1.
The collected samples were extracted and analyzed according to EPA Method 23 and the
above mentioned proposed rules amendment. The sample components (filter, XAD®, and rinses)
were Soxhlet extracted and combined. The sample was then split with half being archived and the
other half analyzed. For the inlet sample analysis, an additional separate "loose" paniculate
fraction was also Soxhlet extracted and analyzed; results of the two inlet analyses were added to
get a single inlet catch weight. Analysis was performed on a high resolution Gas Chromatograph
with a high resolution Mass Spectrometer (GC/MS) detector.
5.6 DETERMINATION OF HYDROGEN CHLORIDE
EPA Proposed Method 322, "Measurement of Hydrogen Chloride Emissions from
Portland Cement Kilns by GFC/IR," was used to monitor HC1 emissions at each location. Stack
gas samples were extracted from each duct or stack and transported through a heated sample
probe, heated sample conditioning system, heated sample line, and a heated sample pump into the
analyzer containing the gas filter correlation infrared spectrometer (GFC/IR). Sampling
components were maintained at a minimum temperature of 375 °F. A heated three-way valve was
attached to the probe assembly to allow for sampling of stack gas or for the introduction of HC1
calibration standards.
HC1 in the sample cell attenuates an infrared light source. The intensity of the attenuated
beam is measured by a detector positioned at the end of the cell. The amount of HC1 hi the
sample gas stream is related to the amount of light attenuated. A schematic of this system is
presented in Figure 5.2.
5.7 DETERMINATION OF CARBON DIOXIDE, OXYGEN, AND
TOTAL HYDROCARBONS
Continuous emission monitoring (CEM) was performed at the scrubber inlet and stack.
All CEM data was recorded using a TracerAVestronics 3000 automatic digital data logger. The
CEMs were housed in the APCC Environmental Monitoring Laboratory positioned at the base of
5-5
-------
Temperature
Sensor
Condenser
Button Hook
Nozzle
Gas
Exit
Stack
Wall
Temperature
Sensor
Adsorbent Resin Trap
Empty 100 ml HPLC Water Empty Silica Gel
Vacuum
Line
Inclined
Manometer
Vacuum
Pump
Figure 5.1 Sampling Train Schematic for EPA Method 23
-------
Halted Probe Thr«**ray valve
(mln. 378*F) Heated Fitter Box
Heated Sample/Calibration Um
P M -10
Cyelon
In-Sttu Matrix
Spiking Hn«
Parkln-Elmar
Mleropreevssor
DDDD DDDDD
OM Pllttr Condition
Infrared Analyxar
Infrared
Oataetor
Figure 5.2 Sampling Train Schematic for Proposed EPA Method 322
5-7
-------
the stack. Stack gas was drawn from the stack through a heated Teflon* sample line which was
maintained at a temperature of approximately 375°F. A portion of the extracted sample was
conditioned to remove moisture and directed to the O2 and CO2 analyzers to determine diluent
concentrations on a dry basis. The remaining portion of the stack gas sample was directed to the
THC analyzer. Figure 5.3 shows a schematic of the sampling system.
5.7.1 Carbon Dioxide and Oxygen
EPA Method 3 A, "Determination of Oxygen and Carbon Dioxide Concentrations in
Emissions from Stationary Sources," was used to determine the O2 and CO2 concentrations at the
inlet and outlet test locations.
A Teledyne Analytical Instruments Model 326 O2 analyzer was utilized to measure the
percentage concentration of 02 in the gas stream. The analyzer utilizes a unique micro-fuel cell to
measure the concentration of O2. The output signal is linear over the specified ranges of analysis.
A Westinghouse/Maihak FINOR CO2 analyzer was used to monitor CO2 concentrations.
The measurement principle for CO2 is IR absorption. Radiation absorbed by CO2 in the sample
cell produces a capacitance change in the detector which is proportional to the CO2 concentration.
5.7.2 Total Hydrocarbons
EPA Method 25A, "Determination of Total Gaseous Organic Concentration using a Flame
lonization Analyzer," was used to determine the THC concentrations at both test locations. A
VIG Industries THC Analyzer (or equivalent), which utilizes a flame ionization detector (FID) to
measure THCs, was calibrated with propane. Approximately 5.0 liters per minute (1pm) of sample
gas is drawn from the source through a heated Teflon® sample line. The sample gas is drawn
through a heated filter and valves by a heated pump. The sample gas is introduced into the FID
chamber and hydrocarbons in the sample are ionized by a hydrogen flame. The flame is
positioned between two charged plates, and the associated electric field induces the migration of
the ions towards the charged plates. The ion migration results in the generation of a current,
which is directly proportional to the amount of THCs present in the sample.
5.8 CEMs DATA ACQUISITION AND HANDLING
Analyzer responses were recorded by a Tracor/Westronics 3000 digital data logger which
recorded the O2, CO2, HC1 and THC concentrations using its integral color printer. Trends were
monitored using the strip chart mode with averages printed digitally at 20 minute intervals and at
the conclusion of the test period. Analyzer responses were recorded by the data logger at 5
second intervals.
5-8
-------
Stack
Wall
Heated Filter
vo
By-Pass Flow
Control Valve
Sample By-Pass
Vent
Sample Transport Line
Pump
Total
Analj-zer
t
Data
Acquisition
Figure 5.3 Sampling Train Schematic for EPA Methods 3A and 25A
-------
6.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)
PROCEDURES AND RESULTS
For any environmental measurement, a degree of uncertainty exists in the data generated
due to the inherent limitations of the measurement system employed. The goals of a QA/QC
program are to ensure, to the highest degree possible, the accuracy of the data collected. This
section summarizes the QA/QC procedures that were employed by PES in the performance of this
test program. The procedures contained in the reference test methods and in the "Quality
Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source
Specific Methods," EPA/600/R-94/038c, served as the basis for performance for all testing and
related work activities in this project.
6.1 CALIBRATION AND PREPARATION OF APPARATUS
The preparation and calibration of source sampling equipment is essential in maintaining
data quality. Brief descriptions of the calibration procedures used by PES are presented below.
The results of equipment and sensor calibrations may be found in Appendix E. Detailed
procedures as presented in the EPA test methods are presented in Appendix G.
6.1.1 Barometers
PES used aneroid barometers which were calibrated against a barometric pressure value
reported by a nearby National Weather Service station.
6.1.2 Temperature Sensors
Bimetallic dial thermometers and Type K thermocouples were calibrated using the
procedure described in Calibration Procedure 2e of EPA/600/R-94/038c. Each temperature
sensor was calibrated over the expected range of use against an ASTM 3C or 3F thermometer.
Table 6.1 summarizes the type of calibrations performed, the acceptable levels of variance, and
the results. Digital thermocouple displays were calibrated using a thermocouple simulator having
arangeofO-2400°F.
6.1.3 Pitot Tubes
PES used Type S pitot tubes constructed according to EPA Method 2 specifications.
Each pitot tube was inspected for conformance to the geometric specifications by the application
of Calibration Procedure 2 of EPA/600/R-94/03 8c. Pitot tubes that meet these requirements are
6-1
-------
TABLE 6.1
SUMMARY OF TEMPERATURE SENSOR CALIBRATION DATA
Temp.
Sensor
I.D.
T5A
T6F
MB-10
RMB-15
Usage
Stack Gas
Stack Gas
Meter Box
Inlet
Outlet
Meter Box
Inlet
Outlet
Temperature, °R
Reference
532
504
664
860
534
494
632
809
493
536
666
492
536
666
493
534
668
493
534
668
Sensor
532
504
664
860
534
493
632
810
494
536
665
494
537
665
495
534
670
493
535
668
Temperature
Difference
0.0%
0.0%
0.0%
0.0%
0.0%
-0.20%
0.0%
0.12%
0.20%
0.0%
-0.15%
0.40%
0.19%
-0.15%
0.40%
0.0%
0.30%
0.00%
0.19%
0.00%
Tolerances
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
-------
assigned a pitot coefficient, Cp, of 0.84. The dimensional criteria and results for each pitot tube
used are presented in Table 6.2.
6.1.4 Differential Pressure Gauges
PES used Dwyer inclined/vertical manometers to measure differential pressures. The
differential pressure measurements included velocity pressure, static pressure, and meter orifice
pressure. Manometers were selected with sufficient sensitivity to accurately measure pressures
over the entire range of expected values. Manometers are primary standards and require no
calibration.
6.1.5 EPA Method 23 Dry Gas Meters and Orifices
The EPA Method 23 dry gas meters and orifices were calibrated in accordance with
Sections 5.3.1 and 5.3.2 of EPA Method 5. This procedure involves direct comparison of the
metered volume passed through the dry gas meter to a reference dry test meter. The reference
dry test meter is calibrated annually using a wet test meter. Before its initial use in the field and
annually thereafter, the metering system is calibrated over the entire range of operation as
specified in EPA Method 5. Acceptable tolerances for the individual dry gas meter correction
factor (y) and orifice calibration factor (AH@) during initial or annual calibrations are ± 0.02 and
± 0.20 from the average, respectively. After field use, a calibration check of the metering system
was performed at a single intermediate setting based on the previous field test. The post-test
calibration check of the dry gas meter correction factor must agree within 5% of the correction
factor generated during the initial or annual calibration. The results for the gas meters and orifices
used in this test program are summarized in Table 6.3.
6.2 REAGENTS AND GLASSWARE PREPARATION
Sample reagents consisted of pesticide (or better) grade acetone and toluene for glassware
preparation and sample recoveries, and pesticide (or better) grade hexane for glassware
preparation. Sample filters and the XAD*-2 sorbent resin traps were prepared by PAL according
to the procedures outlined in Method 23. Water used in the impinger trains was HPLC-grade
reagent water.
After preparation of the XAD*-2 sorbent resin traps by PAL, each trap was spiked with a
mixture of PCDDs/PCDFs surrogates, and capped with glass balls and sockets until used in the
field.
Prior to the field testing portion of the program, all sampling train components and sample
recovery apparatus were prepared according to the following procedure.
1. Wash in hot soapy water (Alconox*).
2. Rinse three times with tap water.
3. Rinse three times with distilled/deionized water.
6-3
-------
TABLE 6.2
SUMMARY OF PITOT TUBE DIMENSIONAL DATA
Measurement
a,
02
P.
P2
T
0
A
z
w
Dt
(A/2)/D,
Criteria
<10°
<10°
<5°
<5°
-
-
-
< 0.125"
< 0.0313"
0.1875" < Dt<;
0.375"
1.05 < (A/2)/Dt<
1.50
Acceptable
Assigned Coefficient
Results
Pitot Tube Identification
5H
0.7
1.6
4
3.3
0.6
0.4
0.956
0.010
0.0067
0.375
1.27
Yes
0.84
7A
0
1
3
2
4
1
0.996
0.069
0.017
0.375
1.33
Yes
0.84
TABLE 6.3
SUMMARY OF DRY GAS METER AND ORIFICE CALIBRATION DATA
Meter
No.
MB-10
RMB-15
Dry Gas Meter Correction Factor, y
Pre-test
1.021
1.000
Post-test
1.020
0.995
% Diff.
-0.2
-0.5
EPA Criteria
±5%
±5%
Orifice Coefficient, AH@
Average
1.92
1.90
Range
1.73-2.44
1.86 - 1.92
EPA Criteria
1.72-2.12
1.70-2.10
6-4
-------
4. Rinse with pesticide-grade acetone.
5. Rinse with pesticide-grade toluene.
6. Rinse with pesticide-grade hexane.
7. Allow to air dry.
8. Cap all openings with hexane-rinsed aluminum foil.
6.3 ON-SITE SAMPLING
The on-site QA/QC activities included:
6.3.1 Measurement Sites
Prior to sampling, the stack and inlet duct were checked dimensionally to determine
measurement site locations, location of velocity and sample test ports, inside stack/duct
dimensions, and sample traverse point locations. Inside stack/duct dimensions were checked
through both traverse axes to confirm uniformity of the stack/duct inside diameter. The inside
stack/duct dimensions, wall thickness, and sample port depths were measured to the nearest 1/16
inch.
6.3.2 Velocity Measurements
All velocity measurement apparatus were assembled, leveled, zeroed, and leak-checked
prior to use and at the end of each determination. The static pressure was determined at a single
point near the center of the stack or duct cross-section.
6.3.3 Moisture
The Method 23 trains were used to determine stack gas moisture. During sampling, the
exit gas of the last impinger was maintained below 68°F to ensure adequate condensation of the
exhaust gas water vapor. The total moisture was determined on-site gravimetrically using an
electronic platform balance with 0.1 gram sensitivity. The amount of moisture collected by the
XAD® trap was also measured.
6.3.4 EPA Method 23
The field sampling QA/QC for EPA Method 23 began in the sample recovery area. The
sample trains were set up and leak-checked to verify sample train integrity before transport to the
sampling sites. At the sampling sites, the sample trains were leak checked a second time. Leaks
found in excess of 0.02 cubic feet per minute (cfm) were corrected prior to beginning the test
runs. Leak checks were also conducted before and after any sample train component changes,
between sample ports, and upon completion of the test runs. Sampling was conducted within the
isokinetic sampling criteria of 100 ± 10%. Table 6.4 summarizes title EPA Method 23 field
sampling QA/QC measurements and EPA's acceptability criteria.
6-5
-------
In addition to the inlet and outlet samples, one field blank sample was collected. A
Method 23 sampling train was assembled and transported to the outlet sampling location, and
leak-checked twice. The sample train was then recovered using the same procedures employed
during the recovery of the sample trains used during actual sample runs. The collected fractions
were transferred to labeled, pre-cleaned sample bottles, transported to the subcontract laboratory,
and analyzed in the same manner as the collected samples.
PES also collected samples of the reagents that were used during the program as blanks.
Samples were collected of the acetone and toluene; an unused filter and XAD*-2 sorbent module
were also collected. These leagent blank samples were transported to the subcontract laboratory
and analyzed for PCDDs/PCDFs using the same procedures as during the analysis of the collected
samples.
6.3.5 Continuous Emission Monitors
CEMs were used to quantify the in-stack concentrations of O2, CO2, THC, and HC1 using
EPA Methods 3A, 25A and Proposed Method 322, respectively. QA/QC checks performed
included direct calibrations, bias checks, and drift checks; matrix spikes were also performed on
the Method 322 HC1 CEMs sampling system. Table 6.5 summarizes the compressed gas
standards that were used during the test program.
6.3.5.1 EPA Method 3A
Prior to the start of each day of testing, the O2 and CO2 analyzers were calibrated with a
zero gas standard and two upscale standards corresponding to approximately 55 and 85% of the
instrument measurement ranges. The calibration error of the analyzers on direct calibration was
less than or equal to 2% of span The sampling line bias was then checked with the zero gas and
one upscale gas for each analyzer. The sampling line bias was less than or equal to 5% of the
response of the analyzer to the calibration standard when injected directly into the analyzer. At
the conclusion of the sampling run, the sampling system was again checked by introducing the
zero and upscale standard into the system at the probe end. The sampling system drift was less
than 3% of the instrument span for both the zero and upscale calibration gases. The true
concentration of the gases measured was then calculated from the average instrument response
and the results of the calibration responses using Equation 6C-1 as found in Method 6C, which is
the procedure specified in Method 3 A. The gases used for calibrations were certified by the
manufacturer, and prepared according to the procedures in "EPA Traceability Protocol for Assay
and Certification of Gaseous Calibration Standards (September 1993)." Results of the above
mentioned QC checks are tabulated in Appendix E.
6.3.5.2 EPA Method 25A
Prior to the start of each day of testing, the THC sampling system was calibrated with a
zero gas standard and three upscale propane standards corresponding to approximately 25, 50,
and 85% of the instrument measurement range. The calibration errors of the THC system were
less than 5% of the instrument operating range. At the conclusion of the sampling run, the
sampling system was again checked by introducing the zero and one upscale standard into
6-6
-------
TABLE 6.4
SUMMARY OF EPA METHOD 23 FIELD SAMPLING QA/QC DATA
Run No.
Site
Date
Pre-Test Leak Rate, acfm
Post-Test Leak Rate, acfm
EPA Criteria, acfm
Percent Isokinetic
EPA Criteria
M23-I-2
Rotary Kiln
Scrubber Inlet
06/28/98
0.001 @1 5" Hg
0.000 @1 5" Hg
0.02
104.6
90-110%
M23-O-2
Rotary Kiln
Scrubber Stack
06/28/98
0.005 @1 5" Hg
0.003 @ll"Hg
0.02
100.2
90-110%
TABLE 6.5
SUMMARY OF CALIBRATION GAS CYLINDERS
Cylinder Number
Contents
Expiration Date
CC91137
CC88470
1912728Y
1836637Y
27.1 ppm HC1 in nitrogen
46.0 ppm HC1 in nitrogen
48.8 ppm HC1 in nitrogen
303.0 ppm HC1 in nitrogen
Certified on 6/12/98
Certified on 6/12/98
Certified on 6/23/98
Certified on 6/12/98
AAL-13302
SG9128557BAL
SG9128479BAL
30.0 ppm C3Hg in air
58.3 ppm C3H8 in air
92.4 ppm C3Hg in air
5/01/01
9/27/99
2/18/01
CC84329
CC84329
CC86922
CC86922
11.03%CO2inN2/O2/CO2
11.04%O2inN2/O2/CO2
19.01%CO2inN2/O2/CO2
19.17%O,inN2/O2/CO?
3/02/01
3/02/01
3/02/01
3/02/01
6-7
-------
the system at the probe. The sampling system drift was less than 3% of the instrument span for
both the zero and upscale calibration gases. The THC results are reported as the average of the
instrument responses over the period of the sampling run. The gases used for calibration were
certified by the manufacturer, and prepared according to the procedures in "EPA Traceability
Protocol for Assay and Certification of Gaseous Calibration Standards (September 1993)."
Results of the above mentioned QC checks are tabulated in Appendix E.
6.3.5.3 Proposed Method 322
Prior to the start of each day of testing, the HC1 analyzer was calibrated with a zero gas
standard and two upscale standards corresponding to approximately 25 and 85% of the
instrument measurement ranges. The calibration error of the analyzers on direct calibration was
less than or equal to 5% of span or 1 ppm, whichever was greater. The sampling line bias was
then checked with the zero gas and one upscale gas. The sampling line bias was less than or equal
to 7.5% (or 1.5 ppm, whichever was greater) of the response of the analyzer to the calibration
standard when injected directly into the analyzer. Results of the above mentioned QC checks are
tabulated in Appendix E.
Following the direct calibration and bias checks, a matrix spike for HC1 was conducted so
that the integrity of the sampling and analysis system for HC1 could be ascertained. The flue gas
was sampled to determine the baseline concentration of the HC1, and after the baseline
concentration was established, a known quantity of HC1 was injected into the sampling system.
The analyzer response must report the concentration of the HC1 in the effluent stream plus the
contribution of the HC1 from the matrix spike injection. The allowable tolerance for the matrix
spike is ± 30% from the predicted value. During the matrix spike procedures conducted on the
sampling system at Redland Stone Products Company, the matrix spikes were within the ± 30%
tolerance. The results of the matrix spikes are presented in Table 6.6 and Appendix E.
TABLE 6.6
SUMMARY OF METHOD 322 HCL IN-SITU SPIKING DATA
Test
Location
Rotary Kiln
Scrubber
Inlet
Rotary Kiln
Scrubber
Stack
HC1 Spike Recovery Efficiencies, %
Pre-test
111
115
Post-test
124
128
Average
117.5
. 121.5
EPA
Criteria
70-130
70-130
6-8
-------
6.4 LABORATORY ANALYTICAL QA/QC PROCEDURES
6.4.1 Analysis of Blank Samples
The EPA Method 23 blank samples were analyzed following the procedures of EPA
Method 23. Field blanks (FB), reagent blanks (RB), and laboratory blanks were used to evaluate
the effectiveness of the sample train clean-up procedures and to check for contamination of the
reagent materials. In addition, the subcontract laboratory conducted the Laboratory Method
Blank (LMB) to evaluate the presence of contamination of the samples during analysis. The
results of these blank analyses and the actual run sample catches are presented in Table 6.7.
6.4.2 Standards Recovery Efficiencies
Prior to shipment of the XAD®-2 sorbent modules by PAL, each module was spiked with
a mixture of surrogate (sampling) standards. The modules were then sent to Marble Falls, Texas,
via Federal Express for use in the sampling program. Upon analysis, the recoveries of the
surrogate standards provide a measure of the capture and holding efficiency of the XAD*-2
sorbent traps for the sampled PCDDs/PCDFs. A low recovery efficiency may indicate the loss of
PCDDs/PCDFs congeners from the XAD®-2 sorbent module after its recovery from the sampling
train. The 1234789-HpCDF surrogate standard recovery for sample M23-I-2BH was 65% which
is below the 70% limit; the PAL case narrative states: "...believe that this observation resulted
from the sample extraction and is not associated with a sampling problem."
A special "cleanup" standard was added to the separate particulate sample fraction of the
inlet Method 23 sample train sample (recovered separately due to the excessively large amount of
the particulate). The recovery efficiency of these standards are presented in lieu of the non-
existent surrogate standard recoveries. Table 6.8 presents the results of the surrogate and
"cleanup" standards recoveries.
Upon receipt of the XAD®-2 sorbent modules by the laboratory after sampling, the
XAD*-2 sorbent resin modules are spiked with a mixture of internal (extraction) standards. The
purpose of these standards is to evaluate the efficiency of the extraction of the PCDDs/PCDFs
congeners from the sample fractions. The results of these recoveries are presented in Table 6.8.
6-9
-------
TABLE 6.7
SUMMARY OF EPA METHOD 23 BLANKS AND SAMPLE CATCHES
PAL Lab Report Page
Numbers in Appendix B
Analvte
2378-TCDD
12378-PeCDD
123478-HxCDD
123678-HxCDD
123789-HxCDD
1234678-HpCDD
OCDD
2378-TCDF c
12378-PeCDF
23478-PeCDF
123478-HxCDF
123678-HxCDF
234678-HxCDF
123789-HxCDF
1234678-HpCDF
1234789-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fs d
Catch, ng Per Sample
PAL LMB
072
{0.0012}
(0.0004)
(0.0009)
(0.0006)
{0.00156}
0.0035
0.0166
{0.0012}
0.0012
(0.0006)
0.0014
0.0009
{0.0008}
0.0008
{0.00212}
{0.00152}
{0.00084}
{0.0012}
(0.0004)
{0.0016}
0.0036
{0.0012}
0.0012
0.0028
{0.0036}
0.0242
M23-
RB-1*
112a
0.0011
(0.0004)
(0.0006)
{0.00096}
0.0014
0.0031
0.0096
(0.0006)
(0.0004)
(0.0004)
0.0008
(0.0003)
(0.0003)
(0.0004)
0.0030
(0.0006)
0.0028
0.0011
(0.0004)
0.0024
0.0032
(0.0006)
(0.0004)
0.0008
0.0032
0.023
M23-
FB-2
134
{0.00085}
(0.0004)
(0.0008)
(0.0006)
(0.0006)
0.0038
0.0135
0.0028
{0.0016}
(0.0005)
0.0012
{0.00052}
(0.0003)
(0.0004)
0.0029
(0.0009)
0.0012
0.0016
0.0028
{0.0064}
0.0072
0.0064
{0.0032}
0.0020
0.0028
0.0375
M23-I-
2 + 2FHb
0 / 003 /
003 A / 090
7153
{0.00236}
(0.0006)
(0.0007)
{0.00272}
{0.00360}
{0.00896}
0.0239
{0.0270}
{0.0204}
{0.0143}
0.013
{0.0080}
{0.00376}
(0.0008)
0.0172
{0.00176}
0.0044
0.0408
0.0068
0.016
0.0088
0.3828
0.1708
0.0424
0.0204
0.717
M23-
O-2
003/111
{0.00182}
{0.0006}
{0.00244}
{0.00176}
0.0016
0.0200
0.0449
0.0055
0.0067
0.0039
{0.00316}
0.0020
(0.0006)
(0.0007)
0.0155
(0.0010)
{0.00452}
0.0148
0.0056
0.0200
0.0396
0.0860
0.0572
0.0088
0.0116
0.289
• Sample RB-1 collected at a different lime kiln facility tested during the same mobilization. The
pages are inserted at the end of Appendix B; the page numbers are out of sequence.
b Result obtained by summing the two inlet sample fractions analyzed.
e Result obtained from the DB-225 analysis.
d Total PCDD/Fs represent the sum of all porychlorinated dibenzo-p-dioxins & dibenzofurans.
() Denotes a non-detect value using the detection limit.
{} Denotes an EMPC value.
6-10
-------
TABLE 6.8
SUMMARY OF EPA METHOD 23 STANDARDS RECOVERY EFFICIENCIES
FULL SCREEN ANALYSIS
PAL Lab Report Page Number
Internal (Extraction) Standards
2378-TCDD
12378-PeCDD
123678-HxCDD
1234678-HpCDD
OCDD
2378-TCDF
12378-PeCDF
123678-HxCDF
1234678-HpCDF
Surrogate (Sampling) Standards
2378-TCDD
23478-PeCDF
123478-HxCDD
123478-HxCDF
1234789-HpCDF
Percent Recovery
PAL
LMB
073
82.3
79.9
80.1
86.0
77.5
62.1
47.0
47.9
37.1
87.7
74.1
86.5
80.5
87.3
M23-
1-2
091
70.7
70.9
70.3
73.4
72.9
62.6
58.4
69.9
53.6
94.7
87.8
103.3
81.8
65.3
M23-
1-2 FH
156
77.0
81.4
80.9
85.3
75.3
64.7
50.7
52.7
46.0
81.4b
75.3 b
93.2"
89.5 b
92.6 b
M23-
0-2
,
112
89.4
86.6
91.0
97.4
88.8
84.4
71.6
91.9
72.0
97.1
104.0
103.2
86.9
81.8
M23-
FB-2
135
83.6
85.6
85.0
94.8
86.6
80.7
68.8
88.0
69.0
95.7
102.3
111.0
90.0
79.1
M23-
RB-1*
113
86.4
94.1
87.4
92.3
83.6
87.7
81.5
91.8
73.7
96.4
98.2
110.1
88.2
81.6
QC Limits
40-130%
40-130%
40-130%
40-130%
40-130%
40-130%
25-130%
25-130%
25-130%
70-130%
70-130%
70-130%
70-130%
70-130%
The "M23-RB-1" sample was collected at a different lime kiln facility tested during the same mobilization. The
pages are inserted at the end of Appendix B, resulting in the page numbers being out of sequence.
The "Surrogate" recoveries presented for Sample "M23-I-2 FH" are actually recoveries for the "cleanup"
standards which were added to the separate paniculate phase of the inlet sample only.
6-11
-------
APPENDIX A
RAW FIELD DATA
-------
Appendix A. 1
Raw Field Data
Rotary Kiln Scrubber Inlet
-------
TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS
Plant: R^zJlo-^J s-^ofy
Date: (,
X«/e_-f
Sampling Location:.
inside of Far Wall to Outside of Nipple:.
Inside of Near Wall to Outside of Nipple (Nipple Length):.
Stack I.D.:
Distance Downstream from Flow Disturbance (Distance B):
"5&0 inches / Stack I.D. - /fl / dd
Distance Upstream from Flow Disturbance (Distance A):
Inches / Stack 1.0.« M dd
/
II
V
•^M
/
//
>
V
f
^
v
f
i
G
*?
(b
pt-s. p*<
X
Calculated B)
Traverse
Point
Number
i
j
3
V
5
£
7
"2
9
(D
n
/}
/: "h*^«/-s ^. \^V7L<>oW
Fraction
of
Length
.0^1
.0^-7
. /(&
. i -?~>
..oso
. Ss^
. 6-w
• -7SO
• S.i3>
.•x-a^
•S=5^>
.^•7-,
Length
(inches)
35^
15 &g
35;%
3£-££
35^
^•s^
35^
3-S ^
5<,^
35 ^s
3^^
35*1?
Product of
Columns 2&3
(To nearest 1/8")
% -•> /
«2>V
4^"
(0^"
^^"
^— *'
^3"
o/i V"
r^l ?3_"
•^/-3s"
33-^ 7/ ^
^'^'^
ocnvmauc 01
Sampling Location
Nipple
Length
(inches)
3V
-*, v
3 V
3V
si''
3 V
3V
g ^r
3V
^^^
si"
) 3V
Traverse Point
Location
(Sum of Col. 4 & 5)
•^V
€ J/r
-7^¥
°l^'r
^'r
/s*z"
=?^V
f^s* ~f O
_ j^^ ^^
^ ^y ^"X
3^^"
•7 -> ^ v
37 ^y
-------
GAS VELOCITY .CYCLONIC. AND VOLUMETRIC FLOW RATE
Plant:
ft«dU.»vJ St&rv?
Sample Location: ^_<-i_iLL.et- 1T*v\.«.V
Run No.:
p v . T
iC
Pbar. in. Hg: <£*\ . ^ *0
Moist, %
10
Stack Dimension, in. Dia. 1 :
Wet Bulb. °F-
Traverse
Point
Number
t* 1
j
^
^
£
f_
j
7
1
/o
//
XJ
^
x«
5
^
7
5>
5
/O
//
/;>
Average
Velocity
Head. in.
H:0
I.V
1. ~?
1 -S
/.*/
/ .<5
1 .~l
1 -Co
;.£=
; . i
I -~7
/. 7
/.^
/ •'S
/.^
/ r«
/ *~?
/.-S"
y.t,
/. 7
/ .7
/. 7
i. -7
I. 7
/. -7
Stack
Temp.. °F
•9o(
?V\
Static Pressure, in. H:O: — ^f .g>
Pilot Tube. Cp: . £*/
Dia. 2:
Dry Bulb. °F:
Md - (0.44 x %C02) + (0.32 x %02> * (0.28 x %N;,)
Md - (0.44 x /2; ) * (0.32 x /O.I) -i- (0.28 x >? )
C,H26 "*" %H20 <^^^
M«-Mdx(1 1QO 1QO t^.^)
T;. °F- R (°F-f480)^ 1
P'"J^ry3.8 (<^t^ ' 13.8
pT^~ ' in-Hfl o^^.fS-V- (3vQ»
V« - 85.4S X l^p X «U^ « ^ PsxMB ^^~^_
»„«!
v«- ft/<
A.. ft2
^^OP /Je>-z.
Q* • VtxAsxeoa/m
Q,. x xeo
Q^ iv •CHI)
p, %»ZO
nd I****
.•>
-,*
-------
Duct Diameters Upstream From Row Disturbance* (Distance A)
0.5 1.0 1.5 2.0 2.5
50
30
20
10
I
I
I
I
I
24
20
16
16
Velocity (Non-Particulate) [ 12 ]_
I
1
I
I
I
I
12
8 "~
I
I
2 3 4 56 7 8 9 10
Duct Diameters Downstream From Row Disturbance* (Distance B)
• From Point of Any Typ« of DMurbvw* (B«nd Exprnton, Contractor!, «te)
LOCATION OF TRAVERSE POINTS IN CIRCULAR DUCTS
(Fraction of Stack Diameter from Inside Wall to Traverse Point)
Traverse
Point
Number
4%04 **
on a
Diameter
1
2
3
4
5
6
7
8
9
10
11
12
Number of Traverse Points on a Diameter
4
0.067
0.250
0.750
0.933
6
0.044
0.146
0.296
0.704
0.854
0.956
'
8
0.032
0.105
0.194
0.323
0.677
0.806
0.895
0.968
10
0.026
0.082
0.146
0.226
0.342
0.658
0.774
0.854
0.918
0.974
12
0.021
0.067
0.118
0.177
0.250
0.356
0.644
0.750
0.823
0.882
0.933
0.979
-------
Plant g.«<
Sampling Location
Run Number:
FIELD DATA SHEET
f'roc^i^e^, Sample Type: /*\eH5Operator:
Pretest Leak Rate:
Date:
ctrn
Pbar:
CO2:
.JO Ps:.
/* i O2:
;«,"ln. Hg.
Pretest Leak Check: Pitot: Orsat: ^A Slack Diameter:
Probe Length/Type: S ' /-*- Sf e
Pito!
As:
Nozzle ID: j- . it/ Thermocouple #: £{\
Assumed Bvn.^fy Filter #:
Meter Box #: /v)fe- /pY: /•*>}
Post-Test Leak Rate: ^.oe^cfm @^'in. Hg.
Post-Test Leak Check: Pitot: Orsat: /o/A
^ K* >•*& ^
Traverse
POM
Numbw
Swiping
Tbm
dock Tin*
(244.001
dock)
GasMaltr
ftoadinfl
V.boty
HMd (Ap)
kiHZO
Grille* Pr«uur« Dittof»nfa/
(AH) In H2O
D«8lr«d I Actual
Stack
T*mp.
Tamparatur*
Piobv
FOtar
Impingvr
Ttmp.
°F
Dry Gas M«t*r T«mp.
hl.l
(Tmln0F)
Outfrt
(Tin otrt°F)
Pump
Vacuum
(in.Hg)
O
,
/•So
/.-**
^•33
/OO
/GO
~7P
6Q
O
.0-70
976?
/O
/. 70
.50
/O
/••70
/•S'
/$-
25-
//so
-oc>o
1. -70
/.so
/•^O
a
A 60
/.(oO
los.
;.SO
Ji
• CoO
/.57
60
91
CeO
103.
to a
10 A
^3_
J5
5-C.
55
S
J.3Q
/-S7
I--S7
^1C_
ISO
^53;
to*
55
JCL
5" l
5S
£5
5-y
/I
]. -VO
So
50
51
(5
AVm-
AH»
Ti-
-------
SAMPLE RECOVERY DATA
PLANT
DATE
Prod
Run No.
Sample Box No.
SAMPLE LOCATION 2.
TRAIN PREPARER T-
job NO. #0/2.QQ.3
Filter No.
SAMPLE RECOVERY PERSON r.
COMMENTS
FRONT HALF
Acetone
Container No.
Filter
Container No.
Description of Filter
Liquid
Level Marked
Sealed
Sealed
Samples Stored and Locked
BACK HALF/MOISTURE
Container No.
Liquid Level Marked
-T- Z lalU<^JL^
Sealed
IMP. NO.
CONTENTS
INITIAL VOL
(ml)
WEIGHT (grams)
INITIAL
FINAL
NET
oO
I OO
"2-50
332-3
TOTAL
-------
FIELD DATA SHEET
Plant ft.ee)
^ Sampling Location
$' Run Number: r
Pretest Leak Rate: .6"
Pretest Leak Check: Pilot:
/„ -.
Sample Type:
Pbar: *)">. 15
CO2: o
Opefalor:
P«:
O2:
elm @ e, ooin. Hg.
>* Orsal:
Nozzle ID: Jkn=-^ Thermocouple #:
Assumed Bws: /Q Filter #: (^ ^
Meter Box #: jAgi-icsY: _A^i AH@:
Probe Lengtfi^Type: s
Slack Diameter: 3S
As:
Post-Test Leak Rate: 1-6" cfm @ O.eein. Hg.
Post-Test Leak Check: P«ol: ^/^Orsat:
Trevwm
PMit
Nuntor
Smplng
Tkm
(mln)
O
^
OockTIrm
(24-how
dock)
toSi^
0«l<,
Gas Meter
Readhg
(Vm)tt9
J-SV- oco
3*&. /6o
Velocity
He«J(AP)
lnH20
Ori«ce Pressure DHterental
(AH) 1" H2O
Dtslred
Actual
Stack
Temp.
(T«)
Temperature
°F
Probe
Y/////YA//////////////////////////
Hter
Impinger
Temp.
°F
Dry Gas Meter Temp.
Mel
(Tn»ln0F)
Outfet
(Tmout°F)
Pump
Vacuum
(in. Ha)
Y///////////////. Y////////A
.,
AVm-
AH-
tl-
-------
SAMPLE RECOVERY DATA
PLANT
DATE
Run No.
Sample Box No.
Job No.
663
SAMPLE LOCATION P*A\
Filter No. G-V
-------
Appendix A. 2
Raw Field Data
Rotary Kiln Scrubber Stack
-------
TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS
Plant: £ « O /-A v>
Date:
Sampling Location:
U-*-
Inside of Far Wall to Outside of Nipple: .
'7
Inside of Near Wail to Outside of Nipple (Nipple Length):
Stack I.D.: 5 \ ^K
Distance Downstream from Flow Disturbance (Distance 3):
/ Stack 1
.0. = \ 0.3 1
dd
Distance Uostream from Flow Disturbance (Distance A):
Calculated By:
inches / Stack I.D. =
Scnematic of
Sampling Location
Traverse
Point
Numoer
!
1
i
4-
s
C
-
Fraction
of
Length
» o W
. \&<^
^ >^vV^
V ^0^
N Si*
. o,^v
Length
(inches)
Stv-15
s
<
Proaua of
Columns 2 &. 3
(To nearest 1 /8")
5- 4o
7 ^f
G'~L
3g 5
46.?^
5 P-^f
Nipple
Length
(incnes)
i,*^
V
r
Traverse Point
Location
(Sum of Col. 4 & 5)
T. CT
'.9,
1. 4-S
«,79
r<9-o
j-r^r^
-------
50
(A
C
o
°- 40
0}
en
12_
12
a —
i
23456789 10
Duct Diameters Downstream From Row Disturbance* (Distance B)
• Fwm Point of Any Typ* at Ol«turt>«nca iB*nd. Emnawn. Conwwwn.
LOCATION OF TRAVERSE POINTS IN CIRCULAR DUCTS
(Fraction of Stack Diameter from Inside Wall to Traverse Point)
Traverse
Point
Number
MM M
on a
Diameter
1
2
3
4
5
6
7
8
9
10
11
12
Numoer of Traverse Points on a Diameter
4
0.067
0.250
0.750
0.933
6
0.044
0.146
0.296
0.704
0.854
0.956
a
0.032
0.105
0.194
0.323
0.677
0.806
0.895
0.968
10
0.026
0.082
0.146
0226
0.342
0.658
0.774
0.854
0.918
0.974
12
0.021
0.067
0.118
0.177
0.250
0.356
0.644
0.750
0.823
0.882
0.933
0.979
-------
GAS VELOCITY .CYCLONIC, AND VOLUMETRIC FLOW RATE
Plant: k
Sample Location:
Run No.: P c,r
Pbar, in. Hg:
Moist, %:
Stack Dimension, in. Dia. 1
Wet Bulb. °F-
Date: d . 3.£. «?
Clock Time: f 3/Jo
Operators: (f(> f P $
Static Pressure, in. H:O: ""*
Pilot Tube. Cp: , % 4-
Dia. 2: '
Dry Bulb. °F:
Traverse
Point
Number
/
}
$
4
j
C,
)
5
3
I
s
(,
1
1
3
f
J
G
1
>
"•?
4-
S
fc
Velocity
Head, in.
H,O
• ^4-
, kk
. 14-
, -7 p-
• ^0
• S'ff
,0|^
• *ISf
»2>5
• *f "?
vl 3
^^5>
i .• 4»
l- !
t 1 ^^
.If)
, "?>-
* t^-
,«4.
\, 1.
\S <:^
7>.cfc/
Average
sq.rt. dp Stack Temp Angle.'
\\ + (0.32 x HCty + (0.28 X %f4j)
Md - (0.44 x ) -f (0.32 x ) -i- (0.28 x )
Md-
*H2° %H2°
M«-Mdx(l - 1(^-)
Ml-
Ti-
„ „.. . S.P.
iao
13.8
) +
13.8
Pa-
in. Hg
V« - 85.49 x <
V» - 85.49 X (
F= A/T"
Cpx VSP x \J-p7
)>(
)X
^
Qt-VsxAaxeOi/m
Qt -
xflO
«cfm
QHtd*
-------
A-1
2
3
4
5
6
B-1
2
3
4
5
6
BASE TIME
48
YAW Angle,
46
58
71
54
44
38
47
58
79
27
32
22
23.334
YAW, Radians
0.803
1.012
1.239
0.942
0.768
0.663
0.820
1.012
1.379
0.471
0.559
0.384
Total min =
0.1276
COS YAW
0.695
0.530
0.326
0.588
0.719 .
0.788
0.682
0.530
0.191
0.891
0.848
0.927
= 180.004
Min/Point
16.209
12.365
7.597
13.715
16.785
18.387
15.914
12.365
4.452
20.791
19.788
21.635
Cumulative
0.000
16.209
28.574
36.171
49.886
66.672
85.059
100.973
113.338
117.790
138.581
158.369
180.004
-------
Plant: _
Sampling Location
Run Number:
FIELD DATA SHEET
Sample Type: M a 3 Operator: f^V/>5
Pbar: 2^.1^ Ps: - ,33
ft- -L. }S
Thermocouple #: TG /
Date:
O2:
Pretest Leak Rate: .QQ5 elm @ \$ in. Hg.
Pretest Leak Check: Pilot: I/ Great: /v*i
CO2:
Probe LengthAype: (o'Gl>%v> Pilot *:^ ?^
Stack Diameter: .Tf. 7/ As: /C. j(t
Nozzle ID:
Assumed Bws: _g _ Filter #:
Meter Box #: pf,^ jjrY: /.0p
Post-Test Leak Rate: . 00 cfm
003 cm _ in. Hg.
Post Test Leak Check: Pilot: _iX^Orsat: >u«>
Point
NumlM
Somplng
Tim*
(mln)
Clock Tim*
(24-hour
dock)
Gaa Meter
RMding
(Vm)n3
Velocily
Head(Ap)
lnH20
OrHice Pressure Differential
(AH) in H2O
Desired
Actual
Stack
Temp
(Ts)
Temperature
°F
Probe
Filter
Impinger
Temp.
Dry Gas Meter Temp.
Inlet
(Tmln0F)
Outlet
(Tmout°F)
Pump
Vacuum
f"i.Hg)
1.0
vo
LCL
l.Q
JUL
93
93
(o
lof^
£1
J_0_
1.0
l/c
JP1
•\ feQ , T-.
0
l-f
j^J
V(0
°l o
S >-.
V'-S
•7
liCL
Vf
ft
JLiO_
j^L
L4=-
yc
J^O.
JL!.
jLt
•xs/
94
V
vi u
yfe
hf
15
. vo
jJLL
IS
L!*I
<\^i
JO.
\J
_LJ_
1,1
7
MV9
v\^i-
u
5
V?
V
L\V
I QQ5.3
5 S
\M\a
-------
Page 7- ol
Plant Name:
Run Number:
O
Test Dale:
Operator:
Traverse
Point
Number
<-
k
Sampling /dock Time
Time, / (24 how
(mln.) / dock)
|i,5 / |^o 3
/*><•£, 1 Vbol
1 f C ' V3VS
1.50 ' YbVi
1 vS" S 1 \^V"b
I5S4 ' \V*.V
\^"5v^ » V
V«<0*.^
VoVpVV
"T d/tT,«p
1 OGV>el2')
Velocity
Head (P.)
In-lhO
• S^
t^/
I Vt
, V)
, \
Orifice Pics. DifferenUil
(^11)10.11,0
Desired
f, y
\,<*
1,4,
\,Vo
XvV-
\..r
\(5
v£
\v^
\v5
Actual
[,f
/.b
\, L
\vV.O
\ to
I js
V5
\S
\x5
\v^
Stack
Temp.*F
114-
\\v
(14-
vN*^
\\v
\\(V
\w
\ \ v
\^ v
\\v
Probe
Temp./ Filter
Temp." F
25>- / 3J/
1SS / ^5^
2sS5 / CLfx
-j.5^- / T,,^
*y^(o ' ~L\*\
•^.Sj ' ?^a
">Sfe / 1^5
ISi / MV
1S5 / >51
V53 / >•**-
/
/
/
/
/
1
1
f
1
1
1
1
/
'
Impinger
Temp.
•F
4v
\5
i-b
s^
/"t)
50
54-
-T3
JJ"
^G
Dry Oas Meter Temp.
Inlet
*h
Q i
rt **
^
^x
°tv-
Cj ?
*l'3
°li
Ol K
UIHICI
^13)
*v >
^ ^
1 ^
1 >
*i i
^ s
Pump
Vactiuin
In-llg
l\
1 /
If
< !
1 \
1 )
( 1
1 1
,,
f i
• o
*")
^0
Go
-------
SAMPLE RECOVERY DATA
PLANT
DATE
Run No.
SAMPLE LOCATION
TRAIN PREPARER
SAMPLE RECOVERY PERSON T.
Sample Box No. H"\O Job No. ROI1.OO3
\UrV- . Filter No. _
COMMENTS
FRONT HALF
Acetone
Container No.
Filter
Container No.
Description of Filter
Liquid
Level Marked
Sealed
Sealed
Samples Stored and Locked
RACK HALF/MOISTURE
Container No. _
Liquid Level Marked
Sealed
IMP. NO.
CONTENTS
INmAL VOL
(ml)
WEIGHT (grams)
INmAL
FINAL
NET
/OO
107. -7
100
Z
TOTAL
• r T
-------
Appendix A.3
Raw Field Data
CEMs Summary & Strip Charts
-------
HCI Correction Worksheet
Redland Stone Products Company
28-June-98
OUTLET
|| Actual value
zero i
mid
hiqh '•
0
27.1
48.8
3 Point Cal
0.9
27.2
48.9
slope (m) 0.983
Y-lntercept (b) 0.79
Avg cone: 1 .9
Actual Cone: 2.0
Pre Bias
-0.3
48.9
1.008
-0.30
Post Bias
2.1
49.0
0.961
2.00
INLET
zero
mW
:ttigh
Actual value
0
46
303
3 Point Cal
1.9
48.1
299.4
slope (m) 0.980
Y-lntercept (b) 2.40
Avg cone: 16.4
Actual Cone: 18,7
Pre Bias
2.2
304.8
0.999
2.20
Post Bias
3.3
303.0
0.989
6.86
-------
HCI Emission Measurements from a Rotary Kiln
Redland Products Company
San Antonio, Texas
6/28/98
Time
10:35-10:55
11:35-11:55
12:35-12:55
Date
Inlet/Outlet
6/28/98
Outlet
Average
HCI
ppm
THC
ppm
1.8
2.2
1.6
1.9
0.4
0.3
0.4
0.4
02
%
CO2
%
12.5
11.8
12.6
12.3
15.2
16.3
15.0
15.5
1 1 :05-1 1 25
12:05-12:25
13:05-1325
6/28/98
Inlet
Average
17.2
16.9
15.2
16.4
0.0
0.0
0.0
0.0
10.0
10.0
10.8
10.3
19.4
19.3
17.9
18.9
-------
h »
t
I
C
9
i
1
i
i i
«»* FESGT fHfffC^ 98 J5 ti( 24 ? i PFR
«** FtiT. ffcWCE W 35:92 23 1 FCM
*« ItsgT flVERflGC 98 :S 8i 22 3 8 PCt
«« ttiT *€Pft3E 88 35 ill a 11 9 P}T
HCLW
nt: *o
go. | e PPM
10!
*** PRINTER DM
ri 5
*( P
125 15; O 17! 5
:7 JUN 28>)98 **•»=
! ' ; i
!•
i
i
i JUN J8, 98) *** '
» |
1 IJI1T5 5r ' IfOEND
; pm! HO.
i '
i i. • ; — *.„ '
; 0 ^ 22. 5
i i
' h • t
' 1
I
'
i
j
i
I
1
t
1 !
25P
i
-------
'•i rs
"J
D 5j
g*
11.
"i i -
O'l
ha 9
-W •'*
M *
M s
I 1
.V- --«--
^— £-°
- - §
N
_. O
a
K-s
. 2
£
.. —-S-
®- -
t^~
... yi
. . a
w
.__ _; ii
. _ • . o
... _. --- . --g
M-
01 -
m^^
7^
.._./..
7^[?
ij-*
«s
..- - "_.- -3
u
H
.« ^
®v
\
\
w
^
*
g *
i §
Q ?
—
*
i *
n
•^>
1 "
s *
a. 4
y w
H
~— W"
H
5 VI
8- a.
-i
9
0)
-j
-* en
i S
*~8
1 1
«--*•
S3 fl
Z
<7
• vi
1 ^
O
: 0>
v«
^\-v»
&
*?
2-U
CuL
too
53 u
pD
-/!
K/ *
r *
^^^^^^^^^
. r»7 - -
.. . ,
^f
J/
_
" "l i I i
llrt
dD «J
s * s »
aatfl«
• OP • 4D
_™ _*..,„ _S — S ^
B w J8 *
..-.-. -^r.-r &<
H* o^
_.3.aii
S§gP
- --r^-S-tS-
- _ —
4 5 i-i
-. . _.
- — - - -
S
Pi
*;3
^'S
15
^P.
^:S
•!il ^i
^ 3
iS
-------
r ;«T/V -MI;-. .1 . LEGEND .
ji a'/ •• >.* -c
1 . im
: ?: ;'
L>:fi<
WT* Jl.
LtCEII
:»:
.34
"DTr
UNIT 01 *** STflPTS RT 09 ; 15 • £7" * •** ENC'S RT 09 15.2? TUN i8- 98, * * *
.».»* LOO ORP
5f!"_. WITS. iT _ _ LEpgn FT. . Wm_ JJ»ITS| .ST. . i._ UGBf ,FT . CrtTfl __ JJNIJ3.. ;; UGOf . .. FT
05!
IB
0
C«2
; ««• RESET Ffc^RflBE 89 15.«J 23 3i| 4
' •*« KESEJr ftERRGEi 99 13 Kj 22 I %
' «* RESET flVEMGt B9 15 8Z 21 1» 9
1
FFH
C02BW
: ^
; , .**(
i *4
^^*i»
iO.|0
\>S^--4. ,: ! • '
I • ^*^;^^uttd:r^zr:"
tju i , i . i ' i ,_.j.±ni:
n- i i • • i . i— - —•»-!-——'——'-^r
ig.'a • 20J0 '^5.'.* : 30.10 ^g.i*1
•40. 0
I
4,-3.|0 I
PPM
"V
'*** LOG QRP
i i
PT DfltHJ miTSJ SL
(JN1T;01
STRRTS flT 09
rr*-ii
i 3«.
eV^sIa .•^•*i
! t^D$! ftT J99 : OF : 51. JJUN 28; 98J *** ,
STRUTS flT
j Mi 37) . Pffl;
STRRTS RT
T 09 : 04 . 24 JJUN 58, 96| '***
UNIT 91 **•»
I . . I
sr :
32 3 PCT' C02
5, «-? PCT
LOG CSRP 1 •»••»•* UNIT 01 *** STflRTS RT *S: 39: S» «•*+ ENDS ftT 93:59.20 ,-JUH 28-98* ***
»;
THC
FF« HDL
-------
S'S
'. i.
i N "
; . - *-: -
K * ' " ;/
1 *
M - K
-I
^"S"" il|J ":'
Si-3 'S
u.=; I «
-P
ui
ko
i"* 'D
-S; »
-------
* £3
e p
SNI 200
aw 3H1
Dh« TJH
?c< 4i en Mfca* i3s» »••
lid r SI 5? » c,T 81 33WQW 1351s **»
Hid 6 :[ K :* 41 91 39«QW 1331s »*«
ill.
o T .
"•*'•,
-------
LL
0.
i
LJ
if"
§
in
•t
fj
IT'
IT'
« t
<*
§
o
s>
IP"
o
§
1 .
-n
§•
IT'
r-
f.
£v£ C^^V--"--^^
y, '^ V} ,M
fill
^ J
si
U fti
* ink
I gl
• m:
H ;
H '
i-
cc
I
ft
' '
t !
5 J
*
*
4
i
Q
§ 1"
4 $is
-------
• V to W
in
M
i
S>
in
£L
C1
m
•H
ri
Q
g
N
T
&
Q
8 " IP"
N
g S g 8
_®_
ri
o
fM
S>
ri
S i 1
-**g-!T-
ti^§3
£
in
e
IP
* Si
SO
v.
£
a
-------
I
,<••*!
- . . rTlH^jSJfc-—^
''.n
'.*
•5
-J
'%
" - -— *— ' — ^M.-'
}-»
-3
•S
t—
(•j
ij!
r-
'fl
O
N
«J\
KP
•5
'3
|. .
(•j
'J!
i1.'
>.H
'W
K ?3 br
Si
-~" -J^__- '-~ « &* ^— l-'-rrE1:.-- .:"- . :? -I ^.- -
^^ " " "TT^ " ^ u -" "' -
^ 3.^2.il " "* -^ ^ 3 2
.... .- . _ .... ... . . "^ — >.^-K - - .... .. ij — . j[ m
« * i si ~ "- -"-•-"- 1 -ii sr "•-
« "• S •__ _ -__.'r-:_;"* •"""£-/"
Ul ~ — ^
^ f i » i ' -' f lift-..
* •_ ... ... §. -
*. -. .:. — :.. §" ' - -"
a --!•-•
* - §
* " " tf "
Ul - - I
51 t
a •--. -:.: \. : -:.-
e ..... y ......
e S
j_
c^
? 15 S. s.
fi
_ * *
w
_ Ul
N
O
Q
f*
•Jt
O
^^•^^ . Jj^ s _^
r^^^^.i-fcl?5-^.. . 9 . .",!£..-. - - - -.
•5
— -
H*
'Jl
'5
- - f>j
p.
o
o
N
yi
: o
w
»
®
13
- -- w
Ijt
o
w
^
'S
Tl
-------
l ;: -» >• - j
' ^
r
r
r '
^ i
'. ' :
•14* ' Y ,)1-^
/ <"
' ?. '/ ; '
r •** KSEI HVERflSE 12 55 95i ^ 1 ? PFfl Ha AVJ5 «**•
C^C) *" RESET RVERNfX 12 55 >)5 23 4 PPM THC itK ***
t "; *5-»1 ;# ttSEJT WERflGE 12 53 »5 22 15 8 PCT j C02 flVJB ***
1 ^ «Sj*" K47 WE*"6! 12.55 8} 21 U » PCT | 02 KG «*f : ,
' -i, : •^*^ ' i i
-ID djja 35^ 0 70,0 ' 10-
i • • : j i
r G i i
" l/y 1
J : I ,;
AM , ' ft?J
1 ' ' i
-tbr 4BJ« ilMB,* ^Bi* > 3*
J
1 ;
i i i
4)» i . ;
1
1
1
4f
i ,
• i . ! - *
i • *
j . !
: . i
' : '•
t '
0 140)0 175M0 . 210 0 245.0 28OJ 0
1 i''' ' 1 ' . !
: ' *\ i ' i i
: : . > : ; :
i . : / , ' !
i 5 • • • i
''' i i ' j,: N ! :
1 ' ' i ' ' '
1 i ' flit ' ' * • > i I
I : : i
' . ' ' 1
; ! ' i ' ' 1 ' 1
^ ' • • I :-'•')! j •• ': \ • !
' ' i i ' ''•I f i • 1 '
. i ' ' ! , r ' i ! '
• ' • i ' : • *4 ' ' . . • • • • . - i • !
-! ••••(''> ' ' ' i
. ;: ) •• ' • !':•••;!
1 ' I ' N ' I • ! ' ' • i
f fi • ! i ! !
S : , • ; ; ' *! i i !
; ! : : *** RESEJI AUEKA6E 12.33-C6J 24 3 1 PPt) ; HCL fl* : ***) . .
; *** RESET mtRnG^ 12. S '85 2^ . 1 PPM THC W3 *** '
I , ' , j ««« KSEf flVEBK 12 3 «5i 22 15.6 PCl C02IW. *H
' j ' , : ^fMcv *•* "f^1 flv'0MC? 12'^ w 21 u i rqr 02 me *«f i
i
a
l J B 9
9
: i» ^1 f '•! ' S; . : 1
^\* J* •Vjrtt. • 6tt~ '
© 5. 0 10. |9 ^^?c3. B ' ^O. '0 c*3L 0 30. ,'0 35. '0 4O. .0
' \ / '
1 ' 1 J - ' '
' \ 1 ' '
|N J J : '
II -1 ' \ ~ 1
J "' 'X, --""
rP' '. '-U. •-.
fl ' 7,'
>*« «££ET (NEHKE, 12 25 W ?4 16.? PH| Ha AM5 **«;
rj •»« PE51T itiBOtf. U.25 W 23 - ") PPM THC Ate i»*
O**^ «• KSET fiVE?fiCE 12 21 W| 22 1?.J PCT C02 (WE ««
''.jJ^ *** ttSET *^ft* ^ 25-W 21 14 * PCT 02 W »*f I
,
-------
* 9J
0
|W
, ~*"» «- .-i
::•,--, ._-_.,
v /
*
t
• y !**••-» LOG ORP 1 » + •»
jUiL
* -JFTHL-Ptl UNITS
~JT\ « ; ~::
1 V !
- ID 0
< H
«
O 35
'
*-:ff
' *
' I •
I
I
^
i ' ; "i
•
-.HIE |
01
a
IB s1
«
1 ' '
••1
! I
, ,
1 !
94
1
j
!
t
i
i '
,
•
I
e
M
I
•5.
'
i
^ .1 •
'
1
UNIT Ol
;T iEODI} PT DflTt
Oil
•82 Kt
, 0 7-0, O 105
f «f
' r •"* "
'
!
i
. i i
i
l
^i •
, ^
i U
11' i 3B
;' '
I
'. j
I
i
I
I
j
i
1 '
, t
0 10.
'
1
i
•
1
i ' '
**» Hit
J ** ' *** "^
**V| ^*'«s
in?^: •
!"!:'!i
, 1
1
i
, I
1
»• . '
^ 1
• '
. *«* STRP'TS flT 13:34 36 **•» EMC'S ftT 'l3 34 37" JUN 2S. 98 •**•*
i WITS, 5T t . LECW PT cqn) IJNIT^ ST i ucot X*" MJJ_ uim ^S^mp.
j PCT CI2 93 8 0 FfH ' TJC ; t-l* & •! PRI *vt^^«c^
j ' i . ' ^^^"*^*"^^^^- ' - ^^^^^ '
0/ 140 0 175, 0 210. 0 . 245J 0 i 280>«k^:jl51 0 .^50. 0 PPM
\,V '!••;• ; • :
: 1 '/i : ! ! ! ' . ; !
M ll ' i • ; • i ' ; '
''' 1 • Jl -^ ' i '• -.'!:' ^' ! i '
, 1
'^:! V :•.: j !..,.:•! 'i : : = •;:
efi5.fi, * is 2. • ! wl , • «a w1 ' ; i i ! *H • j i
U.25:«l . 23 •• 4 , ' Wl , ' ,TK OT ' 1 . »*» ' !
riWHKjaiZSW 22 17J9I ! PCt i tOE fl{G' . ' ' j ' .**«j , j
T. (MjWGt tj.35i^f 2t 1^ i i f( T, ! , (Q2 fl\ i • ' «* ' i •
1 i , ' i V i i ! \- i , . • . i , ( i • i ' ' ! ' ' , ' f ! . , ;
i ' 1
i ' ' '
' ' ' ' i
rf
1 T
:i
•
. i
0 13. 0 ^
,
•
1
w
1
*?
i
''^P *jj , i -9* p{ ; •;:(«• 01 • ; ' j^B « ' «B|if»; : 5»i* | A*» « imr
'• rt1 MI: ;• :!jii!i i'-;i. j ;• i:, ; , .," • 'i; •
. • • i i . : ! I : •!• ,' ! !.!•!' ' . ; ^ ' ' ! i i : ,
• r ' 1 i i ' • { ' ' 1 I i , i i ' I * i ' 1 ' , * ' l ' • * ! ' 1
•'. ' ! • ' ' • i ! ; • i ' ; ! i : : ' j ' ! : •. ••• \ •'.'••*. ' • '' I ' • ! ' •
' i ' • ! : ' ' i ' • ( ' ' ' ' , : ' ' !
' ' ' ' I I I ' . , . ' ! ! | * ' t ' ' i i t 1
il i '''.''• i ''' ! i ' i i '
i ; i ' '• * : ! * ' . • J ! '•
i 1 1 I ' > . t • ' • ' ! • *
•:(.!' ; . i • i : • :' ' ' I . ; .
29. 0 ' ,23. 0 , , 1 .30. 0 , 33.:« • -4O.,'0 45.!«3 . 30. Q PPM
, y i ' ' ' ' ' ' ' i
i j ' '. i : !
\i ' • t * ' '
; j ; .. ! . • >• i ' \
1 f 1 I ' '
• I «4 !',,.'
, t • • • ' ! i
1 j :'' • ' i ;
: J '
«*« UESET (NOME U 8J W 24 12.2 PW HCL WJG *M.
«»« O3E7 ffiEBKt 13 *5 91 23 *»
<0
rK^*S 7,
c. i i« o J 12, P i*>. n ir, s 2"-"«. D i-^. 5 2*;] I-T pry
*^ M^ i
-------
ou
^.J§
*i
•d
*}
Jl
'#
tv: i
'•|"
"" t
-II—.
-w
tr" ;
~o~T
"~-~..
.__.il..!. 1U.
s
Wl
V"'
"®T"
A
l?
A
at
01
Si
>— 'X *•
1
r
l-r
Li
TJ
._, -^
fh' - iS
P
"I
r ^
i.n
a
H
H
4-
'^'
^J
f*
'3 *
,U1 _^.
io. m
S;3
I ^
i.n
I
-i
o
fj
[•;
•J1
js:,
fr
«
<£i
-------
•
I
I
r
r
r
•
i
«
r
r
r
10
PI"
. 350 0 PPM
-JVC
3*.* JUOKifl HTTT
I*** LOG ORP 1 *** UNIT 01 *** STOPTS flT 1 1 ^f"*- -tjj* •'•I-'- •"•"'•^ p-r ^ .< . o? . ^n JIJN 53,98! *•**
>L
MTA IJN1T3 ST _LECEW _ " _M!l_ WHS 5J__. LEGEND. X.;PI_M"L_J
r "~ " S : , PCT" CK C » H: cm, we
^ PT. MTJ_ JJNjrj ST LEGOD ,
. i» 2 s: rr» *CL
-------
at
1II
15 989?
-ID
-tut
r-. t«
r. 5
**» reer HVEWGE is « a;.
«• ft ir Aveiwx « 95 ai
, «• ftsEt flve&MGEj 13 « «:
. *** ff SET flVEJMGt 15 05 91
0,
0
-
«* UESffr flVEHWJ <4:45.«3l 24 Mi 9 Ffc
M 45 8) 23 1
14 45.83! 22 1816
W45.8J 21 it 3 H
3-9 PPH | TJIC
10 -it
*?
'
15. 13
^O. 0 /'
4
-O. O
4O.
?. 0
. y PPH
N
-------
APPENDIX B
METHOD 23 LABORATORY ANALYTICAL DATA
-------
LabData
Summary of Method 23 Analytical Results
Air Emissions Screening Test
Redland Stone Products Co. - San Antonio, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Rotary Kiln Scrubber Inlet - Run M23-I-2
Congeners
DIOXINS:
2378 TCDD
Total TCDD
12378 PeCDD
Total PeCDD
123478 HxCDD
1 23678 HxCDD
123789 HxCDD
Total HxCDD
1 234678 HpCDD
Total HpCDD
12346789 OCDD
OCDD+Totals PCDDs
Catches, ng/sample
Back Half
0.0008
0.0060
(0.0006)
0.0008
ND
{0.00172}
{0.0020}
0.0136
{0.00616}
0.0060
0.0179
0.0443
Front Half
{0.00156}
0.0348
ND
0.006
(0.0007)
0.001
0.0016
0.0024
0.0028
0.0028
0.006
0.052
FURANS:
2378 TCDF
Total TCDF
12378 PeCDF
23478 PeCDF
Total PeCDF
123478 HxCDF
1 23678 HxCDF
234678 HxCDF
123789 HxCDF
Total HxCDF
1234678 HpCDF
1 234789 HpCDF
Total HpCDF
12346789 OCDF
OCDF+Totals PCDFs
Total of Totals
{0.0090}
0.0280
{0.00204}
{0.00192}
0.0064
0.0028
{0.0014}
ND
ND
0.0076
0.0111
ND
0.0112
0.0044
0.0576
0.1019
0.018
0.3548
0.0184
0.0124
0.1644
0.0102
0.0066
{0.00376}
(0.0008)
0.0348
0.0061
{0.00176}
0.0092
ND
0.5632
0.6152
Total
{0.00236}
0.0408
(0.0006)
0.0068
(0.0007)
{0.00272}
{0.00360}
0.016
{0.00896}
0.0088
0.0239
0.0963
{0.0270}
0.3828
{0.0204}
{0.0143}
0.1708
0.013
{0.0080}
{0.00376}
(0.0008)
0.0424
0.0172
{0.00176}
0.0204
0.0044
0.6208
0.7171
ND Not Detected. When both fractions are ND, the greater detection limit is used;
otherwise, ND's are zero in total calculations.
{ } Estimated Maximum Possible Concentration. EMPC values are included in total
ooo
-------
PARADIGM ANALYTICAL LABORATORIES, INC.
2627 Northchase Parkway S.E.
Wilmington, North Carolina 28405
(910) 350-1903
Fax (910) 350-1557
24 July 1998
Michael Maret
Pacific Environmental Services, Inc.
5001 S.Miami Blvd
Research Triangle Park, NC 27709-2077
Contract 68D70002
Sub-Contract- R012-002
Work Assignment- 1-007
Subject: Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans Measurements (PAL Project No. L-1071)
Dear Mike;
Enclosed are the final results for the flue gas samples under your Project R012.003 Texas Lime
Kiln. The analytical procedures conformed or exceeded the ones described in Method 23 using isotope-
dilution high-resolution gas chromatography combined with high-resolution mass spectrometry. The Level
II reporting format is described on the next page. A general summary of the analytical results is presented
in Table 1. Tables 2 and 3 from Project L-1070 cover letter summarize the results for the front-halve of
the four inlet samples, expressed in absolute amount "ng" per sample, and in relative concentrations "part-
per-tnlhon". Figures land 2 show the TEQs and total homologues corresponding to Table 1 data.
No. of Samples Received: 3
No. of Samples Analyzed: 4
No. of Lab. Method Blanks: 1
Your Project Number: R012.003 Texas Lime Kiln
PAL Project No.: L-1071
Remarks:
• Data meet QA/QC requirements with the exception of sample M23-I-2 for which, one of the
sampling standrd (13C12-HpCDF) recovery is 65 percent (70 percent is the limit). We believe that
this observation resulted from the sample extraction and is not associated with a sampling problem.
Thus, we do not recommend the application of a M23 correction factor as required for cases where
the sampling standard recovery is lower than 70 percent..
• The FH of samples M23-I-2 contained 32.48 g of dust and was processed as a separate sample. The
results are reported in two ways (see Tables 2 & 3 from PAL L-1070):
a) Absolute amount in "ng" per sample,
b) Relative concentration in parts-per-trillion (ppt) based on the weight of dust.
• The LMB 13C12-HpCDF extraction standard recovery is 37 percent (40 percent is the limit). After
examining the data for signal-to-noise ratio and detection limit, we validated the datat by placing a
"V" qualifier.
• No analytical difficulties to be reported.
We wanted to thank you for the opportunity to serve you. Please, feel free to contact us if you
have questions or should you need additional technical support.
Sincerely,
Yves Tondeur, Ph.D.
(' 001
North Carolina Wastewater Certification #481
-------
Level II Report
Section 1: Cover Letter, contains a brief description of the project, the client and
PAL Project Numbers, the number and type of samples, the
methodology used to process the samples, QC remarks where any
analytical difficulties are discussed and the impact on the quality of the
data presented, a summary table with the analyte concentrations,
detection limits, the client sample identification numbers, units to report
the concentrations, and a graphical representation of the TEQs and
totals.
Section 2: Project Synopsis, contains the Sample Tracking & Management
Forms, Communications Form, any correspondence, chain-of-custody
and the last page is always a copy of the sample injection log(s). This
section is designed to help the laboratory and the data reviewer with an
overall view of the entire analytical procedure, the initials and dates of
who did what when on which sample. Spiking solution IDs are
recorded along with the batch numbers of the supplies and reagents
used.
Section 3: Analytical Results, contains the sample results topsheets (one set of
two per sample), the raw data (i.e., the selected ion current profiles, the
areas, heights, ion abundance ratios, signal-to-noise ratios, and
retention times of the GC peaks).
Section 4: System Performance, contains the documentation on the GC/MS
system performance. In particular, the mass resolution checks, GC
column performance checks, initial and continuing calibration summary
tables and, when applicable, associated raw data for both column types.
0( ( 002
-------
Table 1: Analyte Concentrations in "ng" per Sampling Train
(FH of the inlet sample shown in Tables 2 and 3 from PAL L-10701
2,3,7,8-TCDD 1
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF11
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fsb
TEQ (ND=0)C
TEQ (ND=l/2)d
TEQ EMPC(ND=0)'
ITEQ EMPC (ND=i/2)
[0.0012] 1
(0.0004)
(0.0009)
(0.0006)
[0.00156]
0.0035
0.0166
[0.0012]
0.0012
(0.0006)
0.0014
0.0009
[0.0008]
0.0008
[0.00212]
[0.00152]
[0.00084]
[0.0012]
(0.0004)
[0.0016]
0.0036
[0.0012]
0.0012
0.0028
[0.0036]
0.0242
0.0000
0.0010
0.0020
0.0020
0.0008 1
(0.0006)
(0.0006)
[0.00172]
[0.002]
[0.00616]
0.0179
[0.009]
[0.00204]
[0.00192]
0.0028
[0.0014]
(0.0004)
(0.0005)
0.0111
(0.0010)
0.0044
0.0060
0.0008
0.0136
0.0060
0.0280
0.0064
0.0076
0.0112
0.1018
0.0010
0.0020
0.0040
0.0040
[0.00182] 1
[0.0006]
[0.00244]
[0.00176]
0.0016
0.0200
0.0449
0.0055
0.0067
0.0039
[0.00316]
0.0020
(0.0006)
(0.0007)
0.0115
(0.0010)
[0.00452]
0.0148
0.0056
0.0200
0.0396
0.0860
0.0572
0.0088
0.0116
0.2885
0.0040
0.0040
0.0060
0.0060
[0.00085]
(0.0004)
(0.0008)
(0.0006)
(0.0006)
0.0038
0.0135
0.0028
[0.0016]
(0.0005)
0.0012
[0.00052]
(0.0003)
(0.0004)
0.0029
(0.0009)
0.0012
0.0016
0.0028
[0.0064]
0.0072
0.0064
[0.0032]
0.0020
0.0028
0.0375
0.0000
0.0010
0.0010
0.0020
a) Result obtained from the DB-225 analysis.
b) Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dibenzofurans.
c) TEQ computed using ITEF and setting non detected analytes with a "Zero" concentration.
d) TEQ computed using ITEF and setting non detected analytes with a concentration half the
calculated detection limit.
e) TEQ computed using ITEF and setting the concentration of EMPC analytes to the EMPC value.
NOTE:
() = ND using DL value.
[ ] = EMPC value.
06 AUG 98 Revision
003
-------
Table 2: Analyte Concentrations in "ng" per Front-Half Sampling Train (i.e., filter and dust) for ajl runs.
-.--- Annly^sJgte^pIji
' '"""^^ellSiilllll
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF1
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1, 2,3,4 ,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fsb
TEQ (ND=0)C
TEQ (ND=l/2)d
TEQ EMPC(ND=0)'
TEQ EMPC (ND=l/2)
s^ sSvlll?1 ' '".rJ/JIr^
KiHj||jl||Hllji&|
[0.0025]
[0.0034]
0.0028
[0.00536]
0.0072
0.0208
0.0200
0.0184
0.0198
0.0240
0.0323
0.0132
0.0114
0.0031
0.0215
[0.00232]
[0.00308]
0.1092
0.0744
0.1384
0.0376
0.6276
0.3208
0.1076
0.0244
1.4600
0.0220
0.0230
0.0270
0.0270
;raj i'- • * ~ • * £• I iii^j>n • • 1
H^^^HBi9KKBHB&WrW^^^^I
BBBJjBgKtii^HBfffllJgHBiBI
[0.00156]
(0.0003)
(0.0007)
0.0010
0.0016
0.0028
0.0060
0.0180
0.0184
0.0124
0.0102
0.0066
[0.00376]
(0.0008)
0.0061
[0.00176]
(0.0008)
0.0348
0.0060
0.0024
0.0028
0.3548
0.1644
0.0348
0.0092
0.6152
0.0110
0.0110
0.0130
0.0130
iltfKyWBMniMMBMM
EH^P^^^^^nHHH^H^HB^n
BBH
[0.00099]
(0.0003)
(0.0005)
(0.0004)
[0.00088]
[0.00168]
0.0051
[0.00124]
(0.0004)
[0.00064]
[0.0008]
[0.00032]
(0.0003)
(0.0003)
0.0006
(0.0006)
(0.0006)
[0.003]
(0.0003)
0.0016
0.0008
[0.001]
[0.001]
[0.001]
0.0008
0.0083
0.0000
0.0010
0.0020
0.0020
BHEaggjgigBJgflp
HH^HHMKil
[0.00108]
(0.0004)
(0.0007)
(0.0005)
[0.00108]
0.0018
0.0046
0.0126
[0.0044]
0.0052
0.0024
[0.00084]
(0.0004)
(0.0004)
0.0012
(0.0006)
(0.0008)
0.0012
[0.002]
0.0056
0.0016
0.0948
0.0280
0.0040
0.0012
0.1410
0.0040
0.0050
0.0060
0.0060
a) Result obtained from the DB-225 analysis.
b) Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dibenzofurans.
c) TEQ computed using ITEF and setting non detected analytes with a "Zero" concentration.
d) TEQ computed using ITEF and setting non detected analytes with a concentration half the
calculated detection limit.
e) TEQ computed using ITEF and setting the concentration of EMPC analytes to the EMPC value.
NOTE;
() = ND using DL value.
[ ] - EMPC value.
06 AUG 98 Revision
-------
Table 3: Analyte Concentrations in "parts-per-trillion" for the Front-Half Sampling Trains (i.e., filter and
dust).
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF"
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fsb
TEQ (ND=0)C
TEQ (ND=l/2)d
TEQ EMPCXND=0)e
TEQ EMPC (ND-1/2)
THIT i ' — '"frlttriii'Ttn
•••BESGHSEiUwBH^a
^^BHnS&SMBMIH^^H
fjjSSjfllljijjjfr
[0.16055]
[0.21809]
0.180
[0.34381]
0.464
1.332
1.280
1.178
1.270
1.539
2.073
0.849
0.731
0.198
1.380
[0.14881]
[0.19756]
7.004
4.772
8.877
2.412
40.257
20.577
6.902
1.565
93.647
1.429
1.457
1.735
1.735
HRiaEHHE^I
[0.04808]
(0.009)
(0.021)
0.030
0.049
0.085
0.186
0.553
0.568
0.382
0.314
0.204
[0.11576]
(0.024)
0.187
[0.05419]
(0.026)
1.071
0.185
0.074
0.086
10.924
5.062
1.071
0.283
18.942
0.337
0.352
0.397
0.402
M
[0.07707]
(0.026)
(0.038)
(0.027)
[0.06843]
[0.13064]
0.395
[0.09642]
(0.031)
[0.04977]
[0.06221]
[0.02488]
(0.021)
(0.025)
0.050
(0.049)
(0.045)
[0.249]
(0.026)
0.124
0.062
[0.093]
[0.062]
[0.093]
0.062
0.644
0.001
0.042
0.129
0.142
^^^^^HB^^^^^^^^^HB
[0.03639]
(0.014)
(0.023)
(0.016)
[0.03645]
0.059
0.154
0.424
[0.1485]
0.176
0.080
[0.02835]
(0.013)
(0.015)
0.042
(0.020)
(0.025)
0.041
[0.054]
0.189
0.054
3.199
0.945
0.135
0.041
4.757
0.139
0.156
0.190
0.197
a) Result obtained from the DB-225 analysis.
b) Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dibenzofurans.
c) TEQ computed using ITEF and setting non detected analytes with a "Zero" concentration.
d) TEQ computed using ITEF and setting non detected analytes with a concentration half the
calculated detection limit
e) TEQ computed using ITEF and setting the concentration of EMPC analytes to the EMPC value.
NOTE:
() - ND using DL value.
[ ] - EMPC value.
06 AUG 98 Revision
-------
TEQ
00060 -1
0 0050 -
0 0040 -
"rig" per Train 0 0030 -
0 0020 -
0.0010 -
00000
0.0060
TEQ (ND=0)
DTEQ (ND=1/2)
DTEQ EMPC (ND =0)
BTEQ EMPC (ND=1/2)
LMB M23-I-2 M23-O-2 M23-FB-2
Texas Lime Kiln Texas Lime Kiln Texas Lime Kiln Texas Lime Kiln
Sample
Figure 1: Graphical representation of the TEQs
004
-------
Total Homologues
o 3000 -r
0 2500 -
0 2000 -
Amount in "ng" per Train 0 1500 -
01000 -
0.0500 - '
00000
LMB
Texas Lime Kiln
M23-I-2 M23-0-2
Texas Lime Kiln Texas Lime Kiln
Sample
M23-FB-2
Texas Lime Kiln
Figure 2: Graphical representation of the totals (tetra- through octachlorinated congeners)
C< ' 005
-------
PAL Project No.: L-1071
3uB
-------
Project Overview for the Analysis of Polychlorinated Dibenzo-/?-Dioxins & Dibenzofurans
No. of Field Samples: _-
No. of Billable Samples:
PAL Project No.: L-1071
O
o
Date Received: 08 JUL 98
Due Date: 29 JUL 98
Client Project ID: R012.003 TX
LIME KILN
Probe Rinse
| Concentration
SOPSP-N-02
TT
" *> v Method23
j&
. « I J**4..Z» A-'1
XAD
Sampling Modules Prep. Project No.: ^ ~~>
Add
Vol.: 40 n L; Cone.: 0.1 ng/ ji L
SOPSP-S-01
Thimbles batch No.: Jt? -
Toluene batch No.:
Pre-Soxhlet:
Others:
Soxhlet 16 H Toluene
SOPSP-E-01
Concentration & Solvent Exchange
SOPSP-N-01
Split Extract
SOPSP-D-01
Hexane batch No.:
CHjClj batch No.:
Silica batch No.:
Alumina batch No.:
PCU-F batch No.:
Na,SO, batch No.:
SOPSP-D-01
Secial Instructions:
j^-^tk
Itoift.
SOPSP-U-03
Concentration ] SOPSP-N-OI
Add
- (/(/
Vol.: 20 ^ L ; Cone.; 0.1 ng/ n L
SOPSP-S-01
I HRGC-HRMS I SQPSP-A-
Of
-------
Project Overview for the Analysis of Polychlorinated Dibenzo-/i-Dioxins & Dibenzofurans
No. of Field Samples:
No. of Billable Samples:
o
o
00
Secial Instructions:
£5
;
PAL Project No.: L-1071
Method!^
SOPSP-A-01
• Method 23
Date Received: 08 JUL 98
Due Date: 29 JUL 98
Client Project ID: R012.003 TX
LIME KILN
M§Jtod>2J"3&
Sample Extract
I Fortified with JS
Reporting Level: I HI ) III 11+
Report
SOPRP-G-01
Data Package
Assembly
SOPSH-A-01
Archive Data
Ship Data
SOPRP-A-01
SOPSH-D-01
1
1
8 A.
r
rc
Lo
i
M.
*
f~*f~<
OC
^
r* i-u
Calibration
T]
L
^
8P.M.
>1 I h^O 1 w^.^1 w »»0l
(lank ^ ISampIes ^ ConCal ^ MS
Instrument ID: ttltw> ,
HP-5MS batch No.:
DB225 batch No.:
ICal:
-------
Sample Tracking for the Analysis of Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans
No. of Field Samples:
Page_/_of_(_
PAL Project No.: L-1071
Date Received: 08 JUL 98
Due Date: 29 JUL 98
Client Project ID: RO 1 2.003 TX
LIME KILN
-------
Communication Exchanges Form for the Analysis of PCDD/PCDFs
No. of Field Samples: 3
Page_/_of_/
PAL Project No.: L-1071
Date Received: 08 JUL 98
Due Date: 29 JUL 98
Client Project ID: R012.003 TX
LIME KILN
O
H*
O
-------
Contract No.: 68D70002
Subcontract No.: R01 2-002
Work Assignment: 1-007
08 July 1998
Michael Maret
Pacific Environmental Services, Inc.
5001 S. Miami Blvd
P.O. Box 12077
Research Triangle Park, NC 27709-2077
Reference: Project No. R012.003; Project Name: US EPA Lime Kiln Screening, Texas Lime
Subject: Inlet Samples Heavy Paniculate Load
Dear Mike:
The thirteen Method 23 samples were received in good condition and no discrepancies were noted
between the sample labels and the chain-of-custody. As we discussed, we organized the samples into three
separate projects, each assigned a specific PAL Project No. Table 1 summarizes the sample identification
and their associated PAL Project Nos.
The object of this letter is to bring to your attention the following concerns. Following a
description of the issues, possible solutions are discussed for your consideration.
The issue pertains to the "inlet" samples. Each of the four inlet samples shows relatively high
levels of dust (particulates). Depending on the sample, we estimated the amount of solids to range from
10 g to 35 g.
The first concern is a practical one. Indeed, the capacity of a normal Soxhlet extraction set up is
exceeded if we want to combine the front- and back-halves of the sampling train (FH & BH). Two separate
extractions would be required for each of the inlet samples. This leads to die following two options:
1 . Combine the two extracts and process the FH and BH as a single sample.
> The question remains as to where the Method 23 internal standards are added.
2. Treat the FH and BH as two separate samples.
> Each sample receives a normal dose of Method 23 internal standards before the extraction.
> This option resembles Method 0023 A's and results in four additional samples.
The second concern is related to generating "meaningful" results for your client's study.
Reporting PCDD/F results in "ng /dscm" in the flue gas in such circumstances - where paniculate levels
are so high - may be of no value to your client. We recommend Option 2 above and propose to report the
analytical results for the inlet samples in two ways: a) absolute amount (e.g., ng per FH) of the PCDD/Fs
and, b) relative concentrations of PCDD/Fs expressed in parts-per-trillion (ppt) or picogram per gram of
"dust" recovered in the inlet sample. Note that this approach can only be achieved if Option 2 is selected,
which amounts to treating the inlet FH as a solid sample rather than as a flue gas sample.
Please, let us know if you have questions and we are waiting for a decision on how you would like
us to handle these particular inlet samples. I can be reached at 910-350-2839.
.
4*
Old
-------
Table 1: Project No. R012.003; Project Name: US EPA Lime Kiln Screening, Texas Lime;
Sample and Project Identification.
PES Sample ID PAL Sample ED PAL Project No.
"M23-I-1 " ~T07p-f ~T-1070
M23-O-1 ""_""\J070i2 __" 1_"_~_~ __ J_kl070
M23-FB-1 "" ~~^107
-------
13
>ACIFIC ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Chain of Custody Record
4 Mum (Project Name
R01 2.003 I US EPA Lime Kiln Screening - Texas Lime
tore:
Abemathy, Gay, Maret, D.D Hoteschuh, Stegal, Stewart
late
i/25/98
i/25/98
5/25/98
5/25/98
3/28/98
3/28/98
3/28/98
5/28/98
a/30798
6/30/98
6/30798
6/30/98
7/1/98
7/1/98
7/1/98
7/1/98
6/25/98
6/25/98
6/25/98
Time
1518
1518
1518
1518
1033
1033
1033
1033
1247
1247
1247
1247
1414
1414
1414
1414
1518
1518
1518
Field Sample ID
M23-I-1-1
M23-I-1-2
M23-I-1-3
M23-M-4
M23-I-2-1
M23-I-2-2
M23-I-2-3
M23-I-2-4
M23-I-3-1
M23-I-3-2
M23-I-3-3
M23-I-&4
M23-M-1
M23-I-4-2
M23-I-4-3
M23-I-4-4
M23-O-1-1
M23-CM-2
M23-O-1-3
Sample Description
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAO Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
*
•
*
•
*
•
•
•
•
•
•
•
•
9
9
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
Analysis Requested
Remarks
L -t0?0 &9&-I
/0fo-l
/*l*~l
/03o-l
L-t03>l /09/-J
(a^i-f
/«->-/
/£>?/'/
L^/o^Z- ;0*2~t
/0^>2*l
10VZ-J
/01Z-I
10*2*$
te?2~
-------
PACIFIC ENV1RONMEKTAL SERVICES, INC.
Central Park West
5001 South Miami Boulevard. P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Chain of Custody Record
ojert Num IProject Name
R012.003 ( US EPA Lime Kiln Screening - Texas Lime
implere:
Abemathy, Gay. Maret. D.D Hobschuh. Siegal. Stewart
Date
6/25/98
6/28/98
6/28/98
6/28/98
6/28/98
6/30/98
6/30/98
6/30/98
6/30/98
7/1/98
7/1/98
7/1/98
7/1/98
6/25/98
6/25/98
6/25/98
6/25/98
i 6/27/98
j 6/27/98
Time
1518
1033
1033
1033
1033
1247
1247
1247
1247
1414
1414
1414
1414
Field Sample ID
M23-0-1-4
M23-O-2-1
M23-O-2-2
M23-0-2-3
M23-O-2-4
M23-O-3-1
M23-O-3-2
M23-O-3-3
M23-O-3-4
M23-O-4-1
M23-O-4-2
M23-O-4-3
M23-04-4
M23-FB-1-1
M23-FB-1-2
M23-FB-1-3
^23-FB-1-4
M23-FB-2-1
M23-FB-2-2
Sample Description
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 * Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1- Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Fitter
Container No. 2 - Train Acetone Rinse
Analysis Requested
•
*
*
*
•
•
*
*
•
*
•
•
»
*
*
•
»
•
*
•
•
*
•
•
*
*
* •
•
*
•
•
*
*
*
*
»
•
*
Remarks
/0T0-2-
I0?l-l
/'3l-7~
/cfrl^T*
Irtf''^
I£>31~ L
t *>>?.- 2-
/o^2-t
/0}2-2-
/**z~r
/e*Z~JT
/*>2rT~
/*?2- - J
FIELD BLANK 1 /03n*1t
FIELD BLANK 1 ^^- 3
FIELD BLANK 2 /*>/-J
FIELD BLANK 2 /^9/-3
7/7/98
Page 2 of 3 Pages
-------
ACIFIC ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Tn'angle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Chain of Custody Record
I Hum [Project Name
R012.003 I
US EPA Lime Kiln Screening - Texas Lime
er»:
Abemathy, Gay, Marat, D.D Hotschuh, Stegal, Stewart
ate
B7/98
/27/9S
/30/98
/30/98
730/98
/30/98
7/1/98
7/1/98
7/1/98
7/1/98
7/7/98
7/7/98
7/7/98
7/7/98
Time
Field Sample ID
M23-FB-2-3
M23-FB-2-4
M23-FB-3-1
M23-FB-3-2
M23-FB-3-3
M23-FB-3-4
M23-FB-4-1
M23-FB-4-2
M23-FB-4-3
M23-FB-4-4
M23-RB-1
M23-RB-2
M23-RB-3
M23-RB-4
nqutehed by: (Signature)
jtoujshati by: (ttjnature)
lOr / ^7 x,
h&A-f A1/7 WM&
Date/Time
Date/Time
' ' ™^.
Sample Description
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Received by: (Signature)
Received for lab by: (Signature)
ey-tf&TTriiMjt- oelit-18
Analysis Requested
•
-
•
•
•
•
*
•
*
•
•
-
•
*
•
•
•
•
•
•
•
•
•
•
*
•
•
Relinquished by: (Signature)
_
Date/Time
Remarks
FIELD BLANK 2 /^ ?/-£
FIELD BLANK 2 /09/~ %
FIELD BLANK 3 //7?2-_?
FIELD BLANK 3 /^2-J
FIELD BLANK 3 /S%2 ~ J
FIELD BLANK 3 WZ^J
FIELD BLANK 4 /^7/-d~
FIELD BLANK 4 /0JS^
FIELD BLANK 4 f0J2^T
FIELD BLANK 4 /O+Z -4T
REAGENT BLANK /^yk?-V
REAGENT BLANK /^V -*r
REAGENT BLANK /^fc-/
REAGENT BLANK yfc7&- ^
Received by: (Signature)
REMARKS
7/7/98
Page 3 of 3 Pages
-------
H
Preparation of the XAD-2 Resin for Method 23 Sampling Session
No. Sampling Modules: 15
No. Filters: 25
PAL Project No.: L-1043
PES.
Order Received: 04 JUN 98
Due Date: 22 JUN 98
Client Project ID: TX Lime Kilns
P.O. No.:
Ph.: (512)-693-5122
To ensure proper handling of the samples, please return this form with the field samples to:
Paradigm Analytical Labs
2627 Northchase Pkwy S.E.
Wilmington, NC 28405
Thank you for your cooperation. Our phone number is 910-350-2839. (Fax: 910-350-1557)
-;*I^-;
^Method'j& Sampling^ ^Jjg| Method 2^mpltit£
Mailing Address: Best western
Attn.: Mike Maret
1403 Hiway 281 N
Marble Falls, TX 78654-4505
Ph.: (512)693-5122
Special Instructions;
Note: An amount of resin equal to one module was fortified as
described above, retained by the laboratory and kept at 4u
Type: Ball/Socket (6-Ring Ball/Soclcet^ Screw Cap
Add M23-SS-n,rt
-------
Paradigm Analytical Labs
Login Report (In01)
Jul. 13, 1998
11:52 AM
Login Number: L1071
Account: 1027 Pacific Environmental Services, Ir
Project: R012.003 Texas Lime Kiln Page: 1
of 1
Laboratory
Sample Number
Client Collect Receive
Sample Number Date Date
PR
Due
Date
Comments
L1071-1
M23-I-2
28-JUN-98
08-JUL-98
StackAir P 23-TO
StackAir C 8290-TO-FT
StackAir C 8290-TO-SL
Hold:
Hold: 05-JUL-98 4 oz. Glass
Hold: 05-JUL-98 4 oz. Glass
29-JUL-98
1 Bottles
1 Bottles
L1071-2
M23-O-2
28-JUN-98
08-JUL-98
StackAir P 23-TO
StackAir C 8290-TO-FT
StackAir C 8290-TO-SL
Hold.
Hold: 05-JUL-98 4 oz. Glass
Hold: 05-JUL-98 4 oz. Glass
29-JUL-98
1 Bottles
1 Bottles
L1071-3
M23-FB-2
28-JUN-98
08-JUL-98
StackAir P 23-TO
StackAir C 8290-TO-FT
StackAir C 8290-TO-SL
Hold:
Hold: 05-JUL-98 4 oz. Glass
Hold: 05-JUL-98 4 oz. Glass
29-JUL-98
1 Bottles
1 Bottles
Signature : fldca-
Date: U
-------
Paradigm Analytical Labs
Login Report (In01)
Jul. 08, 1998
09:59 AM
Login Number: L1071
Account: 1027
Project: R012.003
Pacific Environmental Services,
Texas Lime Kiln
Page: 1 of 1
Laboratory
Sample Number
L1 071-1
L1071-2
L1071-3
Client
Sample Number
M23-I-2
M23-0-2
M23-FB-2
Collect
Date
28-JUN-98
28-JUN-98
28-JUN-98
Receive
Date
08-JUL-98
08-JUL-98
08-JUL-98
Due
PR Date Comments
29-JUL-98 £bc>&{ &rY*fL£iYXA-
29-JUL-98 / ^j.
29-JUL-98 ^ P130L17
Signatu
Date:
(. ;
018
-------
Paradigm
Sample Receipt Checklist
1027
Client:
Client Project ID: R012.003
Lab Project: L1071
No
1
M
3
4 (<
5
6
8 X
(S
9
j
Check
iSES-j^NOX*
^YE^/NO
^-^' ^
_Y£S-V NO—,
YES I/W3^>
^-^
YES^/J^
fYES^y NO
^r '•=
r"YES^7 NO
YES / NO
YES / NO
YE^ -^' Nn
/^ •>
YES /"NO y
k-ll---^
Description
Shipped
Hand Delivered
COC Present on Receipt
Additional Transmittal Form
COC Tape on Shipping Container
Samples intact
Temperature
Sufficient Sample Submitted
Samples Preserved Correctly
Nc__P_reservative Noted
XN/A [.hone recommeded)
Received within Holding time
N/A
: Discrepancies between COC & Label
N/A (no COC Received)
Notes
Note : Use this form to record, comment and report any damages, observations (be specific) of
signficance or potentially important for the resolution of downstream problems.
Additional Comments:
Inspected & Logged in by:
Date:
Time:
01!
-------
o
M
O
OPUSquan 21-JUL-1998
Paradigm Sample Log
Data File S
a20ju!98b 1
a20ju!98b 2
a20ju!98b 3
a20ju!98b 4
a20ju!98b 5
a20ju!98b 6
a20ju!98b 7
a20ju!98b 8
a20ju!98b 9
a20ju!98b 10
a20ju!98b 11
a20ju!98b 12
a20ju!98b 13
a20ju!98b 14
a20ju!98b 15
a20ju!98b 16
a20ju!98b 17
Page 1
Sample ID
DB-5 Retchk \f
FE CS3 V
m^ffi§-!Tx"i72
1072-5 xl/2
1072-6 xl/2
1072-7 xl/2
1072-8 xl/2 1
071698 xl/2 /
PR 1071 xl/2 /
BE CS3 V
Acq. Date
20-JUL-98
20-JUL-98
20-JUL-98
20-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
Page 1 of 1
Time
21:16:15 *
22:01:21
22:46:27
23:31:32
00:16:40
01:01:45
01:46:49
02:32:32
03:17:49
04:02:53
04:47:59
05:33:04
06:18:11
07:03:15
07:48:43
08:33:49 y
09:18:54 ]/
-------
OPUSquan 22-JUL-1998
Paradigm
Data File
A21JUL98A
A21JUL98B
A21JUL98C
A21JUL98C
A21JUL98C
A21JUL98D
A21JUL98E
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL.98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
A21JUL98F
"
N
Sample Log
S
1
1
1
2
3
1
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Page 1
Sample ID
Sand QC
B-225 Retchk
B-225 Retchk
CS3
sb /
B-225 Retchk /
B-225 Retchk /
B-225 Retchk. /
CS3V
sb
1070-1 xl/2
1070-2 xl/2
1070-5 xl/2
1072-2 xl/2
1068-1 xl/2
1069-1 xl/2
1069-2 xl/2
1069-3 xl/2
1072-1 xl/2 ;
IBBHHHM /
1072-4 xl/2 /
1072-5 xl/2 /
1072-8 xl/2 /
Acq. Date
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
21-JUL-98
22-JOL-98
22-JUL-98
22-JUL-98
22-OUL-98
22-JUL-98
22-JUL-98
22-JUL-98
22-JUL-98
22-JUL-98
22-JUL-98
Page 1 of 1
Time
11:08:47
16:44:01
17:52:30
18:29:30
19:06:30
19:59:35
20:01:06
20:06:58 '
20:43:56
21:20:54
21:57:56
22:34:59
23:12:05
23:49:03
00:26:13
01:03:12
01:40:19
02:17:20
02:54:34
03:31:35
04:08:35
04:46:12
05:23:13 ^ ^/
06:01:17 — IS^
-------
10!
O
OPUSquan 23-JUL-1998
Paradigm Sample Log
Data File S
A22JUL98A 1
A22JUL98A 2
A22JUL98A 3
A22JUL98A 4
A22JUL98B 1
A22JUL98B 2
A22JUL98B 3
A22JUL98B 4
A22JUL98C 1
A22JUL98C 2
A22JUL98C 3
A22JUL98C 4
A22JUL98C 5
A22JUL98C 6
A22JUL98D /O
IV)
Page 1
Sample ID
B-225 Retchk S
cs3 y
sb
4MMMMNMMP
1078-4 xl/2
1078-3 xl/2
1078-2 xl/2
1078-1 xl/2
1078-5. xl/2
1078-6 xl/2
1078-7 xl/2
SB
1078-8 xl/2
BE CS3 S
BE CS3 \/
Page 1 of 1
Acq. Date Time
22-JUL-98 09:58:23 ^_____,
22-JUL-98 10:35:22 — ~~~~
22-JUI.-98 11:12:21
22-JUL-98 11:49:22
22-JUL-98 13:48:43
22-JUL-98 14:25:43
22-JUL-98 15:02:43
22-JUL-98 15:39:44
22-JUL-98 16:30:42
22-JOL-98 17:07:42
22-JUL-98 17:44:43
22-JUL-98 18:21:44 ^^, /
22-JUL-98 18:58:44 ^ — ^"^ L~^
22-JUL-98 19:35:45 —
22-JUL-98 21:08:02 (-*•
-------
Section 4
System Perfonmanc<
Section 4-1
Mass Spectrometer Performance Check
Mass Resolution
Documentation for the Analysis
of
Polychlorinated Dibenzo-/j-Dioxins & Dibenzofurans
-------
Peak Locate Examination:20-JUL-1998:21:14 File:A20JUL98B
Experiment: EXP_M23_DB5_OVATION Function: 1 Reference.- PFK317
Volts
2.5975
292.95315 292.98245 293.01175
Volts
1.2464
304.95195 304.98245 305.01295
Volts
0.8353
316.95075 316.98245 317.01415
Volts
3.4259
Volts
3.1531
Volts
1.6484
330.94615 330.97925 331.01235
342.94495 342.97925 343.01355
354.94375 354.97925 355.01475
Volts
1.1537
Volts
2.7169
3-60.94255 366.97925 367.01595
380.93795 380.97604 381.01414
o
ro
-------
Peak Locate Examination:21-JUL-1998:10:02 File:A20JUL98B
Experiment:EXP_M23_DB5_OVATION Function:! Reference:PFK317
Volts
1.1320
292.95315 292.98245 293.01175
Volts
0.5587
304.95195 304.98245 305.01295
Volts
0.3768
316.95075 316.98245 317.01*415
Volts
1.4691
330.94615 330.97925 331.01235
Volts
1.3513
342.94495 342.97925 343.01355
Volts
1.2970
354.94375 354.97925 355.01475
Volts
0.5196
Volts
1.2009
5^6.94255 366.97925 367.01595
380.93795 380.97604 381.01414
-------
Peak Locate Examination:21-JUL-1998:20:06 File:A21JUL98F
Experiment:M23_DB225 Function:! Reference:PFK317
PPM
200
Volts
4.2302
292.95315 292.98245 293.01175
Volts
1.8577
304.95195 304.98245 305.01295
Volts
1.1518
316.95075 316.98245 317."01/415
Volts
5.6745
330.94615 330.97925 331.01235
Volts
4.8040
Volts
2.4566
342.94495 342.97925 343.01355
354.94375 354.97925 355.01475
Volts
4.6436
-------
Peak Locate Examination:22-JUL-1998:08:11 File:A2lJUL98S
Experiment:M23_DB225 Function:! Reference:PFK317
Volts
0.8568
292.95315 292.98245 293.01175
Volts
0.4258
Volts
0.2889
304.95195 304.98245 305.01295
316.95075 316.98245 317.01415
Volts
1.0522
330.94615 330.97925 331.01235
PPM
200
Volts
0.9891
342.94495 342.97925 343.01355
Volts
0.6053
354.94375 354.97925 355.01475
Volts
0.3802
366,94255 366.97925 367.01595
101
Volts
0.9007
380.93795 380.97604 381.01414
-------
Peak Locate Examination:22-JUL-1998:09:58 File:A22JUL98A
Experiment:M23_DB225 Function:! Reference:PFK317
Volts
2.2170
292.95315 292.98245 293.01175
Volts
0.9593
304.95195 304.98245 305.01295
Volts
0.6453
316.95075 316.98245 317.
o
to
on
-------
Section 4
System Perfor<
101
O
JO
CD
Section 4-2
Gas Chromatography Performance Check
Isomer Specificity & Retention Time Windows
Documentation for the Analysis
of
Polychlorinated Dibenzo-/i-Dioxins & Dibenzofurans
-------
o
CO
o
File: A20JUL98B Acq: 20-JUL-1998 21:16:15 Exp: EXP M23 DB5 OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #1 Text: DB-5 Retchk ALS #1
303.9016,319.8965 ^
100% T. J 27;
80.
60.
40.
