United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research triangle Park, IMC 27711
EPA-454/R-00-032
July 2000
AIR
&EPA
Final Report
Manual and Continuous
Emissions Testing, Kiln No. 3
Wet Scrubber Stack
Huron Lime
Huron, Ohio
-------
FINAL REPORT
MANUAL AND CONTINUOUS EMISSIONS TESTING
LIME KILN NO. 3 SCRUBBER STACK
HURON LIME COMPANY
HURON, OHIO
EPA Contract No. 68-D98-004
Work Assignment No. 3-03
Prepared for:
Mr. Michael L. Toney (MD-19)
Work Assignment Manager
SCGA, EMC, OAQPS
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
July 2000
Submitted by
PACIFIC ENVIRONMENTAL SERVICES, INC.
5001 S. Miami Blvd., Suite 300
Post Office Box 12077
Research Triangle Park, NC 27709-2077
(919)941-0333
FAX (919) 941-0234
U.S. Environmental Protection Agency
Region 5, Library (PL-12J)
77 West Jackson Boulevard, 12th float
Chicago, IL 60504-3590
-------
DISCLAIMER
This document was prepared by Pacific Environmental Services, Inc. (PES) under
EPA Contract No. 68-D98-004, Work Assignment No. 3-03. This document has been
reviewed following PES' internal quality assurance procedures and has been approved for
distribution. The contents of this document do not necessarily reflect the views and
policies of the U.S. Environmental Protection Agency (EPA). Mention of trade names
does not constitute endorsement by the EPA or PES.
-------
TABLE OF CONTENTS
Page
1.0 INTRODUCTION 1-1
2.0 SUMMARY OF RESULTS 2-1
2.1 BCpDs/PCDFs MEASUREMENTS 2-1
2.2 ' CEM MEASUREMENTS 2-4
3.0 PROCESS DESCRIPTION 3-1
4.0 SAMPLING LOCATIONS 4-1
5.0 SAMPLING AND ANALYSIS PROCEDURES 5-1
•i " '*
5.1 LOCATION OF MEASUREMENT SITES AND
SAMPLE/VELOCITY TRAVERSE POINTS 5-1
5.2 DETERMINATION OF EXHAUST GAS VOLUMETRIC
FLOWRATE 5-1
5.3 DETERMINATION OF OXYGEN AND CARBON DIOXIDE .... 5-1
5.4 DETERMINATION OF EXHAUST GAS MOISTURE CONTENT . 5-3
5.5 DETERMINATION OF PCDDs/PCDFs 5-3
5.6 DETERMINATION OF TOTAL HYDROCARBONS 5-6
5.7 CEMs DATA ACQUISITION AND HANDLING 5-6
6.0 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES
AND RESULTS 6-1
6.1 CALIBRATION AND PREPARATION OF APPARATUS 6-1
6.2 REAGENTS AND GLASSWARE PREPARATION 6-3
6.3 ON-SITE SAMPLING 6-5
6.4 LABORATORY ANALYSES 6-8
111
-------
TABLE OF CONTENTS (Concluded)
APPENDICES
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX?
APPENDIX G
APPENDIX H
RAW FIELD DATA : A-l
METHOD 23 LABORATORY ANALYTICAL DATA... B-l
CALCULATIONS & COMPUTED .SUMMARY C-l
EXAMPLE EQUATION D-l
QA/QC DATA E-l
PROCESS DATA F-l
SAMPLING & ANALYSIS METHODS G-l
PROJECT PARTICIPANTS H-1
IV
-------
LIST OF TABLES
Table 1.1 Emissions Test Log, Huron Lime Company - Huron, Ohio 1-2
Table 2.1 PCDDs/PCDFs Sampling and Exhaust Gas Parameters, Kiln No. 3
Scrubber Stack, Huron Lime Company - Huron, Ohio 2-2
Table 2.2 PCDDs/PCDFs Concentrations and Emission Rates, Kiln No. 3
Scrubber Stack, Huron Lime Company - Huron, Ohio 2-3
Table 2.3 PCDDs/PCbFs Concentrations and 2378-TCDD Toxic Equivalent
Concentrations Adjusted to 7 Percent Oxygen, Kiln No. 3 Scrubber
Stack, Huron Lime Company - Huron, Ohio 2-5
Table 2.4 THC Concentrations and Emission Rates, Kiln No. 3 Scrubber Stack,
Huron Lime Company - Huron, Ohio 2-6
Table 5.1 Summary of Sampling and Analysis Methods, Huron Lime
Company - Huron, Ohio 5-2
Table 5.2 Summary of Sampling Locations, Test Parameters, Sampling Methods,
and Nmnber-and Duration of Tests, Huron Lime Company -
Huron, Ohio 5-2
Table 6.1 Summary of Temperature Sensor Calibration Data 6-2
Table 6.2 Summary of Pitot Tube Dimensional^)ata 6-4
Table 6.3 Summary of Dry Gas Meter and Orifice Calibration Data 6-4
Table 6.4 Summary of EPA Method 23 Field Sampling QA/QC Data 6-7
Table 6.5 Summary of Calibration Gas Cylinders 6-7
Table 6.6 Summary of EPA Method 23 Blanks & Sample Catches 6-9
Table 6.7 Summary of EPA Method 23 Standards Recovery Efficiencies 6-10
-------
LIST OF FIGURES
Figure 1.1 Project Organization - US EPA Ohio Lime Kiln Screening, Huron
Lime Company - Huron, Ohio 1-3
Figure 4.1 Kiln No. 3 Process Air Flow Schematic, Huron Lime
Company - Huron, Ohio 4-2
Figure 4.2 Kiln No. 3 Scrubber Outlet Sample Port and Sample Point Locations, - •
Huron Lime Company - H ,'._.., u>nio '.*'.'4-3
Figure 5.1 Sampling Train Schematic for EPA Methods 3A and 25A 5-4
Figure 5.2 Sampling Train Schematic for EPA Method 23 5-5
VI
-------
1.0 INTRODUCTION
The U.S. Environmental Protection Agency (EPA) Office of Air Quality Planning and
Standards (OAQPS) Emission Standards Division (BSD) is investigating the lime manufacturing
industry to identify and quantify hazardous air pollutants (HAPs) emitted from lime kilns. ESD
requested that EPA OAQPS Emissions, Monitoring and Analysis Division (EMAD) conduct the
required testing. EMAD issued a work assignment to Pacific Environmental Services, Inc. (PES)
to conduct a screening test to collect air emissions data as specified in the ESD test request.
Initial planning, pre-test site survey, and preparation activities were conducted under EPA
Contract No. 68-D7-0002, Work Assignment No. 0/005. Remaining portions of the preparation
and field mobilization were conducted under EPA Contract No. 68-D7-0002, Work Assignment
No. 1/007, and EPA Contract No. 68-D98-004, Work Assignment 1-09. The draft final report
was completed under EPA Contract No. 68-D98-004, Work Assignment Nos. 1-09 and 2-04.
Generation of the Final Report, incorporating EPA's comments on the Draft Final Report, was
completed under EPA Contract No. 68-D98-004, Work Assignment 3-03
The primary objective was to characterize the controlled emissions of selected HAPs
from a rotary kiln located at Huron Lime Company's Huron, Ohio facility. The screening tests
were conducted to quantify emission rates of total hydrocarbons (THC), and polychlorinated
dibenzo-/?-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs) at the Kiln No. 3 stack.
Although hydrogen chloride (HC1) was also a target compound, testing was not conducted for
HC1 due to an instrument malfunction. The basic test methods that were employed were EPA
Test Methods 1 (sample point location), 2 (effluent gas^ velocity), 3 A (oxygen and carbon dioxide
content), 4 (moisture content), Method 23 (PCDDs/PCDFs content) with proposed revisions,
and 25A (THC content). Testing at the facility was conducted on August 31,1998. One 3-hour
test run was conducted at the scrubber stack to determine PCDDs/PCDFs emissions. Concurrent
with the Method 23 testing, sampling was conducted at the stack breeching to determine
concentrations of oxygen (O2), carbon dioxide (CO2), and THC. Table 1.1 presents the
Emissions Test Log, which summarizes the sample run designators, test dates and times, target
pollutants, and run durations for each of the sampling methods.
PES used three subcontractors for this effort: Air Pollution Characterization and Control
Ltd. (APCC), Paradigm Analytical Laboratories, Inc. (PAL), and Atlantic Technical Services,
Inc. (ATS). APCC provided field testing support for measurement of O2, CO2, and THC
concentrations using Continuous Emission Monitors (CEMs); PAL prepared the XAD®-2 sorbent
resin traps and performed the analysis of the Method 23 sample fractions to determine catch
weights of PCDDs/PCDFs congeners; and ATS provided field testing support and field data
reduction.
1-1
-------
The PES test crew consisted of Michael D. Maret (who served as the Field Team Leader),
Troy Abernathy, Gary Gay, and Paul Siegel. APCC was represented by Aaron Christie and Peter
Day, and ATS was represented by Emil Stewart. Also present during the testing was Michael L. ""•
Toney, the EPA Work Assignment Manager, Joseph P. Wood from EPA ESD, and Cybele M.
Brockmann of Research Triangle Institute, an ESD contractor. Huron Lime Company was
represented by Mr. A. J. (Tony) Paris. ...
Figure 1.1 shows the project organization and major line* of cbmromricntion. Section 2.0 '
presents the results of the testing; Section 3.0 has a brief process description, section 4.0 gives
descriptions of the sampling locations; Section 5.0 gives descriptions of the sampling and analysis
procedures; and Section 6.0 gives the Quality Assurance/Quality Control procedures that were
employed during the testing program, and the results of calibrations and analytical Q A data.
Copies of all field data generated during the testing, the subcontracting laboratory analytical
report, computer calculations and example calculations, calibration data and compressed gas
certifications of analysis, project participant1:; .?r.d reprints of the EPA Test Methods are presefifetl ^
in the appendices to this document. Appe;.vux f has process and operational data supplied by "
RTI.
TABLE 1.1
EMISSIONS TEST LOG
HURON LIME COMPANY 4>HT7KUn,
Run No.
Kiln No. 3 Scrubber Stack
M23-O-3
M3A-O-3
M25A-O-3
Date
08/31/98
08/31/98
08/31/98
Pollutant
" .. ' V
PCDDs/PCDFs
C02 / 02
THC
Run Time
(24-hr Clock)
1750-2128
1749-2134
1749-2134
Sampling
Duration,
(minutes) .
*,,
180
225
225
* , - •*/"• *-
*'.*•-, V
1-2
-------
1
HuronLJme Company
A J. (Tony) Paris
(419)433-2141
EPA/EMC
Wodc Assignment Manager
Michael L. Toney
(919) 541-5247
EPA/ESD
Joseph P. Wood
(919)541-5446
PES
Program Manager
JbhnT. Chehaske
(919)941-0333
PES
Corporate QA/QC Officer
Jeffrey L, Van Atten
(703) 471-8383
PES
Project Manager
Franklin Meadows
(919)941-0333
Research Triangle Institute
ESD Contractor
Cybele M Brockmann
(919)990-8654
PES
Task Manager
Michael D. Maret
(919)941-0333
Pretest
Site Survey
PES
Quality Assurance
Project Plan
PES
Site Specific
Test Plan
PES
Field
Testing
PES
Sample
Analysis
PES
Draft Final
Report
PES
Subcontractor
Air Pollution Characterization
and Control, Ltd.
Subcontractor
Atlantic Technical
Services, Inc.
Subcontractor
Paradigm Analytical
Laboratories, Inc.
Figure 1.1 Project Organization - US EPA Ohio Lime Kiln Screening, Huron Lime Company - Huron, Ohio
-------
2.0 SUMMARY OF RESULTS
This secftbri summarizes the results of the testing that was conducted on Rotary Kiln
No. 3 at Huron Lime Company's facility in Huron, Ohio. Due to the design of the kiln and
scrubber, a location did not exist for the inlet. Therefore, testing was conducted only at the
scrubber stack. The following pages present summaries of exhaust gas parameters, pollutant
concentrations, and pollutant mass emission rates.
2.1 PCDDs/PCDFs MEASUREMENTS
Table 2.1 presents the Method 23 sampling parameters and the parameters of the scrubber
stack exhaust gases. Although two sampling ports were available for the collection of an
isokinetic sample, PES only conducted sampling through one of the test ports. This modification
to the testing was made because PES was unsure of the capability of the existing rail system to
support the Method 23 sampling train. Therefore, with the approval of the WAM, PES
conducted tests by traversing two times through a single port. One Method 23 sampling run was
performed at the scrubber stack location. The isokinetic sampling ratio for run M23-O-3 was
102.1 percent (%), which is within the EPA sampling ratio criterion of 100 ± 10%. For purposes
of the calculation of the volumetric flow rates, O2 and CO2 data were determined from the
Method 3 A CEM data, and moisture content was determined by calculating the mass of
condensate collected in the impinger train during the run.
;,/
In-stack concentrations and associated mass emission rates of the PCDDs/PCDFs
congeners are presented in Table 2.2 for the sampling run. From time to time during the
Method 23 analyses, a peak elutes at the position expected for a particular congener, but the peak
fails validation based on the theoretical split of chlorine isotopes. That is to say the number of
Cl35 isotopes and the number of Cl37 isotopes attached to the PCDDs/PCDFs congeners should
agree with the C135/C137 ratio occurring in nature. For each congener, this ratio must agree within
15%. If the mass ratio of chlorine isotopes does not agree with the natural chlorine isotope ratio,
the peak is then flagged as an Estimated Maximum Possible Concentration, or "EMPC".
The values presented as "Total PCDDs" are the sum of the "12346789 OCDD"
polychlorinated dibenzo-p-dioxin and all of the dioxins labeled "Total"; "Total PCDFs" is the sum
of the "12346789 OCDF" polychlorinated dibenzofuran and all of the furans labeled "Total".
"Total PCDDs + Total PCDFs" values are the sum of the "Total PCDDs" and the "Total PCDFs"
values. Values that have been qualified as EMPC have been included in the sums.
2-1
-------
TABLE 2.1
PCDDs/PCDFs SAMPLING AND EXHAUST GAS PARAMETERS
KILN NO. 3 SCRUBBER STACK
HURON LIME COMPANY - HURON, OHIO
Run No.
M23-O-3
Date
Clock Time
Total Sampling Time, minutes
Average Sampling Rate, dscfm •
Sample Volume:
dscf"
dscmc
Average Exhaust Gas Temperature, ° F
O2 Concentration, % by Volume
CO2 Concentration, % by Volume
Moisture, % by Volume
As Measured
Saturation, At Gas Temperature
Exhaust Gas Volumetric Flow Rate:
acfmd
dscfm1
dscmm'
Isokinetic Sampling Ratio, %
. *G
1750-2128
180
0.583
104.912
2.971
156
6.5
20.9
35.5 .
29.7
49,500
29,500
837
102.1
* Dry standard cubic feet per minute at 68° F (20° C) and 1 atm.
b Dry standard cubic feet at 68° F (20° C) and 1 atm.
c Dry standard cubic meters at 68° F (20° C) and 1 atm.
d Actual cubic feet per minute at exhaust gas conditions.
c Dry standard cubic meters per minute at 68° F (20° C) and 1 atm.
2-2
-------
TABLE 2.2
PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES
KILN NO. 3 SCRUBBER STACK
HURON LIME COMPANY - HURON, OHIO
^CONGENER
DIOXINS:
2378 TCDD
Total TCDD
12378PeCDD
Total PeCDD
123478 HxCDD
123678 HxCDD
123789 HxCDD
Total HxCDD
1234678 HpCDD
Total HpCDD
12346789 OCDD
Total PCDDs
FURANS:
2378 TCDF
Total TCDF
12378 PeCDF
23478 PeCDF
Total PeCDF
123478 HxCDF
123678 HxCDF
234678 HxCDF
123 789 HxCDF
Total HxCDF
1234678 HpCDF
1234789 HpCDF
Total HpCDF
12346789 OCDF
Total PCDFs
Total PCDDs + PCDFs
CONCENTRATION '
(ng/dscm)
0.00343
0.0508
0.00128
0.0151
0.000707
0.00101
0.00104
0.00498
{0.00252}
(0.000572)
{0.0107}
(0.0822)
0.104
1.91
0.0340
0.0203
0.316
0.00697
0.00401
0.00229
(0.000539)
0.0264
0.00353
(0.00114)
0.00350
(0.00189)
(2.260)
(2.342)
EMISSION RATE b
(ue/hr)
0.172
2.55
0.0642
0.757
0.0355
0.0507
0.0524
0.250
{0.127}
(0.0287)
{0.539}
(4.13)
5.22
96.0
1.71
1.02
15.9
0.350
0.201
0.115
(0.0270)
1.32
0.177
(0.0574)
0.176
(0.0946)
(113.4)
(117.6)
* Nanograms per dry standard cubic meter at 20 °C and 1 atm.
b Micrograms per hour.
() Not Detected. Value shown is the detection limit and
{ } Estimated Maximum Possible Concentration. EMPC
is included in totals.
values are included in totals.
2-3
-------
Concentrations and emission rates based on or including EMPC values are denoted by braces
({}). Concentrations and emission rates based on values that have been qualified as being
below the detection limit (Not Detected), or ND, are denoted by parentheses (()).
Table 2.3 gives two PCDDs/PCDFs concentration-based measurements for the outlet
sampling location. In the second column of the table, the in-stack concentrations of the 2378-
PCDDs/PCDFs congeners as well as the homologues (i.e., PCDDs and PCDFs groups that have
the same degree of chlorination) are shown adjusted to 7% oxvgen. Thelbwrt* column of the
table has the 2378 tetra-chloro dibenzodioxin (TCDD) toxic equivalent vaiucs ior those
congeners chlorinated at the 2, 3, 7, and 8 positions. This column represents the in-stack
concentrations of the 2378 congeners after being adjusted for toxicity relative to 2378-TCDDs.
PCDDs/PCDFs congeners that are not chlorinated at the 2, 3, 7, and 8 positions have a relative
toxicity of zero, therefore, the total homologues (e.g., Total TCDD) are not presented in the
Toxic Equivalency columns.
2.2 CEM MEASUREMENTS
Gas samples were extracted from the stack breeching at the outlet of the induced draft
(ID) fan, conditioned, and transported to the CEMs using heat-traced Teflon® sample lines for the
real-time determination of O2, CO2, and THC concentrations. Table 2.4 presents the THC
concentrations and mass emission rates. O2 and CO2 concentrations have been corrected for
observed calibration and bias errors using Equation 6C-l*jg££SGKJjy>d;~ ^^ort 3A. THC -, ->•
concentrations are presented uncorrected, as required in Method 25A; the uncorrected O2 and
CO2 concentrations are given in Appendix A. ?.,#,> Refer to Appendix D for example equations.
The THC sampling system drift for the upscale calibration gas was -25.7%. This means
that the reported average result of 0.8 ppm is biased low. If the assumption is made that the' drift
was linear for the run, the actual THC concentration would be approximately 1.6 ppm.
2-4
-------
TABLE 2.3
PCDDs/PCDFs CONCENTRATIONS AND 2378-TCDD TOXIC EQUIVALENT
CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN
KILN NO. 3 SCRUBBER STACK
HURON LIME COMPANY - HURON, OHIO
CONGENER
DIOXINS:
2378 TCDD
Total TCDD
12378 PeCDD
Total PeCDD
123478 HxCDD
123678 HxCDD
123789 HxCDD
Total HxCDD
1234678 HpCDD
Total HpCDD
12346789 OCDD
Total PCDDs
FURANS:
2378 TCDF
Total TCDF
12378 PeCDF
23478 PeCDF
Total PeCDF
123478 HxCDF
123678 HxCDF
234678 HxCDF
123789 HxCDF
Total HxCDF
1234678 HpCDF
1234789 HpCDF
Total HpCDF
12346789 OCDF
Total PCDFs
Total PCDDs + PCDFs
CONCENTRATION "
(ng/dscm adjusted to 7 percent O2)
M23-O-3
000331
0.0491
0.00123
0.0146
0.000682
0.000975
0.00101
0.00481
{0.00244}
(0.000552)
{0.0104}
(0.0793)
0.100
1.85
0.0328
0.0196
0.305
0.00673
0.00387
0.00221
(0.000520)
0.0255
0.00341
(0.00110)
0.00338
(0.00182)
(2.182)
(2.261)
2378-TCDD
Toxicity
Equivalence Factor
1.000
0.500
0.100
0.100
0.100
0.010
0.001
Total PCDDs TEO
0.100
0.050
0.500
0.100
0.100
0.100
0.100
0.010
0.010
0.001
Total PCDFs TEO
Total TEQ
2378 TOXIC EQUIVALENCIES
(ng/dscm adjusted to 7 percent O2)
M23-O-3
0.00331
0.000617
0.0000682
0.0000975
0.000101
{0.0000244}
{0.0000104}
(0.00423)
0.0100
0.00164
0.00978
0.000673
0.000387
0.000221
(0.0000520)
0.0000341
(0.0000110)
(0.00000182)
(0.0228)
(0.0271)
Nanograms per dry standard cubic meter at 20 °C and 1 atm and corrected to 7 percent oxygen.
() Not Detected. Value shown is the detection limit and is included in totals.
{ } Estimated Maximum Possible Concentration. EMPC values are included in totals.
2-5
-------
TABLE 2.4
THC CONCENTRATIONS AND EMISSION RATES
KILN NO. 3 SCRUBBER STACK BREECHING
HURON LIME COMPANY - HURON, OHIO
Run No.
O-3
Date
Clock Time
Total Sampling Time, minutes
O2 Concentration, % by Volume
CO2 Concentration, % by Volume
Moisture, % by Volume
Volumetric Flow Rate, dscfi
THC (as propane):
Formula Weight, Ib/lb-mole
Concentration, ppmvw b
Concentration, ppmvd ~
Concentration, ppmvd @ 7%O2
Emission Rate, Ib/hr e
•vi I
1749-2134
225
6.5
20.9
29.7
29,500
44.11
0.8
1.14
1.10
' Dry standard cubic feet per minute-af 6R° F (20'b C) and 1 atm.
b Parts per million by volume wet.
c Parts per million by volume dry.
d Parts per million by volume dry basis corrected to 7% oxygen.
' Pounds per hour.
2-6
-------
3.0 PROCESS DESCRIPTION
Kiln No. 3 is an inclined rotating kiln built in 1971. High calcium limestone quarried from
Alpena, Michigan, enters the back of the kiln at the highest point of incline and tumbles toward
the front of the kiln via gravity and the rotating motion of the kiln. Combustion air and fuel enter
at the front of the kiln; the primary fuel is coal, with natural gas used during start-up of the kiln.
The lime exits from the front of the kiln
Exhaust from Kiln No. 3 passes through a venturi scrubber, cyclonic mist eliminator, fan,
and exhaust stack. The exhaust stack uses dampers to regulate air flow through the system.
Water is sprayed in the exhaust as it enters the scrubber. Water from the mist eliminator drains to
a sump; river water and clarified water from the settling ponds are also added to the sump. Refer
to Appendix F for a description of how and when this occurs. A portion of the water from the
settling ponds is also pumped to the venturi.
During the testing, an BSD contractor, Research Triangle Institute, monitored and
recorded process operational data; the tabulated data are in Appendix F.
3-1
-------
4.0 SAMPLING LOCATIONS
Source sampling was performed to determine the controlled emissions of PCDDs/PCDFs,
and THC from Kiln No. 3 located at Huron Lime Company's Huron, Ohio facility. Testing was
conducted at the scrubber stack and the fan-to-stack breeching ductwork. Figure 4.1 is a
simplified process air flow schematic showing the sampling locations.
The scrubber stack was 70.5 inches inside diameter (ID) and exhausted emissions to the
atmosphere. As shown in Figure 4.2, the two sampling ports were positioned approximately
240 inches (3.4 diameters) downstream from the breeching to the stack and approximately
840 inches (11.9 diameters) upstream from the stack opening to the atmosphere. As specified by
Method 1, the isokinetic testing required a 24 point traverse matrix consisting of 12 traverse
points on each of the two perpendicular traverse axes. Although two sampling ports were
available for the collection of an isokinetic sample, PES only conducted sampling through one of
the test ports. This modification to the testing was made because PES was unsure of the
capability of the existing rail system to support the Method 23 sampling train. Therefore, with
the approval of the WAM, PES conducted tests by traversing two times through a single port.
The ports used for the CEMs testing were located in the breeching immediately downstream
from the fan and prior to the stack.
A check for the presence of non-parallel or cyclonic flow, as outlined in Section 2.4 of
EPA Method 1, was performed prior to testing. The results of the cyclonic flow test indicated an
average yaw angle (a) of 6.7°. Because the average yaw angle was less than 20°, which is the
maximum allowed by Method 1, the location was considered suitable for isokinetic sampling and
required no adjustment to the alignment of the nozzle direction.
4-1
-------
Atmosphere
Damper
Stack
I.D. Fan
Mist
Eliminator
Venturi
Dropout
Chamber
Kiln No. 3
PCDDs/PCDFs
Sampling Location^
CEMs Sampling
Location
Figure 4.1 Kiln No. 3 Process Air Flow Schematic,
- Huron Ohio
4-2
-------
70.5"
Traverse
Point
Number
1
T
3
4
5
6
7
8
9
10
11
12
Distance
From Inside
Wall (in.)
1.48
4.72
8.32
12.5
17.6
25.1
45.4
52.9
58.0
62.2
65.8
69.0
Section A-A
840"
240"
PCDDs/PCDFs
Sampling Ports
CEMs
Sampling Ports
Figure 4.2 Kiln No. 3 Scrubber Outlet Sample Port and Sample Point Locations,
Huron Lime Company - Huron, Ohio
4-3
-------
5.0 SAMPLING AND ANALYSIS PROCEDURES
Source sampling was performed at the scrubber stack to determine the concentrations and
mass emission rates of PCDDs/PCDFs and THC. One test run was performed at the stack
location, with the PCDDs/PCDFs run having a net sampling time of 180 minutes and the THC run
having a net sampling time of 225 minutes. The sampling and analytical methods that were used
are summarized in Table 5.1. In Table 5.2, the parameters measured, the sampling methods, the
number of tests performed, and the duration of each test are summarized. Brief descriptions of
the sampling and analysis procedures used are presented below. Copies of all the methods that
were used are presented in Appendix G.
5.1 LOCATION OF MEASUREMENT SITES AND SAMPLE/VELOCITY
TRAVERSE POINTS
EPA Method 1, "Sample and Velocity Traverses for Stationary Sources," was used to
establish velocity and sample traverse point locations. The process ductwork, and the locations of
measurement sites and traverse points, are discussed in Section 4.0 of this document.
5.2 DETERMINATION OF EXHAUST GAS VOLUMETRIC FLOW RATE
EPA Method 2, "Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S
Pitot Tube)," was used in conjunction with EPA Method 23 to determine exhaust gas velocity. A
Type S Pitot tube, constructed according to Method 2 criteria and having an assigned coefficient
of 0.84, was connected to an inclined-vertical manometer. The pitot tube was inserted into the
duct and the velocity pressure (Ap) was recorded at each traverse point. The effluent gas
temperature was also recorded at each traverse point using a Type K thermocouple. The average
exhaust gas velocity was calculated from the average square roots of the velocity pressure,
average exhaust gas temperature, exhaust gas molecular weight, and absolute stack pressure. The
volumetric flow rate is the product of velocity and the stack cross-sectional area of the duct at the
sampling location.
5.3 DETERMINATION OF OXYGEN AND CARBON DIOXIDE
EPA Method 3 A, "Determination of Oxygen and Carbon Dioxide Concentrations in
Emissions from Stationary Sources," was used to determine the O2 and CO2 concentrations at the
scrubber outlet test location.
5-1
-------
FABLE 5.1
SUMMARY OF SAMPLING AND ANALYSIS METHODS,
HURON LIME COMPANY - HURON, OHIO
Sampling Method
Parameter or Target
Measurement Principle
EPA Method 1
EPA Method 2
EPA Method 3 A
EPA Method 4
EPA Method 23 (Proposed
Revisions)
EPA Method 25A
Traverse Point Location^,. «* >• •.
*r ?•— t - r
. .amerit f:-&
Velocity and Flow Rate
C02 and O, Content
Moisture Content
PCDDs/PCDFs
THC
Differential Pressure,
Thermocouple, and
Angular Measurement
Micro-Fuel Cell, FINOR
Gravimetric
Gas Chromatography / Mass
Spectrqmetry. (GC/MS)
.name lomzation Detector '
TABLE 5.2
SUMMARY OF SAMPLING LOCATIONS, TEST PARAMETERS,,
SAMPLING METHODS, AND NUMBER AND DURATION OF TESTS,
HURON LIME COMPANY - HURON, OHIO
Sampling
Location
Kiln No. 3
Scrubber
Stack
Test Parameter
Exhaust Gas Flow Rate
CO2 & O2 Content
Moisture Content
PCDDs/PCDFs
THC
Sampling Methods
EPA Method 2
EPA Method 3 A
EPA Method 4
EPA Method 23 (Proposed
Revisions)
EPA Method 25 A
•;Number '
of Tests
1
- 4-.
1
1
1
Duration,
(minutes)
180
225
iso
180
225 ||
5-2
-------
Continuous emission monitoring (CEM) was performed at the scrubber outlet in the
breeching immediately downstream from the fan. All CEM data was recorded using a
Tracor/Westronics 3000 automatic digital data logger. The CEMs were housed in the APCC
Environmental Monitoring Laboratory positioned at the base of the stack. Stack gas was drawn
from the stack through a heated Teflon® sample line which was maintained at a temperature of
approximately 375°F. A portion of the extracted sample was conditioned to remove moisture
and directed to the O2 and CO2 analyzers to determine diluent concentrations on a dry basis. The
remaining portion of the stack gas sample was directed to the THC analyzer. Figure 5.1 shows a
schematic of the sampling system.
A Teledyne Analytical Instruments Model 326 O2 analyzer was utilized to measure the
percentage concentration of O2 in the gas stream. The analyzer utilizes a unique micro-fuel cell
to measure the concentration of O2. The output signal is linear over the specified ranges of
analysis.
A Westinghouse/Maihak FINOR CO2 analyzer was used to monitor CO2 concentrations.
The measurement principle for CO2 is IR absorption. Radiation absorbed by CO2 in the sample
cell produces a capacitance change in the detector which is proportional to the CO2
concentration.
5.4 DETERMINATION OF EXHAUST GAS MOISTURE CONTENT
EPA Method 4, "Determination of Moisture Content in Stack Gases," was used to
determine the exhaust gas moisture content. EPA Method 4 was performed in conjunction with
the EPA Method 23 test run. Integrated, multi-point, isokinetic sampling was performed.
Condensed moisture was determined by recording pre-test and post-test weights of the
impingers, XAD® sorbent module, and silica gel.
5.5 DETERMINATION OF PCDDs/PCDFs
EPA Method 23, "Determination of Polychlorinated Dibenzo-P-Dioxins and
Polychlorinated Dibenzofurans from Stationary Sources," was used to collect dioxins and furans
at the test location. The proposed rules amending Method 23 as published in the Federal
Register, Volume 60, No. 104, May 31,1995, were employed. These proposed rules correct
existing errors in the method, eliminate the methylene chloride rinse, and clarify the quality
assurance requirements of the method. A multi-point integrated sample was extracted
isokinetically from the 24 traverse points at the scrubber stack as shown in Section 4.0. Each
traverse point was sampled twice for 7.5 minutes each tune. The total run time was of
180 minutes.
The EPA Method 23 sample was pulled through a borosilicate glass nozzle, a heated
glass-lined probe, a precleaned and heated glass fiber filter, a water-cooled condenser coil, and a
sorbent trap containing approximately 40 g of XAD®-2 sorbent resin. The EPA Method 23
sampling train is shown in Figure 5.2.
5-3
-------
Stack
Wall
Heated Filter
Sample By-Pass
Vent
By-Pass Flow
Control Valve
Figure 5.1 Sampling Train Schematic for EPA Methods 3A and 25A.
-------
en
Temperature
Sensor
Condenser
Button Hook
Nozzle
TypeS
Pilot Tube
Gas
Exit
Stack t
Wall *
/ Jl
Heated Glass
Temperature
Sensor
Inclined
Manometer
Temperature
Sensors
Empty 100 ml HPLC Water Empty Silica Gel
Orifice
1 . I . t
Vacuum
Line
Inclined
Manometer
Vacuum
Pump
Figure 5.2 Sampling Train Schematic for EPA Method 23.
-------
The collected samples were extracted and analyzed according to EPA Method 2^ and the
above mentioned proposed rules amendment. The sample components (filter, XAD®, and rinses)
were Soxhlet extracted and combined. The sample was then split with half being archived and
the other half analyzed. Analysis was performed on a high resolution Gas Chromatograph with a
high resolution Mass Spectrometer (GC/MS) detector.
5.6 DETERMINATION OF TOTAL HYDROCARBONS ^ _.,
EPA Method 25 A, "Determination of Total Gaseous Organic Concentration using a
Flame Ionization Analyzer," was used to determine the THC concentrations at the test location.
A VIG Industries THC Analyzer (or equivalent), which utilizes a flame ionization detector (FID)
to measure THCs, was calibrated with propane-in-air standards. Approximately 5.0 liters per
minute (1pm) of sample gas is drawn from the source through a heated Teflon® sample line. The
sample gas is drawn through a heated filter and valves by a heated pump, .The sample gas was
introduced into the FID chamber and hydroc-xtoxis in the sample were ionized by a hydrd'feff "" "" '"
flame. The flame was positioned between two charged plates, and the associated electric field
induced the migration of the ions towards the charged plates. The ion migration resulted hi the
generation of a current, which is directly proportional to the amount of THCs present hi the
sample.
5.7 CEMs DATA ACQUISITION AND HANDLING
V "-* <.
Analyzer responses were recorded by a Tracor/Westronics 30.00. digital data logger which
recorded the O2, CO2, and THC concentrations using its integral color printer. Trends were
monitored using the strip chart mode with averages printed digitally^ 2$_-mkiute intervals and at
the conclusion of the test period. Analyzer responses were recorded by the data logger at < >
5 second intervals.
5-6
-------
6.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)
PROCEDURES AND RESULTS
•*?• n
For any environmental measurement, a degree of uncertainty exists in the data generated
due to the inherent limitations of the measurement system employed. The goals of a QA/QC
program are to ensure, to the highest degree possible, the accuracy of the data collected. This
section summarizes the QA/QC procedures that were employed by PES in the performance of this
test program. The procedures contained in the reference test methods and in the "Quality
Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source
Specific Methods," EPA/600/R-94/038c, served as the basis for performance for all testing and
related work activities in this project.
6.1 CALIBRATION AND PREPARATION OF APPARATUS
The preparation and calibration of source sampling equipment is essential in maintaining
data quality. Brief descriptions of the calibration procedures used by PES are presented below.
The results of equipment and sensor calibrations may be found in Appendix E. Detailed
procedures as presented in the EPA test methods are presented in Appendix G.
6.1.1 Barometers
PES used aneroid barometers which were calibrated against the barometric pressure
reported by a nearby National Weather Service station.
6.1.2 Temperature Sensors
Bimetallic dial thermometers and Type K thermocouples were calibrated using the
procedure described in Calibration Procedure 2e of EPA/600/R-94/03 8c. Each temperature
sensor was calibrated over the expected range of use against an ASTM 3C or 3F thermometer.
Table 6.1 summarizes the type of calibrations performed, the acceptable levels of variance, and
the results. Digital thermocouple displays were calibrated using a thermocouple simulator having
arangeofO-2400°F.
6.1.3 Phot Tubes
PES used Type S pitot tubes constructed according to EPA Method 2 specifications.
Each pitot tube was inspected for conformance to the geometric specifications by the application
of Calibration Procedure 2 of EPA/600/R-94/038c. Pitot tubes that meet these requirements are
6-1
-------
TABLE 6.1
SUMMARY OF TEMPERATURE SENSOR CALIBRATION DATA
Temp.
Sensor
I.D.
7C
MB-10
Usage
Stack Gas
Meter Box
Inlet
Outlet
Temperature, °R
Reference
534
500
666
800
493
536
666
492
536
666
Sensor
534
501
665
801
**
494
536
665
494
537
66r .
Temperature
%
0.0%
0.20%
-0.15%
0.12%
0.20%
0.0%
-0.15%
0.40%
0.19%
Tolerances
<±1.5%
<±1.5%
<±1.5%
<±1.5%
-------
assigned a pilot coefficient, Cp, of 0.84. The dimensional criteria and results for each pitot tube
used are presented in Table 6.2.
6.1.4 Differential Pressure Gauges
PES used Dwyer inclined/vertical manometers to measure differential pressures. The
differential pressure measurements included velocity pressure, static pressure, and meter orifice
pressure. Manometers were selected with sufficient sensitivity to accurately measure pressures
over the entire range of expected values. Manometers are primary standards and require no
calibration.
6.1.5 EPA Method 23 Dry Gas Meters and Orifices
The EPA Method 23 dry gas meter and orifice was calibrated in accordance with
Sections 5.3.1 and 5.3.2 of,EPA Method 5. This procedure involves direct comparison of the
metered volume passed through the dry gas meter to a reference dry test meter. The reference
dry test meter is calibrated annually using a wet test meter. Before its initial use in the field and
annually thereafter, the metering system is calibrated over the entire range of operation as
specified in EPA Method 5.
Acceptable tolerances for the individual dry gas meter correction factor (y) and orifice
calibration factor (AH@) during initial or annual calibrations are ± 0.02 and ±0.20 from the
average, respectively. The orifice coefficient for meter MB-10 was out of tolerance for the four
inches of water orifice setting; however, the orifice coefficient was within tolerance as operated
during the tests. After field use> a calibration check of the metering system was performed at a
single intermediate setting based on the previous field test. The post-test calibration check of the
dry gas meter correction factor must agree within 5% of the correction factor generated during
the initial or annual calibration. The results for the gas meter and orifice used in this test program
is summarized in Table 6.3. ••
6.2 REAGENTS AND GLASSWARE PREPARATION
Sample reagents consisted of pesticide (or better) grade acetone and toluene for glassware
preparation and sample recoveries, and pesticide (or better) grade hexane for glassware
preparation. Sample filters and the XAD®-2 sorbent resin traps were prepared by PAL according
to the procedures outlined in Method 23. Water used in the impinger trains was HPLC-grade
reagent water.
After preparation of the XAD®-2 sorbent resin traps by PAL, each trap was spiked with a
mixture of PCDDs/PCDFs surrogates, and capped with glass balls and sockets until used in the
field.
Prior to the field testing portion of the program, all sampling train components and sample
recovery apparatus were prepared according to the following procedure.
6-3
-------
1 ABLE 6.2
SUMMARY OF PITOT TUBE DIMENSIONAL DATA
Measurement
Oi
02
Pi
P2
Y
6
A
z
w
D,
(A/2)/Dt
Criteria
<10°
<10°
<5°
->
-
-
-
^0.125"
< 0.0313"
0.187S ,
0.84
TABLE 6.3
SUMMARY OF DRY GAS METER AND OR11<1<^ ^Ai,ii*KATION DATA
Meter
No.
MB-10
Dry Gas Meter Correction Factor, y
Pre-test
1021
Post-test
1.013
% Diff.
-0.79
EPA Criteria
±5%
Orifice Coefficient, AH@
Average
*1.92
R«ee
"t.75-2.44
EPA Criteria
1./2-2.1Z |
6-4
-------
1. Wash in hot soapy water (Alconox®).
2. Rinse three times with tap water.
3. Rinse three times with distilled/deionized water.
4. Rinse with pesticide-grade acetone.
5. Rinse with pesticide-grade toluene.
6. Rinse with pesticide-grade hexane.
7. Allow to air dry.
8. Cap all openings with hexane-rinsed aluminum foil.
6.3 ON-SITE SAMPLING
The on-site QA/QC activities included:
6.3.1 Measurement Sites
Prior to sampling, the stack was checked dimensionally to determine measurement site
locations, location of velocity and sample test ports, inside stack/duct dimensions, and sample
traverse point locations. Inside stack/duct dimensions were checked through both traverse axes
to confirm uniformity of the stack/duct inside diameter. The inside stack/duct dimensions, wall
thickness, and sample port depths were measured to the nearest 1/16 inch.
6.3.2 Velocity Measurements
All velocity measurement apparatus were assembled, leveled, zeroed, and leak-checked
prior to use and at the end of each determination. The static pressure was determined at a single
point near the center of the stack or duct cross-section.
6.3.3 Moisture
The EPA Method 23 train was used to determine stack gas moisture. During sampling,
the exit gas of the last impinger was maintained below 68°F to ensure adequate condensation of
the exhaust gas water vapor. The total moisture was determined on-site gravimetrically using an
electronic platform balance with 0.1 gram sensitivity. The amount of moisture collected by the
XAD® trap was also measured.
6.3.4 EPA Method 23
The field sampling QA/QC for EPA Method 23 began in the sample recovery area. The
sample train was set up and leak-checked to verify sample train integrity before transport to the
sampling site. At the sampling site, the sample train was leak checked a second time. Leaks
found in excess of 0.02 cubic feet per minute (cfin) were corrected prior to beginning the test run.
Leak checks were also conducted before and after any sample train component changes and upon
completion of the test run. Sampling was conducted within the isokinetic sampling criteria of
100 ± 10%. Table 6.4 summarizes the EPA Method 23 field sampling QA/QC measurements
and EPA's acceptability criteria.
6-5
-------
In addition to the stack sample, one field blank sample was collected. An EPA Method
23 sampling train was assembled, transported to the outlet sampling location, and leak-checked
three times. The sample train was then recovered using the same procedures employed during
the recovery of the sample trains used during actual sample runs. The collected fractions were
transferred to labeled, pre-cleaned sample bottles, transported to the subcontract laboratory, and
analyzed in the same manner as the collected samples.
PES also collected samples of the reagents that were used during the testing program as
blanks. Samples were collected of the acetone and toluene^. .. ^ ~i*u XAD®-2 sorbent
module were also collected. These reagent blank samples were transported to the subcontract
laboratory and analyzed for PCDDs/PCDFs using the same procedures as during the analysis of
the collected samples.
6.3.5 Continuous Emission Monitors
CEMs were used to quantify the in- -CK'". concentrations of O2, CO2, and THC, using
EPA Methods 3A and 25A, respectively. QA/QC checks performed included direct calibrations,
bias checks, and drift checks. Table 6.5 summarizes the compressed gas standards that were
used during the test program.
6.3.5.1 EPA Method 3A
Prior to the start of each day of testing, the O2 and CO2 analyzers were calibrated with a
zero gas standard and two upscale standards correspondsigig^^iB^i^sptc^^^v^^ ./_, and 85% of the
instrument measurement ranges. The calibratioj^error of .the analyzers om&ect calibration was '",.'""
less than or equal to 2% of span. The sampling line bias was then checked -with the zero gas and
one upscale gas for each analyzer. The sampling line bias was less than or equal to 5% of the
response of the analyzer to the calibration standard when injected diiectty into the analyzer. At .
the conclusion of the sampling run, the sampling system was again checked by introducing the
zero and upscale standard into the system at the probe end. The sampling system drifjt was less
than 3% of the instrument span for both the zero and upscale calibration gases. The true
concentration of the gases measured was then calculated from the average instrument response
and the results of the calibration responses using Equation 6C-1 as found in Method 6C, which is
the procedure specified in Method 3 A. The gases used for calibrations were certified by the
manufacturer and prepared according to the procedures in "EPA Traceabtiity Protocol for Assay
and Certification of Gaseous Calibration Standards (September 1993)."
6.3.5.2 EPA Method 25A
Prior to the start of each day of testing, the THC sampling system was calibrated with a
zero gas standard and three upscale propane-in-air standards corresponding to approximately 25, ~
50, and 85% of the instrument measurement range. The calibration errors of the THC system
were less than 5% of the instrument operating range^ At the conclusipn of the sampling run, the
sampling system was again checked by introducing the zero and one upscale standard into
6-6
-------
TABLE 6.4
SUMMARY OF EPA METHOD 23 FIELD SAMPLING QA/QC DATA
Run No.
Site
Date
Leak Rate, acfin
Pretest
Posttest
EPA Criteria
Percent Isokinetic
Actual
EPA Criteria
M23-O-2
Kiln No. 3
Scrubber Stack
08/31/98
0.005 @1 5" Hg
0.01 @ 16" Hg
0.02
102.1
90-110%
TABLE 6.5
SUMMARY OF CALIBRATION GAS CYLINDERS
Cylinder Number
AAL-13302
ALM-029561
ALM-044152
CC86779
CC86779
CC86922
CC86922
Contents
30.0 ppm C3Hg in air
50. 14 ppm C3H8 in air
85.37 ppm C3H8 in air
10.97 % CO2 in N2/O2/CO2
11.10%O2inN2/O2/CO2
19.01%CO2inN2/O2/CO2
19.17%02inN,/O,/CO2
Expiration Date
5/01/01
8/13/01
8/13/01
3/02/01
3/02/01
3/02/01
3/02/01
6-7
-------
the system at the probe. The sampling system drift was -25.7% of the instrument span for the
upscale calibration gas, which was 50.8 ppm propane-in-air. The THC results are reported as the
average of the instrument responses over the period of the sampling run. The gases used for
calibration were certified by the manufacturer and prepared according to the procedures jrj. "EPA
Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (September
1993)."
6.4 LABORATORY ANALYSES * ^
6.4.1 Analysis of Blank Samples
The EPA Method 23 blank samples were analyzed following the procedures of EPA
Method 23. Field blanks (FB), reagent blanks (RB), and laboratory blanks were used to evaluate
the effectiveness of the sample train clean-up procedures and to check for contamination of .the ••-,
reagent materials. In addition, the subcontr. ».aooratory conducted the Laboratory MetK&d1 "
Blank (LMB) to evaluate the presence of contamination of the samples during analysis. The
results of these blank analyses and the actual run sample catches are presented in Table 6.6.
6.4.2 Standards Recovery Efficiencies
Prior to shipment of the XAD®-2 sorbent modules by PAL, eacn module was spiked with
a mixture of surrogate (sampling) standards. Upon analysis, the recoveries of the surrogate
standards provide a measure of the capture and holding ^rciency 01 me s±n±j -z sorbent traps
for the sampled PCDDs/PCDFs. A low recovery efficiency may indicate the loss of -V'-'M .<.*'•?.'.
PCDDs/PCDFs congeners from the XAD®-2 sorbent module after its recovery from the sampling *
train. The HxCDF surrogate standard recovery efficiency for sample M23-FB-3 was 147%
which is above the 130% criteria. Similar recoveries were noted m the LMB sample. The^AL
lab report remarks state that "...these observations originate from a variation in the response
factors and should not affect the reported amounts of HxCDFs in the sample." , -"?
Upon receipt of the XAD®-2 sorbent modules by the laboratory zdfter sampling, the
XAD®-2 sorbent resin modules were spiked with a mixture of internal (extraction) standards.
The purpose of these standards was to evaluate the efficiency of the extraction of the
PCDDs/PCDFs congeners from the sample fractions. The results of these recoveries are
presented hi Table 6.7.
6-8
-------
TABLE 6.6
SUMMARY OF EPA METHOD 23 BLANKS & SAMPLE CATCHES
PAL Lab Report Page
Numbers in Appendix B.
Analvte
2378-TCDD
12378-PeCDD
123478-HxCDD
123678-HxCDD
123789-HxCDD
1234678-HpCDD
OCDD
2378-TCDF b
12378-PeCDF
23478-PeCDF
123478-HxCDF
123678-HxCDF
234678-HxCDF
123789-HxCDF
1234678-HpCDF
1234789-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fs c
Catch, ng Per Sample
LMB
020
(0.0012)
0.0018
{0.0018}
0.0019
{0.0018}
(0.0017)
(0.0096)
(0.0016)
0.0023
{0.0020}
{0.0016}
{0.0013}
{0.0013}
{0.0018}
{0.0030}
(0.0028)
(0.00411
(0.0012)
0.0016
0.0020
(0.0017)
(0.0016)
0.0024
(0.0006)
(0.0022)
0.0060
M23-RB '
190 a
(0.0010)
(0.0005)
(0.0008)
(0.0007)
0.0012
0.0027
(0.0055)
(0.0015)
(0.0005)
(0.0005)
(0.0010)
(0.0008)
(0.0009)
(0.0011)
0.0038
(0.0011)
(0.0031)
(0.0010)
(0.0005)
0.0012
0.0028
0.0016
(0.0005)
(0.0008)
0.0036
0.0092
M23-FB-3
079
(0.0012)
(0.0007)
(0.0013)
{0.0013}
(0.0010)
{0.0034}
{0.0092}
(0.0015)
(0.0008)
(0.0007)
0.0022
{0.0015)
(0.0011)
(0.0013)
(0.0022)
(0.0028)
(0.0047)
(0.0012)
(0.0007)
0.0016
(0.0014)
(0.0015)
(0.0007)
0.0024
(0.0022)
0.0040
M23-O-3
004 / 052
0.0102
0.0038
0.0021
0.0030
0.0031
{0.0075}
{0.0319}
0.309
0.101
0.0602
0.0207
0.0119
0.0068
(0.0016)
0.0105
(0.0034)
(0.0056)
0.151
0.0448
0.0148
(0.0017)
5.68
0.940
0.0784
0.0104
6.9194
* Sample RB-1 collected at a different lime kiln facility tested during the same mobilization. The
pages are inserted at the end of Appendix B; the page numbers are out of sequence.
b Result obtained from the DB-225 analysis.
c Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dibenzofurans.
() Denotes a non-detect value using the detection limit.
{} Denotes an EMPC value.
6-9
-------
1 ABLE 6.7
SUMMARY OF EPA METHOD 23 STANDARDS RECOVERY' EFFICIENCIES
FULL SCREEN ANALYSIS
PAL Lab Report Page Number
Internal (Extraction) Standards
13C12-2378-TCDD
I3C12-12378-PeCDD
13Ci2-123678-HxCDD
13C12-1234678-HpCDD
13C12-OCDD
13C12-2378-TCDF
13C12-12378-PeCDF
13C12-123678-HxCDF
13C12-1234678-HpCDF
Surrogate (Sampling) Standards
37Cl4-2378-TCDD
13C12-23478-PeCDF
"C12-123478-HxCDD
13C12-123478-HxCDF
13C,,-1234789-HpCDF
Percent Recovery
LMB
021
87.1
107.2
99 5
bj.i
67.0
74.6
69.7
85.8
*.9
107.3
146,5 v
92. J
85.9
169.0
M23-
O-3
053
87.5
105.9
98.8
77.3
64.2
83.9
83.6
.. 78.6
63.5
lOiV,
.103 -8,
80.7
118.3
85.4.',
M23-
FB-3
080
81.3
101.7
96.1 ;
76.3
61.6
74.0
72.7
60.6
>• 54.3
^ s ~ '
106.4
78.9
147.1
. 78.9
M23-
RB*
191
84.7
100.1
•\ 84.5
78.4
52.4
77.9
78.1
61.6
55.9
'-:{? •" ' * '
•"" _
QC Limits
-i*. .- *.*:-•.
40-130%
40-130%
40-130%
40-130%
40-130%
40-130%
25-130%
25-130%
25-130%
70-130%'
70-130%
70-130%
70-130%
70-130%
a The "M23-RB" sample was collected at a different lime kiln facility tested dramg the same mobilization,
The pages are inserted at the end Of Appr •'-1jv R rpciiltino in thp -naop nnmlvri fcn-o'nirt nf sfvnipTirp
, resulting in the page numbers beng'out of sequence.
Note: Recovery efficiencies in bold are outside the QC limits.
6-10
-------
APPENDIX A
RAW FIELD DATA
-------
Appendix A. 1
Raw Field Data
Kiln No. 3 Scrubber Stack
-------
TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS
Pl«nt:
Date:
% •
Sampling Location:
£ C *' ^ tf, K <- •-<. ft
ie"7
f 4 . 5"
Inside of Far Wall to Outside of Nippte:
Inside of Near Wall to Outside of Nipple (Nipple Lengtn): 4
StackI.D.: ~70 S
Distance Downstream from Flow Disturoance (Distance 5):
7-4o inches / Stack I.D. = 3>. f dd
Distance Uostream from Flow Disturbance (Distance AV
. I
y?U inches i Stacx I.D. = f>, l_ad
Calculated By. _
Schematic of
Samoung Location
Traverse
Point
Numtjer
1
9
T>
<{
S
t
-?
y
1
>o
1!
\*-
Fracuon
of
Length
.0^1
H fttl
. 1H
, m
, 150
. 3^L
* <**4-
, iro
> 9>'S
, {??!-
, ^^>
. cn^
Lengtn
(inches)
^O-S"
Proauct of
Columns 2 & 3
(To nearest 1 /8")
K ^ '
VI >
*•:>
\> 4-^
\1,G
QS-lo
VS-Q-
5" >. ^
^«
6XV%
fen$
Q^.o
Nippie
Length
(incnes)
C
Traverse Point
Location
(Sum of Col. 4 & 5)
7,4-
ID. -7
14- 3
I.4L
^4 ^
M.o
S'i.^L
.r^
fc4
fcS'
-71.1
")J'A
-------
Dua Diameters Uostream From Row Oisturcance* (Distance A)
0.5 1.0 1.5 2.0 2.5
50
c
Q
n .A
05
Wl
i± 30
"o
03
£ on
1
£
| 10
c
I
I I I I I I '
*
—
^••B
24
20 , • , .
16 ,16
Velocity (Non-P articulate J '12 12
— a -
! I I I I I - I
234567891
Dua Diameters Downstream From Row Digfcgftffag^*^1^^"'^ J
i
0
B)
Row
i
31:
• From Point of Any Typ« of Ol*ftireane« iB«na. &mtrmon. Convmeaon.
LOCATION OF TRAVERSE POINTS IN QHCULfiFl DUCTS
(Fracnon of Stack Diameter from Inside Watt to Traverse Point)
Traverse
Point
Numder
on a
Diameter
1
2
3
4
5
6
7
a
9
10
11
12
'; "*? "
Numoer of Traverse Points on a Diameter
4
0.067
0.250
0.750
0.933
6
0.044
0.146
0.296
0.704
0.854
0.956
8
0.032-
0,1 0*
0.194
0.323
0.677
v j; 0.806
a89&, .-.
0.968
10
ao26
' -^.OBZ *"'
ai46
0226
0.342
, ,0658
^0774
0.854
0.918
0.974
12
0.021
0.067
-------
aj
GAS VELOCITY AND VOLUMETRIC FLOW RATE
Plant: P
2,
^
5
C
•7
v
q
^0
'!
\y
•
Valocity
Haad
In. H2O
, ) «|
, ((J.
, to
s IV
• (c
v \ °\
> i <±
> ifc
V Zl
V 10
, i "LO
. \\o
\a
. 12-
, 1 L
. !o
, Oe>i
, 1 (
V IJ"
• f<1
v ~L 3
N "2-^
x 1 i
% i K
^5P -.40T1?
Stack
Tamp.
°F
(Sf-
l-T*-
(J-J
/j^r
(55
\_^5
\5J
|55
l^-S
jj-i
U3
U 0
LCD
IwT^-
i^>
lsT3
JJ"3
I J^
ijr^-
\S4-
\ $ £,
IS f-
i5"f
I >7
Tt- I-S^
s<
0
0
»
0
(b
^0
t(
0
o
0
\!
\/
10
O
1
Md = (0.44 x %CO2> + (0.32 x %O2)
Md = (0.44 x ) + (0.32 x ) + (0.28 x
Md -
J
Ma » Md x (1
% H_0 % H_0
•
) + is ( )
100 100
13.6
13.6
f-S
Va = 85.49 x I
^
Va -
o *•-
ft/a
Qa - Va x Aa x 60 a/m
xeo
acfrn
Pa
x 17.«47 x-
-------
Plant _s
Sampling Location.
Run Number:'
FIELD DATA SHEET
"> Operator: (
Date:
Sample Type:
Pbar: ?ft.To
CO2:
Ps:
O2:
~ . 2 3
tf ' J ^
Nozzle ID: ,1> 1 $ Thermocouple #: 7
Pretest Leak Rate: .pp-g elm ® O Filler #:_
Meter Box #: (Q Y: J.g;)
f
^—• n.^., •. „.
Post-Test Leak Rate:, g^j cftn @/^> in. Hg.
Post-Test Leak Check: Pitol: is Orsal: _K^/
-------
SAMPLE RECOVERY DATA
PLANT
Run No.
DATE ?- 3 1 -
-OOP
Sample Box No. A/~ 5 Job No.
SAMPLE LOCATION K:\A * ^ S^bW fl,,Tti.T Filter No. Mrs -Q -.3- 1
TRAIN PREPARER
SAMPLE RECOVERY PERSON
COMMENTS
FRONT HALF
Acetone
Container No.
Filter
Container No.
Description of Filter
Liquid
M33-0-3-2. Level Marked
ft - .3 -
Sealed
Sealed
Av/V
Samples Stored and Locked
Container No.
Liquid Level Marked
Sealed
IMP. NO.
CONTENTS
INITIAL VOL
(ml)
WEIGHT (grams)
INITIAL
FINAL
NET
Trup
321?
-/CO
^75", /
^
,o-
TOTAL
Description of Impinger Catch:
-------
FIELD DATA SHEET
Plant: ^\>«=T Y^to^
Sampling Location •# ^> K^v OvJH-4f
Run Number: r^ 0 Date: tf"?)(-0(i
Pretest Leak Rate: $^&w'cfm@ 15 in. Hg.
Pretest Leak Check: Pftot: Orsat: »U«N
Sample Type : w ?? Operator: bC/^/r?,.,
Pbar: ^.-?o Ps:
C02: O2:
Probe Length/Type: "7 Ci
Stack Diameter: "> Q. S
i 5 3
«s Pilot #: '1 C
As: ai /O
^i Nozzle ID: , !> / o Thermocouple #: ^C.
Assumed Bws: 30 Filter*: "
MeterBox#:|O Y:'oi) AH@: 1 °l L
Post-Test Leak Rate: — cfm @ - — In. Hg
Post-Test Leak Check: Pilot: - — Orsat: A"|
Ttavw«a
Point
Numbw
SampKng
Time
(mln)
.flo'U
>O«A_
t.OO"L
'
aockTVrw
(24-hour
dock)
\*"
^M
vC,'
•
Gas Meter
Reading
(Vm)n3
DS> ,°\^-t
0^> -Oo\
^OS^ V\o
c\<-b.^\S
-^"*,. •'
"% ' ' '
••. *
"-" ^ -'c r.
' • V
Velocity
Head (Ap)
inHZO
Orifice Pressure Differential
(AH) in H2O
Desired
Actual
Stack
Temp
(Ts)
Temperature
°F
Piobe
Filter
knpinger
Temp.
°F
Dry Gas Meter Temp.
Inlet
(Tmin°F)
Outlet
(Tm out°F)
Pump
Vacuum
f«n.Ho)
Y//////////////////////////. '//////////////////////////////.
V'v
—
1
! • t
- -- -- - |
".
'
-
"
,1* '•>*
^
—
:>.$•*
So
,
—-
«
*.
i
—
IJ5
'«
AVm=
AH=
Ts=
-------
SAMPLE RECOVERY DATA
PLANT
Run No.
DATE fl'31 -°[% Sample Box No. IQ+I- 1 Job No. 6SQ9.
SAMPLE LOCATION X.'k *Jg> StsJcbs OiAl *+~ Filter No.
TRAIN PREPARER Tfl-
SAMPLE RECOVERY PERSON
COMMENTS
FRONT HALF
Acetone
Container No.
Filter
Container No.
Description of Filter
Liquid
/*-23-flR-3-.2-Levei Marked
Sealed
Sealed
Samples Stored and Locked
Container No.
Liquid Level Marked
^ 2 3 - A/3 — .3
~
-?
Sealed
IMP. NO.
1
2
3
4
5
6
CONTENTS
>*l>
Tro^p
CVr%fr/*|
HP
p^p4->/
>i iia G-e.1
TOTAL
INITIAL VOL
(ml)
^
_
/&o
100
206*)
WEIGHT (grams i
INITIAL
5o<).>
^iU.o
GDI.?.
GO2..0
51ft 0
ma
FINAL
3o?.3
*int>
1,01.3
Uo}0
3e.O
^WA
NET
0
0
0, /
£
O
0.1-
&..?
Description of Impinger Catch:
-------
-------
Appendix A.2
Raw Field Data
CEMs Summary & Strip Charts
-------
HCI Emission Measurements from a Rotary Kiln
Huron Lime Company
Huron, Ohio
Time
Date
Inlet/Outlet
1749-1804
1804-1819
1819-1834
1834-1849
1849-1904
1904-1919
1919-1934
1934-1949
1949-2004
2004-2019
2019-2034
2034-2049
2049-2104
2104-2119
2119-2134
8/31/98
8/31/98
8/31/98
8/31/98^
8/31/98
8/31/98
8/31/98
8/31/98%
8/31/98
8/31/98
8/31/98
8/31/98
8/31/98
8/31/98
8/31/98
Outlet
\*j, — "
THC
ppm
1.1
1.1
1.1
1.1
1.0
1.0
1.0
1.1
0.9"
0.7
0.5
0.2
0.5
0.3
0.5
0.8
O2
%
CO2
%
6.6
6.6
6.6
6.7
6.7
6.7
6.6
6.5
6.5
6.5
6.6
6.9
7.0
7.0
7.0
6.7
21.4
21.3
21.3
21.3
21.1
21.1
21.2
21.3
21.3
21.3
21.4
20.9
20.5
20.3
20.1
21.1
*No HCI data available, analyzer down
**lt is believed that THC analyzer started to drift down at this point ending at half actual value.
-------
-------
U
Q.
I
c <
-------
I
THC
1 3
•:'l ®
0.0. |i»
T.U. y
L"M.
*** LOG GJRP 1:*** UNIT:91 | *** STRUTS RT 98:46.32 **f ENDS RT 08:46:33 RUG 31,98 ***
miKj ST :jBK__fLJ9!8LJlIML-- i15* --,
as 38.8i pq; oT ; c-T^ pcfT OK J
_SJ_._JLE» r
«3
0 . -T
*** STR
ft MTBi UNHSJ ST ; iiCDC PT Mffl , .WITS ST..
".* «~i" HA« • AX '
-------
S
*
a
OJ
S
CD
o
L'... :L~^l
.r I S
. : _ —- -: s
-------
J 3
U:M:K -
- Ifl
- IB
1R
PPM
t-'
few* ttSO WDM* B;43:lll jS.i |
;'*w*iZTIMDW|«|:45ii| 2 3 , RT
nc.
CQ2ffiJ5
02 mi
• 22. 51 i
0 PCT
100. 0 F-i
12. J3
I
15.
IT* 1B5
i . i J
20.
I , f
0
«2
22.'5
25. |Q PCT
-------
HP! •
•
•
•
t
f
c
r
f
i
t
(
<
r
-
IB
JB
*** (;tsEr
19
24 ~z 3 "*
IHC
ra. "3
.-.' ,1 •••! i~ .
1QO. ' O PPM
r
.
0
8
94
1
0
„
8:
i ' «» RESET flVERHGE 18:45:91 24 -2<3 PI* • THC WO «4 1 • !
, «** RES^T AVERAGE, 1B:43:I8J 23 ». 3 PCT C02 AW •*•> ; :
| ; ! i
: 1 1
' • 1 '
1 • • 1
1
*;:.
i
i • ,
i i
;
,
i *
01 ' :
•
;••!
i
j
f—r
' I
1 ! • '
«* RESET RVERffiE 18 45.8f 22 14. » PCT . 02 HVC **» ' ; ' \
' i !
i .
t , i '
• ' 1 • . • . '
'2.|3, : 5.0 ' 7.
: '
'
;
'•' ' -I'.:
! ' : | • ' . . .
i i
,
, i '
; '!.:•• ' i ' '
&' '
§•'
*i ;
i
i
!
.
'
i '• : !
; • •** RESET fWSM
, . ' . ."tRESgr'nvonk
' . ' ' *«*RtstT, RVERffi
-. : '
10. 9 29. 9 j 30.
'•'•', i
,
: f
•
I
1
0, ;
,
•
' ' !
i
i '
'
; 10.
i i •, i
i ' i ' .
i
1
, 1 ,
, ' i
, i
t ' ' '
i
1
.
i
i
!
i i 1 ; " ' • 1
1
1 ' ! * •
i i
• t
. ' 1
;ih
t ; 1 ! ! 1 ' !
, i . i
• ' !
?' !
, . , ; i i
' 1 i !
: i . • • i < ' ' • i , • • •
' 1
1
1 { i
: 14:38ll
fc»:l3
!. id. J9:8
! ' i '
'
'40.
• ,
;, h
I ' i
1 ; - , 1 •
t • .
, i i i 1
1,1 .1
, M* A
| CT *•
j 22 21
; '!.'
0; j '
3: : fl
,'W
Lfijr
; : ; ;
,30.
:•.,'•• i i
• • ; i I •
!
t ,
1 1 : .
-i . ...,.i, ..„.,„. ...
i * '
• i :
,:13^
MI:
. i
i '
i >
j
4
i
i 1 ! I
• ' . ; • i '
i ' i i ' • ' '
! i ' M M
1 : ' i i!?-)'
i , j 1 TOff
IT: j, ;,(ttf»
1 1 ' ! i !
1 | ! , t '
,i
• ! : | ' *t
i ; i . : :
1
' . : • i
! , ' |
• ' 1
i
i
M
~
!|
0
•
.
1' ;' '
M* REskT RVEKflGE 18:21:21 24 -L,- 7 PI
, • • ^1:.._ . ' i • 1 • '
i
.^0^"
. . "ln~u^
*-r~->;»j
,
1 1
! , '
! ! ! '
N' ' i ncftU '
i • -
i i
1 1 , . •
i
'
)
• i 1
J
' ! ' I ;
1
i
'
i!
, r
I j
1 1
|
• i
: . i
i
!
1
i ,
i M
*
1
h
! ' i«re
' f ' ' •
1 ' !
i
i
t
; ' ,
.
1
I
i
^
;
|
;
j
i
1
1
i
1
: 1
!
0
!
•
l
f
t
•»«
i 'i
1 i
. I t
1
"*7"*
•
1 i
•
"
i
l
1
i
i
i
i
1 1
i
i •
v&i :
v^r ' t I
! !
1
I'll
__
: , , , • '.
i , . i
i ' ,
i- '.
1 ,«
[ i
1 -1
11 i
i ' ,
l i '
jjii
i i '
1 : 1 •
H'
1 '
1
1
' ' 1
i • ;
1 ' t
1 i '
'iii
i : j
':??•
! . ! '
;i;
)
! i i
1 i i !
1 j
i
i '
, ' ,
> >
5 !
' i :
' ' 1
23.
1 ' ! i
' I ;
t t ! j
. 1
i
, ! j | . i
t
' 1 * i '
i 1 , ,
! •
l ,
' , :
i ; •
1 :L
, • I
\\\-\
1 ,80. 0 , I
! i ; ' ' ' '
, f - , ;
• i
i
'
','.'•>
1 ' . • i ! •
.!•' 'lh
i
i |
1 ' . i i '
111 ; • i .
; • i ' :
30. !0 100.
' 1 ' ' '
0 PCT
0 PPM
; ' |
: 1
i • I
1 1
I
' ; ' 19 a 28 94 «
1 . i i . 19.21 23 24 1
~" . :«f ^ : ,;
i
; i
i •
r '
1
t' '
i "^-U^
'•rfv>,^
tir i
5. fJ 7
! • • i
1 .•'•,. :
i ! !
1 , i
.5' , 10.i9 .
1 '
! T
•«* RESET HVERflGE 18.15:87 24 4»
**• RESET HVERME: 19 i3:«il 23-1,
i •; - ! ; : . :..' : i
• ' ' ' • ! 1 1 1 { 1
i i • • ' r
. . ! = ! "•:.'.: 4 i
12.J-5 . . 15.J0 j 17..-5 3a.-9'>- a2.;-5 ; 2?
j — ». '! 1
« CPU THCWC ' *** ' '
PGt C02DV6 . **«
•«* KSET flSWDGE 19.15:fli 22 211 PCT 02 flVp •** ' .
i
i
^ "
„. . , i — . _ j-j..-..;.- i
: ' j
PCT
i: :«
PPM
.
• is i: :i 34:
•
4
t
-------
• •
J J ^ _
-------
f
r
r
r
r
- IB
- 1ft
. IB
90. 0 i 100. 0 PPM
22 7.12. Ftr i MM
e PCT
I
O.j© 1 , i • 10.! 0: t 23.10
!««*KSf «ra&*qu:;3Mi
i *** KJ ,r HVw U.xfiV *** f*^. -» _ f T * f ^"* l"T > ! <
33. 0 ' ! ' • 40. 0' . ' ! ' 130.J0I J 'S0.j0i ' 70.
0 ;'!! 80.10 • s)0J0 i 100. e PPM
82
. iJ.JI.L
*** LOO C(RP 1 *** UNIT 01 *** STORTS OT 11:18:48 *** ENDS «T 11:18:49 RUG 31/98( ***
5T iFffW ^., t*TB UNITS, ST LEGEND >•—MH WITS ST LEGtNb '>T MTft WITS 5T • LEGEND
-------
*•* SEF AVENGE 12:38|W 24 IJ2 ' MM
**»KSBTWBH^t2:3»:«d 23
iet 2^ «a. I HT| . ,
, :' i • • i.
0 PPM
! IOO.-Q PPM
-------
•
f
2"5.i«J
IB
U:N:« _
in
IB
e PPM
e PCT
8O. 0 (, 90. 0 100.10 PPM
f:
**• REST ATOAGE 12.43:9f 24 1,2 P1JN
*** RES^T AVERAGE 12:45.821 23 2L9 PCT
•*» ftSETlMRfiGE 12.4V82 22 6.8 PCI
$ ' '
THC WO
coemG
02 fl*
c
€
C
r
r
t
t
e)
-------
e
! I ' !
;
i
. '>
/ ,
i
t
,
I
•f
•t
, cr* , • , '
^ ,
i ' ' *4
• t
i
1 !
• \
1 1
l|
!
!
:|
i -
t '
,-
_
•
,
r
1 i
;
1
1
i
!
i
i
!
i
i
i
1
i
t
!
'
•
;
1
1
1
i
i
J
j
1
I
': 1
'•
, 1
H
*
M
1
1
.
*
.
1
1
!
•
i
A
!
i
i
'
1
i
!
i
i
i
i
i
i
H:'!
H
M
t
' 1
i
t
;
$
'
a«i
i
|
•
,
1
i
£
a
w
'
(
3
9
w
t
*« ,
M
*
«**
IK SO
0203
I3H1
!
• i '
;l
L
!
i
i t
i 1 !
tfijo;
»ya
IDH1;
, '
1 ' '
' '
^.•09
i .
* i
i
i
i
mzo
9N) 3)3
3d
:f
' *
i
!
s,
1
i
. ;
•
f
i
T
'
j '
ji
' '
,H
38
u
1
°
I
J
) 22
rt«
i
i
! 1
;'«
•If
ii
i
h
1 1
: :«[
! i
•06
i
| i
(
:
.
'
t
1
!
i
A
\
1,
t',
•
^ ; a :
1 i ( '
I
i i ! = .
1 . ,*' *
! ' ' ?' '
| ^
,
a
«
I
«
.
!
1
•
'
!
t '
t i '
y-Ktf iwfflw 4* ***
3:^:5 33MBH ijy^t »••
I'AT'FT VttfliUf 115X1'^*
. ,
i ' JL^J 1
' • ' (TV''
1 i i' i ':".' ' «3f'
1
• i i ' ' '^r- ' '
' ' ! i ' ' ' {jS; \ '•','•'•
;i' i ' I ' rP!i'':i
•ill U-ttl'1!!'^
i ! 1 ! I ' H ' 1 : : i
i ( f 1 ' JJj 1 ; i
1 . ( t . i ! V1 ' , ' ' '
'!i,l
•ii;!
: ; I i
!!i!
}••'• \ ': j ' - ' ! S2» ! ' ' ' ' j i '
' i ' i ' f ! • .
, . 1 1 ; . , j-r :
j:»:rti)(H^ii3»'»*. '
p,*f fr • Jy1*"' rr**".
:8:» 0 HUBAb Ifln «**
, ' . . pf^ *r| ,
i r r i r i . '
1 !
•
1 . . ,.'•.» ' . 1 ' '
:'•!•• •• •'- ! ' !' .
-. .:: !.F '• '•!
• : i .-& . . : , ,
•1* : ! ; '
i ' & :
9 •et' i ©i'ejl , Q
:,' .. |,
ifyd 69 22
13d
«ti
a,
C
J
9WOH1 ' HiU « «
. • , I !i ' .
•&z
\ '
,
1 ^*»: '
«fi
'^ :
; ' ? i
:f
i.i
fa'
v\
i;'i
1 1 i
i ' i
' ' • «
: ' ' ti
' i %
i!
. i i?
1 ; ' i ; *
"'!
. i i
' 1 i | , :
1 : . ' ' '
1 ' . i ' 1 '
*
:•;'
: • I
i .
: 1 ; ' ! < >
i . i i . i • : «
, ' i
r
1 1
0
1 '
:'. ' >1
, '< ' ' '
M
M
•0
•e
e
•0T . ; fc-8
; : : 1
: 4)6
• Ti
, ! ' fi
. R t
' ' I
i-l
i i
; i
i'VT & '4,1 & 'TT e»"e>l i V ., &!'& s» c • % °
a p -
-------
r
r
r
r
e
t
(
f
r
r
c
t
t
r
r
r
i
i
J 5
c»
1
0.
83*
i
1
i.
0.:
«t
.•*
i
i 1 ' •
I
' «3"
^ ! • :
_"V . 1 '
& \ i , '
-r-fTV.U.J U
i i i i ' • ;
**•»•, Lpjd <
1 : WTO , Wits
, 1 1
1 ; :
***' |
ee i9i
1 • ]
? , ;
t .
, i j ;
; i 1 t
_
jb'c
'
_ >l*
t
i •
' 1
RP i jm
!Sri ! i.u
iilfl
' i
1 '
1 . .
i i
i •;
T"'.
RP 1
*!,
|!;
i !
! ;
;'
i
*
i
P?<
!
i
i
i
71
,-:< '',£ 30. 0 40
«** REST AVERAGE 14:39:
*** RESET AVERAGE 14:38:8
*** RESET AVERAGE 14.38:
i" • ' '
1 i \ ' i
s; ' ' i i
; ' ' ' j '
UNIT 101 ' , '*4T!^
i ' PT ' Dfflfl .UNIT? ; ST
1 , ' j « -.2 ! • Kf , •
U-pi
rf
r
0.
81
;-:! ^REST(j^^l£J2
:;;! ' •;.": !:':: iii
***iJNIT'01 '**•* ST^
:._tj ! J •''' '
LEGM PT Dflrt UNITS . ST>
' ' ' * .
1 ' . 1 '
1
i )
! ' '
10. 0 20.
.93 19.3) PCT! > '0
1 • ! ' '
*** RES^T AVERAGE 14:il;8
*** RESQT RVEffiGE M:13:«4
«» RESET AVERAGE 14:15:8
: ' '
'j \
0 '"S30..13 40.
•K?. !
.1 >9
M 24 1
« 23 11
M 22 1
1
i
i '•
. i
i
i
LL i
pT5 IF
ikM
^i!1
, i
; 1
•i : !
« i
:rn|
!| i"
B1 9
i 1
: f 'T1
'|.j
ITS) ;f
LEGtN
21
24 <|
23 a;
1 22 7|
! \
30.1 0 : 60
4.8 piHi me
-6 PCT C02A
l8 PCT i 02 AI
: i
i
i i i ' : ! ;
' ! ' '
1 —
t'i4
t ' 1 ;
1 C
1 ' 1 !
.!,'
fl
. t i 1 JPI
! i
I'M
i!;4!
1 ' ! ' '
' i i . !
2£i" 6(4 **(>f*
* ! i ; !
* . ' i ' '
-!|| |f|i
H 1; if. iTHQI
i' ' i • 1
; i . < >
15 : 2J0 **>
PT' Drirt .UNIT;
. ; H; ;a | , m
\ • fW, • THC fj
t ! , PCT : ; C02 Rlj
9 PI}T (KflVj
1 i
i
t0 70.;©
fJVG *»»
VG . *M!
ip **»
i
i
| • • 1
, ' ' i | |
; so.
i
— H : • - , , '
. ' ' t
I* : EklDJS ;HT j^.4 2£ :02
1 ST' , LEGEND , j i RT DOT
• •' ' ! ! i 1 • • ,
• • : • , :
i . • 1 : • '
0 ; • i !±7f. ?,
U.' ' ' ' ' i 1 '
* i 1 : 'I ; i
1 j! i jt"i! i
• ! ! ' ! '' i 1
• END? FIT i 14:1!
i . i
ST '• LEGENb \
, IHC
tQ «** i
' ' *** :
.-j
— — ; .
; ;
1 i ' ! j ;
0 "50. 0 60. 0 > 70. 0
i '
i | 1
20.
i ' I
i i
3:28
PT DOT!
\ l
: \ ! '
|0 { 90.|0 100
1 , '
1 S i i
1 1 ' . !
! ' i '
1 j
HUG 31, 9el *** ! ; ' i
: ' ! i 1 : i ;
1) ' UN|TS ST LEGEND , ' '
•i' ':"!
0 || 22. 3 as.
\5' : j ' !; 'i
.,'!.!
• . 1 ; > • '
RUG 31, 98J *+*
UNITS ST i LEGEND
0 PPM
i
14 18.13 94 •
14 13:17 »4 g
14.18 14 94 «
14 18:89 84 I
0 PCT
14.13.87 « *
14 17 29 24 1
14:17.27 84 !
14:16 24 84 »
14:16:19 24 S
14:16:18 94 2
!
* ' i . . i
80.10 J; 90.10 100.! 0 PPM
83^
•
1
I
I
.Jt
-------
IB
: '
*** RESET mHX. 11 KM 24 1-3 W
*** RESET WEMGE W:13:Mj 23 21,2 PCT
w
**»
»« RESET (MWGE 1113:81 22
02 IW
e PPM
e CT
i ' : ••.L v ; ' : f
• 17.5 •! 28.10 ! V 22.15 I 29. O PCT
r
r
t
t
t
i
i
-------
Mdd 0 -0GT
J.3d O
Wdd 0
eftT 39KQW ,135311 *« ,
i . : , T-
O I't'?'
, : i i i :I•• : i • i , • ' ' , i • ' I : i
i | 'f4 ; ' . , £^30, j ' , M W E fr*W 3BRaw li
i I ' JM* I j i ; . -Sto ZD3 I ,' ^ ' i | 431, . S|T2 tt K»'9l BaWQW iftSd «** ,
iji^'''''''**! ^*Ji ' i ' lufcj • '?n ^7 oAiM'ftT ^niiMiAU I'lm >**A
1 ' *r : i , fry Jni i i 1"?° ' >v 11 r& Jo ]f^ • 7 > Xflajnp i3)x ***
w r -
-
81 »'9I
« 71
-------
t
t
1R
«« KSET HffiMWE 16:45.S« 24 Li PW
«« RE50 BVEWGE t6:45.W 23 a! 7 PCt
*** RESET flVERflGE 16.45;ei 22 *.;4
me *o
coefWG
1 (Hffji
.ri-5
11
5.
^0.
1 '
1
1
1 (
j '
5.
1 '
1 |
t"
tf
«.*•
»'
0 ^ 7.
r
i
^i
ftr
ff|
•t '
i •
Uf
•J.
82n[j '
,^L
i^4
0 |t 30.
•* ;
. • ' j »*» REi
, • ***ttj>l
; ' «*»|RE
1 -> ' ' i
^x ,
iijf'1'
' !•*
, • : iV
' * ' ;
jj» , ; '
fJ
' 'J^ : '
1 ' '^^ '
;8E '
j ^ ' '
e . •/! :?.
fi- ' '
(K^"'
^
& '
*
'v!
?
1 ,
i
•
0
,
IlfMRAG
rflWJH
IflStRflC
! •
. ' i •
• i i
' '
i ;
1 , '
!
'
!
'!
I
f (
' ' i
, •
t
10.
1
, '
I
1
,
1
! (
;i-»«f
! i1
i ^:»|8
: 16:38i«
! • 1
1 ' ' |
1
1
. ; '
( | l
!|,
• ''*<&
1
!
' i\
(
1
t
_
0
i :
' i : :
f '
• t !
.
' ' 1
? ,,
i
i ' 24, i.1
' 22 ;&
. ' I
. ; :
'!•'
' i ' i
1
| i
i
' . ' *
i
. i ' :
i • i I
I'll
1 ! !.!-
'iyp
^i|'
; ! ii'
..: ' !
i •
,
;12.
1
. ' '• !
: ! 1
. , 1 :
i
',
• i
i .
,
' 38.
,
^ ' ' f^r
.'i;?
ii-'
i i i ;
1 t
i
i . i
• ! ' '
i
, ; ;
?!'i
• i1?-
' i
!
;
5
'
1
I '
.
_
! i
0 '. .
: | '
r _ \
\ i
i
i i ' i
1 1 i •
I 1 '
i
i
• , i
, ' i
1 1 ' '
• ; i
!j;
?i ' i
; > •
! • '
!
; i
.
'
15.
•
, 69.
• iw4% M
Ofifl
OEffl
,
i '
1 i
• , ;
1 '«•
, i . i
1
• ' i
0
1
0
A
5-
5
1
t
i
'
i
•"«*«ltskt»BWE'«.«!« 24 1 .CM ! THCfW
»•* REST flVOTGB 16:15.q 23 21 Kt , ! C02 ft B
; 02 (M
0.(« ! 10.J 0
• »»» tetT fMHKE
! <- :
; «t
i } ;.
20.! e Jt"30., 0
•;; ^ i;
. .i ;?
..J' i -:
'liUtft
t(:15:M
K:1)|A
22
r I
40.'O ' S0.|0 . 60., 0 I 70.
;jis i
25.
-------
03
s
(S
^-7''.T,.
*
"V
ro
9
..3.. ._ 2. :
*
-®_ — T- „-_
!*•*
'Ji
-------
•
t
•
•
•
•
•
•
0
•
t
C
«
«
1
l
t
i
t
1 tr-
- Ifl
18:«:81
f» '
- ?!!.
<«**
- J.8
IB
F'PM
25.
0 PCT
1 100.
0 =*P«
23. 0 PCT
100.10 PPM
L i
-------
I
I
c
r
r
*
9
t
t
HURRMS PRESENT *** UNIT 91 . *** STRRTS RT 18:49:07. *** ,ENDS. RT 18:49:07 RUO 31,98 ***
I
C
C
t
4
f
C
1
I
I
I
1R
' '
•** Kil fKRKE 18.49:9? 24 1,1 PW
»** RESET flYEBBE I8:4».B2! 23 2U3 PCT
•*» REsfeT (WRflGE 18:49:9t 22 & 7 PCT
THCfM , «*
COZING | ' «*j
.02 (NG
-------
r
r
•
•
c
•
•
c
t
•
«
t
i.
t
IB
- ifi
IB
- 1H
*« RESET AVENGE t9:24 92 23 it 2 PCI
«** (EfT flVfRAX 19 34:8t 22 iii PtT
CQ2AV6
02HVC
190.J 0 PPM
I
;
I
I
25.10 PCT
i 100.
0 PPM
25.( 0
-------
CD
Sjt
8
S
^
- • $
^"i £~. ''~^/l/W~V/^'"--,J -•",&/
-_~.»±* U
?'
«•
*.
d.
£i"
tfl-~
— H
w
"I"
<*-_
a>~-
—CD
-_-.--_--J*
"-- "^"a1
cs
.1-14
_ >j—
ffl
TJ
o
-I
1}
Tl
i
-------
u.
LL
O
1"
S
;?-
W
ft
G>
" **'
rl
JL|I B.
IP
OJ
*>L
»
•S
tr>
Q
«;" r!
0
ii
--»
g
S-
». a
•• N- • -
^^
- - - -- -- - - ._._.._ """»_ "i" ' " ""i
O
HO —
W
(S
-.A"
4.
IB
-------
.tod
Wdd 0
e
e |'0eT
_ wern
- - - - -^rr.Ti '"" tc ?Fiufr
« ^
•
"
-------
L L w . .
a.
"f
rj
it
a.
a.
o
a.
-------
APPENDIX B
METHOD 23 LABORATORY ANALYTICAL DATA
-------
PARADIGM ANALYTICAL LABORATORIES, INC.
2627 Northchase Parkway S.E.
Wilmington, North Carolina 28405
(910) 350-1903
Fax (910) 350-1557
30 SEP 98
Michael Maret
Pacific Environmental Services, Inc.
5001 S. Miami Blvd
Research Triangle Park, NC 27709-2077
Contract: 68D70002
Sub-Contract: R012-002
Work Assignment: 1-007
Subject: Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans Measurements (PAL Project No. L-1114)
Dear Mike; - .V.
Enclosed are the final results for the flue gas samples under your Project S509.000 Ohio Lime
Kiln. As you requested, we divided up the set of 15 samples into three separate projects (L-1113, L-1114,
and L-1115; see Table 1 for a summary). This report covers the first set under PAL L-1114. The analytical
procedures conformed or exceeded the ones described in Method 23 using isotope-dilution high-resolution
gas chromatography combined with high-resolution mass spectrometry. The Level n reporting format is
described on the next page. A general summary of the analytical results is presented in Table 2. Figures
land 2 show the TEQs and total homologues corresponding to Tables 2 data.
