EPA Document No. 454R95004
FOURIER TRANSFORM INFRARED (FTIR) METHOD VALIDATION
AT A COAL-FIRED BOILER
EPA Contract No. 68D20163
Work Assignment No. 2
July 1993
Prepared by:
Research Division
Entropy Environmentalists, Inc.
Post Office Box 12291
Research Triangle Park, North Carolina 27709
Prepared for:
Lori T. Lay
U.S. Environmental Protection Agency
Emissions Measurement Center
Research Triangle Park, North Carolina 27711
-------
DISCLAIMER
This document was prepared by Entropy Environmentalists, Inc. under EPA
Contract No. 68D20163, Work Assignment No. 2. This document has not been
reviewed by the U.S. Environmental Protection Agency.
The opinions, conclusions, and recommendations expressed herein are
those of the authors, and do not necessarily represent those of the United
States Environmental Protection Agency.
Mention of specific trade names or products within this report does not
constitute endorsement by the EPA or Entropy Environmentalists, Inc.
-------
TABLE OF CONTENTS
1.0 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 PURPOSE AND DESCRIPTION OF THE PROJECT 2
1.3 KEY PERSONNEL 3
2.0 PROCESS DESCRIPTION AND SAMPLE POINT LOCATIONS 4
2.1 PROCESS DESCRIPTION 4
2.2 BAGHOUSE OUTLET SAMPLE POINT LOCATION 4
3.0 EMISSION TEST SYSTEM DESCRIPTION 6
3.1 DIRECT GAS EXTRACTION 6
3.2 SAMPLE CONCENTRATION 9
•i.O TESTING PROCEDURES 12
4.1 SET UP PROCEDURES 12
4.2 SAMPLING PROCEDURES 12
4.3 RECORDING OF INFRARED SPECTRA 13
4.4 DYNAMIC SPIKING 14
5.0 ANALYSIS PROCEDURES 18
5.1 CALCULATION OF EXPECTED SPIKE COMPOUND CONCENTRATIONS .... 18
5.2 CALCULATION OF OBSERVED SPIKE COMPOUND CONCENTRATIONS .... 20
5.3 COMPARISONS OF EXPECTED AND OBSERVED SPIKED COMPOUND
CONCENTRATIONS 24
6.0 RESULTS AND DISCUSSION 27
6.1 COMPOUNDS WHICH MEET VALIDATION CRITERIA 27
6.2 COMPOUNDS WHICH DO NOT MEET VALIDATION CRITERIA 28
6.3 CEM AND FLOW DATA 28
6.4 DISCUSSION 29
7.0 CONCLUSIONS 34
8.0 REFERENCES 35
TABLES 6-1 THROUGH 6-12 36
-------
1.0 INTRODUCTION
1.1 BACKGROUND
This report describes results of the Fourier transform infrared (FTIR)
method field validation test that was conducted at a coal-fired boiler
facility. The validation test was conducted from January 25 to February
10, 1993 by Dr. Grant M. Plummer, Mr. Scott A. Shanklin, Mr. Greg C.
Blanschan, Dr. Thomas A. Dunder, Dr. Thomas J. Geyer, Ms. Lisa M.
Grosshandler, Dr. Ed Potts, Ms. Patricia Royals, Mr. Rick Strausbaugh, and
Mr. Mike Worthy, of Entropy Environmentalists, Inc., under U.S. EPA
Contract No. 68D20163, Work Assignment No. 2.
FTIR spectrometry is of interest in emissions testing because of its
usefulness in performing multicomponent gas analyses. Because each
distinct molecular structure possesses a distinct infrared absorption
spectrum, FTIR instruments can provide quantitative and qualitative
information on the composition of sample gases. This aspect of the
technique, along with its potential for providing near-real-time analytical
results, is particularly important considering the number of hazardous air
pollutant (HAP) compounds listed in the Clean Air Act Amendment of 1990.
FTIR-related tasks previously performed by Entropy include the
development of infrared reference spectra, laboratory investigations of
sampling and analytical techniques, and performance of screening tests.
Entropy has also prepared a draft protocol describing field and laboratory
test procedures, and has developed prototype software for use in performing
FTIR spectrometric emission measurements. The goals of these activities
are to provide quantitative and qualitative information regarding the
emission of hazardous air pollutants from various industrial processes, and
to further the development of a valid emission test method based on FTIR
technology.
Screening tests were conducted during 1992 at several industrial
facilities, and provided data on the performance and suitability of FTIR
spectrometry for HAP measurements. In most of these tests, gas samples
were extracted, filtered, and delivered directly to the FTIR system for
infrared analysis. This type of sampling and analysis is referred to below
as the "direct gas extraction" technique. Initial estimates of the mass
emission rates of a number of these compounds, at over 30 process locations
of seven different types of facilities, were based on the spectroscopic and
flow rate data obtained during the screening tests. These tests helped
determine sampling and analytical limitations and provided qualitative
information on the emission stream composition.
One screening test was performed by Entropy at a coal-fired utility
boiler. As expected on the basis of pre-test calculations, the usefulness
of the direct gas extraction technique for measuring HAP compounds at the
concentrations corresponding to 10 tons of emissions per year was found to
be limited. This is because of the rather large effluent flow rates
typical of such boilers; even small concentrations (i.e., sub ppm levels)
of HAP's in the effluent output of the boiler can lead to potentially large
yearly mass emissions. It was, therefore, necessary to develop and test
1
-------
the "sample concentration" technique (described below) before
quantification of HAP's by FTIR spectrometry could be attempted at such
facilities.
The utility boiler screening test also provided data on the spectral
interferences expected to occur between the HAP compounds and the boiler's
major gaseous effluent sample constituents. This information was used in
preparation for the "validation" testing described in this report, the goal
of which is to provide statistical information concerning application of
the method to gaseous HAP concentration measurements. The term
"validation" is borrowed from EPA's Method 301 ("Field Validation of
Pollutant Measurement Methods from Various Waste Media"), upon which the
methods of the tests described here were based.
1.2 PURPOSE AND DESCRIPTION OF THE PROJECT
The procedures described in this report were designed to test FTIR
spectrometry in conjunction with both the direct gas phase and
concentration/thermal desorption sampling techniques, with the goal of
determining the bias, precision, and range (sensitivity) of the measurement
techniques. Comparison of these values to the requirements of EPA Method
3011 were made on a compound-by-compound basis to determine the validity of
the FTIR methods for testing of emissions from this type of source.
The FTIR-based method uses two different sampling techniques: (1)
direct gas phase extraction and (2) sample concentration followed by
thermal desorption. The direct gas phase sampling system extracts gas from
the sample point and transports the sample to a mobile laboratory where
sample conditioning and FTIR gas phase analyses are performed. The sample
concentration system employs 10 grams of Tenax sorbent, which can remove
some organic compounds from a large volume (typically 300 liters) of sample
gas. These compounds are thermally desorbed into the smaller FTIR
absorption cell volume (8.5 liters), providing a volumetric concentration
which allows detection of some compounds down to the ppb level in the
original sample.
Entropy operates a mobile laboratory (FTIR truck) that is equipped
with the FTIR instrumentation and sampling equipment. The truck was driven
to the facility and parked directly beneath the sampling port locations.
Equipment was then installed and samples were obtained according to the
procedures described in Sections 3.0 and 4.0. Both direct gas phase and
thermal desorption samples were collected each day between the hours of
8:00 A.M. and 6:00 P.M. FTIR spectra of the gas phase samples were
obtained as the samples were collected. Spectra of the desorption samples
were acquired on the evening of the day they were collected.
-------
1.3 KEY PERSONNEL
The Emissions Measurement Branch (EMB) and the Industrial Studies
Branch (ISB) under the EPA Office of Air Quality Planning and Standards
(OAQPS) were responsible for administering this project. Listed below are
the organizations and personnel who were involved in coordinating and
performing this project.
EMB Work Assignment Manager: Ms. Lori Lay
Industrial Studies Branch
(ISB) Contacts:
Entropy Project Manager:
Entropy Test Personnel:
Mr. Kenneth Durkee
Mr. Bill Maxwell
Dr. Grant M. Plummer
Dr. Tom Dunder
Dr. Tom Geyer
Mr. Scott Shank!in
Ms. Lisa Grosshandler
Dr. Laura Kinner
Dr. Craig Stone
Ms. Patricia Royals
Mr. Greg Blanschan
Mr. Ricky Strausbaugh
Mr. Mike Worthy
-------
2.0 PROCESS DESCRIPTION AND SAMPLE POINT LOCATIONS
2.1 PROCESS DESCRIPTION
The test facility consists of five boilers. Testing was performed on
Unit 2, which is a bituminous coal-fired boiler with an approximate heat
input of 68 MBtu/hr. Bituminous coal is pulverized and blown into the
combustion chamber by fans, providing simultaneous fuel suspension and
combustion. The combustion gases and particulate exiting the boiler pass
through an air preheater, baghouse, and an induced draft (I.D.) fan before
being exhausted to the atmosphere via a stack (see Figure 1).
Measurements during this screening test were made on the outlet
location of the Unit 2 baghouse. Direct gas extraction testing employed
30.5 meters (100 feet) of heated sample line to connect the sampling probe
to the heated manifold in the FTIR truck (see Section 3.1). Concentrated
samples were obtained at the sampling port locations (see Section 3.2).
2.2 BAGHOUSE OUTLET SAMPLE POINT LOCATION
Five 6-inch diameter sample ports were available at the outlet of the
baghouse, a location that is approximately 1.2 meters upstream of the I.D.
fan. The ports were equally spaced along a 1.9 meter wide section of the
duct that was approximately 1.9 meters deep. Access to this location was
provided by stairs and a catwalk. Each probe sampled effluent at a point
near the center of the duct. Electric power was available at a level below
the sample point location (approximately 7.5 meters). The average
temperature of the flue gas was approximately 160°C (320°F).
Direct gas phase extraction and sample concentration samples were
taken from ports E and A, respectively. Flow measurements were conducted
daily using all the available ports.
-------
• 6" I D. Rons
C B A
28"
-70"
I
E D
51" 51"
-70"
Section K-K
Section L-L
To
StacK
•A'
r1
6'
CO
BO
AO
OE
OD
TOD View
From
Baghouse
50102 3/93
Figure 1. Sampling point location.
-------
3.0 EMISSION TEST SYSTEM DESCRIPTION
Two different experimental techniques were employed. The first,
referred to as direct gas extraction, introduced the gas stream to the
sample manifold in the mobile unit from where it could be sent to the
infrared cell. It is expected that direct gas extraction provides a
representative sample by maintaining gas composition. A second technique,
referred to as sample concentration, passed a known volume of gas through
an absorbing material packed into a U-shaped stainless steel collection
tube. After sampling was completed, the tube was then heated and any
collected compounds were desorbed into the FTIR cell and diluted with
nitrogen to one atmosphere total pressure. With this technique,
concentrations of species detected in the absorption cell are generally
higher than their concentrations in the effluent so that it is possible to
achieve lower detection limits for some HAP's. Any lowering of the
detection limit depends on the volume of gas sampled and efficiency with
which a particular compound will adhere to, and desorb from, the sorbent.
Validation tests of the FTIR technique were conducted using both the
extractive gas phase system and the auxiliary sample concentration system.
Infrared absorbance spectra of the gas streams from the outlet of the
baghouse (see Section 2.0) were recorded and analyzed. Components of the
emission test systems prepared by Entropy for this testing are described
below.
3.1 DIRECT GAS EXTRACTION
An extractive system was used to transport the gas stream to the FTIR
spectrometer in the gaseous phase (see Figure 2).
3.1.1 Sampling System and Procedures
Gas was extracted through an 8-foot heated stainless steel probe. A
heated Balston particulate filter rated at 1 micron was installed at the
outlet of the sample probe. A 30.5 meter (100 foot) section of heated 3/8-
inch O.D. Teflon® sample line connected the probe to the heated sample pump
located inside the mobile laboratory. The temperature of the sampling
system components was maintained at approximately 150°C. All components
were constructed of Type 316 stainless steel, glass, or Teflon®. Digital
temperature controllers were used to control and monitor the temperature of
the transport lines. All points of connection were wrapped with electric
heat tape and insulated to ensure that there were no "cold spots" in the
sampling system where condensation might occur. The sample pump provided
approximately 12 to 16 L/min of sample gas flow, depending upon sample line
length and flue gas conditions at the sampling location. The heated sample
flow manifold, located in the FTIR truck, included a secondary particulate
filter and valves that allowed the operator to send the sample gas directly
to the absorption cell or through one of the gas conditioning systems.
-------
Dilution
Probe
Calibration Gas
' Dilution Air
Heated
Transport
Lines
Orifice
Vacuum
HC
Analyzer I
Extractive
Probe
Initial
Particulate
Filter
Mass Row
Meter
Heated
Manifold
Heated
Pump
Spike
Cylinder Gas
t>0102 1/93
F igure 2. FTIR direct gas sampling systom
-------
The extracted gas sample was treated in one of two ways. Sample sent
directly to the FTIR cell was considered unconditioned, or "hot/wet." This
sample is more representative of the actual effluent composition than any
type of intentionally conditioned sample. The gas stream could also be
directed through a condenser to remove most of the water. The condenser
employed a standard Peltier dryer to cool the gas stream to approximately
3°C. The resulting condensate was collected in two traps and removed from
the conditioning system with peristaltic pumps. This technique is known to
leave the concentrations of inorganic and highly volatile compounds very
near to the stack concentrations (dry-basis). The condenser was tested in
an effort to ascertain which HAP's can be reliably quantified using this
system. Time constraints precluded testing of the dilution and Perma-Pure
systems shown in Figure 2.
3.1.2 Analytical System and Procedures
The FTIR equipment employed in this test consisted of a refractive
scanning interferometer, a heated infrared absorption cell, a liquid
nitrogen cooled mercury cadmium telluride (MCT) broad band infrared
detector, and a computer. The interferometer, detector, and computer were
purchased from KVB/Analect, Inc., and comprise their base Model RFX-40
system. The nominal spectral resolution of the system is one wavenumber (1
cm'1). Sample was contained in a variable path white cell, model 5-22 H,
manufactured by Infrared Analysis, Inc. Heated jackets and temperature
controllers were used to maintain a cell temperature of 115°C (240°F). The
absorption path length was externally adjustable from 2.2 to 24.2 meters.
For the validation, a path length of 22 meters was used. The pathlength
was determined by visual inspection of the number of optical passes of the
infrared radiation within the cell, using a co-linear white light source
mounted at the interferometer output flange. The pathlength was verified
by inspection of a 100 ppm ethylene calibration transfer standard (CTS) gas
and comparisons with similar spectra recorded along with the reference
spectra used in the quantitative analysis (see also Section 4.3).
Additional details regarding the testing and analytical procedures are
found in Sections 4 and 5. Standard gas analyzers were operated to provide
dry basis concentration measurements of oxygen (02), carbon monoxide (CO),
and carbon dioxide (C02) from a portion of the condenser sample stream,
which was split of at the condenser outlet. The 02 content of the gas
stream was determined using a Teledyne Model 320P-4 analyzer with a
patented micro-fuel cell. A Thermo Environmental Instruments Model 48 CO
analyzer employing gas filter correlation (GFC) was used to measure CO by
infrared (IR) absorption. To measure the C02 concentrations, a Fuji Model
3300 C02 non-dispersive infrared (NDIR) analyzer was used. A Ratfisch
Model RS255CA was employed to measure the total hydrocarbon content in the
"hot/wet" stream, a portion of which was split off at the outlet of the
heated manifold for this purpose. All the analyzers were calibrated at the
beginning and end of each test period using EPA Protocol 1 certified gas
blends. Propane in air was used to calibrate the Ratfisch instrument.
Measurements provided by the analyzers were averaged over the time
periods when direct gas extraction sampling was conducted. Sample
concentration sampling was conducted concurrently with direct gas
extraction testing.
8
-------
3.2 SAMPLE CONCENTRATION
Sample concentration was performed using the adsorption/thermal
desorption technique described immediately below in Sections 3.2.1 and
3.2.2. Four gas samples were collected simultaneously during sample
concentration each run using a quadruplicate ("quad-") train assembly. A
single sampling train is depicted in Figure 3.
3.2.1 Sampling System and Procedures
Components of a single sampling train include a heated stainless
steel probe, heated filter and glass casing, heated teflon connecting line,
an optional stainless steel air-cooled condenser coil, stainless steel
adsorbent trap in an ice bath, two water-filled impingers followed by an
empty knock-out impinger, an impinger filled with silica gel, a sample
pump, and a dry gas meter. The air-cooled condenser coil was found to be
unnecessary during this test, and was not employed. All heated components
were kept at a temperature above 120°C to ensure no condensation of water
vapor within the system. The sorbent trap was a specially designed
stainless steel U-shaped collection tube filled with 10 grams of Tenax
sorbent and plugged at both ends with glass wool. Stainless steel was used
for the construction of the adsorbent tubes because it gives a more uniform
and more efficient heat transfer than glass; this is an important
consideration, since maintenance of the Tenax temperature is important
during both the sampling and thermal desorption steps of the technique.
Sampling was conducted at approximately 3.1 to 4.2 liters per minute
(0.10 to 0.15 standard cubic feet per minute for collection times of
approximately 90 minutes. The sampling rate was close to the maximum that
could be achieved with the sampling system and the collection time was
chosen to provide a total sampled gas volume of 280 liters (10 standard
cubic feet). Sampling a larger volume is possible, but the time required
would have been prohibitive for this test. The spike gas flow rate,
controlled by a needle valve upstream of the mass flow meter, was chosen to
provide concentrations of approximately 500 ppb, for each spike compound,
in the front half of the heated filter. Exact spike loadings were
calculated from the constant spike flow rate and other parameters described
in Section 5.1. Prior to and following performance of the tests, the mass
flow meters were calibrated against stan'dard dry gas meters at various flow
rates, ambient temperatures, and delivery pressures. These devices were
found to be extremely accurate (+ 1% total integrated flow) and stable
under all conditions.
Before the Tenax adsorbent packed in the sample tubes was used, the
following cleaning procedures were employed to remove any impurities that
might desorb along with the sample compounds collected. The packed tube
was heated to 350°C while being purged with preheated nitrogen at 1 to 2
1pm. The heating and nitrogen flow were maintained for up to 18 hours.
Cleaning the desorption tubes resulted in a decrease in impurity-related
bands that Entropy has observed in spectra from the desorption of new,
commercially precleaned Tenax. However, contaminants from other sources
did affect the test procedures and results, as described in Section 6.4.4.
-------
Heated
hlter Box
Probe
"E
Duel Wall
Gas
Flow
Air-Cooled
Condenser
Coil
Thermocouple
nieriTiocoti|)les
Bypass
Valve
Vacuum Line
50104 4/93
Figure 3. Sample concentration system
-------
3.2.2 Analytical System and Procedures
After each sample was collected, condensed water was removed from the
sample tube. This was accomplished by immersing the tube in an ice bath
and purging it with dry nitrogen for eight minutes. The compounds
collected on the Tenax were then recovered and analyzed as follows. Each
tube was separately wrapped with heat tape and placed in a heating chamber.
One end of the sample tube was connected to a line leading to the inlet of
the evacuated FTIR absorption cell. Gas samples were desorbed from the
Tenax by heating the tube to 250°C, then purging the tube contents into the
FTIR absorption cell with a preheated stream of UPC grade nitrogen gas. The
purge was continued until the cell pressure reached one atmosphere, which
required 8.5 liters of nitrogen. The infrared absorption spectrum of the
desorbed gas was then recorded. The cell was then evacuated, and the
purging process was repeated. The infrared spectrum of the gas resulting
from the second purge was examined to verify that no infrared-absorbing
compounds remained on the Tenax after the first purge. Additional details
regarding the testing and analytical procedures are found in Section 4 and
Section 5.
11
-------
4.0 TESTING PROCEDURES
At the baghouse outlet location described in Section 2.0, some or all
of the following testing procedures were performed. The duration and exact
nature of each procedure depended on the characteristics of the gas stream
and the observed equipment performance.
4.1 SET UP PROCEDURES
The gas phase extractive probe and/or quad-train assembly was
installed at the baghouse outlet sampling location. Temperature and leak
checks of all sampling, conditioning, and FTIR analytical systems were
performed.
The CO, C02, 02, and hydrocarbon analyzers were calibrated according
to standard EPA test procedures using EPA Protocol 1 calibration gases and
procedures similar to those described in EPA Methods 3A, 10, and 25A. The
FTIR system was prepared at 22 meter path length.
Flue gas volumetric flow rate was determined prior to each testing run
according to an EPA Method 2 traverse and the diluent measurement data
provided by the C02 and 02 analyzers. Pitot tube traverses were performed
periodically at one port location and compared to the Method 2 data. No
significant variation of the flow was observed over the test period.
4.2 SAMPLING PROCEDURES
The sampling and spiking procedures described below were conceived to
allow cost-effective validation of the two FTIR analytical methods for as
many gaseous HAP compounds as possible. Sampling methods were adapted from
the Analyte Spiking procedures described in EPA Method 301, Section 5.3.
Performing the described analyte spiking procedures into a gas stream
requires a relatively large volume of well-characterized gas standards,
which are available and practical for field use only in high pressure gas
cylinders. Consultations were held with the Research Division of Scott
Specialty Gases, Inc. to determine the appropriate gas mixtures. Both
sample stability and spectroscopic compatibility were considered in
selecting the sets of compounds to be included in each cylinder. The
cylinder gases are further described and listed below in Section 4.4.
Adaptations of Method 301 procedures used in this test are described below
for each sampling technique.
4.2.1 Direct Gas Extraction
Because only one complete FTIR system was available for the test, it
was not possible to conduct simultaneous sampling using the direct gas
extraction system. Instead, the required 24 samples (12 spiked and 12
unspiked) were collected sequentially for each of the 11 spike cylinder
mixtures tested. The derived precision of the measurements provided by the
technique therefore differs from that intended by Method 301, in that it
contains contributions from any variation in the source emission. The
criteria pollutant CEM instruments were monitored carefully during each set
12
-------
of runs, and indicated extremely stable plant operation over the entire
test period.
Nearly complete sets of "hot/wet" and condenser samples were obtained
during the test. Separate extractions of flue gas were introduced to the
FTIR cell approximately every five minutes. Data were collected in groups
of four consecutive unspiked spectra followed by four spiked samples.
Alternate groups of four samples were extracted until the complete set of
24 spectra was obtained. Collection of these 12 spiked/unspiked sample
pairs required approximately 3? hours. Samples that were compared for
statistical tests were separated in time by about £ hour. Because of low
delivery pressure and/or equipment problems encountered during the test,
two cylinders were emptied before complete sets of 12 spiked/unspiked
sample pair could be collected; incomplete sets of data were obtained for
cylinders #7 (8 pairs) and #8 (6 pairs) spiked into the condenser system.
Because of a procedural error which was not discovered until after the
testing was completed, only five pairs of samples were obtained for the
hot/wet system spiked with cylinder #4 compounds.
4.2.2 Sample _Concentra_t.ion
EPA Method 301, without the adaptation discussed above for the direct
gas extraction system, served as a basis in planning the tests of the
sample concentration technique. However, because of contamination found in
the first sets of samples (see Section 6.4.4), it was necessary to limit
the number of spiking analytes and/or sampling runs in order to complete
the testing with the available on-site time. The number of runs permitted
by these constraints was less in all cases than specified by the test
protocol. The schedule was adjusted during the test to provide the maximum
possible amount of information on the compounds of interest, by trading off
a lower number of sample runs for an increase in the number of compounds
included in the test.
The concentration samples were collected independently of the direct
gas extraction samples. Single runs consisted of sampling 280 liters (10
ft3) of flue gas simultaneously through the four Tenax cartridges included
quad-train. It was possible to complete two and sometimes three sampling
runs in a single day. The charged sample tubes were stored on ice until
the desorption step was completed the same evening. Desorptions were
carried out according to the procedures described in Section 3.2.
4.3 RECORDING OF INFRARED SPECTRA
As specified in the FTIR Protocol, a spectrum of a CTS gas (100 ppm
ethylene in nitrogen) was recorded before and after each testing session to
check the FTIR spectrometer performance. The infrared spectrum of a
gaseous compound consists of characteristic patterns of lines representing
a measure of fundamental structural properties, and provides a unique
"fingerprint" of the absorbing compound. Band intensities vary with
concentration, making it possible to use reference spectra, obtained
earlier in the laboratory, to quantify any compounds detected. However,
line shapes and intensities are also influenced by instrumental factors
such as gas temperature, absorption pathlength, detector response, source
13
-------
intensity, interferometer servo performance, and choices of optical
retardation and apodization functions. The CIS spectra collected at the
test site were compared to spectra of the same CIS gas, collected
concurrently with the quantitative reference spectra. This comparison
allows the operator to detect any instrument malfunctions and, in most
instances, quantitatively account for spectral differences which related to
optical retardation, pathlength and temperature variations.
All spectra were recorded at a nominal resolution of 1 cm"1. The
absorption cell was configured to allow 40 passes of the infrared beam to
traverse the cell between the entrance and exit windows. This is
equivalent to a path length of 22 meters as measured by comparing the CTS
spectra to some collected earlier in the laboratory at a known (shorter)
path length.
Absorbance spectra were each composed of two "single beam" spectra.
First, a background of the evacuated cell was collected and processed. The
background gave an indication of the infrared transmission characteristics
of the system and the frequency dependent sensitivity of the detector. The
cell was then pressurized and a sample spectrum collected. The "single
beam" sample spectrum was divided point by point by the background of the
evacuated cell to give a transmittance spectrum. This removed any effects
resulting from wavelength dependent transmission losses through the
instrumental system. The transmittance file was then converted to
absorbance for use in the subsequent analyses. To provide adequate signal-
to-noise (S/N), 50 sample scans were divided by a 200 scan background. A
sample absorbance spectrum could be obtained in about three minutes.
Repeated treatment with wet samples can degrade the transmission
characteristics of the KBr cell windows. This necessitated periodic
collection of a new background spectrum to ensure a good baseline.
4.4 DYNAMIC SPIKING
Within the time and resource constraints of the test program, Entropy
conducted dynamic analyte spiking according to the procedures described in
the document "Protocol for FTIR Field Validation." Prior to performance of
the test, the procedures described in this document were adapted from those
of Method 301 to accommodate the techniques of interest, and depart from
Method 301 in two basic ways. First, the spiking was performed dynamically,
that is, the spike materials were added to the gas stream as it was
collected. In contrast, Method 301 assumes that a collection medium is
available for (static) addition of the spike compounds prior to the
collection of samples. The dynamic method employed in this test meets the
Method 301 requirement that the spike be introduced as close as possible to
the probe tip, and is more convincing than the static method in that most
elements of the sampling system apparatus are simultaneously exposed to the
spike materials and stack gas over the same period of time. Second, the
direct gas extraction samples were obtained sequentially (rather than
simultaneously), since only one complete FTIR system (rather than the four
required for simultaneous spiking) was available for the test. As
discussed above, the derived precision of the technique therefore contains
contributions from any variation in the source emission levels which occur
during performance of the spiking procedures.
14
-------
Cylinder gas standards, each containing up to five HAP's at
concentrations of 50 ppm (in nitrogen) were prepared for Entropy by Scott
Specialty Gases. See Table 4-1 for a listing of the compounds in each
cylinder, which were grouped according to vapor pressure, stability, and
spectroscopic compatibility. Note that many HAP compounds cannot be
stabilized in cylinders at useful (greater that 300 psig) delivery
pressures, and were therefore excluded from this test. A "tracer" of 1 ppm
sulfur hexafluoride (SFe) was also included in each cylinder, and was used
to verify the spike compound concentrations in the direct gas extraction
samples (see Section 4.4.1).
4.4.1 Direct Gas Extraction
The components used to deliver the spike gas to the direct gas
extraction sampling system were a mass flow meter and heated Teflon® line.
The mass flow meter provided a measure of spike gas flow to the sampling
system. The heated Teflon® line was used to heat the cylinder gas to
approximately the flue gas sample temperature to avoid condensing water
vapor in the sample gas. The heated spike gas was introduced to the
sampling system at a "tee" located between the sample probe outlet and
inlet to the Balston filter (see Figure 2 in Section 3.1.1). From this
point, the spike and sample gas mixture were transported through the
remaining portions of the sampling system described in Section 3.1. An
orifice located at the outlet of the secondary particulate filter within
the heated manifold inside the FTIR truck provided a known total flow of
the sample. A spike dilution factor of five was achieved by maintaining
the spike flow at the mass flow meter at exactly one quarter of the total
flow.
Spike flow ratios were verified in two ways. First, CTS gas (100 ppm
ethylene in nitrogen) was introduced through the mass flow meter and spike
line to the gas sampling system. This was done prior to insertion of the
probe in the sample port so that the CTS spike was mixed with ambient air.
Standard analysis programs (similar to those described in Section 5) were
used in the field to determine the concentration of ethylene in the
resulting sample, and in all cases verified the flow-determined dilution
ratio to within five percent. Another method of verification was also
employed in the field, in which spectra of the spiked samples were
periodically analyzed for the concentration of SF6. The diluted SF6 tracer
contained in each spiked sample was shown in every case to be the expected
0.200 ± 0.020 ppm.
4.4.2 Concentrated Samples
Spike gases were introduced to the appropriate sample concentration
trains through mass flow meters. The measured flow of gas was passed
through a pre-heater coil and then introduced to the sample system at the
inlet to the Method 5 particulate filter. The combined stream travelled
through the cooled collection tube where compounds could be adsorbed onto
the Tenax. The total gas flow was measured with the dry gas meter.
Spiking rates were chosen to provide gas concentrations of concentrations
of approximately 500 ppb in the adsorbed, and yielded post-desorption
concentrations of approximately 20 ppm in the FTIR cell (for compounds with
15
-------
high adsorption and desorption efficiencies). Highly volatile pollutants
such as the SF6 tracer gas do not adsorb well on Tenax, and this compound
was not detected in the concentrated, desorbed samples. Consequently, the
SF8 tracer could not be used to provide a check of the spiking rate (as
described above for the direct gas extraction tests). The expected spike
concentrations for these samples were derived from the standard
concentrations, flow meter readings, spike gas flow time, and total sample
gas volumes (see Section 5.1.2).
16
-------
Table 4-1. Spike Compounds and Cylinder Groupings
Cyl *
*
2
3
-
3
6
7
a
9
11
12
Comoound
Acroiem
Carbonyl Sulfide
Chlorobenzene
1 , 1 .2-Trichlor oethane
Vinyl Chloride
n-Hexane
Methylene Chloride
Propylene Oxide
Vinyl Acetate
p-Xylene
Methyl Chloride
Vinyl Bromide
Acetone
Bromoform
Carbon Tetracnlonae
Carbon Disutfide
2,2.4-Trimethylpentane
m-Xylene
Ethylene Dibromide
Methyl Ethyl Ketone
Toluene
Vinyhdene Chlonae
Ethyl Chloride
Methyl Bromide
Methyl Iodide
Methyl Methacrylate
Acrylonitrile
Allyl Chloride
Ethyl Benzene
o-Xylene
Acetonrtnle
Benzene
Methanol
Methyl Isobutyl Ketone
Tetrachloroethylene
Chloroform
Cumene
Ethylene Oxide
1 ,2-Epoxy Butane
Methyl t-Butyl Ether
1,3-Butadiene
Propylene Oichlonde
Styrene
Trichloroethylene
Ethylene Dibromide
Methyl Chloroform
2-Nitropropane
Comoouna •# I
306
030
037
'59
168
095
117
143 i
166
173
107
167
192
022
:29
328
•65
172
080
'09
153 j
169 i
079
106 i
111 |
114 !
009 '
010 i
077 j
171 i
003
015 !
104 !
112 I
151 I
039
046
084
075 !
115
023 I
142 !
147 i
160
080
108 i
124
17
-------
5.0 ANALYSIS PROCEDURES
The goals of the field test described here are the characterization of
bias, precision, and range of the FTIR technique in conjunction with three
sampling systems. EPA Method 301, which allows the use of spiking or
comparisons to a validated test method, was taken as the basis for
calculation of these quantities; it specifies the comparison of analytical
results for samples containing a known amount of spike material to the
results for samples containing no spike material. The spiking procedures
and associated statistical treatment of the analytical results via Method
301 replace several of the calculational methods prescribed in the FTIR
Protocol. Some departures from the standard Method 301 testing procedures
were adopted for this test, mainly because the requirement of simultaneous,
quadruplicate sample collection is impractical for the direct gas
extraction method. A sequential testing procedure, in which source
variations are subsumed in the method's derived precision, was adopted as
an alternative for this test. The procedures are described in a document
entitled "Protocol for FTIR Field Validation," which was developed by
Entropy and submitted to EMB with the site specific test plan for this
test.
When Method 301 is not employed, recommended alternate methods for FTIR
analysis of stack effluent are described in detail in the "Protocol for
Applying FTIR Spectrometry in Emission Testing" (hereafter, the "FTIR
Protocol"), which was developed by Entropy under EPA contract. The
procedures of the FTIR Protocol were employed to generate and characterize
the sample and reference spectra on which the quantitative spectral
analyses are based; these characterizations are described in detail above
and in reports previously submitted to EMB by Entropy. Most other data
analysis procedures of the FTIR Protocol are intended to provide estimates
of measurement uncertainties from various instrumental and analytical
effects. An example of such an quantity is the "Fractional Reproducibility
Uncertainty" (FCU), which provides a measure of the analytical uncertainty
related to the reproducibility of the spectral data through repeated
application of a "calibration transfer standard" gas. Because the
calculations performed in this work are based on the final HAP
concentrations, this and other errors are included in the statistically
determined measurement uncertainties required by Method 301 (see Section
5.3.1), and are not addressed in this report.
