United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park, NC 27711
EPA-454/R-00-031
May 2000
AIR
&EPA
Final Report
Manual Testing and Continuous
Emissions Testing, Kiln No. 1
Electrostatic Precipitator Inlet and
Stack, Kiln No. 2 Baghouse
Inlet and Stack
Martin Marietta Magnesia
Specialties
Woodville, Ohio
GUI'
-------
FINAL REPORT
MANUAL TESTING AND CONTINUOUS EMISSIONS TESTING
KILN NO. 1 ELECTROSTATIC PRECIPITATOR INLET AND STACK,
KILN NO. 2 BAGHOUSE INLET AND STACK
MARTIN MARIETTA MAGNESIA SPECIALTIES
WOODVILLE, OHIO
EPA Contract No. 68-D98-004
Work Assignment No. 3-03
Prepared for:
Mr. Michael L. Toney (MD-19)
Work Assignment Manager
SCGA, EMC, OAQPS
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
May 2000
Submitted by
PACIFIC ENVIRONMENTAL SERVICES, INC.
5001 S. Miami Blvd., Suite 300
Post Office Box 12077
Research Triangle Park, NC 27709-2077
(919)941-0333
FAX (919) 941-02J4
U.S. Environmental Protection Agency
Region 5, Library (PL-12J)
77 West Jackson Boulevard, 12th Floor
Chicago, IL 60604-3590
-------
DISCLAIMER
This document was prepared by Pacific Environmental Services, Inc. (PES) under EPA
Contract No. 68-D98-004, Work Assignment No. 3-03. This document has been reviewed
following PES' internal quality assurance procedures and has been approved for distribution. The
contents of this document do not necessarily reflect the views and policies of the U.S.
Environmental Protection Agency (EPA). Mention of trade names does not constitute
endorsement by the EPA or PES.
-------
TABLE OF CONTENTS
Page
1.0 INTRODUCTION 1-1
2.0 SUMMARY OF RESULTS 2-1
2.1 KILNNO. 2 2-2
2.2 KILNNO. 1 2-7
3.0 PROCESS DESCRIPTION 3-1
4.0 SAMPLING LOCATIONS 4-1
4.1 KILNNO. 2 4-1
4.2 KILN NO. 1 4-5
5.0 SAMPLING AND ANALYSIS PROCEDURES 5-1
5.1 LOCATION OF MEASUREMENT SITES AND
SAMPLE/VELOCITY TRAVERSE POINTS 5-1
5.2 DETERMINATION OF EXHAUST GAS VOLUMETRIC
FLOWRATE 5-1
5.3 DETERMINATION OF EXHAUST GAS VOLUMETRIC FLOW RATE
(ALIGNMENT APPROACH) 5-4
5.4 DETERMINATION OF OXYGEN AND CARBON DIOXIDE 5-4
5.5 DETERMINATION OF EXHAUST GAS MOISTURE CONTENT 5-5
5.6 DETERMINATION OF PCDDs/PCDFs 5-5
5.7 DETERMINATION OF TOTAL HYDROCARBONS 5-7
5.8 DETERMINATION OF HYDROGEN CHLORIDE 5-7
5.9 CEMs DATA ACQUISITION AND HANDLING 5-7
6.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) PROCEDURES
AND RESULTS 6-1
6.1 CALIBRATION AND PREPARATION OF APPARATUS 6-1
6.2 REAGENTS AND GLASSWARE PREPARATION 6-3
6.3 ON-SITE SAMPLING 6-5
6.4 LABORATORY ANALYSES 6-9
m
-------
TABLE OF CONTENTS (Concluded)
6.5 QA COORDINATOR FIELD AUDIT 6-9
APPENDICES
APPENDIX A RAW FIELD DATA .... A-1
APPENDIX B METHOD 23 LABORATORY ANALYTICAL DATA B-l
APPENDIX C CALCULATIONS & COMPUTER SUMMARIES C-l
APPENDIX D EXAMPLE EQUATIONS D-l
APPENDIXE QA/QC DATA E-l
APPENDIXF PROCESS DATA F-l
APPENDIX G SAMPLING & ANALYSIS METHODS G-l
APPENDIXH PROJECT PARTICIPANTS H-!
IV
-------
LIST OF TABLES
Table 1.1 Emissions Test Log, Martin Marietta Magnesia Specialties -
Woodville, Ohio 1-3
Table 2.1 PCDDs/PCDFs Sampling and Exhaust Gas Parameters, Kiln No. 2
Baghouse Inlet and Stack, Martin Marietta Magnesia Specialties -
Woodville, Ohio 2-3
Table 2.2 PCDDs/PCDFs Concentrations and Emission Rates, Kiln No. 2 Baghouse
Inlet and Stack, Martin Marietta Magnesia Specialties - Woodville, Ohio .... 2-4
Table 2.3 PCDDs/PCDFs Concentrations and 2378-TCDD Toxic Equivalent
Concentrations Adjusted to 7 Percent Oxygen, Kiln No. 2 Baghouse Inlet
And Stack, Martin Marietta Magnesia Specialties - Woodville, Ohio 2-5
Table 2.4 HC1 and THC Concentrations and Emission Rates, Kiln No. 2 Baghouse
Inlet and Stack, Martin Marietta Magnesia Specialties - Woodville, Ohio .... 2-6
Table 2.5 PCDDs/PCDFs Sampling and Exhaust Gas Parameters, Kiln No. 1 ESP
Inlet and Stack, Martin Marietta Magnesia Specialties - Woodville, Ohio .... 2-9
Table 2.6 PCDDs/PCDFs Concentrations and Emission Rates, Kiln No. 1 ESP Inlet
And Stack, Martin Marietta Magnesia Specialties - Woodville, Ohio 2-10
Table 2.7 PCDDs/PCDFs Concentrations and 2378-TCDD Toxic Equivalent
Concentrations Adjusted to 7 Percent Oxygen, Kiln No. 1 ESP Inlet
And Stack, Martin Marietta Magnesia Specialties - Woodville, Ohio 2-11
Table 2.8 THC Concentrations and Emission Rates, Kiln No. 1 ESP Inlet and Stack,
Martin Marietta Magnesia Specialties - Woodville, Ohio 2-12
Table 5.1 Summary of Sampling and Analysis Methods, Martin Marietta Magnesia
Specialties - Woodville, Ohio 5-2
Table 5.2 Summary of Sampling Locations, Test Parameters, Sampling Methods,
and Number and Duration of Tests, Martin Marietta Magnesia Specialties -
Woodville, Ohio 5-3
Table 6.1 Summary of Temperature Sensor Calibration Data 6-2
Table 6.2 Summary of Pitot Tube Dimensional Data 6-4
Table 6.3 Summary of Dry Gas Meter and Orifice Calibration Data 6-4
Table 6.4 Summary of EPA Method 23 Field Sampling QA/QC Data 6-7
Table 6.5 Summary of Calibration Gas Cylinders 6-7
Table 6.6 Summary of EPA Proposed Method 322 HC1 In-Situ Spiking Data 6-8
Table 6.7 Summary of EPA Method 23 Blanks & Sample Catches 6-10
Table 6.8 Summary of EPA Method 23 Standards Recovery Efficiencies 6-11
-------
LIST OF FIGURES
Figure 1.1 Project Organization - US EPA Ohio Lime Kiln Screening,
Martin Marietta Magnesia Specialties - Woodville, Ohio 1-4
Figure 2.1 Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran 2-1
Figure 4.1 Kiln No. 2 Process Air Flow Schematic, Martin Marietta Magnesia
Specialties - Woodville, Ohio 4-2
Figure 4.2 Kiln No. 2 Baghouse Inlet Sample Port and Sample Point Locations,
Martin Marietta Magnesia Specialties - Woodville, Ohio 4-3
Figure 4.3 Kiln No. 2 Baghouse Stack Sample Port and Sample Point Locations,
Martin Marietta Magnesia Specialties - Woodville, Ohio 4-4
Figure 4.4 Kiln No. 1 Process Air Flow Schematic, Martin Marietta Magnesia
Specialties - Woodville, Ohio 4-6
Figure 4.5 Kiln No. 1 ESP Inlet Sample Port and Sample Point Locations,
Martin Marietta Magnesia Specialties - Woodville, Ohio 4-7
Figure 4.6 Kiln No. 1 ESP Stack Sample Port and Sample Point Locations,
Martin Marietta Magnesia Specialties - Woodville, Ohio 4-r)
i
Figure 5.1 Sampling Train Schematic for EPA Methods 3 A and 25A 5-6
Figure 5.2 Sampling Train Schematic for EPA Method 23, Proposed Revisions >-8 ?
Figure 5.3 Sampling Train Schematic for EPA Proposed Method 322 5-9 }
VI
-------
1.0 INTRODUCTION
The U.S. Environmental Protection Agency (EPA) Office of Air Quality Planning and
Standards (OAQPS) Emission Standards Division (BSD) is investigating the lime manufacturing
industry to identify and quantify hazardous air pollutants (HAPs) emitted from lime kilns. ESD
requested that the EPA OAQPS Emissions, Monitoring and Analysis Division (EMAD) conduct
the required testing. EMAD issued a work assignment to Pacific Environmental Services, Inc.
(PES) to conduct a "screening" test to collect air emissions data as specified in the ESD test
request. Initial planning, pre-test site survey, and preparation activities were conducted under
EPA Contract No. 68-D7-0002, Work Assignment No. 0/005. Remaining portions of the
preparation and field mobilization were conducted under EPA Contract No. 68-D7-0002, Work
Assignment No. 1/007, and EPA Contract No. 68-D98-007, Work Assignment 1-09. The draft
final report was completed under EPA Contract No. 68-D98-004, Work Assignment Nos. 1-09
and 2-04. Generation of the Final Report, incorporating EPA's comments on the Draft Final
Report, was completed under EPA Contract No. 68-D98-004, Work Assignment 3-03.
The primary objective was to characterize the uncontrolled and controlled emissions of
selected HAPs from two rotary kilns located at Martin Marietta Magnesia Specialties' Woodville,
Ohio facility. The "screening" tests were conducted to quantify mass flow rates of hydrogen
chloride (HC1), total hydrocarbons (THC), and polychlorinated dibenzo-^-dioxins and
polychlorinated dibenzofurans (PCDDs/PCDFs) at the inlet to the control devices, and the
emissions of HAPs to the atmosphere. The basic test methods that were employed were US EPA
Test Methods 1 (sample point location), 2 (effluent gas velocity), 3 A (oxygen and carbon dioxide
content), 4 (moisture content), 23 (PCDDs/PCDFs content) with proposed revisions, 25 A (THC
content), and Proposed Method 322 (HC1 content).
PES conducted testing on two rotary lime kilns at the facility. Initial equipment set-up
activities commenced on August 24, 1998. Due to difficulties in securing power for the trailer
housing the continuous emission monitors, testing on Kiln No. 2 did not commence until
August 27, 1998. Testing on Kiln No. 1 was conducted on August 28, 1998. On each kiln, one
3-hour test, comprised of the sampling methods mentioned in the previous paragraph, were
conducted at the inlet to each control device (Kiln No. 2 baghouse and Kiln No. 1 ESP) and at
each stack. The inlet and the outlet testing were conducted simultaneously. Due to
contamination of the HC1 analyzer with lime dust, no HC1 data was collected during the testing on
Kiln No. 1. Table 1.1 presents the Emissions Test Log, which summarizes the sample run
designators, test dates and times, target pollutants, and run durations for each of the sampling
methods.
PES used three subcontractors for this effort: Air Pollution Characterization and Control
Ltd. (APCC), Paradigm Analytical Laboratories, Inc. (PAL), and Atlantic Technical Services, Inc.
1-1
-------
(ATS). APCC provided field testing support for measurement of oxygen (O2), carbon dioxide
(C02), THC, and HC1 concentrations using continuous emission monitors (CEMs); PAL prepared
the XAD®-2 sorbent resin traps and performed the analysis of the Method 23 sample fractions to
determine catch weights of PCDDs/PCDFs congeners; and ATS provided field testing support,
and field data reduction.
The PES test crew consisted of Michael D. Maret (who served as the Field Team Leader),
Dennis P. Holzschuh (on-site Quality Assurance Coordinator), Troy Abernathy, Gary Gay,
Dennis D. Holzschuh, and Paul Siegel. APCC was represented by Aaron Christie!, Peter Day, and
Eric Dithrich; ATS was represented by Emil Stewart. Also present during the testing were
Michael L. Toney, the EPA Work Assignment Manager, Joseph P. Wood from EPA ESD, and
Cybele M. Brockmann of Research Triangle Institute, an ESD contractor. Martin Marietta
Magnesia Specialties was represented by Mr. Donald Kuk, Environmental and Safety Manager,
and Mr. Dennis Briggs, Operation Services Manager.
Figure 1.1 presents the project organization and major lines of communication.
Section 2.0 presents the results of the testing; Section 3.0 is reserved for a process description
and operational data; Section 4.0 presents descriptions of the sampling locations; Section 5.0
presents descriptions of the sampling and analysis procedures; and Section 6.0 presents the
Quality Assurance/Quality Control procedures that were employed during the testing program.
and the results of calibrations and analytical QA data. Copies of all field data generated during
the testing, the subcontracting laboratory analytical report, computer calculations and example
calculations, calibration data and compressed gas certifications of analysis, project participants, '*
and reprints of the EPA Test Methods are presented in the appendices to this document, /
Appendix F is reserved for process and operational data. /
1-2
-------
TABLE 1.1
EMISSIONS TEST LOG
MARTIN MARIETTA MAGNESIA SPECIALTIES - WOODVILLE, OHIO
Run No.
Date
Pollutant
Run Time
(24-hr Clock)
Sampling
Duration,
(minutes)8
Kiln No. 2 Baehouse Inlet
M23-I-1
M3A-I-1
M25A-I-1
M322-I-1
Kiln No. 2 Baehouse Stack
M23-O-1
M3A-0-1
M25A-O-1
M322-O-1
08/27/98
08/27/98
08/27/98
08/27/98
PCDDs/PCDFs
C02 / 02
THC
HC1
1025-1439
1100-1505
1100-1505
1100-1505
179b
120
120
120
08/27/98
08/27/98
08/27/98
08/27/98
PCDDs/PCDFs
C02 / 02
THC
HC1
1025-1447
1025-1430
1025-1430
1025-1430
180
120
120
120
Kiln No. 1 ESP Inlet
M23-I-2
M3A-I-2
M25A-I-2
08/28/98
08/28/98
08/28/98
PCDDs/PCDFs
CO2 / O2
THC
1615-1955
1648-1938
1648-1938
180
90
90
Kiln No. 1 ESP Stack
M23-O-2
M3A-O-2
M25A-O-2
08/28/98
08/28/98
08/28/98
PCDDs/PCDFs
CO2 / O2
THC
1615-1958
1613-2013
1613-2013
180
120
120
a The CEMs sampling system operated on a time-shared basis, switching between the inlet and outlet locations.
This applies to Methods 3A, 25A, and 322.
b Application of the "alignment approach" for isokinetic sampling in non-laminar gas streams resulted in a
sampling run of 179 minutes. For further discussion, see Section 5.0 and Appendix G.
1-3
-------
Martin Marietta Magnesia Specialties
Environmental & Safety Manager
Donald E.Kuk,RE.M.
(616)723-1300
EPA/EMC
Work Assignment Manager
Michael L. Toney
(919) 541-5247
EPA/ESD
Joseph P. Wood
(919) 541-5446
PES
Program Manager
John T. Chehaske
(919) 941-0333
PES
Corporate QA/QC Officer
Jeffrey L. Van Atten
(703)471-8383
PES
Project Manager
Franklin Meadows
(919) 941-0333
PES
Task Manager
Michael D.Maret
(919) 941-0333
Research Triangle Institute
BSD Contractor
Cybele M Brockmann
(919) 990-8654
Pretest
Site Survey
PES
Quality Assurance
Project Plan
PES
Site Specific
Test Plan
PES
Field
Testing
PES
Sample
Analysis
PES
Draft Final
Report
PES
Subcontractor
Air Pollution Characterization
and Control, Ltd.
Subcontractor
Atlantic Technical
Services, Inc.
Subcontractor
Paradigm Analytical
Laboratories, Inc.
Figure 1.1 Project Organization - US EPA Ohio Lime Kiln Screening, Martin Marietta Magnesia Specialties - Woodville, Ohio
-------
2.0 SUMMARY OF RESULTS
This section summarizes the results of the testing that was conducted on two rotary lime
kilns at Martin Marietta Magnesia Specialties facility at Woodville, Ohio. Testing was conducted
on Kiln No. 2 at the inlet to the baghouse and at the baghouse stack. On Kiln No. 1, testing was
conducted at the inlet to the ESP, and on the ESP stack. Further discussion of the sampling
locations on each kiln may be found in Section 4.0. The tables on the following pages present flue
gas parameters, pollutant concentrations, and pollutant mass emission rates. Parameters
summarizing the testing on Kiln No. 2 are presented in Tables 2.1 through 2.4, and the testing
parameters for Kiln No. 1 are presented in Tables 2.5 through 2.8.
From tune to time during the Method 23 analyses, a peak elutes at the position expected
for a particular congener, but the peak fails validation based on the theoretical split of chlorine
isotopes. That is to say that the number of Cl35 isotopes and the number of Cl37 isotopes attached
to the PCDDs/PCDFs congeners should agree with the C135/C137 ratio found in nature. For each
congener, this ratio must agree within 15 percent (%). If the mass ratio of chlorine isotopes does
not agree with the natural chlorine isotope ratio then the peak is flagged as an Estimated
Maximum Possible Concentration, or "EMPC".
The values presented as "Total PCDDs" are the sum of the "12346789 OCDD"
polychlorinated dibenzo-p-dioxin and all of the dioxins labeled "Total"; "Total PCDFs" values are
the sum of the "12346789 OCDF" polychlorinated dibenzofuran and all of the furans labeled
"Total". "Total PCDDs + Total PCDFs" values are the sum of the "Total PCDDs" and "Total
PCDFs" values. Values that have been qualified as being EMPC have been included in the sums.
Concentrations and emission rates based on or including EMPC values are denoted by braces
({}). Figure 2.1 presents the basic structures of the PCDD and PCDF molecules.
Figure 2.1 Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran
2-1
-------
2.1 KILN NO. 2
2.1.1 PCDDs/PCDFs Measurements
Table 2.1 presents the Method 23 sampling parameters and parameters of the Kiln No. 2
baghouse inlet and stack exhaust gases. At the baghouse inlet location, the Method 23 sample
train was modified by employing a heated, flexible sampling line connecting the outlet of the
heated sample probe to the inlet of the filter, which was contained in a heated compartment. This
modification was necessary to enable the isokinetic extraction of the sample from a fibiizontal,
round duct that was positioned about 15 feet above ground level. Due to non-laminar flow
conditions at the baghouse inlet, (rotation angle, a = 24.7°), isokinetic sampling was conducted at
the inlet using the "alignment approach". This method is discussed further in Section 5.0 and in
the appendices of this document.
One Method 23 sampling run was conducted on the baghouse inlet, and a second
Method 23 sampling run was conducted simultaneously at the baghouse stack. Both sample runs
were within the isokinetic sampling ratio criterion of 100 ± 10%; the isokinetic sampling ratio for
the inlet run (M23-I-1) was 93.8% and the isokinetic sampling ratio for the outlet run (M23-O-1)
was 102.1%. For purposes of the calculation of the volumetric flow rates, O2 and CO2 data were
determined from the Method 3 A CEM data, and moisture content was determined by calculating
the mass of condensate collected in the impinger trains during the runs. In-stack concentrations
and associated mass emission rates of the PCDDs/PCDFs congeners and homologues are
presented in Table 2.2 for the inlet and outlet sampling runs.
Table 2.3 presents two PCDDs/PCDFs concentration-based measurements for both the
inlet and the outlet sampling locations. In the second and third columns of the table, the in-stack
concentrations of the 2378-PCDDs/PCDFs congeners as well as the homologues (i.e., PCDDs
and PCDFs groups that have the same degree of chlorination) are presented adjusted to 7% O2. , x
The fifth and sixth columns of the table present the 2378 tetra-chloro dibenzodioxin (TCDD) /
toxic equivalent values for those congeners chlorinated at the 2, 3, 7, and 8 positions. Thest /
columns represent the in-stack concentrations of the 2378 congeners after being adjusted for /
toxicity relative to 2378-TCDDs. PCDDs/PCDFs congeners that are not chlorinated at the 2,:;, •-'
7, and 8 positions have a relative toxicity of zero and therefore the total homologues (e.g., Total j
TCDD) are not presented in the Toxic Equivalency columns. /
2.1.2 CEM Measurements
Gas samples were extracted from the baghouse inlet and the stack locations, condi^pn^d,
and transported to the CEMs using heat-traced Teflon* sample lines for the real-time "' ,
determination of O2, CO2, THC, and HC1 concentrations. Table 2.4 presents the average THp
and HC1 concentrations and mass emission rates. O2 and C02 concentrations have been connected
for observed calibration and bias errors using Equation 6C-1, as required in Method 3 A, am HC1
concentrations have been corrected using Equation 1 in Proposed Method 322. THC /
concentrations are presented uncorrected, as required in Method 25 A; the uncorrected Q*, CO2,
and HC1 concentrations are given in Appendix A. 1.3. Refer to Appendix D for example,
equations.
2-2
-------
TABLE 2.1
PCDDs/PCDFs SAMPLING AND EXHAUST GAS PARAMETERS
KILN NO. 2 BAGHOUSE INLET AND STACK
MARTIN MARIETTA MAGNESIA SPECIALTIES - WOODVILLE, OHIO
Run No.
Date
Clock Time
Sampling Location
Total Sampling Time, minutes a
Average Sampling Rate, dscfin b
Sample Volume:
dscfc
dscmd
Average Exhaust Gas Temperature, °F
O2 Concentration, % by Volume
CO2 Concentration, % by Volume
Moisture, % by Volume
Exhaust Gas Volumetric Flow Rate:
acfm"
dscfmb
dscmm'
Isokinetic Sampling Ratio, %
M23-I-1
08/27/98
1025-1439
Inlet
179
0.647
115.737
3.28
496
14.2
11.8
4.8
132,300
67,400
1,910
93.8
M23-O-1
08/27/98
1025-1447
Stack
180
0.624
112.261
3.18
391
14.8
10.7
4.6
117,100
68,400
1,940
102.1
a Due to application of the "alignment approach" sampling duration at the inlet was 179 minutes.
b Dry standard cubic feet per minute at 68° F (20° C) and 1 atm.
c Dry standard cubic feet at 68° F (20° C) and 1 atm.
d Dry standard cubic meters at 68° F (20° C) and 1 atm.
' Dry standard cubic meters per minute at 68° F (20° C) and 1 atm.
2-3
-------
TABLE 2.2
PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES
KILN NO. 2 BAGHOUSE INLET AND STACK
MARTIN MARIETTA MAGNESIA SPECIALTIES - WOODVILLE, OHIO
CONGENER
DIOXINS:
2378 TCDD
Total TCDD
12378 PeCDD
Total PeCDD
123478 HxCDD
123678 HxCDD
123789 HxCDD
Total HxCDD
1234678 HpCDD
Total HpCDD
12346789 OCDD
Total PCDDs
FURANS:
2378 TCDF
Total TCDF
12378 PeCDF
23478 PeCDF
Total PeCDF
123478 HxCDF
123678 HxCDF
234678 HxCDF
123789 HxCDF
Total HxCDF
1234678 HpCDF
1234789 HpCDF
Total HpCDF
12346789 OCDF
Total PCDFs
Total PCDDs + PCDFs
CONCENTRATION •
(ng/dscm, as measured)
M23-I-1 Inlet
0.00293
0.134
{0.00381}
0.0780
{0.00289}
{0.00301}
0.00449
0.0572
0.0113
0.0204
0.0303
0.320
0.0485
1.38
{0.0455}
0.0426
0.647
0.0483
0.0360
{0.0129}
0.00299
0.278
0.0521
0.00735
0.0801
{0.0113}
{2.39}
{2.71}
M23-O-1 Stack
0.000849
0.157
0.00116
0.0881
{0.000818}
0.00214
0.00186
0.0928
0.00648
0.0117
0.0103
0.360
0.00922
0.0975
0.00488
0.00318
0.0327
0.0112
0.00365
{0.000975}
(0.000283)
0.0215
0.0180
0.00249
0.0244
0.0211
0.197
0.557
EMISSION RATE *
Gig/hr)
M23-I-1 Inlet
0.335
15.3
{0.437}
8.93
{0.331}
{0.345}
0.514
6.56
1.30
2.33
3.47
36.6
5.56
158
{5.21}
4.88
74.1
5.53
4.13
{1.47}
0.342
31.9
5.97
0.842
9.17
{1.29}
{274}
{311}
M23-O-1 Stack
0.0987
18.2
0.135
10.2
{0.0951}
0.249
0.216
10.8
0.753
1.36
1.20
41.8
1.07
11.3
0.567
0.369
3.81- ;
1.30 /
0.424 /
{0.113} "j
(0.0329) '/
2.50 f
2.10
0.289
2.84
2.46
22.9
*4.8
' Nanogram per dry standard cubic meter at 20°C and 1 atm.
b Micrograms per hour.
() Not Detected. Value shown is the detection limit and is included in totals.
{ } Estimated Maximum Possible Concentration. EMPC values are included in totals.
2-4
-------
TABLE 2.3
PCDDs/PCDFs CONCENTRATIONS AND 2378-TCDD TOXIC EQUIVALENT
CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN
KILN NO. 2 BAGHOUSE INLET AND STACK
MARTIN MARIETTA MAGNESIA SPECIALTIES - WOODVILLE, OHIO
CONGENER
DIOXINS:
2378 TCDD
Total TCDD
12378 PeCDD
Total PeCDD
123478 HxCDD
123678 HxCDD
123789 HxCDD
Total HxCDD
1234678 HpCDD
Total HpCDD
12346789 OCDD
Total PCDDs
FURANS:
2378 TCDF
Total TCDF
12378 PeCDF
23478 PeCDF
Total PeCDF
123478 HxCDF
123678 HxCDF
234678 HxCDF
123789 HxCDF
Total HxCDF
1234678 HpCDF
1234789 HpCDF
Total HpCDF
12346789 OCDF
Total PCDFs
Total PCDDs + PCDFs
CONCENTRATION '
(ng/dscm, adjusted to 7 percent OO
M23-I-1 Inlet
0.00608
0.278
{0.00791}
0.162
{0.00600}
{0.00625}
0.00931
0.119
0.0235
0.0423
0.0629
0.663
0.101
2.85
{0.0944}
0.0884
1.34
0.100
0.0748
{0.0267}
0.00620
0.578
0.108
0.0153
0.166
{0.0234}
{4.96}
{5.63}
M23-O-1 Stack
0.00194
0.358
0.00265
0.201
{0.00186}
0.00487
0.00423
0.211
0.0148
0.0267
0.0235
0.820
0.0210
0.222
0.0111
0.00724
0.0745
0.0254
0.00832
{0.00222}
(0.000645)
0.0490
0.0411
0.00566
0.0556
0.0482
0.450
1.27
2378-TCDD
Toxicity
Equivalence
Factor
1.000
0.500
0.100
0.100
0.100
0.010
0.001
Total PCDDs TEO
0.100
0.050
0.500
0.100
0.100
0.100
0.100
0.010
0.010
0.001
Total PCDFs TEQ
Total TEQ
2378 TOXIC EQUIVALENCIES |
ng/dscm, adjusted to 7 percent O2lj
M23-I-1 Inlet
0.00608
{0.00396}
{0.000600}
{0.000625}
0.000931
0.000235
0.0000629
(0.01251
0.0101
{0.00472}
0.0442
0.0100
0.00748
{0.00267}
0.000620
0.00108
0.000153
{0.0000234}
{0.0810}
{0.0935}
M23-O-1 Stack
0.00194
0.00133
{0.000186}
0.000487 1
0.000423 1
0.000148
0.0000235
(0.00453} 1
i
0.00210 I
I
0.000556
0.00362
0.00254
0.000832 |
{0.000222} |
(0.0000645) i
i
0.000411 I
0.0000566 I
0.0000482
(0.0105)
(0.0150)
" Nanogram per dry standard cubic meter at 20°C and 1 atm and corrected to 7 percent oxygen.
() Not Detected. Value shown is the detection limit and is included in totals.
{ } Estimated Maximum Possible Concentration. EMPC values are included in totals.
2-5
-------
TABLE 2.4
HCL AND THC CONCENTRATIONS AND EMISSION RATES
KILN NO. 2 BAGHOUSE INLET AND STACK
MARTIN MARIETTA MAGNESIA SPECIALTIES - WOODVBLLE, OHIO
Run No.
Date
Clock Time
Sampling Location
Total Sampling Time, minutes
O2 Concentration, % by Volume
CO2 Concentration, % by Volume
Moisture, % by Volume
Volumetric Flow Rate, dscfin *
HC1:
Formula Weight, Ib/lb-mole
Concentration, ppmvw b
Concentration, ppmvd c
Concentration, ppmvd @ 7%02 d
Emission Rate, Ib/hr c
THC (as propane):
Formula Weight, Ib/lb-mole
Concentration, ppmvw b
Concentration, ppmvd c
Concentration, ppmvd @ 7%O2 d
Emission Rate, Ib/hr e
1-1
08/27/98
1100-1505
Inlet
120
14.2
11.8
4.8
67,400
36.47
38.4
40.4
83.7
15.5
44.11
5.2
5.46
11.3
2.53
0-t^ ~...
08/27/9$* "'
1025-1430
Stack
120
14.8
10.7
4.6
68,400
36.47
23.4
24.5
55.9
9.54
44.11
5.6
5.87
13.4
2.76
Dry standard cubic feet per minute at 68° F (20° C) and 1 atm.
Parts per million by volume wet.
Parts per million by volume dry.
Parts per million by volume dry basis corrected to 7% oxygen.
Pounds per hour.
2-6
-------
Only one set of instruments was available for determination of O2, CO2, THC, and HC1
concentrations; therefore CEMs data was collected from the inlet and the stack locations on a
time-sharing basis. The system was switched from inlet to stack and back again every 35 minutes.
The first five minutes of data from each 3 5-minute period were excluded from the calculation of
average responses to allow for system response time and stabilization.
2.2 KILN NO. 1
2.2.1 PCDDs/PCDFs Measurements
Table 2.5 presents the Method 23 sampling parameters and parameters of the ESP inlet
and stack exhaust gases. At the ESP inlet location, isokinetic sampling was conducted using the
"alignment approach" due to non-laminar flow conditions (a = 30.7°). This method is discussed
further in Section 5.0 and in the appendices of this document. One Method 23 sampling run was
performed at the ESP inlet location, and one Method 23 sampling run was performed at the ESP
stack location. Both runs were conducted simultaneously, and both sample runs were within the
isokinetic sampling ratio criterion of 100 ± 10%; the isokinetic sampling ratio for the inlet run
(M23-I-2) was 108.9% and the isokinetic sampling ratio for the outlet run (M23-O-2) was
104.2%. For purposes of the calculation of the volumetric flow rates, O2 and C02 data were
determined from the Method 3 A CEM data, and moisture content was determined by calculating
the mass of condensate collected in the impinger trains during the runs. In-stack concentrations
and associated mass emission rates of the PCDDs/PCDFs congeners are presented in Table 2.6
for the inlet and outlet sampling runs.
Table 2.7 presents two PCDDs/PCDFs concentration-based measurements for both the
inlet and the stack sampling locations. In the second and third columns of the table, the in-istack
concentrations of the 2378-PCDDs/PCDFs congeners as well as the homologues (i.e., PCDDs
and PCDFs groups that have the same degree of chlorination) are presented adjusted to 7% O2.
The fifth and sixth columns of the table present the 2378 TCDD toxic equivalent values for those
congeners chlorinated at the 2, 3, 7, and 8 positions. These columns represent the in-stack
concentrations of the 2378 congeners after being adjusted for toxicity relative to 2378-TCDDs.
PCDDs/PCDFs congeners that are not chlorinated at the 2, 3, 7, and 8 positions have a relative
toxicity of zero and therefore the total homologues (e.g., Total TCDD) are not presented in the
Toxic Equivalency columns.
2.2.2 CEM Measurements
Measurements were conducted at the ESP inlet and the stack to determine the
concentrations of O2, CO2, and THC. Due to contamination of the HC1 analyzer by lime dust
particles, no HC1 data was collected on Kiln No. 1. Finely divided lime dust particles penetrated
the sample conditioning system, and deposited on the reflective mirrors inside of the analyzer. As
a result, the infrared source's measurement beam was completely attenuated; measurement cell
reference energy was 0.3%. A minimum reference energy of 70% is required for the GFCIR to
operate properly. The CEMs were housed in a trailer supplied by APCC. Table 2.8 presents the
average THC concentrations and mass emission rates for both the inlet and stack locations.
2-7
-------
O2 and CO2 concentrations have been corrected for observed calibration and bias errors
using Equation 6C-1, as required in Method 3 A, THC concentrations are presented uncorrected,
as required in Method 25 A; the uncorrected O2, CO2, and HC1 concentrations are given in
Appendix A.2.3. Refer to Appendix D for example equations.
The CEMs collected data from the inlet and the stack locations on a time-sharing basis.
The system was switched from inlet to stack and back again every 35 minutes. The first five
minutes of data from each 35-minute period were excluded from the calculation of average
responses to allow for system response time and stabilization. ,
2-8
-------
TABLE 2.5
PCDDs/PCDFs SAMPLING AND EXHAUST GAS PARAMETERS
KILN NO. 1 ESP INLET AND STACK
MARTIN MARIETTA MAGNESIA SPECIALTIES - WOODVILLE, OHIO
Run No.
Date
Clock Time
Sampling Location
Total Sampling Time, minutes
Average Sampling Rate, dscfm "
Sample Volume:
dscfb
dscmc
Average Exhaust Gas Temperature, °F
02 Concentration, % by Volume
CO2 Concentration, % by Volume
Moisture, % by Volume
Exhaust Gas Volumetric Flow Rate:
acfmd
dscfm "
dscmm'
Isokinetic Sampling Ratio, %
M23-I-2
08/28/98
1615-1955
Inlet
180
0.556
100.094
2.83
852
10.6
16.9
7.2
89,100
32,500
920
108.9
M23-O-2
08/28/98
1616-1958
Stack
180
0.677
121.868
3.45
699
10.5
16.7
7.0
93,900
39,300
1,110
104.2
1 Diy standard cubic feet per minute at 68° F (20° C) and 1 atm.
b Dry standard cubic feet at 68° F (20° C) and 1 atm.
0 Dry standard cubic meters at 68° F (20° C) and 1 atm.
d Actual cubic feet per minute at exhaust gas conditions.
* Dry standard cubic meters per minute at 68° F (20° C) and 1 atm.
2-9
-------
TABLE 2.6
PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES
KILN NO. 1 ESP INLET AND STACK
MARTIN MARIETTA MAGNESIA SPECIALTIES - WOODVILLE, OHIO
CONGENER
DIOXINS:
2378 TCDD
Total TCDD
12378 PeCDD
Total PeCDD
123478 HxCDD
123678 HxCDD
123789 HxCDD
Total HxCDD
1234678 HpCDD
Total HpCDD
12346789 OCDD
Total PCDDs
FURANS:
2378 TCDF
Total TCDF
12378 PeCDF
23478 PeCDF
Total PeCDF
123478 HxCDF
123678 HxCDF
234678 HxCDF
123789 HxCDF
Total HxCDF
1234678 HpCDF
1234789 HpCDF
Total.HpCDF
12346789 OCDF
Total PCDFs
Total PCDDs + PCDFs
CONCENTRATION •
(ng/dscm, as measured)
M23-I-2 Inlet
{0.00234}
0.195
{0.00275}
0.129
{0.00272}
0.00325
0.00684
0.174
{0.0313}
0.0514
0.0865
0.636
0.0234
0.630
{0.0356}
0.0234
0.425
0.0575
0.0395
0.0161
{0.00349}
0.292
0.104
{0.0157}
0.152
0.0999
1.60
2.23
M23-O-2 Stack
0.000638
0.0849
0.000609
0.0246
{0.000638}
0.00168
{0.00185}
0.0194
0.0187
0.0336
0.0742
0.237
0.00281
0.0510
0.00142
0.00212
0.0201
0.00487
0.00313
0.00394
0.000406
0.0263
0.0197
{0.00455}
0.0245
0.0164
0.138
0.375
EMISSION RATE "
Gig/hr)
M23-I-2 Inlet
{0.129}
10.8
{0.152}
7.12
{0.150}
0.179 -'-•'
0.378
9.63
{1.73}
2.84
4.78
35.1
1.29
34.8 . .
{1.97}
1.29
23.5
3.17
2.18
0.888
{0.193}
16.1
5.74
{0.865}
8.39
5.52
88.2
123
M23-O-2 Stack
0.0426
5.67
0.0407
1.64
{0.0426}
0.112
{0.124}
1.29
1.25
2.25
4.96
15.8
0.188
3.41
0.0949
0.141
1.34
0.325 '»
0.209 /
* '
0.263 /
0.0271 •/
1.76 /
1.32 /„
{0.304}
l.§3
1.10
9.24
j 25.0
Nanogram per dry standard cubic meter at 20° C and 1 atm.
b Micrograms per hour.
() Not Detected. Value shown is the detection limit and is included in totals.
{ } Estimated Maximum Possible Concentration. EMPC values are included in totals.
2-10
-------
TABLE 2.7
PCDDs/PCDFs CONCENTRATIONS AND 2378-TCDD TOXIC EQUIVALENT
CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN
KILN NO. 1 ESP INLET AND STACK
MARTIN MARIETTA MAGNESIA SPECIALTIES - WOODVDLLE, OHIO
CONGENER
DIOXINS:
2378 TCDD
Total TCDD
12378 PeCDD
Total PeCDD
123478 HxCDD
123678 HxCDD
123789 HxCDD
Total HxCDD
1234678 HpCDD
Total HpCDD
12346789 OCE D
Total PCDDs
FURANS:
2378 TCDF
Total TCDF
12378 PeCDF
23478 PeCDF
Total PeCDF
123478 HxCDF
123678 HxCDF
234678 HxCDF
123789 HxCDF
Total HxCDF
1234678 HpCDF
1234789 HpCDF
Total HpCDF
12346789 OCDF
Total PCDFs
Total PCDDs + PCDFs
CONCENTRATION •
(ng/dscm, adjusted to 7 percent Oj)
M23-I-2 Inlet
{0.00316}
0.263
(0.00371)
0.174
{0.00367}
0.00438
0.00924
0.235
{0.0422}
0.0693
0.117
0.859
0.0316
0.850
{0.0481}
0.0315
0.574
0.0776
0.0533
0.0217
{0.00471}
0.394
0.140
{0.0211}
0.205
0.135
2.16
3.02
M23-O-2 Stack
0.000852
0.113
0.000813
0.0328
{0.000852}
0.00225
{0.00248}
0.0259
0.0249
0.0449
0.0991
0.316
0.00376
0.0682
0.00190
0.00283
0.0268
0.00651
0.00418
0.00527
0.000542
0.0352
0.0263
{0.00608}
0.0327
0.0219
0.185
0.501
2378-TCDD
Toxicity
Equivalence
Factor
1.000
0.500
0.100
0.100
0.100
0.010
0.001
Total PCDDs TEQ
0.100
0.050
0.500
0.100
0.100
0.100
0.100
0.010
0.010
0.001
Total PCDFs TEQ
Total TEQ
2378 TOXIC EQUIVALENCIES
(ng/dscm, adjusted to 7 percent O^
M23-I-2 Inlet
{0.00316}
{0.00186}
{0.000367}
0.000438
0.000924
{0.000422}
0.000117
{0.00729}
0.00316
{0.00240}
0.0158
0.00776
0.00533
0.00217
{0.00047}
0.00140
{0.000211}
0.000135
{0.0388}
{0.0461}
M23-O-2 Stack
0.000852
0.000407
{0.0000852}
0.000225
{0.000248}
0.000249
0.0000991
{0.00217}
0.000376
0.0000949
0.00141
0.000651
0.000418
0.000527
0.0000542
0.000263
{0.0000608}
0.0000219
{0.00388}
{0.00605}
* Nanogram per dry standard cubic meter at 20 "C and 1 atm and corrected to 7 percent oxygen.
() Not Detected. Value shown is the detection limit and is included in totals.
{ } Estimated Maximum Possible Concentration. EMPC values are included in totals.
2-11
-------
TABLE 2.8
THC CONCENTRATIONS AND EMISSION RATES
KILN NO. 1 ESP INLET AND STACK
MARTIN MARIETTA MAGNESIA SPECIALTIES - WOODVILLE, OHIO
Run No.
Date
Clock Time
Sampling Location
Total Sampling Time, minutes
O2 Concentration, % by Volume
CO2 Concentration, % by Volume
Moisture, % by Volume
Volumetric Flow Rate, dscfin a
THC (as propane):
Formula Weight, Ib/lb-mole
Concentration, ppmvw b
Concentration, ppmvd °
Concentration, ppmvd @ 7%O2 d
Emission Rate, Ib/hr e
1-2
08/28/98 ;
1648-1938
Inlet
90
10.6
16.9
7.2
32,500
44.11
1.9
2.05
2.76
0.457
O-2
08/28/98
1613-2013
Stack
120
10.5
16.7
7.0
39,300
44.11
3.4
3.66
4.89
0.988
" Dry standard cubic feet per minute at 68° F (20° C) and 1 atm.
b Parts per million by volume wet.
c Parts per million by volume dry.
d Parts per million by volume dry basis corrected to 7% oxygen.
° Pounds per hour.
2-12
-------
3.0 PROCESS DESCRIPTION
The process description is considered confidential business information (CBI) and is not
discussed in this report. During the testing, however, an BSD contractor, Research Triangle
Institute, monitored and recorded process operational data which will be supplied to EPA under a
separate EPA contract.
3-1
-------
-------
4.0 SAMPLING LOCATIONS
Source sampling was conducted to determine uncontrolled and controlled emissions of
HC1, PCDDs/PCDFs, and THCs from two rotary kilns located at Martin Marietta Magnesia
Specialties' Woodville, Ohio facility. Testing was performed at the baghouse inlet and stack of
Kiln No. 2 and at the ESP inlet and outlet of Kiln No. 1. The figures on the following pages
present simplified process air flow schematics, the sample port locations and the sample traverse
point locations for Kiln No. 2 and Kiln No. 1.
4.1 KILN NO. 2
4.1.1 Baghouse Inlet Sampling Location
Figure 4.1 presents the air flow schematic for Kiln No. 2. The baghouse inlet was an
84-inch inside diameter (ID) duct, connecting the multiclones to the baghouse. As shown in
Figure 4.2, the Method 23 sampling ports were located 274 inches (3.26 equivalent duct
diameters) downstream from the nearest flow disturbance, which was an "ambient air bleed in
damper" and 100 inches upstream (1.19 equivalent duct diameters) from a 45° elbow prior to the
inlet of the baghouse. Two additional ports were installed for CEM sampling. Twelve traverse
points on each of the two axes were used, as required by Method 1. Figure 4.2 also depicts the
locations of the sample traverse points within the duct that were used for the isokinetic testing.
A check for the presence of non-parallel or cyclonic flow, as outlined in Section 2.4 of
EPA Method 1, was performed prior to testing. The results of the cyclonic flow test indicated an
average yaw angle (a) of 24.7° at the inlet location. Because the average yaw angle was greater
than 20°, sampling isokinetically required adjustment to the alignment of the nozzle direction to
account for angular flow. Section 5.0 and Appendix G.2 present further details on the use of the
"alignment approach" in the presence of cyclonic flow.
4.1.2 Baghouse Stacks Sampling Locations
The baghouse stack was an 86-inch ID round stack exhausting directly to the atmosphere
from the baghouse exhaust fan as shown in Figure 4.3. Four ports for Method 23 sampling were
located 1,140 inches (13.3 equivalent duct diameters) downstream from the nearest flow
disturbance, which was the baghouse fan breeching, and 168 inches (1.95 equivalent duct
diameters) upstream of the nearest flow disturbance, which was the stack exit. Two additional
ports were installed in the fan outlet breeching for the CEM sampling. Twelve sampling points, as
specified by Method 1, were used for isokinetic traverses. The sampling matrix consisted of four
4-1
-------
Atmosphere
PCDDs/PCDFs
Sampling
Location
CEMs Sampling
Location
Inlet Sampling
Location
Figure 4.1 Kiln No. 2 Process Air Flow Schematic, Martin Marietta Magnesia
Specialties - Woodville, Ohio
4-2
-------
Traverse
Point
Number
1
2
3
4
5
6
7
8
9
10
11
12
Distance
From Inside
Wall (in.)
1.76
5.63
9.91
14.87
21.00
29.90
54.10
63.00
69.13
74.09
78.37
82.24
Section A-A
From
Multi clone
274"
100"
Ambient Air
Damper
CEMs Sampling
Ports
PCDDs/PCDFs
Sampling Ports
Figure 4.2 Kiln No. 2 Baghouse Inlet Sample Port and Sample Point Locations,
Martin Marietta Magnesia Specialties - Woodville, Ohio
4-3
-------
Section A-A
Traverse Distance
Point From Inside
Number Wall (in.)
1
2
3
3.78
12.56
25.46
168"
1140"
PCDDs/PCDFs
Sampling Ports
CEMs
Sampling Ports
Figure 4.3 Kiln No. 2 Baghouse Stack Sample Port and Sample Point Locations,
Martin Marietta Magnesia Specialties - Woodville, Ohio
4-4
-------
half-axes, with three sample points on each half-axis. Figure 4.3 shows the sample points within
the stack that were used for the isokinetic testing and for the velocity traverses.
A check for the presence of non-parallel or cyclonic flow, as outlined in Section 2.4 of
EPA Method 1, was performed prior to testing. The results of the cyclonic flow test indicated an
average yaw angle (a), of 14.4°. Because the average yaw angle was less than 20°, which is the
maximum allowed by Method 1, the location was considered suitable for isokinetic sampling and
required no adjustment to the alignment of the nozzle.
4.2 KILN NO. 1
4.2.1 ESP Inlet Sampling Location
Figure 4.4 presents the air flow schematic for Kiln No. 1. The ESP inlet was a 65.75-inch
ED round duct, connecting the cyclone to the fan before entering the ESP. As shown in
Figure 4.5, two sample ports were located 23 inches (0.35 equivalent duct diameters) downstream
of the trapezoidal transition (connecting a rectangular duct to a round duct) and 23 inches (0.35
equivalent duct diameters) upstream from a 90° elbow leading to the ID fan. This sampling
location did not meet the criteria for upstream and downstream disturbances specified in
Method 1. Sample ports for Method 23 and CEM sampling were installed at this location
because this location was best suited for testing based upon the geometry of the ductwork and
safety of sampling personnel, and because modifying the ductwork to meet Method 1 criteria was
not an option.
PES originally intended to conduct testing at this location using a 24-point sampling
matrix consisting of two 12-point sample traverses. The vertical port was not used, however,
because sampling at this port would have necessitated the use of a flexible line to connect the
sample probe to the filter; because the inlet temperature was about 850°F, the possibility existed
of melting the Teflon flexible line. In addition to the technical problems, the sampling location
was considered hazardous for access by sampling personnel due to the high temperature and lack
of fall protection. Isokinetie sampling was conducted using the horizontal port by sampling at
each point twice during the sampling run.
In addition to the Method 23 ports, two additional ports were installed in the transition
piece for extraction of samples for the CEM system. Figure 4.5 also shows the sample points
within the duct that were used for the isokinetic testing. Due to the sampling and safety issues
encountered at this location, the EPA WAM approved the testing approach at the Kiln No. 1
inlet.
A check for the presence of non-parallel or cyclonic flow, as outlined in Section 2.4 of
EPA Method 1, was performed prior to testing. The results of the cyclonic flow test indicated an
average yaw angle (a), of 30.7°. Because the average yaw angle was greater than 20°, sampling
isokinetically required adjustment to the alignment of the nozzle direction to account for angular
flow. Section 5.0 and Appendix G.2 present further details on the use of the "alignment
approach" in the presence of cyclonic flow.
4-5
-------
Atmosphere
Sampling
Locations
Figure 4.4 Kiln No. 1 Process Air Flow Schematic, Martin Marietta Magnesia
Specialties - Woodville, Ohio
4-6
-------
65.75"
1211 109 8 7 654321
Section A-A
Plan View
Traverse Distance
Point From Inside
Number Wall (in.)
1
2
3
4
5
6
7
8
9
10
11
12
1.38
4.41
7.76
11.64
16.44
23.41
42.34
49.31
54.11
57.99
61.34
64.37
Inaccessible Port
T3 CT
CEMs Sampling Ports
n
23"
Side View
23"
PCDDs/PCDFs
Sampling Port
-> A
From
Cyclone
Figure 4.5 Kiln No. 1 ESP Inlet Sample Port and Sample Point Locations,
Martin Marietta Magnesia Specialties - Woodville, Ohio
4-7
-------
4.2.2 ESP Stack Sampling Location
The ESP stack was a 62-inch ID round duct, which vented the kiln exhaust gas from the
ESP to the atmosphere. As shown in Figure 4.6, two sample ports were located 70 inches (1.13
diameters) downstream of the outlet of the ESP, and 448 inches (7.23 diameters) upstream of the
stack outlet. Twelve traverse points on each of the two axes were used as required by Method 1.
Two other ports upstream of this location were used for the CEMs sampling. Figure 4.6 also
shows the sample points within the duct that were used for the isokinetic testing.
A check for the presence of non-parallel or cyclonic flow, as outlined in Section 2.4 of
EPA Method 1, was performed prior to testing. The results of the cyclonic flow test indicated an
average yaw angle (a), of 6.9°. Because the average yaw angle was less than 20°, which is the
maximum allowed by Method 1, the location was considered suitable for isokinetic sampling and
required no adjustment to the alignment of the nozzle direction.
4-8
-------
Traverse Distance
Point From Inside
Number Wall (in.)
1
2
3
4
5
6
7
8
9
10
11
12
1.30
4.15
7.32
10.97
15.50
22.07
39.93
46.50
51.03
54.68
57.85
60.60
Section A-A
448"
70"
62"
PCDPs/PCDFs
Sampling Ports
CEMs
Sampling Ports
ESP
Figure 4.6 Kiln No. 1 ESP Stack Sample Port and Sample Point Locations,
Martin Marietta Magnesia Specialties - Woodville, Ohio
4-9
-------
-------
5.0 SAMPLING AND ANALYSIS PROCEDURES
Source sampling was performed to determine controlled and uncontrolled emissions of
PCDDs/PCDFs, THC, and HC1 from two rotary lime kilns at Martin Marietta Magnesia
Specialties in Woodville, Ohio. Testing was performed at the baghouse inlet and outlet of Kiln
No. 2, and on the ESP inlet and outlet of Kiln No. 1. One test run, comprised of the test methods
described in following pages, was performed at each location, except that HC1 testing was not
conducted on Kiln No. 1 due to an instrument malfunction. Each test run was approximately
three hours in duration; one set of CEMs was used to collect data from the inlet and outlet
locations, so the amount of data collected by CEMs was less than three hours. The sampling and
analytical methods that were used are summarized in Table 5.1. In Table 5.2, the parameters
measured, the sampling method, the number of tests performed, and the duration of each test are
summarized. Brief descriptions of the sampling and analysis procedures used are presented
below. Copies of all the methods that were used are presented in Appendix G.
5.1 LOCATION OF MEASUREMENT SITES AND SAMPLE/VELOCITY
TRAVERSE POINTS
EPA Method 1, "Sample and Velocity Traverses for Stationary Sources," was used to
establish velocity and sample traverse point locations. The process ductwork, and the locations of
measurement sites and traverse points, are discussed in Section 4.0 of this document.
5.2 DETERMINATION OF EXHAUST GAS VOLUMETRIC FLOW RATE
EPA Method 2, "Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S
Pitot Tube)," was used (in conjunction with EPA Method 23 at the isokinetic sampling locations)
to determine exhaust gas velocity. A Type S phot tube, constructed according to Method 2
criteria and having an assigned coefficient of 0.84, was connected to an inclined-vertical
manometer. The pitot tube was inserted into the duct and the velocity pressure (Ap) was
recorded at each traverse point. The effluent gas temperature was also recorded at each traverse
point using a Type K thermocouple. The average exhaust gas velocity was calculated from the
average square roots of the velocity pressure, average exhaust gas temperature, exhaust gas
molecular weight, and absolute stack pressure. The volumetric flow rate is the product of
velocity and the stack cross-sectional area of the duct at the sampling location.
5-1
-------
TABLE 5.1
SUMMARY OF SAMPLING AND ANALYSIS METHODS,
MARTIN MARIETTA MAGNESIA SPECIALTIES - WOODVILLE, OHIO
Sampling Method
Parameter or Target
Measurement Principle
EPA Method 1
EPA Method 2 (with
alignment approach at inlet
locations)
EPA Method 3 A
EPA Method 4
EPA Method 23 (Proposed
Revisions & with alignment
approach at inlet locations)
EPA Method 25 A
EPA Proposed Method 322
Traverse Point Locations
Velocity and Flow Rate
CO2 and O2 Content
Moisture Content
PCDDs/PCDFs
THC
HC1
Linear Measurement
Differential Pressure,
Thermocouple, and Angular
Measurement
Micro-Fuel Cell, FINOR
Gravimetric
Gas Chromatography / Mass
Spectrometry (GC/MS)
Flame lonization Detector
Gas Filter Correlation /
Infrared (GFC/IR)
5-2
-------
TABLE 5.2
SUMMARY OF SAMPLING LOCATIONS, TEST PARAMETERS,
SAMPLING METHODS, AND NUMBER AND DURATION OF TESTS,
MARTIN MARIETTA MAGNESIA SPECIALTIES - WOODMLLE, OHIO
Sampling
Location
Kiln No. 2
Baghouse Inlet
Kiln No. 2
Baghouse
Stack
Kiln No. 1
ESP Inlet
Kiln No. 1
ESP Stack
Test Parameter
Exhaust Gas Flow Rate
C02 & 02 Content
Moisture Content
PCDDs/PCDFs
THC
HCL
Exhaust Gas Flow Rate
CO2 & 02 Content
Moisture Content
PCDDs/PCDFs
THC
HCL
Exhaust Gas Flow Rate
CO2 & O2 Content
Moisture Content
PCDDs/PCDFs
THC
Exhaust Gas Flow Rate
CO2 & 02 Content
Moisture Content
PCDDs/PCDFs
THC
Sampling Methods
EPA Method 2 with alignment
approach
EPA Method 3A
EPA Method 4
EPA Method 23 (Proposed Revisions^
with alignment approach
EPA Method 25A
EPA Proposed Method 322
EPA Method 2
EPA Method 3A
EPA Method 4
EPA Method 23 (Proposed Revisions
EPA Method 25A
EPA Proposed Method 322
EPA Method 2 with alignment
approach
EPA Method 3A
EPA Method 4
EPA Method 23 (Proposed Revisions]
with alignment approach
EPA Method 25A
EPA Method 2
EPA Method 3A
EPA Method 4
EPA Method 23 (Proposed Revisions
EPA Method 25A
Number
of Tests
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Duration,
^minutes)
179
120
179
179
120
120
180
120
180
180
120
120
180
90
180
180
90
180
120
180
180
120
5-3
-------
5.3 DETERMINATION OF EXHAUST GAS VOLUMETRIC FLOW RATE
(ALIGNMENT APPROACH)
PES conducted cyclonic flow checks according to the procedures described in Section 2.4
of Method 1. When the results of a cyclonic flow check indicated that the flow pattern in the
effluent gas stream was unsuitable for conventional isokinetic sampling (i.e., a > 20°), PES
employed a sampling technique known informally as the "alignment approach." Fajr gas streams
where the flow is cyclonic, or non-parallel with the stack walls, conventional isokinetic sampling
would produce results that are potentially biased with respect to the true paniculate matter
concentration, because the direction of the probe nozzle would not be aligned with the direction
of flow of the effluent gas. Application of the "alignment approach" (which is reprinted in
Appendix G of this document) is one method that can be used to reduce bias in the measurement
of paniculate concentration due to non-parallel flow.
In the application of the "alignment approach", standard isokinetic sampling procedures
are followed, except that the sampling time at each sample point is adjusted, and the orientation of
the pitot assembly is adjusted based upon the flow angles from the cyclonic flow check. PES used
a computer spreadsheet (which is reproduced in Appendices A. 1.1 and A.2.1) to calculate the
sampling time at each point and the total time for the sampling run. Using the cyclonic flow
check results, an arbitrary base time is selected that results in a net run time that meets the
criterion (i.e., 180 minutes). The sampling time at each sample point is determined by multiplying
the base time by the cosine of the flow angle measured at each sampling point. During the samplfe
runs, the base time was adjusted so that a total sample time of approximately 180 minutes was /
achieved.
In order to calculate the isokinetic sampling ratio during the sample run, the velocity
pressure measured in the direction of flow at each sample point is used, since the isokinetic •'
sampling ratio is the ratio of the air velocity through the nozzle to the velocity of the exh^u&t gas
flowing past the nozzle. In order to calculate the volumetric flow rate of the effluent gasjfhrougb
the duct, the axial component (i.e., the component of the velocity vector parallel to the s^k
walls) must be determined. At each sampling point, the axial component of the veloci^yiji directly
proportional to the square root of the velocity pressure multiplied by the cosine of the.flpw angle.
The axial velocity of the gas stream is calculated from the average of these products, affd the
effluent gas volumetric flow is calculated by multiplying the resultant velocity by the^oss-
sectional area of the duct.
5.4 DETERMINATION OF OXYGEN AND CARBON DIOXIDE
EPA Method 3 A, "Determination of Oxygen and Carbon Dioxide Concentrations in
Emissions from Stationary Sources," was used to determine the O2 and CO2 concentrations at the
inlet and outlet test locations. A Teledyne Analytical Instruments Model 326 02 analyzer was
utilized to measure the percentage concentration of O2 in the gas stream. The analyzer utilizes a
unique micro-fuel cell to measure the concentration of O2. The output signal is linear over the
5-4
-------
specified ranges of analysis. A Westinghouse/Maihak FINOR CO2 analyzer was used to monitor
CO2 concentrations. The measurement principle for CO2 is infra-red (IR) absorption. Radiation
absorbed by CO2 in the sample cell produces a capacitance change in the detector which is
proportional to the CO2 concentration.
Continuous emission monitoring was performed at the Kiln No. 2 baghouse inlet and stack
and the Kiln No. 1 ESP inlet and stack. All CEM data were recorded using a Tracor/Westronics
3000 automatic digital data logger. The CEMs were housed in the APCC Environmental
Monitoring Laboratory positioned near the sampling locations. Stack gas was drawn from the
stack through a heated Teflon® sample line which was maintained at a temperature of
approximately 375°F. A portion of the extracted sample was conditioned to remove moisture and
directed to the O2 and CO2 analyzers to determine diluent concentrations on a dry basis. The
remaining portion of the stack gas sample was directed to the THC analyzer. Figure 5.1 shows a
schematic of the sampling system.
5.5 DETERMINATION OF EXHAUST GAS MOISTURE CONTENT
EPA Method 4, "Determination of Moisture Content in Stack Gases," was used to
determine the exhaust gas moisture content. EPA Method 4 was performed in conjunction with
each EPA Method 23 test run. Integrated, multi-point, isokinetic sampling was performed.
Condensed moisture was determined by recording pre-test and post-test weights of the XAD®
sorbent module, impingers, and silica gel.
5.6 DETERMINATION OF PCDDs/PCDFs
EPA Method 23, "Determination of Polychlorinated Dibenzo-P-Dioxins and
Polychlorinated Dibenzofurans from Stationary Sources," was used to collect dioxins and furans
at each location. The proposed rules amending Method 23 as published in the Federal Register,
Volume 60, No. 104, May 31, 1995 were employed. These amendments correct existing errors in
the method, eliminate the methylene chloride rinse, and clarify the quality assurance requirements
of the method. A multi-point integrated sample was extracted isokinetically from the traverse
points shown in Section 4.0. The EPA Method 23 samples were extracted through a glass nozzle,
a heated glass-lined probe, a precleaned and heated glass fiber filter, a water-cooled condenser
coil, and a sorbent trap containing approximately 40 g of XAD®-2 sorbent resin.
Due to the applications of the "alignment approach", the sampling time at each inlet
traverse point varied depending on the flow angle measured during the pre-test velocity traverse.
These times are shown on the field data sheets in Appendix A. 1.1 for Kiln No. 2 and A.2.1 for
Kiln No. 1.
5-5
-------
Ul
ON
Sample By-Pass
Vent
Figure 5.1 Sampling Train Schematic for EPA Methods 3A and 25A
-------
The samples were extracted and analyzed according to EPA Method 23. The sample
components (filter, XAD®, and rinses) were Soxhlet extracted and combined. The sample was
then split with half being archived and the other half analyzed. For the inlet sample analysis, an
additional separate "loose" particulate fraction was also Soxhlet extracted and analyzed; results of
the two inlet analyses were added to get a single inlet catch weight. Refer to Appendix B for a
tabulation of the inlet sample catches. Analysis was performed on a high resolution Gas
Chromatograph with a high resolution Mass Spectrometer (GC/MS) detector. The EPA
Method 23 sampling train is shown in Figure 5.2.
5.7 DETERMINATION OF TOTAL HYDROCARBONS
EPA Method 25 A, "Determination of Total Gaseous Organic Concentration Using a
Flame lonization Analyzer," was used to determine the THC concentrations at both test locations.
A VIG Industries THC analyzer, which utilizes a flame ionization detector (FID) to measure
THC, was calibrated with propane. Approximately 5.0 liters per minute (1pm) of sample gas was
drawn from the source through a heated Teflon® sample line. The sample gas was drawn through
a heated filter and valves by a heated pump. The sample gas was introduced into the FID
chamber and hydrocarbons in the sample were ionized by a hydrogen flame. The flame was
positioned between two charged plates, and the associated electric field induced the migration of
the ions towards the charged plates. The ion migration resulted in the generation of a current,
which was directly proportional to the amount of THC present in the sample. Refer to Figure 5.1
for a schematic of the sampling train.
5.8 DETERMINATION OF HYDROGEN CHLORIDE
EPA Proposed Method 322, "Measurement of Hydrogen Chloride Emissions from
Portland Cement Kilns by GFC/IR," was used to monitor HC1 emissions at each location. Stack
gas samples were extracted from each duct or stack and transported through a heated sample
probe, sample conditioning system, heated sample line, and a heated sample pump into the
analyzer containing the GFC/IR spectrometer. Sampling components were maintained at a
minimum temperature of 375 °F. A heated three-way valve was attached to the probe assembly
to allow for sampling of stack gas or for the introduction of HC1 calibration standards.
HC1 in the sample cell attenuates an infrared light source. The intensity of the attenuated
beam is measured by a detector positioned at the end of the cell. The amount of HC1 in the
sample gas stream is related to the amount of light attenuated. A schematic of this system is
presented in Figure 5.3.
5.9 CEMs DATA ACQUISITION AND HANDLING
.Analyzer responses were recorded by a Tracor/Westronics 3000 digital data logger which
recorded the O2, CO2, HCL and THC concentrations using its integral color printer. Trends were
monitored using the strip chart mode with averages printed digitally at 20-minute intervals and at
5-7
-------
00
Button Hook
Nozzle
Gas
Flow
TypeS
Pitot Tube
Gas
Exit
Temperature
Sensor
Condenser
Stack
Wall
Heated Glass
Liner
Temperature
Sensor
Inclined
Manometer
Recirculation
Pump
Temperature
Sensors
Orifice
I I H
Inclined
Manometer
Temperature
Sensor
Adsorbent Resin Trap
||llwater|||| ||ll
"••Bath ".- I'-
LJ ll'J II'J ll'j LJ
i ^^ 1—
Empty 100 ml HPLC Water Empty Silica Gel
Vacuum
Line >
••*. Vacuum
Purrtp .;,
Figure 5.2 Sampling Train Schematic for EPA Method 23, Proposed Revisions.
-------
Heated Probe Thr«e-way wlw.
(mln. 378*F) Heated Filter Bex
PM-10
Cyelon
Sample Un» Heated 8«mpl«/C*llbnition Urn
Cillbrrtlon Hn»
In-Sttu Matrix
Spiking HIM
P»rkln-Elm»r
Mlcroproe«*tor
DDDD DDDDD
OM Flmr Corrclanen
Infrared An«lyi«r
Inlrarvd
Detector
Figure 5.3 Sampling Train Schematic for EPA Proposed Method 322.
5-9
-------
the conclusion of the test period. Analyzer responses were recorded by the data logger at five
second intervals.
5-10
-------
6.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)
PROCEDURES AND RESULTS
For any environmental measurement, a degree of uncertainty exists in the data generated
due to the inherent limitations of the measurement system employed. The goals of a QA/QC
program are to ensure, to the highest degree possible, the accuracy of the data collected. This
section summarizes the QA/QC procedures that were employed by PES in the performance of this
test program. The procedures contained in the reference test methods and in the "Quality
Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source
Specific Methods," EPA/600/R-94/038c, served as the basis for performance for all testing and
related work activities in this project.
6.1 CALIBRATION AND PREPARATION OF APPARATUS
The preparation and calibration of source sampling equipment is essential in maintaining
data quality. Brief descriptions of the calibration procedures used by PES are presented below.
The results of equipment and sensor calibrations may be found in Appendix E. Detailed
procedures as presented in the EPA test methods are presented in Appendix G.
6.1.1 Barometers
PES used aneroid barometers which were calibrated against the barometric pressure
reported by a nearby National Weather Service station.
6.1.2 Temperature Sensors
Bimetallic dial thermometers and Type K thermocouples were calibrated using the
procedure described in Calibration Procedure 2e of EPA/600/R-94/038c. Each temperature
sensor was calibrated over the expected range of use against an ASTM 3C or 3F thermometer.
Table 6.1 summarizes the type of calibrations performed, the acceptable levels of variance, and
the results. Digital thermocouple displays were calibrated using a thermocouple simulator having
arangeofO-2400°F.
6.1.3 Pitot Tubes
PES used Type S pitot tubes constructed according to EPA Method 2 specifications.
Each pitot tube was inspected for conforrnance to the geometric specifications by the application
of Calibration Procedure 2 of EPA/600/R-94/038c. Pitot tubes that meet these requirements are
6-1
-------
TABLE 6.1
SUMMARY OF TEMPERATURE SENSOR CALIBRATION DATA
Temp.
Sensor
I.D.
5C
T6F
7C
7D
MB-10
RMB-15
Usage
Stack Gas
Stack Gas
Stack Gas
Stack Gas
Dry Gas Meter
Inlet
Outlet
Dry Gas Meter
Inlet
Outlet
Temperature, °R
Reference
532
504
664
860
534
494
632
809
534
500
666
800
534
500
666
800
493
536
666
492
536
666
493
534
668
493
534
668
Sensor
532
504
664
860
534
493
632
810
534
501
665
801
534
501
665
801
494
536
665
494
537
665
495
534
670
493
535
668
Temperature
Difference
0.0%
" 0.0%
0,0%
0.0%
0.0%
-0.20%
0.0%
0.12%
0.0%
0.20%
-0.15%
. 0.13%
0.0%
0.20%
-0.15%
0.13%
0.20%
0.0%
-0.15%
0.41%
0.19%
-0.15%
0.41%
0.0%
0.30% /
0.0%
0.19%
0.0%
Tolerance
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<±1.5%
<""— J— 1 ^ O/
<±1.5%
<±1.5%
^*-~ii J. , J / 0
4* _\ 1 C O/
<±1.5%
^ i i t O/
^•*_i "i £ 0 /
t
*^i 1 . v XoT
<±1,0^
<±l,f^
<±io%
-------
assigned a pilot coefficient, Cp , of 0.84. The dimensional criteria and results for each pitot tube
used are presented in Table 6.2.
6.1.4 Differential Pressure Gauges
PES used Dwyer inclined/vertical manometers to measure differential pressures. The
differential pressure measurements included velocity pressure, static pressure, and meter orifice
pressure. Manometers were selected with sufficient sensitivity to accurately measure pressures
over the entire range of expected values. Manometers are primary standards and require no
calibration.
6.1.5 EPA Method 23 Dry Gas Meters and Orifices
The EPA Method 23 dry gas meters and orifices were calibrated in accordance with
Sections 5.3.1 and 5.3.2 of EPA Method 5. This procedure involves direct comparison of the
metered volume passed through the dry gas meter to a reference dry test meter. The reference
dry test meter is calibrated annually using a wet test meter. Before its initial use in the field and
annually thereafter, the metering system is calibrated over the entire range of operation as
specified in EPA Method 5. Acceptable tolerances for the individual dry gas meter correction
factor (Y) and orifice calibration factor (AH@) during initial or annual calibrations are ± 0.02 and
± 0.20 from the average, respectively. The orifice coefficient for meter MB-10 was out of
tolerance for the four inches of water orifice setting; however, the orifice coefficient was within
tolerance as operated during the tests. After field use, a calibration check of the metering system
was performed at a single intermediate setting based on the previous field test. The post-test
calibration check of the dry gas meter correction factor must agree within 5 percent of the
correction factor generated during the initial or annual calibration. The results for the gas meters
and orifices used in this test program are summarized in Table 6.3.
6.2 REAGENTS AND GLASSWARE PREPARATION
Sample reagents consisted of pesticide (or better) grade acetone and toluene for glassware
preparation and sample recoveries, and pesticide (or better) grade hexane for glassware
preparation. Sample filters and the XAD®-2 sorbent resin traps were prepared by PAL according
to the procedures outlined in Method 23. Water used in the impinger trains was HPLC-grade
reagent water.
After preparation of the XAD®-2 sorbent resin traps by PAL, each trap was spiked with a
mixture of PCDDs/PCDFs surrogates, and capped with glass balls and sockets until used in the
field.
Prior to the field testing portion of the program, all sampling train components and sample
recovery apparatus were prepared according to the following procedure.
1. Wash in hot soapy water (Alconox®).
2. Rinse three times with tap water.
6-3
-------
TABLE 6.2
SUMMARY OF PITOT TUBE DIMENSIONAL DATA
Measurement
a,
02
Pi
P2
y
6
A
z
w
D,
(A/2)/D,
Criteria
< 10°
<10°
<5°
<5°
-
-
-
< 0.125"
<; 0.0313"
0.1875" ^D,£ 0.375"
1.05 <(A/2)/D,£ 1.50
Acceptable
Assigned Coefficient
Results
Pitot Tube Identification
7D
3
3
1
1
1
0
0.931
0.016
0
0.375
1.24
Yes
0.84
7C
1
3
1
1
1
1.3
0.966
0.01686
0.02192
0.375
1.29
Yes
0.84
5C
0
1
1
1
1
1
0.948
0.017
0.017
0.375
1.26
Yes '
0.84
^ 6A
1
.2
.2
.8
2.2
1.1
1.006
0.039
0.019
0.375
1.34
Yes
0.84-/,
TABLE 6.3
SUMMARY OF DRY GAS METER AND ORIFICE CALIBRATION
Meter
No.
MB-10
RMB-15
Dry Gas Meter Correction Factor, y
Pre-test
1.021
1.000
Post-test
1.013
0.999
% Diff.
-0.79
-0.5
EPA Criteria
±5%
±5%
Or
Average
1.92
1.90
ifin> Cftrfiirir^/Aflf
Ranee - n
1.73-2.44 j
1.86-1.9)-
EPA Criteria
1.72-2.12
1.70-2.10
6-4
-------
3. Rinse three times with distilled/deionized water.
4. Rinse with pesticide-grade acetone.
5. Rinse with pesticide-grade toluene.
6. Rinse with pesticide-grade hexane.
7. Allow to air dry.
8. Cap all openings with hexane-rinsed aluminum foil.
6.3 ON-SITE SAMPLING
The on-site QA/QC activities included:
6.3.1 Measurement Sites
Prior to sampling, the stacks and inlet ducts were checked dimensionally to determine
measurement site locations, location of velocity and sample test ports, inside stack/duct
dimensions, and sample traverse point locations. Inside stack/duct dimensions were checked
through both traverse axes to confirm uniformity of the stack/duct inside diameter. The inside
stack/duct dimensions, wall thickness, and sample port depths were measured to the nearest
1/16 inch.
6.3.2 Velocity Measurements
All velocity measurement apparatus were assembled, leveled, zeroed, and leak-checked
prior to use and at the end of each determination. The static pressure was determined at a single
point near the center of the stack or duct cross-section.
6.3.3 Moisture
The Method 23 trains were used to determine stack gas moisture. During sampling, the
exit gas of the last impinger was maintained below 68°F to ensure adequate condensation of the
exhaust gas water vapor. The total moisture was determined on-site gravimetrically using an
electronic platform balance with 0.1 gram sensitivity. The amount of moisture collected by the
XAD® trap was also measured.
6.3.4 EPA Method 23
The field sampling QA/QC for EPA Method 23 began in the sample recovery area. The
sample trains were set up and leak-checked to verify sample train integrity before transport to the
sampling sites. At the sampling sites, the sample trains were leak checked a second time. Leaks
found in excess of 0.02 cubic feet per minute (cfin) were corrected prior to beginning the test
runs. Leak checks were also conducted before and after any sample train component changes,
between sample ports, and upon completion of the test runs. Sampling was conducted within the
isokinetic sampling criteria of 100 ± 10%. Table 6.4 summarizes the EPA Method 23 field
sampling QA/QC measurements and EPA's acceptability criteria.
6-5
-------
In addition to the inlet and stack samples, a field blank sample was collected at the Kiln
No. 2 baghouse stack and at the Kiln No. 1 ESP inlet. A Method 23 sampling train was
assembled and transported to the sampling location, and leak-checked at least twice. The sample
train was then recovered using the same procedures employed during the recovery of the sample
trains used during actual sample runs. The collected fractions were transferred to labeled, pre-
cleaned sample bottles, transported to the subcontract laboratory, and analyzed in the same
manner as the collected samples.
PES also collected samples of the reagents that were used during the program as blanks
Samples were collected of the acetone and toluene; an unused filter was also collected. These
reagent blank samples were transported to the subcontract laboratory and analyzed for
PCDDs/PCDFs using the same procedures as during the analysis of the collected samples.
6.3.5 Continuous Emission Monitors
CEMs were used to quantify the in-stack concentrations of O2, CO2, THC, and HC1 using
EPA Methods 3 A, 25A and Proposed Method 322, respectively. QA/QC checks performed
included direct calibrations, bias checks, and drift checks; matrix spikes were also performed OD
the Method 322 HC1 CEMs sampling system. Table 6.5 summarizes the compressed gas
standards that were used during the test program.
6.3.5.1 EPA Method 3A
Prior to the start of each day of testing, the 02 and C02 analyzers were calibrated with a
zero gas standard and two upscale standards corresponding to approximately 55 and 85% of the
instrument measurement ranges. The analyzers were calibrated by injecting the calibration gasef
directly into the analyzers, and ensuring the the maximum calibration error for the zero, mid, an J
high-level was less than or equal to 2% of span. The samplbg line bias was then checked ^/ith the
zero gas and one upscale gas for each analyzer to ensure that the sampling Kne bias was l£ss than
or equal to 5% of the response of the analyzer to the calibration standard when injecte4ja'ireciiy
into the analyzer. At the conclusion of the sampling run, the sampling sysieln was again checked
by introducing the zero and upscale standard into the system at the probe end. The .sampling
system drift was less than 3% of the instrument span for both the zero andtipscale esuibration
gases. The true concentration of the gases measured was then calculated from the Average
instrument response and the results of the calibration responses using Equation 6C/-1 as found in
Method 6C, which is the procedure specified in Method 3 A. The gases used fof j6alibrations were
certified by the manufacturer, and prepared according to the procedures in "EBjftTraceability
Protocol for Assay and Certification of Gaseous Calibration Standards (September 1993)."
/
6.3.5.2 EPA Method 25A
Prior to the start of each day of testing, the THC sampling system was calibrated with a
zero gas standard and three upscale propane standards corresponding to approximately 25, 50,
and 85% of the instrument measurement range. The calibration errors of the THC system were
less than 5% of the instrument operating range. At the conclusion of the sampling run, the
6-6
-------
TABLE 6.4
SUMMARY OF EPA METHOD 23 FIELD SAMPLING QA/QC DATA
iun No.
Site
Date
Leak Rate, cfin,
Pre-Test
Post-Test
EPA Criteria
}ercent Isokinetic
Actual
EPA Criteria
M23-I-1
Kiln No. 2
Baghouse Inlet
08/27/98
0.004 @1 5" Hg
0.014 @ 15" Hg
<0.02
93.8
90-110%
M23-O-1
Kiln No. 2
Baghouse Stack
08/27/98
0.002 @1 5" Hg
0.001 @ 12" Hg
<0.02
102.1
90-110%
M23-I-2
Kiln No. 1
ESP Inlet
08/28/98
0.002 @1 5" Hg
0.006 @ 16" Hg
<0.02
108.9
90-110%
M23-O-2
Kiln No. 1
ESP Stack
08/28/98
0.002@17"Hg
0.002 @ 19" Hg
<0.02
104.2
90-110%
TABLE 6.5
SUMMARY OF CALIBRATION GAS CYLINDERS
Cylinder Number
Contents
Expiration Date
CC90784
1852263Y
919527Y
1015552Y
26.6 ppm HC1 in nitrogen
49.5 ppm HC1 in nitrogen
196 ppm HC1 in nitrogen
310 ppm HC1 in nitrogen
Certified on 8/11/98
Certified on 8/11/98
Certified on 8/11/98
Certified on 8/11/98
AAL 13302
ALM 029561
ALM044152
30.0 ppm C3H8 in air
50.1 ppmC3Hgmair
85.4 ppm C3H8 in air
5/01/01
8/13/01
8/13/01
CC86779
CC86779
CC86922
CC86922
11.0%C02inN2/O2/CO2
11.1 %02inN2/O2/CO2
19.01%C02inN2/02/CO2
19.17%O2inN2/(VCO2
3/02/01
3/02/01
3/02/01
3/02/01
6-7
-------
sampling system was again checked by introducing the zero and one upscale standard into the
system at the probe. The sampling system drift was less than 3% of the instrument span for both
the zero and upscale calibration gases. The THC results are reported as the average of the
instrument responses over the period of the sampling run. The gases used for calibration were
certified by the manufacturer, and prepared according to the procedures in "EPA Traceability
Protocol for Assay and Certification of Gaseous Calibration Standards (September 1993)."
6.3.5.3 Proposed Method 322 -Xg
Prior to the start of each day of testing, the HC1 analyzer was calibrated with a zero gas
standard and two upscale standards corresponding to approximately 25 and 85% of the
instrument measurement ranges. The calibration error of the analyzers on direct calibration was
less than or equal to 5% of span or 1 ppm, whichever is greater. The sampling line bias was then
checked with the zero gas and one upscale gas. The sampling line bias was less than or equal to
7.5% (or 1.5 ppm, whichever was greater) of the response of the analyzer to the calibration
standard when injected directly into the analyzer.
Following the direct calibration and bias checks, a matrix spike for HC1 was conducted so
that the integrity of the sampling and analysis system for HC1 could be ascertained. The flue gas
was sampled to determine the baseline concentration of the HC1, and after the baseline
concentration was established, a known quantity of HC1 was injected into the sampling system
The analyzer response must report the concentration of the HC1 in the effluent stream plus the
contribution of the HC1 from the matrix spike injection. The allowable tolerance for the matrix
spike is ± 30% from the predicted value. During the matrix spike procedures conducted on the
sampling system at Martin Marietta Magnesia Specialties, the average matrix spikes were within
the ± 30% tolerance; note that the post-test spike recovery on the Kiln No. 2 Baghouse Stack
was 29%. The results of the matrix spikes are presented in Table 6.6.
TABLE 6.6
SUMMARY OF PROPOSED METHOD 322 HCLIN-SITU SPIKING DATA
Kiln
Rotary
Kiln No. 2
Rotary
Kiln No. 1
Test
Location
Baghouse Inlet
Baghouse Stack
ESP Inlet
ESP Stack
HCI Spike Recovery Efficiencies, %
Pre-test
104
111
N/A
N/A
Post-test
101
29
N/A
N/A
Average
102.5
70
N/A
N/A
EPA
Criteria
70-130
70-130
70-130
70-130
Note: No HC1 data was obtained for Kiln No. 1 due to a 0.3% reference energy on the GFCIR. A
minimum reference energy of 70% is needed for the GFCIR to operate properly.
6-8
-------
6.4 LABORATORY ANALYSES
6.4.1 Analysis of Blank Samples
The EPA Method 23 blank samples were analyzed following the procedures of EPA
Proposed Method 23. Field blanks and laboratory blanks were used to evaluate the effectiveness
of the sample train clean-up procedures and to check for contamination of the reagent materials.
In addition, the subcontract laboratory conducted a Laboratory Method Blank (LMB) to check
for the presence of contaminates in the XAD®-2 resin during analysis. The results of these blank
analyses and the actual run sample catches are presented in Table 6.7.
6.4.2 Standards Recovery Efficiencies
Prior to shipment of the XAD®-2 sorbent modules by PAL, each module was spiked with
a mixture of surrogate (sampling) standards except for samples M23-I-1 FH, M23-I-2 FH, and
M23-RB. Upon analysis, the recoveries of the surrogate standards provide a measure of the
capture and holding efficiency of the XAD®-2 sorbent traps for the sampled PCDDs/PCDFs. A
low recovery efficiency may indicate the loss of PCDDs/PCDFs congeners from the XAD®-2
sorbent module after its recovery from the sampling train. As taken from the PAL case narrative,
"The sampling standards (HxCDD for M23-I-2; and HpCDF for M23-FB-1) are outside the
recommended limits of 70 to 130 percent." PAL "..believes that this originates from a variation in
the relative response factors. The reported amounts or concentration of analytes should not be
affected by this observation." In addition, although the OCDD extraction standard in sample
M23-I-2-FH was 37 percent and the method recommends 40 percent as the lower limit, PAL
states that the data should be considered valid based on the Signal-to-Noise ratio (S/N) and
Detection Limit (DL). Table 6.8 presents the results of the surrogate standard recoveries.
Upon receipt of the XAD®-2 sorbent modules by the laboratory after sampling, the
XAD®-2 sorbent resin modules are spiked with a mixture of internal (extraction) standards. The
purpose of these standards is to evaluate the efficiency of the extraction of the PCDDs/PCDFs
congeners from the sample fractions. The results of these recoveries are also presented in
Table 6.8.
6.5 QA COORDINATOR FIELD AUDIT
To meet the goals of the Quality Control Program as described in the QAPP, PES
supplied an on-site QA Coordinator to observe the emission testing and to audit the personnel,
equipment, procedures, and record keeping.
Auditing and observations were conducted at regular intervals during the testing which
provided opportunity for any immediate corrective actions. Checks and audits of the sampling,
data acquisition, sample recovery, and chain of custody for the samples were performed; copies of
the completed forms used for recording the results of the audits and checks are included in
Appendix E, "QA/QC Data."
6-9
-------
TABLE 6.7
SUMMARY OF EPA METHOD 23 BLANKS & SAMPLE CATCHES
PAL Lab Report Page
Numbers in Appendix B.
Analyte
2378-TCDD
17378-PeCDD
123478-HxCDD
123678-HxCDD
123789-HxCDD
1234678-HpCDD
OCDD
2378-TCDF "
12378-PeCDF
23478-PeCDF
123478-HxCDF
123678-HxCDF
234678-HxCDF
123789-HxCDF
1234678-HpCDF
1234789-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
^•rWJpCDFs
Total PCDD/fa *
Catch, ng Per Sample
PALLMB
26
(0.0014)
(0.0006)
(0.0014)
(0.0012)
(0.0013)
{0.0018}
0.0056
(0.0019)
(0.0005)
(0.0005)
(0.0009)
(0.0008)
(0.0009)
(0.0010)
(0.0011)
(0.0013)
(0.0034)
(0.0014)
{0.0016}
(0.0012)
{0.0052}
(0.0019)
(0.0005)
(0.0008)
(0.0011)
0.0056
M23-RB
190
(0.0010)
(0.0005)
(0.0008)
(0.0007)
0.0012
0.0027
(0.0055)
(0.0015)
(0.0005)
(0.0005)
(0.0010)
(0.0008)
(0.0009)
(0.0011)
0.0038
(0.0011)
(0.0031)
(0.0010)
(0.0005)
0.0012
0.0028
0.0016
(0.0005)
{0.0012}
0.0036
0.0092
M23-FB-1
150
(0.0013)
(0.0021)
(0.0017)
(0.0016)
(0.0016)
{0.0033}
(0.0137)
(0.0022)
(0.0012)
(0.0012)
(0.0009)
(0.0008)
(0.0009)
(0.0010)
(0.0016)
(0.0018)
(0.0066)
{0.0032}
(0.0021)
(0.0016)
0.0032
(0.0022)
(0.0012)
(0.0008)
(0.0016)
0.0032
M23-I-1 + FH
OOOa 7005 7044
7211
0.0096
{0.0125}
{0.00948}
{0.00988}
0.0147
0.0371
0.0993
0.1590
{0.1492}
0.1396
0.1583
0.1181
{0.0422}
0.0098
0.1708
0.0241
{0.0369}
0.4384
0.2556
0.1876
0.0668
4.5084
2.1204
0.9124
0.2624
8.8513
M23-O-1
004/095
0.0027
0.0037
{0.00264}
0.0068
0.0059
0.0206
0.0328
0.0293
0.0155
0.0101
0.0355
0.0116
{0.00312}
(0.0009)
0.0573
0.0079
0.0672
0.499
0.280
0.295
0.0372
0.310
0.104
0.0684
0.0776
1.770
M23-FB-2
170
(0.0011)
(0.0006)
(0.0009)
(0.0008)
(0.0008)
{0.0044}
{0.0103}
(0.0017)
(0.0007)
(0.0007)
{0.0008}
(0.0005)
(0.0005)
(0.0006)
(0.0009)
(0.0011)
(0.0027)
(0.0011)
{0.0020}
0.0016
0.0024
{0.0028}
(0.0007)
{0.0008}
(0.0009)
0.0040
M23-I-2 + FH "
OOOb/005/069
7239
{0.00664}
{0.0078}
{0.0077}
0.0092
0.0194
{0.0886}
0.2453
0.0663
{0.1010}
0.0662
0.1629
0.1119
0.0456
{0.0099}
0.2948
{0.0444}
0.2832
4-S0.5524
3656
* ..4944
• ,-:i456
,.7848
1.2052
0.8272
0.4308
6.3345
M23-O-2
0047 124
0.0022
0.0021
{0.0022}
0.0058
{0.00636}
0.0644
0.256
0.0097
0.0049
0.0073
.0.0168
0.0108
0.0136
0.0014
0.0680
{0.0157}
0.0566
0,293
0.0848
0.0668
0.116
0.176
0.0692
0.0908
0.0844
1.294
* Result obtained by summing thetww inlet tample fractions analyzed: EMPC "Total" values were used in calculating the "Total PCDD/Fs" value.
b Result obtained from the DB42^ analysis? *:~ -^
c Total PCDD/Fs represent the sum of all polychloririatedxStejnzo-r •^••'KIP* ft dibenroftirans.
( ) Denotes a non-detect value using the detection limit, ' ^~"*"^-*..^ •
{} Denotes an EMPC value. v°» -^_
?,.
6-io"
-------
TABLE 6.8
SUMMARY OF EPA METHOD 23 STANDARDS RECOVERY EFFICIENCIES
FULL SCREEN ANALYSIS
PAL Report Page Number
Internal (Extraction) Standards
13C12 2378-TCDD
13C,2 12378-PeCDD
13C,2 123678-HxCDD
13C12 1234678-HpCDD
13C12 OCDD
13C12 2378-TCDF
13C12 12378-PeCDF
13C12 123678-HxCDF
13C12 1234678-HpCDF
Surrogate CSampline) Standard
37C14 2378-TCDD
13C12 23478-PeCDF
13C,2 123478-HxCDD
13C12 123478-HxCDF
13C,2 1234789-HpCDF
Percent Recovery
1 MR
LliiLD
27
95.1
108.1
95.9
95.7
69.1
97.8
103.6
101.8
83.8
92.3
92.9
100.7
88.3
91.6
M23-
1-1
45
85.8
99.6
88.9
82.6
59.9
90.0
94.6
90.2
76.8
94.3
93.2
93.4
85.7
83.2
M23-
I-1FH
212
91.8
105.1
89.8
90.8
66.3
89.3
90.9
71.8
69.0
a
a
a
a
a
M23-
O-l
96
93.1
110.6
96.6
95.8
68.5
98.2
106.4
109.2
93.0
94.4
96.1
101.3
89.2
85.0
M23-
FB-1
151
83.7
88.2
95.0
74.9
41.3
79.8
75.2
104.0
62.2
90.5
92.3
96.7
83.2
56.9
M23-
1-2
70
84.1
94.2
61.2
85.9
74.8
84.3
91.8
84.6
82.0
90.1
85.3
132.4
90.2
82.6
M23-
1-2 FH
240
68.8
74.5
66.6
59.0
37.2
68.3
65.2
54.5
48.1
a
a
a
a
a
M23-
O-2
125
90.9
106.6
90.2
79.9
56.3
94.9
105.1
96.8
83.7
95.9
99.6
100.5
94.2
84.0
M23-
FB-2
171
80.0
88.9
79.7
77.5
52.6
76.8
72.0
80.4
53.2
90.2
93.4
98.2
78.3
72.1
M23-
RB
191
84.7
100.1
84.5
78.4
52.4
77.9
78.1
61.6
55.9
b
b
b
b
b
QC
Limits
40-130%
40-130%
40-130%
40-130%
40-130%
40-130%
25-130%
25-130%
25-130%
70-130%
70-130%
70-130%
70-130%
70-130%
a Sample consisted of loose particulate and therefore, no surrogate standards are present.
b No XAD resin was included in the RB sample and therefore, no surrogate standards were recovered.
Note: Recovery efficiencies in bold are outside the QC limits.
6-11
-------
APPENDIX A
RAW FIELD DATA
-------
Appendix A. 1
Raw Field Data
Kiln No. 2
-------
Appendix A. 1.1
Raw Field Data, Kiln No. 2
Baghouse Inlet - PCDDs/PCDFs
-------
TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS
Plant:.
Date:
Sampling Ljocattan:
Inside of Far Wall to Outside of Nippla:
Inside of Near Wall to Outside of Nipple (Nipple Length):.
Stack I.D.:
Distance Downstream from Flow Disturbance (Distance B):
Z -2 'ft " 1™ "?&& inches / Stack 1.0. = 3.26> dd/
Distance Upstream from Flow Disturbance (Distance A):
J £>O inches / Stack I.D. - 1>W dd
£«j>>x\ 6
Calculated Bv:
IOO
n
o
Schematic of
Sampling Location
1-~- \ /
^
}iyfl
\
Traverse
Point
Number
I
£
3
tf
f
^
?
r
T
/o
n
fL,
Fraction
of
Length
^,^2 |
t>it>tf~?
*-ite>
^/?7
0.2$
*&6
0.bHij
e><75
&,%2-3>
9.WZ
&-123
#.17*1
Length
(inches)
\81
^!
/
V
Product of
Columns 2 & 3
(To nearest 1/8")
i~*/n
5" ^
^l "XS
IM H .
^/
^ **
5-^ ^
^
t>°iy^
7^ y$
7? *%
?2 V^
Nipple
Length
(inches)
^'^
Traverse Point
Location
(Sum of Col. 4 & 5)
7- ^
// - 3/v
/^
2!
27-V*
3^
^^? V4
^^ xg
75-^
9^> ^
$^vl
^s-^e
-------
50
Duct Diameters Upstream From Row Disturbance* (Distance A)
0.5 1.0 1.5 2.0 2.5
£30
•5
{20
10
24
20
16
Velocity (Non-Particulate)
16
I
I
1
1
12
8 -
1
1
23456789 10
Duct Diameters Downstream From Row Disturbance* (Distance B)
• From Point of Any Typ« of Disturbance (Band. Expantton, Contraction. «te)
LOCATION OF TRAVERSE POINTS IN CIRCULAR DUCTS
(Fraction of Stack Diameter from Inside Wall to Traverse Point)
Traverse
Point
Number
on a
Diameter
1
2
3
4
5
6
7
8
9
10
11
12
/
Number of Traverse Points on a Diameter
4
0.067
0.250
0.750
0.933
6
0.044
0.146
0.296
0.704
0.854
0.956
'
8
0.032
0.105
0.194
0.323
0.677
0.806
0.895
0.968
;, id
0.026
0.082
,i
0.146
0.226 /
0.342 /
0.658 /
0.77*
0.854
0.918
0.974
'/r' 12
7 0.021
•' 0.067
0.118
0.177
0.250
0.356
0.644
0.750
0.823
0.882
0.933
0.979
-------
GAS VELOCITY AND VOLUMETRIC FLOW RATE
Plant:
Date:
>%*
• II -
i-3fi.
o
+ s^
~*/g. •+
-75 •+
--*£ t
_2£x *
--2£- +
OS. 4.
r //
cS
JJL
Sampling Lo
Run #: fe
Barometric P
Moisture, %:
Stack Dimen
Wet Bulb, °F
TravcrM
Point
Numbw
& >
A
3
4
<;
^
.,
S
s
to
tt
U
fyj-^ . ,
£37^ ^
r^-rV ^
^3^ fy
(&*} S
(~*-J ~\ L
frr\ -7
-+r- v
**e S
/fo
n
\\-
cation: /?^.u«c, Molecular wt.. Drv: Pitot Tube. CD: . s-^
sion, in. Diameter or Sidi
-. . — Drv 1
Velocity
Head
ln.H20
.^S
. T7
.-?~?
5??
1-7
.•W
• 7J
• 7^
^>
. 10
' .(^^
.6-0
44
• 5*5
v^
/V<7
.*e
5,
4"V
.^2
5 T*l?
«^* ^7
.5*7
.•5^
^KP -
Stack
Temp.
°F
5*0 Ci
5oc,
5"oS
^OC=>
ro^
52>3
.-Tfiy
5V ^
^/J
^,,
4*07
«"oG
5-00
^"O J
^p /
(a
yf?
5"/V
^J,
5/y
tt?
zoq
Sol
601
T»-
1: *+" Side 2:
3ulb,°F:
Md - (0.44 X XCOj) + (0.32 X KC^) + (0.28 X %Nfe)
Md-(0.44x ) + (0.32x )4-(0.28x )
Md-
% f^O % HjO
"*" ""* 100 100
100 100
_- B O O
TJ- F- R( F + 460)
18.6 13.6
Pt- IcvHg
«P-
— / T« ^R)
Vt-«,.4WxCpx^Px^ p.xM.
V« - 95,49 x ( ) X ( ) X A/..
A.- n2
QfVsxAixeoaAn
Q«« x X60
Qs • acfm
Ps %»^O
Q« ..-Q»x 17*47 x x(1 *_)
«td T, 100
Qt_..« x 17.647 X x(1 )
•to 100
Q»,»ri- dacfm
-------
BASE TIME
24.708333
8.54007 Total min = 180' 1
0.7713 171
YAW Angle, YAW, Radiai COS YAW
B-12
11
10
9
8
7
6
5
4
3
2
1
A-12
11
10
9
8
7
6
5
4
3
2
1
* 55
*• 40
«• 35
•f 25
+ 0
*- 0
- 15
- 20
- 20
- 25
- 30
- 30
.» 15
+ 18
•*- 8
r 15
t 5
t 11
-18
-35
- 40
- 40
- 45
- 48
0.960
0.698
0.611
0.436
0.000
0.000
0.262
0.349
0.349
0.436
0.524
0.524
0.262
0.314
0.140
0.262
0.087
0.192
0.314
0.611
0.698
0.698
0.785
0.838
0.574
0.766
0.819
0.906
1.000
1.000
0.966
0.940
0.940
0.906
0.866
0.866
0.966
0.951
0.990
0.966
0.996
0.982
0.951
0.819
0.766
0.766
0.707
0.669
Min
4
6
7
7
8
8
8
8
8
7
7
7
8
8
8
8
8
8
8
7
6
6
6
5
tt
Sec
54
33
0
44
32,
32
15
2
2
44
24
24
15
7
27
15
30
23
7
0
33
33
2
43
Min & Sec
4 ' 54 "
6 ' 33 "
7' "
7 ' 44 "
Q'32"
8 ' 32 "
8 '15"
8' 2"
8'2"
7 '44"
7 ' 24 "
7 ' 24 "
8 '15"
8' 7"
8 ' 27 "
8 '15"
8 ' 30 "
8 ' 23 "
8'7"
7' "
6 ' 33 "
6 ' 33 "
6' 2"
5 ' 43 "
Cumulative
Min & Sec
0
4 ' 54 "
1 1 ' 27 "
18 '27"
26'11 "
34 ' 43 "
43-15"
51 '30"
59 ' 32 "
67 ' 34 "
75 '18"
82 ' 42 "
90 ' 6 "
98 ' 21 "
106 '28 "
114-55"
123' 10"
131 '40"
140' 3"
148 '1Q'"'
155'10("%
161'43"
168 ' 16 "
174-18'
180 ! 1 '
-------
Plant-' /*7^. f 4- . U
Sampling Location
Run Number: Jf J-/u?- ' 'bate: y -.> ? -•* f
FIELD DATA SHEET
Sample Type: /m.? Operator: />./>,
Pbar:
CO2:
s?
P»:
O2:
Pretest Leak Rate: .ocH elm @ "S in. Hg. Probe Length/Type: ? 'Js 7^P'tot *•' "7C
Pretest Leak Check: Pitot: ^ j^^&fsat? /Q/A Stack Diameter: /0 y/" As: S^/I.TI .-^»
Nozzle ID: . ^€^ Thermocouple »C: ~7f^
Assumed Bws: ^& Filter #:
Meter Box »:ft.c>ex4r cfm
Post-Test Leak Check: Pitot:
'. q<
@ /s in. Hg.
Great: r~>/y\
TflVMM
Pok>!
NumbM
Sampllni
Tim*
(mln)
ClocfcTlnw
(244iour
docfc)
GM Mater
Reading
Vtlodty
HMd(Ap)
InHZO
Orilc* Pisssur* Differential
(AH) in H2O
Stack
T»mp,
Desired
Actual
Tamperatur*
°F
Probe I Fitter
bnpinger
Tamp.
°F
Dry Gas Mel«r Temp.
Inlet
(Tm!n0F)
Outfei
(Tm oul°F)
Pump
Vacuum
ftn-Hg)
££.
6
_£0_
151
/o
373-tfVO
ffQ7
_5^
5V
/ -S"!
'4*
-£.
-ffi-
Mfc'//"
*»/
/ / j i
. 7t
/.
s^
SO
e.
5-1
53
5-0
fcr^'
u-
/-C.I
i.C-«
J/JTV
•vq,
^1
/-o
^.'^
5.PD
•7S'/*"
S/%
ss
/Art?
. 77C>
10
i-S
r'*
•*•»'
-Vo
it
•7*
. "Si
Ht'SS*
C.O
1 OS
Si
J3'/o"
41&
fl
So
SI
fo
(o
.80
»«=>
ILl'M*
5/o
L,
SO
T
S(
S/
'it1
, SO
/.OS
So
^SO.
AVm-
-7=
v^p-
_
AK
_
Ti-
""•"
-------
SAMPLE RECOVERY DATA
PLANT
DATE
Run No.
Sample Box No. V- |£) Job No. $> 5O<1
SAMPLE LOCATION
TRAIN PREPARER
Filter No, rtA*3.-;g~ J -
SAMPLE RECOVERY PERSON
COMMENTS
FRONT HALF
Acetone
Container No.
Filter
Container No.
Description of Filter
i£//v:
Liquid
-%T-) - Z Level Marked
Sealed
Sealed
Samples Stored and Locked
olud^
HALF/MOISTURE
Container No.
Liquid Level Marked
M-r^-T- I -
Sealed
IMP. NO.
CONTENTS
INITIAL VOL
(ml)
WEIGHT (grams)
INITIAL
FINAL
''/'./NET
\\f\t-
)OO
I60
tlo-Z
TOTAL
Description of Impinger Catch:
-------
Appendix A. 1.2
Raw Field Data, Kiln No. 2
Baghouse Stack - PCDDs/PCDFs
-------
-------
TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS
Plant:
Data:
ft^T <
1 (i I
4 -
Sampling Locauon:
3} 7.
Inside of Far Wall to Outside of Nipple:
Inside o< Near Wall to Outside of Nipple (Nipple Langtn):
Stack I.D.:
Distance Downstream tram Flow Disturbance (Distance 6):
(HO inchee / StacK i.D. = <3-
Distance Uostream from Flow Disturbance (Distance A):
U ^ inches/ StacKi.D. = '• / ad
Calcuiatea By: 0- CA-< _ __ __ _
Schematic of
Sampling Locatxan
Traverse
Point
Numoer
Fraction
of
Lengtn
Lengtn
(inches)
Proauct of
Columns 2&3
(To nearest 1 /8")
Nippte
Length
(incnes)
Traverse Point
Location
(Sum of Col. 4 & 5)
0
±i
s. if?
7-7.
(oO-
L
nr-4-.
94-. L.
-------
Qua Diameters Uostream i-rom Row Oisturcanca* (Distance A)
0.5 1.0 1.5 2.0 2.5
50
en
c
'o
°- 40
03
nj
H- 30
o
CD
r- 20
c
E
PIO
c
2
0
I i I I I I I
24
20
DW «**W
16 16
Velocity (Non-Particuiate) 12 1 i2-!
— [ ' Q —
;'
j f
ii iii' r'~ .
Fie
|
V
A 1
• •
T
i
1
Bl
i L ,
\
j
3IMJTM
rw
4
»!
c
^ •
J 1
3
i
i
,L
^
«•••
2 3 4 5 6 7 8 , . ?9 :- 10
Qua Diameters Downstream From Row Disturbance" (Qistancs B)
• fntn Pelmot Any Typ« e< OUftjteanc* (Sana. ExawMwn. Convmeaon. •«:»
LOCATION OF TRAVERSE POINTS IN CIRCULAR DUCTS
(Fracnon of Stack Diameter from Inside Wall to,-Traverse Point)
Traverse
Point
Numoer
on a
Diameter
1
2
3
4
5
6
7
8
9
10
11
12
r i *"'
Numoer of Traverse Points on a Diameter
4
0.067
0.250
0.750
0.933
6
0.044
0.146
0.296
0.704
0.854
0.956
8
0.032
0.105 /-
0.194 1
0.323
0.677
0.806
0.895
0.968
10
0.026
0.082
0.146
0226
0.342
0.658
0.774
0.854
0.918
0974
12
0.021
0.067
0.118
O177
0.250
0.356
0.644
0750
0.823
0.882
0.933
0979
-------
GAS VELOCITY .CYCLONIC. AND VOLUMETRIC FLOW RATE
Plant: /T) h £T i ' -y fT)
Sample Location:
Run No.:
Pbar, in. Hg:
Moist, %:
?l >
C-6-
Stack Dimension, in. Dia. 1:
Wet Bulb. °F:
Date:
Clock Time:
Operators:
Static Pressure, in. H2O:
Pilot Tube. Cp:
Dia. 2:
Dry Bulb. °F:
o
Traverse
Point
Number
2
3
a
^
7,
3
\
-V
3
Velocity
Head, in.
H,O
(^>0
, V1
^
, ^
> 5" D
, »S>
» 3 i
I 4f-
I ^^~
.xC
ot
» 4^
Stack
Temp.. °F
-
Cyclonic
Flow Angle,
%
\^-
n
i
u
\v
2£
G
U
(^
i 2>
i *?
i??
Directon
of Angle
CUJ
eu
cU
C^
CW
C^
CL/
tto
CU
C i-J
CO
<^ ux->
Average
sq.n. dp Stack Temp Angle,'
Md - (0.44 x ) -t- (0.32 x ) -i- (0.28 x )
Md-
% HO % H20
Ma - (
°R (°F-i-460)
p
) -t-
13.6
Ps
in. Hg
Va * 65.49 x Cp x
Va - 85.49 x ( ) > (
Va- ft/a
A.- n2
Qs • VaxAax60s/m
PsxMs
Q, .
x60
acfm
P.
X 17.847 X-
-------
1 BC3 C3
GAS VELOCITY AND VOLUMETRIC FLOW RATE
Plant: T* KS-T-^ w «** , * ? • Date: 2*5- -7 ~f&
Samolinq Location: #> ou-'K^ Clock Time: *Tv«-
Run #: *
Barometric F
Moisture, %:
Stack Dimen
Wet Bulb, °F
Travaraa
Point
Number
I
1
i
i
I
^
\
^
•s
1
>
V)
y3^, -e>-\ Ooerators: £o P^
'ressure, in. 1
t
Hq: L^vC^ Static Pressure, in. Ho O: -^
Molecular wt.. Drv: Pitot Tube. CD: ., ? t-
sion, in. Diameter or Side 1 : *?fe Side 2:
:: Dry Bulb. °F:
Valocity
Haad
in. H2O
» ^ 1
. A->
. VQ.
xVS
, it.
t V^ ^5
, *>%
\ v) U-
<0-u,
1 ^ T*"
, 5 \
it)
^P = ,^»^
Stack
Tamp.
°F
fo \
^>°7 5
4-0 "L^
^%^
^^i-
4-64-
^^L,
Vot.
\f\
Vo \
^0^)
Vo^
Ta- 4-o i
Md - (0.44 x %CC>2) •»• (0.32 X %O2) + (0.28 X %N2)
Md - (0.44 x ) -l- (0.32 X ) 4- (0.28 x )
% HO % HO
Mai aw Mri V M \4-lA/ \
100 100
* 100 100
Ma- 7T-/JT
Ta- fc/ | °F- °R(°F-t-460) ;
Pa _ Pb + s-p- , ( ) +
13.6 ' ' 13.6
Pa - in. Hg
— I Ta(°R) /
V.-85.49xCpx^Px M . psxMs /
;
Vn-ft«>491f( )^( 'Ml " —
Ve - ft/a
A.- n2
Qa - Va x As x 60 a/m
Qa- x x60
Qa . .- Qa x 17.647 x x <1 -%— )
•W Ta 100
°«jj" X 17.647 X X(1 — — )
aid 100
-------
FIELD DATA SHEET
Plant:
Sampling Location it
Run Number: w >• ~s > o
t.v
v «•*
Date:
1
Sample Type:
Pbar: ^^Ar
CO2.
> "7 Operator:
Ps: ^
O2.
Thermocouple #: 5"
Filter*:
IT-*
Pretest Leak Rate: . oc'L cftn @ \J' in. Hg.
Pretest Leak Check: Pilot: (/ Orsat: w\/
Probe Length/Type:
Stack Diameter:
Pitol #:
As:
Nozzle ID: _»
Assumed Bws:
Meter Box #:h
Posl-Tesl Leak Rale: . QO J cfm @ 4. in. Hg.
Post-Test Leak Check: Pitol: l^ Orsat: A^
«. L-
Traverse
Point
Number
SampNng
Tim*
(mln)
Clock FNTM
(24-hour
dock)
Gas Meter
Reading
(Vm)fl3
Velocity
Head (Ap)
inH2O
Otfic* Pressure Differentia)
(AH) in H2O
Desired
Actual
Stack
Temp
(Ts)
Temperature
°F
Probe
Filter
Imptnger
Temp.
°F
Dry Gas Meter Temp.
Inlet
(Tm in°F)
Outlet
(Tm out°F)
Pump
Vacuum
(in.Hg)
,\9
1\
ID
fOO 0
\o\VS
\,v
_Ll
-U
r
L.
MS
5*-
-5V
Srr-
&«•
7,
1.
-
Jri
To
n v>
TO
t 5
JL
. 5
0
^_tl
H
. 1-
33
1.4
l^f__
IS
25
3-5
_ax.
37 D
3-f-
xt
c
f-
. \
\b\T-
3 3
^t v
? r
l.f
?S
1-
4-
(.0 o
\s 4-
C, I
VI
r
vn
a*
-Ti
fo
S'i
-------
Page i of
Plant Name:
Run Number:
-o\
Test Date:
Operator:
>a ^fyj.
Traverse
Point
Number
c>
3> i
D i.
V) i
Sampling / dock Time
Time, / (24 -hour
(min.) / clock)
\ >$ ' ^ i f 1
\ bo /I i-5^-.
^S / 1351
/ Ho 3
\ ^o ' Hoi
NV5 ' If I ^
N S t> ' \ f 1
1^5. / l(p>.
lt-6 / K>1
ife5 ' H*>
il-t? ' lf"5>7
x^< / 14 + v
^v ' Hf7
/
/
/
'
/
/
/
'
1
Gas Meter
Reading
1*\ -j
7t>*. 7
")G& i-
"76q, 4-
?7J-s
"7X?5',C)
I'll "2-
Tfr* -'
-?^>C T
1C?-1
1<\^.0
")«\4.{\0C\
"• -
Velocity
Header,
in. IhO
aJ->-
.53
,J3
j\"£?
u fij
, 4-,--»"•-
••w^--
Orifke Pres. Differential
(All) In. 11,0
Desired
1,5
t.-S
\.5
1. 3
I* 3
"7-3
\-3
1, i
K3
l.\
M
M
Actual
/, -5
'.3
15
1,3
1' \
1,3
1, 3
1- 3
I ">
M
I.)
1. > -
Stack
Temp. • F
(V
l«r, JL
^«\ ^
3? 7
4o/
inCT
3-) 7
3^ f.
i ^Cj
a>*i 7-
i>T j
Probe
Temp./ Filter
Temp.0 F
>£/ ' ?i"i
>S>- / "VSt,
VS J ' 3-S •)
/
5^-? 7 25>
?yt 7 ?i'/
1^6 ' *ss
•3^0 / XSi
75 C 7 ^V
>V5v ' >Sr
•>«.>/ ^5(_
-2^T / QLS,^
^S-5" ' ^Si
1
t
t
1
1
1
1
1
1
t
'
Impinger
Temp.
•F
-*!>
•$"1
f~7
b?
J" 1
s -j
-y y
X&
p
^?
si
cj
a-l
*
Uullcl
rc
34
ps
7C
^6
^ 7
? V
r^
It
«?^
91
r?
Pump
Vacuum
liullg
c
t>
£>
C
6
&
&
-------
SAMPLE RECOVERY DATA
PLANT flWf»Vl f)/Ur>tta rt
DATE
SAMPLE LOCATION
TRAIN PREPARER Ti
Sample Box No. HH~*J Job No.
Run No. ft-73-Q ~
3 56 9. OOP
Filter No.
fl
SAMPLE RECOVERY PERSON T.flr
COMMENTS
FRONT HALF
Acetone
Container No.
Filter
Container No.
Description of Filter
Liquid
Level Marked is Sealed
Sealed
Samples Stored and Locked
•BA€K HALF/MOISTURE
Container No.
Liquid Level Marked
Sealed
IMP. NO.
CONTENTS
INITIAL VOL
(ml)
WEIGHT (grams)
INITIAL
FINAL
NET
325.5
loo
doS.i.
,00
n.z
TOTAL
Description of Impinger Catch: C-.
-------
FIELD DATA SHEET
Plant:
Sampling Location flz hu^ Q^TC
Run Number: f6~ / Date: ^>-3
Pretest Leak Rate: ^ft"^ elm @ _f£
Pretest Leak Check: Pilot: <\n Orsajt:
Sample Type:
Pbar: aq.,
CO2:
H
Operator:
Ps:
O2:
in. Hg.
ProbeLength/Type: &'Gt.sfi) Pilot #:
Stack Diameter: ?! As:
Nozzle ID: * > * 7 Thermocouple #:
Assumed Bws: J Filter #:
Meter Box #: Ma IQ Y: ]_*
Post-Test Leak Rate:
cfm @ in. Hg.
Post-Test Leak Check: Pilot: Mt Orsat:/u/
\
7.
b
Traverve
Point
Number
SampKnj
Tim*
(mln)
OockTime
(24-hour
dock)
'**-
Gas Meter
Reading
(Vm)n3
1<^^.\ \Q
7^ r, 3 to
"M * • 4oo
"7 95 ,^0 \
., ,
1 *•
"---.
Velocity
Head (Ap)
inH2O
Orifice Pressure Differential
(AH) in H2O
Desired
Actual
Stack
Temp.
(Ts)
Temperature
oF
Probe
Filter
Impinger
Temp.
°F
Dry Gas Meter Temp.
Inlet
(Tm in°F)
Outlet
(Tm out°F)
Pump
Vacuum
(in.Hg)
Y//////////////////////////, '// '//////////////////////////////^
" -••-• •_•
- ~^._
- ...^
«*
V«
'"*"---
**\,
"-
•> ..,%
J_
*"t)
/v«
/vxn
\S
U
1-5
>o
AH=
-------
SAMPLE RECOVERY DATA
PLANT
DATE
Run No.
" I
SAMPLE LOCATION
TRAIN PREPARER
^A
Sample Box No. A/-5 job No. 3503.000
—|» t 1 k
Filter No. A/U3-FB- < -(,
SAMPLE RECOVERY PERSON
COMMENTS
FRONT HALF
Acetone
Container No.
Filter
Container No.
Description of Filter
Liquid
Level Marked
Sealed
Sealed
Samples Stored and Locked
•pKiAVTolo^Afl-
HALF/MOISTURE
Container No.
Liquid Level Marked
-FB-\ -
Sealed
IMP. NO.
CONTENTS
INITIAL VOL
(ml)
WEIGHT (grams)
INITIAL
FINAL
NET
/oo
5-7^.3
TOTAL
Description of Inq>inger Catch:
-------
-------
Appendix A. 1.3
Raw Field Data, Kiln No. 2
CEMs Summary & Strip Charts
-------
HCI Correction Worksheet
Martin Marietta Magnesia Specialties
27-August-98
Kiln #2
OUTLET
|| Actual value
Z63t)
mft"
nisfc
0
26.6
49.5
3 Point Cal
-0.3
25.2
49.1
slope (m) 0.997
Y-lntercept (b) -0.62
Avg cone: 23.5
Actual Cone: 23.4
Pre Bias
-0.3
25.2
0.959
-0.30
Post Bias
1.7
24.8
0.868
2.92
INLET
1 Actual value
; zero
tnid
Wgrj
0
196
310
3 Point Cal
3.2
185
309.6
slope (m) 0.982
Y-lntercept (b) 0.34
Avg cone: 31 .2
Actual Cone: 38.4
Pre Bias
3.2
185
0.928
3.20
Post Bias
9.2
172.2
0.832
18.35
-------
HCI Emission Measurements from Kiln No. 2
Martin Marietta Magnesia Specialties
Woodville, Ohio
Time
Date
Inlet/Outlet
HCI
ppm
THC
ppm :
O2
%
CO2
%
1025-1055
1135-1205
1245-1315
1400-1430
8/27/98
8/27/98
8/27/98
8/27/98
Outlet
Average
40.1
18.6
17.7
17.7
23.5
6.0 •
5.2
5.3
5.9
5.6
14.6
14.6
14.5
14.5
14.5
10.4 /
10.7
10.3p
10.3'
ICWf*
' ' t
/ '
1100-1130
1210-1240
1320-1350
1435-1505
8/27/98
8/27/98
8/27/98
8/27/98
Inlet
Average
28.5
32.4
32.8
28.0
31.2
5.2
5.6
4.9
5.5
5.2
14.0
13.8
13.9
13.8
13.9
11.8
. ,11.6
.'11.5
/ 11.6
11.6
f.
-------
-------
^ *
tt-HC
r
r
i
. \B
*•»•••»• LOG QRP 1 *** UNIT 01 *** STflRTS flT 06:21:11 *** ENDS flT 06:21:12 flUG Z7, 98| ***
(>T OflTB; UNlTsLjT,._^.._tCTS_
itt .8 ; PW ; Ha
. "N'Ji-JL
42 ».* PCI .
02
i
e te
**«. LOG GRP 1 *** UNIT 01
' ' ' '
STfiRTS flT 06:18:31 **+ ENDS flT
i ! '' ! •
i*** LOG QRP 1 *•** JUNIT 01 | *** STRJTiSf flT »*f041:3!
i i . ' * I i . . ' i
06:18:32 flUG 27' 90
*** i
j 0 PCT
-------
r
r
r
c
-1C
HC\
r
f
0 PPM
e PPM
0 PCT
'K
350. 0 PPM
-------
r
r
r
r.
-1C
1ft
KSEr«BWE «?:»:« X It
ttStT WEHtt 87:M:8i 2J .« HjT
KSqri»a«!W:3l:«| 22 .7; PCI
21 U7.7 IW
e PPM
e PF-H
0 PCT
-------
21
Ff"H
HtL
r
••T-
*** LOG QRP 1, **•»• UNIT 01
OfttRl UKlTSl ST
STflRTS flT 071 55. 35 *** ENDp flT |07 : 56.:5fl iRUG 27,
I :: • : ' i
e PPH
0 PPM
*** LOO GRP 1 *** UNIT 01
PT
*** STRRTS flT 07:33:35 *** ENDS HT.07:35:36 HUG 27, 9Q ***
.1
KT
M
to; o
fT MTU WITS ST
'83-.1
OB
PT Mil (HITS ST
w L« mi
tr. 3
20. 0
12. 5
PCT
C
*
«
r
r
i
-------
• • • fe W
-------
r
I
1
f
f
r
IB
HC1-3U)
««» RES H WWE 88:M:8 i 21 2*2.4 HHl;
e PPM
0 PCT
*** LOG QRP 1 *"* UNIT 01 *** STftRTS flT 08:26:^3 *** ENDS ftT,98:26:35 flUG 27
PT Mffft
«L
«2 .9
.fr.J,
PT MM W1T8 ST
Kt
OR
i
JGBL1
FT MTU mm
•*-.!
fW
-------
f
r
r
r
t
C
M* Ksfcr MMGC i9:»:« 24 u PW>
._. » ift m .cam,
~K9rfflEMKi»:3Mll 32 U? PCJ , ; 02 M j
; «.R£SETMHaW:»:9i' ai 6U T" ' i •"&•'•!''
' ' < I i ! 'l '. Ii ''•'"'.
I I .
1.00 (JFfP lj**» JUNJT'01 j
torri UMTS
J! ,
STflfetS P|T ,99
S Si' ' LBGDt ' Li
27!: H6l .**«
i ' i '
iPl
fNp5
m
09!2f:«
J ' U1'.
fWG &7, 961 ***j
, ii,T; • i • i
e PPM
0 PPM
25 8 PCT
»:«:» -
i i
• M* KStf fHOfCE »:».!
M* KSfT W0«* W:M:l} 23 A»
«*KSQrmQMGq0:M.M 2? U,« PCT
•M:M:9^ » 7t2 P*
Ii ; I !
HO.W
-------
I
-------
-------
-------
CD
•s_
71
ft
<9_
n
_?
i
•*r—
-M4i-
•N
»
^Ftr
-JliJU rzrzr:
& .. _...JS -JSJ.ggr=ayvzr.&g
«--
09
«
N
-K.B4J 6£^-i-.
<9_
e
8_aj» _ fejl jtJ»T7
. .01- .-
fer-«
3
Q
CD
$
o
•ri
i
-------
ic
r
r
r
r
336.
8 PPM
e PPM
8 PCT
e PPM
<
c
c
f
»
-------
OT.
am a
WT -
-------
O PPM
0 PCT
e PPM
0 PPM
-------
«•« ttSEf SVEHCE 14 JU.tt 21 196 PPH
1C
t
f
f
r
16
0.0
HCLtW
210.J0
. 41
0.
0
14:»:B^_
-1C
6
243. 0
280. 0
313. 0
338.1 0 PPM
litt
*
0! i
« i
'
isto.*;
H
i '
: I: :
9 ,,
0 Pftl
r
r
0 PCT
0 PPH
-------
J.OJ 0
-------
**RBSniW»0Ba:33:«| 24 4.«
9P|> \42jJ5 ') 15 I0( j :
•Ha '^H™
i •) 'I•.;-'•'
PCT
e PTM
0 PPM
PCT
-------
' air flvo*i u »:« 21 1441 m
T. .' f.- , >
«•* «KfT (WRSCt 13:38:8! 21 21.3 flfa
39.1 d 4O.I0
O PCT
a PPM
PPM
C
r
r
r
-------
irt
f,/
1C
J.B
*** LOO GRP
**•* ' $T*» CT5 flT 16
P 1***UNIT 81 !
I !
' 40.10
;*»K£TfflaWgtf:2r«! 24 21
„. —.I-T
-------
e
33W3* 135H «»*
is:* tswaw Jpsa »••
3i
*
*
a
t
OT-
-------
Wd-J O
OT-
HSl'O
DT
-------
£
o
Q.
-------
***
rp^p-*HP
Hdd j t>
SlINH ^8188 <
-------
Appendix A 2
Raw Field Data
Kiln No. 1
-------
Appendix A.2.1
Raw Field Data, Kiln No. 1
ESP Inlet - PCCDs/PCDFs
-------
TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS
Plant:.
Date:
Sampling Location: (£5P .TV? Jg^f (\£~A«. \\
Inside of Far Wall to Outside of Nipple: b^ ''
Inside of Near Wall to Outside of Nipple (Nipple Length): _? ^
Stack I.D.: 6>5%"
Distance Downstream from Flow Disturbance (Distance B):
Inches/StackI.D.
dd
1-
Distance Upstream from Flow Disturbance (Distance A):
J*" inches / Stack I.D. - • 35 dd
Calculated By: ^>
o. <5
o.Wz
o . ^^
c?.*3?-^
Length
(inches)
^6^"
s
y
Product of
Columns 2 & 3
(To nearest 1/8")
,>«"
•^ "
^/ ^
7 %"
i,**"
t- "
/6 »
^ V« "
^H"
i*%"
^V
5?"
6,1^"
^^^"
Nipple
Length
(inches)
3i"
\
/
Traverse Point
Location
(Sum of Col. 4 & 5)
i**»
->*s"
it
siV
1*%"
JC.**"
4***"
** V
*-?%"
J- "
//,/ t
&***-"
U~f **"
-------
50
Duct Diameters Upstream From Row Disturbance* (Distance A)
0.5 1.0 1.5 2.0 2.5
30
•5
20
10
c
1
T
24
20
16
I
I
16
Velocity (Non-Particulate) L _ i_2_
I
I
12
8
I
I
Row
DMurfoincM
23 456 *7 89 10
Duct Diameters Downstream From Row Disturbance* (Distance B)
• From Point of Any Typ« of DMurfoano (Band, Expansion, Corrtrteton. «te)
LOCATION OF TRAVERSE POINTS IN CIRCULAR DUCTS
(Fraction of Stack Diameter from Inside Wall to Traverse Point)
Traverse
Point
Number
on a
Diameter
1
2
3
4
5
6
7
6
9
10
11
12
Number of Traverse Points on a Diameter
4
0.067
0.250
0.750
0.933
6
0.044
0.146
0.296
0.704
0.654 .
0.956
'
8
0.032
0.105
0.194
0.323
0.677
0.806
0.895
0.968
10
0.026
0.082
0.146
0.226
0.342
0.658
0.774
0.854
0.918
0.974
12
0.021
0.067
0.118
0.177
0.250
0.356
0.644
0.750
0.823
0.882
0.933
0.979
-------
GAS VELOCITY AND VOLUMETRIC FLOW RATE
Plant: /*Lr+.Vi
Sampling Location:.
Date :__£-£
Clock Time:
Operators:.
Barometric Pressure, in. Hg:,
Moisture, %:__£___
Static Pressure, in. I-UO: - y.o
Molecular wt., Dry: Pitot Tube, Cp: -&*/
Stack Dimension, in. Diameter or Side 1: <^s "%" Side 2: -
Wet Bulb, °F:
Oc.
Trav«rM
Point
Number
ft
/£?
/Wtocrty
1- 35
Dry Bulb, °F:.
Stack
T«mp.
T§-
>— ^-OO«'^v«:«-<"
Md = (0.44 x %C02) + (0.32 x %O2) + (0.28 x %
) +18 (
100 100
Tt-
Ps = Pb
Ps
S'P-
in. Hg
Va = 65.49 X (
Vs» «/
A»« ft;
Q« - Vs x Aa x 60 8/m
i
o« -
Qs *
xeo
acfm
Pa
Md «= (0.44 x ) + (0.32 x ) + (0.28 x )
Md»
% HO % H,O
Ma = Mdx(1 - —) + 18 ( — )
100 100
100
daefm
-------
BASE TIME
9.34
Average < 30.7
Points YAW Angle,
btmin= 180' "
Per Point
COS YAW Min Sec
Cumulative
Minutes
o
Time
Per Point
Min & Sec
Cumulative
Min & Sec
o
A-1
2
3
4
5
6
7
8
9
10
11
12
A-1 2
11
10
9
8
7
6
5
4
3
2
1
-18
-15
-20
-22
-18
-18
5
22
35
45
60
90
90
60
45
35
22
5
-18
-18
-22
-20
-15
-18
0.951 8 53
0.966 9 1
0.940 8 47
0.927 8 40
0.951 8 53
0.951 8 53
0.996 9 18
0.927 8 40
0.819 7 39
0.707 6 36
0.500 4 40
0.000 0 0
o.ooo 0 o
0.500 4 40
0.707 6 36
0.819 7 39
0.927 8 40
0.996 9 18
0.951 8 53
0.951 8 53
0.927 8 40
0.940 8 47
0.966 9 1
0.951 8 53
8.88
17.9
26.68
35.35
44.23
53.11
62.41
71.08
78.73
85.33
90
90
90
94.67
101.27
108.92
117.59
126.89
135.77
144.65
153.32
162.1
171.12
180
8 ' 53 "
9'1 "
8 ' 47 "
8 ' 40 "
8 ' 53 "
8 ' 53 "
9 '18"
8 ' 40 "
7 ' 39 "
6 ' 36 "
4 ' 40 "
i M
1 M
4 ' 40 "
6 ' 36 "
7 ' 39 "
8 ' 40 "
9 '18"
8 ' 53 "
8 ' 53 "
8 ' 40 "
8 ' 47 "
9'1 "
8 ' 53 "
8 ' 53 "
17 ' 54 "
26 ' 41 "
35 ' 21 "
44 '14"
53 ' 7 "
62 ' 25 "
71 ' 5 "
78 ' 44 "
85 ' 20 "
90' "
90 ' "
90 ' "
94 ' 40 "
101 '16 "
108 ' 55 "
117 '35"
126 ' 53 "
135 ' 46 "
144 ' 39 "
153*19"
162 ' 6 "
171 ' 7 "
180' "
-------
-'5
-<*
1- S
*•<*»
1-35
^*5
-t-&o
/to
Plant: /7^.f f,y
Sampling Location ^
Run Number:
<..•., M.
X/vW»- (
T'J Data: -x
FIELD DATA SHEET
Sample Type: snj*> Operator:
Pbar: ^^ .(o~7 Ps: — &» .Q
CO2: -^-/.D O2: -*- / S
Nozzle ID:
Thermocouple #:
Pretest Leak Rats:
Pretest Leak Check: Pilot:
cfrn @ /5" in.
^Orsat: *->;
Hg.
f*
TravwM
Point
Murnbi
A I
5
s
if?
SarnpHno
Tbm
(mln)
o
S'53'
Vt'rt
33'
90
r?/?
OockTIrtM
(24-hour
ckx*)
Probe Length/Type:
Stack Diameter:
Pilot
Assumed Bws: 8^ Filter #: J
Meter Box »:dMR-gY: i.peiB AH@:
Post-Test teak Rate: . o&fecfm @ rS in. Hg.
Post-Test Leak Check: Pilot: ^-Orsat:
GuMelw
RMcfng
(Vm)(l9
. 700
76.O
53*7- "70O
. /SO
.^V6. 78 /
555.
5^-7.a^Q
. /-SO
5X7.
V.bcity
H«d(Ap|
biHZO
ttilc* Pressure DHferentiel
(AH) in H2O
Deslfed I Actual
Stack
Temp.
(T*l
T»mperatur*
°F
Probe I Frfter
knplnger
Temp.
°F
Dry Gas Meter Temp.
Inlet
(Tmln°F)
Outlet
(Tm oul°F)
Pump
Vacuum
On.Hg)
Y//////////////^^^
.So
7S
• 10
_28_
.to
ft)
/ I
/.* /
/. fS
/. »
».*/ 1
/.p )
0
»-
t. 01
i.j)
f.
•853
SSI
A^/tf
M
^•57
-P53
50
5(
S 3
5-.P
•S I
•SO
•3 1
5V
S/
S/
t?/
Si
93
<7S
95
9 (
SCo
to
iL
4Vm»
AH-
T5-
Tfn«
Sl
si
5.2
5;
5P
5*0
-------
SAMPLE RECOVERY DATA
PLANT
DATE
-JA ftWie,H-d
5 Run No.
Sample Box No. FN/-/Q Job No.
SAMPLE LOCATION £S?
Filter No.
TRAIN PREPARER
SAMPLE RECOVERY PERSON
COMMENTS
FRONT HALF
Acetone
Container No.
Filter
Container No.
Description of Filter
Liquid
Level Marked
Sealed
Sealed
Samples Stored and Locked
BA^K HALF/MOISTURE
Container No. /
-Z~ 3
Liquid Level Marked
Sealed
. QO O
J--2 - »
IMP. NO.
CONTENTS
INITIAL VOL
(ml)
WEIGHT (grams)
INITIAL
FINAL
NET
ioO
ii
TOTAL
Description of Impinger Catch:
-------
FIELD DATA SHEET
Plant: >\.t
Sampling Location fL
Run Number:
IT /v.\eAr
: g -
Sample Type:
Pbar: jyr.c.
CO2: c
Operator:
Nozzle ID:
Thermocouple
Ps:
02:
Assumed Bws: 3 Filter #:
Meter Box
Pretest Leak Rate: o .
' In. Hg.
Pretest Leak Check: Pltot:
Orsat:
Probe Length/Type:
Stack Diameter:
itot»: —
Post-Test Leak Rate: O.QOC> elm @ ^ in. Hg.
Post-Test Leak Check: Pilot: — • Orsat. —
Tr«v«rw
Pblnt
NumbM
Sampling
Tlnw
(mln)
/A
30
OocfcTlm*
(244iour
/Scx>
{GfZ
j£3(3
Gu Motor
Reading
(Vm)ft3
^K«. "71C,
8c«, .ft^o
^£f« -^'^
Velocity
HMd (Ap)
inH2O
Ori«c« Pr«s«ur« DMtermlU
|AH) ki H2O
DesirMl
Actual
Slack
T»mp.
(T»J
Twnperatur*
°F
Piob*
y/////////////////////////////////
A^//9
KJ)A
^i^A
^-1/rt>
/
^50
(War
lmping»i
T»mp.
°F
Djy Gas Meter Temp.
Met
(Trnln0F)
Outf«t
fjm oul°F)
Pump
Vacuum
fw.Hg)
Y//////////////////////////.
^55>
^y
SO
CO
.*J/A
AH"
-------
SAMPLE RECOVERY DATA
PLANT
DATE
Run No.
£i_ Sample Box No. A/ -£ Job No. xS -5^9, OOP
SAMPLE LOCATION £S-p^Tr)U4- /'*\ ( _ Filter No. utev. f a - g. -
TRAIN PREPARER TA-
SAMPLE RECOVERY PERSON Tfl-
COMMENTS
FRONT HALF
Acetone
Container No.
Filter
Container No.
Description of Filter
Liquid
Mrb-FB-a-2- Level Marked <^ Sealed ^
Sealed
Samples Stored and Locked
Container No.
Liquid Level Marked
-FB -2 -3
Sealed
IMP. NO.
CONTENTS
INITIAL VOL
(ml)
WEIGHT (grams)
INITIAL
FINAL
NET
T'*P
3/5,5"
)OO
5-76.
^60
TOTAL
Description of Impinger Catch:
-------
Appendix A.2.2
Raw Field Data, Kiln No. 1
ESP Stack - PCCDs/PCDFs
-------
TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS
Plant: ff\ i\ nA \w vm/ig € H 'X
Date: ft - ^l- °|<
Sampling Location: JR- \ K
Q ; i ^ < \
Inside of Far Wall to Outside of Nipple: £jf
Inside of Near Wall to Outside of Nipple (Nipple Length): 4" —
Stack I.D.: C 1^ .
Distance Downstream from Flow Disturbance (Distance 5):
^70 inchee / Slack 1.0. = V ) "*- dd
Distance Oostream from Flow Disturbance (Distance A):
\-\$ inches / Stack 1.0. = '"?•?-. ad
Calculated By: QJ^-XA
Schematic of
Sampling Location
Traverse
Point
NumDer
/
7
t,
0> f A-
n Jo
,?^3
«S9 1.
. ^i}
. °\1<\
Lengtn
(inches)
<*1
Proaua of
Columns 2 &. 3
(To nearest 1 /8")
» 3>"D
4/f^
1. 3
ig.
3*1. *i
1— |
tfe .5 m
r
r4.G
^7-< -i
r^.c
.r.f.
rv 4,
C/«
M-(,
-------
50
'o
°- 40
0)
Dua Diameters Uostream From Row Disturbance* (Distance A)
0.5 1.0 1.5 2.0 2.5
Row
v/
T U
At
LOCATION OF TRAVERSE POINTS IN CIRCULAR DUCTS
(Fraction of Stack Diameter from Inside Wall to Traverse Point)
Traverse
Point
Number
on a
Diameter
1
2
3
4
5
6
7
a
9
10
11
12
Number of Traverse Points on a Diameter
4
0.067
0.250
0.750
0.933
6
0.044
0.146
0.296
0.704
0.854
0.956
8
0.032
0.105
0.194
0.323
0.677
0.806
0.895
0.968
10
0.026
0.082
0.146
0.226
0.342
0.658
0.774
0.854
0.918
0.974
12
0.021
0.067
0.118
0.177
0.250
0.356
0.644
0.750
0.823
0.882
0.933
0.979
-------
3BC3 C3
Plant:
GAS VELOCITY AND VOLUMETRIC FLOW RATE
Date: ?•
Sampling Lo
Run #: ?
Barometric F
Moisture, %:
Stack Dimen
Wet Bulb, °F
Travcrs*
Point
Number
1
1
3
t\.
$
(>
f
V
4
iO
i
fL
i
-s
4
S
fe
1
9
^
(o
^
U
cation: & \ Kt o i. Clock Time: G =**
Ooerators: 0» Cr / P *>
'ressure, in. \
Hq: ^^A . fs»s Static Pressure, in. hUO: ' ^ %>
Molecular wt.. Drv: Pitot Tube. CD: . 5?4-
sion, in. Diameter or Sid
': Dryl
Velocity
H«ad
in. H20
/ ^^s
( 95
1 "~
O ^"
, ^5-
.^^
^^
/p C*
.6*{
, Cnl
« $fc
> AO
, ^\ i
» <\ I-
, q-L.
! ^L
» ?>^
, (p^
^P - A\vi
Stack
T«mp.
°F
4^^
^76
^7^
6"?o
696
6f 7
69 7
6?3
6^
t 9 "L
fe^ <
Gq >
t1 >
G<34-
G^
G^S
6,4 I
(oil
Ti- (p?-\
31: kl. Side 2:
3ulb,°F:
Md - (0.44x%CO2) + (0.32 x%O2) + (0.28 x%^)
Md - (0.44 x ) + (0.32 x ) + (0.28 x )
IC^ %H2O %H2O
^oc<^8 * 106" 100
P« - 7 °t \e 5> in. Hg
1EF « ''ift
— / Ts (°R)
r. t u> ._.llir.
1 W._«^0v* )M Jv /
^ 0V*. -Jfc.^ ft/8
V0 6C*''
Qs - Va x Aa x 60 s/m
0
Q Qa - x xflO
QS - *\ V0 ^°\ acfm
P« * HjO
Qt^ .= Qs x 1 7.847 x x (1 - =— )
•" T« 100
T/ n O^-M* X 17.047 x x(1 )
Q»std-
-------
FIELD DATA SHEET
r 4-I"?
Plant: m
Sampling Location --M \ KIV«J o
Run Number: tM?,-ftfr- Date:
Sample Type:
Pbar:
C02:
Operator:
Nozzle ID:
Thermocouple #:
Ps: -.
O2:
"L
Pretest Leak Rate: , o o 7_ cfm @ \$ in. Hg.
Pretest Leak Check: Pilot: \/ Orsat:
—*i — ' I
Probe Length/Type:
Slack Diameter:
Pilot #: (3 A.
As: ^0 f1 (,
Assumed Bws: (2 _ Filter #: ~~-
Meter Box #: jo _ Y:l,Q;n AH@:
Post-Tesl Leak Rate:,-Qt>
-------
SAMPLE RECOVERY DATA
PLANT NW\;<\
DATE
Run No.
, OOP
SAMPLE LOCATION
TRAIN PREPARER TllV
Sample Box No. io*f-2.V Job No.
Q-J"Hg/\" _ Filter No. uaM>-2- I GW5
SAMPLE RECOVERY PERSON
COMMENTS
FRONT HALF
Acetone
Container No.
Filter
Container No.
Description of Filter
Liquid
Level Marked
Sealed
Sealed
Samples Stored and Locked
BACK TTALF/MQtSTORB
Container No.
Liquid Level Marked
- O-2.-
Sealed
IMP. NO.
CONTENTS
INITUL VOL
(ml)
WEIGHT (grams)
INITIAL
FINAL
NET
'Trap
HPJ.C
H-rO
100
TOTAL
Description of Impinger Catch:
-------
Appendix A.2.3
Raw Field Data, Kiln No. 1
CEMs Summary & Strip Charts
-------
HCI Emission Measurements from Kiln No. 1
Martin Marietta Magnesia Specialties
Woodville, Ohio
Time
Date
Inlet/Outlet
THC
ppm
1613-1643
1723-1753
1833-1903
1943-2013
8/28/98
8/28/98
8/28/98
8/28/98
Outlet
Average
1648-1718
1758-1828
1908-1938
8/28/98
8/28/98
8/28/98
Inlet
Average
4.7
3.4
2.9
2.7
3.4
2.3
1.8
1.5
1.9
O2
%
10.7
10.5
10.5
10.5
10.5
10.5
10.5
10.6
10.5
CO2
%
15.9
16.2
16.5
16.3
16.2
16.4
16.6
16.6
16.5
-------
J v
r i
0.
r
^~I
Q.
8
8
_i
*
*
*
H
o,!-
P
sL
i;^
i
!r!<
..X-*r'
-------
r •:
LOG ORP 1 *** UNIT 01 *** STRRTS flT 13:47:39 *** ENDS HT 13:47:42 BUG 28, 98 ***
•
•
•
•
•
•
•
•
I
I
»
•
»
I
"• >
•
•
1C
W MTD UllTj ?T __ LEODC
"
ST UGB» PT m fflTa (HITS U_
. . • . . ., . •
| ®1 ! **4 .STRUTS fJT 13
• , . ..•.••
40:26 *** ENDS nT|l3:40:27 ,flUG 28,98
'
*** KS T (MMG : 13.:
i . ,__i.T_ .Ll
350.0 PPH
e PPM
LOG dRP 1 *** UNIT 01 ! *** STARTS RT 13l30:lJ2 *** ENDP flT; 13:30:17 HUG 28,98! ***
'. > i ! . i * ' i I . '
C U.3VCTi C02 ]
.*** LOG dRP 1 *** UNIT 01 ' *** STflRTS flT 13:26:02 *** ENDS flT 13:26:03 'HUO 28/981 ***
P«: T
c
r
r
t
-------
-------
I
l-
I I
0.
> -^ws.. «.«.--
-------
Mdd
yt
— awn
8T
I'T -
•
•
•
-------
-------
03
*
* 5
5
•»
rl
I 1
5.
*
*
• /
o O
-------
0;-00T
i
-------
4 M TZ V* 55 JT 35WO* 135» **»
•
•
-------
13d 0
Udd 0
J.3d 0
el-eeT •
yarn
twm
Mi Ml
yuan.
\M I'Sl a WlUnWBW OEM ««
4u ft « »:«:JT 3DWQM) i3S» •»»
J.
• i
t
f*
CVS
.;•£
: |':"r, .!,- •
iwizo ; JW it* zz ^«:« t««3«4
9JWZ03 \X !8m'O »:8T^T39B83N* J3S3S»» '
;.._i:
i 1"
ant***
19 MM I
t
a r
WT -
I
«
f
•
• '
•
•
-------
r
03
— *
-------
• r*
L B
PF'M
; o
0 PCT
0 PPM
15. IO PCT
-------
»
t
(
f
f
e
f
22.1 "5
I I
i i
i 22. '5
23. o PCT
0 i 180.
e PPH
23.10 PCT
51
AL.RRMS PRESENT *** UNIT 01 ' *** STflRTS FIT 19:30:34 *** 'ENDS' RT ll9:30i34 ftjUO 28,98 ***
' : ' i ; : ' ' i • i ' • i
:,• • ' : i •; !' i ' i • !
-------
-------
u
CL
CD
fi
8
ui
K/
I i
K
£
.i «
V)
^
! i
J
! i
8
M
(0
fj
.
W
8 sl
.
-------
APPENDIX B
METHOD 23 LABORATORY ANALYTICAL DATA
-------
Summary of Method 23 Analytical Results
Air Emissions Screening Test
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 2 Baghouse Inlet - Run M23-I-1
Congeners
DIOXINS:
2378 TCDD
Total TCDD
12378 PeCDD
Total PeCDD
123478 HxCDD
123678 HxCDD
123789 HxCDD
Total HxCDD
1234678 HpCDD
Total HpCDD
12346789 OCDD
OCDD+Totals PCDDs
Catches, ng/sample
Back Half
0.0096
0.2656
0.0108
0.1324
{0.00788}
{0.00708}
0.0112
0.0684
0.0201
0.0360
0.0393
0.5417
Front Half
ND
0.1728
{0.0017}
0.1232
{0.0016}
0.0028
0.0035
0.1192
0.017
0.0308
0.0600
0.5060
Total
0.0096
0.4384
{0.0125}
0.2556
{0.00948}
{0.00988}
0.0147
0.1876
0.0371
0.0668
0.0993
1.0477
FURANS:
2378 TCDF
Total TCDF
12378 PeCDF
23478 PeCDF
Total PeCDF
123478 HxCDF
123678 HxCDF
234678 HxCDF
123789 HxCDF
Total HxCDF
1234678 HpCDF
1234789 HpCDF
Total HpCDF
12346789 OCDF
OCDF+Totals PCDFs
Total of Totals
0.1545
4.4672
0.1460
0.1362
2.0952
0.1526
0.1143
0.0386
0.0098
0.8960
0.1708
0.0241
0.2624
0.0244
7.7452
8.2869
0.0046
0.0412
{0.0032}
0.0034
0.0252
0.0057
0.0038
{0.0036}
ND
0.0164
ND
ND
ND
{0.0125}
{0.0953}
{0.6013}
0.1590
4.5084
{0.1492}
0.1396
2.1204
0.1583
0.1181
{0.0422}
0.0098
0.9124
0.1708
0.0241
0.2624
{0.0369}
{7.8405}
{8.8882}
ND Not Detected. When both fractions are ND, the greater detection limit is used
and is enclosed in parentheses (); otherwise, ND's are zero in calculating totals.
{ } Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Method 23 Analytical Results
Air Emissions Screening Test
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 ESP Inlet - Run M23-I-2
Congeners
DIOXINS:
2378 TCDD
Total TCDD
12378 PeCDD
Total PeCDD
123478 HxCDD
123678 HxCDD
123789 HxCDD
Total HxCDD
1234678 HpCDD
Total HpCDD
12346789 OCDD
OCDD+Totals PCDDs
Catches, ng/sample
Back Half
{0.00394}
0.4368
0.0048
0.2756
0.0053
0.0048
0.0138
0.4060
0.0744
0.1352
0.2241
1.4777
Front Half
{0.0027}
0.1156
{0.0030}
0.0900
{0.0024}
0.0044
0.0057
0.0884
{0.0142}
0.0104
0.0212
0.3256
Total
{0.00664}
0.5524
{0.0078}
0.3656
{0.0077}
0.0092
0.0194
0.4944
{0.0886}
0.1456
0.2453
1.8033
FURANS:
2378 TCDF
Total TCDF
12378 PeCDF
23478 PeCDF
Total PeCDF
123478 HxCDF
123678 HxCDF
234678 HxCDF
123789 HxCDF
Total HxCDF
1234678 HpCDF
1234789 HpCDF
Total HpCDF
12346789 OCDF
OCDF+Totals PCDFs
Total of Totals
0.0439
1.2868
0.0522
0.0322
0.7080
0.0696
0.0418
0.0208
{0.00388}
0.3276
0.1692
0.0294
0.2652
0.2682
2.8558
4.3335
0.0224
0.4980
{0.0488}
0.0340
0.4972
0.0933
0.0701
0.0248
0.0060
0.4996
0.1256
{0.0150}
0.1656
0.0150
1.6754
2.0010
0.0663
1.7848
{0.1010}
0.0662
1.2052
0.1629
0.1119
0.0456
{0.0099}
0.8272
0.2948
{0.0444}
0.4308
0.2832
4.5312
6.3345
{ } Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
PARADIGM ANALYTICAL LABORATORIES, INC.
2627 Northchase Parkway S.E.
Wilmington, North Carolina 28405
30SEP98 (910)350-1903
MichaelMaret Fax (910) 350-1557
Pacific Environmental Services, Inc.
5001 S. Miami Blvd
Research Triangle Park, NC 27709-2077
Contract. 68D70002
Sub-Contract- RO12-002
Work Assignment: 1-007
Subject: Polychlorinated Dibenzo-/?-Dioxins & Dibenzofurans Measurements (PAL Project No. L-1113)
Dear Mike;
Enclosed are the final results for the flue gas samples under your Project S509.000 Ohio Lime
Kiln. As you requested, we divided up the set of 15 samples into three separate projects (L-1113, L-1114,
and L-1115; see Table 1 for a summary). This report covers the first set under PAL L-1113. The analytical
procedures conformed or exceeded the ones described in Method 23 using isotope-dilution high-resolution
gas chromatography combined with high-resolution mass spectrometry. The Level II reporting format is
described on the next page. A general summary of the analytical results is presented in Tables 2 (when
applicable, the train results are provided exclusive of the front-half data) and 3 (when applicable, the train
results include the front-half data). Tables 4 and 5 summarize the results for the front-halve of the
three inlet samples, expressed in absolute amount "ng" per sample, and in relative concentrations
"part-per-trillion" based on the weight of dust collected. Figures land 2 show the TEQs and total
homologues corresponding to Tables 2 data.
No. of Samples Received: 7
No. of Samples Analyzed: 9
No. of Lab. Method Blanks: 1
Your Project Number: S509.000 Ohio Lime Kiln
PAL Project No.: L-1113
Remarks:
• Data meet QA/QC requirements.
• The FH of samples M23-I-1 and M23-I-2 contain, respectively, 25.5 g and 81.9 g of dust, and were
processed as separate samples, i.e., M23-I-1-FH and M23-I-2-FH. The results are reported in two
ways:
a) Absolute amount in "ng" per sample,
b) Relative concentration in parts-per-trillion (ppt) based on the weight of dust.
• No analytical difficulties to be reported.
• The "Cn-OCDD extraction standard in sample M23-I-2-FH is 37 percent. The method
recommends 40 percent as the lower limit. A data qualifier "V" is placed to indicate that the data
are valid on the basis of the S/N and DL.
• The sampling standards (HxCDD for M23-I-2; and HpCDF for M23-FB-1) are outside the
recommended limits of 70 to 130 percent. We believe this originates from a variation in the relative
response factors. The reported amounts or concentrations of analytes should not be affected by this
observation.
We wanted to thank you for the opportunity to serve you. Please, feel free to contact us if you
have questions or should you need additional technical support.
Yves Tondeur, Ph.D.
{( 001
North Carolina Wastewater Certification #481
-------
Level n Report
Section 1: Cover Letter, contains a brief description of the project, the client and PAL Project
Numbers, the number and type of samples, the methodology used to process the
samples, QC remarks where any analytical difficulties are discussed and the impact on
the quality of the data presented, a summary table with the analyte concentrations,
detection limits, the client sample identification numbers, units to report the
concentrations, and a graphical representation of the TEQs and totals.
Section 2: Project Synopsis, contains the Sample Tracking & Management Forms,
Communications Form, any correspondence, chain-of-custody and the last page is
always a copy of the sample injection log(s). This section is designed to help the
laboratory and the data reviewer with an overall view of the entire analytical
procedure, the initials and dates of who did what when on which sample. Spiking
solution IDs are recorded along with the batch numbers of the supplies and reagents
used.
Section 3: Analytical Results, contains the sample results topsheets (one set of two per sample),
the raw data (i.e., the selected ion current profiles, the areas, heights, ion abundance
ratios, signal-to-noise ratios, and retention times of the GC peaks).
Section 4: System Performance, contains the documentation on the GC/MS system performance.
In particular, the mass resolution checks, GC column performance checks, initial and
continuing calibration summary tables and, when applicable, associated raw data for
both column types.
002
-------
Table 1: Project No. S509.000; Project Name: US EPA Lime Kiln Screening, OhioLime;
Sample and Project Identifications.
PES Sample ID PAL Sample ID PAL Project No.
M23-I-1 1113-1 L-1113
M23-O-1 1113-3 L-1113
M23-FB-1 1113-5 L-1113
M23-RB 1113-7 L-1113
M23-I-1-FH 1113-8 L-1113
M23-I-2 1113-2 L-1113
M23-O-2 1113-4 L-1113
M23-FB-2 1113-6 L-1113
M23-I-2-FH 1113-9 L-1113
M23-O-3 1114-1 L-1114
M23-FB-3 1114-2 L-1114
M23-I-4 1115-1 L-1115
M23-O-4 1115-2 L-1115
M23-FB-4 1115-3 L-1115
M23-I-4-FH 1115-4 L-1115
£( ' 003
-------
Table 2: Analyte Concentrations in "ng" per Sampling Train
(Exclusive of the Front-Half Data for M23-I-1 and M23-I-2.)
Analvte _', J
^visF>4- "^
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF"
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fs"
TEQ (ND=0)°
TEQ (ND=l/2)d
TEQ EMPC(ND=0)e
TEQ EMPC
(ND=l/2)
jSmOO^
(0.001)
(0.001)
(0.001)
(0.001)
(0.001)
[0.0018]
0.006
(0.002)
(0.001)
(0.001)
(0.001)
(0.001)
(0.001)
(0.001)
(0.001)
(0.001)
(0.003)
(0.001)
[0.0016]
(0.001)
[0.0052]
(0.002)
(0.001)
(0.001)
(0.001)
0.006
0.000
0.002
0.000
0.002
^EAff^hliil*
0.010
0.011
0.00788]
0.00708]
0.011
0.020
0.039
0.154
0.146
0.136
0.153
0.114
0.039
0.010
0.171
0.024
0.024
0.266
0.132
0.068
0.036
4.467
2.095
0.896
0.262
8.287
0.141
0.141
0.142
0.142
[0.00394]
0.005
0.005
0.005
0.014
0.074
0.224
0.044
0.052
0.032
0.070
0.042
0.021
[0.00388]
0.169
0.029
0.268
0.437
0.276
0.406
0.135
1.287
0.708
0.328
0.265
4.334
0.044
0.045
0.049
0.049
0.003
0.004
[0.00264]
0.007
0.006
0.021
0.033
0.029
0.015
0.010
0.036
0.012
[0.00312]
(0.001)
0.057
0.008
0.067
0.499
0.280
0.295
0.037
0.310
0.104
0.068
0.078
1.770
0.020
0.020
0.021
0.021
0.002
0.002
[0.0022]
0.006
[0.00636]
0.064
0.256
0.010
0.005
0.007
0.017
0.011
0.014
0.001
0.068
[0.01572]
0.057
0.293
0.085
0.067
0.116
0.176
0.069
0.091
0.084
1.294
0.015
0.015
0.016
0.016
sSSJMMSffltlil
(0.001)
(0.002)
(0.002)
(0.002)
(0.002)
[0.00328]
(0.014)
(0.002)
(0.001)
(0.001)
(0.001)
(0.001)
(0.001)
(0.001)
(0.002)
(0.002)
(0.007)
[0.0032]
(0.002)
(0.002)
0.003
(0.002)
(0.001)
(0.001)
(0.002)
0.003
0.000
0.002
0.000
0.002
1SSS09.00tf
P&ijPirTPP*^!^
(0.001)
(0.001)
(0.001)
(0.001)
(0.001)
[0.0044]
[0.01028]
(0.002)
(0.001)
(0.001)
[0.0008]
(0.000)
(0.001)
(0.001)
(0.001)
(0.001)
(0.003)
(0.001)
[0.002]
0.002
0.002
[0.0028]
(0.001)
[0.0008]
(0.001)
0.004
0.000
0.001
0.000
0.001
$feNSfe
JVJ2341B-
(0.001)
(0.001)
(0.001)
(0.001)
0.001
0.003
(0.006)
(0.001)
(0.001)
(0.001)
(0.001)
(0.001)
(0.001)
(0.001)
0.004
(0.001)
(0.003)
(0.001)
(0.001)
0.001
0.003
0.002
(0.001)
[0.0012]
0.004
0.009
0.000
0.001
0.000
0.001
a) Result obtained from the DB-225 analysis.
b) Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dibenzofurans.
c) TEQ computed using ITEF and setting non detected analytes with a "Zero" concentration.
d) TEQ computed using ITEF and setting non detected analytes with a concentration half the
calculated detection limit.
e) TEQ computed using ITEF and setting the concentration of EMPC analytes to the EMPC value.