No. of Samples Received: 2
No. of Sample^Analyzed: 2
No. of Lab. MethottBlanks: 1
Your Project Number: S509.000 Ohio Lime Kiln
PAL Project No.: L-1114
Remarks:
• Data meet QA/QC requirements.
• No analytical difficulties to be reported.
• The HxCDF sampling standard recovery in sample M23-FB-3 is above the 130 percent level, i.e.,
147 percent). Similar observations were made in the LMB. We believe these observations originate
from a variation in the response factors and should not affect the reported amounts of HxCDFs in
the sample.
We wanted to thank you for the opportunity to serve you. Please, feel free to contact us if you
have questions or should you need additional technical support.
Sincerely,
•&1^L
Yves Tondeur, Ph.D.
01 c 001
North Carolina Wastewater Certification #481
-------
Level II Report
Section 1: Cover Letter, contains a brit f description of the project, the client and PAL Project
Numbers, the number and type of samples, the methodology used to process the
samples, QC remarks where any analytical difficulties are discussed and the impact on
the quality of the data presented, a summary table with the analyte concentrations,
detection limits, the client sample identification numbers, units to report the
concentrations, and a graphical representation.^,^- "rT;^><- ----' *-Bi-
section 2: Project Synopsis, contains the Sample Tracking & Management Forms,
Communications Form, any correspondence, chain-of-custody and the last page is
always a copy of the sample injection log(s). This section is designed to help the
laboratory and the data reviewer with an overall view of the entire analytical
procedure, the initials and dates of who did what when on which sample. Spiking
solution IDs are recorded along with the batch numbers of the supplies and reagents
used.
Section 3: Analytical Results, contain ,.<. ^^npic results topsheets (one set of two per sample),
the raw data (i.e., the selected ion current profiles, the areas, heights, ion abundance
ratios, signal-to-noise ratios, and retention times of the GC peaks).
Section 4: System Performance, contains the documentation on the GC/MS system performance.
In particular, the mass resolution checks, GC column performance checks, initial and
continuing calibration summary tables and, when applicable, associated raw data for
both column types.
002
-------
Table 1: Project No. S509.000; Project Name: US EPA Lime Kiln Screening, OhioLime;
Sample and Project Identifications.
PES Sample ID PAL Sample ID PAL Project No.
M23-I-1 1113-1 " L-1113
M23-O-1 1113-3 ' L-1113
M23-FB-1 1113-5 L-1113
M23-RB 1113-7 L-1113
M23-I-1-FH ' 1113-8 L-1113
M23-I-2 1113-2 L-1113
M23-O-2 1113-4 L-1113
M23-FB-2 1113-6 L-1113
M23-I-2-FH 1113-9 L-1113
M23-O-3 1114-1 L-1114
M23-FB-3 1114-2 L-1114
M23-I-4 1115-1 L-1115
M23-O-4 1115-2 L-1115
M23-FB-4 1115-3 L-1115
M23-I-4-FH 1115-4 L-1115
-------
Table 2: Analyte Concentrations in "ng" per Sampling Tra
Analvte ..- ,7
..-*•". *Jr -cfL*
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF*
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fsb
TEQ (ND=0)C
TEQ (ND=l/2)d
TEQ EMPC(ND=0)*
TEQEMPC(ND=l/2)
(0.001)
0.002
[0.0018]
0.002
[0.0018]
[0.00208]
(0.010)
(0.002)
0.002
[0.00204]
[0.00156]
[0.00132]
[0.00128]
[0.00184]
[0.00296]
(0.003)
(0.004)
(0.001)
0.002
0.002
[0.002]
(0.002)
0.002
[0.006]
[0.0052]
0.006
0.001
0.002
0.003
0.004
OXHOj
0.004
0.002
0.003
0.003
[0.00748]
[0.03192]
0.309
0.101
0.060
0.021
0.012
0.007
(( "or-
0.011
(0.003)
(0.006)
0.151
0.045
0.015
[0.016]
5.684
0.940
0.071" r;
0.010
6.924
0.083
-;.083
0.083
0.083
in
(0.001)
(0.001)
(0.001)
[0.00128]
(0.001)
[0^**..-ji '.
[0.00924]
(0.002)
(0.001)
(0.001)
0.002
[0.00148]
(0.001)
(0.001)
(0.002)
(0.003)
(0.005)
(0.001)
[0.0008]
0.002
1£0,'VX'"^"1
(0.002)
(0.001)
0.002
(0.002)
0.004
0.000
0.002
0.001
0.002
4 "••••->''
a) Result obtained from the DB-225 analysis.
b) Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dtbeuzufurans
c) TEQ computed using ITEF and setting non detected analytes witfc a "Zero" concentration.
d) TEQ computed using ITEF and setting non detected analytes with a concentration half the
calculated detection limit.
e) TEQ computed using ITEF and setting the concentration of EMFC "•-- ->S,MPC value.
NOTE:
() = ND using DL value.
[ ] = EMPC value.
004
-------
TEQ
Amount in "ng" per Train
1MB
S509.000
M23-O-3
S509.000
Sample
M23-FB-3
S509.000
0TEQ(ND=0)
QTEQ(ND=1/2)
HTEQ EMPC (ND=0)
DTEQEMPC (ND=1/2)
Figure 1: Graphical representation of the TEQs based on the data presented in Table 2
OC ( 005
-------
7.000
6.000 -
5.000 -
4.000 -
Amount in "ng" per Train
3.000 -
2.000 -
1.000 -
0.000
ornologues
1MB
S509.000
M23-O-3
S509.000
Sample
M23-FB-3
S509.000
Figure 2: Graphical representation of the totals (teli** through octachlorinated congeners) based on the data
presented in Table 2.
0( ' 006
-------
PAL Project No.: L-1114
Section 2
Project Overview
&
Sample Tracking & Communication Forms
o
o
-------
Project Overview for the Analysis of Polychlorinated Dibenzo-/>-Dioxins & Dibenzofurans
No. of Field Samples: 2
No. of Billable Samples: 2
PAL Project No.: L-1114
Date Received: 08 SEP 98
Due Date: 30 SEP 98
Client Project ID: S509.000
Concentration sopsp-N-02
Spike Profile
ES: 23
SS: 23
JS: 23
4ng(l-2)
4ng(I-l)
Tridecanc batch No.:
Thimbles batch No.:
Toluene batch No.:
Pre-Soxhlet: .
Other*
XAD
Sampling Modules Prep. Project No.: t- -//
Add M23-ES-0to<*-$QT-tin,
Vol.: 40 L; Cone.: 0.1 n/l
SOPSP-S-01
Soxhlet 16 H Toluene
SOPSP-E-01
Concentration ^Solvent Exchange | SOPSP-N-OI
I
Split Extract
SOPSP-D-01
I
Hexane batch No/
CH2Clj batch No.:
F'*ica batch No.: ^
mina batch No.:
U-F batch No.: ~
SO4 batch No.:
-
4
An live
SOPSP-D-OJ
Soeciitl Instructions:
Add M23:,
Vol.: 20 n L; TConc.; 0.1 ng/ n L
SOPSP-S-OI
L
-HRMS
CD J /!/
-------
Project Overview for the Analysis of Polychlorinated Dibenzo-/?-Dioxins & Dibenzofurans
No. of Field Samples: 2
No. of Billable Samples: 2
O
o
Special Instructions:
PAL Project No.: L-1114
Date Received: 08 SEP 98
Due Date: 30 SEP 98
Client Project ID: S509.000
fcwf-S
tethdd 23
Metho
SOPSP-A-01
Sample Extract
Fortified with JS
Reporting Level; I (IIJ HI II+ III+
Report
SOPRP-G-01
Data Package
Assembly
SOPSH-A-01
Archive Data
SOPRP-A-01
SOPSH-D-OI
8A.M.
\
i
MS
i
L
^
W
GC
^
Calibration
b
8P.M.
|
F
Mr>»lr k Cnnirtlnn ^ f~*nrtfnt ^ l\,fC
»ianK ^ 5anipies " concai ^ ivia
\m
1
^
Instrument ID:
HP-5MS batch No.:
DB225 batch No.:
ICal:
ConCal:
, .'^j. /»q •
-------
Sample Tracking for the Analysis of Polychlorinated Dibenzo-/?-Dioxins & Dibenzofurans
No. of Field Samples: _2_
Page_LofJ_
PAL Project No.: L-l 114
Date Received: 08 SEP 98
Due Date: 30 SEP 98
Client Project ID: S509.000
*:r^ j>
' MetKo
-------
Communication Exchanges Form for the Analysis of PCDD/PCDFs
No. of Field Samples: _2_
Pagei_of_/
PAL Project No.: L-1114
Date Received: 08 SEP 98
Due Date: 30 SEP 98
Client Project ID: S509.000
-------
Paradigm Analytical Labs
Login Report (InQt)
Aug. Ob, 1998 . -..I;..;...
10:30 AM
Login Number: L1114
Account: 1027 Pacific Environmental Services, If
Project: S509.000 US EPA Lime Kiln Screening- OH Page: 1 of 1
Laboratory Client Collect
Sample Number Sample Number Date
L1114-1
StackAir
StackAir
StackAir
L1114-2
StackAir
StackAir
StackAir
L1 114-3
StackAir
StackAir
StackAir
M23-O-3
P 23-TO
C 8290-TO-FT
C 8290-TO-SL
M23-FB-3
P 23-TO
C 8290-TO-FT
C 8290-TO-SL
M23-RB
P 23-TO
C 8290-TO-FT
C 8290-TO-SL
31-AUG-98
Hold:
Hold: 07-SEP-98
Hold: 07-SEP-98
31-AUG-98
Hold:
Hold: 07-SEP-98
Hold: Q7-SEP-98
02-SEP-98
Hold:
Hold: 09-SEP-98
Hold: 09-SEP-98
Receive
Date
08-SEP-98
4 oz. Glass
4 oz. Glass
08-SEP-98
4 oz. Glass
4 oz. Of- •
08-SEP-98
4 oz. Glass
4 oz. Glass
Due
PR Date Comments
29-SEP-98i ..-„*«.
1 Bottles
1 Bottles
29-SEP-98
1 Bottles
1 Bottles .
9O-SPP QR it j- i
^a-ath- »o , (UtooC*XW -
GnK-jcyiM
1 Bottles "
1 Bottles
j..
£c ' c.
Signature : Ofifl-
Date : Ql-SEP-'l?"
-------
Paradigm
Sample Receipt Checklist
Client:
Client Project ID:
1027
8509.000
Lab Project: L1114
No
1
Check
YES / (JTO)
(fE§> 1 NO
2 tf&S) 1 NO
| YES / NO
3
4
5
6 ..
7
8
9
YES / (NO)
<£I^ / NO
°C
<^E^ / NO
(YfS; / NO
YES / NO
(?E§) / NO
YES /
-------
ACIFIC ENVIRONMENTAL SERVICES, INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Chain of Custody Record
t Num project Name — — — — .
S509.000 1 US EPA Ume Kiln Screening -Onto Lime
Abemathy, Gay, Maret, D.D Holzschuh, Stegal, Stewart
ate
£8/98
/31/98
/31/98
/31/98
/31/98
9/2/98
9/2/98
9/2/98
9/2/98
3/27/98
3/27/98
3/27/98
3/27/98
8/28/98
8/28/98
8/28/98
8/28/98
8/31/98
8/31/98
Time.
,
.
Field Sample ID
M23-O-2-4
M23-0-3-1
M23-O-3-2
M23-O-3-3
M23-O-3-4
M23-O-4-1
M23-O-4-2
M23-O-4-3
M23-O-&
M23-FB-1-1
M23-FB-1-2
M23-FB-1-3
M23-FB-1-4
M23-FB-2-1
M23-FB-2-2
M23-FB-2-3
M23-FB-2-4
M23-FB-3-1
M23-FB-3-2
Sample Description
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No^ 2 - Train Acetone Rinse •*
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No, 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Analysis Requested
I
•
•
•
•
•
•
*
•
•
•
•
•
•
•
•
•
•
•
*
^^
•
*
•
•
•
•
•
•
•
•
.
•
•
•
•
•
•
*
*
(
t.
Remarks
Report No. 1
Report No. 2
Report No. 2
Report No. 2
Report No. 2
Report No. 3
Report No. 3
P" T • •
Report No. 3
report No. 3
,
-------
-I« '
£-7
I/PACIFIC ENVIRONMENTAL SERVICES, INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Chain of Custody Record
ject Num
S509.000
Project Name
US EPA Lime Kiln Screening - Ohio Lime
nplers:
Abemathy, Gay. Maret. D.D Holzschuh. Siegal, Stewart
Date
8/31/98
8/31/98
9/2/98
9/2/98
9/2/98
9/2/98
9/2/98
9/2/98
9/2/98
9/2/98
Time
Field Sample ID
M23-FB-3-3
M23-FB-3-4
M23-FB-4-1
M23-FB-4-2
M23-FB-4-3
M23-FB-4-4
M23-RB-1
M23-RB-2
M23-RB-3
M23-RB-4
Jmouished b* (Signature)
%$$£*»
Date/Time
Date/Time
Sample Description
Container No. 3 - train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Received by: (Signature)
Received for lab by: (Signature)
Analysis Requested
«
.
*
•
•
•
•
•
•
•
*
I
.
•
•
•
•
•
•
•
•
•
Relinquished by: (Signature)
DateHlme
Remarks
FIELD BLANK 3 - Report No. 2
FIELD BLANK 3 - Report No. 2
FIELD BLANK 4 - Report No. 3
FIELD BLANK 4 - Report No. 3
FIELD BLANK 4 - Report No. 3
FIELD BLANK 4 - Report No. 3
REAGENT BLANK - All reports
REAGENT BLANK - All reports
REAGENT BLANK - All reports
REAGENT BLANK - All reports
Received by: (Signature)
REMARKS
o
01
9/8/98
Page 3 of 3 Pages
-------
*\v
I-
o*D
MP>"
^> -
tt
ACIRC ENVIRONMENTAL SERVICES, INC.
*r
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Chain of Custody Record
S509.000 § US EPA Lima Kiln Screening - Ohio Lime
Abemathy, Gay, Maret, O.D Hobschuh, Siegal, Stewart
ate
'27/98
727/98
/27/98
£7/98
/28/98
/2B/98
728/98
1/28/98
9/2/98
9/2/98
9/2/98
9/2/98
8/27/98
8/27/98
,.8/27/98
8/27/98
8/28/98
8/28/98
8/28/98
Time.
i
i
1
Field Sample ID
M23-M-1
M23-I-1-2 '•
M23-I-1-3
M23-I-1-4
M23-I-2-1
M23-I-2-2
M23-I-2-3
M23-I-2-4
M23-I-4-1
M23-I-4-2
M23-I-4-3 ;
M23-I-4-4
M23-O-1-1
M23-O-1-2
M23-O-1-3
&23-O-1-4
M23-O-2-1
M23-0-2-2
M23-O-2-3
Sample Description
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse ;?
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container Net. 4 - XAD Sorbent Resin
Container No. 1 - Filler :«'
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Analysis Requested
&
Ck
£
*
•
•
•
•
•
•
•
•
•
•
•
«
*
•
•
•
•
•
£
&
•
•
•
•
*
•
•
*
•
•
»
•
•
•
•
•
•
•
•
>>
1*
*i'
-------
0
OPUSquan 29-SEP-1998
Paradigm Sample
Data File
a26sep98m
a26sep98m
a26sep98m
a26sep98m
a26sep98m
a26sep98m
a26sep98m
a26sep98m *
a26sep98m '•
a26sep98m
a26sep98m
a26sep98m
a26sep98m
a26sep98m
a26sep98m
a26sep98m
a26sep98m
a26sep98m
a26sep98m
a26sep98m
a26sep98m
Log
S
(Q
2
3
4
^^
6
7
8
9
10
11
12
13 —
14 ,_
15
16
17
18
19
2CL
£p
Page 1
Sample ID
DB-5 Retchk {/
SB I/
1613-CS1
1613-CS2
1613-CS3
1613-CS4
1613-CS5
SB
1698m23 xl/1
0998m23 xl/1
1698m23 xl/1
1104-0 xl/1-
1114-1 xl/1
1114-2 xl/1
1104-1 xl/2 .
1104-2 xl/2 ,
1104-3 xl/2-..
1104-4 xl/2-
1104-5 xl/2
1104-6 xl/2
BE CS3 i/
i
Acq. Date
26-SEP-98
26-SEP-98
26-SEP-98
26-SEP-98
26-SEP-98
26-SEP-98
26-SEP-98
26-SEP-98
26-SEP-98
26-SEP-98
27-SEP-98
27-SEP-98
27-SEP-98
27-SEP-98
27-SEP-98
, 27-SEP-98
27-SEP-98
27-SEP-98
27-SEP-98
27-SEP-98
27-SEP-98
Page 1 of 1
Time
16:46:46
17:32:59
18:19:05
19:07:33
19:57:04
20:45:27
21:31:33
22:17:35
23:08:22
23:54:27
00:40:41
01:31:40
02:17:51
03:05:54
03:53:14
04:39:51
05:32:01
06:26:03
07:15:16
08:01:16
08:49:13
-------
OPUSguan 30-SEP-1998
Paradigm Sample
Data File
a29sep98m
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
Log
S
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Page 1
Sample ID
B-225 Retchk v
CS3 ex
SB
1120-2
1115-1
1115-2
1115-4
1114-1
1113-1 .
1113-2
1113-3 '
1113-4
1113-8
1113-9
1104-6
CS3 */
"•n**
Acq. Date
29-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
30-SEP-98
30-SEP-98
30-SEP-98
30-SEP-98
30-SEP-98
*
16
17
17
18
19
19
20
21
22
22
23
00
01
01
02
03
Page 1 of 1
Time
:13:59
:07:50
:49:53
:31:58
.-16:01
:58:07
:40:14
:24:44
:06:58
:49:04
:01:50
:43:55
:26:01
: 08:06
•'s
-------
Section 3
Analytical Results
Documentation for the Analysis
of
Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans
O
H>
CO
-------
Paradigm Analytical Labs
LMB
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
<»#
ND
0.0018
EMPC
0.0019
EMPC
ND
ND
ND
0.0023
EMPC
EMPC
EMPC
EMPC
EMPC
EMPC
ND
ND
ND
0.0016
0.0020
ND
ND
0.0024
ND
ND
0,0012
0.0023
DL
(ng)
0.0012
0.0007
0.0013
0.0010
0.0011
0.0017
0.0096
0.0016
0.0008
0.0007
v',0008
0.0006
0.0007
0.0008
0.0022
0.0028
0.0041
0.0012
0.0007
t
0.0010 '
0.0017
0.0016
0.0007
0.0006
, 0.0022
EMPC
i«g)
V,.OU16
• •
0.0018
0.0020
0.0016
0.0013
0.0013
0.0018
0.0030
0.0024
(K0060
0.0020
0.0044
0.006$ ;
0.0052
0.0032
0.0039
RT
(nun.)
->- 17
JJ.U
35:24
35:36
37:48
40:44
28:27
32:35
33:01 .
34:52
," 35:14
35:45
36:59
38:11
* --.
^'
*T"
Ratio
1.64 .- .
1.01
1.06
0.97
0.84 :
0.26
0.67
1.34
1.86 .
0.97
2.28
1.64
1.78
= 0.74
Qualifier
^-•i
•i -"'"•""
-"\ *; '
) r- "'• •*
ITEF
ITEF
•M
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
LMB
Sample Inforinafimi
Matrix-
IfVtifeU.*. / * V»\r4ii»V^-.
Moisture / Lipids: *
0.0 %
L1115
Imb091698rn23
NA
NA
16-Sep-y8
27-Sep-98
,
Filename:
-... Retook:
Begin CoaCab,.
EndConCah
^.-gsfc^l ^<«i
lllHWT_V.Bi.
a26sep98m-l 1
a26sep98m-l
a26s^>98m-12
a26sep98m-21
a2osq39sm-2l
1/2
-------
Paradigm Analytical Labs
Method 23
LMB
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
T VT^V
I3C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDD
13C,2-l,2,3,6,7,8-HxCDD
13C12- 1 ,2,3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
'3C12-l,2,3,7,8-PeCDF
13C12-1, 2,3,6,7, 8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
13C!2-l,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13Cirl,2,3,4,7,8,9-HpCDF. ^
Injection Standards
13C12-1,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
<«I0
4
4
4
4
8
4
4
4
4
4
4
4
4
,; 4
Measured
Amount
<•*>
3.48
4.29
3.94
3,33
5.36
2.98
2.79
3.43
2.20
4.29
5.86
3.70
3.44
6.76
Percent
Recovery
(%)
87.1
107.2
98.5
83.1
67.0
74.6
69.7
85.8
54.9
107.3
146.5
92.5
85.9
169.0
RT
Onto.)
29:25
33:13
35:22
37:48
40:44
28:23
32:34
" 34:47
36:59
33:01
35:19
34:52
38:11
29:08
35:36
Ratio
0.8
1.59
1.28
1.05
0.92
0.8
1.6
0.52
0.44
1.58
1.25
0.53
0.42
0.8
1.21
Qualifier
Client Information
Project Name:
Sample ED:
Laboratory Information
Project E>:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
LMB
L1115
Imb091698m23
NA
NA
16-Sep-98
27-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
End ConCal:
Initial Cal:
Air
1
0.0
a26sep98m-ll
a26sep98m-l
a26sep98m-12
a26sep98m-21
a26sep98m-21
Reviewed by: ^-T
Date Reviewed:
021
2/2
-------
OPUSguan 30-SEP-1998
Filename a26sep98m
Sample 11
Acquired 27-SEP-98
Processed 28-SEP-98
Page 1
00:40:41
12:04:24
Sample ID Imb091698m23 xl/1
Cal Table m8290-092698m
Results Table M8290-092698M/BE] —
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS ,
CS
SS
ss
ss
ss
Name;
2,3,7,8-TCDD;
1, 2,3,7, 8-PeCDD;
1,2,3,4,7, 8-HxCDD;
1,2,3,6,7,8-HxCDD;
1,2,3,7,8,9-HxCDD;
1,2,3,4,6,7, 8-HpCDD;
OCDD;
2,3,7,8-TCDF;
1, 2,3,7, 8-PeCDF;
2,3,4,7,8-PeCDF;
1,2,3,4,7,8-HxCDF;
1,2,3,6,7,8-HxCDF;
2,3,4,6,7,8-HxCDF;
1,2,3,7,8,9-HxCDF;
1,2,3,4,6,7, 8 -HpCDF ;
1,2,3,4,7,8,9-HpCDF;
OCDF;
' 13C-2,3,7,8-TCDD;
13C-1, 2,3,7, 8-PeCDD;
13C-l,2,3,6,7,8-HxCDD;
130-1,2,3,4,6,7,8 HpCDD;
13 -OCDD;
13C-2,3,7, TCDF;
13C-1,2,3,7,! ?eCDF;
13C-1,2,3,6,7,' SxCDF;
13C-l,2,3,4,6,7,f;
-------
OPUSquan 30-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no fHorn:4
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.02
Cone: 0.02
Tox #1: -
Name
2,3,7,8-TCDF
of which 0.01
of which 0.01
Tox #2: -
# RT Respnse
named and 0.01
named and 0.01
Tox #3: -
RA
1 27:00 8.5e+03 0.44 n
8.5e+03
2 28:27 4.3e+04 0.67 y
4.3e+04
3 28:37 1.2e+04 0.59 n
1.2e+04
28:54 1.5e+04
1.5e+04
1.22 n
Cone
0.00
2
5
0.01
1
2
0.00
4
7
0.00
unnamed
unnamed
Area Height
S/N Mod?
2.6e+03 1.6e+03 4.8e-01 n n
5.9e+03 3.5e+03 5.7e-01 n n
L
1.7e+04 6.0e+03 1.8e+00 n n
2.6e+04 8.66+03 1.4e+00 n n
D
4.3e+03 2.0e+03 6.0e-01 n n
7.46+03 3.2e+03 5.2e-01 n n
D
8.4e+03 3.7e+03 l.le+00 n n
6.9e+03 5.5e+03 9.0e-01 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:4
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.11
Cone: 0.11
Tox #1: -
Name
of which *
of which *
Tox #2: -
# RT Respnse
named and 0.11
named and 0.11
Tox #3: -
RA
1 28:07 l.le+04 1.27 n
l.le+04
2 28:23 7.5e+04 3.16 n
7.5e+04
3 29:25 2.4e+05 0.08 n
2.4e+05
4 29:38 1.6e+04 0.37 n
1.6e+04
Cone
0.00
e
4
0.02
C
]
0.08
1
0.01
unnamed
unnamed
Area Height
S/N Mod?
6.3e+03 4.8e+03 1.3e+00 n n
4.9e+03 1.9e+03 9.4e-01 n n
I
5.7e+04 1.2e+04 3.3e+00 y n
l.Se+04 4.7e+03 2.3e+00 n n
1.8e+04 S.le+03 2.2e+00 n n
2.2e+05 4.16+04 2.1e+01 y n
1
4.2e+03 2.6e+03 7.0e-01 n n
l.le+04 3.5e+03 1.8e+00 n n
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:5
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.12 of which 0.11 named and 0.01 unnamed
Cone: 0.12 of which 0.11 named and 0.01 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1,2,3,7,8-PeCDF 1 32:35 1.66+05 1.34 y 0.06
023
-------
OPUSquan 30-SEP-1998
Page 2
2,3,4,7,8-PeCDF
1.66+05
2 32:40 1.6e+04 0.61 n 0.01
1.6e+04
3 33:01 1.6e+05 1.86 n 0.05
1.6e+05
4 33:29 8.1e+03 0.63 n 0.00
S.le+03
5 33:33 l.le+04 1.30 n 0.00
l.le+04
9.le+04 4.0e+04 2.1e+01 y n
6.8e+04 2.7e+04 5.5e+00 y n
1
5.9e+03 3.1e+03 1.6e+00 n n
9.7e+03 3.66+03 7.2e-01 n n
5
l.Oe+05 5.0e+04 2.6e+01 y n
5.5e+04 2.3e+04 4.6e+00 y n
D
3.1e+03 1.66+03 8.4e-01 a n
5.0e+03 2.0. • -• -'•-•• -••
0
6.3e+03 2.66+03 1.3e+00 n n
4.9e+03 3.06+03 6-Oe-Ol n n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:4
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: "RC90-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample tex ' Jl
Amount: 0.08
Cone: 0.08
Tox #1: -
Name
1,2,3,7,8-PeCDD
of which 0.04
of which 0.04
Tox #2: -
named and 0.04
named and 0.04
Tox #3: -
RT Respnse
RA
32:34 3.1e+04 2.55 n
3.16+04
33:01 7.0e+04
7.06+04
33:05 1.26+04
1.26+04
3.11 n
1.82 n
Cone
r 0'
0.02
unnamed
unnamed
Area Height
S/N Mod?
33:13 1.3e+05 1.64 y
1.36+05
0,04
;. .3e+04 9.5e+03 2.1e+00 n n
8.9e+03 3.8e+03 2.7e+00 n n
2
5.3e+04 i'.Ai^rv. <. *. .
1.7e+04 5.2e+03 3.7e+00 y n
.,9.a+C-i 5.^e+03 l.le+00 n n.
i.3e+03 1.3e+03 9.6e-01 n n,.
i
8.26+04 2.9e+04 6.5e+00 y n
5.0e+04 1.8e+04 1.3e+01 y n
024
-------
OPUSquan 30-SEP-1998
Page 3
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:17
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.21
Cone: 0.21
Tox #1: -
Name
of which 0.15
of which 0.15
Tox #2: -
# RT Respnse
named and 0.06
named and 0.06
Tox #3: -
RA
1,2,3,4,7,8-HxCDF 1 34:48 l.le+05 0.84 n
l.le+05
1,2,3,6,7,8-HxCDF 2 34:52 1.3e+05 0.97 n
1.3e+05
3 35:00 l.le+04 0.63 n
l.le+04
--.
4 35:03 1.3e+04 1.65 n
1.3e+04
5 35:07 l.le+04 0.92 n
l.le+04
2,3,4,6,7,8-HxCDF 6
35:14 l.Oe+05 2.28 n
l.Oe+05
35:23 2.0e+04 4.59 n
2.0e+04
8 35:25 1.9e+04 4.15 n
1.9e+04
9 35:33 l.le+04 1.91 n
l.le+04
10 35:35 2.16+04 3.35 n
2.1e+04
1,2,3,7,8,9-HxCDF 11 35:45 1.3e+05 1.64 n
1.3e+05
12 35:53 2.0e+04 1.35 y
2.0e+04
13 36:00 1.5e+04 0.55 n
1.5e+04
14 36:04 1.3e+04 2.63 n
1.3e+04
15 36:06 9.2e+03 1.69 n
9.2e+03
16 36:10 9.2e+03 1.24 y
9.2e+03
17 36:16 1.26+04 0.64 n
1.26+04
Cone
0.04
C
6
0.03
C
e
o.oo
4
6
0.00
£
C
0.00
C
C
0.03
0.01
1
2
0.01
]
•:
0.00
0.01
]
<
0.05
4
0.01
3
E
0.00
e
s
0.00
c
•:
0.00
c
0.00
c
4
0.00
unnamed
unnamed
Area Height
S/N Mod?
5.1e+04 2.7e+04 5.9e+00 y n
6.1e+04 2.3e+04 6.6e+00 y n
6.5e+04 2.3e+04 5.1e+00 y n
6.7e+04 2.2e+04 6.2e+00 y n
3
4.2e+03 2.2e+03 4.8e-01 n n
6.6e+03 2.8e+03 7.8e-01 n n
3
8.3e+03 5.76+03 1.3e+00 n n
5.1e+03 3.8e+03 l.le+00 n n
3
5.5e+03 3.2e+03 7.1e-01 n n
5.9e+03 3.1e+03 8.6e-01 n n
3
7.2e+04 2.1e+04 4.76+00 y n
3.2e+04 1.4e+04 3.8e+00 y n
L
1.7e+04 1.2e+04 2.6e+00 n n
3.6e+03 1.3e+03 3.6e-01 n n
1.5e+04 5.9e+03 1.3e+00 n n
3.66+03 1.36+03 3.66-01 n n
7.0e+03 3.8e+03 8.3e-01 n
3.7e+03 1.5e+03 4.2e-01 n
.66+04 7.7e+03 1.76+00 n n
.8e+03 1.5e+03 4.3e-01 n n
7.86+04 2.46+04 5.46+00 y n
4.7e+04 1.46+04 4.16+00 y n
L
1.2e+04 4.2e+03 9.2e-01 n n
8.7e+03 6.8e+03 1.9e+00 n n
3
5.3e+03 3.8e+03 8.4e-01 n n
9.6e+03 2.9e+03 8.3e-01 n n
3
9.2e+03 6.2e+03 1.4e+00 n n
3.5e+03 2.26+03 6.3e-01 n n
3
5.8e+03 2.9e+03 6.5e-01 n n
3.4e+03 1.7e+03 4.76-01 n n
S.le+03 2.1e+03 4.6e-01 n n
4.1e+03 2.1e+03 6.0e-01 n n
4.8e+03 2.7e+03 6.0e-01 n n
7.6e+03 2.8e+03 7.9e-01 n n
C
025
-------
OPUSguan 30-SEP-1998
Page 4
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no * *Hom/i£
Run: 4 File: a26sep98m S-.ll Acq:27-SEP-98 00-40:41 Proc:28-gEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.26
Cone: 0.26
Tox #1: -
Name
of which 0.14
of which 0.14
Tox #2: -
# RT Respnse
named and 0.12
named and 0.12
Tox #?• -
RA
1 34:47 6.86+04 3.96 n
6.86+04
2 34:52 7.6e+04 3.03 n
7.6e+04
3 34:56 3.6e+04 1.35 y
3.6e+04
35:08 l.Oe+04
l.Oe+04
1.05 n
35:11 8.1e+03 0.51 n
8.16+03
35:14 1.3e+04
1.36+04
1.04 n
1,2,3,4,7,8-HxCDD 7
35:19 9.6e+04 1.01 a.
9.6e+04
1,2,3,6,7,8-HxCDD 8 35:24 1.3e+05 1.06 y
1.3e+05
1,2,3,7,8,9-HxCDD 9
35:36 1.26+05 0.97 i
1.2e+05
10 35:42 2.3e+04 0.41 n
2.36+04
11 35:49 1.86+04 0.63 n
l.Se+04
12 35:56 1.6e+04 0.59 n
1.66+04
13 36:01 9.0e+03
9.06+03
1.41 y
14 36:05 7.8e+03 0.40 n
7.8e+03
15 36:13 9.26+03 0.50 n
9.26+03
16 36:21 8.4e+03 1.38 y
8.46+03
Cone
0.03
e
]
0 03
c
:
o.oi
i
-.00
c
c
0.00
2
C
0.01
e
6
0.05
4
4
0.05
e
'' 6
.05
C
e
o.oi
unnamed
unnamed
Area Height
S/N Mod?
5.5e+04 2.2e+04 7.8e+00 y n
1.4e+04 7.8e+03 l,9e+00 n n
5.7e+04 1.9e+04 6.8e+00 y n
1.9e+04 7.1e+03 1.8e+00 n n
2.0e+04 5.9e+03,
I. , 5e+04 6.6e+03
n a
5.36+03 2.4e+03 8.7e-01 n n
5.1e+03 2.6e+03 6.6e-01 n n
2.7e+03 1.2e+03 4.2e-01 n
5.4e+03 2.4e+03 5.9e-01 n
6.4e+03 2.4e+03 8.5e-Ql n a
6.2e+03 2.5e+03 6.36-131 n n=
5 -. •:
4.86+04^1.66+04 5.8e+00 v n
4.8e+04 •%."»/*..- .....
5
6.9e+04 2.26+04 7.8e+00 y A
).5e+04 2.4e+04 6.0e+00 y JB.
5.9e+04 2.6e+04 9.3«+DOV n
6.1e+04 2.0e+04 5.1e-i-00 y n
6.76+03 4.1e+03 l.Se+00 n n
1.66+04 5.3e+03 1.3e+00.n'vn
7.0e+03 3.6e+03 1.3e+00 «.
l.le+04 5.3e+03 1.3e+00 n
0.01
5.8e+03 2.96+03 l.Oe+00 n n
9.9e+03 3.8e+03 9.4e-01 n.- n
0.00
0.00
5.2e+03 2.4e+03 8.5e-01 n n
3.7e+03 3.0e+03 7.4«-01 n- n
5
2.2e+03 1.4e+03 4.9e-01 n n
5.6e+03 2.2e+03 "5.5e-01 n n
<1.00
V
0.00
3.1(
6.1e+03 2.7e+03 6.7e-01 n
4.9e+03 1.4e+03.4.9e-01 n
3.5e+03 2.3e+03v 5.8e-01 n
n
n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: $07.782 409.779 Mod? no #Hom:8
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
-•>£ >,'.-
r
-------
OPUSquan 30-SEP-1998
Page 5
Amount: 0.24 of which 0.14 named and
Cone: 0.24 of which 0.14 named and
Tox #1: - Tox #2: - Tox
Name t RT Respnse RA
1,2,3,4,6,7,8-HpCDFl 36:59 1.2e+05 1.78 n
1.2e+05
2. 37:13 2.6e+04 1.02 y
2.66+04
3 37:20 1.76+04 1.50 n
1.7e+04
4 37:26 1.4e+04 1.76 n
1.46+04
5 37:43 1.7e+04 1.62 n
1.7e+04
6 37:5-5* l.ile+04 1.16y
l.le+04
l,2,3,4,7,8,9-HpCDF7 38:11 8.4e+04 0.74 n
8.4e-i-04
8 38:13 7.0e+04 0.45 n
7.0e+04
0.10
0.10
#3: -
Cone
0.07
7
0.02
1
1
0.01
1
6
0.01
8
5
0.01
1
6
0.01
e
c
0.06
unnamed
unnamed
Area Height
.9e+04 2.5e+04
.4e+04 1.8e+04
.3e+04 4.3e+03
.3e+04 3.2e+03
.Oe+04 4.7e+03
.8e+03 2.3e+03
.7e+03 3.6e+03
.Oe+03 2.56+03
.le+04 3.7e+03
.5e+03 2.3e+03
.16+03 2.66+03
.2e+03 2.06+03
.5e+04 1.5e+04
.8e+04 l.Se+04
.le+04 8.56+03
.8e+04 1.5e+04
S/N Mod?
5.6e+00 y n
5.0e+00 y n
9.56-01 n n
9.0e-01 n n
l.Oe+00 n n
6.5e-01 n n
8.0e-01 n n
6.9e-01 n n
8.2e-01 n n
6.5e-01 n n
5.8e-01 n n
5.7e-01 n n
3.4e+00 y n
4.1e+00 y n
1.96+00 n n
4.1e+00 y n
027
-------
OPUSquan 30-SEP-1998 Page 6
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425 774 Mod? no #Hom:3
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 C1,.40:41 Proc: 28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m6290-092»Results: M8290-Q9*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.09 of which 0.05 named and 0.03 unnamed
Cone: 0.09 of which 0.05 named and 0.0^ unnamed
Tox ttl: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1,2,3,4,6,7,8-HpCDDl 37:48 8.4e+04 0.84 n 0.05
8.4e+04 3.8e+04 1.3e+04 4.2e+00 y n
4.5e+04 1.4e+04 6.4e+00 y n
2 38:11 4.2e+04 4.07 n 0.03
4.2e+04 3.3e+04 8.8e+03 2.9e+00 n n
8.2e+03 3.1e+03 l.Se+OO n n
3 38:24 1.3e+04 1.31 n 0.01
1.3e+04 . ^ 6e+03 4.0e+03 1.3e+00 n n
. .<- ,.> 2.5e*03 1.2e+00 n n
r r
028
-------
OPUSquan 30-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Purans F:l Mass: 303.902 305.899 Mod? no #Hom:4
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.02
Cone: 0.02
Tox #1: -
Name
2,3,7,8-TCDF
of which 0.01
of which 0.01
Tox #2: -
# RT Respnse
1 27:00 8.5e+03
8.5e+03
named and 0.01
named and 0.01
Tox #3: -
RA
0.44 n
2 28:27 4.3e+04 0.67 y
4.3e+04
3 28:37 1.2e+04 0.59 n
1.2e+04
28:54 1.5e+04
1.5e+04
1.22 n
Cone
0.00
C
0.01
1
0.00
4
0.00
unnamed
unnamed
Area Height
S/N Mod?
2.6e+03 1.66+03 4.8e-01 n n
5.9e+03 3.56+03 5.7e-01 n n
1.7e+04 6.0e+03 1.8e+00 n
2.6e+04 8.6e+03 1.4e+00 n
4.3e+03 2.0e+03 6.0e-01 n n
7.46+03 3.26+03 5.2e-01 n n
8.4e+03 3.7e+03 l.le+00 n
6.9e+03 5.5e+03 9.0e-01 n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:4
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.11
Cone: 0.11
Tox #1: -
of which *
of which *. ,
Tox #2: -
named and 0.11
named.and 0.11
Tox #3: -
Name
RT Respnse
28:07 l.le+04
1.16+04
RA
1.27 n
28:23 7.5e+04 3.16 n
7.56+04
29:25 2.4e+05
2.46+05
0.08 n
29:38 1.6e+04 0.37 n
1.6e+04
Cone
0.00
<
4
0.02
C
]
0.08
:
o.oi
unnamed
unnamed
Area Height
S/N Mod?
.3e+03 4.8e+03 1.3e+00 n n
.9e+03 1.9e+03 9.4e-01 n n
5.7e+04 1.2e+04 3.3e+00 y n
1.8e+04 4.7e+03 2.3e+00 n n
l.Se+04 S.le+03 2.2e+00 n n
2.2e+05 4.1e+04 2.1e+01 y n
L
4.2e+03 2.66+03 7.0e-01 n n
l.le+04 3.5e+03 1.8e+00 n n
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2-' Mass: 339.860 341.857 Mod? no #Hom:5
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: tn8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.12 of which 0.11 named and 0.01 unnamed
Cone: 0.12 of which 0.11 named and 0.01 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name
1,2,3,7,8-PeCDF
# RT Respnse RA Cone Area Height
1 32:35 1.66+05 1.34 y 0.06
S/N Mod?
029
-------
OPUSquan 30-SEP-1998
Page 2
2,3,4,7,8-PeCDF
1.6e+05
2 32:40 1.6e+04 0.61 n 0.01
1.6e+04
3 33:01 1.6e+05 1.86 n 0.05
1.6e+05
4 33:29 8.1e+03 0.63 n 0.00
8.1e+03
5 33:33 l.le+04 1.30 n '••.00
l.le+04
9.1e+04 4.0e+04 2.1e+01 y n
6.8e+04 2.7e+04 5.5e+00 y n
L
5.9e+03 3.1e+03 1.6e+00 n n
9.7e+03 3.6e+03 7.2e-01 n n
l.Oe+05 5.0e+04 2.6e+01 y n
5.5e+04 2.3e+04 4.6e+00 y n
D
3.1e+03 1.6e+03 8.4e-01 n n
5.0e+03 2.0e- " "'•
3
6.3e*03 2.6e+03 1.3e+00 n n
4.9e+03 3.0e+03 6.0e-01 n n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:4
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal : n
-------
OPUSquan 30-SEP-1998
Page 3
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:17
Run: 4 File: a26sep98m S-.ll Acq:27-SEP-98 00:40:41 Proc: 28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Oal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.21
Cone: 0.21
Tox #1: -
Name
of which 0.15
of which 0.15
Tox .#2: -
# RT Respnse
named and 0.06
named and 0.06
Tox #3: -
RA
1,2,3,4,7,8-HxCDF 1 34:48 l.le+05 0.84 n
l.le+05
1,2,3,6,7,8-HxCDF 2
34:52 1.3e+05 0.97 n
1.3e+05
35:00 l.le+04
l.le+04
v ».
35:03 1.3e+04
1.3e+04
0.63 n
1.65 n
5 35:07 l.le+04 0.92 n
l.le+04
2,3,4,6,7,8-HxCDF 6
35:14 l.Oe+05 2.28 n
l.Oe+05
35:23 2.0e+04 4.59 n
2.0e+04
8 35:25 1.9e+04 .4,15 n
1.9e+04
9 35:33 l.le+04 1.91 n
l.le+04
10 35:35 2.1e+04 3.35 n
2.1e+04
1,2,3,7,8,9-HxCDF 11 35:45 1.3e+05
1.3e+05
1.64 n
12 35:53 2.0e+04 1.35 y
2.0e+04
13 36:00 1.5e+04 0.55 n
1.5e+04
14 36:04 1.3e+04 2.63 n
1.3e+04
15 36:06 9.2e+03 1.69 n
9.2e+03
16 36:10 9.2e+03 1.24 y
9.2e+03
17 36:16 1.2e+04 0.64 n
1.2e+04
Cone
0.04
c
e
0.03
6
e
0.00
4
e
o.oo
8
c
0.00
c
c
0.03
0.01
]
0.01
1
3
0.00
1
3
0.01
a
4
0.05
-
4
0.01
1
£
0.00
c
s
0.00
s
•3
0.00
c
3
0.00
c
4
0.00
unnamed
unnamed
Area Height
S/N Mod?
5.1e+04 2.7e+04 5.9e+00 y n
6.1e+04 2.3e+04 6.6e+00 y n
6.5e+04 2.3e+04 5.1e+00 y n
6.7e+04 2.2e+04 6.2e+00 y n
4.2e+03 2.2e+03 4.8e-01 n n
6.6e+03 2.8e+03 7.8e-01 n n
D
8.3e+03 5.7e+03 1.3e+00 n n
5.1e+03 3.8e+03 l.le+00 n n
D
5.5e+03 3.2e+03 7.1e-01 n n
5.9e+03 3.16+03 8.6e-01 n n
3
7.2e+04 2.1e+04 4.7e+00 y n
3.2e+04 1.4e+04 3.8e+00 y n
1.7e+04 1.26+04 2.66+00 n n
3.6e+03 1.3e+03 3.6e-01 n n
1
1.5e+04 5.9e+03 1.3e+00 n n
3.6e+03 1.3e+03 3.6e-01 n n
D
7.0e+03 3.86+03 8.3e-01 n n
3.7e+03 1.5e+03 4.2e-01 n n
L
1.66+04 7.7e+03 1.7e+00 n n
4.8e+03 1.5e+03 4.3e-01 n n
7.8e+04 2.4e+04 5.4e+00 y n
4.7e+04 1.4e+04 4.1e+00 y n
L
1.2e+04 4.2e+03 9.2e-01 n n
8.7e+03 6.86+03 1.9e+00 n n
D
5.3e+03 3.8e+03 8.4e-01 n n
9.6e+03 2.9e+03 8.3e-01 n n
D
9.2e+03 6.2e+03 1.4e+00 n n
3.5e+03 2.2e+03 6.3e-01 n n
5.8e+03 2.9e+03 6.5e-01 n n
3.4e+03 1.7e+03 4.7e-01 n n
D
5.1e+03 2.1e+03 4.66-01 n n
4.1e+03 2.16+03 6.0e-01 n n
D
4.8e+03 2.7e+03 6.0e-01 n n
7.6e+03 2.86+03 7.9e-01 n n
031
-------
OPUSguan 30-SEP-1998
Page 4
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:16
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: mB?,90-092>»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Iinb091698m23 xl/1
Amount: 0.26
Cone: 0.26
Tox fl: -
of which 0.14
of which 0.14
Tox #2: -
named and 0.12
named and 0.12
Tox #3: -
Name
RT Respnse
RA
34:47 6.8e+04 3.96 n
6.8e+04
34:52 7.6e+04 3.03 n
7.6e+04
34:56 3.6e+04
3.6e+04
1.35 y
35:08 l.Oe+04 1.05 n
l.Oe+04
1,2,3,4,7,8-HxCDD 7
35:11 8.1e+03
8.1e+03
35:14 1.3e+04
1.3e+04
35:19 9.66+04
9.6e+04
0.51 n
1.04 n
1.01 n
1,2,3,6,7,8-HxCDD 8 35:24 1.3e+05 1.06y
1.3e+05
1,2,3,7,8,9-HxCDD 9
35:36 1.2e+05
1.2e+05
10 35:42 2.3e+04
2.3e+04
11 35:49 1.8e+04
1.8e+04
0.97 n
0.41 n
0.63 n
12 35:56 1.6e+04 0.59 n
1.66+04
13 36:01 9.06+03
9.0e+03
1.41 y
14 36:05 7.86+03 0.40 n
7.86+03
15 36:13 9.2e+03 0.50 n
9.26+03
16 36:21 8.4e+03 1.38 y
8.46+03
Cone
0.03
C
]
0.03
c
]
0.01
unnamed
unnamed
Area Height
S/N Mod?
0.00
0.01
0.05
5.5e+04 2.2e+04 7.8e+00 y n
1.4e+04 7.8e+03 1.9e+00 n n
5.7e+04 1.9e+04 6.8e+00 y n
1.9e+04 7.1e+03 1.8e+00 n n
2.0e+04 5.9e+03 2.1e+00 n n
1 s«,04 6.6e+03 1.6e+00 a a
5.3e+03 2.4e+03 8.7e-01 n n
5.1e+03 2.6e+03 6.6e-01 n n
)
2.7e+03 1.2e+03 4.2e-01 n n
5.4e+03 2.4e+03 5.9e-01 n n
L
6.46+03 2.4e+03 8.5e-01 n n
6.2e+03 2.5e+03 6.3e-01 n n
5
4.8e+04 1.6e+04 5.8e+00 y n
4 . 8e+04 2t*
0.01
0.01
6.9e+04 2.2e+04 7.8e+00 y n
•6.56*04 2.4e+04 6.0e+00 ¥ «
5.9e+t>4 2.6e+04 9.3e+00 y n<
6.16+04 2.0e+04 5.1e+00 y n
L
6.7e+03 4.1e+03 l.Se+00 n TI
1.6e+04 5.3e+03 1.3e+00 n n
j
''.Oe+03 3.6e+03 1.3e+00 n ' a
l.le+04 5.3e+03 1.3e+00 n' a
0 JO
0.00
0 00
0.00
5.8e+03 2.9e+03 l.Oe+00 n n
9.96+03 3.8e+03 9.4e-01 n n
5.26+03 2.46+03 8.5e-01 n -n
3.7e+03 3.06+03 7.4e-01 n n
3
2.2e+03 1.46+03 4.9e-01 n n
5.66+03 2.2e+03'5.5e-01 n n
D
3.16+03 t.9e;"~ •'
6.16+03 2.7e+03 o.ie-Oo. a u
3
4.96+03 1.46+03 4.96-01 n n
3.5e+03 2.36+03 5.8e-01 n a
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 40" 782 409.779 Mod? no #Homi8
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-§EP-9B 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
032
-------
OPUSguan
Amount :
Cone:
Tox #1:
30-SEP-1998
0
0
-
.24
.24
of
of
which
which
Tox
0.
0.
#2
14
14
: -
Page 5
named
named
and
and
Tox
0.
0.
#3
10
10
: -
unnamed
unnamed
Name
RT Respnse
RA
1,2,3,4,6,7,8-HpCDFl 36:59 1.26+05 1.78n
1.26+05
2 37:13 2.66+04 1.02 y
2.6e+04
37:20 1.76+04
1.76+04
1.50 n
4 37:26 1.4e+04 1.76 n
1.4e+04
5 37:43 1.7e+04 1.62 n
1.7e+04
6 37:55. lVYe+04' 1.16 y
l.le+04
l,2,3,4,7,8,9-HpCDF7 38:11 8.4e+04 0.74 n
8.46+04
38:13 7.0e+04
7.06+04
0.45 n
Cone
0.07
<
0.02
1
3
0.01
]
«
0.01
6
c
0.01
1
e
o.oi
6
c
0.06
3
4
0.05
Area Height
7.96+04 2.5e+04 5,
4.4e+04 1.8e+04 5.
1.3e+04 4.3e+03 9.
1.3e+04 3.26+03 9.
.Oe+04 4.7e+03 1.
.8e+03 2.3e+03 6.
8.7e+03 3.66+03 8.
5.0e+03 2.5e+03 6.
L
l.le+04 3.7e+03 8.
6.5e+03 2.3e+03 6.
L
6.1e+03 2.6e+03 5.
5.2e+03 2.06+03 5.
5
3.56+04 l.Se+04 3.
4.8e+04 l.Se+04 4.
2.1e+04 8.5e+03 1.
4.8e+04 1.5e+04 4.
S/N Mod?
6e+00 y n
Oe+00 y n
5e-01 n n
Oe-01 n n
Oe+00 n n
5e-01 n n
Oe-01 n n
9e-01 n n
2e-01 n n
5e-01 n n
8e-01 n n
7e-01 n n
4e+00 y n
le+00 y n
9e+00 n n
le+00 y n
033
-------
OPUSguan 30-SEP-1998 Page 6
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:3
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cai: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.09 of which 0.05 named and 0.03 unnamed
Cone: 0.09 of which 0.05 named and O.C3 unnamed
TOX ttl: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1,2,3,4, 6,7,8-HpCDDl 37:48 8.4e+04 0.84n 0.05
8.4e+04 3.8e+04 1.3e+04 4.2e+00 y n
4.5e+04 1.4e+04 6.4e+00 y n
2 38:11 4.2e+04 4.07 n 0.03
4.2e+04 3.3e+04 8.8e+03 2.9e+00 n n
8.2e+03 3.1e+03 1.5e+00 n n
3 38:24 1.3e+04 1.31 n 0.01
1.36+04 ,7.fie+03 4.Oe+03 1.3e+00 n n
-'. x;.5e+03 1.2e-t-00 n n
€
-------
o
CO
ca
OPUSquan 28-SEP-1998
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments ;
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
2
1,2,
1,2,3,
1,2,3,
1,2,3,
1,2,3,4,
2
1,2,
2,3,
1,2,3,
1,2,3,
2,3,4,
1,2,3,
1,2,3,4,
Unk ; 1,2,3,4,
Unk ;
ES/RT 13C-2
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
SS
1301,2,
1301,2,3,
1301,2.3,4,
13C-2
1301,2,
1301,2,3,
1301,2,3,4,
13C-1
1301,2,3,
37C1-2
1302,3,
1301,2,3,
1301,2,3,
1301,2,3,4,
37C1-2
1302,3,
1301,2,3,
1301,2,3,
1301,2,3,4,
a26sep98m
11
27-SEP-98
28-SEP-98
Page
00:40:41
12:04:24
1
„
4
L
)*
^«r
-
— • —
If*.
^— ^
?
'£^rf
i ^^
^
0 . b\*°l
^
.*$•
Imb091698m23 xl/1 ' ^ ' "
m8290-092698m
M8290-092698M
Name ;
,3'j|l7,8-TCDD;
3,7,8-PeCDD;
4,7,8-HxCDD;
6,7,8-HxCDD;
7,4,9-HxCDD;
6,7,8-HpCDD;
OCDD;
,3,7,8-TCDF;
3,7,8-PeCDF;
4,7,8-PeCDF;
4,7,8-HxCDF;
6,7,8-HxCDF;
6,7,8-HxCDF;
7,8,9-HxCDF;
6,7,8-HpCDF;
7,8,9-HpCDF;
OCDF;
,3,7,8-TCDD;
3,7,8-PeCDD;
6,7,8-HxCDD;
6,7,8-HpCDD;
13OOCDD;
,3,7,8-TCDF;
3,7,8-PeCDF;
6,7,8-HxCDF;
6,7,8-HpCDF;
,2,3,4-TCDD;
7,8,9-HxCDD;
,3,7,8-TCDD;
4,7,8-PeCDF;
4,7,8-HxCDD;
4,7,8-HxCDF;
7,8,9-HpCDF;
,3,7,8-TCDD;
4,7,8-PeCDF;
4,7,8-HxCDD;
4,7,8-HxCDF;
7,8,9-HpCDF;
Resp;
* .
1.31e+05;
9.56e+04;
1.356+05;
1.206+05;
8.38e+04;
8.616+04;
4.35e+04;
1.60e+05;
1.586+05;
1.126+05;
1.32e+05;
1.04e+05;
1.25e+05;
1.236+05;
8.35e+04;
* .
2.65e+08;
2.22e+08;
2.906+08;
1.63e+08;
1.636+08;
3.406+08;
2.87e+08;
2.296+08;
1.20e+08;
2.956+08;
2.64e+08;
2.946+08;
4.406+08;
1.596+08;
2.856+08;
1.56e+08;
2.946+08;
4.40e+08;
1.596+08;
2.856+08;
1.56e+08;
Ion 1;
* .
8.16e+04;
4.806+04;
6.94e+04;
5.90e+04;
3.84e+04;
1.80e+04;
1.74e+04;
9.14e+04;
1.036+05;
5.12e+04;
6.50e+04;
7.20e+04;
7.77e+04;
7.85e+04;
3.54e+04;
* .
1.18e+08;
1.36e+08;
1.636+08;
8.37e+07;
7.85e+07;
1.51e+08;
1.77e+08;
7.876+07;
3.64e+07;
1.31e+08;
1.44e+08;
2.94e+08;
2.70e+08;
8.87e+07;
9.83e+07;
4.62e+07;
2.946+08;
2.706+08;
8.87e+07;
9.83e+07;
4.62e+07;
Ion 2;
* .
4.99e+04;
4.766+04;
6.54e+04;
6.06e+04;
4.556+04;
6.806+04;
2.60e+04;
6.826+04;
5.52e+04i
6.10e+.o'4;
6.67e+04;
3.156+04;
4.736+04;
4.42e+04;
4.81e+04;
* .
1.476+08;
8.596+07;
1.276+08;
7.96e+07;
8.49e+07;
1.89e+08;
l.lle+08;
1.50e+08;
8.366+07;
1.64e+08;
1.206+08;
_ .
1.706+08;
7.08e+07;
1.86e+08;
1.09e+08;
_ .
1.706+08;
7.086+07;
1.866+08;
1.096+08;
RA;?; RT;
*;n;NotFnd;
1.64;y; 33:13;
1.01;n; 35:19;
1.06;y; 35:24;
0.97;n; 35:36;
0.84;n; 37:48;
0.26;n; 40:44;
6.67;y; 28:27;
1.34;y; 32:35;
1.86;n; 33:01;
0.84;n; 34:48;
0.97;n; 34:52;
2.28;n; 35:14;
1.64;n; 35:45;
1.78;n; 36:59;
0.74;n; 38:11;
*;n;NotFnd;
0.80;y; 29:25;
1.59;y; 33:13;
1.28;y; 35:22;
1.05;y; 37:48;
0.92,-y; 40:44;
0.80;y; 28:23;
1.60;y; 32:34;
0.52;y; 34:47;
0.44;y; 36:59;
0.80;y; 29:08;
1.21;y; 35:36;
-;-;NotFnd;
1.58;y; 33:01;
1.25;y; 35:19;
0.53;y; 34:52;
0.42;y; 38:11;
-;-;NotFnd;
1.58;y; 33:01;
1.25;y; 35:19;
0.53;y; 34:52;
0.42;y; 38:11;
Cone ;
* .
0.042;
0.053;
0.046;
0.050;
0.053;
0.096;
0.012f
0.057;
0.050;
0.041;
0.027;
0.028;
0.049;
0.076;
0.082;
*;
90.049;
128.189;
92.355;
118.010;
273.553;
78.797;
78.511;
84.112;
60.490;
129.122;
191.632;
103.251;
110.247;
92.648;
58.468;
127.336;
114.681;
140.314;
100.651;
69.108;
210.068;
DL;
0.0316;
0.0167;
0.0386;
^ 0.0237;
-•' 0.0294;
"0.0433;
. 0.2360;
S 0.0389;
V 0.0187;
0.0164;
0.0206;
0.0117;
0.0153;
0.0222;
0.0567;
0.0893;
0.0883;
0.1019;
0.0961;
0.0618;
0.2486;
0.1313;
0.0629;
0.0157;
1.1145;
0.2987;
-;
-;
0.0594;
0.0144;
0.1127;
0.6226;
0.4853;
0.0793;
0.0102;
0.1037;
0.4261;
0.7460;
S/Nl;?;
*;n;
6;y;
6;y;
8;y;
9;y;
4;y;
l;n;
2;n;
21;y;
26;y;
6;y;
5;y;
5;y;
5;y;
6;y;
3;y;
*;n;
1411;y;
4769;y;
6456;y;
932;y;
4479;y;
3693, -y;
36158;y;
408 ;y;
317;y;
1872;y;
5089;y;
4361;y;
57554 ;y;
5155;y;
325;y;
369;y;
4361;y;
57554 ;y;
5155;y;
325 ;y;
369, -y;
•• S/N2;?
*;n
13 ;y
5;y
6;y
5;y
6;y
10, -y
l;n
5;y
5;y
7;y
6;y
4;y
4;y
5;y
4;y
*;n
4061;y
13050;y
4314, -y
2261;y
4865;y
3114;y
19315;y
384;y
1208;y
5468;y
3275;y
-; -
30852 ;y
3356;y
301 ;y
1361;y
-; -
30852 ;y
3356;y
301, -y
1361;y
mod?
no
no
no
no
no"
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page
-------
OPUSquan 28-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.903 303.899 Mod? no #Hom:4
Run: 9 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.02
Cone: 0.02
Tox #1: -
Name
2,3,7,8-TCDF
of which 0.01
of which 0.01
Tox #2: -
# RT Respnse
named and 0.01
named and 0.11
Tox #3: -
RA
1 27:00 8.5e+03 0.44 n
8.56+03
2 28:27 4.36+04 0.67 y
4.3e+04
3 28:37 1.2e+04 0.59 n
1.2e+04
4 28:54 1.5e+04 1.22 n
l.Se+04
i_onc
0.00
C
0.01
1
0.00
unnamed
unnamed
Area Height
S/N Mod?
2.6e+03 1.6e+03 4.8e-01 n n
5.9e+03 3.5e+03 5.7e-01 n n
L
1.7e+04 6.0e+03 1.8e+00 n n
2.6e+04 8.6e+03 1.4e+00 n n
D
4 3e+03 2.0e+03 6.0e-01 n n
'.4o+03 3.2e+03 5.2e-01 n n
^
8.4e+03 3.7e+03 l.le+00 n n
6.9e+03 5.5e+03 9.0e-01 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:4
Run: 9 File: a26sep98m S.-ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092_^^giia..t-.= • MR->on.-na~
Version: V3 . 6 31-JXJL-1998 10:51:59 Sample text: Imb091698«ttj xj.y o.
Amount: 0.12
Cone: 0.12
Tox #1: -
Name
of which *
of which *
Tox #2: -
# RT Respnse
named and 0.12
named and 0.' "
Tox #3 : -'
RA
1 28:07 l.le+04 1.27 n
l.le+04
2 28:23 7.5e+04 3.16 n
7.5e+04
3 29:25 2.4e+05 0.08 n
2.4e+05
4 29:38 1.6e+04 0.37 n
1.6e+04
Cone
0. CO
e
4
j,03
C
]
0.08
3
0.01
unnamed
unnamer'
Area Height
S/N Mod?
6.3e+03 4.8e+03 1.3e+00 n n
4.9e+03 1.9e+03 9.4e-01 n n
5.7e+04 1.2e+04 3.3e+00 y'»'rt
1.8e+04 4.76+03 2.3e+00 n ""n
1.8e+04 S.le+03 2.2e+00 n n
2.2e+05 4.16+04 2-le+Ol y n
L
4.2e+03 2.66+03 7.0e-01 n TV
l.le+04 3.5e+03 1.8e+00 n n
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no
*i
Run: 9 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.12 of which 0.11 named and 0.01 unnamed
Cone: 0.12 of which 0.11 named and 0.01 unnamed
Tox #1: - Tox #2: - Tox #2: -
Name # RT Respnse RA Cone
1,2,3,7,8-PeCDF 1 32:35 1.6e+05 1.34 y 0.06
Area Height
S/N Mod?
-------
OPUSquan 28-SEP-1998
Page 2
2,3,4,7,8-PeCDF
1.6e+05
2 32:40 1.6e+04 0.61 n 0.01
1.6e+04
3 33:01 1.6e+05 1.86 n 0.05
1.6e+05
4 33:29 8.1e+03 0.63 n 0.00
. . 8.1e+03
5 33:33 l.le+04 1.30 n 0.00
l.le+04
9.1e+04 4.0e+04 2.1e+01 y n
6.8e+04 2.7e+04 5.56+00 y n
1
5.9e+03 3.1e+03 1.6e+00 n n
9.7e+03 3.6e+03 7.26-01 n n
5
l.Oe+05 5.0e+04 2.6e+01 y n
5.5e+04 2.3e+04 4.6e+00 y n
D
3.1e+03 1.6e+03 8.46-01 n n
5.0e+03 2.0e+03 4.0e-01 n n
3
6.36+03 2.6e+03 1.3e+00 n n
4.9e+03 3.0e+03 6-Oe-Ol n n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:4
Run: 9 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.08
Cone: 0.08
Tox #1: -
Name
1,2,3,7,8-PeCDD
of which 0.04
of which 0.04
Tox #2: -
named and 0.04
named and 0.04
Tox #3: -
RT Respnse
RA
32:34 3.1e+04 2.55 n
3.1e+04
33:01 7.0e+04 3.11 n
7.0e+04
33:05 1.26+04
1.26+04
1.82 n
4 33:13 1.3e+05 1.64 y
1.3e+05
Cone
0.01
2
£
0.02
C
1
0.00
1
4
0.04
unnamed
unnamed
Area Height
S/N Mod?
2.36+04 9.5e+03 2.le+00 n n
8.96+03 3.86+03 2.76+00 n n
2
5.3e+04 2.3e+04 5.le+00 y n
1.76+04 5.2e+03 3.7e+00 y n
3
7.9e+03 5.2e+03 1.le+00 n n
4.36+03 1.36+03 9.6e-01 n n
8.2e+04 2.9e+04 6.5e+00 y n
S.Oe+04 1.8e+04 1.3e+01 y n
037
-------
OPUSquan 28-SEP-1998
Page 3
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:17
Run: 9 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.20
Cone: 0.20
Tox #1: -
of which 0.15
of which 0.15
Tox #2: -
named and 0.05
named and 0 05
Tox #3: -
Name
RT Respnse
RA
1,2,3,4,7,8-HxCDF 1
34:48 l.le+05 0.84 n
l.le+05
1,2,3,6,7,8-HxCDF 2 34:52 1.3e+05 0.97 n
1.3e+05
3 35:00 l.le+04 0.63 n
l.le+04
4 35:03 1.3e+04 1.65 n
1.3e+04
5 35:07 l.le+04 0.92 n
l.le+04
2,3,4,6,7,8-HxCDF 6
35:14 l.Oe+05 2.28 n
l.Oe+05
35:23 2.06+04 4.59 n
2.0e+04
35:25 1.9e+04 4.15 n
1.96+04
35:33 l.le+04 1.91 n
l.le+04
10 35:35 2.le+04
2.1e+04
3.35 n
1,2,3,7,8,9-HxCDF 11 35:45 1.3e+05 1.64 n
1.3e+05
12 35:53 2.0e+04 1.35 y
2.0e+04
13 36:00 1.56+04 0.55 n
l.Se+04
14 36:04 1.3e+04 2.63 n
1.36+04
15 36:06 9.2e+03 1.69 n
9.2e+03
16 36:10 9.26+03 1.24 y
9.26+03
17 36:16 1.26+04 0.64 n
1.2e+04
Cone
0.04
t
(.
0.03
e
<
o.oo
4
u. uO
£
C
0.00
C
C
0.03
0.01
1
3
0.01
unnamed
unnamed
Area Height
S/N Mod?
5.le+04 2.7e+04 5.9e+00 y n
6.le+04 2.3e+04 6.6e+OQ y n
3
6.5e+04 2.3e+04 5.1e+00 y n
6.7e+04 2.2e+04 6.26+00 y n
,7»+03 2.26+03 4.8e-01n n
.: Ui 2.86+03 7.86-01 n n
8.36+03 5.76+03 1.36+00 n n
S.le+03 3.8e+03 l.le+00 n n
5.56+03 3.2e+03 7.1e-01 n n
5.9e+03 3.16+03 8.66-01 n n
3
7.26+04 2.16+04 4.76+00 y n
3.2e+04 1.46+04 3.8e+00 y n
I
1.76+04 1 ,Je+P4 .2 . 6e+00 n n
3.6e+03 j..
0.01
1.5,6+04 5.9e+03 1.3e+00 n n
3.,$e+t3 1.3e+03 3.6e-01 n n
3
7.0e+03 3.86+03 8.36-01 n n
3.7e+03 1.56+03 4.2e-01 n n
I
1.6e+04 7.7e+03 1.7e+00 n n
4.8e+03 1.5e+03 4.3e-01 n n
0.01
r jo
?.8e+04 2.46+04 5.4e+00 y n
4.7e+04 1.46+04 4.1e+00 y li
L
1.2e+04 4.2e+03 9.2e-01 n n
8.76+03 6.86+03 1.9e+00 n n
D
5.36+03 3.86+03 8.46-Ol^n n
9.6e+03 2.9e+03 8.3e-0l'n n
0.00
C 00
9.26+03 6.26+03 1.4e+00 n n
3.5e+03 2.2e+03 6.3a-01 n n
3
5.8e+03 2.9e ., ,
3.46+03 1.7e+03 4.'/e-Ul n n
0 00
0.00
5.1e+03 2.16+03 4.6e-01 n n
4.3,e+03 2.16+03 6.0e-01 n n
D
4.86+03 2.7e+03 6.0e-01 n n
7.66+03 2.8e+03 7.9e-01 n n
038
-------
OPUSquan 28-SEP-1998
Page 4
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:16
Run: 9 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.28
Cone: 0.28
Tox #1: -
Name
of which 0.15
of which 0.15
v " ' Tox tt2: -
# RT Respnse
1 34:47 6.8e+04
6.86+04
named and 0.13
named and 0.13
Tox #3: -
RA
3.96 n
34:52 7.6e+04 3.03 n
7.66+04
34:56 3.6e+04
3.6e+04
1.35 y
4 35:08 l.Oe+04 1.05 n
l.Oe+04
5 35:11 8.1e+03 0.51 n
S.le+03
6 35:14 1.3e+04 1.04 n
1.3e+04
1,2,3,4,7,8-HxCDD 7
35:19 9.66+04 1.01 n
9.6e+04
1,2,3,6,7,8-HxCDD 8 35:24 1.3e+05 1.06 y
1. Set-OS
1,2,3,7,8,9-HxCDD 9
35:36 1.2et-05 0.97 n
1.26+05
10 35:42 2.3e+04 0.41 n
2.3e+04
11 35:49 l.Se+04
1.8e+04
0.63 n
12 35:56 1.6e+04 0.59 n
1.66+04
13 36:01 9.0et-03 1.41 y
9.06+03
14 36:05 7.8e+03 0.40 n
7.8et-03
15 36:13 9.26+03. 0.50 n
9.2e+03
16 36:21 8.4ei-03 1.38 y
8.4et-03
Cone
0.03
E
]
0.03
C
3
0.01
]
0.00
C
c
0.00
2
C
0.01
6
e
0.05
4
4
0.05
«
e
0.05
C
6
0.01
6
]
0.01
:
o.oi
5
9
0.00
c
3
0.00
2
c
0.00
3
e
o.oo
unnamed
unnamed
Area Height
S/N Mod?
5.5e+04 2.2e+04 7.86+00 y n
1.4e+04 7.8e+03 1.9e+00 n n
5.7e+04 1.9e+04 6.8e+00 y n
1.9e+04 7.1e+03 1.8e+00 n n
2.0e+04 5.9e+03 2.16+00 n n
1.5e+04 6.6e+03 1.6e+00 n n
5.3e+03 2.4e+03 8.7e-01 n n
5.1e+03 2.6e+03 6.6e-01 n n
3
2.7e+03 1.2e+03 4.2e-01 n n
5.46+03 2.4e+03 5.9e-01 n n
L
6.4e+03 2.4e+03 8.5e-01 n n
6.26+03 2.56+03 6.3e-01 n n
.8e+04 1.6e+04 5.8e+00 y n
4.8e+04 2.06+04 4.96+00 y n
.9e+04 2.2e+04 7.8e+00 y n
6.5e+04 2.4e+04 6.0e+00 y n
5
5.9e+04 2.6e+04 9.3e+00 y n
6.16+04 2.06+04 S.le+00 y n
1
6.7e+03 4.1e+03 l.Se+00 n n
1.66+04 5.3e+03 1.36+00 n n
7.0e+03 3.66+03 1.3e+00 n n
.le+04 5.36+03 1.36+00 n n
5.8e+03 2.9e+03 l.Oe+00 n n
9.9e+03 3.8e+03 9.4e-01 n n
3
5.2e+03 2.4e+03 8.5e-01 n n
3.7e+03 3.0e+03 7.4e-01 n n
3
2.2e+03 1.4e+03 4.9e-01 n n
5.6e+03 2.2e+03 5.5e-01 n n
3
3.1e+03 1.8e+03 6.6e-01 n n
6.1e+03 2.7e+03 6.7e-01 n n
3
4.9e+03 1.46+03 4.96-01 n n
3.5e+03 2.3e+03 5.8e-01 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:8
Run: 9 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
039
-------
OPUSo^ian 28-SEP-1998
Page 5
Amount: 0.28 of which 0.16 named and
Cone: 0.28 of which 0.16 named and
Tox #1: - Tox #2: - Tox
Name # RT Respnse RA
1,2,3,4,6,7,8-HpCDFl 36:59 1
1
2 37:13 2
2
3 37:20 1
1
.
4 37:26 1
1
5 37:43 1
1
6 37:55 1
1
l,2,3,4,7,8,9-HpCDF7 38:11 8
8
8 38:13 7
7
.2e+05 1.78 n
.2e+05
.6e+04 1.02 y
. 6e+04
.7e+04 1.50 n
.7e+04
.4e+04 1.76 n
.4e+04
.7e+04 1.62 n
.7e+04
.le+04 1.16 y
.le+04
.4e+04 0.74 n
.4e+04
.Oe+04 0.45 n
.Oe+04
0.12
0.12
#3: -
Cone
0.08
7
4
0.02
1
1
0.01
1
6
0.01
8
5
0.01
1
6
0, n"
o
5
0.08
3
4
0.05
2
4
unnamed
unnamed
Area Height
. 9e+04
.4e+04
.3e+04
.3e+04
.Oe+04
.8e+03
.7e+03
.Oe+03
.le+04
.5e+03
.J.e+03
.2e+03
.5e+04
.8e+04
.le+04
.8e+04
2
1
4
3
4
2
3
2
3
2
2
2
1
1
8
1
. 5e+04
.8e+04
.Se-' o_
.2e+03
.7e+03
-3e+03
.6e+03
, 5e+03
.7e+03
,3e+03
,6e+03
.Oe+03
.5e+04
.5e+04
.5e+03
.5e+04
5
5
J
9
1
6
8
6
8
6
5
5
3
4
1
4
S/N Mod?
. 6e+00 y
.Oe+00 y
. -i-v/i n
.Oe-01 n
.Oe+00 n
. 5e-01 n
-5
.Oe-01 n
. 9e-01 n
.2e-01 n
.5e-01 n
.8e-01 n
.7e-01 n
.4e+00 y
.le+00 y
.9e+00 n
.le+00 y
n
n
< ^£ " -' j- • •.". '
n
n
n
n
•n
n
n
n
n
n
n
n
n
* -. :"V-
V; '
.*-
•
040
-------
OPUSquan 28-SEP-1998 Page 6
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:3
Run: 9 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: n\8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.09 of which 0.05 named and 0.03 unnamed
Cone: 0.09 of which 0.05 named and 0.03 unnamed
Tox #1: - Tox f2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1,2,3,4,6,7,8-HpCDDl 37:48 8.4e+04 0.84 n 0.05
8.4e+04 3.8e+04 1.3e+04 4.2e+00 y n
4.5e+04 1.4e+04 6.4e+00 y n
2 38:11 4.26+04 4.07 n 0.03
4.2e+04 3.3e+04 8.8e+03 2.9e+00 n n
8.2e-i-03 3.1e+03 l.Se+OO n n
3 38:24 1.36+04 1.31 n 0.01
1.3e+04 7.6e+03 4.0e+03 1.3e+00 n n
5.8e+03 2.5e+03 1.2e+00 n n
041
-------
'ile:A26SEP98M #1-488 Acq:27-SEP-1998
;ample#ll Text:lmb091698m23 xl/.
19.8965 S:ll BSUB(128, 15, -3 . 0)
.001
50 j
o-
24:41 25:12
K/Ah^JL AA»AA „ 25:t)3\ AjvJl25:4
" V *^'*^'V\/wvVW>V' ^JVr \ry^
25100
321.8936 S:ll BSUB(128, 15, -3 .0)
lOOi
50 j
OJ
L
PKD(3,
TO! 40: 41 GC'EI* Voltage SIR Autospec-OTtimaE 1
Exp:EXP M23 DBS OVATION
3, 2, 0.10%, 3704. 0,1. 00%, F,F)
28ji23 29:25
/\ k
26:05 ofi.rw M ft on ,,
316:12 26:37 27:06l27:28l i I J "I 28:44 29:20,29:43 Ift39:.17 1
~n A A r\ JL^AA fc/\/uK^\ A ^» A i ^v/Vr\ IL^ A ft. /\ Ji»»/W^ IV AM Ar /n A /\J\28 : 55. i> . A/\\AAA A Ai ff • -^n AM 1 Ai * A/
yy-nj A.
2eloo
PKD(3,
^24:21^_2jhj>9^^_2j^^
2s!oo
331.9368 S:ll BSUB{128, 15, -3. 0)
1001
50J
oj
25 loo'
333.9339 S:ll BSUB(128, 15, -3 .0)
100%
-
50J
•
Oj
'
' . T ^sloflF
327.8847 S:U BSUBJ128, 15, - 0)
100%
50 j
oj
25:00'
316.9824 S:1J SMO(1,3) PKD(3,3,3
100* ?.&••>.* . 25-23 2«5
50j
-
OJ
s
,1 •
25100
26:00
PKD(3,
26 : 00
PKD(3,
26 loo'
PKD(3,
•
26 loo'
n vii' v'-v'^v' i Avii_y>/ wx^/ wv"i vovu^ v/w" >-v^H/ '^ ^uayw/ v
-------
File:A26SEP98M
Sample* 11 Text:
355.8546 S:ll F
1004
.
so:
•
.
o:
3XL:10
X^-v/V/^-x,
31:00 3lSl2
357.8517 S:ll F
100%
so:
•
0_
31:05
'v/V/\_x~'~'V/s
31:00 31:12
367.8949 S:ll F
100S
so:
0"
3l!6o 3l!l2
369.8919 S:ll F
100%
so:
o:
31:00 3l!l2
366.9792 S:ll F
1004
50_
0"
3
-------
File:A26SEP98M #1-190 Acq:27-gEP-199« 00:40:41 GC EH- Voltage SIR Autospec-UltimaE
Sample#ll Text:lmb091698m23 xl/1 Exp:EXP_M23_DB5_OVATION
389.8156 S:ll F:3 BSUB{128, 15, -3 . 0) PKD(3, 5, 2, 0 . 10%, 2796 . 0, 1 . 00%,F,F)
35:36
35:24
so:
35:!
35:36
34:00 34:12 34:?' 34:36 34:48 35:00 35:12; 35:24 35:36 35:48 36:00
403.8530 S:ll Fi3 BSUB(128. ,-3.0) PKD(3,5,2,0.10%,8728.0,1.00? F,F)
100%. "••'' 35J>22
' ,,. „ -' :19\ 35:36
so:
•f-
380.9760 S:ll F:3 SMO(1,3) PKD(3,3,3.100.00%,0.0,1.00%,F,F)
100*, 33:59 \4iQ9 34:20 34jO2___- 3_li5Jl _____3_5x2IL
so:
3_5_L38
7E4
4E4
T' t ' I " I—|™T""1—I ' ! r I I I ~l "t1 I 1—I—I—r—I—I—I—I—I—i—i—I—i—i T—T i - i i~~ i~~ i r -T i- i-- i --1 -r r- i i T r i i - i i j- i —T -|- i T i i i i 1 r r~T—i—i—1~
34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 36:24
391.8127 S:ll F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,4020.0,1.00%,F,F)
100%, 35:23 ^2
35:19/1 35:36
50.
.0
34lOO 34!l2 34^24 34136 34148 35iOO 35ll2 35i24 35i36 35i48 36iOO 36ll2 36124
401.8559 S:ll F:3 BSUB(128,15,-3.0) PKD(3,5,2,C.10%,7292.0,1.00%, F,F)
100% 35; 2V.
5E4
,OEO
Time
_4.7E7
(;
r
36 24
3.
Time
8E7
O.OEO
34iOO 34^12'""'""'34I2471 " "'jTlj'e' "'341481 '"asToV " '35:12 ' 35:24' ' VslsV ' VsUV ' VeloV 36:12' ' '36i24 Time
L1.7E8
~T—i—i—t—1- "i—r—\—i—i—r—i—i—i—i—r—T—i—i—i—i—i—i—i—<—i—i—i—i—i—T—i—i—i -*r*"t—r—i—i—i—r- i~-r~"T"~p"i—r—r—i—i—i—i—i—i—i—i—i—i—i—r—i—i—i—i—i—r" T T
34:12 .34:24 34:36 34:48 35:00 35:12,., 35:24 35:36 35:48 36:00 36:12 36:24 Time
-------
File:A26SEP98M #1-193 Acq:27-SEP-1998 00:40:41 GC EH- Voltage SIR Autospec-UltimaE
Sample#ll Text:ImbO91698m23 xl/1 Exp:EXP_M23_DB5_OVATION
423.7767 S.-ll F:4 BSUB(128,15,-3 . 0) PKD(3 , 5, 3 , 0 .10%, 3012 . 0,1. 00%, F, F)
100% 36;59 37^48
38:11
I Jl M
50.
38:44
38:56
r....
36.36 36:48 37:00 37:12 37.;24 37:36 37:48 38:00
425.7737 S:ll F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2136.0,1.00%,F,F)
100% 37;49
50.
38:12 38:24
36136 36)48 37)00 37il2 37:24 37:36
435.8169 S:ll F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,20488.0,1.00%,F,F)
100% 37;48
so:
0.
1.5E4
L7.5E3
.O.OEO
38:24 38:36 38:48
37)48 38:00 38:12
'38:36' 'is!48 39!00 Time
_1.5E4
_7.7E3
O.OEO
39i 00 Time
..1.9E7
_9.5E6
. O.QEQ
' 38:36' '38:48 39:00 Time
T
T
r—T .,—. i i i i i i i i i f i |--i -T" r"T T*n—T" i"" i i 'T IT i i i1 i—r i- i i
36)36 36:48 37:00 37:12 37:24 37:36 37)48 38)00
437.8140 S:ll F:4 BSUB{128,15,-3.0) PKD(3,5,3,0.10%,7908.0,1.00%,F,F)
100% 37;48
50_
38:12 38:24
_1.8E7
_8.9E6
O.OEO
-T—i—i—i—i—i—i—r—i—i—i—i—i—i—i—i—i—i—i—i—i f~T l i i i l—i—i—i—i—i—r~i—>—i—TT—l—i—i—i~i—i—i i i i i i i i i I I i | i i i i • | | i i i r—i [•
36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
430.9728 Stll F:4 SMO(1,3) PKD(3 , 3, 3 , 100 .00%, 0 .0, 1 .00%,F,F)
100% _ 3_6_i42___3_6_i52 _ 37; Id _ 17- TS 37:45
50J
38; 12
; 36
lR:4fi
.2.2E8
..1.1E8
Q-| ..,,,,.,,..,..... , LQ • OEO
'!'36:3'6' ' '36UV ' '37!o'o' ' '37:12' ' '37:24* ' '37:36' ' '37 Us' ' 's'aloo' ' VsllV ' '38124' ' 's'sls'e' ' VsUV '39:00 Time
O
^
01
-------
i'ile:A26Sfit'98M #1-276 Acq:27-SEP-1998 00:40:41 GC EI+ Voltage SIR Autospec-UltimaE
5ample#ll Text:lmb091698m23 xl/1 Exp:EXP_M23_DB5_OVATION
157.7377 S:ll F:5 BSUB(128,15,-3 . 0) PKD(3,5,3,0.10%,10932.0,1.00%,F,F)
LOOi 40;44
so:
39:32
41:25 41:36 41:49 42:02
39:12 39:24 39:36 ' 39.-48 ' 401166 4oli2 40:24 40lie 4ol48 4111
459.7348 S:ll F:5 BSUB(128,15,-3 . 0) PKD(3,5,3,0.10%,2056.0,1.00%,F,F)
100%. 40; 45
50J
.1.1E4
4ll24 ' 4ll36 ' 4ll48 ' 42166 ' 42ll2 Time
..2.1E4
0
39:07 39»19
_^V^\
41--10 41:28
/W^y-i.
.41:45
_1.0E4
O.OEO
39!i2 ' 39124 ' 39136 ' 39U8 ' 4o!66 ' 4o!i2
!24 ' 4o!36 ' 40-!48 ' 4l!66 ' 4l2 4124 4l36 4l48 42 42:12 Time
469.7780 S:ll F:5 BSUB(128, 15, -3 .0) PKD{3 , 5,3 , 0 .10%, 3200.0, 1 .00%,F,F)
100&
50J
0.
