EPA Document No. 454R95004
  FOURIER TRANSFORM INFRARED (FTIR) METHOD VALIDATION
                       AT A COAL-FIRED BOILER
                          EPA Contract No. 68D20163
                            Work Assignment No. 2
                                  July 1993
                                  Prepared by:

                                Research Division
                           Entropy Environmentalists, Inc.
                              Post Office Box 12291
                     Research Triangle Park, North Carolina 27709
                                 Prepared for:

                                  Lori T. Lay
                        U.S. Environmental Protection Agency
                           Emissions Measurement Center
                     Research Triangle Park, North Carolina 27711

-------
                                DISCLAIMER


   This document was  prepared  by  Entropy  Environmentalists,  Inc. under EPA
Contract No. 68D20163, Work  Assignment  No.  2.   This document  has not been
reviewed by the U.S.  Environmental Protection Agency.

   The  opinions,   conclusions,  and  recommendations  expressed  herein  are
those of the authors, and do not  necessarily  represent  those of the United
States Environmental  Protection Agency.

   Mention  of  specific trade names  or  products  within  this report does not
constitute endorsement by the EPA or Entropy Environmentalists,  Inc.

-------
                             TABLE  OF  CONTENTS
1.0  INTRODUCTION 	    1
     1.1   BACKGROUND	    1
     1.2   PURPOSE AND DESCRIPTION OF  THE PROJECT	    2
     1.3   KEY PERSONNEL	    3

2.0  PROCESS DESCRIPTION AND SAMPLE POINT LOCATIONS 	    4
     2.1   PROCESS DESCRIPTION 	    4
     2.2   BAGHOUSE OUTLET SAMPLE POINT LOCATION 	    4

3.0  EMISSION TEST SYSTEM DESCRIPTION 	    6
     3.1   DIRECT GAS EXTRACTION 	    6
     3.2   SAMPLE CONCENTRATION  	    9

•i.O  TESTING PROCEDURES	12
     4.1   SET UP PROCEDURES	12
     4.2   SAMPLING PROCEDURES 	   12
     4.3   RECORDING OF INFRARED SPECTRA 	   13
     4.4   DYNAMIC SPIKING	14

5.0  ANALYSIS PROCEDURES  	   18
     5.1   CALCULATION OF EXPECTED SPIKE COMPOUND CONCENTRATIONS ....   18
     5.2   CALCULATION OF OBSERVED SPIKE COMPOUND CONCENTRATIONS ....   20
     5.3   COMPARISONS OF EXPECTED AND OBSERVED SPIKED COMPOUND
             CONCENTRATIONS 	   24

6.0  RESULTS AND DISCUSSION	27
     6.1   COMPOUNDS WHICH MEET VALIDATION CRITERIA  	   27
     6.2   COMPOUNDS WHICH DO NOT MEET VALIDATION CRITERIA 	   28
     6.3   CEM AND FLOW DATA	28
     6.4   DISCUSSION	29

7.0  CONCLUSIONS	34

8.0  REFERENCES	35

TABLES 6-1 THROUGH 6-12	36

-------
                             1.0   INTRODUCTION
 1.1  BACKGROUND

     This report describes results of the Fourier transform  infrared  (FTIR)
 method  field  validation  test that  was conducted  at a  coal-fired  boiler
 facility.   The  validation test  was  conducted from January  25 to  February
 10,  1993 by  Dr.  Grant  M.   Plummer,  Mr. Scott  A. Shanklin,  Mr.  Greg C.
 Blanschan,  Dr.   Thomas  A.   Dunder,   Dr. Thomas   J.   Geyer,   Ms.   Lisa  M.
 Grosshandler,  Dr. Ed  Potts,  Ms.  Patricia Royals,  Mr.  Rick Strausbaugh, and
 Mr.  Mike  Worthy,   of  Entropy  Environmentalists,  Inc.,  under   U.S.  EPA
 Contract No. 68D20163, Work Assignment No. 2.

     FTIR spectrometry  is  of interest  in emissions testing  because of its
 usefulness  in  performing  multicomponent  gas  analyses.     Because  each
 distinct  molecular  structure  possesses a   distinct  infrared   absorption
 spectrum,   FTIR  instruments   can   provide   quantitative  and  qualitative
 information  on   the   composition  of  sample   gases.    This  aspect  of the
 technique,  along with its potential for  providing near-real-time  analytical
 results, is particularly  important  considering  the number of  hazardous air
 pollutant (HAP)  compounds listed in the  Clean Air Act Amendment of 1990.