NOTE:
() = ND using DL value.
[ ] = EMPC value.
( 004
-------
Table 3: Analyte
(Include
Concentrations in "ng" per Sampling Train
the Front-Half Data for M23-I-1 and M23-I-2.)
Analvte
*~^~* - „ *•
, -•* -t*'
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1 ,2,3,4,7 ,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1, 2,3,4,6,7 ,8-HpCDD
OCDD
2,3,7,8-TCDF'
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2 ,3,4,7 ,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1, 2,3,7 ,8,9-HxCDF
1, 2,3,4,6,7 ,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fs"
TEQ (ND=0)C
TEQ(ND=l/2)d
TEQ EMPC(ND=0)'
- s^lapi^^
x •'jJ-JJIIaSf -";
^ v < ^
0.0096
0.0108
0.0000
0.0000
0.0112
0.0201
0.0393
0.1545
0.1460
0.1362
0.1526
0.1143
0.0386
0.0098
0.1708
0.0241
0.0244
0.2656
0.1324
0.0684
0.0360
4.4672
2.0952
0.8960
0.2624
8.2869
0.1407
0.1408
01422
23g|j|||||jjjf
„, ^^^^ - a$
0.0000
0.0000
0.0000
0.0028
0.0035
0.0170
0.0600
0.0046
0.0000
0.0034
0.0057
0.0038
0.0000
0.0000
0.0000
0.0000
0.0000
0.1728
0.1232
0.1192
0.0308
0.0412
0.0252
0.0164
0.0000
0.5888
0.0040
0.0048
0.0055
0.00%
0.0108
0.0000
0.0028
0.0148
0.0371
0.0993
0.1590
0.1460
0.1396
0.1583
0.1 181
0.0386
0.0098
0.1708
0.0241
0.0244
0.4384
0.2556
0.1876
0.0668
4.5084
2.1204
0.9124
0.2624
8.8757
0.1447
0.1456
0.1477
•?%g 4 ^S&$£^P$S(S&$
0.0000
0.0048
0.0053
0.0048
0.0138
0.0744
0.2241
0.0439
0.0522
0.0322
0.0696
0.0418
0.0208
0.0000
0.1692
0.0294
0.2682
0.4368
0.2756
0.4060
0.1352
1.2868
0.7080
0.3276
0.2652
4.3336
0.0443
0.0450
0.0487
3P15«ii5i53iSi§
0.0000
0.0000
0.0000
0.0044
0.0057
0.0000
0.0212
0.0224
0.0000
0.0340
0.0933
0.0701
0.0248
0.0060
0.1256
0.0000
0.0150
0.1156
0.0900
0.0884
0.0104
0.4980
0.4972
0.4996
0.1656
2.0010
0.0410
0.0420
0.0481
agrfEllL
SSireȣ?
0.0000
0.0048
0.0053
0.0092
0.0194
0.0744
0.2453
0.0663
0.0522
0.0662
0.1629
0.1119
0.0456
0.0060
0.2948
0.0294
0.2832
0.5524
03656
0.4944
0.1456
1.7848
1.2052
0.8272
0.4308
6.3346
0.0853
0.0870
0.0968
a) Result obtained from the DB-225 analysis.
b) Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dibenzofurans.
c) TEQ computed using ITEF and setting non detected analytes with a "Zero" concentration.
d) TEQ computed using ITEF and setting non detected analytes with a concentration half the
calculated detection limit.
e) TEQ computed using ITEF and setting the concentration of EMPC analytes to the EMPC value.
NOTE:
() = ND using DL value.
[ ] = EMPC value.
('. 005
-------
Table 4: Analyte Concentrations in "ng" per Front-Half Sampling Train (i.e., filter and dust) for aU runs
(i.e., M23-I-1, M23-I-3, and M23-I-4).
OCDD
2,3,4,6,7,8-HxCDF
,2,3,7,8-PeCDD
,2,3,4,7,8-HxCDD
,2,3,6,7,8-HxCDD
,2,3,7,8,9-HxCDD
,2,3,4,6,7,8-HpCDD
,3,7,8-TCDF1
,3,4,7,8-PeCDF
,2,3,4,7,8-HxCDF
,2,3,6,7,8-HxCDF
,2,3,7,8,9-HxCDF
,2,3,4,6,7,8-HpCDF
,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fs"
TEQ (ND=0)C
TEQ (ND=l/2)d
TEQ EMPC(ND=0)'
TEQ EMPC
(ND=l/2)
0.0000
0.0000
0.0028
0.0035
0.0170
0.0600
0.0046
0.0000
0.0034
0.0000
0.0000
0.0044
0.0057
0.0000
0.0212
0.0224
0.0000
0.0057
0.0038
0.0000
0.0000
0.0000
0.0000
0.0340
0.0933
0.0701
0.0248
0.0060
0.1256
0.0000
0.0000
0.0150
0.1728
0.1232
0.1192
0.0308
0.0412
0.0252
0.0164
0.0000
0.5888
0.1156
0.0900
0.0884
0.0104
0.4980
0.4972
0.4996
0.1656
2.0010
0.0040
0.0048
0.0055
0.0061
0.0410
0.0420
0.0481
0.0481
0.0008
0.0010
0.0021
0.0034
0.0118
0.0000
0.0062
0.0000
0.0098
0.0166
0.0078
0.0072
0.0000
0.0256
0.0000
0.0121
0.0032
0.0128
0.0400
0.0212
0.2308
0.1120
0.0548
0.0284
0.5153
0.0101
0.0107
0.0106
0.0111
a) Result obtained from the DB-225 analysis.
b) Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dibenzofurans.
c) TEQ computed using ITEF and setting non detected analytes with a "Zero" concentration.
d) TEQ computed using ITEF and setting non detected analytes with a concentration half the
calculated detection limit.
e) TEQ computed using ITEF and setting the concentration of EMPC analytes to the EMPC value.
NOTE: ND and EMPC are considered as zeros.
006
-------
Table 5: Analyte Concentrations in "parts-per-trillion" for the Front-Half Sampling Trains (i.e., filter and
dust) for aU runs (i.e., M23-I-1, M23-I-3, and M23-I-4).
Analyte
-*• -?~ -
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF"
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
Total PCDD/Fsb
TEQ (ND=0)C
TEQ (ND=l/2)d
TEQ EMPC(ND=0)e
TEQ EMPC (ND=l/2)
S509.000 J=
SJ23=M^
(0.038)
[0.06596]
[0.06282]
0.110
0.138
0.667
2.356
0.179
[0.12564]
0.135
0.225
0.148
[0.14291]
(0.034)
(0.250)
(0.289)
[0.49156]
6.784
4.837
4.680
1.209
1.618
0.989
0.644
(0.250)
23.117
0.157
0.189
0.217
0.240
^^^L^^^^^P^P^^
[0.03271]
[0.03612]
[0.02978]
0.054
0.069
[0.1733]
0.259
0.273
[0.59605]
0.415
1.139
0.856
0.303
0.073
1.533
[0.18306]
0.183
1.411
1.098
1.079
0.127
6.078
6.068
6.097
2.021
24.420
0.500
0.513
0.587
0.587
(0.043)
0.039
0.050
0.103
0.165
0.570
[0.77789]
0.303
[0.36081]
0.477
0.805
0.376
0.351
(0.065)
1.243
[0.18041]
0.588
0.155
0.621
1.940
1.028
11.193
5.432
2.658
1.377
24.991
0.492
0.518
0.513
0.537
a) Result obtained from the DB-225 analysis.
b) Total PCDD/Fs represent the sum of all polychlorinated dibenzo-p-dioxins & dibenzofurans.
c) TEQ computed using ITEF and setting non detected analytes with a "Zero" concentration.
d) TEQ computed using ITEF and setting non detected analytes with a concentration half the
calculated detection limit.
e) TEQ computed using ITEF and setting the concentration of EMPC analytes to the EMPC value.
NOTE:
() = ND using DL value.
[ ] = EMPC value.
007
-------
TEQ
Amount in "ng" per Train 0.080 -
0.160 -
0.140 -
0.120 -
0.100 -
0.080 -
0.060 -
0.040 -
0.020 -
X
0.002
i
i
!
i
I
I
i!
||
|
0.
\
sssssss
i
I
%
i
i
14
2
0.049
.JBf=|
IN °-°16
iAi III 1 I °-002 °-001 °-°°1
_ i i i i !
§YO CM 0
— . -r P -T P
2 ^ CO O> CO O)
_j O CM O CM O
in 5 m 5 in
CO •* CO •* CO
•, o v o
O q o P
in csi
Sample
0TEQ (ND=0)
STEQ (ND=1/2)
BTEQ EMPC (ND=0)
OTEQEMPC(ND=1/;
Figure 1: Graphical representation of the TEQs based on the data presented in Table 2
(H ( 008
-------
Total Homologues
Amount in "ng" per Train
2 w
Sample
Figure 2: Graphical representation of the totals (terra- through octachlorinated congeners) based on the data
presented in Table 2.
C< ( 009
-------
PAL Project No.: L-1113
Section 2
Project Overview
&
Sample Tracking & Communication Forms
c
H
-------
Project Overview for the Analysis of Polychlorinated Dibenzo-/?-Dioxins & Dibenzofurans
No. of Field Samples: 9
No. of Billable Samples: 9
PAL Project No.: L-1113
Date Received: 08 SEP 98
Due Date: 30 SEP 98
Client Project ID: S509.000
| Concentration | sopsp-N-02
Spike Profile
ES: 23
SS: 23
JS: 23
4 ng (1-2)
4ng(l-l)
Tridecane batch No.:
Thimbles batch No.:
Toluene batch No.:
Pre-Soxhlet:
Others:
Sampling Modules Prep. Project No.:
Cone.: 0.1 ng/ n L
SOPSP-S-01
Soxhlet 16 H Toluene
SOPSP-E-01
i
Concentration & Solvent Exchange | SOPSP-N-OI
I
Split Extract
I
SOPSP-D-01
Hexane batch No.:
CH2C12 batch No.:
Silica batch No.:
Alumina batch No.:
PCU-F batch No.:
NajSO, batch No.:
SOPSP-D-01
Special Instructions:
Fractionation SOPSP-U-OS
I
Concentration
SOPSP-N-01
Add M23-JS-ffrtn-SO/-/to
Vol.;20nL; Cone.: 0.1 ng/pL
SOPSP-S-01
HRGC-HRMS
SOPSP-A-01
-------
Project Overview for the Analysis of Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans
No. of Field Samples: 9
No. of Billable Samples: 9
3wr
Sr
*.
M
~$*r~
8A.M.
t
Special Instructions:
PAL Project No.: L-1113
Date Received: 08 SEP 98
Due Date: 30 SEP 98
Client Project ID: S509.000
X
•. j
wd
SOPSP-A-01
Sample Extract
Fortified with JS
Reporting Level: I fn) III H+ III+
SOPRP-G-01
I
Data Package
Assembly
SOPSH-A-01
Archive Data
SOPRP-A-01
SOPSH-D-Ol
8P.M.
1
r
MS
^
GC
t,
Calibration
^
Blank
Samples
^
ConCal
^
MS
Instruitxait ID:
HP-5MS batch No.:
DB225 batch No.:
ICal:
ConCal:
-------
Sample Tracking for the Analysis of Polychlorinated Dibenzo-/?-Dioxins & Dibenzofurans
No. of Field Samples: _9_
Page_/_of_/_
PAL Project No.: L-1113
Date Received: 08 SEP 98
Due Date: 30 SEP 98
Client Project ID: S509.000
Lab Sample ID
Client Sample ID
Observations
(use attached communication exchanges form if needed)
SDS
Cone.
S.Ex.
Split
Arch.
PCU
Cone.
JS
TCDF
Misc.
c
H
L-l 11 3-0
L-1113-1
L-l 113-2
L-1113-3
L-l113-4
L-l 113-5
L-l 113-6
L-1113-7
L-l 113-8
L-l 113-9
Lab Method Blank
M23-I-1
M23-I-2
M23-O-1
M23-O-2
M23-FB-1
^_
vX
•
— *
M23-FB-2
M23-RB
M23-I-1-FH
M23-I-2-FH
Ut*
.A.
)
-------
Communication Exchanges Form for the Analysis of PCDD/PCDFs
No. of Field Samples: _9_
c
H
PAL Project No.: L-l 113
Date Received: 08 SEP 98
Due Date: 30 SEP 98
Client Project ID: S509.000
>;f »*tf
Method 2i
-------
PARADIGM ANALYTICAL LABORATORIES, INC.
2627 Northchase Parkway S.E.
Wilmington, North Carolina 28405
(910) 350-1903
Fax (910) 350-1557
Contract No.:
Subcontract No.:
Work Assignment:
09 SEP 98
68D70002
RO12-002
1-007
Michael Maret
Pacific Environmental Services, Inc.
5001 S. Miami Blvd
P.O. Box 12077
Research Triangle Park, NC 27709-2077
Reference: Project No. R012.003; Project Name: US EPA Lime Kiln Screening, Ohio Lime
Subject: Inlet Samples Heavy Particulate Load
Dear Mike:
The twelve Method 23 samples were received in good condition and no discrepancies were noted
between the sample labels and the chain-of-custody. As we discussed, we organized the samples into three
separate projects, each assigned a specific PAL Project No. Table 1 summarizes the sample identification
and their associated PAL Project Nos.
As we discussed, the particulates and filters from the Inlet samples will be extracted and analyzed
as separate samples. We will treat the FH and BH as two separate samples with each sample receiving a
normal dose of Method 23 internal standards before the extraction. The analytical results will be presented
in two formats:
1. Absolute amounts of analyte per front half.
2. Concentrations of the analyte based on the weight of the dust.
Please, let us know if you have questions. I can be reached at 910-350-2839.
Sincerely,
Yves Tondeur, Ph.D.
015
North Carolina Wastewater Certification #481
-------
Table 1: Project No. R012.003; Project Name: US EPA Lime Kiln Screening, Ohio Lime;
Sample and Project Identification.
PES Sample ID
M23-I-1
M23-0-1
M23-FB-1
M23-RB
M23-I-1-FH
M23-I-2
M23-O-2
M23-FB-2
M23-I-2-FH
M23-6-3
M23-FB-3
M23-I-4
M23-O-4
M23-FB-4
M23-I-4-FH
PAL Sample ID
PAL Project No.
1113-1
1113-3
1113-5
1113-7
1113-8
L-1113
L-1113
L-1113
L-1113
L-1113
1113-2
1113-4
1113-6
1113-9
L-1113
L-1113
L-1113
L-1113
1114-1
1114-2
_Lrlll4_
L-1114
1115-1
1115-2
1115-3
1115-4
L-1115
L-1115
L-1115
L-1115
( 016
-------
Paradigm Analytical Labs
Login Report (In01)
Aug. 08, 1998
10:24 AM
Login Number: L1113
Account: 1027 Pacific Environmental Services, Ir
Project: S509.000 US EPA Lime Kiln Screening- OH Page: 1 of 1
.aboratory Client Collect
iample Number Sample Number Date
1113-1
JtackAir
StackAir
JtackAir
1113-2
5tackAir
itackAir
JtackAir
1113-3
itackAir
JtackAir
JtackAir
1113-4
itackAir
itackAir
itackAir
113-5
ItackAir
itackAir
itackAir
113-6
itackAir
itackAir
ItackAir
113-7
itackAir
itackAir
itackAir
113-8
olid
113-9
olid
:
P
C
C
p
c
c
p
c
c
,.
p
c
c
p
c
c
p
c
c
p
c
c
s
s
M23-I-1
23-TO
8290-TO-FT
8290-TO-SL
M23-I-2
23-TO
8290-TO-FT
8290-TO-SL
M23-O-1
23-TO
8290-TO-FT
8290-TO-SL
M23-O-2
23-TO
8290-TO-FT
8290-TO-SL
M23-FB-1
23-TO
8290-TO-FT
8290-TO-SL
M23-FB-2
23-TO
8290-TO-FT
8290-TO-SL
M23-RB
23-TO
8290-TO-FT
8290-TO-SL
M23-I-1 FH
8290-TO-SL
M23-I-2 FH
8290-TO-SL
Hold:
Hold:
Hold:
Hold:
Hold:
Hold:
Hold:
27-AUG-98
03-SEP-98
03-SEP-98
28-AUG-98
04-SEP-98
04-SEP-98
27-AUG-98
Hold: 03-SEP-98
Hold:
Hold:
Hold:
Hold:
Hold:
Hold:
Hold:
Hold:
Hold:
Hold:
Hold:
Hold:
Hold:
Hold:
Hold:
03-SEP-98
28-AUG-98
04-SEP-98
04-SEP-98
27-AUG-98
03-SEP-98
03-SEP-98
28-AUG-98
04-SEP-98
04-SEP-98
02-SEP-98
09-SEP-98
09-SEP-98
27-AUG-98
03-SEP-98
28-AUG-98
04-SEP-98
Receive
Date
08-SEP-98
4 oz. Glass
4 oz. Glass
08-SEP-98
4 oz. Glass
4 oz. Glass
08-SEP-98
4 oz. Glass
4 oz. Glass
08-SEP-98
4 oz. Glass
4 oz. Glass
08-SEP-98
4 oz. Glass
4 oz. Glass
08-SEP-98
4 oz. Glass
4 oz. Glass
08-SEP-98
4 oz. Glass
4 oz. Glass
09-SEP-98
4 oz. Glass
09-SEP-98
4 oz. Glass
PR
N
1
1
N
1
1
N
1
1
N
1
1
N
1
1
N
1
1
N
1
1
1
1
Signature
Date
Due
Date Comments
29-SEP-98
Bottles
Bottles
29-SEP-98
Bottles
Bottles
29-SEP-98
Bottles
Bottles
29-SEP-98
Bottles
Bottles
29-SEP-98
Bottles
Bottles
29-SEP-98
Bottles
Bottles
29-SEP-98
Bottles
Bottles
30-SEP-98
BotUes PA^iculode CttrrJv.
30-SEP-98
Bottles tVvtluJu/T Cc^cAl
C 017
: urid
: OV3£P-
-------
Paradigm
Sample Receipt Checklist
1027
Client:
Client Project ID: S509.000
Lab Project: L1113
No
1
2
3
4
5
6
7
8
' 9
Check
YES / NO
<£f§D/ NO
<^E§)/ NO
YES / NO
YES / (fid)
j?EJ> 1 NO
°C
^(^Ep) / NO
YES / NO
YES / NO
N/
<^?E^ / NO
YES /QJCp
Description
Shipped
Hand Delivered
COC Present on Receipt
Additional Transmittal Form
COC Tape on Shipping Container
Samples Intact
Temperature
Sufficient Sample Submitted
Samples Preserved Correctly
No Preservative Noted
N/A (none recommeded)
Received within Holding time
N/A
Discrepancies between COC & Label
N/A (no COC Received)
Notes
Note : Use this form to record, comment and report any damages, observations (be specific) of
significance or potentially important for the resolution of downstream problems.
Additional Comments:
Inspected & Logged in by:
Date:
Time:
' 018
-------
I-
(I-
CU\
~0f1C*.U*-*4. I
PACIFIC ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Chain of Custody Record
S509.000
US EPA Lime Kiln Screening - Ohio Lime
Samplers:
Abemathy, Gay, Maret, D.D Holzschuh, Siegal, Stewart
Date
8/27/98
8/27/98
8/27/98
8/27/98
8/28/98
8/28/98
8/28/98
8/28/98
9/2/98
9/2/98
9/2/98
9/2/98
8/27/98
8/27/98
8/27/98
8/27/98
8/28/98
8/28/98
8/28/98
Time
Field Sample ID
M23-I-1-1
M23-I-1-2 \
M23-I-1-3
M23-I-1-4
M23-I-2-1
M23-I-2-2
M23-I-2-3
M23-I-2-4
M23-I-4-1
M23-I-4-2
M23-I-4-3
M23-I-4-4
M23-O-1-1
M23-O-1-2
M23-O-1-3
M23-O-1-4
M23-0-2-1
M23-O-2-2
M23-O-2-3
Sample Description
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Analysis Requested
&
c»
£
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
s
£
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
>
1*
4f
-------
PACIF1C ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Chain of Custody Record
Project Num IProject Name
S509.000 | US EPA Lime Kiln Screening - Ohio Lime
Samplers:
Abemathy, Gay, Maret, D.D Holzschuh, Siegal, Stewart
Date
8/28/98
8/31/98
8/31/98
8/31/98
8/31/98
9/2/98
9/2/98
9/2/98
9/2/98
8/27/98
8/27/98
8/27/98
8/27/98
8/28/98
8/28/98
8/28/98
8/28/98
8/31/98
8/31/98
Time
Field Sample ID
M23-O-2-4
M23-O-3-1
M23-O-3-2
M23-O-3-3
M23-O-3-4
M23-0-4-1
M23-O-4-2
M23-O-4-3
M23-O-4^4
M23-FB-1-1
M23-FB-1-2
M23-FB-1-3
M23-FB-1-4
M23-FB-2-1
M23-FB-2-2
M23-FB-2-3
M23-FB-2-4
M23-FB-3-1
M23-FB-3-2
Sample Description
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Analysis Requested
1?
&
*
•
•
•
•
•
•
•
*
•
•
•
•
•
•
•
•
•
•
£
£
•
•
•
•
•
•
•
•
•
•
•
•
*
•
*
•
•
•
•
Remarks
Report No. 1
Report No. 2
Report No. 2
Report No. 2
Report No. 2
Report No. 3
Report No. 3
Report No. 3
Report No. 3
FIELD BLANK 1 - Report No. 1
FIELD BLANK 1 - Report No. 1
FIELD BLANK 1 - Report No. 1
FIELD BLANK 1 - Report No. 1
FIELD BLANK 2 - Report No. 1
FIELD BLANK 2 - Report No. 1
FIELD BLANK 2 - Report No. 1
FIELD BLANK 2 - Report No. 1
FIELD BLANK 3 - Report No. 2
FIELD BLANK 3 - Report No. 2
Page 2 of 3 Pages
-------
i--
QPACIRC ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919)941-0333 FAX: (919) 941-0234
Chain of Custody Record
S509.000
US EPA Lime Kiln Screening - Ohio Lime
Samplers:
Abernathy, Gay, Maret, D.D Holzschuh, Siegal, Stewart
Date
8/31/98
8/31/98
9/2/98
9/2/98
9/2/98
9/2/98
9/2/98
9/2/98
9/2/98
9/2/98
Time
Field Sample ID
M23-FB-3-3
M23-FB-3-4
M23-FB-4-1
M23-FB-4-2
M23-FB-4-3
M23-FB-4-4
M23-RB-1
M23-RB-2
M23-RB-3
M23-RB-4
gafamiished b* (Signature)
l§$drr
RBfinAishetf by: (Signature)
^)vLy flAMfe. •
Date/Time
Date/Time
Hpfai&
Sample Description
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Container No. 1 - Filter
Container No. 2 - Train Acetone Rinse
Container No. 3 - Train Toluene Rinse
Container No. 4 - XAD Sorbent Resin
Received by: (Signature)
Received for lab by: (Signature)
fa- r--rft
^ — •
T IT "•titf'f'rftii/fcVfe-
Analysis Requested
*
&
•
•
•
•
•
•
•
•
•
•
Qf\
<=*
&>
•
•
•
•
•
•
•
•
•
•
Relinquished by: (Signature)
Date/Time
Remarks
FIELD BLANK 3 - Report No. 2
FIELD BLANK 3 - Report No. 2
FIELD BLANK 4 - Report No. 3
FIELD BLANK 4 - Report No. 3
FIELD BLANK 4 - Report No. 3
FIELD BLANK 4 - Report No. 3
REAGENT BLANK - All reports
REAGENT BLANK - All reports
REAGENT BLANK - All reports
REAGENT BLANK - All reports
Received by: (Signature)
REMARKS
o
to
9/8/98
Page 3 of 3 Pages
-------
Q
^
Preparation of the XAD-2 Resin for Method 23 Sampling Session
No. Sampling Modules: _15_
No. Filters: 25
PAL Project No.: L-1102
Order Received: 21 AUG 98
Due Date: 24 AUG 98
Client Project ID: Ohio Lime Kiln
PES
ensure proper handling of the samples, please return this form with the field samples to:
Paradigm Analytical Labs
2627 Northchase Pkwy S.E.
Wilmington, NC 28405
Thank you for your cooperation. Our phone number is 910-350-2839. (Fax:910-350-1557)
*t^$eth
Mailing Address: Mike Maret
(no P.O. Box) Holliday Inn Express
10621 Freemont Pike
Perrysburg, OH 43551
_ . 1T . .. Ph.:419-874-3101
Special Instructions;
Use two traps from Cherockee's
Note: An amount of resin equal to one module was fortified as
described above, retained by the laboratory and kept at 4°C.
Upon return of the field samples, this aliquot will be
used to process the Laboratory Method Blanjs
QC sample.
Filters
Batch No.:
Size:
Type:
_83 mm diameter
""""" ^s
-lass Fibep) Quartz
XAD-2 Resin Modules
Batch No.: &H - it09~>
Type:d)alI/Socket) <£Rtag Ball/Socket Screw Cap
Add
Vol.: 40 M L ; Cone.: 0.1 ng/ M L
Preparation Date:
[Two-week holding time]
Analyst:
-------
-1
to
CO
OPUSquan 28-SEP-1998
Paradigm Sample Log
Data File S
a27sep98m \-~
a27sep98m 2
a27sep98m 3
a27sep98m 4 "•
a27sep98m 5
a27sep98m 6
a27sep98m 7
a27sep98m 8
a27sep98m 9
a27sep98m 10
a27sep98m 11
a27sep98m 12
a27sep98m 13
a27sep98m 14
a27sep98m 15
a27sep98m 16 ^
Page 1
Sample ID
DB-5 Retchk"
FE CS3 I/
1598m23 xl/1
1113-0 xl/2
1113-1 xl/2
1113-2 xl/2
1113-3 xl/2
1113-4 xl/2
1113-5 xl/2
1113-6 xl/2
1113-7 xl/2
1113-8 xl/2
1113-9 xl/2
1096R-1 xl/1
1096R-2 xl/1 /
BE CS3 •/
1
1
Acq. Dat'e
27-SEP-98
27-SEP-98
27-SEP-98
27-SEP-98
27-SEP-98
27-SEP-98
27-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
28-SEP-98
J
Page 1 of 1
Time .
•
19:06:26
19:53:39
20:41:49
21:28:07
22:14:09
23:04:17
23:51:30
00:37:43
01:23:49
02:13:51
02:59:53
03:49:00
04:38:30
05:24:34
06:10:38
06:56:45
-------
J
OPUSquan 30-SEP-1998
Paradigm Sample
Data File
a29sep98m
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
a29sep98n
Log
S
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Page 1
Sample ID
B-225 Retchk v
CS3 »/
SB
1120-2
1115-1
1115-2
1115-4
1114-1
1113-1
1113-2
1113-3
1113-4
1113-8
1113-9
1104-6
CS3 i/
t
Acq. Dat'e
29-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
29-SEP-98
30-SEP-98
30-SEP-98
30-SEP-98
30-SEP-98
30-SEP-98
Page 1 of 1
Time
16:13:59
17:07:50
17:49:53
18:31:58
19:16:01
19:58:07
20:40:14
21:24:44
22:06:58
22:49:04
23:31:14
00:15:21
01:01:50
01:43:55
02:26:01
03:08:06
-------
Section 3
Analytical Results
Documentation for the Analysis
of
Polychlorinated Dibenzo-/>-Dioxins & Dibenzofurans
o
-------
Paradigm Analytical Labs
Method 2 3
LMB
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8--TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
tag)
ND
ND
ND
ND
ND
EMPC
0.0056
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0000
0.0015
DL
(a&
0.0014
0.0006
0.0014
0.0012
0.0013
0.0008
0.0017
0.0019
0.0005
0.0005
0.0009
0.0008
0.0009
0.0010
0.0011
0J0Q13
0.0034
0.0014
0.0006
0.0012
0.0008
0.0019
0.0005
0.0008
0.0011
EMPC
tag)
0.0018
0.0016
0.0052
0.0000
0.0015
RT
(mm.)
28:57
33:02
35:09
35:09
35:21
37:31
40:23
27:56
32:49
34:39
35:01
36:43
37:53
Ratio
0.33
2.8
0.72
0.72
0.88
0.54
0.89
1.08
1.27
2.9
1.15
5.23
2.32
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
LMB
L1113
1113-0
NA
NA
15-Sep-98
27-Sep-98
Sample Information
Matrix:
Weight / Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
End ConCal:
Initial Cal:
Air
1
0.0 %
a27sep98m-4
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
C( 02C
1/2
-------
Paradigm Analytical Labs
Method 23
LMB
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13Cirl,2,3,7,8-PeCDD
13CI2-l,2,3,6,7,8-HxCDD
13Ci2-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl,-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
13C12-l,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
Injection Standards
13Cirl,2,3,4-TCDD
13Cl2-l,2,3,7,8,9-HxCDD
Expected
Amount
(»E)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured
Amount
(ng)
3.81
4.32
3.84
3.83
5.53
3.91
4.14
4.07
3.35
3.69
3.72
4.03
3.53
3.66
Percent
Recovery
<•/•)
95.1
108.1
95.9
95.7
69.1
97.8
103.6
101.8
83.8
92.3
92.9
100.7
88.3
91.6
RT
(min.)
28:56
33:01
35:08
37:31
40:22
27:54
32:22
34:38
36:42
28:57
32:49
35:04
34:33
37:52
28:39
35:21
Ratio
0.79
1.57
1.29
1.06
0.9
0.79
1.57
0.53
0.44
1.59
1.26
0.53
0.44
0.8
1.28
Qualifler
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
LMB
L1113
1113-0
NA
NA
15-Sep-98
27-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retohk:
Begin ConCal:
EndConCal:
Initial Cal:
Air
1
0.0
a27sep98m-4
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
Reviewed by:
Date Reviewed:
r
027
2/2
-------
O
to
00
OPUSquan 28-SEP-1998 Page
Filename a27sep98m
Sample 4
Acquired 27-SEP-98 21:28:07
Processed 28-SEP-98 09:35:38
Sample ID 1113-0 xl/2
Cal Table m8290-091498
Results Table M8290-092798M
Comments
Typ ; Name; Resp;
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
cs
cs
cs
cs
cs
ss
ss
ss
ss
ss
2,3,7,8-TCDD; 2.62e+05;
1,2, 3,7,8-PeCDD; 4.58e+04;
1,2,3,4,7,8-HxCDD; 4.67e+04;
1,2,3,6,7,8-HxCDD; 4.67e+04;
1,2,3,7,8,9-HxCDD; 8.75e+04;
1,2,3,4,6,7,8-HpCDD; 9.25e+04;
OCDD; 2.016+05;
2,3,7,8-TCDF; 2.136+05;
1,2,3,7,8-PeCDF; *;
2,3,4,7,8-PeCDF; 5.73e+04;
1,2,3,4,7,8-HxCDF; *;
1,2,3,6,7,8-HxCDF; 3.87e+04;
2,3,4,6,7,8-HxCDF; 3.736+04;
1,2,3,7,8,9-HxCDF; *;
1,2,3,4,6,7,8-HpCDF; 7.91e+04;
1,2,3,4,7,8,9-HpCDF; 3.79e+04;
OCDF; *;
13C-2,3,7,8-TCDD; 3.14e+08;
13C-l,2,3,7,8-PeCDD; 2.37e+08;
13C-1, 2 ,3,6,7, 8-HxCDD; 2 . 69e+08 ;
13C-1 , 2,3,4,6,7, 8-HpCDD; 2 . 26e+08 ;
13C-OCDD; 2.87e+08;
13C-2,3,7,8-TCDF; 4.01e+08;
13C-l,2,3,7,8-PeCDF; 3.53e+08;
13C-l,2,3,6,7,8-HxCDF; 3.28e+08;
13C-1 , 2,3,4,6,7, 8-HpCDF; 1 . 78e+08 ;
13C-1,2,3,4-TCDD; 3.116+08;
13C-1,2,3,7,8, 9-HxCDD; 2 . 67e+08 ;
37Cl-2,3,7,8-TCDD; 2.84e+08;
13C-2,3,4,7,8-PeCDF; 3.226+08;
13C-l,2,3,4,7,8-HxCDD; 2.05e+08;
13C-1 , 2,3,4,7, 8-HxCDF; 2 . 40e+08 ;
13C-l,2,3,4,7,8,9-HpCDF; 1.43e+08;
37Cl-2,3,7,8-TCDD; 2.84e+08;
13C-2,3,4,7,8-PeCDF; 3.22e+08;
13C-1 , 2,3,4,7, 8-HxCDD; 2 . 05e+08 ;
13C-l,2,3,4,7,8-HxCDF; 2.406+08;
13C-l,2,3,4,7,8,9-HpCDF; 1.43e+08;
2
3
1
1
4
3
9
1
3
2
1
6
2
1
1
1
1
1
1
2
1
5
1
1
2
1
1
8
4
2
1
1
8
4
1
Ion 1;
.18e+04;
.38e+04;
.95e+04;
.95e+04;
.lOe+04;
.25e+04;
.49e+04;
.lle+05;
* .
.20e+04;
* .
.88e+04;
.99e+04;
* .
.64e+04;
.65e+04;
* .
.38e+08;
.45e+08;
.52e+08;
.16e+08;
.36e+08;
.77e+08;
.16e+08;
.14e+08;
.45e+07;
.38e+08;
.50e+08;
.84e+08;
.98e+08;
.14e+08;
.27e+07;
.35e+07;
.84e+08;
.98e+08;
. 14e+08;
.27e+07;
. 35e+07;
Ion 2;
2.41e+05;
1.21e+04;
2.72e+04;
2.726+04;
4.65e+04;
6.006+04;
1.07e+05;
1.03e+05;
* .
2.536+04;
* .
9.91e+03;
1.74e+04;
* .
1.27e+04;
1.14e+04;
* .
1.76e+08;
9.25e+07;
1.18e+08;
1.10e+08;
1.516+08;
2.24e+08;
1.37e+08;
2.14e+08;
1.24e+08;
1.736+08;
1.176+08;
-;
1.24e+08;
9.06e+07;
1.576+08;
9.916+07;
1.24e+08;
9.06e+07;
1.57e+08;
9.91e+07;
0
2
0
0
0
0
0
1
1
2
1
5
2
0
1
1
1
0
0
1
0
0
0
1
1
1
0
0
1.
1.
0.
0.
RA;?; RT;
. 09, -n; 28:57;
80 ;n; 33:02;
72, -n; 35:09;
.72,-n; 35:09;
.88;n; 35:21;
54,-n; 37:31;
89, -y; 40:23;
08 ;n; 27:56;
*;n;NotFnd;
27, -n; 32:49;
*;n;NotFnd;
90;n; 34:39;
15, -y; 35:01;
*;n;NotFnd;
23;n; 36:43;
32 ;n; 37:53;
*;n;NotFnd;
79;y; 28:56;
57;y; 33:01;
29, -y; 35:08;
06;y; 37:31;
90;y; 40:22;
79, -y; 27:54;
57;y; 32:22;
53 ;y; 34:38;
44 ;y; 36:42;
80 ;y; 28:39;
28;y; 35:21;
-;-; 28:57;
59 ;y; 32:49;
26;y; 35:04;
53 ;y; 34:33;
44 ;y; 37:52;
-;-; 28:57;
59, -y; 32:49;
26;y; 35:04;
53, -y; 34:33;
44, -y; 37:52;
Cone ;
0.082;
0.017;
0.021;
0.019;
0.037;
0.045;
0.140;
0.053;
* .
0.018;
* .
0.011;
0.011;
* .
0.033;
0.018;
* .
95.129;
108.105;
95.924;
95.676;
138.171;
97.833;
103.595;
101.832;
83.804;
69.241;
74.895;
87.819;
96.198;
96.743;
90.015;
76.751;
92.337;
92.893;
100.733;
88.337;
91.581;
DL;
0.0338;
0.0150;
0.0347;
0.0311;
0.0320;
0.0206;
0.0433;
0.0471;
0.0136;
0.0132;
0.0233;
0.0202;
0.0223;
0.0254;
0.0271;
0.0313;
0.0855;
0.1734;
0.1364;
0.0395;
1.0375;
0.0144;
0.0715;
0.0201;
0.2523;
0.1433;
-;
-;
0.0567;
0.0205;
0.0524;
0.3049;
0.1638;
0.0567;
0.0079;
0.0529;
0.2788;
0.2213;
S/N1;?;
l;n;
2;n;
l;n;
l;n;
2;n;
5;y;
7;y;
6;y;
*;n;
6;y;
*;n;
2;n;
2;n;
*;n;
4;y;
2;n;
*;n;
1098;y;
4791;y;
7109;y;
229;y;
9637,-y;
3819;y;
67311;y;
880,-y;
1275;y;
1045;y;
6882;y;
4836;y;
61477;y;
5244;y;
620;y;
934;y;
4836;y;
61477 ;y;
5244 ;y;
620 ;y ;
?34;y;
S/N2;?
25;y
6;y
2;n
2;n
2;n
10;y
12 ;y
2;n
*;n
2;n
*;n
l;n
2;n
*;n
2;n
l;n
*;n
3155;y
8299;y
8060;y
248;y
96778;y
4540;y
23410;y
1741;y
1714;y
2956;y
7708;y
-; -
21730;y
6059;y
1278;y
1262;y
-; -
21730;y
6059;y
1278;y
1262;y
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 1C
-------
OPUSquan 28-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:6
Run: 10 File: a27sep98m S:4 Acq:27-SEP-98 21:28:07 Proc:28-SEP-98 09:35:38
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-0 xl/2
Amount: 0.11
Cone: 0.11
Tox #1: -
Name
of which 0.05
of which 0.05
Tox #2: -
tt RT Respnse
named and 0.05
named and 0.05
Tox #3: -
RA
2,3,7,8-TCDF
1 25:34 2.5e+04 0.68 y
2.5e+04
2 25:38 1.9e+04 0.50 n
1.9e+04
3 25:42 3.0e+04 0.62 n
3.0e+04
4 25:56 3.0e+04 0.25 n
3.0e+04
5 27:21 l.le+05 0.35 n
l.le+05
6 27:56 2.1e+05 1.08 n
2.1e+05
Cone
0.01
1
1
0.00
e
]
o.oi
i
i
0.01
6
0.03
£
0.05
unnamed
unnamed
Area Height
S/N Mod?
l.Oe+04 7.2e+03 1.6e+00 n n
1.5e+04 8.5e+03 9.0e-01 n n
3
6.3e+03 3.6e+03 7.8e-01 n n
1.3e+04 6.0e+03 6.4e-01 n n
.2e+04 3.2e+03 7.0e-01 n n
.9e+04 8.0e+03 8.5e-01 n n
6.1e+03 2.5e+03 5.5e-01 n n
2.4e+04 7.6e+03 8.1e-01 n n
3
2.9e+04 7.9e+03 1.7e+00 n n
8.3e+04 1.8e+04 1.9e+00 n n
5
l.le+05 2.5e+04 5.5e+00 y n
l.Oe+05 2.3e+04 2.5e+00 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:2
Run: 10 File: a27sep98m S:4 Acq:27-SEP-98 21:28:07 Proc:28-SEP-98 09:35:38
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-0 xl/2
Amount: 0.10
Cone: 0.10
Tox #1: -
of which 0.08
of which 0.08
Tox #2: -
named and 0.02
named and 0.02
Tox #3: -
Name
2,3,7,8-TCDD
RT Respnse
RA
27:55 6.5e+04 9.16 n
6.5e+04
2 28:57 2.6e+05 0.09 n
2.6e+05
Cone
0.02
C
e
0.08
unnamed
unnamed
Area Height
S/N Mod?
5.9e+04 1.5e+04 2.6e+00 n n
6.4e+03 3.5e+03 1.5e+00 n n
2.2e+04 8.1e+03 1.3e+00 n n
2.4e+05 5.7e+04 2.5e+01 y n
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:4
Run: 10 File: a27sep98m S:4 Acq:27-SEP-98 21:28:07 Proc:28-SEP-98 09:35:38
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-0 xl/2
Amount: 0.03 of which 0.02 named and 0.01 unnamed
Cone: 0.03 of which 0.02 named and 0.01 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
2,3,4,7,8-PeCDF 1 32:49 5.7e+04 1.27 n 0.02
029
-------
OPUSquan 28-SEP-1998
Page 2
5.7e+04
2 33:22 1.6e+04 0.50 n 0.00
1.6e+04
3 33:28 6.0e+03 0.20 n 0.00
6.06+03
3.2e+04 1.4e+04 6.2e+00 y n
2.5e+04 1.3e+04 2.3e+00 n n
)
5.3e+03 3.2e+03 1.4e+00 n n
l.le+04 5.6e+03 9.9e-01 n n
3
l.Oe+03 8.3e+02 3.7e-01 n n
5.0e+03 2.6e+03 4.6e-01 n n
4 33:30 8.2e+03 0.64 n 0.00
8.2e+03
3.2e+03 2.6e+03 1.2e+00 n n
S.Oe+03 2.6e+03 4.6e-01 n n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:7
Run: 10 File: a27sep98m S:4 Acq:27-SEP-98 21:28:07 Proc:28-SEP-98 09:35:38
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-0 xl/2
Amount: 0.08
Cone: 0.08
Tox #1: -
Name
1,2,3,7,8-PeCDD
of which 0.02
of which 0.02
Tox #2: -
named and 0.06
named and 0.06
Tox #3: -
RT Respnse
RA
32:22 5.6e+04 4.74 n
5.6e+04
2 32:29 1.6e+04 3.01 n
1.6e+04
3 32:49 5.7e+04 4.05 n
5.7e+04
4 32:53 6.3e+03 1.76 y
6.3e+03
5 33:02 4.6e+04 2.80 n
4.6e+04
6 33:21 l.le+04 4.26 n
l.le+04
7 33:24 1.3e+04 5.50 n
1.36+04
Cone
0.02
4
c
0.01
3
<
0.02
4
]
0.00
4
0.02
T
]
0.00
€
0.00
unnamed
unnamed
Area Height
S/N Mod?
4.6e+04 2.3e+04 3.8e+00 y n
9.7e+03 3.8e+03 3.7e+00 y n
L
1.2e+04 7.56+03 1.36+00 n n
4.06+03 1.8e+03 1.8e+00 n n
4.6e+04 2.2e+04 3.7e+00 y n
l.le+04 6.7e+03 6.5e+00 y n
3
4.0e+03 2.3e+03 3.9e-01 n n
2.3e+03 2.0e+03 2.06+00 n n
I
3.46+04 l.le+04 1.9e+00 n n
1.2e+04 6.3e+03 6.16+00 y n
8.8e+03 5.5e+03 9.2e-01 n n
2.1e+03 1.7e+03 1.6e+00 n n
l.le+04 5.96+03 9.86-01 n n
2.1e+03 1.7e+03 1.6e+00 n n
030
-------
OPUSquan 28-SEP-1998
Page 3
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:7
Run: 10 File: a27sep98m S:4 Acq:27-SEP-98 21:28:07 Proc:28-SEP-98 09:35:38
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-0 xl/2
Amount: 0.06
Cone: 0.06
Tox #1: -
of which 0.02
of which 0.02
Tox #2: -
named and 0.03
named and 0.03
Tox #3: -
Name
1,2,3,6,7,8-HxCDF 1
RT Respnse RA
34:39 3.9e+04 2.90 n
3.9e+04
34:49 1.3e+04 1.78 n
1.3e+04
3 34:52 1.3e+04 1.49 n
1.3e+04
4 34:56 2.1e+04 0.78 n
2.1e+04
2,3,4,6,7,8-HxCDF 5 35:01 3.7e+04 1.15y
3.7e+04
6 35:05 2.6e+04 1.74 n
2.6e+04
7 35:09 3.9e+04
3.9e+04
1.68 n
Cone
0.01
S
0.00
e
4
0.00
£
c
0.01
9
1
0.01
2
1
0.01
1
9
0.01
unnamed
unnamed
Area Height
S/N Mod?
2.9e+04 1.5e+04 2.2e+00 n n
9.9e+03 6.4e+03 1.4e+00 n n
D
8.0e+03 3.1e+03 4.7e-01 n n
4.5e+03 3.5e+03 7.4e-01 n n
8.1e+03 5.4e+03 8.2e-01 n n
5.4e+03 2.6e+03 5.5e-01 n n
L
9.3e+03 4.7e+03 7.3e-01 n n
1.2e+04 3.9e+03 8.4e-01 n n
1
2.0e+04 1.2e+04 1.8e+00 n n
1.7e+04 8.6e+03 1.8e+00 n n
1.6e+04 6.5e+03 9.9e-01 n
9.5e+03 3.2e+03 6.9e-01 n
2.4e+04 8.5e+03 1.3e+00 n n
1.4e+04 4.0e+03 8.6e-01 n n
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:13
Run: 10 File: a27sep98m S:4 Acq:27-SEP-98 21:28:07 Proc:28-SEP-98 09:35:38
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: tn8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-0 xl/2
Amount: 0.16 of
Cone: 0.16 of
Tox #1: -
Name #
1
2
3
4
1, 2,3,6,7,8-HxCDD 5
1, 2,3,7,8,9-HxCDD 6
7
which
which
Tox
RT
34:37
34:43
34:53
34:59
35:09
35:21
35:28
0.
0.
#2
06
06
: -
Respnse
1.
1.
1.
1.
7.
7.
1.
1.
4.
4.
8.
8.
1.
1.
2e+05
2e+05
7e+04
7e+04
6e+03
6e+03
5e+04
5e+04
7e+04
7e+04
7e+04
7e+04
7e+04
7e+04
named and
named and
Tox
RA
5.52 n
1.25 y
1.44 n
0.54 n
0.72 n
0.88 n
0.45 n
0.10
0.10
#3: -
Cone
0.05
1
1
0.01
9
7
0.00
4
3
0.01
5
9
0.02
1
2
0.04
4
4
0.01
5
unnamed
unnamed
Area
.Oe+05
. 8e+04
.3e+03
.4e+03
.5e+03
.le+03
.3e+03
.9e+03
. 9e+04
.7e+04
. le+04
. 6e+04
.4e+03
Height
3.8e+04
6. le+03
4.4e+03
3.4e+03
1.7e+03
2.6e+03
1.7e+03
3.4e+03
8.8e+03
1.2e+04
1.3e+04
1.3e+04
2.5e+03
6
1
7
6
2
4
2
6
1
2
2
2
4
S/N
.3e+00
.le+00
.4e-01
.4e-01
.8e-01
.8e-01
.86-01
.4e-01
.5e+00
.3e+00
.2e+00
.56+00
.2e-01
Mod?
y
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
r
031
-------
OPUSquan 28-SEP-1998
Page 4
8 35:29 1.7e+04 0.44 n 0.01
1.7e+04
9 35:34 l.Oe+04 0.29 n 0.00
l.Oe+04
10 35:40 5.4e+03 0.89 n 0.00
5.46+03
11 35:46 1.2e+04 2.03 n 0.00
1.26+04
1.2e+04 6.16+03 1.26+00 n n
L
5.36+03 4.76+03 7.9e-01 n n
1.2e+04 6.1e+03 1.2e+00 n n
3
2.3e+03 1.5e+03 2.6e-01 n n
7.9e+03 5.5e+03 l.Oe+00 n n
3
2.56+03 1.4e+03 2.3e-01 n n
2.9e+03 1.5e+03 2.8e-01 n n
D
7.86+03 4.0e+03 6.7e-01 n n
3.96+03 1.96+03 3.6e-01 n n
12 35:51 l.Oe+04 0.67 n 0.00
l.Oe+04
13 35:55 8.5e+03 0.78 n 0.00
8.5e+03
4.2e+03 1.2e+03 2.0e-01 n n
6.26+03 3.2e+03 6.0e-01 n n
D
3.7e+03 2.6e+03 4.36-01 n n
4.8e+03 2.5e+03 4.7e-01 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:4
Run: 10 File: a27sep98m S:4 Acq:27-SEP-98 21:28:07 Proc:28-SEP-98 09:35:38
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-0 xl/2
Amount: 0.07
Cone: 0.07
Tox #1: -
Name
of which 0.05
of which 0.05
Tox #2: -
# RT Respnse
named and 0.02
named and 0.02
Tox #3: -
RA
1,2,3,4,6,7,8-HpCDFl 36:437.9e+04 5.23n
7.9e+04
2 37:20 1.5e+04 1.14 y
l.Se+04
3 37:31 2.5e+04 4.63 n
2.5e+04
l,2,3,4,7,8,9-HpCDF4 37:53 3.8e+04 2.32 n
3.86+04
Cone
0.03
t
1
0.01
e
o.oi
<
0.02
unnamed
unnamed
Area Height
S/N Mod?
6.6e+04 2.2e+04 4.0e+00 y n
1.3e+04 6.1e+03 2.1e+00 n n
8.2e+03 3.2e+03 6.0e-01 n n
7.26+03 2.4e+03 8.3e-01 n n
L
2.16+04 6.76+03 1.26+00 n n
4.5e+03 1.9e+03 6.6e-01 n n
2.7e+04 8.26+03 1.5e+00 n n
l.le+04 4.36+03 1.5e+00 n n
fl 032
-------
OPUSquan 28-SEP-1998
Page 5
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:8
Run: 10 File: a27sep98m S:4 Acq:27-SEP-98 21:28:07 Proc:28-SEP-98 09:35:38
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-0 xl/2
Amount: 0.16
Cone: 0.16
Tox #1: -
of which 0.04
of which 0.04
Tox #2: -
named and 0.12
named and 0.12
Tox #3: -
Name
RT Respnse
RA
36:42 9.3e+04 4.16 n
9.3e+04
37:01 1.5e+04 2.99 n
1.5e+04
3 37:10 9.76+03 1.34 n
9.7e+03
l,2,3,4,6,7,8-HpCDD4 37:31 9.36+04 0.54 n
9.36+04
5 37:52 9.1e+04 4.62 n
9.1e+04
6 38:00 8.5e+03 4.71 n
8.5e+03
7 38:12 8.5e+03 1.81 n
8.5e+03
8 38:17 1.6e+04 1.15 y
1.6e+04
Cone
0.05
3
0.01
]
0.00
c
i
0.04
<
0.04
]
0.00
1
1
0.00
c
0.01
unnamed
unnamed
Area Height
S/N Mod?
7.5e+04 2.6e+04 7.9e+00 y n
1.8e+04 5.6e+03 3.0e+00 n n
l.le+04 3.4e+03 l.Oe+00 n n
3.8e+03 l.Se+03 8.1e-01 n n
D
5.6e+03 2.1e+03 6.2e-01 n n
4.2e+03 1.56+03 7.9e-01 n n
J
3.2e+04 1.6e+04 4.8e+00 y n
6.0e+04 1.8e+04 9.6e+00 y n
7.5e+04 2.0e+04 6.1e+00 y n
1.6e+04 5.8e+03 3.1e+00 y n
7.0e+03 3.16+03 9.3e-01 n n
1.5e+03 8.2e+02 4.4e-01 n n
3
5.5e+03 2.9e+03 8.7e-01 n n
3.0e+03 l.le+03 6.0e-01 n n
8.7e+03 2.9e+03 8.7e-01 n n
7.6e+03 2.86+03 1.5e+00 n n
033
-------
File:A27SEP9SM #1-528 Acq:2
Sample#4
319.8965
100%,
50_
o:
23
vnfyi
321.8936
1003
50 1
o"
331.9368
100S
50 j
OJ
333.9339
100%,
50 j
o:
327.8847
100%
50^
0"
316.9824
100% 23:1
50 j
o:
^
Text:1113-0 xl/2
S:4 BSUB (128, 15, -3
24:06
•21 I , ./24:17
24 100
S:4 BSUB (128, 15, -3
23:51
24 I 00
S:4 BSUB(128,15,-3
24IOO
S:4 BSUB (128, 15, -3
24 lod
S:4 BSUB (128, 15, -3
24 lod
7-SEP-1998 21
:28:07 GC EI +
Voltage SIR
Autospec-UltimaE
Exp:EXP M23 DBS OVATION
.0) PKD(3,3,2
24 .._ 25:11
^M^Vv^VVt
25 Sod
. 0 ) PKD (3,3,2
25:08
25 100
.0) PKD (3, 3, 2
25 Sod
. 0 ) PKD (3,3,2
25 lod
.0) PKD (3, 3, 2
25 Sod
,0.10%, 6032.0,
25:45
W^4v^wu
2eloo
,0.10%, 2236.0,
25 =44 26:10
— f'lSfiiM i "7" f ; -
26:00
,0.10%, 28800.0
2eloo
,0.10%, 12768.0
26 lod
,0.10%, 13308.0
26 Sod
1.00%,F,F)
27:55 _2.1E4
A 28 : 57
V /I.
26:41 27:10. .[\28:09 28:38^ ft.^ ^^
Ww^M/Vw1
27!oO
1.00%,F,F)
26:39 27:06
27:00
,1.00%,F,F)
27!00
,1.00%,F,F)
27 Sod
,1.00%,F,F)
27:00
^h^v^^f^^^ V^H/ACJ^Y^V
_1.1E4
• n nwn
T i , i 1 , 1 , 1 r— | , , , , , ! ( ^-^ . „„„
28:00 29:00 30loO Time
28:57 r.5.9E4
A r
A
JZiiL^!i£1^3!iJLLL, 29J" .
L3.0E4
n ni?n
28:00 29:00 30:00 Time
28:56 3.2E7
il A
/ 1 A
_1.6E7
n nwn
T 1 1 1 1 1 1 1 ' | \ f p | , , , , 1 , ! f—~ . « — w
28:00 29:00 30:00 Time
28:56
A h
y
/\ /\
4.0E7
L2.0E7
• O.OEO
28:00 29 loO 3oloO Time
28:57
A
A
A
_6.4E7
L3.2E7
• O.OEO
28 1 00 29 Sod 30SOO Time
S:4 SMO(1,3) PKD (3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
7 23:43 24:12
i i i | i i i
24:00
. 24:56 25:19
T i I i i r-
25:00
26 '05 26 :
i i 1 i i r
26:00
29 2/?:09
i i | i i
27:00
J^-^jafi-n* ^8:34 29:02 29:29 30:09 1 . 1 Rfi
V
_5.6E7
O.OEO
28:00 29:00 30:00 Time
O
CO
-------
File:A27
Sample#4
355.8546
1005
50.
0.
t
30.:36
357.8517
1003
50_
0"
o /
^
J^y
30136
367.8949
100%
50J
0"
30:36
369.8919
100%
50J
0"
3ol36
366.9792
100%,
so:
0"
-N
30 S3*
0
Co
c/i
SEP98M #1-237 Acq:27 SEP-1998 21:28:07 GC EI+ Voltage SIR Autospec-UltimaE
Text: 1113-0 xl/2 Exp:EXP M23 DBS OVATION
S:4 F:2 BSUB(128 , 15 , -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 5952 . 0 , 1 . 00% , F, F)
32:22 _2.9E4
« 32:49
A A
31-56 \ / 33:02
30A4A6 AAA AA ^ 31A2!y\ 31A^9. * A AV 32;15L\ A32X36 A~A 33:2° 33:34
~V^-^^VVV_yW^/\^
•
L1.4E4
•
n n-nn
30:48 3ll66 31:12 3i.24 3ll36 siUs 32lo6 32112 32124 32136 32148 33 66 ' 33 ! 12 ' 33 • 24 ' 33 • 36 ' Time
S:4 F:2 BSUB(128 , 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 1040 . 0 , 1 . 00% , F, F)
32:24 32.49 33:01
I 1 I 33:18
on, co "51*11 /'"\ Ail A/l \ A
/Yffi-47 A. A A A A 31:28 . / \\ 32 : 06 32 : lf\ [32 : 3oAlA Al/l. I 33:08 ,. ,
^b^lAM/w VAWVVA^A^AALJ^^ V yw^^MAAJU^C^
8.2E3
•
L4.1E3
•
' n ATtiA
36148 3l!66 3iSl2 3i!24 31136 3i!48 32166 32ll2 32 24 32136 32148 33166 ' 33ll2 ' SS1^ ' Ss'ie ' Time
S:4 F:2 BSUB(128 , 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 16088 . 0, 1 . 00%, F, F)
33 01
/
j|
7.7E7
L3.9E7
" n nirn
1 ' ' 1 • ' ' ' ' I ' ' ' ' ' I ' ' ' ' ' 1 ' ' ' ' ' 1 ' ' ' ' ' 1 ' ' ' ' ' 1 ' ' ' ' ' 1 ' ' — ' ' ' 1 ' ' ' ' ' 1 ' ' ' ' ' 1 ' ' ' ' ' 1 i i 1 ' i 1 i i i i i 1 i i i i i I i i r " •"*-•"
30:48 31:00 31:12 31:24 31:36 31 48 32:00 32:12 32 24 32:36 32:48 33loO 33ll2 33124 33-36 Time
S:4 F:2 BSUB (128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10% , 5676 . 0 , 1 . 00%, F, F)
33 01
^
K
_4.7E7
12.4E7
" n fiRD
i i i i i i i T~T TT i r i i i ' i i T i1 i i ) n i T~]~T iiit r~i i i i i i i i i i i i i i i i r r i i i i i i — i — n — i — i — rn — i — i — i — TT — i i"l '!• i i i i • t ~ i i i i — r — i— i — r i i i i^ — • -* — -
30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32.24 32:36 32:48 33:00 33:12 33124 33136 Time
S:4 F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
30:49 31:15 31:33 31:46 32:00 32:12 32:31 32:45 32:58 ^.-^^^.^ 33.41 1 . 4Rft
36148 3ll66 3ill2 3ll24 3ll36 31\48 32166 32li2 3224 32 I 36 ' 32 Us ' 33 I 66 ' 33 1 12 ' 33 124 ' 33 ':3 6 '
.7.0E7
_o . OEO
Time
-------
File:A27SEP98M #1-197 Acq:27-SEP-1998 21:28:07 GC EI+ Voltage SIR Autospec-UltimaE
Sample#4 Text:1113-0 xl/2 Exp:EXP_M23_DB5_OVATION
389.8156 S:4 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,5996.0 ,1.00%, F,F)
100%.
so:
34:00 34:12 34:24 34i36 34i48 35iOO 35il2 35i24
391.8127 S:4 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,5328.0,1.00%,F,F)
100%, 34:34 35:09 35^21
50J
36:00 ' 36:12
401.8559 S:4 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,9372.0,1.00%,F,F)
100%. 35;08 35:21
35:0
so:
4.6E4
L2.3E4
O.OEO
Time
r_1.5E4
L7.5E3
.O.OEO
Time
6.7E7
_3.3E7
O.OEO
Time
1 — \ — 1 — 1 — 1 — 1 — | — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — I — 1 — 1 — 1
33:48 34:00 34:12 34:24
|
T
T
T
T
34:36 34:48 35:00 35:12
403.8530 S:4 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,6508.0 ,1.00%, F,F)
100%, 35;08 35:21
35:0
50J
T
3524 3536
'35 UV ' Velo'o'
'35! 12'
5.2E7
_2 . 6E7
33:48 '34:00 34:12' 34:24' '34:36 34:48 35loo' 35:12 Ss!^' '35:36 35:48 ' 36:0o' ' 36:12 Time
380.9760 S:4 F:3 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%, F, F)
100%, JLLL55—-J14J-Q5 _},&••>.•>. 34-3S 34:44 34; S3 3^x114 35:17
so:
3^.4Q 35:51 36:01
16_i2A-5.1E8
12.6E8
0 ^ '!« I l I | I , | l I l I I I | I I I I I | I I I 1 I | I I I I I | I I I I I | I I 1 I I | I I I 1 I | I I I I I | I I I I I | I I I I I | I I I I l '
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
o
CO
-------
File:A27SEP98M #1-197 Acq:27-SEP-1998 21:28:07 GC EI + Voltage SIR Autospec-UltimaE
Sample#4 Text:1113-0 xl/2 Exp:EXP_M23_DB5_OVATION
423.7767 S:4 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,3324.0 ,1.00% , F, F)
1004 36:42
50J
36:24 36136 36i48 37iOO 37il2 37i24 37i36 37i48 38iOO
425.7737 S:4 F:4 BSUB(128,15,-3.0) PKD(3,5,3 , 0.10%, 1884.0 ,1.00% , F, F)
100% 37:31
so:
s 12
as 24
sse
as 4s
36:42
O.OEO
39:00 Time
1.9E4
_9.3E3
38:57
rr
rr
T
O.OEO
T"
36:24 36:36 36i48 37iOO 37il2 37i24 37i36 37i48 38iOO
435.8169 S:4 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,187236.0,1.00%,F,F)
100% 37:31
50J
38:12 38:24 38:36 38:48 39:00 Time
4.3E7
_2.1E7
O.OEO
—i—i—i—i—i—i—i—i—r—i—i*i"i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—T—i—i—i—I I I I i i—i—i—i—i—i—r—I—i—i—i—i—i—I—i—i—i—i—i—I—i—i—i—i—i—i—r—i—i—i—i—i—i—i—i—i—i—r
36:36 36:48 37:00 37:12 37:24 37:36 37.-18 38:00 38:12 38:24 38:36 38:48 39:00 Time
36:24
437.8140 S:4 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,163476.0,1.00%,F,F)
100% 37:31
so:
0 , ,
36!2V ' VelsV ' VeUV ' 'a^oV 37il2 37;24 37136
30.9728 S:4 F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%, F, F)
DOS, 36:29 37igl^ 37:34 37:45
7
so:
3s!oO 38ll2 38J24
38:08
r_4.lE7
_2.OE7
10.0EO
i Time
38:44 38:55 . 3 . 5E8
L1.8E8
I,'—I—1—l—I—|—I—1—I—I—I—I—I—1—I—I—1—|—I—1—1—1—I—|—i—I—I—I—l—i—l—l—I—I—I—|—I—I—I—I—1—1—1—I—I—I—I—I—I—1—1—i—r—1—I—1—I—1—I—I—I—I—1—I—I—I—I—I—I—i—i—i—i—i—i—i—i—|J-0 • "EO
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
GJ
-------
File:A27SEP98M #1-276 Acq:27-SEP~1998 21:28:07 GC EI+ Voltage SIR Autospec-UltimaE
Sample#4 Text:1113-0 xl/2 Exp:EXP_M23_DB5_OVATION
457.7377 S:4 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,3536.0,1.00%,F, F)
100% 40:23
I i i i i i I i i i i i I i i i i i I i i i i i I i i i T i i i i i i i I i i i i i I i i i i i i i i i i i I i i i i i I | I 'I I 1 I I' I I1 M1 I 1 I I I i i I i
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42 00 42:12 Time
459.7348 S:4 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2112.0,1.00%,F,F)
100% 40:22
50J
40 12 40 24 4o!36 ' 40 1 48 ' 4l!66 ' 4l!i2 ' 4l!24 ' 41136
4 39:36 39:
469.7780 S:4 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,3844.0,1.00%,F,F)
100% 40,-22
so:
0.
42l6d ' 42! 12 Time
..3.7E7
11.9E7
.O.OEO
39-12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 43.! 48 ' 42!6d ' 42!l2 Time
471.7750 S:4 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,424.0,1.00%,F,F)
100% 40;22
so:
_2.1E7
_O.OEO
39ll2 ' 39124 " 39^6 ' 39\48 ' 4o!6d ' 4o!l2 ' 4o!24 ' 4o!36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
454.9728 S:4 F:5 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 3JLill_liLL2!L_23~Li2___. . 4Q.-4?_
50J
41-40
.-09
L1.9E8
.O.OEO
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 4l!6d ' 4l!l2 41:24 41:36 41:48 42:00 42:12 Time
O
CO
-------
File:A27SEP98M #1-528 Acq:27-SEP-1998 21:28:07 GC EI+ Voltage SIR Autospec-UltimaE
Sample#4 Text:1113-0 xl/2 Exp:EXP_M23_DB5_OVATION
303.9016 S:4 BSUB(128,15,-3 . 0) PKD(3,3,2,0.10%,4576.0,1.00%,F,F)
100% 27;56
50 j
O.OEO
Time
24:00 25:00 26:00 27:00
305.8987 S:4 BSUB(128,15,-3 . 0) PKD(3,3,2,0.10%, 9424.0,1.00%, F, F)
lOOSi
24:00 25:00 26:00 27:00
315.9419 S:4 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,10252.0,1.00%,F,F)
100%
50J
29:00
30:00
Oj
-i 1 1 1 r
26:00
T
T I 1 1 1 1 1 1 1 1—
24:00 25:00 26:00 27iOO
317.9389 S:4 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,11020.0,1.00%, F, F)
100%,
50.1
29:00
30 I 00
JlO.OEO
Time
3.9E7
L2.0E7
O.OEO
Time
T
OJ
-i 1 1 1 r-
26:00
T
24:00 25:00 26:00 27iOO
375.8364 S:4 BSUB(128,15,-3.0) PKD (3,3,3,100.00%,212.0,1.00%,F,F)
100% 25 57
29:00
28:56
30 I 00
5.0E7
_2.5E7
O.OEO
Time
-i 1 1 1 1 r-
25:00
50J
OJ
24:29
25:25 25:5
23:40 • , i; JL 25:01 ill 25-*n
J\JU^^^^^M_Uf^l^
n 26:22
u 26:116
26:35
26:59
yivyU
B7:07
';¥ .E6:44 U I 27:20 i
AlU/V/yV^IMUvVAAAvvJK
28:00
27:49 28:21
29:38
1.5E4
_7.3E3
O.OEO
Time
T
24:00 25:00 26:00 27iCC 28:00 29:00 30:00
316.9824 S:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%, F, F)
1004 23:17 23;/n 7.tj-A7. _ Sd-SfiSSriq 7.fi;nS?fi-39 _r7-OQ 27:38 28:04 28^:34 29:03 29:29
50J
OJ
24! 00
25 loo'
26 I 00
27 loo'
28:00
29:00
30:00
1.1E8
_5.6E7
O.OEO
Time
O
CO
CJD
-------
File:A27SEP98M #1-237 Acq:27-SEP-1998 21:28:07 GC EH- Voltage SIR Autospec-UltimaE
Samplef4 Text:1113-0 xl/2 Exp:EXP_M23_DB5_OVATION
339.8597 S:4 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,2256.0,1.00%,F,F)
1004 32:49
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
341.8568 S:4 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,5600.0,1.00%,F,F)
1004
: 32:23
50J 30:4?
OJ
32;49
33:36
O.OEO
Time
1.7E4
18.7E3
1—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—pi—i—i—i—i—i—i—i—i—n—i—i—i—i—i—i—i—i—i—i—i—r-|—i—i—i—i—i—j—i—i—i—i—i—i—i—i—i—i—r—j—i—i—i—i—i—j—i—i—i—i—i—i—i—i—i—i—i—i—i—r-
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
351.9000 S:4 F:2 BSUB(128,15,-3 . 0) PKD(3,3,2,0.10%,1764.0,1.00%,F,F)
1004 32:22
.O.OEO
Time
50.
O
32:49
_5.9E7
.O.OEO
Time
7 . 6E7
13.8E7
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 ' bs!^' ' 33!36
353.8970 S-.4 F:2 BSUB(128,15,-3 . 0) PKD(3 , 3 , 2 , 0 .10%, 3224 . 0,1. 00%,F,F)
100% 32:22
O
32:49
i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i' r i i i i i i i i i i i i i i i ri i r i i i i i i i i i i i* i i ^i i i i i i—i i i i i i i i i i i i i i i i i i i
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
409.7974 S:4 F:2 BSUB(128,15,-3 . 0) PKD(3,3,3,100.00%,6152.0,1.00%,F,F)
1004 32,-32
501
0
.O.OEO
Time
.5.1E4
.2 . 6E4
.O.OEO
Time
.1.4E8
7.0E7
O.OEO
Time
30:43
31:00
33 = 01 33:15
33:37
i—i—I—i—r-1—i—i—i—F—i—i—t—i—?—i—j—i—i—i—i—i—i—|—i—r~i—i—i—|—i—i—]—i—r~j—i—i—r-i—i—r i r11—i—r~r"i—?—i—i—t~t—r-i—)—i—i—r—i—i—i—i—r—j—r—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r—i—j—i—n1
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
66.9792 S:4 F:2 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
004 30:49 31:15 31:33 31-46 32:00 "
50
o"
32:31 32:45 32:58
33:15-
33:41
T
i i I i i ' '' I ' i i i i I t i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i i i i
32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
30:36 30:48 31:00 31:12 31:24
-------
File:A27SEP98M #1-197 Acq:27-SEP-1998 21:28:07 GC EI+ Voltage SIR Autospec-UltimaE
Sample#4 Text:1113-0 xl/2 Exp:EXP_M23_DB5_OVATION
373.8207 S:4 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,6516.0,1.00%,F,F)
100%, 34;39
50J
OJ
34:01
33:55/\ 34.07 34:15
36:16
T
"T
"T
T
T
'35! 36'
'35! do'
1.7E4
L8.4E3
.O.OEO
Time
T
T
T
33148 34^00 34!l2 34124 34i36 34:48 35:00 35:12 35:24
375.8178 S:4 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,4656.0,1.00%, F, F)
34:34
34:01 A ' 35:°°
lOOi
50J
33:50
I i i
34:00
33:48 34100 34il2 34i24 34i36 34i48 35iOO 35:12 35:24
383.8639 S:4 F:3 BSUB(128,15,-3.0) PKD{3,5,2,0.10%,60064.0,1.00%,F,F)
100% 34;38
- 34:33/
50J
OJ
35! 36' ' '35! 48
36:00 '36:12
'35! 48' ' '36! do' ' VellV
.O.OEO
Time
.5.3E7
.2 . 6E7
.O.OEO
Time
.9.8E7
.4.9E7
.O.OEO
Time
.3.2E4
.6E4
.O.OEO
Time
.5.1E8
2.6E8
O.OEO
Time
i — i — I — r— i-
34:24
T
T
33 UV ' 'skTdo' ' '34!12' 34124 34136 34i48 35JOO 35il2 35i24
385.8610 S:4 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,56304.0 ,1.00%,F,F)
100%, 34;38
34:33/
OJ
35:
—|—l—i I" l—i 1 I I—r—i—i—i—i—l—i—i—i—|—i—i—r"T—r-1]—i—i I I I—|—I—r
33:48 34:00 34:12 34:24 34:36 34:48
T
35! 12' ' '35!2Y ' Ysh'e' ' '35!48' ' 's'elo'o' ' '35112'
35:00
445.7555 S:4 F:3 BSUB(128,15,-3.0) PKD(3,3,3 ,100.00%, 1300.0 ,1. 00%, F, F)
lOOi 35;08 35^21
36o 36l2
380.9760 S:4 F:3 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100%, 33-SS 34:05 _34:33 34:30 34:44 34:53 35:04_
50
o
3S-17
35:32
36:01
36:20
—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i i i—i—|—i—\—i—i—i—|—i—r—i—i—i—|—i—i—i—r—i—|—i—i—i—i—i—|—i—i—\—i—i—|—i—i—i—i—i—|—i—r—i—i—i—|—i—i—i—i—i—|—i—i—i—i—i—|—i—r
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
-------
'File:A27SEP98M #1-197 Acq:27-SEP-1998 21:28:07 GC EI+ Voltage SIR Autospec-UltimaE
Sample#4 Text .-1113-0 xl/2 Exp:EXP_M23_DB5_OVATION
407.7818 S:4 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,5372.0,1.00%,F,F)
100% 36:43
50J
OJ
36:29
37:02 37:15
37:31
37:463?A53 38:03 38:12
38:32
38:53
T—F—i—I—i—I—i—i—i—i—i—i—i—i—i—i—i—I—i—i—i—i—i—I—|—i—i—i—i—i—l—i—i—i—i—i—I—i—i—I—i—i—I—i—i—i—i—i—I—i—r
36124 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
409.7788 S:4 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0 .10%,2908.0,1.00%,F,F)
100% 36;43
2.4E4
L1.2E4
O.I
T—i—i—r~T—i—i—i—j—i—I—i—i—i—i—i—i—i—i—i—r
38:24 38:36 38:48 39:00 Time
15 38:23
38:41
:56
1.1E4
L5.6E3
LO.OEO
•n—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—'—|—'—>—i—<—i—|—i—i—'—>—i—|—i—i—i—i—i—|—i—i—i—i—i—r
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
417.8253 S:4 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,16156.0,1.00%,F,F)
100%, 36;42
37:52
/ i
50J
ol
36124 36T3"6" "YeUV ' '37 loo' ' 'a'?! 12 37124 37i36 37i48 38iOO
419.8220 S:4 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,27404.0,1.00%,F,F)
100%, 36;42
37:52
/ l
50 J
Q!
2 . 1E7
L1.0E7
.O.OEO
12
. i—i—i—r—i—r—f—i—l i I I I—I I I—I—l—l—l—l—l I l—l—l—i i |—i—i—i—i—i—|—i—i—l—l—i—pi—i—i—i I | I l l ll | i > ' i ' I i r
36^24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24
479.7165 S:4 F:4 BSUB(128,15,-3 . 0) PKD(3,3,3,100.00%,8344.0,1.00%,F,F)
100% 37^31
V ' YsUV ' '39 i 0 0 Time
4.7E7
.2.3E7
O.OEO
'38 ! 48' ' '39! 00 Time
38:49
36
*-i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—l—i—l—l—l—I—l—l—i—i—1—i—l—i—l—l—I—i—i—i—i—i—I—i—i—l—i—i—1—i—l—l—'—i—|—i—i—i—i—i—|—i—r
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24
2.4E4
L1.2E4
O.OEO
430.9728 S:4 F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 36:29 37-21 37:34 37:45
38:08
s 39:00 Time
38:44 3R:55 _ 3.5E8
11.8E8
O.OEO
"T"n—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—\—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—I—i—'—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—'—i—i—I—i—i—i—i—i—1—i—i—i—i—i—I—i—i—i—i—i—r
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
-------
File:A27SEP98M #1-276 Acq:27-SEP-1998 21:28:07 GC EI+ Voltage SIR Autospec-UltimaE
Sample#4 Text:1113-0 xl/2 Exp:EXP_M23_DB5_OVATION
441.7427 S:4 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%, 3580.0,1.00%, F,F)
100%
39:12 39:24 39:36 39:48 40:00 40il2 40:24 40i36 40!48 41iOO
443.7398 S:4 F:5 BSUB(128,15,-3.0) PKD(3,5,3 , 0.10%, 8436.0,1.00%, F,F)
100% An „, 41,-02
39:16 . _. .. 39.52 40:05 _ ,,40;24 40:40
Oj
41:24 41:36 41:48 42:00 42:12 Time
41:51
| | _ t ...0. OEO
4l!6d ' 41:12 ' 4i!24 ' 4i!36 ' kiUs ' 42l6d ' 42ll2 Time
i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i ' I ' ' i i i I ' i
39:12 39:24 39:36 39:48 40:00 40:12 40:24
469.7780 S:4 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,3844.0,1.00%,F,F)
100% 40;22
50
0.
i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i ii < ii i ii i i ' | ' i ' ' ' i ' ' ' ' ' i • •
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00
471.7750 S:4 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,424.0,1.00%,F,F)
100% 40;22
50
T
3.7E7
_1.9E7
O.OEO
T
Oj
i i i i i i i i i i i i i i i i i i i i i i | i i i i i | i i i i i | i ' *i ' ' | i i i i • i i ' ' '
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48
513.6775 S:4 F:5 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,420.0,1.00%,F,1
100% 40;22
41:24 41:36 41:48 42:00 42:12 Time
4.1E7
L2.1E7
LO.OEO
T
T"
50
39:08
39:31 39:45
~
40-
40:13
40'31
41:24 41:36 41:48 42:00 42:12 Time
3.1E4
L1.6E4
'•52 41:09 41=21
42:00
X^iTT^TT i'Pi ['Wi^Pr f^i'T"! I'l^'''! i •fsfi-^iYiX V7 IVT i i i | i'r i ' T| '< IHTT T; r i'
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48
454.9728 S:4 F:5 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 39^1139^20 3^32 40:47
0 . OEO
41:36 41:48 42:00 42:12 Time
50
41:40
42:09 3.7E8
l.9E8
.O.OEO
i "i i i"'i i'"i r v"t-i i- i'•r»ft"*| ''' '"'''''"' I ' I'-fi'i I"1 '
^39:12 39:24 39«36 JI9;48 40:00
40:24 ' 40J36
41: 41:12
41:36 41:48 42:00 42:12 Time
-------
Paradigm Analytical Labs
Method 23
M23-I-1
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
ing)
0.0096
0,0108
EMPC
EMPC
0.0112
0.0201
0.0393
0.154
0.146
0.136
0.153
0.114
0.0386
0.0098
0.171
0.0241
0.0244
0.266
0.132
0.0684
0.0360
4.47
2.10
0.896
0.262
0.141
0.141
DL
ing)
0.0012
0.0006
0.0013
0.0012
0.0012
0.0015
0.0057
0.0021
0.0008
0.0008
0.0016
0.0014
0.0015
0.0017
0.0026
0.0031
0.0033
0.0012
0.0006
0.0012
0.0015
0.0021
0.0008
0.0014
0.0026
EMPC
ing)
0.0079
0.0071
0.277
0.0756
2.11
0.142
0.142
RT
(mm.)
28:58
33:02
35:09
35:09
35:21
37:32
40:23
27:58
32:23
32:50
34:34
34:39
35:01
35:32
36:43
37:53
40:32
Ratio
0.84
1.54
1.47
1.47
1.25
1.04
0.77
0.79
1.57
1.6
1.24
1.25
1.19
1.21
1.02
0.99
0.94
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ED:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-I-1
LI 113
1113-1
27-Aug-98
08-Sep-98
15-Sep-98
27-Sep-98
Sfompfo. Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retohk:
Begin ConCal:
End ConCal:
Initial_Cal:
Air
1
0.0 %
a27sep98m-5
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
044
1/2
-------
Paradigm Analytical Labs
Method 23
M23-I-1
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
1JC12-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
13Cirl,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3>7)8-TCDD
13C12-2,3,4,7,8-PeCDF
13C12-l,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
Injection Standards
13C12-1A3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
(«8)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured
Amount
(ng)
3.43
3.98
3.56
3.30
4.79
3.60
3.78
3.61
3.07
3.77
3.73
3.74
3.43
3.33
Percent
Recovery
(%)
85.8
99.6
88.9
82.6
59.9
90.0
94.6
90.2
76.8
94.3
93.2
93.4
85.7
83.2
RT
(min.)
28:57
33:02
35:09
37:32
40:22
27:55
32:22
34:38
36:43
28:58
32:50
35:05
34:34
37:53
28:40
35:21
Ratio
0.78
1.59
1.28
1.07
0.9
0.79
1.57
0.52
0.44
1.57
1.25
0.53
044
V.TT
0.79
1.28
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Reviewed by: tf -T •
S509.000
M23-I-1
L1113
1113-1
27-Aug-98
08-Sep-98
15-Sep-98
27-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
EndConCal:
Initial Cal:
Date
Air
1
0.0 %
a27sep98m-5
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
/xC
Reviewed: Z*>fy> V
' 045
2/2
-------
OPUSquan 28-SEP-1998 Page 1
Filename a27sep98m
Sample 5 ,, p_2 7 1
Acquired 27-SEP-98 22:14:09 Vv " '
Processed 28-SEP-98 09:36:23
Sample ID 1113-1 xl/2
Cal Table m8290-091498
Results Table M8290-092798M
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
ss
ss
ss
ss
ss
Name; Resp; Ion 1; Ion 2; RA;?; RT;
2,3,7,8-TCDD; 1.03e+06; 3.83e+05; 6.49e+05; 0.59;n; 28:58;
1,2,3,7,8-PeCDD; 8.13e+05; 4.93e+05; 3.20e+05; 1.54;y; 33:02;
1,2,3,4,7,8-HxCDD; 4.96e+05; 2.95e+05; 2.01e+05; 1.47;n; 35:09;
1,2,3,6,7,8-HxCDD; 4.96e+05; 2.95e+05; 2.01e+05; 1.47;n; 35:09;
1,2,3,7,8,9-HxCDD; 7.66e+05; 4.26e+05; 3.40e+05; 1.25;y; 35:21;
1,2,3,4,6,7,8-HpCDD; 1.10e+06; 5.62e+05; 5.39e+05; 1.04;y; 37:32;
OCDD; 1.50e+06; 6.56e+05; 8.48e+05; 0.77;y; 40:23;
2,3,7,8-TCDF; 7.00e+07; 3.09e+07; 3.91e+07; 0.79;y; 27:58;
1,2,3,7,8-PeCDF; 1.28e+07; 7.82e+06; 4.97e+06; 1.57;y; 32:23;
2,3,4,7,8-PeCDF; 1.22e+07; 7.52e+06; 4.71e+06; 1.60;y; 32:50;
1,2,3,4,7,8-HxCDF; 1.30e+07; 7.19e+06; 5.80e+06; 1.24;y; 34:34;
1,2,3,6,7,8-HxCDF; 1.12e+07; 6.22e+06; 4.98e+06; 1.25;y; 34:39;
2,3,4,6,7,8-HxCDF; 3.43e+06; 1.86e+06; 1.56e+06; 1.19;y; 35:01;
1,2,3, 7,8, 9-HxCDF; 7.62e+05; 4.17e+05; 3.44e+05; 1.21;y; 35:32;
1,2,3,4,6,7,8-HpCDF; 1.16e+07; 5.89e+06; 5.75e+06; 1.02;y; 36:43;
1,2,3,4,7,8,9-HpCDF; 1.42e+06; 7.06e+05; 7.14e+05; 0.99;y; 37:53;
OCDF; l.Ole+06; 4.87e+05; 5.20e+05; 0.94;y; 40:32;
13C-2,3,7,8-TCDD; 3.43e+08; 1.51e+08; 1.93e+08; 0.78;y; 28:57;
13C-l,2,3,7,8-PeCDD; 2.65e+08; 1.63e+08; 1.03e+08; 1.59;y; 33:02;
13C-l,2,3,6,7,8-HxCDD; 3.07e+08; 1.72e+08; 1.35e+08; 1.28;y; 35:09;
13C-l,2,3,4,6,7,8-HpCDD; 2.40e+08; 1.24e+08; 1.16e+08; 1.07;y; 37:32;
13C-OCDD; 3.05e+08; 1.45e+08; 1.60e+08; 0.90;y; 40:22;
13C-2,3,7,8-TCDF; 4.47e+08; 1.98e+08; 2.49e+08; 0.79;y; 27:55;
13C-l,2,3,7,8-PeCDF; 3.91e+08; 2.39e+08; 1.52e+08; 1.57;y; 32:22;
13C-1,2,3, 6,7,8-HxCDF; 3.57e+08; 1.23e+08; 2.35e+08; 0.52;y; 34:38;
13C-l,2,3,4,6,7,8-HpCDF; 2.01e-i-08; 6.12e+07; 1.39e+08; 0.44;y; 36:43;
13C-1,2,3,4-TCDD; 3.78e+08; 1.67e+08; 2.11e+08; 0.79;y; 28:40;
13C-l,2,3,7,8,9-HxCDD; 3.28e+08; 1.84e+08; 1.44e+08; 1.28;y; 35:21;
37Cl-2,3,7,8-TCDD; 3.17e+08; 3.17e+08; -; -;-; 28:58;
13C-2,3,4,7,8-PeCDF; 3.58e+08; 2.18e+08; 1.39e+08; 1.57;y; 32:50;
13C-l,2,3,4,7,8-HxCDD; 2.16e+08; 1.20e+08; 9.60e+07; 1.25;y; 35:05;
13C-l,2,3,4,7,8-HxCDF; 2.54e+08; 8.75e+07; 1.66e-(-08; 0.53;y; 34:34;
13C-l,2,3,4,7,8,9-HpCDF; 1.46e+08; 4.44e+07; 1.02e+08; 0.44;y; 37:53;
37Cl-2,3,7,8-TCDD; 3.17e+08; 3.17e+08; -; -;-; 28:58;
13C-2,3,4,7,8-PeCDF; 3.58e+08; 2.18e+08; 1.39e+08; 1.57,-y; 32:50;
13C-l,2,3,4,7,8-HxCDD; 2.16e+08; 1.20e+08; 9.60e+07; 1.25;y; 35:05;
13C-l,2,3,4,7,8-HxCDF; 2.54e+08; 8.75e+07; 1.66e+08; 0.53;y; 34:34;
13C-l,2,3,4,7,8,9-HpCDF; 1.46e+08; 4.44e+07; 1.02e+08; 0.44;y; 37:53;
8^ ^
Cone;
0.295;
0.270;
0.197;
0.177;
0.281;
0 . 503 ;
0.982;
15.655;
3.650;
3.404;
3.815;
2.858;
0.965;
0.244;
4.269;
0.602;
0.611;
85.789;
99.550;
88.884;
82.594;
119.775;
89.939;
94.578;
90.222;
76.816;
84.065;
92.045;
80.842;
88.090;
83.135;
77.386;
63.913;
94.256;
93.174;
93.419;
85.714;
83.201;
DL;
0.0287;
0.0150;
0.0326;
0.0293;
0.0301;
0.0371;
0.1435;
0.0520;
0.0194;
0.0189;
0.0400;
0.0347;
0.0383;
0.0436;
0.0659;
0.0762;
0.0833;
0.1025;
0.0882;
0.0312;
0.7938;
0.0134;
0.0547;
0.0265;
0.2113;
0.1429;
-;
0.0496;
0.0270;
0.0414;
0.2554;
0.1634;
0.0595;
0.0130;
0.0455;
0.2566;
0.2364;
S/N1;?;
16;y;
45 ;y;
22 ;y;
22 ;y;
21;y;
41;y;
12;y;
895;y;
1051;y;
973 , -y;
243 ,-v;
fj -X~t I J /
265;y;
65;y;
15 ;y;
130;y;
14 ;y;
31;y;
1445;y;
7012;y;
10668;y;
256;y;
16365;y;
6316;y;
61547; ry;
1081;y;
981;y;
1639;y;
11270;y;
4760;y;
58082 ;y;
8354;y;
843;y;
589;y;
4760;y;
58082 ;y;
8354 ;y;
843; y;
589 ;y;
S/N2 ; ? mod?
56, -y
63 ;y
16;y
16;y
20;y
38, -y
71;y
511;y
358;y
322;y
231-v
*• -' •*- » 3
246;y
65 ;y
15;y
418;y
48;y
17 ;y
5288;y
11372;y
7082;y
241;y
16657;y
4009;y
12075;y
1682;y
1836;y
5980;y
7347;y
10807, -y
5470;y
1284;y
1119 py
10807 ;y
5470;y
1284;y
1119;y
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 11
-------
OPUSquan 28-SEP-1998
Page I
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:25
Run: 11 File: a27sep98m S:5 Acg:27-SEP-98 22:14:09 Proc:28-SEP-98 09:36:23
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-1 xl/2
Amount: 111.73 of which 15.66
Cone: 111.73 of which 15.66
Tox #2: -
Tox #1: -
Name
named and 96.08
named and 96.08
Tox #3: -
2,3,7,8-TCDF
RT Respnse
RA
1 24:08 2.8e+07 0.78 y
2.8e+07
2 24:43 1.7e+07 0.76 y
1.7e+07
3 24:51 8.36+04 0.51 n
8.3e+04
4 25:03 1.2e+07 0.77 y
1.2e+07
5 25:21 6.6e+07 0.78 y
6.6e+07
6 25:31 1.6e+07 0.77 y
1.66+07
7 25:40 2.0e+07 0.77 y
2.0e+07
8 25:47 3.1e+07 0.79 y
3.1e+07
9 26:09 1.8e+07 0.75 y
l.Se+07
10 26:15 3.2e+07 0.78 y
3.2e+07
11 26:30 l.Se+07 0.77 y
l.Se+07
12 26:38 2.7e+07 0.78 y
2.7e+07
13 26:56 4.0e+07 0.81 y
4.0e+07
14 27:03 2.3e+07 0.74 y
2.36+07
15 27:20 2.8e+07 0.79 y
2.8e+07
16 27:34 2.0e+06 0.77 y
2.06+06
17 27:41 l.Se+07 0.80 y
l.Se+07
18 27:58 7.0e+07 0.79 y
7.0e+07
19 28:11 4.9e+04 0.69 y
4.9e+04
Cone
6.31
]
3
3.75
c
0.02
C
2.75
C
6
14.76
3.58
c
4.38
£
]
7.04
1
1
4.03
'i
1
7.14
3
1
3.98
3
6.11
1
]
8.89
3
5.06
S
1
6.21
1
1
0.45
S
3
3.41
e
e
15.66
0.01
unnamed
unnamed
Area Height
S/N Mod?
1.2e+07 3.0e+06 5.7e+02 y n
1.6e+07 3.8e+06 3.2e+02 y n
7.3e+06 1.8e+06 3.5e+02 y n
9.5e+06 2.3e+06 2.0e+02 y n
2
2.8e+04 1.4e+04 2.7e+00 n n
5.5e+04 2.2e+04 1.9e+00 n n
5.4e+06 1.26+06 2.4e+02 y n
6.9e+06 1.7e+06 1.4e+02 y n
2.96+07 6.0e+06 1.2e+03 y n
3.7e+07 7.86+06 6.6e+02 y n
3
7.0e+06 l.Oe+06 2.0e+02 y n
9.0e+06 1.4e+06 1.2e+02 y n
3
8.5e+06 2.0e+06 3.8e+02 y n
l.le+07 2.6e+06 2.2e+02 y n
1.4e+07 1.8e+06 3.5e+02 y n
1.86+07 2.3e+06 2.0e+02 y n
7.7e+06 2.1e+06 4.1e+02 y n
l.Oe+07 2.7e+06 2.3e+02 y n
I
1.4e+07 3.06+06 5.7e+02 y n
1.8e+07 3.8e+06 3.3e+02 y n
3
7.8e+06 1.8e+06 3.5e+02 y n
l.Oe+07 2.4e+06 2.0e+02 y n
L
1.2e+07 2.7e+06 5.2e+02 y n
1.5e+07 3.6e+06 3.0e+02 y n
1.8e+07 3.56+06 6.7e+02 y n
2.2e+07 4.56+06 3.8e+02 y n
9.6e+06 2.2e+06 4.1e+02 y n
1.3e+07 2.7e+06 2.3e+02 y n
L
1.2e+07 2.7e+06 S.le+02 y n
1.6e+07 3.4e+06 2.9e+02 y n
8.7e+05 2.1e+05 4-Oe+Ol y n
l.le+06 2.7e+05 2.3e+01 y n
L
6.86+06 l.Se+06 2.9e+02 y n
!.5e+06 1.96+06 1.6e+02 y n
3.1e+07 4.7e+06 9.0e+02 y n
3.9e+07 6.0e+06 S.le+02 y n
1
2.06+04 1.4e+04 2.7e+00 n n
2.9e+04 1.36+04 l.le+00 n n
' 047
-------
OPUSquan 28-SEP-1998 Page 2
20 28:33 2.1e+07 0.79 y 4.63
2.1e+07 9.1e+06 2.1e+06 3.9e+02 y n
1.26+07 2.7e+06 2.3e+02 y n
21 28:50 l.le+07 0.79 y 2.46
l.le+07 4.9e+06 9.8e+05 1.9e+02 y n
6.16+06 1.3e+06 l.le+02 y n
22 29:04 2.6e+06 0.75 y 0.58
2.66+06 l.le+06 2.4e+05 4.7e+01 y n
1.5e+06 3.3e+05 2.8e+01 y n
23 29:19 6.7e+04 0.69 y 0.01
6.76+04 2.7e+04 9.2e+03 1.8e+00 n n
4.0e+04 1.2e+04 l.Oe+00 n n
24 29:30 4.8e+04 0.31 n 0.01
4.8e+04 l.le+04 4.1e+03 7.8e-01 n n
3.7e+04 1.3e+04 l.le+00 n n
25 30:19 2.2e+06 0.85 y 0.50
2.2e+06 l.Oe+06 2.36+05 4.5e+01 y n
1.26+06 2.96+05 2.46+01 y n
c r
048
-------
OPUSguan 28-SEP-1998
Page 3
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:18
Run: 11 File: a27sep98m S:5 Acg:27-SEP-98 22:14:09 Proc:28-SEP-98 09:36:23
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3 . 5 17-APR-1997 11:14:34 Sample text: 1113-1 xl/2
Amount: 7.00
Cone: 7.00
Tox #1: -
Name
2,3,7,8-TCDD
of which 0.29
of which 0.29
Tox #2: -
named and 6.71
named and 6.71
Tox #3: -
RT Respnse
24:35 2.26+04
2.26+04
RA
1.35 n
2 25:45 5.3e+06 0.81 y
5.3e+06
3 26:10 2.56+06 0.79 y
2.56+06
4 26:21 1.96+04 7.81 n
1.9e+04
5 26:33 8.0e+05 0.82 y
8.0e+05
6 27:24 4.9e+06 0.74 y
4.9e+06
7 27:37 8.5e+05 0.69 y
8.56+05
8 27:47 l.le+06 0.80 y
l.le+06
9 27:53 5.2e+05 0.94 n
5.26+05
10 28:16 l.Oe+06 0.79 y
l.Oe+06
11 28:41 1.66+06 0.84 y
1.6e+06
12 28:50 2.8e+06 0.80 y
2.8e+06
13 28:58 l.Oe+06 0.59 n
l.Oe+06
14 29:10 5.3e+05 0.69 y
5.3e+05
15 29:28 l.le+06 0.74 y
l.le+06
16 29:33 2.26+04 0.70 y
2.26+04
17 29:49 2.86+05 0.55 n
2.8e+05
18 30:25 1.9e+05 0.95 n
1.9e+05
Cone
0.01
]
c
1.52
0.73
]
]
0.01
1
0.23
4
1.39
0.24
1
C
0.32
c
t
0.15
0.28
<
C
0.45
7
e
0.79
1
1
0.29
«
0.15
•:
0.30
<
e
o.oi
c
]
0.08
S
3
0.06
unnamed
unnamed
Area Height
S/N Mod?
1.3e+04 5.2e+03 l.le+00 n n
9.5e+03 2.1e+03 8.4e-01 n n
I
2.4e+06 5.56+05 l.le+02 y n
2.96+06 6.8e+05 2.7e+02 y n
3
l.le+06 2.6e+05 5.4e+01 y n
1.4e+06 3.1e+05 1.2e+02 y n
1.6e+04 5.5e+03 1.26+00 n n
2.1e+03 1.8e+03 7.26-01 n n
3
3.6e+05 8.9e+04 1.8e+01 y n
4.4e+05 l.le+05 4.2e+01 y n
2.1e+06 4.36+05 9.0e+01 y n
2.8e+06 5.6e+05 2.2e+02 y n
1
3.5e+05 6.1e+04 1.3e+01 y n
S.le+05 7.96+04 3.1e+01 y n
2
5.0e+05 1.2e+05 2.5e+01 y n
6.2e+05 1.5e+05 5.8e+01 y n
5
2.5e+05 6.6e+04 1.46+01 y n
2.76+05 5.6e+04 2.2e+01 y n
4.4e+05 l.Oe+05 2.1e+01 y n
5.6e+05 1.3e+05 5.0e+01 y n
7.1e+05 1.6e+05 3.3e+01 y n
8.5e+05 1.8e+05 7.2e+01 y n
5
1.2e+06 2.5e+05 5.2e+01 y n
l.Se+06 3.0e+05 1.2e+02 y n
3
3.8e+05 7.9e+04 1.6e+01 y n
6.5e+05 1.4e+05 5.6e+01 y n
2.2e+05 5.4e+04 l.le+01 y n
3.16+05 6.3e+04 2.5e+01 y n
4.5e+05 l.le+05 2.2e+01 y n
6.16+05 1.3e+05 5.3e+01 y n
1
9.16+03 4.8e+03 9.9e-01 n n
1.3e+04 3.7e+03 l.Se+00 n n
9.9e+04 2.7e+04 5.7e+00 y n
1.8e+05 4.4e+04 1.7e+01 y n
9.5e+04 2.2e+04 4.5e+00 y n
l.Oe+05 2.56+04 9.7e+00 y n
049
-------
OPUSquan 28-SEP-1998
Page 4
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:15
Run: 11 File: a27sep98m S:5 Acq:27-SEP-98 22:14:09 Proc:28-SEP-98 09:36:23
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-1 xl/2
Amount: 52.68
Cone: 52.68
Tox #1: -
Name
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
of which 7.05
of which 7.05
Tox #2: -
# RT Respnse
named and 45.63
named and 45.63
Tox #3: -
RA
1 30:45 2.4e+07 1.56 y
2.4e+07
2 31:42 1.2e+07 1.55 y
1.2e+07
3 31:49 5.6e+07 1.56 y
5.6e+07
4 31:56 1.2e+07 1.50 y
1.2e+07
5 32:02 3.2e+06 1.49 y
3.26+06
6 32:05 2.6e+06 1.68 y
2.6e+06
7 32:11 1.8e+07 1.56 y
1.8e+07
8 32:21 4.1e+06 1.55 y
4.1e+06
9 32:23 1.36+07 1.57 y
1.3e+07
10 32:29 7.2e+06 1.53 y
7.2e+06
11 32:34 1.2e+07 1.59 y
1.2e+07
12 32:50 1.2e+07 1.60 y
1.2e+07
13 32:55 8.4e+06 1.52 y
8.4e+06
14 33:04 l.le+06 1.80 n
l.le+06
15 33:22 1.4e+06 1.44 y
1.4e+06
Cone
6.84
]
c
3.27
<
15.79
•5
3.45
1
4
0.89
]
]
0.72
]
c
5.02
:
1.16
:
3.65
c
2.04
4
3.39
4
3.40
7
4
2.36
C
3
0.30
6
3
0.40
unnamed
unnamed
Area Height
S/N Mod?
.5e+07 3.5e+06 9.3e+02 y n
9.5e+06 2.2e+06 3.0e+02 y n
7
7.1e+06 3.1e+06 8.1e+02 y n
.5e+06 1.8e+06 2.4e+02 y n
3.4e+07 l.le+07 2.96+03 y n
2.2e+07 7.1e+06 9.5e+02 y n
5
7.46+06 2.2e+06 5.7e+02 y n
.9e+06 1.5e+06 2.0e+02 y n
.9e+06 9.0e+05 2.4e+02 y n
.3e+06 6.0e+05 8.0e+01 y n
.6e+06 7.3e+05 1.9e+02 y n
9.6e+05 4.3e+05 5.8e+01 y n
2
l.le+07 4.1e+06 l.le+03 y n
7.0e+06 2.7e+06 3.6e+02 y n
5
2.5e+06 1.2e+06 3.2e+02 y n
.6e+06 7.3e+05 9.8e+01 y n
7.8e+06 4.0e+06 l.le+03 y n
5.0e+06 2.7e+06 3.6e+02 y n
J
4.46+06 2.2e+06 5.7e+02 y n
2.9e+06 1.4e+06 1.8e+02 y n
3
7.4e+06 3.7e+06 9.9e+02 y n
4.6e+06 2.4e+06 3.2e+02 y n
7.5e+06 3.7e+06 9.7e+02 y n
4.7e+06 2.4e+06 3.2e+02 y n
5
S.le+06 2.2e+06 5.9e+02 y n
3.3e+06 1.4e+06 1.9e+02 y n
6.9e+05 3.1e+05 8.2e+01 y n
3.8e+05 1.8e+05 2.5e+01 y n
D
8.4e+05 4.4e+05 1.2e+02 y n
5.8e+05 2.9e+05 3.9e+01 y n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Horo:14
Run: 11 File: a27sep98m S:5 Acq:27-SEP-98 22:14:09 Proc:28-SEP-98 09:36:23
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-1 xl/2
Amount: 3.33
Cone: 3.33
of which 0.27
of which 0.27
named and 3.06
named and 3.06
unnamed
unnamed
050
-------
OPUSquan 28-SEP-1998
Page 5
Tox #1: - Tox #2: - Tox
Name # RT Respnse RA
1 31:57 2.
2
2 32:05 1
1
3 32:08 1
1
4 32:15 2
2
5 32:25 2
2
6 32:30 6
6
7 32:36 1
1
8 32:42 2
2
9 32:45 6
6
10 32:51 8
8
11 32:55 2
2
1,2,3,7,8-PeCDD 12 33:02 8
8
13 33:07 4
4
14 33:18 3
3
2e+06 1.54 y
2e+06
6e+04 1.34 y
6e+04
6e+04 1.33 y
6e+04
4e+05 1.41 y
4e+05
Oe+06 1.58 y
Oe+06
9e+05 1.69 y
9e+05
3e+06 1.59 y
3e+06
8e+05 1.50 y
8e+05
4e+05 1.51 y
4e+05
2e+05 1.68 y
2e+05
7e+05 1.71 y
7e+05
le+05 1.54 y
le+05
Oe+05 1.50 y
Oe+05
9e+05 1.72 y
9e+05
#3: -
Cone
0.73
1
8
0.01
9
6
0.01
9
6
0.08
1
9
0.66
1
7
0.23
4
2
0.42
7
4
0.09
1
1
0.21
3
2
0.27
5
3
0.09
1
1
0.27
4
3
0.13
2
1
0.13
2
1
Area
.3e+06
.7e+05
.le+03
. 8e+03
.Oe+03
.8e+03
.4e+05
.8e+04
.2e+06
.7e+05
.3e+05
. 6e+05
. 8e+05
. 9e+05
.7e+05
.le+05
.8e+05
.5e+05
.2e+05
.le+05
.7e+05
.Oe+05
.9e+05
.2e+05
.4e+05
.6e+05
.5e+05
.4e+05
Height
5
3
4
3
7
3
6
4
5
3
2
1
4
2
8
6
1
1
2
1
9
5
2
1
1
8
1
8
.le+05
.4e+05
. 5e+03
.4e+03
.le+03
.4e+03
. 9e+04
.7e+04
.7e+05
.9e+05
.3e+05
.5e+05
.le+05
.5e+05
.le+04
.Oe+04
.6e+05
.2e+05
.4e+05
.6e+05
.3e+04
.3c;+04
.6e+05
.6e+05
.2e+05
.5e+04
.le+05
.Oe+04
8
1
7
1
1
1
1
1
9
1
4
6
7
9
1
2
2
4
4
6
1
2
4
6
2
3
2
3
S/N
. 8e+01
.4e+02
.8e-01
.4e+00
.2e+00
.4e+00
.2e+01
. 9e+01
. 9e+01
.6e+02
.Oe+01
.Oe+01
.le+01
.8e+01
.4e+01
.4e+01
.8e+01
.8e+01
.le+01
.5e+01
.6e+01
.le+01
.5e+01
.3e+01
.le+01
.4e+01
.Oe+01
.2e+01
Mod?
y
y
n
n
n
n
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
051
-------
OPUSquan 28-SEP-1998
Page 6
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:28
Run: 11 File: a27sep98m S:5 Acq:27-SEP-98 22:14:09 Proc:28-SEP-98 09:36:23
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-1 xl/2
Amount: 22.63
Cone: 22.63
Tox #1: -
Name
of which 7.88
of which 7.88
Tox #2: -
# RT Respnse
named and 14.75
named and 14.75
Tox #3: -
RA
1 33:56 6.46+06 1.22 y
6.4e+06
2 34:01 2.96+07 1.24 y
2.9e+07
3 34:08 2.8e+06 1.26 y
2.8e+06
4 34:12 3.3e+06 1.20 y
3.3e+06
5 34:20 1.3e+06 1.15 y
1.3e+06
6 34:26 2.7e+04 1.03 n
2.7e+04
7 34:28 2.8e+04 1.10 y
2.8e+04
1,2,3,4,7,8-HxCDF 8 34:34 1.3e+07 1.24 y
1.36+07
1,2,3,6,7,8-HxCDF 9 34:39 l.le+07 1.25 y
l.le+07
10 34:43 2.5e+06 1.29 y
2.5e+06
11 34:52 3.5e+06 1.21 y
3.5e+06
12 34:58 1.5e+06 1.22 y
1.5e+06
2,3,4,6,7,8-HxCDF 13 35:01 3.4e+06 1.19 y
3.4e+06
14 35:05 1.8e+05 1.79 n
1.8e+05
15 35:09 1.3e+05 0.95 n
1.3e+05
16 35:13 7.3e+04 3.02 n
7.3e+04
17 35:22 6.8e+04 2.76 n
6.8e+04
1,2,3,7,8,9-HxCDF 18 35:32 7.66+05 1.21 y
7.6e+05
19 35:35 8.5e+05 1.29 y
8.5e+05
Cone
1.83
i
8.20
a
a
0.79
a
a
0.94
a
a
0.36
c
c
0.01
a
a
o.oi
a
a
3.82
c
2.86
C
C
0.71
a
a
1.01
a
i
0.43
e
e
0.97
a
a
0.05
a
e
0.04
f
«
0.02
t
a
0.02
c
a
0.24
4
3
0.24
unnamed
unnamed
Area Height
S/N Mod?
3.5e+06 1.8e+06 1.6e+02 y n
2.9e+06 1.5e+06 1.6e+02 y n
}
1.6e+07 7.6e+06 6.6e+02 y n
1.36+07 6.5e+06 6.6e+02 y n
5
1.5e+06 6.7e+05 5.8e+01 y n
1.26+06 5.2e+05 5.3e+01 y n
1
l.Se+06 7.8e+05 6.8e+01 y n
1.5e+06 7.1e+05 7.3e+01 y n
6.8e+05 3.0e+05 2.66+01 y n
5.9e+05 2.6e+05 2.7e+01 y n
L
1.4e+04 7.0e+03 6.1e-01 n n
1.36+04 7.0e+03 7.2e-01 n n
L
1.5e+04 6.1e+03 5.3e-01 n n
1.36+04 7.0e+03 7.2e-01 n n
2
7.26+06 2.8e+06 2.4e+02 y n
5.8e+06 2.2e+06 2.36+02 y n
6.2e+06 3.0e+06 2.66+02 y n
S.Oe+06 2.4e+06 2.5e+02 y n
L
1.4e+06 5.7e+05 5.0e+01 y n
l.le+06 4.7e+05 4.9e+01 y n
L
1.9e+06 7.0e+05 6.16+01 y n
1.66+06 5.2e+05 5.46+01 y n
8.36+05 4.7e+05 4.1e+01 y n
6.8e+05 3.5e+05 3.6e+01 y n
7
1.9e+06 7.5e+05 6.5e+01 y n
1.6e+06 6.3e+05 6.5e+01 y n
1.26+05 4.0e+04 3.5e+00 y n
6.6e+04 1.4e+04 1.4e+00 n n
1
6.3e+04 2.4e+04 2.1e+00 n n
6.6e+04 1.4e+04 1.4e+00 n n
5.5e+04 1.6e+04 1.46+00 n n
l.Se+04 1.3e+04 1.3e+00 n n
2
5.0e+04 1.4e+04 1.2e+00 n n
l.Se+04 6.2e+03 6.4e-01 n n
4.2e+05 1.7e+05 1.5e+01 y n
3.4e+05 1.4e+05 1.5e+01 y n
I
4.8e+05 2.1e+05 1.9e+01 y n
3.76+05 1.4e+05 1.5e+01 y n
052
-------
OPUSquan 28-SEP-1998
Page 7
20 35:47 2.1e+04 2.13 n 0.01
2.1e+04 1.5e+04 6.9e+03
6.8e+03 4.2e+03
21 35:50 3.7e+04 1.52 n 0.01
3.7e+04 2.3e+04 1.2e+04
l.Se+04 7.0e+03
22 35:53 3.7e+04 1.13 y 0.01
3.7e+04 1.96+04 l.Oe+04
1.7e+04 9.3e+03
23 35:55 2.5e+04 1.90 n 0.01
2.56+04 1.66+04 9.36+03
8.56+03 4.76+03
24 36:00 5.9e+04 2.57 n 0.02
5.9e+04 4.26+04 1.4e+04
1.6e+04 7.3e+03
25 36:05 3.7e+04 0.82 n 0.01
3.7e+04 1.76+04 9.16+03
2.0e+04 l.Oe+04
26 36:10 5.1e+04 1.09 y 0.01
5.1e+04 2.76+04 1.5e+04
2.4e+04 6.16+03
27 36:11 4.8e+04 0.96 n 0.01
4.8e+04 2.3e+04 9.7e+03
2.46+04 6.16+03
28 36:18 3.6e+04 0.57 n 0.01
3.6e+04 1.3e+04 5.8e+03
2.36+04 l.le+04
6.0e-01 n n
4.3e-01 n n
l.Oe+00 n n
7.2e-01 n n
9-le-Ol n n
9.6e-01 n n
S.le-01 n n
4.8e-01 n n
1.2e+00 n n
7.5e-01 n n
7.9e-01 n n
l.Oe+00 n n
1.36+00 n n
6.3e-01 n n
8.5e-01 n n
6.36-01 n n
S.Oe-01 n n
l.le+00 n n
053
-------
OPUSquan 28-SEP-1998
Page 8
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:19
Run: 11 File: a27sep98m S:5 Acg:27-SEP-98 22:14:09 Proc:28-SEP-98 09:36:23
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-1 xl/2
Amount: 1.98
Cone: 1.98
Tox #1: -
Name
of which 0.46
of which 0.46
Tox #2: -
# RT Respnse
named and 1.52
named and 1.52
Tox #3: -
RA
1 34:16 4.56+05 1.28 y
4.5e+05
2 34:25 1.4e+04 0.68 n
1.4e+04
3 34:35 1.7e+06 1.36 y
1.7e+06
4 34:44 1.2e+06 1.27 y
1.2e+06
5 34:49 1.3e+05 1.12 y
1.36+05
6 35:01 3.4e+04 2.22 n
3.46+04
7 35:05 3.7e+05 1.18 y
3.7e+05
1,2,3,6,7,8-HxCDD 8 35:09 5.0e+05 1.47 n
5.0e+05
35:16 2.4e+04
2.461-04
1.14 y
1,2,3,7,8,9-HxCDD 10 35:21 7.7e+05 1.25 y
7.7e+05
11 35:33 2.46+04 2.21 n
2.4e+04
12 35:41 1.8e+04 0.68 n
l.Se+04
13 35:46 3.16+04 2.11 n
3.16+04
14 35:50 1.2e+04 0.89 n
1.26+04
15 35:56 2.0e+04 0.84 n
2.0e+04
16 35:59 3.2e+04
3.26+04
0.35 n
17 36:08 2.4e+04 0.77 n
2.4e+04
18 36:10 2.16+04 0.50 n
2.1e+04
19 36:18 1.4e+04 0.76 n
1.4e+04
Cone
0.17
0.01
C
{
0.62
c
0.45
6
C
0.05
{
e
0.01
2
1
0.14
i
0.18
0.01
1
1
0.28
A
0.01
1
0.01
1
1
0.01
2
1
0.00
c
«
0.01
s
a
o.oi
e
o.oi
a
:
o.oi
e.
a
o.oi
unnamed
unnamed
Area Height
S/N Mod?
2.56+05 1.3e+05 2.1e+01 y n
2.0e+05 9.5e+04 1.6e+01 y n
5.66+03 2.6e+03 4.2e-01 n n
8.26+03 2.16+03 3.6e-01 n n
9.6e+05 4.2e+05 7.0e+01 y n
7.16+05 3.0e+05 5.1e+01 y n
6.7e+05 2.6e+05 4.3e+01 y n
5.36+05 2.2e+05 3.7e+01 y n
.9e+04 2.3e+04 3.8e+00 y n
6.2e+04 2.1e+04 3.5e+00 y n
L
2.3e+04 1.3e+04 2.26+00 n n
l.le+04 4.1e+03 7.0e-01 n n
1
2.0e+05 8.3e+04 1.4e+01 y n
1.7e+05 7.7e+04 1.3e+01 y n
3
2.9e+05 1.3e+05 2.2e+01 y n
2.0e+05 9.3e+04 1.6e+01 y n
L
1.3e+04 6.3e+03 l.Oe+00 n n
l.le+04 6.4e+03 l.le+00 n n
3
4.3e+05 1.3e+05 2.1e+01 y n
3.46+05 1.2e+05 2.0e+01 y n
L
1.6e+04 8.9e+03 1.5e+00 n n
7.3e+03 3.2e+03 5.6e-01 n n
7.16+03 4.9e+03 S.le-01 n n
l.Oe+04 4.8e+03 8.3e-01 n n
L
2.1e+04 7.2e+03 1.2e+00 n n
l.Oe+04 4.8e+03 8.2e-01 n n
D
5.4e+03 2.2e+03 3.6e-01 n n
6.16+03 2.7e+03 4.7e-01 n n
9.46+03 4.5e+03 7.4e-01 n n
l.le+04 7.2e+03 1.2e+00 n n
L
8.3e+03 3.6e+03 5.9e-01 n n
2.3e+04 6.7e+03 1.2e+00 n n
l.le+04 5.4e+03 8.9e-01 n n
1.4e+04 6.8e+03 1.2e+00 n n
6.9e+03 3.7e+03 6.1e-01 n n
1.4e+04 6.8e+03 1.2e+00 n n
I
6.0e+03 2.8e+03 4.6e-01 n n
7.9e+03 5.9e+03 l.Oe+00 n n
< f
-------
OPUSguan 28-SEP-1998
Page 9
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:13
Run: 11 File: a27sep98m S:5 Acq:27-SEP-98 22:14:09 Proc:28-SEP-98 09:36:23
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-1 xl/2
Amount: 6.69
Cone: 6.69
Tox #1: -
Name
of which 4.87
of which 4.87
Tox #2: -
# RT Respnse
named and 1.82
named and 1.82
Tox #3: -
RA
1,2,3,4,6,7,8-HpCDFl 36:43 1.2e+07 1.02 y
1.2e+07
2 36:56 2.5e+06 1.02 y
2.5e+06
3 37:03 1.8e+06 1.09 y
1.8e+06
37:11 4.2e+04
4.26+04
37:12 4.2e+04
4.2e+04
37:34 7.0e+04
7.0e+04
37:44 4.3e+04
4.36+04
1.28 n
1.33 n
1.53 n
3.01 n
1,2,3,4,7,8,9-HpCDFS 37:53 1.4e+06 0.99y
1.4e+06
9 38:09 4.2e+04 3.42 n
4.2e+04
10 38:12 1.2e+04
1.2e+04
1.54 n
11 38:15 l.Se+04 2.65 n
1.8e+04
12 38:25 2.3e+04 2.89 n
2.3e+04
13 38:30 3.6e+04 0.99 y
3.6e+04
Cone
4.27
c
c
0.97
]
]
0.72
c
I
0.02
]
0.02
]
0.03
4
0.02
i
1
0.60
0.02
c
0.00
7
4
0.01
1
4
0.01
1
c
0.01
unnamed
unnamed
Area Height S/N Mod?
5.9e+06 2.3e+06 1.3e+02 y n
5.8e+06 2.2e+06 4.2e+02 y n
.2e+06 4.6e+05 2.6e+01 y n
.2e+06 4.4e+05 8.3e+01 y n
9.5e+05 3.36+05 1.9e+01 y n
8.7e+05 3.06+05 5.5e+01 y n
2
2.3e+04 1.3e+04 7.5e-01 n n
1.8e+04 9.6e+03 1.8e+00 n n
2.4e+04 9.0e+03 5.1e-01 n n
1.8e+04 9.6e+03 l.Se+OO n n
4.2e+04 1.3e+04 7.3e-01 n n
2.86+04 4.7e+03 8.7e-01 n n
2
3.2e+04 1.8e+04 l.Oe+00 n n
l.le+04 3.3e+03 6.1e-01 n n
D
7.1e+05 2.5e+05 1.4e+01 y n
7.1e+05 2.66+05 4.8e+01 y n
2
3.3e+04 1.26+04 6.9e-01 n n
9.5e+03 3.7e+03 6.8e-01 n n
7.5e+03 3.5e+03 2.0e-01 n n
4.9e+03 3.7e+03 6.9e-01 n n
1
1.36+04 4.5e+03 2.5e-01 n n
4.9e+03 3.7e+03 6.9e-01 n n
1.7e+04 9.0e+03 5.1e-01 n n
5.8e+03 2.3e+03 4.3e-01 n n
L
1.8e+04 8.8e+03 5.0e-01 n n
1.8e+04 4.4e+03 8.3e-01 n n
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:8
Run: 11 File: a27sep98m S:5 Acq:27-SEP-98 22:14:09 Proc:28-SEP-98 09:36:23
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-1 xl/2
Amount: 1.03
Cone: 1.03
Tox #1: -
of which 0.50
of which 0.50
Tox #2: -
named and 0.52
named and 0.52
Tox #3: -
Name
# RT Respnse RA Cone
1 36:43 8.4e+04 2.67 n 0.04
unnamed
unnamed
Area Height S/N Mod?
055
-------
3PUSguan 28-SEP-1998
Page 10
8.4e+04
2 36:57 8.9e+05 1.04 y 0.40
8.9e+05
3 37:08 3.3e+04 1.21 n 0.01
3.3e+04
6.
2.
}
4.
4.
L
1.
1.
le+04 2.3e+04 5.2e+00 y
3e+04 S.Oe+03 1.7e+00 n
l,2,3,4,6,7,8-HpCDD4 37:32 l.le+06 1.04y 0.50
l.le+06
5 37:44 2.7e+04 1.93 n 0.01
2.7e+04
6 37:53 7.3e+04 16.30n 0.03
7.3e+04
7 37:59 1.7e+04 2.75 n 0.01
1.7e+04
5,
5
L
1
9
J
6
4
L
1
4
8 38:06 2.3e+04 0.96 y 0.01
2.3e+04 1
1
5e+05 1.7e+05 3.7e+01 y n
3e+05 1.9e+05 4.0e+01 y n
8e+04 6.4e+03 1.4e+00 n n
5e+04 5.5e+03 1.2e+00 n n
,6e+05 1.9e+05 4.16+01 y n
,4e+05 1.8e+05 3.8e+01 y n
.8e+04 5.3e+03 1.2e+00 n n
,2e+03 4.2e+03 9.1e-01 n n
.9e+04 2.16+04 4.8e+00 y n
.2e+03 3.3e+03 7.06-01 n n
.2e+04 3.4e+03 7.5e-01 n n
.4e+03 2.6e+03 5.6e-01 n n
le+04 4.4e+03 9.8e-01 n
2e+04 6.2e+03 1.3e+00 n
-------
File:A27SEP98M #1-529 Acq:2'
Sample#5 Text: 1113-1 xl/2
319.8965 S:5 BSUB(128 , 15, -3
100%
:
50 j
-
n:
24:00
321.8936 S:5 BSUB(128, 15, -3
100%
.
50J
0:
24:00
331.9368 S:5 BSUB(128, 15, -3
100%
50J
n:
24:00
333.9339 S:5 BSUB(128, 15, -3 .
100%
50J
0-
24:00
327.8847 S:5 BSUB (128 , 15 , -3 .
100%
50 j
o:
24 !00
316.9824 S:5 SMO(1,3) PKD(3,
100%_ 23:44 24:17
50J
0: N
i i i i i i i i r
24:00
7-SEP-1998 i
. 0) PKD(3,3
25 !00
. 0) PKD(3,3,
25-00
0) PKD(3,3,
25:00
0) PKD(3,3,
25:00
0) PKD(3,3,
25 IOO
3,3,100.00%
24:59 25
i | i i
25:00
22:14:09 GC EI+ Voltage SIP
Exp:EXP M23 DBS OVATION
2, 0.10%, 4816. 0,1. 00%, F,F)
25:45
ft
26:10
A 26:33
/ \ '\ A
26:00 27 100
2, 0.10% ,2528. 0,1. 00%, F,F)
25:46
A
26:10
l\ A >%»
2eloo 27loo
2, 0.10%, 22892. 0,1. 00%, F,F)
26:00 27:00
2, 0.10%, 7980. 0,1. 00%, F,F)
26:00 27:00
2, 0.10%, 14616. 0,1. 00%, F,F)
26 100 ' 27 loo'
, 0.0,1. 00%, F,F)
:29 26:00 26:27 _?7:01
-r— i i | i i c i i | i
26:00 27:00
I Autospec-UltimaE
27:24
28:50
27:47 28:16 28A4As-58 29:28
.x-v/Vv A An/\ >. A 29 =,48
"i ii i i i 1 I ' I ' — I—1 — j i / ' l' I ' f i i i' i i
28:00 29:00 30:00
27:24
28:49
27:47 28:15 28A4A 29:28
.WV A AJV\^ A ^
28:00 29:00 30:00
28:40
A A
H
A /I
i i 1 1 1 1 1 1-"4 — i i 1 ' i ' r 1 1 i 1 r
28:00 29:00 30:00
28:40
A A
A A
i\i\
28:00 29:00 30:00
28:58
ft
/I
28 100 29 100 30 lod
27:37 28:10 28:53 29:17 3^rp1
—i i i i |— i i i i i 1 c 1 1 1 1 1 1 r Y-
28:00 29:00 30:00
5.5E5
_2.8E5
0 OEO
Time
6 .8E5
_3.4E5
0 OEO
Time
3.8E7
U.9E7
• O.OEO
Time
..4.8E7
12.4E7
' O.OEO
Time
_7.0E7
L3.5E7
" O.OEO
Time
_1.2E8
_5.8E7
O.OEO
Time
O
-------
File:A27SEP98M #1-237 Acq
Sample#5 Text: 1113-1 xl/2
355.8546 S:5 F:2 BSUB(128,
100%
-
so:
•
n" _ _ _
3ol36 30 Us isildd 3i
357.8517 S:5 F:2 BSUB(128,
lOOi
so:
-
" " - T r i
3ol36 ' sbUs Sllod 31
367.8949 S:5 F:2 BSUB(128,
100S
so:
n "
30:36 30:48 31:00 31
369.8919 S:5 F:2 BSUB(128,
100%
so:
0"
"-'i i i i i i i i i i i-i-TTT-r n i-
30:36 30:48 31:00 31
366.9792 S:5 F:2 SMO{1,3)
100*30:38 30:48 31:07
so:
:
30:36 30:48 31:00 31
27-SEP-1998 22:14:09 GC EI+ Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
15, -3.0) PKD(3,3,2,0.10%,5764.0,1.00%,F,F)
31:57 32
A
/ \
\ 32:15 /
/ V /\ J
•12 31:24 31:36 SlUs 32: 00 32:12 32
15, -3.0) PKD(3,3,2,0.10%,2528.0,1.00%,F,F)
32 •
31:56 |
ft
32 15
/ I 32A15 1
25 5.7E5
32:36
32:30/1 32:51 33:02
A 1 32 -45 f\ A
A A /i2:55/p:07 33:18
vwvwuvvyvA A.
-
L2.9E5
'O.OEO
24 32! 36 32148 33:00 33!l2 33-124' 33136 Time
25 4.0E5
1 32:36
32:30/1 32 4352:51 33:02
\A A A A2'55A33A07 33:18
•
:
_2.0E5
O.OEO
!l2 3i!24' 31 lie 31 1 48 32! 00 32! 12 32 124 32136 32! 48 33! 00 33112 33 1 24 33! 36 Time
15, -3.0) PKD(3,3,2,0.10%,12704.0,1.00%,F,F)
33:02
A
j v_
8.9E7
_4.5E7
.O.OEO
!l2 3l!24 3ll36 31:48 32:00 32:12 32 24 32:36 32:48 33:00 33:12 33:24 33:36 Time
15, -3.0) PKD(3,3,2,0.10%,4976.0,1.00%,F,F)
33|02
_5.7E7
12 . 8E7
"O.OEO
•12 31:24 31:36 31.:48 32:00 32:12 32-24 32:36 32:48 33:00 33:12 33:24 33:36 Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
31:24 T1 ,T9 31:51 32_:02 32:13
37-31 32_L.4fi 12
-------
File:A27SEP98M #1-197 Acq:27-SEP-1998 22:14:09 GC EI+ Voltage SIR Autospec-UltimaE
Sample#5 Text:1113-l xl/2
389.8156 S:5 F:3 BSUB (128 , 15, -3 . 0)
1003
50_
Q
34:16
A
33! 4's' ' '34l do' ' '34! 12' ' '34124
391.8127 S:5 F:3 BSUB (128 , 15, -3 . 0)
1003^
-
50J
-
0'
34:16
A
33 1 48 34l 00 34:12 34124
401.8559 S:5 F:3 BSUB(128 , 15, -3 . 0)
100%
50J
0"
33148 3 4: 00 34:12 34! 24
403.8530 S:5 F:3 BSUB (128 , 15 , -3 . 0)
1003;
50J
0"
33:48 34 1 00 34:12 34:24
380.9760 S:5 F:3 SMO(1,3) PKD(3,3,3
100% 33:52 34:01 34:12
50_
0"
fe?)^48 34 100 34 !l2 34:24
Exp:EXP M23 DBS OVATION
PKD(3,5,2,0.10%,6076.0,1.00%,F,F)
34:35
11 34:44
1 A
M / \ 35:09 35:21
/ \ / \34.49 35/\A A
4.2E5
;
L2.1E5
" O.OEO
34:36 34:48 35:00 35:12 35:24 3sl36 3si48 36:00 36ll2 Time
PKD(3,5,2,0.10%,5820.0,1.00%/F,F)
34:34 r3.0E5
A 34:43
/ o
A 3521
M 35:09 A
/\JW» /w A
-
'1.5E5
'O.OEO
34l36 3'4:48 35:00 35:12 35:24 35:36 35:48 36:00 3e!l2 Time
PKD(3,5,2,0.10%,6960.0,1.00%,F,F)
35:09 35i21
/in M
J i V_^J v_
7.8E7
.3.9E7
' O.OEO
34l 36 34148 35 100 35 1 12 3sl24 3sl36 35 1 48 36ldo 36ll2 Time
PKD(3,5,2,0.10%,8304.0,1.00%,F,F)
35:09 35i21
35/yl \
1 \ v^ ) v_
_6.1E7
13.1E7
10.0EO
34:36 34 1 48 35ldo 3sll2 3sl24 3sl36 SsU's 3eloO 3ell2 Time
, 100. 00%, 0.0,1. 00%, F,F)
3_4-4fl 35:03 35:27 35:47 35:5S 3fi:10 5 . ORS
_2.5E8
_O.OEO
34l36 34: 48 3sSdo 35ll2 35l24 35l36 35:48 3eloO 36:12 Time
O
en
-------
File:A27SEP98M #1-197 Acq:27-SEP-1998 22:14:09 GC EI+ Voltage SIR Autospec-UltimaE ""
Sample#5 Text:1113-l xl/2 Exp:EXP M23 DBS OVATION
423.7767 S:5 F:4 BSUB (128, 15, -3
1003
50.
0.
36:57
A
A
36:43 / \
s /\^ / \^_
36!24 36536 36:F48 37!oO
425.7737 S:5 F:4 BSUB (128, 15, -3
1003
50_
-
36:57
A
A
36:43 / \
36.24 seise 36548 37500
435.8169 S:5 F:4 BSUB (128, 15 , -3 .
100%
so:
0"
36 24 36536' ' '36 UV ' '37 5 00
437.8140 S:5 F:4 BSUB (128, 15 , -3 .
100%
50J
0"
36 24 36136 36^8 37 ! 00
430.9728 S:5 F:4 SMO(1,3) PKD(3,
1004 36:41 36-52
so:
0'
/
36:24-> 36:36 36:48 37:00
.0} PKD (3, 5, 3, 0.10%, 4508. 0,1. 00%, F,F)
T
I \ 37:53
j ^-^ /\
1.9E5
.9.3E4
-
37:12 37:24 37:36 37 48 38:00 38:12 38!24 38!36 38:48 39 00 Time
0) PKD(3,5,3,0.10%,4636.0,1.00%,F,F)
37:32
f\
A
/ v
- -/ ^ — ^~
1.9E5
19.4E4
.
37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 SsUs 39 00 Time
0) PKD (3, 5, 3, 0.10%, 164372. 0,1. 00%, F,F)
37:32
A
/ v
4.2E7
L2.1E7
' n n^n
37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 3s!48 39 00 Time
0) PKD (3, 5, 3, 0.10%, 161964. 0,1. 00%, F,F)
37; 32
A
' W
_3.9E7
_2.0E7
" O.OEO
37S 12 37! 24 37!36 3?! 48 3s!do 3s!l2 3s!24 3s!36 38548 39!oO Time
3, 3, 100. 00%, 0.0,1. 00%, F,F)
3J7:(18 37:18 37:51 38:05 38:17 38:29 3fl:59 3 . 5F8
.1.7E8
O.OEO
37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
-------
File
Samp
457.
100S
50_
0"
459.
iooa
so:
ol
469.
100%
so:
471.
100%
so:
454.
100%
so:
0"
:A27SEP98M #1-276 Acq
>le#5 Text: 1113-1 xl/2
7377 S:5 F:5 BSUB(128
39:14
J—i — i — i — i — i — i — i — i — n — i — i — i — i — i — i — i — i — r
39:12 39:24 39:36
7348 S:5 F:5 BSUB(128
39112 39124 39136
:27-SEP-1998 22
,15, -3.0) PKD(3
39:50
i i i 1 1 ' ' '
39:48 40:00
,15, -3.0) PKD(3
39148 46166
7780 S:5 F:5 BSUB(128, 15 , -3 . 0) PKD(3
39112 39124 39136
7750 S:5 F:5 BSUB(128
39112 39124 39136
39:48 46166
15, -3.0) PKD(3
39148 46166
:14:09 GC EI + Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
, 5, 3, 0.10%, 15764. 0,1. 00%, F,F)
T
\
jL_Yv_ 40:42 41:17 41:34 41:54 42:04
2.1E5
L1.1E5
' n own
-i— T — i — i— i — i — i — i — i — i — i — i — i — T~T — i — i — i — i — r— i — i — i — r~i — i — i — i — i — i — i — r-j — i — i — i — i — i — i — i — i — r~i — i — i — i — i — i — i — i — j — i — r — i — i — i — i — i — i — i — i — i — i — r^— v • v*-"v
40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
, 5, 3, 0.10%, 3348. 0,1. 00%, F,F)
40:22
/I
2.4E5
.1.2E5
_O.OEO
46112 46124 46136 kbi^S 43.166 41:12 41124 41136 klUs 42166 42ll2 Time
, 5, 3, 0.10%, 2308. 0,1. 00%, F,F)
40:22
/v
3.8E7
L1.9E7
" O.OEO
461l2 46124 4ol36 46U8 41166 4i!i2 41124 43.136 klUs 42166 42!l2 Time
, 5, 3, 0.10%, 2516. 0,1. 00%, F,F)
40:22
/v
4.2E7
12.1E7
10. OEO
46112 46124 4ol36 40 148 4i!66 4i!i2 4il24 4ll36 klUs 42166 42!l2 Time
9728 S:5 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
39:Q^ 39:26 39-/^ T> • ^ 40:14 40-20 40:41 41-05 41:16 41:38 42:01
^39:12 39:24 39:36
39:48 40:00
3.6E8
11.8E8
"O.OEO
40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
-------
File:A27SEP98M #1-529 Acg:2
Sample#5 Text: 1113-1 xl/2
303.9016 S:5 BSUB (128, 15 , -3
100%,
50_
o-
7-SEP-1998 22:14:09 GC EI+ Voltage SIR
Exp:EXP_M23 DBS OVATION
.0) PKD (3, 3, 2, 0.10%, 5204. 0,1. 00%, F,F)
25:21
A
24:08 11 ,,26:15 26:56
A 24:43 25:40 2ff:ft? A A .
y\
24:00
305.8987 S:5 BSUB (128 , 15 , -3
100%,
-
50 j
o:
A A ;wn I\\N\ /v\ y
25:00 26:00 27:00
.0) PKD (3, 3, 2, 0.10%, 11748. 0,1. 00%, F,F)
25:21
A
*T **<" l\Kf?° 2W A2A5A27
A A A /wn /f\ M /v\ i
24 I 00
315.9419 S:5 BSUB (128 , 15 , -3
100%
50 j
o:
24 loo'
317.93R9 S:5 RSTTRM2R.1 5. -3
100%
50 1
o'-
24 100
375.8364 S:5 BSUB (128, 15, -3
100%
-
-
50J
o:
24:23
23:14 23:41 24-os /|24:
_^rvAi/vwA_ AA A_AA>AAvAAAJL/vAj
24100
316.9824 S:5 SMO(1,3) PKD(3,
100%^ 23^:44 24il7
50_
o:
N
25:00 ' 26 1 00 ' 27:00
.0) PKD (3, 3, 2, 0.10%, 6856. 0,1. 00%, F,F)
i i i i i i i i | i i i 1 i | i
25:00 26:00 27:00
. 0) PKD (3, 3, 2, 0.10%, 13 580. 0,1. 00%, F,F)
25 100 ' ' ' 26 loo' ' ' 27 loo'
0) PKD (3, 3, 3, 100. 00%, 204. 0,1. 00%, F,F)
26:45
36 25:04 26:23 1 ^
+\J\I\ A JLRA_^AV\A_AA^ J^AjvUjTvWA/L/lNM A^jAjuA.
25:00 26:00 27:00
3, 3, 100. 00%, 0.0,1. 00%, F,F)
24:59 25:29 26:00 26:27 27:01
25 loo' ' ' ' 26 1 00 ' ' ' 27 1 00
Autospec-UltimaE
_6.0E6
27:58
:20 A
A 27 -41 / \ 2o:3J
l\ ^ i\ \ A 28:50
v^Tv j v yv /\ „ _
-
L3.0E6
' O.OEO
28:00 29:00 30:00 Time
_7.8E6
27:58
:20 A P8 ,,
\97-41 / \ ^° : -}J
!A/\ A28A50.
_3.9E6
O.OEO
28 I 00 29 I 00 30 I 00 Time
T5
ft
l
4.3E7
_2.2E7
O.OEO
1 ' ' i ' ' ' ' ' i ' ' '
28:00 29:00 30:00 Time
T5
ft
A
5.5E7
L2.7E7
- 0 . OEO
28 100 29 100 30 1 00 Time
30 07 1.7E4
28:08 28-57
27-34 A 'to ~>h fl J
1 27:49 l\ M T\ f 29:29 |
L^>yVu^_Ji^'lJ« WvvViA' »u/ \\j^nJ\hM\i^J^f\lw^^v\J,^\^
_8.7E3
O.OEO
28:00 29:00 30:00 Time
^7:37 28:10 28:5329:17 JIJ-01 1 ?™
.5.8E7
O.OEO
28 loo' ' ' ' 29 loo' ' ' ' 30 1 00 ' ' Time
-------
File:A27SEP98M #1-237 Acq:27-SEP-1998 22:14:09 GC EI+ Voltage SIR Autospec-UltimaE
Sample#5
339.8597
1003
50_
3bl36
341.8568
1003
50_
o-
3b!36
351.9000
100%,
_
50 1
o:
3b!36
353.8970
100%
50j
3
409.
0:36
7974
100%
•
-
5Qj
:
o-
30
~-^^-
i i i i
30:36
366.9792
Text:1113-l xl/2
S:5 F:2 BSUB(128,15,
30:45
/\
4 \-
30:48 31:00 31:12
S:5 F:2 BSUB(128,15,
30:45
/\
30:48 31:00 31:12
S:5 F:2 BSUB(128,15,
..
s~< { . t^ V>
LI - — r~^
^ • * '
ibUs silbd 3i .'12
S:5 F:2 BSUB(128,15,
fy I \Al
Ltf^frl- -
r i T" r i — r~r- 1 — i — T— * wj_.u
31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
-3.0) PKD (3, 3, 2 ,0.10%, 1916. 0,1. 00%, F,F)
ty/yp . / 32:22 32:50 1.2E8
— - — T^ ^ . " /T • L/ 11 /
0-0TS* ^ 1 \\ II -5.9E7
<~--*f~~~/'::' 1 V / V. n nc-n
31:24 31:36 31:48 32:00/32:12 32:24 32:36 32:48 33:00 33!l2 33:24 33:36 Time
-3.0) PKD(3,3,2,0.10%,6332.0,1.00%,F,F)
J 1.^>J.tr9 St.* 32P2 32:50 7.7E7
^ * ^A- - -^ ' ' u A A :
" — r^rTr^^ /./*ot. , • /i i r3-8E7
^ S^^J&~~7 /I / \ •
31:24 31:36 31:48 32:00 32V!/2 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
-3.0) PKD (3, 3, 3, 100. 00%, 4824. 0,Z. 00%,F,F)
32:13 r_7.3E4
A 32:25 F
/\ A 32:49 :
l\ A A 33:02 L3.6E4
31:21 31:41 31:57 / 1 J\ A V AA 32:43J\/\ A A 33/\2°/A :
^-.A- — „ — 'Vv- S\A~^^~~^S v V ^-^^A^v— yw vj W v^v/^^x/7 w^ wA-^A-,-0 OEO
T i i i i i i i r i i i i i i p~i i i i r~r r~i i i i i r~n i i i i T i i i i i i r i r i i i i i i i i i i i i i — i — i — i i — i — i — i — r~i — i — i — i — i — i — ^r — *
31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
S:5 F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
100%30:38 30:48 31:07
50J
o:
3b!36
O
CO
i i i | i i n r~i T -T— i r—T— i P r-
30:48 31:00 31:12
Jl:24 31:39 31:51 32:02 32:13 32:31 32:53 33:13 33:29 1 . 4KR
_7.0E7
n nvn
T ' i I i i T-T i | i i r— i i i r— T i i i i i i i i i i i i i i i i i i — i i — i i i~t i — i — i — i i i — i — i — r~i — i — i — i — i — i — i — i — i — i — i — i — i — 1—1 — i — i — i — rn — i — r~" " (-'Cl1-'
31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
-------
File:A27SEP98M #1-197 Acq:2'/-SEP-1998 22:14:
Sample#5 Text .-1113-1 xl/2
373.8207 S:5 F:3 BSUB(128, 15, -3 . 0)
100§
50J
I
o:
34:01
33:48 34:00 34:12 34:24
375.8178 S:5 F:3 BSUB(128, 15, -3 . 0)
100S
50J:
~
-
o-
34:01
A
A
33:56/ \
/ V / V^ -/ — "^ _/~N^
33! 48 ' '34! do' ' '34! 12' ' '34 [24'
383.8639 S:5 F:3 BSUB(128, 15, -3 .0)
100%,
•
sol
o:
33:48 34:00 34:12 34:24
385.8610 S:5 F:3 BSUB(128, 15 , -3 . 0)
1004
^ :
sol
Q~
— * — i — ] — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — | — i — r—
33:48 34:00 34:12 34:24
445.7555 S:5 F:3 BSUB(128, 15, -3 . 0)
1004
;
50J
-
o-
33 -SI 34-01 34-18 -
s*.^ A ^ ^ yv _ X^ A /\_xv /
— I — i — i — i — i — i — i — i — i — i — i — i — i — i — i — r~~r — i— ~r -j- i— i ~
33:48 34:00 34:12 34:24
380.9760 S:5 F:3 SMO(1,3) PKD(3,3,3
100% 33:52 34:01 34:12
sol
o:
/
33i!48 34! 00 34! 12 34524
Exp:
PKD(3,5,2
34:39
A A
34:36
PKD(3,5,2
34:39
/ \ / 34
y \S \^-
34l 36'
PKD(3,5,2
34:38
34:34A
A
V V
34:36
PKD (3,5,2
34:38
34:34A
A/I
34:36
PKD (3, 3, 3
34:36
A
4:32/\
v/^W ^W^
"i r" i ~'j T" i i '
34:36
09 GC EI+ Voltage SIR Autospec-UltimaE
EXP M23 DBS OVATION
, 0.10%, 11504. 0,1. 00%, F,F)
:43 34:52 35:01
7.6E6
L3.8E6
•
- O.OEO
34:48 35:00 35:12 35:24 35:36 35:48 36.:00 36.;12 Time
, 0.10%, 9732. 0,1. 00%, F,F)
:43 34:51 35:01
6.5E6
_3.2E6
0 . OP.O
1^1 "r^ — i r l-'n '*' ' ' '' " I ' i — r--i— t — r i "i r 1 ^? l^p'i i — i — i — r—p-T-'T'-i i- \ r 1-1— T r i -T 1—7 i "t ' - — -
34:48 35:00 35:12 35:24 35:36 35:48 36!oO 36!l2 Time
,0.10%, 53156. 0,1. 00%, F,F)
_5.8E7
•
;.2.9E7
O.OEO
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36!l2 Time
, 0.10%, 65356. 0,1. 00%, F,F)
1.1E8
_5.5E7
O.OEO
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
, 100. 00%, 2036. 0,1. 00%, F,F)
35:09 35A21
35:0£\ \
/\ \ / U 35:5° 36:18
A A/ V \A ^ / ^ 35:31 35:42 A 36:06 A
^W^^^-^-^^yV X/x7 vv — ,/V^_y-wVx^-W v-^-^xv^__~I_A ^^ v^
_3.9E4
_2.0E4
O.OEO
-i I ) I i I i*~i ) i i i i I | i i I i I ] i i i TT ] i i i i i | i i i i i i i i i i r i i i r r—
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
,100. 00%, 0.0,1. 00%, F,F)
34! 36
34, 4R 35:03 35:27 35:47 35:58 36:10 5 ORR
.2.5E8
O.OEO
34! 48 35 5 00 35! 12 35! 24 3s!36 35Us 36! 00 3e!l2 Time
-------
File:A27SEP98M f 1-197 Acq:27-SEP-1998 22:
Sample* 5
407.7818
1008
50_
0
T ' ' !
36124
409.7788
1003
50J
:
o:
36:24
417.8253
100%
_
50^
o:
36-24'
419.8220
100%
50J
o"
^ — I — i — r
36 24
479.7165
100%
50 j
o:
36:
V^J
V— — '
f j p
36 24
430.9728
100%
50 j
o~
'
36l2*)'
—• ,_.L,..i i- i ,.....,... jimj i
Text:1113-l xl/2
S: 5 F:4 BSUB (128, 15, -3 . 0)
36:43
A
/ \ 36:56
/ V /x"*\ s—\.
36:36 36:48 37:00
S:5 F:4 BSUB (128 , 15, -3 . 0)
36:43
A
A
/ \ 36:56
/ V /"\
36:36 36:48 37:00
S:5 F:4 BSUB (128, 15, -3 . 0)
36:43
A
\
\
J V
Ye! 3V ' Ye Us' ' '37 loo'
S:5 F:4 BSUB (128, 15 , -3 . 0)
36:43
A
A
— T'T-T" T"T'"I 1 1? 1 1 1 1 1 1 1 1 T
36:36 36:48 37:00
S:5 F:4 BSUB (128, 15 , -3 . 0)
30
36:41 36:50 36A59 A
^ S~^*~ ^ A A X\A A/ N^ /V^-"
vx \x V/v^y^\/'^A/v ^y ^
— 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1-
36:36 36:48 37:00
S:5 F:4 SMO(1,3) PKD (3, 3,
^6^41 15-52 37
36!36 36 Us 37 ! 00
14:09 GC EI+ Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
PKD ( 3 ,
' i | — ' — r
37:12
PKD ( 3 ,
37:12
PKD ( 3 ,
'37! 12'
PKD ( 3 ,
37:12
PKD ( 3 ,
-\Av/W
>J \x V
-i — i — 1 — i — r—
37:12
5, 3, 0.10%, 17536 0
37:24 37:36
5, 3, 0.10%, 5352.0,
37:24 37:36
5, 3, 0.10%, 23932.0
3?!24 37136
5, 3, 0.10%, 28888.0
T — r— T — | — i — i — i — i — i — | — i — i — r
37:24 37:36
3, 3, 100. 00%, 10552
37:32
A
37:21 \l\
J\jJ L/v-
\j —
T — i — i — 1 I i i l I | i i r
37:24 37:36
, 1.00%,F,F)
37:53
^x~\
2.3E6
•1.1E6
: O.OEO
37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
1.00%,F,F)
37:53
2.2E6
L1.1E6
O.OEO
37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
,1.00%,F,F)
2.3E7
37:53
A
J V
-
L1.2E7
-O.OEO
37:48 38:00 3s!l2 38:24 38:36 38:48 39:00 Time
,1.00%,F,F)
5.3E7
37:53
A
_2.7E7
O.OEO
37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
.0,1.00%,F,F)
37/-52. 38:01 38-14 38:31 38:43 38.55
xx\_/A/V A A TV AA _^\ /^A 38:37/\ /M,_A .,
^^ ^ >j v ^ x — \f^\J*^v vt~^/^\/^/VX V^-/ ^"^ ^^ \^v
— 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_3.9E4
_2.0E4
O.OEO
37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
3, 100. 00%, 0.0,1. 00%, F,F)
:08 37
37!l2
: 18
37124 37136
37:51 38:05 38:17 38:29 38:59 3 . 5RS
_1.7E8
O.OEO
37U8 3s!oO 38!l2 38l24 3s!36 38I48 39loO Time
O
ff>
01
-------
File:A27SEP98M #1-276 Acq
27-SEP-1998 22
Sample#5 Text: 1113-1 xl/2
441.7427 S:5
100S
50^
o:
39:11
39:12
443.7398 S:5
lOOi
50J
ol
39:13
39-12
469.7780 S:5
100S
50J
oj
39112
471.7750 S:5
100%
50J
o"
39:12
513.6775 S:5
100%
50 j
-
0-
39:1
W\— vJV
39:12
454.9728 S:5
100% 39 :H
50-
o:
/
v 39:12
F:5 BSUB (128,
39:37
39:24 39136
F:5 BSUB (128,
39:28
l l i i |-r i i^TT-TT1
39:24 39:36
F:5 BSUB (128,
39124 39136
F:5 BSUB (128,
i i i 1 i i i i i I i i
39:24 39:36
F:5 BSUB (128,
6 29-21 39;3
/A. y^-^A— W^A/v
39:24 ' 39136
F:5 SMO(1,3)
L 39^26
39124 39136
15, -3.0) PKD(3
39:52
39148 46166
15,-3.0) PKD(3
:14:09 GC EI+ Voltage SIR Autospec-UltimaE
Exp: EXP M23 DBS OVATION
,5, 3, 0.10%, 4268. 0,1
40,32
A
4°ja^y v^
461l2 46124 46136
,5, 3, 0.10%, 7680. 0,1.
40,32
A
39:49 40:10 40:24/ V_^.
39:48 40:00
15, -3.0) PKD(3
39148 46166
15, -3.0) PKD(3
39:48 40:00
15, -3.0) PKD(3
39:49
9 A 39:59
sjV / V_ _A^^A^x^\_
"Yglls r 46166^
40:12 40:24 40:36
,5, 3, 0.10%, 2308. 0,1.
40,22
l\^
4oll2 46124 46136
,5,3, 0.10%, 2516. 0,1.
40:22
A
J V_
40:12 40:24 40:36
,3, 3, 100. 00%, 664. 0,1
40:22
A
A
40:12 / \ 40:32 . .
^ y\ r* ^x/uvw^J
40:12 40:24 40:36
00%,F,F)
1.4E5
L6.8E4
' O.OEO
46:48 41:66 4i:12 41124 41:36 4i!48' 42166 42ll2 Time
00%,F,F)
40:53 41:09 ^ 41jJ^6 41:51 ^42:08
i-i-i ip3rT¥^'T^'r;iirrT7T*rY:?r><=r'i •r¥^^r^*f<>i^vi;P7^r/V7n!' , | ,
1.4E5
L6.9E4
L.O.OEO
40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
00%,F,F)
3.8E7
L1.9E7
LO.OEO
46:48 41:66 41:12 41:24 41:36 41:48 42:66 42:12 Time
00%,F,F)
4.2E7
L2.1E7
LO.OEO
40 ! 48 ' 41 166 41 .-12 4i.!24 41. -36 ^lUs' 42.'66 42!l2 Time
.00%,F,F)
40:47 41:0541:15 41:28 41:53 42-05
LA-^v^_^x^ AM. AjAv-^^v/Vyv A y\^-v^^WWvAA y^./-/v\
_2.5E4
_1.2E4
-O.OEO
4b!48' 41:66 41:12 41124 41:36 41148 42:00 42:12 Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
39:54 40
39:48 46166
07 40:20 40:
46112 40:24 46136
41 41:05 41:16 41:3R 41-^7 42-DR .1 . fiRR
_1.8E8
.O.OEO
46148 4ll66 41:12 41:24 4!! 36 klUs 42166 42ll2 Time
O
-------
OPUSquan 30-SEP-1998
Page 8
Page 8
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ
Unk
ES/RT
a29sep98n
8
29-SEP-98 22:06:
30-SEP-98 08:57:
1113-1
07feb-m23conf
m8290cf-092998n
58
41
Total
DPE
LMC
Name;
2,3,7,8-TCDF;
13C-2,3,7,8-TCDF;
Tetra Furans;
HxCDPE;
QC CHK ION (Tetra);
Resp;
.46e+06;
.03e+08;
,90e+08;
Ion 1;
3.21e+06;
8.96e+07;
5.00e+06;
Ion 2;
4.25e+06;
1.146+08;
6.47e+06;
RA; ?;
0.75;y;
0.79;y;
0.77;y;
RT;
27:52;
27:49;
18:08;
Cone; DL;
3.862; 0.0940;
49.838;
98.368; 0.0940;
;NotFnd;
;NotFnd;
S/N1;?;
228;y;
919;y;
553;y;
*;n
DivO;n
S/N2;?
108 ;y
1419;y
259 ;y
mod?
no
no
no
no
no
27:52
27:52
-------
File:A29SEP98N #1-2677 Acq:29-SEP-1998 22:06:58 GC EI+ Voltage SIR Autospec-UltimaE
Sample#8 Text:1113-1 Exp:M23_DB225
303.9016 S:8 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%, 1700.0 ,1.00%,F,F)
100%, 18:08 19:49
16:00 18:00 20:00 22:00 24:00 26:00 28:00
305.8987 S:8 SMO(1,3) BSUB{128,15,-3 . 0) PKD(3,3,3,0.10%, 4792.0,1.00%,F,F)
100%, 18:08 19;48
50^
30:00
32:00
34:00
1.0E6
_5.1E5
O.OEO
36:00 Time
i i—i i i—r—i—i f *i i—i i r 'i
16SOO ISSOO 20SOO 22iOO 24iOO 26100 28100
315.9419 S:8 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%, 10596.0 ,1.00%, F, F)
100* 27;49
5(L
i i i—i—i T' 'I—i—i—r
30:00 32:00
34:00
~T—r"~T—i "1
30 Sob
-i—l "T I—I—i—I—r
34:00
36:00 Time
9.8E6
L4.9E6
LO.OEO
00 Time
—r—i—i—t—i—i—i—i—r—
16:00 18:00
-r" r i i i i i—i—'
20:00 22:00
24:00 26iOO 28:00
317.9389 S:8 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,8488.0,1.00%,F,F)
100%, 27;50
0
32:00
36
1
\
i i j i ' • ' ' | • • ' • • ) ' ' ' ' ' | | i i i i i | i i r i i j i i i « i | i i - i . | i . i . • | • • i ' '
16:00 18:00 20:00 22:00 24:00 26:00 28:00
375.8364 S:8 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,2100.0,1.00%,F,F)
100%
30:00
32:00
1.2E7
L6.0E6
LO.OEO
36:00 Time
16:04
19:02
21:10 22:26, 23.39'
24:33
26:28
25:42 36:48|
29: 35 31: 06 32 :16 33
16 Sob 18:00 20:00 22:00 24:00
316.9824 S:8 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
OJ
26100 28:00 30:00 32:00
16:16 17:4018:4419:4920:5422:0^^
34:00
.24 34:59
'...Jlj Mfo.
34:00 36:00 Time
20:00
24:00
26 Sob
28 Sob
30 Sob
32 Sob
34 Sob
_3.0E7
1.5E7
O.OEO
00 Time
ie Sob
is Sob
22:00
36:
-------
Method 23
M23-I-2
PES
Paradigm Analytical Labs
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
ing)
EMPC
0.0048
0.0053
0.0048
0.0138
0.0744
0.224
0.0439
0.0522
0.0322
0.0696
0.0418
0.0208
EMPC
0.169
0.0294
0.268
0.437
0.276
0.406
0.135
1.29
0.708
0.328
0.265
0.0443
0.0450
DL
V»g)
0.0011
0.0005
0.0013
0.0012
0.0012
0.0015
0.0028
0.0021
0.0008
0.0008
0.0012
0.0011
0.0012
0.0014
0.0026
0.0030
0.0018
0.0011
0.0005
0.0012
0.0015
0.0021
0.0008
0.0011
0.0026
EMPC
ing)
0.0039
0.0039
0.447
0.281
1.43
0.728
0.332
0.0487
0.0487
RT
(mm.)