40:44
1.4E7
L7.2E6
i i i i | i i i i i i i i i i i i i i i i ' i i i i i ' i i ' i ' i | i ' ' i ' | i i i i i |
39ll2 39s24 39136 3^148 40:00 40:12 40:24 40:36
,,, | , ,.-°"OEO
41:24 41:36 41:48 42:00 42:12 Time
471.7750 S:ll F:5 BSUBU28,! ,-3.0) PKD(3, 5,3,0.10%, 3272.0,1.00% R-,F)
100% » ••*•• •> . 40; 44
so:
..1.6E7
L8.0E6
.O.OEO
' ' 39ll2" 39!24 '39136" 39148 ' 40:06'40:12 ' 4ol24" 4ol36 40:' 3* 41:00 ' 4ill2 ' 4il24 ' 41136" 41148 *2l66 ' 42J12 Time
454.9728 S:ll F:5 SMO(1,3) PKb(3,3,3.100.00%,0.0,1.00%,F,F)
100% _?Q-Jt 39 = 26 .19!.T7 39.iA7 40.-07 4Q-1R ^-^ 40^50 43:10 41^14 4JUA9_-.42_dU ^2.4E8
so:
11.2E8
.O.OEO
A39li2 ' 39124 ' 39136 ' 39148 ' 4oloO ' 4o!l2 ' 4ol24 4ol36 40l48 4lloO 4l!l2 41J24 41:36 41=48 42:00 42:12 Time
-------
|File:A26SfiP98M #1-488 Acq:27-gEP-1998 00:40:41 GC EI+ Voltage SIR Autospec-UltimaE
Sample#ll Text:Imb091698m23 xl/1 Exp:EXP_M23_DB5_OVATION
303.9016 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%,3380.0,1.00%,F,F)
100% 28;26
29:27
29:49 30:18
"" 1 r
29:00
"1 1 1 1 T"
30:00
1.2E4
L5.8E3
lO.OEO
Time
~r
1 1 r-
T
T
25:00 26100 27iOO 28iOO
305.8987 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%,6128.0,1.00%,F,F)
1003
25:00 26:00 27iOO 28:00
315.9419 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%, 8036.0,1.00%,F,F)
100% : 28:23
50J
29:00
30:00
_O.OEO
Time
3.0E7
_1.5E7
.O.OEO
Time
3.7E7
_1.9E7
25:00 26:00 27:00 28:00
317.9389 S:ll BSUB(128,15,-3 .0) PKD(3,3,2,0.10%,11992.0,1.00%,F,F)
lOOi 28;23
29:00
30:00
Oj
—I—' '
29:00
29:08
.O.OEO
Time
~T
-i 1 i i 1 r
27:00
25100 26100 21-00 28:00
375.8364 S:ll BSUB(128,15,-3.0) PKD{3,3,3,100.00%,212.0,1.00%,F,F)
100%
50_
30:00
25:00 26:00 27:00
316.9824 S:ll SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
28:00
. ?. 9:0 2 28:2.8
29:00
.O.OEO
Time
^1.1E8
50J
OJ
5.5E7
1.0. OEO
Time
r i 1 1 1 1 1 1 1 1 1 1 1 1 r
25:00 26:00 27:00
28:00
30
-------
:File:A26gEP98M #1-216 Acq:27-SEP-1998 00:40:41 GC EI+ Voltage SIR Autospec-UltimaE
Sample#ll Text:lmb091698m23 xl/1 Exp:EXP_M23_DB5_OVATION
339.8597 S:ll F:2 BSUB(128,15,-3 . 0) PKD(3,3,2,0.10%,1904.0,1.00%,P,F)
100* 32;35 33.-01
50J
31:10
32:04
32:24
32:45
5.1E4
_2.6E4
.O.OEO
33!24 ' 33!36' ' 33:48 Time
3l!6o' ' 3l!i:2 3TJ2431J36 Hjl:48 ^2! 00 32ll2 32:24 32:36 32:48 33100
341.8568 S:ll F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,5020.0,1.00%,F,F)
100% 32;35
50
33:12
33:24 33:36 33:48 Time
31:00 31:12 31:24 31136 31:48 32:00 32:12 32:24 32:36 32:48 33:00
351.9000 S:ll F:2 BSUB(128, 15, -3 . 0} PKD(3, 3,2, 0. 10%, 1940 .0, 1 .00%,F,F)
100%,
50^
o
33:01
32:34
T:
3l!oo' ' Si! 12' ' 31:24' ' '31:36 ' 31 Us' ' 32?00 32:12 32:2^ 32:36 32:48 33:00
353.8970 S:ll F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,2296.0,1 00%,F,F)
100% 33,-01
50_
0
i i i r-
33:12
1.1E8
15.6E7
LO.OEO
33:24 33:36 33i4t Time
" ' i i i i i i i i i i i i i i i i i i i i i i i !• i r i i I I i i i I I i i I t i I i i i i i' i i i i i i i i r i i i
31:00 31:12 31:24 31 '6 31:48 32:00 32:12 '32:24 3:36 32:48 33:00
409.7974 S:ll f:2 BSUB(128, .,-3.0) PKD(3,3,3,100.00%,2608.0,1.C %,F,F)
lOOi £ . .. 31:46 . 32;28; ;36 .
» ,• f 311421 .-• « ii A
50J
. i i i r i i i i i i I I i i i i I i i i i i I ' i • i i i I i ' i i T I i I I i r i ..... i "1 I I i i
31:00 31:12 31:24 31:36 31:43 32:00 32:12 32:24 32:36 32:48 33:00
33:12
sLO.OEO
33i24 .-3136 33:48 Time
366.9792 S:ll F:2 SMO(1,3) PKD(3 , 3 , 3 , 100.00%, 0 . 0 , 1 . 00%, F, F)
1004 __ T1..33 ll-.A* _ 32:05 1?'?1
50J
OJ
32. -50
33±34
i—1—i—i—I—i—I I I—I—I—I—I—r—l—I—[ I I I I—I—I—I—I—I—I—I—I—I—I—I—r—i—ji i—I—l—l—I—i—i—I—I f"f * i—I—I I i | I i i l I | i i
31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00
'33!l2' ' '33:24'
.1.2E8
^6.OE7
O.OEO
!36' ' 33 s Time
-------
File:A26SfiP9«M #1-190 Acq:27-$EP-1998 00:40:41 6C EH- Voltage SIR Autospec-UitimaE
Sample#ll Text:lmb091698m23 xl/1 Exp:EXP_M23_DB5_OVATION
373.8207 S:ll F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,4524.0,1.00%,F,F)
1004 34;48
35:14
35:23
50J
34:00 34512 34^4 34136 34!48 3s!oO
375.8178 S:ll F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%, 3548.0,1.00%, F,F)
100$ 34:48
50J
35136' ' '35:48
O.OEO
36:00 36:12 36:24 Time
2. 4E4
_1.2E4
r—i—i—I—i—r—i—i—i—i—i—i—i—i—i—r—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—ir-i—i—i—i—i—i—i—i—i—i—i
34:00 34:12 34:24 34:36 34:48 35:00 ,35:12 .35:24 35:36 35:48
383.8639 S:ll F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,81692.0,1.00%,F,F)v
100$ 34:47 '" ' ,.
34 :52 ^ i.
36:12 36:24 Time
34:00 34:12 34:24 34:36
36:24 Time
34:48
385.8610 S:ll F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,168620.1.00%,F,
100$ 34:47
4:51
35oO 3512 35:24 35:36
34:00 34: 12' ' '34: 24' ' '34: 36' 34:48 3soO
35:24 35:36 35:48
35:12
445.7555 S:ll F:3 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,756.0,1.00%,F,F)
100$ 35:22
35:1
34'35 34:46
34:00 34:12 34:24 34:36 34:48
35:00
380.9760 S:ll F:3 SMO{1,3) PKD{3,3,3,100.00%, 0.0,1.00%,F,F)
100% 3.1.59 34 -00 ?4-20 34:39 .14;.S3
O
35:24
3-S --Iti
35l36 3ST48
36:00
.O.OEO
'36:12 36:24 Time
36:20.
.3. 5E8
_1.7E8
O.OEO
-A.'"1 '—I—I—'—>—I—I—'—|—i—'—>—'—'—|—i—I—>—i—l—l—i—I—i—I—I—r—i—I—I—!—i—I—I—i—I—I—l—I—i—I—i—l—i—I—I—!—I—i—i—i—I—i—i—r—i—1—i—i—i—i—i—1—i—i—i—i—,—I—i—i—i—i—i—r1-" • UJiu
? 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 36:24 Time
O
^
CO
-------
File:A268:48 39:00 Time
38:49
36:36 36:48 37fOO 37^12 37:24 37 : ~>' f.' ' ' 37 148 ^ ^8 [flV " "3 8112
430.9728 S:ll F:4 SMO(1,3) PKD(3,3,3 100.00%,D 0,1.00%,F.F)
38:24
38:36
o
38:48 39:00 Time
lfl?4fi .'^\'2, 2E8
]
36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
1 ' | i '
38:24
L1.1E8
.O.OEO
1 •' | ' ' '' ' '" | '' i ' ' '"'I
38:36 38:48 39:00 Time
-------
File:A26SEP98M #1-27S Acq:27-gEP-1998 00:40:41 GC EI+ Voltage SIR Autospec-UJ-timaE
Sampleftll Text:lmb091698m23 xl/1 Exp:EXP_M23_DB5_OVATION
441.7427 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2248.0,1.00%,F,F)
100% 40;53
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ' I I I I I I I I I I ' I III I • I I • I I • I • • • I
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48
443.7398 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,4008.0,1.00%,F,F)
100% 40;54
.O.OEO
42:00 42:12 Time
_1.4E4
OJ
i l l i I i l i i l I I I l I l I I I I I I i I l l I l I l l i i r i i i i i i i i i i i i I ..... i i i i i 'i [ i i i i i I
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48
I ' ' ' ' • I
42:00 42:12
469.7780 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,3200.0,1.00%,F,F)
100% 40;44
50J
Time
1.4E7
L7.2E6
LO.OEO
l I I l i l l I l l i l I l l l i I I I I I i I l l l l l I l l l i l l i l l ' l I l i l l l I l~1 l i I l l l l l i [ i I M I | I I I I I | I I I I l | I l I i • | i •
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48
471.7750 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,3272.0 ,1.00%,F,F)
100% 40;44
50_
0.
42! 66 ' 42! 12 Time
1.6E7
L8.0E6
O.OEO
39:12 ' 39:24 ' 39I36 ' 39U8 ' 4o!6d ' 4()!i2 ' 4b!24 ' 4o!36 ' 4o!48 41-166 4i!l2 4l!24 4l!36 4ll48
513.6775 S:ll F:5 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,472.0,1.00%,F,F)
100% 39;15 40^45
50J
0
i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i
39:12 39:24 39:36 39:48 40:00
454.9728 S:ll F:5 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% iq-l'i 39:36 3q.l73q;47 /tn-07 /IQ^ia 40;1R 40:50
4:48 ' 4l!oO 4l!l2 41:24 4li36 4li48
\r
OJ
.13
41
41
42iOO 42:12 Time
2.4E8
4J!66
4JJ24
_1.2E8
O.OEO
39I24
39'48 ' 4o!66
4()!36
41:48 42:00 42:12 Time
tn
-------
Paradigm Analytical Labs
Method 23
M23-O-3
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
(nB)
0.0102
0.0038
0.0021
0.0030
0.0031
EMPC
EMPC
0.309
0.101
0.0602
0.0207
0.0119
0.0068
ND
0.0105
ND
ND
0.151
0.0448
0.0148
ND
5.68
0.940
0.0784
0.0104
0.0830
0.0831
DL
lag)
0.0015
0.0008
0.0020
0.0015
0.0016
0.0017
0.0062
0.0034
0.0016
j.0015
0.0015
0.0011
0.0014
0.0016
0.0027
0.0034
0.0056
0.0015 ^
0.0008
,v, 0,001 5
0.0017
0.0034
0.0015
0.0011
0.0027
EMPC
ttg)
0.0075
0.0319
.?*•-
0.0600
0.0488
0.0160
5.96
0.0904
0.0831
0.0832
RT
(nun.)
29:27
"•"
j;>:i*
35:23
35:36
37:49
40:44
28:26
32:35
33:01
34:47
34:52
35:14
35:45
37:00
38:11
40:53
*
Ratio
0.82
1.52 ,,
1.26
1.25
1.37
0.87
1.14
0.79
1.55
1.58
1.25
1.17
1.09
2.55
0.96
0.73.
0.9
-
*.
_._
?< •
»'
Qualifier
i
j
*
ITEF
ITEF- -
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-O-3
LI 114
1114-1
31-Aug-98
08-Sep-98
16-Sep-98
Sample Information
Moisture / Lipids:
Filename:
v..- Airf-
1
0.0 | %
a26sep98m-13
-. f"
Begin ConCal:
EndConCal:
Initial Cal:
a26sep98m-5
a26sep98m-21
a26sep98m-21
05
1/2
-------
Paradigm Analytical Labs
Method 23
M23-O-3
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13Cl2-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
l3CI2-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13Cl2-l,2,3,6,7,8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37a4-2,3,7,8-TCDD
13Ci2-2,3,4,7,8-PeCDF
l3C,rl,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
Injection Standards
13C,2-1,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
(«g)
4
4
4
4
8
4
4
4
4
4
4
4
4
'4
Measured
Amount
(ng)
3.50
4.24
3.95
3.09
5.13
3.36
3.34
3.15
2.54
4.06
4.15
3.23
4.73
3.42
Percent
Recovery
(%)
87.5
105.9
98.8
77.3
64.2
83.9
83.6
78.6
63.5
101.5
103.8
80.7
118.3
85.4
RT
(min.)
29:26
33:13
35:22
37:48
40:44
28:24
32:34
34:47
36:59
29:27
33:01
35:18
34:51
38:10
29:09
35:35
Ratio
0.8
1.59
1.27
1.08
0.9
0.8
1.59
0.53
0.44
1.59
1.25
0.53
0.43
0.81
1.28
Qualifier
Client Tn formation
Project Name:
Sample ID:
Laboratory Information
Project ED:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-O-3
LI 114
1114-1
31-Aug-98
Q8-Sep-98
16-Sep-98
27-Sep-98
Sample Information
Matrix:
Wei^tf/ Volume:
Moisture / Lipids:
, Filename:
Retchk:
Begin ConCal:
End ConCal:
Initial Cal:
Air
1
0.0
a26sep98m-l?
a26sep98m-l
a26sep98m-5
a26sep98m-21
a26sep98m-21
Reviewed by: V-T-
Date Reviewed:
053
2/2
-------
o
C/T
OPUSquan 30-SEP-1998 Page 1
Filename a26sep98m 1-1 'JS
Sample 13 /-. £ *^'
Acquired 27-SEP-98 02:17:51 \-*'
Processed 28-SEP-98 12:05:57
Sample ID 1114-1 xl/1
Cal Table m8290-092698m
Results Table M8290-092698M-BE
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
SS
Name; Resp; Ion 1; Ion 2; RA;?; RT;
2,3,7,8-TCDD; 8.39e+05; 3.10e+05; 5.29e+05; 0.58;n; 29:27;
1,2,3,7,8-PeCDD; 2.46e+05; 1.48e+05; 9.78e+04; 1.52;y; 33:14;
1,2,3,4,7,8-HxCDD; 9.57e+04; 5.33e+04; 4.24e+04; 1.26,-y; 35:19;
1,2,3,6,7,8-HxCDD; 1.82e+05; l.Ole+05; 8.116+04; 1.25;y; 35:23;
1,2,3,7,8,9-HxCDD; 1.79e+05; 1.03e+05; 7.546+04; 1.37,-y; 35:36;
1,2,3,4,6,7,8-HpCDD; 2.446+05; 1.14e+05; 1.31e+05; 0.87;n; 37:49;
OCDD; 5.90e+05; 3.14e+05; 2.76e+05; 1.14;n; 40:44;
2,3,7,8-TCDF; 7.02e+07; 3.09e+07; 3.93e+07; 0.79;y; 28:26;
1,2,3,7,8-PeCDF; 7.406+06; 4.50e+06; 2.90e+06; 1.55;y; 32:35;
2,3,4,7,8-PeCDF; 4.88e+06; 2.99e+06; 1.896+06; 1.58;y; 33:01;
1,2,3,4,7,8-HxCDF; 1.196+06; 6.59e+05; 5.27e+05; 1.25;y; 34:47;
1,2,3,6,7,8-HxCDF; 9.44e+05; 5.09e+05; 4.35e+05; 1.17;y; 34:52;
2,3,4,6,7,8-HxCDF; 4.44e+05; 2.32e>05; 2.126+05; 1.09;y; 35:14;
1,2,3,7,8,9-HxCDF; 9.32e+04; 6.69e+04; 2.62e+04 "i.55;n; 35:45;
1,2,3,4,6,7,8-HpCDF; 4.41e+05; 2.16e+05; 2.25e+05--; D.96;y; 37:00;
1,2,3,4,7,8,9-HpCDF; 8.29e+04; 3.49e+04; 4.79e+04-; 0.73;n; 38:11;
OCDF; 9.16e+04; 4.35e+04; 4.81e+04' 0.90;y; 40:53;
13C-2,3,7,,8-TCDD; 2.346+08; 1.04e+08; 1.306+08; 0.80;y; 29:26;
13C-l,2,3,7,8-PeCDD; 1.93e+08; 1.186+08; 7.45e+07; 1.59,;$,' 33:13;
13C-l,2,3,6,7,'8-HxCDD; 2.55e+08; 1.42e+08; 1.12e+08; 1 .'27V ; 35:22;
13C-1,2,3,4,6,7 '-HpCDD; 1.33e+08; 6.90e-»07; 6.41e+07; 1 ,08'; ; 37U8;
•7-OCDD; 1.376+08; 6.51e+07; 7.20e+07; 0.90. ; 40:'44;
'- "" • ' '• .'' ; '' '
13C-2.3, 1-TCDF; 3.376+08; 1.50e+08; 1.87e+08; '0..80 ; 28:2,4;
13C-1,2,3," -PeCDF; 3.0.3e+08; 1.86e+08; 1., 1,7,6+08; 1.59 ; 32:34;
13C-1,2,3,6,7 ' -HxCDF; 1.84e+08; 6.366+07; 1.20e+08; 0.53 ; 34:47;
13C-1,2,3,4,6,7 r-HpCDF; 1.22e+08; 3.73e-*07; 8.'A*e+07,- 0.44 ,- 36:59;
1 -. ' ' ' !,', ' i
l3C-l,2,,'i4-TCDD; 2.S9e+08; I.i6«+06; 1.44e+08)' 6.81 ; 29:09;
13C-l,2,3,7,8,'|-HxCDD; 2.31e+08; 1.30B+08; l.Ole+08'jf ,1.28 ; 35:^5;
37Cl-2,3,1,8-TCDD; 2.466+08; 2.4S(S+08; -l -. ; 29:27;
13C-2,3,4,7,8/-PeCDF; _!.29e+08; 2.029+08; 1.27e+08; 1.59;y; 33:01;
13C-l,2,3,4,7,8-HxCDD; ..22e+08; e.ROe+n7; 5.42e+07; 1.25;y; 35:18;
, 13C,-l,2,l,4,7,8-HxCDF; 3.15e+p8; 1.0S«st08; 2.T66+08; C.53;y; 34:51;
13C-l,2,3v4,7,8,9-HpCDF; ?.97e+07; 2.4IW07; S ';6e+07; "=.43;y; 38:10;
37Cl-2,3,7,8-TCDD; 2.46e+08; 2.46e+08; -; -;-; 29:27;
13C-2,3,4,7/lB-PeCDF; 3.29e+08; 2.02e+0a; 1.27e+08; i.'39;y; 33:01;
13C-l,2,3,4,7(18-HxCDD; 1.22e+08; 6.80e+07; 5.42e+07; i.25;y; 35:18;
13C~l,2,3,4,7,8-HxCDF; 3.L5e+08; 1 . 09e+n??.; 2.06e+08; P.53;y; 34:51;
13C-1.2, 3,4,7,8,9-HpCDF; 7.97p+07; 2.41e+07; 5.56e+07; 0.43;y; 38:10;
Cone ;
0.311;
0.094;
0.052;
0.074;
0.077;
0.187;
0.798;
18.990;
2.531;
1.504;
0.517;
0.297;
0.170;
0.043;
0.263;
0.063;
0.109;
87.526;
105.891;
98.777;
77.331;
128.354;
83.919;
83.581;
78.635V
63.509;
53.153;
55.023;
88.790;
86.754;
79.667;
92.998;
54.241;
101.443;
103.796;
80.653;
118.265;
85.407;
DL;
0.0386;
0.0199;
0.0489;
0.0365;
0.0388;
0.0425;
0.1550;
0.0846;
0.0405;
0.0365;
0.0383;
0.0277;
n 0337;
0404;
0675;
. 0856;
'j 1410;
0.1288;
0.0507;
,0.0674;
r0.1510;
0.0387;
0.0592;
,0.0090;
0.6875;
0-1215;
'
h -;
-t
0.0549;
0.0086;
0.1133;
0.4747;
0.1584;
0,10728;
0/0055;
0*1116;
0,'3800;
0,,2515;
S/N1;?;
21, • y;
14 ;y;
6;y;
8;y;
8;y;
14 ;y;
11 ;y;
553, • y;
178, -y;
150;y;
37;y;
30;y;
10;y;
4;y;
9 ; y;
4;y;
1089;y;
10664;y;
4116;y;
922;y;
3372;y;
4003;y;
495278;y;
507 ; y;
1000 ;y, •
1402 ; y;
3608;y;
4469;y;
533114;y;
3165,-y;
655;y;
520;y;
4469;y;
533114;y;
3165;y;
655;y;
520;y;
S/N2;? mod?
35;y
21;y
5;y
6,-y
5,-y
23 ;y
36;y
487, -y
137, -y
108 ;y
27 ;y
23 ;y
8;y
2;n
23, -y
4;y
3;n
3477;y
12441;y
ri75;y
,• 57 Jy
i
19 ;y
.' 22 ;y
'65;y
•59;y
58;y
,96;y
_ . _
2^712,-y
4030;y
738 ;y
1081;y
_ . _
22712;y
4030,-y
738;y
1081;y
no
no
no
no
no
no
no
no
no
no
no
no
nc
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no f
no
no
no
no
no'.
Page 6
-------
OPUSguan 30-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:23
Run: 6 File: a26sep98m S:13 Acg:27-SEP-98 02:17:51 Proc:28-SEP-98 12:05:57
Tables: Run: 26sep-crv Analyte: m8290-092->. Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: 1114-1 xl/1
Amount: 149.02
Cone: 149.02
Tox #1: -
of which 18.99
of which 18.99
Tox #2: -
named and 130.03 unnamed
named and 130.03 unnamed
Tox #3: -
Name
2,3,7,8-TCDF
RT Respnse
RA
24:35 3.2e+07 0.78 y
3.2e+07
2 25:10 1.3e+07 0.78 y
1.36+07
25:19 1.8e+05
1.8e+05
0.53 n
4 25:30 1.5e+07 0.78 y
1.5e+07
5 25:48 l.Oe+08 0.78 y
l.Oe+08
6 25:59 l.le+07 0.79 y
l.le+07
7 26:07 2.2e+07 0.77 y
2.2e+07
26:13 2.4e+07
2.4e+07
1.61 n
9 26:37 1.6e+07 0.77 y
1.6e+07
10 26:42 3.3e+07 0.79 y
3.3e+07
11 26:58 1.8e+07 0.82 y
1.8e+07
12 27:07 3.1e+07 0.76 y
3.1e+07
13 27:24 4.0e+07 0.77 y
4.0e+07
14 27:31 2.0e+07 0.78 y
2.0e+07
15 27:49 4.1e+07 0.79 y
4.1e+07
.' '< - -j .
16 28:01 1.26+06 0.55 n
1.2e+06
17 28:09 1.6e+07 0.81 y
1.66+07
18 28:26 7.0e+07 0.79 y
7.06+07
19 29:02 2.66+07 0.77 y
2.66+07
Cone
8.67
:
3
3.47
C
0.05
£
]
4.04
e
I
28.26
4
C
3.02
i.
t
5.93
c
3
6.48
1
S
4.22
e
E
8.96
1
3
4.99
£
]
8.41
Area Height S/N Mod?
L.4e+07 3.4e+06 3.7e+02 y n
L.8e+07 4.3e+06 3.4e+02 y n
5.66+06 1.36+06 1.5e+02 y n
7.2e+06 1.6e+06 1.3e+02 y n
6.1e+04 2.5e+04 2.7e+00 n n
1.2e+05 3.8e+04 3.0e+00 y n
6.66+06 1.56+06 1.7e+02 y n
8.46+06 1.96+06 1.5e+02 y n
4.6e+07 8.6e+06 9.6e+02 y n
5.96+07 l.le+07 8.8e+02 y n
4.9e+06 1.2e+06 1.4e+02 y n
6.3e+06 l.Se+06 1.26+02 y n
3
9.66+06 2.16+06 2.46+02 y n
1.2e+07 2.7e+06 2.1e+02 y n
l.Se+07 1.96+06 2.16+02 y n
9.2e+06 2.4e+06 1.9e+02 y n
2
6.8e+06 1.96+06 2.2e+02 y n
8.8e+06 2.56+06 2.0e+02 y n
1.5e+07 3.06+06 3.4e+02 y n
1.8e+07 3.8e+06 3.0e+02 y n
3
8.36+06 1.8e+06 2.0e+02 y n
l.Oe+07 2.3e+06 1.8e+02 y n
10.74
5.37
11.14
0.34
4.20
18.99
7.14
1.3e+07 2.9e+06 3.3e+02 y n
1.8e+07 3.86+06 3.0e+02 y n
i
1.7e+07 3.5e+06 3.9e+02 y n
2.3e+07 4.56+06 3.5e+02 y n
7
8.7e+06 1.8e+06 2.Oe+02 y n
l.le+07 2.36+06 1.8e+02 y n
4
l.Se+07 3.7e+06 4.16+02 y n
2.36+07 4.7e+06 3.7e+02 y n
4
4.4e+05 l.Se+05 1.6e+01 y n
S.le+05 2.0e+05 1.6e+01 y n
D
7.0e+06 l.Se+06 1.6e+02 y n
8.6e+06 1.8e+06 1.4e+02 y n
3
3.1e+07 S.Oe+06 5.5e+02 y n
3.96+07 6.2e+06 4.9e+02 y n
!
1.2e+07 2.46+06 2.6e+02 y n
l.Se+07 3.16+06 2.4e+02 y n
055
-------
OPUSquan 30-SEP-1998 Page 2
20 29:19 1.3e+07 0.78 y 3.40
1.36+07 5.5e+06 l.le+06 1.2e+02 y n
7.1e+06 1.4e+06 l.le+02 y n.
21 29:33 2.6e+06 0.77 y 0.71
2.6e+06 1 le-iOG 2.1e+05 2.6e+01 y n
'•>. ' 2 "/e+05 2.2e+01 y n
22 30:36 1.96+05 4.05 n O.Ub
1.9e+05 l.Se+05 3.7e+04 4.2e+00 y n
3.86+04 1.3e+04 l.Oe+00 n n
23 30:47 1.7e+06 0.86 y 0.45
1.76+06 . >e+05 1.96+05 2-le+OI v n
8 9e+05 2.4 : •*..
-------
OPUSguan 30-SEP-1998
Page 3
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:18
Run: 6 File: a26sep98m S:13 Acg:27-SEP-98 02:17:51 Proc:28-SEP-98 12:05:57
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: 1114-1 xl/1
Amount: 4.21
Cone: 4.21
Tox #1: -
Name
2,3,7,8-TCDD
of which 0.31 named and 3.90
of which 0.31 named and 3.90
Tox #2: - ... , Tox #3: -
RT Respnse
RA
1 26:12 3.3e+06 0.77 y
3.3e+06
2 26:39 1.8e+06 0.78 y
1.8e+06
3 27:01 2.2e+05 0.61 n
2.2e+05
4 27:53 1.8e+06 0.76 y
1.8e+06
5 28:05 2.9e+05 0.72 y
2.9e+05
6 28:15 3.0e+05 0.76 y
3.0e+05
7 28:18 l.le+05 0.25 n
l.le+05
8 28:22 2.0e+05 1.32 n
2.0e+05
9 28:44 3.0e+05 1.12'ii
3.0e+05
10 29:10 4.4e+05 0.86 y
4.4e+05
11 29:18 8.7e+05 0.84 y
8.7e+05
12 29:27 8.4e+05 0.58 n
8.46+05
13 29:39 1.7e+05 0.84 y
1.7e+05
14 29:57 5.4e+05 0.75 y
5.46+05
15 30:04 2.4e+04 0.36 n
2.4e+04
16 30:10 1.6e+04 0.39 n
1.6e+04
17 30:18 l.Oe+05 1.64 n
l.Oe+05
18 30:51 6.4e+04 1.07 n
6.4e+04
Cone
1.22
]
1
0.67
1
:
0.08
£
:
0.67
7
1
0.11
1
1
0.11
]
3
0.04
£
0.07
3
E
; o.ii
1
1
0.16
2
0.32
3
4
0.31
2
c
0.06
1
c
0.20
i
0.01
e
3
o.oi
t,
3
0.04
6
0.02
unnamed
unnamed
Area Height
S/N Mod?
1.4e+06 3.2e+05 9.2e+01 y n
1.9e+06 4.3e+05 1.5e+02 y n
7
7.9e+05 1.7e+05 5.0e+01 y n
l.Oe+06 2.36+05 7.8e+01 y n
8.3e+04 2.3e+04 6.7e+00 y n
.4e+05 3.56+04 1.2e+01 y n
7.8e+05 1.5e+05 4.3e+01 y n
l.Oe+06 1.8e+05 6.2e+01 y n
I
1.2e+05 2.2e+04 6.4e+00 y n
1.7e+05 2.56+04 8.6e+00 y n
1.3e+05 3.06+04 8.8e+00 y n
1.76+05 3.8e+04 1.3e+01 y n
1
2.2e+04 1.6e+04 4.6e+00 y n
8.6e+04 1.86+04 6.2e+00 y n
7
l.le+05 2.3e+04 6.6e+00 y n
8.6e+04 l.Se+04 6.2e+00 y n
1
1.6e+05 3.06+04 8.6e+00 y n
1.46+05 3.2e+04 l.le+01 y n
2.0e+05 4.3e+04 1.2e+01 y n
2.4e+05 5.1e+04 1.7e+01 y n
2
3.96+05 8.2e+04 2.4e+01 y n
4.76+05 9.8e+04 3.3e+01 y n
1
3.16+05 7.1e+04 2.1e+01 y n
5.3e+05 l.Oe+05 3.5e+01 y n
.5e+04 1.4e+04 4.2e+00 y n
9.0e+04 1.9e+04 6.4e+00 y n
3
2.36+05 4.1e+04 1.2e+01 y n
3.1e+05 6.6e+04 2.3e+01 y n
1
6.56+03 3.7e+03 l.le+00 n n
1.8e+04 l.Oe+04 3.5e+00 y n
4.46+03 2.5e+03 7.2e-01 n n
l.le+04 4.6e+03 1.6e+00 n n
1
6.4e+04 1.2e+04 3.6e+00 y n
3.9e+04 l.le+04 3.7e+00 y n
2
3.3e+04 l.Oe+04 2.9e+00 n n
3.16+04 9.6e+03 3.3e+00 y n
057
-------
OPUSguan 30-SEP-1998
Page 4
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:18
Run: 6 File: a26sep98m S:13 Acq:27-SEP-98 02:17:51 Proc:28-SEP-98 12:05:57
Tables: Run: 26sep-crv Analyte: m8290-092» Cai. m8?9C--092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: 1114-1 xl/1
Amount: 23.56
Cone: 23.56
Tox #1: -
Name
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
of which 4.04
of which 4.04
Tox #2: -
named and 19.52
named and 19.52
Tox #3. -
#
RT Respnse
RA
1 31:07 7.3e+06 1.57 y
7.3e+06
2 31:15 4.3e+04 3.07 n
4.3e+04
3 31:40 7.1e+04 1.71 y
7.1e+04
'4 31:47 2.1e+04 1 90 n
2.1e+04
5 31:57 4.0e+06 1.53 y
4.06+06
6 32:02 2.4e+07 1.57 y
2.4e+07
7 32:09 4.1e+06 1.45 y
4.16+06
8 32:15 8.8e+05 1.47 y
8.8e+05
9 32:17 9.56+05 1.58 y
9.5e+05
10 32:23 6.3e+06 1.52 y
6.3e+06
11 32:35 7.4e+06 1.55 y
7.46+06
12 32:41 3.06+06 1.56 y
3.06+06
13 32:46 4.8e+06 1.57 y
4.86+06
14 33:01 4.9e+06 1.58 y
4.9e+06
15 33:06 3.5e+06 1.43 y
3.5e+06
16 33:15 4.3e+05 1.58 y
4.3e+05
17 33:22 2.0e+04 0.90 n
2.0e+04
18 33:35 5.0e+05 1.52 y
S.Oe+05
Cone
2.37
4
0.01
1
:
0.02
unnamed
unnamed
Area Height
bVN Mod:
1.30
7.88
0.28
0.3 '
2.03
2.53
j.98
1.56
1.50
1.13
0.14
0.16
1.5e+06 1.3e+06 1.5e+02 y n
2.86+06 7.7e+05 l.Oe+02 y n
1
3.3e+04 1.2e+04 1.5e+00 n. n
l.le+04 6.6e+03 8.8e-01 n n
4.5e+04 1.6e+04 1.9e+00 n n
-2.6e+04 l.le+04 1.5e+00 n n
x.4et-04 3.3e+03 4.0e-01 n. n
7.36+03 3.2e+03 4.2e-01 n n
3
2.46+06 l.Oe+06 1.2e+02 y n
1.6e+06 6.4e+05 8.5e+01 y n
3
l.Se+07 5.4e+06 6.4e+02 y n
9.4e+06 3.6e+06 4.8e+02 y n
J
2.4e+06 6.6e+05 7.8e+01 y n
1.7e+06 4.55*+.°= ,5 ?-•«•> -•
3
•3.26+05 2.2e+05 2.6e+01 y n
3 ,,,56+05 1.5e+05 2-Oe+Ol y a.
5;He+Oi *..8e+05 3.3e+01 y n
3.7e+05 1.8e+05 2.4e+01 y n
3
3.8e+06 1.3e+06 1.5e+02 y n
*06 8.5e+05 l.le+02 y n
' 5e+06 1.5e+06 1.8e+02 y fi
9e+06 l.Oe+06 1.4e+02 y n'
1.86+06 7.56+05 9.0e+01 y n
1.2e+06 4.7e+05 6.3e+01 y n
?..9e+06 1.2e+06 1.4e+02 y n
1.9e+06 7.5e+05 l.Oe+02 y n
3
3.06+06 1.3e+06 1.5e+02 y n
1.96+06 8.1e+05 l.le+02 y n
3
2.16+06 8.1e+05 9.6e+01 y n
L.4e+06 4:9e+r
I
2.6e+05 9.0e+04 l.le+01 y n
1.76+05 5.3e+04 7.1e+00 y n
9.6e+03 5.0e+03 6.0e-01 n n
l.le+04 5.2e+03 7.0e-01 n n
5
3.0e+05 1.3e+05 1.5e+01 y n
2.06+05 6.7e+04 9.0e+00 y n
05S
-------
OPUSquan 30-SEP-1998
Page 5
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:14
Run: 6 File: a26sep98m S:13 Acq:27-SEP-98 02:17:51 Proc:28-SEP-98 12:05:57
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: 1114-1 xl/1
Amount: 1.54
Cone: 1.54
Tox #1: -
Name
1,2,3,7,8-PeCDD
of which 0.09
of which 0.09
Tox #2: -
# RT Respnse
named and 1.44
named and 1.44
Tox #3: -
RA
1 32:09 l.le+06 1.67 y
l.le+06
32:18 3.0e+04
3.0e+04
0.90 n
3 32:36 9.4e+05 1.77 y
9.4e+05
4 32:42 2.0e+05 2.29 n
2.06+05
5 32:47 6.4e+05 1.63 y
6.4e+05
6 32:53 6.5e+04 3.02 n
6.5e+04
7 32:56 1.4e+05 2.16 n
1.4e+05
8 33:03 3.5e+05 2.03 n
3.56+05
33:06 1.2e+05
1.26+05
1.97 n
10 33:14 2.5e+05 1.52 y
2.56+05
11 33:18 9.56+04 2.05 n
9.56+04
12 33:31 3.96+04 1.87 n
3.96+04
13 33:33 2.6e+04 0.95 n
2.6e+04
14 33:39 l.le+04 2.24 n
l.le+04
Cone
0.43
<
0.01
3
3
0.36
(.
2
0.08
1
6
0.24
4
0.02
4
3
0.06
c
4
0.13
3
0.05
£
4
0.09
3
c
0.04
«
0.01
3
0.01
3
3
0.00
unnamed
unnamed
Area Height
S/N Mod?
7.06+05 2.8e+05 6.2e+01 y n
4.2e+05 1.76+05 8.0e+01 y n
1.4e+04 5.4e+03 1.2e+00 n n
1.6e+04 6.1e+03 2.9e+00 n n
.0e+05 2.6e+05 5.6e+01 y n
.4e+05 1.5e+05 7.4e+01 y n
1.4e+05 5.0e+04 l.le+61 y n
6.0e+04 2.4e+04 1.2e+01 y n
4.0e+05 1.6e+05 3.5e+01 y n
2.4e+05 l.le+05 5.5e+01 y n
.9e+04 2.0e+04 4.3e+00 y n
.6e+04 7.7e+03 3.7e+00 y n
9.9e+04 3.0e+04 6.5e+00 y n
4.66+04 l.Se+04 7.1e+00 y n
2.3e+05 8.7e+04 1.9e+01 y n
1.2e+05 4.6e+04 2.2e+01 y n
8.0e+04 2.6e+04 5.5e+00 y n
4.0e+04 1.6e+04 7.8e+00 y n
3
1.5e+05 6.6e+04 1.4e+01 y n
9.8e+04 4.4e+04 2.1e+01 y n
6.4e+04 2.4e+04 5.3e+00 y n
3.1e+04 1.2e+04 5.6e+00 y n
1
2.56+04 1.36+04 2.9e+00 n n
1.4e+04 7.9e+03 3.8e+00 y n
I
1.3e+04 6.6e+03 1.4e+00 n n
1.4e+04 7.9e+03 3.8e+00 y n
7.3e+03 3.9e+03 8.4e-01 n
3.3e+03 1.8e+03 8.5e-01 n
059
-------
OPUSguan 30-SEP-1998
Page 6
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:24
Run: 6 File: a26sep98m S:13 Acg:27-SEP-98 C2:17:S1 Proc:28-SEP-98 12:05:57
Tables: Run: 26sep-crv Analyte: m8290-092» Cai: m8290-Q92»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: 1114-1 xl/1
Amount: 2.47
Cone: 2.47
Tox #1: -
Name
of which 1.03
of which 1.03
Tox #2: -
# RT Respnse
named and 1.45
named and 1.45
Tox #3: -
RA
1 34:08 4.66+05 1.30 y
4.66+05
2 34:14 1.8e+06 1.24 y
1.8e+06
3 34:20 2.5e+05 1.03 n
2.5e+05
4 34:25 2.3e+05 1.20 y
2.3e+05
5 34:32 1.2e+05 1.29 y
1.2e+05
1,2,3,4,7,8-HxCDF 6
1,2,3,6,7,8-HxCDF 7
34:47 1.26+06 1.25 y
1.2e+06
34:52 9.46+05
9.46+05
1.17 y
8 34:55 2.5e+05 1.52 n
2.56+05
9 35:05 2.6e+05 1.05 n
2.6e+05
2,3,4,6,7,8-HxCDF 10 35:14 4.4e+05 1.09 y
4.4e+05
11 35:18 6.86+04
6.86+04
1.50 n
12 35:22 3.1e+04 1.49 n
3.1e+04
13 35:26 1.4e+04 0.86 n
1.46+04
14 35:33 2.1e+04 1.75 n
2.16+04
15 35:37 2.2e+04 1.77 n
2.26+04
1,2,3,7,8,9-HxCDF 16 35:45 9.3e+04 2.55 n
9.36+04
17 35:49 l.Oe+05 1.60 n
l.Oe+05
18 36:00 1.36+04 1.31 y
1.3e+04
19 36:06 1.9e+04 0.80 n
1.9e+04
Cone
0.18
0.70
9
E
0.10
unnamed
unnamed
Area Height S/N Mod?
2.6e+05 l.le+05 1.8e+01 y n
2.06+05 9.0e+04 1.3e+01 y n
D
9.96+05 3.6e+05 5.7e+01 y n
8.0e+05 3.1e+05 4.6e+01 y n
3
1.3e+05 4.8e+04 7.66+00 y n
•> •>-•>»• 05 3.3e+04 5-Oe-t-OQ y n
1.3e+05 4.6e+04 7.3e+00 y n
l.le+05 3.7e+04 5.5e+00 y n
0.05
6.56+04 2.6e+04 4.1e+00 y n
S.le+04 1.9e+04 2.8e+00 n n
0.52
0-30
6.66+05 2.4e+05 3.7e+01 y n
5.3e+05 1.8e+05 2.7e+01 y n
3
S.le+05 1.96+05 3-Oe+Ol y n
4.3e+05 : .f- -.- - - --
0.10
1.5e+05 4.4e+04 6.9e+00 y n
.•l,Oe+Q5 3.7e+04 5.5e+00 y. n;:
0.17
0.01
0 o!
C .Ui
..3ef05 3.6e+04 5.7e+00 y n
1.3e+05 3.7e+04 5.4e+00 y n
7
2.3e+05 6.2e+04 9.8e+00 y n
i.le+05 5.2e+04 7.8e+00 y n
<
4,le+04 1.3e+04 2-le+OO n -n
2.7e+04 9.3e+03 1.4e+00 n .n
:;. \
1.9e+04 7.76+03 1.2e+00 n n
1.3e+04 4.7e+03 7.0e-01 n n
6.6e+03 3.0e+03 4.8e-01 n n
7.6e+03 4.3e+03 6.3e-01 n ja
i
1.3e+04 3.96+03 6.2e-01 n u
7.7e+03 5.36+03 7.8e-01 n n
0.01
0.04
0.04
0.01
C.01
1.46+04 4.66+0? 7 T«-ni n n
7.8e+03 4.7-ei . .
i
6.7e+04 2.66+04 4.16+00 y n
2.6e+04 1.6e+04 2.46+00 n n
3
6.5e+04 1.6e+04 2.6e+00 n n
4.0e+04 1.2e+04 1.8e+00 n n
L
7.4e+03 3.9e+03 6.2e-01 n n
5.7e+03 2.8e+03 4.2e-01 n n
L
8.56+03 3.56+03 5.5e-01 n n
l.le+04 3.36+03 4.9e-01 n n
(K ( C60
-------
OPUSguan 30-SEP-1998
Page 7
20 36:09 l.le+04 1.66 n 0.00
l.le+04
21 36:11 2.26+04 0.86 n 0.01
2.2e+04
22 36:15 l.Oe+04 11.94n 0.00
l.Oe+04
23 36:19 l.Se+04 1.48 n 0.01
1.8e+04
24 36:22 1.3e+04 0.73 n 0.00
1.3e+04
6.66+03 5.2e+03 8.1e-01 n n
4.0e+03 2.7e+03 4.0e-01 n n
L
l.Oe+04 4.5e+03 7.1e-01 n n
1.2e+04 3.8e+03 5.6e-01 n n
D
9.5e+03 4.3e+03 6.8e-01 n n
8.0e+02 6.5e+02 9.6e-02 n n
L
l.le+04 6.4e+03 1.Oe+00 n n
7.4e+03 2.4e+03 3.6e-01 n n
}
5.4e+03 3.3e+03 5.2e-01 n n
7.4e+03 2.4e+03 3.6e-01 n n
f( r 61
-------
OPUSquan 30-SEP-1998
Page 8
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:19
Run: 6 File: a26sep98m S:13 Acq:27-SEP-98 02:17:51 Proc:28-SEP-98 12:05:57
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: 1114-1 xl/1
Amount: 1.31
Cone: 1.31
Tox #1: -
of which 0.20
of which 0.20
Tox #2: -
named and 1.11
named and 1. J.1
Tox #3: -
Name
RT Respnse
RA
34:28 1.3e+05 1.89 n
1.3e+05
34:33 5.5e-<-03 0.62 n
5.5e+03
34:37 1.2e+04 0.33 n
1.2e+04
34:47 1.8e+06 1.44 n
1.8e+06
5 34:57 3.7e+05 1.15 y
3.7e+05
35:02 5.66+04
5.6e+04
1.37 y
7 35:07 1.7e+04 0.89 n
1.76+04
8 35:09 1.6e+04 0.73 n
1.6e+04
9 35:14 1.8e+04 0.87 n
1.8e+04
1,2,3,4,7,8-HxCDD 10 35:19 9.6e+04 1.26 y
9.6e+04
1,2,3,6,7,8-HxCDD 11 35:23 1.8e+05 1.25 y
1.8e+05
12 35:30 1.8e+04 2.15 n
1.8e+04
1,2,3,7,8,9-HxCDD 13 35:36 1.8e+05 1.37 y
1.8e+05
14 36:02 1.6e+04 0.45 n
1.6e+04
15 36:04 1.6e+04 0.39 n
1.6e+04
16 36:09 1.2e+04 1.82 n
1.26+04
17 36:11 8.1e+03 0.96 n
S.le+03
18 36:14 8.4e+03 0.18 n
8.46+03
19 36:18 l.Be+04 1.11 y
l.Se+04
Cone
0.06
£
4
0.00
2
•q
0.01
unnamed
unnamed
Area Height
S/N Mod?
8.2e+04 3.1e+04 7.5e+00 y n
4.3e+04 2.6e+04 5.7e+00 y n
D
2.1e+03 1.3e+03 3.1e-01 n n
3.4e+03 1.5e+03 3.3e-01 n n
<)e+03 1.2e+03 2.8e-01 n
. jj 4.3e+03 9.46-01 n
l.Oe+06 4.0e+05 9.6e+01 y n
7.2e+05 2.9e+05 6.36+01 y n
0.17
0.03
2.06+05 5.8e+04 1.4e+01 y n
1.7e+05 4.9e+04 l.le+01 y n
O.C1
0.01
0.05
0.01
1.2e+04 l.Oe+04 2.4e+00 n n
2.4e+04 1.le+04 2.4e+00 n n
1
7.9e+03 4.2e+03 l.Oe+00 n n
8.9e+03 P..^""1 •'.V- "~ -
I
6.6e+03 3.4e+03 8-le-Ol n n
•i.9.e+"<):« 3.3e+03 7.26-01 n n
i
8.3e+03 3.1e+03 7.56-01 n n
9.5e+03 4.5e+03 l.Oe+00 n n
5.3e+04 2.3e+04 5.6e+00'y n
4-2e+04 2.4e+04 -5.2e+00 y n
j.Oe+05 3.5e+04 8.4e+00 y n.
8. le+04 2.7e+04 6.0e+00 y ' ri
L
1.2e+04 3.8e+03 9.2e-01 n n
5.6e+03 3.5e+03 7.7e-01 n n
0 "ti
0.01
l.Oe+05 3.5e+04 8.4e+00 y n
7.5e+04 2.4e+04 5.3e+00 y n
L
S.le+03 3.56+03 8.3e-01 n n
1. le+04 5.36+03 l'.2e+00 n n
4.4e+03 2.3e+03
1. le+04 5.£e+
4e-01 n
0.01
0. •
o.no
i.Ol
7.5e+03 4.0e+03 9.7e-01 n n
4.1e+03 1.9e+03 4.2e-01 n n
D
4,0e+03 1.9e+03 4.7e-01 n n
4.16+03 1.9e+03 4.2e-01 n n
D
1.3e+03 l.Oe+03 2.5e-01 n n
7.1e+03 2.9e+03 6.4e-01 n •*
1
7.8e+03 2.4e+03 5.8e-01 n n
7.16+03 2.9e+03 6.4e-01 n n
< 062
-------
OPUSguan 30-SEP-1998
Page 9
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no tHom:ll
Run: 6 File: a26sep98m S:13 Acq:27-SEP-98 02:17:51 Proc:28-SEP-98 12:05:57
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: 1114-1 xl/1
Amount: 0.52
Cone: 0.52
Tox #1: -
Name
of which 0.33
of which 0.33
•*-" Tox #2: -
# RT Respnse
named and 0.20
named and 0.20
Tox #3: -
RA
1,2,3,4,6,7,8-HpCDFl 37:00 4.4e+05 0.96y
4.4e+05
2 37:12 9.3e+04 0.73 n
9.3e+04
3 37:18 7.7e+04 0.89 y
7.7e+04
37:26 1.6e+04
1.6e+04
37:29 2.0e+04
2.0e+04
37:41 2.7e+04
2.7e+04
37:59 1.96+04
1.96+04
1.11 y
1.62 n
5.26 n
2.10 n
1,2,3,4,7,8,9-HpCDFS 38:11 8.3e+04 0.73 n
8.3e+04
38:33 1.2e+04
1.2e+04
6.61 n
10 38:38 1.8e+04 2.82 n
1.8e+04
11 38:47 1.6e+04 2.93 n
1.6e+04
Cone
0.26
0.06
T
c
0.05
1
t,
0.01
£
0.01
]
0.02
<
0.01
]
e
0.06
(
0.01
]
]
0.01
1
4
0.01
unnamed
unnamed
Area Height
S/N Mod?
2.26+05 6.6e+04 8.8e+00 y n
2.3e+05 6.9e+04 2.3e+01 y n
3.9e+04 9.3e+03 1.2e+00 n n
5.4e+04 1.6e+04 5.4e+00 y n
3.6e+04 l.le+04 1.4e+00 n n
4.16+04 1.2e+04 4.0e+00 y n
L
8.5e+03 4.0e+03 5.3e-01 n n
7.7e+03 2.56+03 8.4e-01 n n
1.26+04 6.46+03 8.56-01 n n
7.7e+03 2.5e+03 8.4e-01 n n
2
2.3e+04 6.66+03 8.7e-01 n n
4.3e+03 1.5e+03 5.2e-01 n n
1.3e+04 4.8e+03 6.4e-01 n n
6.3e+03 3.0e+03 l.Oe+00 n n
5
3.56+04 9.2e+03 1.2e+00 n n
4.8e+04 l.le+04 3.6e+00 y n
.Oe+04 4.1e+03 5.5e-01 n n
.66+03 7.86+02 2.6e-01 n n
1.4e+04 4.0e+03 5.4e-01 n n
4.86+03 2.16+03 6.9e-01 n n
1.2e+04 3.76+03 4.9e-01 n
4.1e+03 1.3e+03 4.2e-01 n
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:13
Run: 6 File: a26sep98m S:13 Acq:27-SEP-98 02:17:51 Proc:28-SEP-98 12:05:57
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: 1114-1 xl/1
Amount: 0.54
Cone: 0.54
Tox #1: -
Name
of which 0.19
of which 0.19
Tox #2: -
# RT Respnse
named and 0.35
named and 0.35
Tox #3: -
RA
1 37:13 2.7e+05 1.24 n
2.7e+05
2 37:26 1.5e+04 0.34 n
1.5e+04
3 37:29 2.1e+04 0.82 n
Cone
0.21
1
1
0.01
3
0.02
unnamed
unnamed
Area Height
S/N Mod?
l.Se+05 4.7e+04 1.9e+01 y n
1.2e+05 3.5e+04 2.2e+01 y n
L
3.9e+03 2.56+03 9.9e-01 n n
l.le+04 2.6e+03 1.7e+00 n n
CK ' 063
-------
OPUSguan 30-SEP-1998
2
l,2,3,4,6,7,8-HpCDD4 37:49 2
2
5 38:01 2
2
6 38:09 2
2
7 38:12 2
2
Page 10
.le+04
.4e+05 0.87 n
.4e+05
.7e+04 1.13 y
.7e+04
. 4e+04 1.34 n
.4e+04
.2e+04 1.11 y
.2e+04
9
1
0.19
1
1
0.02
1
1
0.02
1
1
0.02
1
1
.3e+03
.le+04
.le+05
.3e+05
.4e+04
.3e+04
.4e+04
.Oe+04
.2e+04
.Oe+04
2
2
3
3
4
5
6
3
5
3
.9e+03
. 6e+03
.4e+04
.5e+04
.6e+03
.4e+03
.3e+03
.9e+0^
.9e+03
.9e+03
1
1
1
2
1
3
2
"*
2
2
. 2e+00
. 7e+00
.4e+01
.3e+01
.9e+00
.4e+00
.5e+00
Ao+OO
.4e+00
.4e+00
n
n
y
y
n
y
n
*
n
n
n
n
n
n
n
n
n
----. *,f~--3t'*l>
n
n
8 38:17 7.6e+03 2.52 n 0.01
7.6e+03 5
2
9 38:21 1.le+04 2.65 n 0.01
1.le+04
10 38:22 9.2e+03 2.08 n 0.01
9.2e+03
11 38:37 1.7e+04 1.41 n 0.01
1.7e+04
12 38:45 2.le+04 1.17 y 0.02
2.1e+04
13 38:51 1.5e+04 2.36 n 0.01
1.5e+04 1
5e+03
2e+03
2.9e+03
1.2e+03
7
3
9
7
1
9
.9e+03
.Oe+03
. je+03
.9e+03
.Oe+03
.le+04
.6e+03
3,
1.
2.
1.
3
2
4
3
,7e+03
.le+03
. 6e+03
.le+03
,2e+03
.4e+03
.Oe+03
.2e+03
1
7
1
7
1
1
1
2
le+04
5e+03
5.Oe+03
1.7e+03
1.2e+00 n n
7.4e-01 n n
1.5e+00 n n
7.1e-01 n n
1.Oe+00 n n
7.le-01 n n
1.3e+00 n n
1.5e+00 n n
1.6e+00 n n
2.Oe+00 n n
2.Oe+00 n n
l.le+00 n n
064
-------
File:A26SEP98M #1-487 Acq:27-SEP-1998 02:
Sample#13 Text: 1114-1 xl/1
319.8965 S:13 BSUB(128, 15, -3 . 0) PKD(3,3,2
100% 26:12
A
n" i i . y v
25:00 ' 26:00
321.8936 S:13 BSUB(128, 15, -3 . 0) PKD(3,3,2
100% 26:12
A
o- y V
25:00 26:00
331.9368 S:13 BSUB(128, 15, -3 . 0) PKD(3,3,2
100%
50J
o:
25:00 26:00
333.9339 S:13 BSUB(128, 15, -3 . 0) PKD(3,3,2
100%
50 j
o:
25!oo' ' ' ' 26loo'
327.8847 S:13 BSUB (128, 15, -3 . 0) PKD(3,3,2
100%
50 j
0:
17:51 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DB5 OVATION
,0.10%, 3448. 0,1. 00%, F,F)
3.2E5
26^39 27:53 L1.6E5
/ \ A 29 • iQ
/\ 27:01 /\ 28:15 28:44 . AA 29:57 :
J V_ xv J v^-^^^y-^ s^ S\J V\ /^ • n mm
27 loo'
,0.10%, 2940.0,
26:38
A 27:01
J V- s*^
27 loo'
,0.10%, 17676.0
27 loo'
,0.10%, 6884.0,
27 loo'
, 0.10%, 10844.0
25 loo 26!oO 27 loo'
316.9824 S:13 SMO(1,3) PKD(3 , 3 , 3, 100 . 00%, 0 . 0, 1 .00%,F,F)
100% 24:32_ 25:18 25.44 26:16 26:43 27:08
50J
Q'-^
— 25 100 26 loo'
27 loo'
28:00 29:00 3oloO " ' ' ' Time
1.00%,F,F)
4.4E5
27:52 .2.2E5
A 29:27 OQ c-7
28:15 28:44 AA 29^5
.T-'~~^N— ^-^ ^\/ V v^^ y\_ - n npn
28:00 29100 3oloO Time
,1.00%,F,F)
29:09 ,_2.5E7
A 29:26 F
A /l
J V^y v — O.OEO
28 100 ' ' ' 29:00 3oloO Time
1.00%,F,F)
29:09 ^3.1E7
A 29:26 F
A A
J \^l \ — -O.OEO
28 loo ' 29 loo ' ' 30 100 Time
,1.00%,F,F)
29:27 4.8E7
11 L2.4E7
J V^ O.OEO
28 loo 29 100 30 100 Time
27:34 28:24 28:54 29_:22 30:05 30:30 _1 . OE8
v
_5.0E7
: O.OEO
28100 29:00 3oloO Time
-------
File:A26SEP98M #1-217 Acq:27-SEP-1998 02:17:51 GC EI+ Voltage SIR Autospec-UltimaE
Sample#13 Text:1114-1 xl/1 Exp:EXP_M23_DB5_OVATION
355.8546 S:13 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,4596.0 ,1.00%, F, F)
100%, 32:09
50J
32:36
2.9E5
L1.4E5
33:03
33:14
:06 A33:18
33:31
.O.OEO
31:00 31:12 31124 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36' ' 33!48 Time
357.8517 S:13 F:2 BSUB(128,15,-3 . 0) PKD{3,3,2,0.10%,2084.0 ,1.00%, F,F)
100%
50J
32:09
32:36
32:46
32:26
33:02 33:14
32:56/3^06 /\33^19 33:31
-8.5E4
O.OEO
31:00 31:12 31-24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 33148 Time
367.8949 S:13 F:2 BSUB(128,15,-3 . 0) PKD(3 , 3 , 2 , 0 .10%, 4288 . 0,1. 00%-, F, F)
100%, - _
0 003%
50J
_
<- ^ /.f
33:13
3l!6o' ' Si! 12
. *. . 6E7
-2.3E7
.O.OEO
31 "6 Sl 32oO 32"! 12' '-32 124' 32 ''3 6 ' '32! 48 33:00 33:12 33i24 3^36 33i48 Time
369.8919 S:13 F:2 BSUB(128,: -3 . 0) -:.PKD(3 , 3 , 2, 0 .10%, 2296 . 0,1. 00% ',F)
so:
33:13
2.9E7
,1.4E7
O.OEO
71 I i i i i i I i i i i i I i i i i i r r i i r i i i T'I i i i i i n I 'i i r •!• i i i rl1 r i i i i i i | •! i i i i i i i i r i' | i i i i T | i i r i i i i i i i i ''" • """
3l!oO 3l!l2 3l!24 31:36 31:48 32:00 32:12 32:24 3: 36 32:48 33:00 33:12 33:24 3 36 33:48 Time
366.9792 S:13 ]':2 SMO(1,3) PK.t>{3 , 3, 3 ,100 .00%, 0 . 0,1. 00%, F,F)
100% 31:14 31:26_ __ _ 31jL57 32:0.2 L- 32i3i 32i45 12-^7 3J_OQ ^1.1E8
so:
;5 . 3E7
O.OEO
, —I—I—I—I—I—I—r -i—I—I—l—l—I—I—rl—I—I—I—I—I—I—I—1—r—i—i—i—I—I—i—i—i—i—T'—r-l—••—i—i—i—i—I—I—r—t—i—i—i—i—l i r—I i I I i i i i I i i i l r~i i | r—| ; i i I r-i I i i [
3l!rOA. 31:1.? 31:24 31:36 3l!48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 33:48 Time
-------
File:A26SEP98M #1-189 Acq:27-SEP-1998 02:l'/:bl GC EI+ Voltage SIR Autospec-UltimaE
Sample#13 Text:1114-l xl/1 Exp:EXP_M23_DB5_OVATION
389.8156 S:13 F:3 BSUB(128, 15 , -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 4160 . 0 , 1 . 00%, F
100%, 34:47
A
h
,F)
n- 3ii28 J ^S^\l ^35j23 35-:36
34:00 34:12 34:24 34:36 34:48 35:00 35:12
391.8127 S:13 F:3 BSUB(128 , 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 4536 . 0 , 1 . 00%, F
100% 34J47
• • A
,: A
4.0Eb
_2.0E5
0 . OEO
35:24 35I36 35:48 36:00 36:12 36!24 Time
,F)
34:28 / V 34A57 35:22 35:36
n - /\^ / ^^_^^ \ ^\
34:00 34:12 34:24 34:36 34:48 35:00 35:12
401.8559 S:13 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 9996 . 0 , 1 . 00%, F
-^^^ ^~^~~~t Tl ^M 1
35124 35:36 35:48 36:00 36:12 36
2.9E5
L1.4E5
" o . OEO
24 Time
,F)
100*, 35j22 35:35
: 35;lfn A
5o: A
„; ;
'34100 34ll2 34-124 341:36 34! 48 3s!oO 3s!l2
403.8530 S:13 F:3 BSUB(128, 15 , -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 6252 . 0, 1 . 00%, F
\\ \\
\ ^^~
4.1E7
_2.1E7
O.OEO
35:24 35:36 35 48 36:00 36:12 36:24 Time
,F)
100%, 35:22 35;35
1 35A^ A
50: A
: /
"— IT— i — r-i — i — i — i — i — i — 1 — i — P — i — r— i — i — i— i — i — i — i — l — i — i— i — i i I i i ' > ' | i ' i ' ' | ' ' '
34:00 34:12 34:24 34:36 34:48 35:00 35:12
380.9760 S:13 F:3 SMO(1,3) PKD{3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F,F)
100%, 3JLL40 35 : 05 3_!:L
\r
so:
n "
" '«s.'i — i — l — i — i — i — i — i — i — i — i — i — i — i — 1 — ' — ' — ' — ' — ' — 1 — ' — ' ' ' ' ' ' ' 1
^34100 34ll2 34^24 34^36 34:48 35:00 35:12
\\ \\
\~J ^-^
_-5 .ZEI
.1.6E7
O.OEO
35:24 35 36 35:48 36:00 36:12 36:24 Time
20 35-38 35:53 36:02 ,_3 . 1E8
_1.6E8
O.OEO
35:24 35:36 35:48 36:00 36:12 36:24 Time
o
-------
File:A26SEP98M #1-194 Acq:27-SEP-1998 02:17:51 GC EI+ Voltage SIR Autospec-UltimaE
Sample#13 Text:1114-l xl/1 Exp:EXP_M23_DB5_OVATION
423.7767 S:13 F:4 BSUBJ128,15,-3.0) PKD(3,5,3,0.10%,2492.0,1.00%,F,F)
100% 37;13
so:
0.
36:58
26=^35_^36450y2XJZ:03
37:49
4.8E4
h_2.4E4
38:21
38:34
38:51
. ,• i", i-,' ,-f O.OEO
38:48 39:00 Time
T—i—i—i—i—i—i—i—I—i—r—T—i—i—i—i—i—i—i i I r ! i 'I
36:36 36:48 37loO 37:12 37i24 37i36
i i '
37:48 38:00
i Ti i -T i i |' i T
38:12 38:24 38:36
425.7737 S.-13 F:4 BSUB(128,15,-3 . 0) PKD(3 , 5, 3 , 0 .10%, 1576 . 0,1. 00%, F, F)
100% 37;13 37:49
so:
36:47
37:05
i_—XV—^—*^«
37:28 37:40
^3.6E4
_1.8E4
38:37 38:45
O.OEO
i—r I I H—t—I—I ' i •*! ' I T f—I—f
38:36 38:48 39:00 Time
, 1.5E7
*36 Us'
i i I | i '
37100 37:12
T
36136 36i48 37iOO 37112 37i24 37:36 37:48 38:00
435.8169 S:13 F:4 BSUB(128,15,-3 . 0) PKD(3,5,3,0.10%,16556.0,1.00%,F,F)
100%
ri r \ T i
38112 38:24
so:
0.
^48
36:36 36:48 37
437.8140 S:13 F:4 BSUB(128,1
100% - •?,' •
50J
r'.\
i — i i'"! T"! — i — i — I 'f" i i
37:12 37:24
T-r-r
; ~.5E6
io
-O.OEO
0 37112 37124 37:36 37:48 38iOO
-3.0) PKD(3,5,3,0.10%,7736.0,1.00%, ,F)
37:49
38112 38:24
38:36 3";48 39:00 Time
..1.4E7
0
36:3V ' '36:48' '37:6o' 37:12' 37:24 - 37:36 3Vi,48 '38.:00 38.:12 38:34 38.:36
430.9728 S:13 <":4 SMO(1,3) PKD(3, 3, 3,100 . 00%, 0 . 0,1.00%,F,F) .
100% IfcAA 37jjD_ 17-12 37:20 I?--3£ 37 = 45 I , : 55 3J--1J 38:37 38 t!
.O.OEO
50J
.48 39:00 Time
!.OE8
-?•8E7
.0. OEO
36:36 36:48 37:00 37:12 37:24 37:36 37:48 - 38:00 38:12 38;24 38:36 38;48 39:00 Time
-------
File
Samp
457.
100%
so:
0"
459.
100%
so:
o:
469.
100%
so:
o:
471.
100%
so:
o:
454.
100%,
so:
0"
:A26SEP98M #1-276 Acq:
le#13 Text: 1114-1 xl/1
7377 S:13 F:5 BSUB(128
— ~^j — i. _ •
39
7348
39
7780
39
7750
i i i i
39
9728
39:
i i i i
t'-SB
39:31 39
X-*~ l"*-r- --.--
^ . /IT nr
T i T- r i — i — i — r — i — i — r— i — 1 — i — r-
:12 39:24 39:36
S:13 F:5 BSUB(128
39:32
•12 ' 39124 ' 39136
S:13 F:5 BSUB(128
:12 39:24 39:36
S:13 F:5 BSUB(128
•12 39124 39:36
S:13 F:5 SMO(1,3)
11 T9:21 39:31
Il2 ' 39124 ' 39136
27-SEP-1998 02:17:51 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
,15, -3.0) PKD(3,5,3,0.10%,5020.0,1.00%,F,F)
40 -44
\
:4239^56^^^40:i6^ 40-33 / ^rVvtUx03 41:26 41:47 42:05
5.8E4
L2.9E4
' O.OEO
' 39148 46166 40 12 46124 4ol36 4ol48 4ll66 41:12 41:24 4ll36 klUs 42166 42.'i2 Time
,15, -3.0) PKD(3,5,3,0.10%,1688.0,1.00%,F,F)
40:45
A
39:47 40:06 / Mr^^^Jx.^^^dU?7 _^ilf8-
6.3E4
L3.2E4
" O.OEO
39148 40:00 40 12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
,15, -3.0) PKD(3,5,3,0.10%,3356.0,1.00%,F,F)
40:44
/v_
1.1E7
L5.7E6
' O.OEO
' 39148 ' 46166 40 12 4ol24 4ol36 40 1 48 41166 4lll2 4ll24 41136 4ll48 42166 42ll2 Time
,15, -3.0) PKD(3,5,3,0.10%,508.0,1.00%,F,F)
40:44
/v_
1.3E7
_6.4E6
_O.OEO
' 39:48 ' 40:66 ' 40 12 '40: 24 4ol36 40:48 41:66 41:12 4ll24 4ll36 klUs 42166 42ll2 Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
39:47 40:07 40:22 40:50 41 :OR 41-19 4L:40 41 : 51 42 : 01
2.2E8
O.OEO
39:48 ' 46:66 ' 40 12 ' 46:24 ' 40:36 ' 4b:48 41:66 41:12 41124 41:36 ^lUs 42166 42:12 Time
O
(75
ffl
-------
File : A26SEP98M If 1-487 Acq:2/-SEP
Sample#13 Text: 1114-1 xl/1
303.9016 S:13 BSUB(128, 15 , -3 . 0)
100% 25;
:
o:
24:35 I
A 25:30 /
A /\ /\ J
'25 loo
305.8987 S:13 BSUB(128, 15, -3 .0)
100% 25(
-
50J
0'
24:35 1
A 25:30 /
/\ /\ TV J_
2s!oO
315.9419 S:13 BSUB(128 , 15 , -3 . 0)
100%
-
\
OJ , , , 1 1 1 1 1 1 r—
25:00
317.9389 S:13 BSUB(128, 15, -3 . 0)
100%
srv
-_
OJ , , , -, , , 1 1 r
25:00
375.8364 S:13;BSUB(128, 15,- 0)
100%.
50_
1 ,
24:13i j24tJ9 . i"i i
Ml AIJUT li n A»A ML A/iA A
Qi .yuif.iu"i\ .. j)iiir'MV' ... ..if 'i1'"""." T" '"r'
25:00
i
PKD (3,3,2
48
1
\ 26:07
wf\
2e!oo
PKD(3,3,2
48
\
\ 26:07
WYTV
26:00
PKD (3,3,2
26100
PKD(3,3,2
-i 1 — -r r-
26:00
PKD(3,3,3
26
J48,
| |
IVIWb^J
26:00
316.9824 S:13 SMO(1,3) PKD(3, 3, 3 , 100 .00%,
iooi
50_
i _..^«:J.i. iL^±a — <^-
-," ' ' 25 1 00
26100
[7:51 GC EI+ Voltage S1K Autospec-UltimaE
J0.io%,89807o,lToO%,F,F) g ^&
28:26
26.42 27:24 27:49 A
A 26:58 A7:31 A 28:09 /\ A 29:19
/T \ AA / V\ /Vy\/V /v/x _,_
' ' '27|00' ' 28100 29:00 30:00
4.3E6
- O.OEO
Time
,0.10%, 12656. 0,1. 00%, F,F) ^ ^
28:26
26:42 27A243rA49 8 09 A 29:01
/A AA / v\ A 28A / \ , , ^V!^i! , —
' ' 27100 28lOO 29:00 30:00
: 5.6E6
- O.OEO
Time
,0.10%,7808.0,1.00%,F,F)
28:24 J.1E/
A
A
_1.6E7
_,- . .,,,,, . T i:-0-OEO
' ' 27100 ' ' 28100 29lo 30:00 Time
, 0.10%, 9128. 0,1.00* ,F)
28:24 3.9E7
A
'-
/I
_1.9E7
•O.OEO
' ' '27!0o' ' ' ' - 'IOO 29 100 30:00 Time
, 100. 00%, 172. 0,1. 00%, F,
22 • 29:09 I
26!39 ' 28:31 A \ 29.4530i°[ ,n30:40
I 27-03 " 27: ) 2*l |j , J \jl / \ f | = 4!j 1 Tf.
_4.0E3
O.OEO
^"^ 27 loo' ' ' '.. Jloo' 29 100 30:00 Time
^^^^ 3Q.=_30 - rl-OE8
\y"~
I -i ( 1 1 1 T" ' ' ' r~ I ' ' ' ' '
_5.0E7
- O.OEO
' ' '27!00 28100 29IOO' 30:00 Time
O
-------
File:A26SEP98M
Sample#13 Text:
339.8597 S:13 F
100%
50 j
;
0"
31:07
/^\
#1-217 Acq:27-SEP-1998 02:lV:bl
1114-1 xl/1
:2 BSUB (128, 15, -3
"' i i -i i i r i i i i i i i i i i i i i i i i
31:00 31:12 31:24 31:36
341.8568 S:13 F
100%
50.:
.
o •
31:07
XX
u ' i ' •> > < n i
31:00 31:12
351.9000 S:13 F
100%
50J
o •
u ' | ' i ' i ' | '
31:00 31:12
353.8970 S:13 F
100%
50J
o •
31:00 31:12
409.7974 S:13 F
100%
50 1
o-
/3i/\il^/v/w
3l!do' ' 31:12
366.9792 S:13 F
100% 31:3
50J
o H
31^60' ' 3i!i2
:2 BSUB (128, 15, -3
31:24 31:36
:2 BSUB (128, 15, -3
31:24 31:36
:2 BSUB (128, 15, -3
31:24 31:36
:2 BSUB (128, 15, -3
yV^w^vA^Vw^-
i i i i 1 ' ' ' ' ' 1 ' ' '
31:24 31:36
:2 SMO(1,3) PKD(3
L4 31 .?fi
-j 4- * •". —
i i i i i i i i i i i ' ' '
31:24 31:36
GC EI4- Voltage SIR Autospec-UltimaE
Exp : EXP_M2 3_DB5_OVATION
.0) PKD(3,3,2,0
32:02
A
A
31 -57/ \
yxV ^
i i i i i r i r | i " r
31:48 32:00
.0) PKD(3,3,2,0
32:02
r
^
i i | i ' f i i~""| ' « ^
31:48 32:00
.0) PKD(3,3,2,0
i i I "T"7""1 '
31:48 32:00
.0) PKD(3,3,2,0
'3l!48 32:00
.10%, 8368. 0,1. 00%,
32:23 32
^\L-r— — /^^ ^-J
32:12 32124 32
.10%, 7472. 0,1. 00%,
?.nq 32:24 32:
^, /\^ ^J
32:12 32!24 32
F,F)
35 32 :46 33 : 01
^5.4E6
_2.7E6
O.OEO
•36 32:48 33:00 33:12 33:24 33:36 33:48 Time
F-F>
34 32 :46 33 : 01
V^yvXV_ XV/^^
_3.6E6
11.8E6
-
- O.OEO
136 32148 33ldo 33ll2 33124 33:36 33:48 Time
.10%,152.0,1.00%,F,F)
32:
A
\
j
32ll2 32124 32
.10%, 2172. 0,1. 00%,
32:
A
f
/
32ll2 32124 32
34 33/t01
V 1 V
8.1E7
_4 . 1E7
O.OEO
!36 32148 33ldo 33ll2 33124 33:36 33:48 Time
F,F)
34 33ri01
\ II
v_ / v_
4 . yEV
.2.5E7
O.OEO
136 32148 33:00 33ll2 33:24 33:36 33:48 Time
.0) PKD(3,3,3,100.00%,2904.0,1.00%,F,F)
31:48
V^/^AJU^S
iii 1 ' ' '
31:48 32:00
, 3, 3, 100. 00%, 0.
31-57 32_
3l!48 32!do
32:25
\ 32:3
* / I A/
32! 12 32124 32
0,1.00%,F,F)
• Q7 3? • 3'
32!l2 32124 32
33:15
32:39 ft
3 A Al\ 33:31
\J\ .32:47 33:02 /VU3.20 A A A
2.8E4
.1.4E4
O.OEO
136 32148 33^00 33ll2 33124 33:36 33:48 Time
> 3?-4S 32:57 33:30 _ 1 . 1E8
15.3E7
-O.OEO
136 32148 33ldo 33!l2 33124 33:36 33-48 Time
-------
File:A26SEP98M #1-189 Acq:
Sample#13 Text: 1114-1 xl/1
373.8207
100%,
50
0
34
375.8178
IOCS
-
50'
-
n-
34
383.8639
100%
_
50J
0"
34
385.8610
100%
',
50-
-
OJ
34
445.7555
100%
50J
o:
S:13 F:3 BSUB(128
34:14
|\
/ i
34:08) \
A / \34:20
/ v_y ^r-'^-^.
!00 34J12 34
S:13 F:3 BSUB(128
£
:00 34:12 34
S:13 F:3 BSUB(128
lo'o' 34:12' ' 34!
S:13 F:3 BSUB(128
!00 • 34:12 -34!
27-SEP-1998 02:17:51 GC EH- Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
,15, -3.0) PKD(3,5,2,
34:47
A
/ \ /
34-32 7 Y
:24 34:36 34! 48
,15, -3.0) PKD(3,5,2,
34:47
A ,
/\ /
1:25 / \l
^__ _ y [
24 34:36 34:48
,15, -3.0) PKD(3,5,2,
34:
34:47A
N
1 r
24' ' 34! 36 34:48
,15, -3.0) PKD(3,5,2,
34:
34:47A
•''•' A 7
2 34:36 34:48
S:13 F;3 BSUB(128,1 -3.0) PKD(3,3,3,
'
.'
34:01 34.19
XVA jA~A
•lLT— 1 1 —
34
380.9760
100%
50J
oj
^
1 i i i" T— i— r— I—I—T— r-r-|
:00 34:12 34:
S:13 ?:3 SMO(1,3)
I i 1 1 | 1 1 1 : 1 | 1 1 1 1 1 |
•- 34:00 34:12 34:
34:31 34:4fJ!3''
24 ' 34:36 34:48
PK£{3,3,3,100.00% 0
'; • 3 f, . 4Q
24 34:36 34:48
0.10%, 6344. 0,1.
\
V_ 35:05 3
1^ — -^~^r-^
35:00 35:
0.10%, 6724. 0,1.
\ _
\ 35:05 3
T""1""— — ^~^-\^_ _ —
35:00 35:
0.10%, 56416. 0,1
51
\
V
35 100 35.
0.10%, 93860.0, *
51
\
35:00. 35:
100. 00%, 4,44. 0,1
.
- • ' .
52 .35 :(}i
00%,F,F)
r3.6E5
^ : ^4 35-45
-^^~ , — | —
- 1.8E5
' O.OEO
12 35:24 35:36 35:48 36:00 36:12 36:24 Time
00%,F,F)
3.1E5
^\ ~
11.6E5
: O.OEO
12 35:24 35:36 35:48 36:00 36:12 36:24 Time
.00%,F,F)
_3.7E7
11.8E7
.O.OEO
J 35124 35I36 ;:48 36:00 16:12 36!:4 Time
-00%,F,F)
6.9E7
"A,
.
L3.5E7
; O.OEO
12 3S.-24 3S.-36 35^:48 36!oO :12 36-24 Time
..00? F,F) '
5/!22 « oc r1.4E4
•35 8/1 35:35>;
>/ \Aj ^^K^_^3t\!!^vy- ^jC_JV_
17.0E3
LO.OEO
35:00 35:12 3s!24 35!36 35.U8 3e!oO C ,'l2 36.24 Time
.0,1.00%,F,F)
3JiL05 -
35.20 3Sr3R 35tB3 36:0^ -illBR
:,;
-1.6E8
-O.OEO
35!00 35 12 35124 35.-36 3s!48 3 6. -00 36ll2 36:24 Time
-------
File:A26SEP98M #1-194 Acq:27-SEP-1998 02:
Sample#13 Text: 1114-1 xl/1
407.7818 S:13 F:4 BSUB(128, 15 , -3
1003
50J
-
o-
37:00
A
LV,,
36!36 36! 48 37 ! 00
409.7788 S:13 F:4 BSUB(128 , 15, -3
100%
50 1
]
-
OJ
36,59
\
/ V.
36.!36 36.-48 37.-00
417.8253 S:13 F:4 BSUBU28, 15, -3
1003S
50 j
o:
36:59
A
A
i ^~~
36136 36^48 37^00
419.8220 S:13 F:4 BSUB(128, 15, -3
100%
50 j
0'
36,59
A
y V
— l — i — i — i — | — i — i — r— i — i — i — l — i — r— Y — i — i — i — i—
36136 36148 37|00
479.7165 S:13 F:4 BSUB (128 , 15, -3
100%
-
50 "
-
0"
36:40 A 37-
^6:32 l\ A .A
S \J\J\~J Ly-WV WvX^^
-i i i i i | i i i p i | i i i i i | i i
36:36 36:48 37:00
430.9728 S:13 F:4 SMO(1,3) PKD(3
100% 36:44 37. nn
50:
Of
7
-^ 36:36 36:48 37:00
. 0 ) PKD ( 3
37:
=*S": IX^.^.
37 ! 12
. 0 ) PKD ( 3
\ 37:12
37 : 12
. 0 ) PKD ( 3
~~ 1 — r~n
37:12
.0) PKD (3
— i — i — i"i i i
37:12
.0) PKD (3
05 A
rvl/v/i
-\y ^ ^^J
37:12
17:
Exp
-5,
18
i s
37
,5,
3 7
37
,5,
37
,5,
i i
37
,3,
\A-V
37
,3,3,100.00%
37:12 31
37 ! 12
• 70
37
51 GC EI+ Voltage SIR Autospec-UltimaE
:EXP M23_DB5_OVATION
3, 0.10%, 7504. 0,1. 00%, F,F)
37:31 37:4137:49 37-59 38:11 38:2038:28 38:38 38:50
•~1 . v/^ — i— ^^ — S~*" • -^ — ' -^ — ^^-^~^^^^-~^^ ' — S\- ' ~ -^ •* -_^ r^~^— «=~ ^/-^^'V.
7.5E4
^3.8E4
•
' O.OEO
!24 37!36 37!48 3s!oO 3s!l2 3s!24 3sl36 3s!48 39 00 Time
3, 0.10%, 2996. 0,1. 00%, F,F)
„ . "?ft • 1 0
:24 37-50 /^t^L 38-51
7.1E4
_3.5E4
O.OEO
.•24 37.-36 37148 38:00 3s!l2 38 .-24 3s!36 38.;48 39 00 Time
3, 0.10%, 10544. 0,1. 00%, F,F)
38:10
J ^^____
1.1E7
_5.3E6
-O.OEO
•24 37:36 37:48 3s!oO 38:12 38:24 38:36 38:48 39.00 Time
3, 0.10%, 11216. 0,1. 00%, F,F)
38:10
y v^__
2.3E7
_1.2E7
O.OEO
•24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
3, 100. 00%, 3592. 0,1. 00%, F,F)
37:49 1.9E4
37:36 /!
A A. A A y \A A A A 38:13A 38:26 .: 38A^5
\l \s^ ^/ b^AVX/ v~\s V \^~J \f\/ — y^^\^\^-^Vvxx^/^^'^^VxwWv/vwyv
_9.3E3
O.OEO
124' ' '37:36 ' V?! 48' '38: do' ' '38: 12' ' '38: 24' ' '38: 36' 13'8!4'8' ' YgloO Time
,0.0,1.00%,F,F)
37:3637:45 37:55 38:19 38:37 3R:46 38:58 2 . OE8
_9.8E7
O.OEO
124 37! 36 37148 Ssldo 38ll2 38I24 38136 3s!48 39loO Time
O
>J
CO
-------
File:A26SEP98M #1-276 Acq:27-SEP-1998 02:l'/:bl GC EI+ Voltage SIR Autospec-UltimaE
Sample#13 Text:1114-1 xl/1 Exp:EXP_M23_DB5_OVATION
441.7427 S:13 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2152.0,1.00%,F,F)
1004 40;53
1.0E4
I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I | i i i i i | i i i i i | | i i i i i | i i i i i | i i i i i | i i i i i | i i i i i i
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
443.7398 S:13 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,4776.0,1.00%,F,F)
100% 40;53
OJ
39:12 39:24 39;41
41=40 41:55
,_1.6E4
18.1E3
LO.OEO
i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i | i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
469.7780 S:13 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,3356.0,1.00%, F,F)
100% 40:44
50J
OJ
..1E7
i.7E6
Jlo.OEO
39!i2 ' 39124 ' 39136 ' 39148 ' 40:66 ' 4o!i2 ' 40:24 40:36 40:48 41:00 41:12 41 4 41:36 41:48 42:00 42:1^ Time
471.7750 S:13 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,508.0,1.00%,F,F)
100% . . 4C-44
50J
ol
1.3E7
L6.4E6
39:12139:24 39:36 i48 40:00 40:12 40-24 40:36.40:4 41:00 41:12 41:24 41:,36 41:48 :00 42:12 Time
513.6775 Sri}' F:5 BSUB(128(J ,-3.0) PKD(3 , 3 , 3 ,100 .00%, 364 . 0, 3, .00' F,F).
100%, f . 3 47
50.;
OJ
39:18
39:33
0:15
40:28,
41:35
~ ^--~ r xi , . . ,- ri rvr-, -r .-.-i . T -I-I-1-. .-!-•-• .,.,-...,.,.. .,,,,, ...•,.. 0 . OEQ
39:12 ' 39:24 39:36 39JS48 40 00 40! 12 ' 40:24 40:36 40:4d 41:00 41:12 41:24 41:36 41:48 .':00 42:12 ,t. ATi
454.9728 S:13 F:5 SMO(1,3) PifeD(3,3,3,100.00% 0.0 T.OO%,V,P)
100%. 10.11 V-;?1 39 = 31 3ft/47 39 .- . _4t:-7J; . Uli5J} ^A1 :OR 41 ;13 Alj-40 41 : 51 42:01
50^
OJ
•n, '-,
Li.1E8
:O.OEO
-2w':i2 '3^:24 39:36 ' 39?i48 40-00 40^2 40:24 40i36 40:48 41rOO 41:12 41:24 41:36 41:48 42:00 42:12 Time
\
•y
o
-------
o
OPUSquan 30-SEP-19'98
Page 1
Page 7
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ ;
Unk ;
ES/RT;
a29sep98n
7
29-SEP-98 21:24:
30-SEP-98 08:57;
1114-1
07feb-m23conf
m8290cf-092998n
44
40
J
Name;
Resp;
2,3,7',8-TCDF; 9.54e+06;
13C-2,3,7,8-TCDF;
Total; Tetra Furans;
DPE ; !- HxCDPE;
LMC ; QC CHK ION (Tetra);
,30e+08;
,78e+08;
Ion 1;
4.22e+06;
5.73e+07;
4.78e+06;
Ion 2;
5.32e+06;
7.25e+07;
RA;?;
0.79;y;
0.79;y;
6.06e+06; 0.79;y;
RT;
27:52;
27:50;
18-:08;
;NotFnd;
;NotFnd;
Cone; DL;
7.733; 0.1454;
31.809;
144.386; 0.1454;
S/N1;?;
213;y;
1454;y;
393;y;
*;n
DivO;n
S/N2;?
142,-y
1409;y
270;y
mod?
yes
no
yes
no
no
-;-; 27:52
-;-: 27:52
yes
-------
jl
•~s
o
%I
OPUSquan 30-SEP-1998
Filename a29sep98n
Sample 7
Acquired 29-SEP-98
Processed 30-SEP-98
Sample ID 1114-1
Page 7
21:24:44
08:57:40 / / /
/ ^ vt<- ' '
Cal Table 07feb-m23conf i A i ft ~-f t/Ve" JIT
Results Table m8290cf-092998n 1^1 1
Comments
Typ Name ;
Unk 2,3,7,8-TCDF;
ES/RT 13C-2,3,7,8-TCDF;
Total Tetra Furans;
DPE HxCDPE;
LMC QC CHK ION (Tetra);
,{
t
^-~~ ~X /^
Resp; Ion 1; Ion 2; RA; ^ry^RT; \C
-------
File
Samp
303.
1003
50-
0
305.
100S
ol
315.
100%
50 j
ol
317.
100%
50 J
o"
375.
100%
50 j
o"
316.
100%
50 j
o:
::A29SEP98N #1-2677 Acq: 29-SEP-1998 21:24:44 GC EI+ Voltage SIR Autospec-UltimaE
>le#7 Text:1114-l Exp:M23 DB225
9016 S:7 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2304 . 0 , 1 . 00%, F, F)
19:49
18i°8 E0:18 22:07 24^15
I Mira^l * T A. f(T 26A30 ' A&» !'A35 31-
16:00 18:00 20:00 22:00 24:00 26:00 28:00
8987 S:7 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 4300 . 0 , 1 . 00%, F, F)
19:49
18 108 BO: 18 22:07 ^A^Vs? o^/W^ '/
n HA A oioyifl^^'^' 9 7/OvR
I Mira./JL /H A A A 26A3° m»
16'lob 18 lob 20 lob 22 lob 24 lob 26:00 J^OO
9419 S:7 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 4372 . 0, 1 . 00% , F, F)
T
16:00 18:00 20:00 22:00 24:00 26:00 28:00
9389 S:7 SMO(1,3) BSUB (128 , 15 , -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 5660 . 0 , 1 . 00% , F, F)
T
16:00 18:00 20:00 22:00 24:00 26:00 28:00
8364 S:7 SMO(1,3) BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 100 . 00%, 1884 . 0, 1 . 00%, F, F)
*v^O*UUvr4#*W*jJ^*>rfi
-------
File:A29SEP98N #1-2677 Acq;29-SEP-199t* 21:24:44 GC EI+ Voltage SIR Autospec-UitimaE
Sample#7 Text:1114-1 Exp:M23_DB225
303.9016 S:7 SMO(1,3) BSUB{128,15,-3.0) PKD(3,3,3,0.10%, 2304.0 ,1.00%,F,F)
19:49
20:18 22:07 23:13
29:35
31:47
A
16iOO 18100 20100 22i 00 14: DO ;. ' JO 28:00
305.8987 S:7 SMO(1,3) BSUB(128,15 ,-3 . 0) PKD(3,3,3,0 iQ%,43C '., 1.00%,F, F)
30lC
32:00
34:00
1.7E6
L1.5E6
L1.3E6
Ll.2E6
L9.9E5
L8.3E5
L6.6E5
L5.0E5
L3.3E5
L1.7E5
. OEO
.•20:18 '22:0723:13
-------
Paradigm Analytical Labs
Method 2 3
M23-FB-3
PE5
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8--TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
«g)
ND
ND
ND
EMPC
ND
EMPC
EMPC
ND
ND
ND
0.0022
EMPC
ND
ND
ND
ND
ND
ND
ND
0.0016
ND
ND
ND
0.0024
ND
0.0002
0.0017
DL
tag)
0.0012
0.0007
0.0013
0.0010
0.0010
0.0014
0.0087
0.0015
0.0008
0.0007
0.0012
0.0009
0.0011
0.0013
0.0022
0.0028
0.0047
0.0012
0.0007
0.0010
0.0014
0.0015
0.0007
0.0009
0.0022
EMPC
tag)
0.0013
0.0034
0.0092
0.0015
0.0008
0.0056
0.0040
0.0005
0.0019
RT
imtn.)