     FTIR-related  tasks  previously   performed   by  Entropy  include  the
 development of  infrared  reference  spectra,  laboratory  investigations of
 sampling  and  analytical  techniques,  and performance of  screening  tests.
 Entropy  has also prepared a  draft  protocol  describing field and  laboratory
 test procedures, and has developed prototype  software for use  in  performing
 FTIR spectrometric  emission  measurements.   The  goals of  these  activities
 are  to  provide quantitative  and  qualitative  information   regarding the
 emission of hazardous air pollutants from various industrial processes, and
 to  further  the  development  of a valid  emission  test method  based on FTIR
 technology.

     Screening  tests  were   conducted  during  1992 at   several   industrial
 facilities,  and  provided  data on  the  performance and suitability of FTIR
 spectrometry  for HAP measurements.   In most  of  these  tests,  gas  samples
were extracted,  filtered,  and  delivered directly  to  the FTIR  system for
 infrared analysis.   This type of sampling and analysis is referred to  below
 as  the  "direct  gas  extraction"  technique.    Initial estimates of  the mass
 emission rates of a number of these compounds, at over 30 process  locations
 of seven different  types of facilities, were based on the spectroscopic and
 flow rate data  obtained during  the screening tests.    These  tests  helped
determine  sampling   and  analytical  limitations   and  provided qualitative
 information on the  emission stream composition.

     One screening  test  was  performed  by  Entropy at  a  coal-fired  utility
boiler.  As expected  on the  basis  of pre-test calculations,  the  usefulness
of the direct gas  extraction technique  for measuring  HAP  compounds at the
concentrations corresponding to  10 tons  of emissions  per year was  found to
be  limited.   This   is  because  of  the  rather large  effluent  flow  rates
typical  of  such  boilers;  even small concentrations (i.e.,  sub ppm  levels)
of HAP's in  the  effluent output of the boiler can lead to potentially  large
yearly mass emissions.   It was, therefore,  necessary to develop  and test

                                                                          1

-------
the   "sample    concentration"    technique   (described    below)    before
quantification of  HAP's  by  FTIR  spectrometry could  be  attempted  at  such
facilities.

     The utility boiler  screening  test also provided data  on  the spectral
interferences expected to occur between  the  HAP  compounds  and  the boiler's
major gaseous effluent sample  constituents.   This  information  was  used in
preparation for the "validation" testing described in this report, the goal
of which  is  to  provide  statistical  information concerning  application of
the  method   to   gaseous  HAP   concentration  measurements.     The  term
"validation"   is  borrowed  from  EPA's  Method  301   ("Field  Validation  of
Pollutant  Measurement  Methods  from Various  Waste  Media"),  upon  which the
methods of the tests described here were based.
1.2  PURPOSE AND DESCRIPTION OF THE PROJECT

     The  procedures  described  in  this report  were  designed  to  test FTIR
spectrometry   in   conjunction  with   both   the   direct  gas   phase  and
concentration/thermal  desorption   sampling techniques,  with  the  goal  of
determining the bias, precision, and range (sensitivity) of the measurement
techniques.   Comparison  of these  values to the  requirements  of EPA Method
3011 were made on a compound-by-compound basis to determine the validity of
the FTIR methods for testing of emissions  from this type of source.

     The  FTIR-based  method  uses  two  different  sampling  techniques:  (1)
direct  gas  phase  extraction   and  (2)  sample  concentration  followed  by
thermal desorption.  The direct gas phase  sampling system extracts  gas from
the  sample point and  transports  the  sample  to a mobile  laboratory where
sample conditioning  and  FTIR  gas  phase analyses are  performed.  The  sample
concentration  system employs  10  grams of Tenax sorbent,  which can  remove
some organic compounds from a large volume (typically 300 liters) of  sample
gas.    These  compounds  are   thermally  desorbed  into  the   smaller FTIR
absorption  cell  volume (8.5 liters),  providing  a  volumetric  concentration
which  allows  detection  of some compounds down to the ppb   level in the
original  sample.

