-------
f
f
f
r
<
f
r
r
c
t
i
• r
c
r
c.
r
I U:H:K
1C
- Ifl
"« RESET IWHtt 11 84:81 24 J> PflH
«« (S50 (NRffiE, 11 M «li 23 18)? RU
**• RESET HVEBKE 11 84:81 22 14 2
STRTS HT iif0e:56
ST . I IffiM PT M
*** i_o ORP
UMTS . ST !
40 SEP 62.
PT .MT> mm ST
24 a ''
«** «Egr MEMEJ W:4»:W) $' »
»*• RESET (MH«4 t«:«:9i 22 119
F'lT
0 PPM
0 PCT
-------
I-
o
0.
O
10
N
n." -" -._-!:..- -. -.
r>l " - "
O
o
nr_-7-:-ir_T^r:. ... -
^;::-^--M_V._ '
GL=Z- __:--.-. r^-. ..
5=_ -- -.g— .-||§ _-
-•- - - —
... . —
Iff " • .!_".."_ "_ '~
. , — . • IF 1 f _L
.s~-j>~-~^~-~r**^y*f- S- •*•-. tfc £ . ^r-T
.. f** - - -- - *4 --
" '"" ii ^«_J U
Q t ** ^ *
_ i «r> ^t ^ ±
^_^_^-^____~^-^T '»~:r.v.a'ij "a: _^-_
.in,-.- , . !__ - ^i. ^_ • -
'- S- «^«
• -• I 1 1 i
o • .. •' - --
f s
L (L
O 0
•--•-<••- • § -
' M . rH
-: _r
J5w oS A ** ^J
. ../^r^V-, -—^—^ ff 5 r» 5 J*-^. — x-
•""ia ' 8 - • J w
- CD |_ v- Si
- « - - - S g^ o
S - if! M
-".-«•- .. - 0
CM
_J^|^it2ti
^W-v.Vifit*.^
-------
90.: 0 100., 0 PPM
0 PCT
330.0 PPM
-------
NO RLRRMS PRESENT + * «• UNIT 01
*»* .STRPTS RT 12.42.10 *;* * ENC'i> RT 12:42.10 b>EP' 0i.
1 . el '
98 ***
"' ;:j I .
, |
LOG QRP 1 *** UNIT
. *** STRRTS. RT 12:40:24. *** ENDS flT 12:40:22 SEP 02,98 ***
IP**
,«1
PW
42 2171 PCT
7\ •*
|IJ-2
12! 3
' I ' •
PCT;
is;
OE
^m "w CT i t£mp
! 5
,
*** ubp
i 2O. 0 i Ji 22!
" r T^^sX
i ' i '
| , ' | ' • I ' ' ! ' I ' | ' , ! ! | 1
Rp .i|**» UN1T.01 I **•* STRRTS, rtT 12:37:2[7 **t ENDS flT ; 12: 37:20 jSEP 62, 9fi( ***
.q" i tflaJ , PT MOT HUTS! sir ' MEP4' . .PT mm UNITS tr: I icoc* ^f-ityL WITS sr ! jjge
—Jl >*<*fn • •' ! »—i —-=—*—-j—rTT ^ . ' „ ; _ i „, . ..v, r^: i
-------
ir.
-Sif
' Jfc- *'!
i ' *?.-* • ,
S *ii •'-
j ! ;rf.CS
5, n
lOi O
K
I
1J:.
7
j,
ir. •?
r"<~n i?
rV.T
i i '
70J0
«*« KSET WOMB 13:95 te 24 4€
•** RESET flVEKMX 13 «:9t 23 II
;B.W 22, 15
ifel*' 21 ;*
i:|
w4 ncfl*
d rty ocfk
11 *f..:i|.*T j.t,
I'M1 j! tOJI* <||
' I!;:,:| ' "
I • ! . ( ' i i
-H:
: I , • I , , '
•' 183. J0 ! 1140.
1 '• '•• •;;<;
• I 175.!
0
i I
. I 21i
I '
I
!•.,1 . I |: i :
9 ; i j '243.6, ; ' 289.
3*3.10 ' ' I '3,30.
0 PPM
i.!0 , j 100.10 PPM
TD*
LOO ORP 1 **^ UNIT 01 *** STflRTS RT 12[45:54 **-j« ENDS HT 12:45:53 SEP 02/9€J ***;
fT mm miiM v , uuun
i«l 11 fW ' Hi
1 !
1 i
1
~f 'r-™ r
ri mm mii> ji i
92 2t t KT Oi
, i — - «~
! i
1 r *. f-t-
u^uw
*~ **a
.-Ui-
^rj^^^iinMf
j « -. J •
.!:..._ -,4
t
«"'•» >!- n^y aeMriux — L«
KTl Cp2 ' «£•« 3f^ 1
1 1 r^m^^^r
i_; ^_ | ~ —\
! i i ;
"<'f . r".
fH
(
J
UJ«Jf>
*e
1 ,
LOO
, i . , . I i '
QRP 1 *** UNIT 01 *** STRRTS RT 12:43:01 *** ENDS RT.12:: 43:01 SEP 02,98 ***'
K-Jgg-_HilBi-JI
•S~i.4- mi
fT
HDL
*
«r
|PT
w-.z rcr
OK
•PT MT»
•4 214
Mil WITS 5T
•#*i« NO flLflRMS PRESENT +** UNIT 01 '»*•»• .STRRTS OT 12:4^:10 *** ENDS ftT l!2:42:10 SEP 02,98 ***
-------
r
r
r
r
i
IB
Ifi
-1C
-541
•M
ff-f-M*e.
0 Bi '
0. «
ml"
Sk
• n
•fe
•i!S
15. !
i. I
O
i •** as* mEWsq c
101
0:4».83J j 24 8.
14:48:8} 23 1
100-t O PPM
1 ; HP
. :«*«£SgrfNdWet3!48:83| 22 12«i DC
I : «*»l!£SETmS*t 13.48:81 d 11,2 PIJH
. I • , ! • : i ' ' '
.114 «r • '!. o»f«|; ;
_, • .. ' i j... t i
,15
I JUW ^_^ H*. • "^
, . ncffi;.;' ! i •« |
02 (M
a ! • 17
5| . 1 i
10.'0
60.
THCfffc
, I
i I
20.10 ' 30., 0 . 40.10 30.,
! i «** Ksqi MSMZ! 13:28.K{ 24 4 4 PP.
; ' ««• BESET flVWtt 12284 22 1*9 Pl}r
; M* KS^I (WWR! 13:28.82J 22 15,'8 PCT 0?(W
' *•« REiT WEHtt 12.28 82 21 ?'l Pl)«
I
i ;
iO j 22J 5 i 2p 0 PCT
I l ' *
I '
'
I .
, 9 • ' \ 319.10 ! 350.
e PPM
90.10 100J0 PPM
i i
Mato
-------
r
CL
-------
-1R
- 1C
•«* RESET fNBKOL 15 95 82 24 6 6 PHI
•*• PtbET rtVEHtt H * W 23 1J 4 PH
i . . I
C02HW
(tt(MJ
NO.WG
.ti**^-
.
!80. 0 I 90. 0 ' 100.J 0 PPM
22J 5 ! 2)5l 0 PCT
0.
79. 0
j— • »—.-__ i ;
105.0 140. 0/ 175.0 2101J0 245.0 280.0 315., 0 350.0 PPM
«** fCET flSTOGE 14.]0 8ft 24 4 5 PPK THC flyG
•*» ffSET AVERfiGE 14.3« 9» 23 1»6 NT C02 *G
™ KTCI atctctx u <« M 22 15.1 PCT 02 WB
-------
E
QL
0.'
Si
In
e
'in
M.
8
O
o
in
IT
TT
If'"
~ IT"
«t -
4
.:^
•. rt
0
*
"
-------
Udd O
' ! : 'dree i e,-es i
e Kit !' , a
ftV) ZOD
lid :>l ZZ »« K « JflBfliW aSK »«
lid 9 IT Ci «i:ef ST HKS1* 1353S •«
-------
lit* 12 fe it !>1 ZWQW115) •»
SI 2 « a 91 3«fiQW
ill JZ te St 91 3£*fl-* 1353S
Ud «f'K'S8K91 Jfll«3*« 1353*
-tn
-------
Mdd 0
J.0d &
•M md C j<» */ zrc i*M *"»LL-£*
"aSSf Is~iilm 9*1 If 3®fi if^pli w
i i
iiM C_; JSf
: IS 5JIW) TJ.W "H
™ !i*«cT»"^
J5~"SlINft WW id
*** 86'ee das ^^:6G:^T.J.y SONS *** T3:ee:9T iy sj.yoj.s *** TO UNO *** T d«D 001 ***
f y sqNa ***
'
• . , _
«xm •! is sum
IO SSI is
98-16 it
OT
•*« ;
>*jwo;
ifei
Ot-^
-------
IB
•«* SEEEI flVEKflGE, 17 55 81- « i 4 «f
«« RESET flVERWE 17 55:81 23-2 P^T
«* KSET AVERAGE 17:55 81{ 22 li PC
•«« RESET HVttflGE 17 35:81 21 If 2
THCfffC
C02RVC
02 WJ
HCLAVO
II \~
!*** LOG dRP 1 *** UNIT 01 . *** STflRTS OT 17} 54.18 **4< END? flT J17:54 . 21 !SEP 02/ 9Sl
'.^Ih'^l ' • ' ' ' ' ' . I ' i ' • i 1 i _i I !
fr-"»iHV u(ns| .sr -: JgiB» fv WB tfiis si j xfew |PT mn>.' 'mtrj; ?r tg&> : IPT MTB UHIT^ sr |
at TA -tT eat I LM ar> i I rtrr n& . ! i •?! _ o i orr i dn ' I bj • 'ai MM! i
JSQP-
«« KES^T AVERRGG 17:25: Bit 24 3 9 PPM
•*» REST KVEKACE 17:23:91 23 7.? P?T
»« RESET fNOSBB 17:25 W 22 93 PtT
*** RESET IWOWE 17 25:98 21 7:5 rttt
I J
r
si; \\
20,
30.
•»*. e
50.' 0
THCAK
C02IW
02 WO
HCLM
. e
9 PPM
0 PCT
350.! 0 PPM
?<&.'. 0
80.
PPM
-------
•o
0
1
-------
J.Od 0 'S
wdd e
Hdd 0
3WON) 1Z» **»
13S» ««
39MH/K 13S3H
3MBW ISX ••»
'I :
Si—.+-.--J
IS SlINTl HIW Id' 00971 ' IS filHTi »1W Id;
t
i
t
J
J
J
-------
1
1 ' ***: PRIMTER OFF ±9.39158 SEP 02,98 *** :
v : « • i ' • !
' ,*** LOG QRP 1 *** UNIT 01 *** STRRTS flT 19:38:30 *** ENDS RT 19 : 38 : 51 SEP 02, 98, *** '
< i, ' .-.«• ~ .rrcut PT JOML IHK CT 1 LH»* xHlf- WTU WITS ST HOW 'PT Dffl» WITS ST ' l£S» _L
t
I
*4
r
i
r
-1C 0.
0
83
i
. 18 0
83
Ifl t.
•' > \ '
1 i ; ,
*«•* LOO 0RP 1 *** (UNIT ,01 *** STR
4. 33- ® ! 70. 0 ' j 103.10, 140.
"V . ,".:: ; : 1 •-
+dri7h-^F. — K-:. i T*~ I- '• "•
PS> J i •' • : ! ;.,-,::'
v-f^ ' • :,•!,-'•,, i i
, • 1 :**S£dT'flWHSl9:2?:i3
. • . • ! j ***•«£ :T(IVWC : 19:»|8
. ' ' ' • i «4 R£H 1 flKJVQ 19:25 B3
, : . »*« RESEl flVWC^ U:25;8
B^ J! 10. 0 20J 0 30. 0 .40.
, • t
^ i
If i . , ; ' ; ;, •
1 ' ! '
£«*]' zi's : r-i0 7:5 ; 10
1 ~ 1 ; ' ,
1 ! »«» FESfl flVEIWCE 19 19 B3
i »** KIT SVBWE 19 18 8
i •»» ROT fhOWGE 19 1* 83
^^ nr,-rr alCWiTr la Id A
? ; I 1 B it 3 * • '3)2 ; 84 . 7 . Pftt; 1JC ,
I \jV^_U-^ , i , J j i
' i ' (ffetrrr^z^^^ ! ! ' :
;' • i i . • i : i :
?TS flT 19i34:eQ **f E^4DS RT 19 : 34 : 07 |SEP 02,98) ***
' il i ' '
L£Goi xff MM jllfUTJ Jt UCDJ) ,PT MT 1 • WITJ ST| IftDI)
il-fS^^-'^-v ^^
; , • • • i • : • i ' : • ' ' :
i ' ! ' ' • 1
;- ; '',.•'•;. ! • i .. i ;
•' .! • ' • ," : • ',•'• i
1 ! ' • i . '••'"• i • i '
i ; . • j ' ' ' : . | : . ' ; • : i ' i ; . ! , ! ! • ! ' , . ' '' ' , ' ; ' ;
'34; ;i: ' i PPI( . . ' i THCWS i i j • M '*H I . i ; ! ' i ' I 1 ' • ' : t
•& ."si : ' !rc ' • • ; oz(4 1 ' ' i • •"• ' ' : i ; . '
: a i| I ! 'PJH,' ; ' . ,' «X Wl ! . *?•'.,'• > ' '
O: 50J0 ! 60.0 '' 70.;© '! 80.0 • 9O...0 100.0 PPM
; i ' !
: ; ! ! i ;
* 1 *
i • !: •: " •. ' '• ' '
•|:i •.'••.:.;•• ;i ' • ; I
It j • , • ,•;'•: • • '
O 1 12! 5 ! 15) 0 , i ; ' 17 5 ; • 1 • ' 20| P, '• 22| 5 25j 0 PCT
! • ' ' i i, • ' • ' ' '
III
1 1 ,
24 - 3 Fffl THC WC *«| ' : ;
J S 1L1 FtT C02*13 «*f , ' '
< 22 11. 3 PCT 02 WO «-i ' .
3 x a R m Ha aw *«
-------
APPENDIX B
METHOD 23 LABORATORY ANALYTICAL DATA
,- • !
'-• ?-%"L. -'
'• #&' i- •
-------
Summary of Method 23 Analytical Results
Air Emissions Screening Test
National Lime & Stone Company - Carey, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 Scrubber Inlet - Run M23-I-4
Congeners
DIOXINS:
2378 TCDD
Total TCDD
12378PeCDD
Total PeCDD
123478 HxCDD
1 23678 HxCDD
123789 HxCDD
Total HxCDD
1 234678 HpCDD
Total HpCDD
1 2346789 OCDD
OCDD+Totals PCDDs
Catches, ng/sample
Back Half
0.0142
1.1926
0.0118
0.2984
0.0063
0.0056
0.0144
0.3284
0.0422
0.0784
0.0798
1.978
Front Half
ND
0.0032
0.0008
0.0128
0.0010
0.0021
0.0034
0.0400
0.0118
0.0212
{0.0160}
{0.0932}
Total
0.0142
1.1958
0.0126
0.3112
0.0073
0.0078
0.0178
0.3684
0.0539
0.0996
{0.0958}
{2.071}
FURANS:
2378 TCDF
Total TCDF
12378PeCDF
23478 PeCDF
Total PeCDF
1 23478 HxCDF
1 23678 HxCDF
234678 HxCDF
123789 HxCDF
Total HxCDF
1234678 HpCDF
1 234789 HpCDF
Total HpCDF
12346789 OCDF
OCDF+Totals PCDFs
Total of Totals
0.2202
15.3752
0.1556
0.1596
3.3196
0.1270
0.0570
0.0270
0.0050
0.4956
0.1095
0.0169
0.1612
0.0348
19.386
21.364
0.0062
0.2308
{0.0074}
0.0098
0.1120
0.0166
0.0078
0.0072
ND
0.0548
0.0256
{0.0037}
0.0284
0.0121
0.4381
{0.5313}
0.2264
15.6060
{0.1630}
0.1695
3.4316
0.1436
0.0648
0.0342
0.0050
0.5504
0.1351
{0.0206}
0.1896
0.0469
19.825
{21.895}
ND Not Detected. When both fractions are ND, the greater detection limit is used
and is enclosed in parentheses (); otherwise, ND's are zero in calculating totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
ooo
-------
30 SEP 98
PARADIGM ANALYTICAL LABORATORIES, INC.
2627 Northchase Parkway S.E.
Wilmington, North Carolina 28405
(910) 350-1903
Fax (910) 350-1557
Michael Maret
Pacific Environmental Services, Inc.
5001 S. Miami Blvd
Research Triangle Park, NC 27709-2077
Contract 68D70002
Sub-Contract RO12-002
Work Assignment. 1-007
Subject: Polychlorinated Dibenzo-/?-Dioxins & Dibenzofurans Measurements (PAL Project No. L-l 115)
Dear Mike;
Enclosed are the final results for the flue gas samples under your Project S509.000 Ohio Lime
Kiln. As you requested, we divided up the set of 15 samples into three separate projects (L-l 113, L-l 114,
and L-l 115; see Table 1 for a summary). This report covers the first set under PAL L-l 115. The analytical
procedures conformed or exceeded the ones described in Method 23 using isotope-dilution high-resolution
gas chromatography combined with high-resolution mass spectrometry. The Level II reporting format is
described on the next page. A general summary of the analytical results is presented in Tables 2 (when
applicable, the train results are provided exclusive of the front-half data) and 3 (when applicable, the train
results include the front-half data). Tables 4 and 5 summarize the results for the front-halve of the
three inlet samples, expressed in absolute amount "ng" per sample, and in relative concentrations
"part-per-trillion" based on the weight of dust collected. Figures land 2 show the TEQs and total
homologues corresponding to Tables 2 data.
No. of Samples Received: 3
No. of Samples Analyzed: 4
No. of Lab. Method Blanks: 1
Your Project Number: S509.000 Ohio Lime Kiln
PAL Project No.: L-l 115
Remarks:
• Data meet QA'QC requirements.
• No analytical difficulties to be reported.
• The FH of sample M23-I-4 contains 20.6 g of dust, and was processed as separate sample, i.e., M23-
I-4-FH. The results are reported in two ways:
a) Absolute amount in "ng" per sample,
b) Relative concentration in parts-per-trillion (ppt) based on the weight of dust.
• The HxCDD sampling standard recovery in sample M23-I-4 is above the 130 percent level, i.e., 132
percent) while the HpCDF sampling standard recovery is below the 70 percent limit (i.e., 69
percent) in sample M23-FB-4. Similar observations were made in the LIMB. We believe these
observations originate from a variation in the response factors and should not affect the reported
amounts of HiCDDs and HpCDFs in the sample.
We wanted to thank you for the opportunity to serve you. Please, feel free to contact us if you
have questions or should you need additional technical support.
Sincerely,
ft
Yves Tondeur, Ph.D.
CC < 001
North Ca Wastewater Certification #481
-------
Level II Report
Section 1: Cover Letter, contains a brief description of the project, the client and PAL Project
Numbers, the number and type of samples, the methodology used to process the
samples, QC remarks where any analytical difficulties are discussed and the impact on
the quality of the data presented, a summary table with the analyte concentrations,
detection limits, the client sample identification numbers, units to report the
concentrations, and a graphical representation of the TEQs and totals.
Section 2: Project Synopsis, contains the Sample Tracking & Management Forms,
Communications Form, any correspondence, chain-of-custody and the last page is
always a copy of the sample injection log(s). This section is designed to help the
laboratory and the data reviewer with an overall view of the entire analytical
procedure, the initials and dates of who did what when on which sample. Spiking
solution IDs are recorded along with the batch numbers of the supplies and reagents
used.
Section 3: Analytical Results, contains the sample results topsheets (one set of two per sample),
the raw data (i.e., the selected ion current profiles, the areas, heights, ion abundance
ratios, signal-to-noise ratios, and retention times of the GC peaks).
Section 4: System Performance, contains the documentation on the GC/MS system performance.
In particular, the mass resolution checks, GC column performance checks, initial and
continuing calibration summary tables and, when applicable, associated raw data for
both column types.
C( ( 002
-------
Table 1: Project No. S509.000; Project Name: US EPA Lime Kiln Screening, OhioLime;
Sample and Project Identifications.
PES Sample ID PAL Sample ID PAL Project No.
M23-I-1 1113-1 L-1113
M23-0-1 1113-3 L-1113
M23-FB-1 1113-5 L-1113
M23-PJB ' 1113-7 L-1113
M23-I-1-FH 1113-8 L-1113
M23-I-2 1113-2 L-1113
M23-0-2 1113-4 L-1113
M23-FB-2 1113-6 L-1113
M23-I-2-FH 1113-9 L-1113
M23-O-3 1114-1 L-1114
M23-FB-3 1114-2 L-1114
M23-I-4 1115-1 L-1115
M23-O-4 1115-2 L-1115
M23-FB-4 1115-3 L-1115
M23-I-4-FH 1115-4 L-1115
003
-------
Table 2: Analyte Concentrations in "ng" per Samplin
(Exclusive of the Front-Half Data for M23-I
Analvte 1 T-
,sr™, „,,„.*,, us*,, ,-^fcj
- ... ,^%fv/iift;5§
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF*
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fs"
TEQ (ND=0)C
TEQ (ND=l/2)d
TEQ EMPC(ND=0)e
TEQ EMPC (ND=l/2)
(0.001)
0.002
[0.0018]
0.002
[0.0018]
[0.00208]
(0.010)
(0.002)
0.002
[0.00204]
[0.00156]
[0.00132]
[0.00128]
[0.00184]
[0.00296]
(0.003)
(0.004)
(0.001)
0.002
0.002
[0.002]
(0.002)
0.002
[0.006]
[0.0052]
0.006
0.001
0.002
0.003
0.004
0.014 f_
0.012 ( *
0.006 ^
0.006
0.014
0.042
0.080
0.220
0.156
0.160
0.127
0.057
0.027
0.005
0.109
0.017
0.035
1.193
0.298
0.328
0.078
15.375
3.320
0.496
0.161
21.364
0.156
0.156
0.156
0.156
' \s V \JS i
fa fa
wtiwp -
' /WlW tb
u.uvt
0.007
0.018
0.036
0.113
0.051
0.046
0.038
0.015
0.009
(0.001)
0.033
0.004
[0.01032]
0.814
0.132
0.143
0.037
11.004
1.242
0.143
0.042
13.592
0.066
0.066
0.066
0.066
f] {A !)
V (A 0)
*-»$M 'D
v. )i)
(0.001)
0.004
[0.01284]
(0.002)
(0.001)
(0.001)
(0.001)
(0.000)
(0.001)
(0.001)
[0.0036]
(0.001)
(0.002)
0.002
[0.0028]
0.001
0.008
(0.002)
(0.001)
0.001
[0.0036]
0.012
0.000
0.001
0.000
0.001
a) Result obtained from the DB-225 analysis.
b) Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dibenzofurans.
c) TEQ computed using ITEF and setting non detected analytes with a "Zero" concentration.
d) TEQ computed using ITEF and setting non detected analytes with a concentration half the
calculated detection limit.
e) TEQ computed using ITEF and setting the concentration of EMPC analytes to the EMPC value.
NOTE:
() = ND using DL value.
[ ] = EMPC value.
Q< ' 004
-------
Table 3: Analyte Concentrations in "ng" per Sampling Train
(Include the Front-Half Data for M23-I-4.)
"~-':~r^W"f'^"'f': ; 4
2,3,7,8-TCDD
1 ,2,3,7 ,8-PeCDD
1,2,3,4,7,8-HxCDD
1 ,2,3,6,7 ,8-HxCDD
1 ,2,3,7 ,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF'
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1 ,2,3,4 ,7,8-HxCDF
1, 2,3,6,7 ,8-HxCDF
2,3,4,6,7,8-HxCDF
1, 2,3,7 ,8,9-HxCDF
1, 2,3,4,6,7 ,8-HpCDF
1,2 ,3,4,7 ,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fs"
TEQ (ND=0)C
TEQ(ND=l/2)'1
TEQ EMPC(ND=0)'
TEQ EMPC (ND=l/2)
r?" ''-r&SidP^PIPS
•., ^ .--^ss^fjN^iisisa
0.0142
0.0118
0.0063
00056
00144
0.0422
0.0798
02202
01556
01596
0.1270
0.0570
0.0270
0.0050
0.1095
0.0169
0.0348
1.1926
0.2984
0.3284
00784
15.3752
3.3196
0.4956
0.1612
21.3639
0.1557
0.1557
0.1557
0.1557
Sl^lilJiiSBBHJBSBmBl
0.0000 |
0.0008
0.0010
0.0021
0.0034
0.0118
0.0000
0.0062
0.0000
0.0098
00166
0.0078
0.0072
0.0000
0.0256
0.0000
0.0121
0.0032
0.0128
0.0400
0.0212
0.2308
0.1120
0.0548
0.0284
0.5153
0.0101
0.0107
0.0106
0.0111
Hr^^-a^JaS^H^f'^ " •""' -
0.0142
0.0126
0.0073
0.0078
0.0178
0.0539
0.0798
0.2264
0.15S6
0.1695
0.1436
0.0648
0.0342
0.0050
0.1351
0.0169
0.0469
1.1958
0.3112
03684
0.0996
15.6060
3.4316
0.5504
0.1896
21.8792
0.1658
0.1664
0.1663
0.1668
a) Result obtained from the DB-225 analysis.
b) Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dibenzofurans.
c) TEQ computed using ITEF and setting non detected analytes with a "Zero" concentration.
d) TEQ computed using ITEF and setting non detected analytes with a concentration half the
calculated detection limit.
e) TEQ computed using ITEF and setting the concentration of EMPC analytes to the EMPC value.
NOTE: ND and EMPC are considered as zeros.
C< 005
-------
Table 4: Analyte Concentrations in "ng" per Front-Half Sampling Train (i.e., filter and dust) for all runs
(i.e., M23-I-1, M23-I-3, and M23-I-4).
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
U,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,g-TCDF'
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fs*
TEQ (ND=0)C
TEQ(ND=l/2)*
TEQ EMPC(ND=0)'
TEQEMPC
(ND=l/2)
0.0000
0.0000
0.0028
0.0035
0.0170
0.0600
0.0046
00000
00034
0.0057
0.0038
0.0000
0.0000
0.0000
00000
0.0000
0.1728
0.1232
0.1192
0.0308
0.0412
0.0252
0.0164
0.0000
0.5888
0.0040
0.0048
0.0055
0.0061
0.0000
0.0000
0.0044
0.0057
0.0000
0.0212
0.0224
0.0000
0.0340
0.0933
0.0701
0.0248
0.0060
0.1256
0.0000
0.0150
0.1156
0.0900
0.0884
0.0104
0.4980
0.4972
0.4996
01656
2.0010
0.0410
0.0420
0.0481
0.0481
0.0000
0.0008
0.0010
0.0021
0.0034
0.0118
0.0000
0.0062
0.0000
0.0098
0.0166
0.0078
0.0072
0.0000
0.0256
0.0000
0.0121
0.0032
0.0128
0.0400
0.0212
0.2308
0.1120
0.0548
0.0284
0.5153
00101
0.0107
0.0106
0.0111
a) Result obtained from the DB-225 analysis.
b) Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dibenzofurans.
c) TEQ computed using ITEF and setting non detected analytes with a "Zero" concentration.
d) TEQ computed using ITEF and setting non detected analytes with a concentration half the
calculated detection limit.
e) TEQ computed using ITEF and setting the concentration of EMPC analytes to the EMPC value.
NOTE: ND and EMPC are considered as zeros.
C< '• 006
-------
2,3,7,8-TCDD
2,3,7,8-TCDF1
2,3,4,7,8-PeCDF
2,3,4,6,7,8-HxCDF
Table 5: Analyte Concentrations in "parts-per-trillion" for the Front-Half Sampling Trains (i.e., filter and
dust) for alj runs (i.e., M23-I-1. M23-I-3, and M23-I-4).
,2,3,7,8-PeCDD
,2,3,4,7,8-HxCDD
,2,3,6,7,8-HxCDD
,2,3,7,8,9-HxCDD
,2,3,4,6,7,8-HpCDD
OCDD
1,2,3,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fs"
TEQ (ND=0)C
TEQ(ND=l/2)d
TEQ EMPC(ND=0)e
TEQ EMPC (ND=l/2)
(0.038)
[0.06596]
[0.06282]
0.110
0.138
0.667
2.356
0.179
[0.12564]
0.135
0.225
0.148
[0.14291]
(0.034)
(0.250)
(0.289)
[0.49156]
[0.03612]
[0.02978]
0.054
0.069
[0.1733]
0.259
0.273
[0.59605]
0.415
1.139
0.856
0.303
0.073
1.533
[0.18306]
0.183
6.784
4.837
4.680
1.209
1.618
0.989
0.644
(0.250)
23.117
0.157
0.189
0.217
1.411
1.098
1.079
0.127
6.078
6.068
6.097
2.021
24.420
0.500
0.513
0.240
0.587
0.587
(0.043)
0.039
0.050
0.103
0.165
0.570
[0.77789]
0.303
[0.36081]
0.477
0.805
0.376
0.351
(0.065)
1.243
[0.18041]
0.588
0.155
0.621
1.940
1.028
11.193
5.432
2.658
1.377
24.991
0.492
0.518
0.513
0.537
a) Result obtained from the DB-225 analysis.
b) Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dibenzofurans.
c) TEQ computed using ITEF and setting non detected analytes with a "Zero" concentration.
d) TEQ computed using ITEF and setting non detected analytes with a concentration half the
calculated detection limit.
e) TEQ computed using ITEF and setting the concentration of EMPC analytes to the EMPC value.
NOTE:
() = ND using DL value.
[ ] = EMPC value.
O 007
-------
TEQ
0.160 -e
0.140 -
Amount in "ng" per Train 0.080 -
1MB M23-I-4 M23-O-4 M23-FB-4
S509.000 S509.000 S509.000 S509.000
Sample
BTEQ (ND=0) t
DTEQ (ND=1/2)
ETEQ EMPC (NO=0)
DTEQ EMPC (NO= 1/2)
Figure 1: Graphical representation of the TEQs based on the data presented in Table 2
008
-------
Total Homologues
25.000 -,
20.000 -
15.000 -
Amount in "ng" per Train
10.000 -
5.000 -
0.000
LMB
S509.000
M23-I-4 M23-O-4
S509.000 S509.000
Sample
M23-FB-4
S509.000
Figure 2: Graphical representation of the totals (tetra- through octachlorinated congeners) based on the data
presented in Table 2.
CC < 009
-------
PAL Project No.: L-1115
Section 2
Project Overview
&
Sample Tracking & Communication Forms
JTr 9 "~
H
o-
-------
0
Project Overview for the Analysis of Polychlorinated Dibenzo-/>-Dioxins & Dibenzofurans
No. of Field Samples: 4 PAL Pr°J€
No. of Billable Samples: 4 ^ "
VMe$|$|fif ? < ^LJ^^^2^ '^\ ^ ^
Probe Rinse
Concentration sopsp-N-02
spike Promt Add M23-
ES: 23 4ng(l-2) Vol.: 40 ^L
SS: 23 4ng(J-J)
... OUAII1C
Tridecane batch No.: r^ST-AWP-y* *
Thimbles batch No.: 3t> -&%-<)&
Toluene batch NO.: ^fAo^ [ Cnnrrntmtion
- .. . *« 1*4/1 1 V^WIHHHI rtlllMI
Pre-Soxhlet: 1 Q #&"**' I,. ...
Others:
Cn
op
1
1o% e —
Special Instructions:
i
Date Received: 08 SEP 98
JCtNo.: L-1115 Due Date: 30 SEP 98
\ /"'is^ *. nuo!»^4. ¥T\. ocnn AAA
^ Client Project ID: IS509.0UO
jfwd ^ -* $$$?eth6d23 X ^f M^orf 2Jf |g1
F»ter f XAD
Sampling Mo dules Prep. Project No.: L. *-/JO&
fc m^f
^•2- H.H^tfll'ttY
ES-fflfifi-Sffl -{(f^L- _ „ _
' i>l/l o/ -o-l//
; Cone.: 0.1 ng/ n L
__^-<^_-j
(1 /» ¥¥ T^/llilPtlP c/HP CP K" fll Hexane batch No • 9'f^'ruf)
j.w i» » wtucm; oty/' or-c-t/f n».«»iiv ««».•..>«.. , ^ . «^v:
1 • ' CH,C1, batch No • V't>f>}Q<-\
&L Solvpnt FjXchanpe »A£-'?t>
111 UtXllaCI. oc/r Sr-JJ-vl ~ '
^
J
i E'v^Qjtfi/inofi/in C/^D CP // />?
r i rtCllOIIaliuli AC/r or-U-Uj
Concentration SOPSP-N-OI
C02, (***^1 I**t4f
Add M23-JS-0j(ffy-SO/~(bD
Vol • 20 n L • Cone.: O.I ng/ n L SOPSP-S-OI
i
HRGC-HRMS *np<:P.i.nt
-------
Project Overview for the Analysis of Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans
No. of Field Samples: 4
No. of Billable Samples: 4
-•-.
o
Special Instructions:
PAL Project No.: L-1115
Date Received: 08 SEP 98
Due Date: 30 SEP 98
Client Project ID: S509.000
SOPSP-A-Ol
Sample Extract
I Fortified with JS
Reporting Level; I f II) III 11+ III+
8A.M.
l '
»»«•< ^- *~1/~* k. /"lnI!l».rn4Snn ......
Mo • "~ "^ C»C ^ calibration
f
«/».Af.
]'
fe r^nnr^al ^ M
~ i^on^al ~ 1VJ
1 -•
re
iij
•
Report
SOPRP-G-01
Data Package
Assembly
SOPSH-A-01
Instrument ID:
HP-5MS batch No..
DB225 batch No.:
ICal:
ConCal: w.
Archive Data
Ship Data
SOPRP-A-01
SOPSH-D-OI
-------
Sample Tracking for the Analysis of Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans
No. of Field Samples: _4_
Page y_of_^
PAL Project No.: L-l 115
Date Received: 08 SEP 98
Due Date: 30 SEP 98
Client Project ID: S509.000
*•- Met
Lab Simple ID
^Weth6d23
Client Simple ID
Observations
(use attached communication exchanges form If needed)
ES
SDS
Cone.
S.Ex.
Split
Arch
PCU
Cone.
JS
2
TCDF
Metho
Misc.
c
I V
L-l 115-0
L-l 115-1
L-l 115-2
L-l 115-3
L-l 115-4
Lab Method Blank
M23-M
M23-O-4
M23-FB-4
M23-I-4-FH
44, nn-°
tf VT.fotW.7TPf ,
, ^/
lfa
Ae*
I
-------
Communication Exchanges Form for the Analysis of PCDD/PCDFs
No. of Field Samples: _4
Page_/_ofJ_
r.
PAL Project No.: L-1115
Date Received: 08 SEP 98
Due Date: 30 SEP 98
Client Project ID: S509.000
aC
-------
Paradigm Analytical Labs
Login Report (In01)
Aug. 08, 1998
10:42 AM
Login Number: L1115
Account: 1027 Pacific Environmental Services, Ir
Project: S509.000 US EPA Lime Kiln Screening- OH Page: 1
of 1
Laboratory Client Collect
Sample Number Sample Number Date
L1115-1
StackAir
StackAir
StackAir
L1115-2
StackAir
StackAir
StackAir
L1115-3
StackAir
StackAir
StackAir
L1115-4
StackAir
StackAir
StackAir
L1115-5
StackAir
StackAir
StackAir
M23-M
P 23-TO
C 8290-TO-FT
C 8290-TO-SL
M23-O-4
P 23-TO
C 8290-TO-FT
C 8290-TO-SL
M23-FB-4
P 23-TO
C 8290-TO-FT
C 8290-TO-SL
M23-I-4-FH
P 23-TO
C 8290-TO-FT
- C 8290-TO-SL
M23-RB
P 23-TO
C 8290-TO-FT
C 8290-TO-SL
02-SEP-98
Hold:
Hold: 09-SEP-98
Hold: 09-SEP-98
02-SEP-98
Hold:
Hold: 09-SEP-98
Hold: 09-SEP-98
02-SEP-98
Hold:
Hold: 09-SEP-98
Hold: 09-SEP-98
02-SEP-98
Hold:
Hold: 09-SEP-98
Hold: 09-SEP-98
02-SEP-98
Hold:
Hold: 09-SEP-98
Hold: 09-SEP-98
Receive
Date
08-SEP-98
4 oz. Glass
4 oz. Glass
08-SEP-98
4 oz. Glass
4 oz. Glass
08-SEP-98
4 oz. Glass
4 oz. Glass
08-SEP-98
4 oz. Glass
4 oz. Glass
08-SEP-98
4 oz. Glass
4 oz. Glass
Due
PR Date Comments
29-SEP-98
1 Bottles
1 Bottles
29-SEP-98
1 Bottles
1 Bottles
29-SEP-98
1 Bottles
1 Bottles
29-SEP-98
1 Bottles
1 Bottles
29-SEP-98
1 Bottles
1 Bottles
Signature: Cj
Date: U
r <
-------
Paradigm
Sample Receipt Checklist
1027
Client:
Client Project ID: S509.000
Lab Project: L1115
No
1
2
3
4
5
6 -*
7
8
9
Check
YES / ©
<£ES}/ NO
(fls^ / NO
YES' /(N9>
YES /(SD)
(YESxV NO
. °C
(£E& / NO
YES / NO
YES /, NO
-------
I-
ti
CZ7
PACIFIC ENVIRONMENTAL SERVICES. INC.
ca\'
J
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Chain of Custody Record
S509.000 I US EPA Llrne Kiln Screening -Onto Lime
piers:
Abematny, Gay, Maret. O.D Hoteschun, Stegal, Stewart
•ite
3/27/98
8/27/98
8/27/98
8/27/98
8/28/98
8/28/98
8/28/98
8/28/98
9/2/98
9/2/98
9/2/98
9/2/98
8/27/98
8/27/98
8/27/98
8/27/98
8/28/98
8/28/98
8/28/98
Time
<£SL.
Field Sample ID
M23-I-1-1
M23-I-1-2 '
M23-I-1-3
M23-M-4
M23-I-2-1
M23-I-2-2
M23-I-2-3
M23-I-2-4
M23-I-4-1
M23-I-4-2
M23-I-4-3
M23-I-4-4
M23-O-1-1
M23-O-1-2
M23-O-1-3
M23-O-1-4
M23-0-2-1
M23-O-2-2
M23-O-2-3
Sample Description
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Analysis Requested
&
o
£
•
•
•
*
•
•
•
•
•
*
•
*
•
*
•
•
•
*
•
$
£
•
•
*
•
•
•
*
•
*
*
•
*
*
•
•
•
*
•
•
\»
It
*!
-------
7 PACIFIC ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Chain of Custody Record
>ject Num [Project Name
S509.000 | US EPA Lime Kiln Screening- Ohio Ume
mpters:
Abemathy, Gay, Maret, D.D Hoteschuh, Stegal, Stewart
Date
8/28/98
8/31/98
8/31/98
8/31/98
8/31/98
9/2/98
9/2/98
9/2/98
9/2/98
8/27/98
8/27/98
8/27/98
8/27/98
8/28/98
8/28/98
8/28/98
8/28/98
8/31/98
8/31/98
Time
Field Sample ID
M23-O-2-4
M23-O-3-1
M23-O-3-2
M23-O-3-3
M23-O-3-4
M23-O-4-1
M23-O-4-2
M23-O-4-3
M23-O-4^4
M23-FB-1-1
M23-FB-1-2
M23-FB-1-3
M23-FB-1-4
M23-FB-2-1
M23-FB-2-2
M23-FB-2-3
M23-FB-2-4
M23-FB-3-1
M23-FB-3-2
Sample Description
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Analysis Requested
VN
§
&
*
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
1
cV
•
•
•
•
•
•
•
•
•
t
•
•
•
•
•
•
•
•
•
Remarks
Report No. 1
Report No. 2
Report No. 2
Report No. 2
Report No. 2
Report No. 3
Report No. 3
Report No. 3
Report No. 3
FIELD BLANK 1 - Report No. 1
FIELD BLANK 1 - Report No. 1
FIELD BLANK 1 - Report No. 1
FIELD BLANK 1 - Report No. 1
FIELD BLANK 2 - Report No. 1
FIELD BLANK 2 - Report No. 1
FIELD BLANK 2 - Report No. 1
FIELD BLANK 2 - Report No. 1
FIELD BLANK 3 - Report No. 2
FIELD BLANK 3 - Report No. 2
9/8/98
Page 2 of 3 Pages
-------
J> "-1--
/PACIRC ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Chain of Custody Record
iject Hum [Project Name
S509.000 I
US EPA Lime Kiln Screening - Ohio Lime
mplers:
Abemathy, Gay, Maret, D.D Hobschuh, Siegal, Stewart
Dale
8/31/98
8/31/98
9/2/98
9/2/98
9/2/98
9/2/98
9/2/98
9/2/98
9/2/98
9/2/98
Time
Field Sample ID
M23-FB-3-3
M23-FB-3-4
M23-FB-4-1
M23-FB-4-2
M23-FB-4-3
M23-FB-4-4
M23-RB-1
M23-RB-2
M23-RB-3
M23-RB-4
jJingulshed bjf (Signature)
i^fcL
Date/Time
Datemme
Sample Description
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Received by: (Signature)
Received for lab by: (Signature)
t^°" ifcH —
rfrTUttTnvtetft-
Analysis Requested
|
•
*
•
•
•
•
•
•
•
•
i
•
•
•
•
*
*
•
•
•
•
Relinquished by: (Signature)
Datemme
Remarks
FIELD BLANK 3 - Report No. 2
FIELD BLANK 3 - Report No. 2
FIELD BLANK 4 - Report No. 3
FIELD BLANK 4 - Report No. 3
FIELD BLANK 4 - Report No. 3
FIELD BLANK 4 - Report No. 3
REAGENT BLANK - All reports
REAGENT BLANK - All reports
REAGENT BLANK - All reports
REAGENT BLANK - All reports
Received by: (Signature)
' . J
~s
Page 3 of 3 Pages
-------
o
o
OPUSquan 29-SEP-1998
Paradigm
Data File
a28sep98a
a28sep98a
a28sep98a
a28sep98a
a28sep98a
a28sep98a
a28sep98a
a28sep98a
a28sep98a
a28sep98a
a28sep98a
a28sep98a
a28sep98a
a28sep98a
a28sep98a
a28sep98a
a28sep98a
a28sep98a
Sample Log
S
1
2
3
4
5
6
7
8
9
10
11 —
12 — •
13 -»
14 — -
15
16
17
18
Page 1
Sample ID
DB-5 Retchk ""
FE CS3
8m8290s xl/1
8m8290w xl/1
8m8290w xl/1
1120-1 xl/1
1117-1 xl/1
1122-18 xl/1
1120-OS xl/1
1120-2 xl/1
1115-1 xl/1
1115-2 xl/1
1115-3 xl/1
1115-4 xl/1
BE CS3 \S
APC Hexane
APC 2%
APC 100%
Acq. Dat'e
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
Page 1 of 1
Time
12:
13:
13:
14:
15:
16:
17:
17:
18:
19:
20:
20:
21:
22:
23:
00:
00:
01:
25
11
57
44
30
16
02
48
34
20
06
53
39
26
13
00
46
34
:48
:50
:54
:00
:04
:09
: 13
:17
:20
:27
:42
:46
:49
:45
:23
:04
:09
:28
-------
~y
OPUSquan 30-SEP-1998
Paradigm Sample
Data File
-------
Section 3
Analytical Results
Documentation for the Analysis
of
Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans
o
fO
-------
Paradigm Analytical Labs
Method 23
LMB
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
tag)
ND
0.0018
EMPC
0.0019
EMPC
EMPC
ND
ND
0.002
EMPC
EMPC
EMPC
EMPC
EMPC
EMPC
ND
ND
ND
0.0016
0.0020
ND
ND
0.002
ND
ND
0.0012
0.0023
DL
tag)
0.0012
0.0007
0.0013
0.0010
0.0011
0.0017
0.0096
0.0016
0.0008
0.0007
0.0008
0.0006
0.0007
0.0008
0.0022
0.0028
0.0041
0.0012
0.0007
0.0010
0.0017
0.0016
0.0007
0.0006
0.0022
EMPC
1«8)
0.002
0.0018
0.0021
0.0020
0.0016
0.0013
0.0013
0.0018
0.0030
0.0024
0.0060
0.002
0.004
0.0060
0.0052
0.0032
0.0039
RT
(mm.)
33:13
35:19
35:24
35:36
37:48
40:44
28:27
32:35
33:01
34:48
34:52
35:14
35:45
36:59
38:11
Ratio
1.64
1.01
1.06
0.97
0.84
0.26
0.67
1.34
1.86
0.84
0.97
2.28
1.64
1.78
0.74
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
1MB
L1115
Imb091698m23
NA
NA
16-Sep-98
27-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retdtk:
Begin ConCal:
End ConCal:
inMaljCal:
Air
1
0.0 %
a26sep98m-l 1
a26sep98m-l
a26sep98m-5
a26sep98m-21
a26sep98m-21
L( ( C23
1/2
-------
Paradigm Analytical Labs
Method 23
LMB
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
l3C12-2,3,7,8-TCDD
13Cirl,2,3,7,8-PeCDD
13Cirl,2,3,6,7,8-HxCDD
13C,2-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37CL,-2,3,7,8-TCDD
13C,2-2,3,4,7,8-PeCDF
13C,rl,2,3,4,7)8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
Injection Standards
13CU-1,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
<«g)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured
Amount
(ng>
3.48
4.29
3.94
3,33
5.36
2.98
2.79
3.43
2.20
4.29
5.86
3.70
3.44
6.76
Percent
Recovery
<•/.)
87.1
107.2
98.5
83.1
67.0
74.6
69.7
85.8
54.9
107.3
146.5
92.5
85.9
169.0
RT
(mln.)
29:25
33:13
35:22
37:48
40:44
28:23
32:34
34:47
36:59
33:01
35:19
34:52
38:11
29:08
35:36
Ratio
0.8
1.59
1.28
1.05
0.92
0.8
1.6
0.52
0.44
1.58
1.25
0.53
0.42
0.8
1.21
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project E>:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
LMB
L1115
Imb091698m23
NA
NA
16-Sep-98
27-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
FuCQfllXiC!
Rctchk:
Begin GonCal:
EndConCal:
Initial Cal:
Air
1
0.0
a26sep98m-ll
a26sep98m-l
a26sep98m-5
a26sep98m-21
a26sep98m-21
Reviewed by:
Date Reviewed:
r r
C24
2/2
-------
10!
!/•->
o
N
tn
OPUSquan 30-SEP-1998
Filename a26sep98m
Sample 11
Acquired 27-SEP-98 00
Processed 28-SEP-98 12
Sample ID Imb091698m23
Cal Table m8290-092698m
Page 1
-.40:41
:04:24
xl/1
Results Table M8290-092698M-BE
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
cs
CS
cs
cs
ss
ss
ss
ss
ss
Name;
2,3,7,8-TCDD;
1,2,3,7,8-PeCDD; 1
1,2,3,4,7,8-HxCDD; 9
1,2,3,6,7,8-HxCDD; 1
1,2,3,7,8,9-HxCDD; 1
1,2,3,4,6,7,8-HpCDD; 8
OCDD; 8
2,3,7,8-TCDF; 4
1,2,3,7,8-PeCDF; 1
2,3,4,7,8-PeCDF; 1
1,2,3,4,7,8-HxCDF; 1
1,2,3,6,7,8-HxCDF; 1
2,3,4,6,7,8-HxCDF; 1
1,2,3,7,8,9-HxCDF; 1
1,2,3,4,6,7,8-HpCDF; 1
1,2,3,4,7,8,9-HpCDF; 8
OCDF;
13C-2,3,7,8-TCDD; 2
13C-l,2,3,7,8-PeCDD; 2
13C-l,2,3,6.7,8-HxCDD; 2
13C-l,2,3,4,6,7,8-HpCDD; 1
13C-OCDD; 1
13C-2,3,7,8-TCDF; 3
13C-l,2,3,7,8-PeCDF; 2
13C-l,2,3,6,7,8-HxCDF; 2
13C-l,2,3,4,6,7,8-HpCDF; 1
13C-1,2,3,4-TCDD; 2
13C-l,2,3,7,8,9-HxCDD; 2
37Cl-2,3,7,8-TCDD; 2
13C-2,3,4,7,8-PeCDF; 4
13C-l,2,3,4,7,8-HxCDD; 1
13C-l,2,3,4,7,8-HxCDF; 2
13C-l,2,3,4,7,8,9-HpCDF; 1
37Cl-2.3,7,8-TCDD; 2
13C-2,3,4,7,8-PeCDF; 4
13C-l,2,3,4,7,8-HxCDD; 1
13C-l,2,3,4,7,8-HxCDF; 2
13C-l,2,3,4,7,8,9-HpCDF; 1
Resp;
* .
.31e+05;
.566+04;
.35e+05;
.20e+05;
.386+04;
.616+04;
.35e+04;
.606+05;
.586+05;
.12e+05;
.32e+05;
.04e+05;
.25e+05;
.23e+05;
. 35e+04;
* .
.656+08;
.226+08;
. 90e+08;
. 63e+08;
. 63e+08;
.40e+08;
.876+08;
.296+08;
.20e+08;
.95e+08;
.64e+08;
.94e+08;
.40e+08;
.596+08;
.85e+08;
.56e+08;
. 94e+08;
.40e+08;
.59e+08;
.85e+08;
56e+08;
Ion 1;
+ .
8.166+04;
4.806+04;
6.946+04;
5.90e+04;
3.846+04;
1.806+04;
1.74e+04;
9.14e+04;
1.03e+05;
5.126+04;
6.506+04;
7.206+04;
7.776+04;
7.85e+04;
3.54e+04;
* .
1.18e+08;
1.366+08;
1.636+08;
8.37e+07;
7.856+07;
1.516+08;
1.776+08;
7.87e+07;
3.64e+07;
1.316+08;
1.44e+08;
2.946+08;
2.706+08;
8.876+07;
9.83e+07;
4.62e+07;
2.94e+08;
2.70e+08;
8.87e+07;
9.83e+07;
4.62e+07;
Ion 2;
* .
4.996+04;
4.76e+04;
6.546+04;
6.06e+04;
4.55e+04;
6.80e+04;
2.60e+04;
6.82e+04;
5.52e+04;
6.106+04;
6.676+04;
3.156+04;
4.736+04;
4.42e+04;
4.816+04;
* .
1.476+08;
8.596+07;
1.276+08;
7.966+07;
8.496+07;
1.896+08;
l.lle+08;
1.50e+08;
8.36e+07;
1.64e+08;
1.20e+08;
_;
1.706+08;
7.08B+07;
1.86e+08;
1.09e+08;
..
1.70e+08;
7.086+07;
1.866+08;
1.09e+08;
1
1
1
0
0
0
0
1
1
0
0
2
1
1
0
0
1
1
1
0
0
1
0
0
0
1
1
1
0
0
1
1.
0.
0.
RA;?; RT;
*;n;NotFnd;
. 64 ;y; 33:13;
.01;n; 35:19;
.06;y; 35:24;
. 97;n; 35:36;
.84;n; 37:48;
.26;n; 40:44;
. 67,-y; 28:27;
. 34, -y; 32:35;
.86;n; 33:01;
. 84 ;n; 34:48;
. 97 ;n; 34:52;
.28;n; 35:14;
.64;n; 35:45;
-78;n; 36:59;
74;n; 38:11;
*;n;NotFnd;
80;y; 29:25;
59,-y; 33:13;
28 ;y; 35:22;
05;y; 37:48;
92 ;y; 40:44;
80;y; 28:23;
60;y; 32:34;
52;y; 34:47;
44 ;y; 36:59;
80;y; 29:08;
21;y; 35:36;
-;-;NotFnd;
58;y; 33:01;
25;y; 35:19;
53 ;y; 34:52;
42,-y; 38:11;
-; -;NotFnd;
58;y; 33:01;
25;y; 35:19;
53 ;y; 34:52;
42;y; 38:11;
Conc;
* .
0.044;
0.045;
0.048;
0.045;
0 . 052 ;
0.098;
0.012;
0.058;
0.051;
0.039;
0.033;
0.032;
0.046;
0.074;
0.064;
* .
87.069;
107.152;
98.483;
83.137;
133.962;
74.547;
69.717;
85.765;
54.905;
60.498;
62.791;
93.403;
102.151;
91.131;
73.679;
92.759;
107.274;
146.522;
92.535;
85.908;
168.945;
DL;
0.0304;
0.0171;
0.0332;
0.0248;
0.0264;
0.0426;
0.2391;
0.0387;
0.0188;
0.0169;
0.0198;
0.0143;
0.0174;
0.0209;
0.0550;
0.0698;
0.1014;
0.0985;
0.0804;
0.0659;
0.1752;
0.0643;
0.0595;
0.0139;
1.1364;
0.2712;
-;
- ;
0.0538;
0.0133;
0.1109;
0.7845;
0.3535;
0.0741;
0.0106;
0.0953;
0.5297;
0.5999;
S/N1;?;
*;n;
6;y;
6;y;
8;y;
9;y;
4;y;
l;n;
2,-n;
21;y;
26;y;
6;y;
5;y;
5;y;
5;y;
6;y;
3;y;
*;n;
1411;y;
4769 ;y ;
6456 ;y ;
932 ;y;
4479, -y;
3693;y;
36158;y;
408;y;
317, -y;
1872;y;
5089;y;
4361;y;
57554, -y, •
5155;y;
325,-y;
369;y;
4361;y;
57554, -y;
5155;y;
325;y;
369;y;
S/N2;?
*;n
13 ;y
5;y
6;y
5;y
6;y
10 ;y
l;n
5;y
5;y
7;y
6;y
4;y
4;y
5;y
4;y
*;n
4061;y
13050;y
4314;y
2261, -y
4865;y
3114;y
19315;y
384 ,-y
1208;y
5468;y
3275;y
-; -
30852 ;y
3356;y
301 ;y
1361;y
_ . _
30852 ;y
3356;y
301;y
1361 ,-y
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page
-------
OPUSquan 30-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:4
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.02
Cone: 0.02
Tox #1: -
Name
2,3,7,8-TCDF
of which 0.01
of which 0.01
Tox #2: -
# RT Respnse
named and 0.01
named and 0.01
Tox #3: -
RA
1 27:00 8.5e+03 0.44 n
8.5e+03
2 28:27 4.3e+04 0.67 y
4.3e+04
3 28:37 1.2e+04 0.59 n
1.2e+04
4 28:54 1.5e+04 1.22 n
1.5e+04
Cone
0.00
C
0.01
]
0.00
4
1
0.00
unnamed
unnamed
Area Height
S/N Mod?
2.6e+03 1.6e+03 4.8e-01 n n
5.9e+03 3.5e+03 5.7e-01 n n
1.7e+04 6.0e+03 1.8e+00 n n
2.6e+04 8.6e+03 1.4e+00 n n
3
4.3e+03 2.0e+03 6.0e-01 n n
7.4e+03 3.2e+03 5.2e-01 n n
8.4e+03 3.7e+03 l.le+00 n n
6.9e+03 5.5e+03 9.0e-01 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:4
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M6290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.11
Cone: 0.11
Tox #1: -
Name
of which *
of which *
Tox #2: -
# RT Respnse
1 28:07 l.le+04
l.le+04
2 28:23 7.5e+04
7.5e+04
3 29:25 2.4e+05
2.4e+05
4 29:38 1.6e+04
1.6e+04
named and 0.11
named and 0.11
Tox #3: -
RA
1.27 n
3.16 n
0.08 n
0.37 n
Cone
0.00
f
<
0.02
C
]
0.08
]
0.01
unnamed
unnamed
Area Height
S/N Mod?
6.3e+03 4.8e+03 1.3e+00 n n
4.9e+03 1.9e+03 9.4e-01 n n
5.7e+04 1.2e+04 3.3e+00 y n
1.8e+04 4.7e+03 2.3e+00 n n
1.8e+04 S.le+03 2.2e+00 n n
2.2e+05 4.1e+04 2.1e+01 y n
1
4.2e+03 2.6e+03 7.0e-01 n n
l.le+04 3.5e+03 1.8e+00 n n
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:5
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.12 of which 0.11 named and 0.01 unnamed
Cone: 0.12 of which 0.11 named and 0.01 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name
1,2,3,7,8-PeCDF
# RT Respnse RA Cone Area Height S/N Mod?
1 32:35 1.6e+05 1.34 y 0.06
r f
026
-------
OPUSguan 30-SEP-1998
Page 2
2,3,4,7,8-PeCDF
1.6e+05
2 32:40 1.6e+04 0.61 n 0.01
1.66+04
3 33:01 1.6e+05 1.86 n 0.05
1.6e+05
4 33:29 8.1e+03 0.63 n 0.00
S.le+03
9.1e+04 4.
6.8e+04 2.
L
5.9e+03 3.
9.7e+03 3.
l.Oe+05 5.
5.5e+04 2.
3
3.1e+03 1.
S.Oe+03 2,
5 33:33 l.le+04 1.30 n 0.00
l.le+04
6.3e+03 2
4.9e+03 3
Oe+04 2.1e+01 y n
7e+04 5.5e+00 y n
le+03 1.6e+00 n n
6e+03 7.26-01 n n
Oe+04 2.6e+01 y n
3e+04 4.6e+00 y n
6e+03 8.4e-01 n n
Oe+03 4.0e-01 n n
6e+03 1.3e+00 n n
Oe+03 6-Oe-Ol n n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:4
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.08
Cone: 0.08
Tox #1: -
Name
1,2,3,7,8-PeCDD
of which 0.04
of which 0.04
Tox #2: -
named and 0.04
named and 0.04
Tox #3: -
RT Respnse
RA
32:34 3.16+04 2.55 n
3.16+04
33:01 7.06+04
7.Oe+04
33:05 1.2e+04
1.26+04
3.11 n
1.82 n
33:13 1.3e+05 1.64 y
1.36+05
Cone
0.01
£
0.02
C
3
0.00
4
0.04
unnamed
unnamed
Area Height
S/N Mod?
2.3e+04 9.5e+03 2.1e+00 n
8.9e+03 3.86+03 2.7e+00 n
5.36+04 2.36+04 5.1e+00 y n
1.7e+04 5.26+03 3.7e+00 y n
3
7.9e+03 5.2e+03 l.le+00 n n
4.3e+03 1.3e+03 9.6e-01 n n
I
8.26+04 2.9e+04 6.5e+00 y n
S.Oe+04 1.86+04 1.3e+01 y n
CC €27
-------
OPUSquan 30-SEP-1998
Page 3
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:17
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.21
Cone: 0.21
Tox #1: -
Name
of which 0.15
of which 0.15
Tox #2: -
# RT Respnse
named and 0.06
named and 0.06
Tox #3: -
RA
1,2,3,4,7,8-HxCDF 1 34:48 l.le+05 0.84 n
l.le+05
1,2, 3,6,7, 8-HxCDF 2
34:52 1.3e+05
1.3e+05
0.97 n
35:00 l.le+04 0.63 n
l.le+04
35:03 1.3e+04
1.36+04
35:07 l.le+04
l.le+04
1.65 n
0.92 n
2,3,4,6,7,8-HxCDF 6
35:14 l.Oe+05 2.28 n
l.Oe+05
35:23 2.0e+04 4.59 n
2.0e+04
35:25 1.9e+04 4.15 n
1.9e+04
35:33 l.le+04
l.le+04
1.91 n
10 35:35 2.1e+04 3.35 n
2.1e+04
1,2,3,7,8,9-HxCDF 11 35:45 1.3e+05 1.64 n
1.3e+05
12 35:53 2.0e+04 1.35 y
2.0e+04
13 36:00 1.5e+04 0.55 n
1.5e+04
14 36:04 1.3e+04 2.63 n
1.3e+04
15 36:06 9.2e+03 1.69vn
9.2e+03
16 36:10 9.2e+03 1.24 y
9.2e+03
17 36:16 1.2e+04 0.64 n
1.26+04
Cone
0.04
C
(
0.03
f
t
0.00
4
6
0.00
£
c
0.00
c
c
0.03
0.01
]
0.01
]
0.00
0.01
1
4
0.05
1
4
0.01
1
£
0.00
c
C
0.00
unnamed
unnamed
Area Height
S/N Mod?
5.1e+04 2.7e+04 5.9e+00 y n
6.1e+04 2.3e+04 6.6e+00 y n
6.5e+04 2.3e+04 5.1e+00 y n
6.7e+04 2.2e+04 6.2e+00 y n
3
4.2e+03 2.2e+03 4.8e-01 n n
6.6e+03 2.8e+03 7.8e-01 n n
8.36+03 5.7e+03 1.3e+00 n n
5.1e+03 3.8e+03 l.le+00 n n
D
5.56+03 3.2e+03 7.16-01 n n
5.9e+03 3.1e+03 8.6e-01 n n
3
7.2e+04 2.1e+04 4.76+00 y n
3.2e+04 1.4e+04 3.8e+00 y n
1.7e+04 1.2e+04 2.6e+00 n n
3.6e+03 1.3e+03 3.66-01 n n
1.5e+04 5.9e+03 1.3e+00 n n
3.66+03 1.3e+03 3.6e-01 n n
D
7.0e+03 3.8e+03 8.3e-01 n n
3.7e+03 1.5e+03 4.2e-01 h n
L
1.6e+04 7.7e+03 1.7e+00 n n
.8e+03 l.Se+03 4.36-01 n n
0.00
7.8e+04 2.4e+04 5.46+00 y n
4.7e+04 1.4e+04 4.le+00 y n
L
1.2e+04 4.2e+03 9.26-01 n n
8.7e+03 6.8e+03 1.9e+00 n n
D
5.3e+03 3.8e+03 8.46-01 n n
9.6e+03 2.9e+03 8.36-01 n n
D
9.2e+03 6.2e+03 1.46+00 n n
3.5e+03 2.2e+03 6.3e-01 n n
0.00
0.00
5.8e+03 2.9e+03 6.56-01 n n
3.46+03 1.76+03 4.7e-01 n n
a
5.1e+03 2.1e+03 4.6e-01 n n
4.1e+03 2.1e+03 6.06-01 n n
4.8e+03 2.7e+03 6.0e-01 n n
7.6e+03 2.8e+03 7.9e-01 n n
£r' C28
-------
OPUSguan 30-SEP-1998
Page 4
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:16
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092>Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.26
Cone: 0.26
Tox #1: -
of which 0.14
of which 0.14
Tox #2: -
named and 0.12
named and 0.12
Tox #3 : -
Name
RT Respnse
RA
34:47 6.8e+04 3.96 n
6.8e+04
34:52 7.6e+04 3.03 n
7.6e+04
34:56 3.6e+04
3.6e+04
35:08 l.Oe+04
l.Oe+04
1.35 y
1.05 n
35:11 8.1e+03 0.51 n
8.1e+03
1,2,3,4,7,8-HxCDD 7
1,2,3,6,7,8-HxCDD 8
1,2,3,7,8,9-HxCDD 9
35:14 1.3e+04
1.3e+04
35:19 9.6e+04
9.6e+04
1.04 n
1.01 n
35:24 1.3e+05 1.06 y
1.3e+05
35:36 1.2e+05 0.97 n
1.2e+05
10 35:42 2.3e+04 0.41 n
2.3e+04
11 35:49 1.8e+04 0.63 n
1.8e+04
12 35:56 1.6e+04
1.6e+04
0.59 n
13 36:01 9.0e+03 1.41 y
9.0e+03
14 36:05 7.8e+03 0.40 n
7.8e+03
15 36:13 9.2e+03 0.50 n
9.2e+03
16 36:21 8.4e+03 1.38 y
8.4e+03
Cone
0.03
C
]
0.03
C
]
0.01
]
0.00
C
C
0.00
C
0.01
(
e
0.05
<
t,
0.05
e
e
0.05
C
(
0.01
(.
]
0.01
:
o.oi
C
s
0.00
C
0.00
2
C
0.00
3
e
0.00
unnamed
unnamed
Area Height
S/N Mod?
5.5e+04 2.2e+04 7.8e+00 y n
1.4e+04 7.8e+03 1.9e+00 n n
3
5.7e+04 1.9e+04 6.8e+00 y n
1.9e+04 7.1e+03 1.8e+00 n n
2.0e+04 5.9e+03 2.1e+00 n n
l,5e+04 6.6e+03 1.6e+00 n n
5.36+03 2.4e+03 8.7e-01 n n
5.16+03 2.6e+03 6.6e-01 n n
2.7e+03 1.2e+03 4.2e-01 n n
5.46+03 2.4e+03 5.9e-01 n n
6.4e+03 2.4e+03 8.5e-01 n n
6.26+03 2.5e+03 6.3e-01 n n
4.8e+04 1.6e+04 5.8e+00 y n
4.8e+04 2.0e+04 4.9e+00 y n
6.9e+04 2.2e+04 7.8e+00 y n
6.5e+04 2.4e+04 6.0e+00 y n
5.96+04 2.6e+04 9.3e+00 y n
6.1e+04 2.0e+04 S.le+00 y n
.7e+03 4.1e+03 l.Se+00 n n
.6e+04 5.3e+03 1.3e+00 n n
7.0e+03 3.6e+03 1.3e+00 n n
l.le+04 5.3e+03 1.3e+00 n n
5.8e+03 2.9e+03 l.Oe+00 n n
9.9e+03 3.8e+03 9.4e-01 n n
3
5.2e+03 2.4e+03 8.5e-01 n n
3.7e+03 3.0e+03 7.4e-01 n n
D
2.2e+03 1.4e+03 4.9e-01 n n
5.6e+03 2.2e+03 5.5e-01 n n
3.1e+03 1.8e+03 6.6e-01 n n
6.1e+03 2.7e+03 6,7e-01 n n
3
4.9e+03 1.4e+03 4.9e-01 n n
3.5e+03 2.3e+03 5.8e-01 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:8
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: zn8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Irob091698m23 xl/1
£r C29
-------
OPUSguan 30-SEP-1998 Page 5
Amount: 0.24 of which 0.14 named and 0.10 unnamed
Cone: 0.24 of which 0.14 named and 0.10 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1,2,3,4,6,7,8-HpCDFl 36:59 1.2e+05 1.78 n 0.07
1.26+05 7.9e+04 2.5e+04 5.6e+00 y n
4.4e+04 1.8e+04 5.0e+00 y n
2 37:13 2.6e+04 1.02 y 0.02
2.6e+04 1.3e+04 4.3e+03 9.5e-01 n n
1.3e+04 3.2e+03 9.0e-01 n n
3 37:20 1.7e+04 1.50 n 0.01
1.7e+04 l.Oe+04 4.7e+03 l.Oe+00 n n
6.8e+03 2.36+03 6.5e-01 n n
4 37:26 1.4e+04 1.76 n 0.01
1.4e+04 8.7e+03 3.6e+03 8.0e-01 n n
5.0e+03 2.5e+03 6.9e-01 n n
5 37:43 1.7e+04 1.62 n 0.01
1.7e+04 l.le+04 3.7e+03 8.2e-01 n n
6.5e+03 2.3e+03 6.5e-01 n n
6 37:55 l.le+04 1.16 y 0.01
l.le+04 6.1e+03 2.6e+03 5.8e-01 n n
5.2e+03 2.0e+03 5.7e-01 n n
l,2,3,4,7,8,9-HpCDF7 38:11 8.4e+04 0.74 n 0.06
8.4e+04 3.5e+04 1.5e+04 3.4e+00 y n
4.8e+04 1.5e+04 4.1e+00 y n
8 38:13 7.0e+04 0.45 n 0.05
7.0e+04 2.1e+04 8.5e+03 1.9e+00 n n
4.8e+04 1.5e+04 4.1e+00 y n
r f
C30
-------
OPUSquan 30-SEP-1998 Page 6
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:3
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.09 of which 0.05 named and 0.03 unnamed
Cone: 0.09 of which 0.05 named and 0.03 unnamed
Tox #1: - Tox *2: - Tox #3: -
Name * RT Respnse RA Cone Area Height S/N Mod?
1,2,3,4,6,7,8-HpCDDl 37:48 8.4e+04 0.84 n 0.05
8.4e+04 3.8e+04 1.3e+04 4.2e+00 y n
4.5e+04 l,4e+04 6.4e+00 y n
2 38:11 4.2e+04 4.07 n 0.03
4.2e+04 3.3e+04 8.8e+03 2.9e+00 n n
8.2e+03 3.1e+03 1.5e+00 n n
3 38:24 1.3e+04 1.31 n 0.01
1.3e+04 7.6e+03 4.0e+03 1.3e+00 n n
5.8e+03 2.5e+03 1.2e+00 n n
C31
-------
OPUSquan 30-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:4
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.02
Cone: 0.02
Tox #1: -
Name
2,3,7,8-TCDF
of which 0.01
of which 0.01
Tox #2: -
# RT Respnse
named and 0.01
named and 0.01
Tox #3: -
RA
1 27:00 8.5e+03 0.44 n
8.56+03
2 28:27 4.36+04 0.67 y
4.3e+04
3 28:37 1.2e+04 0.59 n
1.2e+04
4 28:54 1.5e+04 1.22 n
l.Se+04
Cone
0.00
c
0.01
3
0.00
4
0.00
unnamed
unnamed
Area Height
S/N Mod?
2.6e+03 1.6e+03 4.8e-01 n n
5.9e+03 3.5e+03 5.7e-01 n n
1.7e+04 6.0e+03 1.8e+00 n n
2.6e+04 8.6e+03 1.4e+00 n n
4.3e+03 2.0e+03 6.0e-01 n n
7.4e+03 3.2e+03 5.2e-01 n n
8.4e+03 3.7e+03 l.le+00 n n
6.9e+03 5.5e+03 9.0e-01 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:4
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.11
Cone: 0.11
Tox #1: -
Name
of which *
of which *
Tox #2: -
# RT Respnse
1 28:07 l.le+04
l.le+04
2 28:23 7.5e+04
7.56+04
3 29:25 2.46+05
2.4e+05
4 29:38 1.6e+04
1.6e+04
named and 0.11
named and 0.11
Tox #3: -
RA
1.27 n
3.16 n
0.08 n
0.37 n
Cone
0.00
f
<
0.02
c
]
0.08
3
0.01
unnamed
unnamed
Area Height
S/N Mod?
6.3e+03 4.8e+03 1.3e+00 n n
4.9e+03 1.9e+03 9.4e-01 n n
5.7e+04 1.2e+04 3.3e+00 y n
1.8e+04 4.7e+03 2.3e+00 n n
1.8e+04 B.le+03 2.2e+00 n n
2.2e+05 4.1e+04 2.1e+01 y n
1
4.2e+03 2.6e+03 7.0e-01 n n
l.le+04 3.5e+03 1.8e+00 n n
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:5
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51;59 Sample text: Imb091698m23 xl/1
Amount: 0.12
Cone: 0.12
Tox #1: -
Name
1,2,3,7,8-PeCDF
of which 0.11
of which 0.11
Tox #2: -
named and 0.01
named and 0.01
Tox #3: -
# RT Respnse RA Cone
1 32:35 1.6e+05 1.34 y 0.06
unnamed
unnamed
Area Height S/N Mod?
r' " C32
-------
iPUSguan 30-SEP-1998
Page 2
2, 3,4,7,8-PeCDF
1.6e+05
2 32:40 1.66+04 0.61 n 0.01
1.66+04
3 33:01 1.6e+05 1.86 n 0.05
1.6e+05
4 33:29 8.1e+03 C . 63 n 0.00
8.16+03
5 33:33 l.le+04 1.30 n 0.00
l.le+04
9.1e+04 4.0e+04 2.16+01 y n
6.8e+04 2.7e+04 5.56+00 y n
L
5.9e+03 3.1e+03 1.66+00 n n
9.7e+03 3.6e+03 7.2e-01 n n
5
l.Oe+05 5.0e+04 2.6e+01 y n
5.5e+04 2.36+04 4.6e+00 y n
0
3.1e+03 1.6e+03 8.46-01 n n
5.0e+03 2.0e+03 4.0e-01 n n
3
6.3e+03 2.6e+03 1.3e+00 n n
4.9e+03 3.0e+03 6.0e-01 n n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:4
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: ImbO91698m23 xl/1
Amount: 0.08
Cone: 0.08
Tox #1: -
1,2,3,7,8-PeCDD
of which 0.04
of which 0.04
TOX #2: -
* RT Respnse
named and 0.04
named and 0.04
Tox #3: -
RA
1 32:34 3.16+04 2.55 n
3.16+04
2 33:01 7.0e+04 3.11 n
7.06+04
33:05 1.26+04
1.26+04
1.82 n
33:13 1.36+05 1.64 y
1.36+05
Cone
0.01
5
0.02
C
]
0.00
4
0.04
unnamed
unnamed
Area Height
S/N Mod?
2.3e+04 9.56+03 2.1e+00 n n
8.9e+03 3.8e+03 2.7e+00 n n
I
5.3e+04 2.36+04 5.le+00 y n
1.7e+04 5.26+03 3.7e+00 y n
7.9e+03 5.26+03 1.le+00 n n
4.3e+03 1.36+03 9.6e-01 n n
8.2e+04 2.96+04 6.5e+00 y n
5.0e+04 1.8e+04 1.3e+01 y n
r
cs:
-------
OPUSquan 30-SEP-1998
Page 3
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:17
Run: 4 File: a26sep98m S:ll Acg:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.21
Cone: 0.21
Tox #1: -
Name
of which 0.15
of which 0.15
Tox #2: -
# RT Respnse
named and 0.06
named and 0.06
Tox #3: -
RA
1,2,3,4,7,8-HxCDF 1 34:48 l.le+05 0.84 n
l.le+05
1,2,3,6,7,8-HxCDF 2
34:52 1.3e+05
1.36+05
35:00 l.le+04
l.le-t-04
35:03 l.Se+04
1.3e+04
0.97 n
0.63 n
1.65 n
2,3,4,6,7,8-HxCDF
5 35:07 l.le+04 0.92 n
l.le+04
6 35:14 l.Oe+05 2.28 n
l.Oe+05
7 35:23 2.0e+04 4.59 n
2.0e+04
8 35:25 1.9e+04 4.15 n
1.9e+04
9 35:33 l.le+04 1.91 n
l.le+04
10 35:35 2.1e+04 3.35 n
2.1e+04
1,2,3,7,8,9-HxCDF 11 35:45 1.3e+05 1.64 n
1.36+05
12 35:53 2.0e+04
2.0e+04
1.35 y
13 36:00 1.5e+04 0.55 n
1.5e+04
14 36:04 1.3e+04 2.63 n
1.3e+04
15 36:06 9.2e+03 1.69 n
9.2e+03
16 36:10 9.2e+03 1.24 y
9.2e+03
17 36:16 1.2e+04 0.64 n
1.2e+04
Cone
0.04
C
t
0.03
e
e
0.00
4
t
0.00
E
C
0.00
C
C
0.03
0.01
}
i
0.01
1
0.00
0.01
:
6
0.05
<
0.01
:
£
0.00
C
c
0.00
s
0.00
c
0.00
c
t
0.00
unnamed
unnamed
Area Height
S/N Mod?
5.1e+04 2.7e+04 5.9e+00 y n
6.1e+04 2.3e+04 6.6e+00 y n
3
6.5e+04 2.3e+04 5.1e+00 y n
6.7e+04 2.2e+04 6.2e+00 y n
3
4.2e+03 2.2e+03 4.8e-01 n n
6.6e+03 2.8e+03 7.8e-01 n n
8.3e+03 5.7e+03 1.3e+00 n n
5.1e+03 3.8e+03 l.le+00 n n
3
5.5e+03 3.2e+03 7.1e-01 n n
5.9e+03 3.1e+03 8.6e-01 n n
3
7.2e+04 2.1e+04 4.7e+00 y n
3.2e+04 1.46+04 3.8e+00 y n
1.7e+04 1.2e+04 2.6e+00 n n
3.6e+03 1.3e+03 3.6e-01 n n
L
1.5e+04 5.9e+03 1.3e+00 n n
3.6e+03 1.3e+03 3.6e-01 n n
3
7.0e+03 3.8e+03 8.3e-01 n n
3.7e+03 1.5e+03 4.2e-01 n n
.6e+04 7.7e+03 1.7e+00 n n
.8e+03 1.5e+03 4.3e-01 n n
7.8e+04 2.4e+04 5.4e+00 y n
4.7e+04 1.4e+04 4.1e+00 y n
1.2e+04 4.2e+03 9.2e-01 n n
8.7e+03 6.8e+03 1.9e+00 n n
3
5.3e+03 3.8e+03 8.4e-01 n n
9.6e+03 2.9e+03 8.3e-01 n n
3
9.2e+03 6.2e+03 1.4e+00 n n
3.5e+03 2.2e+03 6.3e-01 n n
D
5.8e+03 2.9e+03 6.5e-01 n n
3.4e+03 1.7e+03 4.7e-01 n n
5.1e+03 2.16+03 4.6e-01 n n
4.1e+03 2.1e+03 6.0e-01 n n
3
4.8e+03 2.7e+03 6.0e-01 n n
7.6e+03 2.8e+03 7.9e-01 n n
£.< ' C34
-------
OPUSguan 30-SEP-1998
Page 4
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:16
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
Amount: 0.26
Cone: 0.26
Tex #1: -
of which 0.14
of which 0.14
Tox #2: -
named and 0.12
named and 0.12
Tox #3: -
Name
RT Respnse
RA
34:47 6.8e+04 3.96 n
6.8e+04
34:52 7.6e+04 3.03 n
7.6e+04
3 34:56 3.6e+04 1.35 y
3.6e+04
4 35:08 l.Oe+04 1.05 n
l.Oe+04
5 35:11 S.le+03 0.51 n
8.1e+03
6 35:14 1.3e+04 1.04 n
1.3e+04
1,2,3,4,7,8-HxCDD 7 35:19 9.6e+04 1.01 n
9.6e+04
1,2,3,6,7,8-HxCDD 8 35:24 1.3e+05 1.06y
1.3e+05
1,2,3,7,8,9-HxCDD 9
35:36 1.2e+05 0.97 n
1.2e+05
10 35:42 2.3e+04 0.41 n
2.3e+04
11 35:49 1.8e+04 0.63 n
1.8e+04
12 35:56 1.6e+04 0.59 n
1.6e+04
13 36:01 9.0e+03 1.41 y
9.0e+03
14 36:05 7.8e+03 0.40 n
7.8e+03
15 36:13 9.2e+03 0.50 n
9.2e+03
16 36:21 8.4e+03 1.38 y
8.4e+03
Cone
0.03
c
]
0.03
C
:
o.oi
i
o.oo
C
c
0.00
c
0.01
e
«
0.05
4
4
0.05
£
C
0.05
C
(.
0.01
e
:
o.oi
a
0.01
c
c
0.00
c
3
0.00
2
c
0.00
3
e
o.oo
unnamed
unnamed
Area Height
S/N Mod?
5.5e+04 2.2e+04 7.8e+00 y n
.4e+04 7.8e+03 1.9e+00 n n
5.7e+04 1.9e+04 6.8e+00 y n
.9e+04 7.1e+03 1.8e+00 n n
2.0e+04 5.9e+03 2.1e+00 n n
1.5e+04 6.6e+03 1.6e+00 n n
5.36+03 2.46+03 8.7e-01 n n
5.1e+03 2.6e+03 6.6e-01 n n
3
2.7e+03 1.2e+03 4.2e-01 n n
5.46+03 2.4e+03 5.9e-01 n n
L
6.46+03 2.4e+03 8.5e-01 n n
6.2e+03 2.56+03 6.3e-01 n n
.8e+04 1.6e+04 5.8e+00 y n
4.8e+04 2.0e+04 4.9e+00 y n
6.9e+04 2.2e+04 7.8e+00 y n
.5e+04 2.4e+04 6.0e+00 y n
5.96+04 2.6e+04 9.3e+00 y n
.16+04 2.0e+04 5.1e+00 y n
6.76+03 4.16+03 1.5e+00 n n
.6e+04 5.3e+03 1.3e+00 n n
7.06+03 3.6e+03 1.3e+00 n n
l.le+04 5.3e+03 1.3e+00 n n
1
5.86+03 2.96+03 l.Oe+00 n n
9.96+03 3.8e+03 9.4e-01 n n
3
5.26+03 2.4e+03 8.5e-01 n n
3.76+03 3.0e+03 7.4e-01 n n
D
2.26+03 1.4e+03 4.9e-01 n n
5.6e+03 2.2e+03 5.5e-01 n n
3
3.16+03 1.8e+03 6.6e-01 n n
6.1e+03 2.7e+03 6.7e-01 n n
D
4.96+03 1.4e+03 4.9e-01 n n
3.5e+03 2.3e+03 5.8e-01 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:8
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09*
Version: V3.6 31-JUL-1998 10:51:59 Sample text: Imb091698m23 xl/1
' C-3
-------
OPUSguan 30-SEP-1998 Page 5
Amount: 0.24 of which 0.14 named and 0.10 unnamed
Cone: 0.24 of which 0.14 named and 0.10 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1,2,3,4,6,7,8-HpCDFl 36:59 1.2e+05 1.78n 0.07
1.2e+05 7.9e+04 2.5e+04 5.6e+00 y n
4.4e+04 1.8e+04 5.0e+00 y n
2 37:13 2.66+04 1.02 y 0.02
2.66+04 1.3e+04 4.3e+03 9.5e-01 n n
1.3e+04 3.2e+03 9.0e-01 n n
3 37:20 1.7e+04 1.50 n 0.01
1.7e+04 l.Oe+04 4.7e+03 l.Oe+00 n n
6.8e+03 2.3e+03 6.5e-01 n n
4 37:26 1.4e+04 1.76 n 0.01
1.4e+04 8.7e+03 3.6e+03 8.0e-01 n n
5.0e+03 2.5e+03 6.9e-01 n n
5 37:43 1.7e+04 1.62 n 0.01
1.7e+04 l.le+04 3.7e+03 8.2e-01 n n
6.5e+03 2.3e+03 6.5e-01 n n
6 37:55 l.le+04 1.16 y 0.01
l.le+04 6.16+03 2.6e+03 5.8e-01 n n
5.2e+03 2.0e+03 5.7e-01 n n
1,2,3,4,7,8,9-HpCDF7 38:11 8.46+04 0.74 n 0.06
8.4e+04 3.5e+04 1.5e+04 3.4e+00 y n
4.8e+04 1.5e+04 4.1e+00 y n
8 38:13 7.06+04 0.45 n 0.05
7.0e+04 2.1e+04 8.56+03 1.9e+00 n n
4.8e+04 1.5e+04 4.1e+00 y n
C36
-------
OPUSquan 30-SEP-1998 Page 6
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:3
Run: 4 File: a26sep98m S:ll Acq:27-SEP-98 00:40:41 Proc:28-SEP-98 12:04:24
Tables: Run: 26sep-crv Analyte: m8290-092» Cal: m8290-092»Results: M8290-09»
Version: V3.6 31-JUL-1998 10:51:59 Sample text: ImbO91698m23 xl/1
Amount: 0.09 of which 0.05 named and 0.03 unnamed
Cone: 0.09 of which 0.05 named and 0.03 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1,2,3,4,6,7,8-HpCDDl 37:48 8.4e+04 0.84 n 0.05
8.4e+04 3.8e+04 1.3e+04 4.2e+00 y n
4.5e+04 1.4e+04 6.4e+00 y n
2 36:11 4.2e+04 4.07 n 0.03
4.2e+04 3.3e+04 8.8e+03 2.9e+00 n n
8.26+03 3.1e+03 1.5e+00 n n
3 38:24 1.3e+04 1.31 n 0.01
1.3e+04 7.6e+03 4.0e+03 1.3e+00 n n
5.8e+03 2.5e+03 1.2e+00 n n
r
' 03
-------
File:A26SEP98M 91-488 Acq:27-5EP-1998 00:40:41 GC El + Volkage SIR Autospec-UltimaE
Sampletll Text :lmbO 9169 8m23 xl/1 Exp:EXP M23 DBS OVATION
319.8965 S:ll BSUB(128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 3704 . 0, 1 . 00% , F,F)
1008
50:
o:
24:41 25
25 loo'
321.8936 S:ll BSUB(128
1001
50_
o:
-vA36^L^__3lAll
25:00
331.9368 S:ll BSUB(128
100%.
50J
25:00
333.9339 S:ll BSUB(128
100%
.
o:
327.
100%
50:
0:
316.
100%
50_
o"
25:00
8847 S:ll BSUB(128
25 :00'
9824 S-.ll SMO(1,3)
24:28
' 25 loo'
26:05
• 12 ifi * 1 ? ") (\
26 1 00
,15, -3.0) PKD(3,3,2,0.
^^^3&3^L~-^J^L
26 100
,15, -3.0) PKD(3,3,2,0.
26:00
,15, -3.0) PKD(3,3,2,0.
26 100
,15, -3.0) PKD(3,3,2,0.
r i i 1 i 1 1 1 —
26:00
PKD(3,3,3,100.00%,0.0
25-23 25:51 26:2
26:00
28i23 29:25
= 37 27:06|27:28, 28 1 °,7 / 1 28 :44 cc 29:ffl29:43 3°:17 ,1
fi\A f\ I /viA^\ lu/s A A. /\*AAAn}*^ A AH A/ *s\ A /\J\ I? ?t\ A^ A /v ^^\AA^JI A Ai ff i\ AA\ A^-AA A A/l
27 100 28 loo 29 loo' 30 1 Oo'
1.5E4
L7.5E3
; O.OEO
Time
10%, 1992. 0,1. 00%, F,F)
29:26
A
^^^^l^^^^^I^A^^U-^2 8A22_ _M^VWW/--iLk3 L\ ^J ^^iP^-^^^A-JU
27:00 28 100 29:00 30:00
4.4E4
_2.2E4
10.0EO
Time
10%, 15468. 0,1. 00%, F,F)
29:08 ..2.9E7
A 29:25
27:00 28:00 29:00 30:00
_1.4E7
O.OEO
Time
10%, 6652. 0,1. 00%, F,F)
29:08 ..3.6E7
A 29:25
A/L
27 loo ' 28 loo 29 loo ' 30:00
10%, 12492. 0,1. 00%, F,F)
29:27
27:00 28:00 29:00 30:00
,1.00%,F,F)
3 27:12 27:3JL2g:p2 ?.R-2fl 28:5929:22 29-i59 30:37
i. II, ,ii|iiiir|tTir— 1 | . i , , 1
27:00 28:00 29:00 30:00
_1 . 8E7
O.OEO
Time
5.5E7
L2.7E7
O.OEO
Time
1.1E8
_5.5E7
O.OEO
Time
O
CO
-------
Pile:A26SEP98M
Sample* 11 Text:
355.8546 S:ll F
100%
.
so;
j
' 0
311:10
1 l r i i i i •! i
-H:00 31J12
J'37.8517 S:ll F
100%
so;
-
-
o •
31 -05
1 1 1 1 1 1 1 1 1
31:00 31:12
367.8949 S:ll F
1008
so;
o;
3l!-00 3l!l2
369.8919 S:ll F
100%
so;
0"
31:00 31:12
366.9792 S:ll F
100%
50_
0"
'1*1:00 ' 31. -12
II-2i;5"l^cq:27-SEP-1998 00:40:41 GC El-t- Voltage SIR Autospec-UltimaE
Imb091698m23 xl/1
:2 BSUB(128,15,-3
Exp:EXP M23 DBS OVATION
.0) PKD{3,3,2,0.10%,4564.0,1.00%,F,F)
33; 13 ^.3.2E4
31:26 31:35
/^S^s-^\J*^~\/'~' — -v^-'^-
i i i i i i i i i i i i i
31:24 31:36
:2 BSUB(128,15,-3
31:2831i37
p*^J^_/s/\>*v/- ^/V^S-^
31:24 31:36
:2 BSUB(128,15,-3
3ll24 31:36
:2 BSUB(128,15,-3
3l!24 3l!36
33:01
JL
32:34 |1
32:12 A / 1
V ^-* V V \J
31:48 32:00 32:12 32:24 32:36 32:48 33:00 33
.0) PKD(3,3,2/0.10%,1388.0,1.00%,F,F)
32:34 33=02
31:56 . I/^T A A^?2:41 >»3 2: 54/^X3 3 : 07
31:48 32:00 32:12 32:24 32:36 32:48 33:00 33
.0) PKD(3,3,2,0.10%,10048.0,1.00%,F,F)
33
/
3l!48 32!do 32!l2 32!24 32^:36 32!48 33!6o 33!
.0) PKD(3,3,2,0.10%,2232.0,1.00%,F,F)
/
31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:
A
\
\
ffl X^A 33:30 33:44
L1.6E4
0 .OEO
•12 33:24 33:36 33:48 Time
1:13
A
A 33:29
2.0E4
.9.8E3
' n nc-n
1 i ! .VTyT^I-T^KrY^^XV^.Y^' " • """
12 33:24 33:36 33:48 Time
/i13
1
V
4.8E7
'.2 . 4E7
10. OEO
12 33:24 33136 33? 48 Time
r2 . 9E7
11.5E7
10. OEO
12 33:24 33!36 33!48 Time
:2 SMO(1,3) PKD(3.3,3,100.QO%,0.0,1.00%,F,F)
31:33 31
31:24 31:36
:45 32^05 32^21 32:32 __J1Z:50 33:08
31. -48 ' 32! 00 32:12 ' '32:24' ' 32 .-36 32 1 48 33.!00 33
33:23 33:34 33:47 ] . 2E8
_6.0E7
.O.OEO
12 33! 24 33.! 36 33.! 48 Time
-------
File:A126SEP9ttM #1-276 Acq:27-SEP-1998 00:40:41 GC EI+ Voltage SIR Autospec-UltimaE
Sample#ll Text:Imb091698m23 xl/1 Exp:EXP_M23_DB5_OVATION
457.7377 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,10932.0,1.00%,F,F)
lOOi 40;44
50.
39:32
41:25 41:36 41:49 42:02
.1.1E4
O.OEO
' ' I I ' i i i I i i i i r I i i i i i I i i i i i i i i i i i i i i i i i I i i i i i i i i i i i 1 i i i i i I i i i i i I i i i i i I i i i i i i i i i i i I i i i i i I i i i i i i
39:12 39:24 39:36 39:48 40iOO 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
459.7348 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2056.0,1.00%,F,F)
lOOii 40:45
_2.1E4
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
469.7780 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%, 3200.0,1.00%, F, F)
100% 40:44
so:
39!i2' ' 39124 39136 ' 39148 ' 4C)!66
_7.2E6
JLO.OEO
!i2 ' 4b.-24 ' 4()!36 40:48 41:00 4i!l2 41.124 41:36 4l!48 42loO 42:12 Time
471.7750 S:ll F:5 BSUB(128, 15, -3 .0) PKD(3 , 5, 3, 0 . 10%, 3272 .0, 1 . 00%, F, F)
1004 40;44
50_
_8.0E6
.O.OEO
i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i t"i i ' i iii | i i i i i [ i i i i i [ i i i i i | i i i i i
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
454.9728
100%
so:
:
/
H '' i r i i
39
S:ll
39:^5
-p-T-I-
•12
F:5 SMO(1,3)
39:26 19r37
1 1 f 1 1 1 T '1 I1 1 1 -
39:24 39:36
PKD(3,
_39:47
-T 1 1 1 I
39148
3, 3, 100. 00%, 0
40:07 4Q
4o!6o' 4o!i2
.0,1
•1R
'«!
.00%, F,
40
24 40 !
F)
•3R 40-50 41-10 41:34 41:49 42:01 2
LI
"0
36 4b!48' 4l!6d 4l!i2 41124 4i!36 4i!48 42!od 42 ! 12
.4E8
.2E8
.OEO
Time
-------
File:A26SeP98M 11-488 Acq:27-gEP-1998 00:40:41 GC EI + Voltage SIR Autospec-UltimaE
Sample#ll Text:lmb091698m23 xl/1 Exp:EXP_M23_DB5_OVATION
303.9016 S.-ll BSUB(128,15,-3.0) PKD{3, 3,2, 0 .10%, 3380 .0,1.00%,F,F)
100%
25:49 26:59
25:3? J
50-
:
OJ
28:26
29:27
29:49 3Q..18
T"
29 loo
301loo'
_1.2E4
_5.8E3
.O.OEO
Time
rr
25:00 26iOO 27 .-00 28:00
305.8987 S:ll BSUB(128,15,-3.0) PKD(3, 3,2,0.10%,6128.0,1.00%,F, F)
100!
25iOO 26:00 27:00 28:00
315.9419 S:ll BSUB(128,15,-3.0) PKD{3,3,2,0.10%,8036.0,1.00%,F, F)
lOOi 28;23
50.:
29:00
30:00
I i 1 1 i I i 1 1 1 1 I 1 1 i 1 1 ri i i '—•"! 1 r-
25:00 26:00 27:00 28:00
317.9389 S:ll BSUB(128,15,-3.0) PKD{3,3,2,0.10%,11992.0,1.00%,F,P)
100%, 28;23
OJ
30 loo'
.O.OEO
Time
3.0E7
Ll.5E7
LO.OEO
Time
29:00
T
T
3.7E7
.1.9E7
O.OEO
Time
-l 1 r-
25:00 26:00 27:00 28:00 29:00 30:00
375.8364 S:ll BSUB(128,15,-3 .0) PKD(3,3,3,100.00%,212.0,1.00%,F,F)
100% .... 29;08
50_
25:41 26°8 2637
25:22 |2.5:52.l4
27:20
: O-QI, lfl
28-36 29-l
29:47
8.1E3
.4.1E3
3°:17 3°46
O.OEO
Time
25ToO 26100 27100
316.9824 S:ll SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 24:2fl 3V;n 2.5^1 IR-.lfi 2iil
28:00
50J
29:00
28:59.29:22.
3ooO
-3JLO2-
25:00
'26:00
27 .-DO'
28:00
'29!loo'
1.1E8
_5.5E7
.O.OEO
Time
-------
Pile:A26SEP98M #1-190 Acq:27-SEP-1998 00:40:41 Gc EI+ Voltage SIR P
Samplefll Text: ImbO 9169 8m23 xl/1 Exp:EXP_M23_DB5_OVATION
389.8156 S:ll F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5, 2, 0 . 10%, 2796 . 0, 1 . 00%, F,
100*| 34:47
f\34:52
: / \ A 35:1
so: \/\ f\
1 V p4:56 /
34:00 34:09 34:29 / S^"\ 35:14/
lUtospec-UltimaE
F)
35:36
$5:24 A
A h
\J\ / \AA 35:49 35:59 TC.IT
rW VV^^w\^Ac^«^34^\^^
— *-i — I — I — I — I — I — i — I — i — i — I — i — r — f — i — i — i — ? — f — i — i — i — i — i — t — i — i — T — I — nr — I — I — I — i — i — i — i — i — 1 — ' — r-r-T -T-r- T -i 'f f 7 •] i T -T — r t f -i-^T-rT-T — 1 — T — i — r — I — i — I— !-• T i i r
34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 36-
391.8127 S:ll F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 4020 . 0, 1 .00%,F,F)
100% 35:23
j 35:19^ 35:36
- - wl A
; 34:12 34:29 34 :42/lsAA/\A 35:10 / | V /\ / VA^J^ i^,. 36:°9
V_I,,fl .,, , f . — ( — j — ,__, — | — — j — I — r_1( — (——-, — t—i—f—i — . — , — , — , — , — , — . — ,— , — , — , — , — . — , — , — , — , — , — . — , — , — , — , — , — j — , — , — , — , — , — | — , — , — , — , — ,- "f— f — r -i — T— i • i I I i I i j i i i i i |
34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 36:
401.8559 S:ll F:3 BSUB{128, 15, -3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 7292 . 0, 1 .00% ,F, F)
100* 35:22
35:lf\ 35:36
:1 /1/L
" *T" r I I ' i — i — r— i — r— i — i i i i — p-i — i i i — i i i — t— i — r-i — i — | — i — i i 1 i — ) — i T i — i — i — i — i — f— i — r'
34:00 34:12 34:24 34:36 34:48 35:00 35:12
403.8530 S:ll F:3 BSUB(128, 15, -3 .0) PKD(3 , 5,2, 0 . 10%, 8728 .0, 1 .00%, F,
100% 3?
35:1
H A
n " J
35!24 35136 35!.48 36loO 3e!l2 36?
F)
>:22
A 35:36
Ul ..
^2.7E4
L1.4E4
h O.OEO
24 Time
r2.5E4
-1.3E4
' O.OEO
24 Time
4.7E7
12 . 4E7
.O.OEO
24 Time
3 . 8E7
.1.9E7
'O.OEO
v ' i i — 1111 — r— i — i — i — 1111 — i — i — i i i — i — r— i — r— i — r— i — i — i — i — i i r i — i — i— i — i — i i | — r— r— i — r-i — i — i — i — r-1! — i — |--r— i — i— T i • ]• T i i I I | i i i i i | i i i i • j
34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 36:24 Time
380.9760 S:ll F:3 SMO(1,3) PKD(3 , 3 , 3 , 100 .00%, 0 . 0. 1 .00%, F, F)
100* 33:59 34-09 34^0 34J9 .14 .-53 35:20 35:38 . 36jL20^-3.5E8
so:
_1.7E8
_O.OEO
"^' 34!00 ' '34:12' '34!2'4' 34^36' 34!48 'ssSoO 3s!l2 35? 24 35I36 35!48 36IOO 36ll2 36124 Time
-------
File:A265EM8M 11-193 Acq:27-SEP-1998 00:40:41 GC EH- Voltage SIR Autospec-UltimaE
Samplefll TextrlmbO91698m23 xl/1 Exp:EXP_M23_DB5_OVATION
423.7767 S:ll F:4 BSUB{128,15,-3.0) PKD(3,5,3,0.10%,3012.0,1.00%,F,F)
100% 36;59 37^48
38:11
J l\ M
so;
38:44
38:56
..1.5E4
_7.5E3
.O.OEO
36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
425.7737 S:ll F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2136.0,1.00%,F,F)
100% 37:49
so:
38:12 38:24
38:36' '38 Us' 39 .-00 Time
36:33
36:59
i ii—i—1~ r 'i—i—I~T--I—T~T "i—r—i—i—i—»—r—i—i—i—i—r—i—i—i—i—i—i—i—i—r~i—r~i—i—i—i—i—i—*—i—r T n—r
36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
-115.8169 S:ll F:4 BSUBU28,15, -3 . 0) PKD(3 , 5, 3 , 0 .10%, 20488 . 0,1. 00%,F,F)
00% 37;48
50J
.7.7E3
O.OEO
T—r—i—i—i—i—i—i—i—r—r—i—i—i—i—i—i—i—i—r—r
38:24 38:36 38:48 39:00 Time
38:12
36^36 36148 37iOO 37il2 37i24 37i36 37:48 38:00
437.8140 S:ll F:4 BSUB(128, 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 7908.0, 1 .00%,F,F)
100% 37;48
50J
38:12 38:24
'asSaV ' VsUV
_9.5E6
.O.OEO
39:00 Time
1. 8E7
.8.9E6
i i i < i i i i i i ' i f*~i T-l i i i ] i i i i i | i i i i" i | i i i 'i i | ' i i "i I | i "I" I '"' 'I | I i i i i | | i i i i i
i 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
430.9728 S:ll F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% _ 3LfijL42_!i52__ ,37:14 37^S 37:45 17 • SA 3R;Q4 38:12 Jfl-?5 3P'-3fi tR-Afi _2.2E8
so:
, ,,,.,,,...,,,.,,. ,-° • °EO
Ye! 36' ' '36148 '37:00' '3?! 12 '37:24* 37J36 37148' ' YsloV YsllY YshV 38:36 38:48 39:00 Time
O
-------
File:A26SEP<)HM #1-216 Acq:27-SEP-1998 00:40:41 GC 61+ Voltage SIR Autospec-ultimaE
Sample*!! Text:Imb091698m23 xl/1 Exp:EXP_M23_DB5_OVATION
339.8597 S:ll F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,1904.0,1.00%,F,F)
100*
32:35
50J
33:01
31:10
32:04
32:24
32:45
Prr
.1E4
. 6E4
.OEO
Time
2E4
6E4
.OEO
Time
.1E8
.6E7
.OEO
Time
1E7
6E7
OEO
Time
. 6E4
,OE3
.OEO
Time
,2E8
.OE7
.OEO
Time
T
T"
T
T
31:00 31:12 31:24 31:36 31i48 32iOO 32il2 32i24 32i36 32i48
341.8568 S:ll F:2 BSUB(128,15,-3.0) PKD(3,3,2 , 0.10%, 5020.0,1.00%,F,F)
1004 32:35
33:00
33:01
33:12
33:24 33:36 33:48
3,
Li,
31:00 31:12 31i24 31:36 31i48 32iOO 32il2 32i24 32i36 32i48
351.9000 S:ll F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,1940.0,1.00%,F,F)
1004 33:01
I ' ' i ' ' i
33:00 33:12
33:24' ' 33:36
33:48
50.