20_
0.
i 23:36*
/
r A
v. J
24:00 25. -00 26. -00 27:00
F:2 339.8597,355.8546
i™*, ./ ^
80_
60_
40_
20J
Q:
i*^ A
30:13 1 \
A
A /I
y v j v
• • • | « « ' • ' | • i i i T |-T r- T r-i r i -r- T-T i r T^T T-T-I I — I I I I I — i I — I — I — I — I — I — I — I — I — I — I — I — i — I — I — I — I — I — I — I —
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00
F:3 373.8207,389.8156 ^
100S
80J
60J
40J
20 j
o;
3TV Af
r A
I I
J \ / v_
-i i — | — i — i — i — i — i — | — i — i — i — i — I — | — i — I — i — i — i — | — i — i — r — i — i — | — i — i — i — i — i — | — i — i — i — i — i — i — i — i — i — i — i — ( — i — r-
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48
F:4 407.7818,423.7767 ^
100%
80 J
60J
40J
20 j
OJ
3JV A A ^ 37-°
A A
\ /\
\ \ \ \
/ ^^ / ^^ j ^^ j ^^
24
A /
A 11 j
1 r Li I
1 11 IV
V / AA
-r" 1 1 1 f- 1^1^
28:00
\__
/ ^-'
^-~
29:(t
All
/1 1
y A \
29 loo 30 00 Time
l2'^ r-
i i
VI
xx
1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 T 1 1
32:12 32:24 32:36 32:48 33:00 33:12 Time
L_ ^
n 35;-n
A A
/ V A
j v j \_
35:00 35:12
36:00 36:12 36:24 36:36 36 48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38
319.8965,331.9368
lOOi 25,13
so:
o:
j
24:00 25:00 26:00 27:00
28:
nil
/ j\j
28:00
' i 1 ' '
35:24
24 38
38
L
i i
29:00
r-
iii) — i — i — i — i — i — r—
35:36 35 48 Time
r-
36 ' 38 Us ' 39 00 Time
™ c, .-5.1E7
29:51
A
A
/I
-
12.5E7
" 0 .OEO
30 loo Time
-------
Pile: A20JUL98B—Acq: 20-JUL-1998 21:16:15Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaE
Sample #1 Text: DB-5 Retchk ALS #1
319.8965
Paradigm
100%
95J
901
85 j
80 J
75J
70J
65J
60J
55J
50 j
45J
40 j
35 j
30j
25j
20 j
15J
10J
5:
OJ
28:25
28:38
28:16
5.0E7
.4.8E7
A . 5E7
L4.3E7
L4.0E7
i.3.8E7
13.5E7
L3.3E7
i.3.0E7
i_2. 8E7
.2.5E7
:_2.3E7
L2.OE7
L1.8E7
Ll.5E7
L1.3E7
L1.0E7
1.7.5E6
I.5.0E6
L2.5E6
I I I I I I I I > I I I I I I I I i—I I I I I I * "i—i I i—I i i—I I i i i i i i i—i—r-i—i—pi—i—i—i—T—I—I—I—i—I—I—i—i—r—i—i i I—i i i—i i I—i i i—i—i—i—i i i—i i I i—r-
27:48 27:54 28:00 28:06 28:12 28:18 28:24 28:30 28:36 28:42 28:48 28:54 29:00 29:06
O.OEO
29:12 Time
O
CO
-------
File: A21JUL98PAcq: 21-JUL-1998 20:06:58Exp: M23_DB225 Voltage SIR EH
Sample #1 Text: DB-225 Retchk ALS #1
303.9016
100%. 27;
27:32
90j
80 j
70 j
60J
50 j
40 J
30
20-
GC Autospec-UltimaEParadigm
OJ
27
315.9419
100%
90J
80 j
70J
60J
50-
40J
30J
20.
10J
0
:00 27:12 27:24 27:36 27:48 28:00 28:12 28:24 28:36 28:48
27:51
~ !
27
i i i i i i i i ii i i i i *t i t' • i 'i i •!—i—i—i—i—i—i—i—i—i—|—i—i—i—i—i—i—i—
:00 27:12 27:24 27:36 27:48 28:00 28:12
28:24
28:36
O
CO
1.2E8
11.1E8
9 . 9E7
L8.6E7
L7.4E7
16.2E7
L4.9E7
L3.7E7
_1.2E7
O.OEO
29:00 Time
2.6E7
.2.4E7
_2.1E7
-1.8E7
.1.6E7
.1.3E7
.1.1E7
_7.9E6
_5.3E6
_2.6E6
O.OEO
29:00 Time
-------
Pile: A22JUL98A—Acq: 22-JLTL-1998 09:58:23 Exp: M23_DB22b Voltage SIR Ei-t- GC Autospec-UltimaE Paradigm
Sample #1 Text: DB-225 Retchk ALS #1
303.9016
lOOi 27:32 27;54
90_
80 j
70J
60J
50J
40 j
30J
20 j
10J
28:11
' ' ' ' I ' '
26:48
315.9419
1004
90.
80.
70J
60.
50.
40_
30J
20J
I I I—r I I i i I—r—i
27:00 27:12
27 124' 27!36' 27 Us' ' 28 !00
27:51
28:12 28:24 28:36 28:48 29:00
'26 Us' ' '2'7lo'o' ' 'il\\2 ' '27124' ' '27! 36 ' '27UV
' 2Q\12 ' ' 2%\2
-------
Section 4
d System Perfonmanc
Section 4-3
Initial Calibrations
(HP-5MS & DB-225 Columns)
Documentation for the Analysis
of
Polychlorinated Dibenzo-jp-Dioxins & Dibenzofurans
o
CO
-------
I C
OPUSquan 20-JUL-1998
Page 1
Run: 0716crv Analyte: m8290-23-» Cal: tn8290-23-» Results:
Page 1 of 1
Version: V3.5 17-APR-1997 11:14:34
o
r.^
Name Mean RRF
S. D.
%RSD
17jul98a S3 17jul98a S4 17jul98a S5 17jul98a S6 17jul98a S7
RRFK1 SD RRF«2 SD RRF#3 SD RRFK4 SD RRF#5 SD
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7, 8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8, 9-HpCDF
OCDF
13C-2,3,7,8-TCDD
13C-l,2,3,7,8-PeCDD
13C-l,2,3,6,7,8-HxCDD
13C-l,2,3,4,6,7,8-HpCDD
13C-OCDD
13C-2,3,7,8-TCDF
13C-l,2,3,7,8-PeCDF
13C-l,2,3,6,7,8-HxCDF
13C- 1 , 2 , 3 , 4 , 6 , 7 , 8-HpCDF
13C-1,2,3,4-TCDD
13C-l,2,3.7,8,9-HxCDD
37Cl-2,3,7,8-TCDD
13C-2,3,4,7,8-PeCDF
13C-l,2,3,4,7,8-HxCDD
13C-1,2,3,4,7, 8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
3701-2,3, 7, 8-TCDD
13C-2/3,4,7,8-PeCDF
13C-l,2,3,4,7,8-HxCDD
13C-l,2,3,4,7,8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
Total Tetra-Furans
Total Tetra-Dioxins
Total Penta-Furans
0.9843
1.1157
0.6718
0.8518
0.8597
0.8965
1.0033
0.9531
0.8711
0.9020
0.8611
1.0877
0.9347
0.8123
1.2600
1.0402
1.0684
1.0970
0.7648
1.0729
0.7951
0.6399
1.3772
1.1987
1.2388
0.7529
-
1.0062
1.1724
0.7230
0.9654
0.5892
0.9166
0.9777
0.6747
0.7855
0.7823
0.9531
0.9843
0.8866
0.011
0.016
0.023
0.119
0.115
0.011
0.004
0.008
0.009
0.023
0.047
0.183
0.129
0.082
0.040
0.103
0.040
0.024
0.056
0.161
0.020
0.032
0.039
0.086
0.206
0.010
_
-
0.058
0.095
0.114
0.104
0.084
0.035
0.025
0.056
0.054
0.109
0.008
0.011
0.012
1
1.
3.
13.
13.
1.
0.
0.
1.
2.
5.
16.
13.
10.
3.
9.
3.
2.
7.
14.
2.
5.
2.
7.
16.
1.
5.
8.
15.
10.
14.
3.
2.
8.
6.
13.
0.
1.
1.
14 %
46 %
35 %
96 % — '
32 % --
21 %
40 %
86 %
04 %
50 %
49 %
79 %""
85 */
14 % '
15 %
89 %
72 %
18 %
28 % /
99 \r
49 %
03 %
82 %
14 % /
62 % '
36 %
. %
- %
74 %
13 %
80 %
79 %
34 %
84 %
55 %
32 %
85 %
97 %
86 %
14 %
31 %
1.00 1.1
1.14 1.2
0.67 -0.1
0.96 0.9
0.95 0.8
0.89 -0.1
1.00 0.1
0.96 1.4
0.87 -0.3
0.88 -0.9
0.87 0.1
1.25 0.9
1.03 0.7
0.87 0.8
1.23 -0.9
0.93 -1.1
1.03 -0.8
1.07 -1.2
0.71 -1.0
0.95 -0.8
0.78 -0.6
0.63 -0.4
1.36 -0.5
1.13 -0.8
1.08 -0.8
0.76 0.6
_ _
-
0.92 -1.5
1.13 -0.4
0.64 -0.7
0.90 -0.6
0.53 -0.8
0.86 -1.7
1.01 1.2
0.67 0.0
0.83 0.8
0.69 -0.8
0.96 1.4
1.00 1.1
0.87 -1.0
0.97 -1.2
1.11 -0.2
0.68 0.3
0.94 0.7
0.95 0.8
0.88 -1.6
1.00 -1.0
0.95 -0.9
0.87 0.3
0.87 -1.2
0.89 0.6
1.20 0.6
1.04 0.8
0.88 0.8
1.22 -1.0
0.96 -0.7
1.02 -1.2
1.08 -0.6
0.73 -0.6
0.95 -0.8
0.78 -0.9
0.61 -0.9
1.34 -1.1
1.14 -0.6
1.07 -0.8
0.74 -1.0
_ _
-
0.99 -0.3
1.08 -0.9
0.58 -1.2
0.84 -1.2
0.49 -1.1
0.91 -0.2
0.95 -1.3
0.62 -1.1
0.79 0.0
0.66 -1.1
0.95 -0.9
0.97 -1.2
0.87 -1.0
0.97
1.13
0.70
0.91
0.93
0.90
1.00
0.95
0.88
0.91
0.92
1.20
1.02
0.86
1.25
1.01
1.08
1.09
0.74
0.98
0.78
0.61
1.36
1.14
1.11
0.75
_
-
1.01
1.10
0.73
0.95
0.58
0.93
0.96
0.75
0.85
0.77
0.95
0.97
0.90
-0.9
0.6
1.4
0.5
0.6
0.2
-1.0
-0.5
1.1
0.3
1.2
0.6
0.7
0.6
-0.2
-0.3
0.2
-0.4
-0.5
-0.6
-0.6
-0.8
-0.6
-0.7
-0.6
-0.4
_
-
0.1
-0.8
0.1
-0.2
-0.1
0.4
-0.7
1.4
1.2
-0.1
-0.5
-0.9
0.7
0.99
1.11
0.64
0.71
0.72
0.90
1.01
0.96
0.87
0.93
0.83
0.90
0.80
0.73
1.28
1.12
1.10
1.12
0.81
1.27
0.82
0.68
1.42
1.26
1.45
0.77
_
-
1.06
1.26
0.80
1.06
0.67
0.94
1.00
0.63
0.73
0.87
0.96
0.99
0.90
0.6
-0.2
-1.4
-1.2
-1.2
0.7
1.0
0.7
0.4
1.0
-0.8
-1.0
-1.0
-1.0
0.6
0.8
0.8
0.9
0.9
1.2
1.0
1.2
1.1
0.8
1.0
1.4
_
-
0.8
0.9
0.6
0.9
1.0
0.7
0.7
-0.8
-1.0
0.8
0.7
0.6
1.2
0.99
1.09
0.67
0.74
0.75
0.91
1.01
0.95
0.86
0.92
0.80
0.88
0.78
0.72
1.32
1.17
1.11
1.12
0.83
1.23
0.82
0.67
1.42
1.32
1.48
0.75
_
-
1.06
1.29
0.86
1.09
0.68
0.94
0.98
0.70
0.73
0.91
0.95
0.99
0.89
0.3
-1.4
-0.2
-1.0
-1.0
0.9
0.9
-0.7
-1.5
0.8
-1.2
-1.2
-1.2
-1.1
1.4
1.3
1.1
1.2
1.3
1.0
1.2
1.0
1.1
1.4
1.2
-0.7
_
-
0.9
1.2
1.2
1.2
1.1
0.7
0.1
0.5
-1.0
1.2
-0.7
0.3
0.2
-------
OPUSquan ll-FEB-1998
Page 1
Page 1 of 1
Run: 07FEB98 Analyte: M23_CONF Cal: 225-07feb Results: Version: V3.5 17-APR-1997 11:14:34
07feb98d S4 07feb98d S5 07feb98d S6 07feb98d S7 07feb98d S8
Name Mean RRF
2,3,7,8-TCDF 0.9472
13C-2,3,7,8-TCDF
HxCDPE
QC CHK ION (Tetra)
S. D. *RSD RRFK1 SD RRF#2 SD RRF#3 SD RRFH4 SD RRF#5 SD
0.033 3.49 % 1.00 1.5 0.91 -1.3 0.94 -0.4 0.95 0.0 0.95 0.1
101
O
co
-------
Section 4
System Perfon
Section 4-4
Documentation for the Analysis
of
Polychlorinated Dibenzo-/j-Dioxins & Dibenzofurans
-------
OPUSquan 21-JUL-1998
Page 1
Page 1 of 2
Run #6 Filename a20jul98b S: 2 I: 1 Acquired: 20-JUL-98 22:01:21 Processed: 21-JUL-98 13:34:23
Run: 0716crv Analyte: m8290-23-» Cal: m8290-23-» Results: Quan : V3.5 17-APR-1997 11:14:34
Sample text: FE CS3 Comments: / OPUS : A3.6/8X 18-MAR-1998 16:12:42
'01
o
Co
00
Typ
Name
Resp
RA
RT
Cone
Dev' n I ./
Mod?
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
ss
ss
ss
ss
ss
DPE
DPE
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8 -HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9 -HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7, 8,9-HpCDF
OCDF
13C-2,3,7,8-TCDD
13C-l,2,3,7,8-PeCDD
13C- 1 ,2,3,6,7, 8-HxCDD
13C- 1,2,3,4,6,7, 8-HpCDD
13C-OCDD
13C-2,3,7,8-TCDF
13C-l,2,3,7,8-PeCDF
13C- 1,2,3,6,7, 8-HxCDF
13C-l,2,3,4,6,7,8-HpCDF
13C-1,2,3,4-TCDD
13C-l,2,3,7,8,9-HxCDD
37Cl-2,3,7,8-TCDD
13C-2,3,4,7,8-PeCDF
13C-1 , 2,3,4,7, 8-HxCDD
13C-1 , 2,3,4,7, 8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
37Cl-2,3,7,8-TCDD
13C-2,3,4,7,8-PeCDF
13C- 1,2,3,4,7, 8-HxCDD
13C-1,2,3,4, 7,8-HxCDF
13C-1 , 2,3,4,7,8, 9-HpCDF
HxCDPE
HpCDPE
2
7
5
7
7
5
1
2
8
9
7
1
8
7
7
6
1
4
2
3
2
4
5
4
3
2
4
3
2
9
5
7
5
2
9
5
7
5
.2e+07
.2e+07
.Oe+07
.6e+07
.2e+07
.9e+07
.Oe+08
.5e+07
.9e+07
.2e+07
.9e+07
.Oe+08
.7e+07
.7e+07
.6e+07
-5e+07
.le+08
.4e+08
.7e+08
.2e+08
. 6e+08
.le+08
.4e+08
.le+08
. 5e+08
.5e+08
.Oe+08
.2e+08
.le+07
. 9e+07
.2e+07
.Oe+07
.Oe+07
le+07
9e+07
2e+07
Oe+07
Oe+07
*
*
0
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
0
0
1
0
0
0
1
1
1
o
o
1
1
0
o
.78
.54
.21
.25
.25
.03
.90
.77
.52
.53
.38
.13
.24
.26
.03
.01
.89
.78
.54
.25
.03
.90
.78
.55
.52
.44
.79
.24
.56
.24
.52
46
56
24
52
46
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
28:27
32:37
34:42
34:46
34:59
37:10
40:01
27:26
31:57
32:24
34: 10
34:14
34:37
35:08
36:21
37:31
40:09
28:25
32:36
34:45
37:09
40:00
27:24
31:56
34:14
36:21
28:08
34:58
28:26
32:23
34:42
34 : 10
37:30
28:26
32:23
34:42
34: 10
37:30
NotFnd
NotFnd
4.93
24.3
24.7
27.2
26.4
24.9
49.5
4.87
24.9
25.1
26.7
26.4
26.7
26.9
24.6
25.3
49.4
100
86.3
92.0
104
202
97.4
84.4
88.1
102
83.6
80.6
5.12
20.9
23.0
22.8
26. 6
5.11
24.8
25.0
25.7
26.0
*
*
-1
-2
-1
8
5
-0
-0
-2
-0
0
6
5
6
7
-1
1
-1
0
-13
-8
3
0
-2
-15
-11
2
2
-16
-8
-8
6
2
-0
0
2
4
.5
.6
.2
.7
.6
.3
.9 /
.6
.2
.2
.6
.7
.7
.6
.6
. 1
.1
.4
.7
.0
.9
.8
.6
.6
.9
.1
-
.4
.4
.0
.7
.2
.1
9
1
8
1
_
-
n
n
/ "
i/f SI n
M/1
nr'/ n
LSI /
1 /
II
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
fi
n
n
n
fl
n
n
n
-------
File: A20JUL98B Acq: 20-JUL-1998 22:01:21 Exp: EXP_M23_DB5_OVATION Voltage SIR EI + GC Autospec-UltimaE Paradigm
Sample #2 Text: FE CS3 ALS #2
319.8965 S:2 SMO(1,3) BSUB(128, 15 , -3 .0) PKD(3 , 3 , 3 , 0 . 10% , 1616 . 0 , 1 . 00%, F, F)
100% A9.46E6 1 . 8E6
50_
o-
321.
100S
0^
331.
100%
50:
0
333.
1001
50J
o"
327.
100%
50J
o:
316.
100%
0:
24 loo
8936 S:2 SMO{1,3)
24!oO
9368 S:2 SMO(1,3)
24:00
9339 S:2 SMO(1,3)
24:00
8847 S:2 SMO{1,3)
24:00
9824 S:2 SMO(1,3)
23:28
i i i i i 1 i
24:00
A
25!.00 26100 27loO 2s!oO 29loO 30
BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%, 1368 . 0 , 1 . 00%, F, F)
A1.21E7
j[
25:00 26:00 27:00 28:00 29:00 30
BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%, 7396 . 0 , 1 . 00%, F, F)
A1.94E8
A A
25:00 26:00 27:00 28:00 29:00 30:
BSUB(128,15,-3.0) PKD{3 , 3 , 3 , 0 . 10%, 3996 . 0, 1 . 00% , F, F)
A2 . 50E8
A A
25100 26!oO ' 27!oO 2s!oO ' 29-!oO 3o!(
BSUB(128,15,-3.0) PKD(3, 3 , 3 , 0 . 10%, 5588 . 0, 1 . 00%, F, F)
A2.08E7
A
25:00 26:00 27:00 28:00 29:00 30:C
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
24:2324:45 25:26 26j_0326:24 26:50 27i22 27 : 44 28: 07 28 :31 29:0529:26 29:51
25! 00 26 loo ' ' 27 loo' ' ' 2s! 00 29\ 00 30 Ic
L9.2E5
O.OEO
00 Time
2.4E6
_1.2E6
•O.OEO
DO Time
3.9E7
.1.9E7
: O.OEO
30 Time
5.0E7
_2.5E7
O.OEO
)0 Time
..4.1E6
_2.1E6
O.OEO
)0 Time
8.1E7
-4.1E7
O.OEO
0 Time
-------
File
Samp
355.
1002
50_
0
357.
1008
50_
0
367.
100%
so:
0"
369.
lOOi
so:
0
366.
100*
50_
0
: A20JUL98B Acq: 20-JUL-1998 22:01:21 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Parad
le #2 Text: FE CS3 ALS #2
8546 S:2 F:2 SMO(1,3) BSUB(128, 15, -3 . 0 ) PKD(3 , 3 , 3 , 0 . 10% , 2496 . 0 , 1 . 00% , F, F)
A4.38E7
A
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
8517 S:2 F:2 SMO(1,3) BSUB(128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1052 . 0 , 1 . 00%, F, F)
A2.85E7
j[
30:12 36!24 36!36 SoUs 3l!66 3i!l2 3i!24 3l!36 SlUs 32!66 32!i2 32I24 32136 32U8 33166 33!l2
8949 S:2 F:2 SMO{1,3) BSUB (128, 15, -3 . 0) PKD(3, 3 , 3 , 0 . 10%, 3124 . 0, 1 . 00%, F, F)
A1.61E8
/L
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
8919 S:2 F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1536 . 0 , 1 . 00%, F, F)
A1.05E8
A '
£
9792 S:2 F:2 SMO(1,3) PKD(3 , 3, 3, 100. 00%, 0 . 0, 1 . 00%, F, F)
30:25 30:38 30:57 31:09 31:21 31:3631:4631:56 32:12 32:24 _12:37 32:50 33^04
30:12 30!24 30 ! 36 36!48 3l!66 31 .-12 3i!24 31 lie' 3l!48 32! 66 32\i2 32 1 24 32! 36 32! 48 33! 66 33! 12
igm
1.5E7
_7.7E6
LO.OEO
Time
_9.9E6
14.9E6
_O.OEO
Time
5.8E7
_2.9E7
_O.OEO
Time
3.8E7
_1.9E7
0 . OEO
Time
7.9E7
.3.9E7
.O.OEO
Time
-------
File
Samf
389
1003
50_
0'
391.
1003
so:
0
401.
100%
50_
0'
403.
100%
50_
0
380.
100%
so:
0'
>: A20JUL98B Acq: 20-JUL-1998 22:01:21 Exp: EXP_M23_DB5_OVATION Voltage SIR EH- GC Autospec-UltimaE Paradigm
)le #2 Text: FE CS3 ALS #2
8156 S:2 F:3 SMO(1,3) BSUB ( 128 , 15, -3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 2132 . 0, 1 . 00%, F, F)
A4.22E7 A4.01E7 1.2E7
33!24 33136 33
8127 S:2 F:3 SMO(1,3)
33:24 33\36 33
8559 S:2 F:3 BSUB(128
33:24 33? 36 33
8530 S:2 F:3 BSUB(128
33^24 33536 33
9760 S:2 F:3 SMO(1,3)
33:22 33
33524 33.! 36 33
/'
fl/l
?48 34loO 34.-12 34524 34536 34^48 3s!oO 3s!l2 35524' YsJsV ' Ys
BSUB (128, 15, -3.0) PKD(3, 5, 2 , 0 . 10%, 3224 . 0, 1 . 00%, F, F)
A3.37E7 A3.22E7
A l\ A
A
'UV
| i i i i i | i i i i i | i i r " i i | i i i i i | r i i i i | i i i i i | i i i i i -i- i — r -r ™r— i — i — i — i — i — i — i — i — , — , — , — , — , —
:48 34:00 34:12 34:24 34:36 34:48 35:00 3s!l2 35:24 35:36 35:
,15, -3.0) PKD(3,5,2,0.10%,12000.0,1.00%,F,F)
A1'76E8 A1.77E8
/v
148 34!oO 34?12 34524 34?36
,15, -3.0) PKD(3,5,2,0.10%,7596.0,1.00%,F,
Al.
J
548 34500 34?12 34?24 34?36
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
:4833:55 34:14
548 34500 34?12 34:24 34.-36
\/l
i i 1 i 1 I i i r i 'i i 1 1 1 i i I i r |"t T — i — i — i i i — i— i — r— i — i
34:48 35:00 35:12 35:24 35536 35?
flE8 A1.43E8
A A
{ /V
i i | i 1 I i i i i i i 1 I I i i i i T (• r -r- i i i i i i — i i i —
34:48 35:00 35:12 35:24 35:36 35
34:54 35:12 35:3fi
34:48 35500 35.!12 35.;24 ' Ys.'sV ' '35
_6.0E6
10.0EO
48 Time
9.6E6
L4.8E6
LO.OEO
48 Time
7.1E7
13 . 6E7
-O.OEO
48 Time
5.7E7
.2 . 8E7
LO.OEO
48 Time
1.6E8
_8.2E7
O.OEO
48 Time
-------
File
Samp
423.
iooa
50_
o:
425.
100S
so;
o.'
435.
100%
so:
0'
437.
100%
so:
0'
430.
100%
so:
0'
: A20JUL98B Acq: 20-JUL-1998 22:01:21 Exp : EXP_
>le #2 Text: FE CS3 ALS #2
7767 S:2 F:4 SMO(1,3) BSUBU28, 15, -3 . 0) PKD(3,3,3
A2.99E7
A
36:00 36:12 36:24 36:36 36:48 37:00 37:12
7737 S:2 F:4 SMO(1,3) BSUB (128, 15, -3 . 0 ) PKD(3,3,3
A2.91E7
A
K
36:00 36112 36124 36:36 SeUs 37166 3T\i.2
8169 S:2 F:4 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3,3,3
A1.34E8
A
36:00 36:12 36:24 36:36 36:48 37:00 37:12
8140 S:2 F:4 SMO(1.3) BSUB (128, 15, -3 . 0) PKD(3,3,3
A1.30E8
A
M23_DB5_OVATION Voltage SIR EH- GC Autospec-UltimaE Paradigm
, 0.10%, 2004. 0,1. 00%, F,F)
7.9E6
^ | | 1 | 1 | | | T— > J-| | |
37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:
, 0.10%, 1444. 0,1. 00%, F,F)
' 37124 ' 37136 ' 37U8 ' 38166 ' 38112 ' 38124 ' 38136 ' 38:48 ' 39
, 0.10%, 9024. 0,1. 00%, F,F)
37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:
,0.10%,2268.0,1.00%,F,F)
-
_4.0E6
O.OEO
00 Time
7.7E6
.3.9E6
0 . OEO
00 Time
3.5E7
.1.8E7
O.OEO
00 Time
3.4E7
_1.7E7
.O.OEO
36166 36! 12' 36124 36536 36!48 37!6o 37!i2 37124 37!36 37I48 38166 38!l2 38!24 38!36 38148 39:00 Time
9728 S:2 F:4 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
36^2436:33 36:49 37:01 37:1837:29 37:42 38:07 38:23 38:52 1.1K8
/""
36:00 36:12 36:24 36:36 36:48 37:00 37:12
.5.6E7
O.OEO
37124 37l36 37148 38\o6 38ll2 38124 38:36 SsUs 39 00 Time
-------
Pile
Samp
457.
1001
50_
o:
459.
1008
so:
o:
469.
100%
50_
0.
471.
100%
so:
0.
454.
100%
so:
0"
: A2(WtJL98B Acq: 20-JUL-1998 22:01:21 Exp: EXP_M23_DB5_OVATION Voltage SIR El-t- GC Autospec-UltimaE Parad
le #2 Text: FE CS3 ALS #2
7377 S:2 F:5 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1584 . 0 , 1 . 00%, F, F)
A4 . S5E7
y\_
1 , , , , . , , , , , 1 , , 1 1 , 1 1 1 — T — r- -i — ] -r r i 1*1 | l i i 1 1 | 1 1 1 1 1 | I I I I 1 | I I i I l | I l l I i
39il2 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41
7348 5:2 F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1020 . 0, 1 . 00%, F, F)
A5 . 41 E7
J\_
1— i — i i i — i — i — i — i — i — i — i — i — i — t i i — i — i — r— i — i T | r r i i"i | i i i i I | 1 1 I I I | I i i i i | i i i i i | i i i i i
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41
7780 S:2 F:5 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD( 3 , 3 , 3 , 0 . 10%, 1864 . 0 , 1 . 00%, F, F)
A1.95E8
J\_
39J12 ' ' ' 39!24 ' ' 39!36 ' ' 39148 4o!ob 4o!l2 4ol24 4o!36 4o!48 4l!
7750 S:2 F:5 SMO{1,3) BSUBU28, 15, -3 . 0) PKD(3 , 3, 3, 0 . 10%, 1716 . 0, 1 . 00%, F, F)
A2 . 1 8E8
J\_
39!l2 ' ' ' 39-124 ' ' ' 39136 ' ' 39148 ' ' 4o!ob 4o!l2 4o!24 4o!36 4o!48 4l!
9728 S:2 F:5 SMO(1,3) PKD(3, 3 , 3 , 100 . 00%, 0 . 0, 1 .00%, F, F)
39:10 39:26 39:41 39:55 40:03 40^:16 40:2640:31 40:42 40:49
1
igm
1.1E7
.5.3E6
_O.OEO
00 Time
1.2E7
L6.0E6
' O.OEO
00 Time
4.3E7
.2 . 1E7
O.OEO
00 Time
4.8E7
_2.4E7
.O.OEO
00 Time
1.2E8
_6.1E7
O.OEO
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 Time
-------
File
Sam;
303.
1003
50_
0_
305.
1008
50_
315.
100%
50J
317.
100%
50 1
oj
375.
100%
50J
OJ
316.
100%
50:
oj
;: A20JUL98B Acq: 20-JUL-1998 22:01:21 Exp : EXP_M23_DB5_OVATION Voltage SIR EI + GC Autospec-UltimaE Paradigm
)le #2 Text: FE CS3 ALS #2
9016 S:2 SMO(1,3) BSUB(128 15 -3 0) PKD(3, 3, 3 , 0 . 10%, 1532 . 0, 1 . 00%, F, F)
A1.09E7
2.2E6
11.1E6
: O.OEO
24:00 25:00 26:00 27:00 28:00 29:00 30:00 Time
8987 S:2 SMO(1,3) BSUB(128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 2712 . 0 , 1 . 00%, F, F)
A1.41E7
A
24100 25?00 26100 27loO 28-loO 29loO 3ol
9419 S:2 SMO{1,3) BSUB{128, 15, -3 . 0) PKD{3 , 3 , 3 , 0 . 10%, 3564 . 0, 1 . 00%, F, F)
A2.37E8
24IOO 25IOO 26100 27loO 2sloO 29loO 3ol
9389 S:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD( 3 , 3 , 3 , 0 . 10%, 5324 . 0, 1 . 00%, F, F)
A3.03E8
24 100 25 100 26 100 27loo' ' 28 I 00 29! 00 30 :(
8364 S:2 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 100 . 00%, 1404 . 0, 1 . 00%, F, F)
26:43 A A
23:28 23:51 25:01 (\ -57 . i c /\ l\ 29-06 90-4(1
A A 24 ; 2 6 A "PR-^I^S'R*^ 11 ^ / • x o 0*7*44 /\ «\ nA ^y • **\i
2.9E6
Ll.4E6
LO.OEO
30 Time
4.9E7
_2 . 5E7
_O.OEO
30 Time
6.3E7
L3.2E7
_O.OEO
30 Time
9.7E3
L4 . 9E3
O.OEO
24:00 25 1 00 26:00 27:00 28 I 00 29 I 00 30:00 Time
9824 S:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00% , F, F)
23:28 24:2324:45 25:26 26:0326:24 26:50 27:2227:4428:0728:31 29:0529:26 29:51 8. 1E7
L4.1E7
O.OEO
1 | • i i i i | i i • ? i i | i i •• i i • i | i i i • i i i t ••!-•-•! 1 P i
24:00 25:00 26:00 27:00 28:00 29:00 30:00 Time
-------
-v
X
File: A20JUL98B Acq: 20-JUL-1998 22:01:21 — bxp: EXP_M23_DB5_OVATION Voltage SIR El* ~
Sample #2
339.8597 S
1001
50.
0
•
30:12
341.8568 S:
1004
50_
o:
3b!i2
351.9000 S:
100%
50J
;
o:
3b!l2
353.8970 S:
1004
50J
;
-
0-
30 .-12
409.7974 S:
100%
~m
5°~
o:
30:13
/\
*^/-~ ' ^ — v
30. -12
366.9792 S:
100%
50 1
0:
3b!l2
Text: FE CS3 ALS #2
2 F:2 SMO(1,3) BSUB(128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 1648 . 0 , 1 . 00%, F, F)
GC Autospec-UltimaE Paradigm
A5.35E7 A5.57E7
A A
A
/ V
30124 30136 sbUs 31166 3llii 31124,' 3ll36 31:48 32l6o 32ll2 32124,'
2 F:2 SMO(1,3) BSUB(128, 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 4236 . 0 , 1 . 00%, F, F)
A3.51E7 A3.64E7
A A
A A
/ V, / V
3bl24 30:36 30148 3i:66 31:12 3i:24 31:36 31:48 32:66 32:12 32:24
2 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%, 580 . 0 , 1 . 00% , F, F)
A2.48E8
A
A
/ \ A6.02E7
/ V- /\
30:24 30:36 30:48 31:66 31112 3il24 ijllie 31 Us ' 32 ! 00 32 ! 12 ' 32 124 '
2 F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2292 . 0, 1 . 00%, F, F)
-> A1.60E8
A
A
/ \ A3.86E7
/ V A
/ N^_ J \_
3b.'24 30:36 30:48 31\66 3^:12 31\24 31\36 '31\48 32166 32.'i2 32I24
2 F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 100 . 00%, 5232 . 0, 1 . 00%, F, F)
30:31 30:53 31:19 31:32 31:50
30^AyXi^\6/^v\ 5i\08 AAvvV\ A A /\32/^\ 32:
^-^/^~^ \y \js \y^^ ly v\f\j v \^f^/ \/f^ — •^^y
3b!24 3b!36 30148 3l!66 3ili2 3il24 31. -36 ' 3i!48 32566 32112 32! 24'
2 F:2 SMO(1,3) PKD{3 , 3 , 3, 100 . 00%, 0 . 0, 1 . 00%, F, F)
30:25 30:38 31:05 31:21 31:3631:4631:56 32:12 32:24
30:24 30:36 3ol48 31:66 31:12 31:24' 31:36 31 : 48 ' 32 1 66 ' 32 1 12 32:24
2.0E7
:9.9E6
o npn
^l i [ i l l i i | l l i 1 1 i r i i i i i i r • -— -
32:36 32:48 33:00 33:12 Time
1.3E7
1.6.5E6
• n ORO
" i i | i i i i i i i i i i i I i i i i i i i r — • -• —
32:36 32:48 33iOO 33ll2 Time
8 . 5E7
_4.2E7
n np.n
i i | i i i i i | i i i i i i i i i i i i i f — - -— -
32:36 32:48 33:00 33:12 Time
5.5E7
_2.7E7
n riEn
i i 1 i i i i i i i i i i i 1 i i i i i I i i' ~ • •»— "
32:36 32:48 33:00 33ll2 Time
32:36 ,_1.2E4
A A
30 V/\ ^\>\2/NLA/\
\/ ^ ^^ \/ ^v Y \
_6.1E3
n.nRn
"i i — 1 — i — I~T~I — i — r-i — i— i — i — i — i— n — i— r— i — i — i— i* " "
32:36 32:48 33:00 33:12 Time
32:37 32:50 31:04 7 QK7
.3.9E7
n nc-n
' ' | ' '"' '' ' 1 ' ' ' ' ' 1 ' ' ' ' ' 1 ' ' • """
32:36 32:48 33:00 33:12 Time
0
-------
-V
-V
File: A20JUL98B
Sample #2 Text:
373.8207 S:2 F:3
100%
"
50 J
o •
33:24 33
375.8178 S:2 F:3
100%
50:
0
'33 :2V ' '33
383.8639 S:2 F:3
100%
50 j
"
o"
"-1 — i — i — i — i — i — i — i — r-
33:24 33
385.8610 S:2 F:3
100%
50:
o
v ' I i i i — i r i i
33:24 33
445.7555 S:2 F:3
100%
50J
o:
33:
r™*k r+.
— * — i — i — i — i — i — i — i — r-
33:24 33
380.9760 S:2 F:3
100% 33:22
0 '
/
Vl ' i i r-'i i i i i
33-24 33
Acq:
20-JUL-1998
22:01:21
Exp: EXP_M23
_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
FE CS3 ALS #2
SMOd
I i i i
136
SMO(1
1 ' ' '
•36
,3)
33
,3)
33
BSUB(128
\36 '
33
BSUB(128
I'"'
:36
SMO(1
33
,3)
1433:41
\^
1 ' ' '
•36
SMOd
I | i '
•36
"^^-
-I— T"
33
,3)
"T" 1 —
33
BSUB(128
1 i i i i i
148 34
BSUB(128
:48 34
,15, -3.0)
T — 1 1 1 1 1 —
•48 34
,15, -3.0)
:48 34
BSUB(128
,15, -3.0)
A5
A
A
/
r— i — i — T-'T — I — H
:00 34:
,15, -3.0)
A4
A
A
/
!00 34:
PKD (3,5,2,0.
. 36E7
/\
A
\\
v
1 1 1 ii i 1 1 1
12 34:24
PKD (3,5,2,0.
.73E7
A
A
i\
v_
12 34124
PKD(3,5,2,0.10%,28556
I • ' • • • i
•00 34:
19E8
f\
A
\
v_
12 34124
PKD{3 , 5,2,0. 10% , 52228
loo 34!
,15, -3.0)
33:57 34:06
/-v
Us' ' '34
PKD (3,3,
:4833:55
T48 ' '34
-^/\^-^l
!o'o' '34!
3,100.00%
34
lo'o' ' 34!
30E8
f\
A
1 \
v_
12 34124
10%, 6016. 0,1. 00%, F,F)
A4.84E7
A A4.26E7
A A
/ v / v_
_1.
_8.
0.
34136 34148 3sloO 3sll2 3sl24 35136 35148
10%, 5712. 0,1. 00%, F,F)
A3.90E7
A A3.39E7
A A
/ V. / v_
71-
_7.
0.
34136 34148 35loO 35ll2 3sl24 35136 35:48
.0,1.00%,F,F)
A2.31E7
y^^
r4'
12.
' 0 .
34136 34148 3sloO 3sll2 35-124 3sl36 35148
.0,1.00%,F,F)
A4.56E7
9.
L4.
' 0 .
34?36 34148 35:00 35:12 35:24 35:36 35:48
PKD (3, 3 ,3, 100. 00%, 1204. 0,1. 00%, F,F)
34:19 -. _
r-\_/~\ 34 :2
12' '34124
,0.0,1.00%,F,
:14
12 ' '34l 24
34:45 34:58
/ \ / \ 35:18
o 34:37/X \34:52/ \ 35.07^- — \J\ 35:33 35/4"L
^\-^_/~^-/ ^~/ \y >• — '-' >— — ' — ^-s — •> — ' > —
r
_4.
0.
34136 34148 35loO 35ll2 35?24 35136 35 48
F)
34:49 35:12 35:36 ,_!
7E7
6E6
OEO
Time
4E7
OE6
OEO
Time
9E7
4E7
OEO
Time
7E7
8E7
OEO
Time
7E3
8E3
OEO
Time
6E8
_8.2E7
O.OEO
'34136 34148 3sloO 35ll2 35124 35136 35 48
Time
-------
'^
-\
File: A20JUL98B Acq: 20-JUL-1998 22:01:21
Exp: EXP_M23_DB5_OVATION
Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #2 Text: FE CS3 ALS #2
407.7818 S:2 F:4 SMO (1,3)
lOOSi A3.§8E7
I
50 j
OJ
\
A
J ^
Seloo' 36ll2 36]24
409.7788 S:2 F:4 SMO(1,3)
100% A3.J5E7
'.
50J
o:
36:00 36:12 36:24
417.8253 S:2 F:4 SMO(1,3)
100S
50.
0.
A7.54E7
A
A
/ \
J V_
36:6d 365l2 36! 24
419.8220 S:2 F:4 SMO(1,3)
100%
50:
o'
A1.70E8
A
A
/ \
J V
v ' i i i i i i i i i i i i i i i i i i i
36:00 36:12 36:24
479.7165 S:2 F:4 SMO(1,3)
100%
-
50J
oj
36-04 36:21
J V • \J*m -
A 1 fi • 1 S A K-
i l\ J O » J. J/ \ f^\
V /\s\^\r\f \ J
^-\J ^ * ^J V V
3 6\ 00 36:12 36? 24
430.9728 S:2 F:4 SMO(1,3)
100* 36:24
50J
o:
1
36iOO 36:12 36.;24
BSUB(128,15,-3.0)
36:36 36:48 37
BSUB(128,15.-3.0)
36:36 36:48 37
BSUB(128,15,-3.0)
36536 36548 37
BSUB{128,15,-3.0)
36:36 36:48 37
BSUB(128,15,-3.0)
36:33 36:51
AA- . A
v ^\Ay \s
Ny \f \^s
36536 36548 37
PKD(3,3,3,0.10%,4488.0,1
A3.24E7
A
, /..v.
:00 37:12 37:24 37:36
PKD(3, 3, 3, 0.10%, 11028.0,
A3.22E7
yT
:00 37:12 37:24 37:36
PKD(3, 3, 3, 0.10%, 28536.0,
Al . 57E7
_>^\^
!dd 37512 37524 37:36
.00%,F,F)
.-1.1E7
L5.6E6
O.OEO
37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
1.00%,F,F)
_1.1E7
L5.3E6
0 . OF.O
37:48 38:00 38:12 38:24 38:36 38!48 39 00 Time
1.00%,F,F)
2.2E7
L1.1E7
O.OEO
37!48 38!dd 38512 38524 38!36 38548 39:00 Time
PKD(3,3,3,0.10%,10456.0,1.00%,F,F)
A3.44E7
/\^
:00 37:12 37:24 37:36
PKD(3,3,3,100.00%,3600.0
37:09
/ \ 37:27 37:
W VrV A s-\ /
v ^ ^w v^ v. /
5 00 37512 37 5 24 37536
5.0E7
.2 . 5E7
O.OEO
37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
,1.00%,F,F)
9.3E3
^37:51 38:14 38J38 /
-. /\ 3B:Oll\ y^\^ / V /X, ^vS /
V/ \J \s^^\j ^^/ \ r^*^ \r^ ^^ ^"^ ^
:
L4.7E3
-
- O.OEO
37 148 38. -00 38 5 12 38:24 38:36 38548 39 5 00 Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
36:33 36:4436:54
36:36 36:48 37
37:18 37:29 37:42 38:07 38:23 3ft:52 1 . 1 RR
i i i i >' i i i i i i i i i i i i i i i i i
:00 37:12 37:24 37:36
_5.6E7
-O.OEO
37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
o
-------
"•v
""s
File: A20JUL5"8B~~
Sample #2 Text:
441.7427 S:2 F:5
1004
50_
o:
443.
1004
50.:
o:
469.
IOCS
50 j
o:
471.
1004
50:
o:
513.
1004
50 j
o:
454.
1004
50J
o:
39ll2
7398 S:2 F:5
3 9? 12
7780 S:2 F:5
39!l2
7750 S:2 F:5
39:12
6775 S:2 F:5
39:12
39:05 _/"X_
39! 12
9728 S:2 F:5
39:10
39ll2
Acq: 20-JUL-1998 22:01:21 Exp: EXP M23 DBS OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
FE CS3 ALS #2
SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10% , 1012 . 0, 1 . 00%, F, F)
A5.14E7 1.1E7
J\_
39124 39136 39148 4o!ob 4o!l2 4o':24 4o!36 4o!48 4l!
SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%, 1964 . 0, 1 . 00%, F, F)
A5 -J5E7
/ \ •
39:24 39:36 39148 40:00 40:12 40.-24 4o!36 40:48 41:
SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%, 1864 . 0 , 1 . 00%, F, F)
Al . 25 E 8
y\_
39l24 39!36 39S48 4o!ob 4o!l2 4o!24 4o!36 4oU8 4l!
SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%, 1716 . 0 , 1 . 00%, F, F)
A2 . 18E8
J\_
39:24 39!36 39548 4o!ob 4o!l2 4ol24 4ol36 40:48 4l!
SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 100 . 00%, 952 . 0 , 1 . 00%, F, F)
40:00
39:29 / \ 40-43
i i i | i i i i i | i i i i i | i i i r -i |--i i — t i — r— ] -i — r-i — T-i — i — i — i — i — i — i — i — i — i — i — i — i — V-^i ^i i""i ^Tp
39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
39:26 39:41 39:55 40:03 40:16 40:2640:31 40:42 40:49
39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
LO.OEO
00 Time
_1.3E7
L6.3E6
"_0 . OEO
00 Time
4.3E7
.2.1E7
.O.OEO
00 Time
4.8E7
_2.4E7
LO.OEO
00 Time
rl.lE4
L5.4E3
1 0 . OEO
00 Time
1.2E8
L6.1E7
O.OEO
00 Time
o
^
00
-------
OPUSquan 21-JUL-1998
Page 1
Page 2 of 2
Run #7 Filename a20ju!98b S: 17 I: 1 Acquired: 21-JUL-98 09:18:54 Processed: 21-JUL-98 13:34:28
Run: 0716crv Analyte: m8290-23-» Cal: m8290-23-» Results: Ouan : V3.5 17-APR-1997 11:14:34
Sample text: BE CS3 Comments: OPUS
A3.6/8X 18-MAR-1998 16:12:42
Typ
Name
Resp
RA
RT
Cone
Dev'n
Mod?
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
cs
cs
cs
cs
cs
ss
ss
ss
ss
ss
DPE
DPE
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-ttxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
13C-2,3,7,8-TCDD
13C-l,2,3,7,8-PeCDD
13C-l,2,3,6,7,8-HxCDD
13C-l,2,3,4,6,7,8-HpCDD
13C-OCDD
13C-2,3,7,8-TCDF
13C-l,2,3,7,8-PeCDF
13C-l,2,3,6,7,8-HxCDF
13C-l,2,3,4,6,7,8-HpCDF
13C-1,2,3,4-TCDD
13C-l,2,3,7,8,9-HxCDD
37Cl-2,3,7,8-TCDD
13C-2,3,4,7,8-PeCDF
13C-l,2,3,4,7,8-HxCDD
13C-l,2,3,4,7.8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
37Cl-2,3,7,8-TCDD
13C-2,3,4,7,8-PeCDF
13C-1 , 2,3,4,7, 8-HxCDD
13C-l,2,3,4,7,8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
HxCDPE
HpCDPE
2
7
5
7
6
5
1
2
8
9
7
9
8
7
7
6
1
4
2
3
2
4
5
4
3
2
4
3
2
1
5
7
5
2
1
5
7
5
.le+07
.3e+07
.3e+07
.le+07
.9e+07
.9e+07
.Oe+08
.4e+07
.9e+07
.2e+07
.7e+07
.8e+07
.5e+07
.6e+07
.6e+07
.4e+07
.le+08
.4e+08
.7e+08
.le+08
.7e+08
.le+08
.2e+08
.le+08
.4e+08
.5e+08
.Oe+08
.le+08
.Oe+07
.Oe+08
.7e+07
.3e+07
.le+07
.Oe+07
.Oe+08
.7e+07
.3e+07
.le+07
*
0.
1.
1.
1.
1.
1.
0.
0.
1.
1.
1.
1.
1.
1.
1.
1.
0.
0.
1.
1.
1.
0.
0.
1.
0.
0.
0.
1.
1.
1.
0.
0.
1.
1.
0.
0.
77
54
21
27
24
02
88
76
54
52
21
26
25
26
02
04
89
77
56
24
04
90
78
55
52
45
78
24
57
23
52
45
57
23
52
45
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
28:27
32:37
34:42
34:46
34:59
37:10
40:01
27:26
31:57
32:24
34:11
34:15
34:37
35:08
36:21
37:31
40:10
28:26
32:37
34:45
37:09
40:01
27:24
31:56
34:14
36:21
28:09
34:58
28:27
32:24
34:41
34:10
37:30
28:27
32:24
34:41
34:10
37:30
NotFnd
NotFnd
4.74
24.1
26.8
25.8
25.7
24.6
49.0
4.80
25.1
25.1
27.1
26.8
27.1
27.7
24.8
25.1
49.0
101
89.5
91.6
107
202
95.5
85.0
86.0
103
82.6
79.3
5.08
21.5
25.5
24.0
27.3
5.04
25.3
27.9
27.7
26.4
*
*
-5.
-3.
7.
3.
2.
-1.
-2.
-4.
0.
0.
8.
7.
8.
11.
-1.
0.
-2.
0.
-10.
-8.
7.
1.
-4.
-15.
-14.
3.
1.
-14.
2.
-3.
9.
0.
1.
11.
10.
5.
1
7
3
3 /
8 /
* (L
0
3
4
6
1
5
0
0
4
1
8
5
4
1
1
5
0
0
4
-
~
6
2
1
8
1
9
1
6
9
5
_
n
n
S\
1 /) "
)// / "
v 1 n
1 .
/ •
/
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n.
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
-------
File: A20JUL98B Acq: 21-JUL-1998 09:18:
Sample #17 Text: BE CS3 ALS #2
319 8965 S-17 SMO(1 3) BSUB(128 15 -3 0)
100%
50 J
n-
"-1 — i 1 1 1 1 1 1 1 1 1 1 — | t i
24:00 25:00
321.8936 S:17 SMO(1,3) BSUB(128 , 15, -3 . 0)
100%
50 J
24:00 25:00
331.9368 S.-17 SMO(1,3) BSUB(128, 15, -3 . 0)
100%
50J
n:
24IOO 25:00
333.9339 S:17 SMO(1,3) BSUB(128, 15, -3 .0}
100%
50J
o~
24 100 25 loo'
327.8847 S:17 SMO (1,3) BSUB (128, 15, -3 . 0)
100%
50J
0:
24 100 25 loo'
316.9824 S:17 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%
54 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
PKD(3,3,3,0.10%, 1196. 0,1. 00%, F,F)
A8.93E6
/\
1.8E6
L9.1E5
LO.OEO
26loO 27loo 28loO 29loO 3oloO Time
PKD(3,3,3,0.10%,1208.0,1.00%,F,F)
A1.16E7
A
2.4E6
i_1.2E6
_O.OEO
26100 27|00 28:00 29loO 30:00 Time
PKD (3, 3, 3, 0.10%, 6572. 0,1. 00%, F,F)
A1.92E8
A A
h
l\
4.0E7
_2 . OE7
-O.OEO
26100 27loO 28:00 29:00 30:00 Time
PKD (3, 3, 3, 0.10%, 2444. 0,1. 00%, F,F)
A2.48E8
A A
A
i\
5.1E7
.2 . 6E7
O.OEO
26:00 27100 2s!oO 29:00 3oloO Time
PKD(3,3,3,0.10%,3272.0,1.00%,F,F)
A2.04E7
4.1E6
L2 . 1E6
: O.OEO
26 100 27 loo' ' ' 28 loo' ' ' ' 29loO 3oloO Time
, 0.0,1. 00%, F,F)
100% 23:36 24:09 24:43 25:07 25:31 26:01 26:36 27:05 27:28 27j_56 28j_26 28^5JL 29^41 ,_3.7E7
50 J
01
24100 25100
_1.9E7
_O.OEO
26loO 27loO 28100 29:00 3oloO Time
-------
Pile
Samp
355.
iooa
50J
oj
357.
100%
so:
0
367.
100%
so:
0"
369.
1008
so:
0
366.
100%
50.
0"
: A20JUL98B Acq: 21-JUL-1998 09:18:54 Exp: EXP_M23_DB5_OVATION Voltage SIR fii+ GC Autospec-UltimaE~TaraaTgm
>le #17 Text: BE CS3 ALS #2
8546 S:17 F:2 SMO{1,3) BSUB( 128, 15, -3 . 0) PKD(3, 3 , 3 , 0 . 10%, 1484 . 0, 1 . 00%, F, F)
A4.44E7 1.6E7
A
3o!i2' 36124 36:36 30:48 31.166 3ill2 31.124 31\36 SlUs 32l6o 32ll2 32I24 32 ! 36 ' 32 Us ' 33 ! 66 ' 33 ! 12
8517 S:17 F:2 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 836 . 0 , 1 . 00% , F, F)
A2.88E7
j[
30:12 30:24 3o!36 30:48 31:66 31112 31:24 3ll36 SlUs'^loO 32 1 12 ' 32 124 ' 32 1 36 32 1 48 ' 33 1 00 ' 33 Il2
8949 S:17 F:2 SMO(1,3) BSUB(128, 15, -3 .0) PKD(3, 3 , 3 , 0 ,10%, 2752 .0, 1 .00%,F,F)
A1.66E8
/L
36112 36124 36136 boUs 31166 3ill2 31124 3ll36 3ll48 32166 32112 32124 32136 32148 33166 33112
8919 S:17 P:2 SMO(1,3) BSUB(128, 15, -3 .0) PKD(3, 3 , 3 , 0 . 10%, 812 .0, 1 . 00%, F, F)
A1.07E8
/L
30:12 36124' 36136 30:48 3ll66 3lli2 31124 3l\36 31:48 32166 32:12 32:24 32136 32148 33:66 33112
9792 S:17 F:2 SMO(1,3) PKD(3, 3 , 3 , 100 .00%, 0 . 0, 1 .00%,F,F)
30:12 30:32 30:45 31:07 31:22 31:38 31:50 32:02 32:13 32:33 32:59
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
18.0E6
.O.OEO
Time
1.0E7
_5.1E6
O.OEO
Time
6.2E7
.3.1E7
O.OEO
Time
3.9E7
.2.0E7
O.OEO
Time
3.6E7
11.8E7
O.OEO
Time
-------
File
Same
389.
100§
so:
0'
391.
100%
50 J
0'
401.
100*
so:
0
403.
100*
so:
0"
380.
100*
50_
0'
>: A^OJUL98B Acq: 21-JUL-1998 09:18:54 Exp: EXP_M23_DB5_OVATION Voltage SIR EH- GC Autospec-UltimaE Parad
>le #17 Text: BE CS3 ALS #2
8156 S:17 F:3 SMO(1,3) BSUB( 128 , 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10% , 1632 . 0, 1 . 00%, F, F)
A3.96E7 A3.82E7
A A A
M A
/ L j v_
.,,., ,.,_, j.,r. r., T t r I | r r . | '~.T , .T- r r , — r f | — i j— ~j [ p— j r r r r r ' t r— i i r—r r* i i 'i r"'T— i — r r* i \ — i — r— T — i 1 I [ " ' i i i "T i "i r T T • T t ' i i T i i — r— r
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35
8127 S:17 F:3 SMO(1,3) BSUB (128 , 15, -3 . 0) PKD(3 , 5 , 2 , 0 . 10% , 1536 . 0 , 1 . 00%, F, F)
A3.11E7 A3.08E7
MA
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35
8559 S:17 F:3 BSUB( 128, 15, -3 . 0) PKD(3 , 5, 2, 0 . 10%, 11444 . 0, 1 . 00%, F, F)
Jl A1.74E8
A
J[
• • i i i i i , • . i • i • i i • i i i • i ii f I 1*1 — i — i ii 1 1 I I i i i i i — i — i — r— i — i — i i i — i — i — i — r— r
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35
8530 S:17 F:3 BSUB{128, 15, -3 . 0) PKD(3, 5,2, 0. 10%, 4560. 0, 1 . 00%, F, F)
13 A1.40E8
A
A
. IV.
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35
9760 S:17 F:3 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00% , F, F)
33:36 33:46 33:54 34:04 34:21 34:33 34:45 35:0035:0735:14 35:25 35i37
/
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35
igm
1.2E7
_5.9E6
0 . OEO
48 Time
_9.2E6
.4.6E6
O.OEO
48 Time
7.2E7
L3.6E7
0 OEO
48 Time
5.7E7
.2 . 8E7
O.OEO
48 Time
7.2E7
13.6E7
O.OEO
48 Time
01
-------
Pile
Samp
423.
100S
50J
0."
425.
100%
so:
Q-
435.
1001
so:
o;
437.
1005k
so:
0
430.
iocs
50J
0"
s: A20JUL98B Acq: 21-JUL-1998 09:18:54 Exp: EXP_M23_DBS_6VATI6N Voltage SIR EI+ GC Autospec-UltimaE Paradigm
)le #17 Text: BE CS3 ALS #2
7767 S:17 F:4 SMO(1,3) BSUB (128 , 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1308 . 0 , 1 . 00%, P, F)
A2.99E7 8.5E6
A F
36I66 36:12 36I24 3^\36 36!48 37!6d 37!i2 37I24 37!36 37!48 38!66 38!i2 38I24 38136 38!48 39!
7737 S:17 F:4 SMO{1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 908 . 0, 1 . 00%, F, F)
A2.93E7
A
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39
8169 S:17 F:4 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 3120 . 0, 1 . 00%, F, F)
A1.37E8
/^
36!66 36:12 36I24 36I36 36!48 37!6o 37112 37!24 37!36 37!48 38-166 38!i2 38!24 38136 38148 39!
8140 S:17 F:4 SMO(1,3) BSUB(128. 15, -3 .0) PKD(3 , 3 , 3 , 0 . 10%, 3380 . 0 , 1 . 00%, F, F)
A1.31E8
A
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39!
9728 S:17 F:4 SMO(1,3) PKD(3,3, 3, 100.00%, 0 .0, 1 .00%,F,F)
36:21 36^49 Ji7_UO _!Zi32 37_L53 38:09 38:2638:36 38:51
/ "
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:
,4.2E6
O.OEO
00 Time
8.2E6
14 . 1E6
0 . OEO
00 Time
3.8E7
L1.9E7
O.OEO
00 Time
3.7E7
_1.9E7
O.OEO
00 Time
5.0E7
12 . 5E7
O.OEO
00 Time
-------
'*>
-N
o
c/i
Pile
Samp
457.
100S
so:
0'
459.
1001
50J
0"
469.
100%
so:
0
471.
10 OSS
so:
0
454.
100%
so:
0"
:: A20JUL98B Acg: 21-JUL-1998 09:18:54 Exp: EXP_M23_DB5_OVATION Voltage SIR EH- GC Autospec-Ul t imaE Parad.
>le #17 Text: BE CS3 ALS #2
7377 S:17 F:5 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 1172 . 0, 1 . 00% , F, F)
A4 -70E7
J\_
39ll2 39?24 39136 39.-48 4o!ob 40.-12 40.-24 40.-36 40.-48 41
7348 S:17 F:5 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 732 . 0 , 1 . 00%, F, F)
A5.31E7
yV
39!l2 39124 39136 39!48 4o!ob 4o!l2 4o!24 4o!36 4o!48 4ll
7780 S.-17 F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1400 . 0, 1 . 00%, F, F)
A1.93E8
J\_
39':12 39!24 39136 39Us 4o!ob 4oll2 4o!24 4o!36 4o':48 4l!
7750 S:17 F:5 SMO(1,3) BSUB(128, 15, -3 .0) PKD(3 , 3, 3, 0 . 10%, 1800 .0, 1 . 00%,F,F)
A2 -15E8
/V
39!l2 39?24 39!36 39!48 4o!ob 4o!l2 4o!24 4ol36 4ol48 4l!
9728 S:17 F:5 SMO(1,3) PKD(3, 3, 3, 100 .00%, 0. 0, 1 . 00%, F, F)
39^07 39:16 39:23 39:32 39^42 39:50 40:01 40d)8 40^16 40_i29 40^15 40^43 40:50 40:57
/ ' " ' " "
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41
igm
_1.1E7
15.5E6
" O.OEO
00 Time
_1.2E7
16.2E6
LO.OEO
00 Time
4.5E7
L2.2E7
10.0EO
00 Time
5.0E7
12 . 5E7
•O.OEO
00 Time
5.4E7
_2.7E7
O.OEO
00 Time
-------
File: A20JUL98B Acq: 21-JUL-1998 09:18:54 Exp: EXP_M23_DB5_6VATION Voltage SIR EH- GC Autospec-UltimaE Paradigm
Sample 117 Text: BE CS3 ALS #2
303.9016 S:17 SMO(1,3) BSUB (128 , 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1000 . 0, 1 . 00%, F, F)
100% A1.04E7 2.1E6
50 j
o"
305.
100%
sol
0
315.
100%
50J
o:
317.
100%
50_
o:
375.
100%
50 j
o:
316.
100%
j
24 loo'
8987 S:17 SMO(1,3)
24 loo'
9419 S:17 SMO(1,3)
9389 S:17 SMO(1,3)
i i i i i I i
24:00
8364 S:17 SMO(1,3)
I nt^i39 A n:
S r\f\f LA jy\l\
24:00
9824 S:17 SMO(1,3)
23:36 24:
24:00
25:00
BSUB(128,15,-3.0) PKD(3
25:00
BSUB (128 ,15, -3.0) PKD(3
25100
BSUB(128,15,-3.0) PKD(3
25:00
BSUB (128, 15, -3.0) PKD(3
24:20 25:03 25:26
25:00
PKD(3,3,3,100.00%,0.0,1
[)£ 24.L43 25:07 25:31
25:00
•O.OEO
26:00 27:00 28:00 29:00 3oloO Time
, 3, 3, 0.10%, 1884. 0,1. 00%, F,F)
A1.36E7 2.8E6
j[
_1.4E6
_O.OEO
26:00 27:00 28:00 29:00 30:00 Time
, 3, 3, 0.10%, 2996. 0,1. 00%, F,F)
A2.30E8 ,_4.8E7
A F
J , , ,
_2.4E7
_O.OEO
26 100 27:00 28:00 29:00 30:00 Time
, 3, 3, 0.10%, 2444. 0,1. 00%, F,F)
A2.94E8 6.1E7
j\
L3.1E7
_O.OEO
26 loo' ' ' ' 27 loo' 28 [oo 29loO 3oloO Time
, 3, 3, 100. 00%, 52. 0,1. 00%, F,F)
28:26 _6.6E3
A A F
25^9 26^20 26/^1 /2^1vv27A38nj'vJ VA.A 2*'f\*2*l\\
L3.3E3
-O.OEO
26:00 27:00 28:00 29:00 30:00 Time
.00%,F,F)
26:01 26:36 27:0527:28 27:56 28:26 28:51 29:41 3.7E7
26:00 ' 27 100 28loO 29? 00 30 lo
_1.9E7
O.OEO
0 Time
-------
File: A20JUL98B Acq: 21-JUL-199H 09:18:b4
Exp: EXP_M23_DB5 OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #17 Text: BE CS3 ALS #2
339.8597 S:17 F:2 SMO(1,3) BSUB(128
100%
50 j
ol
30:12 30:24 30:36
341.8568 S:17 F:2 SMO(1,
100%
50J
o:
3b!i2 36124 36136
351.9000 S:17 F:2 SMO(1,
100%
50J
I
0"
30:12 30:24 30:36
353.8970 S:17 F:2 SMO(1,
100%
sol
Q-
30:12 30:24 30:36
409.7974 S:17 F:2 SMO(1,
1001
50 1
0
3°i" 30:32
\/ \A ^V ^-^r^^/-^
30112 30124 30136
366.9792 S:17 F:2 SMO(1,
100& 30:18 30:32
50 1
o'
30:48 31:
3) BSUB (128
30 :48 31 :
3) BSUB (128
••r r i | i i i i i |
30:48 31:
3) BSUB (128
i i i | i i i i i |
30:48 31:
3) BSUB (128
30:51
/\,A
' v/ \J^
30 148 31 1
,15, -3.0)
00 31:12
,15, -3.0)
66 31-! 12
,15, -3.0)
00 31:12
,15, -3.0)
00 31:12
,15, -3.0)
31:07
t — ^\ r\ s**
^J \J ^^
66 31:12
3) PKD(3,3,3,100.00%
30:45
31:07
PKD ( 3 ,
31:24
PKD ( 3 ,
3ll24
PKD ( 3 ,
i i i 1 i i
31:24
PKD(3,
' 3ll24
PKD ( 3 ,
r*\
J W"
3ll24
,0.0,1.
31:22
3,3,0.10%,724.0
31:36
A5
31:48
3, 3, 0.10%, 1708.
31136
A3
, i
31:48
3, 3, 0.10%, 28.0,
31:36
A2.
J
31148
3, 3, 0.10%, 3096.
i i i 1 i i i
31:36
3,3,100.
31:36
^ — W^
31:36
00%,F,F)
31:38
Al.
1
/
,,,,,/
siUs
,1.00%,F,F)
.38E7
A
A
32:00 32:12
0,1.00%,F,F)
.49E7
f\
A
1 v,
32 Io6 32l 12
1.00%,F,F)
47E8
A
A
\
^
32166 ' 32ll2
0,1.00%,F,F)
59E8
A
l\
\
32:00 32:12
00%, 2172. 0,1. 00%, F,
31:48
/\Ax^
^^-N,
31:48
31:50
32:07
^^\ /Vv,/-
r v/ ^^r
32166 32! 12
A5.53E7
A
/ v_
2.
Ll.
:o
32:24 32:36 32:48 33:00 33:12
A3.65E7
A
A
,,!\,,,,
_1.
_6.
r o,
32:24 32:36 32:48 33:00 33:12
A6.12E7
y\^
8.
L4.
•o
32:24 32:36 32:48 33:00 33:12
A3.90E7
y\
5.
.2.
0
32:24 32:36 32:48 33:00 33:12
F)
32:37
A
32:22 A/ V/\ 33:08
. /\ ^ \ /\ r\^~f
^/ v_y^ v^-^v/ ^-V ^^
9.
_4.
0.
32124 32136 32148 33l6o 33112
32:02 32_Ll3 32:25 32:40 32:59 1.
3oli2 30124 30136
30:48 31:
00 31:12
31:24
31:36
31:48
32:00 32:12
-1.
"o.
32:24 32:36 32:48 33:00 33:12
OE7
OE7
OEO
Time
3E7
7E6
OEO
Time
8E7
4E7
OEO
Time
7E7
8E7
OEO
Time
1E3
6E3
OEO
Time
6E7
8E7
OEO
Time
O
VI
m
-------
File: A20JUL98B Acq: 21-JOL-1998 09:18:
Sample f!7 Text: BE CS3 ALS #2
54 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
373.8207 S:17 F:3 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3,
100%,
50_
0
/
33*: 24 33T:36 33^48 34! 00
375.8178 S:17 F:3 SMO(1,3) BSUB(128, 15, -
100%
"
50J
o:
>
33:24 33:36 33:48 34:00
A5.47E7
. A
A A
AA
34:12 34
3.0) PKD ( 3 ,
A4.34E7
A
A A
/V\
34 .' 12 34
5,2,0.10%, 1600 . 0 , 1 . 00% , F, F)
A4.74E7
AA4
j
\24 34136 34U8 3s!oO
5, 2, 0.10%, 17484. 0,1. 00%, F,F)
A3.80E7
A A3
, ^ J
\24 34.;36 34.-4S 35.!00
,_1.8E7
.22E7
_8.8E6
O.OEO
3s!l2 35I24 35l36 35 48 Time
1.4E7
.36E7
^V
:7.0E6
0 .OEO
35:12 35:24 35:36 35 48 Time
383.8639 S:17 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 10824 . 0, 1 . 00%, F, F)
100%
50 1
;
o:
33:24 33J36 33J48 34loO
A1.15E8
A
A
A/ \
34:12 34
385.8610 S:17 F:3 BSUB(128, 15, -3 . 0) PKD(3, 5,2, 0 .10%
100%
50J
0
33:24 33:36 33:48 34:00
Z8
^
34:12 34
445.7555 S:17 F:3 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3,
100%
50 J
OJ
33:30 H=41 33:53 34:02
^/ ^~~^ — ^- — ' \ . — /N_ ^-^
— r~~ I — 1 — I — I 1 — I — I — 1 — I — I — I — r — l — r r » T— i r — i i — T~T -T
33:24 33:36 33:48 34:00
380.9760 S:17 F:3 SMO(1,3) PKD(3 , 3, 3 , 100
100* 33:36 33:46 33:54 34:04
sol
OJ
/
33:24 33:36 33:48 34:00
34:15
*~~v^ — v
1 1 1 1 1 1 1
34:12 34
.00%, 0.0,1.
A2.
!24' ' '34: 36' ' '34 148' ' VsloV
,6784.0,1.00%,F,F)
A4.
:24 34:36 34:48 35:00
3, 3, 100. 00%, 916. 0,1. 00%, F,F)
34:45 34:58
y\ A
34:33 f \ / \ v
x~\-x-^ v / v /
^ V-^ ^ — ' — ^ ^ /
|" I™"'l T 'T° I I f-y 1 | | I | | 1 | I 1 ~T" I 1
:24 34:36 34:48 35:00
00%,F,F)
34:21 34:33 34:45 35^0035
— i | i i i r— i—
34:12 34
1 — ' ' — i ' — ' | — i ' — ' ' — ' | ' ' — ' > ' i — ' ' '
:24 34:36 34:48 35:00
35E7
^X
5.3E7
L2.7E7
O.OEO
35:12 35:24 35:36 35:48 Time
37E7
1.0E8
_5.2E7
O.OEO
35:12 35:24 35:36 35 48 Time
^-P-^^IJ-^ 35^29 35^37^ /
8.6E3
_4.3E3
O.OEO
1 1 I I 1 T*~T 1 1 I | |~T — T ""I !~~T !~~T 1 1~ "
35:12 35:24 35:36 35:48 Time
.-0735:14 35:25 35:37 7 . 2K7
L3.6E7
• O.OEO
— i — r— | i i i i — i — | — i — i — i — i — i — | — i — i — i — i — r—f
35:12 35:24 35:36 35:48 Time
-------
File: A20JuLy«B Acq: 21-JUL-1998 09:18:54—Exp: EXP_M23_DB5_OVATI6N Voltage SIR EH- GC Autospec-UltimaE—Paradigm
Sample #17 Text: BE CS3 ALS #2
407.7818 S.-17 F:4 SMO(1,3) BSUB(128,15 ,-3 . 0) PKD(3 , 3 , 3 , 0 .10% , 5688 . 0,1. 00%, F, F)
1004 A3.87E7
A3.26E7
50J
OJ
.-1.2E7
U.8E6
1 i i i i i r i -i-'f-f | [ j |"f i |"| i i T' i i i [ i i—i'~r~f i TT "r~r~t T~T-T T"T"-T—i—i-*i—i—i—i—| T 1 I i i t r i i ( i |—r—i—i—n—|—i—r-
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
409.7788 S:17 F:4 SMO(1,3) BSUE(128,15,-3.0) PKD(3,3,3,0.10%,1108.0,1.00%,F,F)
1004 A3.78E7
A3.15E7
i \
50J
"
—i — r~r"T i — T I i •[" i — r I FT i t i i —
38:24 38:36 38:48 39:00 Time
1.2E7
L5.8E6
i i i i i i I i i i i i < i i i 7*1 I I I i I I i i i i i i i i i i i i i i i i i i i i i i i 'i i i i | I I I I i i t i i i i i i i i r i i i i
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
417.8253 S:17 F:4 SMO(1,3) BSUBU28,15, -3 . 0) PKD(3 , 3 , 3 , 0 .10%, 7384 . 0,1. 00%, F, F)
100& A7.58E7
50J
38:24 38:36 38:48 39:00 Time
2.3E7
.1.2E7
Al.57E7
36l6d 36112 36!24 3e!36 SeUs 37:00 37:12 37:24 37:36 37:48 38:00 38:12
419.8220 S:17 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,7212.0,1.00%,F,F)
1004 A1.69E8
.O.OEO
38:24 38:36 38:48 39:00 Time
50J
OJ
A3.49E7
_2.6E7
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
479.7165 S:17 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,1896.0,1.00%,F,F)
1004 36:57 37;09
38:00
O.OEO
50J
OJ
36:07
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
430.9728 S:17 F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F, F)
1004 36:21 36:49 lljJLfl 3_7_O2
50J
38:09
38:24 38:36 38:48 39:00 Time
7.2E3
1.3. 6E3
O.OEO
38I24 38136 3s!48 39loO Time
38:2638:36 38:51 .5. OE7
36TOO 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
12.5E7
lO.OEO
38:24 38:36 38:48 39:00 Time
o
en
oo
-------
File
Saim;
441.
1003
50J
0 '
443.
100%
50J
o:
100%
ol
471.
1001
50J
0'
513.
100%
50J
OJ
454.
100%
oj
s: A20JUL9BB Acq: 21-JUL-1998 09:18:54 Exp: EXP_M23_DB5_6VAT10N Voltage SIR Et + 6C Autospec-UltimaE Parad
>le #17 Text: BE CS3 ALS #2
7427 S:17 F:5 SMO(1,3) BSUB (128 , 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 560 . 0 , 1 . 00%, F, F)
A5 V03E7
39:12 39:24
7398 S:17 F:5 SMO (1,3)
39ll2 39!24
7780 S:17 F:5 SMO (1,3)
39ll2 39124
7750 S:17 F:5 SMO(1,3)
— i — r— i — i — i — i — i -r
39:36
BSUB(128,15,-3
39536
BSUB(128.15,-3
39136
BSUB (128, 15, -3
i i i i i i i i i i i i T~ r • r i r i i i
39:12 39:24 39:36
6775 S:17 F:5 SMO(1,3) BSUB (128, 15, -3
39^06 3906 39l26 3^3^
39ll2 39.'24
9728 S:17 F:5 SMO(1,3)
39:07 39:16 39:23
' 39:12 39124
39548
. 0 ) PKD ( 3 ,
39148
.0) PKD(3,
39148
.0) PKD(3,
• i i | -I i
39:48
.0) PKD(3,
39:49
39:36 39:48
PKD(3,3,3,100.00%,0.0/1.
39:32 39:42 39:
39:36
39:48 '
40:00 40:12 40:24 40:36 40:48 41
3, 3, 0.10%, 1172. 0,1. 00%, F,F)
A5.63E7
igm
1.2E7
L5.8E6
O.OEO
00 Time
1.3E7
L6.6E6
LO.OEO
4o!ob 4o!l2 4ol24 4ol36 4o!48 4l!oO Time
3, 3, 0.10%, 1400.0, 1.00%,F,F)
A1.93E8
4fl!ob 4o!l2 4o!24 4ol36 4o!48 4'l
3, 3, 0.10%, 1800. 0,1. 00%, F,F)
A2 .1 5E8
40:00 4o!l2 4ol24 4ol36 40:48 41
3, 3, 100. 00%, 160. 0,1. 00%, F,F)
40:01
4.5E7
.2.2E7
.O.OEO
00 Time
5.0E7
.2 . 5E7
O.OEO
00 Time
_7.8E3
_3.9E3
O.OEO
40.-00 40.-12 40.-24 40:36 40:48 41:00 Time
00%,F,F)
53 40:01 40:08 40:16 40:29 40:35 40:43 40:50 40:57 5. 4E7
_2.7E7
O.OEO
40:00 40:12 40:24 40:36 40:48 41:00 Time
-------
OPUSquan 22-JUL-1998
Page 1
Page 2 of 2
Run #7 Filename a21ju!98f
Run: a07feb98f Analyte:
Sample text: CS3
S: 2 I: 1 Acquired: 21-JUL-98 20:43:56 Processed: 22-JUL-98 08:22:02
Cal: 07feb-m23» Results: Quan : V3 . 5 17-APR-1997 11:14:34
Comments: OPUS : V3.5X 17-APR-1997 11:31:23
Typ
Unk
ES/RT
Total
DPE
LMC
Name
2,3,7,8-TCDF
130-2,3,7,8-TCDF
Tetra Furans
HxCDPE
QC CHK ION (Tetra)
Resp
4.0e+07
8.4e+08
4.7e+07
RA
0.77
0.78
1.74
/ RT
27:53
27:51
19:51
NotFnd
NotFnd
Cone
5.04
205
5.96
DeV n
0.8
0.8
Mod?
n
n
n
n
n
O
ff>
O
-------
OPUSquan 22-JUL-1998
Page 1
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ
Unk
ES/RT
Total
DPE
IMC
Page
a21ju!98f
3
21-JUL-98
22-JUL-98
sb
07feb-m23conf
M8290-23-072198F
21:20:54
08:31:41
Name;
2,3,7,8-TCDF;
13C-2,3,7,8-TCDF;
Tetra Furans;
HxCDPE;
QC CHK ION (Tetra);
Resp ;
2.23e+05;
Ion 1;
.10e+05;
Ion 2;
1.12e+05;
2.67e+06; 2.62e+05; 6.62e+04;
RA;?; RT;
0.98;n; 27:53;
*;n;NotFnd;
3.95;n; 17:56;
;NotFnd;
;NotFnd;
Cone
DL
S/N1;?;
6;y;
*;n;
14,-y;
*;n
DivO;n
S/N2;? ; mod?
9;y ; no
*;n ; no
7;y ; no
; no
; no
-;-; 27:53
-;-; 27:53
-; -; no
O
05
M.
-------
OPUSquan 22-JUL-1998
Page 1
Ent: 3 Name: Tetra Furans
Page 1 of 1
F:l Mass: 303.902 305.899 Mod? no #Hom:8
Run: 8 File: a21ju!98f S:3 Acq:21-JUL-98 21:20:54 Proc:22-JUL-98 08:31:41
Tables: Run: a21ju!98b Analyte: m23_conf Cal: 07feb-m23»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: sb
Amount: *
Cone: *
Tox #1: -
Name
2,3,7,8-TCDF
of which *
of which *
Tox #2: -
named and *
named and *
Tox #3: -
RT Respnse
RA
Cone
unnamed
unnamed
Area Height
S/N Mod?
17:56 3.3e+05 3.95 n
3.3e+05
18:01 5.9e+05
5.9e+05
1.63 n
3 18:02 7.1e+05 2.16 n
7.1e+05
4 27:32 2.0e+05 0.76 y
2.0e+05
5 27:35 2.4e+05 1.08 n
2.46+05
6 27:53 2.2e+05 0.98 n
2.2e+05
27:55 2.7e+05
2.7e+05
0.47 n
28:13 l.le+05 2.12 n
l.le+05
2.6e+05 6.3e+04 1.4'e+01 y n
6.6e+04 2.8e+04 6.6e+00 y n
*
3.6e+05 8.0e+04 1.8e+01 y n
2.2e+05 5.5e+04 1.3e+01 y n
*
4.8e+05 7.3e+04 1.7e+01 y n
2.2e+05 5.5e+04 1.3e+01 y n
*
8.7e+04 2.5e+04 5.7e+00 y n
l.le+05 3.3e+04 7.8e+00 y n
*
1.2e+05 2.7e+04 6.2e+00 y n
l.le+05 2.8e+04 6.6e+00 y n
*
l.le+05 2.8e+04 6.4e+00 y n
l.le+05 3.8e+04 9.1e+00 y n
*
8.7e+04 2.7e+04 6.1e+00 y n
1.8e+05 4.3e+04 l.Oe+01 y n
*
7.8e+04 1.6e+04 3.7e+00 y n
3.7e+04 1.5e+04 3.5e+00 y n
062
-------
file: A21JUL98P—Acq: 21-JUL-1998 21:20:E>4—Exp: M23_DB225 Voltage SIR EH-GC Autospec-UltimaE—Paradigm
Sample #3 Text: sb ALS #3
303.9016 S:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,4352.0,1.00%,F,F)
100%
1 A8.75E4
\^_ ________ >__^<^_^^v~~^^^ Aj^k/£E3 -^ ^§cl.3EA,t
9.3E4
L4.7E4
lO.OEO
16:00 18:00 20:00 22:00 24:00 26:00 28:00 30:00 32:00 34:00
305.8987 S:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,4188.0,1.00%, F, F)
100* A2.24E5 A1.85E5
16)00 18)00 20)00 22)00 24)00 26)00 28)00 30)00 32)00
315.9419 S:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%, 19804.0,1.00%,F,F)
100* 17.56 27;53
24:
JB i ^f • J J_
50J
16:00 18)00 20)00 22)00 24:00 26:00 28:00 30:00 32:00
317.9389 S:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,23456.0,1.00%, F, F)
100* 17:58
T 1—r
34)00 Time
16:00 18iOO 20.:00 22.:00 24.:00 26.:00 28iOO
375.8364 S:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,8900.0,1.00%,F,F)
100* 24;56
50J
30:00
32:00
34:00
Time
7.2E5
L3.6E5
O.OEO
26:00
28:00
30:00
32:00
34:00
Time
16:00 18:00 20:00 22:00 24:00
316.9824 S:3 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100* 19:22. ^0:42 21^57 23:1524:1525:1626:1427:14 28:28 30:0131:00 32:18 33;3734:34 R. 5E7
50_
2o!ob
22! ob
1 f—T-
24:00
26lob
1 r 1 1 1 r~
28:00
— i - 1 - 1
30:00
1 - 1 - 1 - 1 - 1 - r-
32:00
_4.2E7
O.OEO
16:00
18:00
—r—| 1 r i
34:00 Time
-------
OPUSquan 22-JUL-1998 Page 1
Page 3 of 3
Run #8 Filename a21ju!98f S: 17 I: 1 Acquired: 22-JUL-98 06:01:17 Processed: 22-JUL-98 08:24:11
Run: a07feb98f Analyte: Cal: 07feb-m23» Results: Quan : V3.5 17-APR-1997 11:14:34
Sample text: CS3 Comments: OPUS : V3.5X 17-APR-1997 11:31:23
Typ Name Resp RA / RT Cone /Dev'n / Mod?
Unk 2,3,7,8-TCDF 3.0e+07 0.78 y 27:53 4.85 -3.0 n
ES/RT 13C-2,3,7,8-TCDF 6.6e+08 0.78 y 27:51 161 - n
Total Tetra Furans 3.5e+07 1.11 n 17:59 5.55 -3.0 n
DPE HxCDPE * NotFnd * n
LMC QC CHK ION (Tetra) * NotFnd * n
O
2
-------
O
0)
tn
Pile
Samp
303.
1008
50_
0
100%
50J
o:
315.
1003
50 j
ol
317.
1004
50J
o"
375.
1004
50J
316.
100%
50.
ol
: A21JUL98F Acq: 22-JUL-1998 06:
>le #17 Text: CS3 ALS #2
9016 S:17 SMO{1,3) BSUB( 128 , 15, -3
16:00 18:00 20:00
8987 S:17 SMO(1,3) BSUB(128 , 15, -3
16:00 18.! 00
9419 S:17 SMO (1,3)
..,,,.,.,,
16:00 18:00
9389 S:17 SMO(1,3)
ie'ob ' ' ' ielob
8364 S:17 SMO (1,3)
16:3117:30
to*rf?MfffT**i™ f"T'*y*fr
16:00 18:00
9824 S:17 SMO(1,3)
16:20 18^
16:00 18:00
20. -00
BSUB(128,15,-3
20:00
BSUB(128,15,-3
20:00
BSUB(128,15,-3
19:08
20:00
PKD(3,3,3,100.
23 21;
' 20:00
01:17 Exp: M23_DB225 Voltage SIR EI+ GC Autospec-UltimaE Paradigm
.0) PKD(3,3,3,0.10%,3076.0,1.00%,F,F)
A1.32E7
j\ A7 .JJ3E5
22:00 24:00 26:00 2f
.0) PKD(3,3,3, 0.10%,3112.0,1.00%,F,F
Al.
-T , '
22:00 24:00 26:00 21
.0) PKD(3,3,3, 0. 10%, 212 12. 0,1. 00%, F,
A2.
):00 30:00 32:00 34:00
)
59E7
^ A9 -^ES
ilob 30 1 00 ' 32:00 34:00
F)
57E8
22:00 24:00 26:00 28:00 30:00 32:00 34:00
.0) PKD(3,3,3,0.10%,33252.0,1.00%,F,F)
A3.68E8
22lob 24lob 26:00 28lob 3o!ob 32:00 34:00
.0) PKD(3,3,3,100.00%,6884.0,1.00%,F,F)
21:48 23:22 24:45 26:18 27:52 30:54 33:00 34:23
1.5E6
_7.5E5
O.OEO
Time
1.9E6
L9.4E5
.O.OEO
Time
3.3E7
Ll.7E7
LO.OEO
Time
4.2E7
_2.1E7
_O.OEO
Time
1.9E5
_9.4E4
O.OEO
22:00 24:00 26:00 28:00 30:00 32:00 34lob Time
00%, 0.0,1. 00%, F,F)
02 22;09 23^11 24j57 26i3827j34 28j57 30:01 31:08 32:22 33:32 ^3.8X1
Ll.9E7
"O.OEO
22lob ' 24lob 26lob ' ' 28lob ' ' ' 3olob 32lob ' ' 34lob ' Time
-------
to
Pile: A2UUL98F Acq: 21-JUL-1998 20:43:56 Exp: M23_DB225 Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #2 Text: CS3 ALS #2
303.9016 S:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3, 0 . 10%, 3488 . 0, 1 . 00%, F, F)
lOOi A1.74E7 2.0E6
50J jl L.1.0E6
ielob ie!ob 2o!ob 22 ob 24-00 2e!ob 2s!ob 30-00 32lob 34lob Time
305.8987 S:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 5344 . 0, 1 . 00%, F, F)
100% A2.26E7 2.5E6
50J jl .1.3E6
o • 1 \ A7 -1?E5 o OPO
16:00 18:00 20:00 22 00 24:00 26:00 28:00 30:00 32:00 34:00 Time
315.9419 S:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 18656 . 0 , 1 . 00%, F, F)
1004 A3.67E8 4 . 1E7
50J 1 .2.1E7
o • 1 \ o . OP.O
16:00 18:00 20:00 22 00 24:00 26:00 2
317.9389 S:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 22144 . 0 , 1 . 00%, F, F
100% A4.
50J
o: /
16:00 18:00 20:00 22
375.8364 S:2 SMO(1,3) BSUB(128, 15 , -3 . 0) PI
100% 21
: 16:53 19:57 21:03
16:00 18:00 20:00 22
316.9824 S:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 .
100%. 16:12 17:4818;47 20i2^ 22
.' ....... r
50 j
ie!ob ' ' ' is-ob ' 2o!ob 22
8:00 30:00 32:00 34:00 Time
)
>8E8 5.2E7
.2 . 6E7
V , O.ORO
:00 24:00 26:00 28:00 30:00 32:00 34:00 Time
CD(3,3,3,100.00%,11180.0,1.00%,F,F)
59 27-51 2.9E4
22:5823:59 26:34 1 29:1930j20 31:2932:30 34:16
^^
00 24:00 26:00 28:00 30:00 32:00 34:00 Time
0,1.00%,F,F)
^0623:0324^-01 25:34 27:51 29:0029:57 30:59 32:1033:09 34:13 9.4E7
i.4.7E7
0 .ORO
00 24lob ' 26lob ' ' 28-ob 30:00 32:00 34!ob " Time
-------
OPUSquan 22-JUL-1998
Page 1
Page 1 of 1
Run #6 Filename a22ju!98a S: 2 I: 1 Acquired: 22-JUL-98 10:35:22 Processed: 22-JUL-98 11:58:33
Run: a07feb98f Analyte: m23_conf Cal: 07feb-m23» Results: Quan : V3.5 17-APR-1997 11:14:34
Sample text: CS3 Comments: OPUS : V3.5X 17-APR-1997 11:31:23
Typ Name
Unk 2,3,7,8-TCDF
BS/RT 13C-2,3,7.8-TCDF
Total Tetra Furans
DPE HxCDPE
IMC QC CHK ION (Tetra)
Resp
1.7e+07
3.7e+08
2.06+07
RA
0.79 y
0.78 y
0.23 n
RT
27:54
27:51
24:17
NotFnd
NotFnd
Cone
Dev'n
4.95 -1.1
89.7
5.65 -1.1
Mod?
n
n
n
n
n
-------
'•>
••>
o
00
[File: A22JUL98A Acq: 22 ML 1998 10:35:22 Exp:
Sample #2 Text: CS3 ALS #2
303.9016 S:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3,3,3
100%
50_
305.
1003
50_
0
315.
100S
50:
o:
317.
100%
50 j
375.
ielob islob ' 2olob 22lob
8987 S:2 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD(3,3,3
ielob islob 2olob 22lob
9419 S:2 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD(3,3,3
ielob ielob 2olob 22lob
9389 S:2 SMO{1,3) BSUB(128, 15 , -3 . 0) PKD(3,3,3
ielob islob 2olob 22lob
8364 S:2 SMO(1,3) BSUB(128, 15, -3 .0) PKD(3,3,3
10C\L
50lr\
0.1
316.
100%
50_
^&£^~^^
ielob islob 2olob 22lob
9824 S:2 SMO(1,3) PKD{3 , 3 , 3 , 100 . 00% , 0 . 0 , 1 . 00%
16:06 18:14 19:52 20:59 22:0923:1
16:00 islob 2olob 22lob
M23_DB225 Voltage SIR EI+ GC Autospec-UltimaE Paradigm
, 0.10%, 6332. 0,1. 00%, F,F)
A7.59E6 9.1E5
fl F~
1
24:00 26:00 28
, 0.10%, 7340. 0,1. 00%, F,F)
A9.6
-'
24 1 00 26lob 28
, 0.10%, 17408. 0,1. 00%, F,F)
Al.jj
24:00 26:00 28
, 0.10%, 19924. 0,1. 00%, F,F)
A2.C
24:00 26:00 28
,100. 00%, 87592. 0,1. 00%, F,
^^^JlSl^ZvJ*^^3^^V^
\^ A2.21E5
:00 30:00 32:00 34:00
!OE6
A2.48E5
loo 30:00 32:00 34lob
OE8
1
:00 30:00 32:00 34:00
5E8
f i i i ' i | i t •" r — i — i— i — i i i — i I i — i— i — r'
:00 30:00 32:00 34:00
F)
£Ji^^_^^.?2^^
24lob 2elob 28 ob s'olob ' ' ' 32lob ' ' ' 34lob
,F,F)
524:13 25:28 26:4527:4428:4529:5430:54 12-n H-4R
24100 26100 28
00 30:00 32100 ' ' 34lob
L4.5E5
LO.OEO
Time
1.1E6
L5.6E5
LO.OEO
Time
1.8E7
L8.9E6
LO.OEO
Time
2.3E7
_O.OEO
Time
1.3E5
L6.3E4
10. OEO
Time
_7.3E7
_3 . 6E7
LO.OEO
Time
-------
OPUSquan 23-JUL-1998
Page 1
Page 3 of 3
Run *8 Filename a22ju!98d S: 1 I: 1 Acquired: 22-JUL-98 21:08:02 Processed: 23-JUL-98 07:58:32
Run: a07feb98f Analyte: m23_conf Cal: 07feb-m23» Results: m8290-23-» Quan : V3 .5 17-APR-1997 11:14:34
Sample text: BE CS3 Comments: OPUS : V3.5X 17-APR-1997 11:31:23
Typ Name
Unk 2,3,7,8-TCDF
ES/RT 130-2,3,7,8-TCDF
Total Tetra Furans
DPE HxCDPE
LMC QC CHK ION (Tetra)
Resp
2.4e+07
5.1et08
2.6e+07
RA
0.77 y
0.78 y
4.52 n
RT
27:51
27:49
19:50
NotFnd
NotFnd
Cone
4.92
124
5.43
Dev'n
-1.6
-1.6
Mod?
n
n
n
n
n
-------
o
iV
-------
Section 3
Analytical Results
Documentation for the Analysis
of
Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans
-------
Paradigm Analytical Labs
Method 23
1MB
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ(ND=l/2)
Amount
(ng)
EMPC
ND
ND
ND
EMPC
0.0035
0.0166
EMPC
0.0012
ND
0.0014
0.0009
EMPC
0.0008
EMPC
EMPC
EMPC
ND
ND
ND
0.0036
ND
0.0012
0.0028
ND
0.0004
0.0011
DL
tag)
0.0006
0.0004
0.0009
0.0006
0.0006
0.0004
0.0011
0.0007
0.0007
0.0006
0.0004
0.0003
0.0004
0.0004
0.0009
0.0011
0.0007
0.0006
0.0004
0.0006
0.0004
0.0007
0.0006
0.0003
0.0009
EMPC
t"»8>
0.0012
0.0016
0.0012
0.0008
0.0021
0.0015
0.0008
0.0040
0.0020
0.0070
0.0010
0.0050
0.0040
0.0020
0.0023
RT
(mitt.)
28:28
34:42
34:46
34:58
37:10
40:01
27:28
31:58
34:10
34:15
34:38
35:08
36:21
37:31
40:09
Ratio
1.11
0.73
1.14
0.81
1.17
0.87
0.94
1.38
1.18
1.26
0.59
1.42
1.23
1.36
0.47
•
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Texas Lime Kiln
1MB
L1071
1071-0
Sample Information
Matrix:
Weight/Volume:
Moisture / Lipids:
Original pH:
NA
14rJui-98
20-M-98 ' /
Filename:
Retook:
Begin ConCal:
EndConCal:
Initial Cal:
Air
1
0.0
NA
Grams
%
a20ju!98b-3
a20ju!9Sb-l
a20jul98b-2
a20jul98b-17
IB8290-23-071798
1/2
r f
072
-------
Paradigm Analytical Labs
Method 23
1MB
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13Ci2-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13Cu-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
13C12-1,2,3,4,6,7,8-HPCDF
Cleanup Standards
37CL,-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
13Ci2-l,2,3,4,7,8-HxO)D
13Cu-l,2,3,4,7,8-HxO)F
"Cu-WWW-BpCDT
Injection Standards
13CU-1,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
ing)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured
Amount
ing)
3.29
: 3.20
3.21
3,44
6.20
2,48
1.88
1.92
1.49
3.51
2.97
3.46
3.22
3.49
Percent
Recovery
{*/•)
82.3
79.9 .
80.1
86.0
77.5
62.1
47.0
47.9
37.1
87.7
74.1
86.5
80.5
87.3
" : - '
RT
(nun.)
28:27
32:37
34:45
37:09
40:00
27:26
31:57
34:14
36:21
28:28
32:24
34:42
34:09
37:30
28:10
34:58
Ratio
0.78
1.53
1.26
1.04
0.9
0.78
1.56
0.52
0.44
1.56
1.24
0.52
0.44
0.78
1.24
Qualifier
V
Client Information
Project Name:
Sample ID:
Laborator Information
Project ID:
Sample ID:
Collection Date:
Receipt Date: ;
Extraction Date:
Analysis Date: \
-,-.', r4-, - •
;^-V';V"?£f-«~vi"
Texas Lime Kiln
LMB
L1071
1071-0
Sample Information
Matrix:
Weight/Volume:
Moisture / Lipids:
Original pH:
Filename:
Air
1
0.0
NA
Grams
%
a20jul98b-3
a20jul98b-l
a20ju!98b-2
a20jul98b-17
073
-------
OPUSquan 21-JUL-1998 Page
Filename a20ju!98b
Sample 3
Acquired 20-JUL-98 22:46:27
Processed 21-JUL-98 13:41:08
Sample ID 1071-0 xl/2
Cal Table m8290-23-071798
Results Table M8290-23-072098B
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
SS
Name; Resp;
2,3,7, 8-TCDD; 3.69e+05;
1,2, 3,7,8-PeCDD; *;
1,2,3,4,7,8-HxCDD; 2.84e+04;
1,2,3,6,7,8-HxCDD; 4.90e+04;
1,2,3,7,8,9-HxCDD; 1.086+05;
1,2,3,4, 6,7, 8-HpCDD; 2.026+05;
OCDD; 7.696+05;
2,3,7,8-TCDF; 1.13e+05;
1,2,3,7,8-PeCDF; 6.43e+04;
2,3,4,7, 8-PeCDF; *;
1,2,3,4,7,8-HxCDF; 6.56e+04;
1,2, 3, 6,7,8-HxCDF; 5.39e+04;
2,3,4,6,7,8-HxCDF; 4.21e+04;
1,2,3,7,8,9-HxCDF; 3.67e+04;
1,2,3,4,6,7,8-HpCDF; 6.92e+04;
1,2,3,4,7,8,9-HpCDF; 4.156+04;
OCDF; 4.07e+04;
13C-2,3,7,8-TCDD; 4.116+08;
13C-l,2,3,7,8-PeCDD; 2.78e+08;
13C-l,2,3,6,7,8-HxCDD; 3.21e+08;
13C-1 ,2,3,4,6,7, 8-HpCDD; 2 . 55e+08 ;
13C-OCDD; 3.70e+08;
13C-2,3,7,8-TCDF; 3.89e+08;
13C-l,2,3,7,8-PeCDF; 2.56e+08;
13C-l,2,3,6,7,8-HxCDF; 2.21e+08;
13C-l,2,3,4,6,7,8-HpCDF; 1.04e+08;
13C-1,2,3,4-TCDD; 4.55e+08;
13C-l,2,3,7,8,9-HxCDD; 3.72e+08;
37Cl-2,3,7,8-TCDD; 4.01e+08;
13C-2,3,4,7,8-PeCDF; 3.956+08;
13C-l,2,3,4,7,8-HxCDD; 2.29e+08;
13C-l,2,3,4,7,8-HxCDF; 2.89e+08;
13C-l,2,3,4,7,8,9-HpCDF; 1.91e+08;
37C1-2, 3, 7, 8-TCDD; 4.01e+08;
13C-2,3,4,7,8-PeCDF; 3.95e+08;
13C-1 , 2,3,4,7, 8-HxCDD; 2 . 29e+08 ;
13C-l,2,3,4,7,8-HxCDF; 2.89e+08;
13C-1,2, 3, 4,7,8,9-HpCDF; 1.91e+08;
6
1
2
4
1
3
5
3
3
3
1
2
3
2
1
1
1
1
1
1
1
1
7
3
2
2
4
2
1
9
5
4
2
1
9
5
1
Ion 1;
.40e+04;
* .
.20e+04;
.61e+04;
.84e+04;
.09e+05;
.57e+05;
.46e+04;
.73e+04;
* .
.55e+04;
.Ole+04;
.57e+04;
.15e+04;
.82e+04;
.39e+04;
.31e+04;
.796+08;
.68e+08;
.79e+08;
.306+08;
.75e+08;
.70e+08;
.56e+08;
.58e+07;
.19e+07;
.OOe+08;
.06e+08;
.Ole+08;
.41e+08;
. 27e+08;
. 83e+07;
. 88e+07;
. Ole+08;
. 41e+08;
. 27e+08;
. 83e+07;
. 88e+07;
Ion 2;
3.05e+05;
* .
1.64e+04;
2.29e+04;
5.98e+04;
9.30e+04;
4.12e+05;
5.82e+04;
2.70e+04;
* .
3.01e+04;
2.39e+04;
2.64e+04;
1.51e+04;
3.10e+04;
1.76e+04;
2.76e+04;
2.31e+08;
1.10e+08;
1.42e+08;
1.25e+08;
1.95e+08;
2.19e+08;
1. OOe+08;
1.456+08;
7.236+07;
2.55e+08;
1.666+08;
1.54e+08;
1.026+08;
1.916+08;
1.336+08;
1.54e+08;
1.02e+08;
1.916+08;
1.33e+08;
RA; ?
0 . 2 1 ; n
*;n
0.73;n
1.14;y
0.81;n
1.17;y
0.87;y
0.94,-n
1.38;y
*;n
1.18,-y
1.26,-y
0.59,-n
1.42;y
1.23;n
1 . 3 6 ; n
0.47;n
0.78,-y
1.53;y
1.26;y
1.04,-y
0.90,-y
0.78;y
1.56;y
0.52,-y
0.44;y
0.78,-y
1.24;y
_ - _
1.56;y
1.24;y
0.52;y
0.44;y
1.56;y
1.24,-y
0.52;y
0 . 4 4 ; y
RT;
,- 28:28;
,-NotFnd;
; 34:42;
; 34:46;
; 34:58;
; 37:10;
; 40:01;
; 27:28;
; 31:58;
,-NotFnd;
; 34:10;
; 34:15;
; 34:38;
; 35:08;
; 36:21;
; 37:31;
; 40:09;
; 28:27;
; 32:37;
; 34:45;
; 37:09;
; 40:00;
; 27:26;
; 31:57;
; 34:14;
; 36:21;
; 28:10;
; 34:58;
; 28:28;
; 32:24;
; 34:42;
; 34:09;
; 37:30;
; 28:28;
; 32:24;
; 34:42;
; 34:09;
; 37:30;
Cone ;
0.091;
* .
0.014;
0.017;
0.039;
0.088;
0.415;
0.030;
0.029;
* .
0.035;
0.022;
0.020;
0.020;
0.053;
0.038;
0.021;
82.298;
79.870;
80.132;
86.036;
155.060;
62.051;
46.946;
47.894;
37.130;
94.263;
93.844;
87.685;
74.131;
86.503;
80.451;
87.262;
106.605;
157.961;
108.049;
166.669;
235.104;
DL;
0.0137;
0.0100;
0.0215;
0.0154;
0.0157;
0.0102;
0.0262;
0.0176;
0.0164;
0.0158;
0.0103;
0.0080;
0.0093;
0.0108;
0.0233;
0.0282;
0.0181;
0.0420;
0.0268;
0.0448;
0.0217;
0.2100;
0.0232;
0.0080;
0.1691;
0.0381;
_ .
- ;
0.0126;
0.0082;
0.0679;
0.2169;
0.0486;
0.0169;
0.0105;
0.0776;
0.3934;
0.1532;
S/N1; ?;
9;y;
*;n;
2;n;
3;n;
5;y;
30;y;
33;y;
6,-y;
ll;y;
*;n;
8;y;
6;y;
4;y;
4;y;
6;y;
5,-y;
4;y;
3271;y;
12697;y;
6204,-y;
5259;y;
12943 ;y;
8050;y;
34431;y;
757;y;
1399,-y;
4013;y;
6538,-y;
19215;y;
57969;y;
5331;y;
1065;y;
2252;y;
19215;y;
57969;y;
5331;y;
1065;y;
2252 ;y;
S/N2;?