5.1 CALCULATION OF EXPECTED SPIKE COMPOUND CONCENTRATIONS
As described in Section 4.0, cylinders containing known concentrations
(approximately 50 ppm in all cases) of HAP compounds in nitrogen were
introduced into one half of the samples to be analyzed.
It should be noted that no spectroscopic evidence of any of the spike
compounds was found in the samples which were unspiked. The expected
concentration for all HAP's in unspiked samples was accordingly taken as
zero for the purposes of the statistical calculations prescribed in Method
301. Implications of this procedure are addressed in Sections 5.0 and 6.0.
18
-------
5.1.1 Expected Concentrations in Spiked Gas Phase Samples
Expected concentrations of HAP spike materials in gas phase samples
were calculated on the basis of flow rates measured during the field test.
These flow rates were constantly maintained during the performance of the
field testing for each HAP spiking group, and were verified to within ±10%
by spectroscopic analysis for the 1 ppm SF6 tracer gas component in each
cylinder.
The value for the expected concentration from the gas phase sampling is
given by
total
where:
Cexp is the expected gas spike concentration.
^owsp,k<> ^s the measured flow rate for the spike gas.
Flowtotal is the measured flow rate for the spike gas plus the stack gas.
Ccyl is the cylinder concentration of the spike compound.
5.1.2 Expected Concentrations in Spiked, Concentrated Samples
Expected concentrations of HAP spike materials in concentrated samples
were calculated on the basis of spike flow rates and total gas sample
volumes measured during each run of the field test. These quantities were
not always the same for each run involving a spiking compound group, and
also varied for the two spiked sampling trains within each run. To allow
use of the Method 301 statistical tests, it was necessary introduce scaling
factors designed to yield equal expected concentrations for all the trains
and runs. These factors were taken into account in corrections to the
observed spike concentrations (see Section 5.2.3).
The expected concentration in the sample concentration system is
calculated in two steps. The first equation determines the amount of spike
gas that is placed on the Tenax. It is given by
VolSDike = (TSnike) * (50
spike V spike/
1000CC
19
-------
where:
lke is the volume (in liters) of the spike gas flowed through the
sampling system.
TSP.K. ^ the length of time for sampling.
The value of 50 cc/min was the spike gas flow rate into the sample
concentration system.
The expected concentration is then given by
exp \ 8.0L ) <• cyi;
where:
Cexp is the expected concentration.
Ccyl is the cylinder concentration of the spike gas.
8.0 liters is the volume of the FTIR cell.
5.2 CALCULATION OF OBSERVED SPIKE COMPOUND CONCENTRATIONS
The reported values were calculated using the Multicomp program
(Version 6), which is part of the KVB/Analect FX-70 software package. This
program utilizes a calibration matrix created from a set of reference
spectra. The program was employed to characterize the relation between
known and calculated absorbance values of the reference spectra via least
squares methods. The resulting matrix was then used to determine
concentrations in the unknown mixtures.
5.2.1 Description of K-Matrix Analyses
K-type calibration matrices were used to relate absorbance to
concentration. Several descriptions of this analytical technique can be
found in the literature2. The discussion presented here follows that of
Haaland, Easterling, and Vopicka3.
For a set of m absorbance reference spectra of q different compounds
over n data points (corresponding to the discrete infrared wavenumber
positions chosen as the analytical region) at a fixed absorption pathlength
b, Beer's law can be written in matrix form as
A = KC +E
20
-------
where:
A is the n x m matrix representing the absorbance values of the m
reference spectra over the n wavenumber positions, containing
contributions from all or some of the q components;
K is the n by q matrix representing the relationship between absorbance
and concentration for the compounds in the wavenumber region(s) of
interest, as represented in the reference spectra. The matrix element
K™, = ba^, where a^ is the absorptivity of the qth compound at the nth
wavenumber position;
C is the q x m matrix containing the concentrations of the q compounds
in the m reference spectra;
E is the n x m matrix representing the random "errors" in Beer's law
for the analysis; these errors are not actually due to a failure of
Beer's law, but actually arise from factors such as misrepresentation
(instrumental distortion) of the absorbance values of the reference
spectra, or inaccuracies in the reference spectrum concentrations.
The quantity which is sought in the design of this analysis is the
matrix K, since if an approximation to this matrix, denoted by K, can be
found, the concentrations in a sample spectrum can also be estimated.
Using the vector A* to represent the n measured absorbance values of a
sample spectrum over the wavenumber region(s) of interest, and the vector C
to represent the j estimated concentrations of the compounds comprising the
sample, C can be calculated from A* and K from the relation
£= [Kfc El^E**" .
Here the superscript t represents the transpose of the indicated matrix,
and the superscript -1 represents the matrix inverse.
The standard method for obtaining the best estimate K is to minimize
the square of the error terms represented by the matrix E. The equation
K = ACt[CCt ] -1
represents the estimate K which minimizes the analysis error.
Reference spectra for the K-matrix concentration determinations were
de-resolved to 1.0 cm"1 resolution from existing 0.25 cm"1 resolution
reference spectra. This was accomplished by truncating and re-apodizing
the interferograms of single beam reference spectra and the corresponding
background interferograms. The processed single beam spectra were
recombined and converted to absorbance (see Section 4.3).
21
-------
5.2.2 Preparation of Analysis Programs
To provide accurate quantitative results, K-matrix input must include
absorbance values from a set of reference spectra which, added together,
qualitatively resemble the appearance of the sample spectra. For this
reason, all of the Multicomp analysis files included spectra representing
interferant species and criteria pollutants present in the flue gas in
addition to de-resolved reference spectra of HAP's used for analyte spiking
experiments.
A number of factors affect the detection and analysis of a spiked
analyte in the stack gas matrix. One factor is the composition of the
stack gas. The major spectral interferants in the coal-fired boiler
effluent are water and C02. At C02 concentrations of about 10 percent and
higher, weak absorption bands that are normally not visible begin to
emerge. Some portions of the FTIR spectrum are not available for analysis
because of extreme absorbance levels of water and C02, but most compounds
exhibit at least one absorbance band that is suitable for analysis. A
second factor affecting the analysis is the number of analytes that are to
be detected. The gas cylinder spiking mixtures were prepared with 3 to 5
compounds each so that spectrum would not become overly complicated. Even
so, this means that a spiked sample contained up to 13 compounds including
HAP's, interferant species, and criteria pollutants that were present in
the flue gas.
A set of Multicomp program files was prepared for each of 11 cylinder
mixtures with a separate file for quantifying each compound (47 files
total). Four baseline subtraction points are specified for each analytical
region, identifying an upper and a lower baseline averaging range. The
absorbance data in each range were averaged, a straight baseline was
calculated through the range midpoint using the average absorbance values,
and the baseline was subtracted from the data prior to K-matrix analysis.
Within a cylinder group, all of the files contained the same set of
reference spectra, which represented the compounds listed under each group.
Program files within a grouping differed only by the analytical region(s)
and baseline subtraction techniques specified in the file input. In
addition, every file used for gas phase analysis contained spectra of
sulfur dioxide (S02), carbon dioxide (C02, 10 to 15 percent), water
(approximately 5 percent by volume), and carbon monoxide (CO). It was
also necessary to include nitric oxide (NO) and nitrogen dioxide (N02) in
some of the files. NO was not, in general, an important spectral
interferant, but in cases where the analytical region included frequencies
near 2900 cm"1 it was necessary to account for N02, especially in spectra of
condenser samples. The sample concentration spectra contained water and
small amounts of C02. In addition to the interferants mentioned, hydrogen
chloride (HC1) was present in the stack matrix. Concentrations of
interferant species remained relatively constant during the testing, but
the concentration of HC1 varied by as much as 70 percent below its maximum
concentration.
22
-------
Prior to the actual field test, synthetic spectra were prepared using
sample spectra that had been obtained during previous testing at a coal-
fired boiler. K-matrix programs were then constructed which could
adequately analyze the synthetic spectra. These analysis programs were
found to serve as a useful starting point; all the finalized Multicomp
routines are based on the programs prepared using the synthetic spectra.
Preparation of the synthetic spectra proceeded in the following stages.
First, Entropy obtained a 1 cm"1 reference spectrum of each cylinder
mixture to be used in the analyte spiking experiments. Second, the
cylinder spectra were scaled by a factor of 0.2 to simulate the anticipated
dilution. Finally, a computer generated synthetic spectrum was created by
adding a scaled cylinder spectrum to each of several sample spectra from
the coal-fired boiler. This resulted in a set of synthetic spectra (for
both "hot/wet" and condenser samples) representing simulated spiked samples
in a stack matrix similar to what would be encountered during the
validation testing.
5.2.3 Concentration Correction Factors
Calculated concentrations in sample spectra were corrected for
differences in absorption pathlength between the reference and sample
spectra according to the following relation:
where
Ccorr is the pathlength corrected concentration.
CCaic is tne initial calculated concentration (output of the Multicomp
program designed for the compound)
Lr is the pathlength (3m) associated with the reference spectra.
L, is the pathlength (22m) associated with the sample spectra.
T. is the absolute temperature of the sample gas (388 K).
Tr is the absolute gas temperature at which reference spectra were
recorded (300 to 373 K).
In addition to the pathlength and temperature corrections, the sample
concentration values were corrected for the different expected
concentrations. This adjustment was due to the different amounts of spike
gas that were applied to the sample concentration system. All of the
expected values were normalized to values of 20 ppm; in addition, all of
the calculated concentration values were also normalized in the same manner
as the expected values. The normalization factor is given by
23
-------
where
Cnorm is the normalized calculated concentration value.
C8xp is the expected concentration of the spike compound.
Ccorr is the pathlength adjusted value that was determined previously.
Corrections for variation in sample pressure were considered, and found
to affect the indicated HAP concentrations by no more that one to two
percent. Since this is a small effect in comparison to other sources of
analytical error identified in this study, no sample pressure corrections
were made.
The term "observed concentration" is used hereafter to indicate either
the corrected concentration Ccofr (in the case of direct gas extraction
measurements) or the normalized concentration C^^ (in the case of
concentrated sample measurements).
5.3 COMPARISONS OF EXPECTED AND OBSERVED SPIKED COMPOUND CONCENTRATIONS
During collection of both the concentrated and direct gas extraction
samples, the analyte spiking validation procedures specified in EPA Method
301, Section 6.3 were followed as closely as possible. According to Method
301, half of the samples must be spiked and the other half remain unspiked.
The precision and the bias of the measurement system are calculated via
statistical comparisons these spiked and unspiked data.
5.3.1 Precision
The precision of the measurement system (sampling and analytical) is
measured as the relative standard deviation (RSD) presented as a
percentage. The RSD determines the "size" of the sample standard deviation
relative to the sample mean. The RSD was calculated for both the spiked
and unspiked samples using the following procedures:
a. The differences, d,, between the observed and expected
concentrations of the spiked pairs ("spiked differences") and the
unspiked pairs ("unspiked differences") were calculated separately.
Then the standard deviations of the spiked differences and unspiked
differences were formed using the following equations:
24
-------
SDS =
a.
2n
\
:n
where:
SDS = standard deviation of the spiked differences
SDU = standard deviation of the unspiked differences
n = number of paired samples
The relative standard deviation was determined as follows:
3D
RSD =
x 100
/
RSD =
x 100
where:
= mean of the observed spiked sample concentrations
= mean of the observed unspiked sample concentrations
If the RSD < 50 percent for both the
precision was considered acceptable.
5.3.2 Bias
spiked and unspiked samples, the
The bias is a measure of the systematic error inherent in the
measurement system. The bias is the difference between the observed spiked
value and the expected spiked value, including the difference from zero as
measured by the unspiked value. Ideally, this difference will be zero.
The bias was calculated as follows:
B = Sm - Mm - CS
25
-------
where:
B = bias at the spike level
Sm = mean of the observed spiked sample concentrations
Mm = mean of the observed unspiked sample concentrations
CS = expected value of the spiked concentration.
Even if the bias is not zero, it may not be significantly different
from zero. Statistical significance of the bias is determined by
conducting a small sample hypothesis test of H0: the bias is zero vs Ha:
the bias is not zero, where H0 is the null hypothesis and Ha is the
alternative hypothesis. A small sample test statistic, t, is calculated
from the data and compared to the tabulated t value which comprises the
lower limit of the rejection region for H0 at the 95% confidence level. If
the calculated t statistic falls within the rejection region, the bias is
statistically significant and a correction factor must be used for future
testing. The statistical significance of the bias was determined as
follows:
1. The standard deviation of the mean is calculated as follows:
2. The t-statistic was determined by:
I T5 I
t =
SDm
The bias is considered significant if the t-statistic is greater than
the critical value of the two-sided t-distribution at the 95 percent
confidence level and n-1 degrees of freedom.
If the bias is statistically significant, a correction factor (CF) must
be calculated as follows:
CF = 1 = CS
CS
For the method to be acceptable, CF must be between 0.70 and 1.30.
26
-------
6.0 RESULTS AND DISCUSSION
The spectral analysis programs (Section 5.2.2) were applied to all
sample spectra, and the resulting concentration values were corrected
(Section 5.2.3). All spectra were visually compared to spectra of the
spike cylinder gases to ensure that the resulting concentrations were
physically reasonable and that no obvious spectral interferants had been
omitted from the analytical programs. Statistical analysis of the data was
carried out (Section 5.3), and compounds were classified as "validated" if
they met the following criteria:
• The relative standard deviations for both the spiked and unspiked
series of spectra were less than 50 percent.
• The t-value determined for the data was less than that for the
appropriate number of degrees of freedom at the 95 percent
confidence level.
• If the bias was statistically significant, then a multiplicative
correction factor was determined, and found to between 0.70 and
1.30.
Spectra and analytical programs involving compounds for which the above
criteria were not immediately met were subject to further scrutiny. In
many cases, improvements in the analytical results were achieved by
adjustment of the spectral region and/or baseline subtraction technique
employed in the Multicomp program. Following these adjustments, the
statistical analysis was repeated. Many compounds which did not initially
pass the specified tests were re-classified as "validated" following such
correction of the programs.
For clarity, all tables associated with and described in this section
have been placed at the end of this report (following Section 8.0).
6.1 COMPOUNDS WHICH MEET VALIDATION CRITERIA
The following sections present results and analytical details
concerning those compounds for which the statistical data quality criteria
listed above were met, for each of the three sampling systems investigated.
Tables 6-1 and 6-2 summarize the compound/sampling pairs for which
valid analytical programs could be devised, for the not/wet, condenser, and
concentrated samples. The number of samples is not always the 24 required
by Method 301, but is sometimes lower because of procedural difficulties or
time and material constraints (see Section 6.4.3). However, the
statistical tests were carried out taking the number of samples into
account. Several compounds (notably numbers 159 and L&5"in the hot/wet
samples) exhibit mean unspiked values which vary significantly from zero,
but still meet the Method 301 criteria for analyte spiking. This is
because the difference between the spiked and unspiked concentrations,
rather than their absolute values, are used in all the statistical tests.
Analytically, this effect is due slight errors in the choice of points used
27
-------
for baseline subtraction in the Multicomp programs. The statistical
results indicate that the results of the programs are accurate when
corrected for these offsets, and that the offsets could be removed by
adjustment of the baseline subtraction routines. These testing procedures
for these compounds are listed as having met the Method 301 criteria, but
are not counted as "valid" in the totals presented in Section 7.0
Tables 6-3 through 6-5 present detailed analytical results for each
compound in the hot/wet samples, condenser samples, and concentrated
samples, respectively. Each entry in these Tables provides the observed
concentrations for the spiked and unspiked samples and the statistical
quantities defined in Section 5.3. Table 6-6 presents the reference
spectral files, associated concentrations, analytical regions, and baseline
correction details for the Multicomp programs employed in the calculation
of the observed concentration of the indicated compound in each type of
sample. Each page of the Table pertains to a particular compound/sampling
system combination, and appears in the same order as the information of
Tables 6-3 through 6-5.
6.2 COMPOUNDS WHICH DO NOT MEET VALIDATION CRITERIA
Tables 6-7 through 6-9 list the statistical details for those spike
compounds for which the required data quality criteria were not met. For
brevity, details of the associated Multicomp analyses are not provided in
this report.
6.3 CEM AND FLOW DATA
Data from the CEM analyzers were compiled once per second by the
associated data acquisition system, then combined to provide one-minute
average values. Table 6-10 summarizes the average concentration
measurements collected over each sample run period. The shaded areas
within the Table represent time periods over which the sample was spiked
with cylinder gases containing HAP compounds; analyzer values during these
spiking periods are biased by the presence of the cylinder gas, and are
therefore not presented. The CO, C02, and 02 data are dry basis
measurements because the sample provided to these analyzers was passed
through the condenser system before being introduced to the instruments.
Sample gas analyzed by the THC instrument bypassed the condenser; these
measurements were identically zero for the entire test period, and are
omitted from Table 6-10. Table 6-10 also presents the flue gas volumetric
flow, which was determined for each set of cylinder gas spike runs (see
Section 4.4.1), The water content and average delta p presented in the
'able are the results of wet-bulb/dry-bulb measurements and velocity
traverses conducted before each run. Averaged 02 and C02 concentrations
were coupled with the water and delta p values to calculate the flue gas
flow rates.
28
-------
6.4 DISCUSSION
Several generalizations may be may concerning the failure of the three
sample types (hot/wet, condenser, and concentration) and/or analytical
techniques to meet the Method 301 validation criteria. The discussions
below identify the compounds according to their identification number,
which is listed with each entry in Tables 6-1 through 6-5, and in Tables 6-
7 through 6-9.
6.4.1 Spectral Interferences and Large Sampling Losses
A number of compounds are simply not observable in the spectra of the
direct gas samples delivered to the FTIR instrumentation. These include
compounds 028, 084, 115, and 143 in the hot/wet samples, and compounds 084,
115, and 143 in the condenser samples. For these data, the calculated
spiked and unspiked concentrations varied greatly from sample to sample, or
differed only slightly for individual samples. These effects are probably
caused by heavy spectral interference, losses in the sampling system, or a
combination of both effects.
The concentrated sample spectra indicate that a number of the spike
compounds are not efficiently delivered to the FTIR sample cell. There are
several possible reasons for this effect. Compounds with low boiling
points are probably not efficiently adsorbed by the Tenax trap, or are lost
during the drying cycle; others are highly water soluble and are likely
dissolved in the liquid formed in the trap, and subsequently lost in the
drying process, rather than being adsorbed. Table 6-11 lists those
compounds which were not detected after thermal desorption of spiked
samples, along with their boiling points and solubilities in water. Table
6-12 presents the same information for those compounds which were detected.
The trends noted above are clear from a comparison of these two lists of
physical data.
Of the compounds which were detected in concentrated samples, and for
which analytical programs were devised, several (numbers 010, 159, and
169), failed to meet the Method 301 criteria because of heavy losses in the
sampling system or because of heavy spectral interferences.
6.4.2 Systematic Errors
There is statistical evidence that some compounds are consistently
delivered by the sampling systems (the RSD values for the spiked samples
are low) and are not subject to extreme spectral interferences (the RSD
values for the unspiked samples are low), but the analytical results are
consistently low (mean spiked value less than the expected value) or too
high (mean spiked value greater than the expected value). In the hot/wet
system, the spiked results are consistently low for compounds 029 and 108,
and the spiked results are too high for compounds 039, 046, 077, 104, 106,
112, 171, and 172. In the condenser system, the spiked results are
consistently low for compounds 003, 009, 028, 029, 108, and 115, and the
spiked results are too high for compounds 039, 046, 168, 172, and 192.
In the concentrated samples, the spiked results are consistently low for
compounds 009, 029, 108, 112, and 166, and the spiked results are too high
for compounds 022 and 159.
29
-------
There are several possible systematic errors which could lead to such
results, including (1) errors in the reference spectrum gas concentration,
spike cylinder gas concentration, or both; (2) band intensity mismatch
between reference spectra and sample spectra, caused by instrumental
distortion or gas temperature mismatch between reference and sample
spectra; and (3) a consistent loss of a certain fraction of the spike
concentration in the sampling system (although this impacts only those
results for which the spiked values are lower than expected). Even when
the techniques fail to meet the Method 301 criteria because of these
effects, they may provide useful lower concentration limits (in those cases
when the observed concentration is lower than expected) or upper
concentration limits (in those cases when the observed concentration is
higher than expected).
6.4.3 Statistical Issues
A fundamental question is posed by the fact that several compounds
failed to meet the validation criteria solely because the mean of the
observed values (Smu) was close to zero, causing the RSD of the measurement
to diverge and exceed the 50% limit. This effect is due only to the
failure of the statistical tests when the observed unspiked concentration
is nearly zero. It is well illustrated by the case of acrolein, compound
number 006, when spiked into the condenser samples (although the compound
did meet the validation criteria in the hot/wet samples). The average
unspiked concentration was extremely close to zero for this set of
measurements, with maximum deviations from zero equal to 0.69 and -0.30
ppm. However, the prescribed statistical analysis leads to an RSD value of
587% for this set of measurements, which is well outside the validation
criteria. Note that if the average unspiked mean had been much greater in
absolute magnitude than the actual value of 0.04 ppm, the analysis would
have easily passed the RSD test.
For each sampling system, a number of compounds failed to meet the
Method 301 criteria solely because of this effect. They are, for the
hot/wet system, compounds 075, lllu 117, 147, 151, 153, and 192; for the
condenser system compounds 006, 022, 030, 104, 111, 166, and 167; and for
the concentrated samples, compounds 114 and 142. ~ _ ^_
Several compounds exhibited both this statistical problem and a
correction factor (CF) outside the allowed range. The techniques may
therefore also be suitable for determination of approximate concentrations
or concentration limits (as discussed in Section 6.4.2) for several
compounds. They are, in the condenser system, numbers 003, 009, and 039;
in the concentrated samples, numbers 009, 022, 029, 112, and 159.
The number of samples collected in this test was lower than the 24
specified by Method 301 for all the sample concentration spike compounds
and several of the direct gas spikes. Portions of the Method 301
calculations provide for including the number of samples in the set,
including both the calculations of the standard deviations SDS and SDU and
the test for significance of the bias, which determines whether or not the
correction factor need be applied for a particular compound. As the number
30
-------
of samples decreases from the prescribed twenty four, passing the RSD test
becomes more difficult (requires higher precision of the measurements), but
the bias is less often shown to be significant.
6.4.4 Contaminants
During the validation testing of the sample concentration method,
problems were also encountered due to interference by a variety of
contaminants that were collected, in addition to stack gas components and
spike gas species, on the Tenax adsorbent. During sample analysis, these
contaminants were desorbed along with the desired species, and the
resulting infrared spectra showed absorbances due to both the contaminants
and the expected species. The presence of these contaminants in the
spectra proved to be a significant impediment to determining the
concentrations of the spike gas species, as well as interfering with the
collection of "clean" unspiked samples.
Entropy was able to identify the two most significant contaminants
encountered in this study as well as their source in the sampling system.
Future studies or validation tests will be able to avoid problems with
these contaminants using the knowledge gained from the current work.
Identification of these sources of contamination is also of importance for
any workers using other sample concentration schemes, such as VOST and
Semi-VOST, where similar contamination problems can potentially be
experienced.
The first contaminant encountered during the validation process was
residual mill oil on the stainless steel probe. This contaminant,
identified as a long-chain alkane hydrocarbon (CH3(CH2)nCH3, n>10) by its
infrared spectrum, was observed only during the first two days of
validation testing. New probes had been fabricated for this test, and the
surfaces had been cleaned using solvent. It appeared this cleaning was not
sufficient to remove all residual oil, in light of the high concentrations
detected during the first two days of testing. The amount of oil varied
considerably between the four probes used, indicating that all probes had
not received equal cleaning. Validation testing utilized heated probes,
and the heating process served to drive the oils off the hot metal surface
and onto the Tenax absorbent. The oil contaminant disappeared after two
days, apparently because this provided sufficient time to remove all
residual oil. This problem can be avoided in the future by requiring a
more rigorous cleaning of new stainless steel tubing used for probes and
pre-heating the probes for an extended period before use.
The second contaminant was also identified by its infrared spectrum,
and was determined to result from a chemical reaction4 involving glass
wool, which was initially used in place of the standard filter in the
concentration sampling system. The glass wool (Altech) was silanized, that
is, treated with dimethlydichlorosilane (Si(CH3)2(C1 )2), to reduce its
reactivity. The reaction product (octamethylcyclotetrasiloxane) results
from a hydrolysis reaction between the water and dimethlydichlorosilane in
the presence of HC1:
31
-------
CH3 0 CH3
\ / \ /
Cl CH3 CH3 -Si Si- CH3
\ / / \
4 Si +4 H20 > 0 0 + 8 HC1
/ \ \ /
Cl CH3 CH3 -Si Si- CH3
/ \ / \
CH3 0 CH3
While this cyclic siloxane was definitively identified in the infrared
spectra, a search of the chemical literature was required to determine the
mechanism of its formation. The appended reference list cites studies that
describe the reaction shown above. Note that these references are
primarily from foreign (Russian and German) sources, but the abstracts have
been translated and provide the necessary information to identify the
reaction.
This hydrolysis reaction is known to proceed under the conditions
encountered in the sampling train used in the validation test. Here, the
silanized glass wool was used as a filter material in the heated filter
compartment between the probe and absorbent trap. Flow of hot stack gases
through the filter allowed water to condense on the glass wool, and, in
turn, HC1 to dissolve in this condensed water. The references indicate the
reaction is enhanced by the presence of dissolved HC1 in the water and the
elevated temperatures at which the glass wool was maintained. During the
validation test, it was observed that the concentration of HC1 was rather
variable, and this variability seems to have also affected the
concentration of the reaction product above. While the cyclic siloxane
shown above is the main product, the reaction can also form a variety of
other linear and cyclic siloxanes.
As stated earlier, the infrared spectra clearly showed the presence of
the above cyclic siloxane, which was unambiguously identified using a
spectra search library on the FTIR system. The remaining unidentified
contaminants are probably other products of this reaction mechanism.
Entropy was able to clearly identify the cyclic siloxane and the mill oil
for two reasons. First, these species have quite distinct infrared spectra
that permit identification using spectral search software. Second, the
concentration of the different contaminants varied considerably during the
testing, and some unspiked spectra were recorded that only contained a
single contaminant. Indeed, Entropy was able to use and manipulate these
spectra so they could be used as "reference" spectra in the mathematical
multicomponent analysis.
The presence of the contaminants hampered the validation process for a
number of reasons. Firstly, the mathematical analysis used to determine
concentrations from an infrared spectrum (K matrix method) requires that
the analyst have reference spectra for all species present in the analyzed
spectral regions. Since the absorbances due to the contaminants often
32
-------
overlapped those of the desired analytes, and no reference spectra were
available for some of the contaminants, the accuracy of the mathematical
analysis was impacted. Secondly, there were a number of different
contaminants (at least four) which were present simultaneously and in
varying relative concentrations. It should be noted that these
concentrations varied even among the four trains of the quad-train in a
given sampling run. Thirdly, at times the concentration of one or more
contaminants was so high that it absolutely precluded analysis of the
infrared spectrum. In these cases the contaminant absorbance overwhelmed
that of any other species present.
The problems with sampling system contaminants experienced in the
current study, and especially the identified contaminants and their sources
within the sampling system, are significant for other emissions testing
methods besides the sample concentration scheme utilized in the current
study. Since water and HC1 are commonly encountered in stack gas, and
glass wool is commonly utilized in sampling systems, the reaction to form
siloxanes may occur in a variety of other test methods. Likewise,
contaminants like the residual mill oils on the heated probe can be
present. The fact that these contaminants could be identified serves to
reinforce some of the strengths of FTIR as a measurement technique. Future
validation and screening tests utilizing this sample concentration
technique will avoid these contamination problems by using Teflon or other
inert materials for filtration.
33
-------
7.0 CONCLUSIONS
The FTIR spectrometric analytical procedures described in this report
have been subject to a test for validity according to a revised form of EPA
Method 301, in which the option for (dynamic) analyte spiking was chosen.
On the basis of these tests and the prescribed statistical calculations,
the methodology is to be considered "valid" for a number of compounds in
three different sampling systems. The number of compounds considered
"valid" for each sampling system, and the approximate in-stack
concentration corresponding to the spike concentration level, are
summarized below.
Compounds Meeting Method 301 Analyte Spiking Criteria::
• 25 compounds for hot/wet sampling, at 10 ppm.
• 24 compounds for condenser sampling, at 10 ppm.
• 11 compounds for concentrated samples, at 500 ppb.
With the exception of m-xylene, all compounds which met the validation
criteria in concentrated samples also passed for either the hot/wet or
condenser samples. 16 compounds met the criteria for both the hot/wet and
condenser sampling systems. 33 different compounds met the criteria for at
least one sampling system, as well as a total of 60 compound/sampling
system combinations.
The test procedures differed from those prescribed in Method 301 in the
following ways:
• Gas phase samples were collected sequentially, rather than
simultaneously.
• The required number of samples (24) was not obtained for all gas
phase spike compounds, and fewer than the required number were
obtained for all sample concentration spike compounds.
• Gas phase samples were spiked dynamically at 20% of the sample
volume.
• The equivalent spike levels (10 ppm for gas samples, 500 ppb for
concentrated samples) did not approximate the emission level in the
effluent.
Further testing may be warranted for extension of concentration to
high-boilers (via addition of cryo-trapping), extension of gas phase
sampling to particular reactive species (eg, HC1, HF), and to compounds for
which cylinder gas standards cannot be prepared.
34
-------
8.0 REFERENCES
'"Method 301 - Field Validation of Pollutant Measurement Methods from
Various Waste Media," Federal Register, 57(10), 988-62002, December 29
1992.
2"Computer-Assisted Quantitative Infrared Spectroscopy," Gregory L. McClure
(ed.), ASTM Special Publication 934 (ASTM), 1987.
3"Multivariate Least-Squares Methods Applied to the Quantitative Spectral
Analysis of Multicomponent Mixtures," Applied Spectroscopy, 39(10), 73-84,
1985.
4Cyclic Siloxane Contaminant References:
"Effect of hydrochloric acid on the hydrolytic polycondensation of
bifunctional organochlorosilanes with chlorotrimethylsilane."
Kopylov, V. M., Agashkov, S. P., Sunkovich,G. V., and Prikhod'ko, P.
L., Zh. Obshch. Khim., 61(6), 1378-83, (Russ), 1991.
"Preparation of siloxanes." Lehnert, R., Porzel, A., and Ruehlmann,
K., Z. Chem., 28(5), 190-2, (Ger), 1988.
"Study of the effect of synthesis conditions on the degree of purity
of hydrolytic hydrochloric acid-waste from the production of
organosilicon products." Trokhachenkova, 0. P., Zh. Prikl. Khim.
(Leningrad), 59(10), 2396-9, (Russ), 1986.
"Effect of hydrochloric acid on the hydrolytic copolycondensation of
dimethyldichlorosilane with trimethylchlorosilane." Kopylov, V. M.,
Agashkov, S. P., Kireev, V.V., and Krylova, M. Ye., Vysokomol.
Soedin., Ser. A, 28(7), 1465-72, (Russ), 1986.
"Low-viscosity, storable diorganopolysiloxanes." Hamann, H.,
Kroening, H., Sliwinski, S., Koehler, B., Hoche, R., Fiedler, R.,
and Boehm, M., East German Patent DD 217814 Al 23, 8 pp., (Ger),
Jan 1985.
"Hydrolysis of chlorosilanes." Hajjar, A. L. (General Electric Co.,
USA). German Patent Ger. Offen. DE 3244500 Al 23, 9 pp., (Ger), Jun
1983.
"Hydrolytic polycondensation of dimethyldichlorosilane in
concentrated hydrochloric acid." Panchenko, B.I., Gruber, V. N.,
and Klebanskii, A. L., Vysokomol. Soedin., Ser. A, 11(2), 438-42,
(Russ), 1969.
35
-------
TABLE 6-1.
Summary of Compounds Meeting Method 301 Criteria
in Hot/Wet and Condenser Samples.