     Entropy  operates  a  mobile laboratory  (FTIR  truck)  that is  equipped
with the  FTIR  instrumentation and  sampling equipment.   The truck  was  driven
to  the facility and parked directly  beneath  the  sampling port  locations.
Equipment  was then  installed  and samples were obtained  according to the
procedures  described in Sections  3.0  and  4.0.  Both  direct  gas phase and
thermal  desorption  samples were  collected each  day  between  the  hours of
8:00  A.M.  and 6:00  P.M.   FTIR  spectra of the gas   phase  samples were
obtained  as the  samples  were  collected.    Spectra of the desorption samples
were acquired  on the evening  of the day they  were collected.

-------
1.3  KEY PERSONNEL
     The  Emissions  Measurement  Branch  (EMB)  and  the   Industrial  Studies
Branch  (ISB)  under  the EPA  Office  of Air  Quality Planning  and  Standards
(OAQPS)  were responsible for administering this project.   Listed  below are
the  organizations  and  personnel  who  were  involved  in coordinating  and
performing this project.

     EMB Work Assignment Manager:  Ms.  Lori  Lay
     Industrial  Studies Branch
     (ISB)  Contacts:

     Entropy Project  Manager:

     Entropy Test Personnel:
Mr. Kenneth Durkee
Mr. Bill Maxwell

Dr. Grant M. Plummer

Dr. Tom Dunder
Dr. Tom Geyer
Mr. Scott Shank!in
Ms. Lisa Grosshandler
Dr. Laura Kinner
Dr. Craig Stone
Ms. Patricia Royals
Mr. Greg Blanschan
Mr. Ricky Strausbaugh
Mr. Mike Worthy

-------
            2.0  PROCESS DESCRIPTION AND SAMPLE POINT LOCATIONS
2.1  PROCESS DESCRIPTION

     The test facility consists of five boilers.   Testing was performed on
Unit 2, which  is  a bituminous  coal-fired  boiler with  an  approximate heat
input of  68 MBtu/hr.    Bituminous coal  is pulverized  and blown  into  the
combustion  chamber  by  fans,  providing  simultaneous  fuel suspension  and
combustion.   The combustion  gases and particulate exiting the  boiler pass
through an air preheater, baghouse, and an  induced draft  (I.D.)  fan before
being exhausted to  the atmosphere via a stack (see Figure  1).

     Measurements   during this  screening  test  were  made on  the  outlet
location of  the Unit  2  baghouse.   Direct  gas extraction  testing employed
30.5 meters   (100 feet) of heated  sample line  to  connect the sampling probe
to the heated manifold  in  the FTIR truck  (see Section  3.1).   Concentrated
samples were obtained  at the sampling port  locations  (see Section 3.2).

2.2  BAGHOUSE OUTLET SAMPLE POINT LOCATION

     Five 6-inch diameter sample  ports were  available  at  the  outlet of  the
baghouse,  a   location that is  approximately  1.2 meters  upstream  of the I.D.
fan.  The ports were  equally  spaced  along  a  1.9 meter  wide section of  the
duct that was approximately 1.9 meters deep.  Access  to this location was
provided by   stairs and  a catwalk.  Each probe sampled  effluent  at a point
near the center of  the duct.  Electric power was  available at a level below
the  sample   point   location  (approximately  7.5  meters).    The  average
temperature  of the  flue gas was approximately 160°C  (320°F).

     Direct   gas  phase  extraction and  sample concentration  samples  were
taken from ports E  and  A,  respectively.   Flow measurements were conducted
daily using  all  the available ports.

-------
                                 • 6" I D. Rons
                 C   B   A
           28"
                       -70"
                                       I
                                                                    E  D
                                      51"         51"
                                                               -70"
                    Section K-K
Section L-L
                To
               StacK
                                            •A'
                                                     r1
                                                         6'
                                                CO
                                                BO
                                                AO
                                                    OE
                                                    OD
                                          TOD View
       From
     Baghouse
50102  3/93
                               Figure 1. Sampling point location.