33, -y
*;n
2;n
3;n
6;y
21;y
89 ;y
4;y
3;y
*;n
9;y
7;y
7;y
5;y
7;y
4;y
4;y
10424, -y
22040;y
5477, -y
35516;y
790, -y
7842, -y
23503;y
1136;y
3842,-y
12712;y
5854;y
_ . _
38953;y
4562;y
1697;y
6218;y
-; -
38953;y
4562;y
1697 ;y
6218;y
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 8
-------
OPUSguan 21-JUL-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:2
Run: 8 File: a20ju!98b S:3 Acq: 20-JUL-98 22:46:27 Proc:21-JUL-98 13:41:08
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-0 xl/2
Amount: 0.04
Cone: 0.04
Tox #1: -
Name
2,3,7,8-TCDF
of which 0.03
of which 0.03
Tox #2: -
# RT Respnse
named and 0.01
named and 0.01
Tox #3: -
RA
1 27:28 l.le+05 0.94 n
l.le+05
2 28:34 5.4e+04 1.19 n
5.4e+04
Cone
0.03
t
C
0.01
unnamed
unnamed
Area Height
S/N Mod?
5.5e+04 8.6e-i-03 5.6e+00 y n
5.8e+04 1.26+04 3.9e+00 y n
L
2.9e+04 6.9e+03 4.5e+00 y n
2.5e+04 6.1e+03 2.0e+00 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:4
Run: 8 File: a20ju!98b S:3 Acq:20-JUL-98 22:46:27 Proc:21-JUL-98 13:41:08
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3 . 5 17-APR-1997 11:14:34 Sample text: 1071-0 xl/2
Amount: 0.12
Cone: 0.12
Tox #1: -
Name
of which 0.09
of which 0.09
Tox #2: -
# RT Respnse
named and 0.02
named and 0.02
Tox *3: -
RA
1 25:17 5.9e+04 0.81 y
5.9e+04
2 28:11 1.6e+04 1.13 n
1.66+04
2,3,7,8-TCDD
28:28 3.7e+05
3.7e+05
0.21 n
29:56 2.3e+04 0.43 n
2.36+04
Cone
0.01
0.00
£
0.09
e
1
o.oi
unnamed
unnamed
Area Height
S/N Mod?
2.7e+04 6.2e+03 3.76+00 y n
3.3e+04 6.7e+03 3.6e+00 y n
3
8.5e+03 2.9e+03 1.7e+00 n n
7.5e+03 2.06+03 l.le+00 n n
)
6.46+04 1.4e+04 8.6e+00 y n
3.06+05 6.1e+04 3.3e+01 y n
6.96+03 1.5e+03 8.8e-01 n n
1.6e+04 4.6e+03 2.5e+00 n n
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F-.2 Mass: 339.860 341.857 Mod? no #Hom:l
Run: 8 File: a20ju!98b S:3 Acq:20-JUL-98 22:46:27 Proc:21-JUL-98 13:41:08
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»ResultS: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-0 xl/2
Amount: 0.03
Cone: 0.03
Tox #1: -
Name
1,2,3,7,8-PeCDF
of which 0.03
of which 0.03
Tox #2: -
# RT Respnse
named and *
named and *
Tox #3: -
RA
1 31:58 6.4e+04 1.38 y
6.4e+04
Cone
0.03
unnamed
unnamed
Area Height
S/N Mod?
3.7e+04 1.3e+04 l.le+01 y n
2.7e+04 9.7e+03 3.2e+00 y n
Page 4 of 8
-------
OPUSguan 21-JUL-1998 Page 2
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:0
Run: 8 File: a20ju!98b S:3 Acq-.20-Jtn.-98 22:46:27 Proc:21-JUL-98 13:41:08
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23->Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-0 xl/2
Amount: * of which * named and * unnamed
Cone: * of which * named and * unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1 NotF» * * n *
* * * * n n
* * * n n
076
-------
OPUSquan 21-JUL-1998
Page 3
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no tHom:13
Run: 8 File: a20ju!98b S:3 Acq:20-JUL-98 22:46:27 Proc:21-JUL-98 13:41:08
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-0 xl/2
Amount: 0.15
Cone: 0.15
Tox #1: -
Name
of which 0.10
of which 0.10
Tox #2: -
# RT Respnse
named and 0.06
named and 0.06
Tox #3: -
RA
1 33:32 3.2e+04 1.76 n
3.2e+04
2 33:37 9.4e+03 1.09 y
9.4e+03
1,2,3,4,7,8-HxCDF 3 34:10 6.6e^04 1.18 y
6.6e+04
1,2, 3, 6,7,8-HxCDF 4 34:15 5.4e+04 1.26 y
5.4e+04
2,3,4,6,7,8-HxCDF 5
34:38 4.2e+04 0.59 n
4.2e+04
34:42 1.3e+04 0.21 n
1.3e+04
7 34:46 1.4e+04 0.94 n
1.4e+04
1,2,3,7,8,9-HxCDF 8 35:08 3.7e+04 1.42 y
3.7e+04
9 35:11 3.0e+04 1.49 n
3.0e+04
10 35:19 2.0e+03 3.36 n
2.0e+03
11 35:24 6.1e+03 0.73 n
6.1e+03
12 35:30 3.7e+03 1.05 n
3.7e+03
13 35:34 5.3e+03 1.53 n
5.3e+03
Cone
0.02
3
0.00
'.
'.
0.03
0.02
0.02
0.01
3
0.01
(
0.02
3
0.01
3
3
0.00
3
<
0.00
0.00
3
3
0.00
unnamed
unnamed
Area Height S/N Mod?
2.0e+04 6.5e+03 4.1e+00 y n
1.2e+04 4.0e+03 3.7e+00 y n
D
4.9e+03 1.8e+03 1.2e+00 n n
4.5e+03 1.5e+03 1.4e+00 n n
3
3.6e+04 1.36+04 8.5e+00 y n
3.0e+04 9.9e+03 9.1e+00 y n
3.0e+04 l.Oe+04 6.4e+00 y n
2.4e+04 8.1e+03 7.5e+00 y n
I
1.6e+04 6.1e+03 3.9e+00 y n
2.6e+04 7.7e+03 7.1e+00 y n
1
2.2e+03 1.46+03 8.7e-01 ri n
l.Oe+04 2.9e+03 2.6e+00 n n
L
6.8e+03 2.3e+03 1.5e+00 n n
7.2e+03 1.5e+03 1.4e+00 n n
2
2.2e+04 7.0e+03 4.5e+00 y n
1.56+04 5.5e+03 S.le+OO y n
1
1.8e+04 7.0e+03 4.4e+00 y n
1.2e+04 3.9e+03 3.6e+00 y n
3
1.66+03 7.46+02 4.7e-01 n n
4.7e+02 3.36+02 3.1e-01 n n
2.6e+03 9.66+02 6.1e-01 n n
3.56+03 l.Oe+03 9.4e-01 .n n
D
1.96+03 7.7e+02 4.9e-01 n n
1.8e+03 6.2e+02 5.7e-01 n n
3
3.2e+03 1.4e+03 8.7e-01 n n
2.1e+03 8.7e+02 8.0e-01 n n
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:10
Run: 8 File: a20ju!98b S:3 Acq:20-JUL-98 22:46:27 Proc:21-JUL-98 13:41:08
Tables: Run: a20ju!98b Analyte: »8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-0 xl/2
Amount: 0.18
Cone: 0.18
Tox #1: -
Name
of
of
#
1
which
which
Tox
RT
33:53
0.
0.
#2
07
07
: -
Respnse
5.
5.
6e+
6e+
04
04
named
named
and
and
Tox
RA
1.60
n
0.11
0.11
#3: -
Cone
0.02
3
unnamed
unnamed
Area
4e+04
Height
1.2e+04
S/N Mod?
4.3e+00 y n
r
07?
-------
OPUSquan 21-JUL-1998
Page 4
2.1e+04 8.1e+03 2.8e+00 n n
1,2,3,4,7,
1,2,3,6,7,
1,2,3,7,8,
2 34:00 l.Se+04 3.49 n 0.01
l.Se+04
3 34:04 7.2e+03 1.18 y 0.00
7.26+03
4 34:10 7.8e+04 2.93 n 0.03
7.86+04
5 34:14 6.76+04 2.98 n 0.03
6.7e+04
6 34:19 4.7e+04 0.94 n 0.02
4.7e-04
7 34:26 1. 7e+04 0.86 n 0.01
1.7e+04
8-HxCDD 8 34:42 2.8e+04 0.73 n 0.01
2.8e+04
S-HxCDD 9 34:46 4.9e+04 1.14 y 0.02
4.9e+04
9-HxCDD 10 34:58 1.le+05 0.81 n 0.04
l.le+05
,le+04
,3e+03
,9e+03
, 3e+03
,9e+04
.Oe+04
.Oe+04
7e+04
,3e+04
4e+04
7e+03
.Oe+03
2e+04
6e+04
.6e+04
3e+04
,8e+04
.Oe+04
4.56+03
l.Se+03
1.6e+03
l.Se+03
2.0e+04
5.66+03
l.Se+04
4.3e+03
7.0e+03
6.56+03
1.96+03
3.4e+03
5.46+03
6.66+03
7.76+03
7.7e+03
1.4e+04
1.6e+04
1.6e+00 n n
5.2e-01 n n
5.8e-01 n n
5.2e-01 n n
7.0e+00 y n
1.9e+00 n n
5.3e+00 y n
1.5e+00 n n
2.5e+00 n n
2.2e+00 n n
6.7e-01 n n
1.2e+00 n n
1.9e+00 n n
2.3e+00 n n
2.7e+00 n n
2.6e+00 n n
5.1e+00 y n
5.6e+00 y n
078
-------
PUSguan 21-JUL-1998 Page 5
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no tHom:2
Run: 8 File: a20ju!98b S:3 Acq:20-JUL-98 22:46:27 Proc:21-JUL-98 13:41:08
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-0 xl/2
Amount: 0.09 of which 0.09 named and * unnamed
Cone: 0.09 of which 0.09 named and * unnamed
Tox #1: - Tox #2: - Tox #3: -
«Jame # RT Respnse RA Cone Area Height S/N Mod?
1,2,3,4,6,7,8-HpCDFl 36:21 6.9e+04 1.23 n 0.05
6.9e+04 3.8e+04 l.le+04 6.1e+00 y n
3.1e+04 9.7e+03 7.3e+00 y n.
1,2,3,4,7,8,9-HpCDF2 37:314.1e+04 1.36n 0.04
4.1e+04 2.4e+04 8.6e+03 4.7e+00 y n
1.8e+04 5.2e+03 3.9e+00 y n
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:4
Run: 8 File: a20ju!98b S:3 Acq:20-JUL-98 22:46:27 Proc:21-JUL-98 13:41:08
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-0 xl/2
Amount: 0.19 of which 0.09 named and 0.10 unnamed
Cone: 0.19 of which 0.09 named and 0.10 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1 36:21 4.0e+04 5.24 n 0.02
4.0e+04 3.3e+04 l.le+04 1.2e+01 y n
6.4e+03 2.6e+03 2.1e+00 n n
2 36:35 1.2e+05 1.30 n 0.05
1.2e+05 6.8e+04 2.1e+04 2.3e+01 y n
5.3e+04 1.8e+04 1.5e+01 y n
1,2,3,4,6,7,8-HpCDD3 37:102.0e+05 1.17y 0.09
2.0e+05 l.le+05 2.7e+04 3.0e+01 y n
9.3e+04 2.5e+04 2.1e+01 y n
4 37:30 6.4e+04 3.83 n 0.03
6.4e+04 5.1e+04 1.4e+04 1.5e+01 y n
1.3e+04 4.66+03 3.8e+00 y n
-------
File: A20JUL98B Acq: 20-JUL-1998 22:46:27 Exp : EXP_M23_DB5_OVATION Voltage SIR EI+- GC Autospec-UltimaE Paradigm
Sample #3 Text: 1071-0 xl/2 ALS #4
319.8965 S:3 SMO(1,3) BSUB(128,
100%.
50_
o:
321.
1001
50J
ol
331.
100%
50J
o:
333.
100%
50J
ol
327.
100%
50 1
o:
316.
100%
50 j
o:
n A6.33E3
-v~^-v^^ >W/W~/ /Wyy ^_. -^
24 loo'
8936 S:3 SMO(1,3) BSUB(128,
24:00
9368 S:3 SMO(1,3) BSUB(128,
24:00
9339 S:3 SMO(1,3) BSUB(128,
— i 1 1 1 1 1 i 1 1 1 —
24:00
8847 S:3 SMO(1,3) BSUB(128,
•" ' ' ' "'' '• r- \— ii i i
24:00
9824 S:3 SMO(1,3) PKD(3,3,3
23:19 24:17 24
• \r
24:00
15, -3.0) PKD(3,3,3,0.10%,1656.0,1.00%,F,F)
A6.40E4 r!.7E4
A3.92E4 A
A "A M A8.49E3/ \
/ \ . s/^\ A A. /N /^^\\ /2\ ^ A^ /\^^^X
-
L8.6E3
LO.OEO
25loO 26loO 27^00 2s!oO 29loO 30^00 Time
15, -3.0) PKD(3,3,3,0.10%,1856.0,1.00%,F,F)
A3.05E5
A
A3.27E4 ~l\ ^^>~J
6.3E4
L3.2E4
.O.OEO
25:00 26:00 27loO 28:00 29:00 30:00 Time
15, -3.0) PKD(3,3,3,0.10%,10444.0,1.00%,F,F)
AA
4.2E7
.2 . 1E7
lO.OEO
25loO 26loO 27loO 2s!oO 29:00 30:00 Time
15, -3.0) PKD(3,3,3,0.10%,4200.0,1.00%,F,F)
A2.55E8
A A2.31E8
/ I A
AA
5.3E7
12.7E7
"O.OEO
25. -00 26:00 2?! 00 28:00 29:00 30:00 Time
15, -3.0) PKD(3,3,3,0.10%,4032.0,1.00%,F,F)
A4.01E8
A
A
7.8E7
L3.9E7
LO.OEO
25:00 26:00 27:00 28:00 29:00 30:00 Time
, 100. 00%, 0.0,1. 00%, F,F)
.47 ?<;.nQ 9^-Tfi 9fi-nR 9fi:Rd 57 : 17_ 7.1 : S5 28:35 29:05
VT
r7.5E7
L3.8E7
: O.OEO
'25:00 26:00 27 loo' 28:00 29:00 30:00 Time
o
00
o
-------
File: A20JUL98B Acq: 20-JUL-1998 22:46:27 Exp: EXP_M23_DB5_OVATION Voltage SIR El-t- GC Autospec-UltimaE—Paradigm
Sample #3 Text: 1071-0 xl/2 ALS #4
355.8546 S:3 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%, 2316.0,1.00%,F,F)
100* A3.72E4 _1.7E4
A2.25E4 A A3.47E4 A3.15E4
50_
30112 30:24 30:36 30i48 31iOO 31il2 31i24 31i36 31i48 32.:00
357.8517 S:3 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%, 1352.0,1.00%,F,F)
100%
32124 ' 32136 ' 32148 ' 33!66 ' 33112
18.5E3
50_
A1.39E4
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:1
367.8949 S:3 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,4744.0,1.00%,F,F)
100%.
50_
/\2.78E3
/ ^L
LOE4
L5.2E3
.O.OEO
32.-24 ' 32.'36 ' 32.!48 ' 33!6d 33! 1 2 Time
A1.70E8
..6.0E7
_3.OE7
0 •
36!l2 ' 36!24 ' 36!36 ' SoUs ' 3l!6d ' 3i!l2 31:24 ' 3i!36 ' 3l!48 ' 32l6d ' 32!l2 ' 32!24 ' 32536 '^Us ' 33!6d ' 33? 12 Time
69.8919 S:3 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3 , 3 , 0.10%, 1764.0,1.00%,F,F)
100%,
50_
AI.:
OE8
^3.9E7
11.9E7
' ' ' I | I I I I I | I I I I I | I I I I < | I I T I I | 1 I I I I | I I I I I | I I | I I [ I | I I | I I | 1 •! | [ | | | ! I I | | | |/ i | |i~1 I I I I I I I I I I } 0 • OEO
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32!36 32.:48 33!oO 33!l2 Time
66.9792 S:3 F:2 SMO(1,3) PKD(3,3 , 3,100.00%,0.0,1.00%,F,F)
00%. 30:18 30:49 31:14 31:25 31:42
so:
o:
32:02 32:14
.12^3 J12^43
3.3 : 01 33 : 11 7 . 3R7
36!l2 ' 36J24 ' 30:36 ' 3o!48 ' 3i!66 ' 3l!l2 ' 3l!24 ' 3l!36
3.6E7
.O.OEO
Time
32!6d
1 ' i ' ' ' ' ' i ' ' ' ' ' i ' ' ' ' ' i ' ' ' ' ' i
32:24 32:36 32:48 33:00 33:12
-------
File: A20JUL98B Acq: 20-JUL-1998 22:46:27 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample 13 Text: 1071-0 xl/2 ALS #4
389.8156 S:3 F:3 SMO ( 1 , 3 ) BSUB( 128 , 15 , -3 . 0) PKD(3 , 5 , 2 , 0 . 10% , 2820 . 0 , 1 . 00% , F, F)
100S
50 "
-
0 "
A5.85E4 „. -.„.
rY A4.84E4
A3.42E4 \ A A
A / \/\ A2.61E4 / \
\ V A2-29E4 r\ \
I \Ai.i5E4 / Y \y\ A/ \ ,/ \
s~-^—^ — ^v^^\ _^-^-~~^xV-^/ i \>~--_^^-m^_y — — -^-^^ — \x s^^~^~^
2.1E4
L1.0E4
O.OEO
'33 124' ' ' 3313V ' '33 UV ' '34 loo' ' '34 12' ' '34l2V ' '34! 36 ' 34148 35loO 3sll2 3sl24 35136 35148 Time
391.8127 S:3 F:3 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 2904 . 0 , 1 . 00% , F, F)
100*
so_:
O-1
_i
A5.98E4
A2.15E4 A2.29E4 / \
/ \ A2.44E4 A A / \
/V4.28E3 /\^~^y\ A^-3. LE3 /V \3.56p y A6.91E3 A2.29E3
1.8E4
.8.9E3
n . OP.O
'33l2'4' ' '3313V ' '33U'8' ' '34lo'o' ' '34 12' ' '34124' ' '34! 36 34Us 3sloO 35ll2 35124 3sl36 35l48 Time
401.8559 S:3 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10% , 11216 . 0 , 1 . 00%, F, F)
100%
so:
0"
A1.79E8 A2.06E8
A A A
M
n\^ I ^
7.3E7
.3.7E7
O.OEO
— 1 — i — i — i — i — i — i — i — i — i — i — i — i — r— r— l — l — l — i — i — 1 — l — l — r— i — l — 1 — l — l 1 1 l — 1 — i — l — l — l — r— i — r*T — Hr — r— i — r I 1 i i | i i i 1 1 | 1 I I 1 I | I i 1 I I |— I i I r— l |
33124 33136 33148 34loO 34 12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
403.8530 S:3 F:3 BSUB(128 , 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 10304 . 0 , 1 . 00%, F, F)
100%,
so:
0"
A1.42E8 A1.66E8
A A
A
. / V^
6.0E7
L3.0E7
O.OEO
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . I--T—T T T 1 1 . 1 1 ..... 1 ..... | 1 'I 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 I""" ' | 1 ' ' ' ' [
33124 33136 33148 34:00 34.12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
380.9760 S:3 F:3 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00% , F, F)
100%
so:
0"
33:25 33:39 33^§3 34:01 34:10 34:24 34:40 3-4^5335:00 35:15 35:3635:43
^
1.6E8
.7.9E7
O.OEO
'33124' ' '33:3V ' '33 Us' ' '34lo'o' ' '34 12' ' '34124' ' '34136' ' '34-Us 35-!oO 35ll2 35l24 35^36 35-48 Time
o
00
-------
File: A20JUL98B Acq: 20-JUL-1998 22:46:27 Exp: EXP_M23_DB5_OVATION Voltage SIR EH- GC Autospec-UltimaE Paradigm
Sample #3 Text: 1071-0 xl/2 ALS #4
423.7767 S:3 F:4 SMO(1,3) BSUB ( 128, 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 904 . 0 , 1 . 00%, F, F)
100% A1.09E5 2.8E4
! A6.84E4 A '-
50.: A3.33E4 A /\ ^'^ ^ • ««
0'_— - — . ,~— > V / V _ — <~-*^ ) \_- / V. ^_^. _- _-__ ^~__ s— O.OEO
36:00 36:12 36:24 36:36 36:48
425.7737 S:3 F:4 SMO(1,3) BSUB (128, 15, -3
1001
: A5.26E4
A
A6.35E3 } \^
36:00 36:12 36:24 36:36 36:48
435.8169 S:3 F:4 SMO(1,3) BSUB (128, 15, -3
100S
so:
"' 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 'fr"> 1 1 T 1 1 1 1 1
36100 36ll2 36:24 36:36 36:48
437.8140 S:3 F:4 SMO(1,3) BSUB (128, 15, -3
100%
so:
36100 36ll2 36:24 36:36 36:48
430.9728 S:3 F:4 SMO(1,3) PKD(3 , 3, 3 , 100 .
100*, ^ 36:05 36:25 36:46
/
50_
0'
36:00 36:12 36:24 36:36 36:48
37:00 37:12
.0) PKD(3,3,3,
A9.30E4
37 16o 37 1 12
.0) PKD(3,3,3,
A1.30E8
' 37166 ' 37.' 12
.0) PKD(3,3,3,
A1.25E8
i i i | i i fi i i | i i
37:00 37:12
00%, 0.0, 1.00%,
37^01 37
i I i | i r i i i | i i
37:00 37:12
37l 24 37:36 37:48 38-00 38:12 38:24 38:36 38:48 39:00 Time
0.10%, 1224. 0,1.00%,F,F)
2.6E4
.1.3E4
A1.33E4
-^~^^~± — ^_ — O.OEO
371 24 37136 37148 38166 38112 38124 38136 38:48 39.00 Time
0.10%, 6752. 0,1.00%,F,F)
3.6E7
_1.8E7
37:24 37:36 37148 38:66 38:12 38124 38:36 38:48 39 00 Time
0.10%,960.0,1.00%,F,F)
3.4E7
.1.7E7
0 . OF.O
37124 37136 37148 38166 38ll2 38124 38136 38148 39 00 Time
F,F)
:18 37:31 37:47 38:05 38:17 38:34 1 . 1E8
L5.4E7
O.OEO
37124 ' 37136 ' 37148 ' 38:66 ' 38:12 ' 38:24 38:36 38l48 39loO Time
-------
File
Samj
457.
1003
50_
0"
459.
1008
50J
0'
469.
100*
so:
0'
471.
100%
50J
0'
454.
lOOi
so:
o:
;: A20JUL38B Acq: 20-JUL-1998 22:46:27 Exp : EXP M23 DBS OVATION Voltage SIR EI + GC Autospec-UltimaE Parad
)le #3 Text: 1071-0 xl/2 ALS #4
7377 S:3 F:5 SMO ( 1 , 3 ) BSUB (128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 2660 . 0 , 1 . 00% , F, F)
A3 -57E5
J\_
39:12 ' ' 39124 ' ' 39^36 39:48 4o!ob 40:12 ' 40:24 4o!36 40:48 ' ' ' 41:
7348 S:3 F:5 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 1064 . 0 , 1 . 00% , F, F)
A4. 12E5
J\^
39:12 39:24 39!36 39148 4o!ob 4o!l2 4o!24 4o!36 40:48 41
7780 S:3 F:5 SMO(1,3) BSUB (128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 3088 . 0 , 1 . 00%, F, F)
Al . 75E8
J\_
39:12 39:24 39:36 39:48 4o!ob 40:12 4o!24 4o!36 40:48 41:
7750 S:3 F:5 SMO(1,3) BSUB (128 , 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 56940 . 0 , 1 . 00%, F, F)
A1.95E8
J\^
39:12 39l24 39:36 39:48 40:00 40:12 4o!24 4ol36 40:48 41 1
9728 S:3 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
39:07 39:3939:45 39:52 40:16 40:2840:35 40:45 40:52
'
. . . . , • . i .. | ....... i i i i | i i i i i | i i i i i | i i i i i | i i i i i |' i i i r i | i i i i i |
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:(
igm
9.1E4
_4.6E4
" 0 .OEO
00 Time
9.6E4
L4.8E4
10. OEO
00 Time
4.0E7
.2 . OE7
LO.OEO
00 Time
4.5E7
_2.3E7
O.OEO
00 Time
1.1E8
15.6E7
_O.OEO
DO Time
-------
File: A20JUL98B—Acq: 20-JUL-1998 22:46:27Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaEParadigm
Sample #3 Text: 1071-0 xl/2 ALS #4
303.9016 S:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1524.0,1.00%,F,F)
1004 A5.46E4
A2.91E4
. . A2.14E4
A6.59E3
50J
OJ
^/w/W/^/ Y
24:00 25:00 26!00 27iOO
305.8987 S:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2980.0,1.00%,F,F)
100% A5.82E4
50_
28:00
29:00
24:00 25:00 26:00 27:00
315.9419 S:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,4364.0,1.00%,F,F)
100% A1.70E8
50_
28:00
29:00
0.
T
arad
A,
301
\
V/N
30
301
30I(
^/\_/
30 : 1
_ — • —
1 \
30:C
igm
1.0E4
L5.2E3
O.OEO
DO Time
1.5E4
_7.7E3
: O.OEO
30 Time
3 . 5E7
L1.8E7
O.OEO
DO Time
4 . 5E7
_2.3E7
O.OEO
30 Time
_5.0E3
1 O.OEO
)0 Time
_7.5E7
_3.8E7
O.OEO
0 Time
l i 1 r-
T
T
24:00 25:00 26:00 27100 28:00 29:00
317.9389 S:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,5772.0,1.00%,F,F)
100% A2.19E8
50 j
375.8364
100%
T"- T
S:3
— i 1 —
24
SMO ( 1 ,
T 1 1 1 1—
•00
3) BSUB (128,
'25! oo
15, -3.0)
PKD (3,3
2e!oo
,3, 100. 00%, 1100
27100
.0,1.00%,
F,F)
28:00
28:10
n
29100
' 30U
50J
23-40 24:14 24:37 25i30 ^ 26:20 26:52 27;24
vAyA^^XxvjWV Ly^=yAVV^,^^
28:45 29:16
"T
T
24100 25iOO 26:00
316.9824 S:3 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 23:19 24:17 24j.47 25:09 25j_36 26:05
27TOO
_.2_6.j.5_4._27jLl7.
28 loo' ' ' ' 29100
28:35 29:05
50J
-• 1 r
28:00
29 loo'
~" 1 •"
24:00
25 I 00
26 loo'
27 loo'
o
on
-------
File: A20JUL98BAcq: 20-JUL-1998 22:46:27Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaEParadigm
Sample #3 Text: 1071-0 xl/2 ALS #4
339.8597 S:3 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1200.0,1.00%,F,F)
100* A4.97E4 1.8E4
A3.73E4
/ \
A1.95E4
A3.42E3 A5.84E3
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
341.8568 S:3 F:2 SMO(1,3) BSUB( 128, 15, -3 . 0) PKD (3 , 3 , 3 , 0 . 10%, 3020 . 0 , 1 . 00%, F, F)
100* A2.70E4
I 1 I I I I I r I I I I I T T T I T I 1 I I t r r-T-t-T-T-r-r T I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I | I I | I | | I | | | | | I | | | | | I
30il2 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
351.9000 S:3 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0.10%, 1556.0,1.00%,F,F)
100* A2.41E8
50J
A1.56E8
_4
Lo
Time
.3E4
.5E3
.OEO
Time
.OE7
.5E7
.OEO
Time
.8E7
.9E7
.OEO
Time
.1E4
.7E3
.OEO
Time
.3E7
.6E7
.OEO
Time
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32148 33166 33ll2
353.8970 S:3 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1484.0,1.00%,F,F)
100* A1.54E8
50J
ol
A1.00E8
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
409.7974 S:3 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,4680.0,1.00%,F,F)
100* 32:06
: 30;13 30:27 31:42
50J
OJ
32:37
32:59
~i—r | I i—i—i—i—pi—i—i—i—i—i—i—i—i—i—i—i—i—i—r-r—i—r—i—r—i—i—i—[—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—p—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r—r—i—i—i—i—i—i—i—i—r—i—i—i—i—
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
366.9792 S:3 F:2 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100* 30:18 30:49 31:02 31:14 31:25 31:42
50J
OJ
32:02 32:14
32:33 32:43
33:01 33:11
1 ' I ' ' ' ' ' I ' ' ' ' ' I ' ' ' ' ' I ' ' ' ' ' I ' ' ' ' ' I ' ' ' ' ' I ' ' ' ' ' I ' ' ' ' ' I ' ' ' ' ' I ' ' ' ' ' I ' ' ' ' ' I ' ' ' ' ' I i i i i i i i i i i i i i
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
O
00
0)
-------
Pile: A20JUL98BAcq: 20-JUL-1998 22:46:27Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaEParadigm
Sample #3 Text: 1071-0 xl/2 ALS 14
373.8207 S:3 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,5,2,0.10%,1568.0,1.00%,F,F)
100%. A3.5.5E4 1.4E4
A2.04E4
U.90E3
A5.72E3
A\.57E3
A1.57E4 A2.15E4
A6.80E3 A1.30E4
.56E3
A4.89E3
_7.2E3
O.OEO
33124 33i36 33i48 34loO 34! 12 34 [ 24 34! 36 34:48 3s!oO 3s!l2 3sl24 35 he 35^8 Time
375.8178 S:3 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 5,2,0.10%,1084.0,1.00%,F,F)
100%. A3.^1E4
A2.64E4
/ \ i \
50J A1.16E4
OJ
383.8639 S:3 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,41672.0,1.00%,F,F)
100% A9.8.3E7 4.4E7
L2.2E7
1.0.0EO
A3.51E3 A4.49E3
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
o
A5.32E6
i"t i t i r"r* r*| 1 i r T r i f i i i i i i "i r*r i" i i—i—r1 T '!• r1 i i—i~T-—t ^i r1"!1 i "i | T i'"T r i j T i—i i i j i—i T T i i r i i i T"T I—T i —r i —i
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
385.8610 S:3 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,51872.0,1.00%,F,F)
100% A1.91E8
O
A1.01E7
8.8E7
.4.4E7
LO.OEO
i i i i i I" "I i *•[ ~*| i i i—r—i—r—i—i—i—i—i—i—i—r-"i—i—I—i—i I I I i i i i i i r i i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r—i—i—i i i—i—i i i'
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
45.7555 S:3 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,2048.0,1.00%,F,F)
00%. 34^58
34:45
O
33
35:43
L6.8E3
.O.OEO
I < ' ' i i I | i i i i i | i i i i i | i i i i i | i—i i i i | i i i i i | t i i i i | i i i i i | [ t
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
80.9760 S:3 F:3 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%, F, F)
00% 33:25 33:39 33^5J 34:01 34jJO 34:21 34:40 ,3:4^5335:00
35:15
35:3635:43
1 . 6E8
L7.9E7
10.0EO
i—'—I—>—i—i—i—i—|—i—'—i—i—i—|—i—i—i—>—i—1—i—i—i—i—i—r—i—t—F—i—i—i—r—T—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—?—i—i—i—i—i—r—i—i—i—i—i—i—i—i—i—i—i—i—r
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35148 Time
-------
File: A20JUL98BAcq: 20-JUL-1998 22:46:27Exp: EXP_M23_DB5_OVATION Voltage SIR EI +GC Autospec-UltimaEParadigm
Sample #3 Text: 1071-0 xl/2 ALS #4
407.7818 S:3 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1816.0,1.00%,F,F)
100%, A3.82E4 *•> -> 0,7/1 r_1.2E4
i—i—i—i—i—i—I—r—i—i—i—i—I—i—i—i—t—i—]—i—i—i—i—i—|—i—P—i—i—i—I—'—'—i—'—i—I—i—'—i—r—i—|—i—i—i—i—i—|—i—i—i—r—i—|—r—i—i—i—i—i—i—i—i—i—i—|—i—i—i—i—i—i—i—i—i—i—i—]
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
409.7788 S:3 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1320.0,1.00%,F,F)
100% A3.10E4
50J
1.1E4
i i i i l i i i l T i i i i i i i i i Ti l i i i i i I i i i i i 1' i i i i i I i i i i i I i r T i i i i i i i i l i i i i i l i i i i i | i r i i i | i i i i i i i i i i i i |
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00
417.8253 S:3 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,7032.0,1.00%,F,F)
100% A5.88E7
50-
OJ
A3.19E7
_7.
0
i i i i i i i i i i i i i 1 i i fl l l l l l i i i i i l | i i i i i i i r i i i l l i I T T l I I l l i l [ i i i i i | ....
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00
419.8220 S:3 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,5772.0,1.00%,F,F)
100% A1.33E8
Time
.6E7
. 9E6
.OEO
Time
.6E7
.8E7
.OEO
Time
.1E4
.3E3
.OEO
Time
. 1E8
.4E7
.OEO
Time
OJ
A7.23E7
~T
T
.1
0
' ' 36166 ' 36112 36^24 ' 36136 ' 36148 ' 37lo6 ' 3?! 12 ' 37124 37136 3?!48 3s!oO 3sll2 38^24 38!36 3S!48 39IOO
479.7165 S:3 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,3140.0,1.00%,F,F)
100% 37;10
T
O
35:56 36:09 36:25
38:31
1
38:54
36166 ' 36! 12' ' 36I24 ' 36I36 ' 36548 ' 37166 ' 37ll2 ' 37I24 ' 37136 ' 37148 ' 38166 38!i2 38I24 38136 ' 38148 39!oO
430.9728 S:3 F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100%. _ 36:05 36:25 36:46 37^01 37:18 37:31
50J
37:47
38:05 38:17 38:34
i i i i i i i i i i i i i t i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i | i i i i i i i ' '
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
3824 3836 3848 39iOO
o
00
00
-------
File: A20JUL98B Acq: 20-JUL-1998 22:46:27 ExpT~EXP_M23_DB5_OVATION Voltage SIR EI +GC Autospec-UltimaE—Paradigm
Sample #3 Text: 1071-0 xl/2 ALS #4
441.7427 S:3 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1076.0,1.00%,F,F)
100%. A1.31E4
39:12 39:24 39:36 39:48 40:00 40:12 40:24
443.7398 S:3 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1664.0,1.00%,F,F)
1004 A2.16E4
50j
OJ
40:36
40:48
O.OEO
41:00 Time
8.6E3
_4.3E3
T
T
T
O.OEO
39:12 39:24 39i36 39i48 40lOO 40il2 40i24
469.7780 S:3 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3 , 3 , 0.10%, 3088.0,1.00%,F,F)
1004 A1.75E8
50_
OJ
40:48
41:00 Time
4. OE7
_2.OE7
.O.OEO
T
T
T
39:12 39:24 39:36 39:48 40:00 40:12 40i24
471.7750 S:3 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,56940.0,1.00%,F,F)
100% Al.!
T" ! 1 1' '"! " T I I *T r '
40:36 40:48
50_
OJ
L5E8
41:00 Time
4.5E7
L2.3E7
.FO-ORO
39:12 39:24 39:36 39:48 40.-00 40.:12 40.-24
13.6775 S:3 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,1028.0,1.00%,F,F)
100% 4Qj01
40:36
40:48
41:00 Time
8.9E3
L4.4E3
39:12 39:24 39136 39i48
54.9728 S:3 F:5 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
004.
40:12
50J
40:36 40:48 41:00 Time
40:28 40:35 40:45 40:52 1 . 1E8
15.6E7
39:12
39:24
LO.OEO
39?36
39148
4o!ob
4o!l2
40:24
40:36
41:00 Time
O
00
to
-------
Method 23
M23-I-2
PES
Paradigm Analytical Labs
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8--TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ (ND=0)
TEQ (ND=l/2)
Concentration
0.0008
ND
ND
EMPC
EMPC
EMPC
0.0179
EMPC
EMPC
EMPC
0.0028
EMPC
ND
ND
0.0111
ND
0.0044
0.0060
0.0008
0.0136
0.0060
0.0280
0.0064
0.0076
0.0112
0.0012
0.0017
••gJJ- .
0.0007
0.0006
0.0006
0.0005
0.0005
0.0007
0.0013
0.0006
0.0008
0.0008
0.0005
0.0004
0.0004
0.0005
0.0008
0.0010
0.0007
0.0007
0.0006
0.0005
0.0007
0.0006
0.0008
0.0004
0.0008
EMPC
0.0017
0.0020
0.0062
0.0090
0.0020
0.0019
0.0014
0.0072
0.0048
0.0172
0.0120
0.0728
0.0152
0.0092
0.0037
0.0040
RT
28:27
32:37
34:38
34:45
34:58
37:10
40:01
27:27
31:57
32:24
34:10
34:15
34:37
36:21
37:31
40:09
Ratio
0.91
0.84
2.37
1.57
2.09
0.87
0.95
0.65
2.43
1.19
1.40
1.43
0.41
0.97
0.6
0.82
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Texas Lime Kiln
M23-I-2 ^
- *'* ~ ^- ,,
,;, ", - JA J-%
s- < , • >'-*.
L1071 •
1071-1 r
28-Jun-98
OS-Jul-98
14-M-98
21-M-98
Samnle Information
' -Matdx: \' \ '--
.iVeigh.t /Volume:
. Moisture/Lipids:
' '- ?;-.' - -
•Filename:
Retook:
Begin ConCal:
EndConCal:
Initial Cal:
Air
1
0.0
-
a20jul9£
a20ju!9S
a20ju!9S
a20jul9S
m8290-
090
-------
Paradigm Analytical Labs
Method 23
M23-I-2
PBS
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13Ci2-U,3,7,8-PeCDD
"CI2-l,2,3>6>7,8-HxCDD
13C12-l,2,3,4,6,7,8-HpCDD
I3C12-OCDD
13C,2-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
t3C,,-lA3,6,7,8-HxCDF
13C12-l,2)3,4,6,7,8-HpCDF
Sampling Standards
37CI4-2,3>7,8-TCDD
13C12-2,3,4,7,8-PeCDF
uCj2-l,2,3,4J7J8-HxCDD
13C,2-l,2,3,4,7,8-HxCDF
l3Cu-l,2,3,4,7,8,9-HpCDF
Injection Standards
I3C,2-1,2,3,4-TCDD
13Cirl,2,3,7,8,9-HxCDD
Expected .
Amount :
<««) *
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured/
v Amount ,,
"'' ^ng) ''
2.83
" ,2.84
2.81
2.93
5.84
2.50
2.34
2.80
2.14
3;79
3.51
4.13
3.27
2.61
Percent
Recovery'
{%)
70.7
70.9
70.3
73.4
72.9
62.6
58.4
69.9
53.6
94.7
87.8
103.3
81.8
65.3
RT
C ' -
(min.)
28:26
32:37
34:45
37:09
40:01
27:25
31:56
34:14
36:20
28:27
32:24
34:41
34:10
37:30
28:09
34:58
Ratio
0.77
1.58
1.25
1.04
0,89
0.78
1.55
0.52
0.44
1.53
1.25
0.52
0.44
0.79
1.24
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample JD:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Reviewed by: H -T.
Texas Lime Kiln
M23-I-2
L1^i^otfeft
21-Jol-98
Sample Information
Matrix;,
Moisture /Lqrids:
MtialGal:
Air
1
a20ju!98b-6
a20jul98b-l
a20ju!98b-2
a20jul98b-17
ra8290-23-071798
Date Reviewed:
^ 091
-------
o
CD
OPUSquan 24-JUL-1998
Filename a20ju!98b
Sample 6
Acquired 21-JUL-98 01
Processed 21-JUL-98 13
Sample ID 1071-1 xl/2
Page 1
01:45
43:13
Cal Table m8290-23-071798
Results Table m8290-23-072098b
Comments
Typ Name ;
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
ss
SS
ss
ss
2,3,7,8-TCDD; 2
1,2,3,7,8-PeCDD; 4
1,2,3,4,7,8-HxCDD; 4
1,2,3,6,7,8-HxCDD; 1
1,2,3,7,8,9-HxCDD; 1
1,2,3,4, 6,7, 8-HpCDD; 2
OCDD; 7
2,3,7,8-TCDF; 8
1,2,3,7,8-PeCDF; 1
2,3,4,7,8-PeCDF; 1
1,2,3,4,7,8-HxCDF; 1
1,2,3,6,7,8-HxCDF; 1
2,3,4,6,7,8-HxCDF; 3
1,2,3,7,8,9-HxCDF;
1,2,3,4,6,7,8-HpCDF; 4
1,2,3,4,7,8,9-HpCDF; 2
OCDF; 1
13C-2,3,7,8-TCDD; 3
13C-l,2,3,7,8-PeCDD; 2
13C-l,2,3,6,7,8-HxCDD; 2
13C-l,2,3,4,6,7,8-HpCDD; 2
13C-OCDD; 3
13C-2,3,7,8-TCDF; 3
13C-l,2,3,7,8-PeCDF; 3
13C-l,2,3,6,7,8-HxCDF; 3
13C-l,2,3,4,6,7,8-HpCDF; 1
13C-1,2,3,4-TCDD; 4
13C-l,2,3,7,8,9-HxCDD; 3
37Cl-2,3,7,8-TCDD; 2
13C-2,3,4,7,8-PeCDF; 2
13C-l,2,3,4,7,8-HxCDD; 1
13C-l,2,3,4,7,8-HxCDF; 1
13C-l,2,3,4,7,8,9-HpCDF; 7
37Cl-2,3,7,8-TCDD; 2
13C-2,3,4,7,8-PeCDF; 2
13C-l,2,3,4,7,8-HxCDD; 1
13C-l,2,3,4,7,8-HxCDF; 1
13C-l,2,3,4,7,8,9-HpCDF; 7
Resp;
50e+05;
56e+04;
23e+03;
02e+05;
15e+05;
83e+05;
37e+05;
17e+05;
39e+05;
35e+05;
83e+05;
18e+05;
83e+04;
* .
95e+05;
18e+04;
92e+05;
42e+08;
40e+08;
66e+08;
05e+08;
28e+08;
81e+08;
09e+08;
05e+08;
42e+08;
42e+08;
516+08;
97e+08;
65e+08;
81e+08;
96e+08;
256+07;
97e+08;
65e+08;
81e+08;
96e+08;
25e+07;
Ion 1;
3.16e+04;
2.08e+04;
2.98e+03;
6.216+04;
7.78e+04;
1.31e+05;
3.60e+05;
3.216+05;
9.82e+04;
7.30e+04;
1.066+05;
6.95e+04;
1.12e+04;
* .
2.44e+05;
8.16e+03;
8.62e+04;
1.49e+08;
1.47e+08;
1.48e+08;
1.05e+08;
1.55ei^08;
1.67e+08;
1.88e+08;
1.04e+08;
4.326+07;
1.94e+08;
1.95e-i-08;
2.97e+08;
1.61e+08;
l.Ole+08;
6.68e+07;
2.22e+07;
2.97e+08;
1.61e+08;
l.Ole+08;
6.68e+07;
2.22e+07;
Ion 2;
2.18e+05;
2.48e+04;
1.26e+03;
3.96e+04;
3.72e+04;
1.52e+05;
3.77e+05;
4.95e+05;
4.04e+04;
6.16e+04;
7.62e+04;
4.866+04;
2.72e+04;
* .
2.516+05;
1.36e+04;
1.05e+05;
1.946+08;
9.306+07;
1.18e+08;
l.Ole+08;
1.746+08;
2.146+08;
1.21e+08;
2.016+08;
9.876+07;
2.476+08;
1.566+08;
1.056+08;
8.06e+07;
1.29e+08;
5.03e+07;
1.056+08;
8.06e+07;
1.29e+08;
5.036+07;
RA ,- ? ;
0.14;n;
0.84;n;
2.37;n;
1.57;n;
2.09;n;
0.87;n;
0.95;y;
0.65;n;
2.43;n;
1.19;n;
1.40;y;
1.43;n;
0.41;n;
*;n;
0.97;y;
0.60;n;
0.82;y;
0.77,-y;
1.58;y;
1.25;y;
1.04;y;
0.89;y;
0.78;y;
1.55;y;
0.52;y;
0.44;y;
0.79;y;
1.24,-y;
_;_;
1.53;y;
1.25;y;
0.52;y;
0.44;y;
1.53;y;
1.25;y;
0.52;y;
0 . 4 4 ; y ;
RT;
28:27;
32:37;
34:38;
34:45;
34:58;
37: 10;
40:01;
27:27;
31:57;
32:24;
34:10;
34:15;
34:37;
NotFnd;
36:21;
37:31;
40:09;
28:26;
32:37;
34:45;
37:09;
40:01;
27:25;
31:56;
34:14;
36:20;
28:09;
34:58;
28:27;
32:24;
34:41;
34:10;
37:30;
28:27;
32:24;
34:41;
34:10;
37:30;
Cone ;
0.074;
0.017;
0.003;
0.043;
0.050;
0.154;
0.447;
0.225;
0.051;
0.048;
0.070;
0.035;
0.013;
* .
0.277;
0.015;
0.109;
70.650;
70.907;
70.292;
73.346;
145.882;
62.572;
58.416;
69.930;
53.591;
91.598;
88.658;
66.826;
51.240;
72.560;
57.626;
34.985;
94.641;
87.745;
103.320;
81.762;
65.305;
DL;
0.0169;
0.0137;
0.0160;
0.0115;
0.0117;
0.0171;
0.0319;
0.0160;
0.0201;
0.0194;
0.0112;
0.0087;
0.0101;
0.0117;
0.0211;
0.0255;
0.0180;
0.0358;
0.0431;
0.0311;
0.0214;
0.1863;
0.0192;
0.0171;
0.1090;
0.0847;
-;
-;
0.0143;
0.0175;
0.0472;
0.1398;
0.1082;
0.0207;
0.0171;
0.0680;
0.1691;
0.2603;
S/N1;?;
6;y;
3;n;
l;n;
8;y;
9;y;
27;y;
36;y;
30;y;
12 ;y;
13;y;
13 ;y;
8;y;
2;n;
* ; n ;
30;y;
l;n;
21;y;
3649;y;
7641;y;
6786;y;
6072;y;
681;y;
7191;y;
21123; ;y;
1887;y;
1181;y;
4901;y;
9023;y;
13865;y;
19006,-y;
5880;y;
1271,-y;
535;y;
13865;y;
19006 ;y;
5880;y;
1271;y;
535;y;
S/N2;?
21, -y
4;y
0;n
6;y
6;y
28;y
53 ;y
37 ;y
4;y
5;y
15;y
9;y
5;y
*;n
63, -y
3;y
19 ;y
10424;y
10559,-y
6610;y
9075;y
18286;y
12963;y
14479;y
2515;y
1655;y
13626;y
8881 ;y
-; -
13123;y
5883;y
1634;y
751;y
_ . -
13123;y
5883 ;y
1634 ;y
751;y
mod?
no
no
no
no
no
no
no
no ^^
no ^ll.***^
yes^ {[A, $
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 6
-------
tile: A20JUL98B—Acq: 21-JUL-1998 01:01:45Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaE
Sample #6 Text: 1071-1 xl/2 ALS #7
339.8597 S:6 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2164.0,1.00%,F,F)
Paradigm
3o!l2 ' 3b!24 ' 36I36
3l!66 ' 31 ! 12 31124 31:36 31:48 32166 32ll2 32:24 32136 32i48 33iOO
O.OEO
341.
100%
8568 S:6 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,4328.0,1.00%,F,F)
A1.63E5
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00
O.OEO
33:12
Time
-------
OPUSquan 21-JUL-1998
Filename a20ju!98b
Sample 6
Acquired 21-JUL-98
Processed 21-JUL-98
Sample ID 1071-1 xl/2
Page 1
01:01:45
13:43:13
Cal Table m8290-23-071798
Results Table M8290-23-072098B
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
SS
Name ;
2,3,7,8-TCDD;
1, 2,3,7, 8-PeCDD;
1,2,3,4,7, 8-HxCDD;
1,2,3,6,7,8-HxCDD;
1,2,3,7,8,9-HxCDD;
1, 2,3,4,6,7,8-HpCDD;
OCDD;
2,3,7,8-TCDF;
1, 2,3,7, 8-PeCDF;
2,3,4,7,8-PeCDF;
1,2,3,4, 7,8-HxCDF;
1,2,3,6,7,8-HxCDF;
2,3,4,6,7,8-HxCDF;
1,2,3,7,8,9-HxCDF;
1,2,3,4,6,7, 8-HpCDF;
1 , 2 , 3 , 4 , 7 , 8 , 9-HpCDF;
OCDF;
13C-2,3,7,8-TCDD;
13C-l,2,3,7,8-PeCDD;
13C-l,2,3,6,7,8-HxCDD;
13C-l,2,3,4,6,7,8-HpCDD;
13C-OCDD;
13C-2,3,7,8-TCDF;
13C-1, 2,3,7, 8-PeCDF;
13C-l,2,3,6,7,8-HxCDF;
13C-l,2,3,4,6,7,8-HpCDF;
13C-1, 2,3,4 -TCDD;
13C-l,2,3,7,8,9-HxCDD;
37Cl-2,3,7,8-TCDD;
13C-2 ,3,4,7, 8-PeCDF;
13C-l,2,3,4,7,8-HxCDD;
13C-l,2,3,4,7,8-HxCDF;
13C-l,2,3,4,7,8,9-HpCDF;
37Cl-2,3,7,8-TCDD;
13C-2, 3,4,7, 8-PeCDF;
13C-1.2, 3,4,7,8-HxCDD;
13C-l,2,3,4,7,8-HxCDF;
13C-l,2,3,4,7,8,9-HpCDF;
Resp;
2.50e+05;
4.566+04;
4.23e+03;
1.02e+05;
1.15e+05;
2.836+05;
7.37e+05;
8.176+05;
1.39e+05;
* .
1.836+05;
1.186+05;
3.83e+04;
* .
4.956+05;
2.186+04;
1.926+05;
3.426+08;
2.406+08;
2.66e+08;
2.05e+08;
3.286+08;
3.816+08;
3.096+08;
3.056+08;
1.42e+08;
4.426+08;
3.516+08;
2.976+08;
2.656+08;
l.Sle+08;
1.96e+08;
7.256+07;
2.976+08;
2.656+08;
1.81e+08;
1.966+08;
7.256+07;
Ion 1;
3.16e+04;
2.08e+04;
2.98e+03;
6.21e+04;
7.78e+04;
1.31e+05;
3.60e+05;
3.21e+05;
9. 82e+04;
* .
1.066+05;
6.956+04;
1.126+04;
+ .
2.44e+05;
8.16e+03;
8.62e+04;
1.49e+08;
1.47e+08;
1.48e+08;
l.OSe+08;
1.55e+08;
1.676+08;
1.88e+08;
1.04e+08;
4.326+07;
1.94e+08;
1.956+08;
2.976+08;
1.616+08;
l.Ole+08;
6.686+07;
2.226+07;
2.97e+08;
1.61e+08;
l.Ole+08;
6.68e+07;
2.226+07;
Ion 2;
2.18e+05;
2.48e+04;
1.26e+03;
3.96e+04;
3.72e+04;
1.52e+05;
3.77e+05;
4.95e+05;
4.04e+04;
+ .
7.62e+04;
4.86e+04;
2.72e+04;
* .
2.51S+05;
1.366+04;
1.05e+05;
1.946+08-
9.306+07;
1.18e+08;
l.Ole+08;
1.74e+08;
2.146+08;
1.21e+08;
2.016+08;
9.87e+07;
2.47e+08;
1.566+08;
1.056+08;
8.066+07;
1.29e+08;
5.03e+07;
_ .
1.056+08;
8.06e+07;
1.296+08;
5.036+07;
RA,-?;
0.14;n;
0.84;n;
2.37;n;
1.57;n;
2.09;n;
0.87,-n;
0.95;y;
0.65;n;
2.43;n;
*;n;
1.40;y;
1.43;n;
0.41,-n;
* ; n ,-
0.97;y;
0.60;n;
0.82,-y;
0.77;y;
1.58;y;
1.25;y;
1.04;y;
0.89;y;
0.78;y;
1.55;y;
0.52;y;
0.44;y;
0.79;y;
1.24;y;
_ . _ .
1.53;y;
1.25;y;
0.52;y;
0.44;y;
_ . _ .
1.53;y;
1 . 2 5 ; y ;
0.52,-y;
0.44,-y;
RT;
28:27;
32:37;
34: 38;
34:45;
34:58;
37:10;
40:01;
27:27;
31:57;
NotFnd;
34:10;
34:15;
34:37;
NotFnd;
36:21;
37:31;
40:09;
28:26;
32:37;
34:45;
37:09;
40:01;
27:25;
31:56;
34:14;
36:20;
28:09;
34:58;
28:27;
32:24;
34:41;
34:10;
37:30;
28:27;
32:24;
34:41;
34:10;
37:30;
Cone ;
0.074;
0.017;
0.003;
0.043;
0.050;
0.154;
0.447;
0.225;
0.051;
* .
0.070;
0.035;
0.013;
* -
0.277;
0.015;
0.109;
70.650;
70.907;
70.292;
73.346;
145.882;
62.572;
58.416;
69.930;
53.591;
91.598;
88.658;
66.826;
51.240;
72.560;
57.626;
34.985;
94.641;
87.745;
103.320;
81.762;
65.305;
DL;
0.0169;
0.0137;
0.0160;
0.0115;
0.0117;
0.0171;
0.0319;
0.0160;
0.0201;
0.0194;
0.0112;
0.0087;
0.0101;
0.0117;
0.0211;
0.0255;
0.0180;
0.0358;
0.0431;
0.0311;
0.0214;
0.1863;
0.0192;
0.0171;
0.1090;
0.0847;
-;
- ;
0.0143;
0.0175;
0.0472;
0.1398;
0.1082;
0.0207;
0.0171;
0.0680;
0.1691;
0.2603;
S/N1; ?;
6;y;
3;n;
1 ; n ;
8;y;
9;y;
27;y;
36 ;y;
30;y;
12 ;y;
*;n;
13;y;
8;y;
2;n;
*;n;
30,-y;
l;n;
21, -y;
3649,-y;
7641,-y;
6786;y;
6072;y;
681;y;
7191;y;
21123;y;
1887 ;y;
1181 ; y;
4901; r y;
9023;y;
13865;y;
19006 ;y;
5880,-y;
1271;y;
535, -y ;
13865 ;y;
19006, -y, •
5880 ;y;
1271 ;y ;
535;y;
S/N2;?
21;y
4;y
0;n
6;y
6;y
28;y
53 ;y
37;y
4;y
*;n
15,-y
9;y
5;y
*;n
63 ;y
3;y
19 ;y
10424 ;y
10559;y
6610;y
907 5, -y
18286;y
12963;y
14479;y
2515;y
1655;y
13626,-y
8881;y
-; -
13123;y
5883;y
1634;y
751;y
_ . _
13123;y
5883;y
1634;y
751 ;y
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 11
-------
OPUSquan 21-JUL-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:20
Run: 11 File: a20ju!98b S:6 Acq:21-JUL-98 01:01:45 Proc:21-JUL-98 13:43:13
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-1 xl/2
Amount: 1.84
Cone: 1.84
Tox #1: -
Name
2,3,7,8-TCDF
of which 0.23
of which 0.23
Tox #2: -
# RT Respnse
named and 1.61
named and 1.61
Tox #3: -
RA
1 23:42 6.36+05 0.72 y
6.3e+05
2 24:16 2.2e+05 0.81 y
2.2e+05
3 24:34 3.1e+05 0.85 y
3.1e+05
24:40 3.86+03
3.8e+03
0.53 n
5 24:52 1.3e+06 0.74 y
1.36+06
6 24:59 1.9e+05 0.59 n
1.96+05
7 25:10 3.26+05 0.50 n
3.26+05
8 25:18 4.0e+05 1.05 n
4.0e+05
9 25:40 1.5e+05 0.53 n
1.5e+05
10 25:44 4.1e+05 0.60 n
4.1e+05
11 26:01 l.Se+05 0.44 n
1.5e+05
12 26:09 3.3e+05 0.36 n
3.3e+05
13 26:26 4.0e+05 0.33 n
4.0e+05
14 26:33 2.0e+05 0.23 n
2.0e+05
15 26:50 4.3e+05 0.49 n
4.3e+05
16 27:27 8.2e+05 0.65 n
8.2e+05
17 28:03 2.2e+05 0.57 n
2.2e+05
18 28:10 1.8e+04 1.04 n
1.8e+04
19 28:18 l.le+05 0.68 y
l.le+05
Cone
0.17
•:
0.06
]
]
0.09
3
]
0.00
1
0.35
C
0.05
1
1
0.09
3
0.11
0.04
c
c
0.11
]
0.04
4
]
0.09
£
0.11
c
0.05
]
0.12
]
0.23
E
0.06
E
]
0.00
S
E
0.03
unnamed
unnamed
Area Height
S/N Mod?
2.6e+05 5.3e+04 3.0e+01 y n
3.6e+05 7.2e+04 3.3e+01 y n
.Oe+05 2.2e+04 1.2e+01 y n
.2e+05 2.8e+04 1.3e+01 y n
1.4e+05 2.9e+04 1.6e+01 y n
1.7e+05 3.6e+04 1.6e+01 y n
1.3e+03 7.0e+02 4.0e-01 n n
2.5e+03 1.4e+03 6.3e-01 n n
5.4e+05 l.le+05 6.4e+01 y n
7.3e+05 1.4e+05 6.7e+01 y n
7.1e+04 1.3e+04 7.5e+00 y n
1.2e+05 2.2e+04 l.Oe+01 y n
3
l.le+05 2.7e+04 1.5e+01 y n
2.2e+05 4.0e+04 1.8e+01 y n
1
2.1e+05 2.8e+04 1.6e+01 y n
2.06+05 4.0e+04 1.8e+01 y n
1
5.2e+04 2.0e+04 l.le+01 y n
9.8e+04 3.1e+04 1.4e+01 y n
1.6e+05 3.2e+04 1.8e+01 y n
2.6e+05 5.3e+04 2.5e+01 y n
4.7e+04 1.6e+04 9.4e+00 y n
l.le+05 2.5e+04 1.2e+01 y n
5
8.6e+04 2.56+04 1.4e+01 y n
2.4e+05 4.7e+04 2.2e+01 y n
L
9.8e+04 2.4e+04 1.4e+01 y n
3.0e+05 5.7e+04 2.6e+01 y n
3.7e+04 1.3e+04 7.6e+00 y n
1.6e+05 3.7e+04 1.7e+01 y n
1.4e+05 3.7e+04 2.1e+01 y n
2.9e+05 6.1e+04 2.8e+01 y n
3
3.2e+05 5.4e+04 3.0e+01 y n
5.0e+05 8.0e+04 3.7e+01 y n
5
8.0e+04 1.7e+04 9.9e+00 y n
1.4e+05 2.8e+04 1.3e+01 y n
9.06+03 3.3e+03 1.9e+00 n n
8.6e+03 3.4e+03 1.6e+OC n n
3
4.4e+04 9.56+03 5.4e+00 y n
6.5e+04 1.6e+04 7.4e+00 y n
-------
OPUSguan 21-JUL-1998 Page 2
20 29:48 8.9e+04 0.98 n 0.02
8.9e+04 4.4e+04 8.7e+03 4.9e+00 y n
4.5e+04 l.Oe+04 4.8e+00 y n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:4
Run: 11 File: a20ju!98b S:6 Acq:21-JUL-98 01:01:45 Proc:21-JUL-98 13:43:13
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3 . 5 17-APR-1997 11:14:34 Sample text: 1071-1 xl/2
Amount: 0.23 of which 0.07 named and 0.15 unnamed
Cone: 0.23 of which 0.07 named and 0.15 unnamed
Tox *1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1 25:15 3.0e+05 0.68 y 0.09
3.0e+05 1.2e+05 2.5e+04 1.6e+01 y n
1.8e+05 3.8e+04 1.7e+01 y n
2 25:40 1.3e+05 0.70 y 0.04
1.3e+05 5.3e+04 1.4e+04 9.1e+00 y n
7.6e+04 1.7e+04 7.5e+00 y n
3 26:53 9.3e+04 1.04 n 0.03
9.3e+04 4.7e+04 l.Oe+04 6.4e+00 y n
4.5e+04 7.9e+03 3.5e+00 y n
2,3,7,8-TCDD 4 28:27 2.56+05 0.14 n 0.07
2.5e+05 3.2e+04 9.0e+03 5.8e+00 y n
2.2e+05 4.7e+04 2.1e+01 y n
096
-------
OPUSquar. 21-JUL-1998
Page 3
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.851 Mod? no #Hom:7
Run: 11 File: a20ju!98b S:6 Acq:21-JUL-98 01:01:45 Proc:21-JUL-98 13:43:13
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-1 xl/2
Amount: 0.43
Cone: 0.43
Tox #1: -
Name
of which 0.05
of which 0.05
Tox #2: -
# RT Respnse
named and 0.38
named and 0.38
Tox #3: -
RA
1.2,3,7,8-PeCDF
1 30:16 2.2e<-05 1-89 n
2.2e+05
2 31:15 7.4e+04 2.86 n
7.4e+04
3 31:22 4.4e+05 1.71 y
4.4e+05
4 31:28 6.0e+04 1.93 n
6.0e+04
5 31:45 1.3e+05 1.82 n
1.3e+05
6 31:57 1.4e+05 2.43 n
1.4e+05
32:08 1.le+05 2.13 n
L.le + 05
Cone
0.08
3
0.03
C
]
0.16
1
0.02
0.05
e
<
0.05
c
<
0.04
unnamed
unnamed
Area Height
S/N Mod?
1.4e+05 2.7e+04 1.3e+01 y n
7.4e+04 1.9e+04 4.4e+00 y n
5
5.5e+04 1.9e+04 8.9e+00 y n
1.9e+04 6.6e+03 1.5e+00 n n
2.8e+05 8.0e+04 3.7e+01 y n
1.6e+05 4.9e+04 l.le+01 y n
2
3.9e+04 l.Oe+04 4.8e+00 y n
2.0e+04 4.6e+03 l.le+00 n n
8.3e+04 2.7e+04 1.2e+01 y n
4.66+04 1.8e+04 4.1e+00 y n
9.8e+04 2.6e+04 1.2e+01 y n
4.0e+04 1.7e+04 3.8e+00 y n
7.7e+04 2.66+04 1.2e+01 y n
3.6e+04 1.4e+04 3.2e+00 y n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:6
Run: 11 File: a20ju!98b S:6 Acq:21-JUL-98 01:01:45 Proc:21-JUL-98 13:43:13
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-1 xl/2
Amount: 0.16
Cone: 0(.16
Tox # 1: -'
Name
of which 0.02
of which 0.02
Tox #2: -
# RT Respnse
named and 0.15
named and 0.15
Tox #3: -
RA
1,2,3,7,8-PeCDD
1 31:29 2.0e+05 1.30 n
2.0e+05
2 31:59 8.9e+04 3.66 n
8.96+04
3 32:04 2.86+04 1.16 n
2.8e+04
4 32:09 5.9e+04 1.55 y
5.9e+04
5 32:37 4.6e+04 0.84 n
4.6e+04
6 32:42 2.2e+04 1.34 y
2.2e+04
Cone
0.07
:
?
0.03
]
0.01
:
:
0.02
unnamed
unnamed
Area Height
S/N Mod?
l.ie+05 3.8e+04 1.5e+01 y n
8.6e+04 3.0e+04 1.6e+01 y n
3
7.0e+04 1.8e+04 7.4e+00 y n
1.9e+04 6.9e+03 3.7e+00 y n
.5e+04 5.9e+03 2.4e+00 n n
.3e+04 4.3e+03 2.3e+00 n n
3.6e+04 l.le+04 4.4e+00 y n
.3e+04 8.4e+03 4.5e+00 y n
0.01
.le+04 7.3e+03 2.9e+00 n n
2.56+04 7.6e+03 4.le+00 y n
1.2e+04 4.6e+03 1.9e+00 n n
9.3e+03 3.66+03 1.9e+00 n n
09'
-------
OPUSguan 21-JUL-1998
Page 4
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:13
Run: 11 File: a20jul98b S:6 Acq:21-JUL-98 01:01:45 Proc:21-JUL-98 13:43:13
Tables: Run: a2Qju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-1 xl/2
Amount: 0.30
Cone: 0.30
Tox #1: -
Name
of which 0.12
of which 0.12
Tox #2: -
# RT Respnse
named and 0.18
named and 0.18
Tox #3: -
RA
1 33:31 l.le+05 1.26 y
l.le+05
2 33:37 2.3e+05 1.12 y
2.36+05
3 33:43 2.7e+04
2.7e+04
1.53 n
1,2,3,4,7,8-HxCDF
4 33:49 1.8e+04 0.57 n
1.8e+04
5 33:55 4.4e+04 1.04 n
4.46+04
6 34:10 1.8e+05 1.40 y
1.8e+05
1,2,3,6,7,6-HxCDF 7
2,3,4,6,7,8-HxCDF 9
34:15 1.2e+05
1.2e+Q5
34:28 2.56---04
2.5e+04
1.43 n
0 . 62 n
34:37 3.8e+04 0.41 n
3.8e+04
10 34:42 7.6e+03 0.58 n
7.6e+03
11 34:46 1.9e+04 1.80 n
1.9e+04
12 34:53 4.2e+03 1.51 n
4.2e+03
13 34:59 1.9e+04 0.49 n
1.9e+04
Cone
0.04
(.
4
0.08
3
]
0.01
3
:
0.01
f
]
0.02
0.07
3
0.04
t
0.01
c
3
0.01
3
0.00
4
0.01
3
e
0.00
2
3
0.01
unnamed
unnamed
Area Height S/N Mod?
6.2e+04 2.4e+Q4 9.3e+00 y n
4.9e+04 2.0e+04 l.le+01 y n
3
1.26+05 4.4e+04 1.7e+01 y n
l.le+05 4.0e+04 2.2e+01 y n
I
1.6e+04 3.9e+03 l.Se+OO n n
l.le+04 4.0e+03 2.3e+00 n n
6.7e+03 2.56+03 9.7e-01 n n
1.2e+04 5.2e+03 2.96+00 n n
2.3e+04 6.46+03 2.4e+00 n n
2.2e+04 7.4e+03 4.2e+00 y n
7
l.le+05 3.5e+04 1.3e+01 y n
7.6e+04 2.66+04 1.5e+01 y n
7.0e+04 2.1e+04 8.Oe+00 y n
4.9e+04 1.7e+04 9.3e+00 y n
9.7e+03 3.0e+03 l.le+00 n n
1.6e+04 4.3e+03 2.4e+00 n n
L
l.le+04 5.7e+03 2.2e+00 n n
2.7e+04 S.le+03 4.5e+00 y n
D
2.8e+03 1.76+03 6.4e-01 n n
4.8e+03 1.66+03 9.1e-01 n n
I
1.26+04 2.7e+03 1.Oe+00 n n
6.6e+03 1.8e+03 1.Oe+00 n n
2.5e+03 l.le+03 4.1e-01 n
1.7e+03 9.56+02 5.36-01 n
6.1e+03 2.16+03 8.1e-01 n n
1.2e+04 2.5e+03 1.4e+00 n n
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:10
Run: 11 File: a20ju!98b S:6 Acq:21-JUL-98 01:01:45 Proc:21-JUL-98 13:43:13
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-1 xl/2
Amount: 0.47 of which 0.10 named and 0.37 unnamed
Cone: 0.47 of which 0.10 named and 0.37 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name
RT Respnse
RA
1 33:51 3.2e+05 1.25 y
3.2e+05
Cone Area Height S/N Mod?
0.15
1.8e+05 6.2e+04 3.3e+01 y n
O98
-------
OPUSguan 21-JUL-1998
Page 5
2 34:10 1.9e+05 1.34 y 0.09
1.9e+05
3 34:19 2.1e+05 1.26 y 0.10
2.1e+05
4 34:26 2.8e+04 3.40 n 0.01
2.86+04
5 34:32 6.7e+03 0.77 n 0.00
6.7e+03
1,2,3,4,7,8-HxCDD 6 34:38 4.2e+03 2.37 n 0.00
4.2e+03
1,2,3,6,7,8-HxCDD 7 34:45 l.Oe+05 1.57 n 0.04
l.Oe+05
1,2,3,7,8,9-HxCDD 8 34:58 1.2e+05 2.09 n 0.05
1.26+05
9 35:08 6.6e+03 2.39 n 0.00
6.6e+03
10 35:17 2.8e+04 4.94 n 0.01
2.8e+04
1.4e+05 5.0e+04 3.2e+01 y n
le+05
le+04
2e+05
2e+04
2e+04
4e+03
9e+03
8e+03
Oe+03
3e+03
2e+04
Oe+04
8e+04
7e+04
.7e+03
.Oe+03
.3e+04
.7e+03
3.8e+04
2.5e+04
3.9e+04
2.9e+04
4.2e+03
2.2e+03
1.6e+03
9.Oe+02
1.6e+03
5.2e+02
1.5e+04
8.7e+03
1.8e+04
9.5e+03
1.4e+03
1.4e+03
3.8e+03
1.4e+03
2.0e+01 y n
1.6e+01 y n
2.0e+01 y n
1.9e+01 y n
2.2e+00 n n
1.4e+00 n n
8.2e-01 n n
5.7e-01 n n
8.4e-0l(n )n
3.3e-OlVnyn
8.0e+00 y n
5.6e+00 y n
9.4e+00 y n
6.le+00 y n
7.36-01 n n
8.7e-01 n n
2.0e+00 n n
9.3e-01 n n
-------
OPUSguan 21-JUL-1998
Page 6
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:3
Run: 11 File: a20ju!98b S:6 Acq:21-JUL-98 01:01:45 Proc:21-JUL-98 13:43:13
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-1 xl/2
Amount: 0.32
Cone: 0.32
Tox #1: -
Name
of which 0.29
of which 0.29
Tox #2: -
# RT Respnse
named and 0.02
named and 0.02
Tox #3: -
RA
1,2,3,4,6,7,8-HpCDFl 36:21 4.9e+05 0.97 y
4.9e+05
2 36:31 4.0e+04 0.77 n
4.0e+04
1,2, 3,4, 7, 8, 9-HpCDF3 37:31 2.2e+04 0.60 n
2.2e+04
Cone
0.28
0.02
]
0.01
unnamed
unnamed
Area Height
S/N Mod?
2.4e+05 7.6e+04 3.0e+01 y n
2.5e+05 7.8e+04 6.3e+01 y n
1.7e+04 6.6e+03 2.6e+00 n n
2.3e+04 5.7e+03 4.6e+00 y n
8.2e+03 2.6e+03 1.0e+0(/fn/n
1.4e+04 4.2e+03 3.4e+00 y n
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:3
Run: 11 File: a20ju!98b 5:6 Acq:21-JUL-98 01:01:45 Proc:21-JUL-98 13:43:13
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-1 xl/2
Amount: 0.33
Cone: 0.33
Tox fcl: -
Name
of which 0.15
of which 0.15
Tox #2: -
# RT Respnse
named and 0.17
named and 0.17
Tox #3: -
RA
1 36:20 4.2e+04 5.04 n
4.2e+04
2 36:35 2.8e+05 1.05 y
2.8e+05
1,2,3,4,6,7,8-HpCDDS 37:10 2.8e+05 0.87 n
2.86+05
Cone
0.02
0.15
1
1
0.15
unnamed
unnamed
Area Height
S/N Mod?
3.5e+04 1.2e+04 8.5e+00 y n
7.0e+03 2.96+03 2.0e+00 n n
1.4e+05 4.66+04 3.26+01 y n
1.4e+05 4.2e+04 2.9e+01 y n
1.36+05 3.96+04 2.7e+01 y n
1.5e+05 4.0e+04 2.8e+01 y n
-------
File: A20JUL98B Acq:
Sample #6 Text: 1071
319.8965 S:6 SMO(1,3)
1003
50.
0
321.
100S
50_
o:
t
_^ -v__^~^_^
24 I 00
8936 S:6 SMO(1,3)
24 I 00
331.9368 S:6 SMO(1,3)
1001;
;
50.;
24 I 00
333.9339 S:6 SMO(1,3)
1004
;
50:
o:
24 100
327.8847 S:6 SMO(1,3)
1004
50:
o:
24 1 00
316.9824 5:6 SMO(1,3)
100S
'.
50:
0:
23:16 23:47
24 1 00
21-JUL-1998 01:01
-1 xl/2 ALS #7
BSUB(128,15,-3.0)
A1.2
A
/!
:45 Exp: EXP_M23_DB5
PKD(3,3,3,0.10%,1556
OE5
_OVATION Voltage SIR EI+ GC Autospec-ultimaE Paradigm
.0,1.00%,F,F)
2.6E4
A5"A3E4 A4.71E4 A6.44E4 A3 16E4
A A1.99E4
25loO 26100
BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10% , 2256
A1.77E5
A
A
v^~<~*^~~ i "^ >^Y==^I
25:00
BSUB(128,15,-3.0)
25 loo'
BSUB(128,15,-3.0)
25 loo'
BSUB(128,15,-3.0)
25 loo'
PKD(3,3,3,100.00%,
24jJO 25:10
25:00
A7.58E4
26:00
PKD(3,3,3,0.10%,8188
'26:00'
PKD(3,3,3,0.10%,3744
26 loo'
PKD(3,3,3,0.10%,4360
26 loo'
0.0,1.00%,F,F)
25:40 26:13 26j
,1111
26:00
/ /^^^^^~J^^V^V~-^r-xAjC=^^-^^ -^ ^-^--r^^Cr^^r/^^
27:00 28:00 29loO ' 3o!
.0, 1.00%,F,F)
JE5
r^r-*
27 loo 28 loo 29 loo 30.
:1-3E4
O.OEO
00 Time
4.8E4
L2.4E4
o .OEO
30 Time
.0,1.00%,F,F)
A1.94E8 4.0E7
AA1.49E8
l\l\
27loO 28IOO 29100 3ol(
L2.0E7
: O.OEO
)0 Time
.0,1.00%,F,F)
A2.47E8 5.1E7
AA1.94E8
AA
27loO 28IOO 29100 3o!c
.2.6E7
O.OEO
)0 Time
0,1.00%,F,F)
A2.97E8
A
A
27loO 28100 29100 3olo
_6.1E7
_3.0E7
O.OEO
0 Time
40..27;0527:26_. 27:55 28;20._. 28:56 ,
27 1 00 28 loo ' 29 loo 30 I 0
.6.4E7
.3.2E7
O.OEO
0 Time
-------
File: A20JUL9TTBAcq: 21-JUL-1998 01:01:45Exp: EXP_M23llDB5_OVATION Voltage "STR~¥T+GC Autospec-UltimaEParadigm
Sample #6 Text: 1071-1 xl/2 ALS #7
355.8546 S:6 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2476.0,1.00%,F,F)
100%, A1.J2E5 & J k/o 4.0E4
2.0E4
4 8 3 2 32 12 32i24 32^36 32U8 33:00 33!l2 Time
30:12 30:24 30:36 '
3l!oO '31"! 12 31:24
357.8517 S:6 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1876.0,1.00%,F,F)
100%, A8.56E4
so:
_3.2E4
.1.6E4
Q 1_—--x_^-.x-^-—-~-^_^—_^-^___^-^-^__-x^-^^x ^ ^ _^_>' v-^^—-^—-L__±s ^^~^ "^—^^^—^^—^-^—^-^^ 0 • OEO
"• rTfi T-Ti i i | i i i i r | i i i i i | i i i i i | [ i i i i i | i i i • i r | i i i i i [ i' i i i i | i i i i i | i i i i i | i i t i i ( i i i i i [ i i i i i | i i i yi | i P -
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
367.8949 S:6 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD( 3 , 3 , 3,0.10%,6864.0,1.00%, F, F)
lOOi
50_
A1.47E8
i i i i i i i i i i i i i i i i i i i i i i i i r i i i i i i i i i i i i i i ' i i i i i i i i i i ' i i i i i i ' ' i i |I111 i ''''' r ' 'r ' ' i ' ' ' ' ' i ' ' ' ' ' i ' '
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
..5.2E7
12.6E7
369.8919 S:6 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,3140.0,1.00%,F,F)
100%
50J
A9.30E7
..3.3E7
_1.7E7
" 'l I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ' I I I I I I ' I I I I I I I I I ' ' I I ' I ' I1 I I | I I I T I | I I I 1 I [ I I1
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
366.9792 S:6 F:2 SMOU.3) PKD(3 , 3 , 3 ,100 . 00%, 0 . 0,1. 00%, F, F)
100%, 30:14 30:26 30:55 31:14 31:24 31:3631:46_ _31:J>?__3_2:09 _32 ;_25_. 32j 41_
liO^e^E?
_3.1E7
.O.OEO
"N
i r i i i i T i i i i i i i i i i i i i l r i i t i i i i i i i i i i i i i i i i i i i i i i i i i i | i' i i i i ( i i ' i i | i i i i < | i i i i i | i i i i < | i i i i i |
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
-------
File: A20JUL98B Acq: 21-JUL-1998 01:01:45 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #6 Text: 1071-1 xl/2 ALS #7
389.8156 S:6 F:3 SMO(1,3) BSUB(128 , 15 , -3 . 0 ) PKD(3 , 5 , 2 , 0 . 10%, 1904 . 0 , 1 . 00% , F, F)
100% A1.78E5 6.3E4
50.
0_
391.
100S
50J
OJ
401.
100*
so:
o:
403.
1004
so:
o:
380.
1004
50.
o:
AA1.16E5
/V /\ A6.21E4 A7.78E4
/ Y \ 1 \ 1 A /~\ / \
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:
8127 S:6 F:3 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 1560 . 0 , 1 . 00% , F, F)
A1.42E5
/ 1 A9.24E4
A A
/ \ J\ / \ A3.96E4 A3.72E4
33124 33?36 33Us 34loO 34.!12 34124 34^36 34J48 35':00 35^12 3sl24 3sl36 35:
8559 S:6 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 8512 . 0, 1 . 00%, F, F)
A1.95E8
A1.48E8 A
A 1 I
- /v\ A,
— 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T-T'T [-7 t T1 T- r | 1" T 1 1 1 1 l' 1 I1 1 1 | 1 1 1 rl 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:
8530 S:6 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 6784 . 0, 1 . 00%, F, F)
A1.56E8
A1.18E8 A
n 1 1
A/I /I
L3.1E4
O.OEO
48 Time
5.1E4
.2.6E4
O.OEO
48 Time
7.7E7
.3.8E7
O.OEO
48 Time
_6.0E7
_3.0E7
O.OEO
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
9760 S:6 F:3 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00% , F, F)
33:33 34:09 34:2134:28 34:46 34:58 35:0815^16 35:24 35:37 1.3E8
7
.6.6E7
.O.OEO
1 33!24 33136 33Us 34!oO 34!l2 34!24 34T36 34Us 3s!oO 3s!l2 35I24 35?36 3s!48 Time
-------
File: A20JUL98B Acq: 21-JUL-1998 01:01:45 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-Ultimal ParaHTgm
Sample #6 Text: 1071-1 xl/2 ALS #7
423.7767 S:6 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1440.0,1.00%,F,F)
100%, A1.43E5 _4.8E4
A1.31E5
50J
2.4E4
425.7737 S:6 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3, 3 , 0.10%,1440.0,1.00%,F,F)
100%. A1.36E5 A1.52E5
so:
.O.OEO
4.4E4
12.2E4
435.8169 S:6 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,4736.0,1.00%,F,F)
100% A1.Q5E8
50:
LO.OEO
2 . 9E7
.1.4E7
"' I I I I i I I I l I i I I I I i i I I i "fT*] I I I I I i i i I i i | i i '\I I I | iT11 I I I I I I I I I I I i i I I I i T I i i i I i i i I I I i I I I i I I I i I I I I i I i I' U ' "*1^
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
437.8140 S:6 F:4 SMO(1,3) BSUB{128,15,-3.0) PKD(3 , 3 , 3 , 0.10%,3036.0,1.00%,F,F)
100% A1.Q1E8
so:
2.8E7
_1.4E7
U ' i i r i i i i i i i i i i i i i i i i i fT> i i i i i i i i i i i i i i '\ i i i iT I I i I i i i i i i i i i i i i i i i i i i i i i i i i [ i i i i i i i i i i i | i i i i i | * ' utjU
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
430.9728 S:6 F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100%. 36_q6 36:29 37LLQ1_ 37j_2_4 3_7;38_37:48
so:
38.il7
38:36 38:50
8 . 8E7
14.4E7
O.OEO
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39iOO Time
-------
File: A20JUL98B Acq: 21-JUL-1998 01:01:45 Exp: EXP M23 DBS OVATION Voltage SIR EH- GC Autospec-UltimaE Paradigm
Sample #6 Text: 1071-1 xl/2 ALS #7
457.7377 S:6 F:5 SMO(1,3) BSUB{128, 15, ~3 . 0 ) PKD(3 , 3 , 3 , 0 . 10% , 2368 . 0 , 1 . 00% , F, F)
1003
50.
0
A3.60E5
A
/ \
39ll2 39:24 39136 39:48 40:00 4o!l2 40:24 4o!s6 ' ' 40:48 ' 41
8.8E4
.4.4E4
00 Time
459.7348 S:6 F:5 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 1624 . 0 , 1 . 00% , F, F)
1003
so:
OJ
A3 . 77E5
A
J V41JLOE4
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41
8.8E4
_4.4E4
00 Time
469.7780 S:6 F:5 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 52312 . 0 , 1 . 00%, F, F)
100%
50.
471.
100*
so:
OJ
A1.55E8
J\_
39:12 39:24 39:36 39!48 4o!oO 40:12 40:24 4o!36 ' ' ' 40:48 41
7750 S:6 F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3, 3 , 0 . 10%, 2148 . 0, 1 . 00%, F, F)
A1.74E8
A
y ^^_
i i i i | i i i i i | i i i i i | i i i i i | i- i i i — 'i r r -T-" i— r -T— 1 -T— l l ' -i— • T — r- r— r — r~-i I -i r—i 1 1 1 1 1 1 1 1 1 f
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
3.6E7
L1.8E7
00 Time
r3.9E7
12.0E7
" o OEO
00 Time
454.9728 S:6 F:5 SMO(1,3) PKD(3 , 3, 3 , 100 .00%, 0 .0, 1 . 00%, F, F)
1004
;
so:
0'
39:14 39;23 39j35 39:44 40:03 40:17 40:34 40:42 40:52 Q 4R7
/
_4.7E7
n DRO
39:12 39!24 3*9:36 39 ! 48 " "~ ' 40 I 00 ' '^ 4^ 12 " ' " 40 ^24 ' "" ' 40?36"^ " ' 40 !48 " ' ~" 4TToO Time
-------
File: A20JUL98B Acq:
Sample #6 Text: 1071-
303.9016 Srfi SMOM 31
100S
50 J
n-
A2.62E5
A
u— — r — i r— =f 1 1 F
24:00
305.8987 S:6 SMO (1,3)
100S
501
n:
21-JUL-1998
1 xl/2 ALS
BSUB(128, 15,
01:01
#7
-3 n )
A5.36E5
A
A
A1.45E5/ \
/\ A / V
i i 'i ' i
25
BSUB(128,15,
45 Exp
PKD (3,3
: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
,3,0.10%,1760.0,1.00%,F,F)
A3.21E5
A1 SfiFS A1.43E5 A
/r\ /A A A A A /\ A7'A7E4 A4-41E4
r-N/T \ A \ A/\ /\/\ /\ I \ /\ ^>— - ^
:00
-3.0)
PKD (3,3
1.
15.
• o.
26:00 27:00 28:00 29:00 30:00
, 3, 0.10%, 2164. 0,1. 00%, F,F)
A7.26E5
A3.65E5
A .
24:00
315.9419 S:6 SMO(1,3)
100%
50J
o"
' T "' 1 ! 1 1 I !
24:00
317.9389 S:6 SMO (1,3)
1008
50J
0:
" ' I i 1 i i r— T
24:00
375.8364 S:6 SMO (1,3)
100%
:
50J
-
o"
AS1AE5A
25
BSUB(128,15,
1 r — i "' 'i
25
BSUB(128,15,
' T 1 1 '" "T
25
BSUB(128,15,
24:41
n
. _^
24loo'
316.9824 S:6 SMO(1,3)
100% 23:16 23:47
:
50_
Oj
~^~
'iiii | i
24:00
-J\^ Lr-\_J 1 'A/V-
25
ao £.0
A2.16E5 ""'/(•'
rVT\ /A
:00
-3.0)
I ' '
:00
-3.0)
loo' '
-3.0)
n
25:Wl
s-i—J A/
loo' '
PKD(3,3,3,100.00%,
24^30
1 1 1 1
25
25:10
i '
•00
PKD (3,3
PKD (3,3
PKD (3,3
25:38
A^-A_/^
E5 A2.91E5 'A
r1'
7.
: o.
'26:00' 27 !oO ' 28:00 ' 29:00 30:00
, 3, 0.10%, 4728. 0,1. 00%, F,F)
A1.67E8
j[
3.
_1.
0.
26:OQT 27^00 ' ' 2sloO 29loO 3o!oO
, 3, 0.10%, 3324. 0,1. 00%, F,F)
A2.14E8
j[
4.
12.
•o.
26:00 27loO 28:00 29^00 30:00
, 3, 100. 00%, 13 16. 0,1. 00%, F,F)
28:0928A27
27-37 A /I
A / I / 1
26:22, 26:58 27:2ffV A / \ / \ 28:54 A A-vs
L^\-v / — \r^ vW iXX^^Vu Vv^"*^ vV' " v u^* ^^ \-/ l/u v\ ^/W / v^/-rx-~-\^_^/\/ \TVO
8.
14.
u 0.
i 1 1 1 H — i 1 1 1 1 1 1 1 | i i- , . . , i r-=— i i i [-1
26:00 27:00 28:00 29:00 30:00
1E5
7E4
OEO
Time
5E5
3E4
OEO
Time
4E7
7E7
OEO
Time
3E7
2E7
OEO
Time
6E3
3E3
OEO
Time
0.0,1. 00%, F,F)
25:40
26; 13 . .. 26_i40 _27_L0527:26 27:55 28:20 28_:56 ^6.
-- ,
\J
13.
- o.
I i ' ' > ' i • ' • • ' i • ' • • • i • • • • • i
26:00 27:00 28:00 29:00 30:00
4E7
2E7
OEO
Time
-------
File: A20JUL98B—Acq: 21-JUL-1998 01:01:4bExp: EXP_M23_DB5_OVATION Voltage SIR EI +GC Autospec-UltimaEParadigm
Sample #6 Text: 1071-1 xl/2 ALS #7
339.8597 S:6 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3 , 3,0.10% , 2164.0 , 1.00%,F,F)
100% A2.80E5
50J
A2.26E4/\
i i i i i i i i | f t i i i | i i i
30:12 30:24 30:36
341.8568 S:6 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3 , 3,0.10%,4328.0,1.00%,F,F)
100% A1.63E5
3l!oO ' 3l!l2
3248 33 00 33 12
:36 32:48 33:00 33:12
3ll2 3l24 31:36 31:43 3200 32 i 12
50J
36!i2 ' 3b!24 ' 36136
351.9000 S:6 F:2 SMO(1,3) BSUB (128 , 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 3208 . 0 , 1 . 00%, F, F)
100* Al.gSES A1.61E8
50 j
.8E7
.4E7
.OEO
Time
.4E7
.2E7
.OEO
Time
3!i2 ' 36!24 ' 3b!36 ' 3b!48 ' 3l!oO
31136 31148 32:00 32:12 32:24 32:36 32:-
353.8970 S:6 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%, 3020.0, 1.00%,F,F)
100* A1.21E8 A1.05E8
50 j
33:12
4
'.2
0
' 36124 ' 30l36
3l 3ll2 l24 3136 31B 32 322 3224 3236 3248 33o 33l2
409.7974 S:6 F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 100 . 00%, 3540 . 0, 1 . 00%, F, F)
31:49
32:37
30:24
30:36
3l!48 32 32l2 32:24 3236 3248
366.9792 S:6 F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
100%, 30:14 30:26 _ 3Q;55 Jlj 14_31;24 3 1 : 3 6 3 U46_-llJ-57_32j Q 9 _32:21 _ 32^41
50J
.2E7
. 1E7
.OEO
Time
f -i i I—|—i—i—)—i—i—i—i—f—i—i—i—i—i—i—i—i—i—i—i—i—?—i—i—i—i—i—i—j—i—i—i—n—i—i—i—i—i—i—i—i—i—i—i—i—r~~i—i—i—i—i—1 i ' ' ' i I i ' ' ' ' ( ' ' ' ' ' | ' ' ' ' ' | ' ' "^ " I ' ' ' ' ' I
30ll2 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
-------
File: A20JUL91TBAcq: 21-JUL-1998 01:01:45 Exp: EXP_M23_DB5_OVATION Voltage SIR EI +GC Autospec-UltimaE
#6 Text: 1071-1 xl/2 ALS #7
373.8207 S:6 F:3 SMO(1,3) BSUB(128,15,-3 . 0 ) PKD(3,5,2,0.10%,2632.0,1.00%,F,F)
100%. A1.21E5
A1.06E5
A6.19E4' '
50j
OJ
A2.26E4
A1.12E4
A1.72E4
|
T
T~
|
|
T
33:24 33,i36 33i48 34^00 34!l2 34i24 34i36 34148 35iOO
375.8178 S:6 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,5,2,0.10%,1780.0,1.00%,F,F)
100%. A1.08E5
A7.62E4
50.:
35:12 35:24
35:36
A2.72E4
A158E4
A6.78E3
33:24 33136 33i48 34iOO 34il2 34:24 34i36 34i48
383.8639 S:6 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,25132.0,1.00%,F,F)
100% A1.04E8
50
0:
ssoo
35 24
Paradigm
4.6E4
L2.3E4
jl O.OEO
35:48 Time
4.1E4
12.1E4
JLO.OEO
35:48 Time
4.7E7
_2.4E7
.O.OEO
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48
385.8610 S:6 F:3 BSUB(128,15,-3.0) PKD(3 , 5,2,0.10%, 36536.0 ,1.00%,F,F)
100% A2.01E8
50
0:
35l2
35:36
T
35:48 Time
9.2E7
i.4. 6E7
O.OEO
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00
445.7555 S:6 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,2468.0,1.00%,F,F)
100% 34:44 34:58
'35 1 12' ' '35 1 24'
36
50
0:
33:26
33:48
34:06
35.34 35:42
35:48 Time
1.1E4
_5.5E3
O.OEO
—l |—i—i—i—i—i—|—i—i—i—i—i—|—i—i—i—i—i—|—<—i—i—i—i—|—i—i—i—i—i—|—i—i—i—i—i—|—i—i—i—i—i—|—r—i—i—i—i—|—i—i—i—i—i—|—i—i—i—i—i—|—i—i 1-1—i—I—i—i—i—i—i—r
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
380.9760 S:6 F:3 SMO(1,3) PKD(3,3,3,100.00%, 0.0,1.00%, F, F)
100% 33:33 34j_09 34:2134:28
o
34:46 34:58 35:08 15j_16 35:24
35:37
33:2V ' VshV ' VsUV ' 34100' ' '34112'
.1.3E8
^6.6E7
LO.OEO
i > l ' '
34:24
' ' l i i ' i ' | ' ' ' ' ' i I ' ' ' ' ' I I ' ' ' ' ' I
34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
-------
File: A20JUL98B Acq: 21-JUL-1998 01:01:45 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE—Paradiom
Sample #6 Text: 1071-1 xl/2 ALS #7
407.7818 S:6 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%, 2552.0,1.00%,F,F)
100%, A2.44E5
-
7.8E4
L3.9E4
A8.16E3
.O.OEO
36lo6 36ll2 36l24 36136 36l48 37!o6 37ll2 37124 31:36 37148 38l6o 38-.12 ' 38'24 ' 36-36 38-48 ' 39-00 Tim
409.7788 S:6 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1248.0,1 00%,F,F)
100%. A2.51E5
A2.35E4
A1.36E4
8.1E4
L4.0E4
.O.OEO
T
T
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37^24 37136 37:48 38:00 38:12 38124 ' 38-36 ' 38-48 ' 39-00 Time
417.8253 S:6 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3,0.10%,11020.0,1.00%, F, F)
100%, A4.32E7 1 3 ?
•
4.32E7
/ v
A2.22E7
.6.5E6
36166 36ll2 36124 36J36 36148 37166 37ll2 37124 3?!36 37148 38loO 38ll2 38124 ' 38!36 ' 38;48 ' 39['oO Time
19.8220 S:6 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%, 18108.0,1.00%,F,F)
00%. A9.87E7
'
o
A5.03E7
3.0E7
l.5E7
1 1 | | |
36100 36112 36124 36136 36148 37loO 37ll2 37124 37136 37 Us 38100 38 112 ' 38-24 ' 38 136 ' 38 Us ' 39^00 Time
79.7165 S:6 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,4948.0,1.00%,F,F)
00
o -
36:09
37:10 37:24
38:10
38:24
38:46
..8.0E3
.OEO
36166 ' 36112 ' 36124 ' 36136 ' 36J48 ' 3?! 00 ' 3?! 12 ' 37\24 ' 37':36 ' '37:48 ' 38166 ' 38ll2 ' 38124 ' 38.:36 ' 38l48 ' 39!0o' Time
30.9728 S:6 F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%, F, F)
00%, 36^16 36:29 3_7 : 01 37:24 37:38 37:48 ISjJJZ 38:36 38:50
50
0 ;
/
.8.8E7
4.4E7
36S6d ' 36112 ' 36124 ' 361J6 ' 36148 ' 37loo ' 3?!12 ' 3?!24 ' 37J36 ' 37148 ' 38loO ' 38ll2 ' 38124 ' 38536 ' 38J48 ' 39loO'"xime
-------
File: A20JUL98B Acq: 21-JUL-1998 01:01:45 Exp:
Sample #6 Text: 1071-1 xl/2 ALS #7
441.7427 S:6 F:5 SMO ( 1 , 3 ) BSUB (128 , 15, -3 . 0} PKD(3
100%
50J
39ll2 ' ' ' 39124 ' 39:36 39l48
443.7398 S:6 F:5 SMO (1,3) BSUB (128 , 15, -3 . 0) PKD(3
100%
50J
: A3.75E3
Q ' ' i ' I 1 1 T -T-, r— i f=T 1 1 T~l 1 r— - r-l r- r • | i —
39:12 39:24 39:36 39:48
469.7780 S:6 F:5 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD(3
100%
50J
0:
39ll2 39524 39136 39:48
471.7750 S:6 F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3
100%
50J
0:
39ll2 ' ' ' 39.-24 ' ' ' 39136 ' ' 39148
513.6775 S:6 F:5 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD(3
100%
50 j
39ll2 ' ' 39124 ' ' ' 39136 ' ' 39:48
454.9728 S:6 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00% , 0 . 0 , 1
100* 39:10 39:23 39:35 39:44
50 j
o:
}] 39ll2 39124 39136 39148
EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Parad
, 3, 3, 0.10%, 1032. 0,1. 00%, F,F)
A8.62E4
igm
2.3E4
Ll.lE4
O.OEO
4o!ob ' 4o!l2 40I24 ' 4o!36 4o!48 41:00 Time
, 3, 3, 0.10%, 1372. 0,1. 00%, F,F)
Al -OSES
A3^a2E3y \A]^13^4^ ____^_
40:00 40:12 40:24 40:36 40:48 41:
,3,3,0. 10% , 52312 .0,1.00%,F,F)
Al v55E8
2.7E4
_1.4E4
O.OEO
00 Time
3 . 6E7
L1.8E7
LO.OEO
4o!ob ' ' ' 4o!l2 ' .40124 ' ' 4ol36 ' 4oU8 4lloO Time
, 3, 3, 0.10%, 2148. 0,1. 00%, F,F)
Al . 74E8
40:00 4oll2 40:24 4ol36 40:48 41:
, 3, 3, 100. 00%, 144. 0,1. 00%, F,F)
40:00
^J V-^^A^^_ 4^\5^740X3_ 4A53^^
3 . 9E7
:2 . OE7
-O.OEO
00 Time
7.7E3
-3.9E3
-O.OEO
4olob ' ' ' 4oll2 ' ' ' 4ol24 ' ' ' 4o!36 ' ' 4ol48 ' ' ' 4lloO Time
.00%,F,F)
40:03 40:17 40:34 40:42 40:52 9 . 4E7
:4.7E7
" O.OEO
4olob 4oll2 40-124 4ol36 4ol48 4lloO Time
-------
M23-0-2
:. PES
Paradigm Analytical Labs
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1 ,2,3,4,6,7, 8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
(«»«)
EMPC
EMPC
EMPC
EMPC
0.0016
0.0200
0.0449
0.0055
0.0067
0.0039
EMPC
0.0020
ND
ND
0.0115
ND
EMPC
0.0148
0.0056
0.0200
0.0396
0.0860
0.0572
0.0088
0.0116
0.0036
0.0041
DL
"W
0.0004
0.0004
0.0009
0.0007
0.0007
0.0010
0.0010
0.0005
0.0006
0:0006
0.0006
0.0005
0.0006
0.0007
0.0008
0.0010
0.0007
0.0004
0.0004
0.0007
0.0010
0.0005
0.0006
0.0005
0.0008
EMPC
(«*)
0.0018
0.0006
0.0024
0.0018
0.0032
0.0045
0.0202
0.0188
0.0216
0.198
0.0648
0.0156
0.0140
0.0064
0.0065
RT
(mm.)
28:27
32:37
34:46
34:46
34:58
37:10
40:01
27:27
31:56
32:24
34:10
34:15
36:21
40:10
Ratio
1.03
0.77
0.93
0.93
1.28
0.96
0.88
1.08
1.41
1.41
1.03
1 23
±. »+*
-------
Paradigm Analytical Labs
Method 23
M23-O-2
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
I3C12-2,3,7,8-TCDD
"Cu-1, 2,3,7, 8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13CU- 1 ,2,3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13CI2-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
'3C,2-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3,7,8-TCDD
13C,:-2,3,4,7,8-PeCDF
13C,2-l,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13Cl2-l,2,3,4,7,8,9-HpCDF
Injection Standards
I3Cu-U3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
<«g)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured
Amount
3.58
3.46
3.64
3.90
7.10
3.38
2.86
3.68
2.88
3.88
4.16
4.13
3.47
3.27
Percent
Recovery
(%)
89.4
86.6
91.0
97.4
88.8
84.4
71.6
91.9
72.0
97.1
104.0
103.2
86.9
81.8
RT
(min.)
28:26
32:37
34:45
37:09
40:01
27:24
31:56
34:14
36:21
28:27
32:24
34:41
34:10
37:30
28:09
34:58
Ratio
0.78
1.56
1.25
1.05
0.89
0.78
1.55
0.52
0.44
1.56
1.25
0.52
0.44
0.79
1.25
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Texas Lime Kiln
M23-O-2
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
L1071
1071-2
28-Jun-98
08-M-98
, 14-M-98
21-Jal-98
Filename:
Retchk:
Begin ConCal:
End ConCal:
Initial Cal:
Reviewed by; *f . T.