32:34
31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 33:48
353.8970 S:ll F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,2296.0,1.00%,F,F)
1004 33:01
50j
32:34
7,
13.
0.
31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48
409.7974 S:ll F:2 BSUB{128,15,-3.0) PKD(3,3,3,100.00%, 2608.0,1.00%,F, F)
1004 31:46 32;2832;36
31:4:
50j 31:09
33:00 33:12
33:24 33:36
33:48
31:00 31:12 31i24 31:36 31i48 32iOO 32il2 32i24
366.9792 S:ll F:2 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
1004 31-33 31r45 33:05 ?7:?A 1
32:36 32:48 33:00 33:12 33:24 33:36
50_
33: 50
33:34
23:48
.13:47.1
.6
0
31:12 324 31:36 31:48 32:00 32:12 3:2:24 32:36 32:48 33:00 33:12 33:24 33:36
33:48
o
-------
File:A26SEp98M
Sampletll Text:
11-190 Acq:27-SEP-199« 00:40:41
Imb091698m23 xl/1
373.8207 S:ll F:3
100%
•
50 j
•
0 *
33:59 34
i i f
34:
.0)
:32
"s^.
34:
.0)
GC EI+ Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
PKD (3,5,2,
34:48
A /
V
36 '34 1 48
PKD(3,5,2,
34:48
A f
\ 1
34:29 } ^
-^W>
— I 1 1 1
24
BSUB(128,15,-3
f>-' '
•12
T~rT
34:
BSUB(128,
i i — i— r
24
15, -3
rs /
34!
.0)
34!
.0)
V V^x-'N/ I
— i — i — I — i — i — i — r —
36 34:48
PKD (3,5,2,
34:47
A34
/ \ n
V
1 r
36 34:48
PKD(3,5,2,
34:47
0.10%,4524.0,1.00%,F,F)
S 35:14
\ A 35:23
Vv 35:05 / Vv,A^
— -A^^_ A A /\J TAX r\
— -^-"S^/s/ \> VX-V r 1 Y i ' — f
'35 100 35-1 12 35 -.24
0.10%,3548.0,1.00%,F,F)
\ 35:14
\ A
VA 35:05 L\A
1 \ yv rv— ^. / — *^ V ..
1 ) — i^-^/Y^_X ^" =a-~ -A
'35:00' '35ll2' ' '35124'
0.10%, 81692. 0,1. 00%, F,F)
L-"
35 100 35Sl2 35l 24
0.10%, 168620. 0,1. 00%, F,F)
,_3
35:45
A
A
35:35 / \ 36:04 ,,-,,-
^^/V-v/'X / ^yy^~ ^_ .xy/Y/V— >^i5_(^^=x/
_1
0
35-136 35148 36-loO 36-ll2 3&124
__2
35:46
A
35:36A / AAA. 36:01 36:17
^^ — ^- J\ y II VVv^ — ^r-^r — ^ ^^xA^-^Z2^^--^^
_1
• o
1 ' ' 1 ' ' ' ' ' 1 ' ' ' ' ' 1 ' ' ' ' ' 1 ' ' ' ' ' 1 —
35:36 35:48 36:00 36:12 36:24
__3
•
Li
:o
35136 35:48 36:00 36ll2 36124
6
A34:51
I \ *-.
u ' 1 1 1 1 l 1 I"T
34:00
445.7555 S:ll F
1004
'.
50J
n •
34:04
u ' T- i -i | i i i i
34:00
380.9760 S:ll F
100% imo 14
50J
o:
•fj* ----- J «_*.
" ' r i ' 1 — i — i — i — r
f ^. 34:00
34
:3
-^
34
-.3
\12 '
' ' |
34:
BSUB(128,
34:15
__x-/Vs/\
1 ' I '
Sl2
SMO(1
— ^S^N.
' •' |
34:
,3)
i i i i
24
15, -3
-
J
yv A
24
PKD (3
34!
.0)
~J V
34-1
.3,
V
1 1
36 34148
PKD(3,3,3,
c
5 34:46
j\^ / \ /^
36 34148
3, 100. 00%, 0
jJlQ 14-5D 34:39 3^
— r—
34
liV '
' ' i
34:
24
34!
36 34 148
i
v
35 loo 35? 12 35! 24
100. 00%, 756. 0,1. 00%, F,F)
35:22
-% r- 1 ffi
A A
A/ 1
Av7 ^
35:00 35ll2 3sl24
.0,1.00%,F,F)
I • W 35:20
35100 35:12 35124
.3
:o
3S.-36 35.-4S 36.!00 3ell2 36-24
1
35:36
A 35:53 36:13
/ VA 35:44 A A A
__/^ "\ <\^\S\J \ ^J \__y^____/ l^\A
;
L.8
"o
35136 35148 36loO 36ll2 36?24
35:38 36^20 3
T~— T — ( — r~~i — i — f~' i — t 'T ' T — T~ r 'T " r*~T" T '" i*~ i" T*~I ~ T--"T-~ r1 "i " !• r -i
Ll
0
35.!36 35148 36:00 36:12 36:24
.3E4
.7E4
.OEO
Time
.4E4
.2E4
.OEO
Time
.3E7
.7E7
.OEO
Time
.5E7
.2E7
.OEO
Time
.7E4
.4E3
.OEO
Time
.5E8
.7E8
.OEO
Time
-------
FiIe:A26SEP9BM I1-2V6 Acq:27-SEP-1998 00:40:41 GC EI+ Voltage SIR Autospec-UltimaE
Sample#ll Text:lmb091698m23 xl/1 Exp:EXP_M23_DB5_OVATION
441.7427 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3 , 0.10%,2248.0,1.00%, F,F)
100% 40:53
I ' '' ' ' I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I T I I I I I
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
443.7398 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,4008.0,1.00%,F,F)
100%
OEO
Time
i i i i i i i i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
469.7780 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3, 0.10%, 3200.0 ,1.00%, F,F)
100% 40:44
O
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40 : 36
,.1
_7
8 41:00 41:12 41:24 41:36
471.7750 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,3272.0,1.00%,F,F)
100% 40:44
42Too" 42? 12
O
1
39:12 39i24 39136 ' 39148 ' 4o!66 ' 4o!i2 ' 40124 ' ioTJe^bUs' * 4l!6d ' 41:12 41:24 41:36 41:48 42:00 42:12
.OEO
Time
.4E7
.2E6
I. OEO
Time
.6E7
.OE6
.OEO
Time
513.6775 S:ll F:5 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,472.0,1.00%,F,F)
100% 39;15 40:45
42:05 r5'
i r i—i—i r i—r "T ""r r"T"T'T"r-r r i "T T i i i i—n—i—i—i—i—i—i—i—i—i—i—T—i—i—i—i—i—i—i—r—i—r—i—r-T -p-i—i—i—i—i—i—i—i—i—i—i—r-i—i—i—i-i—i—r—i—i T r i—i T 'i
39il2 39124 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42il2
454.9728 S:ll F:5 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
3.9:47 40-07 /lO^IB 40-3R 40:50 41 :1,1 41 :34 41:49 43:01 ^2
f
50J
Oj
I I I I I I I I I I I I I I I I I I I I I I I | I r I I I | I I I I I I I I I I I I I I I I T I I I I I I I I I I t I | I I I I I | I I T I I | I I I I I | I I I I I [ I I I T I
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
11
Lo
.OEO
Time
,4E8
.2E8
.OEO
Time
-\
O
-------
File:A26SfiP98M #1-193 Acq:27-SEP-1998 00:40:41 GC EI+ Voltage SIR Autospec-UltimaE
Sample#ll Text:Imb091698m23 xl/1 Exp:EXP_M23_DB5_OVATION
407.7818 S:ll F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,4484.0,1.00%,F,F)
100* 36:59
50.;
OJ
38:11
38:50
2.6E4
_1.3E4
.O.OEO
39:00 Tim
2.3E4
1.1E4
lo.OEO
38136 38Us 39:00 Time
1. 1E7
L5.6E6
36:36 36148 37iOO 37il2 37:24 37.:36 37148
409.7788 S:ll F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,3588.0,1.00%,F,F)
100* 36:59
38loo' ' 38:lV
38:24 38:36 38:48
36:36 36:48 37iOO 37il2 37i24 37i36 37i48 38iOO
417.8253 S:ll F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,30600.0,1.00%, F, F)
•* ,^ ^ 38:11
50J
38:12 38:24
36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
419.8220 S:ll F:4 BSUB(128,15,-3.0) PKD(3.5,3,0.10%,18352.0,1.00%,F,F)
n •
100*
50.
36:59
38:12 38:24
38:11
36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
479.7165 S:ll F:4 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,3724.0,1.00%,F,F)
100* 36:35 37:48
50_
0.
38:36 38:48 39:00 Time
2.5E7
.1.2E7
.O.OEO
38:12 38:24 38:36 38:48
38:25
39:00 Time
1.2E4
L6.2E3
. 0.OEO
38:36 38:48 39:00 Time
36:36 36:48 37:00 37:12 37:24 37:36 37:48
430.9728 S:ll F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
36:42 36-52 .17:14 .17:35 37:45 V
38:00
38:12 38:24
50J
1—I—I—l—I—i—I—I—r—i—I—l—I—i—I—P—|—i—r
>' 36:36 36:48 37:00
.2.2E8
11.1E8
-O.OEO
37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
-------
Method 2 3
M23-I-4
PES
Paradigm Analytical Labs
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
tag)
0.0142
0.0118
0.0063
0.0056
0.0144
0.0422
0.0798
0.220
0.156
0.160
0.127
0.0570
0.0270
0.0050
0.109
0.0169
0.0348
1.19
0.298
0.328
0.0784
15.4
3.32
0.496
0.161
0.156
0.156
DL
ing)
0.0011
0.0008
0.0015
0.0014
0.0014
0.0012
0.0030
0.0017
0.0019
0.0019
0.0027
0.0023
0.0026
0.0029
0.0011
0.0013
0.0022
0.0011
0.0008
0.0014
0.0012
0.0017
0.0019
0.0023
0.001 1
EMPC
(UK)
1.21
0.304
0.339
0.0800
15.4
0.502
0.156
0.156
RT
(nun.)
28:58
33:02
35:07
35:07
35:23
37:32
40:24
27:58
32:24 '
32:50
34:35
34:39
35:01
35:32
36:44
37:54
40:32
Ratio
0.82
1.64
1.18
1.18
1.34
1.08
0.88
0.78
1.55
1.53
1.22
1.21
1.28
1.17
1.04
1.06
0.86
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-I-4
L1115
1115-1
02-Sep-98
08-Sep-98
16-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight / Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
EndConCal:
Mtial_CaI:
Air
1
0.0 %
a28sep98a-ll
a28sep98a-l
a28sep98a-2
a28sep98a-15
m8290-091498
r
' C48
1/2
-------
Paradigm Analytical Labs
Method 23
M23-I-4
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13Cir2,3,7,8-TCDD
13Ci2-l,2,3,7,8-PeCDD
'3C12-l,2,3,6,7,8-HxCDD
I3Ci2-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
i3C12-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
13C12-l,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13Ci2-l,2,3,4,7,8,9-HpCDF
Injection Standards
13CI2-1A3,4-TCDD
13C,2-l,2,3,7,8,9-HxCDD
Expected
Amount
(ng)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured
Amount
(Of)
3.45
4.18
2.75
3.61
6.14
3.35
3.80
3.66
3.12
4.01
4.08
5.30
3.70
3.67
Percent
Recovery
<%)
86.4
104.4
68.8
90.3
76.8
83.8
95.0
91.4
77.9
100.2
101.9
132.4
92.6
91.8
RT
(min.)
28:57
33:02
35:06
37:32
40:23
27:55
32:23
34:39
36:44
28:58
32:49
35:06
34:35
37:53
28:39
35:22
Ratio
0.77
1.59
1.25
1.06
0.9
0.79
1.58
0.52
0.45
1.58
1.25
0.53
0.45
0.79
1.27
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Reviewed by: ^ rT-
S509.000
M23-I-4
LUIS
1115-1
02-Sep-98
08-Sep-98
16-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
End ConCal:
Initial CaL
Date
Air
1
0.0 %
a28sep98a-ll
a28sep98a-l
a28sep98a-2
a28sep98a-15
m8290-091498
Reviewed: 3o S*4 1 '
rv ' C 49
2/2
-------
O
01
O
OPUSquan 29-SEP-1998
Filename a28sep98a
Sample 11
Acquired 28-SEP-98
Processed 29-SEP-98
Sample ID 1115-1 xl/1
Page 1
20:06:42
08:13:21
r
\,'
.so* 1)
t^f \J
Cal Table m8290-091498
Results Table M8290-092898A
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
cs
cs
cs
cs
ss
ss
ss
ss
ss
Name;
2,3,7,8-TCDD;
1,2,3,7,8-PeCDD;
1,2,3,4,7,8-HxCDD;
1,2,3,6,7,8-HxCDD;
1,2,3,7,8,9-HxCDD;
1,2,3,4,6,7,8-HpCDD;
OCDD;
2,3,7,8-TCDF;
1, 2,3,7, 8-PeCDF;
2,3,4,7,8-PeCDF;
1,2,3,4,7,8-HxCDF;
1,2,3,6,7,8-HxCDF;
2,3,4,6,7,8-HxCDF;
1,2,3,7,8,9-HxCDF;
1,2,3,4,6,7,8-HpCDF;
1 , 2 , 3 , 4 , 7 , 8 , 9-HpCDF;
OCDF;
13C-2,3,7,8-TCDD;
13C-l,2,3,7,8-PeCDD;
13C- 1,2,3,6,7, 8-HxCDD;
13C-1 , 2,3,4,6,7, 8-HpCDD;
13C-OCDD;
13C-2,3,7,8-TCDF;
13C-l,2,3,7,8-PeCDF;
13C-l,2,3,6,7,8-HxCDF;
13C-l,2,3,4,6,7,8-HpCDF;
13C-1,2,3,4-TCDD;
13C-l,2,3,7,8,9-HxCDD;
37Cl-2,3,7,8-TCDD;
13C-2, 3,4,7, 8-PeCDF;
13C-1 , 2,3,4,7, 8-HxCDD;
13C-l,2,3,4,7,8-HxCDF;
13C-l,2,3,4,7,8,9-HpCDF;
37Cl-2,3,7,8-TCDD;
13C-2, 3,4,7, 8-PeCDF;
13C-1 , 2 , 3 , 4 , 7 , 8-HxCDD;
13C-l,2,3,4,7,8-HxCDF;
13C-l,2,3,4,7,8,9-HpCDF;
Resp;
9.10e+05;
5.80e+05;
2.19e+05;
2.196+05;
5.466+05;
1. 80e+06;
2.80e+06;
1.50e+08;
8.54e+06;
8.97e+06;
7.84e+06;
4.05e+06;
1.74e+06;
2.85e+05;
5.42e+06;
7.24e+05;
1.326+06;
2.15e+08;
1.73e+08;
1.70e+08;
1.88e+08;
2.80e+08;
2.606+08;
2.456+08;
2.59e+08;
1.46e+08;
2.35e+08;
2.35e+08;
2.116+08;
2.45e+08;
1.70e+08;
1.99e+08;
1.176+08;
2.11e+08;
2.45e+08;
1.70e+08;
1.996+08;
1.17e+08;
Ion 1;
3.51e+05;
3.60e+05;
1.196+05;
1.196+05;
3.12e+05;
9.356+05;
1.31e+06;
6.57e+07;
5.19e+06;
5.436+06;
4.30e+06;
2.22e+06;
9.766+05;
1.546+05;
2.77e+06;
3.726+05;
6.096+05;
9.386+07;
1.066+08;
9.466+07;
9.686+07;
1.336+08;
1.15e+08;
1.506+08;
8.916+07;
4.506+07;
1.046+08;
1.316+08;
2.116+08;
1.50e+08;
9.46e+07;
6.86e+07;
3.616+07;
2.116+08;
1.50e+08;
9.46e+07;
6.866+07;
3.61e+07;
Ion 2;
5.596+05;
2.19e+05;
l.OOe+05;
l.OOe+05;
2.346+05;
8.69e+05;
1.496+06;
8.47e+07;
3.34e+06;
3.556+06;
3.546+06;
1.83e+06;
7.63e+05;
1.32e+05;
2.656+06;
3.52e+05;
7.076+05;
1.22e+08;
6.70e+07;
7.546+07;
9.10e+07;
1.47e+08;
1.45e+08;
9.51e+07;
1.706+08;
l.Ole+08;
1.32e+08;
1.04e+08;
„ .
9.49e+07;
7.54e+07;
1.30e+08;
8.09e+07;
_ .
9.49e+07;
7.54e+07;
1.30e+08;
8.09e+07;
RA;?;
0.63;n;
1.64;y;
1.18;y;
1.18;y;
1.34;y;
1.08;y;
0.88;y;
0.78;y;
1.55;y;
1.53;y;
1.22;y;
1.21,-y;
1.28;y;
1.17;y;
1.04;y;
1.06;y;
0.86;y;
0.77;y;
1.59;y;
1.25;y;
1.06;y;
0.90;y;
0.79;y;
1.58;y;
0.52;y;
0.45;y;
0.79,-y;
1.27;y;
_ . _ .
1.58;y;
1.25;y;
0.53;y;
0.45;y;
-;-;
1.58,-y;
1.25;y;
0.53;y;
0.45;y;
RT;
28:58;
33:02;
35:07;
35:07;
35:23;
37:32;
40:24;
27:58;
32:24;
32:50;
34:35;
34:39;
35:01;
35:32;
36:44;
37:54;
40:32;
28:57;
33:02;
35:06;
37:32;
40:23;
27:55;
32:23;
34:39;
36:44;
28:39;
35:22;
28:58;
32:49;
35:06;
34:35;
37:53;
28:58;
32:49;
35:06;
34:35;
37:53;
Cone ;
0.414;
0.295;
0.157;
0.141;
0.361;
1.054;
1.994;
57.988;
3.891;
3.991;
3.174;
1.426;
0.675;
0.126;
2.737;
0.423;
0.869;
86.338;
104.367;
68.820;
90.258;
153.603;
83.772;
95.020;
91.418;
77.870;
52.389;
65.907;
86.474;
96.808;
91.238;
84.715;
71.491;
100.181;
101.919;
132.415;
92.607;
91.805;
DL;
0.0285;
0.0191;
0.0379;
0.0340;
0.0350;
0.0289;
0.0751;
0.0423;
0.0484;
0.0473;
0.0673;
0.0585;
0.0646;
0.0735;
0.0277;
0.0320;
0.0546;
0.0921;
0.0806;
0.0329;
0.4134;
0.0096;
0.0483;
0.0385;
O-ia^e,-
0.0734;
-;
0.0473;
0.0392;
0.0436;
0.1662;
0.0839;
0.0566;
0.0180;
0.0565;
0.1703;
0.1239;
S/Nlr?;
24 ;y;
32;y;
18;y;
18;y;
25;y;
96;y;
49;y;
3295;y;
215;y;
228,-y;
103;y;
66;y;
25;y;
3;y;
232;y;
25;y;
1519;y;
7706;y;
7592; y;
528;y;
15378;y;
4607;y;
32835;y;
1126 ;y;
2069;y;
1718;y;
9313;y;
5578;y;
35587;y;
7592;y;
951;y;
1476;y;
5578;y;
35587;y;
7592 ;y;
951;y;
1476;y;
S/N2;? mod?
132;y
103;y
9;y
9;y
14 ;y
136;y
216;y
2821;y
235;y
255;y
137 ;y
87, -y
34 ;y
5;y
420;y
47, -y
38;y
7008;y
11093;y
6436,-y
494;y
76792;y
6012;y
9654;y
3960;y
3248;y
7925;y
7982;y
-; -
10640;y
6436;y
3215;y
2357;y
-; -
10640;y
6436;y
3215;y
2357;y
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 1(
-------
OPUSguan 29-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:24
Run: 16 File: a28sep98a S:ll Acq:28-SEP-98 20:06:42 Proc:29-SEP-98 08:13:21
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-1 xl/1
Amount: 385.92 of which 57,99
Cone: 385.92 of which 57.99
Tox #2: -
Tox #1: -
Name
named and 327.93 unnamed
named and 327.93 unnamed
Tox #3: -
2,3,7,8-TCDF
RT Respnse
RA
1 24:08 6.2e+07 0.78 y
6.2e+07
2 24:44 3.8e+07 0.78 y
3.8e+07
3 24:52 7.8e+04 0.96 n
7.8e+04
4 25:03 3.3e+07 0.78 y
3.3e+07
5 25:21 1.3e+08 0.76 y
1.3e+08
6 25:28 5.6e+07 0.77 y
5.6e+07
7 25:39 3.5e+07 0.77 y
3.5e+07
8 25:45 8.8e+07 0.78 y
8.86+07
9 26:10 2.3e+07 0.76 y
2.3e+07
10 26:14 5.le+07 0.79 y
S.le+07
11 26:31 3.4e+07 0.77 y
3.4e+07
12 26:38 4.4e+07 0.80 y
4.4e+07
13 26:56 9.4e+07 0.77 y
9.4e+07
14 27:04 6.06+07 0.77 y
6.0e+07
15 27:21 3.3e+07 0.78 y
3.36+07
16 27:40 1.7e+07 0.80 y
1.7e+07
17 27:58 1.5e+08 0.78 y
1.5e+08
18 28:33 2.7e+07 0.77 y
2.7e+07
19 28:50 1.5e+07 0.78 y
l.Se+07
Cone
23.98
14.80
]
0.03
<
12.90
1
]
50.70
C
21.70
13.65
3
33.97
C
8.69
c
]
19.57
12.97
3
]
16.98
36.22
<
C
23.31
2
3
12.74
1
I
6.69
1
S
57.99
C
£
10.24
]
]
5.79
Area Height
S/N Mod?
2.7e+07 6.3e+06 1.9e+03 y n
3.5e+07 8.0e+06 1.6e+03 y n
1.7e+07 3.9e+06 1.2e+03 y n
2.2e+07 4.8e+06 9.7e+02 y n
3
3.8e+04 1.9e+04 5.7e+00 y n
4.0e+04 2.1e+04 4.3e+00 y n
1.5e+07 3.5e+06 l.le+03 y n
.9e+07 4.4e+06 8.8e+02 y n
5.7e+07 1.2e+07 3.6e+03 y n
7.5e+07 1.5e+07 3.1e+03 y n
D
2.5e+07 3.8e+06 1.2e+03 y n
3.2e+07 4.96+06 9.9e+02 y n
1.5e+07 3.7e+06 l.le+03 y n
2.0e+07 4.7e+06 9.5e+02 y n
7
3.9e+07 6.1e+06 1.9e+03 y n
5.0e+07 7.9e+06 1.6e+03 y n
9.8e+06 2.9e+06 8.8e+02 y n
1.3e+07 3.7e+06 7.5e+02 y n
2.2e+07 4.8e+06 1.5e+03 y n
2.8e+07 6.16+06 1.2e+03 y n
7
1.5e+07 3.4e+06 l.Oe+03 y n
1.9e+07 4.3e+06 8.86+02 y n
2.0e+07 4.5e+06 1.4e+03 y n
2.5e+07 5.7e+06 l.le+03 y n
.1e+07 8.4e+06 2.66+03 y n
5.3e+07 1.le+07 2.2e+03 y n
2.6e+07 6.0e+06 1.8e+03 y n
3.4e+07 7.8e+06 1.6e+03 y n
1
1.4e+07 3.3e+06 9.9e+02 y n
1.9e+07 4.26+06 8.5e+02 y n
9
7.7e+06 1.6e+06 5.0e+02 y n
9.6e+06 2.16+06 4.3e+02 y n
J
6.66+07 1.le+07 3.3e+03 y n
8.56+07 1.46+07 2.8e+03 y n
.2e+07 2.5e+06 7.6e+02 y n
.5e+07 3.2e+06 6.5e+02 y n
6.6e+06 1.4e+06 4.36+02 y n
8.4e+06 1.8e+06 3.5e+02 y n
C51
-------
OPUSguan 29-SEP-1998 Page 2
20 29:04 3.6e+06 0.77 y 1.37
3.6e+06 1.66+06 3.5e+05 l.le+02 y n
2.0e+06 4.3e+05 8.7e+01 y n
21 29:25 3.8e+05 0.39 n 0.15
3.8e+05 l.le+05 2.7e+04 8.1e+00 y n
2.7e+05 4.9e+04 1.Oe+01 y n
22 29:35 3.2e+05 0.74 y 0.12
3.2e+05 1.4e+05 3.5e+04 l.le+01 y n
1.9e+05 4.4e+04 9.0e+00 y n
23 29:48 2.1e+05 0.40 n 0.08
2.1e+05 5.96+04 2.7e+04 8.3e+00 y n
l.Se+05 4.26+04 8.5e+00 y n
24 30:18 3.3e+06 1.04 n 1.27
3.3e+06 1.7e+06 3.7e+05 l.le+02 y n
1.6e+06 3.5e+05 7.0e+01 y n
-------
PUSguan 29-SEP-1998 Page 3
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no tHom:16
Run: 16 File: a28sep98a S:ll Acq:28-SEP-98 20:06:42 Proc:29-SEP-98 08:13:21
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: in8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-1 xl/1
Amount: 30.19 of which 0.41 named and 29.77 unnamed
Cone: 30.19 of which 0.41 named and 29.77 unnamed
Tox #1: - Tox #2: - Tox #3: -
•Jame # RT Respnse RA Cone Area Height S/N Mod?
1 25:45 1.9e+07 0.79 y 8.75
1.9e+07 8.56+06 2.1e+06 5.9e+02 y n
l.le+07 2.6e+06 2.8e+03 y n
2 26:03 1.2e+04 1.32 n 0.01
1.2e+04 6.7e+03 3.0e+03 8.4e-01 n n
5.1e+03 2.8e+03 3.0e+00 n n
3 26:11 1.4e+07 0.80 y 6.21
1.4e+07 6.1e+06 1.4e+06 4.0e+02 y n
7.6e+06 1.7e+06 1.8e+03 y n
4 26:34 2.3e+06 0.82 y 1.07
2.3e+06 l.le+06 2.6e+05 7.2e+01 y n
1.3e+06 3.1e+05 3.3e+02 y n
5 27:24 1.2e+07 0.79 y 5.32
1.2e+07 5.2e+06 l.Oe+06 2.8e+02 y n
6.5e+06 1.2e+06 1.3e+03 y n
6 27:37 1.9e+06 0.74 y 0.87
1.9e+06 8.16+05 1.3e+05 3.8e+01 y n
l.le+06 1.8e+05 1.9e+02 y n
7 27:46 2.8e+06 0.83 y 1.29
2.8e+06 1.3e+06 2.8e+05 8.0e+01 y n
1.5e+06 3.5e+05 3.7e+02 y n
8 27:54 5.1e+05 0.92 n 0.23
5.1e+05 2.46+05 6.2e+04 1.7e+01 y n
2.76+05 7.2e+04 7.76+01 y n
9 28:15 2.9e+06 0.80 y 1.30
2.9e+06 1.36+06 2.8e+05 7.9e+01 y n
1.6e+06 3.7e+05 4.0e+02 y n
10 28:41 2.3e+06 0.82 y 1.06
2.3e+06 l.Oe+06 2.3e+05 6.5e+01 y n
1.36+06 2.6e+05 2.86+02 y n
11 28:50 5.4e+06 0.81 y 2.45
5.4e+06 2.4e+06 4.9e+05 1.46+02 y n
3.0e+06 6.1e+05 6.56+02 y n
2,3,7,8-TCDD 12 28:58 9.1e+05 0.63 n 0.41
9.1e+05 3.5e+05 8.4e+04 2.4e+01 y n
5.6e+05 1.2e+05 1.3e+02 y n
13 29:11 l.Oe+06 0.84 y 0.47
l.Oe+06 4.8e+05 l.Oe+05 2.96+01 y n
5.7e+05 l.le+05 1.2e+02 y n
14 29:28 1.2e+06 0.85 y 0.54
1.2e+06 5.4e+05 l.le+05 3.2e+01 y n
6.4e+05 1.36+05 1.46+02 y n
15 29:49 2.86+05 0.74 y 0.13
2.8e+05 1.2e+05 2.6e+04 7.4e+00 y n
1.6e+05 3.1e+04 3.3e+01 y n
16 30:25 1.8e+05 1.85 n 0.08
1.8e+05 1.2e+05 3.2e+04 9.0e+00 y n
6.5e+04 2.3e+04 2.5e+01 y n
C53
-------
OPUSguan 29-SEP-1998
Page 4
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:18
Run: 16 File: a28sep98a S:ll Acq:28-SEP-98 20:06:42 Proc:29-SEP-98 08:13:21
Tables: Run: 14sep-crv Analyte: n\8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3 . 5 17-APR-1997 11:14:34 Sample text: 1115-1 xl/1
Amount: 83.04 of
Cone: 83.04 of
Tox #1: -
Name #
1
2
3
4
5
6
7
8
1,2,3,7,6-PeCDF 9
which 7 .
which 7.
Tox #2
88
88
: -
named and
named and
RT Respnse
30:46 2.
2.
31:43 1.
1.
31:49 4.
4.
31:56 9.
9.
32:03 1,
1.
32:05 1.
1.
32:12 3.
3.
32:20 1.
1.
32:24 8.
le+07
le+07
4e+07
4e+07
le+07
le+07
6e+06
6e+06
5e+06
5e+06
Oe+06
Oe+06
4e+07
4e+07
6e+07
6e+07
5e+06
1.
1.
1.
1.
1.
1.
1.
1.
1.
Tox
RA
.53 y
.57 y
.55 y
.55 y
.53 y
.58 y
.55 y
.48 y
.55 y
75.16
75.16
#3: -
Cone
9.40
1
8
6.31
8.
5.
18.47
2
1
4.34
5
3.
0.69
9.
6
0.45
6.
3.
15.40
2
1.
7.30
9,
6,
3.89
unnamed
unnamed
Area
. 3e+07
.2e+06
. 6e+06
. 5e+06
. 5e+07
. 6e+07
. 9e+06
. 8e+06
. 3e+05
. le+05
.2e+05
.9e+05
.le+07
,3e+07
.7e+06
. 5e+06
Height
2.9e+06
1.9e+06
3.7e+06
2.4e+06
7.9e+06
5.2e+06
2.2e+06
1.4e+06
4.2e+05
2.7e+05
2.8e+05
1.9e+05
8.6e+06
5.6e+06
5.1e+06
3.5e+06
2.
2,
3,
3,
6.
8.
1.
2.
3.
4.
2,
2.
7 ,
8.
4 c
5.
S/N
. 6e+02
. 9e+02
, 2e+02
,7e+02
, 9e+02
.Oe+02
9e+02
. le+02
,7e+01
. 2e+01
,5e+01
. 9e+01
, 5e+02
, 6e+02
,4e+02
.4e+02
Mod?
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
8.5e+06
10 32:29 5.Oe+06 1.59 y
5,Oe+06
11 32:34 1.le+07 1.52 y
1.le+07
2,3,4,7,8-PeCDF
12 32:50 9.Oe+06
9.Oe+06
1.53 y
13 32:55 8.4e+06 1.58 y
8.4e+06
14 33:01 7.5e+05 1.63 y
7.5e+05
15 33:04 2.1e+06 1.64 y
2.1e+06
16 33:10 3.5e+04 1.66 y
3.5e+04
17 33:23 1.Oe+06 1.71 y
1.Oe+06
18 33:31 4.3e+04 2.74 n
4.3e+04
2.25
4.98
3.99
3.78
0.34
0.95
0.02
0.45
0.02
5.2e+06 2.5e+06 2.2e+02 y n
3.3e+06 l,5e+06 2.4e+02 y n
3.1e+06 1.6e+06 1.4e+02 y n
1.9e+06 1.Oe+06 1.6e+02 y n
3
6.7e+06 3.4e+06 3.Oe+02 y n
4.4e+06 2.3e+06 3.6e*02 y n
3
5.4e+06 2.6e+06 2.3e+02 y n
3.5e+06 1.7e+06 2.6e+02 y n
B
S.le+06 2.7e+06 2.3e+02 y n
3.3e+06 1.7e+06 2.6e+02 y n
1
4.6e+05 2.2e+05 1.9e+01 y n
2.8e+05 1.4e+05 2.2e+01 y n
1.3e+06 7,le+05 6.2e+01 y n
8.0e+05 4.5e+05 6.9e+01 y n
2
2.2e+04 1.4e+04 1.2e+00 n n
1.3e+04 6.8e+03 l.Oe+00 n n
6.4e+05 3.16+05 2.7e+01 y n
3.7e+05 1.9e+05 2.9e+01 y n
2
3.2e+04 1.8e+04 1.6e+00 n n
1.2e+04 l.le+04 1.7e+00 n n
C54
-------
OPUSquan 29-SEP-1998
Page 5
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no tHom:16
Run: 16 File: a28sep98a S:ll Acq:28-SEP-98 20:06:42 Proc:29-SEP-98 08:13:21
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-1 xl/1
Amount: 7.63 of
Cone: 7.63 of
TOX #1: -
Name #
1
2
3
4
5
6
7
8
which 0.29 named and
which 0.29 named and
Tox #2: - Tox
RT Respnse RA
31:34 8
8
31:35 9
9
31:56 3
3
32:16 2
2
32:25 4
4
32:31 5
5
32:36 2
2
32:42 3
3
2e+03 2.86 n
2e+03
9e+03 3.64 n
9e+03
9e+06 1.54 y
9e+06
6e+05 1.37 y
6e+05
2e+06 1.55 y
2e+06
8e+05 1.65 y
8e+05
7e+06 1.55 y
7e+06
Oe+05 1.85 n
Oe+05
7.33
7.33
#3: -
Cone
0.00
6
2
0.01
7
2
1.99
2
1
0.13
1
1
2.13
2
1
0.30
3
2
1.39
1
1
0.15
2
unnamed
unnamed
Area Height
le+03
le+03
8e+03
le+03
4e+06
5e+06
5e+05
le+05
5e+06
6e+06
6e+05
2e+05
7e+06
. le+06
.Oe+05
3
5
4
9
1
6
7
5
1
9
1
1
8
5
1
4e+03
3e+02
2e+03
3e+02
Oe+06
5e+05
5e+04
2e+04
3e+06
Oe+05
7e+05
le+05
3e+05
.7e+05
.Oe+05
6.
8.
8.
8.
2.
6.
1.
4.
2.
8.
3.
1.
1.
5.
2.
S/N
6e-01
7e-01
3e-01
7e-01
Oe+02
le+02
5e+01
9e+01
6e+02
4e+02
4e+01
Oe+02
6e+02
3e+02
Oe+01
Mod?
n
n
n
n
y
y
y
y
y
y
y
y
y
y
y
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
1,2,3,7,8-PeCDD
9 32:45 5.le+05 1.52 y 0.26
5.le+05
10 32:52 9.3e+05 1.61 y 0.47
9.3e+05
11 32:56 3.9e+05 1.38 y 0.20
3.9e+05
12 33:02 5.8e+05 1.64 y 0.29
5.8e+05
3.1e+05 1.5e+05 2.9e+01 y n
2.Oe+05 8.2e+04 7.6e+01 y n
7
5.7e+05 3.0e+05 5.9e+01 y n
3.6e+05 1.8e+05 1.6e+02 y n
3
2.3e+05 1.2e+05 2.4e+01 y n
1.6e+05 8.7e+04 8.1e+01 y n
13 33:08 2.7e+05 1.44 y 0.14
2.7e+05
14 33:13 1.6e+04 3.03 n 0.01
1.6e+04
15 33:19 3.0e+05 1.33 y 0.16
3.06+05
16 33:23 1.4e+04 1.99 n 0.01
1.4e+04
3.6e+05 1.6e+05 3.2e+01 y n
2.2e+05 1.le+05 1.Oe+02 y n
1
1.6e+05 8.4e+04 1.6e+01 y n
1.le+05 5.6e+04 5.2e+01 y n
L
1.2e+04 5.8e+03 l.le+00 n n
3.9e+03 2.4e+03 2.3e+00 n n
S
1.7e+05 9.7e+04 1.9e+01 y n
1.3e+05 6.2e+04 5.7e+01 y n
9.2e+03 4.8e+03 9.4e-01 n n
4.6e+03 2.2e+03 2.0e+00 n n
r
C55
-------
OPUSguan 29-SEP-1998
Page 6
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:27
Run: 16 File: a28sep98a S:ll Acq:28-SEP-98 20:06:42 Proc:29-SEP-98 08:13:21
Tobies: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09*
Version: V3 . 5 17-APR-1997 11:14:34 Sample text: 1115-1 xl/1
Amount: 12.72
Cone: 12.72
Tox #1: -
Name
of which 5.40
of which 5.40
Tox #2: -
# RT Respnse
named and 7.32
named and 7.32
Tox #3: -
RA
1 33:56 4.8e+06 1.22 y
4.8e+06
2 34:02 8.3e+06
8.3e+06
1.27 y
3 34:08 5.1e+05 1.23 y
S.le+05
34:14 6.46+05
6.4e+05
1.31 y
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
5 34:20 3.2e+05 1.13 y
3.2e+05
6 34:35 7.8e+06 1.22 y
7.8e+06
7 34:39 4.1e+06 1.21 y
4.1e+06
34:43 l.Oe+06
l.Oe+06
1.13 y
9 34:52 l.le+06 1.15 y
l.le+06
10 34:59 4.2e+05 1.04 n
4.26+05
2,3,4,6,7,8-HxCDF 11 35:01 1.7e+06 1.28 y
1.7e+06
12 35:09 2.8e+04
2.86+04
0.30 n
13 35:13 4.86+04 1.91 n
4.86+04
14 35:16 3.26+04 1.80 n
3.26+04
15 35:25 6.7e+04 2.45 n
6.7e+04
1,2,3,7,8,9-HxCDF 16 35:32 2.9e+05 1.17 y
2.9e+05
17 35:36 l.Oe+06 1.21 y
l.Oe+06
18 35:44 2.8e+04 1.05 n
2.8e+04
19 35:48 3.5e+04 0.89 n
3.56+04
Cone
1.91
3.28
4
0.20
0.25
T
0.13
:
]
3.17
<
1.43
]
0.40
C
4
0.42
C
C
0.17
0.67
c
0.01
«
0.02
]
0.01
]
0.03
<
0.13
1
]
0.40
C
4
0.01
]
]
0.01
unnamed
unnamed
Area Height
S/N Mod?
2.7e+06 1.3e+06 8.1e+01 y n
2.2e+06 l.le+06 l.le+02 y n
4.7e+06 2.1e+06 1.3e+02 y n
3.7e+06 1.7e+06 1.8e+02 y n
2.8e+05 1.3e+05 8.0e+00 y
2.3e+05 l.le+05 l.le+01 y
3.6e+05 1.5e+05 9.7e+00 y n
2.8e+05 1.4e+05 1.4e+01 y n
.7e+05 7.3e+04 4.6e+00 y n
.5e+05 7.1e+04 7.3e+00 y n
4.3e+06 1.6e+06 l.Oe+02 y n
3.5e+06 1.3e+06 1.4e+02 y n
3
2.2e+06 l.Oe+06 6.6e+01 y n
1.8e+06 8.5e+05 8.7e+01 y n
5.4e+05 2.3e+05 1.5e+01 y n
4.7e+05 2.1e+05 2.1e+01 y n
5.7e+05 1.5e+05 9.5e+00 y n
5.0e+05 1.3e+05 1.4e+01 y n
7
2.1e+05 l.le+05 6.8e+00 y n
2.1e+05 l.Oe+05 l.Oe+01 y n
7
9.8e+05 3.9e+05 2.5e+01 y n
7.6e+05 3.3e+05 3.4e+01 y n
6.5e+03 4,le+03 2.6e-01 n n
2.2e+04 9.0e+03 9.26-01 n n
2
3.2e+04 1.4e+04 8.86-01 n n
1.7e+04 8.4e+03 8.6e-01 n n
2.1e+04 8.1e+03 5.1e-01 n n
1.2e+04 4.4e+03 4.5e-01 n n
4.86+04 1.5e+04 9.46-01 n n
2.0e+04 l.le+04 l.le+00 n n
3
1.5e+05 5.4e+04 3.46+00 y n
.3e+05 4.7e+04 4.8e+00 y n
5.6e+05 2.3e+05 l.Se+01 y n
4.6e+05 1.8e+05 1.9e+01 y n
.4e+04 5.8e+03 3.7e-01 n n
.4e+04 4.7e+03 4.8e-01 n n
1.7e+04 6.0e+03 3.8e-01 n
1.9e+04 7.6e+03 7.8e-01 n
r f
056
-------
OPUSquan 29-SEP-1998 Page 7
20 35:51 3.0e+04 0.62 n 0.01
3.0e+04 1.2e+04 6.0e+03 3.8e-01 n n
1.96+04 7.6e+03 7.86-01 n n
21 35:55 2.4e+04 0.31 n 0.01
2.4e+04 5.7e+03 3.6e+03 2.3e-01 n n
1.8e+04 6.0e+03 6.1e-01 n n
22 35:58 8.8e+03 0.75 n 0.00
8.8e+03 3.8e+03 2.5e+03 1.6e-01 n n
5.0e+03 4.0e+03 4.1e-01 n n
23 36:03 2.6e+04 1.85 n 0.01
2.6e+04 1.76+04 3.5e+03 2.2e-01 n n
9.06+03 4.9e+03 5.0e-01 n n
24 36:08 1.5e+04 0.60 n 0.01
l.Se+04 5.7e+03 3.1e+03 2.0e-01 n n
9.46+03 4.5e+03 4.6e-01 n n
25 36:09 2.2e+04 1.37 y 0.01
2.2e+04 1.3e+04 8.7e+03 5.5e-01 n n
9.46+03 4.5e+03 4.6e-01 n n
26 36:14 3.5e+04 1.64 n 0.01
3.5e+04 2.2e+04 7.3e+03 4.6e-01 n n
1.36+04 8.9e+03 9-le-Ol n n
27 36:19 1.6e+04 0.78 n 0.01
1.6e+04 6.96+03 3.3e+03 2.1e-01 n n
8.9e+03 3.3e+03 3.4e-01 n n
< C57
-------
OPUSquan 29-SEP-1998
Page 8
Page 6
Ent: 44 Name: Total Hexa-Dioxins F
Run: 16 File: a28sep98a
S
:11 Acq
: 3 Mass :
:28-SEP-98
Tables: Run: 14sep-crv Analyte: m8290-092»
Version: V3 . 5 17-APR-1997
Amount: 8.62 of which
Cone: 8. 62 of which
Tox #1: - Tox
Name # RT
1 34:17
2 34:35
3 34:44
4 34:50
5 34:56
6 34:59
7 35:00
1,2,3, 6,7, 8-HxCDD 8 35:07
9 35:10
1,2,3,7,8,9-HxCDD 10 35:23
11 35:28
12 35:38
13 35:42
14 35:45
15 36:05
16 36:07
17 36:11
18 36:17
11
0
0
#
:14:34
.50
.50
2 : -
Respnse
4
4
9
9
1
1
2
2
1
1
1
1
1
1
2
2
4
4
5
5
1
1
8
8
1
1
1
1
2
2
1
1
6
6
8
8
.le+05
.le+05
.7e+06
.7e+06
.le+06
.le+06
.Oe+05
.Oe+05
.le+04
.le+04
.2e+04
.2e+04
.Oe+04
.Oe+04
.2e+05
.2e+05
.2e+05
.2e+05
.5e+05
.5e+05
. 8e+04
. 8e+04
.6e+03
.6e+03
. 3e+04
.3e+04
.le+04
.le+04
.4e+04
.4e+04
. 9e+04
.9e+04
. 5e+04
. 5e+04
.8e+03
. 8e+03
389
20
Cal
Sample text :
named and
named and
Tox
RA
1.01 n
1.25 y
1.27 y
1.15 y
1.01 n
0.58 n
0.72 n
1.18 y
1.20 y
1.34 y
0.29 n
0.57 n
0.90 n
1.61 n
3.41 n
2.60 n
3.90 n
3.93 n
.816
:06:
391.813
42 Proc:
Mod?
of
no #Hom:
29-SEP-98 08:13:
: m8290-091»Results
8
18
21
M8290-09»
1115-1 xl/1
8.12
8.12
#3:
-
Cone
0.
6.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
27
2.
2.
54
5.
4.
75
6.
4.
13
1.
9.
01
5.
5.
01
4.
7.
01
4.
6.
14
1.
1.
29
2.
1.
36
3.
2.
01
4.
1.
01
3.
5.
01
6.
6.
01
7.
4.
02
1.
5.
01
1.
5.
04
5.
1.
01
7.
1.
unnamed
unnamed
Area Height
Oe+05 1.
Oe+05 9.
4e+06 2.
3e+06 2.
3e+05 2.
9e+05 2.
le+05 4.
3e+04 3.
4e+03 3.
4e+03 4.
5e+03 2.
9e+03 4.
4e+03 2.
le+03 3.
2e+05 6.
Oe+05 4.
3e+05 9.
9e+05 8.
le+05 8.
3e+05 7.
le+03 2.
4e+04 5.
le+03 1.
5e+03 2.
2e+03 2.
9e+03 2.
Oe+03 2.
3e+03 2.
8e+04 7.
4e+03 3.
4e+04 9.
4e+03 3.
le+04 1.
3e+04 4.
Oe+03 3.
8e+03 1.
Oe+05
6e+04
4e+06
Oe+06
8e+05
Oe+05
6e+04
3e+04
3e+03
2e+03
le+03
7e+03
5e+03
3e+03
4e+04
5e+04
7e+04
2e+04
8e+04
Oe+04
le+03
2e+03
7e+03
5e+03
5e+03
2e+03
3e+03
5e+03
5e+03
le+03
2e+03
le+03
4e+04
8e+03
3e+03
2e+03
2
1
6
4
7
3
1
6
9
8
5
9
7
6
1
9
2
1
2
1
5
1
4
4
7
4
6
4
2
6
2
6
4
9
9
2
S/N
. 9e+01
. 9e+01
. 7e+02
. Oe+02
.9e+01
. 9e+01
.3e+01
. 5e+00
.5e-01
.3e-01
.9e-01
.2e-01
.le-01
.5e-01
.8e+01
.Oe+00
.7e+01
.6e+01
.5e+01
.4e+01
.9e-01
.Oe+00
.7e-01
.9e-01
.le-01
.4e-01
.6e-01
.9e-01
.le+00
.2e-01
.6e+00
.2e-01
.le+00
.5e-01
.5e-01
.3e-01
Page 7
Mod?
y
y
y
y
y
y
y
y
n
n
n
n
n
n
y
y
y
y
y
y
n
n
n
n
n
n
n
n
n
n
n
n
y
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
of 8
' css
-------
OPUSguan 29-SEP-1998 Page 9
Ent: 45 Name: Total Hepta-Furans F-.4 Mass: 407.782 409.779 Mod? no #Hom:8
Run: 16 File: a28sep98a S:ll Acg:28-SEP-98 20:06:42 Proc:29-SEP-98 08:13:21
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3 .5 17-APR-1997 11:14:34 Sample text: 1115-1 xl/1
Amount: 4.07 of which 3.16 named and 0.91 unnamed
Cone: 4.07 of which 3.16 named and 0.91 unnamed
Tox #1: - Tox #2: - Tox #3: -
\Jame # RT Respnse RA Cone Area Height S/N Mod?
1,2, 3,4,6,7,8-HpCDFl 36:44 5.4e+06 1.04 y 2.74
5.4e+06 2.8e+06 l.Oe+06 2.3e+02 y n
2.7e+06 l.Oe+06 4.2e+02 y n
2 36:55 8.2e+05 0.99 y 0.44
8.2e+05 4.16+05 1.5e+05 3.5e+01 y n
4.1e+05 1.6e+05 6.4e+01 y n
3 37:03 7.9e+05 1.09 y 0.43
7.9e+05 4.1e+05 1.5e+05 3.4e+01 y n
3.8e+05 l.Se+05 6.1e+01 y n
1,2,3,4,7,8,9-HpCDF4 37:54 7.2e+05 1.06y 0.42
7.2e+05 3.7e+05 l.le+05 2.5e+01 y n
3.5e+05 1.2e+05 4.7e+01 y n
5 38:02 3.1e+04 1.47 n 0.02
3.1e+04 1.8e+04 7.1e+03 1.6e+00 n n
1.2e+04 6.7e+03 2.7e+00 n n
6 38:10 1.6e+04 2.33 n 0.01
1.6e+04 l.le+04 5.56+03 1.2e+00 n n
4.9e+03 1.9e+03 7.7e-01 n n
7 38:41 1.4e+04 2.47 n 0.01
1.4e+04 9.86+03 3.3e+03 7.3e-01 n n
4.0e+03 1.3e+03 5.5e-01 n n
8 38:50 1.6e+04 1.84 n 0.01
1.6e+04 l.le+04 8.7e+03 1.9e+00 n n
5.8e+03 3.1e+03 1.3e+00 n n
-------
OPUSquan 29-SEP-1998
Page 10
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:5
Run: 16 File: a28sep98a S:ll Acq:28-SEP-98 20:06:42 Proc:29-SEP-98 08:13:21
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-1 xl/1
Amount: 2.05
Cone: 2.05
Tox #1: -
Name
of which 1.05
of which 1.05
Tox #2: -
# RT Respnse
named and 0.99
named and 0.99
Tox #3: -
RA
1 36:43 5.1e+04 4.35 n
5.1e+04
2 36:58 1.6e+06 1.05 y
1.66+06
1,2,3,4,6,7,8-HpCDD3 37:32 1.8e+06 1.08 y
1.8e+06
4 37:48 1.4e+04 1.15 y
1.46+04
5 37:53 7.26+04 3.15 n
7.2e+04
Cone
0.03
4
c
0.91
£
1.05
c
£
0.01
«
0.04
unnamed
unnamed
Area Height
S/N Mod?
4.2e+04 1.9e+04 5.5e+00 y n
9.6e+03 3.9e+03 1.8e+00 n n
L
8.0e+05 3.0e+05 8.8e+01 y n
7.6e+05 3.0e+05 1.4e+02 y n
9.3e+05 3.3e+05 9.6e+01 y n
1.7e+05 2.9e+05 1.4e+02 y n
7.4e+03 3.4e+03 9.9e-01 n n
6.5e+03 2.6e+03 1.2e+00 n n
5.5e+04 1.8e+04 5.2e+00 y n
1.7e+04 6.4e+03 3.0e+00 n n
r r
C60
-------
^o VD c
W H fc
rH O C
O! rH C
1 , , , , 1 , , , ,
CO
OJ ,
en i
OJ
o
2s
OJ ^
W in
lfl rH
1 «<
AJ 01
— 1
D
1 VD
l> "C
a c- >
M CN (
1 "^J
< r-'C~~~^
B! *- ^
H 2 fc
W 0 -
H pi,
0) H -
Ol O
H I*"- ""
O in rH T!/
> 03 - ^\
, I ^"^ OJ
-H ro V£> rH
W OJ ro rH _x
O |ro vo ~
o eu - o)
rs W O in
•31 •• rH ^ ^ ^
i &0 in^--—--.
0 W - 01
O)
o -
CN ro
x> ro
? I
^
/I 0
1
n ro
M 1
tr^in
U rH rH
< X, -
CO
» rH 01
N 1 rH
D in —
1 rH CQ
«t rH W
& % r-l
ff> 0) rH
Cu EH ••
a w
W rH
O rH in
< 0) CT\
•• rH 00
•H £ O\ O O O
.H (D rH O in
t< M ro rH
• H VD VO C
EH W W &
10 ro c
OJ rH C
I 1 , , , , I , , , ,
' O
o
o
•
'
' o
o
• * ?<;
* <
in
co^
0 ^
00 \£> 1
OJ ^
px. ^
OJ /
^
^^
p- ~~^
CN
o —*
0 fe
cs -
dP
o "
fr> s
rH j^JS
O ^
oi '-'__-—-
-» 5 ^""^^^
J^ o LH
rH ^S1 ^
^^===^
- OJ
ro
ro
"0 D
in
o
i
in
"~1
CO
i'i
^ w
m
^J
1 1
w
ID
00
rH O O O
OJ O l/>
•H t- r» c
EH W W CL
ro rH c
OJ rH C
'0
o
o
.CO
•
•
'O
0
.CN ' -
TU=rn ~ — ^
03
OJ
o
o
CO
01
*-^
fc
o »
^D &4
r^ dP
OJ 0
o
'
rH
O
o
OJ
j^
* o
rH
O
OJ
ro
ro
0 H
O ^
in
0
ro
i
*.
in
•^
o 2.
~** g
CO
rH
^J
M
CO
vo
rH O O O
ro o in
ro 1-1
0)
•H r* p*> c
E-< W H [I.
cf\ m c
CN rH C
"O
o
o
" o
o
en
TLss^— '
00 ~~-s
OJ
Lo
0
CO
OJ
0 t,
o -
-•• fo
r- -
OJ dP
o
o
j.— [
o
rH
gro
VD *
OJ ^
O
OJ
ro"
ro
_g|
in
OJ ^.
o
ro
1
in
rH
CO
§3
"•* g
01 en
CQ
!~<
1"*
W
cr.
ro
ro
• 44 ' ' ' ' 1 ' ' ' '
ro O O O
ro o in
ro i-H
E
•H r- r~ o
EH W H K
CO Tji O
^C CN O
1 1 . . 1 . 1 , , , ,
"O
o
0
.ro
• o _
•3 cC"1^1"11""^
0
0
CO
-OJ
~ O (i<
o -
-•• fc
.CN dP
o
o
•
rH
o
o
CN
ID _"
_ OJ ^_j
O
CN
ro
ro
_§|
in
.01 —
o
ro
I
in
rH
CO
'§3
~^; «
• M w
0
i-H
i™*
W
(^
• s
CO
p- 0 0 O
o) o in
ro rH
(U
•H r-
EH U
rH
i
r-
'0 0
o ro
o
. ro
00
fN
in
0)
•H
EH
"O
O
O
. ro
-
"o
o
cr\
. OI
" 0
0
00
. OJ
' o
o
f-
.OJ
' o
o
'"Ui
.CN
" O
o
in
' o
o
.04
^
-------
F'ile:A28SEP98A I1-23V Acg:28-SEP-19y8 20:06:42 Gc EI+ Voltage SIR Autospec-UltimaE
Sample#ll Text: 1115-1 xl/1 Exp:EXP_M23 DB5_OVATION
355.8546 S:ll F:2 BSUB (128, 15, -3 . 0) PKD(3 , 3 , 2, 0 . 10%, 5132 . 0, 1 . 00%, F, F)
1003
50_
0"
. 32:25
31:56 A
A 32:36
(\
L J „ 32:52 no
32:16 rA21\ 32A45A 33A°2 33:19
>^ _7 vyvj v^/vrv_y vv, /v^^ s^
1.3E6
_6.7E5
'O.OEO
36536 36548 3l566 31512 31524 3l536 31548 32566 32512 32524 32536 32548 33500 335l2 33524 33536 Time
357.8517 S:ll F:2 BSUB(128 , 15, -3 . 0) PKD(3 , 3 , 2, 0 . 10%, 1076 . 0 , 1 . 00%, F, F)
100%
"
-
so:
.
*
0
32:25
31-56 11
11 T O T ^
A 1 32:36
A h
230 v A2:5233 02
/ \ 32:16 1 V/TJ 1 A/X /V 33:19
9.0E5
_4.5E5
O.OEO
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
367.8949 S.-11 P-3 RBimf 12fl. 1 5.-1. fl) PKDn . 3. 2. 0. 10%. 6928. 0. 1 . 00%.F.F)
100%
so;
0"
33
/
02
5.3E7
_2.7E7
'O.OEO
V ' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r T 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 T— 7— 7-1— I 1— T 7 -T- 1 I"! 1 T | I "7 I 1 1 | 7 I I -7 1 r I 1 7 7 I- | 1 T 1
30:36 30548 3l5oO 3l5l2 3l524 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
369.8919 S:ll F:2 BSUB (128, 15 , -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 2952 . 0 , 1 . 00%, F, F)
100%,
so:
0 '
33,
J
02
v_
3.3E7
L1.6E7
O.OEO
" ' 1 1 1 1 1 1 r 1 F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T 1 1 1 1 1 1 1 t 1 1 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 T 7—7 1 "7 1 I 1 1 1 | 1 1 1 1 1 | 1 1 1 1 I | 1 I 1 I 1 | I 1 I
30536 30548 3l5oO 3l5l2 3l524 3l!36 3l548 32500 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
366.9792 S:ll F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
100%
so:
0"
30-41 31:0331:12 31-25 31-41 32^:03 3 2jJLZ___3_2_LJLL _—12.: 44 ^ : 5 5 .33^(19 .33_:2.9_
.7.2E7
13.6E7
"O.OEO
30:^6 ' 30:48 ' iji.'dd ' 31512 ' 3i:24 3l!36 31.:48 32.:00 32! 12 32!24 32.;36 32548 33500 335l2 33524 33536 Time
-------
Fil<
Sami
389
1005
50.
0
391.
iooa
so:
,01.
1003
so:
0"
1004
so:
0"
380.
1004
so:
0"
»:A28SEP98A #1-197 Acq:28-SEP-1998 20:06:42 GC EH- Voltage SIR Autospec-UltimaE
3le#ll Text: 1115-1 xl/1 Exp:EXP_M23_DB5_OVATION
8156 S.-ll F.-3 BSUB(128,15,-3.0) PKD(3 , 5, 2, 0 . 10%, 3516 . 0, 1 . 00%, F, F)
34:35
/ \ 34:44
33:48 34! 00 ' 34!l2' '34! 24 34-36 34148 35:00 35:12 35-24 35 .-36 35 UY ' YeioV ' '36.' 12'
8127 S:ll F-.3 BSUBU28, 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 5040 . 0, 1 . 00%, F, F)
34:35
/ \ 34:44
33:48 34:00 34:12 34:24 34 36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
8559 S:ll F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5, 2, 0 . 10%, 6092 . 0 , 1 . 00%, F, F)
35:09 35i22
33:48 34:00 34:12 34:24 34 36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
8530 S:ll F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5, 2, 0. 10%, 5636 . 0, 1 . 00%, F, F)
35:09 35J22
33:48 34:00 34:12 34:24 34 36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
9760 S:ll F:3 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
3J.-53 34:04 34:23 34-3] 34:41 13-04 35:14 3 5 _• 3^_3 5 : 4 4 36:08
3$: 48' ' '34. -OO' ' '34! 12' ' '34! 24' ' 34536 34.' 48' ' Yslo'o' ' Ys-lY ' '35 124' ' YshY ' YsUY ' YsloV ' '36: 12'
2.4E6
L1.2E6
0 .OEO
Time
2.0E6
_1.0E6
0 OEO
Time
5.7E7
_2.8E7
Time
_4 . 5E7
_2.2E7
O.OEO
Time
.1.3E8
O.OEO
Time
-------
File:A28SEP98A
Sample* 11 Text:
423.7767 S:ll F
100%
50_
n"
#1-197 Acq:28-SEP-1999 20:
1115-1 xl/1
:4 BSUB(128,15,-3.0) PKD(3
36:58
.
36 24 36:36 36:48 37:00 37:12
425.7737 S:ll F:4 BSUB(128, 15, -3 . 0) PKD(3
100% 36:58
50J
n'
36124 36 he
435.8169 S:ll F
100%
so:
0" ,
36 24 36:36
437.8140 S-.ll F
100%
so:
0"
"-1- l l i l i l — r—
36 24 36:36
430.9728 S-.ll F
100%. 36:33
:/~
so:
n "
«-*•— i — i — i — i — r— i — r—
36 24 36:36
A
seU's 37 loo 37! 12
:4 BSUB(128,15,-3.0) PKD(3
36:48 37:00 37:12
:4 BSUB(128,15,-3.0) PKD(3
i — r— i — T i i i i 1 l l r— i—i i r l i i
36:48 37:00 37:12
:4 SMO(1,3) PKD(3,3,3,100.
16:49 37:01 37'
i — i — i—i— J-T-- r-i •! i ] i ' i i i i | i i
36:48 37:00 37:12
06:42 GC EI+ Voltage SIR
ExprEXP M23 DBS OVATION
, 5, 3, 0.10%, 3432. 0,1. 00%, F
37:32
h
\
Autospec-UltimaE
J \ 37^53
37:24 37:36 37:48
, 5, 3, 0.10%, 2124. 0,1. 00%, F
37:32
37! 24 37 136 37 148
,5, 3, 0.10%, 61524. 0,1. 00%,
"A"
1 ,
37:24 37:36 37^48
,5, 3, 0.10%, 62528. 0,1. 00%.
37:32
j[
37:24 37:36 37:48
00%, 0.0,1. 00%, F,F)
1fi 17:^0 37:^0
37524 37 !-36 3?! 48
38:00 38:12 38:24 38:36 38:48 39
38:00 ' 38ll2 3sl24 38:36 3sl48 39?
F,F)
38100 38ll2 38^24 3s!36 38U's 39
F,F)
3.3E5
11.6E5
' O.OEO
00 Time
3.0E5
L1.5E5
0 . OEO
00 Time
3.2E7
.1 . 6E7
O.OEO
00 Time
3.1E7
_1.5E7
O.OEO
38:00 38:12 38:24 38:36 3sl48 39:00 Time
^7-^R 1R:1S 1.7E8
_8.7E7
O.OEO
38:00 38:12 38:24 38:36 38:48 39:00 Time
-------
File
Samp
457.
1008
so:
oj
459.
100%
so:
0"
469.
100S
50.
o:
471.
100%
so:
o;
454.
100%
so:
0"
•:A28SEP98A #1-276 Acq:
>le#ll Text:1115-l xl/1
7377 S:ll F:5 BSUB(128
39!l2 39!24 39136
7348 S:ll F:5 BSUB(128
39112 39I24 39!36
7780 S:ll F:5 BSUB(128
28-SEP-1998 20:06:42 GC El-t- Voltage SIR Autospec-UltimaE
Exp:EXP M23 DB5_OVATION
,15, -3.0) PKD(3,5,3/0.10%,6724.0,1.00%,F,F)
y
A
39:48 4C)[6d 4o!i2 4o!24 4o!36 40:48 4l!od 4l!i2 4i!24 41136 4lU8 42!66 42!l
,15, -3.0) PKD(3,5,3,0.10%,1752.0,1.00%,F,F)
40:24
A
39:48 40:66 46:12 40:24 4ol36 4o!48 4l!66 41:12 41:24 4ll36 41:48 42:66 42:1
,15, -3.0) PKD(3,5,3,0.10%,2076.0,1.00%,F,F)
t\
i i i i i i i i i i 1 i i i i i—T'-r r r i i i i i i i i 1 i i i i ' 1 i ' ' ' i | | ' ' ' ' ' | ' ' ' ' ' | ' ' ' ' ' | | 1 ' ' ' ' ' 1 1 ' ' ' ' ' 1 '
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:1
7750 S:ll F:5 BSUB(128, 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 464 . 0, 1 . 00%, F, F)
40:23
A
i i i i i i i i i i i i i i i -r-;-r"t •
39:12 39:24 39:36
9728 S:ll F:5 SMO(1,3)
39:09 33Li32J13L
I
39:12 39:24 39:36
•> . _ .. _ — _
l\.
39148 4o!66 46!l2 4ol24 46136 4o!48 4l!66 4i!i2 4l!24 41 .'36 4ll48 42166 42!l2
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
42 40=05 40:26 40:38 40i47 41:07 41:20 41:41 41:54 42:10
3.3E5
L1.7E5
O.OEO
2 Time
3.8E5
L1.9E5
O.OEO
2 Time
3.2E7
11.6E7
O.OEO
2 Time
r3.6E7
11.8E7
' O.OEO
! Time
1.9E8
.9.4E7
.O.OEO
39I48 46!6o 46!l2 46.'24 46?36 40.-48 4l!66 41 .-12 41 .'24 4l!36 4l!48 42166 42!l2 Time
-------
File:A28SEP98A #1-528 Acq:28-SEP-1998 20:
Sample#ll Text: 1115-1 xl/1
303.9016 S:ll BSUB(128, 15, -3 .0) PKD{3,3,2
100% 25/l21
50 : 24:08 [1
- A 24:44 kfe:2
„: A A A m
24:00 25:00
305.8987 S:ll BSUB(128 , 15, -3 . 0) PKD(3,3,2
100% 25/{21
50j 24:08 [1
A 24:44 GB:2
«: A A A ' T\
24:00 25:00
315.9419 S-.ll BSUB(128,15,-3.0) PKD(3,3,2
1001
50 j
o -
24:00 25:00
317.9389 S:ll BSUB (128, 15, -3 . 0) PKD(3,3,2
100%
50 j
24:00 25:00
375.8364 S:ll BSUB(128 , 15 , -3 . 0) PKD(3,3,3
100?
50 j
.; 23:20 24:01 24:35 25:04
24:00 25:00
316.9824 S:ll SMO(1,3) PKD(3, 3 , 3, 100 .00%,
100% 23^33 24jJ}4_ 24:42 2J5_i22
50_
o- .
"" V— 1 ' 1 1 1 1 1 1 1— ' T |
' 24 00 25:00
06:42 GC EI +
Exp:EXP M23
,0.10%, 3296.
n5A45 26:14
/A /A
26 100
,0.10%, 4948.
^ 2A
26:00
,0.10%, 5580.
I r |
26:00
,0.10%, 5464.
i i |
26:00
,100. 00%, 168
^jj3J 2 o r 1
26.;00'
0.0,1.00%,F,
26^02 2J
26!-00
Voltage SIR Autospec-UltimaE
DBS OVATION
0,1.00%,F,F)
27:58 1.2E7
26:56 A ;
26:38 n7A°27.21 / \ -6.0E6
/VV /Yv/v/vyv /Vy\_ O.OEO
27 lod 28 loo 29 lod 3oloO Time
0,1.00%,F,F)
27:59 1.5E7
26:56 A :
26-38 A7A°4 l\ 17.7E6
AA /Yv A21 /\ /I 28A33rv ^ :n_nRn
27:00 28:00 29:00 30:00 Time
0,1.00%,F,F)
27:55 2.6E7
M i.l.3E7
/ V r n.OEO
27 100 28 loo 29 lod 30-loO ' Time
0,1.00%,F,F)
27:55 . 3.3E7
II _1.6E7
/I : O.OEO
27 100 28 1 00 29:00 30:00 Time
.0,1.00%,F,F)
28:09 7.3E4
fl |l 30:06 :
/ A 29:47 A -3'6E4
926;42.._T. ??f£L^J M J WV41^ 2^3f^AAJ M A:O.OKO
27 loO 28 loO 29 loo 3oloO Time
F)
jjjj 25-52 _^7±AO_2fliil5__ ^8_: 42^9: 05 29:28 Tn_-jj__^6 . 1E7
L3.0E7
\ :n.ORO
27 loO ' 28 loO 29 lod 30loO Time
-------
File:A28SEP98A
Sample#ll Text:
339.8597 S:ll F
lOOSj
50_
0:
30:46
y\
30:36 30:48
341.8568 S-.ll F
100%j
:
5°;
30:46
36136 30U8
351.9000 S:ll F
100%
50J
o"
30:36 30:48
353.8970 S:ll F
100%
50:
0"
30:36 30:48
409.7974 S:ll F
100%
50 :
0'
'•' 1 1 ! -f-T-T-T'-TT T
30:36 30:48
366.9792 S:ll F
100& 30:41
50 1
OJ
i i i i i i i i i i
3D1-36 30.:48
#1-237 Acq:28-SEP-1998 20:06:42 GC EI+ Voltage SIR Autospec-UltimaE
1115-1 xl/1
:2 BSUB(128,15,-3.0)
31:00 31:12 31:24
:2 BSUB(128,15,-3.0)
3ll66 3lli2 31124
:2 BSUB(128,15,-3.0)
3llOQ 31:12 31:24
:2 BSUB(128,15,-3.0)
31:00 31:12 31:24
:2 BSUB(128,15,-3.0)
i i i i i i i i i i i -i ~r T ' t | i i
31:00 31:12 31:24
:2 SMO(1,3) PKD(3,3,3
___3_lj_03_jjL- 1 ? 31:2?
31:00 31:12 31:24
Exp:EXP M23 DBS
OVATION
PKD(3,3,2,0.10%,11468.0,1.00%,F,F)
31:49
,1 «A
31:43/ \
A\ \ Tl • 56
/ \ A
31:36 31:48 32:00
PKD(3,3,2,0.10%,6520
31:48
A
31:431
N b\56_
31136 3lUs 32166
PKD(3,3,2,0.10%,2316
31:36 31:48 32:00
PKD(3,3,2,0.10%,5004
' 31136 31-48 32-66
32:12 R.6E6
A
l\ 32:20
/ \ fo:24 32f^34 32:55
„) L/l\yvA A A 33A°4
_4 .3E6
;
32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
.0,1.00%,F,F)
32:12 ^s.ese
\ 32:20
L2432A34 32:55
/ V / f\/vA A A 33A04
LO.OEO
32ll2 32l 24 32136 32148 33:00 33112 33124 33136 Time
.0,1.00%,F,F)
32:23 32:49
Af(
|\
8.2E7
L4.1E7
LO.OEO
1 ' ' I | r i i i i | , i i ., | i i , i i | i , i , i i i i , i , | i i i i i i i i i
32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
-0,1.00%,F,F)
32:23 32:49
A A
ft
/I
5.3E7
L2.7E7
:0 OEO
32:12 32124 32136 32148 33166 33ll2 33 '24 33:36 Time
PKD( 3, 3, 3, 100. 00%, 524. 0,1>00%,F,F)
32
31136 3ll48 32l6o
, 100. 00%, 0.0,1. 00%, F,
31:41 32-f
^^ —
i i i | i . . i i | i i i i i i i i
31:36 31:48 32:00
32^14 32P4
t\ l\ <^
\ 32-31 32:32 32:56
.-Oe/^yv/l A /Y/\ 33:08 33=20
_1.6E6
18.0E5
-O.OEO
32ll2 32124 32136 32148 33:00 33ll2 33124 '33\36 Time
F)
JL 3_2 • 1 7 "?2:33 3 2 ; 4 4^3 2 -• S 5 33.-Q9 _ 3 .1 ; 2 9 7.2E7
1 ' ' 1 ' ' ' ' ' i ' ' ' ' ' i ' ' ' ' ' i ' ' ' ' ' i ' ' ' ' ' i ' ' ' ' ' i ' ' ' ' ' 1 ' ' '
.3.6E7
.O.OEO
32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
-------
File:A28$EP98A #1-197 Acq:
Sampleflll Text: 1115-1 xl/1
373.8207 S:ll F:3 BSUB(128
100%, 34^02
50.
/
33:56 /
A
\ \ 34:1
' i ) i i / 1 i~ ^~r~^, f7- ,
33:48 34:00 345l2
375.8178 S.-ll F:3 BSUB(128
100*j 34j02
50_
0.
33:56 /\
A
A /I 34:13
1 / V> ' -^ ^-^
33:48 34:00 34:12
28-SEP-1998 20:06:42 GC EI+ Voltage SIR Autospec-UltimaE
Exp:
EXP M23 DB5_OVATION
, 15, -3.0) PKD(3, 5,2.0.10*.15800.0.1.00%.F.F)
34:35
A
/\34:39
/ \ A
4 / V V
J Y V^
34524 34536
,15, -3.0) PKD(3,5,2
34:35
A
/\34:39
/ \ A
/ \/?4
J Y V"
34524 34536
383.8639 S:ll F:3 BSUB(128, 15 , -3 . 0) PKD(3,5,2
100%
50 j
ol
33548 34! 00 34 1 12
34:39
. A
AA
/vl
34:24 34:36
385.8610 S:ll F:3 BSUB(128, 15, -3 .0) PKD(3,5,2
1003
50 j
o:
33548 34 5 00 34? 12
445.7555 S:ll F:3 BSUB(128.
100%
50.
0;
33548 34 [do 34! 12
380.9760 S:ll F:3 SMO(1,3)
1004 33^53 34:04
50:
o:
/
33548 34 5 00 34 5 12
34:39
34:35A
A ;\
AA
IvV
34:24 34:36
15,-370) PKD(3,3,3
^3T
34:31 /\
/Ub
34524 34536
_2.1E6
•^3 J4^52 J^1 3^36
34548 35500 3s5l2 35:24 35536 ' 35548' ' VeJoV ' '36\i2
L1.0E6
Time
, 0.10%, 9808. 0,1. 00%, F,F)
_1.7E6
43 35:01 35-36
"s^ -s ^^ J^~*' \~ S~*^
' ' | ' ' ^ ' ' | i T I i i r-i i i— i — i — I — i i i ' i "i iT1 i i — i— i — | — r— i — i i i — ^ — i i i i i i i — r— i — r-
34:48 35:00 35:12 35:24 35:36 35?48 3e5oO 3e5l2
L8.7E5
10 .OEO
Time
, 0.10%, 36336. 0,1. 00%, F,F)
4.1E7
L2.0E7
n nwn
34548 35 5 00 35 5 12 35 5 24 35 5 36 ' '35 5 48' ' '36\00 ' '36 5 12 ' ' ' Time
,0.10%, 19976. 0,1. 00%, F,F)
7.9E7
_4.0E7
- n . OFD
lijiii — i i | ""i i i — P — i — | — i — t — i — i — i — r~i — i — i — i — i — i — i — i — i — i — i — r-nr-"i — i — i — i — i — r-- T T — j — r— , — [— ) — t t '
34:48 35:00 35:12 35:24 35:36 35:48 36:00 365l2 Time
, 100. 00%, 12 9 6.0, 1.00%,F,F)
35:02
41 A A 35:16
" 34>56y ^^Vy^^-^V 33^31 ^^ ^
_2.3E5
_1.2E5
n riFn
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36!l2 Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
J4: 2,134- 31 34:41
34524 34536
35^04 35:14 35:34 35:44 36:OR^ 7. . -SRR
_1.3E8
n.OFn
34548 35:00 35 5 12 35 5 24 ' 35:36 '35 5 48 36 5 00 ' 36 5 12' ' Time
00
-------
File:A28SEP98A #1-197 Acq:
28-SfiP-199B 20:
Sample#ll Text .-1115-1 xl/1
407.7818 S:ll
1003
50.
-
o-
3 6. -24 36 S
409.7788 S:ll
100%
50J
OJ
36124 36?
417.8253 S:ll
100%
-
50 j
0-
''i i i i i ' 1
36:24 36:
419.8220 S:ll
100%
.
50 J
0"
i i r i — i — r— p
36 24 36:
479.7165 S:ll
1008
50J
-
0'
36-3
^
"-H — TT=T — 1^1 1
36 24 36:
430.9728 S.-ll
100% 36:13
sol
:
*- TJ i •' ' ' |
36:24 36:
F:4 BSUB(128
3T
/
/ v «
/ \^ j
36 36:48
F:4 BSUB(128
36:44
A
A
/ \ 36
/ ^ ^
36 36 U'8
F:4 BSUB(128
36:44
A
/ v
— i" r* FT*! ^^t" i" i"
36 36:48
F:4 BSUB(128
36J44
A
/ V
T r* r i i y" r t i
36 36:48
F:4 BSUB(128
4 36-44
i— i^ -^*\
36 36:48
F:4 SMO(1,3)
36jA9
' ' ' ' ' l ' ' '
36 36:48
,15, -3.0) PKD(3
-.55
"^v ^/^^
37 loO 37. -12
,15, -3.0) PKD(3
:56
"X^ ^\
37 loo 37! 12
,15, -3.0) PKD(3
37:00 37:12
,15, -3.0) PKD(3
37:00 37:12
,15, -3.0) PKD(3
37-03
^•^ y\ |
1 1 | 1 1 I"" I' >~^
37:00 37:12
06:42 GC EI+ Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
,5, 3, 0.10%, 4444.0,
'37. -24' ' '37 \36
,5, 3, 0.10%, 2444.0,
3?! 24 37l 36
,5, 3, 0.10%, 8280.0,
-i i i—i i i i i i jiii
37:24 37:36
,5, 3, 0.10%, 11532.0
37! 24 371 36
,3, 3, 100. 00%, 4888.
37:32
37:24Sj\
/ ^~^~^ \^~~-J\
^ — y Vs* \
yj] 24 37:36
1.00%,F,F)
37:54
^~~^.
1.0E6
L5.2E5
O.OEO
37:48 38:00 38.-12 3sl24 38:36 38:48 39-00 Time
1.00%,F,F)
37:54
y v
1.0E6
.5.1E5
O.OEO
37! 48 38 loO 38ll2 38?24 3sl36 SaU's 39 00 Time
1.00%,F,F)
,_1.7E7
37:53
A
j V_
-
_8.6E6
O.OEO
37 Us 38:00 38ll2 3sl24 38136 SsU's 39 00 Time
,1.00%,F,F)
3.7E7
37:53
A
7 V.
.1.9E7
O.OEO
37.-4S 38:00 38:12 38.-24 38.!36 38.U8 39 00 Time
0,1.00%,F,F)
38:02 38:15 38:34 38:44
S~*^-^^ _S\_jr>^r 1V^>'^ S**~~^-~^/*\~ — \f/*^v- ***.**• ^f\f— ^-**^_^>-~~ "V-^~ ~~ *^-^— «-
_1.3E5
16.3E4
O.OEO
37:48 38 loo 3sll2 3s! 24 38136 38:48 39loO Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
17.01 37:
! 1— T 1 1 1 ' ' | ' '
37:00 37:12
16 .17-.. 10
37 .-24 ' 3 ?! 36'
17:5017:58 38:15 1 . 7E8
.8.7E7
O.OEO
371-48 38. -00 38ll2 38 .-24 38.-36 3sl48 39loO Time
-------
File
Samj
441
1005
50.
0.
443.
1008
50:
o:
469.
100%
50:
o-
471.
100%
50 1
o:
513.
100%
50:
o:
»:A28SEP98A #1-276 AcqT
3le#ll Text:1115-l xl/1
7427 S:ll F:5 BSUB(128
k
39:12 39:24 39:36
7398 S:ll F:5 BSUB(128
39:27
39:12 39124 39136
7780 S:ll F:5 BSUB(128
28-SEP-1998 20:06:42 GC EH- Voltage SIR Autospec-UltimaE
Exp:EXP M23 DB5_OVATION
,15, -3.0) PKD(3,5,3, 0.10%,1968.0,1.00%,F,F)
j/ ^^1— •VX1--
39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42-00 42-1
,15, -3.0) PKD(3,5,3,0.10%,4672.0,1.00%,F,F)
40:32
7 \0jj40 41:00
1.5E5
17.7E4
2 Time
1.8E5
_9.0E4
39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
,15, -3.0) PKD(3,5,3,0.10%,2076.0,1.00%,F,F)
K
39!l2 39I24 39136 39\48 4o!66 46!l2 4o!24 4o!36 40 Us ' 41 ! 66 ' 41 ! 12 41 524 ' 41 \36 ' 4! Us ' 42 !66 ' 42 ! 1
7750 S:ll F:5 BSUB(128, 15 , -3 . 0) PKD(3 , 5 , 3 , 0 . 10%, 464 . 0 , 1 . 00% , F, F)
40:23
39112 39124 39136
6775 S:ll F:5 BSUB(128,
rwv/vfo17 3AJt\]f9!36
. . . . | . i . . . | r i . . i i i , i
39:12 39:24 39:36
454.9728 S:ll F:5 SMO(1,3)
100% 39:09 39:32 39-
50:
o-
r
^ 39:12 39:24 39:36
39:48' 40:66 40:12 46:24 40:36 40 :48 ' 41 : 66 ' 41 : 12 ' 41 :24 ' 41 : 36 ' 41 :48 ' 42 -66 ' 42 : i:
15, -3.0) PKD(3,3,3,100.00%,364.0,1.00%,F,F)
40 -23
^4 \ 40:58
39-51 An-nn / \\/l 40:4040:50 A 41:06 41i^3. 41:53 42:04
jj.-jj.*tu.uu i \\ i-^^Vv A A II A A A fv \ A A A A A
3.2E7
L1.6E7
2 Time
3.6E7
L1.8E7
I Time
_1.4E4
_7.1E3
O.OEO
39:48 40:66 40:12 46:24 46:36 40:48 41:00 41:12 41:24 41:36 41:48 42:66 42:12 Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
42 40:05 40:26 40:3840:47 41:07 41;20 41:41 41:S4 42:10 1 . 9F.8
_9.4E7
O.OEO
39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
O
vl
O
-------
OPUSquan 30-SEP-1998 Page 4
Filename a29sep98n
Sample 4
Acquired 29-SEP-98 19:16:01
Processed 30-SEP-98 08:57:39
Sample ID 1115-1 ^-_^— -—
Cal Table 07feb-m23conf — **"^
Results Table m8290cf-092998n
Comments
Typ Name; Resp; Ion 1; Ion 2; RA;?; RT; Conc.v"' DL; S/N1;?;
Unk 2,3,7,8-TCDF; 1.34e+07; 5.84e+06; 7.55e+06; 0.77;y; 27:55; 5.504; 0.1056; 314;y;
ES/RT 13C-2,3,7,8-TCDF; 2.56e+08; 1.13e+08; 1.43e+08; 0.79;y; 27:51; 62.784; -; 3524;y;
Total Tetra Furans; 8.35e+08; 2.60e+07; 3.34e+07; 0.78;y; 18:10; 342.963; 0.1056; 2227;y;
DPE HxCDPE; * ,- * ;NotFnd; *; - ; *;n
LMC QC CHK ION (Tetra); *; * ;NotFnd; *; -; DivO;n
>- (/ i^P ~ &' 0
\&i* *^-—^^^' "i^
-;-; 27:55
-;-; 27:55
S/N2;? mod?
129 ;y no
2976;y no
919;y no
no
no
^0
T7
- ; - ; no
Page
-------
File:A29SEP98fJ #1-267'
Sample#4
303.9016
Text: 1115-1
S:4 SMO(1,3)
7 Acq:29-SEP-1998 19:16:01
BSUB (128 ,15, -3
.0)
lOOSj ISjlO 20:19
50_
o-
16
305.8987
50J
o:
16
315.9419
1008
50J
ol
16
317.9389
100%
50 j
o:
16
375.8364
100%
:
_„ ;
DU_
:
o:
15:3C
*«^UA,
16
316.9824
100%
50J
0:
-Nl
— ' — *" — i
-16
19:501 21:
11 (I (1 ^
IvlllA 1
:00 18:00 20iOO
S : 4 SMO (1,3)
BStran28.15.-3
18j10 20:20
J
19:501 21:
1 II 11 2/1
MM 1
:00 18:00 20:00
S:4 SMO (1,3)
lob ' ' is lob
S:4 SMO (1,3)
lob is lob
S:4 SMO (1,3)
16:55 _ 18^
^ AigiAt J^ j?.%3Ajlff
i — r — i — "t ^^ ^ f- ' p- T "
•00 18:00
S:4 SMO (1,3)
16:28 18
1 1 1 1 1 1 r—
:00 18:00
BSUB(128,15,-3
' 20 lob '
BSUB (128, 15, -3
20 lob
BSUB (128 ,15, -3
19 • 34
_ I on . 1 Q 21
2 fi it *c
QJRf^l Vhw^VjWfJ*''
20:00
11
^
22
.0)
11
L :27
22
.0)
22
.0)
22
.0)
:24
22
PKD(3,3,3,100.00%,
:37 2D^06_2i:
—I 1 jr—y T~™1 1 1
20:00
16
22
Exp:M23
PKD(3,3
23:
23
oo » "1 0 I
&& • -J &• \
:00
PKD (3,3
23:
oo ,,2ft
22:32 '
1 ' i i '
:00
PKD (3,3
loo' ' '
PKD (3,3
lob' ' '
PKD (3,3
14 23
:00 '
GC El
-t- Voltage SIR Autospec-UltimaE
DB225
,3,
16
0.10%, 2248. 0,1.
:26
A
24
,3,
16
A
>
loo
24:59
&5:26 l\
A A y\
26:00
0.10%. 7028.0. 1.
:26
A
24
,3,
24
,3,
24
,3,
L2233
WK*
24
0.0,1.00%,
,A
loo
24:59
$5:26 A
A A A
26:00
0.10%, 3468. 0,1.
lob
26 lob
0.10%, 5212. 0,1.
loo
100
24
O A .
/c 2
F5&07 26iv?E
i J\r- i&i/L
26:00
00%,F,F)
r5'
27:33
fl_ ...-A 29:15
07:55/\ A. 3i:49
/ \A_/ \ / VV A
,2.
0.
28:00 30:00 32:00 34:00 36 00
00%,F,F)
r6'
27:33
^ rfi\ 29:15
A A A 7\A 31A49
.3.
0.
28:00 30:00 32:00 34:00 36 00
00%,F,F)
27:51
ft
Jl
1.
-6.
• o.
28:00 30 lob 32.' 00 34lob 36 00
00%,F,F)
27 ; 52
fl
I
Jl
1.
.7.
0.
28 lob 30 lob 32 lob 34.' 00 36.00
1.00%,F,F)
30:48 3.
7:03 1
71:06 31:23 1A.(V7
A,27:41 30ai(i TT A\
A2-?li49 ,29:13 3S:^A,32:08 33-iaA Jt55:07
/ y/ Yd,^*^vWfw^W V Wwv^K^^UW^lA^
' *
~
- o .
28:00 30:00 32:00 34:00 36 00
OE6
5E6
OEO
Time
5E6
2E6
OEO
Time
2E7
1E6
OEO
Time
6E7
8E6
OEO
Time
8E4
9E4
OEO
Time
F,F)
22:3023:34 24:44 26:25 2J7^7j2jh°I---Jil31^
:00 ' ' '
i__
24
1 1
loo
'f^T V 1 T1 I I —
26:00
-i i i i r— i i i i | i < i i i | i i i i i | i i r T i
.2.
0.
28:00 30:00 32:00 34:00 36 00
OE7
OE7
OEO
Time
-------
Method 2 3
M23-O-4
PES
Paradigm Analytical Labs
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ (ND=0)
TEQ (ND=l/2)
Concentration
I**)
0.0073
0.0046
0.0029
0.0041
0.0074
0.0177
0.0365
0.113
0.0506
0.0465
0.0381
0.0150
0.0089
ND
0.0332
0.0040
EMPC
0.814
0.132
0.143
0.0368
11.0
1.24
0.143
0.0416
0.0549
0.0550
DL
ing)
0.0010
0.0007
0.0010
0.0009
0.0009
0.0009
0.0014
0.0027
0.0012
0.0012
0.0012
0.0010
0.0011
0.0013
0.0010
0.0011
0.0023
0.0010
0.0007
0.0009
0.0009
0.0027
0.0012
0.0010
0.0010
EMPC
tn#
0.0103
0.825
0.148
0.145
11.0
1.26
0.147
0.0452
0.0549
0.0550
RT
(HUB.)
28:58
33:02
35:06
35:09
35:22
37:32
40:24
27;58
32:23
32:50
34:34
34:39
35:01
35:32
36:44
37:54
40:32
Ratio
0.79
1.37
1.35
1.3
1.26
1.1
0.96
0.77
1.58
1.68
1.19
1.29
1.29
0.84
1.08
1.11
0.73
Qualifier
•
ITEF
ITEF
Client Information
Project Name:
Sample ED:
Laboratory Information
Project ED:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-O-4
LH15
1115-2
02-Sep-98
08-Sep-98
16-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight / Volume:
Moisture / Lipids:
riiMf*HiBTn£ '
Retehk:
Begin ConCal:
EndConCal:
Initial_Cal:
Air
1
0.0 %
a28sep98a-12
a28sep98a-l
a28sep98a-2
a28sep98a-15
m8290-091498
r
073
1/2
-------
Paradigm Analytical Labs
Method 23
M23-O-4
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDD
13C,2-l,2,3,6,7,8-HxCDD
13Cirl,2,3,4,6,7,8-HpCDD
13C12-OCDD
l3C,2-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
'3C12-l,2,3,6,7,8-HxCDF
I3C12-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37CV2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
13Cirl,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
l3Cirl,2,3,4,7,8,9-HpCDF
Injection Standards
13Cu-U3,4-TCDD
!3Cn-l,2,3,7,8,9-HxCDD
Expected
Amount
(ng)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured
Amount
-------
O
•vl
cn
OPUSquan 29-SEP-1998
Filename a28sep98a
Sample 12
Acquired 28-SEP-98
Processed 29-SEP-98
Sample ID 1115-2 xl/1
Page 1
20:53:46
08:14:06
(i C. —
C1" "
i •
\ ^
i)
Cal Table m8290-091498
Results Table M8290-092898A
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
SS
Name;
2,3,7,8-TCDD;
1, 2,3,7, 8-PeCDD;
1,2,3,4,7,8-HxCDD;
1,2,3,6,7,8-HxCDD;
1,2,3,7,8,9-HxCDD;
1 , 2 , 3 , 4 , 6, 7 , 8-HpCDD;
OCDD;
2,3,7,8-TCDF;
1, 2,3,7, 8-PeCDF;
2,3,4,7,8-PeCDF;
1,2,3,4,7,8-HxCDF;
1,2,3,6,7,8-HxCDF;
2,3,4,6,7,8-HxCDF;
1,2,3,7,8,9-HxCDF;
1,2,3,4,6,7,8-HpCDF;
1,2,3,4,7,8,9-HpCDF;
OCDF;
13C-2,3,7,8-TCDD;
13C-l,2,3,7,8-PeCDD;
13C-1,2,3, 6,7, 8-HxCDD;
13C-l,2,3,4,6,7,8-HpCDD;
13C-OCDD;
13C-2,3,7,8-TCDF;
13C-1, 2,3,7, 8-PeCDF;
13C- 1,2, 3,6,7, 8-HxCDF;
13C-l,2,3,4,6,7,8-HpCDF;
13C-1,2,3,4-TCDD;
13C-l,2,3,7,8,9-HxCDD;
37Cl-2,3,7,8-TCDD;
13C-2, 3,4,7, 8-PeCDF;
13C-1,2, 3,4,7,8-HxCDD;
13C-l,2,3,4,7,8-HxCDF;
13C-l,2,3,4,7,8,9-HpCDF;
37Cl-2,3,7,8-TCDD;
13C-2, 3,4,7, 8-PeCDF;
13C-1 , 2,3,4,7, 8-HxCDD;
13C-1.2, 3,4,7,8-HxCDF;
13C-1, 2,3,4,7,8, 9-HpCDF;
Resp ;
5.586+05;
2.276+05;
1.146+05;
1.786+05;
3.106+05;
7.386+05;
1.266+06;
9.22e+07;
2.76e+06;
2.60e+06;
2.21e+06;
l.OOe+06;
5.396+05;
5.74e+04;
1.58e+06;
1.64e+05;
3.856+05;
2.27e+08;
1.73e+08;
1.90e+08;
1.83e+08;
2.76e+08;
2.766+08;
2.44e+08;
2.43e+08;
1.40e+08;
2.47e+08;
2.29e+08;
2.17e+08;
2.25e+08;
1.466+08;
1.67e+08;
8.716+07;
2.176+08;
2.25e+08;
1.46e+08;
1.67e+08;
8.71e+07;
Ion 1;
1.876+05;
1.316+05;
6.546+04;
l.OOe+05;
1.736+05;
3.876+05;
6.186+05;
4.01e+07;
1.696+06;
1.63e+06;
1.20e+06;
5.64e+05;
3.036+05;
2.62e+04;
8.21e+05;
8.62e+04;
1.62e+05;
9.986+07;
1.06e+08;
1.06e+08;
9.516+07;
1.31e+08;
1.226+08;
1.496+08;
8.40e+07;
4.27e+07;
1.086+08;
1.286+08;
2.17e+08;
1.38e+08;
8.20e+07;
5.74e+07;
2.656+07;
2.17e+08;
1.386+08;
8.206+07;
5.74e+07;
2.656+07;
Ion 2;
3.706+05;
9.61e+04;
4.856+04;
7.71e+04;
1.37e+05;
3.516+05;
6.456+05;
5.20e+07;
1.07e+06;
9.706+05;
l.Ole+06;
4.386+05;
2.356+05;
3.116+04;
7.616+05;
7.756+04;
2.23e+05;
1.276+08;
6.73e+07;
8.356+07;
8.81e+07;
1.45e+08;
1.54e+08;
9.46e+07;
1.59e+08;
9.756+07;
1.39e+08;
l.Ole+08;
-;
8.74e+07;
6.44e+07;
1.10e+08;
6.06e+07;
_;
8.74e+07;
6.44e+07;
1.10e+08;
6.06e+07;
RA; ?;
0.51;n;
1.37;y;
1.35;y;
1.30;y;
1.26;y;
1.10;y;
0.96;y;
0.77;y;
1.58;y;
1.68;y;
1.19;y;
1.29;y;
1.29;y;
0.84,-n;
1.08;y;
l.ll;y;
0.73;n;
0.78;y;
1.57;y;
1.27;y;
1.08;y;
0.90;y;
0.79,-y;
1.58;y;
0.53;y;
0.44;y;
0.78;y;
1.27,-y;
-}-'•
1.58;y;
1.27,-y;
0.52;y;
0.44;y;
1.58;y;
1.27;y;
0.52;y;
0.44;y;
RT;
28:58;
33:02;
35:06;
35:09;
35:22;
37:32;
40:24;
27:58;
32:23;
32:50;
34:34;
34:39;
35:01;
35:32;
36:44;
37:54;
40:32;
28:56;
33:02;
35:09;
37:32;
40:23;
27:54;
32:22;
34:38;
36:43;
28:40;
35:21;
28:58;
32:49;
35:05;
34:34;
37:53;
28:58;
32:49;
35:05;
34:34;
37:53;
Cone ;
0.241;
0.116;
0.073;
0.102;
0.184;
0.442;
0.912;
33.472;
1.264;
1.162;
0.953;
0.376;
0.223;
0.027;
0.830;
0.099;
0.258;
86.736;
99.068;
79.013;
90.564;
155.538;
84.710;
89.976;
88.099;
77.082;
55.016;
64.105;
84.441;
84.820;
80.740;
73.308;
54.770;
97.378;
94.302;
102.062;
83.155;
71.052;
DL;
0.0260;
0.0185;
0.0243;
0.0218;
0.0224;
0.0227;
0.0337;
0.0685;
0.0304;
0.0297;
0.0295;
0.0256;
0.0283;
0.0322;
0.0244;
0.0283;
0.0562;
0.1086;
0.6188;
0. 1009;
0.5306;
0.0107;
0.0524;
0.0151;
0.1221;
0.0943;
-;
-;
0.0363;
0.0154;
0.1337;
0.1475;
0 . 1077 ;
0.0437;
0.0073;
0.1580;
0.1493;
0.1479;
S/N1;?;
ll;y;
15;y;
10; y;
21;y;
19 ;y;
58;y;
59,-y;
1164 ;y;
182 ;y;
187;y;
61;y;
40;y;
16;y;
2;n;
79;y;
6;y;
20;y;
1298;y;
932;y;
3275;y;
384;y;
12933 ,-y;
5251;y;
29325;y;
1669;y;
2144,-y;
1478;y;
3660;y;
6657 , -y;
27959, -y;
2704,-y;
1217 ;y;
1104 ;y;
6657 , -y;
27959 ;y;
2704,-y;
1217,-y;
1104;y;
S/N2;? mod?
178 ;y
32 ;y
6;y
10 ;y
13 ;y
71;y
lll;y
1079 ;y
72 ;y
71;y
91;y
46 ;y
21;y
2;n
142;y
12 ;y
12,-y
5675;y
1415, -y
1940;y
445;y
120240;y
4403;y
124778;y
3189;y
2416;y
6426;y
2197;y
-; -
121745;y
1591;y
2324;y
1187;y
_; -
121745;y
1591;y
2324;y
1187;y
~io
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 1"
-------
OPUSquan 29-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:25
Run: 17 File: a28sep98a S:12 Acq:28-SEP-98 20:53:46 Proc:29-SEP-98 08:14:06
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-2 xl/1
Amount: 275.78 of which 33.47
Cone: 275.78 of which 33.47
Tox #2: -
Tox #1: -
Name
named and 242.31
named and 242.31
Tox #3: -
RT Respnse
RA
2,3,7,8-TCDF
1 24:07 5.56+07 0.77 y
5.56+07
2 24:18 4.0e+04 0.82 y
4.0e+04
3 24:43 3.6e+07 0.77 y
3.6e+07
4 24:51 l.Oe+05 0.74 y
l.Oe+05
5 25:02 2.8e+07 0.77 y
2.8e+07
6 25:20 l.Oe+08 0.80 y
l.Oe+08
7 25:28 5.0e+07 0.72 y
5.0e+07
8 25:39 2.5e+07 0.75 y
2.56+07
9 25:45 7.6e+07 0.78 y
7.6e+07
10 26:09 2.06+07 0.76 y
2.0e+07
11 26:14 4.16+07 0.79 y
4.16+07
12 26:30 2.3e+07 0.76 y
2.36+07
13 26:38 3.0e+07 0.77 y
3.0e+07
14 26:56 6.7e+07 0.77 y
6.7e+07
15 27:03 4.9e+07 0.80 y
4.9e+07
16 27:20 2.3e+07 0.79 y
2.3e+07
17 27:34 5.5e+05 0.99 n
5.5e+05
18 27:40 1.3e+07 0.77 y
1.3e+07
19 27:58 9.2e+07 0.77 y
9.2e+07
Cone
19.97
0.01
]
13.04
]
0.04
<
(
10.27
37.93
4
C
18.08
8.91
]
]
27.54
4
7.10
£
1
15.01
3
8.29
c
:
10.81
]
]
24.17
17.68
8.51
]
]
0.20
4.65
c
33.47
unnamed
unnamed
Area Height
S/N Mod?