-------
                   3.0  EMISSION TEST SYSTEM DESCRIPTION

     Two  different  experimental  techniques  were  employed.    The  first,
referred  to  as direct  gas extraction,  introduced  the  gas  stream  to  the
sample manifold  in  the  mobile unit  from where  it could be  sent  to  the
infrared  cell.    It  is  expected  that direct  gas  extraction  provides  a
representative sample by maintaining gas  composition.   A second technique,
referred  to as  sample concentration,  passed a known volume  of  gas through
an  absorbing  material packed  into a  U-shaped  stainless  steel  collection
tube.   After  sampling  was completed,  the  tube  was  then  heated  and  any
collected  compounds were  desorbed into  the  FTIR  cell  and diluted  with
nitrogen   to   one   atmosphere   total   pressure.     With  this   technique,
concentrations  of  species detected  in the  absorption  cell   are  generally
higher than their concentrations in the effluent  so that it  is  possible to
achieve  lower  detection   limits  for  some   HAP's.    Any  lowering  of  the
detection  limit depends  on the volume  of gas sampled  and efficiency  with
which a  particular  compound will  adhere to, and  desorb from,  the sorbent.
Validation  tests   of the  FTIR technique  were  conducted using   both  the
extractive gas phase  system and the  auxiliary  sample concentration system.
Infrared  absorbance  spectra of the  gas  streams  from  the  outlet  of  the
baghouse  (see  Section 2.0) were recorded and analyzed.   Components of the
emission  test  systems prepared by Entropy  for this testing  are  described
below.
3.1  DIRECT GAS EXTRACTION

     An extractive system was used to  transport  the gas stream to the FTIR
spectrometer in the gaseous phase (see Figure 2).

3.1.1  Sampling System and Procedures

     Gas was extracted  through  an 8-foot heated  stainless  steel  probe.   A
heated Balston  particulate  filter rated  at  1  micron was  installed  at the
outlet of the sample probe.  A 30.5 meter (100 foot) section of heated 3/8-
inch O.D. Teflon® sample line connected the probe to the heated sample pump
located  inside  the  mobile  laboratory.   The  temperature  of  the sampling
system components  was maintained  at  approximately  150°C.    All  components
were constructed of  Type 316 stainless steel, glass,  or Teflon®.  Digital
temperature controllers were used to control and monitor the temperature of
the  transport lines.   All  points of connection  were wrapped with electric
heat tape  and  insulated to ensure that  there  were  no  "cold spots"  in the
sampling system where  condensation might occur.   The  sample pump provided
approximately 12 to 16 L/min of sample gas flow, depending upon sample line
length and flue gas conditions at the sampling location.  The heated sample
flow manifold, located  in  the  FTIR truck, included a secondary particulate
filter and valves that allowed the operator to send  the  sample gas directly
to the absorption cell or through one of  the gas conditioning systems.

-------
                          Dilution
                           Probe
 Calibration Gas
'  Dilution Air
 Heated
Transport
  Lines
                                          Orifice
                                         Vacuum
                                                                                                                  HC
                                                                                                                Analyzer I
                         Extractive
                           Probe
   Initial
 Particulate
   Filter
                           Mass Row
                              Meter
                                                                                                                     Heated
                                                                                                                     Manifold
             Heated
              Pump
                     Spike
                 Cylinder Gas
t>0102 1/93
  F igure  2.   FTIR direct gas sampling systom

-------
     The extracted gas  sample  was  treated  in  one of two ways.   Sample  sent
directly to the FTIR cell was  considered unconditioned,  or  "hot/wet."   This
sample  is  more  representative of the  actual  effluent  composition than  any
type of intentionally  conditioned  sample.    The  gas stream  could also be
directed through  a  condenser  to remove  most  of the water.   The  condenser
employed a  standard  Peltier dryer to  cool  the  gas  stream to approximately
3°C.  The resulting condensate was  collected  in two traps and removed  from
the conditioning system with peristaltic pumps.  This technique  is known to
leave  the  concentrations of  inorganic and highly  volatile compounds  very
near to the stack concentrations  (dry-basis).  The  condenser was  tested in
an  effort  to  ascertain which  HAP's  can  be reliably  quantified using  this
system.  Time constraints  precluded  testing of the  dilution and Perma-Pure
systems shown in Figure 2.