Air
1
0.0
a20ju!98b-7
a20ju!98b-l
a20ju!98b-2
a20ju!98b-17
m8290-23-071798
Date Reviewed:
112
2/2
-------
OPUSquan 21-JUL-1998 Page 1
Filename a20ju!98b
Sample 7
Acquired 21-JUL-98 01:46:49
Processed 21-JUL-98 13:43:54
Sample ID 1071-2 xl/2
Ca] Table m8290-23-071798
Results Table M8290-23-072098B
Comments
Typ Name ; Resp ;
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
cs
cs
cs
cs
ss
ss
ss
ss
ss
2,3,7,8-TCDD; 4.32e+05;
1,2,3,7,8-PeCDD; 5.02e+04;
1,2,3,4,7,8-HxCDD; 1.35e+05;
1,2,3, 6,7, 8-HxCDD; 1.356+05;
1,2,3,7,8,9-HxCDD; 1.206+05;
1,2,3,4,6,7,8-HpCDD; 1.23e+06;
OCDD; 2.27e+06;
2,3,7,8-TCDF; 2.56e+06;
1,2,3,7,8-PeCDF; 5.54e+05;
2,3,4,7,8-PeCDF; 3.34e+05;
1,2,3,4,7,8-HxCDF; 2.69e+05;
1,2,3,6,7,8-HxCDF; 2.266+05;
2,3,4,6,7,8-HxCDF; *;
1,2,3,7,8,9-HxCDF; *;
1,2,3,4,6,7,8-HpCDF; 6.96e+05;
1,2,3,4,7,8,9-HpCDF; *;
OCDF; 2.426+05;
13C-2,3,7,8-TCDD; 4.336+08;
13C-l,2,3,7,8-PeCDD; 2.926+08;
13C-l,2,3,6,7,8-HxCDD; 3.47e+08;
13C-1 ,2,3,4,6,7, 8-HpCDD; 2 . 74e+08 ;
13C-OCDD; 4.026+08;
13C-2,3,7,8-TCDF; 5.13e+08;
13C-l,2,3,7,8-PeCDF; 3.79e+08;
13C-l,2,3,6,7,8-HxCDF; 4.03e+08;
13C-l,2,3,4,6,7,8-HpCDF; 1.926+08;
13C-1,2,3,4-TCDD; 4.41e+08;
13C-l,2,3,7,8,9-HxCDD; 3.53e+08;
37Cl-2,3,7,8-TCDD; 3.856+08;
13C-2,3,4,7,8-PeCDF; 3.856+08;
13C-1 ,2,3,4,7, 8-HxCDD; 2 . 36e+08 ;
13C-l,2,3,4,7,8-HxCDF; 2.75e+08;
13C-1 ,2,3,4,7,8, 9-HpCDF; 1 . 23e+08 ;
37Cl-2,3,7,8-TCDD; 3.85e+08;
13C-2,3,4,7,8-PeCDF; 3.85e+08;
13C-1 , 2,3,4,7, 8-HxCDD; 2 . 3 6e+08 ;
13C-l,2,3,4,7,8-HxCDF; 2.75e+08;
13C-l,2,3,4,7,8,9-HpCDF; 1.23e+08;
Ion 1;
9.87e+04;
2.18e+04;
6.52e+04;
6.52e+04;
6.75e+04;
5.99e+05;
1.06e+06;
1.336+06;
3.24e+05;
1.956+05;
1.366+05;
1.246+05;
* .
*;
3.456+05;
* .
1.03e+05;
1.896+08;
1.78e+08;
1.936+08;
1.406+08;
1.906+08;
2.256+08;
2.30e+08;
1.386+08;
5,90e+07;
1.95e+08;
1.966+08;
3.856+08;
2.35e+08;
1.316+08;
9.36e+07;
3.73e+07;
3.85e+08;
2.35e+08;
1.31e+08;
9.36e+07;
3.736+07;
3
2
6
6
5
6
1
1
2
1
1
1
3
1
2
1
1
1
2
2
1
2
1
2
1
1
1
1
8
1
1
1
8
Ion 2;
33e+05;
84e+04;
97e+04;
97e+04;
28e+04;
27e+05;
21e+06;
23e+06;
30e+05;
39e+05;
33e+05;
Ole+05;
* .
* .
51e+05;
* .
40e+05;
44e+08;
14e+08;
54e+08;
34e+08;
12e+08;
88e+08;
48e+08;
65e+08;
33e+08;
47e+08;
57e+08;
50e+08;
05e+08;
81e+08;
54e+07;
50e+08;
05e+08;
81e+08;
54e+07;
RA;?;
0.30;n;
0.77;n;
0.93;n;
0.93;n;
1.28,-y;
0.96;y;
0.88;y;
1.08;n;
1.41,-y;
1.41;y;
1.03,-n;
1.23;y;
*;n;
*;n;
0.98;y;
*;n;
0.74;n;
0.78;y;
1.56;y;
1.25;y;
1.05;y;
0.89;y;
0.78;y;
1.55,-y;
0.52;y;
0.44:y;
0.79;y;
1.25,-y;
1.56,-y;
1.25,-y;
0.52,-y;
0.44;y;
1.56;y;
1.25,-y;
0.52;y;
0.44;y;
RT;
28:27;
32:37;
34:46;
34:46;
34:58;
37:10;
40:01;
27:27;
31:56;
32:24;
34:10;
34:15;
NotFnd;
NotFnd;
36:21;
NotFnd;
40:10;
28:26;
32:37;
34:45;
37:09;
40:01;
27:24;
31:56;
34:14;
36:21;
28:09;
34:58;
28:27;
32:24;
34:41;
34:10;
37:30;
28:27;
32:24;
34:41;
34:10;
37:30;
^'
v-'
^^'
'
Cone ;
0.101;
0.015;
0.061;
0.044;
0.040;
0.499;
1.123;
0.523;
0.168;
0.098;
0.079;
0.051;
* .
* .
0.288;
* .
0.113;
89.414;
86.573;
91.013;
97.403;
177.545;
84.409-
1 71. 588,"
91.871;
71.977;
91.480;
89.209;
86.726;
74.389;
93.829;
80.410;
58.822;
97.047;
103.949;
103.189;
86.842;
81.753;
I
$
v^
DL;
0.0104;
0.0094;
0.0233;
0.0168;
0.0171;
0.0260;
0.0240;
0.0117;
0.0161;
0.0155;
0.0155;
0.0121;
0.0141;
0.0162;
0.0207;
0.0251;
0.0162;
0.0384;
0.0230;
0.0396;
0.0164;
0.1950;
0.0197;
) 0.0123;
0.1486;
0.1111;
-;
- ;
0.0089;
0.0126;
0.0600;
0.1907;
0.1419;
0.0102;
0.0104;
0.0655;
0.1746;
0.2574;
S/N1;?;
ll;y;
3;y;
7;y;
7;y;
6;y;
53;y;
88; y ;
169 ;y;
42;y;
32;y;
8;y;
7;y;
*;n;
*;n;
33;y;
*;n;
27;y;
4905;y;
19471 ,-y;
7021,-y;
9364;y;
796;y;
9978;y;
43416;y;
2079;y;
3106;y;
5165;y;
7126;y;
28308;y;
47371,-y;
6266;y;
1539;y;
1781;y;
28308;y;
47371;y;
6266;y;
1539;y;
1781;y;
S/N2;?
45;y
7;y
8;y
8;y
5;y
65;y
311;y
87 ;y
17;y
12 ;y
17 ;y
12 ;y
*;n
*;n
67 ;y
*;n
20 ;y
9856,-y
18506;y
6865;y
21292;y
45407 ;y
16848;y
19596;y
2251;y
1215;y
10178;y
6922;y
-; -
21416;y
6227;y
1623;y
700;y
.-; -
21416;y
6227;y
1623 ;y
700 ;y
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 12
-------
OPUSquan 21-JUL-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:18
Run: 12 File: a20ju!98b S:7 Acq:21-JUL-98 01:46:49 Proc:21-JUL-98 13:43:54
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3 . 5 17-APR-1997 11:14:34 Sample text: 1071-2 xl/2
Amount: 4.96
Cone: 4.96
TOX #1: -
Name
2,3,7,8-TCDF
of which 0.52
of which 0.52
Tox #2: -
named and 4.44
named and 4.44
Tox #3: -
RT Respnse
RA
1 23:40 2.56+06 0.78 y
2.5e+06
2 24:14 8.4e+05 0.73 y
8.4e+05
3 24:34 1.3e+06 0.76 y
1.3e+06
4 24:51 5.5e+06 0.78 y
5.5e+06
5 25:01 4.6e+05 0.75 y
4.6e+05
25:10 1.6e+06
1.6e+06
1.56 n
7 25:17 1.4e+06 0.58 n
1.4e+06
8 25:39 l.le+06 1.11 n
l.le+06
25:44 1.3e+06
1.3e+06
1.14 n
10 26:01 6.8e+05 1.76 n
6.8e+05
11 26:08 1.2e+06 1.51 n
1.2e+06
12 26:25 1.2e+06 1.69 n
1.2e+06
13 26:50 1.3e+06 1.44 n
1.3e+06
14 27:27 2.6e+06 1.08 n
2.6e+06
15 28:03 6.7e+05 1.03 n
6.7e+05
16 28:20 4.2e+05 0.62 n
4.2e+05
17 28:34 9.9e+04 0.23 n
9.9e+04
18 29:48 1.4e+05 1.15 n
1.4e+05
Cone
0.51
]
]
0.17
<
0.26
C
1.12
0.09
0.32
c
e
0.29
C
I
0.22
C
C
0.27
f
0.14
i,
0.24
4
0.25
4
0.27
C
0.52
]
3
0.14
0.09
]
0.02
]
£
0.03
unnamed
unnamed
Area Height
S/N Mod?
l.le+06 2.46+05 1.8e+02 y n
1.4e+06 3.2e+05 1.2e+02 y n
3.5e+05 7.8e+04 6.0e+01 y n
4.9e+05 l.le+05 4.0e+01 y n
5.66+05 1.2e+05 9.5e+01 y n
7.3e+05 1.7e+05 6.3e+01 y n
2
2.4e+06 4.76+05 3.6e+02 y n
3.1e+06 6.4e+05 2.4e+02 y n
9
2.0e+05 4.7e+04 3.6e+01 y n
2.76+05 S.Oe+04 1.9e+01 y n
2
9.6e+05 1.2e+05 9.46+01 y n
6.2e+05 1.4e+05 S.le+01 y n
J
5.2e+05 1.2e+05 8.8e+01 y n
8.9e+05 1.36+05 4.8e+01 y n
2
5.6e+05 1.3e+05 9.7e+01 y n
5.0e+05 1.3e+05 4.7e+01 y n
7
7.1e+05 1.6e+05 1.2e+02 y n
6.36+05 1.7e+05 6.3e+01 y n
4.3e+05 9.6e+04 7.4e+01 y n
2.5e+05 8.2e+04 3.1e+01 y n
i
7.0e+05 1.5e+05 1.2e+02 y n
4.6e+05 1.4e+05 5.4e+01 y n
7.66+05 1.5e+05 l.le+02 y n
4.5e+05 1.3e+05 4.7e+01 y n
7.9e+05 1.6e+05 1.2e+02 y n
5.56+05 1.66+05 5.9e+01 y n
1.3e+06 2.2e+05 1.7e+02 y n
1.2e+06 2.3e+05 8.7e+01 y n
1
3.4e+05 7.0e+04 5.3e+01 y n
3.3e+05 7.9e+04 3.0e+01 y n
1.6e+05 3.1e+04 2.4e+01 y n
2.66+05 4.9e+04 1.8e+01 y n
.8e+04 5.2e+03 4.0e+00 y n
8.1e+04 1.3e+04 4.9e+00 y n
3
7.5e+04 1.66+04 1.2e+01 y n
6.5e+04 1.2e+04 4.6e+00 y n
< 114
-------
OPUSquan 21-JUL-1998
Page 2
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:14
Run: 12 File: a20ju!98b S:7 Acq:21-JUL-98 01:46:49 Proc:21-JUL-98 13:43:54
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-2 xl/2
Amount: 0.61
Cone: 0.61
Tox #1: -
Name
2,3,7,8-TCDD
of which 0.10
of which 0.10
Tox #2 : -
# RT Respnse
named and 0.50
named and 0.50
Tox #3: -
RA
1 25:15 7.76+05 0.73 y
7.76+05
2 25:40 3.6e+05 0.73 y
3.66+05
3 26:03 1.2e+05 0.83 y
1.2e+05
4 26:54 2.6e+05 0.81 y
2.6e+05
27:08 4.3e+04
4.36+04
0.32 n
6 27:24 7.7e+04 2.06 n
7.76+04
7 27:45 4.9e+04 0.49 n
4.96+04
8 28:10 1.9e+05 0.92 n
1.96+05
9 28:19 8.0e+04 0.87 y
8.0e+04
10 28:27 4.3e+05 0.30 n
4.36+05
11 28:41 3.3e+04 1.49 n
3.3e+04
12 28:56 8.06+04
S.Oe+04
1.00 n
13 29:18 3.1e+04 0.96 n
3.16+04
14 29:54 4.4e+04 3.09 n
4.46+04
Cone
0.18
i
4
0.08
]
0.03
E
e
0.06
1
3
0.01
1
0.02
c
0.01
]
0.05
c
3
0.02
4
0.10
s
•3
0.01
3
]
0.02
<
<
0.01
1
]
0.01
unnamed
unnamed
Area Height
S/N Mod?
3.36+05 6.9e+04 4.7e+01 y n
4.56+05 9.3e+04 6.1e+01 y n
l.Se+05 3.2e+04 2-le+Ol y n
2.1e+05 4.7e+04 3.Oe+01 y n
3
5.5e+04 l.le+04 7.3e+00 y n
6.7e+04 1.4e+04 8.8e+00 y n
S
1.2e+05 2.6e+04 1.8e+01 y n
1.4e+05 2.5e+04 1.6e+01 y n
1
l.Oe+04 2.16+03 1.4e+00 n n
3.2e+04 5.6e+03 3.7e+00 y n
5.26+04 1.2e+04 7.76+00 y n
2.5e+04 5.16+03 3.3e+00 y n
.6e+04 4.4e+03 2.9e+00 n n
3.3e+04 6.0e+03 3.9e+00 y n
5
9.36+04 2.1e+04 1.4e+01 y n
.Oe+05 2.0e+04 1.3e+01 y n
3.7e+04 7.9e+03 5.3e+00 y n
4.36+04 8.56+03 5.6e+00 y n
3
9.96+04 1.7e+04 l.le+01 y n
3.3e+05 6.9e+04 4.5e+01 y n
.9e+04 3.96+03 2.6e+00 n n
.36+04 3.8e+03 2.5e+00 n n
.06+04 9.26+03 6.2e+00 y n
.06+04 8.7e+03 5.76+00 y n
1.5e+04 3.3e+03 2.2e+00 n n
1.6e+04 4.0e+03 2.6e+00 n n
3.3e+04 7.8e+03 5.2e+00 y n
l.le+04 3.6e+03 2.4e+00 n n
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:ll
Run: 12 File: a20jul98b S:7 Acq:21-JUL-98 01:46:49 Proc:21-JUL-98 13:43:54
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: nv8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-2 xl/2
Amount: 1.66 of which 0.27 named and 1.39 unnamed
Cone: 1.6G of which 0.27 named and 1.39 unnamed
Tox #1: - • Tox #2: - Tox #3: -
Name
RT Respnse
RA Cone Area Height S/N Mod?
rr
115
-------
OPUSguan 21-JUL-1998 Page 3
1 30:16 l.le+06 1.49 y 0.33
l.le+06 6.7e+05 1.4e+05 6.6e+01 y n
4.5e+05 9.2e+04 2.3e+01 y n
2 31:15 3.16+05 1.74 y 0.09
3.1e+05 2.0e+05 6.9e+04 3.1e+01 y n
l.le+05 4.0e+04 9.9e+00 y n
3 31:21 1.7e+06 1.51 y 0.52
1.7e+06 l.le+06 2.9e+05 1.3e+02 y n
7.0e+05 1.9e+05 4.7e+01 y n
4 31:28 2.7e+05 1.90 n 0.08
2.7e+05 1.7e+05 4.8e+04 2.2e+01 y n
9.2e+04 2.8e+04 7.0e+00 y n
5 31:36 l.le+05 1.72 y 0.03
l.le+05 6.96+04 1.7e+04 7.7e+00 y n
4.0e+04 l.Oe+04 2.6e+00 n n
6 31:45 3.8e+05 1.28 n 0.11
3.8e+05 2.1e+05 6.4e+04 2.9e+01 y n
1.6e+05 5.3e+04 1.3e+01 y n
1,2,3,7,8-PeCDF 7 31:56 5.5e+05 1.41 y 0.17
5.5e+05 3.2e+05 9.1e+04 4.2e+01 y n
2.3e+05 6.6e+04 1.7e+01 y n
8 32:03 1.9e+05 1.47 y 0.06
1.9e+05 1.2e+05 4.0e+04 1.9e+01 y n
7.96+04 2.8e+04 6.9e+00 y n
9 32:08 3.6e+05 1.64 y 0.11
3.6e+05 2.3e+05 7.6e+04 3.5e+01 y n
1.4e+05 4.7e+04 1.2e+01 y n
2,3,4,7,8-PeCDF 10 32:24 3.3e+05 1.41 y 0.10
3.36+05 2.0e+05 6.9e+04 3.2e+01 y n
1.4e+05 4.8e+04 1.2e+01 y n
11 32:29 1.86+05 1.32 y 0.05
1.8e+05 l.Oe+05 3.8e+04 1.7e+01 y n
7.9e+04 2.8e+04 6.9e+00 y n
116
-------
OPUSquan 21-JUL-1998
Page 4
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:8
Run: 12 File: a20ju!98b S:7 Acq:21-JUL-98 01:46:49 Proc:21-JUL-98 13:43:54
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-2 xl/2
Amount: 0.46
Cone: 0.46
Tox #1: -
Name
of which 0.02
of which 0.02
Tox #2: -
# RT Respnse
named and 0.45
named and 0.45
Tox #3: -
RA
1 31:29 3.8e+05 1.60 y
3.8e+05
31:48 6.8e+04
6.8e+04
1.67 y
3 31:59 2.3e+05 1.97 n
2.3e+05
4 32:04 2.86+05 0.32 n
2.86+05
5 32:10 2.8e+05 0.33 n
2.8e+05
6 32:20 l.Oe+05 0.96 n
l.Oe+05
7 32:24 l.le+05 2.01 n
l.le+05
1,2,3,7,8-PeCDD
32:37 5.0e+04
5.0e+04
0.77 n
Cone
0.12
3
0.02
4
0.07
]
0.09
(
0.09
0.03
c
c
0.03
0.02
unnamed
unnamed
Area Height
S/N Mod?
2.3e+05 7.8e+04 3.3e+01 y n
1.5e+05 4.6e+04 3.7e+01 y n
4.2e+04 1.6e+04 6.9e+00 y n
2.5e+04 9.1e+03 7.3e+00 y n
1.5e+05 3.6e+04 1.6e+01 y n
7.8e+04 2.46+04 2.0e+01 y n
6.8e+04 1.7e+04 7.4e+00 y n
2.1e+05 3.7e+04 3.06+01 y n
3
7.1e+04 2.06+04 8.7e+00 y n
2.1e+05 3.96+04 3.1e+01 y n
3
5.1e+04 1.9e+04 8.0e+00 y n
5.3e+04 1.5e+04 1.2e+01 y n
3
7.6e+04 1.6e+04 6.9e+00 y n
3.8e+04 7.1e+03 5.7e+00 y n
2
2.2e+04 7.3e+03 3.1e+00 y n
2.8e+04 9.1e+03 7.3e+00 y n
Ent: 43 Name: Total Hexa-Furans
Page 5 of £
F:3 Mass: 373.821 375.818 Mod? no #Hom:8
Run: 12 File: a20ju!98b S:7 Acq:21-JUL-98 01:46:49 Proc:21-JUL-98 13:43:54
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-2 xl/2
Amount: 0.42
Cone: 0.42
Tox #1: -
Name
of which 0.13
of which 0.13
Tox t2: -
# RT Respnse
named and 0.29
named and 0.29
Tox #3: -
RA
1 33:31 2.4e+05 1.03 n
2.4e+05
2 33:37 6.5e+05 1.22 y
6.56+05
3 33:43 2.8e+04 0.43 n
2.8e+04
4 33:48 3.1e+04 0.76 n
3.16+04
5 33:55 l.Oe+05 1.45 n
l.Oe+05
6 34:00 1.5e+04 5.82 n
1.5e+04
Cone
0.06
1
1
0.17
2
0.01
E
0.01
3
3
0.03
e
4
0.00
unnamed
unnamed
Area Height
S/N Mod?
1.2e+05 5.0e+04 9.0e+00 y n
1.2e+05 4.5e+04 1.8e+01 y n
7
3.6e+05 1.3e+05 2.4e+01 y n
2.9e+05 l.Oe+05 4.3e+01 y n
L
8.5e+03 3.3e+03 5.8e-01 n n
2.0e+04 7.1e+03 2.9e+00 n n
L
1.3e+04 5.4e+03 9.7e-01 n n
1.7e+04 4.6e+03 1.9e+00 n n
3
6.1e+04 2.2e+04 3.9e+00 y n
4.2e+04 1.4e+04 5.8e+00 y n
1.3e+04 3.1e+03 5.6e-01 n n
-------
OPUSquan 21-JUL-1998
Page 5
1,2,3,4,7,8-HxCDF 7
34:10 2.7e+05 1.03 n
2.7e+05
1,2,3,6,7,8-HxCDF 8 34:15 2.3e+05 1.23 y
2.3e+05
0.08
0.05
2.3e+03 1.5e+03 6.1e-01 n n
B
1.4e+05 4.6e+04 8.2e+00 y n
1.3e+05 4.2e+04 1.7e+01 y n
1.2e+05 4.0e+04 7.2e+00 y n
l.Oe+05 2.9e+04 1.2e+01 y n
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:7
Run: 12 File: a20ju!98b S:7 Acg:21-JUL-98 01:46:49 Proc:21-JUL-98 13:43:54
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-2 xl/2
Amoant: 0.56
Cone: 0.56
Tox #1: -
Nair.e
of which 0.08
of -which 0.08
Tox #2: -
# RT Respnse
named and 0.48
named and 0.48
Tox #3: -
RA
1,2,3,6,7,6-HxCDD
1 33:52 5.1e+05 1.33 y
5.1e+05
2 34:10 2.3e+05 1.35 y
2.3e+05
3 34:20 5.4e+05 1.29 y
5.4e+05
4 34:26 2.6e+04 0.84 n
2.6e+04
5 34:46 1.3e+05 0.93 n
1.3e+05
34:52 5.9e+03
5.9e+03
0.46 n
1,2,3,7,8,9-HxCDD 7 34:58 1.2e+05 1.28y
1.2e+05
Cone
0.18
0.08
3
c
0.20
0.01
1
]
0.04
t
0.00
]
t
0.04
unnamed
unnamed
Area Height
S/N Mod?
2.9e+05 l.Oe+05 2.9e+01 y n
2.2e+05 7.8e+04 2.5e+01 y n
3
1.36+05 5.0e+04 1.4e+01 y n
9.9e+04 3.2e+04 l.Oe+01 y n
3
3.1e+05 l.Oe+05 2.9e+01 y n
2.4e+05 7.8e+04 2.5e+01 y n
I
1.2e+04 5.5e+03 1.6e+00 n n
1.4e+04 4.8e+03 1.6e+00 n n
;
6.5e+04 2.6e+04 7.5e+00 y n
7.0e+04 2.5e+04 8.1e+00 y n
.8e+03 S.le+02 2.36-01 n n
.06+03 2.1e+03 6.8e-01 n n
6.8e+04 2.1e+04 5.9e+00 y n
5.3e+04 1.5e+04 4.96+00 y n
118
-------
OPUSquan 21-JUL-1998
Page 6
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:2
Run: 12 File: a20ju!98b S:7 Acq: 21-JUL-98 01:46:49 Proc:21-JUL-98 13:43:54
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-2 xl/2
Amount: 0.35
Cone: 0.35
Tox #1: -
Mame
of which 0.29
of which 0.29
Tox #2: -
# RT Respnse
named and 0.06
named and 0.06
Tox #3: -
RA
1,2,3,4,6,7,8-HpCDFl 36:217.0e+05 0.98y
7.0e+05
2 36:39 1.3e+05 0.83 n
1.3e+05
Cone
0.29
3
•q
0.06
unnamed
unnamed
Area Height
S/N Mod?
3.5e+05 l.le+05 3.3e+01 y n
3.5e+05 l.le+05 6.7e+01 y n
5
5.9e+04 2.26+04 6.7e+00 y n
7.0e+04 2.1e+04 1.3e+01 y n
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:3
Run: 12 File: a20ju!98b S:7 Acq: 21-JUL-98 01:46:49 Proc:21-JUL-98 13:43:54
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-2 xl/2
Amount: 1.01
Cone: 1.01
Tox #1: -
Name
of which 0.50
of which 0.50
Tox 12: -
# RT Respnse
named and 0.52
named and 0.52
Tox #3: -
RA
1 36:20 5.5e+04 4.42 n
5.5e+04
2 36:35 1.2e+06 1.13 y
1.2e+06
1,2,3,4,6,7,8-HpCDD3 37:10 1.2e+06 0.96y
1.2e+06
Cone
0.02
<
]
0.49
6
C
0.50
unnamed
unnamed
Area Height
S/N Mod?
.5e+04 1.6e+04 4.8e+00 y n
.Oe+04 4.3e+03 1.7e+00 n n
6.4e+05 1.9e+05 5.8e+01 y n
5.7e+05 1.8e+05 7.0e+01 y n
D
6.0e+05 1.7e+05 5.3e+01 y n
6.3e+05 1.7e+05 6.5e+01 y n
-------
File: A20JUL98B Acq:
21-JUL-1998 01:46
:49 Exp: EXP_M23
_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #7 Text: 1071-2 xl/2 ALS #8
319.8965 s-7 RMnn ~n
1002
sol
n-
24:00
321.8936 S-7 SMO(1,3)
100%,
-
50J
n -
24:00
331.93fiR s-7 sMnii n
100%
50_
o-
1 1 1 1 ••! •[ T
24:00
333.9339 S:7 SMO(1,3)
100%
50J
0:
" ' i r— i 1 1 r— r
24:00
327.8847 S:7 SMO(1,3)
100%
50J
o:
' l 1 1 1 1 1 r
24:00
316.9824 S:7 SMO(1,3)
100% 24:01
50_
0
1
-U.I-,, r ,_..,,_., ...,. ,
3 24:00
BSUB(128 , 15, -3 0)
A3. 2
A
25:00
BSUB(128 , 15, -3 . 0)
A4.4
A
L
25:00
BSUB(128 15, -3.0)
25:00
BSUB(128,15,-3.0)
25:00
BSUB(128,15,-3.0)
25:00
PKD(3,3,3,100.00%
24:41
25. W
PKD(3 ,3,3,0.10%,
;iE5
A1.52E5
A A5.53E4
/ V W
26:00
PKD(3, 3,3,0 .10%,
9E5
A2.08E5
i A A6.66E4
V / V y~\
26:00
PKD(3, 3,3,0 .10%,
26:00
PKD(3,3,3,0.10%,
26:00
PKD(3,3,3,0.10%,
r i i i |
26:00
,0.0,1.00%,F,F)
25^44 26:08
26 loo'
1488.0, 1.00%,F,F)
A1.17E5 q ,,, .
A^J^E4 yV/v A3-A9E4 ^^
7.1E4
_3.6E4
O.OEO
27:00 28:00 29:00 30:00 Time
1528.0, 1 .00%, F, F)
9.4E4
A3.33E5
A
A1.45E5 Al oiEB/l
f\ A2.34E4 Ai.uo.tb; \ _A3 _ 97E4
_/ v f — •*- ^^ , — ^^-^^ / v — Y V y~\ - , ^**^--,-m
14.7E4
: 0 . OEO
27\00 " 28 loo 29:00 30:00 Time
7828.0, 1.00%,F,F)
A1.95E8
A A
A A
y\ /v
4.0E7
L2.0E7
: 0 . OEO
27:00 28:00 29:00 30:00 Time
5052. 0,1. 00%, F,F)
A2.47E8
A A
o
l\l\
5 . 1E7
12 . 6E7
.O.OEO
27:00 28-00 29:00 30:00 Time
2744. 0,1. 00%, F,F)
A3.85E8
A
/v
7 . 8E7
L3 . 9E7
: O.OEO
27^00 28:00 29:00 30:00 Time
26-37 27:00 27:51 28:_36 28:5^8 6 . 1E7
\T
:3.1E7
LO.OEO
27:00 28:00 29:00 30. -00 Time
-------
File: A20JUL98B Acq: 21-JUL-1998 01:46:49 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #7 Text: 1071-2 xl/2 ALS #8 ^-^
355 tt^AK C-7 TTO CMAM T\ H<5TmM7R 1 R -1 fU PTCD ( ? . 3 . 3 . 0 . 1 0% . 2140 . 0 . 1 . 00% . F . En/ \
100S
50.
0.
A2.34E5 / \
A /
1 1 A1.53E5 lJl—J
\ \ A4.22E4 A A7^)5E4
/ V^ /\ / Vi V-^/V^— A ^~^L ^ _^
8.0E4
_4.0E4
O.OEO
30:12 30:24 30:36 30i48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
357.8517 S:7 F:2 SMO(1,3) BSUB (128, 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1240 . 0 , 1 . 00%, F, F)
100%. A1.47E5 4.7E4
50"
-
0'
A A2.13E5
l\ rvA
,r\
\ \1 V5.27E4
/ \ A2.53E4 / f \>\ A2.84E4
J v__ /V / 1 1 V^-^V\— - - —
"2.3E4
O.OEO
3oli2 36124 36136 SflUs 31:66 3ill2 31124 3ll36 3ll48 32166 32! 12 32124 32136 32148 33166 33112 Time
367.8949 S:7 F:2 SMO(1,3) BSUB (128 , 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 3224 . 0 , 1 . 00%, F, F)
100S
50:
o:
A1.75E8
/I
6.3E7
L3.1E7
_O.OEO
3oli2 36124 36136 36148 3J.166 3ill2 3ll24 3ll36 3ll48 32l6o 32ll2 32124 32136 32148 33166 33ll2 Time
369.8919 S:7 F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2156 . 0 , 1 . 00% , F, F)
100%
so:
0'
A1.14E8
l\
1 v_
4.0E7
12 . OE7
"O.OEO
3oll2 30124 30136 30148 3lloO 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
366.9792 S:7 F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 .00%, F,F)
100%
so:
0"
30:13 30:33 31:00 31:14 31:32 31:55 32:20 32i36_32^AS 33:01
5.9E7
12.9E7
O.OEO
"M 30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
-------
File: A20JUL98B Acq: 21-JUL-1998 01:46:49
Sample #7 Text: 1071-2 xl/2 ALS #8
389.8156 S:7 F-T sMnn ~\\ RsiTRn^a is -•? n\
100S
50J
_
-
-
0'
A2.90E5
Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
PKD(3, 5, 2, 0.10%, 3504. 0,1. 00%, F,F)
A3.06E5
A
\ A1.33E5 /\
A
\ \
\ /I
/ V^ /
33:24 33:36 33Us 34^00 34.'
391.8127 S:7 F:3 SMO(1,3) BSUB (128 , 15, -3 . 0)
1002
so:
-
0"
A2 . 18E5
/ 1 A9.90I
A
/ v / \
— . — . — ~^_ — __ > ^ • — •*
33124' ' '33:36' ' '33UV ' '34,\ do' '34!
401.8559 S:7 F:3 BSUB (128, 15, -3 . 0) PKD(3,5,
100%
50_
0'
33:24 33:36 33:48 34:00 34:
403.8530 S:7 F:3 BSUB(128, 15, -3 . 0) PKD(3,5,
100%^
so;
0 "
"-1— i — i — r— i — i — i — i — r— i — i — i— i — i— i — i — i — i — i — i — i — r— i — i—r-r- T -j
33:24 33:36 33:48 34:00 34:
380.9760 S:7 F:3 SMO(1,3) PKD( 3 , 3 , 3 , 100 . 00%
100%, 33:28 33_^38 34:0234^_Q9
50:
Q "
7
.-"O ' "' | ' '' 1 -l"i "|" l"r"i"i i | i i i i 'i | i r IT r |
.^! 33:24 33:36 33:48 34:00 34:
/ \ A6.52E4
/v. / \ f\ A6.75E4
\J Al 18E4 / \ S~\
Y "«r ^ ^ _ ^ A^ / \
1.1E5
15.3E4
O.OEO
12 34l24 34he 34Us 3s!oO 35.-12 3sl24 35:36 35148 Time
PKD(3,5,2,0.10%,3108.0,1.00%,F,F)
A2.37E5
A
/ \ A A5.28E4
/ A\1.40E4 / \ S\
' ^'"•' %~T" *^-T "^~~ ^ -S ^-Bl II
:8.2E4
14.1E4
•
V O.OEO
12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
2, 0.10%, 10652. 0,1. 00%, F,F)
A1.93E8 A1.96E8
M A
I 1 V^ 1 V_
7 . 6E7
_3.8E7
LO.OEO
12 34124 34l36 34Us 3s!oO 3s!l2 35I24 35:36 3sl48 Time
2, 0.10%, 8632. 0,1. 00%, F,F)
A1.54E8 Al . 57E8
M A
/ f V_ / V_
6.0E7
_3.0E7
LO.OEO
12 34:24 34:36 34:48 35:00 35:12 35:24 35^36 35:48 Time
, 0.0,1. 00%, F,F)
34:19 34:31 34:46 34:59 35:1635:23 35:33 35:43 1.3E8
L6.3E7
' O.OEO
12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35 48 Time
JV5
-------
Fil(
Sam]
423
1005
50.
0.
425.
100!
50_
0'
435.
100S
50_
437.
100%
so:
0"
430.
100%
so:
0"
=: A20JUL98B Acq: 21-JUL-1998 01:46:49 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Die #7 Text: 1071-2 xl/2 ALS #8
.7767 S:7 F:4 SMO(1,3) BSUB (128 , 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 3300 . 0 , 1 . 00% , F, F)
A6-44E5 A5.99E5
A4.47E4 \ \
*s^. J ^ — J ^- _^— ^
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 3s!24 38:36 38.Ua 39
7737 S:7 F:4 SMO(1,3) BSUB (128, 15 , -3 . 0) PKD( 3 , 3 , 3 , 0 . 10% , 2612 . 0 , 1 . 00% , F, F)
A5.68E5 A6.27E5
A /l
36166 36112 36124 36136 36148 37166 37112 37124 37136 37148 38.'66 38112 38124 38.-36 SsUs 39
8169 S:7 F:4 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 4156 . 0 , 1 . 00%, F, F)
A1.40E8
1 l ' 1 I ' l i l l I ' i i ' l 1 ' ' i '""'""1 | i i i i i | i i i i i l l T^"l 1 | 1 l i i l l i l i i i l i i i i r i i i i i i i 1 i i i i i 1 i -r-r-r T i i i • i i i J
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38.!36 38.Ua 39
8140 S:7 F:4 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1744 . 0 , 1 . 00%, F, F)
A1.34E8
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38136 38Us 39
9728 S:7 F:4 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 .00%, F, F)
36:06 36:23 36i41 37j^00 37_:15 37jJ5 37:54 38:08 38:21 38:48
'
1.9E5
L9.7E4
00 Time
1.9E5
_9.3E4
O.OEO
00 Time
3.9E7
_1.9E7
O.OEO
00 Time
11.9E7
00 Time
8.4E7
.4.2E7
n riKn
<-V 36:66 36:12 36124 36136 36 148 37! 66 37 ! 12 ' 3 7] 2' 4 "ITlie " 37 Us ' 38 ! 66 ' 38 : 12 ' 38 \2l " 38 .-36 ' 38 U^ ' 39 ! 00 Time
-------
File: A20JUL98B Acq: 21-JUL-1998 01:46:49 Exp : EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Parad
Sample #7 Text: 1071-2 xl/2 ALS 18
457.7377 S:7 F:5 SMO(1,3) BSUB (128, 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 2852 . 0, 1 . 00% , F, F)
10 OS A1.06E6
50J
0"
459.
100S
so:
(T
469.
lOOi
so:
o:
471.
lOOi
so:
o:
454.
100%
50_
0
/v
39:12 39:24 39136 39:48 40:00 40 ! 12 40:24 40:36 40:48 41:
7348 S:7 F:5 SMO(1,3) BSUB(128 , 15 , -3 . 0 ) PKD(3 , 3 , 3 , 0 . 10%, 900 . 0 , 1 . 00% , F, F)
, A1.21E6
/v
39:12 39:24 39:36 39:48 4o!ob 4o!l2 40:24 4o!36 40:48 41:
7780 S:7 F:5 SMO(1,3) BSUB ( 128, 15 , -3 . 0 ) PKD(3 , 3 , 3 , 0 . 10%, 55384 . 0 , 1 . 00%, F, F)
Al . 90E8
J\_
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I--T--J— T 1- T-f !-• |- 1 - I ' 1 1 1 "| ' 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
7750 S:7 F:5 SMO(1,3) BSUB(128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1084 . 0 , 1 . 00%, F, F)
A2 . 12E8
J\_
— i — i — r— i — r—> — i i i i — i— i — i — i — i — i — | — i — i — i — i — i — r— T — i — i — f—i — I r — r— r — r — i "'I -!' "! I i i | i i i i i ] i i i i i | i i i i i
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
9728 S:7 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
39:09 39:15 39:28 39:38 39:45 39:56 40i06 40:14 40:24 40:31 40_^5040i56
r
] 39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
igm
2.6E5
11.3E5
".O.OEO
00 Time
2.8E5
.1.4E5
.0 . OEO
00 Time
4.4E7
-2.2E7
O.OEO
00 Time
4.9E7
.2 . 5E7
"O.OEO
00 Time
9.0E7
14 . 5E7
' 0 . OEO
00 Time
-------
File: A20JUL98B Acq:
21-JUL-1998 01:46:49 Exp:
EXP_M23_DB5_OVATION Voltage SIR EH- GC Autospec-UltimaE Paradigm
Sample #7 Text: 1071-2 xl/2 ALS #8
303.9(116 .q-7 SMDM "n
1003
50-
0
j:
A1.10E6
A
/V
i i i 1 i i
24100
305.8987 S:7 SMOM.Tl
100S
50J
0;
A1.41E6
A
24 .-00
315.9419 S:7 SMOM.T^
100%
50 1
o:
24 loo
317.9389 S:7 SMO(1,3)
100%
50J
0"
24:00
375.8364 S:7 SMO(1,3)
100%
:
50J
o"
23.23 23:51
_r\_y\/ W^jW U>A^-
™ i 1 1 1 1 r r
24100
316.9824 S:7 SMO(1,3)
100% 24:01
:
50J
1
— 1~ ~i 1 T 1 1 r~
24:00
BSUB(128,
A2
1 5 , - 3 . 0 ) PKD (3,3,3
.40E6
A5.57E5/1 A7'11E5
BSUB(128,
A3
A7.33E5
/\ A
BSUB(128,
BSUB(128,
BSUB(128,
24:22
.^\/\ /W
"" 1 1 "T "~
PKD(3,3,3
J N^ATX /I V y
25:00 '26
15, -3.0) PKD(3,3,3
.09E6
,0.10%, 1304 .0,1
A7.871
W /\\ A*
-p1 — r* — f 1 *T — i *•
:00 27
,0.10%, 2668.0, 1.
00%,F,F)
4
A1.33E6
A"
A3^40E5^
_2
• o
j i ' ' ' i i ' ' i 1 i i i i i i ^Y i
:00 28:00 29:00 30:00
00%,F,F)
/ \A6.19E5 A6.27E5 A5.45E5 A1'23E6
/ w/r\ /Y\ A A A. A A A3-A9E5^
25:00 26
15, -3.0) PKD(3,3,3
25 : 00 26
15, -3.0) PKD (3, 3, 3
25:00 26
15, -3.0) PKD(3,3,3,
25:01 25:40
VvVxVJ^A/\_^vJ
r T T T i I T
25:00 26
,100. 00%, 0.0, 1.00%,
24:41 25_:44
r 1 1
-i 1 1 1- — i 1 r— — |
25:00 26
loo' ' ' ' 27
,0.10%, 4696. 0,1.
loO ' ' 27
0.10%, 3592. 0,1.
:00 27
100. 00%, 908. 0,1
26:19
rl_jVy **vrxj-v-vA^.
i — i — i — i — i — i — i
00 27
F,F)
26:08 26_L37 27
— i 1 1 1 1
00 27
6
13
0
:00 28:00 29:00 30:00
00%,F,F)
A2.25E8
A
A
/i
4
_2
0
loo 28loO 29loO 3oloO
00%,F,F)
A2.88E8
A
y V
6
.3
0
.-DO ' 28 loO ' 29 .-00 30.-00
.00%,F,F)
28:26 8
A f\ r
A A 29:40
27:55 \ \ A
A / 1 / \ A
/\jV/^Vy vljv \J \_fJ V „ j\ syJ*\rS\f^ \] \ /K/V
14
0
..... | , , , , , | , i i i i i
00 28:00 29:00 30:00
^OQ 27:51 28:26 28:58 6
\ r
V
• 1 1 ( 1 1 r 1 1 1 1 1 j 1 1 1 1 1 1 — "-
-3.
0.
00 28:00 29:00 30:00
.7E5
.3E5
.OEO
Time
.4E5
.2E5
.OEO
Time
.7E7
.3E7
.OEO
Time
.1E7
.OE7
.OEO
Time
. OE3
.OE3
OEO
Time
1E7
1E7
OEO
Time
-------
File: A20JUL98B Acq: 21-JUL-1998 01:46:49 Exp: EXP_M23_DB5_OVATION Voltage SIR EI +GC Autospec-UltimaE Paradigm
Sample #7 Text: 1071-2 xl/2 ALS #8
339.8597 S:7 F:2 SMO(1,3) BSUB(128,15,-3 . 0 ) PKD(3,3,3,0.10%,2176.0,1.00%,F,F)
100* A1.Q5E6
50J
OJ
Af .72E5
1.75E5
A3.24E5
A1.95E5
2.9E5
_1.5E5
O.OEO
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
341.8568 S:7 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,4024.0,1.00%,F,F)
1004 A6.95E5
Oj
A4.51E5
A2.30E5
A1.39E5
1
L9
LO
Time
.9E5
.7E4
OEO
Time
9E7
4E7
OEO
Time
7E7
8E7
OEO
Time
2E4
OE3
OEO
Time
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
351.9000 S:7 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1872.0,1.00%,F,F)
10°^ / fr/*^ t-3ft'f) *4>i> \$M A2.30E8 A2.35E8
50j
OJ
8.
4
i i | I'T1 T i i | i i T i i T'T1 r T T" r-T'T'i—r—n—r-i—i—i—n—pi—r'T^r^r-r-j—t i i i i—i T i i •r-y~t-T'T"i—i T"l i i'"i i i i—r-r—T* T—i T"*T r r 'T' t—r—I"T"T~I—i i IT r T • r i ' T T • i r i
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
353.8970 S:7 F:2 SMO(1,3) BSUB(128,15,-3 . 0) PKD(3,3,3,0.10%,2644.0,1.00%,F,F)
A1.48E8 A1.50E8
LO
50_
OJ
L
T""T' r IT r T T i I t |—fi-'t -f i i—i i i" i i' f i i* i—i—r-i—r-n—r T r r~i Tfr T i—r"T-T" r T~I—t T T r i irfi i i p*l i i i i—|—i—i—r r T—[—r-T i » i "pi—i i r 't [ i i T i i i i i—i—r -T -T-T—T
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
409.7974 S:7 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,4736.0,1.00%,F,F)
1004 . ._" " .""
31:48
5.
L2.
LO.
50J
OJ
33:01
30:25
30:48 31=01
1.
-6.
Lo.
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33il2
366.9792 S:7 F:2 SMO(1,3) PKD(3,3,3,100.00%, 0.0,1.00%,F,F)
100* 30:13 30:33 31:00 31:14 31:32
50_
31:55
32_j_20_
"i—f r"i—r i t i' i—i—i—r T"T- i—i—r \^ T T ' )—r-r T-T-I—i—r~!—i—r—i—i—i—r—i—r—t--r T r-1—i—i—i—r^*r i—r~i—i—i—r T 'ivTi—i—n—i—i—i—i—i—i—i—[—r—r-i—i—r—r—i—i—i—i—i—p-i—i—i—r~i—r"T—T"T"T—i—p
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
OEO
Time
0)
-------
File: A20JUL98B
Sample #7
373.8207 S
1005
50-
0_
Text:
:7 F:3
A3
Acq:
21-JUL-1998
1071-2 xl/2
SMO(1
•57E5
A
,3)
ALS
BSUB(128
01:
#8
,15
A.X.22EJ \
33J24
375.8178 S
1003
50_
0 '
A/
33
•7 F:3
A2.
V
',36'
SMO(1
92E5
33
A6
uv
.09E4
' '34!
,3) BSUB(128
00
IS
A1.19E5 \
s\ r i
33124
383.8639 S
100*
50J
o:
33? 24
385.8610 S:
1003
50 j
o:
1 i '
33:24
445.7555 S:
00%
:
50 J
-
-
Oj
33 :
33:21^
~^~^J
33.1 24
380.9760 S:
100% 33
:
50J
o:
f^
:-~)1 33524
/\J A1.97E4
' ' '33
7 F:3
33:
7 F:3
1 i i "T
33 i
7 F:3
27
-^ 33:
^—^~~
33!
7 F:3
28 j;
33!
v^
36
'
33
BSUB{128
36
33
A4
48
,15,
48
BSUB(128,15,
36
33!
SMO (1,3)
33
36 7
~ — ^-^
36
SMO ( 1 ,
LJ38
36
44
\
48
.21E4
^~^^
34!
-3.0)
34:
-3.0)
00
46:49 Exp: EXP_M23
,-3.0) PKD(3,5,2,0.
A1.36E5
yv\_
34J12 34124
,-3.0) PKD(3,5,2,0.
A1.33E5
/Vv
/ ' T- —
M-l *"\ -) A f\ A
:12 34:24
PKD{3,5,2,0.10%,29952
00
A1.38E8
A
AA
/VV.
34:12 34:24
PKD(3,5,2,0.10%,53344
i i i I i i
34:00
BSUB(128,
15,
A2.65E8
A
I\J[
i i i | i r^^ 1 i | l l i
34:12 34:24
_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
10%, 5580. 0,1. 00%, F,F)
1
16
34:36 34:48 35:00 35:12 35:24 35:36 35 48
10%, 2448 .0, 1.00%,F,F)
A1.06E4
_^ -^^^^
1
_5
n
34!36 34:48 3s!oO 3s!l2 3sl24 35J36 35:48
.0,1.00%,F,F)
6
_3
0
34:36 34:48 35:00 35:12 35:24 35:36 35 48
.0,1.00%,F,F)
1
.6
• n
34:36 34:48 35:00 35:12 35:24 35:36 35 48
.4E5
.8E4
OEO
Time
.1E5
.3E4
.OEO
Time
.2E7
.1E7
.OEO
Time
.2E8
. OE7
.OEO
Time
-3.0) PKD(3,3,3,100.00%,1056.0,1.00%,F,F)
34:12
34,i0fA
/\/ \ 34:22 34
\S^ 33:59 ./ " V r-^ f\ r
331
3)
33!
48
s-_^ — *»
^~^
'34! oo
PKD(3,3,3
48
34
\-^ V-s S
34:12 34:24
34:45 34:58 1
34:4Y\ A
A^ \ / \ 35:41
:32 / \ / V 35:12 . A
v* ^* ' ^- — - — ' X^^^, ^- ^—J ^~^V—^— ' > — ^~^
5
0
34:36 34:48 35:00 35:12 35:24 35:36 35:48
.OE4
OE3
OEO
Time
, 100. 00%, 0.0,1. 00%, F,F)
:0234_iD9 34:19 34:
34:00
i i i ] i i i i i | i i i
34:12 34:24
31 34:46 34:59 35:1635:23 35:33 35:43 1.
.6.
n
i i f T i i-r r | -T- i i r -i J i -i- i i r •] i i t i r- p I T i i i | 1
34:36 34:48 35:00 35:12 35:24 35:36 35:48
3E8
3E7
-OEO
Time
-------
File: A20JUL98BAcq: 21-JUL-1998 01:46:49Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaEParadigm
Sample #7 Text: 1071-2 xl/2 ALS #8
407.7818 S:7 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3 , 3 , 0.10%,3240.0,1.00%,F,F)
100%, A3.45E5
50J
OJ
1.1E5
L5.6E4
A5.87E4
s\
lO.OEO
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
409.7788 S:7 F:4 SMO(1,3) BSU3(128,15,-3.0 ) PKD(3,3,3,0.10%,1664.0,1.00%,F,F)
100% A3.51E5
3s':24 38:36
50j
OJ
39 00 Time
1.1E5
.5.6E4
A7.05E4
S\
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
417.8253 S:7 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,5552.0,1.00%,F,F)
100%. A5.90E7
50
o
38112 38124 38:36 '38:48 39:00 Time
1.7E7
-8.6E6
T T r 'T*TT 'T |^'T T 1 ^T' I I 1—I—I—1—I I T I I "1—I—I—r 7~T 'T—I—I—I—I—I—|—f*1—|—1—r"1?" ! I 1 I 1 I I I—I—I—I—1—T—r"
36iOO 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
419.8220 S:7 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,32296.0,1.00%,F,F)
100% A1.33E8
. ,-|—r—i—i i i T i i—i—r—i—I "T~i T i "T"T t I 'T "r i i' ' U*-*U
38:12 38:24 38:36 38:48 39:00 Time
50
o
A8.54E7
3 . 9E7
_ ft__
_2 . OE7
i i [ r i T"T"T r i 1*^1 i i i?"T"T 'T TT* T i r~T-i—i—r-i—r T*T~I—i—i—r—i—r—i—m—r—r—i—r -T*-\—i—i T T 1 f'^'^r* i "i i i i i—i—i—r-
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
79.7165 S:7 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 ,100.00%,3444.0,1.00%,F,F)
00%, 37j09
36:28
50j
. ."~r~i—i—i r i—|—T—r "i—i i i—i f-T"T' i i i i i i -T • i' U . U c< U
38:12 38:24 38:36 38:48 39:00 Time
,- cc 36:05
35: 55 ^-~.
~~\—i—i—i—r—i—|—T—i—i—i—i—j- T i—i—I-T i—i—i—r •'*""!—|—r—\—r~i—i—i—i—i—r—T—i—i—i—r-(—r—i—r—T—i—i—r—r—i—i—i—i—r—r—r "i i—i—?—r—T-
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
I i i I ' ' ' ' ' I
38:12 38:24 38:36 38:48 39:00 Time
30.9728 S:7 F:4 SMO(1,3) PKD(3,3,3,100.00%, 0.0,1.00%,F,F)
00%, 36:06 36:23 36; 41 37:00 37U5
0-
37:35 37:49 37:59_
_18_iiL
JiiA§_
36166 ' 36112 ' 36124 ' 36!36 beUs
37124 37136 ' 37I48 ' 38\QQ
8 . 4E7
_4.2E7
O.OEO
31
38:12 38:24 38:36 38:48 39:00 Time
-------
File: A20JUL99B
Sample #7 Text:
Acq: 21-JUL-1999 01:46:49
1071-2 xl/2 ALS #8
441.7427 S:7 F:5 SMO(1,3) BSUB (128 , 15 , -3 . 0)
1003
50_
Q
39ll2
443.7398 S:7 F:5
1003
50_
' 39.! 12
469.7780 S:7 F:5
100S
50 j
o:
"-1 — i — i — i — i — i — i —
39:12
471.7750 S:7 F:5
100S
50.
o •
v~* — i i i i i i —
39:12
513.6775 S:7 F:5
100%
50 j
o:
i, 39:08 39.
\_/ *—*S~
"-1 — i 1 P r 1 1 —
39:12
454.9728 S:7 F:5
100% 39:09 39_i
50J
iO^
'
-s ' 39!l2
39:24 39:36
SMO(1,3) BSUB(128,15,-3.0)
39:24 39:36
SMO(1,3) BSUB (128, 15, -3.0)
39:24 39:36
SMO(1,3) BSUB(128,15,-3.0)
i — i — r— i — i— i — i — r— i — i — i — r— i — i — r-
39:24 39:36
SMO(1,3) BSUB(128,15,-3.0)
15 39:26 39^33 39.41
— ^x^\-- / v — ' x^-\X \__
39!24 ' ' 39136
SMO(1,3) PKD(3,3,3,100.00%
15 39:28 39:38 39
i 1 1 1 1 1 r 1 1 1 | 1 i r r-
39:24 39:36
Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
PKD(3,3,3,0.10%,1020.0,1.00%,F,F)
A2.05E3
2 . 9E4
1.1.4E4
• O.OEO
39:48 40:00 40:12 40^24 40:36 40 Us 4l!oO Time
PKD(3,3,3,0.10%,1668.0,1.00%,F,F)
Al . 40E5
/ \
/ \1.19E4
3.6E4
L1.8E4
O.OEO
39:48 40:00 40:12 40.-24 40:36 40.-48 41 00 Time
PKD(3,3,3,0.10%,55384.0,1.00%,F,F)
Al . 90E8
A
J V
4.4E7
_2.2E7
O.OEO
39:48 40:00 40:12 40:24 40:36 40:48 41:00 Time
PKD(3,3,3,0.10%,1084.0,1.00%,F,F)
A2 . 12E8
A
J V
4.9E7
J2. . 5E7
•O.OEO
39:48 40:00 40:12 40:24 40:36 40:48 41 00 Time
PKD(3,3,3,100.00%,1084.0,1.00%,F,F)
40:01
_^^J \^_J^U~\J^^
_8.1E3
_4.0E3
: O.OEO
39 Us ' 4o!ob 4o!l2 40:24 4o!36 4'oUs 41:00 Time
, 0.0,1. 00%, F,F)
:45 39:52 40^06 40:14 40:24 40_L31 40:5040:56 9 . OE7
_4 . 5E7
O.OEO
39:48 ' 40:00 40:12 ' 40:24 40:36 40:48 41:00 Time
10
-------
OPUSquan 22-JUL-1998
Page 1
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ
Unk
ES/RT
a21ju!98f
13
22-JUL-98 03:31:35
22-JUL-98 08:34:22
1071-2 xl/2
07feb-m23conf
M8290-23-072198F
Total
DPE
LMC
Name; Resp;
2,3,7,8-TCDF; 7.13e+05;
13C-2,3,7,8-TCDF; 5.43e+08;
Tetra Furans; 2.47e+07;
HxCDPE; * ;
QC CHK ION (Tetra); * ;
Cone; DL
0.138; 0.0367
132.956;
4.795; 0.0367
S/N1;?;
20;y;
1352;y;
61 ;y;
*;n
DivO;n
Page If
S/N2;?
22 ;y
1322,-y
82,-y
mod?
no
no
no
no
no
27:56
27:56
co
o
-------
OPUSguan 22-JUL-1998
Page 1
Ent: 3 Name: Tetra Furans
Page 1 of 1
F:l Mass: 303.902 305.899 Mod? no #Hom:32
Run: 18 File: a21ju!98f S:13 Acq:22-JUL-98 03:31:35 Proc:22-JUL-98 08:34:22
Tables: Run: a21ju!98b Analyte: m23_conf Cal: 07feb-m23»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-2 xl/2
Amount: 4.80
Cone: 4.80
Tox #1: -
Name
of which 0.14
of which 0.14
Tox #2: -
# RT Respnse
named and 4.66
named and 4.66
Tox #3: -
RA
1 18:13 2.5e+06 0.76 y
2.5e+06
2 19:05 1.4e+04 0.66 y
1.4e+04
3 19:15 1.8e+04 0.48 n
1.8e+04
4 19:25 3.3e+04 0.18 n
3.36+04
5 19:27 3.6e+04 0.26 n
3.6e+04
6 19:53 3.26+06 0.84 y
3.26+06
7 20:07 4.0e+05 1.33 n
4.0e+05
8 20:22 9.9e+05 1.02 n
9.9e+05
9 20:41 6.56+05 0.86 y
6.56+05
10 21:14 8.8e+05 0.75 y
8.8e+05
11 21:33 l.le+06 0.78 y
l.le+06
12 21:52 4.86+04 3.01 n
4.86+04
13 22:00 4.36+05 0.97 n
4.3e+05
14 22:11 2.1e+06 0.80 y
2.1e+06
15 22:37 1.2e+06 0.75 y
1.2e+06
16 23:18 1.7e+06 0.80 y
1.76+06
17 23:28 6.96+05
6.9e+05
0.34 n
18 23:29 7.4e+05 0.43 n
7.4e+05
19 24:20 1.9e+06 0.85 y
1.9e+06
Cone
0.48
3
a
0.00
c
£
0.00
c
]
0.01
c
0.01
0.61
]
•\
0.08
3
0.19
c
<
0.13
T
0.17
C
0.21
4
C
0.01
T
]
0.08
0.40
c
]
0.22
c
e
0.33
c
0.13
]
C
0.14
c
0.37
unnamed
unnamed
Area Height
S/N Mod?
l.le+06 2.1e+05 6.1e+01 y n
1.4e+06 2.9e+05 8.2e+01 y n
D
5.6e+03 3.6e+03 l.Oe+00 n n
8.56+03 5.56+03 1.6e+00 n n
3
5.96+03 4.1e+03 1.26+00 n n
1.2e+04 9.6e+03 2.7e+00 n n
S.le+03 3.46+03 9.9e-01 n n
2.86+04 1.2e+04 3.56+00 y n
1
7.46+03 5.7e+03 1.6e+00 n n
2.86+04 1.26+04 3.56+00 y n
..4e+06 2.96+05 8.4e+01 y n
..7e+06 3.5e+05 l.Oe+02 y n
2.3e+05 4.2e+04 1.2e+01 y n
1.7e+05 3.8e+04 l.le+01 y n
S.Oe+05 l.le+05 3.16+01 y n
4.9e+05 1.26+05 3.5e+01 y n
3.0e+05 6.46+04 1.9e+01 y n
3.56+05 7.7e+04 2.2e+01 y n
7
3.8e+05 6.2e+04 1.8e+01 y n
5.0e+05 8.56+04 2.4e+01 y n
4.6e+05 6.4e+04 1.9e+01 y n
5.9e+05 9.06+04 2.6e+01 y n
L
3.6e+04 1.36+04 3.76+00 y n
1.26+04 l.Oe+04 2.9e+00 n n
2.1e+05 4.3e+04 1.2e+01 y n
2.26+05 5.0e+04 1.4e+01 y n
9.3e+05 1.6e+05 4.5e+01 y n
1.2e+06 1.9e+05 5.4e+01 y n
5.0e+05 8.3e+04 2.4e+01 y n
6.6e+05 1.2e+05 3.3e+01 y n
3
7.5e+05 l.Oe+05 2.9e+01 y n
9.46+05 1.3e+05 3.7e+01 y n
1.7e+05 5.3e+04 1.5e+01 y n
5.2e+05 7.3e+04 2.1e+01 y n
2.2e+05 5.6e+04 1.6e+01 y n
5.2e+05 7.3e+04 2.1e+01 y n
7
8.9e+05 1.2e+05 3.6e+01 y n
l.Oe+06 1.5e+05 4.2e+01 y n
131
-------
OPUSquan 22-JUL-1998
20 25:01 1
1
21 25:30 9
9
22 26:33 4
4
23 26:35 4
4
24 27:32 1
1
2,3,7,8-TCDF 25 27:56 7
7
26 27:58 5
5
27 28:32 3
3
28 29:17 2
2
29 29:18 5
5
30 29:19 5
5
31 29:39 7
7
32 29:48 1
1
Page 2
.7e+06 0.74 y
.7e+06
.Oe+05 0.83 y
.Oe+05
.8e+05 0.38 n
.8e+05
.5e+05 0.28 n
.5e+05
.9e+05 0.20 n
.9e+05
.le+05 0.84 y
.le+05
.8e+05 0.71 y
.8e+05
.3e+05 0.99 n
.3e+05
.le+04 1.51 n
.le+04
.8e+04 0.34 n
.8e+04
.7e+04 0.32 n
.7e+04
.5e+05 0.80 y
.5e+05
. 5e+04 0.65 n
.5e+04
0.33
7
9
0.17
4
4
0.09
1
3
0.09
9
3
0.04
3
1
0.14
3
3
0.11
2
3
0.06
1
1
0.00
1
8
0.01
1
4
0.01
1
4
0.15
3
4
0.00
5
8
.le+05
.7e+05
.le+05
.9e+05
.3e+05
.5e+05
.8e+04
.5e+05
.2e+04
.6e+05
.3e+05
.9e+05
.4e+05
.4e+05
.6e+05
.6e+05
.3e+04
.5e+03
.5e+04
.3e+04
.4e+04
.3e+04
.3e+05
.2e+05
.7e+03
.8e+03
1.
1.
5.
5.
3.
4.
3.
4.
9.
3.
6.
7.
6.
8.
2.
3.
6.
6.
8.
1.
8.
1.
4.
5.
3.
5.
Oe+05
3e+05
le+04
9e+04
2e+04
8e+04
3e+04
8e+04
le+03
7e+04
9e+04
7e+04
4e+04
le+04
3e+04
2e+04
9e+03
4e+03
9e+03
2e+04
3e+03
2e+04
le+04
3e+04
2e+03
3e+03
3
3
1
1
9
1
9
1
2
1
2
2
1
2
6
9
2
1
2
3
2
3
1
1
9
1
.Oe+01
.6e+01
.5e+01
.7e+01
.2e+00
.4e+01
.5e+00
.4e+01
.6e+00
.le+01
.Oe+01
.2e+01
.9e+01
.3e+01
.6e+00
.2e+00
.Oe+00
.8e+00
.6e+00
.5e+00
.4e+00
.5e+00
.2e+01
.5e+01
.3e-01
.5e+00
y
y
y
y
y
y
y
y
n
y
y
y
y
y
y
y
n
n
n
y
n
y
y
y
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
-------
.01
"»1
^
)Jk
File: A21JUL98F Acq: 22-JUL-1998 03:31:35 Exp: M23_DB225 Voltage SIR EI+ GC
Sample #13 Text: 1071-2 xl/2 ALS #13
303.9016 S:13 SMO(1,3) BSUB ( 128 , 15 , -3 . 0) PKD(3
100%, A1.45E6
50.
0
: A1.07E6 1
: 1 A9.28E5
II II H
: A1.06E5 .
: A .._ IU/1 A A/\W1 A
16:00 18:00 20:00 22lob
305.8987 S:13 SMO(1,3) BSUB(128 , 15 , -3 . 0) PKD(3
100%. . __ _ A1.72E6
50_
o-
A1.42E6 1
i n
A1.15E6
• A5.03E5 ,,
A JA jiAjaA A
ielob ' ' ' islob ' ' ' 2olob ' ' ' 22^00
,3, 3, 0.10%, 3460. 0,1.
A8.88E5
Jk A,f?A8E5.
24:00 26:00
,3, 3, 0.10%, 3516. 0,1.
A1.04E6
A\ A ft-X4E5 ,
T i i | r V i r 1 j i
24:00 26:00
315.9419 S:13 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 19496 . 0 , 1
1001
50 j
OJ
ielob islob 2olob 22lob
317.9389 S:13 SMO{1,3) BSUB(128, 15, -3 . 0) PKD(3,
100%
50.
o:
16:00 18:00 20:00 22:00
375.8364 S:13 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3,
100%
50J
o:
19:27
JM
A
24:00 26:00
3, 3, 0.10%, 25472. 0,1
T i i— i "V . T , r— i i
24:00 26:00
3, 3, 100. 00%, 10296.0
00%,F,F)
A3.25E5
*., ^4-,^
28:00
00%,F,F)
\ A111EI
r i i > | i i
28:00
.00%,F,F)
A2.38E8
fi
I
A
28lob
.00%,F,F)
A3 .04E8
][
islo'o
,1.00%,F,F)
16:23 ^f \ 21^16 23:^924^30 25 : 50 26 : 55 27j56 29
16:00 is!ob 2olob 22lob
16.9824 S:13 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 .
100%15:34 17:55 19:49 20:58 ^
50j
o:
• i ~~T i 1 ' — r r — ~~i r — T — i r T > 1~ — i i i 1~~ — i 1 1 i
16:00 18:00 20:00 22:00
CO
CO
24:00 26:00
00%,F,F)
!3jl9 26;08
24:00 26:00
T 1 1 1 1 1 1 r
28:00
27:11 28:20
i 1 ? 1 1 1 1 r
28:00
Autospec-UltimaE Paradigm
,_2 . 9E5
A3.^32E5 A1.J4E4
-
Ll.5E5
O.OEO
30 lob ' 32 lob 34:00 Time
-3.5E5
Ali6E5 A2^5E4
-
Ll.8E5
- O.OEO
'''I'l'i'li'ii'ii'i
30:00 32:00 34:00 Time
2 . 6E7
.1.3E7
O.OEO
30 lob 32 lob ' ' 34 lob ' Time
3.4E7
11.7E7
O.OEO
30:00 32:00 34:00 Time
:10 30:51 32:43
if\*t*+P**n>*m*'«-'*-v • • *SAj"V^>^»"«1A*H»*/">»~* -*»^t^.^S^^yn.i i .. ,a1rMy.^^-
_2.5E5
Ll.2E5
O.OEO
— r^ r~| ' — * ' ' "^ — r — ' — ^ T •TTI i^" i -p-jy— pi
30:00 32:00 34:00 Time
-Z9_j^!JIUjU_3JaJL3J2J^ . 6E7
— i 1 1 1 1 ? 1 1 f — -j ) j 1 1 1 1 1 r*~
.2.3E7
O.OEO
30:00 32:00 34:00 Time
-------
Method 23
M23-FB-2
PES
Paradigm Analytical Labs
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8--TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
U,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
U,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ (ND=0)
TEQ (ND=l/2)
Concentration
Vi3 <
EMPC
ND r
ND
ND
ND
0.0038
0.0135
0.0028
EMPC
ND
0.0012
EMPC
ND
ND
0.0029
ND
0.0012
0.0016
0.0028
ND
0.0072
0.0064
ND
0.0020
0.0028
0.0005
0.0011
-v:~:Wk&,-\.
^v-^'.§ig)'y-
0.0005
:o.e
0.0009
' ' -.- - -Vf *.
0.0016
0.0005
0.0033
0.0040
0.0064
0.0084
0.0104
0.0032
0.0024
0.0015
0.0018
RT
imUL)
28:27
34:46
34:58
37:10
40:01
27:26
31:57
32:24
34:10
34:15
34:38
36:21
40:09
Ratio
1.44
0.%
2.21
0.91
0.83
0.86
1.98
1.87
1.27
0.81
3.32
1.09
0.95
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ED:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Texas Lime Kiln
M23-FB-2 , , "jjKUS
Samle Information
L1071
1071-3
27-Jun-98
08-M-98
14-Jul-98
21-Jul-98
Mename:
Retchk:
0.0 %
a20ju!98b-8
a20ju!98b-l
a20jul98b-2
Initial Cat:
134
-------
Paradigm Analytical Labs
Method 23
M23-FB-2
PBS
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13Cl2-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13Cl2-l,2,3,4,6,7,8-HpCDD
13CI2-OCDD
13Cir2,3,7,8-TCDF
'3C12-l,2,3,7,8-PeCDF
'3Cl2-l,2,3,6,7,8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3,7,8-TCDD
13Cir2,3,4,7,8-PeCDF
13C12-l^,3,437,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13C12-1,2,3,4,7,8,9-HPCDF
Injection Standards
13C12-1,2,3,4-TCDD
'3C12-l,2,3,7,8,9-HxCDD
Expected
Amount >1
{ng)"
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured
; Amount
i-^-j&^O .* " '
3.34
3.43
3.40
3.79
6.93
3.23
2.75
3.52
2.76
3.83
4.09
4.44
3.60
3,16
Percent
Recovery
• -V -.(%)
83.6
85.6
85.0
94.8
86.6
80.7
68.8
88.0
69.0
95.7
102.3
111.0
90.0
79.1
RT
(mto.)
28:26
32:36
34:45
37:09
40:00
27:25
31:56
34:14
36:21
28:27
32:24
34:42
34:09
37:30
28:09
34:58
Ratio
0.77
1.55
1.25
1.04
0.89
0.78
1.55
0.52
0.44
1.56
1.24
0.52
0.44
0.79
1.25
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID: ; \
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Reviewed by: 1 «T.
Texas Lime Kiln
M23-FB-2 f ,
Sample Information
Matrix:
Weight/Volume:
14-M-98
21-Jul-98
EndConCal:
Initial Cal:
Air
1
0.0
a20jul98b-8
a20jul98b-l
a20jul98b-2
~a20ju!98b-17
m829|>-23-071798
135
-------
CO
OPUSquan 21-JUL-1998 Page 1
Filename a20ju!98b
Sample 8
Acquired 21-JUL-98 02:32:32
Processed 21-JUL-98 13:44:37
Sample ID 1071-3 xl/2
Cal Table m8290-23-071798
Results Table M8290-23-072098B
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
SS
Name; Resp;
2,3,7,8-TCDD; 2.84e+05;
1,2,3,7,8-PeCDD; * ;
1,2,3,4,7,8-HxCDD; *;
1,2,3,6,7,8-HxCDD; 5.81e+04;
1,2,3,7,8,9-HxCDD; 8.15e+04;
1,2,3,4,6,7,8-HpCDD; 2.11e+05;
OCDD; 6.20e+05;
2,3,7,8-TCDF; 3.11e+05;
1,2,3,7,8-PeCDF; 1.17e+05;
2,3,4,7,8-PeCDF; 6.53e+04;
1,2,3,4,7,8-HxCDF; 9.17e+04;
1,2,3,6,7,8-HxCDF; 5.25e+04;
2,3,4,6,7,8-HxCDF; 5.73e+04;
1,2,3,7,8,9-HxCDF; *;
1,2,3,4, 6,7, 8-HpCDF; 1.57e+05;
1,2,3,4,7,8,9-HpCDF;
OCDF; 6.05e+04;
13C-2,3,7,8-TCDD; 3.78e+08;
13C-l,2,3,7,8-PeCDD; 2.70e+08;
13C-l,2,3,6,7,8-HxCDD; 3.02e+08;
13C-1 , 2,3,4,6,7, 8-HpCDD; 2 . 49e+08 ;
13C-OCDD; 3.67e+08;
13C-2,3,7,8-TCDF; 4.58e+08;
13C-l,2,3,7,8-PeCDF; 3.40e+08;
13C-l,2,3,6,7,8-HxCDF; 3.606+08;
13C-l,2,3,4,6,7,8-HpCDF; 1.726+08;
13C-1,2,3,4-TCDD; 4.126+08;
13C-l,2,3,7,8,9-HxCDD; 3.306+08;
37Cl-2,3,7,8-TCDD; 3.316+08;
13C-2,3,4,7,8-PeCDF; 3.406+08;
13C-l,2,3,4,7,8-HxCDD; 2.216+08;
13C-1 , 2,3,4,7, 8-HxCDF; 2 . 55e+08 ;
13C-1 , 2,3,4,7,8, 9-HpCDF; 1 . 06e+08 ;
37Cl-2,3,7,8-TCDD; 3.31e+08;
13C-2,3,4,7,8-PeCDF; 3.40e+08;
13C- 1,2,3,4,7, 8-HxCDD; 2 . 21e+08 ;
13C-1.2, 3,4,7,8-HxCDF; 2.556+08;
13C-l,2,3,4,7,8,9-HpCDF; 1.066+08;
Ion 1;
4.71e+04;
* ;
* .
2.85e+04;
5.61e+04;
l.OOe+05;
2.81e+05;
1.44e+05;
7.81e+04;
4.25e+04;
5.13e+04;
2.35e+04;
4.41e+04;
* .
8.16e+04;
* .
2.95e+04;
1.65e+08;
1.64e+08;
1.68e+08;
1.27e+08;
1.72e+08;
2.00e+08;
2.07e+08;
1.236+08;
5.28e+07;
1.82e+08;
1.83e+08;
3.31e+08;
2.07e+08;
1.22e+08;
8.67e+07;
3.25e+07;
3.31e+08;
2.076+08;
1.22e+08;
8.67e+07;
3.25e+07;
2
2
2
1
3
1
3
2
4
2
1
7
3
2
1
1
1
1
2
1
2
1
2
1
1
9
1
7
1
9
1
7
Ion 2 ;
.37e+05;
* .
* .
.96e+04;
.546+04;
.lle+05;
.39e+05;
.68e+05;
.946+04;
.28e+04;
.04e+04;
.90e+04;
.33e+04;
* .
.52e+04;
+ .
.09e+04;
.13e+08;
.06e+08;
.346+08;
.22e+08;
,94e+08;
.57e+08;
.33e+08;
.37e+08;
.19e+08;
.30e+08;
.47e+08;
_ .
.32e+08;
.89e+07;
.68e+08;
.38e+07;
.326+08;
.89e+07;
.68e+08;
.38e+07;
RA;
0.20;
* ;
* .
0.96;
2.21;
0.91;
0.83;
0.86;
1.98;
1.87;
1.27;
0.81;
3.32;
* .
1.09;
* .
0.95;
0.77;
1.55;
1.25;
1.04;
0.89;
0.78;
1.55;
0.52;
0.44;
0.79;
1.25;
- ;
1.56;
1.24;
0.52;
0.44;
1.56;
1.24;
0.52;
0.44;
? ; RT ;
n; 28:27;
n;NotFnd;
n;NotFnd;
n; 34:46;
n; 34:58;
y; 37:10;
y; 40:01;
y; 27:26;
n; 31:57;
n; 32:24;
y; 34:10;
n; 34:15;
n; 34:38;
n;NotFnd;
y; 36:21;
n;NotFnd;
y; 40:09;
y; 28:26;
y; 32:36;
y; 34:45;
y; 37:09;
y; 40:00;
y; 27:25;
y; 31:56;
y; 34:14;
y; 36:21;
y; 28:09;
y; 34:58;
-; 28:27;
y; 32:24;
y; 34:42;
y; 34:09;
y; 37:30;
-; 28:27;
y; 32:24;
y; 34:42;
y; 34:09;
y; 37:30;
Cone ;
0.076;
* .
* .
0.022;
0.031;
0 . 094 ;
0.337;
0.071;
0.040;
0.021;
0.030;
0.013;
0.017;
* .
0.072;
* .
0.031;
83.580;
85.637;
84.997;
94.768;
173.165;
80.676;
68.758;
87.941;
69.011;
85.421;
83.348;
79.910;
70.311;
94.252;
79.781;
54.528;
95.663;
102.294;
110.991;
90.013;
79.041;
DL;
0.0125;
0.0090;
0.0201;
0.0145;
0.0148;
0.0114;
0.0145;
0.0104;
0.0125;
0.0120;
0.0088;
0.0068;
0.0080;
0.0092;
0.0183;
0.0222;
0.0194;
0.0327;
0.0223;
0.0407;
0.0147;
0.0190;
0.0188;
0.0136;
0.1061;
0.1120;
-;
- ',
0.0164;
0.0140;
0.0617;
0.1362;
0.1431;
0.0205;
0.0121;
0.0686;
0.1403;
0.2563;
S/N1;?;
8;y;
*;n;
* ; n ;
4;y;
4;y;
27 ;y;
53 ; y;
23 ; y;
19 ;y;
13 ; y;
9;y;
4;y;
5;y;
*;n;
8;y;
*;n;
7;y;
4629;y;
18453, -y;
7228;y;
28312;y;
11496,-y;
12172;y;
53563;y;
3125;y;
2249; y;
5372 ;y;
7453 ;y;
14039 ;y;
55465 ;y;
6002;y;
2465;y;
1208,-y;
14039;y;
55465 ;y;
6002 ;y;
2465;y;
1208 ; y;
S/N2;?
28,-y
*;n
*;n
3;n
2;n
29;y
110;y
15;y
5;y
3;n
7;y
5;y
3;n
*;n
19 ;y
*;n
5;y
13268;y
21629;y
6018;y
9128;y
26042;y
13487,-y
13970;y
2539;y
1303;y
15017;y
6201;y
-; -
14179;y
4935;y
2092;y
709, -y
-; -
14179;y
4935;y
2092;y
709;y
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 13
-------
OPUSguan 21-JUL-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:17
Run: 13 File: a20ju!98b S:8 Acq:21-JUL-98 02:32:32 Proc:21-JUL-98 13:44:37
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-3 xl/2
Amount : 0.33
Cone: 0.33
Tox #1: -
Name
of
of
#
1
2
3
4
5
6
which
which
Tox
RT
23:40
24:33
24:51
25:10
25:17
25:19
0.07
0.07
t2: -
Respnse
4.36+04
4.3e+04
8.66+04
8.6e-i-04
6.06+04
6. Oe+04
1.8e+04
1.86+04
3.4e+04
3.4e+04
3.1e+04
3.1e+04
named
named
and
and
Tox
RA
1.41
0.74
1.43
0.70
0.62
0.48
n
y
n
y
n
n
0.25
0.25
#3: -
Cone
0.01
2.
1.
0.02
3.
5.
0.01
3.
2.
0.00
7.
1,
0.01
1
2
0.01
1
unnamed
unnamed
Area
5e+04
8e+04
7e+04
Oe+04
5e+04
,5e+04
. 6e+03
. le+04
. 3e+04
.le+04
.Oe+04
Height
6.6e+03
4.1e+03
8.8e+03
1.2e+04
8.2e+03
7.3e+03
2.6e+03
3.2e+03
4.6e+03
5.7e+03
4.1e+03
S/N Mod?
6.
1.
9.
5.
8.
3.
2.
1.
4
2
4
8e+00 y
9e+00 n
Oe+00 y
4e+00 y
5e+00 y
, 3e+00 y
,7e+00 n
.4e+00 n
. 8e+00 y
. 6e+00 n
. 3e+00 y
n
n
n
n
n
n
n
n
n
n
n
2,3,7,8-TCDF
7 25:44 1.4e+05 0.50 n
1.4e+05
26:08 8.5e+04
8.56+04
1.24 n
9 26:26 1.2e+05 0.59 n
1.26+05
10 26:34 8.3e+04 0.72 y
8.3e+04
11 26:50 2.1e+05 0.74 y
2.1e+05
12 26:57 3.4e+03 0.68 y
3.46+03
13 27:10 4.9e+04 0.48 n
4.9e+04
14 27:26 3.1e+05 0.86 y
3.1e+05
15 28:03 8.4e+04 1.53 n
8.4e+04
16 28:18 1.9e+04 1.22 n
1.9e+04
17 29:48 4.2e+04 1.69 n
4.2e+04
0.03
0.02
0.03
2.1e+04 5.7e+03 2.6e+00 n n
3
4.7e+04 9.3e+03 9.6e+00 y n
9.3e+04 1.3e+04 5.9e+00 y n
2
4.7e+04 9.8e+03 l.Oe+01 y n
3.8e+04 1.Oe+04 4.6e+00 y n
3
4.4e+04 8.4e+03 8.7e+00 y n
7.4e+04 1.2e+04 5.5e+00 y n
0.02
0.05
0.00
3.5e+04 6.6e+03 6.8e+00 y n
4.8e+04 9.7e+03 4.4e+00 y n
9.0e+04 2.Oe+04 2.0e+01 y n
1.2e+05 2.6e+04 1.2e+01 y n
D
1.46+03 6.7e+02 6.9e-01 n n
2.0e+03 l.Oe+03 4.5e-01 n n
0.01
0.07
0.02
1.6e+04 3.5e+03 3.6e+00 y n
3.3e+04 6.9e+03 3.2e+00 y n
7
1.4e+05 2.2e+04 2.3e+01 y n
1.7e+05 3.2e+04 1.5e+01 y n
2
S.le+04 1.2e+04 1.2e+01 y n
3.3e+04 8.2e+03 3.7e+00 y n
0.00
0.01
1.le+04 3.5e+03 3.6e+00 y n
8.7e+03 2.5e+03 l.le+00 n n
1
2.7e+04 5.06+03 5.26+00 y n
1.6e+04 3.56+03 1.6e+00 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:3
137
-------
OPUSquan 21-JUL-1998
Page 2
Run: 13 File: a20ju!98b S:8 Acq:21-JUL-98 02:32:32 Proc:21-JUL-98 13:44:37
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-3 xl/2
Amount: 0.14
Cone: 0.14
Tox #1: -
Name
of which 0.08
of which 0.08
Tox #2: -
# RT Respnse
named and 0.06 unnamed
named and 0.06 unnamed
Tox #3: -
RA
2,3,7,8-TCDD
1 25:15 1.6e+05 0.69 y
1.6e+05
2 25:40 6.2e+04 0.96 n
6.2e+04
3 28:27 2.8e+05 0.20 n
2.8e+05
Cone
0.04
t
S
0.02
3
3
0.08
Area Height S/N Mod?
6.4e+04 1.5e+04 l.le+01 y n
9.3e+04 2.1e+04 1.2e+01 y n
2
3.0e+04 6.6e+03 4.8e+00 y n
3.2e+04 6.1e+03 3.6e+00 y n
8
4.7e+04 l.le+04 7.9e+00 y n
2.4e+05 4.8e+04 2.8e+01 y n
r
138
-------
OPUSguan 21-JUL-1998
Page 3
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.85'? Mod? no #Hom:6
Run: 13 File: a20ju!98b S:8 Acq:21-JUL-98 02:32:32 Proc:21-JUL-98 13:44:37
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-3 xl/2
Amount: 0.16
Cone: 0.16
Tox #1: -
Name
of which 0.06
of which 0.06
Tox #2: -
# RT Respnse
named and 0.10
named and 0.10
Tox #3: -
RA
1 30:16 4.9e+04 2.20 n
4.9e+04
2 31:22 1.26+05 2.34 n
1.2e+05
Cone
0.02
unnamed
unnamed
Area Height
S/N Mod?
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
31:45 5.36+04
5.3e+04
31:57 1.26+05
1.26+05
1.98 n
1.98 n
32:24 6.5e+04 1.87 n
6.5e+04
32:30 6.9e+04 1.70 y
6.9e+04
3.4e+04 8.8e+03 7.1e+00 y n
1.5e+04 5.56+03 1.8e+00 n n
0.04
8.5e+04 2.3e+04 1.9e+01 y n
3.6e+04 1.3e+04 4.2e+00 y n
0.02
3.5e+04 9.3e+03 7.5e+00 y n
1.8e+04 6.5e+03 2.1e+00 n n
0.04
7.8e+04 2.3e+04 1.9e+01 y n
3.9e+04 1.6e+04 5.1e+00 y n
0.02
4.3e+04 1.7e+04 1.3e+01 v_n
2.36+04 8.6e+03 2.8e+00/n )n
0.02 \^
4.3e+04 1.3e+04 l.le+01 y n
2.5e+04 8.9e+03 2.9e+00 n n
Page 4 of 8
Ent: 42 Name: Total Per.ta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:3
Run: 13 File: a20ju!98b 5:8 Acq:21-JUL-98 02:32:32 Proc:21-JUL-98 13:44:37
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-3 xl/2
Amount: 0.11
Cone: 0.11
Tox #1: -
Name
of which *
of which *
Tox #2: -
# RT Respnse
named and 0.11
named and 0.11
Tox #3: -
RA
1 31:30 2.26+05 1.52 y
2.26+05
2 31:58 9.9e+04 2.72 n
9.9e+04
3 32:10 3.0e+04 1.55 y
3.0e+04
Cone
0.07
]
8
0.03
0.01
unnamed
unnamed
Area Height
S/N Mod?
.36+05 4.56+04 2.0e+01 y n
.6e+04 2.6e+04 2.7e+01 y n
7.2e+04 1.4e+04 6.4e+00 y n
2.7e+04 7.4e+03 7.8e+00 y n
L
1.8e+04 5.9e+03 2.6e+00 n n
1.2e+04 4.2e+03 4.5e+00 y n
Page 5 of 8
Ent: 43 Name: Total Hexa-Furans F:3 Mass: 373.821 375.818 Mod? no #Hom:12
Run: 13 File: a20ju!98b S:8 Acq:21-JUL-98 02:32:32 Proc:21-JUL-98 13:44:37
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 -Sample text: 1071-3 xl/2
Amount: 0.11
Cone: 0.11
Tox #1: -
of which 0.06
of which 0.06
Tox #2: -
named and 0.05 unnamed
named and 0.05 unnamed
Tox #3: -
r r
139
-------
OPUSquan 21-JUL-1998
Page 4
Name tt RT Respnse RA Cone
1 33:32 3.0e+04 1.13 y 0.01
3.0e+04
2 33:37 6.9e+04 1.06 y 0.02
6.9e+04
3 33:43 5.7e+03 4.22 n 0.00
5.7e+03
4 33:47 l.le+04 2.02 n 0.00
l.le+04
5 33:55 1.4e+04 1.47 n 0.00
1.4e+04
6 34:01 4.4e+03 1.20 y 0.00
4.4e+03
1,2,3,4,7,8-HxCDF 7 34:10 9.26+04 1.27 y 0.03
9.26+04
1,2,3,6,7,8-HxCDF 8 34:15 5.26+04 0.81 n 0.01
5.2e+04
2,3,4,6,7,8-HxCDF 9 34:385.76+04 3.32n 0.02
5.7e+04
10 34:46 1.2e+04 4.38 n 0.00
1.2e+04
11 34:50 5.96+03 3.42 n 0.00
5.9e+03
12 34:59 2.1e+04 1.20 y 0.01
2.16+04
Area Height
S/N Mod?
.6e+04 6.5e+03 3.3e+00 y n
.4e+04 5.2e+03 2.8e+00 n n
.5e+04 1.3e+04 6.6e+00 y n
.3e+04 1.2e+04 6.4e+00 y n
,6e+03 1.7e+03 8.6e-01 n n
,le+03 7.6e+02 4.1e-01 n n
.4e+03 2.4e+03 1.2e+00 n n
.7e+03 1.6e+03 8.8e-01 n n
.4e+03 3.86+03 1.9e+00 n n
.7e+03 2.3e+03 1.2e+00 n n
.4e+03 l.le+03 5.7e-01 n n
.Oe+03 8.8e+02 4.7e-01 n n
. le+04 1.7e+04 8.8e+00 y n
.Oe+04 1.3e+04 6.9e+00 y n
,3e+04 8.4e+03 4.3e+00 y n
.9e+04 8.6e+03 4.6e+00 y n
.4e+04 1.Oe+04 5.2e+00 y n
.3e+04 4.96+03 2.6e+00 n n
.7e+03 3.4e+03 1.7e+00 n n
,2e+03 8.7e+02 4.7e-01 n n
6e+03 1.96+03 9.7e-01 n n
3e+03 5.46+02 2.9e-01 n n
2e+04 3.06+03 1.5e+00 n n
7e+03 2.2e+03 1.2e+00 n n
r
140
-------
OPUSquan 21-JUL-1998
Page 5
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:8
Run: 13 File: a20ju!98b S:8 Acq:21-JUL-98 02:32:32 Proc:21-JUL-98 13:44:37
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-3 xl/2
Amount: 0.26
Cone: 0.26
Tox #1: -
of which 0.05
of which 0.05
Tox #2: -
named and 0.21
named and 0.21
Tox #3: -
Name
RT Respnse
RA
33:52 1.4e+05 1.52 n
1.4e+05
2 34:05 1.3e+04 0.58 n
1.3e+04
3 34:09 1.2e+05 1.80 n
1.261-05
4 34:14 S.le+04 4.36 n
S.le+04
5 34:20 1.3e+05 1.46 n
1.36+05
6 34:26 2.5e+04 1.69 n
2.5e+04
1,2,3,6,7,8-HxCDD 7 34:46 5.8e+04 0.96 n
5.8e+04
1,2,3,7,8,9-HxCDD 8 34:58 8.1e+04 2.21 n
8.1e+04
Cone
0.06
6
C
0.01
<
£
0.05
<
0.03
<
]
0.05
c
0.01
]
c
0.02
0.03
unnamed
unnamed
Area Height
S/N Mod?
8.3e+04 2.8e+04 l.le+01 y n
5.4e+04 2.0e+04 7.2e+00 y n
4.9e+03 1.5e+03 5.8e-01 n n
8.5e+03 2.6e+03 9.2e-01 n n
7.4e+04 2.6e+04 l.Oe+01 y n
4.1e+04 1.26+04 4.5e+00 y n
6.6e+04 2.1e+04 8.4e+00 y n
1.5e+04 5.3e+03 1.9e+00 n n
7.6e+04 2.3e+04 9.2e+00 y n
5.2e+04 1.9e+04 6.86+00 y n
1.5e+04 3.4e+03 1.4e+00 n n
9.1e+03 2.5e+03 8.9e-01 n n
2
2.8e+04 9.0e+03 3.6e+00 v_,n
3.0e+04 7.8e+03 2.8e+OQ/n/>n
5.6e+04 l.le+04 4.2e+00 y n
2.5e+04 6.2e+03 2.3e+00/ff) n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:l
Run: 13 File: a20jul98b S:8 Acq:21-JUL-98 02:32:32 Proc:21-JUL-98 13:44:37
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-3 xl/2
Amount: 0.07
Cone: 0.07
Tox #1: -
Name
of which 0.07
of which 0.07
Tox #2: -
tt RT Respnse
named and *
named and *
Tox #3: -
RA
1, 2, 3,4,6,7,8-HpCDFl 36:21 1.66+05 1.09 y
1.66+05
Cone
0.07
unnamed
unnamed
Area Height
S/N Mod?
8.2e+04 2.36+04 8.0e+00 y n
7.56+04 2.46+04 1.9e+01 y n
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:3
Run: 13 File: a20ju!98b S:8 Acq:21-JUL-98 02:32:32 Proc:21-JUL-98 13:44:37
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-3 xl/2
Amount: 0.21
Cone: 0.21
Tox #1: -
of which 0.09
of which 0.09
Tox #2: -
named and 0.11 unnamed
named and 0.11 unnamed
Tox f3: -
r
-------
OPUSquan 21-JUL-1998
Page 6
Name
RT Respnse
RA
1 36:21 6.2e+04 2.60 n
6.2e+04
2 36:35 1.9e+05 0.97 y
1.96+05
l,2,3,4,6,7,8-HpCDD3 37:10 2.le+05 0.91 y
2.1e+05
Cone
0.03
4
3
0.09
c
t
0.09
Area Height
S/N Mod?
4.5e+04 1.4e+04 1.2e+01 y n
1.7e+04 5.0e+03 4.2e+00 y n
9
9.6e+04 3.le+04 2.6e+01 y n
9.8e+04 2.9e+04 2.4e+01 y n
3
l.Oe+05 3.16+04 2.76+01 y n
1.le+05 3.56+04 2.9e+01 y n
Cf
142
-------
File: A20JUL98B Acq:
21-JUL-1998
Sample #8 Text: 1071-3 xl/2 ALS
319.8965 S:8 SMO(1,3)
100%
50.
0
24:00
321.8936 S:8 SMO(1,3)
1003
50_
\
Q-
,,
24:00
331.9368 S:8 SMO(1,3)
100S
50 j
o:
24 [OO
333.9339 S:8 SMO(1,3)
100%
50J
0"
i i r i i i i
24:00
327.8847 S:8 SMO (1,3)
100%
50J
o:
1 1 1 1 i | r
24^00
316.9824 S:8 SMO(1,3)
100% 23:21 24
50~.
o;
i i i i i i r
24:00
BSUB(128, 15,
'^~*^^^/~~-v*J\- — -
02:32:32 Exp: EXP M23 DB5 OVATION
#9
-3.0) PKD(3,3,3,
A6.40E4
|\ A3.02E4
\ A
*^j>*-* — Jc^x_— ^-~\rfe^
11,,,,
25:00 26
BSUB(128,15,
25
BSUB(128,15,
25
BSUB{128,15,
25
BSUB(128,15,
25
-3.0) PKD(3,3,3,
A9.25E4
A A3.16E4
___^-i— X^__xC\^^___
T ' ' r , r=
:00 26
-3.0) PKD(3,3,3,
•00 26
-3.0) PKD(3,3,3,
i i i i i i
:00 26:
-3.0) PKD(3,3,3,
1 1 1 1 1 r— T
:00 26:
0.10%, 1388. 0,1. 00%
A7.35E3
'V^V-xxyx^j^IWV/
| , r I r , | I
:00 27:00
0.10%, 1712. 0,1. 00%
->^-— — — " s^-— -----
00 27:00
0.10%, 7120. 0,1. 00%
OO' ' ' 27 !00
0.10%, 3200. 0,1. 00%
i i i i i | i
00 27:00
Voltage SIR EI+ GC
,F,F)
Autospec-UltimaE Paradigm
_1.6E4
A5.51E4 A4.71E4
A A
/ \ A1.35E4/ \
I \ A / I
wAyx-^_w /W~-i
28:00
,F,F)
. l' \ i i i i |
L8.2E3
•O.OEO
29:00 30:00 Time
A2 -37E5
A
/ 1
_-^_^^— >^^__^^^--s,_-. ^-^\_^-J— __ _V
28:00
,F,F)
A1.82E8
M A
1 V / V
28!oo'
,F,F)
A2.30E8
AA
i i i r | i i i
28:00
5.0E4
12 . 5E4
_O.OEO
29:00 30:00 Time
3.8E7
_1.9E7
O.OEO
29:00 30:00 Time
4.8E7
12.4E7
0 . OEO
1 1 | ! < 1 1 1 |
29:00 30:00 Time
0.10%,4736.0,1.00%,F,F)
00 27:00
A3.31E8
A
] v
1 1 i i i i / r^
28:00
_6.7E7
_3.3E7
-O.OEO
29:00 30:00 Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
:12 24:4425:05 25:3826:
25
i ' r "~ ' > — r
:00 26:
00 26:28 26:51
1 1 1 1 T 1 r-
00 27:00
27:2227:43 28:06
1 , ( , 1 1 1 |
28:00
28:4729:09 ,_5.8E7
^
i i | i i 1 1 1 (-1-
.2.9E7
O.OEO
29:00 30:00 Time
CO
-------
File: A20JUL98B Acq: 21-JUL-1998 02:32:32 Exp: EXP_M23
_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #8 Text: 1071-3 xl/2 ALS #9
355 flS/lfi q-fl p-9 QMn/1 1^
100S
50"
.
0"
_^
I I I | I I I I 1 | I i r i i | i i i
30:12 30:24 30:36
357.8517 S:8 F:2 SMO(1,3)
1003
50J
_
0"
Al . 98E3
' 3b!i2 30124 ' 36136 '
367.8949 S:8 F:2 SMO(1,3)
100%
so:
0'
" 'i i i 1 i i i i i 1 i i i i i 1 i i i
30:12 30:24 30:36
369.8919 S:8 F:2 SMO(1,3)
100%!
so:
0"
" 'i i i i i i i i i i i i i i i i i i i
30:12 30:24 30:36
366.9792 S:8 F:2 SMO(1,3)
100%^ 30:25
501
0'
30:12 30:24 30:36
BSUB(128 15 -3 0) PKD(3,3,3,0.
A1.31E5
A
___J_L_
-r-i-|-T-i-i-i-T-j T fTVi ( i i i i i | i i i i i |
30-48 31:00 31:12 31:24 31:
BSUB(128,15,-3.0) PKD(3,3,3,0.
A8 . 62E4
A
\
y v_
30:48 31166 31:12 31:24 31:
BSUB(128,15,-3.0) PKD(3,3,3,0.
30:48 31:00 31:12 31:24 31:
BSUB(128,15,-3.0) PKD(3,3,3,0.
30:48 31:00 31:12 31:24 31:
PKD (3, 3, 3, 100. 00%, 0.0,1. 00%, F,
10%, 2264 .0,1 .00%,F,F)
A7.24E4 A3.37E4
r\ A1.80E4 A A2.36E4
^~^—s~~^-—L- V/^y^v—^^^ — v~^ x~~x_— — - — ^ — ^^__
4.
_2.
' 0.
36 ' 3i!48 ' 32!6d 32li2 32124 32 1 36 ' 32 ! 4 8 ' 33 1 66 33112
10%, 944. 0,1. 00%, F,F)
A2.66E4
^ ZV A. V-\ /V_^— -^^\ S\ s-^—6^1^- ^
2.
11.
0
36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
10%, 3168. 0,1. 00%, F,F)
A1.64E8
ft
/ \^
5.
12.
"0,
36 ' 31 148 32!6d 32112 32124 32136 32!48 33!6ci 33112
10%, 1748. 0,1. 00%, F,F)
A1.06E8
ft
/ I
3.
11.
'0.
36 ' 3i!48 ' 32166 32ll2 32124 32136 32148 33166 33112
F)
30:56 31:09 31:21 31:40 32:19 32:39 32:51 33:10 ,_5.
30:48 31:00 31:12 31:24 31:
_2.
0.
36 31 148 ' 32166 32! 12 32124 32!36 32148 33166 33112
8E4
4E4
OEO
Time
6E4
3E4
OEO
Time
8E7
9E7
OEO
Time
8E7
9E7
OEO
Time
6E7
8E7
OEO
Time
-------
Pile
Samj
389
1003
0_
391.
100?
50_
0'
401.
100%
so:
403.
lOOi
so:
380.
100%
501
o:
>: A20JUL98B Acq: 21-JUL-1998 02:32:32 Exp: EXP_M23_DB5_OVATION Voltage SIR EH- GC Autospec-UltimaE Parad
3le #8 Text: 1071-3 xl/2 ALS #9
8156 S:8 F:3 SMO(1,3) BSUB (128 , 15 , -3 . 0) PKD(3 , 5 , 2 , 0 . 10% , 2524 . 0 , 1 . 00% , F, F)
A8.27E4 A7.40E4
A An
£
/y\/\ *2.,3E4 ™
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35
8127 S:8 F:3 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 2764 . 0, 1 . 00%, F, F)
A5.43E4 A5.23E4
___^/L
'33: 24' ' '33: 36' ' '33: 48' ' '34
8559 S:8 F:3 BSUB(128, 15, -3 . 0)
33J24 33136 33?48 34
8530 S:8 F:3 BSUB(128, 15, -3 .0)
33!24 33*:36 33Us 34
9760 S:8 F:3 SMO(1,3) PKD(3,3,
33:25 33:37 33:48
'33:2V ' '33:36' ' '33: 48' ' '34
A4.11E4 A
A / \ A2.96E4
/ \ / \ /A A2.54E4
As.^46^3 y\y VAj^:E3 ^-x/^l-Wso oy^x _^^^— _^
i —I i i i t | T i r i T | r T i i i | r • r i i i i i i i i i i i i T i j i r i !•• T r™ r • i — i — i — i — i — r — r—t — i — i —
:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35
PKD(3,5,2,0.10%,9500.0,1.00%,F,F)
A1.68E8 A1.83E8
, f\ A
M A
!o'o 34!l2 34^24 34136 34148 35.-00 3s!l2 35.!24 35^36 35
PKD(3,5,2,0.10%,9228.0,1.00%,F,F)
A1.34E8 A1.47E8
* A A
M /I
igm
2.9E4
_1.5E4
10.0EO
48 Time
2.3E4
L1.1E4
O.OEO
48 Time
7.1E7
13 . 5E7
O.OEO
48 Time
5.7E7
12.9E7
' O.OEO
loo 34ll2 34^24 34!36 34Us 3s!oO 3s!l2 35^24 3s!36 35^48 Time
3, 100. 00%, 0.0,1. 00%, F,F)
3j4_OO 34:46 34:58 35:15 35:32 35:44 1.2E8
_5.9E7
O.OEO
!o'o' ' '34! 12' ' '34 .'2V ' 34.-361 ' '34.' 48' '35!oo' 's's.'l^' ' 35\24' ' '35: 36' ' VsUs Time
-------
File
Samp
423.
1002
so:
0"
425.
iooa
so:
0"
435.
100%
so:
0"
437.
100%
so;
0"
430.
100%
.
so:
o:
!: A20JUL98B Acq: 21-JUL-1998 02:32:32 Exp: EXP
>le #8 Text: 1071-3 xl/2 ALS #9
7767 S:8 F:4 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD(3,3,3
A9.56E4 A1.00E5
A4.49E4 l\ \
A, A /I
36:00 36:12 36:24 36:36 36:48 37:00 37:12
7737 S:8 F:4 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3,3,3
A1.11E5
A9.85E4 A
A1.73E4 \ \
36566 36:12 36524
8169 S:8 F:4 SMO(1,3)
36:00 36:12 36:24
8140 S:8 F:4 SMO(1,3)
36566 36512 36524
9728 S:8 F:4 SMO(1,3)
36:02 36_i22
/
•> 36:00 36:12 36:24
36:36 36:48 37:00 37:12
BSUB(128,15,-3.0) PKD(3,3,3
A1.27E8
I I1 I '| T I I I I | I I I 1 I | I \<\ I I | r I
36:36 36:48 37:00 37:12
BSUB(128,15,-3.0) PKD(3,3,3
A1.22E8
36536 36548 37566 37512
PKD{ 3, 3, 3, 100. 00%, 0.0, 1.00%
36:35 36_L49 37:01
36:36 36:48 37:00 37:12
M23_DB5_OVATION Voltage SIR EH- GC Autospec-UltimaE Parad
, 0.10%, 1156. 0,1. 00%, F,F)
A1.86E4
igm
3.3E4
L1.7E4
• n np.n
' ' ' | ' ' ' ' ' 1 ' ^"^ '1 (-T-r-i r 1 | I I I i^T |-T-i , , , | - , , -, I | I I I , I ( "~
37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
,0.10%, 1204.0, 1.00%, F,F)
37524 37536 37548 38566 3s5l2 38524 38536 38548 ' 395
,0.10%,1248.0,1.00%,F,F)
37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:
, 0.10%, 3748. 0,1. 00%, F,F)
3.6E4
_1.8E4
_O.OEO
00 Time
3.5E7
_1.8E7
O.OEO
00 Time
3.4E7
_1.7E7
LO.OEO
37524 37536 37548 38566 38512 38524 38536 38548 39 00 Time
,F,F)
37:23 37jj46 37:5738:07 38_i20 38:31 38:42 38:55
7.9E7
L3.9E7
' 0 . OEO
37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
-------
File: A20JUL98B Acq: 21-JUL-1998 02:32:32 Exp: EXP_M23_DB5_OVATION Voltage SIR EI + GC Autospec-UltimaE Paradigm
Sample #8 Text: 1071-3 xl/2 ALS #9
457.7377 S:8 F:5 SMO(1,3) BSUB ( 128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1332 . 0 , 1 . 00% , F, F)
1005
50.