2.4e+07 5.76+06 9.7e+02 y n
3.16+07 7.26+06 9.06+02 y n
1.8e+04 5.5e+03 9.5e-01 n n
2.2e+04 l.Oe+04 1.3e+00 n n
1
1.6e+07 3.5e+06 6.0e+02 y n
2.0e+07 4.6e+06 5.8e+02 y n
.4e+04 1.7e+04 3.0e+00 y n
.0e+04 1.9e+04 2.4e+00 n n
1.2e+07 2.9e+06 5.0e+02 y n
1.6e+07 3.86+06 4.8e+02 y n
4.7e+07 9.2e+06 1.6e+03 y n
5.8e+07 1.2e+07 1.5e+03 y n
3
2.16+07 3.2e+06 5.5e+02 y n
2.9e+07 4.2e+06 5.3e+02 y n
.le+07 2.9e+06 4.9e+02 y n
.46+07 3.7e+06 4.7e+02 y n
3.3e+07 5.0e+06 8.5e+02 y n
4.3e+07 6.46+06 8.1e+02 y n
8.4e+06 2.4e+06 4.1e+02 y n
l.le+07 3.26+06 4.06+02 y n
L
1.8e+07 3.8e+06 6.5e+02 y n
2.3e+07 4.8e+06 6.0e+02 y n
3
9.9e+06 2.2e+06 3.8e+02 y n
1.3e+07 2.96+06 3.66+02 y n
.3e+07 2.9e+06 5.0e+02 y n
.76+07 3.9e+06 4.9e+02 y n
2.9e+07 6.1e+06 l.le+03 y n
3.8e+07 7.8e+06 9.7e+02 y n
3
2.2e+07 4.9e+06 8.56+02 y n
2.7e+07 6.1e+06 7.7e+02 y n
.Oe+07 2.26+06 3.86+02 y n
.3e+07 2.9e+06 3.6e+02 y n
2.7e+05 7.0e+04 1.2e+01 y n
2.7e+05 8.6e+04 l.le+01 y n
5.66+06 1.2e+06 2.16+02 y n
7.2e+06 1.6e+06 2.06+02 y n
7
4.06+07 6.8e+06 1.2e+03 y n
5.26+07 8.6e+06 l.le+03 y n
r (
076
-------
29-SEP-1998 Page 2
20 28:32 1.6e+07 0.77 y 5.70
1.6e+07 6.8e-i-06 1.5e+06 2.5e+02 y n
8.9e+06 1.9e+06 2.4e+02 y n
21 28:49 9.2e+06 0.77 y 3.33
9.2e+06 4.0e+06 8.4e+05 1.4e+02 y n
5.2e+06 l.le+06 1.4e+02 y n
22 29:03 1.6e+06 0.76 y 0.58
1.6e+06 6.86+05 1.7e+05 3.0e+01 y n
9.0e+05 2.2e+05 2.8e+01 y n
23 29:23 1.3e+05 0.82 y 0.05
1.3e+05 6.0e+04 1.8e+04 3.0e+00 y n
7.4e+04 3.5e+04 4.3e+00 y n
24 29:34 1.9e+05 0.79 y 0.07
1.9e+05 8.2e+04 2.4e+04 4.2e+00 y n
l.Oe+05 3.8e+04 4.8e+00 y n
25 30:19 l.le+06 0.97 n 0.40
l.le+06 5.4e+05 1.2e+05 2.0e+01 y n
5.56+05 1.3e+05 1.66+01 y n
r
077
-------
OPUSquan 29-SEP-1998
Page 3
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:17
Run: 17 File: a28sep98a S:12 Acq:28-SEP-98 20:53:46 Proc:29-SEP-98 08:14:06
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-2 xl/1
Amount: 20.71
Cone: 20.71
Tox #1: -
Name
2,3,7,8-TCDD
of which 0.24
of which 0.24
Tox #2: -
# RT Respnse
named and 20.47
named and 20.47
Tox #3: -
RA
1 25:45 1.5e+07 0.79 y
1.56+07
2 25:57 1.46+04 1.10 n
1.4e+04
3 26:10 9.9e+06 0.78 y
9.9e+06
4 26:23 1.4e+04 1.45 n
1.46+04
5 26:33 1.7e+06 0.76 y
1.76+06
6 27:25 8.1e+06 0.77 y
8.1e+06
7 27:36 1.4e+06 0.77 y
1.4e+06
8 27:47 2.1e+06 0.82 y
2.16+06
9 27:53 4.1e+05 1.34 n
4.16+05
10 28:16 1.96+06 0.79 y
1.96+06
11 28:40 1.76+06 0.79 y
1.7e+06
12 28:49 3.5e+06 0.82 y
3.56+06
13 28:58 5.66+05 0.51 n
5.66+05
14 29:10 7.3e+05 0.85 y
7.3e+05
15 29:27 7.0e+05 0.86 y
7.0e+05
16 29:48 1.4e+05 0.98 n
1.4e+05
17 30:24 1.2e+05 0.91 n
1.2e+05
Cone
6.46
(.
£
0.01
6
4.26
<
C
0.01
s
c
0.75
c
3.47
4
0.60
(
0.91
c
]
0.18
:
0.83
£
3
0.74
c
1.52
3
3
0.24
3
0.32
0.30
3
0.06
e
c
0.05
unnamed
unnamed
Area Height
S/N Mod?
6.6e+06 1.5e+06 3.9e+02 y n
8.4e+06 2.0e+06 4.4e+03 y n
L
7.6e+03 3.0e+03 7.7e-01 n n
6.9e+03 3.3e+03 7.5e+00 y n
4.3e+06 9.8e+05 2.5e+02 y n
5.5e+06 1.3e+06 2.9e+03 y n
8.3e+03 4.56+03 1.2e+00 n n
5.8e-i-03 4.0e+03 9.1e+00 y n
7.5e+05 1.8e+05 4.7e+01 y n
9.96+05 2.3e+05 5.3e+02 y n
7
3.5e+06 6.9e+05 1.8e+02 y n
.6e+06 8.6e+05 1.9e+03 y n
6.1e+05 l.Oe+05 2.6e+01 y n
7.9e+05 1.3e+05 3,0e+02 y n
L
9.6e+05 2.1e+05 5.5e+01 y n
1.2e+06 2.6e+05 5.8e+02 y n
2.36+05 4.8e+04 1.3e+01 y n
.8e+05 5.1e+04 1.2e+02 y n
8.5e+05 1.9e+05 4.8e+01 y n
l.le+06 2.46+05 5.3e+02 y n
I
7.6e+05 1.7e+05 4.3e+01 y n
9.6e+05 1.9e+05 4.3e+02 y n
2
1.6e+06 3.2e+05 8.2e+01 y n
1.9e+06 4.1e+05 9.2e+02 y n
I
1.9e+05 4.3e+04 l.le+01 y n
3.7e+05 7.96+04 1.8e+02 y n
3.4e+05 7.5e+04 1.9e+01 y n
3.9e+05 9.2e+04 2.1e+02 y n
D
3.2e+05 7.3e+04 1.9e+01 y n
3.8e+05 8.1e+04 1.8e+02 y n
6.8e+04 1.9e+04 4.8e+00 y n
.9e+04 1.9e+04 4.4e+01 y n
5.8e+04 1.4e+04 3.7e+00 y n
6.36+04 1.7e+04 3.8e+01 y n
C78
-------
OPUSquan 29-SEP-1998
Page 4
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:17
Run: 17 File: a28sep98a S:12 Acq:28-SEP-98 20:53:46 Proc:29-SEP-98 08:14:06
Tables: Run: 14sep-crv Analyte: m8290-0;2» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-2 xl/1
Amount: 31.57
Cone: 31.57
Tox #1: -
Name
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
of which 2.43
of which 2.43
Tox #2: -
# RT Respnse
named and 29.14
named and 29.14
Tox #3: -
RA
1 30:46 l.le+07 1.59 y
l.le+07
2 31:42 5.3e+06 1.58 y
5.36+06
3 31:49 1.6e+07 1.58 y
1.6e+07
4 31:56 3.9e+06 1.67 y
3.9e+06
5 32:02 5.2e+05 1.80 n
5.2e+05
6 32:05 3.5e+05 1.84 n
3.56+05
7 32:11 1.2e+07 1.58 y
1.26+07
8 32:20 5.6e+06 1.53 y
5.6e+06
9 32:23 2.8e+06 1.58 y
2.8e+06
10 32:29 1.7e+06 1.59 y
1.7e+06
11 32:34 3.8e+06 1.61 y
3.8e+06
12 32:42 5.3e+04 2.13 n
5.3e+04
13 32:50 2.6e+06 1.68 y
2.66+06
14 32:54 2.8e+06 1.67 y
2.86+06
15 33:00 2.0e+05 2.19 n
2.0e+05
16 33:03 5.6e+05 1.77 y
5.6e+05
17 33:22 2.3e+05 1.65 y
2.3e+05
Cone
4.88
e
4
2.39
7.45
1
e
1.75
I
0.23
]
0.16
]
5.57
<
2.52
1.26
1
1
0.75
1
«
1.70
1
0.02
3
1.16
1
c
1.26
3
]
0.09
]
«
0.25
3
2
0.10
unnamed
unnamed
Area Height
S/N Mod?
6.6e+06 1.5e+06 3.6e+02 y n
l.2e+06 9.8e+05 1.3e+02 y n
3.2e+06 1.4e+06 3.3e+02 y n
2.1e+06 9.2e+05 1.3e+02 y n
l.Oe+07 3.2e+06 7.4e+02 y n
6.4e+06 2.0e+06 2.7e+02 y n
2.4e+06 9.0e+05 2.1e+02 y n
1.5e+06 5.6e+05 7.8e+01 y n
3
3.3e+05 1.5e+05 3.4e+01 y n
1.8e+05 8.9e+04 1.2e+01 y n
2.3e+05 l.Oe+05 2.4e+01 y n
1.2e+05 6.9e+04 9.5e+00 y n
7.56+06 3.0e+06 7.1e+02 y n
l.8e+06 1.9e+06 2.7e+02 y n
3.4e+06 1.9e+06 4.4e+02 y n
2.26+06 1.26+06 1.7e+02 y n
1.7e+06 7.7e+05 1.8e+02 y n
l.le+06 5.2e+05 7.2e+01 y n
5
l.Oe+06 5.2e+05 1.2e+02 y n
6.4e+05 3.6e+05 4.9e+01 y n
2.3e+06 l.le+06 2.6e+02 y n
1.4e+06 7.4e+05 l.Oe+02 y n
2
3.6e+04 1.9e+04 4.6e+00 y n
1.7e+04 8.6e+03 1.2e+00 n n
S
1.6e+06 8.06+05 1.9e+02 y n
9.7e+05 5.2e+05 7.1e+01 y n
5
1.76+06 9.16+05 2.1e+02 y n
l.Oe+06 5.36+05 7.2e+01 y n
L.4e+05 6.4e+04 1.5e+01 y n
j.3e+04 3.2e+04 4.4e+00 y n
3.6e+05 1.76+05 3.9e+01 y n
2.0e+05 l.Oe+05 1.4e+01 y n
D
1.4e+05 6.7e+04 1.66+01 y r.
8.5e+04 4.2e+04 5.8e+00 y n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:12
-------
OPUSguan 29-SEP-1998
Page 5
Run: 17 File: a28sep98a S:12 Acq:28-SEP-98 20:53:46 Proc:29-SEP-98 08:14:06
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-2 xl/1
Amount: 3.70
Cone: 3.70
Tox #1: -
Name
1,2,3,7,8-PeCDD
of which 0.12
of which 0.12
Tox #2: -
# RT Respnse
named and 3.58
named and 3.58
Tox #3: -
RA
1 31:56 2.2e+06 1.67 y
2.2e+06
2 32:15 l.le+05 1.28 n
l.le+05
3 32:25 2.0e+06 1.61 y
2.0e+06
4 32:29 2.6e+05 1.84 n
2.6e+05
5 32:35 1.3e+06 1.54 y
1.3e+06
6 32:42 1.5e+05 2.03 n
1.5e+05
7 32:45 2.6e+05 1.27 n
2.6e+05
8 32:51 4.2e+05 1.76 y
4.2e+05
9 32:55 1.7e+05 1.39 y
1.7e+05
10 33:02 2.3e+05 1.37 y
2.3e+05
11 33:07 1.2e+05 1.61 y
1.2e+05
12 33:31 2.5e+04
2.5e+04
1.06 n
Cone
1.10
1
£
0.05
c
<
1.03
:
0.13
]
c
0.69
£
t
0.08
c
4
0.13
]
:
0.21
]
0.09
c
0.12
3
c
0.06
"
A
0.01
unnamed
unnamed
Area Height
S/N Mod?
1.3e+06 5.2e+05 1.2e+02 y n
.le+05 3.2e+05 2.0e-*-02 y n
5.9e+04 3.5e+04 7.8ei-00 y n
.7e+04 2.3e+04 1.5e+01 y n
1.2e+06 6.8e+05 1.5e+02 y n
7.8e+05 4.4e+05 2.9e+02 y n
1.7e+05 S.le+04 1.8e+01 y n
9.3e+04 5.3e+04 3.4e+01 y n
8.2e+05 4.le+05 9.2e+01 y n
5.3e+05 2.8e+05 1.8e+02 y n
3
9,9e+04 4.8e+04 l.le+01 y n
4.9e+04 3.0e+04 1.9e+01 y n
1.4e+05 6.3e+04 1.4e+01 y n
l.le+05 4.6e+04 3.0e+01 y n
1
2.7e+05 1.3e+05 3.0e+01 y n
.Se+05 8.4e+04 5.4e+01 y n
9.7e+04 5.5e+04 1.2e+01 y n
7.0e+04 3.7e+04 2.4e+01 y n
2
1.3e+05 6.8e+04 1.5e+01 y n
9.6e+04 4.9e+04 3.2e+01 y n
5
7.2e+04 3.7e+04 8.2e+00 y n
4.5e+04 2.6e+04 1.7e+01 y n
1.36+04 5.1e+03 l.le+00 n n
1.26+04 5.1e+03 3.3e+00 y n
r f
oso
-------
OPUSguan 29-SEP-1998
Page 6
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:25
Run: 17 File: a28sep98a S:12 Acq:28-SEP-98 20:53:46 Proc:29-SEP-98 08:14:06
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-Q9*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-2 xl/1
Amount: 3.79
Cone: 3.79
Tox #1: -
Name
of which 1.58
of which 1.58
Tox #2: -
# RT Respnse
named and 2.21
named and 2.21
Tox #3: -
RA
1 33:56 1.5e+06 1.29 y
1.5e+06
2 34:02 2.5e+06 1.20 y
2.56-1-06
3 34:07 1.2e+05 1.07 y
1.2e+05
4 34:13 l.Se+05 1.09 y
l.Se+05
5 34:20 1.4e+05 1.21 y
1.4e+05
1,2,3,4,7,8-HxCDF 6 34:34 2.2e+06 1.19 y
2.26+06
1,2,3,6,7,8-HxCDF 7 34:39 l.Oe+06 1.29 y
l.Oe+06
8 34:43 2.3e+05 1.23 y
2.36+05
9 34:51 2.46+05 1.54 n
, 2.46+05
2,3,4,6,7,8-HxCDF 10 35:01 5.4e+05 1.29 y
5.46+05
11 35:05 2.3e+04 2.98 n
2.36+04
12 35:10 3.96+04 1.73 n
3.96+04
13 35:16 1.3e+04
1.36+04
4.14 n
1,2,3,7,8,9-HxCDF 14 35:32 5.7e+04 0.84 n
5.76+04
15 35:35 2.2e+05 1.13 y
2.2e+05
16 35:40 1.3e+04 1.31 y
1.36+04
17 35:43 1.3e+04 2.11 n
1.3e+04
18 35:46 8.3e+03 2.44 n
8.36+03
19 35:50 1.2e+04 0.59 n
1.2e+04
Cone
0.62
£
£
1.04
]
:
0.05
«
c
0.06
£
0.06
t
0.95
1
3
0.38
C
4
0.10
1
1
0.10
:
c
0.22
0.01
1
C
0.02
1
0.01
:
0.03
i
0.09
]
]
0.01
c
0.01
e
t
0.00
c
0.00
unnamed
unnamed
Area Height
S/N Mod?
i.3e+05 4.6e+05 6.66+01 y n
.4e+05 3.3e+05 8.2e+01 y n
.4e+06 6.5e+05 9.4e+01 y n
.le+06 5.1e+05 1.26+02 y n
6.3e+04 3.3e+04 4.8e+00 y n
5.9e+04 2.2e+04 5.56+00 y n
5
8.1e+04 4.0e+04 5.76+00 y n
7.4e+04 3.7e+04 9.0e+00 y n
5
7.6e+04 3.3e+04 4.86+00 y n
6.3e+04 3.2e+04 7.9e+00 y n
1.2e+06 4.2e+05 6.16+01 y n
l.Oe+06 3.7e+05 9.1e+01 y n
3
5.6e+05 2.8e+05 4.0e+01 y n
4.4e+05 1.9e+05 4.66+01 y n
D
1.3e+05 5.1e+04 7.56+00 y n
l.Oe+05 5.56+04 1.4e+01 y n
1.5e+05 3.5e+04 5.le+00 y n
9.5e+04 2.3e+04 5.7e+00 y n
2
3.0e+05 l.le+05 1.66+01 y n
2.4e+05 8.4e+04 2.1e+01 y n
L
1.7e+04 1.4e+04 2.0e+00 n n
5.8e+03 4.9e+03 1.2e+00 n n
2
2.5e+04 5.8e+03 8.5e-01 n n
1.4e+04 6.2e+03 1.5e+00 n n
l.le+04 4.4e+03 6.4e-01 n n
2.6e+03 1.6e+03 4.0e-01 n n
3
2.6e+04 1.4e+04 2.le+00 n n
3.1e+04 9.9e+03 2.4e+00 n n
.2e+05 5.1e+04 7.3e+00 y n
.Oe+05 4.5e+04 l.le+01 y n
7.2e+03 4.4e+03 6.4e-01 n n
5.5e+03 3.2e+03 8.0e-01 n n
1
8.8e+03 6.0e+03 8.7e-01 n n
4.2e+03 2.3e+03 5.7e-01 n n
5.9e+03 2.9e+03 4.2e-01 n n
2.4e+03 1.8e+03 4.5e-01 n n
4.3e+03 2.8e+03 4.1e-01 n
7.3e+03 3.7e+03 9.1e-01 n
C81
-------
OPUSguan 29-SEP-1998 Page 7
20 35:53 l.le+04 0.81 n 0.00
l.le+04 S.le+03 2.4e+03 3.5e-01 n n
6.3e+03 2.8e+03 7.0e-01 n n
21 35:55 1.4e+04 1.30 y 0.01
1.4e+04 8.2e+03 3.16+03 4.5e-01 n n
6.3e+03 2.8e+03 7.0e-01 n n
22 36:01 1.6e+04 1.70 n 0.01
1.6e+04 l.Oe+04 5.2e+03 7.5e-01 n n
6.06+03 2.9e+03 7.1e-01 n n
23 36:06 1.2e+04 0.79 n 0.01
1.2e+04 5.4e+03 2.1e+03 3.0e-01 n n
6.8e+03 4.6e+03 l.le+00 n n
24 36:13 8.3e+03 0.42 n 0.00
8.3e+03 2.5e+03 1.6e+03 2.4e-01 n n
5.8e+03 2.7e+03 6.7e-01 n n
25 36:16 1.2e+04 1.06 y 0.01
1.2e+04 6.2e+03 3.16+03 4.5e-01 n n
5.8e+03 2.7e+03 6.7e-01 n n
£.( • C 82
-------
OPUSquan 29-SEP-1998
Page 8
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:18
Run: 17 File: a28sep98a S:12 Acq:28-SEP-98 20:53:46 Proc:29-SEP-98 08:14:06
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: w8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-2 xl/1
Amount: 3.72
Cone: 3.72
Tox #1: -
Name
of which 0.36
of which 0.36
Tox #2: -
S RT Respnse
named and 3.36
named and 3.36
Tox #3: -
RA
1 34:16 2.3e+05 1.16 y
2.3e+05
2 34:20 7.8e+03 1.66 n
7.8e+03
3 34:29 l.le+04
l.le+04
0.57 n
4 34:35 4.5e+06 1.29 y
4.5e+06
5 34:44 6.1e+05 1.24 y
6.16+05
6 34:49 l.Oe+05 0.93 n
l.Oe+05
7 34:58 1.46+04 0.96 n
1.46+04
1,2,3,4,7,8-HxCDD 8 35:06 l.le+05 1.35y
l.le+05
1, 2,3,6,7,8-HxCDD 9 35:09 1.8e+05 1.30 y
1.86+05
10 35:15 1.4e+04 1.08 y
1.46+04
1,2,3,7,8,9-HxCDD 11 35:22 3.1e+05 1.26 y
3.16+05
12 35:29 l.le+04
l.le+04
0.69 n
13 35:33 1.5e+04 0.92 n
1.5e+04
14 35:50 8.4e+03 1.53 n
8.46+03
15 35:54 1.5e+04 0.20 n
1.5e+04
16 35:57 1.3e+04 0.76 n
1.3e+04
17 36:05 1.7e+04 1.01 n
1.7e+04
18 36:17 9.36+03 1.30 y
9.3e+03
Cone
0.14
]
3
0.00
(
0.01
4
2.71
0.37
0.06
4
c
0.01
£
{
0.07
{
<
0.10
3
0.01
t
0.18
]
]
0.01
t
t
0.01
£
0.01
t
1
0.01
3
0.01
C
1
0.01
£
£
0.01
unnamed
unnamed
Area Height
S/N Mod?
1.3e+05 7.4e+04 2.8e+01 y n
l.le+05 5.6e+04 1.8e+01 y n
4.9e+03 2.4e+03 9.0e-01 n n
2.9e+03 1.6e+03 5.0e-01 n n
4.1e+03 2.0e+03 7.7e-01 n n
7.1e+03 3.06+03 9.6e-01 n n
1
2.5e+06 l.le+06 4.1e+02 y n
2.0e+06 8.9e+05 2.8e+02 y n
7
3.4e+05 1.5e+05 5.6e+01 y n
2.7e+05 l.le+05 3.5e+01 y n
6
4.8e+04 2.1e+04 8.1e+00 y n
5.2e+04 1.7e+04 5.5e+00 y n
L
6.6e+03 2.6e+03 9.9e-01 n n
6.9e+03 2.3e+03 7.3e-01 n n
.5e+04 2.7e+04 l.Oe+01 y n
l.9e+04 1.8e+04 5.8e+00 y n
l.Oe+05 5.6e+04 2.1e+01 y n
7.7e+04 3.3e+04 l.Oe+01 y n
1
7.5e+03 3.6e+03 1.4e+00 n n
6.9e+03 3.3e+03 l.Oe+00 n n
L.7e+05 4.9e+04 1.9e+01 y n
L.4e+05 4.2e+04 1.3e+01 y n
4.5e+03 1.9e+03 7.1e-01 n n
6.4e+03 3.5e+03 l.le+00 n n
L
7.4e+03 3.16+03 1.2e+00 n n
8.0e+03 4.6e+03 1.4e+00 n n
L
5.1e+03 1.8e+03 6.8e-01 n n
3.3e+03 2.2e+03 6.8e-01 n n
L
2.5e+03 1.7e+03 6.5e-01 n n
1.2e+04 8.2e+03 2.6e+00 n n
5.5e+03 2.8e+03 l.le+00 n n
7.3e+03 3.7e+03 1.2e+00 n n
1.
8.7e+03 2.5e+03 9.5e-01 n n
8.6e+03 2.3e+03 7.3e-01 n n
5.3e+03 3.1e+03 1.2e+00 n n
4.0e+03 2.9e+03 9.1e-01 n n
Page 7 of 8
0< ( 083
-------
OPUSquan 29-SEP-1998
Page 9
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:10
Run: 17 File: a28sep98a S:12 Acq:28-SEP-98 20:53:46 Proc:29-SEP-98 08:14:06
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: zn8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-2 xl/1
Amount: 1.17
Cone: 1.17
Tox #1: -
Name
of which 0.93
of which 0.93
Tox #2: -
# RT Respnse
named and 0.24
named and 0.24
Tox #3: -
RA
1,2,3,4,6,7,8-HpCDFl 36:44 1.6e+06 1.08 y
1.6e+06
2 36:56 l.Se+05 1.41 n
1.5e+05
3 37:03 2.0e+05 0.97 y
2.06+05
4 37:21 l.le+04 1.87 n
l.le+04
37:24 9.36+03
9.3e+03
1.44 n
37:32 2.56+04 1.56 n
2.5e+04
7 37:46 9.0e+03
9.06+03
1.29 n
l,2,3,4,7,8,9-HpCDF8 37:54 1.6e+05 1.11 y
1.6e+05
9 38:12 1.56+04 1.14 y
1.5e+04
10 38:27 8.9e+03 2.73 n
8.9e+03
Cone
0.83
£
0.09
c
e
0.11
c
:
o.oi
0.01
c
0.01
:
c
0.01
c
0.10
E
0.01
(
0.00
unnamed
unnamed
Area Height
S/N Mod?
8.2e+05 3.3e+05 7.9e+01 y n
7.6e+05 3.0e+05 1.4e+02 y n
9.0e+04 2.9e+04 7.0e+00 y n
6.36+04 2.1e+04 9.6e+00 y n
L
9.96+04 3.5e+04 8.4e+00 y n
l.Oe+05 3.7e+04 1.7e+01 y n
7.1e+03 3.5e+03 8.5e-01 n n
3.8e+03 2.1e+03 l.Oe+00 n n
L
5.5e+03 2.5e+03 6.1e-01 n n
3.8e+03 2.1e+03 l.Oe+00 n n
1.5e+04 5.2e+03 1.2e+00 n n
9.6e+03 3.5e+03 1.6e+00 n n
L
5.1e+03 1.9e+03 4.6e-01 n n
3.9e+03 2.3e+03 l.le+00 n n
5.6e+04 2.4e+04 5.9e+00 y n
7.8e+04 2.5e+04 1.2e+01 y n
1
7.86+03 2.4e+03 5.9e-01 n n
6.8e+03 1.96+03 8.96-01 n n
6.5e+03 3.3e+03 7.9e-01 n n
2.4e+03 l.le+03 5.0e-01 n n
C( '• C84
-------
OPUSquan 29-SEP-1998 Page 10
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:4
Run: 17 File: a28sep98a S:12 Acq:28-SEP-98 20:53:46 Proc:29-SEP-98 08:14:06
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091*>Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-2 "xl/1
Amount: 0.96 of which 0.44 named and 0.52 unnamed
Cone: 0.96 of which 0.44 named and 0.52 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1 36:57 8.0e+05 1.03 y 0.48
8.0e+05 4.1e+05 1.5e+05 6.1e+01 y n
3.9e+05 1.4e+05 7.5e+01 y n
1,2,3,4,6,7,8-HpCDD2 37:32 7.4e+05 l.lOy 0.44
7.4e+05 3.96+05 1.4e+05 5.8e+01 y n
3.5e+05 1.4e+05 7.1e+01 y n
3 37:53 4.7e+04 1.62 n 0.03
4.7e+04 2.9e+04 9.3e+03 3.8e+00 y n
1.8e+04 4.4e+03 2.3e+00 n n
4 38:42 1.7e+04 0.68 n 0.01
1.7e+04 6.7e+03 2.4e+03 9.9e-01 n n
9.96+03 2.5e+03 1.3e+00 n n
ff < CSS
-------
File:A28SEP9BA Il-bl59 Acq:2H-
Sample#12 Text:1115-2 xl/1
319.8965 S:12 BSUB (128, 15 , -3 .
100%
'
50-
A
u- 1 " 'I "I 1 1 1 1 1 1 1 —
24:00
,.1.8936 S.-12 BSUB (128, 15, -3.
100%
.
so -
0-
-J — i 1 1 1 1 1 1 1 1 1—
24:00
331.
100%
50J
A -
9368 S:12 BSUB (128, 15, -3.
0-J , , , , , , , , , r-
24:00
333.9339 S.-12 BSUB(128, 15, -3 .
100%
50^
A -
"-I 1 1 1 1 r— I 1 1— ' r-
24:00
327.8847 S:12 BSUB (128, 15, -3 .
100J
5Ql
J— , , , , , 1 . . 1 r-
24:00
316.9824 S:12 SMO(1,3) PKD(3,
1 00* 71-49. 9A-19.
1 i 1 1 1 1 1 1 1 1 >~
' -^ 24:00
SEP-1998 20:b3:46 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DB5_OVATION
0) PKD(3,3,2,0.10%,3872.0,1.00%,F,F)
25:45
26:10
A 27A25
A 26:33 A 27:4? 28:16 28A49
/ \ / \ -/"\ ' \ ^~x--'v— -/"\ -^^J ^— i -^ -f~~r ~ •<--
1.5E6
17.7E5
o . OEO
25 loo 26 100 27 100 28:00 29:00 30:00 Time
0) PKD(3,3,2,0.10%,444.0,1.00%,F,F)
25:45
fl
26:10
1 A 27:25
11 A 26:32 A 27:46 28:15 28/\50
7 y J \ A J \^~^\— /\ -s-*J ^ — , — — p
Z . UJKO
.
L9.9E5
•O.OEO
25 lod 26 100 27 '.00 28:00 29:00 30:00 Time
0) PKD(3,3,2,0.10%,16428.0,1.00%,F,F)
28:40
A /I
/ I / V
2.4E7
_1.2E7
_O.OEO
25 lod 26 lod 27 100 28:00 29:00 30:00 Time
0) PKD(3,3,2,0.10%,4848.0,1.00%,F,F)
28:40 3.1E7
A A
A
/I 1 V
•
'• 1 . 6E7
LO.OEO
25 lod ' ' ' 26 100 27 100 2sSoO 29:00 30:00 Time
0) PKD(3,3,2,0.10%,6960.0,1.00%,F,F)
28 : 57 .-4 . 6E7
A
/ V
:
p.3E7
-O.OEO
25 lod ' ' 26 100 27 100 28100 29:00 30:00 Time
3'3'^JjTl°^ 30:19 5-6E7
^ ~
_2 . 8E7
- O.OEO
25 lod 26 100 27 100 28loO 29:00 30:00 Time
-------
File:A28SEP98A #1-237 Acq':28-gEP-1998 20-.bJ-.46 GC EI+ Voltage SIR Autospec-UltimaE
Sample#12 Text: 1115-2 xl/1 Exp:EXP_M23_DB5_OVATION
355.8546 S-.12 F-.2 BSUB(128, 15, -3 .0) PKD(3 , 3 , 2 , 0 . 10%, 4476 . 0 , 1 . 00%, F, F)
100%. 32j25
-
50J
0"
3
357.
100%
50.
0'
3
367.
100%
so:
o:
3
369.
100%
so:
0"
3
366.
100%
50_
o:
3
31:56 ft
A 1 Y
6.8E5
\ 32:15 J W9A 32:435y^33:02 33:18
'i i 'PI l i i i i i i i i i i i i T i'i i i i i i i i I-T— T 'r T T r i i i i i i 'i i i*| i i i f i 1 if i r"i 1 i T i T i | in i i i "fi i i i i | l 1 fr i i i i i i i | i i i i i | i i "T
Ol36 30148 31:00 31:12 31:24 3ll36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
8517 S:12 F:2 BSUB (128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 1548 . 0, 1 . 00%, F, F)
32:25
31-56 1
A T
/ 2-29 32:51 33-02
y y 32Ai5 ) \j\] { s^s^ A/^ s\^ 33A18
^i I i i i i i I i i i i i I i i i i~i I i i i i i i i i r-r r-i T i i i i i i r i i r'l T i i i i i *ir i i r i i T i i i | i T i i n| i i i i i f > T i i i ( i i • r • ( i i i~n | . • •
Ol36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
8949 S:12 F:2 BSUBU28, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 57172 . 0, 1 . 00%, F,F)
33.
|
02
bl36 ' isbUs ' 3ll66 ' 3lli2 ' 31124 ' 3ll36 ' 3il48 32166 32li2 32124 32136 32148 33166 33! 12' 33? 24 33136
8919 S-12 F-2 BSUB(128 15 -3 0) PKD(3 , 3 , 2 , 0 . 10% , 23480 . 0 , 1 . 00% , F, F)
1
02
6!36 36148 31166 3iSl2 31124 3ll36 3lS48 32166 32112 32124 32136 32:48 33:00 33:12 33:24 33:36
9792 S:12 F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
JLi^8_!3J:20_jaa5_I
O.'ie ' 36148 ' 3l!66 ' 3ill2 ' 3ll24 3ll36 3ll48 32166 32112 32.-24 32136 32148 33:00 33ll2 33.24 33-36
.
L3.4E5
O.OEO
Time
4.4E5
12.2E5
" O.OEO
Time
5.3E7
_2.7E7
O.OEO
Time
3.3E7
.1.7E7
" O.OEO
Time
_6.6E7
_3.3E7
O.OEO
Time
00
-------
File
Samj
389
100S
50.
0_
391.
100S
0
401.
100%
so:
o:
403.
100%
50_
0"
380.
1002
so:
0"
»:A28SEP98A #1-197 Acq:28-SEP-199« 2
3le#12 Text:1115-2 xl/1
8156 S:12 F:3 BSUB(128 , 15, -3 . 0) PKD
J
34:16 /
— 1 — I — l — 1 — i — l — r~ i — r ( "'"V1 T
33:48 34! 00 34:12 34 1 24 34
8127 S.-12 F:3 BSUB(128, 15, -3 . 0) PKD
34 • "
Jl
34:16 /
Y~l — |— ^^1 I
33:48 34:00 34:12 34:24 34
8559 S-.12 F:3 BSUB(128, 15, -3 . 0) PKD
0:53:46 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
(3, 5, 2, 0.10%, 2636. 0,1. 00%, F,F)
35
IT i i r1 [T- i i i i | i iT~rr~i i i i 'Til i i i i i i i i i r r-rn — i — i — i — i i i — i i r i t i — i i i
36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
(3, 5, 2, 0.10%, 3176. 0,1. 00%, F,F)
4
\ /\^ _. ^
36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36ll2
3, 5, 2, 0.10%, 14972. 0,1. 00%, F,F)
35:09 35ji21
1 A
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 3s!36 35!48 36:00 36:12
8530 S:12 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 19788 . 0 , 1 . 00% , F, F)
35:09 35J21
35:0$ A
33 1 48 '34 I do' ' '34! 12' ' '34! 24' ' '34
9760 S:12 F:3 SMO(1,3) PKD(3 , 3 , 3 , 100
^__3jLL5i__Jli06 3JLj^l__
33S48 34:00 34:12 34:24 34:
i i i i i i i i i | i i • i i i •] i • r i i i i i i i i i i i i i i i i i i i i i i r r T T-T r-
36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36!l2
.00%,0.0,1.00%,F,F)
.. 14 :.ti2 15:22 35:33 35:48 36^04 ^ J36:lfl
36 341: 48 35 -do ' 35! 12 3sl24 '35 '.36' 's'sU's' ' YeloV 36!l2'
1.1E6
L5.4E5
0 OEO
Time
9.0E5
L4.5E5
" o OEO
Time
5.5E7
L2.7E7
" o OEO
Time
_4.3E7
L2.2E7
O.OEO
Time
.2.3E8
.1.2E8
.O.OEO
Time
-------
File
Samj
423
1005
50.
0
36
425.
100S
50j
0
36
435.
100%
so:
0'
36
437.
100%
so:
0'
36
430.
iooa
so:
o:
»:A28SEP98A #1-197 Acq:28-SEP-1998 20:
3le#12 Text: 1115-2 xl/1
7767 S:12 F:4 BSUB(128, 15, -3 . 0) PKD(3
i 36:57
A
36:43 / \
J^- J V,^
!24 36! 36 3e! 48 37! 00 '37*12
7737 S:12 F:4 BSUB(128, 15, -3 . 0) PKD(3
36-57
A
A
36:44 / \
24 36!36 36:48 37!oV '37!l2
8169 S:12 F:4 BSUB(128 , 15, -3 . 0) PKD(3
.•24 36! 36 36:48 37! 00 37!l2
8140 S:12 F:4 BSUB(128, 15, -3 . 0) PKD(3
53:46 GC EI + Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
, 5, 3, 0.10%, 2448. 0,1. 00% ,F,F)
37:32
A
A
y V-, 32^_
37:24 37:36 37:48 38:00 38:12 38:24 38-.36 38!48 39
, 5, 3, 0.10%, 1912. 0,1. 00%, F,F)
37:32
A
/\^
37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39
, 5, 3, 0.10%, 84972. 0,1. 00%, F,F)
37:32
/v
37?24 37?36 37!48 3s!oO 38:12 38^4 38:36 38:48 39:
, 5, 3, 0.10%, 68884. 0,1. 00%, F,F)
37:32
A
24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:
9728 S:12 F:4 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
36:32 36:48 37_J)4 37:14 17:30 3.7-dfi 38:09 38:22 38:3.3
r
36:14 36:36 36:48 37:00 37:12
37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39-.
1.5E5
_7 . 5E4
_O.OEO
00 Time
1.4E5
L7.2E4
LO.OEO
00 Time
3.3E7
_1.6E7
.O.OEO
00 Time
3 . 1E7
11.5E7
'O.OEO
00 Time
_1.6E8
_8.2E7
O.OEO
30 Time
00
-------
File:A28SEP9BA 11-276 Acq:28-6EP-1998 20:53:46 GC EI+ Voltage SIR Autospec-UltimaE - — — — —
Sample#12 Text .-1115-2 xl/1 Exp:EXP_M23_DB5_OVATION
457.7377 S:12 F:5 BSUB(128, 15 , -3 . 0 ) PKD(3 , 5 , 3 , 0 . 10% , 2432 . 0 , 1 . 00%, F, F)
1005
50.
0_
40:24
A
1.5E5
17.3E4
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 4l!l2 4l!24 4l!36 4l!48 42!00 42 • 12 Time
459.7348 S : 12 F:5 BSUB (128, 15, -3 . 0) PKD(3 , 5, 3, 0 . 10%, 1332 . 0, 1 . 00%, F, F)
1008
so:
o;
40:24
A
/ V— ^.
1.5E5
_7.4E4
n nun
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41-00 41:12 41-24 41:36 41:48 42:00 42-12 Time
469.7780 S:12 F:5 BSUB(128, 15 , -3 . 0) PKD(3 , 5 , 3 , 0 . 10%, 2424 . 0, 1 . 00%, F, F)
100*
so:
o:
T
j\^
3.1E7
.1 . 6E7
' n DRD
i i i i | i i i i i -I T i i r-i-i T--I- i- i-f— i-i -T-T r r | . i I T r | i i i , r | i T T r i I ~r -r T- T— T— p-r I I 1 I 1 1 I 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 | | i [ | | | | , , | • • - — -
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
471.7750 S:12 F:5 BSUBU28, 15, -3 . 0) PKD(3 , 5 , 3 , 0 . 10%, 296 . 0, 1 . 00%, F, F)
100*
so:
o:
40:23
A
A
1 \^
* 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 ' 1 ' 1 [ 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 '
_3.6E7
L1.8E7
0 OEO
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
454.9728 S:12 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 .0, 1 . 00%,F,F)
100%
;
so:
o;
39:15 39-31 39t51 40:27 40:52 41:1041:21 41-40 42:07 1 . RRR
.8.8E7
O.ORO
^ 39!l2 39124 39136 39148 46IOO 40-!l2 4o!24 4o!36 4o!48 4l!oO 41 ! 12 ' 41 124 ' 41 ! 36 ' 41 !48 ' 42 ! 00 ' 42 ! 12 Time
-------
File:A28SEP98A #1-529 Acq:28-SEP-1998
Sample#12 Text .-1115-2 xl/1
303.9016 S:12 BSUB(128, 15, -3 . 0) PKD{3
100% 25
- 24:07
50- A 24:43 |
„: A A A /
24:00 25:00
305.8987 S:12 BSUB(128, 15 , -3 . 0) PKD(3
100% 25
CA" 24:07
50- A 24:43
ni l\ A A /
24:00 25:00
315.9419 S:12 BSUB(128 , 15 , -3 . 0) PKD(3
100%
50_
24:00 25:00
317.9389 S.-12 BSUBU28, 15, -3 .0) PKD(3
100%
50 j
0:
24 I 00 25 1 00
375.8364 S:12 BSUB(128, 15, -3 . 0) PKD(3
100%
50 j
- 23:45 24"41
20:53:46 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP_M23 DBS OVATION
, 3, 2, 0.10%, 5832. 0,1. 00%, F,F)
;20 9.2E6
ft ^ « 26:56 "A"8 F
\ 25:45 A A . 4 ,-„-.
2k2V\ 262fe1426:38/\A 27:20 \ ^'^
YVf V j]\ M n\ A rv J \ /V32^ :„ npn
26:00 '
,3, 2, 0.10%, 7968.
:20
I 25:45
26 I 00
,3, 2, 0.10%, 5096.
i i i i 1 i i
26:00
,3, 2, 0.10%, 7644.
26 loo'
,3, 3, 100. 00%, 148
25:50
24:00 25:00 26:00
316.9824 S:12 SMO{1,3) PKD(3 , 3, 3 , 100 . 00%, 0 . 0, 1 . 00%, F,
100S. 23:42 24jJ2 25^15__2_5jL4S~ 26^.
50:
Or -h. i
-> 24:00 25:00
2e!oo
27:00 28!oO 29:00 ' 30 1 00 Time
0,1.00%,F,F)
1.2E7
2W»^ "A'8 : 5 9E6
«A33/y\27,2o A 28:32
A/ V /lV/Vyv7V /\/v :nnpn
27:00 28:00 29:00 30:00 Time
0,1.00%,F,F)
27-54 2.7E7
n
y v • o . ORO
27:00 28:00 29:00 30:00 Time
0,1.00%,F,F)
27-54 3.4E7
M _1.7E7
J V^ . : O.OEO
27:00 28:00 29:00 30:00 Time
.0,1.00%,F,F)
28:07 ,_6.2E4
ft 28:27 F
/ l\ ^T4' ^3-iE4
26:50 27-24 J \ J 38:39 29:05 2!^,5°r^:17,:
_» Axy,-A -.A^ ^-v^A— A~— _W WJ* V^V - ./""V A . - A . ^AAA JT\,jJ »v\. /VSfl • 0 . OEO
27:00 28:00 29:00 30:00 Time
F)
r _2.8E7
- - -i , , i O.OEO
27:00 28:00 29:00 30:00 Time
-------
File:A28SEP98A
Sample#12 Text:
339.8597 S:12 F
lOOSj
50.
0_
30:46
/\
30:36 30:48
341.8568 S:12 F
100S
50 1
~
OJ
30:46
30 lie so Us
351.9000 S:12 F
100%
50:
0:
36136 36148
353.8970 S:12 F
100%
50 j
o-
i i i i i i i i i i
30136 30!48
409.7974 S:12 F
100%
r>Q-
~
0-
— "T — ! — i — ? — i — i — i — [ — i — r-
30:36 30:48
366.9792 S:12 F-
100%
50:
0'
i j ,i i i i ' 1 ' >
30?36 30:48
#1-237 Acq:
1115-2 xl/1
:2 BSUB(128
31:00 31
:2 BSUB(128
31166 31
:2 BSUB(128
31.166 31-
:2 BSUB(128
i i i I i i i i i
31:00 31:
2 BSUB(128
T T1 r T1 i' i •!' r'i i
31:00 31:
2 SMO(1,3)
31.-03
' 31.166 ' 3ll
28-SEP-1998 20:53:46 GC EI+ Voltage SIR Autospec-Ul timaE ' -
,15, -3.0)
:12 31:24
,15, -3.0)
i2"3il24
,15, -3.0)
12 31124
,15, -3.0)
12 31:24
15, -3.0)
12 31:24
PKD(3,3,3
31:23
12 31124
Exp:EXP M23 DBS
PKD(3,3,2,0.10%,4260.
31:49
\
31:42/
A / \31:56
j\j \y\
r i i | i •( i ivi | i T i i r |T~V=
31:36 31:48 32:00
PKD(3,3,2,0.10%,7280.
31:49
A
31:42 \
A / \31A56
y v VA ^
3ll36 3ll48 32-160
PKD(3,3,2,0.10%,2652.
31:36 31:48 32:00
PKD(3,3,2,0.10%,396.0
31:36 31:48 32:00
PKD{3,3,3,100.00%,532
32:
1 ' ' i ' ' ' ' ' i ' i ' ' ' | i > >
31.06 31:48 32:00
OVATION
0,1.00%,F,F)
32:11 1.2E6
N
/\ 32:20
11 _< ** • *-i v
i\ A T 1 T yl
/ \ Afe:23 32h 32:54
; V / r\ /\ A A A
-1.6E6
O.OEO
32:12 32:24 32:36 32:48 33:00 33:12 33?24 33136 Time
0,1.00%,F,F)
32:11 ..2.0E6
A ]_
\ 32:20
ii -* *- . «j «
11 A 32-34
/ \ BE: 23 N 32:54
/ V / rV/V/V A A 33^03
_1.0E6
0 . OEO
32ll2 32124 32:36 32148 SsIoO ' 33 1 12 ' 33 124 ' 33 lie ' Time
0,1.00%,F,F)
32:22 32:49
A A
A A
/I /V
7.8E7
_3.9E7
O.OEO
32112 32.'24 32136 32148 33166 33112 33124 33136 Time
,1.00%,F,F)
32:22 32:49
A A
A A
/v /V
1 ' | ' > < ' ' | ' ' ' ' ' I ' ' ' ' ' I |1"1 i ' | i i i i i | i i i i i | i i i i i | i r i1
4.9E7
:2 . 5E7
O.OEO
32:12 32:24 32:36 32:48 33:00 33:12 33:24 33136 Time
.0,1.00%,F,F)
32:24 ^8.7E5
32:13 A <-
A II
\ 32:31 32/i31 32:55
05 / U> 1 A ^V\ 33^^19—
14.3E5
O.OEO
32:12 32:24 ' 32:36 32.'48 3300 33 1 12 ' 33 ?24^ 33 \36 ' Time
, 100. 00%, 0.0,1. 00%, F,F)
-_Ji^l_^^L5Ji_12^01-
nlie 3il48 32166 '
32:15 32_L45 32:57 33:QR ^^on 33^35 6 . 6E7
.3.3E7
O.OEO
32112 32124 32 1 36 ' 32 1 48 ' 33 1 66 ' 33 Il2 33 1 24 ' 33 1 36 ' Time
-------
File
Samp
373
100S
50_
0_
375.
100S
50 j
o-
383.
100%
o"
385.
100%
50 1
Q-
445.
100%
o"
380.
100%
50J
0-'
»:A28SEP98A #1-197 Acq:28-SEP-1998 20:53:46 GC EI+ Voltage SIR Autospec-UltimaE
)le#12 Text:1115-2 xl/1 ExprEXP M23 DBS OVATION
8207 S:12 F:3 BSUB(128, 15 , -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 6900 . 0, 1 . 00%, F, F)
34:02
33:56/1 34:34
A \ A34;39
/ \ / \ / \ A Tcm
33 1 48 34 1 00 34 1 12
8178 S:12 F:3 BSUB(128,
34:02
33:56/1
A/\-H,«
33148 34: 00 34: 12
8639 S:12 F:3 BSUB(128,
33:48 34:00 34:12
8610 S:12 F:3 BSUB(128,
33:48 34:00 34:12
7555 S-.12 F:3 BSUB(128,
i" i i i i i i i — i i T i — i p r* i
33:48 34:00 34:12
9760 S:12 F:3 SMO(1,3)
33^:55 34:06
n || i i i i i | i i i i i | i i
33:48 34:00 34:12
34:24 34:36
15, -3.0) PKD(3,5,
34:34
34l 24 34! 36
15, -3.0) PKD(3,5,
34:38
34:34A
34:24 34:36
15, -3.0) PKD(3,5,
34:38
34:34/\
34:24 34:36
15, -3.0) PKD(3,3,
34:36
34:29 \ ^
A7 \s
IT 1 | '1 'i i r=^— r -T^f r
34:24 34:36
PKD(3,3,3,100.00%
34:29
i t i i i i i • | i i i
34:24 34:36
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
2, 0.10%, 4060. 0,1. 00%, F,F)
^43 35:01 35:35
34:48 35.-00 35 1 12 35124 35^6 35.-48 3e!do 3e!l2
2, 0.10%, 24268. 0,1. 00%, F,F)
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
2, 0.10%, 24020. 0,1. 00%, F,F)
Y4-UV ' '35! do' ' '3s!l2 ' 35124 35^36 35^48 36!do 36ll2
3, 100. 00%, 3 52. 0,1. 00%, F,F)
^ 35:01 35:09 35. 21
6.6E5
L3.3E5
0 . OEO
Time
5.1E5
L2.5E5
1.0. OEO
Time
-4.1E7
L2.0E7
LO.OEO
Time
7.7E7
L3.8E7
' O.OEO
Time
_1.4E5
_7.2E4
O.OEO
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
,0.0,1. 00%, F,F)
34:52 35:22 35:33 35:48 36^04 ____36:1J? 2 . 3E8
-1.2E8
O.OEO
34148 35:00 35:12' 35:24 3sl36 35I48 36ldo 36:12 Time
O
ID
CO
-------
File:A28SEP98A #1-197 Acq:
28-SEP-1999 ^-A^^^/x -*~-\^-*S^ — y/V-
l i l | 1 > l l l | l 1 l "
36:36 36:48
S:12 F:4 SMO(1,3)
6-32 36^48^
i — i — i — i — i — i — i — i — i — f — i — i — i — i
36:36 36:48
37 !00 37! 12
53:46 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23_DB5_OVATION
,5, 3, 0.10%, 4160.0,
3?! 24 37! 36
,5, 3, 0.10%, 2152.0,
37:24 37:36
,5, 3, 0.10%, 8008.0,
37:24 37:36
,5, 3, 0.10%, 16564.0
37! 24 37 !36
,3, 3, 100. 00%, 4992.
37:33
*-1
37:23 /
AA/V/I 37-40
1.00%,F,F)
37:54
3.3E5
L1.7E5
•O.OEO
37! 48 ' 38!oV ' '38! 12 ' '38 !24' VshV ' '38 ^V '39! 00 Time
1.00%,F,F)
37:53
3.1E5
.1.5E5
O.OEO
37! 48 3s!do' ' 38:12 38124 38:36 ' YsUV '39 00 Time
1.00%,F,F)
37:53
A
1.7E7
_8.6E6
: O.OEO
37l48 3s!do 38:12 38:24 38:36 38:48 39-00 Time
,1.00%,F,F)
37:53
A
,,,,/v ,
4.0E7
.2.0E7
•O.OEO
37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
0,1.00%,F,F)
6.7E4
37! 24 37: 36
_3.4E4
O.OEO
37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
___JiliM-^3JZjLl4
37 S 00 37! 12
37 -30 3
37524 37! 36
7-46 38:09 38:22 1R:33 1 . 6E8
.8.2E7
O.OEO
37:48 38!do 3s!l2 38:24 38:36 38:48 39:00 Time
-------
File:A28SEP98A #1-276 Acq:
28-SEP-1998 20:bJ:46
Sample#12 Text: 1115-2 xl/1
441.7427 S:12
100%
50 1
Q-
^_39jLl2
~~~t — i — I~T — I — i — r— r
39:12
443.7398 S:12
100%
50 j
-
o •
39 :11
39ll2
469.7780 S:12
100S
50J
0 '
" ' 1 I 1 1 1 1 T 1
39:12
471.7750 S:12
100%
50_
n
u ' i i i i I i i i
39:12
513.6775 S:12
100%
-
50J
-
0 "
39:13
\A A A *
" *r ,~i T-T TTV
39:12
454.9728 S:12
100% "?9'1C
50J
Q-
!
u ' 1 1 1 1 f 1 1 1
F:5 BSUB(128
39:32
39124 '~39[36
F:5 BSUB(128
39:29
^^^^^yvA^jw^VN.^
39:24 39:36
F:5 BSUB(128
' ' 1 ' ' ' ' ' 1 ' '
39:24 39:36
F:5 BSUB(128
1 1 1 T 1 — 1 — r-T'T" T 1
39:24 39:36
F:5 BSUB(128
,15, -3.0)
39:49
' 39148 ' 40
,15, -3.0)
39:47
r*T i7=*r i'*T"i/T^
39l48 40
,15, -3.0)
> 1 1 1 T 1 1 1 1
39:48 40
,15, -3.0)
' ' i 1 i i i i '
39:48 40
,15, -3.0)
GC EI+ Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
PKD (3,5,3,
40:04
166 ' 46ll2
PKD (3,5,3,
40:05
^— sA__/^=^vy^V
I ' i ' ' ' I ' '
:00 40:12
PKD(3,5,3,
166 40:12
PKD(3,5,3,
166 46:12
PKD ( 3 , 3 , 3 ,
40:03
1
39:31
A -i
/VL/L-AJx
39124 39:36
F:5 SMO(1,3)
-JQ . -11
' ~ - ' L
i i i i i I 1 1 1 I I
39:24 39:36
39:55
f\ A C A
^J^f\f\T
' 39148 ' 40
PKD(3,3,3
39_:51
' 39148 40
I
uJ LjL-Aiiii
:66 46ll2
,100. 00%, 0
166 46:i2
0.10%,2388.0,1.00%,F,F)
40:32
A
^°^2V_jJAi8_ ...10j54._41;06._ ^ 41:23 _ 41-=45 .J2j03_ _
_5
12
" 0
' 40:24 ' 40136 4ol48 41:66 41:12 41:24 41:36 41:48 42:66 42:12
0.10%,4380.0,1.00%,F,F)
40:32
A
A ao t 4ios iie 4131414141.52 42oe
A^~~~-/^\S \\r^^ r^J\~, -T '•^~s~~~/^~*-*^^~*>^S- ^?±s-^^*^ ,S**T~\s-S
-------
OPUS
30-SEP-1998
Page
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
TYP
Un)c
ES/RT
a29sep98n
5
29-SEP-98
30-SEP-98
1115-2
07feb-m23conf
m8290cf-092998n
19:58:07
08:57:39
Total
DPE
LMC
2
13C-2'
Name;
8-TCDF;
8-TCDF;
3,7
3,7
Tetra Furans;
HxCDPE;
QC CHK ION (Tetra);
Resp;
6.46e+06;
2.41e+08;
5.58e+08;
Ion 1;
2.90e+06;
1.07e+08;
2.08e+07;
Ion 2;
3.57e+06;
1.35e+08;
2.70e+07;
RA;?;
0.81,-y;
0.79,-y;
0.77;y;
RT;
27:54;
27:52;
18:09;
_^- DL
2.819; 0.1266
59.142;
243.244; 0.1266
;NotFnd;
;NotFnd;
S/N1;?;
80; y;
2134;y;
926;y;
* ; n
DivO ; n
S/N2;?
73 ;y
3013;y
857;y
mod?
no
no
no
no
no
27:54
27:54
CD
-------
File:A29SEP98N #1-2677 Acq:
29-SEP-1998 19:58:OV
Sample#5 Text: 1115-2
303.9016 S:5
100!
50_
0
16:00
305.8987 S:5
100%
50:
o:
16 lob
315.9419 S:5
100%
50 j
o"
ie lob
317.9389 S:5
100%
50 J
0'
' ie lob '
375.8364 S.-5
100%
"
.
50.:
;
o-
U^jKi
J — i — i — 1 — i r
16:00
316.9824 S:5
1°°*, 16:12
sol
o-
^6 lob '
SMO(1,3) BSUB (128, 15, -3
18:09
I
18:00
20:19
20:dh 21:
ft A 11 "fi
11 M 11 3
JviAA 1
1 1 > i — ^~
20:00
SMO(1,3) BSUB(128,15,-3
18:09
ft
11
islob
20:19
I
20:93 21:
A n ^
y u iP
IvVlA )'
20 lob
SMO(1,3) BSUB (128, 15, -3
18 1 00
20 lob '
SMO(1,3) BSUB (128, 15, -3
18:00
-1 — 1 — 1 — 1 1
20:00
SMO(1,3) BSUB (128, 15, -3
X 9
1 i
1 R • ? 0 1
-L O • £* \i 11
17:52 J
I^AlUkfrMuiA^vW'
— 1 — 1 — 1 1 — 1 — I — 1 f—
18:00
SMO(1,3) PKD(3
17:21 18:44
' is lob '
30
.0)
10
22
.0)
10
. : 2, i
Exp:M23
PKD (3,3
23:
2B
22:33 1
n/T A J
loo
PKD (3,3
23:
2B
99-T9 F
GC EI+ Voltage SIR Autospec-UltimaE
DB225
,3,
15
:25
A
24
,3,
15
:25
A
fkfF/H
22
.0)
22
.0)
22
.0)
lob
PKD (3,3
loo ' '
PKD (3,3
lob ' '
PKD (3,3
24
,3,
24
,3,
24
,3,
0.10%,
24:
A,/!
loo
0.10%,
24:
A y
loo ' '
0.10%,
lob
0.10%,
loo
4240
59
25:25
A,
26
6020
59
>5:25
\ f\
26
5276
26
4756
26
.0,1.00%,F
F)
27:32
A &7:54/\29A1? 31:49
/ \ r\/\ J \ J Y/\ ^
:00 28
.0,1.00%,F
3.9E6
12 .OE6
•O.OEO
:00 30:00 32:00 34:00 36:00 Time
F)
27:32 „„ , ..
A A7:54A A A 31:49
'\ />/S /\ J\s\ ^
5.2E6
12 . 6E6
: O.OEO
lob 28 lob 30 lob 32 lob 34 lob 36.00 Time
.0,1.00%,F,
27«
/
:00 28
.0,1.00%,F,
"I
/
:00 28
100. 00%, 2744. 0,1. 00%,
24:36
1
J
[ Wzii-r26 "'11 --""2-5
y/ VdiJr
T" -1 — r~ r '™ —
20:00
m.
V
22
,3,3,100.00%,
20:05 21:
"I1 T ~l T 1
20:00
15
22
22 -39i"
rfV^AiVw
lob '
L X
A i i . f.
•TW*
24
0.0,1.00%,
23:
loo' '
20
24
>4il9J
iufr\n i
:00
F,F)
24:28
loo'
•08
i 25
V i
26
26:29
i| 27y 07
:5rln A27 :^
i ""i 1 i " i ' "
:00 28
F)
52
i
1.1E7
15.6E6
' 0 . OEO
:00 30 lob 32 lob 34: 00 36 00 Time
F)
51
1.4E7
17.2E6
O.OEO
:00 30:00 32:00 34:00 36:00 Time
F,F)
35:5ft
30-46 )
i J
^fl2^53 30 ifsfjM ^i-^Q2? »jJ3 -30r?4 :3^ i/
tj«^iA*W^"VM'An^ir^ jl/^ W«W*pHl^Ai^TnL»ijiylvYi| VVfn'UMv**
-3.4E4
Ll.7E4
' 0 . OEO
:00 30 lob 32:00 34:00 36 00 Time
26-27 27-41 2 8 • 49_J£iOi_2JjA9_H^ll___Jii^^^
26
lob ' ' ' 28
_1.8E7
O.OEO
IVo ' ' 30 lob 32 lob 34 lob 36 00 Time
-------
Paradigm Analytical Labs
Method 23
M23-FB-4
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,&-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
(ng)
ND
ND
ND
ND
ND
0.0038
EMPC
ND
ND
ND
ND
ND
ND
ND
EMPC
ND
ND
0.0016
ND
0.0012
0.0084
ND
ND
0.0008
ND
0.0000
0.0011
DL
(««>
0.0009
0.0004
0.0008
0.0007
0.0008
0.0007
0.0035
0.0017
0.0007
0.0007
0.0005
0.0005
0.0005
0.0006
0.0009
0.0010
0.0023
0.0009
0.0004
0.0007
0.0007
0.0017
0.0007
0.0005
0.0009
EMPC
l«*>
0.0128
0.0036
0.0028
0.0028
0.0096
0.0036
0.0001
0.0012
RT
(nun.)
28:57
33:04
35:21
37:31
40:22
27:57
34:33
34:38
35:01
35:32
36:44
37:53
40:30
Ratio
0.38
0.55
2.03
1.06
0.71
2.87
0.88
0.86
1.88
1.96
1.42
1.07
0.74
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ED:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-FB-4
Sample Information
Matrix:
Weight/Volume:
Moisture / Lipids:
Air
1
L1115
1115-3
02-Sep-98
08-Sep-98
16-Sep-98
28-Sep-98
Filename:
Retchk.
Begin ConCal:
EndConCal:
Initial_Cal:
a28sep98a-13
a28sep98a-l
a28sep98a-2
a28sep98a-15
018290-091498
r
C98
1/2
-------
Paradigm Analytical Labs
Method 23
M23-FB-4
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
l3C12-2,3,7,8-TCDD
I3C,rl,2,3,7,8-PeCDD
13Cirl,2)3,6,7)8-HxCDD
13C12-l,2,3A6,7,8-HpCDD
13C12-OCDD
13C,r2,3,7,8-TCDF
l3C12-l,2,3,7,8-PeCDF
13C12-U,3,6,7,8-HxCDF
13C12-1,2,3,4,6,7,8-HPCDF
Sampling Standards
31Clf-2,3,l,&-TCBD
13C12-2,3,4,7,8-PeCDF
l3C!2-l,2,3A7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
"0,2-1,2,3,4,7,8,9-HpCDF
Injection Standards
13C12-1,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
(»8)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured
Amount
(»f)
3.19
4.45
3.54
3.67
5.74
3.07
3.43
3.83
2.45
3.88
4.31
4.11
3.19
2.75
Percent
Recovery
(%)
79.8
111.3
88.6
91.6
71.7
76.8
85.7
95.7
61.2
96.9
107.8
102,8
79.7
68.7
RT
(mta.)
28:56
33:01
35:08
37:31
40:21
27:54
32:21
34:37
36:43
28:57
32:49
35:05
34:33
37:52
28:39
35:21
Ratio
0.78
1.57
1.28
1.06
0.9
0.79
1.59
0.5
0.45
1.59
1.26
0.55
0.45
0.79
1.25
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Reviewed by: tL.'T.
S509.000
M23-FB-4
1.1115
lltS-3
02-Scp-98
08-Sep-98
16-Sep-98
28-Sep-98
Snfnple Information
Matrix:
Weight /Volume:
Moistere/kipids:
'--' ,,.-••'" '"'••-
Ffleaanie:
Rctchk:
Begin ConCal:
fedConCal:
Initial Cal:
Air
1
0.0 %
a28sep98a-13
a28sep98a-l
a28«|)98a-2
a28sep98a-15
m8290-091498
Date Reviewed: Zf>J*11
C99
2J2
-------
V
>
OPUSquan 29-SEP-1998
Filename a28sep98a
Sample 13
Acquired 28-SEP-98 21:
Processed 29-SEP-98 08:
Sample ID 1115-3 xl/1
Cal Table m8290-091498
Results Table M8290-092898A
Comments
Typ Name ;
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
cs
cs
cs
cs
cs
ss
ss
ss
ss
ss
2,3,7,8-TCDD; 1.
1,2,3,7,8-PeCDD; 2.
1,2,3,4,7,8-HxCDD;
1,2,3,6,7,8-HxCDD;
1,2,3,7,8,9-HxCDD; 3.
1,2,3,4,6,7,8-HpCDD; 1.
OCDD; 3.
2,3,7,8-TCDF; 4.
1, 2,3,7, 8-PeCDF;
2,3,4,7,8-PeCDF;
1,2,3,4,7,8-HxCDF; 4.
1,2,3,6,7,8-HxCDF; 3.
2,3,4,6,7,8-HxCDF; 1.
1,2,3,7,8,9-HxCDF; 1.
1,2,3,4,6,7,8-HpCDF; 1.
1,2,3,4,7,8,9-HpCDF; 2.
OCDF; 3.
13C-2,3,7,8-TCDD; 1.
13C-l,2,3,7,8-PeCDD; 1.
13C-l,2,3,6,7,8-HxCDD; 1.
13C-l,2,3,4,6,7,8-HpCDD; 1.
13C-OCDD; 2.
13C-2,3,7,8-TCDF; 2.
13C-l,2,3,7,8-PeCDF; 1.
13C-l,2,3,6,7,8-HxCDF; 2.
13C-l,2,3,4,6,7,8-HpCDF; 1.
13C-1,2,3,4-TCDD; 2.
13C-l,2,3,7,8,9-HxCDD; 2.
37Cl-2,3,7,8-TCDD; 1.
13C-2,3,4,7,8-PeCDF; 2.
13C-l,2,3,4,7,8-HxCDD; 1.
13C-l,2,3,4,7,8-HxCDF; 1.
13C-l,2,3,4,7,8,9-HpCDF; 6.
37Cl-2,3,7,8-TCDD; 1.
13C-2,3,4, 7,8-PeCDF; 2.
13C-l,2,3,4,7,8-HxCDD; 1.
13C-l,2,3,4,7,8-HxCDF; 1.
13C-l,2,3,4,7,8,9-HpCDF; 6.
Page
39:49
14:54
Resp;
656+05;
18e+04;
* .
* .
21e+04;
45e+05;
69e+05;
96e+04;
* .
* .
85e+04;
72e+04;
99e+04;
87e+04;
22e+05;
47e+04;
71e+04;
78e+08;
656+08;
92e+08;
676+08;
29e+08;
13e+08;
98e+08;
38e+08;
OOe+08;
10e+08;
06e+08;
69e+08;
09e+08;
496+08;
57e+08;
02e+07;
69e+08;
09e+08;
49e+08;
57e+08;
02e+07;
1
1.
7.
2.
7.
1.
3.
2.
1.
1.
1.
7.
1.
1.
7.
1.
1.
8.
1.
9.
1.
7.
3.
9.
1.
1.
1.
8.
5.
1.
1.
1.
8.
5.
1.
Ion 1;
686+04;
78e+03;
* .
* .
156+04;
446+04;
546+05;
68e+04;
* .
*;
27e+04;
72e+04;
30e+04;
246+04;
166+04;
276+04;
58e+04;
80e+07;
Ole+08;
07e+08;
596+07;
09e+08;
37e+07;
216+08;
96e+07;
08e+07;
28e+07;
14e+08;
69e+08;
28e+08;
30e+07;
606+07;
86e+07;
69e+08;
28e+08;
30e+07;
60e+07;
86e+07;
Ion 2;
1.496+05;
1.40e+04;
* .
* .
1.066+04;
7.01e+04;
2.16e+05;
1.286+04;
* .
* .
2.586+04;
2.006+04;
6.906+03;
6.34e+03;
5.046+04;
1.19e+04;
2.136+04;
1. OOe+08 ;
6.426+07;
8.42e+07;
8.106+07;
1.216+08;
1.196+08;
7.646+07;
1.586+08;
6.936+07;
1. 186+08 ;
9.136+07;
8.066+07;
6.586+07;
1. Ole+08;
4.166+07;
8.06e+07;
6.586+07;
1. Ole+08;
4.16e+07;
RA;?; RT;
0.11;n; 28:57;
0.55;n; 33:04;
*;n';NotFnd;
*;n;NotFnd;
2.03;n; 35:21;
1.06;y; 37:31;
0.71;n; 40:22;
2.87;n; 27:57;
*;n;NotFnd;
*;n;NotFnd;
0.88;n; 34:33;
0.86;n; 34:38;
1.88;n; 35:01;
1.96;n; 35:32;
1.42;n; 36:44;
1.07,-y; 37:53;
0.74;n; 40:30;
0.78;y; 28:56;
1.57,-y; 33:01;
1.28;y; 35:08;
1.06;y; 37:31;
0.90;y; 40:21;
0.79;y; 27:54;
1.59;y; 32:21;
0.50;y; 34:37;
0.45;y; 36:43;
0.79;y; 28:39;
1.25;y; 35:21;
-;-; 28:57;
1.59;y; 32:49;
1.26;y; 35:05;
0.55;y; 34:33;
0.45;y; 37:52;
-;-; 28:57;
1.59;y; 32:49;
1.26;y; 35:05;
0.55;y; 34:33;
0.45;y; 37:52;
Cone ;
0.091;
0.012;
* ,
* .
0.019;
0.095;
0.321;
0.023;
* .
* .
0.021;
0.014;
0.008;
0.009;
0.090;
0.021;
0.030;
79.822;
111.248;
88.600;
91.636;
143.485;
76.806;
85.719;
95.682;
61.178;
46.823;
57.689;
77.311;
92.326;
91.167;
76.319;
42.036;
96.878;
107.746;
102.774;
79.710;
68.709;
DL;
0.0226;
0.0107;
0.0205;
0.0184;
0.0189;
0.0175;
0.0864;
0.0428;
0.0186;
0.0181;
0.0133;
0.0115;
0.0127;
0.0145;
0.0226;
0.0261;
0.0570;
0.1448;
1.2005;
0.1839;
0.4534;
0.0226;
0.0363;
0.0355;
0.1447;
0.1664;
-;
0.0621;
0.0361;
0.2438;
0.1748;
0.1902;
0.0814;
0.0196;
0.2730;
0.1616;
0.3572;
S/N1;?;
2;n;
2;n;
*;n;
*;n;
5;y;
13 ;y;
7;y;
5;y;
*;n;
*;n;
3;n;
3,-n;
2;n;
1 ; n ;
10;y;
l;n;
4;y;
894;y;
570;y;
1997;y;
490;y;
12303,-y;
7500;y;
9767;y;
1615;y;
756;y;
1120;y;
2118;y;
3630;y;
11928;y;
1773 ;y;
1119 ;y;
425;y;
3630, -y;
11928;y;
1773, -y;
425 ;y;
S/N2;?
85 ;y
9;y
*;n
*;n
2,-n
23 ;y
30;y
2;n
*;n
*;n
4;y
3;n
l;n
l;n
23 ;y
5;y
2;n
3862;y
986;y
1083 ;y
478 ;y
10804 ;y
5377;y
200808;y
2783;y
1089;y
4719 ;y
1163 ;y
234123;y
955;y
1920;y
609 ;y
234123;y
955;y
1920;y
609 ;y
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 1!
-------
OPUSguan 29-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:9
Run: 18 File: a28sep98a S:13 Acq:28-SEP-98 21:39:49 Proc:29-SEP-98 08:14:54
Tablet: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3 .5 17-APR-1997 11:14:34 Sample text: 1115-3 xl/1
Amount: 0.13
Cone: 0.13
Tox #1: -
Name
of which 0.02
of which 0.02
Tox #2: -
# RT Respnse
named and 0.11
named and 0.11
Tox #3: -
RA
2,3,7,8-TCDF
1 24:07 2.36+04 1.35 n
2.36+04
2 25:21 2.56+04 0.48 n
2.5e+04
3 25:23 1.6e+04 0.59 n
1.6e+04
4 26:12 3.0e+04 0.36 n
3.0e+C4
5 27:19 5.1e+04 0.50 n
5.1e+04
6 27:21 4.7e+04 0.38 n
4.76+04
7 27:57 5.Oe+04 2.87 n
5.0e+04
8 28:00 2.86+04 1.20 n
2.8e+04
9 29:21 1.2e+04 0.59 n
1.2e+04
Cone
0.01
:
c
0.01
J
]
0.01
c
c
0.01
0.02
0.02
}
0.02
]
0.01
]
]
0.01
unnamed
unnamed
Area Height
S/N Mod?
1.3e+04 3.4e+03 2.Oe+00 n n
9.9e+03 6.4e+03 1.3e+00 n n
.2e+03 6.2e+03 3.7e+00 y n
.7e+04 8.2e+03 1.7e+00 n n
5.7e+03 3.8e+03 2.3e+00 n n
9.8e+03 3.6e+03 7.5e-01 n n
1
7.9e+03 3.2e+03 1.9e+00 n n
2.2e+04 6.7e+03 1.4e+00 n n
1.7e+04 6.6e+03 3.9e+00 y n
3.4e+04 l.le+04 2.3e+00 n n
1.3e+Q4 6.5e+03 3.9e+00 y n
3.4e+04 l.le+04 2.3e+00 n n
I
3.7e+04 8.8e+03 5.3e+00 y n
1.3e+04 8.7e+03 1.8e+00 n n
.5e+04 6.2e+03 3.7e+00 y n
.3e+04 8.7e+03 1.8e+00 n n
4.4e+03 1.3e+03 7.96-01 n n
7.5e+03 2.3e+03 4.7e-01 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:16
Run: 18 File: a28sep98a S:13 Acq:28-SEP-98 21:39:49 Proc:29-SEP-98 08:14:54
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-3 xl/1
Amount: 0.21
Cone: 0.21
Tox #1: -
of which 0.09
of which 0.09
Tox #2: -
named and 0.12
named and 0.12
Tox #3: -
Name
RT Respnse
RA
23:43 8.36+03 2.57 n
8.3e+03
2 23:49 9.8e+03 1.14 n
9.86+03
3 23:51 8.16+03 0.77 y
S.le+03
4 25:45 7.8e+04 0.82 y
7.86+04
5 25:54 3.06+03 1.79 n
3.0e+03
Cone
0.00
e
0.01
c
4
0.00
<
0.04
<
0.00
unnamed
unnamed
Ajrea Height
S/N Mod?
6.0e+03 3.8e+03 1.66+00 n n
2.3e+03 l.le+03 2.5e+00 n n
L
5.2e+03 2.7e+03 l.le+00 n n
4.6e+03 2.9e+03 6.7e+00 y n
3
3.5e+03 2.3e+03 9.2e-01 n n
4.6e+03 2.9e+03 6.7e+00 y n
3.5e+04 9.2e+03 3.7e+00 y n
4.3e+04 1.3e+04 3.06+01 y n
1.9e+03 l.Oe+03 4.2e-01 n n
r
-------
OPUSguan 29-SEP-1998 Page 2
l.le+03 9.3e+02 2.1e+00 n n
6 25:58 4.2e+03 1.56 n 0.00
4.2e+03 2.5e+03 1.8e+03 7.3e-01 n n
1.6e+03 7.0e+02 1.6e+00 n n
7 27:55 4.06+04 5.21 n 0.02
4.0e+04 3.4e+04 8.9e+03 3.6e+00 y n
6.5e+03 2.8e+03 6.3e+00 y n
8 27:59 6.9e+03 3.91 n 0.00
6.9e+03 5.5e+03 2.3e+03 9.5e-01 n n
1.4e+03 8.6e-i-02 2.0e+00 n n
9 28:40 1.3e+04 1.33 n 0.01
l-3e+04 7.6e+03 2.5e+03 l.Oe+00 n n
5.7e+03 3 .Oe+03- 6.9e+00 y n
10 28:48 7.7e+03 1.18 n 0.00
7.7e+03 4.2e+03 1.7e+03 7.1e-01 n n
3.5e+03 2.0e+03 4.6e+00 y n
2,3,7,8-TCDD 11 28:57 1.7e+05 0.11 n 0.09
l-^e+05 1.7e+04 4.9e+03 2.0e+00 n n
1.5e+05 3.7e+04 8.5e+01 y n
12 29:10 9.3e+03 4.22 n 0.01
9-3e+03 7.5e+03 1.8e+03 7.5e-01 n n
1.8e+03 8.5e+02 2.0e+00 n n
13 29:15 7.4e+03 1.98 n 0.00
7-4e+03 4.9e+03 2.1e+03 8.5e-01 n n
2.5e+03 1.3e+03 2.9e+00 n n
14 29:27 5.0e+03 1.27 n 0.00
S-Oe+03 2.8e+03 3.0e+03 1.2e+00 n n
2.2e+03 1.2e+03 2.8e+00 n n
15 29:51 6.9e+03 1.66 n 0.00
6.9e+03 4.3e+03 1.4e+03 5.9e-01 n n
2.6e+03 1.2e+03 2.7e+00 n n
16 30:22 7.56+03 4.70 n 0.00
7-5e+C3 6.2e+03 2.3e+03 9.46-01 n n
1.3e+03 1.2e+03 2.7e+00 n n
1C2
-------
OPUSquan 29-SEP-1998
Page 3
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.851 Mod? no #Hom:l
Run: 18 File: a28sep98a S:13 Acq:28-SEP-98 21:39:49 Proc:29-SEP-98 08:14:54
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»ResultS: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-3 xl/1
Amount: 0.01
Cone: 0.01
Tox #1: -
Name
of which *
of which *
Tox #2: -
# RT Respnse
named and 0.01
named and 0.01
Tox #3: -
RA
1 31:2C l.le+04 0.75 n
l.le+04
Cone
0.01
unnamed
unnamed
Area Height S/N Mod?
4.6e+03 1.9e+03 1.3e+00 n n
6.16+03 3.2e+03 8.3e-0l n n
Ent
Page 4 of 8
42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:ll
Run: IB File: a28sep98a S:13 Acq:28-SEP-98 21:39:49 Proc:29-SEP-98 08:14:54
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-3 xl/1
Amount: 0.14
Cone: 0.14
Tox #1: -
Name
of which 0.01
of which 0.01
Tox #2: -
# RT Respnse
named and 0.13
named and 0.13
Tox #3: -
RA
1 31:30 9.1e+03 5.53 n
9.1e+03
2 31:56 4.6e+04 1.01 n
4.6e+04
3 32:22 4.0e+04 4.93 n
4.0e+04
4 32:29 6.3e+03 0.97 n
6.3e+03
32:36 2.6e+04
2.6e+04
32:41 8.46+03
8.46+03
3.32 n
1.85 n
1,2,3,7,8-PeCDD
7 32:49 5.3e+04 5.77 n
5.3e+04
8 32:56 1.3e+04 4.94 n
1.36+04
9 33:00 2.96+04 1.07 n
2.96+04
10 33:04 2.26+04 0.55 n
2.2e+04
11 33:08 8.46+03 1.51 y
8.4e+03
Cone
0.00
]
0.02
0.02
3
e
0.00
T
0.01
t
0.00
c
•3
0.03
t
1
0.01
]
0.02
3
]
0.01
1
1
0.00
unnamed
unnamed
Area Height
S/N Mod?
7.7e+03 7.6e+03 2.5e+00 n n
1.4e+03 7.8e+02 1.2e+00 n n
2.3e+04 9.8e+03 3.3e+00 y n
2.3e+04 9.7e+03 1.5e+01 y n
2
3.3e+04 l.le+04 3.6e+00 y n
6.8e+03 4.26+03 6.3e+00 y n
D
3.1e+03 1.8e+03 6.1e-01 n n
3.2e+03 2.1e+03 3.1e+00 y n
1
2.0e+04 5.0e+03 1.7e+00 n n
6.1e+03 3.76+03 5.6e+00 y n
3
5.5e+03 1.7e+03 5.8e-01 n n
3.0e+03 1.6e+03 2.4e+00 n n
4.5e+04 1.8e+04 6.0e+00 y n
7.9e+03 4.26+03 6.3e+00 y n
l.le+04 4.06+03 1.3e+00 n
2.1e+03 1.36+03 1.9e+00 n
1.5e+04 7.5e+03 2.5e+00 n n
1.4e+04 5.86+03 8.7e+00 y n
7.8e+03 5.9e+03 2.0e+00 n n
1.4e+04 5.86+03 8.7e+00 y n
D
5.1e+03 3.7e+03 1.3e+00 n n
3.4e+03 2.6e+03 4.0e+00 y n
-------
OPUSguan 29-SEP-1998
Page 4
Page 5 of
Ent: 43 Name: Total Hexa-Furans F
Run: 18 File: a28sep98a
S:
13 Acg
:3 Mass:
:28-SEP-98
Tables: Run: 14sep-crv Analyte: m8290-092»
Version: V3.5 17-APR-1997 11:
Amount: 0.19 of
Cone: 0.19 of
Tox #1: -
Name #
1
2
3
4
5
6
1,2,3,4,7, 8-HxCDF 7
1,2, 3,6,7, 8-HxCDF 8
9
10
11
12
2,3,4,6,7,8-HxCDF 13
14
15
16
17
18
1,2,3,7,8,9-HxCDF 19
which
which
Tox
RT
34:00
34:05
34:12
34:19
34:23
34:26
34:33
34:38
34:49
34:51
34:53
34:57
35:01
35:06
35:09
35:13
35:21
35:27
35:32
0.
0.
#2
14:34
05
05
: -
Respnse
4.
4.
7.
7.
1.
1.
3.
3.
1.
1.
2.
2.
4.
4.
3
3
1
1
7
7
4
4
9
9
2
2
1
1
1
1
9
9
2
2
8
8
1
1
le+04
le+04
5e+03
5e+03
le+04
le+04
4e+04
4e+04
7e+04
7e+04
8e+04
8e+04
9e+04
9e+04
7e+04
7e+04
4e+04
4e+04
5e+03
5e+03
4e+03
4e+03
le+03
le+03
. Oe+04
.Oe+04
.5e+04
. 5e+04
. 9e+04
.9e+04
.4e+03
.4e+03
.Oe+04
.Oe+04
.le+03
.le+03
.9e+04
.9e+04
373
21
Cal
Sample text:
named and
named and
Tox
RA
1.30 y
1.86 n
1.91 n
0.80 n
0.45 n
0.28 n
0.88 n
0.86 n
0.45 n
0.57 n
.821
:39:
375.818
49 Proc:
Mod? no
8
#Hom:29
29-SEP-98 08:14:54
: m8290-091»Results:
M8290-09»
1115-3 xl/1
0.14
0.14
#3:
-
Cone
0.
0.
0.
0.
0.
0.
0.
0
0
0
02
2.
1.
00
4 .
2.
00
7.
3.
01
1,
1.
01
5.
1.
01
6.
2.
02
2.
2
01
1
2
01
4
9
00
unnamed
unnamed
Area Height
36+04 1.
8e+04 1.
9e+03 1.
6e+03 1.
4e+03 2.
9e+03 2.
5e+04 3.
9e+04 5.
4e+03 3.
2e+04 7.
le+03 2.
2e+04 7
3e+04 7
6e+04 8
7e+04 6
Oe+04 6
3e+03 2
7e+03 3
2.7e+03 1
0.67 n
1.61 n
1.88 n
1.94 n
2.53 n
0.60 n
1.54 n
0.66 n
1.96 n
0
0
0
0
0
0
0
0
0
4
00
1
2
00
5
3
.01
1
6
.01
9
4
.01
1
5
.00
3
5
.01
1
7
.00
3
4
.01
1
6
8e+03 2
8e+03 1
6e+03 1
. 6e+03 2
.5e+03 3
.3e+04 5
.96+03 2
.66+03 4
.9e+03 2
.4e+04 4
.4e+03 1
.56+03 1
.9e+03 2
.26+04 4
.8e+03 3
.2e+03 1
.9e+03 1
.26+04 3
.3e+03 2
3e+04
le+04
8e+03
2e+03
8e+03
8e+03
2e+03
5e+03
le+03
3e+03
9e+03
6e+03
2e+03
7e+03
7e+03
2e+03
2e+03
2e+03
8e+03
8e+03
6e+03
5e+03
.3e+03
. Oe+03
.2e+03
. 6e+03
.36+03
.8e+03
.7e+03
.96+03
.7e+03
.le+03
.4e+03
.Oe+03
.9e+03
.8e+03
.7e+03
.7e+03
4.
5.
6.
5.
1.
1.
1.
2.
1.
3.
1.
3.
2.
3.
2.
2
8
1
6
1
6
6
8
1
2
1
1
1
1
8
6
9
1
1
7
8
S/N Mod?
8e+00 y
Oe+00 y
7e-01 n
6e-01 n
le+00 n
2e+00 n
2e+00 n
5e+00 n
2e+00 n
3e+00 y
le+00 n
4e+00 y
7e+00 n
9e+00 y
5e+00 n
8e+00 n
3e-01 n
5e+00 n
7e-01 n
3e+00 n
Oe-01 n
6e-01 n
.7e-01 n
3e+00 n
.Oe+00 n
.2e+00 n
,6e+00 n
. 3e+00 n
.8e+00 n
.Se-01 n
.4e-01 n
.4e-01 n
.7e+00 n
.4e+00 n
.3e-01 n
.le-01 n
1.46+00 n
1
.2e+00 n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
r
If 4
-------
OFUSguan 29-SEP-1998 Page 5
20 35:39 8.0e+03 4.10 n 0.00
8.06+03 6.46+03 2.2e+03 8.3e-01 n n
1.6e+03 B.Oe+02 3.6e-01 n n
21 35:42 5.4e+03 2.41 n 0.00
5.4e+03 3.8e+03 2.8e+03 l.le+00 n n
1.6e+03 8.0e+02 3.6e-01 n n
22 35:46 5.26+03 0.50 n O.Ou
5.26+03 1.7e+03 1.3e+03 5.0e-01 n n
3.5e+03 1.3e+03 5.9e-01 n n
23 35:48 7.06+03 1.02 n 0.00
7.0e+03 3.5e+03 2.3e+03 8.6e-01 n n
3.5e+03 1.3e+03 5.9e-01 n n
24 35:51 1.4e+04 3.60 n 0.01
1.46+04 l.le+04 3.9e+03 1.5e+00 n n
3.0e+03 1.7e+03 7.6e-01 n n
25 36:02 6.6e+03 2.91 n 0.00
6.66+03 4.9e+03 2.0e+03 7.5e-01 n n
1.7e+03 8.7e+02 3.9e-01 n n
26 36:04 5.36+03 2.14 n 0.00
5.36+03 3.6e+03 2.2e+03 8.2e-01 n n
1.7e+03 8.7e+02 3.9e-01 n n
27 36:10 4.7e+03 0.60 n 0.00
4.7e+03 1.8e+03 1.5e+03 5.5e-01 n n
3.0e+03 9.3e+02 4.2e-01 n n
28 36:13 5.6e+03 0.88 n 0.00
5.66+03 2.6e+03 1.8e+03 6.9e-01 n n
3.0e+03 9.3e+02 4.2e-01 n n
29 36:16 1.5e+04, 1.35 y 0.01
l.Se+04 8.5e+03 4.7e+03 1.8e+00 n n
6.3e+03 3.16+03 1.4e+00 n n
1C 5
-------
OPUSquan
29-SEP-1998
Page 6
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:20
Run: 18 File: a28sep98a S:13 Acq:28-SEP-98 21:39:49 Proc:29-SEP-98 08:14:54
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-3 xl/1
Amount: 0.25
Cone: 0.25
Tox #1: -
Name
of which 0.02
of which 0.02
Tox #2: -
# RT Respnse
named and 0.23
named and 0.23
Tox #3: -
RA
1 34:09 4.5e+03 0.85 n
4.5e+03
2 34:12 5.3e-r03 0.77 n
5.3e+03
3 34:16 5.3e+04 1.28 y
5.3e+04
4 34:33 7.6e+04 4.18 n
7.6e+04
5 34:37 8.0e+04 4.86 n
8.0e+04
6 34:43 6.0e+04 1.46 n
6.0e+04
7 34:48 7.4e+03 0.46 n
7.4e+03
8 34:50 8.5e+03 0.67 n
8.5e+03
9 34:56 8.3e+03 0.80 n
8.3e+03
1,2,3,7,8,9-HxCDD 10 35:21 3.2e+04 2.03 n
3.2e+04
11 35:33 5.9e+03 1.31 y
5.9e+03
12 35:36 4.3e+03
4.3e+03
0.71 n
13 35:46 9.5e+03 1.61 n
9.5e+03
14 35:51 5.7e+03 0.66 n
5.7e+03
15 35:54 6.4e+03 0.57 n
6.46+03
16 35:59 5.66+03 0.59 n
5.66+03
17 36:06 7.7e+03 0.45 n
7.7e+03
18 36:10 1.4e+04 0.29 n
1.4e+04
19 36:12 1.3e+04 0.13 n
1.3e+04
Cone
0.00
0.00
0.03
0.05
(
3
0.05
e
]
0.04
0.00
c
0.01
c
0.00
4
0.02
]
0.00
3
0.00
a
0.01
c
0.00
2
3
0.00
4
0.00
1
0.00
c
0.01
•3
1
0.01
unnamed
unnamed
Area Height
S/N Mod?
2.1e+03 l.le+03 5.4e-01 n n
2.4e+03 1.5e+03 5.6e-01 n n
3
2.3e+03 1.4e+03 7.0e-01 n n
3.0e+03 1.7e+03 6.6e-01 n n
3.0e+04 1.76+04 8.56+00 y n
2.3e+04 1.2e+04 4.4e+00 y n
6.1e+04 2.46+04 1.2e+01 y n
1.5e+04 6.2e+03 2.3e+00 n n
6.6e+04 2.9e+04 1.46+01 y n
1.4e+04 6.4e+03 2.4e+00 n n
3.6e+04 1.4e+04 7,Oe+00 y n
2.5e+04 l.le+04 4.06+00 y n
3
2.3e+03 1.5e+03 7.3e-01 n n
5.1e+03 2.3e+03 8.8e-01 n n
L
3.4e+03 1.96+03 9.2e-01 n n
5.1e+03 2.3e+03 8.8e-01 n n
D
3.7e+03 1.6e+03 7.9e-01 n n
.6e+03 2.96+03 l.le+00 n n
2.1e+04 9.5e+03 4.7e+00 y n
l.le+04 6.06+03 2.3e+00 n n
3.3e+03 1.5e+03 7.3e-01 n
2.5e+03 1.2e+03 4.5e-01 n
1.8e+03 7.4e+02 3.7e-01 n n
2.5e+03 1.2e+03 4.56-01 n n
5.9e+03 1.96+03 9.3e-01 n
3.6e+03 1.36+03 S.Oe-01 n
2.3e+03 1.5e+03 7.6e-01 n n
3.5e+03 1.9e+03 7.3e-01 n n
3
2.36+03 9.66+02 4.8e-01 n n
4.1e+03 1.7e+03 6.4e-01 n n
2.1e+03 1.56+03 7.4e-01 n n
3.5e+03 1.5e+03 5.5e-01 n n
2.4e+03 1.3e+03 6.6e-01 n
5.3e+03 2.4e+03 9.06-01 n
3.3e+03 2.2e+03 l.le+00 n n
l.le+04 3.2e+03 1.2e+00 n n
L
1.4e+03 9.1e+02 4.5e-01 n n
l.le+04 3.2e+03 1.2e+00 n n
r
-------
OPUSquan 29-SEP-1998 Page 7
20 36:17 l.le+04 0.65 n 0-01
l.le+04 4.2e+03 2.2e+03 l.le+00 n n
6.5e+03 5.2e+03 2.0e+00 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no *Hom:9
Run: 18 File: a28sep98a S:13 Acq:28-SEP-98 21:39:49 Proc:29-SEP-98 08:14:54
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3 .5 17-APR-1997 11:14:34 Sample text: 1115-3 xl/1
Amount: 0.16 of which 0.11 named and 0.05 unnamed
Cone: 0.16 of which 0.11 named and 0.05 unnamed
Tox #1: - Tox tt2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1,2,3,4,6,7,8-HpCDFl 36:44 1.26+05 1.42 n 0.09
1.2e+05 7.2e+04 2.9e+04 9.7e+00 y n
S.Oe+04 2.0e+04 2.3e+01 y n
2 36:56 7.3e+03 1.44 n 0.01
7.3e+03 4.3e+03 2.1e+03 7.1e-01 n n
3.0e+03 1.6e+03 1.9e+00 n n
3 36:59 1.2e+04 0.45 n 0.01
1.2e+04 3.7e+03 1.8e+03 6.1e-01 n n
8.3e+03 3.0e+03 3.4e+00 y n
4 37:28 7.9e+03 1.76 n 0.01
7.9e+03 5.1e+03 2.2e+03 7.4e-01 n n
2.9e+03 1.5e+03 1.8e+00 n n
5 37:30 1.7e+04 2.46 n 0.01
1.7e+04 1.2e+04 4.9e+03 1.7e+00 n n
5.0e+03 2.0e+03 2.3e+00 n n
6 37:39 8.7e+03 0.83 n 0.01
8.7e+03 4.0e+03 1.7e+03 5.6e-01 n n
4.7e+03 2.3e+03 2.7e+00 n n
l,2,3,4,7,8,9-KpCDF7 37:53 2.5e+04 1.07 y 0.02
2.5e+04 1.3e+04 3.8e+03 1.3e+00 n n
1.26+04 4.6e+03 5.3e+00 y n
8 38:02 6.7e+03 2.14 n 0.01
6.7e+03 4.6e+03 1.5e+03 5.2e-01 n n
2.1e+03 l.le+03 1.3e+00 n n
9 38:337.6e+03 0.29 n 0.01
7.6e+03 1.7e+03 8.8e+02 3.0e-01 n n
5.96+03 2.2e+03 2.5e+00 n n
107
-------
OPUSguan 29-SEP-1998
Page 8
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:7
Run: 18 File: a28sep98a S:13 Acq:28-SEP-98 21:39:49 Proc:29-SEP-98 08:14:54
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3 . 5 17-APR-1997 11:14:34 Sample text: 1115-3 xl/1
Amount: 0.25
Cone: 0.25
Tox #1: -
"Jame
of which 0.10
of which 0.10
Tox #2: -
# RT Respnse
named and 0.16
named and 0.16
Tox #3: -
RA
1 36:42 4.8e+04 2.88 n
4.8e+04
2 36:56 1.6e+05 1.13 y
1.6e+05
3 37:04 9.1e+03 0.73 n
9.1e+03
1,2,3,4,6,7,8-HpCDD4 37:31 1.4e+05 1.06 y
1.4e+05
5 37:48 8.7e+03 3.23 n
8.7e+03
6 37:59 5.3e+03 1.19 y
5.3e+03
7 38:54 4.1e+03 1.90 n
4.16+03
Cone
0.03
]
0.11
I
0.01
c
0.10
0.01
<
0.00
0.00
unnamed
unnamed
Area Height
S/N Mod?
3.5e+04 l.Oe+04 5.1e+00 y n
1.2e+04 5.8e+03 5.6e+00 y n
8.7e+04 3.06+04 1.5e+01 y n
7.7e+04 3.5e+04 3.4e+01 y n
L
3.9e+03 2.3e+03 l.le+00 n n
5.36+03 1.8e+03 1.7e+00 n n
3
7.4e+04 2.5e+04 1.3e+01 y n
7.06+04 2.46+04 2.3e+01 y n
6.66+03 2.5e+03 1.3e+00 n n
2.0e+03 8.8e+02 8.5e-01 n n
3
2.96+03 1.2e+03 5.9e-01 n n
2.46+03 l.le+03 l.Oe+00 n n
2.7e+03 9.4e+02 4.7e-01 n n
1.4e+03 8.2e+02 8.0e-0l n n
-------
File:A28SEP98A #1-529 Acq:28-SEP-1998
Sample#13 Text: 1115-3 xl/1
319.8965 S-.13 BSUB(128, 15, -3
lOOi
50.
0
23:13. i £3.51 24:23
» A »/\ 11 1 1\ JtjifYn /\ */TCT( .An
vv^vvW^^VfTnrVA^^^IW r
24:00
321.8936 S:13 BSUB(128, 15, -3
100S
50 j
o:
23:27 23: 50 24:18
24iOO
331.9368 S:13 BSUB(128, 15, -3 .
100%
50J
o;
(' r •"' r •• i" •- i ' r I- T ini r - i
24^00
333.9339 S:13 BSUB(128, 15, -3 .
1008
50_
0
•^ T T " T'"" T — ' 1 1 ' !"" T "' '1 "T1
24:00
327.8847 S:13 BSUB (128, 15, -3 .
100%
50J
0'
— i — i — i — i — i — i — i — i — i — i —
24:00
316.9824 S-.13 SMO(1,3) PKD{3,
100% 23:38 24:18 24
50:
o"
* T^ 1 r-— T • —T • • -i T— — i r— — i —
^ 24:00
0) PKD(3,
\ n/\ S\J\ taN»
W V v*v*v it
i 1 r i
25:00
0) PKD(3,
25:00
0) PKD(3,
— i 1 1 r
25:00
0) PKD(3,
25:00
0) PKD(3,
i
25:00
21:39:49 GC El-t- Voltage SIR Autospec-UltimaE
ExprEXP M23 DBS OVATION
3, 2, 0.10%, 2460. 0,1. 00%, F,F)
25;45 27:55
;|24 j 2$-°926:29. 7.278:1927:4^28b087:1728:402/i5\.fjf^.4fi05
' rJ*W ^'\J{ArtJ "v^ft^' uVi^^VV^/^'nlKA^A/ rJ^j^ri\T/\f^A}--Yv?ty*t
1.1E4
IS. 7E3
O.OEO
1 1 1 | 1 1 1 1 , | . . - . 1 | r , , , , j , , , , , | , ,
26:00 27:00 28:00 29:00 30:00 Time
3, 2, 0.10%, 436. 0,1. 00%, F,F)
28:57
fl
25:45 M
^ 26^10 ^ 27A24. 27L51 2S^2J L 29;30 , 30;13
, ..^-~ 4 \} ..jlV-'1f,o, f. *f1^..f*-*.(* . Y"- r ^•t'^"f—^-|" '^ST -r"ffff) *r ^^-V |IVV\T*»^(,.rn^ rtn.,,A.«j,. ^r,f*Hr
3.7E4
L1.9E4
: O.OEO
26:00 27:00 28:00 29:00 30:00 Time
3, 2, 0.10%, 18336. 0,1. 00%, F,F)
28:39 _2.1E7
A 28:56
/ 1 A
A A
-
Ll.OE7
: O.OEO
26:00 27:00 28:00 29:00 30:00 Time
3, 2, 0.10%, 5540. 0,1. 00%, F,F)
28A !s:55
HA
2.6E7
.1.3E7
: O.OEO
26:00' 27:00 28:00 29! 00 30:00 Time
3, 2, 0.10%, 10028. 0,1. 00%, F,F)
28:57
f[
3.6E7
_1.8E7
" O.OEO
26:00 27:00 28:00 29:00 30:00 Time
3, 3, 100. 00%, 0.0,1. 00%, F,F)
:45 25:12
25:00
_?^19_J6:jn5_j^JLia___27^^ .. ___29:06 29:35 . 3Q-^29._5.5E7
12.7E7
-O.OEO
26:00 ' 27:00 28:00 29:00 30:00 Time
o
CD
-------
File:A28SEP98A
Sample#13 Text:
ftl-237 Acq:28-SEP-1998 21:39:49 GC EH- Voltage SIR Autospec-UltimaE
1115-3 xl/1 Exp:EXPJM23_DB5_OVATION
355.8546 S:13 F:2 BSUB(128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 2972 . 0 , 1 . 00% , F, F)
100%,
50 "
-
0"
V 30:46
VV-^yVV/vV
' I ' ' ' ' ' 1 ' '
30:36 30:48
357.8517 S:13 F
1008
-
so:
;
0"
30:47
A /s.
*i i i i i i i i i i
30:36 30:48
367.8949 S:13 F
100%
50_
0 "
" ' i i — i — i — i — i — i — r— i — r
30:36 30:48
369.8919 S:13 F
100%
50J
0"
— h — i ! i — i — i — i — i — i — r
30:36 30:48
366.9792 S:13 F
31:
31:30 /
31:16 » 31:47 /
30:56 A A 31:24A » A /
/UA /^^/wJsAlALi /v,AA/^\A r^
v\/ \*J \l ^'^-Vv ^— /v~i-7v-N/s' V v v W
32:49 r!.9E4
56 32:22 A
A
^ -,-> 1C/S, 32:36 \ ,_ CJ .,, -0 33:35
Ayv^^/^/A ~JJ V/^AT3y\18>L3«%vJlnr
-vyvs^ \x>/v-^ \j <~^J2 v^M v VV ^ Y VW\ / wxA-v/vvv/U u
9U7T
. J Hi J
n np.n
l i l I l l i i l i l i l l l I l l i l l I i l i i l 1 i i i i i | i i i i i | ' i i ' i | i ' i ' i | i » i i — r-y-i— T— r i i i i i i i i' i i i i i i i i i i i i i i f i' •
31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
:2 BSUB(128,15,-3.0) PKD(3 , 3 , 2 , 0 . 10%,
31:
1
1
31:05 31:33 /
C^-^^/^Zc^^J^Aj^^
1 1 1 1 1 I 1 1 I 1 1 1 1 1 1 1 1 T 1 1 1 1 1 1 1 1 T 1 1 1 1 1
664.0,1.00%,F,F)
55
32:24 33:02
I T_ _ _ 32 • 49 J
]2ffi:os AA/yW A/\A AA A run A 33A21 A A
v rvvvA^A" r I W/Y WY\AI WVs/ Y K\/^\/Vv-A/\/j'vW\A
9.9E3
L5.0E3
n ORO
i i i i i i~ ] i ( i ii T^^™"^^^^™1 r i 1 IT fiir i iii -? T 'i~ I i T" r I i i^'T "I — ^Hr^r — 1 i i "i — r i ^r — r — «• - »» —* »»
31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33i24 33136 Time
:2 BSUB(128,15,-3.0) PKD(3 , 3 , 2, 0 . 10%,
r ' i" ! T i"i "r T" i "i — IT r r T T T r~i — i i "i r i — i — i t r i i i i
96396. 0,1. 00%, F,F)
33:01
ft
J
5.5E7
_2.8E7
O.OEO
1 1 ' ' ' > ' "1 "' ' ' ' ' 1 ' ri ' ' 1 ' ' < ' ' 1 ' ' ' ' ' 1 ' 1"'' ' ' 1 ' '"' ' ' I ' ' ' 1 ' 1 ' 1 '
31:00 31:12 31:24 31:36 31:48 32:00 32:12 32124 32:36 32:48 33:00 33il2 33i24 33i36 Time
:2 BSUB(128,15,-3.0) PKD(3 , 3 , 2 , 0 . 10%,
35316. 0,1. 00%, F,F)
33:01
_3.5E7
11.7E7
O.OEO
•1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 | 1 ' 1 1 1 1 1 1 1 1 1 1 ' 1 ' ' ' ]~ ' ' T I-T T i- i -i i i i i i i i i ] i i i i i | i i i i i | i i i i -i j r i i r i -r .— i -r T— r i i i -T
31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
:2 SMO(1,3) PKD(3.3,3,100.00%,0.0,1.00%,F,F)
100% in-M HrfU 31:24 31:
so:
0"
~T — T~T — ' — 1 — ' — ' — | — ' — •"
30-^36 30:48
57 32jQ6 32JJ 32^42 32^59 33:35 6.8E7
.3.4E7
O.OEO
' 3i!6d ' 31:12 ' 31:24 3l!36 31:48 32166 32112 32124 32.-36 32.'48 33 1 66 ' 33 1 12 ' 33 124 33136' Time
-------
Flit
Sam!