3.1.2  Analytical  System and Procedures

     The FTIR  equipment employed  in  this  test consisted  of  a refractive
scanning  interferometer,  a  heated  infrared  absorption  cell,   a   liquid
nitrogen  cooled  mercury  cadmium   telluride   (MCT)  broad  band  infrared
detector, and a computer.  The interferometer,  detector,  and computer   were
purchased  from  KVB/Analect,  Inc.,   and  comprise their  base  Model   RFX-40
system.  The nominal  spectral  resolution of the system  is one wavenumber (1
cm'1).   Sample  was contained  in  a  variable path white  cell,  model 5-22 H,
manufactured by  Infrared Analysis,  Inc.   Heated  jackets  and  temperature
controllers were used to maintain a  cell temperature of 115°C  (240°F).  The
absorption path length  was  externally adjustable from  2.2  to 24.2 meters.
For the  validation,  a path  length  of  22 meters was used.   The pathlength
was determined by visual  inspection  of the number of optical passes of the
infrared radiation within  the cell,  using a co-linear white  light  source
mounted at the  interferometer output  flange.   The  pathlength was verified
by inspection of a 100 ppm ethylene  calibration transfer  standard  (CTS) gas
and  comparisons  with  similar spectra recorded  along  with  the  reference
spectra  used  in  the   quantitative  analysis   (see  also  Section  4.3).
Additional   details  regarding  the  testing and  analytical   procedures  are
found in Sections  4 and 5.  Standard gas analyzers were operated to provide
dry basis concentration measurements of  oxygen  (02),  carbon monoxide (CO),
and carbon  dioxide  (C02) from a portion  of  the condenser  sample stream,
which was  split of at  the  condenser  outlet.    The 02  content  of the gas
stream  was determined  using  a  Teledyne  Model  320P-4  analyzer with  a
patented micro-fuel cell.   A Thermo Environmental  Instruments  Model  48 CO
analyzer employing gas  filter  correlation  (GFC) was used to measure CO by
infrared (IR)  absorption.   To  measure  the  C02 concentrations,  a Fuji Model
3300 C02  non-dispersive infrared  (NDIR)  analyzer  was  used.    A  Ratfisch
Model  RS255CA was  employed  to  measure  the  total hydrocarbon content in the
"hot/wet" stream,  a  portion of  which  was  split  off  at  the outlet  of the
heated  manifold  for this purpose.  All  the analyzers were calibrated at the
beginning and end  of  each test  period using  EPA Protocol  1  certified gas
blends.  Propane in air was used to calibrate the Ratfisch instrument.

     Measurements  provided  by the  analyzers  were  averaged over  the  time
periods  when   direct   gas  extraction  sampling  was  conducted.    Sample
concentration   sampling   was  conducted   concurrently   with   direct  gas
extraction  testing.


                                                                          8

-------
3.2  SAMPLE CONCENTRATION

     Sample  concentration  was   performed   using   the  adsorption/thermal
desorption  technique  described  immediately  below  in  Sections  3.2.1  and
3.2.2.    Four  gas  samples  were  collected  simultaneously  during  sample
concentration each run  using  a quadruplicate ("quad-")  train  assembly.   A
single sampling train is depicted in Figure 3.

3.2.1  Sampling System and Procedures

       Components of  a  single  sampling train  include  a  heated stainless
steel probe, heated filter and glass casing, heated teflon connecting line,
an  optional  stainless  steel   air-cooled  condenser  coil,  stainless  steel
adsorbent  trap  in  an ice  bath,  two water-filled impingers  followed  by an
empty  knock-out  impinger,  an impinger  filled  with  silica  gel,  a sample
pump, and  a  dry  gas  meter.  The  air-cooled  condenser  coil was found to be
unnecessary during this  test,  and was  not  employed.   All heated  components
were  kept  at  a temperature above  120°C to  ensure no  condensation of water
vapor  within  the  system.    The  sorbent   trap  was  a  specially designed
stainless  steel  U-shaped  collection tube  filled  with  10 grams  of Tenax
sorbent and plugged at both ends with glass wool.  Stainless steel was used
for the construction of the adsorbent tubes because it gives a  more uniform
and  more  efficient  heat  transfer  than  glass;  this   is   an  important
consideration,  since maintenance of  the   Tenax  temperature  is important
during both the sampling and thermal desorption steps  of the technique.

     Sampling  was conducted at approximately 3.1 to  4.2 liters  per minute
(0.10  to  0.15 standard  cubic  feet  per  minute  for  collection  times  of
approximately  90 minutes.   The  sampling rate was  close to the  maximum that
could  be  achieved with  the  sampling  system and  the collection time was
chosen  to provide a  total  sampled gas  volume  of 280  liters   (10  standard
cubic  feet).   Sampling a larger  volume  is  possible,  but the  time  required
would  have  been  prohibitive  for this  test.   The  spike gas  flow rate,
controlled by  a needle valve  upstream of the  mass flow meter,  was chosen to
provide  concentrations  of approximately 500  ppb,  for each spike compound,
in  the  front  half  of  the  heated  filter.    Exact  spike   loadings  were
calculated from the constant  spike  flow rate  and other parameters described
in  Section 5.1.   Prior to and following performance of  the tests,  the mass
flow  meters were calibrated against  stan'dard  dry gas meters  at various flow
rates,  ambient temperatures,  and delivery pressures.   These  devices were
found  to  be  extremely  accurate  (+ 1%  total  integrated  flow)  and stable
under  all  conditions.