0.
A2.R1E5
A
y X^04E4
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41
7.2E4
L3.6E4
00 Time
459.7348 S:8 F:5 SMO(1,3) BSUB (128 , 15, -3 . 0) PKD{3 , 3 , 3 , 0 . 10%, 724 . 0, 1 . 00%, F, F)
100S
so:
0'
A3.39E5
A
j ^^_
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41
8.1E4
L4.0E4
00 Time
169.7780 S:8 F:5 SMO(1.3) BSUBf 128. 15. -3 . 0) PKD<3 . 3 . 3 . 0 . 10% . 3464 . 0 . 1 . 00% . F. F>
1002
50_
0_
Al . 72E8
A
/ v_
4.0E7
L2.0E7
^O.OEO
39:12 39J24 39136 39148 4o!ob 4o!l2 4o!24 4ol36 40 V&Q 4l!oO Time
471.7750 S:8 F:5 SMO(1,3) BSUB(128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1728 . 0, 1 . 00%, F, F)
100%
50J
0'
A1.94E8
A
j •--
-4.5E7
_2.3E7
O.OEO
39ll2 39^24 39136 39Us 4o!ob 4oll2 4ol24 4o!36 4oUs 4l!oO Time
454.9728 S:8 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 .00%, F, F)
lOOSj
so:
0'
39:05 39:27 39j_43 40LQ140;07 40^17 40:26 40:38 40:44 40:52 8 . 5E7
'
_4.3E7
n n^n
^ 3T9.!12 ' 39124 39T36 " " 39\48^^ " 4oTo(T" ' ' 4 0 Il2 "~ " "" 4^1 24 ' ' ' 4o!36 ' ^'7o:r48 ' ' ' 41^00 Time
-------
File: A20JUL98B Acq:
21-JUL-1998 02:32
Sample #8 Text: 1071-3 xl/2
303.9016 S:8
1002
50 j
n-
A2
1 /\
305.8987 S:8
100%
50J
o"
SMO (1,3)
50E4
J\ A1^
'24! oo
SMO (1,3)
BSUB (128
ALS #9
,15, -3.0)
:32 Exp: EXP_M23_DBb
PKD (3,3,3,
0.10%, 968.
_OVATION Voltage
0,1.00%,F,F)
SIR EI+ GC Autospec-UltimaE Paradigm
A8.99E4 A1.44E5
A /\
*v?iA-
i i i
BSUB (12 8
,4
A.
/U^
25! oo
,15, -3.0)
A4.68E4
iX^yGLA2/:
'^^'~~^M
26:
PKD (3,3,3,
A4.36E4
vftyy\
00
0.10%, 2200
\
/V ^J V.
27loO
.0,1.00%,F,F)
A1.68E5
A5.08E4
A
A2.65E4
/V/.AA.11E3 A1.09E4 A.
Z-JLVZX^^ _. ^ /^rv^ J-^
28!oO 29IOO
_2.
ll.
:o.
30:00
_3.
A1.21E5 /\
u— 1 T f r-
315.9419 S:8
100S
50 1
o:
" ' i 1 r—
317.9389 S:8
1008
50 j
0'
"— ' — i i i
375.6364 S:8
100%
50 j
0'
rJ\~-J\/
"-* — i •*• "!""• i —
316.9824 S:8
100% 23:21
50J
o:
w— *— — 1 1 f—
Jc2i__
24 loo
SMO (1,3)
'" ""' T" ''
24:00
SMO (1,3)
24 ! 00'
SMO(1,3)
23:47
24 loo'
SMO (1,3)
24
—i 1 1 r
24:00
A4 . 9bJ
^_J\__
1 ' '
BSUB (128
1 i i
BSUB (128
1
BSUB (12 8
24:28
—I 1 r-
PKD (3,3,
:12 2A
"*4
^W^
~~25.-Oo'
,15, -3.0)
— ' — r — ' —
25:00
,15, -3.0)
— i 1 — i —
25:00
,15, -3.0)
«j» "^
\^J^\^
26\
PKD(3,3,3,
-i 1 — i 1 [
26:
PKD(3,3,3,
' ' ' 26!
PKD(3,3,3,
A7 . 41E4
-A1/V\
00
0.10%, 3456
00
0.10%, 3992
00
/ J\
j\^^^L\^.
27 loo
.0,1.00%,F,F)
A2.00E8
A
A
/v
T \ 1 1 1 f 1
27:00
.0,1.00%,F,F)
A2.57E8
A
A
/v
27100
A3.33E4
AA8.70E3
^_^/^v^cCX^___^--_~.
28!oO 29100
28100 29!00
28:00 29:00
^^— w__0^-
_1.
0.
30:00
4.
_2.
0.
soloo
5.
L2.
:.o.
3o!oo
2E4
1E4
OEO
Time
4E4
7E4
OEO
Time
2E7
1E7
OEO
Time
4E7
7E7
OEO
Time
100. 00%, 800. 0,1. 00%, F,F)
^^J^^^
— ' 1 ' —
25:00
3,100.00%
J-H2_5_iJl5_
— i 1 — i —
25:00
26:
00
27:35
o *7 • m n
^i / t U j j 1
^V^yArAjrA-Aj Vv.
27!00
28:26
A A
An A
fZ^T W V^vW^^
28!00 29100
29-53
^-/yWW^W
7.
L3.
0.
30:00
2E3
6E3
OEO
Time
,0.0,1.00%,F,F)
2 5^38 23 1
' ' ' 26!
00 26;28
00
26:51 27:2227:
27:00
43 28:06 28:4729:
28IOO 29100
09 ._5.
V/
_2.
0.
soloo
8E7
9E7
OEO
Time
-------
File: A20JUL98BAcg: 21-JUL-1998 02:32:32Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaEParadigm
Sample #8 Text: 1071-3 xl/2 ALS #9
339.8597 S:8 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3 , 0.10%,1248.0,1.00%,F,F)
1004 A8.51E4 A7.81E4 2.5E4
L1.2E4
O.OEO
30ll2 30i24 30136 30148 3lloO 3l!l2 3l!24 3lS36 3l!48 32^00 32!l2 32 .:24 ' 32 ! 36 32 Us ' 33 ! 00 ' 33 ! 12 Tim
341.8568 S:8 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,3076.0,1.00%,F,F)
100% A3.64E4 A3.94E4 _1.8E4
A1.53E4
A3.38E4 / \ A3.52E4 /
f\ \7.35E3 A 7
>c. N^ /^"w/ V^^x. y V-^ ,/
\ A3.54E4
\./v
A4.25E4
_/\Al-^E4 ^^^
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
351.9000 S:8 F:2 SMO(1,3) BSUB(128,15,-3 . 0) PKD(3,3 , 3 , 0.10%,1352.0,1. 00%, F, F)
100% A2.07E8 A2.JJ7E8
A
50J
oj
_7.5E7
O.OEO
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 ' 32I48 ' 33166 ' 33J12 Time
353.8970 S:8 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,3356.0,1.00%,F, F)
1004 A1.33E8 Al ..32E8
50J
OJ
4.8E7
-2.4E7
O.OEO
T T T T"TTT-| I I I I I t I I I I I I I I r~T' T T I" I' I I ' I ' I ' I ' I ' T" I I't'T'T"* TT"!"! "I T I—T T I—11*11—I [""F I I I I T T T "! T'* I I I ^"1 1 t I T I T'l I I T'l I' r"T I I I T'T'TT'T"!1
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
409.7974 S:8 F:2 SMO{1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,3200.0,1.00%, F,F)
100% ,n.10 31;50
32:37
i i i T—r-T-y f-1—r-T~T "T—i—i—r t"r"i" *T "T"i—r-t—i—i—i—i—i—r T-'TT- T"T-T--I—r—n—i—i—r-r-i—r~i—r—i—i—i—i—i—i—i—t—i—i—i—i—i—i—i—i—r*-i—i—i—i—i—i—i—r~i—i—i—i T i—i—i—i—i—i—i—i -T r- f i—r
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
66.9792 S:8 F:2 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
00%. 30:25 30:56 31:09 31:21 31:40
50J
O
32:39 32:51
>.6E7
L2.8E7
LO.OEO
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I T I I I I I I I I I I I I I I I I I1
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
-------
APPENDIX C
CALCULATIONS & COMPUTER SUMMARIES
-------
-------
Summary of Stack Gas Parameters and Test Results
Air Emissions Screening Test
Redland Stone Products Co. - San Antonio, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Rotary Kiln Scrubber Inlet
Page 1 of 6
y
AH
P
1/2
'static
T5
V,c
C02
02
N2
C
Ap
0
An
•m(sttJ)
Vm(sic))m3
PS
V,
A
Qa
Qs
Q$(cmm)
I
RUN NUMBER
RUN DATE
RUN TIME
M23-I-2
6/28/98
1035-1344
MEASURED DATA
Meter Box Correction Factor 1.021
Avg Meter Orifice Pressure, in. H2O 1.403
Barometric Pressure, inches Hg 29.20
Sample Volume, ft3 115.977
Average Meter Temperature, °F 100.8
Stack Static Pressure, inches H2O -10.00
Average Stack Temperature, °F 438
Condensate Collected, ml 136.4
Carbon Dioxide content, % by volume 19.5
Oxygen content, % by volume 10.3
Nitrogen content, % by volume 70.2
Pilot Tube Coefficient 0.84
Average Square Root Ap, (in. H20)1/2 1.2653
Sample Run Duration, minutes 180.0
Nozzle Diameter, inches 0.191
CALCULATED DATA
Nozzle Area, ft2 0.00020
Standard Meter Volume, dscf 109.154
Standard Meter Volume, dscm 3.091
Stack Pressure, inches Hg 28.46
Moisture, % by volume 5.56
Standard Water Vapor Volume, ft3 6.420
Dry Mole Fraction 0.9444
Molecular Weight (d.b.), Ib/lb-mole 31.53
Molecular Weight (w.b.), Ib/lb-mole 30.78
Stack Gas Velocity, ft/s 91.96
Stack Area, ft2 6.922
Stack Gas Volumetric flow, acfm 38,195
Stack Gas Volumetric flow, dscfm 20,181
Stack Gas Volumetric flow, dscmm 571
Isokinetic Sampling Ratio, % 104.6
-------
Summary of Stack Gas Parameters and Test Results
Redland Stone Products Co. - San Antonio, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Rotary Kiln Scrubber Inlet
Page 2 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-2
6/28/98
1035-1344
EMISSIONS DATA
DIOXINS:
2378 TCDD
ng Catch, ng {0.00236}
ng/dscm Concentration, ng/dscm, as measured {0.000764}
ug/hr Emission Rate, ug/hr {0.0262}
Total TCDD
ng Catch, ng 0.0408
ng/dscm Concentration, ng/dscm, as measured 0.0132
ug/hr Emission Rate, ug/hr 0.453
12378PeCDD
ng Catch, ng (0.0006)
ng/dscm Concentration, ng/dscm, as measured (0.000194)
ug/hr Emission Rate, ug/hr (0.00666)
Total PeCDD
ng Catch, ng 0.0068
ng/dscm Concentration, ng/dscm, as measured 0.00220
ug/hr Emission Rate, ug/hr 0.0754
123478 HxCDD
ng Catch, ng (0.0007)
ng/dscm Concentration, ng/dscm, as measured (0.000226)
ug/hr Emission Rate, ug/hr (0.00777)
123678 HxCDD
ng Catch, ng {0.00272}
ng/dscm Concentration, ng/dscm, as measured {0.000880}
ug/hr Emission Rate, ug/hr {0.0302}
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Redland Stone Products Co. - San Antonio, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Rotary Kiln Scrubber Inlet
Page 3 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-1-2
6/28/98
1035-1344
EMISSIONS DATA-Continued
DIOXINS - Continued
123789 HxCDD
ng Catch, ng {0.0036}
ng/dscm Concentration, ng/dscm, as measured {0.00116}
ug/hr Emission Rate, ug/hr {0.0399}
Total HxCDD
ng Catch, ng 0.0160
ng/dscm Concentration, ng/dscm, as measured 0.00518
ug/hr Emission Rate, ug/hr 0.177
1234678 HpCDD
ng Catch, ng {0.00896}
ng/dscm Concentration, ng/dscm, as measured {0.00290}
ug/hr Emission Rate, ug/hr {0.0994}
Total HpCDD
ng Catch, ng 0.0088
ng/dscm Concentration, ng/dscm, as measured 0.00285
ug/hr Emission Rate, ug/hr 0.0976
OCDD
ng Catch, ng 0.0239
ng/dscm Concentration, ng/dscm, as measured 0.00773
ug/hr Emission Rate, ug/hr 0.265
Total PCDD
ng Catch, ng 0.0963
ng/dscm Concentration, ng/dscm, as measured 0.0312
ug/hr Emission Rate, ug/hr 1.07
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Redland Stone Products Co. - San Antonio, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Rotary Kiln Scrubber Inlet
Page 4 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-2
6/28/98
1035-1344
EMISSIONS DATA - Continued
FURANS
2378 TCDF
ng Catch, ng {0.027}
ng/dscm Concentration, ng/dscm, as measured {0.00874}
ug/hr Emission Rate, ug/hr {0.300}
Total TCDF .
ng Catch, ng 0.3828
ng/dscm Concentration, ng/dscm, as measured 0.124
ug/hr Emission Rate, ug/hr 4.25
12378 PeCDF
ng Catch, ng {0.02044}
ng/dscm Concentration, ng/dscm, as measured {0.00661}
ug/hr Emission Rate, ug/hr {0.227}
23478 PeCDF
ng Catch, ng {0.01432}
ng/dscm Concentration, ng/dscm, as measured {0.00463}
ug/hr Emission Rate, ug/hr {0.159}
Total PeCDF
ng Catch, ng 0.1708
ng/dscm Concentration, ng/dscm, as measured 0.0553
ug/hr Emission Rate, ug/hr 1.89
123478 HxCDF
ng Catch, ng 0.0130
ng/dscm Concentration, ng/dscm, as measured 0.00421
ug/hr Emission Rate, pg/hr 0.144
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Redland Stone Products Co. - San Antonio, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Rotary Kiln Scrubber Inlet
Page 5 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-2
6/28/98
1035-1344
EMISSIONS DATA - Continued
Furans - Continued
123678 HxCDF
ng Catch, ng {0.0080}
ng/dscm Concentration, ng/dscm, as measured {0.00259}
ug/hr Emission Rate, ug/hr {0.0887}
234678 HxCDF
.ng Catch, ng {0.00376}
ng/dscm Concentration, ng/dscm, as measured {0.00122}
ug/hr Emission Rate, ug/hr {0.0417}
123789 HxCDF
ng Catch, ng (0.0008)
ng/dscm Concentration, ng/dscm, as measured (0.000259)
ug/hr Emission Rate, ug/hr (0.00887)
Total HxCDF
ng Catch, ng 0.0424
ng/dscm Concentration, ng/dscm, as measured 0.0137
ug/hr Emission Rate, ug/hr 0.470
1234678 HoCDF
ng Catch, ng 0.0172
ng/dscm Concentration, ng/dscm, as measured 0.00556
ug/hr Emission Rate, ug/hr 0.191
1234789 HoCDF
ng Catch, ng {0.00176}
ng/dscm Concentration, ng/dscm, as measured {0.000569}
ug/hr Emission Rate, ug/hr {0.0195}
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Redland Stone Products Co. - San Antonio, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Rotary Kiln Scrubber Inlet
Page 6 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-2
6/28/98
1035-1344
EMISSIONS DATA - Continued
Furans - Continued
Total HpCDF
ng Catch, ng 0.0204
ng/dscm Concentration, ng/dscm, as measured 0.00660
ug/hr Emission Rate, ug/hr 0.226
OCDF
ng Catch, ng 0.0044
ng/dscm Concentration, ng/dscm, as measured 0.00142
ug/hr Emission Rate, ug/hr 0.0488
Total PCDF
ng Catch, ng 0.6208
ng/dscm Concentration, ng/dscm, as measured 0.201
ug/hr Emission Rate, ug/hr 6.89
Total PCDD + PCDF
ng Catch, ng 0.7171
ng/dscm Concentration, ng/dscm, as measured 0.232
ug/hr Emission Rate, ug/hr 7.96
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Air Emissions Screening Test
Redland Stone Products Company - San Antonio, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Rotary Kiln Scrubber Stack
Page 1 of 6
RUN NUMBER
RUN DATE
RUN TIME
r
AH
Vic
C02
02
N2
Cos() » Ap1/2
0
V,
m(std)
V,
m(std)m3
PS
Dws(ut)
1-Bws
Md
M.
V.
V.a
A
Q.
Qs
Q»(cmm)
I
M23-O-2
6/28/98
1033-1348
MEASURED DATA
Meter Box Correction Factor 1.000
Avg Meter Orifice Pressure, in. H20 1.58
Barometric Pressure, inches Hg 29.20
Sample Volume, ft3 123.601
Average Meter Temperature, °F 88.4
Stack Static Pressure, inches H2O -0.33
Average Stack Temperature, "F 114
Condensate Collected, ml 289.5
Carbon Dioxide content, % by volume 15.7
Oxygen content, % by volume 12.2
Nitrogen content, % by volume 72.1
Pilot Tube Coefficient 0.84
Average Square Root Ap, (in. H20)1'1
In Flow Direction 0.8897
In Axial Direction 0.5756
Sample Run Duration, minutes 180.0
Nozzle Diameter, inches 0.217
CALCULATED DATA
Nozzle Area, ft2 0.00026
Standard Meter Volume, dscf 116.545
Standard Meter Volume, dscm 3.300
Stack Pressure, inches Hg 29.18
Moisture, % by volume 10.5
Moisture (at saturation), % by volume 10.1 used
Standard Water Vapor Volume, ft3 13.627
Dry Mole Fraction 0.899
Molecular Weight (d.b.), Ib/lb-mole 31.00
Molecular Weight (w.b.), Ib/lb-mole 29.69
Stack Gas Velocity, ft/s
In Flow Direction 52.02
In Axial Direction 33.65
Stack Area, ft2 16.35
Stack Gas Volumetric flow, acfm 33,014
Stack Gas Volumetric flow, dscfm 26,604
Stack Gas Volumetric flow, dscmm 753
Isokinetic Sampling Ratio, % 100.2
-------
Summary of Stack Gas Parameters and Test Results
Redland Stone Products Co. - San Antonio, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Rotary Kiln Scrubber Stack
Page 2 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-2
6/28/98
1033-1348
EMISSIONS DATA
DIOXINS:
2378 TCDD
ng Catch, ng {0.00182}
ng/dscm Concentration, ng/dscm, as measured {0.000551}
ug/hr Emission Rate, ug/hr {0.0249}
Total TCDD
ng Catch, ng 0.0148
ng/dscm Concentration, ng/dscm, as measured 0.00448
ug/hr Emission Rate, ug/hr 0.203
12378 PeCDD
ng Catch, ng {0.0006}
ng/dscm Concentration, ng/dscm, as measured {0.000182}
ug/hr Emission Rate, ug/hr {0.00822}
Total PeCDD
ng Catch, ng 0.0056
ng/dscm Concentration, ng/dscm, as measured 0.00170
ug/hr Emission Rate, ug/hr 0.0767
123478 HxCDD
ng Catch, ng {0.00244}
ng/dscm Concentration, ng/dscm, as measured {0.000739}
ug/hr Emission Rate, ug/hr {0.0334}
123678 HxCDD
ng Catch, ng {0.00176}
ng/dscm Concentration, ng/dscm, as measured {0.000533}
ug/hr Emission Rate, ug/hr {0.0241}
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Redland Stone Products Co. - San Antonio, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Rotary Kiln Scrubber Stack
Page 3 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-0-2
6/28/98
1033-1348
EMISSIONS DATA -Continued
DIOXINS - Continued
123789 HxCDD
ng Catch, ng 0.0016
ng/dscm Concentration, ng/dscm, as measured 0.000485
pg/hr Emission Rate, pg/hr 0.0219
Total HxCDD
ng Catch, ng 0.0200
ng/dscm Concentration, ng/dscm, as measured 0.00606
pg/hr Emission Rate, pg/hr 0.274
1234678 HpCDD
ng Catch, ng 0.0200
ng/dscm Concentration, ng/dscm, as measured 0.00606
pg/hr Emission Rate, pg/hr 0.274
Total HpCDD
ng Catch, ng 0.0396
ng/dscm Concentration, ng/dscm, as measured 0.0120
pg/hr Emission Rate, pg/hr 0.542
OCDD
ng Catch, ng 0.0449
ng/dscm Concentration, ng/dscm, as measured 0.0136
pg/hr Emission Rate, pg/hr 0.615
Total PCDD
ng Catch, ng 0.1249
ng/dscm Concentration, ng/dscm, as measured 0.0378
pg/hr Emission Rate, ug/hr 1.71
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Redland Stone Products Co. - San Antonio, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Rotary Kiln Scrubber Stack
Page 4 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-2
6/28/98
1033-1348
EMISSIONS DATA - Continued
FURANS
2378 TCDF
ng Catch, ng 0.0055
ng/dscm Concentration, ng/dscm, as measured 0.00167
ug/hr Emission Rate, ug/hr 0.0753
Total TCDF
ng Catch, ng 0.0860
ng/dscm Concentration, ng/dscm, as measured 0.0261
ug/hr Emission Rate, ug/hr 1.18
12378 PeCDF
ng Catch, ng 0.0067
ng/dscm Concentration, ng/dscm, as measured 0.00203
ug/hr Emission Rate, ug/hr 0.0918
23478 PeCDF
ng Catch, ng 0.0039
ng/dscm Concentration, ng/dscm, as measured 0.00118
ug/hr Emission Rate, ug/hr 0.0534
Total PeCDF
ng Catch, ng 0.0572
ng/dscm Concentration, ng/dscm, as measured 0.0173
ug/hr Emission Rate, ug/hr 0.783
123478 HxCDF
ng Catch, ng {0.00316}
ng/dscm Concentration, ng/dscm, as measured {0.000958}
ug/hr Emission Rate, ug/hr {0.0433}
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Redland Stone Products Co. - San Antonio, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Rotary Kiln Scrubber Stack
Page 5 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-2
6/28/98
1033-1348
EMISSIONS DATA - Continued
Furans - Continued
123678 HxCDF
ng Catch, ng 0.0020
ng/dscm Concentration, ng/dscm, as measured 0.000606
pg/hr Emission Rate, pg/hr 0.0274
234678 HxCDF
ng Catch, ng (0.0006)
ng/dscm Concentration, ng/dscm, as measured (0.000182)
pg/hr Emission Rate, pg/hr (0.00822)
123789 HxCDF
ng Catch, ng (0.0007)
ng/dscm Concentration, ng/dscm, as measured (0.000212)
pg/hr Emission Rate, pg/hr (0.00959)
Total HxCDF
ng Catch, ng 0.0088
ng/dscm Concentration, ng/dscm, as measured 0.00267
pg/hr Emission Rate, pg/hr 0.121
1234678 HpCDF
ng Catch, ng 0.0115
ng/dscm Concentration, ng/dscm, as measured 0.00348
pg/hr Emission Rate, pg/hr 0.158
1234789 HoCDF
ng Catch, ng (0.0010)
ng/dscm Concentration, ng/dscm, as measured (0.000303)
pg/hr Emission Rate, pg/hr (0.0137)
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Redland Stone Products Co. - San Antonio, Texas
US EPA Test Method 23 - PCDDs / PCDFs
Rotary Kiln Scrubber Stack
Page 6 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-2
6/28/98
1033-1348
EMISSIONS DATA - Continued
Furans - Continued
Total HpCDF
ng Catch, ng 0.0116
ng/dscm Concentration, ng/dscm, as measured 0.00351
ug/hr Emission Rate, ug/hr 0.159
OCDF
ng Catch, ng {0.00452}
ng/dscm Concentration, ng/dscm, as measured {0.00137}
ug/hr Emission Rate, ug/hr {0.0619}
Total PCDF
ng Catch, ng {0.16812}
ng/dscm Concentration, ng/dscm, as measured {0.0509}
ug/hr Emission Rate, ug/hr {2.30}
Total PCDD + PCDF
ng Catch, ng {0.29302}
ng/dscm Concentration, ng/dscm, as measured {0.0888}
ug/hr Emission Rate, ug/hr {4.01}
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
APPENDIX D
EXAMPLE EQUATIONS
-------
-------
Nomenclature
Y
AH
Pbar
vm
t»
"static
ts
Vic
CO2
02
N2
CP
Api/2
0
Dn
An
*m(std)
* m(std)m3
PS
Bws
Vw(std)
1-Jjws
Md
Ms
vs
A
Qa
Qs(std)
Qs(cmm)
I
ng/dscm
ng/dscm@7%O2
ug/hr
Ib/hr
Meter Box Correction Factor
Avg Meter Orifice Pressure, in. H20
Barometric Pressure, inches Hg
Sample Volume, ft3
Average Meter Temperature, °F
Stack Static Pressure, inches H2O
Average Stack Temperature, °F
Condensate Collected, ml
Carbon Dioxide content, % by volume
Oxygen content, % by volume
Nitrogen content, % by volume
Pilot Tube Coefficient
Average Square Root Ap, (in. H2O)1/2
Sample Run Duration, minutes
Nozzle Diameter, inches
Nozzle Area, ft2
Standard Meter Volume, dscf
Standard Meter Volume, dscm
Stack Pressure, inches Hg
Moisture, % by volume
Standard Water Vapor Volume, ft3
Dry Mole Fraction
Molecular Weight, dry, lb/lb»mole
Molecular Weight, wet, lb/lb«mole
Stack Gas Velocity, ft/s
Stack Area, ft2
Stack Gas Volumetric flow, acfrn
Stack Gas Volumetric flow, dscrrn
Stack Gas Volumetric flow, dscmm
Isokinetic Sampling Ratio, %
Concentration, ng/dscm
Concentration, ng/dscm adjusted to 7% oxygen
Emission Rate, ug/hr
Concentration, parts per million, dry
Concentration, parts per million, wet
Emission Rate, pounds per hour
-------
Example Calculations
Redland Stone Products Company - San Antonio, Texas
US EPA Method 23-PCDD/PCDF
(Using Data from Run M23-I-2)
Note: Discrepancies may exist between the computer generated reported results, which use
more significant figures, and the values manually calculated from the displayed values.
1. Volume of dry gas sampled corrected to standard conditions of 68 °F, 29.92 in. Hg, ft3.
= 17.64Vv
AH
13.6
460 + t
15.977)(1.021)
29.2
1.403
13.6
( 460 + 100.75
Vm(std) = 109.154 dscf
2. Volume of dry gas sampled corrected to standard conditions of 68°F, 29.92 in. Hg, m3.
Vm(std)m3 = ^(0.028317)
Vm(std)m3 = 009.154X0.028317)
= 3-091 dscm
3. Volume of water vapor at standard conditions, ft3.
= 0.04707V
1C
= (0.04707) (136.4)
= 6.420 scf
-------
4. Moisture content in stack gas.
V ...
(100)
V + V \
I vm(std) vw(std)J
109.154+ 6.420
B.._ = 5.56
(ioo)
5. Dry molecular weight of stack gas, Ib/lb-mol.
Md = 0.44 (%CO2) + 0.32 (%02) + 0.28(%N2 + %CO)
Md = 0.44(19.5) + 0.32(10.3) + 0.28(70.2 + 0)
Md = 31.53 Ib/lb-mol
6. Molecular weight of stack gas, Ib/lb-mol.
Ms = Md(l-BJ100) + 1803J100)
Ms = 31.53(1-5.56/100) + 18(5.56/100)
Ms = 31.53(0.9444) + 18(0.0556)
M = 29.7769 + 1.0008
Ms = 30.78 Ib/lb-mol
-------
7. Absolute stack gas pressure, in. Hg.
p = p. +
s bar
1 static
13.6
P = 29.2 + -
13.6
P = 28.46 inches Hg
8. Stack velocity at stack conditions, fps.
v = 85.49 C
\
t +460
v = (85.49)(0.84)(1.2653)
(437.5 f 460)
(30.78)(28.46)
vs = 91.96 fps
9. Isokinetic Variation.
(n.32)
(109.154) (473.5+460) (17.32)
(91.96) (0.191)2 (180) (28.46) (1-5.56/100)
= 104.6
-------
File: A20JUL98BAcq: 21-JUL-1998 02:32:32Exp: EXP_M23_DB5_OVATION Voltage SIR EH-GC Autospec-UltimaEParadigm
Sample #8 Text: 1071-3 xl/2 ALS #9
373.8207 S:8 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,5,2,0.10%,1944.0,1.00%,F,F)
100%, A5.J3E4
A3.54E4
A1.58E
/ \ A».4^KJ / V \
.95E3
50J
ol
A4.41E4
A9.69E3 A1.16E4 A2.02E4
2.0E4
_9.9E3
A1.31E4
O.OEO
T
~r
~r
~r
33i24 33i36 33^48 34!00 34il2 34i24 34i36 34i48 35:00
375.8178 S:8 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,5,2,0.10%,1864.0,1.00%,F,F)
100%, A3.33E4 A4.04E4
35l24' ' 35!36
1—i—i—i—I—i—|—i—i—P—i—l—|—i—r—i—I—i | i—i—i—i—r—|—i—i—i—i—i—|—i—i—i—i—i—|—i—i—i—i—i—|—i—i—i—i—i—|—i—i—f—i—i—|—i T" i—i—i—I-
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24
383.8639 S:8 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,16912.0,1.00%,F,F)
100% A1.23E8
35:36
35:48 Time
1.4E4
L6.8E3
rO.OEO
35:48 Time
5.3E7
_2.6E7
O.OEO
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24
385.8610 S:8 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,39312.0 ,1.00%,F,F)
100% A2.37E8
50:
35:36
35:48 Time
1.0E8
.5.0E7
O.OEO
33:24 33:36 33:48 34:00 34:12 34:24
34:48 35:00 35:12
34:36
445.7555 S:8 F:3 SMO(1,3) BSUB(128, 15 , -3 . 0) PKD(3 , 3 , 3 , 100 . 00%, 2256 . 0 , 1 . 00%, F, F)
100% 34;45 34;58
35:24 35:36
33124 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00
380.9760 S:8 F:3 SMO(1,3) PKD(3,3,3,100.00%, 0.0,1.00%, F, F)
100%. 22_j25 33i37 33:48 34.OO
50J
34:46
34:58
35:12 35:24
35:15
35:48 Time
8.8E3
.4.4E3
LO.OEO
35:36 35:48 Time
35:32 35:44_1.2E8
L5.9E7
O.OEO
T™1 "| 1 ' I - T ""|J"T — | .--|— p-".| • r i - 1— T - 1~— i - 1 - 1— | - 1 - 1 - 1 - p— T - 1 - , - 1
33:24 33:36 33:48 34:00 34:12
34:24
1 - f - 1 - 1 - ( - , - ) - 1 - 1 - 1 - 1 - 1 - ) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - (— — i
34:36 34:48 35:00 35:12 35:24
' i I ' ' ' ' ' I
35:36 35:48 Time
or
-------
File: A20JUL98B—Acq: 21-JUL-199S 02:32:32Exp: EXP_M23_DB5_OVATION Voltage SIR EI+GC Autospec-UltimaEParadigm
Sample #8 Text: 1071-3 xl/2 ALS #9
407.7818 S:8 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2896.0,1.00%,F,F)
100% A8.16E4 r_2.6E4
50^
0
—i—r-T—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r-T' -i—i—i—T-T—i—[—i—r—i—i—i—|—r—r-i—i—i—[—i—r"r t •-)[—
36:00 36:12 36:24 36:36 36:48 37:00 37:12 37:24
6 37:48 38
409.7788 S:8 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1260.0,1.00%,F,F)
100% A7.J52E4
38:24
50J
_1.3E4
O.OEO
39:00 Time
.2.6E4
L1.3E4
A5.41E3
A7.72E3
LO.OEO
T~367o0365i2 ' 36524 ' 36536 ' 36548 ' 37ToO 37512 37124 ' 37536 ' 37548 ' 38566 'Tsil^' 38524 38)36 38148 39^00 Time
417.8253 S:8 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,7364.0,1.00%,F,F)
100% A5.28E7
50_
OJ
A3.25E7
36:00 36:12 36:24
•36 36:48 37:00 37:12 37:24 37:36
419.8220 S:8 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,28704.0,1.00%,F,F)
100%, A1.19E8
38!66 38512
50
OJ
A7.38E7
T
T
i i i i i i i i i i i Ji i i |*f I I i i i i i i i i i i i i i i I i i i i i I i i i i i i .....
36500 365l2 36?24 36?36 36548 37500 37!l2 37:24 37:36 37:48 38:00 38:12 38:24
479.7165 S:8 F:4 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,3288.0,1.00%,F,F)
100% 37;09
50J
T
1.7E7
L8.3E6
LO.OEO
3 Time
3.7E7
L1.9E7
10.OEO
i I I 1 I I I I I i 1 I I I I I I i i i i ' I—r i I i i I i i I ' ' | |
36500 36!l2 36:24 36:36 36:48 37:00 37:12 37:24
430.9728 S:8 F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 36:02 36:22 36:35 36:49 37:01 37:23
50J
OJ
38:48 39:00 Time
1.3E4
L6.4E3
f 0.OEO
37536 ' 37548 ' 38566 ' 38512 ' 38524 ' 38536 ' 38548 ' 395oO Time
37:46 37:5738:07 3&i20 38:31 38:42 38:55^7. 9E7
_3.9E7
O.OEO
i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i ' i i i i ' i i i i i ' i i ' '' ' ' i i ' i i i i ' i i ' i i '' ''
36!00 36!l2 36524 36536 36548 37!oO 37512 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
-------
File: A20JUL98B
Sample #8 Text:
441.7427 S:8 F:5
1003
50J
•
o •
^-^"\__^~~---
39ll2
443.719R S-fl &•*.
1003
50 j
o:
~ — ^^^—^
39ll2
469.7780 S:8 F:5
100%
50 j
o"
1 i i — i i i — i —
39:12
471.7750 S:8 F:5
100%
50J
0"
"-1 — i — i — i — i — | — i—
39:12
513.6775 S:8 F:5
100%
50 j
o"
\_^_3^10
"-J — i — i — i — r— | — i—
39:12
454.9728 S:8 F:5
100%39:05
50J
o:
/
39ll2
Acq: 21-JUL-1998 02:32:32 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
1071-3 xl/2 ALS #9
SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%, 1224 . 0, 1 . 00%, F, F)
A2 . 95E4
/ \
,/ A4.50E3
_____ ^^^^_^ -_ _____ -^ •^—^-i -^^i2vo —^-^—* ^~\^ ^— ' - •— •
1.1E4
L5.3E3
O.OEO
39:24 ' 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 Time
SMO(1 3) BSUB(128 15, -3 0) PKD(3 , 3 , 3 , 0 . 10% , 1700 . 0 , 1 . 00%, F, F)
A3 . 09E4
f\
'~^~ — . -. — //^ — ~^-^ — — ' " ^ — *^~~ ^ \ — ' "^-^ ^-^ ^ — ~ ~^^ " ' ^ — ^^"^ "" • — '
-i 1 1 1 1 1 1 1 — T — i 1 1 1 1 1 r— I — T 1 1 1 1 1 1 i 1 i i 1 i i i i i | i i i i i | r r— i i i | i i i i i p1
39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
1.1E4
L5.5E3
' 0 . OEO
00 Time
SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10% , 3464 . 0 , 1 . 00%, F, F)
A1.72E8
/\
/ v__
4 . OE7
i.2 . OE7
' O.OEO
T — i — i — i — i — i — r— i — i — i — i — i — i — i — i — i — l — i — i — i r i — I — i — i i i ' l | • . . . — i — | — i — i — i — i — i — I i i i i i | i i i ' ' T
39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 Time
SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%, 1728 . 0, 1 . 00%, F, F)
A1.94E8
A
y N
4 . 5E7
L2.3E7
' O.OEO
39:24 ' ' 39!36 39:48 40:00 4o!l2 40:24 4o!36 4ol48 4l!oO Time
SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 100 . 00%, 244 . 0, 1 . 00%, F, F)
40:01
/ \
%34 y^_ y v^!__/\x_«<2r-_ 4x" 4%i_.
7 . 6E3
_3.8E3
O.OEO
39:24 39:36 39:48 40:00 40:12 40:24 4o!36 40:48 41:00 Time
SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
39-27 39:43 40:0140:07 40:17 40:26 40:38 40:48 8 . 5E7
_4.3E7
O.OEO
39:24 39:36 ' 39Us 40:00 40:12 4o!24 40:36 40:48 41:00 Time
VI
-------
Paradigm Analytical Labs
Method 23
M23-I-2FH
Analytical Data Summary Sheet
Analyte
•
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
AinoBjit , :.j
~~'4jttf ' - *"'2
EMPC
• «-;-.il6"r-r,i1
ND
0.0010
0.0016
0.0028
0.0060
0.0180
0.0184
0.0124
0.0102
0.0066
EMPC
ND
0.0061
EMPC
ND
0.0348
0.0060
0.0024
0.0028
0.355
0.164
0.0348
0.0092
0.0110
0.0114
|?€lBk ^
-•S-^iiW '"•""'• "
0.0006
.'"HK8803 :
6.0007
0.0005
0.0005
0.0005
0.0008
0.0008
0.0006
0.0006
0.0007
0.0006
0.0007
0.0008
0.0009
0.0011
0.0008
0.0006
0.0003
0.0005
0.0005
0.0008
0.0006
0.0006
0.0009
...JEMFC'
i- ''s ^W9 -^ ',
0.0016
••.I-*, f
0.0038
0.0018
0.0390
0.0120
0.0110
0.0040
0.407
0.0470
0.0110
0.0129
0.0131
RT
(mm.)
28:28
32:43
34:42
34:45
34:58
37:10
40:01
27:27
31:57
32:25
34:10
34:15
34:37
35:08
36:21
37:31
40:10
Ratio
0.96
3.56
1.65
1.14
1.31
1.08
0.76
0.74
1.41
1.43
1.17
1.23
1.89
1.22
1.18
1.6
1.34
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Texas Lime Kiln
M23-I-2JH .-";
' -~~ - "- C-t^^7'
~'" ,''-"-,; •
L1071
1071-4
28-Jun-98
08-M-98
14-M-98
21-M-98
Sample Information
Matrix:
Weight /Vohnne:
Moisture / Lipids:
OrigiaalpH:
Filename:
Rctchk;
Begin ConCal:
EndConCal:
Initial Cal:
Air
i Grams
0.0 %
NA
a20jul98b-9
a20jvd98b-l
a20jul98b-2
a20jul98b-17
m8290-23-071798
15C
1/2
-------
Paradigm Analytical Labs
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13Cu-l,2,3,7,8-PeCDD
\3f^ 1 *5 1 4C *1 C T TTT /"^T*\T"\
\^\2~ L *A,+J *\j* * .O~nAVJ'L^L*
"Cu-lASAej.S-HpCDD
13C12-OCDD
13Cjr2,3,7,8-TCDF
l3Cl2-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
I3C,2-l,2,3>4,6,7,8-HpCDF
Cleanup Standards
37CL,-2,3,7,8-TCDD
l3Cl2-2,3,4,7,8-PeCDF
I3C12-l,2,3,4,7,8-HxCDD
>3C,2-l,2,3,4,7,8-HxCDF
uC12-l^,3,4,7,8,9-HpCDF
Injection Standards
UCU-U,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
(ng)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
•
Measured
Amount
"ing)
3.08
3.26
3.24
3.41
6.02
T2.59
2.03
2.11
1.84
3.26
3.01
3.73
3.58
3.70
-
Percent
Recovery
77.0
81.4
80.9
85.3
75.3
64.7
50.7
52.7
46.0
81.4
75.3
93.2
89.5
92.6
RT
(nun.)
28:26
32:37
34:45
37:09
40:01
27:25
31:57
34:14
36:21
28:28
32:24
34:41
34:10
37:31
28:10
34:58
Ratio
0.78
1.56
1.14
1.04
0.89
0.78
1.55
0.52
0.44
1.56
1.39
0.52
0.44
0.79
1.24
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Texas Lime Kiln
M23-I-2FH
L1071
1071-4
28-Jun-98
-Sample Information
Matrix:
Weight/Volume:
Moisture / Lipids:
Original pH:
Filename:
Air
1
0.0
NA
Grams
%
a20jul98b-9
a20jol98b-l
a20ju!98b-2
a20jul98b-17
Date Reviewed:
154
212
-------
Paradigm Analytical Labs
Method 8290
M23-I-2FH
PBS
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Amount
iff*)
EMPC
ND :
ND
0.0296
0.0493
0.0850
0.186
0.553
0.568
0.382
0.314
0.204
EMPC
ND
0.187
EMPC
ND
1.07
0.185
0.0739
0.0862
10.9
5.06
1.07
0.283
0.337
0.352
JIK^^IL..; \"t,;
••::H*W--,
0.0172
0.0092
0.0207
0.0149
0.0152
0.0150
0.0257
0.0234
0.0180
0.0174
0.0227
0.0176
0.0206
0.0237
0.0276
0.0335
0.0260
0.0172
0.0092
0.0149
0.0150
0.0234
0.0174
0.0176
0.0276
^mopc
&H&P0
0.0481
0.116
,,,0.0542
1.20
0.382
0.345
0.135
12.5
1.45
0.333
0.397
0.402
RT
(MB.)
28:28
32:43
34:42
34:45
34:58
37:10
40:01
27:27
31:57
32:25
34:10
34:15
34:37
35:08
36:21
37:31
40:10
Ratio
0.96
3.56
1.65
1.14
1.31
1.08
0.76
0.74
1.41
1.43
1.17
1.23
1.89
1.22
1.18
1.6
1.34
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ED:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Texas Lime Kiln
M23-I-2FH
Sample Information
Matrix:
Weight/Volume:
Moisture / Lipids:
L1071
1071-4
28-Jufl-98
08-Jnl-98
14-M-98
21-M-98
Original pH :
Filename:
fistdfc
Begin ConCal:
EndConCal:
Initial Cal:
Air
32.48 Grams
0.0 %
NA
a20ju!98b-9
a20ju!98b-l
a20ju!98b-2
a20ju!98b-17
m8290-23-071798
15!
1/2
-------
Paradigm Analytical Labs
Method 8290
M23-I-2FH
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13C,rl,2,3,7,8-PeCDD
13Cirl,2,3,6,7,8-HxCDD
13Cirl)2,3,4,6,7)8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13C,rl,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
Cleanup Standards
S7O4-2&7,8-TCDD
l3C12-2,3,4,7,8-PeCDF
13C12-l,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
uC,rlA3,4,7,8,9-HpCDF
Injection Standards
13Ci2-l,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
ing)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured
Amount
t»E)
3.08
3.26
3.24
3.41
6.02
2.59
2.03
2.11
1.84
3.26
3.01
3.73
3.58
3.70
Percent
Recovery
t%)
77.0
81.4
80.9
85.3
75.3
64.7
50.7
52.7
46.0
81.4
75.3
93.2
89.5
92.6
ET
1071-4
28-Jun-98
08-Jul-98
14-Jul-98
21-Jol-98
Matrix:
m$bt/ Volume:
< : Moisture /Lipids:
' •' •'' "; ~ Filename: -
RcfrliV'
Begin ConCal:
EndConCal:
Initial Cal:
Air
32.48 Grams
0.0 %
NA
a20ju!98b-9
a20ju!98b-l
a20jul98b-2
a20ju!98b-17
m8290-23-071798
Reviewed by:
Date Reviewed:
C < 156
-------
OPUSquan 21-JUL-1998
Filename a20ju!98b
Sample 9
Acquired 21-JUL-98
Processed 21-JUL-98
Sample ID 1071-4 xl/2
Page 1
03:17:49
13:45:21
\\
<" ^^s
p\ *r
-^- *'
, uv
. v» °A
Cal Table m8290-23-071798
Results Table M8290-23-072098B
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
SS
Name;
2,3,7,8-TCDD;
1, 2,3,7, 8-PeCDD;
1,2,3,4,7,8-HxCDD;
1,2,3, 6,7,8-HxCDD;
1,2,3,7,8,9-HxCDD;
1,2,3,4,6,7,8-HpCDD;
OCDD;
2,3,7,8-TCDF;
1, 2,3,7, 8-PeCDF;
2,3,4,7,8-PeCDF;
1,2,3,4,7,8-HxCDF;
1,2,3,6,7,8-HxCDF;
2,3,4,6,7,8-HxCDF;
1,2,3,7,8,9-HxCDF;
1,2,3,4,6,7 , 8-HpCDF ;
1,2, 3,4,7, 8,9-HpCDF;
OCDF;
13C-2,3,7,8-TCDD;
13C-1, 2,3,7, 8-PeCDD;
13C-1 2367 8-HxCDD'
13C-l,2,3,4,6,7,8-HpCDD;
13C-OCDD;
13C-2,3,7,8-TCDF;
13C-1 , 2,3,7, 8-PeCDF;
13C-l,2,3,6,7,8-HxCDF;
13C-l,2,3,4,6,7,8-HpCDF;
13C-1,2,3,4-TCDD;
13C-l,2,3,7,8,9-HxCDD;
37Cl-2,3,7,8-TCDD;
13C-2, 3,4,7, 8-PeCDF;
13C-l,2,3,4,7,8-HxCDD;
13C-l,2,3,4,7,8-HxCDF;
13C-l,2,3,4,7,8,9-HpCDF;
37Cl-2,3,7,8-TCDD;
13C-2, 3,4,7, 8-PeCDF;
13C-1 , 2,3,4,7, 8-HxCDD;
13C-l,2,3,4,7,8-HxCDF;
13C-l,2,3,4,7,8,9-HpCDF;
Resp;
3.29e+05;
2.516+04;
2.61e+04;
5.826+04;
9.336+04;
1.30e+05;
2.27e+05;
4.11e+06;
9.686+05;
6.736+05;
4.40e+05;
3.676+05;
1.78e+05;
3.41e+04;
2.06e+05;
4.896+04;
2.67e+04;
3.356+08;
2.47e+08;
2.70e+08;
2.10e+08;
2.996+08;
3.54e+08;
2.416+08;
2.03e+08;
1.07e+08;
3.97e+08;
3.10e+08;
3.256+08;
3.50e+08;
2.056+08;
2.686+08;
1.696+08;
3.25e+08;
3.506+08;
2.056+08;
2.68e+08;
1.69e+08;
Ion 1;
6.306+04;
1.96e+04;
1.62e+04;
3.10e+04;
5.29e+04;
6.72e+04;
9.816+04;
1.746+06;
5.67e+05;
3.97e+05;
2.386+05;
2.036+05;
1.166+05;
1.876+04;
l.lle+05;
3.016+04;
1.53e+04;
1.476+08;
1.516+08;
1.44e+08;
1.076+08;
1.416+08;
1.55e+08;
1.47e+08;
6.90e+07;
3.31e+07;
1.756+08;
1.726+08;
3.25e+08;
2.136+08;
1.19e+08;
9.19e+07;
5.20e+07;
3.256+08;
2.136+08;
1.19e+08;
9.19e+07;
5.206+07;
Ion 2;
2.66e+05;
5.51e+03;
9.84e+03;
2.72e+04;
4.036+04;
6.246+04;
1.296+05;
2.37e+06;
4.02e+05;
2.76e+05;
2.02e+05;
1.656+05;
6.17e+04;
1.536+04;
9.46e+04;
1.886+04;
1.146+04;
1.886+08;
9.646+07;
1.26e+08;
1.03e+08;
1.58e+08;
1.99e+08;
9.446+07;
1.346+08;
7.446+07;
2.21e+08;
1.39e+08;
_.
1.37e+08;
8.60e+07;
1.76e+08;
1.17e+08;
1.37e+08;
8.60e+07;
1.76e+08;
1.17e+08;
RA;?;
0.24;j^
RT;
v 28:28;
3.56f;/h; \32:43;
1.65";iT; 34:42 ;
1.14,-y;
1.31,-y;
1.08;y;
0.76;y;
0.74;y;
1.41;y;
1.43;y;
1.17;y;
1.23;y;
1.89;n;
1.22;y;
1.18;y;
1.60;n;
1.34;n;
0.78;y;
1.56;y;
1.14;y;
1.04;y;
0.89;y;
0.78;y;
1.55;y;
0.52;y;
0.44;y;
0.79;y;
1.24;y;
-;-:
1.56;y;
1.39;y;
0.52;y;
0.44;y;
1.56;y;
1.39;y;
0.52;y;
0.44;y;
34:45;
34:58;
37:10;
40:01;
27:27;
31:57;
32:25;
34:10;
34:15;
34:37;
35:08;
36:21;
37:31;
40:10;
28:26;
32:37;
34:45;
37:09;
40:01;
27:25;
31:57;
34:14;
36:21;
28:10;
34:58;
28:28;
32:24;
34:41;
34:10;
37:31;
28:28;
32:24;
34:41;
34:10;
37:31;
Cone;
0.100;
— 0.009;
0.015;
0.024;
0.040;
0.069;
0.151;
1.219;
0.461;
0.310;
0.255;
0.166;
0.094;
0.021;
0.152;
0.044;
0.017;
76.959;
81.392;
80.888;
85.247;
150.529;
64.737;
50.669;
52,691;
45.952;
82.290;
78.250;
81.375;
75.292;
93.227;
89.504;
92.548;
105.797;
148.647;
115.360;
168.541;
201.472;
DL;
0.0140;
0.0075;
0.0168;
0.0121;
0.0123;
0.0122;
0.0209;
0.0190;
0.0146;
0.0141;
0.0184;
0.0143;
0.0167;
0.0192;
0.0224;
0.0272;
0.0211;
0.0321;
0.0251;
0.0435;
0.0298;
0.0151;
0.0252;
0.0105;
0.1396;
0.0486;
-;
- ;
0.0122;
0.0108;
0.0659;
0.1791;
0.0621;
0.0161;
0.0123;
0.0781;
0.3054;
0.1785;
S/Nl,-?;
9;y;
5;y;
3;n;
5;y;
6;y;
19;y;
17;y;
195;y;
140;y;
117;y;
27 ;y;
24 ;y;
9;y;
2;n;
21;y;
4;y;
4;y;
4854;y;
15652 ;y;
4931;y;
4831;y;
16800;y;
7298;y;
53245;y;
1397;y;
805;y;
5855;y;
5433;y;
19716;y;
80507 ;y;
4237;y;
2162;y;
1091;y;
19716 ;y;
80507 ;y;
4237;y;
2162;y;
1091;y;
S/N2; ?
32jy
xf^^2;n
TTn
4;y
4;y
17 ;y
33, -y
125;y
44 ;y
37,-y
34 ;y
30;y
12,-y
3;y
26;y
5;y
2;n
11175;y
19542;y
7631;y
8417,-y
17980,-y
7883;y
13636;y
1188;y
8485;y
13287;y
8299;y
-; -
20527;y
6659 ;y
1796 ;y
11675;y
20527;y
6659 ;y
1796;y
11675;y
mod?
. no
s no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 14
cn
•vl
-------
OPUSquan 21-JUL-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:21
Run: 14 File: a20ju!98b S:9 Acq:21-JUL-98 03:17:49 Proc:21-JUL-98 13:45:21
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-4 xl/2
Amount: 10.17
Cone: 10.17
Tox #1: -
Name
2,3,7,8-TCDF
of which 1.22
of which 1.22
Tox #2: -
# RT Respnse
named and 8.95
named and 8.95
Tox #3: -
RA
1 23:42 2.7e+06 0.78 y
2.7e+06
2 24:15 8.66+05 0.79 y
8.6e+05
3 24:35 8.5e+05 0.75 y
8.5e+05
4 24:53 6.8e+06 0.80 y
6.8e+06
5 25:02 6.5e+05 0.54 n
6.5e+05
6 25:11 2.9e+06 0.32 n
2.9e+06
7 25:28 1.6e+04
1.6e+04
1.00 n
8 25:40 1.3e+06 0.72 y
1.3e+06
9 25:45 2.1e+06 0.78 y
2.1e+06
10 26:01 1.4e+06 0.74 y
1.4e+06
11 26:09 2.1e+06 0.80 y
2.1e+06
12 26:26 2.5e+06 0.81 y
2.5e+06
13 26:34 l.Oe+06 0.86 y
l.Oe+06
14 26:50 2.2e+06 0.86 y
2.2e+06
15 27:04 9.4e+04 2.24 n
9.4e+04
16 27:10 6.1e+05 0.99 n
6.1e+05
17 27:27 4.1e+06 0.74 y
4.1e+06
18 28:03 1.3e+06 0.76 y
1.3e+06
19 28:19 6.4e+05 0.82 y
6.4e+05
Cone
0.79
3
1
0.26
4
0.25
•3
4
2.02
0.19
4
0.86
0.00
£
e
0.39
C
0.61
S
1
0.41
c
0.62
c
3
0.75
1
:
0.30
4
C
0.64
S
:
0.03
c
0.18
2
i
1.22
1
0.38
c
1
0.19
unnamed
unnamed
Area Height
S/N Mod?
1.2e+06 2.4e+05 1.7e+02 y n
1.5e+06 3.1e+05 l.Oe+02 y n
5
3.8e+05 8.4e+04 5.9e+01 y n
4.8e+05 l.Oe+05 3.5e+01 y n
3.6e+05 7.9e+04 5.6e+01 y n
4.9e+05 l.le+05 3.7e+01 y n
3.0e+06 5.9e+05 4.2e+02 y n
3.8e+06 7.9e+05 2.7e+02 y n
9
2.3e+05 4.8e+04 3.4e+01 y n
4.2e+05 6.8e+04 2.3e+01 y n
7.0e+05 1.6e+05 1.le+02 y n
2.2e+06 2.06+05 6.6e+01 y n
8.26+03 2.7e+03 1.9e+00 n n
8.2e+03 3.7e+03 1.2e+00 n n
3
5.4e+05 1.3e+05 9.3e+01 y n
7.6e+05 1.8e+05 6.2e+01 y n
9.0e+05 2.0e+05 1.4e+02 y n
1.2e+06 2.56+05 8.5e+01 y n
L
5.9e+05 1.36+05 9.4e+01 y n
7.9e+05 1.8e+05 6.0e+01 y n
2
9.2e+05 1.8e+05 1.3e+02 y n
1.2e+06 2.4e+05 S.le+01 y n
l.le+06 2.2e+05 1.5e+02 y n
1.46+06 2.7e+05 9.2e+01 y n
4.6e+05 9.8e+04 6.9e+01 y n
5.4e+05 l.le+05 3.8e+01 y n
i
9.9e+05 1.9e+05 1.4e+02 y n
1.2e+06 2.46+05 8.2e+01 y n
6.5e+04 1.7e+04 1.2e+01 y n
2.96+04 l.Oe+04 3.4e+00 y n
3
3.0e+05 5.5e+04 3.9e+01 y n
3.1e+05 6.4e+04 2.2e+01 y n
2
1.7e+06 2.86+05 2.0e+02 y n
2.4e+06 3.7e+05 1.3e+02 y n
5.6e+05 l.le+05 7.8e+01 y n
7.3e+05 1.5e+05 5.0e+01 y n
9
2.9e+05 5.2e+04 3.7e+01 y n
3.5e+05 7.2e+04 2.4e+01 y n
-------
OPUSguan 21-JUL-1998
Page 2
20 28:34 1.7e+05 1.12 n 0.05
l.Te+05
21 29:49 1.3e+05 0.85 y 0.04
1.36+05
8.9e+04 1.4e+04 9.8e+00 y n
7.9e+04 1.8e+04 6.0e+00 y n
6.06+04 1.3e+04 9-le+OO y n
7.16+04 1.4e+04 4.6e+00 y n
159
-------
OPUSquan 21-JUL-1998
Page 3
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:13
Run: 14 File: a20ju!98b S:9 Acq:21-JUL-98 03:17:49 Proc:21-JUL-98 13:45:21
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-4 xl/2
Amount: 1.02
Cone: 1.02
Tox #1: -
Name
2,3,7,8-TCDD
of which 0.10
of which 0.10
Tox #2: -
# RT Respnse
named and 0.92
named and 0.92
Tox #3: -
RA
1 25:16 1.3e+06 0.79 y
1.3e+06
2 25:24 5.5e+03 2.67 n
5.56+03
3 25:41 8.3e+05 0.81 y
8.3e+05
4 26:03 4.3e+04 0.25 n
4.3e+04
5 26:55 2.9e+05 0.77 y
2.9e+05
6 27:17 2.3e+04 0.74 y
2.36+04
7 27:24 6.3e+04
6.3e+04
6.01 n
8 27:44 5.6e+04 0.84 y
5.6e+04
9 28:11 2.2e+05 0.70 y
2.26+05
10 28:20 l.Se+05 0.87 y
l.Se+05
11 28:28 3.3e+05 0.24 n
3.3e+05
12 28:58 3.8e+04
3.8e+04
0.94 n
13 29:54 1.7e+04 0.51 n
1.7e+04
Cone
0.39
C
1
0.00
4
1
0.25
^
4
0.01
£
3
0.09
1
1
0.01
s
1
0.02
c
s
0.02
•:
0.07
£
1
0.05
£
S
0.10
e
0.01
1
]
0.01
unnamed
unnamed
Area Height
S/N Mod?
5.7e+05 1.2e+05 8.1e+01 y n
7.2e+05 1.5e+05 9.3e+01 y n
4.0e+03 1.4e+03 9.1e-01 n n
1.5e+03 7.4e+02 4.4e-01 n n
3.7e+05 7.7e+04 5.1e+01 y n
4.6e+05 l.Oe+05 6.2e+01 y n
I
8.5e+03 2.7e+03 1.8e+00 n n
3.5e+04 7.5e+03 4.5e+00 y n
3
1.2e+05 2.3e+04 1.5e+01 y n
1.6e+05 3.4e+04 2.1e+01 y n
9.7e+03 3.2e+03 2.1e+00 n n
1.3e+04 3.7e+03 2.2e+00 n n
2
5.4e+04 1.2e+04 7.6e+00 y n
9.0e+03 2.7e+03 1.6e+00 n n
2.5e+04 6.7e+03 4.4e+00 y n
3.0e+04 7.1e+03 4.3e+00 y n
7
8.9e+04 1.9e+04 1.2e+01 y n
1.3e+05 2.6e+04 1.6e+01 y n
.3e+04 1.7e+04 l.le+01 y n
.6e+04 2.0e+04 1.2e+01 y n
6.3e+04 1.4e+04 9.3e+00 y n
2.7e+05 5.3e+04 3.2e+01 y n
.8e+04 4.6e+03 3.1e+00 y n
.9e+04 4.8e+03 2.9e+00 n n
5.8e+03 1.5e+03 1.Oe+00 n n
l.le+04 3.0e+03 1.8e+00 n n
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:13
Run: 14 File: a20ju!98b S:9 Acq:21-JUL-98 03:17:49 Proc:21-JUL-98 13:45:21
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-4 xl/2
Amount: 4.11
Cone: 4.11
Tox #1: -
Name
of which 0.77
of which 0.77
Tox #2: -
# RT Respnse
named and 3.34
named and 3.34
Tox #3: -
unnamed
unnamed
RA
1 30:16 l.Oe+06 1.47 y
l.Oe+06
Cone
0.47
Area Height S/N Mod?
6.0e+05 1.2e+05 l.le+02 y n
160
-------
OPUSguan 21-JUL-1998
2 31:16 6.
6.
3 31:22 2.
2.
4 31:28 5.
5.
5 31:36 2.
2.
6 31:45 1.
1 .
1,2, 3,7, 8-PeCDF 7 31:57 9.
9.
8 32:04 3.
3.
9 32:09 5.
5.
10 32:15 1.
1.
2, 3,4,7,8-PeCDF 11 32:25 6.
6.
Page 4
Oe+05 1.48 y
Oe+05
6e+06 1.66 y
6e+06
4e+05 1.32 y
4e+05
7e+05 1.38 y
7e+05
4e+05 1.54 y
4e+05
7e+05 1.41 y
7e+05
le+05 1.65 y
le+05
7e+05 1.73 y
7e+05
4e+04 0.84 n
4e+04
7e+05 1.43 y
7e+05
4
0.28
3
2
1.21
1
9
0.25
3
2
0.13
1
1
0.35
4
2
0.46
5
4
0.14
1
1
0.27
3
2
0.01
6
7
0.31
4
2
.le+05
. 6e+05
.4e+05
.6e+06
.7e+05
.le+05
.3e+05
.6e+05
.le+05
.5e+05
.9e+05
.7e+05
.Oe+05
.9e+05
.2e+05
.6e+05
.le+05
.5e+03
.7e+03
.Oe+05
.8e+05
8
1
8
4
2
8
5
3
2
1
8
1
1
6
4
1
7
1
3
1
9
. le+04
.2e+05
.3e+04
.6e+05
.8e+05
.Oe+04
.6e+04
.9e+04
.6e+04
.4e+05
.7e+04
.6e+05
.le+05
.5e+04
.Oe+04
.3e+05
.3e+04
.8e+03
.2e+03
.4e+05
.2e+04
3.
1.
3.
4.
1.
6.
2.
3.
1.
1.
3.
1.
4.
5.
1.
1.
2.
1.
1.
1.
3.
3e+01
le+02
3e+01
Oe+02
le+02
9e+01
3e+01
3e+01
Oe+01
2e+02
5e+01
4e+02
4e+01
5e+01
6e+01
le+02
9e+01
6e+00
3e+00
2e+02
7e+01
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
ri
ri
y
y
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
12 32:29 4.Oe+05 1.51 y 0.19
4.0e+05
13 32:58 1.Oe+05 1.65 y 0.05
1.Oe+05
4e+05
6e+05
4e+04
9e+04
8.Oe+04
5.66+04
2.3e+04
1.5e+04
6.9e+01 y n
2.2e+01 y n
2.Oe+01 y n
6.0e+00 y n
-------
OPUSquan 21-JUL-1998
Page 5
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:8
Run: 14 File: a20ju!98b S:9 Acq:21-JUL-98 03:17:49 Proc:21-JUL-98 13:45:21
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23->Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-4 xl/2
Amount: 0.34
Cone: 0.34
Tox #1: -
of which 0.01
of which 0.01
Tox #2 : -
named and 0.33
named and 0.33
Tox #3: -
Name
# RT Respnse
1 31:30 2.8e+05
2.8e+05
2 31:59 2.3e+05
2.3e+05
3 32:05 4.7e+04
4.7e+04
unnamed
unnamed
Area Height
S/N Mod?
1.82 n
1.14 n
1,2,3,7, 8-PeCDD
32:10 1.5e+05 1.40 y
l.Se+05
32:19 l.Se+04 0.33 n
l.Se+04
32:26 1.4e+05 2.03 n
1.4e+05
32:43 2.56+04 3.56 n
2.5e+04
32:54 3.5e+04 1.02 n
3.56+04
0.08
0.02
0.05
0.01
1.6e+05 4.96+04 3.2e+01 y n
1.2e+05 3.8e+04 3.9e+01 y n
1.5e+05 4.6e+04 3.0e+01 y n
8.2e+04 3.0e+04 3.0e+01 y n
2
2.56+04 9.76+03 6.3e+00 y n
2.26+04 8.6e+03 8.7e+00 y n
8.5e+04 3.4e+04 2.2e+01 y n
6.16+04 2.2e+04 2.2e+01 y n
1
4.5e+03 2.2e+03 1.4e+00 n n
1.4e+04 4.8e+03 4.8e+00 y n
0.05
0.01
0.01
9.46+04 2.7e+04 1.8e+01 y n
4.6e+04 1.6e+04 1.6e+01 y n
1
2.0e+04 7.6e+03 5.0e+00 y n
5.56+03 2.16+03 2.16+00 n n
L
1.8e+04 4.8e+03 3.2e+00 y n
1.7e+04 5.4e+03 5.5e+00 y n
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:19
Run: 14 File: a20ju!98b S:9 Acq:21-JUL-98 03:17:49 Proc:21-JUL-98 13:45:21
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-4 xl/2
Amount: 1.24
Cone: 1.24
Tox #1: -
of which 0.54
of which 0.54
Tox #2: -
named and 0.71
named and 0.71
Tox #3: -
Name
RT Respnse
RA
33:31 1.7e+05 1.43 n
1.7e+05
2 33:37 5.9e+05 1.33 y
5.9e+05
3 33:43 7.9e+04 1.27 y
7.9e+04
4 33:49 8.6e+04
8.66+04
1.76 n
5 33:55 3.8e+04 1.77 n
3.8e+04
34:04 4.5e+03
4.5e+03
3.32 n
Cone
0.09
1
'i
0.32
T
0.04
4
•3
0.05
c
3
0.02
]
0.00
unnamed
unnamed
Area Height
S/N Mod?
l.Oe+05 4.1e+04 1.4e+01 y n
7.2e+04 2.9e+04 1.5e+01 y n
2
3.4e+05 1.2e+05 4.3e+01 y n
2.5e+05 9.5e+04 5.0e+01 y n
4.4e+04 1.3e+04 4.7e+00 y n
3.5e+04 1.3e+04 6.8e+00 y n
5.5e+04 1.7e+04 6.1e+00 y n
3.1e+04 l.le+04 5.8e+00 y n
2
2.4e+04 7.6e+03 2.7e+00 n n
1.4e+04 5.1e+03 2.7e+00 n n
3.4e+03 1.6e+03 5.5e-01 n n
162
-------
OPUSquan 21-JUL-1998
1,2,3,4,7,8-HxCDF 7 34:10 4.
4.
1, 2, 3, 6, 7, 8-HxCDF 8 34:15 3
3.
9 34:19 9.
9.
10 34:28 1
1
2,3,4,6,7,8-HxCDF 11 34:37 1
1
12 34:46 2
2
13 34:58 1
1
1, 2, 3,7, 8, 9-HxCDF 14 35:08 3
3
15 35:11 5
5
16 35:26 6
6
17 35:29 5
5
IS 35:37 4
4
19 35:43 5
5
Page 6
4e+05 1.17 y
4e+05
7e+05 1.23 y
7e+05
8e+04 1.27 y
8e+04
5e+05 1.47 n
5e+05
8e+05 1.89 n
8e+05
Oe+04 1.21 y
Oe+04
le+04 3.06 n
le+04
4e+04 1.22 y
4e+04
3e+04 1.32 y
3e+04
le+03 0.20 n
le+03
.6e+03 0.61 n
.6e+03
.9e+03 0.12 n
.9e+03
.8e+03 0.40 n
. 8e+03
1.
0.26
2.
2.
0.17
2.
1.
0.05
5.
4.
0.08
8.
5.
0.09
1.
6.
0.01
1.
9.
0.01
8.
2.
0.02
1.
1.
0.03
3.
2.
0.00
1.
5.
0.00
2
3
0.00
5
4
0.00
1
4
Oe+03
4e+05
Oe+05
Oe+05
6e+05
5e+04
3e+04
7e+04
9e+04
2e+05
2e+04
le+04
2e+03
7e+03
8e+03
9e+04
5e+04
Oe+04
3e+04
Oe+03
le+03
le+03
5e+03
4e+02
4e+03
7e+03
le+03
5.
7.
6.
6.
5.
1.
1.
2.
1.
2.
2.
2.
2.
2.
7.
6
5
9
8
4
1
8
1
2
1
8
1
Oe+02
8e+04
5e+04
9e+04
6e+04
7e+04
4e+04
3e+04
7e+04
6e+04
2e+04
9e+03
3e+03
Oe+03
2e+02
7e+03
9e+03
3e+03
7e+03
4e+02
7e+03
3e+02
6e+03
9e+02
le+03
.7e+02
.2e+03
2.
2.
3.
2.
3.
6.
7.
8.
9.
9.
1.
1
1
7
3
2
3
3
4
1
9
2
8
1
5
3
6
7e-01
7e+01
4e+01
4e+01
Oe+01
Oe+00
5e+00
Oe+00
Oe+00
2e+00
2e+01
Oe+00
2e+00
le-01
8e-01
4e+00
le+00
3e+00
6e+00
5e-01
le-01
9e-01
5e-01
. Oe-01
. 6e-01
.le-01
.le-01
n
y
y
y
y
y
y
y
y
y
y
n
n
n
n
n
y
y
y
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
-------
OPUSguan 21-JUL-1998
Page 7
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:15
Run: 14 File: a20ju!98b S:9 Acq:21-JUL-98 03:17:49 Proc:21-JUL-98 13:45:21
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-4 xl/2
Amount: 0.34
Cone: 0.34
Tox #1: -
Name
of which 0.08
of which 0.08
Tox #2: -
# RT Respnse
named and 0.26
named and 0.26
Tox #3: -
RA
1 33:52 3.8(+04 0.99 n
3.86+04
2 34:11 2.7e+05 1.61 n
2.7e+05
3 34:15 S.le+04 2.11 n
5.1e+04
4 34:20 1.3e+05 1.02 n
1.3e+05
5 34:26 2.0e+04 0.72 n
2.0e+04
6 34:31 1.6e+04 2.74 n
1.6e+04
7 34:36 5.4e+03 0.50 n
5.46+03
1,2,3,4,7,8-HxCDD
34:42 2.6e+04
2.6e+04
1.65 n
1,2,3,6,7,8-HxCDD 9 34:455.8e+04 1.14y
5.8e+04
1,2,3,7,8,9-HxCDD 10 34:58 9.3e+04 1.31 y
9.3e+04
11 35:06 l.le+04 1.30 y
l.le+04
12 35:11 8.7e+03 1.24 y
8.7e+03
13 35:16 5.5e+03 4.62 n
5.5e+03
14 35:20 6.9e+03 0.74 n
6.9e+03
15 35:24 l.le+04 1.77 n
l.le+04
Cone
0.02
3
]
0.12
]
]
0.02
3
0.06
e
e
o.oi
£
]
0.01
]
4
0.00
]
0.02
]
c
0.02
0.04
c
<
0.01
(
<
0.00
4
0.00
4
E
0.00
-i
4
0.01
unnamed
unnamed
Area Height
S/N Mod?
.9e+04 7.2e+03 3.5e+00 y n
.9e+04 7.2e+03 3.6e+00 y n
.6e+05 5.3e+04 2.6e+01 y n
.Oe+05 3.3e+04 1.6e+01 y n
3.56+04 1.2e+04 6.0e+00 y n
1.6e+04 6.5e+03 3.2e+00 y n
6.4e+04 2.1e+04 l.Oe+01 y n
6.3e+04 2.0e+04 9.9e+00 y n
1
8.5e+03 2.9e+03 1.4e+00 n n
1.2e+04 3.6e+03 1.8e+00 n n
L.2e+04 2.4e+03 1.2e+00 n n
1.2e+03 1.4e+03 6.8e-01 n n
l.Se+03 8.9e+02 4.46-01 n n
3.6e+03 1.4e+03 6.8e-01 n n
1.6e+04 5.8e+03 2.9e+00 n n
9.8e+03 4.6e+03 2.3e+00 n n
2
3.1e+04 9.5e+03 4.7e+00 y n
2.7e+04 8.3e+03 4.1e+00 y n
1
5.3e+04 1.3e+04 6.26+00 y n
4.0e+04 9.0e+03 4.4e+00 y n
i.le+03 2.0e+03 9.7e-01 n n
l.7e+03 1.9e+03 9.3e-01 n n
4.8e+03 1.7e+03 8.26-01 n n
3.9e+03 1.36+03 6.36-01 n n
4.56+03 l.Se+03 8.86-01 n n
9.8e+02 5.36+02 2.66-01 n n
D
3.06+03 1.4e+03 7.1e-01 n n
4.0e+03 1.2e+03 6.1e-01 n n
7.0e+03 2.7e+03 1.36+00 n n
4.0e+03 1.2e+03 6.1e-01 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:4
Run: 14 File: a20ju!98b S:9 Acq:21-JUL-98 03:17:49 Proc:21-JUL-98 13:45:21
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-4 xl/2
Amount: 0.28
Cone: 0.28
of which 0.20
of which 0.20
named and 0.08
named and 0.08
unnamed
unnamed
164
-------
OPUSquan 21-JUL-1998
Page 8
Tox #1:
Name
1,2,3,4,6,
Tox #2: - Tox #3: -
RT Respnse RA Cone Area Height
0.15
S/N Mod?
1,2,3,4,7,
7,8-HpCDFl 36:212.1e+05 1.18y
2.1e+05
2 36:33 5.4e+04 0.90 y 0.04
5.4e+04
3 36:40 5.0e+04 1.07 y 0.04
5.0e+04
8,9-HpCDF4 37:31 4.9e+04 1.60 n 0.04
4.9e+04
l.le+05 3.8e+04 2.1e+01 y n
9.5e+04 3.2e+04 2.6e+01 y n
t
2.6e+04 6.4e+03 3.4e+00 y n
2.8e+04 7.9e+03 6.4e+00 y n
1
2.6e+04 8.7e+03 4.7e+00 y n
2.4e+04 8.0e+03 6.4e+00 y n
1
3.0e+04 7.6e+03 4.1e+00 y n
1.9e+04 6.4e+03 5.2e+00 y n
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:4
Run: 14 File: a20ju!98b S:9 Acq:21-JUL-98 03:17:49 Proc:21-JUL-98 13:45:21
Tables: Run: a20ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-4 xl/2
Amount: 0.14
Cone: 0.14
Tox #1: -
Name
of which 0.07
of which 0.07
Tox #2: -
# RT Respnse
named and 0.07
named and 0.07
Tox #3: -
RA
1 36:20 3.8e+04 8.01 n
3.8e+04
2 36:35 6.7e+04 1.23 n
6.7e+04
l,2,3,4,6,7,8-HpCDD3 37:10 1.3e+05 1.08y
1.3e+05
4 37:30 3.4e+04 3.75 n
3.4e+04
Cone
0.02
'.
0.04
0.07
(
(
0.02
unnamed
unnamed
Area Height
S/N Mod?
3.4e+04 8.5e+03 8.0e+00 y n
4.2e+03 1.6e+03 1.4e+00 n n
9
3.7e+04 1.3e+04 1.3e+01 y n
3.0e+04 l.le+04 9.2e+00 y n
7
6.7e+04 2.0e+04 1.9e+01 y n
6.2e+04 1.9e+04 1.7e+01 y n
2
2.7e+04 9.26+03 8.7e+00 y n
7.2e+03 2.8e+03 2.4e+00 n n
-------
File: A20JUL98B Acq: 21-JUL-1998 03:17:49 Exp: EXP_M2J
Sample #9 Text: 1071-4 xl/2 ALS #10
319.8965 S:9 SMO(1,3) BSUB (128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%,
100% A5.^1E5
50J
ol
\ — | . , . , . i, , „.
24
321.8936 S:9 SMO(1,
100%,
50J:
ol
331.
1008
50_
OJ
333.
iooi
50J
ol
327.
100%
50 1
ol
316.
100%
50J
ol
24
9368 S:9 SMO(1,
24
9339 S:9 SMO(1,
— i i 1 1 1 —
24
8847 S:9 SMO(1,
24
9824 S:9 SMO(1,
23:18 23:44
"-"-i 1 1 r • "T "
24
A3.71E5
A A
1 1 i i i i 1 • , , , . | . r
:00 25:00 26:00
3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%,
A7.23E5
A A4.55E5
A A .
:00 25:00 26:00
3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%,
•i 1 1 1 1 1 1 r- - -t- i . . |
:00 25:00 26:00
3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%,
T r— i 1 1 i 1 T" i i i i |
•00 25:00 26:00
3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%,
T — ' — i — i — i — i — r ' ' ' ' • i
:00 25:00 26:00
3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
24:35 25:17 25i5126_Ll2_
1 1 1 1 — i- i | i i i i i | i i
iOO 25:00 26:00
_DB5_OVATION
1516.0,1.00%
A1.25E5
^S\
27:00
1660.0,1.00%
A1.62E5
A
27:00
6252.0,1.00%
27IOO
3468.0,1.00%
27100
3396.0,1.00%
27loO
26:37 27^.
27IOO
Voltage SIR EI+ GC Autospec-UltimaE Paradigm
,F,F)
1.2E5
A8.90E4
_6.2E4
O.OEO
28:00 29 00 30:00 Time
,F,F)
1.6E5
A2 .66E5
A1.27E5A
_ ^ yx^v \
_7 . 8E4
O.OEO
28:00 29:00 30:00 Time
,F,F)
AA ,
3.7E7
Ll . 8E7
lO.OEO
28:00 29:00 30:00 Time
,F,F)
A2-/?A?888E8
ll A
AA ,
4 . 6E7
.2.3E7
.O.OEO
28:00 29:00 30:00 Time
,F,F)
A3.25E8
A
.. , A
6.7E7
L3.4E7
.O.OEO
28:00 29:00 30:00 Time
09_^7^04__^iLO^_2a^2a_^L5J^^13
"^
5.5E7
_2.7E7
O.OEO
28:00 29:00 30:00 Time
-------
File: A20JUL98B Acq: 21-JUL-1998 03:17:49 Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #9 Text: 1071-4 xl/2 ALS #10
355.8546 S:9 F:2 SMO(1,3) BSUB (128, 15 , -3 . 0 ) PKD(3 , 3 , 3 , 0 . 10% , 1528 . 0 , 1 . 00% , F, F)
1003
50.
Q
A1.63E5 A1.50E5
V \ A A8.51E4
/ / \^— / 1 A A9.41E4
H \ 1 / 1 / 1 f\
1 \ / VA/ l^SLUv A1"96154 Al 08E4
5.0E4
.2.5E4
o OEO
' 3oli2 ' 36124 ' 36136 ' 36148 ' 3lloO ' 3ill2 33.124 33.136 31.148 32166 32ll2 32124 32136 32148 33166 33ll2 Time
357.8517 S:9 F:2 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 992 . 0, 1 . 00%, F, F)
1008
50_
Al . 19E5
A A8.25E4 Z<4 bf "
I \ A A6.06E4 -j /'
/A M A4E4 ^
_l\^J22S*)\N\~^J\^f\~ "^f4
3.9E4
_2.0E4
•0 OEO
' 3olT2 ' 30124 ' 36136 ' 30. -48 ' 3l!oO ' 31:12 31124 3ll36 31 Us' 32166 32ll2 32124 32136 32l48 33:66 "33112 Time
367 QQ/IQ c.Q !?.-> CMfi/1 •* l ncrrRM7fl 1 S -T fM PKT)M . 3 . 3 . 0. 1 0%. 3492.0. 1 .00%.F.F)
lOOSj
so:
0"
A1.51E8
M
] V__
5.5E7
L2.7E7
LO.OEO
3oll2 30124 30136 3ol48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 Time
369 001 Q C.Q wo cn/inn "n RqTTRM9H.lS.-T m PKn(3 . 3 . 3 . 0 . 1 0% . 1796 . 0 . 1 .00%. F. F)
100*
50.
:
A9.64E7
A
|\
^ ' I I 1 1 I I I 1 1 1 1 1 1 1 1 1 1 1 't PT-T 111 -1 1 1 1 1 1 I I I r i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i 1 i i i i i i i
3oll2 30124 30136 3ol48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
_3.5E7
_1.8E7
O.OEO
Time
366.9792 S:9 F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
lOOi
50.
0"
30:15 30:30 30:41 30:58 31:08 31:20 31:34 31:49 32:00 32:10 32:24 32 L37 32JL49
30:12 30^24 30\36 3ol42 31:66 31:12 31124 31:36 31:48 32:66 32!l2 32:24 32:36 32:48 33:66 33112
_5.3E7
_2.7E7
.O.OEO
Time
-------
File
Samp
389.
1003
so:
0"
391.
100%
so:
401.
100%
50:
403.
100%
so:
o:
380.
100%,
50J
•: A20JUL98B Acq: 21-JUL-1998 03:17:49 Exp: EXP_M23_DB5_OVATION Voltage SIR El-f GC Autospec-UltimaE Paradigm
>le #9 Text: 1071-4 xl/2 ALS #10
8156 S-9 F-3 SMO(1 3) BSUB(128 15 -3 0) PKD(3 5,2,0 10% , 2040 . 0 , 1 . 00%, F, F)
A1.64E5
I \ A6.41E4
A1.89E4 / V\ A A3.10E4 A5^9E4
Z^\ J TV V8.51E3 ^^Y^AAj^/TlE/ \^ _^A7>04JE^ __^_— ~^H
'33 I241 ' VslsV ' '33I48' ' 's^lo'o^ ' 3\\12 ' ' 34\24 ' 34\36 34\48 3sloO 35.-12 35^24 3S.-36 35l
8127 S:9 F:3 SMO(1,3) BSUB ( 128, 15 , -3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 2016 . 0 , 1 . 00%, F, F)
A1.01E5
/ \ A6.26E4
A1.90E4 I \ \ A2.72E4 A4.03E4
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:
8559 S:9 F:3 BSUB (128, 15, -3 . 0) PKD(3 , 5, 2, 0 . 10%, 12892 . 0, 1 . 00%, F, F)
A1.44E8 A1.72E8
33124 33136 33Us 34loO 34*: 12 34124 34136 34Us 3s!oO 3sll2 35124 3sl36 35l
8530 S:9 F:3 BSUB(128, 15, -3 . 0 ) PKD(3 , 5, 2 , 0 . 10%, 6692 . 0, 1 . 00%, F, F)
A1.26E8 A1.39E8
/y\/l
33:24 33:36 33:48 34:00 34ll2 34:24 34136 34:48 35:00 35:12 35:24 35136 35:
9760 S:9 F:3 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
33:23 33:3133:38 33:49 34-^0 34:30 34:53 35:05 35:29
'
5.4E4
L2.7E4
O.OEO
48 Time
3.3E4
_1.7E4
O.OEO
48 Time
7 . OE7
13 . 5E7
LO.OEO
48 Time
5.6E7
.2 . 8E7
-O.OEO
48 Time
rl.lE8
L5.6E7
" O.OEO
33:24 33:36 33:48 34:00 34ll2 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35148 Time
-------
File
Samj
423.
1003
425.
1003
0"
435.
100%
50J
0"
437.
1008
so:
430.
100%^
50J
:: A20JUL98B Acq: 21-JUL-199S 03:17:49 Exp : EXP_
)le #9 Text: 1071-4 xl/2 ALS flO
7767 S:9 F:4 SMO(1,3) BSUB( 128 , 15, -3 . 0) PKD(3,3,3
A6.72E4
A
A3.72E4 M
A3.36E4 A / \
I"f-*f'T i | r-r-n-rrfT"i i i i i i i r-i -r-|- i i i i i | i i i i i | i i i i i | i i
36:00 36:12 36:24 36:36 36:48 37:00 37:12
7737 S:9 F:4 SMO(1,3) BSUB(128 , 15, -3 . 0) PKD(3,3,3
A6.24E4
A3 . 02E4 / \
A4.20E3 / \ \
**T l~1 1 I • i r l T" l l i l l i i I i i l l i 1 i i 't i~f( i i r i i | l i i i i | i i
36:00 36:12 36:24 36:36 36:48 37:00 37:12
8169 S:9 F:4 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3,3,3
A1.07E8
36:00 36:12 36:24 36:36 36:48 37:00 37:12
8140 S:9 F:4 SMO(1,3) BSUB (128 , 15, -3 . 0) PKD (3, 3, 3
A1.03E8
36!dd 36!i2 36!24 36:36 36!48 37!dd 37! 12
9728 S:9 F:4 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%
36:18 36:33 36:43 37:01 37
M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Parad
, 0.10%, 1056. 0,1. 00%, F,F)
A2.70E4
37!24' 37!36 37!48 SsJod 38!i2 38!24 38-I36 38!48 39
,0.10%,1152.0,1.00%,F,F)
A >NE A3.28E3
37!24 37: 36 37!48 3s!do 38!l2 38 '24' 38:36 38:48 39
, 0.10%, 6416. 0,1. 00%, F,F)
•| 1 1 | 1 I 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 T 1 1 1
37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39
,0.10%,3512.0,1.00%,F,F)
igm
2.1E4
L1.0E4
O.OEO
:00 Time
2.0E4
_1.0E4
O.OEO
:00 Time
3.1E7
.1.6E7
.O.OEO
00 Time
3.0E7
L1.5E7
' O.OEO
37524 3?! 36 37548 SsJod 38512 38 5 24 38:36 38548 39:00 Time
F,F)
^18 37:31 37:5238:01 _. 38:21 38i42 7.4E7
/
36!dd 36!l2 36!24 36!36 36U8 37!do 37!i2
_3.7E7
O.OEO
37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
-------
Fil€
Samj
457
1001
50.
0
459.
100S
50.:
OJ
469.
100%
50J
471.
100%
so:
o:
454.
100%
so:
0'
;: A20JUL98B Acq: 21-JUL-1998 03:17:49 Exp: EXP M23 DBS OVATION Voltage SIR EH- GC Autospec-UltimaE Parad
>le #9 Text: 1071-4 xl/2 ALS #10
7377 S:9 F:5 SMO(1,3) BSUB ( 128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 1552 . 0 , 1 . 00%, F, F)
A9.81E4
Asi___
i i i i i | i i i -T — r— | — i 1 1 r— i— i" -i -T - i-i" r y -i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r 1 1 1 1 1 1 1 1 , 1 1 1 1 1 1 1 r— i r
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41
7348 S:9 F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 912 . 0 , 1 . 00%, F, F)
Al . 29E5
/Y^
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41
7780 S:9 F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1980 . 0, 1 . 00%, F, F)
Al • 41E8
J\_
39:12 39!24 39136 39148 4o!ob 4o!l2 4ol24 4o!36 4o!48 4l!
7750 S:9 F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2076 . 0, 1 . 00%, F, F)
Al . 58E8
f\^
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41
9728 S:9 F:5 SMO(1,3) PKD(3 , 2, 3, 100 . 00%, 0 . 0, 1 . 00%, F, F)
39:08 39:17 39:26 40:15 40:29 40:40 40:46 40:57
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41
igm
2.9E4
11.4E4
• o opo
00 Time
3.0E4
L1.5E4
00 Time
3.3E7
.1.7E7
.O.OEO
00 Time
3.7E7
.1.9E7
O.OEO
00 Time
8.0E7
_4 . OE7
O.OEO
00 Time
-------
File: A2UJUL98B Acq:
Sample #9 Text: 1071
303.9016 S:9 SMO(1,3)
1003
50.
0
A1.17E6
A »
24iOO
305.8987 S:9 SMO(1,3)
IOCS
50_
0
A1.51E6
A "
I—I l—'-J *-| 1
24:00
315.9419 S:9 SMO H .3)
iooa
so:
o:
i i i i i 1
24:00
317.9389 S:9 SMO(1,3)
100%
50 j
o:
24 loo'
375.8364 S:9 SMO(1,3)
iooa
50 j
o:
21-JUL-1998 03:17
-4 xl/2 ALS #10
BSUB(128,15,-3.0)
A3.02E6
:49 Exp: EXP_M23_DB5_OVATION Voltage SIR EI + GC Autospec-UltimaE Paradigm
PKD(3,3,3,0.10%
/ \A6 96E5 A9.01E5 Al
•A3E5^ /Cr\ /A AA
25:00
BSUB(128,15,-3.0)
A3.80E6
A
L ,o
•82E5^ j \^J^
25:00
BSUB(128, 15, -3 .0)
' ' ' ' j '
25:00
BSUB(128,15,-3.0)
25:00
BSUB(128,15,-3.0)
23:21 24:06 25:
A !\ i\ ' A
""r "i ,^~V — S }-> V
24iOO
316.9824 S:9 SMO(1,3)
100% 23:18 23:44
•
50J
o:
f
24 100
1 1 1 1 1 r r
25:00
PKD(3,3,3,100.00%,
26:00
PKD(3,3,3,0.10%
pfi A1.15E6 Al
1 /A AA
26:00
PKD (3, 3, 3, 0.10%
i i i i | i i
26:00
PKD(3,3,3,0.10%
i r i | i .
26:00
,1416.0,1.00%,F,F)
.13E6 A1'74E6
yV y\A3_.ME5/\ A5^6E5_
6.0E5
L3.0E5
- O.OEO
27:00 28:00 29:00 30:00 Time
,2972. 0,1. 00%, F,F)
.35E6 A2^7E6
f\^ /\A3.^07E5/\ A7^30E5^
8.0E5
L4.0E5
: O.OEO
27:00 28:00 29:00 30 00 Time
,4352 .0,1 .00%,F,F)
A 1 R ^T?Q
A1.55E8
A
/v
3.2E7
Ll.6E7
: O.OEO
27:00 28:00 29:00 30:00 Time
,5212.0,1.00%,F,F)
A1.99E8
A
A
4.1E7
12.1E7
1 O.OEO
1 ' ' 1 ' ' ' ' ' 1 ' ' ' ' ' [ ' ' ' ' ' |
27:00 28:00 29:00 30:00 Time
PKD (3, 3, 3, 100. 00%, 72. 0,1. 00%, F,F)
27:37 28:10 7 . 8E3
A 2?/i5fl A 29 = 16
18 -ye. ni 26:44 11 n J\ 1 \ 1 \ A 29:39
/v^^ ^ ^^A^^^J}/ \l\ / V V IA _„ ^U\/U__
26100
0.0,1.00%,F,F)
24:35 25:17 25i5J.26jl2
25 loo'
i i r— — | i r-
26:00
r 1 1 1 1 1 1 1 1 1 1 r 1 1 1 1 r r i i i i —
,3.9E3
O.OEO
27:00 28:00 29:00 30:00 Time
26:37 27:09 27;34 28 : 05 28:28 28 : 51 29 : 13 5 . 5E7
VJ
.2.7E7
O.OEO
27 100 28 loo 29 100 30.-00 Time
-------
File: A20JUL9HB Acq: 21-JUL-1998 03:17:49 Exp :
EXP_M2 3_DB5_OVATION
Voltage SIR EI+ GC Autospec-UltimaE Paradigm
Sample #9 Text: 1071-4 xl/2 ALS 110
339.8597 S:9 F
1003
50
0
A5.97E5
30:12 30
341.8568 S:9 F:
100S
50J
o:
A4.06E5
/\,
36112 30
351.9000 S:9 F:
100%
-
50J
o:
30li2 30
353.8970 S:9 F:
100%
50j
ol
409.7974 S:9 F:
100%
50 j
-
.
OJ
2 SMO(1,3)
BSUB(128,
15, -3.0) PKD(3
,3,
3, 0.10%, 1168.0
,1
00%,F,F)
A1.61E6
A
:24 30:36
2 SMO(1,3)
i i 1 i i i i i
30:48 31
BSUB(128,
/ \
166 ' 3lll2 3ll
15, -3.0) PKD(3
24
,3,
AS
A1.57E5/V ^
31:36 31:48
3, 0.10%, 2484.0
J\
32
,1
7E5
^/\
| l l 7 l l | l 1
:00 32:12
00%,F,F)
A3.97E5
y\/x
4
:2
: 0
32:24 32:36 32:48 33:00 33:12
A9.74E5
A
24 3ol36
2 SMO(1,3)
24 36136
2 SMO(1,3)
24 36136
2 SMO(1,3)
36148 31
BSUB(128,
30:48 31
BSUB(128,
36:48 31
BSUB(128,
/y,
:00 31:12 31:
15, -3.0) PKD(3
166 3ill2 3ll
15, -3.0) PKD(3
166 31:12 3ll
15, -3.0) PKD(3
V~
24
,3,
24
,3,
24
,3,
A4
^1^14E5/\ ^
31:36 31:48
3, 0.10%, 984.0,
Al
,,,,,,,,,,,, -1
31:36 31:48
3, 0.10%, 2492.0
A9
1
31\36 31\48
3, 100. 00%, 2180
.02E5
32
^/V/"V_
166 32:12
A2.76E5
/V\ _ A3 -,17s4
2
.1
n
32124 32136 32148 33166 33ll2
.6E5
.3E5
.OEO
Time
.8E5
.4E5
.OEO
Time
1.00%,F,F)
A2.13E8 7
.47E8 l\
A
l\
32
,1.
Vr-rr-T-i l i i
:00 32:12
00%,F,F)
/ v
-4
:n
32! 24 32 lie 32 148 33166 33112
A1.37E8 5
.44E7 j\
A
i\
32
.0,
31f>" 31,
l\ N
-
' 3oli2 ' 30 1
366.9792 S:9 F:
100% 30:15
50 j
OJ
3oli2 30 1
30:31
__^ — — • — — . „
24 30! 36
2 SMO(1,3)
30:
-s* — /^
36:48 31
PKD(3,3,3
59
^ — ^^ ._
i . i . i i i i i i i i i
:00 31:12 31:
,100. 00%, 0.0,1
— S
24
11 • 39 / 1
3ll36 31 148
/
/
32
:66 32112
1.00%,F,F)
58
\
\ ^32:13
L-^x^--^-
166 ' 32li2
/ v
.2
n
32124 32136 32148 33:66 33ll2
32 • 23
AT 32:55
"V-/ ^^\_ /\^v ^-\. S* \ J — V~A
r4
_2
n
' 32124 ' 32136 32148 ' 33166 33ll2
.9E7
.OE7
.OEO
Time
.1E7
.6E7
.OEO
Time
.1E4
.1E4
.OEO
Time
.00%,F,F)
30:30 30:41 30:58 31:08 31:20
24 36136
30:48 31
•66 3lli2 ' 3ll
24
31:34 31:49
i i | i i i i i | i i i
31:36 31:48
32
32
:00 32jLlO
| r i i i i | i i
:00 32:12
32:24 32:37 32:49 5
_2
n
32:24 32:36 32:48 33:00 33:12
.3E7
.7E7
.OEO
Time
-------
File: A20JUL98B Acq: 21-JUL-1998
Sample #9 Text: 1071-4 xl/2 ALS
373.8207 S:9
100^
50_
g
Al
y
'33! 2V
375.8178 S:9
1001
50_
0_
A7
;
'33\24~
383.8639 S:9
1003
50 j
0:
33124
385.8610 S:9
100%
33:24
445.7555 S:9
100%
50J
•
o-
33:23
-vx/X~_~
33! 24
380.9760 S:9
100% 33:23 33
50J
OJ
/
33:24
F-3 SMO(1 3) BSUB(128
A3.40E5
A
' \y v--^-/~^ ^-^
33:36 ' '33:48 '34
F:3 SMO(1,3) BSUB(128
A2.55E5
A
. 18E4 \
f\J A3^46E4 M 36E4
YshV ' VsUV '34
F:3 BSUB(128,15,-3.0)
33! 36 33! 48 34!
F:3 BSUB(128,15,-3.0)
33:36 33:48 34:
03:17:49 Exp : EXP M23 DBS OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
#10
,15, -3 .0} PKD(3, 5,2, 0.10%, 2832. 0,1.00%,F,F)
r!.2E5
A2.38E5
AA
J [ V"\_^~\_^-^^v ^A3^_02E4
_6.1E4
- O.OEO
:00 34^12 34J24 34!36 34^48 35:00 35:12 3s!24 35^36 35:48 Time
,15, -3.0) PKD(3,5,2,0.10%,1888.0,1.00%,F,F)
,_9.7E4
A2.02E5
A A
1 \J \ A6.17E4
/ \ V\ ^X~X y~^\. A2.28E4
' 4.8E4
• 0 .OEO
00 34ll2 34124 34!36 34Us 3s!oO 3s!l2 3s!24 3sl36 35 48 Time
PKD(3,5,2,0.10%,22040.0,1.00%,F,F)
A9.19E7
A
AA
) VV
4.8E7
2.4E7
: O.OEO
00 34J12 34^24 34136 34I48 3s!oO 35:12 35:24 35:36 35:48 Time
PKD(3,5,2,0.10%,50380.0,1.00%,F,F)
A1.76E8
9.1E7
L4.5E7
O.OEO
00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35 48 Time
F:3 SMO{1,3) BSUB(128 , 15, -3 . 0) PKD(3 , 3 , 3 , 100 . 00%, 2212 . 0 , 1 . 00%, F, F)
33^ 33:48 ^
^s^ ~*~- --~~ '
33!36 33T48 34?
34:07 34y-4? 34:58
on A A J \ /^ / \ 35 = 06 35:14
°°/ \/ WA A / V/^V \7^^J\ 35:23
~V V/ ^^ \^-^^ ^^-^ ^\^s \^^-^^_ — ^_^-^-^_
_1.1E4
_5.4E3
.O.OEO
00 34ll2 34:24 34!36 34:48 35:00 35:12 35:24 35:36 35:48 Time
F:3 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
: 31 3JU38 33:49
33:36 33:48 34:
JBAjJO 34:30 34:53 35:05 35:29 1.1E8
_5.6E7
.O.OEO
00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
CO
-------
Pile: A20JUL98B
Sample #9 Text:
407.7818 S:9 F:4
1003
50_
0
36:00 36
409.7788 S:9 F:4
1003
50_
0:
36:00 36
417.8253 S:9 F:4
100%,
50 j
OJ
36:00 36:
419.8220 S:9 F:4
100%
-
50:
o:
i ' ' i i > > i ' i i
36:00 36:
479.7165 S:9 F:4
100S
50J
o:
35:59 36..j
A A/\A/^
W v^^
36:00 36i
430.9728 S:9 F:4
100%
50:
0;
1
36:00 36i
Acq: 21-JUL-1998 03:17:49
1071-4 xl/2 ALS #10
SMO(1,3) BSUB(128, 15, -3 .0)
A1.11E5
A
A
/ \ A2.57E4
y v__/^v^v
12 36:24 36:36 36:48 37
SMO{1,3) BSUB{128,15,-3.0)
A9.46E4
A
A
/ \ A2.85E4
1 \^_f\^/\
12 36:24 36:36 36:48 37:
SMO(1,3) BSUB(128,15,-3.0)
A3.31E7
A_
12 36:24 36:36 36:48 37:
SMO(1,3) BSUB(128,15,-3.0)
A7.44E7
A
12 36:24 36:36 36:48 37:
SMO(1,3) BSUB(128,15,-3.0)
L1 36:2J 3^,44 37
v — <~\J \f\j V\f^ — '
1 1 I 'F~T "I'l I1' ' 1 1 1 1 1 '""T I "1 1 ' T r" I T
12 36:24 36:36 36:48 37:
SMO(1,3) PKD(3,3,3,100.00%,
36jJ.8 36:37 37
1 > ' ' ' I ' ' ' ' ' I ' ' ' ' ' I ' ' ' ' ' I
12 36:24 36:36 36:48 37:
Exp: EXP_M23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
PKD (3, 3, 3, 0.10%, 1856. 0,1. 00%, F,F)
A3.01E4
_ x/~\_^
4.0E4
_2.0E4
_O.OEO
00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
PKD (3, 3, 3, 0.10%, 1244. 0,1. 00%, F,F)
A1.88E4
y^V
3.4E4
L1.7E4
• n rmn
00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
PKD (3, 3, 3, 0.10%, 12648. 0,1. 00%, F,F)
A5.20E7 1.4E7
A
/\
J \_
L6.9E6
: O.OEO
00 37112 37:24 37! 36 37! 48 38:00 3s!l2 38:24 38:36 38:48 39 00 Time
PKD (3, 3, 3, 0.10%, 2672. 0,1. 00%, F,F)
Al . 17E8 ,_3 . 1E7
A
/ \
j \_
:1.6E7
O.OEO
00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
PKD(3,3,3,100.00%,3556.0,1.00%,F,F)
37:09 ..8.7E3
A 38 05 38:34
•OlX v\ 37-31 37:50 rs ,A A K 38:50
" "V* V " /\ / I A I \ /I 11 f\
v^Vvv^/^^^ ^\^^ V\J \J v^ ^^\J V^/x
i I i i i 1 i i i i i 1 i i i i i I i r i i i | 1 i i i i i 1 i i i i i 1 i i i i i i i i i i i I i i i i i
.4.4E3
1 O.OEO
00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
0.0,1. 00%, F,F)
:01 37-J.8 37^31 37:5238:01 38:21 38:42 7.4E7
~T i — I — i — i — i — i — i — j — i — j — i — i — i — i — T — i — ? i — i P — i » | ) i i i i | i i t i » f i ' i T i i ? — r — ) — i — i — i — i — i — i — i — i — i — i — j — i — j — r—
L3.7E7
O.OEO
00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
-------
File: A20JUL98B—Acq: 21-JUL-1998 03:17:49Exp: EXP_M23_DB5_OVATION Voltage SIR EI+
Sample #9 Text: 1071-4 xl/2 ALS #10
441.7427 S:9 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1108.0,1.00%,F,F)
100% A1.53E4
50J
GC Autospec-UltimaEParadigm
39:36 39148 40iOO 40:12 40:24
443.7398 S:9 F:5 SMO(1,3) BSUB(128,15,-3 . 0) PKD(3,3,3,0.10%,1548.0,1.00%,F,F)
100% Al., 14E4
40:36
40:48
39:12 39:24 39:36 39:48 40:00 40ll2 40i24
469.7780 S:9 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1980.0,1.00%,F,F)
100% A1.41E8
50 j
OJ
39ll2 ' ' ' 39124 ' ' 39136 39U8 4o!oO 4o!l2 40i24
471.7750 S:9 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3,0.10%,2076.0,1.00%,F,F)
100% A1.58E8
50 j
OJ
39:12 39:24 39:36 39:48 40:00 40:12 40:24
513.6775 S:9 F:5 SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3 , 3 ,100.00%,820.0,1.00%,F,F)
100% 40;01
40:36
40:48
40:36
40:48
40:36
O.OEO
41:00 Time
6.9E3
13.4E3
O.OEO
41:00 Time
3.3E7
Ll.7E7
LO.OEO
41:00 Time
3.7E7
_1.9E7
O.OEO
39:17 39:2439:30 39:36
39:12 39:24 39136 39i48 40iOO
454.9728 S:9 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00% , F, F)
40:12
40:24
100%
OJ
39=08 39:17 39:26
40:15 40:25
40:36 40:48
40:40 40:46
^O.OEO
41:00 Time
_40:57 . 8.0E7
L4.0E7
.O.OEO
39:12
39:24
39:36
39:48
40:00
40:12
40:24
40:36
40:48
41:00 Time
-------
OPUSquan 23-JUL-1998 Page 1
Filename a22ju!98a
Sample 4
Acquired 22-JUL-98 11:49:22
Processed 23-JUL-98 08:03:22
Sample ID 1071-4 xl/2
Cal Table 07feb-m23conf
Results Table M8290-23-072298A /
Comments -^
Typ ; Name; Resp; Ion 1; Ion 2; RA;?; RT;
Unk ; 2,3,7,8-TCDF; 1.49e+06; 6.38e+05; 8.49e+05; 0.75;y; 27:54;
ES/RT; 130-2,3, 7, 8-TCDF; 3.49e+08; 1.52e+08; 1.96e+08; 0.78;y; 27:50;
Total; Tetra Furans; 2.89e+07; 1.07e+06; 1.41e+06; 0.76;y; 18:12;
DPE ; HxCDPE; * ; * ;NotFnd;
LMC ; QC CHK ION (Tetra); * ; * ;NotFnd;
-;-; 27:54
-; -;-; 27:54
Cone; DL; S/N1;?; S/N2;? mod?