28:59
33:03
35:07
35:07
35:23
37:33
40:24
27:57
32:23
32:51
34:35
34:40
35:02
35:32
36:46
37:55
40:33
Ratio
0.62
1.39
1.24
1.24
1.40
1.05
0.88
0.79
1.59
1.6
1.30
1.25
1.32
1.43
1.02
0.95
0.91
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ED:
Sample ED:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-I-2
L1113
1113-2
28-Aug-98
08-Sep-98
15-Sep-98
27-Sep-98
Sample Information
Matrix:
Weight / Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
EndConCal:
Initial_Cal:
Air
1
0.0 %
a27sep98m-6
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
r f
069
1/2
-------
Paradigm Analytical Labs
Method 23
M23-I-2
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13C12-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
13CI2-2,3,7,8-TCDF
13Ci2-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
13CI2-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2)3)7,8-TCDD
13C12-2,3,4,7,8-PeCDF
13C,rl,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13C,2-l,2)3)4,7,8,9-HpCDF
Injection Standards
13C12-1,2,3,4-TCDD
I3CI2-l,2,3,7,8,9-HxCDD
Expected
Amount
3.36
3.77
2.45
3.44
5.98
3.37
3.67
3.39
3.28
3.60
3.41
5.30
3.61
3.30
Percent
Recovery
(%)
84.1
94.2
61.2
85.9
74.8
84.3
91.8
84.6
82.0
90.1
85.3
132.4
90.2
82.6
RT
(min.)
28:57
33:02
35:07
37:32
40:24
27:56
32:23
34:39
36:45
28:59
32:50
35:07
34:35
37:54
28:40
35:23
Ratio
0.78
1.58
1.28
1.05
0.9
0.79
1.56
0.53
0.44
1.57
1.28
0.52
0.44
0.79
1.26
Qualifier
Client Information
Project Name:
Sample DD:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-I-2
L1113
1113-2
28-Aug-98
08-Sep-98
15-Sep-98
27-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
End ConCal:
Initial Cal:
Air
1
0.0
a27sep98m-6
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
Reviewed by:
Date Reviewed:
070
2/2
-------
O
OPUSquan 2 8 -SEP- 1998
Filename a27sep98m
Sample 6
Acquired 27-SEP-98 23
Processed 28-SEP-98 09
Sample ID 1113-2 xl/2
Cal Table m8290-091498
Results Table M8290-092798M
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
cs
cs
cs
cs
ss
ss
ss
ss
ss
Name;
2, 3,7,8-TCDD; 5
1,2,3,7,8-PeCDD; 3
1,2,3,4,7,8-HxCDD; 2.
1,2,3, 6,7, 8-HxCDD; 2.
1,2,3,7,8,9-HxCDD; 6.
1,2,3,4,6,7,8-HpCDD; 4.
OCDD; 1.
2,3,7,8-TCDF; 1.
1,2,3,7,8-PeCDF; 4.
2,3,4,7,8-PeCDF; 2.
1.2,3,4,7,8-HxCDF; 5.
1,2,3,6,7,8-HxCDF; 4.
2, 3,4, 6,7,8-HxCDF; 1.
1,2,3,7,8,9-HxCDF; 2.
1,2,3,4,6,7,8-HpCDF; 1.
1,2,3,4,7,8,9-HpCDF; 1.
OCDF ; 1 .
13C-2, 3,7,8-TCDD; 3.
13C-l,2,3,7,8-PeCDD; 2.
13C-l,2,3,6,7,8-HxCDD; 2.
13C-l,2,3,4,6,7,8-HpCDD; 2.
13C-OCDD; 3.
13C-2,3,7,8-TCDF; 4.
13C-l,2,3,7,8-PeCDF; 3.
13C-l,2,3,6,7,8-HxCDF; 3.
13C-1.2, 3,4, 6,7,8-HpCDF; 2.
13C-1,2,3,4-TCDD; 3.
13C-l,2,3,7,8,9-HxCDD; 3.
37C1-2, 3,7,8-TCDD; 2.
13C-2,3,4,7,8-PeCDF; 3.
13C-l,2,3,4,7,8-HxCDD; 2.
13C-l,2,3,4,7,8-HxCDF; 2.
13C-1,2,3,4,7,8, 9-HpCDF; 1.
37C1-2, 3,7,8-TCDD; 2.
13C-2,3,4,7,8-PeCDF; 3.
13C-l,2,3,4,7,8-HxCDD, 2.
13C-l,2,3,4,7,8-HxCDF; 2.
13C-l,2,3,4,7,8,9-HpCDF; 1.
Page 1
04:17
37:06
Resp;
13e+05;
39e+05;
39e+05;
396+05;
72e+05;
40e+06;
12e+07;
44e+07;
36e+06;
76e+06;
78e+06;
OOe+06;
81e+06;
96e+05;
28e+07;
93e+06;
44e+07;
31e+08;
476+08;
206+08;
606+08;
976+08;
12e+08;
73e+08;
49e+08;
236+08;
71e+08;
42e+08;
92e+08;
12e+08;
20e+08;
61e+08;
61e+08;
926+08;
12e+08;
20e+08;
61e+08;
61e+08;
Ion 1;
1.27e+05;
1.976+05;
1.336+05;
1.336+05;
3.926+05;
2.266+06;
5.236+06;
6.33e+06;
2.68e+06;
1.706+06;
3.27e+06;
2.22e+06;
1.036+06;
1.746+05;
6.47e+06;
9.39e+05;
6.84e+06;
1.45e+08;
1.516+08;
1.236+08;
1.336+08;
1.886+08;
1.826+08;
2.27e+08;
1.21e+08;
6.826+07;
1.636+08;
1.91e+08;
2.926+08;
1.90e+08;
1.236+08;
8.976+07;
4.91e+07;
2.926+08;
1.90e+08;
1.236+08;
8.97e+07;
4.91e+07;
Ion 2;
3.866+05;
1.426+05;
1.07e+05;
1.07e+05;
2.806+05;
2.146+06;
5.936+06;
8.06e+06;
1.686+06;
1.066+06;
2.516+06;
1.78e+06;
7.796+05;
1.226+05;
6.35e+06;
9.896+05;
7.556+06;
1.866+08;
9.576+07;
9.66e+07;
1.27e+08;
2.09e+08;
2.30e+08;
1.46e+08;
2.28e+08;
1.556+08;
2.08e+08;
1.516+08;
-;
1.226+08;
9.666+07;
1.71e+08;
1.12e+08;
1.226+08;
9.666+07;
1.716+08;
1.12e+08;
RA;?;
0.33;n;
1.39,-y;
1.24;y;
1.24;y;
1.40;y;
1.05;y;
0.88;y;
0.79;y;
1.59;y;
1.60;y;
1.30;y;
1.25;y;
1.32,-y;
1.43;n;
1.02;y;
0.95;y;
0.91;y;
0.78;y;
1.58;y;
1.28;y;
1.05;y;
0.90;y;
0.79;y;
1.56;y;
O.B3;y;
0.44;y;
0.79;y;
1.26,-y;
- ; - ;
1.57;y;
1.28;y;
0.52;y;
0.44;y;
-;-;
1.57;y;
1.28;y;
0.52;y;
0.44;y;
\
r,' ^
RT;
28:59;
33:03;
35:07;
35:07;
35:23;
37:33;
40:24;
27:57;
32:23;
32:51;
34:35;
34:40;
35:02;
35:32;
36:46;
37:55;
40:33;
28:57;
33:02;
35:07;
37:32;
40:24;
27:56;
32:23;
34:39;
36:45;
28:40;
35:23;
28:59;
32:50;
35:07;
34:35;
37:54;
28:59;
32:50;
35:07;
34:35;
37:54;
Q°fi C
Cone;
0.152;
0.121;
0.133;
0.119;
0.344;
1.859;
5.603;
3.498;
1.305;
0.805;
1.739;
1.045;
0.521;
0.097;
4.230;
0.736;
6.706;
84.104;
94.207;
61.170;
85.864;
149.609;
84.300;
91.789;
84.630;
81.958;
82.572;
95.836;
75.708;
78.214;
81.096;
76.352;
67.681;
90.039;
85.240;
132.415;
90.158;
82.578;
DL;
0.0277;
0.0130;
0.0321;
0.0288;
0.0297;
0.0382;
0.0711;
0.0534;
0.0205;
0.0200;
0.0310;
0.0269;
0.0297;
0.0338;
0.0644;
0.0744;
0.0447;
0.1010;
0.0626;
0.0228;
0.6408;
0.0122;
0.0580;
0.0213;
0.1046;
0.0451;
_ .
-;
0.0623;
0.0217;
0.0302;
0.1264;
0.0516;
0.0768;
0.0110;
0.0500;
0.1504;
0.0731;
S/Nl;?;
7;y;
27;y;
19;y;
19, -y;
34 ;y;
124;y;
138;y;
223 ;y;
328 ;y, •
191 ;y;
182 ,-y;
142;y;
56;y;
10;y;
145;y;
20;y;
648;y;
1500;y;
8911;y;
8335;y;
289;y;
17766;y;
4796;y;
73476;y;
2583;y;
2326;y;
1743 ;y;
12909; ;y;
3499;y;
71120;y;
8335;y;
2015;y;
1383;y;
3499;y;
71120; ry;
8335,-y;
2015;y;
1383 ;y;
S/N2;?
40, -y
34, -y
10 ;y
10 ;y
18 ;y
178;y
734;y
110;y
116;y
61, -y
116 ;y
93 ;y
38, -y
7;y
300;y
45,-y
350;y
4595;y
13199;y
7526;y
302 ;y
27096,-y
3839;y
13962;y
2322;y
8528;y
5350, -y
12056;y
-; -
13753;y
7526;y
1829,-y
5308,-y
13753;y
7526;y
1829,-y
5308;y
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page
-------
OPUSquan 28-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:23
Run: 12 File: a27sep98m S:6 Acq:27-SEP-98 23:04:17 Proc:28-SEP-98 09:37:06
Tables: Run: 14sep-crv Analyte: n>8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-2 xl/2
Amount:.35.66
Cone: 35.66
Tox #1: -
Name
2,3,7,8-TCDF
of which 3.50
of which 3.50
Tox #2: -
# RT Respnse
named and 32.17
named and 32.17
Tox #3: -
RA
1 24:08 1.3e+07 0.78 y
1.3e+07
2 24:44 6.5e+06 0.80 y
6.5e+06
3 25:02 5.0e+06 0.77 y
5.0e+06
4 25:09 8.8e+04 0.77 y
8.8e+04
5 25:21 2.2e+07 0.79 y
2.2e+07
6 25:30 4.9e+06 0.71 y
4.9e+06
7 25:40 6.8e+06 0.66 y
6.8e+06
8 25:48 7.6e+06 0.39 n
7.6e+06
9 26:10 6.3e+06 0.90 n
6.3e+06
10 26:14 l.Oe+07 0.69 y
l.Oe+07
11 26:30 4.5e+06 0.83 y
4.56+06
12 26:39 7.3e+06 0.74 y
7.3e+06
13 26:56 l.Oe+07 0.80 y
l.Oe+07
14 27:03 8.46+06 0.80 y
8.46+06
15 27:21 8.46+06 0.79 y
8.46+06
16 27:33 4.0e+05 0.78 y
4.0e+05
17 27:40 3.9e+06 0.77 y
3.9e+06
18 27:57 1.46+07 0.79 y
1.4e+07
19 28:33 4.0e+06 0.81 y
4.06+06
Cone
3.07
C
1.59
1.21
0.02
C
5.41
S
1
1.19
1.66
2
4
1.84
C
1.52
2.48
4
6
1.09
1.78
<
2.46
4
C
2.03
4
2.05
T
^
o.io
i
0.94
]
3.50
6
£
0.96
unnamed
unnamed
Area Height
S/N Mod?
5.5e+06 1.3e+06 2.8e+02 y n
7.1e+06 1.7e+06 1.5e+02 y n
3
2.96+06 6.6e+05 1.4e+02 y n
3.6e+06 8.0e+05 6.9e+01 y n
L
2.26+06 5.1e+05 l.le+02 y n
2.8e+06 6.4e+05 5.5e+01 y n
I
3.86+04 1.3e+04 2.8e+00 n n
5.0e+04 1.6e+04 1.3e+00 n n
9.8e+06 2.0e+06 4.4e+02 y n
1.2e+07 2.6e+06 2.2e+02 y n
?
2.0e+06 3.0e+05 6.7e+01 y n
2.96+06 3.9e+05 3.36+01 y n
2.7e+06 6.4e+05 1.4e+02 y n
4.16+06 8.5e+05 7.3e+01 y n
2.1e+06 5.7e+05 1.2e+02 y n
5.4e+06 7.5e+05 6.4e+01 y n
I
3.0e+06 7.2e+05 1.6e+02 y n
3.36+06 9.5e+05 8.2e+01 y n
4.2e+06 9.0e+05 2.0e+02 y n
6.0e+06 1.2e+06 l.Oe+02 y n
5
2.06+06 4.7e+05 l.Oe+02 y n
2.4e+06 5.9e+05 5.1e+01 y n
3
3.1e+06 7.3e+05 1.6e+02 y n
4.2e+06 9.3e+05 7.9e+01 y n
l.5e+06 8.9e+05 1.9e+02 y n
5.6e+06 l.le+06 9.4e+01 y n
3
3.7e+06 8.2e+05 1.8e+02 y n
4.6e+06 l.le+06 9.1e+01 y n
3.7e+06 8.6e+05 1.9e+02 y n
4.7e+06 l.le+06 9.7e+01 y n
3
1.7e+05 5.3e+04 1.2e+01 y n
2.2e+05 6.6e+04 5.6e+00 y n
1.7e+06 3.9e+05 8.4e+01 y n
2.2e+06 4.7e+05 4.1e+01 y n
6.3e+06 l.Oe+06 2.2e+02 y n
8.1e+06 1.3e+06 l.le+02 y n
l.Se+06 3.9e+05 8.56+01 y n
2.2e+06 S.le+05 4.4e+01 y n
072
-------
c c
rH rH
O O
0)
00
a a
O rH
O O
0) 01 0) 01
CN ^O <£> G)
in vo
o o
-f +
0) 01
*3* O
CO rH
in in
in in
o o
4- +
01 0>
CO CN
01 0)
in ro
o o
+ +
01 01
O CO
rH CO
•yi in
o o
+ +
01
o o
o
rH
in in
o o
r-
o
01 0)
ro ro
in in
o o
-------
OPUSquan 28-SEP-1998
Page 3
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:17
Run: 12 File: a27sep98m S:6 Acq:27-SEP-98 23:04:17 Proc:28-SEP-98 09:37:06
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-2 xl/2
Amount: 11.25
Cone: 11.25
Tox #1: -
Name
2,3,7,8-TCDD
of which 0.15
of which 0.15
Tox #2: -
tt RT Respnse
named and 11.10
named and 11.10
Tox #3: -
RA
1 25:45 2.0e+07 0.80 y
2.0e+07
2 26:11 9.7e+06 0.80 y
9.7e+06
'26:22 1.7e+04 0.71 y
1.7e+04
4^2"?
6:24 2.0e+04 1.02 n
2.0e+04
5 26:33 3.8e+05 0.87 y
3.8e+05
6 27:26 3.1e+06 0.75 y
3.1e+06
7 27:39 2.8e+05 0.71 y
2.8e+05
8 27:48 6.3e+05 0.83 y
6.3e+05
9 27:55 1.6e+05 2.16 n
1.6e+05
10 28:16 5.5e+05 0.83 y
5.5e+05
11 28:43 l.le+06 0.77 y
l.le+06
12 28:51 l.le+06 0.75 y
l.le+06
13 28:59 5.1e+05 0.33 n
5.16+05
14 29:11 1.5e+05 0.55 n
1.5e+05
15 29:29 1.9e+05 1.13 n
1.9e+05
29:40 1.5e+04 1.91 n
1.5e+04
29:44 9.6e+03 0.83 y
9.6e+03
Cone
5.94
£
:
2.88
<
C
0.00
e
3
0.01
s
9
0.11
1
0.92
a
]
0.08
1
1
0.19
unnamed
unnamed
Area Height
S/N Mod?
.9e+06 2.0e+06 4.5e+02 y n
.le+07 2.5e+06 l.le+03 y n
.3e+06 9.7e+05 2.1e+02 y n
5.4e+06 1.2e+06 5.0e+02 y n
D
6.9e+03 3.96+03 8.7e-01 n n
9.7e+03 6.4e+03 2.7e+00 n n
I
9.9e+03 3.9e+03 8.6e-01 n n
9.7e+03 6.4e+03 2.7e+00 n n
L
1.8e+05 3.8e+04 8.5e+00 y n
2.0e+05 5.8e+04 2.4e+01 y n
2
1.3e+06 2.6e+05 5.7e+01 y n
1.8e+06 3.3e+05 1.4e+02 y n
1.2e+05 1.9e+04 4.2e+00 y n
1.7e+05 2.9e+04 1.2e+01 y n
0.16
2.9e+05 5.76+04 1.3e+01 y n
.4e+05 7.7e+04 3.2e+01 y n
l.le+05 2.46+04 5.3e+00 y n
S.le+04 1.6e+04 6.5e+00 y n
0.31
2.5e+05 5.1e+04 l.le+01 y n
3.06+05 6.5e+04 2.7e+01 y n
1
4.6e+05 9.9e+04 2.2e+01 y n
6.0e+05 1.4e+05 5.8e+01 y n
0.33
0.15,
0.04
.8e+05 l.Oe+05 2.36+01 y n
.4e+05 1.46+05 5.96+01 y n
1.3e+05 3.3e+04 7.2e+00 y n
3.96+05 9.5e+04 4.0e+01 y n
5.2e+04 1.4e+04 3.0e+00 y n
).6e+04 2.2e+04 9.2e+00 y n
9.96+04 2.0e+04 4.56+00 y n
8.7e+04 2.66+04 l.le+01 y n
.Oe+04 3.5e+03 7.9e-01 n n
5.2e+03 1.8e+03 7.4e-01 n n
0.00
4.4e+03 3.06+03 6.5e-01 n n
5.2e+03 1.8e+03 7.4e-01 n n
n
-------
OPUSquan 28-SEP-1998
Page 4
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:20
Run: 12 File: a27sep98m S:6 Acq:27-SEP-98 23:04:17 Proc:28-SEP-98 09:37:06
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3 . 5 17-APR-1997 11:14:34 Sample text: 1113-2 xl/2
Amount: 18.25
Cone: 18.25
Tox #1: -
Name
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
of which 2.11
of which 2.11
Tox #2: -
# RT Respnse
named and 16.14
named and 16.14
Tox #3 : -
RA
1 30:46 l.le+07 1.52 y
l.le+07
'30:54 2.4e+04 1.09 n
2.4e+04
31:02 1.7e+04
1.7e+04
0.41 n
4 31:04 1.8e+04 0.44 n
1.8e+04
5 31:06 2.1e+04 0.37 n
2.1e+04
6 31:43 4.6e+06 1.61 y
4.6e+06
7 31:50 2.06+07 1.55 y
2.0e+07
8 31:57 3.8e+06 1.58 y
3.86+06
9 32:03 8.6e+05 1.29 n
8.6e+05
10 32:06 6.46+05 2.42 n
6.4e+05
11 32:12 4.56+06 1. 52 y
4.5e+06
12 32:21 l.Oe+06 1.41 y
l.Oe+06
13 32:23 4.4e+06 1.59 y
4.4e+06
14 32:30 1.96+06 1.46 y
1.9e+06
15 32:35 3.5e+06 1.49 y
3.5e+06
16 32:43 1.96+04 0.45 n
1.9e+04
17 32:51 2.8e+06 1.60 y
2.8e+06
18 32:56 1.9e+06 1.49 y
1.96+06
19 33:04 2.4e+05 1.21 n
2.4e+05
Cone
3.36
6
4
0.01
3
]
0.01
c
3
0.01
C
3
0.01
c
1
1.36
3
5.87
3
1.14
3
0.25
4
T
0.19
4
1
1.34
3
0.30
C
4
1.30
3
0.55
3
1.03
3
0.01
e
3
0.81
3
3
0.56
1
7
0.07
unnamed
unnamed
Area Height
S/N Mod?
6.9e+06 1.6e+06 4.1e+02 y n
4.5e+06 l.le+06 1.4e+02 y n
1.2e+04 3.9e+03 9.9e-01 n n
l.le+04 4.9e+03 6.7e-01 n n
5.0e+03 2.7e+03 6.8e-01 n n
1.2e+04 4.8e+03 6.5e-01 n n
L
5.46+03 3.56+03 8.7e-01 n n
1.2e+04 4.86+03 6.56-01 n n
L
5.6e+03 4.0e+03 l.Oe+00 n n
1.5e+04 6.1e+03 8.4e-01 n n
2.8e+06 l.le+06 2.9e+02 y n
1.8e+06 7.4e+05 l.Oe+02 y n
7
1.2e+07 3.7e+06 9.2e+02 y n
7.86+06 2.3e+06 3.2e+02 y n
1
2.3e+06 6.6e+05 1.7e+02 y n
1.5e+06 4.5e+05 6.2e+01 y n
4.8e+05 2.36+05 5.7e+01 y n
3.8e+05 1.4e+05 1.9e+01 y n
4.5e+05 1.9e+05 4.7e+01 y n
1.9e+05 1.2e+05 1.7e+01 y n
1
2.7e+06 1.2e+06 2.9e+02 y n
1.8e+06 7.46+05 l.Oe+02 y n
5.9e+05 3.9e+05 9.7e+01 y
4.2e+05 2.56+05 3.5e+01 y
2.7e+06 1.36+06 3.3e+02 y n
1.7e+06 8.46+05 1.2e+02 y n
l.le+06 6.2e+05 1.6e+02 y n
7.6e+05 3.9e+05 5.4e+01 y n
3
2.1e+06 l.le+06 2.8e+02 y n
1.46+06 7.46+05 l.Oe+02 y n
L
6.0e+03 3.7e+03 9.2e-01 n n
1.3e+04 6.4e+03 8.8e-01 n n
L
1.7e+06 7.66+05 1.9e+02 y n
l.le+06 4.5e+05 6.1e+01 y n
5
l.le+06 5.6e+05 1.4e+02 y n
7.6e+05 3.6e+05 5.0e+01 y n
7
1.3e+05 7.5e+04 1.9e+01 y n
l.le+05 5.6e+04 7.7e+00 y n
-------
OPUSquan 28-SEP-1998 Page 5
20 33:23 2.7e+05 1.65 y 0.08
2.7e+05 1.7e+05 8.2e+04 2.1e+01 y n
l.Oe+05 5.5e+04 7.6e+00 y n
07(
-------
OPUSguan 28-SEP-1998
Page 6
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:13
Run: 12 File: a27sep98m S:6 Acq:27-SEP-98 23:04:17 Proc:28-SEP-98 09:37:06
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-2 xl/2
Amount: 7.05
Cone: 7.05
Tox #1: -
Name
1,2,3,7,8-PeCDD
of which 0.12
of which 0.12
Tox #2: -
named and 6.93
named and 6.93
Tox #3: -
RT Respnse
RA
31:57 5.8e+06 1.52 y
5.8e+06
2 32:15 8.1e+04 1.76 y
8.1e+04
3 32:26 7.2e+06 1.63 y
7.2e+06
4 32:31 3.1e+05 1.60 y
3.1e+05
32:36 4.5e+06
4.5e+06
1.57 y
6 32:42 1.2e-t-05 1.89 n
1.2e+05
7 32:45 2.1e+05 1.57 y
2.1e+05
8 32:52 7.5e+05 I.f4 y
7.5e-t-05
9 32:56 1.5e-t-05 1.15 n
l.Se+05
10 33:03 3.4e-i-05 1.39 y
3.4e+05
11 33:08 1.4e+05 1.50 y
1.4e+05
12 33:20 1.3e+05 1.11 n
1.3e+05
13 33:22 7.1e+04 0.13 n
7.1e+04
Cone
2.07
T
0.03
C
2.56
4
0.11
1
1
1.60
1
0.04
£
i.
0.08
1
8
0.27
4
0.05
•/
e
0.12
i
0.05
6
C
0.05
e
0.03
unnamed
unnamed
Area Height
S/N Mod?
3.56+06 l.Se+06 3.66+02 y n
2.36+06 9.36+05 4.2e+02 y n
3
5.2e+04 2.6e+04 6.3e+00 y n
2.9e+04 1.3e+04 5.7e+00 y n
5
4.4e+06 2.3e+06 5.6e+02 y n
2.7e+06 1.3e+06 6.0e+02 y n
1
1.9e+05 9.56+04 2.3e+01 y n
1.2e+05 6.1e+04 2.7e+01 y n
2.7e+06 1.5e+06 3.6e+02 y n
1.7e+06 9.6e+05 4.3e+02 y n
1
8.1e+04 4.6e+04 l.le+01 y n
4.3e+04 2.4e+04 l.le+01 y n
3
1.36+05 4.8e+04 1.2e+01 y n
8.2e+04 3.5e+04 1.6e+01 y n
7
4.7e+05 2.4e+05 5.9e+01 y n
2.8e+05 1.4e+05 6.3e+01 y n
7.9e+04 4.3e+04 l.Oe+01 y n
6.8e+04 2.96+04 1.3e+01 y n
2
2.06+05 l.le+05 2.7e+01 y n
.4e+05 7.5e+04 3.4e+01 y n
8.4e+04 4.16+04 l.Oe+01 y n
5.66+04 2.4e+04 l.le+01 y n
5
7.0e+04 3.5e+04 8.6e+00 y n
6.3e+04 2.8e+04 1.3e+01 y n
3
8.2e+03 6.4e+03 1.6e+00 n n
6.3e+04 2.8e+04 1.3e+01 y n
077
-------
OPUSquan 28-SEP-1998
Page 7
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:29
Run: 12 File: a27sep98m S:6 Acq:27-SEP-98 23:04:17 Proc:28-SEP-98 09:37:06
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-2 xl/2
Amount: 8.42
Cone: 8.42
Tox #1: -
of which 3.40
of which 3.40
Tox #2: -
named and 5.02
named and 5.02
Tox #3: -
Name #
1 33:
2 34:
3 34:
4 34:
5 34:
6 34:
1,2,3,4,7,8-HxCDF 7 34:
1,2,3,6,7,8-HxCDF 8 34:
9 34
10 34
11 34
RT
57
02
08
14
20
28
35
40
44
52
59
Respnse
2.
2.
9.
9.
7.
7.
8
8
5
5
2
2
5
5
4
4
7
7
1
1
5
5
5e+06
5e+06
2e+06
2e+06
le+05
le+05
6e+05
6e+05
5e+05
5e+05
3e+04
3e+04
8e+06
8e+06
Oe+06
Oe+06
2e+05
2e+05
.Oe+06
.Oe+06
. 7e+05
.7e+05
RA
1.28 y
1.21 y
1.39 y
1.37 y
1.27 y
1.63 n
1.30 y
1.25 y
1.32 y
1.29 y
1.21 y
Cone
0.
2.
0.
0.
0.
0.
1.
1.
0
0
0
74
3
•
.
68
c
^
21
'
25
c
16
01
74
05
21
30
17
2,3,4,6,7,8-HxCDF 12 35:02 1.8e+06 1.32 y
1.8e+06
13 35:11 3.1e+04
3.1e+04
0.63 n
14 35:13 2.3e+04 3.07 n
2.3e+04
15 35:17 1.7e+04 1.97 n
1.7e+04
16 35:23 3.9e+04 2.54 n
3.9e+04
1,2,3,7,8,9-HxCDF 17 35:32 3.0e+05 1.43 n
3.0e+05
18 35:35 5.4e+05 1.27 y
5.4e+05
19 35:43 5.6e+04 1.57 n
5.6e+04
unnamed
unnamed
Area Height
S/N Mod?
0.52
0.01
.4e+06 7.161-05 l.Oe+02 y n
l.le+06 5.7e+05 6.9e+01 y n
5.Oe+06 2.3e+06 3.3e+02 y n
4.1e+06 2.06+06 2.4e+02 y n
4.le+05 1.8e+05 2.6e+01 y n
3.0e+05 1.5e+05 1.8e+01 y n
S.Oe+05 2.46+05 3.5e+01 y n
3.6e+05 1.8e+05 2.2e+01 y n
3.1e+05 1.6e+05 2.3e+01 y n
2.4e+05 1.2e+05 1.4e+01 y n
1.4e+04 5.0e+03 7.3e-01 n n
.7e+03 4.76+03 5.6e-01 n n
3.3e+06 1.2e+06 1.8e+02 y n
2.5e+06 9.7e+05 1.26+02 y n
2.26+06 9.76+05 1.4e+02 y n
1.8e+06 7.8e+05 9.36+01 y n
4.1e+05 1.9e+05 2.8e+01 y n
3.le+05 1.3e+05 1.5e+01 y n
5.86+05 1.86+05 2.66+01 y n
4.5e+05 1.46+05 1.7e+01 y n
3.16+05 1.36+05 1.9e+01 y n
2.6e+05 1.le+05 1.3e+01 y n
1.Oe+06 3.9e+05 5.6e+01 y n
7.8e+05 3.2e+05 3.8e+01 y n
0.01
0.00
0.01
0.10
0.16
0.02
1.2e+04 l.Oe+04 l.Se+00 n n
1.9e+04 5.7e+03 6.8e-01 n n
L
1.8e+04 S.Oe+03 1.26+00 n n
5.7e+03 5.1e+03 6.1e-01 n n
3
l.le+04 3.76+03 5.4e-01 n n
5.76+03 5.1e+03 6.1e-01 n n
1
2.8e+04 l.Oe+04 l.Se+00 n n
l.le+04 5.4e+03 6.5e-01 n n
D
1.7e+05 6.8e+04 l.Oe+01 y n
1.2e+05 5.9e+04 7.1e+00 y n
3.0e+05 1.2e+05 1.7e+01 y n
2.4e+05 9.1e+04 l.le+01 y n
2
3.4e+04 1.3e+04 1.9e+00 n n
2.2e+04 6.7e+03 8.0e-01 n n
07;
-------
OPUSguan 28-SEP-1998
Page 8
20 35:46 5.0e+04 1.30 y 0.01
5.0e+04
21 35:52 3.7e+04 0.40 n 0.01
3.7e+04
22 35:54 3.5e+04 0.71 n 0.01
3.56+04
23 35:58 3.7e+04 2.36 n 0.01
3.7e+04
24 36:01 3.1e+04 1.86 n 0.01
3.1e+04
25 36:04 1.8e+04 0.94 n 0.01
1.8e+04
26 36:08 1.8e+04 1.88 n 0.01
1.8e+04
2.8e+04 7.0e+03 l.Oe+00 n n
2.2e+04 6.7e+03 8.0e-01 n n
L
l.Oe+04 5.9e+03 8.5e-01 n n
2.66+04 6.66+03 7.9e-01 n n
L
l.Se+04 8.46+03 1.26+00 n n
2.16+04 l.Oe+04 1.2e+00 n n
L
2.6e+04 l.Oe+04 1.5e+00 n n
l.le+04 6.9e+03 8.2e-01 n n
L
2.0e+04 1.2e+04 1.7e+00 n n
l.le+04 6.9e+03 8.2e-01 n n
L
8.6e+03 5.1e+03 7.56-01 n n
9.1e+03 6.9e+03 8.2e-01 n n
L
1.2e+04 S.Oe+03 7.3e-01 n n
6.3e+03 3.4e+03 4.0e-01 n n
27 36:11 4.86+04 1.60 n 0.01
4.86+04
28 36:17 1.7e+04 1.58 n 0.01
1.7e+04
29 36:19 1.9e+04 1.77 n 0.01
1.96+04
3.0e+04 1.66+04 2.46+00 n n
1.9e+04 7.66+03 9.1e-01 n n
L
l.le+04 6.2e+03 9.1e-01 n n
6.76+03 4.3e+03 5.1e-01 n n
L
1.2e+04 7.46+03 l.le+00 n n
6.7e+03 4.3e+03 5.1e-01 n n
f !
079
-------
OPUSquan 28-SEP-1998
Page 9
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:13
Run: 12 File: a27sep98m S:6 Acq:27-SEP-98 23:04:17 Proc:28-SEP-98 09:37:06
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: ni8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-2 xl/2
Amount: 10.21
Cone: 10.21
Tox #1: -
Name
of which 0.46
of which 0.46
Tox #2: -
# RT Respnse
named and 9.74
named and 9.74
Tox #3: -
RA
1 34:17 6.3e+05 1.30 y
6.3e+05
34:25 9.8e+03
9.8e+03
1.23 y
3 34:35 1.5e+07 1.29 y
1.5e+07
4 34:44 1.7e+06 1.19 y
1.7e+06
34:51 2.0e+05
2.0e+05
1.15 y
34:55 2.1e+04 1.23 y
2.1e+04
35:02 9.3e+03
9.3e+03
1.05 n
1,2,3,6,7,8-HxCDD 8 35:07 2.4e+05 1.24 y
2.46+05
9 35:11 7.06+05 1.11 y
7.06+05
1,2,3,7,8,9-HxCDD 10 35:23 6.7e+05 1.40 y
6.7e+05
11 35:29 2.5e+04 1.02 n
2.5e+04
12 35:35 2.9e+04 0.64 n
2.9e+04
13 35:39 l.le+04 1.45 n
l.le+04
Cone
0.33
0.01
c
t.
7.99
8
e
0.90
s
1
0.11
1
c
0.01
3
c
0.00
4
4
0.12
J
3
0.36
0.34
•q
0.01
1
1
0.02
1
]
0.01
unnamed
unnamed
Area Height
S/N Mod?
3.6e+05 1.6e+05 4.2e+01 y n
2.8e+05 1.3e+05 2.7e+01 y n
L
5.4e+03 2.4e+03 6.2e-01 n n
4.4e+03 3.1e+03 6.6e-01 n n
?
8.76+06 4.0e+06 l.le+03 y n
6.76+06 3.3e+06 7.1e+02 y n
9.4e+05 3.6e+05 9.5e+01 y n
7.9e+05 3.1e+05 6.5e+01 y n
L
l.le+05 4.2e+04 l.le+01 y n
9.5e+04 2.9e+04 6.2e+00 y n
1.2e+04 4.3e+03 l.le+00 n n
9.5e+03 6.6e+03 1.4e+00 n n
4.8e+03 2.4e+03 6.5e-01 n n
4.5e+03 3.2e+03 6.8e-01 n n
1.36+05 7.2e+04 1.9e+01 y n
l.le+05 4.8e+04 l.Oe+01 y n
S
3.7e+05 1.9e+05 S.Oe+01 y n
3.3e+05 1.3e+05 2.8e+01 y n
1
3.9e+05 1.3e+05 3.4e+01 y n
2.8e+05 8.5e+04 1.8e+01 y n
L
1.2e+04 6.2e+03 1.6e+00 n n
1.2e+04 4.0e+03 8.5e-01 n n
2
l.le+04 4.1e+03 l.le+00 n n
1.8e+04 6.7e+03 1.4e+00 n n
6.4e+03 3.4e+03 9.0e-01 n n
4.4e+03 2.4e+03 5.0e-01 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:9
Run: 12 File: a27sep98m S:6 Acq:27-SEP-98 23:04:17 Proc:28-SEP-98 09:37:06
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-2 xl/2
Amount: 6.73
Cone: 6.73
Tox #1: -
Name
of which 4.97
of which 4.97
Tox #2: -
# RT Respnse
named and 1.76
named and 1.76
Tox #3: -
unnamed
unnamed
RA
1,2,3,4,6,7,8-HpCDFl 36:46 l,3e+07 1.02 y
1.3e+07
Cone
4.23
Area Height S/N Mod?
6.5e+06 2.5e+06 1.4e+02 y n
08(
-------
OPUSquan 28-SEP-1998
Page 10
2 36:57 2.2e+06 1.00 y 0.78
2.2e+06
3 37:03 2.5e+06 1.04 y 0.88
2.5e+06
l,2,3,4,7,8,9-HpCDF4 37:55 1.9e+06 0.95 y 0.74
1.9e+06
5 38:00 8.2e+04 0.44 n 0.03
8.2e+04
6 38:10 4.5e+04 1.59 n 0.02
4.56+04
7 38:22 4.8e+04 1.62 n 0.02
4.8e+04
8 38:32 5.1e+04 1.85 n 0.02
5.1e+04
9 38:52 3.5e+04 1.69 n 0.01
3.5e+04
6.4e+06 2.4e+06 3.0e+02 y n
le+06
le+06
3e+06
2e+06
4e+05
9e+05
5e+04
7e+04
7e+04
7e+04
Oe+04
8e+04
3e+04
8e+04
2e+04
3e+04
4.3e+05
4.5e+05
4.7e+05
4.8e+05
3.3e+05
3.5e+05
l.le+04
1.3e+04
1.36+04
6.8e+03
9.2e+03
6.6e+03
1.3e+04
8.4e+03
8.1e+03
6.1e+03
2.56+01
5.7e+01
2.7e+01
6.1e+01
2-Oe+Ol
4.5e+01
6.5e-01
1.7e+00
7.5e-01
8.76-01
5.4e-01
8.36-01
7.56-01
l.le+00
4.86-01
7.86-01
Y n
Y n
y n
y n
Y n
y n
n n
n n
n n
n n
n n
n n
n n
n n
n n
n n
081
-------
OPUSquan 28-SEP-1998
Page 11
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:ll
Run: 12 File: a27sep98m S:6 Acq:27-SEP-98 23:04:17 Proc:28-SEP-98 09:37:06
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-2 xl/2
Amount: 3.55
Cone: 3.55
Tox #1: -
Name
of which 1.86
of which 1.86
Tox #2: -
# RT Respnse
named and 1.70
named and 1.70
Tox #3: -
unnamed
unnamed
RA
1 36:58 3.6e+06 1.05 y
3.6e+06
2 37:06 9.0e+04 0.53 n
9.0e+04
3 37:15 2.0e+04 0.82 n
2.0e+04
l,2,3,4,6,7,8-HpCDD4 37:33 4.4e+06 1.05 y
4.4e+06
5 37:42 5.4e+04 2.45 n
5.4e+04
6 37:55 l.le+05 5.45 n
l.le+05
7 38:00 1.9e+04 1.05 y
1.9e+04
8 38:09 2.1e+04 1.62 n
2.1e+04
9 38:27 4.4e+04 0.90 y
4.4e+04
10 38:32 2.7e+04 2.31 n
2.7e+04
11 38:35 3.06+04 0.71 n
3.0e+04
Cone Area Height
1.52
S/N Mod?
0.04
0.01
1.86
0.02
0.05
1.8e+06 7.3e+05 1.3e+02 y n
1.8e+06 7.1e+05 l.Se+02 y n
J
3.1e+04 1.2e+04 2.0e+00 n n
5.9e+04 1.8e+04 4.5e+00 y n
L
9.06+03 3.1e+03 5.3e-01 n n
l.le+04 4.4e+03 l.le+00 n n
2.3e+06 7.2e+05 1.2e+02 y n
2.1e+06 7.2e+05 1.8e+02 y n
2
3.9e+04 1.3e+04 2.1e+00 n n
1.66+04 1.2e+04 S.le+00 y n
9.5e+04 2.1e+04 3.6e+00 y n
1.7e+04 6.8e+03 1.7e+00 n n
0.01
0.01
9.7e+03 4.2e+03 7.3e-01 n n
9.26+03 3.8e+03 9.3e-01 n n
L
1.36+04 5.7e+03 9.8e-01 n n
7.9e+03 3.8e+03 9.4e-01 n n
0.02
0.01
0.01
2.16+04 8.3e+03 1.4e+00 n n
2.36+04 7.2e+03 1.8e+00 n n
L
1.9e+04 7.66+03 1.36+00 n n
8.1e+03 4.1e+03 l.Oe+00 n n
I
1.2e+04 6.1e+03 l.le+00 n n
1.7e+04 5.3e+03 1.3e+00 n n
082
-------
File:A27SEP98M #1-529 Acq:2
Sample#6 Text:1113-2 xl/2
319.8965 S:6 BSUB (128, 15 , -3
100%
50 :
o -
"-1 1 1 1 1 1 1 1 1 r—
24:00
321.8936 S:6 BSUB (128 , 15, -3
100%
50 j
o •
u-> 1 1 1 1 , 1 r 1 1
24:00
331.9368 S:6 BSUB (128, 15, -3
100%
50 j
0 '
u— ' 1 1 1 1 i 1 1 1 r •
24:00
333.
100%
50 j
0 '
9339 S:6 BSUB (128, 15, -3
" ' 1 1 1 1 1 1 1 1 1 —
24:00
327.8847 S:6 BSUB (128, 15, -3
lOOSj
50 j
0 '
"-1 — i 1 1 1 1 1 1 1 1 —
24:00
316.9824 S:6 SMO(1,3) PKD(3
100% -5T.1O -5T.4T 24-r>Q ?.& •
50 j
0"
u— ' 1 r 1 1 1 1 1 1 1
24:00
7-SEP-1998 23
.0) PKD(3,3,2
-1 1 1 1 1 T
25:00
.0) PKD(3,3,2
-i — i — r ' ' '
25:00
.0) PKD(3,3,2
25 Sod
.0) PKD(3,3,2
25 Sod
.0) PKD(3,3,2
25 Sod
,3,3,100.00%,
36 35- QQ 25^
25 Sod
:04:17 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23_DB5_OVATION
, 0.10%, 4516. 0,1. 00%, F,F)
25:45
A
26:11
l\ A
-• I r | |
26:00 27:00
, 0.10%, 2396. 0,1. 00%, F,F)
25:45
A
26:11
I 1 A
A A
26:00 27:00
, 0.10%, 21496. 0,1. 00%, F,F)
26:00 27:00
, 0.10%, 8952, 0,1. 00%, F,F)
26:00 27 Sod
, 0.10%, 18392. 0,1. 00%, F,F)
26? 00 27:00
0.0,1.00%,F,F).
30 26:02 26:25 _2_6_-ia
26:00 27:00
27:26
2.0E6
11.0E6
LO.OEO
28:00 29:00 30:00 Time
27^24 ^28^5 0_
2.5E6
:1.3E6
LO.OEO
28:00 29:00 30:00 Time
28:40
11 A
1 1 / V
3 . 8E7
Ll.9E7
• O.OEO
28:00 29:00 30:00 Time
28:40
11 l\
A 1 v
4.8E7
_2.4E7
O.OEO
28 Sod 29:00 30:00 Time
T9
A
6.4E7
_3.2E7
O.OEO
28:00 29:00 30:00 Time
27-26 28:Q2 ?ft:37 ?9;23 3_0 : 0_6_ 1.1E8
L5.5E7
' O.OEO
28:00 29:00 3oSoO Time
O
00
-------
File:A27"SEP98M #1-236 Acq:27-SEP-1998 23:04:17 GC EI+ Voltage SIR Autospec-UltimaE " " "
Sample#6 Text: 1113-2 xl/2 Exp:EXP_M23_DB5 OVATION
355.8546 S:6 F:2 BSUB(128 , 15, -3 . 0) PKD(3 , 3 , 2, 0 . 10%, 4080 . 0, 1 . 00%, F, F)
1005
50.
0
32
j
31:57 1
A 1
26 r2.3E6
32:36
M 32:52
\_^^J \ /\ _^
' n nun
30^36 30:48 3l56d 3i!l2 3i!24 3l!36 31 Us 32I66 32 :12 ' 32 24 32 !36 ' 32 Us ' 33 ! 66 ' 33 1 12 '~33 124 ' 33 1 36 ' Time
357.8517 S:6 F:2 BSUB(128 , 15 , -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 2220 . 0, 1 . 00%, F, F)
100S
50_
:
0"
32
31:57
A
A /
26 r!.3E6
32:36
32:52 TT. m
y V J-N.
-
L6.6E5
' n .DRf)
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
367.8949 S:6 F:2 BSUB (128 , 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 8736 . 0 , 1 . 00%, F, F)
100%
so:
0"
33:02
ft
1
A
7 . 8E7
L3.9E7
o.nRO
1 I | | | | 1 ' ' ' ' ' 1 i i i i i i i i i i i i i i i i i i > i i i i i i i i i i— i T— r -i — i i i r -
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
369.8919 S:6 F:2 BSUB (128, 15, -3 . 0) PKD(3 , 3 , 2, 0 . 10%, 3820 . 0, 1 . 00%, F,F)
lOOi
so:
0"
33:02
h
j\
_5.0E7
L2 . 5E7
O.OEO
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
366.9792 S:6 F:2 SMO(1,3) PKD(3 , 3 , 3, 100 . 00%, 0 . 0, 1 . 00%,F,F)
.00% 30JL40 31:25 31:37 11 • "i3_ 32-1732:22
so:
0"
32:32 32:45 33:09 31j_29 1.3E8
.6.4E7
0 . ORO
30 36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
-------
File:A27SEP98M #1-197 Acq
Sample#6 Text: 1113-2 xl/2
:27-SEP-1998 23:04:17 GC EI+ Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
389.8156 S:6 F:3 BSUB(128 , 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 3792 . 0 , 1 . 00% , F, F)
1005
50.
0_
t
34:35
h
/ \ 34:44
^^ J \ ^r~\
4.0E6
L2.0E6
'O.OEO
33148 34 100 3 4! 12 34124 34136 34 Us 35loO 35 12 3sl24 3sl36 3sUs 36loO 3ell2 Time
391.8127 S:6 F:3 BSUB(128
1003
50_
:
0"
33:48 34:00 34:12
401.8559 S:6 F:3 BSUB(128,
100%.
.
so:
0"
33148 34 loo' ' 34ll2
403.8530 S:6 F:3 BSUB(128,
100%.
-
.
50J
0"
33:48 34:00 34:12
380.9760 S:6 F:3 SMO(1,3)
100% 33:50 34:00 34:11
50_
0"
33 148 34 100 34:12
15, -3 .0) PKD (3, 5, 2, 0.10%, 4736. 0,1. 00%, F,F)
34:35
fl
A
/ \ 34:45
^ / \ — ^s~\, , _
3.3E6
_1.7E6
' 0 . OF.n
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
15, -3.0) PKD (3, 5, 2, 0.10%, 6604. 0,1. 00%, F,F)
3 5 • 23 ft RP7
35:10 I
35:0A A
/fl /I
_4.3E7
" n . OKO
i"~i — i "T" i i — i i — i — i I~"T — i i ~r i i r— i i — i i — i — i— T — i — r — i — i^T I IT — i — i — r^T 'I r T i t r— i — i — i — i — i — i— i — i v-r- i i — i j— "i — i — r — i — i — i-'
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35148 36loO 36ll2 Time
15, -3.0) PKD(3,5,2,0.10%,5588.0,1.00%,F,F)
3S"23 fi 7^*7
35A10 A
35:oA
/fl /I
l"~l I r~ ] i i T i i | i i i T i j TT i i r— i i T — r— r — i i !•"' l i ' T — i i 7^7" I I T i i p-i — i r • r i — i — i — t i i — i— i — i — i — i • T— r i i i
_3.4E7
' O.OEO
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36ll2 Time
PKD (3, 3, 3, 100. 00%, 0.0,1. 00%, F,F)
34-2R 34:49 34"59 ^ 5 ;12____^ 33 : 3 6 3_5:4R 36:03 4 . 6RR
.2.3E8
O.ORn
34:24 34:36 34 Us 35loO ' 35ll2' ' '35124' ' '35! 36' ' VsUV ' '36:0o' ' '36ll2' ' ' Time
00
C/l
-------
File:A27SEP98M #1-197 Acq:27-SEP-1998 23:04:17 GC EI+ Voltage SIR Autospec-ultimaE -
Sample#6 Text: 1113-2 xl/2 Exp:EXP_M23_DB5_OVATION
423.7767 S:6 F:4 BSUB (128, 15, -3 . 0) PKD(3 , 5 , 3 , 0 . 10%, 5816 . 0, 1 . 00%, F, F)
1003
50_
0
36:58 37-33
A A
A A
«•« I L^ ^
^•^ j ^ — / x^~_
7.3E5
_3.7E5
n n^n
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37 48 38:00 38:12 38:24 38:36 38:48 39-00 Time
425.7737 S:6 F:4 BSUB (128 , 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 4060 . 0, 1 .00% , F, F)
1001
so:
0"
36:58 37\33
A A
A \\
1 L y L
7.2E5
L3.6E5
O.OEO
36124 36136 36Us 37-!oO 37!l2 3?!24 37136 37148 Sslo'o 38! 12 3s!24 3s!36 38?48 39~:00 Time
435.8169 S:6 F:4 BSUB(128, 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 150428 . 0, 1 . 00%, F, F)
lOOSj
so:
0'
"A32
f[
4.4E7
_2.2E7
' O.OEO
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
437.8140 S:6 F:4 BSUB(128 , 15, -3 . 0 ) PKD(3 , 5, 3 , 0 . 10%, 137992 . 0 , 1 . 00%,F,F)
100%
so:
0"
37:32
A
/ v_
..4.2E7
_2 . 1E7
O.OEO
36 24 36!36 36\48 37 1 00 37 1 12 37 1 24 3?! 36 37 {48 38loO 38:12 3s! 24 38!36 3s!48 39 00 Time
430.9728 S:6 F:4 SMO(1,3) PKD(3, 3, 3 , 100. 00%, 0.0, 1.00%,F,F)
100%
so:
0"
36-33 .37:45 37:57 38:1138:21 38:44 38:59
r
_3.2E8
_1.6E8
.O.OEO
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
-------
File:A27SEP98M #1-276 Acq:
Samplete Text: 1113-2 xl/2
457.7377 S:6 F:5 BSUB(128,
100S
501
0"
39:12 39:24 39:36
459.7348 S:6 F:5 BSUB(128,
100%
50J
OJ
39112 39124 39136
469.7780 S:6 F:5 BSUB(128,
100%
501
0"
39:12 39:24 39:36
471.7750 3:6 F:5 BSUB (128,
100%
so:
0"
39112 39124 39\36
454.9728 S:6 F:5 SMO(1,3)
100%p9:07 ^9:20 39jJ3
50J
0"
/
39:12 39:24 39:36
27-SEP-1998 23:04:17
GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
15, -3.0) PKD(3,5,3,0.
39148 46166 46:12
15 ,-3.0) PKD(3,5,3,0.
39:48 40:66 4oli2
15, -3.0) PKD(3,5,3,0.
39:48 40:00 40:12
15, -3.0) PKD(3,5,3,0.
39148 46166 4oli2
PKD(3,3,3,100.00%,0.0
39:50 40:02
i i i I i i > i i I i i i i i 1 i i i
39:48 40:00 40:12
10%, 10200. 0,1. 00%, F,F)
40:24
{[
1
17
" 0
46124 46I36 46148 4ll66 4ill2 41: 24 41 lie klUs 42166 42ll2
10%, 2192. 0,1. 00%, F,F)
40:24
A
y v
1
_8
0
46124 46136 46148 41:66 41112 41124 41:36 41148 42l6o 42ll2
10%, 2788. 0,1. 00%, F,F)
K *«.•>*
5
12
' n
•i i i i i i ' ' | i i i i i | i | i i i i i | i i i i i | i i i i i | i i i i i | i i i i i | i
40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
10%, 2020. 0,1. 00%, F,F)
40:23
A
y V
_5
_2
0
46124 4oi36 46148 4ll66 41112 41124 41136 ^lUs' 42166 42 1 12
,1.00%,F,F)
40:33 40.:45 41-n* 41:24 41:41 41:54 42:123
-1
0
40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
.4E6
.1E5
.OEO
Time
.6E6
.1E5
.OEO
Time
.OE7
.5E7
.OEO
Time
.5E7
.7E7
.OEO
Time
.4E8
.7E8
.OEO
Time
O
00
-------
File:A27SEP98M #1-529 Acq:27-SEP-199«
Sample#6 Text: 1113-2 xl/2
303.9016 S:6 BSUB(128 , 15, -3 . 0) PKD(3,3
100% 25:
24:08 /'
50- A 24.44
l\ A A /
24:00 25:00
305.8987 S:6 BSUB(128, 15, -3 . 0) PKD(3,3
100% 25:
: 24:08 ^
S^- A 24:44
„• l\ A A /
24:00 25:00
315.9419 S:6 BSUB(128, 15 , -3 . 0) PKD(3,3
100%
50 j
o-
24:00 25:00
317.9389 S:6 BSUB(128, 15, -3 . 0) PKD(3,3
100%
50J
n-
'•'— ' 1 i 1 1 r" — p11 T — i i -•' i • i i i
24:00 25:00
375.8364 S:6 BSUB(128, 15, -3 . 0) PKD(3,3
100%
50 J
: 23Ju8 23:54 24:41 25:12
0 ">«A ^v/ULv-A AA^_*r\A\ A AJL^-AA. A_ AWlr-yvAk*-, ^" A"-
U IVWpT^irj-l-ft^^lVlj^nnjM 1 p^of^w^YNjy-n^lw yviry^i fMi ,
24:00 25:00
316.9824 S:6 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00
100%23-19 ?.3-43 24:09 24:36 25:00 2
50 j
n-
'" 24 loo' ' ' ' 25!00
23:04:17 GC EI+ Voltage SIR
Exp:EXP M23 DBS OVATION
, 2, 0.10%, 4568. 0,1. 00%, F,F)
21
i 26:14 26:56 27
VVTK /f\26/0\ /Y\ 1
26:00 27:00
, 2, 0.10%, 11668. 0,1. 00%, F,F)
21
25_3g 26:14 26:56 27
26. -00 ' ' 27: 00
, 2, 0.10%, 8340. 0,1. 00%, F,F)
26:00 27:00
, 2, 0.10%, 13384. 0,1. 00%, F,F)
26! 00 ' 27 !00
, 3, 100. 00%, 168. 0,1. 00%, F,F)
25-43 27:10
J Ij^i^A^^-LM A A ^Jk Afe
26:00 27 !oO
i, 0.0,1. 00%, F,F)
5^30 26:02^26^:28 2J5 ^5_8_ 2
26:00 ' ' ' 27:00
Autospec-UltimaE
o -i 27:57
/\
A 27:40 A 28:33
v _y\ y v / v ^^ —
28:00 29:00 30:00
:21 27:57
^ 27:40 /\ 28:33
v .A y v A ^ _
28:00 29:00 30:00
27:56
,
28:00 29:00 30:00
T
28:00 29. -00 30:00
28:08
^M41 A AVX- 2?44 ?^4|X -
28:00 29 !00 30 !00
28:00 ' ' 29 loo' ' 3o!oo'
2.0E6
11.0E6
LO.OEO
Time
2.6E6
Ll.3E6
_O.OEO
Time
4.0E7
.2.0E7
_O.OEO
Time
5.1E7
.2 . 6E7
- O.OEO
Time
_3.3E4
Ll.7E4
LO.OEO
Time
.1.1E8
_5.5E7
_O.OEO
Time
-------
File:A27SEP98M #1-236 Acq
27-SEP-1998 23
Sample#6 Text: 1113-2 xl/2
339.8597 S:6 F:2
100S
50
0
30:46
A
3ol36 36148
341.8568 S:6 F:2
1002
50:
o:
30:46
36136 30 Us
351.9000 S:6 F:2
100%
50:
o:
353.8970 S:6 F:2
100%
50:
o:
36136 ' 3ol48 '
409.7974 S:6 F:2
100%
,.0!
;
o-
30:36 30:48
366.9792 S:6 F:2
100% 30i40
50J
o"
3ol36r ' 30148 "
BSUB(128,15,-3.0) PKD(3
:04:
Exp:
,3,2
IV
GC EI+ Voltage SIR Autospec-UltimaE
EXP M23 DBS OVATION
,0.
10%, 3992.0,
1.00%,
F,F)
31:50
silod 31
Il2 31:24 31
BSUB(128,15,-3.0) PKD(3
3ll6d 3i
BSUB (12 8,
31:66 ' 31
BSUB (12 8,
31 166 ' 31
BSUB (12 8,
31:00 31
SMO(1,3)
31:66 ' 31
Il2 31124 3ll
15, -3.0) PKD(3
Il2 31124 31 1
15, -3.0) PKD(3
Il2 3il24 31 1
15, -3.0) PKD(3
:12 31:24 31:
31:
36
,3,2
31 :
/
36
,3,2
36
,3,2
36
,3,3
36
43/
3ll
,0.
31
/
4 7
31:
,0.
3l!
,0.
3l!
\ 31:57
48 32166
10%, 7288.0,
:49
\ 31:57
48 32166
10%, 1552.0,
48 32166
10%, 5080.0,
48 32166
,100. 00%, 4468.
3l!
PKD(3,3,3,100.00%,0.0
31:25 31
•12 31124 31:
:17
36
3l!
32:(
J \
48 32:00
,1.00%,F,F)
31-59
48 32 I 66
32:12
32! 12
1.00%,
32:12
/N
32:12
1.00%,
32112
1.00%,
32l 12
32:23 32:35
oAA,.
32:24 32:36
F,F)
32:23 32:35
/\32:30A
•rf,\ A/V, , ,
32:24 32:36
F,F)
32:23
f\
ft
/I
32124 32136
F,F)
32:23
ll
/ v_
32124 32136
32:51
3
1
0
32148 33l6o 33l 12 33] 2 4 33\36
32:51
2
_1
0
32:48 33 16o 33112 33:24 33 1 36
32:50
A
/i
1
_5
0
32 Us 33166 33l 12 33124 33136
32:50
A
A
;V
7
.3
:n
32148 33166 33ll2 33124 33l36
.7E6
.8E6
.OEO
Time
.4E6
.2E6
.OEO
Time
.1E8
.7E7
.OEO
Time
.1E7
.5E7
.OEO
Time
0,1.00%,F,F)
32:14
^
«/\3
I" 1 | 1 ' '
32:12
32:12 '
32:12
32:25
A
^S^s V ^S^^
32:24 32:36
32j22 32:32
32l 24 32136
1
32:49 33:20
5
- o
32:48 33:00 33:12 33:24 33:36
32:53 33:09 33_L29 fl
Le
:o
32 148 ' 33166 ' 33l 12 ' 33124 ' 33136 '
.2E6
.8E5
.OEO
Time
.3E8
.4E7
.OEO
Time
O
00
CD
-------
File
Samf
373.
1003
50.
o-
375.
1003
50J
ol
383.
100$
50J:
o;
385.
100%
50 j
oj
445.
100%
50_
OJ
380.
100%
50 j
o"
>:A27SEP98M #1-197 Acq: 27-SEP-199& 23:04:17 GC EI+ Voltage SIR Autospec-UltimaE
)le#6 Text: 1113-2 xl/2 Exp:EXP_M23 DBS OVATION
8207 S:6 F:3 BSUB (128 , 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 6856 . 0, 1 . 00%, F, F)
34:02
l\ 34:35
3 A7 V „'*" „ A/W« 3&» j^
33:48 34:00 34:12 34:24
8178 S:6 F:3 BSUB(128, 15, -3 . 0)
34:02
33:57/ \
A/ V^34:14 _
33:48 34:00 34:12 34:24
8639 S:6 F:3 BSUB (128, 15, -3 . 0)
33:48 34:00 34:12 34:24
8610 S:6 F:3 BSUB(128, 15, -3 . 0)
34! 36 34148 35!do 3sll2 35124 35\36 ' '35\48 ' Veldo' ' '36. '12'
PKD (3, 5, 2, 0.10%, 83 60. 0,1. 00%, F,F)
34:35
/V\4:44 3^:52 ^J2 _
34:36 34:48 35:00 35:12 35:24 35:36 35148 36loO 36ll2
PKD (3, 5, 2, 0.10%, 20808. 0,1. 00%, F,F)
34:39
34:3&A
A/l
34:36 34:48 35:00 35:12 35:24 35:36 35:48 36ioO 36:12
PKD (3, 5, 2, 0.10%, 43412. 0,1. 00%, F,F)
34:39
34:35^1
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
7555 S:6 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 3 , 3 , 100 . 00%, 560 . 0 , 1 . 00%, F, F)
34:37
34:30 l\ 35-03f
^ A l\ /C 35:15
33 .-48 34 -do 34:12 34:24
9760 S:6 F:3 SMO(1,3) PKD(3,3,3
33^:50 34:00 34:11 J4jL
s
33 1 48 34l 00 34l 12 34l 24
2.3E6
_1.1E6
• o OEO
Time
2.0E6
;1.0E6
• O.OEO
Time
5.4E7
_2.7E7
' 0 OEO
Time
1.0E8
_5.0E7
O.OEO
Time
_2.2E5
Ll.lES
O.OEO
34:36 34.;48 35:00 35:12 35.;24 35.!36 35.U8 36:00 36:12 Time
, 100. 00%, 0.0,1. 00%, F,F)
9.R 34:49 34-59 35:14 35:36 35.4ft 36:03 4 . fiRR
.2.3E8
.O.OEO
34136 34148 35:00 35ll2 3sl24 3sl36 35U8 36\00 36\12 Time
•5
CO
-------
File:A27SEP9«M #1-197 Acq
Sample#6
407.7818
1003
50.
0_
t
36:24
409.7788
100S
50 j
-
o:
36124
417.8253
100%
_,
50J
o:
1 ' '
36:24
419.8220
100%
50J
o:
| I T
36 24
479.71 fiR
100%
501
'-
o:
36
36 I241
430.9728
100%
:
50 j
Q-
/
36>24'
Text: 1113-2 xl/2
S:6 F:4 BSUB(128
36/T
\
\ \
J V^
36\36 36:48
S:6 F:4 BSUB(128
36:45
A
/ \
/ V
36i36 36:48
S:6 F:4 BSUB(128
36:45
n
A
/\
y v
36:36 36:48
S:6 F:4 BSUB(128
36:45
/\
A
/\
y V
T"T"T "T"'T"'T~^ " T T "T^ 1 1
36:36 36:48
S-6 F-4 BSUB(128,
:2V-SEP-1998 23
,15, -3.0) PKD(3
37:03
/~V .X"\^
37 !do 37:12
,15, -3.0) PKD(3
37:03
S\^ y'^v
37:00 37:12
,15, -3.0) PKD(3
, , | , i i i i | i
37:00 37:12
15, -3.0) PKD(3
,, i ,,.,.,,
37:00 37:12
:04:17 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
, 5, 3, 0.10%, 17120. 0,1. 00%, F,F)
37:55
/~-^
2.5E6
_1.2E6
O.OEO
37124 37! 36 37 Us 38!o'o 3s!l2 38^24 3s!36 38!48 39 00 Time
, 5, 3, 0.10%, 7864. 0,1. 00%, F,F)
37:55
/^--^
2.4E6
L1.2E6
:O.OEO
37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
, 5, 3, 0.10%, 11324. 0,1. 00%, F,F)
2 . 6E7
37:54
ft
_1.3E7
O.OEO
37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
, 5, 3, 0.10%, 6928. 0,1. 00%, F,F)
5.9E7
37:54
/c
_3.0E7
O.OEO
37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
IR.-T m PKnn.T. T.100.00*.10300.0.1.00%.F.F)
37:34
29 36:44 36:
T — i — i — i — r~i — i — IT — i — i — i — r
36:36 36:48
S:6 F:4 SMO(1,3)
36_L33
1 — i — 1'"|- i — i — l — l — i — | — i — i — r
36:36 36:48
54 37:08
'37 -do' ' 37! 12
yu\
^y ^ ^^-^^Js^^A^-A-^^^
_1.4E5
_7 . OE4
- O.OEO
37:24 ;37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
PKD (3, 3, 3, 100. 00%, 0.0,1. 00%, F,F)
-i — i — | — r— 1 — P — i — 1 — | i i
37:00 37:12
37i45 37:57 3Rtl3 38:2fi 3fl:44 38:59 3 . 2E8
_1.6E8
O.OEO
37124 ' 37:36 37: 48 38:00 38:12 38:24 38:36 3sl48 ' 39 00 Time
U
-------
File:A27SEP98M #1-276 Acq
Sample#6 Text: 1113-2 xl/2
27-SEP-1999 23:04:17
GC EH- Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
441.7427 S:6 F:5 BSUB(128, 15, -3 . 0) PKD(3,5,3,0.
1001
50J
o:
39:12 39:24 39:36
443.7398 S:6 F:5 BSUB(128,
100%
50 1
Q~-
39-.ii 39124 391361
469.7780 S:6 F:5 BSUB(128,
100%
50J
o •
39ll2 391241 39136
471.7750 S:6 F:5 BSUB(128,
100%
50J
o:
39:12 39124 39136
513.6775 S:6 F:5 BSUB(128,
100%
50 J
0 '
39:48 40:00 40:12
15, -3.0) PKD(3,5,3,0.
39148 46166 4oll2
15, -3.0) PKD(3,5,3,0.
39148 46166 40:12
15, -3.0) PKD(3,5,3,0.
39:48 40:00 40:12
10%, 2704. 0,1. 00%, F,F)
40^33
A
y V^
1.8E6
_8.8E5
• 0 . OKO
40:24 40:36 40:48 41:00 41:12 41:24 41:36 4ll48 42loO 42J12 Time
10%, 5680. 0,1. 00%,
40:33
A
y V_
4ol24 46136 4ol
10%, 2788. 0,1. 00%,
"A24
A
/ ^ — i-
40:24 40:36 40:
10%, 2020. 0,1. 00%,
40 A23
l\^
46124 46136 4ol
15, -3.0) PKD( 3, 3, 3, 100. 00%, 356. 0,1. 00%
39:0839A39:2i39:33 39:45 40:05
r\ ^/VA /\ WnA _A. A^ ^^ /\~.^ fJ\ /\/-VU,
39ll2 39:24 39:36
454.9728 S:6 F:5 SMO(1,3)
100%39:07 39:20 39^J13
50J
o:
f
39:12 39124 39:36
39:48 40:00 40:12
PKD(3,3,3,100.00%,0.0
39:50 40:02
39:48 46166 4oli2
40:23
A^x
/ W3^A 4^A44
i i 1 i i i i i 1 ViM i H 1
40:24 40:36 40:
,1.00%,F,F)
F,F)
2.0E6
L1.0E6
_O.OEO
48 4ll66 4ill2 41124 4ll36 4ll48 42166 42! 12 Time
F,F)
48 41:00 41112 4il24 41 lie 4i: 48 42166 42 1 1
5.0E7
_2 . 5E7
Lo .OEO
2 Time
F,F)
_5.5E7
_2.7E7
_O.OEO
48 41:66 4ill2 41124 4ll36 41148 42166 42. -12 Time
,F,F)
41:33
41:01 41:16 41:^PA 41/v8 42:00
_2.5E4
_1.2E4
_O.OEO
48 '41:66 41: 12 ' 41:24 41:36 41:48 42166 '42:12 Time
40i33 40:4S 41:OS 41:24 41:41 41:54 42:12 3.4E8
46124 ' 46136 ' 4ol
.1.7E8
.O.OEO
48 4ll66 4lli2 4ll24 41:36 41148 42166 42 1 12 Time
-------
OPUSquan 30-SEP-1998
Page 9
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ
Unk
ES/RT
Total
DPE
LMC
a29sep98n
9
29-SEP-98
30-SEP-98
1113-2
07feb-m23conf
m8290cf-092998n
22:49:04
08:57:41
Name;
,7,8-TCDF;
2
13C-2,3,7,8-TCDF;
Tetra Furans;
HxCDPE;
QC CHK ION (Tetra);
Resp;
1.71e+06;
1.64e+08;
5.07e+07;
Ion 1;
.51e+05;
. 24e+07;
.23e+06;
Ion 2;
9.56e+05;
9.13e+07;
2.77e+06;
RA.;?; RT;
0.79;y; 27:53;
0.79;y; 27:52;
0.80;y; 18:09;
;NotFnd;
;NotFnd;
Page 9
Cone; DL;
1.097; 0.1099;
40.114;
32.605; 0.1099;
S/N1;?;
40;y;
977,-y;
197,-y;
* ;n
DivO;n
S/N2;?
27;y
1401;y
128;y
mod?
no
no
no
no
no
27:53
27:53
o
CD
CO
-------
'File:A29SEP98N #1-2677 Acq':29-SEP-1998 22:49:04 GC EI+ Voltage SIR Autospec-ultimaE
Sample#9 Text:1113-2 Exp:M23_DB225
303.9016 S:9 SMO(1,3) BSUB (128 , 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2104 . 0 , 1 . 00%, F, F)
1809
50J
OJ
19:50
22:08 23:16
24:17
W5 A fA2526A31 27A53 29:35
A A _ A A A /IK ^A
~V ' " i ' V" 1 PI I
4.2E5
L2.1E5
31:50
rr
LO.OEO
16100 ISiOO 20iOO 22100 24:00 26:00 28:00 30:00 32:00
305.8987 S:9 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,4060.0 ,1.00%,F,F)
100%. 18:09
22:07 23:15
A 24:17
2i:24
34:00
O
1:30 27:53 29:35
/\ ~A
31:46
i i i i' i i i i i' i i i i i' 'i * r
16:00 18:00 20:00 22:00 24iOO 26:00 28:00
315.9419 S:9 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%, 8052.0 ,1.00%,F,F)
100% 27;52
i i i*i i i i
32:00
36:00 Time
5.3E5
L2.6E5
.LO.OEO
0.
"i~i i i" i i i
34:00 36 00 Time
7.9E6
L3.9E6
O.OEO
16:00 18:00 20:00 22:00 24:00 26:00 28:00
317.9389 S:9 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,7012.0,1.00%,F,F)
100% 27;51
50J
30:00
32:00
34:00
0.
' 20 I 00 ' ' ' 22.:00 24iOO 26! 00 28iOO
375.8364 S:9 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%, 1032.0,1.00%, F,F)
100%, 20; 02
j.j -. u-* ^u : J.J.
1 c. . no i Tl.l
50J
30 lob
32:00
34:00
36:00 Time
9.9E6
L4.9E6
.O.OEO
i—i—i—i—i—i—i—i—i
16:00 18:00
16iOO 18100 20:00 22:00 24:00
316.9824 S:9 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
26:00
28:00
30:00
32100
34i 00
j.D;f*D j./:iu J.a:i/ 20: 06 21 : 15 22 : 21 ^4:U^ ^3:-iD ^/:ioztJ:xy^?;^H
/<^1
x -. ^ -.. . *--^~,—^ ,«-?^Al.M">-i'U^.T:^J<*i^'-l"-^^-?>v*-.*JjH
16:00
18:00
20:00
22:00
26 o
28:00
30:00
32 00
34:00
36:00 Time
1.8E4
9.2E3
O.OEO
36:00 Time
I.3E7
L1.2E7
O.OEO
36:00 Time
-------
Method 23
M23-O-1
PES
Paradigm Analytical Labs
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
(ng>
0.0027
0.0037
EMPC
0.0068
0.0059
0.0206
0.0328
0.0293
0.0155
0.0101
0.0355
0.0116
EMPC
ND
0.0573
0.0079
0.0672
0.499
0.280
0.295
0.0372
0.310
0.104
0.0684
0.0776
0.0203
0.0204
DL
U>g)
0.0010
0.0005
0.0012
0.0011
0.0011
0.0012
0.0064
0.0022
0.0006
0.0006
0.0009
0.0007
0.0008
0.0009
0.0017
0.0019
0.0030
0.0010
0.0005
0.0011
0.0012
0.0022
0.0006
0.0007
0.0017
EMPC
tag)
0.0026
0.0031
0.517
0.293
0.303
0.344
0.107
0.0760
0.0209
0.0209
RT
(mm.)
28:58
33:02
35:06
35:09
35:21
37:31
40:22
27:56
32:22
32:49
34:34
34:38
35:01
35:30
36:43
37:53
40:30
Ratio
0.67
1.39
0.93
1.32
1.38
0.95
0.84
0.81
1.45
1.48
1.29
1.21
1.48
1.28
1.04
1.13
0.87
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-O-1
L1113
1113-3
27-Aug-98
08-Sep-98
15-Sep-98
27-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retohk:
Begin ConCal:
End ConCal:
Initial_Cal:
Air
1
0.0 %
a27sep98m-7
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
r (
095
1/2
-------
Paradigm Analytical Labs
Method 23
M23-O-1
PBS
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13C12-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
l3C12-l,2,3,7,8-PeCDF
nCi2-l,2,3,6,l,%-Hx.CDF
13Ci2-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37CU-2,3,7,8-TCDD
13C,r2,3,4,7,8-PeCDF
13Cirl,2,3,4,7,8-HxCDD
13Cirl,2,3,4,7,8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
Injection Standards
13C12-lr2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
-------
OPUSquan 28-SEP-1998 Page
Filename a27sep98m
Sample 7
Acquired 27-SEP-98 23:51:30
Processed 28-SEP-98 09:37:52
Sample ID 1113-3 xl/2
Cal Table m8290-091498
Results Table M8290-092798M
Comments
Typ Name; Resp;
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
cs
cs
cs
cs
cs
ss
ss
ss
ss
ss
2,3,7,8-TCDD; 3.97e+05;
1,2,3,7,8-PeCDD; 2.60e+05;
1,2,3,4,7,8-HxCDD; 1.49e+05;
1,2,3,6,7,8-HxCDD; 4.28e+05;
1,2,3,7,8,9-HxCDD; 3.60e+05;
1,2,3,4,6,7,8-HpCDD; 1.07e+06;
OCDD; 1.186+06;
2,3,7,8-TCDF; 5.696+06;
1,2,3,7,8-PeCDF; 1.29e+06;
2,3,4,7,8-PeCDF; 8.62e+05;
1,2,3,4,7,8-HxCDF; 3.00e+06;
1,2,3,6,7,8-HxCDF; 1.136+06;
2,3,4,6,7,8-HxCDF; 2.756+05;
1,2,3,7,8,9-HxCDF; 6.74e+04;
1,2,3,4,6,7,8-HpCDF; 3.87e+06;
1,2,3,4,7,8,9-HpCDF; 4.626+05;
OCDF; 2.596+06;
13C-2,3,7,8-TCDD; 3.15e+08;
13C-l,2,3,7,8-PeCDD; 2.49e+08;
13C-l,2,3,6,7,8-HxCDD; 2.73e+08;
13C-l,2,3,4,6,7,8-HpCDD; 2.28e+08;
13C-OCDD; 2.86e+08;
13C-2,3,7,8-TCDF; 4.12e+08;
13C-l,2,3,7,8-PeCDF; 3.72e+08;
13C-l,2,3,6,7,8-HxCDF; 3.54e+08;
13C-1,2,3,4,6,7, 8-HpCDF ; 1 . 99e+08 ;
13C-1,2,3,4-TCDD; 3.19e+08;
13C-l,2,3,7,8,9-HxCDD; 2.69e+08;
37Cl-2,3,7,8-TCDD; 2.916+08;
13C-2,3,4,7,8-PeCDF; 3.50e+08;
13C-l,2,3,4,7,8-HxCDD; 2.09e+08;
13C-l,2,3,4,7,8-HxCDF; 2.626+08;
13C-l,2,3,4,7,8,9-HpCDF; 1.48e+08;
37Cl-2,3,7,8-TCDD; 2.916+08;
13C-2,3,4,7,8-PeCDF; 3.50e+08;
13C-l,2,3,4,7,8-HxCDD; 2.09e+08;
13C-l,2,3,4,7,8-HxCDF; 2.62e+08;
13C-1 , 2,3,4,7,8, 9-HpCDF; 1 . 48e+08 ;
8
1
7
2
2
5
5
2
7
5
1
6
1
3
1
2
1
1
1
1
1
1
1
2
1
6
1
1
2
2
1
9
4
2
2
1
9
4
1
Ion 1;
.74e+04;
.51e+05;
.16e+04;
.44e+05;
.096+05;
.20e+05;
.36e+05;
.556+06;
.63e+05;
.156+05;
.69e+06;
.20e+05;
.64e+05;
.786+04;
.97e+06;
.45e+05;
.20e+06;
.40e+08;
.52e+08;
.53e+08;
.17e+08;
.36e+08;
.82e+08;
.27e+08;
.226+08;
.126+07;
.42e+08;
.50e+08;
.91e+08;
.14e+08;
.17e+08;
.OOe+07;
.516+07;
.91e+08;
.14e+08;
.17e+08;
. OOe+07 ;
.516+07;
c
Ion 2;
3.106+05;
1.096+05;
7.706+04;
1.84e+05;
l.Sle+05;
5.486+05;
6.426+05;
3.15e+06;
5.26e+05;
3.486+05;
1.316+06;
5.106+05;
l.lle+05;
2.96e+04;
1.906+06;
2.176+05;
1.396+06;
1.75e+08;
9.69e+07;
1.206+08;
l.lle+08;
l.SOe+08;
2.30e+08;
1.456+08;
2.33e+08;
1.386+08;
1.77e+08;
1.19e+08 ;
_ .
1.36e+08;
9.196+07;
1.72e+08;
1.036+08;
1.366+08;
9.19e+07;
1.726+08;
1.03e+08;
» V~ — r
RA;?;
0.28;n;
1.39;y;
0.93;n;
1.32;y;
1.38;y;
0.95;y;
0.84;y;
0.81;y;
1.45;y;
1.48;y;
l-29;y;
1.21;y;
1.48;n;
1.28;y;
1.04;y;
1.13,-y;
0.87;y;
0.80;y;
1.57,-y;
1.27,-y;
1.05;y;
0.91;y;
0.79;y;
1.56,-y;
0.52;y;
0.45;y;
0.80;y;
1.27;y;
1.58;y;
1.27,-y;
0.52;y;
0.44;y;
- ; - ;
1.58;y;
1.27,-y;
0.52,-y;
0.44;y;
'» \
RT;
28:58;
33:02;
35:06;
35:09;
35:21;
37:31;
40:22;
27:56;
32:22;
32:49;
34:34;
34:38;
35:01;
35:30;
36:43;
37:53;
40:30;
28:55;
33:01;
35:08;
37:30;
40:21;
27:54;
32:22;
34:37;
36:43;
28:39;
35:21;
28:58;
32:48;
35:05;
34:33;
37:52;
28:58;
32:48;
35:05;
34:33;
37:52;
Cone ;
0.124;
0.092;
0.066;
0.171;
0.148;
0.515;
0.821;
1.382;
0.387;
0.253;
0.888;
0.291;
0.078;
0.022;
1.432;
0.198;
1.679;
93.061;
110.613;
96.552;
95.791;
137.031;
98.194;
106.376;
109.221;
93.006;
70.981;
75.334;
87.787;
102.135;
97.866;
97.485;
79.016;
94.355;
96.047;
101.239;
89.195;
84.955;
DL;
0.0259;
0.0135;
0.0302;
0.0271;
0.0279;
0.0299;
0.1587;
0.0544;
0.0152;
0.0148;
0.0212;
0.0184;
0.0204;
0.0232;
0.0419;
0.0484;
0.0748;
0.1216;
0.1046;
0.0311;
0.9365;
0.0138;
0.0512;
0.0339;
0.1856;
0.1267;
-;
- ;
0.0721;
0.0346;
0.0413;
0.2242;
0.1448;
0.0827;
0.0144;
0.0416;
0.1880;
0.1840;
S/N1;?;
6;y;
13 ;y;
7;y;
19; y ;
12;y;
44; y ;
10;y;
82;y;
226,-y;
142 ;y;
100;y;
32 ;y;
9;y;
2,-n;
86;y;
9;y;
110;y;
1405;y;
6428;y;
8841;y;
244;y;
12886;y;
5844;y;
29706;y;
1449, -y;
1909;y;
1531;y;
8641;y;
3611;y;
26767;y;
7434;y;
1153;y;
1283;y;
3611;y;
26767;y;
7434, -y;
1153 ;y, •
1283, -y;
S/N2;? ; mod?
36;y
33 ;y
8;y
16 ;y
12 ;y
65 ;y
41, -y
45;y
39;y
28;y
150;y
58 ;y
14;y
4;y
153 ;y
14, -y
50 ;y
3739;y
11113;y
10528;y
242;y
29892;y
5529;y
14736;y
2328;y
1832;y
4009;y
9949;y
-; -
13499;y
8424, -y
1823 ;y
1275,-y
-; -
13499;y
8424;y
1823;y
1275;y
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page
-------
OPUSquan 28-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:23
Run: 13 File: a27sep98m S:7 Acq:27-SEP-98 23:51:30 Proc:28-SEP-98 09:37:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-3 xl/2
Amount: 8.62
Cone: 8.62
Tox #1: -
Name
of which 1.38
of which 1.38
Tox #2: -
named and 7.23
named and 7.23
Tox #3: -
RT Respnse
RA
2,3,7,8-TCDF
23:48 2.9e+04 0.62 n
2.9e+04
23:51 3.8e+04 0.60 n
3.8e+04
3 24:07 2.0e+06 0.80 y
2.0e+06
4 24:42 9.1e+05 0.83 y
9.16+05
5 25:01 1.4e+06 0.76 y
1.4e+06
6 25:20 3.1e+06 0.85 y
3.1e+06
7 25:28 4.76+05 0.40 n
4.7e+05
8 25:30 5.3e+05 0.56 n
5.36+05
9 25:38 8.1e+05 0.84 y
8.1e+05
10 25:47 2.0e+06 0.80 y
2.0e+06
11 26:08 1.2e+06 0.72 y
1.2e+06
12 26:13 1.3e+06 1.01 n
1.3e+06
13 26:29 6.4e+05 0.96 n
6.4e+05
14 26:38 1.7e+06 0.79 y
1.7e+06
15 26:55 2.1e+06 0.80 y
2.1e+06
16 27:02 5.5e+06 0.78 y
5.5e+06
17 27:20 3.3e+06 0.74 y
3.3e+06
18 27:40 5.2e+05 1.13 n
5.2e+05
19 27:56 5.7e+06 0.81 y
5.7e+06
Cone
0.01
1
3
0.01
3
0.49
S
3
0.22
<
C
0.33
C
0.76
]
3
0.11
]
0.13
3
0.20
T
4
0.48
6
3
0.30
C
0.32
e
«
0.15
•a
3
0.41
1
c
0.50
c
3
1.34
0.80
3
3
0.13
1.38
unnamed
unnamed
Area Height
S/N Mod?
l.le+04 3.9e+03 7.5e-01 n n
1.8e+04 5.7e+03 4.9e-01 n n
L
1.4e+04 4.2e+03 8.0e-01 n n
2.4e+04 8.7e+03 7.46-01 n n
9.0e+05 2.2e+05 4.36+01 y n
l.le+06 3.1e+05 2.6e+01 y n
4.1e+05 9.7e+04 1.9e+01 y n
5.0e+05 1.2e+05 l.le+01 y n
3
5.9e+05 1.5e+05 2.8e+01 y n
7.7e+05 1.7e+05 1.5e+01 y n
.4e+06 3.0e+05 5.9e+01 y n
.7e+06 3.6e+05 3.1e+01 y n
1.3e+05 4.5e+04 8.8e+00 y n
3.4e+05 6.7e+04 5.7e+00 y n
1.9e+05 5.3e+04 l.Oe+01 y n
3.4e+05 6.7e+04 5.7e+00 y n
3
3.7e+05 7.7e+04 1.5e+01 y n
4.46+05 9.3e+04 7.9e+00 y n
8.9e+05 1.5e+05 2.9e+01 y n
l.le+06 1.8e+05 1.5e+01 y n
3
5.2e+05 1.2e+05 2.4e+01 y n
7.1e+05 1.6e+05 1.4e+01 y n
2
6.6e+05 1.5e+05 3.0e+01 y n
6.6e+05 1.6e+05 1.4e+01 y n
3.1e+05 7.5e+04 1.4e+01 y n
3.2e+05 7.8e+04 6.7e+00 y n
1
7.5e+05 1.7e+05 3.2e+01 y n
9.5e+05 2.1e+05 1.8e+01 y n
9.2e+05 2.0e+05 3.8e+01 y n
l.le+06 2.7e+05 2.3e+01 y n
I
2.4e+06 5.4e+05 l.Oe+02 y n
3.1e+06 6.8e+05 5.8e+01 y n
D
1.4e+06 3.1e+05 6.1e+01 y n
1.96+06 4.4e+05 3.7e+01 y n
3
2.86+05 6.7e+04 1.3e+01 y n
2.4e+05 6.4e+04 5.5e+00 y n
B
2.5e+06 4.2e+05 8.2e+01 y n
3.1e+06 5.2e+05 4.5e+01 y n
098
-------
OPUSguan 28-SEP-1998 Page 2
20 28:31 l.Oe+06 0.75 y 0.25
l.Oe+06 4.3e+05 l.Oe+05 1.9e+01 y n
5.8e+05 1.3e+05 l.le+01 y n
21 28:38 3.1e+04 3.04 n 0.01
3.1e+04 2.4e+04 6.5e+03 1.2e+00 n n
7.8e+03 4.0e+03 3.4e-01 n n
22 28:49 4.8e+05 0.81 y 0.12
4.8e+05 2.26+05 5.1e+04 9.8e+00 y n
2.76+05 5.1e+04 4.4e+00 y n
23 30:18 7.06+05 0.87 y 0.17
7.0e+05 3.2e+05 7.3e+04 1.4e+01 y n
3.7e+05 9.8e+04 8.3e+00 y n
f''099
-------
OPUSquan 28-SEP-1998
Page 3
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no tHom:22
Run: 13 File: a27sep98m S:7 Acq:27-SEP-98 23:51:30 Proc:28-SEP-98 09:37:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-3 xl/2
Amount: 13.08
Cone: 13.08
Tox #1: -
Name
2,3,7,8-TCDD
of which 0.12
of which 0.12
Tox #2: -
# RT Respnse
named and 12.95
named and 12.95
Tox #3: -
RA
1 25:44 2.36+07 0.76 y
2.3e+07
2 25:53 3.4e+04 0.73 y
3.4e+04
3 26:10 l.le+07 0.78 y
l.le+07
4 26:17 4.0e+04 0.98 n
4.0e+04
5 26:33 3.9e+05 0.75 y
3.96+05
6 26:39 2.1e+04 1.68 n
2.1e+04
7 26:54 1.8e+04 6.62 n
1.8e+04
8 27:24 3.0e+06 0.81 y
3.0e+06
9 27:33 5.8e+04 0.40 n
5.8e+04
10 27:37 1.4e+05 0.96 n
1.4e+05
11 27:46 5.7e+05 0.85 y
5.7e+05
12 27:54 l.le+05 5.89 n
l.le+05
13 28:14 4.2e+05 0.78 y
4.2e+05
14 28:28 2.2e+04 2.79 n
2.2e+04
15 28:32 2.1e+04 3.65 n
2.1e+04
16 28:41 1.2e+06 0.91 n
1.2e+06
17 28:50 l.Oe+06 0.81 y
l.Oe+06
18 28:58 4.0e+05 0.28 n
4.0e+05
19 29:08 3.2e+04 1.67 n
3.2e+04
Cone
7.29
]
]
0.01
1
3.45
4
e
o.oi
0.12
1
2
0.01
1
7
0.01
]
0.92
]
]
0.02
1
4
0.04
6
7
0.18
0.03
c
3
0.13
3
0.01
1
c
0.01
1
4
0.39
c
t
0.31
4
c
0.12
£
i
0.01
unnamed
unnamed
Area Height
S/N Mod?
l.Oe+07 2.3e+06 6.0e+02 y n
1.36+07 3.06+06 1.5e+03 y n
L
1.46+04 6.76+03 1.7e+00 n n
2.06+04 5.1e+03 2.5e+00 n n
l.9e+06 1.26+06 3.0e+02 y n
6.2e+06 1.46+06 6.7e+02 y n
L
2.0e+04 7.7e+03 2.0e+00 n n
2.0e+04 8.06+03 3.9e+00 y n
2
1.76+05 4.26+04 l.le+01 y n
2.2e+05 4.56+04 2.2e+01 y n
L
1.3e+04 5.7e+03 1.5e+00 n n
7.8e+03 2.86+03 1.4e+00 n n
1.6e+04 5.86+03 1.5e+00 n n
2.3e+03 9.0e+02 4.3e-01 n n
.3e+06 2.7e+05 7.1e+01 y n
l.6e+06 3.6e+05 1.7e+02 y n
1.7e+04 8.0e+03 2.1e+00 n n
4.2e+04 1.4e+04 6.7e+00 y n
4
6.8e+04 1.6e+04 4.0e+00 y n
7.1e+04 1.9e+04 9.0e+00 y n
3
2.66+05 5.9e+04 1.5e+01 y n
3.16+05 7.76+04 3.7e+01 y n
3
9.4e+04 2.0e+04 5.3e+00 y n
1.6e+04 6.2e+03 3.0e+00 n n
1.8e+05 4.1e+04 l.le+01 y n
2.36+05 5.66+04 2.7e+01 y n
1
1.6e+04 4.6e+03 1.2e+00 n n
5.7e+03 2.6e+03 1.2e+00 n n
1.66+04 7.3e+03 1.9e+00 n n
4.56+03 2.56+03 1.2e+00 n n
3
5.9e+05 1.26+05 3.2e+01 y n
6.5e+05 1.46+05 6.8e+01 y n
l.5e+05 8.7e+04 2.2e+01 y n
5.5e+05 1.2e+05 5.8e+01 y n
2
8.7e+04 2.3e+04 6.0e+00 y n
3.16+05 7.46+04 3.6e+01 y n
L
2.0e+04 6.1e+03 1.6e+00 n n
1.2e+04 6.0e+03 2.9e+00 n n
iro
-------
OPUSquan 28-SEP-1998 Page 4
20 29:35 1.7e+04 3.91 n 0.01
1.7e+04 1.4e+04 5.56+03 1.4e+00 n n
3.56+03 1.7e+03 8.0e-01 n n
21 29:39 1.3e+04 1.85 n 0.00
1.3e+04 8.4e+03 4.6e+03 1.2e+00 n n
4.66+03 1.6e+03 7.5e-01 n n
22 29:41 1.4e+04 2.03 n 0.00
1.4e+04 9.3e+03 5.le+03 1.3e+00 n n
4.6e+03 1.6e+03 7.5e-01 n n
r
101
-------
OPUSquan 28-SEP-1998
Page 5
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:15
Run: 13 File: a27sep98m S:7 Acq:27-SEP-98 23:51:30 Proc:28-SEP-98 09:37:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-3 xl/2
Amount: 2.70
Cone: 2.70
Tox #1: -
Name
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
of which 0.64
of which 0.64
Tox #2: -
# RT Respnse
named and 2.06
named and 2.06
Tox #3: -
RA
1 30:45 9.1e+05 1.56 y
9.1e+05
2 31:41 3.3e+05 1.58 y
3.3e+05
3 31:48 2.4e+06 1.50 y
2.4e+06
4 31:56 3.2e+05 1.45 y
3.2e+05
32:02 2.3e+05
2.3e+05
1.37 y
6 32:10 8.66+05 1.47 y
8.6e+05
7 32:20 3.7e+05 1.57 y
3.7e+05
8 32:22 1.3e+06 1.45 y
1.3e+06
9 32:29 2.7e+05 1.31 n
2.7e+05
10 32:34 6.6e+05 1.39 y
6.6e+05
11 32:39 l.le+04 0.39 n
l.le+04
12 32:42 1.5e+04 0.41 n
1.5e+04
13 32:49 8.6e+05 1.48 y
8.6e+05
14 32:55 4.6e+05 1.52 y
4.6e+05
15 33:22 l.Oe+05 1.40 y
l.Oe+05
Cone
0.27
C
0.10
]
0.72
]
c
0.09
]
]
0.07
]
c
0.25
c
0.11
]
0.39
c
0.08
1
1
0.20
3
0.00
•3
0.00
4
1
0.25
c
^
0.14
:
0.03
unnamed
unnamed
Area Height
S/N Mod?
5.5e+05 1.4e+05 7.7e+01 y n
3.5e+05 9.46+04 1.3e+01 y n
D
2.0e+05 7.9e+04 4.4e+01 y n
.3e+05 4.5e+04 6.4e+00 y n
1.4e+06 4.7e+05 2.6e+02 y n
9.7e+05 3.1e+05 4.4e+01 y n
.9e+05 6.8e+04 3.8e+01 y n
.3e+05 4.3e+04 6.1e+00 y n
1.3e+05 4.3e+04 2.4e+01 y n
9.6e+04 3.2e+04 4.5e+00 y n
5.1e+05 2.3e+05 1.3e+02 y n
3.5e+05 1.5e+05 2.1e+01 y n
L
2.3e+05 l.le+05 6.0e+01 y n
1.4e+05 7.5e+04 l.le+01 y n
9
7.6e+05 4.0e+05 2.36+02 y n
5.3e+05 2.7e+05 3.9e+01 y n
3
1.5e+05 7.36+04 4.1e+01 y n
1.2e+05 6.0e+04 8.6e+00 y n
3
3.8e+05 2.1e+05 1.2e+02 y n
2.86+05 1.3e+05 1.9e+01 y n
3
3.1e+03 2.0e+03 l.le+00 n n
7.8e+03 5.1e+03 7.3e-01 n n
4.5e+03 2.4e+03 1.4e+00 n
l.le+04 4.1e+03 6.06-01 n
5.1e+05 2.5e+05 l,4e+02 y n
3.5e+05 1.96+05 2.86+01 y n
1
2.8e+05 1.2e+05 6.8e+01 y n
.8e+05 8.0e+04 l.le+01 y n
6.0e+04 3.2e+04 1.8e+01 y n
4.3e+04 1.6e+04 2.3e+00 n n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:12
Run: 13 File: a27sep98m S:7 Acg:27-SEP-98 23:51:30 Proc:28-SEP-98 09:37:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-3 xl/2
Amount: 7.33
Cone: 7.33
of which 0.09
of which 0.09
named and 7.24
named and 7.24
unnamed
unnamed
r
10;
-------
OPUSquan 28-SEP-1998
Page 6
Tox #1:
Name
1,2,3,7,8-PeCDD
Tox #2: -
# RT Respnse
1 31:55 6.1e+06
6.16+06
2 32:14 4.6e+04
4.6e+04
3 32:24 7.7e+06
7.7e+06
4 32:30 2.8e+05
2.8e+05
5 32:35 5.0e+06
5.0e+06
6 32:41 7.1e+04
7.le+04
7 32:44 1.4e+05
1.4e+05
8 32:51 8.5e+05
8.5e+05
9 32:55 1.5e+05
1.5e+05
10 33:02 2.6e+05
2.6e+05
11 33:07 6.6e+04
6.6e+04
12 33:19 7.1e+04
7.le+04
Tox #3: -
RA Cone
1.55 y 2.16
0.62 n 0.02
]
1.54 y 2.72
4
i
1.51 y 0.10
1
1
1.63 y 1.77
]
0.97 n 0.03
1.55 y 0.05
£
C
1.87 n 0.30
C
1.59 y 0.05
c
c
1.39 y 0.09
]
1
1.45 y 0.02
Area Height S/N Mod?
1.36 y 0.03
7e+06 1.5e+06 2.8e+02 y n
4e+06 9.56+05 6.0e+02 y n
.7e+04 l.Oe+04 1.9e+00 n n
.8e+04 l.Oe+04 6.5e+00 y n
.7e+06 2.4e+06 4.5e+02 y n
.Oe+06 1.6e+06 l.Oe+03 y n
.7e+05 6.7e+04 1.2e+01 y n
.le+05 4.36+04 2.7e+01 y n
.le+06 1.66+06 2.9e+02 y n
.9e+06 9.4e+05 5.9e+02 y n
5e+04 2.9e+04 5.2e+00 y n
6e+04 1.4e+04 8.9e+00 y n
.4e+04 3.6e+04 6.7e+00 y n
.4e+04 2.0e+04 1.3e+01 y n
5e+05 2.5e+05 4.6e+01 y n
Oe+05 1.6e+05 9.9e+01 y n
le+04 3.7e+04 6.8e+00 y n
7e+04 2.2e+04 1.4e+01 y n
.5e+05 6.9e+04 1.3e+01 y n
.le+05 5.26+04 3.3e+01 y n
9e+04 2.3e+04 4.2e+00 y n
7e+04 1.4e+04 9.1e+00 y n
le+04 2.0e+04 3.7e+00 y n
Oe+04 1.4e+04 8.9e+00 y n
103
-------
OPUSquan 28-SEP-1998
Page 7
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:24
Run: 13 File: a27sep98m 3:7 Acq:27-SEP-98 23:51:30 Proc:28-SEP-98 09:37:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-3 xl/2
Amount: 2.08
Cone: 2.08
Tox #1: -
Name
of which 1.28
of which 1.28
Tox #2: -
# RT Respnse
named and 0.80
named and 0.80
Tox #3: -
RA
1,2,3,4,7,8-HxCDF
1 33:55 3.9e+05 1.22 y
3.9e+05
2 34:01 1.3e+06 1.19 y
1.3e+06
3 34:07 4.6e+04 1.06 y
4.6e+04
4 34:12 9.36+04 1.08 y
9.3e+04
5 34:19 2.16+05 1.55 n
2.16+05
6 34:27 9.1e+03 1.07 y
9.16+03
7 34:34 3.0e+06 1.29 y
3.0e+06
1,2,3,6,7,8-HxCDF 8 34:38 l.le+06 1.21 y
l.le+06
9 34:50 1.2e+05 2.96 n
1.2e+05
10 34:57 1.8e+05 1.44 n
1.8e+05
2,3,4,6,7,8-HxCDF 11 35:01 2.7e+05 1.48 n
2.7e+05
12 35:25 2.2e+04 0.37 n
2.2e+04
13 35:28 4.56+04 1.79 n
4.5e+04
1,2,3,7,8,9-HxCDF 14 35:30 6.7e+04 1.28 y
6.7e+04
15 35:34 1.7e+05 1.17 y
1.7e+05
16 35:45 1.3e+04 1.00 n
1.3e+04
17 35:52 1.4e+04 1.13 y
1.4e+04
18 35:54 1.4e+04 1.08 y
1.4e+04
19 35:58 2.3e+04 1.47 n
2.36+04
Cone
0.11
3
0.37
1
C
0.01
0.03
<
<
0.06
3
£
0.00
4
4
0.89
3
3
0.29
(.
C
0.03
£
0.05
1
0.08
3
3
0.01
C
3
0.01
3
0.02
0.05
S
1
0.00
unnamed
unnamed
Area Height S/N Mod?
2.1e+05 l.le+05 1.5e+01 y n
1.7e+05 8.2e+04 2.1e+01 y n
7
7.0e+05 3.7e+05 5.0e+01 y n
5.9e+05 3.0e+05 7.8e+01 y n
1
2.4e+04 l.le+04 1.5e+00 n n
2.2e+04 8.8e+03 2.3e+00 n n
.8e+04 2.1e+04 2.7e+00 n n
4.5e+04 1.8e+04 4.6e+00 y n
5
1.3e+05 5.1e+04 6.7e+00 y n
i.le+04 3.3e+04 8.4e+00 y n
4.76+03 3.0e+03 3.9e-01 n n
4.4e+03 2.3e+03 6.0e-01 n n
)
1.7e+06 7.5e+05 l.Oe+02 y n
1.3e+06 5.8e+05 1.5e+02 y n
6.2e+05 2.4e+05 3.2e+01 y n
5.1e+05 2.36+05 5.8e+01 y n
3
8.9e+04 2.7e+04 3.5e+00 y n
3.0e+04 9.8e+03 2.5e+00 n n
l.le+05 5.3e+04 7.1e+00 y n
7.6e+04 3.0e+04 7.8e+00 y n
3
1.6e+05 6.8e+04 9.0e+00 y n
l.le+05 5.6e+04 1.4e+01 y n
L
5.9e+03 2.36+03 3.0e-01 n n
1.6e+04 l.le+04 2.8e+00 n n
2.9e+04 l.Se+04 2.4e+00 n n
1.66+04 l.le+04 2.8e+00 n n
2
3.8e+04 l.Se+04 2.06+00 n n
3.0e+04 1.7e+04 4.4e+00 y n
9.1e+04 3.3e+04 4.4e+00 y n
7.7e+04 3.26+04 8.3e+00 y n
0.00
0.00
0.01
6.4e+03 3.5e+03 4.7e-01 n n
6.4e+03 3.9e+03 l.Oe+00 n n
3
7.6e+03 5.6e+03 7.4e-01 n n
6.7e+03 3.1e+03 8.0e-01 n n
3
7.3e+03 2.8e+03 3.7e-01 n n
6.7e+03 3.1e+03 8.0e-01 n n
L
1.4e+04 5.1e+03 6.8e-01 n n
9.4e+03 4.0e+03 l.Oe+00 n n
-------
OPUSguan 28-SEP-1998 Page 8
20 36:05 1.8e+04 0.53 n 0.01
1.8e+04 6.36+03 3.5e+03 4.7e-01 n n
1.2e+04 4.7e+03 1.2e+00 n n
21 36:09 1.8e+04 0.84 n 0.01
1.8e+04 8.3e-t-03 3.1e+03 4.1e-01 n n
9.9e-t-03 7.1e+03 1.8e+00 n n
22 36:12 2.9e+04 0.26 n 0.01
2.9e+04 5.8e+03 2.7e+03 3.6e-01 n n
2.3e+04 6.4e+03 1.6e+00 n n
23 36:14 3.2e+04 0.42 n 0.01
3.2e+04 9.7e+03 6.0e+03 8.0e-01 n n
2.3e+04 6.4e+03 1.6e+00 n n
24 36:19 2.8e+04 3.20 n 0.01
2.8e+04 2.1e+04 6.2e+03 8.2e-01 n n
6.6e+03 4.3e+03 l.le+00 n n
105
-------
OPUSquan 28-SEP-1998
Page 9
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:22
Run: 13 File: a27sep98m S:7 Acq:27-SEP-98 23:51:30 Proc:28-SEP-98 09:37:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-3 xl/2
Amount: 7.72
Cone: 7.72
Tox #1: -
Name
of which 0.39
of which 0.39
Tox #2: -
# RT Respnse
named and 7.34
named and 7.34
Tox tt3: -
RA
1 34:16 2.7e+05 1.45 n
2.7e+05
2 34:24 9.5e+03 0.34 n
9.5e+03
3 34:33 1.6e+07 1.29 y
1.6e+07
4 34:43 l.le+06 1.15 y
l.le+06
5 34:49 8.1e+04 1.69 n
8.1e+04
6 34:53 5.0e+04 0.76 n
5.0e+04
7 34:57 3.1e+04 1.46 n
3.1e+04
8 35:01 2.2e+04 0.71 n
2.2e+04
1,2,3,4,7,8-HxCDD 9
35:06 1.5e+05 0.93 n
1.5e+05
1,2,3,6,7,8-HxCDD 10 35:09 4.3e+05 1.32 y
4.3e+05
1,2,3,7,8,9-HxCDD 11 35:21 3.6e+05 1.38 y
3.6e+05
12 35:26 2.2e+04 0.87 n
2.2e+04
13 35:34 2.4e+04 1.72 n
2.4e+04
14 35:38 1.2e+04 1.41 y
1.26+04
15 35:40 1.3e+04 1.50 n
1.3e+04
16 35:47 1.6e+04 1.15 y
1.6e+04
17 35:50 1.5e+04 1.22 y
1.5e+04
18 35:53 1.2e+04 0.81 n
1.2e+04
19 36:02 2.3e+04 0.91 n
2.3e+04
Cone
0.11
3
3
0.00
6.60
E
C
0.45
C
c
0.03
C
0.02
0.01
]
]
0.01
S
1
0.07
1
•/
0.17
3
0.15
]
0.01
1
:
0.01
]
E
0.01
1
c
0.01
c
0.01
E
-
0.01
£
e
0.01
c
e
0.01
unnamed
unnamed
Area Height
S/N Mod?
.6e+05 8.6e+04 1.6e+01 y n
.le+05 5.3e+04 l.le+01 y n
2.4e+03 1.4e+03 2.6e-01 n n
7.1e+03 4.6e+03 9.4e-01 n n
D
8.96+06 3.9e+06 7.3e+02 y n
6.9e+06 3.2e+06 6.5e+02 y n
5.86+05 2.1e+05 4.0e+01 y n
5.06+05 1.7e+05 3.6e+01 y n
3
5.1e+04 1.9e+04 3.7e+00 y n
3.0e+04 1.8e+04 3.8e+00 y n
2
2.2e+04 7.1e+03 1.3e+00 n n
2.86+04 9.3e+03 1.9e+00 n n
L.9e+04 7.4e+03 1.4e+00 n n
L.3e+04 7.06+03 1.4e+00 n n
9.0e+03 4.7e+03 8.96-01 n n
1.36+04 7.0e+03 1.4e+00 n n
7
7.2e+04 3.56+04 6.7e+00 y n
7.7e+04 3.8e+04 7.8e+00 y n
2.4e+05 9.86+04 1.9e+01 y n
1.8e+05 7.6e+04 1.6e+01 y n
2.1e+05 6.5e+04 1.2e+01 y n
1.5e+05 5.76+04 1.2e+01 y n
l.Oe+04 5.26+03 9.8e-01 n n
1.2e+04 5.6e+03 1.26+00 n n
1.5e+04 5.4e+03 l.Oe+00 n n
8.9e+03 3.96+03 S.le-Ol n n
1
7.1e+03 3.9e+03 7.4e-01 n n
5.0e+03 2.0e+03 4.2e-01 n n
L
7.5e+03 3.3e+03 6.2e-01 n n
5.0e+03 2.0e+03 4.2e-01 n n
8.7e+03 5.6e+03 l.le+00 n n
7.5e+03 4.3e+03 8.8e-01 n n
i
8.4e+03 3.7e+03 7.1e-01 n n
6.9e+03 2.6e+03 5.5e-01 n n
L
5.6e+03 2.8e+03 5.3e-01 n n
6.9e+03 2.6e+03 5.5e-01 n n
L
l.le+04 3.16+03 5.8e-01 n n
1.2e+04 5.1e+03 l.le+00 n n
106
-------
OPUSguan 28-SEP-1998 Page 10
20 36:06 1.9e+04 2.06 n 0.01
1.9e+04 1.3e+04 7.0e+03 1.3e+00 n n
6.3e+03 3.6e+03 7.5e-01 n n
21 36:14 2.0e+04 1.87 n 0.01
2.0e+04 1.36+04 5.4e+03 l.Oe+00 n n
7.06+03 4.5e+03 9.3e-01 n n
22 36:17 2.8e+04 2.97 n 0.01
2.86+04 2.1e+04 6.4e+03 1.2e+00 n n
7.0e+03 4.5e+03 9.3e-01 n n
107
-------
OPUSquan 28-SEP-1998
Page 11
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:9
Run: 13 File: a27sep98m S:7 Acq:27-SEP-98 23:51:30 Proc:28-SEP-98 09:37:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-3 xl/2
Amount: 2.00
Cone: 2.00
Tox #1: -
Name
of which 1.63
of which 1.63
Tox #2: -
# RT Respnse
named and 0.37
named and 0.37
Tox #3: -
RA
1,2,3,4,6,7,8-HpCDFl 36:43 3.96+06 1.04y
3.9e+06
2 36:55 2.2e+05 1.15 y
2.2e+05
3 37:01 5.6e+05 0.99 y
5.6e+05
4 37:19 2.7e+04 2.33 n
2.7e+04
5 37:29 2.1e+04 2.35 n
2.1e+04
6 37:32 3.6e+04 1.83 n
3.66+04
7 37:40 3.6e-i-04 1.36 n
3.6e+04
1,2,3,4,7,8,9-HpCDFS 37:53 4.6e+05 1.13 y
4.66+05
9 38:04 3.06+04 1.08 y
3.0e+04
Cone
1.43
]
0.09
]
3
0.22
0.01
1
£
0.01
]
(
0.01
]
0.01
:
0.20
o.oi
unnamed
unnamed
Area Height
S/N Mod?
2.0e+06 7.9e+05 8.66+01 y n
1.9e+06 7.46+05 1.5e+02 y n
1.2e+05 4.3e+04 4.7e+00 y n
l.Oe+05 3.8e+04 7.9e+00 y n
2
2.8e+05 l.le+05 1.2e+01 y n
2.8e+05 9.8e+04 2.0e+01 y n
1.9e+04 5.6e+03 6.16-01 n n
8.16+03 3.8e+03 7.8e-01 n n
.46+04 7.8e+03 8.56-01 n n
.1e+03 3.56+03 7.3e-01 n n
2.3e+04 8.0e+03 8.8e-01 n n
1.36+04 4.5e+03 9.3e-01 n n
2.16+04 8.9e+03 9.8e-01 n n
1.5e+04 4.7e+03 9.7e-01 n n
2.56+05 8.0e+04 8.7e+00 y n
2.2e+05 7.06+04 1.4e+01 y n
1.66+04 5.4e+03 5.9e-01 n n
1.5e+04 8.2e+03 1.7e+00 n n
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:10
Run: 13 File: a27sep98m S:7 Acq:27-SEP-98 23:51:30 Proc:28-SEP-98 09:37:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-3 xl/2
Amount: 1.04
Cone: 1.04
Tox #1: -
Name
of which 0.51
of which 0.51
Tox #2: -
# RT Respnse
named and 0.52
named and 0.52
Tox #3: -
RA
1 36:56 8.7e+05 0.96 y
8.7e+05
l,2,3,4,6,7,8-HpCDD2 37:31 l.le+06 0.95 y
l.le+06
3 37:41 1.5e+04 2.23 n
l.Se+04
4 37:45 1.5e+04 2.36 n
l.Se+04
5 37:52 l.Oe+05 3.05 n
l.Oe+05
Cone
0.42
4
4
0.51
C
c
0.01
1
4
0.01
1
4
0.05
unnamed
unnamed
Area Height
S/N Mod?
l.3e+05 1.7e+05 4.3e+01 y n
l.4e+05 1.8e+05 5.8e+01 y n
5.2e+05 1.8e+05 4.46+01 y n
5.56+05 2.0e+05 6.5e+01 y n
L
l.Oe+04 4.4e+03 l.le+00 n n
4.5e+03 2.0e+03 6.5e-01 n n
L
l.le+04 5.6e+03 1.4e+00 n n
4.5e+03 2.0e+03 6.5e-01 n n
7.5e+04 2.4e+04 6.0e+00 y n
-------
OPUSquan 28-SEP-1998 Page 12
2.5e+04 8.5e+03 2.7e+00 n n
6 38:11 1.7e+04 1.41 n 0.01
1.7e+04 9.96+03 3.0e+03 7.3e-01 n n
7.0e+03 2.6e+03 8.4e-01 n n
7 38:18 1.7e+04 1.56 n 0.01
1.7e+04 l.le+04 2.9e+03 7.1e-01 n n
6.8e+03 3.86+03 1.2e+00 n n
8 38:27 1.8e+04 0.80 n 0.01
l.Be+04 7.9e+03 3.2e+03 7.8e-01 n n
9.96+03 3.3e+03 l.le+00 n n
9 38:35 2.2e+04 1.44 n 0.01
2.2e+04 1.3e+04 4.7e+03 1.2e+00 n n
9.16+03 4.2e+03 1.3e+00 n n
10 38:47 1.7e+04 0.89 y 0.01
1.7e+04 8.1e+03 3.4e+03 8.4e-01 n n
9.16+03 3.8e+03 1.2e+00 n n
-------
File:A27SEP98M #1-529
Sample#7 Text: 1113-3
319.8965 S:7 BSUB(128
1003
50_
oj
24 100
321.8936 S:7 BSUB(128
1003
50 j
_
o-
24 1 00
331.9368 S:7 BSUB(128
100%
50 j
ol
24 1 00
333.9339 S:7 BSUB(128
1004
50 j
oj
24:00
327.8847 S:7 BSUB(128
1004
50 j
o:
24 loo'
316.9824 S:7 SMO(1,3)
1004 23:28^ 24:01
"
50 j
o:
24:00
Acq:27-SEP-1998 23:51:30 GC EI + Voltage SIR Autospec-UltimaE
xl/2 Exp:EXP_M23 DBS OVATION
,15, -3.0) PKD(3,3,2,0.10%,3888.0,1.00%,F,F)
25:44
A
/ 26:10
A
A 27:24
J \ J \ r /v ^
2.3E6
Ll.2E6
• n.npin
25 loo 26 loo 27 loo 2sloO ' ' 29loo' ' 3oloO ' Time
,15, -3.0) PKD(3,3,2,0.10%,2076.0,1.00%,F,F)
25:44
A
26:10
A 27:24
/ V / V ^A ^
3.0E6
_1.5E6
- 0 . OF.O
25:00 26:00 27! 00 28loO ' 29loo' ' 3oloo ' Time
,15, -3.0) PKD(3,3,2,0.10%,21356.0,1.00%,F,F)
28:39
A A
y
A/I
3.3E7
ll . 6E7
- o . riF.n
25 100 26 100 27 100 28loO 29loO 3oloO Time
,15, -3.0) PKD(3,3,2,0.10%,10084.0,1.00%,F,F)
28:39
A /I
/ V / V
4.0E7
_2.0E7
O.OEO
25 loo' ' ' ' 26 loo' ' ' ' 27 loo' ' ' ' 28loo' ' ' ' 29loo' ' ' ' 3oloo' ' ' Time
,15, -3.0) PKD(3,3,2,0.10%,18252.0,1.00%,F,F)
28:57
/I
] v
_6.6E7
L3.3E7
•O.OEO
25 loo' ' ' ' 26 loo' ' ' ' 27 loo' ' ' ' 28loo' ' ' ' 29:0o' ' ' ' 30:0o' ' ' Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
24:45 25:19 26:03 P.fi ^8_2^ -J4 27 : 17 27:49 28:14 29_iO^_ 29^34. 30-02 1 . 1E8
.5.3E7
O.OEO
25 loo' ' ' ' 26 loo' ' ' ' 27 loo ' ' ' 28loo' ' ' ' 29loo' ' ' ' 3oloo' ' ' Time
-------
File:A27SEP98M 11-237 Acq:
Sample#7
355.8546
100%,
-
501
-
3ol36r
357.8517
100%
so:
-
,, -
30136
367.8949
100%
501
0 '
u '» 1 1 1
30:36
369.
100%
50:
0"
8919
'i i 1 1
30:36
366.9792
100% -5
501
0 "
j
30:36
Text: 1113-3 xl/2
S:7 F:2 BSUB(128,
30:48 31:00 31
S:7 F:2 BSUB(128,
I T"T [ 1 1 1 ' 1 1 1"l — r"T-"T~r~
30:48 31:00 31
S:7 F:2 BSUB(128,
i i i 1 i i i i i 1 i i i i i
30:48 31:00 31
S:7 F:2 BSUB(128,
i i i l i i i i t l i i i i i •
30:48 31:00 31
S:7 F:2 SMO(1,3)
27-SEP-1998 23:51:30 GC EI+ Voltage SIR Autospec-UltimaE
Exp : EXP M2 3_DB5_OVATION
15, -3.0) PKD(3,3,2,0.10%,5456.0,1.00%,F,F)
32
31:55
A
A 1
•I 12 3ll24 31136 SlUs 32166 32! 12 32
24
I
1 32:35
f\
{ _ l\ 32A51_
_2
11
" 0
24 32136 32:48 33166 33 12 33:24 33:36
15, -3.0) PKD(3,3,2,0.10%,1596.0,1.00%,F,F)
32
31:55
A J
A
/ L _J
i i i i i i i i i i i i i ' ' ' r ' i ' ' ' ' '"i ' ' ' ' ' i ' ' ' ' '
Il2 31.!24 3ll36 31:48 32:00 32:12 32
15, -3.0) PKD (3, 3, 2, 0.10%, 13180. 0,1. 00%, F,
-i — i — r— r~" i — i — r-i — i — p — i — i — i — i i i r-i i n i i i i i i i i ' | i ' r~~i r
•12 31:24 3ll36 31:48 32:00 32:12 32
i24
'l 32:35
1 A
A 32:51
\ / ^ ^ r - , , , ,
1
_8
0
24 32:36 32:48 33 00 33:12 33:24 33:36
F)
33:01
1
j L
a
14
' 0
24 32136 32:48 33 66 33:12 33:24 33:36
15, -3.0) PKD (3, 3, 2, 0.10%, 4816. 0,1. 00%, F,F)
33:01
i
Il2 ' 3ll24 31136 blUs 32166 32! 12 32
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
3.43 31-0531:15 31:27 31:58 32:10_
-r— i — i — i — r~T"i — i — r-i— i — i — n — r-
30:48 31:00 31
Il2 ' 3ll24 ' 3ll36 3il48 32166 32! 12 32
II
5
.2
0
24 32136 32! 48 33166 33:12 33:24 33:36
J2:28 12.: 44 33:0" 33:11 33:32 1
16
0
24 32136 32148 33166 33:12 33124 33:36
.4E6
.2E6
.OEO
Time
.6E6
.1E5
.OEO
Time
.5E7
.2E7
.OEO
Time
.4E7
.7E7
.OEO
Time
.3E8
.5E7
.OEO
Time
-------
File:A27SEP98M
#1-197 Acq
Sample#7 Text: 1113-3 xl/2
389.8156 S:7 F:
1002
50J
0'
33: 48 34
391.8127 S:7 F:
1003
50J
0"
33 : 48 34
401.8559 S:7 F:
100%,
.
so:
o:
33 : 48 34 !
403.8530 S:7 F:
100%
-
so:
0"
33! 48 34!
380.9760 S:7 F:
100% 33ji51
so:
0"
/
r I c I r- I T r-
33:48 34:
3 BSUB{128,
00 34:12
3 BSUB(128,
00 34 1 12
3 BSUB(128,
00 34:12
3 BSUB(128,
00 34! 12
3 SMO(1,3)
___3AJ-13.
1 1 1 1 '~l "™1 T 'I"
00 34:12
27-SEP-1998 23:51:30 GC EI+ Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
15, -3.0) PKD (3, 5, 2, 0.10%, 5272. 0,1. 00%, F,F)
T
A
/ \
J ^ a-"""-—
34:24 34136 34!48 3s!oO 3s!l2 35I24 3s!36 35UV ' YeloV ' '36- 12 ' '
3.9E6
11.9E6
10 . OEO
Tiiri(=>
15, -3.0) PKD (3, 5, 2, 0.10%, 4828. 0,1. 00%, F,F)
34:33
A
A
j ^^34^42
3.2E6
_1.6E6
n m?n
34124 34136 34!48 3s!do 35ll2 3s!24 3sl36 3sU'8 Veldo' ' VsSlV ' ' Time
15, -3.0) PKD (3, 5, 2, 0.10%, 7620. 0,1. 00%, F,F)
35:08 35:21 _6.7E7
35:0* /
ml A
1 \ \^ } \^
-
L3.4E7
" f) f)Rf)
r i i T i" i r"™r— T~T' I~M "T r-'i -i" i i • i r i T i-i T -i-^7 -r- i — i -r"" "\ — |""""i 1 I ii 1 •• i '7 i — i — i — | — i — i"-i i — i — i — r i i r • i — i — i r i -i — ^— " • - — -
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36!oO 36:12 Time
15, -3.0) PKD (3, 5, 2, 0.10%, 5188. 0,1. 00%, F,F)
35:08 35:21 5 . 5E7
35:OS A
A/1 A
/ 1 ^ ) ^
•
12.7E7
"O.OEO
34:24 34!36 34:48 35:00 35:12 35:24 35:36 35:48 3e!oO 36:12 Time
PKD (3 ,3, 3, 100. 00%, 0.0,1. 00%, F,F)
34:33 34:56 35:14 35:26 35:41 36:02 36:15 4 . 6RS
~"i T~T [ r— T — i i i — j i i i i r | i i i i f~] i i i i i i i i — i — i — r — i — i — i — i — i — i — i — i — r — i — i — ( i i i i r— i i i — i — i — i — i — i — i — i — i — i —
.2.3E8
O.OEO
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
-------
File:A2'/SEP98M #1-196 Acq:27-SEP-1998 23
Sample#7 Text: 1113-3 xl/2
423.7767 S:7 F:4 BSUB (128, 15, -3 . 0) PKD(3
100% 36:56
50J
OJ
36
425.
100%
50_
o:
36
435.
100%
so:
o:
36
437.
100%
50:
o:
36
430.
100%
so:
o:
36
36:43 1
/v /
24' ' 36-36 ' VeUV
'V
37 100 37 1 12
7737 S:7 F:4 BSUB (128, 15, -3 . 0) PKD(3
36:56
A
1
24 36:36 36:48
8169 S:7 F:4 BSUB(128,
24 36:36 36:48
8140 S:7 F:4 BSUB (128,
24 36:36 36:48
9728 S:7 F:4 SMO(1,3)
36-44
1 1 1 1 1 1 1 1 1 1 1 1 — T — 1 — T~
24 36:36 36:48
'I
37:00 37:12
15, -3.0) PKD(3
=P-T— |— i— i-r i i | i
37:00 37:12
15, -3.0) PKD(3
-r- 1 — i — \ — i — i — i t i i
37:00 37:12
PKD(3,3,3,100.
37-04
-T—I-J-T-I i i i | i
37:00 37:12
:51:30 GC EI+ Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
, 5, 3, 0.10%, 4084. 0,1. 00% ,F,F)
T
\ 37-52
y ^£-^_ ^/^ - - , -
37124 ' '37:36 37 I 48 ' 38:00 38:12 3sl24 38:36 38:48 39
, 5, 3, 0.10%, 3084. 0,1. 00% ,F,F)
37:31
A
'37 1 24 ' '37 he' 37! 48 38 100 38 1 12 38 1 24 38 he 38 I 48 39
, 5, 3, 0.10%, 165112. 0,1. 00%, F,F)
"f
1.8E5
_9.0E4
O.OEO
00 Time
2.0E5
11.0E5
"O.OEO
00 Time
4.0E7
_2 . OE7
O.OEO
37l 24 37 136 37148 38loO 38ll2 38124 38l36 38 Us 39IOO Time
, 5, 3, 0.10%, 159208. 0,1. 00%, F,F)
"A3°
\\
3.9E7
_1.9E7
O.OEO
3 7 -24 37:36 37: 48 3s!oO 38.12 38:24 38:36 38:48 39:00 Time
00%, 0.0,1. 00%, F,F)
T7-21 37:37^7-45 38:05 38-75 38i31 38J5
3.1E8
11.6E8
_O.OEO
37124 37:36 37! 48 3s!oO 38:12 3sl24 38h6 SsU'a 39loO Time
CO
-------
File
Samp
457.
1003
50_
0 "
459.
iooa
50J
469.
100^
50.
0"
471.
100%
50J
0"
454.
100%
50:
0"
;:A27SEP98M #1-277 Acq:2V-SEP-1998 23:51:30 GC EI + Voltage SIR Autospec-UltimaE
)le#7 Text: 1113-3 xl/2 Exp:EXP M23 DBS OVATION
7377 S:7 F:5 BSUB(128, 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 16096 . 0 , 1 . 00% , F, F)
40:22
/\
\
I \
39^21 3jLLi°_JijJ51j40jJ)l_40 : 12 J—~~^^ 40-41 41:03 41:21 41:33 41:48 42:01
39!i2' 39124 39136 39148 46166 4oli2 46124 4ol36 46148 41166 4ill2 41124 41 lie 41148 42166 42ll
7348 S:7 F:5 BSUB(128 , 15, -3 . 0 ) PKD(3 , 5, 3 , 0 . 10%, 4312 . 0 , 1 . 00%, F, F)
40^22
/I
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:i:
7780 S.-7 F:5 BSUB(128, 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 2836 . 0, 1 . 00%, F,F)
40:21
/v
39:12 39124 39:36 39148 40:66 461l2 k6l24 40:36 40148 4ll66 4lli2 41124 kllie 41:48 42166 42li:
7750 S:7 F:5 BSUB(128 , 15, -3 . 0) PKD(3 , 5 , 3 , 0 . 10%, 1352 . 0 , 1 . 00% , F,F)
40:21
A
i i i i i i i i i i i i i i i i i1 i— r~t"i i i i i i i i i i i i i i i i i i i i i i i i r i i i i i i i i i i i i i i i i i i i i i i i ' i i i i i i i ' i | i i i i i i i i r i i P i
39ll2 39124 39136 39148 40100 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
9728 S:7 F:5 SMO(1,3) PKD(3, 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%,F,F)
iq-1^ 39t27 IQ./in 39:55 40:08 40:34 41.0041:1041:20 41:38 41 :4fl 41:59
r
39:12 39:24 39:36 39.U8 40.:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
1.8E5
L9.0E4
' o OEO
2 Time
1.8E5
_9.2E4
_O.OEO
2 Time
3.7E7
_1.8E7
_O.OEO
I Time
_4 . OE7
12.0E7
"O.OEO
Time
_3.3E8
.1.6E8
.O.OEO
Time
-------
File:A27SEP98M #1-529 Acq:2
Sample#7 Text: 1113-3 xl/2
303.9016 S:7 BSUB(128 , 15 , -3
lOOi
-
50_
0
24:07
A
" ' 1 " 1 1 1 1 1 ' 1* 1 T •
24:00
305.8987 S:7 BSUB(128, 15, -3
lOOi
.
50 j
24:07
A
24:00
315.9419 S:7 BSUB(128, 15, -3
100%
50J
o •
u-* — i — i — i — i — i — | — i — i — i —
24:00
317.9389 S:7 BSUB(128, 15, -3
100%
50 j
o -
"-1 1 i 1 1 1 1 1 i 1 —
24:00
375.8364 S:7 BSUB(128, 15, -3
lOOSj
-
50.1
0-
24 •
23:30 24:11 i
A .A . A . A ... A A \
*>.», P-1,1. <^ 1,1^ « | n «Y .It-. IM(I nn,™, f .
24:00
316.9824 S:7 SMO(1,3) PKD(3
7-SEP-1998
.0) PKD(3,
25
25:01
A A /
25:00
.0) PKD(3,
25
yv A 1
1^1 7 N-i-^-
25:00
.0) PKD(3,
-i — i — | 1 —
25:00
.0) PKD(3,
-i — i 1 1 —
25:00
.0) PKD(3,
-)A
23:51:30 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
3, 2, 0.10%, 5164. 0,1. 00%, F,F)
27:02
A
:20 A 27:20
Wr ^«AJ\ 2/v\ A
26:00 27:00
3, 2, 0.10%, 11708. 0,1. 00%, F,F)
27:02
A
/ 27-20
r\ (\ 1 I £l 1 • £t \J
f\ 25-47 26-13 26T A
26 00 27:00
3, 2, 0.10%, 7008. 0,1. 00%, F,F)
26:00 27:00
3, 2, 0.10%, 9436. 0,1. 00%, F,F)
26:00 27:00
3, 3, 100. 00%, 164. 0,1. 00%, F,F)
5.4E5
27:56
A
27-40/ \ 28:31 30:18
A / V /\ ^ t ,./V ,
_
12 .7E5
1 O.OEO
28:00 29:00 30:00 Time
6.9E5
27 :56
.
A
Z\ ^^_ /^
~
13.5E5
t O.OEO
28:00 29:00 30:00 Time
27,54
ft
, /\
4.1E7
_2.0E7
O.OEO
28:00 29:00 30:00 Time
27:54
A
fl
/I
D .^K/
_2 . 6E7
O.OEO
28:00 29:00 30:00 Time
28:06
fl 28:27
J 28:56 ,„ „„
25:13 25:57 26.24 26:52 27.37 / I UAjtA A9 ' ° 5 ^^v^^^^A^W^IA^
25:00
26:00 27:00
, 3, 3, 100. 00%, 0.0,1. 00%, F,F)
100% ll.ia 1A.r\1 94-dR 25
50J
n -
1
"— ' 1 1 1 r 1 1 1 1 1 —
24:00
25:00
:19 26jJ13_26_^28 26^54 2.7:17-
26:00 27-00
4.9E4
12.4E4
-O.OEO
28:00 29:00 30:00 Time
27:49 ^8;14 29-09 29;34 30;02
1 . J.K8
L5.3E7
: O.OEO
28:00 29:00 30:00 Time
-------
File:A27SEP98M #1-237 Acq:27-SEP-1998 23
Sample*?
339.8597
1003
50.
0
36136
341.8568
1001
_
50:
o:
36!36
351.9000
10 OS
50 j
o:
36136
353.8970
100%
50 j
o:
36136
409.7974
100%
50:
•
o;
Text:1113-3 xl/2
S:7 F:2
30:45
30:48
S:7 F:2
30 :45
y\
soUs '
S:7 F:2
' boUs '
S:7 F:2
30:48
S:7 F:2
BSUB(128,15,
31:00 31:12
BSUB(128,15,
3ll66 ' 3ill2
BSUB(128,15,
31 166 ' 3l! 12
BSUB(128,15,
31:00 31:12
BSUB{128,15,
-3.0) PKD(3
31:24 31.
-3.0) PKD(3
' 31:24 ' 31:
-3.0) PKD(3
' 31124' ' 31 1
-3.0) PKD(3
31:24 31:
-3.0) PKD{3
:51:
Exp:
,3,2
31:4
36
,3,2
31:4
36
,3,2
36
,3,2
36
,3,3
30 GC
EI+ Voltage SIR Autospec-UltimaE
EXP M23 DBS OVATION
,0.10%
31:48
J \
,1788.0
,1.00%,F,F)
32:22
i
32:10 A 32:34
I/ \ 31:56 /\ nl \32:2?\
V V
i i i i
31:48
,0.10%
31:48
/
/
y V
j \^->
31 148
,0.10%
31 Us
,0.10%
31 Us' '
^\ ^~^-^
32:00
,6948.0
:55
32:66
,3920.0
32166
,5136.0
32:00
,100. 00%, 2928
V
J \~ J 1 Wvy \_
32:12 32:24 32:36
,1.00%,F,F)
32:22
A
32:10 / 32:34
A 32:ld A
/\ /i Vv/V
32ll2 321241 ' 32136 '
,1.00%,F,F)
32:22
K
h
/V
32! 12 32! 24 32 136
,1.00%,F,F)
32:22
A
j v.
1 1 1 1 1 1 * 1 1 • ' ' < ' i ' ' >
32:12 32:24 32:36
0,1.00%,F,F)
32:13
A 32:24
n
32:49
i2 • 55
Xj . _* -j
J \ ^i~
4
-.2
'
• n
32:48 33:00 33:12 33.!24 33:36
3
32:49
A
/\32:55
J L/V 33jJ2
Li
0
32148 33:66 33li2 33 .'24 33136
32:48
i
_5
• o
32148 33166 33! 12 33124 33136
32:48
A
/ V.
7
L3
0
32148 33166 ' 33.12 ' 33124 ' 33136 '
1
32:05 M __ _L\
3Q\36
366.9792
j " i "j i r'j r
30:48
S:7 F:2
100% 30:43
50:
o;
30:36
30:48
31:00 31:12
31:24 31:
36
si Us '
A
32:00
_J \XCA7 V32^0
32:12 32:24 32:36
32:47 33:20
17
.7E5
.3E5
.OEO
Time
.1E5
.6E5
.OEO
Time
.2E8
,8E7
.OEO
Time
. 6E7
. 8E7
.OEO
Time
5E6
4E5
O.OEO
32:48 33:00 33 12 33:24 33136
Time
SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
31:0531-1
31:00 31:12
5 31:27
3
1 1 ' ' '
31:24 31:36 31:48
1-58
1 ' 1 ' ' '
32:00
!2:10 32:28 32
1 ' 1 ' ' ' ' ' I ' ' ' ' ' 1 ' ' '
32:12 32:24 32136
•&6. 3?-nn 33:13 33:35 1.
.6.
0.
T — I — 1 — 1 — 1 — 1 — 1 — r~] — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — I — 1 — | — T* '
32:48 33:00 33:12 33:24 33:36
3E8
5E7
OEO
Time
-------
File:A27SEP98M
Sample#7
373.8207
100%
50J
o-
#1-197 Acq:
27-SEP-1998 23:51:
Text: 1113-3 xl/2
S:7 F:
34
__ __ 1
3 BSUB(128,
:01
\
15, -3.0)
Exp:
PKD(3,5,2
34:34
A
A
64: 38
33L55/\ 34:19 / \A
3 3! 48
375.8178
iooa
50J
o-
y \^j
34:
S:7 F:
34
;
33:55/
/~v J
— ' 1 '
33:48
383.8639
100%.
'.
50 J
OJ
33 ! 48
385.8610
100%
-
50 j
0 '
u ' i 1 '
33:48
445.7555
100%
50 j
.
0"
1 T" [— 1 '
33:48
380.9760
100%
50 j
o-
"'• '" I '
-.33:48
34:
S:7 F:
' ^'34!
S:7 F:
T — 1 — I — r— 1
34:
S:7 F:
i i i i i
34!
S:7 F:
v
00 34 ! 12
3 BSUB(128,
:01
*\
34! 24
15, -3.0)
V 34JJ-8
00 34:12
3 BSUB(128,
do' ' '34! 12'
3 BSUB(128,
00 34:12
3 BSUB(128,
i i i — i i i i ~
00 34:12
3 SMO(1,3)
34:24
15, -3.0)
34524
15, -3.0)
'34! 24'
15, -3.0)
34
V. (
/
J
34:24
PKD (3,3,3
y *-f v
34! 36
PKD (3,5,2
34:33
/ B4:38
/ \f\
34:36
PKD(3,5,2
34:37
34:33A
/i \
A A
n^
34! 36
PKD (3,5,2
34:37
34:33^
A A
/Vv
1 'l 1 | 1 IT
34:36
PKD(3,3,3
34:36
\ M
\J V34J
'34! 36
,100.00%,
__3_3^_5J 34:13 34:33
r 1 in |
34:
do' ' '34! 12
— 1 1 1 1 1 1 —
34:24
T — i—i — | — i — i — r
34:36
30 GC EI+ Voltage SIR Autospec-UltimaE
EXP M23 DBS OVATION
,0.10%, 7508. 0,1
35:01
34: 48 35! 00
,0.10%, 3872. 0,1
35:00
34:48 35:00
,0.10%, 39980 n
34! 48 35! 00
,0.10%, 47680.0,
'34148 35! 00
,100. 00%, 2220.0
A.
42 34;557 V
34U8 35!oO
0.0,1.00%,F,F)
34:56
'34! 43' ' '35! do
.00%,F,F)
7
L3
-
• o
35! 12 35:24 3s!36 35:48 36:00 36:12
.00%,F,F)
5
35^34
_2
- o
35:12 35:24 35:36 35:48 36:00 36:12
1.00%,F,F)
-
il
:o
35:12 35:24 35:36 35:48 36:00 36:12
1.00%,F,F)
^1
-5
- o
35-1 12 35-1 24 35-136 SsU's 36lo'o 36:12
,1.00%,F,F)
35:08
A 1 R • 1 4
J\~y\~ „ 35:30
2
Li
-
:o
35! 12 35 24 35! 36 3s!48 3e!oO 3e!l2
15:14 35:26 3S:41 36:02 36:15 4
U
:o
35!l2 35! 24 35136 SsU's 3e!oO 3e!l2
.5E5
.8E5
.OEO
Time
.8E5
.9E5
.OEO
Time
.8E7
.9E7
.OEO
Time
.1E8
.6E7
.OEO
Time
.3E5
.1E5
.OEO
Time
.6E8
.3E8
.OEO
Time
-------
File:A27SEP98M #1-196 Acq:
Sample#7
407.7818
1002
50 1
_
o-
36 1 24
409.7788
100§
50.;
I
Oj
36 24
417.8253
1002
:
50 j
oj
36 24
419.8220
100%
:
50J
o:
'r -T i — r
36 24
479.7165
100%
-
50 j
•
o:
-x_^x-
36:24'
430.9728
100%
50J
0"
X
1 a i t
36:2*
Text:1113-3 xl/2
S:7 F:4 BSUB (128,
36:43
A
A
/ v
/ V !_
Ve 5 36 ' '36: 4s'
S:7 F:4 BSUB (128,
36:43
A
A
/ \
, , . ,.,/r '.-Vr-i-T-r
36:36 36:48
S:7 F:4 BSUB (128,
3 6: 43
36136 36:48
S:7 F:4 BSUB (128,
36:43
A
1 L
11 i 'i — P1 i— n "n i i T 1 I i
36:36 36:48
S:7 F:4 BSUB(128,
36:39 36:52
— \S\S^-S^~/\^ — "- /*\^
— i — i — i — i — i — i — i — i — i — i — i — i —
36:36 36:48
S:7 F:4 SMO(1,3)
36:44
'36 be' ' 36 1 4s'
27-SEP-1998 23
15, -3.0)
37:01
*"» "/"'S-—
'37:o'o'
15, -3 .0)
37:01
37 |00
15, -3.0)
37:00
15, -3.0)
•^'i -r r1 T -i — i
37:00
15, -3.0)
37:04
,/v\— -'VrX^>
I i 1 i l ( r
37:00
PKD (3,3,3
— ___3_2-S-flL4-
'37 loo'
PKD (3
37 1 12
PKD (3
37 1 12
PKD (3
i i i
37:12
PKD (3
— i — | — r—
37:12
PKD (3
37:12
^ — '~~^-
37 1 12
:51:30 GC EI-i- Voltage SIR
Exp : EXP_M23_DB5_OVATION
, 5, 3, 0.10%, 9128. 0,1. 00%, F
37
^
'37 I241 ' '37! 36 ' '37! 4V
, 5, 3, 0.10%, 4824. 0,1. 00%, F
37:
"/•
3?l24 37136 3T\48
Autospec-UltimaE
,F)
:53
"^^
8.0E5
L4.0E5
• O.OEO
38loO 38!l2 38124 38l36 38Us 39:00 Time
F)
52
— ^
7.4E5
L3.7E5
: O.OEO
38 1 00 38 1 12 38124 38 1 36 s'sU's 39:00 Time
, 5, 3, 0.10%, 11988. 0,1. 00%, F,F)
37:
J
37:24 37:36 37:48
n2.3E7
52
(
L1.1E7
' O.OEO
38:00 38:12 38:24 38:36 38:48 39 00 Time
, 5, 3, 0.10%, 27452. 0,1. 00%, F,F)
37:
t
37:24 37:36 37:48
,3, 3, 100. 00%, 6860. 0,1. 00%,
37:32
37:22 J\
A . / 1
N \/V 37:37
/ v VS^A^- A
^r VAX — -^^^/x
'37 124' '31\36 'sVU's'
n5.0E7
52
\
•
.2 . 5E7
' O.OEO
38:00 38:12 38:24 38:36 38:48 39 00 Time
P,P)
6.6E4
vx 35^17 33^x 3y\3° 38M°^38:50__
_3.3E4
: O.OEO
38 1 00 38ll2 38124 3s!36 38148 39 00 Time
, 100. 00%, 0.0,1. 00%, F,F)
37 1 12
17-21 37:37 37:45
37:24 37:36 37:48
38:05 38:16 38:31 38:55 3 . 1E8
_1.6E8
O.OEO
VsloV ' VsllV ' '38l2'4' ' '38 136' ' 'sS.U's' ' '39loO Time
-------
File:A27SEP98M #1-277 Acq:27-SEP-1998 23
Sample#7 Text .-1113-3 xl/2
441.7427 S:7 F:5 BSUB (128, 15 , -3 . 0) PKD(3
1003
50.
0.
i
39112 39124 39:36 39^8 4ol6([
443.7398 S:7 F:5 BSUB(128, 15, -3 . 0) PKD(3
100S
50J
o:
39:12 39124 39:36 39l48 46166
469.7780 S:7 F:5 BSUB(128 , 15, -3 . 0) PKD(3
100%
50J
o"
39ll2 39124 39136 SgUs 46166
471.7750 S:7 F:5 BSUB(128, 15, -3 . 0) PKD(3
100%
50J
o:
39:12 39:24 39136 39148 40:00
:51:30 GC EI+ Voltage SIR AutOSpec-UltimaE
Exp:EXP M23 DBS OVATION
, 5, 3, 0.10%, 2860. 0,1. 00%, F,F)
40:30
A
A
y v_
3.2E5
L1.6E5
• n npn
40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42100 42:12 Time
, 5, 3, 0.10%, 7500. 0,1. 00%, F,F)
40:30
A
J \
3.8E5
11.9E5
' O.OEO
4oli2 46124 46136 46148 4ll66 4lli2 41124 4ll36 41 148 42166 42ll2 Time
,5, 3, 0.10%, 2836. 0,1. 00%, F,F)
"A21
A
/ v_
3.7E7
L1.8E7
O.OEO
4bli2 40124 46136 46148 41166 4ill2 41124 4ll36 klUs 42166 42! 12 Time
, 5, 3, 0.10%, 1352. 0,1. 00%, F,F)
40:21
A
7 V
r_4.0E7
12.0E7
1 O.OEO
40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42ll2 Time
513.6775 S:7 F:5 BSUB(128, 15, -3 . 0) PKD (3 , 3 , 3 , 100 . 00%, 684 . 0 , 1 . 00%, F, F)
lOOij
501
0:
39:20
39112 39124 39i36 39148 40100
40:21
A
/\ ^ 40:57
J \40:29 40;44 A 41:09 41A2° 41;55
v^_Av \-J^-jAJw\f>sjy\^
i i j i fi i i 1 i i i i i I i i i i irl i rr i i | i i i i i | i i i i i | | | i i i > i | i i i i i f-r1
_1.9E4
L9.6E3
-O.OEO
40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
454.9728 S:7 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
lOOft^ 39-17 39:57 3Q-4fl 39:55
:
50J
o;
r
,^3,9:12 39124 39136 39148 46166
40:13 40:27 40:41 41:00 41:1541:26 41:3841:48 41:59 3.3E8
.1.6E8
.O.OEO
46!i2' 46124 46136 46148 4ll66 4lll2 4ll24 4ll36 41148 42166 42 1 12 Time
-------
r-y
OPUSquan 30-SEP-1998
Page 1
Page 10
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ
Unk
ES/RT
a29sep98n
10
29-SEP-98 23:31:
30-SEP-98 08:57:
1113-3
07feb-m23conf
m8290cf-092998n
14
41
Total
DPE
LMC
Name;
2,3,7,8-TCDF;
13C-2,3,7,8-TCDF;
Tetra Furans;
HxCDPE;
QC CHK ION (Tetra);
Resp;
,35e+06;
. 94e+08;
, 39e+07;
Ion 1;
5.93e+05;
8.57e+07;
3.68e+05;
Ion 2;
7.58e+05;
1.08e+08;
4.92e+05;
RA;?
• 78;y
• 79,-y
,75;y
RT;
27:53;
27:49;
18:09;
;NotFnd;
;NotFnd;
Cone; DL;
0.733; 0.0684;
47.520;
7.546; 0.0684;
S/N1;?;
44 ;y;
1801;y;
46;y;
*;n
DivO;n
S/N2;?
29,-y
1854;y
31,-y
mod?
yes
no
yes
no
no
,—y
/
-;-: 27:53
-;-; 27:53
yes
-------
OPUSquan 30-SEP-1998
Page 10
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ
Unk
ES/RT
Total
DPE
LMC
a29sep98n
10
29-SEP-98
30-SEP-98
1113-3
07feb-m23conf
m8290cf-092998n
23:31:14
08:57:41
Name;
2,3,7,8-TCDF;
13C-2,3,7,8-TCDF;
Tetra Furans;
HxCDPE;
QC CHK ION (Tetra);
Resp;
,65e+05;
,94e+08;
, 39e+07;
Ion 1;
3.44e+05;
8.57e+07;
3.68e+05;
Ion 2;
4.21e+05;
1.08e+08;
4.92e+05;
Page 10
RA;?;
0.82,-y;
0.79;y;
0.75;y;
RT;
27:53;
27:49;
18:09;
;NotFnd;
;NotFnd;
47.520;
7.519;
S/N2;?
29 ;y
1854;y
31;y
mod?
no
no
no
no
no
-;-; 27:53
-;-; 27:53
-------
File;A29SEP98N #1-2677 Acq:29-SEP-199^ 23:31:14 GC EH- Voltage SIR Autospec-UltimaE
Sample#10 Text:1113-3 Exp:M23_DB225
303.9016 S:10 SMO(1,3) BSUB(128,15,-3.0) PKD{3,3,3,0.10%,1624.0,1.00%,F,F)
100% 23:15
50.:
T
« :i
1
fA
A
29:36
1.6E5
L8.0E4
31:45
33:43
iO.OEO
16:00 ISiOO 20100 22iOO 24iOO 26iOO
305.8987 S:10 SMO(1,3) BSUB(128,15,-3 . 0) PKD{3 , 3 , 3 , 0 .10%, 3004 . 0,1. 00%, F)
23:15
1 r^i • I T •
32:00
i 'i* | -i •
34:00
50.:
OJ
18:08
T
20:18 22:06
21:1(
24:17
»:«3 21:10 ft .
All A. A/\^/i A
i i — r
36:00 Time
2 . OE5
.1.0E5
31:45
33:42
.O.OEO
16:00. 18:00 20.-00 22iOO 24.:00 26iOO
315.9419 S:10 SMO(1,3) BSUB(128,15,-3.0) PKD(3 , 3,3,0.10%,5236.0,1.00%,F,F)
100^ 27:49
30:00
32:00
f, ^. ...... ,
34:00
o
36:00 Time
9.4E6
-4.7E6
16:00 18:00 20:00 22:00 24:00 26:00 28:00
317.9389 S:10 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,6436.0 , 1.00%,F, F)
100% 27:49
50J
OJ
O.OEO
— I - 1 - 1
30:00
1 - 1 - 1— 1 - 1 - 1 - 1 - 1 - 1 - 1
32:00 34:00
16:00 18:00 20:00 22:00 24:00 26:00 28iOO
375.8364 S:10 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,2656.0,1.00%,F,F)
19125 : 27:02
16:47 -
30 lob
1 - 1
36:00 Time
1.2E7
_6.0E6
O.OEO
32:00
34:00
50J
15:33
28:00
30:00
16:00 18:00 20:00 22:00 24:00 26:00
316.9824 S:10 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
16:05 17:30 18:56 20:17 21:56 23:54 25:04 26:44 28:0229:05 30:18
32:00
34:00
36:00 Time
50J
O
ie Sob
18:00
20:00
22 Sob
26:00
L1.0E7
.O.OEO
24:00
—'—I—r~
28:00
30:00
32:00
34:00
~l 1 J 1"
36:00 Time
-------
File:A29SEP98N #1-26
77 Acq:29-SEP-1998 23:31:14 GC EI + Voltage SIR Autospec-UltimaE
Sample#10 Text: 1113-3
303.9016 S:10 SMO(1,
1002
90J
80.
70J
60j
50 j
40J
30J
20^
-
10j
0 '
18
3) BSUB(128,15,-3.0)
09
19:
16:00 18:00 20
20:19
!j
|
21:30
i
:36 R
ill
ft ft
ILJlju
Exp:M23 DB225
PKD(3,3,3,0.10%,1624.0,1.00%,F,F)
23:15
j
06
24:16
1 27:53
i
1 1 1
2M23
1
«
1
24:57
H
1 27 • 31
45:24 . illTo OT 29:36
IWr-i^r. k K 28 :27 •
E5\28 A A » ffl 33:43
1 JiAffiJLJL UUJ ^1 ±«1_A^_ J
1.6E5
Ll. 4E5
L1.3E5
Ll.lES
L9.6E4
-
L8.0E4
!
L6.4E4
L4.8E4
•
L3.2E4
L1.6E4
:O.OEO
lob 22 lob 24 lob 26 1 00 2^00 30 1 00 32100 34 1 00 36:00 Time
305.8987 S:10 SMO(1,3) BSUB(128, 15, -3 .0)
100%
90j
80J
70 j
60J
50 j
40J
I
30J
20J
10 1
Q-
18:
j
08
PKD(3,3,3,0.10%,3004.0,1.00%M,F)
23:15 \
\ ^
| 20:18
__J
I
1
1n
. i — i — T — i — f — i — * — i — "i — i — f— i — i — i —
E~>' 16:00 18 00 20
1 22:
i
IflfJ
}--Wy\r^
\ / \^f
24:17 /. ^'
i I /
27 :P3
\
06
2:31
IIJiLu^
24:56
§5:24 27!fl ^^
1 A U-l 31:45 3^
2.0E5
Ll.8E5
L1.6E5
L1.4E5
L1.2E5
Ll.OES
L8.2E4
L6.1E4
L4.1E4
_2.0E4
O.OEO
•00 22:00 24:00 26:00 28:00 30:00 32:00 34:00 36:00 Time
-------
Paradigm Analytical Labs
Method 23
M23*O-2
PBS
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1, 2,3,7 ,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ (ND=0)
TEQ (ND=l/2)
Concentration
l»g)
0.0022
0.0021
EMPC
0.0058
EMPC
0.0644
0.256
0.0097
0.0049
0.0073
0.0168
0.0108
0.0136
0.0014
0.0680
EMPC
0.0566
0.293
0.0848
0.0668
0.116
0.176
0.0692
0.0908
0.0844
0.0146
0.0148
DL
ing)
0.0009
0.0005
0.0010
0.0009
0.0009
0.0026
0.0068
0.0019
0.0005
0.0005
0.0012
0.0011
0.0012
0.0013
0.0054
0.0062
0.0033
0.0009
0.0005
0.0009
0.0026
0.0019
0.0005
0.0011
0.0054
EMPC
t»g)
0.0022
0.0064
0.0157
0.304
0.0868
0.0788
0.204
0.0708
0.0936
0.100
0,0157
0.0157
RT
(mm.)
28:57
33:01
35:05
35:08
35:20
37:31
40:22
27:57
32:23
32:49
34:34
34:39
35:00
35:31
36:43
37:53
40:31
Ratio
0.88
1.46
0.79
1.16
1.43
1.02
0.88
0.78
1.40
1.57
1.23
1.41
1.25
1.32
0.95
1.26
0.9
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-O-2
LI 113
1113-4
28-Aug-98
08-Sep-98
l5-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight / Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
End ConCal:
Initial_Cal:
Air
1
0.0 %
a27sep98m-8
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
' 124
1/2
-------
Paradigm Analytical Labs
Method 2 3
M23-O-2
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13C12-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
13Cirl,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
13C12-l,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
I3C12-l,2,3,4,7,8,9-HpCDF
Injection Standards
13C12-1,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
(ng)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured
Amount
(ng)
3.63
4.27
3.61
3.20
4.50
3.80
4.21
3.87
3.35
3.84
3.99
4.02
3.77
3.36
Percent
Recovery
(%)
90.9
106.6
90.2
79.9
56.3
94.9
105.1
96.8
83.7
95.9
99.6
100.5
94.2
84.0
RT
(min.)
28:56
33:01
35:08
37:31
40:21
27:54
32:22
34:38
36:42
28:57
32:48
35:05
34:33
37:52
28:39
35:21
Ratio
0.77
1.57
1.27
1.05
0.9
0.79
1.57
0.52
0.44
1.58
1.26
0.52
0.43
0.79
1.27
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
s
Reviewed by: \\.\ .