* Comoound
Cu*3
006
009
010
010
015
015
022
023
030
C37
037
077
C79
079
080
080
095
095
106
107
107
109
109
112
114
114
117
124
124
142
142
147
151
153
159
159
160
160
165
165
166
167
168
169
169
171
173
173
Acetonnnle
Acroiein
Acrvionrinle
Ally! Chlonae
AIM Chlonde
B«nzen«
Benzene
Bromotorm
1 3-Buladiene
CarOonyi Surfide
ChloroDenzene
Chlorooenzene
Ethvibenzene
Ethvl Chlonae
Ethvl Chlonae
Ethvlene Dibromiae
Ethvlene Dibromiae
n-nexane
n-Hexane
Methyl Bromioe
Methyl Chlonoe
Methyl Chlonde
Methyl Ethyl Ketone
Methyl Ethyl Ketone
Methyl Isobutyl Ketone
Methyl Methacryiate
Methyl Methacryiate
Methylene Chlonae
2-Nrtropropane
2-NitrooroDane
Prooyiene Oichlonae
Prooylene Oichlonae
Styrene
Tetrmcnloroethyleoe
Toluene
1 . 1 .2-Trichloroethane
1 . 1 .2-Trichloroethane
Tncntoroethylene
Trichtoroethyteoe
2.2.4-Trimethylpentane
2.2.4-Trimethylpentane
Vinyl Acetate
Vinyl Bromide
Vinyl Chlonde
Vinylidene Chlonde
Vinylidene Chtoode
o-Xylene
p-Xvlene
D-Xvlene
oamoiing * ot
System Samoles
^ot/wet
Hot/wet
Hot/wet
Hot/wet
Condenser
Hot/wet
Condenser
Hot/wet
Hot/wet
not/wet
-tot; wet
.onaenser
Conaenser
not/ wet
Oonaenser
-oVwet
Conaenser
Mot/wet
Conaenser
Conaenser
Hot/wet
Conaenser
Hot/wet
Condenser
Conaenser
Hot/wet
Conaenser
Condenser
Hot/wet
Condenser
Hot/wet
Conaenser
Conaenser
Condenser
Condenser
Hot/wet
Condenser
Hot/wet
Condenser
Hot/wet
Condenser
Hot/wet
Hot/wet
Hot/wet
Hot/wet
Condenser
Condenser
Hot/wet
Condenser
24
24
24
24
:o
24
•4
:o
24
24
24
2-1
23
_4
24
24
24
24
24
24
24
24
24
24
'4
24
24
24
24
24
24
24
24
14
24
24
24
24
24
20
24
24
24
24
24
24
20
24
24
•-recision
Sotkea Unsoiked
a. 99
0.84
0.97
3.62
0.84
1 38
-13.57
098
• 44
0.41
372
• 27
• 35
~33
3 41
3 75
• 13
• 46
• 61
430
371
5.17
5.52
M 70
5.40
0.99
1.51
3.07
0.56
459
083
2.14
1 11
0.60
2.03
5.26
1.21
0.85
1.07
0.62
0.37
49.09
0.79
0.66
0.37
0.20
1.32
1.31
425
23.10
-1069
382
-6.13
-6.76
-21.20
-1503
-10.91
-9.09
1602
-5461
24 14
-284
-309
-2928
-701
-•4 01
-'094
386
22.03
-679
-41 57
-742
-33.66
13.32
-334
28.69
47.53
33.69
21.96
1490
785
10.31
-12.26
33.60
-466
-6.32
-12.16
36.90
-23.74
16.37
-13.56
15.00
-4.74
12.29
34.04
-23.90
7.60
2536
Bias
„ 91
075
045
• 45
-i 33
' 27
-382
355
-352
O29
269
' 59
297
1 48
• 57
• 03
: 45
' 20
3 36
367
-033
-065
336
2.24
394
0.79
-0.49
-1 34
0.57
0.17
-027
-0.37
3.11
0.32
343
2.19
095
1.03
1.03
0.90
0.23
0.04
-0.38
3.00
-0.07
-0.06
424
3.70
3 15
•-vaJue
3 55
486
328
360
562
772
/ £
500
2.23
596
•5 13
652
•427
2 70
• 50
•057
1 32
7 15
2 09
3 11
• 06
380
599
1 39
426
6.74
2.65
1 94
2.84
0.33
' 48
0.68
18.82
5.13
2.09
4 19
449
10.07
8.71
11.92
4.75
0.03
3.90
26.11
1.21
0.82
1775
15.14
2.22
CF
- 92
0 94
0 96
088
• '5
3 89
1 62
: 35
' 06
' C3
: 79
36
77
38
37
90
35
69
97
73
03
• 07
0 73
0 80
0 72
093
• 05
i 15
094
098
• 33
• 04
0.78
097
0 74
082
0.91
0.90
0.90
0.92
098
1 00
1 04
0.77
' 01
1 01
070
073
376
Mean ,
Soiked Unspifced
' 3.42
11.18
12.19
5.23
5.43
10.96
5.08
9.96
590
•0.54
3.73
•2.36
•3.22
7 14
•o 11
9 16
392
:052
:0.53
1772
761
766
650
709
16.17
3.46
9.98
9.98
10.12
10.08
11 26
15.60
1433
10.26
17.94
1.03
7.96
10.05
10.59
10.73
10.38
2.53
9.99
11.14
1029
10.18
13.58
15.51
17.93
4 UU
-1.15
1.75
-5.42
-3.44 I
•0.30
• 1.11
-0.45
-2.31 I
0.13 I
-296 I
0.77 I
0.25 I
-5.24 I
-2.46 I
-0.99 I
-0.66 I
-0.62 I
0.23 I
408 I
•2.06 I
-1 69 I
-583
-4 11
2.23
-2.43
0.37
1.30
0.57 i
0.93 I
1 05
5.49
0.46
-0.06
4.75
-11.16
-2.99
-0.46
0.09
-0.15
0.18
•7.55
0.36
-1.86
0.36
0.22
-0.66
1.77
4.73
• See Section 6 1. These comoounds meet validation cmena but are not counted as validated comDounas.
36
-------
TABLE 6-2.
Summary of Compounds Heeting Method 301 Criteria
in Concentrated Samples.
ID
#
015
037
080
095
109
124
151
153
160
172
173
Compound
Benzene
Chlorobenzene
Ethylene Dibromide
n-Hexane
Methyl Ethyl Ketone
2-Nitropropane
Tetrachloroethylene
Toluene
Trichloroethylene
m-Xylene
p-Xylene
#of
Samples
8
12
8
8
12
8
8
12
8
12
8
Precision
Spiked Unspiked
8.99
6.24
7.76
28.26
17.32
2.42
26.67
10.31
3.26
4.85
14.25
18.86
33.89
32.11
13.92
-31.16
-37.08
44.51
-45.59
37.35
43.31
-36.71
Bias
-1.14
4.95
2.30
-3.59
4.26
3.11
-1.05
4.20
0.37
5.65
-2.72
t-value
0.63
2.33
1.14
0.72
1.09
4.16
0.19
1.71
0.17
4.44
1.12
CF
1.06
0.80
0.90
1.22
0.82
0.87
1.06
0.83
0.98
0.78
1.16
Mean
Spiked Unspiked
19.90
28.39
24.51
17.68
22.27
21.67
20.50
23.71
25.63
26.00
17.01
1.04
3.44
2.20
1.27
-1.98
-1.44
1.55
-0.49
5.27
0.36
-0.28
37
-------
TABLE 6-3. Compounds Meeting Method 301 Criteria in Hot/Wet Samples.
-------
Acetonitrile-003
SPIKED
12.59
14.56
16.77
14.86
16.45
16.58
15.00
15.84
14.97
17.76
16.13
13.49
15.42
RSD =
DEV.
1.96
-1.91
0.13
0.85
2.79
-2.65
1.17
8.99
Bias= 0.91
t= 0.55
UNSPIKED
3.35
4.19
3.70
3.12
3.39
5.81
4.55
4.02
3.48
3.31
3.69
5.43
4.00
- RSD =
DEV.
0.85
-0.58
2.42
-0.53
-0.16
1.75
3.74
23.10
Exp Conc= 10.50
CF= 0.92
TABLE 6-3 (continued!
Acrolein-006
SPIKED
11.06
11.04
11.24
11.36
11.08
11.33
11.21
11.26
11.17
11.01
11.23
11.21
11.18
RSD =
DEV.
-0.02
0.12
0.25
0.05
-0.16
-0.02
0.23
0.84
Bias= 0.75
t= 4.86
UNSPIKED
-1.15
-1.35
-1.36
-1.24
-1.24
-1.02
-1.14
-1.11
-1.12
-1.11
-0.86
-1.13
-1.15
RSD =
DEV.
-0.20
0.12
0.23
0.03
0.01
-0.27
•0.09
-10.69
Exp Cone = 11.58
CF= 0.94
38
-------
Acrylonitrile-009
SPIKED
12.08
12.25
12.15
12.27
11.98
12.10
12.15
12.38
12.04
12.28
12.30
12.36
12.19
RSD =
DEV.
0.17
0.12
0.12
0.23
0.24
0.06
0.93
0.97
Bias= 0.45
t= 3.28
UNSPIKED
1.64
1.71
1.79
1.70
1.79
1.85
1.74
1.88
1.79
1.75
1.60
1.72
1.75
- RSD =
DEV.
0.07
-0.09
0.06
0.14
-0.04
0.12
0.27
3.82
Exp Conc= 10.00
CF= 0.96
TABLE 6-3 (contmuedl
Ally! Chloride-010
SPIKED
6.23
6.36
6.12
6.40
6.00
6.40
6.41
6.26
5.87
6.27
6.01
6.43
6.23
RSD=
DEV.
0.13
0.28
0.40
-0.15
0.40
0.42
1.48
3.62
Bias* 1.45
t= 3.60
UNSPIKED
^.50
-5.52
-5.22
-5.39
-5.18
-5.12
-5.44
-5.33
-5.52
-6.00
-5.95
-5.85
-5.42
RSD =
DEV.
-1.02
-0.17
0.06
0.11
-0.49
0.09
-1.42
-6.13
Exp Cone = 10.20
CF= 0.88
39
-------
Benzene-015
SPIKED
10.64
10.89
10.93
11.10
10.69
11.02
11.12
11.17
10.84
11.06
11.12
10.98
10.96
RSD =
DEV.
0.25
0.17
0.33
0.05
0.22
-0.14
0.88
1.38
Blas= 1.27
t= 7.72
UNSPIKED
-0.57
-0.45
-0.51
-0.45
•0.16
-0.23
-0.14
-0.28
-0.15
-0.23
-0.21
-0.24
-0.30
- RSD =
DEV.
0.12
0.06
-0.07
-0.14
-0.08
-0.03
-0.14
-21.20
Exp Conc= 10.00
CF= 0.89
TABLE 6-3 (continued)
Bromoform-022
SPIKED
9.69
9.79
9.85
9.91
9.85
10.09
10.08
10.07
10.20
10.04
9.96
RSD =
DEV.
0.09
0.06
0.24
-0.01
•0.16
0.22
0.98
Bias= 0.55
t= 5.00
UNSPIKED
-0.51
-0.48
-0.53
-0.60
-0.42
-0.42
-0.41
-0.39
•0.31
-0.44
-0.45
RSD =
DEV.
0.03
-0.08
0.00
0.02
-0.13
-0.16
-10.91
Exp Conc= 9.86
CF= 0.95
40
-------
1 ,3-Butadiene-023
SPIKED
7.02
7.12
7.10
6.97
6.93
6.85
6.92
7.03
6.46
6.73
6.80
6.82
6.90
RSD =
DEV.
0.11
-0.13
-0.08
0.11
0.27
0.02
0.30
1.44
Blas= -0.52
t= 2.23
UNSPIKED
-2.25
-2.36
-2.54
-2.39
-2.45
-1.76
-2.03
-2.11
-2.30
-2.36
-2.54
-2.58
-2.31
- RSD =
DEV.
-0.11
0.15
0.69
-0.08
-0.06
-0.04
0.55
-9.09
Exp Conc= 9.72
CF= 1.06
TABLE 6-3 (continued)
Carbonyl Sulfide-030
SPIKED
10.53
10.53
10.58
10.69
10.56
10.65
10.61
10.59
10.43
10.44
10.47
10.43
10.54
RSD =
DEV.
0.01
0.11
0.09
-0.02
0.01
-0.04
0.16
0.41
Blas= -0.29
t= 5.96
UNSPIKED
0.13
0.09
0.08
0.12
0.15
0.15
0.14
0.11
0.21
0.18
0.09
0.09
0.13
RSD =
DEV.
-0.04
0.05
0.00
-0.02
-0.03
0.00
-0.05
16.02
Exp Conc= 10.70
CF= 1.03
41
-------
Chlorobenzene-037
SPIKED
9.52
9.41
9.83
10.00
9.58
9.56
9.61
9.55
9.99
9.87
9.92
9.89
9.73
RSD =
DEV.
-0.11
0.16
-0.02
-0.06
-0.13
-0.03
-0.18
0.72
Blas= 2.69
t= 6.13
UNSPIKED
-3.16
-3.23
-3.44
-3.12
-3.00
-2.79
-3.09
-3.03
-3.23
-3.11
-1.44
-2.88
-2.96
- RSD =
DEV.
-0.07
0.32
0.22
0.06
0.12
-1.44
-0.80
-14.61
Exp Conc= 10.00
CF= 0.79
TABLE 6-3 {continued)
Ethyt Chloride-079
SPIKED
7.16
7.68
7.13
7.75
7.40
8.52
7.11
8.13
6.11
6.64
6.12
5.94
7.14
RSD =
DEV.
0.52
0.62
1.12
1.03
0.54
-0.19
3.64
7.33
Bias= 1.48
t= 2.70
UNSPIKED
-4.19
-3.99
^.31
-4.34
-5.41
-5.26
-5.15
-5.42
-6.14
-6.09
-6.07
-6.48
-5.24
RSD =
DEV.
0.20
-0.03
0.15
-0.27
0.06
-0.42
•0.31
-3.09
Exp Cone = 10.90
CF= 0.88
42
-------
Ethylene Dibromide-080
SPIKED
8.98
9.11
9.14
9.29
9.11
9.09
9.14
9.20
9.17
9.16
9.31
9.21
9.16
RSD =
DEV.
0.13
0.16
-0.02
0.06
-0.01
-0.11
0.20
0.75
Blas= 1.03
t= 10.57
UNSPIKED
-1.07
-0.93
-0.97
-0.96
-0.83
-1.01
-0.98
-0.98
-0.94
-1.02
-1.09
-1.10
-0.99
- RSD =
DEV.
0.14
0.01
-0.18
-0.01
-0.08
-0.01
-0.13
-7.01
Exp Conc= 9.12
CF= 0.90
TABLE 6-3 Icontmuodl
n-Hexane-095
SPIKED
10.08
10.42
10.49
10.54
10.52
10.61
10.55
10.86
10.33
10.48
10.58
10.78
10.52
RSD =
DEV.
0.34
0.05
0.08
0.31
0.16
0.19
1.13
1.46
Bias= 1.20
t= 7.15
UNSPIKED
-0.71
-0.75
-0.81
-0.80
-0.38
-0.57
-0.62
-0.61
•0.42
-0.55
-0.60
-0.64
-0.62
RSD =
DEV.
-0.03
0.01
-0.19
0.01
-0.13
-0.04
-0.37
-10.94
Exp Conc= 9.94
CF= 0.89
43
-------
Methyl Chlonde-107
SPIKED
7.81
7.55
7.75
7.68
7.30
7.29
7.19
8.12
7.56
7.72
7.65
7.70
7.61
RSD =
DEV.
-0.26
-0.06
-0.01
0.92
0.17
0.05
0.81
3.71
Blas= -0.33
t= 1.06
UNSPIKED
-1.05
-1.10
-2.04
-1.78
-2.50
-2.27
-2.03
-2.32
-2.51
-2.39
-2.40
-2.29
-2.06
- RSD =
DEV.
-0.04
0.26
0.23
-0.29
0.12
0.11
0.38
-6.79
Exp Conc= 10.00
CF= 1.03
TABLE 6-3 (continued)
Methyl Ethyl Ketone-109
SPIKED
6.59
5.83
7.01
6.37
6.26
6.25
6.43
6.34
6.96
6.24
6.75
6.93
6.50
RSD =
DEV.
-0.76
-0.64
-0.02
-0.09
-0.72
0.18
-2.05
5.52
Blas= 3.36
t= 5.99
UNSPIKED
-3.88
-5.26
-5.93
-5.48
-6.67
-6.43
-6.16
-6.42
-6.11
-6.11
-5.75
-5.74
-5.83
RSD=
DEV.
-1.39
0.45
0.24
-0.26
0.00
0.01
-0.95
-7.42
Exp Conc= 8.96
CF= 0.73
-------
Methyl Methacryiate-1 1 4
SPIKED
8.38
8.39
8.61
8.63
8.17
8.32
8.42
8.63
8.48
8.36
8.58
8.53
8.46
RSD =
DEV.
0.01
0.02
0.16
0.21
-0.12
-0.05
0.22
0.99
Bias= 0.79
t= 6.74
UNSPIKED
-2.42
-2.53
-2.62
-2.55
-2.34
-2.48
-2.55
-2.50
-2.15
-2.34
-2.31
-2.38
-2.43
- RSD =
DEV.
-0.11
0.07
-0.14
0.04
-0.19
-0.07
-039
-3.34
ExpConc= 10.10
CF= 0.93
TABLE 6-3 (continued!
2-Nitropropane-124
SPIKED
9.92
10.06
10.19
10.13
10.22
10.27
10.25
10.24
10.08
9.98
10.08
10.04
10.12
RSD =
DEV.
0.14
-0.07
0.05
-0.01
-0.10
-0.04
-0.03
0.56
Bias= 0.57
t= 2.84
UNSPIKED
0.84
0.28
0.30
0.52
0.52
0.69
0.58
0.50
0.83
0.61
0.58
0.60
0.57
RSD =
DEV.
-0.56
0.22
0.17
-0.08
-0.22
0.02
-0.45
33.69
Exp Conc= 8.98
CF= 0.94
45
-------
Propylene Dichloride-142
SPIKED
11.83
11.90
11.64
11.70
11.10
11.28
11.20
11.06
10.58
10.78
10.99
11.02
11.26
RSD =
DEV.
0.07
0.06
0.18
-0.15
0.20
0.03
0.39
0.83
Blas= -0.27
t= 1.48
UNSPIKED
1.27
1.17
1.12
1.10
1.23
0.82
0.83
0.89
1.10
0.86
1.20
0.98
1.05
. RSD =
DEV.
-0.10
-0.02
-0.41
0.06
-0.24
-0.22
-0.94
14.90
Exp Conc= 10.48
CF= 1.03
TABLE 6-3 (continued!
1 , 1 ,2-Trichloroethane-1 59
SPIKED
0.89
0.89
0.93
1.05
0.78
0.84
0.95
0.93
1.19
1.27
1.28
1.38
1.03
RSD =
DEV.
0.00
0.12
0.06
-0.02
0.08
0.11
0.34
5.26
Blas= 2.19
t= 4.19
UNSPIKED
-11.34
-11.29
-11.87
-11.45
-11.25
-10.87
-11.17
-11.19
-11.32
-11.31
-9.59
-11.30
-11.16
RSD =
DEV.
0.05
0.42
0.38
-0.02
0.01
-1.71
-0.87
-4.66
Exp Conc= 10.00
CF= 0.82
46
-------
Trichloroethylene-1 60
SPIKED
9.95
10.03
10.02
10.03
10.07
10.22
10.17
10.20
9.74
9.97
10.13
10.07
10.05
RSD =
DEV.
0.08
0.01
0.16
0.03
0.23
-0.05
0.45
0.85
Bias= 1.03
t= 10.07
UNSPIKED
-0.40
-0.42
•0.43
-0.44
-0.40
-0.56
•0.56
-0.53
-0.38
-0.49
-0.47
-0.45
-0.46
- RSD =
DEV.
-0.01
-0.01
-0.16
0.03
-0.10
0.01
-0.24
-12.16
Exp Conc= 9.48
CF= 0.90
TABLE 6-3 (continued)
2,2,4-Trimethylpentane-1 65
SPIKED
10.60
10.68
10.70
10.70
10.65
10.83
10.81
10.78
10.82
10.74
10.73
RSD =
DEV.
0.08
0.00
0.18
•0.04
-0.08
0.15
0.62
Blas= 0.90
t= 11.92
UNSPIKED
-0.16
-0.15
-0.16
-0.17
-0.09
-0.17
-0.16
-0.17
-0.08
-0.16
-0.15
RSD =
DEV.
0.00
-0.01
-0.08
-0.01
-0.07
-0.17
-23.74
Exp Conc= 9.98
CF= 0.92
47
-------
Vinyl Acetate-166
SPIKED
2.41
2.96
2.85
3.94
3.14
-0.04
4.11
2.45
2.43
1.38
3.26
1.50
2.53
RSD =
DEV.
0.55
1.09
-3.18
-1.66
-1.05
-1.76
-6.02
49.09
Bias= 0.04
t= 0.03
UNSPIKED
-7.63
-8.59
-7.84
-8.02
-8.11
-6.84
-6.93
-8.54
-7.52
-6.18
-6.01
-8.38
-7.55
- RSD =
DEV.
-0.96
-0.18
1.27
-1.61
1.34
-2.37
-2.50
-13.56
Exp Conc= 10.04
CF= 1.00
TABLE 6-3 (continued)
Vinyl Bromide-167
SPIKED
9.93
9.85
9.83
9.87
9.91
10.01
10.06
9.98
10.07
10.09
10.23
10.00
9.99
RSD =
DEV.
-0.07
0.03
0.10
-0.07
0.02
-0.23
•0.22
0.79
Blas = -0.38
t= 3.90
UNSPIKED
0.30
0.34
0.34
0.36
0.40
0.35
0.34
0.38
0.33
0.45
0.32
0.44
0.36
RSD =
DEV.
0.04
0.02
-0.05
0.04
0.12
0.12
0.28
15.00
Exp Conc= 10.00
CF= 1.04
48
-------
Vinyl Chloride-168
SPIKED
11.22
11.16
11.34
11.27
11.07
11.17
11.13
11.10
11.21
11.00
11.03
10.99
11.14
RSD=
DEV.
-0.06
•0.08
0.10
-0.03
-0.21
-0.03
-0.32
0.66
Bias= 3.00
t= 26.11
UNSPIKED
-1.89
-1.88
-1.88
-1.96
-1.94
-1.96
-1.86
-1.95
-2.15
-2.06
-1.27
-1.54
-1.86
- RSD =
DEV.
0.02
-0.08
-0.02
-0.10
0.09
-0.27
-0.35
-4.74
Exp Conc= 10.00
CF= 0.77
TABLE 6-3 (continued)
Vinylidene Chloride-169
SPIKED
10.32
10.32
10.30
10.32
10.49
10.43
10.42
10.43
10.18
10.07
10.11
10.10
10.29
RSD=
DEV.
0.00
0.02
-0.06
0.01
-0.11
-0.01
-0.17
0.37
Bias* -0.07
t= 1.21
UNSPIKED
0.33
0.41
0.34
0.33
0.40
0.36
0.46
0.35
0.40
0.35
0.31
0.27
0.36
RSD =
DEV.
0.08
-0.01
-0.04
-0.11
-0.05
-0.04
-0.17
12.29
Exp Conc= 10.00
CF= 1.01
49
-------
TABLE 6-3 (continued)
p-Xylene-173
SPIKED
15.22
15.48
15.40
15.06
15.61
16.04
15.28
15.57
15.64
15.68
15.45
15.66
15.51
RSD =
DEV.
0.25
-0.34
0.44
0.29
0.04
0.21
0.90
1.31
Bias= 3.70
t= 15.14
UNSPIKED
1.83
2.07
1.81
1.79
1.81
- 1.62
1.69
1.89
1.74
1.63
1.54
1.82
1.77
RSD =
DEV.
0.24
-0.02
-0.19
0.20
-0.10
0.27
0.40
7.60
Exp Conc= 10.04
CF= 0.73
50
-------
TABLE 6-4. Compounds Meeting Method 301 Criteria in Condenser Samples.
51
-------
AIM Chloride-010
SPIKED
3.79
3.84
3.97
3.85
7.01
6.98
7.01
6.98
5.43
RSD =
DEV.
0.05
-0.11
-0.02
-0.03
•0.12
0.84
Blas= -1.33
t= 5.62
UNSPIKED
-3.87
^.36
-4.29
-3.88
-2.65
-3.03
-2.78
-3.07
-3.23
-3.28
-3.47
-3.38
-3.44
RSD =
DEV.
-0.49
0.41
-0.38
-0.30
-0.05
0.09
-0.71
-6.76
Exp Conc= 10.20
CF= 1.15
fABLE 6-4 (continued)
Benzene-015
SPIKED
9.61
3.43
3.66
2.88
5.73
5.16
5.08
RSD =
DEV.
-6.18
-0.78
-0.57
-7.52
43.57
Blase -3.82
t= 1.72
UNSPIKED
-2.11
-2.30
-1.86
-2.05
-0.56
-0.11
0.20
-0.06
-1.11
RSD =
DEV.
-0.19
-0.19
0.45
-0.26
-0.18
-15.03
Exp Conc= 10.00
CF= 1.62
52
-------
Chlorobenzene-037
SPIKED
11.93
12.36
12.38
12.29
12.39
12.31
12.45
12.59
12.50
12.36
12.49
12.25
12.36
RSD=
DEV.
0.43
-0.09
-0.09
0.14
-0.14
-0.24
0.02
1.27
Bias= 1.59
t= 6.52
UNSPIKED
1.04
0.72
0.88
1.43
0.76
0.74
0.59
0.65
0.59
0.58
0.64
0.64
0.77
RSD=
DEV.
-0.33
0.55
-0.02
0.07
-0.01
0.01
0.26
24.14
Exp Conc= 10.00
CF= 0.86
TABLE 6-4 (continued)
Ethyl Benzene-077
SPIKED
11.70
11.40
11.44
11.73
14.70
14.98
14.92
14.87
13.22
RSD =
DEV.
-0.31
0.29
0.27
-0.04
0.21
1.35
Bias- 2.97
t= 14.27
UNSPIKED
0.22
0.38
0.31
0.39
0.19
0.12
0.22
0.14
0.15
0.45
0.20
0.24
0.25
RSD =
DEV.
0.16
0.08
-0.08
-0.09
0.30
0.04
0.41
42.84
Exp Conc= 10.00
CF= 0.77
53
-------
Ethyl Chloride-079
SPIKED
8.88
10.26
9.95
10.19
11.62
11.12
10.62
10.93
9.43
8.87
8.52
10.98
10.11
RSD =
DEV.
1.37
0.24
-0.49
0.31
-0.57
2.46
3.33
8.41
Bias= 1.67
t= 1.50
UNSPIKED
-1.07
-2.35
-2.22
-2.35
-5.86
-4.87
-2.27
-2.50
-0.86
-2.74
-1.20
-1.17
-2.46
RSD =
DEV.
-1.28
-0.12
0.99
•0.23
-1.88
0.04
-2.48
-29.28
Exp Conc= 10.90
CF= 0.87
TABLE 6-4 (continued)
Ethylene Oibromide-080
SPIKED
8.83
8.97
9.14
9.17
8.54
8.65
8.62
8.86
9.07
9.09
8.94
9.12
8.92
RSD =
DEV.
0.14
0.03
0.12
0.24
0.02
0.18
0.72
1.13
Bias= 0.45
t= 3.32
UNSPIKED
-0.79
-0.75
-0.72
-0.74
-0.59
-0.67
-0.65
-0.75
-0.37
-0.65
-0.56
-0.64
-0.66
RSD =
DEV.
0.05
-0.01
-0.08
-0.11
-0.28
-0.08
-0.51
-14.01
Exp Conc= 9.12
CF= 0.95
54
-------
n-Hexane-095
SPIKED
10.11
10.12
10.09
10.08
10.76
11.32
10.85
10.73
10.47
10.56
10.62
10.61
10.53
RSD =
DEV.
0.01
-0.01
0.57
•0.12
0.09
-0.01
0.53
1.61
Bias= 0.36
t= 2.09
UNSPIKED
0.25
0.26
0.23
0.21
0.20
0.21
0.20
0.26
0.28
0.24
0.19
0.21
0.23
RSD =
DEV.
0.01
-0.02
0.01
0.06
-0.04
0.03
0.05
9.86
Exp Cone = 9.94
CF= 0.97
TABLE 6-4 (continued)
Methyl Bromide-106
SPIKED
16.83
17.80
17.03
18.65
18.36
17.45
16.51
17.96
18.27
18.19
17.48
18.17
17.72
RSD =
DEV.
0.97
1.62
-0.91
1.45
-0.09
0.69
3.74
4.30
Bias= 3.67
t= 3.11
UNSPIKED
3.06
3.68
4.71
6.61
4.40
5.07
3.24
4.93
3.48
3.18
2.53
4.04
4.08
RSD =
DEV.
0.62
1.90
0.67
1.69
-0.30
1.52
6.10
22.03
Exp Conc= 9.98
CF= 0.73
55
-------
Methyl Chloride-107
SPIKED
8.48
9.43
9.87
9.59
7.65
7.08
7.52
8.09
5.72
5.72
6.62
6.13
7.66
RSD =
DEV.
0.95
-0.28
-0.58
0.57
0.00
-0.49
0.18
5.17
Bias= -0.65
t= 0.80
UNSPIKED
-0.50
0.90
•0.82
0.22
-2.78
-1.59
-2.54
-2.29
-2.07
-3.13
-2.59
-3.13
-1.69
RSD =
DEV.
1.40
1.04
1.19
0.25
-1.06
-0.54
2.28
-41.57
Exp Conc= 10.00
CF= 1.07
TABLE 6-4 (continued)
Methyl Ethyl Ketone-109
SPIKED
12.33
13.62
13.76
14.28
3.20
5.17
2.88
3.81
2.48
3.49
5.42
4.67
7.09
RSD =
DEV.
1.29
0.52
1.97
0.93
1.01
-0.75
4.97
11.70
Bias= 2.24
t= 1.39
UNSPIKED
0.28
-0.37
-0.91
3.52
-6.05
-6.11
-6.51
•6.32
-5.62
-6.86
-6.60
-7.76
•4.11
RSD =
DEV.
•0.65
4.42
-0.07
0.19
-1.25
-1.17
1.49
-33.66
Exp Conc= 8.96
CF= 0.80
56
-------
Methyl Isobutyl Ketone-112
SPIKED
15.91
16.54
16.54
16.98
14.35
16.70
16.17
RSD =
DEV.
0.62
0.44
2.35
3.42
5.40
Bias= 3.94
t= 4.26
UNSPIKED
2.93
2.03
2.38
2.29
2.10
2.36
1.56
2.23
2.23
RSD =
DEV.
-0.90
-0.10
0.26
0.67
•0.07
13.32
Exp Conc= 10.00
CF= 0.72
TABLE 6-4 (continued)
Methyl Methacrylate-114
SPIKED
9.83
10.10
10.24
10.17
9.71
10.04
9.92
10.03
9.80
10.08
9.93
9.97
9.98
RSD=
DEV.
0.27
-0.08
0.33
0.10
0.27
0.04
0.93
1.51
Blas= -0.49
t= 2.65
-UNSPIKED
0.49
0.38
0.38
0.41
0.35
0.17
0.34
0.30
0.65
0.35
0.30
0.36
0.37
RSD =
DEV.
•0.10
0.03
-0.17
-0.04
-0.30
0.06
-0.54
28.69
ExpConc= 10.10
CF= 1.05
57
-------
MethyteneChloride-117
SPIKED
8.74
8.86
8.81
8.98
10.63
11.20
11.21
10.61
10.49
10.30
10.26
9.67
9.98
RSD =
DEV.
0.12
0.17
0.57
-0.61
-0.19
-0.59
-0.52
3.07
Bias= -1.34
t= 1.94
UNSPIKED
-0.16
-0.08
-0.10
-0.15
2.38
2.36
2.01
4.10
1.68
1.40
1.26
0.90
1.30
RSD =
DEV.
0.08
-0.05
-0.02
2.09
-0.28
-0.36
1.46
47.53
Exp Conc= 10.02
CF= 1.15
TABLE 6-4 {continued)
2-Nitropropane-l 24
SPIKED
9.52
10.37
10.48
10.37
9.20
10.16
10.37
10.28
9.22
10.17
10.34
10.48
10.08
RSD =
DEV.
0.85
-0.11
0.96
-0.09
0.95
0.13
2.68
4.59
Bias** 0.17
t= 0.33
UNSPIKED
0.86
0.67
0.72
0.74
1.09
0.92
0.87
0.91
1.69
1.03
0.88
0.80
0.93
RSD =
DEV.
-0.19
0.02
-0.17
0.04
-0.66
-0.08
-1.04
21.96
Exp Conc= 8.98
CF= 0.98
58
-------
Propytene DIchloride-142
SPIKED
14.75
15.61
15.36
15.55
15.88
16.38
15.90
15.68
14.99
15.48
15.74
15.85
15.60
RSD =
DEV.
0.86
0.19
0.50
•0.23
0.49
0.11
1.93
2.14
Blas= -0.37
t= 0.68
UNSPIKED
5.97
5.78
5.63
5.81
6.51
5.12
5.41
5.80
4.89
4.64
5.12
5.19
5.49
RSD =
DEV.
-0.19
0.18
-1.39
0.39
•0.25
0.07
-1.18
7.85
Exp Conc= 10.48
CF= 1.04
TABLE 6-4 (continued)
Styrene-147
SPIKED
13.63
14.04
14.21
14.23
14.30
14.52
14.55
14.41
14.38
14.44
14.49
14.74
14.33
RSD =
DEV.
0.41
0.03
0.22
-0.14
0.06
0.25
0.83
1.11
Blas= 3.11
t= 18.82
UNSPIKED
0.51
0.49
0.67
0.77
0.24
0.30
0.26
0.34
0.48
0.49
0.49
0.41
0.46
RSD =
DEV.
-0.02
0.10
0.07
0.08
0.01
-0.08
0.16
10.31
Exp Conc= 10.76
CF= 0.78
59
-------
Tetrachloroethylene-1 51
SPIKED
10.21
10.37
10.42
10.43
10.02
10.10
10.26
RSD =
DEV.
0.15
0.00
0.09
0.24
0.60
Blas= 0.32
t- 5.13
UNSPIKED
-0.04
-0.06
-0.06
-0.05
-0.06
-0.07
-0.07
-0.07
-0.06
RSD=
DEV.
-0.02
0.01
-0.01
0.00
-0.02
-12.26
Exp Conc= 10.00
CF= 0.97
TABLE 6-4 (continued)
Tduene-153
SPIKED
18.59
19.20
19.22
19.62
17.10
17.71
16.86
17.50
17.14
17.44
17.23
17.67
17.94
RSD =
DEV.
0.62
0.40
0.61
0.64
0.30
0.44
3.00
2.03
Blas= 3.43
t= 2.09
-UNSPIKED
4.08
3.92
5.09
10.58
3.78
4.21
4.04
4.08
4.17
4.45
4.53
4.10
4.75
RSD=
DEV.
•0.15
5.49
0.43
0.04
0.27
-0.43
5.65
33.60
Exp Conc= 9.76
CF= 0.74
60
-------
1 ,1 ,2-Trichloroethane-l59
SPIKED
7.52
7.67
7.51
7.70
8.07
8.24
8.24
8.16
8.16
8.03
8.10
8.11
7.96
RSD=
DEV.
0.15
0.19
0.17
-0.08
-0.13
0.01
0.32
1.21
Bias= 0.95
t= 4.49
UNSPIKED
-3.35
-3.23
-3.40
-3.80
-2.42
-2.82
-2.87
-3.02
-2.60
-2.81
-2.73
-2.88
-2.99
RSD =
DEV.