0.449; 0.0565; 24;y; 30;y no
85.407; - ,- 883 ;y; 1100,-y no
8.713; 0.0565; 63;y; 81;y no
* ; - ; * ; n no
* ; - ; DivO ; n no
; -; -; no
Page 9
0)
-------
OPUSguan 23-JUL-1998
Page 1
Ent: 3 Name: Tetra Furans
Page 1 of 1
F:l Mass: 303.902 305.899 Mod? no #Hom;29
Run: 9 File: a22ju!98a S:4 Acq:22-JUL-98 11:49:22 Proc:23-JUL-98 08:03:22
Tables: Run: a07feb98f Analyte: m23_conf Cal: 07£eb-m23»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1071-4 xl/2
Amount: 8.71
Cone: 8.71
Tox #1: -
Name
of which 0.45
of which 0.45
Tox #2: -
# RT Respnse
named and 8.26
named and 8.26
Tox #3: -
RA
1 18:12 2.56+06 0.76 y
2.5e+06
2 18:20 1.3e+04 0.47 n
1.3e+04
3 19:50 4.7e+06 0.77 y
4.7e+06
4 20:05 1.4e+06 1.00 n
1.4e+06
5 20:20 1.7e+06 0.75 y
1.7e+06
6 20:38 9.9e+05 0.76 y
9.9e+05
7 21:11 8.7e+05 0.73 y
8.7e+05
8 21:32 9.3e+05 0.82 y
9.3e+05
9 21:49 8.9e+04 0.50 n
8.9e+04
10 21:57 6.1e+05
6.1e+05
0.63 n
11 22:08 2.1e+06 0.77 y
2.1e+06
12 22:21 8.0e+04 0.78 y
8.0e+04
13 22:33 6.2e+05 0.77 y
6.2e+05
14 23:14 1.7e+06 0.50 n
1.7e+06
15 23:27 4.4e+05 0.51 n
4.4e+05
16 24:17 2.0e+06 0.72 y
2.0e+06
17 24:59 1.8e+06 0.77 y
1.8e+06
18 25:26 7.8e+05 0.51 n
7.8e+05
19 26:29 5.8e+05 0.25 n
5.86+05
Cone
0.75
J
1
0.00
4
c
1.43
0.42
«
«
0.52
c
0.30
4
C
0.26
c
0.28
<
t
0.03
f
0.18
0.64
c
3
0.02
4
0.19
0.51
E
]
0.13
]
0.60
£
3
0.56
I
3
0.24
C
0.18
unnamed
unnamed
Area Height
S/N Mod?
l.le+06 2.2e+05 6.3e+01 y n
1.4e+06 2.8e+05 S.le+Ol y n
4.3e+03 2.4e+03 6.8e-01 n n
9.2e+03 3.66+03 l.Oe+00 n n
2.1e+06 3.7e+05 l.le+02 y n
2.76+06 4.7e+05 1.4e+02 y n
.9e+05 8.4e+04 2.4e+01 y n
.9e+05 l.le+05 3-le+Ol y n
7.4e+05 1.36+05 3.7e+01 y n
9.8e+05 1.7e+05 4.9e+01 y n
4.36+05 8.2e+04 2.4e+01 y n
5.6e+05 l.le+05 3.0e+01 y n
5
3.7e+05 6.56+04 1.9e+01 y n
5.0e+05 9.4e+04 2.7e+01 y n
4.2e+05 6.4e+04 1.8e+01 y n
5.1e+05 7.96+04 2.3e+01 y n
3
3.0e+04 1.2e+04 3.3e+00 y n
6.0e+04 1.5e+04 4.3e+00 y n
2.4e+05 5.3e+04 1.5e+01 y
3.7e+05 7.2e+04 2.1e+01 y
9.26+05 1.66+05 4.5e+01 y n
1.2e+06 2.16+05 5.96+01 y n
3.5e+04 l.le+04 3.1e+00 y n
4.56+04 1.7e+04 4.9e+00 y n
2.7e+05 5.36+04 1.5e+01 y n
3.5e+05 6.1e+04 1.8e+01 y n
L
5.66+05 8.36+04 2.4e+01 y n
l.le+06 1.5e+05 4.3e+01 y n
1.5e+05 2.86+04 8.1e+00 y n
2.9e+05 7.8e+04 2.2e+01 y n
3
8.36+05 1.36+05 3.6e+01 y n
1.2e+06 1.66+05 4.5e+01 y n
5
8.0e+05 l.le+05 3.2e+01 y n
l.Oe+06 1.4e+05 4.1e+01 y n
i
2.6e+05 5.9e+04 1.7e+01 y n
5.2e+05 6.8e+04 2.0e+01 y n
1.26+05 4.46+04 1.3e+01 y n
4.7e+05 6.56+04 1.9e+01 y n
-------
PUSquan 23-JUL-1998 Page 2
20 26:31 6.7e+05 0.44 n 0.20
6.7e+05 2.16+05 4.5e+04 1.3e+01 y n
4.7e+05 6.56+04 1.9e+01 y n
21 27:29 3.5e+05 0.36 n 0.11
3.5e+05 9.46+04 3.7e+04 l.Oe+01 y n
2.66+05 5.76+04 1.6e+01 y n
22 27:32 4.8e+05 1.45 n 0.15
4.8e+05 2.9e+05 4.8e+04 1.4e+01 y n
2.0e+05 5.56+04 1.6e+01 y n
2,3,7,8-TCDF 23 27:54 1.5e+06 0.75y 0.45
l.Se+06 6.46+05 8.3e+04 2.4e+01 y n
8.56+05 l.le+05 3.0e+01 y n
24 28:28 2.0e+05 0.47 n 0.06
2.06+05 6.3e+04 2.5e+04 7.06+00 y n
1.36+05 3.56+04 l.Oe+01 y n
25 28:31 3.1e+05 0.84 y 0.09
3.1e+05 1.46+05 2.9e+04 8.4e+00 y n
1.7e+05 4.26+04 1.2e+01 y n
26 29:14 4.86+04 0.48 n 0.01
4.8e+04 1.6e+04 6.2e+03 1.8e+00 n n
3.3e+04 1.4e+04 3.9e+00 y n
27 29:35 l.le+06 0.79 y 0.34
l.le+06 S.Oe+05 6.1e+04 1.7e+01 y n
6.3e+05 7.8e+04 2.2e+01 y n
28 31:45 1.36+05 4.09 n 0.04
1.3e+05 l.Oe+05 2.2e+04 6.3e+00 y n
2.5e+04 1.3e+04 3.7e+00 y n
29 31:49 l.Oe+05 2.80 n 0.03
l.Oe+05 7.3e+04 2.3e+04 6.7e+00 y n
2.6e+04 1.3e+04 3.8e+00 y n
178
-------
File: A22JUL98A Acq: 22-JUL-1998 11
:49:22 Exp: M23_DB225 Voltage SIR EI + GC Autospec-UltimaE Paradigm
Sample #4 Text: 1071-4 xl/2 ALS #4
303.9016 S:4
100%
50_
n
16:00
305.8987 S:4
100%,
50J
"
n:
i i i i
16:00
315.9419 S:4
100%
50 1
0'
16:00
317.9389 S:4
100%
50 j
o:
ie!ob
375.8364 S:4
100*
50.:
0 "
\
"U^-Axu^yw
ielob
316.9824 S:4
100%
50J
o"
' i6.:ob
SMO(1,3) BSUB(128,15,-3
A2.06E6
Al 07E6
H 4 29
A IWl'A
18:00 20:00
SMO(1,3) BSUB(128,15,-3
A2.67E6
A1.41E6
II
A InV/vA
18:00 20:00
SMO(1,3) BSUB(128,15,-3
18:00 20:00
SMO(1,3) BSUB(128,15,-3
I 1 1 T 1 1 IT,,,.,
18:00 20:00
SMO(1,3) BSUB(128,15,-3
20:24
A
/ \
17:05 18:44 / I
^^^VlUv^vt^PVvJknwAs^wvsWwA^ \
T 1 1 p 1 1 -I--I T T j—l I1'
18:00 20:00
.0) PKD(3,3,3,0.10%,3500.0,1.00%,F,F)
A9.07E5 A8.29E5
E5 A A1A48E5A A2.64E5 A6.38E5 A4.95E5
AA.A/\rA J\ /LTtA . A ^A^ .A A1.03E5
3.8E5
_1 .9E5
: O.OEO
22lob 24:00 26:00 28:00 30:00 32lob 34:00 Time
.0) PKD(3,3,3,0.10%,3492.0,1.00%,F,F)
4.8E5
A1.21E6 Al 16E6
E5 A A2A74E5 'ft IK 18E5 A8.49E5 A6.25E5 ., „_.
AA.A/lrA ,Av /^T^A A /NA^ nA A5.f1.7E4
L2.4E5
O.OEO
' 22:00 24:00 26:00 2s!ob 30:00 32:00 34:00 Time
.0) PKD(3,3,3,0.10%,19436.0,1.00%,F,F)
A1.52E8
A
1
1.7E7
,8.6E6
O.OEO
' 22:00 24:00 26^00 28:00 3o!ob 32:00 34:00 Time
.0) PKD(3,3,3,0.10%,19912.0,1.00%,F,F)
A1.96E8
A
n
2.2E7
.1.1E7
: O.OEO
22:00 24:00 26:00 28:00 30:00 32:00 34:00 Time
.0) PKD (3, 3, 3, 100. 00%, 17 532. 0,1. 00%, F,F)
21:50 23:15 24:35 26:54 28:06 29:53 31-08 33:11
^fff^^^fl^^fff»^^ ^v^AA^^M.^»^-^vvAA>^vA*'
_1.2E5
^5.8E4
-O.OEO
22:00 24:00 ' 26:00 28:00 30:00 32:00 34:00 Time
SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
18:44 2QjL
1 r- T-~T r—r- , -r 11)111
18:00 20:00
5621:58 23:36 25:17 26:^5_ 28:3729:3630:34 31:5432:53 34:19 6 . 6E7
_3.3E7
.O.OEO
22:00 24:00 2e!ob '28:00 30:00 32:00 34:00 Time
-------
Reagent blank sample M23-RB-1 analytical results are
taken from PAL Project No. L1070 (PAL pages 112-128)
This project report details analytical results from another kiln
tested during the same mobilization. One reagent blank sample
was collected for all the facilities tested during the single mobilization.
-------
Paradigm Analytical Labs
Method 23
M23-RB-1
, PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
•-;.;*; ing) •'->>;
0.0011
ND
EMPC
0.0014
0.0031"
0.0096
ND
ND
ND
0.0008
ND
ND
ND
0.0030
"; ND
0.0028
0.0011
ND
0.0024
0.0032
ND
ND
0.0008
0.0032
0.0014
0.0018
%4^i:
0.0005
0.0006
;; "00005' •
0.0005
0.0014
0.0006
0.0004
0.0004
0.0004
0.0003
0.0003
0.0004
0.0005
0.0006
0.0008
0.0005
0.0004
0.0005
0.0005
0.0006
0.0004
0.0003
0.0005
EMPC
s ing)
„'•: •-_-..-•>• .:
6.0010
0.0048
0.0048
0.0015
0.0018
RT
(nun.)
28:28
32:38
34:43
34:47
35:00
37:11
40:03
27:27
34:11
34:15
36-23
40:10
Ratio
0.78
1.41
3.28
1 65
1.11
1.05
0.93
1.08
1.15
1.32
1 00
0.91
QualiGer
- • .-
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Texas Lime Kiln
M23-RB-1
Sample Information
Matrix: ;
Weight / Volume:
Moisture / Lipids:
LI 07.0 : ,"."-~. ":v *.::'•-
1070-4. : . ; . <:
07-M-98 • ;
08-M-98 x "
10-Jul-98
18-M-98
". °; ,- ' ^ .
,v •"' ";\" '; "• - - •
Filename:
Retchk:
Begin ConCal:
EndConCal:
Initial Cal:
Air
1
0.0
al7ju!98b-13
al7jul98b-l
al7jul98b-2
al7jul98b-15
m8290-23-071798
1/2
112
-------
Paradigm Analytical Labs
Method 23
M23-RB-1
PBS.
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13Cir2,3,7,8-TCDD
13C12-l,2,3>7,8-PeCDD
l3Cn-l,2,l,6,7,&-HxCDD
13Cirl,2>3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2)3)7,8-TCDF
"C12-l,2,3,7,8-PeCDF
I3Cu-l,2,3,6,7,8-HxCDF
l3CI2-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3 V7.8-TCDD
I3CI2-2,3,4,7,8-PeCDF
13C,ri,2,3,4,7,8-HxCDD
13Cirl,2,3,4,7,8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
Injection Standards
13C12-U,3,4-TCDD
13C,2-l,2,3,7,8,9-HxCDD
Expected :
Amount 4'
<«K) ^
4
4 - .>
4
4
8
4
4
4
4
4 -.-
4
"'. 4 . \
4
4
Measured;
^Amount ,
-r:^Vr^
3.45
.''..'; 3.76^";
3.50
3.69
6.69
3.51
3.26
3.67
2.95
3.86
3.93
4M.
3.53
3,27
.'Percent'.
Recoyery
^-.^ft%-.: ^
86.4
94.1.
87.4
9l3
83.6
87.7
81.5
91.8
73.7
96.4
98.2
v ho.i;
88.2
8116
RT
fain.)
28:27
32:37
34:46
37:10
40:02
27:26
31:57
34:15
36:22
, 28:28
32:24
• V 34:42
34:11
: .37:32
28:10
34:59
Ratio
.Vr>'r
0.78
1.56
1.26
1.06
0.88
0.78
1.56
0.52
0.44
1.57
.1.23
0.52
0>M
0.79
1.25
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
ProjectID:
Sample ID:
, - '- ~
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Reviewed by: ^f . T.
Texas Lime Kiln
M23-RB-1
': •_•••'- ".- . ,"-' •'••-'"•'•.
L1070 •','- •"•/.;• ;: ; ;
1070-4 .: : - v;.
^.; . ,'-' --..."-•'.-.:
07-Jul-98 ^; " ; ^
08-Jul-98
10-Jul-98
18-Jul-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids;
-. -5 ' " .-;U' " " ^
/ •• Filenamer
-J- :Retchk:"v. .- ' .' \
Begin ConCal:
EndConCal:
Initial Cal:
Date
Air
1
0.0 %
al7ju!98b-13
al7jul98b-l
al7jul98b-2
al7ju!98b-15
m8290r23-071798
Reviewed: Z3^\
-------
OPUSquan 20-JUL-1998 Page 1
Filename a!7ju!98b
Sample 13
Acquired 18-JUL-98 01:47:01
Processed 20-JUL-98 09:08:26
Sample ID 1070-4 xl/2
Cal Table m8290-23-071798
Results Table M8290-23-071798B
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
cs
cs
cs
cs
cs
ss
ss
ss
ss
ss
Name; Resp; Ion 1; Ion 2; RA;?; RT;
2,3,7,8-TCDD; 2.83e+05; 4.15e+04; 2.41e+05; 0.17;n; 28:28;
1,2,3,7,8-PeCDD; 1.92e+04; 1.12e+04; 7.97e+03; 1.41;y; 32:38;
1,2,3,4,7,8-HxCDD; 2.77e+04; 2.13e+04; 6.48e+03; 3.28;n; 34:43;
1,2,3,6,7,8-HxCDD; 5.81e+04; 3.62e+04; 2.19e+04; 1.65;n; 34:47;
1.2,3,7,8,9-HxCDD; 8.43e+04; 4.44e+04; 3.99e+04; l.ll;y; 35:00;
1,2,3,4,6,7,8-HpCDD; 1.53e+05; 7.85e+04; 7.44e+04; 1.05;y; 37:11;
OCDD; 3.90e+05; 1.87e+05; 2.02e+05; 0.93,-y; 40:03;
2,3,7,8-TCDF; 6.34e+04; 3.30e+04; 3.04e+04; 1.08;n; 27:27;
1,2,3,7,8-PeCDF; *; *; *; *;n;NotFnd;
2,3,4,7,8-PeCDF; *; *; *; *;n;NotFnd;
1,2,3, 4,7, 8-HxCDF; 6.12e+04; 3.27e+04; 2.85e+04; 1.15;y; 34:11;
1,2,3,6,7,8-HxCDF; 3.75e+04; 2.14e+04; 1.61e+04; 1.32;y; 34:15;
2,3,4,6,7,8-HxCDF; *; *; *; *;n;NotFnd;
1,2,3,7,8,9-HxCDF; * ; *; *; *;n;NotFnd;
1,2,3,4,6,7,8-HpCDF; 1.61e+05; 8.01e+04; 8.05e+04; 1.00;y; 36:23;
1,2,3,4,7,8,9-HpCDF; *; *; *; *;n;NotFnd;
OCDF; 1.20e+05; 5.69e+04; 6.28e+04; 0.91;y; 40:10;
13C-2,3,7,8-TCDD; 3.44e+08; 1.51e+08; 1.93e+08; 0.78;y; 28:27;
13C-l,2,3,7,8-PeCDD; 2.61e+08; 1.59e+08; 1.02e+08; 1.56;y; 32:37;
13C-l,2,3,6,7,8-HxCDD; 2.83e+08; 1.58e+08; 1.25e+08; 1.26;y; 34:46;
13C-l,2,3,4,6,7,8-HpCDD; 2.22e+08; 1.14e+08; 1.08e+08; 1.06;y; 37:10;
13C-OCDD; 3.23e+08; 1.51e+08; 1.72e+08; 0.88;y; 40:02;
13C-2,3,7,8-TCDF; 4.38e+08; 1.92e+08; 2.46e+08; 0.78;y; 27:26;
13C-l,2,3,7,8-PeCDF; 3.54e+08; 2.16e+08; 1.38e+08; 1.56;y; 31:57;
13C-l,2,3,6,7,8-HxCDF; 3.43e+08; 1.18e+08; 2.25e+08; 0.52;y; 34:15;
13C-l,2,3,4,6,7,8-HpCDF; 1.67e+08; 5.l3e+07; 1.16e+08; 0.44;y; 36:22;
13C-1,2,3,4-TCDD; 3.63e+08; 1.60e+08; 2.03e+08; 0.79;y; 28:10;
13C-l,2,3,7,8,9-HxCDD; 3.02e+08; 1.68e+08; 1.34e+08; 1.25;y; 34:59;
37Cl-2,3,7,8-TCDD; 3.04e+08; 3.04e+08; -; -;-; 28:28;
13C-2,3,4,7,8-PeCDF; 3.40e+08; 2.08e+08; 1.33e+08; 1.57;y; 32:24;
13C-l,2,3,4,7,8-HxCDD; 2.10e+08; 1.16e+08; 9.41e+07; 1.23;y; 34:42;
13C-l,2,3,4,7,8-HxCDF; 2.38e+08; 8.10e+07; 1.57e+08; 0.52;y; 34:11;
13C-l,2,3,4,7,8,9-HpCDF; 1.07e+08; 3.26e+07; 7.43e+07; 0.44;y; 37:32;
37Cl-2,3,7,8-TCDD; 3.04e+08; 3.04e+08; -; -;-; 28:28;
13C-2,3,4,7,8-PeCDF; 3.40e+08; 2.08e+08; 1.33e+08; 1.57;y; 32:24;
13C-l,2,3,4,7,8-HxCDD; 2.10e+08; 1.16e+08; 9.41e+07; 1.23;y; 34:42;
13C-l,2,3,4,7,8-HxCDF; 2.38e+08; 8.10e+07; 1.57e+08; 0.52;y; 34:11;
13C-l,2,3,4,7,8,9-HpCDF; 1.07e+08; 3.26e+07; 7.43e+07; 0.44,-y; 37:32;
Cone ;
0.084;
0 . 007 ;
0.015;
0.024;
0.035;
0.077;
0.241;
0.015;
* .
* .
0.021;
0.010;
* .
* .
0.076;
* .
0.069;
86.342;
94.107;
87.419;
92.327;
167.134;
87.672;
81.511;
91.739;
73.664;
75.191;
76.109;
83.199;
79.976;
96.382;
81.509;
60.110;
96.414;
98.151;
110.111;
88.145;
81.631;
DL;
0.0114;
0.0105;
0.0156;
0.0123;
0.0122;
0.0112;
0.0351;
0.0152;
0.0091;
0.0088;
0.0089;
0.0070;
0.0082;
0.0094;
0.0126;
0.0152;
0.0190;
0.0487;
0.0273;
0.0430;
0.0276;
0.0208;
0.0241;
0.0144;
0.1787;
0.0977;
-;
- ;
0.0202;
0.0148;
0.0639;
0.2293;
0.1249;
0.0238;
0.0105;
0.0670;
0.2151;
0.2158;
S/N1;?;
6;y;
2;n;
3;n;
5;y;
5;y;
19 ;y;
14;y;
5;y;
*;n;
*;n;
4;y;
4;y;
*;n;
*;n;
15;y;
*;n;
15;y;
3589;y;
17216;y;
6066;y;
5293, -y;
13121;y;
8853;y;
43021;y;
1389;y;
3242;y;
3900;y;
5940;y;
12478;y;
42528 ;y;
4471 ;y;
1039, -y;
1790, -y, •
12478, -y;
42528; ;y;
4471;y;
1039 ;y;
1790;y;
S/N2;?
34 ;y
3;n
2;n
4;y
6;y
28 ;y
46 ;y
3;n
*;n
*;n
7;y
3;n
*;n
*,-n
27 ;y
*;n
10 ;y
8202 ;y
19494 ;y
7523 ;y
10514;y
15246;y
13263;y
19577;y
2083 ;y
1476;y
8653;y
7373;y
-; -
19472 ;y
5760 ;y
1526 ;y
827 ;y
-; -
19472;y
5760;y
1526;y
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
827 ;y ; no
Page 18
-------
OPUSquan 20-JUL-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:l
Run: 18 File: al7ju!98b S:13 Acq:18-JUL-98 01:47:01 Proc:20-JUL-98 09:08:26
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-4 xl/2
Amount: 0.02
Cone: 0.02
Tox #1: -
Name
2,3,7,8-TCDF
of which 0.02
of which 0.02
Tox #2: -
# RT Respnse
named and *
named and *
Tox #3: -
RA
1 27:27 6.3e+04 1.08 n
6.3e+04
Cone
0.02
unnamed
unnamed
Area Height
S/N Mod?
3.3e+04 7.7e+03 4.7e+00 y n
3.0e+04 7.7e+03 2.9e+00 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:2
Run: 18 File: a!7ju!98b S:13 Acq:18-JUL-98 01:47:01 Proc:20-JUL-98 09:08:26
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-4 xl/2
Amount: 0.09
Cone: 0.09
Tox #1: -
Name
2,3,7,8-TCDD
of which 0.08
of which 0.08
Tox #2: -
# RT Respnse
named and 0.01
named and 0.01
Tox #3: -
RA
1 25:16 2.4e+04 1.67 n
2.4e+04
2 28:28 2.8e+05 0.17 n
2.8e+05
Cone
0.01
1
I
0.08
unnamed
unnamed
Area Height
S/N Mod?
1.5e+04 3.3e+03 2.6e+00 n n
8.8e+03 2.7e+03 2.0e+00 n n
3
4.1e+04 6.9e+03 5.6e+00 y n
2.4e+05 4.5e+04 3.4e+01 y n
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:4
Run: 18 File: a!7ju!98b S:13 Acq:18-JUL-98 01:47:01 Proc:20-JUL-98 09:08:26
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-4 xl/2
Amount: 0.02
Cone: 0.02
Tox #1: -
of which *
of which *
Tox #2: -
named and 0.02
named and 0.02
Tox #3: -
Name
RT Respnse
RA
31:23 2.2e+04 1.35 y
2.2e+04
32:31 1.7e+04 1.13 n
1.7e+04
32:57 1.3e+04 0.27 n
1.3e+04
4 33:01 1.3e+04 0.28 n
1.3e+04
Cone
0.01
1
S
0.01
S
1
0.00
2
1
0.00
unnamed
unnamed
Area Height
S/N Mod?
1.3e+04 3.6e+03 3.7e+00 y n
9.4e+03 2.8e+03 1.2e+00 n n
1
9.0e+03 2.9e+03 3.Oe+00 n n
7.9e+03 2.0e+03 8.5e-01 n n
0
2.8e+03 1.2e+03 1.2e+00 n n
l.Oe+04 4.36+03 1.9e+00 n n
3
2.9e+03 l.le+03 l.le+00 n n
l.Oe+04 4.3e+03 1.9e+00 n n
Page 4 of 8
115
-------
OPUSquan 20-JUL-199B
Page 2
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no *Hom:3
Run: 18 File: a!7ju!98b S:13 Acq:18-JUL-98 01:47:01 Proc:20-JUL-98 09:08:26
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-4 xl/2
Amount: 0.03
Cone: 0.03
Tox #1: -
Name
of which 0.01
of which 0.01
Tox #2: -
# RT Respnse
named and 0.03
named and 0.03
Tox #3: -
RA
1,2,3,7,8-PeCDD
1 31:57 3.86+04 3.76 n
3.8e+04
2 32:24 4.1e+04 7.00 n
4.1e+04
3 32:38 1.9e+04 1.41 y
1.96+04
Cone
0.01
{
0.01
c
0.01
unnamed
unnamed
Area Height
S/N Mod?
3.0e+04 9.36+03 4.0e+00 y n
8.1e+03 3.5e+03 2.7e+00 n n
3.6e+04 1.2e+04 5.3e+00 y n
5.1e+03 2.0e+03 1.5e+00 n n
L
l.le+04 3.7e+03 1.6e+00 n n
8.0e+03 3.8e+03 2.9e+00 n n
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no IHom:3
Run: 18 File: a!7ju!98b S:13 Acq:18-JUL-98 01:47:01 Proc:20-JUL-98 09:08:26
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»ResultS: M8290-23*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-4 xl/2
Amount: 0.04
Cone: 0.04
Tox #1: -
Name
of which 0.03
of which 0.03
Tox #2: -
# RT Respnse
named and 0.01
named and 0.01
Tox #3: -
RA
1 33:38 2.0e+04 1.23 y
2.0e+04
1,2,3,4,7,8-HxCDF 2 34:11 6.1e+04 1.15 y
6.1e+04
1,2,3,6,7,8-HxCDF 3 34:15 3.86+04 1.32 y
3.86+04
Cone
0.01
]
c
0.02
^
0.01
unnamed
unnamed
Area Height
S/N Mod?
l.le+04 4.3e+03 1.8e+00 n n
9.1e+03 4.0e+03 2.6e+00 n n
I
3.3e+04 l.Oe+04 4.5e+00 y n
2.8e+04 l.Oe+04 6.6e+00 y n
1
2.1e+04 8.3e+03 3.6e+00 y n
1.6e+04 4.4e+03 2.8e+00 n n
-------
OPUSquan 20-JUL-1998
Page 3
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:12
Run: 18 File: al7ju!98b S:13 Acq:18-JUL-98 01:47:01 ProC:20-JOL-98 09:08:26
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-4 xl/2
Amount: 0.21
Cone: 0.21
Tox *1: -
Name
of which 0.07
of which 0.07
Tox #2: -
# RT Respnse
named and 0.14
named and 0.14
Tox t3: -
RA
1 33:53 3.6e+04 0.90 n
3.66+04
2 33:59 2.1e+03 0.40 n
3 34:06 6.1e+03 4.17 n
6.1e+03
4 34:11 9.4e+04 2.47 n
9.46+04
5 34:15 6.8e+04 5.10 n
6.8e+04
6 34:20 7.0e+04 1.35 y
7.0e+04
7 34:24 9.1e+03 0.81 n
9.1e+03
8 34:28 l.le+04 1.03 n
l.le+04
9 34:31 l.le+04 1.07 y
l.le+04
1,2,3,4,7,8-HxCDD 10 34:43 2.8e+04 3.28 n
2.8e+04
1,2,3,6,7,8-HxCDD 11 34:47 5.8e+04 1.65 n
5.8e+04
1, 2, 3,7,8,9-HxCDD 12 35:00 8.4e+04 1.11 y
8.4e+04
Cone
0.02
3
3
0.00
e
i
0.00
e
:
0.04
(
0.03
c
]
0.03
unnamed
unnamed
Area Height S/N Mod?
1.7e+04 6.6e+03 2.9e+00 n n
1.9e+04 7.3e+03 4.0e+00 y n
D
6.1e+02 3.6e+02 1.6e-01 n n
1.5e+03 6.2e+02 3.4e-01 n n
D
5.0e+03 1.2e+03 5.1e-01 n n
1.2e+03 7.2e+02 3.9e-01 n n
6.7e+04 2.3e+04 9:8e+00 y n
2.7e+04 9.1e+03 S.Oe+00 y n
3
5.7e+04 1.9e+04 8.4e+00 y n
l.le+04 4.0e+03 2.2e+00 n n
0.00
0.00
4.0e+04 1.2e+04 5.46+00 y n
3.0e+04 8.9e+03 4.9e+00 y n
D
4.1e+03 1.8e+03 S.Oe-01 n n
5.0e+03 1.6e+03 8.7e-01 n n
5
5.3e+03 2.0e+03 8.7e-01 n n
5.2e+03 1.7e+03 9.6e-01 n n
0.00
0.01
0.02
0.03
5.6e+03 1.96+03 8.4e-01 n n
5.2e+03 1.7e+03 9.6e-01 n n
1
2.1e+04 5.8e+03 2.5e+00 n n
6.5e+03 3.1e+03 1.7e+00 n n
2
3.6e+04 l.le+04 4.7e+00 y n
2.2e+04 7.0e+03 3.9e+00 y n
3
4.4e+04 l.le+04 4.7e+00 y n
4.0e+04 l.le+04 5.8e+00 y n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no *Hom:l
Run: 18 File: al7ju!98b S:13 Acq:18-JUL-98 01:47:01 Proc:20-JUL-98 09:08:26
Tables: Run: al7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-4 xl/2
Amount: 0.08 of which 0.08 named and * unnamed
Cone: 0.08 of which 0.08 named and * unnamed
Tox #1: - Tox #2: - Tox »3: -
Name
RT Respnse
RA
1,2,3,4.6,7.8-HpCDFl 36:23 1.6e+05 1.00 y
1.6e+05
Cone Area Height S/N Mod?
0.08
8.0e+04 2.6e+04 1.5e+01 y n
8.0e+04 2.6e+04 2.7e+01 y n
-------
OPUSguan 20-JUL-1998
Page 4
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:5
Run: 18 File: al7ju!98b S:13 Acq:18-JUL-98 01:47:01 Proc:20-JUL-98 09:08:26
Tables: Run: a!7ju!98b Analyte: m8290-23-» Cal: m8290-23-»Results: M8290-23»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1070-4 xl/2
Amount: 0.15
Cone: 0.15
Tox #1: -
Name
of which 0.08
of which 0.08
Tox #2: -
# RT Respnse
named and 0. 07
named and 0.07
Tox #3: -
RA
1 36:22 3.46+04 6.09 n
3.4e+04
2 36:35 7.7e+04 1.21 n
7.7e+04
3 36:42 8.1e+03 0.74 n
S.le+03
1,2,3,4,6,7,8-HpCDD4 37:11 1.5e+05 1.05 y
1.5e+05
5 37:32 3.0e+04 4.70 n
3.0e+04
Cone
0.02
4
0.04
<
0.00
3
4
0.08
1
•}
0.02
unnamed
unnamed
Area Height
S/N Mod?
2.9e+04 9.1e+03 7.7e+00 y n
4.86+03 1.8e+03 2.3e+00 n n
l.2e+04 1.2e+04 l.Oe+01 y n
3.5e+04 l.Oe+04 1.3e+01 y n
D
3.4e+03 1.3e+03 l.le+00 n n
4.7e+03 1.3e+03 1.6e+00 n n
7.9e+04 2.3e+04 1.9e+01 y n
?.4e+04 2.2e+04 2.&e+01 y n
2.5e+04 6.1e+03 5.1e+00 y n
5.2e+03 2.1e+03 2.6e+00 n n
-------
file: A17JUL98B Acq: 18-JUL-1998 01:47:01 Exp: EXP M23 t>B5 OVATlOri Voltage SIR EI+ CC Autospec-tHtimafi Paradigm
Sample #13 Text: 1070-4 xl/2 ALS #13
319.8965 S:13 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1248 . 0 , 1 . 00%, F, F)
100* A6.60E4 1.5E4
50.
0
321.
100!
50.
0
331.
100S
50:
o:
333.
100%
50:
o:
327.
100%
50:
o:
316.
100%
•
50:
0:
v~ — ~~^*^ ^**-S^r~^---*~>^
• • • i I | r
24:00
8936 S:13 SMO(1,3)
24:00
9368 S:13 SMO(1,3)
24 loo'
9339 S:13 SMO(1,3)
24 loo'
8847 S:13 SMO(1,3)
24:00
9824 S:13 SMO(1,3)
23:26 23:55
r " ~ —
24:00
A1.47E4
'Vy^V-^~VjvV\v\A-'X_^-A_^v^ '^•v^/-^-'~v^
25:00 26:00
BSUB(128,15,-3.0) PKD(3,3,3,0
A8.80E3
25! loo' ' ' ' 26:00
BSUB(128,15,-3.0) PKD(3,3,3,0.
2sloo 2eloo
BSUB (128, 15 ,-3.0) PKD(3,3,3,0.
25 loo' ' ' ' 26 loo'
BSUB(128,15,-3.0) PKD(3,3,3,0.
25:00 26:00
PKD(3,3,3,100.00%,0.0,1.00%,P,
24j37 24j5925:20 25:43
i . i i i r 1 i
25:00 26:00
\ A4.15E4
27! 00 28 100 29 loo' ' ' ' 30 M
10%, 1328. 0,1. 00%, F,F)
A2.41E5
A
._ .A
27 loo 28 loo 29 loo 30 1(
10%, 8376. 0,1. 00%, F,F)
A1.60E8
AA
_7.7E3
: O.OEO
30 Time
4 . 6E4
.2.3E4
O.OEO
)0 Time
3.3E7
_1.6E7
.O.OEO
27 100 28 100 29 100 3oloO Time
10%, 4732. 0,1. 00%, F,F)
A2.03E8 4.1E7
AA
27loO 28100 29100 30:-C
10%,4996.0,1.00%fF,F)
A3.04E8
A
27:00 28:00 29:00 30:0
F)
26:3626:56 27:27 27J1 28j2728j_47 29:U 29:39
27 100 28 100 29 100 ' 30 lo
.2 . 1E7
O.OEO
)0 Time
_6.2E7
_3 . 1E7
O.OEO
0 Time
6.1E7
.3 . OE7
O.OEO
0 Time
-------
Pile: A1VJUL98B Acq: 18-JUL-1998 01:47:01 Exp: EXP M23 DB5 OVATION Voltage sift EI+ Gc Autospec-UltimaE Paradigm
Sample f!3 Text: 1070-4 xl/2 ALS #13
355.8546 S:13 F:2 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3, 3 , 0 . 10%, 2324 . 0, 1 . 00%, F, F)
100*| A3. £5E4 ,_1.5E4
50.
0
357.
100!
50_
0
367.
1001
50J
0"
369.
100%
50_
0."
366.
100%
50.
o:
• A3.04E4 \
'• \ 1 \ A1.12E4
/ \ i \ r\
^—s~^ \, — ^^r ~^s-~^s V_ — ^/ . — _/ X^- •" ^^f™\/ ^ ^*\f ^~^\_-^VJ^ ^^^\
3b!i2 3b!24 3b!36 3b!48 3i!6d 3i!l2 3i!24 3l!36 3i!48 32166 32 ! 12 ' 32 124 ' 32 !36 ' 32 Us' ' 33 !66 ' 33 ! 12
8517 S:13 F:2 SMO(1,3) BSUB(128, 15, -3 .0) PKD(3 , 3 , 3 , 0 . 10%, 1280. 0, 1 . 00%, F, F)
A1.38E4 A
fV\ A5.07E3 I 1
v V-L-^ \_S ^^Vy~^ \^~^ ^~/ 'V V/\X — -~+s \jf V \S v\_y \J V
36!l2 36I24 36J36 3()!48 3l!66 3i!i2 3i!24 31 ! 36 ' 31 148 ' 32 ! 66 ' 32 ! 12 ' 32 ! 24 ' 32 1 36 ' 32 ! 48 ' 33 ! 66 ' 33 ! 12
8949 S:13 F:2 SMO(1,3) BSUBU28, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 3272 . 0 , 1 . 00%, F, F)
A1.59E8
A
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
8919 S:13 F:2 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 1856 . 0 , 1 . 00%, F, F)
A1.02E8
A
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32124 32i36 32i48 33iOO 33:12
9792 S:13 F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
30:20 30:42 31:00 31:19 31:32 31i47 32:04 32:25 32:5J 33;1?6
30:12 30:24 30:36 30:48 31:00 3l!l2 31:24 31:36 ' 31:48 ' 32:66 ' 32:12 ' 32:24 ' 32I36 ' 32:48 ' 33S66 ' 33.'i2
.7.4E3
JLO.OEO
Time
6 . OE3
13 . OE3
O.OEO
Time
5.6E7
12 . 8E7
O.OEO
Time
r3.6E7
11.8E7
Time
6.6E7
.3.3E7
O.OEO
Time
-------
Pile: A17JUL98B — Acq: I8-JUL-1998 01:47:01 — Exp: EXP_M23_DB5_
-------
File: A17JUL98B Acq: 18-JUL-1998 01:47:01 Exp: EXP_M
Sample #13 Text: 1070-4 xl/2 ALS #13
423.7767 S:13 F:4 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3,3,3
lOOi A7.85E4
50.
0
425.
100S
50_
435.
100%
so:
437.
100%
50.
0
430.
100%
so:
0"
'' 36166 ' 36112 ' 36
7737 S:13 F:4 SMO(1
A4.21E4 1 1
,A_ Ik
\^^-J_ V-> -^ _ — .^t- ^
24 36:36 36:48 37:00 37:12
,3) BSUB(128,15,-3.0) PKD(3,3,3
A3.47E4 / 1
/\ /
AJJ77B3 /ik65B3 /^__ } \^
36:00 36:12 36124 36:36 36:48 37:00 37:12
8169 S:13 F:4 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3,3,3
Al . 14E8
I
23_DB5_OVATION Voltage SIR EI+ GC Autospec-UltimaE Paradigm
, 0.10%, 1184. 0,1. 00%, F,F)
2.4E4
A2.46E4
^ISE^^AX^ ^ ^_
37124 37:36 SvUs 38:66 38112 38124 Sslie 38l48 39l
, 0.10%, 796. 0,1. 00%, F,F)
A5.24E3
37124 37?36 37148 38loO 38:12 38:24 38:36 38:48 39
,0.10%, 5712. 0,1. 00%, F,F)
36166 36!l2 36124 36136 36:48 37166 37.'i2 37124 37136 37l48 38166 38:12 38124 38:36 38:48 39l
8140 S:13 F:4 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10% , 2768 . 0, 1 . 00%, F, F)
Al . 08E8
36:00 36:12 36:
9728 S:13 F:4 SMO(1,
35:56 36:09 36:19
_1.2E4
00 Time
2.3E4
.1.1E4
O.OEO
00 Time
3.0E7
_1 . 5E7
O.OEO
00 Time
^2 . 9E7
L1.5E7
LO.OEO
24 36.:36 36:48 37:00 37:12 37:24 37.:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
3) PKD{3,3,3,100.00%,0.0,1.00%,F,F)
36:31 36:4636:55 37;11 37:29 37^40 37:50 38:02 38:13 38:26 38:47 ,_9.4E7
36:00 36:12 36:24 36:36 36:48 37:00 37:12
.4.7E7
.O.OEO
37 ! 24 ' 37 136 ' 37:48 ' 38166 38112 38:24 '38:36 SsUs 39loO Time
-------
10!
Fil€
Samf
457.
1003
50_
o
459.
1003
so:
n}
469.
100%
so:
OJ
471.
100%
so:
OJ
454.
100%
50_
o;
s: A17JUL9HB Acq: 18-JUL-1998 01:47:01 Exp: EXP M23 bBS OVAtlON Voltage SIR EI+ GC Autospec-UltimaE Parad
)le #13 Text: 1070-4 xl/2 ALS #13
7377 S:13 F:5 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3, 0 . 10%, 3224 . 0, 1 . 00%, F, F)
A1.87E5
A
/ \li.27E3
39ll2 ' ' ' 39!24 ' ' ' 39136 ' ' ' 39U8 ' ' ' 4o!ob ' ' ' 4o!l2 ' ' ' 4o!24 ' ' ' 4o!36 ' ' ' 40l48 4l!
7348 S:13 F:5 SMO{1,3) BSUB(128, 15, -3 . 0) PKD(3, 3, 3, 0 . 10%, 1048 . 0, 1 . 00%, F,F)
A2 . 02E5
/ \
J \ A5^.19E3
39!l2 39:24 39136 39U8 4o!ob 4o!l2 4o!24 40-136 4o!48 4l!
7780 S:13 F:5 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2608 . 0, 1 . 00%, F, F)
Al . 51E8
/v
39!l2 39:24 39136 39Ua 4o!ob 4o!l2 4ol24 4ol36 4ol48 4ll
7750 S:13 F:5 SMO(1,3) BSUB(128, 15, -3 .0) PKD(3 , 3, 3 , 0 . 10%, 2528 . 0, 1 . 00%, F, F)
Al . 72E8
/v
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:
9728 S:13 F:5 SMO(1,3) PKD(3 , 3 , 3, 100 . 00%, 0 . 0, 1 . 00%, F, F)
39:09 39:18 39:24 39:33 39:44 40:0540:10 40:25 40:3540:4; 40:49 40:56
39:12 39:24 39:36 39:48 4o!ob 4o!l2 40:24 4ol36 40:48 41:
igm
5.0E4
_2 . 5E4
o OFO
00 Time
4.9E4
L2.4E4
00 Time
3.4E7
L1.7E7
.O.OEO
00 Time
3 . 9E7
_1.9E7
"O.OEO
00 Time
1.0E8
_5.2E7
.O.OEO
00 Time
-------
10'
File: A17JUL98BAcq: 18-JUL-1998 01:47:01Exp: EXP_M23_DB5_OVATION Voltage SIR EI +GC Autospec-UltimaEParadigm
Sample #13 Text: 1070-4 xl/2 ALS #13
303.9016 S:13 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3 , 0.10%,1628.0,1.00%,F,F)
100% A3.30E4
50.
0
A1.36E4
T
T~
i | 1 r-
26:00
T
24:00 25iOO 26iOO 27iOO
305.8987 S:13 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2644.0,1.00%,F,F)
100% A3.Q4E4
50J
OJ
28 loo'
29 loo'
T
T
~r
24:00 25:00 26:00 27iOO
315.9419 S:13 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,4384.0,1.00%,F,F)
100% A1.92E8
28:00
29:00
O
T"
rr
24:00 25iOO 26iOO 27iOO
317.9389 S:13 SMO(1,3) BSUB(128,15,-3.0) PKD(3, 3,3,0.10%,3748.0,1.00%,F,F)
100% A2.46E8
50_
0.
28 Too'
I I I I
29:00
24:00 25:00 26:00 27:00
75.8364 S:13 SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3,3,100.00%,44.0,1.00%,F,F)
00%
28:00
50J
28:27
28:10
23:23
25:00
23:58
25:55
26:35
27:20 27:47
27:00
29:00
29:03
28:00
29:00
24:00 25:00 26:00
16.9824 S:13 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 23:26 23:55 24j 37 24; 5925:20 25:43. . _.. _2&j3626:56 27^27 27_i51 28^2728^47^29^1
50J
24 loo'
'251 oo
I -'I I "• • 1 •-• I r-
26:00
I— •• r- • i •-• r- r "T - r 1- -T
27:00 28:00
29 loo'
timaE Par ad
^-^X/V-AA^
30
il.35E4 ,,/\
wO^V
30 1
30 (
' ' ' 30!C
29:43
30:0
29:39
30 1 0
igm
9.5E3
14.7E3
: O.OEO
00 Time
1.1E4
_5.6E3
30 Time
3 . 9E7
_1 . 9E7
O.OEO
30 Time
5.0E7
.2 . 5E7
O.OEO
)0 Time
_7.4E3
_3.7E3
O.OEO
0 Time
.6.1E7
.3.0E7
O.OEO
0 Time
-------
"Pile: 'A17JUL98B—Acq: 18-JTJL-1998 01:47:01—ExpV feXP_M23_bB5_6VATION Voltage SIR EH- GC Autospec-UltimaE
Sample #13 Text: 1070-4 xl/2 ALS #13
339.8597 S:13 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,976.0,1.00%,F,F)
100%, A2.20E4
Paradigm
3l':24
ft" T- T i i i r i • i—r-r r1 T -i—r-r—i—r~r- pr T- T" r "T -r^—r-r-
30:12 30:24 30:36 30:48 31:00 31il2 3li24 31i36 3li48 32iOO
341.8568 S:13 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2320.0,1.00%,F,F)
100%
50_
33:00
A1.03E4
33:12
.O.OEO
Time
I ' ' I ' I I ' ' ' 1 ' I ' ' ' ' ' 1 ' ' I ' ' I I I I ' I I ' ' I I I I I ' I ' ' I ' ' I I T [ I I I I I | I I I I I | I I I I I | I I I I I | I I I I I | I I I I I | I I
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00
351.9000 S:13 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3 , 0.10%,1768.0,1.00%,F,F)
100* A2.16E8 A2.08E8
50J
T I | 'I
33:12
4lO.OEO
Time
'i l l i l i i i i l i i i i i I i i i i i I i i i l i I i > l l r I i i i I I I i i i i i I i i i i i i i i f i i pi I l I l l i i ii 1 I i T*1 l l [ l i i i i I
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00
353.8970 S:13 F:2 SMO{1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2480.0,1.00%,F,F)
100& A1.38E8 A1.33E8
sol
7. 6E7
L3.8E7
i.O.OEO
33:12 Time
4. 9E7
_2.4E7
30:12 30:24 30:36
Us 31:00 31:12 ' 31:24 31:36 ' 31:48 32:00 ' 32:12 ' 32-124 32136 32:48 ' 33!6d
409.7974 S:13 F:2 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,3692.0,1.00%,F,F)
^O.QEQ
33:12 Time
100*
50.;
OJ
32:40
30:47
33:01
30:38
33:12
^1.2E4
5.9E3
"I T"l T'F T'T'T T 1—r"T-T~T"l T 'f 'I "I I' I 'I I I I" I f I "I I I—f T"'T' f I "T'TT-I I "1 r"! r I—I I f f I 'I I" I—r1 I I IT" T"T "I—r-r»T""|—1—T ~J I" T "I—I ' I J" T 1—I ' T * J T I I I" I "J1 • I "T
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00
366.9792 S:13 F:2 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,P,F)
30:20 30:42 31jJ30 31jl931:32 31:47 _ 3 2^0 4 32^15 33^51___J1
O.OEO
50:
OJ
T
33:12 Time
.Q6>_^_6.6E7
•,.,.1,,.. | ,..,..., , . | , ,..,,-,.,..,., , , . | | , | , . , , , , , i , ,, i , , . , , , i , . , , , , , . ,, | | | , . ,., | | | I | ! | | | | | | | I I [ I l I I I | | I I | | [ | |
30:12 30:24 30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00
L3.3E7
O.OEO
Time
-------
file: A17JOL98B Acq: 18-JUL-1998 01:47:01 Exp: EXP_M23_DB5_OVATION Voltage SlR EH-—GC Autospec-ultimaE—Paradigm
Sample #13 Text: 1070-4 xl/2 ALS #13
373.8207 S:13 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,5,2,0.10%,2336.0,1.00%,F,F)
100$ A3.27E4 1.3E4
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35 36 35:48 Tim
375.8178 S:13 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,5,2,0.10%,1532.0,1.00%,F,F)
100%. A2.85E4
50J
OJ
A9.13E3
.90E3 A2.85E3 A3.01E3
A2.15E3
1.1E4
L5.6E3
O.OEO
I
j
i
'r-
i
33:24 33:36 33^48 34iOO 34il2 34i24 34136 34i48
383.8639 S:13 F:3 BSUB(128,15,-3.0) PKD(3.5,2,0.10%,37376.0,1.00%,F, F)
100%, A1.18E8
50.:
OJ
I
i
35:00 35:12
i — t — i — i — i — i — i — r— T--I — i — i — i — i — r
35:24 35:36 35:48 Time
T
12.6E7
.O.OEO
T—i—r—i—i—i i i—i—i—i—i—i r i—i ' i i ill i i i i—i i i i i i—i—i—i—r—i—i—i—i—i—i—i—i—i—i—i—i—i i i—i—i—i—i i i i—i—r—T—i i
33:24 33136 33:48 34:00 34:12 34:24 34i36 34:48 35:00 35:12 35:24 35:36 35U8 Time
85.8610 S.-13 F:3 BSUB(128,15,-3 . 0) PKD(3 , 5,2 , 0 .10%, 48152 . 0,1. 00%,F, F)
00%. A2.25E8
1.0E8
_5.0E7
O.OEO
33:24 33S36 33:48 34:00 34ll2 34124 34:36 34Us 35:00 35ll2 35:24 35136' ' VsUs Time
45.7555 S:13 F:3 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,1852.0,1.00%,F,F)
004, 33;37 34:46 34:59
j i--i T i ""v'-j""!--!—? i r | • i i i T i r—»—i—T "ii—r—i—i—i—i—r—i—i—i—T—i—i—i—i—i—r—i—i—i—r—i—r~T—i—r~»—i—i—i—i—i—i—i—r—T—i—i—r—r—r- r "t" t i ? r* T i ' i
33:24 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
80.9760 S:13 F:3 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
001 33:23 33:47 34:19 34:38 34:47
50:
35:03 35:16
.1.4E8
_7.2E7
O.OEO
k * | T ' » I 'l'1^"! I "I V I 'I' 1 I I I T""-y—i | 1 r—1 f"T"T F I T !' -T'~V I I 1 1 1 r "I 1 1 [—I l~~l l~l 1 T—1 f~I 1 1 t I I' f"T "IP I "f T T -p'T'T1 I T t I
33:24 . 33:36 33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 Time
-------
Pile: A17JUL98B
Acq: 18-JUL-1998 01:47:01
Exp: EXP_
M23 DBS
Sample #13 Text: 1070-4 xl/2 ALS #13
407.7818 S:13 F:
1001
50 j
o:
.
36166 36
409.7788 S:13 F:
1002
50_
o-
36166 36
417.8253 S:13 F:
100%
50J
OJ
36166 36
419.8220 S:13 F:
100%
50J
oj
36:00 36
479.7165 S:13 F:
100%
50 :
0^
4 SMO(1,3)
A8.01E4
A
A
~J-\=.
Il2 36124
4 SMO(1,3)
A8.05E4
A
A
/ \
/ \-
Il2 36':24
4 SMO(1,3)
A5.13E7
A
A
/ v
Il2 36l24
4 SMO(1,3)
A1.16E8
A
A
/ v_
| i r r i i n I
:12 36:24
4 SMO(1,3)
36:09 36,|
r\ /\ J»
/H^T\
f \/vw \
36! 00 36
430.9728 S:13 F:
s\ 36:2B\
A\A X/V
r 'A/ v
•12 36:24
4 SMO(1,3)
100% 35:56 36:09 36:19 36:
•
50J
r
36:00 36
Il2 ' 36124 '
BSUB(128,15,-3
_^^^___
361J6 36178
BSUB(128,15,-3
A6.05E3
-__,--- ^^^
36136 36148
BSU3(128,15,-3
36136 36!48
BSUB(128,15,-3
36:36 36148
BSUB(128,15,-3
.0)
37!
.0)
37l
.0)
37!
.0)
37!
.0)
PKD(3,3,
00 37! 12
PKD (3,3,
66 37 ! 12
PKD(3,3,
66 37! 12
PKD (3,3,
00 37:12
PKD (3,3,
37:10
A
3,0.10%
37':2T
3,0.10%
37:24
3,0.10%
A3
y
37-! 24
3,0.10%
A7
j
37:24
_OVATION Voltage SIR EH- GC Autospec-UltimaE Paradigm
,1688.0
' ' ' i ' '
37:36
,980.0,
^_f^-, ^_^
' 371: 36
,4796.0
.26E7
A
/V
37136
,23640.
.43E7
A
37:36
3, 100. 00%, 2348
37:21 _
30 36:58 /\ f\ J/i"
M / v, (\ y\
^^ 36:50
V /^/^w-i/\ /
v^/ v ^v\_y
36:36 36-! 48
PKD(3,3,3,100.
31 36:41 36
i i 1 i i i i i I i i i
36:36 36:48
1 1
37-!
00%
ss
37!
/\y w
66 37 ! 12
N V^
37:24
'\
V^^-
37!36
,1.00%,F,F)
2.
_1.
n
37:48 38:00 38:12 38:24 38:36 38:48 39 00
1.00%,F,F)
2.
.1.
37 Us ' 3s! 00 ' 3s! 12 ' 38124 ' 38 lie ' SsUs 39 00
,1.00%,F,F)
1.
:7.
:o.
37148 38166 38ll2 38124 Sslie SsUs 39lflO
0,1.00%,F,F)
3.
:1.
0
37:48 38:00 38:12 38:24 38:36 38:48 39 00
.0,1.00%,F,F)
7.
F:49 38-^ 38A2f 3i;43
AV_, yv/^XAA^s^A^ ^v
:3.
rO.
37:48 38166 38ll2 38124 38:36 38:48 39loO
8E4
4E4
OEO
Time
7E4
4E4
OEO
Time
6E7
8E6
OEO
Time
5E7
7E7
OEO
Time
7E3
9E3
OEO
Time
, 0.0,1. 00%, F,F)
37:11
66 ' 37! 12
37:24
37:34
i i i 1 i i
37:36
37:50 38=02 38:13 38:26 38:47 9.
_4.
' 37148 38166 38112 38124 38136 38:48 39loO
4E7
7E7
Time
-------
File: A17JUL98B
Acq: 18-JUL-1998 01:47:01 Exp: EXP_M23_DB5_oVATl6N Voltage SIR EI+ Gc Autospec-UltimaE Paradigm
Sample #13 Text: 1070-4 xl/2 ALS #13
441.7427 S:13 F
100!
50-
o •
A2.09E3
u— "T 1 1 r— i 1-
39:12
443.7398 S:13 F
100%
50 j
o-
^v S~ •> .
39!l2
469.7780 S:13 F
100!
50 j
OJ
39:12
471.7750 S:13 F:
100!
50J
ol
39ll2
513.6775 S:13 F:
100%
50 j
:5 SMO(1,3)
' 39! 24
5 SMO(1,3)
— i 1 1 r=T — r-
39:24
5 SMO(1,3)
39:24
5 SMO(1,3)
39124
5 SMO(1,3)
BSUB(128,15,-3.0) PKD(3,3,
39:36 39:48
BSUB(128,15,-3.0) PKD(3,3,
— . — — „. — -.. ^ — ,.
T 1 1 I [ 1 1 1 1 1 | 1 1 1
39:36 39:48
BSUB{128,15,-3.0) PKD(3,3,
39136 39148
BSUB(128,15,-3.0) PKD(3,3,
39136 39148
BSUB(128,15,-3.0) PKD(3,3,
: 39M9 39:25 39:33 39:42 39j53
0"
N.
39ll2
454.9728 S:13 F:
100% 39:09
:
50J
oj
f
39ll2
/ \ — /"V
39?24
5 SMO(1,3)
39:18 39:24
39124
/~~\ ^^-^—^> ' \J~
39!36 ' ' 39U8
3, 0.10%, 800. 0,1. 00%, F,F)
A5.69E4
/ \
J \_ A^29.79 A2.J36E3
1.3E4
L6.7E3
O.OEO
4o!ob ' 40:12 40:24 40:36 ' 40:48 41:00 Time
3, 0.10%, 1660. 0,1. 00%, F,F)
A6.28E4
A
/ ^v _
1.9E4
_9.5E3
• O.OEO
T 1 1 1 1 1 T r"T 1 '1 ' 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1
40:00 40:12 40:24 40:36 40:48 41:00 Time
3, 0.10%, 2608. 0,1. 00%, F,F)
Al . 51E8
l\
J V
3.4E7
_1.7E7
:O.OEO
4o!ob 4o!l2 4ol24 4o!36 4ol48 4l!oO Time
3, 0.10%, 2528. 0,1. 00%, F,F)
Al . 72E8
l\
J V
3 . 9E7
L1.9E7
.O.OEO
4o!ob 4o!l2 40!24 4o!36 40:48 41:00 Time
3, 100. 00%, 88. 0,1. 00%, F,F)
40:02
/ \ 40-20 4o 36
-x^x ^ •r/ \ s— — -=-i_/ Vs ^ /^~^ s
,.5 . 5E3
L2.8E3
•O.OEO
4o!ob ' 4o!l2 ' 4ol24 ' ' 4o!36 ' ' ' 40:48 41 00 Time
PKD(3,3(3,100.00%(0.0,1.00%,F,F)
39:33 39:44
39136 39148
40:0^40:10 40:25 40:3540:41 40:49 40:56 1 . OE8
_5.2E7
.O.OEO
4o!ob 4o!l2 40.!24 40-I36 4o!48 4l!oO Time
-------
10. Stack gas volumetric flow rate at stack conditions, acfrn.
Qa = (60) (A) (vs)
Qa = (60) (6.922) (91.96)
Qa = 38,195 acfrn
11. Dry stack gas volumetric flow rate at standard conditions, dscfrn.
(38,195) (1-5.56/100)
=20,181 dscfrn
12. Dry stack gas volumetric flow rate at standard conditions, dscmm.
= (20,181) (0.028317)
Qs(cmm) = 571
-------
13. Pollutant (2378 TCDD) concentration, ng/dscm.
ng/dscm = £
*m(std)m3
, . [ 0.00236 1
ng/dscm = -
3.091
ng/dscm = [ 0.000764 ] ng/dscm
14. Pollutant (2378 TCDD) concentration, ng/dscm adjusted to 7 percent oxygen.
ng/dscm@7%O, = (ng/dscm) (2°'9 " 7) -
* 2 (20.9 - %02)
ng/dscm@7%O2 = ([0.000764]) 13 9
(20.9 - 10.3)
ng/dscm@7%02 = [0.00100] ng/dscm@7%O2
15. Pollutant (2378 TCDD) emission rate,
(60) (ng)
-
Atg/hr =
3) (vmstd)
m(std)
(60) ([0.00236]) (20.181)
(103) (109.154)
= [0.0262]
-------
16. CEM Pollutant (HC1) Concentration, ppmd
ppmd = ppmw / (1 -BJ100)
ppmd = 18.7 / (1-5.56/100)
ppmd =19.8 ppmd
17. CEM Pollutant (HC1) Emission Rate, Ib/hr.
(60) (ppmd) (Fwt)
(106) (385.3)
lb/hr = (60) (19.8) (36.47) (20,200)
(106) (385.3)
Ib/hr = 2.27 lb/hr
18. Method 3A Calibration Error, %. Values are for the oxygen, mid range.
Cal Err % =(100) (Instrument Response-Calibration Gas Concentration)/Span
Cal Err % = (100) (11.2 - 11.0) / 25
Cal Err % = 0.8 %
-------
19. Method 3 A System Bias Check, %. Values are for the oxygen, final upscale check.
Sys Bias % = (100) (Instr.ResponseCALERR-Instr.ResponsesysCAL)/Span
Sys Bias % = (100) (11.2 - 11.3) / 25
Sys Bias % = -0.4 %
20. Method 3A Drift, %. Values are for the oxygen, upscale check.
Drift % = (100) (Instr. ResponseFINAL SYS CAL - Instr. Response]NIT SYS CAL)/ Span
Drift % = (100) (11.3 -10.8) / 25
Drift % = 2.0 %
21. Method 3 A Zero & Upscale Sampling System Check Adjustment. Values are for oxygen, %.
gas v avg
C -(10.3-0.1). "-04
gas 11.05-0.1
Cgas = 10.3 %
Where: C^ = Adjusted gas concentration, ppm or %
C^g = Average unadjusted gas concentration from analyzer
C0 = Average of zero gas initial & final system cal. bias check
C^ = Actual concentration of the upscale calibration gas
Cm = Average of upscale initial & final system cal. bias check
-------
22. Method 322 Zero & Upscale System Bias Checks Adjustment To Analyzer HCI Average.
(C -b)
'V
C
gas
(0.999 + 0.989) [(16-4~2-4)] +(2.20 +6.86)
= _ 0.980
gas 9
= 18 7
Where: bc = Y-intercept of the calibration least-squares line.
bf = Y-intercept of the final bias check 2-point line.
b, = Y-intercept of the initial bias check 2-point line.
C^ = Effluent gas concentration, as measured, ppm.
C.,^ = Average gas concentration indicated by gas analyzer, as
measured, ppm.
m,. = Slope of the calibration least-squares line.
rrif = Slope of the final bias check 2-point line.
nii = Slope of the initial bias check 2-point line.
-------
23. Method 322 HCI Matrix Spike Recovery, Pretest
In Situ HCI Expected (Predicted) Spike Concentration, ppm.
CE = (Cs) (Q./QJ + (Su)(l-(Qi/QJ)
CE = (303) (1.5/12.75) + (36)(1-(1.5/12.75))
CE = 67.4 ppm
Where: CE = Recovery efficiency of spiked HCI, %
Cs = Concentration of HCI in spike gas, ppm
Qs = Spike gas (dilution) flow rate, 1pm
Q, = Sample gas (unspiked) flow rate, 1pm
Qtot = (Qs+Qt) Sum of the spike gas and the sample flow rates, 1pm
Su = Concentration of unspiked (native) sample gas
In Situ HCI Spike Recovery Efficiency. %.
%R = (SM/CE)(100)
%R = (74.8/67.4)(100)
%R = 111 %
Where: %R = Efficiency of recovery of spiked HCI, %
SM = Observed concentration of spiked + sample gas, ppm
CE = Expected or predicted concentration of HCI in spike gas, ppm
-------
APPENDIX E
QA/QC DATA
-------
1of2
PACIFIC ENVIRONMENTAL SERVICES, INC.
Central Park West
5001 South Miami Boulevard. P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Date:
Pw, in Hg
9/1/97
30.16
Calibrator Tom McDonald Meter Box No.:
Reference Meter Correction Factor
MB-10
1.0049
(8/28/96)
AH = 0.5
Trial
1
2
3
Trial
Duration
(min)
19
19
19
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
994.409
1001.982
1009.513
Final
(ft3)
1001.982
1009.513
1017.050
Net
(ft3)
7.573
7.531
7.537
Meter Temperatures
Initial, Inlet
CF)
74
77
80
Final, Inlet
CF)
78
80
81
Avg. Inlet
CF>
76
78.5
80.5
Initial, Outlet
CF)
73
75
77
inal. Outle
CF)
75
77
78
Avg. Outlet
CF)
74
76
77.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
600.523
608.185
615.801
Final
(ft3)
608.185
615.801
623.430
Net
(ft3)
7.662
7.616
7.629
Meter Temperature
Initial
CF)
72
74
76
Final
CF)
74
76
77
Avg.
CF)
73
75
76.5
Meter Box
Correction
Factor
y
1.019
1.019
1.021
Reference
Orifice Press
AHe
(in. H2O)
1.71
1.74
1.74
AH a 0.75
Trial
1
2
3
Trial
Duration
(min)
15
15
15
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
17.220
24.350
31.563
Final
(ft3)
24.350
31.563
38.780
Net
(ft3)
7.130
7.213
7.217
Meter Temperatures
Initial, Inlet
CF)
80
82
82
Final, Inlet
CF)
82
83
83
Avg. Inlet
CF)
81
82.5
82.5
Initial, Outlet
CF)
78
79
79
inal, Outle
CF)
79
79
81
Avg. Outlet
CF)
78.5
79
80
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
623.622
630.833
638.141
Final
(ft3)
630.833
638.141
645.425
Net
(ft3)
7.211
7.308
7.284
Meter Temperature
Initial
CF)
77
78
78
Final
(T)
77
78
78.5
Avg.
CF)
77
78
78.25
Meter Box
Correction
Factor
Y
1.020
1.021
1.018
Reference
Orifice Press
AH0
(in. H2O)
1.82
1.77
1.79
AH= 1.0
Trial
1
2
3
Trial
Duration
(min)
10
10
10
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
38.946
44.490
50.050
Final
(ft3)
44.490
50.050
55.585
Net
(ft3)
5.544
5.560
5.535
Meter Temperatures
Initial, Inlet
CF)
81
83
84
Final. Inlet
CF)
83
84
84
Avg. Inlet
CF)
82
83.5
84
Initial, Outlet
CF)
80
80
80
inal, Outle
CF)
80
80
80
Avg. Outlet
CF)
80
80
80
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
645.614
651.220
656.829
Final
(ft3)
651.22
656.829
662.435
Net
(ft3)
5.606
5.609
5.606
Meter Temperature
Initial
CF)
78
78
78
Final
CF)
78
78
78
Avg.
CF)
78
78
78
Meter Box
Correction
Factor
Y
1.019
1.018
1.023
Reference
Orifice Press
AH0
(in. H20)
1.79
1.78
1.78
10_09017.xls
Printed: 6/10/98
-------
2 of 2
PACIRC ENVIRONMENTAL SERVICES, INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
AH = 2.0
Trial
1
2
3
Trial
Duration
(min)
10
10
10
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
55.868
63.519
71.182
Final
(ft3)
63.519
71.182
78.845
Net
(ft3)
7.651
7.663
7.663
Meter Temperatures
Initial, Inlet
CF)
84
86
86
Final, Inlet
CF)
86
86
87
Avg. Inlet
CF)
85
86
86.5
Initial, Outlet
CF)
81
81
81
inal, Outte
CF)
81
81
81
Avg. Outlet
CF)
81
81
81
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
662.729
670.472
678.244
Final
(ft3)
670.472
678.244
686.010
Net
(ft3)
7.743
7.772
7.766
Meter Temperature
Initial
CF)
78
78
78
Final
CF)
78
78
78
Avg.
CF)
78
78
78
Meter Box
Correction
Factor
T
1.021
1.025
1.024
Reference
Orifice Press
AHe
(in. H2O)
1.87
1.86
1.86
AH = 4.0
Trial
1
2
3
Trial
Duration
(min)
8
8
8
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
79.058
86.620
94.185
Final
(ft3)
86.620
94.185
101.754
Net
(ft3)
7.562
7.565
7.569
Meter Temperatures
Initial, Inlet
CF)
85
87
89
Final, Inlet
CF)
88 •
89
89
Avg. Inlet
CF)
86.5
88
89
Initial, Outlet
CF)
81
82
82
inal, Outle
CF)
82
82
82
Avg. Outlet
CF)
81.5
82
82
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
686.208
693.895
701.558
Final
(ft3)
693.895
701.558
709.244
Net
(ft3)
7.687
7.663
7.686
Meter Temperature
Initial
CF)
78
78
78
Final
CF)
78
78
78
Avg.
CF)
78
78
78
Meter Box
Correction
Factor
T
1.023
1.021
1.025
Reference
Orifice Press
AH0
(in. H2O)
2.44
2.45
2.43
Calibration Results
AH I
0.50
0.75
1.0
2.0
4.0
T
1
1
1
1
1
020
020
020
023
023
AHC
1.73
1.79
1.78
1.86
2.44
Dry Gas Meter MB-10 on 09/01/97
Meter Box Calibration Factor
Meter Box Reference Orifice Pressure
1.021
1.92
m nom? vie
Printed: 6/10798
-------
'PACIFIC ENVIRONMENTAL SERVICES, INC.
Posttest Dry Gas Meter Calibration Form (English Units)
Central Park West
5001 South Miami Boulevard. P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Pretest Calibration Factor
System Vacuum Setting, (in Hg)
Reference Meter Correction Factor
Date: 7/9/98 P^, in Hg
1.021
17
1.0077
29.95 Calibrator
D. Holzschuh
Meter Box No.
MB-10
AH = 1.53
Trial
1
2
3
Duration
(mln)
10
11
10
Dry Gas Meter
Initial
(ft3)
611.3
618.025
625.403
Final
(ft3)-
618.025
625.403
632.111
Net
(ft3)
6.725
7.378
6.708
Initial, Inlet
(°F)
79
77
77
Final, Inle
(°F)
77
77
77
Avg. Inlet
(eF)
78
77
77
Initial, Outlet
(°F)
79
78
77
Final, Outlet
CF)
78
77
77
Avg. Outlet
(°F)
78.5
77.5
77
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
432.055
438.894
446.392
Final
(ft3)
438.894
446.392
453.2
Net
(ft3)
6.839
7.498
6.808
Meter Temperature
Initial
CF)
77
79
77
Final
(T)
79
77
77
Avg.
(°F)
78
78
77
Meter Box
Correction
Factor
Y
1.021
1.019
1.019
Reference
Orifice Press
AH0
(in. H2O)
1.85
1.87
1.87
10_09017.XLS
PostTest07-09-98
7/10/98
-------
1of2
O PACIFIC ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Date:
Pb». in Hg
^:,^jfv^fMj^ ••-•••:• - ':yj
10/13/97 Calibrator MMD
29.86
Meter Box No.:
Reference Meter Correction Factor
RMB-15
1.0077
(10/5/97)
AH = 0.5
Trial
1
2
3
Trial
Duration
(min)
15
13
12
Dry Gas Meter RMB-15
Gas Volume
Initial
(ft3)
48.833
54.722
59.821
Final
(ft3)
54.722
59.821
64.544
Net
(ft3)
5.889
5.099
4.723
Meter Temperatures
Initial, Inlet
(°F)
73
78
80
Final, Inlet
(CF)
77
80
83
Avg. Inlet
CF)
75
79
81.5
Initial, Outlet
CF)
72
74
76
inal. Outle
(°F)
75
75
77
Avg. Outlet
CF)
73.5
74.5
76.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
34.044
39.829
44.843
Final
(ft3)
39.829
44.843
49.463
Net
(ft3)
5.785
5.014
4.620
Meter Temperature
Initial
CF)
70
71
71
Final
CF)
70
70
71
Avg.
CF)
70
70.5
71
Meter Box
Correction
Factor
T
0.997
1.001
0.999
Reference
Orifice Press
AHe
(in. H2O)
1.86
1.86
1.86
AH = 0.75
Trial
1
2
3
Trial
Duration
(min)
8
21
13
Dry Gas Meter RMB-15
Gas Volume
Initial
(ft3)
69.524
73.327
83.322
Final
(ft3)
73.327
83.322
89.571
Net
(ft3)
3.803
9.995
6.249
Meter Temperatures
Initial, Inlet
CF)
74
77
78
Final, Inlet
CF)
74
83
82
Avg. Inlet
CF)
74
80
80
Initial, Outlet
CF)
77
76
78
inal, Outle
CF)
75
77
74
Avg. Outlet
CF)
76
76.5
76
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
54.365
58.108
67.912
Final
(ft3)
58.108
67.912
74.036
Net
(ft3)
3.743
9.804
6.124
Meter Temperature
Initial
CF)
72
72
73
Final
CF)
72
73
73
Avg.
CF)
72
72.5
73
Meter Box
Correction
Factor
T
0.996
0.997
0.995
Reference
Orifice Press
AH0
(in. H2O)
1.91
1.91
1.88
AH= 1.0
Trial
1
2
3
Trial
Duration
(min)
19
8
16
Dry Gas Meter RMB-15
Gas Volume
Initial
(ft3)
89.777
100.214
104.614
Final
(ft3)
100.214
104.614
113.404
Net
(^
10.437
4.400
8.790
Meter Temperatures
Initial, Inlet
CF)
82
85
85
Final, Inlet
CF)
86
87
88
Avg. Inlet
CF)
84
86
86.5
Initial, Outlet
CF)
79
81
82
inal, Outle
CF)
80
81
83
Avg. Outlet
CF)
79.5
81
82.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3) '
74.254
84.440
88.743
Final
(ft3)
84.44
88.743
97.302
Net
(ft3)
10.186
4.303
8.559
Meter Temperature
Initial
CF)
73
73
73
Final
CF)
73
73
73
Avg.
CF)
73
73
73
Meter Box
Correction
Factor
T
0.997
1.002
1.000
Reference
Orifice Press
AH0
(in. H2O)
1.92
1.91
1.92
15 10137.xls
Printed: 6/10/98
-------
2 Of 2
Q PACIFIC ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919)941-0333 FAX: (919) 941-0234
AH = 2.0
Trial
1
2
3
Trial
Duration
(min)
9
7
7
DryGasMeterRMB-15
Gas Volume
Initial
(ft3)
13.863
20.884
26.372
Final
(ft3)
20.884
26.372
31.871
Net
(ft3)
7.021
5.488
5.499
Meter Temperatures
Initial, Inlet
CF)
87
90
90
Final, Inlet
CF)
91
92
93
Avg. Inlet
CF)
89
91
91.5
Initial, Outlet
CF)
83
84
84
inal, Outle
CF)
83
84
84
Avg. Outlet
CF)
83
84
84
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
97.749
104.591
109.929
Final
(ft3)
104.591
109.929
115.281
Net
(ft3)
6.842
5.338
5.352
Meter Temperature
Initial
CF)
73
73
73
Final
CF)
73
73
74
Avg.
CF)
73
73
73.5
Meter Box
Correction
Factor
y
1.001
1.002
1.002
Reference
Orifice Press
AHC
(in. H2O)
1.90
1.89
1.88
AH = 4.0
Trial
1
2
Trial
Duration
(min)
6.5
15.5
Dry Gas Meter RMB-15
Gas Volume
Initial
32.371
39.484
Final
(ft3)
39.484
56.484
Net
(ft3)
7.113
17.000
Meter Temperatures
Initial, Inlet
CF)
92
93
Final, Inlet
CF)
94
97
Avg. Inlet
CF)
93
95
Initial, Outlet
CF)
85
87
inal, Outle
CF)
85
87
Avg. Outlet
CF)
85
87
Trial
1
2
Reference Meter
Gas Volume
Initial
(ft3)
15.775
22.732
Final
(ft3)
22.732
39.287
Net
(ft3)
6.957
16.555
Meter Temperature
Initial
CF)
73
73
Final
CF)
74
73
Avg.
CF)
73.5
73
Meter Box
Correction
Factor
y
1.004
1.005
Reference
Orifice Press
AH0
(in. H2O)
1.92
1.92
Calibration Results
AH
0.50
0.75
1.0
2.0
4.0
Y
0
0
1
1
1
I
.999
.996
.000
.002
.004
AHC
1.86
1.90
1.92
1.89
1.92
Dry Gas Meter RMB-15 on 10/13/97
Meter Box Calibration Factor
Meter Box Reference Orifice Pressure
• Two Trial Average
1.000
1.90
15_10137.xls
Printed: 6/10/98
-------
PACIFIC
ENVIRONMENTAL SERVICES, INC.
Posttest Dry Gas Meter Calibration Form (English Units)
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Pretest Calibration Factor
System Vacuum Setting, (in Hg)
Reference Meter Correction Factor
Date: 7/9/98 Pt«, in Hg
1.000
16
1.0077
29.95 Calibrator
DDH
Meter Box No.
RMB-15
AH= 1.39
Trial
1
2
3
Duration
(min)
10
10
10
Dry Gas Meter
Initial
(ft3)
356.55
362.922
369.302
Final
(ft3)
362.922
369.302
375.662
Net
(ft3)
6.372
6.380
6.360
Initial, Inlet
(T)
77
77
77
Final, Into
(°F)
77
77
77
Avg. Inlet
CF)
77
77
77
Initial, Outlet
CF)
77
77
77
Final, Outlet
<°F)
77
77
77
Avg. Outlet
(°F)
77
77
77
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
455.45
461.749
468.028
Final
(ft3)
461.749
468.028
474.295
Net
(ft3)
6.299
6.279
6.267
Meter Temperature
Initial
(°F)
75
74
74
Final
CF)
74
74
74
Avg.
(T)
74.5
74
74
Meter Box
Correction
Factor
T
0.997
0.994
0.995
Reference
Orifice Press
AH0
(in. H2O)
1.96
1.97
1.98
15 10137
PostTest07-9-98
8/18/98
-------
REFERENCE METER CALIBRATION
ENGLISH REFERENCE METER UNITS
BaroMtMc Pressure 29.73
Meter tM 1.00000
< ( deg ft/Inches HO) 17.64
OGM Serial *
Date
6841495
8/28/96
Filename:
Revised:
F:\DATAFILE\CALIBRAT\CAL HEMU.DSKXDGM REF.
06/08/95
T ime Pressure
(•in) (in. H20)
6.00 -6.60
24.00 -6.60
8.00 -6.60
10.00
35.00
16.50
12.50
14.00
58.50
16.SO
42.00
66.50
15.30
13.50
35.30
-4.00
-4.00
-4.00
-2.80
-2.80
-2.80
-1.60
-1.60
-1.60
-1.30
-1.30
-1.30
Meter Readings
Initial Final
374.451 381.901
381.901 411.424
411.424 421.233
421.233
430.675
464.147
479.992
489.698
500.594
574.496
590.619
614.123
651.520
657.572
663.365
430.675
464.147
479.992
489.698
500.594
546.063
583.672
614.123
651.520
657.572
663.065
677.274
Dry Gas Meter (DGN) Temperature
Volune Initial Final
(cubic feet) (deg F) (deg F)
7.450 73.0 76.0
29.523 74.0 76.0
9.809 76.0 76.0
Uet Test Meter (UTM)
Meter Readings Volune
Initial Final (cubic feet)
496.572 503.987 7.415
503.987 533.471 29.484
533.471 543.279 9.808
OGM
Tenp Coefficient
(deg F) Yds
77.0 1.007
77.0 1.011
77.0 1.015
Coefficient Flow
Variation Rate
Yds-(Avg.Yds) (CFM)
-0.004 1.207
0.000 1.200
0.004 1.197
9.442 76.0 77.0 543.279 552.761
33.472 77.0 77.0 552.761 585.965
15.845 77.0 78.0 585.965 601.625
9.706 78.0 78.0 601.625 611.270
10.896 78.0 78.0 611.270 6Z2.061
45.469 78.0 79.0 622.061 667.125
9.176 79.0 79.0 695.390 704.530
23.504 80.0 80.0 711.429 734.785
37.397 80.0 81.0 734.785 771.901
6.052 81.0 32.0 771.901 777.994
5.493 82.0 82.0 777.994 783.400
14.209 82.0 32.0 783.400 797.515
y.ouo (i.u i.uij u.uuo i.ivf
Max Yds - Min Yds «0.007489914 Must be no greater than 0.030
Average Yds -1.011058546 Must be between 0.95 to 1.05
9.482 77.0 1.013 0.009 0.926
33.204 77.0 1.002 -0.003 0.926
15.660 77.3 0.999 -0.006 0.927
Max Yds - Nin Yds '0.014197179 Must be no greater than 0.030
Average Yds '1.004786738 Must be between 0.95 to 1.05
9.645 77.0 1.003 0.002 0.754
10.791 77.0 0.999 -0.002 0.753
45.364 77.3 1.001 0.000 0.752
Max Yds - Nin Yds • 0.00338145 Must be no greater than 0.030
Average Yds '1.000808891 Must be between 0.95 to 1.35
9.140
23.356
37.116
77.0
77.0
77.0
1.004
1.003
1.003
0.000
0.000
0.000
0.541
0.543
0.545
Jf . I IM I I •*/ I .UU.J U.UUU U.JH2
Max Yds - Min Yds '0.000835063 Must be no greater than 0.030
Average Yds '1.003302205 Must be between 0.95 to 1.35
5.393 78.0 1.016 0.011 0.396
5.406 78.0 3.994 -0.010 0.390
14.115 78.0 1.003 -1.001 0.393
'as - Min fds '0.321724294 Must be no greater than 0.030
Average Yds '1.004344616 Must be between 0.95 to 1.35
Max
Overall Average fds '1.304860199
! certify that the above Dry Gas Meter was calibrated in accordance with =.?.A. Method 5 . paragraoh 7.1 ,-CFR 40 Part 60,
jsinq the Precision Wet rest Meter * 11AE6, which in turn MS calibrated using che American Sell Prover 4 3785,
certificate 4 ?107. vrfijfch is traceable to the National Bureau of Standards (N.i.S.T.;.
Signature .' i^.
)
oat.
? '?.? -*'-•
//
-------
REFERENCE METER CALIBRATION
ENGLISH REFERENCE METER UNITS
Barometric Pressure 29.82
Meter Vw 1.00000
K ( (teg R/lnches Hg) 17.64
Dry Gss Meter (DGM)
Tfsw Pressure Meter Readings Volts*
(•In) (In. H20) Initial Final (cubic feet)
20.50 -8.000 742.719 768.193
5.00 -8.000 768.193 774.402
13.00 -8.000 774.402 790.575
DGM Serial
Date
6841495
10/5/97
Filename:
Revised:
F:\DATAFILE\CALIBRAT\CAL MENU.DSKNDGM REF.
06/08/95
Teaperature
8.50 -5.400 790.575 798.821
27.50 -5.400 798.821 825.423
26.50 -5.400 825.423 850.983
14.00 -3.800 850.983 861.899
15.50 -3.800 861.899 873.960
12.50 -3.800 953.219 962.970
23.50 -2.400 962.970 976.611
17.50 -2.400 976.611 986.740
15.00 -2.400 986.740 995.413
32.00 -1.600 995.413 1008.596
35.C; -1.600 1008.596 1022.986
15.00 -1.600 1022.986 1029.158
25.474
6.209
16.173
Initial Final Meter Readings
(deg F) (deg F) Initial Final
78.0 79.0 671.890 697.180
79.0 79.0 697.180 703.325
79.0 79.0 703.325 719.309
Wet Test Meter (WIN)
DGM
Coefficient
Flow
Voluse Temp Coefficient Variation Rate
(cubic feet) (deg F) Yds Vda-(Avg.Yds) (CFM)
25.290 77.0 1.016 0.002 1.208
6.145 77.0 1.013 0.000 1.204
15.984 77.0 1.012 -0.002 1.204
Max Yds - Mln Yds -0.003626886 Must be no greater than 0.030
Average Yds -1.013636253 Must be between 0.95 to 1.05
79.0
80.0
81.0
81.0
82.0
86.0
719.309 727.485
727.485 753.809
753.809 779.025
779.025 789.820
789.820 801.740
879.651 889.205-
8.176 77.0 1.009 0.001 0.942
26.324 77.0 1.008 0.000 0.938
25.216 77.0 1.006 -0.001 0.932
Msx Yds - Mln Yds -0.002262496 Must be no greater than 0.030
Average Yds -1.007525980 Must be between 0.95 to 1.05
10.795 77.0 1.006 0.001 0.755
11.920 77.0 1.006 0.001 0.753
9.554 78.0 1.004 -0.001 0.747
Max Yds - Mln Yds -0.002245979 Must be no greater than 0.030
Average Yds -1.005164785 Must be between 0.95 to 1.05
13.394 78.0 1.003 -0.001 0.557
9.946 78.0 1.004 0.000 0.556
8.524 78.0 1.006 0.002 0.556
Max Yds - Mln Yds -0.002785363 Must be no greater than 0.030
Average Yds -1.004591811 Must be between 0.95 to 1.05
12.956 78.0 1.006 -0.002 0.396
14.150 78.0 1.007 0.000 0.395
6.080 78.0 1.010 0.002 0.396
Max Yds - Nln Yds -0.004205886 Must be no greater than 0.030
Average Yds -1.007822494 Mint be between 0.95 to 1.05
Overall Average Yds -1.007748265
I certify that the above Dry Gas Meter Mas calibrated in accordance with E.P.A. Method 5 , paragraph 7.1 :CFR 40 Part 60.
using the Precision Wet Test Meter * 11AE6, which In turn was calibrated using the American Bell Prover f 3785.
certificate * F107, uhJdC Is traceable to the National Bureau of Standards (N.I.S.T.).
8.246
26.602
25.560
10.916
12.061
9.751
13.641
10.129
8.673
13.183
14.390
6.172
79.0
79.0
80.0
81.0
81.0
86.0
86.0
87.0
87.0
88.0
89.0
89.0
87.0 889.205 902.599
87.0 902.599 912.545
88.0 912.545 921.069
89.0 921.069 934.025
89.0 934.025 948.175
90.0 948.175 954.255
Signature
Date
-------
TEMPERATURE SENSOR CALIBRATION FORM
Temperature Sensor No.
Ambient Temp. °F 1
Sensor Type
~ ( ^
Length
Reference Temp. Sensor:
Barometric Pressure, "Eg
Date
>-zo--!>
1C,
Z^c-
Test
Sensor
34-
76
^=«-
%
•
Temp.
j>m.%
o
Within
Limits
Y/N
Calibrated
By
•
Diff - (Ref' Tett*>
(Ref. Temp. + 460)
x 100 * 1.5
-------
TEMPERATURE SENSOR CALIBRATION FORM
Temperature Sensor No.
Ambient Temp. °F 7
Reference Temp. Sensor:
Sensor Type fc>7c. Length _LZl
Barometric Pressure, "He "Z.^. &
i/
Date
VZo-nv
^r
if
Ref.
Point
No.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Temp.
Source
IC<£
Mi-o
/y^is,
A*t /C.
[Bol<-
K*-o
Temp. °F
Ref.
Sensor
3^
-?<* .
l^>c.
Test
Sensor
3^
17
zo€
•
Temp.
Diff. %
.fo<^
./ 5-c.
./So
Within
Limits
Y/N
y
y
X
Calibrated
By
(1U^
J\^
$^
Teiro Diff - (**f • Teng? * 46_0) " ( Te8t T&SP' * 460) x 100 < 1.5
p' (Ref. Temp. + 460)
-------
TEMPERATURE SENSOR CALIBRATION FORM
Temperature Sensor No.
Ambient Temp. °F
&M -tio
"7*-
Reference Temp. Sensor:
^ ^ .<
Sensor Type K-TC Length *
Barometric Pressure, "Hg
Date
-!»•**
cr
*'
Ref.
Point
No.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Temp.
Source
H t-^
Vi/v"'«
?«lo'
Temp. °F
Ref.
Sensor
33
*^ ^t-*
^ ^*j ^C
Test
Sensor
*>*
It
-2.1 0
Temp.
Diff. %
.4
\i®
\i^
V renp. Diff - (*ef. Teinp -^ 460) - ( Test Temp
460)
Temp. + 460)
-------
TEMPERATURE SENSOR CALIBRATION FORM
t I
m .. -T^ • Length ^
Ambient Temp. °F 23; . Barometric Pleasure, "Hg -se>. •£«»•'
Reference Temp. Senson m
Date
>-lM»
/•
•'
Ref.
Point
No.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Temp.
Source
ICC.
£**
%£'
Temp. °F
Ref.
Sensor
S3
7^ .
tolS
Test
Sensor
3.3
•7.^
2.01J
•
Temp.
Diff. %
o
. 1*7
o
•••
Within
Limits
Y/N
y
Y
Y
- -
Calibrated
By
A(^>
((u^
XU)%
w
Diff
{Ref' Temp 40) " ( Teat Tg>>
460)
(Ref. Temp. + 460)
100 * 1.5 V
-------
PACIFIC ENVIRONMENTAL SERVICES.1NC.
4700 Duke Drive,
Suite 150
Mason, Ohio
Phone: (513) 398-2556
Fax:(513)3983342
www.pec.com
TEMPERATURE SENSOR CALIBRATION DATA
FOR STACK THERMOCOUPLES
THERMOCOUPLE NUMBER:
BAROMETRIC PRES.(in.Hg):
AMBIENT TEMP. °F:
T5A
DATE:
12/22/97
29.52
72
REFERENCE:
'Mercury-in-glass:
Other
"CALIBRATOR:
ASTM-3F
J.C.
Reference
point
number
1
2
3
4
Source*
(Specify)
Ambient Air
Cold Bath
Hot Bath
Hot Oil
Reference
Thermometer
Temperature.'F
72
44
204
400
Thermocouple
Potentiometer
Tempefatur*,°F
72
44
204
400
Temperature
Difference,6
%
0.00
0.00
0.00
0.00
Type of calibration used.
Bfref. temp aP+A60Wtest thermometer temp.°F+46tH
X100
reftemp,°F+460
Comments:
100<1.5%
STACK THERMOCOUPLE CALIBRATION FORM
1998 Yearly CaDbrafon
-------
PACIFIC ENVIRONMENTAL SERV1CES.INC.
4700 Duke Drive,
Suite 150
Mason, Ohio
Phone: (513) 398-2556
Fax: (513) 3983342
www.pes.com
TEMPERATURE SENSOR CALIBRATION DATA
FOR STACK THERMOCOUPLES
THERMOCOUPLE NUMBER:
T6F
DATE:
12/23/97
BAROMETRIC PRES.(ln.Hg):
AMBIENT TEMP, °F:
29.52
74
REFERENCE:
'Mercury-in-glasa:
Other:
"CALIBRATOR:
ASTM-3F
G.Gay
Reference
point
number
1
2
3
4
Source*
(Specify)
Ambient Air
Cold Bath
Hot Bath
Hot OH
Reference
Thermometer
Temperature,°F
74
34
172
349
Thermocouple
Potentiometer
Temperature.'F
74
33
172
350
Temperature
Difference,"
%
0.00
0.20
0.00
0.12
*Type of calibration used.
bfref. terrm.8F+46QWtest thermometer temp °F+46Cfl
X100
reftemp,°F+460
Comments:
100<1.5%
STACK THERMOCOUPLE CALIBRATION FORM
1998 Yearly Calibration
-------
5H
PACIFIC ENVIRONMENTAL SERVICES, INC
4700
Suite ISO
Mason, Ohio 45040
Phone: (513) 398-2556
Fax (513) 398-3342
www.pes.com
Pilot Tube Number: 5H Dare:
Effective Lcmoh: ' 59' . Calibrated By:
Pilot Tube Openings Damaged? YES | NO |
Pitot Tube Assembly Level? | YES j NO
a , = 0.7 "(< 10°) a 2 -
(3, = 4 8«5°) PJ .
Y= 0.6 6 - 0.4 A =
z = A sin Y = 0.0100 cm (in.) 0.32 cm ( < 1/8 in.)
w - A sin 9 •= 0.0067 cm (in.) 0.08 cm (< 1/32 in.)
PA = 0.478 cm (in.)
12/22/97
S. Simon
1.6 "(< 10°)
3.3 e«5°)
0.956
PB =
0.478
cm (in.)
0.375
cm (in.)
..Oil
"CSI
(a>
(d)
£7
V
JLJL
? A
i"
(•>
^Jr 0«e- or.)
I2±I\SlC.~>
Tftt types a /aai«op>nkigmbialarmeni xnawn «txivo wll na area tnaD««**r
-------
09/14/98 10:08 O513 098 3342
rts
7A
PACIFIC ENVIRONMENTAL SERVICES, INC.
4700 Duke Drive,
Suite 150
Mason, Ohio 45040
Phone: (513) 398-2556
Fax (513) 398-3342
www.pes.com
Pitot Tube Number: 7 A Date:
Effective Length: 86" Calibrated By:
Pitot Tube Openings Damaged? YES | NO |
Pitot Tube Assembly Level? | YES | NO
a , - 0 '(< 10°) a , m
P, - 3 °(<5°) P, -
Y- 4 9*1 A-
r = A sin Y «• 0.069 cm (in.) 0.32 cm ( < 1/8 in.)
w-Asin9- 0.017 cm(in.) 0.08 an (< 1/32 in.)
PA - 0.498 cm On.)
12/22/97
S. Simon
i
2
0.996
°(< 10°)
O «M»
0.498
cm (in.)
0.375
cm (in.)
Yfm typ*c of fae»-ep»n*>9 mkriIgrrnBnt ahewn >bev« wll net effect th«»•••!»• v«lu«of Co(») »e
tong a« ^,Bnd°jl» loss trvnoraqml te tO^.a^ana ft, t>l«sthin «raqi»lte 8". » h buthvi er
(X32 cm (1/8 in.), and w • teat than oraqud to O.OB em(lA2 m.) (mHraneaH.O m
Pitot Tube Calibration Form
1998 Yearly Cilibntkm
-------
NOZZLE CALIBRATION SHEET
DATE: fc-
CALIBRATION BY:.
Nozzle
Identification
Number
a u\* ^ u
D1fln.
0 . I °, (
D2,in.
0 . i °i 0
D3,in.
o. n »
AD, in.
e>t DO t
avg
O.lHl
Where:
D1 2 3 = nozzle diameter measured on a different diameter, in.
Tolerance = measure within 0.001 in.
AD = maximum difference in any two measurements, in.
Tolerance = 0.004 in.
Davg= average of D.,, D2,
-------
c
NOZZLE CALIBRATION SHEET
DATE:
CALIBRATION BY:.
Nozzle
Identification
Number
C»uKs-s \) g~
Drin.
o^n
D2, in.
o.-z-vi
D3,in.
d>.-z^v (o
AD, in.
<£>,<£...> V
Davg
0,-LH
Where:
D1 2 3 * nozzle d>ameter measured on a different diameter, in.
Tolerance « measure within 0.001 in.
AD = maximum difference in any two measurements, in.
Tolerance « 0.004 in.
avgs
of DV D2, D3.
-------
Post-it* Fix
7671
TO
Certificate of Analysis: b.H.A. HrotorarrSas Mixture
Rec#
Cylinder No:
Cylinder Pressure:
Certification Date
Co.
/4PCC.
Airqas Specialty Case
325 McCausMCaxt
Cteflfc. CTOW10
Phone COS) Z5WB7
4149
CC84329
I 2000
3/2/98
Purchase Order #
Expiration Date:
Laboratory:
139680
3/2/01
Cheshire, CT
Reference Standard
trrfon
JfflS
GMIS
GMIS
Component
Carbon DtoxWe
Ox/gen
Instrumentation;
Instniment/Model/Serial No.
Rc«mount/NGA2DOQ/Racl*1
Strvomex/244/701/- £8 •
Cyl. Numbtr
CC34977
CC10014
Anatvtteal Principle
NDIR
Parmagnetic
Concentiatlot^
14.08%
20.98%
Analytical Methodology does not require correction for analytical interferences.
Certified Concentrations;
Analytical Results;
1st CoiQBfiilfint:
2nd Component;
R
S
z
173.630
81.110
Certification performed in accordance with "EPA Tnceability Pi
procedures listed. -,
Do not use cylinder below
s
z
R
91.130
1.420
173.830
Z
R
S
1.4
91.150
Cone
Cone
Cone
AVO:
Cone
Cane
Cone
AVG:
11.034%
11JM7%
11.040
using the assay
150psig.
Approve for Release
-------
Airgas
Airgas Specialty Ga
325 McCasland Court
Cheshire. CT 06410
Phone:(203)250-6827
FAX. (203)250-6842
Certificate of Analysis: E.P.A. Protocol Gas Mixture
Rec#
Cylinder No:
Cylinder Pressure:
Certification Date
4150
CC86922
2000
3/2/98
Reference Standard Information:
Type Component
GMIS
GMIS
Carbon Dioxide
Oxygen
Purchase Order*
Expiration Date:
Laboratory:
13980
3/2/01
Cheshire. CT
Cvi. Number
CC34977
CC19914
Concentration
14.08 %
20.98 %
instrumentation:
Instrument/Model/Serial No.
Rosemount/NGA2000/Rack#1
Servomex/244/701/488
Analytical Principle
NDIR
Parmagnetic
Analytical Methodology does not require correction for analytical interferences.
Certified Concentrations:
Analytical Results:
1st Component:
0.305
Cone
Cone
Cone
AVG:
19.065%
19.006 %
18.964%
19.012 %
2nd Component:
1st Analysis Data:
R 173.630
S
Z
3/2/98
156.87
1.8U
S
Z
R
156.800
1.420
173.830
Z
R
S
1.460
173.810
157.090
Cone
Cone
Cone
AVG:
19.175 %
19.165 %
19.158 %
19.166 %
Certification performed in accordance with ~EPA TraceabUity Protocol (Jan.JWWusing the assay
procedures listed.
Do not use cylinder below 1 50 psig.
Approved for Release
-------
Scott Specialty Gases
pped
From:
1750 EAST CLUB BLVD
DURHAM
Phone: 919-220-0803
NC 27704
Fax: 919-220-0808
CERTIFICATE OF ANALYSIS
PACIFIC ENVIRONMENTAL SER
5001 SOUTH MIAMI
3RD FLOOR, SUITE #300
RESEARCH TRIANGLE PA
NC 27709-2077
PROJECT #: 12-28662-001
P0#: 104-98-0178
ITEM #: 12023411 CAL
DATE: 5/01/98
CYLINDER #: AAL13302
FILL PRESSURE: 1400 PSIG
ANALYTICAL ACCURACY: +-1%
PRODUCT EXPIRATION: 5/01/2001
BLEND TYPE : RECERTIFICATION OF CYLINDER
REQUESTED GAS
COMPONENT CONG MOLES
PROPANE
AIR
30.
PPM
BALANCE
ANALYSIS
(MOLES)
30.0
PPM
BALANCE
ANALYST:
B.M. BECTON
-------
Scott Specialty Gases
11SO EAST CLUB BOULEVARD, DURHAM, NC 27704
$19)2204803 FAX (919) 22OOBOB
CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS
sr
•54
Customer
Pacific Environmental Services
Attn: Mr. Frank Meadows
P.O. Box 12077 ;
L Triangle Park, NC 27709
"' V*. >,"
.YT1CAL INFORMATION
Assay Laboratory
Scott Specialty Gases, fiic.
1750 East Club Boulevatd
Duiham,NC 27704
Purchase Order 104-95-0121
Scott Project f 11-11271
iYTKD CYLINDER
fied to exceed Ac minimmn specifications of EPA Protocol Procedure #Gl,issuedSeptembex, 1993. ••
der Number AAL-13302 Certification Date 04-18-95 Expiration Date
r Pressure 2000 PSIG Previous Certificatkn None
Analytical Unce
+/- 1% N1ST Directly Tractable
Balance
mlem&m ISO PSK?.