29:27
33:14
35:19
35:23
35:35
37:50
40:44
28:25
32:34
33:01
34:47
34:52
35:14
35:45
37:01
38:11
40:54
Ratio
0.37
1.09
1.59
0.94
0.73
1.33
0.64
2.3
2.12
1.49
1.13
1.61
1.24
1.04
0.61
1.69
0.55
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-FB-3
Sample Information
Matrix:
Weight / Volume:
Moisture / Lipids:
Air
1
LI 114
1114-2
31~Aug-98
08-Sep-98
16-Sep-98
27-Sep-98
Filename:
Retchk:
Begin ConCal:
EndConCal:
Inraal_Cal:
a26sep98m-14
a26sep98m-l
a26sep98m-5
a26sep98m-21
a26sep98m-21
'
079
1/2
-------
Paradigm Analytical Labs
M23-FB-3
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13C,2-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13Ci2- 1 ,2,3,4,6,7,8-HpCDD
13C12-OCDD
13C,2-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
l3C12-l,2,3,6J,8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3,7,8-TCDD
l3C12-2,3,4,7,8-PeCDF
l3C12-l,2,3,4,7,8-HxCDD
I3C12-l,2,3,4,7,8-HxCDF
13Cl2-l,2,3,4,7,8,9-HpCDF
Injection Standards
BCU-1,2,3,4-TCDD
13Cirl,2,3,7,8,9-HxCDD
Expected
Amount
(n*)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
.
Measured
Amount
(n«)
3.25
4.07
3.85
3.05
4.93
2.96
\91
2.42
2.17
3.98
4.26
3.16**
5.88
3.16
Percent
Recovery
<%)
81.3
101.7
96.2
76.3
61.6
74.0 "
72.7
60.6
54.3
99.5
106.4
/&.>
- 147.1 i
78.$
V "- i
RT
(rain.)
29:25
33:13
35:22
37:48
. 40:44
28:23
32£4
34:47
• 36:59
29:27
33:00
Jt^.AU
34:51
3*30
29jOB
35:35
Ratio
0.8
1.61
1.27
1.08
U.'B
0.75
1 58-*'£
0.53
0.46
1.58
1.27
053
1,: .'. '•''
',0.8,
- 1 J.% -
Qualifier
~-* • * . • - i
«•-.-
,
Jtv, - '
.,, *»"-.-.
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ED:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Reviewed by: *t .T-
S509.000
M23-FB-3
L1114
1114-2
31-Aug-98
08-Sep-98
16-Sep-98
Sample Information
Matrix:
Weight/ Volume:
Moisture / Lipids:
Filename:
Retchk;
End CqnCaL
1
0.0
a26sep98m-14
a26sep98m-l
a26sep98m-5
a26sep98m-21
a26sep98ro-21
Date rxcV
r f
080
212
-------
O
00
OPUSguan 30-SEP-1998
Filename a26sep98m
Sample 14
Acquired 27-SEP-98 03
Processed 28-SEP-98 12
Sample ID 1114-2 xl/1
Cal Table m8290-092698m
Page 1
05:54
06:42
Results Table M8290-092698M-BE
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
ss
ss
ss
ss
ss
Name;
2,3,7,8-TCDD; 2
1,2,3,7,8-PeCDD; 4
1,2,3,4,7,8-HxCDD; 3
l,2,3,6,7,a-HxCDD; 8
1,2,3,7,8,9-HxCDD; 6
1,2,3,4, 6,7, 8-HpCDD; 1
OCDD; 1
2,3,7,8-TCDF; 3
1,2,3,7,8-PeCDF; 8.
2,3,4,7,8-PeCDF; 9.
1,2,3,4,7,8-HxCDF; 1.
1,2,3,6,7,8-HxCDF; 9.
2,3,4,6,7,8-HxCDF; 7.
1,2,3,7,8,9-HxCDF; 6.
1,2,3,4,6,7,8-HpCDF; 1.
1,2,3,4,7,8,9-HpCDF; 4.
OCDF; 5.
13C-2,3,7,8-TCDD; 2.
13C-l,2,3,7,8-PeCDD; 2.
13C-l,2,3,6,7,8-HxCDD; 2.
13C-l,2,3,4,6,7,8-HpCDD; 1.
13C-OCDD; 1.
13C-2,3,7,8-TCDF; 3.
13C-l,2,3,7,8-PeCDF; 2.
13C-l,2,3,6,7,8-HxCDF; 1.
13C-l,2,3,4,6,7,8-HpCDF; 1.
13C-1,2,3,4-TCDD; 2.
13C-l,2,3,7,8,9-HxCDD; 2.
37Cl-2,3,7,8-TCDD; 2.
13C-2,3,4,7/8-PeCDF; 3.
13C-l,2,3,4,7,8-HxCDD; 1.
13C-l,2,3,4,7,8-HxCDF; 3.
13C-l,2,3,4,7,8,9-HpCDF; 6.
37Cl-2,3,7,8-TCDD; 2.
13C-2,3,4,7,8-PeCDF; 3.
13C-l,2,3,4,7,8-HxCDD; 1.
13C-l,2,3,4,7,8-HxCDF; 3.
13C-l,2,3,4,7,8,9-HpCDF; 6.
Resp;
35e+05;
44e+04;
48e+04;
34e+04;
22e+04;
17e+05;
77e+05;
47e+04;
79e+04;
34e+04;
06e+05;
686+04;
17e+04;
34e+04;
17e+05;
49e+04;
66e+04;
40e+08;
04e+08;
67e+08;
42e+08;
42e+08;
286+08;
90e+08;
53e+08;
12e+08;
86e+08;
49e+08;
47e+08;
23e+08;
256+08;
25e+08;
79e+07;
47e+08;
23e+08;
256+08;
25e+08;
79e+07;
Ion 1;
2.23e+04;
2.31e+04;
2.13e+04;
4.036+04;
2.636+04;
6.68e+04;
6.926+04;
2.42e+04;
5.986+04;
5.58e+04;
5.64e+04;
5.98e+04;
3.976+04;
3.23e+04;
4.45e+04;
2.82e+04;
2.01e+04;
1.066+08;
1.266+08;
1.506+08;
7.366+07;
6.856+07;
1.456+08;
1.78e+08;
5.276+07;
3.52e+07;
1.286+08;
1.406+08;
2.47e+08;
1.986+08;
7.006+07;
1.126+08;
2.026+07;
2.476+08;
1.986+08;
7.006+07;
1.12e+08;
2.026+07;
Ion 2;
2.126+05;
2.136+04;
1.34e+04;
4.316+04;
3.59e+04;
5.036+04;
1.08e+05;
1.05e+04;
2.826+04;
3.756+04;
4.996+04';
3.71e+04,-.
3.206+04;,
3.126+04;'
7.27e+04\-
1.676+04;
3.656+04;
1.346+08;
7.82e+07;
1.186+08;
6.80e+07;
7.356+07;
1.83e+08;
1.12e+08;
l.OOe+08;
7.706+07;
1.58e+08;
1.10e+08;
_ .
1.25e+08;
5.53e+07;
2.136+08;
4.786+07;
_;
1.25e+08;
5.53e+07;
2.13e+08;
4.78e+07;
RA;?;
0.11;n;
1.09;n;
1.59;n;
0.94;n;
0.73;n;
1.33;n;
0.64;n;
2.30;n;
2.12;n;
1.49;y;
1.13;y;
'•1.61;n;
1.24;y;
1.04;n;
0.61,-n;
1.69;n;
0.55;n;
0.80;y;
1.61;y;
1.27;y;
1.08,-y;
0.93;y;
0.79;y;
1.58;y;
0.53;y;
0.46;y;
0.81;y;
1.28;y;
- ' - ;
1.58;y;
1.27;y;
0.53;y;
0.42;y;
-• - •
1.58;y;
1.27;y;
0.53;y;
0.42;y;
RT;
29:27;
33:14;
35:19;
35:23;
35:35;
37:50;
40:44;
28:25;
32:34;
33:01;
34:47;
34:52;
35:14;
35:45;
37:01;
38:11;
40:54;
29:25;
33:13;
35:22;
37:48;
40:44;
28:23;
32:34;
34:47;
36:59;
29:08;
35:35;
29:27;
33:00;
35:18;
34:51;
38:10;
29:27;
33:00;
35:18;
34:51;
38:10;
Cone ;
0.085;
0.016;
0.018;
0.032;
0.025;
0.084;
0.231;
0.010;
0.031;
0.030;
0.056;
0.037;
0.033;
0.035;
0.076;
0.037;
0.065;
81.268;
101.704;
96.145;
76.315;
123.245;
74.008;
72.647;
60.591;
54.315;
58.661;
59.320;
80.816;
77.307;
75.842;
89.113;
42.866;
99.444;
106.414;
78.883;
147.074;
78.921;
DL;
0.0306;
0.0166;
0.0322;
0.0240; .
0.0256;
0.0360;
8.2179;
6.0382;
0.0207;
0.0186;
0.0310;
•0.0224;
0.0273;
\ 0.0327;
0.0556;
0.0705;
0.1179;
0.0942;
0.0715;
0.0770;
0.1585;
0.0409;
0.0428;
0.0150;
0.9026;
0.1027;
...
-;
0.0414;
0.0143;
0.1296;
0.6231;
0.1338;
0.0588;
0.0113;
0.1281;
0.6565;
0.2343;
S/N1;?;
3;n;
3;y;
3;y;
5;y;
4;y;
8;y;
3;y;
3;y;
14;y;
16;y;
4;y;
5;y;
2;n;
2;n;
3;n;
l;n;
4;y;
1431;y;
6641;y;
3962;y;
856;y;
3085;y;
3805;y;
51326;y;
381;y;
1215;y;
2009;y;
3525;y;
5193;y;
57315; ;y;
2899;y;
586;y;
561;y;
5193;y;
57315;y;
2899;y;
586;y;
561, -y;
S/N2;?
16 ;y
6;y
3;n
3;y
3;y
10 ;y
14 ;y
l;n
2;n
3;n
6;y
4;y
3;n
3;y
8;y
2;n
2;n
4053 ;y
9632;y
3914;y
1901;y
28588;y
5908;y
14046;y
289;y
2018;y
5486;y
3454;y
-; -
16406;y
2851;y
446;y
974 ;y
_; -
16406;y
2851;y
446;y
974 ;y
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 7
-------
OPUSguan 30-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:4
Run: 7 File: a26sep98m S:14 Acq:27-SEP-98 03:05:54 Proc:28-SEP-98 12:06:42
Tables: Run: 26sep-crv Analyte: m8290-092» Ceil: ^",290-092»Results: M8290-Q9*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: 1114-2 xl/1
Amount: 0.03
Cone: 0.03
Tox #1: -
of which 0.01
of which 0.01
Tox #2: -
named and 0.02
named and 0.02
Tox S3: -
Name
RT Respnse
RA
2,3,7,8-TCDF
27:49 2.5e+04 1.31 n
2.56+04
27:52 1.5e+04 2.06 n
1.5e+04
3 28:25 3.5e+04 2.30 n
3.56+04
4 28:27 2.8e+04 1.63 n
2.8e+04
-one
0.01
]
]
0.00
]
t,
0.01
unnamed
unnamed
Area Height ..-4S/N Mod?
.4e+04 5.6e+03 2.0e+00 n n
.le+04 7.6e+03 1.2e+00 n n
l.Oe+04 3.66+03 1.3e+00 n n
4.9e+03 2.3e+03 3.6e-01 n I.
1
2.4e+04 9.4e+03 3.3e+00 y n
l.le+04 6.3e+Q3 9.9e-01 n, a.
i./e+04 8.0e+03 2.8e+00 n n
l.le+04 6.3e+03 9.9e-01 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:6
Run: 7 File: a26sep98m S:14 Acq:27-SEP-9? 03:05:54 Proc:28-SEP-98 12:06:42
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: 1114-2 xl/.
Amount: 0.13
Cone: 0.13
Tox #1: -
of which 0.08
of which 0.08
Tox #2: -
named and 0.04
named and 0.04
Tox #3:
Name
2,3,7,8-TCDD
RT Respnse
RA
1 26:11 4.9e+04 0.31 n
4.9e+04
2 29:27 2.3e+05 0.11 n
2.3e+05
3 29:36 1.8e+04 0.84 y
1.8e+04
4 29:51 1.3e+04 1.58 n
1.36+04
5 30:44 1.8e+04 1.28 n
1.86+04
6 30:46 1.5e+04 0.87 y
1.56+04
Cone
0.02
• ' ]
0. PR
0.01
E
c
0.10
£
C
0.01
]
£
0 01
unnamed
unnamed
Area Height
S/N Mod?
1.2e+04 5.4e+03 1.8e+OOTi n
3.8e+04 9.0e+03-3.9e+00 y n .
1 -
2.2e+04 7.6e+03 2.5e+00''n n
2.16+05 3.86+04 1.6e+01 y n
I
8.26+03 3.4e+03 l.le+00 n n
9.86+03 3.7e+03 1.6e+00 n n
3
8.0e+03 3.7e+03 1.2e+00 n n
5.0e+03 2.4e+03. l.Oe+00 n n
l.Oe+04 7.6e+03' 2.5e+00 n n
S.Oe+03 2.8e+03 1.2e+00 n n
1
7.06+03 3*.'6e-. ^ -. .. .1
8.0e+03 2.8e+03 1.2e+00 n n
Page 3 of B
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:3
Run: 7 File: a26sep98m S:14 Acq:27-SEP-98 03:05:54 Proc:28-SEP-98 12:06:42
Tables: Run: 26sep-crv Analyte: m8290-092» Cal. m8290-092»ResultS5 MB290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: 1114-2 xl/1
Amount: 0.07
of which 0.06
named and 0.01
unnamed
r f'
' cs;
-------
OPUSguan 30-SEP-1998
Page 2
Cone: 0.07
Tox #1: -
Name
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
of which 0.06
Tox #2: -
# RT Respnse
named and 0.01
Tox #3: -
RA
1 32:34 8.86+04 2.12 n
8.8e+04
2 33:01 9.3e+04 1.49 y
9.36+04
3 33:07 2.2e+04 0.74 n
2.2e+04
Cone
0.03
C
0.03
C
0.01
unnamed
Area Height S/N Mod?
6.0e+04 2.8e+04 1.4e+01 y n
2.8e+04 1.2e+04 2.2e+00 n n
3
5.6e+04 3.2e+04 1.6e+01 y n
3.8e+04 1.5e+04 2.7e+00 n n
I
9.3e+03 4.1e+03 2.1e+00 n n
1.3e+04 5.6e+03 l.Oe+00 n n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:2
Run: 7 File: a26sep98m S:14 Acq:27-SEP-98 03:05:54 Proc:28-SEP-98 12:06:42
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: 1114-2 xl/1
Amount: 0.04
Cone: 0.04
Tox #1: -
Name
1,2,3,7,8-PeCDD
of which 0.02
of which 0.02
Tox #2: -
named and 0.02
named and 0.02
Tox #3: -
RT Respnse
RA
1 32:10 5.76+04 1.79 n
5.76+04
2 33:14 4.46+04 1.09 n
4.46+04
Cone
0.02
0.02
unnamed
unnamed
Area Height
S/N Mod?
3.7e+04 1.6e+04 3.8e+00 y n
2.1e+04 5.2e+03 2.9e+00 n n
2
2.3e+04 1.5e+04 3.5e+00 y n
2.1e+04 l.Oe+04 5.8e+00 y n
.(K ( 083
-------
OPUSguan 30-SEP-1998
Page 3
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375 fllB Mod? no #Hom:24
Run: 7 File: a26sep98m S:14 Acq:27-SEP-98 03 •. ,!5-. c 4 Proc : 28-SEP-98 12:06:42
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: ni8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: 1114-2 xl/1
Amount: 0.34
Cone: 0.34
Tox #1: -
Name
of which 0.16
of which 0.16
Tox #2: -
# RT Respnse
named and 0.18
named and 0.18
Tox #3: -
RA
1 34:43 l.Oe+04 0.76 n
l.Oe+04
1,2,3,4,7,8-HxCDF 2
34:47 l.le+05 1.13 y
l.le+05
1,2,3,6,7,8-HxCDF 3 34:52 9.7e+04 1.61 n
9.76+04
4 34:56 1.9e+04 0.96 n
1.96+04
5 34:58 2.1e+04 1.88 n
2.1e+04
6 35:02 2.5e+04 1.63 n
2.5e+04
2,3,4,6,7,8-HxCDF 7
35:14 7.2e+04
7.2e+04
1.24 y
35:19 3.4e+04 0.94 n
3.4e+04
35:24 3.8e+04
3.8e+04
3.32 n
10 35:28 1.5e+04 1.38 y
1.5e+04
11 35:31 l.le+04 0.99 n
l.le+04
12 35:38 2.4e+04 2.31 n
2.4e+04
13 35:39 1.9e+04
1.9e+04
1.61 n
1,2,3,7,8,9-HxCDF 14 35:45 6.3e+04 1.04 n
6.3e+04
15 35:49 1.9e+04 1.12 y
1.9e+04
16 35:51 1.7e+04 0.92 n
1.7e+04
17 35:55 9.5e+03 1.47 n
9.5e+03
18 36:01 l.Se+04 0.65 n
l.Se+04
19 36:03 2.Oe+04 0.85 n
2.Oe+04
Cone
0.00
4
C
0.06
c
c
0.04
0.
0.01
]
0.01
0.0":
0.02
unnamed
unnamed
Area Height
S/N Mod?
4.4e+03 3.0e+03 6.1e-01 n n
5.7e+03 3.7e+03 l.le+00 n n.
5 " •
5.6e+04 1.8e+04 3.6e+00 y n
5.0e+04 2.2e+04 6.4e+00 y n
1
6.06+04 2.4e+04 4.9e+00 y n
i " 14 i 4e+04 4.1e-i-aQ y n
•;j.4e+03 8.2e+03 1.6e+00 n n.
9.9e+03 5.1e+03 1.5e+00 n n
1.36+04 6.8e+03 1.4e+00 n n
7.26+03 3.8e+03 l.le+OQ n n
L
1.6e+04 6.5e+03 1.3e+00 n n
9.6e+03 4.8e+03 1.4e+00 n n
4.0e+04 l.Oe+04 2.0e+00 n n
3.26+04
0.01
1.7e+04 7.9e-t-03 1.6e+00 n n
1.8e+C,4 5.9e+03 1.7e+00 n n
2.9e-t-04 7.5e+03 l.Se+00 n n
8.7e+03 3.7e+03 l.le+00 n n,
i.8e+03 3.3e+03 6.7e-01..n n
i,.4ei-03 2.8e+03 8.0e-01 n n
i'.4e+03 3.6e+03 7.1e-01 n n
5.5e+03 2.6e+03 7.4e-01 n a
0.01
1.7e+04 5.0e+03 l.Oe+00 n n
7.26+03 2.4e+03 7.0e-01 n n
O.OL
0.04
0.01
0.01
1.26+04 S.le+03 l."0e+00 n n-
7.2e+03 2.46+03 7.0e-01 n n
}
3.2e+04 9.9e+03 2,0e+00 n n
3.1e+04 1.2e+04 3.4e+00 y n
L
9.8e+03 5.4e+fP " "* T--^? •
8.7e+03 4.2e+oj - • ">--£'.&i.O
8.1e+03 3.9e+03 7.7e-01 n n
8.7e+03 4.2e+03 1.2e+00 n n
0.00
5.7e+03 3.5e+03 6.9e-01 n n
3.8e+03 2.5e+03 7.1e-01 n n
0.01
0 01
7.0e+03 4.1e+03 8.1e-01 n n
l.le+04 3.4e+03 9.8e-01 n n
1
9.1e+03 5.76+03 l.le+00 n n
l.le+04 3.4e+03 9.8e-01 n n
r'
-------
OPUSguan 30-SEP-1998 Page 4
20 36:06 8.9e+03 1.12 y 0.00
8.9e+03 4.7e-i-03 4.2e+03 8.4e-01 n n
4.2e+03 2.8e+03 8.Oe-01 n n
21 36:08 1.3e+04 2.39 n 0.01
1.3e+04 9.26+03 4.7e+03 9.4e-01 n n
3.96+03 2.1e+03 6.Oe-01 n n
22 36:15 1.7e+04 0.74 n 0.01
1.7e+04 7.3e+03 4.5e+03 9.Oe-01 n n
9.9e+03 3.2e+03 9.2e-01 n n
23 36:17 2.6e+04 1.67 n 0.01
2.6e+04 1.6e+04 4.1e+03 8.1e-01 n n
9.9e+03 3.2e+03 9.2e-01 n n
24 36:23 l.le+04 0.80 n 0.01
l.le+04 5.06+03 2.9e+03 5.7e-01 n n
6.36+03 3.8e+03 1.le+00 n n
-------
PUSquan 30-SEP-1998
Page 5
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no fHom:16
Run: 7 File: a26sep98m S:14 Acq:27-SEP-98 03:C5:54 Proc:28-SEP-98 12:06:42
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: 1114-2 xl/1
Amount: 0.25
Cone: 0.25
Tox #1: -
Name
of which 0.08
of which 0.08
Tox #2: -
# RT Respnse
named and 0.18
named and 0.18
Tox #3: -
RA
1 34:47 7.8e+04 3.07 n
7.8e+04
2 34:51 9.16+04 3.42 n
9.1e+04
3 34:56 l.Oe+05 1.36 y
l.Oe+05
35:02 2.4e+04
2.4e+04
0.77 n
5 35:13 1.7e+04 1.34 y
1.7e+04
1,2,3,4,7,8-HxCDD 6
1,2,3,6,7,8-HxCDD 7
8
1,2,3,7,8,9-HxCDD 9
35:19 3.56+04
3.5e+04
1.59 n
35:23 8.36+04 0.94 n
8.3e+04
35:29 l.le+04 0.94 n
l.le+04
35:35 6.2e-i-04 0.73 n
6.2e+04
10 35:43 l.le+04 0.46 n
l.le+04
11 35:51 1.3e+04
1.36+04
1.89 n
12 35:56 1.2e+04 1.56 n
1.2e+04
13 36:01 l.le+04 0.27 n
l.le+04
14 36:10 1.7e+04 0.66 n
1.7e+04
15 36:13 1.4e+04 0.57 n
1.4e+04
16 36:21 l.Oe+04 0.78 n
l.Oe+04
Cone
0.03
C
]
0.04
0.04
unnamed
unnamed
Area Height S/N Mod?
5.9e+04 2.2e+04 7.5e+00 y n
1.9e+04 6.4e+03 2.le+00 n n
1
7.0e+04 2.4e+04 8.3e+00 y n
2.0e+04 7.4e+03 2.4e+00 n n
I
6.0e*04 2.4e+04 8.le+00 y n
.,-u4 1.5e+04 4.9e-t-00 y n
0.01
0.02
0.03
l.le+04 4.8e+03 1.6e+00 n n
1.4e+04 6.8e+03 2.2e+00 n n
L
9.6e+03 6.0e+03 2.0e+00 n n
7.26+03 5.1e+03 1.7e+00 n n
I
2.1e+04 9.3e+03 3.2e+00 y n
1.36+04 8.1e+03 2.66+00 n n
3
4.0e+04 1.6e+04 5.5e+00 y n
4.3e+04 9.*^;*, .,
0.00
3.2e+03 1. le+00 n n
4,le+03 1.3e+00 n n
0.00
0.01
2.6e+04 1.2e+04 4.0e+00 y n
3.66+04 9.4e+03 3.1e+QO y n
3
3.5e+03 1.2e+03 4.1e-01 n n
7.5e+03 2.96+03 9.36-01 n n
«.8e+03 2.4e+03 B.Oe-01 n n
4.66+03 2.8e+03 9.26-01 n n
0.01
7.3e+03 4.3e+03 1.5e+00 n n
4.7e+03 2.3e+03 7.6e-01 n n
0.00
0.01
0.01
2.3e+03 1.2e+03 4.1e-01 n n
8.4e+03 4.7e+03 1.5e+00 n n
1
6.7e+03 2.7e+03 9.1e-01 n n
l.Oe+04 3.7e+03 1.2e+00 n n
L
4.9e+03 3.6e+"-> ' ' "
8.6e+03 4.3e+0j _ . , _ .. ..
0.00
4.5e+03 2.0e+03 6.7e-01 n n
5.8e+03 3.0e+03 9.7e-01 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407,782 409.779 Mod? no iHom:6
Run: 7 File: a26sep98m S:14 Acq:27-SEP-98 03:05:54 Proc:28-SEP-98 12:06:42
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: 1114-2 xl/1
Of f 086
-------
OPUSquan 30-SEP-1998
Page 6
Amount: 0.18 of which 0.11
Cone: 0.18 of which 0.11
Tox #1: - Tox #2: -
Name # RT Respnse
1,2,3,4,6,7,8-HpCDFl 37:01 1.26+05
1.2e+05
2 37:19 3.1e+04
3.1e+04
3 37:45 l.le+04
l.le+04
l,2,3,4,7,8,9-HpCDF4 38:11 4.5e+04
4.56+04
5 38:14 3.3e+04
3.36+04
6 38:40 1.8e+04
l.Se+04
named and 0.07
named and 0.07
Tox #3: -
RA
0.61 n
1.24 n
0.77 n
1.69 n
0.98 y
1.50 n
Cone
0.08
4
1
0.02
1
]
0.01
4
£
0.04
3
0.02
3
3
0.01
unnamed
unnamed
Area Height
4.4e+04 1.6e+04
7.3e+04 2.06+04
2
1.7e+04 6.36+03
1.4e+04 3.6e+03
4.8e+03 1.96+03
6.1e+03 2.0e+03
1
2.86+04 7.3e+03
1.7e+04 5.7e+03
1.66+04 5.8e+03
1.7e+04 5.7e+03
L
l.le+04 3.3e+03
7.2e+03 2.66+03
S/N Mod?
2.8e+00 n n
7.6e+00 y n
l.le+00 n n
1.4e+00 n n
3.4e-01 n n
7.6e-01 n n
1.3e+00 n n
2.2e+00 n n
l.Oe+00 n n
2.2e+00 n n
5.96-01 n
9.76-01 n
087
-------
OPUSguan 30-SEP-1998
Page 7
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:5
Run: 7 File: a26sep98m S:14 Acg:27-SEP-98 O...J5-!.<1 ,- jo: 28-SEP-98 12:06:42
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: 1114-2 xl/1
Amount: 0.17
Cone: 0.17
Tox #1: -
Name
of which 0.08
of which 0.08
Tox #2: -
# RT Respnse
named and 0.08
named and 0.-J3
Tox #3: -
RA
1 37:13 8.66+04 1.71 n
8.66+04
l,2,3,4,6,7,8-HpCDD2 37:501.26+05 1.33n
1.2e-i-05
3 38:20 6.06+03 1.27 n
6.0e+03
4 38:37 8.9e+03 0.99 y
8.96+03
5 38:44 l.le+04 0.69 n
l.le+04
Cone
0.06
C
3
0.08
e
c
0.00
3
0. Ji
4
4
0.01
unnamed
unnamed
Area Height
S/N Mod?
5.4e+04 1.6e+04 7.7e+00 y n
3.26+04 1.2e+04 7.6e+00 y n
3
6.7e+04 1.7e+04 8.2e+OQ y n
S.Oe+04 1.7e+04 l.Oe+01 y n
'3 1.7e+03 7.9e-01 n n
: j..2e+03 7.3e-01 n n
.46+03 1.7e+03 8.2e-01 n n
.5e+03 2.76+03 1.7e+00 n n
4.6e+03 1.7e+03 8.1e-01 n n
6.7e+03 2.66+03 1.6e+00 n n
r c
0
-------
File
Samp
319.
100S
50 :
o"
321.
100%
50:
0:
:A26SEP98M #1-488
le#14 Text: 1114-2
8965 S:14 BSUB(128
Acq:27-SEP-1998 03:
xl/1
,15, -3.0) PKD(3,3,2
26:14
1
24:40 25.Q2 25:59/l]
25100
8936 S:14 BSUB(128
24:22 24:58
25 100
331.9368 S:14 BSUB(128
100%
'.
50:
o:
333.
100%
50:
0:
327.
100%
50:
0:
316.
100%
50:
o:
25:00
9339 S:14 BSUB(128
• r" • ""T —-T" T • r i ' i
25:00
8847 S:14 BSUB(128
1 1 1 1 1 1 r
25:00
9824 S:14 SMO(1,3)
24:10 24-33 24-59
"">! i i i i i i
-> 25:00
I 1 1 1 1 j r- • i
26:00
,15, -3.0) PKD(3,3,2
26:11
25:19 25:58/\
' ' ' 26 loo' '
,15, -3.0) PKD(3,3,2
26:00
,15, -3.0) PKD(3,3,2
1 r- ' ' 1 ' '
26:00
,15, -3.0) PKD (3, 3, 2
26:00
PKD(3,3,3,100.00%,
25:42
i r , . | .
26:00
05:54 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DB5_OVATION
, 0.10%, 3 040. 0,1. 00%, F,F)
28:22
L 29:27
^>/W^ly^^
27 100 28 100 29 I 00 30:00
, 0.10%, 2316. 0,1. 00%, F,F)
29:27
26:36 27:01 27:55 28:23 29 'i£j!lU Vv^jL/^30 : °9 30:41
27100 28:00 29:00 30:00
1.6E4
_7 . 8E3
•O.OEO
Time
3.9E4
.2.0E4
' O.OEO
Time
, 0.10%, 14016. 0,1. 00%, F,F)
29:08 n2.8E7
A 29:25
27:00 28:00 29:00 30:00
, 0.10%, 6304. 0,1. 00%, F,F)
29:08
A 29:25
IU
27loO 28100 29100 3oloO
, 0.10%, 9244. 0,1. 00%, F,F)
29:27
A
A
27loO 28:00 29loO 30:00
_1.4E7
O.OEO
Time
3.5E7
_1.7E7
O.OEO
Time
4.8E7
_2.4E7
O.OEO
Time
0.0,1.00%,F,F)
_?6-35 ?7-00 27-2.3 27-48 28:22 28i49_29-ll 59:34 30 = 04 !Qj_i4_ -9.7E7
Ar™__
27:00 28:00 29:00 30:00
_4.9E7
O.OEO
Time
O
00
CD
-------
File:A26SEP98M #1-217 Acq:27-SEP-1998 03:05:b4 GC El-t- Voltage SIR Autospec-UltimaE
Sample#14 Text:1114-2 xl/1 Exp:EXP_M23_DB5_OVATION
355.8546 S:14 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,4160.0,1.00%,F,F)
lOOi
so:
0.
32:10
32:34
33:01
33:14
_1.9E4
19.5E3
.O.OEO
3l!do' ' 'si!^' ' 31524' ' 31536' ' '31148 ' 32 5 do' ' '32512' ' 32524' ' 32! 36 ' 32548' ' 33 5 do' ' 33512' ' '33!24' ' 33 {36 ' 33148 Time
357.8517 S:14 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,1792.0,1.00%,F,F)
1004
50J
33
_1.1E4
_5.7E3
O.OEO
3l!do "3i!i2 "3l!24' ' 3l!36" 3l!48 ' 32!00 32ll2 32124 32136 32148 33iOO 33ll2 33124 33136 33148 Time
367.8949 S:14 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,7360.0,1.00%,F,F)
100% 33,-13 r4.9E7
12.4E7
50J
~i—i—i i i—i—i—i i i i i i
3l!oO 31:12 31:24
.O.OEO
31 !36 ' 31S 48 ' 32:00 ' 32 S12 ' 32 ! 24 '' '22*36 ' 32548' ' 33 5 00 33:12 33:24 33:36 33:48 Time
369.8919 S:14 F:2 BSUB(128,' .-3.0) PKD(3,3,2,0.10%,3140.0,1,00% \F)
1004
50J
33:13
31:00 3iSl2 ' 31:24' ' 31:36 31.-48 32:00 32:12 32:24 31 36
366.9792 S:14 F:2 SMO(1,3) PKD(3 , 3 .. 3,100 .00%, 0 .0,1.00%, F, F)
1004 3lL26__31jJia_.3Ja52__3^J13_aZa4Jai22 32.
_3.0E7
_1.5E7
.O.OEO
-i—i—i—i—i—i—i—I i l I i i i i i | i i i i n i i i f
8 33!00 33:12 .33:24 : .36 33:48 Time
so:
o:
..1E8
L5.3E7
T—I—I—I—I—1-T—I—I—I—1—I—I—I—I—I—1—I—I—I l l I ' | ' r
31 rOD' 31:12 3l!24 31:36 31:48
I'O.OEO
32! 12 ' 32! 24 ' 32! 36 ' 3248 33oo 33. 12 33 24 33 36 3348
Time
-------
|File-A2"6SEP98M #1-189 Acq:2'7-SEP-199tt 03:0b:b4 GC EI+ Voltage SIR Autospec-Uitimaa
Sample#14 Text:1114-2 xl/1 Exp:EXP_M23_DB5_OVATION
389.8156 S:14 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,2952.0,1.00%,F,F)
100% 34;51
so:
34:29
34:18 A
•> A A- /V VW^y
35:23
35:35
35:1
_2.6E4
_1.3E4
.O.OEO
'34124' ' '3i\36' ' 'it-IB
35 loo' 35:12 35:24 35:36 35:48 36:00
391.8127 's:"l4 F~: 3 BSUB(128". 15, -3~6]i" PKD(3 , 5, 2, 0 .10%, 3060 . 0 ,1. 00%, F, F)
100%
so:
34!oV ' '34I121 ' '34124' ' '3t\36 ' '34148 3s!oO 35!l2 35124 35:36 35:48 36:00
401.8559 's:14 F:3'BSUB(128,15,-3.0) PKD(3,5,2,0.10%,10872.0,1.00%,F,F)
100%. 35;22
so:
35:35
35:1
36:12 36:24 Time
1.6E4
_8.0E3
O.OEO
36:12 36:24 Time
4.3E7
12.2E7
.O.OEO
0.
rr
34!00' ' '34! 12' ' '34!24' ' '34T36' ' '34! 48' ' 'asSo'o' '35112' 35124
403.8530 S:14 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,8696.0,1.00%,F,F)
100% 35;22
so:
35:1
'34!o'o' ' '34:l'2' ' '34:2'4' ' '34136' ' '34!48' '35:00
35:12
380.9760 sTl4 F^3 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%, F, F)
100%
so:
35:48 36:00 36:12 36:24 Time
35! 24 35:36 35:48 36:00 36:12 36:24 Time
O.OEO
'34S 12' ' '34S24' ' '34 1 36'
sSlV ' '35J24'
35 4s
36:12 36:24 Time
O
CD
-------
File:A26SEP98M #1-193 Acq:27-SEP-1998 03:05:54 GC EI+ Voltage SIR Autospec-UltimaE
Sample#14 Text:1114-2 xl/1 Exp:EXP_M23_DB5_OVATION
423.7767 S:14 F:4 BSUB(128,15,-3 . 0) PKD(3,5,3,0.10%,2116.0,1.00%,F,F)
1003; 37:13 37..-50
50J
36:59
36:30 36=41
L9.0E3
.O.OEO
36:36 36:48 37!00 31:12 37i24 37i36 37148 38iOO
425.7737 S:14 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,1600.0,1.00%,F,F)
100%, 37; 49
37:13
so:
VsbV ' '38:36' ' YsUV ' '39(00 Time
1.7E4
18.6E3
38:12 38:24 38:36 38:48 39:00 Time
36i36 36148 37^00 37il2 37124 37136 37148 3s!oO
435.8169 S:14 F:4 BSUB(128,15,-3.0) PKD(3,5,3 0.10%,18668.0,1.00%,F,F)
100%, 37:48
50J
36:36 36:48
37! 48 38 1 00
37-00 37:12 37:24 37: 36
37.8140 S»,U F:4 BSUB(128,1 ,-3.0) PKD(3 , 5, 3 , 0 . 10%, 8192 . 0, 1 . 00% \F)
00%, ! -,..- •, 37:48
so:
36 36 36:48 37:00 37:12 37:24 . 37:36 37:48
30.9728 S:U F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1,00%.F,P)
00%,
50.
_1.6E7
L8.0E6 ,
n.OF.n
38il2 38:24 38:36 ~>B:48 39:00 Time
1.6E7
L7.8E6
.O.OEO
38:12 38:24 38:36
_<9, 4E7
.0". OEO
T~" ' i T T- i—i—r—|—i—r—i—i—i—f—|—i—i—i—i—|—i—i—i—i—i—|—i——i—r—r—|—i—i—'—r-i—i—t 1*1—r—:—i—i—i—i—i—i—i—i—i r-i—i—i—i—i—i—i—i—i—i—i'"i'*"i' i' i • i—i—i—i—f~ ° • U-tl"
36:36 36:48 37:00 37:12 37:24 37:36 37:48"* '38:00 38:12 '38:24 38:36 ';3e-48 39:00 Time
•v
!-'X
-------
File:A26SEP98M #1-277 Acq:27-$EP-199« 03:05:54 GC EI+ Voltage SIR Autospec-UltimaE
Sample#14 Text:1114-2 xl/1 Exp:EXP_M23_DB5_OVATION
457.7377 S:14 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,7872.0,1.00%,F,F)
100% 40:44
so:
42:01
_1.7E4
O.OEO
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
459.7348 S:14 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,1876.0,1.00%,F,F)
100% 40;44
50J
_2.9E4
11.5E4
39:14
42:11
.O.OEO
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
469.7780 S:14 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,3848.0,1.00%,F,F)
100% 40^44
50J
L5.9E6
" I i i i i I i i i i i I i i i i i I i i i i i I I i i i i i i i i i i i i | i •*! i i i | i i i ii | i i i i i | i i i i i | i i i i i | | i i i i i | i i i i i | i
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
471.7750 S:14 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,456.0,1.00%,F,F)
100% 40^44
50J
..1.3E7
_6.5E6
" \ i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i in i i i i i i i ' i| ' i' i' i i' | i ' t i i | i i i i i | i i i i i | i i i i i | i i i i i | i '
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
454.9728 S:14 F:5 SMO(1,3) PKD(3,3,3,100 . 00%,0.0,1.00%,F,F)
100%, TQ;?fi 19-4"* 39:5.6 40:07 40:26 AO: 38 40:48
50J
41:06 41;17
41:36 4j;47
42-09 ^2 . 1E8
•v
_1.0E8
o i \ ,,,,,,,,,, ' ° • OEO
'39!i2 39:24 ' 39:36 ' 39:48 40:66 40:12 ' 4o!24 ' 40:36 40:48 41:66 41:12 41:24 41:36 41:48 42I66 42:12 Time
O
CD
-------
Fiie:A26SEP98M #1-488 Acq:27-SEP-1998 03:05:54 GC EH- Voltage SIR Autospec-ultimaE
Sample#14 Text:1114-2 xl/1 Exp:EXP_M23_DB5_OVATION
303.9016 S:14 BSUB(128,15,-3 . 0) PKD(3,3,2,0.10%,2816.0,1.00%,F,F)
100% 25:48 28;25
25:32 I „„.,, 27:23 27:49
-1.1E4
_5.5E3
25:00 26:00 27:00 28:00
305.8987 S:14 BSUB(128,15,-3 .0) PKD(3,3,2,0.10%,6372.0,1.00%,F,F)
100% 28:24
24:12 25:15 27:31 I.
29:00
30:00
.OEO
Time
25:00 26:00 27:00 28:00
315.9419 S:14 BSUB(128,15,-3.0) PKD{3,3,2,0.10%,7628.0 ,1.00%, F,F)
100% 28:23
29:00
30 loo'
O
Time
^2.9E7
25:00 26:00 2 :00 28:00
317.9389 S:14 BSUB(128,15,-3 . 0) PKD(3 , 3 , 2, 0 .10%, 62 • f, .0,1. ( ,F,F)
100%, . 28:23
2S )
30:00
O
_,._LO.OEO '
Timei
.3.7E7 ;
j
:1.8E7 I
25:00 26:00 27:00 s
375.8364 S:14 BSUB(128,15,- )) PKD(3,3,3,100.00%,160.0,1.00%,F, I
100% t<
: • 27:38
I 1 1 1 T-
29:00
30:00
.O.OEO
Time
50J
oJ
24:18
24:49
:1
26:108. 26:39 '27:03
>8:06
28:25
25:00 26:00 27:00
316.9824 S.-J4 SMO(1,3) PKD(3 , 3 , 3 , } Cu . 00%, 0 . 0, ';, . 00%, F. ^'
23:00
29-49 '- :° 30:41
29:00
30:00
28:22 28:4929:1.129:34 30:04
.O.OEO
Time
^.9.7E7
"" 1 r
26:00
L4.9E7
O.OEO
25:00
27:00
28:00'
29 loo'
30:00
Time
-------
File:A26SEP98M #1-217 Acq: 27-SEP-1998 03:05:54 GC El-t- Voltage SIR Autospec-UltimaE
Sample#14 Text:1114-2 xl/1 Exp:EXP_M23_DB5_OVATION
339.8597 S:14 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,1980.0,1.00%, F, F)
10°* 32:34 33;01
50J
OJ
32 : 03
32:23
32:45
T ' T~T ' '—| i—i—i—'—r—|—i—i—i—i—i—i—i—r ri TrPrirT"TT"'rgi—r-i—i—i—i—i—r^PT" i—i—i—i—j -i i ri i i V'l i 'i t T'T^^r'i^f i—i—i—i—r—i V r' n i**ir-| "i i "T't i |"i ^T=^IWII • ]
31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 33:48
_3.4E4
L1.7E4
/s ___ .
33:17
.O.OEO
Time
..8E4
I.8E3
.OEO
Time
'.7E7
I.8E7
I. OEO
Time
OE7
5E7
OEO
Time
9E4
5E3
OEO
Time
.1E8
.3E7
.OEO
Time
341.8568 S:14 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,5420.0,1.00%,F,F)
100$ 32:34
50J
33:01
-1—i—i—i—i—i—I—i—i—i—i—i—F—i—r—i—\—i—i—r—i—i—i—i—i—i—i—i—i—i—i—i-h—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r—i—i—i—r-
31iOO 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 33:48
351.9000 S.-14 F:2 BSUB(128,15,-3 . 0) PKD(3 , 3 , 2, 0 .10%, 1340 . 0,1. 00%, F, F)
100Sj 32:34
50J
OJ
33:00
31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 33:48
353.8970 S:14 F:2 BSUB(128,15,-3.0) PKD(3,3,2 , 0.10%,3036.0,1.00% , F,F)
100%,
50J
OJ
32:34
33:00
]" I I II I I II I—r "1 'IT! I T "t ! IT! I—1~~|—I—I—I—I—I 'T'T T'T"I—I—I—I—I—I—I—1~I—I—F" I' "T—T—1—! Tl 'I'" I I I T"T l^1] T'T'T I i j f |—T I I I I I—I—I—P-]—1—|—I—I—I—[—T
31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 33:48
409.7974 S:14 F:2 BSUB(128,15,-3.0) PKD(3,3,3 ,100.00%, 2616.0,1.00%,F,F)
100* 32;36
31:07
5
.2.
O.
so
OJ
33:14
]—i—i—i—i—i—|—l—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r-i—i—i—i—i—i—i—i—i—TT—i—i—i—i—i—i—i—i—i—i—i—i—I—i—i—i—i—i—I—i—\—i—i—i—i—i—i—i—i—r-r—i—i—i—i—i—i—i—i—\—i—i—i—r
31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 33:48
1
L9
O
366.9792 S:14 F:2 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100* 31;3fi 31;iq 31: S3 33;m 33:1433:33
50J
OJ
32:53 __ 33:09
-33
i i i i I i i i i i I i i i i i I i i i i i I | i i i i i i i i i i i | i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i
31100 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 33:48
_ _____________
(£
C/l
-------
File:A26SEP98M #1-189 Acq:2'/-SEP-199B 03:Ub:b4 GC EI+ Voltage SIR Autospec-UltimaE
Sample#14 Text:1114-2 xl/1 Exp:EXP_M23_DB5_OVATION
373.8207 S:14 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%, 4992.0,1.00% , F,F)
100%, 34:52
34:47 A
34:01, 3/U/\34:23 34 : 35 34 J W W^^T -/A M .^15 : 28 35:3^:49 35:59^6:08
50J
2.6E4
_1.3E4
O.OEO
sTToo
I
'34 I 36'
34148' ' '35!do' ' '35112' ' '35124
34:12 34:24
375.8178 S:14 F:3 BSUB(128,15,-3 . 0) PKD(3,5,2,0.10%,3480.0,1.00%,F,F)
100%
l\
34:52
35:48 36:00
50J
34:08
34:24
35:14
35-01 35:09,
36:12 36:24 Time
O.OEO
'34!6o' ' '34!l2' ' ' 3412V ' ' 34\36' ' '34 5 48' 35-!6o
35:12 35:24
383.8639 S:14 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%, 59332.0 ,1. 00%,F,F)
100% 34;51
34:4'
50 J
3548
Oj
36:12 36:24 Time
3.5E7
L.1.7E7
' '34,\00' ' 34^12' ' '34524' ' '34!36' ' '34S48 35100 :5!l2 35i24
385.8610 S:14 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,14850" 0,1.00%,F,F)
100% '. 34^51
'*«.
! 36 35:48 36:00
50J
0.
34:4
36:12
' £.
i — r— T-I- i
O.OEO
•24 Tim*
6.6E7
L3.3E7
LO.OEO
445
lOOi
50 j
'34!0fl' ' '34-121 ' '34:: ' ' '34136' ' '34148' ' '35iOO' 35il2 .. 35!24 3s!36 35;48 36:00 *. 6:12 36:24 Time
.7555 's'il4 F:3, BSUB(128, -,-3.0) PKD(3 , 3 , 3 ,100 .£0%, 392 .'0,1. OC *, F, F) .
a. ,, •' ' • . 35:22 ->c.^i • • 1.SE4
34:10 34;19 :,".-.• 34:33 34:42
-11
7.4E3
LO.OEO
34!o'l)' ' '34S12' ' '34!24' ' '34!36' ' 34148 35!00 35I12 35:24 35:36 35:48 36:00 '6:12 36:24 Time
380.9760 S: .4 F:3 SMO(1,3) PKD(3,3,",100.00% C.1,1.00%, F, ?) V
35_iJ32-- 35:19' 3S;34 .. _. ?.r>,_ol .. 36:15 ^3.0E8
100%
50 J
0^
34jO3
v-
' '"I"'
' i "§
'
l . 5E8 '
O.OEO
34:00
"34] iV ' '34! 24 .T"r34"-"36 34i48 35:00 -3c'l2 ' 35:24 35:36 35:48 36:00 3'6:12 36:24 Time
-------
iFile:A26SEP98M #1-193 Acq:27-SEP-1998 03:05:54 GC EI+ Voltage SIR Autospec-UltimaE
Sample#14 Text:1114-2 xl/1 Exp:EXP_M23_DB5_OVATION
407.7818 S:14 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,5612.0,1.00%, F,F)
100% 37:01
37:24 37:36
38:36 38:48
36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24
409.7788 S:14 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%, 2656.0,1.00%,F,F)
100% 37:00
36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24
417.8253 S:14 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,8296.0,1.00%,F,F)
100% 36:59 . <\
38:36 38:48
50_
38:10
39:00 Time
1. OE7
_5.0E6
i r" i "r "j" r--i i i r i 'i -i i "f — i -r" i 'r " 1 i r i ' | I I' 1 i I I I i "i i 'i I r i T r,*~i - 1 i — n — i — i — i — i — i — r*T — r— i — t i • r i i T T '1"T
36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 . 38:24
419.8220 S:14 F:4 BSUB(128, 15, -3 . 0) PKD(3, 5, 3 , 0 . 10%, 11080 . 0, 1 . 00%,F,F)
100% 36;59 ,
O.OEO
50:
0.
i"^"t r i i T i — i i -T \ i i
38:36 38:48 39:00 Time
..2.2E7
38:10
36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
479.7165 S:14 F:4 BSUB(128, 15, -3 .0) PKD(3, 3 , 3, 100 . 00%, 2312 . 0, 1 . 00%, F,F)
100% ,, ., 37:24 37:50
3848 39:
.O.OEO
00 Time
36:43
37:07
36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24
30.9728 S:14 F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
00% 36:3R 2f:W 37:17 37:39
\r
50:
o
O.OEO
38S36' ' '38148' ' YgloO Time
38:37 38;47 _1. 9E8
_9.4E7
'36:36 ' ' 36:48
.O.OEO
•00 Time
ll2 3? 24 37: 36 3748
'38!l'2' ' '38!2'4'
'38: 48'
-------
File:A26SEP98M #1-277 Acq:27-SEP-1998 03:05:54 GC EI+ Voltage SIR Autospec-UltimaE"
Sample#14 Text:1114-2 xl/1 Exp:EXP_M23_DB5_OVATION
441.7427 S:14 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2184.0,1.00%,F,F)
lOOi 40,54
O
39:08
41:50 42:06
9.8E3
_4.9E3
O.OEO
39! 12 ' 39!24 '39136 ' 39 Us '46 100 ' 46112 ' 40!24 ' 40 lie ' 40 Us' ' 4l!6d ' 4!! 12 ' 4l!24 ' 41136 ' 41148 ' 42166 ' 42! 12 Time
443.7398 S:14 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,3804.0,1.00%,F,F)
100i ,„ „ 4°J54 41:07
39:11 .."A" ^9^39:54 «?\ W* /T «';« /^f I ....."i", 41:54
OJ
i i i i ' i i i I i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
469.7780 S:14 F:5 BSUB(128,15,-3 . 0) PKD(3,5,3,0.10%,3848.0,1.00%,F, F)
100%, 40,;44
-5.0E3
LO.OEO
50J
ol
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 t.::24 41! 36 41 Us 42166 ' 42; 12
471.7750 S:14 F:5 BSUB (128 ,15 ,-3 . 0) PKD(3 , 5, 3 , 0 .10%, 456 . 0 ,1': 00%, F, F)
100%, 40:44
Time
. .2E7
i.9E6
l. OEO
Time.
39:12 39:24 .39:36 :48 40:00:40:12 40:24 .40:36.." 40j- t 41:00 41:12 41:24 41:36 41:48-
513.6775 S:14 P:5 BSUB(128, ,-3.0) PKD(3f',3 , 3 ,,100 . 00%, 328 , 0,1'. 00 F,F)
100% 39:07 , ' .'.•'. " %'•'•• \ ,
; I ,v .' •, ' i," • "" ., ' ?•**' '•'"'•
39:32A
y AA^ I L_
50J
OJ
139:1 3
39:51
«'•*'. 4'0144
1
_6
!24 41:45
A A AA AAA
42:05
/\
2E4
OE3
.OEO
Time
.1E8
. OE8
.OEO
Time
39:1! 39:24 39:36
40 !od'' 40.-32 ' 4ol24 ' 40:36 40:48 41-00 41:12 4,^24 41:36 41:48 42.-00 42jl2
54.9728 S-.:4 F:5 SMO(1,3) PKD(3 , 3,1 , 100 . 00>
100%, 39^26 ,11^1— 39:ho AQ-.d'.'
50:
OJ
• y. :r 4C...'--5a 41:14 41. -.0 .._41:50;.X
42;Q9
i '.*',
39 !il 39 124^39 lie' 3-9 •'W^^w''. 00 4o1l2 ' 40 S
,6 40 S 48 ' 41:66 ' 41:12 ' 41:24 ' 41:36 '41:48 42i:00' 42:12
-------
Section 4
Svsteni PerfoKBianc
Section 4-1
Mass Spectrometer Performance Check
Mass Resolution
Documentation for the Analysis
of
Polychlorinated Dibenzo-/;-Dioxins & Dibenzofurans
o
CD
CD
-------
Peak Locate Examination :26-SEP-1998: 16 : 44 File:A26SEP98M
Experiment :EXP_M23_DB5_OVATION Function:! Ref erence: PFK317
PPM Volts
200 7.0574
292.9533
A
/ \
/ \
V V
.5 292.98245 25
J3. 01175
PPM Volts
200 7.2322
PPM Volts
200 _ 2.8083
/A
i/W \
r \
\ "
V \
1 n
/ 'A
j/ \
1 vv.
304.95195 304.98245 305.01295
PPM Volts
200 _ 5.6523
PPM Volts
200 _ 1.6105
A
f v
^ \
Y \
316.95075 316.98245 317.01415
PPM Volts
200 _ 2.5274
330.94615 330.97925 31,01235
342.94495 342.9792 343.01355
354.94375 354.S 325 355.01475
PPM
200
Volts
1.5550
PPM
200"
Volts
3,7788
366.94255 366.97925 367.01595
380.93795 380.97604 381.01414
-------
Peak Locate Examination:27-SEP-1998:09:34 File:A26SEP98M
Experiment:EXP_M23_DB5_OVATION Function:! Reference:PFK317
292.95315 292.98245 293.01175
Volts
1.2782
304.95195 304.98245 305.01295
Volts
0.7412
316.95075 316.98245 317.01415
Volts
2.7590
330.94615 330.97925 331.01235
Volts
2.0534
342.94495 342.97925 343.01355
Volts
0.9231
354.94375 354.97925 355.01475
Volts
0.5543
Volts
1.1364
36§.94255 366.97925 367.01595
380.93795 380.9.7604 381.01414
-------
Peak Locate Examination.-29-SEP-1998:16:13 File:A29SEP98M
Experiment:M23_DB225 Function:! Reference:PFK317
PPM
200
Volts
4.3756
292.95315 292.98245 293.01175
Volts
1.5745
304.95195 304.98245 305.01295
Volts
0.7865
316.95075 316.98245 317.01415
Volts
5.2705
330.94615 330.97925 331.01235
342.94495 342.979 5 343.01355
Volts
1.0846
36^.94255 366.97925 367.01595
Volts
4.1962
PPM
200
Volts
1.9377
\
\
***"^i -i
925 355.01475
(PPM
200
Volts
3.7785,
380.93795 380.97604 381.01414
-------
Peak Locate Examination:30-SEP-1998:03:46 File:A29SEP98N
Experiment:M23_DB225 Function:! Reference:PFK317
Volts
0.5715
292.95315 292.98245 293.01175
Volts
0.1900
304.95195 304.98245 305.01295
Volts
0.0968
316.95075 316.98245 317.01415
Volts
0.7414
330.94615 330.97925 331.01235
PPM
200
Volts
0.6406
Volts
0.2803
7
\
342.94495 342.97925 343.01355
354.94375 354.97925 355.01475
Volts
0.1667
Volts
0.6131
3ft$j94255 366.97925 367.01595
380.93795 380.97604 381.01414
O
-------
Section 4
System Perfon
Section 4-2
Gas Chromatography Performance Check
Isomer Specificity & Retention Time Windows
Documentation for the Analysis
fc' i
cf
Polychlorinated Dibenzo-/j-Dioxins & Dibenzofurans
-------
EMTIC TO-002 NSPS TEST MBTHOD Page 12
Water vapor in the gas stream (from Method 5 or Reference
Method 4), proportion by volume.
Pitot tube coefficient, dimensionless.
Pitot tube constant,
34.97 '- (g/g-mole) (mmHg)11/2
sec
(mmH20)
for the metric system.
85.49
ft f Ib/lb-mole) (in. Hg) 11/2
sec I (°R) (in.H2O)
for the English system.
Ma - Molecular weight of stack gas, dry basis (see Section 3.6),
g/g-mole (Ib/lb-mole) .
M. • Molecular weight of stack gas, wet basis, g/g-mole (Ib/lb-
mole) .-•
"=MH(1-BUJ + 18. OB,.
Eg. 2-5
Pb»r » Barometric pressure at measurement site, mm Hg (in. Hg)
P9 « Stack static pressure, mm Hg (in. Hg).
P. • Absolute stack pressure, mm Hg (in. Hg),
w + P
bar
Eg. 2-6
* Standard absolute pressure, 760 mm Hg (29.92 in. Rg) .
Q.* - Dry volumetric stack gas flow rate corrected to standard
conditions, dsmVhr (dscf/hr).
t. - Stack temperature, *C (°F).
-------
EMTIC TM-002 NSPS TB8T METHOD ;,- >>M^*Page 11
carefully reexamined in top, side, and end views. Xf the pitot face openings are
still aligned within the specifications illustrated in Figure 2-2 or 2-3, it can
be assumed that the baseline coefficient of the pitot tube has not changed. If,
however, the tube has been damaged to the extent that it no longer meets the
specifications of the Figure 2-2 or 2-3, the damage shall either be repaired to
restore proper alignment of the face openings ,-»?- .*•*>-> *• * •shall be discarded';"'**
':- - >• ^.,.;-^
4.1.6.2.2 Pitot Tube Assemblies. After each field use, check the face opening
alignment of the pitot tube, as in Section 4.1.6.2.1;, also, remeasure the
intercomponent spacings of the assembly. If the tntercomponent spacings have not
changed and the face opening alignment is acceptable, it can be assumed that the
coefficient of the assembly has not changed. Xf the face, opening alignment is
no longer within the specifications of Figure 2-2. or 2-3, either repair the
damage or replace the pitot tube (calibrating the new assembly, if necessary) .
If the intercomponent spacings have changed, restore the original spacings, or
recalibrate the assembly. • - ' / •
4.2 Standard Pitot Tub* (if applicable) . if a standard pitot tube is used for
the velocity traverse, the tube shall be constructed according to the criteria
of Section 2.7 and shall be assigned a baseline coefficient value of 0.99. If
the standard pitot tube is used as part of an assembly, the) tube shall be in an
interference- free arrangement (subject to the approval of the Administrator) .
4.3 Temperature Gauge*. After each field*wst, -«wiLiLx«L_ -ial thermometers,
liquid- filled bulb thermometers, thermocouple-potentiometer, systems, and other
gauges at a temperature within 10 percent , of the average* absolute stack
temperature. For temperatures up to 405°C (7€l°P) ,. use- an AS1J4 mercury- in-glass
reference thermometer, or equivalent, as a reference* alternatively, *sjth«sr' '
a reference thermocouple and potentiometer (calibrated by NBS) or thermometric
fixed points, e.g., ice bath and boiling ...water (corrected Cor barometric
pressure) may be used. For temperatures above -tOS'C (76leF) , use an NBS-
calibrated reference thermocouple- potentiometer system .or an alternative
reference, subject to the approval of the Administrator. .
If, during calibration, the absolute temperature measured with the gauge being
calibrated and the reference gauge agree within, 1.5 percent, the temperature data
taken in the field shall be considered valid. Otherwise, the pollutant emission
test shall either be considered invalid or adjustments. {i£ appropriate). -of the
test results shall be made, subject to the apprjQval og tto Administrator
4.4 Barometer. Calibrate the barometer used agr**"st a mercury barometer."
5. CALCULATIONS
Carry out calculations, retaining at least one extra decimal figure beyond that
of the acquired data. Round off figures after final calculation.
: -*• -
5.1 Nomenclature .
A • Cross -sectional area of stack, m1 *£ t»* .
-------
EMTIC TM-002 NSPS TEST METHOD Page 10
located at or near the center of the duct; however, insertion of a probe sheath
into a small duct may cause significant cross-sectional area blockage and yield
incorrect coefficient values (Citation 9 in the Bibliography). Therefore* to
minimize the blockage effect, the calibration point may be a few inches off-
center if necessary. The actual blockage effect will be negligible when the
theoretical blockage, as determined by a projected-area model of the probe
sheath, is 2' percent or less of the duct cross-sectional area for assemblies
without external sheaths (Figure 2-10a), and 3 percent or less for assemblies
with external sheaths (Figure 2-10b).
4.1.5.2 For those probe assemblies in which pitot tube-nozzle interference is
a factor (i.e., those in which the pitot-nozzle separation distance fails to meet
the specification illustrated in Figure 2-6A), the value of CpU) depends upon the
amount of free-space between the tube and nozzle, and therefore is a function of
nozzle size. In these instances, separate calibrations shall be performed with
each of the commonly used nozzle sizes in place. Note that the single-velocity
calibration technique is acceptable for this purpose, even though the larger
nozzle sizes (>0.635 cm or 1/4 in.) are not ordinarily used for isokinetic
sampling at velocities around 915 m/min (3,000 ft/min), which is the calibration
velocity; note also that it is not necessary to draw an isokinetic sample during
calibration (see Citation 19 in the Bibliography).
4.1.5.3 For a probe assembly constructed such that its pitot tube is always used
in the same orientation, only one side of the pitot tube need be calibrated (the
side which will face the flow) . The pitot tube must still meet the alignment
specifications of Figure 2-2 or 2-3, however, and must have an average deviation
(a) value of 0.01 or less (see Section 4.1.4.4.)
4.1.6 Field Use and Racalibration.
4.1.6.1 Field Use.
4.1.6.1.1 When a Type S pitot tube (isolated or in an assembly) is used in the
field, the appropriate coefficient value (whether assigned or obtained by
calibration) shall be used to perform velocity calculations. For calibrated Type
S pitot tubes, the A side coefficient shall be used when the A side of the tube
faces the flow, and the B side coefficient shall be used when the B side faces
the flow; alternatively, the arithmetic average of the A and B side coefficient
values may be used, irrespective of which side faces the flow.
4.1.6.1..2 When a probe assembly is used to sample a small duct, 30.5 to 91.4 cm
(12 to 36 in.) in diameter, the probe sheath sometimes blocks a significant part
of the duct cross-section, causing a reduction in the effective value of C,ul.
Consult Citation 9 in the Bibliography for details. Conventional pitot-sampling
probe assemblies are not recommended for use in ducts having inside diameters
smaller than 30.5 cm (12 in.) (see Citation 16 in the Bibliography).
4.1.6.2 Recalibration.
4.1.6.2.1 Isolated Pitot Tubes. After each field use, the pitot tube shall be
-------
EMTIC TM-002 NSPS TEST METHOD ... ^X.•- Page 9
mean B-side coefficient; calculate the difference between, these ,two average
values.
4.1.4.3 Calculate the deviation of each of the three A-side values of
Cpti) from Cp (side A), and the deviation of each B-side values of Cp,., from
Cp (side B) . Use the following equation: v. v^ . r% ».. •-
r.-.'.'v *#.-
Deviation = C -C (A or B)
PU) P
.- ;..,, ; , -. Eq. 2-3
4.1.4.4 Calculate o, the average deviation from the mean,..for both the A and B
sides of the pitot tube. Use the fallowing equation: - ' «**••:•??• ""'
3 ":"
£lcp<»> ~ CP(A or B)l
o(side A or B) -
**,••» -. .-- - **' 2"4
4.1.4.5 Use the Type S pitot tube only if-the values. Q£ 0 (f^Lde A) and a (side
B) are less than or equal to 0.01 and if-the abs»lut* apali»e o* '«he.difference
between Cp (A) and Cp (B) is 0.01 or less.
4.1.5 Special Considerations. t-.
4.1.5.1 Selection of Calibration Point. ^rjr * *
2.3 _• ''"',f ''• '
4.1.5.1.1 When an isolated Type S pitot tube..is calibrated, select a calibration
point at or near the center of the duct, and follow the procedures outlined in
Sections 4.1.3 and 4.1.4 above. The Type S pitot coefficients so obtained,
i.e., C, (side A) and
-------
EMTIC TM-002 NSPS TEST METHOD Page 8
4.1.3.4 Read Ap(tdl and record its value in a* data table similar to the one shown
in Figure 2-9. Remove the standard pitot tube from the duct, and disconnect it
from the manometer. Seal the standard entry port.
4.1.3.5 Connect the Type S pitot tube to the manometer. Open the Type 8 entry
port. Check the manometer level and zero. Insert and align the Type S pitot
tube so that its A side impact opening is at the sane point as was the standard
pitot tube and is pointed directly into the flow. Make sure that the entry port
surrounding the tube is properly sealed.
4.1.3.6 Read Ap., and enter its value in the data table. Remove the Type S
pitot tube from the duct, and disconnect it from the manometer.
4.1.3.7 Repeat Steps 4.1.3.3 through 4.1.3.6 above until three pairs of Ap
readings have been obtained.
4.1.3.8 Repeat Steps 4.1.3.3 through 4.1.3.7 above for the B side of the Type
S pitot tube.
4.1.3.9 Perform calculations, as described in Section 4.1.4 below.
4.1.4 Calculations.
4.1.4.1 For each of the six pairs of Ap readings (i.e., three from side A and
three from side B) obtained in Section 4.1.3 above, calculate the value of
the Type S pitot tube coefficient as follows:
c -c APstd
Pis) plstd)
*P.
Bq. 2-2
Where:
Cpc.j • Type S pitot tube coefficient.
Cp(.td) - Standard pitot tube coefficient; use 0.99 if the
coefficient is unknown and the tube is designed according
to the criteria of Sections 2.7.1 to 2.7.5 of this
method.
Ap.td - Velocity head measured by the standard pitot tube, cm
(in.) H,0.
Ap. - Velocity head measured by the Type S pitot tube, cm (in.)
H,0.
4.1.4.2 Calculate Cp (side A), the mean A- aide coefficient, and C, (side B) , the
-------
EMTIC TM-002 RSPS TBST MBTHOD s •! ^ '-• Page* !'7
D. « Equivalent diameter. . ,: ^ •
L • Length.
W - Width.
To ensure the presence of stable, fully developed flow patterns at the
calibration site, or "test section, • the site.w-*- v- •* »"«t«d at least eight
diameters downstream and two diameters upstream ~ xron ch« nearest *i>-**TFr*atrm49i^
NOTBs The eight- and two-diameter criteria are not absolute; other test section
locations may be used (subject to approval of the Administrator) , provided that
the flow at the test site is stable and demons trably parallel to the duct axis.
4.1.2.3 The flow system shall have the capacity, to> generate a test-section
velocity around 915 m/min (3,000 f t/min) . This velocity wast be constant with
time to guarantee steady flow during calibration. Note that Type S pitot tube
coefficients obtained by single-velocity calibration, at 51$ si/rain (3,OOO f t/min)
will generally be valid to ±3 perceuc for the measurement of velocities above 305
m/min (1,000 f t/min) and to ±5 to 6 percent for the measurement: of velocities
between 180 and 305 m/roin (600 and 1,000 f t/min) . If a more precise correlation
between Cp and velocity is desired,, the flow system shall have the capacity to
generate at least four distinct, time- invariant test- section velocities covering
the velocity range from 180 to 1,525 m/min (600 to 5,000 f t/min) , and calibration
data shall be taken at regular velocity intervals over this range (see Citations
9 and 14 in the Bibliography for details). -~ :
f s . 1; ...
4.1.2.4 Two entry ports, one each for the standard. and Type S pitot tubes, shall
be cut in the test section; the standard pitot*.$niery .port shall be located
slightly downstream of the Type S port, so that the. standard and Type 3 impact
openings will lie in the same cross-sectional plane during calibration. To
facilitate alignment of the pitot tubes during,, calibration, it ie advisable that
the test section be constructed of plexiglas or aqroe other transparent material.
4.1.3 Calibration Procedure. Note that this procedure isMt^eneral one and must
not be used without first referring to the special considerations presented in
Section 4.1.5. Note also that this procedure^applies only to single-velocity
calibration. To obtain calibration data for .the A and B sides of the Type S
pitot tube, proceed as follows:
4.1.3.1 Make sure that the manometer is properly .fillejd«»4 that th* oil, is free
from contamination and is of the proper density, 'inspect and leak-check all
pitot lines; repair or replace if necessary.
4.1.3.2 Level and zero the manometer. Turn on the fan, and allow the flow to
stabilize. Seal the Type S entry port.
4.1.3.3 Ensure that the manometer is level and zeroed. .Position the standard
pitot tube at the calibration point (determined as outlined in flection 4.1.5.1),
and align the tube so that its tip is pointed directly into the flow. Particular
care should be taken in aligning the tub*^ to avoid yaw/and pitch angles. Make
sure that the entry port surrounding the tube is properly s«ai«ri ,.._.-.......-— -
-------
EMTIC TM-002 NSPS TEST METHOD Page 6
pitot tube is part of an assembly, calibration may still be required, despite
knowledge of the baseline coefficient value (see Section 4.1.1).
If De, &, and |> are outside the specified limits, the pitot tube must be
calibrated as outlined in Sections 4.1.2 through 4.1.5 below.
4.1.1 Type 8 Pitot Tube Assemblies. During sample and velocity traverses, the
isolated Type S pitot tube is not always used; in many instances, the pitot tube
is used in combination with other source-sampling components (thermocouple,
sampling probe, nozzle) as part of an "assembly. • The presence of other sampling
components can sometimes affect the baseline value of the Type S pitot tube
coefficient (Citation 9 in the Bibliography); therefore an assigned (or otherwise
known) baseline coefficient value may or may not be valid for a given assembly.
The baseline and assembly coefficient values will be identical only when the
relative placement of the components in the assembly is such that aerodynamic
interference effects are eliminated. Figures 2-6 through 2-8 illustrate
interference-free component arrangements for Type S pitot tubes having external
tubing diameters between. 0.48 and 0.95 cm (3/16 and 3/8 in.). Type 8 pitot tube
assemblies that fail to meet any or all of the specifications of Figures 2-6
through 2-8 shall be calibrated according to the procedure outlined in Sections
4.1.2 through 4.1.5 below, and prior to calibration, the values of the
intercomponent spacings (pitot-nozzle, pitot-thermocouple, pitot-probe sheath)
shall be measured and recorded.
r
NOTE: Do not use any Type S pitot tube assembly which is constructed such that
the impact pressure opening plane of the pitot tube is below the entry plane of
the nozzle (see Figure 2-SB) .
4.1.2 Calibration Setup. If the Type S pitot tube is to be calibrated, one leg
of the tube shall be permanently marked A, and the other, B. Calibration shall
be done in a flow system having the following essential design features:
4.1.2.1 The flowing gas stream must be confined to a duct of definite cross-
sectional area, either circular or rectangular. For circular cross sections, the
minimum duct diameter shall be 30.5 cm (12 in.) ; for rectangular cross sections,
the width (shorter side) shall be at least 25.4 cm (10 in.).
4.1.2.2 The cross-sectional area of the calibration duct must be constant over
a distance of 10 or more duct diameters. For a rectangular cross section, use
an equivalent diameter, calculated from the following equation, to determine the
number of duct diameters:
2LW
D« =
* (L + W)
Bq. 2-1
Where:
-------
EMTIC TM-002 NS»S TBST METHOD -V^-^^ Tage 5 '
7.6 cm (3 in.) H20 velocity pressure registers on the nanometer; then/ close off
the impact opening. The pressure shall remain stable for at least 15 seconds;
(2) do the same for the static pressure side, except using suction to 'obtain the
minimum of 7.6 cm (3 in.) HaO. Other leak- check procedures, subject to the
approval of the Administrator, may be used.
3.2 Level and zero the manometer. Because v.na man"«"ptgr level and zero may
drift due to vibrations and temperature changes /-make periodic checks during the
traverse. Record all necessary data as shown in the example data sheet
(Figure 2-5) .
3.3 Measure the velocity head and temperature at the trayexoct points specified
by Method 1. Ensure that the proper differential pressure gauge is being used
for the range of Ap values encountered (see Section 2.2). If it is necessary to
change to a more sensitive gauge, do so, and remeasure the Ap and temperature
readings at each traverse point. Conduct a post-test- leak-^ieck (mandatory}, *»
described in Section 3.1 above, to validate the traverse ran. " *H> »-.- ,,
3.4 Measure the static pressure in the stack. One reading is usually adequate.
3.5 Determine the atmospheric pressure.
3.$ Determine the stack gas dry molecular weight. 'For combustion processes or
processes that emit essentially CO,, 0,, CO, 4ta&-^,^VB*&-4fe££~i'3. For processes
emitting essentially air, an analysis need not be conducted; use a dry molecular
weight of 29.0. For other processes, other methods, subject; to the approval of
the Administrator, must be used.
3.7 Obtain the moisture content from Reference Method 4 (or equivalent) or from
Method 5. / '; ' *" "
3.8 Determine the cross-sectional area of the stack or duct at the sampling
location. Whenever possible, physically measure the,s£ack «tiaenaions rather than
using blueprints.
4. CALIBRATION
4.1 Type 8 Pi tot Tub*. Before its initial use, carefully examine the Type S
pitot tube in top, side, and end views to verify- tha£vthe_face openings'.of the
tube are aligned within the specifications illustrated in Figure 2-2 or 2-3. The
pitot tube shall not be used if it fails to meet *~vitse alignment specifications.
After verifying the face opening alignment,- measure and record the following
dimensions of the pitot tube: (a) the external tubing diameter (dimension Dt,
Figure 2-2b) ; and (b) the base-to-opening plane distances (dimensions P* and P»,
Figure 2-2b) . If DE is between 0.48 and 0.95 cm (3/16 and 3/8 in.), and if %
and PI are equal and between 1.05 and 1.50 D«, there axe two possible options:
(1) the pitot tube may be calibrated according to the procedure outlined in
Sections 4.1.2 through 4.1.5 below, or (2) a baseline (isolated tube) coefficient
value of 0.84 may be assigned to the pitot tub*v Mote, .however, that
-------
EMTIC TM-002 NSPS TEST METHOD Page 4
2.5 Barometer. A mercury, aneroid, or other barometer capable of measuring
atmospheric pressure to within 2.5 mm (0.1 in.) Eg. See NOTE in Method 5,
Section 2.1.9.
2.6 Gas Density Determination Equipment. Method 3 equipment, if needed (see
Section 3.6), to determine the stack gas dry molecular weight, and Reference
Method 4 or Method 5 equipment for moisture content determination; other methods
may be used subject to approval of the Administrator.
2.7 Calibration Pitot Tube. When calibration of the Type 8 pitot tube is
necessary (see Section 4), a standard pitot tube for a reference. The standard
pitot tube shall, preferably, have a known coefficient, obtained either (1)
directly from the National Bureau of Standards, Route 70 S, Quince Orchard Road,
Gaithersburg, Maryland, or (2) by calibration against another standard pitot tube
with an NBS-traceable coefficient. Alternatively, a standard pitot tube designed
according to the criteria given in Sections 2.7.1 through 2.7.5 below and
illustrated in Figure 2-4 (see also citations 7, 8, and 17 in the Bibliography)
may be used. Pitot tubes designed according to these specifications will have
baseline coefficients of about 0.99 ± 0.01.
2.7.1 Hemispherical (shown in Figure 2-4) ellipsoidal, or conical tip.
2.7.2 A minimum of six diameters straight run (based upon D, the external
diameter of the tube) between the tip and the static pressure holes.
2.7.3 A minimum of eight diameters straight run between the static pressure
holes and the center-line of the external tube, following the 90-degree bend.
2.7.4 Static pressure holes of equal size (approximately 0.1 D), equally spaced
in a piezometer ring configuration.
2.7.5 Ninety-degree bend, with curved or mitered junction.
2.8 Differential Pressure Gauge for Type 8 Pitot Tube Calibration. An inclined
manometer or equivalent. If the single-velocity calibration technique is
employed (see Section 4.1.2.3), the calibration differential pressure gauge shall
be readable to the nearest 0.13 mm (0.005 in.) H,0. For multivelocity
calibrations, the gauge shall be readable to the nearest 0.13 mm (0.005 in.) HaO
for Ap values between 1.3 and 25 mm (0.05 and 1.0 in.) H20, and to the nearest
1.3 mm (0.05 in.) H,0 for Ap values above 25 mm (1.0 in.) H,0. A special, more
sensitive gauge will be required to read Ap values below 1.3 mm (0.05 in.) HaO
(see Citation 18 in the Bibliography).
3. PROCEDURE
3.1 Set up the apparatus as shown in Figure 2-1. Capillary tubing or surge
tanks installed between the manometer and pitot tube may be used to dampen Ap
fluctuations. It is recommended, but not required, that a pretest leak-check be
conducted as follows: (1) blow through the pitot impact opening until at least
-------
EMTIC TM-002 HSPS TEST METHOD • ^ J *,W Sage 3
+K
i-i
Where:
Apt - Individual velocity head reading at a traverse point, nra (in.)
HjO.
& - Total number of traverse points. ;
K - 0.13 mm H20 when me eric unit*. »sre used an* 0.005 im''lH,0 when
English units are used.
If T is greater than 1.05, the velocity head data are unacceptable and a more
sensitive differential pressure gauge must be used.
MOTE: If differential pressure gauges other than inclined manometers are used ,
(e.g., magnehelic gauges), their calibration-vamv- fcc-<«*•?_:-.:.£ after each teat
series. To check the calibration of a, differential pressure gauge,- compare Ap
readings of the gauge with those of a gauge-o.il, manometer *t^-a minimum of three
points, approximately representing the range of A& values Jn the stack; If, at
each point, the values of Ap as read by the differential pressure ''Hgluge 'and
gauge-oil manometer agree to within 5 percent, the differential pressure gauge
shall be considered to be in proper calibration. . .Otherwise, the test series
shall either be voided, or procedures to adjust? the measured Ap values and final
results shall be used, subject to the approval of the Administrator." ;''
2.3 Temperature Gauge. A thermocouple, liquid-filled bulb thermometer,
bimetallic thermometer, mercury-in-glass thermometer, or other gauge capable of
measuring temperature to within 1.5 percent .Of the mimimura absolute stack
temperature. The temperature gauge shall be attached to the pi tot tube such that
the sensor tip does not touch any metal; the gauge shall .be .in an interference-
free arrangement with respect to the pitot tube. .f«ce;%mi(Iiisja i»ee Figure 2-1 and
also Figure 2-7 in Section 4) . Alternative jjositions may be used if the pitot
tube-temperature gauge system is calibrated according to the procedure of Section
4. Provided that a difference of not more than 1 percent in the average velocity
measurement is introduced, the temperature gauge need not be attached to the
pitot tube; this alternative is subject to the approval of the Administrator.
2.4 Pressure Probe and Gauge. A piezometer tube and mercury-.or water-filled
U-tube manometer capable of measuring stack pressure to .within 2.5 mm (0.1 in.)
Bg. The static tap of a standard type pitot tube or one leg of a Type S pitot
tube with the face opening planes positioned parallel 1» the gaat. flow may also
be used as the pressure probe.
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
number shall be permanently marked or engraved on the body of the tube. A
standard pi tot tube may be used instead of a Type S, provided that it meets the
specifications of Sections 2.7 and 4.2; note, however, that the static and impact
pressure holes of standard pitot tubes are susceptible to plugging in
particulate-laden gas streams. Therefore, whenever a standard pitot tube is used
to perform a traverse, adequate proof must be furnished that the openings of the
pitot tube have not plugged up during the traverse period; this can be done by
taking a velocity head (Ap) reading at the final traverse point, cleaning out the
impact and static holes of the standard pitot tube by "back-purging" with
pressurized air, and then taking another Ap reading. If the Ap readings made
before and after the air purge are the same (±5 percent), the traverse is
acceptable. Otherwise, reject- the run. Note that if Ap at the final traverse
point is unsuitably low, another point may be selected. If "back-purging* at
regular intervals is part of the procedure, then comparative Ap readings shall
be taken, as above, for the last two back purges at which suitably high Ap
readings are observed.
2.2 Differential Pressure Gauge. An inclined manometer or equivalent device.
Most sampling trains are equipped with a 10-in. (water column) inclined-vertical
manometer, having 0.01-in. HaO divisions on the 0- to 1-in. inclined scale, and
0.1-in. HjO divisions on the 1- to 10-in. vertical scale. This type of manometer
(or other gauge of equivalent sensitivity) is satisfactory for the measurement
of Ap values as low as 1.3 mm (0.05 in.) H,0. However, a differential pressure
gauge of greater sensitivity shall be used (subject to the approval of the
Administrator), if any of the following is found to be true: (1) the arithmetic
average of all Ap readings at the traverse points in the stack is less than
1.3 mm (0.05 in.) HaO; (2) for traverses of 12 or more points, more than 10
percent of the individual Ap readings are below 1.3 mm (0.05 in.) H,0; (3) for
traverses of fewer than 12 points, more than one Ap reading is below 1.3 mm
(0.05 in.) H,0. Citation 18 in the Bibliography describes •commercially available
instrumentation for the measurement of low-range gas velocities.
As an alternative to criteria (1) through (3) above, the following calculation
may be performed to determine the necessity of using a more sensitive
differential pressure gauge:
Prepared by Emission Measurement Branch EMTIC M-002
Technical Support Division, OAQPS, EPA
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION
NSPS TBST METHOD W^ tV^*- ' £*
Method 2 • Determination of Stack Gas Velocity and Volumetric
Flow Rate (Type S Pitot Tube)
1. PRINCIPLE AND APPLICABILITY
1.1 Principle. The average gas velocity in a stack is determined from the gaa
density and from measurement of the average velocity head with a Type 8
(Stausscheibe or reverse type) pitot tube.
1.2 Applicability. This method is applicable for, measurement of the average
velocity of a gas stream and for quantifying gas flow. '•'-'•'"•
This procedure is not applicable .*L measurement. site* that fail trf^Slef"the
criteria of Method 1, Section 2.1. Also, the method cannot be used for direct
measurement in cyclonic or swirling gas streams; Section 2.4 of Method 1 shows
how to determine cyclonic or swirling flow conditions. When unacceptable
conditions exist, alternative procedures, subject to the approval of the
Administrator, U.S. Environmental Protection Agency, must be employed to make
accurate flow rate determinations; examples of such alternative procedures are:
(I) to install straightening vanes; (2) to anl(aiJ,x&£. £&f£rJ-~'* volumetric flow
rate stoichiometrically, or (3) to move to another measurement site at which the
flow ia acceptable.
2. APPARATUS
Specifications for the apparatus are given below. Any other apparatus that has
been demonstrated (subject to approval of the. Administrator) to be capable of
meeting the specifications will be Considered acceptable. •;•''"-"
*
2.1 Type S Pitot Tube. Pitot tube made of metal tubing (e.-g., stainless steel)
as shown in Figure 2-1. It is recommended that the external tubing diameter
(dimension De, Figure 2-2b) be between 0.4 8,.and .0.95 on {3/16 and 3/8 inch).
There shall be an equal distance from the base of each leg of the pitot tube to
its face-opening plane (dimensions Px and £fc, Figure 2-2b); it is recommended
that this distance be between 1.05 and 1.50 times thejex±ezaaJL tubing diameter.
The face openings of the pitot tube shall, preferably* be Aligned as shown in
Figure 2-2; however, slight misalignments of the openings are permissible (see
Figure 2-3).
The Type S pitot tube shall nave a known coefficient, determined as outlined in
Section 4. An identification number shall be assigned to the pitot tube; this
Prepared by Emission Measurement Branch ---.-- BMTXC M-002
Technical Support Division, OAQPS, EPA
-------
Appendix G.2
Sampling & Analysis Methods
EPA jVieihud 2
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
•*Page 17
1
o
— —
o
0
o
I—— H-kH
0
o
1
0
o
o
9
o
o
Figure 1-4. Example showing rectangular stack cross section
divided into 12 equal areas, with a traverse point at centroid
of each area.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 16
WJ
tu
ru
Figure 1-3. Example showing circular stack cross section
divided into 12 equal areas, with location of traverse
points indicated.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
15
OJ
Duel DUm»t»r» UpstrMffi from Ftow DMurbxic*
1.0 1.S
I*
40
SO
20
10
0
1 1 I 1 1 1 II
*Hlah*rNaiab*rblbr
11 Stack Dta
1
T
•
X
•
12
• Fran PoM *f Any Typ* el
OMwbane* (SMd. ExMfwtoK CentadMi. MO
'. ^KAta£J3taE£>?
1 1 1 1 1 1
i
i
\
TDWuAme*
J-.-—
-
OJ1i«(24k^
,-,• -
#a£i
\
»/>r.»*-»n-a4i«4
1
10
Duct Dtamctere Downttnam from Ftow Dbtuitane** (pMMtc* B)
Figure 1-2. Minimum number of traverse points for velocity
(nonparticulate) traverses.
.*"-*'
-------
EMTIC TM-001
EMTZC N8PS TEST METHOD
Page 14
OJ
Owl DlMicfci* UprtMm fram PInr DMnbinc** (DMne* A)
14 13 U
10
i r i
Mwtl
I
i
L
(!>•** M
J I I I
a 4 a • r • •
Dud Dhm*ton Downstratm from Hew DMurbwc** (Dbtaae* B)
10
Figure 1-1. Minimum number of traverse points for
particulate traverses.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
v- -Page 13
15 ....