0.12
-0.40
-0.41
-0.15
-0.22
-0.15
-1.20
-6.32
Exp Conc= 10.00
CF= 0.91
TABLE 6-4 (continued)
Trichloroethyiene-1 60
SPIKED
9.98
10.31
10.33
10.39
10.63
10.78
10.80
10.78
10.67
10.78
10.81
10.85
10.59
RSD=
DEV.
0.33
0.06
0.16
-0.02
0.12
0.04
0.69
1.07
Blas= 1.03
t= 8.71
UNSPIKED
0.14
0.15
0.13
0.13
0.05
0.00
0.04
0.03
0.16
0.07
0.06
0.07
0.09
RSD =
DEV.
0.00
0.00
-0.05
-0.01
-0.10
0.01
-0.14
36.90
Exp Conc= 9.48
CF= 0.90
61
-------
2,2,4-Trimethylpentane-l 65
SPIKED
10.08
10.17
10.11
10.16
10.44
10.52
10.47
10.46
10.49
10.50
10.63
10.59
10.38
RSD=
DEV.
0.09
0.05
0.08
-0.02
0.01
-0.04
0.16
0.37
Bias= 0.23
t= 4.75
UNSPIKED
0.16
0.16
0.17
0.17
0.18
0.16
0.18
0.18
0.27
0.17
0.18
0.15
0.18
RSD =
DEV.
-0.01
0.01
-0.02
0.00
-0.09
-0.03
-0.14
16.37
Exp Conc= 9.98
CF= 0.98
TABLE 6-4 (continued)
Vinylidene Chloride-169
SPIKED
11.00
10.99
10.92
10.98
9.70
9.73
9.77
9.77
9.65
9.65
9.87
9.86
10.16
RSD =
DEV.
-0.01
0.06
0.03
0.00
-0.01
-0.01
0.07
0.20
Blas= -0.06
t= 0.82
UNSPIKED
0.20
0.20
0.14
0.39
0.21
0.22
0.22
0.18
0.25
0.19
0.20
0.23
0.22
RSD =
DEV.
0.01
0.25
0.01
-0.05
-0.06
0.03
0.18
34.04
Exp Conc= 10.00
CF= 1.01
62
-------
o-Xylene-171
SPIKED
11.76
11.59
11.94
11.58
15.17
15.47
15.61
15.53
13.58
RSD =
DEV.
-0.17
-0.36
0.30
-0.08
-0.31
1.32
Bias** 4.24
t= 17.75
UNSPIKED
-0.63
-0.85
-0.73
-0.88
-0.62
-0.52
-0.62
-0.78
-0.35
-0.73
-0.51
-0.74
-0.66
RSD =
DEV.
-0.21
-0.15
0.10
-0.16
-0.38
-0.23
-1.03
-23.90
Exp Conc= 10.00
CF= 0.70
TABLE 6-4 (continued!
p-Xylene-173
SPIKED
18.36
18.81
18.33
18.00
17.75
18.11
17.75
15.50
18.49
17.89
17.54
18.58
17.93
RSD =
DEV.
0.45
-0.33
0.37
-2.25
-0.60
1.05
-1.31
4.25
Bias- 3.15
t= 2.22
UNSPIKED
4.39
3.90
5.45
5.03
4.44
5.21
4.78
4.41
5.92
3.82
3.01
6.43
4.73
RSD =
DEV.
-0.50
-0.42
0.77
-0.37
-2.10
3.42
0.81
25.36
Exp Conc= 10.04
CF= 0.76
63
-------
TABLE 6-5. Compounds Meeting Method 301 Criteria in Concentrated Samples.
64
-------
Benzene-015
SPIKED
19.95
22.03
16.88
20.74
19.90
RSD =
DEV.
2.08
3.86
5.93
8.99
Blas= -1.14
t= 0.63
UNSPIKED
1.94
1.61
0.13
0.48
1.04
RSD =
DEV.
-0.33
0.35
0.01
18.86
Exp Conc= 20.00
CF= 1.06
TABLE 6-5 (continued!
Chlorobenzene-037
SPIKED
25.84
29.20
25.61
26.40
32.95
30.32
28.39
RSD =
DEV.
3.36
0.78
-2.63
1.51
6.24
Blas= 4.95
t- 2.33
UNSPIKED
4.38
2.75
1.55
" 2.85
3.58
5.54
3.44
RSD =
DEV.
-1.62
1.30
1.96
1.64
33.89
Exp Conc= 20.00
CF= 0.80
EthyJene Dibromide-080
SPIKED
21.25
25.87
25.75
25.17
24.51
RSD =
DEV.
4.62
-0.58
4.04
7.76
Bias= 2.30
t= 1.14
UNSPIKED
1.80
1.67
1.81
3.54
2.20
RSD =
DEV.
-0.13
1.73
1.60
32.11
Exp Conc= 20.00
CF= 0.90
65
-------
n-Hexane-095
SPIKED
13.88
23.69
17.51
15.64
17.68
RSD =
DEV.
9.81
-1.87
7.95
28.26
Bias= -3.59
t= 0.72
UNSPIKED
2.32
2.42
0.34
0.00
1.27
RSD =
DEV.
0.10
-0.34
•0.24
13.92
Exp Conc = 20.00
CF= 1.22
TABLE 6-5 (continued)
Methyl Ethyl Ketone-109
SPIKED
20.30
11.94
26.15
24.97
27.27
23.02
22.27
RSD =
DEV.
-8.36
-1.18
-4.25
-13.79
17.32
Bias= 4.26
t= 1.09
UNSPIKED
-2.99
-3.39
-0.91
-1.51
-2.22
-0.88
-1.98
RSD =
DEV.
-0.39
-0.60
1.33
0.34
-31.16
Exp Conc= 20.00
CF= 0.82
2-Nitropropane-1 24
SPIKED
21.82
22.86
20.95
21.05
21.67
RSD =
DEV.
1.04
0.10
1.14
2.42
Blas= 3.11
t= 4.16
UNSPIKED
-1.76
-1.86
-1.61
-0.55
-1.44
RSD=
DEV.
-0.10
1.06
0.96
-37.08
Exp Conc= 20.00
CF= 0.87
66
-------
Tetrachloroethylene-1 51
SPIKED
20.45
25.18
13.25
23.11
20.50
RSD =
DEV.
4.73
9.86
14.59
26.67
Blas= -1.05
t= 0.19
UNSPIKED
1.90
2.16
0.39
1.74
1.55
RSD =
DEV.
0.26
1.35
1.61
44.51
Exp Conc= 20.00
CF= 1.06
TABLE 6-5 (continued)
Toluene-153
SPIKED
28.48
22.61
22.43
22.33
23.78
22.63
23.71
RSD =
DEV.
-5.87
-0.10
-1.15
-7.13
10.31
Bias= 4.20
t- 1.71
UNSPIKED
-1.11
-0.66
-0.33
-0.29
-0.42
-0.12
-0.49
RSD =
DEV.
0.45
0.04
0.30
0.79
-45.59
Exp Conc= 20.00
CF= 0.83
Trichloroethylene-1 60
SPIKED
27.88
27.37
22.65
24.63
25.63
RSD =
DEV.
-0.51
1.98
1.47
3.26
Blas= 0.37
t= 0.17
UNSPIKED
9.10
5.27
1.89
4.81
5.27
RSD=
DEV.
-3.83
2.92
-0.92
37.35
Exp Conc= 20.00
CF= 0.98
67
-------
TABLE 6-5 (continued)
m-Xylene-172
SPIKED
25.26
28.15
24.99
24.61
27.02
25.99
26.00
RSD =
DEV.
2.89
-0.38
-1.04
1.47
4.85
Bias= 5.65
t= 4.44
UNSPIKED
0.24
0.39
0.13
0.22
0.42
0.75
0.36
RSD =
DEV.
0.15
0.10
0.34
0.58
43.31
Exp Conc= 20.00
CF= 0.78
p-Xylene-1 73
SPIKED
11.80
16.47
19.23
20.54
17.01
RSD =
DEV.
4.67
1.30
5.97
14.25
Blas= -2.72
t= 1.12
UNSPIKED
-0.44
-0.25
-0.24
-0.16
-0.28
RSD=
DEV.
0.19
0.08
0.27
-36.71
Exp Conc= 20.00
CF= 1.16
68
-------
TABLE 6-6. Analytical Details for Compounds
Presented in Tables 6-3 through 6-5.
69
-------
TABLE 6-6 Icon'tl
Hot/Wet Analysis File for
Acetonrtrile
Compound Name
Water
Sulfur dioxide
Carbon dioxide
cetonitrile
Acetonrtrile
Acetonrtrile
Acetonrtrile
Benzene
Benzene
Benzene
Benzene
Methanol
Methanol
Methanol
Methanol
Methanol
Methanol
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
File Name
1 94C1 ana
1 98c1 asf
CO2a
003a4ara.dsf
003a4arb.dsf
003a4arc.dsf
003a4ard.dsf
01 5a4ara.dsf
01 5a4arb.dsf
01 5a4arc.dsf
01 5a4ard.ds<
1 04a4asa.dsf
1 04a4asb.dsf
1 04a4asc.dsf
1 04a4asd.dsf
1 04a4ase.dsf
1 04a4asf .dsf
1 1 2a4ara.dsf
H2a4arb.dsf
1 1 2a4arc.dsf
1 1 2a4ard.dsf
112a4are.dsf
I12a4arf.dst
1 51 a4asa.dst
1 51 a4asb.dsf
I51a4asd.dsf
1 51 a4ase.dsf
I51a4asf.dsf
ASC
1000
25.791
11
4.97
4.97
1.006
1.015
5.052
5.052
1.036
1.016
5.113
5.113
1.016
1.016
0.203
0.206
5.031
5.031
1.014
1.012
0.202
0.203
4.574
4.574
1.013
0.203
0.203
ISC
1 000.00
25.79
11.00
4.94
4.99
1.05
1.04
5.05
5.07
1.01
0.99
5.10
5.13
1.00
1.00
0.20
0.19
5.13
5.17
0.52
0.61
-0.32
-0.42
4.23
4.28
2.72
3.00
3.23
% Difference
0.00
0.00
0.00
0.59
0.29
4.57
2.54
0.01
0.26
2.86
3.10
0.22
0.37
1.96
1.55
2.43
8.63
1.88
2.67
48.69
40.17
258.25
304.30
7.45
6.45
168.26
1 376.27
1 486.51
Analytical Regions (wavenumbers)
Baseline
882.43 884.5
1252.1 1255.25
Analytical Regions
1039.9 1064
07/09/93
70
-------
TABLE 6-6 Icon't)
Hot/Wet Analysis File for
Acrolein
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acrolein
Acrolein
Acrolein
Acrolein
Acrolein
Carbonyl sulfide
Carbonyl sulfide
Chlorobenzene
Chlorobenzene
Chlorobenzene
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
Vinyl chloride
Vinyl chloride
Vinyl chloride
SF6
Nitric oxide
Hydrogen chloride
File Name
I94ciana
I98clasf
CO2a
006b4ana.dsf
006b4anb.dsf
006b4ane.dsf
006b4anf.dsf
006b4anh.dsf
030a4asc.dsf
030a4ase.dsf
037a4arc.dsf
037a4arh.dsf
037a4arj.dsf
I59b4asa.dsf
1 59b4asc.dsf
1 59b4asf.dsf
1 68a4asa.dsf
1 68a4asd.dsf
1 68a4ase.dsf
SF6_002
NO2zap
HCI 2e
ASC
1000
25.41 3
11
3.011
3.017
0.604
0.603
0.121
1.012
0.203
4.828
1.02
0.203
3.033
0.602
0.121
5.092
1 .023
0.203
0.059
10.1
100
ISC
1 000.00
25.41
11.00
3.07
2.93
0.68
0.67
0.14
0.84
1.05
4.62
2.14
-0.43
3.04
0.57
0.08
5.09
1.04
0.22
0.06
10.10
1 00.00
% Difference
0.00
0.00
0.00
1.77
2.73
12.76
10.62
13.19
16.87
418.26
4.36
109.85
309.38
0.25
4.85
36.47
0.07
1.48
7.88
0.00
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
I nwpr ' '"">«»
2548.76 2549.79
836.84 838.41
3159.74
1 977.81
3161.27
1 978.99
Analytical Regions
2636.11 2875.59
913.7 1000.35
07/09/93
71
-------
TABLE 6-6 (con'tl
Hot/Wet Analysis File for
Acrylonitrile
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Allyl Chloride
Ally! Chloride
Allyl Chloride
Allyl Chloride
Ethyl benzene
Ethyl benzene
Ethyl benzene
Ethyl benzene
Ethyl benzene
o-Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
1 o-Xylenes
o-Xylenes
SF6
File Name
1 94ct ana
1 98C1 asf
C02a
009a4ara.dsf
009a4arb.dsf
009a4arc.dsf
009a4ard.dsf
009a4are.dsf
009a4arf.dsf
01 Ob4asa.dsf
01 Ob4asb.dsf
01 Ob4asc.dsf
01 Ob4asd.dsf
077a4ara.dsf
077a4arb.dsf
077a4arc.dsf
077a4ard.dsf
077a4arf.dsf
1 71 a4asa.dsf
I7la4asb.dsf
I71a4asc.dsf
!7la4asd.dsf
1 71 a4ase.dsf
171a4asf.dsf
SF6 002
ASC
1000
25.791
11
4.991
4.991
1.006
1.014
0.203
0.2
3.093
3.093
0.601
0.602
5.113
5.113
1.014
1.017
0.203
5.072
5.072
1.015
1.016
0.203
0.203
0.057
ISC -
1000.00
25.79
11.00
4.97
5.01
1.02
1.01
0.21
0.20
3.10
3.10
0.58
0.57
4.98
5.27
0.99
0.96
0.06
4.99
5.09
1.03
1.18
0.59
0.60
0.06
% Difference
0.00
0.00
0.00
0.51
0.45
1.28
0.01
2.76
0.74
0.15
0.21
3.92
5.38
2.60
3.05
2.80
5.88
71.05
1.64
0.31
1.60
16.08
188.67
196.32
0.00
Analytical Regions (wavenumbers)
Baseline
872.85 874.63
1 Ini-tfir
21 40.9 21 42.48
Analytical Regions
922.19 997.82
07/09/93
72
-------
TABLE 6-6 Icon't)
Hot/Wet Analysis File for
Allyl Chloride
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Allyl Chloride
Allyl Chloride
Allyl Chloride
Allyl Chloride
Ethyl benzene
Ethyl benzene
Ethyl benzene
Ethyl benzene
Ethyl benzene
o-Xylenes
Xylenes
Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
SF6
File Name
1 94d ana
I98clasf
C02a
009a4ara.dsf
009a4arb.dsf
009a4arc.dsf
009a4ard.dsf
009a4are.dsf
009a4art.dsf
01 Ob4asa.dsf
010b4asb.dsf
01 Ob4asc.dsf
010b4asd.dsf
077a4ara.dsf
077a4arb.dsf
077a4arc.dsf
077a4ard.dsf
077a4arf.dsf
I7la4asa.dsf
I7la4asb.dsf
1 71 a4asc.dsf
171a4asd.dsf
1 71 a4ase.dsf
1 71 a4asf.dsf
SF6 002
ASC
1000
25.791
11
4.991
4.991
1.006
1.014
0.203
0.2
3.093
3.093
0.601
0.602
5.113
5.113
1.014
1.017
0.203
5.072
5.072
1.015
1.016
0.203
0.203
0.057
ISC
1 000.00
25.79
11.00
4.96
5.01
1.03
1.02
0.22
0.21
3.11
3.10
0.56
0.55
5.17
5.24
0.46
0.80
-0.62
5.24
5.27
0.69
0.16
-1.30
-1.36
0.06
% Difference
0.00
0.00
0.00
0.56
0.42
2.44
0.55
8.00
5.34
0.37
0.22
6.47
9.14
1.11
2.50
54.35
21.00
406.61
3.27
3.84
32.27
84.36
739.82
769.59
0.00
Analytical Regions (wavenumbers)
Baseline
873.86 875.12
873.86 875.12
2143.24
2143.24
2143.78
21 43.78
Analytical Regions
893.51 1002.22
1241.86 1301.73
07/09/93
73
-------
TABLE 6-6 Icon t)
Hot/Wet Analysis File for
Benzene
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acetonitrile
Acetonitrile
Acetonitrile
Acetonitrile
Benzene
Benzene
Benzene
Benzene
lethanol
Methanol
Methanol
Methanol
Methanol
Methanol
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Hydrogen chloride
File Name
1 94cl ana
1 98c1 asf
C02a
003a4ara.dsf
003a4arb.dsf
003a4arc.dsf
003a4ard.dsf
01 5a4ara.dsf
01 5a4arb.dsf
01 5a4arc.dsf
01 5a4ard.dsf
1 04a4asa.dsf
1 04a4asb.dsf
1 04a4asc.dsf
1 04a4asd.dsf
1 04a4ase.dsf
1 04a4asf.dst
1 1 2a4ara.dsf
112a4arb.dsf
1 1 2a4arc.dsf
I12a4ard.dsf
1 1 2a4are.dsf
Il2a4arf.dsf
151a4asa.dsf
1 51 a4asb.dsf
1 51 a4asd.dsf
1 51 a4ase.dsf
151a4asf.dsf
HCI 2e
ASC
1000
25.791
11
4.97
4.97
1.006
1.015
5.052
5.052
1.036
1.016
5.113
5.113
1.016
1.016
0.203
0.206
5.031
5.031
1.014
1.012
0.202
0.203
4.574
4.574
1.013
0.203
0.203
100
ISC
1 000.03
25.79
11.00
4.90
4.96
1.25
1.14
5.05
5.07
1.01
0.97
5.10
5.14
0.98
0.98
0.20
0.18
4.95
5.11
1.16
1.02
-0.16
-0.33
4.57
3.97
2.90
2.54
2.12
100.00
% Difference
0.00
0.00
0.00
1.36
0.15
23.99
12.63
0.09
0.39
2.81
4.30
0.20
0.50
3.43
3.40
4.01
12.09
1.54
1.62
14.77
1.08
1 80.05
261.06
0.04
13.23
186.29
1149.65
944.97
0.00
Analytical Regions (wavenumbers)
Baseline
2759 2760.92
873.39 875.8
3156.59
1 978.93
3157.38
1 979.78
Analytical Regions
3020.15 3124.44
1010.22 1063.18
07/09/93
74
-------
TABLE 6-6 Icon't)
Hot/Wet Analysis File for
Bromoform
[Compound Name
Water
"ulfur dioxide
"arbon dioxide
Bromoform
Bromoform
Bromoform
Bromoform
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
" arbon disulfide
irbon disulfide
Carbon disulfide
Carbon disulfide
Carbon disulfide
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2.2.4-Trimethylpentane
2,2,4-Tri-" 'oentane
2,2,4-"r pentane
?" -uiylpentane
jnes
xylenes
n-Xylenes
•n-Xylenes
IJm-Xylenes
File Name
1 94C1 ana
I98dasf
CO2a
022b4asc.dsf
022b4asd.dsf
022b4ase.dsf
022b4asf.dsf
029a4asc.dsf
029a4asd.dsf
029a4ase.dsf
029a4asf.dsf
029a4asg.dsf
029a4ash.dsf
028a4asa.dsf
028a4asb.dsf
028a4asc.dsf
028a4asd.dsf
028a4asg.dsf
1 65a4asa.dsf
I65a4asb.dsf
1 65a4asc.dsf
1 65a4asd.dsf
1 65a4ase.dsf
165a4asf.dsf
1 72a4are.dsf
172a4art.dsf
172a4arg.dsf
172a4arh.dsf
I72a4ari.dsf
ASC
1000
25.791
11
0.605
0.604
0.121
0.121
1.015
1.016
0.203
0.203
0.051
0.052
5.092
5.092
1.018
1.014
0.204
5.102
5.102
1.015
1.015
0.202
0.203
0.203
0.201
4.93
4.93
1.015
ISC
1000.00
25.79
11.00
0.61
0.61
0.10
0.11
0.82
0.91
1.02
0.85
0.21
0.11
5.85
3.66
2.67
2.70
0.58
5.11
5.24
0.75
0.72
-0.17
-0.24
-1.29
0.16
4.25
5.14
3.60
% Difference
0.00
0.00
0.00
0.21
0.83
17.31
8.91
19.71
10.20
401.51
318.59
318.46
1 07.48
14.84
28.19
161.99
1 65.65
1 84.86
0.14
2.68
26.26
28.81
183.28
218.53
734.58
22.49
13.70
4.21
254.17
Analytical Regions (wavenumbers)
Baseline
1 «"»**f*r „ . ,
1003.7 1005.28
1977.61 1979.78
Analytical Regions
1134.18 1159.3$
07/09/9;
75
-------
TABLE 6-6 (con'tl
Hot/Wet Analysis File for
1,3-Butadiene
Compound Name
Water
Sulfur dioxide
Carbon dioxide
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Styrene
Styrene
Styrene
Styrene
Styrene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
SF6
Nitric oxide
Hydrogen chloride
File Name
1 94d ana
1 98cl asf
CO2a
023a4asa.dsf
023a4asb.dsf
023a4asc.dsf
023a4asd.dsf
023a4ase.dsf
023a4asf.dsf
1 42b4asa.dsf
1 42b4asb.dsf
1 42b4asc.dsf
1 42b4asd.dsf
1 42b4ase.dsf
1 42b4asf.dsf
1 47a4asb.dsf
1 47a4asc.dsf
147a4asd.dsf
1 47a4ase.dsf
1 47a4asf.dsf
1 60a4asa.dsf
1 60a4asb.dsf
1 60a4asc.dsf
I60a4asd.dsf
1 60a4ase.dsf
1 60a4asf.dsf
SF6_002
NO2zap
HCI 2e
ASC
1000
25.791
11
5.092
5.092
1.006
1.022
0.205
0.203
3.045
3.045
0.598
0.601
0.121
0.121
5.082
1.015
1.014
0.202
0.203
5.102
5.102
1.014
1.016
0.203
0.203
0.057
10.1
100
ISC
999.97
25.80
11.00
5.08
5.08
1.08
1.08
0.22
0.21
3.04
3.05
0.59
0.60
0.13
0.13
5.08
1.10
0.98
0.17
0.17
5.08
5.16
0.90
0.98
0.20
0.20
0.06
10.10
1 00.00
% Difference
0.00
0.02
0.01
0.19
0.31
7.03
5.21
6.62
5.27
0.11
0.21
2.10
0.80
5.67
4.78
0.13
7.99
3.29
14.98
18.73
0.53
1.12
11.03
3.46
2.67
4.33
0.00
0.00 I
0.00 |
Analytical Regions (wavenumbers)
Baseline
-Lower—
869.06
869.75
Upper—
1234,92
1236
Analytical Regions
866.72 1052.64
07/09/93
76
-------
TABLE 6-6 Icon'tt
Hot/Wet Analysis File for
Carbonyl sulfide
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acrolein
Acrolein
Acrolein
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Chlorobenzene
Chlorobenzene
Chlorobenzene
1,1,2-Trichloroethane
1,1,2-Trichloroethane
1,1,2-Trichloroethane
Vinyl chloride
Vinyl chloride
Vinyl chloride
Carbon monoxide
Acrolein
Chlorobenzene
1,1,2-Trichloroethane
Nitric oxide
Hydrogen chloride
File Name
1 94d ana
1 98c1 asf
CO2a
006b4ana.dsf
006b4ane.dsf
006b4anh.dsf
030a4asc.dsf
030a4asd.dsf
030a4ase.dsf
030a4asf.dsf
037a4arc.dsf
037a4arf.dsf
037a4arj.dsf
1 59b4asa.dsf
1 59b4asc.dsf
1 59b4ase.dsf
1 68a4asa.dsf
1 68a4asd.dsf
1 68a4ase.dsf
197asm
006b4anb.dsf
037a4ard.dsf
159b4asb.dsf
NO2zap
HCI 2e
ASC
1000
25.791
11
3.011
0.604
0.121
1.012
1.017
0.203
0.203
4.828
1.303
0.203
3.033
0.602
0.12
5.092
. 1 .023
0.203
100
3.017
4.828
3.033
10.1
100
ISC
1000.62
25.79
11.00
2.76
1.48
0.14
1.01
1.01
0.23
0.22
5.23
1.03
0.38
2.97
1.48
0.13
5.10
1.00
0.19
100.01
3.10
4.50
2.92
10.10
1 00.05
% Difference
0.06
0.00
0.00
8.52
1 45.90
17.00
0.12
0.90
11.75
7.67
8.21
21.34
88.61
1.96
1 44.82
11.55
0.11
2.55
4.57
0.01
2.64
6.81
3.74
0.00
0.05
Analytical Regions (wavenumbers)
Baseline
1977.56 1979.68
1977.56 1979.68
1977.56 1979.68
1 977.56 0
1977.56 0
2548.66 2549.6
2132.95
2132.95
2132.95
1979.68
1979.68
3160.09
2133.99
2133.99
2133.99
0
0
3161.12
Analytical Regions
2029.21 2075.69
2078.84 2083.76
2883.97 2939.1 1
826.08 884.38
1023.81 1078.96
2876.97 2940
07/09/93
77
-------
TABLE 6-6 Icon'tl
Hot/Wet Analysis File for
Chlorobenzene
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Carbon monoxide
SF6
Acrolein
Acrolein
Acrolein
Acrolein
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
1,1,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1,1,2-Trichloroethane
1 ,1 ,2-Trichloroethane
Nitric oxide
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Hydrogen chloride
File Name
1 94cl ana
1 98C1 asf
C02a
197asm
SF6_002
006b4anb.dsf
006b4ane.dsf
006b4anf.dsf
006b4anh.dsf
030a4asc.dsf
030a4asd.dsf
030a4ase.dsf
030a4asf.dsf
037a4arc.dsf
037a4ard.dsf
037a4arf.dsf
037a4arh.dsf
037a4arj.dsf
1 59b4asa.dsf
1 59b4asb.dsf
1 59b4asc.dsf
1 59b4asd.dsf
1 59b4ase.dsf
NO2zap
1 68a4asa.dsf
1 68a4asb.dsf
1 68a4asc.dsf
1 68a4asd.dsf
1 68a4ase.dsf
HCI 2e
ASC
1000
25.791
11
376.1
0.059
3.017
0.604
0.603
0.121
1.012
1.017
0.203
0.203
4.828
4.828
1.033
1.02
0.203
3.033
3.033
0.602
0.604
0.12
10.1
5.092
5.092
1.013
1.023
0.203
100
ISC
1000.00
25.79
11.00
376.10
0.06
2.98
0.78
0.55
0.43
0.96
0.95
0.51
0.53
5.10
4.58
1.01
0.94
0.21
2.69
3.06
1.25
1.36
1.00
10.10
7.38
1.44
7.40
1.44
0.29
100.00
% Difference
0.00
0.00
0.00
0.00
0.00
1.26
29.50
8.22
258.31
5.26
7.07
149.17
158.40
5.59
5.12
2.38
8.29
2.17
11.26
0.95
106.87
124.98
733.26
0.00
44.97
71.66
630.64
40.65
41.88
0.00
Analytical Regions (wavenumbers)
Baseline
833.14 833.98
2629.56 2634.09
1977.71
3144.53
1 979.58
31 46.79
Analytical Regions
1012.42 1036.64
3029.76 3113.07
07/09/93
78
-------
Hot/Wet Analysis File for
Ethyl chloride
TABLE 6-6 Icon't)
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Methyl bromide
Methyl bromide
Methyl bromide
Methyl bromide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Nitric oxide
SF6
Hydrogen chloride
File Name
1 94C1 ana
1 98c1 asf
CO2a
079b4asa.dsf
079b4asb.dsf
079b4asc.ds1
079b4asd.dsf
079b4ase.dsf
079b4asf.dsf
106a4asb.dsf
1 06a4asc.dsf
106a4asd.dsf
106a4ase.dsf
1 1 1 a4asa.dsf
I11a4asb.dsf
1 1 1 a4asc.dsf
1 1 1 a4asd.dsf
1 1 4b4asa.dsf
H4b4asb.dsf
114b4asc.dsf
!14b4asd.dsf
1 1 4b4ase.dsf
114b4asf.dsf
NO2zap
SF6_002
HCI 2e
ASC
1000
25.791
11
2.997
2.997
0.604
0.602
0.121
0.121
4.919
4.919
1.017
1.018
4.95
4.95
1.02
1.016
3.051
3.051
0.604
0.603
0.123
0.121
10.1
0.057
100
ISC
1000.00
25.79
11.00
3.09
3.03
0.44
0.18
0.12
0.12
4.94
4.95
0.89
0.90
4.96
4.95
1.00
0.97
3.10
3.06
0.48
0.48
-0.01
0.07
10.10
0.06
100.00
% Difference
0.00
0.00
0.00
2.94
1.01
27.55
70.42
2.98
1.09
0.36
0.68
12.80
11.27
0.26
0.04
2.21
5.04
1.47
0.37
20.03
20.90
110.18
40.47
0.00
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
I nwpr
2545.12
1006.16
874.31
2586.87
1 006.66
875.59
4310.76
2159.49
1006.16
431 1 .84
2159.79
1006.66
Analytical Regions
2916.56 3041.03
1263.97 1312.02
943.43 1000.16
07/09/93
79
-------
TABLE 6-6 (con'tl
Hot/Wet Analysis File for
Ethylene dibromide
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
File Name
1 94C1 ana
1 98c1 asf
CO2a
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 08a4asa.dsf
108a4asb.dsf
1 08a4asc.dsf
108a4asd.dsf
1 08a4ase.dsf
1 08a4asf .dsf
1 24b4ana.dsf
124b4anb.dsf
1 24b4anc.dsf
124b4and.dsf
124b4ane.dsf
124b4anf.dsf
ASC
1000
25.791
11
5.031
5.031
1.016
1.017
0.203
0.202
5.123
5.123
1.01
1.012
0.203
0.203
3.013
3.016
0.604
0.603
0.121
0.124
ISC
1000.00
25.79
11.00
4.86
5.18
1.14
1.01
0.21
0.20
5.09
5.17
1.08
0.91
0.17
0.16
2.99
2.61
0.99
2.21
0.51
0.44
% Difference
0.00
0.00
0.00
3.38
2.92
12.07
0.75
1.39
2.42
0.65
0.85
6.46
9.96
16.84
22.56
0.65
13.50
63.44
266.54
326.48
255.53
Analytical Regions (wavenumbers)
Baseline
........I n\A/Pf-— ....... - ' lr***r*r
868.55 869.92
868.55 869.92
2536.6
2536.6
2541 .32
2541 .32
Analytical Regions
1178.74 1196.46
1241.71 1266.92
07/09/93
80
-------
Hot/Wet Analysis File for
Hexane
TABLE 6-6 (con'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Nitric oxide
Hexane
Hexane
Hexane
Hexane
Hexane
Hexane
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Propylene oxide
^ropylene oxide
ropylene oxide
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
Hydrogen chloride
File Name
1 94C1 ana
198c1asf
CO2a
NO2zap
095a4asa.dsf
095a4asb.dsf
095a4asc.dsf
095a4asd.dsf
095a4ase.dsf
095a4asf.dsf
1 1 7a4asa.dsf
1 1 7a4asb.dsf
1 1 7a4asc.dsf
I17a4asd.dsf
1 1 7a4ase.dsf
117a4asf.dsf
1 43b4ana.dsf
143b4anb.dsf
1 43b4and.ds1
1 66a4asa.dsf
1 66a4asb.dsf
166a4asc.dsf
I66a4asd.dsf
1 66a4ase.dsf
166a4asf.dsf
1 73a4asa.ds1
1 73a4asb.dsf
1 73a4asc.dsf
173a4asd.dsf
HCi 2e
ASC
1000
25.791
11
100
5.092
5.092
1.021
1.02
0.206
0.203
5.082
5.082
1.015
0.972
0.202
0.201
15.065
15.086
3.018
5.082
5.082
1.013
1.017
0.203
0.203
5.102
5.102
1.007
1.018
100
ISC
1000.00
25.79
11.00
100.00
5.08
5.11
0.96
1.04
0.20
0.20
5.06
5.10
1.07
0.99
0.12
0.24
14.96
15.09
3.55
5.02
5.05
1.24
1.20
0.50
0.46
4.99
5.25
0.90
0.96
100.00
% Difference
0.00
0.00
0.00
0.00
0.18
0.35
6.47
2.37
4.15
1.12
0.51
0.28
5.02
1.52
39.72
20.27
0.70
0.01
17.55
1.30
0.74
21.97
18.27
1 44.50
127.14
2.26
2.91
10.41
6.09
0.00
Analytical Regions
(wavenumbers)
Baseline
1 Jnnfr
2556.39 2557.97
3159.84 3160.97
Analytical Regions
2835.27 3005.4:
07/09/9:
81
-------
Hot/Wet Analysis File for
Methyl chloride
TABLE 6-6 Icon'tl
Compound Name
Water
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Vinyl bromide
yinyl bromide
Vinyl bromide
Vinyl bromide
Vinyl bromide
Vinyl bromide
Acetone
Acetone
Acetone
Acetone
Acetone
Sulfur dioxide
Carbon dioxide
SF6
Nitric oxide
Hydrogen chloride
File Name
1 94C1 ana
1 07a4asa.dsf
1 07a4asb.dsf
1 07a4asc.dsf
1 07a4asd.dsf
1 07a4ase.dsf
1 07a4asf.dsf
1 67a4asa.dsf
1 67a4asb.dsf
1 67a4asc.dsf
1 67a4asd.dsf
1 67a4ase.dsf
1 67a4asf.dsf
1 92a4arb.dsf
1 92a4arc.dsf
1 92a4ard.dsf
1 92a4are.dsf
1 92a4arf.dsf
1 98c1 asf
CO2a
SF6_002
NO2zap
HCI 2e
ASC
1000
5.092
5.092
1.014
1.018
0.204
0.203
5.082
5.082
1.014
1.017
0.203
0.203
5.021
1.014
1.015
0.203
0.203
25.791
11
0.057
100
100
ISC
1 000.00
5.08
5.09
1.06
1.03
0.23
0.23
5.07
5.07
1.09
1.08
0.25
0.22
5.07
0.92
0.93
0.10
0.08
25.79
11.00
0.06
100.00
100.00
% Difference
0.00
0.28
0.04
3.97
1.06
13.16
11.46
0.32
0.26
6.94
6.36
22.56
6.91
0.89
9.19
8.16
49.43
59.44
0.00
0.00
0.00
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
i '•"ft/nr ' ••»»»«*
2835.42 2836.75
846.88 847.77
4233.1 1
1978.64
4238.62
1 979.53
Analytical Regions
2928.38 3099.97
976.37 1081.94
07/09/93
82
-------
Hot/Wet Analysis File for
Methyl ethyl ketone
TABLE 6-6 (con't)
Comoound Name
Water
Sulfur dioxide
Carbon dioxide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Toluene
Toluene
Toluene
Toluene
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Nitric oxide
Hydrogen chloride
File Name
1 94ct ana
1 98C1 asf
CO2a
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 09a4ara.dsf
1 09a4arb.dsf
1 09a4arc.dsf
1 09a4ard.dsf
1 09a4are.dsf
1 09a4arf.dsf
153a4ara.dsf
1 53a4arb.dsf
1 53a4arc.dsf
1 53a4ard.dsf
1 69b4asa.dsf
169b4asb.dsf
1 69b4asc.dsf
169b4ase.dsf
169b4asf.dsf
NO2zap
HCI 2e
ASC
1000
25.791
11
5.031
5.031
1.016
1.017
0.203
0.202
5.062
5.062
1.011
1.017
0.203
0.202
5.072
5.072
1.013
1 .009
3.039
3.039
0.604
0.121
0.121
10.1
100
ISC
1000.00
25.79
11.00
4.86
5.18
1.13
1.00
0.20
0.19
5.03
5.12
0.92
0.99
0.22
0.19
4.97
5.14
1.09
1.09
3.07
3.08
0.24
0.10
0.07
10.10
100.00
% Difference
0.00
0.00
0.00
3.39
2.99
11.37
1.36
0.54
4.90
0.67
1.15
9.28
2.93
8.44
4.58
2.05
1.40
7.93
8.30
1.07
1.40
59.88
20.72
43.92
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
2831 .7 2833.37
983.93 991 .42
4292.56
1277.98
4293.74
1278.57
Analytical Regions
2872.76 3040.0;
1140.7 1222.K
07/09/9;
83
-------
Hot/Wet Analysis File for
Methyl rrethacrylate
TABLE 6-6 leon'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Methyl bromide
Methyl bromide
Methyl bromide
Methyl bromide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Nitric oxide
SF6
Hydrogen chloride
File Name
1 94d ana
198Cl3St
C02a
079b4asa.dsf
079b4asb.dsf
079b4asc.dsf
079b4asd.dsf
079b4ase.dsf
079b4asf.dst
106a4asb.dsf
I06a4asc.dsf
1 06a4asd.dsf
106a4ase.dsf
1 1 1 a4asa.dsf
1 1 1 a4asb.dsf
1 1 1 a4asc.dsf
H1a4asd.dsf
114b4asa.dsf
114b4asb.dsf
I14b4asc.dsf
114b4asd.dsf
114b4ase.dsf
114b4asf.dsf
NO2zap
SF6_002
HCI 2e
ASC
1000
25.791
11
2.997
2.997
0.604
0.602
0.121
0.121
4.919
4.919
1.017
1.018
4.95
4.95
1.02
1.016
3.051
3.051
0.604
0.603
0.123
0.121
10.1
0.057
100
ISC
1000.00
25.79
11.00
3.00
3.01
0.57
0.56
0.10
0.11
4.92
4.94
0.96
0.97
4.96
4.95
0.98
0.99
3.04
3.06
0.61
0.60
0.11
0.11
10.10
0.06
100.00
% Difference
0.00
0.00
0.00
0.04
0.55
5.25
6.34
15.25
8.00
0.06
0.38
5.34
4.93
0.26
0.02
3.51
2.98
0.41
0.42
0.83
0.03
12.05
11.85
0.00
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
879.8 881 .77
2769.12 2770.84
874.18 875.22
1249.71
3156.71
2028.35
1250.35
3158.49
2030.51
Analytical Regions
1137.5 1232.04
2918.95 3019
915.64 962.12
07/09/93
84
-------
Hot/Wet Analysis File for
2-Nitropropane
TABLE 6-6 (con'tl
(Compound Name
(Water
Sulfur dioxide
Carbon dioxide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
:-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
Nitric oxide
vdroaen chloride
File Name
1 94ct ana
1 98c1 asf
CO2a
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 08a4asa.dsf
108a4asb.dsf
1 08a4asc.dsf
I08a4asd.dsf
1 08a4ase.dsf
1 08a4asf.dsf
124b4ana.dsf
!24b4anb.dsf
124b4anc.dsf
124b4and.dsf
124b4ane.dsf
124b4anf.dsf
NO2zap
HCI 2e
ASC
1000
25.791
11
5.031
5.031
1.016
1.017
0.203
0.202
5.123
5.123
1.01
1.012
0.203
0.203
3.013
3.016
0.604
0.603
0.121
0.124
10.1
100
ISC
1000.00
25.79
11.00
4.83
5.18
1.22
1.05
0.25
0.25
5.09
5.18
0.98
0.93
0.23
0.19
2.97
3.05
0.59
0.63
0.14
0.11
10.10
100.00
% Difference
0.00
0.00
0.00
3.93
2.90
19.64
3.51
22.46
25.42
0.63
1.07
3.06
8.62
11.75
5.49
1.34
1.25
1.88
4.06
16.40
10.58
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
I nwpr
2816.9 2818.48
879.92 881 .49
,. I Innpr
3070.97
0
3071 .95
0
Analytical Regions
2875.79 3039.T
831 .47 868.