389
1003
50_
0
391.
1003
50_
0'
401.
100%
50J
0"
403.
100%
so:
0
380.
100%
so:
0"
t
3:A^8SEP98A #1-197 Acq:28-SEP-1998 21:39:49 GC EI+ Voltage SIR Autospec-ultimaE
3le#13 Text: 1115-3 xl/1 Exp:EXP M23 DBS OVATION
8156 S:13 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5 , 2 , 0 . 10% , 2012 . 0, 1 . 00% , F, F)
34 -37
34.-33A
34:16 A / 1 ,„ ,
A\ I 34:43
Ml A 35 35:21
U^,3^ 1 V V_, !^VJ^\^:r/V^ 35:33 _35i4_6 36^03 ^36^
33548 34!do 34? 12 34524 34536 34548 355do 35 5 12 35524 3s!36 35548' ' YeJoV ' YeJlY
8127 S:13 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 2644 . 0 , 1 . 00%, F, F)
34 -16
/! 34:32 1 \ 35*21
34:04 / 1 A, A 1 1 A
33:52 r, A / \ 34A27 / y^N \ A ^*h^ J\ /Y 35:29 35:39 35:53 36: 11 A
S>^V/W V \XVAJ_--XyV/Vv^ l-J^AAc^/L/vA^^^ AAAA^-^-V/VX^^^/Y^^
33548 34 1 00 34 5 12 34524 34536 34548 355oV ' '35 5 12 ' '35 5 24' ' 35536' ' '35 5 48' ' 's'eio'o' ' '36 5 12 '
8559 S:13 F:3 BSUB(128 , 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 23184 . 0 , 1 . 00% , F, F)
35-08 35:21
35A7\ A
n[ l{
' | i " " " T "I '( • T 1 1 1 | T"'I I T"T J1"l""T~r- H1'? -p-T-'T" *T*T "1 1 |— T I r"T' 1 T~T f I 1 [™ F" I f 1 1 — | P'l 1(11111 r 1T""| 1 1 1 'T 1 1—| 1 1 1 1~ "1 r~f T 1—
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 3s!48 36500 36J12
8530 S:13 F:3 BSUB(128, 15 , -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 33808 . 0 , 1 . 00%, F, F)
35-08 35:21
35;°?\ A
M /I
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 365l2
9760 S:13 F:3 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
33_:49J53j^8 34:11 34:36 34-49 33:21 35:31 36iOO 36-11
/^ ^~—
<3)5'48 34?00 345l2 34524 34536 34?48 35 5 00 ' 35512' ' '35 5 24' '35 5 36' 's's.U's' ' 'l6\0o' ' YeJlY
rr^
3.0E4
_1.5E4
0 OPO
_ V • \JCj\J
Time
1.3E4
L6.4E3
Onpn
. \JCt\J
Time
4.9E7
L2.5E7
' o .OEO
Time
_3.9E7
L2.0E7
O.OEO
Time
2.3E8
_1.2E8
0 OEO
Time
-------
File:A28SEP98A #1-197 Acq:
Sample#13 Text: 1115-3 xl/1
423.7767 S.-13 F:4 BSUB(128
1004, 36
50.
o
36:42
f. 1
/\ /
^^^^r-~^r^ \ — — /
36! 24 36? 36 36 !«
425.7737 S:13 F:4 BSUB(128
100S
-
50_
-
0'
36
36-42 /
36:28 A /
— ^^. ^ S^—^^. /
36^24 36?36 36148
435.8169 S:13 F:4 BSUB(128
i 00%
so:
o:
36:
^
36 24 36-! 36 36:48
437.8140 S:13 F:4 BSUB(128,
lOOi
so:
-
0"
36:
-S~
36:24 36\36 36\48
430.9728 S:13 F:4 SMO(1,3)
100* 36:35
so:
0'
1 '
36l2Y ' '36l3V ' '3614V ' '
28-SEP-1998 21:
,15, -3.0) PKD(3
;56
\
I
\ T7 - 1 n
\ J f • X U
37 I 00 37 ! 12
,15, -3.0) PKD(3
i56
\
V_3J7^05J7^13^
37:00 37! 12
15, -3.0) PKD(3
56
37 loo 37l 12
15, -3.0) PKD(3
56
•s.
37lo'o 37! 12
39:49 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
, 5, 3, 0.10%, 2012. 0,1. 00%, F,F)
-,_ ,- _3.1E4
37:31
A
A
1 \
~^1}Q\^^^^ 38:54
11 . 5E4
- n nc-n
-i — i i | — r— i — i — i — r-] — i — i — i — i — r— | — i — i — . — i — i | i — i — i — i — 1—( — i — i i i i i — i — , — i iiiiii — i — 1—1 — i — i — i — i — i — i-1-" • U1JV
37:24 37:36 37:48 38:00 38:12 38:24 38:36 3sUs 39 00 Time
, 5, 3, 0.10%, 1028. 0,1. 00%, F,F)
r3 . 5E4
37:31
A
/ \
37:22 / V 37:53 38-08 38:21 3R-37
_^^AX^v-^ V—^vx-^^^-^/^^ ^ A ° ^ TV JH^J'
•
11.8E4
' n nun
i i i j^i i i i i | ir i — i 1*1 |T| t i — i — i — r— | — i — i — i — i — i — | — i r f"i T1 j" II i iT^Y > i r'~ ii'~p-r~T^rr7^TvT' " • """
37:24 37:36 37:48 38:00 38:12 38:24 38:36 38148 39 00 Time
, 5, 3, 0.10%, 60560. 0,1. 00%, F,F)
T
} v__
3.0E7
.1.5E7
' n np.n
37:24 37: 36 37:48 3sloO 38-! 12 38-! 24 ' 3sl36 SsUs' ' 39 00 Time
5, 3, 0.10%, 57712. 0,1. 00%, F,F)
T
/ v__
_2.8E7
_1.4E7
n DRD
i i , | rn i i 11™ i i i i i i I i r i i i i i i i — i— i — r-i — i — r—r—t — I i i i i — r— i — i i i — i — i — r" — •
37:24 37:36 37:48 38:00 38:12 38:24 38:36 38148 39loO Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
37:01 17:10
37 100 37? 12
37.:23 37:35 T?-44 38:OJ 38^21 .38:32 3R:S5_ 1 fiKfl
•
.
.8.0E7
n .ORO
37l24 37:36 " '37 1 48 's'slo'o' '318 1 12' ' 's'sb^' ' '318 ! 36' ' 's'sU's' ' '39! 00 Time
-------
File
Samj
457
1003
50.
0
459.
100S
so:
0"
469.
100*
so;
0"
471.
lOOi
so:
0'
454.
iooa
so:
0"
>:A28SEP98A #1-276 Acq: 28-SEP-1998 21:J9:49 Gc EI+ Voltage SIR Autospec-UTtimaE
>le#13 Text: 1115-3 xl/1 Exp:EXP M23 DBS OVATION
7377 S:13 F:5 BSUB (128, 15, -3 . 0) PKD(3 , 5 , 3 , 0 . 10%, 6620 . 0 , 1 . 00% , F, F)
40:22
A
^^^^^^^l^^^^j-^^^^
39:12 39124 39.-36 39148 4ol66 40
7348 S:13 F:5 BSUB(128, 15, -3 . 0) PKD(3,5
_ 39:29
39ll2 39:24 39l36 39:48 40:00 40:
7780 S:13 F:5 BSUB (128, 15, -3 . 0) PKD(3,5
39li2 39124 39136 39148 4ol66 4ol
7750 S:13 F:5 BSUB(128, 15, -3 . 0) PKD(3,5
\
- r -W, 40:38 _^^_ii^°° 4Ui? * 41:33 4l'-50 42:05
^~^ Sg-~»^V^- • ' -^S* r* • ^ • ^^- f^- — "• — «- — ^- . — u_i— —~-^-- ->— -«^— -^_^*
12 4ol24 46136 4ol48 4i 1 66 ' 41 1 12 41 1 24 41 1 3 6 ' 41 1 48 42 1 66 42 1 1
, 3, 0.10%, 1936. 0,1. 00%, F,F)
40:22
A
A
\ \___ 41:07 41:48
12 46124 40:36 40:48 41:66 41 1 12 ' 41 1 24 41 1 3 6 ' 41 1 48 ' 42 166 ' 42 1 1
,3, 0.10%, 2264. 0,1. 00%, F,F)
40:21
/V
12 4ol24 46136 4ol48 4ll66 41:12 4il24 41136 41148 42166 42 :i:
,3, 0.10%, 2908. 0,1. 00%, F,F)
T
/I
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
9728 S:13 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
39:07 J5. 19 19.41_3<».'i740:02 40-19 40:1R 40:56 41:5141:2.1 41:16 41:47 45:0142:13
.^39:12 39:24 39:36 39:48 40:00 40:
5.6E4
12.8E4
LO.OEO
2 Time
5.9E4
13 . OE4
10.0EO
2 Time
2.8E7
.1.4E7
'.O.OEO
I Time
3 . 1E7
Ll.6E7
"O.OEO
' Time
1.7E8
_8 . 5E7
O.OEO
12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
CO
-------
File:A28SEP98A #1-529 Acq:28-SEP-l9"98 21:39:49 GC EH- Voltage SIR Autospec^UltimaE~
Sample#13 Text:1115-3 xl/1 Exp:EXP_M23_DB5_OVATION
303.9016 S:13 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,1672.0,1.00%,F,F)
100%, 25;03 27 57
24:00 25:00 26:00 27iOO
305.8987 S.-13 BSUB(128,15,-3 . 0) PKD(3 , 3 , 2, 0 .10%, 4844 .0,1.00%,F, F)
100* 27 20
25:21 26:35
25:00
50J
28:00
27:58
29:00
30:00
9.0E3
14.5E3
.O.OEO
Tim
24:00 25100 26iOO 27iOO
315.9419 S:13 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,2696.0,1.00%,F,F)
100*
29:00
30:00
0.
JLO.OEO
Time
2.0E7
Z.1.0E7
T
rr
I - 1 - 1
29:00
.O.OEO
Time
2 . 5E7
Ll.3E7
24100 25100 26:00 27:00
317.9389 S:13 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,4724.0,1.00%,F, F)
1004
1 - 1 - 1 - 1 - 1 - 1 - 1 - r
30:00
O
T
T
T
.O.OEO
Time
24:00 25:00 26:00 27:00
375.8364 S:13 BSUB{128,15,-3.0) PKD(3,3,3,100.00%,132.0,1.00%, F, F)
1004 25 53
23:27 23:58
23:11
28:00
29:00
-i j 1 1 r
30:00
24:00 25:00 26:00
316.9824 S:13 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
1004 23:38 24:18 24:45 25:12 25 :39_ __2J105 _2£>^2
27iOO
28:00
30:00
50.
.O.OEO
Time
5.5E7
L2.7E7
25! 00
"•—I—""
26:00
2?! 00
O.OEO
Time
24
28:00
29
30 loo'
-------
File:A2$SEP98A #1-237 Acq:28-SEP-I998 21:39:49 GC El-t- Voltage SIR AutospIF-UltimaE~
Sample#13 Text:1115-3 xl/1 Exp:EXP_M23_DB5_OVATION
339.8597 S:13 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,1404.0,1.00%,F,F)
100% 31:47 32:34 32;49
30:43 Jl
i /I i _ _ . , TO . 01
50J
33:11 33:22
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
341.8568 S:13 F:2 BSUBU28, 15, -3 .0) PKD(3 , 3 , 2 , 0 . 10%, 3836 . 0 , 1 . 00%, F, F)
100%
O
30:44
31;11
31; 49
32:23
32:50
33:36
L3.8E3
. OEO
30:36 30i48 3l!6d ' 31:12 ' 31124 ' 3l!36 ' 31148 ' 32166 ' 32112 ' 32I24 ' 32136 ' 32-!48 ' 33-lo'd ' 33-! 12 ' 33I24 ' 33I36 ' Time
351.9000 S:13 F:2 BSUB(128,15,-3.0) PKD(3,3,2 , 0.10%, 5856.0,1.00%,F,F)
32:21
O
32:49
T
T
7 . OE7
L3.5E7
LO.OEO
) ' I I I I I ' i ' I ' I \ I i T*l pi i I i i | i i i i i | i i i r\ i p 'I I i I I i i i i i i' i i T I I i I i i i i—i I i i I i i i i i i i i i i i
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
353.8970 S:13 F:2 BSUB(128,15,-3 .0) PKD(3,3,2,0.10%,184.0,1.00%,F,F)
100% _ _ 32;49 _4.3E7
50 J
0.
32:21
_2.2E7
O.OEO
i i i i i I i i i i i i i i i i i i i i i i i i i i i i i I i i i r i 1^1 i i i i i i i i i r i i i i 'i i r i i i r i i i i T i i i i i i i i i i i i T i i i
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
409.7974 S:13 F:2 BSUB(128,15,-3.0) PKD(3,3 , 3 ,100.00%,3212.0,1.00%,F,F)
100%
I i i i i I I i I I i i i i I i I i I i i i i i i i i i i i i i i i i i i i i i i i i i i i i 'i i 'i i T t i fi i i i f i i i i i i i' i i i i i i "l i -['\ i -I' i
30136 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
66.9792 S:13 F:2 SMO(1,3) PKD(3,3,3,100.00%, 0 . 0,1. 00%, F, F)
00% 30:51 31:04 31:24 lilSTJliOe
50_
o
32:42
32:59
Jija5_-^6 . 8E7
13.4E7
.O.OEO
30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
C/I
-------
File:A28SEP98A
Sample#13 Text:
81-197 Acq:28-SEP-1998 21:39:49 GC EI+ Voltage SIR Autospec-UltimaE
1115-3 xl/1
373.8207 S.-13 F:3 BSUB(128, 15, -3 . 0)
100S
50.
0
34
33:56]
A
-A^vJ^/
:00
\
\4/^A^^VW
33 .-48 34 loo' ' '34! 12 ' ' il\H
375.8178 S:13 F
100%, 34
_
50:
_
o-
33-48 /^A/
"- i | i i i i i ]
33:48 34l
383.8639 S:13 F
1
)
50:
0"
i i i i i i i |
33:48 34:
385.8610 S-13 F
100%
50:
o:
•T-T-T-I -1" !"|"T
33:48 34i
445.7555 S:13 F
100%
50:
o-
33:56
A
33:48 34:
380.9760 S.-13 F
1003
50:
o:
3J-42 33:5!
r
:3 BSUB(128,15,-3.0)
:00
\ A A
V 34AiywYv
~^^/vAy 1 Y 1
— T"T — i— i — i — i — i — i — i — r — i — i — r— r-
00 34:12 34:24
:3 BSUB(128,15,-3.0)
00 34:12 34:24
:3 BSUB(128,15,-3.0)
00 34:12 34:24
:3 BSUB(128,15,-3.0)
34:20
Ayv __A/\AA^ ^
00 34! 12 34-124
Exp:EXP M23 DBS OVATION
PKD(3,5,2,0.10%,2656.0,1
34:33
n A34:42
/ V\ A 34:49 34:5MA^
V Y W/Vx^-A? Vr
T-l -T ["I" 1 III | 1 II 1 1 | 1 1 1
34:36 34:48 35:00
PKD (3, 5, 2, 0.10%, 2208. 0,1.
34:33
A34:38
1 \ A
. y\A 34:58
r V \-^ ^s/V AA /V~\ A
1 f ^v-^VvVx — /T\yA
. 1 . | 1 1 1 1 1 | 1 1 1 T 1 | 1 t ,
34:36 34:48 35:00
PKD(3, 5, 2, 0.10%, 243 52. 0,1
34:37
34:33/1
A/I
34:36 34:48 35:00
PKD (3, 5, 2, 0.10%, 27120. 0,1
34:37
34:33/\
A/I
34:36 34:48 35-00
PKD(3,3,3,100.00%,416.0,1
35
34:41 /W
^^j\K^ y\/
34:36 34:48 35loO
00%,F,F)
rl-3E4
/Ajs-ii35^1 3K32A "A^1 A ''A1'
r^/vyiv^/^A^vvvTV^AA^WWvVVA
_6.7E3
• n mm
' I | r i i i I | I f i i I | -T -r-r -r -r-i — I — I — I — I — I — i — r — t — I — 1 — r—\ — i — I — i — i— "— " • """
35:12 35:24 35:36 35:48 36:00 36ll2 Time
00%,F,F)
1 .3E4
35:24 35:34 35 .-44 -,c . c-j A
/^ — NA^A y^V\^ — A-/r\x^^-^_A^^-^y\/ — t^, ^ — AA^- — i48 34iOO 34112 34:24
34:36 34;49
34:36 34:48 35:00
35^21 35:31 36:00 36:13
2.3E8
.1.2E8
.O.OEO
35:12 35:24 35:36 35:48 36:00 36:12 Time
-------
File:A28SEP98A #1-197 Acq:28-SEP-1998 21:35:49 GC El+ Voltage SIR Autospec-UltimaE
Sample#13 Text:1115-3 xl/1 Exp:EXP_M23_DB5_OVATION
407.7818 S:13 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%, 2960.0,1.00%,F,F)
100% 36:44
50_
r-3.
36124 36536 36U8 37lOO 37!l2 37i24 37i36 37:48 38:00 38:12 38i24
409.7788 S:13 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,868.0,1.00%.F,F)
1003i 36;43
38:36
38:48 39:00
.OEO
Time
50^
36:32
37:00
37:13 37:24 37:32
r-S*^^ s^^_
i i i i i i
36:36 36148 37iOO 37il2 37i24 37i36 37i48 38iOO
417.8253 S:13 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,15324.0,1.00%,F,F)
1003i 36; 43
50_
Oj
37:52
*l—I—l—i—l—l—l 'l *i—c—i i* I I I i I i—I—i—i—r—T—i—|—i—i—i—i—i—i—i—i—i—i—i—[—i—i—i—i—i—pi—r
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48
T
T—r—T—i—r—i—i—i—j—i—i—i—i r | i—r
38:12 38:24 38:36
' i I ' ' ' ' ' I
38:48 39:00
.2E7
.8E6
.OEO
Time
38:00
419.8220 S:13 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,23684.0 ,1.00%,F,F)
100» 36.J43
50
r-2-l
-------
File:A28sEP98A #1-276 Acq:28-SEP-1998 21:39:49 GC EH- Voltage SIR Autospec-UltimaE
Sample#13 Text:1115-3 xl/1 Exp:EXP_M23_DB5_OVATION
441.7427 S:13 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,1888.0,1.00%,F,F)
100%.
39124 ' 39136 ' 39U8 ' 4o!oO 40ll2 40i24 40136 40i48 4liOO 4lil2 4li24 41136 4l!48 42iOO 42il2 Time
443.7398 S:13 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,4196.0,1.00%,F,F)
39:24 39:51 40:29 ^ 41:50 8. 8E3
i,«.-,ri ,„ A 40:12. _ A40:34 ^n. 4-1*0: 58 , j fel:29 foi.^ /19-nfi
L4.4E3
i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i r i i r i i i i i i i i i | i i i r < f I I ' I I | I i T < ' r~^7 ' ' ~' | ' ' ' ' ' | ' ' i i i | i i i i i [ i i i i i [ r '" ' UE<"
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
469.7780 S:13 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2264.0,1.00%,F,F)
40^21 2.8E7
11.4E7
oj y ^~— LO.OEO
i i i i i i i i i i i i i i i T i i i i i i i i i i i i i i i i"i i i i i i r*i i i i i i i i i i i i i i | i i i i i | i i i i i | i i i i i | i i i i i | i i • i ' | i • i • i
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
471.7750 S:13 F:5 BSUB{128,15,-3.0) PKD(3,5,3,0.10%,2908.0,1.00%, F,F)
100% 40;21
50J
3.1E7
L1.6E7
O.OEO
' ' 39:12 ' 39:24 39:36 39:48' ' 40:66 40:12 4o!24 40:36 40:48 4l!6o 41:12 ' 41:24 4l!36 41:48 42:6d ' 42:12 Time
513.6775 S:13 F:5 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,300.0,1.00%,F,F)
100% 40.; 22
39-17 / W = 27 40:53
3^:20 A ,39:41 39:52 4n:07 A/ \A A 40:40 < 41:05
41:19
y\A 41:28
41:42
1.0E4
1.5.1E3
10.OEO
' 39112 39124 39136 ' 39!48 ' 4o!6d 4o!l2 40124 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
454.9728 S:13 F:5 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100&39:Q7 39:19 ISLJLL35 • *?• 40 -• 02 40.-19 4_0_:J13 ._.. 40:51 _ 4LLl3_41jJZ3 41:3 6 . A1^A2 4^:0.1 42 :13...1. 7E8
IT
L8.5E7
O.OEO
33JJ2 ' 39J24 ' 39J36
4o!6d ' 4o!i2 ' 40524 ' 4ol36 ' 4o!48 4l!6o ' 4l!l2 ' 41524 4l!36 ' 4i!48 ' 42!00 ' 42il2 Time
-------
Method 23
M23-I-4-FH
PBS
Paradigm Analytical Labs
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ(ND=l/2)
Concentration
tag)
ND
0.0008
0.0010
0.0021
0.0034
0.0118
EMPC
0.0062
EMPC
0.0098
0.0166
0.0078
0.0072
ND
0.0256
EMPC
0.0121
0.0032
0.0128
0.0400
0.0212
0.231
0.112
0.0548
0.0284
0.0101
0.0107
DL
WH
0.0009
0.0005
0.0008
0.0007
0.0007
0.0017
0.0056
0.0015
0.0007
0.0006
0.0012
0.0011
0.0012
0.0013
0.0011
0.0013
0.0038
0.0009
0.0005
0.0007
0.0017
0.0015
0.0006
0.0011
0.0011
EMPC
tag)
0.0160
0.0074
0.0037
0.0220
0.0224
0.291
0.134
0.0596
0.0356
0.0106
0.0111
RT
Unto.)
28:56
33:02
35:06
35:09
35:21
37:32
40:23
27:58
32:23
32:49
34:34
34:38
35:00
35:31
36:43
37:53
40:31
Ratio
0.22
1.67
1.12
1.2
1.29
1.17
0.72
0.82
1.91
1.7
1.15
1.31
1.16
1.42
1.00
0.88
0.94
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ED:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-I-4-FH
L1115
1115-4
02-Sep-98
08-Sep-98
16-Sep-98
28-Sep-98
Sample. Information
Matrix:
Weight / Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal.
End ConCal:
Initial_Cal:
Air
1
0.0 %
a28sep98a-14
a28sep98a-l
a28sep98a-2
a28sep98a-15
m8290-091498
'
119
1/2
-------
Paradigm Analytical Labs
Method 23
M23-I-4-FH
PBS
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
' /"** 1 ^ 5 7 C D^/^y^T"^
V^ 17" 1 , j^.J , / «O* xCv^A^ix
'3C12-l,2,3,6,7,8-HxCDD
13Ci2-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
l3Ci2-l,2,3,6,l,S-HaCDf
13C12-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl,-2,3,7,8-TCDD
13C,2-2,3,4,7,8-PeCDF
13C12- 1 ,2,3,4,7,8-HxCDD
13Cirl,2,3,4,7,8-HxCDF
Injection Standards
13CU-1,2,3,4-TCDD
13Cirl,2,3,7,8,9-HxCDD
Expected
Amount
(ng)
4
4
4
4
8
4
4
4
4
Measured
Amount
3.36
4.01
3.05
3,00
4.23
3.33
3.35
2.38
2.20
Percent
Recovery
84.0
100.2
76.3
74.9
52.9
83.2
83.8
59.5
54.9
RT
(min.)
28:55
33:01
35:08
37:31
40:22
27:54
32:22
34:38
36:43
28:39
35:21
Ratio
0.79
1.59
1.27
1.05
0.91
0.78
1.58
0.52
0.45
0.79
1.26
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Tnformarin,p
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-I-4-FH
LUIS
1115-4
02-Sep-98
08-Sep-98
16-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
EndConCal:
initial Cal:
Air
1
0.0
a28sep98a-14
a28sep98a-l
a28sep98a-2
a28sep98a-15
m8290-091498
Reviewed by:
Date Reviewed:
120
2/2
-------
Paradigm Analytical Labs
Method 23
M23-I-4-FH
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
U,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
U,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ(ND=l/2)
Concentration
ti»pt>
ND
0.0388
0.0504
0.103
0.165
0.570
EMPC
0.303
EMPC
0.477
0.805
0.376
0.351
ND
1.24
EMPC
0.588
0.155
0.621
1.94
1.03
11.2
5.43
2.66
1.38
0.492
0.518
DL
tw*)
0.0427
0.0235
0.0376
0.0338
0.0347
0.0811
0.269
0.0724
0.0320
0.0312
0.0596
0.0518
0.0570
0.0650
0.0553
0.0638
0.183
0.0427
0.0235
0.0338
0.0811
0.0724
0.0312
0.0518
0.0553
EMPC
(HW
0.778
0.361
0.180
1.07
1.09
14.1
6.50
2.89
1.73
0.513
0.537
RT
(mtn.)
28:56
33:02
35:06
35:09
35:21
37:32
40:23
27:58
32:23
32:49
34:34
34:38
35:00
35:31
36:43
37:53
40:31
Ratio
0.22
1.67
1.12
1.2
1.29
1.17
0.72
0.82
1.91
1.7
1.15
1.31
1.16
1.42
1.00
0 88
VS.QQ
0.94
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-I-4-FH
L1115
1115-4
Q2-Sep-98
08-Sep-98
16-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retcfcfc
Begin ConCal:
SndConCal:
Initial_Cal:
Air
20.62
0.0 %
a28sep98a-14
a28sep98a-l
a28sep98a-2
a28sep98a-15
m8290-091498
121
1/2
-------
Paradigm Analytical Labs
Method 23
M23-I-4-FH
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
I3C12-l,2,3,7,8-PeCDD
i3C12-l,2,3,6,7,8-HxCDD
13C,2-l,2,3,4,6,7,8-HpCDD
13C,rOCDD
l3C12-2,3,7,8-TCDF
13Cirl,2,3,7,8-PeCDF
13C,rl,2,3,6,7,8-HxCDF
13Cirl,2,3,4,6,7,8-HpCDF
Sampling Standards
37a,-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
'3C,2-l,2,3,4,7,8-HxCDD
13Ci2-l,2,3,4,7,8-HxCDF
l3Ci2-l ,2,3,4,7,8,9-HpCDF
Injection Standards
13C12-1,2,3,4-TCDD
13Cirl,2,3,7,8,9-HxCDD
Expected
Amount
-------
N
ro
OPUSquan 29 -SEP- 1998
Filename a28sep98a
Sample 14
Acquired 28-SEP-98 22:
Processed 29-SEP-98 08:
Sample ID 1115-4 xl/1
Cal Table m8290-091498
Results Table M8290-092898A
Comments
Typ Name ;
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
cs
cs
cs
cs
ss
ss
ss
ss
ss
2,3,7,8-TCDD; 4.
1,2,3,7,8-PeCDD; 3.
1,2,3,4,7,8-HxCDD; 3.
1,2,3,6,7,8-HxCDD; 7.
1,2,3,7,8,9-HxCDD; 1.
1,2,3,4,6,7,8-HpCDD; 3.
OCDD; 3.
2,3,7,8-TCDF; 3.
1,2,3,7,8-PeCDF; 3.
2,3,4,7,8-PeCDF; 4.
1,2,3,4,7,8-HxCDF; 5.
1,2,3,6,7,8-HxCDF; 3.
2,3,4,6,7,8-HxCDF; 2.
1,2,3,7,8,9-HxCDF; 4.
1,2,3,4,6,7,8-HpCDF; 7.
1,2,3,4,7,8,9-HpCDF; 9.
OCDF; 2.
13C-2,3,7,8-TCDD; 1.
13C-l,2,3,7,8-PeCDD; 1.
13C-l,2,3,6,7,8-HxCDD; 1.
13C-1,2,3,4, 6,7,8-HpCDD; 1.
13C-OCDD; 1.
13C-2,3,7,8-TCDF; 2.
13C-l,2,3,7,8-PeCDF; 2.
13C-l,2,3,6,7,8-HxCDF; 1.
13C-l,2,3,4,6,7,8-HpCDF; 8.
13C-1,2,3,4-TCDD; 2.
13C-l,2,3,7,8,9-HxCDD; 2.
37Cl-2,3,7,8-TCDD; 6.
13C-2,3,4,7,8-PeCDF; 1.
13C-l,2,3,4,7,8-HxCDD; 1.
13C-l,2,3,4,7,8-HxCDF; 6.
13C-l,2,3,4,7,8,9-HpCDF; 1.
37Cl-2,3,7,8-TCDD; 6.
13C-2,3,4,7,8-PeCDF; 1.
13C-l,2,3,4,7,8-HxCDD; 1.
13C-l,2,3,4,7,8-HxCDF; 6.
13C-l,2,3,4,7,8,9-HpCDF; 1.
Page
26:45
15:40
Resp;
73e+04;
456+04;
50e+04;
806+04;
21e+05;
566+05;
326+05;
496+06;
32e+05;
51e+05;
70e+05;
07e+05;
59e+05;
46e+04;
65e+05;
59e+04;
70e+05;
946+08;
54e+08;
616+08;
33e+08;
65e+08;
386+08;
OOe+08;
44e+08;
77e+07;
17e+08;
Ole+08;
86e+04;
53e+06;
61e+08;
31e+05;
Ole+05;
86e+04;
53e+06;
61e+08;
31e+05;
Ole+05;
1
Ion 1;
8.376+03;
2.166+04;
1.85e+04;
4.256+04;
6.83e+04;
1.92e+05;
1.39e+05;
1.576+06;
2.186+05;
2.84e+05;
3.056+05;
1.74e+05;
1.39e+05;
2.62e+04;
3.83e+05;
4.48e+04;
1.31C+05;
8.536+07;
9.426+07;
9.026+07;
6.80e+07;
7.856+07;
1.05e+08;
1.22e+08;
4.956+07;
2.706+07;
9.62e+07;
1.12e+08;
6.86e+04;
1.04e+06;
9.026+07;
1.89e+05;
3.08e+04;
6.86e+04;
1.046+06;
9.026+07;
1.896+05;
3.086+04;
, r;
C/»
Ion 2;
3.896+04;
1.29e+04;
1.656+04;
3.556+04;
5.316+04;
1.64e+05;
1.936+05;
1.92e+06;
1.14e+05;
1.67e+05;
2.65e+05;
1.33e+05;
1.20e+05;
1.85e+04;
3.82e+05;
5.10e+04;
1.39e+05;
1.086+08;
5.946+07;
7.096+07;
6.516+07;
8.656+07;
1.346+08;
7.726+07;
9.486+07;
6.076+07;
1.21e+08;
8.896+07;
„ ,
4.93e+05;
7.09e+07;
4.41e+05;
7.05e+04;
4.93e+05;
7.09e+07;
4.41e+05;
7.056+04;
i
T. "
•<
X^
RA;?;
0.21,-n;
1.67,-y;
1.12;y;
1.20;y;
1.29;y;
1.17;y;
0.72;n;
0.82;y;
1.91;n;
1.70;y;
1 15;y;
1.31;y;
1.16;y;
1.42;y;
1.00;y;
0.88;n;
0.94;y;
0.79;y;
1.59;y;
1.27;y;
1.05;y;
0.91,-y;
0.78;y;
1.58;y;
0.52;y;
0.45;y;
0.79;y;
1.26;y;
- * - ;
2.11;n;
1.27;y;
0.43;n;
0.44;y;
2 . 1 1 ; n ;
1.27;y;
0.43;n;
0.44;y;
A
0
RT;
28:56;
33:02;
35:06;
35:09;
35:21;
37:32;
40:23;
27:58;
32:23;
32:49;
34:34;
34:38;
35:00;
35:31;
36:43;
37:53;
40:31;
28:55;
33:01;
35:08;
37:31;
40:22;
27:54;
32:22;
34:38;
36:43;
28:39;
35:21;
28:56;
32:48;
35:08;
34:34;
37:53;
28:56;
32:48;
35:08;
34:34;
37:53;
fl
Cone;
0.024;
0.020;
0.026;
0.053;
0.085;
0.294;
0.401;
1.465;
0.186;
0.246;
0.415;
0.194;
0.181;
0.035;
0.641;
0.093;
0.303;
84.022;
100.161;
76.304;
74.891;
105.776;
83.222;
83.746;
59.499;
54.899;
48.389;
56.327;
0.030;
0.656;
101.160;
0.314;
0.072;
0.036;
0.784;
132.415;
0.528;
0.132;
k*fot =
DL;
0.0220;
0.0121;
0.0194;
0.0174;
0.0179;
0.0418;
0.1387;
0.0373;
0.0165;
0.0161;
0.0307;
0.0267;
0.0294;
0.0335;
0.0285;
0.0329;
0.0943;
0.0911;
0.0611;
0.0483;
0.4403;
0.0024;
0.0316;
0.0118;
0.0874;
0.0630;
-;
0.0476;
0.0120;
0.0641;
0.1057;
0.0720;
0.0580;
0.0066;
0.0768;
0.1539;
0.1421;
10j_U^
S/N1;?;
l;n;
3;y;
5;y;
ll;y;
14;y;
13;y;
5;y;
185;y;
310;y;
482;y;
28;y;
18;y;
12; y;
3;n;
54 ;y;
7;y;
14;y;
1522;y;
8081;y;
5136;y;
427;y;
72819;y;
7671;y;
510523;y;
2202;y;
1325;y;
1776 ;y;
5853;y;
6;y;
3566;y;
5136;y;
9;y;
1,-n;
6;y;
3566;y;
5136;y;
9;y;
l;n;
S/N2;?
18;y
10 ;y
3;y
7;y
8;y
39;y
25;y
65 ;y
13 ;y
20;y
37;y
24 ;y
16,-y
2;n
105 ;y
14 ;y
8;y
6785;y
26429;y
5221;y
462;y
93506;y
8005;y
18939 ;y
2441 ;y
3824;y
7679 ;y
5967 ;y
-; -
123;y
5221;y
ll;y
3;y
-; -
123;y
5221;y
Tl_ * V
-*•-*•' j
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
3 ; y no
Page 1
-------
OPUSguan 29-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:31
Run: 19 File: a28sep98a S.-14 Acg: 28-SEP-98 22:26:45 Proc: 29-SEP-98 08:15:40
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-4 xl/1
Amount: 7.40
Cone: 7.40
Tox #1: -
Name
of which 1.46
of which 1.46
Tox #2: -
# RT Respnse
named and 5.94
named and 5.94
Tox #3: -
RA
1 24:07 6.3e+05 0.77 y
6.36+05
2 24:21 1.2e+04 0.62 n
1.2e+04
3 24:43 4.3e+05 0.78 y
4.36+05
4 25:01 5.96+05 0.76 y
5.9e+05
5 25:08 1.6e+04 0.83 y
1.6e+04
6 25:20 1.7e+06 0.80 y
1.76+06
7 25:27 6.0e+05 0.47 n
6.0e+05
8 25:30 5.6e+05 0.38 n
5.6e+05
9 25:37 3.6e+05 0.81 y
3.6e+05
10 25:44 8.6e+05 2.05 n
8.6e+05
11 26:08 4.9e+05 0.80 y
4.96+05
12 26:13 7.1e+05 0.72 y
7.1e+05
13 26:28 5.6e+05 0.89 n
5.6e+05
14 26:37 7.9e+05 0.87 y
7.9e+05
15 26:54 2.0e+06 0.74 y
2.0e+06
16 27:02 1.3e+06 0.86 y
1.3e+06
17 27:09 1.5e+04 0.92 n
1.5e+04
18 27:19 5.6e+05 0.81 y
5.6e+05
19 27:26 1.8e+04 1.62 n
1.8e+04
Cone
0.26
0.01
<
0.18
1
0.25
0.01
c
0.73
c
0.25
:
<
0.24
:
<
0.15
1
0.36
C
0.20
0.30
<
0.23
0.33
<
0.82
£
1
0.56
£
•/
0.01
0.24
2
3
0.01
unnamed
unnamed
Area Height
S/N Mod?
2.7e+05 6.8e+04 4.7e+01 y
3.5e+05 9.4e+04 1.8e+01 y
4.7e+03 2.26+03 1.5e+00 n n
7.7e+03 3.4e+03 6.6e-01 n n
1.9e+05 4.5e+04 3.1e+01 y n
2.4e+05 6.4e+04 1.3e+01 y n
2.6e+05 6.5e+04 4.5e+01 y n
3.4e+05 7.7e+04 1.5e+01 y n
L
7.56+03 5.2e+03 3.6e+00 y n
9.0e+03 4.5e+03 8.9e-01 n n
3
7.7e+05 1.66+05 l.le+02 y n
9.7e+05 2.2e+05 4.3e+01 y n
L.9e+05 5.3e+04 3.7e+01 y n
l.le+05 6.16+04 1.2e+01 y n
1.6e+05 4.7e+04 3.3e+01 y n
4.1e+05 6.1e+04 1.2e+01 y n
1.6e+05 4.8e+04 3.3e+01 y n
2.0e+05 5.3e+04 l.Oe+01 y n
S
5.8e+05 7.7e+04 5.4e+01 y n
2.8e+05 l.Oe+05 2.0e+01 y n
D
2.2e+05 5.5e+04 3.8e+01 y n
2.7e+05 6.56+04 1.3-2+01 y n
D
3.0e+05 6.9e+04 4.8e+01 y n
l.le+05 l.Oe+05 2.0e+01 y n
2.6e+05 5.7e+04 3.9e+01 y n
2.9e+05 6.9e+04 1.3e+01 y n
3.7e+05 7.96+04 5.5e+01 y n
4.2e+05 9.7e+04 1.9e+01 y n
8.3e+05 1.7e+05 1.2e+02 y n
l.le+06 2.36+05 4.5e+01 y n
5
6.1e+05 1.46+05 9.4e+01 y n
7.1e+05 1.6e+05 3.1e+01 y n
7.1e+03 3.6e+03 2.5e+00 n n
7.7e+03 3.5e+03 6.8e-01 n n
4
2.5e+05 4.9e+04 3.4e+01 y n
3.1e+05 6.9e+04 1.4e+01 y n
L
l.le+04 5.2e+03 3.6e+00 y n
6.7e+03 5.2e+03 l.Oe+00 n n
r (
124
-------
OPUSquan 29-SEP-1998 Page 2
20 27:32 3.9e+04 0.97 n 0.02
3.9e+04 1.9e+04 7.3e+03 5.1e+00 y n
2.0e+04 6.9e+03 l,4e+00 n n
21 27:38 3.9e+05 0.93 n 0.16
3.9e+05 1.9e+05 3.56+04 2.4e+01 y n
2.0e+05 4.76+04 9.3e+00 y n
2,3,7,8-TCDF 22 27:58 3.56+06 0.82 y 1.46
3.5e+06 1.6e+06 2 . 7e+05 .1. 9e+02 y n
1.9e+06 3.36+05 6.5e+01 y n
23 28:09 8.2e+03 0.57 n 0.00
8.2e+03 3.0e+03 1.96+03 1.3e+00 n n
5.2e+03 2.7e+03 5.3e-01 n n
24 28:11 8.3e+03 0.60 n 0.00
8.3e+03 3.1e+03 1.7e+03 1.2e+00 n n
5.2e+03 2.76+03 5.3e-01 n n
25 28:13 l.le+04 0.75 y 0.00
l.le+04 4.8e+03 1.96+03 1.3e+00 n n
6.4e+03 4.2e+03 8.3e-01 n n
26 28:18 8.56+03 0.68 y 0.00
8.5e+03 3.4e+03 1.9e+03 1.3e+00 n n
S.Oe+03 3.9e+03 7.7e-01 n n
27 28:22 1.3e+04 0.45 n 0.01
1.36+04 3.9e+03 1.96+03 1.3e+00 n n
8.7e+03 3.8e+03 7.4e-01 n n
28 28:31 7.06+05 0.81 y 0.29
7.06+05 3.1e+05 6.66+04 4.6e+01 y n
3.8e+05 8.7e+04 1.7e+01 y n
29 28:39 1.6e+04 1.46 n 0.01
1.6e+04 9.6e+03 4.9e+03 3.4e+00 y n
6.5e+03 3.8e+03 7.4e-01 n n
30 28:49 6.46+05 0.92 n 0.27
6.4e+05 3.0e+05 6.8e+04 4.7e+01 y n
3.3e+05 7.26+04 1.4e+01 y n
31 30:16 9.46+04 1.61 n 0.04
9.4e+04 5.8e+04 1.2e+04 8.3e+00 y n
3.6e+04 9.56+03 1.9e+00 n n
r r
125
-------
'PUSquan 29-SEP-1998
Page 3
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:23
Run: 19 File: a28sep98a S:14 Acq:28-SEP-98 22:26:45 Proc:29-SEP-98 08:15:40
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-4 xl/1
Amount: 0.75
Cone: 0.75
Tox #1: -
Maine
of which 0.02
of which 0.02
Tox #2: -
named and 0.73
named and 0.73
Tox #3: -
RT Respnse
RA
23:30 7.56+03 6.29 n
7.5e+03
23:34 7.3e+03 1.02 n
7.3e+03
23:38 l.Oe+04 3.16 n
l.Oe-t-04
23:40 6.6e+03 1.77 n
6.6e+03
23:44 8.9e-i-03 0.89 n
8.96+03
25:44 3.4e+05 0.99 n
3.46+05
25:58 9.5e+03 25.44n
9.5e+03
8 26:10 2.6e+05 0.60 n
2.66+05
9 26:31 6.46+04 0.53 n
6.46+04
10 27:23 1.96+05
1.96+05
1.49 n
11 27:36 2.96+04 0.53 n
2.9e+04
12 27:40 2.3e+04 0.23 n
2.3e+04
13 27:44 5.4e+04
5.4e+04
0.40 n
14 27:46 5.5e+04 0.41 n
5.5e+04
15 27:53 6.36+04
6.3e+04
6.95 n
16 28:02 6.9e+03 10.31n
6.9e+03
17 28:15 9.8e+04 0.85 y
9.8e+04
18 28:41 5.8e+04 0.70 y
5.8e+04
19 28:48 8.4e+04 1.29 n
8.4e+04
Cone
0.00
e
1
0.00
T
0.01
0.00
4
0.00
4
4
0.17
3
]
0.00
c
0.13
c
]
0.03
4
0.10
3
0.01
3
3
0.01
<
3
0.03
3
0.03
3
0.03
C
0.00
f
(
0.05
4
c
0.03
0.04
unnamed
unnamed
Area Height
S/N Mod?
6.5e+03 2.4e+03 9.3e-01 n n
l.Oe+03 8.0e+02 1.3e+00 n n
D
3.7e+03 l.Se+03 7.1e-01 n n
3.6e+03 l.Se+03 3.1e+00 y n
1
7.6e+03 2.6e+03 l.Oe+00 n n
2.4e+03 l.le+03 1.9e+00 n n
4.2e+03 2.4e+03 9.5e-01 n n
2.4e+03 l.le+03 1.96+00 n n
4.2e+03 2.3e+03 9.1e-01 n n
4.7e+03 1.8e+03 3.0e+00 n n
7
1.7e+05 3.3e+04 1.3e+01 y n
1.7e+05 3.7e+04 6.3e+01 y n
9.2e+03 3.06+03 1.26+00 n n
3.6e+02 2.3e+02 3.9e-01 n n
3
9.9e+04 2.6e+04 l.Oe+01 y n
1.6e+05 3.6e+04 6.0e+01 y n
2.2e+04 5.86+03 2.3e+00 n n
4.2e+04 l.le+04 1.8e+01 y n
3
1.2e+05 2.2e+04 8.7e+00 y n
7.7e+04 2.6e+04 4.3e+01 y n
L
l.Oe+04 4.8e+03 1.9e+00 n n
1.9e+04 7.8e+03 l.?e+01 y n
4.3e+03 2.7e+03 l.le+00 n n
1.9e+04 7.8e+03 1.3e+01 y n
3
1.5e+04 6.3e+03 2.5e+00 n n
3.9e+04 9.5e+03 1.6e+01 y n
3
1.6e+04 6.3e+03 2.5e+00 n n
3.9e+04 9.5e+03 1.6e+01 y n
5.5e+04 l.le+04 4.2e+00 y n
7.9e+03 3.6e+03 6.1e+00 y n
D
6.3e+03 1.9e+03 7.5e-01 n n
6.16+02 3.1e+02 5.2e-01 n n
4.5e+04 9.3e+03 3.6e+00 y n
5.3e+04 1.3e+04 2.1e+01 y n
3
2.4e+04 8.6e+03 3.4e+00 y n
3.4e+04 1.3e+04 2.2e+01 y n
4.7e+04 1.6e+04 6-le+OO y n
3.7e+04 1.5e+04 2.5e+01 y n
126
-------
OPUSguan 29-SEP-1998 Page 4
2,3,7,8-TCDD 20 28:56 4.7e+04 0.21 n 0.02
4.7e+04 8.46+03 3.4e+03 1.3e+00 n n
3.9e+04 l.le+04 1.8e+01 y n
21 29:11 3.36+04 0.20 n 0.02
3.3e+04 5.66+03 2.9e+03 l.le+00 n n
2.8e+04 8.4e+03 1.4e+01 y n
22 29:51 5.8e+03 1.82 n 0.00
5.8e+03 3.7e+03 2.3e+03 9.1e-01 n n
2.0e+03 1.6e+03 2.7e+00 n n
23 29:58 1.2e+04 1.80 n 0.01
1.2e+04 7.76+03 4.7e+03 1.9e+00 n n
4.36+03 1.8e+03 3-Oe+OO n n •
r
127
-------
JPUSguan 29-SEP-1998
Page 5
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:15
Run: 19 File: a28sep98a S:14 Acq:28-SEP-98 22:26:45 Proc:29-SEP-98 08:15:40
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-4 xl/1
Amount: 3.41
Cone: 3.41
Tox #1: -
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
of which 0.43
of which 0.43
Tox #2: -
named and 2.98
named and 2.98
Tox #3: -
RT Respnse
30:45 S.Oe+05
5.0e+05
RA
1.75 y
2 31:41 2.76+05 2.07 n
2.7e-«-05
3 31:47 1.26+06 1.64 y
1.2e+06
4 31:55 2.9e+05 1.81 n
2.9e+05
5 32:02 4.2e+04 1.90 n
4.26+04
6 32:05 S.Oe+04 1.79 n
S.Oe+04
7 32:10 1.2e+06 1.61 y
1.2e+06
8 32:19 4.46+05 1.63 y
4.4e+05
9 32:23 3.3e+05 1.91 n
3.3e+05
10 32:28 2.1e+05 1.46 y
2.1e+05
11 32:34 4.4e+05
4.4e+05
1.47 y
12 32:49 4.5e+05 1.70 y
4.5e+05
13 32:54 6.1e+05 1.69 y
6.1e+05
14 33:03 8.6e+04 1.96 n
8.6e+04
15 33:22 5.4e+04 2.52 n
5.4e+04
Cone
0.28
3
0.15
3
£
0.65
<
0.16
3
:
0.02
]
0.03
T
3
0.68
'i
4
0.24
3
0.19
3
0.12
:
£
0.24
3
0.25
3
0.34
0.05
C
0.03
unnamed
unnamed
Area Height
S/N Mod?
3.2e+05 7.7e+04 2.6e+02 y n
1.8e+05 5.2e+04 1.2e+01 y n
1.8e+05 7.4e+04 2.5e+02 y n
8.6e+04 3.4e+04 7.7e+00 y n
7.3e+05 2.3e+05 7.5e+02 y n
4.5e+05 1.6e+05 3.6e+01 y n
1.9e+05 7.4e+04 2.5e+02 y n
l.Oe+05 3.6e+04 8.0e+00 y n
2.7e+04 1.9e+04 6.4e+01 y n
1.4e+04 6.0e+03 1.3e+00 n n
3.2e+04 1.2e+04 4.0e+01 y n
1.8e+04 1.2e+04 2.8e+00 n n
.6e+05 3.0e+05 l.Oe+03 y n
.7e+05 2.0e+05 4.5e+01 y n
2.7e+05 1.3e+05 4.4e+02 y n
1.7e+05 8.3e+04 1.9e+01 y n
5
2.2e+05 9.3e+04 3.1e+02 y n
l.le+05 6.0e+04 1.3e+01 y n
1.3e+05 6.3e+04 2.le+02 y n
8.6e+04 3.4e+04 7.6e+00 y n
1
2.6e+05 1.2e+05 4.0e+02 y n
1.8e+05 7.9e+04 1.8e+01 y n
2.8e+05 1.4e+05 4.8e+02 y n
1.7e+05 8.86+04 2.0e+01 y n
I
3.8e+05 1.8e+05 6.0e+02 y n
2.3e+05 l.le+05 2.5e+01 y n
5.7e+04 2.8e+04 9.4e+01 y n
2.9e+04 1.6e+04 3.5e+00 y n
3
3.9e+04 1.9e+04 6.4e+01 y n
1.5e+04 9.7e+03 2.2e+00 n n
r t
-------
OPUSquan 29-SEP-1998
Page 6
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:16
Run: 19 File: a28sep98a S:14 Acq:28-SEP-98 22:26:45 Proc:29-SEP-98 08:15:40
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-4 xl/1
Amount: 0.58
Cone: 0.58
Tox #1: -
Name
1,2,3,7,8-PeCDD
of which 0.02
of which 0.02
Tox #2: -
named and 0.56
named and 0.56
Tox *3: -
RT Respnse
31:42 1.26+04
1.2e+04
RA
3.97 n
2 31:55 2.2e+05 1.63 y
2.2e+05
32:02 4.7e+03
4.7e+03
32:10 6.66+03
6.6e+03
32:15 2.4e+04
2.4e+04
1.27 n
3. 00 n
2.61 n
32:17 1.7e+04 1.60 y
1.7e+04
32:24 2.6e+05
2.6e+05
1.89 n
8 32:30 3.3e+04 2.45 n
3.3e+04
9 32:35 2.0e+05 1.36 y
2.0e+05
10 32:41 3.2e+04
3.2e+04
2.61 n
11 32:44 3.3e+04 1.50 y
3.3e+04
12 32:51 5.3e+04 1.68 y
5.3e+04
13 32:55 2.96+04
2.9e+04
2.44 n
14 33:02 3.5e+04 1.67 y
3.5e+04
15 33:18 4.46+04
4.46+04
2.42 n
16 33:23 5.2e+03 1.09 n
5.2e+03
Cone
0.01
c
0.13
]
£
0.00
0.00
c
1
0.01
]
(
0.01
f
0.15
1
£
0.02
c
0.12
]
£
0.02
I
0.02
:
0.03
0.02
£
0.02
3
0.03
3
0.00
unnamed
unnamed
Area Height
S/N Mod?
9.3e+03 3.1e+03 1.2e+00 n n
2.3e+03 1.7e+03 2.0e+00 n n
1.4e+05 5.8e+04 2.1e+01 y n
8.66+04 2.96+04 3.5e+01 y n
3
2.66+03 1.8e+03 6.9e-01 n n
2.1e+03 1.8e+03 2.2e+00 n n
3
S.Oe+03 1.9e+03 7.1e-01 n n
1.7e+03 6.9e+02 8.4e-01 n n
.76+04 7.6e+03 2.8e+00 n n
.66+03 2.56+03 3.0e+00 y n
l.le+04 4.5e+03 1.7e+00 n n
6.66+03 2.5e+03 3.0e+00 y n
1.7e+05 6.8e+04 2.5e+01 y n
8.86+04 4.2e+04 5.1e+01 y n
2.3e+04 8.3e+03 3.1e+00 y n
9.5e+03 7.0e+03 8.4e+00 y n
1.26+05 6.0e+04 2.2e+01 y n
8.6e+04 4.4e+04 5.3e+01 y n
2
2.36+04 1.3e+04 4.8e+00 y n
8.8e+03 5.0e+03 6.1e+00 y n
2
2.0e+04 l.le+04 4.1e+00 y n
1.3e+04 8.4e+03 l.Oe+01 y n
3.3e+04 1.8e+04 6.7e+00 y n
2.0e+04 l.le+04 1.3e+01 y n
2
2.06+04 9.7e+03 3.66+00 y n
8.3e+03 5.5e+03 6.7e+00 y n
2
2.2e+04 8.1e+03 3.0e+00 y n
.36+04 8.1e+03 9.8e+00 y n
3.1e+04 1.2e+04 4.5e+00 y n
1.3e+04 5.9e+03 7.2e+00 y n
2.7e+03 1.9e+03 7.0e-01 n n
2.5e+03 1.2e+03 1.4e+00 n n
r f
129
-------
OPUSguan 29-SEP-1998
Page 1
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:23
Run: 19 File: a28sep98a S:14 Acq:28-SEP-98 22:26:45 Proc:29-SEP-98 08:15:40
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-4 xl/1
Amount: 1.71
Cone: 1.71
Tox #1: -
Name
of which 0.82
of which 0.82
Tox #2: -
# RT Respnse
named and 0.89
named and 0.89
Tox #3: -
RA
1 33:55 2.6e+05 1.40 y
2.6e+05
2 34:01 4.9e+05 1.24 y
4.9e+05
34:06 3.3e+04
3.3e+04
1.42 y
4 34:12 3.7e+04 1.18 y
3.7e+04
5 34:19 2.26+04 0.94 n
2.2e+04
1,2,3,4,7,8-HxCDF 6
1,2,3,6,7,8-HxCDF 7
34:34 5.7e+05 1.15 y
5.7e+05
34:38 3.1e+05 1.31 y
3.1e+05
34:42 7.36+04 1.45 n
7.3e+04
34:50 9.5e+04 1.47 n
9.56+04
2,3,4,6,7,8-HxCDF 10 35:00 2.6e+05 1.16 y
2.6e+05
11 35:05 1.3e+04
1.3e+04
0.64 n
12 35:08 l.Oe+04 1.79 n
l.Oe+04
13 35:10 1.4e+04 2.72 n
1.4e+04
14 35:14 1.26+04 0.49 n
1.2e+04
15 35:23 2.6e+04 0.90 n
2.6e+04
1,2,3,7,8,9-HxCDF 16 35:31 4.5e+04 1.42 y
4.5e+04
17 35:35 l.Oe+05 1.34 y
l.Oe+05
18 35:39 1.8e-+04 0.78 n
1.8e+04
19 35:55 1.4e+04 1.96 n
1.46+04
Cone
0.18
3
]
0.34
0.02
]
]
0.03
]
0.02
1
1
0.41
0.19
]
]
0.05
t,
0.07
C
0.18
1
]
0.01
c
0.01
e
•3
0.01
]
0.01
•3
£
0.02
3
3
0.04
3
0.07
c
4
0.01
]
0.01
unnamed
unnamed
Area Height
S/N Mod?
.5e+05 8.1e+04 2.16+01 y n
.le+05 6.3e+04 2.3e+01 y n
2.7e+05 1.3e+05 3.36+01 y n
2.2e+05 l.le+05 4.0e+01 y n
.9e+04 7.6e+03 2.06+00 n n
.4e+04 S.le+03 1.9e+00 n n
2.06+04 l.Oe+04 2.6e+00 n n
1.7e+04 7.56+03 2.7e+00 n n
l.le+04 6.2e+03 1.6e+00 n n
1.2e+04 5.46+03 2.0e+00 n n
I
3.0e+05 l.le+05 2.8e+01 y n
2.7e+05 l.Oe+05 3.7e+01 y n
1.7e+05 7.16+04 1.8e+01 y n
1.3e+05 6.7e+04 2.4e+01 y n
4.3e+04 l.Se+04 3.7e+00 y n
3.0e+04 l.Oe+04 3.76+00 y n
7
5.6e+04 1.6e+04 4.0e+00 y n
3.8e+04 l.Oe+04 3.8e+00 y n
J
1.4e+05 4.8e+04 1.2e+01 y n
1.2e+05 4.56+04 1.6e+01 y n
5.0e+03 3.7e+03 9.4e-01 n n
7.8e+03 4.66+03 1.7s+00 n n
6.7e+03 3.3e+03 8.5e-01 n
3.7e+03 2.2e+03 8.1e-01 n
l.Oe+04 3.76+03 9.56-01 n n
3.7e+03 2.2e+03 8.1e-01 n n
L
3.9e+03 2.2e+03 5.7e-01 n n
8.0e+03 2.9e+03 l.le+00 n n
1.2e+04 4.4e+03 l.le+00 n n
1.4e+04 3.6e+03 1.36+00 n n
1
2.6e+04 l.le+04 2.9e+00 n n
1.86+04 6.5e+03 2.4e+00 n n
7
5.7e+04 2.6e+04 6.6e+00 y n
4.3e+04 1.8e+04 6.4e+00 y n
7.9e+03 2.3e+03 5.8e-01 n
l.Oe+04 7.06+03 2.5e+00 n
9.2e+03 4.7e+03 1.2e+00 n n
4.7e+03 3.1e+03 l.le+00 n n
r
130
-------
OPUSguan 29-SEP-1998 Page
20 35:59 l.Oe+04 0.53 n 0.01
l.Oe+04 3.6e+03 2.1e+03 5.3e-01 n n
6.7e+03 3.3e+03 1.2e+00 n n
21 36:04 1.3e+04 1.50 n 0.01
1.3e+04 7.7e+03 2.3e+03 5.8e-01 n n
5.1e+03 2.6e+03 9.6e-01 n n
22 36:11 1.4e+04 0.76 n 0.01
1.4e+04 6.2e+03 2.7e+03 7.0e-01 n n
8.1e+03 2.9e+03 l.le+00 n n
23 36:16 6.5e+03 1.41 y 0.00
6.5e+03 3.8e+03 1.6e+03 4.0e-01 n n
2.7e+03 2.1e+03 7.5e-01 n n
f< ' 131
-------
OPUSguan 29-SEP-1998
Page 9
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:17
Run: 19 File: a28sep98a S:14 Acq:28-SEP-98 22:26:45 Proc:29-SEP-98 08:15:40
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-4 xl/1
Amount: 1.12
Cone: 1.12
Tox #1: -
Name
of which 0.16
of which 0.16
Tox #2: -
# RT Respnse
named and 0.96
named and 0.96
Tox 13: -
RA
1 34:16 6.8e+04 1.15 y
6.86+04
2 34:24 9.0e+03 1.86 n
9.0e+03
3 34:26 8.2e+03 1.60 n
8.2e+03
4 34:34 l.Oe+06 1.18 y
l.Oe+06
34:43 l.Se+05
1.5e+05
34:49 3.4e+04
3.4e+04
1.12 y
1.27 y
34:51 9.6e+03 2.12 n
9.6e+03
34:56 8.96+03
8.96+03
2.40 n
9 35:00 l.le+04 4.00 n
l.le+04
1,2,3,4,7,8-HxCDD 10 35:06 3.5e+04 1.12 y
3.5e+04
1,2,3,6,7,8-HxCDD 11 35:09 7.8e+04 1.20 y
7.86+04
1,2,3,7,8,9-HxCDD 12 35:21 1.2e+05 1.29 y
1.2e+05
13 35:58 8.2e+03 2.12 n
8.2e+03
14 36:03 l.Oe+04 3.15 n
l.Oe+04
15 36:07 1.2e+04 1.17 y
1.2e+04
16 36:16 4.36+03 2.08 n
4.3e+03
17 36:20 4.06+03 6.60 n
4.0e+03
Cone
0.05
T
0.01
c
0.01
c
0.72
C
4
0.10
e
0.02
]
]
0.01
<
0.01
f
0.01
£
0.03
]
1
0.05
unnamed
unnamed
Area Height S/N Mod?
3.6e+04 1.7e+04 l.Oe+01 y n
3.2e+04 1.4e+04 6.5e+00 y n
L
5.8e+03 2.7e+03 1.6e+00 n n
3.16+03 1.8e+03 8.2e-01 n n
L
5.0e+03 2.5e+03 1.5e+00 n n
3.1e+03 1.8e+03 8.2e-01 n n
2
5.5e+05 2.6e+05 1.5e+02 y n
4.7e+05 2.16+05 9.7e+01 y n
D
7.86+04 3.06+04 l.Se+01 y n
6.9e+04 2.7e+04 1.2e+01 y n
2
1.96+04 8.7e+03 5.2e+00 y n
1.5e+04 5.4e+03 2.5e+00 n n
6.66+03 2.86+03 1.7e+00 n n
3.1e+03 1.5e+03 7.1e-01 n n
L
6.3e+03 2.9e+03 1.7e+00 n n
2.6e+03 2.0e+03 9.0e-01 n n
L
8.4e+03 3.1e+03 1.9e+00 n n
2.1e+03 1.2e+03 5.3e-01 n n
3
1.9e+04 8.6e+03 5.2e+00 y n
1.7e+04 7.2e+03 3.3e+00 y n
0.08
0.01
0.01
0.01
4.36+04 1.7e+04 l.le+01 y n
3.6e+04 l.Se+04 6.P8+00 y n
3
6.86+04 2.3e+04 1.4e+01 y n
5.36+04 1.6e+04 7.6e+00 y n
L
5.5e+03 2.36+03 1.4e+00 n n
2.66+03 1.8e+03 8.4e-01 n n
I
7.76+03 3.36+03 2.0e+00 n n
2.46+03 1.3e+03 5.9e-01 n n
L
6.6e+03 3.3e+03 2.0e+00 n n
5.7e+03 3.3e+03 1.5e+00 n n
0.00
0.00
2.9e+03 1.6e+03 9.5e-01 n n
1.4e+03 1.3e+03 6.0e-01 n n
)
3.5e+03 1.6e+03 9.8e-01 n n
5.36+02 7.36+02 3.36-01 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:8
C' 132
-------
OPUSguan 29-SEP-1998 Page 10
Run: 19 File: a28sep98a S:14 Acq:28-SEP-98 22:26:45 Proc:29-SEP-98 08:15:40
Tables: Run: 14sep-crv Analyte: m829Q-092» Cal: m8290-091»Results: M8290-09*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-4 xl/1
Amount: 0.93 of which 0.73 named and 0.20 unnamed
Cone: 0.93 of which 0.73 named and 0.20 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1,2,3,4,6,7,8-HpCDFl 36:43 7.7e+05 l.OOy 0.64
7.7e+05 3.8e+05 1.5e+05 5.4e+01 y n
3.8e+05 1.6e+05 l.Oe+02 y n
2 36:55 7.7e+04 1.00 y 0.07
7.7e+04 3.8e+04 1.6e+04 5.7e+00 y n
3.8e+04 1.2e+04 8.0e+00 y n
3 37:01 l.le+05 1.33 n 0.09
l.le+05 6.0e+04 2.6e+04 9.3e+00 y n
4.5e+04 1.3e+04 8.5e+00 y n
4 37:24 l.Oe+04 1.90 n 0.01
l.Oe+04 6.8e+03 2.4e+03 8.4e-01 n n
3.6e+03 9.06+02 5.9e-01 n n
1,2,3,4,7,8,9-HpCDFS 37:53 9.6e+04 0.88 n 0.09
9.6e+04 4.5e+04 2.1e+04 7.4e+00 y n
5.1e+04 2.16+04 1.4e+01 y n
6 38:43 l.Oe+04 1.00 y 0.01
l.Oe+04 5.2e+03 1.7e+03 6.0e-01 n n
5.2e+03 1.7e+03 1.2e+00 n n
7 38:45 1.3e+04 0.91 y 0.01
1.3e+04 6.0e+03 2.1e+03 7.4e-01 n n
6.6e+03 3.8e+03 2.5e+00 n n
8 38:55 6.5e+03 0.57 n 0.01
6.56+03 2.4e+03 l.Oe+03 3.8e-01 n n
4.2e+03 1.3e+03 8.3e-01 n n
£<" 133
-------
OPUSquan 29-SEP-1998 Page 11
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:3
Run: 19 File: a28sep98a S:14 Acq:28-SEP-98 22:26:45 Proc:29-SEP-98 08:15:40
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1115-4 xl/1
Amount: 0.55 of which 0.29 named and 0.25 unnamed
Cone: 0.55 of which 0.29 named and 0.25 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1 36:57 2.9e+05 1.16 y 0.24
2.9e+05 1.6e+05 5.0e+04 l.le+01 y n
1.4e+05 4.6e+04 3.0e+01 y n
l,2,3,4,6,7,8-HpCDD2 37:32 3.6e+05 1.17 y 0.29
3.6e+05 1.9e+05 5.7e+04 1.3e+01 y n
1.6e+05 6.0e+04 3.9e+01 y n
3 38:48 1.6e+04 2.24 n 0.01
1.6e+04 l.le+04 4.8e+03 1.le+00 n n
4.9e+03 1.7e+03 1.le+00 n n
0
-------
File:A28SEP98A #1-529
Sample#14 Text: 1115-4
319.8965 S-.14 BSUB(128
100%,
50J
o:
Acg:28-SEP-1998
xl/1
,15, -3.0) PKD(3,
22:26:45 GC EH- Voltage SIR Autospec-UltimaE
Exp:EXP M23 DB5_OVATION
3, 2, 0.10%, 2556. 0,1. 00%, F,F)
25i44 26:10
A ft 27
3.4E4
23
l 28:48
U 27:53 7S-4A . . -.
-^V^8_^^^
1 1 1 I T 1 f
24:00
321.8936 S:14 BSUB(128
100%,
50j
o:
23:58
24 loo'
331.9368 S:14 BSUBU28
100!
50 j
o-
i I i I r | i
24:00
333.9339 S:14 BSUB(128
lOOi
50J
o"
" ' r i — i — i — i i — r—
24:00
327.8847 S:14 BSUB(128
100%
so •
•J Vm.
0'
23:32 24:02 „
rM4jf : WllA , ~iu^hjv\frf
— * 1 \ • i r 1 [ 1 —
24:00
316.9824 S:14 SMO(1,3)
— i 1 1 1 r i r
25:00
,15, -3.0) PKD(3,
24:33
.fff: n,|A,A - -.- - -,
25 loo'
,15, -3.0) PKD(3,
25:00
,15, -3.0) PKD(3,
-i 1 1 1 1 1 r
25:00
,15, -3.0) PKD(3,
24:35 25:01
24:28, . . I 25:
LM\JV^>^W^VAA
—i 1 ~i T 1 1 ' '"r
25:00
i i i i i . r- -i | i
26:00 27:00
3, 2, 0.10%, 596. 0,1. 00%, F,F)
25:44 26:09
A fl 27:
1
A JWx _ .. )
26 loo 27^00
3, 2, 0.10%, 12064. 0,1. 00%, F,F)
26:00 27:00
3, 2, 0.10%, 3512. 0,1. 00%, F,F)
1 1 1 1 1 i c i r— — i i r-
26:00 27:00
3, 2, 0.10%, 7968. 0,1. 00%, F,F)
• i i i i i i i i i i i i i i • i
L1.7E4
' O.OEO
28:00 29:00 30:00 Time
3.8E4
22
1 28 • 14 28 : 48
I A2A:50 A 28:3fS\ A A A 29:47 30:20
wr]
' .-v ' — ' — i — ' — i — ' —
24:00
-r- — i 1 ' 1 1 r-
25:00
___15u32_2JjLll^£uJLI]___^2j-14
26 100 2?! 00
27_-5_4 28'28 28;S9_29:24 29:55 30:20 5.2E7
_2 . 6E7
O.OEO
28:00 29:00 30:00 Time
Co
en
-------
File:A28SEP98A #1-237 Acq:28-SEP-1998 22:26:45 GC El-t- Voltage SIR Autospec-UltimaE
Sample#14 Text:1115-4 xl/1 Exp:EXP_M23_DB5_OVATION
355 a^AK 0.1/1 TJ.O nottriMOQ 1 t; -» n\ PKO^T 1 "> . n 1 n% . 2688 . 0 . 1 . 00% . F. F)
1003
so:
-
0"
32:24 -,,. ....
31:55 \ 32:35
M 1 1
\ 32:15/12:3(11 ^A^ 33:01 33 = 18
r-irA T_-/_^-*^i5i _i 2-?~ ^^^— ^-, ^-icA 2^~i^s\~~ ^J \_^^^^^^— ^^/\ — •/ \/~V/ ^ ltr*^J\f\^^£^/~^^s~^s^s^^^^ ^^s-^ ^ ^ — .
'ri i i~i~7i i i i i i iTTiiiirT ii "iiii i i i i i 'i r*i ri'i TT i i i |*f*f r frf i F i 'i i i i i i i"i i \l i 'i \ f i i i i r i i ' i i ~ -T'l 'f i i i| i iii riTi i
6.9E4
13.4E4
O.OEO
30.:36 30.:48 3liOO 31.-12 3ll24 31.:36 31i48 32.:00 32.:12 32:24 32 36 32-48 33iOO 33il2 33.:24 33^36 Time
357.8517 S:14 F:2 BSUB{128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 828 . 0, 1 . 00%, F, F)
100%
•
so:
-
0 "
32:24 32-35
a
32-51
2:30 I J/!Abi 33:02 33.1R
ALWA.JV A./V , /Vl _ S
4.5E4
.2.3E4
0 .OEO
30:36 30:48 31:00 31:12 31:24 31i36 31:48 32iOO 32il2 32i24 32 36 32148 33:00 33:12 33i24 33:36 Time
367.RQ4Q .q-14 F-2 nsiinn^R. 1 R. -T .m PKnn . 3 .2. Q .10%. 5824 .0 . l .00%.F.F1
100%
so:
0"
33:01
A
1 v_
4.7E7
.2.4E7
O.OEO
" ''i i i i i i i i i i i i i i i i t i i i i i i i i i ii — i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i -T r1^ r"'~' T '-> T '~T r1"1 T ' ' r1"' -<-••!— T--J-* . i . . . i . .
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32 36 32:48 33:00 33:12 33:24 33:36 Time
369.8919 S:14 F:2 BSUB(128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10% , 1124 . 0 , 1 . 00%, F, F)
100*
so:
0"
33:01
_3.0E7
11.5E7
"O.OEO
V 'l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ' 1 1 1 ' ' ' 1 1 ' ' ' ' 1 1 1 ' ' ' ' 1 1— T-T-T— T -I" I- I -I 1 1 1 1 1 1 1 | 1 1 1 , 1 | , , I , , | | | 1 , 1
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32 36 32:48 33:00 33:12 33:24 33:36 Time
366.9792 S:14 F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 .0, 1 . 00%, F, F)
100%,
so:
0"
30 41 3i^o53ijj^i_jnxyu_JLLL!3_^^
6.5E7
_3.2E7
O.OEO
— T — I — I — T~~T — 1 — I — I — 1 — 1 — 1 — I — 1 — I — I — 1 — I — I — 1 — I — 1 — 1 — 1 — I — i — I — l~r — r T i— | T ' i T i | T i -T- T~T ~r r r— r i r~ T~ T— i - i i i | i i i T i T i - i T r -| r i r r i | | i • < i • | i ' > < < | i i i
j.3^,-36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32 36 32:48 33:00 33:12 33:24 33:36 Time
-------
File
Samj
389
1003
50.
0.
391.
100S
so:
0"
401.
100%
50.
o:
403.
so:
o:
380.
100%
so:
0"
;:A28SEP98A #1-196 Kcq:
>le#14 Text: 1115-4 xl/1
8156 S:14 F:3 BSUB(128
•
34:
33:48 34:00 34ll2
8127 S:14 F:3 BSUB (128
34:
33 Us 34 loo 34 1 12
8559 S:14 F:3 BSUB (128
33:48 34:00 34:12
8530 S:14 F:3 BSUB (128
33:48 34:00 34ll2
9760 S:14 F:3 SMO(1,3)
34
/
' "33:48 34:00 34:12
28-SEP-1998 22:26:45 GC EH- Voltage SIR Autospec-UltimaE
Exp : EXP_M2 3_DB5_OVATION
,15, -3.0) PKD(3,5,2,0.10%,1660.0,1.00%,F,F)
34:34
16 / V34^43^ 35:09 35:21
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
,15, -3.0) PKD(3,5,2, 0.10%,2176.0,1.00%,F,F)
34:34
16 j V^JJA^ 35^8 35^22
34124 34136 34:48 35!o'o 35 1 12 35124 35^6 35? 48 36lo'o 3e!l2
,15, -3.0) PKD(3,5,2,0.10%,7876.0,1.00%,F,F)
35:08 35J21
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
15, -3.0) PKD(3,5,2, 0.10%, 612 0.0,1.00%,F,F)
35:08 35J21
A A
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
l:1R 34i38l4.46 35^35 . 15:59
2.6E5
L1.3E5
' O.OEO
Time
2.1E5
O.OEO
Time
4.6E7
.2.3E7
O.OEO
Time
_3.7E7
11.8E7
"O.OEO
Time
_2.2E8
.1.1E8
_O.OEO
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
-------
File:A28SEP98A #1-197 Acq:28-SEP
Sample#14 Text .-1115-4 xl/1
423.7767 S:14 F:4 BSUBU28, 15, -3
100% „, „
50_
-
0
jo: D /
1 — I — l — i — l — i — | — i — l — i — i — i — i — l — i — i — i— i — i — r—
36:24 36:36 36:48 37:00
425.7737 S:14 F:4 BSUB(128, 15, -3
iooa
"
50J
36:57
..» A
36:24 36:36 36:48 37:00
435.ftifi"^ — ~^/~~^s — ""' — ^ — i*^" — "^ — *• — ~~v^- — /\*£^=^»^-s^^ -S^~**^S\ — — ^yv/*x— — —
L2.9E4
0 . ORO
'37! 12' ' '37I24' ' ~37 ^36 ' '37 Us' 38!00 ' 38!l2 3 8. -24 ' 38\36' ' '38!4'8' ' '39 00 Time
.0) PKD(3,5,3,0.10%,1528.0,1.00%,F,F)
37:32 6.1E4
A
:05 \ \_^27:43 38^00 _^___38Aii
.
.3.1E4
' O.OEO
37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
0) PKD( 3, 5, 3, 0.10%, 56928.0, 1.00%,F,F)
37:31
A
j[
2.4E7
11.2E7
'O.OEO
37:12 37! 24 37:36 37:48 38:00 3s!l2 3s!24 3s!36 38:48 39 00 Time
0) PKD(3,5,3,0.10%,50340.0,1.00%,F,F)
37:31
A
A
/ L
_2.3E7
11.2E7
O.OEO
'37.-12 37.-2'4 37136 37 U's 38.'do 3s!l2 3s!24 3sl36 38.U8 39.-00 Time
3 ,3, 100. 00%, 0.0,1. 00%, F,F)
37-13 SiiSD ^__3_8_LO_6 ^8-5? 1 . 5E8
.7.6E7
O.OEO
— i ' i ~ i ""i ' i ( r" r~"T"~^ ' i' p i t — i ' i l — i i r" "' i I r~~r i i i T~~* ' ' ^ ' 1 ' ' ' ' ' ] ' ' ' i t r~ t i I i i | i T i t r" r~
37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
-------
Sam{
457
1005
50.
0
459.
100!
50_
0'
469.
100%
50.
471.
100*
so:
0"
454.
100*
50.
0"
»:A28SEP9«A #1-277 Acq: 28-SEP-1998 22:26:45 GC EI+ Voltage SIR Autospec-UltimaE
3le#14 Text: 1115-4 xl/1 Exp:EXP M23 DBS OVATION
7377 S:14 F:5 BSUB (128, 15, -3 . 0) PKD(3 , 5 , 3 , 0 . 10%, 7800 . 0 , 1 . 00% , F, F)
40:23
39!i2 39124 39!36 39I48
7348 S:14 F:5 BSUB ( 128 , 15, -3
39:12 39:41
39112 39!24 39!36 39 Us
7780 S:14 F:5 BSUB (128 , 15, -3
39!i2 39!24 39136 ' 39:48
7750 S:14 F:5 BSUB (128, 15, -3 .
i i i i 1 i i1 i i i 1 i i i i i 1 i i i i i '1 i i
39:12 39:24 39:36 39:48
9728 S:14 F:5 SMO(1,3) PKD(3,
39:15 3J-J2 39^
'
"59!l2 39!24 39136 39U8
l\
^Afl^y-*^^"^--^^
46I66 46!i2 4o!24 46I36 46I48 4l!66 41 ! 12 ' 41 ! 24 ' 41 ! 36 ' 41 ! 48 ' 42 ! 66 ' 42 ! 1.
.0) PKD(3,5,3,0.10%,1820.0,1.00%,F,F)
40n"
A
/ Vx
i I I | 1 1 1 P\' | ill 1 1 | 1 1 r 1 1 | i i i i i | i i i r i | r i i r i | i i i i i i i i ,, , i , , i i i i , r i r -T I 1 1 1 1 I I I
40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42 : li
0) PKD(3,5,3,0.10%,272.0,1.00%,F,F)
40:22
A
/I
40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42 : 12
0) PKD(3,5,3,0.10%,232.0,1.00%,F,F)
40:22
j\^
40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
3, 3, 100. 00%, 0.0,1. 00%, F,F)
52 4n-0jl 40;23 40:39 41:03 41:14 41:38 41:S3 42:09
40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
5.4E4
.2.7E4
.O.OEO
2 Time
4.6E4
_2.3E4
.O.OEO
2 Time
2.0E7
L9.9E6
.O.OEO
! Time
_2.2E7
11.1E7
O.OEO
Time
1.6E8
-8.1E7
O.OEO
Time
CO
-------
File:A28SEP98A #1-529 Acq:28-SEP-199B
Sample#14 Text: 1115-4 xl/1
303.9016 S.-14 BSUB(128,15,-3.0) PKD(3
1003
50J 25,
: 24:07 25:01 /
0: A A A. J
24:00 25:00
305.8987 S:14 BSUB{128, 15, -3 . 0) PKD{3,
100%
: 25:
5°- h
- 24-°6 25:0i /
n: . . A A A J
24:00 25:00
315.9419 S:14 BSUB(128, 15, -3 .0) PKD(3,
100%
" ' I)
24 !oO ' ' ' 25 !00
317.9389 S:14 BSUB(128, 15, -3 .0) PKD(3,
1004
50 J
o-
24:00 25:00
375.8364 S:14 BSUB(128, 15, -3 . 0) PKD(3,
1004
50- 2
O T A A
'- AI91-7R 1 .124:09 24:56 .
n - 1\ A, Mf* if_ \ A ^|\ A* A^ - ^ r i^ JV^/%
24 loo 25 loo
316.9824 S:14 SMO(1,3) PKD(3 , 3 , 3 , 100 . 0
1004 ^3:23 2_4:J)8_ 2Aj3~L
50_
^' 24:00 25:00
22:26:45 GC El
Exp:EXP M23
3, 2, 0.10%, 1440
20
I 25:44 26:1!
Vrxyf\ /A
26:00
3, 2, 0.10%, 5108
19
I 25:43 26:12
WSytX /A
26:00
3, 2, 0.10%, 3024
26 loo
3, 2, 0.10%, 3688.
26 100
3, 3, 100. 00%, 132
5:29
"'r* iA i** fA^i - 1-*
26:00
0%, 0.0,1. 00%, F,
26:00
+ Voltage SIR Autospec-UltimaE
DBS OVATION
.0,1.00%,F,F)
27:58 2.7E5
26:54 A :
26:37 A A M 28:49 f1'^5
/A 7TV A ^X J \ A A _ :„ „„„
27:00 28:00 29:00 30:00 Time
.0,1.00%,F,F)
27-58 3.4E5
26:54 A :
Ml 2 / :1.7E5
27:19 / 28:31 ;
. A _TV / V A A ._ . _, .-n npn
27:00 28:00 29:00 30:00 Time
0,1.00%,F,F)
27:54 r2'3E7
f[
J V O.OF.O
27 lod 28 loo 29 loo 3oloo' ' ' Time
0,1.00%,F,F)
27:54 3.0E7
1 L1.5E7
., _,. J y , O.OKO
27 loo ' ' 28 loo ' 29 100 3oloo' ' ' Time
.0,1.00%,F,F)
1.4E4
28:06 i j
jfe 8 : 1JJ7 U 28*55 30-09 _6.9E3
27:00 ' 28 100 29 100 3oloo' ' Time
F)
? 3fi-4n _ 27:14 23:.5_4_.._ 28:28 . 28:.59 29:24 29:56.30:20 5. 2F.7
L2.6E7
0 .OEO
27 100 ' ' ' 28 100 ' ' 29 100 ' ' 3oloO ' ' Time
-------
File:A28SEP98A
Sample#14 Text :
339.8597 S:14 F
1005
50.
0.
!
: 30:45
30l36 30!48
341.8568 S:14 F
1003
50_
0_
•
30:44
J V
30 136 30:48
351.9000 S:14 F
100S
50_
0
3
0:36 30:48
353.8970 S:14 F
lOOi
50 j
o;
ablse'abUs
409.7974 S:14 F:
100%
.
50:
0,
-|-"V -^^— — v— J*. —
36!36 30U8
366.9792 S:14 F:
100%
50:
oj
30:41
30-i,36 30:48
#1-HJV Acq:
1115-4 xl/1
:2 BSUB(128
31 166 31
:2 BSUB(128
3i!66 31
:2 BSUB(128
31 166 31 !
28-SEP-1998 22:26:45 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
,15, -3.0) PKD(3,3,2,0.10%,300.0,1.00%,F,F)
32:10 ^.3.0E5
31:47 f\
A 32:54
I \ 32:19 32:34 . h
33\352l02 1 V7W!/5V A/ V 33A°3 33:22
-
Ll.5E5
• n fiRO
1 ' ' ' ' | ' i ' ' ' | '' ' ' T ' 1 ' ' 1 1 r 1 rli ' 1 1 '!' ' 1 1 r 1 T 1 1 T 1 1 1 1 f 1 1 7 1 1 T~j**l 1*1 1 • 1 '1 | | | |*|-| 1 1 T 1 1* 1 1 1 1 ' " -•—"
:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
,15, -3.0) PKD(3,3,2,0.10%,4460.0,1.00%,F,F)
31A" 32A'°
A / \ "^O*^/!
l\ l\ 32:19 32:33 A A
31:41/ \31:55 / \ /\A32*28/\ /\ / \
y\y \«-/\ / V / Y \ /\ / V /V/\-'3:03 33:22
2.0E5
Ll.OES
12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
,15, -3.0) PKD(3,3,2,0.10%,116.0,1.00%,F,F)
32:22
A
A
i\
1 1 1 ' 1 1 1 ' ' ' 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 [ 1 1 1 *l 1 [ T 1 1 1 ' 1 1 1 1 1 1 I 1 1 1 1 1 1 I 1 1 I I I — 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
5.9E7
-3.0E7
LO.OEO
Time
2 BSUB(128,15,-3.0) PKD(3 , 3 , 2 , 0 . 10%, 1972 . 0 , 1 . 00%, F, F)
32:22
A
3i!66 31!
H
3.7E7
Ll.9E7
- n . OHO
i i r » ' T "i r-1 r~t T 'yr-T T-T'T^-J r— r-i — r-i — | — i — r T T i T i — i — T-T — i — i T™I r i r | — i — i — i— i — r — | T T — i — i — i — i — i — r— r— i — r T r i — i i T T r i — i — i— i — i — i — i— r " ~
12 31:24 31:36 33:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
2 BSUB{128,15,-3.0) PKD(3 , 3, 3 , 100 . 00%, 464 . 0, 1 . 00%, F, F)
30:58
-A j^ — - -^-
31:00 31 1 1
2 SMO(1,3)
31:05 31
32:24 7.4E4
32:14 j\ 32-48
Ay\ n 32:31 ^32:54
l\] \ A \\ /\^^«."^,A r\^ 33-36
J\l ^\ f \ — . ^ \fJ V_^/ \s*~/* \ / Vys/^A rt A ^\
L3.7E4
n fiED
"f~l — 1 — r~T — | — 1 1 1 i 1 — | — f 1 t r i '"i — 1 i I 1 1 | } t — i' i*f [ — i — ilii — i — i V i — i — I^JT^I i"Yt — i — r*i — i — i — i — [ — t — i — i i > y*l frt — r-i — i — i1^ 1* O i ' r"l *r T' * ~
12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
:14 31:31 31:43 3?..f)5 3J? • 1 Q 32:3332:43 32:5933:10 33-22 33:3fl 6.5E7
_3.2E7
O.OF.O
1 1 1 1 1 1' 1 1 ' 1 T -TT-|i|i>iii|iiiii|iiiiirT -1 1 1 1 1 1 1 1 1 1 1 1 1 T 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
-------
File:A28SEP98A #1-196 Acq:
Sample#14 Text: 1115-4 xl/1
373.8207 S:14 F:3
100* 34:01
50.
0
33:55 A
I\J \.
33 148' ' '34! do'
375.8178 S:14 F:3
1008
sol
-
n:
34:01
A
TA
\ \
i \^/ \^
33:48 34:00
3R3.8639 S:14 F:3
.1 C 0%
50 j
0
"•*"-! — r~~! — i i i — i — r— i — p
33:48 34:00
385.8610 S:14 F:3
100%
50 j
0'
v - i-T-f- i— i -r i— i |' i • i
33:48 34:00
445.7555 S:14 F:3
100*
50 j
o:
/v^^Sj^OO
33148 34lOO
BSUB(128
34 -12
~^>_. ^A.^
34Tl2
BSUB(128
34:13
34:12
BSUB(128
1 1 1 1 T 1
34:12
28-SEP-1998 22:26:
45 GC EH- Voltage
SIR Autospec-Ul t imaE
Exp : EXP_M23_DB5_OVATION
, 1 5 , - 3 . 0 ) PKD (3,5,
34:34
/\34:38
AA
~ T - >/ Y v
34! 24 34! 36
,15, -3.0) PKD(3,5,
34:34
4
/\34:38
/\ A
/ V V
y Y v-
34:24 34:36
,15, -3.0) PKD(3,5,
34:38
A
I
•i""T '~r' T" I~~T "i i i| i r*T
34:24 34:36
BSUB(128,15,-3.0) PKD(3,5,
"T f" 1" I T"l "
34:12
34:38
A
K
34:24 34:36
BSUB(128,15,-3.0) PKD(3,3,
34:10
34-12
380.9760 S:14 F:3 SMO(1,3)
lOOi
50 1
o"
fc&laV ' '34 loo'
34
T ' " T "~ 1 I 1 '1
34:12
34:37
/
34:29 / 3,
, /V, 7M V
34:24 34:36
PKD(3,3,3,100.00%
2, 0.10%, 3908. 0,1 .
35:00
:42 34: 50 f\
'>— ^. ^~^^ ^-^ V.
34! 48 35! 00
00%,F,F)
_1.3E5
s\ 3S -49
— ~s-*s \ ~ir ^
_6.6E4
: O.OEO
'35! 12 ' 35!24r 35:36 35!48 's'eloo' ' '36\12 " ' Time
2, 0.10%, 2760. 0,1. 00%, F,F)
35:00
A
34:51 J\
-^_ _; ^^ V^__^
34:48 35:00
2, 0.10%, 10676. 0,1
1 ' i i — i ' ' i*n ' ' r~
34:48 35:00
2, 0.10%, 18384. 0,1
— r—i i r- 1 i i i ~y < i i
34:48 35:00
3, 100. 00%, 296. 0,1.
35
1:44 A J
A A /\ r
A 34:52 N\l
\ /V.J'N^^V y y
34:48 35:00
,0.0,1.00%,F,F)
:1R 34:3R34:dfi
T 1 1 1 1 1 1 1 . | l . l
34:24 34:36
i i | i i i i i | i i i i
34:48 35:00
35:34
1.1E5
1.5.7E4
O.OEO
351: 12 35^24 35136 3s!48 36loO 36ll2 Time
.00%,F,F)
2.4E7
L1.2E7
: O.OEO
35:12 35:24 35:36 35:48 36:00 36:12 Time
00%,F,F)
4 . 5E7
L2.2E7
-O.OEO
35-12 35! 24 35! 36 35:48 3(s!do 36:12 Time
00%,F,F)
^2.3E4
:08 35i21
\35:13 A
\ A A »
\ / \ / \ -,[- -,-j ... ._ A T6-03
1 / \ ^J V A 35:33 35:42 /\ A
— r—j — i— T — r—r— i— j r r i- r r,? Y r i "7 , TT >'i "V* , • V Wi Y'yv p-^1
Ll.lE4
O.OEO
35:12 35:24 35:36 35:48 36:00 36:12 Time
35jJ35 35^59 2.2E8
.1.1E8
O.OEO
I j 1 I f ( 1 I I 1 1 t I 1 1 1~~1 r i 1 1 " 1 i r T l l 1 t TJ 1 1 "~ T T" '| 1
35:12 35:24 35:36 35:48 36:00 36:12 Time
-------
File:A28SEP98A #1-197 Acq:
28-SEP-1998 22:
Sample#14 Text: 1115-4 xl/1
407.7818 S:14 F:4
1003
50.
0.
36
/
/
/
36124 36^36
409.7788 S:14 F:4
1003
50J
*
0.:
36
/
/
—I
36124 36 136
417.8253 S:14 F:4
1009
50^
oj
36
/
1
36 24 36 he
419.8220 S:14 F:4
100%
50:
0:
1
/
/
36!24 36he
479.7165 S:14 F:4
100%
50J
•
Oj
36:29. 36:38
^^v^^Wu^^A-^^-
F ~I T— T T 1 1 1 1"
36 24 36:36
430.9728 S:14 F:4
100%
50 j
o:
7
36:24' ' '36 136'
BSUB (128
A"
<\
\
V. — •
36:48
BSUB (128
A43
\
v
V, r^"
36? 48
BSUB (128
;43
\
36:48
BSUB (128
i43
\
V.
36 Us
,15, -3.0) PKD(3
37:01
^^ ^^
37:00 37:12
,15, -3.0) PKD(3
37:01
37:00 37! 12
,15, -3.0) PKD(3
37:00 37:12
,15, -3.0) PKD(3
37 \ 00 37 ! 12
BSUB (128, 15, -3.0) PKD(3
26:45 GC EI+ Vo.
Exp : EXP_M2 3_DB5_
,5,3,0 .10%, 2788
37:24 37:36
,5, 3, 0.10%, 1512.
'sVhY ' 37!36
,5, 3, 0.10%, 7848
-T T— TI— r~i — r— r -i — r—~i — i —
37:24 37:36
,5, 3, 0.10%, 5956.
37! 24 37! 36
.tage SIR Autospec-UltimaE
.OVATION
0, 1.00%,F,F)
37:53
1.5E5
L7.7E4
• n tiRD
37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
0,1.00%,F,F)
,
37:52
Xs s^
1.6E5
L8.0E4
: O.OFO
37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
0,1.00%,F,F)
1.0E7
L5.2E6
n .iiEn
T ( 1 1 1 1 1 1 1 T 1 1 * 1 1 1 ] 1 1 1 1 ( 1 1 1 1 1 1 1 * 1 1 * 1 [ 1 1 1 1 1 1—~ ' ~ — "
37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
0,1.00%,F,F)
2.3E7
.1.1B7
O.OEO
37 Us 3s!do 38!l2 3s!24 3s!36 38 Us 39 00 Time
, 3, 3, 100. 00%, 43 96. 0,1. 00%, F,F)
37:31
A
A
/ V
36:53 37:05 / A
- /v . /N / ^A /^ V /^ -
^^--^-^V.
'36 UV
SMO(1,3)
36-52
-i — i — | — i — i — r—
36:48
_yvv_^^/ \^_/v^-x
T~T — i — i — I — i — i — I T™ t — r-
37:00 37:12
s~^ \~> -— ' •*-*
i i i 1 i i i i i 1 i
37:24 37:36
PKD(3,3,3,100.00%,0.0,1.00%,F,
37:13
i — r— | — i — r p i P | I r-
37:00 37:12
i ' ' i i" i "i T T * i 'i ' i — r ~~i
37:24 37:36
37 :45
/\/y\3^J[1^^^38Ap^7j^
r_4.2E4
L2.1E4
- O.OEO
37. -48 Ye -DO Ys'lY 38:24' 38:36 38:48' ' 39 00 Time
F)
27:5J) 38:06 3RrR5 1 . 5E8
L? . 6E7
-O.OEO
'37! 48' 'laldo 38.-12 38I24 38136 38148 39^00 Time
-------
File:A28gEp98A #1-277 Acq:!
Sample#14 Text: 1115-4 xl/1
441.7427 S:14
100!
50_
_
0:
A39:10
•>. J \— _ —**. _-—- __^ ^—
39.:12
443 739fi <> • 1 &
100%
50:;
-
0"
39:12
v^-^-^/V/v
39112
469.7780 S:14
100S
50:
0"
39:12
471.7750 S:14
100?
50 :
o"
"~t i i i i i i i i
39:12
513.6775 S:14
100%
50:
o:
39:12
v- 1 1 1 1 1 1 T T"l
39:12
454.9728 S:14
100% 19 -I*
50:
Q"
'
7«k'rr r r f i i i
|C-)1 39:12
F:5 BSUB(128,
39:25 39:38
39:24 39:36
F:5 BSUB(128
58-SEP-1998 22:26:45 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
15, -3.0) PKD(3,5,3,0.10%,2308.0,1.00%,F,F)
T
\
39:56 40:1140:20 / \ 40:45 41:10 41:26 41:38 41-51 42:02
__—^^ >-»_- . /\ -^ . , /* ->\^- ^ y^— 'V*~1~*s.'V •*/ >^V^*X-^~>i^^^~^-^J— ^- — i -^a**J~~~l*'^'S -~| k -^v^N-iy— " ^x^^XN-,- *^V^* — — >-^A •—^-v J™^-^J^!l— ^*^^-^^x^ j^- — ^/V
rTT| Pit l T | iiip i | -r-r T-I i |T 1-1 i l | i i i i i | i i i i i | . i i i i | i i i i i | i i i i i | i i i r . f i-r-i-r I | i i i i i | i
3.2E4
L1.6E4
£O.OEO
39.U8 40100 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
15, -3 0) PKD(3, 5,3, 0.10%, 4736. 0, 1 . 00%, F,F)
40:31
A
39:29 39:45 40:06 40:19 / X?j37 40:52 41 -OR 41;26 41:38 41:54 42;07
:>^x_y~Vvs^/-r--r\.
39[24 39:36
F:5 BSUB(128,
39:24 39:36
F:5 BSUB(128,
'T l'"1 T T 1 1 1 I ! I'T-
39:24 39:36
F:5 BSUB(128,
A 39:33
39124 ' 39136
F:5 SMO(1,3)
19:33
39:24 39:36
4.1E4
12.0E4
O.OEO
39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
15, -3.0) PKD ( 3, 5 ,3, 0.10%, 272. 0,1. 00%, F,F)
40:22
A
l\^
2 . OE7
_9.9E6
O.OEO
39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
15, -3.0) PKD(3,5,3,0.10%,232.0,1.00%,F,F)
40:22
A
J ^
2.2E7
L1.1E7
: O.OEO
39:48 ' 40:66 ' 40:12 4ol24 4ol36 4ol48 4ll66 4lll2 41:24 4ll36 4ll48 42166 42:12 Time
15, -3.0) PKD(3,3,3,100.00%,228.0,1.00%,F,F)
40 -21
I\40A3A° »n »* 40:59 41:12 41,:26A 41:48 142.05A
rA50^^40A%J WVUy^V^vJA /A^JU^JU^^
_7.7E3
L3.8E3
O.OEO
39T48 4olo6 4oli2 4ol24 4ol36 46:48 41:66 41:12 41124 41136 ilUs 42166 42! 12 Time
PKD (3, 3, 3, 100. 00%, 0.0,1. 00%, F,F)
39:52 An-nA 40:23 40i3q 41 -ni 41:14 jHi42 41:53 42:09 1 . 6E8
.8.1E7
-O.OEO
39148 ' 40 166 ' 40:12 ' 40 -24 ' 40:36 ' 46:48 41:66 41:12' 41:24 41:36 41:48 42:66 42 1 12 Time
-------
OPUSquan 30-SEP-1998
Page 1
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ
Unk
ES/RT
a29sep98n
6
29-SEP-98
30-SEP-98
1115-4
07feb-m23conf
m8290cf-092998n
Total
DPE
LMC
20:40:14
08:57:40
2,3,7
1302,3,7
Tetra
QC CHK ION
Name;
8-TCDF;
8-TCDF;
Furans;
HxCDPE;
(Tetra);
Resp ;
3.46e+05;
2.34e+08;
1.09e+07;
Ion 1; Ion 2; RA;?; RT;
1.48e+05; 1.98e+05; 0.75;y; 27:52;
1.036+08; 1.31e+08; 0.79,-y; 27:50;
2.46e+05; 2.79e+05; 0.88;y; 18:08;
* ;NotFnd;
* ;NotFnd;
Cone ;
0 J
57.344;
4.896; 0.1074;
Page 6
S/N1;?;
8;y;
2188,-y;
19;y;
*;n
DivO;n
S/N2;?
4;y
2611;y
mod?
yes
no
yes
no
no
-;-; 27:52
27:52
yes
01
-------
OPUSquan 30-SEP-1998
Page 6
Page 6
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ
Unk
ES/RT
a29sep98n
6
29-SEP-98 20:40:
30-SEP-98 08:57:
1115-4
07feb-m23conf
m8290cf-092998n
14
40
Total
DPE
LMC
2,3,7
13C-2.3.7
Tetra
QC CHK ION
Name;
,8-TCDF;
,8-TCDF;
Furans;
HxCDPE;
(Tetra);
Resp;
* .
2.34e+08;
1.05e+07;
Ion 1;
* .
1.03e+08;
2.46e+05;
Ion 2;
1.31e+08;
RA;?; RT;
*;n;NotFnd;
0.79;y; 27:50;
0.88;y; 18:08;
,-NotFnd;
,-NotFnd;
/
Conpj/ DL;
(V 0.1074;
57.344;
4.734; 0.1074;
S/N1;?;
*;n,-
2188,-y;
19 ;y;
*;n
DivO;n
S/N2;?
*;n
2611;y
mod?
no
no
no
no
no
;NotFnd
-;-;NotFnd
-------
File:A29SEP98fo #1-2676 Acq:29-SEP-1998 20:40:14
Sample#6 Text: 1115-4
303.9016 S:6
100S
50.
0.
16:07
ie Sob
305.8987 S:6
100^
50_
Oj
15:30 16
16:00
315.9419 S:6
100S
50_
o:
ieSob
317.9389 S:6
100%
50J
ol
ieSob
375.8364 S:6
100%
50 j
o:
16:15
VA~**UPA«J*
16:00
316.9824 S:6
100%
50_
oj
SMO(1,3) BSUB(128,15,-3
20:18
18:08 20:^3 01
I i in 21:
A 0 A J
,— -,-jt-,- JMAJ
18:00 2o!ob
SMO(1,3) BSUB(128,15,-3
20:18
18:09 20:013 _.
ft 1 n 11 A
;42_Jjj619jJJOjl^^
is Sob 20 Sob
SMO(1,3) BSUB(128,15,-3
is Sob 20 Sob
SMO(1,3) BSUB(128,15,-3
is Sob 20 Sob
SMO(1,3) BSUB(128,15,-3
.0)
10
jft
L
22
.0)
09
/V>1
Re*
22
.0)
22
.0)
22
0)
Exp:M23
PKD (3,3
23:
2B
[
22:33
M A -Al
Sob
PKD (3,3
23:
pjf
GfA^2
Sob ' '
PKD (3, 3
Soo'
PKD (3,3
Sob' '
PKD(3,3
*~f**~^j*f***iu**^/tn*t>**ffl^^
is Sob 20 Sob 22 Sob
SMO(1,3) PKD(3,3,3,100.00%,
15:43 16:57 18:21 20:11 71
^'16 lob1
' is Sob ' ' ' 20 5 ob
•3?