S509.000
M23-0-2
L1113
1113-4
28-Aug-98
08-Sep-98
15-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
End ConCal:
Initial Cal:
Date
Air
1
0.0 %
a27sep98m-8
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
t th
Reviewed: 2?kt>v7
£' ' 125
212
-------
m
OPUSquan 28-SEP-1998 Page 1
Filename a27sep98m
Sample 8 \-
Acquired 28-SEP-98 00:37:43
Processed 28-SEP-98 09:38:35
Sample ID 1113-4 xl/2
Cal Table m8290-091498
Results Table M8290-092798M
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
S3
SS
SS
Name; Resp; Ion 1; Ion 2; RA;?; RT;
2,3,7,8-TCDD; 3.68e+05; 8.52e+04; 2.83e+05; 0.30;n; 28:57;
1,2,3,7,8-PeCDD; 1.49e+05; 8.86e+04; 6.08e+04; 1.46;y; 33:01;
1,2,3,4,7,8-HxCDD; 1.25e+05; 5.526+04; 6.98e+04; 0.79;n; 35:05;
1,2,3,6,7,8-HxCDD; 3.69e+05; 1.98e+05; 1.70e+05; 1.16;y; 35:08;
1,2,3,7,8,9-HxCDD; 3.906+05; 2.30e+05; 1.61e+05; 1.43;n; 35:20;
1,2,3,4,6,7,8-HpCDD; 3.02e+06; 1.53e+06; 1.49e+06; 1.02;y; 37:31;
OCDD; 8.156+06; 3.816+06; 4.346+06; 0.88;y; 40:22;
2,3,7,8-TCDF; 2.69e+06; 1.18e+06; 1.51e+06; 0.78;y; 27:57;
1,2,3,7,8-PeCDF; 4.20e+05; 2.45e+05; 1.75e+05; 1.40,-y; 32:23;
2,3,4,7,8-PeCDF; 6.446+05; 3.94e+05; 2.50e+05; 1.57;y; 32:49;
1,2,3,4,7,8-HxCDF; 1.36e+06; 7.51e+05; 6.11e+05; 1.23;y; 34:34;
1,2,3,6,7,8-HxCDF; l.Ole+06; 5.916+05; 4.18e+05; 1.41;y; 34:39;
2,3,4,6,7,8-HxCDF; 1.14e+06; 6.366+05; 5.08e+05; 1.25;y; 35:00;
1,2,3,7,8,9-HxCDF; 1.05e+05; 5.98e+04; 4.54e+04; 1.32;y; 35:31;
1,2,3,4,6,7,8-HpCDF; 4.47e+06; 2.18e+06; 2.29e+06; 0.95;y; 36:43;
1,2,3,4,7,8,9-HpCDF; 8.956+05; 4.99e+05; 3.966+05; 1.26;n; 37:53;
OCDF; 1.94e+06; 9.206+05; 1.02e+06; 0.90;y; 40:31;
13C-2,3,7,8-TCDD; 3.21e+08; 1.40e+08; 1.81e+08; 0.77;y; 28:56;
13C-l,2,3,7,8-PeCDD; 2.51e+08; 1.53e+08; 9.75e+07; 1.57;y; 33:01;
13C-l,2,3,6,7,8-HxCDD; 2.76e+08; 1.54e+08; 1.21e+08; 1.27;y; 35:08;
13C-l,2,3,4,6,7,8-HpCDD; 2.066+08; 1.05e+08; l.OOe+08; 1.05;y; 37:31;
13C-OCDD; 2.54e+08; 1.216+08; 1.34e+08; 0.90;y; 40:21;
13C-2,3,7,8-TCDF; 4.16e+08; 1.84e+08; 2.33e+08; 0.79;y; 27:54;
13C-l,2,3,7,8-PeCDF; 3.84e+08; 2.34e+08; 1.50e+08; 1.57;y; 32:22;
13C-l,2,3,6,7,8-HxCDF; 3.40e+08; 1.17e+08; 2.23e+08; 0.52;y; 34:38;
13C-1,2,3,4, 6,7,8-HpCDF; 1.946+08; 5.946+07; 1.34e+08; 0.44;y; 36:42;
13C-1,2,3,4-TCDD; 3.33e+08; 1.47e+08; 1.87e+08; 0.79;y; 28:39;
13C-l,2,3,7,8,9-HxCDD; 2.91e+08; 1.63e+08; 1.28e+08; 1.27;y; 35:21;
37Cl-2,3,7,8-TCDD; 3.01e+08; 3.016+08; -; -;-; 28:57;
13C-2,3,4,7,8-PeCDF; 3.75e+08; 2.30e+08; 1.45e+08; 1.58;y; 32:48;
13C-l,2,3,4,7,8-HxCDD; 2.09e+08; 1.17e+08; 9.246+07; 1.26;y; 35:05;
13C-l,2,3,4,7,8-HxCDF; 2.65e+08; 9.11e+07; 1.74e+08; 0.52;y; 34:33;
13C-l,2,3,4,7,8,9-HpCDF; 1.42e+08; 4.25e+07; 9.99e+07; 0.43;y; 37:52;
37Cl-2,3,7,8-TCDD; 3.01e+08; 3.01e+08; -; -;-; 28:57;
13C-2,3,4,7,8-PeCDF; 3.75e+08; 2.30e+08; 1.45e+08; 1.58;y; 32:48;
13C-l,2,3,4,7,8-HxCDD; 2.09e+08; 1.176+08; 9.24e+07; 1.26;y; 35:05;
13C-l,2,3,4,7,8-HxCDF; 2.65e+08; 9.11e+07; 1.74e+08; 0.52;y; 34:33;
13C-l,2,3,4,7,8,9-HpCDF; 1.42e+08; 4.256+07; 9.996+07; 0.43;y; 37:52;
. &*
Cone ;
0.112;
0.053;
0.055;
0.146;
0.159;
1.609;
6.396;
0.647;
0.122;
0.183;
0.421;
0.271;
0.339;
0.035;
1.699;
0.393;
1.414;
90.861;
106.629;
90.194;
79.904;
112.562;
94.869;
105.128;
96.766;
83.731;
74.208;
81.520;
87.083;
104.694;
90.749;
91.227;
70.365;
95.865;
99.623;
100.494;
94.213;
84.034;
DL;
0.0228;
0.0118;
0.0242;
0.0217;
0.0223;
0.0639;
0.1696;
0.0478;
0.0131;
0.0128;
0.0306;
0.0266;
0.0293;
0.0334;
0.1342;
0.1552;
0.0825;
0.1065;
0.0987;
0.0252;
1.2269;
0.0131;
0.0447;
0.0369;
0.2182;
0.0878;
-;
-;
0.0600;
0.0376;
0.0334;
0.2636;
0.1004;
0.0689;
0.0160;
0.0351;
0.2665;
0.1345;
S/N1;?;
4;y;
9;y;
7;y;
20; y;
18; y ;
71 ;y;
61;y;
37;y;
50;y;
69;y;
37,-y;
37 ;y;
43, -y;
4;y;
25;y;
4;y;
69;y;
1414;y;
5997;y;
14875;y;
10298;y;
6937;y;
14133;y;
1142;y;
1393;y;
1530;y;
14954;y;
4206;y;
14915;y;
10848;y;
939,-y;
936;y;
4206;y;
14915;y;
10848,-y;
939;y;
936;y;
S/N2;? mod?
46;y
20;y
8;y
I9;y
13, -y
81 ;y
430;y
24, -y
17, -y
25;y
32 ;y
~'*1 ' JT
29 ;y
34, -y
3;y
207, -y
30;y
47 ;y
5717 ;y
9047 ;y
8676;y
163 ;y
30935;y
5868;y
43460;y
1505;y
4023;y
6227;y
8622 ;y
-; -
46112;y
6520;y
1278;y
2693;y
46112;y
6520;y
1278;y
2693;y
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 14
-------
OPUSquan 28-SEP-1998 Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:24
Run: 14 File: a27sep98m S:8 Acq:28-SEP-98 00:37:43 Proc:28-SEP-98 09:38:35
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-4 xl/2
Amount: 5.14 of which 0.65 named and 4.50 unnamed
Cone: 5.14 of which 0.65 named and 4.50 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1 24:07 2.06+06 0.77 y 0.47
2.0e+06 8.5e+05 2.1e+05 4.0e+01 y n
l.le+06 2.7e+05 2.9e+01 y n
2 24:42 6.8e+05 0.80 y 0.16
6.8e+05 3.0e+05 7.2e+04 1.4e+01 y n
3.8e+05 9.2e+04 9.6e+00 y n
3 25:02 1.2e+06 0.73 y 0.30
1.2e+06 5.2e+05 1.2e+05 2.2e+01 y n
7.1e-t-05 1.7e+05 1.8e+01 y n
4 25:09 4.9e+04 1.54 n 0.01
4.9e+04 3.0e+04 1.le+04 2.0e+00 n n
1.9e+04 l.Oe+04 l.le+00 n n
5 25:21 2.2e+06 0.78 y 0.53
2.2e+06 9.8e+05 2.1e+05 4.1e+01 y n
1.2e+06 2.5e+05 2.7e+01 y n
6 25:27 2.3e+05 0.47 n 0.05
2.3e+05 7.26+04 3.4e+04 6.4e+00 y n
1.5e+05 4.6e+04 4.8e+00 y n
7 25:30 2.9e+05 1.00 n 0.07
2.9e+05 1.4e+05 3.4e+04 6.5e+00 y n
1.5e+05 4.4e+04 4.6e+00 y n
8 25:38 5.0e+05 0.83 y 0.12
5.0e+05 2.3e+05 5.6e+04 l.le+01 y n
2.7e+05 8.le+04 8.5e+00 y n
9 25:48 1.3e+06 0.79 y 0.31
1.3e+06 5.7e+05 9.Oe+04 1.7e+01 y n
7.2e+05 l.le+05 l.le+01 y n
10 25:55 5.9e+04 0.80 y 0.01
5.9e+04 2.6e+04 1.Oe+04 2.0e+00 n n
3.3e+04 8.9e+03 9.4e-01 n n
11 26:09 9.6e+05 1.13 n 0.23
9.6e+05 5.1e+05 9.6e+04 1.8e+01 y n
4.5e+05 l.Oe+05 l.le+01 y n
12 26:13 6.2e+05 0.73 y 0.15
6.2e+05 2.6e+05 7.9e+04 1.5e+01 y n
3.6e+05 9.5e+04 9.9e+00 y n
13 26:30 3.8e+05 0.99 n 0.09
3.8e+05 1.9e+05 5.le+04 9.7e+00 y n
1.9e+05 6.7e+04 7.0e+00 y n
14 26:37 1.3e+06 0.85 y 0.30
1.36+06 5.8e+05 1.4e+05 2.7e+01 y n
6.7e+05 1.6e+05 1.7e+01 y n
15 26:55 1.4e+06 0.84 y 0.34
1.4e+06 6.56+05 1.5e+05 2.9e+01 y n
7.86+05 1.7e+05 1.8e+01 y n
16 27:03 1.6e+06 0.80 y 0.38
l-6e+06 7.0e+05 1.6e+05 3.1e+01 y n
8.7e+05 1.8e+05 1.9e+01 y n
17 27:19 1.6e+06 0.73 y 0.39
1.6e+06 6.8e+05 1.5e+05 2.8e+01 y n
9.4e+05 2.1e+05 2.26+01 y n
18 27:40 3.16+05 0.67 y 0.07
3-le+OS 1.2e+05 3.7e+04 7.0e+00 y n
1.8e+05 4.4e+04 4.6e+00 y n
2,3,7,8-TCDF 19 27:57 2.7e+06 0.78 y 0.65
2.7e+06 1.2e+06 2.0e+05 3.7e+01 y n
1.5e+06 2.3e+05 2.4e+01 y n
127
-------
OPUSquan 28-SEP-1998 Page 2
20 28:05 8.2e+05 1.99 n 0.20
8.2e+05 5.46+05 1.3e-t-05 2.5e+01 y n
2.7e+05 7.0e+04 7.3e+00 y n
21 28:32 5.1e+05 0.71 y 0.12
5.1e+05 2.1e+05 5.2e+04 9.9e+00 y n
3.0e+05 6.3e+04 6.7e+00 y n
22 28:50 2.3e+05 0.55 n 0.06
2.3e+05 8.2e+04 3.Oe+04 5.8e+00 y n
1.5e+05 4.5e+04 4.7e+00 y n
23 29:04 6.6e+04 0.79 y 0.02
6.6e+04 2.9e+04 8.1e+03 1.5e+00 n n
3.7e+04 1.7e+04 1.7e+00 n n
24 30:18 4.5e+05 0.76 y 0.11
4.5e+05 1.96+05 4.1e+04 7.7e+00 y n
2.66+05 4.9e+04 S.le+00 y n
128
-------
OPUSquan 28-SEP-1998
Page 3
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:17
Run: 14 File: a27sep98m S:8 Acq:28-SEP-98 00:37:43 Proc:28-SEP-98 09:38:35
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-4 xl/2
Amount: 7.71
Cone: 7.71
Tox #1: -
Name
2,3,7,8-TCDD
of which 0.11
of which 0.11
Tox #2 : -
named and 7.60
named and 7.60
Tox #3 : -
RT Respnse
RA
23:20 1.36+04 2.98 n
1.3e+04
2 25:44 1.5e+07 0.79 y
1.56+07
3 25:57 1.9e+04
1.9e+04
1.57 n
4 26:10 6.4e+06 0.79 y
6.4e+06
5 26:33 2.3e+05 0.60 n
2.3e+05
6 27:24 1.7e+06 0.77 y
1.7e+06
7 27:37 6.2e+04 0.29 n
6.2e+04
8 27:46 3.7e+05 0.76 y
3.7e+05
9 27:53 l.le+05 3.30 n
l.le+05
10 28:14 2.5e+05 0.90 n
2.5e+05
11 28:39 2.8e+05 1.01 n
2.8e+05
12 28:50 4.7e+05 0.73 y
4.7e+05
13 28:57 3.7e+05 0.30 n
3.7e+05
14 29:42 8.2e+03 1.82 n
8.26+03
15 29:53 8.4e+03 1.63 n
8.4e+03
16 30:04 9.5e+03 1.85 n
9.5e+03
17 30:11 7.1e+03 4.14 n
7.1e+03
Cone
0.00
9
3
4.55
€
6
0.01
1
7
1.95
0.07
£
3
0.53
c
0.02
:
4
0.11
:
0.03
£
0.08
3
]
0.08
]
]
0.14
0.11
£
0.00
c
2
0.00
c
3
0.00
6
3
0.00
unnamed
unnamed
Area Height S/N Mod?
9.5e+03 3.9e+03 9.9e-01 n n
3.2e+03 1.2e+03 8.3e-01 n n
6.6e+06 1.6e+06 4.0e+02 y n
8.3e+06 1.9e+06 1.3e+03 y n
L
l.le+04 6.2e+03 1.6e+00 n n
7.36+03 2.6e+03 1.7e+00 n n
2.8e+06 6.3e+05 1.6e+02 y n
3.6e+06 8.26+05 5.5e+02 y n
7
8.9e+04 2.7e+04 6.9e+00 y n
l.Se+05 3.6e+04 2.4e+01 y n
3
7.66+05 1.4e+05 3.7e+01 y n
9.8e+05 1.9e+05 1.3e+02 y n
L.4e+04 9.2e+03 2.4e+00 n n
1.8e+04 1.2e+04 8.1e+00 y n
1.6e+05 3.8e+04 9.7e+00 y n
2.1e+05 4.5e+04 3.0e+01 y n
J.3e+04 1.8e+04 4.6e+00 y n
2.56+04 7.56+03 5.0e+00 y n
3
1.26+05 2.7e+04 6.8e+00 y n
L.3e+05 2.9e+04 2.0e+01 y n
L.4e+05 2.8e+04 7.2e+00 y n
L.46+05 2.96+04 2-Oe+Ol y n
2.0e+05 4.7e+04 1.2e+01 y n
2.7e+05 5.46+04 3.6e+01 y n
8.5e+04 1.7e+04 4.5e+00 y n
2.8e+05 6.8e+04 4.6e+01 y n
D
5.3e+03 3.6e+03 9.2e-01 n n
2.9e+03 2.0e+03 1.3e+00 n n
D
5.2e+03 2.2e+03 5.6e-01 n n
3.2e+03 1.9e+03 1.3e+00 n n
6.2e+03 3.0e+03 7.8e-01 n n
3.3e+03 2.5e+03 1.7e+00 n n
D
5.7e+03 2.86+03 7.2e-01 n n
1.46+03 6.56+02 4.4e-01 n n
129
-------
OPUSquan 28-SEP-1998
Page 4
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:17
Run: 14 File: a27sep98m S:8 Acq:28-SEP-98 00:37:43 Proc:28-SEP-98 09:38:35
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-4 xl/2
Amount: 1.79
Cone: 1.79
Tox #1: -
Name
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
of which 0.30
of which 0.30
Tox #2: -
# RT Respnse
named and 1.48
named and 1.48
Tox #3: -
RA
1 30:45 6.7e+05 1.49 y
6.7e+05
2 31:00 1.4e+04 0.74 n
1.4e+04
3 31:14 1.3e+04 0.43 n
1.3e+04
4 31:42 2.4e+05 1.58 y
2.4e+05
5 31:48 1.4e+06 1.57 y
1.46+06
6 31:56 2.5e+05 1.34 y
2.5e+05
7 32:02 1.4e+05 1.84 n
1.4e+05
8 32:11 8.7e+05 1.46 y
8.7e+05
9 32:20 1.6e+05 1.35 y
1.6e+05
10 32:23 4.2e+05 1.40 y
4.26+05
11 32:28 2.4e+05 1.53 y
2.4e+05
12 32:34 3.8e+05 1.32 y
3.86+05
13 32:43 6.6e+03
6.6e+03
0.81 n
14 32:49 6.4e+05 1.57 y
6.46+05
15 32:54 7.2e+05 1.64 y
7.2e+05
16 33:13 1.4e+04 0.42 n
1.4e+04
17 33:27 1.6e+04 1.01 n
1.6e+04
Cone
0.19
4
0.00
c
1
0.00
^
c
0.07
3
c
0.41
£
C
0.07
\
3
0.04
£
4
0.25
C
0.05
c
e
0.12
]
0.07
3
c
0.11
2
]
0.00
2
3
0.18
•3
0.21
4
0.00
4
s
0.00
unnamed
unnamed
Area Height S/N Mod?
4.06+05 l.le+05 4.4e+01 y n
2.7e+05 7.4e+04 1.5e+01 y n
3
5.8e+03 3.6e+03 1.4e+00 n n
7.9e+03 4.4e+03 8.6e-01 n n
D
3.9e+03 2.0e+03 8.0e-01 n n
9.0e+03 3.0e+03 6.0e-01 n n
7
1.5e+05 6.5e+04 2.6e+01 y n
9.4e+04 3.6e+04 7.1e+00 y n
8.7e+05 2.7e+05 l.le+02 y n
5.6e+05 1.7e+05 3.4e+01 y n
1.4e+05 4.6e+04 1.8e+01 y n
l.le+05 3.4e+04 6.7e+00 y n
1
8.96+04 2.5e+04 9.8e+00 y n
4.86+04 2.7e+04 5.3e+00 y n
5.2e+05 2.3e+05 9.2e+01 y n
3.5e+05 1.3e+05 2.66+01 y n
9.3e+04 4.5e+04 1.8e+01 y n
6.9e+04 3.1e+04 6.0e+00 y n
2
2.5e+05 1.3e+05 5.0e+01 y n
.7e+05 8.4e+04 1.7e+01 y n
1.56+05 7.5e+04 3.0e+01 y n
9.6e+04 4.5e+04 8.8e+00 y n
1
2.1e+05 l.le+05 4.5e+01 y n
.6e+05 7.5e+04 1.5e+01 y n
.0e+03 2.0e+03 7.8e-01 n n
.6e+03 3.4e+03 6.6e-01 n n
3.9e+05 1.7e+05 6.9e+01 y n
2.5e+05 1.3e+05 2.5e+01 y n
1
4.56+05 2.3e+05 9.0e+01 y n
2.76+05 1.3e+05 2.56+01 y n
4.1e+03 2.2e+03 8.8e-01 n n
9.7e+03 4.1e+03 8.1e-01 n n
3
8.1e+03 4.0e+03 1.6e+00 n n
8.0e+03 4.6e+03 9.0e-01 n n
130
-------
OPUSquan 28-SEP-1998
Page 5
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:13
Run: 14 File: a27sep98m S:8 Acq:28-SEP-98 00:37:43 Proc:28-SEP-98 09:38:35
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-4 xl/2
Amount: 2.22
Cone: 2.22
Tox #1: -
Name
of which 0.05
of which 0.05
Tox #2: -
# RT Respnse
named and 2.16
named and 2.16
Tox #3: -
RA
1,2,3,7,8-PeCDD
1 31:56 l.Se+06 1.64 y
l.Se+06
2 32:06 1.4e+04 1.20 n
1.4e+04
3 32:15 2.8e+04 4.18 n
2.8e+04
4 32:24 2.2e+06 1.56 y
2.2e+06
5 32:29 1.3e+05 1.36 y
1.3e+05
6 32:35 1.4e+06 1.56 y
1.4e+06
7 32:44 9.3e+04 1.31 n
9.36+04
8 32:51 3.3e+05 1.61 y
3.3e+05
9 32:55 4.4e+04 1.35 y
4.4e+04
10 33:01 1.5e+05 1.46 y
1.5e+05
11 33:07 6.7e+04 3.36 n
6.7e+04
12 33:18 5.46+04 1.61 y
5.4e+04
13 33:25 1.4e+04 2.60 n
1.46+04
Cone
0.64
]
e
0.00
(.
0.01
c
0.77
]
£
0.05
C
0.48
I
C
0.03
C
4
0.11
]
0.02
]
0.05
I
e
0.02
unnamed
unnamed
Area Height
S/N Mod?
l.le+06 4.6e+05 l.le+02 y n
6.9e+05 2.9e+05 2.1e+02 y n
D
7.5e+03 5.6e+03 1.4e+00 n n
.2e+03 2.8e+03 2.1e+00 n n
2.36+04 9.1e+03 2.3e+00 n n
5.46+03 2.7e+03 2.0e+00 n n
1.3e+06 7.1e+05 1.8e+02 y n
8.6e+05 4.7e+05 3.5e+02 y n
7.56+04 4.0e+04 l.Oe+01 y n
5.5e+04 2.3e+04 1.7e+01 y n
3
8.3e+05 3.9e+05 9.8e+01 y n
5.3e+05 2.7e+05 2.0e+02 y n
3
5.2e+04 1.9e+04 4.8e+00 y n
4.0e+04 1.5e+04 l.le+01 y n
L
2.0e+05 8.5e+04 2.1e+01 y n
.2e+05 6.1e+04 4.5e+01 y n
0.02
0.00
2.5e+04 l.le+04 2.9e+00 n n
.9e+04 1.2e+04 8.7e+00 y n
8.9e+04 3.5e+04 8.9e+00 y n
6.1e+04 2.7e+04 2.0e+01 y n
2
5.2e+04 2.0e+04 5.0e+00 y n
1.5e+04 8.8e+03 6.6e+00 y n
2
3.3e+04 1.9e+04 4.7e+00 y n
2.1e+04 l.le+04 S.le+OO y n
D
9.8e+03 3.8e+03 9.5e-01 n n
3.86+03 1.8e+03 1.3e+00 n n
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:15
Run: 14 File: a27sep98m S:8 Acq:28-SEP-98 00:37:43 Proc:28-SEP-98 09-38-35
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-4 xl/2
Amount: 2.36
Cone: 2.36
Tox #1: -
Name
of which 1.07
of which 1.07
Tox #2 : -
# RT Respnse
named and 1.29
named and 1.29
Tox #3: -
unnamed
unnamed
RA
1 33:55 6.5e+05 1.34 y
6.5e+05
Cone
0.20
Area Height S/N Mod?
3.7e+05 2.0e+05 2.9e+01 y n
131
-------
OPUSquan 28-SEP-1998
2 34:01 1.
1.
3 34:07 1.
1.
4 34:12 2.
2.
5 34:19 1.
1.
1,2,3,4,7,8-HxCDF 6 34:34 1.
1.
1,2,3,6,7,8-HxCDF 7 34:39 1.
1.
8 34:42 2.
2.
9 34:51 3.
3.
10 34:58 2.
2.
2,3,4^6,7,8-HxCDF 11 35:00 1.
1.
12 35:09 5.
5.
13 35:22 2
2
1,2,3,7,8,9-HxCDF 14 35:31 1
1
15 35:34 2
2
Page 6
8e+06 1.29 y
8e+06
7e+05 1.12 y
7e+05
8e+05 1.29 y
8e+05
6e+05 1.21 y
6e+05
4e+06 1.23 y
4e+06
Oe+06 1.41 y
Oe+06
2e+05 1.05 n
2e+05
8e+05 1.35 y
8e+05
8e+05 1.10 y
8e+05
le+06 1.25 y
le+06
4e+04 2.06 n
4e+04
8e+04 3.99 n
8e+04
le+05 1.32 y
le+05
7e+05 1.32 y
7e+05
2
0.54
1
7
0.05
9
8
0.08
1
1
0.05
8
7
0.42
7
6
0.27
5
4
0.07
1
1
0.11
2
1
0.09
1
1
0.34
6
5
0.02
3
1
0.01
2
5
0.04
6
4
0.08
1
1
.8e+05
.Oe+06
.8e+05
.le+04
.2e+04
.6e+05
.2e+05
.7e+04
.2e+04
.5e+05
.le+05
. 9e+05
.2e+05
.le+05
.le+05
.2e+05
. 6e+05
.5e+05
.4e+05
.4e+05
.le+05
.7e+04
.8e+04
.3e+04
.7e+03
.Oe+04
.5e+04
.5e+05
.2e+05
1.
4.
3.
4.
3.
6.
5.
3.
4.
2.
2.
2.
1.
5.
4.
7.
5.
6.
5.
3.
2.
1
9
1
3
2
2
6
4
4e+05
9e+05
9e+05
4e+04
5e+04
9e+04
le+04
8e+04
Oe+04
6e+05
2e+05
7e+05
9e+05
6e+04
2e+04
le+04
4e+04
2e+04
6e+04
le+05
3e+05
Oe+04
5e+03
2e+04
8e+03
8e+04
le+04
5e+04
le+04
2.
6.
5.
6.
5.
9.
7.
5.
5.
3.
3.
3
2
7
6
1
8
8
8
4
3
1
1
1
5
3
3
9
6
Oe+01
8e+01
8e+01
le+00
le+00
6e+00
5e+00
3e+00
9e+00
7e+01
2e+01
7e+01
9e+01
8e+00
3e+00
Oe+01
le+00
7e+00
3e+00
3e+01
4e+01
4e+00
.4e+00
.7e+00
.6e-01
.9e+00
.le+00
.le+00
.le+00
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
n
n
n
n
y
y
y
y
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
132
-------
OPUSquan 28-SEP-1998
Page 7
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:16
Run: 14 File: a27sep98m S:8 Acq:28-SEP-98 00:37:43 Proc:28-SEP-98 09:38:35
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-4 xl/2
Amount: 2.12
Cone: 2.12
Tox #1: -
Name
of which 0.36
of which 0.36
Tox #2: -
# RT Respnse
named and 1.76
named and 1.76
Tox #3: -
RA
1 34:16 3.4e+05 1.47 n
3.4e+05
2 34:23 1.3e+04 1.31 y
1.3e+04
3 34:34 2.8e+06 1.28 y
2.8e+06
4 34:43 8.4e+05 1.28 y
8.4e+05
5 34:48 1.2e+05 1.06 y
1.2e+05
6 34:54 2.2e+04 0.95 n
2.2e+04
1,2,3,4,7,8-HxCDD 7 35:05 1.2e+05 0.79 n
1.2e+05
1,2,3,6,7,8-HxCDD 8 35:08 3.7e+05 1.15 y
3.7e+05
1,2,3,7,8,9-HxCDD 9
35:20 3.9e+05 1.43 n
3.9e+05
10 35:30 1.4e+04 0.99 n
1.46+04
11 35:39 6.9e+03 1.36 y
6.9e+03
12 35:44 1.2e+04 1.11 y
1.2e+04
13 35:49 1.6e+04 0.60 n
1.6e+04
14 35:52 1.4e+04 0.70 n
1.4e+04
15 35:54 1.6e+04
1.6e+04
0.94 n
16 36:00 2.4e+04 0.88 n
2.4e+04
Cone
0.14
]
0.01
C
1.17
]
1
0.35
4
i
0.05
6
C
0.01
1
1
0.06
c
1
0.15
1
0.16
]
0.01
0.00
4
0.00
£
C
0.01
c
B
0.01
c
6
0.01
1
6
0.01
unnamed
unnamed
Area Height
S/N Mod?
2.0e+05 9.0e+04 2.2e+01 y n
1.4e+05 6.0e+04 1.6e+01 y n
7.6e+03 3.56+03 8.6e-01 n n
5.8e+03 2.7e+03 7.1e-01 n n
1.6e+06 7.86+05 1.96+02 y n
1.2e+06 6.0e+05 1.6e+02 y n
4.7e+05 1.9e+05 4.6e+01 y n
3.7e+05 1.66+05 4.0e+01 y n
6.0e+04 2.2e+04 5.4e+00 y n
5.7e+04 1.7e+04 4.4e+00 y n
L
l.Oe+04 4.6e+03 l.le+00 n n
l.le+04 5.9e+03 1.5e+00 n n
5.5e+04 2.7e+04 6.5e+00 y n
7.0e+04 3.1e+04 7.9e+00 y n
2.0e+05 8.0e+04 2.0e+01 y n
1.7e+05 7.3e+04 1.9e+01 y n
2.3e+05 7.3e+04 l.Se+01 y n
.66+05 5.1e+04 1.3e+01 y n
7.1e+03 5.0e+03 1.2e+00 n n
7.2e+03 3.5e+03 9.0e-01 n n
4.0e+03 2.6e+03 6.4e-01 n n
2.9e+03 1.9e+03 4.8e-01 n n
6.2e+03 4.7e+03 l.le+00 n n
5.6e+03 3.0e+03 7.8e-01 n n
L
5.9e+03 3.2e+03 7.9e-01 n n
9.9e+03 3.9e+03 l.Oe+00 n n
L
5.9e+03 4.3e+03 l.le+00 n n
8.4e+03 3.9e+03 l.Oe+00 n n
7.9e+03 6.4e+03 1.6e+00 n n
8.4e+03 3.9e+03 l.Oe+00 n n
l.le+04 5.5e+03 1.3e+00 n n
1.3e+04 4.7e+03 1.2e+00 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:12
Run: 14 File: a27sep98m S:8 Acq:28-SEP-98 00:37:43 Proc:28-SEP-98 09-38-35
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-4 xl/2
133
-------
OPUSquan 28-SEP-1998
Page 8
Amount : 2 . 74 of which 2 . 09 named and 0 . 65
Cone: 2.74 of which 2.09 named and 0.65
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone
1,2,3,4,6,7,8-HpCDFl 36:43 4
4
2 37:02 1
1
3 37:30 5
5
4 37:47 5
5
1, 2 , 3, 4, 7 , 8, 9-HpCDF5 37-53 9
9
6 37:59 6
6
7 38:02 6
6
8 38:16 8
8
9 38:18 6
6
10 38:22 8
8
11 38:33 7
7
12 38:48 2
2
.5e+06 0.95 y
.5e+06
.Oe+06 0.90 y
.Oe+06
.le+04 2.13 n
.le+04
.9e+04 9.37 n
. 9e+04
.Oe+05 1.26 n
.Oe+05
.5e+04 3.28 n
. 5e+04
.6e+04 4.51 n
. 6e+04
.6e+04 4.40 n
. 6e+04
. 2e+04 3.02 n
.2e+04
.2e+04 5.50 n
. 2e+04
. 8e+04 6.99 n
. 8e+04
. 7e+04 1.97 n
.7e+04
1.70
2
2
0.41
4
5
0.02
3
1
0.02
5
5
o ^ Q
u . j y
5
4
0.03
5
1
0.03
5
1
0.03
7
1
0.03
4
1
0.03
6
1
0.03
6
9
0.01
1
9
unnamed
unnamed
Area Height
.2e+06
.3e+06
.8e+05
. 3e+05
. 5e+04
. 6e+04
. 3e+04
.7e+03
.Oe+05
.Oe+05
. Oe+04
.5e+04
. 4e+04
.2e+04
.Oe+04
. 6e+04
.7e+04
. 6e+04
. 9e+04
.3e+04
. 8e+04
. 8e+03
.8e+04
.2e+03
9
9
1
2
1
5
2
2
1
1
1
8
2
4
2
4
2
8
2
5
2
4
9
4
.7e+05
.3e+05
.9e+05
.2e+05
.8e+04
.le+03
.Oe+04
.2e+03
.5e+05
.4e+05
. 8e+04
.6e+03
.4e+04
.8e+03
.le+04
.9e+03
.2e+04
.2e+03
.3e+04
.2e+03
.4e+04
.2e+03
.2e+03
.Oe+03
2
2
4
4
4
1
5
5
3
3
4
1
6
1
5
1
5
1
6
1
6
9
2
8
S/N Mod?
.5e+01 y n
.le+02 y n
. 9e+00 y n
. 8e+01 y n
.6e-01 n n
.le+00 n n
.3e-01 n n
.Oe-01 n n
.9e+00 y n
. Oe+01 y n
.7e-01 n n
.9e+00 n n
.le-01 n n
.le+00 n n
.3e-01 n n
.le+00 n n
.7e-01 n n
.8e+00 n n
.Oe-01 n n
.2e+00 n n
.2e-01 n n
.4e-01 n n
.4e-01 n n
.8e-01 n n
134
-------
OPUSguan 28-SEP-1998
Page 9
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:10
Run: 14 File: a27sep98m S:8 Acq:28-SEP-98 00:37:43 Proc:28-SEP-98 09:38:35
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-4 xl/2
Amount: 3.12
Cone: 3.12
Tox #1: -
Name
of which 1.61
of which 1. 61
Tox #2: -
# RT Respnse
named and 1.51
named and 1.51
Tox #3: -
RA
1 36:57 2.4e+06 1.07 y
2.4e+06
l,2,3,4,6,7,8-HpCDD2 37:31 3.0e+06 1.02 y
3.0e+06
3 37:52 8.0e+04 2.99 n
8.0e+04
4 38:16 3.8e+04 1.36 n
3.8e+04
5 38:18 3.26+04 0.96 y
3.26+04
6 38:22 6.1e+04 0.90 y
6.1e+04
7 38:25 6.4e+04 0.98 y
6.4e+04
8 38:32 6.1e+04 1.48 n
6.1e+04
9 38:33 4.9e+04 0.99 y
4.9e+04
10 38:37 3.0e+04 0.70 n
3.0e+04
Cone
1.29
1
1
1.61
3
1
0.04
£
0.02
]
0.02
]
]
0.03
0.03
0.03
0.03
0.02
unnamed
unnamed
Area Height
S/N Mod?
1.3e+06 4.6e+05 6.2e+01 y n
1.2e+06 4.2e+05 6.7e+01 y n
1.5e+06 5.3e+05 7.1e+01 y n
1.5e+06 5.1e+05 8.1e+01 y n
i
6.0e+04 1.8e+04 2.5e+00 n n
2.0e+04 7.1e+03 l.le+00 n n
2
2.2e+04 l.le+04 1.5e+00 n n
1.6e+04 5.5e+03 8.9e-01 n n
.6e+04 7.9e+03 l.le+00 n n
.6e+04 5.5e+03 8.9e-01 n n
2.9e+04 9.9e+03 1.3e+00 n n
3.2e+04 7.6e+03 1.2e+00 n n
3
3.2e+04 l.Oe+04 1.4e+00 n n
3.2e+04 7.6e+03 1.2e+00 n n
3
3.6e+04 1.0er04 1.4e+00 n n
2.56+04 9.96+03 1.6e+00 n n
3
2.4e+04 9.6e+03 1.3e+00 n n
2.5e+04 9.9e+03 1.6e+00 n n
2
1.3ei-04 6.4e+03 8.6e-01 n n
1.8e+04 6.46+03 l.Oe+00 n n
135
-------
File:A27SEP98M #1-528 Acq:28-SEP-l998
Sample#8 Text: 1113-4 xl/2
319.8965 S:8 BSUB(128, 15, -3 . 0) PKD(3,3
100%
50J
0;
24:00 25:00
321.8936 S:8 BSUB (128, 15, -3 . 0) PKD(3,3
100%
50 j
o:
24 loo ' ' ' 25 loo'
331.9368 S:8 BSUB (128, 15, -3 . 0) PKD(3,3
100%
50 j
0:
24:00 25:00
333.9339 S:8 BSUB (128, 15 , -3 . 0) PKD (3, 3
100%
50 j
o:
24:00 25 100
327.8847 S:8 BSUB(128, 15, -3 . 0) PKD(3,3
100%
50J
o:
24 1 00 " ' ' 25 loo
316.9824 S:8 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00<
100%23:14 23:50 2&-1A 25:00 ;
'J
50 j
o-
^'"*X F 1 1 T |" T ~1 r T 1 I" ' '
24:00 25:00
00:37:43 GC EI+ Voltage SII
Exp:EXP M23 DBS OVATION
, 2, 0.10%, 3892. 0,1. 00%, F,F)
25:44
A
M 26:10
A A
26:00 27:00
, 2, 0.10%, 1492. 0,1. 00%, F,F)
25:44
A
26:10
!\ A
26 1 00 27 I 00
, 2, 0.10%, 21540. 0,1. 00%, F,F)
26:00 27:00
, 2, 0.10%, 6816. 0,1. 00%, F,F)
26 1 00 ' ' ' 27 100
, 2, 0.10%, 15624. 0,1. 00%, F,F)
26 100 ' ' ' 27 1 00
i, 0.0,1. 00%, F,F)
>5:33 26:19 26-43 21 •
i i i i i i i i i 1 i •
26:00 27:00
* Autospec-UltimaE
1.6E6
L7.8E5
27^24 ; n ni?n
28:00 29:00 30:00 Time
1.9E6
-9.7E5
27:24 -
28 .-GO 29 1 00 30 100 Time
28:39 ,_3.3E7
A A r
A A
J V / V O.OEO
I >
-------
File
Samj
355
100S
50_
0
357.
1002
50J
0"
367.
100%
so:
0"
3
369.
100%
50J
0"
>:A27SEP98M #1 237 Acq:28-SEP-1998 00:37:43 GC EI + Voltage SIR Autospec-UltimaE
>le#8 Text: 1113-4 xl/2 Exp:EXP M23 DB5 OVATION
8546 S:8 F:2 BSUB(128 , 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 3992 . 0, 1 . 00%, F, F)
32:24
I A. i ..,.„
01
30:36 30!48 3l!do 3lSl2 3l!24 3l!36 3lUs 32!oO 32!l2 32^24 32136 32 -.48 ' 33 00 ' 33 ! 12 ' 33 !24 ' 33 ! 36
8517 S:8 F:2 BSUB (128, 15 , -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 1344 . 0, 1 . 00%, F, F)
32:24
31:56 / 32:35
A IU »,.„
:02
10:36 30:48 3l!6d 3iSl2 31124 3ll36 3l!48 32loO 32ll2 32124 32136 32148 33 S 00 ' 33 ! 12 ' 33 124 ' 33 ! 3 6
8949 S:8 F:2 BSUB (128, 15, -3 . 0) PKD(3 , 3 , 2, 0 . 10%, 12428 . 0 , 1 . 00% , F, F)
33.
b!36 3b!48 3i!dd 3i!i2 3i!24 31136 31 Us 32!6d 32! 12 32124 32 !36 ' 32 \48 ' 33 ! C
8919 S:8 F:2 BSUB (128, 15 , -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 5052 . 0, 1 . 00%, F, F)
33.
01
i i 1 1 1 l l 1 fill — r-T— i — i i i i — 1
10 33:12 33:24 33:36
01
\
7.1E5
L3.5E5
' o OEO
Time
4.7E5
L2.3E5
0 OEO
Time
7.5E7
_3.7E7
0 OEO
Time
_4.6E7
_2.3E7
n.oirn
1 1 | | | .. l i l | l l l l . | l l l l l l | l , l l l l l l l l l l l l l l l l l l l l l l l l ! I | I 1 1 1 1 1 1 1 1 1 1 1 1 I T-T— I—I — I—I— I"' "••
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
366.9792 S:8 F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
100% 31:1131:20 31:35 31-S4 3?-OR 32:32 32:44 32:59 33:15 33:28 1 3K8
so:
0"
_6.3E7
n nT?n
••tM. • ' • ' 1 | | ' i i i ' i i i i i i | ' i ' ' • | i i i i i i i i i i i i i i i i i i i i i i i i i i r i i I-T-T i i i 1 i i i i — ii 1 I I i i — i | i i i1 " • «"«
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32ll2 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
CO
-------
File:A27SEP98M #1-197 Acq:28-SEP-1998 00:37:43 GC EI+ Voltage SIR Autospec-UltimaE
Sample#8 Text:1113-4 xl/2 Exp:EXP_M23_DB5_OVATION
389.8156 S:8 F:3 BSUB ( 128 . 15 . -3 . 0 ) PKD( 3 . 5 . 2 . 0 . 10% , 4092 . 0 . 1 . 00% . F . F)
1003
so:
.
-
0"
34:34
f\
A
/ 34:43
34:16 / 3Vf:38A 3.
33:48 34:00 34:12 34:24 34:36 34:48 35:00
7.8E5
_3.9E5
5:08 35:20
35:12 35:24 35:36 35:48 36:00 36:12 Time
391.8127 S:8 F:3 BSUB (128, 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 3848 . 0, 1 . 00%, F, F)
1004.
so:
-
-
0"
34:34
A
A
/ 34:43
34:15 / V A 3
x'x / » / \
33T48 34.^0 34':12 34124 34136 34148 3s!do
6.0E5
_3.0E5
5 : 09 35-21
"^l r^N, ii! n nv.n
35:12 35:24 35:36 35:48 36:00 36:12 Time
401.8559 S:8 F:3 BSUB(128 , 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 4524 . 0 , 1 . 00%, F, F)
100%
•
so:
0"
35:08 35/21 6.8E7
35:OBl A
A
/I
33:48 34:00 34:12 34:24 34:36 34:48 35:00
M
^ — / ^ — ' n . OF.O
'35! 12' '35!24' 35!36' 35J48 36!o'o' ' '36J12' ' ' Time
403.8530 S:8 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 6080 . 0 , 1 . 00%, F, F)
100% 35^08 35^21 r5.3E7
-
so:
0"
35:0
— — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — • — i — i — i — i — > — ' — [ — i — ' — i~~
33:48 34:00 34:12 34:24 34:36 34:48 35:00
380.9760 S:8 F:3 SMO(1,3) PKD(3 , 3, 3 , 100 .00%, 0 . 0, 1 . 00%,F,F)
100* TT-54 ?4-m 34;51 15.-0/
so:
0'
/"
33ll8 34 !00 34:12 34:24 34: 36 34: 48 35loO
1 \
V — J \^ ' n . ORO
'35! 12' ' 35! 24 35! 36 35148 36loO 36:12 Time
1 35-19 35:35 35:48 36:06 4 . 4E8
L2.2E8
' 0 . OF.O
35:12 35:24 3sl36 3sl48 3eloO 36ll2 Time
-------
File
Samf
423.
1003
50_
(T
3€
425.
1003
50J
0"
36
435.
100%
so:
0"
36
437.
100%
50J
0"
36
430.
100%
so:
0"
36
>:A27SEP98M #1-197 Acq:28-SEP-1998 00:37:43 GC EI+ Voltage SIR Autospec-UltimaE
)le#8 Text:1113-4 xl/2 Exp:EXP M23 DBS OVATION
7767 S:8 F:4 BSUB (128 , 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 7444 . 0 , 1 . 00% , F, F)
36:57 3?A31
A \
A
3*- 1 L / V
:24 36:36 36148 37 00 37:12 37:24 37136 37!48 3s!oO 3s!l2 38^24 38-36 ' '38-4V ' '39
7737 S:8 F:4 BSUB (128, 15, -3 . 0) PKD(3 , 5 , 3 , 0 . 10%, 6216 . 0 , 1 . 00%, F, F)
37:31
36:57 A
n /\
A /I
124 36!36 36U'8 37!o'o 37! 12 3 7 5 24 37136 3?! 48 3s!oO 3s!l2 3s!24 TslsV ' VsUV ' '39
8169 S:8 F:4 BSUB (128, 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 224388 . 0 , 1 . 00%, F, F)
37:31
A
24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38U8 39
8140 S:8 F:4 BSUB(128, 15, -3 . 0} PKD(3 , 5 , 3 , 0 . 10%, 209708 . 0 , 1 . 00% , F, F)
37:31
A
1 1 1— 1 — 1 1 — 1 — 1 — 1 1 1 — I— 1 1 — 1 — 1 1 — I — 1— 1 — 1 1 — 1 — I — 1 1 1 r-T-'l T T r-T-i | i I r T I I I I I I I | I I i I I I I 1 I I I I I 1 I'T't'-n T
24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:
9728 S:8 F:4 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
36:34 -37_Ll7__JJ:30 37.4437:52 38-05 38:24 38:36 38;44 3flt5fi
r
!24^136!36 36U'8 37!00 37!l2 37! 24 37536 37548 38!o'o 38:12 3s!24 3s!36 38548 39!
5.4E5
L2.7E5
00 Time
5.1E5
_2.5E5
00 Time
3.6E7
_1.8E7
o OEO
00 Time
3.4E7
-1.7E7
O.OEO
00 Time
3.0E8
_1.5E8
O.OEO
00 Time
CO
CO
-------
File:A27SEP98M #1-276 Acq
Sample#8 Text: 1113-4 xl/2
457.7377 S:8 F:5 BSUB(128
IOCS
50_
0"
39112 39124 39lie
459.7348 S:8 F:5 BSUB(128,
100%
50J
0:
l9ll2 39124 39136
469.7780 S:8 F:5 BSUB(128,
100%
so:
0'
39112 39124' 39136
471.7750 S:8 F:5 BSUB(128,
100%
so:
0:
39112 ' 39124 ' 39136
454.9728 S:8 F:5 SMO(1,3)
100% 39_:12 12jJ2
50J
„:
'
39112 39124 39136
28-SEP-1998 00:37:43 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
15, -3.0) PKD(3,5,3,0.10%,15740.0,1.00%,F,F)
40:22
A
y v
9.7E5
L4.9E5
' O.OEO
39l48 46166 46112 4ol24 40-136 40:48 4ll66 41:12 41124 41:36' 4il48 42166 42ll2 Time
15, -3.0) PKD{3,5,3,0.10%,2552.0,1.00%,F,F)
40:22
A
J v
1.1E6
L5.5E5
' 0 . OEO
39148 46166 4bll2 4ol24 4ol36 46!48 4ll66 4lli2 4ll24 41:36 klUs 42166 42:12 Time
15, -3.0) PKD (3, 5, 3, 0.10%, 2984. 0,1. 00%, F,F)
40:21
A
j ^~—
3.1E7
_1.5E7
_O.OEO
39:48 40:00 4QlH 40:24 40:36 40:48 4ll66 4ill2 4ll24 4i:36 4ll48 42166 42ll2 Time
15, -3.0) PKD (3, 5, 3, 0.10%, 1092. 0,1. 00%, F,F)
40:21
A
J v r
_3.4E7
L1.7E7
O.OEO
39148 40166 4oli2 4ol24 4ol36 40 Us 4ll66 4lli2 4ll24 41 lie 4ll48 42166 42:12 Time
PKD (3, 3, 3, 100. 00%, 0.0,1. 00%, F,F)
40:05 40:33 40^57 41:12 41:28 41:52 45-nft 3 . 2Efl
.1.6E8
.O.OEO
39148 40166 40:12 4ol24 4ol36 4ol48 4ll66 4lli2 41:24 4ll36 4l':4B 42166 42:12 Time
-------
File:A27SEP98M #1-528 Acq:2
Sample#8 Text: 1113-4 xl/2
303.9016 S:8 BSUB (128 , 15, -3
lOOSj 24:07
C f\
50_
0.
\
•
8-SEP-1998 00
.0) PKD(3,3,2
25:21
A
: 24:42 A M
: . _ A
24:00
305.8987 S:8 BSUB(128, 15 , -3
1003
50_
0_
24:07
A
A_AJ^
25-00
.0) PKD(3,3,2
25:20
25:02 I
24:42 A II
-, L\_^
24! 00
315.9419 S:8 BSUB(128, 15, -3
1002
50 j
o:
24 !00
317.9389 S:8 BSUB (128, 15, -3
1004
50J
o:
24 I 00
375.8364 S:8 BSUB (128, 15 , -3
1004
50 1
o:
1
A /\ /2?::
A. / V. ; VT
25:00
.0) PKD(3,3,2
25:00
. 0) PKD(3,3,2
25IOO
0) PKD(3,3,3,
23:17 24:00 0/l ...
,,2^:23 |23{59I »24:2:9 , 25;09
fWUIAMAWIlUA VWy\^AAvO..
24 I 00
316.9824 S:8 SMO(1,3) PKD(3,
1004
;
50J
0"
23:14 23:50 24-21
r - - -
24 loo'
r/uJ L_AjL/W_ATnl_A^
25 I 00
:37:43 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
,0.10%, 5260.0
26:09
v/Y\ TV6
26:00
,0.10%, 9524.0,
26:08
28\jA /V\ 26
\7Y V- J~i\ t
2e!od
,0.10%, 5864.0,
26 I 00
0.10%, 8916.0,
26! 00
100. 00%, 184.0
25:56
25:44JU6.09 26
_AAJvJl'yLAAJ-lA_^H
26:00
3, 3, 100. 00%, 0.0,1. 00%, F,F)
25_:00 25:
25IOO
33 26^19
2e!oo
1.00%,F,F)
27:57 _2.2E5
27-03 A
26:37 A Q8:05
A AA A AH oo ,o
^ /Yl /\ 27A40/ V\ TL^9,04 3°A18
.
-
_1 . 1E5
27:00 28:00 29:00 3o!oO Time
1.00%,F,F)
27-57 _2.8E5
27:20 /C
26:55 ^/;^u /\
^ A A /A n.
^3A /Vl /\ 27:40/2?->05 28:32 30.18
^/.V / 1 V 7 V J\ J Y\ A A29 = 04 ^/^
L1.4E5
27:00 28:00 29:00 3o!oO Time
1.00%,F,F)
27:54 4.1E7
A
/v
_2.0E7
• n nun
27 1 00 28 1 00 29 loo ' ' ' 30 1 00 ' ' Time
1.00%,F,F)
27:54 5.2E7
A
/\
L2.6E7
- n nun
1 1 1 | | 1 1 1 Ij f 1 , 1 1 1 1 , , , , , , , ,!_« . «^.w
27:00 28:00 29:00 3o!oO Time
,1.00%,F,F)
. 28:56 1.2E4
•32 28^|6 III 111 29:42 30:11
(*" A 1] AWUA/AAjA^^\A^'wW/^ ^AA/l/^' '\AT/ I/1A»AA_MLA_JL/ mAAjMjL//IIlA HA
L6.2E3
n nun
27:00 28 loo' 29loo' ' 30iOO ' Time
26:43 27:12 27:44 2.8:27 ^g.j)fi 2^:40
.1.0E8
.5.2E7
n nun
i i | r 1 1 — -i 1 1 1 1 , , 1 1 , 1 1 , , . , , ,L" . u.uu
27:00 28:00 29:00 3o!oO Time
-------
File:A27SEP98M #1-237 Acq
Sample#8
339.8597
1002
-
50:
o:
36 lie
341.8568
100%,
_
50"
o:
36136
351.9000
100S
50 j
o"
i I i >
30:36
353.8970
100%
50J
o"
36136
409.7974
100%
-
50J
o -
" Vprr
30:36
366.9792
100%
50J
0:
i I i i
28-SEP-1998 00
Text: 1113-4 xl/2
S:8 F:2
30:45
A
30 Us
S:8 F:2
30:45
A
isoUs
S:8 F:2
30:48
S:8 F:2
i i i 1 i i i
30:48
S:8 F:2
30:48
S:8 F:2
30:36^ 30i48
BSUB(128,15,-3.0) PKD(3
:37 :
Exp:
,3,2
43 GC EI+ Voltage SIR Autospec-UltimaE
EXP_M23 DBS OVATION
,0.10%, 2516.0
31,48
\
,1.00%,
32:11
A
/\
3K1 te6^ / V
31:00 31
BSUB(128,
31.
31 166 31
BSUB(128,
31:00 31
BSUB(128,
31:00 31
BSUB(128,
31:00 31
SMO (1,3)
31:
31:00 31
:12 31:24 31
15, -3.0) PKD(3
11
•12 ' 3i;24 ' 31
* M^i J Jt, » Ai^X ~S J-
15, -3.0) PKD(3
1 i i i i ' |
:12 31:24 31
15,-3.0) PKD(3
|-rt T-I !• | i i i I i |
:12 31:24 31:
15, -3.0) PKD(3
31:32
l~r IT n | r n 0 i |
:12 31:24 31:
36
,3,2
31:48 32:00
,0.10%, 5084.0
31:48
A
32:12
,1.00%,
32:11
A
36 '
,3,2
36
,3,2
36
,3,3
31:48 32:00
,0.10%, 8412.0
31:48 32:00
,0.10%, 1744.0
i 'T i ' ' i i | i i i
31:48 32:00
,100. 00%, 2660
32:12
,1.00%,
32! 12
1.00%,
32112
F,F)
32:23
32:54
32:49/1
32:34 A \
33A03 33A21
32! 24
F,F)
32:23
2
_1
n
32:36 32:48 33:00 33:12 33124 33136
,_!
32:54
32:34 A A
AVA /\/ 1 33.3 ^
32\24
F,F)
32:22
A
A
/.y,
32:24
F,F)
32:22
*
A
/y,
32:24
8
0
32:36 32:48 33:00 33:12 33:24 33:36
32:48
A,
f[
1
i.6
•o
32:36 32:48 33:00 33:12 33:24 33:36
32:48
A
j[
8
14
:o
32136 32148 33166 3 3. -12 33 .'24 33136
.7E5
.4E5
.OEO
Time
.8E5
-9E4
.OEO
Time
.3E8
.3E7
.OEO
Time
.1E7
. OE7
.OEO
Time
0,1.00%,F,F)
32:13
* A
N
32:04 1 \
36
31:48 32166
32! 12
32:24
A
2
^J\32:30 33:01 33:25
^-^v/ V^^/S^ ^> ^ — ^ --^ -,
32 124
-1
:o
32:36 32:48 33:00 33:12 33:24 33:36
.9E5
.4E5
.OEO
Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
11 31:20 31:31
I i > i i > I i i i i i I
•12 31:24 31:
-JUL:
36
41 31:54
i i 1 1 ' ' '
31:48 32:00
32. -1
32:12
£. 3
i i I i i
32:24
2:32 32:44 32:59 33:15 33:28 1
_6
0
i i 1 ' i i i ' | ' ' ' ' ' i i | i i i i i | i i i
32:36 32:48 33:00 33:12 33:24 33:36
.3E8
3E7
OEO
Time
-------
File:A27SEP98M
#1-19
Sample#8 Text: 1113-4
373.8207 S
1003
50_
0
:8 F
V Acq:28-SEP-1998 00:37:
xl/2
:3 BSUB(128,
15, -3.0)
Exp:
PKD(3,5,2
43 GC EI + Voltage SIR Autospec-UltimaE
EXP M23 DBS
,0.10%, 7144.
OVATION
0,1.00%,
34:01
A
33:55/\
33:48
375.8178 S
1003
-
50_
o:
A,
34
:8 F
loo '
34:12
34l 12
:3 BSUB(128,
34124
15, -3.0)
34:39
A A
A/V
34l 36
PKD (3,5,2
35
34:51 /
•N^ ^*^ ^-i
34148 35
,0.10%, 6748.
:00
A
\
Ido 35
0,1.00%,
34:01
A
34:33
35
:00
F,F)
4
35:34
:2
• n
:12 35:24 35:36 35:48 36:00 36ll2
F,F)
3
33:55/ \ A A A
33:48
383.8639 S
100%
50^
o"
33 1 48
385.8610 S
100%
50J
o-
33! 4V
445.7555 S
lOOi
'.
50J
-
o-
A.
34
:8 F
34
'U
loo
34:12
34 1 12
3 BSUB(128,
!do' '
34 1 12
:8 F:3 BSUB(128,
34
:8 F:
loo
34 1 12
3 BSUB(128,
^^
34 1 24
15, -3.0)
'34! 24'
15, -3.0)
34 1 24
15, -3.0)
y v%
34 he
PKD (3,5,2
34:38
n A
AA
Jx\
34 1 36
PKD (3,5,2
34:38
r. A
AA
/Y v.
34:36
PKD(3,3,3
i2 ^*A
34:48 35
,0.10%, 43632
34l 48 ' ' '35
,0.10%, 61668
34:48 35
,100. 00%, 676
'V
100 35
.0,1.00%
Ido' ' '35
.0,1.00%
00 35
.0,1.00%
35:35
_2
:12 35:24 35:36 35:48 36:00 36:12
,F,F)
5
_2
n
T — i — i — i — i — i — 1 — i — i — i — i — i — 1 — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — r^
:12 35:24 35:36 35:48 36:00 36ll2
,F,F)
9
_4
ho
:12 35:24 35:36 35:48 36:00 36:12
,F,F)
35;08 35:21 ^3
-x,3,3^-
ri i i -*
33:48
380.9760 S
100% 31
:
50 j
o:
.r
33 1 48
34
:8 F:
:5.4
34
^^_
r • ••
loo
34:11
34:12
34
34:23 y
34:24
3 SMO(1,3) PKD (3, 3, 3
34:03
:00
34 1 12
3 4 1 24
:30
/v/v/
34:36
43
V A~ ^
34:48 35
35:04/\
/""» / I
A/\
/ V
/ v I
V \
00 35
A
/\
A / \ 35:51 ,_ nc
A/^ W\^°J^8_ _Aw^_^ AA^. ^^A
Ll
- o
:12 35:24 35:36 35:48 36:00 36ll2
.9E5
.5E5
. OEO
Time
.9E5
.OE5
.OEO
Time
.OE7
.5E7
.OEO
Time
.3E7
.6E7
.OEO
Time
.OE4
.5E4
.OEO
Time
, 100. 00%, 0.0,1. 00%, F,F)
34136
34:51
34 1 48 35 I
35:04
~~l 1 1 1 1
00 35
35:19 35:35 35:48 36:06 &
_2
0
| i i i i i | i r i i i | i i i i — i — | — i — r—l — i — i — | — i — i — i — i — i — | — i — i — i — r-1--
:12 35:24 35:36 35:48 36:00 36:12
.4E8
.2E8
.OEO
Time
-------
File:A27
Sample#8
407.7818
1003
50_
0_
36124
409.7788
1003
50 J
\
o:
36124
417.8253
100*
-
50J
ol
36 24
419.8220
100%
-
50 J
o:
36 24
479.7165
100%
•
•
50^
oj
/
\J
v~J
36.24
430.9728
100%
50 j
o:
1
36 •**>]
SEP98M #1-197 Acq
Text: 1113-4 xl/2
:28-SEP-1998 00:37:43 GC EI+ Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
S:8 F.-4 BSUB(128,15,-3.0) PKD(3 , 5, 3 , 0 . 10%, 38808 . 0 , 1 . 00%, F, F)
36;43
,
y
36^36 36.U8
^ 37A°2 37:53
i. ^ _/"*->_
1.0E6
L5.1E5
37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
S:8 F:4 BSUB(128, 15, -3 . 0) PKD(3, 5, 3, 0 . 10%, 4500 . 0, 1 . 00%, F, F)
36:43
A
A
/ v /
J S-
36:36 36:48
S:8 F:4 BSUB(128,
36:42
/\
A
\
/ V.
36:36 36:48
S:8 F:4 BSUB (128,
36:42
A
A
A
/ v
sehe seU's
S:8 F:4 BSUB (128,
36:34
A
1 / \ /"^—v — A A /*\ S
K/ V^/ \r\jJ\>^\J\S
36:36 36:48
S:8 F:4 SMO(1,3)
36:34
36! 36 36:48'
9.4E5
, 37A°2 37:53
N^ ^/ V ^^^
L4.7E5
n rtc-n
i 1 | I r I I i | I i I i i I r— i i— i i i i i i — i—i — i — i"H — i T i i i i i — r— i — r— i — i — i — i— i — i — i i i — i — r— i — i — r— i — i — i — i— i — i i i i — r*— w • «"«
37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
15, -3.0) PKD(3,5,3,0.10%,15572.0,1.00%,F,F)
r_2.2E7
37:52
K
JL.1E7
- n nRn
I i | i i r~' i I i i i ' i I i i i r— i i i i i i — i — r"i — i — i i 1 I i i i i — r— i — i — i — i — i — i— i — i — i — i — r— i — I i i I i i i I i i i i — f — •
37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39-00 Time
15, -3.0) PKD(3,5,3,0.10%,12352.0,1.00%,F,F)
5.0E7
37:52
A
y v
_2 . 5E7
n . np.n
37:00 37:12 37:24 37:36 37:48 38:00 38 12 38:24 38:36 38:48 39 00 Time
15, -3.0) PKD (3, 3, 3, 100. 00%, 10052. 0,1. 00%, F,F)
37:31 _2.8E4
A •» Q yi c
A) \ A A 37:58 38:15 38-39 A AA
\>^AvWvA/vvV ^^lAv^-WV^Av^
_1.4E4
O.OEO
37:00 37112 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
PKD (3, 3, 3, 100. 00%, 0.0,1. 00%, F,F)
37^17 37:30 37:4437:52 3ff:05 38:19 38:2838:3638:44 3R:Rfi 3 . OEfi
.1.5E8
O.OEO
37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
-------
File:A27SEP98M #1-276 Acq:
Sample#8 Text:1113-4 xl/2
441.7427 S:8
1001
50,
o:
39? 12
443.7398 S:8
iooa
50 j
o:
39-! 12
469.7780 S:8
100%
50J
o:
39:12
471.7750 S:8
100%
50 j
0:
39:12
513.6775 S:8
100%
50;
o-
F:5 BSUB(128,
39124 39136
F:5 BSUB{128,
39124 39136
F:5 BSUB(128,
39124 39136
F:5 BSUB(128,
39:24 39:36
F:5 BSUB(128,
39:14 39:37
___y\/WAy~\-
39:12
454.9728 S:8
100% _39-12
50J
o"
;
., 39:12
*/\ /\ _/V\A_
39:24 39:36
F:5 SMO (1,3)
39:32
i i i l i i i i i I i r
39:24 39:36
28-SEP-1998 00:37:43 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DB5 OVATION
15, -3.0) PKD(3,5,3,0.10%,3572.0,1.00%,F,F)
40:31
/[
A
J V_
2.5E5
L1.2E5
: O.OEO
39:48 40:66 46:12 40:24 40:36 40:48 41:66 41:12 41:24 41:36 41:48 42:66 42:12 Time
15, -3.0) PKD(3,5,3,0.10%,6008.0,1.00%,F,F)
40A31
A
/ ^— >-4_ _
2.9E5
L1.4E5
- O.OEO
39:48 40:66 4o!l2 46:24 40 lie 40 -48 41:66 41:12 41:24 kllse 41:48 42166 42:12 Time
15, -3.0) PKD(3,5,3,0.10%,2984.0,1.00%,F,F)
40:21
A
A
/..\^
3 . 1E7
_1.5E7
LO.OEO
39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
15, -3.0) PKD(3,5,3,0.10%,1092.0,1.00%,F,F)
40:21
A
J \,
3.4E7
Ll.7E7
" O.OEO
39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
15, -3.0) PKD(3,3,3,100.00%,484.0,1.00%,F,F)
"A21
A
39-58A J \ 40:45 40:57 41A18 41:50
~^/\ /vA/\ W/W u VA-/\^-/l / ^^vW\ /"N. sSV\ l\/\J/\*. /\/\ A/V ^A_ r^X/v /V^vA_jV_A7V\_A_AA-wAA__>\A.
_1.7E4
-8.5E3
-O.OEO
39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
40:05 40:11 40:57 41:12 41:11 41:46 41:5842: OR 3 . 2R8
Ll.6E8
- O.OEO
39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
rn
-------
OPUSquan 30-SEP-1998
Page 1
Page 11
a29sep98n
11
30-SEP-98
30-SEP-98
1113-4
07feb-m23conf
m8290cf-092998n
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments ;
Typ ; Name;
Unk ; 2,3,7,8-TCDF;
ES/RT; 13C-2,3,7,8-TCDF;
Total; Tetra Furans;
DPE ; HxCDPE;
LMC ; QC CHK ION (Tetra);
00:15:21
08:57:42
Resp;
.21e+05;
.83e+08;
.236+06;
Ion 1;
1.88e+05;
8.00e+07;
3.47e+05;
Ion 2;
32e+05;
,03e+08;
, 68e+05;
RA;?
81;y
. 78,-y
.74;y
RT;
27:52;
27:50;
18:08;
;NotFnd;
;NotFnd;
Cone; DL;
0.243; 0.0788;
44.751;
3.588; 0.0788;
S/N1;?;
13;y;
3371;y;
38;y;
*;n
DivO;n
S/N2;?
10 ;y
3141;y
30;y
mod?
yes •
no
yes '
no
no
-;-; 27:52
-;-; 27:52
yes
-------
).)
a >-3 M a
TJ o co 3
ID
01
n ft
O M
8
n
M >
o o
o «
o
to
3 cr er
ft M M I
Bl
X *)
Kf e
n H
O Bl
>o 3
W M
1-3 S
o a
a i
+ a>
0 01
Ul 00 M
*> O H>
-J O -0 H
(D ID (D O
+ + + 3
O O O
Ul -J Ul H»
*>• l-» t-i
o> O Ln
00 Ul NJ H
ID ro n> o
+ + + 3
o o o
Ul 00 Ul IO
-j -j
*» <»
0 ? M^W
rr rr 00 -J -J
0 3 0 ui ui
3 3 3 3 3 a
O O O O O '0
3 O H OJ U)
CD -O M O O
to r-h H1
' n>
o tr
0 J, '
rti 3
l to
o ui
10 O
to o
VO t-h
00
cn
n w
o o
CO O
> Q)
tO
CO
3
o
tl
a
CO
%
%
CO
w
"0
10
CO
iQ
(D
IQ
(D
-------
File:A29SEP98N #1-2677 Acq:30-SEP-1998 00:15:21 GC EI+ Voltage SIR Autospec-UltimaE
Sample#ll Text:1113-4 Exp:M23_DB225
303.9016 S:ll SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1740.0,1.00%,F,F)
100%, 18,-08
23:15
22:32 A i 24:56
II ni.nr»4 Jl o-4l.no 11
y^v^y^v^-
16:00 18:00 20:00 22:00 24:00 26100 28/00
305.8987 S:ll SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,3164.0,1.00%;T,F)
1004 18:09
34:00
16:00 18:00 20.:00 22:00 24:00 26:00
315.9419 S:ll SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2556.0,1.00%,F,F)
1004 27;50
34:00
OJ
30 lob
32 I 00
36:00 Time
9.8E4
L4.9E4
20:18 22:07
2B:nm 21:30
~T
-i—i—i—i—i—i—i—i—i—i—r—i—i—i—|—i—
18:00 20:00 22:00
16:00 18:00 20:00 22:00 24:00 26:00 28:00
317.9389 S:ll SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%, 3516 . 0 ,1.00%, F, F)
100% 27;49
O
T"
T
T"
16:00 18:00 20:00 22:00 24:00 26:00 28:00 30:00
375.8364 S:ll SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,1984.0,1.00%,F,F)
lOOi
32:00
50J
0.
18:21 20:00 22:02 ,23-44 25:15 26:33 27:53 292:^64fo-30 31:54 33:07 34:25
A ' A A r^ n * r\ n f\ f^ f\ n >^ A n f\ *^ f . f\ f\ "^rt-AA TA.AA "5O.AA O^.AA
15:51 17 ,, 18:21 20:00
16iOO 18:00 20:00 22:00 24iOO 26:00 28:00 30:00 32:00 34:00 36:00 Time
316.9824 S:ll SMO(1,3) PKD(3,3,3,100 . 00%,0.0,1.00%,F,F)
1004, 15:49 17:2818:3519:42 21:20 22:46 24:1825:2626:31 __28:2jl_3J)^^^
50J
_8.9E6
34 lob
O.OEO
•j ,—i 1—r—
„ 16:00
~T 1—i—i—i—i—i 1—i—(—r~-
18:00 20:00
22:00
24:00
26:00
28:00
30:00
32:00
36:00 Time
-------
File:A29SEP98N #1-2677 Acq:30-SEP-1998 00:15:21 GC EI+ Voltage SIR Autospec-UltimaE
Sample#ll Text:1113-4 Exp:M23_DB225
303.9016 S:ll SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1740.0,1.00%,F,F)
18 08
16:00 18:00 20:00 22:00 24:00
26:00 28KOO
305.8987 S:ll SMO(1,3) BSUB (128,15,-3 . 0) PKD(3 , 3 , 3 , 0 .10%, 3164 . 0 ,1. 00%,F,,
18:09
16:00 18:00 20:00 22:00 24:00 26:00 28:00 30:00
O.OEO
00 Time
-------
Paradigm Analytical Labs
Method 23
M23-FB-1
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8--TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
tag)
ND
ND
ND
ND
ND
EMPC
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.0032
ND
ND
ND
ND
0.0000
0.0021
DL
IBS)
0.0013
0.0021
0.0017
0.0016
0.0016
0.0017
0.0137
0.0022
0.0012
0.0012
0.0009
0.0008
0.0009
0.0010
0.0016
0.0018
0.0066
0.0013
0.0021
0.0016
0.0017
0.0022
0.0012
0.0008
0.0016
EMPC
ing)
0.0033
0.0032
0.0064
0.0000
0.0021
RT
(mm.)
28:59
35:09
35:09
35:21
37:32
27:56
34:33
34:38
35:30
Ratio
0.48
1.09
1.09
1.82
1.74
0.78
1.57
1.44
0.37
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ED:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-FB-1
L1113
1113-5
27-Aug-98
08-Sep-98
15-Sep-98
28-Ser*-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
End ConCal:
Initial_Cal:
Air
1
0.0 %
a27sep98m-9
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
r
150
1/2
-------
Paradigm Analytical Labs
Method 23
M23-FB-1
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
l3C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13C12-l,2,3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
13C12-l,2,3,4,7)8-HxCDD
l*Cu-l, 2,3,4,7, &-H\CDF
l3Ci2-l,2,3,4,7,S,9-HpCD?
Injection Standards
13C12-1,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
(»g)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured
Amount
(ng)
3.35
3.53
3.80
2.99
3.30
3.19
3.01
4.16
2.49
3.62
3.69
3.87
3.33
2.28
Percent
Recovery
(%)
83.7
88.2
95.0
74.9
41.3
79.8
75.2
104.0
62.2
90.5
92.3
96.7
83.2
56.9
RT
(min.)
28:56
33:01
35:09
37:31
40:22
27:54
32:22
34:37
36:43
28:59
32:49
35:05
34:33
37:52
28:40
35:21
Ratio
0.77
1.59
1.28
1.05
0.9
0.79
1.59
0.53
0.44
1.58
1.27
0.52
0.45
, 0.8
1.28
Qualifier
Client Information
Project Name:
Sample ED:
Laboratory Information
Project ID:
Sample ED:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Reviewed by: -A '\ '
S509.000
M23-FB-1
L1113
1113-5
27-Aug-98
08-Sep-98
15-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
End ConCal:
Initial Cal:
Date
Air
1
0.0 %
a27sep98m-9
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
j
Reviewed: ^o!nf^'
r
151
2/2
-------
C/1
10
OPUSquan 28-SEP-1998 Page 1
Filename a27sep98m
Sample 9
Acquired 28-SEP-98 01:23:49
Processed 28-SEP-98 09:39:20
Sample ID 1113-5 xl/2
Cal Table m8290-091498
Results Table M8290-092798M
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
cs
cs
cs
cs
cs
ss
ss
ss
ss
ss
Name; Resp; Ion 1; Ion 2; RA;?; RT;
2,3,7,8-TCDD; 1.69e+05; 1.48e-i-04; 1.54e+05; 0.10;n; 28:59;
1,2,3,7, 8-PeCDD; *; *; *; *;n;NotFnd;
1,2,3,4,7,8-HxCDD; 3.25e-i-04,- 1.70e+04; 1.55e+04; 1.09;y; 35:09;
1,2,3,6,7,8-HxCDD; 3.25e+04; 1.70e+04; 1.55e+04; 1.09;y; 35:09;
1,2,3,7,8,9-HxCDD; 3.73e+04; 2.41e+04; 1.32e+04; 1.82;n; 35:21;
1,2,3,4,6,7,8-HpCDD; 7.41e+04; 4.71e+04; 2.70e+04; 1.74;n; 37:32;
OCDD; *; *; *; *;n;NotFnd;
2,3,7,8-TCDF; 1.69e+05; 7.40e+04; 9.47e+04; 0.78;y; 27:56;
1,2,3,7,8-PeCDF; *; * ; * ; *;n;NotFnd;
2,3,4,7,8-PeCDF; *; *; *; *;n,-NotFnd;
1,2,3,4,7,8-HxCDF; 3.57e+04; 2.18e+04; 1.39e+04; 1.57,-n; 34:33;
1,2,3,6,7,8-HxCDF; 2.75e+04; 1.62e+04; 1.13e+04; 1.44;n; 34:38;
2,3,4,6,7,8-HxCDF; *; * ; *; *;n;NotFnd;
1,2,3,7,8,9-HxCDF; 8.48e+03; 2.28e+03; 6.20e+03; 0.37,-n; 35:30;
1,2,3,4,6,7,8-HpCDF; * ; * ; *; * ,-n;NotFnd;
1,2,3,4,7,8,9-HpCDF; * ; * ; * ; *;n;NotFnd;
OCDF; *; * ; * ; *;n;NotFnd;
13C-2,3,7,8-TCDD; 2.26e+08; 9.85e+07; 1.27e+08; 0.77;y; 28:56;
13C-l,2,3,7,8-PeCDD; 1.58e+08; 9.71e+07; 6.12e+07; 1.59;y; 33:01;
13C-l,2,3,6,7,8-HxCDD; 1.49e+08; 8.35e+07; 6.54e+07; 1.28;y; 35:09;
13C-l,2,3,4,6,7,8-HpCDD; 9.87e+07; 5.05e+07; 4.82e+07; 1.05;y; 37:31;
13C-OCDD; 9.56e+07; 4.53e+07; 5.03e+07; 0.90;y; 40:22;
13C-2.3, 7,8-TCDF; 2.67e+08; 1.18e+08; 1.49e+08; 0.79;y; 27:54;
13C-l,2,3,7,8-PeCDF; 2.10e+08; 1.29e+08; 8.09e+07; 1.59;y; 32:22;
13C-l,2,3,6,7,8-HxCDF; 1.87e+08; 6.48e+07; 1.22e+08; 0.53;y; 34:37;
13C-l,2,3,4,6,7,8-HpCDF; 7.37e+07; 2.25e+07; 5.13e+07; 0.44;y; 36:43;
13C-1,2,3,4-TCDD; 2.54e+08; 1.13e+08; 1.42e+08; 0.80;y; 28:40;
13C-l,2,3,7,8,9-HxCDD; 1.49e+08; 8.37e+07; 6.54e+07; 1.28;y; 35:21;
37Cl-2,3,7,8-TCDD; 2.00e+08; 2.00e+08; -; -;-; 28:59;
13C-2/3,4,7,8-PeCDF; 1.90e+08; 1.16e+08; 7.35e+07; 1.58;y; 32:49;
13C-l,2,3,4,7,8-HxCDD; 1.09e+08; 6.09e+07; 4.79e+07; 1.27;y; 35:05;
13C-l,2,3,4,7,8-HxCDF; 1.29e+08; 4.41e+07; 8.47e+07; 0.52;y; 34:33;
13C-l,2,3,4,7,8,9-HpCDF; 3.67e+07; 1.14e+07; 2.536+07; 0.45;y; 37:52;
37Cl-2,3,7,8-TCDD; 2.00e+08; 2.00e+08; -; -;-; 28:59;
13C-2,3,4,7,8-PeCDF; 1.90e+08; 1.16e+08; 7.35e+07; 1.58;y; 32:49;
13C-l,2,3,4,7,8-HxCDD; 1.09e+08; 6.09e+07; 4.79e+07; 1.27;y; 35:05;
13C-l,2,3,4,7,8-HxCDF; 1.29e+08; 4.41e+07; 8.47e+07; 0.52;y; 34:33;
13C-l,2,3,4,7,8,9-HpCDF; 3.67e+07; 1.14e+07; 2.53e+07; 0.45;y; 37:52;
Cone ;
0.073;
* .
0.027;
0.024;
0.028;
0.082;
* .
0.063;
* .
* .
0.020;
0.013;
* .
0.005;
* .
* .
* .
83.677;
88.198;
95.033;
74.839;
82.541;
79.826;
75.175;
103.980;
62.192;
56.623;
41.793;
75.673;
69.317;
92.012;
86.545;
35.376;
90.458;
92.240;
96.705;
83.176;
56.881;
DL;
0.0324;
0.0521;
0.0436;
0.0391;
0.0403;
0.0433;
0.3428;
0.0556;
0.0301;
0.0294;
0.0236;
0.0205;
0.0227;
0.0258;
0.0388;
0.0449;
0.1646;
0.2754;
0.1418;
0.0551;
0.5216;
0.0164;
0.1615;
0.0411;
0.2266;
0.1665;
„,.
0.0539;
0.0419;
0.0731;
0.2739;
0.1903;
0.0624;
0.0242;
0.0753;
0.2485;
0.3025;
S/N1;?;
2;n;
*;n;
l;n;
l;n;
2;n;
5;y;
*;n;
5;y;
*;n;
*;n;
2;n;
2;n;
*;n;
l;n;
*;n;
*;n;
*;n;
603;y;
4508 ;y;
5869;y;
473;y;
5523;y;
945;y;
40689;y;
817;y;
782;y;
665;y;
5596;y;
4309;y;
43578;y;
5009;y;
605;y;
337;y;
4309;y;
43578;y;
5009;y;
605;y;
337 ;y;
S/N2;? mod?
18, -y
*;n
2;n
2;n
2;n
4;y
*;n
3;n
*;n
*;n
l;n
2;n
*;n
l;n
*;n
*;n
*;n
1662;y
4609;y
4672,-y
317;y
35158;y
3103;y
5969;y
2475 ;y
1413 ;y
1804;y
4722 ;y
6726;y
4204;y
1821;y
576 ;y
-; -
6726 ;y
4204;y
1821;y
576;y
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 15
-------
OPUSguan 28-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:4
Run: 15 File: a27sep98m S:9 Acq:28-SEP-98 01:23:49 Proc:28-SEP-98 09:39:20
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-5 xl/2
Amount: 0.08
Cone: 0.08
Tox #1: -
Name
of which 0.06
of which 0.06
Tox tt2: -
# RT Respnse
named and 0.02
named and 0.02
Tox #3: -
RA
2,3,7,8-TCDF
1 25:28 1.3e+04 0.94 n
1.3e+04
2 25:57 1.9e+04 0.28 n
1.96+04
3 26:00 1.56+04 0.51 n
l.Se+04
4 27:56 1.7e+05 0.78 y
1.7e+05
Cone
0.00
e
e
o.oi
4
]
0.01
4
c
0.06
unnamed
unnamed
Area Height
S/N Mod?
6.1e+03 3.3e+03 9.3e-01 n n
6.5e+03 4.0e+03 S.le-01 n n
.2e+03 1.8e+03 5.1e-01 n n
.5e+04 6.8e+03 8.8e-01 n n
4.9e+03 2.1e+03 6-Oe-Ol n n
9.7e+03 7.0e+03 9.0e-01 n n
5
7.4e+04 1.8e+04 5.1e+00 y n
9.5e+04 2.0e+04 2.6e+00 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:8
Run: 15 File: a27sep98m S:9 Acq:28-SEP-98 01:23:49 Proc:28-SEP-98 09:39:20
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-5 xl/2
Amount: 0.21
Cone: 0.21
Tox #1: -
Name
of which 0.07
of which 0.07
Tox #2: -
# RT Respnse
named and 0.14
named and 0.14
Tox #3: -
RA
2,3,7,8-TCDD
1 25:46 6.9e+04 0.85 y
6.9e+04
2 25:53 8.5e+03 1.26 n
8.5e+03
3 28:08 1.4e+04 2.07 n
1.4e+04
4 28:56 1.8e+05 0.19 n
1.8e+05
5 28:59 1.7e+05 0.10 n
1.7e+05
6 29:17 l.le+04 2.73 n
l.le+04
7 29:20 9.8e+03 2.40 n
9.86+03
8 29:33 1.7e+04 2.01 n
1.7e+04
Cone
0.03
0.00
4
T
0.01
c
4
0.08
3
:
0.07
i
]
0.00
1
0.00
6
0.01
unnamed
unnamed
Area Height
S/N Mod?
3.2e+04 l.Oe+04 2.9e+00 n n
3.7e+04 7.6e+03 3.7e+00 y n
4.8e+03 2.6e+03 7.3e-01 n n
3.86+03 2.3e+03 l.le+00 n n
1
9.56+03 4.9e+03 1.4e+00 n n
4.6e+03 3.76+03 1.8e+00 n n
3.0e+04 l.le+04 3.1e+00 y n
1.5e+05 3.66+04 1.8e+01 y n
1.5e+04 7.3e+03 2.1e+00 n n
l.Se+05 3.6e+04 1.8e+01 y n
7.9e+03 3.9e+03 l.le+00 n n
2.9e+03 1.66+03 7.86-01 n n
3
6.9e+03 3.5e+03 l.Oe+00 n n
2.9e+03 1.6e+03 7.8e-01 n n
L
l.le+04 4.8e+03 1.3e+00 n n
5.6e+03 2.2e+03 l.le+00 n n
Page 3 of E
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:2
r
153
-------
OPUSquan 28-SEP-1998 Page 2
Run: 15 File: a27sep98m S:9 Acg:28-SEP-98 01:23:49 Proc:28-SEP-98 09:39:20
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3 .5 17-APR-1997 11:14:34 Sample text: 1113-5 xl/2
Amount: 0.01 of which * named and 0.01 unnamed
Cone: 0.01 of which * named and 0.01 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1 30:48 1.4e+04 0.51 n 0.01
1.4e+04 4.9e+03 2.7e+03 l.le+00 n n
9.6e+03 5.8e+03 8.1e-01 n n
2 30:52 l.le+04 0.98 n 0.01
l.le+04 5.3e+03 2.1e+03 8.6e-01 n n
5.4e+03 4.3e+03 6.0e-01 n n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:0
Run: 15 File: a27sep98m S:9 Acg:28-SEP-98 01:23:49 Proc:28-SEP-98 09:39:20
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-5 xl/2
Amount: * of which * named and * unnamed
Cone: * of which * named and * unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1 NotF» * * n *
* * * * n n
* * * n n
-------
OPUSguan 28-SEP-1998
Page 3
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:23
Run: 15 File: a27sep98m S:9 Acq:28-SEP-98 01:23:49 Proc:28-SEP-98 09:39:20
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-5 xl/2
Amount : 0.20
Cone: 0.20
Tox #1: -
Name
of which 0.04
of which 0.04
Tox #2: -
# RT Respnse
1 34:24 1.5e+04
named and 0.16
named and 0.16
Tox #3: -
RA Cone
unnamed
unnamed
Area Height
S/N Mod?
2.52 n 0.01
1.5e+04
1,2,3,4,7,8-HxCDF 2 34:33 3.6e+04 1.57 n 0.02
3.6e+04
1,2,3,6,7,8-HxCDF 3 34:38 2.8e+04 1.44 n 0.01
2.8e+04
4 35:06 2.2e+04 2.40 n 0.01
2.2e+04
5 35:09 1.8e+04 0.50 n 0.01
1.8e+04
6 35:10 2.4e+04 0.98 n 0.01
2.4e+04
7 35:15 1.7e+04 2.44 n 0.01
1.7e+04
8 35:18 l.le+04 1.37 y 0.01
l.le+04
9 35:21 2.5e+04 0.79 n 0.01
2.5e+04
10 35:24 1.3e+04 0.94 n 0.01
1.3e+04
11 35:28 1.3e+04 1.06 y 0.01
1.3e+04
1,2,3,7,8,9-HxCDF 12 35:30 8.5e+03 0.37 n 0.01
8.5e+03
13 35:33 1.7e+04 2.97 n 0.01
1.7e+04
14 35:37 1.8e+04 1.07 y 0.01
1.8e+04
15 35:42 1.3e+04 2.02 n 0.01
1.36+04
16 35:50 1.3e+04 0.52 n 0.01
1.3e+04
17 35:55 1.7e+04 4.22 n 0.01
1.7e+04
18 35:58 l.Oe+04 0.59 n 0.01
l.Oe+04
19 36:01 9.2e+03 0.48 n 0.01
9.2e+03
l.le+04 6.6e+03 2.0e+00 n n
4.2e+03 1.9e+03 6.3e-01 n n
2
2.2e+04 8.0e+03 2.4e+00 n n
1.4e+04 4.6e+03 1.5e+00 n n
L
1.6e+04 5.9e+03 1.8e+00 n n
l.le+04 4.8e+03 1.6e+00 n n
1.6e+04 7.4e+03 2.2e+00 n n
6.6e+03 4.5e+03 1.5e+00 n n
L
6.1e+03 5.2e+03 1.6e+00 n n
1.2e+04 3.7e+03 1.2e+00 n n
L
1.2e+04 4.7e+03 1.4e+00 n n
1.2e+04 3.7e+03 1.2e+00 n n
L
1.2e+04 6.9e+03 2.1e+00 n n
4.8e+03 2.4e+03 7.8e-01 n n
6.6e+03 3.9e+03 1.2e+00 n n
4.8e+03 2.4e+03 7.8e-01 n n
L
l.le+04 6.1e+03 1.8e+00 n n
1.4e+04 3.3e+03 l.le+00 n n
6.3e+03 4.6e+03 1.4e+00 n
6.7e+03 2.9e+03 9.2e-01 n
6.6e+03 4.8e+03 1.5e+00 n n
6.2e+03 3.1e+03 9.9e-01 n n
2.3e-i-03 1.9e+03 5.7e-01 n
6.2e+03 3.1e+03 9.9e-01 n
1.3e+04 5.3e+03 1.6e+00 n n
4.3e+03 2.9e+03 9.5e-01 n n
1
9.2e+03 5.3e+03 1.6e+00 n n
8.5e+03 3.9e+03 1.3e+00 n n
L
8.6e+03 4.3e+03 1.3e+00 n n
4.3e+03 1.6e+03 5.3e-01 n n
L
4.6e+03 3.2e+03 9.8e-01 n n
8.8e+03 2.3e+03 7.5e-01 n n
1.4e+04 6.1e+03 1.8e+00 n n
3.3e+03 1.5e+03 5.0e-01 n n
L
3.9e+03 3.3e+03 l.Oe+00 n n
6.6e+03 3.3e+03 l.le+00 n n
L
3.0e+03 1.86+03 5.5e-01 n n
6.3e+03 2.1e+03 6.7e-01 n n
155
-------
OPUSquan 28-SEP-1998
Page 4
20 36:03 l.Oe+04 0.64 n 0.01
l.Oe+04
21 36:07 1.6e+04 1.61 n 0.01
1.6e+04
22 36:13 5.46+03 1.33 y 0.00
5.4e+03
4.06+03 2.7e+03 8.2e-01 n n
6.36+03 2.1e+03 6.7e-01 n n
l.Oe+04 3.7e+03 1.le+00 n n
6.2e+03 4.6e+03 1.5e+00 n n
3.le+03 1.46+03 4.3e-01 n n
2.3e+03 1.9e+03 6.3e-01 n n
23 36:17 l.le+04 3.03 n 0.01
l.le+04
8.5e+03 1.9e+03 5.6e-01 n n
2.8e+03 2.0e+03 6.6e-01 n n
156
-------
OPUSguan 28-SEP-1998
Page 5
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:20
Run: 15 File: a27sep98m S:9 Acq:28-SEP-98 01:23:49 Proc:28-SEP-98 09:39:20
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-5 xl/2
Amount: 0.25
Cone: 0.25
Tox #1: -
Name
1,2,3,6,7,8-HxCDD
of which 0.05
of which 0.05
Tox #2: -
named and 0.20
named and 0.20
Tox #3: -
#
RT Respnse
RA
1 34:33 6.4e+04 4.86 n
6.4e+04
2 34:42 3.8e+04 2.57 n
3.8e+04
3 34:49 8.2e+03 2.80 n
8.2e+03
4 34:54 l.Oe+04 1.27 y
l.Oe+04
5 34:57 1.8e+04 0.66 n
1.8e+04
6 35:09 3.3e+04 1.09 y
3.3e+04
7 35:12 7.6e+03 1.34 y
7.6e+03
8 35:17 7.9e+03 1.10 y
7.9e+03
1,2,3,7,8,9-HxCDD 9
35:21 3.7e+04
3.7e+04
1.82 n
10 35:30 8.6e+03 0.98 n
8.6e+03
11 35:36 1.4e+04 0.92 n
1.4e+04
12 35:38 l.le+04 0.51 n
l.le+04
13 35:45 l.Oe+04 0.22 n
l.Oe+04
14 35:51 7.2e+03
7.2e+03
0.95 n
15 35:54 l.Oe+04 1.06 y
l.Oe+04
16 36:01 l.le+04 5.09 n
l.le+04
17 36:02 8.2e+03 3.68 n
8.2e+03
18 36:07 6.2e+03 0.77 n
6.2e+03
19 36:12 1.2e+04 0.88 n
1.2e+04
Cone
0.05
C
1
0.03
]
0.01
«
0.01
C
A
0.01
3
0.02
]
]
0.01
4
0.01
4
1
0.03
:
o.oi
unnamed
unnamed
Area Height S/N Mod?
5.3e+04 2.2e+04 5.5e+00 y n
l.le+04 4.0e+03 l.le+00 n n
3
2.7e+04 9.5e+03 2.3e+00 n n
l.le+04 4.2e+03 1.2e+00 n n
6.0e+03 2.7e+03 6.5e-01 n n
2.2e+03 1.5e+03 4.2e-01 n n
L
5.8e+03 2.2e+03 5.3e-01 n n
4.6e+03 2.7e+03 7.3e-01 n n
L
7.2e+03 3.6e+03 8.7e-01 n n
l.le+04 4.5e+03 1.2e+00 n n
.7e+04 6.0e+03 1.5e+00 n n
.6e+04 6.7e+03 1.8e+00 n n
4.4e+03 3.0e+03 7.2e-01 n n
3.2e+03 2.5e+03 6.8e-01 n n
4.2e+03 2.5e+03 6.2e-01 n n
3.8e+03 2.2e+03 6.1e-01 n n
3
2.4e+04 7.5e+03 1.8e+00 n n
1.3e+04 6.7e+03 1.8e+00 n n
0.01
0.01
0.01
0.01
0.01
4.3e+03 1.5e+03 3.7e-01 n n
4.3e+03 1.4e+03 3.9e-01 n n
L
6.56+03 3.9e+03 9.5e-01 n n
7.1e+03 3.0e+03 8.1e-01 n n
L
3.6e+03 1.8e+03 4.5e-01 n n
7.1e+03 3.0e+03 8.1e-01 n n
L
1.9e+03 1.2e+03 2.8e-01 n n
8.5e+03 2.9e+03 7.9e-01 n n
L
3.56+03 1.6e+03 3.9e-01 n n
3.7e+03 2.4e+03 6.6e-01 n n
I
5.3e+03 2.4e+03 5.9e-01 n n
5.0e+03 4.06+03 l.le+00 n n
0.01
0.01
0.00
0.01
9.0e+03 3.16+03 7.5e-01 n n
1.8e+03 1.2e+03 3.2e-01 n n
L
6.5e+03 2.6e+03 6.3e-01 n n
1.8e+03 1.2e+03 3.2e-01 n n
3
2.7e+03 1.3e+03 3.1e-01 n n
3.56+03 2.16+03 5.8e-01 n n
L
5.7e+03 1.7e+03 4.0e-01 n n
6.4e+03 3.8e+03 l.Oe+00 n n
157
-------
OPUSguan 28-SEP-1998 Page 6
20 36:18 1.3e+04 0.81 n 0.01
1.3e+04 5.8e+03 2.8e+03 6.8e-01 n n
7.26+03 4.3e+03 1.2e+00 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:3
Run: 15 File: a27sep98m S:9 Acq:28-SEP-98 01:23:49 Proc:28-SEP-98 09:39:20
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-5 xl/2
Amount: 0.03 of which * named and 0.03 unnamed
Cone: 0.03 of which * named and 0.03 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name tt RT Respnse RA Cone Area Height S/N Mod?
1 38:14 6.5e+03 2.23 n 0.01
6.5e+03 4.5e+03 2.0e+03 5.9e-01 n n
2.0e+03 6.8e+02 3.0e-01 n n
2 38:16 8.4e+03 3.18 n 0.01
8.46+03 6.4e+03 1.9e+03 5.6e-01 n n
2.0e+03 6.8e+02 3.0e-01 n n
3 38:38 1.2e+04 2.65 n 0.01
1.2e+04 8.56+03 3.0e+03 8.8e-01 n n
3.2e+03 1.5e+03 6.56-01 n n
-------
OPUSquan 28-SEP-1998 Page 7
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:4
Run: 15 File: a27sep98m S:9 Acq:28-SEP-98 01:23:49 Proc:28-SEP-98 09:39:20
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-5 xl/2
Amount: 0.21 of which 0.08 named and 0.13 unnamed
Cone: 0.21 of which 0.08 named and 0.13 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1 36:43 3.2e+04 5.03 n 0.04
3.2e+04 2.6e+04 1.2e+04 3.8e+00 y n
5.3e+03 2.4e+03 1.3e+00 n n
2 36:57 7.3e+04 0.93 y 0.08
7.3e+04 3.5e+04 1.3e+04 4.3e+00 y n
3.8e+04 l.Oe+04 5.5e+00 y n
l,2,3,4,6,7,8-HpCDD3 37:32 7.4e+04 1.74 n 0.08
7.4e+04 4.7e+04 1.5e+04 4.8e+00 y n
2.7e+04 7.5e+03 4.0e+00 y n
4 38:41 1.3e+04 0.45 n 0.01
1.3e+04 4.0e+03 2.2e+03 7.1e-01 n n
9.0e+03 3.9e+03 2.1e+00 n n
159
-------
File:A2'7SEP98M #l-b29
Acq:28-SEP-1998 01
Sample#9 Text: 1113-5 xl/2
319.8965 S:9 BSUB(128, 15 , -3 . 0) PKD(3,3,2
100%
50 J
0 "
23:24 23j51k
23:i4i i » n y&-.
yJWlNWWvivl
"-1 1 1 1 1 1 1 r
24:00
321.8936 S:9 BSUB(128
1003
50J
0 "
23:15 24:00
" '- i 'i - i 1 1 i r
24:00
331.9368 S:9 BSUB(128
100%
sol
o •
"-1 1 1 1 1 1 1 r
24:00
333.9339 S:9 BSUB(128
100%
50 J
n •
U-l , i 1 . 1 1 r
24:00
327.8847 S:9 BSUB(128
100%
50J
n •
u-" i— — i 1 1 P 1 r
24:00
316.9824 S:9 SMO(1,3)
100% 91-44 24
50J
o •
u-> , 1 1 1 1 1 r
24:00
Tj30 , 25:05
'25! od
,15, -3.0) PKD(3,3,2
24:31 25:17
25 100
,15, -3.0) PKD(3,3,2
— i 1 1 — t— | i i
25:00
,15, -3.0) PKD(3,3,2
25100
,15, -3.0) PKD(3,3,2
25 100
PKD(3,3,3,100.00%,
:13 24:42 2
' 25:00
:23:49 GC EI + Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
, 0.10%, 3544. 0,1. 00%, F,F)
25:46 27:53 28:56
I31/l 2lp=21_ ^27^05 27 : 36 1 L : 08 28 : 38 Lj 29:33 ^
\J-\^\pfJ^^
1. JE4
L6.3E3
LO.OEO
26100 27loO 28loO 29loO 3oloO Time
, 0.10%, 2072. 0,1. 00%, F,F)
28:57
A
f\
^y\4 2A^.9 26:51 ILi^L^J^v^li^^^
3.9E4
_2.0E4
O.OEO
26 loo 27:00 28:00 29! 00 3oloO Time
, 0.10%, 36832. 0,1. 00%, F,F)
28,40
11 l\
A A
2.5E7
_1.2E7
_O.OEO
26 lod 27 loo 28 loo 29:00 30:00 Time
, 0.10%, 17296. 0,1. 00%, F,F)
28,40
11 A
/ l / V
3.1E7
_1 . 6E7
_O.OEO
26:00 27:00 28loO 29:00 30:00 Time
, 0.10%, 10368. 0,1. 00%, F,F)
28:57 _4.5E7
rt
l\
12.2E7
O.OEO
26 loo 27:00 28loO 29:00 30:00 Time
0.0,1.00%,F,F)
5-34 26-03 26-27 26:52 27:lfi_ 7.1 • W 28:0^ 7.R-17 29^4 ^9 = 40 in-.QK 8 . 5E7
_4.3E7
O.OEO
26 100 27 100 28 100 29:00 30:00 Time
-------
File:A27SEP98M #1-237 Acq:28-SEP-1993 01:23:49 GC EI+ Voltage SIR Autospec-UltimaE
Sample#9 Text:1113-5 xl/2 Exp:EXP_M23_DB5_OVATION
355.8546 S:9 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,10608.0,1.00%,F,F)
100%, 32;22
32:49
50J
0.
30:44
33:38
30.:36 30 Us ' siSod ' 31! 12
11.2E4
.0 .OEO
Time
31:36 31:
357.8517 S:9 F:2 BSUB(128,15,-3.0) PKD(3,3,2 , 0.10%, 6036.0,1.00%,F,F)
32:21
T rv c A fl l\ 11 . *•) ^ T 1 • c; f^ A
30:40
so:
32!6d ' 32! 12 ' 32! 24 ' 32! 3 6 ' 32I48 ' 33!6d
33:02
i ' I ' ' ' ' ' I ' '
33:24 33:36
33:26
15.1E3
10.OEO
J~~i ii—( i—|—'—i—i—i—i—|—i—i—i—i—i—]—i—i—i—F—r~\—i—i—i—i—i—|—i—r~t—r—i—|—i—i—i—i—i—i—i—i—i—i—r—r—i—i—i—i—i—i—i—i—i—F—i—i—i—i—i—i—i—i—r—i—i—i—i—i—i—r—i—i—i—i—i—i—i—i—i—i—j—i—p—i—i—i—i—r
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
367.8949 S:9 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,11416.0,1. 00%, F, F)
100%
50J
33:01
\
/A
L2.6E7
10.OEO
3b!36 ' 3b!48 ' 3i!6d ' 3i!l2 ' 31:24 ' 3l!36 ' 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
Time
369.8919 S:9 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,7132.0,1.00%,F,F)
100%,
so:
33:01
L1.6E7
" 'i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i | i i i i i | i i i i r| IT i i i i i i i i i | i i i i i i i i i1 •
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
366.9792 S:9 F:2 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100%
50J
30:40 30:52
31:15 31:32 31:49 32^00 32jl2 32^25.
33:42 1.1E8
[.5.5E7
•
*i- I i i i i i I i i — i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i | i i i i i i i i i i i | ..... i i i i i i | i i i i i i i i i i i | i i i i i | — i i i i i | i i •
.3;0:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
-------
File:A27SEP98M #1-197 Acq:28-SEP-1998 01:23:49 GC KJ >- Voltage SIR Autospec-UltimaE !
Sample#9 Text: 1113-5 xl/2
Exp : EXP_M23_DB5_OVATION
389.8156 S:9 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 4116 . 0 , 1 . 00%, F, F)
100%
34:38 _3.1E4
34:33H
50J A
34:16 /
33:58 TV 34:2^
/ B4 • 42
V \ A 34-57 35:09 35:21
_1.6E4
A rt r*A
i 1 ' ' ' ' ' I ' ' ' ' ' l ' ' ' ' ' 1 ' ' ' ' ' I ' ' ' ' ' I I ' ' ' ' ' l i i i i i i I, i i ' " • uc-u
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35I24 35^36 3sUs 36loO 3ell2 Time
391.8127 S:9 F:3 BSUB (128, 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 3668 . 0, 1 . 00%, F, F)
100%
34:3
: 34:03 34i16 fS
: ¥x48A /\ A ^A A 34/vf\ 1
: \[\/\f\r*J\l \^ \J \jv^^
Q -7J?T
i TC.-rn "3C;.O1
*P\"}/i/io JD:J.U oo.^j.
\ A A A 36:04 36-14i
\ y \/\48 Ax3yVr 1 n 1 35:3n35A41 A A MA A A/A
^^C\A/ Y^i 1 vW 1 \T^^/{ P{ J\£s\ n^
1 | I 1 t—l 1 1 1 1 i 1 l r— I i i l r-T l I l l r i T i- i T i i -r i r ~i i r-i i— i — r— T — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — | — i — i — i — i — i — j — ] — | — i — | — ) — | — , —
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35136 35148 36loO 36-.12
_4.6E3
o . OEO
Time
401.8559 S:9 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5, 2, 0 . 10%, 6344 . 0 , 1 . 00%, F, F)
100%
.
so:
0" _,
33:48 34:00 • 34il2 34:24 34
,_ 35:09 35:21 _3.7E7
A ^ A
M n
_1.9E7
"1 r r ^"T i j i i i i T~ mr~~f " i r i T |" T i v i — i |*l' ) i i i i i — i — i — ( — i — i — i — i — i — i — r— | — i r i — i — » — r i 7 — r-r~^ ~ •
:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36ll2 Time
403.8530 S:9 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5,2, 0 . 10%, 6020 . 0, 1 . 00%,F,F)
100%
50J'
n'
33:48 34:00 34:12 34:24 34
380.9760 S:9 F:3 SMO(1,3) PKD(3 , 3 , 3 , 100
35:09 35:21
/i rt A
M f\
n\ i\
_2 . 8E7
11.4E7
O.OEO
136 34148 35.-00 35:12 35124 35136 35148 3eloO 36.!12 Time
.00%, 0.0,1. 00%, F,F)
100% 33:53 34:11 34:22 - 34:34 34:53 35:09 35:33 35:43 36:01 36:14 3 . 8E8
./
50:
n:
— f^.1' l — I — i — l — l — I l — i — i l — i — 1 I l i r ""T ' pp l 'T l"" l l
33^:48 34:00 34:12 34:24 34
.1.9E8
O.OEO
[ 1 r ill 1 F T^ i i ~T" 1 i l I 1 I 1 r i i i r T i i I 1 1 1 I i i I 1 i i F f'~~~i 1 1 r i i i T 1 1 1 "1" I
:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
-------
File:A27SEP98M #1-197 Acq:28-SEP-1998 01:23:49 GC EI+ Voltage SIR Autospec-UltimaE
Sample#9
423.7767
IOCS
50_
^^
36J24
425.7737
lOOSj
50"
:
36
\A^V
36 24
435.8169
lOOSj
so:
0:
36.24
437.8140
100%
so:
0"
36-24
430.9728
1004 36.^2
so:
0:
/
340 lfi-49 38-57 2 6E8
.1.3E8
o . np.o
36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
-------
File:A27SEP98M #1-276 Acq:28-SEP-19^8 01:23:49 GC EI + Voltage SIR Autospec-UltimaE
Sample#9 Text:1113-5 xl/2 Exp:EXP_M23_DB5_OVATION
457.7377 S:9 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,13136.0 ,1.00%, F,F)
100%. 40;22
50J
39:07
59
42:08
_3.0E4
11.5E4
.O.OEO
39:12 ' 39:24 ' 39:36 39:48 40:66 ' 40:12 4o!24 4ol36 40:48 ' 4l!66 4i!l2 ' 41:24 41:36 ' 41:48 42:66 42:12 Time
459.7348 S:9 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2332.0,1.00%,F,F)
100%, 40;22
50J
39:35 39:46 39:58
2.5E4
L1.2E4
Q. OEO
39:12 ' 39:24 39:36 ' 39:48 40:66 40:12 ' 40:24 ' 40:36 46:48 ' 41:66 41:12 4i:24 41:36 4i!48 42166 42:12 Time
469.7780 S:9 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2316.0,1.00%,F,F)
1004 40^22
50J
0.
,_6.4E6
O.OEO
' ' 39112 ' 39124 ' 39136 ' SgUs ' 4o!66 ' 4o!l2 ' 4o!2'7 ' 4o!36 ' kbUs ' 4l!6o ' 4i!i2 ' 4ll24 ' 4l!36 ' 4l!48 ' 42!o6 ' 42ll2 Time
471.7750 S:9 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,404.0,1.00%,F,F)
100%
50J
0.
40^22
-7.1E6
.O.OEO
' ' 39li2' ' 39124 ' 39136 ' 39I48 ' 4o!66 ' 46!l2:
40:36 46:48 4i:66 41:12 4i:24 41:36 41:48 ' 42:66 42:12 Time
454.9728 S:9 F:5 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
1004 39:12 19:46 Afl:13 4Q:27
so:
41
41:34
.2.7E8
_1.4E8
| | | | | | ,,,,,,,. Q • OEO
40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
"> ' 39112 ' 39124 ' 39I36 ' 39148 ' 4o!66
4o!24
-------
File:A27SEP98M #1-529 Acq:28-SEP-1998 01:23:49 GC EI + Voltage SIR Autospec-UltimaE
Sample#9 Text:1113-5 xl/2 Exp:EXP_M23_DB5_OVATION
303.9016 S:9 BSUB(128,15,-3.0) PKD (3,3,2,0.10%,3520.0,1.00%,F,F)
100%. 27:19 27;56
23:13
0-
"2.
18
T"
Lo
. OE4
.OE4
.OEO
Time
.7E4
.3E4
.OEO
Time
.7E7
.3E7
.OEO
Time
.4E7
.7E7
.OEO
Time
T
24100 25iOO 26:00 27:00 28:00 29:00 30:00
305.8987 S:9 BSUB(128,15,-3.0) PKD (3,3,2,0.10%,7756.0,1.00%,F,F)
100%, 27:20 27:57
23:49
23:13 23:3
30:18
rr
~T
29:00
_1
1 1-
24iOO 25100 26100 27:00
315.9419 S:9 BSUB(128,15,-3 . 0) PKD(3,3,2,0.10%,28492.0,1.00%,F,F)
100%,
30
2.
O
T
29 loo'
30 !00
—I - 1 - 1 r ....... r-
24:00
1 - 1 - r ' i T
25:00
26:00 27:00
317.9389 S:9 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,10920.0,1.00%, F, F)
100%
50J
Oj
3.
30: 00
i i i i
-i 1 1 r
25:00
1 1 1 1 1 r-
24:00 25:00 26:00 27:00
375.8364 S:9 BSUB(128,15,-3.0) PKD(3 , 3,3,100.00%,196.0,1.00%, F, F)
100% 23 29
50J
28:00
29:00
25:01
24:28 I25;13 25;44
fJ^J-
24100 25:00 26:00 27:00 28:00 29:00 30:00
316.9824 S:9 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 23:44 24:13 24:42 25:34 26 : 03 26 :27 26 : 52 27 :16 27 : 42 28 : Q5 28:37 2£U4 ..2.9 : 40 . .3.0 :fl6
OJ
28 loo'
29 loo'
30 I 00
L4
Lo
5E7
3E7
OEO
Time
-i 1 1 1 1 1 1 1 1 r-
24:00 25:00
2 6 loo'
27 I 00
C/l
-------
iFile:A27SEP98M #1-237 Acq:28-SEP-1998 01:23:49 GC EH- Voltage SIR Autospec-UltimaE
Sample*9 Text:1113-5 xl/2 Exp:EXP_M23_DB5_OVATION
339.8597 S:9 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,2400.0,1.00%, F, F)
100* 31:48
50.
OJ
30:44
33:37
1.2E4
L5.9E3
T
30:36 30U8 3liOO 3l!l2 3i:24 3l!36 31:48 32:66 32:12 32:24 32:36 32:48 33:66 33112 ' 33I24 ' 33;36
341.8568 S:9 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,7076.0,1.00%,F,F)
100% 30^47
32:09 32:34 32:50 33:35
~t f\ . A M l\ \ •< I • I )/L II A J -L . J J I ft -t O . 1 •-!
50^
OJ
lO.OEO
Time
1.4E4
_7.1E3
30i36 ' SOUS ' 3l!66 ' 3lli2 ' 31124 ' 3l!36
I ' i ' i ' l i ' i i ' I ' ' i i ' I ' i i ' i I i i i i i I i i i i i I i i i i i I i i
:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
351.9000 S:9 F:2 BSUB(128,15,-3 . 0) PKD(3,3,2,0.10%,1608.0,1.00%,F,F)
100% 32:22 32;49
O.OEO
Time
4' ' 33l36
7 . OE7
13.5E7
1 I ' ' ' ' ' I ' ' ' ' ' I | i i i i i | i i i i i | i i i i-Tyi i i i i | i i i i i | i i i -i i |-1 i i r i | i i i i I-1 i -i i i i I i i i i i i i i i i i i i i i
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
lO.OEO
Time
353.8970 S:9 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,6732.0,1.00%,F,F)
lOOi
50 j
OJ
32:22
32:49
4.5E7
_2.3E7
LO.OEO
Time
1.2E4
L6.1E3
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:2433-36
409.7974 S:9 F:2 BSUB(128,15,-3 .0) PKD(3,3,3,100.00%,836.0,1.00%,F,F)
100% 31,-15 _ 32;33
30:58
33:01
30
.O.OEO
Time
.1.1E8
.5.5E7
.O.OEO
Time
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33124 ' 33536
66.9792 S:9 F:2 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
30:40 30:52 31:15 31:32 31:49 32^00 32:12 32:25 33:46 33;03 33:13 3_3_i4J
50J
O
I i i i i i l i i i i i l i i i i i l i i i i i i i i i i i i i i i i i l i i i i i l i i i i i l i i i i i i i i i i i i i i i i i i i i i i i i i i i i i—i i i i i i i—i i i i i i i r i
3-Oi:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
-------
File:A27SEP99M #1-197 Acq:28-SEP-1998 01:23:49 GC EH- Voltage SIR Autospec-UltimaE
Sample#9 Text:1113-5 xl/2 Exp:EXP_M23_DB5_OVATION
373.8207 S:9 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,3300.0,1.00%,F,F)
33:48 34 !do 34! 12 34 S 24 34! 36 34: 48 35:00' ' '35! 12' ' '35 124' ' '3 5.'36' ' '35! 48' ' VsSdo' ' '36:12
375.8178 S:9 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,3088.0,1.00%,F,F)
100*33:45 ,. _ 34:37 35:Q5
33:48 34:00 34:12 34124 34i36 34:48 35iOO
383.8639 S:9 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,35568.0,1.00%,F, F)
100% 34:37
34:33|
35lie' ' '35T48
I I I I I I I
36:00 36:12
OJ
-[—i—i—i—i—i—l—l—i—i—i—l—l—i—i—T-"T—r—"|—i—f I i l |—l—i—i—l l T i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
385.8610 S:9 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,22808.0,1.00%,F,F)
100% 34:37
: 34:33/
50 j
ol . . . . T
lO.OEO
Time
6.1E3
_3.1E3
.O.OEO
Time
2.9E7
.1.5E7
O.OEO
Time
5.6E7
_2 . 8E7
LO.OEO
Time
33148 34:00 34:12 34J24 34:36 34:48 35:00 35:12 35:24 35:36 3514836:00
445.7555 S:9 F:3 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,704.0,1.00%,F,F)
100% 35;09 35:21
501
33:48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
80.9760 S:9 F:3 SMO(1,3) PKD(3,3,3,100.00%, 0.0,1.00%, F, F)
100%__23_i53 34:11 340,2 34:34 34;B3 . 35:»9 15.^33 35^:43 36:01 36:14
.O.OEO
Time
3.8E8
:1.9E8
r~F I—T~~i—r~T—r—i—i—i—i—I—i—i—I—I—i—[—i—i—i—i—I—I—i—i—i—i—i—I—i—T—T—T—I—i—I—i—i—i—i—I—T—i—i—r—i—I—i—TT—i—i—i—i—r—i—i—i—i—i—i—r—T—i—i—r—r—i—I—i—r—i—i—i—r
£S>?48 34:00 34:12 34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
.O.OEO
Time
-------
File:A27SEP98M #1-197 Acq:28-SEP-1998 01:23:49 GC EI+ Voltage SIR Autospec-UltimaE
Sample#9 Text: 1113-5 xl/2 Exp:EXP_M23_DB5_OVATION
407.7818 S:9 F:4 BSUB(128, 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 3376 . 0, 1 . 00%, F, F)
1004
50J
O
8;41 38:54
7.5E3
L3.8E3
O.OEO
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
409.7788 S:9 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2264.0,1.00%,F,F)
100%, 36N43
37:54
38:12 38:24 38:36 38:48 39:00 Time
7.1E3
L3.5E3
10.0EO
36 UV ' '37! do' ' '37! 12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
36:24 36:36
417.8253 S:9 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,12356.0,1.00%,F,F)
100% 36;43
37:52
9.7E6
L4.8E6
O.OEO
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
419.8220 S:9 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,15904.0,1.00%,F,F)
100%, 36:43
50J
38:12 38:24 38:36 38:48 39iOO Time
_2.2E7
37:52
•h—p—i—i—i—i—I—r—l—i—l T I—l—l—l—l—i—|—i—l—i—l—i—I—i—l—i—i—i—I—i—i—i—I—i—|—i—i—i—i—i,,,,.,
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
T
O.OEO
479.7165 S:9 F:4 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,6192.0,1.00%,F,F)
100%, • 37:31 38;04
36:47
50J
OJ
36:36
38:44
1.6E4
L7.9E3
LO.OEO
T—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—|—i—I—i—i—I—I—I—i—i—i—i—I—I—i—I—i—I—I—I—I—I—i—i—I—i—I—I—I—i—I—i—i—I—l—i—|—i—I—i—r—l—|—i—i—i—r—l—l—i—i—i—i—i—|—l—i—i—i—i—r
36:24 36:36 36:48 37:00 37:12 37:24 37136 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
430.9728 S:9 F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0 ,1.00%,F, F)
100* 36:28 __ _36:43 36:56 37:12 .12:38.
50J
38:06
•7.7. 38:32 3fl.-40 3ft .-49 38 .- 57 2 . 6E8
1.3E8
O.OEO
VeUV ' '371 DO 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
-------
File:A27SEP98M #1-276 Acq:28-SEP-1998 01:23:49 GC EI+ Voltage SIR Autospec-UltimaE
Sample#9 Text:1113-5 xl/2 Exp:EXP_M23_DB5_OVATION
441.7427 S:9 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2904.0,1.00% , F, F)
100%
50.;
39:17
40:35
41:11 .41:24
41:42
42:10
1 ' ' | | | | | i i i i i | i i i i i | | i i i i i I i i i i i I i i i i i i i i i i i | i i i i i I i i
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36
443.7398 S:9 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,5096.0,1.00%,F,F)
100%
6.9E3
13.5E3
LO.OEO
41:48 42:00 42:12 Time
50J
flv\
I I I I ' I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36
469.7780 S:9 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2316.0,1.00%,F,F)
100% 40:22
41:48 42:00 42:12 Time
1.3E7
L6.4E6
LO.OEO
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36
471.7750 S:9 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,404.0,1.00%,F,F)
100% 40,;22
50 j
OJ
41:48 42:00 42:12 Time
1.4E7
17.1E6
i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i-i i i i i i i i i i i i i i i i i i i i i | i i i i i | i i i i i | i i i i i | i i
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36
513.6775 S:9 F:5 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,552.0,1.00%,F,F)
100% 40;22 40.44 41;00
T
T
.O.OEO
i i i i i i i i i i i i i i i i i ri i i i i i i i i i r~i fi i i i i i i i i i i i | i i i i i | i i i i i | i i i i i | i i i i i | i i i i i |
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36
454.9728 S:9 F:5 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 32.LL2 -W-.AR 4^13 40:27 40:38 40:50
50J
41 :
41
41:48 42:00 42:12 Time
8.8E3
_4.4E3
O.OEO
41 [48 42^00 42112 Time
41-49 4?:07 2.7E8
i i i i i i i i I i i i i i I i i i i i I i i i i i I | i i i i i | i i i i i | i i i i i | i i i i i | i i i i i | i i i i i | i i i i i | i i
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36
.1.4E8
O.OEO
41:48 42:00 42:12 Time
-------
Paradigm Analytical Labs
Method 23
M23-FB-2
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8--TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ (ND=0)
TEQ (ND=l/2)
Concentration
i«»S)
ND
ND
ND
ND
ND
EMPC
EMPC
ND
ND
ND
EMPC
ND
ND
ND
ND
ND
ND
ND
ND
0.0016
0.0024
ND
ND
ND
ND
0.0000
0.0012
DL
(ng)
0.0011
0.0006
0.0009
0.0008
0.0008
0.0008
0.0057
0.0017
0.0007
0.0007
0.0005
0.0005
0.0005
0.0006
0.0009
0.0011
0.0027
0.0011
0.0006
0.0008
0.0008
0.0017
0.0007
0.0005
0.0009
EMPC
t»g)
0.0044
0.0103
0.0008
0.0020
0.0068
0.0028
0.0008
0.0001
0.0013
RT
(mm.)
28:58
35:08
35:08
35:22
37:32
40:22
27:56
34:34
34:38
35:00
35:31
40:29
Ratio
0.85
1.11
1.11
1.04
1.27
0.61
1.49
2.56
1.35
1.14
1.1
0.4
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-FB-2
L1113
1113-6
28-Aug-98
08-Sep-98
15-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight / Volume:
Moisture / Lipids:
Filename:
Retehk:
BeginConCal:
End ConCal:
Initial_Cal:
Air
1
0.0 %
a27sep98m-10
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
r ( ' 170
1/2
-------
Paradigm Analytical Labs
Method 2 3
M23-FB-2
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13C 2-l 23467 8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
13Cirl,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
13C12-l,2,3,4,7,8-HxCDD
13C,2-l,2,3,4,7,8-HxCDF
13C12-l,2>3,4,7,8>9-HpCDF
Injection Standards
13Ci2-l,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
(ng)
4
4
4
4
8
4
4
4
4
4
4
4
4
4
Measured
Amount
(ng)
3.20
3.56
3.19
3.10
4.21
3.07
2.88
3.22
2.13
3.61
3.73
3.93
3.13
2.88
Percent
Recovery
80.0
88.9
79.7
77.5
52.6
76.8
72.0
80.4
53.2
90.2
93.4
98.2
78.3
72.1
RT
(min.)
28:56
33:01
35:08
37:31
40:21
27:54
32:22
34:37
36:43
28:58
32:49
35:05
34:33
37:53
28:39
35:21
Ratio
0.79
1.57
1.28
1.06
0.9
0.79
1.57
0.51
0.44
1.57
1.26
0.55
0.44
0.79
1.28
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ED:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-FB-2
L1113
1113-6
28-Aug-98
08-Sep-98
15-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
End ConCal:
Initial Cal:
Air
1
0.0
a27sep98m-10
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
Reviewed by:
_.-
Date Reviewed:«
r
171
2/2
-------
OPUSquan 28-SEP-1998 Page
Filename a27sep98m
Sample 10
Acquired 28-SEP-98 02:13:51
Processed 28-SEP-98 09:40:05
Sample ID 1113-6 xl/2
Cal Table m8290-091498
Results Table M8290-092798M
Comments
Typ Name; Resp;
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
ss
ss
ss
ss
ss
2,3,7,8-TCDD; 1.97e+05;
1,2,3,7,8-PeCDD; * ;
1,2,3,4,7,8-HxCDD; 4.07e+04;
1,2,3,6,7,8-HxCDD; 4.07e+04;
1,2,3,7,8,9-HxCDD; 5.87e+04;
1,2,3,4,6,7,8-HpCDD; 1.63e+05;
OCDD; 2.50e+05;
2,3,7,8-TCDF; 1.67e+05;
1,2,3,7,8-PeCDF; *;
2,3,4,7,8-PeCDF; * ;
1,2,3,4,7,8-HxCDF; 4.41e+04;
1,2,3,6,7,8-HxCDF; 3.07e+04;
2,3,4,6,7,8-HxCDF; 2.07e+04;
1,2,3,7,8,9-HxCDF; 8.76e+03;
1,2,3,4,6,7,8-HpCDF; *;
1,2,3,4,7,8,9-HpCDF; *;
OCDF; 2.10e+04;
13C-2,3,7,8-TCDD; 2.49e+08;
13C-l,2,3,7,8-PeCDD; 1.84e+08;
13C-1, 2 , 3 , 6 , 7 , 8-HxCDD; 1 . 99e+08 ;
13C-l,2,3,4,6,7,8-HpCDD; 1.63e+08;
13C-OCDD; 1.95e+08;
13C-2,3,7,8-TCDF; 2.97e+08;
13C-l,2,3,7,8-PeCDF; 2.32e+08;
13C-1 , 2,3,6,7, 8-HxCDF; 2 . 31e+08 ;
13C-1 , 2,3,4,6,7, 8-HpCDF; 1 . Ole+08;
13C-1,2,3,4-TCDD; 2.94e+08;
13C-1 , 2,3,7,8, 9-HxCDD; 2 . 38e+08 ;
37Cl-2,3,7,8-TCDD; 2.20e+08;
13C-2,3,4,7,8-PeCDF; 2.12e+08;
13C-l,2,3,4,7,8-HxCDD; 1.48e+08;
13C-l,2,3,4,7,8-HxCDF; 1.50e+08;
13C-l,2,3,4,7,8,9-HpCDF; 6.35e+07;
37Cl-2,3,7,8-TCDD; 2.20e+08;
13C-2,3,4,7,8-PeCDF; 2.12e+08;
13C-l,2,3,4,7,8-HxCDD; 1.48e+08;
13C-l,2,3,4,7,8-HxCDF; 1.50e+08;
13C-l,2,3,4,7,8,9-HpCDF; 6.35e+07;
1
2.
2.
2.
2.
9.
9.
1.
3.
1.
1.
4.
6.
1.
1.
1.
8.
9.
1.
1.
7.
3.
1.
1.
2.
1.
8.
5.
1.
2.
1.
8.
5.
1.
Ion 1;
81e+04;
* .
13e+04;
136+04;
99e+04;
lle+04;
50e+04;
OOe+05;
* .
*;
17e+04;
76e+04;
lOe+04;
596+03;
*;
*;
04e+03;
10e+08;
13e+08;
126+08;
386+07;
19e+07;
31e+08;
42e+08;
80e+07;
06e+07;
30e+08;
33e+08;
20e+08;
29e+08;
24e+07;
34e+07;
94e+07;
20e+08;
29e+08;
24e+07;
34e+07;
94e+07;
Ion 2;
1.696+05;
*;
1.93e+04;
1.936+04;
2.886+04;
7.19e+04;
1.55e+05;
6.736+04;
* .
* .
1.24e+04;
1.30e+04;
9.686+03;
4.166+03;
* .
* .
1.50e+04;
1.39e+08;
7.186+07;
8.736+07;
7.936+07;
1.03e+08;
1.66e+08;
9.01e+07;
1.536+08;
7.016+07;
1.646+08;
1.05e+08;
8.25e+07;
6.55e+07;
9.656+07;
4.416+07;
8.256+07;
6.556+07;
9.656+07;
4.416+07;
RA;?; RT;
0.17;n; 28:58;
*;n;NotFnd;
l.ll;y; 35:08;
l.ll;y; 35:08;
1.04,-n; 35:22;
1.27;n; 37:32;
0.61,-n; 40:22;
1.49;n; 27:56;
*;n;NotFnd;
*,-n;NotFnd;
2.56;n; 34:34;
1.35;y; 34:38;
1.14;y; 35:00;
1.10;y; 35:31;
*;n;NotFnd;
*;n;NotFnd;
0.40;n; 40:29;
0.79;y; 28:56;
1.57;y; 33:01;
1.28;y; 35:08;
1.06;y; 37:31;
0.90;y; 40:21;
0.79;y; 27:54;
1.57;y; 32:22;
0.51;y; 34:37;
0.44;y; 36:43;
0.79;y; 28:39;
1.28;y; 35:21;
-;-; 28:58;
1.57;y; 32:49;
1.26;y; 35:05;
0.55;y; 34:33;
0.44;y; 37:53;
-,--; 28:58;
1.57;y; 32:49;
1.26;y; 35:05;
0.55;y; 34:33;
0.44;y; 37:53;
Cone ;
0
0
0
0
0
0
0
0
0
0
0
0
79
88
79
77
105
76
71
80
53
65
66
72
67
78
63
38
90
93
98
78
72
.078;
* .
.025;
.022;
.033;
.110;
.257;
.056;
*;
* .
.020;
.012;
.009;
.004;
* .
* .
.020;
.950;
.904;
.674;
.455;
.181;
.777;
.955;
.385;
.189;
.386;
.767;
.122;
.150;
.342;
.011;
.326;
.230;
.355;
.209;
.334;
.053;
DL;
0.0269;
0.0156;
0.0223;
0.0200;
0.0206;
0.0210;
0.1423;
0.0432;
0.0180;
0.0176;
0.0131;
0.0114;
0.0125;
0.0143;
0.0231;
0.0267;
0.0685;
0.1488;
0.0614;
0.0283;
0.6109;
0.0086;
0.0707;
0.0102;
0.0944;
0.0947;
-;
0.0404;
0.0104;
0.0376;
0.1141;
0.1082;
0.0514;
0.0063;
0.0491;
0.1317;
0.2313;
S/N1;?;
3;n;
*;n;
3;n;
3;n;
4;y;
14, -y;
3;y;
8;y;
*;n;
*;n;
4;y;
3,-n;
l;n;
l;n;
*;n;
*;n;
l;n;
981;y;
10944,-y;
7657;y;
312;y;
13696;y;
2982;y;
226297 ;y;
2419;y;
1252,-y;
9621;y;
5321 ;y;
230230;y;
6632;y;
1612;y;
659;y;
5321;y;
230230;y;
6632, -y;
1612 ;y, •
659 ;y;
S/N2;?
30;y
*;n
3;y
3;y
3;n
18, -y
20;y
3;n
*;n
*;n
4;y
3;n
3;y
2;n
*;n
*;n
l;n
3053 ;y
11606;y
8669;y
289,-y
58634 ;y
3320;y
21776;y
2944;y
1613 ,-y
3628;y
10704 ;y
21176;y
7382;y
1946;y
839, -y
21176;y
7382 ;y
1946 ;y
839;y
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 16
-------
OPUSquan 28-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:2
Run: 16 File: a27sep98m S:10 Acq-.28-SEP-98 02:13:51 Proc:28-SEP-98 09:40:05
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-6 xl/2
Amount: 0.13
Cone: 0.13
Tox #1: -
Name
2,3,7,8-TCDF
of which 0.06
of which 0.06
Tox #2: -
# RT Respnse
named and 0.07
named and 0.07
Tox #3: -
RA
1 27:20 2.1e+05 0.91 n
2.1e+05
2 27:56 1.7e+05 1.49 n
1.7e+05
Cone
0.07
1
]
0.06
unnamed
unnamed
Area Height
S/N Mod?
l.Oe+05 2.0e+04 8.2e+00 y n
l.le+05 2.4e+04 3.4e+00 y n
l.Oe+05 2.0e+04 8.2e+00 y n
6.7e+04 1.9e+04 2.8e+00 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:7
Run: 16 File: a27sep98m S:10 Acq:28-SEP-98 02:13:51 Proc:28-SEP-98 09:40:05
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3 .5 17-APR-1997 11:14:34 Sample text: 1113-6 xl/2
Amount: 0.12
Cone: 0.12
Tox #1: -
of which 0.08
of which 0.08
Tox #2: -
named and 0.04
named and 0.04
Tox #3: -
Name
RT Respnse
RA
24:55 7.5e+03 1.20 n
7.5e+03
2 25:44 6.8e+04 0.76 y
6.8e+04
3 25:48 9.6e+03 2.47 n
9,6e+03
4 25:52 7.3e+03 0.50 n
7.3e+03
28:29 6.7e+03
6.7e+03
1.77 n
2,3,7,8-TCDD
6 28:32 7.8e+03 2.18 n
7.8e+03
7 28:58 2.0e+05 0.17 n
2.0e+05
Cone
0.00
<
0.03
3
0.00
6
2
0.00
2
4
0.00
4
0.00
c
0.08
unnamed
unnamed
Area Height
S/N Mod?
4.1e+03 2.1e+03 S.Se-Ol n n
3.4e+03 1.5e+03 1.2e+00 n n
3
2.9e+04 9.3e+03 2.4e+00 n n
3.8e+04 9.3e+03 7.6e+00 y n
6.8e+03 3.6e+03 9.3e-01 n
2.8e+03 1.4e+03 l.le+00 n
2.46+03 1.5e+03 3.9e-01 n n
4.9e+03 1.7e+03 1.4e+00 n n
4.3e+03 2.5e+03 6.6e-01 n n
2.4e+03 l.le+03 9.4e-01 n n
D
5.3e+03 3.5e+03 9.1e-01 n n
2.4e+03 l.le+03 8.7e-01 n n
3
2.8e+04 l.le+04 2.8e+00 n n
1.7e+05 3.7e+04 3.0e+01 y n
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:l
Run: 16 File: a27sep98m S:10 Acq:28-SEP-98 02:13:51 Proc:28-SEP-98 09:40:05
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-6 xl/2
Amount: 0.01
Cone: 0.01
Tox #1: -
of which *
of which *
Tox #2: -
named and 0.01 unnamed
named and 0.01 unnamed
Tox #3: -
17
-------
OPUSquan 28-SEP-1998
Page 2
Name
RT Respnse
RA
Cone
Area Height
S/N Mod?
1 32:05 1.8e+04 0.30 n
1.8e+04
0.01
4.2e+03 2.0e+03 1.2e+00 n n
1.4e+04 4.2e+03 8.6e-01 n n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:7
Run: 16 File: a27sep98m S:10 Acq:28-SEP-98 02:13:51 Proc:28-SEP-98 09:40:05
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-6 xl/2
Amount: 0.09
Cone: 0.09
Tox #1: -
Name
of which *
of which *
Tox #2: -
named and 0.09
named and 0.09
Tox #3: -
RT Respnse
RA
31:55 3.9e+04 4.38 n
3.96+04
2 32:07 6.8e+03
6.8e+03
3.77 n
3 32:22 5.8e+04 6.10 n
5.8e+04
4 32:28 1.8e+04 1.25 n
1.8e+04
32:31 1.3e+04
1.3e+04
0.63 n
32:35 9.8e+03 1.05 n
9.8e+03
32:49 4.46+04
4.4e+04
4.00 n
Cone
0.02
0.00
c
1
0.03
C
£
0.01
c
0.01
4
0.00
c
4
0.02
unnamed
unnamed
Area Height
S/N Mod?
3.2e+04 9.7e+03 1.9e+00 n n
7.2e+03 4.1e+03 3.1e+00 y n
5.46+03 2.26+03 4.4e-01 n n
1.4e+03 l.le+03 8.2e-01 n n
3
S.Oe+04 1.9e+04 3.8e+00 y n
8.16+03 5.6e+03 4.2e+00 y n
L
9.7e+03 4.0e+03 7.9e-01 n n
7.8e+03 2.7e+03 2.0e+00 n n
4.9e+03 4.3e+03 8.5e-01 n n
7.8e+03 2.7e+03 2.0e+00 n n
D
5.0e+03 2.8e+03 5.5e-01 n n
4.8e+03 1.6e+03 1.2e+00 n n
2
3.5e+04 1.8e+04 3.6e+00 y n
8.9e+03 4.0e+03 3.Oe+00 n n
f' 174
-------
OPUSquan 28-SEP-1998
Page 3
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:26
Run: 16 File: a27sep98m S:10 Acq:28-SEP-98 02:13:51 Proc:28-SEP-98 09:40:05
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-6 xl/2
Amount: 0.18
Cone: 0.18
Tox #1: -
of which 0.05
of which 0.05
Tox 12: -
named and 0.14
named and 0.14
Tox #3: -
Name
RT Respnse
34:01 2.2e+04
2.2e+04
34:05 7.96+03
7.9e+03
RA
0.81 n
2.95 n
3 34:18 l.le+04 0.82 n
l.le+04
4 34:28 9.3e+03 1.22 y
9.3e+03
1,2,3,4,7,8-HxCDF 5
1,2,3,6,7,8-HxCDF 6
34:34 4.46+04 2.56 n
4.4e+04
34:38 3.1e+04
3.1e+04
1.35 y
7 34:44 1.6e+04 2.63 n
1.6e+04
1 34:50 l.le+04 1.16 y
l.le+04
9 34:52 9.3e+03 0.76 n
9.36+03
10 34:58 2.6e+04 1.70 n
2.6e+04
2,3,4,6,7,8-HxCDF 11 35:00 2.1e+04 1.14 y
2.16+04
12 35:06 2.2e+04 1.10 y
2.2e+04
13 35:10 2.0e+04
2.0e+04
2.34 n
14 35:14 9.9e+03 2.75 n
9.9e+03
15 35:22 2.1e+04 3.76 n
2.1e+04
16 35:26 1.2e+04 1.55 n
1.2e+04
17 35:28 l.Oe+04 1.15 y
l.Oe+04
1,2,3,7,8,9-HxCDF 18 35:31 8.8e+03 1.10 y
8.86+03
19 35:34 l.le+04 0.99 n
l.le+04
Cone
0.01
S
1
0.00
c
0.00
4
C
0.00
c
4
0.02
]
0.01
]
]
0.01
1
4
0.01
e
c
0.00
4
C
0.01
3
c
0.01
1
c
0.01
]
]
0.01
1
C
0.00
1
0.01
1
<
0.01
•)
4
0.00
c
4
0.00
4
4
0.01
unnamed
unnamed
Area Height
S/N Mod?
9.8e+03 5.8e+03 1.8e+00 n n
1.2e+04 7.6e+03 5-Oe+OO y n
3
5.9e+03 2.1e+03 6.4e-01 n n
2.06+03 1.26+03 7.8e-01 n n
4.9e+03 2.36+03 7.1e-01 n n
5.9e+03 2.9e+03 1.9e+00 n n
3
5.1e+03 3.2e+03 9.8e-01 n n
4.2e+03 2.16+03 1.4e+00 n n
3.2e+04 1.26+04 3.7e+00 y n
1.2e+04 5.5e+03 3.6e+00 y n
L.Se+04 8.2e+03 2.5e+00 n n
L.3e+04 4.5e+03 3.0e+00 n n
1.26+04 4.16+03 1.2e+00 n n
4.56+03 2.4e+03 1.6e+00 n n
6.1e+03 3.16+03 9.5e-01 n n
5.36+03 3.4e+03 2.2e+00 n n
3
4.0e+03 2.3e+03 6.96-01 n n
5.36+03 3.4e+03 2.2e+00 n n
1.6e+04 6.36+03 1.9e+00 n n
9.7e+03 5.0e+03 3.3e+00 y n
l.le+04 4.5e+03 1.4e+00 n n
9.7e+03 5.0e+03 3.3e+00 y n
1.2e+04 4.3e+03 1.3e+00 n n
l.le+04 3.46+03 2.2e+00 n n
L
1.46+04 5.0e+03 1.5e+00 n n
5.96+03 2.2e+03 1.4e+00 n n
3
7.3e+03 4.2e+03 1.3e+00 n n
2.6e+03 1.2e+03 7.8e-01 n n
L
1.7e+04 7.4e+03 2.3e+00 n n
4.5e+03 2.46+03 1.6e+00 n n
7.4e+03 4.2e+03 1.3e+00 n n
4.8e+03 2.2e+03 1.5e+00 n n
3
5.5e+03 2.56+03 7.5e-01 n n
4.8e+03 2.2e+03 1.5e+00 n n
4.6e+03 2.9e+03 8.9e-01 n n
4.2e+03 2.86+03 1.8e+00 n n
5.6e+03 3.6e+03 l.le+00 n n
5.7e+03 2.56+03 1.7e+00 n n
175
-------
OPUSguan 28-SEP-1998
Page 4
20 35:38 9.5e+03 3.62 n 0.00
9.56+03
21 35:40 7.9e+03 2.83 n 0.00
7.96+03
22 35:45 1.4e+04 2.68 n 0.01
1.4e+04
7.4e+03
2.1e+03
3.5e+03 l.le+00 n n
8.2e+02 5.4e-01 n n
23 35:51 9.56+03 1.71 n 0.00
9.56+03
24 36:01 1.3e+04 3.51 n 0.01
1.3e+04
25 36:05 1.5e+04 5.61 n 0.01
l.Se+04
26 36:13 1.6e+04 6.16 n 0.01
1.6e+04
5.86+03
2.16+03
L
l.Oe+04
3.9e+03
D
6.06+03
3.5e+03
1.9e+03 5.86-01 n
8.2e+02 5.4e-01 n
5.6e+03 1.7e+00 n n
1.8e+03 1.2e+00 n n
3.5e+03 l.le+00 n n
l.le+03 7.4e-01 n n
l.Oe+04 3.56+03 l.le+00 n n
2.9e+03 3.06+03 2.0e+00 n n
L
1.3e+04 4.4e+03 1.3e+00 n n
2.36+03 1.2e+03 7.7e-01 n n
L
1.4e+04 4.46+03 1.3e+00 n n
2.36+03 1.4e+03 9.4e-01 n n
( c 176
-------
OPUSquan 28-SEP-1998
Page 5
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:20
Run: 16 File: a27sep98m S:10 Acq:28-SEP-98 02:13:51 Proc:28-SEP-98 09:40:05
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-6 xl/2
Amount: 0.26
Cone: 0.26
Tox #1: -
of which 0.06
of which 0.06
Tox #2: -
named and 0.20
named and 0.20
Tox #3: -
Name
RT Respnse
34:23 8.3e+03
8.3e+03
34:27 5.7e+03
5.7e+03
RA
0.39 n
0.58 n
34:33 6.8e+04 3.22 n
6.8e+04
34:37 8.0e+04
8.0e+04
4.43 n
5 34:43 6.9e+04 1.40 y
6.9e+04
6 34:50 8.4e+03 0.87 n
8.4e+03
7 34:53 7.6e+03 0.69 n
7.6e+03
1,2,3,6,7,8-HxCDD 8 35:08 4.1e+04 1.11 y
4.1e+04
9 35:16 8.7e+03 0.62 n
8.7e+03
1,2,3,7,8,9-HxCDD 10 35:22 5.9e+04 1.04 n
5.9e+04
11 35:26 l.le+04 0.41 n
l.le+04
12 35:34 6.7e+03 0.62 n
6.7e+03
13 35:41 1.2e+04
1.2e+04
1.52 n
14 35:47 8.9e+03 0.72 n
8.9e+03
15 35:51 5.3e+03
5.3e+03
0.69 n
16 35:52 6.8e+03 1.16 y
6.8e+03
17 35:57 1.2e+04 0.54 n
1.2e+04
18 36:02 l.le+04 1.10 y
l.le+04
19 36:13 1.8e+04 0.94 n
1.8e+04
Cone
0.00
2
6
0.00
0.04
c
]
0.05
(.
1
0.04
4
0.00
2
4
0.00
2
4
0.02
1
0.00
C
0.03
0.01
2
1
0.00
4
0.01
4
0.01
c
0.00
2
0.00
•a
2
0.01
4
-
0.01
E
C
0.01
unnamed
unnamed
Area Height
S/N Mod?
2.3e+03 1.3e+03 5.1e-01 n n
6.0e+03 3.3e+03 l.le+00 n n
3
2.1e+03 l.Oe+03 3.9e-01 n n
3.6e+03 1.4e+03 4.7e-01 n n
)
5.2e+04 2.7e+04 l.le+01 y n
1.6e+04 6.2e+03 2.1e+00 n n
6.5e+04 2.7e+04 l.le+01 y n
1.5e+04 8.4e+03 2.9e+00 n n
4.0e+04 1.5e+04 6.0e+00 y n
2.9e+04 1.6e+04 5.5e+00 y n
.9e+03 2.5e+03 9.9e-01 n n
.5e+03 3.6e+03 1.2e+00 n n
3.1e+03 1.7e+03 6.7e-01 n
4.5e+03 3.6e+03 1.2e+00 n
2.1e+04 7.4e+03 2.9e+00 n n
1.9e+04 8.9e+03 3.1e+00 y n
3.3e+03 1.2e+03 4.8e-01 n
5.4e+03 2.3e+03 7.9e-01 n
3.0e+04 9.2e+03 3.6e+00 y n
2.9e+04 8.5e+03 2.9e+00 n n
1
3.1e+03 2.0e+03 8.0e-01 n n
7.6e+03 3.0e+03 l.Oe+00 n n
0
2.6e+03 1.8e+03 7.2e-01 n n
4.2e+03 3.0e+03 l.Oe+00 n n
7.2e+03 2.7e+03 l.le+00 n n
4.7e+03 3.3e+03 l.le+00 n n
3.7e+03 2.1e+03 8.4e-01 n n
5.2e+03 1.8e+03 6.2e-01 n n
3
2.2e+03 7.9e+02 3.16-01 n n
3.2e+03 1.6e+03 5.4e-01 n n
3
3.7e+03 1.7e+03 6.7e-01 n n
3.2e+03 1.6e+03 5.4e-01 n n
4.2e+03 2.1e+03 8.3e-01 n n
7.7e+03 2.4e+03 8.2e-01 n n
S.Oe+03 2.3e+03 8.9e-01 n n
5.5e+03 2.1e+03 7.3e-01 n n
L
8.8e+03 4.3e+03 1.7e+00 n n
9.4e+03 3.0e+03 l.Oe+00 n n
n 177
-------
OPUSquan 28-SEP-1998 Page 6
20 36:19 8.6e+03 0.46 n 0.00
8.6e+03 2.7e+03 1.4e+03 5.4e-01 n n
5.9e+03 2.4e+03 8.4e-01 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:0
Run: 16 File: a27sep98m S:10 Acq:28-SEP-98 02:13:51 Proc:28-SEP-98 09:40:05
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-6 xl/2
Amount: * of which * named and * unnamed
Cone: * of which * named and * unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1 NotF» * * n *
* * * * n n
* * * n n
(< ITS'
-------
OPUSguan 28-SEP-1998
Page 7
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:ll
Run: 16 File: a27sep98m S:10 Acg:28-SEP-98 02:13:51 Proc:28-SEP-98 09:40:05
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-6 xl/2
Amount: 0.27
Cone: 0.27
Tox #1: -
Name
of which 0.11
of which 0.11
Tox #2: -
# RT Respnse
named and 0.16
named and 0.16
Tox #3: -
RA
1 36:43 2.5e+04 3.51 n
2.5e+04
2 36:57 9.6e+04 1.02 y
9.6e+04
3 37:06 l.Oe+04 1.55 n
l.Oe+04
4 37:09 8.5e+03 3.39 n
8.56+03
1,2,3,4,6,7,8-HpCDD5 37:32 1.6e+05 1.27 n
1.6e+05
6 37:46 8.1e+03 0.84 n
8.1e+03
7 37:48 9.0e+03 1.04 y
9.06+03
8 37:52 3.9e+04 2.60 n
3.9e+04
9 38:27 6.0e+03 1.72 n
6.0e+03
10 38:37 1.3e+04 1.38 n
1.3e+04
11 38:42 1.6e+04 8.23 n
1.6e+04
Cone
0.02
2
C
0.06
4
A
0.01
e
4
o.oi
c
1
0.11
c
0.01
4
0.01
<
4
0.03
]
0.00
3
0.01
c
0.01
unnamed
unnamed
Area Height
S/N Mod?
2.0e+04 1.26+04 5.3e+00 y n
5.6e+03 3.0e+03 1.8e+00 n n
.8e+04 2.3e+04 l.Oe+01 y n
4.7e+04 1.7e+04 l.Oe+01 y n
L
6.2e+03 2.5e+03 l.le+00 n n
4.06+03 1.9e+03 1.2e+00 n n
6.5e+03 2.3e+03 l.le+00 n n
1.96+03 9.96+02 6.1e-01 n n
L
9.1e+04 3.1e+04 1.4e+01 y n
7.2e+04 2.96+04 1.8e+01 y n
L
3.76+03 2.06+03 9.3e-01 n n
4.46+03 2.16+03 1.36+00 n n
.66+03 2.56+03 l.le+00 n n
.46+03 2.1e+03 1.36+00 n n
2.86+04 8.3e+03 3.8e+00 y n
l.le+04 3.5e+03 2.1e+00 n n
3.86+03 1.46+03 6.5e-01 n n
2.26+03 8.86+02 5.4e-01 n n
1
7.86+03 3.5e+03 1.6e+00 n n
5.66+03 1.7e+03 l.Oe+00 n n
L
1.46+04 6.4e+03 2.9e+00 n n
1.7e+03 9.9e+02 6.0e-01 n n
O 179
-------
File:A27SEP98M #1-529 Acq:28-SEP-1998 02:13:51 GC EI+ Voltage SIR Autospec-UltimaE
Sample#10 Text: 1113-6 xl/2
319.8965 S:10 BSUB(128 , 15, -3
100%,
50.
0
M^VAv^^vvAVw^
24:00
321.8936 S:10 BSUB(128, 15, -3
1003
50 j
;
o-
-^_^-^iL4JLs_2i;i0^ ^j
24 100
331.9368 S:10 BSUB(128, 15, -3
100%
50:
o:
24l 00
333.9339 S:10 BSUB(128, 15, -3
100%
50J
o:
24 loo
327.8847 S:10 BSUB(128, 15, -3
100%
50J
o:
24iOO
Exp : EXP_M23_DB5_OVATION
.0) PKD(3,3,2,0.10%,3844.0,1.00%,F,F)
2Aj59 25
wW^
25 100
.0) PKD(3,3,
^5325^2
25 loo
.0) PKD(3,3,
25 100
.0) PKD(3,3,
l | i 1 r
25:00
.0) PKD(3,3,
25:00
316.9824 S:10 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%
100% 23 .-15 23:51 24:27
50J
o:
k/T^T .11.11111
24:00
25:04 25
25 loO
27:55 28:58 ^1 . 5E4
25:44 A I
IMM A26/\°9 26A?5 i27!1^?, J2P:02 I 2V°/2[9-05 29:38 30:04
Mj^MW^hN[j^^
-
L7.5E3
- n mm
i i i | i i — i , — i 1 1 , 1 1 1 1 1 1 1 1 , — | , , , , , — , , ^^ . v^v
26:00 27:00 28:00 29:00 3oloO Time
2 ,0.10%, 1224. 0,1. 00%, F,F)
28:58 3.8E4
A '
A
25:44 ^c 1A \
L-A-^. 3A3 26ji° 27J05 27;^2J^fL- /uflA^jL I ,29:27 30:00
Ll.9E4
• n own
26:00 27:00 28 1 00 29:00 30:00 ' Time
2, 0.10%, 24744. 0,1. 00%, F,F)
28:39
A
o
/I l\
3.0E7
Ll . 5E7
• n .OEO
' ' I ' ' ' ^^ ' r~~~l ' ' ' ' "? ' i r rifc~-r r • i - i r .— , - r ........ 1 |h . t .
26:00 27:00 28:00 29:00 3o!oO Time
2, 0.10%, 10164. 0,1. 00%, F,F)
28:39
A A
HA
3.7E7
.1 . 8E7
- 0 . OEO
26:00 27:00 28:00 29:00 3oloO Time
2, 0.10%, 9272. 0,1. 00%, F,F)
28:57
A
(\
_4.9E7
-2 . 5E7
O.OEO
26:00 27:00 28:00 29:00 30:00 Time
,0.0,1.00%,F,F)
:34 _ _2.6-:.33__26:5J7 ^7^272J7t50 28:22 28:52 2.9:4J_ 7 . RK7
.3.9E7
0 .OEO
i i | i i i i i | i i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 p 1 r*
26:00 27:00 28:00 29:00 30:00 Time
-------
File:A27SEP98M #1-237 Acq:28-SEP-1998 02:13:51 GC EI+ Voltage SIR Autospec-UltimaE
Sample#10 Text:1113-6 xl/2 Exp:EXP_M23_DB5_OVATION
355.8546 S:10 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,5020.0 ,1.00%,F,F)
100S, 32-22
32,49
50J
30i36 30148 3llOO 31112 3l24 3i36 3l48 32
I I I I I I I I I I I I I | I I I I I | I I 1 I I 1 I I I I I |
32:24 32:36 32:48 33:00 33:12 33:24 33:36
357.8517 S:10 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,1336.0,1.00%,F,F)
1004 31j56 32:22 33f01
50_
2.2E4
L1.1E4
OEO
Time
33:35
30.;36 ' 3o!48 ' 3l!6d ' 3i!l2
_3.0E3
O.OEO
Time
:24 31:36 31:48 32:00
367.8949 S:10 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,5948.0,1.00%,F,F)
1004
50_
32124 ' 32I36 ' 32148 ' 33\o6 ' 33! 12 ' 33
0.
33:01
H3.3E7
10.OEO
I I I I I I I I I I I I I I I I I I I I I i I I I I I I I I I I I I i I I I I 11 l-'l i I | I i i i i I i i i i i' I i V I i i i I I I I i i I i i I
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
69.8919 S:10 F:2 BSUB(128,15,-3.0) PKD(3,3 , 2,0.10%,3644.0,1.00%,F,F)
.OOi
so:
33:01
4.2E7
.2.1E7
O.OEO
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33! 24 ' 33 lie Time
66.9792 S-.10 F:2 SMO(1,3) PKD(3 , 3 , 3 ,100 . 00%, 0 . 0,1. 00%, F, F)
004 30:45 31:01 31:25 _31j_50 ^.j_2;0
50J
.9.6E7
14.8E7
.O.OEO
i i i i i I i i i i i I i i i i i I i i i i i I i i i i i i i i i i i i i i i i i i i i—i i i i i i i i i i i i i i i i i i i i i—iii i iii
30:3-6 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32^24 32:36 32:48 33:00 33:12 33:24 33:36 Time
or,
-------
ile-A27SEP98M #1-196 Acq:28-SEP-1998 02:U:bl GC EI+ Voltage SIR Autospec-UltimaE
Sampie#10 Text:1113-6 xl/2 Exp:EXP_M23_DB5_OVATION
389.8156 S:10 F:3 BSUB{128,15,-3.0) PKD(3,5,2,0.10%,2544.0,1.00%,F,F)
1004 .34;37
50J
34:43
34:16
33:54 34:09 A34/21
/X..XV ./^-^^J X^*VV-—
r_2.8E4
_1.4E4
35:22
35:06
35:3335:41
36:13
.O.OEO
Time
33 UV ' '34Sdo' ' '34112' ' 34124 34136 34148 35:00 35:12 35:24 35:36 35:48 36:00
391.8127 S:10 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,2892.0,1.00%,F,F)
100% 34i43
50J
36:12
1.7E4
_8.5E3
33 UV ' 'siSoV ' '34ll2' ' '34124' ' '34S3V ' '34UV ' VsSdV ' VsSlV ' '35124 3S\36 35^48 36:00
401.8559 S:10 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,6440.0,1.00%,F,F)
100% 35;21
so:
o.
O.OEO
36:12 Time
_6.2E7
_3.1E7
.O.OEO
36:12 Time
33 UV ' '34ldo' ' '34': 12 ' '34124' ' '3413V ' 134l4V ' VsloV ' 35ll2 35124
403.8530 S:10 F:3 BSUB(128,15,-3.0) PKD(3,5,2,0.10%,4556.0,1.00%,F,F)
100%. 35;21
XUU* 35:08
35:0
so:
35:36 35:48 36:00
4 . 9E7
33-48 34100 34:12 34:24
380.9760 S:10 F:3 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,^, F)
100%
3536 3548 36oO
50J
_1.6E8
10.0EO
Time
' '341 12' ' '34124' ' '34136' ' '3454V
'35:12 35:24 35:36 35:48 36:00 36:12
-------
File:A27SEP98M #1-
-197 Acq:28-SEP-1998 02:
SamplettlO Text: 1113-6 xl/2
423.7767 S:10 F:4
100%,
-
so:
;
-
0'
36
y
36:27 /
--V^V^~V. •^
36?24 36\36
425.7737 S:10 F:4
100%
-
50J
:
-
0"
36
36:31 ,J
, __r- ._ — -/V'v. • ^. j\
^^^-| — i — I — I — I — i — i — i — I — r
36:24 36:36
435.8169 S:10 F:4
100%
50_
0"
~*n — i — i — i — i — i — |—i — i — r
36:24 36:36
437.8140 S:10 F:4
100%
50J
0"
"— H — i — i — i — i — i — i — i — i — r
36.24 36:36
430.9728 S:10 F:4
100% 36:33
50:
0"
'
i i i i i i i i i i
36^24 36:36
BSUB(128,15,-3.0) PKD(3
36:57
T7
37:05 *'i
^Vy Y-^—r^y^
36! 48 37 loo 37l 12
BSUB (128, 15, -3.0) PKD(3
36:57
A
:43 /
V 36:5]/ V 37:06
\ _, . A.^-7 W^ ,—'>- — A
— I — i — 1 — i — l — i — I — i — | — I — i — r— T — i — r1 -r— r
36:48 37:00 37:12
BSUB(128,15,-3.0) PKD(3
— T — r"~r- i ~r -f^T^l •[ — r— t — i — i~~i — r i i
36:48 37:00 37:12
BSUB(128,15,-3.0) PKD{3
36:48 37:00 37:12
SMO(1,3) PKD(3,3,3,100.
36-48 37:10
•~1 1 1 1"™ 1 1 T~~l T 1 1 1 TT I 1 T~
36:48 37:00 37:12
13:51 GC EI+ Voltage SIR Autospec-UltimaE
Exp : EXP M2 3_DB5_OVATION
, 5, 3, 0.10%, 2200. 0,1. 00%, F,F)
37:32 3.1E4
A
M
^A "^A^y A/37-41 /^V. 38:02 38:1738-25 A 38:51
A/^^-y/^/ r S— : — -/• — (r~~r ^^^ — ^\ /V^i — •^s/V/"s':N^-v — i — v*~ — r'^—r/ >-~^^ ^^V^^ ^-.