07/09/9
85
-------
Hot/Wet Analysis File for
Propylene dichloride
TABLE 6-6 Icon'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Styrene
Styrene
Styrene
Styrene
Styrene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
SF6
Nitric oxide
Hydrogen chloride
File Name
1 94C1 ana
1 98c1 asf
CO2a
023a4asa.dsf
023a4asb.dsf
023a4asc.dsf
023a4asd.dsf
023a4ase.dsf
023a4asf.dsf
1 42b4asa.dsf
1 42b4asb.dsf
1 42b4asc.dsf
1 42b4asd.dsf
1 42b4ase.dsf
1 42b4asf.dsf
1 47a4asb.dsf
1 47a4asc.dsf
1 47a4asd.dsf
1 47a4ase.dsf
147a4asf.dsf
1 60a4asa.dsf
1 60a4asb.dsf
1 60a4asc.dsf
1 60a4asd.dsf
1 60a4ase.dsf
160a4asf.dsf
SF6_002
NO2zap
HCI 2e
ASC
1000
25.791
11
5.092
5.092
1.006
1.023
0.205
0.203
3.045
3.045
0.598
0.601
0.121
0.121
5.082
1.015
1.014
0.202
0.203
5.102
5.102
1.014
1.016
0.203
0.203
0.057
10.1
100
ISC
1000.00
25.79
11.00
5.12
5.07
1.01
1.01
0.20
0.19
3.05
3.06
0.57
0.57
0.09
0.07
5.07
1.11
1.00
0.18
0.18
5.08
5.20
0.68
0.98
0.13
0.25
0.06
10.10
100.00
% Difference
0.00
0.00
0.00
0.50
0.42
0.05
1.45
2.06
6.50
0.16
0.35
5.18
5.43
21.86
39.48
0.25
8.90
1.67
12.65
10.96
0.43
1.90
32.90
4.02
33.94
22.75
0.00
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
I nwf*r..-« _--..... ' !»•**•* «r
867.02 869.51
2836.35 2837.29
1277.56
3159.89
1278.74
3160.92
Analytical Regions
996.86 1038
2927.59 3031.58
07/09/93
86
-------
Hot/Wet Analysis File for
1,1,2-Trichloroethane
TABLE 6-6 (con tl
[Compound Name
Water
Sulfur dioxide
Carbon dioxide
Carbon monoxide
SF6
Acrolein
Acrolein
Acrolein
Acrolein
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Nitric oxide
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
1 ,1 ,2-Trichlcroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
•" ,1 ,2-Trichloroethane
Inyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Hydrogen chio'id?
File Name
1 94C1 ana
1 98C1 asf
CO2a
1 97asm
SF6_002
006b4anb.dsf
006b4ane.dsf
006b4anf.dsf
006b4anh.dsf
030a4asc.dsf
030a4asd.dsf
030a4ase.dsf
030a4as1.dsf
NO2zap
037a4ard.dsf
037a4arf.dsf
037a4arh.dsf
037a4arj.dsf
1 59b4asa.dsf
1 59b4asb.dsf
1 59b4asc.dsf
159b4asd.dsf
I59b4ase.dsf
159b4asf.dsf
1 68a4asa.dsf
168a4asb.dsf
1 68a4asc.dsf
1 68a4asd.dsf
1 68a4ase.dsf
HCI 2e
ASC
1000
25.791
11
376.1
0.059
3.017
0.604
0.603
0.121
1.012
1.017
0.203
0.203
10.1
4.828
1.033
1.02
0.203
3.033
3.033
0.602
0.604
0.12
0.121
5.092
5.092'
1.013
1.023
0.203
20.1
ISC
1000.00
25.79
11.00
376.10
0.06
2.98
0.70
0.70
0.11
0.92
0.96
0.61
0.59
10.10
4.19
2.65
2.16
1.35
3.03
3.04
0.59
0.59
0.11
0.11
7.36
1.47
7.35
1.47
0.28
20.10
% Difference
0.00
0.00
0.00
0.00
0.00
1.22
15.34
15.63
9.09
9.52
6.05
199.31
1 88.27
0.00
13.16
156.51
1 1 1 .99
563.02
0.19
0.34
1.59
1.55
7.28
8.63
44.58
71.16
625.61
43.27
37.59
0.00
Analytical Regions (wavenumbers)
Baseline
1 r\\f./f*r 1 !»»••»«»
832.5 834
832.5 834
1252
1252
1253.4
1253.4
Analytical Regions
909.41 960.62
1181.99 1311.9:
07/09/9;
87
-------
Hot/Wet Analysis File for
Trichloroethylene
TABLE 6-6 Icon'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Styrene
Styrene
Styrene
Styrene
Styrene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
SF6
File Name
1 94cl ana
1 98ct asf
CO2a
023a4asa.dsf
023a4asb.dsf
023a4asc.dsf
023a4asd.dsf
023a4ase.dsf
023a4asf.dsf
1 42b4asa.dsf
1 42b4asb.dsf
1 42b4asc.dsf
1 42b4asd.dsf
1 42b4ase.dsf
I42b4asf.dsf
1 47a4asb.dsf
1 47a4asc.dsf
1 47a4asd.dsf
1 47a4ase.dsf
1 47a4asf.dsf
1 60a4asa.dsf
1 60a4asb.dsf
1 60a4asc.dsf
1 60a4asd.dsf
1 60a4ase.dsf
1 60a4asf.dsf
SF6 002
ASC
1000
25.791
11
5.092
5.092
1.006
1.023
0.205
0.203
3.045
3.045
0.598
0.601
0.121
0.121
5.082
1.015
1.014
0.202
0.203
5.102
5.102
1.014
1.016
0.203
0.203
0.057
ISC
1000.00
25.79
11.00
5.12
5.07
1.01
1.01
0.22
0.22
3.01
3.09
0.61
0.54
0.16
0.06
5.05
1.15
1.06
0.20
0.22
5.08
5.16
0.91
0.99
0.19
0.19
0.06
% Difference
0.00
0.00
0.00
0.49
0.51
0.79
0.82
6.54
8.43
1.17
1.55
1.23
10.12
28.30
49.64
0.69
12.87
4.12
0.55
8.16
0.54
1.09
10.56
2.87
5.81
6.89
0.00
Analytical Regions (wavenumbers)
Baseline
..._..( nwf*r. ....... ' i •"*•"*«»•
821 .43 823.39
867.02 869.51
867.02
1 978.25
869.51
1979.58
Analytical Regions
826.25 860.91
919.7 959.88
07/09/93
88
-------
Hot/Wet Analysis File for
2.2,4-Trimethvlpentane
TABLE 6-6 Icon'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Bromoform
Bromoform
Bromoform
Bromoform
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon disutfide
Carbon disutfide
Carbon disulfide
Carbon disulfide
Carbon disulfide
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
m-Xylenes
m-Xylenes
m-Xylenes
m-Xylenes
m-Xylenes
Nitric oxide
Hydrogen chloride
File Name
I94ciana
1 98C1 asf
C02a
022b4asc.dsf
022b4asd.dsf
022b4ase.dsf
022b4asf.dsf
029a4asc.dsf
029a4asd.dsf
029a4ase.dsf
029a4asf.dsf
029a4asg.dsf
029a4ash.dsf
028a4asa.dsf
028a4asb.dsf
028a4asc.dsf
028a4asd.dsf
028a4asg.dsf
1 65a4asc.dsf
165a4asd.dsf
I65a4ase.dsf
1 65a4as1.dsf
172a4are.dsf
172a4arf.dsf
172a4arg.dsf
I72a4arh.dsf
1 72a4ari.dsf
NO2zap
HCI 2e
ASC
1000
25.791
11
0.605
0.604
0.121
0.121
1.015
1.016
0.203
0.203
0.051
0.052
5.092
5.092
1.018
1.014
0.204
1.015
1.015
0.202
0.203
0.203
0.201
4.93
4.93
1.015
100
100
ISC
1 000.00
25.79
11.00
0.44
0.68
0.30
0.39
0.81
0.94
0.82
0.86
0.21
0.48
4.70
4.18
4.21
3.86
2.74
1.02
1.01
0.20
0.20
0.21
0.18
4.82
5.04
1.02
1 00.00
100.00
% Difference
0.00
0.00
0.00
27.80
12.86
151.65
224.63
20.55
7.40
302.58
322.57
309.22
818.67
7.71
17.95
312.90
280.93
1 243.04
0.41
0.24
1.78
2.43
3.65
12.97
2.19
2.18
0.52
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
Lower
2694.38 2696.18
3160.3 3161.01
Analytical Regions
2861 .57 3009.23
07/09/93
89
-------
Hot/Wet Analysis File for
Vinyl acetate
TABLE 6-6 {con'tl
Comoound Name
Water
Sulfur dioxide
Carbon dioxide
Hexane
Hexane
Hexane
Methylene chloride
Methylene chloride
Methylene chloride
Propylene oxide
Propylene oxide
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
p-Xylenes
p-Xylenes
p-Xylenes
SF6
File Name
1 94d ana
198c1asf
CO2a
095a4asa.dsf
095a4asc.dsf
095a4ase.dsf
1 1 7a4asa.dsf
1 1 7a4asc.dsf
1 1 7a4ase.dsf
1 43b4ana.dsf
143b4anc.dsf
1 66a4asa.dsf
1 66a4asb.dsf
1 66a4asc.dsf
1 66a4asd.dsf
1 66a4ase.dsf
1 66a4asf.dsf
1 73a4asa.dsf
1 73a4asc.dsf
1 73a4ase.dsf
SF6 002
ASC
1000
25.791
11
5.092
1.021
0.206
5.082
1.015
0.202
15.065
3.006
5.082
5.082
1.013
1.017
0.203
0.203
5.102
1.007
0.204
0.057
ISC
999.17
25.76
11.10
5.00
1.42
0.54
4.56
3.38
1.74
14.82
4.22
5.06
5.09
1.04
1.05
0.19
0.23
5.01
1.57
-0.20
0.06
% Difference
0.08
0.14
0.94
1.75
38.82
163.35
10.28
232.55
758.71
1.61
40.37
0.41
0.14
2.86
2.98
7.80
13.08
1.85
56.04
196.25
0.00
Analytical Regions (wavenumbers)
Baseline
1978.68 0
1978.68 0
..,..,_ WJJJJV,!— —
1979.58
1979.58
0
0
Analytical Regions
823.23 906.69
919.53 1046.33
07/09/93
90
-------
Hot/Wet Analysis File for
Vinyl bromide
TABLE 6-6 (can't)
Compound Name
Water
Sulfur dioxide
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Vinyl bromide
Vinyl bromide
Vinyl bromide
Vinyl bromide
x 'inyl bromide
Vinyl bromide
Acetone
Acetone
Acetone
Acetone
Acetone
Carbon dioxide
SF6
File Name
1 94C1 ana
198clasf
1 07a4asa.dsf
1 07a4asb.dsf
1 07a4asc.dsf
1 07a4asd.dsf
1 07a4ase.dsf
1 07a4asf.dsf
I67a4asa.dsf
I67a4asb.dsf
167a4asc.dsf
167a4asd.dsf
1 67a4ase.dsf
1 67a4ast.dsf
1 92a4arb.dsf
1 92a4arc.dsf
192a4ard.dsf
1 92a4are.dsf
1 92a4arf.dsf
CO2a
SF6 002
ASC
1000
25.791
5.092
5.092
1.014
1.018
0.204
0.203
5.082
5.082
1.014
1.017
0.203
0.203
5.021
1.014
1.015
0.203
0.203
11
0.057
ISC
1000.00
25.79
5.08
5.11
0.99
1.00
0.21
0.21
5.07
5.08
1.04
1.04
0.21
0.21
5.07
0.90
0.91
0.22
0.18
11.00
0.06
% Difference
0.00
0.00
0.20
0.34
2.03
1.87
2.18
3.58
0.17
0.01
2.08
1.84
1.51
1.65
0.88
10.92
10.40
6.93
11.56
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
1 r\\*tf*r ... 1 lr\r\ar
836.88 838.23
836.88 838.23
836.88 838.23
1971.76
1971.76
1971.76
1974.16
1974.16
1974.16
Analytical Regions
990.35 1025.26
899.81 904.54
939.59 944.72
07/09/93
91
-------
TABLE 6-6 Icon't)
Hot/Wet Analysis
Vinyl
File for
chloride
Compound Name
Water
Sulfur dioxide
Carbon dioxide
SF6
Nitric oxide
Acrolein
Acrolein
Acrolein
Acrolein
Carbonyl sutfide
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Carbon monoxide
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1,1,2-Trichloroethane
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Hydrogen chloride
File Name
1 94c1 ana
198clasf
CO2a
SF6_002
NO2zap
006b4anb.dsf
006b4ane.dsf
006b4anf.dsf
006b4anh.dsf
030a4asc.dsf
030a4asd.dsf
030a4ase.dsf
030a4asf.dsf
1 97asm
037a4ard.dsf
037a4arf.dsf
037a4arh.dsf
037a4arj.dsf
159b4asa.dsf
I59b4asb.dsf
159b4asc.dsf
159b4asd.dsf
1 59b4ase.dsf
168a4asa.dsf
1 68a4asb.dsf
1 68a4asc.dsf
I68a4asd.dst
1 68a4ase.dsf
I68a4ast.dsf
HC! 2e
ASC
1000
25.791
11
0.059
10.1
3.017
0.604
0.603
0.121
1.012
1.017
0.203
0.203
100
4.828
1.033
1.02
0.203
3.033
3.033
0.602
0.604
0.12
5.092
5.092
1.013
1.023
0.203
0.211
10.1
ISC
1000.00
25.79
11.00
0.06
10.10
2.98
0.70
0.70
0.12
1.00
1.00
0.28
0.28
100.00
4.81
1.10
1.01
0.24
3.03
3.04
0.60
0.60
0.12
7.31
1.52
7.31
1.50
0.31
0.31
10.10
% Difference
0.00
0.00
0.00
0.00
0.00
1.28
16.00
16.02
0.40
1.18
1.74
36.08
36.68
0.00
0.28
6.44
0.96
17.29
0.22
0.32
1.21
0.98
3.73
43.59
70.25
621 .31
46.89
53.10
45.05
0.00
Analytical Regions (wavenumbers)
Baseline
831 833
"HH^i '
2535.83 2538.15
Analytical Regions
852.81 1056.06
07/09/93
92
-------
TABLE 6-6 Icon't)
Hot/Wet Analysis File for
Vinylidene chloride
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Toluene
Toluene
Toluene
Toluene
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
File Name
1 94ci ana
198clasf
CO2a
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 09a4ara.dsf
I09a4arb.dsf
1 09a4arc.dsf
109a4ard.dsf
1 09a4are.ds1
1 09a4arf.dsf
1 53a4ara.dsf
153a4arb.dsf
1 53a4arc.dsf
1 53a4ard.dsf
169b4asa.dsf
169b4asb.dsf
1 69b4asc.dsf
169b4ase.dsf
169b4asf.dsf
ASC
1000
25.791
11
5.031
5.031
1.016
1.017
0.203
0.202
5.062
5.062
1.011
1.017
0.203
0.202
5.072
5.072
1.013
1.009
3.039
3.039
0.604
0.121
0.121
ISC
1000.00
25.79
11.00
4.87
5.16
1.11
1.05
0.28
0.24
5.02
5.13
0.88
1.03
0.21
0.27
4.96
5.18
0.98
1.06
3.02
3.05
0.64
0.13
0.13
% Difference
0.00
0.00
0.00
3.12
2.53
9.52
2.83
37.36
18.57
0.90
1.32
13.03
1.24
2.46
30.94
2.24
2.16
3.30
5.36
0.57
0.34
5.59
3.52
3.52
Analytical Regions (wavenumbers)
Baseline
831.81 832.41
1 004.05 1 004.59
1004.05
1251.17
1004.59
1255.11
Analytical Region;
834.13 898.'
1059.44 1113.1
07/09/!
93
-------
Hot/Wet Analysis File for
p-Xylenes
TABLE 6-6 Icon'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Hexane
Hexane
Hexane
Methylene chloride
Methylene chloride
Methylene chloride
Propylene oxide
Propylene oxide
Vinyl acetate
Vinyl acetate
Vinyl acetate
p-Xylenes
p-Xylenes
p-Xylenes
>Xylenes
p-Xylenes
Nitric oxide
Hydrogen chloride
File Name
1 94C1 ana
198c1asf
CO2a
095a4asa.dsf
095a4asc.dsf
095a4ase.dsf
1 1 7a4asa.dsf
1 1 7a4asc.dsf
1 1 7a4ase.dsf
143b4ana.ds1
143b4anc.dsf
1 66a4asa.dsf
1 66a4asc.dsf
1 66a4ase.dsf
1 73a4asa.dsf
1 73a4asb.dsf
1 73a4asc.ds1
1 73a4asd.dsf
1 73a4ase.dsf
NO2zap
HCI 2e
ASC
1000
25.791
11
5.092
1.021
0.206
5.082
1.015
0.202
15.065
3.006
5.082
1.013
0.203
5.102
5.102
1.007
1.018
0.204
10.1
100
ISC
1000.04
25.79
11.00
5.11
0.95
0.20
5.08
1.01
0.18
14.94
3.65
5.09
1.00
0.19
4.98
5.25
0.91
0.96
0.19
10.10
100.07
% Difference
0.00
0.00
0.03
0.30
7.30
5.07
0.02
0.20
10.32
0.85
21.42
0.07
1.41
8.15
2.35
2.95
9.43
5.45
6.84
0.00
0.07
Analytical Regions (wavenumbers)
Baseline
2559.43 2560.94
1978.64 0
1978.64 0
3159.88
1979.58
1979.58
3160.98
0
0
Analytical Regions
2854.43 3083.14
770.61 81 9.06
1082.58 1141.27
07/09/93
94
-------
TABLE 6-6 (con t)
Condenser Analysis File for
Allyl Chloride
[Compound Name
(Water
Sulfur dioxide
Carbon dioxide
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Allyl Chloride
Allyl Chloride
Allyl Chloride
Allyl Chloride
Ethyl benzene
Ethyl benzene
Ethyl benzene
Ethyl benzene
Ethyl benzene
o-Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
SF6
File Name
1 94d anb
1 98C1 asf
CO2a
009a4ara.dsf
009a4arb.dsf
009a4arc.dsf
009a4ard.dsf
009a4are.dsf
009a4arf.dsf
01 Ob4asa.dsf
010b4asb.dsf
01 Ob4asc.dsf
01 Ob4asd.dsf
077a4ara.dsf
077a4arb.dsf
077a4arc.dsf
077a4ard.dsf
077a4arf.dsf
1 71 a4asa.dsf
1 71 a4asb.dsf
1 71 a4asc.dsf
171a4asd.dsf
1 71 a4ase.dsf
I71a4asf.dsf
SF6 002
ASC
1000
25.791
11
4.991
4.991
1.006
1.014
0.203
0.2
3.093
3.093
0.601
0.602
5.113
5.113
1.014
1.017
0.203
5.072
5.072
1.015
1.016
0.203
0.203
0.057
ISC % Difference
1 000.00
25.79
11.00
4.96
5.01
1.03
1.02
0.22
0.21
3.11
3.10
0.56
0.55
5.17
5.24
0.46
0.80
-0.63
5.23
5.26
0.70
0.17
-1.28
-1.35
0.06
0.00
0.00
0.00
0.56
0.42
2.43
0.55
7.99
5.33
0.37
0.21
6.43
9.15
1.11
2.56
54.82
21.66
409.99
3.19
3.79
31.20
82.97
731 .50
761.54
0.00
Analytical Regions (wavenumbers)
Baseline
...... I nwf*r . . .- ••
873.86 875.12
873.86 875.12
21 43.24
2143.24
_
Cl
2143.78
2143.78
Analytical Regions
893.51
1241.86
1002.Z
1 301 .7:
07/09/9C
95
-------
TABLE 6-6 Icon'tl
Condenser Analysis File for
Benzene
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acetonrtrile
Acetonitrile
Acetonitrile
Acetonrtrile
Benzene
Benzene
Benzene
Benzene
Methano!
Methanol
Methanol
Methanol
Methanol
Methanol
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
File Name
1 94d anb
1 98cl asf
CO2a
003a4ara.dsf
003a4arb.dsf
003a4arc.dsf
003a4ard.dsf
01 5a4ara.dsf
01 5a4arb.dsf
01 5a4arc.dsf
015a4ard.dsf
1 04a4asa.dsf
1 04a4asb.dsf
1 04a4asc.dsf
1 04a4asd.dsf
1 04a4ase.dsf
1 04a4asf.dsf
1 1 2a4ara.dsf
112a4arb.dsf
1 1 2a4arc.dsf
1 1 2a4ard.dsf
1 1 2a4are.dsf
112a4arf.dsf
1 51 a4asa.dsf
1 51 a4asb.dsf
151a4asd.dsf
151a4ase.dsf
1 51 a4asf.dsf
ASC
1000
25.791
11
4.97
4.97
1.006
1.015
5.052
5.052
1.036
1.016
5.113
5.113
1.016
1.016
0.203
0.206
5.031
5.031
1.014
1.012
0.202
0.203
4.574
4.574
1.013
0.203
0.203
ISC
1 000.00
25.79
11.00
4.90
4.96
1.25
1.14
5.05
5.07
1.01
0.97
5.10
5.14
0.98
0.98
0.20
0.18
4.95
5.12
1.16
1.02
-0.15
-0.32
4.58
3.96
2.90
2.55
2.12
% Difference
0.00
0.00
0.00
1.36
0.15
24.14
12.58
0.10
0.39
2.80
4.34
0.20
0.50
3.44
3.41
4.06
12.13
1.55
1.68
13.82
0.24
1 74.85
255.35
0.07
13.33
185.66
1154.98
944.92
Analytical Regions (wavenumbers)
Baseline
1 nwpr ' i *»••»*»*
2759 2760.92
873.39 875.8
3156.59
1 978.93
3157.38
1 979.78
Analytical Regions
3020.15 3124.44
1010.22 1063.18
07/09/93
96
-------
TABLE 6-6 (con tl
Condenser Analysis File for
Chlorobenzene
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Carbon monoxide
SF6
Acrolein
Acrolein
Acrolein
Acrolein
Carbonyl sulfide
arbonyl sulfide
Carbonyl sulfide
Carbonyl sulftde
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
1,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,2-Trichloroethane
1,1,2-Trichloroethane
Nitric oxide
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
File Name
1 94c1 anb
1 98cl asf
C02a
1 97asm
SF6_002
006b4anb.dsf
006b4ane.dsf
006b4anf.dsf
006b4anh.dsf
030a4asc.dsf
030a4asd.dsf
030a4ase.dsf
030a4asf.dsf
037a4arc.dst
037a4ard.dsf
037a4art.dsf
037a4arh.dsf
037a4arj.dsf
1 59b4asa.dsf
1 59b4asb.dsf
159b4asc.dsf
1 59b4asd.dsf
159b4ase.dsf
NO2zap
1 68a4asa.dsf
168a4asb.dsf
1 68a4asc.dsf
168a4asd.dsf
1 68a4ase.dsf
ASC
1000
25.791
11
376.1
0.057
3.017
0.604
0.603
0.121
1.012
1.017
0.203
0.203
4.828
4.828
1.033
1.02
0.203
3.033
3.033
0.602
0.604
0.12
10.1
5.092
5.092
1.013
1.023
0.203
ISC
1000.00
25.79
11.00
376.10
0.06
2.98
0.78
0.55
0.43
0.95
0.95
0.51
0.54
5.10
4.58
1.01
0.94
0.21
2.71
3.05
1.24
1.33
0.94
10.10
7.38
1.44
7.41
1.44
0.29
% Difference
0.00
0.00
0.00
0.00
0.00
1.23
29.73
9.25
259.75
6.04
6.51
1 48.35
164.55
5.59
5.11
2.41
8.39
2.58
10.71
0.68
106.13
120.48
681.86
0.00
44.94
71.64
630.73
40.78
43.18
Analytical Regions (wavenumbers)
Baseline
833.14 833.98
2629.56 2634.09
1977.71
3144.53
1979.58
3146.79
Analytical Regions
1012.42 1036.64
3029.76 3113.07
07/09/93
97
-------
TABLE 6-6 Icon t)
Condenser Analysis File for
Ethyl benzene
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Ally! Chloride
Ally) Chloride
Allyl Chloride
Ally! Chloride
Ethyl benzene
Ethyl benzene
Ethyl benzene
.Ethyl benzene
Ethyl benzene
o-Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
Nitric oxide
File Name
1 94ci anb
198c1asf
CO2a
009a4ara.dsf
009a4arb.dsf
009a4arc.dsf
009a4ard.dsf
009a4are.dsf
009a4arf.dsf
010b4asa.dsf
010b4asb.dsf
01 Ob4asc.dsf
010b4asd.ds1
077a4ara.dsf
077a4arb.dsf
077a4arc.dsf
077a4ard.dsf
077a4arf.dsf
1 71 a4asa.dsf
1 71 a4asb.dsf
1 71 a4asc.dsf
1 71 a4asd.dsf
1 71 a4ase.dsf
I7la4asf.dsf
NO2zap
ASC
1000
25.791
11
4.991
4.991
1.006
1.014
0.203
0.2
3.093
3.093
0.601
0.602
5.113
5.113
1.014
1.017
0.203
5.072
5.072
1.015
1.016
0.203
0.203
10.1
ISC
1000.00
25.79
11.00
4.77
4.99
1.66
1.36
0.44
0.52
3.10
3.10
0.58
0.56
4.95
5.25
1.13
1.06
0.24
5.02
5.12
0.99
1.05
0.27
0.28
10.10
% Difference
0.00
0.00
0.00
4.47
0.02
65.21
33.55
118.58
161.63
0.23
0.21
3.96
7.73
3.23
2.60
11.39
3.83
17.65
1.02
0.88
2.29
2.81
33.73
39.03
0.00
Analytical Regions (wavenumbers)
Baseline
1 nwpr ...... ' !•»•»»»•
2760.28 2761.12
•-•wp^ui
3160.11 3161.29
Analytical Regions
2854.28 3122.12
07/09/93
98
-------
TABLE 6-6 Icon't)
Condenser Analysis File for
Ethyl chloride
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Methyl bromide
Methyl bromide
Methyl bromide
Methyl bromide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
1 Methyl methacrylate
Nitric oxide
SF6
File Name
1 94c1 anb
198c1asf
CO2a
079b4asa.dsf
079b4asb.dsf
079b4asc.dsf
079b4asd.dsf
079b4ase.dsf
079b4asf.dsf
1 06a4asb.dsf
I06a4asc.dsf
1 06a4asd.dsf
1 06a4ase.dsf
1 1 1 a4asa.dsf
1 1 1 a4asb.dsf
1 1 1 a4asc.dsf
1 1 1 a4asd.dsf
1 1 4b4asa.dsf
1 1 4b4asb.dsf
1 1 4b4asc.dsf
114b4asd.dsf
1 1 4b4ase.dsf
1 1 4b4asf.dsf
NO2zap
SF6 002
ASC
1000
25.791
11
2.997
2.997
0.604
0.602
0.121
0.121
4.919
4.919
1.017
1.018
4.95
4.95
1.02
1.016
3.051
3.051
0.604
0.603
0.123
0.121
10.1
0.057
ISC
1000.00
25.79
11.00
3.09
3.03
0.43
0.15
0.13
0.13
4.94
4.95
0.89
0.91
4.96
4.95
1.00
0.97
3.09
3.06
0.49
0.48
-0.01
0.07
10.10
0.06
% Difference
0.00
0.00
0.00
3.13
1.04
28.66
75.07
8.21
5.65
0.34
0.67
12.57
11.12
0.25
0.06
2.10
5.09
1.38
0.37
18.89
19.84
1 04.80
39.55
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
1 m>>p>r 1 IrM-inr
2545.12 2586.87
1006.16 1006.66
874.31 875.59
431 0.76
21 59.49
1006.16
431 1 .84
2159.79
1 006.66
Analytical Regions
2916.56 3041.03
1263.97 1312.02
943.43 1000.16
07/09/93
99
-------
TABLE 6-6 Icon'tl
Condenser Analysis File for
Etnylene dibromide
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl chlorotorm
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
File Name
1 94C1 anb
1 98c1 asf
CO2a
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 08a4asa.dsf
1 08a4asb.dsf
1 08a4asc.dsf
1 08a4asd.dsf
1 08a4ase.dsf
1 08a4asf.dsf
1 24b4ana.dsf
124b4anb.dsf
1 24b4anc.dsf
1 24b4and.dsf
124b4ane.dsf
124b4anf.dsf
ASC
1000
25.791
11
5.031
5.031
1.016
1.017
0.203
0.202
5.123
5.123
1.01
1.012
0.203
0.203
3.013
3.016
0.604
0.603
0.121
0.124
ISC
1000.00
25.79
11.00
4.86
5.18
1.14
1.01
0.21
0.20
5.09
5.17
1.08
0.91
0.17
0.16
3.00
2.59
1.00
2.28
0.53
0.46
% Difference
0.00
0.00
0.00
3.38
2.92
12.07
0.75
1.37
2.44
0.65
0.84
6.53
9.92
16.07
21.84
0.55
14.19
65.77
277.95
338.22
267.44
Analytical Regions (wavenumbers)
Baseline
... ... . .-1 C\\t\ff*r i i ' lr-*»-**»r
868.55 869.92
868.55 869.92
2536.6
2536.6
2541 .32
2541 .32
Analytical Regions
1178.74 1196.46
1241.71 1266.92
07/09/93
100
-------
TABLE 6-6 Icon't)
Condenser Analysis File for
Hexane
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Nitric oxide
Hexane
Hexane
Hexane
Hexane
Hexane
Hexane
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Propylene oxide
Propylene oxide
Propylene oxide
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
File Name
1 94C1 anb
1 98cl asf
CO2a
NO2zap
095a4asa.dsf
095a4asb.dsf
095a4asc.dsf
095a4asd.dsf
095a4ase.dsf
095a4asf.dsf
1 1 7a4asa.dsf
I17a4asb.dsf
1 1 7a4asc.dsf
117a4asd.dsf
1 1 7a4ase.dsf
1 1 7a4asf .dsf
I43b4ana.dsf
I43b4anb.dsf
143b4and.dsf
1 66a4asa.dsf
166a4asb.dsf
1 66a4asc.dsf
I66a4asd.dsf
1 66a4ase.dsf
1 66a4asf.dsf
1 73a4asa.dsf
173a4asb.dsf
173a4asc.dsf
173a4asd.dsf
ASC
1000
25.791
11
10.1
5.092
5.092
1.021
1.02
0.206
0.203
5.082
5.082
1.015
0.972
0.202
0.201
15.065
- 15.086
3.018
5.082
5.082
1.013
1.017
0.203
0.203
5.102
5.102
1.007
1.018
ISC
1 000.00
25.79
11.00
10.10
5.08
5.11
0.96
1.04
0.20
0.20
5.06
5.09
1.08
1.00
0.10
0.25
14.96
15.09
3.53
5.04
5.06
1.16
1.14
0.42
0.38
4.99
5.25
0.90
0.96
% Difference
0.00
0.00
0.00
0.00
0.17
0.33
6.37
2.42
4.00
0.99
0.44
0.14
6.32
2.53
50.05
21.68
0.71
0.03
16.88
0.92
0.41
14.03
11.60
105.04
86.52
2.28
2.92
10.35
5.90
Analytical Regions (wavenumbers)
Baseline
2556.39 2557.97
31 59.84
3160.97
Analytical Regions
2835.27 3005.43
07/09/93
101
-------
TABLE 6-6 Icon'tl
Condenser Analysis File for
Methyl bromide
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Methyl bromide
Methyl bromide
Methyl bromide
Methyl bromide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Nitric oxide
File Name
1 94C1 anb
1 98d asf
CO2a
079b4asa.dsf
079b4asb.dsf
079b4asc.dsf
079b4asd.dsf
079b4ase.dsf
079b4asf.dsf
1 06a4asb.dsf
1 06a4asc.dsf
1 06a4asd.dsf
106a4ase.dsf
1 1 1 a4asa.dsf
I11a4asb.dsf
1 1 1 a4asc.dsf
1 1 1 a4asd.dsf
1 1 4b4asa.dsf
1 1 4b4asb.dsf
1 1 4b4asc.dsf
1 1 4b4asd.dsf
1 1 4b4ase.dsf
I14b4asf.dsf
NO2zap
ASC
1000
25.791
11
2.997
2.997
0.604
0.602
0.121
0.121
4.919
4.919
1.017
1.018
4.95
4.95
1.02
1.016
3.051
3.051
0.604
0.603
0.123
0.121
10.1
ISC
1000.00
25.79
11.00
3.01
3.00
0.59
0.56
0.12
0.12
4.95
4.91
0.98
0.97
4.98
4.94
0.99
0.98
3.04
3.06
0.61
0.61
0.13
0.12
10.10
% Difference
0.00
0.00
0.00
0.28
0.15
3.09
7.03
2.47
4.84
0.64
0.26
3.78
5.18
0.50
0.19
3.41
3.89
0.50
0.36
1.70
1.75
4.94
3.87
0.00
Analytical Regions (wavenumbers)
Baseline
. . „ . . , | nwpr. «... ' '•-*•"**»•'
2805.09 281 1 .39
3155.26 3165.9
Analytical Regions
2938.47 3008.44
07/09/93
102
-------
TABLE 6-6 Icon'tl
Condenser Analysis File for
Methyl chloride
Compound Name
Water
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Vinyl bromide
Vinyl bromide
Vinyl bromide
Vinyl bromide
Vinyl bromide
Vinyl bromide
Acetone
Acetone
Acetone
Acetone
Acetone
Sulfur dioxide
Carbon dioxide
SF6
Nitric oxide
File Name
I94danb
1 07a4asa.dsf
1 07a4asb.dsf
1 07a4asc.dsf
1 07a4asd.dsf
1 07a4ase.dsf
1 07a4asf.dsf
1 67a4asa.dsf
1 67a4asb.dsf
167a4asc.dsf
167a4asd.dsf
1 67a4ase.dsf
1 67a4asf .dsf
1 92a4arb.dsf
1 92a4arc.dsf
1 92a4ard.dsf
1 92a4are.dsf
I92a4arf.dsf
198clasf
CO2a
SF6_002
NOZzap
ASC
1CXX)
5.092
5.092
1.014
1.018
0.204
0.203
5.082
5.082
1.014
1.017
0.203
0.203
5.021
1.014
1.015
0.203
0.203
25.791
11
0.057
10.1
ISC
1000.02
5.08
5.09
1.05
1.03
0.23
0.22
5.06
5.07
1.09
1.09
0.25
0.22
5.07
0.91
0.92
0.10
0.08
25.79
11.00
0.06
10.10
% Difference
0.00
0.20
0.01
3.48
0.63
11.79
9.84
0.37
0.28
7.86
7.00
25.01
8.45
0.98
10.27
9.02
52.49
62.28
0.00
0.00
0.00
0.00
Analytical Regions
(wavenumbers)