22
GC EI+ Voltage SIR Autospec-UltimaE
DB225
,3,0.10%,
16
:25
f) 24:
An
-JB
24Tob
,3,0.10%,
15
i24 24:
W-AJ
24:00
,3,0.10%,
24 ! 00
,3,0.10%,
24 Sob
2584. 0,1. 00%, F
27:3
58 Ik A
5:23 |\ SnT,
2e!oo Ija
5924. 0,1. 00%, F
,F) It
/-^^^~ r9
1 /29:14
A A A 31:48
_^^ &L02
_4
^OJO 30:00 32 5 00 ' 34:00 ' ^36 00
. 1E4
. 6E4
nun
. UlLl/
Time
T
/ _1.2E5
57 27«3^/ 29:15
5:24 A JJF
26 ! 00 23
^rt 39:33 31:49
W\^J\W^^
SOQ 30 5 00 32 Sob ' ' 34 Sob ' ' ' 36
• p. i p4
_ U • J-E**4
00
5076. 0,1. 00%, F,F)
"i
/
26 Sob 28
5320. 0,1. 00%, F,
27ii
/
26 Sob 28
3, 100. 00%, 3132. 0,1. 00%,
24:35
24iob '
Time
50 1.1E7
L5.6E6
• n
f i '' ' — i — i — | — i 1 — i — i 1 — | — i 1 1 — i l i 1 — i — r—i — i — f-w
:00 30:00 32:00 34:00 36-00
F)
50
Time
1.4E7
1.7.
n
i i" i — i — i — | — i — i — i — i — i — | — i — i — i — i i i — i — i — i — i — i •
:00 30:00 32:00 34:00 36 00
F,F)
35:5'
/
26:17 27:51 29:13 30:53 32:51 34:00 35:i/l
rA/^ttS+'fatJLfV^j.WkjJ^^^
r7T-rr — "S Tiy T"*^ T ^T^f — p01?*' i1?1 — i — "T71-?1^ — ^p^y^r^'T17 T • i ^T T;^'-^f^riT^r"rlii —
26:00 28:00 30:00 32:00 34:00 36
r6'
13.
0.
00
OE6
OEO
Time
1E4
1E4
OEO
Time
0.0,1.00%,F,F)
22:42
00
23:58 25:18 26:33 27:
24 Sob '
' 26 Sob ' ' '28
5JL2!iil_J^ii!i!iJJZ~!2^^
.1.
0.
00 ' 30 Sob ' ' 32:00 ' ' ' 34? 00 ' ' ' 36 00
4E7
7E7
OEO
Time
-------
IPile-A29sEP9UH il-i*bVb Acq:29-SEH-i99U 20:40 = 14 GC KI+ Voltage SIR Autospec-uitimaK
tampie#6 Text=1115-4 Exp:M23_DB225
Sampie*t> Texc:IJ.J.D-* ;;„,•, ->~-> n 1 n» -^OA n 1 nn% F F^
303.9016 S:6 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2584.0,1.00%,F,F)
fHjiMAWA^uAx^
16-00 18 o 20OO 22o 2400 26OO 28 5
305.8987 S:6 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%, 5924.0,1.00%,F,F)
100* 23 15
15:30 16:42 17.
-------
Section 4
System Perfoic
Section 4-1
Mass Spectrometer Performance Check
Mass Resolution
Documentation for the Analysis
of
Polychlorinated Dibenzo-/?-Dioxins & Dibenzofurans
-------
Peak Locate Examination:28-SEP-1998:12:23 File:A28SEP98A
Experiment:EXP_M23_DB5_OVATION Function:! Reference:PFK317
Volts
2.4419
292.95315 292.98245 293.01175
Volts
0.8912
304.95195 304.98245 305.01295
Volts
0.4721
316.95075 316.98245 317.01415
330.94615 330.97925
Volts
2.3323
342.94495 342.97925 343.01355
Volts
1.1219
354.94375 354.97925 355.01475
Volts
0.6570
36frr»4255 366.97925 367.01595
Volts
2.0531
380.93795 380.97604 381.01414
-------
2.1940
Peak Locate Examination:29-SEP-1998:02:19 File:A28SEP98A
Experiment:EXP_M23_DB5_OVATION Function:! Reference:PFK317
Volts
292.95315 292.98245 293.01175
Volts
0.8188
304.95195 304.98245 305.01295
Volts
0.4183
316.95075 316.98245 317.01415
Volts
2.4232
Volts
1.9469
Volts
0.8934
330.94615 330.97925 331.01235
342.94495 342.97925 343.01355
354.94375 354.97925 355.01475
Volts
0.5312
Volts
1.6148
366ffM255 366.97925 367.01595
380.93795 380.97604 381.01414
C/T
U
-------
Peak Locate Examination:29-SEP-1998:16:13 File:A29SEP98M
Experiment:M23_DB225 Function:! Reference:PFK317
PPM
200
Volts
4.3756
292.95315 292.98245 293.01175
Volts
1.5745
304.95195 304.98245 305.01295
Volts
0.7865
316.95075 316.98245 317.01415
PPM
200
Volts
5.2705
A
330.94615 330.97925 331.01235
PPM
200
Volts
4.1962
342.94495 342.97925 343.01355
Volts
1.9377
354.94375 354.97925 355.01475
Volts
1.0846
Volts
3.7785
3^66.94255 366.97925 367.01595
380.93795 380.97604 381.01414
-------
Peak Locate Examination:30-SEP-1998:03:46 File:A29SEP98N
Experiment:M23_DB225 Function:! Reference:PFK317
Volts
0.5715
292.95315 292.98245 293.01175
Volts
0.7414
330.94615 330.97925 331.01235
Volts
0.1667
.< • ~- _^
36?6.94255 366.97925 367.01595
Volts
0.1900
304.95195 304.98245 305.01295
Volts
0.6406
342.94495 342.97925 343.01355
Volts
0.0968
316.95075 316.98245 317.01415
Volts
0.2803
354.94375 354.97925 355.01475
Volts
0.6131
380.93795 380.97604 381.01414
C/7
CO
-------
Section 4
System Perfon
Section 4-2
Gas Chromatography Performance Check
Isomer Specificity & Retention Time Windows
Documentation for the Analysis
of
Polychlorinated Dibenzo-/?-Dioxins & Dibenzofurans
Cfl
-------
File:A28SEf>98A #1-529 Acq:28-SEf>-1998 12:25:48 GC EI+ Voltage SIR Autqspec-ultimaE - '
Samplell Text:DB-5 Retchk Exp:EXP M23 DBS OVATION
303.9016,319.8965
1004. 25:40 . 27
80.
60.
40.
20.
0_
24:04
A i^
A ^
l\ 1
r
i
j
>53 29:07
28:43 /
1/lY
k. / AA
24!00 25':O^T "~ 26ToQT " ^ ~27T~00 ' ~" " YsloO ' ~" ""29-00"
F:2 339.8597,355.8546
1004, j-^
80 j
60J
40J
20J
OJ
f' 31:54
30:41 I A
A
/ \ \
y v / v
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32124 32
F:3 373.8207,389.8156
1004
80J
60j
40 j
20J
/
36 32:48 33:00 33:12
L. <-
30:20
30:fll6
AM
/I 1
/ A \
i — i — i — | — f / > ^-i1
30:00 Time
33:2l£ L- _
\\
V
\ ^
\rl I 1 l l l r i r i i i'
33:24 33136 Time
33:55 34:15**- . /
/ f \Y 35:19^ ^
/ ' \ A
A
/ /\
35:34
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36
F:4 407.7818,423.7767
1004 36^42 36;56 Js , ^"
80 j
60 j
40J
20J
f A I A 37A52
A A
11 M \ \
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
319.8965,331.9368
1004 25:40
80j
60J
40J
20J
OJ
j
\
r-
~
-
00 36:12 Time
r
38:12 38:24 38:36 38:48 39:00 Time
28:52
28:411 A
n IH
m
n
J F U
^
"'^! ' ' 24! 00 ' ' 25: 00 ' ' 26:00 ' ' 27!oo' ' ' 28! 00 ' ' ' '29:00
30:20
30:00 Time
CA
rn
-------
--ile:A28gEP9aA 11-5^9 Acq.-28-5EP-199B 12:25:4B GC an- Voltage SIR Autospec-u
5amplefl Text:DB-5 Retchk Exp:EXP_M23_DB5_OVATION
)19'8965 29;07
100%
95:
85:
80:
75:
70:
65:
60:
55-^
50:
45:
40:
35
30:
25:
20.
15.
10
5
0
28:54
28:45
_1.3E7
_1.2E7
Ll.2E7
11.1E7
Ll.OE7
L9.8E6
L9.2E6
L8.5E6
L7.8E6
L7.2E6
:6.5E6
L5.9E6
L5.2E6
:4.6E6
:3.9E6
L3.3E6
L2.6E6
12.QE6
11.3E6
L6.5E5
.O.OEO
Time
2812
28
Sl8 ' 28124 ' 28130 ' 28 S 36 ' 28!« ' '28 1 48 ' 28S54 ' 29 ! 00 29:06 29:12 29:18 29:24 29:30 29:36
-------
Pile:A29SEP98« #1-2677 Acq:29-5Et>-1998 16:13:59 GC EH- Voltage SIR Autospec-UltimaE
Sample#l Text:DB-225 Retchk Exp:M23_DB225
303.9016,315.9419
100* 27;53
27:30
95J
90J
85J
80 j
75J
70J
65 j
60 j
55 j
50 j
45J
40 j
35:
30 j
25J
20J
15J
10 j
5.
28:09
"36:24 26:36 26:48
7^22?! 24 ' 27! 36 ' 27 I 48
28S6d ' 28112 ' 28 24 28 36 28 48 29:00 29:12
Time
01
-------
Section 4
System Perforaiaiic
Section 4-3
Initial Calibrations
(HP-5MS & DB-225 Columns)
Documentation for the Analysis
of
Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans
C/T
00
-------
OPUSquan
16-SEP-1998
Page
1
i f~ ' l
Run: 14sep-crv Analyte: m8290 Cal:
Name Mean RRF S. D.
Results:
Page 1 of 1
Version: V3.5 17-APR-1997 11:14:34
%RSD
14sep98m S3 14sep98m S4 14sep98m S5 14sep98m S6 14sep98m S7
RRF»1 SD RRF&2 SD RRF»3 SD RRF»4 SD RRF»5 SD
?
n {&{"
r/ \
Vx/
cy
^y
£_/
^j
tafy )
\~±
tf
ID
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3.4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
13C-2,3,7,8-TCDD
13C-l,2,3,7,8-PeCDD
13C-l,2,3,6,7,8-HxCDD
13C-l,2,3,4,6,7,8-HpCDD
13C-OCDD
13C-2,3,7,8-TCDF
13C-l,2,3,7,8-PeCDF
13C-l,2,3,6,7,8-HxCDF
13C-1,2,3,4,6,7, 8-HpCDF
) 13C-1,2,3,4-TCDD
/ 13C-l,2,3,7.8,9-HxCDD
/
,,',)/ 37Cl-2,3,7,8-TCDD
C-y/ 13C-2,3.4,7,8-PeCDF
-// 13C-1.2,3,4.7,8-HxCDD
/ 13C-l,2,3.4,7,8-HxCDF
^ 13C-l,2,3,4,7,8,9-HpCDF
3701-2,3, 7, 8-TCDD
/ 13C-2,3,4,7,8-PeCDF
/ 13C-l,2,3,4,7,8-HxCDD
/ 13C-l,2,3,4,7,8-HxCDF
[^ 13C-l,2,3.4,7,8,9-HpCDF
Total Tetra-Furans
Total Tetra-Dioxins
Total Penta-Furans
1.0257
1.1457
0.8199
0.9128
0.8982
0.9131
1.0044
0.9992
0.8955
0.9204
0.9410
1.1148
1.0006
0.8709
1.3737
1.1710
1.0873
1.0598
0.6999
1.0514
0.8753
0.7701
1.3145
1.1002
1.2071
0.7878
-
1.0350
1.0782
0.7931
0.9989
0.6859
0.9764
0.9797
0.7552
0.8281
0.8707
0.9992
1.0257
0.9080
0.030
0.026
0.038
0.059
0.042
0.008
0.015
0.013
0.013
0.029
0.022
0.042
0.043
0.026
0.012
0.013
0.020
0.030
0.054
0.030
0.017
0.038
0.018
0.062
0.034
0.017
-
0.042
0.068
0.042
0.035
0.015
0.015
0.009
0.054
0.038
0.010
0.013
0.030
0.016
2.96 %
2.26 %
4.66 %
6.50 %
4.65 %
0.87 %
1.53 %
1.33 %
1.43 %
3.13 %
2.37 %
3.72 %
4.34 %
3.03 %
0.86 %
1.15 %
1.85 %
2.86 %
7.67 %
2.83 %
1.98 %
4.93 %
1.40 %
5.65 %
2.84 %
2.21 %
- %
4.05 %
6.30 %
5.29 %
3.50 %
2.21 %
1.54 %
0.90 %
7.15 %
4.53 %
1.12 %
1.33 %
2.96 %
1.72 %
1.08
1.15
0.81
0.87
0.85
0.91
1.02
1.01
0.87
0.93
0.95
1.14
1.06
0.87
1.37
1.16
1.06
1.04
0.66
1.04
0.87
0.74
1.31
1.06
1.17
0.77
-
1.01
1.03
0.75
0.98
0.66
0.97
0.97
0.72
0.83
0.86
1.01
1.08
0.90
1.7
0.3
-0.2
-0.7
-1.1
-0.5
1.1
1.1
-1.6
0.4
0.4
0.7
1.4
0.1
-0.2
-0.8
-1.5
-0.6
-0.7
-0.2
-0.5
-0.9
-0.1
-0.7
-1.0
-0.9
-
-0.6
-0.8
-0.9
-0.7
-1.4
-0.5
-1.3
-0.6
0.1
-1.1
1.1
1.7
-0.3
1.02
1.16
0.80
1.02
0.96
0.91
1.01
0.98
0.89
0.93
0.91
1.12
0.98
0.83
1.37
1. 16
1.08
1.04
0.65
1.00
0.87
0.76
1.30
1.06
1.26
0.79
-
0.99
1.03
0.84
0.98
0.69
0.95
0.98
0.84
0.78
0.87
0.98
1.02
0.91
-0
0
-0
1
1
-0
0
-1
0
0
-1
0
-0
-1
-0
-0
-0
-0
-0
-1
-0
-0
-1
-0
1
o
-1
-0
1
-0
0
-1
-0
1
-1
0
-1
-0
0
.3
.7
.6
.7
.5
.9
.3
.1
.0
.2
.3
.2
.5
.5
.5
. 8
.5
.8
.8
.6
.3
.4
.0
.7
.4
.0
_
.1
.7
.2
.6
.1
.5
.4
.5
.4
.1
.1
.3
.2
1.01 -0.6
1.16 0.5
0.84 0.4
0. 88 -0.6
0.91 0.2
0.91 -0.8
1.01 0.6
1.00 -0.3
0.90 0.4
0.93 0.4
0.97 1.1
1.16 1.0
1.02 0.5
0.89 0.7
1.39 1.7
1 19 1.4
1.09 0.3
1.05 -0.4
0.68 -0.4
1.06 0.2
0.87 -0.1
0.75 -0.5
1.30 -0.7
1.08 -0.4
1.18 -0.9
0. 77 -1.0
-
1.03 -0.1
1.05 -0.4
0.78 -0.3
1.00 0.1
0.68 -0.2
0.99 0.6
0.98 -0.3
0.74 -0.3
0.85 0.6
0.89 1.6
1.00 -0.3
1.01 -0.6
0.92 0.5
1.00 -0.8
1.15 0.3
0.78 -1.1
0.91 -0.1
0.87 -0.6
0.92 1.3
0.99 -0.6
0.99 -0.7
0.91 1.1
0.94 0.7
0.95 0.6
1.10 -0.4
0.98 -0.4
0.86 -0.4
1.36 -1.0
1 16 -0.6
1.11 1.0
1.06 0.0
0.71 0.2
1.08 0.9
0.86 -0.8
0.77 0.0
1.32 0.3
1.10 0.0
1.22 0.3
0. 80 0. 5
_
1.04 0.2
1.09 0.2
0.76 -0.9
0.98 -0.5
0.69 0.2
0.98 0.5
0.99 1.2
0.70 -1.0
0.81 -0.6
0.86 -0.6
0.99 -0.7
1.00 -0.8
0.93 1.1
1.02
1.10
0.88
0. 89
0.90
0.92
0.98
1.01
0.90
0.87
0.92
1.05
0.95
0.90
1.37
1 IP
.1 . -L O
1.10
1.11
0.79
1.07
0.91
0.83
1.34
1.21
1.21
0.81
_
1.10
1.19
0.83
1.06
0.71
0.99
0.99
0.78
0.87
0.87
1.01
1.02
0.88
-0.1
-1.8
1.5
-0.4
0.0
0.8
-1.4
1.0
0.2
-1.8
-0.7
-1.5
-1.1
1.0
0.0
00
. o
0.7
1.7
1.6
0.8
1.7
1.7
1.6
1.7
0.1
1.4
_
1.5
1.6
1.0
1.7
1.4
0.8
0.8
0.4
1.2
-0.1
1.0
-0.1
-1.5
-------
Xn
OPUSquan ll-FEB-1998
Page 1
Run: 07FEB98 Analyte: M23_CONF Cal: 225-07feb Results:
Page 1 of 1
Version: V3.5 17-APR-1997 11:14:34
Name Mean RRF
2,3,7,8-TCDF 0.9472
130-2,3,7,8-TCDF
HxCDPE
QC CHK ION (Tetra)
S. D.
0.033
07feb98d S4 07feb98d S5 07feb98d S6 07feb98d S7 07feb98d S8
%RSD RRFK1 SD RRF*2 SD RRF#3 SD RRF#4 SD RRF#5 SD
3.49 %
1.00 1.5 0.91 -1.3 0.94 -0.4 0.95 0.0 0.95 0.1
-------
Section 4
System Perforjgianci
Section 4-4
Continuing Calibrations
Documentation for the Analysis
of
Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans
05
-------
(75
OPUSquan 29-SEP-1998 Page
Run 16 Filename a28sep98a S: 2
Run: 14sep-crv Analyte: m8290-092» Cal
Sample text: FE CS3
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
SS
DPE
DPE
Name
2, 3, 7, 8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7, 8 -HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
130-2,3, 7, 8-TCDD
13C-1 , 2,3,7, 8-PeCDD
130-1,2,3,6,7,8-HxCDD
13C-l,2,3,4,6,7,8-HpCDD
13C-OCDD
130-2,3, 7, 8-TCDF
13C-l,2,3,7,8-PeCDF
13C- 1,2,3,6,7. 8-HxCDF
130-1,2,3,4,6,7,8-HpCDF
130-1,2,3,4-TCDD
130-1 , 2 , 3 , 7 , 8 . 9-HxCDD
3701-2, 3, 7, 8-TCDD
130-2,3,4,7,8-PeCDF
13C-l,2,3,4,7,8-HxCDD
130-1,2,3,4,7,8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
3701-2, 3, 7, 8-TCDD
130-2,3,4,7,8-PeCDF
130-1 , 2,3,4,7, 8-HxCDD
130-1,2,3,4,7,8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
HxCDPE
HpCDPE
1
I:
1 Acquired: 28-SEP-98 13:11
: m8290-091» Results:
Comments :
2
1
1
1
1
1
1
3
1
1
1
1
1
1
1
1
2
2
1
2
2
3
3
2
2
1
2
2
2
.2
1
2
1
2
2
1
2
1
Reap
.5e+07
.le+08
.le+08
.Oe+08
.le+08
.Oe+08
.8e+08
.2e+07
.3e+08
.46+08
.5e+08
.5e+08
.4e+08
.3e+08
.4e+08
.2e+08
.Oe+08
.4e+08
.9e+08
.2e+08
.le+08
.4e+08
.Oe+08
. 7e+08
.56+08
.9e+08
.26+08
.le+08
.3e+07
.9e+08
. 8e+08
.5e+08
. 7e+08
.3e+07
.9e+08
8e+08
.5e+08
7e+08
*
*
0
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
0
0
1
0
0
0
1
1
1
0
0
1
1
0
0
RA
.78
.57
.24
.27
.26
.04
.89
.79
.54
.55
.23
.24
.23
.26
.04
.04
.90
.77
.58
.27
.05
.91
.79
.58
.53
.44
.79
.27
.59
.26
.52
.45
.59
.26
.52
45
u
y.
y1
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
/ RT
28:56
33:01
35:05
35:08
35:21
37:31
40:21
27:55
32:22
32:49
34:33
34:37
34:60
35:30
36:43
37:52
40:30
28:55
33:00
35:08
37:30
40:20
27:54
32:22
34:37
36:42
28:38
35:20
28:56
32:48
35:04
34:33
37:51
28:56
32:48
35:04
34:33
37:51
NotFnd
NotFnd
:50 Processed:
Uuan : V3
OPUS : A3
Cone
10.2
50.6
58.9
51.4
54.1
53.0
104
10.7
52.7
57.1
61.2
53.2
56.0
57.2
52.6
53.2
109
101
119
97.0
109
203
104
113
98.1
112
49.4
60.2
10.0
120
106
115
114
9.97
106
110
117
102
*
*
Page 1 of 1
29-SEP-98 07:53:11
.5 17-APR-1997 11:14:34
.6/8X 18-MAR-1998 16:12:42
Dev'n
2
1
17
2
8
6
4
6
5
14
22
6
12
14
5
6
8
0
18
-3
9
1
3
13
-1
11
0
20
6
14
13
-0
6
9
17
1
.1
.2
.8 -
.8
.3
.1 /
•2 ^9
I
.7
.5
. 2 /*T)
.4 ' <--'
.4
.0
.4
.2
.3
.8
.5
.9
.0
.4
.7
.9
.1
.9
.8
-
-
.2
.2
.5
.8
.7
3
3
7
0
7
-
"
Mod?
n
n
n
n
t ~ n
i^T n
IJ "
/ n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
-------
Fiie:A28SEP98A I1-5Z9
Sample#2 Text:FE CS3
319.8965 S:2 BSUB(128
100%
50 j
°: i , , , ,
24:00
321.8936 5:2 BSUB(128
100*
50_
0 ..,,,,,
24:00
331.9368 S:2 BSUB(128
100!
50 j
0:
24:00
333.9339 S:2 BSUB{128
1001
50J
0:
24 Sod
327.8847 S:2 BSUB(128
1008
50J
n:
24 Sod
316.9824 S:2 SMO(1,3)
100*23:14 24:00
50 j
o:
24 !00
Acq:28-SEP-1998 13:ll:bO GC El + Voltage SIR
Exp:EXP M23 DBS OVATION
,15, -3.0) PKD(3,3,2,0.10%,3724.0,1.00%,F,F)
25 Sod 2 6 Sod 27 5 00
,15, -3.0) PKD(3,3,2,0.10%,1416.0,1.00%,F,F)
25:00 26:00 27? 00
,15, -3.0) PKD(3,3,2,0.10%,15424.0,1.00%,F,F)
25 Sod 26 Sod 27:00
,15, -3.0) PKD(3,3,2,0.10%,7072.0,1.00%,F,F)
25:00 26 Sod ' ' 27 5 00
,15, -3.0) PKD(3,3,2,0.10%,19568.0,1.00%,F,F)
25 Sod 26 Sod 27 5 00
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
24:43 25:20 25-54 26:3727^00
25:00 26 Sod 27$ 00
Autospec-UltimaE
28:56 2.4E6
11 .1.2E6
J \- n OFO
!• i i i | i i — r- i i1 — p— i 1 1 1 1 1 1 1 ,0-U - unu
28:00 29:00 30:00 Time
28:56 3.0E6
11 L1.5E6
_, .7 v n np.n
• i • i | i i i i - /-- r" 1 i i 1 1 i i 1 i1 " • UIiu
28:00 29:00 30:00 Time
. 28:55 ^2.3E7
A A
A A
7 v / V n ORO
r i i "i "j1 r i "T* -T"~- 1 f r i "' i i 1 i i , i' " • «""
28:00 29:00 30:00 Time
28:55 ^3.0E7
A A F
A A
7 V / V O.OEO
28 5 00 ' ' 29 Sod ' ' ' 30 Sod ' ' Time
28:56 _5.2E6
A
11 _2.6E6
/ L n.ORO
28SOO 29! 00 30 Sod Time
?7:42 2R-21 5R-4R 7.q.1S29:38 30:1Q 9 . OR7
L4.5E7
O.ORO
28:00 29:00 30:00 Time
CO
-------
File:A28SEP9BA 11-237 Acq:28-SEP-1998 13:11:50 (5C El+ Voltage Sift Autqspec-UltimaE — 1
Sample#2 Text:FE CS3 Exp:EXP M23_DB5 OVATION
355.8546 S:2 F:2 BSUB(128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 .10% , 4472 . 0, 1 . 00%, F, F)
100?
50_
0"
33:01
fl
/ {
, 30:36 30:48 3l!oO 3i!l2 31:24 3l!36 3i.;48 32166 32ll2 32124 32136 32148 33 66 ' 33 1 12 ' 33 -24 ' 33 !36
3.4E7
.1.7E7
" 0 OEO
Time
357.8517 S:2 F:2 BSUB (128, 15, -3 . 0) PKD(3 , 3,2, 0 .10%, 1244 . 0, 1 . 00%, F, F)
100%
50:
0
33:01
A
J
30136 30148 3lloO 3lll2 3ll24 31:36 3l\48 32166 32? 12 3 2 [2 4' 32 lie 32 1 48 33 66 ' 33 !l2 ' 33 :24 ' 33 lie '
2.3E7
.1.2E7
0 OEO
Time
367.8949 5:2 F:2 BSUB{128, 15, -3 .0) PKD(3, 3, 2, 0 . 10%, 6984 . 0, 1 . 00%, F, F)
100%^
50J
-
0"
"1
/
.00
13:06
5.7E7
.2 . 8E7
n . ORO
30:36 30148 31:66 31 '12' 31 124 31\36 31:48 32166 32ll2T 32:24 ' ^Tie' ' S^S ' 33 66 ' 33 :12 ' 33 :24 ' 33 :36 ' Time
369.8919 S:2 F:2 BSUB(128, 15, -3 . 0) PKD(3, 3,2, 0 .10%, 2940 . 0, 1 . 00%, F, F)
100%
so:
.
o:
33
J
00
B3:06
ly\
r.3.7E7
_1.8E7
O.OEO
3bl36 3bl48 31166 31:12 3l!24 31 136 31 1 48 32166 32:12 32124 32136 32148 33:66 33:12 33:24' 33136 Time
366.9792 S:2 F:2 SMO(1,3) PKD(3,3, 3, 100.00%, 0.0, 1. 00%,F,F)
100%
so:
0"
30:39 30:52 31:03 31:26 31:41 31:53 U.-.lt 32^30 _12:4512rS4 33:09 33:2733:18
1.1E8
-5.6E7
O.OEO
30:36. 30:48 31:00 31:12 31:24 31:36 31:48 32100 32:12 32:24 32:36 32:48 33 00 33:12 33:24 33:36 Time
-------
Pile
Samp
100%:
so:
0
391.
100%
so:
0'
401.
100%,
so:
0"
403.
100%
50_
0
380.
100%
so:
0"
:A28SEP98A 11-197 Acq:
le#2 Text:FE CS3
8156 S:2 F:3 BSUB(128,
3 3! 48
8127
33: 48
8559
-i--|— r-
33:48
8530
1 i | i
33:48
9760
/
•i 'i i •
33:48
34:00 34:12
S:2 F:3 BSUB(128,
34:00 34:12
S:2 F:3 BSUB(128,
i— i — i — i—i — r— T — i — i i i — i— r
34:00 34:12
S:2 F:3 BSUB(128,
T— i — r— i — i — r— i — I — i — r— i — r— i
34:00 34:12
S:2 F:3 SMO(1,3)
34 -03
i i i " I | i i i i i—p- 1- i
34:00 34:12
28-SEP-1998 13:11:50 6C Ei + Voltage Sift Autospec-UltimaE
Exp:EXP M23 DB5_OVATION
15, -3.0) PKD(3,5,2,0.10%,4308.0,1.00%,F,F)
3T5!08 3T
34:24 34:36
15, -3.0) PKD(3,5
34:24 34:36
15,-3.0) PKD(3,5
1 1 ' 1 1 1 1 ' T'-p-l
34:24 34:36
15, -3.0) PKD{3,5
I
1 1 T 1 | 1 1 1 1 1 | T 1 t I 1
34:48 35:00 35
,2, 0.10%, 6084. 0,1. 00%,
35:05
A »
34:48 35:00 35
,2, 0.10%, 7492. 0,1. 00%,
f/i08
1
34:48 35:00 35
,2, 0.10%, 4948. 0,1. 00%,
35:04
A /I
i
In
j{
Fl2 35! 24 35! 36 35! 48 3(5 ! 00 36! 12
F,F)
35:21
A
[l2 3sT24 35l36 35148 3e!oO 36ll2
F,F)
35:20
h
\12 ' '35124 351: 36 35148 36! 00 36ll2
F,F)
35:20
j[
3
_1
0
_2
.1
0
5
12
0
4
12
0
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
PKD{3,3,3,100.00%,0.0,1.00%,F,F)
34:29 34^43 "-04 T^-14 35.57 T^4ft 35_J9 ,_4
'34! 24' ' '34:36
34148 35IOO 35
.2
0
!l2 35!24 35!36 3s!48 36:00 36^12
1
. OE7
.5E7
.OEO
Time
.4E7
.2E7
.OEO
Time
.4E7
.7E7
.OEO
Time
.2E7
.1E7
.OEO
Time
.OE8
.OE8
.OEO
Time
C/T
-------
?iie:A28SEP93A #1-197 Acq:28-5EP-l998 13:11:50 GC EH- Voltage SIR Autpspec-OltimaB ' — —
3ample#2 Text:FE CS3 Exp:EXP M23 DBS OVATION
123.7767 S:2 F:4 BSUB(128, 15, -3 .0) PKD{3, 5, 3, 0 .10%, 21060 . 0, 1 . 00%, F, F)
L003
50.
37:31
rt
A
/ \
' .—— . J ^
Jfi:24 36! 36 36! 48 37? 00 37 5 12 3?! 24 37! 36 37? 48 3s!oO 38 1 12 3s!24 38!3V ' YsUV ' '39
1.9E7
L9.6E6
-0 . OEO
00 Time
125.7737 5:2 F:4 BSUB(128, 15, -3 . 0) PKD(3, 5, 3, 0 . 10%, 23532 . 0, 1 . 00%, F, F)
1001
so:
0"
3li31
A
1.8E7
L8.9E6
n npn
36:24 36!36 36:48 37!oO 3?5l2 3?!24 37T36 37148 38loO 38Tl2 '"38124 '38:36' ' YsUV ' '39 00 Time
435.8169 S:2 F:4 BSUB(128, 15, -3 . 0) PKD(3 , 5, 3, 0 .10%, 32836 .0, 1 . 00%,F,F)
100%
50.
o:
37:30 _4.1E7
.2 . 1E7
' n riEn
36 24 36!36 36!48 37loO 37:12 37!24 37T:36 37148 IdloO 38\12 38\24 '38\36 ' '381*8 ' '39\QO Time
437.8140 S:2 F:4 BSUB(128, 15, -3 . 0) PKD(3 , 5, 3 , 0.10%, 42312 . 0, 1 . 00%, F, F)
100%
so:
o:
37-30 3.9E7
L1.9E7
n nv.n
36 24 36:36 36: 48 37:00 3v!l2 37? 24 37? 36 37? 48 3s!oO '3s!l2' Vs^Y ' '38\36' ' 'sS.U's' ' '39! 00 Time
430.9728 S:2 F:4 SMO(1,3) PKD(3 , 3 , 3 , 100 .00%, 0 .0, 1. 00%,F.F)
100%^
so:
o:
JA-16 3fij:49 17:04 37:14 17:24 17:1^ 37:44 17-^fi 18:13 38:34 38:51 2.7RR
.1.4E8
O.OEO
36!24^ 36!36 36:48' 37!oO 37!l2 37?24 31\36 ' YvU's ' 's's-Oo' ' '38 1^2^^38:24 ' Tsll'e' " 'seTis" ' TgloO Time
-------
File
Samp
457.
1001
so:
0'
459.
100*
so:
0"
469.
100%
50.
0
471.
100%
so:
0'
454.
100%
so:
0"
:A28SfiP98A #1-276 Acq:28-5fiP-1998 13:11:50 <5C fij+ Voltage Sift Autpspec-OltimaE
le*2 Text:FE CS3 Exp.-EXP M23 DB5_OVATION
7377 S:2 F:5 BSUB(128, 15, -3 .0) PKD(3 , 5, 3 , 0 . 10%, 12792 . 0, 1 . 00%, F, F)
40:21
A
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:i;
7348 S:2 F:5 BSUB(128, 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 2976 . 0 , 1 . 00%, F, F)
40:21
39ll2 39:24 39:36 39:48 40:00 40:12 46:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:66 42:1:
7780 S:2 F:5 BSUB(128, 15, -3 . 0) PKD(3, 5, 3 , 0 . 10%, 2004 . 0 , 1 . 00%, F, F)
4T
i i i i 1 i i i i i 1 i i i i i 1 i i i i i 1 i i i i "r T i i i i i i i r i i i 1 r i i i i 1 i i i i i 1 i i i i i i i i i i i 1 i i i i i i i i i i i 1 i i i i i | i i i i i | • i i i i | •
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:i:
7750 S:2 F:5 BSUB(128, 15, -3 .0) PKD(3, 5,3, 0.10%, 1904 . 0, 1 .00%, F, F)
'T
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:i;
9728 S:2 F:5 SMO(1,3) PKD(3, 3, 3 , 100. 00%, 0 . 0, 1 ,00%,F,F)
3Q-?.n 39:33 39:51 40:16 40 = 28 40:42 40:56 41:16 41:36 42-iOl
'^'39:12 ' 39:24 ' 39:36 ' 39:48 40166 4o!i2 4b':24 4ol36 40:48 41166 4ili2 4i':24 41136 4i':48 42166 42li:
2.4E7
11.2E7
O.OEO
J Time
2 . 8E7
L1.4E7
LO.OEO
2 Time
4 . 6E7
.2.3E7
LO.OEO
2 Time
5 . 1E7
L2 . 6E7
.O.OEO
I Time
2 . 9E8
.1.4E8
' O.OEO
J Time
-------
Plle:A28SEP98A #1-529
Sample#2 Text:FE CS3
303.9016 S:2 BSUB(128,
100%
50J
o:
24 loo
305.8987 S:2 BSUB(128,
100%
SOJ
0
11111)1
24:00
315.9419 S:2 BSUB(128,
100%
50:
0"
" ' i i — i — i — i i i
24:00
317.9389 S:2 BSUBU28,
100!
50 1
Q
UJ — i 1 — i — i — i — i — i —
24:00
375.8364 S:2 BSUB(128,
100%
50:
0 "
23:56
23:28 9, 1,
13:14 23-41
fo MA A. R^./JVvAm_jA_i
' 24: 00
316.9824 S:2 SMO(1,3)
1008.23:14 24:00
50 1
o-
'tCTi < 1 1 1 1 1 —
^ 24:00
Acq:28-SEP-199« U:il:50 GC El+
Voltage SIR Autospec-UltimaE
Exp : EXP_M2 3_DB5_OVATION
15, -3.0) PKD(3,3,2,0.10%,3708.0,
25100 26:00
15. -3.0) PKD(3,3,2,0.10%,8960.0,
25100 26:00
15, -3.0) PKD(3,3,2,0.10%,7772.0,
r i i i [ r— — i fill 1 >
25:00 26:00
15, -3.0) PKD(3,3,2,0.10%,8604.0,
— i 1 r 1 1 1 1 1 1 1 1 i I
25:00 26:00
15, -3.0) PKD(3,3,3,100.00%,180.0
26:19
25:38 26.-05J
24:32i 25:05 gdL^ 26:4l 1(1
vL_/\_/JUAAM_/sM A /V A p«iW"r -fitj/UAAAAjWi "LAw
25:00 26100
PKD(3,3/3,100.00%,0.0,1.00%,F,F)
24:43 25:20 25:54 2
— i — i — i — i — i — i — i — i p i — | i — i — i
25100 26:00
1.00%,F,F)
S97-S5
3.2E6
.1.6E6
O.OEO
27:00 28:00 29:00 30:00 Time
1.00%,F,F)
27:55
11
_ 1 \
4.0E6
_2 . OE6
O.OEO
27:00 28:00 29:00 30:00 Time
1.00%,F,F)
27:54
A
ft
A
2.9E7
:1.5E7
O.OEO
27 lod 28 100 29 100 3oloO Time
1.00%,F,F)
S9-7.S4
3.7E7
_1.8E7
•O.OEO
27:00 28:00 29:00 30:00 Time
,1.00%,F,F)
27:44 I
27-19 1 26:39 fl
1 i / P Q • n fi
I i 27:1.5 28:111 j\ /\fl j 1 1 AJl30:|jiB
AjuitAf(AAW-Jl\hJu\-i^jtjV\hMMr^^fLj(j^J[^vUW IA/A/ VA/\»MA, «>A7lA/UI/\/l/\AAAj' fti_^
1.4E4
16.9E3
-O.OEO
27 lod 28:00 29:00 30:00 Time
fi;37 27^00 27:42 28:21 28:48 29:1529:38 30:10 9 . OE7
L4 . 5E7
O.OEO
27 lod 28 100 29:00 30:00 Time
-------
File:A28SEp98A
tl-237 Acq:
Sample#2 Text:FE CS3
339.8597 S:2 F:
100%,
-
50J
o:
3
6:36 30:48
341.8568 S:2 F:
100%
50 1
o-
2 BSUB(128,
31166 31
2 BSUB(128,
30:36 36148 31166 31
351.9000 S:2 F:
100%
50.
0.
30:36 36:48
353.8970 S:2 F:
100%
*
50:
0:
30:36 36148
409.7974 S:2 F:
1004
SO"
OJ
30:40 ft
/ — Xr^-vu_
36:36 36148
366.9792 S:2 F:
100430:39 30:
50 j
OJ
2 BSUB(128,
31:00 31
2 BSUBU28,
3ll66 31
2 BSUB(128,
A AAA A
/ Vv\A/Vw^V_
3i!66 31
2 SMO(1,3)
52 31:03
28-5EP-1998 13:11:
Exp:
15, -3.0) PKD(3,3,2
•12 3ll24 3ll36
15, -3.0) PKD(3,3,2
:12 31:24 3l\36
15, -3.0) PKD(3,3,2
•12 31:24 3ll36
15, -3.0) PKD(3,3,2
•12 31 124 31 136
15, -3.0) PKD(3,3,3
/ WyvVw-WVWvAy V-'
•12 31124 31 l36
PKD(3,3,3,100.00%,
50 GC EI+ Voltage SIR Autospec-UltimaE
EXP M23 DBS OVATION
, 0.10%, 1716. 0,1. 00%, F,F)
32:22
.
31148 32166 32l 12 32l 24
, 0.10%, 7196. 0,1. 00%, F,F)
32:22
A
31148 32166 32112 32124
, 0.10%, 1756. 0,1. 00%, F,F)
32:22
31:48 32:00 32:12 32:24
, 0.10%, 3824. 0,1. 00%, F,F)
32:22
3il48 32166 32li2' 32124
,100. 00%, 3128. 0,1. 00%, F,F)
32:07
1 1
:44 3i:4 f2 = U 32:22
" — \A~_AJ UA_J VV__/V^'^^
31148 32166 32l 12 32? 24
0.0,1.00%,F,F)
31:26 31:41 TI . m 32:16 32
32:49 ,_4.7E7
k
ft
Jl
I m | f i T r f T- r^r'T-i i i i i i i i i i i i i r i i i i i i i i i i1
32:36 32:48 33:00 33:12 33124 33136
-2.4E7
.O.OEO
Time
32:49 3.0E7
A
Ll.5E7
n nv.n
i i 'i I i i i i r T T*I'|" r i i i i i i i i i i i i i i i i i i i i i i |l - • -~"
32:36 32:48 33:00 33:12 33124 33136 Time
32:48 1.0E8
A
15.0E7
n np.n
iiiiii'iifi'rl'iii T"T-r-r i i i i i i i i i i i i i i i i i IL - •
32:36 32:48 33:00 33:12 33124 33136 Time
32:48 6.4E7
A
A
j v
-3.2E7
LO.OEO
32136 32:48 33166 33112 33124 33136 Time
33:01 2.2E4
A
/
32:35 /l33:06 . 33:31
i /\ A r\ AA-v » / \ A 33: 3yA * A A A A
Wv\-wWJ A/v^ V^N/ XA/WA/^ vv^yv vVWV
1 1E4
O.OEO
32 \36 32l 48 33166 33l 12 33124 33:36 Time
•3032:39 32:S4 33:09 33:27 33:3R 1 . 1 Efl
30:3$ 36:48
31:00 31
:12 31:24 31:36
31:48 32:00 32:12 32:24
_5 . 6E7
..O.OEO
32:36 32:48 33:00 33:12 33:24 33:36 Time
-------
File:A28SEp9BA #1-197 Acq
Samplel2 Text:FE
373.8207 S
100%,
50:
o:
33:48
375.8178 S
100*v
50 j
0_
33:48
383.8639 S
100%
'.
501
0
33 : 48
385.8610 S
100%
•
50J
o"
1 i 1 ' '
33:48
445.7555 S
100%
sol
Q~
.A
" '' i f i i
33:48
380.9760 S
100%
sol
o:
'
-,
33S 48'
:2 F:3
CS3
BSUBU28,
34:00 34:12
:2 F:3
BSUB(128,
34 : 00 34 : 12
:2 F:3
BSUBU28,
34Tdo 34 ! 12
:2 F:3
BSUB(128,
" ' ' I ' ' ' ' ' 1 ' '
34:00 34:12
:2 F:3
33:57
BSUB(128,
34:11
'"'1 r* ' ' T »" '
34:00 34:12
:2 F:3
34^
SMO (1,3)
03
' ' i 1 | ' '
34:00 34:12
28-SEP-199H 1J:11:
15, -3.0)
34 i
15, -3
34!
24
.0)
24
15, -3.0)
34:
24
15, -3.0)
34 1
24
15, -3.0)
34:20
'34:
PKD(3,
'34!
24
Exp:
PKD(3,5,2
34:33
A A
A
,/,y\
34:36
PKD(3,5,2
34:33
A A
A
; V \_
34! 36
PKD(3,5,2
34:33
A n
J V v
34! 36
PKD(3,5,2
34:33
A A
A
/ V V,
r i i | i T i
34:36
PKD(3,3,3
34:33 34
34T36
50 GC EI+ Voltage SIR Autpspec-UltimaE
EXP M23 DBS OVATION
,0.10%,
34:48
,0.10%,
34! 48
,0.10%,
34 ! 48
,0.10%,
'34 '48
25016. 0,1. 00%, F,F)
35:00
A
A
) V
iii| r i i i i i
35:00 35:
^
35:30
.2
n
12 35:24 35:36 35:48 36:00 36:12
.2E7
.1E7
.OEO
Time
31764. 0,1. 00%, F,F)
35:00
35lOO 35:
34712.0,1.00%,
34:59
A
J \
35 -do 35!
16236.0,1.00%,
34:59
A
J[
i r i i T i i i i i
35:00 35:
,100. 00%, 804. 0,1. 00%,
:43
, !![• < ^T^T1
34 ! 48
35:08
A A
AA
/ L
_-^^> — v ^ —
35! do 35!
3
35:30
,
Li
0
12 35124 35:36 35:48 36:00 36:12
F,F)
4
35:30
.
12
0
12 35 124 35! 36 35! 48 36ldo 36!l2
F,F)
_8
35:30
.4
0
12 35! 24 35! 36 35! 48 36!do 36J12
F,F)
35:21
r\
A
/ \ 35:36 35.46 35:54 36:02 36:14
_3
Li
"o
12 35! 24 35 136 35:48 36:00 36! 12
.4E7
.7E7
.OEO
Time
.2E7
.1E7
.OEO
Time
.2E7
.1E7
.OEO
Time
.1E4
. 6E4
.OEO
Time
3, 3, 100. 00%, 0.0,1. 00%, F,F)
14
24
•?Q
' '34! 36
.14:47
34 ! 48
1S-.OA 1'
35! do 35!
^14 TR.-27 1S-4fl .IS.- 59 A
.2
0
12 35:24 35:36 35:48 36.;do 36:12
.OE8
.OE8
.OEO
Time
-------
File: A28SEPS
8A #1-19V Acq:
28-SEP-1998 13
Sample 12 Text:FE CS3
407.7818 S:2
100%,
50_
o:
36.24 36
409.7788 S:2
100*
".
50J
OJ
36 24 36
417.8253 S:2
100%
-
50J
o:
36! 24 36
419.8220 S:2
100%
-
50^
o:
36-! 24 36
479.7165 S:2
100%
50 j
0
36:28
M A
\J WN^
36524 36
430.9728 S:2
100% 36
50 j
o:
'
~s
36:24X 36
F:4 BSUB (128,
36:43
A
y v
:36 36:48
F:4 BSUB (128,
36:43
A
A
y v
•36 36:48
F:4 BSUB(128,
36:42
A
y^
:36 36J48
F:4 BSUB (128,
36:42
A
A
y v
•36 36! 48
F:4 BSUB (128,
36:4/3 36
-•^V^ v/Vvvx
136 36:48
F:4 SMO(1,3)
:36_ 36:49
:36 36:48
15, -3.0)
37:00
15, -3.0)
'37 loo'
15, -3.0)
37:00
15, -3.0)
37 ! 00
15, -3.0)
:56 .A
37 ! 00
PKD(3,3,3
37:04
37:00
PKD(3
r 1 f l
37:12
PKD(3
37 ! 12
PKD(3
1 1 '
37:12
PKD(3
37 ! 12
PKD(3
:11:50 GC EI+ Voltage SIR Autpspec-UltimaE
Exp:EXP_M23 DBS OVATION
,5, 3, 0.10%, 12312.0,
37:24 37:36
,5, 3, 0.10%, 7484. 0,1
37:24 37:36
,5,3,0.10%,9432.0,1
37:24 37:36
,5, 3, 0.10%, 10436.0,
37-124 37536
,3, 3, 100. 00%, 4972.0
37:30
A
37:13 A 37:40
.A 37:19 jJ \ A A
•""W *—
37! 12
•x_/VV "N/W yj
37! 24 37! 36
1.00%,F,F)
2
37:52
A
j V_
:1
n
1 1 I'l 1 IT I1IIIIIIII1T7 T-T-TT 1 1 1 1 1 1— I 1 1 1 1 1 > r — ^
37:48 38:00 38:12 38:24 3S.-36 38:48 39 00
.00%,F,F)
2
37:52
A
Ll
• n
37:48 38:00 38:12 38:24 38:36 3s!48 39 00
.00%,F,F)
^2
37:51
-
Ll
:n
37:48 38:00 38:12 38:24 38:36 38:48 39 00
1.00%,F,F)
^5
37:51
A
y v
-2
0
37548 38 5 00 38 5 12 38 5 24 38536 38548 39 5 00
,1.00%,F,F)
2
37:54 38i32 38:41 38:52 A
k A^X\ s\ A-x Axv . sA ~J\ A\/ \A l\^ s\ -/\A/\/\
V-^yVV \^/ \J^^J v\-f^/ \S~^ w v V^-V^/ v^-/V^ N/ \/V V
-i
0
37 548 38 5 00 38 5 12 38524 38 5 36 38548 39 5 00
.9E7
.5E7
OEO
Time
.7E7
.3E7
.OEO
Time
.6E7
.3E7
.OEO
Time
.8E7
.9E7
.OEO
Time
.4E4
.2E4
.OEO
Time
, 100. 00%, 0.0,1. 00%, F,F)
37:1
i 1 i i
37:12
4 37:24 37-3S 37
i i i i i i i i i I i i i
37:24 37:36
:44 17:Sfi 3R:13 38:34 3B:SR 2
.1
0
i i i i i i i i i i i i -i i i i T i , , | , i , i , , , , i i i i i T i r i i
37-.4S 38!00 38:12 38:24 38:36 38:48 39500
.7E8
.4E8
.OEO
Time
-------
File:A28SEp98A #1-276 Acq:28-SEP-199« 1J
Sample#2
441.7427
100S
50J
OJ
Text : FE
S:2
39:12
443.7398
100S
SOJ
OJ
39
469.7780
1001
50.
o:
39
'1 .7750
. J ! *,
50J
o:
" ' i i i i
39
513.6775
100%
50 j
•
0"
-jA ^j.
" ' T i-n
39
454.9728
100% TO
50 J
0
1
-39
S:2
I ' '
•12
5:2
Sl2
5:2
\ > >
•12
S:2
39:
<\ /\A
T^1"
•12
S:2
_LL_
rrir
F:5
'39!
F:5
'^l
F:5
39!
F:5
'39!
F:5
17 i
V/\f\/V
39!
F:5
CS3
BSUB(128,
24 39:36
BSUB(128,
1 ' ' i ' | ' '
24 39:36
BSUBU28,
24 39136
BSUB(128,
24 ' 39:36
BSUB(128,
39:32
A J \ ,/^B. /ls >
24 ' 39136
SMO(1,3)
39:24 39:35
i i i I
39:
1 ' i
24 39:36
:11:50 GC EI+ Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
15,
-3 .
0) PKD(3
' i i 1 i ' ' '
39:48 40:00
15,
39
15,
39
15,
39
15,
39
i
"V J
39
-3.
148
-3.
J48
-3.
148
-3.
:47
V w
!48
0) PKD(3
40:00
0) PKD(3
40:66
0) PKD(3
40:00
0 ) PKD { 3
39:59 /
A (Af/vA,/
40 Io6
,5, 3, 0.10%, 3820.
40,30
A
40:12 40:24 40
,5, 3, 0.10%, 6588.
40/f9
A
40:12 40:24 40
,5, 3, 0.10%, 2004.
4000
A
/.L,,.
40:12 40:24 40
,5, 3, 0.10%, 1904.
40:20
A
J V_
40:12 40:24 40
,3, 3, 100. 00%, 676
40:21
A
\ l\ J ^V/^iS/
4oll2 46:24 40
0,1.00%,F,F)
2
_1
0
:36 40:48 41:00 41:12 41:24 41:36 41:48 42100 42ll2
0,1.00%,F,F)
3
_1
0
:36 40:48 41:00 41:12 41:24 41:36 4ll48 42100 42ll2
0,1.00%,F,F)
4
.2
0
136 46:48 4ll66 4ill2 41124 41:36 ilUs 42166 42112
0,1.00%,F,F)
5
:2
0
136 46148 4ll66 4lli2 4ll24 41136 iiUs 42166 42ll2
.0,1.00%,F,F)
:36 4°A55 A 41:15 41:32 41:54 .
\ ("•<%• (^ / V~"^^Aj W ^ ^r f '^A^ '^^/^ • 1^^ ••-^VrJ^^^" li" **" d^h i t^ /^V^ F — *_ •^•J-|^J\— -|
2
-1
• o
136 40:48 41:66 4lll2 41:24 4lli6 41:48 42loO 42ll2
.7E7
.4E7
.OEO
Time
.OE7
.5E7
.OEO
Time
.6E7
.3E7
.OEO
Time
.1E7
.6E7
.OEO
Time
.7E4
.3E4
.OEO
Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
39:51
r-i~i "
39
Us'
-r™r"i T1 i i i
40:00
40:16 40:28
40:12 40:24 40
40:45 40:56 41:1fi 41:36 42:01 2
-1
0
! 36 '46: 48 4ll66 4ill2 4ll24 41:36 41:48 42:66 42:12
.9E8
.4E8
.OEO
Time
-------
OPUSquan 29-SEP-1998
Page 1
Page 2 of 2
Run »7 Filename a28sep98a S: 15 I: 1 Acquired: 28-SEP-98 23:'l3:23 Processed: 29-SEP-98 07:54:01
Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091» Results: Quan : V3.5 17-APR-1997 11:14:34
Sample text: BE CS3 Comments: OPUS : A3.6/8X 18-MAR-1998 16:12:42
fo
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
SS
DPE
DPE
Name
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1 , 2 , 3 , 4 , 6 , 7 , 8 - HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1 , 2 , 3 , 4 , 7 , 8 , 9-HpCDF
OCDF
13C-2,3,7,8-TCDD
13C-l,2,3,7,8-PeCDD
13C-l,2,3,6,7,8-HxCDD
13C-l,2,3,4,6,7,8-HpCDD
13C-OCDD
13C-2,3,7,8-TCDF
13C-1 , 2,3,7, 8-PeCDF
13C-l,2,3,6,7,8-HxCDF
13C-1 , 2,3,4,6,7, 8-HpCDF
13C-1,2,3,4-TCDD
13C-1 , 2,3,7,8, 9-HxCDD
37Cl-2,3,7,8-TCDD
13C-2,3,4,7,8-PeCDF
13C-1 , 2,3,4,7, 8-HxCDD
13C-l,2,3,4,7,8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
37Cl-2,3,7,8-TCDD
13C-2 , 3,4,7, 8-PeCDF
13C-J,2,3,4,7,8-HxCDD
13C-l,2,3,4,7,8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
HxCDPE
HpCDPE
3
1
1
1
1
1
1
4
1
1
1
2
1
1
1
1
1
3
2
- 2
2
3
4
3
3
2
3
2
3
3
2
3
2
3
3
2
3
2
Resp
.5e+07
.4e+08
.3e+08
.3e+08
.3e+08
.2e+08
.9e+08
.5e+07
.8e+08
.9e+08
.8e+08
.Oe+08
.8e+08
.6e+08
.7e+08
.4e+08
.9e+08
.3e+08
.3e+08
. 8e+08
. 4e+08
. 6e+08
. 3e+08
.8e+08
.3e+08
.2e+08
.2e+08
.7e+08
.3e+07
.8e+08
.2e+08
.le+08
.Oe+08
.3e+07
.8e+08
.2e+08
.le+08
.Oe+08
*
*
0
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
0
0
1
0
0
0
1
1
1
0
0
1
1
0
0
RA
.79
.55
.24
.26
.24
.03
.88
.76
.56
.56
.23
.24
.25
.25
.04
.05
.90
.78
.58
.28
.04
.91
.79
.58
.53
.44
.79
.26
.58
.26
.53
.44
.58
.26
.53
.44
b«
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
/ RT
28:56
33:01
35:05
35:08
35:21
37:31
40:21
27:55
32:22
32:49
34:34
34:38
35:00
35:31
36:42
37:52
40:31
28:55
33:00
35:07
37:31
40:21
27:54
32:21
34:37
36:42
28:38
35:20
28:56
32:48
35:04
34:33
37:51
28:56
32:48
35:04
34:33
37:51
NotFnd
NotFnd
Cone
10.2
52.4
56.7
51.2
53.5
52.6
103
10.5
53.0
55.5
56.1
56.2
54.8
53.9
54.6
53.1
99.9
97.5
103
98.0
102
172
102
107
102
105
71.7
75.6
9.77
109
104
115
105
10.0
101
106
113
100
*
*
Dev
2
4
13
2
7
5
3
4
6
10
12
12
9
7
9
6
-0
-2
3
-2
2
-13
2
7
1
4
-2
8
3
14
4
0
1
5
12
0
'n
.4
.8
:l oit
•° ,J
.3 //
•° °h
•• //
.1 / /
.9 /
.3
.5
.6
.8
.3
.1
.1
.5
.0
.0
.3
.8
.2
.0
.5
.6
_
-
.3
.5
.7
.7
.9
.2
.4
.7
.9
.3
-
"
Mod?
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
-------
>iie:A28SEP98A 11-528
3ample#15 Text: BE CS3
319.8965 S:15 BSUB(128
100%
50J
o:
321.
100%
50 1
o:
331.
100%
50.
0"
333.
100S
sol
•o
327.
100%
50 J
OJ
316.
100%
50.;
o:
f
24:00
8936 S:15 BSUB(128
24:00
9368 S:15 BSUB(128
24:00
9339 S:15 BSUB{128
— — i 1 T 1 r •— r — r
24:00
8847 S:15 BSUB(128
24:00
9824 S:15 SMO(1,3)
,2 1:13 24jJ)6
"V 24:00
Acq:28-SEP-199a 2J:1J:23 GC 61+
Exp:EXP_M23_
,15, -3.0) PKD(3,3,2,0.10%,1892.
25 !00 26 !00
,15, -3.0) PKD(3.3,2,0.10%,284.0
25:00 26:00
,15, -3.0) PKD(3,3,2,0.10%,19904
Voltage SIR Autpspec-UltimaE
DBS OVATION
0,1.00%,F,F)
28:56
A
A
27:00 28:00 29:00 30:00
,1.00%,F,F)
28:56
A
l\
27 !o6 28!oO 29! 00 30!00
.0,1.00%,F,F)
28:38
A A
A A
25:00 26! 00 27? 00 28 1 00 29! 00 30:00
,15, -3.0) PKD(3,3,2,0.10%,5328.0,1.00%,F,F)
28:38
25:00 26:00
,15, -3.0) PKD(3,3,2,0.10%,10728
, AA ,
27!00 28:00 29:00 30:00
.0,1.00%,F,F)
28:56
A
l\
25.' 00 26!00 27! 00 28:00 29:00 30-!oO
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
24:33 25:01 25 • 32 J25 -• 55 26 = 2426:48 27il4 27_i45 ._2Ail5 2&iA2^Z3-:Q6 29;1Q 3JLJI5
25:00 26:00
27? 00 28!00 29! 00 30!00
3.4E6
-1.7E6
O.OEO
Time
4.2E6
L2.1E6
: O.OEO
Time
3.2E7
.1 . 6E7
O.OEO
Time
4 . 1E7
_2 . OE7
O.OEO
Time
7.1E6
_3.5E6
" 0 . OEO
Time
_4 . 8E7
_2.4E7
O.OEO
Time
-------
Pile
Samp
355.
1001
50_
0
357.
100%
so:
0
•
367.
1001
so:
0"
3
369.
iooa
so:
0"
3
366.
100%
so:
0"
3
>:A<>8SEP98A #1-237 Acq:28-SEP-1998 23:1J:23 <5C El+ Voltage SIR Autospec-ultimaE
>le#15 Text:BE CS3 Exp:EXP M23 DBS OVATION
8546 S.-15 F:2 BSUB(128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 3348 . 0, 1 . 00%, F, F)
33:01
A
J6!36 36!48 31166 3i!i2 31:24 31:36
8517 S:15 F:2 BSUB(128, 15, -3 . 0) PKD(3,3,
l6!36 SOUS 3i!66 31:12 31:24 31\36 '
8949 S:15 F:2 BSUB(128, 15 , -3 . 0) PKD(3,3,
0:36 30:48 31:00 31:12 31:24 31:36
8919 S:15 F:2 BSUB(128, 15, -3 . 0) PKD(3,3,
0:36 36:48 31:66 31:12 3i!24 3i!36
9792 S:15 F:2 SMO(1,3) PKD(3,3 , 3, 100 .00%
30:38 30:55 31:11 31:2731:36
0:36 30:48 31:00 31:12 31:24 31:36
II
i ' | 1 i i ii I i i i I i r i ' i i i I ' I "I i i 1 i i i i i I i i i r i 'r T-T 1 1 i 1 i i i i i i i i i i i [ i i i
31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
2, 0.10%, 836. 0,1. 00%, F,F)
33:01
fl
iiiiirii|T! r r 'T -r- !-T-T-T-r^~T-r-i— r-T-T-T-r-T— i i i i i i i i f\ i it 1 i i i t i i i i i i i i i i i i i
31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
2, 0.10%, 27944. 0,1. 00%, F,F)
33:00
ft
ft
/ B3:06
) V\_
31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
2, 0.10%, 18664. 0,1. 00%, F,F)
33:00
A
ft
I B3:06
/ V\
31:48 32:66 32!l2 32:24 32I36 32148 33166 33112 33I24 33I36
,0.0,1.00%,F,F)
31:50 32:02 32:16 32^30. \?-&* 33 = 04 33 r 1 S 33t2S 33:39
31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
4.4E7
_2.2E7
.O.OEO
Time
2 . 8E7
_1.4E7
.O.OEO
Time
7 . 2E7
_3 . 6E7
O.OEO
Time
4.5E7
.2.3E7
O.OEO
Time
6.1E7
_3 . OE7
O.OEO
Time
-------
ic.:A28SEP98A fl
.•>ample#15 Text. -BE
389.8156 S:15 F:3
1008
5o:
„
33:48 34:00
391.8127 S:15 F:3
1008
^
0"
33:48 34:00
401.8559 S:15 F:3
100S
5°-
o-
33:48 34:00
403.8530 S:15 F:3
1008
5°^
0:
33:48 34: do
380.9760 S:15 F:3
100% 33:53
so:
o: ^
33:48 34:00
-197 Acq:28-5EP-19!>8 23:13:23 GC EI+ Voltage SIR Autpspec-tfltimaE — 1
CS3 Exp:EXP_M23_DB5_OVATION
BSUB{128,15,-3.0) PKD(3,5,2,0.10%,1568.0,1.00%,F,F)
35
/
j
34:12 34! 24 34! 36 34:48 35:00
ffl T
W A
I ^ y L
3.2E7
_1 . 6E7
' n ntrn
-T*-I i | F 1 1 i — i | T1 1 1 1 I | I I — r— i — r— j — i — t— i — i i i — i — i— i — i — i i i — i — i — i-*-" • "*"*
35:12 35:24 35:36 35J48 36IOO 36 12 Time
BSUB(128,15,-3.0) PKD(3,5,2, 0.10%,2364.0,1.00%,F,F)
34:12 34! 24 34! 36 34:48 3s!do
BSUB(128,15,-3.0) PKD(3, 5, 2, 0 .10%, 19240 .0,
3
/
1
34:12 34524 34? 36 34: 48 3s!oO
BSUB(128,15,-3.0) PKD(3, 5, 2, 0. 10%, 34756 . 0,
35:08 35:21
U A
W A
i^^-
2 . 5E7
.1.3E7
n r>j?n
-i^-i i | I1 1 1 i — i — | i* 1 1 1 i — |— i — i — i — i — r— i — i — i — i — i — i— i — i — i — i — i — i — i — i — i — i — r-—- • """
35:12 35:24 35:36 35:48 36:00 3e!l2 Time
1.00%,F,F)
5:07 35:20
h A
l\ n
L /v_
6.4E7
.3.2E7
n nwn
•1 — i — i — (111 — i — i — | r 1 1 1 1 — I — i — I i i i — r— i — i — i — i — i — i— i — i — i — i — i i i — i — i — r-*-~ • ~~~
35:12 35:24 35:36 35?48 36!oO 3e!l2 Time
1.00%,F,F)
35:07 35:20
A h A
f
34:12 34':24 34:36 34!48 3s!oO
SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
I /I
_5.0E7
_2.5E7
O.ORO
35:12 35:24 35:36 35:48 36:00 3e!l2 Time
34:22 34:47 35:03 35:22 35:34 35:45 3fi:01 36:14 2.1F.R
34:12 '34! 24 34? 36 34:48' Vs-oV
.1.0E8
O.OEO
35:12 35:24 35:36 35:48 36:00 36!l2 Time
-------
File
Samp
423.
100*
so:
0
36
425.
100*
so:
0"
36
435.
100*
so:
0"
36
437.
100*
so:
0"
36
430.
100*
so:
0"
36
:A28SEP98A #1-197 Acq:28-SEP-1998 '2 J :
le#15 Text: BE CS3
7767 S:15 F:4 BSUB{128, 15, -3 . 0) PKD(3
24' '
7737
24'
8169
.24
8140
*• i i i
24
9728
2V
' 1 | ' 1 1 1 1 1 1 1 1*T> 1 1 1 1 1 1 | 1 T
36:36 36:48 37:00 37:12
S:15 F:4 BSUB(128 , 15, -3 . 0) PKD(3
36:36 36:48 37:00 37:12
S:15 F:4 BSUB(128, 15, -3 . 0) PKD(3
36:36 36:48 37:00 37:12
S:15 F:4 BSUB(128, 15, -3 .0) PKD(3
1 ' 1 1 1 1 1 1 | 1 1 f*>l [ 1 1 1 1 1 |-T T
36:36 36:48 37:00 37:12
S:15 F:4 SMO(1,3) PKD(3, 3, 3, 100.
36:57
— i — i i 'i — i i i — i— i — i — r r i i I i i i i 'i | i ' '
36:36 36:48 37:00 37:12
13:23 GC fit* Voltage SiR
Exp:EXP M23 DB5_OVATION
,5, 3, 0.10%, 54928. 0,1. 00%,
T
37:24 37:36 37:48
,5,3,0.10%,54332.0,1.00%,
T
37124 37:36 37:48
,5, 3, 0.10%, 110260. 0,1. 00%
T
37:24 37:36 37:48
,5, 3, 0.10%, 102588. 0,1. 00%
T
37:24 37:36 37:48
00%, 0.0,1. 00%, F,F)
37:24 37:37
37 [24 37: 36 37 [48
Autospec-UltimaE
F,F) '
'38 [do ' '38 [l2 38 [24 38 ?36 38: 48 39
F,F)
'38:00 38!l2 38 [24 38!.36 38 [48 39
,F,F)
38 [do 38 [l2 38 [24 38 [36 38: 48 39?
,F,F)
_2.0E7
_9.9E6
O.OEO
00 Time
_2 . OE7
.1.0E7
O.OEO
00 Time
4.2E7
.2 . 1E7
10.0EO
00 Time
4 . OE7
_2 . OE7
.O.OEO
'38 [do '38 !l2 38 [24 38 [36 38 [48 39 00 Time
38:39 1.4E8
.7 . 1E7
.O.OEO
38:00 38:12 38:24 38!36 38:48 39 00 Time
-------
Pile
Samp
457.
100*
so:
0
459.
100%
so:
0
469.
100S
50
o;
471.
100%
50.
o:
454.
100%
50_
0
:A2BSfiP98A #1-276 Acg:
le#15 Text: BE CS3
7377 S:15 F:5 BSUB(128
39J12 39124 39!36
7348 S:15 F:5 BSUB(128
' i i i i 1 i i i i i [ i i i i i 1 i i
39:12 39:24 39:36
7780 S:15 F:5 BSUB(128
' i i i i i i i i i i i i i i i i i i i
39:12 39:24 39:36
7750 S.-15 F:5 BSUB(128
' i i i i i i i i i r PT • i T i i I ii
39:12 39:24 39:36
9728 S:15 F:5 SMO{1,3)
39^.2.1 39:32
'•i i i i T"r"r '" "* ' 1 ' ' ' ' ' '"" 1 ' '
39:12 39:24 39:36
28-SEP-1998 23:13:23 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23_DB5 OVATION
,15, -3.0) PKD(3,5,3,0.10%,1504.0,1.00%,F,F)
T
/I
39I48 4b!66 4b!l2 4o!24 46I36 4o!48 4i!66 4l!l2 4l!24 41136 ^lUs' 42!6o 42li
,15, -3.0) PKD(3,5,3,0.10%,1280.0,1.00%,F,F)
40:21
A
39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:1
,15, -3.0) PKD{3,5,3,0.10%,1760.0,1.00%,F,F)
T
' 39S48 ' 40:66 ' 46!l2 ' 46I24 46!36 4():48 4l!66 4i!l2 4i!24 41:36 4i!48 42!66 42!l
,15, -3.0) PKD(3,5,3,0.10%,2392.0,1.00%,F,F)
t\
2.3E7
L1.1E7
O.OEO
2 Time
2 . 6E7
_1.3E7
O.OEO
2 Time
4 . 4E7
_2 . 2E7
O.OEO
2 Time
4 . 8E7
_2.4E7
O.OEO
'39. '48 40 166 46!i2 4b!24 4C)!36 4b!48 4i!66 4i!l2 4l!24 4i!36 4lU8 42:66 42:12 Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
qq.ij; 4n;12 40:44 41-11
-------
File:A28Sfip!J8A 11-528
Sample#15 Text. -BE CS3
303.9016 S:15 BSUB(128
100*
50 :
o:
305.
100%
so:
o:
315.
100*
50:
o;
317.
100*
50:
o:
375.
100*
50:
o:
316.
100*
50.
o:
24:00
8987 S:15 BSUB(128
24 Sod
9419 S:15 BSUB(128
24500
9389 S:15 BSUB(128
24 Sod
8364 S:15 BSUB(128
Acq:28-SEP-1998 23:13:23 <5t EI-i- Voltage SIR Autospec-OltimaE
Exp:EXP M23 DBS OVATION
,15, -3.0) PKD(3,3,2,0.10%,2280.0,1.00%,F,F)
27:55
A
25:00
,15, -3.0) PKD(3,3,
25 Sod
,15, -3.0) PKD(3,3,
25:00
,15, -3.0) PKD(3,3,
25 Sod
,15, -3.0) PKD(3,3,
24:11
23:18 23A49, nip4:21,, 2,4;51 „ 25:
L/VJ *)A ^/A^AM/UAJWWKVJW A.jAM.A A.A.A. .A
24 Sod
9824 S:15 SMO(1,3)
^3:13 24:06
i r • i • i i i ' -r
24SOO
25 Sod
PKD(3,3,3,100.00%
24:33 ?5:01 25
25:00
/\
26:00 27:00 28:00
2, 0.10%, 5860. 0.1. 00%, F,F)
27,55
11
26:00 27 Sod 2aS oo
2, 0.10%, 5044. 0,1. 00%, F,F)
27:54
A
26:00 27 5 00 28. -00
2, 0.10%, 4456. 0,1. 00%, F,F)
27,53
A
26 Sod 27 Sod 28 Sod
3, 100. 00%, 164. 0,1. 00% ,F,F)
28
26!°7 i 27- OH 27- 4R
29 26:OJ) 26:28, 1 27 .(A E7-34|i f 28:15 /
rt ^ A -A llA» (/ A^A A • ^ ll( ^ AAVT^AA n^^» Ji|-JkAA««^AA/^A J^A/
26 Sod ' 27 Sod ' ' ' '28 Sod
r -i— ••[ i r— i 1 1 1 r— i r'
29:00 30:00
29 Sod ' ' ' 30 Sod
29 Sod ' ' ' 30 Sod
29 Sod ' ' ' 30 Sod
4.3E6
_2.1E6
O.OEO
Time
5.6E6
:2.8E6
O.OEO
Time
4.1E7
:2 . OE7
•O.OEO
Time
5.1E7
12 . 6E7
0 . OEO
Time
38 2.2E4
. 28:55 3°j°8
\ A 29:35 30:^5
29 Sod 30:00
,0.0,1.00%,F,F)
:12 25:55 26:24 2fj:4B 27-1/1 2.7-45 2R:15 2R : 42 29 :06 29i30 .30^.05
26:00 27:00 28:00
29 Sod ' ' 30 Sod
Ll . 1E4
' 0 . OEO
Time
4 . 8E7
.2.4E7
O.OEO
Time
CJD
-------
File:A28SEP98A 11-237 Acq:28-SEP-19i:
Sample* 15 Text: BE CS3
339.8597 S:15 F:2 BSUB(128, 15, -3 . 0)
100%
50:
30(36 solas' 33.I66 3i!i2 ' 3i!24
341.8568 S:15 F:2 BSUB(128, 15, -3 . 0)
100)
50:
sblie bbUs 33.166 31:12 33.124
351.9000 S:15 F:2 BSUB{128 , 15 , -3 . 0)
100%
50:
o:
30:36 30:48 31:66 31:12 31:24
353.8970 S:15 F:2 BSUBJ128, 15, -3 . 0)
100)
50_
30:36 30:48 31:00 31:12 31:24
409.7974 S:15 F:2 BSUB(128, 15, -3 .0)
100%
; 31:05
50- 30:54 h
n:JWw\A^JW\!^L
>8 23:13:23 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
PKD(3,3,2,0.10%,800.0,1.00%,F,F)
32:22 32^49 5 . 5E7
A A
^ J \^ 1 \- n non
31 136 31 Us' 32166 32! 12 32! 24
PKD(3,3,2,0.10%,4808.0,1.00%,F,F)
32:22
31 !36 31 148 32166 32:12 32! 24' '
PKD(3,3,2,0.10%,96.0,1.00%,F,F)
32:21
A
33.136 31:48 32: 66 32112 32:24'
PKD(3,3,2,0.10%,136.0,1.00%,F,F)
32:21
3ll36 31:48 32:00 32:12 32:24
PKD(3,3,3,100.00%,2480.0,1.00%,F,F)
32:16
i 31:50 k A T7-?fi
31: 3 A A A, //V\ A^VA A
'VOwv/v^V^^-Nr' ™u vuu_
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24
366.9792 S:15 F:2 SMO{1,3) PKD(3,3 , 3 , 100 .00%, 0 .0, 1 .00%,F,F)
100%30^8_^30:55 31:11 31:2731:36 31:50 32:02 32i16 32:
50:
n;
30:36 30:48 31:00 31:12 31:24
3i!36 31:48 32:66 32:12 32:24
iijiiiiijiiiiiiiiiiirT T-T -r-i i i i i i i i i i r -
32:36 32:48 33:00 33:12 33:24 33136 Time
32:48 3.8E7
M .1.9E7
- i V o OFO
32:36 32:48 33:00 33:12 33S24 33136 Time
32:48 1.2E8
A .6.2E7
n , , , , , /, Vrr i , , , , , , j , . ( , n nRn
32:36 32:48 33:00 33:12 33?24 33136 Time
32:48 7.8E7
/I :3.9E7
32:36 32:48 33:00 33:12 33:24 33:36 Time
33:00 ,_1.9E4
A 33:13 T
32:48 A ,L,ni2i -'-^
^f&^fd6 VwVvAMAjw » „.„
32:36 32:48 33:00 33:12 33:24 33:36 Time
^{L 3'- = 44_ 33:04 13-1S 33:5S 33-3Q fi.lF.7
_3.0E7
. i , . , n.OKn
32:36 32:48 33:00 33:12 33:24 33:36 Time
on
-------
Fiie:A28SfiP98A 11-197 Acq:28-SfiP-1998 23:13:23 GC E1+ Voltage SIR Autospec-UltimaE
Sample#15 Text:BE CS3 Exp:EXP_M23_DB5_OVATION
373.8207 S:15 F:3 BSUB(128,15,-3.0) PKD(3,5,2, 0.10%, 57256.0 ,1.00% , F,F) '
10°* 34'38 35:00
50J •• '- -' 35:31
OJ
5.2E7
_2.6E7
33:48 34ldo 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35\36 YsUV ' Veldo' ' 's^lV '
375.8178 S:15 F:3 BSUB(128,15,-3.0) PKD(3,5,2, 0.10%,47268.0,1.00%,F,F)
100%. 34:38
34:59
50j M /i A 35:30
0
O.OEO
Time
4.2E7
.2.1E7
O.OEO
Time
33S48 34SOO 34:12 34524 34S36 34S48 35:00 35:12 35S24 35136 35:48 ' VeloV ' '36:12' ' '
383.8639 S:15 F:3 BSUB(128,15,-3.0) PKD(3,5,2, 0.10%,34268.0,1.00%,F,F)
100*
50:
0
T
T
34:59
35:30
5.4E7
_2.7E7
O.OEO
Time
T
T
__ _ , , . I i i I I i I i i i r i i i • 1 I i i I i—T-T—i i i—r~i—i i I I i i r i i—r—i—i i i i i i i i i i i i—i i i
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
385.8610 S:15 F:3 BSUB(128,15,-3.0) PKD(3,5,2, 0.10%,111544.0,1.00%,F,F)
100%, 34;37 34.59
35:30
50 J
1.0E8
.5.2E7
O.OEO
Time
2.1E4
L1.1E4
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
445.7555 S:15 F:3 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,368.0,1.00%,F,F)
100%. 35^07 35:20
50J
o
-A
33:58
A
fWi
34:25
34:47
4
35:52
35:38
.O.OEO
Time
33=48 34iOO 34il2 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
380.9760 S:15 F:3 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100*, 33:53 14:33 14:47 35:03
O
35:45
36:01
2.1E8
L1.0E8
0. OEO
Time
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
00
-------
'ile:A28SEP98A 11-197 Acq:
>ample#15
107.7818 S
100%.
50:
0:
36 24
109.7788 S
100%
50:
o"
' I i i i i
36 24
117.8253 S
100%
.
50:
0:
36! 24
419.8220 S
100%
50:
0
36! 24'
479.7165 S
100%
50:
o:
^36:29
I A
J\JW
" ' i i i i i
36.24
430.9728 S
100%
50:
b
/
'i ' .V"T"'
36 24
Text : BE
:15 F:4
36:
/
/
36:36
:15 F:4
36:
/
/
ii i i i i
36:36
:15 F:4
36X
rt
/'
/
36:36
:15 F:4
36 •
A
/'
/
36 1 36 '
:15 F:4
36:39
A A /
^VX/W
i i 1 i i i
36:36
:15 F:4
' 1 ' ' '
36:36
CS3
BSUB(128
42
\
\
36:48
BSUB(128
42
\
\
V. ,
i r ii i i
36148
BSUB(128
42
\
V,
1 1 1 1 1 1
36:48
BSUB(128
42
\
i r*\ i i i
36:48
BSUB{128
\ A A>
vwvw
T~T — l~~l — r~~ T"
36:48
SMO(1,3)
3<
36UV
28-SEP-1998 23:13:153 GC fil+ Voltage
SIR Autpspec-UltimaE
Exp:EXP M23 DBS OVATION
,15, -3.0) PKD(3, 5, 3, 0.10%, 6432. 0,1. 00%,
37.-00 37:12 37:24 37:36 37
,15, -3.0) PKD(3,5,3,0.10%,17272.0,1.
37:00 37:12 37:24 37:36 37
, 15 , -3 . 0) PKD(3 , 5,3,0.10%, 15100 .0,1.
37:00 37il2 37:24 37J36 37
,15, -3.0) PKD(3,5,3,0.10%,28992.0,1.
1— i — i — i— i — i — i — i — | i i i i i | i i i i i | • i i i r-
37:00 37:12 37:24 37:36 37
,15, -3.0) PKD(3,3,3,100.00%,2176.0,1
37:31
37:06 / \ I 37
36A59AA 37:18 A/ V h
wvWWV^A^^ W~YJ\^v
'37! do' 37! 12 37:24 37! 36 37
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
5:51 17 .-24 37^:37
'37! do' ' '37! 12 37:24 37: 36 37
37
/
:48
00%
37
/
1 <
:48
00%
37:
/
/
148
00%
37:
Its
F,F)
:52
\
38
,F,F)
:52
\
V,
38
,F,F)
51
\
V
38
,F,F)
51
\
V
38
_3
-1
0
:00 38:12 38:24 38:36 38.;48 39 00
__3
Ll
0
:00 38:12 38:24 38!36 38:48 39 00
2
Li
:o
:00 38:12 3s!24 3s!36 38148 39!oO
5
.2
0
.-00 38. -12 381-24 38:36 SS.U's 39 00
.3E7
.7E7
.OEO
Time
.3E7
.6E7
.OEO
Time
.7E7
.3E7
.OEO
Time
.9E7
.9E7
.OEO
Time
.00%,F,F)
:48
L
v\
V*
148
!48
AA
/ V7V~
38
38
38:34
J 38:49
38:12 1 A38-54
AA A A 1 1 A A A/I A A /\_ y
•^Jv LJ^-vwvvwAA/ Wv \_>v/v\yvvv-'
1
_7
0
!do 38!l2 38!24 38:36 38:48 39 00
38 :39 1
_7.
0.
!do 38:12 38:24 38:36 3s!48 39! 00
. 5E4
.4E3
OEO
Time
4E8
1E7
OEO
Time
-------
File
Samp
441.
1003
50_
o-
443.
iooa
50:
o:
469.
100%
o:
471.
100%
50:
o"
513.
100%
50:
o:
454.
100%
50:
o:
:A28SEP98A *l-276 Acq:
le#15 Text:BE CS3
7427 S:15 F:5 BSUB(128
39!i2 39124 39I36
7398 S:15 F:5 BSUB(128
39!l2 39124 39136
7780 S:15 F:5 BSUB(128
39:12 39:24 39:36
7750 S:15 F:5 BSUB(128
39:12 39:24 39:36
6775 S:15 F:5 BSUB(128
.39:11 39:29
^/i A'S A S\ ^A A A /\
39ll2r 39124 39136
9728 S:15 F:5 SMO{1,3)
39:21 39:32
39ll2 39124 39136
28-SEP-1998 23:13:23 GC E1+ Voltage Sift Autospec-UltimaE ~ '
Exp.-EXP M23 DBS OVATION
,15, -3.0) PKD(3,5,3,0.10%,1308.0,1.00%,F,F)
40:31
39:48 40
,15, -3.0)
39 148 40
,15, -3,0)
39:48 40
,15, -3.0)
39:48 40
,15, -3.0)
39:46
39148 40
PKD{3,3,3
39:51
39I48 40
1 i i i i i 1
•00 40:
PKD{3,5,
!6d ' 40:
PKD (3,5,
I i i i i i I
100 40l
PKD(3,5,
•j-T'i-r-T T-J
:00 40:
PKD (3,3,
40:06
A f
: 00 40 :
,100.00%
!6d ' 46!
/V
12 40:24 40:36 40:48 41
3, 0.10%, 3256. 0,1. 00%, F,F)
40,31
A
12 40:24 40:36 40:48 41
3, 0.10%, 1760. 0,1. 00%, F,F)
40:21
12 40:24 40:36 40:48 41
3, 0.10%, 2392. 0,1. 00%, F,F)
40:21
/v...
12 40:24 40:36 40:48 41
3, 100. 00%, 192. 0,1. 00%, F,F)
40:21
A
, J V_JVWV40A46/VA°A
12 40:24 40:36 40:48 41
, 0.0,1. 00%, F,F)
40:32 40:44
12 46!24 46!36 46!48 41
:00 41:'12 41:24 41:36 41:48 42loO 42:1
:00 41:12 41:24 41:36 41:48 42:00 42 1 1
1"'T 1 T 1 1 T' I 1 f I 1 T"T 1 T1 1 I T-T"T 1— I— T T~ TT'I 1 1 1 1 1 1 1 1 1 1
:00 41:12 41:24 4ll36 41:48 42loO 42?1
•j—r-T T— ri -pr T i— r T T-T't i—r-r i i i" t i i i i i r i i i i i i i i i i
:00 41:12 41:24 41:36 41:48 42:00 42:1
41:56
5% ^^£& ^ /v^A46r A AA 42A10
2.4E7
_1.2E7
O.OEO
2 Time
2 . 6E7
_1.3E7
O.OEO
2 Time
4.4E7
_2.2E7
•O.OEO
2 Time
4.8E7
:2.4E7
O.OEO
2 Time
1.6E4
_8.2E3
O.OEO
!6o 41:12 41-124 41:36 41:48 42:00 42ll2 Time
41:11 41:27 41:4241:51 42:0fi
•00 41:12 41:24 41:36 41:48 42:6d 42:i:
1.5E8
^7.7E7
•O.OEO
2 Time
00
CO
-------
OPUSquan 30-SEP-1998
Page 1
Page 1 of 2
Run »6 Filename a29sep98n
Run: a07£eb98f Analyte:
Sample text: CS3
S: 1 I: 1 Acquired: 29-SEP-98 17:07:50 Processed: 30-SEP-98 08:24:51
Cal: 07feb-m23» Results: Quan : V3.5 17-APR-1997 11:14:34
Comments: OPUS : V3.5X 17-APR-1997 11:31:23
Typ
On)c
ES/RT
Total
DPE
LMC
Name
2,3,7,8-TCDF
13C-2,3,7,8-TCDF
Tetra Furans
HxCDPE
QC CHK ION (Tetra)
Resp
1.4e+07
2.9e+08
1.5e+07
RA
0.78 y
0.79 y
0.74 y
RT
27:53
27:51
24:13
NotFnd
NotFnd
Cone
5.26
70.6
5.39
Dev'n
5.2
5.2
Mod?
n
n
n
n
n
-------
File:A29SEP9Btf
fl-2677 Acq:
29-SEP-1998 17:07:
Samplefll Text:CS3
303.9016 SMO(1,
1001
50.:
o
u ' i i 1 i i i
16:00
305.8987 SMO(1,
100S
50:
0
" ' 1 1 1 II 1
16:00
315.9419 SMOd,
100%
50:
o:
' 16:00 '
317.9389 SMO(1,
100%
50:
o •
"-1 — i — i — i — i — i — r
16:00
375.8364 SMOd,
100il5:07
j 17:
—ti ii ij i y
"-J — i — l — l — i — i — r-
16:00
316.9824 SMOd,
100%
50:
0:
16:29
~V 16 1 ob
3) BSUB(128,
i i i i i i i
18:00
3) BSUB(128,
i i i i i i i
18:00
3) BSUB(128,
' IB lob '
3) BSUB(128,
-i — i — | — i — i — i — r-
18:00
3) BSUB(128,
04 \l\\°M 19
I'dlSfiUkri
' 18 I 00 '
3) PKD(3,3,3
17:43 18:57
' 18 1 00 '
15, -3.0)
ii i i i
20:00
15, -3.0)
-r— j— r-r-i
20:00
15, -3.0)
-i — | — i — i — r
20:00
15, -3.0)
20:00
15, -3.0)
19:59
iiiui
W/Jw
-l 1 . 1 r
20:00
,100.00%
50 GC EI + Voltage SIR Autospec-UltimaE
Exp:M23 DB225
PKD (3,3,3
22:00
PKD (3,3,3
i i I i i
22:00
PKD (3,3,3
' 22 I 00
PKD(3,3,3
' 22 I 00
PKD(3,3,3
55, 22:3f
UfeL:39 |jl j
wjrWW
1 1 1 1 r—
22:00
,0.0,1.00%
20:45 22:15
-T 1 1 1 r
20:00
22 1 00
, 0.10%, 2560. 0,1.00%,F,F)
27
f
\ 33:41
_6.8E5
L3.4E5
O.OEO
' 24 1 00 26 I 00 28 loo 30 I 00 32: 00 34:00 36! 00 Time
, 0.10%, 5916. 0,1. 00%, F,F)
27
^i
n53
1 33:40
_8.9E5
L4.4E5
i- n ni?n
0 . OEO
'' 24 loo 26 1 00 28 lob 30 I 00 32:00 34 ! 00 36! 00 Time
, 0.10%, 5200. 0,1. 00%, F,F)
27
j
/
i51
\
1.4E7
L6.9E6
• O.OEO
24 lob 26 I 00 28 lob 30 I 00 32! 00 34! 00 36:00 Time
, 0.10%, 6480. 0,1. 00%, F,F)
27
1
:50
\
1.8E7
L8.8E6
O.OEO
' 24 I 00 26 I 00 28 lob 30 I 00 32! 00 34! 00 36:00 Time
,100. 00%, 4264. 0,1. 00%, F,F)
27
2 3. \ 3 0 L j „ ft-i* -*-p o ^ j b of lijjj t
WrWWW
:51 29.18 30:44 _ 34:09 r^ —
^5«59d 2fr:¥» u J3U18,> lJ^i,oBlllM:f3 L6 2E3
^ i iiJidMili i ?fei JdUiM iIPP UraMLjykiiiLi
Yf |T ™ IT V "* ™ " "^f ryT'p'ir (| ' iippr'"^ TTi " * ^o OEO
' 24 lob ' ' 26 1 00 28 lob 3o!oO 32! 00 34! 00 36:00 Time
,F,F)
23:25 24:32 25:36 26:56
J8LdJ_J9i37_3£:J42^1il3_ill59__3^^
D . «C. /
.3.2E7
O.OEO
24 1 00 26 1 00 28 1 00 30loO 32:00 34:00 36:00 Time
00
in
-------
OPUSquan 30-SEP-1998
Page 1
Page 2 of 3
Run *7 Filename a29sep98n
Run: a07feb98f Analyte:
Sample text: CS3
S: 15 I: 1 Acquired: 30-SEP-98 03:08:06 Processed: 30-SEP-98 08:25:30
Cal: 07feb-m23» Results: Quan ; V3.5 17-APR-1997 11:14:34
Comments: OPUS : V3.5X 17-APR-1997 11:31:23
TyP
Unk
ES/RT
Total
DPE
IMC
Name
2,3,7,8-TCDF
13C-2.3,7,8-TCDF
Tetra Furans
HxCDPE
QC CHK ION (Tetra)
Resp
9.7e+06
2.0e+08
l.Oe+07
RA
RT
0.78 y 27:51
0.79 y 27:48
2.07 n 19:46
NotFnd
NotFnd
Cone
5.15
48.8
5.51
Dev'
2.9
2.9
Mod?
y
n
y
n
n
7)
-------
OPUSguan 30-SEP-1998
Page 1
Page 2 of 2
Run #7 Filename a29sep98n
Run: a07feb98f Analyte:
Sample text: CS3
S: 15 I: 1 Acquired: 30-SEP-98 03:08:06 Processed: 30-SEP-98 08:25:30
Cal: 07feb-m23» Results: Quan : V3.5 17-APR-1997 11:14:34
Comments: OPUS : V3.5X 17-APR-1997 11:31:23
Typ
Unk
ES/RT
Total
DPE
LMC
Name
2,3,7,8-TCDF
13C-2,3,7,8-TCDF
Tetra Furans
HxCDPE
QC CHK ION (Tetra)
Resp
7.8e+06
2.0e+08
1.6e+07
RA
0.43
0.79
2.07
RT
27:51
27:48
19:46
NotFnd
NotFnd
Cone
4.14
48.8
8.41
Dev'n
Mod?
-17.2
n
n
n
n
n
-------
File:A29SEP99N #1-2677
Acq:30-SEP-1998 03:08:06 GC El + Voltage SIR Autospec-ultimaE " ' "
Sample#15 Text:CS3
303.9016 S:15
100S
50_
0
ielob
305.8987 S:15
100S
50 1
o"
ielob
315.9419 S:15
iooa
sol
ol
ie-ob
317.9389 S:15
1008
50:
OJ
16:00
375.8364 S:15
100*
50:
o-
15:57 i
i 46!1'
WJU^*W^
16iOO
316.9824 S:15
100ft 16:06
50:
0:
16:00
SMO (1,3)
islob
SMO (1,3)
islob
SMO (1,3)
ielob
SMO (1,3)
18:00
SMO (1,3)
7:07 ,
i ti. ba L|,ift
MMJllUmw
1 1 1 1 1
18:00
SMO (1,3)
BSUB(128,15,-3
20 I 00
BSUB(128,15,-3
20:00
BSUB(128,15,-3
i i — i — i — |— i — i — i— r
20:00
BSUB(128,15,-3
20:00
BSUB(128,15,-3
21.-.1
19,:12 22l1:j|
dJff^Pp^l
1 IT r ~t T r I
20:00
Exp:M23 DB225
.0) PKD(3,3,3,0.10%,1196.0,1.00%,F,F)
27i
J
4
22 lob 24 lob 26 lob / 28
.0) PKD(3,3,3,0.10%,2016.0,1.0«%rE
"ft
|
22:00 24:00 26:00 28
51 / /.> / / r4'6E5
v-^l/fth (tfalMw fytj'^*'
[22 33:34
.2.3E5
n np.n
f V l ' i — f~~i — | — r i1 i i — i — | — i t i — 1^1*1 i — i i i i — | — ••"-•*
yQQ 30:00 32:00 34:00 36:00 Time
\F)
50
, 3;li38
6.2E5
L3.1E5
n np.n
lob 30 loo ' 32 lob ' ' 34 1 00 ' '36:00 Time
.0) PKD(3,3,3,0.10%,1924.0,1.00%,F,F)
27-48
A
1
22 lob ' 24 lob ' 26 lob ' 28
9.7E6
L4.8E6
O.OEO
f i T" i r— i | r T i • "i—" r— i 1 ""i r i "i i-1 i" ' i ' *T T ' r " f •
:00 30:00 32:00 34:00 36:00 Time
.0) PKD(3,3,3,0.10%,1540.0,1.00%,F,F)
27-48
A
|
— i i i i i i i | i i i i i | i i i i S
22:00 24:00 26:00 28
.0) PKD(3, 3, 3, 100. 00%, 1400. 0,1. 00%
3
9
te^LlTfcJi-iS1 L S$l26tf6lUi
VWMMJMiw^^
i 1 l i . r i i i r i r i i i i i i i
22:00 24:00 26:00 28
1.2E7
.6.1E6
O.OEO
00 30:00 32:00 34:00 36 00 Time
,F,F)
1.3E4
7Q.7n 32:44 „,. n\
3:12 3d [97 30-31 32:09 33:.49 35:|d
,1*. Aifili iLftia - ,31|:jn id*!** , jltui.pr&iillflMl
1 t — i i — i i — i T i ? — i — ? — T — i — r — i — i — i — 1 — i — i — * f ' ™f ™ ~r^
_6.6E3
O.OEO
00 30:00 32:00 34:00 36-00 Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
17:47 19:02 20:29 21
18:00
^' |- ' P |i '— . — f | T r
20:00
.l!l^.^-2,3J?lJ-^.5fJ^.L.-.-.-.-.-.--?J^9. . . . .29^37 . 3Q1.57 __^^IO_J^LLia^5j^U 9 . 7E6
i | r T i — i — i — i — i — r — i — i 1 — | — i 1 1 1 — r~
22:00 24:00 26:00 28
— i — i — i r—t — i 1 — i 1 — i 1 1 r~~T — i — i r |' i 1 1 — ~i — i —
_4.9E6
O.OEO
00 30:00 32:00 34:00 36-00 Time
on
-------
Fiie:A29SEP98t4 #1-2677 Acy-
/ ll^
33:34
.„ . A
16:00 18 lob 20:00 22:00 24! 00 26Sob 28-00 3o!ob 32^00 34lob 36
8987 S:15 SMO(1,3) BSUB(128, 15, -3 . 0) PKD{3, 3, 3 , 0 . 10%, 2016 .0, 1 .00%, F,F)
27:50
1
33:38
.„ 16:00 18:00 20:00 22:00 24:00 26:00 28 00 30:00 32:00 34:00 36:
4.6E5
L4.1E5
L3.7E5
i.3.2E5
L2.7E5
L2.3E5
L1.8E5
L.1.4E5
_9.1E4
_4.6E4
O.OEO
00 Time
6.2E5
L5.6E5
i.5. OE5
L4.4E5
L3.7E5
L3.1E5
L2.5E5
:.1.9E5
i.l.2E5
:6.2E4
"O.OEO
00 Time
00
-------
Reagent blank sample M23-RB analytical results are
taken from PAL Project No. L-l 113 (PAL pages 190-210).
This project report details analytical results from another kiln
tested during the same mobilization. One reagent blank sample
was collected for all the facilities tested during the single mobilization.
-------
Paradigm Analytical Labs
Method 23
M23-RB
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
lng>
ND
ND
ND
ND
0.0012
0.0027
ND
ND
ND
ND
ND
ND
ND
ND
0.0038
ND
ND
ND
ND
0.0012
0.0028
0.0016
ND
ND
0.0036
0.0002
0.0013
DL
(ng>
0.0010
0.0005
0.0008
0.0007
0.0007
0.0008
0.0055
0.0015
0.0005
0.0005
0.0010
0.0008
0.0009
0.0011
0.0009
0.0011
0.0031
0.0010
0.0005
0.0007
0.0008
0.0015
0.0005
0.0008
0.0009
EMPC
-------
Paradigm Analytical Labs
Method 23
M23-RB
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
"Cu-l^SJ.S-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13Cirl,2,3,4,6,7,8-HpCDD
13C12-OCDD
l3C,r2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13Cirl,2,3,6,7)8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
Samnlinp Standards
37Cl4-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
13C12-l,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13Cu-U,3,4,7,8,9-HpCDF
Injection Standards
13C12-1,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
to)
4
4
4
4
8
4
4
4
4
Measured
Amount
(HZ)
3.39
4.00
3.38
3.13
4.19
3.12
3.13
2.46
2.23
Percent
Recovery
(%)
84.7
100.1
84.5
78.4
52.4
77.9
78.1
61.6
55.9
RT
(mln.)
28:56
33:02
35:09
37:31
40:22
27:54
32:22
34:37
36:43
28:40
35:21
Ratio
0.77
1.57
1.25
1.06
0.89
0.79
1.56
0.53
0.44
0.79
1.26
QualiGer
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-RB
L1113
1113-7
02-Sep-98
08-Sep-98
15-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
EndConCal:
Initial Cal:
Air
1
0.0
a27sep98m-ll
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
Reviewed by:
Date Reviewed:
19
2/2
-------
OPUSquan 28-SEP-1998
Filename a27sep98m
Sample 11
Acquired 28-SEP-98
Processed 28-SEP-98
Sample ID 1113-7 xl/2
Page 1
02:59:53
09:40:52
Cal Table m8290-091498
Results Table M8290-092798M
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
Name;
2,3,7,8-TCDD;
1, 2,3,7, 8-PeCDD;
1,2,3,4,7, 8-HxCDD;
1,2,3,6,7,8-HxCDD;
1,2,3,7,8,9-HxCDD;
1,2,3,4,6,7,8-HpCDD;
OCDD;
2,3,7,8-TCDF;
1, 2,3,7, 8-PeCDF;
2,3,4,7,8-PeCDF;
1,2,3,4,7, 8-HxCDF;
1,2,3,6,7,8-HxCDF;
2,3,4,6,7,8-HxCDF;
1,2,3,7,8,9-HxCDF;
1,2,3,4,6,7,8-HpCDF;
1,2,3,4,7,8,9-HpCDF;
OCDF;
13C-2,3,7,8-TCDD;
13C-1, 2,3,7, 8-PeCDD;
13C-l,2,3,6,7,8-HxCDD;
13C-l,2,3,4,6,7,8-HpCDD;
13C-OCDD;
13C-2,3,7,8-TCDF;
13C-1. 2,3,7, 8-PeCDF;
1 3C- 1,2, 3,6,7, 8-HxCDF;
13C-l,2,3,4,6,7,8-HpCDF;
13C-1,2,3,4-TCDD;
13C-l,2,3,7,8,9-HxCDD;
37Cl-2,3.7,8-TCDD;
13C-2, 3,4,7, 8-PeCDF;
13C-1 , 2 , 3 , 4 , 7 , 8-HxCDD;
13C-l,2,3,4,7,8-HxCDF;
13C-l,2,3,4,7,8,9-HpCDF;
37Cl-2,3,7,8-TCDD;
13C-2,3,4,7,8-PeCDF;
13C-l,2,3,4,7,8-HxCDD;
13C-1,2,3,4,7,8-HXCDF;
SS ;13C-l,2,3,4,7,8,9-HpCDF;
Resp;
6.816+04;
1.806+04;
2.72e+04;
2.726+04;
6.016+04;
1.07e+05;
l.Sle+05;
7.786+04;
* .
* .
4.15e+04;
3.07e+04;
* .
2.736+04;
1.45e+05;
2.256+04;
3.06e+04;
2.756+08;
2.166+08;
2.256+08;
1.76e+08;
2.06e+08;
3.146+08;
2.62e+08;
1.886+08;
1.126+08;
3.07e+08;
2.536+08;
2.556+05;
3.476+06;
2.256+08;
1.256+06;
* .
2.55e+05;
3.47e+06;
2.25e+08;
1.25e+06;
* .
Ion 1;
2.896+04;
1.246+04;
1.32e+04;
1.32e+04;
3.20e+04;
5.16e+04;
5.436+04;
6.84e+04;
1r .
* .
2.48e+04;
1.74e+04;
* .
2.00e+04;
7.44e+04;
1.04e+04;
2.13e+04;
1.206+08;
1.32e+08;
1.25e+08;
9.046+07;
9.736+07;
1.39e+08;
1.60e+08;
6.48e+07;
3.456+07;
1.35e+08;
1.41e+08;
2.556+05;
2.16e+06;
1.256+08;
4.40e+05;
* .
2.55e+05;
2.16e+06j
1.25e+08;
4.406+05;
*;
3
5
1
1
2
5
9
9
1
1
7
7
1
9
1
8
9
8
1
1
1
1
7
1
1
1
9
8
1
Ion 2;
.91e+04;
.56e+03;
.39e+04;
.39e+04;
.81e+04;
.566+04;
.706+04;
.41e+03;
* .
* .
. 66e+04;
.32e+04;
* .
.33e+03;
.02e+04;
.22e+04;
.25e+03;
.55e+08;
.44e+07;
.99e+07;
. 52e+07;
.096+08;
.766+08;
. 02e+08;
.23e+08;
.806+07;
.71e+08;
.12e+08;
.31e+06;
99e+07;
08e+05;
* *
31e+06;
9.99e+07;
8.08e+05;
* t
RA;?; RT;
0.74;y; 28:57;
2.23;n; 33:02;
0.95;n; 35:09;
0.95;n; 35:09;
1.14;y; 35:21;
0.93;y; 37:32;
0.56;n; 40:22;
7.27;n; 27:57;
*;n;NotFnd;
*;n;NotFnd;
1.49;n; 34:33;
1.32;y; 34:38;
*;n;NotFnd;
2.73;n; 35:33;
1.06;y; 36:43;
0.85;n; 37:53;
2.30;n; 40:31;
0.77;y; 28:56;
1.57;y; 33:02;
1.25;y; 35:09;
1.06;y; 37:31;
0.89;y; 40:22;
0.79;y; 27:54;
1.56;y; 32:22;
0.53;y; 34:37;
0.44;y; 36:43;
0.79;y; 28:40;
1.26;y; 35:21;
-;-; 28:57;
1.65;y; 32:49;
1.25;y; 35:09;
0.54;y; 34:33;
*;n;NotFnd;
-;-; 28:57;
1.65;y; 32:49;
1.25;y; 35:09;
0.54,-y; 34:33;
*;n;NotFnd;
Cone ;
0.024;
0.007;
0.015;
0.013;
0.030;
0.067;
0.146;
0.025;
* .