16 ....
17 ....
18 ....
19 ....
20 ....
21 ....
A A • » • •
23 ....
24 ....
*•*
95.
1
98.
4
'.. .-
-
89
.1
92
.5
96
.6
98
.6
•
83
.5
87
.1
1
90
.3
93
.3
96
.1
98
.7
78.
2,i
82.
0
•* f- •
85.
4
88.
4
91.
3
94.
,& i
96.
5
98.
9
'uilit IU
72.
8
77.
0
^ -.5»'!.i
ear
6
83.
9
86.
8
89.
5
92.
1
94.
5
96.
8
98.
9
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 12
TABLE 1-2
LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS
(Percent of stack diameter from inside
wall to traverse point)
Traverse
Point
Number on a
Diameter
1
2
3
4
5
6
7
8
9
10 ....
11 ....
•L^s • * • •
13 ....
14 ....
Number of traverse points on a diameter
2
14
.6
85
.4
-•7T-
4
6.
7
25
.0
75
.0
93
.3
6
4.
4
14
.6
29
.6
70
.4
85
.4
95
.6
8
3.
2
10
.5
19
.4
32
.3
67
.7
80
.6
89
.5
96
.8
10
2.6
8.2
14.
6
22.
6
34.
2
65.
8
.77.
4
85.
4
91 .
8
97.
,4
12
2.1
6.7
11.
8
17.
7
25.
0
35.
6
64.
4
75.
0
82.
3
88.
2
93.
3
97.
9
14
1.8
5.7
9.9
14.
6
20.
1
26.
9
36.
6
63.
4
73.
1
79.
9
85.
4
90.
1
94.
3
98.
2
16
1.6
4.9
8.5
12.
5
16.
9
22.
0
28.
3
37.
5
62.
5
71.
7
78.
0
83.
1
87.
5
91.
5
18
1.
4
4.
4
7.
5
10
.9
14
.6
18
.8
23
.6
29
.6
38
.2
61
.8
70
.4
76
.4
81
.2
85
.4
20
1.
3
3.
9
6.
7
9.
7
11
2.
9
16
.5
20
.4
25
.0
30
.6
38
.8
61
.2
69
.4
75
.0
79
.6
22
1.1
3.5
6.0
8.7
11.
6
14.
6
18.
0
21.
8
26.
2
31.
5
39.
3
60.
7
68.
5
73.
8
24
1.1
3.2
5.5
7.9 1
10.
5
13.
2
16.
1
19.
4
23.
0
27.
2
32.
3
39.
8
60.
2
67.
7
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 11
Table 1-1. CROSS-SECTION LAYOUT FOR
RECTANGULAR STACKS
[Number of traverse points
9
12
16
20
25
30
36
42
49
3x3
4x3
4x4
5x4
5x5
6x5
6x6
7x6
7x7
I*
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 10
August 1983.
14. Gerhart, P.M. and M.J. Dorsey. Investigation of Field Test
Procedures for Large Fans. University of Akron. Akron, OH.
(EPRI Contract CS-1651). Final Report (RP-1649-5). December
"80._
15. Smith, W.S. and D.J. Grove. A New Look at Isokinetic Sampling
- Theory and Applications. Source Evaluation Society
Newsletter. VIII(3):19-24. August 1983.
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD J^rr>- Page 9
Manufacturing Co. Los Angeles, CA. Bulletin WP-50».v 1968.
4. Standard Method for Sampling Stacks for Particulate Matter.
In: 1971 Book of ASTM Standards, Part 23. ASTM Designation D
2928-71. Philadelphia, PA. 1971.
5. Hanson, H.A., et al. Particulate sampling Strategies for11
Large Power Plants Including Nonuniforra Plow. USEPA, ORD,
ESRL, Research Triangle Park, NC. EPA-600/2-76-170. June
1976.
6. Entropy Environmentalists, Inc. , Determination, of the Optimum
Number of Sampling Points: An Analysis of Method 1 Criteria.
Environmental Protection Agency. Research Triangle Park, NC.
EPA Contract No. 68-01-3172, Task 7.
7. Hanson, H.A., R.J. Davini, 3.K. Morgan,, and A.A. Iversen.
Particulate Sampling Strategies for ''Large Power Plants
Including Nonuniform Flow. USEPA, Research Triangle Park, NC.
Publication No. EPA-600/2-76-170. June 1976. 350 p.
8. Brooks, E.F., and R.L. Williams. Flow and Gas Sampling
Manual. U.S. Environmental Pj&te££&x? - //,-'~" -~y. Research
Triangle Park, NC. Publication No. EPA-600/2-76-203. July
1976. 93 p. " ""
''if- i.
9. Entropy Environmentalists, Inc. Traverst^iPoint Study >'*'"• EPA
Contract No. 68-02-3172. June 1977. 19 p.
10. Brown, J. and K. Yu. Test Report s Particulate Sampling
Strategy in Circular Ducts. Emission^ Mgasureiaent Bfahch.
Emission Standards and Engineering } Division. U.S.
Environmental Protection Agency, Research Triangle Park, NC
27711. July 31, 1980. 12 p.
11. Hawksley, P.G.W., S. Badzioch, and J.H. Blackett. 'Measurement
of Solids in Flue Gases. Leatherhead^ finqland, The British
Coal Utilisation Research Association.- "1961. p. 129-133.
12. Knapp, K.T. The Number of Sam^-uig Points Needed : for
Representative Source Sampling.,,,, In: Proceedings of the Fourth
National Conference on Energy arid Environment. Theodore, L.
et al. (ed) . Dayton, Dayton Section of the American Institute
of Chemical Engineers. October 3-7, 1976. p. 563-568.
13. Smith, W.S. and D.J. Grove. A Proposed Extension of EPA
Method 1 Criteria. Pollution Engineering, XV (8) -.36-37.
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 8
2.5.6.2 To ensure that the gas flow is parallel to the central
axis of the test section, follow the procedure in Section 2.4 for
cyclonic flow determination to measure the gas flow angles at the
centroid of the test section from two test ports located 90° apart.
The gas flow angle measured in each port must be ±2° of 0°.
Straightening vanes should be installed, if necessary, to meet this
criterion. •""-"
2.5.6.3 Pitch Angle Calibration. Perform a calibration traverse
according to the manufacturer's recommended protocol in 5°
increments for angles from -60° to +60° at one velocity in each of
the two ranges specified above. Average the pressure ratio values
obtained for each angle in the two flow ranges, and plot a
calibration curve with the average values of the pressure ratio (or
other suitable measurement factor as recommended by the
manufacturer) versus>the pitch angle. Draw a smooth line through
the data points. Plot also the data values for each traverse
point. Determine the differences between the measured datavalues
and the angle from the calibration curve at the same pressure
ratio. The difference at each comparison must be within 2° for
angles between 0° and 40° and within 3° for angles between 40° and
60°.
2.5.6.4 Yaw Angle Calibration. Mark the three-dimensional probe
to allow the determination of the yaw position of the probe. This
is usually a line extending the length of the probe and aligned
with the impact opening. To determine the accuracy of measurements
of the yaw angle, only the zero or null position need be calibrated
as follows: Place the directional probe in the test section, and
rotate the probe until the zero position is found. With a
protractor or other angle measuring device, measure the angle
indicated by the yaw angle indicator on the three-dimensional
probe. This should be within 2° of 0°. Repeat this measurement
for any other points along the length of the pitot where yaw angle
measurements could be read in order to account for variations in
the pitot markings used to indicate pitot head positions.
BIBLIOGRAPHY
1. Determining Dust Concentration in a Gas Stream, ASME
Performance Test Code No. 27. New York. 1957.
2. DeVorkin, Howard, et al. Air Pollution Source Testing Manual.
Air Pollution Control District. Los Angeles, CA. November
1963.
3. Methods for Determining of Velocity, Volume, Dust and Mist
Content of Gases. Western Precipitation Division of Joy
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD M^. ,..,Page 7
Where:
Ri * resultant angle at traverse point i,^degree.'
Yi - yaw angle at traverse point i, degree.
Pi « pitch angle at traverse point-i, degree.
•„- *- • ,•. -.•
2.5.4.2 Calculate the average resultant xua uiie measurements«^".
Bj. 1-3
Where:
R«vg • average resultant angle, degree.
n «• total number of traverse points,
2.5.4.3 Calculate the standard deviations:
-n"\2
(n-1)
. -. t.
^
'--* ->*•.. Hj.^4
Where:
Sd - standard ^deviation, degree. . i*v '
2.5.5 The measurement location is acceptable if Rav, £ 20° and Sj
* i r\o i
i 10 . i
2.5.6 Calibration. Use a flow system as rtesrclhed in Sections
4.1.2.1 and 4.1.2.2 of Method 2. In addition, the flow system
shall have the capacity to generate two te,st-section velocities:
one between 365 and 730 tn/min (12pa; and 2400 ft/min) and one
between 730 and 1100 m/min (2400 and'3600 ft/min).
2.5.6.1 Cut two entry ports in the test section. ;The axes,.through
the entry ports shall be perpendicular to each other and intersect
in the centroid of the test section. The ports should be elongated
slots parallel to the axis of the test section and of sufficient
length to allow measurement of pitch angles while maintaining the
pi tot head position at the test-section centroid. To facilitate
alignment of the directional probe during calibration, the test
section should be constructed of plexiglass or some other
transparent material. All calibration measurements should be made
at the same point in the test section, preferably at the centroid
of the test section.
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 6
the location and layout of the traverse points. If the measurement:
location is determined to be acceptable
according to the criteria in this alternative procedure, use the
same traverse point number and locations for sampling and velocity
measurements.
2.5.3 Measurement Procedure.
2.5.3.1 Prepare the directional probe and differential pressure
gauges as recommended by the manufacturer. Capillary tubing or
surge tanks may be used to dampen pressure fluctuations. It is
recommended, but not required, that a pretest leak check be
conducted. To perform a leak check, pressurize or use suction on
the impact opening until a reading of at least 7.6 cm (3 in.) H20
registers on the differential pressure gauge, then plug the impact
opening. The pressure Of a leak-free system will remain stable for
at least 15 seconds.
2.5.3.2 Level and zero the manometers. Since the manometer level
and zero may drift because of vibrations and temperature changes,
periodically check the level and zero during the traverse.
2.5.3.3 Position the probe at the appropriate locations in the gas
stream, and rotate until zero deflection is indicated for the yaw
angle pressure gauge. Determine and record the yaw angle. Record
the pressure gauge readings for the pitch angle, and determine the
pitch angle from the calibration curve. Repeat this procedure for
each traverse point. Complete a "back-purge" of the pressure lines
and the impact openings prior to measurements of each traverse
point.
A post-test check as described in Section 2.5.3.1 is required. If
the criteria for a leak-free system are not met, repair the
equipment, and repeat the flow angle measurements.
2.5.4 Calculate the resultant angle at each traverse point, the
average resultant angle, and the standard deviation using the
following equations. Complete the calculations retaining at least
one extra significant figure beyond that of the acquired data.
Round the valu$£uafter the final calculations.
2.5.4.1 Calculate the resultant angle at each traverse point:
Rt * arc cosine [ (cosineY1) (cosinePi)]
Eq. 1-2
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD . Page 5
described above.
2.5 Alternative Measurement Site Selection Procedure. This
alternative applies to sources where measurement locations are less
than 2 equivalent or duct diameters downstream or less €han one-
half duct diameter upstream from a flow disturbance. The
alternative should be limited to ducfp i •**•*-- than 24 in. in
diameter where blockage and wall effects are minimal. -• '•;.-? JfcW. ,j
directional flow-sensing probe is used to measure pitch and yaw
angles of the gas flow at 40 or more traverse points; the resultant
angle is calculated and compared with acceptable criteria for mean
and standard deviation.
MOTE: Both the pitch and yaw angles are measured from a line
passing through the traverse point and parallel, to the stack axis.
The pitch angle is the angle of the gas flow component in the plane
that INCLUDES the traverse line and is paral3^Vtro the stack axis.
The yaw angle is the angle of the gas flow component in the plane
PERPENDICULAR to the traverse line at the traverse point and is
measured from the line passing through the traverse point and
parallel to the stack axis.
2.5.1 Apparatus.
2.5.1.1 Directional Probe. Any directional probe, such as United
Sensor Type DA Three-Dimensional Direct ional:.-Prabe, capable of
measuring both the pitch and yaw angle*, of gas.flows is acceptable.
(NOTE: Mention of trade name or specific products does not
constitute endorsement by the U.S. Environmental Protection
Agency.) Assign an identification number: to the directional probe,
and permanently mark or engrave the' number on the body of the
probe. The pressure holes of directional probes are susceptible to
plugging when used in particulate-laden gas, streams. Therefore, a
system for cleaning the pressure holes by "back-purging" with
pressurized air is required.
2.5.1.2 Differential Pressure Gauges. Inclined manometers, U-tube
manometers, or other differential pressure gauges ie.g., magnehelic
gauges) that meet the specifications described* £& Method. 2, Section
2.2.
-*"•.'
NOTE: If the differential pressure gauge produces both negative
and positive readings, then both negative and positive pressure
readings shall be calibrated at a minimum of three points as
specified in Method 2, Section 2.2.
2.5.2 Traverse Points. Use a minimum of 40 traverse points for
circular ducts and 42 points for rectangular ducts for the gas flow
angle determinations. Follow Section 2.3-and Table'1-1 or 1-2 for
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 4
1, determine the grid configuration. Divide the stack cross-
section into as many equal rectangular elemental areas as traverse
points, and then locate a traverse point at the centroid of each
equal area according to the example in Figure 1-4.
If the tester desires to use more than the minimum number of
traverse points, expand the "minimum number of traverse points"
matrix (see Table 1-1) by adding the extra traverse points along
one or the other or both legs of the matrix; the final matrix need
not be balanced. For example, if a 4 x 3 "minimum number of
points" matrix were expanded to 36 points, the final matrix could
be 9 x 4 or 12 x 3, and would not necessarily have to be 6 x 6.
After constructing the final matrix, divide the stack cross-section
into as many equal rectangular, elemental areas as traverse points,
and locate a traverse point at the centroid of each equal area. The
situation of traverse points being too close to the stack walls is
not expected to arise with rectangular stacks. If this problem
should ever arise, the Administrator must be contacted for
resolution of the matter.
2.4 Verification of Absence of Cyclonic Flow. In most stationary
sources, the direction of stack gas flow is essentially parallel to
the stack walls. However, cyclonic flow may exist (1) after such
devices as-f cyclones and inertial demisters following venturi
scrubbers, or (2) in stacks having tangential inlets or other duct
configurations which tend to induce swirling; in these instances,
the presence or absence of cyclonic flow at the sampling location
must be determined. The following techniques are acceptable for
this determination. Level and zero the manometer. Connect a Type
S pitot tube to the manometer. Position the Type S pitot tube at
each traverse point, in succession, so that the planes of the face
openings of the pitot tube are perpendicular to the stack cross-
sectional plane; when the Type S pitot tube is in this position, it
is at "0° reference." Note the differential pressure (Ap) reading
at each traverse point. If a null (zero) pitot reading is obtained
at 0° reference at a given traverse point, an acceptable flow
condition exists at that point. If the pitot reading is not zero
at 0° reference, rotate the pitot tube (up to ±90° yaw angle) ,
until a null reading is obtained. Carefully determine and record
the value of the rotation angle (a) to the nearest degree. After
the null technique
has been applied at each traverse point, calculate the average of
the absolute values of a; assign a values of 0° to those points for
which no rotation was required, and include these in the overall
average. If the average value of a is greater than 20°, the
overall flow condition in the stack is unacceptable, and
alternative methodology, subject to the approval of the
Administrator, must be used to perform accurate sample and velocity
traverses. The alternative procedure described in Section 2.5 may
be used to determine the rotation angles in lieu of the procedure
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD ,..T,,iA.,.,J?age 3
2.2.2 Velocity (Non-Particulate) Traverses. When velocity or
volumetric flow rate is to be determined (but not particulate.
matter), the same procedure as that used for particulate .traverses
(Section 2.2.1) is followed, except that Figure 1-2 may be used
instead of Figure 1-1.
2.3 Cross-Sectional Layout and Location ojc -rr&vers* Points.
2.3.1 Circular Stacks. Locate the traverse points on two
perpendicular diameters according to Table 1-2 and the example
shown in Figure 1-3. Any equation (for examples, see Citations 2
and 3 in the Bibliography) that gives the same values as those in
Table 1-2 may be used in lieu of Table 1-2.
For particulate traverses, one of the diameters must be in a plane
containing the greatest expected concentration, "variation, y'-e.g.,
after bends, one diameter shall be in the plane of the bend. This
requirement becomes less critical as the* distance from the
disturbance increases; therefore, other diameter locations may be
used, subject to the approval of the Administrator.
In addition, for stacks having diameters greater than 0.61 m (24
in.), no traverse points shall be within -2-5 jcentimeters (1.00 in. \^,,
of the stack walls; and for stack diameters equaj. 'to or less thanv?i'v
0.61 m (24 in.), no traverse points shall be .located.within 1.3 cm
(0.50 in.) of the stack walls. To meet these criteria, observe the
procedures given below.
2.3.1.1 Stacks With Diameters Greater Thaft V.€2*a (24 in.). When
any of the traverse points as located.in Section. 2.3.1 fall within
2.5 cm (1.00 in.) of the
stack walls, relocate them away froth the stack walls to: (1) a
distance of
2.5 cm (1.00 in.); or (2) a distance equal to the nozzle inside
diameter, whichever is larger. These relocated traverse points (on
each end of a diameter) shall be the "adjusted" traverse points.
Whenever two successive traverse points are combined to form a
single adjusted traverse point, treat the adjusted point as two
separate traverse points, both in the ,saap4-ing (or velocity
measurement) procedure, and in recording- the data.
2.3.1.2 Stacks With Diameters Equal To or Less Than 0.61 m (24
in.). Follow the procedure in Section 2.3.1.1, noting only that
any "adjusted" points should be relocated away from the stack walls
to: (1) a distance of 1.3 cm (0.50 in.) ; or (2) a distance equal to
the nozzle inside diameter, whichever is larger. .. .. •
2.3.2 Rectangular Stacks. Determine the number of traverse points
as explained in Sections 2.Land 2.2 of ±his method. From Table 1-
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSFS TEST METHOD
2LW
(L + W)
Eq. 1-1
Where
Length and W » width.
An alternative procedure is available for determining the
acceptability of a measurement location not meeting the criteria
above. This procedure,
determination of gas flow angles at the sampling points and
comparing the results with acceptability criteria, is described in
Section 2.5.
2.2 Determining the Number of Traverse Points.
2.2.1 Particulate Traverses. When the eight- and two-diameter
criterion can be met, the minimum number of traverse points shall
be: (1) twelve, for circular or rectangular stacks with diameters
(or equivalent diameters) greater than 0.61 meter (24 in.); (2)
eight, for circular stacks with diameters between 0.30 and 0.61
meter (12 and 24 in.); and (3) nine, for rectangular stacks with
equivalent diameters between 0.30 and 0.61 meter (12 and 24 in.).
When the eight- and two-diameter criterion cannot be met, the
minimum number of traverse points is determined from Figure 1-1.
Before referring to the figure, however, determine the distances
from the chosen measurement site to the nearest upstream and
downstream disturbances, and divide each distance by the stack
diameter or equivalent diameter, to determine the distance in terms
of the number of duct diameters. Then, determine from Figure 1-1
the minimum number of traverse points that corresponds: (1) to the
number of duct diameters upstream; and (2) to the number of
diameters downstream. Select the higher of the two minimum numbers
of traverse points, or a greater value, so that for circular stacks
the number is a multiple of 4, and for rectangular stacks, the
number is one of those shown in Table 1-1.
Prepared by Emission Measurement Branch
Technical Support Division, OAQPS, EPA
EMTIC TM-001
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
Method 1 - Sample and Velocity Traverses for Stationary Sources
1. PRINCIPLE AND APPLICABILITY ~
1.1 Principle. To aid in the representative measurement of
pollutant emissions and/or total volumetric flow rate from a
stationary source, a measurement site where the effluent stream is
flowing in a known direction is selected, and the cross-section of
the stack is divided into a number of equal areas. A traverse
point is then located within each of these equal areas.
1.2 Applicability. This met- hod is applicable to flowing .gas
streams in ducts, stacks, aud flues. The method cannot be used
when: (1) flow is cyclonic or swirling (sees Section 2.4), (2) a
stack is smaller than about 0.30 meter (12 in.) in diameter, or
0.071 m2 (113 in.2) in cross- sectional area, or (3) the measurement
site is less than two stack or duct diameters downstream or less
than a half diameter upstream from a flow disturbance
The requirements of this method * wsasrt *• tais.- ' — *.~idered before
construction of a new facility from whigh emissions will be
measured; failure to do so may require . subsequent: alterations to
the stack or deviation from the standard procedure. , .Cases.
involving variants are subject to approval by :t&s Administrator, ,
U.S. Environmental Protection Agency.
/
/
2. PROCEDURE \
2.1 Selection of Measurement Sit« . Sampling or velocity
measurement is performed at a site located at least eight stack or
duct diameters downstream and two diameters upstream from any flow
disturbance such as a bend, expansion, or contraction in the stack,
or from a visible flame. If necessary, an alternative location may
be selected, at a position at least two stack, or duct diameters
downstream and a half diameter upstream from aof flow disturbance.
For a rectangular cross section, an equivalent diameter (D.) shall
be calculated from the following equudon, to determine the
upstream and downstream distances:
Prepared by Emission Measurement Branch •' ' EMTIC TM-001
Technical Support Division, OAQPS, EPA
-------
Appendix G. 1
Sampling & Analysis Methods
El A Method 1
-------
APPENDIX G
SAMPLING & ANALYSIS METHODS
(EPA Methods 1, 2, 3/ ^ ^ "nosed Revisions), & 25A)
-------
-------
ojjj 16
' ta! tff
. 0 ug
V» is
va «A
Ofc a\
^ *t
^- 1N
• ^»
HK
IS
^
U)
..1» * I to r1
^-.....; v.:. • ,1p t.,,::,:,,-.
c 'x «• ]j ^ 1% '
s^' U SV-"- »• Jx fJ
X . .••-•>J.-E_:^--. I., .la.-". U,
ii-"'":yi "V-to -C ^':•-.•» $r'- >ffl-^ ""
"
'w%rv. S-vX"
f&*y- - •-
-------
• .«.fMr -A *-»»•* sr^rsSnEif«o^csa^Jww*^*^^ *-•-•'*
$»$\?* F8 f P',C
s $ S vi $ $ ? V- N . - •-*
" ^\ "" • N " *i " J^ ' ^ C\
.\;!--.^-?>s-V:i3-.-.:->-5-r
vr-I'-i* s- •:, '• fc • I-1--N o x,.
-------
0
c.
r
•s
•>.
'^ss-x.p^&.,
M^i^-m^^sfe
-------
'
V£ I- * k I 1
aifc&frfrs:&>j-
&? *-£• l viKJvs-: r-
&• ^t-'Vi8c8r...j.
^•^Y-SW-i'S-^. HV
iW^^'^/i-'-ff--.^:'-
•A04t **».-"•"'••--^••":^^i./^r-"-»M' I •'•' •*"
>S^yigi£il^^
- !* 'I
• \1 re
^•-ffi-:
-------
*,!:;1?^Wi^ ?"•••>!
M^ »vHx
t*.V8
-------
1
I
1
£
«t
<§(
s9|K
i
1
i
•
1
T
i
I
i
i
i
i
i
L
5
^w
4
^
7
!• »•.
!*••••
— s
05^-
^x
^ _^^
«'
j
Ju
V
>3^
I f\
i v-
-* I
•+• ^
V)
>
Oa
• 3
to £
> E
i!
; .
p^ —
--^
fe
L®
•P
Vf
C^
1
-------
Table 1. Process Parameters Recorded During Emissions Testing of Kiln 3 at Huron Ume September <( 1998
Time
3:00 PM
320PM
3:35 PM
3:50 PM
4:05 PM
425PM
4:45 PM
5:10 PM
5:50 PM
6:07 PM
629PM
6:45 PM
7:00 PM
7:1 5PM
7:30 PM
7:45 PM
8:00 PM
8:1 5PM
8:30 PM
8:46 PM
9:01 PM
9:16 PM
9:30 PM
9:45 PM
10:00 PM
10:15 PM
10-.30PM
Rnnnrttnrt
ecoraeo
limestone, tph
28.0
27.5'
28.5
27.0
29.0
- 28.5
27.5
27.0
26.5
27.5
27.5
28.0
28.0
25.5
26.5
27.0
26.0
28.5
27.0
26.5
27.5
29.0
28.5
29.0
27.5
27.0
25.5
Fan.
amperage
82
82
83
82
84
84
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
82
Scrubber pump,
amperage
34.5
34.5
34.5
34.5
34.5
34.5
34.5
34.5
34.5
34.5
34.5
34.5
34.5
34.0
34.5
34.5
34.5
34.0
34.0
34.0
34.0
34.0
34.0
34.0
34.0
34.0
34.5
Feed end
temp, *F
1150
1150
1150
1150
1150
1150
1150
1150
1150
1150
1150
1150
1150
1150
1160
1160
1160
1165
1165
1165
1165
1165
1165
1165
1165
1165
1160
Kiln, rph
68.0
69.0
70.0
70.0
69.0
69.5
69.0
62.5
62.0
62.0
67.0
66.5
66.0
66.5
67.0
66.5 •
65.0
60.5
65.5
65.5
65.0
65.5
65.5
65.5
65.0
65.0
65.0
%0
0.70
0.70
0.80
0.60
0.70
0.70
0.60
0.75
0.70
0.70
0.80
0.70
0.80
0.90
0.80
0.70
0.80
0.70
0.90
1.00
1.00
0.90
0.90
0.90
1.00
0.90
1.00
Coal feed
indicator1
7.80
7.80
7.80
7.80
7.80
7.80
7.80
7.80
7.75
7.80
7.80
7.80
7.75
7.80
7.85
7.80
7.80
7.85
7.90
7.85
7.85
7.95
7.90
7.90
7.90
7.90
7.80
'The coal feed indicator parameter is a relative indicator, of the feed rate of coal to the bowl mill, I.e., as the coal feed rate to the bowl
mill Increases, the value of the coal feed Indicator increases and vice versa.
Acronyms and abbreviations: rph = rotations per hour, tph = tons per hour, ID = induced draft; °F = degrees Fahrenheit.
Table 2. Statistical Analysis of Process Parameters Recorded During Emissions Testing of Kiln 3 at Huron Ume
# of recordings
Minimum rec'd value
Maximum rec'd value
Average of rec'd values
% RSD of average of rec'd
values
Recorded
limestone, tph
27
25.5
• 29.0
27.5
3.64
Fan, amps
27
82
84
82
0.68
Scrubber pump,
amps
27
34.0
34.5
34.3
0.717
Feed end
temp.'F
27
1150
1165
1156
0.6092
Kiln, rph
27
60.5
70.0
66.1
3.74
%o,
27
0.60
1.00
0.80
15
Coal feed
||-*rllf^artftf
27
7.75
7.95
7,83
0.647
Acronyms and abbreviations: rec'd = recorded; rph = rotations per hour, tph = tons per hour, ID = induced draft; °F • degrees
Fahrenheit; % RSD = percent relative standard deviation.
-------
6
References
1. Docket entry II-D-55 Letter and attachment, A. Paris, Huron
Lime Company, to J. Wood, EPA:MICG, November 10, 1995, •&•*"-
enclosing response to NLA/EPA voluntary questionnaire.
-------
of the recorded values of fan amperage was 82, and the
percent relative standard deviation of the recorded
values was 0.68; the latter indicates little change in
exhaust flow during testing.
As shown in Figure 1, water from the settling ponds and
sump is sprayed in the exhaust prior to the venturi
throat; according to plant personnel, approximately
10 percent of the water is from the settling ponds and
90 percent is from the sump. The amperage of the sump
pump was recorded during testing to monitor relative
changes in the flow rate of sump water to the venturi.
The average of the recorded values of pump amperage was
34.3 amps, and the percent relative standard deviation
of the recorded values was 0.717; the latter indicates
little change in the flow rate of sump water to the
venturi.
The morning of testing, plant personnel measured the
pressure drop across the venturi throat; the measured
pressure drop was 15 inches of water. During the pre-
test site survey, the pressure drop across venturi
throat was 11 inches of water.
During testing, the averages of the recorded values of
temperature and percent oxygen of the exhaust at the
feed end of the kiln were 1156 °F and 0.80 percent,
respectively; the percent relative standard deviations
of the recorded values were 0.60 percent and 15 percent
for kiln temperature and percent oxygen, respectively.
During the pre-test site survey, the temperature and
percent oxygen of the exhaust at the feed end of the
kiln were 1050 °F-during survey and 1.5 percent,
respectively.
The coal feed indicator parameter is a relative
indicator of the feed rate of coal to the bowl mill,
i.e., as the coal feed rate to the bowl mill increases,
the value of the coal feed indicator increases and vice
versa. As shown in Table 2, the percent relative
standard deviation of the recorded values for this
parameter were low, indicating little change in coal
feed rate to the kiln.
During testing, the average of the recorded values of
kiln revolutions per hour (rph) was 66.1; during the
pre-test site survey, kiln speed was noted as 72 rph.
-------
Process Information
Kiln 3 was built in 1971 (see Figure 1) . The kiln is'ah :
inclined rotating kiln. High calcium limestone, which is -'• '•-*+•• -•*•
quarried in Alpena, Michigan, enters through the back of the kiln
(the highest point of incline) , and tumbles toward the front end
of the kiln via gravity and the rotating mrv* *•"•* -f *•+>** kiln. '-'"'
Combustion air and fuel enter at the front ot che kiln. The* >r :
primary fuel is coal; natural gas is used during start-up of the
kiln. Lime exits the front of the kiln.
Exhaust from kiln 3 passes through a venturi scrubber,
cyclonic mist eliminator, fan, and exhaust stack. . Tbe exhaust
stack contains dampers, which are used to regulate air flow
through the system. Water is sprayed in the exhaust as it enters
the scrubber. Water from the mist eliminator drains to a sump;
river water and clarified water croai settling ponds are also^fc*'^,
added to the sump (see Attachment 1 for a description of how and
when this occurs) . Water is continuously pumped from the sump to
the venturi. A portion of the water from the settling ponds is
also pumped to the venturi.
Process Monitoring
Table 1 lists the process parameters recorded, during testing
for the kiln and scrubber. Table 2 presents, ,statistical analyses
of the data in Table 1. The following points perftgjn to these;'*- *"~
tables.
• According to plant personnel, jbhe instrument that reads
tph of limestone is off by 5 units (on the plus side>;
The recorded values in Table 1 were npt Adjusted for
this discrepancy.
• According to the plant's questionnaire, the design
capacity of kiln 3 is 350 tons>rper day (tpd) of lime.
During the pre-test site survey, plant personnel stated
that kiln 3 was producing 300 tpd offline. During r
testing, the average of the recorded values of tph of
limestone was 27.5; subtracting *•*"*» units from this
average, multiplying it by 24 hours per day, and
dividing it 2 tons of limestone per ton of lime gives
270 tpd of lime, which is approximately 77 percent of
the design capacity.
• Fan amperage indicates a relative change in exhaust
flow. During the pre-test^.,site survey, fan amperage
was recorded as 80 amps. During .testing, the average .„_
-------
APPENDIX F
PROCESS DATA
Proces,, uaid supplied by
Research Triangle Institute under a separate work assignment.
-------
Continuous Emissions Monitoring Data Sheet
EPA Method* 3A, 2SA, and 322
Project Number
Firm Name
SHa Location
Test Number
Source
Date
Analyzer
Total Hydrocarbons
Oxygen
Carbon Dioxide
98061
PES
Huron Lime
1
Outlet
8/31/9B
Range
O-IOOppm
0-25%
0-25%
Testers
Ambient Temp
Time
•
zero
upscale
zero
upscale
zero
upscale
-
75
1749-2134
Rack Cat.
n/a
n/a
0.3
18.9
-0.3
18.9
Jf
Pre Test
Sys. Cat.
-0.2
50.8
0.4
19.1
-0.2
'9.3
>
Cat. Bias
% of Span
n/a
n/a
0.4%
0.8%
0.5%
t.0%
t5%
Post Test
Sys. Cal.
-0.3
25.1
0.3
18.9
0.1
19.1
Cal. Bias
% of Span
n/a
n/a
0.0%
0.0%
2.0%
1.0%
±5%
Drift
% of Span
0.1%
25.7%
0.4%
0.8%
•13%
1.0%
±3%
Avg. Analyzer
Response
0.8
Actual Gas
Cone.
n/a
-------
TABLE C-3.1
Huron Lime Calibration Table
OUTLET
Huron, Ohio
THC
ZERO GAS
LOW RANGE
MID RANGE
HIGH RANGE
02
ZERO GAS
MID RANGE
HIGH RANGE
CO2
ZERO GAS
MID RANGE
HIGH RANGE
CALIBRATION ERROR TEST
Range 0 - tOOppm
ACTUAL CONC
0.0
30.0
50.1
85.4
Range 0 - 25%
ACTUAL CONC
0.0
11.1
19.2
Range 0 - 25%
ACTUAL CONC
0.0
11.0
19.0
RESPONSE
0.2
28.9
50.8
85.5
RESPONSE
0.3
11.2
18.9
RESPONSE
-0.3
11.5
18.9
PREDICTED
-
30.2
50.2
85.5
DIFFERENCE
0.3
0.1
-0.3
DIFFERENCE
-0.3
0.5
-0.1
%CALERR
.
-4.2%
1.1%
0.0%
% SPAN
1.2% '
0.4%
-1.2%
% SPAN
-1.2%
2.0%
-0.4%
-------
Scott Specialty Gases
ed
From:
1750 EAST CLUB BLVD
DURHAM NC
Phone: 919-220-0803
CERTIFICATE OF
Fax: 919-220-0808
ANALYSIS •-,r-V
PACIFIC ENVIRONMENTAL SER
5001 SOUTH MIAMI
3RD FLOOR, SUITE #300
RESEARCH TRIANGLE PARK
NC 27709-2077
PROJECT #: 12-30096-002
PO#: 104-99-0008
ITEM #: 1202RCOC AL
8/13/98 * -
CYLINDER #: ALM044152
FILL PRESSURE: 1500PSIG
ANALYTICAL ACCURACY: +-1%
PRODUCT EXPIRATION: 8/13/2001
RECERTIFICATION
COMPONENT
\
PROPANE
AIR
ANALYSIS
85.37 PPM
BAL.
ANALYTICAL METHOD: yARIAN 3400
ANALYST:
APPROVED BY:
B BECTON
-------
Scott Specialty Gases
nipped
From:
1750 EAST CLUB BLVD
DURHAM
Phone: 919-220-0803
NC 27704
Fax: 919-220-0808
CERTIFICATE OF ANALYSIS
PACIFIC ENVIRONMENTAL SER
5001 SOUTH MIAMI
3RD FLOOR, SUITE #300
RESEARCH TRIANGLE PARK
NC 27709-2077
PROJECT #: 12-30096-001
PO#: 104-99-0008
ITEM #: 1202RCOC AL
DATE: 8/13/98
CYLINDER #: ALM029561
FILL PRESSURE: 900PSIG
ANALYTICAL ACCURACY: +-1%
PRODUCT EXPIRATION: 8/13/2001
1
RECERTIFICATION
COMPONENT
PROPANE
AIR
\
ANALYSIS
50.14 PPM
BAL.
ANALYTICAL METHOD:
ANALYST: "~ *J$T
B BECTON
IAN 3400
APPROVED BY
-------
Scott Specialty Gases
175D EASTCLUB BOULEVARD, DURHAM. NC 27704
(919)2200803 FAX (919) 22M808
CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS
•4
Customer
Pacific Environmental Services
Amr Mr. Frank Meadows
P.O. Box 12077
Research Triangle Park, NC 27709
ANALYTICAL INFORMATION
Assay Laboratory
Scott Specialty Gases, foe.
17SO East Club Boulevard
Durham, NC 27704
Purchase Order 104-95-0121
Scott Project # 12-11271
[| Certified to exceed the minimum specifications of EPA Protocol Procedure #G1, issued September, 1993.
Cylinder Number
AAL-13302
Certification Date
2000 PSIG
Previous Certification
04-18-95 Expiration Date
None
Certified Concentration
Analytical Uncertainty*
+/-1% NIST Directly Traceable
•&*
REFERENCE STANDARD
Type*' Expiration Date
1668 06-%
£*•?£
Cylinder Number
ALM-032005
Last Date Calibrated ,.
03-23-95 . ;. --V
^S? ANALYZER READINGS (Z>-ZeroG«s R-HeferclieeG*. T-Te*G«
Concentration
95.5 PPM Balance in Air
INSTRPMENTATTON
Jwtrnmeat/Model/Serial #
v^f Varian/3400/16804
•* „>, Analytical Principle
Gas Chromatography
t)
^^•-'i^ie^mponents
-v***7' \ ^ ftOJMDC
'"VIT-^Hy'-^SiS
Vj
.jisy
*&*** jj^g
as.?^rwK—-/jp^
;?»>v -'jr^J
-.-' ~-\.3-3:&\
•• ~ ',' iff -f-'~ ' ' 3
..""•yr.f.^ff ~
7 ** . J"r
"•$ g*
'•: ^r'1^
"~"^h
• ^--"J--;!
First Triad Analysis
Due: 04-11-95 Response Unite: Are»
STD-1397517 SPL-43696*
SPL-437932 SPLM3S070
STD-1396973 S1D-1393705
D«te: RnqnowUnl*:
STD~ SPL"
&PL- SPL-
STI^ SID-
STD- SPL-
SPL- SPL-
sto- sn>-
Second Triad Aaalysi»
EMe: RnpoMe UuB:
STO- SPL-
SPL- SPL-
STD" SH^ -
Dae: Rriii amir Unto:
STI> SPL-
SPL- SPL-
sn>- sun
* ™" *- •*
DMR " <".,^,-,-aiaBUi!- STD-
//
In
Calibration Curve
DMK 03-23-9S
D^e:
^/'1/
^l^TWri^—
aly«'S. Vaughan /
' /
-------
Scott Specialty Gases
pped
From:
1750 EAST CLUB BLVD
DURHAM
Phone: 919-220-0803
NC 27704
CERTIFICATE
O F
Fax: 919-220-0808
ANALYSIS
PACIFIC ENVIRONMENTAL SER
5001 SOUTH MIAMI
3RD FLOOR, SUITE #300
RESEARCH TRIANGLE PA
PROJECT #: 12-28662-001
PO#: 104-98-0178
ITEM #: 12023411 CAL
DATE: 5/01/98
NC 27709-2077
CYLINDER #: AAL13302
FILL PRESSURE: 1400 PSIG
ANALYTICAL ACCURACY: +-1%
PRODUCT EXPIRATION: 5/01/2001
BLEND TYPE
COMPONENT
PROPANE
AIR
RECERTIFICATION OF CYLINDER
REQUESTED GAS
CONC MOLES
ANALYSIS
(MOLES)
30.
PPM
BALANCE
30.0
PPM
BALANCE
ANALYST:
B.M. BECTON
-------
Airgas
Airgas Specialty
325 McCausland Court
Cheshire. CT 06410
Phone: (203) 250-6827
FAX. (203)250-6842
Certificate of Analysis: E.P.A. Protocol Gas Mixture
Rectt
Cylinder No:
Cylinder Pressure:
Certification Date
4150
CC86922
2000
3/2/98
Purchase Order #
Expiration r>r'*~-
Laboratory:
13980
3/2/01
Cheshire, CT
Reference Standard Information:
Type Component
GMIS Carbon Dioxide
GMIS Oxygen
Cvi. Number
CC34977
CC19914
Concentration
14.08 %
20.98 %
Instrumentation:
Instrument/Modet/Seriai No.
Rosemount/NGA2000/Rack#1
Servomex/244/701 /488
Analytical Principle
NDIR
Parmagnetic
Analytical Methodology does not require correction for analytical interferences.
Certified Concentrations:
Carton D&xiete :
Oxygen - ;
flltregeo
cstmi""1*""""*'"
Analytical Results:
1st Component;
1st Analysis Date:
R 3259
S
Z
2/16/98
3.782
0.265
S
z
R
3.726
0.256
3.298
2nd Component:
1st Analysis Date:
R 173.630
S
Z
3/2/98
156.970
1.890
S
z
R
156.890
1.420
173.630
Z
R
S
Z
R
S
3.3O5
3.769
173 JI8'
157.030
Cone
Cone
Cone
AVG:
Cone
Cone
Cone
AVG:
19.065%
19.006%
18.964%
19.012 %
19.175 %
19.165 %
19.158 %
19.166 %
Certification performed in accordance with "EPA Traceability Protocol (Jan. 1909)" using the assay
procedures listed.
Do not use cylinder below 150 psig.
ApprovedI for Release
-------
Airgas
Airgas Specialty Case
325 McCaujtand Court
Cheshire. CT 06410
Phone: (203) 250-6827
FAX: (203)250-6842
Certificate of Analysis: E.P.A. Protocol Gas Mixture
Rec#
Cylinder No :
Cylinder Pressure:
Certification Date
4149
CC86779
2000
3/2/98
Reference Standard Information:
Type Component
GMIS
GMIS
Carbon Dioxide
Oxygen
Purchase Order*
Expiration Date:
Laboratory:
139680
3/2/01
Cheshire. CT
Cvl. Number
CC34977
CC19914
Concentration
14.08%
20.98 %
Instrumentation:
Instrument/Model/Serial No.
Rosemount/NGA2000/Rack#1
Servomex/244/701/488
Analytical Principle
NDIR
Parmagnetic
Analytical Methodology does not require correction for analytical interferences.
Certified Concentrations;
Analytical Results:
1st Component:
Cone
Cone
Cone
AVG:
10.931
%
%
11.012 %
10.981
10.975 %
2nd_Cornpoqeqt:
1st Analysis Date:
R 173.630
S _
Z
3/2/98
91.580
1.
S
Z
R
91.620
1.420
173.630
Z
R
S
1.460
173.810
91.690
Cone
Cone
Cone
AVG:
11.118%
11.103%
11.084 %
11.102 %
Certification performed in accordance with "EPA Traceability Protocol (Jan. 1998)" using the assay
procedures listed.
Do not use cylinder below 150 psig.
Approved~|o£Release
-------
NOZZLE CALIBRATION SHEET
DATE:
. G, • ( k -
CALIBRATION RV-
Nozzle
Identification
Number
G-Lf^.5 XX \vf
D 1 , in.
©x"Vio
D2,in.
o
D3,in.
O,l>\0
,
AD,ia
o.
_>
Davg
0."i»\T> *-
Where:
D1 2 3 = nozzle diameter measured on a different diameter, in.
Tolerance = measure within 0.001 in.
AD = maximum difference in any two measurements, in.
Tolerance = 0.004 in. "
Davg~
of D1, D2> Dg.
-------
7C
PACIFIC ENVIRONMENTAL SERVICES, INC.
4700 Duke Drive,
Suite ISO
Mason, Ohio 45040
Phone:(513)398-2556
Fax (513) 398-3342
www.pes.com
Pilot Tube Number:
P, =
Y =
7C
Effective Length: .*«.. 85"
Pitoi Tube Openings Damaged?
Pilot Tube Assembly Level?
a , = 1
YES
L
YES
J
'(< 10°)
e =
1.3
Date:
Calibrated By:
N0
NO
a , =
A =
12/15/97
S. Simon
0.966
10°)
z = A sin Y =
w = A sin 6 =
i A
0.01686
0.02192
PA =
cm (in.) 0.32 cm ( < 1/8 in.)
cm (in.) 0.08 cm ( < 1/32 in.)
0.483
0.483
0.375
cm (in.)
cm (in.)
cm (in.)
.A
X B
I^rlZ'Vhsr..."-)
-
f)
(0)
(C)
The types of faoe-opanng misalignment shown above wil not affect thebasetne value of Cp(s) so
long as a, and °-j Is less than or equal to 1O*. li,and B, is less than or equal to 5*. z Is less than or
equal to O.32 cm (1/8 in.), and w is lass than or equal toO.OS cm (1/32 in.) ( refer enoel 1.O in
Saalcn 16 m
Pitot Tube Calibration Form
1998 Yearly Calibration
-------
PACIFIC ENVIRONMENTAL SERVICES.INC.
4700 Duke Drive,
Suite 150
Mason, Ohio
Phone: (513) 398-2556
Fax:(513)3983342
www.pes.com
TEMPERATURE SENSOR CALIBRATION DATA
FOR STACK THERMOCC* ^_«
THERMOCOUPLE NUMBER:
7C
DATE:
12/15/97
BAROMETRIC PRES.(ln.Hg):
AMBIENT TEMP. °F:
29.52
74
REFERENCE:
Mercury-in-glass:
Other:
"CALIBRATOR:
ASTM-3F
G. Gay
Reference
point
number
1
2
3
4
Source3
(Specify)
Ambient Air
Cold Bath
Hot Bath
Hot Oil
Reference
Thermometer
Temperrture,°F
74
,0
206
340
Thermocouple..,.
Ppte/rtigmeter
Temperature,1^
74.
, 41
-•'-. ' -205
341
Temperature
Difference,1"
0.00
0.20
0.15
0.13
Type of calibration used.
"(ref. temp.aF+46QWtest thermometer temD.eF+46Qy X100
reftemp,°F+460
Comments:
100<1.5%
STACK THERMOCOUPLE CALIBRATION FORM
1998 Yearly Calibration
-------
TEMPERATURE SENSOR CALIBRATION FORM
- 007"
Temperature Sensor No.
Ambient Temp. °F 2.
Sensor Type fc-Tc. Length
Barometric Pressure, "Hg
Reference Temp. Sensor:
Date
VZo-^Y
*>
//•
Ref.
Point
No.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Temp.
Source
lc£
Mi-O
fr*\?»/
toil*-
!**«-
H*-D
Temp. °F
Ref.
Sensor
3t
7<>
-Loc.
>
Test
Sensor
3-f-
17
'^•^
Temp.
Diff . %
.^oc,
./ 5ft
O/S^
Within
Limits
Y/N
y
y
y
Calibrated
By
(1U^
7^^
^
'
% Temp. Diff
(Ref. Temp + 460) - ( Test Temp. +
(Ref. Temp. +460)
460)
x 100 s 1.5 %
-------
TEMPERATURE SENSOR CALIBRATION FORM
Temperature Sensor No.
Ambient Temp. °F
Sensor Type <- (^ Length ^.->•.,.-.
Barometric Pressure, "Hg "L^. c/ "'
Reference Temp. Sensor:
Date
>--Lo*r
"
«
Ref.
Point
No.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Temp.
Source
his
JVMTL
VU^
,
Temp. °F
Ref.
Sensor
3>S
1C.
Z^G,
Test
Sensor
34-
7^
~*-
. '
Temp.
Diff. %
0
••
WithJn
Limits
Y/N
•-'•'• •
Calibrated
By
., «U«--,: _-
,. ,
'•' ' '"';
-. : -t '• -••'•
•?.-$
c.
% Temp Diff =
P'
. Temp + 460) - ( Test Temp.. + 460) 10Q s ^ 5 %
(Ref. Temp. •»• 460} . ..
-------
REFERENCE METER CALIBRATION
ENGLISH REFERENCE METER UNITS
Barometric Pressure
N«ttr YM
K ( deg R/inches Hg)
Time Pressure
(i»in) (in. H20)
6.00 -6.60
24.00 -6.60
8.00 -6.60
10.00
35.00
16.50
12.50
14.00
58.50
16.50
42.00
66.50
15.30
13.50
35.00
•4.00
-4.00
-4.00
-2.30
-2.80
-2.80
-1.60
-1.60
-1.60
-1.00
•1.00
-1.00
29.73
1.00000
17.64
DGM Serial * 6841495
Date 8/28/96
Filename: F:\DATAFILE\CALIBRAT\CAL NENU.OSKXOGM REF.
Revised: 06/08/95
Dry Gas Meter (DGM) Tenperature Wet Test Meter (WTN) DGM Coefficient Flow
Meter Readings Voline Initial Final Meter Readings Voluae Ten? Coefficient Variation Rate
Initial Final (cubic feet) (deg F) (deg F) Initial Final (cubic feet) (deg F) Yds Ids-(Avg.Yds) (CFM)
374.451 381.901 7.450 73.0 76.0 496.572 503.987 7.415 77.0 1.007 -0.004 1.207
381.901 411.424 29.523 74.0 76.0 503.987 533.471 29.484 77.0 1.011 0.000 1.200
411.424 421.233 9.809 76.0 76.0 533.471 543.279 9.808 77.0 1.015 0.004 1.197
Max Tds - Min Yds -0.007489914 Must be no grester than 0.030
Average Yds *1. 011058546 Must be between 0.95 to 1.05
421.233
430.675
464.147
479.992
489.698
500.594
574.496
590.619
614.123
651.520
657.572
563.365
430.675
464.147
479.992
489.698
500.594
546.063
583.672
614.123
651.520
657.572
663.065
677.274
9.442
33.472
15.845
9.706
10.896
45.469
9.176
23.504
37.397
4.052
5.493
14.209
76.0
77.0
77.0
78.0
78.0
78.0
79.0
80.0
80.0
81.0
82.0
82.0
77.0 543.279 552.761
77.0 552.761 585.965
78.0 585.965 601.625
78.0 601.625 611.270
78.0 611.270 622.061
79.0 622.061 667.125
79.0 695.390 704.530
80.0 711.429 734.785
81.0 734.785 771.901
82.0 771.901 777.994
82.0 777.994 783.iOO
32.0 783.400 797.515
9.482
33.204
15.660
Max Yds - Nin
Average
9.645
10.791
45.064
Max Yds - Nin
Average
9.140
23.356
37.116
Max Yds - Min
Average
6.393
5.406
14.115
77.0
77.0
77.0
Yds "0
Yds «1
77.0
77.0
77.0
Yds •
Yds >1
1.013
1.002
0.999
.014197179 Must
.004786738 Must
1.003
0.999
1.001
0.00338145 Must
.000808891 Must
77.0 1.004
77.0 1.003
77.0 1.003
Yds *0.000835063 Must
Yds »1. 003302203 Hust
78.0
78.0
78.0
1.016
0.994
1.003
0.009 0.926
-0.003 0.926
-0.006 0.927
be no greater than
be between 0.95 to
0.002 0.754
-0.002 0.753
0.000 0.752
be no greater than
be between 0.95 to
0.000 0.541
0.000 0.543
0.000 0.545
be no greater than
be between 0.95 to
0.011 0.396
-0.010 0.390
-1.001 0.393
0.030
1.05
0.030
t.05
0.030
1.35
A M««
Max fat • Min fds *0.021724294 Must be no greater than 3.030
Average Yds '1.004344616 Must be between 0.95 to 1.35
Overall Average Yds *1.004860199
! certify that the above Dry Gas Meter uas calibrated in accordance with 5.P.A. Method 5 . paragraoh 7.1 ;CFR 40 Part 60,
•jsino. the Precision wet Test Meter » 11AE6, which in turn was calibrates using the American Sell Prover * 3785,
certificate 4 ?107. which is traceable to the National 3ureau if Standards (H.i.S.r.;.
Signature •cJ^L -
I/K
Date
. a /.
//
-------
PACIFIC ENVIRONMENTAL SERVICES, INC.
Posttest Dry Gas Meter Calibration Form (English Units)
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Pretest Calibration Factor
System Vacuum Setting, (in Hg)
Reference Meter Correction Factor
Date: 9/8/98 Pbar, in Hg
1.021
11
1.008
29.75 Calibrator: jwb
Meter Box No.
MB-10
AH= 1.41
Trial
1
2
3
Duration
(min)
10
10
10
Dry Gas Meter
Initial
(ft3)
175.033
182.466
169.866
Final
(ft3)
182.466
189.866
197.28
Net
(ft3)
7.433
7.400
7.414
Initial, Inlet
(°F)
^3
75
77
Final, Inle
(°F)
75
77
78
Avg. Inlet
(°F)
74
76
Initial, Outlet
(°F)
73
74
77.5 j 74
Final, Outlet
(°F)
74
74
75
Avg. Outlet
(°F)
73.5
74
74.5
'
H
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
655.378
662.858
670.293
Final
#»)
662.858
670.293
677.758
Net
(ft3)
7.480
7.435
7.465
Meter Temperature „
Initial
(°F)
73
*,^73
74
Final
(°F)
73
•74
74
%g.
IT)
73
~3.5
74
Meter Box
Correction
Factor ,
y
1.012
1.012
1.019
Reference
Orifice Press
AH0
(in. H2O)
1.42
1.44
1.43
10 09017
PostTestog-08-98
'••&„
•A*-.
-------
2 of 2
PACIFIC ENVIRONMENTAL SERVICES, INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919)941-0333 FAX: (919) 941-0234
AH = 2.0
Trial
1
2
3
Trial
Duration
(min)
10
10
10
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
55.868
63.519
71.182
Final
(ft3)
63.519
71.182
78.845
Net
(ft3)
7.651
7.663
7.663
Meter Temperatures
Initial, Inlet
(°F)
84
86
86
Final, Inlet
(°F)
86
86
87
Avg. Inlet
(°F)
85
86
86.5
Initial, Outlet
(°F)
81
81
81
inal, Outle
(°F)
81
81
81
Avg. Outlet
(°F)
81
81
81
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
662.729
670.472
678.244
Final
(ft3)
670.472
678.244
686.010
Net
(ft3)
7.743
7.772
7.766
Meter Temperature
Initial
(•F)
78
78
78
Final
(•F)
78
78
78
Avg.
(*F)
78
78
78
Meter Box
Correction
Factor
Y
1.021
1.025
1.024
Reference
Orifice Press
AH0
(in. H2O)
1.87
1.86
1.86
AH = 4.0
Trial
1
2
3
Trial
Duration
(min)
8
8
8
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
79.058
86.620
94.185
Final
(ft3)
86.620
94.185
101.754
Net
(ft3)
7.562
7.565
7.569
Meter Temperatures
Initial, Inlet
(•F)
85
87
89
Final, Inlet
(°F)
88
89
89
Avg. Inlet
(°F)
86.5
88
89
Initial, Outlet
(•F)
81
82
82
inal, Outle
(•F)
82
82
82
Avg. Outlet
CF)
81.5
82
82
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
686.208
693.895
701.558
Final
(ft3)
693.895
701.558
709.244
Net
(ft3)
7.687
7.663
7.686
Meter Temperature
Initial
CF)
78
78
78
Final
(•F)
78
78
78
Avg.
(°F)
78
78
78
Meter Box
Correction
Factor
Y
1.023
1.021
1.025
Reference
Orifice Press
AHC
(in. H20)
2.44
2.45
2.43
Calibration Results
[ AH
0.50
0.75
1.0
2.0
4.0
Y
1.020
1.020
1.020
1.023
1.023
AHe |
1.73
1.79
1.78
1.86
2.44
Dry Gas Meter MB-10 on 09/01/97
Meter Box Calibration Factor
Meter Box Reference Orifice Pressure
1.021
1.92
10_09017.XLS
Printed: 6/11/98
-------
1of2
PACIFIC ENVIRONMENTAL SERVICES, MC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 9414)333 FAX: fSfS) 941-0234
:
Date:
9/1/97
Calibrator Tom McDonald
Meter Box No.: MB-10
, in Hg 30.16
Reference Meter Correction Factor; 1.0049 (8/28/96)
AH = 0.5
Trial
1
2
3
Trial
Duration
(min)
19
19
19
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
994.409
1001.982
1009.513
Final
(ft3)
1001.982
1009.513
1017.050
Net
(ft3)
7.573
7.531
7.537
__..
Initial, Inlet
CF)
74
77
80
Final, Intel
CF),/
78
80
81
Met«r T->
Avy. inlet
en
76
78.5
80.5
mperatures
Initial, Outlet
CF)
73
75
77
inal, Outle
CF)
75
77
78
Avg. Outlet
<"F)
74
76
77.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
600.523
608.185
615.801
Final
(ft3)
608.185
615.801
623.430
Net
(ft3)
7.662
7.616
7.629
Meter Temperature
Initial
CF)
72
74
76
Final
CF) .
74
76
77
Avg.
CF)
73
75
76.5
Meter Box
Correction
Factor
Y
1.019
,1-019
1.021
Reference
Orifice Press
AH0
(in. H2O)
1.71
1.74
1.74
AH = 0.75
Trial
1
2
3
Trial
Duration
(min)
15
15
15
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
17.220
24.350
31.563
Final
(ft3)
24.350
31.563
38.780
Net
(ft3)
7.130
7.213
7.217 ,
Meter Temperatures
Initial, Inlet
CF)
80
82
.. 82
Final, Intel
yrv .
V • /
82
83 '
ear. ;
•Avg. Inlet
81
82.SS
.82.5
initial, Outlet
:*F)
78
J_ 79
79
inal, Outle
CF)
79
79
81
Avg. Outlet
(°F)
78.5
79
80
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
623.622
630.833
638.141
Final
(ft3)
630.833
638.141
645.425
Net
(ft3)
7.211
7.308
7.284
Meter Temperature
Initial
CF)
77
78
78
Final
CF)
77
78
78.5
Avg,
CF)
77
78
78.25
Meter Box'
Correction
Factor
y
. 1.020
1.021
1.018
Reference
Orifice Prews
AH0
(in. HjO)
1.82
1.77
1.79
AH= 1.0
Trial
1
2
3
Trial
Duration
(min)
10
10
10
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
38.946
44.490
50.050
Final
(ft3)
44.490
50.050
55.585
Net
(ft3)
5.544
5.560
5.535
Meter Temperatures
Initial, Inlet
CF)
81
83
84 „.
Final, InM
cn
83
84
84
Avfl.lali,
cn
82
83.5
84
Jo**, Outlet
CF)
80
80
80
inal, Outle
CF)
80
80
80
Avg. Outlet
CF)
80
80
80
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
645.614
651.220
656.829
Rnal
(ft3)
651.22
656.829
662.435
Net
(ft3)
5.606
5.609
5.606
Meter Temperature
Initial
CF)
78
78
78
Final
CF)
78
78
78
Avg.
CF)
78
78
78
Meter Box
Correction
Factor
T
. 1.019
1.018
1.023!
Reference
Orifice Press
AH0
(in. H2O)
1.79
1.78
i.78
10 09017.XLS
Printed: 6/11/98
-------
APPENDIX E
QA/QC DATA
-------
19. Method 3 A System Bias Check, %. Values are for the oxygen, final upscale check.
Sys Bias % = (100) (Instr. ResponseCALERR- Instr. ResponseSYSCAL)/Span
Sys Bias % = (100) (18.9 - 18.9) / 25
Svs Bias % = 0.0 %
t
20. Method 3A Drift, %. Values are for the oxygen, upscale check.
Drift % = (100) (Instr. Response^^SYg CAL - Instr. Response^^ CAL )/ Span
Drift % = (100) (18.9 - 19.1) / 25
Drift % = -0.8 %
21. Method 3 A Zero & Upscale Sampling System Check Adjustment. Values are for oxygen,
gas
= (6.7-0.35) 19J?
888 19.0-0.35
C_ = 6.5 %
Where: C^ = Adjusted gas concentration, ppm or %
C^ = Average unadjusted gas concentration from analyzer
C0 = Average of zero gas initial & final system cal. bias check
C^ = Actual concentration of the upscale calibration gas
Cm = Average of upscale initial & final system cal. bias check
-------
16. CEM Pollutant (HC1) Concentration, ppm,,
ppmd = ppmw/(l-BJ100)
ppmd = i.4 / (1-29.7/100)
ppmd = 1.99 ppm,
17. CEM Pollutant (HC1) Emission Rate, lb/hr.
lb/hr =
(106) (385.3)
lb/hr = (60) (1.99) (44.11) (29.542)
(106) (385.3)
lb/hr = 0.405 Ib/hr
18. Method 3A Calibration Error, %. Values are for the oxygen, mid range.
Cal Err % = (100) (Instrument Response - Calibration Gas Concentration)/Span
Cal Err % = (100) (11.2 - 11.1) / 25
Cal Err % = 0.4 %
-------
13. Pollutant (2378 TCDD) concentration, ng/dscm.
ng/dscm = -——
m(gtd>n
V -fc./«*j\«. 3
,. 0.0102
ng/dscm =
2.971
ng/dscm = 0.00343 ng/dscm
14. Pollutant (2378 TCDD) concentration, ng/dscm adjusted to 7 percent oxygen.
ng/dscm@7%O2 = (ng/dscm)
ng/dscm@7%O2 = (0.00343)
(20.9 - %O2)
13.9
^, = IU.UUJHJ 1
2 (20.9 - 6.5)
ng/dscm@7%O2 = 0.00331 ng/dscm@7%O2
15. Pollutant (2378 TCDD) emission rate, |lg/hr.
(60) (ng)
__
do3)
= (60) (0.0102) (29,542)
(103) (104.912)
jig/hr = 0.172 ng/hr
-------
10. Stack gas volumetric flow rate at stack conditions, acfin.
Qa = (60) (A) (Vg)
Qa = (60) (27.11) (30.43)
Qa = 49,492 acfin
11. Dry stack gas volumetric flow rate at standard conditions, dscfin.
= O7-64) (49,492) I —^^—I (l - 29.7/100)
I 156.4 + 460 V 7
= 29,542 dscfin
12. Dry stack gas volumetric flow rate . : standard conditions, dscmm.
°'028317
) - 1^9,542) (0.028317)
= 837 dscmm
-------
7. Absolute stack gas pressure, in. Hg.
p
p _ p + static
. te D_6
-0.23
X 4*^ t I '
13.6
PR = 29.68 inches Hg
8. Stack velocity at stack conditions, fps.
v = 85.49 C
\
460
v = (85.49)(0.84)(0.4881)
\
(156.4 + 460)
(27.56) (29.68)
vg = 30.43
9. Isokinetic Variation.
0/ol.
- 460) (17.32)
(104.912) (156.4+ 460) (17.32)
(30.43) (0.310)2 (180) (29.68) (1-29.7/100)
= 102.1
-------
4. Moisture content in stack gas, as measured.
V,
, (100)
+ v
v
BOT - *L«« (100)
m 104.912+ 57.661
= 35.5
Moisture content in stack gas, at saturation. Used if lower than measured moisture.
B = io(6-691"(3144/(ts+390-86))) / Ps * 100
ws(sat)
E r ,= io(6-691-(3l44/(l56+390-86)>> / 2968 * 100
ws(sal)
= 29-5
5. Dry molecular weight of stack gas, Ib/lb-mol.
Md = 0.44 (%CO2) + 032(%O2) + 0.28 (%N2 + %CO)
M. = 0.44(20.9) + 0.32(6.5) + 0.28(72.6 + 0)
Md = .U.60 Ib/lb-mol
6. Molecular weight of stack gas, Ib/lb-mol.
Mg = Md(l-B^100) +
Mg = 31.60(1-29.73/100) + 18(29.73/100)
Mg = 31.60(0.7027) + 18(0.2973)
Mg = 22.205 + 5.351
M = 27.56 Ib/lb-mol
-------
Example Calculations
Huron Lime Company - Huron, Ohio
US EPA Method 23-PCDDs/PCDFs
(Using Data from Run M23-O-3)
Note: Discrepancies may exist between the computer generated reported results, which use
more significant figures, and the values manually calculated from the displayed values.
1. Volume of dry gas sampled corrected to standard conditions of 68°F, 29.92 in. Hg, ft3.
'm(std)
= 17.64VV
AH
13.6
460 + t_
= (17.64)(107.709)(1.021)
29.7 +
1.27
13.6
^ 460 + 90.9 }
= 104-912 dscf
2. Volume of dry gas sampled corrected to standard conditions of 68°F, 29.92 in. Hg, m3.
= Vm(std)(0.028317)
= (104.912) (0.028317)
= 2.971 dscm
3. Volume of water vapor at standard conditions, ft3.
= 0.04707V
1C
= (0.04707)(1225.0)
= 57.661 scf
-------
Nomenclature
Y
AH
Pbar
vm
tm
"static
t.
Vlc
CO2
02
N2
CP
AP1/2
0
D
*m(std)
m(std)m3
P
w(std)
M
A
Qa
Qs(std)
^cs(cimn)
I
ng/dscm
ng/dscm@7%O2
ug/hr
Ib/hr
Meter Box Correction Factor
Avg Meter Orifice Pressure, in. H2O
Barometric Pressure, inches Hg
Sample Volume, ft3
Average Meter Temperature. °F
Stack Static Pressure, inche^ n A>
Average Stack Temperature, °F
Condensate Collected, ml
Carbon Dioxide content, % by volume
Oxygen content, % by volume
Nitrogen content, % by volume
Pitot Tube Coefficient
Average Sqi, • c Root Dp, (in. H2O)J*
Sample Run Duration, minutes
Nozzle Diameter, inches
Nozzle Area, ft2
Standard Meter Volume, dscf
Standard Meter Volume* dsc™
Stack Pressure, inches Hg
Moisture, % by volume
Standard Ws^er Vapor Volume, ft3
Dry Mole Fraction
Molecular Weight, dry, lb/lb«mole
Molecular Weight, wet, Ib/lb-mole
Stack Gas Velocity, ft/s
Stack Area, ft2
Stack Gas Volumetric flow, acfm
Stack Gas Volumetric flow, dscfin
Stack Gas Volumetric flow, dscmm
Isokinetic Sampling Ratio, %
Concentration, ng/dscm
Concentration, ng/dscm adjusted to 7% oxygen
Emission Rate, ug/hr
Concentration, parts per million, dry
Concentration, parts per million, wet
Emission Rate, pounds per hour ~
-------
APPENDIX D
EXAMPLE EQUATIONS
-------
Summary of Stack Gas Parameters and Test Results
Huron Lime Company - Huron, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 3 Scrubber Stack
Page 6 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-3
08/31/98
1750-2128
EMISSIONS DATA - Continued
Furans - Continued
Total HpCDF
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
ug/hr Emission Rate, ug/hr
OCDF
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
ug/hr Emission Rate, pg/hr
Total PCDF
ng Catch, ng
ng/dscm , Concentration., ng/dscm, as measured
ug/hr Emission Rate, ug/hr
Total PCDD + PCDF
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
ug/hr Emission Rate, ug/hr
0.0104
0.00350
0.176
(0.0056)
(0.00189)
(0.0946)
(6.7144)
(2.260)
(113.4)
(6.9586)
(2.342)
(117.6)
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Huron Lime Company - Huron, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 3 Scrubber Stack
Page 5 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-3
EMISSIONS DATA - Continued
Furans - Continued
123678 HxCDF
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
ug/hr Emission Rate, )j,y. i
234678 HxCDF
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
ug/hr Emission Rate, ug/hr
123789 HxCDF ^
ng Catch, ng
ng/dscm Concentration, ng/d&m, as measured
ug/hr Emission Rate, ug/hr
Total HxCDF
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
ug/hr Emission Rate, ug/hr
i.-
1234678 HpCDF
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
ug/hr Emission Rate, ug/rjr
1234789 HpCDF
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
pg/hr Emission Rate, ug/hr
0.0119
0.00401
0.201
0.0068
0.00229
0.115
(0.0016)
40,001)539}
(0.0270)
OJJ784
0.0264
1.32
0.0105
0.00353
0.177
(0.0034)
(0.00114)
(0.0574)
() Not Detected. Value shown is the detection limit and is included in totals. -
{} Estimated Maximum Possible Concentration. EMPC values we included in trt»\»
-------
Summary of Stack Gas Parameters and Test Results
Huron Lime Company - Huron, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 3 Scrubber Stack
Page 4 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-3
08/31/98
1750-2128
EMISSIONS DATA - Continued
FURANS
2378 TCDF
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
pg/hr Emission Rate, pg/hr
Total TCDF
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
ug/hr Emission Rate, ug/hr
12378 PeCDF
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
pg/hr Emission Rate, ug/hr
23478 PeCDF
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
ug/hr Emission Rate, ug/hr
Total PeCDF
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
ug/hr Emission Rate, ug/hr
123478 HxCDF
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
pg/hr Emission Rate, pg/hr
0.309
0.104
5.22
5.68
1.91
96.0
0.101
0.0340
1.71
0.0602
0.0203
1.02
0.940
0.316
15.9
0.0207
0.00697
0.350
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Huron Lime Company - Huron, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 3 Scrubber Stack
Page 3 of 6
RUN NUMBER
RUN DATE
RUN TIME
EMISSIONS DATA -Continued
DIOXINS - Continued
123789 HxCDD
ng Catch, ng
ng/dscm Concentration, ng/dc<"rn nc measured
ug/hr Emission Rate, ug
Total HxCDD
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
ug/hr Emission Rate, ug/hr
1234678 HpCDD
ng Catch, ng
ng/dscm Concentration, ngA 'scrn, as measured
ug/hr Emission Rate, ug/hr
Total HpCDD
ng Catch, ng
ng/dscm Concentration, ng/oscm, as measured
ug/hr Emission Rate, ug/hr
OCDD
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
ug/hr Emission Rate, ug/hr
Total PCDD
ng Catch, ng
ng/dscm Concentration, ng/dscm, as measured
ug/hr Emission Rate, ug/hr -'
M23-O-3
08/31/98
0.0031
0.00104
0.0524
0.0148
0.00498
0.250
{0.0075}
{0.00252}
{0.127}
(0.0017)
(0.000572)
(0.0287)
{0.0319}
{0.0107}
{0.539}
(0.2442)
(O.OB22)
(4.13)
,7* ,,<<,'"
() Not Detected. Value shown is the detection Hmrt and is included in totals.
{ } Estimated Maximum Possible Concentration. EMPC values at* indmfed
-------
Summary of Stack Gas Parameters and Test Results
Huron Lime Company - Huron, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 3 Scrubber Stack
Page 2 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-3
08/31/98
1750-2128
ng
ng/dscm
ug/hr
ng
ng/dscm
pg/hr
ng
ng/dscm
ug/hr
ng
ng/dscm
ug/hr
ng
ng/dscm
ug/hr
ng
ng/dscm
ug/hr
EMISSIONS DATA
DIOXINS:
2378 TCDD
Catch, ng
Concentration, ng/dscm, as measured
Emission Rate, ug/hr
Total TCDD
Catch, ng
Concentration, ng/dscm, as measured
Emission Rate, M9/hr
12378PeCDD
Catch, ng
Concentration, ng/dscm, as measured
Emission Rate, pg/hr
Total PeCDD
Catch, ng
Concentration, ng/dscm, as measured
Emission Rate,
123478 HxCDD
Catch, ng
Concentration, ng/dscm, as measured
Emission Rate, ug/hr
123678 HxCDD
Catch, ng
Concentration, ng/dscm, as measured
Emission Rate, ug/hr _
0.0102
0.00343
0.172
0.151
0.0508
2.55
0.0038
0.00128
0.0642
0.0448
0.0151
0.757
0.0021
0.000707
0.0355
0.0030
0.00101
0.0507
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and
Test Results
Air Emissions Screening Test ?
Y
AH
Pbar
vm
Tm
Pstatc
Ts
V,c
CO2
02
N2
CP
Ap"2
©
Dn
An
Vm(std)
Vm(std)
PS
B«
"ws(Ht)
VWSM
1-Bvvs
Md
Ms
v,
A
Q,
Qs
Qsfcmrn)
I
Huron Lime Company - Huron,
US EPA Test Method 23 - PCDDs /
Kiln No. 3 Scrubber Stack
Page 1 of 6
RUN NUMBER
RUN DATE
RUN TIME
MEASURED DATA
Meter Box Correction Factor
Avg Meter Orifice Pressure, in. H20
Barometric Pressure, inches Hg
Sample Volume, ft3
Average Meter Tenv-.aujnj, r
Stack Static Pressure, inches H2O
Average Stack Temperature, °F
Condensate Collected, ml
Carbon Dioxide content, % by volume
Oxygen content, % by volume
Nitrogen content, % by volume
Pitot Tube Coefficient
Average Square Root Ap, (in. H2O)1/2
Sample Run DuratiO:,, .Mnute-
Nozzle Diameter, inches
CALCULATED DAT,*
Nozzle Area, ft2
Standard Meter Voiume, dscf
Standard Meter Volume, dscm
Stack Pressure, inches Hg
Moisture, % by volume
Moisture (at saturation), % by volume
Standard Water Vapor Volume, ft3
Dry Mole Fraction
Molecular Weight (d.b.), Ib/lb-mole
Molecular Weight (w.b.), Ib/lb-mole
Stack Gas Velocity, ft/s
Stack Area, ft2
Stack Gas Volumetric flow, acfm
Stack Gas Volumetric flow, dscfm
Stack Gas Volumetric flow, dscmm
Isokinetic Sampling Ratio, %
Ohio
PCDFs
M23-O-3
vo/Ji/db
1750-2128
1.021
1.27
29.70
107.709
90.9
-0.23
156
1225.0
20.9
6.5
*....
0.84
0.4881
180.0
0.310
0.00052
104.912 • '
2.971
29.68
35.5
„ 29.7 (ueed)
57.961
0.703
31.60
27.56
30.43
27.11
: . 49,492
29,542
R37
102.1
-------
APPENDIX C
CALCULATIONS &'COMPUTER SUMMARIES
-------
File:A275Ef>98M tl-276 Acq:28-SEP-199B 02:59:53 <3C El* Voltage SIR Autospec-Ultimafi
Samplelll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
441.7427 S:ll F:5 BSUB(128.15,-3.0) PKD(3,5,3,0.10%,2632.0,1.00%,F,F)
1004 39:53
50:
0:
42:01
39
39:12 39:24 39:36 ' 39:48 ' 40:00 ' 40:12 ' 46:24 ' 46:36 ' 40:48 ' 4l!66
443.7398 S:ll F:5 BSUB(128,15,-3 . 0) PKD(3,5,3,0.10%,5240.0,1.00%,F,F)
1004 39:08 4°'32
7.2E3
.3.6E3
O.OEO
4i':24 ' 4il36 ' 4i.;48 ' 42I66 ' 42!l2 Tim.
..1.2E4
39:12 39:24 39:36 39:48 40:00 40:12 40124 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
469.7780 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2116.0,1.00%,F,F)
1004 40,; 22
50:
o:
2.7E7
Ll.4E7
O.OEO
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 1:24 41:36 41:48 42:00 42:12
471.7750 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,396.0,1.00%,F,F)
lOOt " .-, 40^22 3
50:
0:
Time
0E7
39112 '39:24 ' 39:36 ' 39:49 ' 40:66 ' 40:12 ' 4o!24 40:36 40:4 ' 41!00 ' 41:12 ' 41:24 ' 41:36 ' 41!48 :66 '42:12
513.6775 6:11 F:5 BSUBU28,1: ,-J.OJ PKD(3,3,3,100.00%,440.0,1.00? F,F)
loot
41,20
4120
4l«33 41:47 2:00
.-1
.6.
.OEO
Time
.3E4
3E3
OEO
39112 39:24 39:36 39:48 40:00 40:12 40i24 40:36 40:43 41:00 41:12 41=24 41:36 41:48 42:00 42:12
454.9728 f:ll F:5 SMO(1,3) PKD(3,3,3,100.00%,0,0,1.00%,F,F) , ,
50:
OJ
U
LO
3E8 *
2E8
" i
OEO ,
Time
39:12 39J24 ' 39:36 ' 39:48 ' 4o!66 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
A)
-------
File:A27SEP98M fl-197 Acq:28-SEP-1998 02:59:53 GC EI+ Voltage SIR Autospec-UltimaE
Samplelll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
407.7818 S:ll F:4 BSUB(128,15,-3.0) PKD{3,5,3,0.10%,3232.0,1.00%,F,F)
100% 36:43
50_
36:24 36:36 36:48 37:00 37il2 37J24 37i36 37148 38:00
409.7788 S:ll F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,1532.0,1.00%,F,F)
100%
A
/I 1*7 • fiO "3*7 • 11 "3*7 • C "3 "3 Q « ft*?
36:33 7 V^ 3ll53_ _>V _y>3 7^13 ^ZAlL^ZJ^JZML^-Irv: /vJ A _ 38j21 38L33_ 38^
I3ii54_
_2
36:24 36:36 36:48 37:00 37-12 37:24 37136 37|48 38:00
417.8253 S:ll F:4 BSUB(128.15,-3.0) PKD(3,5,3,0.10%,6436.0,1.00%,F.F)
100* 36:43
50.
38:12 38:24 38:36
38:48
OJ
^LO
39:00
1
.6
.6E4
.3E4
.OEO
Time
.4E7
.9E6
.OEO
Time
.1E7
.6E7
36:24 36:36 36:48 37:00 37-12 37:24 37:36 37:48 38:00
419.8220 S:ll F:4 BSUB(128.15,-3.0) PKD(3,5,3,0.10%,5872.0,1.00%,F,F)
100% 36:43
50_
38:12 38:24 38:36
38:48
39:00
3
38:24 38:36 38:48
36:24 36:36 36:48 37:00 37:12 37-24 37i36 37:48 38:00
479.7165 S:ll F:4 8506(128,15,-3.0) PKD(3,3,3,100.00%,2200.0,1.00%,F,F)
100% 37:30
38:12
50.
36:33
36:24 36:36 36:48 37:00 37J12 37124 37i36 37i48
430.9728 S:ll F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 36^30 36:39 37;flO 37;12 37:36
38:00
38:12 38:24 38:36 38:48 39:00
50:
O
Ifl^Ofi
3ft; 53
T ' * " r r — r "'"7 i — f
36:24 36:36
r— 1 — I ' i"i i — i f i T~ i T~ i — r~r i — i
36-48 37:00 37:12
i — i — I—T — i — i — r i- i — r—r
37-24 37:36
T — r ^--, — r
37:48
i — i — i~"r*"T~ r T~-T~ T— f "T~-I — i — i — r r"T- i — r- r i — t i
38:00 38:12 38:24 38:36
2.2Rfl
O.OEO
38:48 39:00 Time
-------
?ile:A27SEp98M
3amplelll Text:
373.8207 S:
100%
50
0 '
33:l«3
^vA^l
33S 4V '
375.8178 S:
100%
so:
0
11 F
,
:55
M
•34!
11 F
34
fl-197 Acq:
1113-7 xl/2
:3 BSUB(128
1
1 34:08 .
SV^/x/v
do ' '34 5 12'
:3 BSUB(128
:01
28-SEP-1998 02:59:53 <3C 61
,15, -3.0)
34:27
— T— i — i — l i i — r
34:24
,15, -3.0)
33:56 A
•s\S~>*S
33 : 48
383.8639 S:
100%
50:
0:
33:48
385.8610 S:
100S
50:
0
33:48' '
445.7555 S:
100%
50:
•
0-
33:51
yvw. .A_j\.
" '-l-f-l T T
33:48.
380.9760 £:
100%
50:
o:
V
"-' r '1 i >"r
•36,: 48
V
34!
11 F
34
34:
11 F
34:
"h r*"*
34!
11 F
. S~^r
•"T '' f
34:
11 F
_3-4-
'34!
04:05
00 34:12
:3 BSUBU28
00
00 34 : 12
:3 BSUBU28
00
00 34 : 12
:3 BSUB(128
34:10
00* ' '34: 12'
:3 SMO(1,3)
•01
-r— r— i — i— i- T — i— r
00 34:12
34:20
34:24
,15, -3.0)
34:24
,15, -3.0)
34:24
,15, -3.0)
• '"T •
34:25
A A
34:24
PKD(3,3,3
-i— l— v-j ? T i
34124
Exp:
PKD(3,5,2
34:38
/VW
'34:36' '
PKD(3,5,2
34:38
r V V_
34? 36
PKD(3,5,2
'T
A
i\
34:36
PKD(3,5,2
34:37
A
/v
34:36
PKD(3,3,3
34:
i
34il36
+ Voltage
SIR Autospec-UltimaE
EXP M23 DBS OVATION
,0.10%,
*/\J
i i 1 i i •
34:48
,0.10%,
34:48
\J\s~^
34:48
.0.10%,
34 ! 48
,0.10%,
-t
34! 48
4272. 0,1. 00%, F,
35>l01 35
-^vv
1 — 1 — 1 — I—I — 1 — 1 — 1
35:00
:09
^A
35 5 12
2192. 0,1. 00%, F,
35:00
AAn 35
35! do
19392.0,1
35:00
26820 0,1.
35s 00" .**
,loo.oo%,4oa,'o,i.
:,* ' " . ;
34
44
\_^J\^^\. j
34 : 48
'I ;• '
"' 35
,„•
/V\^Hv7
35:00
:09
/X^v ..
\J\-
3sTl2
00%, F
35Sl2
00%, F
35: '2
00? F
:09
«
\
\
^•r^
35! 12
F)
__!
35:21 A 35:50
f\ A 35:41 A A 36:07 ,,.,,
ys-A/ ^v y\ A/» V\/\ r^^—~ AJ 1 AJ x A /^^^VA £ Ai
.7
n
i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — r— i — i — i — i — i — r-*-"
35:24 35:36 35:48 36:00 36:12
F)
,_!
35:34
35:21 35:3A 36:02 36:13 A
15
• n
35?24 35!.36 3s!48 3e!oO 36:12
,F)
2
-1
:o
35!24 3E 5 35!48 36Sdo 365l2
,F)
5
:2
0
35:24 35:36 35:48 36! 00 3e!l2
.F)
35:21
' "' •
/ \ 35,36 35:56 3. 07 36.18
S f ^k*~^*SVN— i^^l • S^~* ^* ^>W^V"X>B'**B 'l 'YNS1'r>^\(' ^ n f^~\f^\m* -*
r2
•9
0
35:24 35:36 35:48 36:00 36:12
,100.00%,0=0.1.00%,F,F)
34:36
V-
34:48
35:01
--••;
35:00
15 1R 15:15 15:5R '» 3
35:12
.— ^ ': r , •
Li
"o
35-124 35:36 3s!48 36:do.' •>;36:12
.5E4
.3E3
OEO
Time
. OE4
.2E3
.OEO
Time
.9E7
.4E7
.OEO
Tims
.6E7
.8E7
.OEO
Time
.OE4
.8E3
.OEO
Tim«
•;
.2E8
.6E9 ''
.OEO
Time
-------
Fiie:A^7SEP9tiM #1-237 Acq:28-SEP-1998 02:b9:53 GC El+ Voltage SIR Autospec-UltimaE
Samplefll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
339.8597 S:ll F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,1328.0,1.00%,F,F)
10°* 32J34 32:49
31:47 32:23
50:
Oj
30:41
L-V-A^L
32:02
32:10
33:22
9
1.4.
30:36 30:48 31:00 31:12 31:24 31:2
341.8568 S:ll F:2 BSUB(128,15,-3.0) PKD(3, 3,2,0.10%,3980.0,1.00%.F,F)
3S48 ' 32S66 ' 32.'i2 ' 32I24 ' 32136 ' 32.U8 ' 33I66 ' 33!l2 ' 33I24 ' 33136
.7E3
. 9E3
.OEO
Time
, . . I ' ' ' i ' I l i i ' ' I ' i i l l I i i i l ' I i i l i l I i i i i i I i r i i i i i i i i i i l i i i i i i . .
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32i36 32:48 33loO 33:12 33:24 33:36
351.9000 S:ll F:2 BSUB(128,15,-3.0} PKD(3,3,2, 0.10%,132.0,1.00%,F,F)
100% 32;22
50:
0:
T.
T
I l l l i i | l l l l i I i i l i i I i i i l T' I i l i l i l i i i i i i i i i I i f I l i l l i i i r i i I i i i i i i i i i i i i i i i i i i i i i i i i i i
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
353.8970 S:ll F:2 BSUB{128,15,-3 .0) PKD(3,3,2,0.10%,3544.0,1.00%,F,F)
100% 32;22
50:
0:
.4
30:36 ' 30.U8 ' 31:66 ' 31:12 ' 31:24 ' 3i:36 ' 3ll48 32:00 32:12 32124 32:36 32.-4S 33.!66 ' 33112' ' 33!24 ' 33136
.OEO
Time
.3E7
.2E7
.OEO
Time
.2E7
.6E7
.OEO
Time
409.7974 S:ll F:2 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,560.0,1.00%,F,F)
100%
50_
33:01
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32ll2 32:24 32:36 32:48 33:00 33:12 33:24 33:36
366.9792 S:ll F:2 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100%^ 30:4230:52 31:03 31:1631:26 31:45 32:01 r?.i7 32-Ti3?.:4fi Vl-.nA 21i2B_Hi4
50.
0:
3,0:36 ' 36;48' ' 3J!6d ' 3JIJ2' ' 3i!24 ' 3J!36 ' nUs' ' 32;6o' ' 32J12' ' 32!24 ' 32;36 ' 32J48' ' 33:6d ' 33:12 33J24 33:36
_4
.1E7
.5E7
.OEO
Time
-------
File:A275EP98M 11-529 Acg:28-SEP-1998 02:59:53 6C 61-t- Voltage SIR Autospec-UltimaE!
Samplefll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
303.9016 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%,2908.0,1.00%,F,F)
100* 27:21 27;57
50.
OJ
30:18
24:00 25:00 26:00 27iOO 28;0(
305.8987 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%,5972.0,1.00%,F,F)
100%. 27-19 27:55
r_1.7E4
L8.4E3
.O.OEO
Time
2.5E4
11.2E4
.O.OEO
Time
3.2E7
L1.6E7
29:00
1 I " I '•••!'•
30:00
30:19
24:00 25:00 26:00 27:00
315.9419 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%,8692.0,1.00%,F,F)
100%
29:00
30:00
0:
24:00 25:00 26:00 27:00
317.9389 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%,7608.0,1 00%,F,F)
100%.