Baseline
1 Inofir..
2835.42 2r 3.75
846.88 3~,/.77
4233.1 1
1 978.64
4238.62
1 979.53
Analytical Regions
2928.38 3099.91
976.37 1 081 .9'
07/09/9C
103
-------
Condenser Analysis File for
Methyl ethyl ketone
TABLE 6-6 Icon't)
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Toluene
Toluene
Toluene
Toluene
Vinylidene chloride
Vmylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Nitric oxide
File Name
194danb
1 98d asf
CO2a
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 09a4ara.dsf
1 09a4arb.dsf
1 09a4arc.dsf
I09a4ard.ds1
1 09a4are.dsf
109a4arf.dsf
1 53a4ara.dsf
1 53a4arb.dsf
1 53a4arc.dsf
I53a4ard.dsf
1 69b4asa.dsf
169b4asb.dsf
I69b4asc.dsf
169b4ase.dsf
169b4ast.dsf
NO2zap
ASC
1000
25.791
11
5.031
5.031
1.016
1.017
0.203
0.202
5.062
5.062
1.011
1.017
0.203
0.202
5.072
5.072
1.013
1.009
3.039
3.039
0.604
0.121
0.121
10.1
ISC
1000.00
25.79
11.00
4.86
5.18
1.13
1.00
0.20
0.19
5.03
5.12
0.92
0.99
0.22
0.19
4.97
5.14
1.10
1.10
3.07
3.08
0.25
0.10
0.07
10.10
% Difference
0.00
0.00
0.00
3.39
2.99
11.39
1.32
0.42
4.73
0.67
1.14
9.25
2.87
8.43
4.81
2.08
1.41
8.21
8.60
1.05
1.39
59.37
21.42
43.53
0.00
Analytical Regions (wavenumbers)
Baseline
1 nwflr ' !•»•••»•
2831 .7 2833.37
983.93 991 .42
4292.56
1277.98
4293.74
1278.57
Analytical Regions
2872.76 3040.07
1140.7 1222.63
07/09/93
104
-------
TABLE 6-6 (con't)
(Compound Name
[Water
Sulfur dioxide
Carbon dioxide
Acetonitrile
Acetonitrile
Acetonitrile
Acetonitrile
Benzene
Benzene
Benzene
Benzene
Methanol
Methanol
Methanol
Methanoi
Methanol
Methanol
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethytene
Tetrachloroethylene
Tetrachloroethylene
Nitric oxide
Condenser
File Name
1 94c1 anb
1 98c1 asf
CO2a
003a4ara.dsf
003a4arb.ds1
003a4arc.dsf
003a4ard.dsf
01 5a4ara.dsf
01 5a4arb.dsf
015a4arc.dsf
015a4ard.dsf
1 04a4asa.dsf
1 04a4asb.dsf
1 04a4asc.dsf
1 04a4asd.dsf
1 04a4ase.dsf
1 04a4asf.dsf
1 1 2a4ara.dsf
1 1 2a4arb.dsf
112a4arc.dsf
112a4ard.dsf
1 1 2a4are.dsf
112a4arf.dsf
1 51 a4asa.dsf
1 51 a4asb.dsf
151a4asd.dsf
151a4ase.dsf
I51a4asf.dsf
NO2zap
Analysis File tor
Methyl isobutyl
ASC
1000
25.791
11
4.97
4.97
1.006
1.015
5.052
5.052
1.036
1.016
5.113
5.113
1.016
1.016
0.203
0.206
5.031
5.031
1.014
1.012
0.202
0.203
4.574
4.574
1.013
0.203
0.203
10.1
ketone
ISC
1000.00
25.79
11.00
4.77
4.67
2.70
1.78
5.09
5.06
1.02
0.80
5.09
5.16
0.98
0.97
0.19
0.17
4.94
5.13
1.00
1.00
0.20
0.20
4.47
4.56
1.27
1.22
0.52
10.10
% Difference
0.00
0.00
0.00
4.05
5.99
168.30
75.24
0.76
0.17
2.02
20.99
0.54
0.92
4.09
4.57
7.44
16.58
1.78
1.89
1.29
1.40
3.78
0.01
2.31
0.24
25.30
499.75
1 57.93
0.00
Analytical Regions (wavenumbers)
Baseline
.1 n\A7f*r.. ...........
868.69 869.58
2783.82 2788.35
» I Jnnpr
1 978.89
3157.82
1 979.78
3161.17
Analytical Regior
1144.42 1207
2872.05 2994
07/09
105
-------
TABLE 6-6 Icon't)
Condenser Analysis File for
Methyl metnacrylate
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Methyl bromide
Methyl bromide
Methyl bromide
Methyl bromide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Nitric oxide
SF6
File Name
1 94C1 anb
1 98c1 asf
C02a
079b4asa.dsf
079b4asb.dsf
079b4asc.dsf
079b4asd.dsf
079b4ase.dsf
079b4asf.ds1
1 06a4asb.dsf
1 06a4asc.dsf
1 06a4asd.dsf
1 06a4ase.dsf
1 1 1 a4asa.dsf
1 1 1 a4asb.dsf
1 1 1 a4asc.dsf
111a4asd.dsf
1 1 4b4asa.dsf
1 1 4b4asb.dsf
114b4asc.dsf
1 1 4b4asd.dsf
1 1 4b4ase.dsf
I14b4asf.dsf
NO2zap
SF6 002
ASC
1000
25.791
11
2.997
2.997
0.604
0.602
0.121
0.121
4.919
4.919
1.017
1.018
4.95
4.95
1.02
1.016
3.051
3.051
0.604
0.603
0.123
0.121
10.1
0.057
ISC
1 000.00
25.79
11.00
2.99
3.01
0.58
0.57
0.11
0.12
4.93
4.94
0.94
0.96
4.96
4.95
1.00
0.99
3.04
3.06
0.61
0.60
0.11
0.11
10.10
0.06
% Difference
0.00
0.00
0.00
0.10
0.51
4.36
5.21
11.38
4.68
0.18
0.42
7.90
6.11
0.18
0.01
2.18
2.23
0.41
0.43
0.63
0.11
11.72
11.71
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
t f\\A/pr.- - j -in ' 1«^""*^*
879.8 881 .77
2769.12 2770.84
874.18 875.22
1249.71
3156.71
2028.35
1 250.35
3158.49
2030.51
Analytical Regions
1137.5 1232.04
2918.95 3019
915.64 962.12
07/09/93
106
-------
Condenser Analysis File for
Methylene chloride
TABLE 6-6 Icon tl
Compound Name
Water
Sutfur dioxide
Carbon dioxide
Hexane
Hexane
Hexane
Hexane
Hexane
Hexane
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Propylene oxide
Propylene oxide
Propylene oxide
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
Nitric oxide
File Name
1 94C1 bvb
I98dasf
CO2a
095a4asa.dsf
095a4asb.dsf
095a4asc.dsf
095a4asd.dsf
095a4ase.dsf
095a4asf.dst
1 1 7a4asa.dsf
Il7a4asb.dsf
1 1 7a4asc.dsf
Il?a4asd.dsf
1 1 7a4ase.dsf
Ii7a4asf.dsf
1 43b4ana.dsf
I43b4anb.dsf
1 43b4and.dsf
1 66a4asa.dsf
166a4asb.dst
1 66a4asc.dsf
1 66a4asd.dst
166a4ase.dsf
166a4asf.dsf
173a4asa.ds1
I73a4asb.ds1
173a4asc.dsf
1 73a4asd.dsf
NO2zap
ASC
1000
25.791
11
5.092
5.092
1.021
1.02
0.206
0.203
5.082
5.082
1.015
0.972
0.202
0.201
1 5.065
1 5.086
3.018
5.082
5.082
1.013
1.017
0.203
0.203
5.102
5.102
1.007
1.018
10.1
ISC
1000.00
25.79
11.00
5.09
5.11
0.95
1.03
0.20
0.21
5.05
5.12
1.00
0.95
0.18
0.20
14.93
15.16
3.34
5.08
5.11
0.96
0.97
0.16
0.16
4.96
5.26
0.93
1.03
10.10
% Difference
0.00
0.00
0.00
0.02
0.24
6.83
1.28
1.24
2.10
0.62
0.76
1.13
2.32
8.99
0.60
0.88
0.46
10.60
0.11
0.59
5.17
5.03
21.28
22.86
2.72
2.98
7.50
0.83
0.00
Analytical Regions (wavenumbers)
Baseline
837.28 838.41
2559.44 2560.23
... „ _. I Inn^r
1978.69
4178.26
1 979.78
0
Analytical Regior
1241.32 1290
2952.01 3045
07/09
107
-------
TABLE 6-6 loon'tl
Condenser Analysis File for
2-Nitropropane
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethyiene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
Nitric oxide
File Name
I94danb
198c1asf
CO2a
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 08a4asa.dsf
1 08a4asb.dsf
1 08a4asc.dsf
I08a4asd.dsf
1 08a4ase.dsf
I08a4asf.dst
I24b4ana.dsf
124b4anb.dsf
124b4anc.dsf
I24b4and.dsf
I24b4ane.dsf
I24b4anf.dsf
NO2zap
ASC
1000
25.791
11
5.031
5.031
1.016
1.017
0.203
0.202
5.123
5.123
1.01
1.012
0.203
0.203
3.013
3.016
0.604
0.603
0.121
0.124
10.1
ISC
1 000.00
25.79
11.00
4.83
5.18
1.21
1.05
0.25
0.25
5.09
5.18
0.98
0.93
0.23
0.19
2.97
3.05
0.59
0.63
0.14
0.11
10.10
% Difference
0.00
0.00
0.00
3.92
2.95
19.03
3.06
20.95
23.37
0.64
1.09
3.05
8.61
12.16
5.22
1.34
1.23
1.81
4.40
16.87
11.06
0.00
Analytical Regions
... , ., 1 nwnr..,,
(wavenumbers)
Baseline
2816.9 2818.48
879.92 881 .49
1 Inr-tAr
3070.97
0
3071 .95
0
Analytical
2875.79
831 .47
Regions
3039.65
868.5
07/09/93
108
-------
TABLE 6-6 Icon't)
Condenser Analysis File for
Propylene dichloride
Compound Name
Water
Suttur dioxide
Carbon dioxide
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Styrene
Styrene
Styrene
Styrene
Styrene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
shloroethvlene
--
File Name
1 94C1 anb
198clas1
CO2a
023a4asa.dsf
023a4asb.dsf
023a4asc.dsf
023a4asd.dsf
023a4ase.dsf
023a4ast.dsf
142b4asa.dsf
I42b4asb.dsf
142b4asc.dst
I42b4asd.dsf
1 42b4ase.dsf
I42b4asf.dsf
147a4asb.dsf
1 47a4asc.dsf
147a4asd.dsf
1 47a4ase.dsf
147a4asf.dsf
1 60a4asa.dsf
I60a4asb.dsf
160a4asc.dsf
160a4asd.dsf
1 60a4ase.dsf
160a4asf.dsf
SF6_002
NO2zap
ASC
1000
25.791
11
5.092
5.092
1.006
1.023
0.205
0.203
3.045
3.045
0.598
0.601
0.121
0.121
5.082
1.015
1.014
0.202
0.203
5.102
5.102
1.014
1.016
0.203
0.203
0.057
10.1
ISC
1000.00
25.79
11.00
5.12
5.07
1.01
1.01
0.20
0.19
3.05
3.06
0.57
0.57
0.09
0.07
5.07
1.10
0.99
0.17
0.18
5.09
5.22
0.59
0.95
0.08
0.20
0.06
10.10
% Difference
0.00
0.00
0.00
0.50
0.42
0.06
1.44
2.12
6.62
0.14
0.37
5.06
5.53
22.42
41.45
0.21
8.49
2.19
14.00
12.99
0.17
2.20
42.07
6.97
60.86
0.21
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
1 nwrtr ' i«»»«»
867.02 869.51
2836.35 2837.29
1277.56
3159.89
1278.74
3160.92
Analytical Regions
996.86 1038
2927.59 3031.58
07/09/93
109
-------
Condenser Analysis File for
Styrene
TABLE 6-6 (con'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Styrene
Styrene
Styrene
Styrene
Styrene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
SF6
File Name
1 94C1 anb
198c1asf
C02a
023a4asa.dsf
023a4asb.dsf
023a4asc.dsf
023a4asd.dsf
023a4ase.dsf
023a4as1.dsf
1 42b4asa.dsf
1 42b4asb.dsf
1 42b4asc.dsf
1 42b4asd.dsf
142b4ase.dsf
1 42b4asf.dsf
I47a4asb.dsf
1 47a4asc.dsf
1 47a4asd.dsf
1 47a4ase.dsf
147a4asf.dsf
1 60a4asa.dsf
1 60a4asb.dsf
1 60a4asc.dsf
160a4asd.dsf
1 60a4ase.dsf
160a4asf.dsf
SF6 002
ASC
1000
25.791
11
5.092
5.092
1.006
1.023
0.205
0.203
3.045
3.045
0.598
0.601
0.121
0.121
5.082
1.015
1.014
0.202
0.203
5.102
5.102
1.014
1.016
0.203
0.203
0.057
ISC
1 000.00
25.79
11.00
5.08
5.08
1.09
1.09
0.22
0.21
3.05
3.04
0.60
0.60
0.11
0.12
5.07
1.10
0.99
0.17
0.17
5.08
5.16
0.91
0.98
0.20
0.20
0.06
% Difference
0.00
0.00
0.00
0.32
0.28
8.21
6.34
7.13
5.43
0.22
0.15
0.41
1.02
9.12
0.47
0.20
8.77
2.43
14.08
16.86
0.50
1.08
10.72
3.72
3.91
4.30
0.00
Analytical Regions (wavenumbers)
Baseline
1 m».nr 1 l«1r-»«»r
867.02 869.51
867.02 869.51
1978.4
1978.4
1 979.78
1 979.78
Analytical Regions
886.32 931.22
966.67 1006.85
07/09/93
110
-------
Condenser Analysis File for
Tetrachloroethylene
TABLE 6-6 Icon t)
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acetonitrile
Acetonitrile
Acetonitrile
Acetonitrile
Benzene
Benzene
Benzene
Benzene
lethanol
Methanol
Methanol
Methanol
Methanol
Methanol
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Tetrachloroethylene
,'etrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
SF6
File Name
I94cianb
I98clasf
CO2a
003a4ara.dsf
003a4arb.dsf
003a4arc.dsf
003a4ard.dsi
015a4ara.dsf
01 5a4arb.dst
01 5a4arc.dsf
01 5a4ard.dsf
1 04a4asa.dsf
1 04a4asb.dsf
1 04a4asc.dsf
1 04a4asd.dsf
1 04a4ase.dsf
1 04a4asf .dsf
1 1 2a4ara.dsf
112a4arb.dsf
1 1 2a4arc.dsf
112a4ard.dsf
1 1 2a4are.dsf
112a4art.dsf
1 51 aAasa.dsf
151a4asb.dsf
151a4asd.dsf
1 51 a4ase.dsf
151a4asf.dsf
SF6 002
ASC
1000
25.791
11
4.97
4.97
1.006
1.015
5.052
5.052
1.036
1.016
5.113
5.113
1.016
1.016
0.203
0.206
5.031
5.031
1.014
1.012
0.202
0.203
4.574
4.574
1.013
0.203
0.203
0.057
ISC
1000.00
25.79
11.00
4.94
5.03
1.01
0.86
4.67
4.26
4.26
3.56
5.04
5.15
1.10
1.22
0.02
0.04
4.78
5.45
0.89
0.43
-0.28
-0.03
4.42
4.70
0.98
0.97
0.20
0.06
% Difference
0.00
0.00
0.00
0.68
1.27
0.49
15.01
7.47
15.75
31 1 .47
250.31
1.49
0.67
7.77
20.28
88.94
82.24
4.92
8.31
12.19
57.78
237.74
1 1 5.70
3.30
2.75
3.70
374.82
3.72
0.00
Analytical Regions (wavenumbers)
Baseline
,..—....! nw^r
867.22 870.27
1 Innpr
1253.68
1254.88
Analytical Regions
899.2 925.2
07/09/93
111
-------
Condenser Analysis File for
Toluene
TABLE 6-6 (con't)
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Nitric oxide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Toluene
Toluene
Toluene
Toluene
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
File Name
I94danb
1 98c1 ast
CO2a
NO2zap
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 09a4ara.dsf
1 09a4arb.dsf
1 09a4arc.dsf
1 09a4ard.dsf
1 09a4are.dsf
1 09a4arf.dsf
1 53a4ara.dst
1 53a4arb.dsf
1 53a4arc.dsf
1 53a4ard.dsf
1 69b4asa.dsf
1 69b4asb.dsf
1 69b4asc.dsf
1 69b4ase.dsf
1 69b4asf.dsf
ASC
1000
25.791
11
10.1
5.031
5.031
1.016
1.017
0.203
0.202
5.062
5.062
1.011
1.017
0.203
0.202
5.072
5.072
1.013
1.009
3.039
3.039
0.604
0.121
0.121
ISC
1 000.00
25.79
11.00
10.10
4.88
5.15
1.13
1.06
0.23
0.16
5.02
5.14
0.90
0.97
0.19
0.18
5.01
5.14
1.00
1.00
1.92
2.21
9.69
2.06
1.80
% Difference
0.00
0.00
0.00
0.00
3.00
2.39
11.18
4.06
14.61
19.53
0.75
1.44
11.42
5.14
5.84
12.32
1.29
1.39
1.08
1.43
36.76
27.34
1504.79
1610.18
1396.07
Analytical Regions (wavenumbers)
Baseline
, , ........ I n\A/or ' lr\r-*«r
2791.18
2791.18
2795.12
2795.12
3155.95
3155.95
3159.08
31 59.08
Analytical
2862
3018.19
Regions
2924
3054.7
07/09/93
112
-------
TABLE 6-6 (con'tl
Condenser Analysis File for
1 ,1 ,2-Trichloroethane
I Compound Name
Water
Sulfur dioxide
3arbon dioxide
Carbon monoxide
SF6
Acrolein
Acrolein
Acrolein
Acrolein
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Nitric oxide
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
File Name
1 94d anb
198clasf
CO2a
1 97asm
SF6_002
006b4anb.dsf
006b4ane.dsf
006b4anf.dsf
006b4anh.dsf
030a4asc.dsf
030a4asd.dsf
030a4ase.dsf
030a4asf.dsf
NO2zap
037a4ard.dsf
037a4arf.dsf
037a4arh.dsf
037a4arj.dsf
1 59b4asa.dsf
1 59b4asb.dsf
1 59b4asc.dsf
1 59b4asd.dsf
1 59b4ase.dsf
1 59b4asf.dst
1 68a4asa.dsf
1 68a4asb.dsf
1 68a4asc.dsf
1 68a4asd.dsf
1 68a4ase.dsf
ASC
1000
25.791
11
376.1
0.057
3.017
0.604
0.603
0.121
1.012
1.017
0.203
0.203
10.1
4.828
1.033
1.02
0.203
3.033
3.033
0.602
0.604
0.12
0.121
5.092
5.092
1.013
1.023
0.203
ISC
1000.00
25.79
11.00
376.10
0.06
2.98
0.70
0.70
0.11
0.91
0.96
0.61
0.59
10.10
4.22
2.59
2.12
1.30
3.03
3.04
0.59
0.59
0.11
0.11
7.36
1.47
7.35
1.47
0.28
% Difference
0.00
0.00
0.00
0.00
0.00
1.22
15.35
15.62
9.08
9.73
5.83
199.13
188.14
0.00
12.67
1 50.73
1 07.86
537.76
0.19
0.34
1.58
1.55
7.30
8.74
44.54
71.12
625.51
43.46
38.60
Analytical Regions (wavenumbers)
Baseline
832.5 834
832.5 834
.. .. .1 Jnnpr. ,
1252
1252
1253.4
1253.4
Analytical Regior
909.41 960
1181.99 1311
07/09,
113
-------
Condenser Analysis File for
Trichloroethylene
TABLE 6-6 Icon'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Styrene
Styrene
Styrene
Styrene
Styrene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
SF6
File Name
1 94cl anb
198dasf
C02a
023a4asa.dsf
023a4asb.dsf
023a4asc.dsf
023a4asd.dsf
023a4ase.dsf
023a4asf.dsf
1 42b4asa.dsf
1 42b4asb.dsf
1 42b4asc.dsf
I42b4asd.dsf
1 42b4ase.dsf
1 42b4asf .dsf
1 47a4asb.dsf
1 47a4asc.dsf
1 47a4asd,dsf
1 47a4ase.dsf
1 47a4asf .dsf
1 60a4asa.dsf
1 60a4asb.dsf
1 60a4asc.dsf
I60a4asd.dsf
1 60a4ase.dsf
160a4asf.dsf
SF6 002
ASC
1000
25.791
11
5.092
5.092
1.006
1.023
0.205
0.203
3.045
3.045
0.598
0.601
0.121
0.121
5.082
1.015
1.014
0.202
0.203
5.102
5.102
1.014
1.016
0.203
0.203
0.057
ISC
1000.00
25.79
11.00
5.12
5.07
1.01
1.01
0.22
0.22
3.00
3.10
0.61
0.55
0.17
0.07
5.05
1.15
1.06
0.20
0.22
5.08
5.16
0.91
0.99
0.19
0.19
0.06
% Difference
0.00
0.00
0.00
0.49
0.51
0.75
0.82
6.48
8.68
1.44
1.68
2.61
9.08
41.44
38.56
0.68
12.77
4.00
1.08
7.06
0.54
1.09
10.52
2.82
5.72
6.83
0.00
Analytical Regions (wavenumbers)
Baseline
t owflr ' '••»•»*»
821 .43 823.39
867.02 869.51
wppi/i
867.02
1978.25
869.51
1979.58
Analytical Regions
826.25 860.91
919.7 959.88
07/09/93
114
-------
Condenser Analysis File for
2,2,4-Trimethylpentane
TABLE 6-6 Icon'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Bromoform
Bromoform
Bromoform
Bromoform
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
t
, Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon disur de
Carbon disulfide
Carbon disulfide
Carbon disulfide
Carbon disulfide
^,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
m-Xylenes
m-Xylenes
m-Xylenes
m-Xylenes
m-Xylenes
Nitric oxide
File Name
1 94C1 anb
1 98c1 asf
CO2a
022b4asc.dsf
022t>4asd.dsf
022b4ase.dsf
022b4as1.dsf
029a4asc.dsf
029a4asd.dsf
029a4ase.dsf
029a4asf.dsf
029a4asg.dsf
029a4ash.dsf
028a4asa.dsf
028a4asb.dsf
028a4asc.dsf
028a4asd.dsf
028a4asg.dsf
1 65a4asc.dsf
1 65a4asd.dsf
1 65a4ase.dsf
1 65a4asf.dsf
I72a4are.dsf
172a4art.dsf
I72a4arg.dsf
I72a4arh.dsf
1 72a4ari.dsf
NO2zap
ASC
1000
25.791
11
0.605
0.604
0.121
0.121
1.015
1.016
0.203
0.203
0.051
0.052
5.092
5.092
1.018
1.014
0.204
1.015
1.015
0.202
0.203
0.203
0.201
4.93
4.93
1.015
100
ISC
1 000.00
25.79
11.00
0.44
0.68
0.31
0.39
0.80
0.95
0.83
0.86
0.23
0.48
4.71
4.17
4.20
3.88
2.75
1.02
1.01
0.20
0.20
0.21
0.17
4.82
5.04
1.02
1 00.00
% Difference
0.00
0.00
0.00
27.68
12.46
159.06
224.38
21.49
6.87
309.37
323.13
348.55
826.62
7.54
18.19
312.73
282.56
1247.46
0.41
0.24
1.82
2.46
2.57
13.37
2.19
2.20
0.21
0.00
Analytical Regions (wavenumbers)
Baseline
. I nwftr
2694.38 2696.18
1 lni->*»r
3160.3 3161.01
Analytical Regions
2861 .57 3009.2
07/09/9
115
-------
Condenser Analysis File for
Vinylidene chloride
TABLE 6-6 (con'tl
[Compound Name
Water
Sulfur dioxide
arbon dioxide
-thylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Toluene
Toluene
Toluene
Toluene
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
File Name
194danb
1 98c1 asf
CO2a
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 09a4ara.dsf
1 09a4arb.dsf
1 09a4arc.dsf
1 09a4ard.dsf
I09a4are.dsf
1 09a4arf.dsf
1 53a4ara.dsf
1 53a4arb.dsf
1 53a4arc.dsf
1 53a4ard.dsf
1 69b4asa.dsf
1 69b4asb.dsf
I69b4asc.dsf
1 69b4ase.dsf
1 69b4asf.dsf
ASC
1000
25.791
11
5.031
5.031
1.016
1.017
0.203
0.202
5.062
5.062
1.011
1.017
0.203
0.202
5.072
5.072
1.013
1 .009
3.039
3.039
0.604
0.121
0.121
ISC
1 000.00
25.79
11.00
4.87
5.16
1.11
1.05
0.28
0.24
5.02
5.13
0.88
1.03
0.21
0.26
4.96
5.18
0.98
1.06
3.02
3.05
0.64
0.13
0.13
% Difference
0.00
0.00
0.00
3.12
2.53
9.52
2.81
37.27
18.52
0.90
1.31
12.87
1.22
1.52
30.30
2.27
2.21
3.48
4.98
0.57
0.34
5.65
3.62
3.62
Analytical Regions (wavenumbers)
Baseline
.„_ , ,...! OWPT- — .____. ^—_ I Ir^rtar
831 .81 832.41
1 004.05 1 004.59
1 004.05 1 004.59
1251.17 1255.11
Analytical Regions
834.13 898.73
1 059.44 1 1 1 3.01
07/09/93
116
-------
Condenser Analysis File for
o-Xylenes
TABLE 6-6 (con't)
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Allyl Chloride
Ally! Chloride
Allyl Chloride
Allyl Chloride
Ethyl benzene
Ethyl benzene
Ethyl benzene
Ethyl benzene
Ethyl benzene
o-Xylenes
o-Xylf es
o-Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
Nitric oxide
File Name
1 94C1 anb
1 98d asf
CO2a
009a4ara.dsf
009a4arb.dsf
009a4arc.dsf
009a4ard.dsf
009a4are.dsf
009a4art.dsf
01 Ob4asa.dsf
010b4asb.dsf
01 Ob4asc.dsf
010b4asd.dsf
077a4ara.dsf
077a4arb.dsf
077a4arc.dsf
077a4ard.dsf
077a4arf.dsf
1 71 a4asa.dsf
171a4asb.dsf
1 71 a4asc.dsf
1 71 a4asd.dsf
1 71 aAase.dsf
!71a4asf.dsf
NO2zap
ASC
1000
25.791
11
4.991
4.991
1.006
1.014
0.203
0.2
3.093
3.093
0.601
0.602
5.113
5.113
1.014
1.017
0.203
5.072
5.072
1.015
1.016
0.203
0.203
10.1
ISC
1000.00
25.79
11.00
4.68
4.92
2.09
1.63
0.69
0.74
3.13
3.09
0.54
0.50
4.95
5.25
1.13
1.06
0.24
5.00
5.10
1.06
1.14
0.39
0.40
10.10
% Difference
0.00
0.00
0.00
6.18
1.51
107.56
60.48
237.26
267.06
1.30
0.27
9.90
17.35
3.25
2.63
11.28
3.79
18.46
1.50
0.55
3.96
11.99
93.64
98.74
0.00
Analytical Regions (wavenumbers)
Baseline
I rvA/or .