* .
0.023;
0.015;
* .
0.017;
0.094;
0.017;
0.027;
84.666;
100.074;
84.488;
78.354;
104.788;
77.927;
78.125;
61.555;
55.857;
68.205;
70.996;
0.080;
1.053;
112.010;
0.494;
* .
0.095;
1.348;
132.415;
0.801;
* .
DL;
0.0251;
0.0131;
0. 0190;
0.0171;
0.0176;
0.0207;
0.1379;
0.0369;
0.0132;
0.0129;
0.0242;
0.0210;
0.0232;
0.0264;
0.0233;
0.0270;
0.0764;
0.1238;
0.0757;
0.0219;
0.7446;
0.0088;
0.0539;
0.0146;
0.1042;
0.0421;
--'
0.0567;
0.0149;
0.0291;
0.1259;
0.0481;
0.0671;
0.0083;
0.0329;
0.1990;
0.0937;
S/N1;?;
2;n;
2;n;
2 ; n ;
2;n;
5;y;
9;y;
2;n;
5;y;
*;n;
*;n;
2 ; n ;
2;n;
*;n;
2;n;
10 ;y;
•*• v • J I
2;n;
3;n;
1343;y;
6410,-y;
13908 ;y;
242;y;
12834 ;y;
3647;y;
629056;y;
1477 ;y;
2134;y;
1518,-y;
14769;y;
4;y;
10042;y;
13908;y;
10;y;
*;n;
4;y;
10042 ;y;
13908;y;
10;y;
*;n(
S/N2;? mod?
7;y
6;y
1 • n
M t 11
l;n
4;y
9;y
14;y
l;n
*;n
*,-n
3;n
3;n
*;n
2;n
16 ;y
3;n
l;n
3443;y
18004 ;y
10363;y
292;y
76011;y
5326;y
14713 ;y
2082 ;y
5347;y
3813;y
11331;y
_ . -
232 ;y
10363;y
13 ;y
*;n
~ ? ""
232;y
10363;y
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
13, -y ; no
*;n » no
Page
-------
OPUSquan 28-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:5
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.09
Cone: 0.09
Tox #1: -
Name
of which 0.02
of which 0.02
Tox #2: -
# RT Respnse
named and 0.06
named and 0.06
Tox #3: -
RA
2,3,7,8-TCDF
1 23:34 2.9e+04 0.89 y
2.9e+04
2 27:21 l.le+05 0.81 y
l.le+05
3 27:57 7.8e+04 7.27 n
7.86+04
4 30:20 4.7e+04 0.53 n
4.7e+04
5 30:27 l.le+04 0.61 n
l.le+04
Cone
0.01
:
3
0.04
e
«
0.02
t
c
0.02
3
0.00
unnamed
unnamed
Area Height
S/N Mod?
1.3e+04 3.2e+03 l.le+00 n n
1.5e+04 9.1e+03 1.5e+00 n n
1
5.1e+04 1.4e+04 4.6e+00 y n
.3e+04 1.9e+04 3.2e+00 y n
6.8e+04 1.3e+04 4.5e+00 y n
9.4e+03 4.5e+03 7.6e-01 n n
2
1.6e+04 4.4e+03 1.5e+00 n n
3.1e+04 8.36+03 1.4e+00 n n
3
4.2e+03 1.5e+03 5.0e-01 n n
6.8e+03 3.7e+03 6.2e-01 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:5
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09*
Version: V3 .5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.06
Cone: 0.06
Tox #1: -
of which 0.02
of which 0 . 02
Tox #2: -
named and 0.03
named and 0.03
Tox #3: -
Name
RT Respnse RA
3.62 n
1 24:29 1.26+04
1.2e+04
2 24:30 l.Oe+04
l.Oe+04
2.76 n
2,3,7,8-TCDD
3 25:45 1.2e+04 1.52 n
1.2e+04
4 27:54 6.1e+04 14.lOn
6.1e+04
5 28:57 6.8e+04 0.74 y
6.8e+04
Cone
0.00
S
0.00
1
1
0.00
4
0.02
G
4
0.02
unnamed
unnamed
Area Height
S/N Mod?
9.8e+03 4.2e+03 l.le+00 n n
2.7e+03 l.le+03 8.1e-01 n n
D
7.4e+03 4.0e+03 l.Oe+00 n n
2.7e+03 l.le+03 8.1e-01 n n
D
7.0e+03 4.2e+03 l.le+00 n n
4.66+03 2.26+03 1.5e+00 n n
5.7e+04 1.2e+04 3.1e+00 y n
4.0e+03 2.7e+03 1.9e+00 n n
2.9e+04 8.2e+03 2.le+00 n n
3.9e+04 9.4e+03 6.7e+00 y n
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:6
Run: 17 File: a27sep98m £;11 Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.03
of which *
named and 0.03
unnamed
193
-------
OPUSquan 28-SEP-1998 Page 2
Cone: 0.03 of which * named and 0.03 unnamed
Tox tl: - TOX #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1 32:54 1.4e+04 1.13 n 0.01
1.4e+04 /.6e+03 3.6e+03 2.7e+00 n n
6.7e+03 S.Oe+03 1.2e+00 n n
2 33:02 1.4e+04 0.58 n 0.01
1.4e+04 5.1e+03 2.0e+03 1.5e+00 n n
8.8e+03 2.4e+03 6.1e-01 n n
3 33:22 1.le+04 0.99 n 0.00
l.le+04 5.6e+03 2.9e+03 2.2e+00 n n
5.6e+03 3.0e+03 7.5e-01 n n
4 33:24 5.5e+03 0.23 n 0.00
5.5e+03 l.Oe+03 4.8e+02 3.6e-01 n n
4.5e+03 2.1e+03 5.2e-01 n n
5 33:29 6.8e+03 0.22 n 0.00
6.8e+03 1.2e+03 6.96+02 5.2e-01 n n
5.6e+03 3.3e+03 8.2e-01 n n
6 33:35 l.le+04 0.12 n 0.00
l.le+04 l.le+03 8.5e+02 6.4e-01 n n
9.56+03 2.56+03 6.2e-01 n n
194
-------
OPUSquan 28-SEP-1998
Page 3
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no *Hom:11
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.06
Cone: 0.06
Tox #1: -
Name
1,2,3,7,8-PeCDD
of which 0.01
of which 0.01
Tox #2: -
named and 0.05
named and 0.05
Tox #3: -
RT Respnse
RA
32:22 2.8e+04 2.67 n
2.8e+04
32:35 l.le+04 2.73 n
l.le+04
32:37 5.6e+03
5.6e+03
32:45 1.96+04
1.96+04
0.98 n
3.49 n
5 32:48 9.7e+03 1.38 y
9.7e+03
6 32:51 l.Oe+04 1.51 y
l.Oe+04
7 33:02 l.Se+04 2.23 n
1.8e+04
8 33:10 9.6e+03 5.29 n
9.6e+03
9 33:14 6.36+03 3.13 n
6.3e+03
10 33:18 1.7e+04 2.67 n
1.7e+04
11 33:26 l.le+04
l.le+04
1.21 n
Cone
0.01
0.00
1
1
0.00
0.01
]
4
0.00
c
<
0.00
e
4
0.01
3
C
0.00
8
1
0.00
4
1
0.01
]
<
0.00
unnamed
unnamed
Area Height
S/N Mod?
2.1e+04 1.2e+04 2.6e+00 n n
7.7e+03 3.9e+03 6.1e+00 y n
D
7.8e+03 3.3e+03 7.3e-01 n n
2.8e+03 l.le+03 1.8e+00 n n
D
2.8e+03 2.16+03 4.7e-01 n n
2.8e+03 l.le+03 1.8e+00 n n
L.4e+04 7.26+03 1.6e+00 n n
l.2e+03 1.36+03 2.1e+00 n n
5.66+03 3.1e+03 6.86-01 n n
4.1e+03 1.7e+03 2.7e+00 n n
6.1e+03 4.1e+03 8.96-01 n n
4.16+03 1.7e+03 2.7e+00 n n
1.2e+04 7.2e+03 1.6e+00 n n
5.6e+03 3.6e+03 5.7e+00 y n
3
8.1e+03 2.56+03 5.4e-01 n n
1.5e+03 9.6e+02 l.Se+00 n n
4.8e+03 2.2e+03 4.8e-01 n n
1.5e+03 9.66+02 1.5e+00 n n
L.3e+04 4.56+03 9.86-01 n n
l.7e+03 2.8e+03 4.5e+00 y n
5.86+03 3.46+03 7.4e-01 n n
4.86+03 2.56+03 4.0e+00 y n
195
-------
OPUSquan 28-SEP-1998
Page 4
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:21
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.21 of which 0.05 named and
Cone: 0.21 of which 0.05 named and
Tox #1: - Tox #2: - Tox
Name # RT Respnse RA
1 34:00 5
5
2 34:08 1
1
3 34:13 6
6
4 34:16 1
1
5 34:20 1
1
6 34:22 1
1
7 34:27 1
1
1,2,3,4,7,8-HxCDF 8 34:33 4
4
1,2,3, 6,7, 8-HxCDF 9 34:38 3
3
10 35:09 1
_1
11 35:19 1
1
12 35:21 3
3
13 35:27 7
7
. le+04 1.51 n
.le+04
.4e+04 1.36 y
.4e+04
.le+03 3.58 n
.le+03
.le+04 3.90 n
.le+04
.3e+04 0.64 n
. 3e+04
. 2e+04 0.54 n
.2e+04
. 2e+04 3.63 n
.2e+04
.le+04 1.49 n
.le+04
.le+04 1.32 y
.le+04
.5e+04 1.08 y
.5e+04
.6e+04 1.09 y
.6e+04
.le+04 3.09 n
.le+04
.5e+03 2.09 n
.5e+03
0.15
0.15
#3: -
Cone
0.03
3
2
0.01
7
5
0.00
4
1
0.01
8
2
0.01
4
7
0.01
4
7
0.01
9
2
0.02
2
1
0.01
1
1
0.01
7
7
0.01
8
7
0.02
2
7
0.00
5
2
unnamed
unnamed
Area Height
.le+04
. Oe+04
. 8e+03
.8e+03
. 7e+03
. 3e+03
.5e+03
.2e+03
. 9e+03
. 7e+03
.2e+03
.7e+03
.3e+03
.6e+03
.5e+04
.7e+04
.7e+04
.3e+04
.8e+03
.2e+03
.2e+03
.5e+03
.3e+04
.5e+03
.le+03
.4e+03
1
9
2
2
2
9
3
1
2
1
2
1
4
1
8
5
9
5
3
2
3
2
6
2
2
1
.3e+04
.2e+03
. 8e+03
. Oe+03
.4e+03
. 5e+02
. 5e+03
.3e+03
.7e+03
.9e+03
.le+03
. 9e+03
.Oe+03
. 5e+03
.le+03
. 6e+03
.2e+03
.6e+03
.8e+03
.3e+03
.2e+03
.5e+03
.3e+03
.5e+03
.9e+03
.7e+03
3
4
6
9
5
4
8
5
6
8
5
8
9
6
1
2
2
2
9
1
7
1
1
1
6
7
S/N
. Oe+00
.2e+00
. 6e-01
.3e-01
. 6e-01
.3e-01
.3e-01
.9e-01
.3e-01
.8e-01
.Oe-01
.8e-01
.3e-01
.9e-01
.9e+00
.6e+00
.2e+00
.6e+00
.Oe-01
.le+00
.4e-01
.le+00
.5e+00
.le+00
.7e-01
.7e-01
Mod?
n
y
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
-n
n
n
n
n
n
n
n
n
n
n
1,2,3,7,8,9-HxCDF 14 35:33 2.7e+04 2.73 n 0.02
2.7e+04
15 35:41 2.2e+04 5.48 n 0.01
2.2e+04
16 35:48 9.3e+03 1.48 n 0.01
9.3e+03
17 35:53 1.4e+04 2.54 n 0.01
1.4e+04
18 35:58 8.le+03 1.47 n 0.00
8.le+03
19 36:01 1.4e+04 2.25 n 0.01
1.4e+04
2.Oe+04 8.8e+03 2.le+00 n n
7.3e+03 4.8e+03 2.2e+00 n n
L
1.9e+04 3.9e+03 9.Oe-01 n n
3.4e+03 2.2e+03 1.Oe+00 n n
L
5.56+03 3.5e+03 8.3e-01 n n
3.7e+03 2.26+03 9.96-01 n n
L
1.Oe+04 2.3e+03 5.4e-01 n n
4.0e+03 2.8e+03 1.3e+00 n n
D
4.8e+03 3.16+03 7.2e-01 n n
3.3e+03 2.0e+03 8.9e-01 n n
I
9.66+03 6.96+03 1.6e+00 n n
4.36+03 2.86+03 1.3e+00 n n
196
-------
OPUSguan 28-SEP-1998 Page 5
20 36:07 2.3e+04 3.42 n 0.01
2.3e+04 1.8e+04 3.4e+03 7.9e-01 n n
5.2e+03 2.3e+03 l.Oe+00 n n
21 36:15 7.1e+03 1.00 n 0.00
7.1e+03 3.6e+03 1.8e+03 4.2e-01 n n
3.6e+03 2.2e+03 l.Oe+00 n n
1
V
-------
OPUSquan 28-SEP-1998
Page 6
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:20
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.17
Cone: 0.17
Tox #1: -
of which 0.04
of which 0.04
Tox #2: -
named and 0.12
named and 0.12
Tox #3: -
Name
RT Respnse RA
2.38 n
1 34:38 5.7e+04
5.7e+04
2 34:44 3.Oe+04
3.Oe+04
0.71 n
3 34:51 8.5e+03 0.57 n
8.5e+03
4 34:57 l.le+04 0.40 n
l.le+04
35:01 1.5e+04
1.5e+04
0.86 n
1,2,3,6,7,8-HxCDD 7
35:05 1.46+04 0.97 n
1.46+04
35:09 2.7e+04 0.95 n
2.7e+04
35:15 6.3e+03 2.05 n
6.3e+03
1,2,3,7,8,9-HxCDD 9 35:21 6.0e+04 1,14 y
6.Oe+04
10 35:29 1.3e+04 0.68 n
1.3e+04
11 35:33 5.5e+03 0.43 n
5.5e+03
12 35:39 7.3e+03 0.41 n
7.3e+03
13 35:41 8.7e+03 0.34 n
8.7e+03
14 35:46 8.26+03 1.12 y
8.2e+03
15 35:50 1.Oe+04 0.99 n
1.Oe+04
16 35:52 9.4e+03 0.82 n
9.46+03
17 35:56 5.9e+03 1.02 n
5.9e+03
18 36:02 9.5e+03 1.42 y
9.5e+03
19 36:07 1.4e+04 1.54 n
1.4e+04
Cone
0.03
<
]
0.02
]
]
0.00
c
0.01
2
E
o.oi
6
8
0.01
t
0.01
3
3
0.00
<
0.03
0.01
C
7
0.00
unnamed
unnamed
Area Height
S/N Mod?
4.Oe+04 l.Se+04 6.7e+00 y n
.7e+04 5.86+03 2.2e+00 n n
.3e+04 4.96+03 1.8e+00 n n
.8e+04 5.5e+03 2.1e+00 n n
3.1e+03 1.96+03 6.9e-01 n n
5.4e+03 2.1e+03 8.1e-01 n n
3.2e+03 2.26+03 8.0e-01 n n
S.le+03 3.16+03 1.2e+00 n n
6.9e+03 1.86+03 6.5e-01 n n
S.le+03 3.1e+03 1.2e+00 n n
6.8e+03 4.56+03 1.6e+00 n n
7.1e+03 3.6e+03 1.4e+00 n n
1.3e+04 6.3e+03 2.3e+00 n
1.4e+04 3.76+03 1.4e+00 n
4.36+03 2.46+03 8.7e-01 n n
2.1e+03 1.8e+03 6.8e-01 n n
3.26+04 1.3e+04 4.6e+00 y n
2.8e+04 1. Oe+04 4.0e+00 y n
L
5.1e+03 2.4e+03 8.6e-01 n n
7.5e+03 3.3e+03 1.3e+00 n n
0.00
1.66+03 7.6e+02 2.8e-01 n n
3.9e+03 2.0e+03 7.8e-01 n n
0.00
2.1e+03 1.2e+03 4.5e-01 n n
S.le+03 2.6e+03 l.Oe+00 n n
0.00
2.2e+03 l.le+03 3.9e-01 n n
6.5e+03 3.1e+03 1.2e+00 n n
0.01
0.00
0.00
0.00
4.3e+03 1.56+03 5.5e-01 n n
3.9e+03 2.8e+03 l.le+00 n n
L
5.1e+03 3.0e+03 l.le+00 n n
5.2e+03 2.5e+03 9.7e-01 n n
4.2e+03 3.0e+03 l.le+00 n n
5.2e+03 2.5e+03 9.7e-01 n n
D
3.06+03 1.86+03 6.66-01 n n
2.9e+03 1.5e+03 6.0e-01 n n
0.01
5.6e+03 3.3e+03 1.2e+00 n n
3.9e+03 1.6e+03 6.2e-01 n n
8.7e+03 2.5e+03 9.0e-01 n n
5.66+03 2.26+03 8.56-01 n n
198
-------
OPUSguan 28-SEP-1998 Page 7
20 36:17 8.5e+03 0.64 n 0.00
8.5e+03 3.3e+03 2.4e+03 8.7e-01 n n
5.2e+03 2.2e+03 8.6e-01 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:4
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.14 of which 0.11 named and 0.03 unnamed
Cone: 0.14 of which 0.11 named and 0.03 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1,2,3,4,6,7,8-HpCDFl 36:43 1.4e+05 1.06y 0.09
1.4e+05 7.4e+04 3.1e+04 9.6e+00 y n
7.0e+04 2.5e+04 1.6e+01 y n
2 36:55 2.2e+04 0.75 n 0.02
2.2e+04 9.6e+03 4.56+03 1.4e+00 n n
1.3e+04 2.4e+03 1.66+00 n n
3 37:03 1.7e+04 0.59 n 0.01
1.7e+04 6.4e+03 2.4e+03 7.5e-01 n n
l.le+04 4.5e+03 2.9e+00 n n
l,2,3,4,7,8,9-HpCDF4 37:53 2.3e+04 0.85 n 0.02
2.36+04 l.Oe+04 5.2e+03 1.6e+00 n n
1.2e+04 4.3e+03 2.8e+00 n n
199
-------
OPUSquan 28-SEP-1998 Page 8
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:2
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.07 of which 0.07 named and 0.01 unnamed
Cone: 0.07 of which 0.07 named and 0.01 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1,2,3,4,6,7,8-HpCDDl 37:32 l.le+05 0.93y 0.07
l.le+05 5.2e+04 2.1e+04 9.3e+00 y n
5.6e+04 1.6e+04 9.2e+00 y n
2 37:57 l.le+04 0.90 y 0.01
l.le+04 5.3e+03 2.0e+03 8.7e-01 n n
5.9e+03 3.4e+03 1.9e+00 n n
200
-------
File:A275EE>98M
-------
File
Samp
355.
100%
so:
0'
3
357.
1008
so:
n '
3
367.
100S
50.
o
3
369.
100%,
so:
0 '
3
366.
100%
50.
o
:A27SfiP98M Jl-237 Acq:28-SfiP-1998 02:b9:53 GC EI + Voltage SIR Autospec-UltimaE
le#ll Text: 1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
8546 S:ll F:2 BSUB(128, 15, -3 . 0 ) PKD(3 , 3 , 2 , 0 . 10%, 4604 . 0 , 1 . 00%, F, F)
32:22
30:4030:49 31:Q1 31:14 31:30 31.44 'h k i\ All AA/Aj^A^A P\ 33 : 10 ^\'f\^ "^A^A
'i 1 i i i l i 1 l l i l l 1 l l i l l 1 l l i l i 1 i I-T i i | i i i r I | i i i i i | i 1 i
0:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00
8517 S:ll F:2 BSUB(128 , 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 632 . 0,
31:00
i 31 1? 31ii?59
'i i i i i i i i i i i i i i l i i r i i r i i i i l l i i l i l i ' i ' i | | i T i
0:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00
8949 S:ll F:2 BSUB(128 , 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 9952 . 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -f'T T 1 1 1 1 1 1 1 1 1 1 1 ' ' '
0136 30:48 3l!oO 31:12 31:24 31:36 31:48 32:00
8919 S:ll F:2 BSUB(128 , 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 2316 . 0
32li2' 32124 32136' 32148 33 66 33ll2 33124 33136
1.00%,F,F)
32 i2,1 33:02
32112 32124 32136 32148 33:
,1.00%,F,F)
33
32112 32124 32136 32148 33
,1.00%,F,F)
33
J
66 33:12 33:24 33136
^02
00 33:12 33:24 33:36
,01
V
1.8E4
_9.0E3
O.OEO
Time
6.3E3
.3.1E3
0 . OEO
Time
6.4E7
_3.2E7
O.OEO
Time
4.2E7
.2.1E7
O.OEO
bl36" 36I48 "3i!66 ' 3i!l2" 3i!24" 3ll36 3l!48 32loO 32ll2 32124 32136 32U8 33:00 33:12 33:24 33:36 Time
9792 S:ll F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
1 30-4230-52 31:03 31:1631:26 31:45 32:01 3 2_117____12jL3JLJ2M6 21^04 . ill^aJLL^g . 1E7
30:36 ' 30:48 ' 31:00 ' 31:12 ' 3i:24 ' 3i!36 31148 32166
.4.5E7
.O.OEO
32ll2 32l24' 32136 32148 33 66 33112 33124 33136 Time
^3
o
-------
File:A27SfiP98M 11-197 Acq:28-5EP-1998 02:59:51} GC El+ Voltage SIR Autospec-Oltimag
Sample#ll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
389.8156 S:ll F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 2748 . 0, 1 . 00%, F, P)
100S
50.
0
34:38
2.2E4
\ 35:21
/ 1 A
/ \ 35:09 A
34:"° 34A\^^ 34A2^ AJk. \ r\ 34:57 A A /
_> — -~^ — ^J^X^A^-^^~'SV — ^/V, — ^^^^/.A^ jv~^ ww^-vV V^AA/
V 35:37 36:02
\V-^V^^/V^^x/ — vA A^xwwVw^^— ^/-AxW— ^
.1.1E4
n nT?n
• | 1 1 1 1 1 |-t r 1 -T- 1 | 1 1 1 1 1 | 1 -1- f 1 ' 1 7 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 -J 1' 1 1 T-t f 1 1 T T"T | 1 1 1 1 1 | 1 1 1 1 1 1 I | 1 1 | • | | ,!'•"• """
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
391.8127 S:ll F:3 BSUB(128, 15 , -3 . 0) PKD{3 , 5, 2 , 0 . 10%, 2584 . 0 , 1 . 00%, F, F)
100S
-
50J
.
0
35:21
34:16 34:37 34:48 i 1
A f\ i^A i T; • no I
/^/v^Al3^^ V WY^VYI W
•o
UA/vX/^A^^
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
401.8559 S:ll F:3 BSUB(128 , 15, -3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 4128 . 0 , 1 . 00% , F, F)
100%
50.
0
1.1E4
•
L5.6E3
O.OEO
Time
35:09 35:21
/I A
A A
33:48 34:00 34:12 34124 34136 34:48 35:00 35:12 35
403.8*130 S.-11 F:3 HSimnafl.TJ.-I.O) PKD/3. 5. 2. 0.10%. 4344.0. 1.00%. F.F)
1002
so:
o
•
6.1E7
L3.0E7
O.OEO
24 35:36 35:48 36:00 36:12 Time
35:09 35i21
A A
A A
J_LJ>
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35
380.9760 S:ll F:3 SMO ( 1 , 3 ) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 .00%, F, F)
1004 34:01 35^04 35:18
50_
o:
33J:48 34! 00 34! 12 34! 24 34? 36 34:48 35:00 3s!l2 35
_4 . 9E7
L2.5E7
O.OEO
24 35:36 35:48 36:00 36:12 Time
35:35 3_5:58 3 . 2ER
.1.6E8
.O.OEO
:24 35:36 35:48 36:00 36:12 Time
-------
File:A27sfiP98ta J1-19V Acq:28-SEP-1998 02:59:b3 GC EI+ Voltage SIR Autospec-UltimaE '" " ' ' "
Sample#ll Text .-1113-7 xl/2
423.7767 S:ll F:4 BSUB (128 , 15 , -3
100S
50_
0_
36:42
l\ 36A57
/ \ 36-50 /\
A fL\L A J \
^/ — -A--WVV — ^=u\fj v — *
36:24 36536 36?48 sVToT
425.7737 S:ll F:4 BSUB (128, 15, -3
100S
50.
0
36:56
»\
36:43 \
36:31 A 7 V
> — /VA>^A^-VV VyA- — y \-S\.
36 24 36536 36-148 37 5 00
435.8169 S:ll F:4 BSUB (128, 15, -3
100%
50.
0_
36 24 36S36 36-I48 37!oO
437.8140 S:ll F:4 BSUB(128, 15, -3
100%
so:
0
36524 36536 36548 37 5 00
430.9728 S:ll F:4 SMO(1,3) PKD(3
100% 36:30 36i3<) 37;00
so:
0"
/
36:^4 3653fi 36\4B 37 1 00
Exp-.EXP M23 DBS OVATION
.0) PKD(3,5,3,0.10%,2288.0,1.00%,F,F)
37:32 ^2.2E4
j
/
37:08 37:L9 / \A, 37:43 37:57 38i07. 38:26 38:37 A38-55
^^^~-~^ — ^V^W/V^ i 1^^^*^- s^*^~y\^ A-y\uAv^\^^ ,^, ^T-^^s^\r\/~^ ^. — A^^ J\_/vA r*s~
-1.1E4
n nun
i I i | i i i i i | l l i i i | i i i i f- y i Y— r r-T — | — i — i — i — i — i — r-i — i — i — i—, — i — i — r— i — i T i i — r— i — i — i — •— i — i— i — i — i — J-w . «iau
37:12 37:24 37:36 37:48 38:00 38:12 3s!24 38536 3s!48 39 00 Time
.0) PKD(3,5,3,0.10%,1736.0,1.00%,F,F)
"A32
\
1 \ -,-, r-,
37:10 37:19 / V37:39 37=57 38.08 38:18 38:33 38.54
~_^-'Vv/^-/V — ^xv^v Vy\yv ^^ A^ Xv ^f^^-^^-^-xy — /V^-W — ^-/v/^V/v^r-^-^_-p/Srf_ii/-:-x1/v^
1.7E4
-8.3E3
n ni?n
> i i | I i i i I | > I I ' i 1 I i i i i 1 F i i r T 7 I -r T i -T i i -r • r- i -i — i — i — i — i — i — i — i — i — i — i — i — i — i — , — i — i — i — i — r1-" • """
37:12 37:24 37:36 37:48 38:00 38:12 38:24 38536 38548 39 00 Time
.0) PKD(3,5,3,0.10%,136268.0,1.00%,F,F)
37:31
A
/ v__
3.3E7
.1.7E7
D.OEO
37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39500 Time
.0) PKD(3,5,3,0.10%/105916.0,1.00%,F,F)
37:31
A
A
i\.
3.1E7
.1 . 6E7
Lo.OEO
37 5 12 37?24 37:36 37548 3s5oO 3s5l2 38524 38536 38548 395oO Time
, 3, 3, 100. 00%, 0.0,1. 00%, F,F)
37:12 37:41 37.j57 3R:06 38^25 1R-3.R 3R-53 2.2RR
11.1E8
_O.OEO
37 5 12 37524 37536 37548 38 5 00 38 5 12 38 5 24 38 5 36 38548 39 5 00 Time
-------
File:A2'7SEp98M *l-276 Acq:
Sampletll Text: 1113-7 xl/2
4 57. 7 "5 77 R:11 V:<=> RqTTRM2B
1003
50.
0_
•
X'-^-A-^-^^JU.
39:08 /
/" — "vs *
39:12 39124 39^36
459.7348 S:ll F:5 BSUB(128
100S
so:
-
oJ
^^gEF-1998 02:59:53 GC EI+ Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
, 15, -3 .0) PKD (3, 5, 3, 0.10%, 11300.0, 1.00%,F,F)
40:22
Jl
3
11
n
1 1 1 1 1 1 1 1 1 1 1 1 1 1 I | • 1 1 •> | 1 1 1 I 1 I 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 I I T 1 1 1 1 1 1 | 1 | 1 | I | ' ~
39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41i24 41:36 41i48 42:00 42:12
,15, -3.0) PKD(3,5,3,0.10%,1904.0,1,00%,F,F)
T
39:12 39:26 39:40 39>:54 J \ ^40^34 40:59 ^fh-.n 41:40 41:56
xvv^V — \^-^~*J — *r-~*-v-" _^v
39:12 39!24 39I36
469.7780 S:ll F:5 BSUB(128
100%
so:
o:
39:12 39:24 39:36
^^-~^^=t»/v — ^-^^-v^^-^ -v^-' ^-/ *^^/ N^- — ^Xt-^^^^yv^^^/x^ayv^oi^ — ^s- •"v-v^.s^. •f — "w~i/\c*=»^x/—v- „— ^^-
2
LI
n
39:48 46!6d 46!l2' 46!24 46':36 46!48 kllod 4i!l2 41 !24 ' 41 !36 ' 41 [48 ' 42 ! 66 ' 42 ! 12
,15, -3.0) PKD(3,5,3,0.10%,2116.0,1.00%,F,F)
T
\ V.
2
_1
n
i i i i i i i i 1 i i i i i 1 i i n i i I i IT 1 I i i i i i i i i i i i i i i i i i r i i i i i i i i i i i i i r i r i I-T i i i i i i i i i i i i i ' —
39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
.6E4
. 8E4
OEO
Time
.7E4
.3E4
-OEO
Time
.7E7
-4E7
OEO
Time
471.7750 S:ll F:5 BSUB(128, 15, -3 . 0) PKD(3 , 5, 3, 0 . 10%, 396 . 0, 1 . 00%, F,F)
100%
50_
0.
39! 12 39 124 39:36
454.9728 S:ll F:5 SMO(1,3)
40:22
A
) V^
_3
11
0
39!48 46!6d 46!l2 46I24 46!36 46U8 4i!6d 4i!i2 4i!24 4l!36 iiUs 42!6d 42!l2
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 39:09 39:2239:32 39:45 40:01 40:12 40:38 40:4fl 41:10 41:2fl 41:49 42-01 2
50_
0.
/
r V 39! 12 39! 24 39-! 36
.1.
0
39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
-OE7
.5E7
OEO
Time
3E8
2E8
OEO
Time
-------
Fiie:A27SEP98M #1-529 Acq:28-SEP-1998 02:b9:S3 GC El-t- Voltage SIR Autospec-ultimas'
Sample#ll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
303.9016 S:ll BSUBU28, 15 , -3 . 0) PKD(3 , 3 , 2 , 0 .10%, 2908 . 0 ,1. 00% , F, F)
27:21 27:57
50:
OJ
30:18
1.7E4
.8.4E3
T
T
O.OEO
Time
~r
T
24:00 25:00 26iOO 27JOO
305.8987 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%,5972.0,1.00%,F,F)
100* 27:19
28:00
27:55
29 loo'
23:46
24:35
50:
OJ
24700"~" ' 25!oO ~"~" 26iOO 27iOO
315.9419 S:ll BSUB{128,15,-3.0) PKD(3,3,2,0.10%,8692.0,1.00%, F, F)
100%
50_
0:
29:00
30:00
30:00
2. 5E4
L1.2E4
.O.OEO
Time
3.2E7
Ll.6E7
O.OEO
Time
4.1E7
.2.0E7
24:00 25:00 26:00 27:00
317.9389 S:ll BSUB(128,15,-3.0) PKD(3 , 3,2,0.10%,7608.0,1,00%,F,F)
100%
29:00
30:00
O.OEO
Time
24:00 25:00 26:00 27:00
375.8364 S:ll BSUB(128,15,-3.0) PKD(3,3,3,100.00%,196.0,1.00%,F,P)
100%. 23:53
28:00
50:
25:16
25:11
27:01
26:26
27:42.
29:00
28;40
28:56
11
28:
:11 25:56 , ,, 26:491, , *' * 1
24:00 25.:00 26iOO
316.9824 S:ll £MO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100%, 23^21 23:53 24;1K 24=42 2S;11 25:4626:12
27:00
50:
0:
28:00 29:00
28:24 28i58
30:00
30:00
25:00
26! 00
28:00
T—i 1 'i r-
JlO.OEO
Time
7.2E7
_3.6E7
O.OEO
Time
24:00
27:00
29:00
30:00
-------
File:A27SEP98M f1-237 Acq:28-SfiP-199B 02:59:53 GC EI+ Voltage SIR Autospec-UltimaE—"
Sample#ll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
339.8597 S:ll F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,1328.0,1.00%, F,F)
10°* 32(34 32:49
31:47
31:09
S~^J\£-^>'^^^
T
T
3li48 32!00 32!12 ' 32124
30:36 30:48 31:00
341.8568 S:ll F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,3980.0,1.00%,F,F)
100%,
30:45
50.
OJ
9.7E3
33:22 L4.9E3
1 ' I i "i i i i i i i i i i i i i i i i' 0• OEO
32:48 33:00 33:12 33?24 33.-36 Tim.
32:33
32:5°
T
T
T
T
9.6E3
L4.8E3
O.OEO
36 3o48 3l 32 31:24 3l36 3148 3200 3212 3224
351.9000 S:ll F:2 BSUB(128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 132 . 0 , 1 . 00%, F, F)
32:22
i i | i i i i r ] ..... i i i i i i i i i
33:00 33:12 33:24 33:36 Tim
8.3E7
L4.2E7
T"
T
-PT
T
.O.OEO
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
153.8970 S:ll F:2 BSUB(128,15,-3 . 0) PKD(3,3,2,0.10%,3544.0,1.00%,F,F)
100%, 32;22 5.2E7
50:
31:66 31:12
i i 11 i i 111»i~i~j 11 i i i 11 11 i i i 11 11 i f* i i i i i | i i i i i [• i i i i i • [ i i i i i i i i i i i i i i i i i i i i •
.:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33124 33136
409.7974 S:ll F:2 BSUB(128,15,-3 . 0) PKD(3,3,3,100.00%,560.0,1.00%,F,F)
100% 33:01
.2.6E7
O.OEO
Time
1.4E4
i ri i—i—i—r—i—i—i—i—i—i—f—i—i—i—i—i~i—i—i—i—r—T—i i i—r—i—1—1—i—i—i—i—i ri—i—i—n—i T i—r—i—r-i—i—i—i—T—i—i i r i—r i it—i—i—rn—i—I—i—i—i—i—i—i—i—i—i—r~r
30136 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33^36 Time
366.9792 S:ll F:2 SMO(1,3) PKD(3 , 3 . 3 , 100 . 00%, 0 . 0 , 1 . 00%, F,F)
100% 30:42O:52 31:03 31:1631:26 31:45 32:01
50_
. n
32^532:46
33:28 .13-40 9 . 1 E7
-4.5E7
.O.OEO
' it i | i i ' i i i i i i i i I i i i i i i | i i i i i | i i i i i i i i r i i i i i i i i i i i i i ' | i i i i i i i i i i t i i i > i i i i i i i i i i i i i i i i i
,^3,0:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
~^J"^M "~ " ~~~~ ' " ~ ' "—-~ "•™ ~ — '
N
-------
File:A27SBf>98M
Samplelll Text:
373.8207 S:
100%,
50_
0
33:io
r-v\A~\
" ' ' 1 ' ' '
33:48
375.8178 S:
100%,
o"
11 F
:55 I
M
'34!
11 F
34
11-197 Acq:
28-SEP-1998 02:59:53 GC El+ Voltage
1113-7 xl/2
:3
\
L
00
:3
i "•
BSUB{128
34:08
VWW
I 1 T f 1 — 1 — I
34:12
BSUBU28
L
,15, -3.0)
34:27
i ' i 1 ' ' •'
34:24
,15, -3.0)
33:56 /I
f\ J 04:05
^^J V Ww^
'• — r 1 i — i — r
33:48
383.8639 S:
100%
50:
0:
33:48
385.8610 S:
100%
50:
0:
33:48
445.7555 S:
100%
50_
0
33:51
>\ys_AA.
33:48
380.9760 S:
100%
50_
0
i i i i i
•36,: 48
'34!
11 F
34:
•i f**
34!
11 F
34:
34!
11 F
'34:
11 F
34
' ' I
00
:3
00
00
:3
00
00
:3
00
:3
•m
34:00
i t ? r-i — r
34:12
BSUB(128
34 : 12
BSUB(128
34l 12
BSUB(128
34:10
34:12
SMO(1,3)
34:20
' '34: 24'
,15, -3.0)
34! 24
,15, -3.0)
34.! 24
,15, -3.0)
34:25
34:24
PKD(3,3,3
Exp:
PKD (3, 5, 2
34:38
/vw
I 1 1 — 1 1 1
34:36
PKD (3,5,2
34:38
M
'34 lie' '
PKD(3,5,2
3T
ft
l\
34:36
PKD(3,5,2
34:37
A
A
l\
34. -36
PKD(3,3,3
34:
34:36
EXP M23 DBS
,0.10%, 4272
35
IV\A^
s**s \y
'34 UY ' '35!
,0.10%, 2192
35:
34:48 A/*
\_A/^/V^
341: 4V ' '35:
SIR Autospec-UltimaE
OVATION
.0,1.
00%,F,F)
^_1
i01 35:09 35:21 A 35:50
\ , f\ . f\ A 35:41 A A 36:07,, .,.
\rJ\L~\S\ ~A/ ^^.n A/v V\A f^^~^ /\J\ AJ \ A/"X-V\ XA
00
.0,1.
00
M 3!
V.
00
,0.10%, 19392. 0,1
34:48 35:
00
,0.10%, 26820. 0,1
34:48 35:
00
,100. 00%, 408. 0,1
34:55
35
44 A 35:0
-------
File:A27gfiP98W 11-197 Acq:28-SfiP-1998 02:59:S3 GC EI+ Voltage SIR Autospec-UltimaE
Sample#ll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
407.7818 S:ll F:4 BSUB(128.15.-3.0) PKD(3,5,3,0.10%,3232.0,1.00%,F,F)
100% 36:43
37:48 38:00
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
409.7788 S:ll F:4 BSUB{128,15,-3.0) PKD{3,5,3,0.10%,1532.0,1.00%,F,F)
100% 36:43
50:
OJ
37:22
37:41
37:53
38:07
•y^^'^r-r rpp < • • - f~f i • r "I , rrr i \ liii in rr—»—i—i—i—i—»—i—i—i—i—i—i—i—i—i—i—i—i—i—r~~i—I—»—'—'—i—>—[—'—'—'—'—'—I—'—'—'—'—'—I—>—i—>—'—r*~f—i—i—i—i—i—i—i—i—i—i—i—r
36:2-4 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38;00 38:12 38:24 38:36 38:48 39:00 Time
-------
File:A27SEP9UM 11-276 Acq:2B-SEP-1998 02:b9:53 GC EI + Voltage Sift Autospec-uitimaE
Sampleill Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
441.7427 S.-ll F:5 BSUB(128,15,-3 . 0) PKD(3 , 5, 3 , 0 .10%, 2632 . 0,1. 00%, F, F)
lOOi
50J
OJ
39:53
40:31
42:01
39:25
7.2E3
L3.6E3
LO.OEO
4o!6d ' 4C)!i2 ' 4C)!24
46S48 ' 4i!66
39:12 39:24 39:36 39:
443.7398 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3 , 0.10%,5240.0,1.00%,F,F)
100%. .. .. 40:32
50J
4i!48
42166 ' 42ll2
39:12 39124 39:36 39:48 40:00 40il2 40124 40136 40148 41100
469.7780 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2116.0,1.00%,F,F)
100%, 40:22
50J
O
t I I f f T 'I "I I f I I I I I I I T-T'T'T'T "'T T "T 1 'I '! "1 T I T I'T TT I T I TT'"T' T"T' T T T T'"T"|-"| I I I I I I I I I I I I 1 I I T T I f T T I' I I I I
39:12 39:24 39:36 39-48 40-00 40:12 40:24 40136 40148 41iOO 41:12 4l!24 41i36
471.7750 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,396.0,1.00%,F,F)
100% 40.; 22
50:
0
Time
1.2E4
L6.1E3
LO.OEO
41148 42166 42!12 Time
2.7E7
Ll.4E7
LO.OEO
' i I i i i i i i i i
41:48 42:00 42:12 Time
3.0E7
_1.5E7
O.OEO
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 4lIoO 4lll2 41:24 41:36
513.6775 S:ll F:5 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,440.0,1.00%,F,F)
1004 40:22
50_
39:45
39:11 3.1:24
I
39:57
41:04
41:48 42:00 42:12 Time
1.3E4
_6.3E3
41:20
41:33 41:47
39:12 39:24 39:36 39:48 4ooO 40:12 424 4o36 40:48 4loO 4l!l2 4l!24 4l!36
454.9728 S:ll F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 .00%, 0 . 0, 1 . 00%, F, F)
100% 39:09 Jjg;2?->Q^2 iq;J^ dOrPI 40:1^ _ 40 ^S 40-4fl 41
50.
OJ
41:48
41:49
2:00
A^A/yd" O.OEQ
42100 42:12 Time
2 . 3E8
O.OEO
-f-rt-
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 ' 4o!48 ' 41166 ' 4l!i2 ' 4i!24 ' 4ll36
41:48 42:00 42:12 Time
-------
APPENDIX C
TIONS & COMPUTER SUMMARIES
-------
Summary of Stack Gas Parameters and Test Results
Air Emissions Screening Test
National Lime & Stone Company - Carey, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Y
AH
Pbar
Tm
Pstatic
Ts
V,c
C02
02
N2
CP
Ap1*
0
Dn
An
Vm(std)
Vm(std)
P,
v«td
1-Bws
Md
Ms
v,
A
Qa
Qs
Q»(cmm)
I
Kiln No. 1 Scrubber Inlet
Page 1 of 6
RUN NUMBER
RUN DATE
RUN TIME
MEASURED DATA
Meter Box Correction Factor
Avg Meter Orifice Pressure, in. H20
Barometric Pressure, inches Hg
Sample Volume, ft3
Average Meter Temperature, °F
Stack Static Pressure, inches H20
Average Stack Temperature, "F
Condensate Collected, ml
Carbon Dioxide content, % by volume
Oxygen content, % by volume
Nitrogen content, % by volume
Pitot Tube Coefficient
Average Square Root Ap, (in. H2O)1/2
Sample Run Duration, minutes
Nozzle Diameter, inches
CALCULATED DATA
Nozzle Area, ft2
Standard Meter Volume, dscf
Standard Meter Volume, dscm
Stack Pressure, inches Hg
Moisture, % by volume
Standard Water Vapor Volume, ft3
Dry Mole Fraction
Molecular Weight (d.b.), Ib/lb-mole
Molecular Weight (w.b.), Ib/lb-mole
Stack Gas Velocity, tt/s
Estimated Stack Area, ft2
Stack Gas Volumetric flow, acfm
Stack Gas Volumetric flow, dscfm
Stack Gas Volumetric flow, dscmm
Isokinetic Sampling Ratio, %
M23-I-4
9/2/98
1250-1641
1.000
1.61
29.58
113.771
79.3
-16.2
365
205.8
12.4
13.0
74.6
0.84
1 .0709
180
0.218
0.00026
110.516
3.129
28.39
8.1
9.687
0.919
30.50
29.50
76.3
7.87
36,042
20,116
570
92.7
-------
Summary of Stack Gas Parameters and Test Results
National Lime & Stone Company - Carey, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 Scrubber Inlet
Page 2 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-4
9/2/98
1250-1641
EMISSIONS DATA
DIOXINS:
2378 TCDD
ng Catch, ng 0.0142
ng/dscm Concentration, ng/dscm, as measured 0.00454
ug/hr Emission Rate, ug/hr 0.155
Total TCDD
ng Catch, ng 1.1958
ng/dscm Concentration, ng/dscm, as measured 0.382
ug/hr Emission Rate, ug/hr 13.1
12378 PeCDD
ng Catch, ng 0.0126
ng/dscm Concentration, ng/dscm, as measured 0.00403
ug/hr Emission Rate, ug/hr 0.0126
Total PeCDD
ng Catch, ng 0.3112
ng/dscm Concentration, ng/dscm, as measured 0.0994
ug/hr Emission Rate, ug/hr 3.40
123478 HxCDD
ng Catch, ng 0.0073
ng/dscm Concentration, ng/dscm, as measured 0.00233
ug/hr Emission Rate, ug/hr 0.0797
123678 HxCDD
ng Catch, ng 0.0078
ng/dscm Concentration, ng/dscm, as measured 0.00249
ug/hr Emission Rate, ug/hr 0.0852
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
National Lime & Stone Company - Carey, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 Scrubber Inlet
Page 3 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-4
9/2/98
1250-1641
EMISSIONS DATA -Continued
DIOXINS - Continued
123789 HxCDD
ng Catch, ng 0.0178
ng/dscm Concentration, ng/dscm, as measured 0.00569
ug/hr Emission Rate, ug/hr 0.194
Total HxCDD
ng Catch, ng 0.3684
ng/dscm Concentration, ng/dscm, as measured 0.118
ug/hr Emission Rate, ug/hr 4.02
1234678 HpCDD
ng Catch, ng 0.0539
ng/dscm Concentration, ng/dscm, as measured 0.0172
ug/hr Emission Rate, ug/hr 0.589
Total HpCDD
ng Catch, ng 0.0996
ng/dscm Concentration, ng/dscm, as measured 0.0318
ug/hr Emission Rate, ug/hr 1.09
OCDD
ng Catch, ng {0.0958}
ng/dscm Concentration, ng/dscm, as measured {0.0306}
ug/hr Emission Rate, ug/hr {1.05}
Total PCDD
ng Catch, ng {2.071}
ng/dscm Concentration, ng/dscm, as measured {0.662}
ug/hr Emission Rate, ug/hr {22.6}
{} Estimated Maximum Possible Concentration. EM PC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
National Lime & Stone Company - Carey, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 Scrubber Inlet
Page 4 of 6
RUN NUMBER
RUN DATE
RUNTIME
M23-I-4
9/2/98
1250-1641
EMISSIONS DATA - Continued
FURANS
2378 TCDF
ng Catch, ng 0.2264
ng/dscm Concentration, ng/dscm, as measured 0.0723
ug/hr Emission Rate, ug/hr 2.47
Total TCDF
ng Catch, ng 15.6060
ng/dscm Concentration, ng/dscm, as measured 4.99
ug/hr Emission Rate, ug/hr 170
12378PeCDF
ng Catch, ng {0.1630}
ng/dscm Concentration, ng/dscm, as measured {0.0521}
ug/hr Emission Rate, ug/hr {1-78}
23478 PeCDF
ng Catch, ng 0.1695
ng/dscm Concentration, ng/dscm, as measured 0.0542
ug/hr Emission Rate, ug/hr 1 -85
Total PeCDF
ng Catch, ng 3.4316
ng/dscm Concentration, ng/dscm, as measured 1.10
ug/hr Emission Rate, ug/hr 37.5
123478 HxCDF
ng Catch, ng 0.1436
ng/dscm Concentration, ng/dscm, as measured 0.0459
ug/hr Emission Rate, ug/hr 1-57
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
National Lime & Stone Company - Carey, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 Scrubber Inlet
Page 5 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-4
9/2/98
1250-1641
EMISSIONS DATA - Continued
Furans - Continued
123678 HxCDF
ng Catch, ng 0.0648
ng/dscm Concentration, ng/dscm, as measured 0.0207
ug/hr Emission Rate, ug/hr 0.708
234678 HxCDF
ng Catch, ng 0.0342
ng/dscm Concentration, ng/dscm, as measured 0.0109
ug/hr Emission Rate, ug/hr 0.374
123789 HxCDF
ng Catch, ng 0.0050
ng/dscm Concentration, ng/dscm, as measured 0.00160
ug/hr Emission Rate, ug/hr 0.0546
Total HxCDF
ng Catch, ng 0.5504
ng/dscm Concentration, ng/dscm, as measured 0.176
ug/hr Emission Rate, ug/hr 6.01
1234678 HoCDF
ng Catch, ng 0.1351
ng/dscm Concentration, ng/dscm, as measured 0.0432
ug/hr Emission Rate, ug/hr 1.48
1234789 HoCDF
ng Catch, ng {0.0206}
ng/dscm Concentration, ng/dscm, as measured {0.00658}
ug/hr Emission Rate, ug/hr {0.225}
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
National Lime & Stone Company • Carey, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 Scrubber Inlet
Page 6 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-4
9/2/98
1250-1641
EMISSIONS DATA - Continued
Furans - Continued
Total HpCDF
ng Catch, ng 0.1896
ng/dscm Concentration, ng/dscm, as measured 0.0606
ug/hr Emission Rate, ug/hr 2.07
OCDF
ng Catch, ng 0.0469
ng/dscm Concentration, ng/dscm, as measured 0.0150
ug/hr Emission Rate, ug/hr 0.512
Total PCDF
ng Catch, ng 19.825
ng/dscm Concentration, ng/dscm, as measured 6.33
ug/hr Emission Rate, (jg/hr 217
Total PCDD + PCDF
ng Catch, ng {21.895}
ng/dscm Concentration, ng/dscm, as measured {7.00}
ug/hr Emission Rate, pg/hr {239}
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Air Emissions Screening Test
National Lime & Stone Company - Carey, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 Scrubber Outlet
Page 1 of 6
Y
AH
rstauc
Ts
vlc
CO2
02
N2
C,
Ap
0
Dn
m(std)
'p
1/2
P,
Bw,
Md
M.
V.
A
Q.
Q.
Q§(cinm)
I
RUN NUMBER
RUN DATE
RUN TIME
M23-O-4
9/2/98
1252-1645
MEASURED DATA
Meter Box Correction Factor 1.021
Avg Meter Orifice Pressure, in. H20 1.57
Barometric Pressure, inches Hg 29.58
Sample Volume, ft3 121.464
Average Meter Temperature, °F 76.0
Stack Static Pressure, inches H20 -26.00
Average Stack Temperature, "F 109
Condensate Collected, ml 272.7
Carbon Dioxide content, % by volume 11.1
Oxygen content, % by volume 14.9
Nitrogen content, % by volume 74.0
Pitot Tube Coefficient 0.84
Average Square Root Ap, (in. H20)1/2 0.8086
Sample Run Duration, minutes 180.0
Nozzle Diameter, inches 0.230
CALCULATED DATA
Nozzle Area, ft2 0.00029
Standard Meter Volume, dscf 121.188
Standard Meter Volume, dscm 3.432
Stack Pressure, inches Hg 27.67
Moisture, % by volume 9.6
Moisture (at saturation), % by volume 9.0 (used)
Standard Water Vapor Volume, ft3 12.836
Dry Mole Fraction 0.910
Molecular Weight (d.b.), Ib/lb-mole 30.37
Molecular Weight (w.b.), lb/lb«mole 29.26
Stack Gas Velocity, ft/s 48.7
Stack Area, ft2 12.03
Stack Gas Volumetric flow, acfm 35,122
Stack Gas Volumetric flow, dscfm 27,444
Stack Gas Volumetric flow, dscmm 777
Isokinetic Sampling Ratio, % 102.3
-------
Summary of Stack Gas Parameters and Test Results
National Lime & Stone Company - Carey, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 Scrubber Outlet
Page 2 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-4
9/2/98
1252-1645
EMISSIONS DATA
DIOXINS:
2378 TCDD
ng Catch, ng 0.0073
ng/dscm Concentration, ng/dscm, as measured 0.00213
ug/hr Emission Rate, ug/hr 0.0992
Total TCDD
ng Catch, ng 0.814
ng/dscm Concentration, ng/dscm, as measured 0.237
ug/hr Emission Rate, ug/hr 11.1
12378 PeCDD
ng Catch, ng 0.0046
ng/dscm Concentration, ng/dscm, as measured 0.00134
ug/hr Emission Rate, ug/hr 0.0625
Total PeCDD
ng Catch, ng 0.132
ng/dscm Concentration, ng/dscm, as measured 0.0385
ug/hr Emission Rate, ug/hr 1.79
123478 HxCDD
ng Catch, ng 0.0029
ng/dscm Concentration, ng/dscm, as measured 0.000845
ug/hr Emission Rate, ug/hr 0.0394
123678 HxCDD
ng Catch, ng 0.0041
ng/dscm Concentration, ng/dscm, as measured 0.00119
ug/hr Emission Rate, ug/hr 0.0557
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
National Lime & Stone Company - Carey, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 Scrubber Outlet
Page 3 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-4
9/2/98
1252-1645
EMISSIONS DATA -Continued
DIOXINS - Continued
123789 HxCDD
ng Catch, ng 0.0074
ng/dscm Concentration, ng/dscm, as measured 0.00216
ug/hr Emission Rate, ug/hr 0.101
Total HxCDD
ng Catch, ng 0.143
ng/dscm Concentration, ng/dscm, as measured 0.0417
pg/hr Emission Rate, ug/hr 1.94
1234678 HpCDD
ng Catch, ng 0.0177
ng/dscm Concentration, ng/dscm, as measured 0.00516
ug/hr Emission Rate, ug/hr 0.241
Total HpCDD
ng Catch, ng 0.0368
ng/dscm Concentration, ng/dscm, as measured 0.0107
pg/hr Emission Rate, ug/hr 0.500
OCDD
ng Catch, ng 0.0365
ng/dscm Concentration, ng/dscm, as measured 0.0106
ug/hr Emission Rate, ug/hr 0.496
Total PCDD
ng Catch, ng 1.16
ng/dscm Concentration, ng/dscm, as measured 0.339
ug/hr Emission Rate, ug/hr 15.8
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
National Lime & Stone Company - Carey, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 Scrubber Outlet
Page 4 of 6
RUN NUMBER
RUN DATE
RUNTIME
M23-O-4
9/2/98
1252-1645
EMISSIONS DATA - Continued
FURANS
2378 TCDF
ng Catch, ng 0.113
ng/dscm Concentration, ng/dscm, as measured 0.0329
ug/hr Emission Rate, ug/hr 1.54
Total TCDF
ng Catch, ng 11.0
ng/dscm Concentration, ng/dscm, as measured 3.21
ug/hr Emission Rate, ug/hr 149
12378 PeCDF
ng Catch, ng 0.0506
ng/dscm Concentration, ng/dscm, as measured 0.0147
ug/hr Emission Rate, ug/hr 0.688
23478 PeCDF
ng Catch, ng 0.0465
ng/dscm Concentration, ng/dscm, as measured 0.0136
ug/hr Emission Rate, ug/hr 0.632
Total PeCDF
ng Catch, ng 1.24
ng/dscm Concentration, ng/dscm, as measured 0.361
ug/hr Emission Rate, ug/hr 16.8
123478 HxCDF
ng Catch, ng 0.0381
ng/dscm Concentration, ng/dscm, as measured 0.0111
ug/hr Emission Rate, ug/hr 0.518
(} Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
National Lime & Stone Company - Carey, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 Scrubber Outlet
Page 5 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-4
9/2/98
1252-1645
EMISSIONS DATA - Continued
Furans - Continued
123678 HxCDF
ng Catch, ng 0.0150
ng/dscm Concentration, ng/dscm, as measured 0.00437
ug/hr Emission Rate, ug/hr 0.204
234678 HxCDF
ng Catch, ng 0.0089
ng/dscm Concentration, ng/dscm, as measured 0.00259
ug/hr Emission Rate, ug/hr 0.121
123789 HxCDF
ng Catch, ng (0.0013)
ng/dscm Concentration, ng/dscm, as measured (0.000379)
ug/hr Emission Rate, ug/hr (0.0177)
Total HxCDF
ng Catch, ng 0.143
ng/dscm Concentration, ng/dscm, as measured 0.0417
ug/hr Emission Rate, ug/hr 1.94
1234678 HoCDF
ng Catch, ng 0.0332
ng/dscm Concentration, ng/dscm, as measured 0.00967
ug/hr Emission Rate, ug/hr 0.451
1234789 HoCDF
ng Catch, ng 0.0040
ng/dscm Concentration, ng/dscm, as measured 0.00117
ug/hr Emission Rate, ug/hr 0.0544
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
National Lime & Stone Company - Carey, Ohio
US EPA Test Method 23 - PCODs / PCDFs
Kiln No. 1 Scrubber Outlet
Page 6 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-4
9/2/98
1252-1645
EMISSIONS DATA - Continued
Furans - Continued
Total HoCDF
ng Catch, ng 0.0416
ng/dscm Concentration, ng/dscm, as measured 0.0121
ug/hr Emission Rate, ug/hr 0.565
OCDF
ng Catch, ng {0.0103}
ng/dscm Concentration, ng/dscm, as measured {0.00300}
ug/hr Emission Rate, ug/hr {0.140}
Total PCDF
ng Catch, ng {12.4349}
ng/dscm Concentration, ng/dscm, as measured {3.62}
pg/hr Emission Rate, (jg/hr {169}
Total PCDD + PCDF
ng Catch, ng {13.5972}
ng/dscm Concentration, ng/dscm, as measured {3.96}
ug/hr Emission Rate, ug/hr {185}
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
'* wk'^V,
••$•:&&'-
'• > -..'..»>
• i-s:^
. ,;.a
• : •,;.---.- • - .'
',*
EXAMPLE EQUATIONS^'$&*&
..._£t?J-*
•xri?""***"''
-------
Nomenclature
Y
AH
Pbar
V
vk
C02
02
N2
c
Ap
0
D
p
1/2
V,
m(std)
V,
m(std)m3
P8
B
* w(std)
1-B™
Md
H
vs
A
Qa
Qs(«td)
Vs(cmm)
I
ng/dscm
ng/dscm@7%O2
ug/hr
Ib/hr
Meter Box Correction Factor
Avg Meter Orifice Pressure, in. H2O
Barometric Pressure, inches Hg
Sample Volume, ft3
Average Meter Temperature, °F
Stack Static Pressure, inches H2O
Average Stack Temperature, °F
Condensate Collected, ml
Carbon Dioxide content, % by volume
Oxygen content, % by volume
Nitrogen content, % by volume
Pitot Tube Coefficient
Average Square Root Dp, (in. H2O)1/2
Sample Run Duration, minutes
Nozzle Diameter, inches
Nozzle Area, ft2
Standard Meter Volume, dscf
Standard Meter Volume, dscm
Stack Pressure, inches Hg
Moisture, % by volume
Standard Water Vapor Volume, ft3
Dry Mole Fraction
Molecular Weight, dry, lb/lb«mole
Molecular Weight, wet, lb/lb»mole
Stack Gas Velocity, ft/s
Stack Area, ft2
Stack Gas Volumetric flow, acfin
Stack Gas Volumetric flow, dscfm
Stack Gas Volumetric flow, dscmm
Isokinetic Sampling Ratio, %
Concentration, ng/dscm
Concentration, ng/dscm adjusted to 7% oxygen
Emission Rate, ug/hr
Concentration, parts per million, dry
Concentration, parts per million, wet
Emission Rate, pounds per hour
-------
Example Calculations
National Lime and Stone Company - Carey, Ohio
US EPA Method 23-PCDDs/PCDFs
(Using Data from Run M23-I-4)
Note: Discrepancies may exist between the computer generated reported results, which use
more significant figures, and the values manually calculated from the displayed values.
Volume of dry gas sampled corrected to standard conditions of 68°F, 29.92 in. Hg, ft3
= 17-64VmY
AH
13.6
460 + t.
= (17.64)(113.771)(1.000)
29.58
1.61
13.6
460 + 79.31
= 110'516 dscf
2. Volume of dry gas sampled corrected to standard conditions of 68°F, 29.92 in. Hg, m3.
= ^(0.028317)
= (H0.516)(0.028317)
= 3.129 dscm
3. Volume of water vapor at standard conditions, ft3.
= 0.04707V
1C
= (0.04707)(205.8)
= 9.687 scf
-------
4. Moisture content in stack gas, as measured.
m(std) vw(std)
110.516+ 9.687
B... = 8.06
(100)
Dry molecular weight of stack gas, Ib/lb-mol.
Md = 0.44 (%CO2) + 0.32(%O2) + 0.28 (%N2 +%CO)
Md = 0.44(12.4) + 0.32(130) + 0.28(74.6 + 0)
Md = 30.504 Ib/lb-mol
6. Molecular weight of stack gas, Ib/lb-mol.
Ms = MdO -B^/100) + 18(8^/100)
Ms = 30.504(1-8.06/100) + 18(8.06/100)
Ms = 30.504(0.9194) + 18(0.0806)
U = 28.045 + 1.451
S
J
Mr = 29.496 Ib/lb-mol
-------
7. Absolute stack gas pressure, in. Hg.
P
p _ p + static
s " bar 13.6
P = 29.58 +
-16.2
13.6
Ps = 28.39 inches Hg
8. Stack velocity at stack conditions, fps.
vs = 85.49 Cp
t +460
v = (8549)(0.84)(1.0709)
\
(365 + 460)
(29.496) (28.39)
vs = 73.33 fps
9. Isokinetic Variation.
0/ol .
(17.32)
n (9) f .) (1 -BJ100)
(110.516) (365+460) (17.32)
(73.33) (0.218)2 (180) (28.39) (1-8.06/100)
= 92.7
-------
10. Stack gas volumetric flow rate at stack conditions, acfin.
Qa = (60) (A) (v.)
Qa = (60) (7.87) (73.33)
Qa = 36,042 acfin
11. Dry stack gas volumetric flow rate at standard conditions, dscfin.
P.
(t +460)
p
= 17.64 Q ! (l-B/100)
a ft + 460^ l ^ *
(17.64) (36,042) 28'39 (l - 8.06/100)
v } v 365 + 460
= 20,116 dscftn
12. Dry stack gas volumetric flow rate at standard conditions, dscmm.
0-028317
) = (20,116) (0.028317)
dscmm
-------
13. Pollutant (2378 TCDD) concentration, ng/dscm.
ng/dscm =
,.
ng/dscm =
vm(rtd>n3
0.0142
3.129
ng/dscm = 0.00454 ng/dscm
14. Pollutant (2378 TCDD) concentration, ng/dscm adjusted to 7 percent oxygen.
ng/dscm@7%O2 = (ng/dscm)
* ° 2
(20.9 - %O2)
ng/dscm@7%O, = (0.00454) —
2 (20.9 - 13.0)
ng/dscm@7%O2 = 0.00798 ng/dscm@7%O2
15. Pollutant (2378 TCDD) emission rate, M-g/hr.
..
= (60) (0.0142) (20,1 16)
(103) (110.516)
Hg/hr = 0.155 ng/hr
-------
16. CEM Pollutant (HC1) Concentration, ppmd
ppmd = ppmw / (1 -BJ100)
ppmd = 29.4 / (1-8.1/100)
ppmd = 32.0 ppmd
17. CEM Pollutant (HC1) Emission Rate, lb/hr.
lb/hr =
(106) (385.3)
lb/hr = (60) (32.0) (36.47) (20,116)
(106) (385.3)
lb/hr = 3.65 lb/hr
18. Method 3A Calibration Error, %. Values are for the oxygen, mid range.
Cal Err % = (100) (Instrument Response - Calibration Gas Concentration)/Span
Cal Err % = (100) (11.6 - 11.1) / 25
Cal Err % = 2.0 %
-------
19. Method 3 A System Bias Check, %. Values are for the oxygen, final upscale check.
Sys Bias % =(100)(Instr. ResponseCALERR-Instr. ResponseSYSCAL)/Span
Sys Bias % = (100) (11.6 - 11.3) / 25
Sys Bias % = 1.2 %
20. Method 3A Drift, %. Values are for the oxygen, upscale check.
Drift % = (100) (Instr. ResponseFINAL SYS CAL - Instr. Response^^ SYS CAL) / Span
Drift % = (100) (11.3 -11.6) / 25
Drift % = -1.2 %
21. Method 3 A Zero & Upscale Sampling System Check Adjustment Values are for oxygen,
c
— (C^ — C* \ "^
v avg O' r^ r*
gas ^ avg
C =(13.4-0.20)
gas 11.45-0.20
Cgas = 13.0 %
Where: C^ = Adjusted gas concentration, ppm or %
C^ = Average unadjusted gas concentration from analyzer
C0 = Average of zero gas initial & final system cal. bias check
C^ = Actual concentration of the upscale calibration gas
Cm = Average of upscale initial & final system cal. bias check
-------
22. Method 322 Zero & Upscale System Bias Checks Adjustment To Analyzer HCI Average.
Results are for the Outlet Data due to no inlet post spikes performed.
in
C = c-
^
(0.895 + 0.684) [C9-1 C"1-53))] +(-0.10 + 4,48)
1.011
= 10.5 ppm
Where: bc = Y-intercept of the calibration least-squares line.
bf = Y-intercept of the final bias check 2-point line.
b, = Y-intercept of the initial bias check 2-point line.
C^ = Effluent gas concentration, as measured, ppm.
C^ = Average gas concentration indicated by gas analyzer, as
measured, ppm.
m,. = Slope of the calibration least-squares line.
rrjf = Slope of the final bias check 2-point line.
m; = Slope of the initial bias check 2-point line.
-------
23. Method 322 HCI Matrix Spike Recovery, Post-test
In Situ HCI Expected (Predicted) Spike Concentration, ppm.
CE = (Cs) (Q./QJ + (SU)(1-(Q./QJ)
CE = (310) (1.0/11.0) + (40)(1 -(1.0/11.0))
CE = 64.5 ppm
Where: CE = Recovery efficiency of spiked HCI, %
Cs = Concentration of HCI in spike gas, ppm
Qs = Spike gas (dilution) flow rate, 1pm
Q, = Sample gas (unspiked) flow rate, 1pm
Qtot = (Qs+Qt) Sum of the spike gas and the sample flow rates, 1pm
Sy = Concentration of unspiked (native) sample gas
In Situ HCI Spike Recovery Efficiency. %.
%R = (SM/CE)(100)
%R = (68.27 64.5) (100)
%R = 106 %
Where: %R = Efficiency of recovery of spiked HCI, %
SM = Observed concentration of spiked + sample gas, ppm
CE = Expected or predicted concentration of HCI in spike gas, ppm
-------
APPENDIX E
QA/QCDATA
-------
-------
1of2
PACIFIC ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Date:
9/1/97
Calibrator Tom McDonald
Meter Box No.: MB-10
, in Hg 30.16
Reference Meter Correction Factor 1.0049 (8/28/96)
AH = 0.5
Trial
1
2
3
Trial
Duration
(min)
19
19
19
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
994.409
1001.982
1009.513
Final
^
1001.982
1009.513
1017.050
Net
^
7.573
7.531
7.537
Meter Temperatures
Initial, Inlet
CF)
74
77
80
Final, Inlet
en
78
80
81
Avg. Inlet
CF)
76
78.5
80.5
Initial, Outlet
CF)
73
75
77
inal, Outie
CF)
75
77
78
Avg. Outlet
74
76
77.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
600.523
608.185
615.801
Final
(ft3)
608.185
615.801
623.430
Net
(ft3)
7.662
7.616
7.629
Meter Temperature
Initial
CF)
72
74
76
Final
CF)
74
76
77
Avg.
CF)
73
75
76.5
Meter Box
Correction
Factor
Y
1.019
1.019
1.021
Reference
Orifice Press
AH0
(in. H2O)
1.71
1.74
1.74
AH = 0.75
Trial
1
2
3
Trial
Duration
(min)
15
15
15
Dry Gas Meter MB-10
Gas Volume
Initial
17.220
24.350
31.563
Final
24.350
31.563
38.780
Net
7.130
7.213
7.217
Meter Temperatures
Initial, Inlet
CF)
80
82
82
Final, Inlet
CF)
82
83
83
Avg. Inlet
CF)
81
82.5
82.5
Initial, Outlet
CF)
78
79
79
inal, Outie
CF)
79
79
81
Avg. Outlet
CF)
78.5
79
80
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
623.622
630.833
638.141
Final
(ft3)
630.833
638.141
645.425
Net
(ft3)
7.211
7.308
7.284
Meter Temperature
Initial
CF)
77
78
78
Final
CF)
77
78
78.5
Avg.
CF)
77
78
78.25
Meter Box
Correction
Factor
Y
1.020
1.021
1.018
Reference
Orifice Press
AH0
(in. H2O)
1.82
1.77
1.79
AH = 1.0
Trial
1
2
3
Trial
Duration
(min)
10
10
10
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
38.946
44.490
50.050
Final
(ft3)
44.490
50.050
55.585
Net
(ft3)
5.544
5.560
5.535
Meter Temperatures
Initial. Inlet
CF)
81
83
84
Final, Inlet
CF)
83
84
84
Avg. Inlet
CF)
82
83.5
84
Initial, Outlet
CF)
80
80
80
inal, Outie
CF)
80
80
80
Avg. Outlet
CF)
80
80
80
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(fh
645.614
651.220
656.829
Rnal
(ft3)
651.22
656.829
662.435
Net
(ft3)
5.606
5.609
5.606
Meter Temperature
Initial
CF)
78
78
78
Rnal
CF)
78
78
78
Avg.
CF)
78
78
78
Meter Box
Correction
Factor
Y
1.019
1.018
1.023
Reference
Orifice Press
AH0
(in. H20)
1.79
1.78
1.78
10 09017.XLS
Printed: 6M1/98
-------
2 of 2
PACIFIC ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
AH = 2.0
Trial
1
2
3
Trial
Duration
(min)
10
10
10
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
55.868
63.519
71.182
Final
(ft3)
63.519
71.182
78.845
Net
(ft3)
7.651
7.663
7.663
Meter Temperatures
Initial, Inlet
CR
84
86
86
Final, Inlet
CR
86
86
87
Avg. Inlet
CR
85
86
86.5
Initial, Outlet
CR
81
81
81
inal, Outle
CR
81
81
81
Avg. Outlet
CR
81
81
81
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
662.729
670.472
678.244
Final
(ft3)
670.472
678.244
686.010
Net
(ft3)
7.743
7.772
7.766
Meter Temperature
Initial
CR
78
78
78
Rnal
CR
78
78
78
Avg.
CR
78
78
78
Meter Box
Correction
Factor
y
1.021
1.025
1.024
Reference
Orifice Press
AHC
(in. H2O)
1.87
1.86
1.86
AH = 4.0
Trial
1
2
3
Trial
Duration
(min)
8
8
8
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
79.058
86.620
94.185
Final
«f)
86.620
94.185
101.754
Net
(ft3)
7.562
7.565
7.569
Meter Temperatures
Initial, Inlet
CR
85
87
89
Final, Inlet
CR
88
89
89
Avg. Inlet
CR
86.5
88
89
Initial, Outlet
CR
81
82
82
inal, Outle
CR
82
82
82
Avg. Outlet
CR
81.5
82
82
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
686.208
693.895
701.558
Final
(ft3)
693.895
701.558
709.244
Net
(ft3)
7.687
7.663
7.686
Meter Temperature
Initial
CR
78
78
78
Final
CR
78
78
78
Avg.
CR
78
78
78
Meter Box
Correction
Factor
T
1.023
1.021
1.025
Reference
Orifice Press
AH0
(in. H2O)
2.44
2.45
2.43
Calibration Results
AH
0.50
0.75
1.0
2.0
4.0
Y
1.020
1.020
1.020
1.023
1.023
AHC |
1.73
1.79
1.78
1.86
2.44
Dry Gas Meter MB-10 on 09/01/97
Meter Box Calibration Factor
Meter Box Reference Orifice Pressure
1.021
1.92
10 09017.XLS
Printed: 6/11/98
-------
PACIRC ENVIRONMENTAL SERVICES, INC.
Posttest Dry Gas Meter Calibration Form (English Units)
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919)941-0333 FAX: (919) 941-0234
Pretest Calibration Factor
System Vacuum Setting, (in Hg)
Reference Meter Correction Factor
Date: 9/8/98 Pb». in Hg
1.021
11
1.008
29.75 Calibrator: jwb
Meter Box No.
MB-10
AH= 1.41
Trial
1
2
3
Duration
(min)
10
10
10
Dry Gas Meter
Initial
(ft3)
175.033
182.466
189.866
Final
(ft3)
182.466
189.866
197.28
Net
(ft3)
7.433
7.400
7.414
Initial, Inlet
(T)
73
75
77
Final, Inle
(°F)
75
77
78
Avg. Inlet
(°F)
74
76
77.5
Initial, Outlet
(T)
73
74
74
Final, Outlet
(°F)
74
74
75
Avg. Outlet
(°F)
73.5
74
74.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
655.378
662.858
670.293
Final
(ft3)
662.858
670.293
677.758
Net
(ft3)
7.480
7.435
7.465
Meter Temperature
Initial
(°F)
73
73
74
Final
(T)
73
74
74
Avg.
(T)
73
73.5
74
Meter Box
Correction
Factor
Y
1.012
1.012
1.015
Reference
Orifice Press
AH0
(in. H2O)
1.42
1.44
1.43
10 09017
PostTest09-08-98
-------
1of2
PACIFIC ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919)941-0333 FAX: (919) 941-0234
Date:
Pb«r, in Hg
10/13/97
29.86
Calibrator MMD
Meter Box No.: RMB-15
Reference Meter Correction Factor. 1.0077 (10/5/97)
AH = 0.5
Trial
1
2
3
Trial
Duration
(min)
15
13
12
Dry Gas Meter RMB-15
Gas Volume
Initial
(ft3)
48.833
54.722
59.821
Final
(ft3)
54.722
59.821
64.544
Net
(ft3)
5.889
5.099
4.723
Meter Temperatures
Initial, Inlet
CF)
73
78
80
Final, Inlet
CF)
77
80
83
Avg. Inlet
CF)
75
79
81.5
Initial, Outlet
CF)
72
74
76
inal, Outle
CF)
75
75
77
Avg. Outlet
(°F)
73.5
74.5
76.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
34.044
39.829
44.843
Final
(ft3)
39.829
44.843
49.463
Net
(ft3)
5.785
5.014
4.620
Meter Temperature
Initial
CF)
70
71
71
Final
CF)
70
70
71
Avg.
CF)
70
70.5
71
Meter Box
Correction
Factor
Y
0.997
1.001
0.999
Reference
Orifice Press
AH0
(in. H2O)
1.86
1.86
1.86
AH = 0.75
Trial
1
2
3
Trial
Duration
(min)
8
21
13
Dry Gas Meter RMB-15
Gas Volume
Initial
^
69.524
73.327
83.322
Final
(ft3)
73.327
83.322
89.571
Net
(ft3)
3.803
9.995
6.249
Meter Temperatures
Initial, Inlet
CF)
74
77
78
Final, Inlet
CF)
74
83
82
Avg. Inlet
(°F)
74
80
80
Initial, Outlet
(°F)
77
76
78
inal, Outle
(T)
75
77
74
Avg. Outlet
(°F)
76
76.5
76
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
54.365
58.108
67.912
Final
(ft3)
58.108
67.912
74.036
Net
(ft3)
3.743
9.804
6.124
Meter Temperature
Initial
(°F)
72
72
73
Final
CF)
72
73
73
Avg.
CF)
72
72.5
73
Meter Box
Correction
Factor
Y
0.996
0.997
0.995
Reference
Orifice Press
AHe
(in. H2O)
1.91
1.91
1.88
AH= 1.0
Trial
1
2
3
Trial
Duration
(min)
19
8
16
Dry Gas Meter RMB-15
Gas Volume
Initial
89.777
100.214
104.614
Final
100.214
104.614
113.404
Net
(ft3)
10.437
4.400
8.790
Initial, Inlet
82
85
85
Final, Inlet
CF)
86
87
88
Meter Temperatures
Avg. Inlet
CF)
84
86
86.5
Initial, Outlet
CF)
79
81
82
inal, Outle
CF)
80
81
83
Avg. Outlet
CF)
79.5
81
82.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
74.254
84.440
88.743
Final
(ft3)
84.44
88.743
97.302
Net
(ft3)
10.186
4.303
8.559
Meter Temperature
Initial
CF)
73
73
73
Final
CF)
73
73
73
Avg.
i'F)
73
73
73 1
Meter Box
Correction
Factor
Y
0.997
1.002
1.000
Reference
Orifice Press
AH0
(in. H20)
1.92
1.91
1.92
15_10137.XLS
Printed: 6/11/98
-------
2 of 2
PACIFIC ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
AH = 2.0
Trial
1
2
3
Trial
Duration
(min)
9
7
7
Dry Gas Meter RMB-15
Gas Volume
Initial
(ft3)
13.863
20.864
26.372
Final
(ft3)
20.884
26.372
31.871
Net
^
7.021
5.488
5.499
Meter Temperatures
Initial, Inlet
CF)
87
90
90
Final, Inlet
CF)
91
92
93
Avg. Inlet
CF)
89
91
91.5
Initial, Outlet
CF)
83
84
84
inal, Outle
CF)
83
84
84
Avg. O-rtlet
CF)
83
84
84
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
97.749
104.591
109.929
Final
(ft3)
104.591
109.929
115.281
Net
(ft3)
6.842
5.338
5.352
Meter Temperature
Initial
CF)
73
73
73
Rnal
CF)
73
73
74
Avg.
CF)
73
73
73.5
Meter Box
Correction
Factor
T
1.001
1.002
1.002
Reference
Orifice Press
AH0
(in. H2O)
1.90
1.89
1.88
AH = 4.0
Trial
1
2
Trial
Duration
(min)
6.5
15.5
Dry Gas Meter RMB-15
Gas Volume
Initial
(ft3)
32.371
39.484
Final
(ft3)
39.484
56.484
Net
(ft3)
7.113
17.000
Meter Temperatures
Initial, Inlet
CF)
92
93
Final, Inlet
CF)
94
97
Avg. Inlet
CF)
93
95
Initial, Outlet
CF)
85
87
inal, Outle
CF)
85
87
Avg. Outlet
CF)
85
87
Trial
1
2
Reference Meter
Gas Volume
Initial
(ft3)
15.775
22.732
Final
(ft3)
22.732
39.287
Net
(ft3)
6.957
16.555
Meter Temperature
Initial
CF)
73
73
Final
CF)
74
73
Avg.
CF)
73.5
73
Meter Box
Correction
Factor
T
1.004
1.005
Reference
Orifice Press
AH0
(in. H20)
1.92
1.92
Calibration Results
AH
I r
0.50 0.999
0.75 0.996
1.0 1.000
2.0 1.002
4.0 1.004
AHa
1.86
1.90
1.92
1.89
1.92
Dry Gas Meter RMB-15 on 10/13/97
Meter Box Calibration Factor
Meter Box Reference Orifice Pressure
• Two Trial Average
1.000
1.90
15 10137.XLS
Printed: 6/11/98
-------
PACIFIC ENVIRONMENTAL SERVICES, INC.
Posttest Dry Gas Meter Calibration Form (English Units)
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919)941-0333 FAX: (919)941-0234
Pretest Calibration Factor
System Vacuum Setting, (in Hg)
Reference Meter Correction Factor
Date: 9/8/98 P**. in Hg
1.000
14
1.008
29.75 Calibrator:
JWB
Meter Box No.
RMB-15
AH= 1.41
Trial
1
2
3
Duration
(min)
10
10
10
Dry Gas Meter
Initial
(ft3)
709.71
716.383
722.394
Final
(ft3)
716.383
722.394
729.765
Net
(ft3)
6.673
6.011
7.371
Initial, Inlet
(°F)
71
72
74
Final, Inle
(°F)
72
74
75
Avg. Inlet
(•F)
71.5
73
74.5
Initial, Outlet
<°F)
71
73
71
Final, Outlet
(°F)
71
71
72
Avg. Outlet
(T)
71
72
71.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
634.511
641.145
647.118
Final
(ft3)
641.145
647.118
654.408
Net
(ft3)
6.634
5.973
7.290
Meter Temperature
Initial
(T)
71
71
71
Final
CF)
71
71
71
Avg.
(°F)
71
71
71
Meter Box
Correction
Factor
Y
0.999
1.001
0.997
Reference
Orifice Press
AH9
(in. H2O)
1.80
2.22
1.49
15
PostTe?*n9-8-98
'14/98
-------
REFERENCE METER CALIBRATION
ENGLISH REFERENCE METER UNITS
Barometric Pressure 29.82
Meter Yw 1.00000
r ( deg R/fnches Hg) 17.64
Dry Gaa Meter
Time Pressure Meter Readings
(min) (in. H20)
20.50
5.00
13.00
8.50
27.50
26.50
•8.000
-8.000
-8.000
-5.400
-5.400
-5.400
Initial
742.719
768.193
774.402
790.575
798.821
825.423
DGM Serial * 6841495
Date 10/5/97 Filename: F:\DATAFILE\CALIBRAT\CAL HENU.DSKXDGH REF.
Revised: 06/08/95
(DGM) Temperature Uet Test Meter (UTM) DGM Coefficient Flow
Voluie Initial Final Meter Readings Volume Temp Coefficient Variation Rate
Final (cubic feet) (deg F) (deg F)
768.193
774.402
790.575
798.821
825.423
850.983
25.474
6.209
16.173
8.246
26.602
25.560
78.0
79.0
79.0
79.0
79.0
80.0
79.0
79.0
79.0
79.0
80.0
81.0
Initial
671.
697.
703.
719.
727.
753.
890
180
325
309
485
809
Final (cubic feet) (deg F) Yds Vds-(Avg.Yds) (CFM)
697.180
703.325
719.309
727.485
753.809
779.025
25.290 77.0 1.016 0.002 1.208
6.145 77.0 1.013 0.000 1.204
15.984 77.0 1.012 -0.002 1.204
Max Yds - Min Yds -0.003626886 Must be no greater than 0.
Average Yds -1.013636253 Must be between 0.95 to 1.
8.176 77.0 1.009 0.001 0.942
26.324 77.0 1.008 0.000 0.938
25.216 77.0 1.006 -0.001 0.932
Max Yds - Mln Yds -0.002262496 Nust be no greater than 0.
030
05
030
Average Tds -1.007525980 Must be betNeen 0.95 to 1.05
14.00
15.50
12.50
-3.800
-3.800
-3.800
850.983
861.899
953.219
861.899
873.960
962.970
10.916
12.061
9.751
81.0
81.0
86.0
81.0
82.0
86.0
779.
789.
879.
025
820
651
789.820
801.740
889.205
10.795 77.0 1.006 0.001 0.755
11.920 77.0 1.006 0.001 0.753
9.554 78.0 1.004 -0.001 0.747
Max Yds - Mln Yds -0.002245979 Must be no greater than 0.030
Average Yds -1.005164785 Must be between 0.95 to 1.05
23.50
17.50
15.00
32.00
35.C"y
15.00
-2.400
-2.400
-2.400
-1.600
-1.600
-1.600
962.970
976.611
986.740
995.413
1008.596
1022.986
976.611
986.740
995.413
1008.596
1022.986
1029.158
13.641
10.129
8.673
13.183
14.390
6.172
86.0
87.0
87.0
88.0
89.0
89.0
87.0
87.0
88.0
89.0
89.0
90.0
889.
902.
912.
921.
934.
948.
205
599
545
069
025
175
902.599
912.545
921.069
934.025
948.175
954.255
13.394 78.0 1.003 -0.001 0.557
9.946 78.0 1.004 0.000 0.556
8.524 78.0 1.006 0.002 0.556
Max Yds - Min Yds -0.002785363 Nust be no greater than 0.
Average Yds -1.004591811 Nuat be between 0.95 to 1.
12.956 78.0 1.006 -0.002 0.396
14.150 78.0 1.007 0.000 0.395
6.080 78.0 1.010 0.002 0.396
030
05
Nax Yds - Nin Yds -0.004205886 Nuat be no greater than 0.030
Average Yds -1.007822494 Nust be between 0.95 to 1.05
Overall Average Yds -1.007748265
I certify that the above Dry Gas Meter was calibrated in accordance with E.P.A. Method 5 , paragraph 7.1 :CFR 40 Part 60,
using the Precision Uet Test Meter f 11AE6, which In turn was calibrated using the American Bell Prover * 3785.
certificate f F107, whJcK* Is traceable to the National Bureau of Standards (N.I.S.T.).
Signature
Date
-------
REFERENCE METER CALIBRATION
ENGLISH REFERENCE METER UNITS
BaroMtrfc Pressure 29.73
Natar Yu 1.00000
K ( da* R/inches Ng) 17.64
OGN Serial f
Data
6841495
8/28/96
Filename: F:\DATAFILE\CALIBRAT\CAL MENU.OSKXDGM REF.
Ravlsed: 06/08/95
Tine Pressure
(win) (in. H20)
6.00 -6.60
24.00 -6.60
8.00 -6.60
10.00
35.00
16.50
12.50
14.00
58.50
16.50
42.00
66.50
15.90
13.50
35.30
-4.00
-4.00
-4.00
-2.80
-2.80
-2.80
-1.60
-1.60
-1.60
-1.00
•1.00
-1.00
Meter Readings
Initial Final
374.451 381.901
381.901 411.424
411.424 421.233
421.233
430.675
464.147
479.992
489.698
500.594
574.496
590.619
614.123
651.520
657.572
663.365
430.675
464.147
479.992
489.698
500.594
546.063
583.672
614.123
651.520
657.572
663.065
677.274
Dry Gas Meter (OGM) Temperature
VoluM Initial Final
(cubic feet) (deg F) (dag F)
7.450
29.523
9.809
73.0
74.0
76.0
76.0
76.0
76.0
Wet Tast Nater (UTH) OGM Coefficient Flow
Metar Readings Voluna Temp Coefficient Variation Rate
Initial Final (cubic feet) (deg F) Yds Yds-(Avg.Yds) (CFM)
496.572 503.987 7.415 77.0 1.007 -0.004 1.207
503.987 533.471 29.484 77.0 1.011 0.000 1.200
533.471 543.279 9.808 77.0 1.015 0.004 1.197
Max Yds - Nin Yds -0.007489914 Must ba no graatar than 0.030
Average Yds "1.011058546 Must ba between 0.95 to 1.05
9.482 77.0 1.013 0.009 0.926
33.204 77.0 1.002 -0.003 0.926
15.660 77.0 0.999 -0.006 0.927
Max Yds - Nin Yds -0.014197179 Must be no graatar than 0.030
Average Yds »1.004786738 Must be between 0.95 to 1.05
9.645 77.0 1.003 0.002 0.754
10.791 77.0 0.999 -0.002 0.753
45.064 77.0 1.001 0.000 0.752
Max Yds - Hin Yds • 0.00338145 Must be no graatar than 0.030
Average Yds -1.000808891 Must ba between 0.95 to 1.05
9.140 77.0 1.004 0.000 0.541
23.356 77.0 1.003 0.000 0.543
37.116 77.0 1.003 0.000 0.545
Max Yds - Min Yds •0.000835063 Must ba no graatar than 0.030
Average Yds -1.003302205 Must ba between 0.95 to 1.35
6.393 78.0 1.016 0.011 0.396
5.406 78.0 0.994 -0.010 0.390
14.115 78.0 1.003 -0.001 0.393
Hex 'as - Nin fds »0.021724294 Nust ba no graatar than 0.030
Average Yds «1.004344616 Must ba between 0.95 to 1.95
Overall Average /ds *1.004860199
! certify that the above Dry Gas Heter was calibrated in accordance with 5.P.A. Method 5 , paragraph 7.] ;CFR 40 Part 60,
jsinq the Precisian Wet rest deter * 11AE6. *hich in turn *as calibrated -using the American 3el( Prover * 3785.
certificate 4 ?107. whteh is rraceabte to the Rational Bureau n Standards (N.i.S.T.;.
9.442
33.472
15.845
9.706
10.896
45.469
9.176
23.504
37.397
6.052
5.493
14.209
76.0
77.0
77.0
78.0
78.0
78.0
79.0
80.0
80.0
81.0
82.0
82.0
77.0 543.279 552.761
77.0 552.761 S8S.96S
78.0 585.965 601.625
78.0 601.625 611.270
78.0 611.270 622.061
79.0 622.061 667.125
79.0 695.390 704.530
80.0 711.429 734.785
81.0 734.785 771.901
32.0 771.901 777.994
32.0 777.994 783.400
32.0 783.400 797.515
Signature c
Date
//
-------
4F
PACIFIC ENVIRONMENTAL SERVICES, INC.
4700 Doke Drive,
Suite ISO
Mason, Ohio 45040
Phone: (513) 398-2556
Fax (513) 398-3342
www.pcs.cMn
Pitor Tube Number:
Effective Length:
4F
49"
Date:
Calibrated By:
Pitot Tube Openings Damaged?
Pitot Tube Assembly Level?
O , = 1
P , - I
YES
L
YES
J
NO
'(< 10°)
j
Pi
A -
z » A sin Y "
w » A sin Q «
0.017
cm (in.) 0.32 cm ( < 1/8 in.)
cm (in.) 0.08 cm ( < 1/32 in.)
0.47 cm (in.)
0.47
D,
0.375
cm (in,)
cm (in.)
12/23/97
S. Simon
0.94
« 10")
The i>p»i ef f«cf-05«ninfl mltiugnmtnt sna<*n ieev« will not a nee: the Baseline ralu* efCp(x) so
long «• a. trO a, !• !«»» ihin or «quil to 10*. a, end a , I: lass ihon or !•:: man or
• qua* 10 0.12 em (I/a In ). in« w n Itti intn or tqutl 10 C.OB cm (1/11 in.) (r«t»r«nc« 11.0 in
Steilen 18 Oi
Pitot Tube Calibration Form
1998 Yearly Calibranra
-------
5C-1
PACIFIC ENVIRONMENTAL SERVICES, INC.
4700 Duke Drive,
Suite 150
Mason, Ohio 45040
Phone: (513) 398-2556
Fax (513) 398-3342
www.pes.coro
PUot Tube Number: 5C-1 Date:
Effective Lent-*: 61" Calibrated By.
Pitot Tube Openings Damaged? YES | NO |
Pitot Tube Assembly Level? | YES | NO
a i - 0 °(< 10") a 2 -
P, - 1 0«5°) (3, -
Y- i e = i A =
i = A sin Y = 0.017 cm (in.) 0.32 cm ( < 1/8 in.)
w «= A sin 6 = 0.017 cm (in.) 0.08 cm (< 1/32 in.)
PA - 0.474 cm (in.)
12/23/97
S. Simon
1 °« 10")
1 c«5°)
0.948
0.474
cm (in.)
0.375
cm (in.)
Tne types of race-opening ms«&nm«ni »nown above wii na ar»o tnebeeeme vemeerOp(s) *o
lorg as Sana "Si* i«s» than or equal to 10*, a, and aa » laaa tnan or equal to 5". z la leaa than or
equal to a 32 cm (i/« In.}, ana w K loss than orequa teO.O crn(ia2 in.) (mforoncol 1.O In
Pitot Tube Calibration Form
1998 Yearly Calibration
-------
PACIFIC ENVIRONMENTAL SERVICES.INC.
4700 Duke Drive,
Suite 150
Mason, Ohio
Phone: (513) 398-2556
Fax: (513) 3983342
www.pes.com
TEMPERATURE SENSOR CALIBRATION DATA
FOR STACK THERMOCOUPLES
THERMOCOUPLE NUMBER:
4F
DATE:
12/23/97
BAROMETRIC PRES.(ln.Hg):
AMBIENT TEMP. °F:
29.52
76
REFERENCE:
Mercury-in-glass:
Other:
'CALIBRATOR:
ASTM-3F
J.C.
Reference
point
number
1
2
3
4
Source8
(Specify)
Ambient Air
Cold Bath
Hot Bath
Hot Oil
Reference
Thermometer
Temperature,°F
76
38
204
341
Thermocouple
Potentiometer
Temperature,°F
76
38
204
342
Temperature
Difference,"
%
0.00
0.00
0.00
0.12
*Type of calibration used.
Vef. tempfsF+460Wtest thermometer temp.sF+46Q) X100
reftemp,DF+460
Comments:
100<1.5%
STACK THERMOCOUPLE CALIBRATION FORM 1998 Yearly Calibration
-------
PACIFIC ENVIRONMENTAL SERVICES.INC.
4700 Duke Drive,
Suite 150
Mason, Ohio
Phone: (513) 398-2556
Fax: (513) 3983342
www.pes.com
TEMPERATURE SENSOR CALIBRATION DATA
FOR STACK THERMOCOUPLES
THERMOCOUPLE NUMBER:
5C
DATE:
12/22/97
BAROMETRIC PRES.(ln.Hg):
AMBIENT TEMP. °F:
29.52
72
REFERENCE:
Mercury-in-glass:
Other
'CALIBRATOR:
ASTM-3F
J.C.
Reference
point
number
1
2
3
4
Source"
(Specify)
Ambient Air
Cold Bath
Hot Bath
Hot Oil
Reference
Thermometer
Temperature, °F
72
44
204
400
Thermocouple
Potentiometer
Temperature,°F
72
44
204
400
Temperature
Difference,1*
%
0.00
0.00
0.00
0.00
Type of calibration used.
"(ref. temo °F+46QWtest thermometer temp.°F+460^
X100
reftemp,°F+460
Comments:
100<1.5%
STACK THERMOCOUPLE CALIBRATION FORM
1998 Yearly Calibration
-------
TEMPERATURE SENSOR CALIBRATION FORM
Temperature Sensor No. D&M -1» Sensor Type KT-TC Length 1_
Ambient Temp. °F T^f Barometric Pressure, "Hg to
Reference Temp. Sensor:
Date
-li^fr
Cf
4.f
Ref.
Point
No.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Temp.
Source
iVio
hr\ f1-
"^o\<-,
Temp. °F
Ref.
Sensor
33
1^
-L^
Test
Sensor
*>&
7^-
11 0
Temp.
Diff. %
.4C<~
o
.^t=i
Within
Limits
Y/N
v|
V
^
Calibrated
By
\ift
JytS
Hfc
% Temp. Diff = (J?ef • Ten7P
- < rest
(Ref. Temp. + 460)
x 100 * 1.5
-------
TEMPERATURE SENSOR CAUBRATION FORM
Temperature Sensor No.
Ambient Temp. °F
Reference Temp. Senson
, _
Sensor Type K -T^ • Length
— Barometric Pressure, "Kg
Date
i C,-«4 V
1 ** » •» H *
/.
•'
Ref.
Point
No.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Temp.
Source
H^
Art A.
M°.lo'
Temp. °F
Ref.
Sensor
***
So
7f .
to*
Test
Sensor
3.3
•7.^
•to-*
•
Temp.
Diff. %
o
.1^7
o
Within
jLJlUUS
T/N
V
Y
Y
- -
Calibrated
By
jNu^>
T(U\
ku%
w
% Temp. Diff «
*^
Teinp * 40) "
460)
,
(JZef . Teop. + 460)
x 100 * 1.5 %
-------
TEMPERATURE SENSOR CALIBRATION FORM
Temperature Sensor No.
Ambient Temp. °F
Sensor Type K-Tc. Length _
Reference Temp. Sensor:
Barometric Pressure, "Hg 7,«». <.i
Date
&--LD.W
"
«
Ref.
Point
No.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Temp.
Source
j£5
*ftH£'
wtv^
i
Temp. °F
Ref.
Sensor
^) ^5
I C^
Z^<-
Test
Sensor
34-
75-
Temp.
Diff. %
o
Within
Limits
Y/N
Calibrated
By
/ .
V .
% Temp. Diff = (J?ef '
p
40) " ( Teat
460)
,
(Ref. Temp. + 460)
100 * 1.5
-------
TEMPERATURE SENSOR CALIBRATION FORM
Temperature Sensor No.
Ambient Temp. °F T.
Reference Temp. Sensor:
- 007"
Sensor Tvne fc-Tc. Length I
Barometric Pressure, "Hg 7 Q
Date
VZO--IY
^t
,f
Ref.
Point
No.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Temp.
Source
fC<£
ti^o
^-*i?>/
M/t
(3»lc
Kco
Temp. °F
Ref.
Sensor
3-z^
7<*
•7^0 c,
Test
Sensor
I*-
17
•2^>^
Temp.
Diff . %
.^roc.
./ S'Co
0/So
Within
Limits
Y/N
y
X
y
Calibrated
By
(\Uk
j\t^
/V^>
c
% Temp. Diff =
(Ref. Temp + 460) - ( Test Temp. +
(.Ref. Temp. + 460)
460)
x 100 s 1.5
-------
NOZZLE CALIBRATION SHEET
DATE: f-J- ?*
CAUBRATION BY:
Nozzle
Identification
Number
&L n
D 1 , in.
.3 "So
D2,in.
.^3o
D3,in.
•cP^O
AD, in.
Where:
.
\,
= nozzle diameter measured on a different diameter, in.
Tolerance = measure within 0.001 in.
AD = maximum difference in any two measurements, in.
Tolerance = 0.004 in.
Davg= average of D1, D2, Dg.
-------
NOZZLE CALIBRATION SHEET
DATE:
CALIBRATION RV-
Nozzle
Identification
Number
-------
Airgas
Airgas Specialty Gas
325 McCaustandCourt
Cheshire. CT 06410
Phone (203) 250-6827
FAX: (203)2504842
Certificate of Analysis: E.P.A. Protocol Gas Mixture
Rec#
Cylinder No:
Cylinder Pressure:
Certification Date
4149
CC86779
2000
3/2/98
Purchase Order #
Expiration Date:
Laboratory:
139680
3/2/01
Cheshire, CT
Reference Standard Information:
Type Component
GMIS
GMIS
Carbon Dioxide
Oxygen
Instrumentation:
Instniment/Model/Serial No.
Rosemount/NGA2000/Rack#1
Servomex/244/701/488
Cvl. Number
CC34977
CC19914
Analytical Principle
NDIR
Parmagnetic
Concentration
14.08%
20.98 %
Analytical Methodology does not require correction for analytical interferences.
Certified Concentrations:
Analytical Results:
1st Component:
1st Analysis Date:
R 3259
S 2.940
Z 0265
2nd Component:
IstAnatywsDate:
R 173.630
S 91.580
Z 1.890
2/16/98
S
Z '
R
3/2/96
S
Z
R
2.899
0256
3298
91.620
1.420
173.630
Z
R
S
Z
R
S
0.305
3.305
2.939
1.460
173.810
91.690
Cone
Cone
Cone
AVG:
Cone
Cone
Cone
AVG:
10.931 %
10.981 %
11.012%
10.975 %
11.118%
11.103%
11.084%
11.102%
Certification performed in accordance with "EPA Traceability Protocol (Jan. 1998)" using the assay
procedures listed.
Do not use cylinder below 150 psig.
-------
Airgas
Airgas Specialty Ga
325 McCausland Court
Cheshire. CT 06410
Phone:(203)250-6827
FAX. (203)250-6842
Certificate of Analysis: E.P.A. Protocol Gas Mixture
Rec#
Cylinder No:
Cylinder Pressure:
Certification Date
4150
CC86922
2000
3/2/98
Purchase Order #
Expiration Date:
Laboratory:
13980
3/2/01
Cheshire. CT
Reference Standard Information:
Type Component
GMIS
GMIS
Carbon Dioxide
Oxygen
Instrumentation:
InstmmemVModet/Serial No.
Rosemount/NGA2000/Rack#1
Servomex/244/701/488
Cvl. Number
CC34977
CC19914
Analytical Principle
NDIR
Pamnagnetic
Concentration
14.08 %
20.98 %
Analytical Methodology does not require correction for analytical interferences.
Certified Concentrations:
Analytical Results:
1st Component:
2nd Component:
1st Analysis Ma:
R 173.630
S 156.977
Z 1.890
3/2/96
S
Z
R
156.890
1.420
173.630
Z
R
S
1.460
173.810
157.030
Cone
Cone
Cone
AVG.
Cone
Cone
Cone
AVG:
19.065 %
19.006%
18.964 %
19.012 %
19.175 %
19.165 %
19.158 %
19.166 %
Certification performed in accordance with "EPA Traceabittty Protocol (Jan. 1998)' using the assay
procedures listed.