50.
0
29:00
30:00
24:00 25:00 26:00 '27-00
375.8364 3:11 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,196.0,1,00%,F, )
100%. 23:53 ' ,
28:00
29:00
50J
27 :0:
25:16 ; -ye .50
25:11 ,K23.'56 . i, 26:49
i25:35 AA »• '•! -" •• f
JuilM
24:00 25:00 25100
316.9824 S:ll £MO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 21.21 23 i 53 2* ! 16 24 = 42 ^S-11 25:46 2g;12
30:00
30:01
O.OEO
Time
4. 1E7
12.OE7
O.OEO
Time
r!.OB4
.5.0E3
.O.OEO
Time
7.2E7
!.3. 6E7.
27:00
28:00
50J
29:00
28:24 28i58
30:00
2SL
1 - 1 - 1 - 1 " I
28:00
-i 1 1 V-
24100
-i—i " i
25:00
26:00
-T - 1 - 1
27:00
29:00
•30:00
Time
-------
Fiie:A27SEP98M #1-276 Acq:28-SEP-1998 02:59:53 GC 61+ Voltage SIR Autospec-UltimaE
Samplelll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATlON
457.7377 S:ll F:5 BSUB(128,15,-3.0) PKD<3,5,3,0.10%,11300.0,1.00%,F,F)
100% 40:22
so:
41:0741:17 41:29
39:23
41A56 42:07
.1.8E4
O.OEO
39:12 ' 39I24 ' 39:36 ' 39:48 4o!6d ' 46!l2 ' 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
459.7348 S:ll F:5 BSUB(128,15,-3.0) PKD{3,5,3,0.10%,1904.0,1.00%,F,F)
100%. 40;22
so:
39:12 39:26 39:40 39:54
41:56
_1.3E4
O.OEO
IT i I I T I i i I I I i i I i I I i i i i I i I i I i | i I i i I I i i i i I I i i i i i I i i i i i I i i T i i 1 i I i i i I i i i i i I I i i I i I i i I i I I i I i i i 1 i I i i i I
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
469.7780 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2116.0,1.00%,F,F)
1004 40j22
50.
i i i i i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i 1
i i i i i I i i i
.1.4E7
'
39:12 ' 39:24 ' 39:36 39:48 '40:00 40:12 40:24 40:36 40148 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
471.7750 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,396.0,1.00%,F,F)
100% 40j22
so:
_1.5E7
i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i T i i i ii I I I I i i i i I i i i i i i i i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i ' 'WEl"
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
454.9728 S:ll F:5 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
^9 W.J.IW'1?, 39.-4S 40:01 *"^3 4Q;38 4Q.4R 41?in 41:2fl 41;49 42:01 . 2 .3E8
V
50J
" I
•
i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i
-V 39:12 39:24 39:36 39:48 40100 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
-------
File:A27SEP98M 11-197 Acq:2B-SEp-199H 02:59:53 Gt El+ Voltage SIR Autospec-UltimaE
Sampletll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
423.7767 S:ll F:4 BSUBJ128,15,-3.0) PKD(3,5,3,0.10%,2288.0,1.00%,F,F)
100%. 37;32
36:42
so:
_2.2E4
rr
T
T"
T
rr
T
O.OEO
T
36:24 36=36 36:48 37100 37=12 37i24 37136 37148 38100
425.7737 S:ll F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,1736.0,1.00%,F,F)
100%. 37:32
38:12 38:24 38:36
'38 Us' ' '39!00 Time
..1.7E4
37:10 37:19
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
435.8169 Srll F:4 BSUB(128 15,-3.0) PKDP.S,'' 0 .10%, 136268. 0,1. 00%, F, F)
lOOi .
50_
0.
_3.3E7
L1.7E7
36124 .36-36 36:48 37:00 37112 37:24 37136 37:4^ 38:00
437.8140 3:11 F:4 BSUB(128,: ,-J.O) PKD(3,5,3,0.10%,105916.0,1.0 S.F.F)
100% : . 37;31 , ,
50J
O.OEC
38:12 38:24 38:36
1:48
39:00 Time
3.1E7
11.6E7
n
u •
_. _
— i — r i — 1| i — I I- r i — I i i 1*1^1 ' I I 'i I i i i i i 'i i I '1 i < i I 17* t1 I I i I I i -. — i — i — r— i — i — i — i — i — I I I i I i — i r— i
36:24 36136 36:48 37:00 37:12 37124 37:36 37:4; 38:00 38:12 38:24 38:36 8:48 39:00 Time
430.9728 J:ll F:4 SMO(1,3) PKD(3 . 3 , 3 , 100 . 00% . 0 , 0, 1 00%,F,F)
100% 36: JO_3_fijJLa_ 3_liQQ 37; 12 ______________ 37:4
50.
3JL-
2.2BR
O.OEO
36:^4 36:3f 36:48 37:00 37:12' '37:24 ' '37:36 '37:48 38:00 38:12 38:24 38:36 -38:48 39:00 Time
-------
File:A27SEP98M 11-197 Acq:
Sample#ll Text: 1113-7 xl/2
389.8156 S:ll F:3 BSUB(128
100*
.
so:
0
34:00 34:
^ — <~-"\~^ — i^~\^/\^^^^-J
33148 34! 00 34:12
391.8127 S:ll F:3 BSUB<128
100%
50.
0
34
. 34'01 34:09 fl
f^^\^A^^L
i | i i t i r | i i i i i | i i
33:48 34:00 34:12
401.8559 S:ll F:3 BSUB(128
100%
50_
0
403.
100S
50.
0
380.
100%
so:
0"
33:48 34:00 34:12
8530 S:ll F:3 BSUB(128
'— i — i— i — i — r— i — i — i — i — i — r— i — i — i — i — r
33:48 34:00 34:12
9760 S:ll F:3 SMO(1,3)
34:01
f
r i i i i i i | i i i i i | i i
33v:;48 34:00 34:12
28-SEP-1998 02:59:53 GC fil+ Voltage Sift Autospec-UltimaE
Exp:EXP_M23 DB5_OVATION
,15, -3.0) PKD(3,5,2,0.10%,2748.0,1.00%,F,F)
34:38
A
\\ 35:21
/ ^ = 09 A
16 34:24 A / \ * ,„ CT . /\ / ^
v^A _^AM^ ^ 3iA53wV\ ^J
34! 24 34: 36 34! 48 3s!oO 3s!l2 3E
,15, -3.0) PKD(3,5,2,0.10%,2584.0,1.00%,F,F)
i 35:37 36:02
>!24 35!36 35l48 36JOO 3e!l2
2.2E4
.1.1E4
O.OEO
Time
35:21
:16 34:37 34:48 i 1
\ ™,A A A A 3ii« A3^?? 1
\^v^fi V \/Uvv\//n W
1 35i53;34 A35:46 36:07 36:18
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
,15, -3.0) PKD(3,5,2,0.10%,4128.0,1.00%,F,F)
1.1E4
.5.6E3
O.OEO
Time
35:09 35:21
Ah
. . "T 1 I-T T"l i i i i i i i i i i i i i i i i i i i i i i i i i i i i i
34:24 34136 34148 35:00 35:12 35:24 35:36 35:48 36:00 36:12
,15, -3.0) PKD(3,5,2,0.10%,4344.0,1.00%,F,F)
35:09 35i,21
in
34124 34S36 34.:48 35iOO 35:12 35:24 35:36 35:48 36:00 36:12
PKD (3, 3, 3, 100. 00%, 0.0,1. 00%, F,F)
35:04 35:18
1V15__ ^.SR
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
6.1E7
.3 . OE7
O.OEO
Time
4 . 9E7
.2.5E7
"O.OEO
Time
3.2E8
_I.6E8
O.OEO
Time
-------
File:A27SEP98M fl-237 Acq:28-SfiP-1998 02:59:53 GC El-*- Voltage SIR Autospec-UitimaE
Sampletll Text.-1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
355.8546 S:ll F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,4604.0,1.00%,F,F)
lOOt 32:22
so:
33:02
30:40 30:49
33:21 33:34
r_1.8E4
_9.0E3
.O.OEO
i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I I I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i
30:36 30:48 31:00 31il2 3ll24 31:36 31:48 32:00 32:12 32:24 32136 32:48 33:00 33ll2 33:24 33:36 Time
357.8517 S:ll F:2 BSUB(128,15,-3 . 0) PKD(3,3,2,0.10%,632.0,1.00%,F,F)
100%
50.
33:02
33:07 33:18 33.37
_b.3E3
.3.1E3
31:17
31:08» A A31:2
30:36 30:48 31 00 31 12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
367.8949 S:ll F:2 BSUB(128,15,-3 .0) PKD(3,3,2,0.10%,9952.0,1.00%,F,F)
100%
50J
33^02
L3.2E7
O.OEC
30!36 ';3b:48 ' 31:66 ' 31:12 ' 31:24 ' 31:36 3ll48 32iOO 32:12 32:24 32:36 32:48 33:00 33ll2 33^4 ' 33:36 Time
369.8919 8:11 F:2 BSUB{128,1 ,-3.0) PKD(3,3,2,0.10%,2316.0,1.00% f',F)
100% , , , ' :•
so:
33:01
30:36 ' 30148 ' 3l:OQ
4.2E7
_2.1E7
O.OEO
31:24 31:36 31:48 32«00 32:12 i2l24 32.!36 32:48 33:00 33:12 33:24 33:36 Time
366.9792 ;>:11 F:2 SMO(1,3) PKD(3, 3, 3,100 .00%,0.0, i ^0%,F, F)
: 4230:52 31:03 31;1631j26 31j45_ ' .32j.01 32:_17_ 3?-lci 12:46 11:04 . 33:28 3..1MQ. 9 . 1E7
50J
0
U.5E7 :
^
Jl
O.OEO
Time
3p:36 30:48 ' 31:66 ' 31:12'^ 31:24 ' 31:36 31^48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 3"3:24 33:36
-------
File:A275feP9HM Sl-529 Acq:28-SEP-1998 02:59:53 6C EI+ Voltage Sift Autospec-UltimaE
Sample#ll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
319.8965 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%, 3844.0,1.00%, F, F)
100%. 27:54
50_
0
28:57
23:42
1.4E4
.6.9E3
O.OEO
Time
24:00 25:00 26:00 27:00
321.8936 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%, 1420.0,1.00%,F,F)
100%. V-
*
•] 1 r-
27:00
50.
T 1 1 1 1 1 1 1 1 1 1 1 1——1 1 r
24:00 25:00 26:00
331.9368 S:ll BSUB(128,15,-3 .0) PKD(3,3,2,0.10%,20040.0,1.00%,F,F)
100%
50.
0.
28100 29:00
28:40
30:00
I 1 I " f"" r T ' T~"1 i -.i i T I " "1 I" r i i rj i I i I - T
25:00 26:00 27:00 28:00
.O.OEO
Time
3. OE7
_1.5E7
O.OEO
Time
T- ..... T I
• I
24:00
333.9339 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%, 10092.0,1.00%,F,F)
100%
50:
29:00
30:00
OJ
28:40
T 1 I 1 1 I I
24:00
327.8847 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%,13500.0,1.00%,F,F)
100%.
50J
1 1 1 1 1 1 1 l 1 1 r-
27:00 28:00
30 !00
3 . 9E7
-1.9E7
.O.OEO
Time
-i 1 1 1 1 1 P 1 r
25:00 26:00
26100 27100 28:00
316.9824 S:ll SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100%. 23^2JL, 23^53 24.-JL/1 _24;42 31Q 1 25:46 26:12 21=04 ?7^40 2Bx2A_
29:00
30:00
50:
OJ
.O.OEO
Time
7.2E7
:3.6E7
29! 00
30 !00
.O.OEO
Time
T - 1 - 1
24:00
1 - 1 - 1
25:00
1 - 1 - 1
26:00
27:00
28:00
-------
OPUSquan 28-SEP-1998 Page 8
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:2
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Result«: H8290-09*
Version: V3.5 17-APR-1997 11:14:34 Sample text 1113-7 xl/2
Amount: 0.07 of which 0.07 named and 0.01 unnamed
Cone: 0.07 of which 0.07 named and 0.01 unnamed
Tox #1: - TOX #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1,2,3,4,6,7,8-HpCDDl 37:32 l.le+05 0.93 y 0.07
l.le+05 5.2e+04 2.1e+04 9.3e+00 y n
5.6e+04 1.6e+04 9.2e+00 y n
2 37:57 l.le+04 0.90 y 0.01
l.le+04 5.3e+03 2.0e+03 8.7e-01n n
5.9e+03 3.4e+03 1.9e+00 n n
-.4-
200
-------
OPUSquan 28-SEP-1998
Page 1
20 36:17 8.5e+03 0.64 n
8.5e+03
0.00
3.3e+03 2.4e+03 8.7e-01 n n
5.2e+03 2.2e+03 8.6e-01 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:4
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.14
Cone: 0.14
Tox #1: -
Name
of which 0.11
of which 0.11
Tox #2: -
# RT Respnse
named and 0.03
named and 0.03
Tox #3: -
RA
1,2,3,4,6,7,8-HpCDFl 36:43 1.4e+05 1.06 y
1.4e+05
2 36:55 2.2e+04 0.75 n
2.2e+04
3 37:03 1.7e+04 0.59 n
1.7e+04
l,2,3,4,7,8,9-HpCDF4 37:53 2.3e+04 0.85 n
2.3e+04
Cone
0.09
0.02
c
]
0.01
t
1
0.02
unnamed
unnamed
Area Height
S/N Mod?
7.4e+04 3.1e+04 9.6e+00 y n
7.0e+04 2.56+04 1.6e+01 y n
2
9.6e+03 4.5e+03 1.4e+00 n n
1.3e+04 2.4e+03 1.6e+00 n n
6.4e+03 2.4e+03 7.5e-01 n n
l.le+04 4.5e+03 2.9e+00 n n
l.Oe+04 5.2e+03 1.6e+00 n n
1.2e+04 4.36+03 2.8e+00 n n
199
-------
OPUSquan 28-SEP-1998
Page 6
Page 6 of B
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no fHom:20
Run: 17 File: a27sep98n\ S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09-
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.17
Cone: 0.17
Tox #1: -
Name
of which 0.04
of which 0.04
Tox #2: -
# RT Respnse
named and 0.12
named and 0.12
Tox #3: -
RA
1 34:38 5.7e+04 2.38 n
5.7e+04
2 34:44 3.0e+04 0.71 n
3.0e+04
3 34:51 8.5e+03 0.57 n
8.5e+03
4 34:57 l.le+04 0.40 n
l.le+04
5 35:01 1.5e+04 0.86 n
1.5e+04
6 35:05 1.4e+04 0.97 n
1.4ei-04
1,2,3,6,7,8-HxCDD 7 35:09 2.7e+04 0.95 n
2.7e+04
8 35:15 6.36+03 2.05 n
6.3e+03
1,2,3,7,8,9-HxCDD 9 35:21 6.0e+04 1.14 y
6.06+04
10 35:29 1.3e+04 0.68 n
1.3e+04
11 35:33 5.56+03 0.43 n
5.5e+03
12 35:39 7.3e+03 0.41 n
7.36+03
13 35:41 8.76+03 0.34 n
8.76+03
14 35:46 8.2e+03 1.12 y
8.2e+03
15 35:50 l.Oe+04 0.99 n
l.Oe+04
16 35:52 9.4e+03 0.82 n
9.46+03
17 35:56 5.9e+03 1.02 n
5.96+03
18 36:02 9.5e+03 1.42 y
9.56+03
19 36:07 1.46+04 1.54 n
1.4e-i-04
Cone
0.03
<
:
0.02
:
3
o.oo
T
C
0,01
t
0.01
e
6
0.01
«
I
0.01
1
1
0.00
<
0.03
0.01
c
0.00
a
1
0 00
c
0.00
e
o.oo
4
0.01
c
c
o.OO
<
c
0.00
3
2
0.00
c
0.01
unnamed
unnamed
Area Height S/N Mod?
l.Oe+04 1.8e+04 6.7e+00 y n
L.7e+04 5.8e+03 2.2e+00 n n
L.3e+04 4.9e+03 l.Se+00 n n
L.Se+04 5.56+03 2.1e+00 n a
3.16+03 1.9e+03 6.9e-01 n n
5.4e+03 2.1e+03 8.1e-01 n n
?e+03 2.2e+03 8.0e-01 n a
b.le+03 3.1e+03 1.2e+00 n n
L
6.96+03 1.8e+03 6.5e-01 n n
S.le+03 3.16+03 1.2e+00 n n
6.8e+03 4.5e+03 1.66+00 n n
7.16+03 3.66+03 1.46+00 n n
L
1.3e+04 6.3e+03 2.3e+00 n n
1. 4e+04 ;l~-5*w££ _?-, v-ir-."" -, -«
4.3e+03 2.46+03 8.7e-01 n n
2.1e+03 1.8e+03 6.8e-01 n n
3
3.26+04 1.36+04 4.6e+00 y n
2.8e+04 l.Oe+04 4.0e+00 y n*
L
S.le+03 2.4e+03 8.6e-01 n n
7.5e+03 3.3e+03 1.3e+00 n n
1.66+03 7.66+02 2.8e-01 n n
3.9e+03 2.06+03 7.8e-01 n n
3
2.16+03 1.26+03 4.56-01 n,. n
5.le+03 2.6e+03 l.Oe+00 n n
3
2.2e+03 1.le+03 3.9e-01 n n
6.5e+03 3.16+03 1.2e+00 n n
D
4.3e+03 1.5e+03 5.5«-01 a a
3.9e+03 2.8e+O3 1.1«+M a. n
S.le+03 3.06+03 l.lce+00 n n
5.2e+03 2.56+L, j... J,. ,1 n
D
4.2e+03 3.0e+03 l.le+00 n n
5.2e+03 2.56+03 9.7e-01 n n
3
3.0e+03 1.8e+03 6.6e-01 n n
2.9e+03 1.5e+03 6.0e-01 n n
5.6e+03 3.3e+03 1.2e+00 » TI
3.9e+03 1.66+03 6.2e-01 n n
L
8.7e+03 2.56+03 9.0e-01 n n
6.3e-ui n n
19
-------
OPUSquan 28-SEP-1998 Page 5
20 36:07 2.3e+04 3.42 n 0.01
2.3e+04 1.8e+04 3.4e+03 7.9e-01 n n
5.2e+03 2.3e+03 l.Oe+00 n n
21 36:15 7.1e+03 1.00 n 0.00
7.1e+03 3.6e+03 1.8e+03 4.2e-01 n n
3.6e+03 2.2e+03 l.Oe+00 n n
-------
OPUSquan 28-SEP-1998
Page 4
Page 5
Ent: 43 Name: Total Hexa-Furans
Run: 17 File: a27sep98m
S:
F : 3 Mass :
11 Acq:28-SEP-98
Tables: Run: 14sep-crv Analyte: m8290-092»
Version: V3.5 17-APR-1997
Amount: 0.21 of which
Cone: 0.21 of which
Tox #1: - Tox
Name # RT
1 34:00
2 34:08
3 34:13
4 34:16
5 34:20
6 34:22
7 34:27
1,2,3,4,7,8-HxCDF 8 34:33
1,2,3,6,7,8-HxCDF 9 34:38
10 35:09
11 35:19
12 35:21
13 35:27
1,2,3,7,8,9-HxCDF 14 35:33
15 35:41
16 35:48
17 35:53
18 35:58
19 36:01
11:
0.
0.
#2
14:34
05
05
: -
Respnse
5.
5.
1.
1.
6.
6.
1.
1.
1.
1.
1.
1.
1.
1.
4.
4.
3.
3.
1.
1.
1.
1.
3.
3.
7.
7.
2.
2.
2.
2.
9.
9.
1.
1.
8.
8.
1.
1.
le+04
le+04
4e+04
4e+04
le+03
le+03
le+04
le+04
3e+04
3e+04
2e+04
2e+04
2e+04
2e+04
le+04
le+04
le+04
le+04
5e+04
5e+04
6e+04
6e+04
le+04
le+04
5e+03
5e+03
7e+04
7e+04
2e+04
2e+04
3e+03
3e+03
4e+04
4e+04
le+03
le+03
4e+04
4e+04
373
02
Cal
Sample text:
named and
named and
Tox
RA
1.51 n
1.36 y
3.58 n
3.90 n
0.64 n
0.54 n
3.63 n
1.49 n
1.32 y
1.08 y
1.09 y
3.09 n
2.09 n
2.73 n
5.48 n
1.48 n
2.54 n
1.47 n
2.25 n
.821 375.818
:59
:53 Proc:
Mod?
of
no #Hom:
28-SEP-98 09:40:
: m8290-091»Results
e
21
52 ;•-••- ' '•-": * ' - '
: M8290-09» : .---.-
1113-7 xl/2 ' '
0.15
0.15
*3:
-
Cone
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
03
3
2
01
7
5
00
4
1
01
r,
A
01
4
7
01
4
7
01
9
2
02
2
1
01
- 1
1
01
7
7
01
8
7
02
2
7
00
5
2
02
2
7
01
1
3
01
5
3
01
1
4
00
4
3
01
9
4
unnamed
unnamed
Area Height:
.le+04 1.
.Oe+04 9.
.8e+03 2.
.8e+03 2.
.7e+03 2.
.3e+03 9.
"5*"-03 3.
.ie+03 1.
.9e+03 2.
.7e+03 1.
.2e+03 2.
.7e+03 1.
.3e+03 4.
.6e+03 5.
.5e+04 8.
.7e+04 5.
.7e+04 9.
.3e+04 5.
-8e+03 3.
.2e+03 2.
.2e+03 3.
3e+04
2e+03
8e+03
Oe+03
4e+03
5e+02
5e+03
3e+03
7e+03
9e+03
le+03
9e+03
Oe+03
Se*$3
le+03
6e+03
2e+03
6e+03
8e+03
3e+03
2e+03
.5e+03 2.5e+03
.3e+04 6.
.5e+03 2.
.le+03 2.
.4e+03 1.
.Oe+04 8.
.3e+03 4.
.9e+04 3.
.4e+03 2.
.5e+03 3.
.7e+03 2.
.Oe+04 2.
.Oe+03 2.
.8e+03 3.
.3e+03 2.
.6e+03 6.
.3e+03"Z.
3e+03
Se+03
9e+03
7e+03
8e+03
8e+03
9e+0^
2e+i,-
5e+03
2e+03
3e+03
8e+03
le+03
Oe+03
9e+03
Be+03
3
4
6
9
5
4
e
5
6
8
5
8
9
£
1
2
2
2
9
1
7
1
1
1
6
7
2
2
q
8
9
5
1
7
8
1
1
S/N
.Oe+00
.2e+00
.6e-01
.3e-01
. 6e-01
-3e-01
.3e-01
.9e-01
.3e-01
.8e-01
.Oe-01
. 8e-01
. 3e-01
_£,n..*1
.9e+00
. 6e+00
.2e+00
. 6e+00
.Oe-01
.le+00
. 4e-01
.le+00
.5e+00
. le+00
.7e-01
.7e-01
. le+00
.2e+00
, Oe-01
. v/fciOO
. 3e-01
.9e-01
.4e-01
.3e+00
. 2e-01
.9e-01
. 6e+00
.3«+0»
- -- '2$'^ *>*-•*'
Mod,' - •' ' ' ••'"• ' "' '
n
y
n
n
•n
n
n
n
n
n
n
n
n
n
n
n
•n
n
n
n
n
n
.**-
n
n
n
n
&
a
n
n
n
n
n
n
n
n
n
"
n
n
n
a
•n
n
•
u
n
n
n
n
n
''(•."i
a
n
n
n
H
^
n
n
n
a
n •/•''
n
n
n
n
a
n •.-*'•-• ':* .•>'?
n •" " ' ' - •-"""•• •
n
n
n
n
n
n
n
it
-------
OPUSquan 28-SEP-1998
Page 3
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:ll
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.06
Cone: 0.06
Tox #1: -
Name
1,2,3,7,8-PeCDD
of which 0.01
of which 0.01
Tox #2: -
***?
# RT Respnse
named and 0.05
named and 0.05
Tox #3: -
RA
1 32:22 2.86+04 2.67 n
2.86+04
2 32:35 l.le+04 2.73 n
l.le+04
3 32:37 5.6e+03 0.98 n
5.66+03
4 32:45 1.9e+04 3.49 n
1.9e+04
5 32:48 9.7e+03 1.38 y
9.76+03
6 32:51 l.Oe+04 1.51 y
l.Oe+04
7 33:02 l.Se+04 2.23 n
l.Se+04
8 33:10 9.66+03 5.29 n
9.6e+03
33:14 6.3e+03
6.36+03
3.13 n
10 33:18 1.7e+04 2.67 n
1.7e+04
11 33:26 l.le+04 1.21 n
l.le+04
Cone
0.01
1
0.00
1
2
0.00
0.01
1
4
0.00
c
4
0.00
6
4
0.01
1
c
0.00
E
1
0.00
4
3
0.01
1
4
0.00
unnamed
unnamed
Area Height
S/N Mod?
2.1e+04 1.2e+04 2.6e+00 n n
7.7e+03 3.9e+03 6.1e+00 y n
D
7.8e+03 3.3e+03 7.3e-01 n n
2.8e+03 l.le+03 l.Se+00 n n
D
2.86+03 2.16+03 4.76-01 n n
2.86+03 l.le+03 1.8e+00 n n
1.4e+04 7.2e+03 1.6e+00 n n
4.2e+03 1.3e+03 2.1e+00 n n
5.66+03 3.16+03 6.86-01 n n
4.1e+03 1.7e+03 2.7e+00 n n
6.1e+03 4.16+03 8.9e-01 n n
4.1e+03 1.7e+03 2.7e+00 n n
1.26+04 7.26+03 1.66+00 n n
5.6e+03 3.6e+03 5.7e+00 y n
D
S.le+03 2.5e+03 5.4e-01 n n
1.5e+03 9.6e+02 1.5e+00 n n
I.8e+03 2.26+03 4.86-01 n n
L.5e+03 9.6e+02 1.5e+00 n n
1.3e+04 4.56+03 9.8e-01 n n
4.7e+03 2.8e+03 4.5e+00 y n
J
5.8e+03 3.4e+03 7.4e-01 n n
4.86+03 2.56+03 4.06+00 y n
195
-------
OPUSquan 28-SEP-1998
Page 2
Cone: 0.03
Tox #1: -
Name
of which *
Tox #2: -
# RT Respnse
named and L.03
Tox #3: -
RA
1 32:54 1.46+04 1.13 n
1.46+04
2 33:02 1.46+04 0.58 n
1.46+04
3 33:22 l.le+04 0.99 n
l.le+04
33:24 5.56+03
5.5e+03
0.23 n
33:29 6.8e+03 0.22 n
6.86+03
33:35 l.le+04 0.12 n
l.le+04
Cone
0.01
1
t
0.01
c
E
0.00
5
5
0.00
1
4
0.00
1
c
0.00
unnamed
Area Height
S/N Mod?
7.Se+03 3.6e+03 2.7e+00 n n
6.7e+03 5.0e+03 1.2e+00 n n
L
5.1e+03 2.0e+03 1.5e+00 n n
8.8e+03 2.4«+"V «.J*-01 TV n
3
5.6e+03 2.9ei03 2.2e+00 n n
5.6e+03 3.0e+03 7.5e-01 n n
D
l.Oe+03 4.8e+02 3.6e-01 n n
4.5e+03 2.1e+03 5.2e-01 n n
3
1.2e+03 6.9e+02 5.2e-01 n n
5.6e+03 3.3e+03 8.2e-01 n a
D
l.le+03 8.5e+02 6.4e-01 n n
9.5e+03 2.5e+03 6.2e-01 n n
-------
OPUSguan 28-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no *Hom:5
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Rxin: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amoxint: 0.09
Cone: 0.09
Tox #1: -
Name
of which 0.02
of which 0.02
Tox #2: -
t RT Respnse
named and 0.06
named and 0.06
Tox #3: -
RA
2,3,7,8-TCDF
1 23:34 2.96+04 0.89 y
2.96+04
2 27:21 l.le+05 0.81 y
l.le+05
3 27:57 7.8e+04 7.27 n
7.86+04
4 30:20 4.7e+04 0.53 n
4.76+04
5 30:27 l.le+04 0.61 n
l.le+04
Cone
0.01
1
2
0.04
c
e
0.02
«
5
0.02
3
0.00
unnamed
unnamed
Area Height
S/N Mod?
1.3e+04 3.2e+03 l.le+00 n n
l.Se+04 9.1e+03 1.5e+00 n n
1
S.le+04 1.4e+04 4.6e+00 y n
6.3e+04 1.9e+04 3.26+00 y n
6.8e+04 1.3e+04 4.5e+00 y n
9.46+03 4.5e+03 7.6e-01 n n
2
1.6e+04 4.4e+03 1.5e+00 n n
3.1e+04 8.3e+03 1.4e+00 n n
3
4.2e+03 1.5e+03 5.0e-01 n n
6.8e+03 3.7e+03 6.2e-01 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no tHorn:5
Run: 17 File: a27sep98m Sill Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»ResultS: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.06
Cone: 0.06
Tox #1: -
of which 0.02 .- .named and 0.03
of which 0.02 named and 0.03
Tox #2: - Tox #3: -
Name
RT Respnse
RA
2,3,7,8-TCDD
1 24:29 1.2e+04 3 . 62 n
2 24:30 l.Oe+04 2.76 n
l.Oe+04
3 25:45 1.2e+04 1.52 n
1.2e+04
4 27:54 6.16+04 14.10n
6.1e+04
5 28:57 6.8e+04 0.74 y
"'" 6.86+04
Cone
0.00
9
2
0.00
•)
2
0.00
1
4
0.02
c
t
0.02
unnamed
unnamed
Area Height
S/N Mod?
9.8e+03 4.2e+03 l.le+00 n n
2.7e+03 l.le+03 8.1e-01 n n
.4e+03 4.0e+03 l.Oe+00 n n
.7e+03 l.le+03 8.1e-01 n n
7.0e+03 4.2e+03 l.le+00 n n
4.6e+03 2.2e+03 1.5e+00 n n
5.7e+04 1.2e+04 3.1e+00 y n
4.0e+03 2.7e+03 1.9e+00 n n
2.9e+04 8.26+03 2.1e+00 n n
3.9e+04 9.4e+03 6.7e+00 y n
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:6
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.03
of which *
named and 0.03
unnamed
193
-------
OPUSquan 28-SEP-1998
Page 1
Filename a27sep98m
Sample 11
Acquired 28-SEP-98 02:59:53
Processed 28-SEP-98 09:40:52
Sample ID 1113-7 xl/2
Cal Table m8290-091498
Results Table M8290-092798M
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Comments
Name;
2,3,7,8-TCDD;
1,2,3,7,8-PeCDD;
1,2,3,4,7,8-HxCDD;
1,2,3,6,7,8-HxCDD;
1,2,3,7,8,9-HxCDD;
1,2,3,4,6,7,8-HpCDD;
OCDD;
2,3,7,8-TCDF;
; 1, 2,3,7, 8-PeCDF;
; 2,3,4,7,8-PeCDF;
1,2,3,4,7,8-HxCDF;
1,2,3,6,7,8-HxCDF;
2,3,4,6,7,8-HxCDF;
; 1,2,3,7,8,9-HxCDF;
; 1,2,3,4,6,7,8-HpCDF;
1,2,3,4,7,8,9-HpCDF;
OCDF;
ES/RT; 13C-2.3,7,8-TCDO;
ES
ES
ES
• ES
13C-1, 2,3,7, 8-PeCDD;
; 13C-l,2,3,6,7,8-HxCDD;
;13C-l,2,3,4,6,7,8-HpCDD;
' 3C-OCDD;
Resp;
6.81e+04;
1. 80e+04, •
2.72e+04;
2.72e+04;
6.01e+04;
1.07e+05;
1.51e+05;
7.78e+04;
* *
* .
4.15e+04;
3.07e+04;
* .
2.73e+04;
1.45e+05;
2.256+04;
3.06e+04;
2.75e+08;
2.166+08;
2.25e+08;
1.76«-+08;
2.066+08;
' ES/RT:; 13C-2,3,7,8-Tq6rj 3.14e*08;
ES
ES
ES
JS
JS
cs
cs
cs
cs
cs
ss
ss
ss
• ss
ss
13C-1, 2,3,7, 8-PeCOF;
t» 13C-l,2,3,6,7.8-HxCDF;
» 13C-1 , 2 , 3 , 4 , 6 , 7 , 8-HpGSfF ;
1 13C-l,2,3,4-TCflb»
I 13C-l,2,3.7,8.9-HxCDt>;
37C1 -2,3,7, 8-TCDD;
13C-2 , 3 , 4 , 7 , 8-P«CDF;
; 13C-l,2,3,4,7,8-HxCDD;
; 13C-l,2,3,4,7,B-HxCDF;
;I3C-l,2,3,4,7,8,9-HpCDF;
37Cl-2,3.7,8-TCDD;
13C-2, 3,4,7, 8-PeCDF;
; 13C-l,2,3,4,7,8-HxCDD;
; l3C-l,2,3,4,7,8-HxCDF;
;13C-l,2,3,4,7,8,9-HpCDF;
2.62e*08;
1.88e+08;
1.12e+08.-
3.07e+08;
2.53e+08;
2.55e+05;
3.476+06;
2.256+08;
1.256+06;
* .
2.556+05;
3.47e+06;
2.25e+08;
1.256+06;
* .
Ion 1;
2.896+04;
1.24e+04;
1.326+04;
1.326+04;
3.20e+04;
5.166+04;
5.43e+04;
6.84e+04;
* .
* .
2.486+04;
1.74e+04;
* .
2.00e+04;
7.44e+04;
1.046+04;
2.136+04;
1.206+08;
1.326+08;
1.25e+08f
9.,04e+07;
9.73e+-07;
* i
1. 39e+OB;
1.60e+0fl;
6.486+07;
3,.45e+07;
l.aSe+08;
l.fle+08;
2.55e+05;
2.16e+06;
1.25e+08,
4,40+G5;
*;
2.558-^05;
2.16e+06;
1.25e+08;
4.40e+05;
* .
Ion 2;
3.91e+04;
5.566+03;
1.396+04;
1.39e+04;
2.816+04;
5.566+04;
9.706+04;
9.416+03;
* .
* ,
1.66e+04;
1.326+04;
* .
7.33 -oa!
7.02e +4)4;
1.226+04^
9.256+03;
1.556+08;
8.44e+07;
9.99e+07;
8.526+07;
1.096+08}
1.76e+r08;
1.02a+a&!-
1.23e+0*-;
7 . 80»+fl,7 ;
1.7lt+08;
1.120+08;
1.316+06-
9.996+07;
8.088+05;
RA;?;
0.74;y;
2.23;n;
0.95;n;
0.95;n;
0.93;y;
0.56;n;
7.27;n;
*;n;
*;n;
1.49;n;
1.32;y;
*;n;
2.73;n;
1.06;y;
0.85;n;
2.30;n;
0.77;y;
1.57^y;
1.25;y;
1.06'y;
0.89'^;
0.79''y;
1.56.y;
0.53;y;
,0.44;y;
0.7S y»
J.2f yj
-.->
1.65;yj
l-25fy;
0.54;y»
RT;
28:57;
33:02;
35:09;
35:09;
35:21;
37:32;
40:22;
27:57;
NotFnd;
NotFnd;
34:33;
34:38;
NotFnd;
35:33;
36:43;
37:53;
40:31;
28:56;
33:02;
35:09;
37:31;
40:22;
27:54;
32:22;
34:37;
36:43;
28:40;
35:21;
28:57;
32:49;
35:09;
34:33;
Cone;
0.024;
0.007;
0.015;
0.013;
0.030;
0.067;
0.146;
0.025;
* .
1
0.023;
0.015;
* .
o.c
0.0&4 •
O.OIT.
O.O'^i ,
84.666;
100.074;
84.488;
78.354}
104.788^
77.92,7;
78.12,5;
61.555;
53'. 85,?,;
68.201;
70.99l»
0.080;
1.053;
112.010;
0.494;
*; *;,n;NotFnd; .*,-
t.--
#<'' -;
1.31e+06;
9.996+07;
8.088+05;
* •
*
- 1 - ;
i.65;y;
1.25ty;
0.54;y;
28:57;
32:49;
35:09;
34:33;
'4.
0.0'9W
1.34'8;
132.413;
0 . 801 ;
* in; NotFnd; • * ;,
DL;
0.0251;
0.0131;
0.0190;
0.0171;
0.0176;
0.0207;
0.1379;
0.0369;
0.0132;
0.0129;
0.0242;
0.0210;
0.0232;
0.0264;
0.0233;
0.0270;
0.0764;
0.1238;
0.0757;
0.0219;
0.7446;
0.0088;
0.0539;
0.0146;
0.1042;
0.0421;
-1
-J
0.0567;
0.0149;
0.0291;
0.1259,
0.0481;
0.0671;
0.0083;
0.0329;
0.1990;
0.0937;
S/N1;?;
2;n;
2;n;
2;n;
2;n;
5;y;
9;y;
2;n;
5;y;
*;n;
*;n;
2;n;
2;n;
*;n;
2;n;
10;y;
2;n;
3;n;
1343;y;
6410;y;
13908;y;
242;y;
12834;y#
*
3647;y;
629056;yi
1477,-y;
2134, -y;
1518;y;
14769,-yt
4;y;
10042 ;y;
13908;yr
10 ;y;
*;m
4;y;
10042;y;
13908;yi
10;y;
*;n;
S/N2;?
7;y
6;y
l;n
1 • n
4,'y
9;y
14, -y
l;n
*;n
*;n
3;n
3;n
*;n
2;n
16;y
3;n
l;n
3443;y
18004 ;y
10363, -y
•292;y
311;y
326 ;y
713;y
082 ;y
147 ;y
813;y
-331>y
- 1 _
332 ;y
10363 ;y
13;y )
*;n
<',
' '' -; -
232;y
10363;y
"' 13, -y
*;n )
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
' no
no
*o
'no
%o
•t
no
no
..no
no
no
Page 17
-------
Paradigm Analytical Labs
Method 23
M23-RB
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13CI2-2,3,7,8-TCDD
13Ci2-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13CU- U^,4,6,7,8-HpCDD
I3C12-OCDD
"C12-2,3,7,8-TCDF
13C,2-l,2,3,7,8-PeCDF
I3CI2-l,2,3,6,7,8-HxCDF
l3C,2-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3,7,8-TCDD
uCu-2A4,7,8-PeCDF
13CI2-l,2,3,4,7,8-HxCDD
13C,2-l,2,3,4,7,8-HxCDF
Injection Standards
13C,2-U,3,4-TCDD
13C,2-l,2,3,7,8,9-HxCDD
Expected
Amount
(OK)
4
4
4
4
8
4
4
4
4
-
Measured
Amount
(IK)
3.39
4.00
3.38
3.13
4.19
3.12
3.13
2.46
2.23
Percent
Recovery
84.7
100.1
84.5
78.4
52.4
77.9
78.1
61.6
55.9
RT
(mln.)
28:56
33:02
35:09
37:31
40:22
27:54
32:22
34:37
36:43
28:40
. 35:21
Ratio
0.77
1.57
1.25
1.06
0.89
0.79
1.56
0.53
0.44
0.79
1.26
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-RB
L1113
1113-7
02-Sep-98
08-Sep-98
15-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
End ConCal:
Initial Cal:
Air
1
0.0
a27sep98m-ll
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
Reviewed by:
Date Reviewed:
191
2/2
-------
Paradigm Analytical Labs
Method 23
M23-RB
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PcCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
l"g)
ND
ND
ND
ND
0.0012
0.0027
ND
ND
ND
ND
ND
ND
ND
ND
0.0038
ND
ND
ND
ND
0.0012
0.0028
0.0016
ND
ND
0.0036
0.0002
0.0013
DL
W
0.0010
0.0005
0.0008
0.0007
0.0007
0.0008
0.0055
0.0015
0.0005
0.0005
0.0010
0.0008
0.0009
0.0011
0.0009
0.0011
0.0031
0.0010
0.0005
0.0007
0,0008
0.0015
0.0005
0.0008
0.0009
EMPC
tag)
...
0.0012
0.0002
0.0013
RT
(mm.)
28:57
•"•02
JJ.V.X
35:09
35:21
37:32
40:22
27:57
34 33
34:33
35:33
36:43
37:53
40:31
--
Ratio
0.74
2^3
0.95
0.95
1.14
0.93
0.56
7.27
1.49
1.32
2.73
1.06
0.85
2.3 *
Qualifier
.« -, •, .-
;'t3 '.'" -"•"•'
if -"* * - • -
, . .
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-RB
L1113
1113-7
02-Sep-98
08-Sep-98
15-Sep-98
28-Sep-98
Sampje Information
Matrix:
Weigui/ volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
EndConCat
Initial Cat
Air
1
0.0 %
a27sep98m-ll
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-Q9l498
1/2
-------
Reagent blank sample M23-RB analytical results are
taken from PAL Project No. L-l 113 (PAL pages 190-210).
This project report details analytical results from another kiln
tested during the same mobilization. One reagent blank sample
was collected for all the facilities tested during the single mobilization.
-------
File:A29SEt98N #1-2677 Acq:30-SEP-1998 03:08:06 Gc EI+ Voltage SIR Autospec-UltimaE
Sample#15 Text:CS3 Exp:M23_DB225
303.9016 S:15 SMO(1,3) BSUB{128, 15, -3 . 0) PKD(3 , 3, 3 , 0 . 10%, 1196 . 0, 1 . 00%, F, F)
100% 27j51
90 J
80J
70J
60 j
50 j
40J
30J
20J
10J
OJ
305.
100%
90 J
80 j
70J
60J
50J
40J
30J
20:
10:
0:
A. ^ . , ,
f lb
-------
File:A29SEP98N S1-2FT7
Sample#15 Text:CS3
303.9016 S-.15 SMO(1,3)
100%
50 j
0
16:00 18JOO
305.8987 S:15 SMO(1,3)
100%
50l
°: , , I ,
16:00 18:00
315.9419 S:15 SMO(1,3)
100%
50J
0:
16:00 18:00
317.9389 S:15 SMO(1,3)
100%
50 j
n:
16:00 18:00
375.8364 S:15 SMO(1,3)
100%
50-; 15:57 i7:07
n^ujfttu^^
lelob ' ' ' isiob
316.9824 S:15 SMO(1,3)
100% ^ 16^06 17:47
50_
f^sl
0:'
ie!ob ' ' ' islob
Acq:30-SEP-1998 03:08:06 GC EI+ Voltage
Exp:M23 DB225
BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 . 10%, 1196 . 0
20:00 22:00 24:00 26:00
BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2016.0
. • • t | • • i i i | i i i •• i i | *i i -i i "i i r
20:00 22:00 24:00 26:00
BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 0 .10%, 1924 . 0
20:00 22:00 24iOO 26iOO
BSUB(128,15,-3.0) PKD(3 , 3 , 3, 0 .10%, 1540 . 0
20:00 22:00 24:00 26:00
BSUB(128,15,-3.0) PKD(3 , 3 , 3 , 100 . 00%, 1400
21:13
,n ,„ 2lj|)9
19,: 12 21i|lB, 22:52 25-32
'20:00 ' ' 22lob ' ' '24!ob' ' ' 26 lob
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
19:02 20:2921:34 23:2624:3525:41
20:00 22:00 24:00 26:00
SIR Autospec-UltimaE
,1.00%,F,F)
27:51 / 4.6E5
\C^ ^ H//-fh f/iidMtfw l^CM'^'f •**-- -2.3E5
/\\\ f] 33-34
// V 7 JJj^>fl n np.n
— 1— T'TT 1 ' f / 1 1 1 1 | 1 1 1 1— I 1 1 1 1 1 *T 1 1 1 1 1 1 U • UIiu
/ 28-XJO 30:00 32:00 34:00 36-00 Time
27:50 V 6.2E5
II L3.1E5
A 33:38 !n npn
i — 'i— i I- p'-r-'T— i — i i | i — i — i 'i i — i i i i i *T i i i i i i -" • "ClU
28:00 30:00 32:00 34:00 36 00 Time
,1.00%,F,F)
27:48 9.7E6
11 :4.8E6
/ I • n . OEO
i r i- V"]'"i i T r- r i — r— r — i — i — i — i — i — i i i i — i — i — i — r— i — i w . wuv
28:00 30:00 32:00 34:00 36 00 Time
,1.00%,F,F)
27:48 1.2E7
1 .6.1E6
28:00 30:00 32:00 34:00 36:00 Time
.0,1.00%,F,F)
1.3E4
27\228 12 29:2° 3D 32-09I44 33-49 3b:jJ -6'6E3
jWXj^^ n npn
' 28-lob ' ' ' 30 lob ' ' 32! 00 ' ' 34 lob ' ' 36:00 Time
^^2ljji9_^^^3^^ . 7E6
L4.9E6
28:00 30:00 32:00 34:00 36:00 Time
o
-------
OPOSquan 30-SEP-1998
Page 1
Page 2 of 2
Run #7 Filename a29sep98n
Run: a07£eb98f Analyte:
Sample text: CS3
S: 15 I: 1 Acquired: 30-SEP-98 03:08:06 Processed: 30-SEP-98 08:25:30
Cal: 07feb-m23» Results: Quan : V3.5 17-APR-1997 11:14:34
Comments: OPUS : V3.5X 17-APR-1997 11:31:23
Typ
Unk
ES/RT
Total
DPE
LMC
Name
2,3,7,8-TCDF
13C-2,3,7,8-TCDF
Tetra Furans
HxCDPE
C3C CHK ION (Tetra)
Resp
7.8e+06
2.0e+08
1.6e+07
RA
0.43 n
0.79 y
2.07 n
RT
27:51
27:48
19:46
NotFnd
NotFnd
Cone
Mod?
n
n
n
n
n
CO
-------
OPUSguan 30-SEP-1998
Page 1
Page 2 of 3
Run #7 Filename a29sep98n
Run: a07feb98f Analyte:
Sample text: CS3
S: 15 I: 1 Acquired: 30-SEP-98 03:08:06 Processed: 30-SEP-98 08:25:30
Cal: 07feb-m23» Results: Quan : V3.5 17-APR-1997 11:14:34
Comments: OPUS : V3.5X 17-APR-1997 11:31:23
Typ
Unk
ES/RT
Total
DPE
LMC
Name
2,3,7,8-TCDF
13C-2,3,7,8-TCDF
Tetra Furans
HxCDPE
QC CHK ION (Tetra)
Resp
9. 7e-K>6
2.0e+08
l.Oe+07
RA
0.78 y
0.79 y
2.07 n
f RT
27:51
27:48
19:46
NotFnd
NotFnd
Cone
5.15
48.8
5.51
Dev'n
2.9
2.9
Mod?
y
n
y
n
n ,
frv
<••>
CO
05
-------
File:A29SEP98N
Sampletfl Text :
303.9016 SMO(1
1008
50:
:
o-
16:00
305.8987 SMO(1
1003s
50:
•
0:
' ielob '
315.9419 SMO(1
100*
50:
0:
ielob
317.9389 SMO(1
1003
50:
•
0:
>
4
16 1 00
375.8364 SMO(1
1003115:0'.
1 • 17
~H ii>i iX i
t\ A *
' 16-00 '
316. 9824, SMO(1
IOQ\ '16:29
-
50:
0:
1
••
:
"^ 16': 00
#1-2677 Acq:
CS3
,3) BSUB (128,
18:00
,3) BSUB(128,
' is lob '
,3) BSUB (128,
18 I 00
,3) BSUB (128,
.
18:00
,3) BSUB (128,
j04 18:10 ,9
LlO/jlAi
WWVWWIY
' is lob
,3) PKD(3,3,3
17:43 18:57
18:00
29-SEP-1998 17:07:SO
Exp:M23
15, -3.0) PKD(3,3,3,0
20:00 22:00
15, -3.0) PKD(3,3,3,0
20 lob 22 lob
15, -3.0) PKD(3,3,3,0
20 I 00 22:00
15, -3.0) PKD(3,3,3,0
T-
i*
;'
:>0:00 22 lob
GC EI + Voltage SIR Autospec-UltimaE
DB225
.10%,2560.0,1.00%,F,F)
27
,
d53
l 33-41
6.8E5
.3.4E5
_O.OEO
24:00 26:00 28:00 30:00 32:00 34:00 36 00 Time
.10%,5916.0,1.00%,F,F)
27
1
j
-i fr
r
\ 33-40
8.9E5
_4.4E5
_O.OEO
24 100 26 lob 28 lob 30 1 00 32 1 00 34? 00 36:00 Time
.10%, 5200. 0,1. 00%, F,F)
27
/
i51
\
1.4E7
L6.9E6
LO.OEO
24:00 26:00 28:00 0:00 32:00 34:00 36 00 Time
.10%, 648" 0,1.00%,F,F)
"l
•
'
/
50
•
.
\ , "'
1.8E7 .'
L8.8E6
•
LO.OEO
24:00 '-26:00 28:00 ,30:00,.. 32:00 • -:00 36tOO Time
_.5, -3.0) PKt>(3,3,3,100.00%,4264.0,l. '0%,F,F
49:59''
JJ SS|0:55 22:311 2
wy$w^
20:00 22:00'
,.100. 00%, 0.0,1. 00%, F
20:45 22:15 23
20:00 22:00
, ' 27
3J4524I^?1 2f3^ 27J
WWw^
r i *
51 29.lfl 30:44 ^ 4,?9 r1'2^
n F i *' ** * *~i* "|*T P K I * filnlr* T*I i r i* |r « npn
24:00 26IOO 28:00 30:00 32:00 34:00 36:00 Time
F^
25 24:3225:36 26:5(5
' >
24:00 26:00 28
\*
28-19 29-3730:4731:5332:59 34,il2 J5i42_6.4E7
i . . ..
l'
i!
•2
?Z 't
_O.OEO
lob 30 1 00 32 lob ';34!ob ' 36:00 Time
-------
OPUSquan 30-SEP-1998
Page 1
Page 1 of 2
Run #6 Filename a29sep98n
Run: a07feb98f Analyte:
Sample text: CS3
S: 1 I: 1 Acquired: 29-SEP-98 17:07:50 Processed: 30-SEP-98 08:24:51
Cal: 07feb-m23» Results: Quan : V3.5 17-APR-1997 11:14:34
Comments: OPUS : V3.5X 17-APR-1997 11:31:23
Typ
Unk
ES/RT
Total
DPE
LMC
Name
2,3,7,8-TCDF
13C-2,3,7,8-TCDF
Tetra Furans
HxCDPE
QC CHK ION (Tetra)
Resp
1.4e+07
2.9e+08
1.5e+07
RA
0.78 y
0.79 y
0.74 y
RT
27:53
27:51
24:13
NotFnd
NotFnd
Cone
5.26
70.6
5.39
Dev'n
5.2
5.2
Mod?
n
n
n
n
CO
"•>
-------
File:A26SfiP98M #1-277 Acq:27-gEP-l9"98~08F39n3~5C~El + Voltage SIR Autospec-UltimaE ~~ = 1
Sample#21 Text: BE CS3
441.7427 S:21
1003
50_
0
•
39112
443.7398 S:21
1008
50_
0_
39:12
469.7780 S:21
100%
50:
OJ
39:12
471.7750 S:21
100%
-
50J
o"
i
4
39:12
513.6775 S:21
100%
50:
OJ
3!»:15
A
39:12
454.9728 S:21
100%
50:
o:
39. Q7
/ -.
39li2
F:5 BSUB(128,15,-3.0)
Exp:EXP M23 DBS OVATION
PKD(3,5,3,
39124 39 136 ' 39 Us 40166 4oli2
F:5 BSUB(128,15,-3.0)
39124 39136 39148 40
F:5 BSUB(128,15,-3.0)
39:24 39:36 39:48 40
F:5 BSUB(128,15,-3.0)
39l 24 39136 3, Ufl 40
F.-5 BSUB(128,15,-3.0)
39:46 "
/\ .A l\ A /y r
39:24 39136 39:48 40
F:5 SMO(1,3) PKD(3,3,3
39_t26 39-4fr
-\
39:24 39:36 39:48 40
PKD(3,5,3,
166 46!i2'
PKD (3,5,3,
:00 40:12
PKD(3,5,3,
??'
'""
:00 46:12
PKD(3,3,3,
,
0.10%,1208.0,1.00%.F,F)
40:53
A
y v
r-T' r JT i-r-r r^-r i i i i f\ \ i r i
40:24 40:36 40:48 41
0.10%,2700.0,1.00%,F,F)
40:53
A
J ^
46124 46136 40:48 41
0.10%,3628.0,1.00%,F,F)
40:43
A
J ^~^_____
40:24 40:36 40:48 41
0.10%,296.0,1.00%,F,F)
40:43
• A
7\
") ^ ._^
40:24 40:36 40:< 41
100.0Q%,2p,0.0,1.00! F,F)
", 4°A44
\
40:09 40:19 A / ' \
AA/IJ A r1AAA_M A/L_7 x — —
:00 4oll2
,100. 00%, 0
40-12
:00 40:12
46124 40:36 40:48 41:
.0,1.00%,F,F)
40_:'?3 40i44
;
*•
40:24 40:36 40:48 41:
' %-MW
•-
2.1E7
_1 . 1E7
n nt?n
1 1 1 1 1 l" 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 '" • """
:00 41:12 41:24 41:36 4ll48 42loO 42ll2 Time
2.3E7
L1.2E7
LO.OEO
166 4ill2 41:24 4ll36 4ll48 42166 42ll2 Time
3.5E7
_1.8E7
0 .ORf
166 41:12 ;i:24 41136 41148 42166 42:12 Time
3OH1'"*
• y Cf '
*.
.1.9E7
O.OEO
66 4ill2 4il24 4il36 4ilifi ^166 42ll2 Time
*•
t »>'v
„ 41;10 A * 41:35 AI ** 42J07
JV A A^ r r A 41jA3^ 41^ AJWJ-YVT-r^
,1.1E4
_5.7E3
O.OEO
66 4ill2 4il24 41136 41:48 4zl6o 42il2 Time
41:05 41?4^ 42-01
,;;
7i.5Ea;
;7.7E7;;
O.OEfl
00 41:12 41:24 41:36 41.:48 42:00 42.-12 Time
-------
File:A26SEp98M #1-193 Acq:27-SEP-1998 08:49:13 GC EI+ Voltage SIR Autospec-UltimaE
Sample#21 Text:BE CS3 Exp:EXP_M23_DB5_OVATION
407.7818 S:21 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,26292.0,1.00%,F,F)
100%. 36:59
50:
OJ
38:11
-1—i—i—I—r—i—I—i—i—r—(—i—i—i—i l I I I I l I l i—i—i—i—r—i—i—i—i—
36:36 36:48 37:00 37?12 37$24 37536
409.7788 S:21 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,26804.0,1.00%.F,F)
100% 36:58
50_
0.
3.7E7
_1.9E7
.0.
I ! I 1 I I ' fT | "H III I r-T— 1 'T
37:48 38:00 38:12
38:11
i ' | i i
38:24
36:36 36:48 37:00 37:12 37124 37i36 37148 38iOO
417.8253 S:21 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,30844.0,1.00%,F,F)
100% 36:58
50:
0:
I I l i l i l i i—i—i—i—r—i—l
38:36 38:48 39:00 Time
3 . 6E7
.1.8E7
38l2 3824
38:10
36:36 . 36:48 37:00 37:12 37:24 37:36 37:48 38:00
419.8220 S:21 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%, 17180.0,1.00%,F,F)
100% 36:58
50:
0:
3812 3824 3836 3848
38:10
36:36 36148 37:00 37:12 37:24 37:36 37:48 38:00
479.7165 S:21 F:4 BSUBU28,15,-3.0) PKD(3,3,3,100.00%,816.0,1.00%,F,F)
100% 37:47
38l2 3824
3s!36 38:48
36136 36:48 37:00 37:12 37:24 37:36 37:48
430.9728 S:21 F:4 SMO{1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
fi./li 3fi;493fi;Sfi 37:10 37:30
38500 385l2
3824 3836
_O.OEO
38:36 38:48 39:00 Time
3.4E7
L1.7E7
O.OEO
39:00 Time
7.4E7
_3.7E7
.O.OEO
50J
^
39:00 Time
_1.3E4
_6.5E3
O.OEO
38:48 39100 Time
3R.R5 1 .4E8
_6 . 9E7
O.OEO
36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
-------
l'ile:A26SEP98W
Sample#21 Text
373.8207 S:21
100%
.
50 1
01
34:00
375.8178 S:21
100%
.
50J
0 '• i i i i • i
34:00
383.8639 8:21
100%
50.
1
34:00
385.8610 S:21
100%
50.
i
^
\
34:00
445.7555 S!:21
100%
.
bOj
34:D1
'i i i PI' i i'
34-CO
380.9760 S:21
1 n (\9r •* ^ - c ft
50;
.
/
;
>
i i • i . •
•:-s,34 ; 00
11-189 Acq:27-SEiP-1998 08:49:1J <1
:BE
F:3
'34!
F:3
'34!
F:3
'34!
F:3
"
• ••
14:
F:3
••
"l^i" i
34:
F:3
'14!
CS3
BSUB(128,15,-3.0)
12 34:24 34:
BSUB(128,15,-3.0)
12 34:24 34:
BSUB(128,15,-3.0)
i i i i i i |
12 34:24 34:
BSUB(128,15,-3.0)
**•
;
12 34:2' 34:
BSUB(128,1 ,-3.0)
J *
34:18
12 ' 34: 24' ' 34:
SMO(1,3) PKD(3 3,
14 -26
•
— i — i — r— i — i — I — i — i — i — i — r— |
12 34:24 34:
Exp : EXP
PKD(3,5,2,0.
34:51
is A
A A
N\
1 Y v
36 34U8
PKD(3,5,2,0.
N34A51
A /\
N\
1 Y V
36 34:48
PKD(3,5,2,0.
34:51
A
A/\
j y "v
36 34:48
PKD(3,5,2,0.
- 34:51
S\ l\
• A A
' / \ \
/Y V
36 34:48
C~ET
M23
10%,
35:
10%,
35:
10%,
3s!
10%,
M!
+ Voltage SIR Autospec-UltimaE
DBS OVATION
18864.0,1.00%,
00
35:14
35!l2
198468.0,1.00%
00
35:14
35!l2
272068.0,1.00%
00
35:13
A
j \
35!l2
5249?3.0,1.00%
00
PKD(3,3,3,100sOO%,280
' \f,'.
i*
}4£9 ^JiQ
36 34:48
35:13
A '
/\ "
/, ^-
35:12
,0,1.00\,
t
i
/ v
35:04 j>
ill ^ S*^
35:
3, 100. 00%, f.O,' , i
T4-43 34: 51
36 34^48
00
0%,F
3s!oo
35:12
F)
•A
35ll2
F,F)
35:45
A
1 ^
> —
_o .
_
13.
:n
35I24 35:36 35148 36:00 36:12 36:24
,F,F)
35:45
A
i ^
35l24 35l36 35
,F,F)
35:44
A
35:24 35l3 35
,F,F)
35:44
A
/,>
35:24 35:36 35
F,F)
A 35:35
/\ A
1 — _
r '
_2.
- n
Us 36loO 36:12 36:24
1
r '
-3-
0,
Us 36loO 36!l2 36:24
7~7-T • i
r '
7.
0.
•48 36:00 5:12 36:24
3.
' * »
,' ••
36:15 s
V. / V^35:45 35:59 - >:1V\
35124 35:36 35
15.26 35^40
i ;>-•• ' -
;,- 5
35124 35136 35
1 .
0.
US 36:00 36:12 36:24
«.W 1fi?1fi •"' 2.
1.
0.
Us 36^00 ,;.. 36:12 36:24
8E7
4E7
OEO
Time
3E7
6E7
OEO
Time
4E7
7E"
DEC
Time
r
4E8
OE7
OEO
Time
OE4
5B4
OEO
Time
2BS
1E&
OEO
Time
-------
Pile:A265Ep98M 11-217 Acq:27-5fiP-1998 08:49:13 <5C E1+ Voltage SIR Autospec-UltimaE
Samplel21 Text: BE CS3 Exp:EXP_M23_DB5_OVATION
339.8597 S:21 F:2 BSUB(128, 15, -3 .0) PKD(3,3 , 2, 0 .10%, 1148.0, 1 .00%,F,F)
100% ,, ... 33:00
T f
" ' 1 I — 1 I 1 — r T-T III"! — 1 1 1 1 1 1 1 1 1 1
31:00 31:12 31:24 31:36
341.8568 S:21 F:2 BSUB(128, 15, -3
100!
50J
31 00 31:12 31:24 31:36
351.9000 S:21 F:2 BSUB(128, 15, -3
100%
50.
0
3l!6o 31:12 3l!24 31J36
353.8970 S:21 F:2 BSUB(128,15,-3
100!
50:
n •
31:00 31:12 31:24 31:36
409.7974 S:21 F:2 BSUB{128, 15, -3
1008
50-: 31:10 ^ 31yi4
" *| i i — i — i — i— i — i — i i i — i i i — i — r— i — r-i — r T • i
31:00 31:12 31:24 31:36
366.9792 S:21 F:2 SMO(1,3) PKD(3
100% 11 ;18 31:33
50:
0
v ' ij i — i — i — i — i r IT i — i — I — I — I — i — i — r-r rill
31,:00 31:12 31:24 31:36
31:48 32100 32:12 32-24 32:36 32:48 33:00
.0) PKD(3,3,2,0.10%,8436.0,1.00%,F,F)
I I
31:48 32:00 32:12 32:24 32:36 32:48 33:00
.0) PKD(3,3,2,0.10%,2328.0,1.00%,F,F)
32:33 33K°°
IV H
31:48 32:00 32!l2 32:24 32136 32\48 33!6o
.0) PKD(3,3,2,0.10%,1348.0,1.00%,F,F)
32:33 33K°°
^ H
SlUs 32l6o 32ll2 32124 32!36 32S48 33!6o
.0) PKD(3,3,3,100.00%,2344.0,1.00%,F,F)
1 31-58 32=08 32:31 32:44 33:00
\^AfS\j\^J^A^>^J^^
'31:48' 32! 00 32! 12 32124" 32\36 32148 33:00
, 3, 3, 100. 00%, 0.0,1. 00%, F,F)
11 ,47 31:57 "513 32:26 32:56
31:48 32:00 32:12 32I24, 32136 32:48 33!6o
1.0E8
.5.1E7
0 . OF.O
33:12 33:24 33:36 33:48 Time
6.6E7
13.3E7
•O.OEO
'33:12' ' '33:24' ' '33:36' ' '33:48 Time
1.8E8
_9.2E7
r : 0 . OEO
33! 12 33-124 33:36 33148 Time
1.2E8
_5 . 9E7
r 0 . OEO
33:12 33:24 33:36 33:48 Time
33:12 2.1E4
/\ . .1.0E4
./ B3:17 A 33:34 .
•v^ \ — J W VV vV^^Ayv/*- • o QEO
33ll2 33:24 33:36 33:48 Time
13?17 33:37 33:49 7. 8E7
_3.9E7
O.OEO
33:12 33:24 33:36 33:48 Time
CO
-------
>ile:A26sfiP98M #1-488 Acq:27-SEP-1998
3ample#21 Text: BE CS3
303.9016 S:21 BSUB(128,
1003
50J
o-
25:00
305.8987 S:21 BSUB(128,
100S
50:
0
25:00
315.9419 S:21 BSUB(128,
1008
50_
0
25:00
317.9389 S:21 BSUB(128,
100%
50:
'
o:
•
25 loo'
375.8364 S:21 BSUB(128,
100S
50:
0'
24:32
n -K n MM.
25:00
316.9824 S:21 SMO(1,3)
100% 94-1fi ">*.'*.•> 2«;.-n3
so:
0
f~J 1 • 1 1 1 1 1
^ ' 25:00
15, -3.0) PKD{3,
i i i i 1 i
26:00
15, -3.0) PKD(3,
1 1 r- i- -j
26:00
15, -3.0) PKD(3,
26:00
15, -3.0) PKD(3,
26:00
15, -3.0) Ptt>(3,
'
A"]* *°AC
26 100
08:49:13 GC El> Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
3, 2, 0.10%, 3168. 0,1. 00%, F,F)
28:24
A
J \_
7.4E6
L3.7E6
_O.OEO
27:00 28:00 29:00 30:00 Time
3, 2, 0.10%, 7660. 0,1. 00%, F,F)
28:24
A
j[
9.5E6
.4.8E6
_O.OEO
27 loo' 28 :00' ' 29 loO 3oloO ' Time
3, 2, 0.10%, 7524. 0,1. 00%, F.F)
28.23
ft
/I
6.7E7
_3.4E7
O.OEC
27 !00 ' ' 28:00 ' 2'J: 00 3oloO Time
3, 2, 0.10%, 8536. 0,1. 00%, F,F)
28:22
* ft
/ \
.'. ' 1 V
8.5E7
:4.3E7
^O.OEO
27:00 2:!:00 29:00 30.-00 ,;. Time
3, 3, 100. 00%, 116. 0,1. 00%, F,! '
. . " 29:07
**' . '"'• •'' A A
' • '* 11 (\
2 ,:58 /I 30:0, 30:40
17 26:32 26!^8 27: L 28:50,1 \ \ i ,. A3to:.l.. i,
^ -yi-V* **' ^ - -** * AA(* "i - - - — " (* T — ,/Ltyi_A.Tl. (L-.t^/L /)«A r
r!.4E4
_6.9B3
_O.OEO
27100 ^ 28:00 29loO 30:00 Time
PKD(3,3,3,iOO.OO%,O.C,I 00%,?,?)
JJS-ld 25:57
26:00
26^ 26i£2 21:21 2P.-12 2fl:36 29^04 29:36 30--01 -3Qi33 * 7 . 4E7 .
- ' . . : " , ' '.«••'
•
13.7E7-;,
«* f.'
.O.OEO
27:00 ' ' 28:00 29:00 30 1 00 Time
-------
File
Samp
457.
IOCS
so:
0'
459.
100%
so:
0
469.
100%
50.
0"
471.
100%
so:
0_
454.
loos
so:
0
:A26SEP98M #1-277 Acq:27-SEP-1998 08:49:13 GC EI+ Voltage SIR Autospec-UltimaE
le#21 Text: BE CS3 Exp:EXP M23 DB5_OVATION
7377 S:21 F:5 BSUB(128, 15, -3 .0) PKD(3 , 5, 3 , 0 . 10%, 1512 . 0, 1 . 00%, F, F)
40:44
39112 39124 39:36 39148
7348 S:21 F:5 BSUB{128,15, -3.
39112 39124 39:36 39148
7780 S:21 F:5 BSUB(128, 15, -3 .
39:12 39:24 39136 39148
7750 S:21 F:5 BSUB(128, 15, -3 .
39:12 39:24 39:36 39:48
9728 S:21 F:5 SMO(1,3) PKD(3,
39:Q7 39_t26 39^46^
-N39ll2 39:24 39:36 39:48
40166 40:12 46124 46136 46148 4ll66 4lll2 41:24 41:36 4ll48 42166 42ll2
0) PKD(3,5,3,0.10%,1400.0,1.00%,F,F)
40:44
/v_
46:60 40:12 46:24 46:36 46:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
0) PKD(3,5,3,0.10%,3628.0,1.00%,F,F)
40:43
/v_
46166 461l2 46124 46:36 4ol48 4ll66 4ill2 4ll24 41:36 4ll48 42166 42ll2
0) PKD(3,5,3,0.10%,296.0,1.00%,F,F)
40:43
/v^
1.8E7
L9.2E6
.O.OEO
! Time
2 . 1E7
L1.0E7
.O.OEO
! Time
3 . 5E7
_1 . 8E7
.O.OEO
> Time
3 . 9E7
_1.9E7
_O.OEO
40100 40:12 40124 40136 40:48 4llOQ 41:12 41:24 41:36 41:48 42:00 42:12 Time
3, 3, 100. 00%, 0.0,1. 00%, F,F)
40,12 40:33 40^44 4J,:0<5 41-41 42:01 1 . 5E8
L7.7E7
.O.OEO
'46:66 461l2 46124 46136' .46148 4ll66 4lll2 4ll24 4ll36 4ll48 42166 42ll2 Time
CO
-------
Pilt
Sami
423
100S
50_
0'
425.
1003
so:
0"
435.
100S
so;
0"
437.
100S
50J
0"
430.
100%
so:
0'
j:A26SEP98M #1-193 AcqJ27-SEP-1998 08:
)le#21 Text: BE CS3
7767 S:21 F:4 BSUB(128, 15, -3 .0) PKD(3
36536
7737 S:21
36!36
8169 S:21
3*!3€
8140 S:21
3( :36
9728 S:21
36^3_p_ 36
/ :
36:36
36! 48 37 5 00 37! 12
F:4 BSUB(128,15,-3.0) PKD(3
36! 48 37:00 37 5 12
F:4 BSUB{128,15,-3.0) PKD(3
36:48 37? 00 37! 12
P:4 BSUB(128,1 -3.0) PKD(3
49:13 GC EH- Voltage SIR Autospec-OltimaE
Exp:EXP_M23_DB5 OVATION
, 5, 3, 0.10%, 3136. 0,1. 00%, F,F)
37:48
j\^
37:24 37:36 37:48 38:00 38:12 38!24 3s!36 3s!48 39
, 5, 3, 0.10%, 2616. 0,1. 00%, F,F)
37:48
A
/I
i i | i i i i i | ' i i ~r'i T-r i i i i | i i' 1 1 I | i i i i i i i r i i i i i
37:24 37:36 37:48 38!oO 3s!l2 3s!24 3s!36 3s!48 39
, 5, 3, 0.10%, 12220. 0,1. 00%, F,F)
37:47
/v_
37!24 37.-36 37!48 ; 3s!do 3s!l2 38!24 3s!36 ;8.!48 39-
,5, 3, 0.10%, 3528. 0,1. 00% >,F) '
37A47
,,; ^\_ :. , ,.
36!48 37:00 37:12 37:24 3?!36 37:48 38!oO 38!l2 38!24 3s!36 .-,8:48 39:
F:4 SMO(1,3) PKD(3 3, 3, 100. 00%, 0 . 0, 1 .OOi.F.F)
36! 48 37: 00 37\ 12
' *
i i 1 i i i i i 1 i i "f i -,i | i1 iV T i i 1 i i i i i I i i i i i ] -r r T f T — i — i — i— T — i — i — i — i — i — i — i — r-i
37:24 37:36 37:48 38:00 38:12 38!24 3s!36 ••••38:48 39?
2.0E7
19.9E6
LO.OEO
00 Time
1.9E7
L9.7E6
-O.OEO
00 Time
4.0E'
12. OE ,
' 0 . DEC
00 Time
,.3 . 9E7
11 . 9E7
VO.OEO
00 Time
1.4E8
.6.9ET
O.OEO
00 Time
-------
File:A26SfiP98M #1-189 Acq:27-SEP-1998 08:49:13 GC EH- Voltage SIR Autospec-UltimaE
Sample#21 Text: BE CS3 Exp:EXP_M23_DB5_OVATION
389.8156 S:21 F:3 BSUB(128, 15, -3 .0) PKD(3, 5, 2, 0.10%, 2020.0, 1.00%, F,F)
100% .35ii22
-
so:
0"
391.
100%
-
50.
o:
401.
100%
so:
o:
403.
1008
so;
o:
380.
1001
so:
0"
A A 35:35
34:00 34:12 34J24 34:36 34:48 3s!oO 35!l2 35:24 3s!36 SsU's 36loO 36:12 36:
8127 S:21 F:3 BSUB(128, 15, -3.0) PKD(3, 5, 2, 0.10%, 2044.0, 1.00%, F,F)
35:22
A A 35K35
f/l/v
34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 36:
8559 S:21 F:3 BSUB(128, 15, -3 .0) PKD(3, 5, 2,0 .10%, 9764 .0, 1 . 00%, F,F)
35:22
» A 35:35
A \ A
rfl/l
' '34!00' ' '34:12 ' ' '3'4!2'4' ' '34!3'6' ' '34-148 3s!oO 35!l2 35I24 35136 3s!48 3e!oO 36ll2 36-
8530 S:21 F:3 BSUB(128, 15, -3 .0) PKD(3, 5,2,0 .10%, 6564 .0, 1.00%, F,F)
35:22
/yL]v_
' '34!do' ' '34!l2' ' '34124' ' '34!3'6' ' 34148 35!oO 35!l2 35J24 35136 3s!48 36loO 36:12 36!
9760 S:21 F:3 SMO{1,3) PKD(3,3,3, 100 .00%, 0.0, 1 .00%,F,F)
33:58 ™.?fi yi-AJ i4-«;i ^-m T^2fi ^^^n is-S2 3fi = Tfi
' '34:00' ' '34:12' ' '34!24 34:36 34!48 35!oO 35:12 3s!24 3s!36 3s!48 36:00 36ll2 36:
_4.2E7
-
12 . 1E7
'.O.OEO
24 Time
3.4E7
.1.7E7
_O.OEO
24 Time
8 . 1E7
L4.0E7
' 0 . OEO
24 Time
6.3E7
_3.2E7
O.OEO
24 Time
,2.2E8
.1.1E8
O.OEO
24 Time
00
-------
Pile:A26SEP98M Jl-217 Acq:27-SEP-1998 08:49:13 GC El-t- Voltage SIR Autospec-Ultimafe
Samplel21 Text: BE
355.8546 S:21 F:2
100S
so:
0"
31:00 31:12
357.8517 S:21 F:2
100ft
50_
0.
31:00 3l!l2
367.8949 S:21 F:2
1004
50.
o:
!
3l!do 31:12
369.8919 Ss2l F:2
1004
so:
:
0'
.
•
31:00 31:12
366.9792 S:21 F:2
CS3 Exp:EXP M23 DBS OVATION
BSUB(128,15,-3.0) PKD(3,3,2,0.10%,3856.0,1.00%,F,F)
33:13
A
A
/v_
5.6E7
L2.8E7
O.OEO
3l!24 31:36 31:48 32:00 32:12 32|24 32:36 32:48 33:00 33:12 33S24 33136 33:48 Time
BSUB(128,15,-3.0) PKD(3,3,2,0.10%,1640.0,1.00%,F,F)
33:13
1
/ \ r
3.3E7
_1.7E7
-O.OEO
3l!24 3l!36 31:48 32!6o 32!l2 32J24 32!36 32148 33ldo 33!l2 33!24 33136 33!48 Time
BSUB(128,15,-3.0) PKD(3 , 3 , 2 , 0 . 10%, 4384 . 0, 1 . 00%, F,F)
33:12
A
A
/v.
_9.3E",
.4.7E7
.O.OEO
31:24 31:36 31:48 32:00 32:12 32:24 32 36 32:48 33:00 33:12 33:24 ' !36 33:48 Time
BSUB(128,1 -3.0) PKD(3, 3, 2,0. 10%, 296. 0,1.00%,! F)
. • 33i12
" ' A
"'' -• ' ft
1 W 17
/ r^—
5.8E7
_2 . 9E7
10.0EO
31:24 31:36 31:48 32:00 32:12 32:24 32 36 32148 33«00 33:12 33i24 3%:36 33:48 Time
SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 31:18 31:33 11.A7 11 . 7 32:1? 32^26 32:56 33^17 33;*7 3J:*9 7 . 8E7
so:
o:
31 ~bO 31:12
''
«;,
,3.9rf
-O.OEO
31:24 31:36 3l!48 32!6o 32ll2 32.;24 32:36 32.U8 33:00 33!l2 33!24 33:36 33:48 Time
-------
File:A26SEP98M #1-488 Acq:27-SEP-1998 08:49:13 GC EI+ Voltage SIR
Sample#21 Text: BE CS3
319.8965 S:21 BSUB(128, 15, -3 . 0)
100%
50J
ol
25 !00
321.8936 S:21 BSUB(128, 15, -3 .0)
1003
50.
0:
25 :00'
331.9368 S:21 BSUB(128, 15, -3 .0)
100%
50J
OJ
'. 25:00'
333.9339 S:21 BSUB(128, 15, -3 .0)
10 08
sol
0'
25:00
327.8847 S:21 BSUB(128, 15, -3.0)
100%
50 j
o"
25:00
316.9824 S:21 SMO(1,3) PKD(3,3,
100% 24:16 24:42 25^03 25:34
50J
0:
."•\
- ' ' 25 :00'
Exp:EXP M23 DBS OVATION
PKD(3,3,2,0.10%,2324.0,1.00%,F,F)
26 !00 27 I 00 28
PKD(3,3,2,0.10%,1896.0,1.00%,F,F)
26:00 27 1 00 28
PKD(3,3,2,0.10%,15912.0,1.00%,F,F)
26 loo' ' ' 27 loo' ' ' ' 28
PKD(3,3,2,0.10%,6872.0,1.00%,F,F)
26:00 27:00 28
PKD(3,3,2,0.10%,16288.0,1.00%,F,F)
26:00 27:00 28
3, 100. 00%, 0.0,1. 00%, F,F)
25:57 2fi:2fi 26:52 27_L21
26. -00 27 loo' ' ' ' 28
Autospec-UltimaE
29:26
rt
A
iv
5.0E6
_2.5E6
O.OEO
100 29 loo 30 100 Time
29:26
A
A
IV.
6.4E6
_3.2E6
O.OEO
•00 29:00 30 100 Time
29:07
A »
AA
I{IV
5 . OE7
12 . 5E7
O.OEO
100 29 loo 30 loo Time
29:07
A A
A A
i\IV
6.1E7
_3 . 1E7
O.OEO
loo 29 100 30. -00 Time
29:26
K
1 . OE7
L5.1E6
• 0 . OEO
|00 29:00 30:00 Time
5ft?12 S»fi^fi 29:04 2
-------
OPUSquan 28-SEP-1998 Page 2
DPE OCDPE * NotFnd * - n
DPE NCDPE * NotFnd * - n
DPE DCDPE * NotFnd * - n
LMC QC CHK ION (Tetra) * NotFnd * - n
LMC QC CHK ION (Penta) * NotFnd * n
LMC QC CHK ION (Hexa) * NotFnd * n
LMC QC CHK ION (Hepta) * NotFnd * - n
LMC QC CHK ION (Octa) * NotFnd * - n
-------
OPl
1.
fc
L^
^
^
/ r
<
X
^
JSquan 28-SEP-1998
Run #6 Filename a26sep98m
Run: 26sep-crv Analyte: m8290-092»
Sample text: BE CS3
Typ Name
Unk 2,3,7,8-TCDD
Unk 1,2,3,7,8-PeCDD
Unk 1,2,3,4,7,8-HxCDD
Unk 1,2,3,6,7,8-HxCDD
Unk 1,2,3,7,8,9-HxCDD
Unk 1,2,3,4,6,7,8-HpCDD
Unk OCDD
Unk ' 2,3,7,8-TCDF
Unk 1,2.3,7,8-PeCDF
Unk 2,3,4,7,8-PeCDF
Unk 1,2,3,4,7,8-HxCDF
Unk 1,2,3,6,7,8-HxCDF
Unk 2,3,4,6,7,8-HxCDF
Unk 1,2,3,7,8,9-HxCDF
Unk 1,2,3,4,6,7,8-HpCDF
Unk 1,2.3,4,7,8,9-HpCDF
Unk OCDF
. ES/RT 13C-2,3,7.8-TCDD
ES 13C-l,2,3,7,8-PeCDD
ES 13C-l,2,3,6,7,8-HxCDD
ES 13C-l,2,3,4,6,7,8-HpCDD
ES 13C-OCDD
ES/RT 13C-2,3,7,8-TCDF
ES 13C-l,2,3,7,8-PeCDF
ES 13C-l,2,3,6,7,8-HxCDF
ES 13C-l,2,3,4,6,7,8-HpCDF
JS 13C-1,2,3,4-TCDD
' JS 13C-l,2,3,7,8,9-HxCDD
CS 37Cl-2,3,7,8-TCDD
CS 13C-2,3,4,7,8-PeCDF
CS 13C-l,2,3,4,7,8-HxCDD
CS 13C-l,2,3,4,7,8-HxCDF
CS 13C-l,2,3,4,7,8,9-HpCDF
SS 37Cl-2,3,7,8-TCDD
SS 13C-2,3,4,7,8-PeCDF
SS 13C-l,2,3,4,7,8-HxCDD
SS 13C-l,2,3,4,7,8-HxCDF
SS 13C-l,2,3,4,7,8,9-HpCDF
DPE HxCDPE
DPE HpCDPE
Page 1
S: 21 I: 1 Acquired: 27-SEP-98 08:49
Cal: m8290-092»
Comments :
Resp
5.86+07
2.36+08
1.76+08
2.36+08
2.16+08
1.56+08
2.1e+08
8.3e+07
3.36+08
3.7e+08
2.7e+08
3.7e+08
3.0e+08
2.5e+08
2.4e+08
1.9e+08
2.4e+08
S.Oe+08
3.4e+08
4.7e+08
3.1e+08
3.9e+08
7.56+08
6.8e+08
4.2e+08
3.56+08
4.9e+08
4.26+08
5.2e+07
7.1e+08
2.8e+08
6.2e+08
2.7e+08
5.26+07
7.16+08
2.8e+08
6.2e+08
2.7e+08
Results:
/
^/
RA ^
0.80 y
1.59 y
1.25 y
1.29 y
1.26 y
1.04 y
0.90 y
0.78 y
1.55 y
1.56 y
1.24 y
1.30 y
1.34 y
1.31 'y
1.03 y
1.03 y
0.90 y
0.80 y
1.63 y
1.28 y
1.07 y
0.89 y
0.79 y
1.58 y
0.53 y
0.46 y
0.81 y
1.26 y
1.59 y
1.27 y
0.53 y
0.45 y
1.59 y
1.27 y
0.53 y
0.45 y
^
>
Page 1 of 1
^
^/. J
:13 Processed: 28-SEP-98 11:52:19
Quan : V3.6 31-JUL-1998 10:51:59
OPUS : V3.6X 31-JUL-1998 11:15:12
RT
29:26
33:13
35:19
35:22
35:35
37:48
40:44
28:24
32:34
33:00
34:47
34:51
35:14
35:45
36:59
38:11
40:53
29:24
33:12
35:22
37:47
40:43
28:23
32:33
34:47
36:58
29:07
35:35
29:26
32:60
35:18
34:51
38:10
29:26
32:60
35:18
34 : 51
38:10
Cone Dev ' n
10.4 3.8
48.7 -2.7
58.1 16.3
47.9 -4.2
55.7 11.5
50.8 1.7
98.7 -1.3
10.0 0.4
49.8 -0.5
48.6 -2.9
52.0 3.9
41.0 -18.0
44.0 -11.9
53.0 6.1
51.5 3.1
64.0 28.0 —
87.1 -12.9
103 3.4
120 19.6
93.8 -6.2
142 ^2^^^,
106^ 5.7
113 12.6 J
Mod?
31 lo
n >' '
n ***^" /^
n "^£o
n /^
y^~
*7 J**~
~~-~~~~ — —
*^" — (
/ n tO
VL M ^
p~ t •
I ^..+
n
n
n
n
n
n
n I
A./
/r> L
(y n /r/
c/
n .1 * *jjJ*
n t&V^
/ /
//, »'
///,(/&
l/fihm
AW '
^l
JU
"^ \tfip"*
Li&(Jr
,,1 :"£>>!
' • • n *v ft* ..
11 1^ y
t n "^ .*/
98.1 -1.9 -A n fi0r
110 10.2 P"^ , n \J
- -•&** . ^
M5 - *1 ' >
11.1 10.5
hf^ A n '
108 7.9 *~^(S*- ' n Qttit
102 1.7 > n
79.4 -20.6 %Ut, • n
137 37.3 ^a~ n
J. ^ ^
\ \j"
**"£
riff *A
^
Ul/i
10.7 6.9 <^f n /^,tf)
95.8 -4.2
109 8.8
80.4 -19.6
124 24.3
* ' NotFnd *
* NotFnd *
-f-A*^ A,! n '
w^ . « *l
/y»W ' n
ft^f' n
n
n
k$
^ ^/
V
I
r^
s-
K
^
*'
^
fr
.,*}*
0r
ft
,m
*f
/ 1 J
\t**
5
*/•)
1^ V
'
^
N
-------
Pile:A26SEP98M #1-277 Acq:
26-SEP-1998 19
Sample#5 Text:1613-CS3
441.7427 S
100S
50:
o"
39.1
443.7398 S
100!
50:
0:
39:
469.7780 S
100%
50:
o:
' ' ' 39?
471.7750 S
100%
50:
0"
^"ai!
513.6775 S
100% ,
'
50:
0:
.
1
I Ite-
" T 1 I 1 I -
39:
454.9728 J.
100!
50:
.
o-
r.n.3
l»^fc. i
:5
12
:5
12
:5
12
:5
-r— r
12
:5
V
-r-t-
12
:5
'-39:12
F:5 BSUB{128,
39124 39136
F:5 BSUB(128,
39124 39136
F:5 BSUB(128,
39124 39136
F:5 BSUB(128,
'••
i i i ii i i i i i I i i
39:24 39:36
F:5 BSUB(128,
39:25
i i i 1 i i i i i l i i
39124 39:36
F:5 SMO(1,3)
39:30
39:24 39:36
15, -3.0) PKD(3
39:48 46166
15, -3.0) PKD(3
39 l48 46166
15, -3.0) PKD(3
39 148 46100
15, -3.0) PKD(3
t
^l^Ufi ' 40:00 '
15, -3.0) PKD(3
39:47
1 Ii l!io8:02
UUI/OA
39:48 40:00
PKD(3,3,3,100.