2805.09 2809.42
. ...... . -.. .1 Innpr.-
31 60.09
3161.22
Analytical Regions
2859.84 3095.C
07/09/S
117
-------
Condenser Analysis File for
p-Xylenes
TABLE 6-6 (con'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Hexane
Hexane
Hexane
Methylene chloride
Methylene chloride
Methylene chloride
Propylene oxide
Propylene oxide
Vinyl acetate
Vinyl acetate
Vinyl acetate
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
Nitric oxide
File Name
I94clanb
1 98c1 asf
CO2a
095a4asa.dsf
095a4asc.dsf
095a4ase.dsf
1 1 7a4asa.dsf
1 1 7a4asc.dsf
1 1 7a4ase.dsf
I43b4ana.dsf
1 43b4anc.dsf
1 66a4asa.dsf
1 66a4asc.dsf
1 66a4ase.dsf
1 73a4asa.dsf
1 73a4asb.dsf
1 73a4asc.dsf
1 73a4asd.dsf
1 73a4ase.dsf
N02zap
ASC
1000
25.791
11
5.092
1.021
0.206
5.082
1.015
0.202
15.065
3.006
5.082
1.013
0.203
5.102
5.102
1.007
1.018
0.204
10.1
ISC c
1 000.08
25.79
11.00
5.11
0.94
0.19
5.09
1.01
0.18
14.93
3.69
5.09
0.99
0.18
4.98
5.26
0.93
0.94
0.19
10.10
Yo Difference
0.01
0.00
0.04
0.34
7.99
7.23
0.06
0.40
9.17
0.90
22.70
0.10
2.12
9.50
2.42
3.01
7.30
7.28
7.79
0.00
Analytical Regions (wavenumbers)
Baseline
I nw/Rr ' '"•••"»••
2559.43 2560.94
1 978.64 0
1 978.64 0
3159.88
1979.58
1 979.58
3160.98
0
0
Analytical Regions
2854.43 3083.14
770.61 819.06
1082.58 1141.27
07/09/9:;
118
-------
Concentrated Analysis File for
Benzene
TABLE 6-6 Icon'tl
Compound Name
Water
Water
Water
Contaminant 1
Contaminant 3
Contaminant 6
Benzene
Benzene
Benzene
Benzene
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
File Name
1 94C1 bvb
1 94c1 ana
1 94C1 anb
contaml
contamS
contame
01 5a4arc.dsf
01 5a4ard.dsf
01 5a4are.dsf
01 5a4arf.dsf
1 1 2a4ara.dsf
H2a4arb.dsf
1 1 2a4arc.dsf
112a4ard.dsf
112a4are.dsf
112a4art.dsf
I51a4asa.dsf
151a4asb.dsf
151a4asd.dsf
I5la4ase.dsf
151a4asf.dsf
ASC
385
1000
220
100
100
100
1.036
1.016
0.205
0.203
5.031
5.031
1.014
1.012
0.202
0.203
4.574
4.574
1.013
1.013
0.203
ISC
485.39
953.17
257.15
100.04
99.94
1 00.00
1.03
1.00
0.26
0.26
4.18
4.25
4.09
3.96
4.54
5.93
5.28
3.59
1.82
1.22
1.61
% Difference
26.07
4.68
16.89
0.04
0.06
0.00
0.49
1.54
25.33
25.75
16.84
15.47
302.66
290.63
21 43.29
2816.99
15.38
21.57
79.62
20.29
691.72
Analytical Regions (wavenumbers)
Baseline
,._..._.! n\A/f>r
UUWOI •-•-—---«•—«-•-•-
495.99 498.46
• i _i • i iillnno
----------- --« • -up^jc
2396.25
r_
• «»«--- * 11--- -
2400.58
Analytical Region:
672.09 700. i
07/09/!
119
-------
Concentrated Analysis File for
Chlorobenzene
TABLE 6-6 (con'tl
Compound Name
Water
Contaminant 1
Contaminant 6
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
1,1,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1,1,2-Trichloroethane
1,1,2-Trichloroethane
1 ,1 ,2-Trichloroethane
File Name
1 94d bvb
contaml
contamS
037a4arc.dsf
037a4ard.dsf
037a4art.dsf
037a4arh.dsf
037a4arj.dsf
159b4asa.dsf
I59b4asb.dsf
1 59b4asc.dsf
159b4asd.dsf
1 59b4asf.dsf
ASC
1000
100
100
4,828
4.828
1.033
1.033
0.203
3.033
3.033
0.602
0.604
0.121
ISC
1 000.00
1 00.00
1 00.00
5.04
4.61
1.09
1.01
0.23
3.03
3.05
0.57
0.57
0.08
% Difference
0.00
0.00
0.00
4.39
4.56
5.64
2.50
13.02
0.01
0.45
4.96
5.26
35.06
Analytical Regions (wavenu
BJ
. , ...... I nwf^r... ... ,.-.u.
495 497
495 497
495 497
mbers)
iseline
Upper —
2397
2397
2397
2400
2400
2400
Analytical Regions
684.2 686.57
730.68 751.16
1024.73 1026.5
07/09/93
120
-------
Concentrated Analysis File for
Ethylene dibromide
TABLE 6-6 (con'tl
Compound Name
Water
Contaminant 3
Contaminant 6
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
File Name
194C1ANA
contamS
contame
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 08a4asa.dsf
1 08a4asb.dsf
1 08a4asc.dsf
108a4asd.dsf
1 08a4ase.dsf
1 08a4asf.dsf
1 24b4ana.dsf
124b4anb.dsf
124b4anc.dsf
1 24b4and.dsf
124b4ane.dsf
124b4anf.dsf
ASC
1000
100
100
5.031
5.031
1.016
1.017
0.203
0.202
5.123
5.123
1.01
1.012
0.203
0.203
3.013
3.016
0.604
0.603
0.121
0.124
ISC
1 000.00
1 00.00
100.00
4.86
5.18
1.14
1.01
0.20
0.19
5.21
5.10
1.45
0.46
-0.29
-0.32
3.02
2.70
0.91
1.72
0.46
0.53
% Difference
0.00
0.00
0.00
3.38
2.90
12.33
0.31
0.33
4.71
1.76
0.53
43.45
54.55
244.67
257.15
0.18
10.60
49.92
185.58
280.93
326.58
Analytical Regions (wavenumbers)
Baseline
495.99 498.46
495.99 498.46
2396.25
2396.25
2400.58
2400.58
Analytical Regions
594.25 609.21
1182 1191.1
07/C9/93
121
-------
Concentrated Analysis File for
Hexane
TABLE 6-6 Icon'tl
Compound Name
Water
Water
Hydrogen chloride
Contaminant 1
Contaminant 3
Contaminant 6
Hexane
Hexane
Hexane
Hexane
Hexane
Hexane
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
File Name
1 94c1 anb
1 94c1 ana
hcl_2e
contam!
contam3
contame
095a4asa.dsf
095a4asb.dsf
095a4asc.dsf
095a4asd.dsf
095a4ase.dsf
095a4ast.dsf
1 66a4asa.dsf
1 66a4asb.dsf
1 66a4asc.dsf
1 66a4asd.dsf
1 66a4ase.dsf
I66a4as(.dsf
1 73a4asa.dsf
173a4asb.dsf
1 73a4asc.dsf
1 73a4asd.dsf
1 73a4ase.dsf
ASC
535
1000
166
200
100
100
5.092
5.092
1.021
1.02
0.206
0.203
5.082
5.082
1.013
1.017
0.203
0.203
5.102
5.102
1.007
1.018
0.204
ISC
535.94
999.50
166.00
200.00
100.00
100.01
5.10
5.11
0.92
1.01
0.18
0.19
4.90
4.86
1.80
1.91
0.86
1.18
4.96
5.25
0.93
1.03
0.31
% Difference
0.18
0.05
0.00
0.00
0.00
0.01
0.08
0.42
10.21
1.41
12.14
5.82
3.57
4.29
77.08
87.22
325.01
482.24
2.75
2.93
8.21
1.31
51.17
Analytical Regions (wavenumbers)
Baseline
2498.9 2504.5
3154.77 3161.02
Analytical Regions
2835 2910
07/09/93
122
-------
Concentrated Analysis File for
Methyl ethyl ketone
TABLE 6-6 Icon tl
Compound Name
Water
Water
Water
Contaminant 1
Contaminant 2
Contaminant 3
Contaminant 6
Hydrogen chloride
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl ethyl ketone
viethyi ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Toluene
Toluene
Toluene
Toluene
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
File Name
1 94c1 bvb
1 94cl ana
I94danb
contami
contam2
contam3
contamS
hcl_2e
080a4ara.dsf
080a4arb.dsf
080a4arc.dst
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 09a4ara.dsf
1 09a4arb.dsf
I09a4arc.dsf
109a4ard.dsf
1 09a4are.dsf
109a4arf.dsf
1 53a4ara.dsf
1 53a4arb.dsf
1 53a4arc.dsf
1 53a4ard.dsf
1 69b4asa.dsf
1 69b4asb.dsf
1 69b4asc.dsf
169b4ase.dsf
169b4asf.dsf
ASC
405
1000
235
100
100
100
100
200
5.031
5.031
1.016
1.017
0.203
0.202
5.062
5.062
1.011
1.017
0.203
0.202
5.072
5.072
1.013
1.009
3.039
3.039
0.604
0.604
0.121
ISC
403.84
1000.23
236.03
1 00.00
1 00.00
1 00.00
1 00.00
200.00
4.86
5.18
1.14
1.01
0.20
0.20
5.01
5.12
0.95
1.02
0.25
0.23
5.05
5.17
0.83
0.82
3.24
3.18
-0.37
-0.12
-0.08
% Difference
0.29
0.02
0.44
0.00
0.00
0.00
0.00
0.00
3.39
2.94
12.12
0.82
0.42
3.11
0.97
1.14
5.88
0.32
20.60
12.09
0.50
1.96
18.07
18.76
6.76
4.62
161.39
120.46
1 68.02
Analytical Regions (wavenumbers)
Baseline
2575 2601 .79
495 498
j I Innp r
3319.76
2400
3322.13
2404
Analytical Regior
2895.14 3021
1135.36 1215
07/09,
123
-------
Concentrated
2-
Analysis File for
Nitropropane
TABLE 6-6 (con'tl
Compound Name
Water
Water
Water
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
File Name
1 94c1 anb
1 94d bvb
1 94cl ana
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 08a4asa.dsf
1 08a4asb.dsf
1 08a4asc.dsf
108a4asd.dsf
1 08a4ase.dsf
1 08a4asf.dsf
1 24b4ana.dsf
1 24b4anb.dsf
124b4anc.dsf
1 24b4and.dsf
1 24b4ane.dsf
124b4anf.dsf
ASC
218
467
1000
5.031
5.031
1.016
1.017
0.203
0.202
5.123
5.123
1.01
1.012
0.203
0.203
3.013
3.016
0.604
0.603
0.121
0.124
ISC
232.45
424.15
1016.86
4.94
4.65
2.23
1.95
0.85
0.64
5.34
4.17
2.81
2.22
2.18
1.90
2.97
3.07
0.57
0.58
0.13
0.11
% Difference
6.63
9.18
1.69
1.79
7.68
118.90
91.64
319.66
217.68
4.14
18.55
178.12
118.81
971 .27
836.49
1.42
1.78
4.93
4.17
8.21
8.20
Analytical Regions (wavenumbers)
Baseline
irr-,_.__.) n\A/f*r. . i. , ,...,. i i »•*••»*"*•'
1300.13 1302.69
2404.03 241 5.06
Analytical Regions
1579.31 1598.02
07/09/93
124
-------
Concentrated Analysis File for
Tetrachloroethylene
TABLE 6-6 (con tl
Compound Name
Water
Water
Contaminant 1
Contaminant 6
Benzene
Benzene
Benzene
Benzene
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
File Name
I94c1bvb
1 94c1 ana
contaml
contame
01 5a4ara.dsf
01 5a4arb.dsf
01 5a4arc.dsf
01 5a4ard.ds<
1 1 2a4ara.dsf
112a4arb.dsf
1 1 2a4arc.dsf
112a4ard.dsf
112a4are.dsf
I12a4arf.dsf
1 51 a4asa.dsf
1 51 a4asb.dsf
1 51 a4asd.dsf
1 51 a4ase.dsf
151a4asf.dsf
ASC
475
1000
100
100
5.052
5.052
1.036
1.016
5.031
5.031
1.014
1.012
0.202
0.203
4.574
4.574
1.013
1.013
0.203
ISC
477.09
999.00
100.00
100.00
4.96
4.94
2.02
1.02
4.94
5.10
1.12
1.11
0.05
-0.06
4.44
4.72
0.99
0.98
0.20
% Difference
0.44
0.10
0.00
0.00
1.87
2.14
95.07
0.52
1.83
1.35
10.77
9.15
74.61
1 29.49
2.91
3.21
2.44
3.53
2.98
Analytical Regions (wavenumbers)
Baseline
. . ... 1 nwpr. ....
495.99 498.46
495.99 498.46
2396.25
2396.25
r . .
2400.38
2400.38
Analytical Regions
762.4 8C
885 9^
07/09/S
125
-------
Concentrated Analysis File for
Toluene
TABLE 6-6 Icon'tl
Compound Name
Water
Water
Contaminant 6
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Toluene
Toluene
Toluene
Toluene
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
File Name
1 94cl anb
1 94c1 bvb
contamG
080a4ara.dst
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dst
080a4arf.dsf
1 09a4ara.dsf
109a4arb.dsf
1 09a4arc.dst
1 09a4ard.dsf
1 09a4are.dsf
109a4art.dsf
1 53a4ara.dsf
153a4arb.dsf
1 53a4arc.dsf
1 53a4ard.dsf
169b4asa.dsf
169b4asb.dsf
169b4asc.dsf
169b4ase.dsf
169b4asf.dsf
ASC
415
1000
100
5.031
5.031
1.016
1.017
0.203
0.202
5.062
5.062
1.011
1.017
0.203
0.202
5.072
5.072
1.013
1 .009
3.039
3.039
0.604
0.604
0.121
ISC
414.09
1000.37
1 00.00
5.46
3.68
3.10
2.72
1.97
2.29
5.47
5.51
-0.81
-0.85
-1.41
-1.12
4.98
5.13
1.12
1.12
1.79
2.45
8.20
1.98
1.72
% Difference
0.22
0.04
0.00
8.50
26.81
205.12
167.36
869.74
1031.95
8.01
8.92
180.09
183.65
792.82
652.04
1.91
1.06
10.72
10.59
41.22
19.55
1259.17
228.67
1329.54
Analytical Regions
496.63
496.63
(wavenumbers)
Baseline
497.67
497.68
f Irtrtar
2410.43
2410.43
2419.09
2419.09
Analytical Regions
692.82 695.58
720 732.21
07/09/93
126
-------
Concentrated Analysis File for
Trichloroethylene
TABLE 6-6 Icon'tl
SCompound Name
later
Contaminant 1
Contaminant 6
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Styrene
Styrene
Styrene
Styrene
Styrene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
File Name
1 94C1 ana
CONTAM1
CONTAM6
1 42b4asa.dsf
142b4asb.dsf
1 42b4asc.dsf
I42b4asd.dsf
142b4ase.dsf
1 42b4asf.dsf
1 47a4asb.dst
1 47a4asc.dsf
1 47a4asd.dsf
147a4ase.dsf
1 47a4asf.dsf
1 60a4asa.dsf
1 60a4asb.dsf
1 60a4asc.dsf
160a4asd.dsf
1 60a4ase.dsf
1 60a4asf.dsf
ASC
1000
100
100
3.045
3.045
0.598
0.601
0.121
0.121
5.082
1.015
1.014
0.202
0.203
5.102
5.102
1.014
1.016
0.203
0.203
ISC
1 000.00
100.00
1 00.00
2.88
3.10
0.77
0.86
0.52
0.49
5.08
1.09
0.98
0.15
0.14
5.07
5.15
0.95
1.02
0.22
0.22
% Difference
0.00
0.00
0.00
5.50
1.75
27.93
42.89
326.71
308.46
0.08
7.71
3.41
23.77
31.83
0.66
0.86
6.45
0.76
9.63
7.07
Analytical Regions (wavenumbers)
Baseline
,.»__„,..! OWPT . * Irvr^&r
495.99 498.46
495.99 498.46
495.99 498.46
2396.25
2396.25
2396.25
2400.58
2400.58
2400.58
Analytical Regions
781 .52 784.3
931 948
837 857
07/09/93
127
-------
Concentrated
m
Analysis File for
-Xylenes
TABLE 6-6 (con't)
Compound Name
Water
Water
Contaminant 6
Bromotorm
Bromoform
Bromoform
Bromoform
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
m-Xylenes
m-Xylenes
m-Xylenes
m-Xylenes
m-Xylenes
File Name
1 94cl ana
1 94c1 anb
contamS
022b4asc.dsf
022b4asd.dsf
022b4ase.ds1
022b4astdsf
029a4asc.dsf
029a4asd.dsf
029a4ase.dsf
029a4asf.dsf
029a4asg.dst
029a4ash.dsf
1 65a4asa.dsf
1 65a4asb.dsf
1 65a4asc.dsf
1 65a4asd.dsf
1 65a4ase.dsf
1 65a4asf.dsf
1 72a4are.dsf
172a4arf.dsf
1 72a4arg.dsf
1 72a4arh.dsf
1 72a4ari.dsf
ASC
1000
170
100
0.605
0.604
0.121
0.121
1.015
1.016
0.203
0.203
0.051
0.052
5.102
5.102
1.015
1.015
0.202
0.203
0.203
0.201
4.93
4.93
1.015
ISC
999.63
172.22
99.98
0.64
0.47
0.24
0.48
1.01
1.03
0.20
0.20
0.04
0.04
4.22
3.87
5.95
4.48
5.48
6.15
0.22
0.19
4.82
5.04
1.04
% Difference
0.04
1.30
0.02
6.43
22.40
101.05
297.96
0.73
0.93
1.24
1.15
24.71
20.61
17.26
24.22
485.74
340.89
2608.79
2922.72
6.71
8.34
2.29
2.21
1.98
Analytical Regions (wavenumbers)
Baseline
Lower
495.99
498.46
-Upper-
2396.25
2400.58
Analytical Regions
765.2 770.7
07/09/93
128
-------
Concentrated Analysis File for
p-Xylenes
Compound Name
Water
Water
Water
Contaminant 1
Contaminant 3
Contaminant 6
Hexane
Hexane
Hexane
Hexane
Hexane
Hexane
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
File Name
194clbvt>
194clanb
1 94C1 ana
contaml
contamS
contamS
095a4asa.dsf
095a4asb.dsf
095a4asc.dst
095a4asd.dsf
095a4ase.dsf
095a4ast.dst
1 66a4asc.dsf
166a4asd.dsf
1 66a4ase.dsf
166a4asf.dsf
1 73a4asa.dsf
I73a4asb.dsf
1 73a4asc.dsf
173a4asd.dsf
1 73a4ase.dsf
ASC
545
230
1000
200
100
100
5.092
5.092
1.021
1.02
0.206
0.203
1.013
1.017
0.203
0.203
5.102
5.102
- 1 .007
1.018
0.204
ISC
528.33
218.52
1011.73
200.04
99.98
100.00
3.87
5.06
3.90
3.09
3.33
3.74
0.85
0.93
0.82
0.84
4.98
5.25
0.91
0.97
0.19
TABLE M Icon'ti
% Difference
3.06
4.99
1.17
0.02
0.02
0.00
24.05
0.66
282.09
203.24
1511.68
1740.10
16.40
8.32
304.64
31 1 .58
2.34
2.90
9.31
4.50
9.12
Analytical Regions (wavenumbers)
Baseline
.... -...I n\MF*r ,...,. * lr>r>ar
495 498
2400 2403
Analytical Regions
788 809
07/09/93
129
-------
TABLE 6-7. Compounds Not Meeting Method 301 Criteria in Hot/Wet Samples.
130
-------
TABLE 6-7 (continued)
Carbon Disulfide-028
SPIKED
18.39
41.90
58.83
63.23
26.13
17.66
61.36
45.22
19.94
54.74
40.74
RSD =
DEV.
23.52
4.41
-6.47
-16.14
34.81
38.12
35.71
Bias= 2.48
t= 0.10
UNSPIKED
17.95
36.23
16.59
45.58
41.22
31.42
8.14
38.17
47.29
3.20
28.58
RSD=
DEV.
18.28
28.99
-9.80
30.03
-44.09
23.41
70.99
Exp Conc= 9.68
CF= 0.80
Carbon Tetrachloride-029
SPIKED
7.33
7.37
7.42
7.43
7.47
7.52
7.50
7.47
7.59
7.54
7.46
RSD=
DEV.
0.04
0.00
0.05
-0.02
-0.06
0.01
0.37
Blas= -2.72
t= 74.24
UNSPIKED
0.19
0.18
0.19
0.19
0.25
0.21
0.21
0.18
0.26
0.20
0.21
RSD =
DEV.
-0.01
0.00
-0.05
-0.02
-0.06
•0.14
11.87
Exp Conc= 9.98
CF= 1.37
131
-------
TABLE 6-7 (contmowi)
Chloroform-039
SPIKED
15.35
15.16
15.33
15.14
15.24
15.28
15.22
15,21
15.60
15.51
15.49
15.20
15.31
RSD =
DEV.
-0.19
-0.19
0.05
-0.01
-0.09
-0.29
-0.72
0.76
Bias= 4.90
t= 24.48
UNSPIKED
0.80
0.79
0.69
0.75
0.91
0.63
1.03
0.58
0.64
0.78
0.79
0.63
0.75
- RSD =
DEV.
-0.01
0.06
-0.28
-0.44
0.13
-0.16
-0.70
21.69
Exp Conc= 9.66
CF= 0.66
Cumene-046
SPIKED
14.68
14.80
14.89
15.07
15.12
15.20
15.36
15.58
15.69
15.88
15.81
15.91
15.33
RSD =
DEV.
0.12
0.18
0.09
0.22
0.19
0.10
0.89
0.72
Bias= 5.85
t= 40.11
UNSPIKED
-0.59
-0.61
-0.57
-0.60
-0.59
-0.56
-0.82
-0.54
-0.27
-0.44
-0.45
-0.44
-0.54
RSD =
DEV.
-0.02
-0.03
0.03
0.28
-0.16
0.01
0.11
-17.61
Exp Conc= 10.02
CF= 0.63
132
-------
TABLE 6-7 (continued)
1 ,2-Eooxy Butane-075
SPIKED
13.17
13.58
14.09
13.81
11.26
11.70
11.72
11.61
9.79
10.76
10.59
10.60
11.89
RSD =
DEV.
0.41
-0.28
0.44
-0.10
0.98
0.01
1.44
2.87
Bias= 1,31
t= 2.35
UNSPIKED
-0.41
-0.01
-0.46
-0.14
1.00
0.26
0.56
-0.55
0.27
-0.19
-0.49
-0.81
-0.08
. RSD =
DEV.
0.40
0.32
-0.74
-1.11
-0.46
-0.32
-1.91
-540.44
Exp Conc= 10.66
CF= 0.89
Ethyl Benzene-077
SPIKED
14.38
14.45
14.45
14.13
14.42
14.50
14.41
14.54
14.38
14.42
14.49
14.80
14.45
RSD=
DEV.
0.06
-0.32
0.08
0.13
0.04
0.31
0.30
0.95
Bias** 5.48
t= 19.02
UNSPIKED
-0.44
-1.02
-1.11
-1.14
-0.68
-1.22
-1.09
-1.18
•0.85
-1.20
-1.27
-1.16
-1.03
RSD=
DEV.
-0.58
-0.03
-0.54
-0.10
-0.35
0.11
-1.48
-24.58
Exp Conc= 10.00
CF= 0.65
133
-------
TABLE 6-7 (continued)
Ethytene Oxide-084
SPIKED
3.45
2.71
2.13
2.19
3.57
3.35
3.41
3.20
3.52
2.72
3.34
3.07
3.06
RSD =
DEV.
-0.74
0.07
-0.22
-0.22
-0.80
-0.27
-2.17
10.99
Blas= -5.92
t= 10.73
UNSPIKED
-0.44
-1.16
•0.93
-0.52
-1.66
-1.33
-1.90
-0.70
-1.07
-1.22
-0.61
-0.80
-1.03
. RSD =
DEV.
-0.72
0.41
0.33
1.20
-0.14
-0.19
0.88
-42.51
Exp Conc= 10.00
CF= 2.45
Methanoi-104
SPIKED
11.68
12.15
12.13
12.30
11.71
11.92
11.80
12.10
11.44
11.90
11.81
11.75
11.89
RSD =
DEV.
0.47
0.17
0.21
0.30
0.46
-0.07
1.54
1.88
Bias= 4.40
t= 17.47
UNSPIKED
-1.19
-1.01
-1.16
-1.17
-0.92
-1.12
-1.19
-1.21
-1.27
-1.18
-1.06
-1.35
-1.15
RSD=
DEV.
0.19
-0.01
-0.20
-0.02
0.09
-0.29
-0.24
-10.13
Exp Conc= 8.64
CF= 0.66
134
-------
TABLE 6-7 (continued)
Methyl Bromide-106
SPIKED
12.55
13.28
14.45
13.55
14.50
14.54
14.32
16.27
13.64
12.92
11.76
11.55
13.61
RSD =
DEV.
0.73
-0.89
0.03
1.96
-0.72
-0.21
0.90
5.07
Bias= 6.24
t= 7.72
UNSPIKED
-2.66
-3.48
-3.03
-2.33
-3.07
-2.59
-2.51
-1.68
-1.79
-1.65
-3.18
-3.31
-2.61
- RSD =
DEV.
-0.82
0.70
0.47
0.83
0.14
-0.13
1.20
-16.11
Exp Conc= 9.98
CF= 0.62
Methyl Chloroform-108
SPIKED
10.49
10.55
10.58
10.33
10.41
10.42
10.46
10.40
10.33
10.35
10.22
10.27
10.40
RSD =
DEV.
0.06
-0.26
0.01
-0.06
0.02
0.05
-0.18
0.77
Bias= -2.77
t= 20.10
UNSPIKED
4.78
4.42
4.44
4.54
4.48
4.55
4.54
4.54
4.53
4.52
4.46
4.54
4.53
RSD =
DEV.
-0.36
0.10
0.07
0.01
-0.01
0.09
•0.10
2.47
Exp Conc= 8.64
CF= 1.47
135
-------
TABLE 6-7 (continued)
Methyl lodide-111
SPIKED
8.02
7.39
6.85
6.62
7.83
7.97
7.88
7.64
7.87
7.28
6.91
6.20
7.37
RSD =
DEV.
-0.63
-0.23
0.14
-0.24
-0.59
-0.72
-2.26
4.60
Blas= -2.32
t= 5.05
UNSPIKED
-1.28
-0.66
-0.63
0.00
-0.57
-0.09
0.10
0.47
-0.50
-0.43
-0.31
-0.27
•0.35
- RSD =
DEV.
0.62
0.63
0.49
0.37
0.07
0.04
2.21
-89.10
Exp Conc= 10.04
CF= 1.30
Methyl tsobutyl Ketone-112
SPIKED
20.98
21.25
21.31
21.05
21.09
21.38
21.21
21.18
20.93
21.22
21.18
21.09
21.16
RSD=
DEV.
0.28
-0.26
0.30
-0.03
0.29
-0.08
0.50
0.77
Bias= 6.71
t= 32.89
UNSPIKED
4.10
4.46
4.50
4.42
4.39
' 4.45
4.52
4.56
4.35
4.48
4.60
4.47
4.44
RSD =
DEV.
0.36
-0.09
0.07
0.04
0.13
-0.14
0.37
2.74
Exp Conc= 10.00
CF= 0.60
136
-------
TABLE 6-7 (continued!
Methyl t-Butyl Ether-115
SPIKED
-2.85
-2.60
-2.27
-2.08
-1.31
•0.52
0.04
0.71
1.43
2.13
2.44
2.61
-0.19
RSD =
DEV.
0.25
0.19
0.78
0.67
0.70
0.17
2.76
-196.95
Blas= -9.34
t= 23.41
UNSPIKED
-0.68
•0.38
-0.60
•0.39
-0.60
•0.37
-0.49
-0.34
-0.67
•0.50
-0.44
-0.43
-0.49
- RSD =
DEV.
0.30
0.21
0.23
0.15
0.17
0.01
1.07
-28.61
Exp Conc= 9.64
CF= 31.90
Methylene Chloride-117
SPIKED
9.60
10.42
10.81
10.94
10.69
10.85
10.73
11.47
10.37
10.37
10.61
11.02
10.65
RSD =
DEV.
0.82
0.13
0.16
0.74
0.00
0.40
2.26
3.23
Blas= 0.36
t= 0.77
UNSPIKED
0.65
1.03
-0.47
0.41
0.60
0.18
0.08
0.29
0.31
0.16
0.19
-0.19
0.27
RSD =
DEV.
0.38
0.88
-0.42
0.21
•0.15
-0.37
0.52
121.81
Exp Conc= 10.02
CF- 0.96
137
-------
TABLE 6-7 (continued!
Propylene Oxide-143
SPIKED
-1.11
-2.90
-2.58
-1.91
-1.97
-4.04
-1.86
-3.68
-2.63
-3.13
-1.98
-3.08
-2.57
RSD=
DEV.
-1.80
0.66
-2.06
-1.82
-0.50
-1.10
-6.62
-40.01
Blas= -8.82
t= 7.50
UNSPIKED
^.17
-4.00
-3.46
-3.39
^.29
-3.60
-3.48
-4.17
^.25
-3.29
-3.02
^*.42
-3.79
. RSD =
DEV.
0.17
0.07
0.69
-0.69
0.96
-1.40
-0.20
-14.94
ExpConc= 10.04
CF= 8.21
Styrene-147
SPIKED
14.04
13.80
13.84
13.92
14.10
14.40
14.31
14.18
13.65
13.97
14.23
14.08
14.04
RSD=
DEV.
-0.24
0.09
0.30
-0.13
0.32
-0.15
0.18
1.11
Bias* 2.50
t= 3.35
UNSPIKED
2.87
1.02
1.34
1.05
1.25
-0.43
-0.12
0.00
0.60
0.45
0.67
0.67
0.78
RSD =
DEV.
-1.85
-0.29
-1.69
0.12
-0.15
0.00
-3.86
93.36
Exp Conc= 10.76
CF= 0.81
138
-------
TABLE 6-7 IcontmtMdl
Tetrachloroethyiene-1 51
SPIKED
10.45
10.65
10.60
10.70
10.53
10.63
10.68
10.60
10.56
10.57
10.62
10.62
10.60
RSD =
DEV.
0.20
0.10
0.10
•0.08
0.01
-0.01
0.32
0.70
Bias= 0.77
t= 2.43
UNSPIKED
-0.09
-0.10
-0.10
-1.17
-0.01
-0.08
-0,10
-0.09
-0.06
-0.06
-0.11
-0.11
-0.17
RSD =
DEV.
•0.01
-1.07
-0.07
0.02
0.00
0.00
-1.14
-179.94
Exp Conc= 10.00
CF= 0.93
Tduene-153
SPIKED
14.13
14.41
14.39
14.31
14.45
14.54
14.59
14.22
13.94
13.73
14.02
13.86
14.22
RSD =
DEV.
0.29
-0.08
0.10
-0.37
-0.21
-0.16
-0.44
1.12
Bias= 4.12
t= 15.42
UNSPIKED
0.94
0.51
0.23
0.31
0.32
0.34
0.69
0.13
0.13
0.35
0.07
0.03
0.34
RSD=
DEV.
-0.43
0.08
0.03
•0.55
0.22
-0.04
-0.70
63.78
Exp Conc= 9.76
CF» 0.70
139
-------
TABLE 6-7 (continued)
o-Xylene-171
SPIKED
14.17
14.16
14.06
14.31
14.09
14.14
14.22
14.12
14.11
14.43
14.32
14.43
14.21
RSD =
DEV.
-0.01
0.24
0.05
-0.10
0.33
0.11
0.62
0.88
Blas= 7.31
t= 42.66
UNSPIKED
-3.36
-3.11
-3.22
-3.32
-2.93
-3.04
-3.18
-3.02
-2.96
-3.04
-2.90
-3.13
-3.10
RSD =
DEV.
0.25
-0.10
-0.11
0.15
-0.09
-0.23
-0.12
-3.76
Exp Conc= 10.00
CF= 0.58
m-Xylene-172
SPIKED
14.02
14.28
14.34
14.60
14.11
14.63
14.45
14.46
14.42
14.20
14.35
RSD =
DEV.
0.27
0.27
0.53
0.02
-0.21
0.86
1.50
Blas= 6.98
t= 30.29
UNSPIKED
-2.68
-2.49
-2.55
-2.66
-2.69
-2.74
-2.87
-2.75
-2.46
-2.39
-2.63
RSD =
DEV.