Do not use cylinder below 150 psig.
Approved for Release
-------
SPECTRA GASES
277CoitSt»lrvinglon,NJ07111 USA Tel.: (973) 372-2060 • (800) 932-0624 • Fax: (973) 372-8551
Shipped Prom: 80 Industrial Drive • Alpha. N.J. 06665
CERTIFICATE OF ANALYSIS
EPA PROTOCOL MIXTURE
PROCEDURE *: O1
CUSTOMER:
SGI ORDER «:
ITEM*:
P.O.*:
Spectra
128639
7
8.0007
CYLINDER*: CC84880
CYLINDER PRES: 2000 PSIG
C6A OUTLET: 590
STOCK *: RS-59
CERTIFICATION DATE: 11/21/87
EXPIRATION DATE: 11/21/2000
CERTIFICATION HISTORY
COMPONENT
Propane
DATE OF
ASSAY
11/21/97
MEAN
CONCENTRATION
30.1 ppm
CERTIFIED
CONCENTRATION
30.1 ppm
ANALYTICAL
ACCURACY
+/-1%
BALANCE
Air
REFERENCE STANDARDS
COMPONENT
Propane
SRM/NTRMf
SRM-2643a
CYLINDER*
SX20148
CONCENTRATION
99.1 ppm
INSTRUMENTATION
COMPONENT
Propane
MAKE/MODEL
H. Packard 6890
SERIAL*
US00001434
DETECTOR
GC-FID
CALIBRATION
DATE(S]
10/23/97
THW STANDARD WAS CERTOED ACCORDMQ TO THE EPA PROTOCOL PROCEDURE
DO NOT USE THW STANDARD V THE CYUNDER PRESSURE IS LESS THAN 160 PSK2.
ANALYST:
DATE:
i 1/21/97
TED NEEME
-------
SPELTRH 6RSES INC!
3434 Route 22 West • Branchburg. NJ 08876 USA Tel.: (608) 252-9300 • (800) 932-0624 • Fax (908) 252-0811
Shipped From: 80 Industrial Drive • Alpha, NJ 08865
CERTIFICATE OF ANALYSIS
EPA PROTOCOL MIXTURE
PROCEDURE *: Q1
CUSTOMER:
SGI ORDER *:
ITEM*:
P.0.f:
National Lime & Stone Companj
135736
1
3538
CERTIFICATION DATE: 3/25/98
EXPIRATION DATE: 3/25/2001
CERTIFICATION HISTORY
CYLINDER*: CC88348
CYLINDER PRES: 2000 PSIG
CGA OUTLET: 590
COMPONENT
^Propane
DATE OF
ASSAY
3/25/98
MEAN
CONCENTRATION
55.4 ppm
i
•
BALANCE Air
REFERENCE STANDARDS
COMPONENT
Propane
SRM/NTRM*
SRM-2643a
CYUNDEfe*
SX2014B
!
CERTIFIED
CONCENTRATION
55.4 ppm
CONCENTRATION
W4 ••••.
.1 pfHn
ANALYTICAL
ACCURACY
+/-1%
INSTRUMENTATION
COMPONENT
Propane
MAKE/MODEL
H. Packard 6890
SERIAL*
US00001434
DETECTOR
GC-FID
CALIBRATION
DATEfS)
3/25/98
TMS STANDARD WAS
fWED ACCORDMO TO THE EPA PROTOCOL PROCEDURES.
DO NOT USE TH8 STANDARD FTteCYUNDER PRESSURE IS LESS THAN IMPSn.
ANALYST:
DATE:
8/31/98
TEDNEEME
-------
SPECTRA GASES
277CoitSt.«lrvington.NJ07111 USA Tel.: (201) 372-2080 • (800) 932-0824 • Fax (201) 372-8551
Shipped From: 80 Industrial Drive • Alpha, NJ. 08865
CERTIFICATE OF ANALYSIS
EPA PROTOCOL MIXTURE
PROCEDURE*: O1
CUSTOMER:
SGI ORDER *:
ITEM*:
P.O.*:
Stock G-RS-69
950527
6
S0005
CERTIFICATION DATE: 10/8/97
EXPIRATION DATE: 10/8/2000
CYLINDER *: CC82246
CYLINDER PRES: 2000 PSIG
CGA OUTLET: 590
COMPONENT
Propane
DATE OF
ASSAY
10/8/97
MEAN
CONCENTRATION
82.1 ppm
CERTIFIED
CONCENTRATION
ANALYTICAL
ACCURACY
+M%
BALANCE
Air
COMPONENT
SRM/NTRM*
SRM-26438
CYLINDER*
8X20148
CONCENTRATION
99.1 ppm
COMPONENT
MAKE/MODEL
H. Packard-6890
SERIAL*
US00001434
DATE(S)
THB STANDARD WAS CERTFED ACCORDMO TO THE EPA PROTOCOL PROCEDURES.
DO NOT USE THB STANDARD f THE CYUNDER PRESSURE IS LESS THAN «0 PSM.
ANALYST:
DATE:
TED NEEME
10/8/97
-------
rRHGHSES
3434 Route 22 West • Branchburg, NJ 08876 USA Tel: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0611
SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08865 TEL (908) 454-7455
SHIPPED TO:
APCCLTD
60 Industrial Park Road West
Tdland.CT 06084
CERTIFICATE
OF
ANALYSIS
SGI ORDER * : 134813
ITEM*: 4
CERTIFICATION DATE: 8/11/98
P.OM: 3482
BLEND TYPE: CERTIFIED
CYLINDER *: CC90784
CYLINDER PRES: 2000 psig
CYLINDER VALVE: CGA 330
ANALYTICAL ACCURACY: + / - 5%
COMPONENT
REQUESTED GAS
CONC
ANALYSIS
Hydrogen Chloride
Nitrogen
25.0 ppm
Balance
26.6 ppm
Balance
ANALYST:
Ted Meeme
RECEIVED AU6 1 7 139b
DATE:
8/11/98
USA • United Kingdom • Germany • Japan
iso a ooa
-------
RB6RSES
^^1 3434 Route 22 West • Branchburg. NJ 08876 USA Tel: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811
SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08865 TEL: (908) 454-7455
SHIPPED TO:
APCCLTD
60 Industrial Park Road West
Tolland, CT 06084
CERTIFICATE
OF
ANALYSIS
SGI ORDER f: 134813
ITEM*: 2
CERTIFICATION DATE: 8/11/98
P.O.*: 3482
BLEND TYPE: CERTIFIED
CYLINDER *:919527Y
CYLINDER PRES: 2000 psig
CYLINDER VALVE: CGA 330
ANALYTICAL ACCURACY: + / - 6%
COMPONENT
REQUESTED GAS
CONC
ANALYSIS
Hydrogen Chloride
195 ppm
196 ppm
Nitrogen
Balance
Balance
REQEIVED AU6 1 7 ',
ANALYST:
Ted Neeme
DATE:
8/11/98
USA • United Kingdom • Germany • Japan
ISO BOOS
-------
SPECTRfl GflSES
3434 Route 22 West • Branchburg, NJ 08876 USA Tel: (90S) 252-9300 • (800) 932-0624 • Fax: (908) 252-0611
SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08865 TEL: (908) 454-7455
SHIPPED TO:
APCCLTD
60 Industrial Park Road West
Tdland, CT 06084
CERTIRCATE
OF
ANALYSIS
SGI ORDER*: 134813
ITEM*: 1
CERTIFICATION DATE: 8/11/98
P.O.*: 3482
BLEND TYPE: CERTIFIED
CYLINDER * : 1015552Y
CYLINDER PRES: 2000 psig
CYLINDER VALVE: CGA 330
ANALYTICAL ACCURACY: +/-6%
COMPONENT
REQUESTED GAS
CONC
ANALYSIS
Hydrogen Chloride
Nitrogen
300 ppm
Balance
310 ppm
Balance
ANALYST:
Ted Neeme
RECEIVED AUfi 1 7 198S
DATE:
8/11/98
USA • United Kingdom • Germany • Japan
iso B o o a
-------
INLET
HCI In-Situ Matrix Spike
Recovery Efficiencies
Plant Carey, Ohio
Date
Project No. 98061
Cs-Spike Gas Cone, (ppm) 310
Test 1 Su-Native Concentration (ppm)
nrtial * Qt-Analyzer Flow (Ipm)
Qs-Dilution Rate (Ipm)
Sm-Observed Concentration (ppm)
Ce-Expected Concentration (ppm)
Spike Recovery "»-
Su-Native Concentration (ppm) 40
Final Qt-Analyzer Flow (Ipm) 10.0
Qs-Dilution Rate (Ipm) 1.0
Sm-Observed Concentration (ppm) 68.2
Ce-Expected Concentration (ppm) 64.5
Spike Recovery (%) 106%
* In the interest of time, an initial HCI spike was not performed.
-------
TABLE C-3.4
National Lime & Stone Company Calibration Table
INLET
Carey, Ohio
THC
ZERO GAS
LOW RANGE
MID RANGE
HIGH RANGE
O2
ZERO GAS
MID RANGE
HIGH RANGE
CO2
ZERO GAS
MID RANGE
HIGH RANGE
HCI
ZERO GAS
LOW GAS
MID RANGE
HIGH RANGE
CALIBRATION ERROR TEST
Range 0 - tOOppm
ACTUAL CONC
0.0
30.1
55.4
82.1
Range 0 - 25%
ACTUAL CONC
0.0
11.1
19.2
Range 0 - 25%
ACTUAL CONC
0.0
11.0
19.0
RESPONSE
3.0
34.8
59.2
81.6
RESPONSE
0.2
11.6
19.5
RESPONSE
-0.2
11.5
18.6
DIFFERENCE
3.0
4.7
3.8
-0.5
DIFFERENCE
0.2
0.5
0.3
DIFFERENCE
-0.2
0.5
-0.4
% SPAN
3.0%
15.6%
6.9%
-0.6%
% SPAN
0.8%
2.0%
1.2%
% SPAN
•0.8%
2.0%
-1.6%
Range 0 -350ppm
ACTUAL CONC
0.0
26.6
196.0
310.0
RESPONSE DIFFERENCE
Not Available*
% SPAN
0.0%
0.0%
0.0%
0.0%
*ln the interest of time, the inlet was not calibrated.
-------
Continuous Emissions Monitoring Data Sheet
EPA Methods 3A, 2SA, and 322
Project Number
Firm Name
Site Location
TMI Number
Source
Date
Analyzer
Hydrooen Chloride
Total Hydrocarbons
Oxygen
Cerbon Dioxide
98061
PES
National Lime
1
Inlet
fl/2/98
Range
0-350ppm
0-lOOppm
0-25%
0-25%
Teetere
Ambient Temp
Time
•
zero
upscale
zero
upscale
zero
upscale
zero
upscale
-
70
1250-1615
RackCal.
1.3
rVa
rva
n/a
0.1
11.2
-0.3.
11.4
PraTast
Sys. Cal.
1.3
n/a
3.2
34.8
0.2
11.6
-0.2
11.5
Cat. Bias
% of Span
0.0%
n/a
nit
n/e
0.4%
1.6%
0.4%
0.4%
±5%
Post last
Sys. Cal.
3.0
n/a
4.0
34.7
0.2
11.3
0.0
11.3
Cal. Bias
% of Span
0.5%
n/a
nit
nit
0.4%
0.4%
1.2%
-0.4%
±5%
Drift
% of Span
-0.5%
n/a
-0.8%
0.1%
0.0%
1.2%
-0.8%
0.8%
13%
Avfl. Analyzer
Re»pon*e
29.4
Actual Oa»
Cone.
n/a
-------
Outlet
HCI In-Situ Matrix Spike
Recovery Efficiencies
3lant
Date
Project No.
Carey, Ohio
98061
Cs-Spike Gas Cone, (ppm)
310
festl
nitial
Su-Native Concentration (ppm)
Qt-Analyzer Flow (Ipm)
Qs-Dilution Rate (Ipm)
Sm-Observed Concentration (ppm)
Ce-Expected Concentration (ppm)
Spike Recovery '0/-
Su-Native Concentration (ppm) *
Final Qt-Analyzer Flow (Ipm)
Qs-Dilution Rate (Ipm)
Sm-Observed Concentration (ppm)
Ce-Expected Concentration (ppm)
Spike Recovery (%)
Average concentration over Snrtest was used for value.
13.8
10
2
46.8
63.2
74%
9.1
10
2
72.6
59.3
123%
-------
TABLE C-3.3
National Lime & Stone Company Calibration Table
OUTLET
Carey, Ohio
THC
ZERO GAS
LOW RANGE
MID RANGE
HIGH RANGE
02
ZERO GAS
MID RANGE
HIGH RANGE
C02
ZERO GAS
MID RANGE
HIGH RANGE
HCI
ZERO GAS
LOW GAS
MID RANGE
HIGH RANGE
CALIBRATION ERROR TEST
Range 0 - 100ppm
ACTUAL CONC
0.0
30.1
55.4
82.1
Range 0 - 25%
ACTUAL CONC
0.0
11.1
19.2
Range 0 - 25%
ACTUAL CONC
0.0
11.0
19.0
RESPONSE
1.3
30.9
55.4
80.9
RESPONSE
0.2
11.6
19.5
RESPONSE
-0.2
11.5
18.6
DIFFERENCE
1.3
0.8
0.0
-1.2
DIFFERENCE
0.2
0.5
0.3
DIFFERENCE
-0.2
0.5
-0.4
% SPAN
1.3%
2.7%
0.0%
-1.5%
% SPAN
0.8%
2.0%
1.2%
% SPAN
-0.8%
2.0%
-1.6%
Range 0 -350ppm
ACTUAL CONC
0.0
26.6
196.0
310.0
RESPONSE
-0.1
23.7
196.8
312.2
DIFFERENCE
-0.1
-2.9
0.8
2.2
% SPAN
0.0%
-0.8%
0.2%
0.6%
-------
Continuous Emissions Monitoring Data Sheet
EPA Method* 3A, 25A, Mid 322
Project Number
FlrmNwiM
Site Location
Te»t Number
Source
Date
98061
PES
National Lime
_ Teeter*
Ambient Temp
"Time
Outlet
9/2/98
70
1250-tfirf
Analyzer
Hydrogen Chloride
Totel Hydrocarbon*
Oxygen
Carbon Dioxide
Range
0-350ppm
0-100ppm
0-25%
0-25%
zero
upacato
Rack Cat.
upscale
zero
upscale
zero
upscale
23.7
n/a
n/a
0.1
19.1
•0.3
18.6
Pretest
Sys. Cal.
-o.i
23.7
1.3
30.9
0.1
19
18.5
Cal. Bias
% of Span
0.0%
0.0%
n/a
n/a
0.0%
-0.4%
1.2%
-0.4%
±5%
Post Test
Sys. Cal.
2.5
20.7
2.6
29.6
0.4
19.6
0.0
18.5
Cal. Bias
% of Span
0.7%
-0.9%
n/a
n/a
1.2%
2.0%
1.2%
-0.4%
±5%
Drift
% of Span
•0.7%
0.9%
-1.3%
1.3%
•1.2%
-2.4%
0.0%
0.0%
±3%
Avg. Analyzer
Reaponae
9.1
Actual Qa*
Cone.
n/a
-------
APPENDIX F
PROCESS DATA
Process data supplied by
Research Triangle Institute under a separate work assignment.
.
-------
-------
Process Information
Kiln 1 was built in 1963, and is one of first rotary hearth designs by the Calcimatic
company (see Figure 1). The kiln is torus-shaped, and rotates counterclockwise. Dolomitic
limestone, which is mined on-site, enters the kiln through a preheater, and is deposited onto a
torus-shaped tray inside the kiln. The limestone is heated by natural gas burners, which are
located on the outside and inside of the kiln. Viewed from above, the limestone travels
counterclockwise with the kiln while combustion gases travel clockwise. Finished lime is
scraped off the tray after one revolution of the kiln.
Exhaust from kiln 1 passes through a preheater, cyclone, venturi scrubber, cyclonic mist
eliminator, and fan; exhaust from the fan is combined with exhaust from another kiln's air
pollution control system and then vented through a stack. Water is sprayed into the throat of the
venturi scrubber. The mist eliminator removes the water from the exhaust; water from the mist
eliminator is sent to a settling pond to remove solids. Clarified water is returned to the scrubber;
city water or quarry water is used for make-up water.
Process Monitoring
Table 1 presents process parameters recorded during testing for the kiln and scrubber,
respectively. Table 2 presents statistical analyses of the data in Table 1. The following points
pertain to these tables.
• The average of the recordings of static pressure at the inlet of the venturi and the
average of the recordings of static pressure at the outlet of the venturi were 16
inches of water (vacuum) and 30 inches of water (vacuum), respectively; based on
these numbers, the differential pressure across the venturi was 14 inches of water.
During the pre-test site survey, the pressure drop across venturi was 12 to 13
inches of water.
• The average of the recordings of kiln speed (actually, the inverse of kiln speed)
was 81.4 minutes per revolution; the percent relative standard deviation for this
parameter was 0.646 percent During the pre-test site survey, plant personnel
stated that minutes per revolution of the kiln varies from 50 to 80.
• The amperage of the scrubber pump, which provides an indication of water flow
to the scrubber, remained constant during testing.
• The average of the recordings of natural gas to the kiln was 25.0 million standard
cubic feet per hour (mscfh). During a phone call to the plant on March 17,1998,
plant personnel stated the fuel rate to kiln 1 was 45 mscfh.1
-------
During the pre-test site survey, plant personnel stated that the dolomitic lime
contained approximately 40.1 percent magnesium oxide (MgO), and 56.9 percent
calcium oxide (CaO).
Note, the plant does not measure limestone feed rate and lime production rate.
-------
Limestone
k Combustion exhaust
Ume
Interior tray wfthln kiln
.-*—-^
location of (nteilor trey
City water
Kme x
outside burner ports for
natural gas
Location of measurements
A - mscf of natural gas
B-pump amps
C • static pressure
D • gas sampling
E • temperature wfthln kfln
Figure 1. Kiln 1 at National Ume and Stone
-------
Table 1. Prooae* Parameters Recorded During Emissions Tasting of Kiln 1 at National Lime and Stone September/, 1998
Time
Qas Rate, mfflkxi Pressure at venturl Pressure at venturl Calculated differential "~
standard cubic MefHjO outlet, "HjO pressure across venturl, Kiln speed, Temperature Scrubber
feet per hour (vacumm) _ (vacuum) _ 'H^ _ mln/rev Inside kiln, "F pump, amps
12:56 PM
1:13 PM
1:33 PM
1:52 PM
2:05 PM
2:30 PM
2:41 PM
3:00 PM
3:16 PM
3:36 PM
3:56 PM
4:14 PM
4:31 PM
4:50 PM
5:09 PM
521PM
25.3
25.2
27.6
24.3
22.7
25.5
23.7
28.0
24.4
23.3
25.6
23.8
26.5
24.4
24.2
25.9
16.6
16.5
16.5
16.8
16.4
16.8
17.1
16.1
16.9
16.6
16.7
16.8
16.8
16.8
16.8
17.0
30.1
30.6
29.9
30.6
30.2
30.2
30.6
30.1
30.1
30.3
30.3
30.2
30.4
30.3
30.4
30.3
13.5
14.1
13.4
13.8
13.8
13.6
13.5
14.0
13.2
13.7
13.6
13.4
13.6
13.5
13.6
13.3
81.6
81.7
82.2
81.5
81.4
81.7
80.4
80.2
81.6
81.3
81.7
81.6
82.1
81.3
81.1
81.7
2348
2349
2343
2355
2367
2357
2320
2335
2348
2368
2354
2336
2345
2342
2363
2353
42
42
42
42
42
42
42
42
42
42
•42
42
42
42
42
42
Table 2. SurUsucal Analysis of Process Parameters Recorded During Emissions Testing of Kiln 1 at National Ume and Stone September^ 1998
Time
Gas Rate, mffiton Calculated differential
standardcubfc Pressure at venturl Pressure at venturl pressure across venturl, KBnspeed, Temperature Scrubber
feet per hour NefHgO ouflefH^O 'HaO mln/rev Inside Mln.°F pump, amps
w m recuiuni||v
Minimum recM value
Maximum recfd value
Average of retfd values
16
22.7
28.0
25.0
5.90
16
16.1
17.1
16.7
1.47
16
29.9
30.6
30.3
0.659
16
13.2
14.1
13.6
1.761
16
80.2
82.2
81.4
0.646
16
2320
2368
2349
0.5307
16
42.0
42.0
42.0
0.000
Acronyrns *id abbreviations: rec-d - recorded; % RSD - percent relative standard deviation;
-------
6
References
1. Telephone Contact Summary, C. Brockmann, RTI, with D. Mapes, National Lime and
Stone, March 17,1998, to clarify information gathered during the pre-test site survey.
-------
I,**- ••
APPENDIX G
SAMPLING & ANALYSIS METHODS
' * i- ^
23 with Proposed Amendments, 25A, Proposed 322)
-------
Appendix G. 1
Sampling & Analysis Methods
EPA Method 1
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
Method 1 - Sample and Velocity Traverses for Stationary Sources
1. PRINCIPLE AND APPLICABILITY
1.1 Principle. To aid in the representative measurement of
pollutant emissions and/or total volumetric flow rate from a
stationary source, a measurement site where the effluent stream is
flowing in a known direction is selected, and the cross-section of
the stack is divided into a number of equal areas. A traverse
point is then located within each of these equal areas.
1.2 Applicability. This method is applicable to flowing gas
streams in ducts, stacks, and flues. The method cannot be used
when: (1) flow is cyclonic or swirling (see Section 2.4), (2) a
stack is smaller than about 0.30 meter (12 in.) in diameter, or
0.071 m2 (113 in.2) in cross-sectional area, or (3) the measurement
site is less than two stack or duct diameters downstream or less
than a half diameter upstream from a flow disturbance.
The requirements of this method must be considered before
construction of a new facility from which emissions will be
measured; failure to do so may require subsequent alterations to
the stack or deviation from the standard procedure. Cases
involving variants are subject to approval by the Administrator,
U.S. Environmental Protection Agency.
/
/
2. PROCEDURE \
2.1 Selection of Measurement Site. Sampling or velocity
measurement is performed at a site located at least eight stack or
duct diameters downstream and two diameters upstream from any flow
disturbance such as a bend, expansion, or contraction in the stack,
or from a visible flame. If necessary, an alternative location may
be selected, at a position at least two stack or duct diameters
downstream and a half diameter upstream from any flow disturbance.
For a rectangular cross section, an equivalent diameter (D,) shall
be calculated from the following equation, to determine the
upstream and downstream distances:
Prepared by Emission Measurement Branch EMTIC TM-001
Technical Support Division, OAQPS, EPA
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
2LW
(L + W)
Eq. 1-1
Where
Length and N • width.
An alternative procedure is available for determining the
acceptability of a measurement location not meeting the criteria
above. This procedure,
determination of gas flow angles at the sampling points and
comparing the results with acceptability criteria, is described in
Section 2.5.
2.2 Determining the Number of Traverse Points.
2.2.1 Particulate Traverses. When the eight- and two-diameter
criterion can be met, the minimum number of traverse points shall
be: (1) twelve, for circular or rectangular stacks with diameters
(or equivalent diameters) greater than 0.61 meter (24 in.); (2)
eight, for circular stacks with diameters between 0.30 and 0.61
meter (12 and 24 in.); and (3) nine, for rectangular stacks with
equivalent diameters between 0.30 and 0.61 meter (12 and 24 in.).
When the eight- and two-diameter criterion cannot be met, the
minimum number of traverse points is determined from Figure 1-1.
Before referring to the figure, however, determine the distances
from the chosen measurement site to the nearest upstream and
downstream disturbances, and divide each distance by the stack
diameter or equivalent diameter, to determine the distance in terms
of the number of duct diameters. Then, determine from Figure 1-1
the minimum number of traverse points that corresponds: (1) to the
number of duct diameters upstream; and (2) to the number of
diameters downstream. Select the higher of the two minimum numbers
of traverse points, or a greater value, so that for circular stacks
the number is a multiple of 4, and for rectangular stacks, the
number is one of those shown in Table 1-1.
Prepared by Emission Measurement Branch
Technical Support Division, OAQPS, EPA
EMTZC TM-001
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 3
2.2.2 Velocity (Non-Particulate) Traverses. When velocity or
volumetric flow rate is to be determined (but not particulate
matter), the same procedure as that used for particulate traverses
(Section 2.2.1) is followed, except that Figure 1-2 may be used
instead of Figure 1-1.
2.3 Cross-Sectional Layout and Location of Traverse Points.
2.3.1 Circular Stacks. Locate the traverse points on two
perpendicular diameters according to Table 1-2 and the example
shown in Figure 1-3. Any equation (for examples, see Citations 2
and 3 in the Bibliography) that gives the same values as those in
Table 1-2 may be used in lieu of Table 1-2.
For particulate traverses, one of the diameters must be in a plane
containing the greatest expected concentration variation, e.g.,
after bends, one diameter shall be in the plane of the bend. This
requirement becomes less critical as the distance from the
disturbance increases; therefore, other diameter locations may be
used, subject to the approval of the Administrator.
In addition, for stacks having diameters greater than 0.61 m (24
in.), no traverse points shall be within 2.5 centimeters (1.00 in.)
of the stack walls; and for stack diameters equal to or less than
0.61 m (24 in.), no traverse points shall be located within 1.3 cm
(0.50 in.) of the stack walls. To meet these criteria, observe the
procedures given below.
2.3.1.1 Stacks With Diameters Greater Than 0.61 m (24 in.). When
any of the traverse points as located in Section 2.3.1 fall within
2.5 cm (1.00 in.) of the
stack walls, relocate them away from the stack walls to: (1) a
distance of
2.5 cm (1.00 in.); or (2) a distance equal to the nozzle inside
diameter, whichever is larger. These relocated traverse points (on
each end of a diameter) shall be the "adjusted" traverse points.
Whenever two successive traverse points are combined to form a
single adjusted traverse point, treat the adjusted point as two
separate traverse points, both in the sampling (or velocity
measurement) procedure, and in recording the data.
2.3.1.2 Stacks With Diameters Equal To or Less Than 0.61 a (24
in.). Follow the procedure in Section 2.3.1.1, noting only that
any "adjusted* points should be relocated away from the stack walls
to: (1) a distance of 1.3 cm (0.50 in.); or (2) a distance equal to
the nozzle inside diameter, whichever is larger.
2.3.2 Rectangular Stacks. Determine the number of traverse points
as explained in Sections 2.1 and 2.2 of this method. From Table 1-
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 4
1, determine the grid configuration. Divide the stack cross-
section into as many equal rectangular elemental areas as traverse
points, and then locate a traverse point at the centroid of each
equal area according to the example in Figure 1-4.
If the tester desires to use more than the minimum number of
traverse points, expand the "minimum number of traverse points"
matrix (see Table 1-1) by adding the extra traverse points along
one or the other or both legs of the matrix; the final matrix need
not be balanced. For example, if a 4 x 3 •minimum number of
points" matrix were expanded to 36 points, the final matrix could
be 9 x 4 or 12 x 3, and would not necessarily have to be 6 x 6.
After constructing the final matrix, divide the stack cross-section
into as many equal rectangular, elemental areas as traverse points,
and locate a traverse point at the centroid of each equal area. The
situation of traverse points being too close to the stack walls is
not expected to arise with rectangular stacks. If this problem
should ever arise, the Administrator must be contacted for
resolution of the matter.
2.4 Verification of Absence of Cyclonic Flow. In most stationary
sources, the direction of stack gas flow is essentially parallel to
the stack walls. However, cyclonic flow may exist (1) after such
devices as cyclones and inertial demisters following venturi
scrubbers, or (2) in stacks having tangential inlets or other duct
configurations which tend to induce swirling; in these instances,
the presence or absence of cyclonic flow at the sampling location
must be determined. The following techniques are acceptable for
this determination. Level and zero the manometer. Connect a Type
S pitot tube to the manometer. Position the Type S pitot tube at
each traverse point, in succession, so that the planes of the face
openings of the pitot tube are perpendicular to the stack cross-
sectional plane; when the Type S pitot tube is in this position, it
is at "0° reference." Note the differential pressure (Ap) reading
at each traverse point. If a null (zero) pitot reading is obtained
at 0° reference at a given traverse point, an acceptable flow
condition exists at that point. If the pitot reading is not zero
at 0° reference, rotate the pitot tube (up to ±90° yaw angle) ,
until a null reading is obtained. Carefully determine and record
the value of the rotation angle (a) to the nearest degree. After
the null technique
has been applied at each traverse point, calculate the average of
the absolute values of a; assign a values of 0° to those points for
which no rotation was required, and include these in the overall
average. If the average value of a is greater than 20°, the
overall flow condition in the stack is unacceptable, and
alternative methodology, subject to the approval of the
Administrator, must be used to perform accurate sample and velocity
traverses. The alternative procedure described in Section 2.5 may
be used to determine the rotation angles in lieu of the procedure
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 5
described above.
2.5 Alternative Measurement Site Selection Procedure. This
alternative applies to sources where measurement locations are less
than 2 equivalent or duct diameters downstream or less than one-
half duct diameter upstream from a flow disturbance. The
alternative should be limited to ducts larger than 24 in. in
diameter where blockage and wall effects are minimal. A
directional flow-sensing probe is used to measure pitch and yaw '
angles of the gas flow at 40 or more traverse points; the resultant
angle is calculated and compared with acceptable criteria for mean
and standard deviation.
NOTE: Both the pitch and yaw angles are measured from a line
passing through the traverse point and parallel to the stack axis.
The pitch angle is the angle of the gas flow component in the plane
that INCLUDES the traverse line and is parallel to the stack axis.
The yaw angle is the angle of the gas flow component in the plane
PERPENDICULAR to the traverse line at the traverse point and is
measured from the line passing through the traverse point and
parallel to the stack axis.
2.5.1 Apparatus.
2.5.1.1 Directional Probe. Any directional probe, such as United
Sensor Type DA Three-Dimensional Directional Probe, capable of
measuring both the pitch and yaw angles of gas flows is acceptable.
(NOTEs Mention of trade name or specific products does not
constitute endorsement by the U.S. Environmental Protection
Agency.) Assign an identification number to the dire ional probe,
and permanently mark or engrave the number on the body of the
probe. The pressure holes of directional probes are susceptible to
plugging when used in particulate-laden gas streams. Therefore, a
system for cleaning the pressure holes by "back-purging" with
pressurized air is required.
2.5.1.2 Differential Pressure Gauges. Inclined manometers, U-tube
manometers, or other differential pressure gauges (e.g., magnehelic
gauges) that meet the specifications described in Method 2, Section
2.2.
NOTE: If the differential pressure gauge produces both negative
and positive readings, then both negative and positive pressure
readings shall be calibrated at a minimum of three points as
specified in Method 2, Section 2.2.
2.5.2 Traverse Points. Use a minimum of 40 traverse points for
circular ducts and 42 points for rectangular ducts for the gas flow
angle determinations. Follow Section 2.3 and Table 1-1 or 1-2 for
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 6
the location and layout of the traverse points. If the measurement
location is determined to be acceptable
according to the criteria in this alternative procedure, use the
same traverse point number and locations for sampling and velocity
measurements.
2.5.3 Measurement Procedure.
2.5.3.1 Prepare the directional probe and differential pressure
gauges as recommended by the manufacturer. Capillary tubing ox-
surge tanks may be used to dampen pressure fluctuations. It is
recommended, but not required, that a pretest leak check be
conducted. To perform a leak check, pressurize or use suction on
the impact opening until a. reading of at least 7.6 cm (3 in.) H20
registers on the differential pressure gauge, then plug the impact
opening. The pressure of a leak-free system will remain stable for
at least 15 seconds.
2.5.3.2 Level and zero the manometers. Since the manometer level
and zero may drift because of vibrations and temperature changes,
periodically check the level and zero during the traverse.
2.5.3.3 Position the probe at the appropriate locations in the gas
stream, and rotate until zero deflection is indicated for the yaw
angle pressure gauge. Determine and record the yaw angle. Record
the pressure gauge readings for the pitch angle, and determine the
pitch angle from the calibration curve. Repeat this procedure for
each traverse point. Complete a "back-purge" of the pressure lines
and the impact openings prior to measurements of each traverse
point.
A post-test check as described in Section 2.5.3.1 is required. If
the criteria for a leak-free system are not met, repair the
equipment, and repeat the flow angle measurements.
2.5.4 Calculate the resultant angle at each traverse point, the
average resultant angle, and the standard deviation using the
following equations. Complete the calculations retaining at least
one extra significant figure beyond that of the acquired data.
Round the values after the final calculations.
2.5.4.1 Calculate the resultant angle at each traverse point:
RA = arc cosine I (cosineYj) (cosinePi) ]
Bq. 1-2
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 7
Where:
RA . resultant angle at traverse point i, degree.
Yt « yaw angle at traverse point i, degree.
Pi m pitch angle at traverse point i, degree.
2.5.4.2 Calculate the average resultant for the measurements:
Hj. 1-3
Where:
R>vg « average resultant angle, degree.
n » total number of traverse points.
2.5.4.3 Calculate the standard deviations:
8-- \
(Rt-R)
i-i
(n-1)
HI, 1-4
Where:
Sd - standard deviation, degree.
2.5.5 The measurement location is acceptable if Ravg z 20° and $,
* 10°. (
2.5.6 Calibration. Use a flow system as described in Sections
4.1.2.1 and 4.1.2.2 of Method 2. In addition, the flow system
shall have the capacity to generate two test-section velocities:
one between 365 and 730 m/min (1200 and 2400 ft/min) and one
between 730 and 1100 m/min (2400 and 3600 ft/min) .
2.5.6.1 Cut two entry ports in the test section. The axes through
the entry ports shall be perpendicular to each other and intersect
in the centroid of the test section. The ports should be elongated
slots parallel to the axis of the test section and of sufficient
length to allow measurement of pitch angles while maintaining the
pi tot head position at the test-section centroid. To facilitate
alignment of the directional probe during calibration, the test
section should be constructed of plexiglass or some other
transparent material. All calibration measurements should be made
at the same point in the test section, preferably at the centroid
of the test section.
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 8
2.5.6.2 To ensure that the gas flow is parallel to the central
axis of the test section, follow the procedure in Section 2.4 for
cyclonic flow determination to measure the gas flow angles at the
centroid of the test section from two test ports located 90° apart.
The gas flow angle measured in each port must be ±2° of 0°.
Straightening vanes should be installed, if necessary, to meet this
criterion.
2.5.6.3 Pitch Angle Calibration. Perform a calibration traverse
according to the manufacturer's recommended protocol in 5°
increments for angles from -60° to +60° at one velocity in each of
the two ranges specified above. Average the pressure ratio values
obtained for each angle in the two flow ranges, and plot a
calibration curve with the average values of the pressure ratio (or
other suitable measurement factor as recommended by the
manufacturer) versus the pitch angle. Draw a smooth line through
the data points. Plot also the data values for each traverse
point. Determine the differences between the measured datavalues
and the angle from the calibration curve at the same pressure
ratio. The difference at each comparison must be within 2° for
angles between 0° and 40° and within 3° for angles between 40° and
60°.
2.5.6.4 Yaw Angle Calibration. Mark the three-dimensional probe
to allow the determination of the yaw position of the probe. This
is usually a line extending the length of the probe and aligned
with the impact opening. To determine the accuracy of measurements
of the yaw angle, only the zero or null position need be calibrated
as follows: Place the directional probe in the test section, and
rotate the probe until the zero position is found. With a
protractor or other angle measuring device, measure the angle
indicated by the yaw angle indicator on the three-dimensional
probe. This should be within 2° of 0°. Repeat this measurement
for any other points along the length of the pitot where yaw angle
measurements could be read in order to account for variations in
the pitot markings used to indicate pitot head positions.
BIBLIOGRAPHY
1. Determining Dust Concentration in a Gas Stream, ASME
Performance Test Code No. 27. New York. 1957.
2. DeVorkin, Howard, et al. Air Pollution Source Testing Manual.
Air Pollution Control District. Los Angeles, CA. November
1963.
3. Methods for Determining of Velocity, Volume, Dust and Mist
Content of Gases. Western Precipitation Division of Joy
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 9
Manufacturing Co. Los Angeles, CA. Bulletin WP-50. 1968.
4. Standard Method for Sampling Stacks, for Particulate Matter.
In: 1971 Book of ASTM Standards, Part 23. ASTM Designation D
2928-71. Philadelphia, PA. 1971.
5. Hanson, H.A., et al. Particulate Sampling Strategies for
Large Power Plants Including Nonuniform Flow. USEPA, ORD,
ESRL, Research Triangle Park, NC. EPA-600/2-76-170. June
1976.
6. Entropy Environmentalists, Inc. Determination of the Optimum
Number of Sampling Points: An Analysis of Method 1 Criteria.
Environmental Protection Agency. Research Triangle Park, NC.
EPA Contract No. 68-01-3172, Task 7.
7. Hanson, H.A., R.J. Davini, J.K. Morgan, and A.A. Iversen.
Particulate Sampling Strategies for Large Power Plants
Including Nonuniform Flow. USEPA, Research Triangle Park, NC.
Publication No. EPA-600/2-76-170. June 1976. 350 p.
8. Brooks, E.F., and R.L. Williams. Flow and Gas Sampling
Manual. U.S. Environmental Protection Agency. Research
Triangle Park, NC. Publication No. EPA-600/2-76-203. July
1976. 93 p.
9. Entropy Environmentalists, Inc. Traverse Point Study. EPA
Contract No. 68-02-3172. June 1977. 19 p.
10. Brown, J. and K. Yu. Test Report: Particulate Sampling
Strategy in Circular Ducts. Emission Measurement Branch.
Emission Standards and Engineering Division. U.S.
Environmental Protection Agency, Research Triangle Park, NC
27711. July 31, 1980. 12 p.
11. Hawksley, P.G.W., S. Badzioch, and J.H. Blackett. Measurement
of Solids in Flue Gases. Leatherhead, England, The British
Coal Utilisation Research Association. 1961. p. 129-133.
12. Knapp, K.T. The Number of Sampling Points Needed for
Representative Source Sampling. In: Proceedings of the Fourth
National Conference on Energy and Environment. Theodore, L.
et al. (ed) . Dayton, Dayton Section of the American Institute
of Chemical Engineers. October 3-7, 1976. p. 563-568.
13. Smith, W.S. and D.J. Grove. A Proposed Extension of EPA
Method 1 Criteria. Pollution Engineering. XV (8):36-37.
-------
EMTIC TM-001 EMTIC NSPS 'TEST METHOD Page 10
August 1983.
14. Gerhart, P.M. and M.J. Dorsey. Investigation of Field Test
Procedures for Large Fans. University of Akron. Akron, OH.
(EPRI Contract CS-1651). Final Report (RP-1649-5). December
1980.
15. Smith, W.S. and D.J. Grove. A New Look at Isokinetic Sampling
- Theory and Applications. Source Evaluation Society
Newsletter. VIII(3):19-24. August 1983.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 11
Table 1-1. CROSS-SECTION LAYOUT FOR
RECTANGULAR STACKS
9
12
16
20
25
30
36
42
49
3x3
4x3
4x4
5x4
5x5
6x5
6X6
7X6
7x7
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 12
TABLE 1-2
LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS
(Percent of stack diameter from inside
wall to traverse point)
Traverse
Point
Number on a
Diameter
1
2
3
4
5
6
7
8
9
10 ....
11 ....
•L 4* » • • •
13 ....
14 ....
Number of traverse points on a diameter 1
2
14
.6
85
.4
4
6.
7
25
.0
75
.0
93
.3
6
4.
4 1
14
.6
29
.6
70
.4
85
.4
95
.6
8
3.
2
10
.5
19
.4
32
.3
67
.7
80
.6
89
.5
96
.8
10
2.6
8.2
14.
6
22.
6
34.
2
65.
8
77.
4
85.
4
91.
8
97.
4
12
2.1
6.7
11.
8
17.
7
25.
0
35.
6
64.
4
75.
0
82.
3
88.
2
93.
3
97.
9
14
1.8
5.7
9.9
14.
6
20.
1
26.
9
36.
6
63.
4
73.
1
79.
9
85.
4
90.
1
94.
3
98.
2
16
1.6
4.9
8.5
12.
5
16.
9
22.
0
28.
3
37.
5
62.
5
71.
7
78.
0
83.
1
87.
5
91.
5
18
1.
4
4.
4
7.
5
10
.9
14
.6
18
.8
23
.6
29
.6
38
.2
61
.8
70
.4
76
.4
81
.2
85
.4
20
1.
3
3.
9
6.
7
9.
7
11
2.
9
16
.5
20
.4
25
.0
30
.6
38
.8
61
.2
69
.4
75
.0
79
.6
22
1.1
3.5
6.0
8.7
11.
6
14.
6
18.
0
21.
8
26.
2
31.
5
39.
3
60.
7
68.
5
73.
8
24
1.1
3.2
5.5
7.9
v-
13.
2
16.
1
19.
4
23.
0
27.
2
32.
3
39.
8
60.
2
67.
7
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 13
15 ....
16 ....
17 ....
18 ....
19 ....
20 ....
21 ....
22 ....
23 ....
24 ....
95.
1
98.
4
89
.1
92
.5
95
.6
98
.6
•
83
.5
87
.1
90
.3
93
.3
96
.1
98
.7
78.
2
82.
0
85.
4
88.
4
91.
3
94.
0
96.
5
98.
9
72.
8
77.
0
80.
6
83.
9
86.
8
89.
5
92.
1
94.
5
96.
8
98.
9
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 14
Dm* DlMvton UprtMB torn RD* Dl
13
i*(DMMC*A)
U
40
W
20
10
0
I I I I I I I I
•HW_»_».I.»
MWU*
L-
'
|
TOIUI
M>
^^-H-,,
V 1
-
^ ^
I i* 11111111 »m»o»o
1 **
...' .
MM* Mmk* • OO k> (41 • (1t-»4 kL)
1 1 1 1 1 1 1 1
t 4 I ( 7 I
Dud DlMtvtm DovmtrMm fcom Ftew DhrtHrbMM** (OMMM •)
Figure 1-1. Minimum number of traverse points for
particulate traverses.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 15
M
OJ
Duet Dtomvtora Upstream trem Flow DMuitaanc** (DManc* A)
1.0 1.S 2.0
40 -
>0 -
20 -
10 -
II till
1 1
V
1
1
•
^
i
\
TDWuftaoe*
_ ***
-
1* Stock DlMMtor»OJ1« (14 kk)
1
- *FiMiP»lntofAiiyTjf»*ot
DWufBMM (BMrt. Expantton, ConMclM. Me J
Stock Dto
II 1 1 1 1
11
It!*
motor • 0 JO to OJ1 • (1144 tej
2 34 S 6 7 •
• 10
.
Duet Otamcton Downitmim from Ftow Dliturtxnc** (Ototanc* B)
Figure 1-2. Minimum number of traverse points for velocity
(nonparticulatej traverses.
-------
EMTIC TM-001
EMTIC NSPS TUST METHOD
Page 16
MJ
SU
TM
Figure 1-3. Example showing circular stack cross section
divided into 12 equal areas, with location of traverse
points indicated.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 17
o
o
__._
0
0
o
o
o
o
o
o
o
o
Figure 1-4. Example showing rectangular stack cross section
divided into 12 equal areas, with a traverse point at centre id
of each area.
-------
Appendix G.2
Sampling & Analysis Methods
EPA Method 2
-------
EMISSION 'HBJuhttlSHKNT TECHNICAL INFOKMXTION
NSP8 TEST METHOD
Method 2 - Determination of Stack Oas Velocity and Volumetric
How Rate (Type S Pitot Tube)
1. PRXHCXPXiE AND APPLICABILITY
1.1 Principle. The average gas velocity in a stack ia determined from the gas
density and from measurement of the average velocity head with a Type 8
(Stausscheibe or reverse type) pitot tube.
1.2 Applicability. This method is applicable for measurement of the average
velocity of a gaa stream and for quantifying gas flow.
This procedure is not applicable at measurement sites that fail to meet the
criteria of Method 1, Section 2.1. Also, the method cannot be used for direct
measurement in cyclonic or swirling gas streams; Section 2.4 of Method 1 shows
how to determine cyclonic or swirling flow conditions. When unacceptable
conditions exist, alternative procedures, subject to the approval of the
Administrator, U.S. Environmental Protection Agency, must be employed to make
accurate flow rate determinations; examples of such alternative procedures are:
(1) to install straightening vanes; (2) to calculate the total volumetric flow
rate stoichiometrically, or (3) to move to another measurement site at which the
flow is acceptable.
2. APPARATUS
Specifications for the apparatus are given below. Any other apparatus that has
been demonstrated (subject to approval of the Administrator) to be capable of
meeting the specifications will be considered acceptable.
***""--.* ^t -s-
*
2.1 Type S Pitot Tube. Pitot tube made of metal tubing (e.g., stainless steel)
as shown in Figure 2-1. It is recommended that the external tubing diameter
(dimension De, Figure 2-2b) be between 0.48 and 0.95 cm (3/16 and 3/8 inch).
There shall be an equal distance from the base of each leg of the pitot tube to
its face-opening plane (dimensions iy atnd H, Figure 2-2b); it is recommended
that this distance be between 1.05 and 1.50 times the external tubing diameter.
The face openings of the pitot tube shall, preferably, be aligned as shown in
Figure 2-2; however], 'slight misalignments of the openings are permissible (see
Figure 2-3).
The Type S pitot tube shall have a known coefficient, determined as outlined in
Section 4. An identification number shall be assigned to the pitot tube; this
Prepared by Emission Measurement Branch XMTZC M-002
Technical Support Division, OAQPS, BPA
-------
EMISSION MEASUREMENT tKXUrtCiL XVFO1
NSPS TEST METHOD
number shall be permanently narked or engraved on the body of the tube. A
standard pitot tube may be used Instead of a Type 8, provided that it meets the
specifications of Sections 2.7 and 4.2; note, however, that tb* static and impact
pressure holes of standard pitot tubes are "*N»6i.^«4.-*^.« to plugging In
particulate-laden gas streams. Therefore, whenever a standard pitot tube im used
to perform a traverse, adequate proof must be furnished that the openings of the
pitot tube have not plugged up during the traverse period; this can be done by
taking a velocity head (Ap) reading at the final traverse point, cleaning out the
impact and static holes of the standard pitot tube by "back-purging" with
pressurized air, and then taking another Ap reading. If the. Ap readings made
before and after the air purge are the same (±5 percent)* the traverse is
acceptable. Otherwise, reject- the run. Mote that if Ap at the final traverse
point is unsuitably low, another point may be selected. If "back-purging" at
regular intervals is part of the procedure, then comparative ^p readings shall
be taken, as above, for the last two back purges at which suitably high Ap
readings are observed.
2.2 Differential Pressure Gauge. An inclined manometer or equivalent device.
Most sampling trains are equipped with a 10-in. (water column) inclined-vertical
manometer, having 0.01-in. HZO divisions on the 0- to 1-in. inclined scale, and
O.l-in. H,0 divisions on the 1- to 10-in. vertical-aci!*. This fcypv of. manometer
(or other gauge of equivalent sensitivity) is satisfactory for the measurement
of Ap values as low as 1.3 mm (0.05 in.) H,0. However,.a differential pressure
gauge of greater sensitivity shall be used .(subject to the approval of the
Administrator), if any of the followirwy i,a found to^be true* 43A £ae arithmetic
average of all Ap readings at the traverse points in the vtack is less than
1.3 mm (0.05 in.) H,0; (2) for traverses of 12 or more points, more than 10
percent of the individual Ap readings are below 1.3 on (0.05 in.) H,O; (3) for
traverses of fewer than 12 points, ->ore than one Ap reading is below 1.3 mm
(0.05 in.) HaO. Citation 18 in the Bibliography describes .commercially available
instrumentation for the measuremen ,ȣ low-range gas velocities.
As an alternative to criteria (1) through (3)j above* the.fol lowing calculation
may be performed to determine the necessity of using a more sensitive
differential pressure gauge:
Prepared by Emission Measurement Branch . . ; w~* ..'-.-•- JMT1C M-002
Technical Support Division, OAQPS, SPA "''"....
-------
EMTIC TM-002 ' " NS5S TEST METHOD Page 3
T = ^
i-i
Where:
Apt - Individual velocity head reading at a traverse point, mm (in.)
H,0.
n • Total number>of traverse points.
K • 0.13 ran H20 when metric units are used and 0.005 din. H,0 when
English units are used.
If T ia greater *->v»" i.os, the velocity head data are unacceptable and a more
sensitive differential pressure gauge must be used.
MOTE t If differential pressure gauges other than inclined manometers are used
(e.g., magnehelic gauges), their calibration must be checked after each test
series. To check the calibration of a differential pressure gauge,- compare Ap
readings of the gauge with''those of a gauge-oil manometer at a minimum of three
points, approximately representing the range of Ap values in the stack. If, at
each point, the values of Ap as read by the differential pressure gauge and
gauge-oil manometer agree to within 5 percent, the differential pressure gauge
shall be considered to be -in proper calibration. Otherwise, the test series
shall either be voided, or procedures to adjust the measured Ap values and final
results shall be used, subject to the approval of the Administrator.
2.3 Temperature Gauge. A thermocouple, liquid-filled bulb thermometer,
bimetallic thermometer, mercury-in-glass thermometer, or other gauge capable of
measuring temperature to within 1.5 percent of the minimum absolute stack
temperature. The temperature gauge shall be attached to the pitot tube such that
the sensor tip does not touch any metal; the gauge shall be in an interference-
free arrangement with respect to the pitot tube face openings (see Figure 2-1 and
also Figure 2-7 in Section 4) . Alternative positions may be used if the pitot
tube-temperature gauge system is calibrated according to the procedure of Section
4. Provided that a difference of not more than 1 percent in the average velocity
measurement is introduced, the temperature gauge need not be attached to the
pitot tube; this alternative is subject to the approval of the Administrator.
2.4 Pressure Probe and Gauge. A piezometer tube and mercury- or water-filled
U-tube manometer capable of measuring stack pressure to within 2.5 mm (0.1 in.)
Hg. The static tap of a standard type pitot tube or one leg of a Type 3 pitot
tube with the face opening planes positioned parallel to the gas flow may also
be used as the pressure probe.
-------
BMTIC TM-002 MW»iT»T XRBOD
2.5 Barometer. A mercury, aneroid, or other barometer capable of measuring
atmospheric pressure to within 2.5 mm (0.1 in.) Bg. See MOTB in Method 5,
Section 2.1.9.
2.6 Gas Density Determination Equipment. Method 3 equipment, if needed (see,
Section 3.6), to determine the stack gas dry molec ' ,.«lght, and Reference
Method 4 or Method 5 equipment for moisture content determination; other •nttioflir '
may be used subject to approval of the Administrator.
2.7 Calibration Pi tot Tube. When calibration of the Type S pitot tube la
necessary (see Section 4), a standard pitot tube for a reference. The standard
pitot tube shall, preferably, have a known coefficient, obtained either (1)
directly from the National Bureau of Standards, Route ,70 S, Quince Orchard Koad,
Gaithersburg, Maryland, or (2) by calibration against another standard pitot tube
with an NBS- traceable coefficient. Alternatively, a standard pitot tube designed
according to the criteria given in factions 2.7.1 through' a ."7 . 5 below and
illustrated in Figure 2-4 (see also Citations 7, 8, and 17 in the Bibliography)
may be used. Pitot tubes designed according to these specifications will have
baseline coefficients of about 0.99 ± 0.01.
2.7.1 Hemispherical (shown in Figure 2-4) ellipsoidal, or conical tip.
2.7.2 A minimum of six diameters straight run (based upon O»_ the external
diameter of the tube) between the tip and the static pressure holes.
2.7.3 A minimum of eight diameters straight . ran- Jbetween the static pressure
holes and the centerline of the external tube, following fehe^SBrdegr-se bend.
2.7.4 Static pressure holes of equal size (approximately 0.1 D) , equally spaced
in a piezometer ring configuration.
2.7.5 Ninety-degree bend, with curved or mitered junction.
2.8 Differential Pressure Oauge for Type 8 Pitot Tube Calibration. An inclined
manometer or equivalent. If the single-velocity, calibration technique is
employed (see Section 4.1.2.3), the calibration differential pressure gauge shall
be readable to the nearest 0.13 mm (0.005 in.) H,0. For „ multivelocity
calibrations, the gauge shall be readable, to the nearest ^Jp^«» (0.005 in.) HaO
for &p values between 1.3 and 25 mm (0.05 and 1.0 i».i V& and to the nearest
1.3 mm (0.05 in.) H,0 for Ap values above 25 mm (1.0 in.) B20. A special, more
sensitive gauge will be required tc read &p values —low 1.3 an (0.05 in.) HaO
(see Citation 18 in the Bibliograpl^}.
3. PROCKDUItX
3.1 Set up the apparatus as shown in Figure 2-1. Capi^lezy tubing or surge
tanks installed between the manometer and pitot tube may r he, used, to dampen Ap
fluctuations. It is recommended, bit not required, that a pretest leak-check be
conducted as follows: (1) blow through the pitot'ieyeete' apftair.a
-------
EMTIC TO- 002 ~^.j" WBVa TEST METHOD Page 5
7.6 cm (3 in.) H,0 velocity pressure registers on the manometer; then, close off
the impact opening. The pressure shall remain stable for at least 15 seconds;
(2) do the same for the static pressure side, except using suction to obtain the
minimum of 7.6 cm (3 in.) HaO. Other leak-check procedures, subject to the
approval of the Administrator, may be used.
3.2 Level and zero the manometer. Because the nanometer level and zero nay
drift due to vibrations and temperature changes, make periodic checks during the
traverse. Record all necessary data as shown in the example data sheet
(Figure 2-5) .
3.3 Measure the velocity head and temperature at the traverse points specified
by Method 1. Ensure that the proper differential pressure gauge is being used
for the range of Ap values encountered (see Section 2.2). If it is necessary to
change to a more sensitive gauge, do so, and remeasure the Ap and temperature
readings at each traverse -po^rt-.^j Conduct a post-test leak-check (mandatory), as
described in Section 3.1 above, to validate the traverse run.
3.4 Measure the static pressure in the stack. One reading is usually adequate.
3.5 Determine the atmospheric pressure.
3.6 Determine the stack gas dry molecular weight. For combustion processes or
processes that emit essentially CO,, 02, CO, and K,, use Method 3. For processes
emitting essentially air, an analysis need not be conducted; use a dry molecular
weight of 29.0. For other processes, other methods, subject to the approval of
the Administrator, must be used.
3.7 Obtain the moisture content from Reference Method 4 (or equivalent) or from
Method 5. /
3.8 Determine the cross -sectional area of the stack or duct at the sampling
location. Whenever possible-, physically measure the stack dimensions rather than
using blueprints .
4 . CALIBRATION
4.1 Type 8 Pi tot Tube. Before its initial use, carefully examine the Type 3
pitot tube in top, side, and end views to verify that the face openings of the
tube are aligned within the specifications illustrated in Figure 2-2 or 2-3. The
pitot tube shall not be used, if it fails to meet these alignment specifications.
After verifying the face opening alignment, measure and record the following
dimensions of the pitot tube: (a) the external tubing diameter (dimension Dt,
Figure 2-2b) ; and (b) the base-to'opening plane distances (dimensions PA and P»,
Figure 2-2b) . If Dt is between 0:.4S and 0.95 cm (3/16 and 3/8 in.), and if %
and P, are equal and between 1.05 and 1.50 D«, there are two possible options:
(1) the pitot tube may be calibrated according to the procedure outlined in
Sections 4.1.2 through 4.1.5 below^or (2) a baseline (isolated tube) coefficient
value of 0.84 may be assigned to the pitot tube. Mote, however, that if the
-------
BMT1C TM-002 KS?S T*ST UKBOD . . . ; Page 6
pitot tube is part of an assembly, calibration may still be required, despite
knowledge of the baseline coefficient value (see Section 4.1.1) .
If Dt, &, and f are outside the specified limits, the pitot tube must be
calibrated as outlined in Sections 4.1.2 through .4.1.5 below. -;.: _ -,y,
- «• .-"»
4.1.1 Type S Pitot Tube Assemblies. During sample, and ,
-------
EMTIC TM-002
D. - Equivalent diameter.
L • Length.
W - Width.
To ensure the presence of stable, fully developed flow patterns at the
calibration .f^te^ or "test section, • the site must be located at least eight
diameters downstream and two diameters upstream from the nearest disturbances. .
MOTBi The eight- and two-diameter criteria are not absolute; other test section
locations may be used (subject to approval of the Administrator), provided that
the flow at the test site is stable and demonstrably parallel to the duct axis.
4.1.2.3 The flow system shall have the capacity to generate a test-section
velocity around 915 m/min (3,000 f t/min). This velocity must be constant with
time to guarantee steady flow during calibration. Mote that Type S pitot tube
coefficients obtained by single-velocity calibration at 915 m/min (3,000 f t/min)
will generally be valid to '±3 percent for the measurement of velocities above 305
m/min (1,000 f t/min) and to ±5 to 6 percent for the measurement of velocities
between 160 and 305 m/min (600 and 1,000 f t/min). If a more precise correlation
between Cp and velocity is desired, the flow system shall have the capacity to
generate at least four distinct, time-invariant test-section velocities covering
the velocity range from 180 to 1,525 m/min (600 to 5,000 f t/min), and calibration
data shall be taken at regular velocity intervals over this range (see Citations
9 and 14 in the Bibliography for details).
4.1.2.4 Two entry ports, one each for the standard and Type S pitot tubes, shall
be cut in the test Becfion; the standard pitot entry port shall be located
slightly downstream of the Type S port, so that the standard and Type S impact
openings will lie in the same cross-sectional plane during calibration. To
facilitate alignment of the pitot tubes during calibration, it is advisable that
the test section be constructed of plexiglas or some other transparent material.
4.1.3 Calibration Procedure. Note that this procedure is a general one and must
not be used without first" referring to the special considerations presented in
Section 4.1.5. Note also that this procedure applies only to single-velocity
calibration. To obtain calibration data for the A and B sides of the Type S
pitot tube, proceed as follows:
4.1.3.1 Make sure that the manometer is properly filled and that the oil is free
from contamination and is of the proper density. Inspect and leak-check all
pitot lines; repair or replace if necessary.
4.1.3.2 Level and zero the manometer. Turn on the fan, and allow the flow to
stabilize. Seal the Type S entry port.
4.1.3.3 Ensure that the manometer is level and zeroed. Position the standard
pitot tube at the calibration point (determined as outlined in Section 4.1.5.1),
and align the tube no that its tip is pointed directly into the flow. Particular
care should be taken in aligning the tube to avoid yaw and pitch angles. Make
sure that the entry port surrounding the tube is properly sealed.
-------
EMTIC TM-002 NSPS TKST KKTHOD
4.1.3.4 Read Ap,**, and record its value in at data table similar to the one shown
in Figure 2-9. Remove the standard pitot tube from the duct, and disconnect it .
from the manometer. Seal the standard entry port.
4.1.3.5 Connect the Type 8 pitot tube to the manometer. Open the Type 8 entry
port. Check the manometer level and zero. Inser* --•••," ' i-h» Type S pitot
tube so that its A side impact opening is at the sane point as was the standaird
pitot tube and is pointed directly into the flow. , Make sure that the entry port
surrounding the tube is properly sealed.
4.1.3.6 Read Ap., and enter its value in the data table. Remove the Type 8
pitot tube from the duct, and disconnect it from the manometer.
4.1.3.7 Repeat Steps 4.1.3.3 through 4.1.3.6 above until three pairs of Ap
readings have been obtained.
4.1.3.8 Repeat Steps 4.1.3.3 through * 1.3.7 above for the B side of the Type v
S pitot tube.
4.1.3.9 Perform calculations, as described in Section 4.1.4 below.
4.1.4' Calculations.
4.1.4.1 For each of the six pairs of Ap readings {i.e., tktee from aide fiT and
three from side B) obtained in Section 4.1.3 above, calculate the value of
the Type S pitot tube coefficient as follows:
Cp(a) ~Cp
-------
EMTIC TM-002 -<• • •- H8PS TB8T METHOD Page 9
mean B-side coefficient; calculate the difference between these two average
values.
4.1.4.3 Calculate the deviation of each of the three A-side values of
from Cp (side A), and the deviation of each B-side values of Cp,., from
(side B) . U»e^ the following equation:
Deviation = C_ -C~(A or B)
p p
Bq. 2-3
4.1.4.4 Calculate a, the average deviation from the mean, for both the A and B
sides of the pitot tube. Use the following equation:
-VAorB)l
o(side A or B)
Bq. 2-4
4.1.4.5 Use the Type S pitot tube only if the values of a (side A) and o (side
B) are less than or equal to 0.01 and if the absolute value of the difference
between Cp (A) and Cp (B) is 0.01 or less.
4.1.5 Special Considerations.
4.1.5.1 Selection of Calibration Point.
2.3
4.1.5.1.1 When an isolated Type S pitot tube is calibrated, select a calibration
point at or near the center of the duct, and follow the procedures outlined in
Sections 4.1.3 and 4.1^4 above. The Type S pitot coefficients so obtained.
i.e., Cp (side A) and C, (side B), will be valid, so long as either: (1) the
isolated pitot tube is used; or (2) the pitot tube is used with other components
^nozzle, thermocouple, sample probe) in an arrangement that is free from
aerodynamic interference effects (see Figures 2-6 through 2-8) .
4.
4.1.5.1.2 For Type 8 pitot tube-thermocouple combinations (without sample
probe), select a calibration point at or near the center of the duct, and follow
the procedures outlined in Sections 4.1.3 and 4.1.4 above. The coefficients mo
obtained will be valid so long as the pitot tube-thermocouple combination is used
by itself or with other components in an interference-free arrangement (Figures
2-6 and 2-8).
4.1.5.1.3 For assemblies with sample probes, the calibration point should be
-------
EMTIC TM-002 NSffft .fX8T MKBOD ... Page 10
located at or near the center of the duct; however, insertion of a probe sheath
into a small duct nay cause significant cross-sectional area- blockage and yield
incorrect coefficient values (Citation 9 in the Bibliography). Therefore* to
minimize the blockage effect, the calibration point nay be a few inches off-
center if necessary. The actual blockage effect will be negligible when the
theoretical blockage, as determined by a project? ,.,;,*.j. uodel of the probe
sheath, is 2 percent or less of the duct cross-sectional area for assemblies
without external sheaths (Figure 2-lOa), and 3 percent or less for assemblies
with external sheaths (Figure 2-10b).
4.1.5.2 For those probe assemblies in which pitot tube-nozzle interference is
a factor (i.e., those in which the pitot-nozzle separation distance fails to meet
the specification illustrated in Figure 2-6A), the value of Cp(., depends upon the
amount of free-space between the tube and nozzle, and therefore is a function of
nozzle size. In these instances, separate calibrations shall be performed with
each of the commonly used nozzle sizes .•».** place r^. Kate that the single-velocity
calibration technique is acceptable for this purpose, even though the larger
nozzle sizes (>0.635 cm or 1/4 in.) are not ordinarily used for isokinetic
sampling at velocities around 915 tn/min (3,000 ft/min), which is the calibration
velocity; note also that it is not necessary to draw an isokinetic sample during
calibration (see Citation 19 in the Bibliography).
4.1.5.3 For a probe assembly constructed such that its pitot tube .is always, used
in the same orientation, only one side of the pitot tube need be .calibrated (the
side which will face the flow) . The pitot tube must still meet the alignment
specifications of Figure 2-2 or 2-3, however, and must have an average deviation
(o) value of 0.01 or less (see Section 4 1.4.4.)
4.1.6 Field Us* and Recalibration.
4.1.6.1 Field Use.
4.1.6.1.1 When a Type S pitot tube : - olated or in an assembly}. 4* used in the
field, the appropriate coefficient;* value (whether assigned or obtained by
calibration) shall be used to perform velocityt .calculatipna, .For calibrated Type
8 pitot tubes, the A side coefficient shall be used when the A side of the tube
faces the flow, and the B side coefficient shall be used when the B side faces
the flow; alternatively, the arithmetic aytrage o£ the A and B side coefficient
values may be used, irrespective of which side faces the flow.
4.1.6.1.2 When a probe assembly is used to sample a jmall duct, 30.5 to 91.4 cm
(12 to 36 in.) in diameter, the proV--- sheath sometimes blocks a significant part
of the duct cross-section, causing a reduction in the effective value of C,,«,.
Consult Citation 9 in the Bibliography for details. Conventional pi tot-sampling
probe assemblies are not recommended for use in ducts having inside diameters
smaller than 30.5 cm (12 in.) (see Citation 16 in the Bibliography).
4.1.6.2 Recalibration.
/
4.1.6.2.1 Isolated Pitot Tubes. After each fluid MM, jg»n^it:^«- *•«'?* shall he
-------
EMTIC TM-002 - ..j. .-;• - HSPS TSST MBTHOD Page 11
carefully reexamined in top, side, and end views. If th^ pitot face openings are
still aligned within the specifications illustrated in Figure 2-2 or 2-3, it can
be assumed that the baseline coefficient of the pitot tube has not r>^"g»^. If,
however, the tube has been damaged to the extent that it no longer meets the
specifications of the Figure 2-2 or 2-3, the damage shall either be repaired to
restore projawr, alignment of the face openings, or the tube shall be discarded.
4.1.6.2.2 Pitot Tube Assemblies . After each field use, check the face opening
alignment of the pitot tube, as in Section 4.1.6.2.1;; also, remeasure the
intercomponent spacings of the assembly. If the later-component spacings have not
changed and the face opening alignment is acceptable, it can be assumed that the
coefficient of the assembly has not changed. If the face opening alignment is
no longer within the specifications of Figure 2-2 or 2-3, either repair the
damage or replace the pitot tube (calibrating the new assembly, if necessary) .
If the intercomponent spacings have changed, restore the original spacings, or
recalibrate the assembly. •
4.2 Standard Pitot Tub* (if applicable) . If a standard pitot tube is used for
the velocity traverse, the tube shall be constructed according to the criteria
of Section 2.7 and shall be assigned a baseline coefficient value of O.99. If
the standard pitot tube is used as part of an assembly, the tube shall be in an
interference- free arrangement (subject to the approval of the Administrator) .
4.3 Temperature Gauges. After each field use, calibrate dial thermometers,
liquid-filled bulb thermometers, thermocouple-potentiometer systems, said other
gauges at a temperature within 10 percent of the average absolute stack
temperature. For temperatures up to 405*C (761*F) , use an ASTM mercury- in-glass
reference thermometer, -or equivalent, as a reference; alternatively, either
a reference thermocouple and potentiometer (calibrated by MBS) or thermometric
fixed points, e.g., ice bath and boiling water (corrected for barometric
pressure) may be used. For temperatures above 405*C (761°F) , use an NBS-
calibrated reference thermocouple-potentiometer system or an alternative
reference, subject to the approval of the Administrator.
If, during calibration, the absolute temperature measured with the gauge being
calibrated and the reference gauge agree within 1.5 percent, the temperature data
taken in the field shall be considered valid. Otherwise, the pollutant emission
test shall either be considered invalid or adjustments (if appropriate) of the
test results shall be made, subject to the approval of the Administrator.
4.4 Barometer* .Calibrate the barometer used against a mercury barometer.
5. CALCULATIONS
Carry out calculations, retaining at least one extra decimal figure beyond that
of the acquired data. Round off figures after final calculation.
5.1 nomenclature .
A • Cross-sectional area of stack, m* (ft1) .
-------
EMTIC TM-002 V999 TKBT MBTHOD '" •>-•,'* Page 12
8,, » Water vapor in the gas stream (from Method 5 or Reference
Method 4), proportion by volume.
Cp - Pitot tube coefficient, dimension!esj»v
*** »
K - Pitot tube constant, -**•
34.97
m
sec
(g/g-mole) (mmHg)
(mmH,0)
1/2
for the metric s vat em.
ft [ Ib/lb-mole) (in.Hg)]1'*
85.49
for the English system.
sec I (°R) (in.H20) I
M« - Molecular weight of stack ^P^jJryJaasi^Jsee Sfcction 36),
g/g-mole (Ib/lb-mole) .
M. - Molecular weight of stack gas,,, wet basis, g/g-mole (Ib'lb
mole) . • -; - - - ' " • '
^- ', «*~* •'-*.. -'
— M r i .. a \ *IP HR
~ Wj I A 15.._ / T XO • wD.._
a ' ws' ws
• .>-*. —• •"-•i"''Eq. 2-5
'v^-"""- "-*!-
Pt»r •* Barometric pressure at measurement site, mm Hg (In Hg) .
P, - Stack static pressure, mm Hg (in. Eg).
P, • Absolute stack pressure, mm Hg (in. Hg),
Eq. 2-6
Pltd » Standard absolute pressure, 760 mm Hg (29.92 in. Hg) .
volumetric stack gas flow rate corrected to standard
conditions, dsmVhr (dscf/hr) .
_'.V : .-,.-->
t. » Stack tempera* ir* , *C { *F) .
-------
EMTIC TM-002
Page 13
T. » Absolute stack temperature, *K (°R)
273 + t.
for metric.
Bq. 2-7
460 + t.
for English.
v.
Ap •
3,600.
18.0 •
Bq. 2-8
Standard absolute teraperature, 293*K (528*R).
Average stack gas velocity, in/sec (ft/sec) .
Velocity head of stack gas, mm H»0 (in. HaO) .
Conversion factor, sec/hr.
•*: ~-
Molecular weight of water, g/g-mole (Ib/lb-mole) .
5.2 Average Stack Gas Velocity.
K
Eq. 2-9
5.3 Average Stack Gas Dry Volumetric Flow Rate.
3,600(l-Bw)vBA
Lstd
'ltd
BIBLIOGRAPHY
1. Mark, L.S. Mechanical Engineers' Handbook. New York.
Co., Inc. 1951.
2. Perry. J.R. Chemical Engineers' Handbook. New York.
Bq. 2-10
McGraw-Hill Book
McGraw-Hill Book
-------
EMTIC TM-002 »»*« TRST METHOD V. ' * ' '"fage ±4''
Co., Inc. 1960.
3. Shigehara, R.T., W.F. Todd, and W.S. Smith. Significance of Errors in
Stack Sampling Measurements. U.S. Environmental* Protection Agency,
Research Triangle Park, N.C. (Presented at the Annual Meeting of the Air
Pollution Control Association, St. Louis, MO,. . . . ^.970) . •'.'_*
4. Standard Method for Sampling Stacks for Particulate Matter. In: 1971 Book
of ASTM Standards, Part 23. Philadelphia, PA. 1971. ASTM Designation
D 2928-71.
5. Vexmard, J.K. Elementary Fluid Merhan1.cs. New YorJt* John Wiley and Sons,
Inc. 1947.
6. Fluid Meters - Their Theory and Application. American Society of
Mechanical Engineers, New York *?,Y. 1959, ; r ' ; .• V
7. ' ASERAE Handbook of Fundamentals. 1972. p. 208.
8. Annual Book of ASTM Standards, Part 26. 1974. p. 648.
9. Vollaro, R.F. Guidelines for Type S Pitot Tube Calibration. , .U.S.
Environmental Protection Agency, Research Tr'angle. Park, N.C. (Presented
at 1st Annual Meeting, Source Evaluation Society, Dayton, OB,
September 18, 1975.) . ?
10. Vollaro, R.F. A Type S Pitot Tiibe Calibratioft^pfa^r-«£«<,-JEmri
Protection Agency, Emission Measurement Branen^: .SesMZJcte. Triangle Park,
N.C. July 1974..
11. Vollaro, R.F. The Effects of Impact Opening; M^sajULjiniiiP n jr on. the Value of
the Type S Pitot Tube Coefficient. U.S. Environmental.4 Protection Agency,
Emission Measurement Branch, ".-c.ear.ch Triangle".Paa^«^:\~ October 1976.
12. Vollaro, R.F. Establishment of a Baseline. Coefficient. Value for Properly
Constructed Type S Pitot Tubes. U.S. Environaentat Protection Agency,
Emission Measurement Branch, ^search Triangle Park, NC. November 1976.
13. Vollaro, R.F. An Evaluation c: Single-Velocity^ Calibration Technique a& a
Means of Determining Type S Pitot Tube' Coefficients. U.S. Environmental
Protection Agency, Emission Measurement Branch, Reseax^h Triahtfle Park, HC.
August 1975. ' : "!fA
14. Vollaro, R.F. The Use of Type S Pitot Tubes for the Measurement of Low
Velocities. U.S. Environmental Protection Agency,* Emission Measurement
Branch, Research Triangle Par:, NC. 'November 1976.
15. Smith, Marvin L. Velocity Calibration of EPA Type Sourice Sampling Probe
United Technologies Corporatif a, Pratt and Wxita^Ajrcraft Division, Bast
Hartford, CT. 1975.
-------
EMTIC TM-002 . . . .„,. ,;NSPS TKST METHOD Page IS
16. Vollaro, R.P. Recommended Procedure for Sample Traverses in Ducts Smaller
than 12 Inches in Diameter. U.S. Environmental Protection Agency, Emission
Measurement Branch, Research Triangle Park, NC. November 1976.
17. Ower, B. and R.C. Pankhurst. The Measurement of Air Flow, 4th Ed. London,
Pergamon Press. 1966.
18. Vollaro, R.P. A Survey of Commercially Available Instrumentation for the
Measurement of Low-Range Gas Velocities. U.S. Environmental Protection
Agency, Emission Measurement Branch, Research Triangle Park, KC.
November 1976. (Unpublished Paper).
IS. Gnyp, A.W,, C.C. St. Pierre, D.S. Smith, D. Mozzon, and J. Steiner. An
Experimental Investigation of the Effect of Pitot Tube-Sampling Probe
Configurations on the Magnitude of the S Type Pitot Tube Coefficient for
Commercially Available Source Sampling Probes. Prepared by the University
of Windsor for the Ministry of the Environment, Toronto, Canada.
February 1975.
-------
EMTIC TM-002
TK8T
Pag« 16
1JO-U4M*
J_CE
Figure 2-1. Type S pitot tube mancwter assembly'.
-------
BMTIC TM-002
MSPS TKST METHOD
Page 17
TctaAxfc
ZZIVJITEIW
EL! Jli.A-..
—v—m -e^-
Figure 2-2. Properly constructed Type S pitot tube.
-------
EMTIC TM-002
TK8T KSTHOD
Page 18
"ft
Figure 2-3. Types of face-opening taisaligntnent thait caqt nMrxilt from field use
or improper construction of Type S pitot tube«*£rv4"TBb««e trf.ll not affect the
baseline value of Cp(s) so long as o1 and o» slO%; Pa I $* **'. z iO.32 cm (1/8
in.) and w iO.08 cm (1/32 in.) (cit-^.ion 11 in Bibliography).
-------
EMTIC TM-002
_,. . JffSFS TKST METHOD
Page 19
Figure 2-4. Standard pitot tube design specifications.
-------
EMTIC TM-002 KSPS TEST IBTHOD
-------
EMTIC TM-002
HSP8 TXST METHOD
Page 21
PLANT
DATS .
RUN NO.
JSTACK D1A. OR
DIMENSIONS, m (in.) BAROMETRIC PRESS., mm Eg
(in. Hg) ______CROSS SECTIONAL AREA, V? (ft2)
OPERATORS
PITOT TOBB I.D. NO.
AVO. COEFFICIENT, Cp -
LAST DATE CALIBRATED _
SCHEMATIC OF STACK
CROSS SECTION
Traverse
Pt. No.
Vel. Bd., _p
mm (in.) H,O
Stack Temperature
T.,
•c CF)
Average
T.,
°K CR)
*9
mm Hg
(in.Hg)
(AP)I/»
Figure 2-5. Velocity traverse data.
-------
EMTIC TM-002
NSPS TKST MTHOD
Page 22
1 0,
]
nook mky HMW-
Figure 2-6. Proper pitot tube-sampling nozzle configuration to prevent
aerodynamic interference: button OOOK type nozzle; centers of nozzle and
pitot opening aligned; Dt betwe^r ,<;8 and 0.95 cm (3/16 and 3/8 in.).
-------
EMTIC TM-002
ftSFS TEST HKTHOD
Page 23
\
d
(O, TlrHI^I
I I
Figure 2-7. Proper thermocouple placement to prevent interference: Dt
between 0.48 and 0.95 cm (3/16 and 3/8 in.).
-------
EMTIC TM-002
NSH>» TSST MBTBOD
J-JL
frab*
Figure 2-8. Minimum pitot-sample probe separa|ion needed to prevent
interference; Dt between 0.48 and 0,95 cm (3/16 and 3/8 in.).
' afcr., '
-------
EMT1C TM-002
HSP8 TEST METHOD
Page 25
PITOT TUBE XDENT
RUN NO.
1
2
3
RUN NO.
1
2
3
Aver acre De
IFICATION NUMBEJ
"A
cm H2O
(in E2O)
"B
cm BjO
(in H,O)
- r **"- ' t
viation = cy.-
l: DATS
• SIDE CALIBRATI
cm HjO
(in HjO)
(SIDE A)
" SIDE CALIBRATE
cm HjO
(in H,0)
(SIDE B)
_Sk<.>
! OS
ON
:ON
_ r
^p (A or B)
tLIBRATBD BY:
Deviation
Deviation
(AorB)
Cp{SideA) -Cp(SideB) -MustBeiO.Ol
-------
EMTIC TM-002 NSW rBST JUH'UOL) ' Page 26
Figure 2-9. Pitot tube calibration data.
-------
EMTIC TM-002
JJSPS TBST METHOD
Page 27
Figure 2-10. Projected-area models for typical pitot tube assemblies.
-------
Appendix G.3
Sampling & Analysis Methods
•- • r - * •
"'•*•""* ?~ 'EPA Method 3A
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
Method 3A • Determination of Oxygen and Carbon Dioxide Concentrations
1n Emissions from Stationary Sources
(Instrumental Analyzer Procedure)
1. APPLICABILITY AND PRINCIPLE
1.1 Applicability. This method 1s applicable to the determination of oxygen (Oz) and
carbon dioxide (C02) concentrations 1n emissions from stationary sources only when
specified within the regulations.
1.2 Principle. A sample 1s continuously extracted from the effluent stream: a
portion of the sample stream 1s conveyed to an instrumental analyzer(s) for
determination of 02 and CQ concentratlon(s). Performance specifications and test
procedures are provided to ensure reliable data.
2. RANGE AND SENSITIVITY
Same as 1n Method 6C. Sections 2.1 and 2.2. except that the span of the monitoring
system shall be selected such that the average Oj or C02 concentration is not less than
20 percent of the span.
3. DEFINITIONS - ^:~ '
3.1 Measurement System. The total equipment required for the determination of the 02
or CQz concentration. The measurement system consists of the same major subsystems as
defined in Method 6C. Sections 3.1.1. 3.1.2. and 3.1.3.
3.2 Span. Calibration Gas. Analyzer Calibration Error. Sampling System Bias. Zero
Drift. Calibration Drift. Response Time, and Calibration Curve. Same as in Method 6C.
Sections 3.2 through 3. ft, andba&^Qi .*;*•<- — ,
" '' ~ *"*
3.3 Interference Response. The output response of the measurement system to a
component in the sample gas. other than the gas component being measured.
4. MEASUREMENT SYSTEM PERFORMANCE SPECIFICATIONS
Same as 1n Method 6C. Sections 4.1. through 4.4.
Prepared by Emission Measurement Branch EMTIC TM-003A
Technical Support Division. QAQPS. EPA May 6. 1989
-------
EMTIC TM-003A NSPS TEST METHOD Page 2
5. APPARATUS AND REAGENTS
5.1 Measurement System. Any measurement system for Oj or CQ that meets the
specifications of this method. A schematic of an acceptable measurement system 1s
shown 1n Figure 6C-1 of Method 6C. The essential components of the measurement system
are described below:
5.1.1 Sample Probe. A leak-free probe of sufficient length to traverse the sample
points. -\i,
5.1.2 Sample Line. Tubing to transport the sample gas from the probe to the moisture
removal system. A heated sample line 1s not required for systems that measure the 02
or C02 concentration on a dry basis, or transport dry gases.
5.1.3 Sample Transport Line. Calibration Valve Assembly, Moisture Removal System.
Partlculate Filter. Sample Pump, Sample Flow Rate Control. Sample Gas Manifold, and
Data Recorder. Same as 1n Method 6C. Sections 5 1.3trough 5.1.9, and 5.1.11. except
that the requirements to use stainless steel. Teflon, and nonreactlve glass filters do
not apply.
5.1.4 Gas Analyzer. An analyzer to determine continuously the Oj or COj concentration
in the sample gas stream. The analyzer must meet" the applicable performance
specifications of Section 4. A means of controlling the analyzer flew rate and a
device for determining proper sample flow rate (e.g.. precision rotameter, pressure
gauge downstream of all flow controls, etc.) shall be provided at the analyzer. The
requirements for measuring and controlling the analyzer for measuring and controlling
the analyzer flow rate are not applicable if data are presented that demonstrate the
analyzer 1s insensitive to flow variations over the range'4encountered during the test.
5.2 Calibration Gases. The calibration gases for-COz analyzers shall be COj 1n Nj or
COj in air. Alternatively. oysOz. Oj/SC,. or (yoysOz gas mixtures in N2 may be used.
Three calibration gases, as specified in Sections 5.3.1 throug^A-M of Method 6C.
shall be used. For 02 monitors tha^ cannot analyze zero gas. a calibration gas
concentration equivalent to less than 10 percenUof the span may be used in place of
zero gas.
6- MEASUREMENT SYSTEM PERFORMANCE TES"5" PROCEDURES
Perform the following procedures before measurementftDf I Jssions (Section 7).
6.1 Calibration Concentration Verification. Follow Section 6.1 xrf Method 6C. except
1f calibration gas analysis is required, use Method 3 and change the acceptance
criteria for agreement among Method 3 results to 5 percent (or 0.2 percent by volume.
whichever 1s greater).
6.2
prior
Interference Response. Conduct an Interference response test of the analyzer
to Its Initial use 1n the fielc- Thereafter, rechedt ttnrwasurement system 1f
-------
EMTIC TM-003A NSPS TEST METHOD Page 3
changes are made 1n the Instrumentation that could alter the Interference response
(e.g., changes 1n the type of gas detector). Conduct the Interference response 1n
accordance with Section 5.4 of Method 20.
6.3 Measurement System Preparation. Analyzer Calibration Error, Response Tine, and
Sampling System Bias Check. Follow Sections 6.2 through 6.4 of Method 6C.
7. EMISSION TEST PROCEDURE
7.1 Selection of Sampling Site and Sampling Points. Select a measurement site and
sampling points using the same criteria that are applicable to tests performed using
Method 3.
7.2 Sample Collection. Position the sampling probe at the first measurement point.
and begin sampling at the same rate as that used during the response time test.
Maintain constant rate sampling (I.e.. ±10 percent) during the entire run. The
sampling time per run shall be the same as for tests conducted using Method 3 plus
twice the average system response time. For each run. use only those measurements
obtained after twice the response time of the measurement system has elapsed to
determine the average effluent concentration.
7.3 Zero and Calibration Drift Test. Follow Section 7.4 of Method 6C.
8. QUALITY CONTROL PROCEDURES
The following quality control procedures are recommended when the results of this
method are used for an emission rate correction factor, or excess air determination.
The tester should select one of the following options for validating measurement
results:
8.1 If both 02 and CQ are measured using Method 3A. the procedures described in
Section 4.4 of Method 3 should be followed to validate the 02 and CQ measurement
results.
8.2 If only 02 is measured using Method 3A. measurements of the sample streamZCO
concentration should be obtained at the sample by-pass vent discharge using an Orsat
or Fyrite analyzer, or equivalent. Duplicate samples should be obtained concurrent
with at least one run. Average the duplicate Orsat or Fyrite analysis results for
each run. Use the average COZ values for comparison with the2 0 measurements in
accordance with the procedures described in Section 4.4 of Method 3.
8.3 If only C02 is measured using Method 3A. concurrent measurements of the sample
stream C02 concentration should be obtained using an Orsat or Fyrite analyzer as
described in Section 8.2. For each run. differences greater than 0.5 percent between
the Method 3A results and the average of the duplicate Fyrite analysis should be
investigated.
-------
EMTIC 7M-003A NSPS TI3J METHOD Page 4
9. EMISSION CALCULATION
9.1 For all C02 analyzers, and for 02 analyzers that can be calibrated with zero gas,
follow Section 8 of Method 6C, except express all concentrations as percent, father.
than ppm. - •"-*"
9.2 For Oi analyzers that use a low-level cal 1 brat 1W gas 1n place of a zero gas.
calculate the effluent gas concentration using Equation 3A-1.
C.-GO,
C,« - (t - C.) + C., Eq. 3A-1
C.- C0
Where:
Cg^ - Effluent gas concentration, dry basis, percent. :*'
C., - Actual concentration of the upscale calibration gas. percent.
C,, - Actual concentration of the low-level calibration gas. percent.
C. - Average of Initial and final system calibration bias check
responses for the upscale calibration gas. percent.
C0 - Average of Initial and f << system calibration bias tteck
responses for the low level gas. percent.
?•*
U - Average gas concentration -indicated by the gas analyzer, dry basis,
percent.
,#
10. BIBLIOGRAPHY
Same as 1n Bibliography of Method 60
-------
Appendix G.4
Sampling & Analysis Methods
EPA Method 23
-------
6560-50
ENVIRONMENTAL PROTECTION AGENCY
40 CFR Part 60
[AD-FRL- ]
STANDARDS OF ^PERFORMANCE FOR NEW STATIONARY SOURCES
Appendix A , Test Method 23
AGENCY: Environmental Protection Agency (EPA).
ACTION: Proposed Rule.
SUMMARY: This rule amends Method 23, entitled
"Determination of Polychlorinated Dibenzo-p-Dioxins and
Polychlorinated DibefLZufurans from Stationary Sources," to
correct existing errors in the method, to eliminate the methylene
chloride rinse of the sampling train, and to clarify the quality
assurance requirements of the method.
DATES: Comments.-. - Comments must be received on or before
(90 days after publication in the FEDERAL
REGISTER].
Public Hearing. *if anyone contacts EPA requesting to speak
at a public hearing by (two weeks after
publication in the FEDERAL REGISTER), a public hearing will be
held on ; (four weeks after publication in the
FEDERAL REGISTER), beginning at 10:00 a.m. Persons interested in
attending the hearing should .call Ms. Lala Cheek at
(919) 541-5545 to verify that a hearing will be held.
Request to Speak at Hearing. Persons wishing to present
-------
oral testimony must contact EPA bv (two weeks
after publication in the FEDERAL REGISTER).
ADDRESSES: Comments. Comments should be submitted - (in duplicate
if possible) to Public Docket No. A-94-2 at the following
address: U. S. Environmental Protection Agency , Air and
Radiation Docket and Information Center, Mail Code: 6102, 401 M
Street, SW, Washington, DC 20460. The Agency requests that a
separate copy also be sent to the contact person listed below.
The docket is located at the above address in Room 1*-lBOO
Waterside Mall (ground floor), and may be inspected from
8:30 a.m. to Noon and 1:00 to 3:00 PM, Monday through Friday.
The proposed regulatory text and other materials related .to this
rulemaking are available for review in the.dpcket or copies may
-';* -,.. - S .--•.
be mailed on request from the Air Docket by* c^ilitig 2O2-26Q-7S48.
A reasonable fee may be charged for copying.docket anaterials*
public Hearing. If any;,f;d contacts EPA -i«gn4fstirig a public
hearing, it will be held at EPA's Emission Measurement
* * " *
Laboratory, Research Triangle Park,, North GarQlJna. ; Persons
' " *-'.*-
interested in attending the hearing otftwiefatng t—.- preset oral A
- /\ ^--.'
testimony should notify Ms. Jbala Cheek (MD-19) , U.S.
Environmental Protection Agency, Research Triangle Park,- Uorth, •••
-.
Carolina 27711, telephone number (919) 541-5545.,., ,.,
-------
Docket: A DockeHty A-94-22, containing materials relevant to
this rulemaking, is available for public inspection and copying
between 8:30 a.m. and Noon and 1:00 and 3:00 p.m., Monday through
Friday, in at EPA's Air Docket"Section (LE-131), Room M-1500
Waterside Mall (ground floor) 401 M Street, S.W., Washington,
D.C. 20460. A reasonable fee may be charged for copying.
FOR FURTHER INFORMATION CONTACT: Gary McAlister, Emission
Measurement Branch (MD-19), Emissions, Monitoring, and Analysis
Division, U.S. Environmental Protection Agency, Research Triangle
Park, North Carolina 27711, telephone (919) 541-1062.
SUPPLEMENTARY INFORMATION:
The proposed regulatory text of the proposed rule is not
included in this fe^e^ra^.:::Rsgj.ster notice, but is available in
• vc~y /"•- •'
Docket No. A-94-22 or "by written or telephone request from the
/
Air Docket (see ADDRESSES). If necessary, a limited number of
• - X; "
copies of the Regulatory Text are available from the EPA contact
persons designated earlier in this notice. This Notice with the
proposed regulatory language is also available on the Technology
Transfer Network (TTN), one of EPA's electronic bulletin boards.
TTN provides information and technology exchange in various areas
of air pollution control. The service is free except for the
cost of the phone call. Dial (919) 541-5742 for up to a 14400
-------
bps modem. If more information on TTN is needed, call the HELP
line at (919) 541-5384.
I. • SUMMARY
Method 23 was promulgated along with the New Source
Performance Standard for municipal waste combustors (Subpart Ea).
As promulgated, the method contained some errors. This action
would correct those errors and would clarify some of the existing
quality assurance requirements. In addition, the current
procedure requires rinsing of. "tile sampling train with. two
separate solvents which must be analyzed separately. Based on
data the Agency has collected since promulgation of Method 23, we
believe that one of these rinse steps and the resulting sample
fraction can be eliminated. This could save as much as $2000 per
test run in analytical costs. *
'"*-' -i.
II. THE RULEMAKING
•" . V
This rulemaking does ace impose emission measurement
requirements beyond those specified in'the cxirrjent regulations
-.is.
nor does it change any emiss^ on standard. Rather, the rulemaking
would simply amend an existing test methor! associated with
emission measurement requirements in the current regulations that
would apply irrespective of **his rulemaking. - • •
III. ADMINISTRATIVE REQUIREMENTS
-------
A. Public Hearing
A public hearing will be held, if requested, to discuss the
proposed amendment in accordance with section 307(d)(5)of the
Clean Air Act. Persons wishing to make oral presentations should
-,.*", * „
contact EPA at the address given in the ADDRESSES section of this
preamble. Oral presentations will be limited to 15 minutes each.
Any member of the public may file a written statement with EPA
before, during, or within 30 days after the hearing. Written
statements should be addressed to the Air Docket Section address
given in the ADDRESSES section of this preamble.
A verbatim transcript of the hearing and written statements
will be available for public inspection and copying during normal
- .— r v~e , ~-v. '
working hours at EPA'£ Air Docket Section in Washington, DC {see
- * - *• s, --- ,
ADDRESSES section "of th'is preamble) .
B. Docket
-ff, > -.
The docket is alf organized and complete file of all the
information considered by EPA in the development of this
rulemaking. The docket is a dynamic file, since material is
added throughout the rulemaking development. The docketing
system is intended to allow members of the public and industries
involved to identify and locate documents readily so that they
may effectively participate in the rulemaking process. Along
5
-------
with the statement of basis and purpose of the proposed and
promulgated test method revisions and EPA responses to
significant comments, the contents of the docket, except for
interagency review materials, will serve as the record in case of
judicial review [Section 307(d) (7) (A)].
C. Executive Order 12291 Review
Under Executive Order 12291, EPA is required to judge
whether a regulation is a "major rule" and,- therefore, subject to
the requirements of a regulator/ impact analysis. This
rulemaking does not impose emission measurement requirements
beyond those specified in the current regulations, nor does it
change any emission standard. The Agency nas determined that
this regulation would result in none of the. adverse economic
effects set forth in Section 3 of the Order as grounds for
i*
finding the regulation to be a "major'rule.." Tlje Agency has,
therefore, concluded that ti., regulation is not ^i *major rule"
under Executive Order 12291.
D. Regulatory Flexibility Act
The Regulatory Flexibility Act (RFA) ^c '•SBO requires the
identification of potentially adverse impacts of Federal
regulations upon small business entities. _ The RFA specifically
requires the completion of an analysis in those instances where
-------
small business impacts are possible. This rulemaking does not
impose emission measurement requirements beyond those specified
in the current regulations, nor does it change any emission
standard. Because this rulemaking imposes no adverse economic
"*
impacts, an analysis has not been conducted.
Pursuant to the provision of 5 D.S.C. 605(b), I hereby
certify that the promulgated rule will not have an impact on
small entities because no additional costs will be incurred.
E. Paperwork Reduction Act
This rule does not change any information collection
requirements subject to Office of Management and Budget review
under the Paperwork Reduction Act of 1980, 44 U.S.C. 3501 et sag.
F. Statutory Authority
The statutory authority for this proposal is provided by
sections 111 and 301(a) of the Clean Air Act, as amended: 42
U.S.C., 7411 and 7601{a).
LIST OF SUBJECTS
Air pollution control, municipal waste combustors,
polychorinated dibenzo-p-dioxins, sources.
-------
Date The Administrator
-%•*:» . • -.
It is proposed that 40 CFK fart 60 be amended as follows:
1. The authority citation for Part 60 continues to read as
follows: Authority: Clean Air Act (42 U.S.C. 7401 [et seq.], as
• ~'s*-S-* '•''
amended by Pub. L 101-549).
V*>-- -
2. Replace test Method 23 of AppendisfeA, with the
following:
Method 23 - Determination of Polvchlorinatad Dibenzo-p-dioxlna
and Polychlorinated Dibenzofurans from Municipal. Waste Combust ore
1. APPLICABILITY AND PRINCIPLE
1.1 Applicability. This method is applicable to the'
determination of emissions of polyghlorinated dibenzo-p-dioxins
(PCDD's) and polychlorinated libeiissofurans (PCDF's) from
municipal waste combustors. Calibration-standards -are selected
for regulated emission levels or municipal wasterf^mbuators
1.2 Principle. A sample is withdrawn isokinetically from the
gas stream and collected in the sample probe, on a glass fiber
filter, and on a packed column of adsorbent material. The sample
cannot be separated into a p rticle and vapor fraction. The
PCDD's and PCDF's are extracted from the sample, separated by
high resolution gas chromatography (HRGC), and weasured by high
8
-------
resolution mass spectrometry (HRMS).
2. APPARATUS "" v '
2.1 Sampling. A schematic of the sampling train is shown in
Figure 23-1. Sealing greases shall not be used in assembling the
train. TRC^fain is identical to that described in Section 2.1
of Method 5 of this appendix with the following additions:
-------
Figure 23.1 Sampling Train
••y ,
10
-------
"•- ~ •'-
2.1.1 Nozzle. The nozzle shall be made of nickel, nickel -
plated stainless steel, quart-. *r borosilicate glass.
2.1.2 Sample Transfer Lines. The sample transfer lines, if
needed, shall be heat traced, heavy walled TFE (1/2 in. OD with
1/8 in. wall) with connecting fittings tha*- are rrsmsible of
forming leak-free, vacuum- tight connections iwithottt using sealing
greases . The line shall be as short as possible and must be
maintained at £l20eC. . . „.*".*-
2.1.1 Filter Support. Teflon or Teflon-coated wire.
2.1.2 Condenser. Glass, coij. type with compatible fittings.
A schematic diagram is shown in Figure 23-2.
2.1.3 Water Bath. Thermostatically controlled to maintain the
gas temperature exiting the condenser at ^.20PC (68°F) .
2.1.4 Adsorbent Module. Glass container to hold up to 40
grams of resin adsorbent. A schematic diagram is shown in Figure
23-2. Other physical configurer ions of the- water- jacketed resin
trap/condenser assembly are acceptable . The connecting fittings
shall form leak- free, vacuum . -t ight se'al'S. A coarse glass frit is
included to retain the adsortoeat in the water- jacketed sorbent
module .
2.1.5 Probe Liner. The probe liner shall be made of glass and
a Teflon ferrule or Teflon cjated O-ring shall be used to make
the seal at the nozzle end of the probe.
12
-------
2.2 Sample Recovery.
2.2.1 Pitting jCaf»*.f M3£©und glass, Teflon tape, or aluminum
foil (Section 2.2.6) to cap off the sample exposed sections of
the train and sorbent module.
2.2.2 Wash Bottles. Teflon, 500-mL.
13
-------
Flue
Gas
Flow
n
• 20/15
SorbentTrap
OteM Wool Plug
GtattSMmd Ditk
Water Jacket
Cooftnj CoB
Walw
§20/15
Figure 23.2 Condenser and Adsorbent Trap
14
-------
15
-------
2.2.3 Probe Liner, Probe Nozzle, and Filter Holder Brushes.
Inert bristle brushes with pr: ;^saned stainless steel or Teflon
handles. The probe brush shall have extensions of stainless
steel or Teflon, at least as long as the probe. The brushes
shall be properly sized and shaped to brtw* ""«• *•'«•> noansleV, p^Sfee :'''-
liner, and transfer line, if used. •*•• -*-"?
2.2.4 Filter Storage Container. Sealed filter holder, wide-
mouth amber glass jar with Teflon-lined cap, glass, petri dish, or
Teflon baggie.
2.2.5 Balance. Triple beam.
2.2.6 Aluminum Foil. Heavy duty, hexane-rinsed (Do not use to
wrap or ship filter samples, because it may react with
particulate matter).
2.2.7 Metal Storage Contain*-1** Air tight Container to store
silica gel. ./
2.2.8 Graduated Cylinder. CC&ss, 250-mL with 2-nffr' *
graduations. -U."'
2.2.9 Glass Sample Storage Containers. : Amber glass bottles
for sample glassware washes, SGOV or'10QA-*&«••;v^tfe leak free
Teflon-lined caps. . -; . . -
2.3 Analysis.
2.3.1 Sample Containers. 125- and 250-mL flint glass bottles
with Teflon-lined caps. :, : ;'., '
16
-------
2.3.2 Test Tubes. Glass.
2.3.3 Soxhlet ExllraWi'on Apparatus. Capable of holding 43 x
123 mm extraction thimbles.
2.3.4 Extraction Thimble. Glass/ precleaned cellulosic, or
glass fiber** '
2.3.5 Pasteur Pipettes. For preparing liquid chromatographic
columns.
2.3.6 Reacti-vials. Amber glass, 2-mL.
2.3.7 Rotary Evaporator. Buchi/Brinkman RF-121 or equivalent.
2.3.8 Kuderna-Danish Concentrator Apparatus.
2.3.9 Nitrogen Evaporative Concentrator. N-Evap Analytical
Evaporator Model III or equivalent.
2.3.10 Separatory Funnels. Glass, 2-liter.
2.3.11 Gas Chrcsfaatbg*apih. Consisting of the following
components:
2.3.11.1 Oven. "Capable of maintaining the separation column
at the proper operating temperature ±10°C and performing
programmed increases in temperature at rates of at least
40°C/min. " -
*, *. .
2.3.11.2 Temperature* Gaucfes. To monitor column oven,
detector, and exhaust temperatures ±1°C.
2.3.11.3 Flow Systems. Gas metering system to measure sample,
fuel, combustion gas, and carrier gas flows.
17
-------
2.3.11.4 Capillary Columns. A fused silica column,
60 x 0.25 mm inside diameter fTD) coated with DB-S and a fused
silica column, 30 m x 0.25 mm ID coated with DB-225. Other
column systems may be substituted provided that the user is able
6---i<
to demonstrate, using calibration and pe«£nT""^—'^^oks, tnat''*'
the column system is able to meet the specifications of Section
6.1.2.2.
2.3.12 Mass Spectrometer. Capable of routine operation at a
resolution of 1:10000 with a stability of ±5 ppm.
2.3.13 Data System. Compatible with the mass spectrometer and
capable of monitoring at least five groups of 25 ions.
2.3.14 Analytical Balance. To measure within 0.1 mg.
?,.''• • •
3. REAGENTS
3.1 Sampling. iH- #. --'-.-, ?'-'»'•
• '.. i • *-".„ ,-f,
3.1.1 Filters. Glass fiber filters.! without organic binder,
exhibiting at least 99.95 percert efficiency, {^0.05 percent
penetration) on 0.3-micron dioctyl phthalate smoke particles.