+- 40
,,
39:48 40:00
:57:04 6C E1+ Voltage Sift Autospec-UltimaE
Exp:EXP M23 DBS
,5, 3, 0.10%, 2520.
461l2 46124 40
,5, 3, 0.10%, 4096.
461l2 46124 40
,5, 3, 0.10%, 3488.
461l2 46124 4C
,5, 3, 0.10%, 2356.
•'\
461l2 40:24 40
,3, 3, 100. 00%, 308
' ' »
40-
40:25 I
40«i6 k H
OVATION
0,1.00%,F,F)
40 A53
A
J ^-—
_3
-1
0
136 46148 4ll66 4lll2 41124 4ll36 41148 42166 42 1 12
0,1.00%,F,F)
40:53
A
/ — —
_4
-2
:o
136 46!48 4ll66 4ill2 4il24 4ll36 41148 42166 42ll2
0,1.00%,F,F)
40^43
A
J ^
5
.2
0
:36 46148 41:66 4lll2 4l!24 41136 4ll48 42166 42ll2
0,1.00%,F,F)
40,43
/V:
y V:,
6
_3
0
;!i6 4ol."i 4ll66 4ill2 41124 4ll36 4lU8 2166 42ll2-
.0,1.00% ?,F)
Si^7 41:15 41:28 2:00
i 1 t 40:59 11 1 41:34 1 Jl
•i\{vv?' 5it A Art IT'9 nAfY841:46I / H2A°7
jl/""' ^ Uyy u/W UiULAJl/vJUUv-vA^lA/U uv \JW.
4
-
12
:o
461l2 40124 46136 4ol48 41:66 4lSi2 4il24 41136 41.U8 42100 42ll2
00%, 0 0,1.00%,F
06
4b!l2 46124 40
p)
40^39 41-ni 41- 14 41t25 41:50 42^9 3
, .5 ,
.
11
• o
I36',46l48 4ll66 41:12 41124 4ll36 41148 42166 42:12
.7E6
.8E6
.OEO
Time
.2E6
.1E6
.OEO
Time
.5E6
.7E6
.OEG
Time
.2E6
.1E6
.OEO
Time
. 8E3
.4E3
.OEO
Time
.OE8
.5E8,
V
.osq
Time
-------
File:A26SfiP98M
Sample* 5
407.7818
100%
50:
0:
409.7788
100S
50:
0:
417.8253
100%
50:
0:
419.8220
100%
50:
0:
479.7165
100S
50:
o"
Text:
S:5 F
36:36
S:5 F
36:36
S:5 F
36:36'
S:5 F
36! 36
S:5 F
#1-193 Acq:26-SEP-1998 19:57:04 GC EI+ Voltage
SIR Autospec-UltimaE
1613-CS3 Exp:EXP M23 DBS OVATION
:4 BSUB(128,15,-3.0) PKD(3 , 5, 3 , 0 . 10%, 20708 . 0, 1 .
36:59
A
y ^-37:10
36:48 37100 37ll2 37:24 37136 37
:4 BSUB(128,15,-3.0) PKD(3, 5, 3 , 0 .10%, 19104 .0, 1 .
36:59
A
/ v^_
36:48 37! 00 37:12 37:24 37:36 37
:4 BSUB(128,15,-3.0) PKD(3, 5, 3, 0 .10%, 45224 . 0, 1 .
36:58
A
y v___
36? 48 37! 00 37:12 37124 37S36 37
:4 BSUB(128,15,-3.0) PKD(3 , 5, 3 , 0 . 10%, 39216 . 0, 1 .
36:58
A
y \ —
36:48 37:00 37:12 37:24 37:36 37
:4 BSUB(128,15,-3.0) PKD(3, 3 , 3, 100 . 00%, 5692 .0, 1
37:01 ^
36:43 36:5^37:06 -,7:24 37
36
My
v
430.9728
:33
V*A
Wv/^
36: 36 '
S:5 F
100% 36^35
50:
o:
i
'~' '
fO
N
36-36
*IVAfit\^^
m vy ** \s W v y v \s\f y y^/ \^j » v V V
36:48 37iOO 37:12 37:24 37:36 37
:4 SMO{1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
Ifi-Aft 37;02 37:28 37:38 37i
36:48 37:00 37:12 37:24 37:36 37
00%,F,F)
38:10
J V__
1.0E7
L5.2E6
LO.OEO
!48 38100 38ll2 38?24 38136 38148 39loO Time
00%,F,F)
38:10
J ^--— ^
9.8E6
_4.9E6
O.OEO
1 48 38:00 38:12 38:24 38:36 38:48 39:00 Time
00%,F,F)
38:10
J V__
9.0E6
_4.5E6
.O.OEO
148 38!6o 38ll2 38124 38136 38148 39loO Time
00%,F,F)
38:10
J V__
2.0E7
Ll.OE7
•O.OEO
•48 38:00 38ll2 38:24 38:36 38:48 39:00 Time
.00%,F,F)
;48 38.14 38:31 38:56
VJV38A°\ AA AA A ^=4A r\J^
^^^ V ^V \ V V^ Vy vV V {j^ >— ' V V
1.2E4
L6.2E3
O.OEO
Us' ' VsloV '38:12 ' '38:24 38136 38Us 39 00 Time
4fi lfl-00 1H-5S 3fl?41 2.7E8
_1.4E8
_O.OEO
•48 38:00 38:12 38:24 38:36 38:48 39:00 Time
-------
PiIe:A26SEP98M f1-189 Acq:26-SfiP-1998 19:57:04 6C EJ> Voltage Slk Autospec-ttttimaE
Sample#5 Text:1613-CS3 Exp:EXP_M23_DB5_OVATION
373.8207 S:5 F.-3 BSUB(128,15,-3 . 0) PKD(3, 5,2, 0.10%, 214368. 0,1. 00%, F,F)
100% 34:51
34:47A 35:14
50:
0:
34:00 34:12 34i24 34:36 34:48 35iOO 35J12 35124
375.8178 S:5 F:3 BSUB(128,15,-3 . 0) PKD(3,5,2,0.10%,5552.0,1.00%,F, F)
100%. 34:51
34:46/\ 35:14
50:
0:
3536
3s48
36oO
34:00 34112 34:24 34136 34148 35:00 35il2 35:24
383.8639 S:5 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,9732.0,1.00%,F,F)
100% 34:50
34:46/\ 35:13
50.
" 'i i i I i i—i i i I i i i i i I i i
34:00 34:12 34:24
3536
i i i I i 1 i I—rill—ii i i "" ""T i i i i i i i f^yr-r I I I
34:36 34:48 35:00 35:12 35:24 35-3? 35U8
35:45
3548
35:44
36:00
36:12
385.8610 S:5 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,40012.0,1.00%,F,F)
100% 34:50
34:46A 35sl3
50:
0:
*,*.
•i
35:44
'34:00' ' '34112' ' '34:2< '34:36' 34:48 35iOO '.35:12 35:24 35i36 '35:48
445.7555 3:5 P:3 BSUB(128,15 -3.fliJ PKD(3/3,3,100.00%,1400.0,1.00< -F,F)
100% , . ''•
50:
0:
31:04
34:90
1:42 A A 35:02'35:11
_ A
'34:00' ' '34:12' ' '34:24' ' '34:3'6' 34J48 35:00 35:12 35:24 35i36 35:48
380.9760 S:5 F:3 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.C3%,F,F)
100% 3d;nA _ •^A•^^ IA^O 3*^« ^^i^n 35?n
.O.OEC
36i 24 Time
50:
0:
-3iiA6_
_^n-,_I_ O.OEO
36:00 36:12 36:24 Time
36^17
_2 . 1E8
O.OEO
•-34:00 34:12 34.!24 34:36 34:48 35:00 35:12 35:24 35:36 35:48
36.!00 , 3e!l2
36 24 Time
-------
File:A26SEP98M
Sample* 5
339.8597
100%
;
50 j
o:
3i!do
341.8568
100S
50J
OJ
31:00
351.9000
100%
50J
OJ
31:00
353.8970
1003
501
OJ
31:00
409.7974
100%
.
5°1
OJ
AM
J Vv \
3i!do'
366.9792
100%
50J
OJ
#1-217 Acq:26-SEP-1998 19:57:04 Gt EI + Voltage Sift Autospec-UltimaE
Text:1613-CS3
S:5
31
S:5
31
S:5
31
S:5
31
S:5
31
A
L_^
31
S:5
F:
•12
F:
Sl2
F:
:12
F:
!l2
F:
:12
/LA
Wl
!l2
F:
2 BSUB(128,15,-3.
31124 3ll36
2 BSUB(128,15,-3.
3l!24 3l!36
2 BSUB(128,15,-3.
3ll24 31:36
2 BSUB(128,15,-3.
31:24 31:36
2 BSUB(128,15,-3.
31:21 31:34 ,
MA /^ >v/M ^
A/VV\VV/V/ KA/1
31:24 31:36
2 SMO(1,3) PKD(3,
Exp:EXP M23 DBS OVATION
0) PKD(3,3,2,0.10%,1728.0,
31:48 32:00 32:12 32:
0) PKD(3, 3, 2, 0.10%, 10420.0
31:48 32:00 32:12 32:
0) PKD(3,3,2,0.10%,1732.0,
3l!48 32!00 32!l2 32!
0) PKD(3,3,2,0.10%,1736.0,
31:48 32:00 32!l2 32?
0) PKD(3,3,3,100.00%,3616.
31:58
Jr^^A1 : JW^J^-A 32 : 2
31:48 32:00 32:12 32:
3, 3, 100. 00%, 0.0,1. 00%, F,F)
31 -46 32 -03 3? •?!
1.00%,F,F)
32:34
24 32:36
33:00 ,_4
K
A
' L-.
_2
0
32:48 33:00 33:12 33:24 33:36 33:48
.2E7
.1E7
.OEO
Time
,1.00%,F,F)
24 ,32:36
1.00%,F,F)
32:34
24 32:36
1.00%,F,F)
32:34
/
A
/v_
24 32:36
0,1.00%,F,
^2,3.
^r^/\f^
24 ' 32? 36
32:35 .1
33:00
f[^
_2
_1
:o
32!48 33:00 33!l2 33:24 33!36 33:48
32f
ft
/L_
7
_3
;n
32:48 33:00 33:12 33:24 33:36 33:48
L 70.^0
4
_2
0
32:48 33:00 33:12 33!24 33:36 33!48
F)
, r1
ft 33:13
32Al^AlTA56 A A A/ \3A17 33:2/7\A A
^x^v v vv ' V/vWl/^ N/v\^xr\y vVN^/^yVA^
•
19
•o
32:48 33:00 33:12 33:24 33:36 33:48
2;4332?t>2 33:03 33:15 J3:24 33:3433:43 1
3i!do
31
!l2
31:24 31:36
31:48 32:00 32:12 32:
24, 32:36
_7
0
32:48 33:00 33:12 33!24 33!36 33:48
.7E7
.4E7
.OEO
Time
.3E7
.6E7
.OEO
Time
.8E7
.4E7
.OEO
Time
.9E4
.5E3'
.OEO
Time
.5E8
.5E7
.OEO
Time
-------
Flle:A26sEP98M #1-488 Acq:26-SEP-1998 19:57:04 GC 61+
Sample#5 Text:1613-CS3
303.9016 S:5 BSUB(128, 15, -3 .0) PKD(3,3,
lOOi
50_
0
25100 26100
305.8987 S:5 BSUB(128,15, -3 .0) PKD(3,3,
100%
50J
o:
25JOO 26:00
315.9419 S:5 BSUB(128, 15, -3 .0) PKD(3,3,
100%
50:
o:
. 25100 26100
317.9389 S:5 BSUB(128,15, -3 .0) PKD(3,3,
1001
50 j
o:
'•.
25 1 00 26 loo'
375.8364 S:5 BSUB(128, 15, -3 . 0) I>KD{3,3,
100% 25?31
50.
0
24:52 1
24|35 25-U 1 25i4836-06
M^LMjJLLluULU^
25IOO' ' ' 26loo'
316.9824 6:5 SMO(1,3) PKD(3 , 3, 3, 100 . 00%
100% ?.*••>* 24?m 25i37
50J
0.
{
VS ' '« ' 25 100 26 loo'
Voltage SIR Autospec-UltimaE
ExprEXP M23 DBS OVATION
2,0. 10%, 3428.0,
27 I 00
2, 0.10%, 11620.0
27:00
2, 0.10%, 6148.0,
27 loo'
2, 0.10%, 14572.0
.•
27:00'
3, 100. 00%, 240.0
i1--
. 26|592
.yfij^
27:00
, 0.0.1. 00%, F,F1
?fi'^T Ifi-^ft
27 100
1.00%,F,F)
28:24
A
A
;L
3.5E6
Ll.8E6
• O.OEO
28 100 29 100 30 100 Time
,1.00%,F,F)
28:24
A
/ v_
4.5E6
L2.2E6
LO.OEO
28 loo' ' ' 29:00 3oloo' Time
1.00%,F,F)
28:23
A
3 . 1E7
Ll.6E7
7 V_ fo.OEf;
28 100 29 100 30 100 Time
,1,00%,F,F)
28j23
•=•' A
/L
_3 . 9EV
L1.9E7
_O.OEO
; jloo ' 29:00, 30 100 Time
,1.QO%,F;F
29:07 7.6E3
. ' A j/29:34
7«212|7i41:':58 28J2286:37 j f}lfW''3* 30:00 3^37
dLAJlAM^J/LAJlA^fLjl l\ pi w «lLsj\A_AJA_%A_jlAjL^
_3 . 8E3
LO.OBO
28:00 29:00 3oloO Time
27:32 28jfll 2g:22 ^28:5429:15 29.:58 30:30 1.4E8
. »v" j
.6 . 8E?'
_O.OEO
28 loo 29 loo 3oloD Time
-------
|File:A26SEp98M #1-277 Acq:26-SEp-1998 19 :!>'/: 04 6C El+ Voltage SIR Autospec-UltimaM
Sample#5 Text:1613-CS3 Exp:EXP_M23_DB5_OVATION
457.7377 S:5 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2684.0,1.00%,F,F)
100%, 40;44
so:
. _Q . OEO
I i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i I I i I i I I i i I i i I < T i i I I [' i i i' i i | i i I I i | I I I I I | i i I I I | I i i i i | i i i i i | i
39ll2 39$24 39?36 39?48 4oloO 40:12 40124 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
459.7348 S:5 F:5 BSUB(128,15,-3 .0) PKD(3,5,3,0.10%,1700.0,1.00%,F,F)
100%, 40;44 _3.3E6
_3.0E6
_1.5E6
so:
_1.7E6
O.OEO
39:12 ' 39124 ' 39136 ' 39:48 ' 46166 ' 461l2 ' 46124 ' 46:36^ ' 46:48 ' 4ilo6 ' 4lli2 ' 4ll24 4ll36 ' 4ll48 42166 42-li2 Time
469.7780 S:5 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%, 3488.0,1.00%,F,F)
lOOi 40^43 ^5.5E6
50.
_2.7E6
O.OEO
39:12 ' 39l24 ' 39l36 ' 39l48 ' 46166 ' 461l2 ' 46124 ' 46136 ' 46148 ' 4ll66 ' 41:12 ' 41124 ' 4ll36 ' 41J48 ' 42166 ' 42112 Time
471.7750 S:5 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2356.0,1.00%,F,F)
100%
so:
^6.2E6
_3.1E6
. 0.OEO
39ll2 ' 39124 ' 39l36 ' 39l48 ' 46166 ' 4o!l2 ' 46124 ' 40136 ' 46148 ' 4ll66 ' 4l!l2 ' 4il24 ' 4ll36 ' 41148 ' 42166 ' 42ll2 Time
454.9728 S:5 F:5 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
1004 39:02 25LOQ 40:06 jiO;39
so:
41-25
41:50
42 : 09 ,_3 . OE8
_1.5E8
O.OEO
|9lJ2 ' 39i24 ' 39136 ' 39148 ' 46166 ' 4olJ2 ' 46124 ' 46136'' 46148 ' 4J166 ' 41; 12 ' 4J124 ' 4J136 ' 4J148 ' 42166 42 112 Time
i fym.1 |
on
-------
File:A26SfiP98M #1-193 Acq
Sample#5 Text:1613-CS3
423.7767 S:5 F:4 BSUB(128
100%
so:
o:
36536 36548
425.7737 S:5 F:4 BSUB(128
100S
so:
o:
36:36 36548
435.8169 S:5 F:4 BSUB(128
100%
so:
0'
36536 36! 48
437.8140 S:5 F:4 BSUB(128
100%j
.
so:
n"
31:36 36548
430.9728 S:5 F:4 SMO(1,3)
100% 36:35 Ifi-AP.
so:
•
0"
, .— — =-"- '"
•
'T.ESJS i r'j'i— r-i-i -i -i -r- i i T
^ 3(5:36 36!48
:26-SEP-1998 19:bV:04 GC El+ Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
,15, -3.0) PKD(3,5,3,0.10%,5844.0,1.00%,F,F)
37:48
A
— y ^~— ,. ,
4.5E6
L2.3E6
-O.OEO
37 5 00 37 5 12 37524 37536 37548 38 5 00 38 5 12 38 5 24 38 5 36 38 5 48 39 00 Time
,15, -3.0) PKD(3,5,3,0.10%,4496.0,1.00%,F,F)
37:48
A
j ^^-—
4.3E6
-2.2E6
-O.OEO
37 5 00 37 5 12 37524 37536 37548 38 5 00 38:12 38 5 24 38:36 38 5 48 39 5 00 Time
,15, -3.0) PKD(3,5,3,0.10%,23944.0,1.00%,F,F)
37:47
A
37^12 J ^— -___
8 . 9E6
L4.4E6
"' 0 . OEO
3756o 37?12 37524 37^36 37548 38!6o 38ll2 38524 38:36 "-8548 39:00 Time
,15 -3.0) PKD(3, 5, 3, 0.10%, 9868. 0,1. 00%,; F)
37! 47 .;_ i8.6E6
* • / \ *'
' / I
-•;• ; . 1 \
J • ^—— „-
.
L4.3E6
LO.OEO
375o'o' ' 375l2 37t24 37536 37148 38!6o 38:12 38524 38536 8548 39 00 Time
PKD(3,3,3,100.00%^0.0,1 00%,F,F)
"% f^ . r\f\ - t*f * *t Q 11 1 c "2 1 * Jl £ t O • f\f\ "^O*^^ "} O • jl 1 f} *7 B* fl
J / U X " T - rfi f If'inJf* n"H;ULI J V " «i J -1 IT J"~ ft » f K* O
* " * * .-
-1-4
\,
O.OEO
37:00' ' '37512' ' '37524 " 37536 37548" 38 5 00 3s5l2 38524 3s!36 ,38548 39:00 Time
-------
File:A263EP9BM #1-189 Acq:26-SEP-1998 19:57:04 GC EH- Voltage SIR Autospec-UltimaE
Sample#5 Text:1613-CS3 Exp:EXP M23 DBS OVATION
389.8156 S:5 F:3 BSUB(128, 15, -3 .0) PKD(3 , 5,2, 0. 10%, 4328 .0, 1 .00%,F, F)
100% 35^22 r!.3E7
-
so;
o:
A
/
34:00 34:12 34124 34J36 34148 35!oO 3s!l2
/\ 35:35
/ \ A
(vjv_
L6.7E6
'O.OEO
35!24 35!36 35l48 36loO 36ll2 36 24 Time
391.8127 S:5 F:3 BSUB(128, 15, -3 .0) PKD(3, 5, 2, 0.10%, 5948. 0,1. 00%, F,F)
100% 3
so:
A
A
34:00 34:12 34:24 34:36 34:48 35:00 35:12
401.8559 S:5 F:3 BSUB(128, 15, -3 .0) PKD(3, 5,2, 0 .10%, 11632 .0, 1.00%, F
5:22 ^I.IE?
A 35/\35
_5.4E6
n.ORO
1 i i i i i~T i i i i i i i i i I ' i 1 I 1 I i r i i | i i i i i ['"•- -
35:24 35:36 35:48 36:00 36:12 36:24 Time
,F)
100% 35X22 ,-2.8E7
so:
35:1
A
/
34:00 34!l2 34:24 34:36 34:48 35:00 35:12
403.8530 S:5 F:3 BSUB(128, 15, -3 .0) PKD(3, 5,2, 0 .10%, 9392 . 0, 1.00%, F,
A 35A35
VJ V-_
_1.4E7
O.OEO
35:24 35-136 35:48 36l6o 36:12 36:24 Time
F)
100% 35X22
•
so:
35:1
A
A
/
34:00 34:12 34:24 34i36 34:48 35:00 35:12
380.9760 S:5 F:3 SMO(1,3) PKD(3 , 3, 3, 100 . 00%, 0 .0, 1 . 00%,F,F)
100% ->A.n* -1/l.n 14.10 3A-1B 34:50 35:07
50_
0
u-"i — i — i — 1 — i — i i i — i—i — i — i — i — i — i — 1 — r - i • i i i 1 i i i i i 1 i i i i i 1 i i i i i , i i ••
•,-,34:00 34:12 34:24 34:36 34:48 35:00 35:12
9\ 35:35
V Av
^-v ^-—
2.. IE/
_1.1E7
.O.OEO
35124 35l36 35J48 36:00 36:12 36:24 Time
35,26 35:46 Ifi.flfi 36:17 4.3E8
.2.1E8
.0 . OEO
35l24 35:36 35:48 36:00 36!l2 36 24 Time
-------
File:A26SEP98M #1-217 Acq:26-SfiP-1998 19:57:04 <3C EI+ Voltage SIR Autospec-UltimaE
Sample#5 Text:1613-CS3 Exp:EXP_M23_DB5_OVATION
355.8546 S:5 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,5516.0,1.00%,F,F)
100%
so:
33:13
_2.3E7
11.1E7
10.0EO
31:00 31:12 3lT24 31:36' ' '31:48 32:00 32:12 32:24 32^36 32:48 33!6o' ' '33:12 ' '33:24' ' 3 3:3 V""~ 3 3T48 Time
357.8517 S:5 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,932.0,1.00%,F,F)
100%.
50J
33:13
^1.4E7
_7.0E6
.O.OEO
31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24' ' 33:36 ' 33:48 Time
367.8949 S:5 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,10668.0,1.00%,F,F)
100%.
so:
33:12
3.6ET
31:00 31«12 31:24 31:36 31:48.. 32:00 32:12 32:24 32'36 32:48 33:00 33:12 33124
•36 33:48
369.8919 S»5 F:2 BSUB{128,15 -3.0) PKD(3,3,2,0.10%,2456.0,1.00%,! F)
100& ,
50J
o:
33:12
-2.3E7
L1.2E7
O.OEO
31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32 36 32:48 33:00 33sl2 33:24 31:36 ' 33:48 Time
366.9792 S.-5 F:2 SMO(1,3) PKD(3, 3, 3,100.00%, 0.0,1.00%,F,F)
100%. 31;46 33:03. . .13 '1 32^35 32-43 32; 52..
50:
, •)&.
IT
1 SRfl
-7.5E7
O.OEO
31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:6o' ' '33:12 33:24 33-36 33:48 Time
*
-------
Pile:A26SEP9HM *l-488 Acq:26-SEP-1998
SampleiS Text:1613-CS3
319.8965 S:5
1001
50:
o:
321.8936 S:5
100%
50^
0_
331.9368 S:5
100%
_
soj
ol
333.9339 S:5
100%
50:
0:
327.8847 S:5
100%
50:
o-
316.9824 S:5
100% 24-25
50:
o:
/*<"" "1 r~
X'
BSUB(128,15,-3.0) PKD(3,3
25 !00 ' 26 loo'
BSUB(128,15,-3.0) PKD{3,3
i i I i 1 1 i i I r
25:00 26:00
BSUB(128,15,-3.0) PKD(3,3
. 25 1 00 ' ' 26 loo'
BSUB(128,15,-3.0) PKD(3,3
25loO 26:00
BSUB(128,15,-3.0) PKD(3,3
— i r— | 1 1 1 1 1 1 r
25:00 26:00
19:57:04 GC 21+
Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
,2, 0.10%, 4584.0,
27:00
,2, 0.10%, 2536.0,
27:00
,2, 0.10%, 14548.0
p i 1 1 1 1-
27:00
,2, 0.10%, 7704.0,
27IOO
,2, 0.10%, 19640.0
27:00
1.00%,F,F)
29:26
A
j \^_
_2
.1
0
28:00 29:00 3o!oO
1.00%,F,F)
29:26
A
y V_
2
;1
'• n
28:00 29:00 30:00
,1»00%,F,F)
29:07 2
A 29:24
11 A
A
/Uv_
_l
0
28:00 29:00 30:00
1.00%,F,F)
29:07
A A
y vy V
3
-1
•o
28IOO 29100 30!00
,1.00%,F,F)
29:26
A
y v_
4
_2
0
i i i i i i i i i i i i r i ^^ i i i i i i ' i 1 —
28:00 29:00 30:00
.2E6
.1E6
.OEO
Time
. 8E6
.4E6
.OEO
Time
.4E7
.2E7
.OEO
Time
.OE7
.5E7
.OEO
Time
.6E6
.3E6
.OEO
Time
SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
^4:51 25:3T
i r— — i i i i i i | r-
25:00 26:00
26-^e; 26-58
_ _, , | | | p_
27:00
27-^2 28:01 23:22 2fJ:54_2<3 : l"j 29-58 30:30 1
':6
0
28:00 29:00 30loO
.4E8
,8E7
.OEO
Time
-------
OPUSquan 28-SEP-1998
Page 6
41 Tot Total Penta-Furans 0.00
42 Tot Total Penta-Dioxins 0.00
43 Tot Total Hexa-Furans 0.00
44 Tot Total Hexa-Dioxins 0.00
45 Tot Total Hepta-Furans 0.00
46 Tot Total Hepta-Dioxins 0.00
47 DPE HxCDPE 1.00
48 DPE HpCDPE 1.00
49 DPE OCDPE 1.00
50 DPE NCDPE 1.00
51 DPE DCDPE 1.00
52 LMC QC CHK ION (Tetra) 1.00
53 LMC QC CHK ION (Penta) 1.00
54 LMC QC CHK ION (Hexa) 1.00
55 LMC QC CHK ION (Hepta) 1.00
56 LMC QC CHK ION (Octa) 1.00
n
n
n
n
n
n
,04
.41
.62
0.81
1.10
0.98
NotF*
NotF*
NotF*
NotF*
NotF*
NotF*
NotF*
NotF*
NotF*
NotF*
y
y
y
y
y
y
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
-------
OPUSquan 28-SEP-1998
Page 5
tt
Page 3 of 5
Run #3 Filename a26sep98m S: 5 I: 1 Acquired: 26-SEP-98 19:57:04 Processed: 27-SEP-98 09:50:53
Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092» Results: Version: V3.6 31-JUL-1998 10:51:59
Sample text: 1613-CS3 Comments:
Typ
Name
Amount
Resp
RA
RT
RF
RRF
Modified?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS .
CS
CS
CS
CS
CS
ss
ss
ss
ss
ss
Tot
Tot
2,3,7,8-TCDD
1,2,3,7,8-PeCDD .
1.2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6", 7, 8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
13C-2,3,7,8-TCDD
13C-l,2,3,7,8-PeCDD
13C-1 , 2,3,6,7, 8-HxCDD
13C-l,2,3,4,6,7,8-HpCDD
13C-OCDD
13C-2,3,7,8-TCDF
13C-l,2,3,7,8-PeCDF
13C-l,2,3,6,7,8-HxCDF
13C-l,2,3,4,6,7,8-HpCDF
13C-1,2,3,4-TCDD
13C-l,2,3,7,8,9-HxCDD
37Cl-2,3,7,8-TCDD
13C-2,3,4,7,8-PeCDF
13C-1 , 2,3,4,7, 8-HxCDD
13C-1 , 2,3,4,7, 8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
37Cl-2,3,7,8-TCDD
13C-2,3,4,7,8-PeCDF
13C-1 , 2 , 3 , 4 , 7 , 8-HxCDD
13C-1 ,2,3,4,7, 8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
Total Tetra-Furans
Total Tetra-Dioxins
10.00
50.00
50.00
50.00
50.00
50.00
100.00
10.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
100.00
100.00
100.00
100.00
100.00
200.00
100.00
100.00
100.00
100.00
100.00
.100.00
10.00
100.00
100.00
100.00
100.00
10.00
100.00
100.00
100.00
100.00
0.00
0.00
2.
1.
5.
9.
8.
3.
3.
4.
1.
1.
8.
1.
1.
8.
7.
4.
4.
2.
1.
1.
7.
6.
3.
3.
1.
1.
2.
1.
2.
3.
8.
2.
6.
2.
3.
8.
2.
6.
-
"
85e+07
03e+08
25e+07
17e+07
19e+07
88e+07
49e+07
lOe+07
50e+08
72e+08
89e+07
66e+08
23e+08
60e+07
37e+07
92e+07
42e+07
58e+08
45e+08
86e+08
90e+07
62e+07
81e+08
09e+08
43e+08
12e+08
60e+08
64e+08
52e+07
44e+08
57e+07
91e+08
97e+07
52e+07
44e+08
57e+07
91e+08
97e+07
0.78 y
1.59 y
1.25 y
1.28 y
1.30 y
0.98 y
0.88 y
0.82 y
1.54 y
1.52 y
1.22 y
1.22 y
1.12 y
1.18 y
1.03 y
1.13 y
0.84 y
0.81 y
1.58 y
1.29 y
1.10 y
0.89 y
0.80 y
1.58 y
0.52 y
0.47 y
0.80 y
1.28 y
1.58 y
1.26 y
0.53 y
0.44 y
1.58 y
1.26 y
0.53 y
0.44 y
' ~ n
- n
29:26
33:13
35:19
35:22
35:35
37:48
40:44
28:24
32:34
33:00
34:47
34:51
35:14
35:45
36:59
38:10
40:53
29:24
33:12
35:22
37:47
40:43
28:23
32:34
34:46
36:58
29:07
35:35
29:26
32:59
35:18
34:50
38:10
29:26
32:59
35:18
34:50
38:10
-
"
1
1
0
0
0
0
1
1
0
1
1
2
1
1
1
0
1
0
0
1
0
0
1
1
0
0
2.60e+06
1.64e+06
0
1
0
1
0
0
1
0
2
0
1
1
.10
.41
.56
.99
.88
.98
.05
.07
.97
.11
.24
.33
.72
.20
.32
.88
.34
.99
.56
.14
.48
.20
.47
.19
.87
.68
_
-
.97
.32
.52
.78
.43
.98
.11
.46
.04
.62
.07
.10
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
n
n
y
y
y
y
y
y
y
y
y
y
y
y
n
n
n as
1
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
-------
Section 4
Svsteni PerfoKBianc
Section 4-4
Documentation for the Analyis
Polychlorinated Dibenzo-/>-Dioxins & Dibenzofurans
-------
OPUSquan ll-FEB-1998 Page 1
Page 1 of 1
Run: 07FEB98 Analyte: M23_CONF Cal: 225-07feb Results: Version: V3.5 17-APR-1997 11:14:34
07feb98d S4 07feb98d S5 07feb98d S6 07feb98d S7 07feb98d S8
Name Mean RRF S. D. %RSD RRF#1 SD RRF#2 SD RRF*3 SD RRF*4 SD RRF#5 SD
2,3,7,8-TCDF 0.9472*^" 0.033 3.49% 1.00 1.5 0.91-1.3 0.94-0.4 0.95 0.0 0.95 0.1
13C-2,3,7,8-TCDF - - - % -- -- -- -- --
HxCDPE - - - % -- -- -- -- --
QC CHK ION (Tetra) - - -% -- -- -- -- --
foi
-------
I
m.
OPUSquan 16-SEP-1998
Page 1
Page 1 of 1
Run: 14sep-crv Analyte: m8290 Cal:
Name Mean RRF S. D.
Results:
Version: V3.5 17-APR-1997 11:14:34
%RSD
14sep98m S3 14sep98m S4 14sep98m S5 14sep98m S6 14sep98m S7
RRFll SD RRFI2 SD RRF13 SD RRF#4 SD RRFI5 SD
?
{£>(-'
^i()l \
V " ." )
/cy
(/
\^^
^?c
/ *7 ^ /
*• !rS
— N
H
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
13C-2,3,7,d-TCDD
13C-l,2,3,7,8-PeCDD
13C-l,2,3,6,7,8-HxCDD
13C-l,2,3,4,6,7,8-HpCDD
I3C-OCDD
' 13C-2,3,7,8-TCDF
13C-l,2,3,7,8-PeCDF
13C-l,2,3,4,6,7,8-H_CDr
\ t
) 130-1, 2,3,4-'; COD
/ 13C-l,2.3,7,8,9-HxCDD
/ . ' ' , '
»/')/ 37Cl-2,3,7,8-TCDD
&.' / 13C-2,3,4,7,8-PeCDF
-// 13C-l,2,3,4,7.8-HxCDD
/ 13C-l,2,3,4,7,8-HxCDF
[ 13C-l,2,3,4,7,8.9-HpCDP
37Cl-2,3,7,8-TCDD
, / 13C-2,3,4,7,8-PeCDF
/ 13C-l,2,3,4,7,8-HxCDD
/ 13C-l,2,3,4,7,8-HxCbF
1301,2,3,4,7,8,9-HpCDF
''•
Total Tetra-Furans
Total Tetra-Dioxins
Total Penta-Furans
1.0257
1.1457
0.8199
0.9128
0.8982
0.9131
1.0044
0.9992
0.8955
0.9204
0.9410
1.1148
1.0006
0.8709
1.3737
1.1710
1.0873
1.0598
0.6999
1.0514
0.8753
0.7701
1.3145
1.1002
'1.2071
0.7878
«,
»'* "
1.0350
1.0782
0.7931
0.9989
0.6859
0.9764
0.9797
3.7552
D.8281
0.8707
0.9992
1.0257
0.9080
0.030
0.026
0.038
0.059
0.042
0.008
0.015
0.013
0.013
0.029
0.022
0.042
0.043
0.026
0.012 ;
0.013
O."?0 !
0.030
0.054
0.030
0.017
0.038
0.018
0.062
0.034
0.017
1
r
t i
0.041
0.0*6
0.042
0,035
0,015
0.01!
0.00?
0.054
0.038
0.010
0.013
0.030
0.016
2.96 %
2.26 %
4.66 %
6.50 %
4.65 %
0.87 %
1.53 %
1.33 %
1.43 %
3.13 %
2.37 %
3.72 %
4.34 %
3.03 %
0.86 %
1.15 %
1.85 %
2.86 %
7.67 %
2.83 %
1.98 %
4.93 %
1.40 %
5.65 %
2.ft4 %
2.31 %
,
/ . ( ' *
4.05 %
6.30 %
5.29 %
3.50 %
2.21 %
1.54 %
u.90 %
7.15 %
4'. 53 %
1.12 %
1.33 %
2.96 %
1.72 %
1.08 1.7
1.15 0.3
0.81 -0.2
0.87 -0.7
0.85 -1.1
0.91 -0.5
1.02 1.1
1.01 1.1
0.87 -1.6
0.93 0.4
0.95 0.4
1.14 0.7
1.06 1.4
0.87 0.1
1.37 -0.2
1.16 -0.8
1.06 -1.5
1.04 -0.6
0.66 -0.7
1.04 -0.2
0.87 -0.5
0.74 -0.9
1.31 -0 1
1.06 -0 >
1.17 -1.5
ft.77 -0 ")
** * >
; /_' ~
f « ~
1.01 -0 '3
1.03 -0 3
0.16 -C J
0.98 -0 7
0.66 -1.4
0.97 -0.5
0.97 -1.3
0.72 -0.6
0.83 0.1
0.86 -1.1
1.01 1..1.
" .1.08 1.7
0.90 -0,.3
1.02
1.16
0.80
1.02
0.96
0.91
1.01
0.98
0.89
0.93
0.91
1.12
0.98
0.83
1.37
1.16
1.08
1.04
0.65
1.00
0.87
0.76
1.30
1.06
1.26
0.79
-
-
0.99
1.03
0.84
0.98
0.69
0.95
«.98
0.84
0.78
0.87
0.98
1.02
0.91
-0.3
0.7
-0.6
1.7
1.5
-0.9
0.3
-1.1
0.0
0.2
-1.3
0.2
-0.5
-1.5
-0.5
-0.8
-0.5
-0.8
-0.8
-1.6
-0.3
-0.4
-1.0
-0.7
1.4
0.0
-
—
-1.1
-0.7
1.2
-0.6
0.1
-1.5
-0.4
1.5
-1.4
0.1
-1.1
-0.3
0.2
1.01 -0.6
1.16 0.5
0.84 0.4
0.88 -0.6
0.91 0.2
0.91 -0.8
1.01 0.6
1.00 -0.3
0.90 0.4
0.93 0.4
0.97 1.1
1.16 1.0
1.02 0.5
0.89 0.7
1.39 1.7
1.19 1.4
3 09 0.3
1 :5 -0.4
0 _3 -0.4
1 06 0.2
0.87 -0.1
0.75 -0.5
1.30 -0.7
1.08 -0.4
1.18 -0.9
0.77 -1.0
u
*?• _ «.
''• ,"• *
I.,b3 -O.i
i.bs -o.4
0.16 -0.3
1 . 00 0.1
0.68 -0.2
0.99 0.6
0.98 -0.3
0.7,4 -0.3
0.85. 0.6
0.-89 1.6
1.00 -0.3
1.01 -0.6
0.92 0.5
1.00 -0.8
1.15 0.3
0.78 -1.1
0.91 -0.1
0.87 -0.6
0.92 1.3
0.99 -0.6
0.99 -0.7
0.91 1.1
0.94 0.7
0.95 0.6
1.10 -0.4
0.98 -0.4
0.86 -0.4
1.36 -1.0
1.16 -0.6
1.11 1.0
1.06 0.0
0.71 0.2
1.08 0.9
0.86 -0.8
0.77 0.0
1.32 0.3
1.10 0.0
1.22 0.3
0.80 0.5 ',
- -
—
1.04 0.2
1.09 0.2
8.76 -0.9
0.98 -0.5
0.69 0.2
0,98 0.5
0.99 1.2
0.70 -1.0
0.81 -0.6
0.86 -0.6
0.99 -0.7
1.00 -0.8
0.93 1.1
1.02
1.10
0.88
0.89
0.90
0.92
0.98
1.01
0.90
0.87
0.92
1.05
0.95
0.90
1.37
1.18
1.10
1.11
0.79
1.07
0.91
0.83
1.34
I/''*
1.
0.
1.
1.
0.-3
1.06
0.71
0.99
0.99
0.7fl
0.8f,
0.87";
t
1.01'.
1.02
0.88
-0.1
-1.8
1.5
-0.4
0.0
0.8
-1.4
1.0
0.2
-1.8
-0.7
-1.5
-1.1
1.0
0.0
0.8
0.7
1.7
1.6
0.8
1.7
1.7
1.6
1.7
0.1
1.4
—
1.5
1.6
1.0
1.7
1.4
O.cT 1'
0.8.
8.4;
> • 2
'•4.1
1.0
-0.1
-1.5
-------
Section 4
Sstem Perfonmanc
Section 4-3
Initial Calibrations
(HP-5MS & DB-225 Columns)
Documentation for the Analysis
of
Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans
o
00
-------
me:A'29S8P9BM #1-2677 Acq:29-SEP-l998 16:13:59 GC El* Voltage SIR Autospec-UltimaE
Sample#l Text:DB-225 Retchk Exp:M23_DB225
303.9016,315.9419
lOOi 2.7; 53
: 27:30
95:
90:
85:
80:
75:
70:
65:
60J
55:
50:
45:
40:
35:
30:
25:
20:
15:
10:
5:
0:L-=--.«
[-r -r -T-T-I [ I I I I I I I I I I I I I I I I I I I ' ! I I I I I—I I I "I I I I 'I I I I I I I I—I r I—I I I I 'I I I I I •[ I I I I r I—; I I I''
2g,i24 26:36 26:48 27:00 27:12 27:24 27:36 27:48 28:00 28:12 28:24 28:36 28:48 29:0*0 29:12
Time
-------
Pile: A26SEt>98M Acq: 26-SEP-1998 16:46:46—Exp: EXP_M23_DB5_OVAtl6ti Voltage SIR EI+ GC Autospec-UltimaE
Sample #1 Text: DB-5 Retchk ALS #1
319.8965
lOOi 29;36
95:
90:
851
80:
75:
70:
65:
60:
55:
50:
45:
40:
35:
30:
25:
20:
15:
10:
Paradigm"
5:
29:24
29:15
_1.7E7
.1.6E7
_1.5E7
_1.4E7
_1.3E7
_1.3E7
L1.2E7
Ll.1E7
i.1. OE7
.9.2E6
_8.4E6
_7.5E6
-6.7E6
_5.9E6
_5.0E6
.4.2E6
_3.3E6
.2.5E6
_1.7E6
_8.4E5
.O.OEO
I I I I l I I l I I l I i I I I l I I I l 1 I I I i ii i—i—I i i—i—i i I i—l—i i i; I i i i—l i I i—i—i i i | i r-i—i i | i i i i l | | i i i i i | |
•42 28:48 28:54 29:00 29:06 29:12 29:18 29:24 29:30 29:36 29:42 29:48 29;54 30:00 30:06 Time
-------
File
Samp
303.
100S
80J
60 J
40J
20J
OJ
F:2
1001
80J
60J
40J
20J
OJ
3
: A26SEP98M Acg: 26-SEP-1998 16:-
le #1 Text: DB-5 Retchk ALS #1
9016,319.8965
26
24:32 X
A1
/
JFT75 — Exp: E*P_M23_D65_OVATION Volt
09 ^ 28:
1
V /
i i • i b i i i 1 1 i 1 — i — i * i i i i i | i ' '
25:00 26:00 27:00 28:00
339.8597,355.8546
31:04 , gf* 32/i°8r
A^/ ^fi ^ *^ * / 1
I ^^tC^ ff mr \ \
ss' t^r \9i \ 1
; v
1 f i i i V i i i i i i — n — i — i — i — i — i i i — rill — r"!— r- T i T l I'l i i y l l i i i 1 i i i C~i" I i i i T i
1:00 3l!l2 31124 31:36 31:48 32:00 32:12 32:24 32:36 32
F:3 373.8207,389.8156
lOOi 34;07y 34/28 ;,
80^
60J
40J
20J
OJ
F:4
100%
80J
60J
40J
20 1
OJ
r r
: Jl /I
34:00 34:12 34:24 34:36 34:48 35.:00 35.:12 35:24
407. 763.8,423. 7767
3'/K T'f • :--;".« v
/i rl\ ' -*.w
' ' ' '"A
'• •' \ •" \ ';/\
• /L /I ' yv
35{36 36.U8 37l»0 37 12 37:24 37:36 37:48'- 38:00
319.8965,331.9368 •-'
100% ; r 26
80J
60J
40 J
20J
Of
•i
«. * j
09
EjMi r4— l 1 1 i l 1 l l "' i T^— l 1 1 i-M1"i 11 T i • i i | i i
~N 25:00 26:00 27:00 28:00
age SIR EI+ GC Autospec-UltimaE Par
23 _ 29:36
Ml
j]\
ad
6--
4
V.
29! 00 30-!oO
ff
/R
igm
^
-
Time
r
-
-
-
48 33l6o 33ll2 33124 33136 33 48 Time
-- r
35^33 35:48
A A
A A
/V /V
35:36 35:48 36:00 -»6:12 36
v I
38:10
r\ • •
A
/v , •
38:12 38:24 38136 38:48 39
-
-
24 Time
-
-
-
00 Time
29:23
A 11 4/l ;
All ;-
' //Ul 2 I
i
;
-
-
29:00 30:00 * Time
/
ft
-------
EMTIC TM-002
NSPS TEST HBTHOD
Page 13
T.
for metric.
Absolute stack temperature, °K (°R)
= 273 + t.
Eg. 2-7
460 + t.
for English.
v.
Ap •
3,600.
18.0 .
Eq. 2-8
Standard absolute temperature, 293*K (528*R).
Average stack gas velocity, tn/sec (ft/sec).
Velocity head of stack gas, mm H20 (in. H20).
Conversion factor, sec/hr.
Molecular weight of water, g/g-mole (Ib/lb-mole).
5.2 Average Stack Gas Velocity.
KG
s|avg)
Eg. 2-9
5.3 Average Stack Gas Dry Volumetric Flow Rate.
Qsd = 3,600(l-Bw8)vaA
Eg. 2-10
BIBLIOGRAPHY
1. Mark, L.S. Mechanical Engineers' Handbook. New York. McGraw-Hill Book
Co., Inc. 1951.
2. Perry. J.R. Chemical Engineers' Handbook. New York. McGraw-Hill Book
-------
EMTIC TM-002 NSPS TEST METHOD f _ . Page 14
Co., Inc. 1960.
3. Shigehara, R.T., W.F. Todd, and W.S. Smith. Significance of Errors in
Stack Sampling Measurements. U.S. Environmental Protection Agency, •'
Research Triangle Park, N.C. (Presented at the A*"»"*l Meeting of the Air
Pollution Control Association, St. Louis,*. : :.i .3, 1970) .":'•*% "*'
4. Standard Method for Sampling Stacks for Particulate Matter. In: 1971 Book
of ASTM Standards, Part 23. Philadelphia, PA. 1971. ASTM Designation
D 2928-71.
5. Vennard, J.K. Elementary Fluid Mechanics. Hew York. John Wiley and Sons,
Inc. 1947.
6. Fluid Meters - Their Theory and Application. ,;• , American Society of
Mechanical Engineers, New York, N.Y. 1959.
7. ' ASHRAE Handbook of Fundamentals. 1972. p. 208.
8. Annual Book of ASTM Standards, Part 26. 1974. p. 648.
9. Vollaro, R.F. Guidelines for Type S Pitot Tube Calibration. U.S.
Environmental Protection Agency, Research Triangle park. N.C. (Presented,
at 1st Annual Meeting, Source JByaJ.ttaea.on »o<^u=uy_ Dayton, OH,
September 18, 1975.)
10. Vollaro, R.F. A Type S Pitot Tube Calibration $£udy. U.S. Environmental
Protection Agency, Emission Measurement Branch.! Be ncinrrh Triangle Park,
N.C. JUly 1974..
11. Vollaro, R.F. The Effects of Impact Opening Misalignment en the Value of
the Type S Pitot Tube Coefficient. U.S. Environmental, Protection Agency,
Emission Measurement Branch, Research Triangle Park^UC. October 1976.
12. Vollaro, R.F. Establishment of a Baseline Coefficient Value for Properly
Constructed Type S Pitot Tubes. U.S. Environmental Protection Agency,
Emission Measurement Branch, Research Triangle Park, NC. November 1976.
13. Vollaro, R.F. An Evaluation of Single-Velocity OH brat ion Technique as a
Means of Determining Type S Pitot Tube Coefficients.. U.S. Environmental
Protection Agency, Emission Measurement Branc"- Research Triangle Park, NC.
August 1975.
14. Vollaro, R.F. The Use of Type S Pitot Tubes for the Measurement of Low
Velocities. U.S. Environmental Protection Agency, Emission Measurement
Branch, Research Triangle Park, NC. November 1976.
15. Smith, Marvin L. Velocity Calibration of EPA Type Source Sampling Probe.
United Technologies Corporation, Pratt and Whitney Aircraft Division, Bast
Hartford, CT. 1975.
-------
EMTIC TM-002 HSPS TEST METHOD Page 15
16. Vollaro, R.P. Recommended Procedure for Sample Traverses in Ducts Smaller
than 12 Inches in Diameter. U.S. Environmental Protection Agency, Emission
Measurement Branch, Research Triangle Park, NC. November 1976.
17. Ower, E. and R.C. Pankhurst. The Measurement of Air Flow, 4th Ed. London,
Pergamon Press. 1966.
18. Vollaro, R.F. A Survey of Commercially Available Instrumentation for the
Measurement of Low-Range Gas Velocities. U.S. Environmental Protection
Agency, Emission Measurement Branch, Research Triangle Park, NC.
November 1976. (Unpublished Paper).
19. Gnyp, A.W., C.C. St. Pierre, D.S. Smith, D. Mozzon, and J. Steiner. An
Experimental Investigation of the Effect of Pitot Tube-Sampling Probe
Configurations on the Magnitude of the S Type Pitot Tube Coefficient for
Commercially Available Source Sampling Probes. Prepared by the University
of Windsor for the Ministry of the Environment, Toronto, Canada.
February 1975.
-------
EMTIC TM-002
HSPS TEST METHOD
Page
1.M-U4M*
LCL
| TjMo
v"
TypcSPMTub*
FIM)
Spwtag
Figure 2-1. Type S pitot tube manometer assembly.
-------
EMT1C TM-002
NSPS TBST METHOD
Page 17
Tn
TubcAxh
TutaAxfc
Pan
B-SktoPtm
(b)
XVB
(e)
(b)k»yir.l»p««
«4*ktoriM;bo*
kofeiWM. ••
&Mmyk*u
•tueMMimy
Figure 2-2. Properly constructed Type S pitot tube.
-------
EMTIC TM-002
NSPS TEST METHOD
•. ' ' »
Page 18
if
k~
Figure 2-3. Types of face-opening misalignment that can result from field use
or improper construction of Type S pitot tubes. . T>ese will not affect the
baseline value of Cp(s) so long as a1 and a2 siC°, 8* ->nA. PJ s5", z «0.32 cm (1/8
in.) and w £0.08 cm (1/32 in.) (citation 11 in Bibliography).
-------
EMTIC TM-002
HSPS TEST METHOD
Page 19
Figure 2-4. Standard pitot tube design specifications.
-------
EMTIC TM-002 NSPS TEST METHOD Page 20
-------
EMTIC TM-002
HSPS TEST METHOD
Page 21
PLANT
DATE
DIMENSIONS,
(in. Hg) —
OPERATORS _
RUN NO.
(in.) __
m tin.) BAROMETRIC PRESS.,
.CROSS SECTIONAL AREA, a? (ft3)
.STACK DIA. OR
mm Hg
PITOT TUBE I.D. NO.
AVG. COEFFICIENT,
Cp -
LAST DATE CALIBRATED _
SCHEMATIC OF STACK
CROSS SECTION
Traverse
Pt. No.
Vel. Hd., Ap
mm (in.) HaO
Stack Temperature
T.,
•C (°F)
Average
T.,
°K (°R)
P.
mm Hg
(in.Hg)
Up)1/*
-
Figure 2-5. Velocity traverse data.
-------
EMTIC TM-002
NSPS TEST MHTHOP
Page 22
i L pi 4i«,«»««Bik»tetfu«»Bi»»
h «••»*• »•* Wf
A. BotlMnVlnr;*liowlnt«ilnkiMiHMkib*HMCrii
•pwibifl ptoM of flM ptot kibfi staS kv MVif vik of ••OVA Vio
Figure 2-6. Proper pitot tube-sampling nozzle configuration to prevent
aerodynamic interference: button-hook type.nozzle: centers of nozzle and
pitot opening aligned: Dt between 0.48 and 6".95 cm (3/16 and 3/8 in.).
-------
EMTIC 114-002
NSPS TBST METHOD
Page 23
(o,
\mVMm i
I »k*
y
OK
{e,
-»*"•-- '
•W I
Figure 2-7. Proper thermocouple placement to prevent interference: Dt
between 0.48 and 0.95 cm (3/16 and 3/8 in.).
-------
EMTIC TM-002
NSPS TEST METHOD
Page 24
Typ»8PlbtTub»
pin-
Figure 2-8. Minimum pitot-samp^x,-probe separation .Bested to prevent
interference; Dt between 0.48 and 0.95 cm (3/16 and 3/8 in.).
-------
EMTIC TM-002
NSPS TBST METHOD
Page 25
PITOT TUBE IDENTIFICATION NUMBEI
It . DATE: CM.TBBATR15 BY?
RUN NO.
1
2
3
RUN NO.
1
2
3
"A" SIDE CALIBRATION
cm H2O
(in H2O)
cm HjO
(in HjO)
(SIDE A)
=.,.,
"B" SIDE CALIBRATION
cm H,O
(in H,O)
AveracreDeviation =rr
cm H,0
(in H,O)
(SIDE B)
3 _
fa Cp(s) ~Cp(AorB)
= _ »-Mii
Deviation
Cp(., - Cp(A)
Deviation
Cp,., - Cp(B)
«si-R»
-------
EMTIC TM-002 NSPS TEST MBTHOD Page 26
Figure 2-9. Pitot tube calibration data.
-------
EMTIC TM-002
NSPS TEST METHOD
Page 27
n.wi
ID-,*-]
fr=l /
Figure 2-10. Projected-area models for typical pitot tube assemblies.
-------
Appendix G.3
Sampling & Analysis Methods
EPA Method 3 A
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
Method 3A - Determination of Oxygen and Carbon Dioxide Concentrations
1n Emissions from Stationary Sources
(Instrumental Analyzer Procedure)
1. APPLICABILITY AND PRINCIPLE
1.1 Applicability. This method 1s applicable to the determination of oxygen (02) and
carbon dioxide (C02) concentrations 1n emissions from stationary sources only when
specified within the regulations.
1.2 Principle. A sample 1s continuously extracted from the effluent stream: a
portion of the sample stream is conveyed to an instrumental analyzer(s) for
determination of 0* and CQ concentrations). Performance specifications and test
procedures are provided to ensure reliable data.
2. RANGE AND SENSITIVITY
Same as in Method 6C. Sections 2.1 and 2.2. except that the span of the monitoring
system shall be selected such that the average 02 or C02 concentration is not less than
20 percent of the span.
3. DEFINITIONS
3.1 Measurement System. The total equipment required for the determination of the 02
or COj concentration. The measurement system consists of the same major subsystems as
defined in Method 6C, Sections 3.1.1. 3.1.2. and 3.1.3.
3.2 Span. Calibration Gas. Analyzer Calibration Error. Sampling System Bias, Zero
Drift. Calibration Drift. Response Time, and Calibration Curve. Same as in Method 6C.
Sections 3.2 through 3.8. and 3.10.
3.3 Interference Response. The output response of the measurement system to a
component in the sample gas. other than the gas component being measured.
4. MEASUREMENT SYSTEM PERFORMANCE SPECIFICATIONS
Same as in Method 6C. Sections 4.1 through 4.4.
Prepared by Emission Measurement Branch EMTIC TM-003A
Technical Support Division. OAQPS. EPA May 6. 1989
-------
EMTIC TM-003A NSPS TEST METHOD Page 2
5. APPARATUS AND REAGENTS
5.1 Measurement System. Any measurement system for Oj or CQ that meets the
specifications of this method. A schematic of an acceptable measurement system 1s
shown 1n Figure 6C-1 of Method 6C. The essential components of the measurement system
are described below:
5.1.1 Sanple Probe. A leak-free probe of sufficient length to traverse the sample
points.
5.1.2 Sample Line. Tubing to transport the sample gas from the probe to the moisture
removal system. A heated sample line is not required for systems that measure the 02
or C02 concentration on a dry basis, or transport dry gases.
5.1.3 Sample Transport Line. Calibration Valve Assembly. Moisture Reaoval System.
Participate Filter. Sample Pump. Sample Flow Rate Control. Sample Gas Manifold, and
Data Recorder. Same as in Method 6C. Sections 5.1.3 through 5.1.9. and 5.1.11. except
that the requirements to use stainless steel. Teflon, and nonreactlve glass filters do
not apply.
5.1.4 Gas Analyzer. An analyzer to determine continuously the 02 or COz concentration
in the sample gas stream. The analyzer must meet the applicable performance
specifications of Section 4. A means of oaiitq$&Hjr&£ & \ " flow rate and a
device for determining proper sample flow .rate te.g.r precisian jcotaneter, pressure
gauge downstream of all flow controls, etc.) shall be provided- at the analyzer. The
requirements for measuring and controlling the analyzer for. measuring and controlling
the analyzer flow rate are not applicable if data are presented ttet demonstrate the
analyzer is insensitive to flow variations over the'range encountered during the test.
5.2 Calibration Gases. The calibration gases for COj analyzers shall be C02 1n N, or
C02 in air. Alternatively. C(ys02. 02/S02. or (ycOz/SOfe gas.. mixtures in N2 may be used.
Three calibration gases, as specified in Sections. 5.3.1 through 5.3.4 of Method 6C.
shall be used. For 02 monitors that cannot analyze zero gas. a calibration gas
concentration equivalent to less than 10 percent of the span may. be used in place of
zero gas.
6- MEASUREMENT SYSTEM PERFORMANCE TEST PROCEDURES
•i i \lf 7- A;
Perform the following procedures before measurement or €"»i
-------
EMTIC TM-003A NSPS TEST METHOD Page 3
changes are made 1n the Instrumentation that could alter the Interference response
(e.g.. changes 1n the type of gas detector). Conduct the interference response 1n
accordance with Section 5.4 of Method 20.
6.3 Measurement System Preparation. Analyzer Calibration Error, Response Time, and
Sampling System Bias Check. Follow Sections 6.2 through 6.4 of Method 6C.
7. EMISSION TEST PROCEDURE
7.1 Selection of Sampling Site and Sampling Points. Select a measurement site and
sampling points using the same criteria that are applicable to tests performed using
Method 3.
7.2 Sample Collection. Position the sampling probe at the first measurement point.
and begin sampling at the same rate as that used during the response time test.
Maintain constant rate sampling (i.e.. ±10 percent) during the entire run. The
sampling time per run shall be the same as for tests conducted using Method 3 plus
twice the average system response time. For each run. use only those measurements
obtained after twice the response time of the measurement system has elapsed to
determine the average effluent concentration.
7.3 Zero and Calibration Drift Test. Follow Section 7.4 of Method 6C.
8. QUALITY CONTROL PROCEDURES
The following quality control procedures are recommended when the results of this
method are used for an emission rate correction factor, or excess air determination.
The tester should select one of the following options for validating measurement
results:
8.1 If both 02 and CQ are measured using Method 3A. the procedures described in
Section 4.4 of Method 3 should be followed to validate the 02 and CQ measurement
results.
8.2 If only Q2 is measured using Method 3A. measurements of the sample stream2CO
concentration should be obtained at the sample by-pass vent discharge using an Orsat
or Fyrite analyzer, or equivalent. Duplicate samples should be obtained concurrent
with at least one run. Average the duplicate Orsat or Fyrite analysis results for
each run. Use the average C02 values for comparison with the2 0 measurements in
accordance with the procedures described in Section 4.4 of Method 3.
8.3 If only C02 is measured using Method 3A. concurrent measurements of the sample
stream C02 concentration should be obtained using an Orsat or Fyrite analyzer as
described 1n Section 8.2. For each run. differences greater than 0.5 percent between
the Method 3A results and the average of the duplicate Fyrite analysis should be
investigated.
-------
EMTIC TM-003A NSPS TEST METHOD Page 4
9. EMISSION CALCULATION
9.1 For all C02 analyzers, and for 02 analyzers that can be calibrated with zero gas.
follow Section 8 of Method 6C. except express all -"incentrattens as percent, rather
than ppm.
9.2 For Oz analyzers that use a low-level calibration gas 1n place of a zero gas.
calculate the effluent gas concentration using Equation 3A-1.
(C - Q.) + C., Eq. 3A-1
c. - c, -
Where:
CM, - Effluent gas concentration, dry basis, percent.
C., - Actual concentration of the upscale calibration gas. percent.
CM - Actual concentration of the low-level calibration gas. percent.
C. - Average of Initial and final .system calibration bias check
responses for the upscale calibration gas. percent.
C0 - Average of initial and final, system calibration bias check
responses for the low level gas. percent.
C - Average gas concentration indicated by the gas analyzer, dry basis.
percent.
10. BIBLIOGRAPHY
Same as in Bibliography of Method 6C.
-------
Appendix G.4
Sampling & Analysis Methods
EPA Method 23
-------
6560-50
ENVIRONMENTAL PROTECTION AGENCY
40 CFR Part 60
[AD-FRL- ]
STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES
Appendix A , Test Method 23
AGENCY: Environmental Protection Agency (EPA).
ACTION: Proposed Rule.
SUMMARY: This rule amends Method 23, entitled
"Determination of Pblychlorinated Dibenzo-p-Dioxins and
Polychlorinated Dibenzofurans from Stationary Sources, n to
correct existing errors in the method, to eliminate the methylene
chloride rinse of the sampling train, and to clarify the quality
assurance requirements of the method.
DATES: Comments. Comments must be received on or before
(90 days after publication in the FEDERAL
REGISTER].
Public Hearing. if anyone contacts EPA requesting to speak
at a public hearing by (two weeks after
publication in the FEDERAL REGISTER), a public hearing will be
held on : -___ (four weeks after publication in the
FEDERAL REGISTER), beginning at 10:00 a.m. Persons interested in
attending the hearing should call Ms. Lala Cheek at
(919) 541-5545 to verify that a hearing will be held.
Request to Speak at Hearing. Persons wishing to present
-------
oral testimony must contact EPA by (two weeks
after publication in the FEDERAL REGISTER).
ADDRESSES: Comments. Comments should be submitted (in duplicate
if possible) to Public Docket No. A-94-2 at the following
•"*^Vw- , -
address: U. S. Environmental Protection Agency , Air and
Radiation Docket and Information Center, Mail Code: 6102, 401 M
Street, SW, Washington, DC 20460. The Agency requests that a
separate copy also be sent tc Uie contact person listed below?
The docket is located at the above address in Room M-1500
Waterside Mall (ground floor) , and may be inspected from
8:30 a.m. to Noon and 1:00 to 3:00 PM, Monday through Friday.
The proposed regulatory text and oth«^pWBresrii--i... L^ted to this
rulemaking are available for review in the docket tar copies may
be mailed on request from the Ajir Docket by calling 202-260-7548.
A reasonable fee may be charged for copying docket, materials.
Public Hearing. If anyone contactstEPA requesting a public
hearing, it will be held at EPA's Emission Measurement
Laboratory, Research Triangle Park, North-Carolina. Persons
interested in attending the hearing or wi ^Mng to prelsent oaral:-.«»-*
testimony should notify Ms. Lala Cheek (MD-19), U.S.
Environmental Protection Agency, Research Triangle Park, North
Carolina 27711, telephone number (919) 541-5545.
-------
Docket: A Docket, A-94-22, containing materials relevant to
this rulemaking, is available for public inspection and copying
between 8:30 a.m. and Noon and 1:00 and 3:00 p.m., Monday through
Friday, in at EPA's Air Docket'Section (LE-131), Room M-1500
Waterside Mall {ground floor) 401 M Street, S.W., Washington,
D.C. 20460. A reasonable fee may be charged for copying.
FOR FURTHER INFORMATION CONTACT: Gary McAlister, Emission
Measurement Branch (MDri9), Emissions, Monitoring, and Analysis
Division, U.S. Environmental Protection Agency, Research Triangle
Park, North Carolina 27711, telephone (919) 541-1062.
SUPPLEMENTARY INFORMATION:
The proposed regulatory text of the proposed rule is not
included in this Federal Register notice, but is available in
Docket No. A-94-22 or by written or telephone request from the
i
Air Docket (see ADDRESSES). If necessary, a limited number of
copies of the Regulatory Text are available from the EPA contact
persons designated earlier in this notice. This Notice with the
proposed regulatory language is also available on the Technology
Transfer Network (TTN), one of EPA's electronic bulletin boards.
TTN provides information and technology exchange in various areas
of air pollution control. The service is free except for the
cost of the phone call. Dial (919) 541-5742 for up to a 14400
3
-------
bps modem. If more information on TTN is needed, call the HELP
line at (919) 541-5384. v; .-:
I. SUMMARY
Method 23 was promulgated along with the New Source
• * ...-_ .;. ^i£? '•'
Performance Standard for municipal waste combustors (Subpart Ea).
As promulgated, the method contained some errors. This action
would correct those errors and would clarify some of the existing
quality assurance requirement In addition/ th« xnirrent JJ>-v
procedure requires rinsing of the sampling train with.two
separate solvents which must be analyzed separately. Based on
data the Agency has collected since promulgation of Method 23, we
believe that one of these rinse step*fcj«***njfcU- .»..—.-.wing sample ^
fraction can be eliminated. This could save taff much as $2000 per
test run in analytical costs.
II. THE RULEMAKING •«-.,.
This rulemaking does not impose emission measurement
requirements beyond those specified in the current regulations
nor does it change any emission standard. Rather, the rulemaking
would simply amend an existing test ^neth^^ *ssociate*l with-.- <,,.:*•$•
emission measurement requirements in the current regulations that
would apply irrespective of this rulemaking.
III. ADMINISTRATIVE REQUIREMENTS
-------
A. Public
A public hearing will be held, if requested, to discuss the
proposed amendment in accordance with section 307 (d) (5) of the
Clean Air Act. Persons wishing to make oral presentations should
contact EPA at the address given in the ADDRESSES section of this
preamble. Oral presentations will be limited to 15 minutes each.
Any member of the public may file a written statement with EPA
before, during, or within 30 days after the hearing. Written
statements should be addressed to the Air Docket Section address
given in the ADDRESSES section of this preamble.
A verbatim transcript of the hearing and written statements
will be available for public inspection and copying during normal
working hours at EPA's Air Docket Section in Washington, DC (see
ADDRESSES section of this preamble) .
B . Docket
The docket is an organized and complete file of all the
information considered by EPA in the development of this
rulemaking. The docket is a dynamic file, since material is
added throughout the rulemaking development. The docketing
system is intended to allow members of the public and industries
involved to identify and locate documents readily so that they
may effectively participate in the rulemaking process. Along
-------
with the statement of basis and purpose of the proposed and
promulgated test method revisions and EPA responses to
significant comments, the contents of the docket, except for
interagency review materials, will serve as the record in case of
•»•- >-..«•-->--•'."*£' '
judicial review [Section 307(d)(7)(A)].
C. Executive Order 12291 Review
Under Executive Order 12291, EPA is required to judge
whether a regulation is a "mcj^r rule" and, therefore, subject
the requirements of a regulatory impact analysis. This
rulemaking does not impose emission measurement requirements
beyond those specified in the current regulations, nor does it
change any emission standard. The Agency nays aeiLermined that
this regulation would result in none, of the adverse economic
effects set forth in Section 1 of the Order as grounds for
finding the regulation to be a "major rule." The Agency has,
therefore, concluded that this regulation is not a "major rule"
under Executive Order 12291.
D. Regulatory Flexibility Act
The Regulatory Flexibility Act (RFJ\: - * ^98& requires'the
identification of potentially adverse impacts of Federal'
regulations upon small business entities. The KFA specifically
requires the completion of an analysis in those instances where
-------
small business impacts are possible. This ruletnaking does not
impose emission measurement requirements beyond those specified
in the current regulations, nor does it change any emission
standard. Because this rulemaking imposes no adverse economic
impacts, an analysis has not been conducted.
Pursuant to the provision of 5 U.S.C. 605(b), I hereby
certify that the promulgated rule will not have an impact on
small entities because no additional costs will be incurred.
E. Paperwork Reduction Act
This rule does not change any information collection
requirements subject to Office of Management and Budget review
under the Paperwork Reduction Act of 1980, 44 U.S.C. 3501 et seg.
"-* '
P. Statutory Authority
The statutory authority for this proposal is provided by
*••*„•
sections 13.1 and 301 (a) of the Clean Air Act, as amended: 42
U.S.C., 7411 and 7601(a).
LIST OF SUBJECTS
Air pollution control, municipal waste combustors,
polychorinated dibenzo-p-dioxins, sources.
-------
Date The Administrator
It is proposed that 40 CFR Part 60 be amended as follows:
1. The authority citation for Part 60 continues to read as
follows: Authority: Clean Air Act (42 U.S.C. 7401 [et seq.], as
-»*>. ' '".- .-"' '•*'•'*&•"
amended by Pub. L 101-549).
2. Replace test Method 23 of Appendix A, with the
following:
Method 23 - Determination of Polychlorinated Dibenzo-p-dioxins
and Polychlorinated Dibenzofurans from Municipal Waste Combustors
,r
1. APPLICABILITY AND PRINCIPLE
1.1 Applicability. This method i^^gq^iv..^*. .« the -
" * *
determination of emissions of polychlorinated dibenzo-p-dioxins
(PCDD's) and polychlorinated dibenzofurans {PCDF's) from
municipal waste combustors. Calibration standards are selected
• ,'•*'. ''
for regulated emission levels for municipal waste combustors.
1.2 Principle. A sample is withdrawn isojcioetical ly from the
gas stream and collected in the sample probe; on a glass fiber
filter, and on a packed column of adsorlr^nf material. , The sample
cannot be separated into a particle and vapor fraction. The
PCDD's and PCDF's are extracted from the sample/ separated by
high resolution gas chromatography (HRG0H-"and measured ny nign
8
-------
resolution mas£» spectromet ry (HRMS) .
2. APPARATUS
2.1 Sampling. A schematic of the sampling train is shown in
Figure 23-1. Sealing greases shall not be used in assembling the
train. The train is identical to that described in Section 2.1
of Method 5 of this appendix with the following additions:
-------
Figure 23.1 Sampling Train
10
-------
11
-------
2.1.1 Nozzle. The nozzle shall be made of nickel, nickel-
plated stainless steel, quartz, or borosilicate glass.
2.1.2 Sample Transfer Lines. The sample transfer lines, if
needed, shall be heat traced, heavy walled TFE (1/2 in. OD with
1/8 in. wall) with connecting fittings tfo8**- ar-* ftRwaabfce of,*: r•-.*«*»
forming leak-free, vacuum-tight connections without using sealing
greases. The line shall be as short as possible and must be
maintained at i!20°C.
2.1.1 Filter Support. Teflon or Teflon-coated wire.
2.1.2 Condenser. Glass, coil type with compatible fittings.
A schematic diagram is shown in Figure 23-2.
2.1.3 Water Bath. Thermostatically controlledJto maintain the
gas temperature exiting the co^jjenser at «s.20eC (68*F) .
2.1.4 Adsorbent Module. Glass container, to.hold up to 40
grams of resin adsorbent. A schematic diagram.ia shown in Figure :
, i
' '<
23-2. Other physical configurations of.the water-jacketed resin
trap/condenser assembly are acceptable. The connecting fittings
shall form leak-free, vacuum tight seals. A coarse glass frit is
included to retain the adsorbent in the water-jacketed sorbent
module.
2.1.5 Probe Liner. The probe liner shall be made of glass and
a Teflon ferrule or Teflon coated Q-rlng shall be used to. make
the seal at the nozzle end of the probe.
12
-------
2.2 Sample Recovery.
2.2.1 Fitting Caps. Ground glass, Teflon tape, or aluminum
foil (Section 2.2.6) to cap off the sample exposed sections of
the train and sorbent module.
2.2.2 Wash Bottles. Teflon, 500-mL.
13
-------
o
• 20/15
Flue
Gas
Flow
Sorbent Trap
• 20/11
Figure 23.2 Condenser and Adsorbent Trap
14
-------
2.2.3 Probe Liner, Probe Nozzle, and Filter Holder Brushes.
Inert bristle brushes with precleaned stainless steel or Teflon
handles. The probe brush shall have extensions of stainless
steel or Teflon, at least as long as the probe. The brushes
shall be properly sized and shaped to br^*9* «"*• *•>« xtozxle/ p£9be
liner, and transfer line, if used.
2.2.4 Filter Storage Container. Sealed filter holder, wide-
mouth amber glass jar with Teflon-lined cap, glass petri dish, or
Teflon baggie.
2.2.5 Balance. Triple beam.
2.2.6 Aluminum Foil. Heavy duty, hexane.-rinsed (Do not use to
wrap or ship filter samples, because it may react with
particulate matter).
2.2.7 Metal Storage Container. Air tight container to store
silica gel.
2.2.8 Graduated Cylinder. Glass, 250-rnL with 2-mL
graduations.
2.2.9 Glass Sample Storage Container^.. , Amber glass bottles
if
for sample glassware washes, 500- or lOOOr-mL, with leak free
Teflon-lined caps.
2.3 Analysis.
2.3.1 Sample Containers. 125- and 250-mL £>lint glass bottles
with Teflon-lined caps.
16
-------
2.3.2 Test Tubes. Glass.
2.3.3 Soxhlet Extraction Apparatus. Capable of holding 43 x
123 mm extraction thimbles.
2.3.4 Extraction Thimble. Glass, precleaned cellulosic, or
glass fiber-.--
2.3.5 Pasteur Pipettes. For preparing liquid chromatographic
columns.
2.3.6 Reacti-vials.- Amber glass, 2-mL.
2.3.7 Rotary Evaporator. Buchi/Brinkman RF-121 or equivalent.
2.3.8 Kuderna-Danish Concentrator Apparatus.
2.3.9 Nitrogen Evaporative Concentrator. N-Evap Analytical
Evaporator Model III or equivalent.
2.3.10 Separatory Funnels. Glass, 2-liter.
2.3.11 Gas Chromatograph. Consisting of the following
components: *
2.3.11.1 Oven. Capable of maintaining the separation column
at the proper operating temperature ±10°C and performing
programmed increases in temperature at rates of at least
40°C/min.
2.3.11.2 Temperature Gauges. To monitor column oven,
detector, and exhaust temperatures ±1°C.
2.3.11.3 Flow Systems. Gas metering system to measure sample,
fuel, combustion gas, and carrier gas flows.
17
-------
2.3.11.4 Capillary Columns. A fused silica col-cram, "*"
60 x 0.25 mm inside diameter (ID), coated with DB-5 and a fused
silica column, 30 m x 0.25 mm ID coated with DB-225. Other
column systems may be substituted provided that the user is able
to demonstrate, using calibration and pevFo-i-marie« <*eck«, -.tj»fe.i*
the column system is able to meet the specifications of Section
6.1.2.2.
2.3.12 Mass Spectrometer. Capable of. routine operation at a
resolution of 1:10000 with a stability of ±5 ppm.
2.3.13 Data System. Compatible with the mass spectrometer and
capable of monitoring at least five groups of 25 ions.
2.3.14 Analytical Balance. To measure within 0.1 mg.
3. REAGENTS ;
3.1 Sampling.
3.1.1 Filters. Glass fiber filters, without, pxganic binder,
*
exhibiting at least 99.95 percent efficiency_(<0V05 percent
penetration) on 0.3-micron dioctyl phthalate smoke particles.
The filter efficiency test shall be conducted in-accordance with
ASTM Standard Method D 2986-71 (Reapproved; 1978) (incorporated by
reference - see §60.17).
3.1.1.1 Precleaning. All filters shall be cleaned before
their initial use. Place a glass extraction thimble and 1 g of
silica gel and a plug of glass wool into a Soxhlet apparatus,
18
-------
charge the apparatus with toluene, and reflux for a minimum of 3
hours. Remove the toluene and discard it, but retain the silica
gel. Place no more than 50 filters in the thimble onto the
silica gel bed and top with the cleaned glass wool. Charge the
Soxhlet with toluene and reflux for 16 hours. After extraction,
allow the Soxhlet to cool, remove the filters, and dry them under
a clean nitrogen (N2) stream. Store the filters in a glass petri
dishes and seal with Teflon tape.
3.1.2 Adsorbent Resin. Amberlite XAD-2 resin. Thoroughly
cleaned before initial use. Do not reuse resin. If precleaned
XAD-2 resin is purchased from the manufacturer, the cleaning
procedure described in Section 3.1.2.1 is not required.
3.1.2.1 Cleaning; Procedure may be carried out in a giant
Soxhlet extractor. An all-glass filter thimble containing an
extra-coarse frit is used for extraction of XAD-2. The frit is
recessed 10-15 mm above a crenelated ring at the bottom of the
thimble to facilitate drainage. The resin must be carefully
retained in the extractor cup with a glass wool plug and a
stainless steel ring because it floats on methylene chloride.
This process involves sequential extraction in the following
order.
Solvent, Procedure
Water Initial Rinse: Place resin in a beaker,
19
-------
rinse once with HPLC water, and discard
water. Refill beaker with, water, let
stand overnight, and discard water.
Water Extract with HPLC water for 8 hours.
' \"
Methanol Extract with m*,,:, - ^r-i *-» 12 hours. '"*"*"
Methylene Chloride Extract with methylene chloride for 22
hours.
Methylene Chloride Extract ^ith methylene chloride for 22
hours.
3.1.2.2 Drying.
3.1^2.2.1 Drying Column. Pyrex pipe,. 10.2 cm ID by 0.6 m
long, with suitable retainers.
3.1.2.2.2 Procedure. The adsorbent must. be/ dried, with clean
inert gas. Liquid nitrogen from a standard, commercial liquid
nitrogen cylinder has proven to bes a reliabla, source for large
v
volumes of gas free from organic contaminants.. ..Connect the
liquid nitrogen cylinder to the column by a length of cleaned
^r /
copper tubing, 0.95 cm ID, coiled to pass through a heat source.
A convenient heat source is a water-bath heated- from a steam
line. The final nitrogen temperature should only be warm to the
touch and not over 40°C. Continue flowing nitrogen through the
adsorbent until all the residual solvent is removed. The flow
rate should be sufficient to gently agitate the particles, but
20
-------
not so excessive as to cause the particles to fracture.
3.1.2.3 Quality Control Check. The adsorbent must be checked
for residual raethylene chloride (MeCl2) as well as PCDDs and
PCDFs prior to use. The analyst may opt to omit this check for
precleaned XAD-2.
3.1.2.3.1 MeCl, Residue Extraction. Weigh a 1.0 g sample of
dried resin into a small vial, add 3 mL of toluene, cap the vial,
and shake it well.
3.1.2.3.2 MeCl, Residue Analysis. Inject a 2 /tl sample of the
extract into a gas chromatograph operated under the following
conditions:
Column: 6 ft x 1/8 in stainless steel containing 10 percent
OV-1011" on 100/120 Supelcoport.
Carrier Gas: Helium at a rate of 30 mL/min.
Detector: Flame ionization detector operated at a sensitivity
\
of 4 x 10-" A/mV.
Injection Port Temperature: 250°C.
Detector Temperature: 305°C.
Oven Temperature: 30°C for 4 rain; programmed to rise at
40°C/min until it reaches 250°C; return to 30°C after 17
minutes.
Compare the results of the analysis to the results from the
reference solution. Prepare the reference solution by injecting
21
-------
4.0 /il of methylene chloride into 100 mL of toluene. This
corresponds to 100 fig of methylene chloride per g of adsorbent.
The maximum acceptable concentration is 1000 ptg/g of adsorbent.
If the adsorbent exceeds this level, drying must be continued
>,
until the excess methylene chloride is r«ft""ivw* . .*-•-*--**>
3.1.2.3.3 PCDD and PCDF Check. Extract the adsorbent sample
as described in Section 5.1. Analyze the extract as described in
Section 5.3. If any of the PCDDs or PCDFs (tetra through hexa)
are present at concentrations above the target/detection limits
(TDLs) , the adsorbent must be recleaned by .repeating the last
step of the cleaning procedure. The TDLs. fpr the various
' . " • . -"i-
PCDD/PCDF congeners are listed in Table 1.
3.1.2.4 Storage. After cleaning,, the adgorbcyafe ,,iaay be stored
in a wide mouth amber glass container with a. Teflon-lined cap or
placed in glass adsorbent modules tightly sealed with glass
stoppers. It must be used within 4 weeks of cleaning. If
precleaned adsorbent is purchased in sealed containers, it must
be used within 4 weeks after the seal is-"broken.
3.1.3 Glass Wool. Cleaned by sequential immersion in three
•-* •
aliquots of methylene chloride, dried in d j.iu°C oven, and stored
in a methylene chloride-washed glass container with a Teflon-
lined screw cap.
3.1.4 Water. Deionized distilled and stored in a methylene
22
-------
chloride-rinsed glass container with a Teflon-lined screw cap.
3.1.5 Silica Gel. Indicating type, 6 to 16 mesh. If
previously used, dry at 175° C (350°F) for two hours. New silica
gel may be used as received. Alternatively, other types of
desiccants (equivalent or better) may be used, subject to the
approval of the Administrator.
3.1.6 Chromic Acid Cleaning Solution. Dissolve 20 g of sodium
dichromate in 15 mL of water, and then carefully add 400 mL of
concentrated sulfuric acid.
3.1.7 HPLC Water.
3.2 Sample Recovery.
3.2.1 Acetone. Pesticide quality.
3.2.2 Toluene. Pesticide quality.
3.3 Analysis.
3.3.1 Potassium Hydroxide. ACS grade, 2-percent
(weight/volume) in water.
3.3.2 Sodium Sulfate. Granulated, reagent grade. Purify
prior to use by rinsing with methylene chloride and oven drying.
Store the cleaned material in a glass container with a Teflon-
lined screw cap.
3.3.3 Sulfuric Acid. Reagent grade.
3.3.4 Sodium Hydroxide. 1.0 N. Weigh 40 g of sodium hydroxide
into a 1-liter volumetric flask. Dilute to 1 liter with water.
23
-------
3.3.5 Hexane. Pesticide grade.
3.3.6 Methylene Chloride. Pesticide grade.
3.3.7 Benzene. Pesticide grade.
3.3.8 Ethyl Acetate.
3.3.9 Methanol. Pesticide grade. i«^r ,-
3.3.10 Toluene. Pesticide grade.
3.3.11 Nonane. Pesticide grade.
3.3.12 Cyclohexane. Pesticide Grade.
3.3.13 Basic Alumina. Accivity grade 1, 100,^200 mesh. Prior
to use, activate the alumina by heating for 16 hours at 130°C.
Store in a desiccator. Pre-activated alumina may be purchased
;
from a supplier and may be used as received. *
3.3.14 Silica Gel. Bio-Sil A, 100-200 mesh...J5±or to use,
activate the silica gel by heating for at least 30 minutes at
180°C. After cooling, rinse the silica gel sequentially with
methanol and methylene chloride. Heat, the rinsed silica gel at
50°C for 10 minutes, then increase the temperature gradually to
180°C over 25 minutes and maintain.it a£ this temperature for
90 minutes. Cool at room temperature and store in a glass
container with a Teflon-lined screw cap.
3.3.15 Silica Gel Impregnated with Sulfuric Acid. Combine 100
g of silica gel with 44 g of concentrated sulfuric acid in a
screw capped glass bottle and agitate thoroughly. Disperse the
24
-------
solids with a stirring rod until a uniform mixture is obtained.
Store the mixture in a glass container with a Teflon-lined screw
cap.
3.3.16 Silica Gel Impregnated with Sodium Hydroxide. Combine
39 g of 1 N sodium hydroxide with 100 g of silica gel in a screw
capped glass bottle and agitate thoroughly. Disperse solids with
a stirring rod until a uniform mixture is obtained. Store the
mixture in glass container with a Teflon-lined screw cap.
3.3.17 Carbon/Celite. Combine 10.7 g of AX-21 carbon with 124
g of Celite 545 in a 250-mL glass bottle with a Teflon-lined
screw cap. Agitate the mixture thoroughly until a uniform
mixture is obtained. Store in the glass container.
3.3.18 Nitrogen. Ultra high purity.
3.3.19 Hydrogen. Ultra high purity.
3.3.20 Internal Standard Solution. Prepare a stock standard
solution containing the isotopically labelled PCDD's and PCDP's
at the concentrations shown in Table 2 under the heading
"Internal Standards" in 10 tnL of nonane.
3.3.21 Surrogate Standard Solution. Prepare a stock standard
solution containing the isotopically labelled PCDD's and PCDF's
at the concentrations shown in Table 2 under the heading
"Surrogate Standards" in 10 mL of nonane.
3.3.22 Recovery Standard Solution. Prepare a stock standard
25
-------
j
solution containing the isotopically labelled PCDD's and PCDF's
at the concentrations shown in Table 2 under the heading
•*,
"Recovery Standards" in 10 tnL of nonane.
4. PROCEDURE
4.1 Sampling. The complexity of thi^» ««*-v«^ •*- jsuch that, in
order to obtain reliable results, testers and analysts should be
trained and experienced with the procedures.
4.1.1 Pretest Preparation.
4.1.1.1 Cleaning Glassware. All glass components of the train
upstream of and including the adsorbent module, shall be cleaned
as described in Section 3A of the "ManualJqf Analytical Methods
for the Analysis of Pesticides in Human and Environmental
Samples." Special care shall fce devoted to .the, removal of
residual silicons grease sealants on ground; glass connections of
" - ;*
used glassware. Any residue shall be removed, by soaking the
.•--. '">'*••
glassware for several hours in a chromic, ac.icl, cleaning solution
prior to cleaning as described above.
4.1.1.2 Adsorbent Trap. The traps shall be loaded in a clean
area to avoid contamination. They may not be loaded in the
field. Fill a trap with 20 to 40 g of XAb-2. Follow the XAD-2
with glass wool and tightly cap both ends of the trap. Add 40 /il
of the surrogate standard solution {Section 3%3.21) to each trap
for a sample that will be split prior to analysis or 20 /*! of the
26
-------
surrogate standard solution (Section 3.3.21) to each trap for
samples that will not be split for analysis (Section 5.1). After
addition of the surrogate standard solution, the trap must be
used within 14 days. Keep the spiked sorbent under refrigeration
until use.
4.1.1.3 Sampling Train. It is suggested that all components
be maintained according to the procedure described in APTD-0576.
4.1.1.4 Silica Gel. Weigh several 200 to 300 g portions of
silica gel in air tight containers to the nearest 0.5 g. Record
the total weight of the silica gel plus container, on each
container. As an alternative, the silica gel may be weighed
directly in the fifth impinger just prior to sampling.