0.19
-0.10
-0.05
0.12
0.07
023
-3.17
Exp Conc= 10.00
CF= 0.59
140
-------
TABLE 0-7 (continued)
Acetone-192
SPIKED
-0.21
0.00
-0.13
0.08
-0.32
-0.10
-0.10
0.01
-0.16
0.16
0.04
0.19
-0.04
RSD =
DEV.
0.21
0.21
0.22
0.11
0.31
0.15
1.22
-344.62
Blas= 2.17
t= 12.98
UNSPIKED
-11.40
-11.59
-11.70
-11.77
-11.94
.-11.89
-11.67
-11.71
-11.67
-11.59
-11.85
-11.74
-11.71
RSD=
DEV.
-0.19
-0.07
0.05
-0.04
0.08
0.11
-0.06
-0.62
Exp Conc= 9.50
CF= 0.81
141
-------
TABLE 6-8. Compounds Not Meeting Method 301 Criteria in Condenser Samples.
142
-------
TABLE 6-8 (continued)
Acetonrtrile-003
SPIKED
6.51
5.78
7.42
10.09
2.66
9.19
6.94
RSD =
DEV.
-0.73
2.68
6.52
8.47
36.11
Bias= -3.42
t= 1.32
UNSPIKED
-0.60
0.86
-1.10
0.12
-1.38
-0.35
0.19
1.17
-0.14
RSD =
DEV.
1.46
1.21
1.03
0.98
4.68
-497.99
Exp Conc= 10.50
CF= 1.48
Acrolein-006
SPIKED
11.09
11.68
11.82
11.84
11.55
11.81
11.91
12.00
11.83
12.04
12.13
12.04
11.81
RSD =
DEV.
0.59
0.02
0.27
0.09
0.21
-0.09
1.09
1.69
Blas= 0.20
t= 0.66
UNSPIKED
-0.01
0.02
-0.03
-0.08
-0.11
-0.24
-0.01
-0.30
0.69
0.03
0.14
0.34
0.04
RSD =
DEV.
0.03
-0.05
-0.14
-0.29
-0.65
0.19
-0.90
586.98
Exp Cone = 11.58
CF= 0.98
143
-------
TABLE 6-8 (continued)
Acrylonitrile-009
SPIKED
7.76
7.72
7.74
7.86
8.75
9.94
10.11
10.03
7.74
RSD =
DEV.
-0.04
0.12
1.19
-0.08
1.19
5.46
Bias= -2.41
t= 4.97
UNSPIKED
0.14
0.00
0.14
0.26
0.09
0.10
0.01
-0.07
0.89
0.09
0.10
0.10
0.15
. RSD =
DEV.
-0.14
0.13
0.01
-0.08
-0.80
0.00
-0.89
156.33
Exp Conc= 10.00
CF= 1.32
Bromoform-022
SPIKED
8.99
9.10
9.11
9.12
9.43
9.61
9.65
9.63
9.48
9.56
9.69
9.63
9.42
RSD =
DEV.
0.11
0.01
0.18
-0.02
0.08
-0.07
0.29
0.73
Bias= -0.32
t= 3.12
UNSPIKED
-0.34
-0.32
-0.27
-0.13
-0.09
-0.10
-0.15
-0.13
0.19
-0.02
-0.04
-0.07
•0.12
RSD =
DEV.
0.02
0.15
-0.01
0.02
•0.21
-0.03
-0.05
-62.06
Exp Conc= 9.86
CF= 1.03
144
-------
TABLE 6-8 (continued)
l,3-Butadiene-023
SPIKED
7.42
7.62
7.66
7.69
8.37
8.38
8.45
8.33
8.24
8.23
8.15
8.30
8.07
RSD =
DEV.
0.20
0.03
0.01
-0.12
-0.01
0.15
0.27
0.99
Blas= -1.64
t= 16.42
UNSPIKED
0.02
-0.07
•0.23
-0.30
0.24
0.14
0.13
0.08
0.08
-0.05
-0.07
-0.02
-0.01
RSD =
DEV.
-0.09
-0.07
-0.11
-0.05
•0.13
0.05
-0.39
-1026.51
Exp Conc= 9.72
CF= 1.20
Carbon Disulfide-028
SPIKED
7.56
7.44
7.26
7.50
8.78
8.66
8.76
8.75
8.48
8.55
8.59
8.56
8.24
RSD =
DEV.
-0.12
0.25
-0.11
-0.01
0.07
-0.03
0.04
1.07
Bias= -3.12
t= 28.94
UNSPIKED
1.02
0.97
0.89
0.90
2.19
2.04
1.99
1.96
2.13
2.11
2.06
1.92
1.68
RSD=
DEV.
•0.05
0.01
-0.15
-0.02
-0.02
-0.14
-0.37
3.66
Exp Conc= 9.68
CF= 1.48
145
-------
TABLE 6-8 (continued)
Carbon Tetrachloride-029
SPIKED
6.52
5.95
5.38
5.94
7.14
7.10
7.09
7.10
7.05
7.02
7.17
7.00
6.71
RSD =
DEV.
-0.57
0.57
-0.04
0.01
-0.03
-0.17
-0.23
3.52
Blas= -3.44
t= 14.49
UNSPIKED
0.11
0.08
0.07
0.09
0.20
0.18
0.23
0.18
0.25
0.20
0.21
0.21
0.17
RSD =
DEV.
-0.02
0.02
-0.02
-0.05
-0.05
0.00
-0.13
14.15
Exp Conc= 9.98
CF= 1.53
Carbonyt Sulfide-030
SPIKED
10.61
10.74
10.63
10.56
10.89
11.03
11.01
11.07
10.94
10.93
10.93
10.55
10.82
RSD =
DEV.
0.13
-0.07
0.14
0.06
-0.01
-0.39
•0.13
1.18
Blas= 0.01
t= 0.10
UNSPIKED
0.03
0.15
0.09
0.28
0.08
0.07
0.09
0.08
0.21
0.10
0.07
0.06
0.11
RSD=
DEV.
0.12
0.19
0.00
-0.01
-0.12
-0.01
0.17
68.39
Exp Conc= 10.70
CF= 1.00
146
-------
TABLE 6-8 (continued)
Chloroform-039
SPIKED
14.01
14.13
14.02
14.00
14.09
14.33
14.67
14.62
14.65
14.70
14.71
14.86
14.40
RSD =
DEV.
0.12
-0.01
0.24
-0.05
0.05
0.15
0.51
0.64
Bias= 4.74
t= 47.85
UNSPIKED
-0.07
0.05
-0.14
-0.13
-0.04
-0.02
-0.01
0.01
0.16
0.14
0.00
0.00
•0.01
RSD =
DEV.
0.12
0.01
0.02
0.02
-0.02
0.00
0.15
-661.16
Exp Conc= 9.66
CF= 0.67
Cumene-046
SPIKED
14.78
15.05
15.03
15.08
13.88
14.31
14.74
14.84
14.84
15.17
15.15
15.25
14.84
RSD =
DEV.
0.28
0.05
0.44
0.10
0.33
0.10
1.29
1.23
Blas= 4.58
t= 24.72
UNSPIKED
0.20
0.18
0.21
0.13
0.11
0.15
0.13
0.09
0.55
0.51
0.36
0.30
0.24
RSD=
DEV.
-0.01
-0.08
0.04
•0.03
-0.04
-0.06
-0.18
14.30
Exp Conc= 10.02
CF= 0.69
147
-------
TABLE 6-8 (continued)
1 ,2-Epoxy Butane-075
SPIKED
9.68
9.72
9.45
9.04
4.81
5.38
5.63
6.02
10.53
10.72
10.62
10.38
8.50
RSD =
DEV.
0.04
-0.41
0.57
0.39
0.19
-0.24
0.54
2.92
Bias= -3.51
t= 11.39
UNSPIKED
1.39
1.37
1.30
1.27
0.83
1.24
1.31
1.13
1.57
1.36
1.89
1.49
1.35
. RSD =
DEV.
-0.02
-0.04
0.41
-0.19
-0.20
-0.39
-0.42
13.58
Exp Conc= 10.66
CF= 1.49
Ethyiene Oxide-084
SPIKED
1.35
2.16
2.99
3.13
2.91
2.72
2.13
1.95
0.67
0.99
0.79
0.69
1.87
RSD =
DEV.
0.81
0.14
•0.19
-0.18
0.32
-0.10
0.80
14.24
Bias= -9.85
t= 22.89
UNSPIKED
1.07
1.58
1.80
1.29
1.55
2.17
1.94
1.45
2.04
1.68
2.19
1.87
1.72
RSD =
DEV.
0.50
-0.51
0.62
-0.49
-0.36
-0.32
-0.55
19.63
Exp Conc= 10.00
CF= 66.33
148
-------
TABLE 6-8 (continuedI
Methand-104
SPIKED
10.62
11.58
12.06
12.99
8.78
10.24
11.04
RSD =
DEV.
0.96
0.93
1.45
3.33
6.31
Bias= 2.30
t= 3.18
UNSPIKED
0.25
0.63
0.12
0.50
-0.38
-0.04
-0.05
-0.21
0.10
RSD=
DEV.
0.38
0.38
0.33
-0.16
0.93
194.23
Exp Conc= 8.64
CF= 0.79
Methyl Chloroform- 108
SPIKED
6.87
6.87
6.88
6.92
6.93
6.93
6.87
6.90
7.04
7.02
6.88
7.13
6.93
RSD =
DEV.
0.00
0.04
0.01
0.03
-0.02
0.25
0.30
1.07
BIas= -2.44
t= 31.31
UNSPIKED
0.61
0.64
0.61
0.58
0.81
0.80
0.82
0.87
0.79
0.74
0.78
0.81
0.74
RSD =
DEV.
0.03
-0.03
-0.01
0.05
-0.04
0.03
0.02
3.25
Exp Conc= 8.64
CF= 1.39
149
-------
TABLE 6-8 (continued)
Methyl lodide-1 1 1
SPIKED
6.57
7.06
7.02
8.28
9.00
9.14
9.01
8.89
8.83
9.12
8.96
8.91
8.40
RSD =
DEV.
0.49
1.26
0.14
-0.12
0.29
-0.05
2.01
4.79
Bias= -1.45
t= 2.78
UNSPIKED
-3.19
-3.16
-2.36
-1.75
1.66
0.72
0.37
0.35
1.29
1.26
1.33
1.14
-0.20
RSD =
DEV.
0.03
0.60
-0.94
-0.02
-0.03
-0.19
-0.54
-167.99
ExpConc= 10.04
CF= 1.17
Methyl t-Butyl Ether-1 15
SPIKED
3.34
4.18
4.18
4.25
6.86
6.89
6.73
6.22
1.13
1.72
1.92
2.23
4.14
RSD =
DEV.
0.84
0.07
0.03
-0.52
0.59
0.32
1.33
8.32
Blas= -4.78
t= 13.14
UNSPIKED
-0.54
-0.60
-0.50
-0.58
-0.70
-0.95
-0.78
-0.76
•0.69
-0.84
-0.72
-0.99
•0.72
RSD =
DEV.
-0.07
-0.08
-0.26
0.03
-0.15
-0.26
-079
-16.42
Exp Conc= g.64
CF= 1.98
150
-------
TABLE 6-8 (continued)
Propylene Oxide-143
SPIKED
-1.33
-1.19
-0.81
-0.56
1.32
1.76
1.77
3.65
0.33
1.28
1.89
0.68
0.73
RSD =
DEV.
0.14
0.25
0.44
1.88
0.94
-1.21
2.45
97.92
Bias= -7.61
t= 5.43
UNSPIKED
-1.64
-1.40
-2.72
-2.22
-1.69
-2.09
-1.97
-0.91
-2.58
-0.34
0.21
-3.07
-1.70
RSD =
DEV.
0.25
0.50
-0.40
1.06
2.25
-3.28
0.36
-70.75
Exp Conc= 10.04
CF= 4.13
Vinyl Acetate-166
SPIKED
8.26
8.35
8.35
8.36
8.16
8.73
8.33
8.27
8.01
8.23
8.26
8.25
8.30
RSD=
DEV.
0.08
0.01
0.57
-0.07
0.22
-0.02
0.81
2.17
Bias= -1.68
t= 9.13
UNSPIKED
-0.09
-0.10
-0.08
-0.09
-0.08
-0.08
-0.09
-0.07
0.09
-0.04
-0.08
-0.08
-0.07
RSD =
DEV.
-0.01
-0.01
0.00
0.02
-0.13
0.00
-0.12
-60.14
Exp Conc= 10.04
CF= 1.20
151
-------
TABLE 6-8 (continued)
Vinyl Bromide-167
SPIKED
8.87
8.87
8.86
8.66
9.31
9.50
9.44
9.33
9.32
9.42
9.44
9.48
9.21
RSD=
DEV.
0.01
-0.20
0.19
-0.10
0.09
0.04
0.02
0.98
Bias= -0.74
t= 7.50
UNSPIKED
-0.19
-0.08
-0.15
-0.12
0.00
-0.05
•0.04
-0.02
0.01
0.05
•0.01
-0.03
•0.05
RSD =
DEV.
0.11
0.03
-0.05
0.02
0.04
-0.03
0.12
-73.91
Exp Conc= 10.00
CF= 1.08
Vinyl Chloride- 168
SPIKED
12.91
13.00
12.93
12.80
13.10
13.33
13.28
13.45
13.19
13.23
13.27
12.93
13.12
RSD-
DEV.
0.09
•0.13
0.23
0.17
0.04
-0.35
0.06
1.05
Blas= 3.26
t= 15.86
UNSPIKED
-0.13
-0.09
0.04
-0.45
-0.10
-0.15
-0.16
-0.17
0.03
-0.16
-0.23
-0.19
-0.15
RSD =
DEV.
0.04
-0.49
-0.05
•0.01
-0.19
0.04
-0.66
-104.29
Exp Conc= 10.00
CF= 0.75
152
-------
TABLE 6-8 (contmuwi)
m-Xylene-172
SPIKED
16.53
17.41
17.28
17.06
17.89
18.33
18.19
18.54
18.06
18.31
18.09
18.26
17.83
RSD =
DEV.
0.88
-0.22
0.43
0.35
0.25
0.17
1.87
1.79
Bias= 5.82
t= 14.38
UNSPIKED
2.50
1.71
1.38
1.45
2.22
2.06
2.29
2.20
2.17
2.00
2.16
1.93
2.01
RSD =
DEV.
-0.79
0.07
-0.16
-0.08
-0.17
-0.22
-1.36 I
12.39
Exp Conc= 10.00
CF= 0.63
Acetone-192
SPIKED
7.69
9.24
9.32
9.67
6.28
8.54
9.71
9.86
5.23
8.72
9.73
9.96
8.66
RSD =
DEV.
1.55
0.34
2.26
0.15
3.49
0.23
8.02
14.84
Bias= -1.55
t= 1.11
UNSPIKED
0.90
0.79
0.78
0.68
0.29
0.31
0.25
0.29
2.72
0.79
0.43
0.36
0.71
RSD =
DEV.
-0.11
-0.10
0.03
0.04
-1.93
-0.07
-2.14
78.24
Exp Conc= 9.50
CF= 1.20
153
-------
TABLE 6-9. Compounds Not Meeting Method 301 Criteria
in Concentrated Samples.
154
-------
TABLE 6-9 IcontVHMdl
Acrytonitrile-009
SPIKED
4.11
4.34
2.79
3.69
2.03
1.11
3.01
RSD=
DEV.
0.23
0.90
-0.92
0.22
17.73
Bias= -16.78
t= 28.60
UNSPIKED
-0.57
-0.05
-0.15
•0.42
0.01
-0.07
-0.21
RSD =
DEV.
0.52
-0.28
-0.08
0.16
-117.42
ExpConc= 20.00
CF= 6.22
Ally! Chloride-010
SPIKED
20.60
17.11
14.98
13.18
9.80
10.01
14.28
RSD=
DEV.
-3.49
-1.80
0.22
-5.07
11.23
Bias= -6.66
t= 3.85
UNSPIKED
1.06
0.01
0.56
1.72
1.12
1.19
0.94
RSD =
DEV.
-1.06
1.17
0.07
0.19
68.24
Exp Conc= 20.00
CF= 1.50
Bromoform-022
SPIKED
29.75
26.50
24.15
23.77
26.00
24.54
25.78
RSD =
DEV.
-3.26
-0.38
-1.46
-5.10
5.68
Bias= 5.21
t= 3.28
UNSPIKED
1.19
0.32
0.13
0.41
1.30
0.09
0.57
RSD =
DEV.
-0.87
0.28
-1.21
-1.80
108.33
Exp Conc= 20.00
CF= 0.79
155
-------
TABLE 6-9 (continued)
Carbon Tetrachlohde-029
SPIKED
11.21
8.85
8.44
7.98
10.46
9.16
9.35
RSD =
DEV.
-2.36
-0.46
-1.30
•4.13
11.95
Bias= -10.68
t= 9.55
UNSPIKED
0.02
0.01
0.02
0.04
0.05
0.01
0.03
RSD =
DEV.
•0.01
0.02
-0.04
-0.03
67.36
Exp Conc= 20.00
CF= 2.15
Methyl Chloroform-108
SPIKED
10.21
8.99
12.62
12.72
11.13
RSD =
DEV.
-1.21
0.10
-1.12
4.47
Blas= -g.80
t= 17.11
UNSPIKED
0.25
0.80
1.56
1.14
0.94
RSD =
DEV.
0.55
-0.43
0.12
30.37
Exp Conc= 20.00
CF= 1.96
Methyl Isobutane Ketone-112
SPIKED
40.00
47.90
39.20
43.11
42.55
RSD-
DEV.
7.90
3.91
11.81
8.46
Bias= 19.13
t= 5.07
UNSPIKED
6.22
3.65
1.37
2.46
3.42
RSD =
DEV.
-2.57
1.09
-1.48
33.28
Exp Conc= 20.00
CF= 0.51
156
-------
TABLE 6-9 (continued)
Methyt Methacryiate-114
SPIKED
27.80
23.84
22.00
21.87
23.88
23.74
23.85
RSD=
DEV.
-3.96
-0.13
-0.14
-4.23
6.79
Bias= 3.51
t= 2.13
UNSPIKED
0.86
0.20
0.53
0.05
0.29
0.11
0.34
RSD =
DEV.
-0.65
-0.47
-0.18
-1.31
99.58
Exp Conc= 20.00
CF= 0.85
Propylene Dichloride-142
SPIKED
25.81
32.92
24.71
25.46
27.22
RSD =
DEV.
7.11
0.74
7.85
10.72
Bias= 3.72
t= 0.95
UNSPIKED
4.14
0.23
2.28
7.38
3.51
RSD=
DEV.
-3.91
5.10
1.18
74.83
Exp Conc= 20.00
CF= 0.84
Styrene-147
SPIKED
22.48
21.00
18.22
19.01
20.18
RSD=
DEV.
-1.47
0.79
-0.68
3.38
Blas= -3.32
t= 1.38
UNSPIKED
3.29
1.48
1.94
7.28
3.50
RSD=
DEV.
-1.81
5.34
3.53
65.81
Exp Conc= 20.00
CF= 1.20
157
-------
TABLE 6-9 (continued)
1 , 1 ,2-Trichloroethane-1 59
SPIKED
35.82
33.46
29.01
29.03
30.06
28.07
30.91
RSD =
DEV.
-2.36
0.02
-1.99
^.32
4.07
Bias= 9.79
t= 7.07
UNSPIKED
0.95
0.96
1.42
2.83
0.27
0.28
1.12
RSD =
DEV.
0.01
1.41
0.01
1.43
51.42
Exp Conc= 20.00
CF= 0.67
2,2,4-Trimethylpentane-1 65
SPIKED
45.23
2.79
18.34
' 3.79
7.31
5.30
13.79
RSD =
DEV.
-42.43
-14.55
-2.01
-59.00
132.92
Blas= -11.27
t= 0.60
UNSPIKED
8.29
0.93
2.50
4.21
4.18
10.26
5.06
RSD =
DEV.
-7.36
1.71
6.08
0.42
78.21
Exp Cone = 20.00
CF= 2.29
158
-------
TABLE 6-9 (contmuadt
Vinyl Acetate-166
SPIKED
4.52
7.44
12.71
7.80
8.12
RSD =
DEV.
2.92
-4.90
-1.98
35.15
Blas= -11.67
t= 4.09
UNSPIKED
-0.25
-0.20
-0.25
•0.16
-0.22
DEV.
0.06
0.08
0.14
RSD= -23.58
Exp Conc= 20.00
CF= 2.40
Vinylidene Chloride-169
SPIKED
3.41
0.70
1.11
1.91
0.67
0.74
1.42
RSD =
DEV.
-2.71
0.80
0.07
-1.84
81.08
Bias= -18.53
t= 16.04
JJNSPIKED
-0.25
-0.11
0.02
0.02
-0.01
0.02
-0.05
RSD =
DEV.
0.15
0.01
0.03
0.18
-116.48
Exp Conc= 20.00
CF= 13.57
159
-------
TABLE 6-10. CEM and Flow Data.
Note: Effluent flow given in dry standard cubic feet per minute (DSCM).
160
-------
Summary of GEM Test Results for Cylinder #1
Date
02/02/93
02/06/93
Spike
v/
v/
\/
v/
v/
v/
v/
V7
v/
v/
v/
v'
Run*
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Sample
Time
1043-1045
1050-1053
1057-1059
1103-1104
1111-1114
1135-1137
1143-1145
1151-1153
1412-1413
1416-1418
1422-1423
1428-1430
1436-1437
1440-1441
1426-1427
1450-1451
1459-1500
1504-1505
1508-1508
1512-1513
1520-1521
1524-1525
1528-1529
1533-1534
Sample
Conditioning
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
CO C
ppmd 7
41.6
1857
873
314.7
t f
\ 1>^H""
'-: -.&r
'• / v
28.5
305
31.9
24.5
'•$*>< ~®$ "•&&&-
^sC^ffffe
!- i ?jw'j '"
' N, 4>i>'$ '
X\A&'-
v "<;>/ ••
,: ' ' t ,'
' "•
)2 CO2
Od %d
8.8 10.5
93 99
80 108
9.3 99
',•• * J, ••
y^^- 5 -
^l:
,'
92 99
94 98
94 97
7.5 7.5
*%*!.?** ^, ' , -
W
'J >'*'
97 94
7.4 76
70 78
73 7.6
'ft s'' ^ s
* ^ :'
v. f :
THC
ppmw
^ ^
^
^
. ,
-
' '' ;, "•' v
i
- """t "? \
:
^ „ -
- '- , ' I
- " ;
Avg. Effluent Vol
%H2O delta P Flow (DSCM)
7 03 34,421
o>
o
1
-------
Summary of CEM Test Results for Cylinder #2
Date
02/02/93
02/08/93
Spike
N/
\/
v/
v/
V'
v/
\s
v/
v/
v/
v/
v/
Run #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Sample
Time
1245-1249
1252-1254
1258-1300
1303-1305
1322-1324
1329-1333
1338-1341
1348-1350
1426-1428
1433-1435
1444-1446
1450-1452
1459-1501
1506-1508
1513-1515
1519-1521
1529-1531
1536-1538
1543-1545
1550-1552
1559-1601
1606-1608
1614-1616
1621-1623
Sample
Conditioning
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
CO O2 CO2 THC
ppmd %d %d ppmw
24.9 8 7 10.4 I , ,
255 88 105 - -
288 85 107
25.7 8.4 108, ;
if' '*"!,*** " f '
lH^hl^lf^vvv ' '
.. ' *""^ * v^',w5 '* \ ,
*
No CEM Data Available ? % *
' ,
-,&*»& £&^< t >*<>''*
^^ypc^i •' ^ *' ,"i *',-"
^t^l^»>%^^ - %'/'?'< '
% ii\,i i ' ,% " Xi,
51.7 99 94
65 2 97 97
43.3 98 96'
31.5 89 10.5 ,
%,-b&:-M 1 ' "- ' . ' ' -
' "J '/' |;%>" K 1 f<"
^^ - - ^ l>
Avg. Effluent Vol
%H2O delta P Flow (DSCM)
7 03 34,261
ro
-------
Summary of GEM Test Results for Cylinder #3
Date
02/02/93
02/08/93
Spike
v/
v/
V
V
•y
\/
v
V
v/
V
V
v/
Run #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Sample
Time
1523-1525
1528-1530
1534-1535
1539-1541
1548-1549
1553-1555
1559-1601
1604-1606
0938-0940
0945-0947
0951-0953
0957-0959
1005-1008
1011-1014
1021-1023
1035-1037
1046-1048
1055-1057
1105-1107
1115-1117
1125-1127
1132-1134
1140-1142
1147-1149
Sample
Conditioning
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
CO O
ppmd %
24.4
251
26.5
23.6
;&n*Ji^Jte
^Pllllllllil^vi
59.8
60.2
61.2
63.3
tj| ~,
v|;\ V *
I >
70.0
76.1
65.3
62.0
^*MjJh*;fe«f
1^^^-'^'^
'"T^rf V - '
...:. (?. .'
2 CO2
d %d
8.8 104
88 105
90 103
8.8 10.4
i^^'<"'x *
m%f "$$" \
PvM* "*"- ',
/vA sx*« iv X '
8.7 10.7
8.7 106
8.7 10.6
8.5 107
H* ^l»' ,*•*• ,
r^C^ * -
pX-^-v^; , ' ,
I r *1 * -
5 > 'V
•• V *
8.9 105
90 104
8.7 106
91 103
\ f v>.
!'< ^ '
4 *
THC
ppmw
t
I
5
*#' s \ Hs
^ /-<,4
j^ -• : ',£?*•
AV^4"
,^" -^"'
i ' ; ,
ft' ^
: * ""
"• -> j.
>
,
Avg Eftluent Vol
%H2O delta P Flow (DSCM)
7 0.3 34,241
IB
m
o>
a\
-------
Summary of CEM Test Results for Cylinder #4
Date
02/02/93
02/08/93
Spike
v/
N/
V/
V/
v/
y
v/
x/
v/
v/
v/
N/
Run*
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Sample
Time
1639-1641
1646-1648
1652-1653
1657-1659
1707-1709
1714-1717
1722-1724
1729-1730
1637-1639
1644-1646
1651-1654
1658-1700
1707-1710
1715-1717
^1721-1723
1728-1730
1736-1738
1742-1744
1749-1751
1755-1758
1806-1808
1813-1816
1821-1823
1827-1829
Sample
Conditioning
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
CO 0
ppmd %
29.7
293
298
38.7
§&&$>«*&li
ilri &r i!
33.4 1
294
25.5
26.7
^m^y^^^y
'*-&Wv.>
35.3
420
35.2
34.1
§" ' *4 fj
li'-
^ -s
» v, •
2 CO2
d %d
8.8 10.5
88 10.3
82 11.0
8.7 10.5
k^|> f **J<{
B&HolJL
W& f
j™/\s .. '.. %
00 92*
98 9.7
93 9.9
95 99
ffefefe^ Wl
ill KVV
^^-
gaM/. 1, * „ j^
ysT9' -' » x
97 9.7
94 100
94 10.1
9.4 100
M'>, N 0, %
?v x v
H ^
5 <
THC
ppmw
. '&, J \
s ^\ J
•v
_, ^
, \.
\\'%jjf..s<"
££jiij?s\>.
*• ,i,y^ f '
, ;A\ J-K
,%"'•* *'
-*«:*/:
< '^r ^
\f't '• ,
<•• • ^ > » '
^ /" >-. >
^W^',^
, r ^ * *
:%> \-
X '
•. «
^
,
>'
-
S
%
Avg. Effluent Vol.
%H2O delta P Flow (DSCM)
7 0.3 34,266
-------
Summary of CEM Test Results for Cylinder #5
Date
02/03/93
02/08/93
Spike
V
\/
V'
•y
^
\/
65.1
69.9
96.1
75.7
^%4filpM^
Vt ^fo^
..." A."
2 CO2
,d %d
9.4 96
9.4 96
10.1 90
89 101
9.4 99
94 100
9.5 99
97 96
ybsfr/h^i S*;
t
IPf ' \ ^
94 100
9.3 100
92 10.2
95 98
^'•^ o :
v. \ V
V "*'%
-
THC
ppmw
^ ", y-'-'
' *,-,-,- -^..
- '^l:.--^
) <%-|;J\v
4 1* if ^^
'j^fr^i^
\^-\- '^
* ^.^
:•• , ^ *-,
1. ^ ^ '
f ^ -""*
' ! ^ v""
s . 5: -:
* * K ^
['«
- ^
1 ' i
i
i -\ •
: % ;
N
-
!
Avg. Eftluent Vol.
%H2O delta P Flow (DSCM)
7 03 34,290
en
-------
Summary of CEM Test Results for Cylinder #6
Date
02/03/93
02/09/93
Spike
V
V
v/
v/
-s
v/
v/
v/
v/
v/
v/
^
Run*
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Sample
Time
1602-1605
1611-1612
1616-1617
1620-1625
1636-1638
1642-1644
1648-1650
1653-1655
1256-1258
1302-1305
1310-1312
1315-1318
1327-1329
1335-1337
1344-1346
1352-1354
1400-1402
1408-1410
1414-1416
1422-1424
1433-1435
1440-1442
1447-1449
1453-1455
Sample
Conditioning
Condenser
Condenser
Condenser
Condense/
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
CO
ppmd
294
31.6
296
298
Jfp
3769
327.7
160.0
82.5
43.8
61.6
41.8
43.2
O2
8.7
88
8.7
10.4
11.4
8.7
9.5
Vl
90
9.4
ft
10.3
101
103
10.3
< * ' , X <••> ''
CD
-------
Summary of GEM Test Results for Cylinder #7
Date
02/09/93
Run*
1
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Sample
Time
1200-1201
1206-1207
1212-1214
1219-1220
1306-1307
1312-1313
1317-1318
1322-1324
0951-0953
1002-1004
1012-1014
1022-1024
1029-1031
1037-1039
1045-1047
1054-1056
1102-1104
1110-1112
1119-1121
1126-1128
1135-1137
Sample
Conditioning
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
%H2O
Avg.
delta P
Effluent vol
Flow (DSCM
34.
P
m
Ol
O
CM
5
8.
-------
Summary of CEM Test Results for Cylinder #8
Effluent Vol.
Flow (DSCM)
f
m
o>
CO
-------
Summary of CEM Test Results for Cylinder #9
Effluent Vol.
Flow (DSCM)
o>
o
ot
VjD
-------
Summary of CEM Test Results for Cylinder # 11
tniueni voi.
Flow (DSCM)
-------
Summary of CEM Test Results for Cylinder #12
o>
O
-------
TABLE 6-11. Compounds Not Detected Using Sample Concentration.
172
-------
SPECIES NOT DETECTED USING
SAMPLE CONCENTRATION ON TENAX
Species:
Acetone*
Acetonitrile*
Acrolein*
Bromomethanet
1,3-Butadienet
1,2-Butylene Oxide*
t-Butyl Methyl Ether*
Carbon Disulfidet
Carbonyl Sulfidet
Chloromethanet
Ethyl Chloridet
Ethylene Oxidet
Methanol*
Methyl Iodide*
Methylene Chloridet
Propylene Oxide*
Vinyl Bromidet
Vinyl Chloridet
Boiling Point:
BP- 56.2°C
BP- 81.6°C
BP- 52.5°C
BP- 3.6°C
BP-4.5°C
BP- 63°C
BP- 53°C
BP- 46
BP-50
BP—24
BP= 12
BP- 10
BP- 64
BP- 42
BP- 39
BP= 34
BP= 15
5°C
2°C
22°C
3°C
7°C
7°C
5°C
8°C
2°C
8°C
BP=-13.9°C
Reason for Non-Detection;
t = low boiling point (<50°C)
# - high water solubility
* = unknown reason
Water Solubility:
miscible
miscible
40:100
0.09:100
insoluble
unknown
slightly soluble
0.22:100
lOOcc:100ml (gas)
400cc:100ml (gas)
0.57:100
oo
miscible
1.4:100
2:100
65:100
insoluble
slightly soluble
173
-------
TABLE 6-12. Compounds Detected Using Sample Concentration.
174
-------
SPECIES DETECTED USING
SAMPLE CONCENTRATION ON TENAX
Species Detected: <25% of Spike
Acrylonitrlle
1,2-Dichloroethane
Species Detected; >25X of Spike
Benzene
Bromoform
Carbon Tetrachloride
Chlorobenzene
Chloroform
3-Chloropropylene
Cumene
1,2-Dibromoethane
1,2-Dlbromomethane
1,2-Dichloropropane
Ethyl Benzene
n-Hexane
Isooctane
Methyl Isobutyl Ketone
Methyl Methacrylate
Methyl Ethyl Ketone
2-Nitropropane
Styrene
Tetrachloroethylene
Toluene
1,1,1-Tri chloroethane*
1,1,2-Trichloroethane
Trichloroethylene
Vinyl Acetate
m-Xylene
o-Xylene
p-Xylene
Boiling Point:
BP- 77.3°C
BP- 83°C
BP-
BP-
BP-
BP=
BP-
BP-
BP-
BP-
BP«
BP-
BP«
BP«
BP-
BP-
BP-
BP«
BP-
BP«
BP-
BP-
BP-
BP=
BP>
BP-
80.1°C
149°C
76.7°C
132°C
62°C
44°C
152°C
131°C
97°C '
95°C
136.3°C
69°C
99.3°C
119°C
100°C
73.4°C
120.3°C
145°C
121°C
110.6°C
74.1°C
113.5°C
86.7°C
72°C
139.3°C
144°C
138.4°C
Water Solubility:
7.35:100
1:120
1:1430
1:800
1:2000
insoluble
1:200
slightly soluble
insoluble
1:250
1.2:100
slightly soluble
insoluble
insoluble
insoluble
1.9:100
v. slightly sol.
27.5:100
1.7:100
sparingly soluble
1:1000
v. slightly sol.
insoluble
insoluble
insoluble
1:50
insoluble
insoluble
insoluble
175
-------
|