-
L1.6E4
-
'O.OEO
37 ?24 37 he 3 VI 48 3sloo 38ll2 3s!24 3sl36 33:48 39 00 Time
, 5, 3, 0.10%, 1632. 0,1. 00%, F,F)
37:31
A
\
\
1 ^37:39 _. 38:02 38:16 38:29
^ — Ny1"— *- >*^ S~\ — ..J/"^_ ^^/ V— /^^-^^ — ^_/V -y^ ~s*t/ /^~> l~*~S^-^^f*~ y- ^ _ /\_ ^ ^\ ^/
3.1E4
"
L1.5E4
;
" O.OEO
— i — i — i — 1—1 — i — i — i — i — i — r— i — i — i — i — i — i — i — i — r — i — i — i — i — r— i — i — i — i — i — i — i — i — i — i — i — i — i — i — | — i — i — i — i — i — i — i — r— i — 1—1 — i
37-24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
, 5, 3 ,0.10%, 99444. 0,1. 00%, F,F)
T
K
3 . 1E7
11 . 6E7
' O.OEO
Y?! 24 ' '37 36' ' 'sVU's' ' 'ssldo' 38ll2 38124 3sl36 38 1 48 39 00 Time
, 5, 3, 0.10%, 100112. 0,1. 00%, F,F)
T
|\
2 . 9E7
L1.4E7
" O.OEO
'37 124' ' 'sTis'e ' 37 1 48 38 1 00 38ll2 38124 38:36 SsU's 39.00 Time
00%, 0.0,1. 00%, F,F)
37:29 37:45 38:05 38:33 38:56 2.3E8
11.1E8
" O.OEO
' I ' 1 r i F" ~l ii ii r i I T~~T r^l r i r i 1 1 F 1 I I I 1 1 1 T r i r i i I 1 r i " ~r~ i i 1 i '~l i 1~~" i I
37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
00
CJ
-------
File:A27SEP98M #1-277 Acq':28-SEP-1998 02:13:51 GC EI+ Voltage SIR Autospec-UltimaE
Sample#10 Text:1113-6 xl/2 Exp:EXP_M23_DB5_OVATION
457.7377 S:10 F:5 BSUB(128,15,-3.0) PKD{3,5,3,0.10%,11256.0,1.00%,F,F)
100% 40:22
50J
_4.9E4
_2.4E4
i i i i i i i i i i i i i i i i i i i i | i i i T i | i i i i i | i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i '"•UEU
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
459.7348 S:10 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2240.0,1.00%,F,F)
100% 40:23
50_
40:35 40:45
469.7780 S:10 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,1952.0,1.00%,F,F)
100& 40;21
so:
41:06 41:19 41:33 41:44
42:03
0.
4.5E4
L2.3E4
_O.OEO
2.7E7
_1.3E7
.O.OEO
39ll2 ' 39:24 ' 39136 ' 39Us' ' 46!6o ' 4b!l2 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
471.7750 S:10 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,512.0,1.00%,F,F)
100% 40;21
50J
11.5E7
.O.OEO
I I I | I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I"! I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I—I I I I I I I I I I I I I I I
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
454.9728 S:10 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F,F)
100%, J9;14 39-^24 _ iq;SR _4JI O 1 40:22 _ 40^42
50J
41
41;30 41;41
41:59 42:11^2.4E8
I1.2E8
10.OEO
"V 39li2 ' 39I24 ' 39136 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
-------
File:A27SEP98M #l-b29 Acq:28-SEP-1998 02:13:51 GC EH- Voltage SIR Autospec-UltimaE
Sample#10 Text:1113-6 xl/2 Exp.-EXP M23 DBS OVATION
303.9016 S:10 BSUB( 128, 15 , -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 2484 . 0 , 1 . 00%, F, F)
lOOi
50_
0_
27:20 27:56
OC.C^J ll / \ OQ"3O*?Q*^'7 JUlJ-O
23:17 24:09 24:40 25:27 05 .256g- °9. 26 : 34 A^7nJb7:32 \ lofi-lO / 1^8- 31 29-23 29-59 J,
tri^^xzKI&AWI^^
2.2E4
_1.1E4
n ORO
24100 25!od 26 loo" 27loO ^sloo" ' """"^g-OO '^ ' 30^00 ' ~^ Time
305.8987 S:10 BSUB(128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 6888 . 0 , 1 . 00%, F, F)
lOOi
50J
o:
27:20 27:56
23:4324-09 At] 1 A 25 : 14 25 : 37 26J(i° 26 :36 27: 03 | 27 : 39 I ^g 12 28 : 36 29 • 02 29 -28 L
tf^^v1^^
2.7E4
.1.4E4
n m?n
24 !oO 25:00 26loO 27loo 2sloO "" 29 1 00 ~" ~"~ "~ Soloo'"""" Time
315.9419 S:10 BSUB{128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 9588 . 0 , 1 . 00%, F, F)
iooa
5°H
o:
2T4
/l
2 . 9E7
L1.4E7
• n . (iKD
• ' i ' ' | i T -T— i i [ r r- r - i r y T i -~r i I 1 1 1 1 r 1 1 1 1 1 1 1 1 F "~ 1 1 1 1 1 '| 1 1— ~
24:00 25:00 26:00 27:00 28:00 29:00 30:00 Time
317.9389 S:10 BSUB(128 , 15, -3 . 0) PKD(3 , 3 , 2, 0 . 10%, 11008 . 0 , 1 . 00%, F, F)
100%
50 J
o:
27:54
A
ft
A
3.7E7
11.8E7
' O.OEO
24:00 ' ' 25:00 26:00 27 1 00 28:00 29! 00 30:00 Time
375.8364 S-.10 BSUB{128, 15, -3 .0) PKD(3 , 3, 3, 100 . 00%, 184 .0, 1 .00%,F,F)
lOOi
50 J
:
o-
, 7, ,„ 23:39 1
odn^t ^Dijj A ro Q . r\ c fl
4 i23:31 24:20 . 1l , 25:37I 26:16 jl 27:00 27.3QA 27:56 aa.'/\ \A\ 29J38 3(|j16J
LAA-A_A/ftA_jiAMju>/. A/X^ ll«j-L-/iAA_AAMAA1rt_/u\-J(l/ljAAyffl. A A All A/\_A jvAv/AAj\AJW\A_rftA^ jh*tJ\ J\Af^J( JWW>?V\/uVAVvW^WUVLAj^ ' AA_W \J lAw| AAA A^ AA A/\IIA/\ A t
_1.7E4
_8.7E3
: O.OEO
24i 00 25iOO 26i 00 27100 28100 29:00 30iOO Time
316.9824 S:10 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
100*53-15 23:51 24:27 25:04 25:34 26^3326:57 27:27 27:50_ 28i22 28:52 29:43 7 . RT57
50J
o:
13.9E7
O.OEO
,— T , , , ^ , 1 , , _ ,_ , , , -, | - 7 , r - —f~ — T— r- - T~ T - -j 7 -- T- 1 ~ 1 1~ -—j—---f- T — -, y- ,— - -T T— 1 T T" f~~T
24:00 25100 26:00 27:00 28:00 29:00 30:00 Time
00
-------
File:A27SEP98M #1-237 Acq:28-SEP-l998 02:13:51 GC EI+ Voltage SIR Autospec-UltimaE
Sample#10 Text:1113-6 xl/2 Exp:EXP_M23_DB5_OVATION
339.8597 S:10 F:2 BSUB{128, 15, -3 . 0) PKD(3, 3,2, 0 . 10%, 1568 . 0, 1 . 00%,F,F)
100% 32:22 32;49
50
OJ
30:43
33:29
9.3E3
L.4.6E3
.O.OEO
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
341.8568 S.-10 F:2 BSUB(128,15,-3 . 0) PKD{3 , 3 , 2 , 0 .10%, 4848 . 0,1. 00%, F, F)
100% 31:58 . . .. 32;34
30:47
50J . 30:
32:22
33:24 33:36 Time
1.0E4
-5.1E3
. O.QEQ
33:24 33:36 Time
7.4E7
_3.7E7
30!36 ' 30\48
31124 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
351.9000 S.-10 F:2 BSUB(128,15,-3 . 0) PKD(3 , 3 , 2 , 0 .10%, 320 . 0,1. 00%, F,F)
100%. 32:22
OJ
32:49
i I i i i i i I i i i i i I i i i i i I i i i i i I i i—i i i I i i i f\ \~"\ i i i i I i i i i i I i i i ^ i f'i i i n I i i i i i' I i i i i i I i i i i i' I i i
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
i i I i i i i i I i i
33:24 33:36
LO.OEO
Time
_4.7E7
.2.3E7
353.8970 S:10 F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,2152.0,1.00%,F,F)
100% 32,-22
50J
OJ
32:49
. . . i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i ri i"*! i i i i i i i i i i i i i i i i ri i i i'i i ' i ii r i i ~i > ' i i i > •r-i| i i
30l36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
409.7974 S:10 F:2 BSUB(128,15,-3 . 0) PKD(3,3,3,100.00%, 308.0,1.00%,F,F)
100%
31:13 31:37
32;22 32:37
O.OEO
33!24 ' 33.-36 Time
1 K | W r.X i i Mi ii i i Vi ri iT i i i | i i ill | ill iT| i ii i i | T-i TV i | i i i . i | "i l-i i i-| i -i-i T-I- | i n -i-i- | i r-r-i , [•! T-
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
366.9792 S:10 F:2 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100%. 30:45 31:01 31:25 Ti -50 32:07 3Zili_12^!£_ 33:Q3
33:24 33:36
50J
OJ
! I | | I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I | I I I I I | I I I I I I I I I I I | j I I i i i | i I
3(*36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12
.O.OEO
Time
.9.6E7
.4.8E7
LO.OEO
33!24' ' 33136 Time
-------
File:A27SEP98M
Sample* 10 Text:
373.8207 S
100%.
bO_
0
32
#1-196 Acq:28-SEP-1998 02:13:
1113-6 xl/2
10 F:3
:55
BSUB(128,15,-3.0)
51 GC EH- Voltage SIR Autospec-UltimaE
Exp:EXP M23_DB5_OVATION
PKD (3,5,
34:34
A
2, 0.10%, 3288.0,
1.00%,F,
A 34:01 I\K A ->A . CQ
*jvJ\f
33 1 48 '
375.8178 S:
100%,
:
50j
o-
w
'34!
A
'.V
00
10 F:3
34
-.01
33:52 |\
A A "
33! 48
383.8639 S:
100%,
50j
o:
33 1 48
385.8610 S:
100%
-
50j
o"
33:48
445.7555 S:
100%
-
50'
o:
33:49
/-\/Vy^
•i J t'-r-r
33:48
380.9760 S:
V\l
34l
10 F
34l
10 F
— i i-*y
34-!
10 F
V
00
:3
00
:3
00
:3
j[±\/^v~v^VVV A
'34! 12' ' '34 I 24'
BSUB(128,15,-3.0)
N 34:19
34l 12 34} 24
BSUB(128,15,-3.0)
34l 12 34 1 24
BSUB(128,15,-3.0)
34:12 34:24
BSUB (128, 15, -3.0}
jv\y
V IV
' '34\36
PKD (3,5,
34:34
,34:50 /V,
Awv/ ]\
' 34:48' ' '35 .-DO
2, 0.10%, 1516.0,
34:59
35:10
-YU
'35 -12
1.00%,F,
/\ fA A .A L3^09
34l 36
PKD(3,5,
34:37
34:33I\
A \
J V V_
34:36
PKD(3,5,
34:37
34:33/\
A A
./,v.v,
34l 36
PKD (3,3,
34:06 34:15 34=33 34
^\^^N/\^ A/Vxx ^ _/ V-N
"^T^
10 F
00
:3
34:12 34:24
SMO(1,3) PKD (3, 3,
'34! 36'
3,100.00%
100% 33:52
50J
o-
i 1 i i i
3 3*; 48
1 1 1
34:00
34:12 34:24
34:36
A./vrTy
34:48 35:00
2, 0.10%, 16340.0
34 Us 35] 00
2, 0.10%, 25740.0
34:48 35-00
3, 100. 00%, 384.0
35
I
^43_34:5/4/
'I -1 | 1 I*! ' f \'lf 1 I
34:48 35:00
, 0.0,1. 00%, F,F)
34:57
34:48 35 00
W-
3 si 12
,1.00%,F
35ll2
,1.00%,F
i i i | i
35:12
,1.00%,F
35:09
:05d
^ /
\/
U",
, , , i n
35:12
35:12
F)
_1
35:22
yvy ^/Y^YYVV-Y VYV^ fY^i^^^^^
-
"6
- n
35l24 35136 35:48 36loO 36:12
F)
n-8
35:23 35:31 35.43
s /\\J\^Y* w\7A^W/^^ / — sJ VVvV\Ax^
14
• n
35124 35136 35l48 36lo'o 3e!l2
,F)
r4
r2
:0
35I24 35:36 3sl48 36:00 3ell2
,F)
7
;
13
:o
'35:24' ' 35-36 35l 48 SeloO 36:12
,F)
35:21 2
A
\
1 35:25 35:38 .
= lf \A A A 35:5° A36:05A
\/ ^\^^-^^V^V\^/\^^^\^\-rJV^
^ 9
:o
'35:24 35:36 35l48 36:00 36:12
T5.59 1
ll
:o
35:24 35:36 35:48 36:00 36:12
.3E4
.6E3
OEO
Time
.2E3
.1E3
.OEO
Time
.OE7
.OE7
-OEO
Time
.6E7
.8E7
.OEO
Time
. OE4
.8E3
.OEO
Time
.3E8
. 6E8
.OEO
Time
00
-------
File:A27SEP98M #1-197 Acq:28-SEP-1998 02:13:51 GC EI+ Voltage SIR Autospec-ultimaE
Sample#10 Text:1113-6 xl/2 Exp:EXP_M23_DB5_OVATION
407.7818 S:10 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,3372.0,1.00%,F,F)
100% 37:33
50J
36:4
38:53
38:47
9.2E3
L4.6E3
:O.OEO
00 Time
36-124 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36
409.7788 S:10 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,948.0,1.00%,F,F)
100% 36;44
50J
38:48 39:
36:24 36 36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36
38:48
417.8253 S:10 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,10008.0,1.00%,F,F)
100% 36:43
50J
37:53
36)24 36136 36148 37iOO 37112 37i24 37i36 37:48 38:00
419.8220 S:10 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,17796.0,1.00%,F,F)
100% 36:43
i i I i i i i i I i i i i i I i i
38:12 38:24 38:36
7.6E3
_3.8E3
i^O.OEO
39:00 Time
1.3E7
L6.3E6
LO.OEO
38:48
39:00 Time
r—i—i—i—i—i—i—r—I—i—i r I i i i—i—i—i—i—i—i—i i i—i—i—i—i—r-i
36:24 36:36 36:48 37:00 37:12 37:24
38:12 38:24 38:36
39:00 Time
37:36 37:48 38:00
479.7165 S:10 F:4 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,4584.0,1.00%,F,F)
100%. 37:31
37:21
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36
430.9728 S:10 F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100% 36:33 36_i48_ ^7-10 37:7S 37:33 1
50J
OJ
38:48 39:00 Time
38:56 2.3E8
Q.OEQ
38:48 39:00 Time
i—f i t—I—»—i—i—r—r—i—r—r—r—i—i—r—i—i—i—i—i—r—i—:—i—J—i—I—i—'—'—i—'—I—r"T—f—i—r [ i i i—I—i—|—i—i i ) i | > i ' ' ' f " ' ' ' ' ( ' r
36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36
-------
File:A27SEP98M #1-277 Acq:28-SEP-1998 02:13:51 GC EI+ Voltage SIR Autospec-UltimaE
Sample#10 Text:1113-6 xl/2 Exp:EXP_M23_DB5_OVATION
441.7427 S:10 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,1884.0,1.00%,F,F)
lOOSj 39-10 39:54 40:23
50J
OJ
T
T
6.7E3
L3.3E3
.O.OEO
I | i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i .
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
443.7398 S:10 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,5112.0,1.00%, F,F)
10 02v *$ Q • 9 fi A 41*41 98E3
39:10 I 39^39^ 39:51 40;02 40:20 J ^^40:56^41:14 ^^ | ^^
50j
l i i i i i I i i i i i i | i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
469.7780 S:10 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,1952.0,1.00%,F,F)
100% 40;21 2.7E7
50
o
L1.3E7
LO.OEO
i i I i i i i i I i i i i i i i i i i i i i i i i i i i i i i i I i i 'i i i I r i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I i i i i i I
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
471.7750 S:10 F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,512.0,1.00%,F,F)
100% 40:21
50
o
3.0E7
11.5E7
1 O.OEO
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00
513.6775 S-.10 F:5 BSUB(128,15,-3 .0) PKD(3 , 3 , 3 ,100 . 00%, 372 . 0 ,1. 00%, F,F)
100%, 40:21
Time
50
o
41:04
41:15 41:33
41:22
15.7E3
- O.OEO
T—i—i—i—i—i—i—i—i—i—i—rVi—i—r—i—T rr i i—rrV"i—i—rn—i—i—i—i—i—r T—i—r—i—i—i—i—i—i—i—i—\—r~i—i—r—i—i—r—i—i—i—i—i—r—i—i—r—i—i—i—i—i—r~i—n—i—r—i—i—i—i—r—r~\—i—i i i—r"T i—i—r—i—i—r
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
54.9728 S:10 F:5 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
00%, 39-1/1 39:24 19- q.S 40-11 40:22 40:42 40-R3 41 ;05 41;3f} 41;4S 12_lM__r_2 . 4E8
50
Q-
_1.2E8
.O.OEO
' r^1i i | T i i' i i 'i •! T r I i i i i i i 'F- i i F i i "i | i i i i i i i r i i i r i T-I i i | i-r r i i | r i r-T i l i i i i i i i i -i i i l 'i F i i -i i i i i r-1 i r i i--i i r ITT i F -| i ' • " "
E/^>39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
00
-------
Paradigm Analytical Labs
Method 23
M23-RB
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
-------
Paradigm Analytical Labs
Method 2 3
M23-RB
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13C12-l,2,3,7)8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13C12-l,2>3,4,6,7,8-HpCDD
13C12-OCDD
13C12-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13Ci2-l,2,3,6,7,8-HxCDF
i3C12-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
13Ci2-l,2)3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
Injection Standards
13C12-1,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
(«8)
4
4
4
4
8
4
4
4
4
Measured
Amount
(«8)
3.39
4.00
3.38
3.13
4.19
3.12
3.13
2.46
2.23
Percent
Recovery
(%)
84.7
100.1
84.5
78.4
52.4
77.9
78.1
61.6
55.9
RT
(rain.)
28:56
33:02
35:09
37:31
40:22
27:54
32:22
34:37
36:43
28:40
35:21
Ratio
0.77
1.57
1.25
1.06
0.89
0.79
1.56
0.53
0.44
0.79
1.26
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-RB
L1113
1113-7
02-Sep-98
08-Sep-98
15-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
End ConCal:
Initial Cal:
Air
1
0.0
a27sep98m-ll
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
Reviewed by: 6.
-------
OPUSguan 28-SEP-1998
Filename a27sep98m
Sample 11
Acquired 28-SEP-98 02
Processed 28-SEP-98 09
Sample ID 1113-7 xl/2
Cal Table m8290-091498
Results Table M8290-092798M
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
ss
ss
ss
ss
ss
Name;
2,3,7,8-TCDD; 6
1, 2,3,7, 8-PeCDD; 1
1,2,3,4,7,8-HxCDD; 2
1,2,3,6,7,8-HxCDD; 2
1,2,3,7,8,9-HxCDD; 6
1,2,3,4,6,7,8-HpCDD; 1
OCDD; 1
2,3,7,8-TCDF; 7
1, 2,3,7, 8-PeCDF;
2,3,4,7,8-PeCDF;
1,2,3,4,7,8-HxCDF; 4
1,2,3,6,7,8-HxCDF; 3
2,3,4,6,7,8-HxCDF;
1,2,3,7,8,9-HxCDF; 2
1,2,3,4,6,7,8-HpCDF; 1
1,2,3,4,7,8,9-HpCDF; 2
OCDF; 3
13C-2,3,7,8-TCDD; 2
13C-l,2,3,7,8-PeCDD; 2
13C-l,2,3,6,7,8-HxCDD; 2
13C-l,2,3,4,6,7,8-HpCDD; 1
13C-OCDD; 2
13C-2,3,7,8-TCDF; 3
13C-l,2,3,7,8-PeCDF; 2
13C-l,2,3,6,7,8-HxCDF; 1
13C-l,2,3,4,6,7,8-HpCDF,- 1
13C-1,2,3,4-TCDD; 3
13C-l,2,3,7,8,9-HxCDD; 2
37Cl-2,3,7,8-TCDD; 2
13C-2,3,4,7,8-PeCDF; 3
13C-l,2,3,4,7,8-HxCDD; 2
13C-l,2,3,4,7,8-HxCDF; 1
13C-l,2,3,4,7,8,9-HpCDF;
37Cl-2,3,7,8-TCDD; 2
13C-2,3,4,7,8-PeCDF; 3
13C-l,2,3,4,7,8-HxCDD; 2
13C-l,2,3,4,7,8-HxCDF; 1
13C-l,2,3,4,7,8,9-HpCDF;
Page 1
:59:53
:40:52
Resp ;
.81e+04;
. 80e+04;
. 72e+04;
.72e+04;
. Ole+04;
.07e+05;
.Sle+05;
.78e+04;
* .
* .
.156+04;
.07e+04;
* .
.73e+04;
.45e+05;
.25e+04;
.06e+04;
.75e+08;
. 16e+08;
. 25e+08;
.76e+08;
.06e+08;
. 14e+08;
. 62e+08;
. 88e+08;
. 12e+08;
.07e+08;
.53e+08;
.55e+05;
.47e+06;
.25e+08;
.25e+06;
* .
55e+05;
47e+06;
25e+08;
25e+06;
* .
Ion 1;
2.89e+04;
1.24e+04;
1.32e+04;
1. 32e+04;
3.206+04;
5.16e+04;
5.43e+04;
6.84e+04;
* .
* .
2.48e+04;
1.74e+04;
* .
2.00e+04;
7.44e+04;
1.04e+04;
2.13e+04;
1.20e+08;
1.32e+08;
1.25e+08;
9.04e+07;
9.73e+07;
1.39e+08;
1.60e+08;
6.48e+07;
3.45e+07;
1.35e+08;
1.41e+08;
2.55e+05;
2.16e+06;
1.25e+08;
4.40e+05;
* .
2.55e+05;
2.166+06;
1.25e+08;
4.40e+05;
* .
3.
5.
1.
1.
2.
5.
9.
9.
1.
1.
7.
7.
1.
9.
1.
8.
9.
8.
1.
1.
1.
1.
7.
1.
1.
1.
9.
8.
1.
9.
8.
Ion 2;
91e+04;
56e+03-
39e+04;
39e+04;
81e+04;
56e+04;
70e+04;
41e+03;
* ,
it ,
66e+04;
32e+04;
* .
33e+03;
02e+04;
22e+04;
25e+03;
55e+08;
44e+07;
99e+07;
52e+07;
09e+08;
76e+08;
02e+08;
23e+08;
806+07;
716+08;
12e+08;
31e+06;
99e+07;
08e+05;
* .
31e+06;
99e+07;
08e+05;
* .
RA;?; RT;
0.74;y; 28:57;
2.23;n; 33:02;
0.95;n; 35:09;
0.95,-n; 35:09;
1.14,-y; 35:21;
0.93,-y; 37:32;
0.56,-n; 40:22;
7.27;n; 27:57;
*;n;NotFnd;
*,-n;NotFnd;
1.49,-n; 34:33;
1.32;y; 34:38;
*;n;NotFnd;
2.73;n; 35:33;
1.06;y; 36:43;
0.85;n; 37:53;
2.30;n; 40:31;
0.77;y; 28:56;
1.57;y; 33:02;
1.25;y; 35:09;
1.06;y; 37:31;
0.89;y; 40:22;
0.79;y; 27:54;
1.56;y; 32:22;
0.53;y; 34:37;
0.44;y; 36:43;
0.79;y; 28:40;
1.26;y; 35:21;
-;-; 28:57;
1.65;y; 32:49;
1.25;y; 35:09;
0.54,-y; 34:33;
*;n;NotFnd;
-;-; 28:57;
1.65,-y; 32:49;
1.25;y; 35:09;
0.54;y; 34:33;
*;n;NotFnd;
Cone ;
0.024;
0.007;
0.015;
0.013;
0.030;
0.067;
0.146;
0.025;
* .
* .
0.023;
0.015;
* .
0.017;
0.094;
0.017;
0.027;
84.666;
100.074;
84.488;
78.354;
104.788;
77.927;
78.125;
61.555;
55.857;
68.205;
70.996;
0.080;
1.053;
112.010;
0.494;
* .
0.095;
1.348;
132.415;
0.801;
+ .
DL;
0.0251;
0.0131;
0.0190;
0.0171;
0.0176;
0.0207;
0.1379;
0.0369;
0.0132;
0.0129;
0.0242;
0.0210;
0.0232;
0.0264;
0.0233;
0.0270;
0.0764;
0.1238;
0.0757;
0.0219;
0.7446;
0.0088;
0.0539;
0.0146;
0.1042;
0.0421;
_ .
- ;
0.0567;
0.0149;
0.0291;
0.1259;
0.0481;
0.0671;
0.0083;
0.0329;
0.1990;
0.0937;
S/N1;?;
2;n;
2;n;
2;n;
2;n;
5;y;
9;y;
2;n;
5;y;
*;n;
*;n;
2;n;
2;n;
*;n;
2;n;
10;y;
2;n;
3;n;
1343 ;y;
6410 ;y;
13908;y;
242;y;
12834;y;
3647;y;
629056;y;
1477;y;
2134;y;
1518;y;
14769;y;
4;y;
10042 ;y;
13908;y;
10, -y;
*;n;
4;y;
10042 ;y;
13908;y;
10 ; y;
*;n;
S/N2;?
7;y
6;y
l;n
l;n
4;y
9;y
14 ;y
l;n
*;n
*;n
3;n
3;n
*;n
2;n
16, -y
3;n
l;n
3443, -y
18004;y
10363 ;y
292;y
76011;y
5326;y
14713,-y
2082 ;y
5347,-y
3813 ;y
11331;y
-; -
232,-y
103 63, -y
13, -y
*;n
_ . _
232;y
10363;y
13 ;y
*;n
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 17
-------
OPUSquan 28-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:5
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.09
Cone: 0.09
Tox #1: -
Name
of which 0.02
of which 0.02
Tox #2: -
# RT Respnse
named and 0.06
named and 0.06
Tox #3: -
RA
2,3,7,8-TCDF
1 23:34 2.96+04 0.89 y
2.9e+04
2 27:21 l.le+05 0.81 y
l.le+05
3 27:57 7.8e+04 7.27 n
7.8e+04
4 30:20 4.76+04 0.53 n
4.7e+04
5 30:27 i.le+04 0.61 n
l.le+04
Cone
0.01
1
]
0.04
C
e
0.02
£
c
0.02
1
•3
0.00
unnamed
unnamed
Area Height
S/N Mod?
1.3e+04 3.2e+03 l.le+00 n n
1.5e+04 9.1e+03 1.5e+00 n n
5.1e+04 1.4e+04 4.6e+00 y n
6.3e+04 1.9e+04 3.2e+00 y n
6.8e+04 1.3e+04 4.5e+00 y n
9.4e+03 4.5e+03 7.6e-01 n n
2
1.6e+04 4.4e+03 1.5e+00 n n
3.1e+04 8.3e+03 1.4e+00 n n
D
4.2e+03 l.Se+03 S.Oe-01 n n
6.8e+03 3.7e+03 6.2e-01 n n
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:5
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEE-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.06
Cone: 0.06
Tox #1: -
Name
of which 0.02
of which 0.02
Tox #2: -
# RT Respnse
named and 0.03
named and 0.03
Tox #3: -
RA
2,3,7,8-TCDD
1 24:29 1.2e+04 3.62 n
1.2e+04
2 24:30 l.Oe+04 2.76 n
l.Oe+04
3 25:45 1.2e+04 1.52 n
1.2e+04
4 27:54 6.1e+04 14.10n
6.16+04
5 28:57 6.8e+04 0.74 y
6.8e+04
Cone
0.00
c
0.00
1
0.00
1
A
0.02
c
i.
0.02
unnamed
unnamed
Area Height
S/N Mod?
9.8e+03 4.2e+03 l.le+00 n n
2.7e+03 l.le+03 8.1e-01 n n
3
7.4e+03 4.0e+03 l.Oe+00 n n
2.7e+03 l.le+03 8.1e-01 n n
3
7.0e+03 4.26+03 l.le+00 n n
4.6e+03 2.26+03 1.5e+00 n n
5.7e+04 1.26+04 3-le+OO y n
4.06+03 2.76+03 1.9e+00 n n
2
2.9e+04 8.2e+03 2.1e+00 n n
3.96+04 9.46+03 6.7e+00 y n
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:6
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.03
of which *
named and 0.03
unnamed
193
-------
OPUSquan 28-SEP-1998
Page 2
Cone: 0.03
Tox #1: -
Name
of which *
Tox #2: -
named and 0.03
Tox #3: -
RT Respnse
32:54 1.4e+04
1.4e+04
2 33:02 1.4e+04
1.4e+04
3 33:22 l.le+04
l.le+04
4 33:24 5.5e+03
5.5e+03
5 33:29 6.8e+03
6.8e+03
6 33:35 l.le+04
l.le+04
RA
1.13 n
0.58 n
0.99 n
0.23 n
0.22 n
0.12 n
Cone
0.01
t
0.01
c
£
0.00
c
c
0.00
1
4
0.00
1
c
0.00
unnamed
Area Height
7.6e+03 3.6e+03
6.7e+03 5.0e+03
1
5.1e+03 2.0e+03
8.8e+03 2.4e+03
D
5.6e+03 2.9e+03
5.6e+03 3.0e+03
3
l.Oe+03 4.86+02
4.5e+03 2.1e+03
1.2e+03 6.96+02
5.66+03 3.36+03
3
l.le+03 8.5e+02
9.56+03 2.5e+03
S/N Mod?
2.7e+00 n n
1.2e+00 n n
1.5e+00 n n
6.16-01 n n
2.2e+00 n n
7.5e-01 n n
3.6e-01 n n
5.2e-01 n n
5.2e-01 n
8.2e-01 n
6.4e-01 n n
6.2e-01 n n
-------
OPUSquan 28-SEP-1998
Page 3
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:ll
Run: 17 File: a27sep98m S:ll Acg:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.06
Cone: 0.06
Tox #1: -
Name
1,2,3,7,8-PeCDD
of which 0.01
of which 0.01
Tox #2: -
# RT Respnse
named and 0.05
named and 0.05
Tox #3: -
RA
1 32:22 2.8e+04 2.67 n
2.8e+04
2 32:35 l.le+04 2.73 n
l.le+04
3 32:37 5.6e+03 0.98 n
5.6e+03
4 32:45 1.9e+04 3.49 n
1.9e+04
5 32:48 9.7e+03 1.38 y
9.7e+03
6 32:51 l.Oe+04 1.51 y
l.Oe+04
7 33:02 l.Be+04 2.23 n
1.8e+04
8 33:10 9.6e+03 5.29 n
9.6e+03
9 33:14 6.36+03 3.13 n
6.3e+03
10 33:18 1.7e+04 2.67 n
1.7e+04
11 33:26 l.le+04 1.21 n
l.le+04
Cone
0.01
2
7
0.00
7
2
0.00
2
2
0.01
1
4
0.00
c
4
0.00
6
4
0.01
1
c
0.00
e
i
o.oo
4
i
0.01
1
4
0.00
unnamed
unnamed
Area Height S/N Mod?
2.1e+04 1.2e+04 2.6e+00 n n
7.7e+03 3.9e+03 6.1e+00 y n
D
7.8e+03 3.3e+03 7.3e-01 n n
2.8e+03 l.le+03 1.8e+00 n n
D
2.8e+03 2.1e+03 4.7e-01 n n
2.8e+03 l.le+03 1.8e+00 n n
1
1.4e+04 7.2e+03 1.6e+00 n n
4.2e+03 1.36+03 2.1e+00 n n
D
5.6e+03 3.1e+03 6.8e-01 n n
4.1e+03 1.7e+03 2.7e+00 n n
.1e+03 4.1e+03 8.9e-01 n n
.1e+03 1.76+03 2.7e+00 n n
1.2e+04 7.26+03 1.6e+00 n n
5.6e+Q3 3.6e+03 5.7e+00 y n
3
8.1e+03 2.56+03 5.4e-01 n n
1.56+03 9.6e+02 1.5e+00 n n
3
4.8e+03 2.2e+03 4.8e-01 n n
1.5e+03 9.6e+02 1.5e+00 n n
L
1.3e+04 4.56+03 9.8e-01 n n
4.7e+03 2.8e+03 4.5e+00 y n
D
5.8e+03 3.46+03 7.4e-01 n n
4.8e+03 2.56+03 4.0e+00 y n
195
-------
OPUSquan 28-SEP-1998
Page 4
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:21
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.21
Cone: 0.21
Tox #1: -
Name
of which 0.05
of which 0.05
Tox #2: -
# RT Respnse
named and 0.15
named and 0.15
Tox #3: -
RA
1 34:00 S.le+04 1.51 n
5.1e+04
2 34:08 1.4e+04 1.36 y
1.4e+04
34:13 6.1e+03
6.1e+03
3.58 n
4 34:16 l.le+04 3.90 n
l.le+04
5 34:20 1.3e+04 0.64 n
1.3e+04
6 34:22 1.2e+04 0.54 n
1.2e+04
7 34:27 1.2e+04 3.63 n
1.2e+04
1,2,3,4,7,8-HxCDF 8 34:33 4.1e+04 1.49 n
4.1e+04
1,2,3,6,7,8-HxCDF 9 34:38 3.1e+04 1.32 y
3.1e+04
10 35:09 1.5e+04 1.08 y
1.5e+04
11 35:19 1.6e+04 1.09 y
1.66+04
12 35:21 3.1e+04 3.09 n
3.1e+04
13 35:27 7.5e+03 2.09 n
7.5e+03
1,2,3,7,8,9-HxCDF 14 35:33 2.7e+04 2.73 n
2.7e+04
15 35:41 2.2e+04 5.48 n
2.2e+04
16 35:48 9.3e+03 1.48 n
9.3e+03
17 35:53 1.4e+04 2.54 n
1.46+04
18 35:58 8.1e+03 1.47 n
8.1e+03
19 36:01 1.46+04 2.25 n
1.46+04
Cone
0.03
T
0.01
c
0.00
4
1
0.01
s
0.01
(:
0.01
4
0.01
s
0.02
3
0.01
1
1
0.01
7
7
0.01
£
-i
0.02
'
0.00
c
0.02
0.01
]
0.01
c
0.01
1
4
0.00
4
0.01
unnamed
unnamed
Area Height
S/N Mod?
3.1e+04 1.3e+04 3.0e+00 n n
2.0e+04 9.2e+03 4.2e+00 y n
L
7.86+03 2.8e+03 6.6e-01 n n
5.8e+03 2.0e+03 9.3e-01 n n
D
4.7e+03 2.4e+03 5.6e-01 n n
1.36+03 9.5e+02 4.36-01 n n
I
8.56+03 3.5e+03 8.3e-01 n n
2.2e+03 1.3e+03 5.9e-01 n n
4.96+03 2.7e+03 6.3e-01 n n
7.7e+03 1.9e+03 8.8e-01 n n
1
4.26+03 2.1e+03 5.0e-01 n n
7.76+03 1.9e+03 8.86-01 n n
9.36+03 4.0e+03 9.3e-01 n n
2.6e+03 1.5e+03 6.9e-01 n n
2
2.56+04 8.1e+03 1.9e+00 n n
1.7e+04 5.6e+03 2.6e+00 n n
L
1.7e+04 9.2e+03 2.2e+00 n n
1.3e+04 5.6e+03 2.6e+00 n n
7.8e+03 3.8e+03 9.0e-01 n n
7.2e+03 2.3e+03 l.le+00 n n
L
8.2e+03 3.2e+03 7.4e-01 n n
7.56+03 2.5e+03 l.le+00 n n
2.3e+04 6.3e+03 1.5e+00 n n
7.5e+03 2.5e+03 l.le+00 n n
5.1e+03 2.9e+03 6.7e-01 n n
2.4e+03 1.7e+03 7.7e-01 n n
2
2.0e+04 8.8e+03 2.1e+00 n n
7.36+03 4.8e+03 2.2e+00 n n
1.96+04 3.9e+03 9.0e-01 n n
3.4e+03 2.2e+03 l.Oe+00 n n
L
5.5e+03 3.5e+03 8.3e-01 n n
3.7e+03 2.2e+03 9.96-01 n n
L
l.Oe+04 2.3e+03 5.4e-01 n n
4.0e+03 2.8e+03 1.3e+00 n n
4.8e+03 3.1e+03 7.2e-01 n n
3.3e+03 2.0e+03 8.9e-01 n n
L
9.6e+03 6.9e+03 1.6e+00 n n
4.3e+03 2.8e+03 1.3e+00 n n
r t
19€
-------
OPUSquan 28-SEP-1998 Page 5
20 36:07 2.3e+04 3.42 n 0.01
2.3e+04 1.8e+04 3.4e+03 7.9e-01 n n
5.2e+03 2.3e+03 l.Oe+00 n n
21 36:15 7.1e+03 1.00 n 0.00
7.1e+03 3.6e+03 1.8e+03 4.2e-01 n n
3.6e+03 2.2e+03 l.Oe+00 n n
-------
OPUSguan 28-SEP-1998
Page 6
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:20
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.17
Cone: 0.17
Tox #1: -
Name
of which 0.04
of which 0.04
Tox #2: -
# RT Respnse
named and 0.12
named and 0.12
Tox #3: -
RA
1 34:38 5.7e+04 2.38 n
5.7e+04
2 34:44 3.0e+04 0.71 n
3.0e+04
3 34:51 8.5e+03 0.57 n
8.56+03
4 34:57 l.le+04 0.40 n
l.le+04
5 35:01 1.5e+04 0.86 n
1.5e+04
6 35:05 1.4e+04 0.97 n
1.4e+04
1,2,3,6,7,8-HxCDD 7
35:09 2.7e+04 0.95 n
2.7e+04
35:15 6.3e+03 2.05 n
6.3e+03
1,2,3,7,8,9-HxCDD 9 35:21 6.0e+04 1.14 y
6.0e+04
10 35:29 1.3e+04 0.68 n
1.3e+04
11 35:33 5.5e+03 0.43 n
5.5e+03
12 35:39 7.3e+03 0.41 n
7.3e+03
13 35:41 8.7e+03 0.34 n
8.7e+03
14 35:46 8.2e+03 1.12 y
8.26+03
15 35:50 l.Oe+04 0.99 n
l.Oe+04
16 35:52 9.4e+03 0.82 n
9.46+03
17 35:56 5.9e+03 1.02 n
5.96+03
18 36:02 9.5e+03 1.42 y
9.5e+03
19 36:07 1.4e+04 1.54 n
1.46+04
Cone
0.03
i
]
0.02
]
]
0.00
T
C
0.01
3
6
0.01
«
£
0.01
(
0.01
]
]
0.00
4
0.03
0.01
c
1
0.00
]
0.00
c
0.00
2
«
0.00
<
0.01
c
c
0.00
4
c
0.00
0.00
c
1
0.01
unnamed
unnamed
Area Height
S/N Mod?
4.0e+04 1.8e+04 6.7e+00 y n
1.7e+04 5.8e+03 2.2e+00 n n
.3e+04 4.9e+03 l.Se+00 n n
.8e+04 5.5e+03 2-le+OO n n
3.1e+03 1.96+03 6.96-01 n n
5.4e+03 2.16+03 S.le-Ol n n
3.2e+03 2.2e+03 8.0e-01 n n
8.1e+03 3.16+03 1.26+00 n n
6.9e+03 l.Se+03 6.56-01 n n
8.1e+03 3.1e+03 1.2e+00 n n
6.8e+03 4.5e+03 1.6e+00 n n
7.1e+03 3.6e+03 1.46+00 n n
L.3e+04 6.3e+03 2.36+00 n n
L.4e+04 3.7e+03 1.4e+00 n n
4.3e+03 2.46+03 8.7e-01 n n
2.1e+03 1.86+03 6.8e-01 n n
3
3.2e+04 1.3e+04 4.66+00 y n
2.8e+04 l.Oe+04 4.0e+00 y n
L
5.1e+03 2.46+03 8.6e-01 n n
7.5e+03 3.36+03 1.3e+00 n n
1.6e+03 7.6e+02 2.86-01 n n
3.9e+03 2.0e+03 7.8e-01 n n
2.16+03 1.26+03 4.5e-01 n n
5.1e+03 2.6e+03 l.Oe+00 n n
D
2.2e+03 l.le+03 3.9e-01 n n
6.5e+03 3.1e+03 1.2e+00 n n
4.3e+03 1.5e+03 5.5e-01 n n
3.9e+03 2.8e+03 l.le+00 n n
L
5.1e+03 3.0e+03 l.le+00 n n
5.2e+03 2.5e+03 9.7e-01 n n
4.2e+03 3.0e+03 l.le+00 n n
5.2e+03 2.56+03 9.76-01 n n
D
3.0e+03 l.Se+03 6.6e-01 n n
2.9e+03 1.56+03 6.06-01 n n
5.6e+03 3.3e+03 1.2e+00 n n
3.9e+03 1.6e+03 6.2e-01 n n
L
8.7e+03 2.5e+03 9.0e-01 n n
5.6e+03 2.2e+03 8.5e-01 n n
19?
-------
OPUSguan 28-SEP-1998
Page 7
20 36:17 8.5e+03 0.64 n
8.5e+03
0.00
3.3e+03 2.4e+03 8.7e-01 n n
5.2e+03 2.2e+03 8.6e-01 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:4
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.14
Cone: 0.14
Tox #1: -
Name
of which 0.11
of which 0.11
Tox #2: -
tt RT Respnse
named and 0.03
named and 0.03
Tox #3: -
RA
1,2,3,4,6,7,8-HpCDFl 36:43 1.4e+05 1.06y
1.4e+05
2 36:55 2.2e+04 0.75 n
2.26+04
3 37:03 1.7e+04 0.59 n
1.7e+04
l,2,3,4,7,8,9-HpCDF4 37:53 2.3e+04 0.85 n
2.3e+04
Cone
0.09
0.02
c
3
0.01
e
i
0.02
unnamed
unnamed
Area Height
S/N Mod?
7.4e+04 3.1e+04 9.6e+00 y n
7.0e+04 2.5e+04 1.66+01 y n
2
9.6e+03 4.5e+03 1.4e+00 n n
1.3e+04 2.4e+03 1.6e+00 n n
L
6.46+03 2.4e+03 7.5e-01 n n
l.le+04 4.5e+03 2.9e+00 n n
2
l.Oe+04 5.2e+03 1.6e+00 n n
1.26+04 4.3e+03 2.8e+00 n n
-------
OPUSquan 28-SEP-1998 Page 8
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:2
Run: 17 File: a27sep98m S:ll Acq:28-SEP-98 02:59:53 Proc:28-SEP-98 09:40:52
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-7 xl/2
Amount: 0.07 of which 0.07 named and 0.01 unnamed
Cone: 0.07 of which 0.07 named and 0.01 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name # RT Respnse RA Cone Area Height S/N Mod?
1,2,3,4,6,7,8-HpCDDl 37:32 l.le+05 0.93 y 0.07
l.le+05 5.2e+04 2.1e+04 9.3e+00 y n
5.6e-i-04 1.6e+04 9.2e+00 y n
2 37:57 l.le+04 0.90 y 0.01
l.le+04 5.3e+03 2.0e+03 8.7e-01 n n
5.9e+03 3.4e+03 1.9e+00 n n
200
-------
File:A27SEP98M #1-529 Acq:28-SEP-1998 02:59:53 GC EI+ Voltage SIR Autospec-UltimaE
Sample#ll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
319.8965 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%,3844.0,1.00%,F,F)
100%, 27:54
o
28:57
23:
23:42
1.4E4
1.6. 9E3
T
rr
T"
28:00
""" 1 '
30:00
LO.OEO
Time
24:00 25:00 26:00 27iOO
321.8936 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%, 1420.0,1.00%,F, F)
100%,
29:00
28:56
24:00 25:00 26:00 27iOO
331.9368 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%,20040.0,1.00%, F, F)
100%
50J
ol
28:00
29:00
30:00
28:40
T—'—I ii r ~t r "i r-
25:00 26:00
24:00 25:00 26iOO 27:1
333.9339 S:ll BSUB(128,15,-3 . 0) PKD(3,3,2,0.10%,10092.0,1.00%,F,F)
100%
50J
.O.OEO
Time
3.0E7
.1.5E7
1
O.OEO
Time
3.9E7
L1.9E7
0.
28:00 29:00 30:00
28:40
-i 1 1 r
26:00
T
28 loo'
30:00
LO.OEO
Time
i
-i 1 1 r
25:00
24100 25iOO 26:00 27:00
327.8847 S:ll BSUB(128,15,-3.0) PKD(3 , 3 , 2,0 .10%,13500.0,1.00%,F, F)
100%
50J
24iOO 25100 26:00
316.9824 S-.ll SMO(1,3) PKD(3 , 3 , 3 ,100 .00%, 0 . 0,1. 00%, F, F)
IQOa, 23^21 -.23-; 53.24 04-24:42 25-.11 25:46 26^12
27:00
28:00
50:
29:00
L5S_-
30:00
-23J
.O.OEO
Time
7.2E7
_3.6E7
-T 1 r 1 1 r-
25:00
-T 1 r-
-T 1 r-
28:00
29 loo'
-i 1 r
30:00
O.OEO
Time
24 I OO"
26100
27 100
-------
File-A27SEP98M #1-237 Acq:28-SEP-1998 02:59:53 GC EI+ Voltage SIR Autospec-UltimaE
Sample#ll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
355.8546 S.-ll F:2 BSUB{128,15,-3 . 0) PKD(3 , 3 , 2, 0 .10%, 4604 . 0 ,1. 00% , F, F)
100% 32;22
50.
30:4030:49 31:01 31:14 313°
1.8E4
L9.0E3
O.OEO
31i36 31:48 32.:00 32il2 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
357.8517 S:ll F:2 BSUB{128,15,-3.0) PKD(3,3,2,0.10%,632.0,1.00%,F,F)
100%
so:
33:02
33:07 33:18 33:27
6.3E3
L3.1E3
•i l i i i i i l l i i i i i l i i i i i |
30:36 30:48 31:00 31:12 31:24
367.8949 S:ll F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,9952.0,1.00%,F,F)
100%
so:
33rf
.-6.4E7
L3.2E7
O.OEO
30[36 ' 30U8 ' 31166 ' 31112 ' 3il24 ' 31136 ' 3lU8 ' 32!o6 ' 32!l2 ' 32124 32136 32:48 33:00 33:12 33:24 33:36 Time
.8919 S:ll F:2 BSUB(128,15,-3 .0) PKD{3,3,2,0.10%,2316.0,1.00%,F,F)
so:
V
L2.1E7
O.OEO
30!36 ' 30U8 ' 3l!66 ' 3l!i2 ' 3l!24 ' 3l\36 ' 3lUs ' 32166 ' 32!l2 ' 32124 ' 32136 32:48 33:00 33:12 33:24 33:36 Time
366.9792 S:ll F:2 SMO(1,3) PKD{3,3,3,100.00%,0.0,1.00%,F,F)
1004 30-4230-52 31:03 31:1631:26 31:45 32:01 32 :_17_
32_ii5_J2M6.
_3JL
33- 2
so:
9.1E7
L4.5E7
"O.OEO
Ju I I I I I I I I I I I I I I I I I I I I I I I I I ' I I I I I I I I I ' I ' •
30:36 30:48 31:00 31:12 31:24 31:36 31:48
32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
Time
-------
File
Samp
389.
100%
50J
0"
391.
100%
50J
OJ
401.
50:
0'
403.
100%
so:
0"
380.
100%^
50J
0'
:A27SEP98M #1-197 Acq:
le#ll Text: 1113-7 xl/2
8156 S:ll F:3 BSUB(128
34:00 34:
^ ^~"'V^_^A~\/-A/'^^X^~/
33 ! 48
8127
yv_/V
33 ! 48
8559
33 •! 48
8530
34 I 00 34 5 12
S:ll F:3 BSUB(128
34
34:01 34;09 J
\rWWv-\At
' '34! do' ' '34:12'
S:ll F:3 BSUB(128
34:00 34:12
S: 11 F:3 BSUB(128
'—i — i — i — i — i — i — i — i — i — i — i — i — i — | — i — r
33:48 34:00 34:12
9760 S:ll F:3 SMO(1,3)
33^48
'34! do' ' '34 .-12'
28-SEP-1998 02:59:53 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DB5_OVATION
,15, -3.0) PKD(3,5,2,0.10%,2748.0,1.00%,F,F)
34:38
l\ 35:21
\ 35:09 A
16 34A24 ^vLlA 34:57 /vA / V 35:37 36:02
345 24 34! 36 34548 35!do 35 !
,15, -3.0) PKD (3, 5, 2, 0.10%, 2584. 0,1. 00%,
:16 34:37 34:48 i
\ A l\ A 34:59 3/^vT
34:24 34536 34548 3s5do 355
,15, -3.0) PKD (3, 5, 2, 0 . 10%, 4128 . 0, 1 . 00% ,
35:09
34524 34:36 34:48 35:00 35:
,15, -3.0) PKD (3, 5, 2, 0.10%, 4344. 0,1. 00%,
35:09
•i- i "i i i i i i i I i i i* i ' I I ' ' ' ' ' 1
34524 34536 34:48 35:00 35:
PKD (3, 3, 3, 100. 00%, 0.0,1. 00%, F,F)
35:04
34524 34:36 34:48 35:00 35:
12 35:24 35:36 35:48 36:00 36:12
F,F)
35:21
12 35?24 35536 35:48 36:00 3e5l2
F,F)
35:21
11 . . . .
12 35:24 35:36 35:48 36:00 36:12
F,F)
35:21
H
2.2E4
L1.1E4
' O.OEO
Time
1.1E4
L5.6E3
10. OEO
Time
^e.lE?
_3.0E7
_O.OEO
Time
_4.9E7
L2.5E7
"O.OEO
12 35 5 24 35 5 36 35. -48 36 5 00 36 5 12 Time
35:18 35^35 _ ^^•IiP 3.2E8
_1.6E8
" O.OEO
12 35:24 35:36 35:48 36:00 36:12 Time
">
^
r \
-------
File:A27SEP98M #1-197 Acg:28-SEP-1998 02:59:53 GC EI + Voltage SIR Autospec-UltimaE
Sample#ll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
423.7767 S:ll F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2288.0,1.00%,F,F)
100%, 37;32
36:42
so:
0.
..2.2E4
38:50
38:55
rr
T
i.OEO
36:24 36136 36i48 37iOO 37il2 37i24 37i36 37i48 38iOO
425.7737 S:ll F:4 BSUB(128,15,-3.0) PKD{3,5,3,0.10%,1736.0,1.00%,F,F)
100% 37:32
38:12 38:24 38:36 38:48 39:00 Tinv
so:
36:56
36:43
0.
36:2Y ' YelsV ' Ye^VsVloV " '37! 12' ' '37 bV ' '37bV ' V?!^' ' Vslo'o'
435.8169 S:ll F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,136268.0,1.00%,F,F)
100% 37:31
so:
_8.3E3
Q.QEO
'38:48 39:00 Timi
38:12 38:24
38:36
U.1.7E7
'r i i i i—i—i—i—i ' i "i—r—i—i—i r*T*r i—r—i—i—i—i—i—i—i—i—i—i—i—i—V—i—. -i i'"i i i i i i i i i i i | i i i i i I i i i i i—| I I i i i i i i i i i i i i i i i J " •
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
437.8140 S:ll F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,105916.0,1.00%,F,F)
100% 37;31
50J
i i i—i—i—i—i—i—i—i—r-
..3.1E7
_1.6E7
.O.OEO
i r i T i—i—i—i—i—i—i—i—i—i—i—i—i—r-*i—i—i i f I i i—i—i—i i i—i—r-i—i i i i i i—r—i—i—i—i—\—i "i "i T" i—i—i—i—i—i i i i—r-i—i i i—r
36124 36136 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
30.9728 S.-ll F:4 SMO(1,3) PKD(3 , 3 , 3 ,100 . 00%, 0 . 0,1. 00%, F, F)
00%, 36^30 3&1JJ9. 11- "" 37;1_2. 37:41__
50J
37-57
1.2E8
L1.1E8
O.OEO
r- 'r i—i—i—i—r—i—1—1—i—i—i—i—i—r—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r—T—T—i i t' i—i—i—i—i—i—!—i—[—i—i—i—i—i—I—i—i—i—r—i—i—i—i—i—i—i—r
36:^4 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
-------
File:A27SEP98M ffl-276 Acq:28-SEP-1998 02:59:53 GC EI+ Voltage SIR Autospec-UltimaE'
Sample#ll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
457.7377 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,11300.0,1.00%,F,F)
100%, 40:22
50J
0
39:23
3.6E4
_1.8E4
T
T
T
O.OEO
39112 39i24 39i36 39Us 4o!66 4b!l2 4o!24 4o!36 4oU8 4l!66 4l!i2 4il24 41136 4l!48 ' 42166 ' 42? 12 Time
459.7348 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,1904.0,1.00%,F,F)
100%, 40;22 2.7E4
50J
39:12 39:26 39:40 39:54
40=34
41:56
L1.3E4
.O.OEO
I i i i i i I i i i i i i i i i i i I i i i i i I i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
469.7780 S:ll F:5 BSUB (128,15,-3 . 0) PKD(3 , 5, 3 , 0 .10%, 2116 . 0,1. OC?,, F, F)
100% 40:22
50J
2.7E7
L1.4E7
- f" i T i i—i—r-i—i—i "i i ""i i—i—r-r~i—r-i ri—r-i—i—i -i i—r—T—i—r—r*i—n—i i~f r I r""i T"T I'T^I-T-I—n—i i "i—n—r~r~i—i' i i i—r*i—r i r"i i—i—i -i T i—r-i—r—i—i—i r"i r"i—r—i—r—i—r*—
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
471.7750 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,396.0,1.00%,F,F)
100% 40:22
so:
_3 . OE7
_1.5E7
O.OEO
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 ' 40:48 41:66 41:12 41:24.. ' 41136 '4! [&lT 42100 42:12 Time
54.9728 S:ll F:5 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
,00%,lg.-Qj 39:2339:32 39:45 40:01 40:12 40:38 4J):4R
so:
41:10
41i28
41:49 42:01
2 . 3E8
_1.2E8
' i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i I | i i i i i | i i i i i i i i i i i | i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i ' U • UE.U
:^. 39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
-------
File:A27SEP98M #1-529 Acq:28-SEP-l99tf 02:59:53 GC EI+ Voltage SIR Autospec-UltimaE
Sample#ll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
303.9016 S:ll BSUB(128,15,-3.0) PKD(3 , 3,2,0.10%,2908.0,1.00%,F,F)
100% 27:21 27:57
30:18
r_1.7E4
18.4E3
1 1 1 r-
rr
27 !oO
28 loo'
30 loo'
lO.OEO
Time
,_2.5E4
Ll.2E4
.O.OEO
Time
3.2E7
L1.6E7
24:00 25:00 26:00
305.8987 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%,5972.0,1.00%,F,F)
100%, 27:19 27«55
24:35
29:00
24:00 25:00 26:00 27:00
315.9419 S:ll BSUB{128,15,-3.0) PKD(3,3,2,0.10%,8692.0,1.00%,F,F)
100%
50j
29:00
30:19
30:00
.O.OEO
Time
4.1E7
_2.0E7
24:00 25:00 26:00 27:00
317.9389 S:ll BSUB(128,15,-3.0) PKD(3,3,2,0.10%,7608.0,1.00%,F,F)
100%
29:00
0.
29:00
30:00
30 !00
30:01
O.OEO
Time
—l 1 1 1 l 1 r-
24:00
25:00 26:00 27:00
375.8364 S:ll BSUB(128,15,-3.0) PKD(3,3,3,100.00%,196.0,1.00%,F,F)
100%, 23:53
27:01
28:00
5 Ci-
3;13 ?l:38
23:f
25:16
°5
26:26
30:00
1.0E4
_5.0E3
O.OEO
Time
24:00 25:00 26:00
316.9824 S:ll SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F, F)
100% 23!21 J3:5324;Jfi 24:42 . 2S_Q1.. _2_5:46 26j,12
27:00
28:00
29:00
"27 loo'
28 loo'
29:00
30 I 00
-7 • 2E7
.3.6E7
.O.OEO
Time
-i 1 1 1 ia i T "~ r~
24:00
25:00
26 loo'
-------
File:A27SEP98M #1-237 Acq:28-SEP-1998 02:59:53 GC EI + Voltage SIR Autospec-UltimaE
Samplettll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
339.8597 S:ll F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,1328.0,1.00%,F,F)
100%, 32;34
31:47 ,„..,,
501
I ' i i i i I i i i i i I i i i p i I i i p i i I i i i i i I i i p i i I p p "p' i "p i i i i i i i i i i i i I i i i i i i i i i—i i i i i i i i i i i i i i i i i i
30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
341.8568 S.-ll F:2 BSUB(128,15,-3 . 0) PKD(3, 3,2, 0 .10%, 3980 . 0,1. 00%, F, F)
1003ii , 32-33 32:50
1 30:45 A . 32:11 32:23 J » J A 32-55
50J |\. J-L;UO 31:25 . ^L AJ^:U.J /^ /WT7\ 32:4,2 /\ A .. 33;i!D 33:29
OJ
30:
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32112 32:24 32:36 32:48 33:00 33:12 ' 33:24 33:36
351.9000 S:ll F:2 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,132.0,1.00%,F, F)
100% 32:22
/I
501
0.
O.OEO
Time
9.6E3
14.8E3
.O.OEO
Time
.8.3E7
.4.2E7
.O.OEO
Time
.5.2E7
.2.6E7
.O.OEO
Time
i i I i i i i i I i i i i i i i i i i i i i i i i i i i i i i T*i i i i i i i i i i i 1 p f i i p i i i r i i p p p i i i i i i i i i i i i i i i p i
30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
353.8970 S:ll F:2 BSUB(128,15,-3.0) PKD(3 , 3,2 , 0.10%,3544.0,1.00%,F,F)
100% 32;22
501
OJ
30:48 31:00 31:12
:24 31:36 31:48 32:00 32:12 32:24
409.7974 S:ll F:2 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,560.0 ,1.00%,F, ]
100%
32:48
3324
50
i i i i i p i i i i i i p i i i i i p i p i i i i i i i i i i i i i p i i i i i i i I i i i i i i i i i p i i i r i i i i i i i i i i p i i i i p i i i i i i i i i i i i i
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
66.9792 S:ll F:2 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
00%, 30:4230:52 31:03 31:1631:26 3JL.-45 32:01 3j.-17_
50_
0
32:46
33:04
ri:2fl 33:40
I 'I' ' I ' "I I I < I I | I I I I I | I I P I I | I I I I I I I 1 I 'I I | I I I I I I I I I I P | I I I I P | 'I I I I I I I I P P I I I I I I I I I I I I P I I I I I I I I I I
i;36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
O.OEO
Time
.9.1E7
4.5E7
O.OEO
Time
^ T
-------
File:A27SEP98M #1-197 "Acqf
Sampletfll Text:1113-7 xl/2
373.8207 S:ll F:3 BSUB(128
100%, n
50.
0
"y^O U^8 .
33! 48 34! 00 34. -12
375.8178 S:ll F:3 BSUB(128
100% 34i01
50J
o-
33:56 \
\ J 04:05
^^) V \Af^~^
33 U'S 34:00 34! 12
383.8639 S:ll F:3 BSUB(128
100%
50-i
'.
Q-
34:00
33:48 34! 00 347 12 '
28-SEP-1998 02:59
53 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP_M23_DB5 OVATION
,15, -3.0) PKD (3, 5
34:38
34:27 A /\4
-vwAA/ Y*r
34124 34! 36
,15, -3.0) PKD(3,5,
34:38
34:20 A/\/\
34 $24 34. -36
,15,-3.0) PKD(3,5,
34:37
/ \
J \^^
34! 24 '34136
385.8610 S:ll F:3 BSUB(128, 15, -3 . 0) PKD(3,5,
100%
50 j
o:
34:00
33:48 34:00 34:12
34,37
j[
34:24 34:36
445.7555 S:ll F:3 BSUB(128, 15, -3 . 0) PKD(3,3,
100%
50 j
^
o-
33:51 34:10
33:48 34. -00 34:12
380.9760 S:ll F:3 SMO(1,3)
100% 34:01
50J
o:
/
• | i i i i i | i i . i i | i i
•33)548 34:00 34:12
2, 0.10%, 4272. 0,1. 00%, F,F)
,-1.5E4
34-49 3v\01 35:09 35:21 * 35:50
^LA\^vAA^^
-
7.3E3
f\ r\r?r\
r-i-i— p-r i i i i ) i i i i i | i i i i i ! i t i i i | i i i i i | i i i i i , i i i i i , i i , , I- " • u^u
34:48 35:00 35:12 35:24 35:36 35:48 36lOO 36ll2 Time
2, 0.10%, 2192. 0,1. 00%, F,F)
r_1.0E4
35:00 , 35:34
34-48 A /V\ 35:09 35:21 in A 36:02 36:13 A
-^V^^^VJV/v^v^^XrvAA^ V/VV^AAyVYVYV^WWu V
15.2E3
• n fipn
i i I i i i i i I i i i j i | i i i r i •! i -1- r T -i -i-i— i — i — i — i — i — i — i — i — i — i — i — i — i — i — ? — i — i — , — r — i — i— *— " • «"**
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
2, 0.10%, 19392. 0,1. 00%, F,F)
2.9E7
-1.4E7
o . np.fi
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
2, 0.10%, 26820. 0,1. 00%, F,F)
5.6E7
_2.8E7
O.OEO
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
3, 100. 00%, 408. 0,1. 00%, F,F)
35:09 35/i21
A It
34:25 34:44 ^ 35:0^ \ / \ 35:36 ,. . 35:56 36 = 07 ,fi.1fi
A A ''^^_^— —-^
34:24 34:36
PKD(3,3,3,100.00%
'34! 24' ' '34! 36
/V^N/VNA—/ V\A-_xV\_/ ^A__yV^ ^XNx-s__/^NX V_W/ VVN^/V— ^ A_>\.^^XN^V/ V ^~\ >V S
_2 . OE4
L9.8E3
O.OEO
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
,010,1.00%,F,F)
35^4 35^18 35:35 35tSR 3.2ER
.1.6E8
O.ORO
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
-------
File:A27SEP98M #1-197 Acg:28-SEP-1998 02:59:53 GC EI+ Voltage SIR Autospec-UltimaE
Sampletfll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
407.7818 S:ll F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,3232.0,1.00%,F,F)
1004 36:43
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48
409.7788 S:ll F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,1532.0,1.00%,F,F)
100%, 36:43
50
36:53 37A°2 ,37:13 37A22 37:31 37:41 37A53
38:21 38:33 38:
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48
417.8253 S.-ll P:4 BSUB(128,15,-3 . 0) PKD(3 , 5, 3 , 0 .10%, 6436 . 0,1. 00%, F,F)
1004 36:43
50:
O
39:00
1,
•H—I—I—l—I—I—l l f—l—l i" I I I I—l—1—l—I I I—I—I—I—I—I—I—I—I—I—i—I—l—i—I—I—l—r
36:24 36:36 36:48 37:00 37:12 37:24 37:36
i I i i i i i I i i
37:48 38:00
419.8220 S:ll F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,5872.0,1.00%,F,F)
100% 36:43
.0,
4E7
9E6
OEO
Time
38:12 38:24 38:36 38:48 39iOO
50
T — l — l — i — i — i — i — l i — l I l — l — l— l — i — l
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48
479.7165 S:ll F:4 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,2200.0,1.00%,F,F)
100% 37:30
36:43 36:52
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48
3900
430.9728 S:ll F:4 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
100%, 36-30 36_Lia_ i2jJHL_3iO2 37:35
50J
J&J
36\2A' ' '36:36 ' VeUV ' Vvldo' ' '^1\12 ' 'il\2l ' '31:36 ' 'svUV ' Vslo'o' ' VsllV ' '38124' ' VshV ' 's'sU's'
ll
10
'39 loo
.OEO
Time
.2E8
.1E8
.OEO
Time
-------
File:A27SEP98M #1-276 Acq:28-SEP-1998 02:59:53 GC EI+ Voltage SIR Autospec-UltimaE
Sample#ll Text:1113-7 xl/2 Exp:EXP_M23_DB5_OVATION
441.7427 S:ll F:5 BSUB(128,15,-3.0) PKD{3,5,3,0.10%,2632.0,1.00%,F,F)
100% 39:53 40;31
50 j
ol
42:01
7.2E3
L3.6E3
O.OEO
39:12 39:24 39:36 39U8 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48
i '
443.7398 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,5240.0,1.00%,F,F)
39:08
42:00 42:12 Time
50
39!l2 39l24' ' 39!36 ' 39U8 ' 40166 4o!i2 4o!24 4ol36 4ol48 4i!66 4l!i2 4il24 4i!36 4lU8
469.7780 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,2116.0,1.00%,F,F)
100% 40.; 22
I I I | I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I *l I I I I I1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I T | I I I I I | I I
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48
471.7750 S:ll F:5 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,396.0,1.00%,F,F)
100% 40,; 22
o
42:00 42:12 Time
2.7E7
Ll.4E7
LO.OEO
|
T
42:00 42:12 Time
3.0E7
Ll.5E7
T
.O.OEO
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48
513.6775 S:ll F:5 BSUB{128,15,-3.0) PKD(3,3,3,100.00%,440.0,1.00%,F,F)
100%, 40;22
39:45
50J
39:11 39:24
A
39:57
39:49 A
\_/vJ-_jvV V\_
:10
41:04
42:00 42:12 Time
1.3E4
L6.3E3
40:
tflA
,A_
i
41:20
/ L
41:33 41:47
2:00
rr
I.OEO
39!l2 39i24 39:36 39:48 40:00 40:12 40:24 41
454.9728 S:ll F:5 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F, F)
40. 01 40:12 40:38 40:48 41; 02
41.QQ 4l!i2 41124 41:36
50J
OJ
41:49
42:00 42:12 Time
.2.3E8
i i i i i i i i i i I i i i i i i i i i i i i i i i i—ii i i i i i i i | i i i ' i i | 'i i i i i | i i i i i | i i i i i | • i i i i | i •
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48
_1.2E8
.O.OEO
42:00 42:12 Time
-------
Paradigm Analytical Labs
Method 23
M23-I-1 FH
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
l»g)
ND
EMPC
EMPC
0.0028
0.0035
0.0170 .
0.0600
0.0046
EMPC
0.0034
0.0057
0.0038
EMPC
ND
ND
ND
EMPC
0.173
0.123
0.119
0.0308
0.0412
0.0252
0.0164
ND
0.0040
0.0048
DL
(»&
0.0010
0.0006
0.0006
0.0006
0.0006
0.0011
0.0074
0.0017
0.0005
0.0005
0.0008
0.0007
0.0008
0.0009
0.0064
0.0074
0.0031
0.0010
0.0006
0.0006
0.0011
0.0017
0.0005
0.0007
0.0064
EMPC
(n«)
0.0017
0.0016
0.0032
0.0036
0.0125
0.176
0.128
0.123
0.0748
0.0360
0.0236
0.0055
0.0061
RT
(mm.)
28:58
33:01
35:05
35:09
35:21
37:31
40:22
27:56
32:23
32:49
34:34
34:38
35:00
40:31
Ratio
0.90
1.29
1.54
1.26
1.20
1.05
0.82
0.86
1.86
1.57
1.21
1.08
1.03
0.74
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ED:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-I-1 FH
L1113
1113-8
27-Aug-98
08-Sep-98
15-Sep-98
28-Sep-98
ftample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
End CooCal:
Initial_Cal:
Air
1
0.0 %
a27sep98m-12
a27sep98m-l
a27sep98m-2
a27sep98m-16
mS290-091498
n 211
1/2
-------
Paradigm Analytical Labs
Method 23
M23-I-1 FH
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
l3C12-2,3,7,8-TCDD
I3C,rl,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13C12-i,2,3,4,6,7,8-HpCDD
13C12-OCDD
l3C12-2,3,7,8-TCDF
l3C12-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
I3C,rl,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cll-2,3)7)8-TCDD
13C12-2,3A7,8-PeCDF
l3C12-l,2,3,457,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13Cirl,2,3,4,7,8,9-HpCDF
Injection Standards
BC12-1,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
(ng)
4
4
4
4
8
4
4
4
4
Measured
Amount
(ng)
3.67
4.20
3.59
3.63
5.30
3.57
3.64
2.87
2.76
Percent
Recovery
(•/•)
91.8
105.1
89.8
90.8
66.3
89.3
90.9
71.8
69.0
RT
(min.)
28:55
33:01
35:08
37:30
40:21
27:54
32:22
34:38
36:42
28:38
35:21
Ratio
0.78
1.58
1.26
1.07
0.91
0.8
1.58
0.52
0.44
0.79
1.26
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-I-1 FH
LI 113
1113-8
v- --..,,
27-Aug-98
08-Sep-98
15-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
End ConCal:
Initial Cal:
Air
1
0.0
a27sep98m-12
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
Reviewed by:
\
Date Reviewed:
2/2
-------
Paradigm Analytical Labs
Method 23
M23-I-1 FH
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ (ND=0)
TEQ (ND=l/2)
Concentration
(ppt)
ND
EMPC
EMPC
0.1099
0.1382
0.6675
2.3557
0.1790
EMPC
0.1351
0.2246
0.1476
EMPC
ND
ND
ND
EMPC
6.784
4.837
4.680
1.2093
1.6176
0.9894
0.6439
ND
0.1565
0.1894
DL
(PPO
0.0380
0.0247
0.0247
0.0221
0.0228
0.0427
0.2921
0.0663
0.0193
0.0189
0.0314
0.0273
0.0302
0.0342
0.2502
0.2893
0.1212
0.0380
0.0247
0.0221
0.0427
0.0663
0.0189
0.0273
0.2502
EMPC
tppt)
0.0660
0.0628
0.1256
0.1429
0.4916
6.910
5.010
4.837
2.9368
1.4134
0.9266
0.2168
0.2402
RT
(mm.)
28:58
33:01
35:05
35:09
35:21
37:31
40:22
27:56
32:23
32:49
34:34
34:38
35:00
40:31
Ratio
0.90
1.29
1.54
1.26
1.20
1.05
0.82
0.86
1.86
1.57
1.21
1.08
1.03
0.74
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information.
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-I-1 FH
LI 113
1113-8
27-Aug-98
08-Sep-98
15-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight / Volume:
Moisture / Lipids:
Filename:
Retehk:
Begin ConCal:
EndConCal:
Mtial_Cal:
Air
25.47
0.0 %
a27sep98m-12
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
C(' 213
1/2
-------
Paradigm Analytical Labs
Method 23
M23-M FH
PBS
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDD
!3C12-l,2,3,6,7,8-HxCDD
13C12-l,2,3,4,6,7,8-HpCDD
13CI2-OCDD
l3C12-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
13Ci2-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3,7,8-TCDD
l3Cu-2,3,4,7,8-PeCDF
13C12-l,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13C12-l,2,3,4,7,8,9-HpCDF
Injection Standards
13CI2-1,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
(ng)
4
4
4
4
8
4
4
4
4
Measured
Amount
(ng)
3.67
4.20
3.59
3.63
5.30
3.57
3.64
2.87
2.76
Percent
Recovery
(%)
91.8
105.1
89.8
90.8
66.3
89.3
90.9
71.8
69.0
RT
(min.)
28:55
33:01
35:08
37:30
40:21
27:54
32:22
34:38
36:42
28:38
35:21
Ratio
0.78
1.58
1.26
1.07
0.91
0.8
1.58
0.52
0.44
0.79
1.26
Qualifier
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ED:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Reviewed by: *i •'T •
S509.000
M23-I-1 FH
L1113
1113-8
27-Aug-98
08-Sep-98
15-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
EndConCal:
Initial Cal:
Date
Air
25.47
0.0 %
a27sep98m-12
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
Reviewed: Jo &/» ^ 1
214
2/2
-------
to
H*
01
OPUSquan 28-SEP-1998 Page 1
Filename a27sep98m
Sample 12 \\H 7\
Acquired 28-SEP-98 03:49:00 Q,^- "
Processed 28-SEP-98 09:41:36
Sample ID 1113-8 xl/2
Cal Table m8290-091498
Results Table M8290-092798M
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
SS
Name; Resp; Ion 1; Ion 2; RA;?; RT;
2,3,7,8-TCDD; 6.37e+04; 3.01e+04; 3.36e+04; 0.90;n; 28:58;
1,2,3,7,8-PeCDD; 9.31e+04; 5.24e+04; 4.07e+04; 1.29;n; 33:01;
1,2,3,4,7,8-HxCDD; 6.92e+04; 4.20e+04; 2.72e+04; 1.54;n; 35:05;
1,2,3,6,7,8-HxCDD; 1.36e+05; 7.62e+04; 6.02e+04; 1.26;y; 35:09;
1,2,3,7,8,9-HxCDD; 1.67e+05; 9.11e+04; 7.60e+04; 1.20;y; 35:21;
1,2,3,4,6,7,8-HpCDD; 7.03e+05; 3.60e+05; 3.42e+05; 1.05;y; 37:31;
OCDD; 1.75e+06; 7.86e+05; 9.63e+05; 0.82;y; 40:22;
J
2,3,7,8-TCDF; 9.96e+05; 4.61e+05; 5.35e+05; 0.86;y; 27:56;
1,2,3,7,8-PeCDF; 1.88e+05; 1.22e+05; 6.57e+04; 1.86;n; 32:23;
2,3,4,7,8-PeCDF; 2.07e+05; 1.27e+05; 8.07e+04; 1.57;y; 32:49;
1,2,3,4,7,8-HxCDF; 2.66e+05; 1.46e+05; 1.20e+05; 1.21;y; 34:34;
1,2,3,6,7,8-HxCDF; 2.01e+05; 1.04e+05; 9.62e+04; 1.08;y; 34:38;
2,3,4,6,7,8-HxCDF; 1.77e+05; 8.95e+04; 8.71e+04; 1.03;n; 35:00;
1,2,3,7,8,9-HxCDF; * ; * ; * ; * ;n;NotFnd;
1,2,3,4,6,7,8-HpCDF; *; *; *; *;n;NotFnd;
1,2,3,4,7,8,9-HpCDF; *; *; *; *;n;NotFnd;
OCDF; 3.93e+05; 1.67e+05; 2.25e+05; 0.74;n; 40:31;
13C-2,3,7,8-TCDD; 2.56e+08; 1.12e+08; 1.44e+08; 0.78;y; 28:55;
13C-l,2,3,7,8-PeCDD; 1.95e+08; 1.20e+08; 7.55e+07; 1.58;y; 33:01;
13C-l,2,3,6,7,8-HxCDD; 2.13e+08; 1.19e+08; 9.41e+07; 1.26;y; 35:08;
13C-l,2,3,4,6,7,8-HpCDD; 1.81e+08; 9.36e+07; 8.76e+07; 1.07;y; 37:30;
13C-OCDD; 2.32e+08; 1.10e+08; 1.22e+08; 0.91;y; 40:21;
13C-2,3,7,8-TCDF; 3.09e+08; 1.37e+08; 1.72e+08; 0.80;y; 27:54;
13C-l,2,3,7,8-PeCDF; 2.62e+08; 1.60e+08; 1.02e+08; 1.58;y; 32:22;
13C-l,2,3,6,7,8-HxCDF; 1.96e+08; 6.73e+07; 1.28e+08; 0.52;y; 34:38;
13C~l,2,3,4,6,7,8-HpCDF; 1.24e+08; 3.80e+07; 8.57e+07; 0.44;y; 36:42;
13C-1,2,3,4-TCDD; 2.63e+08; 1.16e+08; 1.47e+08; 0.79,-y; 28:38;
13C-l,2,3,7,8,9-HxCDD; 2.26e+08; 1.26e+08; 9.99e+07; 1.26;y; 35:21;
37Cl-2,3,7,8-TCDD; 3.22e+04; 3.22e+04; -; -;-; 28:58;
13C-2,3,4,7,8-PeCDF; 2.06e+06; 1.23e+06; 8.26e+05; 1.49;y; 32:48;
13C-l,2,3,4,7,8-HxCDD; 2.13e+08; 1.19e+08; 9.41e+07; 1.26;y; 35:08;
13C-l,2,3,4,7,8-HxCDF; 6.57e+05; 2.68e+05; 3.89e+05; 0.69;n; 34:33;
13C-l,2,3,4,7,8,9-HpCDF; 1.08e+05; 3.02e+04; 7.75e+04; 0.39;y; 37:53;
37Cl-2,3,7,8-TCDD; 3.226+04; 3.22e+04; -; -;-; 28:58;
13C-2,3,4,7,8-PeCDF; 2.06e+06; 1.23e+06; 8.26e+05; 1.49;y; 32:48;
13C-l,2,3,4,7,8-HxCDD; 2.13e+08; 1.19e+08; 9.41e+07; 1.26;y; 35:08;
13C-l,2,3,4,7,8-HxCDF; 6.57e+05; 2.68e+05; 3.89e+05; 0,69;n; 34:33;
13C-l,2,3,4,7,8,9-HpCDF; 1.08e+05; 3.02e+04; 7.75e+04; 0.39;y; 37:53;
Vft =
Cone ;
0.024;
0.042;
0.040;
0.070;
0.088;
0.425;
1 . 500 ;
0.322;
0.080;
0.086;
0.143;
0.094;
0.091;
* .
* .
* .
0.313;
91.798;
105.089;
89.792;
90.748;
132.597;
89.317;
90.904;
71.793;
68.944;
58.530;
63.282;
0.012;
0.727;
119.041;
0.292;
0.069;
0.013;
0.800;
132.415;
0.406;
0.099;
DL;
0.0242;
0.0157;
0.0157;
0.0141;
0.0145;
0.0272;
0.1860;
0.0422;
0.0123;
0.0120;
0.0200;
0.0174;
0.0192;
0.0218;
0.1593;
0.1842;
0.0772;
0.1391;
0.0797;
0.0293;
0.6682;
0.0113;
0.0568;
0.0098;
0.0757;
0.0629;
-;
- ;
0.0490;
0.0100;
0.0388;
0.0914;
0.0719;
0.0540;
0.0046;
0.0387;
0,1157;
0.1145;
3
S/Nl;?;
3;y;
6;y;
9;y;
16;y;
16;y;
48 ;y;
15 ;y;
31 ;y;
52 ;y;
37;y;
19 ;y;
14 ;y;
12 ;y;
*;n;
*;n;
*,-n;
14,-y;
1230;y;
8063;y;
9775;y;
346;y;
14051;y;
4168,-y;
323999;y;
1926,-y;
1441;y;
1278, -y;
9265 ;y;
2,-n;
2676;y;
9775;y;
7;y;
l;n;
2;n;
2676;y;
9775;y;
7;y;
l;n;
S/N2;?
12 ;y
13 ;y
6;y
9;y
12 ;y
53 ;y
92 ;y
13,-y
9;y
10;y
20;y
21, -y
ll;y
*;n
*;n
*;n
10, -y
3710;y
12563;y
10984;y
325;y
41673;y
5626;y
29543;y
4671, -y
5708;y
3852;y
10428;y
-; -
291;y
10984 ;y
14 ;y
4;y
-; -
291, -y
10984 ;y
14,-y
4;y
mod?
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page If
-------
OPUSquan 28-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:l Mass: 303.902 305.899 Mod? no #Hom:22
Run: 18 File: a27sep98m S:12 Acq:28-SEP-98 03:49:00 Proc:28-SEP-98 09:41:36
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-8 xl/2
Amount: 2.12
Cone: 2.12
Tox #1: -
Name
of which 0.32
of which 0.32
Tox #2: -
# RT Respnse
named and 1.80
named and 1.80
Tox #3: -
RA
1 24:07 4.4e+05 0.84 y
4.4e+05
2 24:42 1.8e+05 1.55 n
1.8e+05
3 25:02 4. let-OS 0.96 n
4.1e-t-05
4 25:09 2.5e+04 2.54 n
2.5e+04
5 25:20 6.8e+05 0.76 y
6.8e+05
6 25:26 8.8e+04 0.52 n
8.8e+04
7 25:30 l.Oe+05 0.80 y
l.Oe+05
25:40 1.2e+05
1.2e+05
1.75 n
9 25:43 2.1e+05 0.37 n
2.16+05
10 26:02 2.9e+04 0.46 n
2.9e+04
11 26:09 2.8e-t-05 0.87 y
2.86+05
12 26:13 2.8e+05 0.70 y
2,8e+05
13 26:29 1 . le+05 1.36 n
l.le+05
14 26:37 4.6e+05 0.90 n
4.6e-i-05
15 26:54 6.9e+05 0.65 n
6.96+05
16 27:03 6.4e+05 1.00 n
6.4e+05
17 27:20 3.2e+05 0.84 y
3.2e+05
18 27:34 2.1e+04 0.58 n
2.1e+04
19 27:37 l.le+05 0.18 n
l.le+05
Cone
0.14
0.06
]
0.13
0.01
1
1
0.22
0.03
C
0.03
4
c
0.04
<
0.07
C
1
0.01
c
0.09
3
3
0.09
1
3
0.04
e
4
0.15
0.22
<
0.21
•3
•3
0.10
I
1
0.01
]
0.03
unnamed
unnamed
Area Height
S/N Mod?
2.0e+05 4.5e+04 1.8e+01 y n
2.4e+05 5.9e+04 8.0e+00 y n
5
l.le+05 2.3e+04 8.8e+00 y n
7.0e+04 2.7e+04 3.6e+00 y n
3
2.0e+05 4.7e+04 l.Se+01 y n
2.1e+05 5.0e+04 6.8e+00 y n
1
1.8e+04 5.56+03 2.1e+00 n n
7.06+03 4.36+03 5.86-01 n n
2
3.06+05 6.7e+04 2.66+01 y n
3.96+05 8.7e+04 1.2e+01 y n
3
3.0e+04 1.36+04 5.0e+00 y n
5.86+04 1.96+04 2.6e+00 n n
3
4.66+04 1.4e+04 5.2e+00 y n
5.7e+04 1.6e+04 2.2e+00 n n
4
7.7e+04 1.7e+04 6.76+00 y n
4.4e+04 l.Se+04 2.1e+00 n n
5.6e+04 2.1e+04 8.1e+00 y n
1.56+05 3.16+04 4.2e+00 y n
L
9.2e+03 S.Oe+03 1.9e+00 n n
2.06+04 9.86+03 1.3e+00 n n
J
1.3e+05 3.0e+04 1.2e+01 y n
.5e+05 4.1e+04 5.5e+00 y n
1.2e+05 2.6e+04 9.9e+00 y n
.7e+05 3.96+04 5.3e+00 y n
6.66+04 2.1e+04 8.1e+00 y n
4.86+04 1.46+04 1.8e+00 n n
2.2e+05 4.76+04 1.8e+01 y n
2.46+05 5.96+04 8.0e+00 y n
2
2.7e+05 5.8e+04 2.2e+01 y n
4.2e+05 7.1e+04 9.6e+00 y n
3.2e+05 6.56+04 2.5e+01 y n
3.26+05 7.96+04 l.le+01 y n
D
1.5e+05 3.4e+04 1.3e+01 y n
1.86+05 4.2e+04 5.7e+00 y n
L
7.66+03 4.4e+03 1.7e+00 n n
1.3e+04 4.3e+03 5.8e-01 n n
1.6e+04 l.Oe+04 3.9e+00 y n
8.9e+04 2.0e+04 2.7e+00 n n
r
216
-------
OPUSquan 28-SEP-1998 Page 2
20 27:39 1.3e+05 0.48 n 0.04
1.3e+05 4.2e+04 1.2e+04 4.8e+00 y n
8.9e+04 2.0e+04 2.7e+00 n n
2,3,7,8-TCDF 21 27:56 l.Oe+06 0.86 y 0.32
l.Oe+06 4.6e+05 8.1e+04 3.1e+01 y n
5.4e+05 9.4e+04 1.3e+01 y n
22 28:31 2.3e+05 0.72 y 0.07
2.3e+05 9.48+04 2.3e+04 8.8e+00 y n
1.38+05 3.0e+04 4.1e+00 y n
217
-------
OPUSquan 28-SEP-1998
Page 3
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:16
Run: 18 File: a27sep98m S:12 Acq:28-SEP-98 03:49:00 Proc:28-SEP-98 09:41:36
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09*
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-8 xl/2
Amount: 4.50
Cone: 4.50
Tox #1: -
Name
2,3,7,8-TCDD
of which 0.02
of which 0.02
Tox #2: -
# RT Respnse
named and 4.47
named and 4.47
Tox #3: -
RA
1 25:43 6.36+06 0.78 y
6.3e+06
2 25:53 l.Oe+04 3.44 n
l.Oe+04
3 26:09 3.3e+06 0.78 y
3.3e+06
4 26:32 8.7e+04 2.59 n
8.7e+04
5 27:24 l.le+06 0.79 y
l.le+06
27:38 2.26+04
2.2e+04
1.91 n
7 27:39 1.36+04 0.69 y
1.3e+04
8 27:46 2.0e+05 0.67 y
2.06+05
9 27:54 5.7e+04 3.29 n
5.76+04
10 28:15 1.3e+05 0.56 n
1.3e+05
11 28:19 7.06+03
7.06+03
1.80 n
12 28:41 1.6e+05 0.79 y
1.6e+05
13 28:48 3.2e+05 0.84 y
3.2e+05
14 28:55 3.76+04 0.67 y
3.7e+04
15 28:58 6.4e+04 0.90 n
6.46+04
16 29:42 6.6e+03 1.08 n
6.6e+03
Cone
2.39
T
0.00
1.25
]
]
0.03
(
0.42
A
t
0.01
1
1
0.00
c
0.08
6
3
0.02
4
]
0.05
f,
S
0.00
4
0.06
£
0.12
:
i
o.oi
3
0.02
o.oo
unnamed
unnamed
Area Height
S/N Mod?
2.7e+06 6.4e+05 1.9e+02 y n
3.56+06 8.56+05 6.9e+02 y n
D
7.86+03 2.5e+03 7.2e-01 n n
2.3e+03 1.76+03 1.4e+00 n n
.4e+06 3.46+05 l.Oe+02 y n
.8e+06 4.2e+05 3.4e+02 y n
6.3e+04 1.96+04 5.5e+00 y n
2.4e+04 1.3e+04 l.le+01 y n
2
4.9e+05 l.Oe+05 2.9e+01 y n
6.2e+05 1.2e+05 l.Oe+02 y n
L
1.5e+04 4.1e+03 1.2e+00 n n
7.7e+03 S.Oe+03 4.1e+00 y n
5.3e+03 2.8e+03 8.3e-01 n n
7.7e+03 5.0e+03 4.1e+00 y n
3
8.2e+04 1.96+04 5.6e+00 y n
1.2e+05 3.0e+04 2.4e+01 y n
.46+04 1.2e+04 3.4e+00 y n
.3e+04 5.86+03 4.7e+00 y n
4.6e+04 1.3e+04 3.8e+00 y n
8.1e+04 1.8e+04 1.5e+01 y n
4.56+03 2.46+03 6.9e-01 n n
2.56+03 1.4e+03 l.le+00 n n
5
7.06+04 1.9e+04 5.5e+00 y n
8.96+04 2.4e+04 1.9e+01 y n
l.Se+05 3.86+04 l.le+01 y n
1.8e+05 4.86+04 3.9e+01 y n
L
1.5e+04 S.Oe+03 2.3e+00 n n
2.2e+04 1.4e+04 1.2e+01 y n
2
3.06+04 1.26+04 3.56+00 y n
3.4e+04 1.5e+04 1.2e+01 y n
3.4e+03 1.6e+03 4.6e-01 n n
3.2e+03 1.7e+03 1.3e+00 n n
r
218
-------
OPUSguan 28-SEP-1998
Page 4
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:14
Run: 18 File: a27sep98m S:12 Acq:28-SEP-98 03:49:00 Proc:28-SEP-98 09:41:36
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-8 xl/2
Amount: 0.91
Cone: 0.91
Tox #1: -
Name
of which 0.17
of which 0.17
Tox #2: -
# RT Respnse
named and 0.74
named and 0.74
Tox #3: -
RA
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1 30:45 2.46+05 1.56 y
2.4e+05
2 31:41 9.4S+Q4 1.12 n
9.4e+04
3 31:47 S.le+05 1.60 y
5.1e+05
4 31:55 7.36+04 1.70 y
7.36+04
5 32:02 2.1e+04 1.28 n
2.1e+04
6 32:11 2.8e+05 1.67 y
2.86+05
7 32:19 9.0e+04 2.18 n
9.0e+04
8 32:23 1.9e+05 1.86 n
1.96+05
9 32:28 6.9e+04 2.01 n
6.9e+04
10 32:34 1.6e+05 1.54 y
1.66+05
11 32:49 2.16+05 1.57 y
2.16+05
12 32:54 1.8e+05 1.27 n
1.8e+05
13 33:00 1.4e+04 0.50 n
1.4e+Q4
14 33:03 2.6e+04
2.6e+04
1.86 n
Cone
0.10
1
c
0.04
C
4
0.22
i
0.03
4
0.01
]
c
0.12
3
]
0.04
t
0.08
1
t
0.03
t.
0.07
c
e
0.09
]
£
0.08
]
0.01
4
c
0.01
unnamed
unnamed
Area Height
S/N Mod?
1.5e+05 3.9e+04 3.0e+01 y n
9.5e+04 2.5e+04 6.4e+00 y n
1
5.0e+04 2.2e+04 1.7e+01 y n
4.5e+04 2.4e+04 6.2e+00 y n
3.1e+Q5 9.5e+04 7.2e+01 y n
2.0e+05 6.5e+04 1.7e+01 y n
.66+04 l.Se+04 l.le+01 y n
2.7e+04 1.3e+04 3.4e+00 y n
1.2e+04 7.5e+03 5.7e+00 y n
9.2e+03 7.5e+03 2.0e+00 n n
2
1.7e+05 7.5e+04 5.7e+01 y n
l.Oe+05 4.9e+04 1.3e+01 y n
6.1e+04 3.0e+04 2.3e+01 y n
2.8e+04 1.7e+04 4.4e+00 y n
3
1.2e+05 6.9e+04 5.2e+01 y n
6.6e+04 3.4e+04 9.0e+00 y n
3
4.6e+04 2.1e+04 1.6e+01 y n
2.3e+04 1.7e+04 4.6e+00 y n
7
9.6e+04 5.5e+04 4.1e+01 y n
6.2e+04 3.7e+04 9.7e+00 y n
.3e+05 4.9e+04 3.7e+01 y n
i.le+04 3.7e+04 9.6e+00 y n
l.Oe+05 4.9e+04 3.7e+01 y n
7.9e+04 3.16+04 S.le+OO y n
4.8e+03 3.2e+03 2.4e+00 n n
9.5e+03 4.9e+03 1.3e+00 n n
L
1.7e+04 9.2e+03 7.0e+00 y n
8.9e+03 4.8e+03 1.3e+00 n n
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:12
Run: 18 File: a27sep98m S:12 Acq:28-SEP-98 03:49:00 Proc:28-SEP-98 09:41:36
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-8 xl/2
Amount: 3.25 of which 0.04 named and 3.20 unnamed
Cone: 3.25 of which 0.04 named and 3.20 unnamed
Tox #1: - Tox #2: - Tox #3: -
Name
RT Respnse
RA
Cone Area Height S/N Mod?
f (
219
-------
OPUSquan 28-SEP-1998 Page 5
1 31:55 2.0e+06 1.66 y
2.0e+06
2 32:24 2.6e+06 1.62 y
2.6e+06
3 32:30 8.76+04 1.18 n
8.7e+04
4 32:35 1.9e+06 1.51 y
1.9e+06
5 32:40 3.2e+04 1.51 y
3.26+04
6 32:45 5.8e+04 1.07 n
5.8e+04
7 32:51 3.1e+05 1.54 y
3.1e+05
8 32:55 3.5e+04 0.79 n
3.5e+04
1,2,3,7,8-PeCDD 9 33:01 9.3e+04 1.29 n
9.36+04
10 33:07 2.5e+04 0.98 n
2.5e+04
11 33:18 3.0e+04 1.17 n
3.06+04
12 33:22 7.5e+03 4.04 n
7.5e+03
0.90
1
7
1.18
1
1
0.04
4
4
0.86
1
7
0.01
1
1
0.03
3
2
0.14
1
1
0.02
1
1
0.04
5
4
0.01
1
1
0.01
1
1
0.00
6
1
.2e+06
.4e+05
.6e+06
. Oe+06
.7e+04
.Oe+04
.le+06
.6e+05
.9e+04
. 3e+04
.Oe+04
.8e+04
.9e+05
.2e+05
.5e+04
. 9e+04
,2e+04
. le+04
.2e+04
.3e+04
. 6e+04
.4e+04
.Oe+03
.5e+03
5
3
9
5
2
2
6
4
8
5
1
1
9
6
1
1
2
1
8
4
7
7
2
7
.3e+05
.2e+05
.le+05
.7e+05
.5e+04
.2e+04
.le+05
.2e+05
.5e+03
.8e+03
.4e+04
.Oe+04
.4e+04
.8e+04
.le+04
.le+04
.6e+04
.9e+04
.le+03
.5e+03
.9e+03
.4e+03
.6e+03
.6e+02
1.
2.
1.
4.
5.
1.
1.
3.
1.
4.
3.
7.
2.
4.
2.
8.
5.
1.
1.
3.
1.
5.
5.
5.
le+02
3e+02
9e+02
le+02
3e+00
6e+01
3e+02
Oe+02
8e+00
2e+00
le+00
5e+00
Oe+01
9e+01
3e+00
2e+00
7e+00
3e+01
7e+00
3e+00
7e+00
4e+00
5e-01
5e-01
y
y
y
y
y
y
y
y
n
y
y
y
y
y
n
y
y
y
n
y
n
y
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
-------
OPUSguan 28-SEP-1998
Page 6
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:10
Run: 18 File: a27sep98m S:12 Acq:28-SEP-98 03:49:00 Proc:28-SEP-98 09:41:36
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-8 xl/2
Amount: 0.65
Cone: 0.65
Tox #1: -
Name
of which 0.33
of which 0.33
Tox #2: -
# RT Respnse
named and 0.33
named and 0.33
Tox #3: -
RA
1 33:55 1.4e+05 0.96 n
1.4e+05
2 34:01 3.4e+05 1.30 y
3.4e+05
3 34:06 2.5e+04 1.41 y
2.5e+04
4 34:12 4.2e+04 1.04 n
4.2e+04
5 34:34 2.7e+05 1.21y
2.7e+05
6 34:38 2.0e+05 1.08 y
2.0e+05
7 34:51 4.5e+04 2.44 n
4.5e+04
2,3,4,6,7,8-HxCDF 8 35:00 1.8e+05 1.03 n
1.8e+05
9 35:09 2.1e+04 1.19 y
2.1e+04
10 35:14 l.Oe+04 0.66 n
l.Oe+04
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
Cone
0.07
e
7
0.18
1
1
0.01
1
1
0.02
0.14
]
1
0.09
1
S
0.02
]
0.09
£
£
0.01
]
c
0.01
unnamed
unnamed
Area Height
S/N Mod?
6.9e+04 3.8e+04 9.9e+00 y n
7.1e+04 4.1e+04 1.7e+01 y n
1.9e+05 9.1e+04 2.4e+01 y n
1.5e+05 8.0e+04 3.3e+01 y n
1
1.5e+04 8.1e+03 2.1e+00 n n
l.le+04 4.0e+03 1.6e+00 n n
2
2.1e+04 l.le+04 3.0e+00 n n
2.0e+04 8.8e+03 3.6e+00 y n
1.5e+05 7.2e+04 1.9e+01 y n
1.2e+05 S.Oe+04 2.0e+01 y n
3
l.Oe+05 5.26+04 1.4e+01 y n
9.6e+04 5.26+04 2.1e+01 y n
2
3.2e+04 l.Oe+04 2.7e+00 n n
1.3e+04 4.5e+03 1.8e+00 n n
8.9e+04 4.4e+04 1.2e+01 y n
8.7e+04 2.7e+04 l.le+01 y n
l.le+04 5.8e+03 1.5e+00 n n
9.5e+03 3.86+03 1.5e+00 n n
I
4.0e+03 2.2e+03 5.9e-01 n n
6.0e+03 2.66+03 1.le+00 n n
221
-------
OPUSquan 28-SEP-1998
Page 7
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no #Hom:21
Run: 18 File: a27sep98m S-.12 Acq:28-SEP-98 03:49:00 Proc: 28-SEP-98 09:41:36
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-8 xl/2
Amount: 3.18
Cone: 3.18
Tox tl: -
of which 0.20
of which 0.20
Tox #2: -
named and 2.98
named and 2.98
Tox #3: -
Name
RT Respnse
RA
34:15 l.le+05 1.45 n
l.le+05
2 34:21 6.0e+03
6.0e+03
1.81 n
3 34:34 4.9e+06 1.30 y
4.9e+06
4 34:42 4.2e+05 1.20 y
4.2e+05
5 34:50 2.6e+04 1.56 n
2.6e+04
6 34:51 1.66+04 0.57 n
1.6e+04
34:54 1.26+04
1.2e+04
0.81 n
8 34:58 1.2e+04 1.38 y
1.2e+04
9 34:59 9.66+03 1.32 y
9.6e+03
1,2,3,4,7,8-HxCDD 10 35:05 6.96+04 1.54 n
6.9e+04
1,2,3,6,7,8-HxCDD 11 35:09 1.46+05 1.26 y
1.46+05
1,2,3,7,8,9-HxCDD 12 35:21 1.7e+05 1.20y
1.76+05
13 35:27 9.96+03 1.28 y
9.96+03
14 35:31 l.Oe+04 0.80 n
l.Oe+04
15 35:44 7.0e+03 1.35 y
7.0e+03
16 35:57 l.le+04 1.42 y
l.le+04
17 36:01 l.le+04 0.66 n
l.le+04
18 36:04 9.0e+03 0.40 n
9.0e+03
19 36:10 1.56+04 0.68 n
1.5e+04
Cone
0.06
6
4
0.00
i
2.60
0.22
]
0.01
3
]
0.01
c
]
0.01
c
e
0.01
6
C
0.01
c
4
0.04
4
0.07
e
0.09
s
0.01
c
t
0.01
t.
c
0.00
4
2
0.01
e
4
0.01
4
e
o.oo
2
e
o.oi
unnamed
unnamed
Area Height
S/N Mod?
6.6e+04 3.5e+04 1.6e+01 y n
4.6e+04 2.4e+04 9.7e+00 y n
D
3.8e+03 1.6e+03 7.3e-01 n n
2.1e+03 1.36+03 S.Oe-01 n n
D
2.7e+06 1.46+06 6.6e+02 y n
2.1e+06 l.le+06 4.4e+02 y n
2
2.3e+05 9.7e+04 4.4e+01 y n
1.9e+05 8.9e+04 3.6e+01 y n
1.6e+04 5.86+03 2.7e+OD n n
l.Oe+04 S.le+03 2.1e+00 n n
L
5.8e+03 3.7e+03 1.7e+00 n n
l.Oe+04 S.le+03 2.1e+00 n n
5.3e+03 2.9e+03 1.3e+00 n n
6.5e+03 3.26+03 1.3e+00 n n
6.9e+03 3.4e+03 1.6e+00 n n
5.0e+03 3.1e+03 1.3e+00 n n
L
5.4e+03 3.9e+03 l.Se+00 n n
4.1e+03 2.3e+03 9.3e-01 n n
4.2e+04 2.0e+04 9.16+00 y n
2.7e+04 1.4e+04 5.8e+00 y n
7
7.66+04 3.5e+04 1.6e+01 y n
6.0e+04 2.36+04 9.3e+00 y n
9.16+04 3.56+04 1.6e+01 y n
7.6e+04 3.0e+04 1.2e+01 y n
L
5.5e+03 2.06+03 9.06-01 n n
4.3e+03 2.86+03 l.le+00 n n
4.6e+03 1.6e+03 7.2e-01 n n
5.76+03 4.3e+03 1.7e+00 n n
3
4.06+03 1.9e+03 8.66-01 n n
3.0e+03 2.2e+03 8.9e-01 n n
L
6.3e+03 3.8e+03 1.76+00 n n
4.4e+03 3.4e+03 1.36+00 n n
4.3e+03 1.9e+03 8.8e-01 n n
6.4e+03 4.1e+03 1.6e+00 n n
2.6e+03 1.46+03 6.6e-01 n n
6.4e+03 4.1e+03 1.6e+00 n n
1
6.0e+03 1.9e+03 8.6e-01 n n
8.96+03 2.86+03 l.le+00 n n
22J
-------
OPUSguan 28-SEP-1998 Page 8
20 36:16 l.Oe+04 1.00 n 0.01
l.Oe+04 5.2e+03 2.7e+03 1.3e+00 n n
5.2e+03 2.6e+03 l.Oe+00 n n
21 36:20 l.le+04 0.45 n 0.01
l.le+04 3.5e+03 2.1e+03 9.7e-01 n n
7.8e+03 6.1e+03 2.4e+00 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no #Hom:l
Run: 18 File: a27sep98m S:12 Acq:28-SEP-98 03:49:00 Proc:28-SEP-98 09:41:36
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-8 xl/2
Amount: 0.08 of which * named and 0.08 unnamed
Cone: 0.08 of which * named and 0.08 unnamed
Tox #1; - Tox #2: - Tox #3: -
Name ft RT Respnse RA Cone Area Height S/N Mod?
1 36:54 1.3e+05 1.27 n 0.08
1.3e+05 7.3e+04 2.8e+04 8.0e-01 n n
5.7e+04 2.5e+04 l.le+01 y n
223
-------
OPUSguan 28-SEP-1998
Page 9
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no ttHom:6
Run: 18 File: a27sep98m S:12 Acg:28-SEP-98 03:49:00 Proc:28-SEP-98 09:41:36
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-8 xl/2
Amount: 0.80
Cone: 0.80
Tox #1: -
Name
of which 0.43
of which 0.43
Tox #2: -
# RT Respnse
named and 0.37
named and 0.37
Tox #3: -
RA
1 36:57 5.56+05 1.07 y
5.5e-t-05
l,2,3,4,6,7,8-HpCDD2 37:31 7.0e+05 1.05 y
7.0e+05
3 38:01 l.Oe+04 0.44 n
l.Oe+04
4 38:13 1.7e+04 1.22 n
1.7e+04
5 38:16 l.le+04 0.46 n
l.le+04
6 38:33 2.3e+04 2.06 n
2.3e+04
Cone
0.34
0.43
0.01
0.01
c
0.01
3
•/
0.01
unnamed
unnamed
Area Height
S/N Mod?
2.9e+05 1.2e+05 3.9e+01 y n
2.7e+05 l.Oe+05 3.8e+01 y n
3
3.6e+05 1.5e+05 4,8e+01 y n
3.4e+05 1.4e+05 5.3e+01 y n
1
3.1e+03 2.3e+03 7.7e-01 n n
7.0e+03 2.5e+03 9.6e-01 n n
L
9.6e+03 4.6e+03 1.5e+00 n n
7.8e+03 2.4e+03 9.3e-01 n n
3.6e+03 1.7e+03 5.8e-01 n n
7.8e+03 2.4e+03 9.3e-01 n n
1.6e+04 4.6e+03 1.5e+00 n n
7.6e+03 3.4e+03 1.3e+00 n n
22-
-------
File:A27SEP98M #1-529 Acq:28
Sample#12 Text: 1113-8 xl/2
319.8965 S:12 BSUB (128, 15 , -3
100%
50J
-
n:
i i I i I i r— i r
24:00
321.8936 S:12 BSUB(128, 15 , -3
100%
50 j
-
o:
24 Sod
331.9368 S:12 BSUB(128, 15, -3
100%
50 1
0:
24 I 00
333.9339 S:12 BSUB(128 , 15, -3
100%
50J
0:
24:00
327.8847 S:12 BSUB (128, 15 , -3
100%
: 24:10 04
50J 23:29 124:21 ^
'• jviA AAn/Ah/V/w rTOArl/lTA A
24:00
316.9824 S:12 SMO(1,3) PKD(3,
100% 23:23 21:55 24
50J
o-
'.^- ' 24 Sod
-SEP-1998 03:49:00 GC EI + Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS
.0) PKD(3,3,2,0.10%,3416.0,1
25:43
/ 26:09
A
A
/ V A
25:00 26:00
.0) PKD(3,3,2,0.10%,1232.0,1
25:43
l\
26:09
A
j v y v r.
25 lod 26 lod
.0) PKD(3, 3, 2, 0.10%, 20356.0,
25 lod ' ' ' 26 lod
.0) PKD(3,3,2,0.10%,8460.0,1
i i i i i i i | i i i
25:00 26:00
0) PKD(3,3,2,0.10%,9944.0,1
25:43
_0 VAT I ON
.00%,F,F)
6.4E5
27:24 _„ .„
/V 28j^48
_3.2E5
O.OEO
27:00 28:00 29:00 30:00 Time
.00%,F,F)
27 :24
y\ _ J~\x.
8.5E5
-4.2E5
O.OEO
27 lod ' 28 Sod 29 lod ' ' 3o!od ' Time
1.00%,F,F)
28:38
n n
1 1 / 1
2 . 6E7
1.1. 3E7
• n .ORO
27 Sod ' ' ' 28 Sod ' ' ' 29 lod ' ' ' 30 Sod ' ' Time
.00%,F,F)
28:38
M A
1 V / V
3.3E7
_1.6E7
O.OEO
I i f I r i i i I i i i i 1 I i i i i i i i i i
27:00 28:00 29:00 30:00 Time
.00%,F,F)
28:57 ..3.1E4
I45! 95-91 t\ 26fi61 26:35 27:04 27:42 . 28:32 \ 29:35 30:00
n iA-AA\AJl N A/i i A / Hi/I^A PI 111* A Ml* An/\» A§K /AA* AH II Jl>/\A^:!flWi lA/i\A« Mlkrv : Hil 1 ^ Ln ^vi^lP^^AA
f^l/ VOI^SAT V\nj (l/'ltxV Y\^/Y yl
i i i i i i r | i i i
25:00 26:00
3, 3, 100. 00%, 0.0,1. 00%, F,F)
:A5 25:15__ _ 25^49 26:13
— T — | i — T i r i i i i T
25:00 26:00
yiin|UY \/tW|[YLJ TJ^ " u IT w " ""'V v ^I'wiywp yv ry i-vyyi/wvj
Ll.6E4
-O.OEO
1 1 1 1 1 1 1 1 1 1 1 1 1 1 f 1 1 1 1 1 1 1 1 1
27:00 28:00 29:00 30:00 Time
26:58 27^26 28:17 28^52 29:18 2J =j4J_ 10^20 6 . 6E7
_3.3E7
O.OEO
T i | i i 1 1 1 1 ' i 1 1 1 1 1 1 1 r~ — i 1 1 r 1 r — * —
27:00 28:00 29:00 30:00 Time
JO
M
tn
-------
File:A27SEP98M #1-236 Acq:28-SEP-1998 03:49:00 GC EI+ Voltage SIR Autospec-UltimaE
Sample#12 Text: 1113-8 xl/2 Exp:EXP_M23_DB5_OVATION
355.8546 S:12 F:2 BSUB (128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10% , 4656 . 0 , 1 . 00% , F, F)
100% 32:24
50_
n
31:55 32;35
A A ...
y v J \ / v /\
3o!36 30!48 3l!oO 3l!l2 3l!24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:
357.8517 S:12 F:2 BSUB(128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 1384 . 0 , 1 . 00% , F, F)
100%, 32j24
so:
-
0'
132:35
ft
][ 32:51
9.1E5
_4.5E5
O.OEO
66 33! 12 33124 ' 33\36 Time
r5.7E5
30!36 3o!48 31:00 3l!l2 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:
367.8949 S:12 F:2 BSUB(128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 7904 . 0, 1 . 00%, F, F)
100%
so:
0"
33/
/
.
12.8E5
LO.OEO
00 33:12 33:24 33:36 Time
01
1
6.4E7
_3.2E7
' O.OEO
"'111 — i i i i i i i i i i i i i i i i i i -T— i — i— r— r i— T T r i i i i i i i i i i i i i i i i i i i i i i < i i i i i i > 1.1111111111111
30!36 30!48 3l!oO 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33 00 33:12 33:24 33:36 Time
369.8919 S:12 F:2 BSUB(128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 3084 . 0 , 1 . 00%, F, F)
lOOi
50J
0"
33/
j
01
s.
_3.9E7
_1.9E7
O.OEO
'l 1 1 IT 1 1 T 1 'I 1' 1 1 1 f 1 1 1 1 1 1 1 1 1 I | 1 1 1 1 1 | 1 1 1 1 1 | ' F 1 F 1 F F F F F F F F F F F F F F 1 F 1 1 1 , 1 , 1 1 | . . 1 1 1 F F F F F , F F F F F | F F I 1 F 1 1 F F
30!36 30U8 31:00 3l!l2 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
366.9792 S:12 F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
lOOi 30:42 31:0031:10 31:24 31:36 31:55 32:10 12_i3J3__3ii45__32j-5JZ
so:
o:
._ 33U5 33:28 8.3E7
.4.2E7
-O.OEO
30\3^ 30 Us 3i!6d 3i!i2 3l!24 3i!36 siUs 32! 66 32!l2 32:24 32\36 '32\48 33 66 33:12 33:24 33!36 Time
-------
File:A27SEP98M #1-197 Acq:
Sample#12 Text: 1113-8 xl/2
389.8156 S:12 F:3 BSUB(128
100%.
so:
0"
391.
100S
50J
0.'
401.
100%
so:
0'
403.
100%
50:
0"
380.
100%,
so:
33-1 48' ' 'S4 loo' ' '34! 12
8127 S:12 F:3 BSUB(128
33:48 34:00 34:12
8559 S:12 F:3 BSUB(128
33:48 34:00 34:12
8530 S:12 F:3 BSUB(128
33:48 34:00 34:12
9760 S:12 F:3 SMO(1,3)
34-06
33'? 48 34:00 34 5 12
28-SEP-1998 03:49:00 GC EI+ Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
,15, -3.0} PKD(3,5,2,0.10%,2184.0,1.00%,F,F)
34:34
A
A
/ I 34:42
3 4-1 24 34-136 34148 35loO 3s!l2 3s!24 3s!36 35 5 48 36loO 3e!l2
,15, -3.0} PKD(3,5,2,0.10%,2492.0,1.00%,F,F)
34:34
34:42
34!24 34:36 34!48 3s!oO 35!l2 35:24 35:36 35:48 36:00 36:12
,15, -3.0) PKD(3,5,2,0.10%,6240.0,1.00%,F/F)
35:08 35:21
A A
34!24 34136 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
,15, -3.0) PKD(3,5,2,0.10%,4356.0,1.00%,F,F)
35:08 35:21
A A
'34 5 24 ' ' '34! 36 ' 34? 48 35!do 35:12 3s!24 3s!36 35\48 36\00 36 5 12
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
™-32 ™-51 35-06 35i41 35:58 36:11
34524 34536 34548 3s!oO 3s!l2 3sl24 3s!36 35548 365oO 36 5 12
1.4E6
17.2E5
"O.OEO
Time
1.1E6
_5.5E5
O.OEO
Time
6.1E7
13.1E7
O.OEO
Time
4.8E7
_2.4E7
O.OEO
Time
2.9E8
11.4E8
"O.OEO
Time
fO
-------
File:A27SEP98M #1-197 Acq:28-SEP-1998 03:49:00 GC EI+ Voltage SIR Autospec -Ult imaE
Sample#12 Text:1113-8 xl/2
423.7767 S:12 F:4 BSUB (128, 15, -3 .
100%,
50_
.
0"
36:57
36:24 36136 36:48 37ldo
425.7737 S:12 F:4 BSUB (128, 15, -3 .
100%
-
50J
0'
36:57
36:24 36:36 36:48 37:00
435.8169 S.-12 F:4 BSUB (128 . 15 . -3 .
100%
so:
0"
36124 36136 36.-4S 37.-00
437.8140 S:12 F:4 BSUB (128, 15, -3 .
100%
so:
0"
36:24 36:36 36:48 37:00
430.9728 S:12 F:4 SMO(1,3) PKD(3,
100% 36:29 36:45 ' 37:02
50:
t
'
35x24 36136 36)48 37iOO
Exp.-EXP M23 DBS OVATION
0) PKD (3, 5, 3, 0.10%, 3036. 0,1. 00%, F,F)
37-31 1 5E5
A
'
/ \
J \ _
-
L7.4E4
-
37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
0) PKD(3,5,3,0.10%,2604.0,1.00%,F,F)
37:31 r!.4E5
A
A
y V
L7.0E4
" 0 .ORO
37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39.00 Time
0) PKD (3, 5, 3, 0.10%, 101500. 0,1. 00%, F,F)
37:30
A
j \
3 . 5E7
_1.8E7
' O.OEO
37.-12 37.;24 37:36 37I48 38loO 38.-12 38.-24 3s!36 SsU's 39loO Time
0) PKD (3, 5, 3, 0.10%, 101852. 0,1. 00%, F,F)
37:30
A
f[
_3.3E7
L1.7E7
O.OEO
37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
3, 3, 100. 00%, 0.0,1. 00%, F,F)
37 = 18 37:30 17:40 _ 18_JL2_8_ 38^56 2. OE8
U
.1.0E8
.O.OEO
37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
-------
File
Samj
457.
1001
50.
0
459.
1002
50J
0'
469.
100%
50J
0"
471.
100%
50J
0"
454.
100%
so:
0"
;:A27SEP98M ttl-277 Acq:28-SEP-1998 03:49:00 GC EI+ Voltage SIR Autospec-UltimaE
>le#12 Text: 1113-8 xl/2 Exp:EXP M23_DB5_OVATION
7377 S:12 F:5 BSUB (128, 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 17032 . 0 , 1 . 00%, F, F)
40:22
A
40:00 J- — _V^ 41:25 41:36
1 l l 1 | 1 l l IT | i 1'1-i-r- | i i l I-T | i l i i i | i l i i i | i i T- i i | i r-r i i | i >-!"' f-l •[ i 1 i i i1 j i i i i i | i i i i i i i i i i i i i i i i i i i i i i i i i i
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42: 11
7348 S:12 F:5 BSUB{128, 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 3208 . 0 , 1 . 00% , F, F)
40:22
A
39:12 39:24 39:36 39:48 40:00 40 12 40:24 40:36 40:48 41:00 41:12 41:24 41 36 41:48 42:00 42:li
7780 S:12 F:5 BSUB(128, 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 2212 . 0 , 1 . 00%, F, F)
t\
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
7750 S:12 F:5 BSUB (128, 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 816 . 0 , 1 . 00% , F, F)
40:21
[[
2.9E5
L1.4E5
I Time
3.0E5
_1.5E5
O.OEO
i Time
3.1E7
L1.6E7
" O.OEO
Time
_3.4E7
_1.7E7
O.OEO
39[:i2 39I24 39I36 39!48 4o!66 4o!i2 4o!24 4o!36 4o!48 4l!66 4i!i2 4l!24 kilie 41148 42166 42 ! 12 Time
9728 S:12 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
39^09_2J:21 39:50 40:05 40:19 40:32 41:02 41:7.0 41:35 41:_54 42:11 7. . 7.RR
f_^ — Y-
'"Si 39: 12 39124 39136 39:48 4o!66 46':i2 46!24 4o!36 40 1 48 " 41 \ 66 " 4ll 12 * ^41 [24" ' 41 1 36^1 [48 " 42 ': 66 ' 42 1 12
O.OEO
Time
JO
-------
Fiie:A27SEP98M #1-529 Acqi28-SEP-1998 03:
Sample#12 Text .-1113-8 xl/2
303.9016 S:12 BSUB{128, 15, -3 . 0) PKD(3,3,2
100%,
25:20
Rn! 24:07 25:02 A
50_ A • ll
: I 24:42 A /]_
o :_^^Jli^lJ^vL\2Ji22yV^y u / w\.
24:00 25.1 00
305.8987 S:12 BSUB(128, 15, -3 . 0) PKD(3,3,2
10(»j 25:20
50: 24;°7 25:02 A
A 24:42 A 2C
^s^JZ^i^J^jt^ mJ
24! od 25! od
315.9419 S:12 BSUB(128, 15, -3 . 0) PKD(3,3,2
100%
50J
o:
24 Sod ' ' ' 25! od
317.9389 S:12 BSUB(128, 15, -3 . 0) PKD(3,3,2
100%
50 j
24:00 25:00
375.8364 S:12 BSUB(128, 15, -3 . 0) PKD(3,3,3
100%
"H i **> O 't *") 24*56 '^r'AO
lllif^'f 24:02 24:30 i 25j2?
49:00 GC EI+ Voltage SIR Autospec-UltimaE
Exp.-EXP M23 DBS OVATION
, 0.10%, 2596. 0,1. 00%, F,F)
->-, m 27)h56 r8.2E4
27 : 03 n
26:37 A A :
26:09 A Al 27:20 1 ^ ,4 . 1E4
/^"JlV A/I / 1 \ A 23A39/ \ ^ = 3^29:02 29:35 30:18 :
' 1 1 \v^v/ 1 ^ ^ V V 7_ 1 \ J \ ^ff\. J V C^U. J'USLixy^- ^.A - . . . M^ . • n nun
26:00 . 27:00
, 0.10%, 7388. 0,1. 00%, F,F)
9fi ^ 27n:°2
26 :37 ,, /I
26:08 A AJ\ 27:20
26:00 27:00
, 0.10%, 7668. 0,1. 00%, F,F)
26:00 ' ' ' 27! 00
,0.10%,6928.0,1.00%,F,F)
26:00 27:00
, 100. 00%, 132. 0,1. 00%, F,F)
26:00 26:41 27:05 27:31
24:00 ' 25:00 ' ' 2e! 00 ' ' ' 2?! 00
316.9824 S:12 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
100%, 23:23 J>3 : 55 ^4:A5 25:^5_ 25^49_J26-13 26:58 2 7.1 26 _
50_
°" A - - .
'>! ' ' 24! 00 ' ' ' 25!oo'
26 5 00 ' ' 27! 00
28:00 29:00 30:00 Time
27:56 1.0E5
/\ 28:31 ^5-1E4
l!j-~\21j^J\l^^
- i— p -r.^wp^v~w7^ |>W-A^^XV-.- pvxx^-^u^—xv^pA/ ^A/f 0 . OBO
28:00 29:00 30:00 Time
27:54 3.2E7
|1 _1.6E7
J V n . np.n
28:00 29:00 30:00 ' ' Time
27:54 3.9E7
11 _1.9E7
J v n . np.n
28:00 29:00 30:00 Time
28:07 _9.0E3
ji 28:54
28!oo' ' ' 29! 00 ' 30:00 Time
28:17 28_:5_2 29^18 2^9 :43_ _^fTjL?JL 6 - 6P.7
L3.3E7
• O.OEO
28 loo' 29! 00 ' 30: 00 ' Time
-------
File
Samp
339.
1003
50_
o-
3
341.
1002
50J
ol
3
351.
100%
50 1
ol
3
353.
100*
50 1
o"
3
409.
100%
50 j
o"
3
366.
100%
50 J
o:
:A27SEP98M #1-236 Acq:28-SEP-1998 03:49:00 GC EI + Voltage SIR Autospec-UltimaE
>le#12 Text:1113-8 xl/2 Exp:EXP M23 DB5_OVATION
8597 S-.12 F:2 BSUB(128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 1316 . 0 , 1 . 00% , F, F)
31:47 9.6E4
30 = 45 31-41/1 A 32 = ^23 'A'" 3A4A ~4'8E4
s \ /\J V/~V ^ / \ / 1 V /\ / V / W \ A. A n n-c-n
. 1 . . . i i | . i i |"|-J iTI I in| i i i i i | i r T i < ^ i i i
0:36 30:48 31:00 31:12 31:24 31:36
8568 S:12 F:2 BSUB(128, 15, -3 . 0) PKD(3,3,
30:45 3l.t
/_\ 30:58 31:13 31:26 A
-XV. — --^ ' ^=* — — • — — • -- — ^- — -—, •**» — *s^~*>*. — • -s^\^— ^.-^i — :
0:36 30:48 31:00 31:12 31:24 31:36
9000 S:12 F:2 BSUB (128 , 15, -3 . 0) PKD(3,3,
0:36 30:48 3l!oO 3l!l2 31:24 31:36
8970 S:12 F:2 BSUB(128, 15, -3 . 0) PKD(3,3,
o!36 30548 3l56d 31512 31524 31536
7974 S:12 F:2 BSUB (128, 15, -3 . 0} PKD(3,3,
0:36 30:48 31:00 31:12 31:24 31:36
9792 S:12 F:2 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%
30:42 31:0031:10 31:24 31:36
3(TJ36 30:48 31:00 31:12 3l!24 31:36
31 48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33J36 Time
2 ,0.10%, 3820. 0,1. 00* ,F,F)
31:47 ,_6.8E4
A 32:11 F
A 32: 33 32:49
A32:28A A A -3"4E4
jiijV/L J^\l\^3^ 33:1233^2233:32 y n nn,n
i i | i i i-fi-j i r i i r |- T i -i- t-T-]— i-T-i-r i-pr-i 1 i i | i i i I i [ i i f i i [ i i i i i | i i i i i i i i > " • OEO
31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33i36 Time
2, 0.10%, 264. 0,1. 00%, F,F)
32:22 8.6E7
/I L4.3E7
31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33524 33536 Time
2, 0.10%, 1832. 0,1. 00%, F,F)
32:22 5.4E7
/I L2.7E7
r-r- / L :n.ORO
31548 32 5 00 32512 32524 32536 32548 33566 335l2 33524 33536 Time
3, 100. 00%, 644. 0,1. 00%, F,F)
32:13 3.3E5
A 32:23 :
A <^
32:05 / ^2:^01 32:56 33-. 08
31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33536 Time
, 0.0,1. 00%, F,F)
31:55 32:10 32:33 32-45 32:57 33:15 33:28 8 . 3R7
_4.2E7
31:48 32:00 32:12 32:24 32:36 32:48 33:00 335l2 33:24 33:36 Time
-------
File:A27SEP98M #1-197 Acq:
Sample#12 Text:1113-8 xl/2
373.8207 S:12 F:3 BSUB(128
1002
,
50^
o:
34:01
A
A
33:551 \
. - AJ U"A»
33! 48 34:00 34-1 12
375.8178 3:12 F:3 BSUB(128
lOOSj 34^01
-
50j
-
o-
34:13
. ^^
33148 34100 34112
383.8639 S:12 F:3 BSUB(128
lOOSj
50J
o:
'33:48 ' '34: 00 ' 34:12
28-SEP-1998 03:49
00 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
,15, -3.0)
^
3 4: 24
,15, -3.0)
^•""V
34:24
,15, -3.0)
'34: 24'
385.8610 S:12 F:3 BSUB(128, 15, -3 . 0)
100%
50 j
o;
33:48 34: 00 34:12
34:24
445.7555 S:12 F:3 BSUB(128, 15, -3 . 0)
100%
:
50J
_
o-
A 34:03 34:13
/\ " ^^^_~xX_^V^
33:48 34:00 34:12
380.9760 S:12 F:3 SMO(1,3)
100% 34:06
50 j
'-V
" 33:48 34:00 34:12
34:
l\
J\
~" "34 [24^
PKD(3,3,3
3-
34:24
PKD(3,5,
34:34
/\34:38
J\J\
"" 34\36
PKD(3,5,
34:38
/ \ / \4
J T "\-^
34:36
PKD (3,5,
34:38
f[
A
/ V
'34! 36 '
PKD (3, 5,
34:38
,
34:36
PKD (3,3,
34:35
30 [\
M V-
. M 34
Vj v^y
34\i&
,100.00%
1:35
34:36
2, 0.10%, 3784. 0,1. 00%, F,F)
35:00
^35=51^^^04
3 4! 48 35!oo' ' '35!l2'
2, 0.10%, 2460. 0,1. 00%, F,F)
35:00
42 34:51 /J\
34:48 35:00 35:12
2, 0.10%, 17 688. 0,1. 00%, F,F
i i i i i i i 1 1 i i i i i 1 i i i
34:48 35:00 35:12
2, 0.10%, 13720. 0,1. 00%, F,F)
34-1 48 35: 00 35ll2
9.4E4
35:23 ^^4 36:12
•4.7E4
- n nirn
i r- i-1' -i T T1 I— f-r— r-i — i — i — | — r-1 — I — r-=i — i — i — i~i" i "P'T'i — i T~f'-" • "•LJ"
35:24 35:36 35:48 36:00 36:12 Time
f_8.1E4
3_ __ 35:35
-L ^ — ^r- ^^,^^ —
_4.1E4
LO.OEO
35:24 35:36 35:48 36^00 36ll2 Time
3.4E7
Ll.7E7
- n nun
35:24 35:36 35:48 36^00 36:12 Time
6.4E7
-3.2E7
O.OEO
35^24 35l36 3s!48 36-!oO 3e!l2 ' ' Time
3, 100. 00%, 2848. 0,1. 00%, F,F)
35:08 35
^ A A A
•« 34: 55 A J\ A .
\ — _. xy ^-^V/v v ^~J \^/
34148 35100 3sTl2
,0.0,1.00%,F,F)
34:51 _ 15^06
'34 Us' ' '35! do' ' '35! 12'
4.7E4
:20
M
' \^!/^L^S^
.2.4E4
_O.OEO
35\24 35\36 35: 48 36ldo 36ll2 Time
35^41 35:5R 36:11 ?. . 9RR
.1.4E8
.O.OEO
35:24 35:36 35:48 36:00 36:12 Time
-------
File:A27SEP98M #1-197 Acq:28-SEP-1998 03:49:00 GC EI + Voltage SIR Autospec-UltimaE
Sample#12 Text-.1113-8 xl/2 Exp:EXP_M23_DB5_OVATION
407.7818 S:12 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,34960.0,1.00%,F,F)
100%, 36:43
50J
37:1437:22 37:32
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48
409.7788 S:12 F:4 BSUB(128,15,-3.0) PKD{3,5,3,0.10%,2248.0,1.00%,F,F)
100% 36:43
i — i — i — i — i — i — i — i — i
38:00 38:12
38:24
50J
O
i — | — i — i — i — i — i — | — i — r— i — i — i — i
38:36 38:48 39:00 Time
1.3E5
_6.7E4
36:55
37:52
O.OEO
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
417.8253 S:12 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,10904.0,1.00%,F,F)
100% 36:42
50J
38:12 38:24 38:36 38:48
OJ
39:00 Time
1.6E7
L7.9E6
LO.OEO
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00
419.8220 S:12 F:4 BSUB(128,15,-3.0) PKD(3,5,3,0.10%,6300.0,1.00%,F,F)
1004 36:42
50J
38:12 38:24 38:36 38:48
OJ
39:00 Time
3 . 6E7
_1.8E7
.O.OEO
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12
479.7165 S:12 F:4 BSUB(128,15,-3.0) PKD(3,3,3,100.00%,9756.0,1.00%,F,F)
100%
38:24 38:36
38:48 39:00 Time
i—i—i—i—i—i—i—r—i—i—i—i—i—i—r—i—i—i—]
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
50J
OJ
430.9728 S:12 F:4 SMO(1,3) PKD(3,3,3,100.00%, 0.0,1.00%, F,F)
100%, 36:23 ifi-^45 37jJ12 T7:ia 37_L30 37:40
50J
_3.R;?.8
.2.0E8
:1.0E8
LO.OEO
1 I II ii—i—i—i—|—i—i—l—i—l—I—l—i—i—i—i—I—i—i—r—i—i—i—i—i—i i i—|—i—i—i—i—i—|—i—r—i—i—i—|—i—i—i—i—r-]—i—r—i—r—i—|—r—i—i i i | i—i—r—i i ( r—i i i i | i i i i—i f
36:24 36:36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:1238:24 38; 36 384** 3900 Time
CO
» -N
-------
File:A27SEP98M #1-277 Acq:
Sample#12
441.7427 S
1001
50 1
o"
^-x^-
"39!
443.7398 S
100%
50j
•
OJ
•X^/V^-"
469.7780 S
100%
50 j
0"
" ' i i i i i
39:
471.7750 S
100%
50J
0'
" ' i i i i i
39l
513.6775 S
100%
so-
.
0"
28-SEP-1998 03:49:00 GC EI+ Voltage SIR Autospec-UltimaE
Text .-1113-8 xl/2
:12 F:
^-vA^v-:
12 39
:12 F:
39:19
•^s^yw^
12 39
:12 F:
1 1 1 1 I'
12 39
-.12 F:
i •! i i i
12 39
:12 F:
5 BSUB(128
^27_^_^
124 ' 39136
5 BSUB(128
,15, -3
:43
S\S- s —. ^
t 1 1 I 1 1
39:48
,15, -3
39:38 ^Q./ia
^ — ^^-A^-^Jv
124 39136
5 BSUB(128
•24 39:36
5 BSUB(128
•24 39:36
5 BSUB{128
/^l-XjC-r*,,- _
bgUs
,15, -3
39:48
,15, -3
39:48
,15, -3
-0)
Exp : EXP_M2 3_DB5_
PKD (3,5,3,
0.10%, 3532.
40:31
A
A
OVATION
0,1.00%,F,F)
39:57 40:14.^v/^ V.^^^ 40 : 47 40 : 5f
40
.0)
j 1 1 1 1 i I i i
:00 40:12
PKD(3,5,3,
40:03
— -^
40
.0)
40
.0)
40
.0)
•vWX— 'V v —
166 kolii
PKD(3,5,3,
100 40:12
PKD (3,5,3,
:00 40:12
PKD (3, 3, 3,
40:24 40
0.10%, 5512.
40:30
A
40:22./ \0
— •s/N/y x
46124 46!
0.10%, 2212.
"A21
A
/ V
46124 40
0.10%, 816.0
"A21
A
/ V
4ol24 40
100. 00%, 584
40:21
5 41:16 41:28 41:41 42:04
5
_2
'- o
36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12
0,1.00%,F,F)
:37 40:47 41:02 41:2.6 41:37 41:50 42:10
'Vx/~rv'> — '-^Vr'V~»
-Ay^-ps/^~^^v> ^-rV\^~- — Y— ^V^ '•^y'V-v — \^^ /^ — -t — r\sS^^^-
5
_2
_0
36 40:48 41:66 4lli2 4ll24 41 lie 41148 42166 42 1 12
0,1.00%,F,F)
3
Li
0
36 46148 41.166 4ill2 41.124 41136 41148 42166 42ll2
,1.00%,F,F)
36 46148 4ll
.0,1.00%,F,F)
3
.1
0
66 4lli2 41124 41136 41 Us 42166 42 1 12
"
-------
OPUSguan 30-SEP-1998
Page 1
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ
Unk
ES/RT
a29sep98n
12
30-SEP-98 01:01:
30-SEP-98 08:57;
1113-8
07feb-m23conf
m8290cf-092998n
50
42
Total
DPE
LMC
Name ;
2,3,7,8-TCDF;
13C-2,3,7,8-TCDF;
Tetra Furans;
HxCDPE;
QC CHK ION (Tetra);
Resp;
1.136+05;
1.05e+08;
9.496+05;
Ion 1;
4.73e+04;
4.63e+07;
7.13e+04;
Ion 2;
6.59e+04;
5.85e+07;
7.48e+04;
RA;?;
0.72;y;
0.79;y;
0.95;n;
Page 12
RT;
27:53;
27:48;
18:08;
Cone; DL
0.114; 0.1203
25.671;
0.954; 0.1203
;NotFnd;
,-NotFnd;
S/N1;?;
5;y;
1818;y;
15;y;
*;n
DivO; n
S/N2;?
2;n
2756;y
5;y
mod?
yes •
no
yes
no
no
/
/
-;-; 27:53
-;-; 27:53
yes
CO
01
-------
OPUSquan 30-SEP-1998
Page 12
Page 12
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ
Unk
ES/RT
a29sep98n
12
30-SEP-98
30-SEP-98
1113-8
07feb-m23conf
m8290cf-092998n
01:01:50
08:57:42
Total
DPE
LMC
Name; Resp;
2,3,7,8-TCDF;
130-2,3,7,8-TCDF; 1.
Tetra Furans; 7.
HxCDPE;
QC CHK ION (Tetra);
05e+08;
87e+05;
Ion 1;
* .
4.636+07;
7.136+04;
Ion 2;
* .
5.85e+07;
7.486+04;
RA;?; RT;
*;n;NotFnd;
0.79;y; 27:48;
0.95;n; 18:08;
;NotFnd;
;NotFnd;
25.671
0.791
-,--,-NotFnd
;-;NotFnd
-------
File:A29SEP98N #1-2677 Acq:30-SEP-1998 01:01:50 GC EI+ Voltage SIR Autospec-UltimaE
Sample#12 Text:1113-8 Exp:M23_DB225
303.9016 S:12 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1136.0,1.00%,F,F)
100% 18;08 23-13
OJ
22:29
^:AY562226,2727:29
A 2*34
16100 18iOO 20iOO 22100 24iOO 26? 00 28iOO
305.8987 S:12 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,3228.0,1.00%,F,F)
100% 18;08 23:14
-.••*' .33:08 ^4.10 JS^J :
f^y^^UM*^^ . OEO
L9.4E3
35:23 :
30:00
32:00
34:00
16:00 18:00 20:00 22:00 24iOO 26iOO 28iOO 30:00
315.9419 S:12 SMO(1,3) BSUB (128, 15, -3 . 0) PKD(3 , 3 , 3 , 0 . 10%, 2784 . 0, 1 . 00%, F, F)
100% 27:48
50J
32iOO
34:00
lO.OEO
36:00 Time
5.1E6
L2.5E6
.O.OEO
16:00 18:00 20:00 22:00 24:00 26:00 28:00 30:00
317.9389 S:12 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,2320.0,1.00%,F,F)
100% 27;48
32:00
34:00
O
-i—i—i—i—i—i—i—i—i—i i i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—p—i—i—i—i
leloo 18:00 20:00 22:00 24:00 26:00 28iOO
375.8364 S:12 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,100.00%,2744.0,1.00%,F,F)
100%
30 lob
32 Sob
34 Sob
36:00 Time
6.4E6
L3.2E6
Lo.OEO
leiOO 18100 20iOO 22100 24:00 26iOO 28:00 30:00
316.9824 S:12 SMO(1,3) PKD(3 , 3 , 3,100 . 00%,0.0,1.00%,F,F)
100% 16:0117:0618:11 20:10 21:3522:4023:46 25:04 26:31:_.,27 ;_45_28 ;_48 29:54 31:
50J
O
-7BTT-1 1 1 1 1 1 1 ) 1 1 1 1 1 1 1 1 1 1 1
!'-?16:00 18:00 20:00
26 Sob
28 Sob
30 Sob
36:00 Time
3S-..34 3.0E4
L1.5E4
O.OEO
32iOO 34-: 00 36:00 Time
Oi_H^°JL3ul4^^Ai2jLJ^^3rl • 5E7
_7.5E6
O.OEO
36:00 Time
~~>—I—^
34:00
22:00
24:00
32:00
CO
-------
File:A29SEP98N #1-2677 Acq:30-SEP-l998 01:01:50 GC EI+ Voltage SIR Autospec-UltimaE
Sample#12 Text:1113-8 Exp:M23_DB225
303.9016 S:12 SMO{1,3) BSUBU28,15, -3 .0) PKD(3 , 3 , 3 , 0 ,10%, 1136 . 0,1,00%, F,F)
16:50
16:14
22:00 24:00 26:00 2
305.8987 S:12 SMO(1,3) BSUB(128,15,-3 .0) PKD(3,3,3,0.10%, 3228.0,1.00%,
36:00 Time
36:00 Time
-------
Paradigm Analytical Labs
Method 23
M23-I-2 FH
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
ing)
EMPC
EMPC
EMPC
0.0044
0.0057
EMPC
0.0212
0.0224
EMPC
0.0340
0.0933
0.0701
0.0248
0.0060
0.1256
EMPC
0.0150
0.116
0.090
0.088
0.0104
0.4980
0.4972
0.4996
0.1656
0.0410
0.0420
DL
VW)
0.0014
0.0009
0.0013
0.0011
0.0012
0.0015
0.0028
0.0024
0.0010
0.0010
0.0022
0.0019
0.0021
0.0024
0.0027
0.0031
0.0073
0.0014
0.0009
0.0011
0.0015
0.0024
0.0010
0.0019
0.0027
EMPC
V»g)
0.0027
0.0030
0.0024
0.0142
0.0488
0.0150
0.134
0.100
0.095
0.0244
0.5784
0.5460
0.5208
0.181
0.0481
0.0481
RT
(mm.)
28:55
33:01
35:05
35:09
35:21
37:31
40:22
27:56
32:22
32:49
34:34
34:38
35:00
35:31
36:43
37:53
40:31
Ratio
1.00
1.04
0.81
1.1
1.22
1.24
0.77
0.8
1.92
1.55
1.29
1.23
1.41
1.41
1.04
1.54
0.81
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-I-2FH
Sample Information
Matrix: Air
Weight/Volume: 1
Moisture / Lipids: 0.0
L1113
1113-9
28-Aug-98
08-Sep-98
15-Sep-98
28-Sep-98
Filename:
Retchk:
Begin ConCal:
EndConCal:
InitialjCal:
a27sep98m-13
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
' 239
1/2
-------
Paradigm Analytical Labs
Method 23
M23-I-2 FH
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13C12- 1 ,2,3 ,4,6,7,8-HpCDD
13C,2-OCDD
l3C,2-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13CI2-l,2,3,6,7,8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37CV2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
13Cirl,2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13C12-1,2,3)4)7,8,9-HPCDF
Injection Standards
13C12-1,2,3,4-TCDD
13C12-l,2,3,7,8,9-HxCDD
Expected
Amount
(ng)
4
4
4
4
8
4
4
4
4
Measured
Amount
(ntf
2.75
2.98
2.67
2.36
2.98
2.73
2.61
2.18
1.92
Percent
Recovery
(%)
68.8
74.5
66.6
59.0
37.2
68.3
65.2
54.5
48.1
RT
(mln.)
28:56
33:01
35:08
37:31
40:22
27:54
32:22
34:37
36:43
28:39
35:20
Ratio
0.78
1.55
1.27
1.06
0.9
0.79
1.56
0.53
0.44
0.8
1.27
Qualifier
V
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Reviewed by: ^ .T •
S509.000
M23-I-2 FH
L1113
1113-9
28-Aug-98
08-Sep-98
15-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight / Volume:
Moisture / Lipids:
Filename:
Retchk:
Begin ConCal:
EndConCal:
Initial Cal:
Date
Air
1
0.0 %
a27sep98m-13
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
f sk
Reviewed: Icktw
2J2
-------
Paradigm Analytical Labs
Method 23
M23-I-2 FH
PES
Analytical Data Summary Sheet
Analyte
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
Total TCDDs
Total PeCDDs
Total HxCDDs
Total HpCDDs
Total TCDFs
Total PeCDFs
Total HxCDFs
Total HpCDFs
TEQ(ND=0)
TEQ (ND=l/2)
Concentration
(ppt)
EMPC
EMPC
EMPC
0.0542
0.0693
EMPC
0.2587
0.2734
EMPC
0.4154
1.1389
0.8558
0.3027
0.0727
1.5333
EMPC
0.1831
1.411
1.098
1,079
0.1269
6.0776
6.0679
6.0971
2.0210
0.5002
0.5130
DL
(ppq
0.0175
0.0109
0.0154
0.0138
0.0142
0.0184
0.0337
0.0291
0.0126
0.0122
0.0271
0.0236
0.0260
0.0296
0.0325
0.0376
0.0894
0.0175
0.0109
0.0138
0.0184
0.0291
0.0122
0.0236
0.0325
EMPC
(ppt)
0.0327
0.0361
0.0298
0.1733
0.5961
0.1831
1.635
1.225
1.157
0.2978
7.0588
6.6634
6.3559
2.207
0.5873
0.5873
RT
(mm.)
28:55
33:01
35:05
35:09
35:21
37:31
40:22
27:56
32:22
32:49
34:34
34:38
35:00
35:31
36:43
37:53
40:31
Ratio
1.00
1.04
0.81
1.1
1.22
1.24
0.77
0.8
1.92
1.55
1.29
1.23
1.41
1.41
1.04
1.54
0.81
Qualifier
ITEF
ITEF
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
S509.000
M23-I-2 FH
L1113
1113-9
28-Aug-98
08-Sep-98
15-Sep-98
28-Sep-98
Sample Information
Matrix:
Weight /Volume:
Moisture / Lipids:
Filename:
Retcbk:
Begin ConCal:
EndConCal:
Initial_Cal:
Air
81.94
0.0 %
a27sep98m-13
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
O 241
1/2
-------
Paradigm Analytical Labs
Method 23
M23-I-2 FH
PES
Analytical Data Summary Sheet
Labeled
Standard
Extraction Standards
13C12-2,3,7,8-TCDD
"Cu-l^S.T.g-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13C12-l,2,3,4,6,7)8-HpCDD
I3C12-OCDD
13C12-2,3,7,8-TCDF
13C12-l,2,3,7,8-PeCDF
13C12-l,2,3,6,7,8-HxCDF
I3C12-l,2,3,4,6,7,8-HpCDF
Sampling Standards
37Cl4-2,3,7,8-TCDD
13C12-2,3,4,7,8-PeCDF
13C12-U2,3,4,7,8-HxCDD
13C12-l,2,3,4,7,8-HxCDF
13Cirl,2,3,4,7,8,9-HpCDF
Injection Standards
13C12-1,2,3,4-TCDD
13C,2-l,2,3,7,8,9-HxCDD
Expected
Amount
<«g)
4
4
4
4
8
4
4
4
4
Measured
Amount
(ng)
2.75
2.98
2.67
2,36
2.98
2.73
2.61
2.18
1.92
Percent
Recovery
<%>
68.8
74.5
66.6
59.0
37.2
68.3
65.2
54.5
48.1
RT
(rain.)
28:56
33:01
35:08
37:31
40:22
27:54
32:22
34:37
36:43
28:39
35:20
Ratio
0.78
1.55
1.27
1.06
0.9
0.79
1.56
0.53
0.44
0.8
1.27
Qualifier
V
Client Information
Project Name:
Sample ID:
Laboratory Information
Project ID:
Sample ID:
Collection Date:
Receipt Date:
Extraction Date:
Analysis Date:
Reviewed by: IfjT.
S509.000
M23-I-2fH
LI 113
1113-9
28-Aug*98
08-Sep-98
15-Sep-98
28-Sep-98
Sample Information
Matrix:
Wei^it/ Volume:
Moisture / Lipids:
Initial Cal:
Air
81.94
0.0
%
a27sep98m-l
a27sep98m-2
a27sep98m-16
m8290-091498
Date Reviewed:
f^ ' 242
212
-------
CO
OPUSquan 28-SEP-1998
Filename a27sep98m
Sample 13
Acquired 28-SEP-98
Processed 28-SEP-98
Sample ID 1113-9 xl/2
Page 1
04:38:30
09:42:20
(Jr
560
*
\flT
J-
Cal Table m8290-091498
Results Table M8290-092798M
Comments
Typ
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
ss
SS
S3
S3
Name;
2,3,7,8-TCDD;
1, 2,3,7, 8-PeCDD;
1,2,3,4,7,8-HxCDD;
1,2,3,6,7,8-HxCDD;
1,2,3,7,8,9-HxCDD;
1,2,3,4,6,7, 8-HpCDD ;
OCDD ;
2,3,7,8-TCDF;
1, 2,3,7, 8-PeCDF;
2,3,4,7,8-PeCDF;
1,2,3,4,7,8-HxCDF;
1,2,3,6,7,8-HxCDF;
2,3,4,6,7,8-HxCDF;
1,2,3,7,8, 9-HxCDF;
1,2,3,4,6,7, 8-HpCDF ;
1,2,3,4,7,8,9 -HpCDF ;
OCDF;
13C-2,3,7,8-TCDD;
13C-1 ,2,3,7, 8-PeCDD;
13C-l,2,3,6,7,8-HxCDD;
13C-1 , 2,3,4,6,7, 8-HpCDD;
13C-OCDD;
13C-2,3,7,ff-TCDF;
13C-1, 2,3,7, 8-PeCDF;
13C- 1 , 2 , 3 , 6 , 7 , 8-HxCDF ;
13C-l,2,3,4,6,7,8-HpCDF;
13C-1,2,3,4-TCDD;
13C-l,2,3,7,8,9-HxCDD;
37Cl-2,3,7,8-TCDD;
13C-2 ,3,4,7, 8-PeCDF;
13C-l,2,3,4,7,8-HxCDD;
13C-l,2,3,4,7,8-HxCDF;
13C-l,2,3,4,7,8,9-HpCDF;
37Cl-2,3,7,8-TCDD;
13C-2 ,3,4,7, 8-PeCDF;
13C-l,2,3,4,7,8-HxCDD;
13C-l,2,3,4,7,8-HxCDF;
13C-l,2,3,4,7,8,9-HpCDF;
Resp;
1.13e+05;
l.OOe+05;
6.166+04;
1.25e+05;
1.556+05;
2.976+05;
2.706+05;
3.77e+06;
1.786+06;
1.27e+06;
2.57e+06;
2.226+06;
7.136+05;
1. 50e+05 ;
2.876+06;
2.976+05;
2.066+05;
1.666+08;
1.206+08;
1.236+08;
9.186+07;
1.026+08;
2.046+08;
1.63e+08;
1.16e+08;
6.736+07;
2.28e+08;
1.76e+08;
* .
l.Ole+06;
1.23e+08;
5.98e+05;
* .
ir .
l.Ole+06;
1.23e+08;
5.98e+05;
1r .
Ion 1;
5.656+04;
S.lOe+04;
2.75e+04;
6.55e+04;
8.53e+04;
1.64e+05;
1.176+05;
1.67e+06;
1.17e+06;
7.72e+05;
1.45e+06;
1.236+06;
4.166+05;
8.816+04;
1.476+06;
1.80e+05;
9.216+04;
7.276+07;
7.27e+07;
6.906+07;
4.72e+07;
4.816+07;
9.036+07;
9.906+07;
3.99e+07;
2.056+07;
l.Ole+08;
9.846+07;
*;
6.076+05;
6.90e+07;
2.20e+05;
* .
* .
6.07e+05;
6.90e+07;
2.20e+05;
Ion 2;
5.63e+04;
4.90e+04;
3.416+04;
5.936+04;
7.016+04;
1.33e+05;
1.52e+05;
2.09e+06;
6.09e+05;
4.97e+05;
1.12e+06;
9.97e+05;
2.96e+05;
6.23e+04;
1.416+06;
1.17e+05;
1.14e+05;
9.326+07;
4.69e+07;
5.43e+07;
4.46e+07;
5.356+07;
1.146+08;
6.356+07;
7.586+07;
4.686+07;
1.276+08;
7.756+07;
_;
4.056+05;
5.436+07;
3.77e+05;
RA;?;
1.00;n;
1.04;n;
0.81;n;
1.10;y;
1.22;y;
1.24;n;
0.77,-y;
0.80;y;
1.92,-n;
1.55;y;
1.29;y;
1.23;y;
1.41,-y;
1.41,-y;
1.04;y;
1.54;n;
0.81;y;
0.78;y;
1.55;y;
1.27;y;
1.06;y;
0.90,-y;
0.79;y;
1.56;y;
0.53,-y;
0.44,-y;
0.80;y;
1.27;y;
1.50;y;
1.27;y;
0.58;y;
RT;
28:55;
33:01;
35:05;
35:09;
35:21;
37:31;
40:22;
27:56;
32:22;
32:49;
34:34;
34:38;
35:00;
35:31;
36:43;
37:53;
40:31;
28:56;
33:01;
35:08; — .
37:31;
40:22;
27:54;
32:22;
34:37;
36:43;
28:39;
35:20;
28:55;
32:49;
35:08; — .
34:33;
Conc ;
0.067;
0.074;
0.061;
0.111;
0.142;
0.355;
0.530;
1.842;
1.221;
0.851;
2.333;
1.753;
0.620;
0.149;
3.141;
0.375;
0.375;
68.769;
74.461;
66.634;
58.993;
74.369;
68.271;
65.162;
54.520;
48.065;
50.658;
49.333;
* .
0.414;
88.340;
0.340;
*; *;n;NotFnd; *;
_;
4.05e+05;
5.43e+07;
3.77e+05;
1.50;y;
1.27;y;
0.58;y;
28:55;
32:49;
35:08; —
34:33;
*;
0.635;
132.415;
0.623;
*; *; *;n;NotFnd; *;
DL;
0.0359;
0.0224;
0.0316;
0.0283;
0.0291;
0.0376;
0.0690;
0.0597;
0.0257;
0.0250;
0.0555;
0.0483;
0.0533;
0.0606;
0.0666;
0.0770;
0.1831;
0.1448;
0.1275;
0.0528;
0.3325;
0.0022;
0.0593;
0.0121;
0.1046;
0.0589;
-;
- ;
0.0501;
0.0123;
0.0700;
0.1264;
0.0673;
0.0736;
0.0088;
0.0971;
0.2197;
0.1538;
S/N1;?;
5;y;
8;y;
9;y;
18;y;
19;y;
26;y;
16, -y;
101;y;
300;y;
243;y;
99;y;
30,-y;
8;y;
119, -y;
12,-y;
9;y;
855;y;
3657;y;
4325 ;y ;
486 ;y;
55218; :y;
2639;y;
211561;y;
1307;y;
1281;y;
1215;y;
5582 ;y;
*;n;
1709;y;
4325 ;y;
6;y;
*;n;
*;n;
1709;y;
4325;y;
6;y;
*;n;
S/N2;? mod?
7;y
19, -y
4;y
9;y
6;y
32, -y
41;y
54, -y
66 ;y
50;y
109;v
J. V -/ / Jf
121,-y
38;y
8;y
157 ;y
11 ;y
5;y
2801;y
4973;y
3833,-y
408, -y
75542;y
4434;y
14960;y
1919;y
3301;y
3798 ;y
5187;y
-; -
124;y
3833;y
9;y
*;n
-; _
124;y
3833,-y
9;y
*;n
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
Page 19
-------
OPUSquan 28-SEP-1998
Page 1
Page 1 of 8
Ent: 39 Name: Total Tetra-Furans F:1 Mass: 303.902 305.899 Mod? no #Hom:24
Run: 19 File: a27sep98m S:13 Acg:28-SEP-98 04:38:30 Proc:28-SEP-98 09:42:20
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-9 xl/2
Amount: 14.60
Cone: 14.60
Tox #1: -
Name
2,3,7,8-TCDF
of which 1.84
of which 1.84
Tox #2: -
# RT Respnse
named and 12.75
named and 12.75
Tox #3: -
RA
1 24:06 1.9e+06 0.81 y
1.96+06
2 24:41 l.le+06 0.80 y
l.le+06
3 25:01 7.9e+05 0.80 y
7.9e+05
4 25:20 4.2e+06 0.80 y
4.26+06
5 25:28 4.0e+05 0.98 n
4.0e+05
6 25:30 4.0e+05 0.97 n
4.0e+05
7 25:39 1.2e+06 0.80 y
1.2e+06
8 25:45 1.2e+06 1.30 n
1.2e+06
9 25:54 2.7e+04 1.29 n
2.7e+04
10 26:08 l.Oe+06 0.71 y
l.Oe+06
11 26:13 2.0e+06 0.92 n
2.0e+06
12 26:29 9.4e+05 0.84 y
9.46+05
13 26:37 1.5e+06 0.76 y
1.56+06
14 26:55 2.5e+06 0.74 y
2.5e+06
15 27:02 1.5e+06 0-78 y
l.Se+06
16 27:19 1.8e+06 0.78 y
1.8e+06
17 27:33 9.2e+04 0.39 n
9.2e+04
18 27:39 9.4e+05 0.80 y
9.4e+05
19 27:56 3.8e+06 0.80 y
3.8e+06
Cone
0.95
£
1
0.56
C
e
0.38
<
2.07
3
0.20
0.19
0.60
C
t
0.60
'i
C
0.01
3
3
0.51
4
t
0.96
c
]
0.46
4
C
0.73
«
£
1.22
3
3
0.75
£
£
0.87
•>
3
0.04
«
0.46
4
c
1.84
unnamed
unnamed
Area Height
S/N Mod?