• ioohBm of not knowm etrot
STANDARD
#1668
Expiration Date
06-%
odd/Serial*
/3400/16804
.YZER READINGS
Cylinder Number
ALM-032005
Last Date Calibrated
03-23-95
R-Rrferenc* Gum T>Tot CM
Concentration
95.5 PPM Balance in Air
Analytical Principle
Coefflrfart)
Flnt Triad Analysb
Second Triad Analyiis
CaiibratioB Curve
CMe: 0*-1W3 Ropwe Una: An*
STD-1397317 SPL-A3W«
SPL-43TW2 SPL-43W70
STD-139«»73 STD-1393703
DHK RMpaMlMlt:
5TD- 5PL"
SPL- m."
STD- STTD-
DM: (O-2MS
STO-
SPL-
sn>-
STL-
SPL-
S7D-
SPL-
STD-
8PL-
SPL-
sn>-
DMK
DMK
STD-
SPL-
STD-
8PL-
SFL-
8n>-
DMK
8PL-
sn>*
SPL-
SPL-
S1D-
-------
Air Jtroaur ana
SPECIALTY GK _ ./EPARTMENT
12722 S. WENTWORTH AVENUE
CHICAGO, IL 60628
Certificate of Analysis - EPA Protocol Gas Standard
Page 1 of 1
PERFORMED ACCORDING TO EPA TRACEABILITY PROTOCOL FOR ASSAY AND CERTIFICATION OP GASEOUS CALIBRATION STANDARDS (PROCEDURE
Customer:
ROCHESTER - APCI
77 DEEP ROCK RO.
ROCHESTER NY 14624-
PO: GALSON Reli
*** Certified Concentration ***
Certified
Component Concentration
Order Nos 314-053317-
Batch Not 861-34622
Notest
Cylinder Nos SG9151288BJ
Bar Code Nos DDJ496
Cylinder Pressure's 2000 psig
Certification Dates 09/27/96
Expiration Dates 09/27/99
********* Reference Standard* ********* ************* Analytical Instrumentation *********-
Standard Instrument Serial Last Measurement
Cylinder f Number Concentration Make/Model Number Calibration Principal
PROPANE
Balance Cast AIR
Oxygen Concentration
58.3 ±.28 PPM SG9128557BAL GMIS
50.33 PPM Gow-Mac 750 59405U 09/10/96 GC-FID
19.9 %
* Standard should not be used below ISO psig
Analysts
Approved By:
EstafanouV
R\CWfa Pry
\
-------
For Technical Information Call
1-800-752-1597
PRODUCTS
Air Produce* and Chemicala, Inc. • 13722 S. Mentvorth Avenue, Chicago, It S062B
ISO CERTIFICATION: 9002
CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS STANDARD
PERFORMED ACCORDING TO EPA IHACEABILfTY PROTOCOL FOR ASSAY ANL CERTIFICATION OF GASEOUS CALIBRATION STANDARDS (PROCEDURE KG1)
CUB toman
AIR PRODUCTS AND CHEMICALS, INC.
4822 INDUSTRY LANE
UDI BUSINESS PARK
DURHAM NC 27709
Order No: 833-075875-01
Batch No: 861-45269
PO:
Release:
Cylinder No:
Bar Code No:
SG9170173BAL
DDT476
Cylinder Pressure*: 2000 psig
Certification Date: 02/18/98
Expiration Date: 02/18/01
CERTIFIED CONCENTRATION
COMpOBMie
PROPANE
AIR
Certified
Caaeratxatioa
•2.<*.c? PPM
Balance Oai
REFERENCE STANDARDS
Cylinder
•uaber
8a»13i«7JBAL
•taadard
Type
sas
atandtrd
Coaeentratioa
100.7 PPM
ANALYTICAL INSTRUMENTATION
Tnirnnrint"
Make/Nodal
Oow-Hac 750
8«rlal
Hu^>«r
5940SU
La>t
Calibcatioa
02/10/98
MaaaureaMat
triaeipal
GC-P10
Contaminant
Oxygen Concentration
21.0 %
STANDARD SHOULD NOT BE USED BELOW 150 PSIQ
. .
Approved By:
\
^> /frsO
ames Laaa
-------
5PECTBH GHSES
277 Colt Street » Irvington. NJ 07111 USA Tel: (973) 372-2060 • (800) 929-2427 • Fax: (973) 372-8551
SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08865 TEL: (908) 454-7455
SHIPPED TO:
APCCLTD
60 Industrial Park Road West
Tolland.CT 06084
CERTIFICATE
OF
ANALYSIS
SOI ORDER*: 133817
FTEM*: 2
CERTIFICATION DATE: 6/12/98
P.O.*: 3426
BLEND TYPE: CERTIFIED
CYLINDER*: CC91137
CYLINDER PRES: 2000 psfe
CYLINDER VALVE: CGA 330
ANALYTICAL ACCURACY: + / - 6%
COMPONENT
REQUESTED GAS
CONG
ANALYSIS
Hydrogen Chloride
Nitrogen
25.0 ppm
Balance
27.1 ppm
Balance
ANALYST:
DATE:
6/12/98
Ted Neeme
USA • United Kingdom • Germany • Japan
iso e o o a
-------
5PECTRH 6RSES
277 Coit Street«Irvington. NJ 07111 USA Tel: (973) 372-2060 •(800) 929-2427 • Fax: (973) 372-8551
SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08865 TEL (908) 454-7455
SHIPPED TO:
APCCLTD
60 Industrial Park Road West
Tolland.CT 06084
CERTIFICATE
OF
ANALYSIS
SGI ORDER*: 133817
FTEMf: 3
CERTIFICATION DATE; 6/12/98
P.OJP: 3426
BLEND TYPE: CERTIFIED
CYLINDER *: CC88470
CYLINDER PRES: 2000 psig
CYLINDER VALVE: CGA 330
ANALYTICAL ACCURACY: + / - 6%
COMPONENT
REQUESTED GAS
CONC
ANALYSIS
Hydrogen Chloride
Nitrogen
42.0 ppm
Balance
46.0 ppm
Balance
ANALYST:.
-J
DATE:
6/12/98
Ted Neeme
USA • United Kingdom • Germany • Japan
iao e o o a
-------
• •••• Ul
277 Coit Street • Irvington. NJ 07111 USA Tel: (201) 372-2060 • (800) 932-0624 • Fax: (201) 372-8551
SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08865 TEL (908) 454-7455
SHIPPED TO:
APCC LTD-Eric Dtthrich
C/O Redlands Stone Products Company
179101H10 Wtat
San Antonio, TX 78257
CERTIFICATE
OF
-YSIS
SGI ORDER * : 134121
ITEM*: 1
CERTIFICATION DATE: 0/23/98
P.OM: 3454
BLEND TYPE:
CVUNDBtf :1912728Y
CYLJNDBt PRE8: 2000 peig
CYLINDER VALVE: CGA 330
ANALYTICAL ACCURACY: + / - 8%
COMPONENT
REQUESTED GAS
CONC
ANALYSIS
Hydrogen Chloride
Nitrogen
46.0 ppm
48.8 ppm
Bstance
ANALYST:
Ted
DATE:
6/23/98
USA — California • United Kingdom • Germany
iso a a a a
-------
SPECTRfl EflSES
RECEIVED JUN 1 7
^^M 277 Cort Street • Irvington. NJ 07111 USA Tel: (973) 372-2060 • (600) 929-2427 • Fax: (973) 372-6551
SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08865 TEL: (908) 454-7455
SHIPPED TO:
APCCLTD
60 Industrial Park Road West
ToHand.CT 06084
CERTIFICATE
OF
ANALYSIS
SOI ORDER*: 133817
ITEM*: 4
CERTIFICATION DATE: 6/12/98
P.O.*: 3426
BLEND TYPE: CERTIFIED
CYLINDER*: 1836637Y
CYLINDER PRES: 2000 psig
CYLINDER VALVE: CGA 330
ANALYTICAL ACCURACY: + / - 5%
COMPONENT
REQUESTED GAS
CONG
ANALYSIS
Hydrogen Chloride
300 ppm
303 ppm
Nitrogen
Balance
ANALYST:
DATE:
6/12/96
USA • United Kingdom • Germany • Japan
ISO BOOS
-------
TABLE C-3.4
Redland Stone Products Company Calibration Table
2 8-June-9 8
INLET
San Antonio, TX
THC
ZERO GAS
LOW RANGE
MID RANGE
HIGH RANGE
02
ZERO GAS
MID RANGE
HIGH RANGE
C02
ZERO GAS
MID RANGE
HIGH RANGE
HCI
ZERO GAS
MID RANGE
HIGH RANGE
CALIBRATION ERROR TEST
Range 0 • 100ppm
ACTUAL CONC
0.0
30.0
58.3
92.4
Range 0 - 25%
ACTUAL CONC
0.0
11.04
19.2
Range 0 - 20%
ACTUAL CONC
0.0
11.03
19.0
RESPONSE
0.0
32.6
58.8
93.1
RESPONSE
0.3
11.2
19.0
RESPONSE
0.2
11.3
19.1
PREDICTED
-
30.2
58.7
93.1
DIFFERENCE
0.3
0.2
-0.2
DIFFERENCE
0.2
0.3
0.1
% CAL ERR
-
7.9%
0.1%
0.0%
% SPAN
1.2%
0.6%
-0.8%
% SPAN
1.0%
1.4%
0.5%
Range 0 - 350ppm
ACTUAL CONC
0.0
46.0
303.0
RESPONSE
1.9
48.1
299.4
DIFFERENCE
1.9
2.1
-3.6
% SPAN
0.5%
0.6%
-1.0%
-------
Project Number
Firm Nairn
Site Location
Test Number
Source
Date
98042
PES
Continuous Emissions Monitoring Data Sheet
EPA Methods 3A, 25A, and 322
San Antonio
1
Inlet Redland
6/28/98
_ Test era
_ Ambient Temp
Time
100
11:05-13:25
Analyzer
Hydrogen Chloride
Total Hydrocarbon*
Oxygen
Carbon Dioxide
Range
0-350ppm
(MOOppm
0-25%
0-20%
zero
upscale
Rack Cal.
zero
upscale
zero
upscale
upscale
1.9
299.4
n/a
n/a
0.3
0.2
11.3
PreTest
Sys. Cal.
2.2
304.8
0.0
93.1
0.1
10.8
0.3
10.8
Cal. Bias
% of Span
0.1%
1.5%
n/a
n/a
-0.8%
•1.6%
0.5%
•2.5%
±5%
Post Test
Sys. Cal.
3.3
303.0
0.0
90.0
0.1
11.3
0.3
10.8
Cal. Bias
% of Span
0.4%
1.0%
n/a
n/a
-O.B%
0.4%
0.5%
-2.5%
±5%
Drift
of Span
-0.3%
0.5%
0.0%
3.1%
0.0%
•2.0%
0.0%
0.0%
±3%
Avg. Analyzer
Response
16.4
Actual Qae
Cone.
n/a
-------
INLET
HCI In-Situ Matrix Spike
Recovery Efficiencies
Plant Redland San Antonio, TX
Date 28-Jun-98
Project No. 98042
Cs-Spike Gas Cone, (ppm)
303
Testl
nrtial
Final
Su-Native Concentration (ppm)
Qt-Analyzer Flow (Ipm)
Qs-Dilution Rate (Ipm)
Sm-Observed Concentration (ppm)
Ce-Expected Concentration (ppm)
Spike Recovery
Su-Native Concentration (ppm)
Qt-Analyzer Flow (Ipm)
Qs-Dilution Rate (Ipm)
Sm-Observed Concentration (ppm)
Ce-Expected Concentration (ppm)
Spike Recovery
36
11.25
1.5
74.8
67.4
111%
17.5
10.00
1.5
67.8
54.7
124%
-------
TABLE C-3.3
Redland Stone Products Company Calibration Table
28-June-98
OUTLET
San AntonioJX
THC
ZERO GAS
LOW RANGE
MID RANGE
HIGH RANGE
02
ZERO GAS
MID RANGE
HIGH RANGE
C02
ZERO GAS
MID RANGE
HIGH RANGE
HCI
ZERO GAS
MID RANGE
HIGH RANGE
CALIBRATION ERROR TEST
Range 0-100ppm
ACTUAL CONG
0.0
30.0
58.4
92.4
Range 0 - 25%
ACTUAL CONC
0.0
11.04
19.2
Range 0 - 20%
ACTUAL CONC
0.0
11.03
19.0
Range 0 - SOppm
ACTUAL CONC
0.0
27.1
48.8
RESPONSE
0.0
32.6
57.2
92.7
RESPONSE
0.3
11.2
19.0
RESPONSE
0.2
11.3
19.1
RESPONSE
0.9
27.2
48.9
PREDICTED
••
30.1
58.6
92.7
DIFFERENCE
0.3
0.2
-0.2
DIFFERENCE
0.2
0.3
0.1
DIFFERENCE
0.9
0.1
0.1
% CAL ERR
-
8.3%
•2.4%
0.0%
% SPAN
1.2%
0.6%
-0.8%
% SPAN
1.0%
1.4%
0.5%
% SPAN
1.8%
0.2%
0.2%
-------
Prefect Number
Finn Name
Site Location
Teat Number
Source
Dal*
98042
PES
San Antonio
1
Continuous Emissions Monitoring Data Sheet
EPA Method* 3A, 25A, and 322
Tmt an
Ambient Temp
Time
Outlet Redland
6/28/98
100
10:35-12:55
Analyzer
rfyQroQtn cnlorMw
Total Hydrocarbon*
Oxygen
Carbon DloxWe
Range
0-50ppm
0-100ppm
0-25%
0-20%
upscale
Rack Cal.
upscale
upscale
ZGfO
upscale
48.9
n/a
n/a
0.3
11.2
0.2
11.3
Pro Teat
Sys. Cal.
0.9
4B.9
0.0
92.7
0.1
10.9
0.3
10.9
Cal. Bias
% of Span
0.0%
0.0%
n/a
n/a
•0.8%
•1.2%
0.5%
•2.0%
±5%
Post Test
Sys. Cal.
1.4
49.0
0.0
94.2
0.1
11.3
0.3
11
Cal. Bias
% of Span
1.0%
0.2%
n/a
n/a
•0.8%
0.4%
0.5%
•1.5%
±5%
Drift
% of Span
-1.0%
-0.2%
0.0%
-1.5%
0.0%
-1.6%
0.0%
•0.5%
±3%
Avg. Analyzer
Reaponee
1.9
Actual Qaa
Cone.
n/a
-------
Outlet
HCI In-Sltu Matrix Spike
Recovery Efficiencies
Plant
Date
Project No.
Testl
Initial
Final
Redland San Antonio, TX
28-Jun-98
98042
Su-Native Concentration (ppm)
Qt-Analyzer Flow (Ipm)
Qs-Dilution Rate (Ipm)
Sm-Observed Concentration (ppmj
Ce-Expected Concentration (ppm)
Spike Recovery (%)
Su-Native Concentration (ppm)
Qt-Analyzer Flow (Ipm)
Qs-Dilution Rate (Ipm)
Cs-Spike Gas Cone, (ppm) 303
3.5
16.25
1.5
33.0
28.8
115%
4.4
15
1.5
Sm-Observed Concentration (ppm) 40.4
Ce-Expected Concentration (ppm)
Spike Recovery (%)
31.5
128%
-------
APPENDIX F
PROCESS DATA
Process data to be supplied to EPA EMC by
Research Triangle Institute under a separate work assignment.
-------
-------
APPENDIX G
SAMPLING & ANALYSIS METHODS
(EPA Methods 1,2 w/Alignment Approach, 3A, 23 and proposed amendments, 25A, 322)
-------
-------
Appendix G.I
Sampling & Analysis Methods
EPA Method 1
-------
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
Method 1 - Sample and Velocity Traverses for Stationary Source*
1. PRINCIPLE AND APPLICABILITY
1.1 Principle. To aid in the representative measurement of
pollutant emissions and/or total volumetric flow rate from a
stationary source, a measurement site where the effluent stream is
flowing in a known direction is selected, and the cross-section of
the stack is divided into a number of equal areas. A traverse
point is then located within each of these equal areas.
1.2 Applicability. This method is applicable to flowing gas
streams in ducts, stacks, and flues. The method cannot be used
when: (1) flow is cyclonic or swirling (see Section 2.4), (2) a
stack is smaller than about 0.30 meter (12 in.) in diameter, or
0.071 m2 (113 in.2) in cross-sectional area, or (3) the measurement
site is less than two stack or duct diameters downstream or less
than a half diameter upstream from a flow disturbance.
The requirements of this method must be considered before
construction of a new facility from which emissions will be
measured; failure to do so may require subsequent alterations to
the stack or deviation from the standard procedure. Cases
involving variants are subject to approval by the Administrator,
U.S. Environmental Protection Agency.
2. PROCEDURE
2.1 Selection of Measurement Site. Sampling or velocity
measurement is performed at a site located at least eight stack or
duct diameters downstream and two diameters upstream from any flow
disturbance such as a bend, expansion, or contraction in the stack,
or from a visible flame. If necessary, an alternative location may
be selected, at a position at least two stack or duct diameters
downstream and a half diameter upstream from any flow disturbance.
For a rectangular cross section, an equivalent diameter (D.) shall
be calculated from the following equation, to determine the
upstream and downstream distances:
Prepared by Emission Measurement Branch EMTIC TM-001
Technical Support Division, OAQPS, EPA
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
2LW
(L + W)
Eq. 1-1
Where
Length and W * width.
An alternative procedure is available for determining the
acceptability of a measurement location not meeting the criteria
above. This procedure,
determination of gas flow angles at the sampling points and
comparing the results with acceptability criteria, is described in
Section 2.5.
2.2 Determining the Number of Traverse Points.
2.2.1 Particulate Traverses. When the eight- and two-diameter
criterion can be met, the minimum number of traverse points shall
be: (1) twelve, for circular or rectangular stacks with diameters
(or equivalent diameters) greater than 0.61 meter (24 in.}; (2)
eight, for circular stacks with diameters between 0.30 and 0.61
meter (12 and 24 in.); and (3) nine, for rectangular stacks with
equivalent diameters between 0.30 and 0.61 meter (12 and 24 in.).
When the eight- and two-diameter criterion cannot be met, the
minimum number of traverse points is determined from Figure 1-1.
Before referring to the figure, however, determine the distances
from the chosen measurement site to the nearest upstream and
downstream disturbances, and divide each distance by the stack
diameter or equivalent diameter, to determine the distance in terms
of the number of duct diameters. Then, determine from Figure 1-1
the minimum number of traverse points that corresponds: (1) to the
number of duct diameters upstream; and (2) to the number of
diameters downstream. Select the higher of the two minimum numbers
of traverse points, or a greater value, so that for circular stacks
the number is a multiple of 4, and for rectangular stacks, the
number is one of those shown in Table 1-1.
Prepared by Emission Measurement Branch
Technical Support Division, OAQPS, EPA.
XMTZC TM-001
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 3
2.2.2 Velocity (Non-Particulate) Traverses. When velocity or
volumetric flow rate is to be determined (but not particulate
matter), the same procedure as that used for particulate traverses
(Section 2.2.1) is followed, except that Figure 1-2 may be used
instead of Figure 1-1.
2.3 Cross-Sectional Layout and Location of Traversa Points.
2.3.1 Circular Stacks. Locate the traverse points on two
perpendicular diameters according to Table 1-2 and the example
shown in Figure 1-3. Any equation (for examples, see Citations 2
and 3 in the Bibliography) that gives the same values as those in
Table 1-2 may be used in lieu of Table 1-2.
For particulate traverses, one of the diameters must be in a plane
containing the greatest expected concentration variation, e.g.,
after bends, one diameter shall be in the plane of the bend. This
requirement becomes less critical as the distance from the
disturbance increases; therefore, other diameter locations may be
used, subject to the approval of the Administrator.
In addition, for stacks having diameters greater than 0.61 m (24
in.), no traverse points shall be within 2.5 centimeters (1.00 in.)
of the stack walls; and for stack diameters equal to or less than
0.61 m (24 in.), no traverse points shall be located within 1.3 cm
(0.50 in.) of the stack walls. To meet these criteria, observe the
procedures given below.
2.3.1.1 Stacks With Diameters Greater Than 0.61 m (24 in.). When
any of the traverse points as located in Section 2.3.1 fall within
2.5 cm (1.00 in.) of the
stack walls, relocate them away from the stack walls to: (1) a
distance of
2.5 cm (1.00 in.); or (2) a distance equal to the nozzle inside
diameter, whichever is larger. These relocated traverse points (on
each end of a diameter) shall be the "adjusted" traverse points.
whenever two successive traverse points are combined to form a
single adjusted traverse point, treat the adjusted point as two
separate traverse points, both in the sampling (or velocity
measurement) procedure, and in recording the data.
2.3.1.2 Stacks With Diameters Equal To or Less Than 0.61 m (24
in.). Follow the procedure in Section 2.3.1.1, noting only that
any "adjusted" points should be relocated away from the stack walls
to: (1) a distance of 1.3 cm (0.50 in.); or (2) a distance equal to
the nozzle inside diameter, whichever is larger.
2.3.2 Rectangular Stacks. Determine the number of traverse points
as explained in Sections 2.1 and 2.2 of this method. From Table 1-
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 4
1, determine the grid configuration. Divide the stack cross-
section into as many equal rectangular elemental areas as traverse
points, and then locate a traverse point at the centroid of each
equal area according to the example in Figure 1-4.
If the tester desires to use more than the minimum number of
traverse points, expand the "minimum number of traverse points"
matrix (see Table 1-1) by adding the extra traverse points along
one or the other or both legs of the matrix; the final matrix need
not be balanced. For example, if a 4 x 3 "minimum number of
points" matrix were expanded to 36 points, the final matrix could
be 9 x 4 or 12 x 3, and would not necessarily have to be 6 x 6.
After constructing the final matrix, divide the stack cross-section
into as many equal rectangular, elemental areas as traverse points,
and locate a traverse point at the centroid of each equal area. The
situation of traverse points being too close to the stack walls is
not expected to arise with rectangular stacks. If this problem
should ever arise, the Administrator must be contacted for
resolution of the matter.
2.4 Verification of Absence of Cyclonic Plow. In most stationary
sources, the direction of stack gas flow is essentially parallel to
the stack walls. However, cyclonic flow may exist (1) after such
devices as cyclones and inertial demisters following venturi
scrubbers, or (2) in stacks having tangential inlets or other duct
configurations which tend to induce swirling; in these instances,
the presence or absence of cyclonic flow at the sampling location
must be determined. The following techniques are acceptable for
this determination. Level and zero the manometer. Connect a Type
S pitot tube to the manometer. Position the Type S pitot tube at
each traverse point, in succession, so that the planes of the face
openings of the pitot tube are perpendicular to the stack cross-
sectional plane; when the Type S pitot tube is in this position, it
is at "0° reference." Note the differential pressure (Ap) reading
at each traverse point. If a null (zero) pitot reading is obtained
at 0° reference at a given traverse point, an acceptable flow
condition exists at that point. If the pitot reading is not zero
at 0° reference, rotate the pitot tube (up to ±90° yaw angle) ,
until a null reading is obtained. Carefully determine and record
the value of the rotation angle (a) to the nearest degree. After
the null technique
has been applied at each traverse point, calculate the average of
the absolute values of a; assign a values of 0° to those points for
which no rotation was required, and include these in the overall
average. If the average value of a is greater than 20°, the
overall flow condition in the stack is unacceptable, and
alternative methodology, subject to the approval of the
Administrator, must be used to perform accurate sample and velocity
traverses. The alternative procedure described in Section 2.5 may
be used to determine the rotation angles in lieu of the procedure
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 5
described above.
2.5 Alternative Measurement Site Selection Procedure. This
alternative applies to sources where measurement locations are less
than 2 equivalent or duct diameters downstream or less than one-
half duct diameter upstream from a flow disturbance. The
alternative should be limited to ducts larger than 24 in. in
diameter where blockage and wall effects are minimal. A
directional flow-sensing probe is used to measure pitch and yaw
angles of the gas flow at 40 or more traverse points; the resultant
angle is calculated and compared with acceptable criteria for mean
and standard deviation.
NOTE: Both the pitch and yaw angles are measured from a line
passing through the traverse point and parallel to the stack axis.
The pitch angle is the angle of the gas flow component in the plane
that INCLUDES the traverse line and is parallel to the stack axis.
The yaw angle is the angle of the gas flow component in the plane
PERPENDICULAR to the traverse line at the traverse point and is
measured from the line passing through the traverse point and
parallel to the stack axis.
2.5.1 Apparatus.
2.5.1.1 Directional Probe. Any directional probe, such as United
Sensor Type DA Three-Dimensional Directional Probe, capable of
measuring both the pitch and yaw angles of gas flows is acceptable.
(NOTE: Mention of trade name or specific products does not
constitute endorsement by the U.S. Environmental Protection
Agency.) Assign an identification number to the directional probe,
and permanently mark or engrave the number on the body of the
probe. The pressure holes of directional probes are susceptible to
plugging when used in particulate-laden gas streams. Therefore, a
system for cleaning the pressure holes by "back-purging" with
pressurized air is required.
2.5.1.2 Differential Pressure Gauges. Inclined manometers, U-tube
manometers, or other differential pressure gauges (e.g., magnehelic
gauges) that meet the specifications described in Method 2, Section
2.2.
NOTE: If the differential pressure gauge produces both negative
and positive readings, then both negative and positive pressure
readings shall be calibrated at a minimum of three points as
specified in Method 2, Section 2.2.
2.5.2 Traverse Points. Use a minimum of 40 traverse points for
circular ducts and 42 points for rectangular ducts for the gas flow
angle determinations. Follow Section 2.3 and Table 1-1 or 1-2 for
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 6
the location and layout of the traverse points. If. the measurement
location is determined to be acceptable
according to the criteria in this alternative procedure, use the
same traverse point number and locations for sampling and velocity
measurements.
2.5.3 Measurement Procedure.
2.5.3.1 Prepare the directional probe and differential pressure
gauges as recommended by the manufacturer. Capillary tubing or
surge tanks may be used to dampen pressure fluctuations. It is
recommended, but not required, that a pretest leak check be
conducted. To perform a leak check, pressurize or use suction on
the impact opening until a reading of at least 7.6 cm (3 in.) H20
registers on the differential pressure gauge, then plug the impact
opening. The pressure of a leak-free system will remain stable for
at least 15 seconds.
2.5.3.2 Level and zero the manometers. Since the manometer level
and zero may drift because of vibrations and temperature changes,
periodically check the level and zero during the traverse.
2.5.3.3 Position the probe at the appropriate locations in the gas
stream, and rotate until zero deflection is indicated for the yaw
angle pressure gauge. Determine and record the yaw angle. Record
the pressure gauge readings for the pitch angle, and determine the
pitch angle from the calibration curve. Repeat this procedure for
each traverse point. Complete a "back-purge" of the pressure lines
and the impact openings prior to measurements of each traverse
point.
A post-test check as described in Section 2.5.3.1 is required. If
the criteria for a leak-free system are not met, repair the
equipment, and repeat the flow angle measurements.
2.5.4 Calculate the resultant angle at each traverse point, the
average resultant angle, and the standard deviation using the
following equations. Complete the calculations retaining at least
one extra significant figure beyond that of the acquired data.
Round the values after the final calculations.
2.5.4.1 Calculate the resultant angle at each traverse point:
RA « arc cosine[ (cosineYi) (cosinePi)]
Eq. 1-2
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 7
Where:
Ri « resultant angle at traverse point i, degree.
YI » yaw angle at traverse point i, degree.
Pi - pitch angle at traverse point i, degree.
2.5.4.2 Calculate the average resultant for the measurements:
ER,
Bj. 1-3
Where:
RtVg * average resultant angle, degree.
n - total number of traverse points.
2.5.4.3 Calculate the standard deviations:
N
i-i
(n-1)
Hj. 1-4
Where:
Sd = standard deviation, degree.
2.5.5 The measurement location is acceptable if Ravg s 20° and S*
i 10°.
2.5.6 Calibration. Use a flow system as described in Sections
4.1.2.1 and 4.1.2.2 of Method 2. In addition, the flow system
shall have the capacity to generate two test-section velocities:
one between 365 and 730 m/min (1200 and 2400 ft/min) and one
between 730 and 1100 m/min (2400 and 3600 ft/min).
2.5.6.1 Cut two entry ports in the test section. The axes through
the entry ports shall be perpendicular to each other and intersect
in the centroid of the test section. The ports should be elongated
slots parallel to the axis of the test section and of sufficient
length to allow measurement of pitch angles while maintaining the
pitot head position at the test-section centroid. To facilitate
alignment of the directional probe during calibration, the test
section should be constructed of plexiglass or some other
transparent material. All calibration measurements should be made
at the same point in the test section, preferably at the centroid
of the test section.
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 8
2.5.6.2 To ensure that the gas flow is parallel to the central
axis of the test section, follow the procedure in Section 2.4 for
cyclonic flow determination to measure the gas flow angles at the
centroid of the test section from two test ports located 90° apart.
The gas flow angle measured in each port must be ±2° of 0°.
Straightening vanes should be installed, if necessary, to meet this
criterion.
2.5.6.3 Pitch Angle Calibration. Perform a calibration traverse
according to the manufacturer's recommended protocol in 5°
increments for angles from -60° to +60° at one velocity in each of
the two ranges specified above. Average the pressure ratio values
obtained for each angle in the two flow ranges, and plot a
calibration curve with the average values of the pressure ratio (or
other suitable measurement factor as recommended by the
manufacturer) versus the pitch angle. Draw a smooth line through
the data points. Plot also the data values for each traverse
point. Determine the differences between the measured datavalues
and the angle from the calibration curve at the same pressure
ratio. The difference at each comparison must be within 2° for
angles between 0° and 40° and within 3° for angles between 40° and
60°.
2.5.6.4 Yaw Angle Calibration. Mark the three-dimensional probe
to allow the determination of the yaw position of the probe. This
is usually a line extending the length of the probe and aligned
with the impact opening. To determine the accuracy of measurements
of the yaw angle, only the zero or null position need be calibrated
as follows: Place the directional probe in the test section, and
rotate the probe until the zero position is found. With a
protractor or other angle measuring device, measure the angle
indicated by the yaw angle indicator on the three-dimensional
probe. This should be within 2° of 0°. Repeat this measurement
for any other points along the length of the pitot where yaw angle
measurements could be read in order to account for variations in
the pitot markings used to indicate pitot head positions.
BIBLIOGRAPHY
1. Determining Dust Concentration in a Gas Stream, ASME
Performance Test Code No. 27. New York. 1957.
2. DeVorkin, Howard, et al. Air Pollution Source Testing Manual.
Air Pollution Control District. Los Angeles, CA. November
1963.
3. Methods for Determining of Velocity, Volume, Dust and Mist
Content of Gases. Western Precipitation Division of Joy
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 9
Manufacturing Co. Los Angeles, CA. Bulletin WP-50. 1968.
4. Standard Method for Sampling Stacks for Particulate Matter.
In: 1971 Book of ASTM Standards, Part 23. ASTM Designation D
2928-71. Philadelphia, PA. 1971.
5. Hanson, H.A., et al. Particulate Sampling Strategies for
Large Power Plants Including Nonuniform Flow. USEPA, ORD,
ESRL, Research Triangle Park, NC. EPA-600/2-76-170. June
1976.
6. Entropy Environmentalists, Inc. Determination of the Optimum
Number of Sampling Points: An Analysis of Method 1 Criteria.
Environmental Protection Agency. Research Triangle Park, NC.
EPA Contract No. 68-01-3172, Task 7.
7. Hanson, H.A., R.J. Davini, J.K. Morgan, and A.A. Iversen.
Particulate Sampling Strategies for Large Power Plants
Including Nonuniform Flow. USEPA, Research Triangle Park, NC.
Publication No. EPA-600/2-76-170. June 1976. 350 p.
8. Brooks, E.F., and R.L. Williams. Flow and Gas Sampling
Manual. U.S. Environmental Protection Agency. Research
Triangle Park, NC. Publication No. EPA-600/2-76-203. July
1976. 93 p.
9. Entropy Environmentalists, Inc. Traverse Point Study. EPA
Contract No. 68-02-3172. June 1977. 19 p.
10. Brown, J. and K. Yu. Test Report: Particulate Sampling
Strategy in Circular Ducts. Emission Measurement Branch.
Emission Standards and Engineering Division. U.S.
Environmental Protection Agency, Research Triangle Park, NC
27711. July 31, 1980. 12 p.
11. Hawksley, P.G.W., S. Badzioch, and J.H. Blackctt. Measurement
of Solids in Flue Gases. Leatherhead, England, The British
Coal Utilisation Research Association. 1961. p. 129-133.
12. Knapp, K.T. The Number of Sampling Points Needed for
Representative Source Sampling. In: Proceedings of the Fourth
National Conference on Energy and Environment. Theodore, L.
et al. (ed) . Dayton, Dayton Section of the American Institute
of Chemical Engineers. October 3-7, 1976. p. 563-568.
13. Smith, W.S. and D.J. Grove. A Proposed Extension of EPA
Method 1 Criteria. Pollution Engineering. XV (8):36-37.
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 10
August 1983.
14. Gerhart, P.M. and M.J. Dorsey. Investigation of Field Test
Procedures for Large Fans. University of Akron. Akron, OH.
(EPRI Contract CS-1651). Final Report (RP-1649-5) . December
1980.
15. Smith, W.S. and D.J. Grove. A New Look at Isokinetic Sampling
Theory and Applications. Source Evaluation Society
Newsletter. VIII(3):19-24. August 1983.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 11
Table 1-1. CROSS-SECTION LAYOUT FOR
RECTANGULAR STACKS
(••••••••• ••••••••• VWV •••••••• V»V> ••••••• •••••••!
umber of traverse points
9
12
16
20
25
30
36
42
49
3x3
4x3
4x4
5x4
5x5
6x5
6x6
7x6
7x7
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 12
TABLE 1-2
LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS
(Percent of stack diameter from inside
wall to traverse point)
Traverse
Point
Number on a
Diameter
1
2
3
14
5
6
7
8
9
10 ....
11 ....
12 ....
13 ....
14 ....
Number of traverse points on a diameter
2
14
.6
85
.4
4
6.
7
25
.0
75
.0
93
.3
6
4.
4
14
.6
29
.6
70
.4
85
.4
95
.6
8
3.
2
10
.5
19
.4
32
.3
67
.7
80
.6
89
.5
96
.8
10
2.6
8.2
14.
6
22.
6
34.
2
65.
8
77.
4
85.
4
91.
8
97.
4
12
2.1
6.7
11.
8
17.
7
25.
0
35.
6
64.
4
75.
0
82.
3
88.
2
93.
3
97.
9
14
1.8
5.7
9.9
14.
6
20.
1
26.
9
36.
6
63.
4
73.
1
79.
9
85.
4
90.
1
94.
3
98.
2
16
1.6
4.9
8.5
12.
5
16.
9
22.
0
28.
3
37.
5
62.
5
71.
7
78.
0
83.
1
87.
5
91.
5
18
1.
4
4.
4
7.
5
10
.9
14
.6
18
.8
23
.6
29
.6
38
.2
61
.8
70
.4
76
.4
81
.2
85
.4
20
1.
3
3.
9
6.
7
9.
7
11
2.
9
16
.5
20
.4
25
.0
30
.6
38
.8
61
.2
69
.4
75
.0
79
.6
22
1.1
3.5
6.0
8.7
11.
6
14.
6
18.
0
21.
8
26.
2
31.
5
39.
3
60.
7
68.
5
73.
8
24
1.1
3.2
5.5
7.9
10.
5
13.
2
16.
1
19.
4
23.
0
27.
2
32.
3
39.
8
60.
2
67.
7
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 13
15 ....
1 & • • » •
17 ....
18 • . • •
19 ....
20 ....
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 14
80
Dud Dtomtom UpctoMi tarn Ptov DMobme** (DMMW A)
tJ 1J U
40 -
M
20
10
L
1«
t
1
1
1
I
3 4 I t 7 I
Dud DlMMtem Dowiwtraani torn Plow DMuibtrxa* (DWanc* •)
10
Figure 1-1. Minimum number of traverse points for
particulate traverses.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 15
so
O.S
Duet Diameter* Upstream from Flow Disturbance* (Distance A)
1.0 1.S 2.0
40 -
20 -
10 -
2.5
II 1 1 1 1
"Higher Noaibsr Is tor
Rectangular Stacks or Due*
1
1
f
12
- • From PsM of Any Type of
Disturbance (Bend. Expansion. Confracaon. etc.)
Stack DtoiMter
1 1 1 1 1 1
^•1
i
\
I
TDWurbsocs
L "•
DMirbanes
-
0 J1 • (24 In.)
,.,' -
• 0 JO to OJ1 • (12-24 Si.)
I
345678
Duct Dlimatora Downstraam from Flow Disturbance* (Distance B)
10
Figure 1-2. Minimum number of traverse points for velocity
(nonparticulate) traverses.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 16
MJ
au
Figure 1-3. Example showing circular stack cross section
divided into 12 equal areas, with location of traverse
points indicated.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 17
o
o
0
o
o
1
o
0
0
o
o
o
o
Figure 1-4. Example showing rectangular stack cross section
divided into 12 equal areas, with a traverse point at centroid
of each area.
-------
-------
Appendix G.2
Sampling & Analysis Methods
EPA Method 2 w/Alignment Approach
-------
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
Method 2 - Determination of Stack Gas Velocity and Volumetric
Flow Rate (Type 8 Pitot Tube)
1. PRINCIPLE AMD APPZ.ICABH.ITY
1.1 Principle. The average gas velocity in a stack is determined from the gaa
density and from measurement of the average velocity head with a Type S
(Stausscheibe or reverse type) pitot tube.
1.2 Applicability. This method is applicable for measurement of the average
velocity of a gaa stream and for quantifying gas flow.
This procedure is not applicable at measurement sites that fail to meet the
criteria of Method 1, Section 2.1. Also, the method cannot be used for direct
measurement in cyclonic or swirling gas streams; Section 2.4 of Method 1 shows
how to determine cyclonic or swirling flow conditions. When unacceptable
conditions exist, alternative procedures, subject to the approval of the
Administrator, U.S. Environmental Protection Agency, must be employed to make
accurate flow rate determinations; examples of such alternative procedures are:
(1) to install straightening vanes; (2) to calculate the total volumetric flow
rate stoichiometrically, or (3) to move to another measurement site at which the
flow is acceptable.
2. APPARATUS
Specifications for the apparatus are given below. Any other apparatus that has
been demonstrated (subject to approval of the Administrator) to be capable of
meeting the specifications will be considered acceptable.
/*
2.1 Type S Pitot Tube. Pitot tube made of metal tubing (e.g., stainless steel)
as shown in Figure 2-1. It is recommended that the external tubing diameter
(dimension Dt/ Figure 2-2b) be between 0.48 and 0.95 cm (3/16 and 3/8 inch) .
There shall be an equal distance from the base of each leg of the pitot tube to
its face-opening plane (dimensions PA and E^, Figure 2-2b); it is recommended
that this distance be between 1.05 and 1.50 times the external tubing diameter.
The face openings of the pitot tube shall, preferably, be aligned as shown in
Figure 2-2; however, slight misalignments of the openings are permissible (see
Figure 2-3).
The Type S pitot tube shall have a known coefficient, determined as outlined in
Section 4. An identification number shall be assigned to the pitot tube; this
Prepared by Bmieiion Measurement Branch EMTZC M-002
Technical Support Division, OAQPS, EPA
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
number shall be permanently narked or engraved on the body of the tube. A
standard pitot tube nay be used instead of a Type 8, provided that it meets the
specifications of Sections 2.7 and 4.2; note, however, that the static and impact
pressure holes of standard pitot tubes are susceptible to plugging in
particulate-laden gas streams. Therefore, whenever a standard pitot tube is used
to perform a traverse, adequate proof must be furnished that the openings of the
pitot tube have not plugged up during the traverse period; this can be done by
taking a velocity head (Ap) reading at the final traverse point, cleaning out the
impact and static holes of the standard pitot tube by "back-purging" with
pressurized air, and then taking another Ap reading. If the Ap readings made
before and after the air purge are the same (±5 percent), the traverse is
acceptable. Otherwise, reject- the run. Note that if Ap at the final traverse
point is unsuitably low, another point may be selected. If "back-purging" at
regular intervals is part of the procedure, then comparative Ap readings shall
be taken, as above, for the last two back purges at which suitably high Ap
readings are observed.
2.2 Differential Pressure Gauge. An inclined manometer or equivalent device.
Most sampling trains are equipped with a 10-in. (water column) inclined-vertical
manometer, having 0.01-in. H2O divisions on the 0- to 1-in. inclined scale, and
0.1-in. H,0 divisions on the 1- to 10-in. vertical scale. This type of manometer
(or other gauge of equivalent sensitivity) is satisfactory for the measurement
of Ap values as low as 1.3 mm (0.05 in.) H,0. However, a differential pressure
gauge of greater sensitivity shall be used (subject to the approval of the
Administrator) , if any of the following is found to be true: (1) the arithmetic
average of all Ap readings at the traverse points in the stack is less than
1.3 nun (0.05 in.) H:0; (2) for traverses of 12 or more points, more than 10
percent of the individual Ap readings are below 1.3 mm (0.05 in.) H,0; (3) for
traverses of fewer than 12 points, more than one Ap reading is below 1.3 mm
(0.05 in.) HjO. Citation 18 in the Bibliography describes commercially available
instrumentation for the measurement of low-range gas velocities.
As an alternative to criteria (1) through (3) above, the following calculation
may he performed to determine the necessity of using a more sensitive
differential pressure gauge:
Prepared by Emission Measurement Branch EKTZC M-002
Technical Support Division, OAQPS, EPA
-------
EMTIC TM-002
NSPS TEST METHOD
Page 3
1-1
'API
Where:
Apt » Individual velocity head reading at a traverse point, mm (in.)
HjO.
n « Total number of traverse points.
K - 0.13 inn EaO when metric units are used and 0.005 in. H,0 when
English units are used.
If T is greater than 1.05, the velocity head data are unacceptable and a more
sensitive differential pressure gauge must be used.
MOTE: If differential pressure gauges other than inclined nanometers are used
(e.g., magnehelic gauges), their calibration must be checked after each test
series. To check the calibration of a differential pressure gauge,- compare Ap
readings of the gauge with those of a gauge-oil manometer at a minimum of three
points, approximately representing the range of Ap values in the stack. If, at
each point, the values of Ap as read by the differential pressure gauge and
gauge-oil manometer agree to within 5 percent, the differential pressure gauge
shall be considered to be in proper calibration. Otherwise, the test series
shall either be voided, or procedures to adjust the measured Ap values and final
results shall be used, subject to the approval of the Administrator.
2.3 Temperature Gauge. A thermocouple, liquid-filled bulb thermometer,
bimetallic thermometer, mercury-in-glass thermometer, or other gauge capable of
measuring temperature to within 1.5 percent of the minimum absolute stack
temperature. The temperature gauge shall be attached to the pitot tube such that
the sensor tip does not touch any metal; the gauge shall be in an interference-
free arrangement with respect to the pitot tube face openings (see Figure 2-1 and
also Figure 2-7 in Section 4) . Alternative positions may be used if the pitot
tube-temperature gauge system is calibrated according to the procedure of Section
4. Provided that a difference of not more than 1 percent in the average velocity
measurement is introduced, the temperature gauge need not be attached to the
pitot tube; this alternative is subject to the approval of the Administrator.
2.4 Pressure Probe and Gauge. A piezometer tube and mercury- or water-filled
U-tube manometer capable of measuring stack pressure to within 2.5 mm (0.1 in.)
Eg. The static tap of a standard type pitot tube or one leg of a Type 8 pitot
tube with the face opening planes positioned parallel to the gas flow may also
be used as the pressure probe.
-------
EMTIC TM-002 HSPS TKST METHOD Page 4
2.5 Barometer. A mercury, aneroid, or other barometer capable of measuring
atmospheric pressure to within 2.5 mm (0.1 in.) Hg. See NOTB in Method 5,
Section 2.1.9.
2.6 Gas Density Determination Equipment. Method 3 equipment, if needed (see
Section 3.6), to determine the stack gas dry molecular weight, and Reference
Method 4 or Method 5 eq-iipment for moisture content determination; other methods
may be used subject to approval of the Administrator.
2.7 Calibration Pitot Tube. When calibration of the Type S pitot tube is
necessary (see Section 4), a standard pitot tube for a reference. The standard
pitot tube shall, preferably, have a known coefficient, obtained either (1)
directly from the National Bureau of Standards, Route 70 S, Quince Orchard Road,
Gaithersburg, Maryland, or (2) by calibration against another standard pitot tube
with an MBS-traceable coefficient. Alternatively, a standard pitot tube designed
according to the criteria given in Sections 2.7.1 through 2.7.5 below and
illustrated in Figure 2-4 (see also Citations 7, 8, and 17 in the Bibliography)
may be used. Pitot tubes designed according to these specifications will have
baseline coefficients of about 0.99 ± 0.01.
2.7.1 Hemispherical (shown in Figure 2-4) ellipsoidal, or conical tip.
2.7.2 A minimum of six diameters straight run (based upon D, the external
diameter of the tube) between the tip and the static pressure holes.
2.7.3 A minimum of eight diameters straight run between the static pressure
holes and the center line of the external tube, following the 90-degree bend.
2.7.4 Static pressure holes of equal size (approximately 0.1 D), equally spaced
in a piezometer ring configuration.
2.7.5 Ninety-degree bend, with curved or mitered junction.
2.8 Differential Pressure Gauge for Type S Pitot Tube Calibration. An inclined
manometer or equivalent. If the single-velocity calibration technique is
employed (see Section 4.1.2.3), the calibration differential pressure gauge shall
be readable to the nearest 0.13 mm (0.005 in.) H,0. For multivelocity
calibrations, the gauge shall be readable to the nearest 0.13 mm (0.005 in.) HaO
for Ap values between 1.3 and 25 mm (0.05 and 1.0 in.) H,0, and to the nearest
1.3 mm (0.05 in.) HaO for Ap values above 25 mm (1.0 in.) HaO. A special, more
sensitive gauge will be required to read Ap values below 1.3 mm (0.05 in.) H,0
(see Citation 18 in the Bibliography).
3. PROCEDURE
3.1 Set up the apparatus as shown in Figure 2-1. Capillary tubing or surge
tanks installed between the manometer and pitot tube may be used to dampen Ap
fluctuations. It is recommended, but not required, that a pretest leak-check be
conducted as follows: (1) blow through the pitot impact opening until at least
-------
EMTIC TM-002 NSPS TEST METHOD Page 5
7.6 cm (3 in.) H,0 velocity pressure registers on the manometer; then, close off
the impact opening. The pressure shall remain stable for at least 15 seconds;
(2) do the same for the static pressure side, except using suction to obtain the
minimum of 7.6 cm (3 in.) H20. Other leak-check procedures, subject to the
approval of the Administrator, may be used.
3.2 Level and zero the manometer. Because the manometer level and zero may
drift due to vibrations and temperature changes, make periodic checks during the
traverse. Record all necessary data as shown in the example data sheet
(Figure 2-5).
3.3 Measure the velocity head and temperature at the traverse points specified
by Method 1. Ensure that the proper differential pressure gauge is being used
for the range of Ap values encountered (see Section 2.2). If it is necessary to
change to a more sensitive gauge, do so, and remeasure the Ap and temperature
readings at each traverse point. Conduct a post-test leak-check (mandatory), as
described in Section 3.1 above, to validate the traverse run.
3.4 Measure the static pressure in the stack. One reading is usually adequate.
3.5 Determine the atmospheric pressure.
3.6 Determine the stack gas dry molecular weight. For combustion processes or
processes that emit essentially C0a, 0,, CO, and N2, use Method 3. For processes
emitting essentially air, an analysis need not be conducted; use a dry molecular
weight of 29.0. For other processes, other methods, subject to the approval of
the Administrator, must be used.
3.7 Obtain the moisture content from Reference Method 4 (or equivalent) or from
Method 5.
3.8 Determine the cross-sectional area of the stack or duct at the sampling
location. Whenever possible, physically measure the stack dimensions rather than
using blueprints.
4. CALIBRATION
4.1 Type 8 Pi tot Tub*. Before its initial usu, carefully examine the Type S
pitot tube in top, side, and end views to verify that the face openings of the
tube are aligned within the specifications illustrated in Figure 2-2 or 2-3. The
pitot tube shall not be used if it fails to meet these alignment specifications.
After verifying the face opening alignment, measure and record the following
dimensions of the pitot tube: (a) the external tubing diameter (dimension De,
Figure 2-2b); and (b) the base-to-opening plane distances (dimensions PA and P»,
Figure 2-2b) . If De is between 0.48 and 0.95 cm (3/16 and 3/8 in.), and if £
and P, are equal and between 1.05 and 1.50 DC, there are two possible options:
(1) the pitot tube may be calibrated according to the procedure outlined in
Sections 4.1.2 through 4.1.5 below, or (2) a baseline (isolated tube) coefficient
value of 0.84 may be assigned to the pitot tube. Note, however, that if the
-------
EMTIC TM-002 NSPS TEST MKTHOD Page 6
pitot tube is part of an assembly, calibration may still be required, despite
knowledge of the baseline coefficient value (see Section 4.1.1).
If Dt, ^, and f are outside the specified limits, the pitot tube must be
calibrated as outlined in Sections 4.1.2 through 4.1.5 below.
4.1.1 Type S Pitot Tube Assemblies. During sample and velocity traverses, the
isolated Type S pitot tube is not always used; in many instances, the pitot tube
is used in combination with other source-sampling components (thermocouple,
sampling probe, nozzle) as part of an "assembly." The presence of other sampling
components can sometimes affect the baseline value of the Type S pitot tube
coefficient (Citation 9 in the Bibliography); therefore an assigned (or otherwise
known) baseline coefficient value may or may not be valid for a given assembly.
The baseline and assembly coefficient values will be identical only when the
relative placement of the components in the assembly is such that aerodynamic
interference effects are eliminated. Figures 2-6 through 2-8 illustrate
interference-free component arrangements for Type S pitot tubes having external
tubing diameters between. 0.48 and 0.95 cm (3/16 and 3/8 in.). Type S pitot tube
assemblies that fail to meet any or all of the specifications of Figures 2-6
through 2-8 shall be calibrated according to the procedure outlined in Sections
4.1.2 through 4.1.5 below, and prior to calibration, the values of the
intercomponent spacings (pitot-nozzle, pitot-thermocouple, pitot-probe sheath)
shall be measured and recorded.
NOTE: Do not use any Type S pitot tube assembly which is constructed such that
the impact pressure opening plane of the pitot tube is below the entry plane of
the nozzle (see Figure 2-6B).
4.1.2 Calibration Setup. If the Type S pitot tube is to be calibrated, one leg
of the tube shall be permanently marked A, and the other, B. Calibration shall
be done in a flow system having the following essential design features:
4.1.2.1 The flowing gas stream must be confined to a duct of definite cross-
sectional area, either circular or rectangular. For circular cross sections, the
minimum duct diameter shall be 30.5 cm (12 in.) ; for rectangular cross sections,
the width (shorter side) shall be at least 25.4 cm (10 in.).
4.1.2.2 The cross-sectional area of the calibration duct must be constant over
a distance of 10 or more duct diameters. For a rectangular cross section, use
an equivalent diameter, calculated from the following equation, to determine the
number of duct diameters:
D = 2LW
e (L + W)
Bq. 2-1
Where:
-------
EMTIC TM-002 KSPS TBST METHOD Page 7
D. • Equivalent diameter.
L » Length.
N • Width.
To ensure the presence of stable, fully developed flow patterns at the
calibration site, or "test section," the site must be located at least eight
diameters downstream and two diameters upstream from the nearest disturbance*.
KOTKi The eight- and two-diameter criteria are not absolute; other test section
locations may be used (subject to approval of the Administrator), provided that
the flow at the test site is stable and demonstrably parallel to the duct axis.
4.1.2.3 The flow system shall have the capacity to generate a test-section
velocity around 915 m/min (3,000 ft/min) . This velocity must be constant with
time to guarantee steady flow during calibration. Note that Type S pitot tube
coefficients obtained by single-velocity calibration at 915 m/min (3,000 ft/min)
will generally be valid to ±3 percent for the measurement of velocities above 305
m/min (1,000 ft/min) and to ±5 to 6 percent for the measurement of velocities
between 180 and 305 m/min (600 and 1,000 ft/min) . If a more precise correlation
between C, and velocity is desired, the flow system shall have the capacity to
generate at least four distinct, time-invariant test-section velocities covering
the velocity range from 180 to 1,525 m/min (600 to 5,000 ft/min), and calibration
data shall be taken at regular velocity intervals over this range (see Citations
9 and 14 in the Bibliography for details).
4.1.2.4 Two entry ports, one each for the standard and Type S pitot tubes, shall
be cut in the test section; the standard pitot entry port shall be located
slightly downstream of the Type S port, so that the standard and Type S impact
openings will lie in the same cross-sectional plane during calibration. To
facilitate alignment of the pitot tubes during calibration, it is advisable that
the test section be constructed of plexiglas or some other transparent material.
4.1.3 Calibration Procedure. Mote that this procedure is a general one and must
not be used without first referring to the special considerations presented in
Section 4.1.5. Note also that this procedure applies only to single-velocity
calibration. To obtain calibration data for the A and B sides of the Type S
pitot tube, proceed as follows:
4.1.3.1 Make sure that the manometer is properly filled and that the oil is free
from contamination and is of the proper density. Inspect and leak-check all
pitot lines; repair or replace if necessary.
4.1.3.2 Level and zero the manometer. Turn on the fan, and allow the flow to
stabilize. Seal the Type S entry port.
4.1.3.3 Ensure that the manometer is level and zeroed. Position the standard
pitot tube at the calibration point (determined as outlined in Section 4.1.5.1),
and align the tube so that its tip is pointed directly into the flow. Particular
care should be taken in aligning the tube to avoid yaw and pitch angles. Make
sure that the entry port surrounding the tube is properly sealed.
-------
EMTIC TM-002 NSPS TEST KKTEOD Page 8
4.1.3.4 Read Ap.^, and record its value in a data table similar to the one shown
in Figure 2-9. Remove the standard pitot tube from the duct, and disconnect it
from the manometer. Seal the standard entry port.
4.1.3.5 Connect the Type S pitot tube to the manometer. Open the Type 8 entry
port. Check the manometer level and zero. Insert and align the Type S pitot
tube so that its A side impact opening is at the sane point as was the standard
pitot tube and is pointed directly into the flow. Make sure that the entry port
surrounding the tube is properly sealed.
4.1.3.6 Read Ap., and enter its value in the data table. Remove the Type S
pitot tube from the duct, and disconnect it from the manometer.
4.1.3.7 Repeat Steps 4.1.3.3 through 4.1.3.6 above until three pairs of Ap
readings have been obtained.
4.1.3.8 Repeat Steps 4.1.3.3 through 4.1.3.7 above for the B side of the Type
S pitot tube.
4.1.3.9 Perform calculations, as described in Section 4.1.4 below.
4.1.4' Calculations.
4.1.4.1 For each of the six pairs of Ap readings (i.e., three from side A and
three from side B) obtained in Section 4.1.3 above, calculate the value of
the Type S pitot tube coefficient as follows:
Pis) ~ p(std),
Bq. 2-2
Where:
Cp,., - Type S pitot tube coefficient.
CpUtd) . Standard pitot tube coefficient; use 0.99 if the
coefficient is unknown and the tube is designed according
to the criteria of Sections 2.7.1 to 2.7.5 of this
method.
Ap«d " Velocity head measured by the standard pitot tube, cm
(in.) H,0.
Ap. » Velocity head measured by the Type S pitot tube, cm (in.)
HaO.
4.1.4.2 Calculate C, (side A), the mean A-side coefficient, and Cp (side B), the
-------
EMTIC TM-002 NSPS TBST METHOD Page 9
mean B-side coefficient; calculate the difference between these two average
values.
4.1.4.3 Calculate the deviation of each of the three A-side values of
Cp(i> from Cp (side A), and the deviation of each B-side values of Cp,., from
Cp (side B) . Use the following equation:
Deviation = C -C (A or B)
Eg. 2-3
4.1.4.4 Calculate a, the average deviation from the mean, for both the A and B
sides of the pitot tube. Use the following equation:
- Cp(A or B)|
o(side A or B) =
Eq. 2-4
4.1.4.5 Use the Type S pitot tube only if the values of o (side A) and o (side
B) are less than or equal to 0.01 and if the absolute value of the difference
between Cf (A) and Cp (B) is 0.01 or less.
4.1.5 Special Considerations.
4.1.5.1 Selection of Calibration Point.
2. 3
4.1.5.1.1 When an isolated Type S pitot tube is calibrated, select a calibration
point at or near the center of the duct, and follow the procedures outlined in
Sections 4.1.3 and 4.1.4 above. The Type S pitot coefficients so obtained,
i.e., Cp (side A) and £ (side B), will be valid, so long as either: (1) the
isolated pitot tube is used; or (2) the pitot tube is used with other components
^nozzle, thermocouple, sample probe) in an arrangement that is free from
aerodynamic interference effects (see Figures 2-6 through 2-8) .
•l.
4.1.5.1.2 For Type S pitot tube-thermocouple combinations (without sample
probe), select a calibration point at or near the center of the duct, and follow
the procedures outlined in Sections 4.1.3 and 4.1.4 above. The coefficients so
obtained will be valid so long as the pitot tube-thermocouple combination is used
by itself or with other components in an interference-free arrangement (Figures
2-6 and 2-8) .
4.1.5.1.3 For assemblies with sample probes, the calibration point should be
-------
EMTIC TM-002 N8PS TEST KBTHOD Page 10
located at or near the center of the duct; however, insertion of a probe sheath
into a small duct may cause significant cross-sectional area blockage and yield
incorrect coefficient values (Citation 9 in the Bibliography). Therefore* to
minimize the blockage effect, the calibration point may be a few inches off-
center if necessary. The actual blockage effect will be negligible when the
theoretical blockage, as determined by a projected-area model of the probe
sheath, is 2 percent or less of the duct cross-sectional area for assemblies
without external sheaths (Figure 2-10a), and 3 percent or less for assemblies
with external sheaths (Figure 2-10b).
4.1.5.2 For those probe assemblies in which pitot tube-nozzle interference is
a factor (i.e., those in which the pitot-nozzle separation distance fails to meet
the specification illustrated in Figure 2-6A), the value of Cp(.) depends upon the
amount of free-space between the tube and nozzle, and therefore is a function of
nozzle size. In these instances, separate calibrations shall be performed with
each of the commonly used nozzle sizes in place. Note that the single-velocity
calibration technique is acceptable for this purpose, even though the larger
nozzle sizes (>0.635 cm or 1/4 in.) are not ordinarily used for isokinetic
sampling at velocities around 915 m/min (3,000 ft/rain), which is the calibration
velocity; note also that it is not necessary to draw an isokinetic sample during
calibration (see Citation 19 in the Bibliography) .
4.1.5.3 For a probe assembly constructed such that its pitot tube is always used
in the same orientation, only one side of the pitot tube need be calibrated (the
side which will face the flow) . The pitot tube must still meet the alignment
specifications of Figure 2-2 or 2-3, however, and must have an average deviation
(a) value of 0.01 or less (see Section 4.1.4.4.)
4.1.6 Field Use and Recalibration.
4.1.6.1 Field Use.
4.1.6.1.1 When a Type S pitot tube (isolated or in an assembly) is used in the
field, the appropriate coefficient value (whether assigned or obtained by
calibration) shall be used to perform velocity calculations. For calibrated Type
S pitot tubes, the A side coefficient shall be used when the A side of the tube
faces the flow, and the B side coefficient shall be used when the B side faces
the flow; alternatively, the arithmetic average of the A and B side coefficient
values may be used, irrespective of which side faces the flow.
4.1.6.X.2 When a probe assembly is used to sample a small duct, 30.5 to 91.4 cm
(12 to 36 in.) in diameter, the probe sheath sometimes blocks a significant part
of the duct cross-section, causing a reduction in the effective value of C,(B|.
Consult Citation 9 in the Bibliography for details. Conventional pitot-sampling
probe assemblies are not recommended for use in ducta having inside diameters
smaller than 30.5 cm (12 in.) (see Citation 16 in the Bibliography).
4.1.6.2 Recalibration.
4.1.6.2.1 Isolated Pitot Tubes. After each field use, the pitot tube shall be
-------
EMTIC TM-002 NSPS TEST METHOD Page 11
carefully reexamined in top, side, and end views. If the pi tot face openings are
still aligned within the specifications illustrated in Figure 2-2 or 2-3, it can
be assumed that the baseline coefficient of the pitot tube has not changed. If,
however, the tube has been damaged to the extent that it no longer meets the
specifications of the Figure 2-2 or 2-3, the damage shall either be repaired to
restore proper alignment of the face openings, or the tube shall be discarded.
4.1.6.2.2 Pitot Tub* Assentolies. After each field use, check the face opening
alignment of the pitot tube, as in Section 4.1.6.2.1; also, remeasure the
intercomponent spacings of the assembly. If the intercomponent spacings have not
changed and the face opening alignment is acceptable, it can be assumed that the
coefficient of the assembly has not charged. If the face opening alignment is
no longer within the specifications of Figure 2-2 or 2-3, either repair the
damage or replace the pitot tube (calibrating the new assembly, if necessary).
If the intercomponent spacings have changed, restore the original spacings, or
recalibrate the assembly.
4.2 Standard Pitot Tuba (if applicable) . If a standard pitot tube is used for
the velocity traverse, the tube shall be constructed according to the criteria
of Section 2.7 and shall be assigned a baseline coefficient value of 0.99. If
the standard pitot tube is used as part of an assembly, the tube shall be in an
interference-free arrangement (subject to the approval of the Administrator) .
4.3 Temperature Gauges. After each field use, calibrate dial thermometers,
liquid-filled bulb thermometers, thermocouple-potentiometer systems, and other
gauges at a temperature within 10 percent of the average absolute stack
temperature. For temperatures up to 405°C (761°F), use an ASTM mercury-in-glass
reference thermometer, or equivalent, as a reference; alternatively, either
a reference thermocouple and potentiometer (calibrated by NBS) or thermometric
fixed points, e.g., ice bath and boiling water (corrected for barometric
pressure) may be used. For temperatures above 405°C (761°F), use an NBS-
calibrated reference thermocouple-potent iometer system or an alternative
reference, subject to the approval of the Administrator.
If, during calibration, the absolute temperature measured with the gauge being
calibrated and the reference gauge agree within 1.5 percent, the temperature data
taken in the field shall be considered valid. Otherwise, the pollutant emission
test shall either be considered invalid or adjustments (if appropriate) of the
test results shall be made, subject to the approval of the Administrator.
4.4 Barometer. Calibrate the barometer used against a mercury barometer.
5. CALCUIATIONS
Carry out calculations, retaining at least one extra decimal figure beyond that
of the acquired data. Round off figures after final calculation.
5.1 Nomenclature.
A - Cross-sectional area of stack, m* (ft*).
-------
EMTZC TM-002 NSPS TEST METHOD Page 12
&«, - Water vapor in the gas stream (from Method 5 or Reference
Method 4), proportion by volume.
Cp • Pitot tube coefficient, dimensionless.
K_ • Pitot tube constant,
34.
m
sec
(g/g-mole) (mmHg)
(mmH20)
1'2
for the metric system.
11/2
85
49 ft flb/lb-mole) (in.Hg)V
sec I (°R) (in.H20) ]
for the English system.
MA - Molecular weight of stack gas, dry basis (see Section 3.6),
g/g-mole (Ib/lb-mole).
M, - Molecular weight of stack gas, wet basis, g/g-mole (Ib/lb-
mole).
-Md(l-B||.) + 18.0BWS
Eg. 2-5
p^ m Barometric pressure at measurement site, mm Hg (in. Hg) .
p, - Stack static pressure, mm Hg (in. Hg).
p. « Absolute stack pressure, mm Hg (in. Hg),
= P.. + P
rbar g
Bq. 2-6
Pltd - Standard absolute pressure, 760 mm Hg (29.92 in. Kg).
Q.4 « Dry volumetric stack gas flow rate corrected to standard
conditions, dsmVhr (dscf/hr) .
t, - Stack temperature, *C (*F).
e
-------
EMTIC TM-002
MSPS TEST MBTHOD
Page 13
T, • Absolute stack temperature, *R (°R) .
273 + t.
for metric.
Eq. 2-7
= 460 + t.
for English.
Ap
Eg. 2-8
Standard absolute temperature, 293*K (528*R).
Average stack gas velocity, in/sec (ft/sec).
Velocity head of stack gas, mm H20 (in. HaO).
3,600- Conversion factor, sec/hr.
18.0 • Molecular weight of water, g/g-mole (Ib/lb-mole).
5.2 Average Stack Gas Velocity.
s (avg)
Eg. 2-9
5.3 Average Stack Gas Dry Volumetric Flow Rate.
T
std
's(avg)
•std
BIBLIOGRAPHY
1. Mark, L.S. Mechanical Engineers' Handbook. New York.
Co., Inc. 1951.
2. Perry. J.H. Chemical Engineers' Handbook. New York.
Eq. 2-10
McGraw-Hill Book
McGraw-Hill Book
-------
EMTIC TM-002 NSP8 TEST METHOD Page 14
Co., Inc. 1960.
3. Shigehara, R.T., H.F. Todd, and N.S. Smith. Significance of Errors in
Stack Sampling Measurements. U.S. Environmental Protection Agency,
Research Triangle Park, N.C. (Presented at the Annual Meeting of the Air
Pollution Control Association, St. Louis, MO., June 14-19, 1970).
4. Standard Method for Sampling Stacks for Particulate Matter. In: 1971 Book
of ASTM Standards, Part 23. Philadelphia, PA. 1971. ASTM Designation
D 2928-71.
5. Vennard, J.K. Elementary Fluid Mechanics. Hew York. John Wiley and Sons,
Inc. 1947.
6. Fluid Meters - Their Theory and Application. American Society of
Mechanical Engineers, New York, N.Y. 1959.
7. ' ASHRAE Handbook of Fundamentals. 1972. p. 208.
8. Annual Book of ASTM Standards, Part 26. 1974. p. 648.
9. Vollaro, R.F. Guidelines for Type S Pitot Tube Calibration. U.S.
Environmental Protection Agency, Research Triangle Park, N.C. (Presented
at 1st Annual Meeting, Source Evaluation Society, Dayton, OH,
September 18, 1975.)
10. Vollaro, R.F. A Type S Pitot Tube Calibration Study. U.S. Environmental
Protection Agency, Emission Measurement Branch, Research Triangle Park,
N.C. July 1974.
11. Vollaro, R.F. The Effects of Impact Opening Misalignment on the Value of
the Type S Pitot Tube Coefficient. U.S. Environmental Protection Agency,
Emission Measurement Branch, Research Triangle Park, NC. October 1976.
12. Vollaro, R.F. Establishment of a Baseline Coefficient Value for Properly
Constructed Type S Pitot Tubes. U.S. Environmental Protection Agency,
Emission Measurement Branch, Research Triangle Park, NC. November 1976.
13. Vollaro, R.F. An Evaluation of Single-Velocity Calibration Technique as a
Means of Determining Type S Pitot Tube Coefficients. U.S. Environmental
Protection Agency, Emission Measurement Branch, Research Triangle Park, NC.
August 1975.
14. Vollaro, R.F. The Use of Type S Pitot Tubes for the Measurement of Low
Velocities. U.S. Environmental Protection Agency, Emission Measurement
Branch, Research Triangle Park, NC. November 1976.
15. Smith, Marvin L. Velocity Calibration of EPA Type Source Sampling Probe.
United Technologies Corporation, Pratt and Whitney Aircraft Division, Bast
Hartford, CT. 1975.
-------
EMTIC TM-002 NSPS TEST METHOD Page 15
16. Vollaro, R.P. Recommended Procedure for Sample Traverses in Ducts Smaller
than 12 Inches in Diameter. U.S. Environmental Protection Agency, Emission
Measurement Branch, Research Triangle Park, NC. November 1976.
17. Ower, E. and R.C. Pankhurst. The Measurement of Air Flow, 4th Bd. London,
Pergamon Press. 1966.
18. Vollaro, R.F. A Survey of Commercially Available Instrumentation for the
Measurement of Low-Range Gas Velocities. U.S. Environmental Protection
Agency, Emission Measurement Branch, Research Triangle Park, NC.
November 1976. (Unpublished Paper).
19. Gnyp, A.W., C.C. St. Pierre, D.S. Smith, D. Mozzon, and J. Steiner. An
Experimental Investigation of the Effect of Pitot Tube-Sampling Probe
Configurations on the Magnitude of the S Type Pitot Tube Coefficient for
Comnercially Available Source Sampling Probes. Prepared by the University
of Windsor for the Ministry of the Environment, Toronto, Canada.
February 1975.
-------
EMTIC TM-002
KSPS TEST METHOD
Page 16
1JO-2J4M*
IB.ri-i.OkL)
i_CI
p*ntun SMMT
eangfcj* T*rep*ntun I
'/ 1 S
Type 8PM Tufa*
Pilot fc*«m»rmoeeupt» «piclng
Figure 2-1. Type S pi tot tube manometer assembly.
-------
EMTIC TM-002
HSPS TSST METHOD
Page 17
Ungfadkul
TubtAxh
O> A
-2 &.-.> ""I4**
s..^—-li~rv%
1.MD,
B-SUtPMM
AV6
(e)
(b) too »tow; IM ipmlng *
• COnoBMt^ VfMft VlHPVtf
ketitMM. imlni
MmcMMiwcf
Figure 2-2. Properly constructed Type S pi tot tube.
-------
EMTIC TM-002
KSPS TBST METHOD
Page 18
-h -C-:>^—
\\s
1-
Figure 2-3. Types of face-opening misalignment that can result from field use
or improper construction of Type S pitot tubes. These will not affect the
baseline value of Cp(s) so long as a1 and of £10°, (J1 and P* sS*, z £0.32 cm (1/8
in.) and w £0.08 cm (1/32 in.) (citation 11 in Bibliography).
-------
EMTIC TM-002
HSPS TEST METHOD
Page 19
C3
Figure 2-4. Standard pitot tube design specifications.
-------
EMTIC TM-002 NSPS TEST IOTBOD Page 20
-------
EMTIC TM-002
NSP8 TEST METHOD
Page 21
PLANT
DATE _
RUN NO.
(in.) _
.STACK DIA. OR
DIMENSIONS, m (in.) BAROMETRIC PRESS., mm Hg
(in. Hg) CROSS SECTIONAL AREA, m? (ft2)
OPERATORS ___
PITOT TUBE I.D. NO.
AVG. COEFFICIENT,
Cp -
LAST DATE CALIBRATED _
SCHEMATIC OF STACK
CROSS SECTION
Traverse
Pt. No.
Vel. Hd., Ap
mm (in.) H3O
Stack Temperature
T.,
ec CF)
Average
T.,
*K (°R)
P.
mm Hg
(in.Hg)
(AP)1/J
Figure 2-5. Velocity traverse data.
-------
EMTIC TM-002
NSPS TEST XETBOD
Page 2
10, Tyn t HtrtTBU £~
rfc^=*
A. ioaMi Vl»w; •»»«*(• •WBwnfW*
•*»!*>«
g ptem e) HM pM k*» Mnl k* MM ••) or atom t»
Figure 2-6. Proper pitot tube-sampling nozzle configuration to prevent
aerodynamic interference; button-hook type nozzle; centers of nozzle and
pitot opening aligned; Dt between 0.48 and 0.95 cm (3/16 and 3/8 in.).
-------
EMTIC TM-002
NSPS TEST METHOD
Page 23
Tfr.iHrtT.t.
K *»•»•"
Figure 2-7. Proper thermocouple placement to prevent interference; Dt
between 0.48 and 0.95 cm (3/16 and 3/8 in.).
-------
EMTIC TM-002
NSPS TEST HKTHOD
Page 24
Figure 2-8. Minimum pitot-sample probe separation needed to prevent
interference: Dt between 0.48 and 0.95 cm (3/16 and 3/8 in.).
-------
EMTIC TM-002
NSPS TEST METHOD
Page 25
PITOT TUBE IDENT
RUN NO.
1
2
3
RUN NO.
1
2
3
AveracreDe*
IFICATION NUMBEI
"A1
cm HjO
(in H2O)
"B
cm H2O
(in HjO)
viaiti on =rr
I: DATE
* SIDE CALIBRATI
cm HjO
(in H20)
(SIDE A)
" SIDE CALIBRATE
cm HjO
(in H,0)
(SIDE B)
3
§ Cp(8)
: C«
ON
[ON
~ ^p(AorB)
„ -Mu
IiIBRATED BY: _
Deviation
Deviation
Cp,., - Cp(B)
stBo<0. 01
(AorB)
Cp(SideA) -Cp(SideB) -MustBesO.01
-------
EMTIC TM-002 NSPS TBST MBTBOD Page 26
Figure 2-9. Pitot tube calibration data.
-------
EMTIC TM-002
HSPS TEST METHOD
Page 27
Figure 2-10. Projected-area models for typical pitot tube assemblies.
-------
-------
STACK SAMPLING CYCLONIC
General
Conventional sampling procedures are not applicable to stacks with
cyclonic flow due to the presence of non-axial flow components. This
appendix describes a method for sampling stacks with cyclonic flow; I.e.
flow with tangential velocity components. Cyclonic flow may exist after
cyclones, tangential Inlets, or other configurations that may tend to
Induce swirling.
Several different approaches have been devised to minimize the biasing
effects of non-axial flow. The method discussed In this appendix
utilizes the alignment approach to reduce or eliminate the bias produced
by misalignment of the sampling nozzle and pltot tubes with the path of
the particles. Sampling results obtained with this method must be
reviewed for possible Inherent bias (see section entitled Accuracy
Considerations) to determine acceptability for any purpose.
Accuracy Considerations
As discussed In Chapter 5, small (light) particles tend to follow the
flow stream while Jarge (heavy) particles tend to be affected core by
their own Inertia than by the flow stream. Due to the effects of the
cyclonic condition and centrifugal action, components of radial velocity
should be Imparted to large particles, while small particles continue to
follow the flow stream. If the sampling ports are sufficiently down-
stream of the onset of cyclonic flow (at least two stack diameters),
large particles should have moved to the vicinity of the stack wall and
no longer have radial velocity components. For this reason, this method
does not consider components of radial velocity, and the term "total
velocity vector" refers to the resultant of the vertical (parallel to
the stack axis) velocity vector and the tangential velocity vector.
Although sampling by the alignment approach Is done In the direction of
flow of the stack gas at each sample point, bias may still be produced
1f the path of the particles 1s not 1n the direction of flow. Small
particles follow the flow stream and large particles at the stack wall
have no radial velocity components so the only source of bias should be
large particles near the stack wall that may not be moving In the direc-
tion of flow, I.e. unequal tangential velocity components. An Indica-
tion of the distribution of large and small particles may be obtained by
comparing the probe wash and cyclone catch to the filter and Inplnger
catch. Large particles that do not follow the flow stream should be
caught 1n the probe and cyclone, while small particles should be caught
on the filter and In the Implngers. Such comparison may yield
-------
Information on possible bias 1n the sample since bias 1s produced by
large particles, but should not be considered to be an accurate deter-
mination of particle size distribution. If the large particles were not
novlng 1n the direction of flow In the stack, the large/snail particle
proportion 1n the sampling train nay not be the sane as 1n the stack.
If all particles are novlng parallel to the direction of flow, no bias
should be produced.
If the pollutant 1s or behaves as a gas, no bias 1s produced by par-
ticles moving 1n directions other than parallel to the flow stream.
This method provides an accurate determination of velocity and flow
rate, which are requirements of gaseous sampling (Chapter 6). The
larger the proportion of the total catch that behaves as a gas (filter
and Implngers), the greater the confidence 1n the sample being without
bias.
Determining Cyclonic Flow
The existence of cylconic flow 1s determined by measuring the flow angle
at each sample point. The flow angle 1s the angle between the direction
of How and the axis of the stack. If the average of the absolute val-
ues of the flow angles 1s greater than 20*, cyclonic flow exists to such
an extent that special sampling procedures are necessary.
The direction of flow 1s determined by locating the pltot tube null posi-
tion at each sample point. The pltot tube null position at a sample
point 1s determined by rotating the pltot tubes around the axis of the
probe until a zero manometer reading 1s obtained. Advance knowledge of
the direction of the tangential flow component Is helpful for the Ini-
tial rotation of the pltot tubes since the plane through the pltot tubes
must be perpendicular to the total velocity vector to obtain a null read-
Ing on the manometer. The angle between the plane through the pltot
tubes 1n the null position and the stack cross«sectfonal plane 1s equal
In magnitude to the flow angle; the magnitude of the angle may be
measured with the pltot tubes 1n the null position or after the pltot
tubes have been rotated 90* Into the flow stream for velocity measure-
ment. A magnetic protractor-level 1s a convenient angle measuring de-
vice; scribe marks on the sample box with a pointer on the probe (or
vice-versa) may be satisfactory If proper alignment with the axis of the
stack and the plane of the pltot tubes Is maintained.
In some cases of cyclonic flow, the flow angle may be greater than 90*
at some sample points. Indicating flow back Into the stack at those
particular sample points. If the flow angle Is greater than 90*, 1t Is
recorded as 90* so that sample points with negative velocity are con-
sidered to have no vertical velocity (cos 90* - 0). The existence of
sample points with negative velocity may be determined with the pltot
tubes aligned with the flow stream; the manometer deflection will Indi-
cate the direction of flow.
-------
Sampling Procedure
Standard 1sok1net1c sampling procedures (Chapters 4 and 5) are followed
except for adjustment of the sampling time and pitot tube and nozzle
orientation at each sample point.
Preliminary Velocity Traverse and Calculations
Knowledge of the flow angles at all sampling points 1s necessary to
Insure that the total sample time and total sample volume 1s adequate; •
therefore, flow angles are normally measured during the preliminary
velocity traverse. The complete set of angles should be measured In as
short a duration of time as possible In case the position of the flow
cyclone 1n the stack 1s changing with time. After the measurement of
flow angles Is complete, a base sampling time for each sampling point Is
selected. The actual sampling time at each sample point Is the base
sampling time multiplied by the cosine of the flow angle at that sample
point.
All preliminary procedures and calculations are performed with prelimi-
nary data as measured 1n the direction of flow similar to standard 1 so-
kinetic sampling procedures. The actual sampling time at each sample
point (base time x cos a) Is used 1n preliminary calculations. As
discussed earlier, 1f zero or negative flow exists at any sample point,
the flow angle 1s recorded as 90* and the actual sampling tine at that
sample point Is zero (cos 90° « 0). The base tine should be large
enough so that the total sample volume 1s adequate and that the sampling
time at the sample point with the shortest actual sampling time Is long
enough to record data. Appendix 0 contains data forms for recording
angles and sampling times along with forms for standard stack sampling.
Sampling
Sampling 1s performed with the nozzle and pltot tubes oriented 1n the
direction of flow at each sampling point with 1sok1net1c conditions
maintained according to the AP measured 1n the flow stream. As dis-
cussed In the section on Accuracy Considerations, radial velocity
components are not considered since large particles should have no
radial velocity components. Since large particles should be concen-
trated near the stack wall, the accuracy of sampling at the outer points
1s of particular Importance. The precalculated sampling time at each
sampling point Is the base time multiplied by the cosine of the flow
angle. For Instance, 1f the base sampling time 1s four minutes and the
flow angle 1s 60° at one sample point, the actual sampling time at that
sample point 1s two minutes (cos 60* » 0.5). It Is suggested that
sampling at each sample point be started at some Increment of a minute
or that a timer be used for each sample point to avoid confusion with
various odd minutes and seconds. The flow may be stopped for short
-------
periods between sample points, but the off-time nust not be so long that
the sample could be contaminated by particles entering the sampling
train while the flow 1s stopped.
In some cases of cyclonic flow, some sample points may have negative
flow or flow back Into the stack (flow angle > 90*) rather than out the
stack. These sampling points are treated as points with zero flow and
zero actual sampling time. This situation may cause the results to be
biased high If some of the pollutant sampled at the sample points with
positive How Is also present at the sample points with negative flow.
Two separate samples may produce more accurate results 1n such a case -
one sample for positive now and one sample for negative now with the
numerical difference being the emission rate.
The field check of percent 1sok1net1c Is made using actual parameters
measured during sampling; velocity 1s used as measured In the now
stream and time Is the sum of the adjusted (actual) sampling times for
the separate sample points. -The 1 sold net 1c check could also be per-
formed by calculating the vertical velocity component at each sample
point and using the total base time as explained 1n the section on Data
Reduction, but this approach 1s considered too cumbersome for field use.
Data Reduction
Data reduction procedures must account for the differences between the
total velocity vectors (defined by a and AP) and the exiting components
of these vectors. Since the average exiting velocity oust be used to
calculate stack now rate (ACFM or SCFM), effective stack height, and,
1n turn, allowable emission rate and standard effective stack height,
data reduction procedures must average only the vertical components of
the total velocity vectors. Different data reduction approaches may
yield correct results; the data reduction procedures discussed 1n this
section are based on adjustment of Individual AP readings to correspond
to vertical velocity components. Standard data reduction procedures are
discussed In Chapter 8 and only the adjustments to the Input data neces-
sary to apply the standard procedures are discussed here.
Each field AP reading (as measured 1n the now stream) 1s multiplied by
the square of the cosine of the now angle («) corresponding to each AP
reading. Data reduction Input AP 1s (cos2 a) (field AP). Input sample
time per sample point 1s the total base sampling time per sample point
and the total sampling time Input Is the total base time (base time)
(number of sample points). All other parameters are Input as measured.
The data sheets 1n Appendix D should be helpful 1n organizing cyclonic
flow data.
-------
CYCLONIC FLOW FIELD CALCULATION SHEET
Company Name_
Address
Date
Tester
Sampling Location
Base Test Time
Sarapl e
Point
•
Angle
Test
Time
Run t
AP
.
cos * ( /£p)
•• j--»— •
Run f
*P
.
cos ^ ( £p)
Run f
.P
•^
cos 4 (/Sf
Tesc Time » coi t (B*«e Tine)
Average
Average Apu
" '00$
Average &
-------
. Appendix G.3
Sampling & Analysis Methods
EPA Method 3A
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
Method 3A • Determination of Oxygen and Carbon Dioxide Concentrations
1n Emissions from Stationary Sources
(Instrumental Analyzer Procedure)
1. APPLICABILITY AND PRINCIPLE
1.1 Applicability. This method 1s applicable to the determination of oxygen (Oj) and
carbon dioxide (C02) concentrations in emissions from stationary sources only when
specified within the regulations.
1.2 Principle. A sample is continuously extracted from the effluent stream: a
portion of the sample stream is conveyed to an instrumental analyzer(s) for
determination of 02 and CQ concentration(s). Performance specifications and test
procedures are provided to ensure reliable data.
2. RANGE AND SENSITIVITY
Same as in Method 6C. Sections 2.1 and 2.2. except that the span of the monitoring
system shall be selected such that the average 02 or C02 concentration is not less than
20 percent of the span.
3. DEFINITIONS
3.1 Measurement System. The total equipment required for the determination of the 02
or COz concentration. The measurement system consists of the same major subsystems as
defined in Method 6C. Sections 3.1.1. 3.1.2. and 3.1.3.
3.2 Span, Calibration Gas, Analyzer Calibration Error. Sampling System Bias. Zero
Drift. Calibration Drift, Response Time, and Calibration Curve. Same as in Method 6C.
Sections 3.2 through 3.8. and 3.10.
3.3 Interference Response. The output response of the measurement system to a
component in the sample gas. other than the gas component being measured.
4. MEASUREMENT SYSTEM PERFORMANCE SPECIFICATIONS
Same as in Method 6C. Sections 4.1 through 4.4.
Prepared by Emission Measurement Branch EMTIC TM-003A
Technical Support Division. OAQPS. EPA May 6. 1989
-------
EMTIC TM-003A NSPS TEST METHOD Page 2
5. APPARATUS AND REAGENTS
5.1 Measurement Systen. Any measurement system for Oj or CQ that meets the
specifications of this method. A schematic of an acceptable measurement system 1s
shown 1n Figure 6C-1 of Method 6C. The essential components of the measurement system
are described below:
5.1.1 Sample Probe. A leak-free probe of sufficient length to traverse the sample
points.
5.1.2 Sample Line. Tubing to transport the sample gas from the probe to the moisture
removal system. A heated sample line 1s not required for systems that measure the 02
or C02 concentration on a dry basis, or transport dry gases.
5.1.3 Sample Transport Line. Calibration Valve Assembly. Moisture Renewal System.
Participate Filter. Sample Pump. Sample Flow Rate Control. Sample Gas Manifold, and
Data Recorder. Same as 1n Method 6C. Sections 5.1.3 through 5.1.9. and 5.1.11. except
that the requirements to use stainless steel. Teflon, and nonreactlve glass filters do
not apply.
5.1.4 Gas Analyzer. An analyzer to determine continuously the 0? or COj concentration
In the sample gas stream. The analyzer must meet the applicable performance
specifications of Section 4. A means of controlling the analyzer flow rate and a
device for determining proper sample flow rate (e.g.. precision rotameter. pressure
gauge downstream of all flow controls, etc.) shall be provided at the analyzer. The
requirements for measuring and controlling the analyzer for measuring and controlling
the analyzer flow rate are not applicable 1f data are presented that demonstrate the
analyzer is insensitive to flow variations over the range encountered during the test.
5.2 Calibration Gases. The calibration gases for C02 analyzers shall be f^ 1n ^ or
C02 in air. Alternatively. C02/S02. (ySOz. or Oz/COV/SOz gas mixtures in N2 may be used.
Three calibration gases, as specified 1n Sections 5.3,1 through 5.3.4 of Method 5C.
shall be used. For 02 monitors that cannot analyze zero gas. a calibration gas
concentration equivalent to less than 10 percent of the span may be used 1n place of
zero gas.
6. MEASUREMENT SYSTEM PERFORMANCE TEST PROCEDURES
Perform the following procedures before measurement of emissions (Section 7).
6.1 Calibration Concentration Verification. Follow Section 6.1 of Method 6C. except
1f calibration gas analysis is required, use Method 3 and change the acceptance
criteria for agreement among Method 3 results to 5 percent (or 0.2 percent by volume.
whichever 1s greater).
6.2 Interference Response. Conduct an Interference response test of the analyzer
prior to Its Initial use 1n the field. Thereafter, recheck the measurement system 1f
-------
EMTIC TM-003A NSPS TEST METHOD Page 3
changes are made 1n the Instrumentation that could alter the Interference response
(e.g., changes 1n the type of gas detector). Conduct the Interference response 1n
accordance with Section 5.4 of Method 20.
6.3 Measurement System Preparation. Analyzer Calibration Error. Response Tine, and
Sampling System Bias Check. Follow Sections 6.2 through 6.4 of Method 6C.
7. EMISSION TEST PROCEDURE
7.1 Selection of Sampling Site and Sampling Points. Select a measurement site and
sampling points using the same criteria that are applicable to tests performed using
Method 3.
7.2 Sample Collection. Position the sampling probe at the first measurement point.
and begin sampling at the same rate as that used during the response time test.
Maintain constant rate sampling (I.e.. ±10 percent) during the entire run. The
sampling time per run shall be the same as for tests conducted using Method 3 plus
twice the average system response time. For each run. use only those measurements
obtained after twice the response time of the measurement system has elapsed to
determine the average effluent concentration.
7.3 Zero and Calibration Drift Test. Follow Section 7.4 of Method 6C.
8. QUALITY CONTROL PROCEDURES
The following quality control procedures are recommended when the results of this
method are used for an emission rate correction factor, or excess air determination.
The tester should select one of the following options for validating measurement
results:
8.1 If both 02 and CQ are measured using Method 3A. the procedures described in
Section 4.4 of Method 3 should be followed to validate the 02 and CQ measurement
results.
8.2 If only 02 is measured using Method 3A. measurements of the sample stream,CO
concentration should be obtained at the sample by-pass vent discharge using an Orsat
or Fyrlte analyzer, or equivalent. Duplicate samples should be obtained concurrent
with at least one run. Average the duplicate Orsat or Fyrite analysis results for
each run. Use the average C02 values for comparison with the20 measurements in
accordance with the procedures described in Section 4.4 of Method 3.
8.3 If only C02 1s measured using Method 3A. concurrent measurements of the sample
stream C02 concentration should be obtained using an Orsat or Fyrlte analyzer as
described in Section 8.2. For each run. differences greater than 0.5 percent between
the Method 3A results and the average of the duplicate Fyrlte analysis should be
Investigated.
-------
EMTIC TM-003A NSPS TEST METHOD Page 4
9. EMISSION CALCULATION
9.1 For all C02 analyzers, and for 02 analyzers that can be calibrated with zero gas.
follow Section 8 of Method 6C. except express all concentrations as percent, rather
than ppm.
9.2 For Oj analyzers that use a low-level calibration gas In place of a zero gas.
calculate the effluent gas concentration using Equation 3A-1.
CM " CM
CgK . - (C - C.) + C., Eq. 3A-1
C.- C0
Where:
C«i$ - Effluent gas concentration, dry basis, percent.
CM - Actual concentration of the upscale calibration gas. percent.
CM - Actual concentration of the low-level calibration gas. percent.
C. - Average of initial and final system calibration bias check
responses for the upscale calibration gas. percent.
C0 - Average of Initial and final system calibration bias check
responses for the low level gas. percent.
C - Average gas concentration indicated by the gas analyzer, dry basis.
percent .
10. BIBLIOGRAPHY
Same as 1n Bibliography of Method 6C.
-------
Appendix G.4
Sampling & Analysis Methods
EPA Method 23
-------
-------
6560-50
ENVIRONMENTAL PROTECTION AGENCY
40 CFR Part 60
[AD-FRL- ]
STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES
Appendix A , Test Method 23
AGENCY: Environmental Protection Agency (EPA).
ACTION: Proposed Rule.
SUMMARY: This rule amends Method 23, entitled
"Determination of Polychlorinated Dibenzo-p-Dioxins and
Polychlorinated Dibenzofurans from Stationary Sources," to
correct existing errors in the method, to eliminate the methylene
chloride rinse of the sampling train, and to clarify the quality
assurance requirements of the method.
DATES: Comments. Comments must be received on or before
(90 days after publication in the FEDERAL
REGISTER].
public Hearing. If anyone contacts EPA requesting to speak
at a public hearing by (two weeks after
publication in the FEDERAL REGISTER), a public hearing will be
held on (four weeks after publication in the
FEDERAL REGISTER), beginning at 10:00 a.m. Persons interested in
attending the hearing should call Ms. Lala Cheek at
(919) 541-5545 to verify that a hearing will be held.
Request to Speak at Hearing. Persons wishing to present
-------
oral testimony must contact EPA by (two weeks
after publication in the FEDERAL REGISTER) .
ADDRESSES: Comments. Comments should be submitted (in duplicate
if possible) to Public Docket No. A-94-2 at the following
address: U. S. Environmental Protection Agency , Air and
Radiation Docket and Information Center, Mail Code: 6102, 401 M
Street, SW, Washington, DC 20460. The Agency requests that a
separate copy also be sent to the contact person listed below.
The docket is located at the above address in Room M-1500
Waterside Mall (ground floor), and may be inspected from
8:30 a.m. to Noon and 1:00 to 3:00 PM, Monday through Friday.
The proposed regulatory text and other materials related to this
rulemaking are available for review in the docket or copies may
be mailed on request from the Air Docket by calling 202-260-7548.
A reasonable fee may be charged for copying docket materials.
Public Hearing. If anyone contacts EPA requesting a public
hearing, it will be held at EPA's Emission Measurement
Laboratory, Research Triangle Park, North Carolina. Persons
interested in attending the hearing or wishing to present oral
testimony should notify Ms. Lala Cheek (MD-19), U.S.
Environmental Protection Agency, Research Triangle Park, North
Carolina 27711, telephone number (919) 541-5545.
-------
Docket;: A Docket, A-94-22, containing materials relevant to
this rulemaking, is available for public inspection and copying
between 8:30 a.m. and Noon and 1:00 and 3:00 p.m., Monday through
Friday, in at EPA's Air Docket1Section (LE-131), Room M-1500
Waterside Mall (ground floor) 401 M Street, S.W., Washington,
D.C. 20460. A reasonable fee may be. charged for copying.
FOR FURTHER INFORMATION CONTACT: Gary McAlister, Emission
Measurement Branch (MD-19), Emissions, Monitoring, and Analysis
Division, U.S. Environmental Protection Agency, Research Triangle
Park, North Carolina 27711, telephone (919) 541-1062.
SUPPLEMENTARY INFORMATION:
The proposed regulatory text of the proposed rule is not
included in this Federal Register notice, but is available in
Docket No. A-94-22 or by written or telephone request from the
Air Docket (see ADDRESSES). If necessary, a limited number of
copies of the Regulatory Text are available from the EPA contact
persons designated earlier in this notice. This Notice with the
proposed regulatory language is also available on the Technology
Transfer Network (TTN), one of EPA's electronic bulletin boards.
TTN provides information and technology exchange in various areas
of air pollution control. The service is free except for the
cost of the phone call. Dial (919) 541-5742 for up to a 14400
-------
bps modem. If more information on TTN is needed, call the HELP
line at (919) 541-5384.
I. SUMMARY
Method 23 was promulgated along with the New Source
Performance Standard for municipal waste combustors (Subpart Ea).
As promulgated, the method contained some errors. This action
would correct those errors and would clarify some of the existing
quality assurance requirements. In addition, the current
procedure requires rinsing of the sampling train with two
separate solvents which must be analyzed separately. Based on
data the Agency has collected since promulgation of Method 23, we
believe that one of these rinse steps and the resulting sample
fraction can be eliminated. This could save as much as $2000 per
test run in analytical costs.
II. THE RULEMAKING
This rulemaking does not impose emission measurement
requirements beyond those specified in the current regulations
nor does it change any emission standard. Rather, the rulemaking
would simply amend an existing test method associated with
emission measurement requirements in the current regulations that
would apply irrespective of this rulemaking.
III. ADMINISTRATIVE REQUIREMENTS
-------
ic Hearin
A public hearing will be held, if requested, to discuss the
proposed amendment in accordance with section 307(d) (5) of the
Clean Air Act. Persons wishing to make oral presentations should
contact EPA at the address given in the ADDRESSES section of this
preamble. Oral presentations will be limited to 15 minutes each.
Any member of the public may file a written statement with EPA
before, during, or within 30 days after the hearing. Written
statements should be addressed to the Air Docket Section address
given in the ADDRESSES section of this preamble.
A verbatim transcript of the hearing and written statements
will be available for public inspection and copying during normal
working hours at EPA's Air Docket Section in Washington, DC (see
ADDRESSES section of this preamble) .
p . Docket
The docket is an organized and complete file of all the
information considered by EPA in the development of this
rulemaking. The docket is a dynamic file, since material is
added throughout the rulemaking development . The docketing
system is intended to allow members of the public and industries
involved to identify and locate documents readily so that they
may effectively participate in the rulemaking process. Along
-------
with the statement of basis and purpose of the proposed and
promulgated test method revisions and EPA responses to
significant comments, the contents of the docket, except for
interagency review materials, will serve as the record in case of
judicial review [Section 307(d)(7) (A)] .
C. Executive Order 12291 Review
Under Executive Order 12291, EPA is required to judge
whether a regulation is a "major rule" and, therefore, subject to
the requirements of a regulatory impact analysis. This
rulemaking does not impose emission measurement requirements
beyond those specified in the current regulations, nor does it
change any emission standard. The Agency has determined that
this regulation would result in none of the adverse economic
effects set forth in Section 1 of the Order as grounds for
finding the regulation to be a "major rule." The Agency has,
therefore, concluded that this regulation is not a "major rule"
under Executive Order 12291.
D. Regulatory Flexibility Act
The Regulatory Flexibility Act (RFA) of 1980 requires the
identification of potentially adverse impacts of Federal
regulations upon small business entities. The RFA specifically
requires the completion of an analysis in those instances where
-------
small business impacts are possible. This rulemaking does not
impose emission measurement requirements beyond those specified
in the current regulations, nor does it change any emission
standard. Because this rulemaking imposes no adverse economic
impacts, an analysis has not been conducted.
Pursuant to the provision of 5 U.S.C. 605(b), I hereby
certify that the promulgated rule will not have an impact on
small entities because no additional costs will be incurred.
E. Paperwork Reduction Act
This rule does not change any information collection
requirements subject to Office of Management and Budget review
under the Paperwork Reduction Act of 1980, 44 U.S.C. 3501 et seq.
F. Statutory Authority
The statutory authority for this proposal is provided by
sections 111 and 301(a) of the Clean Air Act, as amended: 42
U.S.C., 7411 and 7601(a).
LIST OF SUBJECTS
Air pollution control, municipal waste combustors,
polychorinated dibenzo-p-dioxins, sources.
-------
Date The Administrator
It is proposed that 40 CFR Part 60 be amended as follows:
1. The authority citation for Part 60 continues to read as
follows: Authority: Clean Air Act (42 U.S.C. 7401 [et seq.], as
amended by Pub. L 101-549) .
2. Replace test Method 23 of Appendix A, with the
following:
Method 23 - Determination of Polychlorinated Dibenzo-p-dioxina
and Polychlorinated Dibenzofurans from Municipal Haste Combust or s
1. APPLICABILITY AND PRINCIPLE
1.1 Applicability. This method is applicable to the
determination of emissions of polychlorinated dibenzo-p-dioxins
(PCDD's) and polychlorinated dibenzofurans (PCDF's) from
municipal waste combustors. Calibration standards are selected
for regulated emission levels for municipal waste combustors.
1.2 Principle. A sample is withdrawn isokinetically from the
gas stream and collected in the sample probe, on a glass fiber
filter, and on a packed column of adsorbent material. The sample
cannot be separated into a particle and vapor fraction. The
PCDD's and PCDF's are extracted from the sample, separated by
high resolution gas chromatography (HRGC), and measured by high
8
-------
resolution mass spectrotnetry (HRMS) .
2. APPARATUS
2.1 Sampling. A schematic of the sampling train is shown in
Figure 23-1. Sealing greases shall not be used in assembling the
train. The train is identical to that described in Section 2.1
of Method 5 of this appendix with the following additions:
-------
OuFInt
Figure 23.1 Sampling Train
10
-------
11
-------
2.1.1 Nozzle. The nozzle shall be made of nickel, nickel-
plated stainless steel, quartz, or borosilicate glass.
2.1.2 Sample Transfer Lines. The sample transfer lines, if
needed, shall be heat traced, heavy walled TFE (1/2 in. OD with
1/8 in. wall) with connecting fittings that are capable of
forming leak-free, vacuum-tight connections without using sealing
greases. The line shall be as short as possible and must be
maintained at ^120°C.
2.1.1 Filter Support. Teflon or Teflon-coated wire.
2.1.2 Condenser. Glass, coil type with compatible fittings.
A schematic diagram is shown in Figure 23-2.
2.1.3 Water Bath. Thermostatically controlled to maintain the
gas temperature exiting the condenser at
-------
2.2 Sample Recovery.
2.2.1 Fitting Caps. Ground glass, Teflon tape, or aluminum
foil (Section 2.2.6) to cap off the sample exposed sections of
the train and sorbent module.
2.2.2 Wash Bottles. Teflon, 500-mL.
13
-------
• 20/15
Flue
Gas
Flow
Sorbent Trap
XAD-2
Glaaa Wool Plug
Sintered DM
Water Jacket
Condenser
Cooling Coll
Water Jacket
* 20/15
Figure 23.2 Condenser and Adsorbent Trap
14
-------
15
-------
2.2.3 Probe Liner, Probe Nozzle, and Filter Holder Brushes.
Inert bristle brushes with precleaned stainless steel or Teflon
handles. The probe brush shall have extensions of stainless
steel or Teflon, at least as long as the probe.. The brushes
shall be properly sized and shaped to brush out the nozzle, probe
liner, and transfer line, if used.
2.2.4 Filter Storage Container. Sealed filter holder, wide-
mouth amber glass jar with Teflon-lined cap, glass petri dish, or
Teflon baggie.
2.2.5 Balance. Triple beam.
2.2.6 Aluminum Foil. Heavy duty, hexane-rinsed (Do not use to
wrap or ship filter samples, because it may react with
particulate matter).
2.2.7 Metal Storage Container. Air tight container to store
silica gel.
2.2.8 Graduated Cylinder. Glass, 250-mL with 2-mL
graduations.