4.1.1.5 Filter. Check each filter against light for
irregularities and flaws or pinhole leaks. Pack the filters flat
in a clean glass container or Teflon baggie. Do not mark filter
- ( . .. V
with ink or any other contaminating substance.
4.1.2 Preliminary Determinations. Same as Section 4.1.2
Method 5.
4.1.3 Preparation of Sampling Train.
4.1.3.1 During preparation and assembly of the sampling train,
keep all train openings where contamination can enter, sealed
until sampling is about to begin. Wrap sorbent module with
aluminum foil to shield from radiant heat of sun light. (NOTE:
27
-------
Do not use sealant grease in assembling the train.)
4.1.3.2 Place approximately 100 mL of water in the second and
third impingers, leave the first and fourth impingers empty, and
transfer approximately 200 to 300 g of preweighed silica gel from
its container to the fifth impinger.
4.1.3.3 Place the silica gel container in a clean place for
later use in the sample recovery. Alternatively, the weight of
the silica gel plus the fifth impinger may be determined to the
" ' • *5. .
nearest 0.5 g and recorded.
4.1.3.4 Assemble the sampling train as shown in Figure 23-1.
4.1.3.5 Turn on the adsorbent module and condenser coil
recirculating pump and begin monitoring the adsorbent module gas
entry temperature. Ensure proper sorben^ ga«Kentry temperature
before proceeding and before sampling is initiated. It is
extremely important that the XAD-2 adsorbent resin temperature
never exceed 50°C because thermal decomposition and breakthrough
of surrogate standards will occur. During" testing, the XAD-2
temperature must not exceed 20°C for efficient capture, of the
PCDD's and PCDF's.
. j-
4.1.4 Leak-Check Procedure. Same as Mecxiod S, Section 4.1.4.
w
4.1.5 Sampling Train Operation. Same as Method 5, .
Section 4.1.5. <
* *•
4.2 Sample Recovery. Proper cleanup procedure begins as soon
28
-------
as the probe is removed from the stack at the end of the sampling
period. Seal the nozzle end of the sampling probe with Teflon
tape or aluminum foil.
When the probe can be safely handled, wipe off all external
particulate matter near the tip of the probe. Remove the probe
from the train and close off both ends with aluminum foil. Seal
off the inlet to the train with Teflon tape, a ground glass cap,
or aluminum foil.
Transfer the prob,e and impinger assembly to the cleanup area.
This area shall be clean and enclosed so that the chances of
losing or contaminating the sample are minimized. Smoking, which
could contaminate the sample, shall not be allowed in the cleanup
area. Cleanup personnel shall wash their hands prior to sample
recovery.
Inspect the train prior to and during disassembly and note any
abnormal conditions, e.g., broken filters, colored impinger
liquid, etc. Treat the samples as follows:
4.2.1 Container No. 1. Either seal the filter holder or
carefully remove the filter from the filter holder and place it
in its identified container. Do not place the filter in aluminum
foil. Use a pair of cleaned tweezers to handle the filter. If
it is necessary to fold the filter, do so such that the
particulate cake is inside the fold. Carefully transfer to the
29
-------
container any particulate matter and filter fibers which adhere
to the filter holder gasket, by using a dry inert bristle brush
and a sharp-edged blade. Seal.the container with Teflon tape.
4.2.2 Adsorbent Module. Remove the module from the train,
tightly cap both ends, label it, and store it on ice for, ..
w * — "'£"*
•£!"*'*
transport to the laboratory.
4.2.3 Container No. 2. Quantitatively recover material
deposited in the nozzle, probe transfer lines, the front half of
«•-•-
the filter holder, and the cyclone if used, first, by brushing
while rinsing three times with acetone and then, by rinsing the
probe three times with toluene. Collect all the rinses in
Container No. 2.
Rinse the back half of the filter holder three times with
„*>-•**, '' -_---*-
acetone. Rinse the connecting line between the filter and the
condenser three times with acetone. Soak* the connecting line
with three separate portions of toluene for 5 winotes each. If
using a separate condenser and adsorbent trap, rinse the
condenser in the same manner as the connecting line. Collect all
the rinses in Container No. 2 and mark the level of the liquid on
• " **» i- * -
the container. '
4.2.4 Impinger Water. Measure the liquid in the first four
impingers to within 1 mL by using a graduated^ cylinder or by
weighing it to within 0.5 g by,using a bjLyanpe, Record the
30
-------
volume or weight of liquid present. This information is required
to calculate the moisture content of the effluent gas. Discard
the liquid after measuring and recording the volume or weight.
4.2.5 Silica Gel. Note the color of the indicating silica gel
to determine if it has been completely spent and make a mention
of its condition. Transfer the silica gel from the fifth
impinger to its original container and seal.
5. ANALYSIS
All glassware shall be cleaned as described in Section 3A of
the "Manual of Analytical Methods for the Analysis of Pesticides
in Human and Environmental Samples." All samples must be
extracted within 30 days of collection and analyzed within 45
days of extraction.
5.1 Sample Extraction. The analyst may choose to split the
sample extract after the completion of sample extraction
procedures. One half of the sample can then be archived. Sample
preparation procedures are given for using the entire sample and
for splitting the sample.
5.1.1 Extraction System. Place an extraction thimble (Section
2.3.4), 1 g of silica gel, and a plug of glass wool into the
»
Soxhlet apparatus, charge the apparatus with toluene, and reflux
for a minimum of 3 hours. Remove the toluene and discard it, but
retain the silica gel. Remove the extraction thimble from the
31
-------
extraction system and place it in a glass beaker ,tp catch the
solvent rinses.
5.1.2 Container No. 1 (Filter). Transfer the contents'
directly to the glass thimble of the extraction system and
extract them simultaneously with the XAD-? resin. ^
'' , .--•'-><,»• -.
small portions of methylene chloride anu ddu these to the
concentrated solution and concentrate further to near dryness.
This residue contains particulate matter removed in the rinse of
the sampling train probe and nozzle. Add ithe concentrate co cne
32
-------
filter and the XAD-2 resin in the Soxhlet apparatus described in
Section 5.1.1.
5.1.5 Extraction, for samples that are to be split prior to
analysis add 40 /il of the internal standard solution
(Section 3.3.20) to the extraction thimble containing the
contents of the adsorbent cartridge, the contents of
Container No. 1, and the concentrate from Section 5.1.4.
Alternatively, 20 /xl of the internal standard solution
(Section 3.3.20) for samples that are not to be split prior to
analysis. Cover the contents of the extraction thimble with the
cleaned glass wool plug to prevent the XAD-2 resin from floating
into the solvent reservoir of the extractor. Place the thimble
in the extractor, and, add the toluene contained in the beaker to
the solvent reservoir. Add additional toluene to fill the
reservoir approximately 2/3 full. Add Teflon boiling chips and
(
assemble the apparatus. Adjust the heat source to cause the
extractor to cycle three times per hour. Extract the sample for
16 hours. After extraction, allow the Soxhlet to cool. Transfer
the toluene extract and three 10-mL rinses to the rotary
evaporator. Concentrate the extract to approximately 10 mL. If
decided to split the sample, store one half for future use, and
analyze the other half according to the procedures in Sections
5.2 and 5.3. In either case, use a nitrogen evaporative
33
-------
concentrator to reduce the volume of the sample being analyzed,to
near dryness. Dissolve the residue in 5 mL of hexane.
5.2 Sample Cleanup and Practionatlbn. *
The following sample cleanup and fractionation procedures are
recommended. Alternative procedures max**** nfctlised pxpvidiisg,^.*
i ..,.'- -.-
acceptable identification criteria (Section 5.3.2.5) and
quantification criteria (Section 5.3.2.6) are met.
5.2.1 Silica Gel Column. Pack one end of a glass column,
20 mm x 230 mm, with glass wo»-*. Add in sequence, 1 g silicif
gel, 2 g of sodium hydroxide impregnated silica gel, 1 g silica
gel, 4 g of acid-modified silica gel, and 1 g of silica gel.
Wash the column with 30 mL of hexane and discard. Add the sample
~~* 1 '
extract, dissolved in 5 mL of hexane to £he column with two
additional 5-mL rinses. Elute the column with .an additional 90
mL of hexane and retain the entire eluat«v Concentrate this
solution to a volume of about 1 mL using the nitrogen evaporative
concentrator (Section 2.3.9).
5.2.2 Basic Alumina Column. Shorten a 25-mL. disposable
Pasteur pipette to about 16 mL. Pack the lower section with
* ~ •••. v *"*• t-- ».i
glass wool and 12 g of basic alumina, -ireuisier the concentrated"
extract from the silica gel column to the top of the basic
alumina column and elute the column ^sequentially with 120 mL of
0.5 percent methylene chloride in hexane followed by 120 mL of 35
34
-------
percent methyleise chloride in hexane. Discard the first 120 mL
of eluate. Collect the second 120 mL of eluate and concentrate
it to about 0.5 mL using the nitrogen evaporative concentrator.
Transfer this extract with hexane to "13 mL tubes".
5.2.3 AX-21 Carbon/Celite 545 Column. Remove the bottom 0.5
in. from the tip of a 2-mL disposable Pasteur pipette. Insert a
glass fiber filter disk or glass wool plug in the top of the
pipette 2.5 cm from the constriction. Add sufficient
carbon/Celite™ mixture to form a 2 cm column (the 0.6 mL mark
column. Top with a glass wool plug. In some cases AX-21 carbon
fines may wash through the glass wool plug and enter the sample.
This may be prevented by adding a celite plug to the exit end of
the column. Pre-elute the column with 5 mL toluene, followed by 1
mL of a 50:50 methylene chloride/cyclohexane mixture, followed by
5 mL of hexane. Load in sequence, the sample extract in 1 mL
hexane, 2x0.5 mL rinses in hexane, 2 mL of 50 percent methylene
chloride in hexane and 2 mL of 50 percent benzene in ethyl
acetate and discard the eluates. Invert the column and elute in
the reverse direction with 13 mL of toluene. Collect this
eluate. Concentrate the eluate in a nitrogen evaporator at 45°C
to about 1 mL. Transfer the concentrate to a Reacti-vial using a
toluene rinses and concentrate to near dryness (less than 20 /zl)
using a stream of N2. Store extracts at room temperature,
35
-------
shielded from light, until the analysis is performed.
5.3 Analysis. Analyze the sample with a gas chromatograph
coupled to a mass spectrometer (GC/MS) using the instrumental
parameters in Sections 5.3.1 and 5.3.2. Immediately prior to
analysis, add a 20 /zl aliquot of the recoverv standard. scx
from Table 2 to each sample. A 2 /il aliquot of the extract is
injected into the GC. Sample extracts are first analyzed using
the DB-5 capillary column to determine the concentration of each
isomer of PCDD's and PCDF's ( ,«s era -through octa-) . If 2,3,7,8*- :i
TCDF is detected in this analysis, then analyze another aliquot
of the sample in a separate run, using the DB-225 column to
measure the 2,3,7,8 tetra-chloro dibenzofuran isomer. Other
column systems may be used, provided . that it caa^bd .demonstrated
using calibration and performance checks that, the column system
is able to meet the specifications of Section 6.1.2. ' v
5.3.1 Gas Chromatograph Operating Conditions. .The recommended*
conditions are shown in Table 4. *.
•*- - ~"
5.3.2 High Resolution Mass Spectrometer.
f
5.3.2.1 Resolution. 10,000 resolving power or 100 ppm
mass/mass . / . - >
5.3.2.2 lonization Mode. Electron impact.
5.3.2.3 Source Temperature 250°C. • ,
5.3.2.4 Monitoring Mode. Selected ion monitoring. A list of
36
-------
the various ions to be monitored is presented in Table 5.
5.3.12.5 Identification Criteria. The following identification
criteria shall be used for the characterization of
polychlorinated dibenzodioxins and dibenzofurans.
1. The integrated ion-abundance ratio (M/M+2 or M+2/M+4) shall
be within 15 percent of the theoretical value. The acceptable
ion-abundance ratio ranges (±15%) for the identification of
chlorine-containing compounds are given in Table 6. If the ion-
abundance ratio ranges are the outside those in Table 6, the
source has the option of using the results if the concentration
is determined using procedures in Section 9.3 or redoing the
analysis to eliminate the unacceptable ion-abundance ratio.
2. The retention time for the analytes must be within 3
seconds of the corresponding 13C-labeled internal standard or
surrogate standard.
3. The monitored ions, shown in Table 5 for a given analyte,
shall reach their maximum within 2 seconds of each other.
4. The identification of specific isomers that do not have
corresponding 13C-labeled standards is done by comparison of the
relative retention time (RRT) of the analyte to the nearest
internal standard retention time with reference (i.e., within
0.005 RRT units) to the comparable RRT's found in the continuing
calibration.
37
-------
5. The signal to noise ratio for all monitored ions mus&sbe
greater than 2.5.
6. The confirmation of 2, 3, 7, 8-TCDF shall satisfy all ""of
the above identification criteria.
7. Any PCDF coeluting (±2 s) with a p<»ak in tJwe corresponding
PCDPE channel, of intensity 10% or greater compared to the
analyte peak is evidence of a positive^, interference, the source
may opt keep the value to calculate CDD/CDF concentration or
conduct a complete reanalysit* j.a an effort to remove or shift the :
interference. If a reanalysis is conducted, all values from the
reanalyzed sample will be used for CDD/CDF concentration
calculations.
8. Set the mass spectrometer ,lock, channel^ aa specified in
Table 5. Monitor the quality control check channels specified in
.*»'*' * '•' '
Table 5 to verify instrument stability during the analysis.•"••'•If
the signal varies by more than 25 percent from the average
response, results for all isomers at,-corresponding residence time
shall be invalid. The source has the options- of .conducting
«&
additional cleanup procedures on the other portion of the sample
for split samples or diluting the origineu. c*ample or following
other procedures recommended by the Administrator. When a
complete reanalysis is conducted, a^JL concentration calculations
shall be based on the reanalyzed sample.
38
-------
5.3.2.6 Quantification. The peak areas for the two ions
monitored for each analyte are summed to yield the total response
for each analyte. Each,internal standard is used to quantify the
indigenous PCDD's or PCDF's in its homologous series. For
example, the "C12-2,3,7,8-tetra chlorinated dibenzodioxin is used
to calculate the concentrations of all other tetra chlorinated
isomers. Recoveries of the tetra- and penta- internal standards
are calculated using the "C12-1,2,3,4-TCDD. Recoveries of the
hexa- through octa- internal standards are calculated using ^C^-
1,2,3,7,8,9-HxCDD. Recoveries of the surrogate standards are
calculated using the corresponding homolog from the internal
standard. When no peak is detected, the noise level, as measured
by the intensity of, the noise in a clear zone of the
chromatogram, is used to calculate the detection limit. Tables
7, 8, and 9 summarize the quantification relationships for the
/
unlabeled analytes, internal standards and surrogate standards,
respectively.
6. CALIBRATION
Same as Method 5 with the following additions.
6.1 GC/MS -System.
6.1.1 Initial Calibration. Calibrate the GC/MS system using
the set of five standards shown in Table 3. The relative
standard deviation for the mean response factor from each of the
39
-------
unlabeled analytes (Table 3) and of the internal and surrogate
standards shall be less than or equal to the values in Table 6
The signal to noise ratio for the GC signal present in every ''"•"
selected ion current profile shall be greater than or equal to
10. The ion abundance ratios shall be vtt"v * ^ >v"° *~*»ntrol
in Table 5.
6.1.2 Daily Performance Check.
6.1.2.1 Calibration Check. Inject 2 /il of solution Number 3
from Table 3. Calculate the relative response, factor (RRF) for
each compound and compare each RRF to the corresponding mean RRF
obtained during the initial calibration. The analyzer
performance is acceptable if the measured RRF'a for the labeled
and unlabeled compounds for th%..daily*rxm*"ar£ jrifrhin the: limitB
of the mean values shown in Table 10. Jn addition, the ion-
abundance ratios shall be within the allowable, control limits
shown in Table 6.
6.1.2.2 Column Separation Check. Inject 2 /zl of a solution of
a mixture of PCDD's and PCDF's that ^documents resolution between
2,3,7,8-TCDD and other TCDD isomers. Resolution is defined as a
-• i---.'
valley between peaks that is less than 25 percent of the lower of
the two peaks. Identify and record the. retention time windows
. :f
for each homologous series. Perform a similar' resolution check
on the confirmation column to document the resolution between
40
-------
2,3,7,8 TCDF attd other TCDF isomers.
6.2 Lock Channels. Set mass spectrometer lock channels as
specified in Table 5. Monitor the quality control check channels
specified in Table 5 to verify instrument stability during the
analysis.
7. QUALITY CONTROL
7.1 Sampling Train Collection Efficiency Check. Add 40 /il of
the surrogate standards in Table 2 for samples split for analysis
or 20 fj.1 of the surrogate standards for sample not split for
analysis to the adsorbent cartridge of each train before
collecting the field samples.
7.2 Internal Standard Percent Recoveries. A group of nine
carbon-labeled PCDDs and PCDFs representing the tetra- through
octachlorinated homologues, is added to every sample prior to
extraction. The role of the internal standards is to quantify
the native PCDD's and PCDF's present in the sample as well as to
determine the overall method efficiency. Recoveries of the
internal standards shall be between 40 to 130 percent for the
tetra- through hexachlorinated compounds while the range is 25 to
130 percent "for the hepta- and octachlorinated homologues.
7.3 Surrogate Standard Recoveries. The five surrogate
compounds in Table 3 are added to the resin in the adsorbent
sampling cartridge before the sample is collected. The surrogate
41
-------
recoveries are measured relative to the internal standards iend
are a measure of the sampling train collection efficiency. They
are not used to measure the native PCDD's and PCDF's. All
surrogate standard recoveries shall be between 70 and
130 percent. Poor recoveries for all the, «*VVWM.«-.^ jaacf Be an?.
indication of breakthrough in the sampling train. If the
recovery of all standards is below 70 percent, the sampling runs
must be repeated. As an alternative, the sampling runs do not
have to be repeated if the final results are divided by the
fraction of surrogate recovery (on a homolog group basis). Poor
recoveries of isolated surrogate compounds should not be grounds
for rejecting an entire set of samples.
7.4 Toluene QA Rinse. Report the results of ti*a>toluene QA
rinse separately from the total sample catch--._ Do not add it to
the total sample.
7.5 Detection Limits. Calculate the detection limits using
the equation in Section 9.8. If the - detection limits meet the
Target Detection Limits (TDLs) in Table 1, then they are
considered acceptable. If the TDLs are not met, the impact of
the detection limits shall be calculated udxng the procedures in
Section 9.9. If the maximum potential value of the sum of the
summed detection limits is less then'1 SO percent of the emission
standard, the detection limits are acceptable. If the value is
42
-------
greater than 50 'percent of the emission standard, then the
analysis and/or sampling and analysis must be repeated until
acceptable detection limits are obtained.
8. QUALITY ASSURANCE
8.1 Applicability. When the method is used to analyze samples
to demonstrate compliance with a source emission regulation, an
audit sample must be analyzed, subject to availability.
8.2 Audit Procedure. Analyze an audit sample with each set of
compliance samples. The audit sample contains tetra through octa
isomers of PCDD and PCDF. Concurrently analyze the audit sample
and a set of compliance samples in the same manner to evaluate
the technique of the analyst and the standards preparation. The
same analyst, analytical reagents, and analytical system shall be
used both for the compliance samples and the EPA audit sample.
8.3 Audit Sample Availability. Audit samples will be supplied
only to enforcement agencies for compliance tests. Audit samples
may be obtained by writing:
Source Test Audit Coordinator (MD-77B)
Quality Assurance Division
Atmospheric Research and Exposure Assessment Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
or by calling the Source Test Audit Coordinator (STAC) at (919)
43
-------
541-7834. The audit sample request must be made "at least S'0;-days,
prior to the scheduled compliance sample analysis. .
8.4 Audit Results. Calculate the audit sample concentration
according to the calculation procedure provided in the audit
instructions included with the audit sarrnm^ Fill 4a the audit
sample concentration and the analyst's name on the audit response
form included with the audit instructions. Send one copy to the
EPA Regional Office or the appropriate enforcement agency and a
second copy to the STAC. The EPA Regional office or the
appropriate enforcement agency will report the results of the
*
audit to the laboratory being audited. Include this response
with the results of the compliance, samples in relevant reports to
the EPA Regional Office or the,--appropriate enforcement agency.
9. CALCULATIONS
Same as Method 5, Section 6 with the following additions.
_. ;;
9.1 Nomenclature.
Aai = Integrated ion current of the noise at the retention time
of the analyte.
. Aeij « Integrated ion current of the two ions characteristic of
compound i in the jth calibration standard.
A*clj - Integrated ion current, of the two ions characteristic of
the internal standard i in the jth. calibration standard.
» Integrated ion current of the two ions characteristic of
44
-------
surrogate compound i in the calibration standard.
Integrated ion current of the two ions characteristic of
compound i in the sample.
Integrated ion. current of the two ions characteristic of
internal standard ± in the sample.
Integrated ion current of the two ions characteristic of
the recovery standard.
Integrated ion current of the two ions characteristic of
surrogate compound i in the sample.
Ci - Concentration of PCDD or PCDF i in the sample, pg/M3.
CT » Total concentration of PCDD's or PCDF's in the sample,
pg/M3.
DL « Detection limit, pg/sample.
= Detection limit for each homologous series, pg/sample.
DL.ua «* Sum of all isomers times the corresponding detection
i
limit, ng/m3.
Hal = Summed heights of the noise at the retention time of the
analyte in the two analyte channels.
mci » Mass of compound i in the calibration standard injected
into the analyzer, pg.
m*cl = Mass of labeled compound i in the calibration standard
injected- into the analyzer, pg.
m*t - Mass of internal standard i added to the sample, pg.
45
-------
= Mass of recovery standard in the calibration standard
injected into the analyzer, pg.
m. = Mass of surrogate compound in the sample to be analyzed,
pg.
m.! • Mass of surrogate compound i in Mv» calibration standard^
pg-
RRFA » Relative response factor for compound i.
RRFr. = Recovery standard response factor.
RRF8 *s Surrogate compound response factor.
vm(«td>= Metered volume of sample run, dscm.
1000 = pg per ng.
9.2 Average Relative Response Factor.
JB'
RRF =
,
clj
9.4 Recovery Standard Response Factor,
9.3 Concentration of the PCDD's and PCDF's,
ml Al '"'••
C = — • • , Eq. 23-2
A,' RRF. V
X H _k-j
46
-------
Aei m
ei "
Eq. 23-3
9.5 Recovery of Internal Standards (R*)
„ • - *' *r.
xlOO% Eq. 23-4
9.6 Surrogate Compound Response Factor,
Ac.i fflci
Eq. 23-5
9.7 Recovery of Surrogate Compounds (R.)
A . ml
R = - Li — f - xiQO% Eq. 23-6
• . *
9.8 Detection Limit (DL) . The detection limit can be
calculated based on either the height of the noise or the area of
47
-------
the noise using one of the two equations.
Detection limit using height for the DB-225 column. Three and
one half times the height has been empirically determined to give
area.
-> . , ,-:*.* .">•
2.5 (3.5 x H .) m,
DL = ii Eq. 23-7
Aei RRF
Detection limit using height tor the DB-5 column- Five times "the
height has been empirically determined to give area.
2.5 (5 x H ) a/
DL = £± - Eq. 23-8
Ac'i RRF
Detection limit using area of ,the noise.
2 . 5 A . m,
DL = ii , - Eq. 23-9
A,'
cl
9.9 Summed Detection Limits. Calculate the maxitmxm potential
value of the summed detection limits. If, the isomer (group of
unresolved isomers) was not detecte'd, use the value calculated
for the detection limit in Section 9.8 above-*--If the ieo^ic-r
(group of unresolved isomers) was detected, use the value (target
48
-------
detection limit) from Table 1.
- (13 DLKDD .* 16 DLtCBf + 12
* 14 DL>.cor+ 7 ."'fcfflD + 12 DLHxcBp E_
2 DL + 4 q*
/ 1000
Note: The number of isomers used to calculate the summed
detection limit represent the total number of isomers typically
separated and not the actual number of isomers for each series.
9.10 Total Concentration of PCDD's and PCDF'a in the Sample.
' Eq. 23-11
Any PCDDs or PCDFs that are reported as not detected (below the
DL) shall be counted as zero for the purpose of calculating the
total concentration of PCDDs and PCDFs in the sample.
10. BIBLIOGRAPHY
1. American Society of Mechanical Engineers. Sampling for the
Determination of Chlorinated Organic Compounds in Stack
Emissions. Prepared for U.S. Department of Energy and U.S.
Environmental Protection Agency. Washington DC. December 1984.
25 p.
2. American Society of Mechanical Engineers. Analytical
49
-------
Procedures to Assay Stack Effluent Samples and~ Residual v%
Combustion Products for Polychlorinated Dibenzo-p-Dioxins (PCDD)
and Polychlorinated Dibenzofurans (PCDF). Prepared for the U.S.
Department of Energy and U.S. Environmental Protection Agency.
Washington, DC. December 1984. 23 p. .... -.",»*
3. Thompson, J. R. (ed.). Analysis of Pesticide Residues in
Human and Environmental Samples. U.S.. Environmental Protection
Agency. Research Triangle Park, NC. 1974.
4. Triangle Laboratories. Case Study: Analysis of Samples
for the Presence of Tetra Through Octachloro-p-Dibenzodioxins and
Dibenzofurans. Research Triangle Park, NC. 1988. 26 p.
5. U.S. Environmental Protection Agency. Method 8290 - The
*^- ••
Analysis of Polychlorinated Dibenzo-p-dloxin, asjd. J^aiychlorinated
Dibenzofurans by High-Resolution Gas Chromatography/
High-Resolution Mass Spectrometry. In: Test Methods for
Evaluating Solid Waste. Washington, DC. SW-846.'; "
6. Personnel communications with R. L. Harless of U.S. EPA and
Triangle Laboratory staff.
50
-------
TABLE 23-1. TARGET DETECTION LIMITS (TDLs)
ANALYTE
TCDD/TCDF
PeCDD/PeCDF
HxCDD/HxCDF
HpCDD/HpCDF
OCDD/OCDF
TDL (pg/Sample Train)
50
250
250
250
500
TABLE 23-2. COMPOSITION OF THE SAMPLE FORTIFICATION AND RECOVERY
- ^STANDARDS SOLUTIONS*
ANALYTE
CONCENTRATION (pg//iL)
Internal Standards
"C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDD
13C12-1, 2, 3, 6, 1 , 8-HxCDD
13C12-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
"C12-2, 3,7,8 -TCDF
l3C12-l,2,3,7,8-PeCDF
"C12-l, 2, 3 ,6,7, 8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
Surrogate
37Cl4-2,3,7,8-TCDD
13Cl2-l,2,3,4,7,8-HxCDD
"C12- 2 ,3,4,7,8- PeCDF
"C12-l,2,3,4,7,8-HxCDF
"Cia-l,2,3,4,7,8,9-HpCDF
100
100
100
100
100
100
100
100
100
Standards
100
100
100
100
100
Recovery Standards
51
-------
13C12-1,2,3,4-TCDD
13C12-1 , 2 , 3 , 7 , 8 , 9-HxCDD
100
100
Calibration levels are specific for samples at
the MWC compliance standard level.
52
-------
TABLE 23-3. COMPOSITION OF THE INITIAL CALIBRATION SOLUTIONS
(COMPOUND
SOLUTION NO.
CONCENTRATIONS (pg//iD
1
2
UNLABELED ANALYTES
2,3,7,8-TCDD
2,3,7,8-^CDF
1,2,3,7,8-PeCDD
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8 -HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8 -HxCDD
1,2,3,4,6,7,8-HpCDD
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDD
OCDF
0.5
0.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2,5
5
5
1
1
5
5
5
5
5
5
5
5
5
5
5
5
5
10
10
3
5
5
25
25
25
25
25
25
25
25
25
25
25
25
25
50
50
4
50
50
250
250
250
250
250
250'
250
250
250
250
250
250
250
500
500
5
100
100
500
500
500
500
500
500
500
500
500
500
500
500
500
1000
1000
INTERNAL STANDARDS
13C12-2,3,7,8-TCDD
13Cia- 1 ,2,3 ,n ,B -PeCDD
"C12-l,2,3,6,7,8-HxCDD -
13C13-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
53
-------
1
13C12-2,3,7,8-TCDP
13C12-1, 2 , 3 , 7, 8-PeCDF
13C12-1, 2 ,3,6 , 7, 8-HxCDF
13C12-1 , 2,3,4,6,7, 8-HpCDF
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
TABLE 23-3. (Continued)
COMPOUND
SOLUTION NO.
CONCENTRATION (pg/^D
1
2
3
4
5
SURROGATE STANDARDS
"Cl4-2,3,7,8-TCDD
13C12-2 , 3,4,7, 8 -PeCDF
13C12-1, 2 , 3 , 4 , 7, 8-HxCDD
13C12-1, 2 , 3 ,4 , 7, 8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
60
60
60
60
60
80
80
80
80 ^;
80 ...
100
100
100
100
100
120
120
120
120
120
**AP
140
140
140
140
RECOVERY STANDARDS
13C12-1,2,3,4-TCDD
13C12-1, 2,3,7,8, 9-HxCDD
100.
100
— 100
100
luu j 100
100 1 100
100
100
54
-------
TABLE 23-4. RECOMMENDED GC OPERATING CONDITIONS
Column Type
DB-5
DB-225
Length (m)
i.d. (nun)
Film Thickness (ftm)
Carrier Gas
Carrier Gas Flow (mL/min)
60
0.25
0.25
Helium
1-2
30
0.25
0.25
Helium
1-2
Injection Mode
Valve Time (rain)
Initial Temperature (o C)
Initial Time (min)
Rate 1 (deg. C/min)
Temperature 2 (deg. C)
Rate 2 (deg. C/min)
Final Temperature (deg. C)
<-- splitless -->
2.5
150
0.5
60
170
3
300
2.5
130
2.5
50
170
4
250
55
-------
TABLE 23-5. ELEMENTAL COMPOSITIONS AND EXACT MASSES OF THE IONS
MONITORED BY HIGH RESOLUTION MASS SPECTROMETRY FOR PCDD'S AND PCDF's
DESCRIPTOR
NUMBER
2
3
ACCURATE
MASS
292.9825
303.9016
305.8987
315.9419
317.9389
319.8965
321.8936
327.8847
330.9792
331.9368
333.9339
339.8597
341.8567
351.9000
353.8970
355.8546
357.8516
367.8949
369.8919
375.8364
409.7974
373.8208
375.8178
383.8639
385.8610
389.8157
391.8127
392.9760
ION
TYPE
LOCK
M
M+2
M
M+2
M
M+2
M
QC
M
M+2
M+2
M+4
M+2
M+4
M+2
M+4
M+2
M+4
M+2
M+2
M+2
M+4
M
M+2
M+2
M+4
LOCK
ELEMENTAL COMPOSITION '
CrFxi
C^H^C^O
CuHt^Cl^l^O
"CxaH^CltO
"CulL^CVClO
C12H435C1403
, CiaH43sCl3"Cl03
C12H4"C1402
C,F13
"C13H43SC1402
13C12H43SC137C102
CuH^CVClO
piaR?k?Clx"u.tau
"CuHa^CV'ClO
"C^Hj^CV'ClaO
C12H335C1;37C1Q, ;.
ffl- - ~ •
C12H335C1337C1202'S .•••'"•
13C12H33SC1437C102
"C12H335Cl337Cl2Oa .
C12H43SC1537C1O
C12H335C1S37C1O
C12H235r^77ClO
Ci2H235Cl4"Cl20
"Cl2Ha35ClsO
»C12H235C1$"C10
C12H23SC1S37C102
C12H23SC1437C1202
C9F15
ANALYTE 1
*/*« . / • - •
PFK
TCDF
TCDF
TCDF(S)
TCDF(S)
TCDD
TCDD
TCDD(S)
PFK
TCDD(S)
TCDD(S)
PeCDF 1
PeCDF
PeCDF (S)
PeCDF (S)
PeCDD
PeCDD
PeCDD (S)
PeCDD (S) 1
HxCDPE
HpCPDE
HxCDF
HxCDF
HxCDF (S) 1
HxCDF (S) 1
HxCDD
HxCDD
PFK
56
-------
401.8559
403.8529
445.7555
430.9729
M+2
M+4
M+4
QC
«C12H23SC15"C102
"CuHa^Cl^ClaO
C12H235C1S37C120
C9F17
HxCDD(S)
HxCDD(S)
OCDPE
PFK
TABLE 23-5. (Continued)
DESCRIPTOR
NUMBER
ACCURATE
MASS
,407.7818
409.7789
417.8253
389.8157
391.8127
392.9760
401.8559
403.8529
445.7555
430.9729
407.7818
409.7789
417.8253
419.8220
423.7766
425.7737
435.8169
437.8140
479.7165
430.9729
441.7428
443.7399
457.7377
459.7348
469.7779
ION
TYPE
M+2
M+4
M
M+2
' M+4
LOCK
M+2
M+4
M+4
QC
M+2
M+4
M^
M+2
M+2
M+4
M+2
M+4
M+4
LOCK
M+2
M+4
M+2
M+4
M+2
ELEMENTAL DESCRIPTION
C12H3SC1«37C10
C^H^CVClaO
"CuH^ClTO
C12H235C1537C102
CuHa^CV'ClaOa
C9P15
13C12H235Cl537ClOa
13C12H235C14"C120
C12H23SC1S37C120
C9F17
C12H35C1S37C1O
C12H35C1S37C120
13C12H35C1,O
13C12H35C1S37C10
C12H3SC1637C102
C12H35C1537C12O2
13C12H3SC1S37C102
13C12H35C1S37C1202
C12H35C1737C12O
C,F17
C123SC17"C10
C123SC1S37C120
C1235C17"C102
C1235C1637C1202
13C1235C1,37C102
ANALYTE
HpCDF
HpCDF
HpCDF (S)
HxCDD
HxCDD
PFK
HxCDD (S)
HxCDD (S)
OCDPE
PFK
HpCDF
HpCDF
HpCDF (S)
HpCDF (S)
HpCDD
HpCDD
HpCDD (S)
HpCDD (S)
NCPDE
PFK
OCDF
OCDF
OCDD
OCDD
OCDD(S)
57
-------
471.7750
513.6775
442.9728
M+4
M+4
QC
13C1235CV7C1202
Cu^CV'ClaO, - .'-...
CioFx7
OCDD(S)
DCD£E
PFK
34.968853
The following nuclidic masses were used:
H - 1.007825 O - 15.994914 C « 12.000000 35C1
13C - 13.003355 "Cl - 36.965903 P - 18.9984
S = Labeled Standard
QC » Ion selected for monitoring instrument stability during the
GC/MS analysis.
^*«« •**«»•
58
-------
TABLE 23-6. ACCEPTABLE RANGES FOR ION-ABUNDANCE RATIOS OP PCDD's AND
PCDP'S
Number of
Chlorine
Atoms
4
5
6
6*
7b
7
8
Ion Type
M/M+2
M+2/M+4
M+2/M+4
M/M+2
M7M+2
M+2/M+4
M+2/M+4
Theoretical
Ratio
0.77
1.55
1.24
0.51
0.44
1.04
0.89
Control Limits
Lower
0.65
1.32
1.05
0.43
0.37
0.88
0.76
Upper
0.89
1.78
1.43
0.59
0.51
1.20
1.02
59
-------
TABLE 23-7. UNLABELED ANALYTES QUANTIFICATION RELATIONSHIPS
ANALYTE
2,3,7,8-TCDD
Other TCDD's
1,2,3,7,8-PeCDD
Other PeCDD's
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
Other HxCDD 's
1,2,3,4,6,7,8-HpCDD
Other HpCDD's
OCDD
2,3,7,8-TCDF
Other TCDF's
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
Other PeCDF's
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8-HxCDF
Other HxCDF's
1,2,3,4,6,7,8-HpCDF
INTERNAL STANDARD USED
13C12- 2,3,7,8-TCDD
13C12-2,3,7,8-TCDD
,
13C12-l,2,3,7,8-PeCDD
"Cia-1 , 2 , 3 , 7 , 8 -PeCDD
• -.,••- • ' • -
"Cu-1 , 2 , 3 , 6 , 7 , 8 -HxCDD
l3Cia-l , 2 , 3 , 6 , 7 , 8 -HxCDD
13CU- 1 , 2 , 3 , 6 , 7 , 8-HxCDD
13C12-l,2,3,6,7,8-HxCDD »
13C12-l,2,3,4,6,7,8-HpCDD
13C12-l,2,3,4,6,7,8-HpCDD
13 1
13C12- 2,3,7,8-TCDF
l3C12-2,3,7,8-TCDF
-.
13C12-l,2,3,7,8-PeCDF
13C12-l,2,3,7,8-PeCDF
13C12-1, 2, 3, 7, 8-PeCDF
13C12-1, 2, 3 , 6, 7, 8-HxCDF
13C12-i,2,3^, ',8-HxCDF
uCia-l, 2, 3 ,6,7 , 8-HXCDF
"C12-l,2,3,6,7,8-HxCDF
13C12-l,2,3f6,7,8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
60
-------
1,2,3,4,7,8,9-HpCDF
OCDF
I "C12-l,2,3,4,6,7,8-HpCDF
BSSE^^IBH99SB^ES9HH^^B^H^9^BMBHMHMHHBI^MMB1HHMH^I
61
-------
TABLE 23-8. INTERNAL STANDARDS QUANTIFICATION RELATIONSHIPS
INTERNAL STANDARD
13C12-2,3,7,8-TCDD
«C12-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
"Cjj-l , 2 , 3 , 4 , 6, 7, 8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13C12-1 , 2,3,7, 8-PeCDF
"C^-l, 2, 3 , 6, 7, 8-HxCDF
13C12-1 , 2 , 3 , 4 , 6, 7, 8-HpCDF
STANDARD USED DURING PERCENT
RECOVERY DETERMINATION
13Cu-l,2-,3,4-TCDb
13C12-1,2,3,4-TCDD
"Cia-l ,"2,3,7,8,9 -HxCDD
"Cu-1,2, 3,7, 8, 9-HxCDD
• . v
-v,12-o. , * , j , / , 8 , 9"-HxCDD .
1k^a-l,2f3,4-TO)D
"CU-I^S^-TCDD
"Cij-1 ,2,3,7,8^9 -HxCDD' , , i':
"Cu-l^^fT^^S-HxCDD
.,, . . .-•-«. -•-...-.*'
TABLE 23-9. SURROGATE STANDARDS QUANTIFICATION BELATIONSHIPS
SURROGATE STANDARD
37Cl4-2,3,7, 8-TCDD
13C12-2 ,3,4,7, 8-PeCDF
13C12- 1,2,3,4,7, 8 -HxCDD
13C12-1, 2 ,3,4 , 7, 8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
STANDARD USED DURING PERCENT
"^EPPVERJF DETERMINATION, v
.^Cnr^. 3, 7, 8-TCDD
13C12-1 , 2,3,7, 8-PeCDF
$(>«• * " * * •
13C12-1 , 2 , 3 , 6 , 7 , 8 -HxCDD
"C^-l^^^e^.S-HxCDF
13C12 -1,2,3,4,6,7,8 -HpCDF
62
-------
TABLE 23-10. MINIMUM REQUIREMENTS FOR INITIAL AND DAILY CALIBRATION
RESPONSE FACTORS
COMPOUND
RELATIVE RESPONSE FACTORS
INITIAL
CALIBRATION
(RSD)
DAILY
CALIBRATION
(% DIFFERENCE)
UNLABELED ANALYTES
2,3,7,8-TCDD
2,3,7,8-TCDF
1,2,3, 7,8-PeCDD
1,2,3,7,8-PeCDF
1,2,4,5,7, 8-HxCDD
1,2,3, 6,7, 8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,4,6,7,8-HpCDD
1,2,3,4,6,7,8-HpCDF
OCDD
OCDF
25
25
25
25
25
25
25
25
25
25
25
25
25
25
30
SURROGATE STANDARDS
37Cl4-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
"C12 -1,2,3,4,7,8 -HxCDD
13C12-l,2,3,4,7,8-HxCDF
l3C12-l,2,3,4,7,8,9-HpCDF
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
30
25
63
-------
Thannoooupto
"S"Typa Pilot
Filter Holder
Thaimocoupl
Prob«
Tlitnnocoupto TIwnnocoupto
f Ch«ekV«lvt
StaokWall /
Pilot
Manomatar ^
RMlreulatlonPiimp
Alr-Tlghl
Pump
Figure 5-1. CDO/COF Sampling Train Configuration
•T
H
(D
Slllea Qtl
(300 grams)
loom! HPLC W.n
Ttiaimoeouplaa
OHIlea
Vacuum Una
-------
CondMiMr
Flu* Oas Flow
SortwntTrap
H-
1C
H
at
in
0 mm QlMft Cooling Cod
•20/1S
Wcttr Jcefctt Cooflno CoH
OI*M Woof Plug WM*rJ«ctot XAD-2
(TSQrams)
FIGURE 2. CONDENSER AND 80RBENT TRAP FOR COLLECTION OF GASEOUS PCDDs AND
PCOFt
-------
10
u>
-------
Appendix G.5
Sampling & Analysis Methods
EPA Method 25A
-------
*
j»
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
METHOD 25A-DBTBRMINATION OF TOTAL GASEOUS ORGANIC
CONCENTRATION USING A FLAMS IONIZATION ANALYZER
1. Applicability and Principle
1.1 Applicability. This method applies to the measurement of total gaseous
organic concentration of vapors consisting primarily of alkanes, alkenes, and/or
arenes (aromatic hydrocarbons). The concentration is expressed in terms of
propane (or other appropriate organic calibration gas) or in terms of carbon.
1.2 Principle. A gas sample is extracted from the source through a heated
sample line, if necessary, and glass fiber filter to a flame ionization analyzer
(PIA) . Results are reported as volume concentration equivalents of the
calibration gas or as carbon equivalents.
2. Definitions
2.1 Measurement Systems. The total equipment required for the determination
of the gas concentration. The system consists of the following major subsystems:
2.1.1 Saaple Interface. That portion of the system that is used for one or more
of the following: sample acquisition, sample transportation, saraple
conditioning, or protection of the analyzer from the effects of the stack
effluent.
2.1.2 Organic Analyzer. That portion of the system that senses organic
concentration and generates an output proportional to the gas concentration.
2.2 Span Value. The upper limit of a gas concentration measurement range that
is specified for affected source categories in the applicable part of the
regulations. The span value is established in the applicable regulation and is
usually 1.5 to 2.5 times the applicable emission limit. If no span value is
provided, use a span value equivalent to 1.5 to 2.5 times the expected
concentration. For convenience, the span value should correspond to 100 percent
of the recorder scale.
2.3 Calibration Gas. A known concentration of a gas in an appropriate diluent
gas.
2.4 Zero Drift. The difference in the measurement system response to a zero
level calibration gas before and after a stated period of operation during which
no unscheduled maintenance, repair, or adjustment took place.
Prepared by Emission Measurement Branch KMTIC TM-25A
Technical Support Division, OAQPS, EPA June 23, 1993
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD Page 2
2.5 Calibration drift. The difference in the measurement system response to
a midlevel calibration gas before and after a stated period of operation during
which no unscheduled maintenance, repair or adjustment took place.
2.6 Response Time. The time interval from a step change in pollutant
concentration at the inlet to the emission measw*-- r ' *,-:•.. to* tin tiniest ***: •'**
which 95 percent of the corresponding final value is reached as displayed on the
recorder.
2.7 Calibration Brror. The difference between the gas concentration indicated
by the measurement system and the known- concentration of the calibration gas.
3. Apparatus. , .
"-r.
A schematic of an acceptable measurement system is shown in Figure 25A-1.
The essential components of the measurement system are described below:
3.1 Organic Concentration Analyser. A flame ionization analyzer (PIA) capable
of meeting or exceeding the specifications in this method.
3.2 Sample Probe. Stainless steel, or equivalent, three-hole rake type.
Sample holes shall be 4 mm in diameter or smaller and located at 16.7, 50, and
63.3 percent of the equivalent stack diameter. Alternatively-, ar single opening
probe may be used so that a gas sample is coi^pptabef^fcttj.- J^. ..entrally located' " *
10 percent area of the stack cross-section • • . ~
3.3 Sample Line. Stainless steel or Teflon > tubing to transport the sample
gas to the analyzer. The sample line should be heated,; if necessary, to prevent
condensation in the line.
3.4 Calibration Valve Assembly. A three way valve assembly, to direct the zero
and calibration gases to the analyzers is recommended. Other methods, such as
quick-connect lines, to route calibration gas to the analyzers are applicable.
3.5 Particulate Filter. An in-stack or an*out-of-stack glass fiber filter is
recommended if exhaust gas particulate loading is significant, , An out-of-stack
filter should be heated to prevent any condensation.
* Mention of trade names or specific products does not constitute
endorsement by the Environmental Protection Agency.
•_• -••' ~i\ ••-•••^•'••^
3.6 Recorder. A strip-chart recorder, analog computer, or digital recorder for
recording measurement data. The minimum data recording requirement is one
measurement value per minute, Note: This method is often applied in highly
explosive areas. Caution and care should be exercised in choice of equipment and
installation.
4. Calibration and Other Gases.
Gases used for calibrations, fuel, and combustion air (if required) are
-------
EMTIC TM-25A EMTIC KSPS TEST METHOD Page 3
contained in compressed gaa cylinders. Preparation of calibration gases shall
be done according to the procedure in Protocol No. 1, listed in Citation 2 of
Bibliography. Additionally, the manufacturer of the cylinder should provide a
recommended shelf life for each calibration gas cylinder over which the
concentration does not change more than ±2 percent from the certified value. Tor
calibration gas values not generally available (i.e., organics between 1 and 10
percent by volume), alternative methods for preparing calibration gas mixtures,
such as dilution systems, may be used with prior approval of the Administrator.
Calibration gases usually consist of propane in air or nitrogen and are
determined in terms of the span value. Organic compounds other than propane can
be used following the above guidelines and making the appropriate corrections for
response factor.
4.1 Fuel. A 40 percent H,/60 percent K^ gas mixture is recommended to avoid
an oxygen synergism effect that reportedly occurs when oxygen concentration
varies significantly from a mean value.
4.2 Zero Gas. High purity air with less than 0.1 parts per million by volume
(ppmv) of organic material (propane or carbon equivalent) or less than 0.1
percent of the span value, whichever is greater.
4.3 Low-level Calibration Gas. An organic calibration gas with a concentration
equivalent to 25 to 35 percent of the applicable span value.
4.4 Mid-level Calibration Gas. An organic calibration gas with a concentration
equivalent to 45 to 55 percent of the applicable span value.
4.5 High- level Calibration Gas. An organic calibration gas with a
concentration equivalent to 80 to 90 percent of the applicable span value.
5. Measurement System Performance Specifications
5.1 Zero Drift. Less than ±3 percent of the span value.
5.2 Calibration Drift. Less than ±3 percent of span value.
5.3 Calibration Error. Less than ±5 percent of the calibration gas value.
6. Pretest Preparations
6.1 Selection of Sampling site. The location of the sampling site is generally
specified by the applicable regulation or purpose of the test; i.e., exhaust
stack, inlet line, etc. The sample port shall be located at least 1.5 meters or
2 equivalent diameters upstream of the gas discharge to the atmosphere.
6.2 Location of Sample Probe. Install the sample probe so that the probe is
centrally located in the stack, pipe, or duct and is sealed tightly at the stack
port connection.
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD Page 4
6.3 Measurement System Preparation. Prior to the emission test* assemble the
measurement system following the manufacturer's written instructions in preparing
the sample interface and the organic analyzer. Make the system operable.
FIA equipment can be calibrated for almost any rang* of total organica
concentrations. For high concentrations of orgaitL. ' " " T;^~"H«n.t by volroiM alb
propane) modifications to most commonly available analyzers are necessary. One
accepted method of equipment modification is to decrease the size of the sample
to the analyzer through the use of a smaller diameter sample capillary. Direct
and continuous measurement of organic concentration is a necessary consideration
when determining any modification design.
6.4 Calibration Error Test. Immediately prior ,^o the test series, (within 2
hours of the start of the test) introduce zero gasp and high-l«rel calibration gas
at the calibration valve assembly. Adjust the analyzer output to the appropriate
levels, if necessary. Calculate the predicted response for the low-level and
aid-level gases based on a linear response line between the zero and high-level
responses. Then introduce low-level and mid-level calibration gases successively
to the measurement system. Record the analyzer responses for low-level and mid-
level calibration gases and determine the differences between the measurement
system responses and the predicted responses. These differences must be less
th«Ti 5 percent of the respective calibration gas value. If not, the measurement
system is not acceptable and must be replaced or repaired prior to testing. No
adjustments to the measurement system shall ^^easp&S&i —— the calibration
and before the drift check (Section 7.3). If adjustment* *m jwoessary before
the completion of the test series, perform the drift checks prior to the required
adjustments and repeat the calibration following the adjustments. If multiple
electronic ranges are to be used, each additional.range, finmt be checked with a
mid-level calibration gas to verify the multiplication factor. '*-'••"
6.5 Response Tims Test. Introduce Zero gas into the measurement system at the
calibration valve assembly. When the system output has stabilized, switch
quickly to the high-level calibration gas, .Record the time from the
concentration change to the measurement system response equivalent to 95 percent
of the step change. Repeat the test three times and average the results.
7. Emission Measurement Test Procedure
7,1 Organic Measurement. Begin sampling at the start of the test period,
recording time and any required process information: as appropriate. In
particular, note on the recording chart periods o* T>w>r*»sa interruption or cyclic
operation.
7.2 Drift Determination. Immediately following the completion of the test
period and hourly during the test period, reintroduce the zero and mid-level
calibration gases, one at a time, to the measurement syste* at the calibration
valve assembly. (Make no adjustments to the measurement system until after both
the zero and calibration drift checks are made.) Record the analyzer response.
If the drift values exceed the specified limits, invalidate the test results
preceding the check and repeat the test following corrections to the measurement
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD Page 5
system. Alternatively, recalibrate the test measurement system as in Section 6.4
and report the results using both sets of calibration data (i.e., data determined
prior to the test period and data determined following the test period) .
8. Organic Concentration calculations
Determine the average organic concentration in terms of ppmv as propane or
other calibration gas. The average shall be determined by the integration of the
output recording over the period specified in the applicable regulation. If
results are required in terms of ppmv as carbon, adjust measured concentrations
using Equation 25A-1.
CC=KC»eas **• 25A-1
Where:
Co - Organic concentration as carbon, ppmv.
Organic concentration as measured, ppmv.
K m Carbon equivalent correction factor.
K » 2 for ethane.
K - 3 for propane.
K » 4 for butane.
K - Appropriate response factor for other organic calibration
gases .
9. Bibliography
1. Measurement of Volatile Organic Compounds -Guideline Series. U.S.
Environmental Protection Agency. Research Triangle Park, NC.
Publication No. EPA-450/2-78-041. June 1978. p. 46-54.
2. Traceability Protocol for Establishing True Concentrations of Gases
Used for Calibration and Audits of Continuous Source Emission
Monitors (Protocol No. 1). U.S. Environmental Protection Agency,
Environmental Monitoring and Support Laboratory. Research Triangle
Park, NC. June 1978.
3. Gasoline Vapor Emission Laboratory Evaluation- Part 2. U.S.
Environmental Protection Agency, Office of Air Quality Planning and
Standards. Research Triangle Park, NC. EMB Report No. 75-GAS-6.
August 1975.
-------
EMTIC TM-25A
EMTIC NSPS TEST METHOD
J'l
Page S
Proka
Otgwrio
Pwip
Stack
Figure 25A-1. Organic Concentracion Measurement: Systems,
-------
Appendix G.6
Sampling & Analysis Methods
EPA Proposed Method 322
-------
>•*' T - J*-r -
-------
(PROPOSED) TEST METHOD 322 - MEASUREMENT OF HYDROGEN CHLORIDE
EMISSIONS FROM PORTLAND CEMENT KILNS BY GFCIR
1.0 Applicability and Principle
1.1 Applicability. This method is applicable to the
determination of hydrogen chloride (HC1) concentrations in
emissions from portland cement kilns. This is an instrumental
method for the measurement of HC1 using an extractive sampling
system and an infrared (IR) gas-filter correlation (GFC)
analyzer. ,This method is intended to provide the cement industry
with a direct interface instrumental method. A procedure for
analyte spiking is included for quality assurance. This method
is considered to be self-validating provided that the
requirements in section 9 of this method are followed.
1.2 Principle. A gas sample is continuously extracted from
a stack or duct over the test period using either a source-level
hot/wet extractive subsystem or a dilution extractive subsystem.
A nondispersive infrared gas filter correlation (NDIR-GFC)
analyzer is specified for the measurement of HC1 in the sample.
The total measurement system is comprised of the extractive
subsystem, the analyzer, and the data acquisition subsystem.
Test system performance specifications are included in this
method to provide for the collection of accurate, reproducible
data.
1.3 Test System Operating Range. The measurement range
(span) of the test system shall include the anticipated HC1
concentrations of the effluent and spiked samples. The range
should be selected so that the average of the effluent
measurements is between 25 and 75 percent of span. If at any
time during a test run, the effluent concentration exceeds the
span value of the test system, the run shall be considered
invalid.
2.0 Summary of Method
2.1 Sampling and Analysis. Kiln gas is continuously
extracted from the stack or duct using either a source level,
hot/wet extractive system, or an in-situ dilution probe or heated
out-of-stack dilution system. The sample is then directed by a
heated sample line maintained above 350°F to a GFC analyzer
having a range appropriate to the type of sampling system. The
gas filter correlation analyzer incorporates a gas cell filled
with HC1. This gas cell is periodically moved into the path of
an infrared measurement beam of the instrument to filter out
essentially all of the HC1 absorption wavelengths. Spectral
filtering provides a reference from which the HC1 concentration
of the sample can be determined. Interferences are minimized in
the analyzer by choosing a spectral band over which compounds
such as CO2 and H2O either do not absorb significantly or do not
match the spectral pattern of the HC1 infrared absorption.
-------
2.2 Operator Requirements. The analyst must be familiar
with the specifications and test procedures' of this method and
follow them in order to obtain reproducible and accurate data.
3.0 Definitions
3.1 Measurement System. The total equipment required for
the determination of gas concentration. The measurement system
consists of the following major subsystems:
3.1.1 Sample Interface. That portion of a system used for
one or more of the following: sample acemi «* It-ion, sanplfi^y..**,^
transport, sample conditioning, or proteu 1.0.0*1 ui cue analyzers
from the effects of the stack gas.
3.1.2 Gas Analyzer. That portion of the system that senses
the gas to be measured and generates an, putput proportional to
its concentration.
3.1.3 Data Recorder. A strip chart recorder, analog
computer, or digital recorder for recording measurement data from
the analyzer output.
3.2 Span. The upper limit of the gas concentration
measurement range displayed on the data recorder.
3.3 Calibration Gas. A known concentration of a gas in an
appropriate diluent gas (i.e., N2) .
3.4 Analyzer Calibration Error. The difference between the
gas concentration exhibited by the gas analyzer and the known
concentration of the calibration gas when the" calibration gas is
introduced directly to the analyzer.
3.5 Sampling System Bias. ThespsssBB^b^:'^ * --m bias is the,
difference between the gas concentrations exhibited by the
measurement system when a known concentration
-------
"Cold spots" in the sampling system can allow water vapor in the
sample to condense resulting in removal of HC1 from the sample
stream. The extent of HCl sampling system bias depends on
concentrations of potential interferants, moisture content of the
gas stream, temperature of the gas stream, temperature of
sampling system components, sample flow rate, and reactivity of
HCl with other species in the gas stream. For measuring HCl in a
wet gas stream, the temperatures of the gas stream and sampling
system components and the sample flow rate are of primary
importance. In order to prevent problems with condensation in
the sampling system, these parameters must be closely monitored.
4.1.1 System Calibration Checks. Performing these
calibration checks where HCl calibration gas is injected through
the entire system both before and after each test run
demonstrates the integrity of the sampling system and capability
of the analyzer for measuring this water soluble and otherwise
unstable compound under ideal conditions (i.e., HCl in N2) .
4.1.2 Analyte Spiking Checks. For analyte spiking checks,
HCl calibration gas is quantitatively added to the sample stream
at a point upstream of the particulate filter and all other
sample handling components both before and after each test run.
The volume of HCl spike gas should not exceed 10 percent of the
total sample volume so that the sample matrix is relatively
unaffected. Successfully performing these checks demonstrates
the integrity of the sampling system for measuring this water
soluble and reactive compound under actual sample matrix
conditions. Successfully performing these checks also
demonstrates the adequacy of the interference rejection
capability of the analyzer. (See section 9.3 of this method.)
4.2 Analytical Interferences. Analytical interferences are
reduced by the GFC spectroscopic technique required by the
method. The accuracy of HCl measurements provided by some GFC
analyzers is known to be sensitive to the moisture content of the
sample. This must be taken into account in order to acquire
accurate results. These analyzers must be calibrated for the
specific moisture content of the samples.
5.0 Safety
This method may involve sampling at locations having high
positive or negative pressures, or high concentrations of
hazardous or toxic pollutants, and cannot address all safety
problems encountered under these diverse sampling conditions. It
is the responsibility of the tester(s) to ensure proper safety
and health practices, and to determine the applicability of
regulatory limitations before performing this test method.
Because HCl is a respiratory irritant, it is advisable to limit
exposure to this compound.
6.0 Equipment and Supplies
Note: Mention of company or product names does not
constitute endorsement by the U. S. Environmental Protection
Agency.
-------
6.1 Measurement System. Use any GFC measurement system for
HC1 that meets the specifications of this method. All sampling
system components must be maintained above the kiln gas
temperature, when possible, or at least 350°F. The length of
sample transport line should be minimized and sampling rate
should be as high as possible to minimize adsorption of HC1. The
essential components of the measurement system are described in
sections 6.1.1 through 6.1.12. ,
6.1.1 Sample Probe. Glass, stainile*"* steel Ii«9ls&l£oyHV£or
equivalent, of sufficient length to traverse the sample"points.
The sampling probe shall be heated to a minimum of 350°F to
prevent condensation. Dilution extractive systems must use a
dilution ratio such that the average diluted concentrations are
between 25 to 75 percent of the selected measurement range of the
analyzer.
6.1.2 Calibration Valve Assembly.,, Use a heated, three-way
valve assembly, or equivalent, for selecting either sample-gas or
introducing calibration gases to the measurement, system or
introducing analyte spikes into the measurement system at the
outlet of the sampling probe before the primary particulate
filter.
6.1.3 Particulate Filter. A coarse filter or other device
may be placed at the inlet of the probe for removal of large
particulate (10 microns or greater). A heated (Balston® or
equivalent) filter rated at 1 micron, is necessary .for primary
particulate removal, and shall be plaB»d^^feir" '""7 after the* .<-->.
heated probe. The filter /filter ^.holder shail be Tftalntained at
350°F or a higher temperature. Additional filters at the inlet
of the gas analyzer may be used to prevent accumulation of
particulate material in the measurementv&ystenrjotsi extend the
useful life of components. All filters shall be fabricated "of
materials that are nonreactive with HC1.... Some; types of glass
filters are known to react with HC1. >
6.1.4 Sample Transport Lines. Stainless steel or
polytetrafluoroethylene (PTFE) tubin,g shall be heated to a
minimum temperature of 350°F (sufficient to prevent condensation
and to prevent HC1 and NH3 from combining into ammonium chloride
in the sampling system) to transport the sample, gas to the gas
analyzer. ' , '-.
6.1.5 Sample Pump. Use a leak-free pump to pull the sample
gas through the system at a flow rate sufficient to jainimize the
response time of the measurement system. The pump coittponents -.,.
that contact the sample must be heated to a temperature greater,,
than 350°F and must be constructed of a material that is
nonreactive to HC1.
6.1.6 Sample Flow Rate Control. A sample flow rate control
valve and rotameter, or equivalent, must., be. used to maintain a
constant sampling rate within ±10 perceA^,. T,hese components must
be heated to a temperature greater than 350°F. (Hfitlfi: The
tester may elect to install a back-pressure regulator to maintain
-------
the sample gas manifold at a constant pressure in order to
protect the analyzer(s) from over-pressurization, and to minimize
the need for flow rate adjustments.)
6.1.7 Sample Gas Manifold. A sample gas manifold, heated
to a minimum of 350°F, is used to divert a portion of the sample
gas stream to the analyzer and the remainder to the by-pass
discharge vent. The sample gas manifold should also include
provisions for introducing calibration gases directly to the
analyzer. The manifold must be constructed of material that is
nonreactive to the gas being sampled.
6.1.8 Gas Analyzer. Use a nondispersive infrared analyzer
utilizing the gas filter correlation technique to determine HC1
concentrations. The analyzer shall meet the applicable
performance specifications of section 8.0 of this method, (Note:
Housing the analyzer in a clean, thermally-stable, vibration free
environment will minimize drift in the analyzer calibration.)
The analyzer (system) shall be designed so that the response of a
known calibration input shall not deviate by more than ±3 percent
from the expected value. The analyzer or measurement system
manufacturer may provide documentation that the instrument meets
this design requirement. Alternatively, a known concentration
gas standard and calibration dilution system meeting the
requirements of Method 205 of appendix M to part 51 of this
chapter, "Verification of Gas Dilution Systems for Field
Calibrations" (or equivalent procedure), may be used to develop a
multi-point calibration curve over the measurement range of the
analyzer.
6.1.9 Gas Regulators. Single stage regulator with cross
purge assembly that is used to purge the CGA fitting and
regulator before and after use. (This purge is necessary to
clear the calibration gas delivery system of ambient water vapor
after the initial connection is made, or after cylinder
changeover, and will extend the life of the regulator.) Wetted
parts are 316 stainless steel to handle corrosive gases.
6.1.10 Data Recorder. A strip chart recorder, analog
computer, or digital recorder, for recording measurement data.
The data recorder resolution (i.e., readability) shall be 0.5
percent of span. Alternatively, a digital or analog meter having
a resolution of 0.5 percent of span may be used to obtain the
analyzer responses and the readings may be recorded manually. If
this alternative is used, the readings shall be obtained at
equally-spaced intervals over the duration of the sampling run.
For sampling run durations of less than 1 hour, measurements at
1-minute intervals or a minimum of 30 measurements, whichever is
less restrictive, shall be obtained. For sampling run durations
greater than 1 hour, measurements at 2-minute intervals or a
minimum of 96 measurements, whichever is less restrictive, shall
be obtained.
6.1.11 Mass Flow Meters/Controllers. A mass flow meter
having the appropriate calibrated range and a stated accuracy of
-------
±2 percent of the measurement range is used to measure the HC1
spike flow rate'. This device must be calibrated with the major
component of the calibration spike gas (e.g., nitrogen) using an
NIST traceable bubble meter or equivalent. When spiking HC1, the
mass flow meter/controller should be thoroughly purged before and
after introduction of the gas to prevent corrosion of the
interior parts.
6.1.12 System Flow Measurement. A measurement device or
procedure to determine the total flow r^. l F ^^t^^gas* WirChia^u; ,*»•
the measurement system. A rotameter, or mass flow meter
calibrated relative to a laboratory standard to within ±2 percent
of the measurement value at the actual operating temperature/
moisture content, and sample composition (molecular weight) is
acceptable. A system which ensures that the total sample flow
rate is constant within ±2 percent and which relies on an
intermittent measurement of the actual flow rat;e •> •- •• •
(e.g., calibrated gas meter) ^s also acceptable. <-.•-• •""*• •**
6.2 HC1 Calibration Gases. The calibration gases for the
gas analyzer shall be HC1 in N2. Use at least three calibration
gases as specified below:
6.2.1 High-Range Gas. Concentration equivalent to 80 to
100 percent of the span.
6.2.2 Mid-Range Gas. Concentration^equivalent to 40 to 60
percent of the span.
6.2.3 Zero Gas. Concentration of less than 0.25 percent of
the span. Purified ambient air may •!»«?>6S«?^ — ,!.j 'zero ga«-'by--<*-'•*•'""-'*
passing air through a charcoaV,filter or througit^aiwsor more
impingers containing a solution of 3 percent H202.
6.2.4 Spike Gas. A calibration gas of known concentration
(typically 100 to 200 ppm) used for analyse spikes ir* accordance
with the requirements of section 9.3 of this method. '
7.0 Reagents and Standards ;
7.1 Hydrogen Chloride. Hydrogen Chloride is a reactive gas
and is available in steel cylinders from various, commercial gas
vendors. The stability is such that it,is not possible to
purchase a cylinder mixture whose HC1 concentration can be
certified at better than ±5 percent. The stability of the
cylinder may be monitored over time by^perdfcodically analyzing
cylinder samples. The cylinder gas concentration must be
verified within 1 month prior to the use of the calibration gas.
Due to the relatively high uncertainty of HC1 calibration gas
values, difficulties may develop in meetirn the performance :«
specifications if the mid-range and high-range calibration'gases
are not consistent with each other. Where problems are
encountered, the consistency of the test gas standards may be
determined: (1) by comparing analyzer responses for the test
gases with the responses to additional certified calibration gas
standards/ (2) by reanalysis of the calibration gases ir»
accordance with sections 7.2.1 or 7.2.2 of this method, or (3) by
other procedures subject to the approval of EPA.
-------
7.2 Calibration Gas Concentration Verification. There are
two alternatives for establishing the concentrations of
calibration gases. Alternative No. 1 is preferred.
7.2.1 Alternative No. 1. The value of the calibration
gases may be obtained from the vendor's certified analysis within
1 month prior to the test. Obtain a certification from the gas
manufacturer that identifies the analytical procedures and date
of certification.
7.2.2 Alternative No. 2. Perform triplicate analyses of
the gases using Method 26 of appendix A to part 60 of this
chapter. Obtain gas mixtures with a manufacturer's tolerance not
to exceed ±5 percent of the tag value. Within 1 month of the
field test, analyze each of the calibration gases in triplicate
using Method 26 of appendix A to part 60 of this chapter. The
tester must follow all of the procedures in Method 26 (e.g., use
midget impingers, heated Pallflex TX40H175 filter (TFE-glass
mat), etc. if this analysis is performed. Citation 3 in section
13 of this method describes procedures and techniques that may be
used for this analysis. Record the results on a data sheet.
Each of the individual HC1 analytical results for each
calibration gas shall be within 5 percent (or 5 ppm, whichever is
greater) of the triplicate set average; otherwise, discard the
entire set and repeat the triplicate analyses. If the average of
the triplicate analyses is within 5 percent of the calibration
gas manufacturer's cylinder tag value, use the tag value;
otherwise, conduct at least three additional analyses until the
results of six consecutive runs agree within 5 percent (or 5 ppm,
whichever is greater) of the average. Then use this average for
the cylinder value.
7.3 Calibration Gas Dilution Systems. Sample flow rates of
approximately 15 L/min are typical for extractive HC1 measurement
systems. These flow rates coupled with response times of 15 to
30 minutes will result in consumption of large quantities of
calibration gases. The number of cylinders and amount of
calibration gas can be reduced by the use of a calibration gas
dilution system in accordance with Method 205 of appendix M to
part 51 of this chapter, "Verification of Gas Dilution Systems
for Field Instrument Calibrations." If this option is used, the
tester shall also introduce an undiluted calibration gas
approximating the effluent HCl concentration during the initial
calibration error test of the measurement system as a quality
assurance check.
8.0 Test System Performance Specifications
8.1 Analyzer Calibration Error. This error shall be less
than ±5 percent of the emission standard concentration or ±1
ppm,(whichever is greater) for zero, mid-, and high-range gases.
8.2 Sampling System Bias. This bias shall be less than
±7.5 percent of the emission standard concentration or ±1.5 ppm
(whichever is greater) for zero and mid-range gases.
8.3 Analyte Spike Recovery. This recovery shall be between
-------
70 to 130 percent of the expected concentration of spiked samples
calculated with the average of the before and after run spikes.
9.0 Sample Collection, Preservation, and Storage
9.1 Pretest. Perform the procedures of sections 9.1.1
through 9.1.3.3 of this method before measurement of emissions
(procedures in section 9.2 of this method). It is important to
note that after a regulator is placed on an HC1 gas cylinder
valve, the regulator should be purged with dry Na or dry
compressed air for approximately 10 min;i'"" VO^T-O initiating'"any
HC1 gas flow through the system. This purge is necessary to
remove any ambient water vapor from within the regulator and
calibration gas transport lines; the HC1 in the calibration gas
may react with this water vapor and increase system response
time. A purge of the system should also be performed at the
conclusion of a test day prior- to removing the regulator from the
gas cylinder. Although the regulator wetted parts are cor.rosion
resistant, this will reduce t ie possibility of corrosion *'"J "
developing within the regulator and extend the, life of the
equipment.
9.1.1 Measurement System Preparation. Assemble the
measurement system by following the manufacturer's written
instructions for preparing and preconditioning the gas analyzer ,^
and, as applicable, the other system components. Introduce the
calibration gases in any sequence, and make all necessary 'I
adjustments to calibrate the analyzer and the data recorder. If
necessary, adjust the instrument' fbrgc^e,;*^**-^!r ..oisture -.
content of the samples. Adjust system comj>oneiLta.vto achieve
correct sampling rates.
9.1.2 Analyzer Calibration Error^..^ Conduct the analyzer
calibration error check in the field by .introducing calibration
gases to the measurement system,at any point upstream of the gas
analyzer in accordance with sections 9.1.2, l.and^ .9.1.2,2 of this
method. '
9.1.2.1 After the measurement system,has been prepared for
use, introduce the zero, mid-range,...and,,high-range gases to the
analyzer. During this check, make "no adjustments to the system
except those necessary to achieve the correct, calibration gas
flow rate at the analyzer. Record the analyzer responses to each
calibration gas. Note: A calibration "curve established prior to
the analyzer calibration error check may be used to convert the
analyzer response to the equivalent gas.concentration introduced
to the analyzer. However, the same correction procedure shall be,
used for all effluent and calibration measurements obtained
during the test.
B.I.2.2 The analyzer calibration error check shall be
considered invalid if the difference in gas concentration
displayed by the analyzer and the concentration of the
calibration gas exceeds ±5 percent of the.^emission standard
concentration or ±1 ppm, (whichever is greater) for the zero,
mid-, or high-range calibration gases. If an invalid calibration
-------
is exhibited, cross-check or recertify the calibration gases,
take corrective action, and repeat the analyzer calibration error
check until acceptable performance is achieved.
9.1.3 Sampling System Bias Check. For nondilution
extractive systems, perform the sampling system bias check by
introducing calibration gases either at the probe inlet or at a
calibration valve installed at the outlet of the sampling probe.
For dilution systems, calibration gases for both the analyzer
calibration error check and the sampling system bias check must
be introduced prior to the point of sample dilution. For
dilution and nondilution systems, a zero gas and either a mid-
range or high-range gas (whichever more closely approximates the
effluent concentration) shall be used for the sampling system
bias check.
9.1.3.1 Introduce the upscale calibration gas, and record
the gas concentration displayed by the analyzer. Then introduce
zero gas, and record the gas concentration displayed by the
analyzer. During the sampling system bias check, operate the
system at the normal sampling rate, and make no adjustments to
the measurement system other than those necessary to achieve
proper calibration gas flow rates at the analyzer. Alternately
introduce the zero and upscale gases until a stable response is
achieved. The tester shall determine the measurement system
response time by observing the times required to achieve a stable
response for both the zero and upscale gases. Note the longer of
the two times and note the time required for the measurement
system to reach 95 percent of the step change in the effluent
concentration as the response time.
9.1.3.2 For nondilution systems, where the analyzer
calibration error test is performed by introducing gases directly
to the analyzer, the sampling system bias check shall be
considered invalid if the difference between the gas
concentrations displayed by the measurement system for the
sampling system bias check and the known gas concentration
standard exceeds ±7.5 percent of the emission standard or ±1.5
ppm, (whichever is greater) for either the zero or the upscale
calibration gases. If an invalid calibration is exhibited, take
corrective action, and repeat the sampling system bias check
until acceptable performance is achieved. If adjustment to the
analyzer is required, first repeat the analyzer calibration error
check, then repeat the sampling system bias check.
9.1.3.3 For dilution systems (and nondilution systems where
all calibration gases are introduced at the probe), the
comparison of the analyzer calibration error results and sampling
system bias check results is not meaningful. For these systems,
the sampling system bias check shall be considered invalid if the
difference between the gas concentrations displayed by the
analyzer and the actual gas concentrations exceed ±7.5 percent of
the emission standard or ±1.5 ppm, (whichever is greater) for
either the zero or the upscale calibration gases. If an invalid
-------
calibration is exhibited, take corrective action, and repeat the
sampling system bias check until acceptable performance is
achieved. If adjustment to the analyzer is required, first
repeat the analyzer calibration error check. • ; :
9.2 Emission Test Procedures
9.2.1 Selection of Sampling Site and Sampling Points.
Select a measurement site and sampling points using the same
criteria that are applicable to Method 26 of appendix A to part
60 of this chapter.
;
.- - *• •-
9.2.2 Sample Collection. Position the sampling probe at
the first measurement point, and begin sampling at the same rate
as used during the sampling system bias check. Maintain constant
rate sampling (i.e., ±10 percent) during the entire run. Field
test experience has shown that conditioning of the sample system
is necessary for approximately 1-hour prior to conducting the
first sample run. This conditioning period should, be repeated
after particulate filters are replaced and at the beginning of
each new day or following any period when the .sampling system is
inoperative. Experience has also shown that prior to adequate
conditioning of the system, the response to analyte spikes and/or
the change from an upscale calibration gas to a representative
effluent measurement may be delayed by more than twice the normal
measurement system response time. It is recommended that the
analyte spikes (see section 9.3 of this method) be performed to
determine if the system is adequately* conditioned. The sampling .
system is ready for use when the time^neifCkxxt=u 2^j. che
measurement system to equilibrate after a change, from a
representative effluent measurement to a representative spiked
sample measurement approximates the calibration gas response time
observed in section 9.1.3.1 of this method.
9.2.3 Sample Duration. After completing,, the sampling
system bias checks and analyte spikes prior to a-. ±eat run,
constant rate sampling of the effluent should begin. For each
run, use only those measurements obtained after all residual
response to calibration standards or, 'spikes are eliminated and
representative effluent measurements are displayed to determine
the average effluent concentration. At a, minimum, this requires
that the response time of the measurement 'system has elapsed
before data are recorded for calculation of the average effluent
concentration. Sampling should be continuous for the duration of
the test run. The length of data collection should be at least
as long as required for sample collection ^y Method 26. of part 60
of this chapter. One hour sampling runs using this method have
provided reliable data for cement kilns.
9.2.4 Validation of Runs. Before and after each run, or if
adjustments are necessary for the measurement system during the
run, repeat the sampling system bias check procedttre described in
section 9.1.3 of this method. (Make no adjustments to the
measurement system until after the drift checks are completed.)
-------
Record the analyzer's responses.
9.2.4.1 If the post-run sampling system bias for either the
zero or upscale calibration gas exceeds the sampling system bias
specification, then the run is considered invalid. Take
corrective action, and repeat both the analyzer calibration error
check procedure (section 9.1.2 of this method) and the sampling
system bias check procedure (section 9.1.3 of this method) before
repeating the run. ,
9.2.4.2 If the post-run sampling system bias for both the
zero and upscale calibration gas are within the sampling system
bias specification, then construct two 2-point straight lines,
one using the pre-run zero and upscale check values and the other
using the post-run zero and upscale check values. Use the slopes
and y-intercepts of the two lines to calculate the gas
concentration for the run in accordance with equation 1 of this
method.
9.3 Analyte Spiking—Self-Validating Procedure. Use analyte
spiking to verify the effectiveness of the sampling system for
the target compounds in the actual kiln gas matrix. Quality
assurance (QA) spiking should be performed before and after each
sample run. The spikes may be performed following the sampling
system bias checks (zero and mid-range system calibrations)
before each run in a series and also after the last run. The HC1
spike recovery should be within ±30 percent as calculated using
equations 1 and 2 of this method. Two general approaches are
applicable for the use of analyte spiking to validate a GFC HC1
measurement system: (1) two independent measurement systems can
be operated concurrently with analyte spikes introduced to one of
the systems, or (2) a single measurement system can be used to
analyze consecutively, spiked and unspiked samples in an
alternating fashion. The two-system approach is similar to
Method 301 of this appendix and the Ipeasurement bias is
determined from the difference in the paired concurrent
measurements relative to the amount of HC1 spike added to the
spiked system. The two-system approach must employ identical
sampling systems and analyzers and both measurement systems
should be calibrated using the same mid- and high-range
calibration standards. The two-system approach should be largely
unaffected by temporal variations in the effluent concentrations
if both measurement systems achieve the same calibration
responses and both systems have the same response times. (See
Method 301 of this appendix for appropriate calculation
procedures.) The single measurement system approach is
applicable when the concentration of HC1 in the source does not
vary substantially during the period of the test. Since the
approach depends on the comparison of consecutive spiked and
unspiked samples, temporal variations in the effluent HC1
concentrations will introduce errors in determining the expected
concentration of the spiked samples. If the effluent HC1
concentrations vary by more than ±10 percent (or ±5 ppm,
-------
whichever is greater) during the time required to obtain and
equilibrate a new sample (system response time), it may be
necessary to: (1) use a dual sampling system approach, ,!..'"
(2) postpone testing until stable emission concentrations are
achieved, (3) switch to the two-system approach [if possible] or,
(4) rely on alternative QA/QC procedures. The dual-sampling
system alternative uses two sampling lines to convey sample"' to
the gas distribution manifold. One of yth.st,.sample lines is used
to continuously extract unspiked kiln g* r»'"*
-------
introduction into the sample matrix to prevent a localized
condensation of the gas stream at the spike introduction point.
A heated sample transport line(s) containing multiple transport
tubes within the heated bundle may be used to spike gas up
through the sampling system to the spike introduction point. Use
a calibrated flow device (e.g., mass flow meter/controller) to
monitor the spike flow rate. Use a calibrated flow device (e.g.,
rotameter, mass flow meter, orifice meter, or other method) to
monitor the total sample flow rate. Calculate the spike ratio
from the measurements of spike flow and total flow. (See
equation 2 and 3 in section 10.2 of this method.)
9.3.3 Analyte Spiking. Determine the approximate effluent
HC1 concentrations by examination of preliminary samples. For
single-system approaches, determine whether the HC1 concentration
varies significantly with time by comparing consecutive samples
for the period of time corresponding to at least twice the system
response time. (For analyzers without sample averaging, estimate
average values for two to five minute periods by observing the
instrument display or data recorder output.) If the concentration
of the individual samples varies by more than ±10 percent
relative to the mean value or ±5 ppm, (whichever is greater), an
alternate approach may be needed.
9.3.3.1 Adjust the spike flow rate to the appropriate level
relative to the total flow by metering spike gas through a
calibrated mass flow meter or controller. Allow spike flow to
equilibrate within the sampling system for at least the
measurement system response time and a steady response to the
spike gas is observed before recording response to the spiked gas
sample. Next, terminate the spike gas flow and allow the
measurement system to sample only the effluent. After the
measurement system response time has elapsed and representative
effluent measurements are obtained, record the effluent unspiked
concentration. Immediately calculate the spike recovery.
9.3.3.2 If the spike recovery is not within acceptable
limits and a change in the effluent concentration is suspected as
the cause for exceeding the recovery limit, repeat the analyte
spike procedure without making any adjustments to the analyzer or
sampling system. If the second spike recovery falls within the
recovery limits, disregard the first attempt and record the
results of the second spike.
9.3.3.3 Analyte spikes must be performed before and after
each test run. Sampling system bias checks must also be
performed before and after each test run. Depending on the
particular sampling strategy and other constraints, it may be
necessary to compare effluent data either immediately before or
immediately after the spike sample to determine the spike
recovery. Either method is acceptable provided a consistent
approach is used for the test program. The average spike
recovery for the pre- and post-run spikes shall be used to
determine if spike recovery is between 70 and 130 percent.
-------
10.0 Data Analysis and Emission Calculations
The average gas effluent concentration is determined from
the average gas concentration displayed by the gas analyzer and
is adjusted for the zero and upscale sampling system bias checks,
as determined in accordance with section 9.2.3 of this method.
The average gas concentration displayed by the analyzer may be
determined by integration of the area under the curve for chart
recorders, or by averaging all of the effluent measurements.
Alternatively, the average may be calcu,3,^**»H fmw
recorded at equally spaced intervals over cue eacire duration of
the run. For sampling run durations of less than 1-hour, average
measurements at 2-minute intervals or less, shall be used. For
sampling run durations greater than labour, measurements at 2--
minute intervals or a minimum of 96 measurements, whichever is
less restrictive, shall be used. Calculate the effluent gas
concentration using equation 1.
"',: :•'"
,*iv)
-------
Qr = Total sample flow rate {effluent sample flow plus
spike flow).
S0 = Native concentration of HC1 in unspiked effluent
samples.
Acceptable recoveries for analyte spiking are ±30 percent.
11.0 Pollution Prevention
Gas extracted from the source and analyzed or vented from
the system manifold shall be either scrubbed/ exhausted back into
the stack, or discharged into the atmosphere where suitable
dilution can occur to prevent harm to personnel health and
welfare or plant or personal property.
12.0 Waste Management
Gas standards of HC1 are handled as according to the
instructions enclosed with the materials, safety data sheets.
13.0 References
1. Peeler/ J.W./ Summary Letter Report to Ann Dougherty/
Portland Cement Association/ June 20, 1996.
2. Test Protocol, Determination of Hydrogen Chloride
Emissions from Cement Kilns (Instrumental Analyzer Procedure)
Revision 4; June 20, 1996.
3. Westlin, Peter R. and John W. Brown. Methods for
Collecting and Analyzing Gas Cylinder Samples. Source Evaluation
Society Newsletter. 1(3):5-15. September 1978.
-------
APPENDIX H
PROJECT PARTICIPANTS
-------
PROJECT PARTICIPANTS
Affiliation
USEPA
Pacific Environmental Services,
Inc.
Atlantic Technical Services
(PES Subcontractor)
APCC, Ltd.
(PES Subcontractor)
Research Triangle Institute
(EPA/ESD Contractor)
Name
Joe Wood, BSD
Michael L. Toney, EMC
Franklin Meadows
Michael D. Maret
Gary Gay
Paul Siegel
Troy Abernathy
Emil Stewart
Aaron R. Christie
Peter Day
Cybele M. Brockmann
Responsibility
Environmental Engineer
Work Assignment Manager
Project Manager
Field Team Leader
Site Leader/Console Operator
Sampling Technician
Sample Recovery
Data Reduction
CEM Team Leader
CEM Sampling Technician
Process Coordinator
-------
TECHNICAL REPORT DATA
• • '• Please read instructions on the reverse before completing
1. REPORT NO. 2.
EPA-454/R-00-032
4. TITLE AND SUBTITLE
Final Report
Manual and Continuous Emissions Testing
Kiln No. 3 Scrubber Stack
Huron Lime
Huron, Ohio
7. AUTHOR(S)
Franklin Meadows
Emil W. Stewart
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Pacific Environmental Services, Inc.
Post Office Box 12077
Research Triangle Park, North Carolina 27709-2077
12. SPONSORING AGENCY NAME ANB ABDRESS
U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Emissions, Monitoring and Analysis Division
Research Triangle Park, North Carolina 2771 1
3. RECIPIENT'S ACCESSION NO.
5. REPORT DATE
July 2000
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-D-98004
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
EPA/200/04
15. SUPPLEMENTARY NOTES
16. ABSTRACT
The United States Environmental Protection Agency (EPA) Emission Standards Division (BSD) is investigating the lime manufacturing industry to
identify and quantify hazardous air pollutants (HAPs) emitted from lime kilns. ESD requested that EPA's Emissions, Monitoring and Analysis Division
(EMAD) conduct the required testing. EMAD issued a work assignment to Pacific Environmental Services, Inc. (PES) to conduct a "screening" test to
collect air emissions data as specified in the ESD test request. The primary objective of the testing program was to characterize HAP emissions from a
rotary lime kiln located at the Huron Lime Company's Huron, Ohio facility. Based on the pollutant concentrations and emissionrates calculated from the
results of the screening tests, the kiln may be selected by EPA for further testing.
The tests were conducted to quantify the controlled air emissions of polychlorinated dibenzo-p-dioxins and polyclorinated dibenzofurans
(PCDDs/PCDFs) from the Kiln No. 3 scrubber stack. Concurrent with the PCDDs/PCDFs testing, sampling was conducted at the stack breeching to
determine concentrations of oxygen (O2), carbon dioxide (CO2), and total hydrocarbons (THC).
During the testing program another EPA contractor monitored and recofded^process and emission control system operating parameters.
*•> ^
This report consists of one volume totaling 440 pages.
17.
a. DESCRIPTIONS
Dioxins/Furans
Hazardous Air Pollutants
Total Hydrocarbons
Wet Scrubber
18. DISTRIBUTION STATEMENT
Unlimited
KEY WORDS AND DOCUMENT ANALYSIS
b. IDENTIFIERS/OPEN ENDED TERMS
19. SECURITY CLASS (This Report)
Unclassified
20. SECURITY CLASS (This page)
Unclassified
c. COASTI Field/Group
21. NO. OF PAGES
440
22. PRICE
EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE
F:\U\FMeadows\TRD.Frm\WP 6.1
------- |