8.7e+05 2.1e+05 7.9e+01 y n
l.le+06 2.56+05 3.8e+01 y n
5.1e+05 1.2e+05 4.3e+01 y n
6.46+05 l.Se+05 2.4e+01 y n
3
3.56+05 8.8e+04 3.3e+01 y n
.4e+05 l.le+05 1.7e+01 y n
1.9e+06 4.06+05 l.Se+02 y n
2.3e+06 S.le+05 7.9e+01 y n
D
2.0e+05 6.4e+04 2.4e+01 y n
2.0e+05 7.26+04 l.le+01 y n
9
2.0e+05 6.46+04 2.4e+01 y n
2.06+05 7.2e+04 l.le+01 y n
5.5e+05 1.3e+05 4.7e+01 y n
6.8e+05 l.Se+05 2.2e+01 y n
}
7.06+05 l.le+05 4.1e+01 y n
5.3e+05 1.36+05 2-le+Ol y n
L
1.56+04 4.26+03 1.6e+00 n n
1.26+04 5.56+03 8.66-01 n n
.36+05 1.3e+05 5.1e+01 y n
6.16+05 1.7e+05 2.7e+01 y n
5
9.36+05 2.06+05 7.5e+01 y n
l.Oe+06 2.2e+05 3.4e+01 y n
4.36+05 9.9e+04 3.7e+01 y n
S.le+05 1.3e+05 1.9e+01 y n
6.46+05 1.6e+05 6.2e+01 y n
8.5e+05 1.8e+05 2.8e+01 y n
I
l.le+06 2.2e+05 8.2e+01 y n
1.46+06 2.96+05 4.56+01 y n
6.76+05 l.Se+05 5.86+01 y n
8.66+05 2.06+05 3.06+01 y n
7.8e+05 1.86+05 6.6e+01 y n
l.Oe+06 2.2e+05 3.4e+01 y n
i
2.66+04 l.le+04 4.0e+00 y n
6.6e+04 1.5e+04 2.3e+00 n n
4.26+05 9.6e+04 3.6e+01 y n
5.26+05 1.2e+05 l.Se+Ol y n
1
1.7e+06 2.7e+05 l.Oe+02 y n
2.1e+06 3.5e+05 5.4e+01 y n
244
-------
OPUSquan 28-SEP-1998
Page 2
20 28:32 1.4e+06 0.76 y 0.66
1.4e+06
21 28:39 2.3e+04 2.21 n. 0.01
2.3e+04
22 28:49 7.9e+05 0.79 y 0.39
7.96+05
23 29:03 1.3e+05 0.34 n 0.06
1.3e+05
24 30:18 1.2e+05 1.25 n 0.06
1.2e+05
5.8e+05 1.3e+05 5.0e+01 y n
7.7e+05 1.9e+05 2.9e+01 y n
1.6e+04 5.2e+03 2.Oe+00 n n
7.1e+03 4.8e+03 7.5e-01 n n
3.5e+05 7.3e+04 2.8e+01 y n
4.4e+05 l.Oe+05 1.5e+01 y n
3.2e+04 1.2e+04 4.4e+00 y n
9.4e+04 2.1e+04 3.3e+00 y n
6.4e+04 1.5e+04 5.7e+00 y n
5.2e+04 1.4e+04 2.1e+00 n n
C< 245
-------
OPUSquan 28-SEP-1998
Page 3
Page 2 of 8
Ent: 40 Name: Total Tetra-Dioxins F:l Mass: 319.897 321.894 Mod? no #Hom:19
Run: 19 File: a27sep98m S:13 Acq:28-SEP-98 04:38:30 Proc:28-SEP-98 09:42:20
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-9 xl/2
Amount: 3.60
Cone: 3.60
Tox #1: -
Name
2,3,7,8-TCDD
of which 0.07
of which 0.07
Tox #2: -
named and 3.53
named and 3.53
Tox #3: -
RT Respnse
RA
1 24:31 7.26+03 0.72 y
7.2e+03
2 24:52 l.le+04 4.29 n
l.le+04
3 25:44 3.36+06 0.82 y
3.3e+06
4 25:52 l.le+04 2.15 n
l.le+04
5 26:08 1.4e+06 0.80 y
1.4e+06
26:32 5.9e+04
5.9e+04
0.51 n
7 27:23 4.0e+05 0.94 n
4.0e+05
8 27:46 7.4e+04 0.56 n
7.46+04
9 28:14 7.8e+04 0.41 n
7.8e+04
10 28:17 6.5e+04 0.17 n
6.5e+04
11 28:39 1.96+05 0.89 n
1.96+05
12 28:49 2.1e+05 0.85 y
2.1e+05
13 28:55 l.le+05 1.00 n
l.le+05
14 29:08 4.9e+04 0.51 n
4.9e+04
15 29:11 4.36+04 0.30 n
4.3e+04
16 29:26 4.7e+04 0.44 n
4.76+04
17 29:29 3.8e+04 0.17 n
3.86+04
18 29:54 6.3e+03 1.32 n
6.3e+03
19 30:06 8.16+03 2.06 n
8.1e+03
Cone
0.00
3
4
0.01
S
1.96
1
1
0.01
1
i
0.81
«
•}
0.03
•3
0.24
1
0.04
4
0.05
C
0.04
c
c
0.11
s
1
0.12
S
1
0.07
c
c
0.03
]
0.03
]
^
0.03
3
0.02
c
^
0.00
0.00
unnamed
unnamed
Area Height
S/N Mod?
3.0e+03 1.9e+03 7.0e-01 n n
4.2e+03 2.1e+03 l.le+00 n n
9.3e+03 3.7e+03 1.4e+00 n n
2.2e+03 l.le+03 6.1e-01 n n
1.5e+06 3.5e+05 1.3e+02 y n
1.8e+06 4.36+05 2.3e+02 y n
L
7.2e+03 2.5e+03 9.4e-01 n n
3.3e+03 1.9e+03 l.Oe+00 n n
.1e+05 1.3e+05 4.8e+01 y n
.6e+05 1.8e+05 9.5e+01 y n
2.0e+04 7.5e+03 2.8e+00 n n
3.9e+04 l.le+04 6.1e+00 y n
I
1.9e+05 4.3e+04 1.6e+01 y n
2.1e+05 4.3e+04 2.3e+01 y n
1
2.7e+04 9.4e+03 3.5e+00 y n
4.7e+04 1.3e+04 6.9e+00 y n
5
2.3e+04 7.9e+03 2.9e+00 n n
5.5e+04 1.6e+04 8.8e+00 y n
1
9.5e+03 6.56+03 2.4e+00 n n
5.5e+04 1.6e+04 8.8e+00 y n
9.0e+04 1.8e+04 6.9e+00 y n
l.Oe+05 2.2e+04 1.2e+01 y n
2.
9.5e+04 2.1e+04 7.9e+00 y n
l.le+05 2.96+04 1.5e+01 y n
7
5.7e+04 1.3e+04 4.9e+00 y n
5.6e+04 1.4e+04 7.5e+00 y n
.7e+04 6.2e+03 2.3e+00 n n
3.3e+04 6.7e+03 3.6e+00 y n
l.Oe+04 5.3e+03 2.0e+00 n n
3.3e+04 6.7e+03 3.6e+00 y n
3
1.4e+04 5.1e+03 1.9e+00 n n
3.3e+04 9.4e+03 5.0e+00 y n
2
5.6e+03 5.5e+03 2.1e+00 n n
3.3e+04 9.4e+03 5.0e+00 y n
D
3.6e+03 2.06+03 7.6e-01 n n
2.7e+03 1.2e+03 6.5e-01 n n
3
5.5e+03 2.7e+03 l.Oe+00 n n
2.7e+03 2.16+03 l.le+00 n n
O 246
-------
OPUSquan 28-SEP-1998
Page 4
Page 3 of 8
Ent: 41 Name: Total Penta-Furans F:2 Mass: 339.860 341.857 Mod? no #Hom:16
Run: 19 File: a27sep98m S:13 Acq:28-SEP-98 04:38:30 Proc:28-SEP-98 09:42:20
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-9 xl/2
Amount: 13.75
Cone: 13.75
Tox #1: -
Name
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
of which 2.07
of which 2.07
Tox #2: -
named and 11.68
named and 11.68
Tox #3: -
# RT Respnse RA Cone
1 30:44 2.7e+06 1.57 y 1.86
2.7e+06
2 31:41 1.3e+06 1.62 y 0.85
1.3e+06
3 31:48 6.3e+06 1.54 y 4.24
6.3e+06
4 31:56 1.3e+06 1.52 y 0.85
1.3e+06
5 32:02 2.6e+05 1.49 y 0.18
2.6e+05
6 32:04 2.6e+05 1.42 y 0.17
2.6e+05
7 32:11 1.8e+06 1.51 y 1.20
1.8e+06
8 32:22 1.8e+06 1.92 n 1.22
1.8e+06
9 32:29 7.9e+05 1.57 y 0.54
7.9e+05
10 32:33 1.4e+06 1.55 y 0.95
1.4e+06
11 32:49 1.3e+06 1.55 y 0.85
1.3e+06
12 32:54 9.5e+05 1.47 y 0.64
9.5e+05
13 33:03 9.9e+04 2.88 n 0.07
9.9e+04
14 33:09 2.1e+04 0.13 n 0.01
2.1e+04
15 33:14 1.8e+04 0.36 n 0.01
1.86+04
16 33:21 1.4e+05 1.35 y 0.10
1.4e+05
unnamed
unnamed
Area Height
S/N Mod?
1.7e+06 4.1e+05 2.7e+02 y n
l.le+06 2.4e+05 5.3e+01 y n
7.8e+05 3.5e+05 2.3e+02 y n
4.8e+05 2.3e+05 5.0e+01 y n
1
3.8e+06 1.2e+06 7.9e+02 y n
2.5e+06 8.0e+05 1.7e+02 y n
7.6e+05 2.5e+05 1.7e+02 y n
5.0e+05 1.6e+05 3.6e+01 y n
3
1.6e+05 7.06+04 4.6e+01 y n
l.Oe+05 5.0e+04 l.le+01 y n
7
1.5e+05 7.4e+04 4.9e+01 y n
l.le+05 4.8e+04 l.le+01 y n
l.le+06 4.46+05 2.9e+02 y n
7.0e+05 2.8e+05 6.1e+01 y n
2
1.2e+06 4.5e+05 3.0e+02 y n
6.1e+05 3.0e+05 6.6e+01 y n
}
4.8e+05 2.6e+05 1.7e+02 y n
3.1e+05 1.6e+05 3.5e+01 y n
8.5e+05 4.7e+05 3.1e+02 y n
5.5e+05 3.1e+05 6.8e+01 y n
7.7e+05 3.7e+05 2.4e+02 y n
5.0e+05 2.3e+05 5.0e+01 y n
J
5.6e+05 3.1e+05 2.06+02 y n
3.8e+05 2.0e+05 4.5e+01 y n
7
7.4e+04 2.96+04 1.9e+01 y n
2.6e+04 1.2e+04 2.7e+00 n n
1
2.4e+03 l.le+03 7.1e-01 n n
1.96+04 7.7e+03 1.7e+00 n n
1
4.8e+03 1.9e+03 1.3e+00 n n
1.3e+04 7.6e+03 1.7e+00 n n
D
8.2e+04 4.2e+04 2.8e+01 y n
6.1e+04 2.9e+04 6.4e+00 y n
-------
OPUSquan 28-SEP-1998
Page 5
Page 4 of 8
Ent: 42 Name: Total Penta-Dioxins F:2 Mass: 355.855 357.852 Mod? no #Hom:14
Run: 19 File: a27sep98m S:13 Acq:28-SEP-98 04:38:30 Proc:28-SEP-98 09:42:20
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-9 xl/2
Amount: 2.57
Cone: 2.57
Tox #1: -
Name
1,2,3,7,8-PeCDD
of which 0.07
of which 0.07
Tox tt2: -
# RT Respnse
named and 2.50
named and 2.50
Tox #3: -
RA
1 31:56 9.8e+05 1.45 y
9.86+05
2 32:08 7.7e+03 3.77 n
7.7e+03
3 32:14 2.6e+04 1.25 n
2.6e+04
4 32:25 9.2e+05 1.58 y
9.2e-i-05
5 32:29 7.1e+04 1.21 n
7.1e+04
6 32:35 9.66+05 1.66 y
9.6e+05
7 32:41 4.5e+04 0.94 n
4.5e+04
8 32:45 S.le+04 2.05 n
8.1e+04
9 32:51 1.76+05 1.44 y
1.7e+05
10 32:55 6.1e+04 1.14 n
6.1e+04
11 33:01 l.Oe+05 1.04 n
l.Oe+05
12 33:07 4.5e+04 1.24 n
4.5e+04
13 33:21 l.Oe+04 1.62 y
l.Oe+04
14 33:25 l.le+04 1.67 y
l.le+04
Cone
0.73
t
<
0.01
(
]
0.02
]
]
0.68
C
0.05
3
2
0.71
e
0.03
0.06
C
0.13
3
0.05
2
0.07
C
4
0.03
0.01
e
<
o.oi
unnamed
unnamed
Area Height
S/N Mod?
5.8e+05 2.4e+05 6.1e+01 y n
.0e+05 1.6e+05 1.2e+02 y n
.1e+03 1.9e+03 4.9e-01 n n
.66+03 7.56+02 5.5e-01 n n
.5e+04 8.86+03 2.2e+00 n n
.2e+04 S.Oe+03 3.6e+00 y n
5.6e+05 2.96+05 7.4e+01 y n
3.6e+05 1.8e+05 1.3e+02 y n
3.9e+04 1.9e+04 4.7e+00 y n
3.2e+04 1.6e+04 l.le+01 y n
L
6.0e+05 3.6e+05 9.1e+01 y n
3.66+05 2.26+05 1.6e+02 y n
3
2.2e+04 l.le+04 2.8e+00 n n
2.36+04 6.36+03 4.5e+00 y n
5.4e+04 2.6e+04 6.5e+00 y n
2.7e+04 1.5e+04 l.le+01 y n
l.Oe+05 5.96+04 1.5e+01 y n
7.0e+04 4.0e+04 2.9e+01 y n
3.3e+04 1.7e+04 4.2e+00 y n
2.9e+04 l,4e+04 l.Oe+01 y n
5.1e+04 3.26+04 8.0e+00 y n
4.9e+04 2.66+04 1.9e+01 y n
3
2.5e+04 1.7e+04 4.2e+00 y n
2.06+04 l.Oe+04 7.4e+00 y n
I
6.56+03 4.3e+03 l.le+00 n n
4.0e+03 1.9e+03 1.4e+00 n n
6.76+03 3.4e+03 8.5e-01 n n
4.0e+03 1.9e+03 1.4e+00 n n
f c
<
-------
OPUSquan 28-SEP-1998
Page 6
Ent: 43 Name: Total Hexa-Furans
Page 5 of 8
F:3 Mass: 373.821 375.818 Mod? no #Hom:20
Run: 19 File: a27sep98m S:13 Acq:28-SEP-98 04:38:30 Proc:28-SEP-98 09:42:20
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-9 xl/2
Amount: 13.14
Cone: 13.14
Tox #1: -
Name
of which 4.85
of which 4.85
Tox #2: -
# RT Respnse
named and 8.28
named and 8.28
Tox #3: -
RA
1 33:55 1.2e+06 1.18 y
1.2e+06
2 34:01 5.7e+06 1.26 y
5.7e+06
3 34:07 4.2e+05 1.10 y
4.26+05
4 34:12 4.96+05 1.22 y
4.9e+05
5 34:19 1.4e+05 1.13 y
1.46+05
6 34:22 1.7e+04 1.26 y
1.76+04
7 34:26 1.8e+04 1.42 y
1.8e+04
1,2,3,4,7,8-HxCDF 8 34:34 2.6e+06 1.29 y
2.6e+06
1,2,3,6,7,8-HxCDF 9
34:38 2.2e+06 1.23 y
2.26+06
10 34:42 3.9e+05 1.54 n
3.9e+05
11 34:51 5.66+05 1.26 y
5.6e+05
12 34:57 2.2e+05 0.94 n
2.2e+05
2,3,4,6,7,8-HxCDF 13 35:00 7.1e+05 1.41 y
7.16+05
14 35:05 1.96+04 1.03 n
1.96+04
15 35:09 2.8e+04 3.07 n
2.8e+04
16 35:14 5.8e+03 1.19 y
5.86+03
17 35:17 l.le+04 3.01 n
l.le+04
18 35:21 2.8e+04 1.52 n
2.86+04
1,2,3,7,8,9-HxCDF 19 35:31 1.56+05 1.41 y
l.Se+05
Cone
1.10
e
c
5.01
0.37
0.43
0.13
e
o.oi
c
0.02
:
2.33
1
]
1.75
1
1
0.34
]
0.49
0.19
3
]
0.62
4
0.02
c
c
0.02
(.
0.01
•3
0.01
0.02
]
]
0.15
unnamed
unnamed
Area Height
S/N Mod?
6.8e+05 3.6e+05 6.5e+01 y n
5.7e+05 3.0e+05 7.4e+01 y n
I
3.2e+06 1.66+06 2.9e+02 y n
2.5e+06 1.2e+06 2.9e+02 y n
7
2.2e+05 l.le+05 2.1e+01 y n
2.0e+05 8.5e+04 2.1e+01 y n
3
2.7e+05 1.4e+05 2.4e+01 y n
2.2e+05 1.2e+05 2.9e+01 y n
3
7.5e+04 3.8e+04 6.8e+00 y n
6.7e+04 3.5e+04 8.6e+00 y n
L
9.5e+03 7.6e+03 1.4e+00 n n
7.5e+03 2.8e+03 6.8e-01 n n
2
l.le+04 3.2e+03 5.7e-01 n n
7.5e+03 2.86+03 6.8e-01 n n
1.4e+06 5.5e+05 9.9e+01 y n
l.le+06 4.4e+05 l.le+02 y n
1.2e+06 6.4e+05 1.2e+02 y n
l.Oe+06 4.9e+05 1.2e+02 y n
I
2.3e+05 l.le+05 1.9e+01 y n
1.5e+05 6.5e+04 1.6e+01 y n
3.1e+05 1.2e+05 2.1e+01 y n
2.5e+05 l.le+05 2.6e+01 y n
l.Oe+05 5.96+04 l.le+01 y n
l.le+05 4.96+04 1.2e+01 y n
l.2e+05 1.7e+05 3.0e+01 y n
3.0e+05 1.66+05 3.8e+01 y n
2
9.7e+03 5.7e+03 l.Oe+00 n n
9.46+03 3.1e+03 7.5e-01 n n
2
2.16+04 6.1e+03 l.le+00 n n
6.86+03 5.2e+03 1.3e+00 n n
3.16+03 2.4e+03 4.36-01 n n
2.6e+03 1.4e+03 3.5e-01 n n
1
7.96+03 4.6e+03 8.2e-01 n n
2.66+03 1.46+03 3.56-01 n n
1.7e+04 4.5e+03 8.1e-01 n n
l.le+04 4.96+03 1.2e+00 n n
8.8e+04 4.6e+04 8.2e+00 y n
6.2e+04 3.4e+04 8.3e+00 y n
249
-------
OPUSguan 28-SEP-1998 Page 7
20 35:34 1.3e+05 1.27 y 0.11
1.3e+05 7.2e+04 2.5e+04 4.5e+00 y n
5.7e+04 2.9e+04 7.0e+00 y n
250
-------
OPUSguan 28-SEP-1998
Page 8
Page 6 of 8
Ent: 44 Name: Total Hexa-Dioxins F:3 Mass: 389.816 391.813 Mod? no tHom:17
Run: 19 File: a27sep98m S:13 Acq:28-SEP-98 04:38:30 Proc:28-SEP-98 09:42:20
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-9 xl/2
Amount: 2.46
Cone: 2.46
Tox #1: -
of which 0.31
of which 0.31
Tox #2: -
named and 2.15
named and 2.15
Tox tt3: -
Name
RT Respnse
RA
34:15 l.le+05 1.54 n
l.le+05
34:22 7.26+03
7.2e+03
1.00 n
3 34:30 5.9e+03 0.47 n
5.9e+03
4 34:34 1.76+06 1.26 y
1.7e+06
5 34:43 3.7e+05 1.20 y
3.7e+05
6 34:52 6.8e+03 0.35 n
6.8e+03
7 35:00 9.76+03 0.91 n
9.7e+03
1,2,3,4,7,8-HxCDD 8 35:05 6.2e+04 0.81 n
6.2e+04
1,2,3,6,7,8-HxCDD 9 35:09 1.2e+05 l.lOy
1.26+05
1,2,3,7,8,9-HxCDD 10 35:21 1.6e+05 1.22 y
1.6e+05
11 35:39 6.36+03 1.36 y
6.36+03
12 35:49 9.3e+03 1.38 y
9.3e+03
13 35:56 3.7e+03 0.95 n
3.7e+03
14 36:00 l.Oe+04 0.80 n
l.Oe+04
15 36:05 8.56+03 0.60 n
8.56+03
16 36:07 1.5e+04 0.89 n
1.5e+04
17 36:14 9.3e+03
9.3e+03
0.36 n
Cone
0.10
€
4
0.01
0.01
1
4
1.62
c
0.34
1
0.01
1
c
0.01
4
c
0.06
0.11
e
c
0.14
?
0.01
0.01
c
0.00
1
1
0.01
4
C
0.01
1
c
0.01
-
0.01
unnamed
unnamed
Area Height S/N Mod?
;.8e+04 3.1e+04 2.1e+01 y n
l.4e+04 2.7e+04 7.3e+00 y n
3.6e+03 1.9e+03 1.3e+00 n n
3.6e+03 2.3e+03 6.3e-01 n n
L
1.9e+03 6.4e+02 4.3e-01 n n
4.0e+03 1.76+03 4.5e-01 n n
9.8e+05 5.1e+05 3.4e+02 y n
7.7e+05 3.76+05 l.Oe+02 y n
1
2.0e+05 9.5e+04 6.4e+01 y n
..7e+05 6.9e+04 1.9e+01 y n
l.Se+03 7.1e+02 4.8e-01 n n
5.0e+03 2.5e+03 6.9e-01 n n
4.6e+03 2.4e+03 1.6e+00 n n
5.1e+03 3.3e+03 8.9e-01 n n
S
2.7e+04 1.3e+04 9.0e+00 y n
3.46+04 1.4e+04 3.8e+00 y n
L
6.6e+04 2.7e+04 1.8e+01 y n
5.9e+04 3.1e+04 8.5e+00 y n
1
8.5e+04 2.96+04 1.9e+01 y n
7.06+04 2.2e+04 5.9e+00 y n
L
3.6e+03 2.0e+03 1.3e+00 n n
2.7e+03 1.8e+03 4.9e-01 n n
5.4e+03 3.2e+03 2.2e+00 n n
3.96+03 1.96+03 5.3e-01 n n
1.8e+03 1.3e+03 8.7e-01 n n
1.9e+03 1.4e+03 3.9e-01 n n
L
4.7e+03 3.4e+03 2.3e+00 n n
5.86+03 2.1e+03 5.6e-01 n n
L
3.2e+03 1.26+03 8.4e-01 n n
5.3e+03 1.6e+03 4.4e-01 n n
L
7.0e+03 2.9e+03 1.9e+00 n n
7.9e+03 3.2e+03 8.8e-01 n n
1
2.46+03 1.4e+03 9.8e-01 n n
6.8e+03 3.3e+03 9.0e-01 n n
Page 7 of 8
Ent: 45 Name: Total Hepta-Furans F:4 Mass: 407.782 409.779 Mod? no fHom:9
-------
OPUSquan 28-SEP-1998
Page 9
Run: 19 File: a27sep98m S:13 Acg:28-SEP-98 04:38:30 Proc:28-SEP-98 09:42:20
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-9 xl/2
Amount: 4.60
Cone: 4.60
Tox #1: -
Name
of which 3.52
of which 3.52
Tox #2: -
# RT Respnse
named and 1.09
named and 1.09
Tox #3: -
RA
1,2,3,4,6,7,8-HpCDFl 36:43 2.9e+06 1.04y
2.9e+06
2 36:55 5.3e+05 1.02 y
5.3e+05
3 37:02 3.2e+05 1.03 y
3.2e+05
4 37:18 1.7e+04 4.08 n
1.7e+04
5 37:25 2.4e+04 2.49 n
2.4e+04
6 37:40 6.0e+03 0.58 n
6.0e+03
l,2,3,4,7,8,9-HpCDF7 37:53 3.0e+05 1.54 n
3.0e+05
8 38:04 1.8e+04 1.91 n
1.8e+04
9 38:16 9.9e+03 0.64 n
9.9e+03
Cone
3.14
1
1
0.62
0.38
]
]
0.02
]
0.03
]
f
0.01
0.38
3
]
0.02
]
e
o.oi
unnamed
unnamed
Area Height
S/N Mod?
1.5e+06 5.8e+05 1.2e+02 y n
1.4e+06 5.4e+05 1.6e+02 y n
2
2.7e+05 9.6e+04 2.0e+01 y n
2.6e+05 l.le+05 3.1e+01 y n
.6e+05 5.8e+04 1.2e+01 y n
.6e+05 5.8e+04 1.7e+01 y n
1.4e-i-04 4.9e+03 l.Oe+00 n n
3.4e+03 1.4e+03 4.0e-01 n n
1.7e+04 4.0e+03 8.2e-01 n n
6.8e+03 3.4e+03 l.Oe+00 n n
1
2.2e+03 9.1e+02 1.9e-01 n n
3.8e+03 1.7e+03 5.0e-01 n n
3
1.8e+05 6.1e+04 1.2e+01 y n
1.2e-i-05 3.8e+04 l.le+01 y n
1.2e+04 5.6e+03 1.26+00 n n
6.3e+03 2.4e+03 6.9e-01 n n
3.8e+03 2.1e+03 4.26-01 n n
6.0e+03 2.86+03 8.1e-01 n n
f '•
-------
OPUSquan 28-SEP-1998
Page 10
Page 8 of 8
Ent: 46 Name: Total Hepta-Dioxins F:4 Mass: 423.777 425.774 Mod? no #Hom:6
Run: 19 File: a27sep98m S:13 Acq:28-SEP-98 04:38:30 Proc:28-SEP-98 09:42:20
Tables: Run: 14sep-crv Analyte: m8290-092» Cal: m8290-091»Results: M8290-09»
Version: V3.5 17-APR-1997 11:14:34 Sample text: 1113-9 xl/2
Amount: 0.67
Cone: 0.67
Tox #1: -
of which 0.35
of which 0.35
Tox #2: -
named and 0.32
named and 0.32
Tox #3: -
Name
#
RT Respnse
RA
1 36:56 2.2e+05 1.08 y
2.2e+05
1,2,3,4,6,7,8-HpCDD2 37:31 3.0e+05 1.24 n
3.0e+05
3 37:56 l.Oe+04 1.87 n
l.Oe+04
4 38:16 1.4e+04 1.42 n
1.4e+04
5 38:21 1.4e+04 1.05 y
1.4e+04
6 38:26 1.3e+04 2.31 n
1.3e+04
Cone
0.26
]
3
0.35
1
1
0.01
t
^
0.02
£
c
0.02
C
e
o.oi
unnamed
unnamed
Area Height
S/N Mod?
l.le+05 4.2e+04 1.8e+01 y n
l.Oe+05 4.1e+04 2.6e+01 y n
1.6e+05 6.0e+04 2.6e+01 y n
1.3e+05 5.0e+04 3.2e+01 y n
L
6.8e+03 2.3e+03 9.9e-01 n n
3.6e+03 l.Se+03 9.3e-01 n n
8.2e+03 4.3e+03 1.8e+00 n n
5.8e+03 1.9e+03 1.2e+00 n n
6.9e+03 3.4e+03 1.5e+00 n n
6.6e+03 2.5e+03 1.6e+00 n n
L
8.7e+03 3.5e+03 1.5e+00 n n
3.8e+03 1.26+03 7.8e-01 n n
253
-------
File:A27SEP98M #1-528
Sample#13 Text: 1113-9
319.8965 S:13 BSUB(128
100S
50_
0
i i i f i i i
24:00
321.8936 S:13 BSUB(128
lOOi
50J
.
o-
24:00
331.9368 S:13 BSUB(128
lOOS,
-
50 1
Oj
24 loo'
333.9339 S.-13 BSUB(128
100%
:
50 j
o-
'24 loo
327.8847 S:13 BSUB(128
100%
50J
0"
23:34
I ,23:59
liJLftJWWWfl HA lA/\Ai/?
Vlw'VT ' U wv\yl[ \r ^V^*WM
25 IOO
PKD(3,3,3,100.00%,0.0
1 24 • ^R _?^ • ?7
25:00
.10%, 2684. 0,1. 00%, F,F)
44
26:08
\ A 27:23 28-49
V J \ ,_ _yS^_ — ^ - ,-~LiO-l
3.5E5
_1.8E5
• O.OEO
' ( ' ' ' ' ' 1 ' ' ' ' ' 1 ' ' ' ' ' [ ' ' ' ' ' I ' ' '
26:00 27:00 28:00 29:00 30:00 Time
10%, 1868. 0,1. 00%, F,F)
44
26:09
A
^ J\ 27/^3 28:48
4.3E5
_2.2E5
O.OEO
26:00 27:00 28:00 29:00 30:00 Time
10%, 18880. 0,1. 00%, F,F)
28:39 r_2.3E7
A 28:56
A
A/I
-
:1.1E7
O.OEO
26 loo 27 1 00 28:00 29! 00 3oloO Time
10%, 7576. 0,1. 00%, F,F)
28:39 2.9E7
A 28:56
11 A
A
A /\
_1.4E7
O.OEO
26. -00 27 .-00 28 100 29:00 30:00 Time
10%, 8956. 0,1. 00%, F,F)
28 57 3.0E4
ic.ci ^ /• ^ i~ OQ»fio ^_7i08
llAAlIk A \MlAk. wU JA., ^..i T/ilJ .1. /WYJ AniL^^AljVA llA / T\ AftrtA < 4P :^i3LL .juniffMli J. m
^yv/l/v^Wv* v^IMj^ Viw 'Y^WVYv^Wf^yvyyN "A/y^
_1.5E4
O.OEO
~i 1 1 1 1 " i ~~~i 1 1 1 1 1 | i i i ~ i i | i 1 1 1 1 1 1 1 r~~ - - - • —
26:00 27:00 28:00 29:00 30:00 Time
,1.00%,F,F)
26-13 2.6'4Q _?7-Q7 27/^3 /28_;02 JJ8:48 _22_L25 30i07 6.3E7
.3.1E7
O.OEO
26:00 27:00 28:00 29:00 30:00 Time
-------
File:A27SEP9HM #1-237 Acq:
Sample#13 Text .-1113-9 xl/2
355.8546
100S,
50.
0-
3bl36
357.8517
100§
50_
0
30136
367.8949
100%
so:
0"
36136
369.8919
100%
50J
0'
30 136
366.9792
S:13 F-.2 BSUB (128
30 Us 3l!6d 31
S.-13 F:2 BSUB (128
28-SEP-1998 04:38:30 GC EI+ Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
,15, -3.0) PKD(3,3,2,0.10%,3984.0,1.00%,F,F)
32:35 ^3.7E5
32:25 1
31:56 A
A fl
/ \ 1 32:2^ 1 32A51 33:01 33. 18
.
•
L1.8E5
" O.OEO
Il2 31:24 31. '36 31\48 32166 32li2 32124 32136 32148 33166 33. -12 33124 33:36 Time
,15, -3.0) PKD(3,3,2,0.10%,1384.0,1.00%,F,F)
32:35
I (1 I
/ \ J J2-2S 1 32-45yy51 33:01
2.2E5
L1.1E5
"O.OEO
30:48 3llo6 3i!i2 31 124 31:36 31:48 32166 32li2 32124 32136 32l48 33166 33112 33124 33^36 Time
S:13 F:2 BSUB (128
soUs siloo' 3i
,15, -3.0) PKD(3,3,2,0.10%,10452.0,1.00%,F,F)
33:01
/ ^
3 . 8E7
_1 . 9E7
O.OEO
12 31124 31:36 SlUs 32166 32112 32124 32136 32148 33l6o 33112 33124 Sslie Time
S:13 F:2 BSUB (128, 15, -3 . 0) PKD(3 , 3 , 2, 0 . 10%, 5052 . 0, 1 . 00%, F, F)
SOUS 31166 31:
S:13 F:2 SMO(1,3)
100*,30:38 30:55 31:06
so:
0"
sots'e
30:48 31:00 31:
33:01
] I
_2 . 5E7
_1.3E7
O.OEO
12 3ll24 3l! 36 3l! 48 32166 32112 32124 32136 32148 33l6o 33112 33124 33136 Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
31:2131:31 31:5232:01 32:2132:30 32:45 ??••;£; 33:1333:22 33:37 7 . 9E7
.3.9E7
O.OEO
12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
-------
File
Samp
389.
1008
50_
0'
::A27SEP98M #1-197 Acq:
>le#13 Text:1113-9 xl/2
8156 S:13 F:3 BSUB(128
28-SEP-1998 04:38:30 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP_M23_DB5 OVATION
,15, -3.0) PKD(3,5,2,0.10%,1484.0,1.00%,F,F)
34:34
A
\\
/ \ 34:43
34^15 y ^ yy _15-^9 3J^1
33:48 34:00 34:12
391.8127 S:13 F:3 BSUB(128
1002
50J
0"
34:
S**
33:48 34:00 34:12
401.8559 S:13 F:3 BSUB (128
100%
•
so:
0'
33:48 34:00 34:12
403.8530 S:13 F:3 BSUB(128
100%
•
so:
0"
380.
100%
50J
0"
33:48 34:00 34:12
9760 S:13 F:3 SMO(1,3)
33j48_ 3JLL&7
r
r33)?48 34:00 34:12
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
5.1E5
L2.5E5
"O.OEO
Time
,15, -3.0) PKD(3,5,2,0.10%,3676.0,1.00%,F,F)
34:34
A
A
34:43
15 / [^ yy 35^08 35j21
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
3.7E5
.1.9E5
O.OEO
Time
,15, -3.0) PKD(3,5,2,0.10%,7780.0,1.00%,F,F)
35:20 r_4.3E7
35:08 A
/I I \
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
"
_2.2E7
O.OEO
Time
,15, -3.0) PKD(3,5,2,0.10%,6820.0,1.00%,F,F)
35:20 3.5E7
35:08 A
Al \
A
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
14-27 ™-W 34:S2 35:30 36:02 1^;?>1
34:24 34:36 34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12
11.8E7
O.OEO
Time
2.7E8
.1.3E8
O.OEO
Time
-------
File:A27SEP98M #1-197 Acq:28-SEP-1998 04:38:30 GC EI+ Voltage SIR Autospec-UltimaE
Sample#13 Text: 1113-9 xl/2 Exp:EXP M23 DBS OVATION
423.7767 S:13 F:4 BSUB (128 , 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 2340 . 0 , 1 . 00%, F, F)
1°°*, 37^31 r6.lE4
36:56
A
! 36:43 / \
36124 36.-36 36U'8' 'n\OQ
425.7737 S:13 F:4 BSUB (128, 15 , -3
100%,
36:56
^
36 24 36:36 36:48 37:00
435.8169 S:13 F:4 BSUB (128, 15, -3
100%
so:
36:24 36:36 36:48 37:00
437.8140 S-.13 F:4 BSUB ( 128 , 15 , -3
100%
so:
36 24 36:36 36:48 37:00
30.9728 S:13 F:4 SMO(1,3) PKD(3,
100*i 36:37 36:46
-.r
so:
36:24 36136 ' YeUV ' 'sVloV
A
37! 12 37! 24 '37:36' 37! 48
.0) PKD( 3, 5, 3, 0.10%, 1588. 0,1. 00%,
37:31
A
__^ J L, 37
37:12 37:24 37:36 37:48
0) PKD(3, 5, 3, 0.10%, 36432. 0,1. 00%
37:31
A
37:12 37:24 37:36 37:48
0) PKD(3, 5, 3, 0.10%, 40984. 0,1. 00%
37:31
A
37:12 37:24 37:36 37:48
3, 3, 100. 00%, 0.0,1. 00%, F,F)
37:15 37:31 37
37:12 37:24 37:36 37:48
L3.1E4
38:16 38:31 38^49 ^_ !
Vslo'o' '38 1 12' ' '38 124' ' VshV ' '38!4>81 ' '39 00 Time
F,F)
5.1E4
_2.6E4
:52 38:08 38:20 38:32 38:48
38:00 38:12 38:24 38:36 38:48 39 00 Time
,F,F)
1.8E7
L8.9E6
38:00 38:12 38:24 38:36 38:48 39 00 Time
,F,F)
1.7E7
_8.4E6
38:00 38:12 38:24 38:36 38:48 39:00 Time
:53 38:03 38:17 38:45 » n2 . OE8
\/ — ;
V
L1.0E8
" 0 . OEO
'38: do' '38! 12' ' '38! 24' ' YshV ' '38: 48' ' 's'gloO Time
en
-------
Fiie:A27SEP98M #1-276 Acq":
Sampletl3 Text: 1113-9 xl/2
457.7377 S:13 F:5 BSUB(128
1003
50_
0_
k
39:11 39:32
_^* — " — "^*N — •**• — "V*— -s*- — - — -*\^jr*/\f~r~S
39112 39124 39\36
459.7348 S:13 F:5 BSUB(128
100S
so:
-
0_
39:32
39112 39124 39:36
28-SEP-1998 04:38:30 GC EI+ Voltage SIR
Exp:EXP M23 DBS OVATION
,15, -3.0) PKD(3,5,3,0.10%,2260.0,1.00%,F
40:22
/I
39:53 40:05 jLV\ 40:40 40
C^—~-/\_^ s__* — — 'S-^>^__^V — •— •" — " — ^V — s^~y/s^\ /v -xsA-
39:48 40:66 461l2 46:24 40:36 40:48
,15, -3.0) PKD(3,5,3,0.10%,1004.0,1.00%,F
40:22
A
A
39:55 / V,
^^ -^-yv-p—^ j p/ x^o r— ^ f
39148 46166 4oli2 4ol24 4ol36 4ol48
Autospec-UltimaE
,F)
:54 41:07 41:22 41;H7 41:58
A~v -,( V /"^l'^-' /*~M*I f^*~~/*^~^t s^—s^ *'*. • ^^.-V A / ^-~, - , . »,, — / ,/\.-,,n,r> f ^.
4.1E4
L2.0E4
.
' n nwn
i i r T ( n r i j i i i i i | i i i 1-1 T i- 1 i i i 1 1 11' - • - — -
41:00 41:12 41:24 41:36 4ll48 42loO 42ll2 Time
,F)
40:59 41:46
/V-A^— ^^— ^_^-*,,-. t^—*.^^.^ A ^/~^/*~ S~J\ w'-^.lAA—
4.1E4
L2.0E4
n nwn
41:00 41:12 41:24 41:36 41:48 42:00 42ll2 Time
469.7780 S.-13 F:5 BSUB(128, 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 244 . 0, 1 . 00%, F, F)
lOOSj
so:
0'
39112 39124 39136
471.7750 S:13 F:5 BSUB(128
100*
so:
0"
39:12 39:24 39:36
454.9728 S:13 F:5 SMO(1,3)
1004 39:09 3
-------
File:A27SEP98M #1-528 Acq:28-SEP-1998 04:38:30 GC EI+ Voltage SIR Autospec-UltimaE
Sample#13 Text:1113-9 xl/2 Exp:EXP_M23_DB5_OVATION
303.9016 S:13 BSUB(128,15,-3 . 0) PKD(3,3,2,0.10%,2652.0,1.00%,F,F)
100%, 25:20
24:00 25:00 26:00 27iOO
305.8987 S:13 BSUB(128,15,-3 . 0) PKD(3,3,2,0.10%, 6468.0,1.00%,F,F)
100% 25:20
28:00
29:00
24:06
A
24:42 M 25:
A A JW
26:54
TS A 26:37 A
Yf\ /f\ AA / V\
27:57
27:20 A
A 27A39/\
28:32
A 28:49
J\ S^ ^
24:00 25:00 26:00 27:00
315.9419 S:13 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,7688.0,1.00%,F,F)
100%
50J
OJ
29:00
30:00
OEO
Time
5.2E5
_2.6E5
O.OEO
Time
2.0E7
L1.0E7
.O.OEO
24:00 25:00 26:00 27:00
317.9389 S:13 BSUB(128,15,-3.0) PKD(3,3,2,0.10%,5768.0,1.00%,F,F)
1004
24:00 25:00 26:00 27:00
75.8364 S:13 BSUB(128,15,-3.0) PKD(3,3,3,100.00%, 140.0,1.00%, F,F)
00%, _ _ „_ „„ 26:59
24:00 25:00 26:00
16.9824 S:13 SMO(1,3) PKD(3,3,3,100.00%,0.0,1.00%,F,F)
00%
27:00
28:00
L3.1E7
O.OEO
24:00
25
26:00
27:00
JV5
-------
File:A27SEP98M
Sample#13 Text:
339.8597 S:13 F
1008
50J
o:
30:44
30.:36 30i48
#1-237 Acq:28-SEP-1998 04:38:30 GC EI+ Voltage SIR Autospec-UltimaE
1113-9 xl/2
:2 BSUB(128
31:00 31:
Exp : EXP_M23_DB5_OVATIOM
15, -3.0) PKD (3, 3, 2, 0.10%, 1516. 0,1. 00%, F,F)
31:48
31-41/ \ 32:11 32:22 32:33 32.49
A / \ 31:56 A A32:29/\ X A
A7 V/\ J^V V VVA/V AA
1.2E6
L6.0E5
LO.OEO
12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
341.fl^fiR S:13 F:2 R.qrmn?.ft. 1S.-3.0) PKDf3 .3. 2. 0.10%. 4576.0. 1.00%. F.F)
1003
50J
o:
30:43
/\
sbSie solas'
351.9000 S:13 F
1001
50J
o:
30:36 30:48
353.8970 S.-13 F
100S
50J
o"
30:36 30:48
409.7974 S:13 F
100%
-
50j
•
o:
30:46
366.9792 S:13 F
31:48
A
iiiSod 31:
:2 BSUB(128,
31 S6d 31 1
:2 BSUB(128,
31:00 31:
:2 BSUB(128,
31:00 31:
:2 SMO(1,3)
100%3Q:38 30:55 31:06
50 j
o-
30:36 30148
i i -i 1 i i i i i 1
31:00 31:
Ti.Ai/l 32:10 32:22 32:33 -. ..
31 = 4:1/ \31:55 A A32:29A 32A49A
A/ \/\32:02 /\ ^A^ AA
8.0E5
_4.0E5
O.OEO
12 31S24 31 136 3il48 32\00 32\H 32124 32136 32148 33:00 33112 33124 33136 Time
15, -3.0) PKD (3, 3, 2, 0.10%, 232. 0,1. 00%, F,F)
32:22
M
/ V
4.9E7
_2.5E7
O.OEO
12 3ll24 31-136 3lS48 32S6d 32-112 32? 24 32136 32 -48 33l6d 33112 33-124 33:36 Time
15, -3.0) PKD(3,3,2,0.10%,2052.0,1.00%,F,F)
32:22
n
3.1E7
_1.5E7
O.OEO
12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36 Time
15, -3.0) PKD (3, 3, 3, 100. 00%, 540. 0,1. 00%, F,F)
32:13 9.6E4
^V 1 1 32-24
1 1 A
l?-nfi/ 32:21\ 32:37 33-01
31-28 J4. vo \AT~A7 1 A >» A
L4.8E4
_O.OEO
12 31:24 3ll36 31:48 32l6d 32ll2 32124 32.-36 32:48 33l6o 33.-12 33:24 23\3& Time
PKD (3, 3, 3, 100. 00%, 0.0,1. 00%, F,F)
31:2131:31 31:55 32:2132:30 32:4^^-^^ 33:1333:22 33:41 7. 9E7
.3.9E7
.O.OEO
12 31:24 31:36 31:48 32:00 32:12 32:24 32136 32:48 33:00 33:12 33:24 33136 Time
-------
File:A27SEP98M
Sample#13 Text:
373.8207 S:13 F
1003
50J
n-
34
33.J
y\J
— i — i — i — i i i i — i
33:48 34:
375.8178 S:13 F
1003
50 j
-
o:
34
#1-197 Acq:
1113-9 xl/2
:3 BSUB(128
r
\ M,u
00 ' 34 ! 12
:3 BSUB(128
i01
28-SEP-1998 04:39:
30 GC EI+ Voltage
SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
,15, -3.0) PKD(3,5,
34:38
/\/\4
r* I r j ' i i Pi — r—-f— i — r^n
34:24 34:36
,15, -3.0) PKD{3,5,
34:38
A
2,0.10%
42 34:5
34:48'
2,0.10%
,5576.0,1.
1 _35^00
-i r~l | > i — r
35:00
,4084.0,1.
00%,F,F)
1
:8
- o
'35!i2' ' Vs! 24 35^36 35148 3e!do 36:12
00%,F,F)
3 A5/ \ 34:12 ^ A*. AD 34:51 35:00
y V7
1 | 1 1 1 T 1 |
33:48 34:
383.8639 S:13 F
100%
50J
0"
— i — i — i — i — i — i — i — r
33:48 34:
385.8610 S:13 F
100%
so-;
0:
— i — i — i — i — i — i — i — r
33:48 34:
445.7555 S:13 F
100%
50 j
'
0 '
33:50
r | i T T- r-i r
33:48 34:
380.9760 S:13 F
100%33-48
50 j
o"
/-
i i i i i i i i
f3!SU8 34i
V^ _> — -s^, S*^
— r TI-I -^ v r "i i
00 34:12
:3 BSUB(128
^7" i "™'i r i " "i — r~r
00 34:12
:3 BSUB(128
00 34:12
:3 BSUB(128
34:04
r^j-'-y-spr'-^ , Y T't ^r
00 34:12
:3 SMO(1,3)
__24-dl7___
I T~~T 1 1 r"~l T
00 34:12
•^^T 'T^ T i~r~i — i~y-~i — r^
34:24 34:36
,15, -3.0) PKD(3,5,
3T
A
y v
34:24 34:36
,15, -3.0) PKD(3,5,
34:37
f\
j[
34:24 34:36
,15, -3.0) PKD(3,3,
34:36
i i
34:24 34:36
-.r ^^^
•^i — I — pr-r
34:48
2,0.10%
34:48
2,0.10%
n i i r
34:48
_ XN._
-i — rT1 | r i r-
35:00
,14284.0,1
35:00
,18944.0,1
35:00
l
16
'
• o
35. -12 35^24 3s!36 SsU's 36ldo 3e!l2
.00%,F,F)
1
Lg
:o
'35 1 12' ' '35 124 ' '35! 36 35! 48 '36-1 00 36:12'
.00%,F,F)
3
_1
0
3 5-1 12 35:24 35-! 36 3s!48 36loO 36-! 12
.6E6
.1E5
.OEO
Time
.2E6
.OE5
.OEO
Time
.9E7
.3E6
.OEO
Time
.6E7
.8E7
.OEO
Time
3, 100. 00%, 1500. 0,1. 00%, F,F)
4 :45
•v/\_A_
— l — I — | iT
34:48
35:01
A\
^J\J
35:00
5
35:13
_2
35:12 35:24 35:36 35:48 36:00 36:12
.3E4
. 6E4
r\r*r\
. OEO
Time
, 0.0,1. 00%, F,F)
34:52
i i 1 i i
34:48
35:00
35:30 36:02 36:21 2
Li
:o
i i 1 i i i > i 1 > i i i i 1 i i i i i 1 i i i > > i i i > i i i i i i i
35:12 35:24 35:36 35:48 36:00 36:12
.7E8
.3E8
.OEO
Time
to
-------
File:A27SEP98M
Sample#13
407.7818
100%
50 j
:
o:
36 1241
409.7788
100%
50 1
Q~
Text :
S:13
36!
S:13
F
36
F
#1-197 Acq:
1113-9 xl/2
:4 BSUB(128
36:43
A
/ 1 ^
) V >~
'36:48
:4 BSUB(128
28-SEP-1998 04:38:30 GC El* Voltage SIR Autospec-UltimaE
,15, -3.0)
55
\_ -fS~^
37 100
,15, -3.0)
Exp:EXP M23 DBS OVATION
PKD(3,5,3,0.10%,4880.0,1.00%,F,F)
37:53
5
L2
"o
37.' 12 37124 37136 31-^8 3sldo 38ll2 38124 38136 38148 39 00
PKD (3, 5, 3, 0.10%, 3420. 0,1. 00%, F,F)
36h43
36 124'
417.8253
100%
50 j
o:
36 24
419.8220
100%
50J
0'
— H — 1 — 1 T
36 24
479.7165
100%
50 j
:
0'
i i i
36:
S:13
36 1
S:13
'36 1
S:13
36
F
36
F
36
F
36:35
•^T 1 1 T
36 24
430.9728
100%
50 j
;
X
,\.^.\ '
•~^ — ~-
'36 1
S:13
36
Ve !
s^x- >
36
F
A 36/
36:48
:4 BSUB(128
36:43
A
y V
36:48
:4 BSUB(128
36:43
A
/ V
36:48
:4 BSUB{128
55
37:00
,15, -3.0)
37:00
,15, -3.0)
37:00
,15, -3.0)
37:53
5
_2
0
37:12 ' '37124 37.!36 37148 38.00 3sll2 3sl24 38136 SS.U's' '39 00
PKD(3,5,3,0.10%,6520.0,1.00%,F,F)
8
_4
0
37:12 37124 37136 37148 38:00 38.-12 38.-2'4 3sl36 38UV ' 39 00
PKD (3, 5, 3, 0.10%, 5804. 0,1. 00%, F,F)
1
_9
0
37112' '37! 24 37? 36 37l 48 38 loo 38ll2 38124 3sl36 SsU's 39: 00
PKD(3,3,3,100.00%,5908.0,1.00%,F,F)
37:27
A
/37:30
37:20/ \AA ^0 .A
. 3,6:4636:54 37^:07 J^J v \~~-^ ^7A^2 rv A 3811^ . ^° l\\% :46 ^
'36: 48
:4 SMO(1,3)
,-/• — ~ — ' -
37 100
PKD (3,3,
:37 36:46
—1 —
36
Ve Us "
'37lo'o'
_^^ — ^-. — ~^~* ^_* — ^^--x_x > — • -< — f^^~ *__^_/ v^y \^S^-^-^NXX/ " v— f \^-^ v ^— * \sv^~^_^j ^
_5
'-.2
0
37l 12 37124 37136 37148 3'sloO 3sll2 38124 38136 38148 39:00
3, 100. 00%, 0.0,1. 00%, F,F)
.9E5
.9E5
.OEO
Time
,4E5
.7E5
.OEO
Time
.4E6
.2E6
.OEO
Time
.9E7
.6E6
.OEO
Time
.5E4
8E4
OEO
Time
37:15 37:31 37:53 38:03 38:17 38:45 , __r2 • OE8
\/
.1.0E8
0.
37112' '37124 ' 3?l36 37148 SS^OO 38 ! 12 38:24 38:36 38:48 39:00
OEO
Time
-------
File
Samp
441.
1003
50_
o_
443.
1002
50J
o:
469.
100%
50 j
oj
471.
100%
50l
513.
100%
50J
o;
454.
100%
50J
o"
•:A27SEP98M #1-276 Acq: 28-SEP-1998 04:38:30 GC EI + Voltage SIR Autospec-UltimaE
>le#13 Text-.1113-9 xl/2 Exp:EXP M23 DBS OVATION
7427 S:13 F:5 BSUB(128, 15, -3 . 0) PKD(3 , 5 , 3 , 0 . 10%, 3412 . 0 , 1 . 00% , F, F)
40:31
^^3jh_14^_^^39:32 39:46 40:00 40 : 13^^. /LV,^^, i^° :49 41:1841:28 41:42 42:02
391121 ' 39124 ' 39136 ' 39148
7398 S-.13 F:5 BSUB(128, 15, -3
39:23 39:36 39:48
rVx-x/ — ^VxA-^Vv^Vv^W^^^^^-^^^VA-
39112 39124 39136' 39148
7780 S:13 F.-5 BSUB(128 , 15, -3
39:12 39:24 39:36 39:48
7750 S:13 F:5 BSUB(128, 15, -3
39112 39124' 39136 39148
6775 S:13 F:5 BSUB(128, 15, -3
39-06 11 39:41
I ji-2* 39i33 1 39:5
AT IV\A_A/ lAjWjvWy 1/AvJL
l i i i i i i i i i i i i i i i i i | i i i t i i i r i i i i i i i i i i i i i i i i i i i i i i i
40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:1
.0) PKD(3,5,3,0.10%,5912.0,1.00%,F,F)
40:31
A
40:0840:18 N \40:39 40:49 A 41:13 A4l-30 41:4141:51 42:06
4oS66 4o!i2' 46124 46136 40 1-48 41.-66 4ill2 4il24 4ll36 41148 42l6o 42ll
.0) PKD (3, 5, 3, 0.10%, 244. 0,1. 00%, F,F)
40:22
40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:1.
.0) PKD(3,5,3,0.10%,196.0,1.00%,F,F)
'K
46166 461l2 4ol24 4ol36 4Q]-&8 41:66 41:12 41:24 4il36 41148 42166 42li:
. 0) PKD(3,3,3,100.00%,212.0,1.00%,F,F)
40:19 i
0 lN°=26 41j05 41:17 ..„ .41:53
k" «i«». /wJL^^^5Lfra Kj#$fa^_ JU_ . n. "^
3.3E4
_1.7E4
O.OEO
2 Time
3.2E4
_1.6E4
_O.OEO
2 Time
1.3E7
L6.7E6
' O.OEO
2 Time
1 . 5E7
L7.4E6
' O.OEO
2 Time
r8.7E3
L4.3E3
- O.OEO
39112 39124 ' 39136 39:48 ' 40166 ' 461l2 ' 4C)l24 ' 4ol36 ' 46148 ' 41:66 ' 4ill2 ' 4ll24 ' 4ll36 ' ilUs ' 42166 ' 42! 12 Time
9728 S-.13 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
TQ-^q 39^20 _ 39:42 39:53 40:13 41:00 41-13 41:28 41:57 __2 . OE8
^'39:12 39:24 39:36 39:48
_1.0E8
O.OEO
40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
-------
OP0Squan 30-SEP-1998
Page 1
Page 13
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ
Unk
ES/RT
a29sep98n
13
30-SEP-98
30-SEP-98
1113-9
07feb-m23conf
m8290cf-092998n
01:43:55
08:57:42
Total
DPE
IMC
Name;
2,3,7,8-TCDF;
13C-2,3,7,8-TCDF;
Tetra Furans;
HxCDPE;
QC CHK ION (Tetra);
Resp;
3.86e+05;
7.24e+07;
9.11e+06;
lon 1;
,71e+05;
.18e+07;
,93e+05;
Ion 2;
2.15e+05;
4.06e+07;
3,72e+05;
RA;?;
0.79;y;
0.78;y;
0.79;y;
RT;
27:50;
27:48;
18:08;
Cone; DL;
0.560; 0.1217;
17.753;
13.229; 0.1217;
;NotFnd;
;NotFnd;
S/N1;?;
19,-y;
1244;y;
56,-y;
*;n
DivO;n
S/N2;?
15 ;y
1759 ;y
38, -y
mod?
yes
no
yes
no
no
—>
-;-; 27:50
27:50
yes
-------
OPUSquan 30-SEP-1998
Page 13
Filename
Sample
Acquired
Processed
Sample ID
Cal Table
Results Table
Comments
Typ
Unk
ES/RT
a29sep98n
13
30-SEP-98 01:43:
30-SEP-98 08:57:
1113-9
07feb-m23conf
m8290cf-092998n
55
42
Total
DPE
LMC
Name;
2,3,7,8-TCDF;
13C-2,3,7,8-TCDF;
Tetra Furans;
HxCDPE;
QC CHK ION (Tetra);
Resp;
1.60e+05;
7.24e+07;
8.986+06;
Ion 1;
. 06e+05;
.18e+07;
. 93e+05;
Ion 2;
5.44e+04;
4.06e+07;
3.72e+05;
RA;?;
1.94;n;
0.78;y;
0.79;y;
RT;
27:50;
27:48;
18:08;
Page 13
f\A^
J? IflA^.
Cone;/ DL;
0.1217;
17.753;
13.051; 0.1217;
;NotFnd;
;NotFnd;
S/N1;?;
18;y;
1244,-y;
56;y;
*;n
DivO;n
S/N2;?
14,-y
1759;y
38,-y
mod?
no
no
no
no
no
-;-; 27:50
ff>
W
-------
File:A29SEP98N f 1-2677"
Acq:30-SEP-1998 01:43:55 GC EI+ Voltage
Sample#13 Text .-1113-9
303.9016 S:13
100%,
•
50J
o:
16:00
305.8987 S.-13
100%
-
50^
-
o -
"— — r— r-^'r-n "T~
16:00
315.9419 S:13
100%,
50 j
o:
' 16 Sob '
317.9389 S:13
100%
50 1
Q-
-i - i | i i
16:00
375.8364 S:13
100%
50 j
\
0 "
15:56
' ieSob '
316.9824 S:13
100% 15:45
50 j
o--
^ir~*l-v-wt »M
V
-*-| 1 1 1
-^ 16:00
SMO (1,3)
18
:08
j
BSUB(128,15,
19:48
J20: 17
r i
-3.0)
22
11 11 3P :35 ~
II lUlU a,!;2?
- - -J - T-T1
i T T T
is!
SMO ( 1 ,
18
1 • • i
is!
SMO ( 1 ,
-i — i — i — p
18:
SMO ( 1 ,
'' is!
SMO ( 1 ,
18:
i
1 'is!
SMO ( 1 ,
17:32
-i i i r
is!
00
3)
:08
•i i
00
3)
00
3)
00
3)
02
A>—
00
3)
20:00
BSUB(128, 15,
19:47
I J
Llf ill
ill 1 A
L^>VLA JL I
2o!ob '
BSUB(128,15,
20:00
BSUB(128,15,
20:00
BSUB(128,15,
19:07 20:12
i 1 i r— ^| i IT
20:00
jl/B luft
22:
-3.0)
22
'.-09
A M
AA A
ilf \ sA
22:
-3.0)
'22!
-3.0)
'22!
-3.0)
22
—i i |
22!
SIR Autospec-UltimaE
Exp:M23_DB225
PKD(3
23
:05
1 A ^i
00
PKD(3
:05 23
2
2:30
A J
l n ^*-
00
PKD(3
00
PKD(3
00
PKD(3
:05
UvyUitv
00
PKD(3,3,3,100.00%,0.0,1
,3, 3, 0.10%, 1132.0
: 13
I 24:14
3:24 IJ24;54
IV |j\_ /IVJlx J
24:00 26-00
,3, 3, 0.10%, 1900 0
\ 24:14
li23 A C 5:24 26
l\ / 1 /l\ Jl?5 : 53;
\ ^^f ^-it ^1 X^y/l X A_ J-
' 24!ob 26!ob
,3, 3, 0.10%, 2776.0
' 24!ob ' ' ' 26:00
,3, 3, 0.10%, 2508.0
' 24 Sob ' ' 26 Sob
,3, 3, 100. 00%, 1612
24:23
^lj2^£^Mi
24 Sob ' 26 Sob
.00%,F,F)
19:07 21:15 22 : 30 23 : 35 liiii^-— 26L
00
I i I i | I I r
20:00
' ' r
22!
00
-I 1 ] i i I i I | r—
24:00 26:00
,1.00%,
.26 27
F,F)
^6
:50 29:32
^ „ A, AflR^ 3 •'•J'ft-
•
'
13
• o
28:00 30:00 32-00 34:00 36 00
. 9E4
. 5E4
.OEO
Time
,1.00%,F,F)
7.8E4
:29 27
=52 29:33
|28:27 A 31:45
i A /!?/rif *2 3^-?V^ 33:40
\fl f^NuL*/ MV ^'nij/ULr -u fci n "^ V HI_«J^UU^MJI rf* * * - rtnn
•
13.9E4
-
• o
28-00 30 00 32 Sob ' ' 34! 00 ' ' ' 36 00
OEO
Time
,1.00%,F,F)
27i
1
48
t
3.5E6
-1
7E6
O.OEO
28:00 30:00 32:00 34-.00 36-00
Time
,1.00%,F,F)
"i
/
28
49
t
4.
12.
"o.
:00^ ' 30 5 00 ' ' 32 Sob ' 34!ob' ' '36:00
4E6
2E6
OEO
Time
.0,1.00%,F,F)
35:32
35:05
2| 27:4528:52 30 : 24 31J28 _V. ..V. 33 =38 ^M
28
^^^A^^^^^^jji^m^ <•(.
_3.
_1.
0.
.00 30:00 32:00 34:00 ' 36:00
2427:3528:41 ii:l8__Jil56jJv^2^J4Jl2^^
~ i i t' i
28
~J i I i I I J I I I 1 I | I i I ( i 1 1 1 1 1 1
.6.
0.
:00 30:00 32:00 34:00 36:00
3E4
6E4
OEO
Time
3E7
5E6
OEO
Time
-------
'File:A29SEP98N #1-2677 Acq:30-SEP-1998 01:43:55 GC EI+ Voltage SIR Autospec-UltimaE
Sample#13 Text:1113-9 Exp:M23_DB225
303.9016 S:13 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1132.0,1.00%,F,F)
19f48
18:08
16:00 ' ' ' 18lob 20lOO 22 00 24100 26:00
305.8987 S:13 SMO(1,3) BSUB(128,15,-3.0) PKD(3,3,3,0.10%,1900.0,1.00%/B,F)
22:05 23:12
isoo
18:00
2o!ob '
22:00
24:00
26:00
28:00
30:00
32:00
34:00
36:00 Time
-------
Section 4
System Perfor<
Section 4-1
Mass Spectrometer Performance Check
Mass Resolution
Documentation for the Analysis
of
Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans
-------
Peak Locate Examination:27-SEP-1998:19:02 File:A27SEP98M
Experiment:EXP_M23_DB5_OVATION Function:! Reference:PFK317
PPM
200
Volts
2.7387
292.95315 292.98245 293.01175
Volts
0.9883
304.95195 304.98245 305.01295
PPM
200
Volts
0.5241
316.95075 316.98245 317.01415
Volts
2.8104
330.94615 330.97925 331.01235
Volts
2.2295
342.94495 342.97925 343.01355
Volts
1.0900
354.94375 354.97925 355.01475
Volts
0.6348
36-6,; 94255 366.97925 367.01595
PPM
Volts
1.8554
380.93795 380.97604 381.01414
-------
Peak Locate Examination:28-SEP-1998:07:41 File:A27SEP98M
Experiment:EXP_M23_DB5_OVATION Function:! Reference:PFK317
292.95315 292.98245 293.01175
Volts
1.1815
304.95195 304.98245 305.01295
Volts
0.6141
316.95075 316.98245 317.01415
PPM
200
Volts
3.6034
330.94615 330.97925 331.01235
Volts
2.9184
342.94495 342.97925 343.01355
Volts
1.3163
354.94375 354.97925 355.01475
Volts
0.7864
3'63l94255 366.97925 367.01595
Volts
2.3855
380.93795 380.97604 381.01414
-------
Peak Locate Examination:29-SEP-1998:16:13 File:A29SEP98M
Experiment:M23_DB225 Function:! Reference:PFK317
PPM
200
Volts
4.3756
292.95315 292.98245 293.01175
Volts
1.5745
304.95195 304.98245 305.01295
Volts
0.7865
316.95075 316.98245 317.01415
Volts
5.2705
330.94615 330.97925 331.01235
Volts
4.1962
342.94495 342.97925 343.01355
PPM
200
Volts
1.9377
354.94375 354.97925 355.01475
Volts
1.0846
366.94255 366.97925 367.01595
PPM
200
Volts
3.7785
380.93795 380.97604 381.01414
-------
Peak Locate Examination:30-SEP-1998:03:46 File:A29SEP98N
Experiment:M23_DB225 Function:1 Reference:PFK317
Volts
0.5715
292.95315 292.98245 293.01175
Volts
0.1900
304.95195 304.98245 305.01295
Volts
0.0968
316.95075 316.98245 317.01415
Volts
0.7414
330.94615 330.97925 331.01235
Volts
0.6406
Volts
0.2803
342.94495 342.97925 343.01355
354.94375 354.97925 355.01475
Volts
0.1667
Volts
0.6131
366.97925 367.01595
380.93795 380.97604 381.01414
-------
Section 4
System PerfoKHianc
Section 4-2
Gas Chromatography Performance Check
Isomer Specificity & Retention Time Windows
Documentation for the Analysis
of
Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans
-------
File:A27SEP98M #1-529 Acq:27-SEP-1998 19:06:26 GC EI+ Voltage SIR Autospec-UltimaE
Sample#l Text:DB-5 Retchk Exp:EXP_M23_DB5_OVATION
303.9016,319.8965
100% 25^43 ^ 27,55
80J S ^
24:06 {-"
60
40J
20J
Oj
29:09
28:4
i.
30:
—I i 1 r-
24iOO
F:2 339.8597,355.8546
100%
80 j
60J 30:43
40J
20J
25:00
0.
-i—'< *i i i
26:00
31:
27:00
28:00
29:00
Time
llllll111 I*T*I i i i i"i i i i i i i i i i i i i i i i i i i i i 'i
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
Time
F:3 373.8207,389.8156
100* 33,-55 ^ 34; 16
80J
60J
40 j
20 j
0.
35:20
35:34
i—i—i \T i—i—r**T~*r i i i—i i 'i—i i1! i i i—i i i"T* i T i r^r i—i—i i i i i—i—i—r-
33:48 34:00 34:12 34:24 34136 34:48 35:00 35il2 35i24
F:4 407.7818,423.7767
100% 36;43^ 36; 56.
35:36' ' VsU
Time
80J
60J
40J
20J
37:31
37:53
36124' ' '36\36 ' Ye^V '37!o^0 ' '37:12' ' '3? 124 '37:36 ' '37:4I8' ' '38: do' ' '38:12' ' '38124 38:36 38:48 39:00 Time
319.8965,331.9368
lOOi
80J
60J
40J
20 j
25:43
30:00
i i i i i
24:00
i i i i i *i 'i | i
25:00 26:00
27:00
28:00
29:00
Time
-------
J
File:A27SEP98M #1-529 Acq:27-SEP-1998 19:06:26 GC EI+ Voltage SIR Autospec-UltimaE
Sample#l Text:DB-5 Retchk Exp:EXP_M23_DB5_OVATION
319.8965
100% 29;09
95j
90j
85:
80J
75J
70J
65J
60 j
55J
50 j
45 j
40j
35J
30l
25J
20J
15J
10 j
5
28:56
28:46
_1.3E7
1.3E7
L1.2E7
11.1E7
Ll.lE7
L1.0E7
9.4E6
18.7E6
L8.0E6
L7.4E6
_6.7E6
_6.0E6
..5.4E6
_4.7E6
_4.0E6
L3.3E6
-2.1E6
_2.0E6
_1.3E6
_6.7E5
.O.OEO
Time
28112 28:18 28:24 28:30 28J36 28:42 28:48 28:54 29:00 29:06 29:12 29:18 29:24 29:30 29:36
-------
Pile:A29SEP98M #1-2677 Acq:29-SEP-1998 16:13:59 GC El* Voltage SIR Autospec-UltimaE
Sample#l Text:DB-225 Retchk Exp:M23_DB225
303.9016,315.9419
100* 2.7; 53
27:30
95:
90:
80:
75:
70:
65:
60:
55:
50:
45:
40:
35:
30:
25:
20:
15:
10:
5:
28:09
i rr f i r i int i tni iirinriirrni i O rriirY"fry-if'T''i i'i f \ i i i i i i i i i i i i i i i i i i i• >• i i i i i i i • i • ' ' ' ' i | ' ' •* ' *i "^ irrrr^pr r
26:24 26:36 26:48 27^00 27J12 27:24 27:36 27:48 28:00 28:12 28:24 28:36 28:48 29:00 29:12
Time
-------
Section 4
System Perfonmanc
Section 4-3
Initial Calibrations
(HP-5MS & DB-225 Columns)
Documentation for the Analysis
of
Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans
JO
-------
OPUSquan 16-SEP-1998
Page 1
Run: 14sep-crv Analyte: m8290
Name Mean RRF
2,3,7,8-TCDD
1.2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8.9-HxCDD
1,2,3,4.6.7,8-HpCDD
OCDD
2.3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7.8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8.9-HpCDF
OCDF
13C-2,3,7.8-TCDD
13C-l,2,3,7,8-PeCDD
13C-l,2,3,6,7,8-HxCDD
13C-l,2,3.4,6,7,8-HpCDD
13C-OCDD
13C-2,3,7,8-TCDF
13C-1.2,3,7,8-PeCDF
13C-l,2.3,6,7,8-HxCDF
13C-1.2,3.4,6,7,8-HpCDF
13C-1,2,3,4-TCDD
13C-1,2,3.7,8,9-HxCDD
Cal:
Results:
Page 1 of 1
Version: V3.5 17-APR-1997 11:14:34
S. D.
%RSD
14sep98m S3 14sep98m S4 14sep98m S5 14sep98m S6 14sep98m S7
RRFtl SD RRF*2 SD RRF*3 SD RRF*4 SD RRF*5 SD
1.0257
1.1457
0.8199
0.9128
0.8982
0.9131
1.0044
0.9992
0.8955
0.9204
0.9410
1.1148
1.0006
0.8709
1.3737
1.1710
1.0873
1.0598
0.6999
1.0514
0.8753
0.7701
1.3145
1.1002
1.2071
0.7878
0.030
0.026
0.038
0.059
0.042
0.008
0.015
0.013
0.013
0.029
0.022
0.042
0.043
0.026
0.012
0.013
0.020 i
0.030
0.054
0.030
0.017
0.038
0.018
0.062
0.034
0.017
2.96 %
2.26 %
4.66 %
6.50 %
4.65 %
0.87 %
1.53 %
1.33 %
1.43 %
3.13 %
2.37 %
3.72 %
4.34 %
3.03 %
0.86 %
1.15 %
1.85 %
2.86 %
7.67 %
2.83 %
1.98 %
4.93 %
1.40 %
5.65 %
2.84 %
2.21 %
1.08
1.15
0.81
0.87
0.85
0.91
1.02
1.01
0.87
0.93
0.95
1.14
1.06
0.87
1.37
1.16
1.06
1.04
0.66
1.04
0.87
0.74
1.31
1.06
1.17
0.77
1.7
0.3
-0.2
-0.7
-1.1
-0.5
1.1
1.1
-1.6
0.4
0.4
0.7
1.4
0.1
-0.2
-0.8
-1.5
-0.6
-0.7
-0.2
-0.5
-0.9
-0.1
-0.7
-1.0
-0.9
1.02
1.16
0.80
1.02
0.96
0.91
1.01
0.98
0.89
0.93
0.91
1.12
0.98
0.83
1.37
1.16
1.08
1.04
0.65
1.00
0.87
0.76
1.30
1.06
1.26
0.79
-0
0
-0
1
1
-0
0
-1
0
0
-1
0
-0
-1
-0
-0
-0
-0
-0
-1
-0
-0
-1
-0
1
0
.3
.7
.6
.7
.5
.9
.3
.1
.0
.2
.3
.2
.5
.5
.5
.8
.5
.8
.8
.6
.3
.4
.0
.7
.4
.0
1
1
0
0
0
0
1
1
0
0
0
1
1
0
1
1
1
1
0
1
0
0
1
1
1
0
.01
.16
.84
.88
.91
.91
.01
.00
.90
.93
.97
.16
.02
.89
.39
.19
.09
.05
.68
.06
.87
.75
.30
.08
.18
.77
-0.6
0.5
0.4
-0.6
0.2
-0.8
0.6
-0.3
0.4
0.4
1.1
1.0
0.5
0.7
1.7
1.4
0.3
-0.4
-0.4
0.2
-0.1
-0.5
-0.7
-0.4
-0.9
-1.0
1.00
1.15
0.78
0.91
0.87
0.92
0.99
0.99
0.91
0.94
0.95
1.10
0.98
0.86
1.36
1.16
1.11
1.06
0.71
1.08
0.86
0.77
1.32
1.10
1.22
0.80
-0.8
0.3
-1.1
-0.1
-0.6
1.3
-0.6
-0.7
1.1
0.7
0.6
-0.4
-0.4
-0.4
-1.0
-0.6
1.0
0.0
0.2
0.9
-0.8
0.0
0.3
0.0
0.3
0.5
1.02
1.10
0.88
0.89
0.90
0.92
0.98
1.01
0.9C
0.87
0.92
1.05
0.95
0.90
1.37
1.18
1.10
1.11
0.79
1.07
0.91
0.83
1.34
1.21
1.21
0.81
-0.1
-1.8
1.5
-0.4
0.0
0.8
-1.4
1.0
0.2
-1.8
-0.7
-1.5
-1.1
1.0
0.0
0.8
0.7
1.7
1.6
0.8
1.7
1.7
1.6
1.7
0.1
1.4
,,--•,/ 37Cl-2,3,7,8-TCDD
£V/ 13C-2,3,4,7,8-PeCDF
_/ / 13C-l,2,3,4,7,8-HxCDD
/ 13C-l,2,3,4,7,8-HxCDF
(_ 13C-l,2,3,4,7,8,9-HpCDF
37Cl-2,3,7,8-TCDD
/ 13C-2,3,4.7,8-PeCDF
/ 13C-l,2,3,4,7,8-HxCDD
/ 13C-l,2,3,4,7,8-HxCDF
j_ 13C-l,2,3,4,7.8,9-HpCDF
Total Tetra-Furans
Total Tetra-Dioxins
Total Penta-Furans
1.0350
1.0782
0.7931
0.9989
0.6859
0.9764
0.9797
0.7552
0.8281
0.8707
0.9992
1.0257
0.9080
0.042
0.068
0.042
0.035
0.015
0.015
0.009
0.054
0.038
0.010
0.013
0.030
0.016
4.05 %
6.30 %
5.29 %
3.50 %
2.21 %
1.54 %
0.90 %
7.15 %
4.53 %
1.12 %
1.33 %
2.96 %
1.72 %
1.01 -0.6
1.03 -0.8
0.75 -0.9
0.98 -0.7
0.66 -1.4
0.97 -0.5
0.97 -1.3
0.72 -0.6
0.83 0.1
0.86 -1.1
1.01 1.1
1.08 1.7
0.90 -0.3
0.99 -1.1
1.03 -0.7
0.84 1.2
0.98 -0.6
0.69 0.1
0.95 -1.5
0.98 -0.4
0.84 1.5
0.78 -1.4
0.87 0.1
0.98 -1.1
1.02 -0.3
0.91 0.2
1
1
0
1
0
0
0
0
0
0
1
1
0
.03
.05
.78
.00
.68
.99
.98
.74
.85
.89
.00
.01
.92
-0.1
-0.4
-0.3
0.1
-0.2
0.6
-0.3
-0.3
0.6
1.6
-0.3
-0.6
0.5
1.04 0.2
1.09 0.2
0.76 -0.9
0.98 -0.5
0.69 0.2
0.98 0.5
0.99 1.2
0.70 -1.0
0.81 -0.6
0.86 -0.6
0.99 -0.7
1.00 -0.8
0.93 1.1
1.10 1
1.19 1
0.83 1
1.06 1
0.71 1
0.99 0
0.99 0
0.78 0
0.87 1
0.87 -0
1.01 1
1.02 -0
0.88 -1
.5
.6
.0
.7
.4
.8
.8
.4
.2
.1
.0
.1
.5
-------
OPUSquan ll-FBB-1998 Page 1
Page 1 of 1
Run: 07FEB98 Analyte: M23_CONF Cal: 225-07feb Results: Version: V3.5 17-APR-1997 11:14:34
07feb98d S4 07feb98d S5 07feb98d S6 07feb98d S7 07feb98d S8
Name Mean RRF S. D. %RSD RRF#1 SD RRF#2 SD RRF#3 SD RRF#4 SD RRF#5 SD
2,3,7,8-TCDF 0.9472 "" 0.033 3.49% 1.00 1.5 0.91 -1.3 0.94 -0.4 0.95 0.0 0.95 0.1
130-2,3,7,8-TCDF - - - % -- -- -- -- --
HxCDPE - - -% -- - - -- - - --
QC CHK ION (Tetra) - - -% - - -- -- -- --
to
-------
Section 4
Sstem PerfoK
Section 4-4
Documentation for the Analysis
of
Polychlorinated Dibenzo-p-Dioxins & Dibenzofurans
-------
OPUSquan 28-SEP-1998
Page 1
Page 2 of 2
Run #7 Filename a27sep98m
Run: 14sep-crv Analyte:
Sample text: FE CS3
Typ
S: 2 I: 1 Acquired: 27-SEP-98 19:53:39 Processed: 28-SEP-98 09:18:44
Cal: m8290-091» Results: Quan : V3.5 17-APR-1997 11:14:34
Comments: OPUS : A3.6/8X 18-MAR-1998 16:12:42
Name
Resp
RA
RT
Cone
Dev'n
Mod?
/•""s
to
00
LA
p*
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
SS
OPE
DPE
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
13C-2,3,7,8-TCDD
13C-l,2,3,7,8-PeCDD
13C-l,2,3,6,7,8-HxCDD
13C-l,2,3,4,6,7,8-HpCDD
13C-OCDD
13C-2,3,7,8-TCDF
13C-l,2,3,7,8-PeCDF
13C-l,2,3,6,7,8-HxCDF
13C-l,2,3,4,6,7,8-HpCDF
13C-1,2,3,4-TCDD
13C-1 ,2,3,7,8, 9-HxCDD
37Cl-2,3,7,8-TCDD
13C-2,3,4,7,8-PeCDF
13C-l,2,3,4,7,8-HxCDD
13C-l,2,3,4,7,8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
3701-2,3, 7, 8-TCDD
13C-2,3,4,7,8-PeCDF
13C-l,2,3,4,7,8-HxCDD
13C-l,2,3,4,7,8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
HxCDPE
HpCDPE
2
9
7
8
8
5
6
3
1
1
1
1
1
9
8
7
7
2
1
1
1
1
3
2
2
1
2
1
2
2
1
1
9
2
2
1
1
9
.7e+07
.9e+07
.8e+07
.Oe+07
.le+07
.7e+07
.6e+07
.5e+07
.3e+08
.4e+08
.le+08
.3e+08
.le+08
.7e+07
.8e+07
.Oe+07
.6e+07
.5e+08
.6e+08
.7e+08
.2e+08
.3e+08
.3e+08
.7e+08
.2e+08
.3e+08
.5e+08
.7e+08
.5e+07
.7e+08
.4e+08
. 8e+08
.9e+07
.5e+07
.7e+08
.4e+08
.8e+08
.96+07
*
*
0
1
1
1
1
1
0
0
1
1
1
1
1
1
1
0
0
0
1
1
1
0
0
1
0
0
0
1
1
1
0
0
1
1
0
0
.79
.59
.25
.28
.25
.02
.88
.78
.56
.54
.24
.26
.28
.24
.03
.99
.92
.78
.58
.27
.05
.91
.79
.59
.53
.45
.78
.28
.59
.26
.53
.44
.59
.26
.53
.44
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
28:57
33:02
35:06
35:09
35:22
37:31
40:22
27:56
32:23
32:49
34:35
34:39
35:01
35:32
36:43
37:53
40:31
28:55
33:01
35:08
37:31
40:21
27:54
32:22
34:38
36:43
28:39
35:21
28:57
32:48
35:05
34:34
37:52
28:57
32:48
35:05
34:34
37:52
NotFnd
NotFnd
10.3
53.3
54.8
50.5
52.4
52.5
104
10.6
53.3
54.2
53.1
53.5
50.9
49.4
51.3
47.0
112
96.9
93.8
99.5
81.2
97.5
102
102
112
95.6
55.0
46.6
9.60
102
104
110
85.9
9.91
100
104
98.7
89.9
*
3.
6.
9.
0.
4.
5.
3.
6.
6.
8.
6.
7.
1.
-1.
2.
-6.
12.
-3.
-6.
-0.
-18.
-51.
2.
1.
11.
-4.
-4.
1.
3.
10.
-14.
-0.
0.
4.
-1.
-10.
2
6
7
9
8
1
7
1
5
4
1
0
8
2
5
1
2
1
2
5
8
2 X (j)
4
5
6
4
-
—
0
8
8
3
1
9
4
1
3
1
-
"
n
n
n /4
n /^jj^^~)
n ^~tf /
n f '/
11 /
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
-------
OPUSquan 28-SEP-1998
Page 2
DPE
DPE
DPE
LMC
LMC
LMC
LMC
LMC
OCDPE
NCDPE
DCDPE
QC CHK ION (Tetra)
QC CHK ION (Penta)
QC CHK ION (Hexa)
QC CHK ION (Hepta)
QC CHK ION (Octa)
NotFnd
NotFnd
NotFnd
NotFnd
NotFnd
NotFnd
NotFnd
NotFnd
n
n
n
n
n
n
n
n
fcv
09
-------
File:A27SEP9aM #1-528 Acq:2
Sample#2 Text:FE CS3
319.8965 S:2 BSUB(128, 15, -3
100%
50J
o-
"-' i — i i 1 i ii i ' i •
24:00
321.8936 S:2 BSUB{128, 15, -3
100%
50J
o-
24:00
331.9368 S:2 BSUB(128, 15, -3
100%
50 J
o-
24:00
333.9339 S:2 BSUB(128, 15, -3
100%
50J
o-
24:00
327.8847 S:2 BSUB (128, 15 , -3
100%
50J
n-
" * i i i i i i i i i
24:00
316.9824 S:2 SMO(1,3) PKD(3
100%23-|2 21:53 24:22
50J
0 r«-v
«,.ir-^r T , , r . 1 , ,
24:00
7-SEP-1998 19
.0) PKD(3,3,2
-i 1 1 1 1 r
25:00
.0) PKD(3,3,2
T -I -| • 1 1 !
25:00
.0) PKD(3,3,2
1 1 1 ••' ' '
25:00
.0) PKD(3,3,2
i — i — T ""' " ' '
25:00
.0) PKD(3,3,2
i i i i i i
25:00
,3,3,100.00%,
25:15
-1 T~ ]•- 1 1 1
25:00
:53:39 GC El-t- Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
, 0.10%, 5944. 0,1. 00%, F,F)
26:00 27:00 28:00
,0.10%,2184.0,1.00%,F,F)
26:00 27:00 28:00
, 0.10%, 25484. 0,1. 00%, F,F)
i i i i i i . i i i i i i i i iii
26:00 27:00 28:00
, 0.10%, 12300. 0,1. 00%, F,F)
26:00 27:00 28:00
, 0.10%, 27716. 0,1. 00%, F,F)
26:00 27:00 28:00
0.0,1.00%,F,F)
3S-44 26:19 26:4£J>7:11 27:35 28^25
26:00' 27:00 28:00
28:57 _2.6E6
A
ll L1.3E6
/ V :O.OF.O
29:00 ' 30 !00 Time
28:57 3.2E6
A F
1 1 Ll.6E6
/ V : O.OEO
29:00 30:00 Time
28:55 _2.5E7
A A F
II A L1.2E7
V / V , ,: O.OEO
29:00 30:00 Time
28,55 3.1«
I
V / V. " O.OEO
29:00 30:00 Time
28:57 ..5.3E6
A
M _2.7E6
/ V n.OEO
29:00 30:00 Time
2ft:49 29:13 29:42 30:0_? 1.3E8
L6.6E7
O.OEO
29:00 30 !00 Time
00
-------
•-ile
Samp
355.
100*
50^
0"
357.
lOOi
so:
0
•
: A2 7 gfePSFM #1-237 Acq:
le#2 Text:FE CS3
8546 S:2 F:2 BSUB{128,
!0:36 30:48 31:00 31
8517 S:2 F:2 BSUB(128,
10:36 30:48 31:00 31
367.8949 S:2 F:2 BSUB{128,
100%
so:
0"
•
0:36 3bl48 31:66 31
369.8919 S:2 F:2 BSUB(128,
1008
50J
0'
3
366.
100%
50J
f^
—3
else bbUs 3il66 31
9792 5:2 F:2 SMO(1,3)
30:40 30:55 31
0:36 30:48 31:00 31
27-SEP-1998 19:53:39 GC EI+ Voltage SIR Autospec-UltimaE
Exp : EXP_M23_DB5_OVATION
15, -3.0) PKD(3,3,2,0.10%,5736.0,1.00%,F,F)
33.
|
1 i i i i i | i i i i i 1 i i i i i | i i i i i | i i i i i 1 i i i i i i i i i i i | i i i i i i i t i ' i i I c
:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:0
15, -3.0) PKD(3,3,2,0.10%,1764.0,1.00%,F,F)
T
02
v_
0 33:12 33:24 33:36
02
\
:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
15, -3.0) PKD(3,3,2,0.10%,16332.0,1.00%,F,F)
3.1E7
L1.5E7
'O.OEO
Time
1.8E7
_9.1E6
O.OEO
Time
33:01
II
I
l\
.
33:07
W/^
•12 31124 33.136 SlUs 32166 32li2 32I24 32136' 32I48 33166 33!i2 33:24 33136
15, -3.0) PKD(3,3,2,0.10%,6188.0,1.00%,F,F)
5.4E7
_2.7E7
O.OEO
Time
33:01
A
ft
l\
3:06
v^V
Hi 31124 31:36 31:48 32.!66 32112 32124' 32136 32148 33166 33:12 33124 33136
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
11 31:28 31:45 32:02 3^-lfi ^.^n 32:40 32:58
.13:13 33:34
:12 31:24 31:36 31:48 32100 32:12 32:24 32:36 32:48 33:00 33:12 33:24 33:36
..3.4E7
L1.7E7
" 0 . OEO
Time
1.6E8
.8.2E7
O.OEO
Time
-------
File
Samj
389
10 OS
50.
0.
391.
100S
so:
0"
401.
100%
50_
o:
403.
1004
50_
0"
380.
1004
so:
Q'
;:A^/SEP98M JU-197 Acq:27-SEP-1998 19:53:39 GC EH- Voltage SIR Autospec-UltimaE
)le#2 Text:FE CS3 Exp:EXP M23 DBS OVATION
8156 S:2 F:3 BSUB(128 , 15, -3 . 0) PKD(3 , 5, 2 , 0 . 10%, 3692 . 0, 1 . 00%, F, F)
35i09 35:22
IU
33 1 48 34 IOO 34 1 12 34124 34! 36 34 1 48 35loV ' YsSlV ' '3S\24 ' YsisV ' YsUs' ' YeSoV ' '36-12 ' '
8127 S:2 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 6248 . 0, 1 . 00%, F, F)
35:09 35:22
A A f\
M A
nv_ /L
33 1 48 34! 00 34 1 12 34 1 24 34! 36 34 1 48 35:00 35 1 12' '35124' ' YsSsV ' '35 1 48' ' 'seldo' ' '36 1 12
8559 S:2 F:3 BSUB(128, 15, -3 . 0) PKD(3 , 5 , 2 , 0 . 10%, 7944 . 0 , 1 . 00%, F, F)
35:08 35:21
M A
y 1 V^ j V_
33 148 34 I 00 34 1 12 3 4! 24 34 1 36 34 1 48 ' 35ldo' ' '35 1 12' ' '35: 24' '''35 1 36' ' '35 1 48' ' 's'eldo' ' 's'ell^'
8530 S:2 F:3 BSUB(128, 15, -3 . 0) PKD(3, 5, 2 , 0 . 10%, 5376 . 0 , 1 . 00% , F, F)
35:08 35:21
A A A
M. /I
33:48 34:00 34:12 34:24 34:36 34:48 35loO 3s!l2 35.;24 35I36 35148 36loO 36ll2
9760 S:2 F:3 SMO(1,3) PKD(3, 3, 3, 100 .00%, 0 . 0, 1 .00%,F, F)
33_L5S_34jJ)3 34_il4 34:28 34:59 Ifi.fld 3fi.13
3,3:48 34:00 34:12 34:24 34:36 34:48 35:00 35!l2 35?24 35I36 3sl48 36loO 36:12
2.0E7
.1.0E7
0 OEO
Time
1.6E7
_7.9E6
o OEO
Time
4 . OE7
_2.0E7
o OEO
Time
3.2E7
.1 . 6E7
O.OEO
Time
5.9E8
_2.9E8
O.OEO
Time
to
00
C/T
-------
File
Samp
423.
1003
50J
O"1
36
425.
100S
50J
0'
36
435.
100%
so:
0"
36
437.
100%
50J
o:
36
430.
100S
so:
0
:A27SEP98M #1-197 Acq:27-SEP-1998 19: S3: 39 GC EH- Voltage SIR Autospec-UltimaE
le#2 Text:FE CS3 Exp:EXP_M23_DB5_OVATION
7767 S:2 F:4 BSUB(128, 15, -3 . 0) PKD{3, 5, 3, 0 . 10%, 60484 .0, 1. 00%,F,F)
37:31
24'
7737
124
8169
124
8140
!2Y
9728
r
24
36:36 36:48 3?!oO 3?!l2 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39
S:2 F:4 BSUB(128, 15, -3 . 0) PKD(3 , 5, 3, 0 . 10%, 55872 . 0, 1 .00%,F,F)
37:31
j\
36!36 36U'8 37!do 37! 12 37 1 24 37-136 37U's 3s!oO 3s!l2 3s!24 38I36 38:48 39!
S:2 F:4 BSUB(128, 15 , -3 . 0) PKD(3 , 5 , 3 , 0 . 10%, 104040 . 0, 1 . 00%, F, F)
37:31
/v_
36!36 36?48 37!do 37 1 12 3 7 1 24 37 1 36 37:48 s'slflO 3-8 1 12 38 1 24 318: 36 SsU's 39:
S:2 F:4 BSUB{128, 15, -3 .0) PKD(3 , 5, 3 , 0.10%, 112308.0, 1 . 00%, F,F)
T
9.7E6
_4.9E6
O.OEO
00 Time
9.7E6
L4.8E6
' O.OEO
00 Time
2.0E7
L1.0E7
'O.OEO
00 Time
1.9E7
_9.6E6
O.OEO
T — i i i i — i i i — r— i — i — i i*T"*i i i i i i i — 1 i i — i — r- 1 — | — i n i — r- 1- r t -1'r'T"! • i11!" r 'T t i i i i i ' i i | i i i i i | i i i i i | i i r i i1 | i i "r 'i i1
36!36 36:48 37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
S:2 F:4 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0 , 1 . 00%, F, F)
L2.0E8
_O.OEO
36:36 36!48 37:00 37-.12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39:00 Time
-------
File
Samf
457.
1003
50.
0
459.
100§
so:
0"
469.
100S
so:
0"
471.
100%
50_
n~
454.
100%
so:
'IT
"->l
::A27SEP98M ffl-276 Acq: 27-SEP-1998 19:53:39 GC EI+ Voltage SIR Autospec-UltimaE
>le#2 Text:FE CS3 Exp:EXP M23 DBS OVATION
7377 S:2 F:5 BSUB (128, 15, -3 . 0) PKD(3 , 5 , 3 , 0 . 10%, 16372 . 0, 1 . 00%, F, F)
40:22
A
39112 39124 39136 39148 4o!66 4o!i2 4C)!24 ibUe 4o!48 4l!66 4i!i2 41 !24 ' 41 136 ' 41 Us ' 42 ! 66 ' 42 !l
7348 S:2 F:5 BSUB(128, 15, -3 .0) PKD(3, 5, 3 , 0 . 10%, 3352 . 0, 1 . OC°d,F, F)
40:22
A
/I
1 ' ' ' T ' ' ' ' ' 1 ' ' ' ' ' 1 ' ' ' ' ' 1 ' ' ' ' ' I ' ' ' ' ' 1 ' ' ' 1 ' 1 1 ' ' ' ' 1 1 1 1 1 1 I 1 1 1 1 1 I 1 1 1 1 1 1 1 1 T-T-l— T~T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:1
7780 S:2 F:5 BSUB (128, 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 4564 . 0, 1 . 00%, F, F)
T
1 ' ' > | 1 ' ' ' 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 I T 1 1 1 1 1 1 I T'T-TT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 I | 1 I 1
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:1
7750 S:2 F:5 BSUB(128, 15, -3 . 0) PKD(3 , 5, 3 , 0 . 10%, 2520 . 0 , 1 . 00%, F, F)
T
39:12 39:24 39:36 39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:i:
9728 S:2 F:5 SMO(1,3) PKD(3 , 3 , 3 , 100 . 00%, 0 . 0, 1 . 00%, F, F)
39-13 39:28 39:44 40;05 40:19 40:32 40-47 40:58 41r10 41-21 41:40 41:^742-07
•
r r -i— i I r-i"-i"T"i' i T i i i i 1 i i i i'i'i-r r1 1 i i i i < i n1 | i i 'i'T i 'fiii I'l i i"i-T-r-f-T-T-i"-r-r~r-rl~'' '' ' ' 1 ' I ~n— r-r-r -r i i i i i i i i i i i i i i i T i i i i i i i '
39:12 39:24 39:36 39:48 40iOO 40:12 40-24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42100 42:li
7.8E6
_3.9E6
0 OEO
2 Time
9.0E6
_4.5E6
o OEO
2 Time
1.5E7
_7.5E6
' 0 OEO
2 Time
1.7E7
_8.4E6
O.OEO
2 Time
4.2E8
_2.1E8
O.OEO
! Time
fO
GO
-------
File:A27SEP98M #1-528 Acq:27-SEP-1998 19:53:39 GC EH- Voltage SIR
Sample#2 Text:FE CS3 Exp:EXP_M23_DB5_OVATION
303.9016 S:2 BSUB{128, 15, -3 .0) PKD(3, 3, 2, 0 .10%, 5128.0, 1 .00%,F,F)
100%
50:
o:
305.
100%
50:
o-
315.
1003
50:
0:
317.
100%
50:
0:
24:00 25:00 26:00 27:00
8987 S:2 BSUB(128, 15, -3 .0) PKD(3 , 3 , 2, 0 . 10%, 14080.0, 1 .00%,F,F)
24:00 25:00 26:00 27:00
9419 S:2 BSUB(128, 15, -3 .0) PKD(3 , 3 ,2 , 0 . 10%, 11036. 0 , 1 . 00%,F,F)
1— l ii i i ) 1 1 l l l r— l - • i - l l 1 ' l l l l 1 | i
24:00 25:00 26:00 27:00
9389 S:2 BSUB(128, 15, -3 . 0) PKD(3 , 3 , 2, 0 . 10%, 11712 . 0, 1 . 00%, F, F)
* l l l 1 i i i l r— i 1 i T'- i •' r l i 1 r i l i i i i
24:00 25:00 26:00 27:00
375.8364 S:2 BSUB(128, 15, -3 .0) PKD(3,3, 3, 100 .00%, 208.0, 1.00%,F,F)
100%, 25 18
50:
0:
316.
100%
50:
1*5
1 /in 26:18 1
I 23|35 24:10 it 25.-OJ 25:34 26:00|l 2f|j45 \212-
24:00 25:00 26:00 27:00
9824 S:2 SMO(1,3) PKD(3, 3 , 3 , 100 .00%, 0.0, 1 . 00%,F,F)
-IT-IO ?V53 ?>!•?? P^-IS 25-44 26;J9 26:4827:1
*f • r • i 1 r— — i r 1 1 1 1 T ' —\ "~ ~\ r T 1 " i i i ' ' ' • | '
24:00 25:00 26:00 27:00
Autospec-UltimaE
27:56
f[
28 !00 29:00 ' ' 3o!oO
27ii56
11
28!00 29 Io6 30 lod
27:54
A
l\
28:00 29:00 30:00
27:54
A
A
28. -00 29:00 30:00
3.4E6
:1.7E6
O.OEO
Time
4.3E6
_2.2E6
O.OEO
Time
3.3E7
.1.6E7
O.OEO
Time
4 . 1E7
L2.0E7
: O.OEO
Time
1.4E4
28:39
28100 29100 30:00
1 7.7-.1S 2R:25 28:49 29:13 29:42 30:09
28:00 29:00 30:00
il . 1E3
- 0 . OEO
Time
_1.3E8
_6 . 6E7
O.OEO
Time
-------
File;A27SEP98M 01-237 Acq:
Sample#2
339.8597
100%
50J
0'
' i ' '
30:36
341.8568
100%
50J
o:
36136
351.9000
100S
50,
o"
36136
353.8970
100%
50 j
o:
36136
409.7974
Text:FE
S:2 F:2
30:48
S:2 F:2
'ill111
30:48
S:2 F:2
30:48
S:2 F:2
30:48
S:2 F:2
CS3
BSUBU28,
31:00 31
BSUB{128,
31:00 31
BSUB(128,
31:00 31
BSUB(128,
31:00 31
BSUB(128,
2V-SEP-1998 19:53:
Exp:
15, -3.0) PKD(3,3,2
:12 31:24 31:36
15, -3.0) PKD(3,3,2
:12 31:24 31:36
15, -3.0) PKD(3,3,2
:12 31:24 31:36
15, -3.0) PKD(3,3,2
Il2 31:24 31:36
15, -3.0) PKD(3,3,3
39 GC EI+ Voltage SIR Autospec-UltimaE
EXP M23 DBS OVATION
,0.10%, 2056. 0,1. 00%,
31:48 32:00 32:12
,0.10%, 6268. 0,1. 00%,
31:48 32:00 32:12
,0.10%, 1908. 0,1. 00%,
31:48 32:00 32:12
,0.10%, 3064. 0,1. 00%,
31:48 32:00 32:12
F,F)
32:23
, ,,,
32:24
F,F)
32:23
32:24
F,F)
32:22
A
j \_
32:24
F,F)
32:22
A
A
/i
32! 24
32:49
A
/ ^
4.5E7
_2.2E7
O.OEO
32:36 32:48 33:00 33:12 33:24 33:36 Time
32:49
l\
1 \^
^3.0E7
_1.5E7
O.OEO
32:36 32148 33100 33:12 33:24 33:36 Time
32:48
1
1 V_
_8.3E7
L4.2E7
: O.OEO
32136 32148 33166 33112 33124 33136 Time
32:48
f\
^
5.4E7
L2.7E7
1 O.OEO
32:36' 32 Us 33166 33ll2 33:24 33 lie Time
,100. 00%, 4516. 0,1. 00%, F,F)
100% 30:43
50 j
0"
A o n c*7 A
11 30 : 57 ||
AA A vv . A JLA
/v V
~* i 1 ' '
30136
366.9792
100% 30:
50 j
o:
v v'W;
' 30 Us '
S:2 F:2
40 3_0
i ' ' 1 ' ' '
30:48
ri \j\ yvv
31 166 ' 31
SMO (1,3)
:55 31
31:66 ' 31
31:45
31:30
f\ « *i/\ f\ A .
\l V^A^Vv^ WA^A1
1 1 1 1 1 1 1 1 ' ' '
:12 31:24 31:36
PKD(3,3,3,100.00%,
11 31:28 3
|'"l -T 1 1 1 1 1 1 1 1 1 | ' ' '
Il2 31:24 31:36
tal-50 32
l\ n 32:02 A
wV w^vTV/^
3ll48 32:00 32:12
0.0,1.00%,F,F)
1./1R 32:02 32,:
31:48 32:00 32:12
A A i
u/l/V1
' 32124
Ifi 32-
32! 24
33:01 1.8E4
32:42 A 33|18
A * A (j 32:52 hj \ A A/\ /L A A/\A /1 1\A
WUUvvr\A'r ^ w » \X v \yvvvs/ u/v
_9.1E3
O.OEO
32136 32U8 33166 33ll2 33124 33136 Time
^n 35:40 32. SR 33:13 33:34 ..1.6E8
:8.2E7
O.OEO
32l36 32 Us 33166 33:12 33124 33:36 Time
00
-------
File:A27SEP98M *1"-197 Acq:27-SEP-1998 1T-5TT
Sample#2 Text:FE CS3 Exp:
373.8207 S:2
100%
_
bOj
o:
33:48
375.8178 S:2
100%
~
50J
OJ
33 1 48
383.8639 S:2
100%
'.
b(L
ol
33: 48
385.8610 S:2
100%
•
50J
Q!
33148
445.7555 S:2
100S
50 :
•
0.;
33:
A
s^X^TW >
33:48
380.9760 S:2
lOOi _ 33_L
sol
Qf
33:48
F:3 BSUB(128.15,-3.0)
34:00 34:12 34124
F:3 BSUB(128,15,-3.0)
34: 00 34:12 34124
F:3 BSUB(128,15,-3.0)
34 Ido' 34 .-12' '34124'
F-.3 BSUB(128,15,-3.0)
34 : 00 34 1 12 34 1 24
F:3 BSUB(128,15,-3.0)
5534/|l:08 A A34
^^\y wvj^\__/ i^\A__
34lo'o 34l 12 34:24
F:3 SMO(1,3) PKD(3,3,3
«^34-(13 34-14 34-
34:00 34:12 34i24
PKD (3,5,2
34:39
A n
A A
AA
l\\.
34:36
PKD (3,5,2
34:39
n A
A A
A
/y v
34l 36
PKD(3,5,2
34:38
A A
A A
AA
/ y v
34:36
PKD(3,5,2
34:38
A A
AA
IV \^
34l 36
PKD(3,3,3
34:33
39 GC EI+ Voltage SIR Autospec-UltimaE
EXP_M23 DBS OVATION
,0.10%, 48516. 0,1. 00%,
J5 : 01
.
34l 48 35lo'o 35:
,0.10%, 43520. 0,1. 00%,
35:00
34:48 35! 00 35 1
,0.10%, 55928. 0,1. 00%,
35:00
A
A
I \
34l 48' ' 35 1 do' ' 35 1
,0.10%, 80464. 0,1. 00%,
35:00
/i
A
y V_
34l 48 35 -CO 35l
,100. 00%, 996. 0,1. 00%,
35:08
A n
AA
= 3A 34:41 . / V \-
AJ vyvOv
341 3 6
^V-^-^^/V^/ v
34148 35ldo 35:
F,F)
35:32
A
/v
12 35:24 35
F,F)
35:32
A
y v
12' '35124 '35
F,F)
35:31
X
12 35:24 35
F,F)
35:31
A
/V.
12 35: 24 35
F,F)
35:21
A
A
J5-16/ V,^5-'
12 35 -24 35
3
.1
n
~T" 1 ' 1' t- T'T — | — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — r—
:36 35:48 36100 36:12
r2
-
^
• n
~f r t -t -i — i i i i i i — i — i — i — i — i — i— i — i — i — i — i — r" —
:36 35:48 36:00 36ll2
r3
-
r1
:n
:36 35:48 36:00 36ll2
6
•
-.3
:o
136 35l 48 36ldo 36:12
35 36:03 /v A
VYS^^-^ ^A.T— ^ -— Aw^- — ' /
r2
t
0
•36 ' '35U'8 ' 36ldo '36\12
.1E7
.6E7
.OEO
Time
.5E7
.2E7
OEO
Time
.4E7
.7E7
.OEO
Time
.4E7
.2E7
.OEO
Time
.4E4
.2E4
.OEO
Time
, 100. 00%, 0.0,1. 00%, F,F)
28
' '34 lie'
34:59
34148 35:00 35:
12 35:24 35
36-04 36:13 5
.2
0
:36' ' 'SB UV ' 36100 ' '36 -12'
.9E8
9E8
OEO
Time
-------
File:A27SEPySM #1-197 Acq
Sample#2 Text:FE CS3
407.7818
lOOi
50.
0_
36! 24
409.7788
IOCS
50.
o:
36:24
417.8253
100*
50:
OJ
36 24
419.8220
100%
SO:
0:
36^24
479.7165
100%
50:
0:
36:
A A
/A h
VJ
36 24
430.9728
100%
50:
'"V
:27-SEP-199« 19: S3: 39 GC EH- Voltage SIR Autospec-UltimaE
Exp:EXP M23 DB5_OVATION
S:2 F:4 BSUB(128, 15, -3 . 0) PKD(3,5,
36:43
f\
A
A
l,\.,.,
36:36 36:48
37! do 37! 12
S:2 F:4 BSUB (128, 15, -3 . 0) PKD(3,5,
36:43
n
A
/\
/ V.
36136 36:48
S:2 F:4 BSUB (128,
36:43
A
A
/ L
36136 36U'8
S:2 F:4 BSUB (128,
36:43
/I
/ \
J \
36:36 36:48
S:2 F:4 BSUB (128,
30 36:42 A
i A AA7\/\_AWu
\j\s u \S y \-v/v-'v *-^
36:36 36:48
S:2 F:4 SMO(1,3)
36:39
—I i | I1 l l i r— ] i — i r-
37:00 37:12
15, -3.0) PKD(3,5,
37:00 37:12
15, -3.0) PKD(3,5,
37:00 37:12
15, -3.0) PKD(3,3,
37:15
^.
/A_wv \r\
,-^-^X ' JV w V
-l — i — 1 — l — i l — i l — i — 1 — l — i —
37:00 37:12
PKD(3,3,3,100.00%
37 -.OR
3, 0.10%, 14188.0,
i l — | i — i i — i i | — i — i — r
37:24 37:36
3. 0.10%, 13296.0,
37:24 37:36
3, 0.10%, 10748.0,
37:24 37:36
3, 0.10%, 9404. 0,1
37:24 37:36
3, 100. 00%, 6224.0
37:32
A A
r\
/ \ A /sA
^AJ VWA
y\s*^ \^ \ V \^t \
37:24 37:36
, 0.0,1. 00%, F,F)
1.00%,F,F)
37:53
A
/ V.
37:48 38
1.00%,F,F)
37:53
A
/ v_
37:48 38
1.00%,F,F)
37:52
A
/ \
37:48 38
.00%,F,F)
37:52
A
i V_
37:48 38
,1.00%,F,F)
38
37:48
/-\ A /\ ,-v * ;
/ \/ v"^ vvv
37:48 38
37-.?.fi ll.^ 17-dfi 37- RR
n!.7E7
_8.5E6
O.nEf)
| 1 1 1 I 1 | l l — 1 1 l 1 l l — r— i — i — i — i — p — i— i — p — i — i — i — i — i — i — l •
:00 38:12 38:24 38:36 38:48 39-00 Time
,_1.7E7
-
18.4E6
n.ORO
:00 38:12 38:24 38:36 38:48 39 00 Time
1.4E7
-
L7.1E6
• O.OKO
r i i i i i 1 i i i i i — r— i — i i i — i — i — i — i — i — i — i i i i i i — r— r — •
:00 38:12 38:24 38:36 38:48 39 00 Time
3.1E7
.1 . 6E7
O.ORO
:00 38:12 38:24 38:36 38:48 39:00 Time
2.7E4
L°o nc 3J{1|8.2D38^28 38:38 38:56/
A 38: 05 A/\/f8A2A A A A A 38:48 M /
vv\yvv ^ l/ v v/ v-~/v/v vvv^^~v vy v
11.4E4
- O.OEO
1 — l — i — l — l — i — | — i — I — I — i — I — 1 — I — i — i — I — p — 1 — i — i — r — i — i — 1 — r — r — i — I — i — f
:00 38:12 38:24 38:36 38:48 39:00 Time
3R-12"iR;20 3R-3fi 38-51 4 . OE8
36124
36:36 36:48
37:00 37112
37:24 37:36
37:48 38
_2.0E8
O.OEO
:00 38:12 38:24 38:36 38:48 39:00 Time
to
-------
File:A27SEP98M #1-276 Acq:
Sample#2
441.7427
100%
50J
o"
39
443.7398
100%
50:
OJ
39
469.7780
100%
50J
o-
'^TTTTT
39
471.7750
100%
50 j
0'
" ' i i i i
39
513.6775
100%
•
50J
0"
Text : FE
S
T
S
S
1
S
1
S
:2 F:5
12 39:
:2 F:5
12 39!
:2 F:5
•T" n TY"r
12 39:
:2 F:5
i i i i i I
12 39:
:2 F:5
CS3
BSUB<128,
24 39:36
BSUB(128,
24 39!-36
BSUB(128,
i i i i i i i i
24 39:36
BSUBU28,
1 i '
24 39:36
BSUB(128,
27-SEP-1998 19
:53:39
GC EI+ Voltage SIR
Autospec-UltimaE
Exp:EXP M23 DBS OVATION
15, -3.0)
39:48
15, -3.0)
' 39148 '
15, -3.0)
' ' ' 1 ' ' '
39:48
15, -3.0)
T 1 1 1 1 1 1
39:48
15, -3.0)
PKD(3
-f—r-i — i — r~r
40:00
PKD(3
40. -66
PKD(3
IT "i T"i~r
40:00
PKD(3
40:00
PKD(3
,5,3,0
40:12
.5,3,0
40. -12
,5,3,0
-T ' P I1 I "T
40:12
,5,3,0
' ' I ' '
40:12
. 10%, 3152. 0,1. 00%, F,
40:31
J\
40:24 40:36 40:48
. 10%, 7252. 0,1. 00%, F,
40:31
A
J V
46124 46!36 46I48
. 10%, 4564. 0,1. 00%, F,
40:21
A
/ v__
1TiTT~r'T"ri' r1 1 i ! TT r r i i 'i
40:24 40:36 40:48
. 10%, 2520. 0,1. 00%, F,
40:21
A
y v__
40:24 40:36 40:48
,3, 3, 100. 00%, 1012. 0,1. 00%,
40:22
A
39:53 /\
39
.*
v ' i i i i
39
454.9728
-\
1
S
100% 39
50J
OL:
/
"".'•a"! i i
-. 39
1
A" 39
fb-A/^
' ' ' ' ' 1
12 39:
:2 F:5
-13 ^
' ' | ' ' 1
12 39:
9c ft 39:43 ft
. U A ^
Ay-'VVVuV
~T — 1" t— T"T"f~T"T"
24 39:36
SMO (1,3)
/ VWUl/'
> • ' i > > >'
39:48
PKD(3,3,
19:2R 39:44
~n~r~i — i — [— r'T
24 39:36
i ' i i ' ' i
39:48
40:01
A A i
-------
OPUSquan 28-SEP-1998
Page 1
Page 3 of 3
Run #8 Filename a27sep98m
Run: 14sep-crv Analyte:
Sample text: BE CS3
Typ
S: 16 I: 1 Acquired: 28-SEP-98 06:56:45 Processed: 28-SEP-98 09:25:42
Cal: m8290-091» Results: Quan : V3.5 17-APR-1997 11:14:34
Comments: OPUS : A3.6/8X 18-MAR-1998 16:12:42
Name
Resp
RA
RT
Cone
Dev'n
Mod?
^
iN)
fn
>*r
w
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
Unk
ES/RT
ES
ES
ES
ES
ES/RT
ES
ES
ES
JS
JS
CS
CS
CS
CS
CS
SS
SS
SS
SS
SS
DPE
DPE
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,6,7, 8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDF
13C-2,3,7,8-TCDD
13C-l,2,3,7,8-PeCDD
13C-1 , 2,3,6,7, 8-HxCDD
13C-l,2,3,4,6,7,8-HpCDD
13C-OCDD
13C-2,3,7,8-TCDF
13C-l,2,3,7,8-PeCDF
13C-l,2,3,6,7,8-HxCDF
13C-l,2,3,4,6,7,8-HpCDF
13C-1,2,3,4-TCDD
13C-1 , 2,3,7,8, 9-HxCDD
37Cl-2,3,7,8-TCDD
13C-2,3,4,7,8-PeCDF
13C-l,2,3,4,7,8-HxCDD
13C-l,2,3,4,7,8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
37Cl-2,3,7,8-TCDD
13C-2 ,3,4,7, 8-PeCDF
13C-l,2,3,4,7,8-HxCDD
13C-l,2,3,4,7,8-HxCDF
13C-l,2,3,4,7,8,9-HpCDF
HxCDPE
HpCDPE
3.
1.
1.
1.
1.
1.
2.
4.
2.
2.
2.
2.
2.
1.
1.
1.
2.
3.
2.
3.
2.
4.
4.
4.
3.
2.
3.
3.
3.
4.
2.
3.
2.
3.
4.
2.
3.
2.
9e+07
7e+08
5e+08
4e+08
5e+08
4e+08
4e+08
9e+07
le+08
2e+08
2e+08
le+08
le+08
8e+08
9e+08
7e+08
7e+08
7e+08
8e+08
2e+08
9e+08
6e+08
7e+08
4e+08
6e+08
7e+08
6e+08
2e+08
7e+07
3e+08
8e+08
6e+08
4e+08
7e+07
3e+08
8e+08
6e+08
4e+08
*
*
0.79
1.57
1.25
1.29
1.26
1.04
0.89
0.78
1.56
1.55
1.24
1.25
1.24
1.26
1.04
1.03
0.90
0.78
1.57
1.26
1.05
0.91
0.80
1.56
0.53
0.44
0.79
1.26
1.59
1.27
0.53
0.44
1.59
1.27
0.53
0.44
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
28:59
33:02
35:06
35:09
35:22
37:32
40:24
27:57
32:23
32:50
34:35
34:39
35:01
35:32
36:44
37:54
40:32
28:57
33:02
35:09
37:32
40:22
27:56
32:23
34:39
36:44
28:40
35:22
28:58
32:50
35:05
34:34
37:53
28:58
32:50
35:05
34:34
37:53
NotFnd
NotFnd
10.2
51.8
58.8
49.5
53.4
53.1
104
10.4
52.5
54.1
63.3
53.6
57.5
57.3
51.5
51.9
108
99.2
112
94.7
102
186
101
114
94.1
106
79.1
89.8
9.99
113
109
112
107
10.1
99.0
115
119
101
*
*
2
3
17
-1
6
6
4
4
5
8
26
7
15
14
2
3
7
-0
12
-5
2
-6
1
13
— 5
6
-0
12
8
12
6
0
-1
14
19
0
.2
.7
.5 •
.0
.8
.3
.4
.2
.0
.3 /
.6 — ^
.3
.0
.5
.9
.8
.6
.8
.0
.3
.2
.8 "^
.2
.6
.9
.4
-
—
.1
.5
.9
.4
.9
.7
.0
.9
.3
.5
-
-
n
n
n
n
n At
n ffj\ ^^y
11 'V/
n /'*
n /
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
-------
OPUSquan 28-SEP-1998 Page 2
DPE OCDPE * NotFnd * n
DPE NCDPE * NotFnd * n
DPE DCDPE * NotFnd * n
IMC QC CHK ION (Tetra) * NotFnd * n
LMC QC CHK ION (Penta) * NotFnd * n
LMC QC CHK ION (Hexa) * NotFnd * n
LMC QC CHK ION (Hepta) * NotFnd * n
LMC QC CHK ION (Octal * NotFnd * n
CD
-------
File
Sctrnj
319.
1003
50.
0
321.
100S
50_
o:
331.
100S
50:
o:
333.
100S
50J
o:
327.
lOOi
50 j
o:
316.
lOOi
50 j
o:
;:A27SEP98M #1 529 Acq: 28-SEP-1998 06:56:45 GC EI+ Voltage SIR Autospec-UltimaE
>le#16 Text: BE CS3 Exp:EXP M23 DBS OVATION
8965 S:16 BSUB(128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 3196 . 0, 1 . 00%, F, F)
28/i59
24:00
8936 S:16 BSUB(128, 15, -3
24! 00
9368 S:16 BSUB(128, 15, -3
24 loo'
9339 S:16 BSUB(128, 15, -3 .
24 !00
8847 S:16 BSUB(128, 15, -3 .
24! 00
9824 S:16 SMO(1,3) PKD(3,
23:22 23:52 24:21
-> 24:00
II
i | i i i ' i | i i i r11— i 1 1 1 1 1 1 1 1 1 1 1 r1 — r*—\ 1 1 1 1 1 1 p r
25:00 26:00 27:00 28:00 29:00 30:00
.0) PKD(3,3,2,0.10%,3340.0,1.00%,F,F)
28:58
A
• 1 • • i i • 1 i i i i i i- -p' T^~I— i 1 1 1 1 r— i r
25:00 26:00 27:00 28:00 29:00 30:00
0) PKD(3,3,2,0.10%,17120.0,1.00%,F,F)
28:40
A A
n
' i i i i i I • i • i i i i i i i • i i • 'i — i 1 ' i * r — p— i 1 ' i i 1 1 i 1 i1
25:00 26:00 27:00 28:00 29:00 30:00
0) PKD(3,3,2,0.10%,6612.0,1.00%,F,F)
A 28A5?
U
25:00 26:00 27:00 28:00 29:00 30:00
0) PKD(3,3,2,0.10%,12996.0,1.00%,F,F)
28:58
A
25:00 26:00 27:00 28:00 29:00 30:00
3, 3, 100. 00%, 0.0,1. 00%, F,F)
25:00 25:26 26:0926:33 27:03 27:2927^54 J28:29 29:0829:31 29:57
25:00 26:00 27:00 28:00 29:00 30:00
3.7E6
.1.9E6
LO.OEO
Time
5.0E6
L2.5E6
LO.OEO
Time
3.6E7
_1.8E7
.O.OEO
Time
4 . 5E7
_2.3E7
O.OEO
Time
_8.3E6
_4.1E6
O.OEO
Time
_6.1E7
.3.1E7
O.OEO
Time
-------
Fiie:A27SEP98M #1-237 Acq:28-SEP-1998 06:56:45 GC EH- Voltage SIR Autospec-UltimaE "
Sample#16 Text: BE CS3 Exp:EXP M23 DBS OVATION
355.8546 S:16 F:2 BSUB(128, 15, -3 .0) PKD(3 , 3 , 2 , 0 . 10%, 4268 . 0 , 1 . 00%, F,F)
100%,
^.
o:
33:02
A
j
5.7E7
.2.9E7
O.OEO
30:36 30:48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32:36 32:48 33 00 33ll2 33124 33136 Time
357.8517 S:16 F:2 BSUBU28, 15, -3 . 0) PKD(3 , 3 , 2, 0 . 10%, 2096 . 0, 1 . 00%, F, F)
100S
50J
o:
33:02
A
|
l\
3.7E7
_1.9E7
.O.OEO
30:36 36148 3J.166 3lll2 31:24 31136 Sl.Us 32.'66 32.'i2 32124 32136 32148 33166 33ll2 33[24 ^33^36 Time
367.8949 S:16 F:2 BSUB(128, 15, -3 .0) PKD(3, 3 , 2 , 0 .10%, 8740 .0, 1 .00%,F,F)
100%
so:
-
o:
33
J
02
\
33:07
Vyv
9.1E7
_4 . 5E7
-O.OEO
36136 36148 31166 3ill2 31.124 3ll36 3il48 32166 32112 32124 32136 32148 33166 33112 33:24 '33^36 Time
369.8919 S:16 F:2 BSUB(128, 15, -3 . 0) PKD(3, 3, 2, 0 . 10%, 3800 .0, 1 . 00%, F,F)
100%
"
so:
•
o:
33
j
02
33:07
\2/^
^5.9E7
_2.9E7
_O.OEO
36136 36148 3ll66 31:12 3ll24 31:36 3i:48 32166 32ll2 32124 32136 32148 33166 33112 33124 33136 Time
366.9792 S:16 F:2 SMO(1,3) PKD(3, 3, 3, 100 .00%, 0 . 0, 1.00%,F,F)
100%
so:
-;
31:0131:11 31-^631:36 32:01 32-12 ^-?0 32-42 32.-^S 13-17 33j31 7.4R7
^
.3.7E7
_O.OEO
30136 30.-48 31:00 31:12 31:24 31:36 31:48 32:00 32:12 32:24 32136 32.:48 33 00 33:12 33:24 33:36 Time
-------
File:A27SEP98M #1-197 Acq:
Sample#16 Text: BE CS3
389.8156 S:16 F:3 BSUB(128
100%
•
50_
0
"•ii — i — i— i — i — i i i — i — i — i — i — i — i — i
33:48 34:00 34:12
391.8127 S:16 F:3 BSUB(128
100%
50_
o
33:48 34:00 34:12
401.8559 S:16 F:3 BSUB{128
100%
so:
o
33:48 34:00 34:12
403.8530 S:16 F:3 BSUB(128
100%
so:
0"
33:48 34:00 34:12
380.9760 S:16 F:3 SMO(1,3)
100%> 33:50 34jJ17
so:
rtr
UJ1 ,T _.. , , r , , „,, — p- ri-TT r "T • i i — i — r
"33548 34:00 34il2
28-SEP-1998 06:56:45 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23_DB5_OVATION
,15, -3.0) PKD(3,5,2,0.10%,2248.0,1
35
1
1
34524 34536 34:48 35:00
,15, -3.0) PKD(3,5,2,0.10%,6300.0,1
35
/
/
— i — i — i — i — i — r— i — i — i — | — i — i i i i — 1 — i — i — i — i — i — 1 — r"i —
34524 34:36 34:48 35:00
,15, -3.0) PKD(3,5,2,0.10%,6532.0,1
35:
/
34524 34:36 34:48 35:00
,15, -3.0) PKD (3 ,5, 2, 0.10% ,4952. 0,1
"i
j
34524 34:36 34:48 35:00
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
34:54
"1 ' 1 | 1 1 ' ' ' | | 1 1 1 1 T | 1 1 1
34:24 34:36 34:48 35:00
.00%,F,F)
•06 35;22 4.5E7
\l\ j\
IV / V
L2.2E7
'O.OEO
35:12 35524 35536 35:48 3e5do 365l2 Time
.00%,F,F)
Z.06 35:22 3 . 5E7
t T A
Y v / V,
_1.7E7
O.OEO
355l2 35?24 35536 35.!48 3656o 3e5l2 Time
.00%,F,F)
05 35:22
111 11
r8.2E7
_4 . 1E7
O.OEO
'355l2' 35524 35536 35548 365do 365l2 Time
.00%,F,F)
05 35:21
A A
ft H
6.5E7
L3.2E7
"O.OEO
VsIlV 35 5 24 35 5 36 35548 36 5 00 36 5 12 Time
35:58 2.5E8
_1.3E8
"O.OEO
'35:12 ' '3552Y 35536 35548 36500 3e5l2 Time
CD
-------
File:A27SEP98M #1-197 Acq:
Sample#16 Text: BE CS3
423.7767 S:16 F:4 BSUB(128
1002
so:
0'
36-24 36:36 36:48
425.7737 S:16 F:4 BSUB(128
1003
50J
0:
36! 24 36:36 36: 48
435.8169 S.-16 F:4 BSUB(128
100%
so:
o:
36:24' ' YeSaV ' '36\48 '
437.8140 S:16 F:4 BSUB(128
100S
so:
0"
36 24 36:36 36:48
430.9728 S:16 F:4 SMO(1,3)
lOOSi 16:30 36-40
so:
0,
r
36:24 36:36 36:48
28-SEP-1998 06:56:45 GC EH- Voltage SIR Autospec-UltimaE
Exp:EXP_M23 DBS OVATION
,15, -3.0) PKD(3,5,3,0.10%,14852.0,1.00%,F,F)
37:32
A
j\
2.9E7
_1 . 5E7
O.OEO
37:00 37:12 37:24 37:36 37:48 38:00 38:12 38:24 38:36 38:48 39 00 Time
,15, -3.0) PKD(3,5,3,0.10%,14040.0,1.00%,F,F)
37:32
A
j \_
2 . 8E7
_1.4E7
LO.OEO
31 100 37:12 3 7: 24 37! 36 37148 38:00 38:12 38124 38! 36 38 1 48 39100 Time
,15, -3.0) PKD(3,5,3,0.10%,53080.0,1.00%,F,F)
37:32
A
A
A
5 . 9E7
_3.0E7
.O.OEO
37:00 3?! 12 37:24 37:36 37.-48 38.-00 38:12 38.-2'4 38S36 SsU'a 39loO Time
,15, -3.0) PKD(3,5,3,0.10%,36492.0,1.00%,F,F)
37;32
_5.6E7
_2 . 8E7
_O.OEO
37:00 37:12 37:24 37:36 37-48 38:00 38:12 38:24 38:36 38:48 39:00 Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
37:12 37:35 38:13 3R:243fl:32 1 . 7F.fl
—
.8.7E7
.O.OEO
37 100 37! 12 37! 24 37! 36 37! 48 38 5 00 38:12 38:24 3s!36 38:48 39! 00 Time
-------
File
Samp
457.
1001
so:
0'
459.
100%
so:
0'
469.
100*
so:
0'
471.
100%
50:
01
454.
100%
so:
0'
-s
:A27SEP98M #1-276 Acq:
le#16 Text: BE CS3
7377 S:16 F:5 BSUB(128
1 i i i i i i i i r i [ i i i i i [ i r-
39:12 39:24 39:36
7348 S:16 F:5 BSUB{128
i i i i I i i i i i i i i i i i I i i
39:12 39:24 39:36
7780 S:16 F:5 BSUB(128
^i r""r i i T "T i-i i -T1 i r ••? i r i T i—
39:12 39:24 39:36
7750 S.-16 F:5 BSUB(128
1 i i I i 1 I i i I i i i i I i I 1 l'-r-
39:12 39:24 39:36
9728 S:16 F:5 SMO(1,3)
39:24
^
39:12 39:24 39:36
28-SEP-1998 06:56:45 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DB5_OVATION
,15, -3.0) PKD(3,5,3,0.10%,2920.0,1.00%,F,F)
.j»
3.2E7
L1.6E7
LO.OEO
1— I1 T— I1 1 -T 1 1 1 1 1 1 1 1 1 1 1 1 1 *1 1 1 1 ll 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i i i • i i i i i i • • i • i i i 1 1 1 1 1 • i 1 1 | i
39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
,15, -3.0) PKD(3,5,3,0.10%,1996.0,1.00%,F,F)
T
3 . 5E7
_1.7E7
_O.OEO
39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
,15, -3.0) PKD(3,5,3,0.10%,740.0,1.00%,F,F)
T
6.1E7
_3.0E7
_O.OEO
39:48 40:00 40:12 40:24 40:36 40:48 41:00 41:12 41:24 41:36 41:48 42:00 42:12 Time
,15, -3.0) PKD(3,5,3,0.10%,248.0,1.00%,F,F)
T
6.7E7
L3.4E7
LO.OEO
' 39.'48 ' 40.'66 ' 46112 ' 46124 4ol36 4C)l48 41166 4i!l2 4i!24 4ll36 41148 42166 42!l2 Time
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
40-13 40-27 4P-'i« 41,20 41:37 41:54 42:08 1 . 9E8
_9.3E7
O.OEO
' 39! 48 40 166 4b!i2 46124 46!36 4o!48 4l!66 4l!i2 4l!24 4ll36 4il48 42:66 42112 Time
fft
-------
File:A27SEP98M #1-529
Sample#16 Text: BE CS3
303.9016 S:16 BSUB(128
100%
50:
o"
305.
100%
50:
o:
315.
100S
50:
o:
317.
100%
50:
0:
24:00
8987 S:16 BSUB(128
24 100
9419 S:16 BSUB(128
24:00
9389 S:16 BSUB(128
i — i i — i — i i • "-i — -i—
24:00
375.8364 S:16 BSUB(128
100%
50:
0:
316.
100S
50:
0:
123:14 24:06
24:00
Acq:28-SEP-1998 06:
,15, -3.0) PKD(3,3,2
25:00
,15, -3.0) PKD(3,3,2
25 100
,15, -3.0) PKD(3,3,2
25:00
,15, -3.0) PKD(3,3,2
25:00
,15, -3.0) PKD(3,3,3
1
\/f\l\Q M lA^MrA"^A .Afh. ""
25 1 00
56:45 GC EH- Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
, 0.10%, 2948. 0,1. 00%, F,F)
27:57
26:00
,0.10%, 5792.
26 100
,0.10%, 5140.
26 1 00
,0.10%, 8868.
26:00
,100. 00%, 132
26
:36 26i°3
26:00
j\
21:00 28:00 29:00 30:00
0,1.00%,F,F)
27:57
A
I
27 I 00 28 100 29 100 3oloO
0,1.00%,F,F)
27:56
n
l\
27 1 00 28 1 00 29 100 30 1 00
0,1.00%,F,F)
27 i56
A
A
27:00 28:00 29:00 30:00
4.9E6
_2.4E6
O.OEO
Time
6.2E6
L3.1E6
LO.OEO
Time
4.7E7
_2.4E7
O.OEO
Time
5.8E7
L2.9E7
O.OEO
Time
.0,1.00%,F,F)
28:57 1.1E4
:27 A A
1 1 I 29:29 30:08
1 27:15 M29:09 , I I
|6:3,6 i 1 jj. 28:ltt \ /\JljllJl| I | |u
L5.4E3
: O.OEO
27 loo 28:00 29loO 3oloO Time
9824 S:16 SMO(1,3) PKD(3 , 3 , 3 , 100 .00%, 0 .0, 1 .00%,F, F)
23:22 23:52 24:21 25:00 25:26 2fi.092fir11 27:03 27r29 27^54 28:29 29 : 08 29 :3L 291.52.
I — i — i — i — i — i — | — i —
24:00
-T 1 1 1 J • r-- , i
25:00
26:00
27IOO 28loO 29100 3o!oO
_6 . 1E7
_3.1E7
O.OEO
Time
-------
File:A27SEP98M #i-2JV Acq: 28-SEP-1998 06:56:45 GC EH- Voltage SIR Autospec-UltimaE
Sample#16 Text: BE CS3 Exp:EXP M23 DBS OVATION
339.8597 S:16 F:2 BSUB (128, 15, -3 . 0) PKD(3 , 3 , 2 , 0 . 10%, 3320 . 0, 1 . 00%, F, F)
100% 32:23 32/5° .-7 . 1E7
50J A 1 _3.5E7
0- / V / V n nFn
3bl36 30148 31166 ' 3lli2 ' 31
341.8568 S:16 F:2 BSUB(128, 15, -3
100%
50 j
0:
30136 36148 3ll66 3lli2 31
351.9000 S:16 F:2 BSUB (128, 15, -3 .
100%
o:
30:36 36148 31166 31112 31
353.8970 S:16 F:2 BSUB (128, 15, -3 .
100%
50:
0:
30136 36148 31166 3ill2 31
409.7974 S:16 F:2 BSUB (128, 15, -3 .
100%
50 '
" 30:48 31:08
0 : "*A~v_^-AAAN_/v^wV-~-WL_A
sblie bbUs biloo 3ili2 31
366.9792 S:16 F:2 SMO(1,3) PKD(3,
100% 31:0131:11 3
50:
-30:36 30:48 31:00 31:12 31
:24 31:36 31:48 32:00 32:12 32:24 32:36
0) PKD(3,3,2,0.10%,6256.0,1.00%,F,F)
32:23
/I
124 31:36 31:48 32166 32112 32124 32136
0) PKD(3,3,2,0.10%,208.0,1.00%,F,F)
32:23
!\
124 3il36 3il48 32166 32112 32124 32136
0) PKD(3,3,2,0.10%,3096.0,1.00%,F,F)
32:22
11
.-24 3il36 3ll48 32166 32ll2 32124 32136
0) PKD(3,3,3,100.00%,2320.0,1.00%,F,F)
31-32 32:08 32
. A 31:45 31:57 A A 32:24 32/{35 i
?24T 3iS36 31:48 32166 32112 32124 32136
3, 3, 100. 00%, 0.0,1. 00%, F,F)
1-J>fi31-3fi 35:01 32:1? 32:3fi3
124 ' 31136 ' 3ll48 32 1 66 ' 32 1 12 ' 32 124 32136
32:48 33:00 33:12 33:24 33:36 Time
32:50 4.4E7
M L2.2E7
/ V r : O.OEO
32148 33166 33112 33124 33136 Time
32:50 1.6E8
A _7.9E7
) \ : O.OEO
32.'48 33166 331121 33:24 ijslie Time
32:50 9.8E7
A L4.9E7
J \ O.OEO
32148 33166 33ll2 33124 33136 Time
33:03 2.1E4
(\ 33:20
:43 / A A _1.0E4
A 32:52 / A II A 33-37A
v^\s W\/v WvV v\J \r^/ LvWWj 0 . OEO
32148 33166 33:12 33124 33136 Time
1-Afi 32:Sfl 33:17 33:31 7 . 4E7
.3.7E7
, , , , O.OEO
32:48 33:00 33:12 33:24 33:36 Time
CO
Q
-------
!File:A27SEP98M #1-197 Acq:
Sample#16 Text:
373.8207 S:16 F
100%
50:
ol
33:48 34!
375.8178 S:16 F
100%
-
50 j
ol
33 : 48 34 !
383.8639 S-.16 F
100*.
i
50:
0:
33:48' ' '34:
385.8610 S:16 F
lOOi
50:
0:
33:48 34S
445.7555 S:16 F
lOOIj
50:
o:
BE
:3
00
:3
00
:3
00
:3
00
:3
33:52 34:
33:48' ' '34:
380.9760 S:16 F
lOOi 33^50^
50:
o:
"—•—i — i — i — i — i — i — i — r
33:48 34:
00
:3
CS3
BSUB(128
34 1 12
BSUB(128
34.! 12'
BSUB(128
34l 12'
BSUB(128
34 1 12
BSUB(128
04
34:12
SMO(1,3)
28-SEP-1998 06:56:
45 GC EI+ Voltage SIR Autospec-UltimaE
Exp:EXP M23 DBS OVATION
,15, -3.0) PKD(3,5,
34:35
A f\
A
/Vv
34:24 34:36
,15, -3.0) PKD(3,5,
34:35
i i
A A
A A
/VV
— i i— i i i i i r-i r— i r~r
34:24 34:36
,15, -3.0) PKD(3,5,
34:34
h A
A
/,yA,
34:24 34:36
,15, -3.0) PKD(3,5,
34:34
A n
A/I
/VV
34:24 34:36
,15, -3.0) PKD(3,3,
2, 0.10%, 24036. 0,1. 00%, F,F)
35:01 _6.5E7
A 35:32
A
A
.3.3E7
n np.n
• • 1 I • T1 1 I 1 1 1 1 — 1 — 1 — 1 — I — 1 — p-"l — 1 — i1 I 1 — 1 — I — i — i — i — i — i — 1 1 I | III — I— I — i — | — ill' • - — -
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
2, 0.10%, 13508. 0,1. 00%, F,F)
35:01 ,_5.2E7
A 35: 32
l\
:
:1 . 6E7
• • i i • • • i i • ^TT T"-p~iT "i "t "i—r'-r — r *i ~T -r1 1 i •! i i i T •; •> i- r1 r p i~ i- r r T T T ~i ~ r" T" *~ -----
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
2, 0.10%, 12504. 0,1. 00%, F,F)
35:01 6.5E7
A 35i31
A
/V /I,
_3.2E7
O.OEO
34:48 35IOO 35:12 35124 3s!36 35U's 36loO 36:12 Time
2, 0.10%, 44384. 0,1. 00%, F,F)
35:01 _1.2E8
A 35i31
A
A A
.6.1E7
O.OEO
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
3, 100. 00%, 320. 0,1. 00%, F,F)
35:05 _3.1E4
h . 35:22
/\ A A
A A
34/\21 ^v^v-^A43 34A53vV V V/x _/ lj>£^ ^ ^ 35A55 31^5^36A16
34^24 34 -36
PKD{3,3,3,100.00%
34-07
00
— j— T 1 r—| |-
34:12
-i — i — i — i — i — i — r — i — i — i — i — i — r
34:24 34:36
Ll.6E4
-O.OEO
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
,0.0,1.00%,F,F)
34rS4 ISrSfl 2.5E8
.1.3E8
O.OEO
34:48 35:00 35:12 35:24 35:36 35:48 36:00 36:12 Time
-------
File:A27SEP98M
Sample* 16 Text:
407.7818
100%,
I
50J
o:
36 24
409.7788
1004
.
50^
o:
36124
417.8253
1004
50_
o:
36 124'
419.8220
1004
.
50J
o:
36:24'
479.7165
1004
50 j
-
0"
S:16 F
#1-197 Acq:
BE
:4
CS3
BSUB(128
28-SEP-1998 06:
,15, -3.
0 ) PKD ( 3
56:45 GC EI+ Voltage SIR
Exp:EXP M23 DBS OVATION
, 5, 3, 0.10% ,8832. 0,1. 00%, F
Autospec-UltimaE
,F)
36;44 _4
36136
S:16 F
1
:4
A
A
V
36:48
BSUB(128
37 ! 00
,15, -3.
37 ! 12
0) PKD (3
37
/
1
37! 24 37! 36 37148
, 5, 3, 0.10%, 6012. 0,1. 00%, F
:54
\
V
".
-2
'• o
38ldo 38!l2 38124 3s!36 38: 48 39loO
,F)
36;44 _3
36:36
S:16 F
i i 1 i
36:36
S:16 F
i i 1 i
36:36
S:16 F
36:35.
1
/
:4
36
/
:4
36
/
/
:4
A
'\
V
'36:48
BSUB(128
:44
A
\
36:48
BSUB(128
:44
\
\
i i~l i i i
36:48
BSUB(128
36:50
'37 'do'
,15, -3.
'37! do'
,15, -3.
37:00
,15, -3.
37 :
i
37 ! 12
0) PKD (3
'37: 12'
0 ) PKD ( 3
'37! 12'
0) PKD(3
05
37
/
/
37! 24 37 [36 37: 48
,5, 3, 0.10%, 11520. 0,1. 00%,
37:
37:24 37:36 37:48
, 5, 3, 0.10%, 4360. 0,1. 00%, F
37:
37:24 37:36 37:48
,3, 3, 100. 00%, 2852. 0,1. 00%
37:32
A
/\ 37:47
V^N A. 36J45AA «/U A37:16 A 37A2/8 L . J\ .1
,_y/^
36 24'
430.9728
1004 _J£j
50J
0:
* — 1 ~^.
'36:36
S:16 F
30 36^
y^-
:4
40
s \S V w \^^
36:48
SMO(1,3)
^V~A/ V
'37! do'
PKD(3,
v ^ \^ —
1 1 ! | 1 1
37:12
3,3,100.
12:13-
-N/\yv_/ ^-AVV iAyv
37:24 37:36 37:48
00%, 0.0,1. 00%, F,F)
37:35
:54
.
-1
0
38:00 38:12 38:24 38:36 38:48 39:00
F,F)
3
53
r
.
r1
:o
38:00 38:12 38:24 38:36 38:48 39 00
.F)
8
53
y
•
14
:o
38:00 38:12 38:24 38:36 38:48 39:00
,F,F)
1
37:59 38:14
\ AAA*A A r^ A AA38:41 A A
W W\xv x^v K/ ^V\x\AA>^vV-v/v\yvrVs/vVyN
-
19
-
•o
'38 !do' ' '38:12' '38: 24' '38: 36' ' '38: 48' ' '39:00
38:13 3fl;24 38:32 1
/
©?24
36:36
36:48
37:00
37:12
37:24 37:36 37:48
_8
0
38:00 38:12 38:24 38:36 38:48 39:00
.1E7
.OE7
.OEO
Time
.8E7
.9E7
.OEO
Time
.5E7
.8E7
.OEO
Time
.OE7
.OE7
.OEO
Time
.9E4
.6E3
.OEO
Time
.7E8
.7E7
.OEO
Time
CO
-------
i-ile:A27SEP98M #1-276 Acq:28-SEP-iy9y Ob:bb:4b
Sample#16 Text. -BE CS3
441.7427 S:16 F:
100%
50J
:
'T r i^ T1 T r"r t'-i
39:12 39
443.7398 S:16 F:
100%
50 j
n -
"' i i i i i i i i i i
39:12 39
469.7780 S:16 F:
100%
50 j
n •
u ' i i i i i i i i i i
39ll2 39
471.7750 S:16 F:
100%
50 j
fl i
" ' i i i i i i i i i i
39ll2 39
513.6775 S:16 F:
100%j
-
50J
39:15
1 iT*Pi -I'l >
_3
0
41166 4ill2 41124 4ll36 41:48 42:66 42:12
F,F)
/ \ 40:56 41j18 41:45 42:00
J V__4^\9J^O:48
46124 46136 40:48
PKD(3,3,3,100.00%,0.0,1.00%,F,F)
40, n 40:27
"39 148 40 166 40:12
46124 46136 40148
A ^ 41A1A° A f^i riA-~ AifN^r r^n i-V;^ f-
2
1
0
4ll66 4lli2 41:24 41:36 41:48 42:66 42:12
_4IU5a 41i2H 41:42 — 41 ;54 42^05-^1
9
0
41:66 4lli2 4ll24 41:36 41:48 42:66 42:12
TP'7
.8E7
.OEO
Time
.OE7
.OE7
.OEO
Time
.1E7
.OE7
.OEO
Time
.7E7
.4E7
.OEO
Time
.4E4
.2E4
.OEO
Time
.9E8
.3E7
.OEO
Time
-------
OPUSquan 30-SEP-1998
Page 1
Page 1 of 2
Run #6 Filename a29sep98n
Run: a07feb98f Analyte:
Sample text: CS3
S: 1 I: 1 Acquired: 29-SEP-98 17:07:50 Processed: 30-SEP-98 08:24:51
Cal: 07feb-m23» Results: Quan : V3.5 17-APR-1997 11:14:34
Comments: OPUS : V3.5X 17-APR-1997 11:31:23
Typ
Unk
ES/RT
Total
DPE
LMC
Name
2,3,7,8-TCDF
13C-2,3,7,8-TCDF
Tetra Furans
HxCDPE
QC CHK ION (Tetra)
Resp
1.4e+07
2.9e+08
1.5e+07
RA
0.78 y
0.79 y
0.74 y
RT
27:53
27:51
24:13
NotFnd
NotFnd
Cone
5.26
70.6
5.39
Dev'n
5.2
5.2
Mod?
n
n
n
n
n
CO
o
C/t
-------
F~ile:A29SfiP98to
#1-2677 Acq:
29-SEP-1998 17:07:
Sample* 1 Text:CS3
303.9016 SMO(1,
100S
50:
-
0'
' 16:00
305.8987 SMO(1,
100%
50:
0 '
"-1 — i — i — 1 — r— i — i-
16:00
315.9419 SMO(1,
100%
50:
|
"•^ — r— l — l — i — i — r-
16:00
317.9389 SMO(1,
100%
50:
:
U ' • t r | i i •• r '
16:00
375.8364 SMO(1,
100%15:07
3 17:
5Qj 16:2511
mjM
OJ — i — r— i — i — i — r
16:00
316.9824 SMO(1,
100*1 16:29
-
50:
^
"-«— ! — i 1 — i — r — r-
leloo
3) BSUB(128,
i ' | ' ' i '
18:00
3) BSUB(128,
18:00
3) BSUB(128,
" 1" "I " ' 1 T - "T " 1 1
18:00
3) BSUB(128,
i i i l i ; i
18:00
3) BSUB(128,
04 \1:-104 i9
— I 1— 1 f— T 1 T "
18:00
3) PKD(3,3,3
17:43 18:57
—i — i — i — i — i — i — r
18:00
15, -3.0)
i I i i i
20:00
15, -3.0)
i i i i • i
20:00
15, -3.0)
2V: 00
15, -3.0)
20 lob
15, -3.0)
19:59
i 20:
PM
50 GC EH- Voltage SIR
Autospec-UltimaE
Exp:M23_DB225
PKD(3,3,3
i i i i i —
22:00
PKD(3,3,3
— r— T — i — l — i —
22:00
PKD(3,3,3
— 1 — l — | — l — r—
22:00
PKD(3,3,3
22 1 00
PKD(3,3,3
Ufet:39 |ij J
20:00 22 lob
,100. 00%, 0.0, 1.00%
20:45 22:15
20 :00
22 1 00
, 0.10%, 2560. 0,1. 00%, F
24:00 26:00
, 0.10%. 5916. 0,1. 00%, F
24 100 26 lob
, 0.10%, 5200. 0,1. 00%, F
24 lob 26:00
, 0.10%, 6480. 0,1. 00%, F
24 lob 26 Sob
,100. 00%, 4264. 0,1. 00%
j 23:4524:49 26;3L
l! T wi A\ U Oi li 2 & 5 26l
24 lob 26 lob
,F,F)
23:25 24:3225:36 26:
24 lob 26 lob
,F)
27
-J
P
i ^^ -41
i j j . f* j.
--*--. _.--.-_---_ ., --. •• • -.- i — . *-• i- -, -^\--.-- -v i l-l-l-'
6.8E5
L3.4E5
: O.OEO
' 28:00 30:00 32:00 34loO 36:00 Time
.F)
27
-L
f3
.
\ J,^
8.9E5
L4.4E5
•O.OEO
28 lob 30 lob 32 lob 34:00 36 00 Time
/F)
27
J51
1
1.4E7
_6.9E6
O.OEO
28:00 30:00 32:00 34:00 36:00 Time
,F)
27
_J.
:50
1
1.BE7
L8.8E6
' 0 . OEO
28:00 30:00 32:00 34:00 36:00 Time
,F,F)
•1 "*in>A
27
27
M
2(
56
U5 292:18 "j'l'.lB 35if?7 "f''| f
3 lob 30 lob 32:00 34:00 36
-n 10 "3-37 •*P-4'' ^ '^ 32:59 1/l?15 35lA9i
«O.A^ f ' • ••- •
00 Time
6.4E7
L3.2E7
•O.OEO
28-00 30:00 32:00 34:00 36:00 Time
-------
OPUSquan 30-SEP-1998
Page 1
Page 2 of 3
Run #7 Filename a29sep98n
Run: a07feb98f Analyte:
Sample text: CS3
S: 15 I: 1 Acquired: 30-SEP-98 03:08:06 Processed: 30-SEP-98 08:25:30
Cal: 07feb-m23» Results: Quan : V3.5 17-APR-1997 11:14:34
Comments: OPUS : V3.5X 17-APR-1997 11:31:23
Typ
Unit
ES/RT
Total
DPE
LMC
Name
2,3,7,8-TCDF
13C-2,3,7,8-TCDF
Tetra Furans
HxCDPE
QC CHK ION (Tetra)
Resp
9.7e+06
2.0e+08
l.Oe+07
RA
0.78
0.79
2.07
V RT
27:51
27:48
19:46
NotFnd
NotFnd
Cone
5.15
48.8
5.51
Dev'
2.9
2.9
Mod?
y
n
y
n
n
Co
-------
OPOSquan 30-SEP-1998
Page 1
Page 2 of 2
Run #7 Filename a29sep98n
Run: a07feb98£ Analyte:
Sample text: CS3
S: 15 I: 1 Acquired: 30-SEP-98 03:08:06 Processed: 30-SEP-98 08:25:30
Cal: 07feb-m23» Results: Quan : V3.5 17-APR-1997 11:14:34
Comments: OPUS : V3.5X 17-APR-1997 11:31:23
Typ
Unk
ES/RT
Total
DPE
LMC
Name
2,3,7,8-TCDF
13C-2,3,7,8-TCDF
Tetra Furans
HxCDPE
QC CHK ION (Tetra)
Resp
7.8e+06
2.0e+08
1.6e+07
RA
0.43 n
0.79 y
2.07 n
RT
27:51
27:48
19:46
NotFnd
NotFnd
Cone
4.14
48.8
8.41
Dev'n
-17.
Mod?
n
n
n
n
n
CO
-------
File:A29SEP98tf #1-2677
Sample#15 Text:CS3
303.9016 S:15
iooa
50J
o-
' ie lob '
305.8987 S:15
looa
50 1
:
OJ
ielob
315.9419 S:15
1003
50 j
OJ
16:00
317.9389 S:15
100%
50 j
o-
' ielob '
375.8364 S:15
100%
50 j
o-
15:57 i
i ll6* 17
lUdUPAM/
ielob
316.9824 S:15
100%
50 j
02
16:06
v
16:00
SMO (1,3)
' islob
SMO(1,3)
islob
SMO(1,3)
1 1 1 1 1
18:00
SMO (1,3)
islob
SMO(1,3)
1 ti- h.i 1 1 1 c
fcOJuWiS
islob
SMO (1,3)
17 : 47
T 1 . 1 1
18:00
Acq:30-SEP-1998 03:08:06 GC EH- Voltage
SIR Autospec-UltimaE
Exp:M23 DB225
BSUB(128,15,-3.0) PKD(3,
20. -00 22 lob
BSUB(128,15,-3.0) PKD(3,
20 lob 22 lob
BSUB(128,15,-3.0) PKD(3,
20:00 22:00
BSUB(128,15,-3.0) PKD(3,
20 lob 22 lob
BSUB(128,15,-3.0) PKD(3,
21:13
il
2lJI)9
19,: 12 , 21:B5 22:52
•8iife 2?l:fe° -jJiW22''01! il
'w^Alli/y^I'lui/'f "MuMjWwMiArt
111 20 loo ' 22 lob '
PKD(3,3,3,100.00%,0.0,1.
19:02 20:2921:34 23
20:00 22:00
3, 3, 0.10%, 1196.0
24 loo 26 lob
3, 3, 0.10%, 2016.0
24 lob 26 lob
3, 3, 0.10%, 1924.0
24:00 26:00
3, 3, 0.10%, 1540.0
24lob 26lob
3, 3, 100. 00%, 1400
bj^iq1 i, ^jj|36 I2
24 lob ' ' ' 26 lob
00%,F,F)
:26 24:35 25:41
24:00 26:00
,1.00%,F,F)
27:51 , /
L /^6^ ft,{$Mm swj'W::+~
/Til f\ 33-34
4.6E5
L2.3E5
O.OEO
/ 28|(H) 30 lob 32 lob 34? 00 36 00 Time
,1.(>0%^F,F)
27:50
A
I
M 33-38
,,,/), ,4 , , , , , ,
6.2E5
L3.1E5
.
LO.OEO
28:00 30:00 32:00 34:00 36:00 Time
,1.00%,F,F)
27:48
|
\\
9.7E6
_4.8E6
_O.OEO
28:00 30:00 32:00 34:00 36 00 Time
,1.00%,F,F)
27:48
A
1
, ,,|\
1.2E7
L6.1E6
_O.OEO
28:00 30:00 32:00 34:00 36 00 Time
.0,1.00%,F,F)
27-25 29-20 32:44 uJ
jiu^^
1.3E4
_6.6E3
O.OEO
' 28 lob ' ' ' 30 lob ' ' ' 32 lob ' ' 34-00 ' ' 36:00 Time
O*7«^Q OQ»T7 TA«^"7 T'l^OO *^4*1Q 3^*4? Q 7T**n
& i s *& y £* y * j i j \ji g j / 1 j^n* y y ^^ ft^f ,» f- -* -^/i.^f.tKijir^fir~ *-»v^
_4.9E6
O.OEO
28:00 30:00 32:00 34100 36:00 Time
Co
-------
File:A29SEP98N #1-2677 Acq:30-SEP-1998 03:08:06 GC EH- Voltage SIR Autospec-ultimaE
Sample#15 Text:CS3 Exp:M23_DB225
303.9016 S:15 SMO{1,3) BSUB(128, 15, -3 . 0) PKD(3, 3, 3, 0 .10%, 1196 . 0, 1 . 00%, F,F)
100% 27i'51
90 j
sol
70J
60J
50J
40J
30J
20.=
10J
0:
305.
100%
90J
80J
70j
60j
50J
40 j
30j
20 j
10 j
0:
^ n/i^
. W'^
[/ I ///%
// 7 W^V
I/ U' (
33:34
1 ^ . A
ie.'ob 18 5 00 20:00 22 .-00 24:00 26:00 28:00 30:00 32:00 34. -00 36
8987 S:15 SMO(1,3) BSUB(128, 15, -3 .0) PKD(3 , 3 , 3 , 0 . 10%, 2016 . 0, 1 . 00%, F, F)
27:50
^16:00 18:00 20:00 22:00 24:00 26:00 28
33:38
A
00 30:00 32:00 34:00 36:
4.6E5
L4 . 1E5
_3.7E5
_3.2E5
_2.7E5
.2.3E5
_1.8E5
.1.4E5
_9.1E4
.4 . 6E4
:O.OEO
00 Time
6.2E5
i_5.6E5
L5.0E5
I.4.4E5
L3.7E5
L3.1E5
i.2.5E5
11.9E5
_1.2E5
_6.2E4
O.OEO
00 Time
-------
APPENDIX C
CALCULATIONS & COMPUTER SUMMARIES
-------
Appendix C.I
Calculations & Computer Summaries
Kiln No. 2
-------
Summary of Method 23 Analytical Results
Air Emissions Screening Test
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 2 Baghouse Inlet - Run M23-I-1
Congeners
DIOXINS:
2378 TCDD
Total TCDD
12378 PeCDD
Total PeCDD
123478 HxCDD
123678 HxCDD
123 789 HxCDD
Total HxCDD
1234678 HpCDD
Total HpCDD
12346789 OCDD
OCDD+Totals PCDDs
Catches, ng/sample
Back Half
0.0096
0.2656
0.0108
0.1324
{0.00788}
{0.00708}
0.0112
0.0684
0.0201
0.0360
0.0393
0.5417
Front Half
ND
0.1728
{0.0017}
0.1232
{0.0016}
0.0028
0.0035
0.1192
0.017
0.0308
0.0600
0.5060
Total
0.0096
0.4384
{0.0125}
0.2556
{0.00948}
{0.00988}
0.0147
0.1876
0.0371
0.0668
0.0993
1.0477
FURANS:
2378 TCDF
Total TCDF
12378 PeCDF
23478 PeCDF
Total PeCDF
123478 HxCDF
123678 HxCDF
234678 HxCDF
123789 HxCDF
Total HxCDF
1234678 HpCDF
1234789 HpCDF
Total HpCDF
12346789 OC0F
OCDF+Totals PCDFs
Total of Totals
0.1545
4.4672
0.1460
0.1362
2.0952
0.1526
0.1143
0.0386
0.0098
0.8960
0.1708
0.0241
0.2624
0.0244
7.7452
8.2869
0.0046
0.0412
{0.0032}
0.0034
0.0252
0.0057
0.0038
{0.0036}
ND
0.0164
ND
ND
ND
{0.0125}
{0.0953}
{0.6013}
0.1590
4.5084
{0.1492}
0.1396
2.1204
0.1583
0.1181
{0.0422}
0.0098
0.9124
0.1708
0.0241
0.2624
{0.0369}
{7.8405}
{8.8882}
ND Not Detected. When both fractions are ND, the greater detection limit is used
and is enclosed in parentheses (); otherwise, ND's are zero in calculating totals.
{ } Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Air Emissions Screening Test
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 2 Baghouse Inlet
Page 1 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-1
8/27/98
1025-1439
1/2
MEASURED DATA
Meter Box Correction Factor 1.000
Avg Meter Orifice Pressure, in. H20 1.63
Barometric Pressure, inches Hg 29.57
Sample Volume, ft3 120.258
Average Meter Temperature, °F 84.2
Stack Static Pressure, inches H20 -7.60
Average Stack Temperature, °F 496
Condensate Collected, ml 124.0
Carbon Dioxide content, % by volume 11.8
Oxygen content, % by volume 14.2
Nitrogen content, % by volume 74.0
Pitot Tube Coefficient 0.84
Average Square Root Ap, (in. H2O)1/2
In Flow Direction 0.8632
In Axial Direction 0.7594
Sample Run Duration, minutes 179.0
Nozzle Diameter, inches 0 252
CALCULATED DATA
Nozzle Area, ft2 0.00035
Standard Meter Volume, dscf 115.737
Standard Meter Volume, dscm 3.277
Stack Pressure, inches Hg 29.01
Moisture, % by volume 4.8
Standard Water Vapor Volume, ft3 5.837
Dry Mole Fraction 0.952
Molecular Weight (d.b.), Ib/lb-mole 30.46
Molecular Weight (w.b.), Ib/lb-mole 29.86
Stack Gas Velocity, ft/s
In Flow Direction 65.13
In Axial Direction 57.30
Stack Area, ft2 38.48
Stack Gas Volumetric flow, acfm 132,309
Stack Gas Volumetric flow, dscfm 67,405
Stack Gas Volumetric flow, dscmm 1,909
Isokinetic Sampling Ratio, % 93.6
y
AH
Pbar
vm
Tm
Pstatic
Ts
V,c
CO2
02
N2
CP
AP1'2
Cos((j>) * Ap
0
An
PS
Bws
Vwstd
1-BWS
Md
Ms
Vs
Vsa
A
Qa
Qs
Qs(cmm)
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 2 Baghouse Inlet
Page 2 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-1
8/27/98
1025-1439
EMISSIONS DATA
DIOXINS:
2378 TCDD
ng Catch, ng 0.0096
ng/dscm Concentration, ng/dscm, as measured 0.00293
ug/hr Emission Rate, ug/hr 0.335
Total TCDD
ng Catch, ng 0.4384
ng/dscm Concentration, ng/dscm, as measured 0.134
ug/hr Emission Rate, ug/hr 15.3
12378 PeCDD
ng Catch, ng {0.0125}
ng/dscm Concentration, ng/dscm, as measured {0.00381}
ug/hr Emission Rate, ug/hr ' {0.437}
Total PeCDD
ng Catch, ng 0.2556
ng/dscm Concentration, ng/dscm, as measured 0 0780
ug/hr Emission Rate, pg/hr 8.93
123478 HxCDD
ng Catch, ng {0.00948}
ng/dscm Concentration, ng/dscm, as measured {0.00289}
ug/hr Emission Rate, ug/hr {0.331}
123678 HxCDD
ng Catch, ng {0.00988}
ng/dscm Concentration, ng/dscm, as measured {0.00301}
ug/hr Emission Rate, ug/hr {0.345}
() Not Detected. Value shown is the detection limit and is included in totals
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 2 Baghouse Inlet
Page 3 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-1
8/27/98
1025-1439
EMISSIONS DATA -Continued
DIOXINS - Continued
123789 HxCDD
ng Catch, ng 0.0147
ng/dscm Concentration, ng/dscm, as measured 0.00449
ug/hr Emission Rate, ug/hr 0.514
Total HxCDD
ng Catch, ng 0.1876
ng/dscm Concentration, ng/dscm, as measured 0.0572
Mg/hr Emission Rate, pg/hr 6.56
1234678 HpCDD
ng Catch, ng 0.0371
ng/dscm Concentration, ng/dscm, as measured 0.0113
ug/hr Emission Rate, ug/hr 1.30
Total HpCDD
ng Catch, ng 0.0668
ng/dscm Concentration, ng/dscm, as measured 0.0204
ug/hr Emission Rate, ug/hr 2.33
OCDD
ng Catch, ng 0.0993
ng/dscm Concentration, ng/dscm, as measured 0.0303
ug/hr Emission Rate, ug/hr 3.47
Total PCDD
ng Catch, ng 1.0477
ng/dscm Concentration, ng/dscm, as measured 0.320
ug/hr Emission Rate, ug/hr 36.6
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 2 Baghouse Inlet
Page 4 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-1
8/27/98
1025-1439
EMISSIONS DATA - Continued
FURANS
2378 TCDF
ng Catch, ng 0.1590
ng/dscm Concentration, ng/dscm, as measured 0.0485
ug/hr Emission Rate, ug/hr 5.56
Total TCDF
ng Catch, ng 4.5084
ng/dscm Concentration, ng/dscm, as measured 1.38
ug/hr Emission Rate, ug/hr 158
12.3.7.9.. PQ.CP.F
ng Catch, ng {0.1492}
ng/dscm Concentration, ng/dscm, as measured {0.0455}
ug/hr Emission Rate, ug/hr {5.21}
23478 PeCDF
ng Catch, ng 0.1396
ng/dscm Concentration, ng/dscm, as measured 0.0426
ug/hr Emission Rate, pg/hr 4.88
Total PeCDF
ng Catch, ng 2.1204
ng/dscm Concentration, ng/dscm, as measured 0.647
ug/hr Emission Rate, ug/hr 74.1
123478 HxCDF
ng Catch, ng 0.1583
ng/dscm Concentration, ng/dscm, as measured 0.0483
ug/hr Emission Rate, ug/hr 5.53
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodviile, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 2 Baghouse Inlet
Page 5 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-1
8/27/98
1025-1439
EMISSIONS DATA - Continued
Furans - Continued
123678 HxCDF
ng Catch, ng 0.1181
ng/dscm Concentration, ng/dscm, as measured 0.0360
ug/hr Emission Rate, ug/hr 4.13
234678 HxCDF
ng Catch, ng {0.0422}
ng/dscm Concentration, ng/dscm, as measured {0.0129}
ug/hr Emission Rate, ug/hr {1-47}
123789 HxCDF
ng Catch, ng 0.0098
ng/dscm Concentration, ng/dscm, as measured 0.00299
ug/hr Emission Rate, ug/hr 0.342
Total HxCDF
ng Catch, ng 09124
ng/dscm Concentration, ng/dscm, as measured 0.278
ug/hr Emission Rate, ug/hr 31.9
1234678 HoCDF
ng Catch, ng 0.1708
ng/dscm Concentration, ng/dscm, as measured 0.0521
ug/hr Emission Rate, ug/hr 5.97
1234789 HpCDF
ng Catch, ng 0.0241
ng/dscm Concentration, ng/dscm, as measured 0.00735
ug/hr Emission Rate, ug/hr 0.842
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 2 Baghouse Inlet
Page 6 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-1
8/27/98
1025-1439
EMISSIONS DATA- Continued
Furans - Continued
Total HpCDF
ng Catch, ng 0.2624
ng/dscm Concentration, ng/dscm, as measured 0.0801
ug/hr Emission Rate, ug/hr 9.17
OCDF
ng Catch, ng {0.0369}
ng/dscm Concentration, ng/dscm, as measured {0.0113}
ug/hr Emission Rate, ug/hr {1-29}
Total PCCF
ng Catch, ng {7.8405}
ng/dscm Concentration, ng/dscm, as measured {2.39}
ug/hr Emission Rate, ug/hr {274}
Total PCDD + PCDF
ng Catch, ng {8.8882}
ng/dscm Concentration, ng/dscm, as measured {2.71}
pg/hr Emission Rate, ug/hr {311}
() Not Detected. Value shown is the detection limit and is included in totals.
{ } Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Air Emissions Screening Test
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 2 Baghouse Stack
Page 1 of 6
Y
AH
Pba,
'static
V,c
CO2
02
N2
Ap
0
p
1/2
An
PS
1-BWS
Md
Ms
Vs
A
Qa
Qs
**s
I
RUN NUMBER
RUN DATE
RUN TIME
M23-O-1
8/27/98
1025-1447
MEASURED DATA
Meter Box Correction Factor 1.021
Avg Meter Orifice Pressure, in. H2O 1.33
Barometric Pressure, inches Hg 29.57
Sample Volume, ft3 114.553
Average Meter Temperature, °F 85.2
Stack Static Pressure, inches H20 -0.31
Average Stack Temperature, °F 391
Condensate Collected, ml 116.1
Carbon Dioxide content, % by volume 10.7
Oxygen content, % by volume 14.8
Nitrogen content, % by volume 74.5
Pitot Tube Coefficient 0.84
Average Square Root Ap, (in. H20)1/2 0.6849
Sample Run Duration, minutes 180.0
Nozzle Diameter, inches 0.257
CALCULATED DATA
Nozzle Area, ft2 0.00036
Standard Meter Volume, dscf 112.261
Standard Meter Volume, dscm 3.179
Stack Pressure, inches Hg 29.55
Moisture, % by volume 4.6
Standard Water Vapor Volume, ft3 5.465
Dry Mole Fraction 0.954
Molecular Weight (d.b.), Ib/lb-mole 30.30
Molecular Weight (w.b.), lb/lb«mole 29.73
Stack Gas Velocity, ft/s 48.4
Stack Area, ft2 40.34
Stack Gas Volumetric flow, acfm 117,145
Stack Gas Volumetric flow, dscfm 68,428
Stack Gas Volumetric flow, dscmm 1,938
Isokinetic Sampling Ratio, % 102.1
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 2 Baghouse Stack
Page 2 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-0-1
8/27/98
1025-1447
EMISSIONS DATA
DIOXINS:
2378 TCDD
ng Catch, ng 0.0027
ng/dscm Concentration, ng/dscm, as measured 0.000849
|jg/hr Emission Rate, ug/hr 0.0987
Total TCDD
ng Catch, ng 0.499
ng/dscm Concentration, ng/dscm, as measured 0.157
ug/hr Emission Rate, ug/hr 18.2
12378 PeCDD
ng Catch, ng 0.0037
ng/dscm Concentration, ng/dscm, as measured 0.00116
ug/hr Emission Rate, pg/hr 0.135
Total PeCDD
ng Catch, ng 0.280
ng/dscm Concentration, ng/dscm, as measured 0.0881
ug/hr Emission Rate, pg/hr 10.2
123478 HxCDD
ng Catch, ng {0.0026}
ng/dscm Concentration, ng/dscm, as measured {0.000818}
ug/hr Emission Rate, ug/hr {0.0951}
123678 HxCDD
ng Catch, ng 0.0068
ng/dscm Concentration, ng/dscm, as measured 0.00214
ug/hr Emission Rate, ug/hr 0.249
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 2 Baghouse Stack
Page 3 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-1
8/27/98
1025-1447
EMISSIONS DATA -Continued
DIOXINS - Continued
123789 HxCDD
ng Catch, ng 0.0059
ng/dscm Concentration, ng/dscm, as measured 0.00186
pg/hr Emission Rate, pg/hr 0.216
Total HxCDD
ng Catch, ng 0.295
ng/dscm Concentration, ng/dscm, as measured 0.0928
pg/hr Emission Rate, ug/hr 10.8
1234678 HpCDD
ng Catch, ng 0.0206
ng/dscm Concentration, ng/dscm, as measured 0.00648
ug/hr Emission Rate, pg/hr 0.753
Total HpCDD
ng Catch, ng 0.0372
ng/dscm Concentration, ng/dscm, as measured 0.0117
pg/hr Emission Rate, pg/hr 1.36
OCDD
ng Catch, ng 0.0328
ng/dscm Concentration, ng/dscm, as measured 0.0103
pg/hr Emission Rate, pg/hr 1.20
Total PCDD
ng Catch, ng 1.1440
ng/dscm Concentration, ng/dscm, as measured 0.360
pg/hr Emission Rate, ug/hr 41.8
{) Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 2 Baghouse Stack
Page 4 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-1
8/27/98
1025-1447
EMISSIONS DATA - Continued
FURANS
2378 TCDF
ng Catch, ng 0.0293
ng/dscm Concentration, ng/dscm, as measured 0.00922
ug/hr Emission Rate, ug/hr 1.07
Total TCDF
ng Catch, ng 0.310
ng/dscm Concentration, ng/dscm, as measured 0.0975
ug/hr Emission Rate, ug/hr 11.3
12378 PeCDF
ng Catch, ng 0.0155
ng/dscm Concentration, ng/dscm, as measured 0.00488
ug/hr Emission Rate, ug/hr 0.567
23478 PeCDF
ng Catch, ng 0.0101
ng/dscm Concentration, ng/dscm, as measured 0.00318
ug/hr Emission Rate, ug/hr 0.369
Total PeCDF
ng Catch, ng 0.104
ng/dscm Concentration, ng/dscm, as measured 0.0327
ug/hr Emission Rate, ug/hr 3.80
123478 HxCDF
ng Catch, ng 0.0355
ng/dscm Concentration, ng/dscm, as measured 0.0112
ug/hr Emission Rate, ug/hr 1.30
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 2 Baghouse Stack
Page 5 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-1
8/27/98
1025-1447
EMISSIONS DATA - Continued
Furans - Continued
123678 HxCDF
ng Catch, ng 0.0116
ng/dscm Concentration, ng/dscm, as measured 0.00365
ug/hr Emission Rate, ug/hr 0.424
234678 HxCDF
ng Catch, ng {0.0031}
ng/dscm Concentration, ng/dscm, as measured {0.000975}
ug/hr Emission Rate, ug/hr {0.113}
123789 HxCDF
ng Catch, ng (0.0009)
ng/dscm Concentration, ng/dscm, as measured (0.000283)
ug/hr Emission Rate, ug/hr (0.0329)
Total HxCDF
ng Catch, ng 0.0684
ng/dscm Concentration, ng/dscm, as measured 0.0215
ug/hr Emission Rate, ug/hr 2.50
1234678 HpCDF
ng Catch, ng 0.0573
ng/dscm Concentration, ng/dscm, as measured 0.0180
ug/hr Emission Rate, ug/hr 2.10
1234789 HpCDF
ng Catch, ng 0.0079
ng/dscm Concentration, ng/dscm, as measured 0,00249
ug/hr Emission Rate, pg/hr 0.289
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 2 Baghouse Stack
Page 6 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-1
8/27/98
1025-1447
EMISSIONS DATA - Continued
Furans - Continued
Total HpCDF
ng Catch, ng 0.0776
ng/dscm Concentration, ng/dscm, as measured 0.0244
ug/hr Emission Rate, ug/hr 2.84
OCDF
ng Catch, ng 0.0672
ng/dscm Concentration, ng/dscm, as measured 0.0211
ug/hr Emission Rate, ug/hr 2.46
Total PCDF
ng Catch, ng 0.6272
ng/dscm Concentration, ng/dscm, as measured 0.197
ug/hr Emission Rate, ug/hr 22.9
Tptal PCDD + PCDF
ng Catch, ng 1.7712
ng/dscm Concentration, ng/dscm, as measured 0.557
ug/hr Emission Rate, ug/hr 64.8
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals
-------
-------
Appendix C.2
Calculations & Computer Summaries
Kiln No. 1
-------
-------
Summary of Method 23 Analytical Results
Air Emissions Screening Test
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 ESP Inlet - Run M23-I-2
Congeners
DIOXINS:
2378 TCDD
Total TCDD
12378 PeCDD
Total PeCDD
123478 HxCDD
123678 HxCDD
123789 HxCDD
Total HxCDD
1234678 HpCDD
Total HpCDD
12346789 OCDD
OCDD+Totals PCDDs
Catches, ng/sample
Back Half
{0.00394}
0.4368
0.0048
0.2756
0.0053
0.0048
0.0138
0.4060
0.0744
0.1352
0.2241
1.4777
Front Half
{0.0027}
0.1156
{0.0030}
0.0900
{0.0024}
0.0044
0.0057
0.0884
{0.0142}
0.0104
0.0212
0.3256
Total
{0.00664}
0.5524
{0.0078}
0.3656
{0.0077}
0.0092
0.0194
0.4944
{0.0886}
0.1456
0.2453
1.8033
FURANS:
2378 TCDF
Total TCDF
12378 PeCDF
23478 PeCDF
Total PeCDF
123478 HxCDF
123678 HxCDF
234678 HxCDF
123789 HxCDF
Total HxCDF
1234678 HpCDF
1 234789 HpCDF
Total HpCDF
12346789 OCDF
OCDF+Totals PCDFs
Total of Totals
0.0439
1.2868
0.0522
0.0322
0.7080
0.0696
0.0418
0.0208
{0.00388}
0.3276
0.1692
0.0294
0.2652
0.2682
2.8558
4.3335
0.0224
0.4980
{0.0488}
0.0340
0.4972
0.0933
0.0701
0.0248
0.0060
0.4996
0.1256
{0.0150}
0.1656
0.0150
1.6754
2.0010
0.0663
1.7848
{0.1010}
0.0662
1.2052
0.1629
0.1119
0.0456
{0.0099}
0.8272
0.2948
{0.0444}
0.4308
0.2832
4.5312
6.3345
{ } Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Air Emissions Screening Test
Martin
Y
AH
Pbar
vm
Tm
^static
Ts
vte
C02
02
N2
cp
AP1/2
Cos(<(i) * Ap
e
Dn
An
Vm(std)
Vm(std)
PS
Bws
vwstd
1-Bwi
Md
Ms
Vs
vsa
A
Qa
Qs
Qs(cmm)
I
Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs
Kiln No. 1 ESP Inlet
Page 1 of 6
RUN NUMBER
RUN DATE
RUN TIME
MEASURED DATA
Meter Box Correction Factor
Avg Meter Orifice Pressure, in. H2O
Barometric Pressure, inches Hg
Sample Volume, ft3
Average Meter Temperature, °F
Stack Static Pressure, inches H2O
Average Stack Temperature, "F
Condensate Collected, ml
Carbon Dioxide content, % by volume
Oxygen content, % by volume
Nitrogen content, % by volume
Pilot Tube Coefficient
Average Square Root Ap, (in. H20)1/2
In Flow Direction
1/2 In Axial Direction
Sample Run Duration, minutes
Nozzle Diameter, inches
CALCULATED DATA
Nozzle Area, ft2
Standard Meter Volume, dscf
Standard Meter Volume, dscm
Stack Pressure, inches Hg
Moisture, % by volume
Standard Water Vapor Volume, ft3
Dry Mole Fraction
Molecular Weight (d.b.), Ib/lb-mole
Molecular Weight (w.b.), Ib/lb-mole
Stack Gas Velocity, ft/s
In Flow Direction
In Axial Direction
Stack Area, ft2
Stack Gas Volumetric flow, acfm
Stack Gas Volumetric flow, dscfm
Stack Gas Volumetric flow, dscmm
Isokinetic Sampling Ratio, %
/ PCDFs
M23-I-2
8/28/98
1615-1955
1.000
1.08
29.67
105.202
91.6
-6.00
852
166.1
16.9
10.6
72.5
0.84
0.8147
0.7193
180.0
0.245
0.00033
100.094
2.834
29.23
7.2
7.818
0.928
31.13
30.18
71.35
63.00
23.58
89,121
32,490
920
108.9
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 ESP Inlet
Page 2 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-2
8/28/98
1615-1955
EMISSIONS DATA
DIOXINS:
2378 TCDD
ng Catch, ng {0.00664}
ng/dscm Concentration, ng/dscm, as measured {0.00234}
ug/hr Emission Rate, pg/hr {0.129}
Total TCDD
ng Catch, ng 0.5524
ng/dscm Concentration, ng/dscm, as measured 0.195
ug/hr Emission Rate, ug/hr 10.8
12378 PeCDD
ng Catch, ng {0.0078}
ng/dscm Concentration, ng/dscm, as measured {0.00275}
pg/hr Emission Rate, pg/hr {0.152}
Total PeCDD
ng Catch, ng 0.3656
ng/dscm Concentration, ng/dscm, as measured 0.129
ug/hr Emission Rate, ug/hr 7.12
123478 HxCDD
ng Catch, ng {0.0077}
ng/dscm Concentration, ng/dscm, as measured {0.00272}
pg/hr Emission Rate, ug/hr {0.150}
123678 HxCDD
ng Catch, ng 0.0092
ng/dscm Concentration, ng/dscm, as measured 0.00325
ug/hr Emission Rate, ug/hr 0.179
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 ESP Inlet
Page 3 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-2
8/28/98
1615-1955
EMISSIONS DATA -Continued
DIOXINS - Continued
123789 HxCDD
ng Catch, ng 0.0194
ng/dscm Concentration, ng/dscm, as measured 0.00684
ug/hr Emission Rate, ug/hr 0.378
Total HxCDD
ng Catch, ng 0.4944
ng/dscm Concentration, ng/dscm, as measured 0174
ug/hr Emission Rate, ug/hr 9.63
1234678 HpCDD
ng Catch, ng {0.0886}
ng/dscm Concentration, ng/dscm, as measured {0.0313}
ug/hr Emission Rate, ug/hr {1-73}
Total HpCDD
ng Catch, ng 0.1456
ng/dscm Concentration, ng/dscm, as measured 0.0514
ug/hr Emission Rate, ug/hr 2.84
O_C_D_B
ng Catch, ng 0.2453
ng/dscm Concentration, ng/dscm, as measured 0.0865
ug/hr Emission Rate, ug/hr 4.78
Total PCDD
ng Catch, ng 1.8033
ng/dscm Concentration, ng/dscm, as measured 0.636
ug/hr Emission Rate, ug/hr 35.1
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 ESP Inlet
Page 4 of 6
RUN NUMBER
RUN DATE
RUNTIME
M23-I-2
8/28/98
1615-1955
EMISSIONS DATA - Continued
FURANS
2378 TCDF
ng Catch, ng 0.0663
ng/dscm Concentration, ng/dscm, as measured 0.0234
ug/hr Emission Rate, ug/hr 1.29
Total TCDF
ng Catch, ng 1.7848
ng/dscm Concentration, ng/dscm, as measured 0.630
ug/hr Emission Rate, ug/hr 34.8
12378 Pe3DF
ng Catch, ng {0.1010}
ng/dscm Concentration, ng/dscm, as measured {0.0356}
ug/hr Emission Rate, ug/hr {1.97}
23478 PeCDF
ng Catch, ng 0.0662
ng/dscm Concentration, ng/dscm, as measured 0.0234
ug/hr Emission Rate, ug/hr 1.29
Total PeCDF
ng Catch, ng 1.2052
ng/dscm Concentration, ng/dscm, as measured 0.425
ug/hr Emission Rate, ug/hr 23.5
123478 HxCDF
ng Catch, ng 0.1629
ng/dscm Concentration, ng/dscm, as measured 0.0575
ug/hr Emission Rate, ug/hr 3 17
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 ESP Inlet
Page 5 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-2
8/28/98
1615-1955
EMISSIONS DATA - Continued
Furans - Continued
123678 HxCDF
ng Catch, ng 0.1119
ng/dscm Concentration, ng/dscm, as measured 0.0395
ug/hr Emission Rate, ug/hr 2.18
234678 HxCDF
ng Catch, ng 0.0456
ng/dscm Concentration, ng/dscm, as measured 0.0161
ug/hr Emission Rate, ug/hr 0.888
123789 HxCDF
ng Catch, ng {0.0099}
ng/dscm Concentration, ng/dscm, as measured {0.00349}
ug/hr Emission Rate, ug/hr {0.193}
Total HxCDF
ng Catch, ng 0.8272
ng/dscm Concentration, ng/dscm, as measured 0.292
ug/hr Emission Rate, ug/hr 16.1
1234678 HpCDF
ng Catch, ng 0.2948
ng/dscm Concentration, ng/dscm, as measured 0.104
ug/hr Emission Rate, ug/hr 5.74
1234789 HpCDF
ng Catch, ng {0.0444}
ng/dscm Concentration, ng/dscm, as measured {0.0157}
ug/hr Emission Rate, ug/hr {0.865}
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 ESP Inlet
Page 6 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-I-2
8/28/98
1615-1955
EMISSIONS DATA - Continued
Furans - Continued
Total HpCDF
ng Catch, ng 0.4308
ng/dscm Concentration, ng/dscm, as measured 0.152
ug/hr Emission Rate, ug/hr 8.39
OCDF
ng Catch, ng 0.2832
ng/dscm Concentration, ng/dscm, as measured 0.0999
ug/hr Emission Rate, ug/hr 5.52
Total PCDF
ng Catch, ng 4.5312
ng/dscm Concentration, ng/dscm, as measured 1.60
ug/hr Emission Rate, ug/hr 88.2
Total PCDD + PCDF
ng Catch, ng 6.3345
ng/dscm Concentration, ng/dscm, as measured 2.23
ug/hr Emission Rate, ug/hr 123
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Air Emissions Screening Test
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 ESP Stack
Page 1 of 6
Y
AH
Pbar
Vm
V,c
CO2
02
N2
Ap
0
Dn
'p
1/2
»m(s(d)
*m(std)
PS
BWS
»wstd
1-BWS
Md
Ms
Vs
A
Qa
Qs
RUN NUMBER
RUN DATE
RUN TIME
M23-O-2
8/28/98
1615-1958
MEASURED DATA
Meter Box Correction Factor 1.021
Avg Meter Orifice Pressure, in. H20 1.64
Barometric Pressure, inches Hg 29.67
Sample Volume, ft3 125.361
Average Meter Temperature, °F 91.9
Stack Static Pressure, inches H2O -0.68
Average Stack Temperature, °F 699
Condensate Collected, ml 196.0
Carbon Dioxide content, % by volume 16.7
Oxygen content, % by volume 10.5
Nitrogen content, % by volume 72.8
Pitot Tube Coefficient 0.84
Average Square Root Ap, (in. H20)1/2 0.9124
Sample Run Duration, minutes 180.0
Nozzle Diameter, inches 0.252
CALCULATED DATA
Nozzle Area, ft2 0.00035
Standard Meter Volume, dscf 121.868
Standard Meter Volume, dscm 3.451
Stack Pressure, inches Hg 29.62
Moisture, % by volume 7.0
Standard Water Vapor Volume, ft3 9.226
Dry Mole Fraction 0.930
Molecular Weight (d.b.), Ib/lb-mole 31.09
Molecular Weight (w.b.), Ib/lb-mole 30.17
Stack Gas Velocity, ft/s 74.6
Stack Area, ft2 20.97
Stack Gas Volumetric flow, acfm 93,881
Stack Gas Volumetric flow, dscfm 39,332
Stack Gas Volumetric flow, dscmm 1,114
Isokinetic Sampling Ratio, % 104.2
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 ESP Stack
Page 2 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-2
8/28/98
1615-1958
EMISSIONS DATA
DIOXINS:
2378 TCDD
ng Catch, ng 0.0022
ng/dscm Concentration, ng/dscm, as measured 0.000638
(jg/hr Emission Rate, ug/hr 0.0426
Total TCDD
ng Catch, ng 0.293
ng/dscm Concentration, ng/dscm, as measured 0.0849
ug/hr Emission Rate, ug/hr 5.67
12378PeCDD
ng Catch, ng 0.0021
ng/dscm Concentration, ng/dscm, as measured 0.000609
pg/hr Emission Rate, ug/hr 0.0407
Total PeCDD
ng Catch, ng 0.0848
ng/dscm Concentration, ng/dscm, as measured 0.0246
ug/hr Emission Rate, ug/hr 1.64
123478 HxCDD
ng Catch, ng {0.0022}
ng/dscm Concentration, ng/dscm, as measured {0.000638}
|jg/hr Emission Rate, ug/hr {0.0426}
123678 HxCDD
ng Catch, ng 0.0058
ng/dscm Concentration, ng/dscm, as measured 0.00168
ug/hr Emission Rate, pg/hr 0.112
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 ESP Stack
Page 3 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-2
8/28/98
1615-1958
EMISSIONS DATA -Continued
DIOXINS - Continued
123789 HxCDD
ng Catch, ng {0.0064}
ng/dscm Concentration, ng/dscm, as measured {0.00185}
ug/hr Emission Rate, ug/hr {0.124}
Total HxCDD
ng Catch, ng 0.0668
ng/dscm Concentration, ng/dscm, as measured 0.0194
ug/hr Emission Rate, ug/hr 1.29
1234678 HpCDD
ng Catch, ng 0.0644
ng/dscm Concentration, ng/dscm, as measured 0.0187
ug/hr Emission Rate, (jg/hr 1.25
Total HpCDD
ng Catch, ng 0.116
ng/dscm Concentration, ng/dscm, as measured 0.0336
ug/hr Emission Rate, ug/hr 2.25
OCDD
ng Catch, ng 0.256
ng/dscm Concentration, ng/dscm, as measured 0.0742
ug/hr Emission Rate, ug/hr 4.96
Total PCDD
ng Catch, ng 0.8166
ng/dscm Concentration, ng/dscm, as measured 0.237
ug/hr Emission Rate, ug/hr 15.8
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 ESP Stack
Page 4 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-2
8/28/98
1615-1958
EMISSIONS DATA - Continued
FURANS
2378 TCDF
ng Catch, ng 0.0097
ng/dscm Concentration, ng/dscm, as measured 0.00281
ug/hr Emission Rate, ug/hr 0.188
Total TCDF
ng Catch, ng 0.176
ng/dscm Concentration, ng/dscm, as measured 0.0510
ug/hr Emission Rate, ug/hr 3.41
12378 PeCDF
ng Catch, ng 0.0049
ng/dscm Concentration, ng/dscm, as measured 0.00142
ug/hr Emission Rate, pg/hr 0.0949
23478 PeCDF
ng Catch, ng 0.0073
ng/dscm Concentration, ng/dscm, as measured 0.00212
ug/hr Emission Rate, pg/hr 0.141
Total PeCDF
ng Catch, ng 0.0692
ng/dscm Concentration, ng/dscm, as measured 0.0201
pg/hr Emission Rate, ug/hr 1.34
123478 HxCDF
ng Catch, ng 0.0168
ng/dscm Concentration, ng/dscm, as measured 0.00487
ug/hr Emission Rate, ug/hr 0.325
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EM PC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 ESP Stack
Page 5 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-2
8/28/98
1615-1958
EMISSIONS DATA - Continued
Furans - Continued
123678 HxCDF
ng Catch, ng 0.0108
ng/dscm Concentration, ng/dscm, as measured 0.00313
ug/hr Emission Rate, ug/hr 0.209
234678 HxCDF
ng Catch, ng 0.0136
ng/dscm Concentration, ng/dscm, as measured 0.00394
ug/hr Emission Rate, ug/hr 0.263
123789 HxCDF
ng Catch, ng 0.0014
ng/dscm Concentration, ng/dscm, as measured 0.000406
Mg/hr Emission Rate, ug/hr 0.0271
Total HxCDF
ng Catch, ng 0.0908
ng/dscm Concentration, ng/dscm, as measured 0.0263
ug/hr Emission Rate, ug/hr 1.76
1234678 HpCDF
ng Catch, ng 0.0680
ng/dscm Concentration, ng/dscm, as measured 0.0197
ug/hr Emission Rate, ug/hr 1.32
1234789 HpCDF
ng Catch, ng {0.0157}
ng/dscm Concentration, ng/dscm, as measured {0.00455}
ug/hr Emission Rate, ug/hr {0.304}
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
Summary of Stack Gas Parameters and Test Results
Martin Marietta Magnesia Specialties - Woodville, Ohio
US EPA Test Method 23 - PCDDs / PCDFs
Kiln No. 1 ESP Stack
Page 6 of 6
RUN NUMBER
RUN DATE
RUN TIME
M23-O-2
8/28/98
1615-1958
EMISSIONS DATA - Continued
Furans - Continued
Total HpCDF
ng Catch, ng 0.0844
ng/dscm Concentration, ng/dscm, as measured 0.0245
ug/hr Emission Rate, ug/hr 1.63
OCDF
ng Catch, ng 0.0566
ng/dscm Concentration, ng/dscm, as measured 0.0164
ug/hr Emission Rate, ug/hr 1.10
Total PCDF
ng Catch, ng 0.4770
ng/dscm Concentration, ng/dscm, as measured 0.138
ug/hr Emission Rate, ug/hr 9.24
Total PCDD + PCPF
ng Catch, ng 1.2936
ng/dscm Concentration, ng/dscm, as measured 0.375
ug/hr Emission Rate, |jg/hr 25.0
() Not Detected. Value shown is the detection limit and is included in totals.
{} Estimated Maximum Possible Concentration. EMPC values are included in totals.
-------
-------
APPENDIX D
EXAMPLE EQUATIONS
-------
-------
Nomenclature
y
AH
Pbar
v
•*• static
ts
Vic
CO2
02
N2
CP
Api/2
0
Dn
An
^m(std)
v
v m(std)m3
PS
Bws
Vw(std)
1-Bws
Md
Ms
Vs
A
Qa
Qs(std)
Qs(cmm)
I
ng/dscm
ng/dscm@7%O2
ug/hr
Ib/hr
Meter Box Correction Factor
Avg Meter Orifice Pressure, in. H2O
Barometric Pressure, inches Hg
Sample Volume, ft3
Average Meter Temperature, °F
Stack Static Pressure, inches H2O
Average Stack Temperature, °F
Condensate Collected, ml
Carbon Dioxide content, % by volume
Oxygen content, % by volume
Nitrogen content, % by volume
Pitot Tube Coefficient
Average Square Root Ap, (in. H2O)1/2
Sample Run Duration, minutes
Nozzle Diameter, inches
Nozzle Area, ft2
Standard Meter Volume, dscf
Standard Meter Volume, dscm
Stack Pressure, inches Hg
Moisture, % by volume
Standard Water Vapor Volume, ft3
Dry Mole Fraction
Molecular Weight, dry, lb/lb»mole
Molecular Weight, wet, lb/lb*mole
Stack Gas Velocity, ft/s
Stack Area, ft2
Stack Gas Volumetric flow, acfm
Stack Gas Volumetric flow, dscfm
Stack Gas Volumetric flow, dscmm
Isokinetic Sampling Ratio, %
Concentration, ng/dscm
Concentration, ng/dscm adjusted to 7 % oxygen
Emission Rate, ug/hr
Concentration, parts per million, dry
Concentration, parts per million, wet
Emission Rate, pounds per hour
-------
Example Calculations
Martin Marietta Specialties Company - Woodville, Ohio
US EPA Method 23-PCDDs/PCDFs
(Using Data from Run M23-O-1)
Note: Discrepancies may exist between the computer generated reported results, which use
more significant figures, and the values manually calculated from the displayed values.
1. Volume of dry gas sampled corrected to standard conditions of 68 °F, 29.92 in. Hg, ft3.
AH
13.6
460 + t.
m(std)
14.553)(1.021)
29.57
1.33
13.6
460 + 85.24
= "2.261 dscf
2. Volume of dry gas sampled corrected to standard conditions of 68°F, 29.92 in. Hg, m3.
= Vm(std)(0.028317)
= (112.261)(0.028317)
Vm(std)m3 - 3.179 dscm
3. Volume of water vapor at standard conditions, ft3.
= 0.04707V
1C
Vw(std) = (0.04707)(116.1)
Vw(std) = 5.465 scf
-------
4. Moisture content in stack gas, as measured.
Bws = ^ ^?r—r (100)
5.465
112.261+ 5.465
Bws = ,,„/;".,„ (100)
= 4.64
5. Dry molecular weight of stack gas, Ib/lb-mol.
Md = 0.44(%C02) + 0.32 (%O2) + 0.28(%N2+%CO)
M = 0.44(10.7) + 0.32(14.8) + 0.28(74.5+0)
Md = 30.3 Ib/lb-mol
6. Molecular weight of stack gas, Ib/lb-mol.
Ms = Md(l ~BWS/100) + 18(BWS/100)
Ms = 30.3(1-4.64/100) + 18(4.64/100)
Ms - 30.3(0.9536) + 18(0.0464)
Ms - 28.894 + 0.835
Ms = 29.73 Ib/lb-mol
-------
7. Absolute stack gas pressure, in. Hg.
p
p = p + static
, bar
P = 29.57 + -
13.6
Ps = 29.55 inches Hg
8. Stack velocity at stack conditions, fps.
vs = 85.49 Cp vv_,/avg
\
ts+460
v = (85.49) (0.84) (0.6849)
(390.9 + 460)
(29.73)(29.55)
vs = 48.4 fps
9. Isokinetic Variation.
(V
m(5td)
(17.32)
(vs)(Dn2)(6)(Ps)(l-Bws/100)
(112.261) (390.9+460) (17.32)
(48.4) (0.257)2 (180) (29.55) (1-4.64/100)
= 102.1
-------
10. Stack gas volumetric flow rate at stack conditions, acfm.
Qa = (60) (A) (vs)
Qa = (60) (40.34) (48.4)
Qa = 117,145 acfm
11. Dry stack gas volumetric flow rate at standard conditions, dscfm.
= 17.64
^ '>,
Q- 7T«n 0 -
- (17.64) (1.7,145) 39(460 (1 -4.64/100)
Q*id) = 68,428 dscftn
12. Dry stack gas volumetric flow rate at standard conditions, dscmm.
0-028317
s(cmm)
(68'428) (0-028317)
QS(cmm) = 1,938 dscmm
-------
13. Pollutant (23 78 TCDD) concentration, ng/dscm.
ng/dscm = -—^
m(std)m
,, 0.0027
ng/dscm =
3.179
ng/dscm = 0.000849 ng/dscm
14. Pollutant (2378 TCDD) concentration, ng/dscm adjusted to 7 percent oxygen.
ng/dscm@7%02 = (ng/dscm) (2°'9 " 7)
° 2 (20.9 - %O2)
ng/dscm@7%02 = (0.000849) 13'9
(20.9 - 14.8)
ng/dscm@7%02 = 0.00194 ng/dscm@7%O2
15. Pollutant (2378 TCDD) emission rate, ng/hr.
(60) (ng)
=
to. (60) (0.0027) (68,428)
(103) (112.261)
Mg/hr = 0.0987 jug/hr
-------
16. CEM Pollutant (HC1) Concentration, pprr^
ppmd = ppmw / (1 -BJ100)
ppmd = 23.4 /(I-4.6/100)
ppmd = 24.5 ppmd
17. CEM Pollutant (HC1) Emission Rate, lb/hr.
(60) (ppmd) (Fwt)
lb/hr =
(106) (385.3)
lb/hr _ (60) (24.5) (36.47) (68,428)
(106) (385.3)
lb/hr = 9.54 lb/hr
18. Method 3 A Calibration Error, %. Values are for the oxygen, mid range.
Cal Err % = (100) (Instrument Response - Calibration Gas Concentration) / Span
Cal Err % = (100) (11.2 - 11.1) / 25
Cal Err % = 0.4 %
-------
19. Method 3 A System Bias Check, %. Values are for the oxygen, final upscale check.
Sys Bias % = (100) (Instr. ResponseCAL ERR - Instr. ResponsesYS CAL) / Span
Sys Bias % = (100) (18.9 - 18.9) / 25
Sys Bias % = 0.0 %
20. Method 3A Drift, %. Values are for the oxygen, upscale check.
Drift % = (100) (Instr. ResponseFINAL SYS CAL - Instr. Response^^ SYS CAL) / Span
Drift % = (100) (18.9 - 18.7) / 25
Drift % - 0.8 %
21. Method 3 A Zero & Upscale Sampling System Check Adjustment. Values are for
oxygen, %.
gas
ma
19 2
C c =(14.5-0.15)
as k
c ..
gas M8.8-0.15
Cgas = 14.8 %
Where: Cgas = Adjusted gas concentration, ppm or %
Cavg = Average unadjusted gas concentration from analyzer
C0 = Average of zero gas initial & final system cal. bias check
Cma = Actual concentration of the upscale calibration gas
Cm = Average of upscale initial & final system cal. bias check
-------
22. Method 322 Zero & Upscale System Bias Checks Adjustment To Analyzer HCI
Average.
gas
(0.959 + 0.868) [(215 ( °'62))] + (-0.3 + 2.92)
= _ 0.997 _
gas 2
Cgas = 23.4 ppm
Where: bc = Y-intercept of the calibration least-squares line.
bf = Y-intercept of the final bias check 2-point line.
b, = Y-intercept of the initial bias check 2-point line.
Cgas = Effluent gas concentration, as measured, ppm.
Cavg = Average gas concentration indicated by gas analyzer, as
measured, ppm.
mc = Slope of the calibration least-squares line.
mf = Slope of the final bias check 2-point line.
nij = Slope of the initial bias check 2-point line.
-------
23. Method 322 HCI Matrix Spike Recovery, Pretest
In Situ HCI Expected (Predicted) Spike Concentration, ppm.
CE = (Cs) (Q./QJ ^(S^d-CQ./QJ)
CE = (310) (1.0/10.3) + (23.4)(1-(1.0/10.3))
CE = 51.2 ppm
Where: CE = Recovery efficiency of spiked HCI, %
Cs = Concentration of HCI in spike gas, ppm
Qs = Spike gas (dilution) flow rate, 1pm
Qt = Sample gas (unspiked) flow rate, 1pm
Qtot = (Qs+Qt) Sum of the spike gas and the sample flow rates, 1pm
Su = Concentration of unspiked (native) sample gas
In Situ HCI Spike Recovery Efficiency. %.
%R = (SM/CE)(100)
%R = (56.6/51.2)(100)
%R = 111 %
Where: %R = Efficiency of recovery of spiked HCI, %
SM = Observed concentration of spiked + sample gas, ppm
CE = Expected or predicted concentration of HCI in spike gas, ppm
-------
APPENDIX E
QA/QC DATA
-------
-------
1of2
PACIRC ENVIRONMENTAL SERVICES, INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919)941-0333 FAX: (919) 941-0234
Date:
9/1/97
i Hg 30.16
jrCalibratioirFormf
Calibrator Tom McDonald
Meter Box No.: MB-10
Reference Meter Correction Factor. 1.0049 (8/28/96)
AH = 0.5
Trial
1
2
3
Trial
Duration
(min)
19
19
19
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
994.409
1001.982
1009.513
Final
(ft3)
1001.982
1009.513
1017.050
Net
(ft3)
7.573
7.531
7.537
Meter Temperatures
Initial, Inlet
CF)
74
77
80
Final, Inlet
CF)
78
80
81
Avg. Inlet
CF)
76
78.5
80.5
Initial, Outlet
CF)
73
75
77
inal, Outle
(°F)
75
77
78
Avg. Outlet
(T)
74
76
77.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
600.523
608.185
615.801
Final
(ft3)
608.185
615.801
623.430
Net
(ft3)
7.662
7.616
7.629
Meter Temperature
Initial
CF)
72
74
76
Final
CF)
74
76
77
Avg.
CF)
73
75
76.5
Meter Box
Correction
Factor
Y
1.019
1.019
1.021
Reference
Orifice Press
AHQ
(in. H2O)
1.71
1.74
1.74
AH = 0.75
Trial
1
2
3
Trial
Duration
(min)
15
15
15
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
17.220
24.350
31.563
Final
(ft3)
24.350
31.563
38.780
Net
-_$!!_
7.130
7.213
7.217
Meter Temperatures
Initial, Inlet
CF)
80
82
82
Final, Inlet
CF)
82
83
83
Avg. Inlet
CF)
81
82.5
82.5
Initial, Outlet
CF)
78
79
79
inal, Outle
CF)
79
79
81
Avg. Outlet
CF)
78.5
79
80
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
623.622
630.833
638.141
Final
(ft3)
630.833
638.141
645.425
Net
(ft3)
7.211
7.308
7.284
Meter Temperature
Initial
CF)
77
78
78
Final
CF)
77
78
78.5
Avg.
CF)
77
78
78.25
Meter Box
Correction
Factor
Y
1.020
1.021
1.018
Reference
Orifice Press
AH0
(in. H2O)
1.82
1.77
1.79
AH= 1.0
Trial
1
2
3
Trial
Duration
(min)
10
10
10
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
38.946
44.490
50.050
Final
(ft3)
44.490
50.050
55.585
Net
(ft3)
5.544
5.560
5.535
Meter Temperatures
Initial, Inlet
CF)
81
83
84
Final, Inlet
CF)
83
84
84
Avg. Inlet
CF)
82
83.5
84
Initial, Outlet
CF)
80
80
80
inal, Outle
CF)
80
80
80
Avg. Outlet
CF)
80
80
80
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft5)
645.614
651.220
656.829
Final
(ft3)
651.22
656.829
662.435
Net
(ft3)
5.606
5.609
5.606
Meter Temperature
Initial
CF)
78
78
78
Final
CF)
78
78
78
Avg.
CF)
78
78
78
Meter Box
Correction
Factor
Y
1.019
1.018
1.023
Reference
Orifice Press
AH0
(in. H2O)
1.79
1.78
1.78
10 09017.XLS
Printed: 6/11/98
-------
2 of 2
PACIFIC ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
AH = 2.0
Trial
1
2
3
Trial
Duration
(min)
10
10
10
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
55.868
63.519
71.182
Final
(ft3)
63.519
71.182
78.845
Net
(ft3)
7.651
7.663
7.663
Meter Temperatures
Initial, Inlet
CF)
84
86
86
Final, Inlet
(°F)
86
86
87
Avg. Inlet
CF)
85
86
86.5
Initial, Outlet
CF)
81
81
81
inal, Outle
CF)
81
81
81
Avg. Outlet
CF)
81
81
81
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
662.729
670.472
678.244
Final
(ft3)
670.472
678.244
686.010
Net
(ft3)
7.743
7.772
7.766
Meter Temperature
Initial
CF)
78
78
78
Final
CF)
78
78
78
Avg.
CF)
78
78
78
Meter Box
Correction
Factor
r
1.021
1.025
1.024
Reference
Orifice Press
AHe
(in. H2O)
1.87
1.86
1.86
AH = 4.0
Trial
1
2
3
Trial
Duration
(min)
8
8
8
Dry Gas Meter MB-10
Gas Volume
Initial
(ft3)
79.058
86.620
94.185
Final
(ft3)
86.620
94.185
101.754
Net
(ft3)
7.562
7.565
7.569
Meter Temperatures
Initial, Inlet
CF)
85
87
89
Final, Inlet
(8F)
88
89
89
Avg. Inlet
CF)
86.5
88
89
Initial, Outlet
CF)
81
82
82
inal, Outle
CF)
82
82
82
Avg. Outlet
CF)
81.5
82
82
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
686.208
693.895
701.558
Final
(ft3)
693.895
701.558
709.244
Net
(ft3)
7.687
7.663
7.686
Meter Temperature
Initial
CF)
78
78
78
Final
CF)
78
78
78
Avg.
CF)
78
78
78
Meter Box
Correction
Factor
T
1.023
1.021
1.025
Reference
Orifice Press
AH0
(in. H2O)
2.44
2.45
2.43
Calibration Results
AH |
0.50
0.75
1.0
2.0
4.0
* I
1.020
1.020
1.020
1.023
1.023
AHe |
1.73
1.79
1.78
1.86
2.44
Dry Gas Meter MB-10 on 09/01/97
Meter Box Calibration Factor
Meter Box Reference Orifice Pressure
1.021
1.92
10 09017.XLS
Printed: 6/11/98
-------
O PACIFIC ENVIRONMENTAL SERVICES, INC.
Posttest Dry Gas Meter Calibration Form (English Units)
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919)941-0333 FAX: (919) 941-0234
Pretest Calibration Factor
System Vacuum Setting, (in Hg)
Reference Meter Correction Factor
Date: 9/8/98 Pbar, in Hg
1.021
11
1.008
29.75 Calibrator: jwb
Meter Box No.
MB-10
AH= 1.41
' Trial
1
2
3
Duration
(min)
10
10
10
Dry Gas Meter
Initial
(ft3)
175.033
182.466
189.866
Final
(ft3)
182.466
189.866
197.28
Net
(ft3)
7.433
7.400
7.414
Initial, Inlet
(°F)
73
75
77
Final, Inle
(°F)
75
77
78
Avg. Inlet
(°F)
74
76
77.5
Initial, Outlet
(°F)
73
74
74
Final, Outlet
(°F)
74
74
75
Avg. Outlet
(»F)
73.5
74
74.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
655.378
662.858
670.293
Final
(ft3)
662.858
670.293
677.758
Net
(ft3)
7.480
7.435
7.465
Meter Temperature
Initial
(°F)
73
73
74
Final
<°F)
73
74
74
Avg.
(°F)
73
73.5
74
Meter Box
Correction
Factor
Y
1.012
1.012
1.015
Reference
Orifice Press
AHffl
(in. H2O)
1.42
1.44
1.43
10 09017
PostTest09-08-98
-------
1of2
PACIFIC ENVIRONMENTAL SERVICES. INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Date:
Pt>ar. in Hg
^^.sjm&pyfttfffi^^ -••• :-^^^,mm
10/13/97 Calibrator. MMD
29.86
Meter Box No.:
Reference Meter Correction Factor
RMB-15
1.0077
(10/5/97)
AH = 0.5
Trial
1
2
3
Trial
Duration
(min)
15
13
12
Dry Gas Meter RMB-15
Gas Volume
Initial
(ft3)
48.833
54.722
59.821
Final
^
54.722
59.821
64.544
Net
^
5.889
5.099
4.723
Meter Temperatures
Initial, Inlet
CF)
73
78
80
Final, Inlet
CF)
77
80
83
Avg. Inlet
CF)
75
79
81.5
Initial, Outlet
CF)
72
74
76
inal, Outle
CF)
75
75
77
Avg. Outlet
CF)
73.5
74.5
76.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
34.044
39.829
44.843
Final
(ft3)
39.829
44.843
49.463
Net
(ft3)
5.785
5.014
. 4.620
Meter Temperature
Initial
CF)
70
71
71
Final
(°F)
70
70
71
Avg.
CF)
70
70.5
71
Meter Box
Correction
Factor
Y
0.997
1.001
0.999
Reference
Orifice Press
AH0
(in. H2O)
1.86
1.86
1.86
AH = 0.75
Trial
1
2
3
Trial
Duration
(min)
8
21
13
Dry Gas Meter RMB-15
Gas Volume
Initial
(ft3)
69.524
73.327
83.322
Final
(ft3)
73.327
83.322
89.571
Net
^
L 3.803
9.995
6.249
Meter Temperatures
Initial, Inlet
CF)
74
77
78
Final, Inlet
CF)
74
83
82
Avg. Inlet
(°F)
74
80
80
Initial, Outlet
CF)
77
76
78
inal, Outle
CF)
75
77
74
Avg. Outlet
CF)
76
76.5
76
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
54.365
58.108
67.912
Final
(ft3)
58.108
67.912
74.036
Net
(ft3)
3.743
9.804
6.124
Meter Temperature
Initial
CF)
72
72
73
Final
CF)
72
73
73
Avg.
CF)
72
72.5
73
Meter Box
Correction
Factor
Y
0.996
0.997
0.995
Reference
Orifice Press
AH0
(in. H20)
1.91
1.91
1.88
AH = 1.0
Trial
1
2
3
Trial
Duration
(min)
19
8
16
Dry Gas Meter RMB-15
Gas Volume
Initial
(ft3)
89.777
100.214
104.614
Final
(ft3)
100.214
104.614
113.404
Net
(ft3)
10.437
4.400
8.790
Meter Temperatures
Initial, Inlet
CF)
82
85
85
Final, Inlet
CF)
86
87
88
Avg. Inlet
CF)
84
86
86.5
Initial, Outlet
CF)
79
81
82
inal, Outle
CF)
80
81
83
Avg. Outlj
CF)
79.5
81
82.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
74.254
84.440
88.743
Final
(ft3)
84.44
88.743
97.302
Net
(ft3)
10.186
4.303
8.559
Meter Temperature
Initial
CF)
73
73
73
Final
CF)
73
73
73
Avg.
CF)
73
73 |
73
Meter Box
Correction
Factor
Y
0.997
1.002
1.000
Reference
Orifice Press
AH0
(in. H2O)
1.92
1.91
1.92
15 10137.XLS
Printed: 6/11/9
-------
2 of 2
PACIFIC ENVIRONMENTAL SERVICES, INC.
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
. (919) 941-0333 FAX: (919) 941-0234
AH = 2.0
Trial
1
2
3
Trial
Duration
(min)
9
7
7
DryGasMeterRMB-15
Gas Volume
Initial
(ft3)
13.863
20.884
26.372
Final
(ft3)
20.884
26.372
31.871
Net
(ft3)
7.021
5.488
5.499
Meter Temperatures
Initial, Inlet
CF)
87
90
90
Final, Inlet
CF)
91
92
93
Avg. Inlet
CF)
89
91
91.5
Initial, Outlet
(°F)
83
84
84
inal, Outle
CF)
83
84
84
Avg. Outlet
CF)
83
84
84
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
97.749
104.591
109.929
Final
(ft3)
104.591
109.929
115.281
Net
(ft3)
6.842
5.338
5.352
Meter Temperature
Initial
CF)
73
73
73
Final
CF)
73
73
74
Avg.
CF)
73
73
73.5
Meter Box
Correction
Factor
Y
1.001
1.002
1.002
Reference
Orifice Press
AHg
(in. H2O)
1.90
1.89
1.88
AH = 4.0
Trial
1
2
Trial
Duration
(min)
6.5
15.5
DryGasMeterRMB-15
Gas Volume
Initial
(ft3)
32.371
39.484
Final
(ft3)
39.484
56.484
Net
(ft3)
7.113
17.000
Meter Temperatures
Initial, Inlet
CF)
92
93
Final, Inlet
CF)
94
97
Avg. Inlet
CF)
93
95
Initial, Outlet
CF)
85
87
inal, Outle
CF)
85
87
Avg. Outlet
CF)
85
87
Trial
1
2
Reference Meter
Gas Volume
Initial
(ft3)
15.775
22.732
Final
(ft3)
22.732
39.287
Net
(ft3)
6.957
16.555
Meter Temperature
Initial
CF)
73
73
Final
CF)
74
73
Avg.
CF)
73.5
73
Meter Box
Correction
Factor
Y
1.004
1.005
Reference
Orifice Press
AH0
(in. H2O)
1.92
1.92
Calibration Results
AH
0.50
0.75
1.0
2.0
4.0
Y
0.999
0.996
1.000
1.002
1.004
AHe
1.86
1.90
1.92
1.89
1.92
Dry Gas Meter RMB-15 on 10/13/97
Meter Box Calibration Factor
Meter Box Reference Orifice Pressure
• Two Trial Average
1.000
1.90
15 10137.XLS
Printed: 6/11/98
-------
PACIFIC ENVIRONMENTAL SERVICES, INC.
Posttest Dry Gas Meter Calibration Form (English Units)
Central Park West
5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234
Pretest Calibration Factor
System Vacuum Setting, (in Hg)
Reference Meter Correction Factor
Date: 9/8/98 Pbar, in Hg
1.000
14
1.008
29.75 Calibrator:
JWB
Meter Box No.
RMB-15
AH= 1.41
Trial
1
2
3
Duration
(min)
10
10
10
Dry Gas Meter
Initial
(ft3)
709.71
716.383
722.394
Final
(ft3)
716.383
722.394
729.765
Net
(ft3)
6.673
6.011
7.371
Initial, Inlet
(°F)
71
72
74
Final, Inle
<°F)
72
74
75
Avg. Inlet
(°F)
71.5
73
74.5
Initial, Outlet
(°F)
71
73
71
Final, Outlet
<°F)
71
71
72
Avg. Outlet
<°F)
71
72
71.5
Trial
1
2
3
Reference Meter
Gas Volume
Initial
(ft3)
634.511
641.145
647.118
Final
(ft3)
641.145
647.118
654.408
Net
(ft3)
6.634
5.973
7.290
Meter Temperature
Initial
(°F)
71
71
71
Final
(°F)
71
71
71
Avg.
(°F)
71
71
71
Meter Box
Correction
Factor
Y
0.999
1.001
0.997
Reference
Orifice Press
AH0
(in. H20)
1.80
2.22
1.49
PostTeF'^9-8-98
'14/98
-------
REFERENCE METER CALIBRATION
ENGLISH REFERENCE METER UNITS
Barometric Pressure
Meter Yw
K ( deg R/ inches Kg)
Time Pressure
(nin) (in. H20)
6.00 -6.60
24.00 -6.60
8.00 -6.60
10.00
35.00
16.50
12.50
14.00
58.50
16.50
42.00
66.50
15.00
13.50
35.00
-4.00
-4.00
-4.00
-2.80
-2.80
-2.80
-1.60
-1.60
-1.60
-1.00
•1.30
-1.30
29.73
1.00000
17.64
DGM Serial * 6841495
Date 8/28/96
Filename: F:\DATAFILE\CALIBRAT\CAL MENU.DSK\DGM REF.
Revised: 06/08/95
Dry Gas Meter (DGM) Temperature Uet Test Meter (UTM) OGM Coefficient Flow
Meter Readings Volume Initial Final Meter Readings Volume Temp Coefficient Variation Rate
Initial Final (cubic feet) (deg F) (deg F) Initial Final (cubic feet) (deg F) Yds Yds-(Avg.Yds) (CFM)
374.451 381.901 7.450 73.0 76.0 496.S72 503.987 7.415 77.0 1.007 -0.004 1.207
381.901 411.424 29.523 74.0 76.0 503.987 533.471 29.484 77.0 1.011 0.000 1.200
411.424 421.233 9.809 76.0 76.0 533.471 543.279 9.808 77.0 1.015 0.004 1.197
Max Yds - Min Yds -0.007489914 Must be no greater than
Average Yds '1.011058546 Must be between 0.95 to
421.233
430.675
464.147
479.992
489.698
500.594
574.496
590.619
614.123
651.520
657.572
663.065
430.675
464.147
479.992
489.698
500.594
546.063
583.672
614.123
651.520
657.572
663.065
677.274
9.442
33.472
15.845
9.706
10.896
45.469
9.176
23.504
37.397
6.052
5.493
14.209
76.0
77.0
77.0
78.0
78.0
78.0
79.0
80.0
80.0
81.0
82.0
82.0
77.0 543.279
77.0 552.761
78.0 585.965
78.0 601.625
78.0 611.270
79.0 622.061
79.0 695.390
80.0 711.429
81.0 734.785
32.0 771.901
82.0 777.994
32.0 783.400
552.761
585.965
601.625
611.270
622.061
667.125
704.530
734.785
771.901
777.994
783.400
797.515
9.482 77.0
33.204 77.0
15.660 77.0
Max Yds - Min Yds *0
Average Yds '1
9.645 77.0
10.791 77.0
45.064 77.0
Max Yds - Min Yds •
Average Yds '1
1.013
1.002
0.999
.014197179 Must
.004786738 Must
1.003
0.999
1.001
0.00338145 Must
.000808891 Must
9.140 77.0 1.004
23.356 77.0 1.003
37.116 77.0 1.003
Max Yds - Min Yds »0. 000835063 Must
Average Yds »1. 003302205 Must
6.393 78.0
5.*06 78.0
14.115 78.0
1.016
0.994
1.003
> *n^« **^* ^n* u.,_ _
0.009 0.926
-0.003 0.926
-0.006 0.927
be no greater than
be between 0.95 to
0.002 0.754
-0.002 0.753
0.000 0.752
be no greater than
be between 0.95 to
0.000 0.541
0.000 0.543
0.000 0.545
be no greater than
be between 0.95 to
0.011 0.396
•0.010 0.390
-0.001 0.393
0.030
1.05
0.030
1.05
0.030
1.05
0.030
1.35
i rvzn
Max 'as - Min fds *0. 021724294 Must be no greater than 0.030
Average Yds «1. 004344616 Must be between 0.95 to 1.35
Overall Average fds = 1.004860199
! certify that the above Dry Gas Meter was calibrated in accordance *ith s.?.A. Method 5 , paragraph 7.1 ;CFR 40 Parr 60,
•jsing the Precision Wet Test Meter « 11AE6, vrtiich in -rurn MS ;alibrated -jsing the American Sell Prover 4 3785,
certificate 4 ?107. which is Traceable to the National Jureau af Stanoaros (H.i.S.T.;.
Signature • g^.
Date
-?/.
//
-------
REFERENCE METER CALIBRATION
ENGLISH REFERENCE METER UNITS
Barometric Pressure 29.82
Meter YM 1.00000
K ( deg R/ inches Kg) 17.64
Dry Gas Mater
Time Pressure Meter Readings
(min) (in. H20)
20.50
5.00
13.00
8.50
27.50
26.50
14.00
15.50
12.50
23.50
17.50
15.00
32.00
35.C'>
15.00
-8.000
-8.000
•8.000
-5.400
-5.400
-5.400
-3.800
-3.800
-3.800
-2.400
-2.400
-2.400
-1.600
-1.600
-1.600
Initial
742
768
774
790
798
825
850
861
953
962
976
986
995
1008
1022
.719
.193
.402
.575
.821
.423
.983
.899
.219
.970
.611
.740
.413
.596
.986
DGH Serial * 6841495
bate 10/5/97 Filename: F:\DATAFILE\CALIBRAT\CAL MENU.DSKNDGM REF,
Revised: 06/08/95
(DGM) Temperature Wet Test Meter (UTM) DGM Coefficient Flow
Volume Initial Final Meter Readings Volume Temp Coefficient Variation Rate
Final (cubic feet) (deg F) (deg F)
768.193
774.402
790.575
798.821
825.423
850.983
861.899
873.960
962.970
976.611
986.740
995.413
1008.596
1022.986
1029.158
25.474
6.209
16.173
8.246
26.602
25.560
10.916
12.061
9.751
13.641
10.129
8.673
13.183
14.390
6.172
78.0
79.0
79.0
79.0
79.0
80.0
81.0
81.0
86.0
66.0
87.0
87.0
88.0
89.0
89.0
79.0
79.0
79.0
79.0
80.0
81.0
81.0
82.0
86.0
87.0
87.0
88.0
89.0
89.0
90.0
Initial
671.890
697.180
703.325
719.309
727.485
753.809
779.025
789.820
879.651
889.205
902.599
912.545
921.069
934.025
948.175
Final (cubic feet) (deg F) Yds Yds-(Avo.Yds) (CFM)
697.180
703.325
719.309
727.485
753.809
779.025
789.820
801.740
889.205
902.599
912.545
921.069
934.025
948.175
954.255
25.290 77.0 1.016 0.002 1.208
6.145 77.0 1.013 0.000 1.204
15.984 77.0 1.012 -0.002 1.204
Max Yds - Mln Yds -0.003626886 Must be no greater than 0
Average Yds -1.013636253 Must be between 0.95 to 1
8.176 77.0 1.009 0.001 0.942
26.324 77.0 1.008 0.000 0.938
25.216 77.0 1.006 -0.001 0.932
Max Yds - Mln Yds -0.002262496 Must be no greater than 0
Average Yds -1.007525980 Must be between 0.95 to 1
10.795 77.0 1.006 0.001 0.755
11.920 77.0 1.006 0.001 0.753
9.554 78.0 1.004 -0.001 0.747
Max Yds - Mln Yds -0.002245979 Must be no greater than 0
Average Yds -1.005164785 Must be between 0.95 to 1
13.394 78.0 1.003 -0.001 0.557
9.946 78.0 1.004 0.000 0.556
8.524 78.0 1.006 0.002 0.556
Max Yds - Min Yds -0.002785363 Must be no greater than 0
Average Yds -1.004591811 Must be between 0.95 to 1
12.956 78.0 1.006 -0.002 0.396
14.150 78.0 1.007 0.000 0.395
6.080 78.0 1.010 0.002 0.396
.030
.05
.030
.05
.030
.05
.030
.05
- . s o e .
Average Yds -1.007822494 Must be between 0.95 to 1.05
Overall Average Yds -1.007748265
I certify that the above Dry Gas Meter was calibrated in accordance with E.P.A. Method 5 , paragraph 7.1 ;CFR 40 Part 60,
using the Precision Wet Test Meter I 11AE6, which in turn was calibrated using the American Bell Prover f 3785,
certificate i F107, wMeN' is traceable to the National Bureau of Standards (N.I.S.T.).
Signature ^L jfr V^ Date
-------
TEMPERATURE SENSOR CALffiRATION FORM
Temperature Sensor No. NAvb-
Ambient Temp. °F ~i &
Sensor Type VC- ( c. Length
Barometric Pressure, "Hg
, c/
Reference Temp. Sensor:
Date
b'^'ffr
<•
"
Ref.
Point
No.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Temp.
Source
iAvf
"Rl1
wt1^
t
Temp. °F
Ref.
Sensor
Vi
1C.
Z^<*
Test
Sensor
34-
7t
-^>5-
Temp.
Diff. %
o
Within
Limits
Y/N
Calibrated
By
% Temp. Diff =
460) " ( Test
460)
. Temp. + 460)
x 100 S 1.5 %
-------
TEMPERATURE SENSOR CALIBRATION FORM
DC.M- oof
Temperature Sensor No.
Ambient Temp. °F 7
Reference Temp. Sensor:
Sensor Type fc-Tc. Length I ^
Barometric Pressure, "Hg
Date
VZ0-'?v
'<
,f
Ref.
Point
No.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Temp.
Source
(C<£
I4>~o
^-/
A-i/z-
[3&i<-
K«_o
Temp. °F
Ref.
Sensor
3-z-
7<*
7,0 C,
Test
Sensor
3^
17
'2^>^
Temp.
Diff. %
.'foC,
./ *<=>
J^
Within
Limits
Y/N
y
y
X
Calibrated
By
I\Uk
\^
,\ijK
% Temp. Diff =
^
rest
460)
(Ret. Temp. + 460)
x 100 x 1.5 %
-------
TEMPERATURE SENSOR CALIBRATION FORM
^»&'^ _ , i
Temperature Sensor No. D&M -\& Sensor Type K - f C Length '
Ambient Temp. °F "7*f Barometric Pressure, "Hg 'So
Reference Temp. Sensor:
Date
')***
it
*'
Ref.
Point
No.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Temp.
Source
iVlo
&*£'
?££'
Temp. °F
Ref.
Sensor
33
7-r
Zc,*
Test
Sensor
§r
I*?
-Z.I O
Temp.
Diff. %
.4oc
o
. £1^
Within
Limits
Y/N
>|
V
^
Calibrated
By
\\&
% Temp. Diff =
(Ref '
. Temp. + 460)
' + 460) xlOO * 1.5 %
-------
TEMPERATURE SENSOR CAUBRATION FORM
£Mfc-\-S , _
Temperature Sensor No. pc.u^oof Sensor Type K-TC Length
Ambient Temp. °F _ 7^ _ Barometric Pressure, "Hg
Reference Temp. Sensor:
Date
,-lt'V
/.
. *
Ref.
Point
No.
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
Temp.
Source
^o
£**
Qot t- •
•
Temp. °F
Ref.
Sensor
tt
7* .
-Lot
Test
Sensor
33
•7^"
•tOTf
•
Temp.
Diff. %
o
. IB7
o
•
Within
Y/N
V
Y
Y
Calibrated
By
Ai^>
7b^
^L I
.if 1 \^J
^
- Teap
Temp.
460)
1.5
-------
PACIFIC ENVIRONMENTAL SERVICES.INC.
4700 Duke Drive,
Suite 150
Mason, Ohio
Phone: (513) 398-2556
Fax: (513)3983342
www.pes.com
TEMPERATURE SENSOR CALIBRATION DATA
FOR STACK THERMOCOUPLES
THERMOCOUPLE NUMBER:
5C
DATE:
12/22/97
BAROMETRIC PRES.(ln.Hg):
AMBIENT TEMP. °F:
29.52
72
REFERENCE:
Mercury-in-glass:
Other:
"CALIBRATOR:
ASTM-3F
J.C.
Reference
point
number
1
2
3
4
Source3
(Specify)
Ambient Air
Cold Bath
Hot Bath
Hot Oil
Reference
Thermometer
Temperature,°F
72
44
204
400
Thermocouple
Potentiometer
Temperature,°F
72
44
204
400
Temperature
Difference,"
%
0.00
0.00
0.00
0.00
"Type of calibration used.
b(ref. temp.°F+46QWtest thermometer temp.0F+46fK
X100
reftemp,°F+460
Comments:
100<1.5%
STACK THERMOCOUPLE CALIBRATION FORM 1998 Yearly Calibration
-------
11/23/98 15:36 ©5134896619
PES CINCINNATI -»-»-» DURHAM
1^)002/006
PACIFIC ENVIRONMENTAL SERVICESJNC.
4700 Duke Drive,
Suite 150
Mason, Ohio
Phone: (513) 398-2556
Fax:(513) 3983342
www.pes.com
TEMPERATURE SENSOR CALIBRATION DATA
FOR STACK THERMOCOUPLES
THERMOCOUPLE NUMBER:
T6F
DATE:
12/23/97
BAROMETRIC PRES.(ln.Hg):
AMBIENT TEMP. eF:
29.52
74
REFERENCE:
Mercury -in-glass:
Other:
"CALIBRATOR:
ASTM-3F
G.Gay
Reference
point
number
1
2
3
4
Source8
(Specify)
Ambient Air
Cold Bath
Hot Bath
Hot Oil
Reference
Thermometer
Temperature,°F
74
34
172
349
Thermocouple
Potentiometer
Temperature,°F
74
33
172
350
Temperature
Difference,6
%
0.00
0.20
0.00
0.12
"Type of calibration used.
"(ref. temp.gF+460Wtest thermometer temp.sF+460^
X100
ref temp,°F+460
100<1.5%
Comments:
STACK THERMOCOUPLE CALIBRATION FORM 1998 Yearly Calibration
-------
PACIFIC ENVIRONMENTAL SERVICES,INC.
4700 Duke Drive,
Suite 150
Mason, Ohio
Phone: (513) 398-2556
Fax: (513)3983342
www.pes.com
TEMPERATURE SENSOR CALIBRATION DATA
FOR STACK THERMOCOUPLES
THERMOCOUPLE NUMBER:
7C
DATE:
12/15/97
BAROMETRIC PRES.(ln.Hg):
AMBIENT TEMP. °F:
29.52
74
REFERENCE:
Mercury-in-glass:
Other
"CALIBRATOR:
ASTM-3F
G. Gay
Reference
point
number
1
2
3
4
Source3
(Specify)
Ambient Air
Cold Bath
Hot Bath
Hot Oil
Reference
Thermometer
Temperature,°F
74
40
206
340
Thermocouple
Potentiometer
Temperature,°F
74
41
205
341
Temperature
Difference,6
%
0.00
0.20
0.15
0.13
Type of calibration used.
bfref. temp.gF+46QWtest thermometer temD.aF+4601
X100
ref temp,°F+460
Comments:
100<1.5%
STACK THERMOCOUPLE CALIBRATION FORM
1998 Yearly Calibration
-------
PACIFIC ENVIRONMENTAL SERVICES.INC.
4700 Duke Drive,
Suite 150
Mason, Ohio
Phone: (513) 398-2556
Fax: (513) 3983342
www.pes.com
TEMPERATURE SENSOR CALIBRATION DATA
FOR STACK THERMOCOUPLES
THERMOCOUPLE NUMBER:
7D
DATE:
12/23/97
BAROMETRIC PRES.(ln.Hg):
AMBIENT TEMP. °F:
29.52
74
REFERENCE:
Mercury-in-glass:
Other:
"CALIBRATOR:
ASTM-3F
G. Gay
Reference
point
number
1
2
3
4
Source3
(Specify)
Ambient Air
Cold Bath
Hot Bath
Hot Oil
Reference
Thermometer
Temperature,°F
74
40
206
340
Thermocouple
Potentiometer
Temperature,°F
74
41
205
341
Temperature
Difference,"
%
0.00
0.20
0.15
0.13
Type of calibration used.
6fref temp cF+46QWtest thermometer temp.flF+46Cn X100
.reftemp,°F+460
100<1.5%
Comments:
STACK THERMOCOUPLE CALIBRATION FORM
1998 Yearly Calibration
-------
11/23/98 15:36
©5134896619
PES CINCINNATI
DURHAM
1^1003/006
5C
PACIFIC ENVIRONMENTAL SERVICES, INC.
4700 Duke Drive,
Suite 150
Mason, Ohio 45040
Phone: (513) 398-2556
Fax (513) 398-3342
www.pcs.com
Pilot Tube Number:
Effective Length:
5C
61"
Pitot Tube Openings Damaged?
Phot Tube Assembly Level?
a , = 0
3 T= L
Y= 1
'« 10°)
8 =
1
NO
12/23/97
S. Simon
0.948
10°)
z = A sin Y =
w = A sin 6 =
0.017
EA.
0.017
cm (in.) 0.32 cm ( < 1/8 in.)
cm (in.) 0.08 cm ( < 1/32 in.)
0.474 cm (in.)
0.474
0.375
cm (in.)
cm (in.)
ff)
(a)
The types or face-open Ing m teal Igrmeni snown BDRVO wii na affect the baseline valuoor Cp(s) so
long a=«,ane<»al8iee8 tnon oroqial to 1OV(i,am a, S less than or aqvAl to S*. z Is tass tnan or
equal to C. 32 cm (1/8 in.), a now e leu than or equal (oO.OB cm (1/32 in.) (naferaneel 1.0 in
Snctjcn "• ~-
Pitot Tube Calibration Form
1998 Yearly Calibration
-------
6A
PACIFIC ENVIRONMENTAL SERVICES, INC.
4700 Duke Drive,
Suite ISO
Mason, Ohio 45040
Phone: (513) 398-2556
Fax (513) 398-3342
www.pes.com
Pilot
Tube Number: 6A Date:
Effective Length: 75.5" Calibrated By:
Pilot
Pilot
Tube Openings Damaged? YES | NO |
Tube Assembly Level? \ YES | NO
a , = 1 °« 10°) a2 =
3 , = 0.2 °«5°) (32 =
Y= 2.2 9 = 1.1 A =
z = A sin Y = 0.039 cm (in.) 0.32 cm ( < 1/8 in.)
w = A sin 6 = 0.019 cm (in.) 0.08 cm ( < 1/32 in.)
PA = 0.504 cm (in.)
12/23/97
S. Simon
0.2 °« 10°)
0.8 °«5°)
1.006
PB =
0.505
cm (in.)
0.375
cm (in.)
JZ
-V-vT
!
lEtawL/
'^-'S
(c)
r^v.e-:.cl... _\.?.'.$r.,or -»
f>
(a)
The type* of faoe-openng msalgnment shown above wll not affect thebaseine value of Cp(s) so
long as <*, and<*jls less than or equal to 1O*, a, and CJ2 Is le*» than or equal to 5*. z is less than or
equal to O.32 cm (1/8 In.), and w is less than or equal to O.OB cm(1/32 in.) (reference 1 1.O In
Section 1RCn
Pitot Tube Calibration Form
1998 Yearly Calibration
-------
7C
PACIFIC ENVIRONMENTAL SERVICES, INC.
4700 Duke Drive,
Suite 150
Mason, Ohio 45040
Phone: (513) 398-2556
Fax (513) 398-3342
www.pes.com
Pilot Tube Number:
Effective Length:
Pilot Tube Openings Damaged?
Pilot Tube Assembly Level?
a , =
P,
7C
85"
YES
YES
(< 10°)
9 =
1.3
NO
a , =
12/15/97
S. Simon
0.966
'« 10?)
z = A sin Y =
w = A sin 6 =
0.01686
0.02192
PA =
cm (in.) 0.32 cm ( < 1/8 in.)
cm (in.) 0.08 cm ( < 1/32 in.)
0.483 cm (in.)
0.483
Dt =
0.375
cm (in.)
cm (in.)
The types of fat»-openng moajgnm«n( shown above wll not aftoct thebasekne value of Q3(s) so
long as <*, and<^ls less than or equal to 1O*.a,and tt, is less than or equal to S*. z Is lass than or
equal to O.32 cm (1/8 In.), and w a less than orequ* too.06 cm (1/32 In.) (rafarenoal 1.0 In
Phot Tube Calibration Form
1998 Yearly Calibration
-------
7D
PACIFIC ENVIRONMENTAL SERVICES, INC.
4700 Duke Drive.
Suite ISO
Mason, Ohio 45040
Phone: (513) 398-2556
Fax (513) 398-3342
www.pes.com
Pilot Tube Number:
Effective Length:
7D
84,5"
Pitot Tube Openings Damaged?
Pitot Tube Assembly Level?
YES
NO
'(< 10°)
0.931
z = A sin y
w = A sin 8
0.016
PP
D,
cm (in.) 0.32 cm ( < 1/8 in.)
cm (in.) 0.08 cm ( < 1/32 in.)
0.466 cm (in.)
0.465
0.375
cm (in.)
cm (in.)
The types or Taca-openkiQ m« alignment cnownaDova will net affect W>a baaatoe value of Cp(8) SO
long as °, anoOils las a than or aquaiio 1OV a, and a, 'B las* ttwn oraqiolte 6'. z« laaa than or
equal to 0. 32 cm (1/8 n.). anaw to tott than or equal teO.OB cm (1(32 In.) (referaneal 1.O in
?V»cm<*i 6 O^
Pitot Tube Calibration Form
1998 Yearly Calibrate
-------
NOZZLE CALIBRATION SHEET
DATE:
CALIBRATION BY:.
Where:
Nozzle
Identification
Number
D 1 , in.
D2,in.
Dg.ln.
AD, in.
avg
D1 2 3 = nozzle diametei' measured on a different diameter, in.
Tolerance = measure within 0.001 in.
AD = maximum difference in any two measurements, In.
Tolerance = 0.004 in.
Davg= average of D1, D2, Dg.
-------
NOZZLE CALIBRATION SHEET
DATE:.
CALIBRATION BY:.
Nozzle
Identification
Number
GLfc^sTXsr
Dvln.
O.T.SL
D2,in.
t>,itt
D3, in.
o,t^is
AD, in.
-------
Airgas
Airgas Specialty Gas
325 McCausiand Court
Cheshire. CT 06410
Phone. (203) 250-6827
FAX: (203)250-6842
Certificate of Analysis: E.P.A. Protocol Gas Mixture
Rec#
Cylinder No:
Cylinder Pressure:
Certification Date
4149
CC86779
2000
3/2/98
Purchase Order*
Expiration Date:
Laboratory:
Reference Standard Information:
Type Component
GMIS Carbon Dioxide
GMIS Oxygen
139680
3/2/01
Cheshire, CT
Cvl. Number
CC34977
CC19914
Concentration
14.08 %
20.98 %
instrumentation:
Instrument/Model/Serial No.
Rosemount/NGA2000/Rack#1
Servomex/244/701 M88
Analytical Principle
NDIR
Parmagnetic
Analytical Methodology does not require correction for analytical interferences.
Certified Concentrations:
Component
cafcoa W
Oxygen
Piocedtj
» »£ *z%£>\ ,f „ fXf'V
W_3
Analytical Results:
1st Component;
1st Analysis Date:
R 3.2S9 "
S
Z
2.940
0.265
2/16/98
s
z
R
2.899
2nd Compoqent:
1st Analysis Date:
R _ 173.630
S
Z
3/2/98
91.580
1.890
S
Z
R
91.620
173.630
Z
R
S
Z
R
S
0.305
3.305
2.939
1.460
173.810
91.690
Cone
Cone
Cone
AVG:
Cone
Cone
Cone
AVG:
10.931 %
10.981 %
11.012 %
10.975 %
11.118%
11.103%
11.084%
11.102 %
Certification performed in accordance with "EPA Traceability Protocol (Jan. 1998)" using the assay
procedures listed.
Do not use cylinder below 150 psig.
-------
Airgas
Airgas Specialty
325 McCausUnd Court
Cheshire. CT 06410
Phone: (203) 250-6627
FAX: (203)250-6842
Certificate of Analysis: E.P.A. Protocol Gas Mixture
Recft
Cylinder No:
Cylinder Pressure:
Certification Date
4150
CC86922
2000
3/2/98
Purchase Order #
Expiration Date:
Laboratory:
13980
3/2/01
Cheshire, CT
Reference Standard Information:
Type Component
GMIS Carbon Dioxide
GMIS Oxygen
w
Instrumentation:
Instrument/Model/Seriai No.
Rosemount/NGA2000/Racfctt
Servomex/244/701/488
Cvl. Number
CC34977
CC19914
Analytical Principle
NDIR
Parmagnetic
Concentration
14.08 %
20.98 %
Analytical Methodology does not require correction for analytical interferences.
Certified Concentrations:
Analytical Results:
1st Component:
2nd Component:
1st Analysis Date:
R 173.630
S
Z
3/2/98
156.970
1.1
S
Z
R
156.890
1.420
173.630
Z
R
S
1.460
173.810
157.030
Cone
Cone
Cone
AVG:
Cone
Cone
Cone
AVG:
19.086%
19.006 %
18.964%
19.012 %
19.175 %
19.165 %
19.158 %
19.166 %
Certification performed in accordance with 'EPA Traceability Protocol (Jan. J998)" using the assay
procedures listed. / ~~
'
'
Do not use cylinder below 1 fO psig.
Approved for Release
-------
Scott Specialty Gases
1730 EAST CLUB BOULEVARD, DURHAM, NC 27704
<919)22MB03 FAX (919) 22CKBCB
CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS
Customer
Pacific Environmental Services
Aim: Mr. Frank Meadows
P.O. Box 12077
Research Triangle Park, NC 27709
ANALYTICAL INFORMATION
Assay Laboratory
Scott Specialty Gases, Inc.
1750 East Club Boulevard
Durham, NC 27704
Purchase Order 104-95-0121
Scott Project # 12-11271
Certified to exceed the minimum specifications of EPA Protocol Procedure #G1, issued September, 1993.
-Cylinder Number AAL-13302 Certification Date 04-18-95 Expiration Date ~04-18-98
"Cylinder Pressure 2000 PSIG Previous Certification None .".^ ,.-..-,.*'
INDER
Components
'.Propane
Certified Concentration
: 29.93 PPM: *
Analytical Uncertainty*
+/-1% NIST Directly Traceable
Balance
gDo tat OK when cylinder praam • lew than 130 PSIG.
*A»»lyticduiKaat»iiilyBhKligK'eofiimlbiowaenOT«o^
REFERENCE STANDARD
ff .- ,-
'
Type'
NTRM # 1668
' Off
£ir
*
Expiration Date
06-%
Lntrument/Model/Serial #
Yarian/3400/16804
Cylinder Number
ALM-032005
Last Date Calibrated
03-23-95
Concentration
95.5 PPM Balance in Air
Analytical Principle
Gas Chramatography
:;•&,
ANALYZER READINGS (Z-ZeroGM R-Rcferenct CM T-TatGa r-Correbtiea Coefficient)
^Components
Propme
i
i
First Triad Analysis Second Triad Analysis Calibration Curve
Due: 04-1S-93 Kopona Unite: Am
STD-1397317 SPL-43696S
SPL-43T952 SPL-43I07D
STD-1396OT3 STD-1393703
DUB: RnpooH Unite:
STD- SPL-
SPL- SPL-
STD- STD-
DtuBl KJOfpOOtO 1/Bwt*
STD- SPL-
SPL- SPL-
STD- STD-
Due: Rnpome Unite:
STD- SPL-
SPL- SPL-
STD- STD-
D«e-. Rcfpcrae Units:
STD- SPL-
SPL- SPL-
STD- STD-
DUe: BMDOM Unite:
STO- SPL-
SPL- SPL-
STD- STD-
//
Drte: 03-2345
Due:
J/ ///
WfiTWuL.
Analyil'S. Vanghan
7
-------
Scott Specialty Gases
pped
From:
1750 EAST CLUB BLVD
DURHAM
Phone: 919-220-0803
NC 27704
Fax: 919-220-0808
CERTIFICATE OF ANALYSIS
PACIFIC ENVIRONMENTAL SER
5001 SOUTH MIAMI
3RD FLOOR, SUITE #300
RESEARCH TRIANGLE PA
NC 27709-2077
PROJECT #: 12-28662-001
PO#: 104-98-0178
ITEM #: 12023411 CAL
DATE: 5/01/98
CYLINDER #: AAL13302
FILL PRESSURE: 1400 PSIG
ANALYTICAL ACCURACY: +-1%
PRODUCT EXPIRATION: 5/01/2001
BLEND TYPE
COMPONENT
PROPANE
AIR
RECERTIFICATION OF CYLINDER
REQUESTED GAS
CONC HOLES
30.
PPM
BALANCE
ANALYSIS
(MOLES)
30.0
PPM
BALANCE
ANALYST:
B.M. BECTON
-------
Scott Specialty
Gases
nxpped
From:
1750 EAST CLUB BLVD
DURHAM
Phone: 919-220-0803
NC 27704
Fax: 919-220-0808
CERTIFICATE OF ANALYSIS
PACIFIC ENVIRONMENTAL SER
5001 SOUTH MIAMI
3RD FLOOR, SUITE #300
RESEARCH TRIANGLE PARK
1
NC 27709-2077
PROJECT #: 12-30096-001
PO#: 104-99-0008
ITEM #: 1202RCOC AL
DATE: 8/13/98
CYLINDER #: ALM029561
FILL PRESSURE: 900PSIG
ANALYTICAL ACCURACY:
PRODUCT EXPIRATION:
\
+-1%
8/13/2001
RECERTIFICATION
COMPONENT
PROPANE
AIR
ANALYSIS
50.14 PPM
BAL.
ANALYTICAL METHOD:
ANALYST:
-------
Scott Specialty Gases
1750 EAST CLUB BLVD
DURHAM
Phone: 919-220-0803
NC 27704
Pax: 919-220-0808
CERTIFICATE OF ANALYSIS
PACIFIC ENVIRONMENTAL SER
5001 SOUTH MIAMI
3RD FLOOR, SUITE #300
RESEARCH TRIANGLE PARK
\
NC 27709-2077
PROJECT #: 12-30096-002
PO#: 104-99-0008
ITEM #: 1202RCOC AL
DATE: 8/13/98
CYLINDER #: ALM044152
FILL PRESSURE: 1500PSIG
ANALYTICAL ACCURACY: +-1%
PRODUCT EXPIRATION: 8/13/2001
RECERTIFICATION
COMPONENT
\
PROPANE
AIR
ANALYSIS
85.37 PPM
BAL.
ANALYTICAL METHOD: VARIAN 3400
ANALYST:
APPROVED BY:
B BECTON
-------
SPECTBfl GH5E5
3434 Route 22 West* Branchburg, NU 08876 USA Tel: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811
SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08665 TEL (908) 454-7455
SHIPPED TO:
APCCLTD
60 Industrial Park Road West
Tolland.CT 06084
CERTIFICATE
OF
ANALYSIS
SGI ORDER *: 134813
ITEM*: 4
CERTIFICATION DATE: 8/11/98
P.O J*: 3482
BLEND TYPE: CERTIFIED
CYLINDER *: CC90784
CYLINDER PRES: 2000 psig
CYLINDER VALVE: CGA 330
ANALYTICAL ACCURACY: + / - 6%
COMPONENT
REQUESTED GAS
CONC
ANALYSIS
Hydrogen Chloride
25.0 ppm
26.6 ppm
Nitrogen
Balance
Balance
RECEIVED AU6 1 7 t99b
ANALYST:
DATE:
8/11/98
Ted Neeme
USA • United Kingdom • Germany • Japan
iso e a a a
-------
SPECTRfl GH5ES
3434Routs22West• Branchburg, NJ08878USA Tel:(908)252-9300• (800)932-0624 -Fax:(908)252-0811
SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08865 TEL (908) 454-7455
SHIPPED TO:
APCCLTD
60 Industrial Park Road West
Toltand.CT 06084
CERTIFICATE
OF
ANALYSIS
SGI ORDER f: 134813
ITEM*: 3
CERTIFICATION DATE: 8/11/98
P.OJ: 3482
BLEND TYPE: CERTIFIED
CYLINDER *: 18S2263Y
CYLINDER PRES: 2000 ptig
CYLINDER VALVE: CGA 330
ANALYTICAL ACCURACY: + / - 8%
COMPONENT
REQUESTED GAS
CONC
ANALYSIS
Hydrogen Chloride
Nitrogen
46.0 ppm
Balance
49.5 ppm
Balance
ANALYST:
Ted Neeme
RECEIVED AU6 1 7 199
DATE:
8/11/98
USA • United Kingdom • Germany • Japan
iso ao os
-------
SPECTRfl GB5E5
3434 Route 22 West • Branchburg. NJ 08876 USA Tel: (908) 252-9300 • (BOO) 932-0624 • Fax: (908) 252-0811
SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08865 TEL (908) 454-7455
SHIPPED TO:
APCCLTD
60 Industrial Park Road West
Tolland.CT 06084
CERTIFICATE
OF
ANALYSIS
SGI ORDER *: 134813
ITEM*: 2
CERTIFICATION DATE: 8/11/98
P.QJt: 3482
BLEND TYPE: CERTIFIED
CYLINDER *:919527Y
CYLINDER PRES: 2000 psJg
CYLINDER VALVE: CGA 330
ANALYTICAL ACCURACY: + / - 6%
COMPONENT
REQUESTED GAS
CONG
ANALYSIS
Hydrogen Chloride
195 ppm
196 ppm
Nitrogen
Balance
Balance
REQEIVED AU6 1 7
ANALYST:
DATE:
8/11/98
Ted Neeme
USA • United Kingdom • Germany • Japan
iso a a a a
-------
sporrafl GflSiS
3434 Routs 22 West • Branchburg, NJ 08876 USA Tel: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811
SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08865 TEL (808) 454-7455
SHIPPED TO:
APCCLTD
60 Industrial Park Road West
Tolland.CT 06084
CERTIFICATE
OF
ANALYSIS
SGI ORDER*: 134813
ITEM*: 1
CERTIFICATION DATE: 8/11/98
P.O A: 3482
BLEND TYPE:
CYLINDER*: 1015552Y
CYLINDER PRES: 2000 psig
CYLINDER VALVE: CGA330
ANALYTICAL ACCURACY: + / - 6%
COMPONENT
REQUESTED GAS
CONG
ANALYSIS
Hydrogen Chloride
Nitrogen
300 ppm
Balance
310 ppm
Balance
ANALYST:
Ted Neeme
RECEIVED Alifi 1 7 198S
DATE:
8/11/98
USA • United Kingdom • Germany • Japan
ISO O O Q 2
-------
INLET
HCI In-Situ Matrix Spike
Recovery Efficiencies
Plant Woodville, Ohio
Date 27-Aug-98
Project No. 98061
Test 1 Su-Native Concentration (ppm)
Initial Qt-Analyzer Flow (Ipm)
Qs-Dilution Rate
(Ipm)
Sm-Observed Concentration (ppm)
Ce-Expected Concentration (ppm)
Spike Recovery
;%)
Su-Native Concentration (ppm)
Final Qt-Analyzer Flow (Ipm)
Qs-Dilution Rate
(Ipm)
Sm-Observed Concentration (ppm]
Ce-Expected Concentration (ppm)
Spike Recovery
(%)
Cs-Spike Gas Cone, (ppm) 31 0
45
13.3
1.5
74.5
71.9
104%
35
13.3
1.5
63.7
62.9
101%
-------
TABLE C-3.6
Martin Marietta Calibration Table
Kiln No. 2
INLET
Woodville.Ohlo
THC
ZERO GAS
LOW RANGE
MID RANGE
HIGH RANGE
O2
ZERO GAS
MID RANGE
HIGH RANGE
CO2
ZERO GAS
MID RANGE
HIGH RANGE
HCI
ZERO GAS
MID RANGE
HIGH RANGE
CALIBRATION ERROR TEST
Range 0 - tOOppm
ACTUAL CONC
0.0
30.0
50.1
85.4
Range 0 - 25%
ACTUAL CONC
0.0
11.1
19.2
Range 0 - 25%
ACTUAL CONC
0.0
• 11.0
19.0
RESPONSE
1.9
33.2
52.9
85.0
RESPONSE
0.0
11.2
18.9
RESPONSE
-0.3
11.5
18.9
PREDICTED
-
31.1
50.7
85.0
DIFFERENCE
0.0
0.1
-0.3
DIFFERENCE
-0.3
0.5
-0.1
% CAL ERR
.
7.0%
4.5%
0.0%
%SPAN
0.0%
0.4%
-1.2%
%SPAN
-1.2%
2.0%
-0.4%
Range 0 -350ppm
ACTUAL CONC
0.0
196.0
310.0
RESPONSE
3.2
185.0
309.6
DIFFERENCE
3.2
-11.0
-0.4
%SPAN
0.9%
-3.1%
-0.1%
-------
Project Number
Firm Nam*
Site Location
Teat Number
Source
Date
Continuous Emissions Monitoring Data Sheet
EPA Method. 3A, 28A, end 322
98061
PES
Teeter*
Woodvffle.Ohlo Ambient Temp
1 Time
7B
Inlet Kiln f2
B/27/9B
1025-1350
Analyzer
Hydrogen Chloride
Total Hydrocarbon*
Oxygen
Carbon Dioxide
Rang*
0-350ppm
0-50ppm
0-25%
0-20%
zero
upscale
Rack Cal.
zero
upscale
upscale
zero
upscale
185
n/a
n/a
0.3
1B.9
•0.3
1B.9
Pra Tast
Sya. Cal.
3.2
185.0
1.9
33.2
0.0
18.5
•0.1
1B.8
Cal. Bias
% of Span
0.0%
0.0%
n/a
n/a
-1.2%
•1.6%
f.0%
-0.5%
±5%
Poat Taat
Sya. Cal.
9.2
172.2
2.0
27.B
0.0
19.0
-0.1
18.7
Cal. Biaa
% of Span
1.7%
-3.7%
n/a
n/a
-1.2%
0.4%
0.8%
-0.8%
15%
Drift
% of Span
-1.7%
3.7%
•0.1%
5.4%
0.0%
-2.0%
0.0%
0.4%
13%
Avg. Analyzer
Reaponae
31.2
Actual Oas
Cone.
n/a
-------
OUTLET
HCI In-Situ Matrix Spike
Recovery Efficiencies
Plant Woodville, Ohio
Date 27-Aug-98
Project No. 98061
Test 1 Su-Native Concentration (ppm) *
Initial Qt-Analyzer Flow (Ipm)
Qs-Dilution Rate (Ipm)
Sm-Observed Concentration (ppm)
Ce-Expected Concentration (ppm)
Spike Recovery (%)
Su-Native Concentration (ppm)
Final Qt-Analyzer Flow (Ipm)
Qs-Dilution Rate (Ipm)
Cs-Spike Gas Cone, (ppm) 31 0
23.4
9.3
1
56.
6
51.2
111
%
11.8
9.3
1
Sm-Observed Concentration (ppm) 1 1 .8
Ce-Expected Concentration (ppm)** 40.8
Spike Recovery (%)
29%
* Used average of Pre and Post Native concentration for Initial Spike
**No response for Post Spike
-------
TABLE C-3.5
Martin Marietta Calibration Table
Kiln No.2
OUTLET
Woodville, Ohio
THC
ZERO GAS
LOW RANGE
MID RANGE
HIGH RANGE
02
ZERO GAS
MID RANGE
HIGH RANGE
C02
ZERO GAS
MID RANGE
HIGH RANGE
HCI
ZERO GAS
MID RANGE
HIGH RANGE
CALIBRATION ERROR TEST
Range 0 - 100ppm
ACTUAL CONG
0.0
30.0
50.1
85.4
Range 0 - 25%
ACTUAL CONC
0.0
11.1
19.2
Range 0 - 25%
ACTUAL CONC
0.0
• 11.0
19.0
Range 0 - SOppm
ACTUAL CONC
0.0
26.6
49.5
RESPONSE
0.5
32.6
49.3
87.6
RESPONSE
0.3
11.2
18.9
RESPONSE
-0.3
11.5
18.9
RESPONSE
-0.3
25.2
49.1
PREDICTED
-
31.1
51.6
87.6
DIFFERENCE
0.3
0.1
-0.3
DIFFERENCE
-0.3
0.5
-0.1
DIFFERENCE
-0.3
-1.4
-0.4
% CAL ERR
-
5.0%
-4.6%
0.0%
% SPAN
1.2%
0.4%
-1.2%
% SPAN
-1.2%
2.0%
-0.4%
%SPAN
-0.6%
-2.8%
•0.8%
-------
Project Number
Firm Name
Site Location
TM! Number
Source
Date
Continuous Emissions Monitoring Data Sheet
EPA Method* 3A, 25A, and 322
96061
PES
Teeter*
Woodvine.Ohlo Ambient Temp
1 Time
Outlet Kln»2
877/98
78
1025-1350
Analyzer
Hydrogen Chloride
Total Hydrocarbon*
Oxygen
Carbon Dioxide
Range
o-soppm
o-iooppm
0-25%
0-25%
zero
upscale
Rack Cal.
zero
upscale
zero
upscale
zero
upscale
•0.3
25.2
nfe
n/a
0.3
18.9
-0.3
18.9
PreTest
Sys. Cal.
•03
25.2
Q.S
32.6
0.2
18.7
18.8
Cal. Bias
% of Span
0.0%
0.0%
n/a
n/a
•0.4%
-0.8%
1.2%
•1.2%
±5%
Post Test
Sys. Cal.
1.7
24.8
2.0
25.7
0.1
18.9
-0.1
18.4
Cal. Bias
% of Span
4.0%
•0.8%
n/a
n/a
-0.8%
0.0%
0.8%
-2.0%
±5%
Drift
% of Span
•4.0%
0.8%
6.9%
0.4%
•0.8%
0.4%
0.8%
±3%
Avg. Analyzer
Response
23.5
Actual Gas
Cone.
n/a
-------
TABLE C-3.8
Martin Marietta Calibration Table
Kiln No. 1
INLET
Woodville, Ohio
THC
ZERO GAS
LOW RANGE
MID RANGE
HIGH RANGE
02
ZERO GAS
MID RANGE
HIGH RANGE
C02
ZERO GAS
MID RANGE
HIGH RANGE
CAUBRATION ERROR TEST
Range 0 - fOOppm
ACTUAL CONG
0.0
30.0
50.1
86.4
Range 0 - 25%
ACTUAL CONC
0.0
11.1
19.2
Range 0 - 25%
ACTUAL CONC
0.0
11.0
19.0
RESPONSE
-1.2
26.2
47.8
81.3
RESPONSE
0.1
11.2
19.0
RESPONSE
-0.2
11.5
18.8
PREDICTED
-
27.8
47.2
81.3
DIFFERENCE
0.1
0.1
-0.2
DIFFERENCE
-0.2
0.5
-0.2
% CAL ERR
«•
•5.3%
1.2%
0.0%
% SPAN.
0.4%
0.4%
-0.8%
% SPAN
-0.8%
2.0%
-0.8%
-------
Continuous Emissions Monitoring Data Sheet
EPA Methods 3A, 25A, and 322
Project NUItwSr
Firm Nam*
Site Location
Test Number
SOUK*
Oat*
98061
PES
Testers
WDOdvl»e.Ohlo Ambient Tamp
1 Ttnw
Inlet Kiln #1
8/28/98
81
1813-2013
Analyzer
Total Hydrocarbons
Oxygen
Carbon Dioxide
Rang*
0-IOOppm
0-25%
0-25%
zero
upscale
RackCal.
zero
upscale
zero
upscale
n/a
n/a
0.1
19.0
-0.2
18.8
Pro Test
Sys. Cal.
-1.2
26.2
0.4
18.6
0.2
18.4
Cal. Bias
% of Span
nit
n/a
1.2%
•1.6%
1.6%
•1.6%
±5%
Post Test
Sys. Cal.
-1.0
26.1
0.4
18.B
0.6
18.8
Cal. Bias
% of Span
n/a
n/a
1.2%
-0.8%
2.8%
-0.8%
±5%
Drift
% of Span
-0.2%
0.1%
0.0%
-0.8%
Avg. Analyzer
Response
1.9
Actual Oas
Cone.
n/a
±3%
-------
TABLE C-3.7
Martin Marietta Calibration Table
Kiln No. 1
OUTLET
Woodville, Ohio
THC
ZERO GAS
LOW RANGE
MID RANGE
HIGH RANGE
02
ZERO GAS
MID RANGE
HIGH RANGE
CO2
ZERO GAS
MID RANGE
HIGH RANGE
CALIBRATION ERROR TEST
Range 0 - fOOppm
ACTUAL CONC
0.0
30.0
50.1
85.4
Range 0 - 25%
ACTUAL CONC
0.0
11.1
19.2
Range 0 - 25%
ACTUAL CONC
0.0
11.0
19.0
RESPONSE
0.2
33.8
53.8
84.0
RESPONSE
0.1
11.2
19.0
RESPONSE
-0.2
11.5
18.8
PREDICTED
-
29.6
49.4
84.0
DIFFERENCE
0.1
0.1
-0.2
DIFFERENCE
-0.2
0.5
-0.2
% CAL ERR
-
13.9%
8.9%
0.0%
% SPAN
0.4%
0.4% .
-0.8%
% SPAN
-0.8%
2.0%
-0.8%
-------
Continuous Emissions Monitoring Data Sheet
EPA Methods 3A, 25A
Profec* NufnlMr
Firm Nam*
Site Location
Teat Number
Source
Dal*
96061
PES
Teeter*
Woochfllla, Ohio Ambl*m Twnp
1 Tim*
Outlet Kin HM
8/28/98
61
1613-2013
Analyzer
Total Hydrocarbona
Oxygen
Carbon Dioxide
Range
O-tOOppm
0-25%
0-25%
zero
upscale
RackCal.
zero
upscale
zero
upscale
n/a
n/a
0.1
19.0
-0.2
Pro Test
Sys. Cat.
0.2
33.8
0.1
18.6
-0.1
18.3
Cal. Bias
% of Span
n/a
n/a
0.0%
•0.8%
0.4%
•2,0%
15%
Post Test
Sys. Cal.
-0.1
33.8
0.2
19.3
•0.1
18.6
CaL Bias
% of Span
n/a
n/a
0.4%
1.2%
0.4%
•0.8%
±5%
Drift
% of Span
0.3%
0.0%
0.0%
-1.2%
±3%
Avg. Analyzer
ReeponM
3.4
Actual Qa*
Cone.
n/a
-------
Martin Marietta
Lime Kiln Emission Test
Woodville, Ohio
Sso *¥
of 5
I. Test Run Observations Date
R » Recommended
H - Mandatory
1. Train see -up ' filter ID
filter weight
filter checked for holes
filter centered
nozzle clean- • • •
nozz 1 e • undamaged
nozzle diameter (inii
probe liner clean
probe markings correct
probe heated along
entire- length
impingera- charged
impingers- iced
meter- box leveled
pitot manometer- zeroed
orifice- manometer- zeroed
filter- box- or- holder- at- temp-.
all ball joints lightly
1 ' • greased
all -openings -capped
2. Train leak check LC
at nozzle: initial- {R-J- • • VAC 1
«Q02 cfni @ 15 LC
in. He initial, intermediate (R) VAC
Intermediate and LC
final at highest intermediate (RJ VAC
Vacuum during LC
test nm.J intermediate (RJ VAC
final (M) LC
VAC
3. Pitot lines leak initial positive- line (RJ
check: negative- line (R')' ' '
(hold 2 in. H2OJ
final- poBitxve- line* (Hi
on manometer for
(15 sec.; negatave- line- (R-J
oitoc* tube* undamaged- •
M-3 bag initial leak check (MJ
Tedlar bag: Should hold 2 to 4 in. HjO
pressure- for- 10 minutes- or
zero flow meter reading on
continuous evacuation- or-
Completely fill bag and let
stand overnight— no deflation.
/A/At
A»#
Test
Run
1
M-3 3
M
AV/?
>ko
-<*c4
-^L*
'-^L
.W^Tc?
•£**-o
~*4*-*>
V?c/>
' ^\ej*
Vtift/5 '
'/Ac^i '
ViJitX " '
V*^L«0
,/U/A~
' ffT
stff^
'Wtof
' '/3 "/&1
• • , • '1
I
,60 V
/V"Xr4
f '
'
,6 /<•!
/J""/4
^•cl/* j'
ckw> '3V
'•
^ ''i 6fV
i* i -,
y3 0 1 \
r. . ,
•ill i
1 •/
bo+fef-
<$V7-^
Teat
?
A 1 / fj
*\s / fy
/L/ / /T^
^^^c^
/Vf*°
/U*<3' ' '
vtiLa •
"u^^8^"
• ai£ /
"fr4
^ ''//*
tyBJ^l ''
'9«J >rf'"
'' ^
/^ 5 feA
*»•'(/•
7 ' M?
1 ' /Uc3 " ' '
V _w
A
/T-
Test
Run
3
. .
...
1
' •• 1
....
Test
Run
4
• •
!
• •
. . .
y
-------
JuJ.y , 1998
Date
R • Recommended
M - Mandatory
4. M-3 sampling train check:
initial* {M")
(should hold
10 in. vacuum final \MJ
for* 1/2* min. )
Purge sample train* with* stack* gas
Constant rate sampling 1- par
5. Time- test' started*
Time tesf ended-
6. Dry gas (' • •>• port* initial
meter final
volume: (' ' )' pert' initial * •• *
final
I • •)• port* initial
• • final
(. • • ) * port initial
final 1
7. Train operation Nozzle changed
during run during run —
• • • NOT* ALLOWED
pitch' and' yaw of' probe* o-.k.
nozzle' not s craned- on* nipple
effective' seal* around* pro >e • • • •
probe moved- at* proner* time
probe .heated • •
calculator constants or nomograph
changed when TS and /or TM
changes* significantlv*
average time to set
isokenetics after probe
moved* to* next* point
Average values:
impinger temperature
should* be-< 70"
Post filter gas streamer or
Filter box temperacure
Sfl^T^Jiy, <320T,
• *T* circle one
stack* temoeratnre' *
barometric* P taken* and* value
was probe ever disconnected
from filter holder while in
stack?
was filter chanced during run?
Test
Run
1
1 1" <*• j
• • \
\
.../...
•••/•••/
/' /
/'
/d.'JfAi
l/tf'.VOO
'*?ft/ofi85
•• •£/ *
* * *A/0 ' '
• t^tex ~ •
•xtf^,
d
xj//f
iQ-lf&H.
n
^
• f96*fi
9~n
/I/O
**ic
-------
July
Page
, 1933
3 of 5
Date
R " Recommended
M « Mandatory
Check on filter holder loosening of
clamping device holder
was silica gel changed
during run?
was any particulate lost?
Accurate flP
reading of' AH ...
meter temperature * * *
stack temperature
meter* vacuum
time- per- point
impinger- temperature
filter- box temperature
Minimum sample time of • • )Aft min met
Minimum sample volume of y£$- • dacf collected
8. Post test: — All- openings- sealed
- recovery- area- clean- sheltered
- filter handled- with* gloves-, * forceps-
W fij\\t - petri* dish sealed, labeled-
\ '
**(*si '
/&^
' fa**
' b+ia '
• '%Li ' •
*JH-
Test
Run
A • • •»-! <•?
..^o
-*€-«
A4*J&
' J&4 '
\J .*&S'J t
faf/'f-
1
'fTtffi
• L>S- 'I
£/
f/
*4*zr • '
'/ty*6' '
• vtij • '
tC-e^> ' ' •
-Vo' ' '
•lit. /*/.
•u^ '
*iJ /&
/•^•4-C-^)
*s$ft4 ' '
*'*4&' "
'sifez*
*AfJ»" "
'Mf
•*)/•&•
A^j ' •
' Sl^St' '
ftjlS)
a' '
A&a' ' '
• VAAA '
Test
Run
3
•I
1
}
1
• * • *t
1
.)
I
1
"
Test
Run
4
' "
. . . . |
1
• • - -
' * "
!
-------
a u;
Pa
-4 of 5
Date
R * Recommended
M - Mandatory
'
9. Post test Orsat Analysis of Initial (Mi
integrated bag sample orsat
analyzer - Analyzer leak check
(levels should not fall below Final (M)
cap. tubing and not more than
0.2 mL in burrette for 2- min-.) •
Orsaf samples-: • Each bag analyzed- 3* times'
Z' CO-» agrees- within- 0-.21' • •
SI- 0? agrees- within Ov2X
Z- CO- agrees- within- 0-.2X
Analysis at end of test. Orsat analyser
checked against air- (20; 9- +• 0-.3)
Orsat Analysis:
J < *. O-»A
J v cos
Fo » 2Q-.9 — Z Q«»
• z co«»
Fuel
Fft range for- fuel
Orsaf analysis- valid
Orsat solutions changed
when calculated F0
exceeds fuel type -range
10. All samples locked uo
All sampling- comoonenrs- clean- and* sealed
All data* sheets submitted- to- observer
- Orsat
- Run- isofcenetic- • • • Team/Observer*
- Particuiate- recovery
JL - Process- data
' '^' • -Charts
- Calibration sheets
Lntf
i
Test
Run
1
'l\//f
\
\
•
. . . /
/
r
/
I
/
k*9l9
Test
Run
2
/I]— «t 3
* tiff"
/ /
/-/..
/ /
II
•J" ••,
i" 'A'
/ M
1 7 lilt
\l
-^ — N / ' / J 1
Test
Run
3
Test
Run
4
... (. . .
\
h • • •
. . . .
!'.-.}.••• \l "H\'[ ['-'
• •••»»•/ i //-t ••• r - •
r ' |
1_M —
' In!!
• I /If
I 1
M
^h^
"j*f^
\,.'?fi£.
tf4
Xr£*aL
r
f- • • •
f
' 'fv^' ' ' \ t
$*-*' " "
' & //^-t" Wffp
'St4ts4 '\ '*^>' ' '
. 9. .
' ' & /A-
• ^t^-
' ' H^Li ' •
• &!/•/¥•
•xt^B
t •
t f •
\ ' • •
........
* • •
-------
Page 5 of 5
J. NOTES: Care should be taken, when sampling for organic compounds, Co
follow stringent quality control guidelines to avoid contamination of the
sample and sampling train. Take note of any occurences which could bias
the sample in any manner.
Include: (1) General comments; (2) Changes to pretest agreement with
justification; (3) Identify (manufacturer) and describe condition of
sampling equipment; (4) any abnormal occurrences during test program.
(Additional page(s) attached: Yes • • • . No •)
P ^
,-„ ___ . .
Signature of Observer Affiliation of Observer Date
-------
Martin Marietta
Lime Kiln Emission Test
Woodville, Ohio
Date
Page
1998
1 of 2
Quality Control Check
Prior to Stan of Tests
Assemble trains in dost free environment
Visually inspect eacn tram tor piopei assembly
*-•
Visually inspect TypeS Pilot tube
Leak check each leg of Type S Pitot tnbe
T faAt rltffte ftitir* anmltno «mtn
During Testing
AV613O pUUU
' ( & CtjCt,f , Of J / J
O^JL_
0*^0^.
CtAT»O»-_
CXJlrvvJk^
^
\^0
^V*
xuu-e-o
^-i-O-CLx1
"^^
•^^•P^X
A/Liv^,^
/t^
f
;o
- /.ooo
/Uo. 7C-
Jf = A
Uof r
680.
-------
Date
Page
1998
2 of 2
Quality Control Check
After Testing
Visually inspect sampling node
Visually inspect Type SPftot tube
Leak check each leg of the Type S Pftot tube
Kecora oDservaoons u any
Field Log
Project name/ID and location
Sampling personnel (names/position)
Geological observations including ™«p
Sample run times and dates
Sample descriptions
DuuipQou of QC samples
Deviations from QAPP
Difficulties in sampling or unusual conditions
Sample Labels
Sample ID
Date and time of collection
tiflb *ThiMritfi initials
AMMJ«J»MM| n •• •••!•<••
Analytical parameter
Preservative required
Observation
'M^e-C* 6 k
J -
-^o «> t"
'M-co "jocrjD
•AY* «HTtid)
H-c^/
u
k>Me K\lu EiHtJf'tv TPI?- ^ayft/o Ato/vcTta.
(0»«Soillr , Ci^'O
y^« a . a V«i» t^w. Yn 8 o p~* •- lv\
/*>k\ D0«(t£5 • 6u&i G&ffK
A^^-^Ut,
Sfc-H^LL."t^^ /go /^//y fl^37&?J
w ^^^ / ^ V
^^U^ T^<^o f ^fk 2?)
A;/^
^cw^L,, on yj"! js/^jTL* 5T»«V
U '
^x^f^^a
j
-<*«-Cl
(f^9^ft - /o.-aJ'-z^ 3:9tP*i
TA
^Lxr^tx^ ^%^_j
5^J I^JrcJ^i'L lIDJJ-l^.
-------
Martin Marietta
Lime Kiln Emission Test
WoodvUle, Ohio
/T//A/ *^|
I. Test Run Observations Date
R » Recoranended
M - Mandatory
1. Train set- ap * filter ID
filter weight
filter checked for holes
filter centered
nozzle clean1 • • •
nozzle • undamaged
nozzle diameter (inii
probe liner clean
probe markings correct
probe heated along
entire- length
i-spingers* charged
inpingers- iced
meter* box leveled
pitot roanoneter* zeroed
orifice* manometer* zeroed
filter* box* or* holder* at* ttsmr.
all ball joints lightly
greased
all -openings -capped
2. Train leak check LC
at nozzle: initial- {Rj- • • VAC
( ' 1
• Vt4&)
JU&) '
'^Hiesi ' 1
V*tzfc
i
i -
/y 'fa
<&a>3
'°taA^3
/
r 5 ON*
??n *fc
"p.
•SUAJ
"K T /
/1//J
jjD -*j^> 5l£
O*~0rw^rCS>
Test
Run
*/*'
/V//Q-
^Afic* '
jfcfiA
^L&s' '
' J>L(c^> '
?3S")
**4*A
Jift^
c/
*At^ ' '
' 'Vt4£4 '
•s&e* '
Jiie* • •
' "McjJ'
• v£teV *
c/
* *
, dot^'
' '/jf*/A
. .,
.
'
/
i OOc,
f^f ' * •&
CL**f] \ 4'
*7vWi f j
\ '^9»V>?'
/
/ _> • l\.
>?"• c-k
f J
\ * *\AJL& ' '
t.
ii
$!A
. 'M
Test
Run
3
....
1
... i
....
i
Test
Run
4
• -
• •
1
-------
//07ef Ar>S/cJ-
Date
R • Recommended
M - Mandatory
4. M-3 sampling train check:
ini.ci.ai \n/
(should hold
10 in. vacuum nnai \H) -
for- 1/2* tnin. )
Purge sample train- with- stack- gas
Constant rate sampling 1* nsr
5. Time- test* started*
Time test- ended-
6. Dry gas 1' * )* port* initial
meter final
volume: I* ' J* pert* initial -..- *
finmi
t, • •>• port- initimi
Apr
•CMC
Run
1
' flf-o/3 ' '
1
/ y//v .
4 H-tt-
. ..i*. .
Li
• •V.YJVto
• ~Tt^?ft
*jff), MO
•• * finmi t
(. * )• port initimi 1
finmi
7. Train operation Nozzle changed
during run during run —
• • • • NUT~ ALLOWED
pitch* and- yaw of- probe- o.lc-.
nozzle* not scraped* on- nipple
effective- seal* around- probe
'JT?4'"^
/\j
••*&& •
• • -fyo ' '
• • ••*••£/>• •
^V
Test
Run
2
///—aiy
.A. . L J .
A it
//j/|L
'j 'If ff' ' '
1 $7 "
•t- f /• •
Y-VJ"/^
*7i'j
-------
, 1993
3 of 5
/*/Z^ • fl\J£,(T ' "
R -
M »
Date
Recommended
Mandatory
Check on
clamoing
Accurate
Minimum
Minimum
filter holder loosening of
device holder
was silica gel changed
during run?
was any particulate lost?
*P Jl l
meter temoeratnre . • •
stack temperature
meter- vacuum- &\\&\
time- per- point '•
impinger* temoerature
filter- box temoerature
sample time of *• -/par min met
sample volume of • /&\- • d«cf collected
8. Post cest: -• All- openings- sealed
- recoverr area- clean* sheltered
— filter handled- with- gloves-, * forcewr • '
- petri dish sealed, labeled* •
- anv samole lost
grad cyi.
weighed
water- measured- mL • • ems
- silica- gel- weighed*, • net* ems
- condition — color* • • • /•1^-j9>wev*t- * '
** spent* f
- probe- cooled- suff icientiv
- nozzle- removed* and* brushed
- probe brushed 6- times • • •
— nozzle* brushes* clean
- wash bottles clean
- acetone clean
- M-8 15' minute- marge
- water/solution clean
l - blank taken: acetone-, water-, other*
Probe brush- and extension clean*, '
Samoie container*: • Clean
Gasped-
labeled
Sealed
Liouid- level* marked- •
•*
faf-fi-
Test
Run
1
i
//a
A>6
•fr
•
' 9*A*Jb
-%«•*••
S$«4
'/ty«W<3
ffgf'Hf
Test
Run
2
U
# o
/% -ft
\ V l
Ww
te99 /•
(j:h ' '
Test
Run
3
Test
Run
4
'• ' '
•i:r- \
• <' TtfH
3if<5"*23
^.
'•AJi* ' i " " ' 'I
•jtltM
' J^/)'
' '&*£ '
• • -f- • • •;
.... ). . .
... .(.
~vd ' \
.
Sfifcfc
• ($s*c\ "I l
tf*/~& \ j. . . .
• M^f ' '
fyvf ' '
•$*-
•*$%••
'•4ft2' ' '
"_] If /A' '
>l^»'
to** •
' ^f*^ '
MfeJ ' '
jL^A '
' f* ' '
fy** ' '
• -sUUj
r * - *
j. . . .
•
. . . .
fl A \ A
-------
Page
4 of 5
Date
R " Reconnended
M » Mandatory
9. Post test Orsat Analysis of Initial (MJ
integrated bag sample or sat
analyzer - Analyzer leak check
(levels should not fall below Final (M)
cap. tubing and not more than
0.2 mL in burrette for 2' min-. } •• •
Orsaf samples- ' Each bag analyzed- 3- times-
Z CO? agrees- within- 0-.2X
TOy agrees- within Q-.2X
Z- CD- agrees- within- 0-.2X
Analysis at end of test. Orsat analyzer
checked against air' (20; 9- *• 0;3)
Orsat Analysis:
Si *o.»z
cos
Fo » 2Q-.9 — Z* 0*>
% GOi
Fuel
Fn range- for- fuel
Orsaf analysis* valid
Orsat solutions changed
when calculated Fo
exceeds fuel type- range
10. All samples locked uo
All samoiing- comoonents- clean- and* sealed-
j£ All data- sheets submitted- rn _uh nmrrti i -44.
- Orsat T. . . . .
- Run' isokenetic* • • • Team/Observer-
- Parcicuiace- recovery
- Process- data
- Charts
• -• Calibration sheets
/aw
Test
Run
1
ry-o/_p
P/fy-
•M
/ /'
i
•\i-\i \-
•li 11 ff
l\J[ll
. . . \
L[ I
[•• Ay
• n-ff
{ 1
•/ v/- •
• 1 /
n it A
I/I/I
st^^\
' ^LjLa
' jLlsA
' y/o/A-
' 'sterji '
"JifeA '
•^texi
•s*4Sl
Jd^A '
**# ••
Test
Run
3
....
1
... . . .,
. ...
:
1
Test
Run
4
I
r
!• '
r •
(.....
.....
A
-------
Page 5 of 5
j. NOTES: Care should be taken, when sampling for organic compounds, to
follow stringent quality control guidelines to avoid contamination of the
sample and sampling train. Take note of any occurences which could bias
the sample in any manner.
Include: (1) General comments; (2) Changes to pretest agreement with
justification; (3) Identify (manufacturer) and describe condition of
sampling equipment; (4) any abnormal occurrences during test program.
(Additional page(s) attached: Yes • • • , Ho __•)
Signature of ObserverAffiliation of Observer Date
-------
Martin Marietta
Lime Kiln Emission Test
Woodville, Ohio
Date
Page
, 1998
1 of
Quality Control Check
Prior to Start of Tests
Keep all cleaned glassware sealed until train assembly
•
Assemble trains in dust nee environment
•
Visually inspect each tram for proper assembly
Level and zero manometer
Visually inspect 5swtp'*n8 nff/Tl'? for chips
Visually inspect TypeS Pitot tube
Leak check each leg of Type S Phot tnbe
During Testing
UAVCISG puim
sample data and caicHninoM lecoraea on pieuumaued
u2ta sneets
Unusual occurrences noted in test log
Properly maintain the roll and pitch of axis of TypeS
Pttnti anii qmnnKng ncnzifl
Leak check train before md pfter my component
changes during test
exit temperature
Calibration forms reviewed for compi**mfn ""d
accuracy
LroU SucCQ rcViCWGU ay rm uoiiy Ulinng WSOng
Observation
/
£4^a-KJi.
1
*££*O
v
^^
•^*fe>A-
5 = /. fl ff o
6H ^ i.90
*/ /uo. 7.C
0
\| r A o
Ool.
«-,
V./7 Z
>
-------
Date |I||1F , 1998
Page 2 of 2
Quality Control Check
Observation
After Testing
Visually inspect sampling noaie
Visually inspect Type S Pitot tube
Leak check each leg of the TypeS Pitot tube
Leak **hfrk the entire sampling train
Record observations if any
Field Log
Project name/ID and location
.
ui lie nh/ 0
Sampling personnel (names/position)
LI y /
Geological observations including map
/» n f\ ,..
Sample run times and dates
/ fffi
to
Sample dc sm iptiuus
Description of QC samples
Deviations from QAPP
Difficulties in sampling or tmusual conditions
Sample Labels
Sample ID
Date and time of collection
Lab technician initials
Analytical parameter
Preservative required
-------
APPENDIX F
PROCESS DATA
Process data to be supplied to EPA EMC by
Research Triangle Institute under a separate contract.
-------
APPENDIX G
SAMPLING & ANALYSIS METHODS
(EPA Methods 1, 2 w/Alignment Approach, 3A, 23, 25A, Proposed 322)
-------
Appendix G. 1
Sampling & Analysis Methods
EPA Method 1
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
Method 1 - Sample and Velocity Traverses for Stationary Sources
1. PRINCIPLE AND APPLICABILITY
1.1 Principle. To aid in the representative measurement of
pollutant emissions and/or total volumetric flow rate from a
stationary source, a measurement site where the effluent stream is
flowing in a known direction is selected, and the cross-sect ion of
the stack is divided into a number of equal areas. A traverse
point is then located within each of these equal areas.
1.2 Applicability. This method is applicable to flowing gas
streams in ducts, stacks, and flues. The method cannot be used
when: (1) flow is cyclonic or swirling (see Section 2.4), (2) a
stack is smaller than about 0.30 meter (12 in.) in diameter, or
0.071 m2 (113 in.2) in cross-sectional area, or (3) the measurement
site is less than two stack or duct diameters downstream or less
than a half diameter upstream from a flow disturbance.
The requirements of this method must be considered before
construction of a new facility from which emissions will be
measured; failure to do so may require subsequent alterations to
the stack or deviation from the standard procedure. Cases
involving variants are subject to approval by the Administrator,
U.S. Environmental Protection Agency.
2. PROCEDURE
2.1 Selection of Measurement Site. Sampling or velocity
measurement is performed at a site located at least eight stack or
duct diameters downstream and two diameters upstream from any flow
disturbance such as a bend, expansion, or contraction in the stack,
or from a visible flame. If necessary, an alternative location may
be selected, at a position at least two stack or duct diameters
downstream and a half diameter upstream from any flow disturbance.
For a rectangular cross section, an equivalent diameter (D«) shall
be calculated from the following equation, to determine the
upstream and downstream distances:
Prepared by Emission Measurement Branch EMTIC TM-001
Technical Support Division, OAQPS, EPA
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSFS TEST METHOD
D ~ 2LW
8 (L-+W)
Eq. 1-1
Where
L » Length and W « width.
An alternative procedure is available for determining the
acceptability of a measurement location not meeting the criteria
above. This procedure,
determination of gas flow angles at the sampling points and
comparing the results with acceptability criteria, is described in
Section 2.5.
2.2 Determining the Number of Traverse Points.
2.2.1 Particulate Traverses. When the eight- and two-diameter
criterion can be met, the minimum number of traverse points shall
be: (1) twelve, for circular or rectangular stacks with diameters
(or equivalent diameters) greater than 0.61 meter (24 in.); (2)
eight, for circular stacks with diameters between 0.30 and 0.61
meter (12 and 24 in.); and (3) nine, for rectangular stacks with
equivalent diameters between 0.30 and 0.61 meter (12 and 24 in.).
When the eight- and two-diameter criterion cannot be met, the
minimum number of traverse points is determined from Figure 1-1.
Before referring to the figure, however, determine the distances
from the chosen measurement site to the nearest upstream and
downstream disturbances, and divide each distance by the stack
diameter or equivalent diameter, to determine the distance in terms
of the number of duct diameters. Then, determine from Figure 1-1
the minimum number of traverse points that corresponds: (1) to the
number of duct diameters upstream; and (2) to the number of
diameters downstream. Select the higher of the two minimum numbers
of traverse points, or a greater value, so that for circular stacks
the number is a multiple of 4, and for rectangular stacks, the
number is one of those shown in Table 1-1.
Prepared by Emission Measurement Branch EMTIC TM-001
Technical Support Division, OAQPS, EPA
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 3
2.2.2 Velocity (Kon-Particulate) Traverses. When velocity or
volumetric flow rate is to be determined (but not particulate
matter), the same procedure as that used for particulate traverses
(Section 2.2.1) is followed, except that Figure 1-2 may be used
instead of Figure 1-1.
2.3 Cross-Sectional Layout and Location of Traverse Points.
2.3.1 Circular Stacks. Locate the traverse points on two
perpendicular diameters according to Table 1-2 and the example
shown in Figure 1-3. Any equation (for examples, see Citations 2
and 3 in the Bibliography) that gives the same values as those in
Table 1-2 may be used in lieu of Table 1-2.
For particulate traverses, one of the diameters must be in a plane
containing the greatest expected concentration variation, e.g.,
after bends, one diameter shall be in the plane of the bend. This
requirement becomes less critical as the distance from the
disturbance increases; therefore, other diameter locations may be
used, subject to the approval of the Administrator.
In addition, for stacks having diameters greater than 0.61 m (24
in.), no traverse points shall be within 2.5 centimeters (1.00 in.)
of the stack walls; and for stack diameters equal to or less than
0.61 m (24 in.), no traverse points shall be located within 1.3 cm
(0.50 in.) of the stack walls. To meet these criteria, observe the
procedures given below.
2.3.1.1 Stacks With Diameters Greater Than 0.61 m (24 in.). When
any of the traverse points as located in Section 2.3.1 fall within
2.5 cm (1.00 in.) of the
stack walls, relocate them away from the stack walls to: (1) a
distance of
2.5 cm (1.00 in.); or (2) a distance equal to the nozzle inside
diameter, whichever is larger. These relocated traverse points (on
each end of a diameter) shall be the "adjusted" traverse points.
Whenever two successive traverse points are combined to form a
single adjusted traverse point, treat the adjusted point as two
separate traverse points, both in the sampling (or velocity
measurement) procedure, and in recording the data.
2.3.1.2 Stacks With Diameters Equal To or Less Than 0.61 m (24
in.). Follow the procedure in Section 2.3.1.1, noting only that
any "adjusted" points should be relocated away from the stack walls
to: (1) a distance of 1.3 cm (0.50 in.); or (2) a distance equal to
the nozzle inside diameter, whichever is larger.
2.3.2 Rectangular Stacks. Determine the number of traverse points
as explained in Sections 2.1 and 2.2 of this method. From Table 1-
-------
EMTIC TM-001 EMTIC KSPS TEST METHOD Page 4
1, determine the grid configuration. Divide the stack cross-
section into as many equal rectangular elemental areas as traverse
points, and then locate a traverse point at the centroid of each
equal area according to the example in Figure 1-4.
If the tester desires to use more than the minimum number of
traverse points, expand the "minimum number of traverse points"
matrix (see Table 1-1) by adding the extra traverse points along
one or the other or both legs of the matrix; the final matrix need
not be balanced. For example, if a 4 x 3 'minimum number of
points" matrix were expanded to 36 points, the final matrix could
be 9 x 4 or 12 x 3, and would not necessarily have to be 6 x 6.
After constructing the final matrix, divide the stack cross-section
into as many equal rectangular, elemental areas as traverse points,
and locate a traverse point at the centroid of each equal area. The
situation of traverse points being too close to the stack walls is
not expected to arise with rectangular stacks. If this problem
should ever arise, the Administrator must be contacted for
resolution of the matter.
2.4 Verification of Absence of Cyclonic Flow. In most stationary
sources, the direction of stack gas flow is essentially parallel to
the stack walls. However, cyclonic flow may exist (1) after such
devices as cyclones and inertial demisters following venturi
scrubbers, or (2) in stacks having tangential inlets or other duct
configurations which tend to induce swirling; in these instances,
the presence or absence of cyclonic flow at the sampling location
must be determined. The following techniques are acceptable for
this determination. Level and zero the manometer. Connect a Type
S pitot tube to the manometer. Position the Type S pitot tube at
each traverse point, in succession, so that the planes of the face
openings of the pitot tube are perpendicular to the stack cross-
sectional plane; when the Type S pitot tube is in this position, it
is at "0° reference." Note the differential pressure (Ap) reading
at each traverse point. If a null (zero) pitot reading is obtained
at 0° reference at a given traverse point, an acceptable flow
condition exists at that point. If the pitot reading is not zero
at 0° reference, rotate the pitot tube (up to ±90° yaw angle) ,
until a null reading is obtained. Carefully determine and record
the value of the rotation angle (a) to the nearest degree. After
the null technique
has been applied at each traverse point, calculate the average of
the absolute values of a; assign a values of 0° to those points for
which no rotation was required, and include these in the overall
average. If the average value of a is greater than 20°, the
overall flow condition in the stack is unacceptable, and
alternative methodology, subject to the approval of the
Administrator, must be used to perform accurate sample and velocity
traverses. The alternative procedure described in Section 2.5 may
be used to determine the rotation angles in lieu of the procedure
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 5
described above.
2.5 Alternative Measurement Site Selection Procedure. This
alternative applies to sources where measurement locations are less
than 2 equivalent or duct diameters downstream or less than one-
half duct diameter upstream from a flow disturbance. The
alternative should be limited to ducts larger than 24 in. in
diameter where blockage and wall effects are minimal. A
directional flow-sensing probe is used to measure pitch and yaw
angles of the gas flow at 40 or more traverse points; the resultant
angle is calculated and compared with acceptable criteria for mean
and standard deviation.
NOTE: Both the pitch and yaw angles are measured from a line
passing through the traverse point and parallel to the stack axis.
The pitch angle is the angle of the gas flow component in the plane
that INCLUDES the traverse line and is parallel to the stack axis.
The yaw angle is the angle of the gas flow component in the plane
PERPENDICULAR to the traverse line at the traverse point and is
measured from the line passing through the traverse point and
parallel to the stack axis.
2.5.1 Apparatus.
2.5.1.1 Directional Probe. Any directional probe, such as United
Sensor Type DA Three-Dimensional Directional Probe, capable of
measuring both the pitch and yaw angles of gas flows is acceptable.
(NOTE: Mention of trade name or specific products does not
constitute endorsement by the U.S. Environmental Protection
Agency.) Assign an identification number to the directional probe,
and permanently mark or engrave the number on the body of the
probe. The pressure holes of directional probes are susceptible to
plugging when used in particulate-laden gas streams. Therefore, a
system for cleaning the pressure holes by "back-purging" with
pressurized air is required.
2.5.1.2 Differential Pressure Gauges. Inclined manometers, U-tube
manometers, or other differential pressure gauges (e.g., magnehelic
gauges) that meet the specifications described in Method 2, Section
2.2.
NOTE: If the differential pressure gauge produces both negative
and positive readings, then both negative and positive pressure
readings shall be calibrated at a minimum of three points as
specified in Method 2, Section 2.2.
2.5.2 Traverse Points. Use a minimum of 40 traverse points for
circular ducts and 42 points for rectangular ducts for the gas flow/
angle determinations. Follow Section 2.3 and Table 1-1 or 1-2 for
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 6
the location and layout of the traverse points. If the measurement:
location is determined to be acceptable
according to the criteria in this alternative procedure, use the
same traverse point number and locations for sampling and velocity
measurements.
2.5.3 Measurement Procedure.
2.5.3.1 Prepare the directional probe and differential pressure
gauges as recommended by the manufacturer. Capillary tubing or
surge tanks may be used to dampen pressure fluctuations. It is
recommended, but not required, that a pretest leak check be
conducted. To perform a leak check, pressurize or use suction on
the impact opening until a reading of at least 7.6 cm (3 in.) H20
registers on the differential pressure gauge, then plug the impact
opening. The pressure of a leak-free system will remain stable for
at least 15 seconds.
2.5.3.2 Level and zero the manometers. Since the manometer level
and zero may drift because of vibrations and temperature changes,
periodically check the level and zero during the traverse.
2.5.3.3 Position the probe at the appropriate locations in the gas
stream, and rotate until zero deflection is indicated for the yaw
angle pressure gauge. Determine and record the yaw angle. Record
the pressure gauge readings for the pitch angle, and determine the
pitch angle from the calibration curve. Repeat this procedure for
each traverse point. Complete a "back-purge" of the pressure lines
and the impact openings prior to measurements of each traverse
point.
A post-test check as described in Section 2.5.3.1 is required. If
the criteria for a leak-free system are not met, repair the
equipment, and repeat the flow angle measurements.
2.5.4 Calculate the resultant angle at each traverse point, the
average resultant angle, and the standard deviation using the
following equations. Complete the calculations retaining at least
one extra significant figure beyond that of the acquired data.
Round the values after the final calculations.
2.5.4.1 Calculate the resultant angle at each traverse point:
RA « arc cosine! (cosineY1) (cosinePi) ]
Eq. 1-2
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 7
Where:
Ri « resultant angle at traverse point i, degree.
Yj « yaw angle at traverse point i, degree.
PA = pitch angle at traverse point if degree.
2.5.4.2 Calculate the average resultant for the measurements:
Hj. 1-3
Where:
Ravg • average resultant angle, degree.
n » total number of traverse points.
2.5.4.3 Calculate the standard deviations:
(n-1)
Hi. 1-4
Where:
Sd * standard deviation, degree.
2.5.5 The measurement location is acceptable if Ravg z 20° and S
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 8
2.5.6.2 To ensure that the gas flow is parallel to the central
axis of the test section, follow the procedure in Section 2.4 for
cyclonic flow determination to measure the gas flow angles at the
centroid of the test section from two test ports located 90° apart.
The gas flow angle measured in each port must be ±2° of 0°.
Straightening vanes should be installed, if necessary, to meet this
criterion.
2.5.6.3 Pitch Angle Calibration. Perform a calibration traverse
according to the manufacturer's recommended protocol in 5°
increments for angles from -60° to +60° at one velocity in each of
the two ranges specified above. Average the pressure ratio values
obtained for each angle in the two flow ranges, and plot a
calibration curve with the average values of the pressure ratio (or
other suitable measurement factor as recommended by the
manufacturer) versus the pitch angle. Draw a smooth line through
the data points. Plot also the data values for each traverse
point. Determine the differences between the measured datavalues
and the angle from the calibration curve at the same pressure
ratio. The difference at each comparison must be within 2° for
angles between 0° and 40° and within 3* for angles between 40° and
60°.
2.5.6.4 Yaw Angle Calibration. Mark the three-dimensional probe
to allow the determination of the yaw position of the probe. This
is usually a line extending the length of the probe and aligned
with the impact opening. To determine the accuracy of measurements
of the yaw angle, only the zero or null position need be calibrated
as follows: Place the directional probe in the test section, and
rotate the probe until the zero position is found. With a
protractor or other angle measuring device/ measure the angle
indicated by the yaw angle indicator on the three-dimensional
probe. This should be within 2° of 0°. Repeat this measurement
for any other points along the length of the pitot where yaw angle
measurements could be read in order to account for variations in
the pitot markings used to indicate pitot head positions.
BIBLIOGRAPHY
1. Determining Dust Concentration in a Gas Stream, ASME
Performance Test Code No. 27. New York. 1957.
2. DeVorkin, Howard, et al. Air Pollution Source Testing Manual.
Air Pollution Control District. Los Angeles, CA. November
1963.
3. Methods for Determining of Velocity, Volume, Dust and Mist
Content of Gases. Western Precipitation Division of Joy
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 9
Manufacturing Co. Los Angeles, CA. Bulletin WP-50. 1968.
4. Standard Method for Sampling Stacks for Particulate Matter.
In: 1971 Book of ASTM Standards, Part 23. ASTM Designation D
2928-71. Philadelphia, PA. 1971.
5. Hanson, H.A., et al. Particulate Sampling Strategies for
Large Power Plants Including Nonuniform Flow. USEPA, ORD,
ESRL, Research Triangle Park, NC. EPA-600/2-76-170. June
1976.
6. Entropy Environmentalists, Inc. Determination of the Optimum
Number of Sampling Points: An Analysis of Method 1 Criteria.
Environmental Protection Agency. Research Triangle Park, NC.
EPA Contract No. 68-01-3172, Task 7.
7. Hanson, H.A., R.J. Davini, J.K. Morgan, and A.A. Iversen.
Particulate Sampling Strategies for Large Power Plants
Including Nonuniform Flow. USEPA, Research Triangle Park, NC.
Publication No. EPA-600/2-76-170. June 1976. 350 p.
8. Brooks, E.F., and R.L. Williams. Flow and Gas Sampling
Manual. U.S. Environmental Protection Agency. Research
Triangle Park, NC. Publication No. EPA-600/2-76-203. July
1976. 93 p.
9. Entropy Environmentalists, Inc. Traverse Point Study. EPA
Contract No. 68-02-3172. June 1977. 19 p.
10. Brown, J. and K. Yu. Test Report: Particulate Sampling
Strategy in Circular Ducts. Emission Measurement Branch.
Emission Standards and Engineering Division. U.S.
Environmental Protection Agency, Research Triangle Park, NC
27711. July 31, 1980. 12 p.
11. Hawksley, P.G.W., S. Badzioch, and J.H. Blackett. Measurement
of Solids in Flue Gases. Leatherhead, England, The British
Coal Utilisation Research Association. 1961. p. 129-133.
12. Knapp, K.T. The Number of Sampling Points Needed for
Representative Source Sampling. In: Proceedings of the Fourth
National Conference on Energy and Environment. Theodore, L.
et al. (ed) . Dayton, Dayton Section of the American Institute
of Chemical Engineers. October 3-7, 1976. p. 563-568.
13. Smith, W.S. and D.J. Grove. A Proposed Extension of EPA
Method I Criteria. Pollution Engineering. XV (8)-.36-37.
-------
EMTIC TM-001 EMTIC NSPS TEST METHOD Page 10
August 1983.
14. Gerhart, P.M. and M.J. Dorsey. Investigation of Field Test
Procedures for Large Fans. University of Akron. Akron, OH.
(EPRI Contract CS-1651). Final Report (RP-1649-5). December
1980.
15. Smith, W.S. and D.J. Grove. A New Look at Isokinetic Sampling
- Theory and Applications. Source Evaluation Society
Newsletter. VIII(3):19-24. August 1983.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 11
Table 1-1. CROSS-SECTION LAYOUT FOR
RECTANGULAR STACKS
9
12
16
20
25
30
36
42
49
3x3
4x3
4x4
5x4
5x5
6x5
6x6
7x6
7x7
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 12
TABLE 1-2
LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS
(Percent of stack diameter from inside
wall to traverse point)
Traverse
Point
Number on a
Diameter
1
2
3
4
5
6
7
8
9
10 ....
11 ....
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 13
15 ....
16 ....
17 ....
18 ....
19 ....
20 ....
21 ....
22 ....
23 ....
24 ....
95.
1
93.
4
89
.1
92
.5
95
.6
98
.6
•
83
.5
87
.1
90
.3
93
.3
96
.1
98
.7
78.
2
82.
0
85.
4
88.
4
91.
3
94.
0
96.
5
98.
9
72.
8
77.
0
80.
6
83.
9
86.
8
89.
5
92.
1
94.
5
96.
8
98.
9
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 14
M
Dud DfaMtora Up»tr»«m ftem Flow Dbtuftuic*' (DMum A)
U y M
su
90
M
10
1
1
1
L
W tackMH
NM •! Any T>H M
• «•
1
1
1
J_
1
1 4 * ( 7 I >
Dud Dhmcton DOMWIramffl Inm Ftow Dfcturbtnc** (DMum B)
10
Figure 1-1. Minimum number of traverse points for
particulate traverses.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 15
0.8
Duet DbmojtofB Upstream from Flow Dktuitaanc** (Dtetanc* A)
1.0 1.S 2.0
2.5
40
SO
20
10
0
II I I I I I
"Higher Number bfer
Rectangular Stock* er Due*
1
1
5j
a>«
]
1
\
1
TDbhBtane*
81*
DMuikanea
-
10 Stock DtoMtor> 041 • (24 K)
1
12
- •From Point of Any Typo of
DWuibwc* (Band. Expansion, Confection. MO
Stock Dtorooti
II 1 1 1 1
Oo, .'
>r • 0 JO to 041 • (12-14 ki j
1 1
3 4567 •
Duet Dtemoton Downttmam from Flow Dl»lurb»ne»* (Dbtaneo) B)
10
Figure 1-2. Minimum number of traverse points for velocity
(nonparticulate) traverses.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 16
t4J
3U
ru
Figure 1-3. Example showing circular stack cross section
divided into 12 equal areas, with location of traverse
points indicated.
-------
EMTIC TM-001
EMTIC NSPS TEST METHOD
Page 17
o
o
o
o
o
L-.-.J
o
0
o
o
0
o
o
Figure 1-4. Example showing rectangular stack cross section
divided into 12 equal areas, with a traverse point at centroid
of each area.
-------
-------
Appendix G.2
Sampling & Analysis Methods
EPA Method 2 w/Alignment Approach
-------
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CBHTBR
NSPS TEST METHOD
Method 2 - Determination of Stack Oas Velocity and Volumetric
flow Rate (Type 8 Pitot Tube)
1. PRINCIPLE AND APPLICABILITY
1.1 Principle. The average gas velocity in a stack is determined from the gaa
density and from measurement of the average velocity head with a Type S
(Stausscheibe or reverse type) pi tot tube.
1.2 Applicability. This method is applicable for measurement of the average
velocity of a gas stream and for quantifying gas flow.
This procedure is not applicable at measurement sites that fail to meet
criteria of Method 1, Section 2.1. Also, the method cannot be used for direct
measurement in cyclonic or swirling gas streams; Section 2.4 of Method 1 shows
how to determine cyclonic or swirling flow conditions. When unacceptable
conditions exist, alternative procedures, subject to the approval of the
Administrator, U.S. Environmental Protection Agency, must be employed to make
accurate flow rate determinations; examples of such alternative procedures are:
(1) to install straightening vanes; (2) to calculate the total volumetric flow
rate stoichiometrically, or (3) to move to another measurement site at which the
flow is acceptable.
2 . APPARATUS
Specifications for the apparatus are given below. Any other apparatus that has
been demonstrated (subject to approval of the Administrator) to be capable of
meeting the specifications will be considered acceptable.
*•
2.1 Type S Pitot Tube. Pitot tube made of metal tubing (e.g., stainless steel)
as shown in Figure 2-1. It is recommended that the external tubing diameter
(dimension De/ Figure 2-2b) be between 0.48 and 0.95 cm (3/16 and 3/8 inch).
There shall be an equal distance from the base of each leg of the pitot tube to
its face-opening plane (dimensions P* and ^ , Figure 2-2b) ; it is recommended
that this distance be between 1.05 and 1.50 times the external tubing diameter.
The face openings of the pitot tube shall, preferably, be aligned as shown in
Figure 2-2; however, slight misalignments of the openings are permissible (see
Figure 2-3) .
The Type S pitot tube shall have a known coefficient, determined as outlined in
Section 4. An identification number shall be assigned to the pitot tube; this
Prepared by mission Measurement Branch KMTZC M-002
Technical Support Division, OAQPS, EPA
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CBNTKR
MSPS TEST METHOD
number shall be permanently narked or engraved on the body of the tube. A
standard pitot tube nay be used Instead of a Type S, provided that it meets the
specifications of Sections 2.7 and 4.2; note, however, that the static and impact
pressure holes of standard pitot tubes are susceptible to plugging in
particulate-laden gas streams. Therefore, whenever a standard pitot tube is used
to perform a traverse, adequate proof must be furnished that the openings of the
pitot tube have not plugged up during the traverse period; this can be done by
taking a velocity head (Ap) reading at the final traverse point, cleaning out the
impact and static holes of the standard pitot tube by "back-purging" with
pressurized air, and then taking another Ap reading. If the Ap readings made
before and after the air purge are the same (±5 percent), the traverse is
acceptable. Otherwise, reject- the run. Note that if Ap at the final traverse
point is unsuitably low, another point may be selected. If "back-purging" at
regular intervals is part of the procedure, then comparative Ap readings shall
be taken, as above, for the last two back purges at which suitably high Ap
readings are observed.
2.2 Differential Pressure Gauge. An inclined manometer or equivalent device.
Most sampling trains are equipped with a 10-in. (water column) inclined-vertical
manometer, having 0.01-in. H2O divisions on the 0- to 1-in. inclined scale, and
0.1-in. H,0 divisions on the 1- to 10-in. vertical scale. This type of manometer
(or other gauge of equivalent sensitivity) is satisfactory for the measurement
of Ap values as low as 1.3 mm (0.05 in.) H20. However, a differential pressure
gauge of greater sensitivity shall be used (subject to the approval of the
Administrator), if any of the following is found to be true: (1) the arithmetic
average of all Ap readings at the traverse points in the stack is less than
1.3 mm (0.05 in.) HaO; (2) for traverses of 12 or more points, more than 10
percent of the individual Ap readings are below 1.3 mm (0.05 in.) HaO; (3) for
traverses of fewer than 12 points, more than one Ap reading is below 1.3 mm
(0.05 in.) H,0. Citation 18 in the Bibliography describes'commercially available
instrumentation for the measurement of low-range gas velocities.
As an alternative to criteria (1) through. (3) above, the following calculation
may be performed to determine the necessity of using a more sensitive
differential pressure gauge:
Prepared by Emission Measurement Branch IMX1C M-002
Technical Support Division, OAQPS, EPA
-------
EMTIC TM-002 NSPS TEST METHOD . Page 3
T = ^i
_
1-1
Where:
Apt • Individual velocity head reading at a traverse point, ran (in.)
H,0.
n • Total number of traverse points.
K » 0.13 ran HaO when metric units are used and 0.005 in. H,0 when
English units are used.
If T is greater than 1.05, the velocity head data are unacceptable and a more
sensitive differential pressure gauge must be used.
NOTB: If differential pressure gauges other than inclined manometers are used
(e.g., magnehelic gauges), :heir calibration must be checked after each test
series. To check the calibration of a differential pressure gauge,- compare Ap
readings of the gauge with those of a gauge-oil manometer at a minimum of three
points, approximately representing the range of Ap values in the stack. If, at
each point, the values of Ap as read by the differential pressure gauge and
gauge-oil manometer agree to within 5 percent, the differential pressure gauge
shall be considered to be in proper calibration. Otherwise, the test series
shall either be voided, or procedures to adjust the measured Ap values and final
results shall be used, subject to the approval of the Administrator.
2.3 Temperature Gauge. A thermocouple, liquid-filled bulb thermometer,
bimetallic thermometer, mercury-in-glass thermometer, or other gauge capable of
measuring temperature to within 1.5 percent of the minimum absolute stack
temperature. The temperature gauge shall be attached to the pi tot tube such that
the sensor tip does not touch any metal; the gauge shall be in an interference-
free arrangement with respect to the pitot tube face openings (see Figure 2-1 and
also Figure 2-7 in Section 4). Alternative positions may be used if the pitot
tube-temperature gauge system is calibrated according to the procedure of Section
4. Provided that a difference of not more than 1 percent in the average velocity
measurement is introduced, the temperature gauge need not be attached to the
pitot tube; this alternative is subject to the approval of the Administrator.
2.4 Pressure Probe and Gauge. A piezometer tube and mercury- or water-filled
D-tube manometer capable of measuring stack pressure to within 2.5 mm (0.1 in.)
Hg. The static tap of a standard type pitot tube or one leg of a Type S pitot
tube with the face opening planes positioned parallel to the gas flow may alao
be used as the pressure probe.
-------
EMTIC TM-002 NSPS TEST METHOD Page 4
2.5 Barometer. A mercury, aneroid, or other barometer capable of measuring
atmospheric pressure to within 2.5 mm (0.1 in.) Bg. See NOTB in Method 5,
Section 2.1.9.
2.6 Gas Density Determination Equipment. Method 3 equipment, if needed (see
Section 3.6), to determine the stack gas dry molecular weight, and Reference
Method 4 or Method 5 equipment for moisture content determination; other methods
may be used subject to approval of the Administrator.
2.7 Calibration Pitot Tube. When calibration of the Type S pitot tube is
necessary (see Section 4), a standard pitot tube for a reference. The standard
pitot tube shall, preferably, have a known coefficient, obtained either (1)
directly from the National Bureau of Standards, Route 70 S, Quince Orchard Road,
Gaithersburg, Maryland, or (2) by calibration against another standard pitot tube
with an MBS-traceable coefficient. Alternatively, a standard pitot tube designed
according to the criteria given in Sections 2.7.1 through 2.7.5 below and
illustrated in Figure 2-4 (see also Citations 7, 8, and 17 in the Bibliography)
may be used. Pitot tubes designed according to these specifications will have
baseline coefficients of about 0.99 ± 0.01.
2.7.1 Hemispherical (shown in Figure 2-4) ellipsoidal, or conical tip.
2.7.2 A minimum of six diameters straight run (based upon D, the external
diameter of the tube) between the tip and the static pressure holes.
2.7.3 A minimum of eight diameters straight run between the static pressure
holes and the center-line of the external tube, following the 90-degree bend.
2.7.4 Static pressure holes of equal size (approximately 0.1 D), equally spaced
in a piezometer ring configuration. /
2.7.5 Ninety-degree bend, with curved or mitered junction.
2.8 Differential Pressure Oauge for Type S Pitot Tube Calibration. An inclined
manometer or equivalent. If the single-velocity calibration technique is
employed (see Section 4.1.2.3), the calibration differential pressure gauge shall
be readable to the nearest 0.13 mm (0.005 in.) H,0. For multivelocity
calibrations, the gauge shall be readable to the nearest 0.13 mm (0.005 in.) BaO
for Ap values between 1.3 and 25 mm (0.05 and 1.0 in.) B20, and to the nearest
1.3 mm (0.05 in.) H20 for Ap values above 25 mm (1.0 in.) H,0. A special, more
sensitive gauge will be required to read Ap values below 1.3 mm (0.05 in.) HaO
(see Citation 18 in the Bibliography).
3. PROCEDURE
3.1 Set up the apparatus as shown in Figure 2-1. Capillary tubing or surge
tanks installed between the manometer and pitot tube may be used to dampen Ap
fluctuations. It is recommended, but not required, that a pretest leak-check be
conducted as follows: (1) blow through the pitot impact opening until at least
-------
EMTIC TM-002 NSPS TEST METHOD Page 5
7.6 cm (3 in.) H,0 velocity pressure registers on the manometer; then, close off
the impact opening. The pressure shall remain stable for at least 15 seconds;
(2) do the same for the static pressure side, except using suction to obtain the
minimum of 7.6 cm (3 in.) HaO. Other leak-check procedures, subject to the
approval of the Administrator, may be used.
3.2 Level and zero the manometer. Because the manometer level and zero may
drift due to vibrations and temperature changes, make periodic checks during the
traverse. Record all necessary data as shown in the example data sheet
(Figure 2-5).
3.3 Measure the velocity head and temperature at the traverse points specified
by Method 1. Ensure that the proper differential pressure gauge is being used
for the range of Ap values encountered (see Section 2.2). If it is necessary to
change to a more sensitive gauge, do so, and remeasure the Ap and temperature
readings at each traverse point. Conduct a post-test leak-check (mandatory), as
described in Section 3.1 above, to validate the traverse run.
3.4 Measure the static pressure in the stack. One reading is usually adequate.
3.5 Determine the atmospheric pressure.
3.6 Determine the stack gas dry molecular weight. For combustion processes or
processes that emit essentially C0]( 02, CO, and N2, use Method 3. For processes
emitting essentially air, an analysis need not be conducted; use a dry molecular
weight of 29.0. For other processes, other methods, subject to the approval of
the Administrator, must be used.
3.7 Obtain the moisture content from Reference Method 4 (or equivalent) or from
Method 5.
3.8 Determine the cross-sectional area of the stack or duct at the sampling
location. Whenever possible, physically measure the stack dimensions rather than
using blueprints.
4. CALIBRATION
4.1 Type 8 Pi tot Tube. Before its initial use, carefully examine the Type S
pi tot tube in top, side, and end views to verify that the face openings of the
tube are aligned within the specifications illustrated in Figure 2-2 or 2-3. The
pitot tube shall not be used if it fails to meet these alignment specifications.
After verifying the face opening alignment, measure and record the following
dimensions of the pitot tube: (a) the external tubing diameter (dimension Dt,
Figure 2-2b) ; and (b) the base-to-opening plane distances (dimensions P* and P»,
Figure 2-2b) . If De is between 0.48 and 0.95 cm (3/16 and 3/8 in.), and if %
and P, are equal and between 1.05 and 1.50 H, there are two possible options:
(1) the pitot tube may be calibrated according to the procedure outlined in
Sections 4.1.2 through 4.1.5 below, or (2) a baseline (isolated tube) coefficient
value of 0.84 may be assigned to the pitot tube. Mote, however, that if the
-------
EMTIC TM-002 N3PS TEST METHOD Page 6
pitot tube is part of an assembly, calibration nay still be required, despite
knowledge of the baseline coefficient value (see Section 4.1.1) .