2.2.9 Glass Sample Storage Containers. Amber glass bottles
for sample glassware washes, 500- or 1000-mL, with leak free
Teflon-lined caps.
2.3 Analysis.
2.3.1 Sample Containers. 125- and 250-mL flint glass bottles
with Teflon-lined caps.
16
-------
2.3.2 Test Tubes. Glass.
2.3.3 Soxhlet Extraction Apparatus. Capable of holding 43 x
123 mm extraction thimbles.
2.3.4 Extraction Thimble. Glass, precleaned cellulosic, or
glass fiber.
2.3.5 Pasteur Pipettes. For preparing liquid chromatographic
•
columns.
2.3.6 Reacti-vials. Amber glass, 2-mL.
2.3.7 Rotary Evaporator. Buchi/Brinkman RF-121 or equivalent.
2.3.8 Kuderna-Danish Concentrator Apparatus.
2.3.9 Nitrogen Evaporative Concentrator. N-Evap Analytical
Evaporator Model III or equivalent.
2.3.10 Separatory Funnels. Glass, 2-liter.
2.3.11 Gas Chromatograph. Consisting of the following
components:
2.3.11.1 Oven. Capable of maintaining the separation column
at the proper operating temperature ±10°C and performing
programmed increases in temperature at rates of at least
40°C/min.
2.3.11.2 Temperature Gauges. To monitor column oven,
detector, and exhaust temperatures ±1°C.
2.3.11.3 Flow Systems. Gas metering system to measure sample,
fuel, combustion gas, and carrier gas flows.
17
-------
2.3.11.4 Capillary Columns. A fused silica column,
60 x 0.25 mm inside diameter (ID), coated with DB-5 and a fused
silica column, 30 m x 0.25 mm ID coated with DB-225. Other
column systems may be substituted provided that the user is able
to demonstrate, using calibration and performance checks, that
the column system is able to meet the specifications of Section
6.1.2.2.
2.3.12 Mass Spectrometer. Capable of routine operation at a
resolution of 1:10000 with a stability of ±5 ppm.
2.3.13 Data System. Compatible with the mass spectrometer and
capable of monitoring at least five groups of 25 ions.
2.3.14 Analytical Balance. To measure within 0.1 mg.
3. REAGENTS
3.1 Sampling.
3.1.1 Filters. Glass fiber filters, without organic binder,
exhibiting at least 99.95 percent efficiency (<0.05 percent
penetration) on 0.3-micron dioctyl phthalate smoke particles.
The filter efficiency test shall be conducted in accordance with
ASTM Standard Method D 2986-71 (Reapproved 1978) (incorporated by
reference - see §60.17).
3.1.1.1 Precleaning. All filters shall be cleaned before
their initial use. Place a glass extraction thimble and 1 g of
silica gel and a plug of glass wool into a Soxhlet apparatus,
18
-------
charge the apparatus with toluene, and reflux for a minimum of 3
hours. Remove the toluene and discard it, but retain the silica
gel. Place no more than 50 filters in the thimble onto the
silica gel bed and top with the cleaned glass wool. Charge the
Soxhlet with toluene and reflux for 16 hours. After extraction,
allow the Soxhlet to cool, remove the filters, and dry them under
a clean nitrogen (N2) stream. Store the filters in a glass petri
dishes and seal with Teflon tape.
3.1.2 Adsorbent Resin. Amberlite XAD-2 resin. Thoroughly
cleaned before initial use. Do not reuse resin. If precleaned
XAD-2 resin is purchased from the manufacturer, the cleaning
procedure described in Section 3.1.2.1 is not required.
3.1.2.1 Cleaning. Procedure may be carried out in a giant
Soxhlet extractor. An all-glass filter thimble containing an
extra-coarse frit is used for extraction of XAD-2. The frit is
recessed 10-15 mm above a crenelated ring at the bottom of the
thimble to facilitate drainage. The resin must be carefully
retained in the extractor cup with a glass wool plug and a
stainless steel ring because it floats on methylene chloride.
This process involves sequential extraction in the following
order.
Solvent Procedure
Water Initial Rinse: Place resin in a beaker,
19
-------
rinse once with HPLC water, and discard
water. Refill beaker with water, let
stand overnight, and discard water.
Water Extract with HPLC water for 8 hours.
Methanol Extract with methanol for 22 hours.
Methylene Chloride Extract with methylene chloride for 22
hours.
Methylene Chloride Extract with methylene chloride for 22
hours.
3.1.2.2 Drying.
3.1.2.2.1 Drying Column. Pyrex pipe, 10.2 cm ID by 0.6 m
long, with suitable retainers.
3.1.2.2.2 Procedure. The adsorbent must be dried with clean
inert gas. Liquid nitrogen from a standard commercial liquid
nitrogen cylinder has proven to be a reliable source for large
volumes of gas free from organic contaminants., Connect the
liquid nitrogen cylinder to the column by a length of cleaned
copper tubing, 0.95 cm ID, coiled to pass through a heat source.
A convenient heat source is a water-bath heated from a steam
line. The final nitrogen temperature should only be warm to the
touch and not over 40°C. Continue flowing nitrogen through the
adsorbent until all the residual solvent is removed. The flow
rate should be sufficient to gently agitate the particles, but
20
-------
not so excessive as to cause the particles to fracture.
3.1.2.3 Quality Control Check. The adsorbent must be checked
for residual methylene chloride (MeCla) as well as PCDDs and
PCDFs prior to use. The analyst may opt to omit this check for
precleaned XAD-2.
3.1.2.3.1 MeCl2 Residue Extraction. Weigh a 1.0 g sample of
dried resin into a small vial, add 3 mL of toluene, cap the vial,
and shake it well.
3.1.2.3.2 MeClj Residue Analysis. Inject a 2 /xl sample of the
extract into a gas chromatograph operated under the following
conditions:
Column: 6 ft x 1/8 in stainless steel containing 10 percent
OV-1017" on 100/120 Supelcoport.
Carrier Gas: Helium at a rate of 30 mL/min.
Detector: Flame ionization detector operated at a sensitivity
of 4 x 10-11 A/mV.
Injection Port Temperature: 250°C.
Detector Temperature: 305°C.
Oven Temperature: 30°C for 4 min; programmed to rise at
40°C/min until it reaches 250°C; return to 30°C after 17
minutes.
Compare the results of the analysis to the results from the
reference solution. Prepare the reference solution by injecting
21
-------
4.0 pil of methylene chloride into 100 mL of toluene. This
corresponds to 100 /xg of methylene chloride per g of adsorbent.
The maximum acceptable concentration is 1000 pg/g of adsorbent.
If the adsorbent exceeds this level, drying must be continued
until the excess methylene chloride is removed.
3.1.2.3.3 PCDD and PCDF Check. Extract the adsorbent sample
as described in Section 5.1. Analyze the extract as described in
Section 5.3. If any of the PCDDs or PCDFs (tetra through hexa)
are present at concentrations above the target detection limits
(TDLs), the adsorbent must be recleaned by repeating the last
step of the cleaning procedure. The TDLs for the various
PCDD/PCDF congeners are listed in Table 1.
3.1.2.4 Storage. After cleaning, the adsorbent may be stored
in a wide mouth amber glass container with a Teflon-lined cap or
placed in glass adsorbent modules tightly sealed with glass
stoppers. It must be used within 4 weeks of cleaning. If
precleaned adsorbent is purchased in sealed containers, it must
be used within 4 weeks after the seal is broken.
3.1.3 Glass Wool. Cleaned by sequential immersion in three
aliquots of methylene chloride, dried in a 110°C oven, and stored
in a methylene chloride-washed glass container with a Teflon-
lined screw cap.
3.1.4 Water. Deionized distilled and stored in a methylene
22
-------
chloride-rinsed glass container with a Teflon-lined screw cap.
3.1.5 Silica Gel. Indicating type, 6 to 16 mesh. If
previously used, dry at 175° C (350°F) for two hours. New silica
gel may be used as received. Alternatively, other types of
desiccants (equivalent or better) may be used, subject to the
approval of the Administrator.
3.1.6 Chromic Acid Cleaning Solution. Dissolve 20 g of sodium
dichromate in 15 mL of water, and then carefully add 400 mL of
concentrated sulfuric acid.
3.1.7 HPLC Water.
3.2 Sample Recovery.
3.2.1 Acetone. Pesticide quality.
3.2.2 Toluene. Pesticide quality.
3.3 Analysis.
3.3.1 Potassium Hydroxide. ACS grade, 2-percent
(weight/volume) in water.
3.3.2 Sodium Sulfate. Granulated, reagent grade. Purify
prior to use by rinsing with methylene chloride and oven drying.
Store the cleaned material in a glass container with a Teflon-
lined screw cap.
3.3.3 Sulfuric Acid. Reagent grade.
3.3.4 Sodium Hydroxide. 1.0 N. Weigh 40 g of sodium hydroxide
into a 1-liter volumetric flask. Dilute to 1 liter with water.
23
-------
3.3.5 Hexane. Pesticide grade.
3.3.6 Methy1ene Chloride. Pesticide grade.
3.3.7 Benzene. Pesticide grade.
3.3.8 Ethyl Acetate.
3.3.9 Methanol. Pesticide grade.
3.3.10 Toluene. Pesticide grade.
3.3.11 Nonane. Pesticide grade.
3.3.12 Cyclohexane. Pesticide Grade.
3.3.13 Basic Alumina. Activity grade 1, 100-200 mesh. Prior
to use, activate the alumina by heating for 16 hours at 130°C.
Store in a desiccator. Pre-activated alumina may be purchased
from a supplier and may be used as received.
3.3.14 Silica Gel. Bio-Sil A, 100-200 mesh. Prior to use,
activate the silica gel by heating for at least 30 minutes at
180°C. After cooling, rinse the silica gel sequentially with
methanol and methylene chloride. Heat the rinsed silica gel at
50°C for 10 minutes, then increase the temperature gradually to
180°C over 25 minutes and maintain it at this temperature for
90 minutes. Cool at room temperature and store in a glass
container with a Teflon-lined screw cap.
3.3.15 Silica Gel Impregnated with Sulfuric Acid. Combine 100
g of silica gel with 44 g of concentrated sulfuric acid in a
screw capped glass bottle and agitate thoroughly. Disperse the
24
-------
solids with a stirring rod until a uniform mixture is obtained.
Store the mixture in a glass container with a Teflon-lined screw
cap.
3.3.16 Silica Gel Impregnated with Sodium Hydroxide. Combine
39 g of 1 N sodium hydroxide with 100 g of silica gel in a screw
capped glass bottle and agitate thoroughly. Disperse solids with
a stirring rod until a uniform mixture is obtained. Store the
mixture in glass container with a Teflon-lined screw cap.
3.3.17 Carbon/Celite. Combine 10.7 g of AX-21 carbon with 124
g of Celite 545 in a 250-mL glass bottle with a Teflon-lined
screw cap. Agitate the mixture thoroughly until a uniform
mixture is obtained. Store in the glass container.
3.3.18 Nitrogen. Ultra high purity.
3.3.19 Hydrogen. Ultra high purity.
3.3.20 Internal Standard Solution. Prepare a stock standard
solution containing the isotopically labelled PCDD's and PCDF's
at the concentrations shown in Table 2 under the heading
"Internal Standards" in 10 mL of nonane.
3.3.21 Surrogate Standard Solution. Prepare a stock standard
solution containing the isotopically labelled PCDD's and PCDF's
at the concentrations shown in Table 2 under the heading
"Surrogate Standards" in 10 mL of nonane.
3.3.22 Recovery Standard Solution. Prepare a stock standard
25
-------
solution containing the isotopically labelled PCDD's and PCDF's
at the concentrations shown in Table 2 under the heading
"Recovery Standards" in 10 inL of nonane.
4. PROCEDURE
4.1 Sampling. The complexity of this method is such that, in
order to obtain reliable results, testers and analysts should be
trained and experienced with the procedures.
4.1.1 Pretest Preparation.
4.1.1.1 Cleaning Glassware. All glass components of the train
upstream of and including the adsorbent module, shall be cleaned
as described in Section 3A of the "Manual of Analytical Methods
for the Analysis of Pesticides in Human and Environmental
Samples." Special care shall be devoted to the removal of
residual silicone grease sealants on ground glass connections of
used glassware. Any residue shall be removed by soaking the
glassware for several hours in a chromic acid cleaning solution
prior to cleaning as described above.
4.1.1.2 Adsorbent Trap. The traps shall be loaded in a clean
area to avoid contamination. They may not be loaded in the
field. Fill a trap with 20 to 40 g of XAD-2. Follow the XAD-2
with glass wool and tightly cap both ends of the trap. Add 40 /il
of the surrogate standard solution (Section 3.3.21) to each trap
for a sample that will be split prior to analysis or 20 /zl of the
26
-------
surrogate standard solution (Section 3.3.21) to each trap for
samples that will not be split for analysis (Section 5.1). After
addition of the surrogate standard solution/ the trap must be
used within 14 days. Keep the spiked sorbent under refrigeration
until use.
4.1.1.3 Sampling Train. It is suggested that all components
be maintained according to the procedure described in APTD-0576.
4.1.1.4 Silica Gel. Weigh several 200 to 300 g portions of
silica gel in air tight containers to the nearest 0.5 g. Record
the total weight of the silica gel plus container, on each
container. As an alternative, the silica gel may be weighed
directly in the fifth impinger just prior to sampling.
4.1.1.5 Filter. Check each filter against light for
irregularities and flaws or pinhole leaks. Pack the filters flat
in a clean glass container or Teflon baggie. Do not mark filter
with ink or any other contaminating substance.
4.1.2 Preliminary Determinations. Same as Section 4.1.2
Method 5.
4.1.3 Preparation of Sampling Train.
4.1.3.1 During preparation and assembly of the sampling train,
keep all train openings where contamination can enter, sealed
until sampling is about to begin. Wrap sorbent module with
aluminum foil to shield from radiant heat of sun light. (NOTE:
27
-------
Do not use sealant grease in assembling the train.)
4.1.3.2 Place approximately 100 mL of water in the second and
third impingers, leave the first and fourth impingers empty, and
transfer approximately 200 to 300 g of preweighed silica gel from
its container to the fifth impinger.
4.1.3.3 Place the silica gel container in a clean place for
later use in the sample recovery. Alternatively, the weight of
the silica gel plus the fifth impinger may be determined to the
nearest 0.5 g and recorded.
4.1.3.4 Assemble the sampling train as shown in Figure 23-1.
4.1.3.5 Turn on the adsorbent module and condenser coil
recirculating pump and begin monitoring the adsorbent module gas
entry temperature. Ensure proper sorbent gas entry temperature
before proceeding and before sampling is initiated. It is
extremely important that the XAD-2 adsorbent resin temperature
never exceed 50°C because thermal decomposition and breakthrough
of surrogate standards will occur. During testing, the XAD-2
temperature must not exceed 20°C for efficient capture of the
PCDD's and PCDF's.
4.1.4 Leak-Check Procedure. Same as Method 5, Section 4.1.4.
4.1.5 Sampling Train Operation. Same as Method 5,
Section 4.1.5.
4.2 Sample Recovery. Proper cleanup procedure begins as soon
28
-------
as the probe is removed from the stack at the end of the sampling
period. Seal the nozzle end of the sampling probe with Teflon
tape or aluminum foil.
When the probe can be safely handled, wipe off all external
particulate matter near the tip of the probe. Remove the probe
from the train and close off both ends with aluminum foil. Seal
off the inlet to the train with Teflon tape, a ground glass cap,
or aluminum foil.
Transfer the probe and impinger assembly to the cleanup area.
This area shall be clean and enclosed so that the chances of
losing or contaminating the sample are minimized. Smoking, which
could contaminate the sample, shall not be allowed in the cleanup
area. Cleanup personnel shall wash their hands prior to sample
recovery.
Inspect the train prior to and during disassembly and note any
abnormal conditions, e.g., broken filters, colored impinger
liquid, etc. Treat the samples as follows:
4.2.1 Container No. 1. Either seal the filter holder or
carefully remove the filter from the filter holder and place it
in its identified container. Do not place the filter in aluminum
foil. Use a pair of cleaned tweezers to handle the filter. If
it is necessary to fold the filter, do so such that the
particulate cake is inside the fold. Carefully transfer to the
29
-------
container any particulate matter and filter fibers which adhere
to the filter holder gasket, by using a dry inert bristle brush
and a sharp-edged blade. Seal.the container with Teflon tape.
4.2.2 Adsorbent Module. Remove the module from the train,
tightly cap both ends, label it, and store it on ice for
transport to the laboratory.
4.2.3 Container No. 2. Quantitatively recover material
deposited in the nozzle, probe transfer lines, the front half of
the filter holder, and the cyclone, if used, first, by brushing
while rinsing three times with acetone and then, by rinsing the
probe three times with toluene. Collect all the rinses in
Container No. 2.
Rinse the back half of the filter holder three times with
acetone. Rinse the connecting line between the filter and the
condenser .three times with acetone. Soak the connecting-line
with three separate portions of toluene for 5 minutes each. If
using a separate condenser and adsorbent trap, rinse the
condenser in the same manner as the connecting line. Collect all
the rinses in Container No. 2 and mark the level of the liquid on
the container.
4.2.4 Impinger Water. Measure the liquid in the first four
impingers to within 1 mL by using a graduated cylinder or by
weighing it to within 0.5 g by using a balance. Record the
30
-------
volume or weight of liquid present. This information is required
to calculate the moisture content of the effluent gas. Discard
the liquid after measuring and recording the volume or weight.
4.2.5 Silica Gel. Note the color of the indicating silica gel
to determine if it has been completely spent and make a mention
of its condition. Transfer the silica gel from the fifth
impinger to its original container and seal.
5. ANALYSIS
All glassware shall be cleaned as described in Section 3A of
the "Manual of Analytical Methods for the Analysis of Pesticides
in Human and Environmental Samples." All samples must be
extracted within 30 days of collection and analyzed within 45
days of extraction.
5.1 Sample Extraction. The analyst may choose to split the
sample extract after the completion of sample extraction
procedures. One half of the sample can then be archived. Sample
preparation procedures are given for using the entire sample and
for splitting the sample.
5.1.1 Extraction System. Place an extraction thimble (Section
2.3.4), 1 g of silica gel, and a plug of glass wool into the
»
Soxhlet apparatus, charge the apparatus with toluene, and reflux
for a minimum of 3 hours. Remove the toluene and discard it, but
retain the silica gel. Remove the extraction thimble from the
31
-------
extraction system and place it in a glass beaker to catch the
solvent rinses.
5.1.2 Container No. 1 (Filter). Transfer the contents
directly to the glass thimble of the extraction system and
extract them simultaneously with the XAD-2 resin.
5.1.3 Adsorbent Cartridge. Suspend the adsorbent module
directly over the extraction thimble in the beaker (See Section
5.1.1) . The glass frit of the module should be in the up
position. Using a Teflon squeeze bottle containing toluene,
flush the XAD-2 into the thimble onto the bed of cleaned silica
gel. Thoroughly rinse the glass module catching the rinsings in
the beaker containing the thimble. If the resin is wet,
effective extraction can be accomplished by loosely packing the
resin in the thimble. Add the XAD-2 glass wool plug to the
thimble.
5.1.4 Container No. 2 (Acetone and Toluene) .. Concentrate the
sample to a volume of about 1-2 mL using a Kuderna-Danish
concentrator apparatus, followed by N2 blow down at a temperature
of less than 37°C. Rinse the sample container three times with
small portions of methylene chloride and add these to the
concentrated solution and concentrate further to near dryness.
This residue contains particulate matter removed in the rinse of
the sampling train probe and nozzle. Add the concentrate to the
32
-------
filter and the XAD-2 resin in the Soxhlet apparatus described in
Section 5.1.1.
5.1.5 Extraction. For samples that are to be split prior to
analysis add 40 /il of the internal standard solution
(Section 3.3.20) to the extraction thimble containing the
contents of the adsorbent cartridge, the contents of
Container No. 1, and the concentrate from Section 5.1.4.
Alternatively, 20 /il of the internal standard solution
(Section 3.3.20) for samples that are not to be split prior to
analysis. Cover the contents of the extraction thimble with the
cleaned glass wool plug to prevent the XAD-2 resin from floating
into the solvent reservoir of the extractor. Place the thimble
in the extractor, and add the toluene contained in the beaker to
the solvent reservoir. Add additional toluene to fill the
reservoir approximately 2/3 full. Add Teflon boiling chips and
assemble the apparatus. Adjust the heat source to cause the
extractor to cycle three times per hour. Extract the sample for
16 hours. After extraction, allow the Soxhlet to cool. Transfer
the toluene extract and three 10-mL rinses to the rotary
evaporator. Concentrate the extract to approximately 10 mL. If
decided to split the sample, store one half for future use, and
analyze the other half according to the procedures in Sections
5.2 and 5.3. In either case, use a nitrogen evaporative
33
-------
concentrator to reduce the volume of the sample being analyzed to
near dryness. Dissolve the residue in 5 mL of hexane.
5.2 Sample Cleanup and Practionation.
The following sample cleanup and fractionation procedures are
recommended. Alternative procedures may be utilized providing
acceptable identification criteria (Section 5.3.2.5) and
quantification criteria (Section 5.3.2.6) are met.
5.2.1 Silica Gel Column. Pack one end of a glass column,
20 mm x 230 mm, with glass wool. Add in sequence, 1 g silica
gel, 2 g of sodium hydroxide impregnated silica gel, 1 g silica
gel, 4 g of acid-modified silica gel, and 1 g of silica gel.
Wash the column with 30 mL of hexane and discard. Add the sample
extract, dissolved in 5 mL of hexane to the column with two
additional 5-mL rinses. Elute the column with an additional 90
tnli of hexane and retain the entire eluate. Concentrate this
solution to a volume of about 1 mL using the nitrogen evaporative
concentrator (Section 2.3.9).
5.2.2 Basic Alumina Column. Shorten a 25-mL disposable
Pasteur pipette to about 16 mL. Pack the lower section with
glass wool and 12 g of basic alumina. Transfer the concentrated
extract from the silica gel column to the top of the basic
alumina column and elute the column sequentially with 120 mL of
0.5 percent methylene chloride in hexane followed by 120 mL of 35
34
-------
percent methylene chloride in hexane. Discard the first 120 mL
of eluate. Collect the second 120 raL of eluate and concentrate
it to about 0.5 mL using the nitrogen evaporative concentrator.
Transfer this extract with hexane to "13 mL tubes".
5.2.3 AX-21 Carbon/Celite 545 Column. Remove the bottom 0.5
in. from the tip of a 2-mL disposable Pasteur pipette. Insert a
glass fiber filter disk or glass wool plug in the top of the
pipette 2.5 cm from the constriction. Add sufficient
carbon/Celite1" mixture to form a 2 cm column (the 0.6 mL mark
column. Top with a glass wool plug. In some cases AX-21 carbon
fines may wash through the glass wool plug and enter the sample.
This may be prevented by adding a celite plug to the exit end of
the column. Pre-elute the column with 5 mL toluene, followed by 1
mL of a 50:50 methylene chloride/cyclohexane mixture, followed by
5 mL of hexane. Load in sequence, the sample extract in 1 mL
hexane, 2x0.5 mL rinses in hexane, 2 mL of 50 percent methylene
chloride in hexane and 2 tnL of 50 percent benzene in ethyl
acetate and discard the eluates. Invert the column and elute in
the reverse direction with 13 mL of toluene. Collect this
eluate. Concentrate the eluate in a nitrogen evaporator at 45°C
to about 1 mL. Transfer the concentrate to a Reacti-vial using a
toluene rinses and concentrate to near dryness (less than 20
using a stream of N2. Store extracts at room temperature,
35
-------
shielded from light, until the analysis is performed.
5.3 Analysis. Analyze the sample with a gas chromatograph
coupled to a mass spectrometer (GC/MS) using the instrumental
parameters in Sections 5.3.1 and 5.3.2. Immediately prior to
analysis, add a 20 /xl aliquot of the recovery standard solution
from Table 2 to each sample. A 2 jil aliquot of the extract is
injected into the GC. Sample extracts are first analyzed using
the DB-5 capillary column to determine the concentration of each
isomer of PCDD's and PCDF's (tetra-through octa-). If 2,3,7,8-
TCDF is detected in this analysis, then analyze another aliquot
of the sample in a separate run, using the DB-225 column to
measure the 2,3,7,8 tetra-chloro dibenzofuran isomer. Other
column systems may be used, provided that it can be demonstrated
using calibration and performance checks that the column system
is able to meet the specifications of Section 6.1.2.
5.3.1 Gas Chromatograph Operating Conditions. The recommended
conditions are shown in Table 4.
5.3.2 High Resolution Mass Spectrometer.
5.3.2.1 Resolution. 10,000 resolving power or 100 ppm
mass/mass.
5.3.2.2 lonization Mode. Electron impact.
5.3.2.3 Source Temperature 250°C.
5.3.2.4 Monitoring Mode. Selected ion monitoring. A list of
36
-------
the various ions to be monitored is presented in Table 5.
5.3.2.5 Identification Criteria. The following identification
criteria shall be used for the characterization of
polychlorinated dibenzodioxins and dibenzofurans.
1. The integrated ion-abundance ratio (M/M+2 or M+2/M+4) shall
be within 15 percent of the theoretical value. The acceptable
ion-abundance ratio ranges (±15%) for the identification of
chlorine-containing compounds are given in Table 6. If the ion-
abundance ratio ranges are the outside those in Table 6, the
source has the option of using the results if the concentration
is determined using procedures in Section 9.3 or redoing the
analysis to eliminate the unacceptable ion-abundance ratio.
2. The retention time for the analytes must be within 3
seconds of the corresponding 13C-labeled internal standard or
surrogat e s t andard.
3. The monitored ions, shown in Table 5 for a given analyte,
shall reach their maximum within 2 seconds of each other.
4. The identification of specific isomers that do not have
corresponding "C-labeled standards is done by comparison of the
relative retention time (RRT) of the analyte to the nearest
internal standard retention time with reference (i.e., within
0.005 RRT units) to the comparable RRT's found in the continuing
calibration.
37
-------
5. The signal to noise ratio for all monitored ions must be
greater than 2.5.
6. The confirmation of 2, 3, 7, 8-TCDF shall satisfy all of
the above identification criteria.
7. Any PCDF coeluting (±2 s) with a peak in the corresponding
PCDPE channel, of .Intensity 10% or greater compared to the
analyte peak is evidence of a positive interference, the source
may opt keep the value to calculate CDD/CDF concentration or
conduct a complete reanalysis in an effort to remove or shift the
interference. If a reanalysis is conducted, all values from the
reanalyzed sample will be used for CDD/CDF concentration
calculations.
8. Set the mass spectrometer lock channels as specified in
Table 5. Monitor the quality control check channels specified in
Table 5 to verify instrument stability during the analysis.. If
the signal varies by more than 25 percent from the average
response, results for all isomers at corresponding residence time
shall be invalid. The source has the options of conducting
additional cleanup procedures on the other portion of the sample
for split samples or diluting the original sample or following
other procedures recommended by the Administrator. When a
complete reanalysis is conducted, all concentration calculations
shall be based on the reanalyzed sample.
38
-------
5.3.2.6 Quantification. The peak areas for the two ions
monitored for each analyte are summed to yield the total response
for each analyte. Each internal standard is used to quantify the
indigenous PCDD's or PCDF's in its homologous series. For
example, the 13C12-2,3,7,8-tetra chlorinated dibenzodioxin is used
to calculate the concentrations of all other tetra chlorinated
isomers. Recoveries of the tetra- and penta- internal standards
are calculated using the 13C12-1,2,3,4-TCDD. Recoveries of the
hexa- through octa- internal standards are calculated using *3CU-
1,2,3,7,8,9-HxCDD. Recoveries of the surrogate standards are
calculated using the corresponding homolog from the internal
standard. When no peak is detected, the noise level, as measured
by the intensity of the noise in a clear zone of the
chromatogram, is used to calculate the detection limit. Tables
7, 8, and 9 summarize the quantification relationships for the
unlabeled analytes, internal standards and surrogate standards,
respectively.
6. CALIBRATION
Same as Method 5 with the following additions.
6.1 GC/MS System.
6.1.1 Initial Calibration. Calibrate the GC/MS system using
the set of five standards shown in Table 3. The relative
standard deviation for the mean response factor from each of the
39
-------
unlabeled analytes (Table 3) and of the internal and surrogate
standards shall be less than or equal to the values in Table 6.
The signal to noise ratio for the GC signal present in every
selected ion current profile shall be greater than or equal to
10. The ion abundance ratios shall be within the control limits
in Table 5.
6.1.2 Daily Performance Check.
6.1.2.1 Calibration Check. Inject 2 /il of solution Number 3
from Table 3. Calculate the relative response factor (RRF) for
each compound and compare each RRF to the cor re spending mean RRF
obtained during the initial calibration. The analyzer
performance is acceptable if the measured RRF's for the labeled
and unlabeled compounds for the daily run are within the limits
of the mean values shown in Table 10. In addition, the ion-
abundance ratios shall be within the allowable control limits
shown in Table 6.
6.1.2.2 Column Separation Check. Inject 2 Ail of a solution of
a mixture of PCDD's and PCDF's that documents resolution between
2,3,7,8-TCDD and other TCDD isomers. Resolution is defined as a
valley between peaks that is less than 25 percent of the lower of
the two peaks. Identify and record the retention time windows
•
for each homologous series. Perform a similar resolution check
on the confirmation column to document the resolution between
40
-------
2,3,7,8 TCDF and other TCDF isomers.
6.2 Lock Channels. Set mass spectrometer lock channels as
specified in Table 5. Monitor the quality control check channels
specified in Table 5 to verify instrument stability during the
analysis.
7. QUALITY CONTROL
7.1 Sampling Train Collection Efficiency Check. Add 40 /il of
the surrogate standards in Table 2 for samples split for analysis
or 20 ftl of the surrogate standards for sample not split for
analysis to the adsorbent cartridge of each train before
collecting the field samples.
7.2 Internal Standard Percent Recoveries. A group of nine
carbon-labeled PCDDs and PCDFs representing the tetra- through
octachlorinated homologues, is added to every sample prior to
extraction. The role of the internal standards is to quantify
the native PCDD's and PCDF's present in the sample as well as to
determine the overall method efficiency. Recoveries of the
internal standards shall be between 40 to 130 percent for the
tetra- through hexachlorinated compounds while the range is 25 to
130 percent for the hepta- and octachlorinated homologues.
7.3 Surrogate Standard Recoveries. The five surrogate
compounds in Table 3 are added to the resin in the adsorbent
sampling cartridge before the sample is collected. The surrogate
41
-------
recoveries are measured relative to the internal standards and
are a measure of the sampling train collection efficiency. They
are not used to measure the native PCDD's and PCDF's. All
surrogate standard recoveries shall be between 70 and
130 percent. Poor recoveries for all the surrogates may be an
indication of breakthrough in the sampling train. If the
recovery of all standards is below 70 percent, the sampling runs
must be repeated. As an alternative, the sampling runs do not
have to be repeated if the final results are divided by the
fraction of surrogate recovery (on a homolog group basis). Poor
recoveries of isolated surrogate compounds should not be grounds
for rejecting an entire set of samples.
7.4 Toluene QA Rinse. Report the results of the toluene QA
rinse separately from the total sample catch. Do not add it to
the total sample.
7.5 Detection Limits. Calculate the detection limits using
the equation in Section 9.8. If the detection limits meet the
Target Detection Limits (TDLs) in Table 1, then they are
considered acceptable. If the TDLs are not met, the impact of
the detection limits shall be calculated using the procedures in
Section 9.9. If the maximum potential value of the sum of the
summed detection limits is less then 50 percent of the emission
standard, the detection limits are acceptable. If the value is
42
-------
greater than 50 percent of the emission standard, then the
analysis and/or sampling and analysis must be repeated until
acceptable detection limits are obtained.
8. QUALITY ASSURANCE
8.1 Applicability. When the method is used to analyze samples
to demonstrate compliance with a source emission regulation, an
audit sample must be analyzed, subject to availability.
8.2 Audit Procedure. Analyze an audit sample with each set of
compliance samples. The audit sample contains tetra through octa
isomers of PCDD and PCDF. Concurrently analyze the audit sample
and a set of compliance samples in the same manner to evaluate
the technique of the analyst and the standards preparation. The
same analyst, analytical reagents, and analytical system shall be
used both for the compliance samples and the EPA audit sample.
8.3 Audit Sample Availability. Audit samples will be supplied
only to enforcement agencies for compliance tests. Audit samples
may be obtained by writing:
Source Test Audit Coordinator (MD-77B)
Quality Assurance Division
Atmospheric Research and Exposure Assessment Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
or by calling the Source Test Audit Coordinator (STAC) at (919)
43
-------
541-7834. The audit sample request must be made at least 30 days
prior to the scheduled compliance sample analysis.
8.4 Audit Results. Calculate the audit sample concentration
according to the calculation procedure provided in the audit
instructions included with the audit sample. Fill in the audit
sample concentration and the analyst's name on the audit response
form included with the audit instructions. Send one copy to the
EPA Regional Office or the appropriate enforcement agency and a
second copy to the STAC. The EPA Regional office or the
appropriate enforcement agency will report the results of the
audit to the laboratory being audited. Include this response
with the results of the compliance samples in relevant reports to
the EPA Regional Office or the appropriate enforcement agency.
9. CALCULATIONS
Same as Method 5, Section 6 with the following additions.
9.1 Nomenclature.
= Integrated ion current of the noise at the retention time
of the analyte.
= Integrated ion current of the two ions characteristic of
compound i in the jth calibration standard.
A*cij « Integrated ion current of the two ions characteristic of
the internal standard i in the jth calibration standard.
» Integrated ion current of the two ions characteristic of
44
-------
surrogate compound i in the calibration standard.
AA = Integrated ion current of the two ions characteristic of
compound i in the sample.
A\ = Integrated ion current of the two ions characteristic of
internal standard i in the sample.
AJS = Integrated ion current of the two ions characteristic of
the recovery standard.
= Integrated ion current of the two ions characteristic of
surrogate compound i in the sample.
Ci = Concentration of PCDD or PCDF i in the sample, pg/M3.
CT = Total concentration of PCDD's or PCDF's in the sample,
pg/M3.
DL = Detection limit, pg/sample.
= Detection limit for each homologous series, pg/sample.
DL8um = Sum of all isomers times the corresponding detection
limit, ng/m3.
Hai = Summed heights of the noise at the retention time of the
analyte in the two analyte channels.
mci = Mass of compound i in the calibration standard injected
into the analyzer, pg.
m*ci = Mass of labeled compound i in the calibration standard
injected into the analyzer, pg.
m'i - Mass of internal standard i added to the sample, pg.
45
-------
= Mass of recovery standard in the calibration standard
injected into the analyzer, pg.
m, «s Mass of surrogate compound in the sample to be analyzed,
pg.
« Mass of surrogate compound i in the calibration standard,
pg.
e Relative response factor for compound i.
RRFrj = Recovery standard response factor.
RRF. » Surrogate compound response factor.
Vm
-------
RRFra = ci " Eq. 23-3
9.5 Recovery of Internal Standards (R*) .
*
Ar, RFr,
xlOO% Eq. 23-4
9.6 Surrogate Compound Response Factor.
Eq. 23-5
9.7 Recovery of Surrogate Compounds (R.) .
A mi
Rt - — — - - x!00% Eq. 23-6
"
9.8 Detection Limit (DL). The detection limit can be
calculated based on either the height of the noise or the area of
47
-------
the noise using one of the two equations.
Detection limit using height for the DB-225 column. Three and
one half times the height has been empirically determined to give
area.
2.5 (3.5 x JT.) a/
DL = Eq. 23-7
Detection limit using height for the DB-5 column. Five times the
height has been empirically determined to give area.
2.5 (5 x H ) a/
DL = - - - - Eq. 23-8
Detection limit using area of the noise.
2.5 A . m,
DL = —- Eq. 23-9
Ac*i RRFi
9.9 Summed Detection Limits. Calculate the maximum potential
value of the summed detection limits. If the isomer (group of
unresolved isomers) was not detected, use the value calculated
for the detection limit in Section 9.8 above. If the isomer
(group of unresolved isomers) was detected, use the value (target
48
-------
detection limit) from Table 1.
DLtua = (13 DLKDD + 16 DLtCDf + 12
+ 14 DLP.cor+ 7 DLHXCDD + 12
+ 2 DL*P«H> + 4
/ 100°
Note: The number of isomers used to calculate the summed
detection limit represent the total number of isomers typically
separated and not the actual number of isomers for each series.
9.10 Total Concentration of PCDD's and PCDF's in the Sample.
c = 2-)ci Eq- 23'1:L
r 1-1
Any PCDDs or PCDFs that are reported as not detected (below the
DL) shall be counted as zero for the purpose of calculating the
total concentration of PCDDs and PCDFs in the sample.
10. BIBLIOGRAPHY
1. American Society of Mechanical Engineers. Sampling for the
Determination of Chlorinated Organic Compounds in Stack
Emissions. Prepared for U.S. Department of Energy and U.S.
Environmental Protection Agency. Washington DC. December 1984.
25 p.
2. American Society of Mechanical Engineers. Analytical
49
-------
Procedures to Assay Stack Effluent Samples and Residual
Combustion Products for Polychlorinated Dibenzo-p-Dioxins (PCDD)
and Polychlorinated Dibenzofurans (PCDF) . Prepared for the U.S.
Department of Energy and U.S. Environmental Protection Agency.
Washington, DC. December 1984. 23 p.
3. Thompson, J. R. (ed.). Analysis of Pesticide Residues in
Human and Environmental Samples. U.S. Environmental Protection
Agency. Research Triangle Park, NC. 1974.
4. Triangle Laboratories. Case Study: Analysis of Samples
for the Presence of Tetra Through Octachloro-p-Dibenzodioxins and
Dibenzofurans. Research Triangle Park, NC. 1988. 26 p.
5. U.S. Environmental Protection Agency. Method 8290 - The
Analysis of Polychlorinated Dibenzo-p-dioxin and Polychlorinated
Dibenzofurans by High-Resolution Gas Chromatography/
High-Resolution Mass Spectrometry. In: Test Methods for
Evaluating Solid Waste. Washington, DC. SW-846.
6. Personnel communications with R. L. Harless of U.S. EPA and
Triangle Laboratory staff.
50
-------
TABLE 23-1. TARGET DETECTION LIMITS (TDLs)
ANALYTE
TCDD/TCDF
PeCDD/PeCDF
HxCDD/HxCDF
HpCDD/HpCDF
OCDD/OCDF
TDL (pg/Sample Train)
50
250
250
250
500
TABLE 23-2. COMPOSITION OF THE SAMPLE FORTIFICATION AND RECOVERY
STANDARDS SOLUTIONS*
ANALYTE
Internal
13C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDD
"C12 - 1 , 2 , 3 , 6 , 7 , 8 - HxCDD
13Ca2-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13Ci2-l,2,3,7,8-PeCDF
13C12-1 , 2,3,6,7,8 -HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
Surrogate
37Cl4-2,3,7,8-TCDD
13C12-1,2,3,4, 7,8-HxCDD
13C12-2,3,4,7,8-PeCDF
13C12-l,2,3,4,7,8-HxCDF
13C12-1 , 2 , 3 , 4 , 7 , 8 , 9-HpCDF
CONCENTRATION (pg//iL)
Standards
100
100
100
100
100
100
100
100
100
Standards
100
100
100
100
100
Recovery Standards
51
-------
13c12-i,
"C12-l,
2,3,4-TCDD
2,3,7,8,9-HxCDD
100
100
'Calibration levels are specific for samples at
the MWC compliance standard level.
52
-------
TABLE 23-3. COMPOSITION OF THE INITIAL CALIBRATION SOLUTIONS
COMPOUND
SOLUTION NO.
CONCENTRATIONS (pg/pl)
1
2
3
UNLABELED ANALYTES
2,3,7,8-TCDD
2,3,7, 8-TCDF
1,2,3,7,8-PeCDD
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3, 4,7, 8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8-HxCDD
1,2,3,4,6,7,8-HpCDD
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDD
OCDF
0.5
0.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
5
5
1
1
5
5
5
5
5
5
5
5
5
5
5
5
5
10
10
5
5
25
25
25
25
25
25
25
25
25
25
25
25
25
50
50
4
50
50
250
250
250
250
250
250
250
250
250
250
250
250
250
500
500
5
100
100
500
500
500
500
500
500
500
500
500
500
500
500
500
1000
1000
INTERNAL STANDARDS
13C12-2,3,7,8-TCDD
"C12-l,2,3,7,8-PeCDD
13C13-l,2,3,6,7,8-HxCDD
"Cia- 1 ,2,3,4,6,7,8 -HpCDD
"CU-OCDD
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
53
-------
13C12-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13C12-l/2,3,6/7,8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
TABLE 23-3. (Continued)
COMPOUND
SOLUTION NO.
CONCENTRATION (pg//il)
1
2
3
4
5
SURROGATE STANDARDS
37Cl4-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
13C12-1 , 2,3,4,7 , 8-HxCDD
13C12- 1 ,2,3,4,7,8 -HxCDF
13C12-1 , 2,3,4,7,8, 9-HpCDF
60
60
60
60
60
80
80
80
80
80
100
100
100
100
100
120
120
120
120
120
140
140
140
140
140
RECOVERY STANDARDS
13C12-1,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
100
100
100
100
100
100
100
100
100
100
54
-------
TABLE 23-4. RECOMMENDED GC OPERATING CONDITIONS
Column Type
DB-5
DB-225
Length (m)
i.d. (mm)
Film Thickness (^m)
Carrier Gas
Carrier Gas Flow (mL/min)
60
0.25
0.25
Helium
1-2
30
0.25
0.25
Helium
1-2
Injection Mode
Valve Time (min)
splitless
2.5
2.5
Initial Temperature (o c)
Initial Time (min)
Rate 1 (deg. C/min)
Temperature 2 (deg. C)
Rate 2 (deg. C/min)
Final Temperature (deg. C)
150
0.5
60
170
3
300
130
2.5
50
170
4
250
55
-------
TABLE 23-5. ELEMENTAL COMPOSITIONS AND EXACT MASSES OP THE IONS
MONITORED BY HIGH RESOLUTION MASS SPECTROMETRY FOR PCDD'B AND PCDF's
DESCRIPTOR
NUMBER
2
1 1
3
ACCURATE
MASS
292.9825
303.9016
305.8987
315.9419
317.9389
319.8965
321.8936
327.8847
330.9792
331.9368
333.9339
339.8597
341.8567
351.9000
353.8970
355.8546
357.8516
367.8949
369.8919
375.8364
409.7974
373.8208
375.8178
383.8639
385.8610
389.8157
391.8127
392.9760
ION
TYPE
LOCK
M
M+2
M
M+2
M
M+2
M
QC
M
M+2
M+2
M+4
M+2
M+4
M+2
M+4
M+2
M+4
M+2
M+2
M+2
M+4
M
M+2
M+2
M+4
LOCK
ELEMENTAL COMPOSITION
C7Fn
C12H435C140
C12H43SC13C137O
13C12H43SC140
13C12H43SC1337C10
C12H435C1402
C12H435C1337C102
C12H437C1402
C7F13
"C12H435C1402
13C12H43SC137C103
C12H335C1437C10
C12H335C1337C120
13C12H33SC1437C10
13C12H335C1337C120
C12H33SC1337C102
C12H335C1337C1202
13C12H335C1437C102
"C12H335C1337C1202
C12H435C1S37C10
C12H335C1S37C10
C12H235C1S37C1O
C12H235C14"C120
13C12H235C160
13C12H235C1537C10
C12H235C1537C102
C12H23SC14"CI202
C9F15
ANALYTE
PFK
TCDF
TCDF
TCDF(S)
TCDF(S)
TCDD
TCDD
TCDD(S)
PFK
TCDD(S)
PeCDF
PeCDF
PeCDF (S)
PeCDF (S)
PeCDD
PeCDD
PeCDD (S)
PeCDD (S)
HxCDPE
HpCPDE
HxCDF
HxCDF
HxCDF (S)
HxCDF (S)
HxCDD
HxCDD
PFK
-------
401.8559
403.8529
445.7555
430.9729
M+2
M+4
M+4
QC
l3C12Ha35Cl537Cl02
13C12H235C1437C120
C12H23SC16"C120
C9F17
HxCDD(S)
HxCDD(S)
OCDPE
PPK
TABLE 23-5. (Continued)
DESCRIPTOR
NUMBER
ACCURATE
MASS
407.7818
409.7789
417.8253
389.8157
391.8127
392.9760
401.8559
403.8529
445.7555
430.9729
407.7818
409.7789
417.8253
419.8220
423.7766
425.7737
435.8169
437.8140
479.7165
430.9729
441.7428
443.7399
457.7377
459.7348
469.7779
ION
TYPE
M+2
M+4
M
M+2
M+4
LOCK
M+2
M+4
M+4
QC
M+2
M+4
M
M+2
M+2
M+4
M+2
M+4
M+4
LOCK
M+2
M+4
M+2
M+4
M+2
ELEMENTAL DESCRIPTION
C12H35C1S"C10
C12H35C15"C120
13C12H3SC17O
C12H235C1S37C102
C12H23SC14"C1202
C9F15
13C12H23SC1S37C102
13C12H235C1«37C120
C12H235C1637C120
C9F17
C12H35C1837C1O
C12H35C1537C120
13C12H35C17O
13C12H35C1637C10
C12H35C16"C1O2
C12H3SC1537C12O2
"C12H35C1S37C102
13C12H35C1S37C1202
C12H3SC1737C12O
C,F17
C123SC1,37C10
C1235C1637C120
C123SC1737C102
C12«cis37ci2o2
13C123SC1737C102
ANALYTE
HpCDF
HpCDF
HpCDF (S)
HxCDD
HxCDD
PFK
HxCDD (S)
HxCDD (S)
OCDPE
PFK
HpCDF
HpCDF
HpCDF (S)
HpCDF (S)
HpCDD
HpCDD
HpCDD (S)
HpCDD (S)
NCPDE
PFK
OCDF
OCDF
OCDD
OCDD
OCDD(S)
57
-------
471.7750
513.6775
442.9728
M+4
M+4
QC
13Cia35CV7Cl202
Ci23sCl8"Cl2O2
ClO^l.7
OCDD(S)
DCDPE
PFK
35C1 - 34.968853
The following nuclidic masses were used:
H « 1.007825 O * 15.994914 C - 12.000000
13C = 13.003355 37C1 - 36.965903 F - 18.9984
S = Labeled Standard
QC » Ion selected for monitoring instrument stability during the
GC/MS analysis.
-------
TABLE 23-6. ACCEPTABLE RANGES FOR ION-ABUNDANCE RATIOS OF PCDD's AND
PCDF's
Number of
Chlorine
Atoms
4
5
6
6-
7b
7
8
Ion Type
M/M+2
M+2/M+4
M+2/M+4
M/M+2
M7M+2
M+2/M+4
M+2/M+4
Theoretical
Ratio
0.77
1.55
1.24
0.51
0.44
1.04
0.89
Control Limits
Lower
0.65
1.32
1.05
0.43
0.37
0.88
0.76
Upper
0.89
1.78
1.43
0.59
0.51
1.20
1.02
59
-------
TABLE 23-7. UNLABELED ANALYTES QUANTIFICATION RELATIONSHIPS
ANALYTE
2,3,7,8-TCDD
Other TCDD's
1,2,3,7,8-PeCDD
Other PeCDD's
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7, 8, 9-HxCDD
Other HxCDD's
INTERNAL STANDARD USED
13C12-2,3,7,8-TCDD
13C12-2,3,7,8-TCDD
"Cu-1 , 2 , 3 , 7 , 8 -PeCDD
13C12-l,2,3,7,8-PeCDD
"C^-l , 2 , 3 , 6 , 7, 8-HxCDD
13C12-1 , 2 , 3 , 6 , 7 , 8 -HxCDD
"Cu-1 , 2 , 3 , 6 , 7 , 8 -HxCDD
"C12-l , 2,3,6,7, 8-HxCDD
1,2,3,4,6,7,8-HpCDD
Other HpCDD's
OCDD
2,3,7,8-TCDF
Other TCDF's
13C12-l,2,3f4,6,7,8-HpCDD
13C12-l,2,3,4,6,7,8-HpCDD
"Cu-OCDD
"C12-2,3,7,8-TCDF
13C12-2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
Other PeCDF's
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8-HxCDF
Other HxCDF's
"C12-l, 2, 3, 7, 8-PeCDF
13C12-l,2,3,7,8-PeCDF
13C12-l,2,3,7,8-PeCDF
"C12-l , 2,3,6,7,8 -HxCDF
13C12-1, 2, 3 , 6, 7, 8-HxCDF
"Cu-l, 2 , 3 , 6 , 7 , 8-HxCDF
"C12-l,2,3,6,7,8-HxCDF
"Cu-l, 2 , 3 , 6 , 7, 8-HxCDF
1,2,3,4,6,7,8-HpCDF
"Cia-l^^^^^.S-HpCDF
-------
1,2,3,4,7,8,9-HpCDF "C12-l, 2,3, 4, 6, 7, 8-HpCDF
OCDF
13C12-l,2,3,4,6,7,8-HpCDF
61
-------
TABLE 23-8. INTERNAL STANDARDS QUANTIFICATION RELATIONSHIPS
INTERNAL STANDARD
13C12-2,3,7,8-TCDD
"C12-l,2,3,7,8-PeCDD
13C12 - 1 , 2 , 3 , 6 , 7 , 8 -HxCDD
13C12-l,2,3,4,6,7,8-HpCDD
"C12-OCDD
13C12-2,3,7,8-TCDF
"C12-l,2,3,7,8-PeCDF
13C12- 1 ,2,3,6,7,8 -HxCDF
»C12-l,2,3,4,6,7,8-HpCDF
STANDARD USED DURING PERCENT
RECOVERY DETERMINATION
13C12-1,2,3,4-TCDD
"^-1,2,3,4^(3)0
13C« -1,2,3,7,8,9 -HxCDD
13C12-1, 2 , 3 , 7, 8 , 9-HxCDD
13C12- 1 , 2 , 3 , 7 , 8 , 9-HxCDD
13C12-1,2,3,4-TCDD
i3C12-l,2,3,4-TCDD
13C12-1 , 2 , 3 , 7 , 8 , 9-HxCDD
13C12-1 , 2,3,7,8,9 -HxCDD
TABLE 23-9. SURROGATE STANDARDS QUANTIFICATION RELATIONSHIPS
SURROGATE STANDARD
"Cl4-2,3,7,8-TCDD
13C12-2/3,4,7/8-PeCDF
13C12-1,2,3,4,7,8- HxCDD
13C12 - 1 , 2 , 3 , 4 , 7 , 8 -HxCDF
"C^-l^S^^S^-HpCDF
STANDARD USED DURING PERCENT
RECOVERY DETERMINATION
13C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDF
13C12-1 , 2 , 3 , 6 , 7 , 8-HxCDD
13C12-1 , 2,3,6,7, 8-HxCDF
l3C12-l,2,3,4,6,7,8-HpCDF
-------
TABLE 23-10. MINIMUM REQUIREMENTS FOR INITIAL AND DAILY CALIBRATION
RESPONSE FACTORS
COMPOUND
RELATIVE RESPONSE FACTORS
INITIAL
CALIBRATION
(RSD)
DAILY
CALIBRATION
(V DIFFERENCE)
UNLABELED ANALYTES
2,3,7,8-TCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDD
1,2,3,7,8-PeCDF
1,2,4,5,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,4,6,7,8-HpCDD
1,2,3,4,6,7,8-HpCDF
OCDD
OCDF
25
25
25
25
25
25
25
25
25
25
25
25
25
25
30
25
25
25
25
25
25
25
25
25
25
\
25
25
25
25
30
SURROGATE STANDARDS
37Cl4-2,3,7,8-TCDD
13C12-2/3,4,7,8-PeCDF
13C12 -1,2,3,4,7,8 -HxCDD
13C12-l,2,3,4,7,8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
25
25
-------
FlIttrHoldtr
Thtrmoeouplt
Probt
Thtrmoeouplt Thtimoeoupta
f ChtokVtlvt
fittokWalt
MMMMIMttf ^^*
Rtolroultllbn Pump
ImplnQtr
Thtnnoooupl t •
100ml HPLCWattr
By*P«M
Vato
Empty «<-wtBatti
Alr-TIoM
Vacuum UM
Figure 5-1. COD/CDF Sampling Train Configuration
-------
ConoanMr
Flu* QM Flow
SorbantTrap
H
n>
to
37cm-
• mm Olaia CooltnQ CoN
o\
in
•20/16
Wator Jaefcat Cooling CoN
•To Suit-
Imm \m\iiiii\w
ijitflll 4(1*1 •••••(••••i
•••••••••••••••••••••••••i
••••••••••••••••••••••••A*
>••••••••••••• ••••••••••«
ilii?
::t::?::;?j|^ y
OlaaaWoolPlug WatarJaeket XAD-2
(TBQrams)
r^:
7
•20/16
FIGURE 2. CONDENSER AND SORBENT TRAP FOR COLLECTION OF GASEOUS PCDDi AND
PCOFa
-------
Appendix G.5
Sampling & Analysis Methods
EPA Method 25A
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
METHOD 25A-DBTERMINATION OF TOTAL OASEOUS ORGANIC
CONCENTRATION USINO A FLAME IONIZATION ANALTZER
1. Applicability and Principle
1.1 Applicability. This method applies to the measurement of total gaseous
organic concentration of vapors consisting primarily of alkanes, alkenes, and/or
arenes (aromatic hydrocarbons). The concentration is expressed in terms of
propane (or other appropriate organic calibration gas) or in terms of carbon.
1.2 Principle. A gas sample is extracted from the source through a heated
sample line, if necessary, and glass fiber filter to a flame ionization analyzer
(FIA) . Results are reported as volume concentration equivalents of the
calibration gas or as carbon equivalents.
2. Definitions
2.1 Measurement Systems. The total equipment required for the determination
of the gas concentration. The system consists of the following major subsystems:
2.1.1 Sample Interface. That portion of the system that is used for one or more
of the following: sample acquisition, sample transportation, sample
conditioning, or protection of the analyzer from the effects of the stack
effluent.
2.1.2 Organic Analyzer. That portion of the system that senses organic
concentration and generates an output proportional to the gas concentration.
2.2 Span Value. The upper limit of a gas concentration measurement range that
is specified for affected source categories in the applicable part of the
regulations. The span value is established in the applicable regulation and is
usually 1.5 to 2.5 times the applicable emission limit. If no span value is
provided, use a span value equivalent to 1.5 to 2.5 times the expected
concentration. For convenience, the span value should correspond to 100 percent
of the recorder scale.
2.3 Calibration Gas. A known concentration of a gas in an appropriate diluent
gas.
2.4 Zero Drift. The difference in the measurement system response to a zero
level calibration gas before and after a stated period of operation during which
no unscheduled maintenance, repair, or adjustment took place.
Prepared by Emission Measurement Branch EMTIC TM-25A
Technical Support Division, OAQPS, EPA June 23, 1993
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD Page 2
2.5 Calibration drift. The difference in the measurement system response to
a midlevel calibration gas before and after a stated period of operation during
which no unscheduled maintenance, repair or adjustment took place.
2.6 Response Time. The tine interval from a step change in pollutant
concentration at the inlet to the emission measurement system to the time at
which 95 percent of the corresponding final value is reached as displayed on the
recorder.
2.7 Calibration Error. The difference between the gas concentration indicated
by the measurement system and the known concentration of the calibration gas.
3. Apparatus.
A schematic of an acceptable measurement system is shown in Figure 25A-1.
The essential components of the measurement system are described below:
3.1 Organic Concentration Analyser. A flame ionization analyzer (PIA) capable
of meeting or exceeding the specifications in this method.
3.2 Sample Probe. Stainless steel, or equivalent, three-hole rake type.
Sample holes shall be 4 mm in diameter or smaller and located at 16.7, 50, and
83.3 percent of the equivalent stack diameter. Alternatively, a single opening
probe may be used so that a gas sample is collected from the centrally located
10 percent area of the stack cross-section.
3.3 Sample Lin*. Stainless steel or Teflon * tubing to transport the sample
gas to the analyzer. The sample line should be heated, if necessary, to prevent
condensation in the line.
3.4 Calibration Valve Assembly. A three way valve assembly to direct the zero
and calibration gases to the analyzers is recommended. Other methods, such as
quick-connect lines, to route calibration gas to the analyzers are applicable.
3.5 Particulate Filter. An in-stack or an' out-of-stack glass fiber filter is
recommended if exhaust gas particulate loading is significant. An out-of-stack
filter should be heated to prevent any condensation.
* Mention of trade names or specific products does not constitute
endorsement by the Environmental Protection Agency.
3.6 Recorder. A strip-chart recorder, analog computer, or digital recorder for
recording measurement data. The minimum data recording requirement is one
measurement value per minute, Note: This method is often applied in highly
explosive areas. Caution and care should be exercised in choice of equipment and
installation.
4. Calibration and Other Oases.
Gases used for calibrations, fuel, and combustion air (if required) are
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD Page 3
contained in compressed gas cylinders. Preparation of calibration gases shall
be done according to the procedure in Protocol No. 1, listed in Citation 2 of
Bibliography. Additionally, the manufacturer of the cylinder should provide a
recommended shelf life for each calibration gas cylinder over which the
concentration does not change more than ±2 percent from the certified value. For
calibration gas values not generally available (i.e., organics between 1 and 10
percent by volume), alternative methods for preparing calibration gas mixtures,
such as dilution systems, may be used with prior approval of the Administrator.
Calibration gases usually consist of propane in air or nitrogen and are
determined in terms of the span value. Organic compounds other than propane can
be used following the above guidelines and making the appropriate corrections for
response factor.
4.1 Fuel. A 40 percent H,/60 percent Nj gas mixture is recommended to avoid
an oxygen synergism effect that reportedly occurs when oxygen concentration
varies significantly from a mean value.
4.2 Zero Gas. High purity air with less than 0.1 parts per million by volume
(ppmv) of organic material (propane or carbon equivalent) or less tha™ 0.1
percent of the span value, whichever is greater.
4.3 Low-level Calibration Gas. An organic calibration gas with a concentration
equivalent to 25 to 35 percent of the applicable span value.
4.4 Mid-level Calibration Gas. An organic calibration gas with a concentration
equivalent to 45 to 55 percent of the applicable span value.
4.5 High-level Calibration Gas. An organic calibration gas with a
concentration equivalent to 80 to 90 percent of the applicable span value.
5. Measurement System Performance Specifications
5.1 Zero Drift. Less than ±3 percent of the span value.
5.2 Calibration Drift. Less than ±3 percent of span value.
5.3 Calibration Error. Less than ±5 percent of the calibration gas value.
€. Pretest Preparations
6.1 Selection of Sampling Site. The location of the sampling site is generally
specified by the applicable regulation or purpose of the test; i.e., exhaust
stack, inlet line, etc. The sample port shall be located at least 1.5 meters or
2 equivalent diameters upstream of the gas discharge to the atmosphere.
6.2 Location of Sample Probe. Install the sample probe so that the probe is
centrally located in the stack, pipe, or duct and is sealed tightly at the stack
port connection.
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD Page 4
6.3 Measurement system Preparation. Prior to the emission test, assemble the
measurement system following the manufacturer's written instructions in preparing
the sample interface and the organic analyzer. Make the system operable.
FIA equipment can be calibrated for almost any range of total organic*
concentrations. For high concentrations of organics (>1.0 percent by volume as
propane) modifications to most commonly available analyzers are necessary. One
accepted method of equipment modification is to decrease the size of the sample
to the analyzer through the use of a smaller diameter sample capillary. Direct
and continuous measurement of organic concentration is a necessary consideration
when determining any modification design.
6.4 Calibration Krror Test. Immediately prior to the test series, (within 2
hours of the start of the test) introduce zero gas and high-level calibration gas
at the calibration valve assembly. Adjust the analyzer output to the appropriate
levels, if necessary. Calculate the predicted response for the low-level and
mid-level gases based on a linear response line between the zero and high-level
responses. Then introduce low-level and mid-level calibration gases successively
to the measurement system. Record the analyzer responses for low-level and mid-
level calibration gases and determine the differences between the measurement
system responses and the predicted responses. These differences must be less
than 5 percent of the respective calibration gas value. If not, the measurement
system is not acceptable and must be replaced or repaired prior to testing. No
adjustments to the measurement system shall be conducted after the calibration
and before the drift check (Section 7.3). If adjustments are necessary before
the completion of the test series, perform the drift checks prior to the required
adjustments and repeat the calibration following the adjustments. If multiple
electronic ranges are to be used, each additional range must be checked with a
mid-level calibration gas to verify the multiplication factor.
6.5 Response Time Test. Introduce Zero gas into the measurement system at the
calibration valve assembly. When the system output has stabilized, switch
quickly to the high-level calibration gas. Record the time from the
concentration change to the measurement system response equivalent to 95 percent
of the step change. Repeat the test three times and average the results.
7. Emission Measurement Test Procedure
7.1 Organic Measurement. Begin sampling at the start of the test period,
recording time and any required process information as appropriate. In
particular, note on the recording chart periods of process interruption or cyclic
operation.
7.2 Drift Determination. Immediately following the completion of the test
period and hourly during the test period, reintroduce the zero and mid-level
calibration gases, one at a time, to the measurement system at the calibration
valve assembly. (Make no adjustments to the measurement system until after both
the zero and calibration drift checks are made.) Record the analyzer response.
If the drift values exceed the specified limits, invalidate the test results
preceding the check and repeat the test following corrections to the measurement
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD Page 5
system. Alternatively, recalibrate the test measurement system as in Section 6.4
Bii<3 report the results using both sets of calibration data (i.e., data determined
prior to the test period and data determined following the test period) .
8. Organic Concentration calculations
Determine the average organic concentration in terms of ppmv as propane or
other calibration gas. The average shall be determined by the integration of the
output recording over the period specified in the applicable regulation. If
results are required in terms of ppmv as carbon, adjust measured concentrations
using Equation 25A-1.
**• 25A'1
Where:
Ce • Organic concentration as carbon, ppmv.
C^,- Organic concentration as measured, ppmv.
K • Carbon equivalent correction factor.
K * 2 for ethane.
K » 3 for propane.
K » 4 for butane.
K • Appropriate response factor for other organic calibration
gases.
9. Bibliography
1. Measurement of Volatile Organic Compounds-Guideline Series. U.S.
Environmental Protection Agency. Research Triangle Park, NC.
Publication No. EPA-450/2-78-041. June 1978. p. 46-54.
2. Traceability Protocol for Establishing True Concentrations of Gases
Used for Calibration and Audits of Continuous Source Emission
Monitors (Protocol No. 1) . U.S. Environmental Protection Agency,
Environmental Monitoring and Support Laboratory. Research Triangle
Park, NC. June 1978.
3. Gasoline Vapor Emission Laboratory Evaluation-Part 2. U.S.
Environmental Protection Agency, Office of Air Quality Planning and
Standards. Research Triangle Park, NC. EMB Report No. 75-GAS-6.
August 1975.
-------
EMTIC TM-25A
BMTIC NSPS TEST METHOD
; 1
Page 6
Organic
AMlyzw
•nd
Racantor
Caferatton
Vahra
Pump
Stack
Figure 25A-1. Organic Concentration Measurement System.
-------
Appendix G.6
Sampling & Analysis Methods
EPA Proposed Method 322
-------
(PROPOSED) TEST METHOD 322 - MEASUREMENT OF HYDROGEN CHLORIDE
EMISSIONS FROM PORTLAND CEMENT KILNS BY GFCIR
1.0 Applicability and Principle
1.1 Applicability. This method is applicable to the
determination of hydrogen chloride (HC1) concentrations in
emissions from portland cement kilns. This is an instrumental
method for the measurement of HC1 using an extractive sampling
system and an infrared (IR) gas-filter correlation (GFC)
analyzer. This method is intended to provide the cement industry
with a direct interface instrumental method. A procedure for
analyte spiking is included for quality assurance. This method
is considered to be self-validating provided that the
requirements in section 9 of this method are followed.
1.2 Principle. A gas sample is continuously extracted from
a stack or duct over the test period using either a source-level
hot/wet extractive subsystem or a dilution extractive subsystem.
A nondispersive infrared gas filter correlation (NDIR-GFC)
analyzer is specified for the measurement of HC1 in the sample.
The total measurement system is comprised of the extractive
subsystem, the analyzer, and the data acquisition subsystem.
Test system performance specifications are included in this
method to provide for the collection of accurate, reproducible
data.
1.3 Test System Operating Range. The measurement range
(span) of the test system shall include the anticipated HC1
concentrations of the effluent and spiked samples. The range
should be selected so that the average of the effluent
measurements is between 25 and 75 percent of span. If at any
time during a test run, the effluent concentration exceeds the
span value of the test system, the run shall be considered
invalid.
2.0 Summary of Method
2.1 Sampling and Analysis. Kiln gas is continuously
extracted from the stack or duct using either a source level,
hot/wet extractive system, or an in-situ dilution probe or heated
out-of-stack dilution system. The sample is then directed by a
heated sample line maintained above 350°F to a GFC analyzer
having a range appropriate to the type of sampling system. The
gas filter correlation analyzer incorporates a gas cell filled
with HC1. This gas cell is periodically moved into the path of
an infrared measurement beam of the instrument to filter out
essentially all of the HC1 absorption wavelengths. Spectral
filtering provides a reference from which the HC1 concentration
of the sample can be determined. Interferences are minimized in
the analyzer by choosing a spectral band over which compounds
such as C02 and H20 either do not absorb significantly or do not
match the spectral pattern of the HC1 infrared absorption.
-------
2.2 Operator Requirements. The analyst must be familiar
with the specifications and test procedures of this method and
follow them in order to obtain reproducible and accurate data.
3.0 Definitions
3.1 Measurement System. The total equipment required for
the determination of gas concentration. The measurement system
consists of the following major subsystems:
3.1.1 Sample Interface. That portion of a system used for
one or more of the following: sample acquisition, sample
transport, sample conditioning, or protection of the analyzers
from the effects of the stack gas.
3.1.2 Gas Analyzer. That portion of the system that senses
the gas to be measured and generates an output proportional to
its concentration.
3.1.3 Data Recorder. A strip chart recorder, analog
computer, or digital recorder for recording measurement data from
the analyzer output.
3.2 Span. The upper limit of the gas concentration
measurement range displayed on the data recorder.
3.3 Calibration Gas. A known concentration of a gas in an
appropriate diluent gas (i.e., N2) .
3.4 Analyzer Calibration Error. The difference between the
gas concentration exhibited by the gas analyzer and the known
concentration of the calibration gas when the calibration gas is
introduced directly to the analyzer.
3.5 Sampling System Bias. The sampling system bias is the
difference between the gas concentrations exhibited by the
measurement system when a known concentration gas is introduced
at the outlet of the sampling probe and the known value of the
calibration gas.
3.6 Response Time. The amount of time required for the
measurement system to display 95 percent of a step change in gas
concentration on the data recorder.
3.7 Calibration Curve. A graph or other systematic method
of establishing the relationship between the analyzer response
and the actual gas concentration introduced to the analyzer.
3.8 Linearity. The linear response of the analyzer or test
system to known calibration inputs covering the concentration
range of the system.
3.9 Interference Rejection. The ability of the system to
reject the effect of interferences in the analytical measurement
processes of the test system.
4.0 Interferences
4.1 Sampling System Interferences. An important
consideration in measuring HC1 using an extractive measurement
system is to ensure that a representative kiln gas sample is
delivered to the gas analyzer. A sampling system interferant is
a factor that inhibits an analyte from reaching the analytical
instrumentation. Condensed water vapor is a strong sampling
system interferant for HC1 and other water soluble compounds.
-------
"Cold spots" in the sampling system can allow water vapor in the
sample to condense resulting in removal of HCl from the sample
stream. The extent of HC1 sampling system bias depends on
concentrations of potential interferants, moisture content of the
gas stream, temperature of the gas stream, temperature of
sampling system components, sample flow rate, and reactivity of
HC1 with other species in the gas stream. For measuring HC1 in a
wet gas stream, the temperatures of the gas stream and sampling
system components and the sample flow rate are of primary
importance. In order to prevent problems with condensation in
the sampling system, these parameters must be closely monitored.
4.1.1 System Calibration Checks. Performing these
calibration checks where HC1 calibration gas is injected through
the entire system both before and after each test run
demonstrates the integrity of the sampling system and capability
of the analyzer for measuring this water soluble and otherwise
unstable compound under ideal conditions (i.e., HC1 in N2) .
4.1.2 Analyte Spiking Checks. For analyte spiking checks,
HC1 calibration gas is quantitatively added to the sample stream
at a point upstream of the particulate filter and all other
sample handling components both before and after each test run.
The volume of HCl spike gas should not exceed 10 percent of the
total sample volume so that the sample matrix is relatively
unaffected. Successfully performing these checks demonstrates
the integrity of the sampling system for measuring this water
soluble and reactive compound under actual sample matrix
conditions. Successfully performing these checks also
demonstrates the adequacy of the interference rejection
capability of the analyzer. (See section 9.3 of this method.)
4.2 Analytical Interferences. Analytical interferences are
reduced by the GFC spectroscopic technique required by the
method. The accuracy of HCl measurements provided by some GFC
analyzers is known to be sensitive to the moisture content of the
sample. This must be taken into account in order to acquire
accurate results. These analyzers must be calibrated for the
specific moisture content of the samples.
5.0 Safety
This method may involve sampling at locations having high
positive or negative pressures, or high concentrations of
hazardous or toxic pollutants, and cannot address all safety
problems encountered under these diverse sampling conditions. It
is the responsibility of the tester(s) to ensure proper safety
and health practices, and to determine the applicability of
regulatory limitations before performing this test method.
Because HCl is a respiratory irritant, it is advisable to limit
exposure to this compound.
6.0 Equipment and Supplies
Note: Mention of company or product names does not
constitute endorsement by the U. S. Environmental Protection
Agency.
-------
6.1 Measurement System. Use any GFC measurement system for
HC1 that meets the specifications of this method. All sampling
system components must be maintained above the kiln gas
temperature, when possible, or at least 350°F. The length of
sample transport line should be minimized and sampling rate
should be as high as possible to minimize adsorption of HC1. The
essential components of the measurement system are described in
sections 6.1.1 through 6.1.12.
6.1.1 Sample Probe. Glass, stainless steel, Hastalloy"1, or
equivalent, of sufficient length to traverse the sample points.
The sampling probe shall be heated to a minimum of 350°F to
prevent condensation. Dilution extractive systems must use a
dilution ratio such that the average diluted concentrations are
between 25 to 75 percent of the selected measurement range of the
analyzer.
6.1.2 Calibration Valve Assembly. Use a heated, three-way
valve assembly, or equivalent, for selecting either sample gas or
introducing calibration gases to the measurement system or
introducing analyte spikes into the measurement system at the
outlet of the sampling probe before the primary particulate
filter.
6.1.3 Particulate Filter. A coarse filter or other device
may be placed at the inlet of the probe for removal of large
particulate (10 microns or greater). A heated (Balston® or
equivalent) filter rated at 1 micron is necessary for primary
particulate removal, and shall be placed immediately after the
heated probe. The filter/filter holder shall be maintained at
350°F or a higher temperature. Additional filters at the inlet
of the gas analyzer may be used to prevent accumulation of
particulate material in the measurement system and extend the
useful life of components. All filters shall be fabricated of
materials that are nonreactive with HC1. Some types of glass
filters are known to react with HC1.
6.1.4 Sample Transport Lines. Stainless steel or
polytetrafluoroethylene (PTFE) tubing shall be heated to a
minimum temperature of 350°F (sufficient to prevent condensation
and to prevent HC1 and NH3 from combining into ammonium chloride
in the sampling system) to transport the sample gas to the gas
analyzer.
6.1.5 Sample Pump. Use a leak-free pump to pull the sample
gas through the system at a flow rate sufficient to minimize the
response time of the measurement system. The pump components
that contact the sample must be heated to a temperature greater
than 350°F and must be constructed of a material that is
nonreactive to HC1.
6.1.6 Sample Flow Rate Control. A sample flow rate control
valve and rotameter, or equivalent, must be used to maintain a
constant sampling rate within ±10 percent. These components must
be heated to a temperature greater than 350°F. (Note: The
tester may elect to install a back-pressure regulator to maintain
-------
the sample gas manifold at a constant pressure in order to
protect the analyzer(s) from over-pressurization, and to minimize
the need for flow rate adjustments.)
6.1.7 Sample Gas Manifold. A sample gas manifold, heated
to a minimum of 350°F, is used to divert a portion of the sample
gas stream to the analyzer and the remainder to the by-pass
discharge vent. The sample gas manifold should also include
provisions for introducing calibration gases directly to the
analyzer. The manifold must be constructed of material that is
nonreactive to the gas being sampled.
6.1.8 Gas Analyzer. Use a nondispersive infrared analyzer
.utilizing the gas filter correlation technique to determine HC1
concentrations. The analyzer shall meet the applicable
performance specifications of section 8.0 of this method. (Note:
Housing the analyzer in a clean, thermally-stable, vibration free
environment will minimize drift in the analyzer calibration.)
The analyzer (system) shall be designed so that the response of a
known calibration input shall not deviate by more than ±3 percent
from the expected value. The analyzer or measurement system
manufacturer may provide documentation that the instrument meets
this design requirement. Alternatively, a known concentration
gas standard and calibration dilution system meeting the
requirements of Method 205 of appendix M to part 51 of this
chapter, "Verification of Gas Dilution Systems for Field
Calibrations" (or equivalent procedure), may be used to develop a
multi-point calibration curve over the measurement range of the
analyzer.
6.1.9 Gas Regulators. Single stage regulator with cross
purge assembly that is used to purge the CGA fitting and
regulator before and after use. (This purge is necessary to
clear the calibration gas delivery system of ambient water vapor
after the initial connection is made, or after cylinder
changeover, and will extend the life of the regulator.) Wetted
parts are 316 stainless steel to handle corrosive gases.
6.1.10 Data Recorder. A strip chart recorder, analog
computer, or digital recorder, for recording measurement data.
The data recorder resolution (i.e., readability) shall be 0.5
percent of span. Alternatively, a digital or analog meter having
a resolution of 0.5 percent of span may be used to obtain the
analyzer responses and the readings may be recorded manually. If
this alternative is used, the readings shall be obtained at
equally-spaced intervals over the duration of the sampling run.
For sampling run durations of less than 1 hour, measurements at
1-minute intervals or a minimum of 30 measurements, whichever is
less restrictive, shall be obtained. For sampling run durations
greater than 1 hour, measurements at 2-minute intervals or a
minimum of 96 measurements, whichever is less restrictive, shall
be obtained.•
6.1.11 Mass Flow Meters/Controllers. A mass flow meter
having the appropriate calibrated range and a stated accuracy of
-------
±2 percent of the measurement range is used to measure the HC1
spike flow rate'. This device must be calibrated with the major
component of the calibration spike gas (e.g., nitrogen) using an
NIST traceable bubble meter or equivalent. When spiking HC1, the
mass flow meter/controller should be thoroughly purged before and
after introduction of the gas to prevent corrosion of the
interior parts.
6.1.12 System Flow Measurement. A measurement device or
procedure to determine the total flow rate of sample gas within
the measurement system. A rotameter/ or mass flow meter
calibrated relative to a laboratory standard to within ±2 percent
of the measurement value at the actual operating temperature/
moisture content/ and sample composition (molecular weight) is
acceptable. A system which ensures that the total sample flow
rate is constant within ±2 percent and which relies on an
intermittent measurement of the actual flow rate
(e.g./ calibrated gas meter) is also acceptable.
6.2 HC1 Calibration Gases. The calibration gases for the
gas analyzer shall be HC1 in N2. Use at least three calibration
gases as specified below:
6.2.1 High-Range Gas. Concentration equivalent to 80 to
100 percent of the span.
6.2.2 Mid-Range Gas. Concentration equivalent to 40 to 60
percent of the span.
6.2.3 Zero Gas. Concentration of less than 0.25 percent of
the span. Purified ambient air may be used for the zero gas by
passing air through a charcoal filter or through one or more
impingers containing a solution of 3 percent H2O2.
6.2.4 Spike Gas. A calibration gas of known concentration
(typically 100 to 200 ppm) used for analyte spikes in accordance
with the requirements of section 9.3 of this method.
7.0 Reagents and Standards
7.1 Hydrogen Chloride. Hydrogen Chloride is a reactive gas
and is available in steel cylinders from various commercial gas
vendors. The stability is such that it is not possible to
purchase a cylinder mixture whose HC1 concentration can be
certified at better than ±5 percent. The stability of the
cylinder may be monitored over time by periodically analyzing
cylinder samples. The cylinder gas concentration must be
verified within 1 month prior to the use of the calibration gas.
Due to the relatively high uncertainty of HC1 calibration gas
values/ difficulties may develop in meeting the performance
specifications if the mid-range and high-range calibration gases
are not consistent with each other. Where problems are
encountered, the consistency of the test gas standards may be
determined: (1) by comparing analyzer responses for the test
gases with the responses to additional certified calibration gas
standards/ (2) by reanalysis of the calibration gases in
accordance with sections 7.2.1 or 7.2.2 of this method, or (3) by
other procedures subject to the approval of EPA.
-------
7.2 Calibration Gas Concentration Verification. There are
two alternatives for establishing the concentrations of
calibration gases. Alternative No. 1 is preferred.
7.2.1 Alternative No. 1. The value of the calibration
gases may be obtained from the vendor's certified analysis within
1 month prior to the test. Obtain a certification from the gas
manufacturer that identifies the analytical procedures and date
of certification.
7.2.2 Alternative No. 2. Perform triplicate analyses of
the gases using Method 26 of appendix A to part 60 of this
chapter. Obtain gas mixtures with a manufacturer's tolerance not
to exceed ±5 percent of the tag value. Within 1 month of the
field test, analyze each of the calibration gases in triplicate
using Method 26 of appendix A to part 60 of this chapter. The
tester must follow all of the procedures in Method 26 (e.g., use
midget impingers, heated Pallflex TX40H175 filter (TFE-glass
mat), etc. if this analysis is performed. Citation 3 in section
13 of this method describes procedures and techniques that may be
used for this analysis. Record the results on a data sheet.
Each of the individual HC1 analytical results for each
calibration gas shall be within 5 percent (or 5 ppm, whichever is
greater) of the triplicate set average; otherwise, discard the
entire set and repeat the triplicate analyses. If the average of
the triplicate analyses is within 5 percent of the calibration
gas manufacturer's cylinder tag value, use the tag value;
otherwise, conduct at least three additional analyses until the
results of six consecutive runs agree within 5 percent {or 5 ppm,
whichever is greater) of the average. Then use this average for
the cylinder value.
7.3 Calibration Gas Dilution Systems. Sample flow rates of
approximately 15 L/min are typical for extractive HC1 measurement
systems. These flow rates coupled with response times of 15 to
30 minutes will result in consumption of large quantities of
calibration gases. The number of cylinders and amount of
calibration gas can be reduced by the use of a calibration gas
dilution system in accordance with Method 205 of appendix M to
part 51 of this chapter, "Verification of Gas Dilution Systems
for Field Instrument Calibrations." If this option is used, the
tester shall also introduce an undiluted calibration gas
approximating the effluent HC1 concentration during the initial
calibration error test of the measurement system as a quality
assurance check.
8.0 Test System Performance Specifications
8.1 Analyzer Calibration Error. This error shall be less
than ±5 percent of the emission standard concentration or ±1
ppm,(whichever is greater) for zero, mid-, and high-range gases.
8.2 Sampling System Bias. This bias shall be less than
±7.5 percent of the emission standard concentration or ±1.5 ppm
(whichever is greater) for zero and mid-range gases.
8.3 Analyte Spike Recovery. This recovery shall be between
-------
70 to 130 percent of the expected concentration of spiked samples
calculated with the average of the before and after run spikes.
9.0 Sample Collection, Preservation, and Storage
9.1 Pretest. Perform the procedures of sections 9.1.1
through 9.1.3.3 of this method before measurement of emissions
(procedures in section 9.2 of this method) . It is important to
note that after a regulator is placed on an HC1 gas cylinder
valve, the regulator should be purged with dry N2 or dry
compressed air for approximately 10 minutes before initiating any
HC1 gas flow through the system. This purge is necessary to
remove any ambient water vapor from within the regulator and
calibration gas transport lines; the HC1 in the calibration gas
may react with this water vapor and increase system response
time. A purge of the system should also be performed at the
conclusion of a test day prior to removing the regulator from the
gas cylinder. Although the regulator wetted parts are corrosion
resistant, this will reduce the possibility of corrosion
developing within the regulator and extend the life of the
equipment.
9.1.1 Measurement System Preparation. Assemble the
measurement system by following the manufacturer's written
instructions for preparing and preconditioning the gas analyzer
and, as applicable, the other system components. Introduce the
calibration gases in any sequence, and make all necessary
adjustments to calibrate the analyzer and the data recorder. If
necessary, adjust the instrument for the specific moisture
content of the samples. Adjust system components to achieve
correct sampling rates.
9.1.2 Analyzer Calibration Error. Conduct the analyzer
calibration error check in the field by introducing calibration
gases to the measurement system at any point upstream of the gas
analyzer in accordance with sections 9.1.2.1 and 9.1.2.2 of this
method.
9.1.2.1 After the measurement system has been prepared for
use, introduce the zero, mid-range, and high-range gases to the
analyzer. During this check, make no adjustments to the system
except those necessary to achieve the correct calibration gas
flow rate at the analyzer. Record the analyzer responses to each
calibration gas. Note; A calibration curve established prior to
the analyzer calibration error check may be used to convert the
analyzer response to the equivalent gas concentration introduced
to the analyzer. However, the same correction procedure shall be
used for all effluent and calibration measurements obtained
during the test.
9.1.2.2 The analyzer calibration error check shall be
considered invalid if the difference in gas concentration
displayed by the analyzer and the concentration of the
calibration gas exceeds ±5 percent of the emission standard
concentration or ±1 ppm, (whichever is greater) for the zero,
mid-, or high-range calibration gases. If an invalid calibration
-------
is exhibited, cross-check or recertify the calibration gases,
take corrective action, and repeat the analyzer calibration error
check until acceptable performance is achieved.
9.1.3 Sampling System Bias Check. For nondilution
extractive systems, perform the sampling system bias check by
introducing calibration gases either at the probe inlet or at a
calibration valve installed at the outlet of the sampling probe.
For dilution systems, calibration gases for both the analyzer
calibration error check and the sampling system bias check must
be introduced prior to the point of sample dilution. For
dilution and nondilution systems, a zero gas and either a mid-
range or high-range gas (whichever more closely approximates the
effluent concentration) shall be used for the sampling system
bias check.
9.1.3.1 Introduce the upscale calibration gas, and record
the gas concentration displayed by the analyzer. Then introduce
zero gas, and record the gas concentration displayed by the
analyzer. During the sampling system bias check, operate the
system at the normal sampling rate, and make no adjustments to
the measurement system other than those necessary to achieve
proper calibration gas flow rates at the analyzer. Alternately
introduce the zero and upscale gases until a stable response is
achieved. The tester shall determine the measurement system
response time by observing the times required to achieve a stable
response for both the zero and upscale gases. Note the longer of
the two times and note the time required for the measurement
system to reach 95 percent of the step change in the effluent
concentration as the response time.
9.1.3.2 For nondilution systems, where the analyzer
calibration error test is performed by introducing gases directly
to the analyzer, the sampling system bias check shall be
considered invalid if the difference between the gas
concentrations displayed by the measurement system for the
sampling system bias check and the known gas concentration
standard exceeds ±7.5 percent of the emission standard or ±1.5
ppm, (whichever is greater) for either the zero or the upscale
calibration gases. If an invalid calibration is exhibited, take
corrective action, and repeat the sampling system bias check
until acceptable performance is achieved. If adjustment to the
analyzer is required, first repeat the analyzer calibration error
check, then repeat the sampling system bias check.
9.1.3.3 For dilution systems (and nondilution systems where
all calibration gases are introduced at the probe), the
comparison of the analyzer calibration error results and sampling
system bias check results is not meaningful. For these systems,
the sampling system bias check shall be considered invalid if the
difference between the gas concentrations displayed by the
analyzer and the actual gas concentrations exceed ±7.5 percent of
the emission standard or ±1.5 ppm, (whichever is greater) for
either the zero or the upscale calibration gases. If an invalid
-------
calibration is exhibited, take corrective action, and repeat the
sampling system bias check until acceptable performance is
achieved. If adjustment to the analyzer is required, first
repeat the analyzer calibration error check.
9.2 Emission Test Procedures
9.2.1 Selection of Sampling Site and Sampling Points.
Select a measurement site and sampling points using the same
criteria that are applicable to Method 26 of appendix A to part
60 of this chapter.
9.2.2 Sample Collection. Position the sampling probe at
the first measurement point, and begin sampling at the same rate
as used during the sampling system bias check. Maintain constant
rate sampling (i.e., ±10 percent) during the entire run. Field
test experience has shown that conditioning of the sample system
is necessary for approximately 1-hour prior to conducting the
first sample run. This conditioning period should be repeated
after particulate filters are replaced and at the beginning of
each new day or following any period when the sampling system is
inoperative. Experience has also shown that prior to adequate
conditioning of the system, the response to analyte spikes and/or
the change from an upscale calibration gas to a representative
effluent measurement may be delayed by more than twice the normal
measurement system response time. It is recommended that the
analyte spikes (see section 9.3 of this method) be performed to
determine if the system is adequately conditioned. The sampling
system is ready for use when the time required for the
measurement system to equilibrate after a change from a
representative effluent measurement to a representative spiked
sample measurement approximates the calibration gas response time
observed in section 9.1.3.1 of this method.
9.2.3 Sample Duration. After completing the sampling
system bias checks and analyte spikes prior to a test run,
constant rate sampling of the effluent should begin. For each
run, use only those measurements obtained after all residual
response to calibration standards or spikes are eliminated and
representative effluent measurements are displayed to determine
the average effluent concentration. At a minimum, this requires
that the response time of the measurement system has elapsed
before data are recorded for calculation of the average effluent
concentration. Sampling should be continuous for the duration of
the test run. The length of data collection should be at least
as long as required for sample collection by Method 26 of part 60
of this chapter. One hour sampling runs using this method have
provided reliable data for cement kilns.
9.2.4 Validation of Runs. Before and after each run, or if
adjustments are necessary for the measurement system during the
run, repeat the sampling system bias check procedure described in
section 9.1.3 of this method. (Make no adjustments to the
measurement system until after the drift checks are completed.)
-------
Record the analyzer's responses.
9.2.4.1 If the post-run sampling system bias for either the
zero or upscale calibration gas exceeds the sampling system bias
specification, then the run is considered invalid. Take
corrective action, and repeat both the analyzer calibration error
check procedure (section 9.1.2 of this method) and the sampling
system bias check procedure (section 9.1.3 of this method) before
repeating the run. ,
9.2.4.2 If the post-run sampling system bias for both the
zero and upscale calibration gas are within the sampling system
bias specification, then construct two 2-point straight lines,
one using the pre-run zero and upscale check values and the other
using the post-run zero and upscale check values. Use the slopes
and y-intercepts of the two lines to calculate the gas
concentration for the run in accordance with equation 1 of this
method.
9.3 Analyte Spiking-Self-Validating Procedure. Use analyte
spiking to verify the effectiveness of the sampling system for
the target compounds in the actual kiln gas matrix. Quality
assurance (QA) spiking should be performed before and after each
sample run. The spikes may be performed following the sampling
system bias checks (zero and mid-range system calibrations)
before each run in a series and also after the last run. The HC1
spike recovery should be within ±30 percent as calculated using
equations 1 and 2 of this method. Two general approaches are
applicable for the use of analyte spiking to validate a GFC HC1
measurement system: (1) two independent measurement systems can
be operated concurrently with analyte spikes introduced to one of
the systems, or (2) a single measurement system can be used to
analyze consecutively, spiked and unspiked samples in an
alternating fashion. The two-system approach is similar to
Method 301 of this appendix and the measurement bias is
determined from the difference in the paired concurrent
measurements relative to the amount of HC1 spike added to the
spiked system. The two-system approach must employ identical
sampling systems and analyzers and both measurement systems
should be calibrated using the same mid- and high-range
calibration standards. The two-system approach should be largely
unaffected by temporal variations in the effluent concentrations
if both measurement systems achieve the same calibration
responses and both systems have the same response times. (See
Method 301 of this appendix for appropriate calculation
procedures.) The single measurement system approach is
applicable when the concentration of HC1 in the source does not
vary substantially during the period of the test. Since the
approach depends on the comparison of consecutive spiked and
unspiked samples, temporal variations in the effluent HC1
concentrations will introduce errors in determining the expected
concentration of the spiked samples. If the effluent HC1
concentrations vary by more than ±10 percent (or ±5 ppm,
-------
whichever is greater) during the time required to obtain and
equilibrate a new sample (system response time), it may be
necessary to: (1) use a dual sampling system approach,
(2) postpone testing until stable emission concentrations are
achieved, (3) switch to the two-system approach [if possible] or,
(4) rely on alternative QA/QC procedures. The dual-sampling
system alternative uses two sampling lines to convey sample to
the gas distribution manifold. One of the sample lines is used
to continuously extract unspiked kiln gas from the source. The
other sample line serves as the analyte spike line. One GFC
analyzer can be used to alternately measure the HC1 concentration
from the two sampling systems with the need to purge only the
components between the common manifold and the analyzer. This
minimizes the time required to acquire an equilibrated sample of
spiked or unspiked kiln gas. If the source varies by more than
±10 percent or ±5 ppm, (whichever is greater) during the time it
takes to switch from the unspiked sample line to the spiked
sample line, then the dual-sampling system alternative approach
is not applicable. As a last option, (where no other
alternatives can be used) a humidified nitrogen stream may be
generated in the field which approximates the moisture content of
the kiln gas. Analyte spiking into this humidified stream can be
employed to assure that the sampling system is adequate for
transporting the HC1 to the GFC analyzer and that the analyzer's
water interference rejection is adequate.
9.3.1 Spike Gas Concentration and Spike Ratio. The volume
of HC1 spike gas should not exceed 10 percent of the total sample
volume (i.e., spike to total sample ratio of 1:10) to ensure that
the sample matrix is relatively unaffected. An ideal spike
concentration should approximate the native effluent
concentration, thus the spiked sample concentrations would
represent approximately twice the native effluent concentrations.
The ideal spike concentration may not be achieved because the
native HC1 concentration cannot be accurately predicted prior to
the field test, and limited calibration gas standards will be
available during the field test. Some flexibility is available
by varying the spike ratio over the range from 1:10 to 1:20.
Practical constraints must be applied to allow the tester to
spike at an anticipated concentration. Thus, the tester may use
a 100 ppm calibration gas and a spike ratio of 1:10 as default
values where information regarding the expected HC1 effluent
concentration is not available prior to the tests.
Alternatively, the tester may select another calibration gas
standard and/or lower spike ratio (e.g., 1:20) to more closely
approximate the effluent HC1 concentration.
9.3.2 Spike Procedure. Introduce the HC1 spike gas mixture
at a constant flow rate (±2 percent) at less than 10 percent of
the total sample flow rate. (For example, introduce the HC1
spike gas at 1 L/min (±20 cc/min) into a total sample flow rate
of 10 L/min). The spike gas must be preheated before
-------
introduction into the sample matrix to prevent a localized
condensation of the gas stream at the spike introduction point.
A heated sample transport line(s) containing multiple transport
tubes within the heated bundle may be used to spike gas up
through the sampling system to the spike introduction point. Use
a calibrated flow device (e.g., mass flow meter/controller) to
monitor the spike flow rate. Use a calibrated flow device (e.g.,
rotameter, mass flow meter, orifice meter, or other method) to
monitor the total sample flow rate. Calculate the spike ratio
from the measurements of spike flow and total flow. (See
equation 2 and 3 in section 10.2 of this method.)
9.3.3 Analyte Spiking. Determine the approximate effluent
HC1 concentrations by examination of preliminary samples. For
single-system approaches, determine whether the HC1 concentration
varies significantly with time by comparing consecutive samples
for the period of time corresponding to at least twice the system
response time. (For analyzers without sample averaging, estimate
average values for two to five minute periods by observing the
instrument display or data recorder output.) If the concentration
of the individual samples varies by more than ±10 percent
relative to the mean value or ±5 ppm, (whichever is greater), an
alternate approach may be needed.
9.3.3.1 Adjust the spike flow rate to the appropriate level
relative to the total flow by metering spike gas through a
calibrated mass flow meter or controller. Allow spike flow to
equilibrate within the sampling system for at least the
measurement system response time and a steady response to the
spike gas is observed before recording response to the spiked gas
sample. Next, terminate the spike gas flow and allow the
measurement system to sample only the effluent. After the
measurement system response time has elapsed and representative
effluent measurements are obtained, record the effluent unspiked
concentration. Immediately calculate the spike recovery.
9.3.3.2 If the spike recovery is not within acceptable
limits and a change in the effluent concentration is suspected as
the cause for exceeding the recovery limit, repeat the analyte
spike procedure without making any adjustments to the analyzer or
sampling system. If the second spike recovery falls within the
recovery limits, disregard the first attempt and record the
results of the second spike.
9.3.3.3 Analyte spikes must be performed before and after
each test run. Sampling system bias checks must also be
performed before and after each test run. Depending on the
particular sampling strategy and other constraints, it may be
necessary to compare effluent data either immediately before or
immediately after the spike sample to determine the spike
recovery. Either method is acceptable provided a consistent
approach is used for the test program. The average spike
recovery for the pre- and post-run spikes shall be used to
determine if spike recovery is between 70 and 130 percent.
-------
10.0 Data Analysis and Emission Calculations
The average gas effluent concentration is determined from
the average gas concentration displayed by the gas analyzer and
is adjusted for the zero and upscale sampling system bias checks,
as determined in accordance with section 9.2.3 of this method.
The average gas concentration displayed by the analyzer may be
determined by integration of the area under the curve for chart
recorders, or by averaging all of the effluent measurements.
Alternatively, the average may be calculated from measurements
recorded at equally spaced intervals over the entire duration of
the run. For sampling run durations of less than 1-hour, average
measurements at 2-minute intervals or less, shall be used. For
sampling run durations greater than 1-hour, measurements at 2-
minute intervals or a minimum of 96 measurements, whichever is
less restrictive, shall be used. Calculate the effluent gas
concentration using equation 1.
r _ I c J where:
** 2 bc Y-
intercept of
the
calibration
least-
squares
line.
bf = Y-intercept of the final bias check 2-point line.
bi = Y-intercept of the initial bias check 2-point
line.
Cgas = Effluent gas concentration, as measured, ppm.
Cavg = Average gas concentration indicated by gas
analyzer, as measured, ppm.
me = Slope of the calibration least-squares line.
mf = Slope of the final bias check 2-point line.
nii _ Slope of the initial bias check 2-point line.
The following equations are used to determine the percent
recovery (%R) for analyte spiking:
%R = (SM/CE) x 100 (Eq. 2)
where:
SM = Mean concentration of duplicate analyte spiked
samples (observed).
CE - Expected concentration of analyte spiked samples
(theoretical).
CE = CS(QS/QT) + S0(1-QS/QT) (Eq. 3)
where:
Cs - Concentration of HC1 spike gas (cylinder tag
value).
Qs = Spike gas flow rate.
J
-------
QT = Total sample flow rate {effluent sample flow plus
spike flow).
S0 = Native concentration of HC1 in unspiked effluent
samples.
Acceptable recoveries for analyte spiking are ±30 percent.
11.0 Pollution Prevention
Gas extracted from the source and analyzed or vented from
the system manifold shall be either scrubbed, exhausted back into
the stack, or discharged into the atmosphere where suitable
dilution can occur to prevent harm to personnel health and
welfare or plant or personal property.
12.0 Waste Management
Gas standards of HC1 are handled as according to the
instructions enclosed with the materials safety data sheets.
13.0 References
1. Peeler, J.W., Summary Letter Report to Ann Dougherty,
Portland Cement Association, June 20, 1996.
2. Test Protocol, Determination of Hydrogen Chloride
Emissions from Cement Kilns (Instrumental Analyzer Procedure)
Revision 4; June 20, 1996.
3. Westlin, Peter R. and John W. Brown. Methods for
Collecting and Analyzing Gas Cylinder Samples. Source Evaluation
Society Newsletter. 3_{3):5-15. September 1978.
-------
APPENDIX H
PROJECT PARTICIPANTS
-------
PROJECT PARTICIPANTS
Affiliation
Name
Responsibility
USEPA
Joe Wood, BSD
Michael L. Toney, EMC
Environmental Engineer
Work Assignment Manager
Pacific Environmental Services,
Inc.
Franklin Meadows
Michael D. Maret
Dennis P. Holzschuh
Dennis D. Holzschuh
Gary Gay
Paul Siegel
Troy Abernathy
Project Manager
Task Manager
QA Coordinator
Site Leader/Console Operator
Site Leader/Console Operator
Sampling Technician
Sample Recovery
Atlantic Technical Services
(PES Subcontractor)
Emil Stewart
Alan F. Lowe
Marshall M. Cannon
Sampling Technician/Data
Reduction
Technical Support
Technical Support
APCC, Ltd.
(PES Subcontractor)
John Powell
Eric Dithrich
Peter Day
President
CEM Team Leader
CEM Sampling Technician
Research Triangle Institute
(EPA/ESD Contractor)
Cybele M. Brockmann
Process Coordinator
-------
-------
1 REPORT NO
EPA-454/R-00-011
TECHNICAL REPORT DATA
Please read instructions on the re\erse before completing
->
4 TITLE AND SUBTITLE
Final Report
Manual Testing and Continuous Emissions Monitoring
Rotary Lime Kiln Scrubber Inlet and Stack
Redland Stone Products Company
San Antonio, Texas
7. AUTHOR(S)
Franklin Meadows
Emil W Stewart
9 PERFORMING ORGANIZATION NAME AND ADDRESS
Pacific Environmental Services, Inc
Post Office Box 12077
Research Triangle Park, North Carolina 27709-2077
12 SPONSORING AGENCY NAME AND ADDRESS
U S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Emissions, Monitoring and Analysis Division
Research Triangle Park, North Carolina 2771 1
3 RECIPIENT'S ACCESSION NO
5 REPORT DATE
April 2000
6 PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO
11 CONTRACT/GRANT NO
68-D-98004
1 3 TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
EPA/200/04
15 SUPPLEMENTARY NOTES
16 ABSTRACT
The United States Environmental Protection Agency (EPA) Emission Standards Division (ESD) is investigating the lime manufacturing industry to
identify and quantify hazardous air pollutants (HAPs) emitted from lime kilns ESD requested that EPA's Emissions, Monitoring and Analysis Division
(EMAD) conduct the required testing EMAD issued a work assignment to Pacific Environmental Services, Inc (PES) to conduct a "screening" test to
collect air emissions data as specified in the ESD test request. The primary objective of the testing program was to characterize HAP emissions from a
rotary lime kiln at the Redland Stone Products Company's facility located in San Antonio, Texas Based on the pollutant concentrations and emission
rates calculated from the results of the screening tests, the kiln may be selected b> EPA for further testing
The tests were conducted to quantify' the uncontrolled and controlled air emissions of hydrogen chloride (HC1), total hydorcarbons (THC). and
polychlormated dibenzo-p-dioxins and polyclormated dibenzofurans (PCDDs/PCDFs) Emissions from the kiln were controlled by a scrubber Testing
was conducted at the scrubber inlet and and at the stack. Inlet and stack runs were conducted simultaneously Oxygen (O2) and carbon dioxide (C02)
were also monitored at each location
During the testing program another EPA contractor monitored and recorded process and emission control system operating parameters, and
prepared Section 3 0 of this report
17.
a. DESCRIPTIONS
Dioxins/Furans
Hazardous Air Pollutants
Hydrogen Chloride
Scrubber
Total Hydrocarbons
18 DISTRIBUTION STATEMENT
Unlimited
KEY WORDS AND DOCUMENT ANALYSIS
b IDENTIFIERS/OPEN ENDED TERMS
'. " <>[A i".1; ; -
**,;'•; * , ,' . .
1 9 SECURITY CLASS (This Report)
Unclassified
20 SECURITY CLAFS l'rhis pc.gn
Unclassified
c. COASTI Field/Group
"\ • i
•••--*• • .--,',
*''•"• '•»;••
. - ») • !-
21 NO OF PAGES
524
22 PRICE
EPA Form 2220-1 (Rev 4-77) PREVIOUS EDITION IS OBSOLETE
F:\U\FMeadows\TRD.Frm\WP 6. f
------- |