The filter efficiency test shall be conducted in accordance with
ASTM Standard Method D 2986-71 (Reapproved 19=78,}^incorporated by
reference - see §60.17). . ., ?v r-^ ; -. •* --/••
- f • -
3.1.1.1 Freeleaning. All filters shall be cleaned before
their initial use. Place a glass extraction thiablfr and 1 g! of i'• >
silica gel and a plug of glass wool into & Soxhlet^ apparatus,
18
-------
charge the apparatus with toluene, and reflux for a minimum of 3
hours. Remove Che'tb'luene and discard it, but retain the silica
gel. Place no more than 50 filters in the thimble onto the
silica gel bed and top with the cleaned glass wool. Charge the
Soxhlet WTCfi 'toluene and reflux for 16 hours. After extraction,
allow the Soxhlet to cool, remove the filters, and dry them under
a clean nitrogen (N3) stream. Store the filters in a glass petri
dishes and seal with Teflon tape.
3.1.2 Adsorbent Resin. Amberlite XAD-2 resin. Thoroughly
cleaned before initial use. Do not reuse resin. If precleaned
XAD-2 resin is purchased from the manufacturer, the cleaning
procedure described in Section 3.1.2.1 is not required.
3.1.2.1 Cleaning. Procedure may be carried out in a giant
Soxhlet extractor;/ An all-glass filter thimble containing an
extra-coarse frit is used for extraction of XAD-2. The frit is
recessed 10-15 n^afc^e a crenelated ring at the bottom of the
thimble to facilitate drainage. The resin must be carefully
retained in the extractor cup with a glass wool plug and a
stainless steel ring because it floats on methylene chloride.
This process involves sequential extraction in the following
order.
Solvent Procedure
Water Initial Rinse: Place resin in a beaker,
19
-------
rinse once with HPLC water, and discard
water:.; Refill beaker with water, let
stand overnight, and discard water.
Water Extract with HPLC water for 8 hours.
Methanol Extract with meth^s,;"" ' ^' hours. &••
Methylene Chloride Extract with methylene chloride for 22
hours.
Methylene Chloride Extract with methylene chloride for 22
hours.
3.1.2.2 Drying. v>
3.1*2.2.1 Drying Column. Pyrex pipe, 10.2 cm ID by 0.6 m
long, with suitable retainers.
3.1.2.2.2 Procedure. The adsorbent must be dried with clean
inert gas. Liquid nitrogen from a standard "commercial liquid
nitrogen cylinder has proven to be a reliable.source for large
volumes of gas free from organaj contaminants. Connect the
liquid nitrogen cylinder to me column by a length of cleaned
copper tubing, 0.95 cm ID, coiled to pa&s through a heat source.
A convenient heat source is a water-bath-heated from a steam
line. The final nitrogen temperature should only be warm to the
touch and not over 40°C. Continue flowing nitrogen through the
adsorbent until all the resiJu&l solvent is removed. The flow
rate should be sufficient to: gently agitate the jpar tides, but
20
-------
not so excessive as to cause the particles to fracture.
3.1.2.3 Quality* Control Check. The adsorbent must be checked
for residual methylene chloride (MeCla) as well as PCDDs and
PCDFs prior to use. The analyst may opt to omit this check for
3.1.2.3.1 MeClj Residue Extraction. Weigh a 1.0 g sample of
dried resin into a small vial, add 3 mL of toluene, cap the vial,
and shake it well.
3.1.2.3.2 MeClj Residue Analysis. Inject a 2 /il sample of the
extract into a gas chromatograph operated under the following
conditions:
Column: 6 ft x 1/8 in stainless steel containing 10 percent
OV-101™ on 100/120 Supelcoport .
Carrier Gas: Helium at a rate of 30 mL/min.
Detector: Flame ionization detector operated at a sensitivity
\
of 4 x 10-"
Injection Port Temperature: 250°C.
Detector Temperature: 305°C.
Oven Temperature: 30"C for 4 min; programmed to rise at
* * -«; <*•
40°C/min until it reaches 250°C; return to 30°C after 17
minutes .
Compare the results of the analysis to the results from the
reference solution. Prepare the reference solution by injecting
21
-------
4.0 /xl of methylene chloride into 100 mL of toluene. This
corresponds to 100 p.g of methyl
-------
chloride-rinsed glass container with a Teflon-lined screw cap.
3.1.5 Silica,0^1._. ^Indicating type, 6 to 16 mesh. If
previously used, dry at 175° C (350°F) for two hours. New silica
gel may be used-as received. Alternatively, other types of
desiccants (equivalent or better) may be used, subject to the
approval of the Administrator.
3.1.6 Chromic Acid Cleaning Solution. Dissolve 20 g of sodium
dichromate in 15 mL of water, and then carefully add 400 mL of
concentrated sulfuric acid.
3.1.7 HPLC Hater.
3.2 Sample Recovery.
3.2.1 Acetone. Pesticide quality.
3.2.2 Toluene. Pesticide quality.
3.3 Analysis.
•*- t?-*^-:
3.3.1 Potassium Hydroxide. ACS grade, 2-percent
(weight/volume) in. w^er.,
3.3.2 Sodium Sulfate. Granulated, reagent grade. Purify
prior to use by rinsing with methylene chloride and oven drying.
Store the cleaned material in a glass container with a Teflon-
lined screw..,cap,.; *
3.3.3 Sulfuric Acid. Reagent grade.
3.3.4 Sodium Hydroxide. 1.0 N. Weigh 40 g of sodium hydroxide
into a 1-liter volumetric flask. Dilute to 1 liter with water.
23
-------
3.3.5 Hexane. Pesticide grade.
3.3.6 Methylene Chloride. Pesticide grade
3.3.7 Benzene. Pesticide grade.
3.3.8 Ethyl Acetate.
3.3.9 Methanol. Pesticide grade. .'•/
3.3.10 Toluene. Pesticide grade. -
3.3.11 Nonane. Pesticide grade.
3.3.12 Cyclohexane. Pesticide Grade.
3.3.13 Basic Alumina. Activity grade 1, 100-200 mesh. Prior
to use, activate the alumina by heating for 16 hours at 130°C.
Store in a desiccator. Pre-activated alumina may be purchased
from a supplier and may be used as received. >, ,
3.3.14 Silica Gel. Bio-Sil A, 100-200.mesh. Prior to use,
activate the silica gel by heating f,or at leas,t ,^31? minutes at
180"C. After cooling, rinse the silica gel sequentially with
methanol and methylene chloride. Heat the rinsed silica gel at
50°C for 10 minutes, then increase the temperature gradually to
180°C over 25 minutes and maintain it at...this temperature for
90 minutes. Cool at room temperature and store in a glass
container with a Teflon-lined Rcrew cap. , -.., -~.
3.3.15 Silica Gel Impregnated with Sulfuric Acid. Combine 100
g of silica gel with 44 g of concentrated sulfuric acid in a .
screw capped glass bottle and agitate, thoroughly*, Disperse the
24
-------
solids with a stirring rod until a uniform mixture is obtained.
_,<- " * •"'•*'••'. ,-
Store the mixture in a glass container with a Teflon-lined screw
cap.
3.3.16 Silica Gel Impregnated with Sodium Hydroxide. Combine
39 g of 1 N sodium hydroxide with 100 g of silica gel in a screw
capped glass bottle and agitate thoroughly. Disperse solids with
a stirring rod until a uniform mixture is obtained. Store the
mixture in glass container with a Teflon-lined screw cap.
3.3.17 Carbon/Celite. Combine 10.7 g of AX-21 carbon with 124
g of Celite 545 in a 250-mL glass bottle with a Teflon-lined
screw cap. Agitate the mixture thoroughly until a uniform
mixture is obtained. Store in the glass container.
3.3.18 Nitrogen. Ultra high purity.
^*'~v *;.-•'•*•
3.3.19 Hydrogea. Ultra high purity.
3.3.20 Internal Standard Solution. Prepare a stock standard
solution containing the isotopically labelled PCDD's and PCDF's
at the concentrations shown in Table 2 under the heading
"Internal Standards" in 10 mL of nonane.
3.3.21 Surrogate Standard Solution. Prepare a stock standard
t • v" »*•"'*• •*• f"
solution containing the isotopically labelled PCDD's and PCDF's
at the concentrations shown in Table 2 under the heading
"Surrogate Standards" in 10 mL of nonane.
3.3.22 Recovery Standard Solution. Prepare a stock standard
25
-------
solution containing the isotopically labelled PCDD's and PCDF's
at the concentrations shown a.ii fable 2 'tinder the heading
"Recovery Standards" in 10 tnL of nonane.
4. PROCEDURE
4.1 Sampling. The complexity of thia,,m'=><->>'-v* 4 «nrh that, in
order to obtain reliable results, testers and analysts should be
trained and experienced with the procedures.
4.1.1 Pretest Preparation.
4.1.1.1 Cleaning Glassware, All glass components of the train
upstream of and including the adsorbent module; shall be cleaned
as described in Section 3A of the "Manual of Analytical Methods
for the Analysis of Pesticides in Human and Environmental
Samples." Special care shall be devoted to the removal of
residual silicone grease sealants or, ground -glasa^connections of
used glassware. Any residue shall be removed by soaking the
glassware for several hours i s chromic acid 'cleaning solution
prior to cleaning as described above.
4.1.1.2 Adsorbent Trap. The traps shall be loaded in a clean
area to avoid contamination. They may not "'be loaded in the
field. Fill a trap with 20 * 40. g of XAD-2. Follow the XAD-2
with glass wool and tightly cap both ends of the trap. Add 40 pi
of the surrogate standard solution (Section 3.3..21) to each trap
for a sample that will be split prior^ to analysis or 20 j*l of the
26
-------
surrogate standard solution (Section 3.3.21) to each trap for
samples that will not:''be split for analysis (Section 5.1). After
addition of the surrogate standard solution, the trap must be
used within 14 days. Keep the spiked sorbent under refrigeration
until use.
4.1.1.3 Sampling Trkfta. It is suggested that all components
be maintained according to the procedure described in APTD-0576.
4.1.1.4 Silica Gel. Weigh several 200 to 300 g portions of
silica gel in air tight containers to the nearest 0.5 g. Record
the total weight of the silica gel plus container, on each
container. As an alternative, the silica gel may be weighed
directly in the fifth impinger just prior to sampling.
4.1.1.5 Filter. Check each filter against light for
irregularities and flaws or pinhole leaks. Pack the filters flat
~ "-" vf-^« " *V-. *
in a clean glass container or Teflon baggie. Do not mark filter
/
\
with ink or any other contaminating substance.
4.1.2 Preliminary Determinations. Same as Section 4.1.2
Method 5.
4.1.3 Preparation of Sampling Train.
4.1.3.1 During preparation and assembly of the sampling train,
keep all train openings where contamination can enter, sealed
until sampling is about to begin. Wrap sorbent module with
aluminum foil to shield from radiant heat of sun light. (NOTE:
27
-------
Do not use sealant grease in assembling the train.)
4.1.3.2 Place approximately 1-0 mL of water in the'second and
third impingers, leave the first and fourth impingers empty, and
transfer approximately 200 to 300 g of preweighed silica gel from
-' J» - t,
its container to the fifth impinger. - *^ *~'*k "'""'
4.1.3.3 Place the silica gel container in a clean place for
later use in the sample recovery. Alternatively, the weight of
the silica gel plus the fifth impinger may be: determined to the
nearest 0.5 g and recorded.
4.1.3.4 Assemble the sampling train as shown,,in Figure 23-1.
4.1.3.5 Turn on the adsorbent module and condenser coil
recirculating pump and begin monitoring the adsorbent module gas
entry temperature. Ensure proper sorbent gas entry „temperature
before proceeding and before sampling is initiated* It i?s
extremely important that the XAD-2 adsorbent resin- temperature
never exceed 50°C because thenrd decomposition f^jhreakthrough
of surrogate standards will occur. During testing, the XAD-2
temperature must not exceed 20"C for efficient capture of the
PCDD's and PCDF's. '&
4.1.4 Leak-Check Procedure, Same as Method 5, Section 4.1.4.
4.1.5 Sampling Train Operation. Same as Method 5,
Section 4.1.5. ' '•-'"iv*'""'"•"*' v' --
4.2 Sample Recovery. Proper cleanup procedure, tiegins as soon
28
-------
as the probe is removed from the stack at the end of the sampling
period. Seal the nozzle end of the sampling probe with Teflon
tape or aluminum foil.
y- -
When the probe can be safely handled, wipe off all external
particulate matter near the tip of the probe. Remove the probe
from the train and close off both ends with aluminum foil. Seal
off the inlet to the train with Teflon tape, a ground glass cap,
or aluminum foil.
Transfer the probe and impinger assembly to the cleanup area.
This area shall be clean and enclosed so that the chances of
losing or contaminating the sample are minimized. Smoking, which
could contaminate the sample, shall not be allowed in the cleanup
area. Cleanup personnel shall wash their hands prior to sample
recovery.
Inspect the train prior to and during disassembly and note any
• - jt *• r—"• * • V
abnormal conditions, e.g., broken filters, colored impinger
liquid, etc. Treat the samples as follows:
4.2.1 Container No. 1. Either seal the filter holder or
carefully remove the filter from the filter holder and place it
in its identified contained. Do not place the filter in aluminum
foil. Use a pair of cleaned tweezers to handle the filter. If
it is necessary to*'"fold the filter,' do so such that the
particulate cake is inside the fold. Carefully transfer to the
29
-------
container any particulate matter and filter fibers which adhere
to the filter holder gasket, by using a dry inert bristle larush
and a sharp-edged blade. Seal.the container with Teflon tape.
4.2.2 Adsorbent Module. Remove the nodule from the train,
tightly cap both ends, label it, and store *«• *-., * ~•. for -*.•&*£':.
transport to the laboratory. "-^^
4.2.3 Container No. 2. Quantitatively recover material
deposited in the nozzle, probe transfer-lines.,.: the. .front half of
the filter holder, and the cyclone, if used, first, by brushing
while rinsing three times with acetone and then, by rinsing the
probe three times with toluene. Collect all the rinses in
Container No. 2.
Rinse the back half of the filter holder three times with
acetone. Rinse the connecting "• ine betwe en1 y$feiB, filter*'and the
condenser three times with acetone. Soak the connecting line
with three separate portions ct eoluene for 5 minutes^lsfaeh. If
i-
, •*•_.
using a separate condenser and adsorbent trap", rinse the
condenser in the same manner as the connecting lilies - Collect all
the rinses in Container No. 2 and,.mark tfce;?lA*fci-of the liquid on
>• -'f-i ,$
the container. ;i'^'^-'
4.2.4 Impinger Water. Measure the liquid in the first four
impingers to within 1 raL by uaihg a graduated cylinder^ or Toy t,;
weighing it to within 0.5 g by using a balance,-;<;Bacord the
30
-------
volume or weight of liquid present. This information is required
to calculate the'moisfeterfe-Qontent of the effluent gas. Discard
the liquid after measuring and recording the volume or weight.
4.2.5 Silica Gel. Note the color of the indicating silica gel
to determine if it has been completely spent and make a mention
of its condition. Transfer the silica gel from the fifth
impinger to its original container and seal.
5. ANALYSIS
All glassware shall be cleaned as described in Section 3A of
the "Manual of Analytical Methods for the Analysis of Pesticides
in Human and Environmental Samples." All samples must be
extracted within 30 days of collection and analyzed within 45
days of extraction.
5.1 Sample Extraction. The analyst may choose to split the
sample extract after the completion of sample extraction
procedures. One ha-l-f* of the sample can then be archived. Sample
preparation procedures are given for using the entire sample and
for splitting the sample.
5.1.1 Extraction System. Place an extraction thimble (Section
2.3.4), 1 g of silica ge'l, and a plug of glass wool into the
- •
Soxhlet apparatus, charge the apparatus with toluene, and reflux
for a minimum of 3 hours. Remove the toluene and discard it, but
retain the silica gel.. Ilemove the extraction thimble from the
31
-------
extraction system and place it in a glass beaker to catch the
solvent rinses.
5.1.2 Container No. 1 (Filter). Transfer the contents
directly to the glass thimble of the extraction system and
extract them simultaneously with the XAD-^2 -resir.
5.1.3 Adsorbent Cartridge. Suspend the adsorbent module
directly over the extraction thimble in the beaker (See Section
5.1.1) . The glass frit of the module should be.in tlie up
position. Using a Teflon squeeze bottle containing toluene,
flush the XAD-2 into the thimble onto the bed of cleaned silica
gel. Thoroughly rinse the glass module catching the rinsings in
the beaker containing the thimble. If the resin is wet,
effective extraction can be accomplished by loosely packing the
resin in the thimble. Add the'Tan--* glass..wool plug to the
thimble.
5.1.4 Container No. 2 (Acetone and Toluene). Concentrate the
sample to a volume of about 1-2 mL using a Kuderna-Danish
concentrator apparatus, followed by-N2'blow down at a temperature
of less than 37°C. Rinse the sample container tlnree times with
small portions of methylene chloride and aaa these uo the
concentrated solution and concentrate further to near dryness.
This residue contains particuiate matter removed in the rinse" of1'
the sampling train probe and nozzle. Add the concentrate to the
32
-------
filter and the XAD-2 resin in the Soxhlet apparatus described in
Section 5.1.1.*'
5.1.5 Extraction. For samples that are to be split prior to
analysis add 40 jil of the internal standard solution
(Section 3v3v20) to the extraction thimble containing the
contents of the adsorbent cartridge, the contents of
Container No. 1, and the concentrate from Section 5.1.4.
Alternatively, 20 /zl of the internal standard solution
(Section 3.3.20) for samples that are not to be split prior to
- •*„ *•*-->
analysis. Cover the contents of the extraction thimble with the
cleaned glass wool plug to prevent the XAD-2 resin from floating
into the solvent reservoir of the extractor. Place the thimble
in the extractor, and add the toluene contained in the beaker to
the solvent reservoir. Add additional toluene to fill the
reservoir approximately 2/3 full. Add Teflon boiling chips and
• 'v .1 1
assemble the apparatus. Adjust the heat source to cause the
extractor to cycle three times per hour. Extract the sample for
16 hours. After extraction, allow the Soxhlet to cool. Transfer
the toluene extract and three 10-mL rinses to the rotary
evaporator. Concentrate the extract to approximately 10 mL. If
decided to split the sample, store one half for future use, and
analyze the other half according to the procedures in Sections
5.2 and 5.3. In either case, use a nitrogen evaporative
33
-------
concentrator to reduce the volume of the sample being analyzed to
near dryness. Dissolve the residue in 5 mL of hexane.
5.2 Sample Cleanup and Practionation.
The following sample cleanup and fractionation procedures are
recommended. Alternative procedures may be utilized providing f^~-,
*• f1-
acceptable identification criteria (Section 5.3.2.5) and
quantification criteria (Section 5.3.2.6) are met.
5.2.1 Silica Gel Column. Pack one end of a-glass column,
20 mm x 230 mm, with glass wool. Add in sequence, 1 g silica
gel, 2 g of sodium hydroxide impregnated silica gel, 1 g silica
gel, 4 g of acid-modified silica gel, and 1 g of silica gel.
Wash the column with 30 mL of hexane and discard. Add the sample
extract, dissolved in 5 mL of hexane to the column with two
additional 5-tnL rinses. Elut<* the column-with an^-additional 90
mL of hexane and retain the entire eluate. . Concentrate this
solution to a volume of about. 1 mL usiritr >the 'nitrogen evaporative
•»'*"
concentrator (Section 2.3.9)'.
5.2.2 Basic Alumina Column. Shorten a 25-mL disposable
Pasteur pipette to about 16 r\L, Pack the lower section with
* ' afs, • - " - -- *
-•"**• ;
glass wool and 12 g of basic. Alumina. Transfer the concentrated
extract from the silica gel .column to the top of the basic
alumina column and elute the column sequentially with 120 mL of
0.5 percent methylene chloride in hexane followed.-by_ 120 mL of 35
34
-------
percent tnethylene chloride in hexane. Discard the first 120 mL
of eluate. Collect the second 120 mL of eluate and concentrate
it to about 0.5 mL using the nitrogen evaporative concentrator.
Transfer this extract with hexane to "13 mL tubes".
5.2.3 AX-21 Carbon/Celite 545 Column. Remove the bottom 0.5
in. from the tip of a 2-*mL disposable Pasteur pipette. Insert a
glass fiber filter disk or glass wool plug in the top of the
pipette 2.5 cm from the constriction. Add sufficient
carbon/Gelitew mixture to form a 2 cm column (the 0.6 mL mark
column. Top with a glass wool plug. In some cases AX-21 carbon
fines may wash through the glass wool plug and enter the sample.
This may be prevented by adding a celite plug to the exit end of
the column. Pre-elute the column with 5 mL toluene, followed by 1
mL of a 50:50 methylene chloride/cyclohexane mixture, followed by
5 mL of hexane. Load in sequence, the sample extract in 1 mL
hexane, 2x0.5 mL rinses* iji hexane, 2 mL of 50 percent methylene
'- ^:." ^-*''-
chloride in hexane and 2 mL of 50 percent benzene in ethyl
acetate and discard the eluates. Invert the column and elute in
the reverse direction with 13 mL of toluene. Collect this
eluate. Concentrate the eluate in a nitrogen evaporator at 45°C
to about 1 mL. Transfer the concentrate to a Reacti-vial using a
toluene rinses and concentrate to near dryness (less than 20
using a stream of N2. Store extracts at room temperature,
35
-------
shielded from light/ until the analysis is performed.
5.3 Analysis. Analyze the Cample with a gas chromatograph
coupled to a mass spectrometer (GC/MS) using the instrumental
parameters in Sections 5.3.1 and 5.3.2. Immediately prior to
analysis, add a 20 /il aliquot of the recpy•.
5.3.2.1 Resolution. 10,000 resolving pow*r or 100 ppm
* *t
~- «.*••
mass/mass. .v-: , . ,*. •' : •-
ti.
5.3.2.2 Xonization Mode. Electron impact.
•v .
5.3.2.3 Source Temperature 250°C. - - ' - ' ^.~f-
5.3.2.4 Monitoring Mode. 'Elected ioa monitoxiTigf A list of
36
-------
the various ions to be monitored is presented in Table 5.
5.3.2.5 Identification Criteria. The following identification
criteria shall be used for the characterization of
polychlorinated dibeiizodioxins and dibenzofurans.
1. The integrated ion-abundance ratio (M/M+2 or M+2/M+4) shall
be within 15 percent of the theoretical value. The acceptable
ion-abundance ratio ranges (±15%) for the identification of
chlorine-containing compounds are given in Table 6. If the ion-
abundance ratio ranges are the outside those in Table 6, the
. r ~ *•* <'.*
source has the option of using the results if the concentration
is determined using procedures in Section 9.3 or redoing the
analysis to eliminate the unacceptable ion-abundance ratio.
2. The retention time for the analytes must be within 3
seconds of the corresponding 13C-labeled internal standard or
surrogate standard.
3. The monitored ions, shown in Table 5 for a given analyte,
shall reach their maximum within 2 seconds of each other.
4. The identification of specific isomers that do not have
corresponding 13C-labeled standards is done by comparison of the
relative retention time (RRT) of the analyte to the nearest
internal standard retention time with reference (i.e., within
0.005 RRT units) to the comparable RRT's found in the continuing
calibration.
37
-------
5. The signal to noise ratio for all monitored ions must be
greater than 2.5.
6. The confirmation of 2, 3, 7, 8-TCDF shall satisfy all of
the above identification criteria.
7. Any PCDF coeluting (±2 s) with a pe»v *««-*-. -;r»r re spending
PCDPE channel, of intensity 10% or greater compared to the
analyte peak is evidence of a positive interference, the source
may opt keep the value to calculate CDD/CDF concentration or
conduct a complete reanalysis in an effort to remove or shift the
interference. If a reanalysis is conducted, all values from the
reanalyzed sample will be used for CDD/CDF concentration
calculations.
r> . •
8. Set the mass spectrometer Ig.ck channels as specified in
Table 5. Monitor the quality control 'check, channels, specified in
Table 5 to verify instrument stability ..during, the analysis. If
the signal varies by more tha. -i percent from the average
response, results for all isomers at corresponding residence time
shall be invalid. The source has the options of conducting
additional cleanup procedures on the other portion of the sample
•*;-i'
for split samples or dilutinr the original sample or following
other procedures recommended by the Administrator. When a
complete reanalysis is conducted, all concentration calculations
shall be based on the reanalyzed sample.
38
-------
5,3.2.6 Quantification. The peak areas for the two ions
monitored for each -aȣfc$*iiei:?are summed to yield the total response
for each analyte. Each internal standard is used to quantify the
indigenous PCDD's or PCDF's in its homologous series. For
example, the^3C12-2,3,7,8-tetra chlorinated dibenzodioxin is used
to calculate the concentrations of all other tetra chlorinated
isotners. Recoveries of the tetra- and penta- internal standards
are calculated using the 13C12-l/2,3,4-TCDD. Recoveries of the
hexa- through octa- internal standards are calculated using *3CU-
1,2,3,7, 8, 9-HxCDD. Recoveries of the surrogate standards are
calculated using the corresponding homolog from the internal
standard. When no peak is detected, the noise level, as measured
by the intensity of the .noise in a clear zone of the
chromatogram, is us'ed--to calculate the detection limit. Tables
7, 8, and 9 summarize the quantification relationships for the
/
unlabeled analytes,"internal standards and surrogate standards,
respectively.
6. CALIBRATION
Same as Method 5 with the following additions.
6.1 GC/MS System.
6.1.1 Initial Calibration. Calibrate the GC/MS system using
the set of five standards shown in Table 3. The relative
standard deviation for the mean response factor from each of the
39
-------
*
unlabeled analytes (Table 3) and of the internal and surrogate
standards shall be less than or equal to the values in Table/*?*''1'!' '
.'•'.=(";• • - '- "'"".'* ' "'
The signal to noise ratio for the GC signal present in every
selected ion current profile shall be greater thah'or equal to **
10. The ion abundance ratios shall be within the control limits
"i *&*. ~*-*'
•-•-,- -.
in Table 5.
V
6.1.2 Daily Performance Check.
6.1.2.1 Calibration Check. Inject 2 \i1 of solution Number 3
from Table 3. Calculate the relative response factor (RRF) for
V. . - -
each compound and compare each >^:F to the coi responding mean RRF
obtained during the initial calibration. The analyzer
performance is acceptable if the measured HELF's for the labeled
and unlabeled compounds for the daily run are Sfithin the limits
of the mean values shown in Table 10. In addition,.the iori
abundance ratios shall be withiu the allowable control limits
shown in Table 6.
1 • -• „-..v •*-- •
6.1.2.2 Column Separation *, .-.fade*'-- Inject 2 /*!• of "a solution of
a mixture of PCDD's and PCDF's that documents resolution between
2,3,7,8-TCDD and other TCDD i-somers. Resolutiog%..4JS defined as a
*• . r ^' x •-:- '
valley between peaks that is less than'25 p^i^ant of the l&Wer of
, t -. •-* M.; V '•>;' \ ': • '." •
!>, " ''" ';
the two peaks. Identify and record the retention time windows
t
for each homologous series. Perform a similar resolution check .
• :• --V,^-?,.'i ••-' *-' ' ---*-;
on the confirmation column to document the resolution between
40
-------
2,3,7,8 TCDF and other TCDF isoraers.
6.2 Lock ChaniS«l3s;-v'Set mass spectrometer lock channels as
specified in Table 5. Monitor the quality control check channels
specified in Table 5 to verify instrument stability during the
analysis. :
7. QUALITY CONTROL
7.1 Sampling Train Collection Efficiency Check. Add 40 /il of
the surrogate standards in Table 2 for samples split for analysis
or 20 /zl of the surrogate standards for sample not split for
analysis to the adsorbent cartridge of each train before
collecting the field samples.
7.2 Internal Standard Percent Recoveries. A group of nine
carbon-labeled PCDDs and PCDFs representing the tetra- through
octachlorinated homologues, is added to every sample prior to
extraction. The role of the internal standards is to quantify
the native PCDD's and PCDF's present in the sample as well as to
determine the overall method efficiency. Recoveries of the
internal standards shall be between 40 to 130 percent for the
tetra- through hexachlorinated compounds while the range is 25 to
130 percent for the hiepta- and octachlorinated homologues.
7.3 Surrogate Standard Recoveries. The five surrogate
compounds in Table 3 are added to the resin in the adsorbent
sampling cartridge before the sample is collected. The surrogate
41
-------
recoveries are measured relative to the internal standards and
are a measure of the samplinr train collection efficiency. They
are not used to measure the native PCDD's and PCDF's. All
surrogate standard recoveries shall be between 70 and
130 percent. Poor recoveries for all the.surrogates may be an ^
indication of breakthrough in the sampling train. If the
recovery of all standards is below 70 percent, the sampling runs
must be repeated. As an alternative, the sampling runs do not
have to be repeated if the final results are divided by the
fraction of surrogate recovery (on a homolog group basis). Poor
recoveries of isolated surrogate compounds should not be grounds
for rejecting an entire set of samples.
7.4 Toluene QA Rinse. Report the results of the toluene QA
rinse separately from the tota1 sample catch. Do not add it to
the total sample.
7.5 Detection Limits. Ca . aue the detection limits using
the equation in Section 9.8. If the detection limits meet the
Target Detection Limits (TDL in Table 1, then they are
considered acceptable. If tUe TDiLs are nofc. met, the impact of
the detection limits shall h. calculated uttxug tl*s procedures in
Section 9.9. If the maximum potential value of the sum of the
summed detection limits is lean then 50 percent of the emission
standard, the detection limits are acceptable. -If the value is
42
-------
greater than 50 percent of the emission standard, then the
analysis and/of asropilaHg:. and analysis must be repeated until
acceptable detection limits are obtained.
8. QUALITY ASSURANCE
8.1 Applicability. When the method is used to analyze samples
to demonstrate compliance with a source emission regulation, an
audit sample must be analyzed, subject to availability.
8.2 Audit Procedure. Analyze an audit sample with each set of
compliance samples. The audit sample contains tetra through octa
isomers of PCDD and PCDF. Concurrently analyze the audit sample
and a set of compliance samples in the same manner to evaluate
the technique of the analyst and the standards preparation. The
same analyst, analytical reagents, and analytical system shall be
used both for the compliance samples and the EPA audit sample.
8.3 Audit Sample Availability. Audit samples will be supplied
only to enforcement agencies for compliance tests. Audit samples
may be obtained by writing:
Source Test Audit Coordinator (MD-77B)
Quality Assurance Division
Atmospheric Research and Exposure Assessment Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
or by calling the Source Test Audit Coordinator (STAC) at (919)
43
-------
541-7834. The audit sample request must be made at least 30 days
prior to the scheduled compl-anes sample analysis.
8.4 Audit Results. Calculate the audit sample concentration
according to the calculation procedure provided in the audit
instructions included with the audit sampl-r T"""" IP the audit...
sample concentration and the analyst's natate on the audit response
form included with the audit instructions. Send one copy to the
EPA Regional Office or the appropriate enforcement agency and a
second copy to the STAC. The EPA Regional office or the
appropriate enforcement agency will report the results of the
•
audit to the laboratory being audited. Include this response
with the results of the compliance samples in relevant reports to
the EPA Regional Office or the appropriate enforcement agency.
9. CALCULATIONS :
Same as Method 5, Section 6 with the following additions.
9.1 Nomenclature.
Integrated ion current of the noise at the retention time
of the analyte.
Integrated ion current, of the two ions characteristic of
compound i in the jL, -calibration standard.
A*clj « Integrated ion current of the two ions characteristic of
the internal standa.^ 4 in the jth calibration standard.
« Integrated ion current of the two ions characteristic of
44
-------
surrogate compound i in the calibration standard.
AJ. « Integrated ion current of the two ions characteristic of
compound i in the sample.
A*t « Integrated ion. current of the two ions characteristic of
internal, standard i in the sample.
Integrated ion current of the two ions characteristic of
the recovery standard.
Integrated ion current of the two ions characteristic of
surrogate compound i in the sample.
i » Concentration of PCDD or PCDF i in the sample, pg/M3.
p = Total concentration of PCDD's or PCDF's in the sample,
pg/M3.
DL = Detection limit, pg/sample.
= Detection limit for each homologous series, pg/sample.
« Sum of all isomers times the corresponding detection
!
\
limit, rig/m3.
Hai = Summed heights of the noise at the retention time of the
analyte in the two analyte channels.
mci « Mass of compound i in the calibration standard injected
into the analyzer, pg.
m*cl = Mass of labeled compound i in the calibration standard
injected- into the analyzer, pg.
m*t = Mass of internal standard i added to the sample, pg.
45
-------
ti^. = Mass of recovery standard in the calibration standard
injected into the anal^i^r, pg.
m, = Mass of surrogate compound in the sample to be analyzed,
pg.
TUji « Mass of surrogate compound i in th*» Calibration standard,
pg.
RRFi » Relative response factor for compound i.
RRFr. = Recovery standard response factor.
RRF, = Surrogate compound response factor.
Vntstd)88 Metered volume of sample run, dscm.
1000 = pg per ng.
9.2 Average Relative Response Factor.
RRF, = -2. VJ ""' -- E<3' 23-1
A 2)
elj
9.3 Concentration of the n.- ^D'S and PCDF's.
CL = —^ . Eq. 23-2
RRF. V
1 ™*i«.
9.4 Recovery Standard Re««?onse Factor.
46
-------
.v Cl m" Eq. 23-3
Ar, mcl
9.5 Recovery of Internal Standards (R*)
R' = —if—xlOO% Eq. 23-4
Ar, RFr,
9.6 Surrogate Compound Response Factor.
RRFf = 2i- Eq. 23-5
9.7 Recovery of Surrogate Compounds (R.) .
ml
R. = - IJ-^ - "100% Eq. 23-6
RRFg
9.8 Detection Limit (DL). The detection limit can be
calculated based on either the height of the noise or the area of
47
-------
the noise using one of the two equations.
Detection limit using height lor che DB-225 column. Three aH9 ~ *
one half times the height has been empirically determined to give
area.
2.5 (3.5 x H .) m. '-'•*'•
DL = , -; --- E(3- 23'7
Detection limit using height for the DB-5 column. Five times the
height has been empirically determined to give-area.
2.5 (5 x H ) a/
DL ~ — . :v Eq, 23-8
Ac\ RRFi
Detection limit using area ot the noise.
2.5 A.
DL = —- -. V.^i- -l Eq. 23-9
* .• f *• •*? ^
Acl
9.9 Summed Detection Limits. Calculate'the maximum potential
value of the summed detectio:* limits. If the isoraer (group of
unresolved isomers) was not ietecte'd, use the value calculated
for the detection limit in Section.9.8 above^. . ££-£be isomer
(group of unresolved isomert/ was detected, \ise.fchje value (target
48
-------
detection limit) from Table 1.
= (13 DLKDD + 16 DLTCDF + 12
4
/ 100°
12 -,_
Eq.
Note: The number of isomers used to calculate the summed
detection limit represent the total number of isomers typically
separated and not t;he actual number of isomers for each series.
9.10 Total Concentration of PCDD's and PCDP's in the Sample.
Eq. 23-11
Any PCDDs or PCDFs that are reported as not detected (below the
DL) shall be counted as zero for the purpose of calculating the
' * i
total concentration of PCDDs and PCDFs in the sample.
10. BIBLIOGRAPHY
1. American Society of Mechanical Engineers. Sampling for the
Determination of Chlorinated Organic Compounds in Stack
Emissions. Prepared for U.S. Department of Energy and U.S.
Environmental Protection Agency. Washington DC. December 1984.
25 p.
2. American Society of Mechanical Engineers. Analytical
49
-------
Procedures to Assay Stack Effluent Samples and Residual
Combustion Products for Polycfxiuriaat.ed Dibenzo-p-Dioxins (PCDD)
and Polychlorinated Dibenzofurans (PCDP) . Prepared for the U.S.
Department of Energy and U.S. Environmental Protection Agency.
Washington, DC. December 1984. 23 p. .
3. Thompson, J. R. (ed.) /aialysis of Pesticide Residues in
Human and Environmental Samples. U.S. Environmental Protection
Agency. Research Triangle Park, NC. 1974.
4. Triangle Laboratories. rase Study^ Analysis of Samples
for the Presence of Tetra Through Octachloro-pdDibenzodioxins and
Dibenzofurans. Research Triangle Park, NC. 1988. 26 p.
5. U.S. Environmental Protection Agency. Method 8290 - The
Analysis of Polychlorinated Dibenso-p-dioxin and Polychlorinated
Dibenzofurans by High-Resolu* i :». k«£ Chromatography/
High-Resolution Mass Spectrometry. Irj.: Test Methods for
Evaluating Solid Waste. Was/, ir.j'ton, DC. SW-846.
_F
6. Personnel communications with R. L. -Uarless _of U.S. EPA and
Triangle Laboratory staff.
50
-------
TABLE 23-3... .TARGET DETECTION LIMITS (TDLs)
ANALYTE
TCDD/TCDF
PeCDD7PeCDF
HxCDD/HxCDF
HpCDD/HpCDF
OCDD/OCDF
TDL (pg/Sample Train)
50
250
250
250
500
TABLE 23-2. COMPOSITION OF THE SAMPLE FORTIFICATION AND RECOVERY
STANDARDS SOLUTIONS'
ANALYTE
CONCENTRATION (pg//iL)
Internal Standards
"C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDD
"C12-l , 2 , 3 , 6 , 7 , 8 -HxCDD
13C12- 1 , 2 , 3 ,4 ,6 , 7 , 8 -HpCDD
13C12-OCDD
l3C12-2,3,7,8-TCDF
13Ca2-l,2,3,7,8-PeCDF
13C12-1, 2, 3 ,6,7, 8-HxCDF
"Cij-l^S^e^S-HpCDF
100
100
100
100
100
100
100
100
100
Surrogate Standards
37Cl4-2,3,7,8-TCDD '
13Cl2-l,2,3,4,7,8-HxCDD
13C12-2,3l4,7,8-PeCDF
"C12-l, 2 ,3,4,7, 8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
100
100
100
100
100
Recovery Standards
51
-------
"C12-1,2,3,4-TCDD
100
13C12-1, 2, 3 , 7, 8 , 9-HxCDD
100
Calibration levels are specific for samples at
the MWC compliance standard level.
52
-------
TABLE 23-3. COMPOSITION OP THE INITIAL CALIBRATION SOLUTIONS
COMPOUND
SOLUTION NO.
CONCENTRATIONS (pg//il)
1
2
3
4
5
UNLABELED ANALYTES
2,3,7,8-TCDD
2,3,7,8*TCDF
1,2,3,7,8-PeCDD
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD"-
1,2,3,7,8,9-HxCDD
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3, 7,8, 9-HxCDF
2,3,4,6,7,8-HxCDD" "*
1,2,3,4,6,7,8 -HpCDD - ;
1,2,3,4,6,7,8 -HpCDF
1,2,3,4,7,8,9-HpCDF ^ .
-. .» ". : f
OCDD
OCDF . ,
0.5
0.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
5
5
1
1
5
5
5
5
5
5
5
5
5
5
5
5
5
10
10
5
5
25
25
25
25
25
25
25
25
25
25
25
25
25
50
50
50
50
250
250
250
250
250
250'
250
250
250
250
250
250
250
500
500
100
100
500
500
500
500
500
500
500
500
500
500
500
500
500
1000
1000
INTERNAL STANDARDS
"C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDlf- j^ "
13C12-1 , 2 , 3 , 6 , 7 , 8-HxCDD
"C12-l,2,3,4,6,7,8-HpCbb.
"C12-OCDD " ' r '
100
:• 100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
53
-------
13C12-2,3,7,8-TCDF
"C12-l,2,3,7,8-PeCDF
13C12- 1,2,3,6,7, 8-HxCDF
"C12-l,2,3,4,6,7,8-HpCDF
100
xOU
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
T.T30
100
100
TABLE 23-3. (Continued)
COMPOUND
SOLUTION NO.
CONCENTRATION (pg//il)
1
2
3
4
SURROGATE STANDARDS
37Cl4-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
13C12- 1 ,2,3,4,7, 8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
60
60
<- j
60
60
80
80
80
80
80
100
100
100
100
100
120
120
120
120
120
RECOVERY STANDARDS
13C12-1,2,3,4-TCDD
"C12-l, 2 , 3 , 7, 8, 9-HxCDD
100
100
10U
100
100
.t 100
100
100
5
140
140
140
140
140
100
100
54
-------
TABLE 23-4. RECOMMENDED GC OPERATING CONDITIONS
-
Column Type
DB-5
DB-225
Length (m)
i.d. (mm)
Film Thickness (/zm)
Carrier Gas
Carrier Gas Flow (mL/min)
Injection Mode „.;
Valve Time (rain)
60
0.25
0.25
Helium
1-2
<--
2.5
30
0.25
0.25
Helium
1-2
splitless -->
2.5
Initial Temperature (o C)
Initial Time (min)
Rate 1 (deg. C/min)
Temperature 2 (deg. G)
Rate 2 (deg. C/min)
Final Temperature (deg. C)
150
0.5
60
170
3
300
130
2.5
50
170
4
250
55
-------
TABLE 23-5. ELEMENTAL COMPOS"" .',KS AND EXACT MASSES OF THE IONS
MONITORED BY HIGH RESOLUTION MASS SPECTROMETR^'FOfc PX33D7e AND PCDF's
DESCRIPTOR
NUMBER
2
1
|
3
ACCURATE
MASS
292.9825
303.9016
305.8987
315.9419
317.9389
319.8965
321.8936
327.8847
330.9792
331.9368
333.9339
339.8597
341.8567
351.9000
353.8970
355.8546
357.8516
367.8949
369.8919
375.8364
409.7974
373.8208
375.8178
383.8639
385.8610
389.8157
391.8127
392.9760
ION
TYPE
LOCK
M
M+2
M
M+2
M
M+2
M
QC
M
M+2
M+2
M+4
M+2
M+4
M+2
M+4
M+2
M+4
M+2
M+2
M+2
M+4
M
M+2
M+2
M+4
LOCK
jj^EMENTAL-. COMPOSITION *
C7Fai
C12H43SC140
Ci2H435Cl3Cl "0
UC12H4«C14O
"C12H435C1337C10
C12H435C1403
djH^Cl^ClC-a
C12H437C14C>21' - - -
' CrF-ai"--'1-.'-^1 *
»C12H4«C1402 * ^ -
13CiaH435Cl"ClOa
CiaH335Cl437ClO
C13H335C1337C120
"CiaH335Cl437C10 .-*/^ -
"C12H335Cl3^Ci^^v^ ,
C12H33SC1337C102
C12H335C13"C12C^ ,
"Ci2H335Cl4"ClOa- '^.;:
"Cu^MClj^Cl/),-. ,
C12H435C1S37C10
c12H335cit37cia -;
C12H235C^SJ7C10
C12H235Cl437ClaO
"C12H23SC160
"CiaH235Cl537ClO
djHj^Cls^ClQ, ..- .
Cty ''SJy^^1 '.M^»3 ^v *
12H23*dV»'Ci2\ya
C.PW
' "ANALYTE'
PFK
TCDF
TCBP iw J
TCDF(S)
TCDF(S) 1
TCDD |
TCDD
TCDD(S)
V PFK
TCDD(S)
TCDD(S)
PeCDF
PeCDF
PeCDF (S)
PeCDP (S)
PeCDD
r ... PeCDD
PeCDD (S)
PeCDD (S)
HxCDPE
HpCPDE
HxCDF
HxCDF
HxCDF (S)
HxCDF (S)
HxCDD
I .. „,„.
xiXCuU
PFK
-
56
-------
401.8559
403.8529
445.7555
430.9729
M+2
M+4
, M+4
QC
uC12Ha35Cl5"Cl02
l3C12Ha35Cl437ClaO
CuHj^Cl^'CljO
C9F17
HxCDD(S)
HxCDD(S)
OCDPE
PPK
TABLE 23-5.
(Continued)
DESCRIPTOR
NUMBER
.14
ACCURATE
MASS
-4Q7.7818
409.7789
417.8253
389.8157
391.8127
392.9760
401.8559
403.8529
445.7555
430.9729
407.7818
409.776^'
417.8253
419.8220^
423.7766
425.7737
435.8169
437.8140
479.7165
430.9729
441.7428
443.7399
457.7377
459.7348
469.7779
ION
TYPE
M+2
M+4
M
M+2
M+4
rLOCK
M+2
M+4
M+4
QC
M+2
M+4
M
. M+2
M+2
M+4
M+2
M+4
M+4
LOCK
M+2
M+4
M+2
M+4
M+2
ELEMENTAL DESCRIPTION
C12H35C1S37C10
CjaH^Cl^ClaO
"CuH^C^O
C12Ha35Cl537ClOa
C12H235C1437C1202
C9F15
13C12H235C1S37C102
"C12H235C1437C120
C12H23SC1637C120
C9F17
C12H35C1637C1O
C12H35C1S37C120
"C12H35C17O
"C12H35C1637C10
C12H35C1637C102
C12H3SC1537C1202
13C12H3SC1S37C102
"CUH3SC1S37C1202
C12H35C1737C12O
C,F17
C123SC1737C10
C12«C1S37C120
C1235C1737C102
C123'C1S37C1202
"C123SC1,37C102
ANALYTE
HpCDF
HpCDF
HpCDF (S)
HxCDD
HxCDD
PFK
HxCDD (S)
HxCDD (S)
OCDPE
PFK
HpCDF
HpCDF
HpCDF (S)
HpCDF (S)
HpCDD
HpCDD
HpCDD (S)
HpCDD (S)
NCPDE
PFK
OCDF
OCDF
OCDD
OCDD
OCDD(S)
57
-------
471.7750
513.6775
442.9728
M+4
M+4
QC
"Cu^Cli'^ljOj
C^CVCljOa
Cio^n
OCDD (S)
DCDPE
PPK
«C1 - 34.968853
The following nuclidic masses were used:
H - 1.007825 O » 15.994914 C - 12.000000
"C - 13.003355 37C1 - 36.965903 F - 18.9984 " t
S = Labeled Standard
QC » Ion selected for monitoring instrument stability during the
GC/MS analysis.
56
-------
TABLE 23-6. ACCEPTABLE RANGES FOR ION-ABUNDANCE RATIOS OP PCDD'S AND
PCDP's
Number of
Chlorine
Atoms
4
5
6
6*
7b
7
8
ion Type
M/M+2
M+2/M+4
M+2/M+4
M/M+2
M7M+2
M+2/M+4
M+2/M+4
Theoretical
Ratio
0.77
1.55
1.24
0.51
0.44
1.04
0.89
Control Limits
Lower
0.65
1.32
1.05
0.43
0.37
0.88
0.76
Upper
0.89
1.78
1.43
0.59
0.51
1.20
1.02
59
-------
TABLE 23-7. UNLABELED ANALYTEE OUANTIFICA'TION RELATIONSHIPS
ANALYTE
2,3,7,8-TCDD
Other TCDD ' s
INTERNAL STAflDASbbi TFSfiD
"Cl2-2,3,7,8-TCDD
"C^ -2,3,7,8-TCDD
1,2,3,7,8-PeCDD
Other PeCDD's
"C12-l,2,3,7,8-PeCDD
"Cu-l^S^.S-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
Other HxCDD 's
"Cu-l , 2 , 3 , 6 , 7 , 8-HxCDD
13Cia-l , 2 , 3 , 6 , 7 , 8-HxCDD
"Cu-1 , 2,3,6,7,8 -HxCDD
13C12- 1 , 2 , 3 , 6 , 7 ,8 -HxCDD
1,2,3,4,6,7,8-HpCDD
Other HpCDD's
-!cia~l,2,3,4,6,7,8-HpCDD
13C12-l,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
Other TCDF's
y^
»Cia- 2,3,7,8-TCDF ;/
13Ci2-2, 3,7, 8-TCDFV f
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
Other PeCDF's
-. ,-,.»-•- <•"' • 1'
"C12-l,2,3,7,8-PeCDF 1
13C12-1 , 2,3,7,8- PeCDF '= :~ '' \
' ' 1
13C12-1 , 2 , 3 , 7, 8-PeCDF
.-J:JH -•'•--- .
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8-HxCDF
Other HxCDF's
13C12-1 , 2 , 3 , 6 /T^fiT-HxCDF
Ci2-l ,2,3,6, i i o iiJ'x-.iJi? " • •-.
"C12-l , 2 , 3 , 6 , 7 , 8 -HxCDF
13C12-l,2,3,6,7,8-HxCDF
"C12-l, 2, 3, 6, 7, 8-HxtDP
1 1,2,3,4,6,7,8-HpCDF
13C12-l,2,3,4,6,7,8-HpCDF |
60
-------
1,2,3,4,7,8,9-HpCDF "C^-1,2,3,4,6,1,8-HpCDF
OCDF
13C12-1,2,3,4,6,7, 8-HpCDF
61
-------
TABLE ^-8. INTEj^NAL STANDS .:;S QUANTIFICATION RES&TIONSHIPS
INTERNAL STANDARD
13C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
l3C,j-l,2,3,4,6,7f 8-H)pCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13C12-1, 2 ,3,7, 8-PeCDF
"Cu-l^SfS^S-HxCDF
13C12-1 , 2 , 3 , 4 , 6, 7, 8-HpCDF
STANDARD USED DURING PERCENT
RECOVERY DETERMINATION
13Cia-l,2,3,4-TCDD
"CU-I^S^-TCDD
l3C12-ll2,3t*7,B,9-HxCDI>
13C12-l,2,3,7,8,9-HxCDD
13^. , .-..,'. 9-HxCDD _-v
» . <
**Cja-l*2,3,4-TCDD
"CU-I^^^-TCDD
13C12-lr2;3^7YB,9-HxCDD
"Curl, 2/ 3 , 7 7 8 > S^HxCpD
TABLE 23-9. SURROGATE STANDARDS QUANTIFICATION RELATIONSHIPS
SURROGATE STANDARD
37Cl4-2,3,7,8-TCDD
"C12-2 , 3 , 4 , 7, 8-PeCDF
13C12-1, 2 , 3 , 4 , 7 , 8-HxCDD
13C12 - 1 , 2 , 3 , 4 , 7 , 8 >HxCDF
"C12-l,2,3,4,7,8,9-HpCDF
, STAHDJ^^USEp^ DURING PERCENT
REC^Jifl^t^^W^MiKATiON
.." "**.".
13C12-2,3,7,8-TCD15
"Coi-1,2,3, 7,8-PeCDF
v. ~-,^ ,13Caa-ii,-^l%«iiffT^8-HXCDD
n- 13CM-1,2V 3,6,7, 8-HxCDF
*» ' ' "—' ""-'•" -.,, -J-.-.V * -
"C12 -1/2,3, 4 \ S , 7^.8 -HpCDF
62
-------
TABLE 23-10. MINIMUM REQUIREMENTS FOR INITIAL AND DAILY CALIBRATION
RESPONSE FACTORS
COMPOUND
UNLABELED
2,3,7,8-TCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDD
1,2,3,7,8-PeCDF
1,2,4,5,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,4,6,7,8-HpCDb
1,2,3,4,6,7,8-HpCDF
OCDD
OCDF
RELATIVE RESPONSE FACTORS
INITIAL
CALIBRATION
(RSD)
ANALYTES
25
25
25
25
25
25
25
25
25
25
25
25
25
25
30
SURROGATE STANDARDS
37Cl4-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
"C12 - 1 , 2 , 3 , 4 , 7 , 8 -HxCDD
13C12-1 , 2,3,4 , 7, 8-HxCDF
"CX2-l,2,3,4,7,8,9-HpCDF
25
DAILY
CALIBRATION
(% DIFFERENCE)
25
25
25
25
25
25
25
25
25
25
25
25
25
25
30
25
1
63
-------
TtMimoooupto
"S"TypaPllol
Filter Hold«r
Tharmocoupla
Prob«
ChaekValvt
Alr-Tlght
Pump
H-
!
(D
Slllea Qtl
(300 gram*)
Manomatt? **-
H«olreulatlbn
Vacuum U *«a
Figure 5-1. CDO/CDP Sampling Train Configuration
-------
COIWWtMf
SorbmttTrap
H-
ib
c
h
(D
to
en
immOlMsCooflnpCoN I
•20/18
Wafer J*cfc«t CooOn0 Con
$20/15
Vtat*rJaclMt XAO-2
(TBQnmt)
8fcrtwwl Otak
FIGURE 2. CONDENSER AND SORBENT TRAP FOR COLLECTION OF GASEOUS PCDDt AND
PCDF«
-------
Appendix G.5
Sampling & Analysis Methods
EPA Method 25A
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
METHOD 25A-DBTBRMINATION OF TOTAL GASEOUS ORGANIC
CONCENTRATION USING A FLAME IONIZATION ANALYZER
1. AppliOBBtlity and Principle
1.1 Applicability. This method applies to the measurement of total gaseous
organic concentration of vapors consisting primarily of alkanes, alkenes, and/or
arenes (aromatic hydrocarbons). The concentration is expressed in terms of
propane (or other appropriate organic calibration gas) or in terms of carbon.
1.2 Principle. A gas sample is extracted from the source through a heated
sample line, if necessary, and glass fiber filter to a flame ionization analyzer
(FIA) . Results are reported as volume concentration equivalents of the
calibration gas or as carbon equivalents.
2. Definitions
2.1 Measurement Systems. The total equipment required for the determination
of the gas concentration. The system consists of the following major subsystems:
2.1.1 Sample Interface. That portion of the system that is used for one or more
of the following: sample acquisition, sample transportation, sample
conditioning, or protection of the analyzer from the effects of the stack
effluent.
2.1.2 Organic Analyzer. That portion of the system that senses organic
concentration and generates an output proportional to the gas concentration.
2.2 Span Value. The upper limit of a gas concentration measurement range that
is specified for affected source categories in the applicable part of the
regulations. The span value is established in the applicable regulation and is
usually 1.5 to 2.5 times the applicable emission limit. If no span value is
provided, use a span value equivalent to 1.5 to 2.5 times the expected
concentration. For convenience, the span value should correspond to 100 percent
of the recorder scale.
2.3 Calibration Gas. A known concentration of a gas in an appropriate diluent
gas.
2.4 Zero Drift. The difference in the measurement system response to a zero
level calibration gas before and after a stated period of operation during which
no unscheduled maintenance, repair, or adjustment took place.
Prepared by Emission Measurement Branch EMTIC TM-25A
Technical Support Division, OAQPS, EPA June 23, 1993
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD , Page 2
2.5 Calibration drift. The difference in the measurement system response to
a midlevel calibration gas before and after a stated period of operation during
which no unscheduled maintenance, repair or adjustment took place.
2.6 Response Tim*. The time interval from a step change in pollutant
concentration at the inlet to the emission measure. ,a * tt. the t±»e
which 95 percent of the corresponding final value is reached as displayed on
recorder. ,>-?«
'<,&
2.7 Calibration Error. The difference between the gas concentration indicated
by the measurement system and the known- concentration of the calibration gas .
3. Apparatus. • ;
A schematic of an acceptable measurement system* Is shown in Figure 25A-1.
The essential components of the measurement system are described below:
3.1 Organic Concentration Analyzer. A flame ionization analyzer (FIA) capable
of meeting or exceeding the specifications in this method.
3.2 Sample Probe. Stainless steel, or equivalent, three-hole rake type.
Sample holes shall be 4 mm in diameter or smaller and located at 16.7, 50, and
83.3 percent of the equivalent stack diameter. Alternatively, a single opening
probe may be used so that a gas sample is collected from the centrally located
10 percent area of the stack cross-section.
3.3 Sample Line. Stainless steel or Teflon *• tubiag to transport the sample
gas to the analyzer. The sample linet-ihoultJ be heated, i£ aeceMBry, to prevent
condensation in the line.
3.4 Calibration Valve Assembly. A three way .valve asseatoHr** direct the zero
and calibration gases to the analyzers is recommended.* - Other "gfrhpdff , such as
quick-connect lines, to route calibration gas to the analyze** .are applicable,
••*', •?*.
3.5 Particulate Filter. An in- stack or an' out-of -stack glass fiber filter is
recommended if exhaust gas particulate loading, is- significant . An out -of -stack
filter should be heated to prevents any condensation.
* Mention of trade names or specific products.. doe« not constitute
endorsement by the Environmental Protection Agency. '
3.6 Recorder. A strip-chart recorder, analog computer, or digital recorder for
recording measurement data. The minimum data recording requirement is one
measurement value per minute, Note: This method is often applied in highly
explosive areas. Caution and care should be exercised in choice of equipment and
installation.
4. Calibration and Other Oases. - • •
Gases used for calibration? fuel, and combustion air (if-required) are
-------
EMTIC TM-25A EMTIC KSPS TEST METHOD Page 3
contained in compressed gas cylinders. Preparation of calibration gases shall
be done according to the procedure in Protocol No. 1, listed in Citation 2 of
Bibliography. Additionally, the manufacturer of the cylinder should provide a
recommended shelf life for each calibration gas cylinder over which the
concentration does not change more than ±2 percent from the certified value. For
calibration gair, values not generally available (i.e., organics between X and 10
percent by volume), alternative methods for preparing calibration gas mixtures,
such as dilution systems, may. be used with prior approval of the Administrator.
Calibration gases usually consist of propane in air or nitrogen and are
determined in terms of the span value. Organic compounds other than propane can
be used following the above guidelines and making the appropriate corrections for
response factor.
4.1 Fuel. A 40 percent H,/60 percent N| gas mixture is r+wiwndcd to avoid
an oxygen synergism effect, that reportedly occurs when oxygen concentration
varies significantly from a mean value.
4.2 Zero Gas. High purity air with less than 0.1 parts per million by volume
(ppmv) of organic material (propane or carbon equivalent) or less t->""i 0.1
percent of the span value, whichever is greater.
4.3 Low-level Calibration Gas. An organic calibration gas with a concentration
equivalent to 25 to 35 percent of the applicable span value.
4.4 Mid-level Calibration Oas. An organic calibration gas with a concentration
equivalent to 45 to 55 percent of the applicable span value.
4.5 High- level Calibration Gas. An organic calibration gas with a
concentration equivalent to 80 to 90 percent of the applicable span value.
5. Measurement System Performance Specifications
5.1 Zero Drift. Less than ±3 percent of the span value.
5.2 Calibration Drift. Less than ±3 percent of span value.
5«3 Calibration Xrror. Less than ±5 percent of the calibration gas value.
6. Pretest Preparations
6.1 Selection of Sampling Site. The location of the sampling site is generally
specified by the applicable regulation or purpose of the test; i.e., exhaust
stack, inlet line, etc. The sample port shall be located at least 1.5 meters or
2 equivalent diameters upstream of the gas discharge to the atmosphere.
6.2 Location of Sample Probe. Install the sample probe so that the probe is
centrally located in the stack, pipe, or duct and is sealed tightly at the stack
port connection.
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD ... Page 4
€.3 Measurement System Preparation. Prior to the emission test, assemble the
measurement system following the manufacturer's written instructions in preparing
the sample interface and the organic analyzer. Make the system operable.
FIA equipment can be calibrated for almost any range of total organic*^-
concentrations. For high concentrations of organic'- . _ >ant by volume as'
propane) modifications to most commonly available analyzers are necessary. One
accepted method of equipment modification is to decrease the size of the sample
to the analyzer through the use of a smaller diameter'"-'sample capillary. Direct
and continuous measurement of organic concentration is a necessary consideration
when determining any modification design.
6.4 Calibration Error Test. Immediately prior to the test series, (within 2
hours of the start of the test) introduce zero gas and high-level calibration gas
at the calibration valve assembly. Adjust the analyzer output to the appropriate
levels, if necessary. Calculate the predicted response for the low-level and
mid-level gases baaed on a linear response' line between, the xero end high-level
responses. Then introduce low-level and mid-level calibration gases successively
to the measurement system. Record the analyzer responsev^for low-level and mid-
level calibration gases and determine the differences between the measurement
system responses and the predicted responses. These differences must be less
fha" 5 percent of the respective calibration gas value. If not, the measurement
system is not acceptable and must be replaced or repaired prior to testing. . Mo
adjustments to the measurement system shall be conducted after the calibration
and before the drift check (Section 7.3). If adjustments are necessary before
the completion of the test series, perform the drift checks prior to the required
adjustments and repeat the calibration following the, adjustments. If multiple
electronic ranges are to be used, ea^h additional ^aagji ptMt Jw checked with «
mid-level calibration gas to verify the multiplication factor.
$.5 Response Time Test. Introduce Zero gas into, the measurement system at the
calibration valve assembly. When the system output- has stabilized, switch
quickly to the high-level calibration gas. Record the^time from the
concentration change to the measurement system response equivalent to 95 percent
of the step change. Repeat the test three times and average the results.
7. Emission Measurement Test Procedure
7.1 Organic Measurement. Begin sampling at the start «E-,fclN» test period,
recording time and any required process information a* appropriate. In
particular, note on the recording chart periods*Bf pi ,<.«*ss interruption or cyclic
operation. . _ . -„.
7.2 Drift Determination. Immediately following the completion of the test
period and hourly during the test period, reintroduce the zero and mid-level
calibration gases, one at a time, to the measurement system at the calibration
valve assembly. (Make no adjustments to the measurement system until after both
the zero and calibration drift checks are made.) Record the analyser response.
If the drift values exceed the specified limits,, ^Invalidate. the test results
preceding the check and repeat the test following corrections to the measurement
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD Page 5
system. Alternatively, recalibrate the test measurement system as in Section 6.4
and report the results using both sets of calibration data (i.e., data determined
prior to the test period and data determined following the test period) .
8. Organic Concentration calculations
Determine the average organic concentration in terms of ppmv as propane or
other calibration gas. The average shall be determined by the integration of the
output recording over the period specified in the applicable regulation. If
results are required in terms of ppmv as carbon, adjust measured concentrations
using Equation 25A-1.
**• 25A-1
Where: , ,
C, • Organic concentration as carbon, ppmv.
Organic concentration as measured, ppmv.
K » Carbon equivalent correction factor.
K • 2 for ethane.
K • 3 . for propane .
,. ~j- s
K • 4 for butane.
K • Appropriate response factor for other organic calibration
gases .
9. Bibliography
1. Measurement of Volatile Organic Compounds-Guideline Series. U.S.
Environmental Protection Agency. Research Triangle Park, HC.
Publication No. EPA-450/2-78-041. June 1978. p. 46-54.
2. Traceability Protocol for Establishing True Concentrations of Gases
Used for Calibration and Audits of Continuous Source Emission
Monitors (Protocol No. 1). U.S. Environmental Protection Agency,
Environmental Monitoring and Support Laboratory. Research Triangle
Park, HC. June 1978.
3. Gasoline Vapor Emission Laboratory Evaluation- Part 2. U.S.
Environmental Protection Agency, Office of Air Quality Planning and
Standards. Research Triangle Park, NC. EMB Report No. 75-GAS-6.
August 1975.
-------
EMTIC TM-25A
EMTZC NSPS TEST METHOD
Page £
Prab*
Oigwb
Aiwlynr
Cafcrvfen
Valvt
Pwnp
Stock
Figure 25A-1. Organic Concentration Measurement System.
-------
--*- <«.--
Appendix G.6
Sampling & Analysis Methods
-. EPA Proposed Method 3 22
-------
(PROPOSED) TEST METHOD 322 - MEASUREMENT OF HYDROGEN CHLORIDE
EMISSIONS FROM PORTJLAJ^ CEMENT KILNS BY GFCIR
1.0 Applicability and Principle
1.1 Applicability. This method is applicable to the
determination of hydrogen chloride (HC1) concentrations in
emissions froru portland cement kilns. This is an instrumental
method for the measurement of HC1 using an extractive sampling
system and an infrared (IR) gas-filter correlation (GFC)
analyze*.-sr^ihiis. method is intended to provide the cement industry
with a direct interface instrumental method. A procedure for
analyte spiking is included for quality assurance. This method
is considered to be self-validating provided that the
requirements in section 9 of this method are followed.
1.2 Principle. A gas sample is continuously extracted from
a stack or duct over the test period using either a source-level
hot/wet extractive subsystem or a dilution extractive subsystem.
A nondispersive infrared gas filter correlation (NDIR-GFC)
analyzer is specified for the measurement of HC1 in the sample.
The total measurement -sj^tem is comprised of the extractive
subsystem, the analyzer, and the data acquisition subsystem.
Test system performance specifications are included in this
method to provide for the collection of accurate, reproducible
data.
1.3 Test System Operating Range. The measurement range
(span) of the test system shall include the anticipated HC1
concentrations of the effluent and spiked samples. The range
should be selected, sp^ tha£ the average of the effluent
measurements is befewee-n 55 >nd 75 percent of span. If at any
time during a test run, the effluent concentration exceeds the
span value of the test system, the run shall be considered
invalid. , j> -.
2.0 Summary of Method
2.1 Sampling and Analysis. Kiln gas is continuously
extracted from the stack or duct using either a source level,
hot/wet extractive system, or an in-situ dilution probe or heated
out-of-stack dilution system. The sample is then directed by a
heated sample line maintained above 350°F to a GFC analyzer
having a range appropriate to the type of sampling system. The
gas filter correlation analyzer incorporates a gas cell filled
with HC1. This, gas cell is periodically moved into the path of
an infrared measurement beam of the instrument to filter out
essentially all of the HC1 absorption wavelengths. Spectral
filtering provides a reference from which the HC1 concentration
of the sample can be determined. Interferences are minimized in
the analyzer by choosing a spectraj.,.band over which compounds
such as CO2 and H2O either do not absorb significantly or do not
match the spectral pattern o,f the HC1 infrared absorption.
-------
2.2 Operator Requirements. The analyst must be familiar
with the specifications and test procedures of this method and.,,
follow them in order to obtain reproducible and.accurate data.r
3.0 Definitions
3.1 Measurement System. The total equipment, required for
the determination of gas concentration. The measurement system
consists of the following major subsystems:
3.1.1 Sample Interface. That portion of a; system used for
one or more of the following: sample acquit *v4 "H, .Cample-' •j'v-r:5fc* «y;-
transport, sample conditioning, or protection 01 wae analyze!^ -V~ ./"'*
from the effects of the stack gas.
3.1.2 Gas Analyzer. That portion of< the system that senses
the gas to be measured and generates an output proportional to
its concentration.
3.1.3 Data Recorder. A strip chart recorder, analog
computer, or digital recorder for recording measurement data from
the analyzer output.
3.2 Span. The upper limit of the gas concentration
measurement range displayed on the data recorder. -,i. •-.».-
3.3 Calibration Gas. A known content r a ti^ti^of "a"'cjia in an
appropriate diluent gas (i.e., N2) .
3.4 Analyzer Calibration Error. The difference between the
gas concentration exhibited by the gas analyzer and the known
concentration of the calibration gas when the. calibration gas is
introduced directly to the analyzer. . , ,.
3.5 Sampling System Bias. The sarupliag,system bias'is the* »'
difference between the gas concentrations exhibited by the
measurement system when a known concentration gas is introduced
at the outlet of the sampling prol?e and' the kjipwn *valtae of th»
calibration gas. \\\ -^f'fJ '• >:-''-. "'' ? . »');»>•
3.6 Response Time. The amount of time"-1 required for the
measurement system to display 95 percent of a step change in gas
concentration on the data recorder.
3.7 Calibration Curve. A graph (^-^ther.Systematic method
of establishing the relationship between, th£
and the actual gas concentration introduced to "t
3.8 Linearity. The linear response of the analyzer or test
system to known calibration inputs cov;er;Lng~ tJse, jQpncentration
range of the system. , . .t'v/!
3.9 Interference Rejection.. TJtie^ ability of'.the system to
reject the effect of interferences''in tfieT-,gjnaiyV.ieal measurement
processes of the test system. , .«-„•?<-• v?'^ '
4.0 Interferences . ,^: ,r- >
4.1 Sampling System Interferences. An important:- '
consideration in measuring HC1 using.,an extractive measurement
system is to ensure that a representative.kiln gas sample is
delivered to the gas analyzer. A sampling system interferant is
a factor that inhibits an analyte from reaching1 ±lMf5 analytical *
instrumentation. Condensed water vapor is a strong sampling
system interferant for HC1 and other water soluble, compounds.
-------
"Cold spots" in the sampling system can allow water vapor in the
sample to condense r^u&ting in removal of HC1 from the sample
stream. The extenrt'of^HCi sampling system bias depends on
concentrations of potential interferants, moisture content of the
gas stream, temperature of the gas stream, temperature of
sampling system components, sample flow rate, and reactivity of
HC1 with other species in the gas stream. For measuring HC1 in a
wet gas stream, the temperatures of the gas stream and sampling
system coinp0«ents and the sample flow rate are of primary
importance."* In order to prevent problems with condensation in
the sampling system, these parameters must be closely monitored.
4.1.1 System Calibration Checks. Performing these
calibration checks where HC1 calibration gas is injected through
the entire system both before and after each test run
demonstrates the integrity of the sampling system and capability
of the analyzer for measuring this water soluble and otherwise
unstable compound under ideal conditions (i.e., HCl in N2) .
4.1.2 Analyte Spiking Checks. For analyte spiking checks,
HCl calibration g$s_;i« -quantitatively added to the sample stream
at a point upstre'anMexf the particulate filter and all other
sample handling components both before and after each test run.
The volume of HCl spike gas should not exceed 10 percent of the
total sample volume so that the sample matrix is relatively
unaffected. Successfully performing these checks demonstrates
the integrity of the sampling system for measuring this water
soluble and reactive compound under actual sample matrix
conditions. Successfully performing these checks also
demonstrates the adequacy of the interference rejection
capability of the analyzer. (See section 9.3 of this method.)
4.2 Analytic^f'^nterferences. Analytical interferences are
reduced by the GFC spectroscopic technique required by the
method. The accuracy of HCl measurements provided by some GFC
analyzers is known to be sensitive to the moisture content of the
sample. This must be taken into account in order to acquire
accurate results. These analyzers must be calibrated for the
specific moisture content of the samples.
5.0 Safety
This method may involve sampling at locations having high
positive or negative pressures, or high concentrations of
hazardous or toxic pollutants, and cannot address all safety
problems encountered under these diverse sampling conditions. It
is the responsibility
-------
6.1 Measurement System. Use any GFC measurement system for
HC1 that meets the specifications of this method. All sampling
system components must be maintained above the kiln gas
temperature, when possible, or at least 350°F. The length of
sample transport line should be minimized and sampling rate
should be as high as possible to minimize adsorption of HC1. The
essential components of the measurement system are described in
sections 6.1.1 through 6.1.12.
6.1.1 Sample Probe. Glass, stainless ste*O Hastalloy*1^^*^
equivalent, of sufficient length to traverse me aouiplfe points;
The sampling probe shall be heated to a minimum of 350°F to
prevent condensation. Dilution extractiveP*Siystems mus.t use a
dilution ratio such that the average diluted concentrations are
between 25 to 75 percent of the selected measurement range of the
analyzer.
6.1.2 Calibration Valve Assembly. Use a-heated, three-way
valve assembly, or equivalent, for selecting either sample gas or
introducing calibration gases to the measurement system or
introducing analyte spikes into the measurement system at the
outlet of the sampling probe b,?£. re the^primary particulate
filter.
6.1.3 Particulate Filter. A coarse filter or other device
may be placed at the inlet of the probe for removal of large
particulate (10 microns or greater). A heated (Balston® or
equivalent) filter rated at 1 micron is necessary for pripary
particulate removal, and shall be placed immediately after the
heated probe. The filter/filter holder shall be maintained at
350°F or a higher temperature. Additional filters at the inlet
of the gas analyzer may be used to prevent accumulation of
particulate material in the measurement system and extend the
useful life of components. All filters shall be fabricated of
materials that ar<3 nonreactive with HC1. Some types of glass
filters are known to react with HC1.
6.1.4 Sample Transport Lines. Stainless steel or
polytetrafluoroethylene (PTFE) tubing shall be heated to a
minimum temperature of 350°F .sufficient to prevent "Condensation
and to prevent HC1 and NH3 from combining into ammonium chloride
in the sampling system) to transport the sample gas to the gas
analyzer.
6.1.5 Sample Pump. Use a leak-^free pump to pull the sample
gas through the system at a flow rate sufficient to minimize the
response time of the measurement systemV^ "Fhe pump components
that contact the sample must be heated to a temperature greater
than 350°F and must be constructed of a material that is
nonreactive to HC1.
6.1.6 Sample Flow Rate Control. A sample flow rate control
valve and rotameter, or equivalent, roust be used to maintain a
constant sampling rate within ±10 percent. These components must,
be heated to a temperature greater than 350°F. (Httte.: The
tester may elect to install a back-pressure regulator to maintain
-------
the sample gas manifold at a constant pressure in order to
protect the analyzer is,} from over-pressurization, and to minimize
the need for flow rate adjustments.)
6.1.7 Sample Gas Manifold. A sample gas manifold/ heated
to a minimum of 350°?, is used to divert a portion of the sample
gas stream to the analyzer and the remainder to the by-pass
discharge vent. The sample gas manifold should also include
provisions for introducing calibration gases directly to the
analyzer. JIhe,, manifold must be constructed of material that is
nonreactive to the gas being sampled.
6.1.8 Gas Analyzer. Use a nondispersive infrared analyzer
.utilizing the gas filter correlation technique to determine HC1
concentrations. The analyzer shall meet the applicable
performance specifications of section 8.0 of this method. (Note:
Housing the analyzer in a clean, thermally-stable, vibration free
environment will minimize drift in the analyzer calibration.)
The analyzer (system) shall be designed so that the response of a
known calibration input shall not deviate by more than ±3 percent
from the expected value. The analyzer or measurement system
manufacturer may provide documentation that the instrument meets
this design requirement. Alternatively, a known concentration
gas standard and calibration dilution system meeting the
requirements of Method 205 of appendix M to part 51 of this
chapter, "Verification of Gas Dilution Systems for Field
Calibrations" (or equivalent procedure), may be used to develop a
multi-point calibration curve over the measurement range of the
analyzer.
6.1.9 Gas Regulators. Single stage regulator with cross
purge assembly that is used to purge the CGA fitting and
regulator before and, after use. (This purge is necessary to
clear the calibration gas- delivery system of ambient water vapor
after the initial connection 'is made, or after cylinder
changeover, and will extend the life of the regulator.) Wetted
parts are 316 stainless steel to handle corrosive gases.
6.1.10 Data Recorder. A strip chart recorder, analog
computer, or digital recorder, for recording measurement data.
The data recorder resolution (i.e., readability) shall be 0.5
percent of span. Alternatively, a digital or analog meter having
a resolution of 0.5 percent of span may be used to obtain the
analyzer responses and the readings may be recorded manually. If
this alternative is used, the readings shall be obtained at
equally-spacejiJjntervals over the duration of the sampling run.
For sampling run durations of less than 1 hour, measurements at
1-minute intervals or a minimum of 30 measurements, whichever is
less restrictive, shall be obtained. For sampling run durations
greater than 1 hour, measurements at 2-minute intervals or a
minimum of 96 measurements, whichever is less restrictive, shall
be obtained.
6.1.11 Mass Flow Meters/Controllers. A mass flow meter
having the appropriate calibrated range and a stated accuracy of
-------
±2 percent of the measurement range is used to measure the HC1
spike flow rate'. This device must be calibrated Kith, the major
component of the calibration spike gas (e.g., nitrogen) using an
NIST traceable bubble meter or equivalent. When spiking HC1, the
mass flow meter/controller should be thoroughly purged before and
after introduction of the gas to prevent corrosion'of the
interior parts.
6.1.12 System Flow Measurement. A measurement device or
procedure to determine the total flow ratp ^f ^»~.fie gas
the measurement system. A rotameter, or mass flow meter
calibrated relative to a laboratory standard to within ±2 percent
of the measurement value at the actual operating temperature,
moisture content, and sample composition (molecular weight) is
acceptable. A system which ensures that the total sample flow
rate is constant within ±2 percent and which relies on an
intermittent measurement of the actual flow rate -
(e.g., calibrated gas meter) is also acceptable.
6.2 HC1 Calibration Gases. The calibration gases for the
gas analyzer shall be HC1 in N . Use at., least three calibration
gases as specified below: ...*.'
6.2.1 High-Range Gas. Concentration equivalent to 80 to
100 percent of the span.
6.2.2 Mid-Range Gas. Concentration equivalent to 40 to 60
percent of the span.
6.2.3 Zero Gas. Concentration of less than 0.25 percent of
the span. Purified ambient air may be u-ed for the zero gas by
passing air through a charcoal filter or through one or more
impingers containing a solution of 3 percent H2O2.
6.2.4 Spike Gas. A calibration gas of known concentration
(typically 100 to 200 ppm) used for anaiytee'1'spoJegs^in.,accordance
with the requirements of section 9.3 of this method.
7.0 Reagents and Standards
7 .1 Hydrogen Chloride. Hydrogen. Ch4,ori
-------
7.2 Calibration Gas Concentration Verification. There are
two alternatives for establishing the concentrations of
calibration gases. Alternative No. 1 is preferred.
7.2.1 Alternative No. 1. The value of the calibration
gases may be obtained from the vendor's certified analysis within
1 month prior to the test. Obtain a certification from the gas
manufacturer that identifies the analytical procedures and date
of certification.
7.2.2. ^Alternative No. 2. Perform triplicate analyses of
the gases using Method 26 of appendix A to part 60 of this
chapter. Obtain gas 'mixtures with a manufacturer's tolerance not
to exceed ±5 percent of the tag value. Within 1 month of the
field test, analyze each of the calibration gases in triplicate
using Method 26 of appendix A to part 60 of this chapter. The
tester must follow all of the procedures in Method 26 (e.g., use
midget impingers, heated Pallflex TX40H175 filter (TFE-glass
mat), etc. if this analysis is performed. Citation 3 in section
13 of this method describes procedures and techniques that may be
used for this analysis. Record the results on a data sheet.
Each of the individual HC1 analytical results for each
calibration gas shall be within 5 percent (or 5 ppm, whichever is
greater) of the triplicate set average; otherwise, discard the
entire set and repeat the triplicate analyses. If the average of
the triplicate analyses is within 5 percent of the calibration
gas manufacturer's cylinder tag value, use the tag value;
otherwise, conduct at least three additional analyses until the
results of six consecutive runs agree within 5 percent (or 5 ppm,
whichever is greater) of the average. Then use this average for
the cylinder value.
7.3 Calibration Gas Dilution Systems. Sample flow rates of
approximately 15 L/min are typical for extractive HC1 measurement
systems. These flow rates coupled with response times of 15 to
30 minutes will result in consumption of large quantities of
calibration gases. The number of cylinders and amount of
calibration gas can be reduced by the use of a calibration gas
dilution system in accordance with Method 205 of appendix M to
part 51 of this chapter, "Verification of Gas Dilution Systems
for Field Instrument Calibrations." If this option is used, the
tester shall also introduce an undiluted calibration gas
approximating the effluent HCl concentration during the initial
calibration error test of the measurement system as a quality
assurance check.". vi-.---. "•
8.0 Test System Performance Specifications
8.1 Analyzer Calibration Error. This error shall be less
than ±5 percent of the emission standard concentration or ±1
ppm,(whichever is greater) for zero, mid-, and high-range gases.
8.2 Sampling System Bias. This bias shall be less than
±7.5 percent of the emission standard concentration or ±1.5 ppm
(whichever is greater) for zero and mid-range gases.
8.3 Analyte Spike Recovery. This recovery shall be between
-------
70 to 130 percent of the expected concentration of spiked samples
calculated with the average of «•>>.«. before and after run spikes.
9.0 Sample Collection, Preservation, and Storage
9.1 Pretest. Perform the procedures of sections 9.1.1
through 9.1.3.3 of this method before measurement of emissions
(procedures in section 9.2 of this method). It is important to
note that after a regulator is placed on an HC1 gas cylinder
valve, the regulator should be purged with dry N2 or dry
compressed air for approximately 10 minut«* »•"»*• - - initiating any''
HC1 gas flow through the system. This purge is necessary to
remove any ambient water vapor from withjji the regulator and
calibration gas transport lines; the HC1 in the calibration gas
may react with this water vapor and increase system response
time. A purge of the system should also be performed at the
conclusion of a test day prior to removing the regulator from the
gas cylinder. Although the regulator wetted parts are corrosion
resistant, this will reduce the possibility, of corrosion
developing within the regulator and extend the life of the
equipment.
9.1.1 Measurement System £reparation. Assemble the
measurement system by following the manufacturer's written
instructions for preparing and preconditioning the gas analyzer
and, as applicable, the other system components. Introduce the
calibration gases in any sequence, and make all necessary
adjustments to calibrate the analyzer and the data recorder. If
necessary, adjust the instrument for the specific moisture
content of the samples. Adjust system components to achieve
correct sampling rates.
9.1.2 Analyzer Calibration Error. Conduct the analyzer
calibration error check in th, ci^d by introducing calibration
gases to the measurement system;at any point upstream of the gas
analyzer in accordance with sections 9.1.2.1 and 9.1.2.2 of this
method.
9.1.2.1 After the measurement system has been prepared for
use, introduce the zero, mid range, and high-range gases to the
analyzer. During this check", make no adjustments to the system
except those necessary to achieve th.e correct calibration gas
flow rate at the analyzer. Record-the -analyzer responses to each
calibration gas. Note: A calibration curve established prior to
the analyzer calibration error check may be used ta convert the
analyzer response to the equivalent gas., tpneentration introduced
to the analyzer. However, the same correction procedure shall be
used for all effluent and calibration measurements obtained
during the test.
9.1.2.2 The analyzer calibration error check shall be
considered invalid if the difference in gas concentration
displayed by the analyzer and the concentration of the
calibration gas exceeds ±5 percent of the emission standard
concentration or ±1 ppm, (whichever is greater) for the zero,
mid-, or high-range calibration gases. . If an invalid calibration
-------
is exhibited, cross-check or recertify the calibration gases,
take corrective action,^.and repeat the analyzer calibration error
check until acceptable* "performance is achieved.
9.1.3 Sampling System Bias Check. For nondilution
extractive systems, perform the sampling system bias check by
introducing calibration gases either at the probe inlet or at a
calibration valve installed at the outlet of the sampling probe.
For dilution systems, calibration gases for both the analyzer
calibration error check and the sampling system bias check must
be introduced prior to the point of sample dilution. For
dilution anci nondilution systems, a zero gas and either a mid-
range or high-range gas (whichever more closely approximates the
effluent concentration) shall be used for the sampling system
bias check.
9.1.3.1 Introduce the upscale calibration gas, and record
the gas concentration displayed by the analyzer. Then introduce
zero gas, and record the gas concentration displayed by the
analyzer. During the sampling system bias check, operate the
system at the normal .sampling rate, and make no adjustments to
the measurement systeiTpther than those necessary to achieve
proper calibration gas flow rates at the analyzer. Alternately
introduce the zero and upscale gases until a stable response is
achieved. The tester shall determine the measurement system
response time by observing the times required to achieve a stable
response for both the zero and upscale gases. Note the longer of
the two times and note the time required for the measurement
system to reach 95 percent of the step change in the effluent
concentration as the response time.
9.1.3.2 For nondilution systems, where the analyzer
calibration error tesj^is performed by introducing gases directly
to the analyzer, the sampling system bias check shall be
considered invalid if the difference between the gas
concentrations displayed by the measurement system for the
sampling system bias ,ch.eck and the known gas concentration
standard exceeds ±7.15" percent of the emission standard or ±1.5
ppm, (whichever is greater) for either the zero or the upscale
calibration gases. If an invalid calibration is exhibited, take
corrective action, and repeat the sampling system bias check
until acceptable performance is achieved. If adjustment to the
analyzer is required, first repeat the analyzer calibration error
check, then repeat the sampling system bias check.
9.1.3.3 For dilution systems (and nondilution systems where
all calibration...gases are introduced at the probe), the
comparison of the analyzer calibration error results and sampling
system bias check results is not meaningful. For these systems,
the sampling system bias check shall be considered invalid if the
difference between the gas concentrations displayed by the
analyzer and the actual gas concentrations exceed ±7.5 percent of
the emission standard* or ±1.5 ppm, (whichever is greater) for
either the zero or the upscale calibration gases. If an invalid
-------
calibration is exhibited, take corrective action, and repeat the
sampling system bias check until acceptable performance is - ,,.,,
achieved. If adjustment to the analyzer is required, first l^;^?-
repeat the analyzer calibration error check.
9.2 Emission Test Procedures
9.2.1 Selection of Sampling Site and Sampling Points.
Select a measurement site and sampling points using the same
criteria that are applicable to Method 26 of appendix A to part
60 of this chapter. - _ • *.
-***?•' »
9.2.2 Sample Collection. Position tl\e sampling probe at
the first measurement point, and begin sampling at the same rate
as used during the sampling system bias check. Maintain constant
rate sampling (i.e., ±10 percent) during the entire run. Field
test experience has shown that conditioning of the sample system
is necessary for approximately 1-hour prior to.conducting the
first sample run. This conditioning period:,should be repeated
after particulate filters are replaced and at-the beginning of
each new day or following any period whe.n, the sampling system is
inoperative. Experience has a? ,c shown,?that price to adequate
conditioning of the system, the response to analyte spikes and/or
the change from an upscale calibration gas to ,
constant rate sampling of the effluent-should begin^.For each
run, use only those measurements obtained aft^c^-^LL residual
response to calibration staa;.,,^ds or spikes are eliminated and
representative effluent measurements are displayed to determine
the average effluent concentration. .At^a., minimum, .this requires
that the response time of the measurement system has,. el.apsed
before data are recorded for calculation of the. average effluent
concentration. Sampling should be, continuous, fox'the duration of
the test run. The length of data collection should be at least ,;
as long as required for sample collection _y Method 26, of part 60
of this chapter. One hour sampling runs using this method have
provided reliable data for cement kilns.
9.2.4 Validation of Runs. Before and after each run, or if
adjustments are necessary for the measurement system,, during the
run, repeat the sampling system bias check procedure described in
section 9.1.3 of this method. (Make no adjustments .to the
measurement system until after the,.drift c>eclcs ar^cqmpleted.}
-------
Record the analyzer's responses.
9.2.4.1 If theypos,t-run sampling system bias for either the
zero or upscale calibration gas exceeds the sampling system bias
specification, then the run is considered invalid. Take
corrective action, and repeat both the analyzer calibration error
check procedure (section 9.1.2 of this method) and the sampling
system bias check'procedure (section 9.1.3 of this method) before
repeating the run. .
9.2.4.2 If the post-run sampling system bias for both the
zero and upscale calibration gas are within the sampling system
bias specification, then construct two 2-point straight lines,
one using the pre-run zero and upscale check values and the other
using the post-run zero and upscale check values. Use the slopes
and y-intercepts of the two lines to calculate the gas
concentration for the run in accordance with equation 1 of this
method.
9.3 Analyte Spiking-Self-Validating Procedure. Use analyte
spiking to verify the effectiveness of the sampling system for
the target compounds in the actual kiln gas matrix. Quality
assurance (QA) spiking should be performed before and after each
sample run. The spikes may be performed following the sampling
system bias checks (zero and mid-range system calibrations)
before each run in a series and also after the last run. The HC1
spike recovery should be within ±30 percent as calculated using
equations 1 and 2 of this method. Two general approaches are
applicable for the use of analyte spiking to validate a GFC HC1
measurement system: (1) two independent measurement systems can
be operated cono»r«e«ftly with analyte spikes introduced to one of
the systems, or (2-) 'a'single measurement system can be used to
analyze consecutively, spiked and unspiked samples in an
alternating fashion. > The two-system approach is similar to
Method 301 of this appendix and the measurement bias is
determined from the difference in the paired concurrent
measurements relativ«"-t© -the amount of HC1 spike added to the
spiked system. The two-system approach must employ identical
sampling systems and analyzers and both measurement systems
should be calibrated using the same mid- and high-range
calibration standards. The two-system approach should be largely
unaffected by temporal-variations in the effluent concentrations
if both measurement systems achieve the same calibration
responses and both systems have the same response times. (See
Method 301 of this appendix for appropriate calculation
procedures.) The singLe*measurement system approach is
applicable when the concentration of HC1 in the source does not
vary substantially during the period of the test. Since the
approach depends on the comparison of consecutive spiked and
unspiked samples, temporal variations in the effluent HC1
concentrations will.introduce errors in determining the expected
concentration of the spiked samples. If the effluent HC1
concentrations vary by ..more than ±10 percent (or ±5 ppm,
-------
whichever is greater) during the time required to obtain and
equilibrate a new sample (sys****m response time), it may be
necessary to: (1) use a dual sampling system approach,
(2) postpone testing until stable emission concentrations are
achieved, (3) switch to the two-system approach [if possible] or,
(4) rely on alternative QA/QC procedures. The dual-sampling
system alternative uses two sampling lines to convey sample to
the gas distribution manifold. One of the sample lines is used
to continuously extract unspiked kiln gas from the source. The
other sample line serves as the analyte s^,.,. line. One GFC
analyzer can be used to alternately measure the HC1 concentration
from the two sampling systems with the need to purge only the
components between the common manifold and the analyzer. This
minimizes the time required to acquire an equilibrated sample of
spiked or unspiked kiln gas. If the source varies by more than
±10 percent or ±5 ppm, (whichever is greater) during the time it
takes to switch from the unspiked sample line to the spiked
sample line, then the dual-sampling system alternative approach
is not applicable. As a last option, (where no other
alternatives can be used) a hw^dified 'nitrogen stream may be
generated in the field which approximates the moisture content of
the kiln gas. Analyte spiking into this humidified stream can be
employed to assure that the sampling system is adequate for
transporting the HC1 to the GFC analyzer and that the analyzer's
water interference rejection is adequate.
9.3.1 Spike Gas Concentration and Spike.'Ratio^,t The volume
of HC1 spike gas should not exceed 10 percent of the total sample
volume (i.e., spike to total,,sample ratio of 1:10) to ensure that
the sample matrix is relatively unaffected,- An ideal spike
concentration should approximate the native effluent
concentration, thus the spiked sample concentrations would
represent approximately twice the native effluent concentrations.
The ideal spike concentration may not be achieved because the
native HC1 concentration cannot be accurately predicted prior to
the field test, and limited faiibration gas standards will be
available during the field rfest. 'Some flexibility is available
by varying the spike ratio over the range from 1:10 to 1:20.
Practical constraints must be applied to allow the tester to
spike at an anticipated concentration. Thus, the tester may use
a 100 ppm calibration gas and a spike ratio of 1:10 as default
values where information regarding the expected JiCl effluent
concentration is not available prior to the tests.
Alternatively, the tester mav select another calibration gas
standard and/or lower spike atio--(e.g., 1:20) to more closely
approximate the effluent HC1 concentration.
9.3.2 Spike Procedure Introduce the HC1 spike gas mixture
at a constant flow rate (±2 percent) at less than 10 percent of
the total sample flow rate. (For example, introduce the HC1 ..
spike gas at 1 L/min (±20 cc/min) into a total sample flow rate
of 10 L/min). The spike gas must be preheated before
-------
introduction into the sample matrix to prevent a localized
condensation of the gas stream at the spike introduction point.
A heated sample transport line(s) containing multiple transport
tubes within the heated bundle may be used to spike gas up
through the sampling system to the spike introduction point. Use
a calibrated flow device (e.g., mass flow meter/controller) to
monitor the spike flow rate. Use a calibrated flow device (e.g.,
rotameter, mass flow meter, orifice meter, or other method) to
monitor the-total sample flow rate. Calculate the spike ratio
from the measurements of spike flow and total flow. (See
equation 2 and 3 in section 10.2 of this method.)
9.3.3 Analyte Spiking. Determine the approximate effluent
HC1 concentrations by examination of preliminary samples. For
single-system approaches, determine whether the HC1 concentration
varies significantly with time by comparing consecutive samples
for the period of time corresponding to at least twice the system
response time. (For analyzers without sample averaging, estimate
average values for two to five minute periods by observing the
instrument display or data recorder output.) If the concentration
of the individual samples varies by more than ±10 percent
relative to the mean value or ±5 ppm, (whichever is greater), an
alternate approach may be needed.
9.3.3.1 Adjust the spike flow rate to the appropriate level
relative to the total flow by metering spike gas through a
calibrated mass flow meter or controller. Allow spike flow to
equilibrate within the sampling system for at least the
measurement system response time and a steady response to the
spike gas is observed before recording response to the spiked gas
sample. Next, terminate the spike gas flow and allow the
measurement system to sample, only the effluent. After the
measurement system response time has elapsed and representative
effluent measurements are obtained, record the effluent unspiked
concentration. Immediately calculate the spike recovery.
9.3.3.2 If the spike recovery is not within acceptable
limits and a change in the effluent concentration is suspected as
the cause for exceeding the recovery limit, repeat the analyte
spike procedure without making any adjustments to the analyzer or
sampling system. If the second spike recovery falls within the
recovery limits, disregard the first attempt and record the
results of the second spike.
9.3.3.3 Analyte spikes must be performed before and after
each test run. Sampling system bias checks must also be
performed before and after each test run. Depending on the
particular sampling strategy and other constraints, it may be
necessary to compare effluent data either immediately before or
immediately after the spike sample to determine the spike
recovery. Either method is acceptable provided a consistent
approach is used for the test program. The average spike
recovery for the pre- and post-run spikes shall be used to
determine if spike recovery is between 70 and 130 percent.
-------
10.0 Data Analysis and Emission Calculations
The average gas effluent concentration is determined from
the average gas concentration displayed by the gas analyzer and
is adjusted for the zero and upscale sampling system bias checks,
as determined in accordance with section 9.2.3 of this method.
The average gas concentration displayed by the analyzer may be
determined by integration of the area under the curve for chart
recorders, or by averaging all of the effluent measurements.
Alternatively, the average may be calcuiairr--» *---~ ^asurementi'^.^! • --'
recorded at equally spaced intervals over tne entire duration of"" *'* f
the run. For sampling run durations of less than 1-hour, average
measurements at 2-minute intervals or less, shall be used. For
sampling run durations greater than 1-hour, measurements at 2-
minute intervals or a minimum of 96 measurements, whichever is
less restrictive, shall be used. Calculate the effluent gas
concentration using equation 1.
C
_ \ ^~«vg c' i J.A, j. u \ (Eq. 1)
where
*" 2 bc = Y-
• intercept of
the
•y"',:-.- calibration
least-
squares
line.
bf - Y-intercept of the final bias check 2-point line,
bA = Y-intercept of the initial bias check 2-point
line.
Cgas " Effluent gas concentration, as measured, ppra.
Cavg "* Average gas concentration indicated by gas
analyzer, as measured, ppm.
m,. = Slope of the calibration least-rsquares line.
mf * Slope of the fir -j. bias check 2-point .line.
mA . Slope of the initial bias check 2-point line.
The following equations are used to determine the percent
recovery (%R) for analyte spiking:
%R = (SM/C^ x 100 . _-_.," (Eq. 2)
where:
SM = Mean concentration of duplicate <^ ly- a.,spiked
samples (observed* '"-:
CB « Expected concentration of analyte spiked samples
(theoretical).
CE - CS(QS/QT) •< SU(1-QS/QT) (Eq. 3)
where:
Cs « Concentration of HC1 spike gas (cylinder tag
value).
Qs «• Spike gas flow ra-s.
-------
QT = Total sample flow rate (effluent sample flow plus
spike flow).
S0 = Native concentration of HC1 in unspiked effluent
samples.
Acceptable recoveries for analyte spiking are ±30 percent.
11.0 Pollution Prevention
Gas extracted from the source and analyzed or vented from
the system manifold shall be either scrubbed, exhausted back into
the stack, or discharged into the atmosphere where suitable
dilution caiv'occur to prevent harm to personnel health and
welfare or plant or personal property.
12.0 Waste Management
Gas standards of HC1 are handled as according to the
instructions enclosed with the materials, safety data sheets.
13.0 References
1. Peeler, J.W., Summary Letter Report to Ann Dougherty,
Portland Cement Association, June 20, 1996.
2. Test Protocol, Determination of Hydrogen Chloride
Emissions from Cement Kilns (Instrumental Analyzer Procedure)
Revision 4; June 20, 1996.
3. Westlin, Peter R. and John W. Brown. Methods for
Collecting and Analyzing Gas Cylinder Samples. Source Evaluation
Society Newsletter. 1(3):5-15. September 1978.
-------
-------
APPENDIXH
PROJECT PARTICIPANTS ::
-------
-------
PROJECT PARTICIPANTS
Affiliation
USEPA
<
Pacific Environmental Services,
Inc.
• * r* ' f
Atlantic Technical Services
(PES Subcontractor)
ff • '•&?•
APCC, Ltd. ,.;
(PES Subcontractor)
Research Triangle Institute
(EPA/ESD Contractor)
Name
Joseph P. Wood, ESD
Michael L. Toney, EMC
Franklin Meadows
Michael D. Maret
Dennis P. Holzschuh
Dennis D. Holzschuh
Gary Gay
Paul Siegel
Troy Abernathy
Emil Stewart
J*5
Aaron Christie
Peter Day
Cybele M. Brockmann
Responsibility
Environmental Engineer
Work Assignment Manager
Project Manager
Field Team Leader
QA Coordinator
Site Leader/Console Operator
Site Leader/Console Operator
Sampling Technician
Sample Recovery
Sampling Technician/Data
Reduction
CEM Team Leader
CEM Sampling Technician
Process Coordinator
-------
-------
TECHNICAL REPORT DATA
Please read instructions on the reverse before completing
1. REPORT NO. " °* - "'
EPA-454/R-00-033
4. TITLE AND SUBTITLE
Final Report
Manual and Continuous Emissions Testing
Kiln No 1 Scrubber Inlet and Stack
National Lime & Stone company
Carey, Ohio
3>v-'
7. AUTHOR(S)
Franklin Meadows ... -
Emil W. Stewart
9. PERFORMING ORGANIZATION NAMI
Pacific Environmental Services, Inc.
Post Office Box 12077
Research Triangle Park. North Carolina 27
: AND ADDRESS
709-2077
12 SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Emissions, Monitoring and Analysis Division
Research Triangle Park. North Carolina 2771 1
3. RECIPIENT'S ACCESSION NO.
5. REPORT DATE
July 2000
6 PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO
68-D-98004
13. TYPE OF REPORT AND PERIOD COVERED
Final
14 SPONSORING AGENCY CODE
EPA/200/04
15 SUPPLEMENTARY NOTES
16. ABSTRACT
The United States Environmental Protection Agency (EPA) Emission Standards Division (ESD) is investigating the lime manufacturing industry to
identify and quantify hazardous air pollutants (HAPs) emitted from lime kilns. ESD requested that EPA's Emissions. Monitoring and Analysis Division
(EMAD) conduct the required testing EMAD issued a work assignment to Pacific Environmental Services, Inc. (PES) to conduct a "screening" test to
collect air emissions data as specified in th.e ESD test request. The primary objective of the testing program was to characterize emissions of selected
hazardous air pollutants (HAPs) from Krlr&Nb.-l located at the National Lime & Stone Company in Carey, Ohio. Based on the pollutant concentrations
and emissionrates calculated from the results of the screening tests, the kiln may be selected by EPA for further testing.
The tests were conducted to quantify the uncontrolled and controlled air emissions of hydrogen chloride (HCI), total hydrocarbons (THC), and
polychlorinated dibenzo-p-dioxins and polyclorinated dibenzofurans (PCDDs/PCDFs). Testing was conducted on September 2, 1998. One test run was
conducted at the scrubber inlet and scrubber poutlet (stack); inlet and outlet testing was performed simultaneously. Concurrent with the PCDDs/PCDFs
testing, sampling was conducted at the stack breeching to determine concentrations of oxygen (O2), carbon dioxide (CO2), and total hydrocarbons (THC).
During the testing program another EPA contractor monitored and recorded process and emission control system operating parameters.
This report consists of one volume totaling 540 pages.
17.
a. DESCRIPTIONS
Dioxins/Furans
Hazardous Air Pollutants
Hydrogen Chloride
Total Hydrocarbons
Wet Scrubber
18. DISTRIBUTION STATEMENT
Unlimited
• KEY WORDS AND DOCUMENT ANALYSIS
b. IDENTIFIERS/OPEN ENDED TERMS
i*-
19. SECURITY CLASS (This Report)
• Unclassified
20. SECURITY CLASS (This page)
Unclassified
c. COASTI Field/Group
21. NO. OF PAGES
540
22. PRICE
EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE
F:\U\FMeadows\TRD.Frm\WP 6.1
-------