If De, &, and f are outside the specified limits, the pitot tube must be
calibrated as outlined in Sections 4.1.2 through 4.1.5 below.
4.1.1 Type 8 Pitot Tube Asaeaiblies. During sample and velocity traverses, the
isolated Type a pitot tube is not always used; in many instances, the pitot tube
is used in combination with other source-sampling components (thermocouple,
sampling probe, nozzle) as part of an "assembly." The presence of other sampling
components can sometimes affect the baseline value of the Type S pitot tube
coefficient (Citation 9 in the Bibliography); therefore an assigned (or otherwise
known) baseline coefficient value may or may not be valid for a given assembly.
The baseline and assembly coefficient values will be identical only when the
relative placement of the components in the assembly is such that aerodynamic
interference effects are eliminated. Figures 2-6 through 2-8 illustrate
interference-free component arrangements for Type S pitot tubes having external
tubing diameters between. 0.48 and 0.95 cm (3/16 and 3/8 in.). Type 8 pitot tube
assemblies that fail to meet any or all of the specifications of Figures 2-6
through 2-8 shall be calibrated according to the procedure outlined in Sections
4.1.2 through 4.1.5 below, and prior to calibration, the values of the
intercomponent spacings (pitot-nozzle, pitot-thermocouple, pitot-probe sheath)
shall be measured and recorded.
NOTB: Do not use any Type S pitot tube assembly which is constructed such that
the impact pressure opening plane of the pitot tube is below the entry plane of
the nozzle (see Figure 2-SB).
4.1.2 Calibration Setup. If the Type S pitot tube is to be calibrated, one leg
of the tube shall be permanently marked A, and the other, B. Calibration shall
be done in a flow system having the following essential design features:
4.1.2.1 The flowing gas stream must be confined to a duct of definite cross-
sectional area, either circular or rectangular. For circular cross sections, the
minimum duct diameter shall be 30.5 cm (12 in.) ; for rectangular cross sections,
the width (shorter side) shall be at least 25.4 cm (10 in.).
4.1.2.2 The cross-sectional area of the calibration duct must be constant over
a distance of 10 or more duct diameters. For a rectangular cross section, use
an equivalent diameter, calculated from the following equation, to determine the
number of duct diameters:
2LW
D =
* (L + W)
Bq. 2-1
Where:
-------
EMTIC TM-002 HSPS TRST MKTHOD Page 7
D. • Equivalent diameter.
L » Length.
W - Width.
To ensure the presence of stable, fully developed flow patterns at the
calibration site, or "test section," the site must be located at least eight
diameters downstream and two diameters upstream from the nearest disturbances. .
NOTE: The eight- and two-diameter criteria are not absolute; other test section
locations may be used (subject to approval of the Administrator), provided that
the flow at the test site is stable and demonstrably parallel to the duct axis.
4.1.2.3 The flow system shall have the capacity to generate a test-section
velocity around 915 m/min (3,000 ft/min) . This velocity must be constant with
time to guarantee steady flow during calibration. Note that Type 3 pitot tube
coefficients obtained by single-velocity calibration at 915 m/min (3,000 f t/min)
will generally be valid to ±3 percent for the measurement of velocities above 305
m/min (1,000 f t/min) and to ±5 to 6 percent for the measurement of velocities
between 180 and 305 m/min (600 and 1,000 f t/min). If a more precise correlation
between Cp and velocity is desired, the flow system shall have the capacity to
generate at least four distinct, time-invariant test-section velocities covering
the velocity range from 180 to 1,525 m/min (600 to 5,000 f t/min), and calibration
data shall be taken at regular velocity intervals over this range (see Citations
9 and 14 in the Bibliography for details).
4.1.2.4 Two entry ports, one each for the standard and Type S pitot tubes, shall
be cut in the test section; the standard pitot entry port shall be located
slightly downstream of the Type S port, so that the standard and Type S impact
openings will lie in the same cross-sectional plane during calibration. To
facilitate alignment of the pitot tubes during calibration, it is advisable that
the test section be constructed of plexiglas or some other transparent material.
4.1.3 Calibration Procedure. Note that this procedure is a general one and must
not be used without first referring to the special considerations presented in
Section 4.1.5. Note also that this procedure applies only to single-velocity
calibration. To obtain calibration data for the A and B sides of the Type S
pitot tube, proceed as follows:
4.1.3.1 Make sure that the manometer is properly filled and that the oil is free
from contamination and is of the proper density. Inspect and leak-check all
pitot lines; repair or replace if necessary.
4.1.3.2 Level and zero the manometer. Turn on the fan, and allow the flow to
stabilize. Seal the Type S entry port.
4.1.3.3 Ensure that the manometer is level and zeroed. Position the standard
pitot tube at the calibration point (determined as outlined in Section 4.1.5.1),
and align the tube so that its tip is pointed directly into the flow. Particular
care should be taken in aligning the tube to avoid yaw and pitch angles. Make
sure that the entry port surrounding the tube is properly sealed.
-------
EMTIC TM-002 NSPS TEST MBTBQD page 8
4.1.3.4 Read Ap,t4, and record its value in a* data table similar to the one shown
in Figure 2-9. Remove the standard pitot tube from the duct, and disconnect it
from the manometer. Seal the standard entry port.
4.1.3.5 Connect the Type 3 pitot tube to the nanometer. Open the Type S entry
port. Check the manometer level and zero. Insert and align the Type S pitot
tube so that its A side impact opening is at the sane point as was the standard
pitot tube and is pointed directly into the flow. Hake sure that the entry port
surrounding the tube is properly sealed.
4.1.3.6 Read Ap,, and enter its value in the data table. Remove the Type S
pitot tube from the duct, and disconnect it from the manometer.
4.1.3.7 Repeat Steps 4.1.3.3 through 4.1.3.6 above until three pairs of Ap
readings have been obtained.
4.1.3.8 Repeat Steps 4.1.3.3 through 4.1.3.7 above for the B side of the Type
S pitot tube.
4.1.3.9 Perform calculations, as described in Section 4.1.4 below.
4.1.4* Calculations.
4.1.4.1 For each of the six pairs of Ap readings (i.e., three from side A and
three front side B) obtained in Section 4.1.3 above, calculate the value of
the Type S pitot tube coefficient as follows:
-c AP'td
''"pfatd)
AP.
BX. 2-2
Where :
CpU) - Type S pitot tube coefficient.
Cputdi " Standard pitot tube coefficient; use 0.99 if the
coefficient is unknown and the tube is designed according
to the criteria of Sections 2.7.1 to 2.7.5 of this
method.
ApKd - Velocity head measured by the standard pitot tube, cm
(in.) H20.
Ap. » Velocity head measured by the Type S pitot tube, cm (in.)
HaO.
4.1.4.2 Calculate C, (side A) , the mean A- side coefficient, and C, (side B) , the
-------
EMTIC TM-002 HSPS TEST METHOD Page 9
mean B-side coefficient; calculate the difference between these two average
values.
4.1.4.3 Calculate the deviation of each of the three A-side values of
CpW from Cp (side A), and the deviation of each B-side values of Cp,.) from
Cp (side B) . Use the following equation:
Deviation * C_ ~C_(A or B)
V f
Eg. 2-3
4.1.4.4 Calculate a, the average deviation from the mean, for both the A and B
sides of the pitot tube. Use the following equation:
o(side A or B)
-Cp(AorB)
Eq. 2-4
4.1.4.5 Use the Type S pitot tube only if the values of o (side A) and o (side
B) are less than or_ equal to 0.01 and if the absolute value of the difference
between Cp (A) and Cp (B) is 0.01 or less.
4.1.5 Special Considerations.
4.1.5.1 Selection of Calibration Point.
2.3
4.1.5.1.1 When an isolated Type S pitot tube is calibrated, select a calibration
point at or near the center of the duct, and follow the procedures outlined in
lections 4.1.3 and 4.1.4 above. The Type S pitot coefficients so obtained,
i.e., C, (side A) and 9 (side B), will be valid, so long as either: (1) the
isolated pitot tube is used; or (2) the pitot tube is used with other components
^nozzle, thermocouple, sample probe) in an arrangement that is free from
aerodynamic interference effects (see Figures 2-6 through 2-8) .
4.
4.1.5.1.2 For Type S pitot tube-thermocouple combinations (without sample
probe), select a calibration point at or near the center of the duct, and follow
the procedures outlined in Sections 4.1.3 and 4.1.4 above. The coefficients so
obtained will be valid so long as the pitot tube-thermocouple combination is used
by itself or with other components in an interference-free arrangement (Figures
2-6 and 2-8).
4.1.5.1.3 For assemblies with sample probes, the calibration point should be
-------
EWTIC TM-002 NSPS TB3T HBTHOD Page 10
located at or near the center of the duct; however, insertion of a probe sheath
into a small duct may cause significant cross-sectional area blockage and yield
incorrect coefficient values (Citation 9 in the Bibliography). Therefore, to
minimize the blockage effect, the calibration point may be a few inches off-
center if necessary. The actual blockage effect will be negligible when the
theoretical blockage, as determined by a projected-area model of the probe
sheath, is 2 percent or less of the duct cross-sectional area for assemblies
without external sheaths (Figure 2-10a), and 3 percent or less for assemblies
with external sheaths (Figure 2-10b).
4.1.5.2 For those probe assemblies in which pitot tube-nozzle interference is
a factor (i.e., those in which the pitot-nozzle separation distance fails to meet
the specification illustrated in Figure 2-6A), the value of CpU) depends upon the
amount of free-space between the tube and nozzle, and therefore is a function of
nozzle size. In these instances, separate calibrations shall be performed with.
each of the commonly used nozzle sizes in place. Note that the single-velocity
calibration technique is acceptable for this purpose, even though the larger
nozzle sizes (>0.635 cm or 1/4 in.) are not ordinarily used for isokinetic
sampling at velocities around 915 m/min (3,000 f t/min), which is the calibration
velocity; note also that it is not necessary to draw an isokinetic sample during
calibration (see Citation 19 in the Bibliography).
4.1.5.3 For a probe assembly constructed such that its pitot tube is always used
in the same orientation, only one side of the pitot tube need be calibrated (the
side which will face the flow) . The pitot tube must still meet the alignment
specifications of Figure 2-2 or 2-3, however, and must have an average deviation
(o) value of 0.01 or less (see Section 4.1.4.4.)
4.1.6 Field T7s« and Recalibration.
/
t
4.1.6.1 Field Use. \
4.1.6.1.1 When a Type S pitot tube (isolated or in an assembly) is used in the
field, the appropriate coefficient value (whether assigned or obtained by
calibration) shall be used to perform velocity calculations. For calibrated Type
S pitot tubes, the A side coefficient shall be used when the A side of the tube
faces the flow, and the B side coefficient shall be used when the B side faces
the flow; alternatively, the arithmetic average of the A and B side coefficient
values may be used, irrespective of which side faces the flow.
4.1.6.X.2 When a probe assembly is used to sample a small duct, 30.5 to 91.4 cm
(12 to 36 in.) in diameter, the probe sheath sometimes blocks a significant part
of the duct cross-section, causing a reduction in the effective value of C,,.,.
Consult Citation 9 in the Bibliography for details. Conventional pitot-sampling
probe assemblies are not recommended for use in ducts having inside diameters
smaller than 30.5 cm (12 in.) (see Citation 16 in the Bibliography).
4.1.6.2 Recalibration.
4.1.6.2.1 Isolated Pitot Tubes. After each field use, the pitot tube shall be
-------
EMTIC TM-002 NSPS TEST HBTBOD Page 11
carefully reexamined in top, side, and end views. If the pitot face openings are
still aligned within the specifications illustrated in Figure 2-2 or 2-3, it can
be assumed that the baseline coefficient of the pitot tube has not changed. If,
however, the tube has been damaged to the extent that it no longer meet a the
specifications of the Figure 2-2 or 2-3, the damage shall either be repaired to
restore proper alignment of the face openings, or the tube shall be discarded.
4.1.6.2.2 Pitot Tube Assemblies. After each field use, check the face opening
alignment of the pitot tube, as in Section 4.1.6.2.1;, also, remeasure the
intercomponent spacings of the assembly. If the intercomponent spacinga have not
changed and the face opening alignment is acceptable, it can be assumed that the
coefficient of the assembly has not changed. If the face opening alignment ia
no longer within the specifications of Figure 2-2 or 2-3, either repair the
damage or replace the pitot tube (calibrating the new assembly, if necessary).
If the intercomponent spacings have changed, restore the original spacings, or
recalibrate the assembly.
4.2 Standard Pitot Tuba (if applicable). If a standard pitot tube ia used for
the velocity traverse, the tube shall be constructed according to the criteria
of Section 2.7 and shall be assigned a. baseline coefficient value of 0.99. If
the standard pitot tube is used as part of an assembly, the tube shall be in an
interference-free arrangement (subject to the approval of the Administrator).
4.3 Temperature Gauges. After each field use, calibrate dial thermometers,
liquid-filled bulb thermometers, thermocouple-potentiometer systems, and other
gauges at a temperature within 10 percent of the average absolute stack
temperature. For temperatures up to 405°C (761°P), use an ASTM mercury-in-glass
reference thermometer, or equivalent, as a reference; alternatively, either
a reference thermocouple and potentiometer (calibrated by NBS) or thermometric
fixed points, e.g., ice bath and boiling water (corrected for barometric
pressure) may be used. For temperatures above 405°C (76l°F), use an NBS-
calibrated reference thermocouple-potentiometer system or an alternative
reference, subject to the approval of the Administrator.
If, during calibration, the absolute temperature measured with the gauge being
calibrated and the reference gauge agree within 1.5 percent, the temperature data
taken in the field shall be considered valid. Otherwise, the pollutant emission
test shall either be considered invalid or adjustments (if appropriate) of the
test results shall be made, subject to the approval of the Administrator.
4.4 Barometer. Calibrate the barometer used against a mercury barometer.
5. CALCTIATIONS
Carry out calculations, retaining at least one extra decimal figure beyond that
of the acquired data. Round off figures after final calculation.
5.1 Nomenclature.
A • Cross-sectional area of stack, m* (ft2).
-------
EMTIC TM-002 NSPS TEST METHOD Page 12
B». • Water vapor in the gas stream (from Method 5 or Reference
Method 4), proportion by volume.
Cp » Pitot tube coefficient, diroensionless.
Kp - Pitot tube constant,
34.97 n ' [ (g/9-Mole) (romHg) 11/2
sec I (°K) (ramH20) I
for the metric system.
85.49
sec
Ib/lb-mole) (in. Hg) 11/2
(in.H20) J
for the English system.
Mi - Molecular weight of stack gas, dry basis (see Section 3.6),
g/g-tnole (Ib/lb-mole) .
M. - Molecular weight of stack gas, wet basis, g/g-mole (Ib/lb-
mole) .
Eq. 2-5
Pbu " Barometric pressure at measurement site, mm Hg (in. Hg) .
Pg • Stack static pressure, mm Hg (in. Hg).
p. - Absolute stack pressure, mm Hg (in. Hg),
^ + P
bar g
Eq. 2-6
P.t* - Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
Q,* * Dry volumetric stack gas flow rate corrected to standard
conditions, dsmVhr (dscf/hr) .
t. - Stack temperature, "C (*F).
-------
EMTIC TM-002
NSFS TKST MBTHOD
Page 13
T,
for metric.
Absolute stack temperature, *K (°R)
273 +
Bq. 2-7
= 460 + t.
for English.
Bq. 2-8
T.M - Standard absolute temperature, 293*K (528*R).
v, « Average stack gas velocity, ra/sec (ft/sec).
Ap • Velocity head of stack gas, mm HaO (in. HaO) .
3,600- Conversion factor, sec/hr.
18.0 » Molecular weight of water, g/g-mole (Ib/lb-mole).
5.2 Average Stack Gas Velocity.
-------
EMTIC TM-002 NSPS TEST HKTHOD Page 14
Co., Inc. 1960.
3. Shigehara, R.T., H.F. Todd, and W.S. Smith. Significance of Errors in
Stack Sampling Measurements. U.S. Environmental Protection Agency,
Research Triangle Park, N.C. (Presented at the Annual Meeting of the Air
Pollution Control Association, St. Louis, MO., June 14-19, 1970).
4. Standard Method for Sampling Stacks for Particulate Matter. In: 1971 Book
of ASTM Standards, Part 23. Philadelphia, PA. 1971. ASTM Designation
D 2928-71.
5. Vexmard, J.K. Elementary Fluid Mechanics. New York. John Wiley and Sana,
Inc. 1947.
6. Fluid Meters - Their Theory and Application. American Society of
Mechanical Engineers, New York, N.Y. 1959.
7. ' ASHRAB Handbook of Fundamentals. 1972. p. 208.
8. Annual Book of ASTM Standards, Part 26. 1974. p. 648.
9. Vollaro, R.F. Guidelines for Type S Pitot Tube Calibration. U.S.
Environmental Protection Agency, Research Triangle Park, N.C. (Presented
at 1st Annual Meeting, Source Evaluation Society, Dayton, OB,
September 18, 1975.)
10. Vollaro, R.F. A Type S Pitot Tube Calibration Study. U.S. Environmental
Protection Agency, Emission Measurement Branch, Research Triangle Park,
N.C. July 1974..
11. Vollaro, R.F. The Effects of Impact Opening Misalignment on the Value of
the Type S Pitot Tube Coefficient. U.S. Environmental Protection Agency,
Emission Measurement Branch, Research Triangle Park, NC. October 1976.
12. Vollaro, R.F. Establishment of a Baseline Coefficient Value for Properly
Constructed Type S Pitot Tubes. U.S. Environmental Protection Agency,
Emission Measurement Branch, Research Triangle Park, NC. November 1976.
13. Vollaro, R.F. An Evaluation of Single-Velocity Calibration Technique as a
Means of Determining Type S Pitot Tube Coefficients. U.S. Environmental
Protection Agency, Emission Measurement Branch, Research Triangle Park, NC.
August 1975.
14. Vollaro, R.F. The Use of Type S Pitot Tubes for the Measurement of Low
Velocities. U.S. Environmental Protection Agency, Emission Measurement
Branch, Research Triangle Park, NC. November 1976.
15. Smith, Marvin L. Velocity Calibration of EPA Type Source Sampling Probe.
United Technologies Corporation, Pratt and Whitney Aircraft Division, Bast
Hartford, CT. 1975.
-------
EMTIC TM-002 NSPS TBST MRTHOD Page 15
16. Vollaro, R.F. Recommended Procedure for Sample Traverses in Ducts Smaller
than 12 Inches in Diameter. U.S. Environmental Protection Agency, Emission
Measurement Branch, Research Triangle Park, NC. November 1976.
17. Ower, B. and R.C. Pankhurst. The Measurement of Air Flow, 4th Ed. London,
Pergamon Press. 1966.
18. Vollaro, R.F. A Survey of Commercially Available Instrumentation for the
Measurement of Low-Range Gas Velocities. U.S. Environmental Protection
Agency, Emission Measurement Branch, Research Triangle Park, NC.
November 1976. (Unpublished Paper).
19. Gnyp, A.H., C.C. St. Pierre, D.S. Smith, D. Mozzon, and J. Steiner. An
Experimental Investigation of the Effect of Pitot Tube-Sampling Probe
Configurations on the Magnitude of the S Type Pitot Tube Coefficient for
Commercially Available Source Sampling Probes. Prepared by the University
of Windsor for the Ministry of the Environment, Toronto, Canada.
February 1975.
-------
EMTIC TM-002
HSPS TBST METHOD
Page 16
1.M-2J4M*
J_CI
Figure 2-1. Type S pitot tube manometer assembly.
-------
EMTIC TM-002
HSPS TBST METHOD
Page 17
TubtA*
TulMAxb
PM*
s^EBzr
(b)
(c)
'.tKatftitngt***, »«nl«l I
Mink;
(e)rthrtMf;bot>>
«bil «t
O.M n*y b* union* to HM t*M *•».
Figure 2-2. Properly constructed Type S pi tot tube.
-------
EMTIC TM-002
NSPS TBST METHOD
Page 18
iv-*
Figure 2-3. Types of face-opening misalignment that can result from field use
or improper construction of Type S pitot tubes. These will not affect the
baseline value of Cp(s) so long as ex1 and o* £10°, B1 and $3 s5*. z £0.32 cm (1/8
in.) and w £0.08 cm (1/32 in.) (citation 11 in Bibliography).
-------
EMTIC TM-002
NSFS TEST METHOD
Page 19
Figure 2-4. Standard pitot tube design specifications.
-------
EMTIC TM-002 HSPS TEST ttKTHOD page 20
-------
EMTIC TM-002
NSPS TEST METHOD
Page 21
PLANT
DATE _
RUN NO.
(in.) _
JSTACK DIA. OR
DIMENSIONS, m (in.) BAROMETRIC PRESS., mm Hg
(in. Hg) CROSS SECTIONAL AREA, m* (ft2)
OPERATORS
PITOT TUBE I.D. NO.
AVG. COEFFICIENT, Cp -
LAST DATE CALIBRATED __
SCHEMATIC OF STACK
CROSS SECTION
Traverse
Pt. No.
Vel. Hd. , Ap
mm (in.) H20
Stack Temperature
T.,
°C CF)
Average
T.,
°K (°R)
P9
mm Hg
(in.Hg)
Up)»/»
Figure 2-5. Velocity traverse data.
-------
KMTIC TH-002
HSPS TEST HBTHOD
Page 22
I >kU*«0»h)kr» f U«
X Mbi
PMTak*
•mh Miry H«M.
Figure 2-6. Proper pitot tube-sampling nozzle configuration to prevent
aerodynamic interference: button-hook type nozzle: centers of nozzle and
pitot opening aligned: Dt between 0.48 and 0.95 cm (3/16 and 3/8 in.).
-------
EMTIC TM-002
NSPS TEST 10BTBOD
Page 23
JO,
' .•""•-. I
••* I
-^pTa..*.
CO
M
1 I
JO, TmtM^T.*.
Figure 2-7. Proper thermocouple placement to prevent interference: Dt
between 0.48 and 0.95 cm (3/16 and 3/8 in.).
-------
EMTIC TM-002
KSPS TEST METHOD
Page 24
Typ« 8 PfcXTub*
Sample
Figure 2-8. Minimum pitot-sample probe separation needed to prevent
interference: Dt between 0.48 and 0.95 on (3/16 and 3/8 in.).
-------
EMTIC 111-002
NSPS TEST METHOD
Page 25
PITOT TUBE IDENTIFICATION NUMBER:
DATE:
.CALIBRATED BY: _
RUN NO.
1
2
3
•A" SIDE CALIBRATION
&?Md
cm HjO
(in HjO)
**«•»
cm HjO
(in H2O)
Cp.w»
(SIDE A)
Cp,.,
Deviation
Cp,., - Cp(A)
RUN NO.
1
2
3
"B" SIDE CALIBRATION
AP.td
cm HjO
(in HaO)
AP(.i
cm HaO
(in H30)
CP..V.
(SIDE B)
Cpi.)
Deviation
Cp,.i - Cp(B)
Average Deviat ion = a
(AorB)
~C
p(AorB)
-MustBe^O.Ol
Cp{SideA) -Cp{SideB)hMustBe^0.01
-------
EMTIC TM-002 NSPS TEST MBTEOD Page 26
Figure 2-9. Pitot tube calibration data.
-------
EMTIC TM-002
NSPS TEST METHOD
Page 27
Figure 2-10. Projected-area models for typical pitot tube assemblies.
-------
STACK SAMPLING CYCLONIC FLOW
General
Conventional sampling procedures are not applicable to stacks with
cyclonic flow due to the presence of non-axial flow components. This
appendix describes a method for sampling stacks with cyclonic flow; I.e.
flow with tangential velocity components. Cyclonic flow nay exist after
cyclones, tangential Inlets, or other configurations that may tend to
Induce swirling.
Several different approaches have been devised to minimize the biasing
effects of non-axial flow. The method discussed In this appendix
utilizes the alignment approach to reduce or eliminate the bias produced
by misalignment of the sampling nozzle and pltot tubes with the path of
the particles. Sampling results obtained with this method must be
reviewed for possible Inherent bias (see section entitled Accuracy
Considerations) to determine acceptability for any purpose.
Accuracy Considerations
As discussed In Chapter 5, small (light) particles tend to follow the
flow stream while Jarge (heavy) particles tend to be affected more by
their own Inertia than by the flow stream. Due to the effects of the
cyclonic condition and centrifugal action, components of radial velocity
should be Imparted to large particles, while small particles continue to
follow the flow stream. If the sampling ports are sufficiently down-
stream of the onset of cyclonic flow (at least two stack diameters),
large particles should have moved to the vicinity of the stack wall and
no longer have radial velocity components. For this reason, this method
does not consider components of radial velocity, and the term "total
velocity vector* refers to the resultant of the vertical (parallel to
the stack axis) velocity vector and the tangential velocity vector.
Although sampling by the alignment approach Is done In the direction of
flow of the stack gas at each sample point, bias may still be produced
1f the path of the particles Is not 1n the direction of now. Small
particles follow the flow stream and large particles at the stack wall
have no radial velocity components so the only source of bias should be
large particles near the stack wall that may not be moving In the direc-
tion of flow, I.e. unequal tangential velocity components. An Indica-
tion of the distribution of large and small particles may be obtained by
comparing the probe wash and cyclone catch to the filter and Implnger
catch. Large particles that do not follow the flow stream should be
caught 1n the probe and cyclone, while small particles should be caught
on the filter and In the Implngers. Such comparison may yield
-------
Information on possible bias 1n the sample since bias 1s produced by •
large particles, but should not be considered to be an accurate deter- .
ml nation of particle size distribution. If the large particles were not
moving 1n the direction of flow In the stack, the large/small particle
proportion 1n the sampling train nay not be the sane as In the stack.
If all particles are moving parallel to the direction of flow, no bias
should be produced.
If the pollutant 1s or behaves as a gas, no bias Is produced by par-
ticles moving In directions other than parallel to the flow strean.
This method provides an accurate determination of velocity and flow
rate, which are requirements of gaseous sampling (Chapter 6). The
larger the proportion of the total catch that behaves as a gas (filter
and Inplngers), the greater the confidence In the sample being without
bias.
•
Determining Cyclonic Flow .
The existence of cyIconic flow Is determined by measuring the flow angle
at each sample point. The flow angle Is the angle between the direction
of flow and the axis of the stack. If the average of the absolute val-
ues of the flow angles 1s greater than 20*, cyclonic flow exists to such
an extent that special sampling procedures are necessary.
The direction of flow 1s determined by locating the pltot tube null posi-
tion at each sample point. The pltot tube null position at a sample
point Is determined by rotating the pltot tubes around the axis of the
probe until a zero manometer reading 1s obtained. Advance knowledge of
the direction of the tangential flow component Is helpful for the Ini-
tial rotation of the pltot tubes since the plane through the pltot tubes
must be perpendicular to the total velocity vector to obtain a null read-
Ing on the manometer. The angle between the plane through the pltot
tubes 1n the null position and the stack cross-sectional plane 1s equal
In magnitude to the flow angle; the magnitude of the angle may be
measured with the pltot tubes 1n the null position or after the pltot
tubes have been rotated 90° Into the flow stream for velocity measure-
ment. A magnetic protractor-level Is a convenient angle measuring de-
vice; scribe marks on the sample box with a pointer on the probe (or
vice-versa) may be satisfactory 1f proper alignment with the axis of the
stack and the plane of the pltot tubes Is maintained.
In some cases of cyclonic flow, the flow angle may be greater than 90*
at some sample points, Indicating flow back Into the stack at those
particular sample points. If the flow angle Is greater than 90*, It Is
recorded as 90* so that sample points with negative velocity are con-
sidered to have no vertical velocity (co* 90* - 0). The existence of
sample points with negative velocity may be determined with the pltot
tubes aligned with the flow stream; the nanometer deflection will Indi-
cate the direction of flow.
-------
Sampling Procedure
Standard 1sok1net1c sampling procedures (Chapters 4 and 5) are followed
except for adjustment of the sampling time and pi tot tube and nozzle
orientation at each sample point.
Preliminary Velocity Traverse and Calculations
Knowledge of the flow angles at all sampling points Is necessary to
Insure that the total sample time and total sample volume Is adequate; •
therefore, flow angles are normally measured during the preliminary
velocity traverse. The complete set of angles should be measured In as
short a duration of time as possible In case the position of the flow
cyclone 1n the stack 1s changing with time. After the measurement of
flow angles 1s complete, a base sampling time for each sampling point 1s
selected. The actual sampling time at each sample point 1s the base
sampling time multiplied by the cosine of the flow angle at that sample
point.
All preliminary procedures and calculations are performed with prelimi-
nary data as measured 1n the direction of flow similar to standard 1 so-
kinetic sampling procedures. The actual sampling time at each sample
point (base time x cos a) Is used 1n preliminary calculations. As
discussed earlier, If zero or negative flow exists at any sample point,
the flow angle 1s recorded as 90* and the actual sampling time at that
sample point Is zero (cos 90° • 0). The base time should be large
enough so that the total sample volume 1s adequate and that the sampling
time at the sample point with the shortest actual sampling time 1s long.
enough to record data. Appendix D contains data forms for recording
angles and sampling times along with forms for standard stack sampling.
Sampling
Sampling 1s performed with the nozzle and pltot tubes oriented 1n the
direction of flow at each sampling point with 1sok1net1c conditions
maintained according to the AP measured In the flow stream. As dis-
cussed In the section on Accuracy Considerations, radial velocity
components are not considered since large particles should have no
radial velocity components. Since large particles should be concen-
trated near the stack wall, the accuracy of sampling at the outer points
1s of particular Importance. The precalculated sampling time at each
sampling point Is the base time multiplied by the cosine of the flow
angle. For Instance, If the base sampling time Is four minutes and the
flow angle 1s 60* at one sample point, the actual sampling time at that
sample point Is two minutes (cos 60* * 0.5). It Is suggested that
sampling at each sample point be started at some Increment of a minute
or that a timer be used for each sample point to avoid confusion with
various odd minutes and seconds. The flow may be stopped for short
-------
periods between sample points, but the off-time must not be so long that f
the sample could be contaminated by particles entering the sampling V.
train while the flow Is stopped.
In some cases of cyclonic flow, some sample points may have negative
flow or flow back Into the stack (flow angle > 90*) rather than out the
stack. These sampling points are treated as points with zero flow and
zero actual sampling time. This situation may cause the results to be
biased high 1f some of the pollutant sampled at the sample points with
positive flow 1s also present at the sample points with negative flow.
Two separate samples may produce more accurate results In such a case -
one sample for positive flow and one sample for negative flow with the
numerical difference being the emission rate.
The field check of percent 1sok1net1c Is made using actual parameters
measured during sampling; velocity 1s used as measured In the flow
stream and time Is the sum of the adjusted (actual) sampling times for
the separate sample points. -The Isoklnetlc check could also be per-
formed by calculating the vertical velocity component at each sample
point and using the total base time as explained In the section on Data
Reduction, but this approach Is considered too cumbersome for field use.
Data Reduction
Data reduction procedures must account for the differences between the
total velocity vectors (defined by « and AP) and the exiting components I
of these vectors. Since the average exiting velocity mist be used to
calculate stack now rate (ACFM or SCFM), effective stack height, and,
1n turn, allowable emission rate and standard effective stack height,
data reduction procedures must average only the vertical components of
the total velocity vectors. Different data reduction approaches may
yield correct results; the data reduction procedures discussed 1n this
section are based on adjustment of Individual AP readings to correspond
to vertical velocity components. Standard data reduction procedures are
discussed In Chapter 8 and only the adjustments to the Input data neces-
sary to apply the standard procedures are discussed here.
Each fleldAP reading (as measured In the flow stream) Is multiplied by
the square of the cosine of the flow angle («) corresponding to each AP
reading. Data reduction Input AP Is (cos2 a) (fleldAP). Input sample
time per sample point Is the total base sampling time per sample point
and the total sampling time Input Is the total base time (base time)
(number of sample points). All other parameters are Input as measured.
The data sheets In Appendix D should be helpful In organizing cyclonic
flow data.
-------
CYCLONIC FLOW FIELD CALCULATIOH SHEET
Company Name Date
Address Tester
Sampling Locatioi
Sample
Point
•
.
Angle
*
Test
Time
•
i Base Test Time
•
Run #
AP
cos* (VA"P)
.
'
- — — •
Ron f .
.
cos * ( £p)
Run t
Ap
••••
6
«M«
T««c Tine • co« * (Bate Tima)
Avg.
Average &p
-------
Appendix G.3
Sampling & Analysis Methods
EPA Method 3 A
-------
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
Method 3A • Determination of Oxygen and Carbon Dioxide Concentrations
in Emissions from Stationary Sources
(Instrimiental Analyzer Procedure)
1. APPLICABILITY AND PRINCIPLE
1.1 Applicability. This method 1s applicable to the determination of oxygen (Op and
carbon dioxide (COZ) concentrations in emissions from stationary sources only when
specified within the regulations.
1.2 Principle. A sample 1s continuously extracted from the effluent stream: a
portion of the sample stream 1s conveyed to an instrumental analyzer(s) for
determination of 02 and CQ concentratlon(s). Performance specifications and test
procedures are provided to ensure reliable data.
2. RANGE AND SENSITIVITY
Same as 1n Method 6C. Sections 2.1 and 2.2. except that the span of the monitoring
system shall be selected such that the average 02 or C02 concentration is not less than
20 percent of the span.
3. DEFINITIONS
3.1 Measurement System. The total equipment required for the determination of the 02
or C02 concentration. The measurement system consists of the same major subsystems as
defined 1n Method 6C. Sections 3.1.1. 3.1.2. and 3.1.3.
3.2 Span. Calibration Gas, Analyzer Calibration Error. Sampling System Bias, Zero
Drift. Calibration Drift. Response Time, and Calibration Curve. Same as in Method 6C.
Sections 3.2 through 3.8. and 3.10.
3.3 Interference Response. The output response of the measurement system to a
component in the sample gas. other than the gas component being measured.
4. MEASUREMENT SYSTEM PERFORMANCE SPECIFICATIONS
Same as in Method 6C. Sections 4.1 through 4.4.
Prepared by Emission Measurement Branch EMTIC TM-003A
Technical Support Division. OAQPS. EPA May 6. 1989
-------
EMTIC TM-003A NSPS TEST METHOD Page 2
5. APPARATUS AND REAGENTS
5.1 Measurement System. Any measurement system for Oz or CQ that meets the
specifications of this method. A schematic of an acceptable measurement system Is
shown 1n Figure 6C-1 of Method 6C. The essential components of the measurement system
are described below:
5.1.1 Sample Probe. A leak-free probe of sufficient length to traverse the sample
points.
5.1.2 Sample Line. Tubing to transport the sample gas from the probe to the moisture
removal system. A heated sample line 1s not required for systems that measure the 02
or C02 concentration on a dry basis, or transport dry gases.
5.1.3 Sample Transport Line. Calibration Valve Assembly. Moisture Removal System.
Partlculate Filter. Sample Pump. Sample Flow Rate Control. Sample Gas Manifold, and
Data Recorder. Same as 1n Method 6C. Sections 5.1.3 through 5.1.9. and 5.1.11. except
that the requirements to use stainless steel. Teflon, and nonreactlve glass filters do
not apply.
5.1.4 Gas Analyzer. An analyzer to determine continuously the 02 or COj, concentration
in the sample gas stream. The analyzer must meet the applicable performance
specifications of Section 4. A means of controlling the analyzer flow rate and a
device for determining proper sample flow rate (e.g.. precision rotameter, pressure
gauge downstream of all flow controls, etc.) shall be provided at the analyzer. The
requirements for measuring and controlling the analyzer for measuring and controlling
the analyzer flow rate are not applicable if data are presented that demonstrate the
analyzer 1s insensitive to flow variations over the range encountered during the test.
/
5.2 Calibration Gases. The calibration gases for CO^ analyzers shall be C02 1n Nj or
C02 in air. Alternatively. CtySty. 02/S02. or (yoysOj, gas mixtures in N2 may be used.
Three calibration gases, as specified in Sections 5.3.1 through 5.3.4 of Method 6C.
shall be used. For 02 monitors that cannot analyze zero gas. a calibration gas
concentration equivalent to less than 10 percent of the span may be used in place of
zero gas.
6. MEASUREMENT SYSTEM PERFORMANCE TEST PROCEDURES
Perform the following procedures before measurement of emissions (Section 7).
6.1 Calibration Concentration Verification. Follow Section 6.1 of Method 6C. except
1f calibration gas analysis is required, use Method 3 and change the acceptance
criteria for agreement among Method 3 results to 5 percent (or 0.2 percent by volume.
whichever Is greater).
6.2 Interference Response. Conduct an Interference response test of the analyzer
prior to Its Initial use in the field. Thereafter, recheck the measurement system 1f
-------
EMTIC TM-003A NSPS TEST METHOD Page 3
changes are made 1n the Instrumentation that could alter the Interference response
(e.g.. changes 1n the type of gas detector). Conduct the interference response 1n
accordance with Section 5.4 of Method 20.
6.3 Measurement System Preparation. Analyzer Calibration Error, Response Time, and
Sampling System Bias Check. Follow Sections 6.2 through 6.4 of Method 6C.
7. EMISSION TEST PROCEDURE
7.1 Selection of Sampling Site and Sampling Points. Select a measurement site and
sampling points using the same criteria that are applicable to tests performed using
Method 3.
7.2 Sample Collection. Position the sampling probe at the first measurement point.
and begin sampling at the same rate as that used during the response time test.
Maintain constant rate sampling (i.e.. ±10 percent) during the entire run. The
sampling time per run shall be the same as for tests conducted using Method 3 plus
twice the average system response time. For each run. use only those measurements
obtained after twice the response time of the measurement system has elapsed to
determine the average effluent concentration.
7.3 Zero and Calibration Drift Test. Follow Section 7.4 of Method 6C.
8. QUALITY CONTROL PROCEDURES
The following quality control procedures are recommended when the results of this
method are used for an emission rate correction factor, or excess air determination.
The tester should select one of the following options for validating measurement
results:
8.1 If both 02 and CQ are measured using Method 3A. the procedures described in
Section 4.4 of Method 3 should be followed to validate the 02 and CQ measurement
results.
8.2 If only 02 1s measured using Method 3A. measurements of the sample stream2CO
concentration should be obtained at the sample by-pass vent discharge using an Orsat
or Fyrite analyzer, or equivalent. Duplicate samples should be obtained concurrent
with at least one run. Average the duplicate Orsat or Fyrite analysis results for
each run. Use the average COz values for comparison with the2 0 measurements in
accordance with the procedures described in Section 4.4 of Method 3.
8.3 If only C02 is measured using Method 3A. concurrent measurements of the sample
stream C02 concentration should be obtained using an Orsat or Fyrite analyzer as
described 1n Section 8.2. For each run. differences greater than 0.5 percent between
the Method 3A results and the average of the duplicate Fyrite analysis should be
Investigated.
-------
EMTIC TM-003A NSPS TEST METHOD Page 4
9. EMISSION CALCULATION
9.1 For all C02 analyzers, and for 02 analyzers that can be calibrated with zero gas.
follow Section 8 of Method 6C. except express all concentrations as percent, rather
than ppm.
9.2 For Oz analyzers that use a low-level calibration gas 1n place of a zero gas.
calculate the effluent gas concentration using Equation 3A-1.
(C - C.) + C. Eq. 3A-1
C.-C.
Where:
COM - Effluent gas concentration, dry basis, percent.
CM - Actual concentration of the upscale calibration gas, percent.
CM - Actual concentration of the low-level calibration gas. percent.
C. - Average of Initial and final system calibration bias check
responses for the upscale calibration gas. percent.
C0 - Average of initial and final system calibration bias check
responses for the low level gas. percent.
C - Average gas concentration indicated by the gas analyzer, dry basis.
percent.
10. BIBLIOGRAPHY
Same as in Bibliography of Method 6C.
-------
Appendix G.4
Sampling & Analysis Methods
EPA Proposed Method 23
-------
-------
6560-50
ENVIRONMENTAL PROTECTION AGENCY
40 CFR Part 60
[AD-PRL- ]
STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES
Appendix A , Test Method 23
AGENCY: Environmental Protection Agency (EPA).
ACTION: Proposed Rule.
SUMMARY: This rule amends Method 23, entitled
"Determination of Polychlorinated Dibenzo-p-Dioxins and
Polychlorinated Dibenzofurans from Stationary Sources," to
correct existing errors in the method, to eliminate the methylene
chloride rinse of the sampling train, and to clarify the quality
assurance requirements of the method.
DATES: Comments. Comments must be received on or before
(90 days after publication in the FEDERAL
REGISTER].
Public Hearing. If anyone contacts EPA requesting to speak
at a public hearing by (two weeks after
publication in the FEDERAL REGISTER), a public hearing will be
held on (four weeks after publication in the
FEDERAL REGISTER), beginning at 10:00 a.m. Persons interested in
attending the hearing should call Ms. Lala Cheek at
(919) 541-5545 to verify that a hearing will be held.
Request to Speak at Hearing. Persons wishing to present
-------
oral testimony must contact EPA by (two weeks
after publication in the FEDERAL REGISTER) .
ADDRESSES: Comments. Comments should be submitted (in duplicate
if possible) to Public Docket No. A-94-2 at the following
address: U. S. Environmental Protection Agency , Air and
Radiation Docket and Information Center, Mail Code: 6102, 401 M
Street, SW, Washington, DC 20460. The Agency requests that a
separate copy also be sent to the contact person listed below.
The docket is located at the above address in Room M-1500
Waterside Mall (ground floor), and may be inspected from
8:30 a.m. to Noon and 1:00 to 3:00 PM, Monday through Friday.
The proposed regulatory text and other materials related to this
rulemaking are available for review in the docket or copies may
be mailed on request from the Air Docket by calling 202-260-7548.
A reasonable fee may be charged for copying docket materials.
Publiq Hearing. If anyone contacts EPA requesting a public
hearing, it will be held at EPA's Emission Measurement
Laboratory, Research Triangle Park, North Carolina. Persons
interested in attending the hearing or wishing to present oral
testimony should notify Ms. Lala Cheek (MD-19), U.S.
Environmental Protection Agency, Research Triangle Park, North
Carolina 27711, telephone number (919) 541-5545.
-------
Docket: A Docket, A-94-22, containing materials relevant to
this rulemaking, is available for public inspection and copying
between 8:30 a.m. and Noon and 1:00 and 3:00 p.m., Monday through
Friday, in at EPA's Air Docket1Section (LE-131), Room M-1500
Waterside Mall (ground floor) 401 M Street, S.W., Washington,
D.C. 20460. A reasonable fee may be charged for copying.
FOR FURTHER INFORMATION CONTACT: Gary McAlister, Emission
Measurement Branch (MD-19), Emissions, Monitoring, and Analysis
Division, U.S. Environmental Protection Agency, Research Triangle
Park, North Carolina 27711, telephone (919) 541-1062.
SUPPLEMENTARY INFORMATION:
The proposed regulatory text of the proposed rule is not
included in this Federal Register notice, but is available in
Docket No. A-94-22 or by written or telephone request from the
Air Docket (see ADDRESSES). If necessary, a limited number of
copies of the Regulatory Text are available from the EPA contact
persons designated earlier in this notice. This Notice with the
proposed regulatory language is also available on the Technology
Transfer Network (TTN), one of EPA's electronic bulletin boards.
TTN provides information and technology exchange in various areas
of air pollution control. The service is free except for the
cost of the phone call. Dial (919) 541-5742 for up to a 14400
-------
bps modem. If more information on TTN is needed, call the HELP
line at (919) 541-5384.
I. • SUMMARY
Method 23 was promulgated along with the New Source
Performance Standard for municipal waste combustors (Subpart Ea).
As promulgated, the method contained some errors. This action
would correct those errors and would clarify some of the existing
quality assurance requirements. In addition, the current
procedure requires rinsing of the sampling train with.two
separate solvents which must be analyzed separately. Based on
data the Agency has collected since promulgation of Method 23, we
believe that one of these rinse steps and the resulting sample
fraction can be eliminated. This could save as much as $2000 per
test run in analytical costs.
II. THE RULEMAKING
This rulemaking does not impose emission measurement
requirements beyond those specified in the current regulations
nor does it change any emission standard. Rather, the rulemaking
would simply amend an existing test method associated with
emission measurement requirements in the current regulations that
would apply irrespective of this rulemaking.
III. ADMINISTRATIVE REQUIREMENTS
-------
A. Public Hearing
A public hearing will be held, if requested, to discuss the
proposed amendment in accordance with section 307(d)(5)of the
Clean Air Act. Persons wishing to make oral presentations should
contact EPA at the address given in the ADDRESSES section of this
preamble. Oral presentations will be limited to 15 minutes each.
Any member of the public may file a written statement with EPA
before, during, or within 30 days after the hearing. Written
statements should be addressed to the Air Docket Section address
given in the ADDRESSES section of this preamble.
A verbatim transcript of the hearing and written statements
will be available for public inspection and copying during normal
working hours at EPA's Air Docket Section in Washington, DC (see
ADDRESSES section of this preamble).
B. Docket
The docket is an organized and complete file of all the
information considered by EPA in the development of this
rulemaking. The docket is a dynamic file, since material is
added throughout the rulemaking development. The docketing
system is intended to allow members of the public and industries
involved to identify and locate documents readily so that they
may effectively participate in the rulemaking process. Along
-------
with the statement of basis and purpose of the proposed and
promulgated test method revisions and EPA responses to
significant comments, the contents of the docket, except for
interagency review materials, will serve as the record in case of
judicial review [Section 307(d)(7)(A)].
C. Executive Order 12291 Review
Under Executive Order 12291, EPA is required to judge
whether a regulation is a "major rule" and, therefore, subject to
the requirements of a regulatory impact analysis. This
rulemaking does not impose emission measurement requirements
beyond those specified in the current regulations, nor does it
change any emission standard. The Agency has determined that
this regulation would result in none of the adverse economic
effects set forth in Section 1 of the Order as grounds for
/
t
finding the regulation to be a "major rule." The Agency has,
therefore, concluded that this regulation is not a "major rule"
under Executive Order 12291.
D. Regulatory Flexibility Act
The Regulatory Flexibility Act (RFA) of 1980 requires the
identification of potentially adverse impacts of Federal
regulations upon small business entities. The RFA specifically
requires the completion of an analysis in those instances where
-------
small business impacts are possible. This rulemaking does not
impose emission measurement requirements beyond those specified
in the current regulations, nor does it change any emission
standard. Because this rulemaking imposes no adverse economic
impacts, an analysis has not been conducted.
Pursuant to the provision of 5 U.S.C. 605 (b), I hereby
certify that the promulgated rule will not have an impact on
small entities because no additional costs will be incurred.
E. Paperwork Reduction Act
This rule does not change any information collection
requirements subject to Office of Management and Budget review
under the Paperwork Reduction Act of 1980, 44 U.S.C. 3501 et sag.
P. Statutory Authority
The statutory authority for this proposal is provided by
sections 111 and 301(a) of the Clean Air Act, as amended: 42
U.S.C., 7411 and 7601(a).
LIST OF SUBJECTS
Air pollution control, municipal waste combustors,
polychorinated dibenzo-p-dioxins, sources.
-------
Date The Administrator
It is proposed that 40 CFR Part 60 be amended as follows:
1. The authority citation for Part 60 continues to read as
follows: Authority: Clean Air Act (42 U.S.C. 7401 [et seq.], as
amended by Pub. L 101-549}.
2. Replace test Method 23 of Appendix A, with the
following:
Method 23 - Determination of Polychlorinated Dibenzo-p-dioxins
and Polychlorinated Dibenzofurans from Municipal Waste Combustors
1. APPLICABILITY AND PRINCIPLE
1.1 Applicability. This method is applicable to the
determination of emissions of polychlorinated dibenzo-p-dioxins
(PCDD's) and polychlorinated dibenzofurans (PCDF's) from
municipal waste combustors. Calibration standards are selected
for regulated emission levels for municipal waste combustors.
1.2 Principle. A sample is withdrawn isokinetically from the
gas stream and collected in the sample probe, on a glass fiber
filter, and on a packed column of adsorbent material. The sample
cannot be separated into a particle and vapor fraction. The
PCDD's and PCDF's are extracted from the sample, separated by
high resolution gas chromatography (HRGC), and measured by high
8
-------
resolution mass spectrometry (HRMS).
2. APPARATUS
2.1 Sampling. A schematic of the sampling train is shown in
Figure 23-1. Sealing greases shall not be used in assembling the
train. The train is identical to that described in Section 2.1
of Method 5 of this appendix with the following additions:
-------
OMFbw
-4*-v.
Figure 23.1 Sampling Train
10
-------
-------
2.1.1 Nozzle. The nozzle shall be made of nickel, nickel-
plated stainless steel, quartz, or borosilicate glass.
2.1.2 Sample Transfer Lines. The sample transfer lines, if
needed, shall be heat traced, heavy walled TFE (1/2 in. OD with
1/8 in. wall) with connecting fittings that are capable of
forming leak-free, vacuum-tight connections without using sealing
greases. The line shall be as short as possible and must be
maintained at £l20°C.
2.1.1 Filter Support. Teflon or Teflon-coated wire.
2.1.2 Condenser. Glass, coil type with compatible fittings.
A schematic diagram is shown in Figure 23-2.
2.1.3 Water Bath. Thermostatically controlled to maintain the
gas temperature exiting the condenser at ^.20°C (68°F) .
2.1.4 Adsorbent Module. Glass container to hold up to 40
grams of resin adsorbent. A schematic diagram is shown in Figure
\
\
23-2. Other physical configurations of the water-jacketed resin
trap/condenser assembly are acceptable. The connecting fittings
shall form leak-free, vacuum tight seals. A coarse glass frit is
included to retain the adsorbent in the water-jacketed sorbent
module.
2.1.5 Probe Liner. The probe liner shall be made of glass and
a Teflon ferrule or Teflon coated O-ring shall be used to. make
the seal at the nozzle end of the probe.
12
-------
2.2 Sample Recovery.
2.2.1 Fitting Caps. Ground glass, Teflon tape, or aluminum
foil (Section 2.2.6) to cap off the sample exposed sections of
the train and sorbent module.
2.2.2 Wash Bottles. Teflon, 500-mL.
13
-------
Flue
Gas
Flow
Sorbent Trap
* 20/15
GtaM Sintered Dfek
XAD-2
Water Jacket
OtoM Wool Plug
Condenser
Cooling CoD
Water Jacket
r\
* 20/15
Figure 23.2 Condenser and Adsorbent Trap
14
-------
15
-------
2.2.3 Probe Liner, Probe Nozzle, and Filter Holder Brushes.
Inert bristle brushes with precleaned stainless steel or Teflon
handles. The probe brush shall have extensions of stainless
steel or Teflon, at least as long as the probe. The brushes
shall be properly sized and shaped to brush out the nozzle, probe
liner, and transfer line, if used.
2.2.4 Filter Storage Container. Sealed filter holder, wide-
mouth amber glass jar with Teflon-lined cap, glass petri dish, or
Teflon baggie.
2.2.5 Balance. Triple beam.
2.2.6 Aluminum Foil. Heavy duty, hexane-rinsed (Do not use to
wrap or ship filter samples, because it may react with
particulate matter).
2.2.7 Metal Storage Container. Air tight container to store
silica gel.
2.2.8 Graduated Cylinder. Glass, 250-mL with 2-mL
graduations.
2.2.9 Glass Sample Storage Containers. Amber glass bottles
for sample glassware washes, 500- or 1000-mL, with leak free
Teflon-lined caps.
2.3 Analysis.
2.3.1 Sample Containers. 125- and 250-mL flint glass bottles
with Teflon-lined caps.
16
-------
2.3.2 Test Tubes. Glass.
2.3.3 Soxhlet Extraction Apparatus. Capable of holding 43 x
123 mm extraction thimbles.
2.3.4 Extraction Thimble. Glass, precleaned cellulosic, or
glass fiber.
2.3.5 Pasteur Pipettes. For preparing liquid chromatographic
columns.
2.3.6 Reacti-vials. Amber glass, 2-mL.
2.3.7 Rotary Evaporator. Buchi/Brinkman RF-121 or equivalent.
2.3.8 Kuderaa-Danish Concentrator Apparatus.
2.3.9 Nitrogen Evaporative Concentrator. N-Evap Analytical
Evaporator Model III or equivalent.
2.3.10 Separatory Funnels. Glass, 2-liter.
2.3.11 Gas Chromatograph. Consisting of the following
components:
2.3.11.1 Oven. Capable of maintaining the separation column
at the proper operating temperature ±.10°C and performing
programmed increases in temperature at rates of at least
40°C/min.
2.3.11.2 Temperature Gauges. To monitor column oven,
detector, and exhaust temperatures ±1°C.
2.3.11.3 Flow Systems. Gas metering system to measure sample,
fuel, combustion gas, and carrier gas flows.
17
-------
2.3.11.4 Capillary Columns. A fused silica column,
60 x 0.25 mm inside diameter (ID), coated with DB-5 and a fused
silica column, 30 m x 0.25 mm ID coated with DB-225. Other
column systems may be substituted provided that the user is able
to demonstrate, using calibration and performance checks, that
the column system is able to meet the specifications of Section
O*X«A*M*
2.3.12 Mass Spectrometer. Capable of routine operation at a
resolution of 1:10000 with a stability of ±5 ppm.
2.3.13 Data System. Compatible with the mass spectrometer and
capable of monitoring at least five groups of 25 ions.
2.3.14 Analytical Balance. To measure within 0.1 mg.
3. REAGENTS
3.1 Sampling.
3.1.1 Filters. Glass fiber filters/ without organic binder,
\
exhibiting at least 99.95 percent efficiency (<0.05 percent
penetration) on 0.3-micron dioctyl phthalate smoke particles.
The filter efficiency test shall be conducted in accordance with
ASTM Standard Method D 2986-71 (Reapproved 1978) (incorporated by
reference - see §60.17).
3.1.1.1 Freeleaning. All filters shall be cleaned before
their initial use. Place a glass extraction thimble and 1 g of
silica gel and a plug of glass wool into a Soxhlet apparatus,
18
-------
charge the apparatus with toluene, and reflux for a minimum of 3
hours. Remove the toluene and discard it, but retain the silica
gel. Place no more than 50 filters in the thimble onto the
silica gel bed and top with the cleaned glass wool. Charge the
Soxhlet with toluene and reflux for 16 hours. After extraction,
allow the Soxhlet to cool/ remove the filters, and dry them under
a clean nitrogen (N2) stream. Store the filters in a glass petri
dishes and seal with Teflon tape.
3.1.2 Adsorbent Resin. Amber lite XAD-2 resin. Thoroughly
cleaned before initial use. Do not reuse resin. If precleaned
XAD-2 resin is purchased from the manufacturer, the cleaning
procedure described in Section 3.1.2.1 is not required.
3.1.2.1 Cleaning. Procedure may be carried out in a giant
Soxhlet extractor. An all-glass filter thimble containing an
extra-coarse frit is used for extraction of XAD-2. The frit is
recessed 10-15 mm above a crenelated ring at the bottom of the
thimble to facilitate drainage. The resin must be carefully
retained in the extractor cup with a glass wool plug and a
stainless steel ring because it floats on methylene chloride.
This process involves sequential extraction in the following
order.
Procedure
Water Initial Rinse: Place resin in a beaker,
19
-------
rinse once with HPLC water, and discard
water. Refill beaker with water, let
stand overnight, and discard water.
Water Extract with HPLC water for 8 hours.
Methanol Extract with methanol for 22 hours.
Methylene Chloride Extract with methylene chloride for 22
hours.
Methylene Chloride Extract with methylene chloride for 22
hours.
3.1.2.2 Drying.
3.1;2.2.1 Drying Column. Pyrex pipe, 10.2 cm ID by 0.6 m
long, with suitable retainers.
3.1.2.2.2 Procedure. The adsorbent must be dried with clean
inert gas. Liquid nitrogen from a standard commercial liquid
nitrogen cylinder has proven to be a reliable source for large
volumes of gas free from organic contaminants. Connect the
liquid nitrogen cylinder to the column by a length of cleaned
copper tubing, 0.95 cm ID, coiled to pass through a heat source.
A convenient heat source is a water-bath heated from a steam
line. The final nitrogen temperature should only be warm to the
touch and not over 40°C. Continue flowing nitrogen through the
adsorbent until all the residual solvent is removed. The flow
rate should be sufficient to gently agitate the particles, but
20
-------
not so excessive as to cause the particles to fracture.
3.1.2.3 Quality Control Check. The adsorbent must be checked
for residual methylene chloride (MeCl2) as well as PCDDs and
PCDFs prior to use. The analyst may opt to omit this check for
precleaned XAD-2.
3.1.2.3.1 MeCl3 Residue Extraction. Weigh a 1.0 g sample of
dried resin into a small vial, add 3 mL of toluene, cap the vial,
and shake it well.
3.1.2.3.2 MeCl2 Residue Analysis. Inject a 2 /il sample of the
extract into a gas chromatograph operated under the following
conditions:
Column: 6 ft x 1/8 in stainless steel containing 10 percent
OV-101™ on 100/120 Supelcoport.
Carrier Gas: Helium at a rate of 30 mL/min.
Detector: Flame ionization detector operated at a sensitivity
of 4 x 10-" A/mV.
Injection Port Temperature: 250°C.
Detector Temperature: 305°C.
Oven Temperature: 30°C for 4 rain; programmed to rise at
40°C/min until it reaches 250°C; return to 30°C after 17
minutes.
Compare the results of the analysis to the results from the
reference solution. Prepare the reference solution by injecting
21
-------
4.0 fil of methylene chloride into 100 raL of toluene. This
corresponds to 100 jig of methylene chloride per g of adsorbent.
The maximum acceptable concentration is 1000 /xg/g of adsorbent.
If the adsorbent exceeds this level, drying must be continued
until the excess methylene chloride is removed.
3.1.2.3.3 PCDD and PCDF Check. Extract the adsorbent sample
as described in Section 5.1. Analyze the extract as described in
Section 5.3. If any of the PCDDs or PCDFs (tetra through hexa)
are present at concentrations above the target detection limits
(TDLs) , the adsorbent must be recleaned by repeating the last
step of the cleaning procedure. The TDLs for the various
PCDD/PCDF congeners are listed in Table 1.
3.1.2.4 Storage. After cleaning, the adsorbent may be stored
in a wide mouth amber glass container with a Teflon-lined cap or
placed in glass adsorbent modules tightly sealed with glass
stoppers. It must be used within 4 weeks of cleaning. If
precleaned adsorbent is purchased in sealed containers, it must
be used within 4 weeks after the seal is broken.
3.1.3 Glass Wool. Cleaned by sequential immersion in three
aliquots of methylene chloride, dried in a 110°C oven, and stored
in a methylene chloride-washed glass container with a Teflon-
lined screw cap.
3.1.4 Water. Deionized distilled and stored in a methylene
22
-------
chloride-rinsed glass container with a Teflon-lined screw cap.
3.1.5 Silica Gel. Indicating type, 6 to 16 mesh. If
previously used, dry at 175° C (350°F) for two hours. New silica
gel may be used as received. Alternatively, other types of
desiccants (equivalent or better) may be used, subject to the
approval of the Administrator.
3.1.6 Chromic Acid Cleaning Solution. Dissolve 20 g of sodium
dichromate in 15 mL of water, and then carefully add 400 mL of
concentrated sulfuric acid.
3.1.7 HPLC Water.
3.2 Sample Recovery.
3.2.1 Acetone. Pesticide quality.
3.2.2 Toluene. Pesticide quality.
3.3 Analysis.
3.3.1 Potassium Hydroxide. ACS grade, 2-percent
(weight/volume) in water.
3.3.2 Sodium Sulfate. Granulated, reagent grade. Purify
prior to use by rinsing with methylene chloride and oven drying.
Store the cleaned material in a glass container with a Teflon-
lined screw cap.
3.3.3 Sulfuric Acid. Reagent grade.
3.3.4 Sodium Hydroxide. 1.0 N. Weigh 40 g of sodium hydroxide
into a 1-liter volumetric flask. Dilute to 1 liter with water.
23
-------
3.3.5 Hexane. Pesticide grade.
3.3.6 Methylene Chloride. Pesticide grade.
3.3.7 Benzene. Pesticide grade.
3.3.8 Ethyl Acetate.
3.3.9 Methanol. Pesticide grade.
3.3.10 Toluene. Pesticide grade.
3.3.11 Nonane. Pesticide grade.
3.3.12 Cyclohexane. Pesticide Grade.
3.3.13 Basic Alumina. Activity grade 1, 100-200 mesh. Prior
to use, activate the alumina by heating for 16 hours at 130°C.
Store in a desiccator. Pre-activated alumina may be purchased
from a supplier and may be used as received.
3.3.14 Silica Gel. Bio-Sil A, 100-200 mesh. Prior to use,
activate the silica gel by heating for at least 30 minutes at
180°C. After cooling, rinse the silica gel sequentially with
(
methanol and methylene chloride. Heat the rinsed silica gel at
50°C for 10 minutes, then increase the temperature gradually to
180°C over 25 minutes and maintain it at this temperature for
90 minutes. Cool at room temperature and store in a glass
container with a Teflon-lined screw cap.
3.3.15 Silica Gel Impregnated with Sulfuric Acid. Combine 100
g of silica gel with 44 g of concentrated sulfuric acid in a
screw capped glass bottle and agitate thoroughly. Disperse the
24
-------
solids with a stirring rod until a uniform mixture is obtained.
Store the mixture in a glass container with a Teflon-lined screw
cap.
3.3.16 Silica Gel Impregnated with Sodium Hydroxide. Combine
39 g of 1 N sodium hydroxide with 100 g of silica gel in a screw
capped glass bottle and agitate thoroughly. Disperse solids with
a stirring rod until a uniform mixture is obtained. Store the
mixture in glass container with a Teflon-lined screw cap.
3.3.17 Carbon/Celite. Combine 10.7 g of AX-21 carbon with 124
g of Celite 545 in a 250-mL glass bottle with a Teflon-lined
screw cap. Agitate the mixture thoroughly until a uniform
mixture is obtained. Store in the glass container.
3.3.18 Nitrogen. Ultra high purity.
3.3.19 Hydrogen. Ultra high purity.
3.3.20 Internal Standard Solution. Prepare a stock standard
solution containing the isotopically labelled PCDD's and PCDF's
at the concentrations shown in Table 2 under the heading
"Internal Standards" in 10 mL of nonane.
3.3.21 Surrogate Standard Solution. Prepare a stock standard
solution containing the isotopically labelled PCDD's and PCDF's
at the concentrations shown in Table 2 under the heading
"Surrogate Standards" in 10 mL of nonane.
3.3.22 Recovery Standard Solution. Prepare a stock standard
25
-------
solution containing the isotopically labelled PCDD's and PCDF's
at the concentrations shown in Table 2 under the heading
"Recovery Standards" in 10 mL of nonane.
4. PROCEDURE
4.1 Sampling. The complexity of this method is such that, in
order to obtain reliable results, testers and analysts should be
trained and experienced with the procedures.
4.1.1 Pretest Preparation.
4.1.1.1 Cleaning Glassware. All glass components of the train
upstream of and including the adsorbent module, shall be cleaned
as described in Section 3A of the "Manual of Analytical Methods
for the Analysis of Pesticides in Human and Environmental
Samples.* Special care shall be devoted to the removal of
residual silicone grease sealants on ground glass connections of
used glassware. Any residue shall be removed by soaking the
glassware for several hours in a chromic acid cleaning solution
prior to cleaning as described above.
4.1.1.2 Adsorbent Trap. The traps shall be loaded in a clean
area to avoid contamination. They may not be loaded in the
field. Fill a trap with 20 to 40 g of XAD-2. Follow the XAD-2
with glass wool and tightly cap both ends of the trap. Add 40 pi
of the surrogate standard solution (Section 3.3.21) to each trap
for a sample that will be split prior to analysis or 20 (A. of the
26
-------
surrogate standard solution (Section 3.3.21) to each trap for
samples that will not be split for analysis (Section 5.1). After
addition of the surrogate standard solution, the trap must be
used within 14 days. Keep the spiked sorbent under refrigeration
until use.
4.1.1.3 Sampling Train. It is suggested that all components
be maintained according to the procedure described in APTD-0576.
4.1.1.4 Silica Gel. Weigh several 200 to 300 g portions of
silica gel in air tight containers to the nearest 0.5 g. Record
the total weight of the silica gel plus container, on each
container. As an alternative, the silica gel may be weighed
directly in the fifth impinger just prior to sampling.
4.1.1.5 Filter. Check each filter against light for
irregularities and flaws or pinhole leaks. Pack the filters flat
in a clean glass container or Teflon baggie. Do not mark filter
with ink or any other contaminating substance.
4.1.2 Preliminary Determinations. Same as Section 4.1.2
Method 5.
4.1.3 Preparation of Sampling Train.
4.1.3.1 During preparation and assembly of the sampling train,
keep all train openings where contamination can enter, sealed
until sampling is about to begin. Wrap sorbent module with
aluminum foil to shield from radiant heat of sun light. (NOTE:
27
-------
Do not use sealant grease in assembling the train.)
4.1.3.2 Place approximately 100 mL of water in the second and
third impingers, leave the first and fourth impingers empty, and
transfer approximately 200 to 300 g of preweighed silica gel from
its container to the fifth impinger.
4.1.3.3 Place the silica gel container in a clean place for
later use in the sample recovery. Alternatively, the weight of
the silica gel plus the fifth impinger may be determined to the
nearest 0.5 g and recorded.
4.1.3.4 Assemble the sampling train as shown in Figure 23-1.
4.1.3.5 Turn on the adsorbent module and condenser coil
recirculating pump and begin monitoring the adsorbent module gas
entry temperature. Ensure proper sorbent gas entry temperature
before proceeding and before sampling is initiated. It is
extremely important that the XAD-2 adsorbent resin temperature
never exceed 50°C because thermal decomposition and breakthrough
of surrogate standards will occur. During testing, the XAD-2
temperature must not exceed 20°C for efficient capture of the
PCDD's and PCDF's.
4.1.4 Leak-Check Procedure. Same as Method 5, Section 4.1.4.
4.1.5 Sampling Train Operation. Same as Method 5,
Section 4.1.5.
4.2 Sample Recovery. Proper cleanup procedure begins as soon
28
-------
as the probe is removed from the stack at the end of the sampling
period. Seal the nozzle end of the sampling probe with Teflon
tape or aluminum foil.
When the probe can be safely handled, wipe off all external
particulate matter near the tip of the probe. Remove the probe
from the train and close off both ends with aluminum foil. Seal
off the inlet to the train with Teflon tape, a ground glass cap,
or aluminum foil.
Transfer the probe and impinger assembly to the cleanup area.
This area shall be clean and enclosed so that the chances of
losing or contaminating the sample are minimized. Smoking, which
could contaminate the sample, shall not be allowed in the cleanup
area. Cleanup personnel shall wash their hands prior to sample
recovery.
Inspect the train prior to and during disassembly and note any
abnormal conditions, e.g., broken filters, colored impinger
liquid, etc. Treat the samples as follows:
4.2.1 Container No. 1. Either seal the filter holder or
carefully remove the filter from the filter holder and place it
in its identified container. Do not place the filter in aluminum
foil. Use a pair of cleaned tweezers to handle the filter. If
it is necessary to fold the filter, do so such that the
particulate cake is inside the fold. Carefully transfer to the
29
-------
container any particulate matter and filter fibers which adhere
to the filter holder gasket, by using a dry inert bristle brush
and a sharp-edged blade. Seal.the container with Teflon tape.
4.2.2 Adsorbent Module. Remove the module from the train,
tightly cap both ends, label it, and store it on ice for
transport to the laboratory.
4.2.3 Container No. 2. Quantitatively recover material
deposited in the nozzle, probe transfer lines, the front half of
the filter holder, and the cyclone, if used, first, by brushing
while rinsing three times with acetone and then, by rinsing the
probe three times with toluene. Collect all the rinses in
Container No. 2.
Rinse the back half of the filter holder three times with
acetone. Rinse the connecting line between the filter and the
condenser three times with acetone. Soak the connecting line
!
with three separate portions of toluene for 5 minutes each. If
using a separate condenser and adsorbent trap, rinse the
condenser in the same manner as the connecting line. Collect all
the rinses in Container No. 2 and mark the level of the liquid on
the container.
4.2.4 Impinger Water. Measure the liquid in the first four
impingers to within 1 mL by using a graduated cylinder or by
weighing it to within 0.5 g by using a balance. Record the
30
-------
volume or weight of liquid present. This information is required
to calculate the moisture content of the effluent gas. Discard
the liquid after measuring and recording the volume or weight.
4.2.5 Silica Gel. Note the color of the indicating silica gel
to determine if it has been completely spent and make a mention
of its condition. Transfer the silica gel from the fifth
impinger to its original container and seal.
5. ANALYSIS
All glassware shall be cleaned as described in Section 3A of
the "Manual of Analytical Methods for the Analysis of Pesticides
in Human and Environmental Samples." All samples must be
extracted within 30 days of collection and analyzed within 45
days of extraction.
5.1 Sample Extraction. The analyst may choose to split the
sample extract after the completion of sample extraction
procedures. One half of the sample can then be archived. Sample
preparation procedures are given for using the entire sample and
for splitting the sample.
5.1.1 Extraction System. Place an extraction thimble (Section
2.3.4), 1 g of silica gel, and a plug of glass wool into the
»
Soxhlet apparatus, charge the apparatus with toluene, and reflux
for a minimum of 3 hours. Remove the toluene and discard it, but
retain the silica gel. Remove the extraction thimble from the
31
-------
extraction system and place it in a glass beaker to catch the
solvent rinses.
5.1.2 Container No. 1 (Filter). Transfer the contents
directly to the glass thimble of the extraction system and
extract them simultaneously with the XAD-2 resin.
5.1.3 Adsorbent Cartridge. Suspend the adsorbent module
directly over the extraction thimble in the beaker (See Section
5.1.1) . The glass frit of the module should be in the up
position. Using a Teflon squeeze bottle containing toluene,
flush the XAD-2 into the thimble onto the bed of cleaned silica
gel. Thoroughly rinse the glass module catching the rinsings in
the beaker containing the thimble. If the resin is wet,
effective extraction can be accomplished by loosely packing the
resin in the thimble. Add the XAD-2 glass wool plug to the
thimble.
5.1.4 Container No. 2 (Acetone and Toluene). Concentrate the
sample to a volume of about 1-2 mL using a Kuderna-Danish
concentrator apparatus, followed by N2 blow down at a temperature
of less than 37°C. Rinse the sample container three times with
small portions of methylene chloride and add these to the
concentrated solution and concentrate further to near dryness.
This residue contains particulate matter removed in the rinse of
the sampling train probe and nozzle. Add the concentrate to the
32
-------
filter and the XAD-2 resin in the Soxhlet apparatus described in
Section 5.1.1.
5.1.5 Extraction. For samples that are to be split prior to
analysis add 40 /zl of the internal standard solution
(Section 3.3.20) to the extraction thimble containing the
contents of the adsorbent cartridge, the contents of
Container No. 1, and the concentrate from Section 5.1.4.
Alternatively, 20 /il of the internal standard solution
(Section 3.3.20) for samples that are not to be split prior to
analysis. Cover the contents of the extraction thimble with the
cleaned glass wool plug to prevent the XAD-2 resin from floating
into the solvent reservoir of the extractor. Place the thimble
in the extractor, and add the toluene contained in the beaker to
the solvent reservoir. Add additional toluene to fill the
reservoir approximately 2/3 full. Add Teflon boiling chips and
assemble the apparatus. Adjust the heat source to cause the
extractor to cycle three times per hour. Extract the sample for
16 hours. After extraction, allow the Soxhlet to cool. Transfer
the toluene extract and three 10-mL rinses to the rotary
evaporator. Concentrate the extract to approximately 10 mL. If
decided to split the sample, store one half for future use, and
analyze the other half according to the procedures in Sections
5.2 and 5.3. In either case, use a nitrogen evaporative
33
-------
concentrator to reduce the volume of the sample being analyzed to
near dryness. Dissolve the residue in 5 mL of hexane.
5.2 Sample Cleanup and Fractionation.
The following sample cleanup and fractionation procedures are
recommended. Alternative procedures may be utilized providing
acceptable identification criteria (Section 5.3.2.5) and
quantification criteria (Section 5.3.2.6) are met.
5.2.1 Silica Gel Column. Pack one end of a glass column,
20 mm x 230 mm, with glass wool. Add in sequence, 1 g silica
gel, 2 g of sodium hydroxide impregnated silica gel, 1 g silica .
gel, 4 g of acid-modified silica gel, and 1 g of silica gel.
Wash the column with 30 mL of hexane and discard. Add the sample
extract, dissolved in 5 mL of hexane to the column with two
additional 5-mL rinses. Elute the column with an additional 90
mL of hexane and retain the entire eluate. Concentrate this
solution to a volume of about 1 mL using the nitrogen evaporative
concentrator (Section 2.3.9).
5.2.2 Basic Alumina Column. Shorten a 25-mL disposable
Pasteur pipette to about 16 mL. Pack the lower section with
glass wool and 12 g of basic alumina. Transfer the concentrated
extract from the silica gel column to the top of the basic
alumina column and elute the column sequentially with 120 mL of
0.5 percent methylene chloride in hexane followed by 120 mL of 35
34
-------
percent methylene chloride in hexane. Discard the first 120 mL
of eluate. Collect the second 120 mL of eluate and concentrate
it to about 0.5 mL using the nitrogen evaporative concentrator.
Transfer this extract with hexane to "13 mL tubes" .
5.2.3 AX-21 Carbon/Celite 545 Column. Remove the bottom 0.5
in. from the tip of a 2-mL disposable Pasteur pipette. Insert a
glass fiber filter disk or glass wool plug in the top of the
pipette 2.5 cm from the constriction. Add sufficient
carbon/Celite1" mixture to form a 2 cm column (the 0.6 mL mark
column. Top with a glass wool plug. In some cases AX-21 carbon
fines may wash through the glass wool plug and enter the sample.
This may be prevented by adding a celite plug to the exit end of
the column. Pre-elute the column with 5 ml toluene, followed by 1
mL of a 50:50 methylene chloride/cyclohexane mixture, followed by
5 mL of hexane. Load in sequence, the sample extract in 1 mL
hexane, 2x0.5 mL rinses in hexane, 2 mL of 50 percent methylene
chloride in hexane and 2 mL of 50 percent benzene in ethyl
acetate and discard the eluates. Invert the column and elute in
the reverse direction with 13 mL of toluene. Collect this
eluate. Concentrate the eluate in a nitrogen evaporator at 45°C
to about 1 mL. Transfer the concentrate to a Reacti-vial using a
toluene rinses and concentrate to near dryness (less than 20 /zl)
using a stream of N2. Store extracts at room temperature,
35
-------
shielded from light, until the analysis is performed.
5.3 Analysis. Analyze the sample with a gas chromatograph
coupled to a mass spectrometer (GC/MS) using the instrumental
parameters in Sections 5.3.1 and 5.3.2. Immediately prior to
analysis, add a 20 /zl aliquot of the recovery standard solution
from Table 2 to each sample. A 2 /zl aliquot of the extract is
injected into the GC. Sample extracts are first analyzed using
the DB-5 capillary column to determine the concentration of each
isomer of PCDD's and PCDP's (tetra-through octa-). If 2,3,7,8-
TCDF is detected in this analysis, then analyze another aliquot
of the sample in a separate run, using the DB-225 column to
measure the 2,3,7,8 tetra-chloro dibenzofuran isomer. Other
column systems may be used, provided that it can be demonstrated
using calibration and performance checks that the column system
is able to meet the specifications of Section 6.1.2.
1
5.3.1 Gas Chromatograph Operating Conditions. The recommended
conditions are shown in Table 4.
5.3.2 High Resolution Mass Spectrometer.
5.3.2.1 Resolution. 10,000 resolving power or 100 ppm
mass/mass.
5.3.2.2 lonization Mode. Electron impact.
5.3.2.3 Source Temperature 250°C.
5.3.2.4 Monitoring Mode. Selected ion monitoring. A list of
36
-------
the various ions to be monitored is presented in Table 5.
5.3.2.5 Identification Criteria. The following identification
criteria shall be used for the characterization of
polychlorinated dibenzodioxins and dibenzofurans.
1. The integrated ion-abundance ratio (M/M+2 or M+2/M+4) shall
be within 15 percent of the theoretical value. The acceptable
ion-abundance ratio ranges (±15%) for the identification of
chlorine-containing compounds are given in Table 6. If the ion-
abundance ratio ranges are the outside those in Table 6, the
source has the option of using the results if the concentration
is determined using procedures in Section 9.3 or redoing the
analysis to eliminate the unacceptable ion-abundance ratio.
2. The retention time for the analytes must be within 3
seconds of the corresponding 13C-labeled internal standard or
surrogat e s tandard.
3. The monitored ions, shown in Table 5 for a given analyte,
shall reach their maximum within 2 seconds of each other.
4. The identification of specific isomers that do not have
corresponding 13C-labeled standards is done by comparison of the
relative retention time (RRT) of the analyte to the nearest
internal standard retention time with reference (i.e., within
0.005 RRT units) to the comparable RRT^s found in the continuing
calibration.
37
-------
5. The signal to noise ratio for all monitored ions must be
greater than 2.5.
6. The confirmation of 2, 3, 1, 8-TCDP shall satisfy all of
the above identification criteria.
7. Any PCDF coeluting (±2 s) with a peak in the corresponding
PCDPE channel, of intensity 10% or greater compared to the
analyte peak is evidence of a positive interference, the source
may opt keep the value to calculate CDD/CDF concentration or
conduct a complete reanalysis in an effort to remove or shift the
interference. If a reanalysis is conducted, all values from the
reanalyzed sample will be used for CDD/CDF concentration
calculations.
8. Set the mass spectrometer lock channels as specified in
Table 5. Monitor the quality control check channels specified in
Table 5 to verify instrument stability during the analysis. • If
the signal varies by more than 25 percent from the average
response, results for all isomers at corresponding residence time
shall be invalid. The source has the options of conducting
additional cleanup procedures on the other portion of the sample
for split samples or diluting the original sample or following
other procedures recommended by the Administrator. When a
complete reanalysis is conducted, all concentration calculations
shall be based on the reanalyzed sample.
38
-------
5.3.2.6 Quantification. The peak areas for the two ions
monitored for each analyte are summed to yield the total response
for each analyte. Each internal standard is used to quantify the
indigenous PCDD's or PCDF's in its homologous series. For
example, the l3C12-2,3,7,8-tetra chlorinated dibenzodioxin is used
to calculate the concentrations of all other tetra chlorinated
isomers. Recoveries of the tetra- and penta- internal standards
are calculated using the 13C12-1,2,3,4-TCDD. Recoveries of the
hexa- through octa- internal standards are calculated using ^C^-
1,2,3,7,8,9-HxCDD. Recoveries of the surrogate standards are
calculated using the corresponding homolog from the internal
standard. When no peak is detected, the noise level, as measured
by the intensity of the noise in a clear zone of the
chromatogram, is used to calculate the detection limit. Tables
7, 8, and 9 summarize the quantification relationships for the
unlabeled analytes, internal standards and surrogate standards,
respectively.
6. CALIBRATION
Same as Method 5 with the following additions.
6.1 GC/MS System.
6.1.1 Initial Calibration. Calibrate the GC/MS system using
the set of five standards shown in Table 3. The relative
standard deviation for the mean response factor from each of the
39
-------
unlabeled analytes (Table 3) and of the internal and surrogate
standards shall be less than or equal to the values in Table 6.
The signal to noise ratio for the GC signal present in every
selected ion current profile shall be greater than or equal to
10. The ion abundance ratios shall be within the control limits
in Table 5.
6.1.2 Daily Performance Check.
6.1.2.1 Calibration Check. Inject 2 /xl of solution Number 3
from Table 3. Calculate the relative response factor (RRF) for
each compound and compare each RRF to the corresponding mean RRF
obtained during the initial calibration. The analyzer
performance is acceptable if the measured RRF's for the labeled
and unlabeled compounds for the daily run are within the limits
of the mean values shown in Table 10. In addition, the ion*
abundance ratios shall be within the allowable control limits
shown in Table 6.
6.1.2.2 Column Separation Check. Inject 2 /zl of a solution of
a mixture of PCDD's and PCDF's that documents resolution between
2,3,7,8-TCDD and other TCDD isomers. Resolution is defined as a
valley between peaks that is less than 25 percent of the lower of
the two peaks. Identify and record the retention time windows
•
for each homologous series. Perform a similar resolution check
on the confirmation column to document the resolution between
40
-------
2,3,7,8 TCDF and other TCDF isomers.
6.2 Lock Channels. Set mass spectrometer lock channels as
specified in Table 5. Monitor the quality control check channels
specified in Table 5 to verify instrument stability during the
analysis.
7. QUALITY CONTROL
7.1 Sampling Train Collection Efficiency Cheek. Add 40 /zl 6f
the surrogate standards in Table 2 for samples split for analysis
or 20 /zl of the surrogate standards for sample not split for
analysis to the adsorbent cartridge of each train before
collecting the field samples.
7.2 Internal Standard Percent Recoveries. A group of nine
carbon-labeled PCDDs and PCDFs representing the tetra- through
octachlorinated homologues, is added to every sample prior to
extraction. The role of the internal standards is to quantify
the native PCDD's and PCDF's present in the sample as well as to
determine the overall method efficiency. Recoveries of the
internal standards shall be between 40 to 130 percent for the
tetra- through hexachlorinated compounds while the range is 25 to
130 percent for the hepta- and octachlorinated homologues.
7.3 Surrogate Standard Recoveries. The five surrogate
compounds in Table 3 are added to the resin in the adsorbent
sampling cartridge before the sample is collected. The surrogate
41
-------
recoveries are measured relative to the internal standards and
are a measure of the sampling train collection efficiency. They
are not used to measure the native PCDD's and PCDF's. All
surrogate standard recoveries shall be between 70 and
130 percent. Poor recoveries for all the surrogates may be an
indication of breakthrough in the sampling train. If the
recovery of all standards is below 70 percent, the sampling runs
must be repeated. As an alternative, the sampling runs do not
have to be repeated if the final results are divided by the
fraction of surrogate recovery (on a homolog group basis). Poor
recoveries of isolated surrogate compounds should not be grounds
for rejecting an entire set of samples.
7.4 Toluene QA Rinse. Report the results of the toluene QA
rinse separately from the total sample catch. Do not add it to
the total sample. /
\
7.5 Detection Limits. Calculate the detection limits using
the equation in Section 9.8. If the detection limits meet the
Target Detection Limits (TDLs) in Table 1, then they are
considered acceptable. If the TDLs are not met, the impact of
the detection limits shall be calculated using the procedures in
Section 9.9. If the maximum potential value of the sum of the
summed detection limits is less then 50 percent of the emission
standard, the detection limits are acceptable. If the value is
42
-------
greater than 50 percent of the emission standard, then the
analysis and/or sampling and analysis must be repeated until
acceptable detection limits are obtained.
8. QUALITY ASSURANCE
8.1 Applicability. When the method is used to analyze samples
to demonstrate compliance with a source emission regulation, an
audit sample must be analyzed, subject to availability.
8.2 Audit Procedure. Analyze an audit sample with each set of
compliance samples. The audit sample contains tetra through octa
isomers of PCDD and PCDF. Concurrently analyze the audit sample
and a set of compliance samples in the same manner to evaluate
the technique of the analyst and the standards preparation. The
same analyst, analytical reagents, and analytical system shall be
used both for the compliance samples and the EPA audit sample.
8.3 Audit Sample Availability. Audit samples will be supplied
only to enforcement agencies for compliance tests. Audit samples
may be obtained by writing:
Source Test Audit Coordinator (MD-77B)
Quality Assurance Division
Atmospheric Research and Exposure Assessment Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
or by calling the Source Test Audit Coordinator (STAC) at (919)
43
-------
541-7834. The audit sample request must be made at least 30 days
prior to the scheduled compliance sample analysis.
8.4 Audit Results. Calculate the audit sample concentration
according to the calculation procedure provided in the audit
instructions included with the audit sample. Fill in the audit
sample concentration and the analyst's name on the audit response
form included with the audit instructions. Send one copy to the
EPA Regional Office or the appropriate enforcement agency and a
second copy to the STAC. The EPA Regional office or the
appropriate enforcement agency will report the results of the
audit to the laboratory being audited. Include this response
with the results of the compliance samples in relevant reports to
the EPA Regional Office or the appropriate enforcement agency.
9. CALCULATIONS
Same as Method 5, Section 6 with the following additions.
9.1 Nomenclature.
Aal = Integrated ion current of the noise at the retention time
of the analyte.
Aeij « Integrated ion current of the two ions characteristic of
compound i in the jth calibration standard.
A*cij - Integrated ion current of the two ions characteristic of
the internal standard i in the jth calibration standard.
» Integrated ion current of the two ions characteristic of
44
-------
surrogate compound i in the calibration standard.
Integrated ion current of the two ions characteristic of
compound i in the sample.
Integrated ion. current of the two ions characteristic of
internal standard i in the sample.
Integrated ion current of the two ions characteristic of
the recovery standard.
Integrated ion current of the two ions characteristic of
surrogate compound i in the sample.
Ci « Concentration of PCDD or PCDF i in the sample, pg/M3.
CT = Total concentration of PCDD's or PCDF's in the sample,
pg/M3.
DL = Detection limit, pg/sample.
= Detection limit for each homologous series, pg/sample.
• Sum of all isomers times the corresponding detection
limit, ng/m3.
Hai = Summed heights of the noise at the retention time of the
analyte in the two analyte channels.
moi = Mass of compound i in the calibration standard injected
into the analyzer, pg.
m*ct » Mass of labeled compound i in the calibration standard
injected- into the analyzer, pg.
m*i - Mass of internal standard i added to the sample, pg.
45
-------
* Mass of recovery standard in the calibration standard
injected into the analyzer, pg.
m, » Mass of surrogate compound in the sample to be analyzed,
pg.
m.1. • Mass of surrogate compound i in the calibration standard,
pg.
« Relative response factor for compound i.
RRFr, = Recovery standard response factor.
RRF. « Surrogate compound response factor.
v«(itd>~ Metered volume of sample run, dscm.
1000 = pg per ng.
9.2 Average Relative Response Factor.
- *
RRF = —]£ —^—— Eq. 23-1
1 nJ-l A*
cl
9.4 Recovery Standard Response Factor,
9 .3 Concentration of the PCDD' a and PCDF' a.
m, A.
C = i—i Eq. 23-2
A/ RRF. Vm
* *••***
46
-------
RRFeg = c* " Eq. 23-3
'
9.5 Recovery of Internal Standards (R*) .
Ar. RFr, »i
xlOO% Eq. 23-4
9.6 Surrogate Compound Response Factor.
9.7 Recovery of Surrogate Compounds (R.)
Eq. 23-5
xlQO% Eq. 23-6
9.8 Detection Limit (DL) . The detection limit can be
calculated based on either the height of the noise or the area of
47
-------
the noise using one of the two equations.
Detection limit using height for the DB-225 column. Three and
one half times the height has been empirically determined to give
area.
2.5 (3.5 x H .) a,*
DL = - Eq. 23-7
Detection limit using height for the DB-5 column. Five times the
height has been empirically determined to give area.
2.5 (5 x H,) «;
DL » Eq. 23-8
Detection limit using area of the noise.
i
i
2.5 A . ffl,
DL = ——- Eq. 23-9
Ac*i RRFJ
9.9 Summed Detection Limits. Calculate the maximum potential
value of the summed detection limits. If the isomer (group of
unresolved isomers) was not detected, use the value calculated
for the detection limit in Section 9.8 above. If the isomer
(group of unresolved isomers) was detected, use the value (target
48
-------
detection limit) from Table 1.
= (13 DLtCDD + 16 DLTCDF + 12
7 Z>£,XCDD + 12 DLflxCBr
+ 4 *
/ 1000
Note: The number of isomers used to calculate the summed
detection limit represent the total number of isomers typically
separated and not the actual number of isomers for each series.
9.10 Total Concentration of PCDD's and PCDP's in the Sample.
C = 2JC. Eq. 23-11
j-i
Any PCDDs or PCDFs that are reported as not detected (below the
DL) shall be counted as zero for the purpose of calculating the
total concentration of PCDDs and PCDFs in the sample.
10. BIBLIOGRAPHY
1. American Society of Mechanical Engineers. Sampling for the
Determination of Chlorinated Organic Compounds in Stack
Emissions. Prepared for U.S. Department of Energy and U.S.
Environmental Protection Agency. Washington DC. December 1984.
25 p.
2. American Society of Mechanical Engineers. Analytical
49
-------
Procedures to Assay Stack Effluent Samples and Residual
Combustion Products for Polychlorinated Dibenzo-p-Dioxins (PCDD)
and Polychlorinated Dibenzofurans (PCDP) . Prepared for the U.S.
Department of Energy and U.S. Environmental Protection Agency.
Washington, DC. December 1984. 23 p.
3. Thompson, J. R. (ed.). Analysis of Pesticide Residues in
Human and Environmental Samples. U.S. Environmental Protection
Agency. Research Triangle Park, NC. 1974.
4. Triangle Laboratories. Case Study: Analysis of Samples
for the Presence of Tetra Through Octachloro-p-Dibenzodioxins and
Dibenzofurans. Research Triangle Park, NC. 1988. 26 p.
5. U.S. Environmental Protection Agency. Method 8290 - The
Analysis of Polychlorinated Dibenzo-p-dioxin and Polychlorinated
Dibenzofurans by High-Resolution Gas Chromatography/
High-Resolution Mass Spectrometry. In: Test Methods for
Evaluating Solid Waste. Washington, DC. SW-846.
6. Personnel communications with R. L. Harless of U.S. EPA and
Triangle Laboratory staff.
50
-------
TABLE 23-1. TARGET DETECTION LIMITS (TDLs)
ANALYTE
TCDD/TCDF
PeCDD/PeCDF
HxCDD/HxCDF
HpCDD/HpCDF
OCDD/OCDF
TDL (pg/Sample Train)
50
250
250
250
500
TABLE 23-2. COMPOSITION OF THE SAMPLE FORTIFICATION AND RECOVERY
STANDARDS SOLUTIONS*
ANALYTE
CONCENTRATION (pg/jiL)
Internal Standards
13cia
»C12
13C12
"C12
13C12
13C12
13C12
13C12
»C12
-2,
-1,
-1,
-1,
3,
2,
2,
2,
7,
3,
3,
3,
8 -TCDD
7,
6,
4,
8-PeCDD
7,
6,
8-HxCDD
7,8-HpCDD
-OCDD
-2,
-1,
-1,
-1,
3,
2,
2,
2,
7,
3,
3,
3,
8-TCDF
7,
6,
4,
8-
7,
6,
PeCDF
8-HxCDF
7,8-HpCDF
100
100
100
100
100
100
100
100
100
Surrogate Standards
37Cl4-2
13r
^-12
13C12
13C12
13cia
-1,
-2,
-1,
-1,
,3,
2,
3,
2,
2,
7 , 8 -TCDD
3,
4,
3,
3,
4,
7,
4,
4,
7,
8-
7,
7,
8-HxCDD
PeCDF
8-HxCDF
8,9-HpCDF
100
100
100
100
100
Recovery Standards
51
-------
13C12-1,2,3,4-TCDD
13C12-1 , 2 , 3 , 7 , 8 , 9-HxCDD
100
100
'Calibration levels are specific for samples at
the MWC compliance standard level.
52
-------
TABLE 23-3. COMPOSITION OF THE INITIAL CALIBRATION SOLUTIONS
COMPOUND
SOLUTION NO.
CONCENTRATIONS (pg//il)
1
2
3
UNLABELED ANALYTES
2,3,7,8-TCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDD
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8-HxCDD
1,2,3,4,6,7,8-HpCDD
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF
OCDD
OCDF
0.5
0.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
5
5
1
1
5
5
5
5
5
5
5
5
5
5
5
5
5
10
10
5
5
25
25
25
25
25
25
25
25
25
25
25
25
25
50
50
4
50
50
250
250
250
250
250
250'
250
250
250
250
250
250
250
500
500
5
100
100
500
500
500
500
500
500
500
500
500
500
500
500
500
1000
1000
INTERNAL STANDARDS
13C12-2,3,7,8-TCDD
l3C12-l,2,3,7,8-PeCDD
13C12-l,2,3,6,7,8-HxCDD
13C12-l,2,3,4,6,7,8-HpCDD
"Cu-OCDD
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
53
-------
"Cia-2,3,7,8-TCDF
13C13- 1 , 2 , 3 , 7 , 8 -PeCDF
13Cia-l, 2 , 3 , 6 , 7 , 8-HxCDF
"Cia-l^S^e^B-HpCDF
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
TABLE 23-3. (Continued)
COMPOUND
SOLUTION NO.
CONCENTRATION (pg//il)
1
2
3
4
5
SURROGATE STANDARDS
37Cl«-2,3,7,8-TCDD
13Cia-2,3,4,7,8-PeCDF
13Cia- 1 , 2 , 3 , 4 , 7 , 8-HxCDD
13C12-1 , 2 , 3 , 4 , 7 , 8-HxCDF
13Cia-l,2,3,4,7,8,9-HpCDF
60
60
60
60
60
80
80
80
80
80
100
100
100
100
100
120
120
120
120
120
140
140
140
140
140
RECOVERY STANDARDS
13Cia-l,2,3,4-TCDD
13Cia-l, 2 , 3 , 1, 8, 9-HxCDD
100
100
100
100
100
100
100
100
100
100
54
-------
TABLE 23-4. RECOMMENDED GC OPERATING CONDITIONS
Column Type DB-5 DB-225
Length (m)
i.d. (mm)
Film Thickness (/zm)
Carrier Gas
Carrier Gas Flow (mL/min)
60
0.25
0.25
Helium
1-2
30
0.25
0.25
Helium
1-2
Injection Mode <-- splitless -->
Valve Time (rain) 2.5 2.5
Initial Temperature (o C) 150 130
Initial Time (min) 0.5 2.5
Rate 1 (deg. C/min) 60 50
Temperature 2 (deg. C) 170 170
Rate 2 (deg. C/min) 3 4
Final Temperature (deg. C) 300 250
55
-------
TABLE 23-5. ELEMENTAL COMPOSITIONS AND EXACT MASSES OF THE IONS
MONITORED BY HIGH RESOLUTION MASS SPECTROMETRY FOR PCDD'S AND PCDF's
DESCRIPTOR
NUMBER
2
• 3
ACCURATE
MASS
292.9825
303.9016
305.8987
315.9419
317.9389
319.8965
321.8936
327.8847
330.9792
331.9368
333.9339
339.8597
341.8567
351.9000
353.8970
355.8546
357.8516
367.8949
369.8919
375.8364
409.7974
373.8208
375.8178
383.8639
385.8610
389.8157
391.8127
392.9760
ION
TYPE
LOCK
M
M+2
M
M+2.
M
M+2
M
QC
M
M+2
M+2
M+4
M+2
M+4
M+2
M+4
M+2
M+4
M+2
M+2
M+2
M+4
M
M+2
M+2
M+4
LOCK
ELEMENTAL COMPOSITION
C,Fii
C12H435C140
C12H435C13C137O
13C12H435C140
"C^H^CI^CIO
CuH^C^Qa
CiaH4JSCl1"ClOa
C12H437C1402
CvFu
"djH^C^O,
»C12H435C1"C102
CuHa^CV'ClO
C12H335C1337C120
13C12H335C14"C10
"C12H335C1337C120
CiaH335Cl337ClOa
C12H335C1337C1202
»C12H33SC1437C102
"C12H335C1337C1202
C12H435C1S37C10
C12H33SC1S37C1O
C12H235C1537C10
C1JH235C1437C120
"C12H235C160
13C12H23SC1537C10
ClaH235Cl537Cl02
CI2H235C1437C1202
C,F15
ANALYTE
PFK
TCDF
TCDF
TCDF(S)
TCDF(S)
TCDD
TCDD
TCDD(S)
PFK
TCDD(S)
TCDD(S)
PeCDF
PeCDF
PeCDF (S)
PeCDF (S)
PeCDD
PeCDD
PeCDD (S)
PeCDD (S)
HxCDPE
HpCPDE
HxCDF
HxCDF
HxCDF (S)
HxCDF (S)
HxCDD
HxCDD
PFK 1
56
-------
401.8559
403.8529
445.7555
430.9729
M+2
M+4
M+4
QC
"C^H^CI^CIO,
13C12H23SC1437C120
C12H235C1637C120
C9F17
HxCDD(S)
HxCDD (S)
OCDPB
PPK
TABLE 23-5.
I Continued)
DESCRIPTOR
NUMBER
ACCURATE
MASS
407.7818
409.7789
417.8253
389.8157
391.8127
392.9760
401.8559
403.8529
445.7555
430.9729
407.7818
409.7789
417.8253
419.8220
423.7766
425.7737
435.8169
437.8140
479.7165
430.9729
441.7428
443.7399
457.7377
459.7348
469.7779
ION
TYPE
M+2
M+4
M
M+2
M+4
LOCK
M+2
M+4
M+4
QC
M+2
M+4
M
M+2
M+2
M+4
M+2
M+4
M+4
LOCK
M+2
M+4
M+2
M+4
M+2
ELEMENTAL DESCRIPTION
C12H35C1S37C10
C^H^CVClaO
"CizH^Cl,©
C12H23SC153'C102
C12H23SC1«37C1202
C9P15
13C12H235C1537C102
13C12H235C1«37C120
C12H235C1S37C120
C9F17
C12H35C1637C10
C12H35C1S37C120
13C12H3SC170
13C12H35C1637C10
C12H35C1637C102
C12H35C1537C1202
13C12H3SC1S37C102
13C12H3SC1537C1202
C12H3SC1737C120
C9F17
C1235C1737C10
C123SC1S37C120
C1235C17"C102
C1235CV7C1202
"C1235C1737C102
ANALYTE
HpCDF
HpCDF
HpCDF (S)
HxCDD
HxCDD
PFK
HxCDD (S)
HxCDD (S)
OCDPE
PFK
HpCDF
HpCDF
HpCDF (S)
HpCDF (S)
HpCDD
HpCDD
HpCDD (S)
HpCDD (S)
NCPDE
PFK
OCDF
OCDF
OCDD
OCDD
OCDD(S)
57
-------
471.7750
513.6775
442.9728
M+4
M+4
QC
13C123SC1$"C1202
C1235C18"C1202
CioFj.7
OCDD(S)
DCDPE
PFK
35C1 - 34.968853
The following nuclidic masses were used:
H m 1.007825 O « 15.994914 C - 12.000000
13C - 13.003355 37C1 = 36.965903 P « 18.9984
S = Labeled Standard
QC - Ion selected for monitoring instrument stability during the
GC/MS analysis.
58
-------
TABLE 23-6. ACCEPTABLE RANGES FOR ION-ABUNDANCE RATIOS OP PCDD's AND
PCDP's
Number of
Chlorine
Atoms
4
5
6
6a
7b
7
8
Ion Type
M/M+2
M+2/M+4
M+2/M+4
M/M+2
M7M+2
M+2/M+4
M+2/M+4
Theoretical
Ratio
0.77
1.55
1.24
0.51
0.44
1.04
0.89
Control Limits
Lower
0.65
1.32
1.05
0.43
0.37
0.88
0.76
Upper
0.89
1.78
1.43
0.59
0.51
1.20
1.02
59
-------
TABLE 23-7. UNLABELED ANALYTES QUANTIFICATION RELATIONSHIPS
ANALYTE
2,3,7,8-TCDD
Other TCDD's
INTERNAL STANDARD USED
"C^- 2,3,7,8-TCDD
13C12-2,3,7,8-TCDD
1,2,3,7,8-PeCDD
Other PeCDD's
1,2,3, 4,7, 8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
Other HxCDD's
13C12-l,2,3,7,8-PeC3DD
"Cia-1 , 2 , 3 , 7 , 8 -PeCDD
"Cu-1 , 2 , 3 , 6 , 7 , 8 -HxCDD
13C13-1 , 2 , 3 , 6 , 7 , 8 -HxCDD
13Cia-l , 2 , 3 , 6 , 7 , 8-HxCDD
13C12-1, 2, 3, 6, 7, 8-HxCDD
1,2,3,4,6,7,8-HpCDD
Other HpCDD's
13C12-l,2,3,4,6,7,8-HpCDD
13C12-l,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
Other TCDF's
"Cu-OCDD
13C12-2,3,7,8-TCDF
13C12-2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
Other PeCDF's
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8-HxCDF
Other HxCDF's
1,2,3,4,6,7,8-HpCDF
13C12-1, 2, 3, 7, 8-PeCDF
"C12-l,2,3,7,8-PeCDF
13C12-l,2,3,7,8-PeCDF
13C12-1,2,3,6, 7,8-HxCDF
13C12-l,2,3,6,7,8-HxCDF
13C12-l,2,3,6,7,8-HxCDF
13C12-1, 2, 3, 6 , 7, 8-HxCDF
13C12-l,2,3,6,7,8-HxCDF
13C12-l,2,3,4,6,7,8-HpCDF
60
-------
1,2,3,4,7,8,9-HpCDF j"Cia-l,2,3,4,6,1,8-HpCDF
OCDF
13
C12-l,2,3,4,6,7,8-HpCDF
61
-------
TABLE 23-8. INTERNAL STANDARDS QUANTIFICATION RELATIONSHIPS
INTERNAL STANDARD
13C12-2/3,7,8-TCDD
l3C12-l,2,3,7,8-PeCDD
"C12-l,2,3,6,7,8-HxCDD
"Cu-l^S^S^a-HpCDD
13C12-OCDD
13C12-2/3,7,8-TCDF
13C12-1 ,2,3,7, 8-PeCDF
"Cu-1, 2, 3 , 6, 7, 8-HxCDF
»C12-l,2,3,4,6,7,8-HpCDF
STANDARD USED DURING PERCENT
RECOVERY DETERMINATION
13C12-1,2,3,4-TCDD
13C12-1,2,3,4-TCDD
13C12-1 , 2 , 3 , 7 , 8 , 9-HxCDD
"C^-l , 2 , 3 , 7 , 8 , 9 -HxCDD
13C12-1 , 2 , 3 , 7 , 8 , 9 -HxCDD
"Cja-l^/S^-TCDD
"0^-1,2,3,4-1000
"Cu-1 , 2 , 3 , 7 , 8 , 9-HxCDD
"C12-l , 2 , 3 , 7 , 8 , 9 -HxCDD
TABLE 23-9. SURROGATE STANDARDS QUANTIFICATION RELATIONSHIPS
SURROGATE STANDARD
37Cl4-2,3,7,8-TCDD
13C12-2 ,3,4,7, 8-PeCDF
13C12-1, 2 ,3,4,7 , 8-HxCDD
13C12-1, 2 , 3 , 4 , 7, 8-HxCDF
"C12-l ,2,3,4,7,8, 9-HpCDF
STANDARD USED DURING PERCENT
RECOVERY DETERMINATION
"C12-2,3,7,8-TCDD
13C12-l,2,3,7,8-PeCDF
13C12-1, 2 ,3,6 , 7, 8-HxCDD
13C12- 1 ,2,3,6,7,8 -HxCDF
13C12 -1,2,3,4,6,7,8 -HpCDF
62
-------
TABLE 23-10. MINIMUM REQUIREMENTS FOR INITIAL AND DAILY CALIBRATION
RESPONSE FACTORS
COMPOUND
RELATIVE RESPONSE FACTORS
INITIAL
CALIBRATION
(RSD)
DAILY
CALIBRATION
(V DIFFERENCE)
UNLABELED ANALYTES
2,3,7,8-TCDD
2,3,7, 8-TCDF
1,2,3,7,8-PeCDD
1,2,3,7,8-PeCDF
1,2,4,5,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8-HxCDF
1,2,3,4,6,7,8-HpCDD
1,2,3,4,6,7,8-HpCDF
OCDD
OCDF
SURROGATE
37Cl4-2,3,7,8-TCDD
13C12-2,3,4,7,8-Pe.CDF
13Cia-l , 2,3,4,7,8 -HxCDD
13C12-l,2,3,4,7,8-HxCDF
13Cia-l,2,3,4,7,8,9-HpCDF
25
25
25
25
25
25
25
25
25
25
25
25
25
25
30
STANDARDS
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
30
25
63
-------
1C
h
Thonnoooupl
"S"TypaPltol
/ff"
!• U
Filter Holder
Thaimocoupte
ProlM
Tbarmocoupte Ttwmocoupto
ChfokValvt
a\
Slllea Q«l
(300 grams)
MllUMIMttr
100ml HPLC Water
WtltrKnockort
Implngcr
Thtnaoeouplaa
Orlllet
By-Pata
Yalta
MatoValva
Vacuum Una
Alr.Tloht
Pump
Figure 6-1. CDD/CDF Sampling Train Configuration
-------
CofMwiiMr
FhitOatFlow'
SorbmtTrap
•r
(£
h
cn
ui
8 mm OlaM Cooling Cod
•20/16
•20/16
W«Ur Jacket Cooling Coll
GteM Woof Plug WatwJackot XAD-2
(TSQrMM)
QlMtSmtoratfDtak
FIGURE 2. CONDENSER AND SORBENT TRAP FOR COLLECTION OF GASEOUS PCDDs AND
PCOFs
-------
-------
Appendix G. 5
Sampling & Analysis Methods
EPA Method 25A
-------
-------
EMISSION MEASUREMENT TECHNICAL INFORMATION CENTER
NSPS TEST METHOD
METHOD 25A-DBTERKINATION OF TOTAL GASEOUS ORGANIC
CONCENTRATION USING A FLAMK IONIZATION ANALYZER
1. Applicability and Principle
1.1 Applicability. This method applies to the measurement of total gaseous
organic concentration of vapors consisting primarily of alkanes, alkenes, and/or
arenes (aromatic hydrocarbons). The concentration is expressed in terms of
propane (or other appropriate organic calibration gas) or in terms of carbon.
1.2 Principle. A gas sample is extracted from the source through a heated
sample line, if necessary, and glass fiber filter to a flame ionization analyzer
(FZA). Results are reported as volume concentration equivalents of the
calibration gas or as carbon equivalents.
2. Definitions
2.1 Measurement Systems. The total equipment required for the determination
of the gas concentration. The system consists of the following major subsystems t
2.1.1 Saaple Interface. That portion of the system that is used for one or more
of the following: sample acquisition, sample transportation, sample
conditioning, or protection of the analyzer from the effects of the stack
effluent.
2.1.2 Organic Analyzer. That portion of the system that senses organic
concentration and generates an output proportional to the gas concentration.
2.2 Span Value. The upper limit of a gas concentration measurement range that
is specified for affected source categories in the applicable part of the
regulations. The span value is established in the applicable regulation and is
usually 1.5 to 2.5 times the applicable emission limit. If no span value is
provided, use a span value equivalent to 1.5 to 2.5 times the expected
concentration. For convenience, the span value should correspond to 100 percent
of the recorder scale.
2.3 Calibration Gas. A known concentration of a gas in an appropriate diluent
gas.
2.4 Zero Drift. The difference in the measurement system response to a zero
level calibration gas before and after a stated period of operation during which
no unscheduled maintenance, repair, or adjustment took place.
Prepared by Emission Measurement Branch EMTIC TM-25A
Technical Support Division, OAQPS, EPA June 23, 1993
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD Page 2
2.5 Calibration drift. The difference in the measurement system response to
a midlevel calibration gas before and after a stated period of operation during
which no unscheduled maintenance, repair or adjustment took place.
2.6 Response Time. The time interval from a step change in pollutant
concentration at the inlet to the emission measurement system to the time at
which 95 percent of the corresponding final value is reached as displayed on the
recorder.
2.7 Calibration Brror. The difference between the gas concentration indicated
by the measurement system and the known concentration of the calibration gas.
3. Apparatus.
A schematic of an acceptable measurement system is shown in Figure 25A-1.
The essential components of the measurement system are described below:
3.1 Organic Concentration Analyzer. A flame ionization analyzer (FIA) capable
of meeting or exceeding the specifications in this method.
3.2 Sample Probe. Stainless steel, or equivalent, three-hole rake type.
Sample holes shall be 4 mm in diameter or smaller and located at 16.7, 50, and
83.3 percent of the equivalent stack diameter. Alternatively, a single opening
probe may be used so that a gas sample is collected from the centrally located
10 percent area of the stack cross-section.
3.3 Sample Line. Stainless steel or Teflon * tubing to transport the sample
gas to the analyzer. The sample line should be heated, if necessary, to prevent
condensation in the line.
3.4 Calibration Valve Assembly. A three way valve assembly to direct the zero
and calibration gases to the analyzers is recommended. Other methods, such as
quick-connect lines, to route calibration gas to the analyzers are applicable.
3.5 Farticulate Filter. An in-stack or an*out-of-stack glass fiber filter is
recommended if exhaust gas particulate loading is significant. An out-of-stack
filter should be heated to prevent any condensation.
* Mention of trade names or specific products does not constitute
endorsement by the Environmental Protection Agency.
3.6 Recorder. A strip-chart recorder, analog computer, or digital recorder for
recording measurement data. The minimum data recording requirement is one
measurement value per minute, Mote: This method is often applied in highly
explosive areas. Caution and care should be exercised in choice of equipment and
installation.
4. Calibration and Other Oases.
Oases used for calibrations, fuel, and combustion air (if required) are
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD Page 3
contained in compressed gas cylinders. Preparation of calibration gases shall
be done according to the procedure in Protocol No. 1, listed in Citation 2 of
Bibliography. Additionally, the manufacturer of the cylinder should provide a
recommended shelf life for each calibration gas cylinder over which the
concentration does not change more than ±2 percent from the certified value. Tor
calibration gas values not generally available (i.e., organics between 1 and 10
percent by volume), alternative methods for preparing calibration gas mixtures,
such as dilution systems, may be used with prior approval of the Administrator.
Calibration gases usually consist of propane in air or nitrogen and are
determined in terms of the span value. Organic compounds other than propane can
be used following the above guidelines and making the appropriate corrections for
response factor.
4.1 Fuel. A 40 percent H2/60 percent K^ gas mixture is recommended to avoid
an oxygen synergism effect that reportedly occurs when oxygen concentration
varies significantly from a mean value.
4.2 Zero Gas. High purity air with less than 0.1 parts per million by volume
(ppmv) of organic material (propane or carbon equivalent) or less than 0.1
percent of the span value, whichever is greater.
4.3 Low-level Calibration Gas. An organic calibration gas with a concentration
equivalent to 25 to 35 percent of the applicable span value.
4.4 Mid-level Calibration Gas. An organic calibration gas with a concentration
equivalent to 45 to 55 percent of the applicable span value.
4.5 High- level Calibration Gas. An organic calibration gas with a
concentration equivalent to 80 to 90 percent of the applicable span value.
5. Measurement System Performance Specifications
5.1 Zero Drift. Less than ±3 percent of the span value.
5.2 Calibration Drift. Less than ±3 percent of span value.
5.3 Calibration Error. Less than ±5 percent of the calibration gas value.
6. Pretest Preparations
6.1 Selection of Saapling Site. The location of the sampling site is generally
specified by the applicable regulation or purpose of the test; i.e., exhaust
stack, inlet line, etc. The sample port shall be located at least 1.5 meters or
2 equivalent diameters upstream of the gas discharge to the atmosphere.
6.2 Location of Sample Probe. Install the sample probe so that the probe is
centrally located in the stack, pipe, or duct and is sealed tightly at the stack
port connection.
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD Page 4
6.3 Measurement System Preparation. Prior to the emission test, assemble the
measurement system following the manufacturer's written instructions in preparing
the sample interface and the organic analyzer. Make the system operable.
FIA equipment can be calibrated for almost any range of total organics
concentrations. For high concentrations of organics (>l.O percent by volume as
propane) modifications to most commonly available analyzers are necessary. One
accepted method of equipment modification is to decrease the size of the sanqple
to the analyzer through the use of a smaller diameter sample capillary. Direct
and continuous measurement of organic concentration ia a necessary consideration
when determining any modification design.
6.4 Calibration Error Test. Immediately prior to the test series, (within 2
hours of the start of the test) introduce zero gas and high-level calibration gas
at the calibration valve assembly. Adjust the analyzer output to the appropriate
levels, if necessary. Calculate the predicted response for the low-level and
mid-level gases based on a linear response line between the zero and high-level
responses. Then introduce low-level and mid-level calibration gases successively
to the measurement system. Record the analyzer responses for low-level and mid-
level calibration gases and determine the differences between the measurement
system responses and the predicted responses. These differences must be less
th?n 5 percent of the respective calibration gas value. If not, the measurement
system is not acceptable and must be replaced or repaired prior to testing. No
adjustments to the measurement system shall be conducted after the calibration
and before the drift check (Section 7.3). If adjustments are necessary before
the completion of the test series, perform the drift checks prior to the required
adjustments and repeat the calibration following the adjustments. If multiple
electronic ranges are to be used, each additional range must be checked with a
mid-level calibration gas to verify the multiplication factor.
6.5 Response Tina Test. Introduce Zero gas into the measurement system at the
calibration valve assembly. When the system output has stabilized, switch
quickly to the high-level calibration gas. Record the time from the
concentration change to the measurement system response equivalent to 95 percent
of the step change. Repeat the test three times and average the results.
7. Emission Measurement Test Procedure
7.1 Organic Measurement. Begin sampling at the start of the test period,
recording time and any required process information as appropriate. In
particular, note on the recording chart periods of process interruption or cyclic
operation.
7.2 Drift Determination. Immediately following the completion of the test
period and hourly during the test period, reintroduce the zero and mid-level
calibration gases, one at a time, to the measurement system at the calibration
valve assembly. (Make no adjustments to the measurement system until after both
the zero and calibration drift checks are made.) Record the analyzer response.
If the drift values exceed the specified limits, invalidate the test results
preceding the check and repeat the test following corrections to the measurement
-------
EMTIC TM-25A EMTIC NSPS TEST METHOD Page 5
system. Alternatively, recalibrate the test measurement system as in Section 6.4
and report the results using both sets of calibration data (i.e., data determined
prior to the test period and data determined following the test period) .
8. Organic Concentration calculations
Determine the average organic concentration in terms of ppmv as propane or
other calibration gas. The average shall be determined by the integration of the
output recording over the period specified in the applicable regulation. If
results are required in terms of ppmv as carbon, adjust measured concentrations
using Equation 25A-1.
*«• 25A'1
Where:
C, • Organic concentration as carbon, ppmv.
Organic concentration as measured, ppmv.
K » Carbon equivalent correction factor.
K » 2 for ethane.
K « 3 for propane.
K » 4 for butane.
K «• Appropriate response factor for other organic calibration
gases .
9. Bibliography
1. Measurement of Volatile Organic Compounds-Guideline Series. U.S.
Environmental Protection Agency. Research Triangle Park, NC.
Publication No. EPA-450/2-78-041. OUne 1978. p. 46-54.
2. Traceability Protocol for Establishing True Concentrations of Gases
Used for Calibration and Audits of Continuous Source Emission
Monitors (Protocol No. 1). U.S. Environmental Protection Agency,
Environmental Monitoring and Support Laboratory. Research Triangle
Park, NC. June 1978.
3. Gasoline Vapor Emission Laboratory Evaluation- Part 2. U.S.
Environmental Protection Agency, Office of Air Quality Planning and
Standards. Research Triangle Park. NC. EMB Report No. 75-GAS-6.
August 1975.
-------
EMTIC TM-25A
EMTIC NSPS TEST METHOD
Page 6
Preb*
Oigwlto
Amlyur
Caferrton
Valve
Pump
Stack
Figure 25A-1. Organic Concentration Measurement System.
-------
Appendix G.6
Sampling & Analysis Methods
EPA Proposed Method 322
-------
-------
(PROPOSED) TEST METHOD 322 - MEASUREMENT OF HYDROGEN CHLORIDE
EMISSIONS FROM PORTLAND CEMENT KILNS BY GFCIR
1.0 Applicability and Principle
1.1 Applicability. This method is applicable to the
determination of hydrogen chloride (HC1) concentrations in
emissions from portland cement kilns. This is an instrumental
method for the measurement of HC1 using an extractive sampling
system and an infrared (IR) gas-filter correlation (GFC)
analyzer. This method is intended to provide the cement industry
with a direct interface instrumental method. A procedure for
analyte spiking is included for quality assurance. This method
is considered to be self-validating provided that the
requirements in section 9 of this method are followed.
1.2 Principle. A gas sample is continuously extracted from
a stack or duct over the test period using either a source-level
hot/wet extractive subsystem or a dilution extractive subsystem.
A nondispersive infrared gas filter correlation (NDIR-GFC)
analyzer is specified for the measurement of HC1 in the sample.
The total measurement system is comprised of the extractive
subsystem, the analyzer, and the data acquisition subsystem.
Test system performance specifications are included in this
method to provide for the collection of accurate, reproducible
data.
1.3 Test System Operating Range. The measurement range
(span) of the test system shall include the anticipated HC1
concentrations of the effluent and spiked samples. The range
should be selected so that the average of the effluent
measurements is between 25 and 75 percent of span. If at any
time during a test run, the effluent concentration exceeds the
span value of the test system, the run shall be considered
invalid.
2.0 Summary of Method
2.1 Sampling and Analysis. Kiln gas is continuously
extracted from the stack or duct using either a source level,
hot/wet extractive system, or an in-situ dilution probe or heated
out-of-stack dilution system. The sample is then directed by a
heated sample line maintained above 350°F to a GFC analyzer
having a range appropriate to the type of sampling system. The
gas filter correlation analyzer incorporates a gas cell filled
with HC1. This gas cell is periodically moved into the path of
an infrared measurement beam of the instrument to filter out
essentially all of the HC1 absorption wavelengths. Spectral
filtering provides a reference from which the HC1 concentration
of the sample can be determined. Interferences are minimized in
the analyzer by choosing a spectral band over which compounds
such as CO2 and H2O either do not absorb significantly or do not
match the spectral pattern of the HC1 infrared absorption.
-------
2.2 Operator Requirements. The analyst must be familiar
with the specifications and test procedures of this method and
follow them in order to obtain reproducible and accurate data.
3.0 Definitions
3.1 Measurement System. The total equipment required for
the determination of gas concentration. The measurement system
consists of the following major subsystems:
3.1.1 Sample Interface. That portion of a system used for
one or more of the following: sample acquisition, sample
transport, sample conditioning, or protection of the analyzers
from the effects of the stack gas.
3.1.2 Gas Analyzer. That portion of the system that senses
the gas to be measured and generates an output proportional to
its concentration.
3.1.3 Data Recorder. A strip chart recorder, analog
computer, or digital recorder for recording measurement data from
the analyzer output.
3.2 Span. The upper limit of the gas concentration
measurement range displayed on the data recorder.
3.3 Calibration Gas. A known concentration of a gas in an
appropriate diluent gas (i.e., N2) .
3.4 Analyzer Calibration Error. The difference between the
gas concentration exhibited by the gas analyzer and the known
concentration of the calibration gas when the calibration gas is
introduced directly to the analyzer.
3.5 Sampling System Bias. The sampling system bias is the
difference between the gas concentrations exhibited by the
measurement system when a known concentration gas is introduced
at the outlet of the sampling probe and the known value of the
calibration gas.
3.6 Response Time. The amount of time required for the
measurement system to display 95 percent of a step change in gas
concentration on the data recorder.
3.7 Calibration Curve. A graph or other systematic method
of establishing the relationship between the analyzer response
and the actual gas concentration introduced to the analyzer.
3.8 Linearity. The linear response of the analyzer or test
system to known calibration inputs covering the concentration
range of the system.
3.9 Interference Rejection. The ability of the system to
reject the effect of interferences in the analytical measurement
processes of the test system.
4.0 Interferences
4.1 Sampling System Interferences. An important
consideration in measuring HC1 using an extractive measurement
system is to ensure that a representative kiln gas sample is
delivered to the gas analyzer. A sampling system interferant is
a factor that inhibits an analyte from reaching the analytical
instrumentation. Condensed water vapor is a strong sampling
system interferant for HC1 and other water soluble compounds.
-------
"Cold spots" in the sampling system can allow water vapor in the
sample to condense resulting in removal of HC1 from the sample
stream. The extent of HC1 sampling system bias depends on
concentrations of potential interferants, moisture content of the
gas stream, temperature of the gas stream, temperature of
sampling system components, sample flow rate, and reactivity of
HC1 with other species in the gas stream. For measuring HC1 in a
wet gas stream, the temperatures of the gas stream and sampling
system components and the sample flow rate are of primary
importance. In order to prevent problems with condensation in
the sampling system, these parameters must be closely monitored.
4.1.1 System Calibration Checks. Performing these
calibration checks where HC1 calibration gas is injected through
the entire system both before and after each test run
demonstrates the integrity of the sampling system and capability
of the analyzer for measuring this water soluble and otherwise
unstable compound under ideal conditions (i.e., HC1 in N2) .
4.1.2 Analyte Spiking Checks. For analyte spiking checks,
HC1 calibration gas is quantitatively added to the sample stream
at a point upstream of the particulate filter and all other
sample handling components both before and after each test run.
The volume of HC1 spike gas should not exceed 10 percent of the
total sample volume so that the sample matrix is relatively
unaffected. Successfully performing these checks demonstrates
the integrity of the sampling system for measuring this water
soluble and reactive compound under actual sample matrix
conditions. Successfully performing these checks also
demonstrates the adequacy of the interference rejection
capability of the analyzer. (See section 9.3 of this method.)
4.2 Analytical Interferences. Analytical interferences are
reduced by the GFC spectroscopic technique required by the
method. The accuracy of HC1 measurements provided by some GFC
analyzers is known to be sensitive to the moisture content of the
sample. This must be taken into account in order to acquire
accurate results. These analyzers must be calibrated for the
specific moisture content of the samples.
5.0 Safety
This method may involve sampling at locations having high
positive or negative pressures, or high concentrations of
hazardous or toxic pollutants, and cannot address all safety
problems encountered under these diverse sampling conditions. It
is the responsibility of the tester(s) to ensure proper safety
and health practices, and to determine the applicability of
regulatory limitations before performing this test method.
Because HC1 is a respiratory irritant, it is advisable to limit
exposure to this compound.
6.0 Equipment and Supplies
Note: Mention of company or product names does not
constitute endorsement by the U. S. Environmental Protection
Agency.
-------
6.1 Measurement System. Use any GFC measurement system for
HC1 that meets the specifications of this method. All sampling
system components must be maintained above the kiln gas
temperature, when possible, or at least 350°F. The length of
sample transport line should be minimized and sampling rate
should be as high as possible to minimize adsorption of HC1. The
essential components of the measurement system are described in
sections 6.1.1 through 6.1.12.
6.1.1 Sample Probe. Glass, stainless steel, Hastalloy1", or
equivalent, of sufficient length to traverse the sample points.
The sampling probe shall be heated to a minimum of 350°F to
prevent condensation. Dilution extractive systems mus.t use a
dilution ratio such that the average diluted concentrations are
between 25 to 75 percent of the selected measurement range of the
analyzer.
6.1.2 Calibration Valve Assembly. Use a heated, three-way
valve assembly, or equivalent, for selecting either sample gas or
introducing calibration gases to the measurement system or
introducing analyte spikes into the measurement system at the
outlet of the sampling probe before the primary particulate
filter.
6.1.3 Particulate Filter. A coarse filter or other device
may be placed at the inlet of the probe for removal of large
particulate (10 microns or greater). A heated (Balston® or
equivalent) filter rated at 1 micron is necessary for primary
particulate removal, and shall be placed immediately after the
heated probe. The filter/filter holder shall be maintained at
350°F or a higher temperature. Additional filters at the inlet
of the gas analyzer may be used to prevent accumulation of
particulate material in the measurement system and extend the
useful life of components. All filters shall be fabricated of
materials that are nonreactive with HC1. Some types of glass
filters are known to react with HC1.
6.1.4 Sample Transport Lines. Stainless steel or
polytetrafluoroethylene (PTFE) tubing shall be heated to a
minimum temperature of 350°F (sufficient to prevent condensation
and to prevent HC1 and NH3 from combining into ammonium chloride
in the sampling system) to transport the sample gas to the gas
analyzer.
6.1.5 Sample Pump. Use a leak-free pump to pull the sample
gas through the system at a flow rate sufficient to minimize the
response time of the measurement system. The pump components
that contact the sample must be heated to a temperature greater
than 350°F and must be constructed of a material that is
nonreactive to HC1.
6.1.6 Sample Flow Rate Control. A sample flow rate control
valve and rotameter, or equivalent/ must be used to maintain a
constant sampling rate within ±10 percent. These components must
be heated to a temperature greater than 350°F. (Notes The
tester may elect to install a back-pressure regulator to maintain
-------
the sample gas manifold at a constant pressure in order to
protect the analyzer(s) from over-pressurization, and to minimize
the need for flow rate adjustments.)
6.1.7 Sample Gas Manifold. A sample gas manifold, heated
to a minimum of 350°F, is used to divert a portion of the sample
gas stream to the analyzer and the remainder to the by-pass
discharge vent. The sample gas manifold should also include
provisions for introducing calibration gases directly to the
analyzer. The manifold must be constructed of material that is
nonreactive to the gas being sampled.
6.1.8 Gas Analyzer. Use a nondispersive infrared analyzer
.utilizing the gas filter correlation technique to determine HC1
concentrations. The analyzer shall meet the applicable
performance specifications of section 8.0 of this method. (Note:
Housing the analyzer in a clean, thermally-stable, vibration free
environment will minimize drift in the analyzer calibration.)
The analyzer (system) shall be designed so that the response of a
known calibration input shall not deviate by more than ±3 percent
from the expected value. The analyzer or measurement system
manufacturer may provide documentation that the instrument meets
this design requirement. Alternatively, a known concentration
gas standard and calibration dilution system meeting the
requirements of Method 205 of appendix M to part 51 of this
chapter, "Verification of Gas Dilution Systems for Field
Calibrations" (or equivalent procedure), may be used to develop a
multi-point calibration curve over the measurement range of the
analyzer.
6.1.9 Gas Regulators. Single stage regulator with cross
purge assembly that is used to purge the CGA fitting and
regulator before and after use. (This purge is necessary to
clear the calibration gas delivery system of ambient water vapor
after the initial connection is made, or after cylinder
changeover, and will extend the life of the regulator.) Wetted
parts are 316 stainless steel to handle corrosive gases.
6.1.10 Data Recorder. A strip chart recorder, analog
computer, or digital recorder, for recording measurement data.
The data recorder resolution (i.e., readability) shall be 0.5
percent of span. Alternatively, a digital or analog meter having
a resolution of 0.5 percent of span may be used to obtain the
analyzer responses and the readings may be recorded manually. If
this alternative is used, the readings shall be obtained at
equally-spaced intervals over the duration of the sampling run.
For sampling run durations of less than 1 hour, measurements at
1-minute intervals or a minimum of 30 measurements, whichever is
less restrictive, shall be obtained. For sampling run durations
greater than 1 hour, measurements at 2-minute intervals or a
minimum of 96 measurements, whichever is less restrictive, shall
be obtained.
6.1.11 Mass Flow Meters/Controllers. A mass flow meter
having the appropriate calibrated range and a stated accuracy of
-------
±2 percent of the measurement range is used to measure the HC1
spike flow rate'. This device must be calibrated with the major
component of the calibration spike gas (e.g., nitrogen) using an
NIST traceable bubble meter or equivalent. When spiking HC1, the
mass flow meter/controller should be thoroughly purged before and
after introduction of the gas to prevent corrosion of the
interior parts.
6.1.12 System Flow Measurement. A measurement device or
procedure to determine the total flow rate of sample gas within
the measurement system. A rotameter, or mass flow meter
calibrated relative to a laboratory standard to within ±2 percent
of the measurement value at the actual operating temperature,
moisture content, and sample composition (molecular weight) is
acceptable. A system which ensures that the total sample flow
rate is constant within ±2 percent and which relies on an
intermittent measurement of the actual flow rate
(e.g., calibrated gas meter) is also acceptable.
6.2 HC1 Calibration Gases. The calibration gases for the
gas analyzer shall be HC1 in N2. Use at least three calibration
gases as specified below:
6.2.1 High-Range Gas. Concentration equivalent to 80 to
100 percent of the span.
6.2.2 Mid-Range Gas. Concentration equivalent to 40 to 60
percent of the span.
6.2.3 Zero Gas. Concentration of less than 0.25 percent of
the span. Purified ambient air may be used for the zero gas by
passing air through a charcoal filter or through one or more
impingers containing a solution of 3 percent H2O2.
6.2.4 Spike Gas. A calibration gas of known concentration
(typically 100 to 200 ppm) used for analyte spikes in accordance
with the requirements of section 9.3 of this method.
7.0 Reagents and Standards
7.1 Hydrogen Chloride. Hydrogen Chloride is a reactive gas
and is available in steel cylinders from various commercial gas
vendors. The stability is such that it is not possible to
purchase a cylinder mixture whose HC1 concentration can be
certified at better than ±5 percent. The stability of the
cylinder may be monitored over time by periodically analyzing
cylinder samples. The cylinder gas concentration must be
verified within 1 month prior to the use of the calibration gas.
Due to the relatively high uncertainty of HC1 calibration gas
values, difficulties may develop in meeting the performance
specifications if the mid-range and high-range calibration gases
are not consistent with each other. Where problems are
encountered, the consistency of the test gas standards may be
determined: (1) by comparing analyzer responses for the test
gases with the responses to additional certified calibration gas
standards, (2) by reanalysis of the calibration gases in
accordance with sections 7.2.1 or 7.2.2 of this method, or (3) by
other procedures subject to the approval of EPA.
-------
7.2 Calibration Gas Concentration Verification. There are
two alternatives for establishing the concentrations of
calibration gases. Alternative No. 1 is preferred.
7.2.1 Alternative No. 1. The value of the calibration
gases may be obtained from the vendor's certified analysis within
1 month prior to the test. Obtain a certification from the gas
manufacturer that identifies the analytical procedures and date
of certification.
7.2.2 Alternative No. 2. Perform triplicate analyses of
the gases using Method 26 of appendix A to part 60 of this
chapter. Obtain gas mixtures with a manufacturer's tolerance not
to exceed ±5 percent of the tag value. Within 1 month of the
field test, analyze each of the calibration gases in triplicate
using Method 26 of appendix A to part 60 of this chapter. The
tester must follow all of the procedures in Method 26 (e.g., use
midget impingers, heated Pallflex TX40H175 filter (TFE-glass
mat), etc. if this analysis is performed. Citation 3 in section
13 of this method describes procedures and techniques that may be
used for this analysis. Record the results on a data sheet.
Each of the individual HC1 analytical results for each
calibration gas shall be within 5 percent (or 5 ppm, whichever is
greater) of the triplicate set average; otherwise, discard the
entire set and repeat the triplicate analyses. If the average of
the triplicate analyses is within 5 percent of the calibration
gas manufacturer's cylinder tag value, use the tag value;
otherwise, conduct at least three additional analyses until the
results of six consecutive runs agree within 5 percent (or 5 ppm,
whichever is greater) of the average. Then use this average for
the cylinder value.
7.3 Calibration Gas Dilution Systems. Sample flow rates of
approximately 15 L/min are typical for extractive HC1 measurement
systems. These flow rates coupled with response times of 15 to
30 minutes will result in consumption of large quantities of
calibration gases. The number of cylinders and amount of
calibration gas can be reduced by the use of a calibration gas
dilution system in accordance with Method 205 of appendix M to
part 51 of this chapter, "Verification of Gas Dilution Systems
for Field Instrument Calibrations." If this option is used, the
tester shall also introduce an undiluted calibration gas
approximating the effluent HCl concentration during the initial
calibration error test of the measurement system as a quality
assurance check.
8.0 Test System Performance Specifications
8.1 Analyzer Calibration Error. This error shall be less
than ±5 percent of the emission standard concentration or ±1
ppm,(whichever is greater) for zero, mid-, and high-range gases.
8.2 Sampling System Bias. This bias shall be less than
±7.5 percent of the emission standard concentration or ±1.5 ppm
(whichever is greater) for zero and mid-range gases.
8.3 Analyte Spike Recovery. This recovery shall be between
-------
70 to 130 percent of the expected concentration of spiked samples
calculated with the average of the before and after run spikes.
9.0 Sample Collection, Preservation, and Storage
9.1 Pretest. Perform the procedures of sections 9.1.1
through 9.1.3.3 of this method before measurement of emissions
(procedures in section 9.2 of this method) . It is important to
note that after a regulator is placed on an HC1 gas cylinder
valve, the regulator should be purged with dry N2 or dry
compressed air for approximately 10 minutes before initiating any
HC1 gas flow through the system. This purge is necessary to
remove any ambient water vapor from within the regulator and
calibration gas transport lines; the HC1 in the calibration gas
may react with this water vapor and increase system response
time. A purge of the system should also be performed at the
conclusion of a test day prior to removing the regulator from the
gas cylinder. Although the regulator wetted parts are corrosion
resistant, this will reduce the possibility of corrosion
developing within the regulator and extend the life of the
equipment.
9.1.1 Measurement System Preparation. Assemble the
measurement system by following the manufacturer's written
instructions for preparing and preconditioning the gas analyzer
and, as applicable, the other system components. Introduce the
calibration gases in any sequence, and make all necessary
adjustments to calibrate the analyzer and the data recorder. If
necessary, adjust the instrument for the specific moisture
content of the samples. Adjust system components to achieve
correct sampling rates.
9.1.2 Analyzer Calibration Error. Conduct the analyzer
calibration error check in the field by introducing calibration
gases to the measurement system at any point upstream of the gas
analyzer in accordance with sections 9.1.2.1 and 9.1.2.2 of this
method.
9.1.2.1 After the measurement system has been prepared for
use, introduce the zero, mid-range, and high-range gases to the
analyzer. During this check, make no adjustments to the system
except those necessary to achieve the correct calibration gas
flow rate at the analyzer. Record the analyzer responses to each
calibration gas. Note: A calibration curve established prior to
the analyzer calibration error check may be used to convert the
analyzer response to the equivalent gas concentration introduced
to the analyzer. However, the same correction procedure shall be
used for all effluent and calibration measurements obtained
during the test.
9.1.2.2 The analyzer calibration error check shall be
considered invalid if the difference in gas concentration
displayed by the analyzer and the concentration of the
calibration gas exceeds ±5 percent of the emission standard
concentration or ±1 ppm, (whichever is greater) for the zero,
mid-, or high-range calibration gases. If an invalid calibration
-------
is exhibited, cross-check or recertify the calibration gases,
take corrective action, and repeat the analyzer calibration error
check until acceptable performance is achieved.
9.1.3 Sampling System Bias Check. For nondilution
extractive systems, perform the sampling system bias check by
introducing calibration gases either at the probe inlet or at a
calibration valve installed at the outlet of the sampling probe.
For dilution systems, calibration gases for both the analyzer
calibration error check and the sampling system bias check must
be introduced prior to the point of sample dilution. For
dilution and nondilution systems, a zero gas and either a mid-
range or high-range gas (whichever more closely approximates the
effluent concentration) shall be used for the sampling system
bias check.
9.1.3.1 Introduce the upscale calibration gas, and record
the gas concentration displayed by the analyzer. Then introduce
zero gas, and record the gas concentration displayed by the
analyzer. During the sampling system bias check, operate the
system at the normal sampling rate, and make no adjustments to
the measurement system other than those necessary to achieve
proper calibration gas flow rates at the analyzer. Alternately
introduce the zero and upscale gases until a stable response is
achieved. The tester shall determine the measurement system
response time by observing the times required to achieve a stable
response for both the zero and upscale gases. Note the longer of
the two times and note the time required for the measurement
system to reach 95 percent of the step change in the effluent
concentration as the response time.
9.1.3.2 For nondilution systems, where the analyzer
calibration error test is performed by introducing gases directly
to the analyzer, the sampling system bias check shall be
considered invalid if the difference between the gas
concentrations displayed by the1; measurement system for the
sampling system bias check and the known gas concentration
standard exceeds ±7.5 percent of the emission standard or ±1.5
ppm, (whichever is greater) for either the zero or the upscale
calibration gases. If an invalid calibration is exhibited, take
corrective action, and repeat the sampling system bias check
until acceptable performance is achieved. If adjustment to the
analyzer is required, first repeat the analyzer calibration error
check, then repeat the sampling system bias check.
9.1.3.3 For dilution systems (and nondilution systems where
all calibration gases are introduced at the probe), the
comparison of the analyzer calibration error results and sampling
system bias check results is not meaningful. For these systems,
the sampling system bias check shall be considered invalid if the
difference between the gas concentrations displayed by the
analyzer and the actual gas concentrations exceed ±7.5 percent of
the emission standard or ±1.5 ppm, (whichever is greater) for
either the zero or the upscale calibration gases. If an invalid
-------
calibration is exhibited, take corrective action, and repeat the
sampling system bias check until acceptable performance is
achieved. If adjustment to the analyzer is required, first
repeat the analyzer calibration error check.
9.2 Emission Test Procedures
9.2.1 Selection of Sampling Site and Sampling Points.
Select a measurement site and sampling points using the same
criteria that are applicable to Method 26 of appendix A to part
60 of this chapter.
9.2.2 Sample Collection. Position the sampling probe at
the first measurement point, and begin sampling at the same rate
as used during the sampling system bias check. Maintain constant
rate sampling {i.e., ±10 percent) during the entire run. Field
test experience has shown that conditioning of the sample system
is necessary for approximately 1-hour prior to conducting the
first sample run. This conditioning period should be repeated
after particulate filters are replaced and at the beginning of
each new day or following any period when the sampling system is
inoperative. Experience has also shown that prior to adequate
conditioning of the system, the response to analyte spikes and/or
the change from an upscale calibration gas to a representative
effluent measurement may be delayed by more than twice the normal
measurement system response time. It is recommended that the
analyte spikes (see section 9.3 of this method) be performed to
determine if the system is adequately conditioned. The sampling
system is ready for use when the time required for the
measurement system to equilibrate after a change from a
representative effluent measurement to a representative spiked
sample measurement approximates the calibration gas response time
observed in section 9.1.3.1 of this method.
9.2.3 Sample Duration. After completing the sampling
system bias checks and analyte spikes prior to a test run,
constant rate sampling of the effluent should begin. For each
run, use only those measurements obtained after all residual
response to calibration standards or spikes are eliminated and
representative effluent measurements are displayed to determine
the average effluent concentration. At a minimum, this requires
that the response time of the measurement system has elapsed
before data are recorded for calculation of the average effluent
concentration. Sampling should be continuous for the duration of
the test run. The length of data collection should be at least
as long as required for sample collection by Method 26 of part 60
of this chapter. One hour sampling runs using this method have
provided reliable data for cement kilns.
9.2.4 Validation of Runs. Before and after each run, or if
adjustments are necessary for the measurement system during the
run, repeat the sampling system bias check procedure described in
section 9.1.3 of this method. (Make no adjustments to the
measurement system until after the drift checks are completed.)
-------
Record the analyzer's responses.
9.2.4.1 If the post-run sampling system bias for either the
zero or upscale calibration gas exceeds the sampling system bias
specification, then the run is considered invalid. Take
corrective action, and repeat both the analyzer calibration error
check procedure (section 9.1.2 of this method) and the sampling
system bias check procedure (section 9.1.3 of this method) before
repeating the run. (
9.2.4.2 If the post-run sampling system bias for both the
zero and upscale calibration gas are within the sampling system
bias specification, then construct two 2-point straight lines,
one using the pre-run zero and upscale check values and the other
using the post-run zero and upscale check values. Use the slopes
and y-intercepts of the two lines to calculate the gas
concentration for the run in accordance with equation 1 of this
method.
9.3 Analyte Spiking—Self-Validating Procedure. Use analyte
spiking to verify the effectiveness of the sampling system for
the target compounds in the actual kiln gas matrix. Quality
assurance (QA) spiking should be performed before and after each
sample run. The spikes may be performed following the sampling
system bias checks (zero and mid-range system calibrations)
before each run in a series and also after the last run. The HC1
spike recovery should be within ±30 percent as calculated using
equations 1 and 2 of this method. Two general approaches are
applicable for the use of analyte spiking to validate a GFC HC1
measurement system: (1) two independent measurement systems can
be operated concurrently with analyte spikes introduced to one of
the systems, or (2) a single measurement system can be used to
analyze consecutively, spiked and unspiked samples in an
alternating fashion. The two-system approach is similar to
Method 301 of this appendix and the measurement bias is
determined from the difference in the paired concurrent
measurements relative to the amount of HC1 spike added to the
spiked system. The two-system approach must employ identical
sampling systems and analyzers and both measurement systems
should be calibrated using the same mid- and high-range
calibration standards. The two-system approach should be largely
unaffected by temporal variations in the effluent concentrations
if both measurement systems achieve the same calibration
responses and both systems have the same response times. (See
Method 301 of this appendix for appropriate calculation
procedures.) The single measurement system approach is
applicable when the concentration of HC1 in the source does not
vary substantially during the period of the test. Since the
approach depends on the comparison of consecutive spiked and
unspiked samples, temporal variations in the effluent HC1
concentrations will introduce errors in determining the expected
concentration of the spiked samples. If the effluent HC1
concentrations vary by more than ±10 percent (or ±5 ppm,
-------
whichever is greater) during the time required to obtain and
equilibrate a new sample (system response time), it may be
necessary to: (1) use a dual sampling system approach,
(2) postpone testing until stable emission concentrations are
achieved, (3) switch to the two-system approach [if possible] or,
(4) rely on alternative QA/QC procedures. The dual-sampling
system alternative uses two sampling lines to convey sample to
the gas distribution manifold. One of the sample lines is used
to continuously extract unspiked kiln gas from the source. The
other sample line serves as the analyte spike line. One GFC
analyzer can be used to alternately measure the HC1 concentration
from the two sampling systems with the need to purge only the
components between the common manifold and the analyzer. This
minimizes the time required to acquire an equilibrated sample of
spiked or unspiked kiln gas. If the source varies by more than
±10 percent or ±5 ppm, (whichever is greater) during the time it
takes to switch from the unspiked sample line to the spiked
sample line, then the dual-sampling system alternative approach
is not applicable. As a last option, (where no other
alternatives can be used) a humidified nitrogen stream may be
generated in the field which approximates the moisture content of
the kiln gas. Analyte spiking into this humidified stream can be
employed to assure that the sampling system is adequate for
transporting the HC1 to the GFC analyzer and that the analyzer's
water interference rejection is adequate.
9.3.1 Spike Gas Concentration and Spike Ratio. The volume
of HC1 spike gas should not exceed 10 percent of the total sample
volume (i.e., spike to total sample ratio of 1:10) to ensure that
the sample matrix is relatively unaffected. An ideal spike
concentration should approximate the native effluent
concentration, thus the spiked sample concentrations would
represent approximately twice the native effluent concentrations.
The ideal spike concentration may not be achieved because the
native HC1 concentration cannot be accurately predicted prior to
the field test, and limited calibration gas standards will be
available during the field test. Some flexibility is available
by varying the spike ratio over the range from 1:10 to 1:20.
Practical constraints must be applied to allow the tester to
spike at an anticipated concentration. Thus, the tester may use
a 100 ppm calibration gas and a spike ratio of 1:10 as default
values where information regarding the expected HC1 effluent
concentration is not available prior to the tests.
Alternatively, the tester may select another calibration gas
standard and/or lower spike ratio (e.g., 1:20) to more closely
approximate the effluent HC1 concentration.
9.3.2 Spike Procedure. Introduce the HC1 spike gas mixture
at a constant flow rate (±2 percent) at less than 10 percent of
the total sample flow rate. (For example, introduce the HC1
spike gas at 1 L/min (±20 cc/min) into a total sample flow rate
of 10 L/min). The spike gas must be preheated before
-------
introduction into the sample matrix to prevent a localized
condensation of the gas stream at the spike introduction point.
A heated sample transport line(s) containing multiple transport
tubes within the heated bundle may be used to spike gas up
through the sampling system to the spike introduction point. Use
a calibrated flow device {e.g., mass flow meter/controller) to
monitor the spike flow rate. Use a calibrated flow device (e.g.,
rotameter, mass flow meter, orifice meter, or other method) to
monitor the total sample flow rate. Calculate the spike ratio
from the measurements of spike flow and total flow. (See
equation 2 and 3 in section 10.2 of this method.)
9.3.3 Analyte Spiking. Determine the approximate effluent
HC1 concentrations by examination of preliminary samples. For
single-system approaches, determine whether the HC1 concentration
varies significantly with time by comparing consecutive samples
for the period of time corresponding to at least twice the system
response time. (For analyzers without sample averaging, estimate
average values for two to five minute periods by observing the
instrument display or data recorder output.) If the concentration
of the individual samples varies by more than ±10 percent
relative to the mean value or ±5 ppm, (whichever is greater), an
alternate approach may be needed.
9.3.3.1 Adjust the spike flow rate to the appropriate level
relative to the total flow by metering spike gas through a
calibrated mass flow meter or controller. Allow spike flow to
equilibrate within the sampling system for at least the
measurement system response time and a steady response to the
spike gas is observed before recording response to the spiked gas
sample. Next, terminate the spike gas flow and allow the
measurement system to sample only the effluent. After the
measurement system response time has elapsed and representative
effluent measurements are obtained, record the effluent unspiked
concentration. Immediately calculate the spike recovery.
9.3.3.2 If the spike recovery is not within acceptable
limits and a change in the effluent concentration is suspected as
the cause for exceeding the recovery limit, repeat the analyte
spike procedure without making any adjustments to the analyzer or
sampling system. If the second spike recovery falls within the
recovery limits, disregard the first attempt and record the
results of the second spike.
9.3.3.3 Analyte spikes must be performed before and after
each test run. Sampling system bias checks must also be
performed before and after each test run. Depending on the
particular sampling strategy and other constraints, it may be
necessary to compare effluent data either immediately before or
immediately after the spike sample to determine the spike
recovery. Either method is acceptable provided a consistent
approach is used for the test program. The average spike
recovery for the pre- and post-run spikes shall be used to
determine if spike recovery is between 70 and 130 percent.
-------
10.0 Data Analysis and Emission Calculations
The average gas effluent concentration is determined from
the average gas concentration displayed by the gas analyzer and
is adjusted for the zero and upscale sampling system bias checks,
as determined in accordance with section 9.2.3 of this method.
The average gas concentration displayed by the analyzer may be
determined by integration of the area under the curve for chart
recorders, or by averaging all of the effluent measurements.
Alternatively, the average may be calculated from measurements
recorded at equally spaced intervals over the entire duration of
the run. For sampling run durations of less than 1-hour , average
measurements at 2-minute intervals or less, shall be used. For
sampling run durations greater than 1-hour, measurements at 2-
minute intervals or a minimum of 96 measurements, whichever is
less restrictive, shall be used. Calculate the effluent gas
concentration using equation 1.
.
r x _ i c J where:
•" 2 bc = Y-
intercept of
the
calibration
least-
squares
line.
bc »» Y-intercept of the final bias check 2-point line.
bt =» Y-intercept of the initial bias check 2-point
line.
Cgas = Effluent gas concentration, as measured, ppm.
Cavg = Average gas concentration indicated by gas
analyzer, as measured, ppm.
rr^ = Slope of the calibration least-squares line.
mf = Slope of the final bias check 2-point line.
mt . Slope of the initial bias check 2-point line.
The following equations are used to determine the percent
recovery (%R) for analyte spiking:
%R = (SM/CB) x 100 (Eq. 2)
where :
SM = Mean concentration of duplicate analyte spiked
samples (observed) .
CB - Expected concentration of analyte spiked samples
(theoretical) .
CE - CS(QS/QT) + S0(1-QS/QT) (Eq. 3)
where :
Cs «* Concentration of HC1 spike gas (cylinder tag
value) .
Q« = Spike gas flow rate.
-------
QT = Total sample flow rate (effluent sample flow plus
spike flow).
Su = Native concentration of HC1 in unspiked effluent
samples.
Acceptable recoveries for analyte spiking are ±30 percent.
11.0 Pollution Prevention
Gas extracted from the source and analyzed or vented from
the system manifold shall be either scrubbed, exhausted back into
the stack, or discharged into the atmosphere where suitable
dilution can occur to prevent harm to personnel health and
welfare or plant or personal property.
12.0 Waste Management
Gas standards of HC1 are handled as according to the
instructions enclosed with the materials, safety data sheets.
13.0 References
1. Peeler, J.W., Summary Letter Report to Ann Dougherty,
Portland Cement Association, June 20, 1996.
2. Test Protocol, Determination of Hydrogen Chloride
Emissions from Cement Kilns (Instrumental Analyzer Procedure)
Revision 4; June 20, 1996.
3. Westlin, Peter R. and John W. Brown. Methods for '
Collecting and Analyzing Gas Cylinder Samples. Source Evaluation
Society Newsletter. 2(3}:5-15. September 1978.
-------
-------
APPENDIX H
PROJECT PARTICIPANTS
-------
-------
PROJECT PARTICIPANTS
Affiliation
Name
Responsibility
USEPA
Joe Wood, BSD
Michael L. Toney, EMC
Environmental Engineer
Work Assignment Manager
Pacific Environmental Services,
Inc.
Franklin Meadows
Michael D. Maret
Dennis P. Holzschuh
Dennis D. Holzschuh
Gary Gay
Paul Siegel
Troy Abernathy
Project Manager
Field Team Leader
QA Coordinator
Site Leader/Console Operator
Site Leader/Console Operator
Sampling Technician
Sample Recovery
Atlantic Technical Services
(PES Subcontractor)
Emil Stewart
Sampling Technician/Data
Reduction
APCC, Ltd.
(PES Subcontractor)
Eric Dithrich
Aaron Christie
Peter Day
CEM Team Leader
CEM Team Leader
CEM Sampling Technician
Research Triangle Institute
(EPA/ESD Contractor)
Cybele M. Brockmann
Process Coordinator
-------
-------
TECHNICAL REPORT DATA
Please read instructions on the reverse before completing
1. REPORT NO.
EPA-454/R-00-031
2.
4. TITLE AND SUBTITLE
Final Report
Manual Testing and Continuous Emissions Testing
Kiln No. 1 Electrostatic Precipitator Inlet and Stack,
Kiln No. 2 Baghouse Inlet and Stack
Martin Marietta Magnesia Specialties
Woodville, Ohio
7. AUTHOR(S)
Franklin Meadows
Emil W. Stewart
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Pacific Environmental Services, Inc.
Post Office Box 12077
Research Triangle Park, North Carolina 27709-2077
12. SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Emissions, Monitoring and Analysis Division
Research Triangle Park, North Carolina 2771 1
3. RECIPIENT'S ACCESSION NO.
5. REPORT DATE
May 2000
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-D-98004
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
EPA/200/04
15. SUPPLEMENTARY NOTES
16. ABSTRACT
The United States Environmental Protection Agency (EPA) Emission Standards Division (ESD) is investigating the lime manufacturing industry to
identify and quantify hazardous air pollutants (HAPs) emitted from lime kilns. ESD requested that EPA's Emissions, Monitoring and Analysis Division
(EMAD) conduct the required testing. EMAD issued a work assignment to Pacific Environmental Services, Inc. (PES) to conduct a "screening" test to
collect air emissions data as specified in the ESD test request. The primary objective of the testing program was to characterize HAP emissions from two
rotary lime kilns located at the Martin Marietta Magnesia Specialties facility in Woodville, Ohio. Based on the pollutant concentrations and emission
rates calculated from the results of the screening tests, the kiln may be selected by EPA for further testing.
The tests were conducted to quantify the uncontrolled and controlled air emissions of hydrogen chloride (HC1), total hydorcarbons (THC), and
polychlorinated dibenzo-p-dioxins and polyclorinated dibenzofurans (PCDDs/PCDFs) from two rotary kilns, one controlled by a baghouse and the other
controlled by an ESP. Testing was conducted at the inlet and outlet of each control device. Inlet and outlet runs were conducted simultaneously.
Oxygen (O2) and carbon dioxide (CO2) were also monitored at each location.
During the testing program another EPA contractor monitored and recorded process and emission control system operating parameters. Process and
emission control system data are considered CBI and are not included in this report.
This report consists of one volume totaling 366 pages.
17.
a. DESCRIPTIONS
Baghouse
Dioxins/Furans
Electrostatic Precipitator
Hazardous Air Pollutants
Hydrogen Chloride
Total Hydrocarbons
18. DISTRIBUTION STATEMENT
Unlimited
KEY WORDS AND DOCUMENT ANALYSIS
b. IDENTIFIERS/OPEN ENDED TERMS
19. SECURITY CLASS (This Report)
Unclassified
20. SECURITY CLASS (This page)
Unclassified
c. COASTI Field/Group
21. NO. OF PAGES
366
22. PRICE
EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE
FAU\FMeadows\TRD.Frm\ W 6.1
------- |