      Before  the Tenax adsorbent  packed in the sample tubes was used, the
following cleaning  procedures were  employed  to  remove any  impurities that
might desorb along with  the  sample compounds collected.   The  packed tube
was heated to 350°C while  being  purged with preheated  nitrogen at 1 to  2
1pm.   The heating  and nitrogen  flow  were maintained for up  to 18 hours.
Cleaning  the desorption  tubes  resulted in  a decrease  in impurity-related
bands that  Entropy  has observed in spectra  from  the  desorption  of new,
commercially  precleaned Tenax.   However,   contaminants  from  other  sources
did affect the test  procedures  and results, as described in  Section 6.4.4.

-------
       Heated
      hlter Box
                              Probe
                             "E
                                   Duel Wall
                                      Gas
                                      Flow
                                                               Air-Cooled
                                                               Condenser
                                                                  Coil
Thermocouple
                                                nieriTiocoti|)les
                                                                 Bypass
                                                                  Valve
                                                                                               Vacuum Line
50104 4/93
                                                 Figure 3.  Sample concentration system

-------
3.2.2  Analytical System and Procedures

     After each  sample was  collected,  condensed  water was removed from the
sample tube.   This  was accomplished by  immersing the tube  in  an ice bath
and  purging  it  with  dry  nitrogen  for  eight   minutes.    The  compounds
collected on  the Tenax were then  recovered and  analyzed as follows. Each
tube was separately wrapped with heat tape and placed  in  a heating chamber.
One end of the sample  tube  was  connected  to a line leading to the inlet of
the  evacuated  FTIR  absorption  cell.   Gas  samples were  desorbed from the
Tenax by heating the tube to 250°C, then purging the tube contents into the
FTIR absorption cell with a preheated stream of UPC grade nitrogen gas. The
purge was continued until  the  cell pressure  reached  one atmosphere, which
required 8.5  liters of nitrogen.   The  infrared  absorption  spectrum of the
desorbed  gas  was then recorded.   The  cell  was  then evacuated,  and the
purging process  was repeated.   The infrared  spectrum of the gas resulting
from  the  second purge  was  examined to  verify  that  no  infrared-absorbing
compounds remained  on  the Tenax  after  the first  purge.   Additional  details
regarding the testing  and analytical procedures  are found in Section 4 and
Section 5.
                                                                          11

-------
                          4.0  TESTING PROCEDURES


     At the baghouse outlet  location described in  Section  2.0,  some or all
of the following  testing procedures were performed.  The duration and exact
nature of each procedure depended  on  the characteristics  of the gas stream
and the observed  equipment performance.

4.1  SET UP PROCEDURES

     The  gas  phase  extractive   probe  and/or   quad-train  assembly  was
installed at the baghouse  outlet  sampling  location.   Temperature and leak
checks  of  all  sampling,  conditioning,  and  FTIR  analytical  systems  were
performed.

     The CO, C02, 02, and  hydrocarbon analyzers were  calibrated according
to standard EPA test procedures using  EPA  Protocol  1  calibration gases and
procedures  similar  to those  described  in EPA Methods  3A,  10, and 25A.  The
FTIR system was prepared at 22 meter path length.

     Flue gas volumetric flow rate was determined prior to each testing run
according  to  an  EPA  Method  2  traverse and the diluent  measurement data
provided by the C02 and 02  analyzers.   Pitot tube  traverses were performed
periodically at one  port  location and compared  to the Method  2  data.   No
significant variation of the flow was observed  over the test period.

4.2  SAMPLING PROCEDURES

     The sampling and spiking  procedures described below were conceived to
allow cost-effective validation of the two FTIR analytical  methods for as
many gaseous HAP compounds as possible.  Sampling methods were adapted from
the Analyte  Spiking  procedures described  in  EPA Method  301,  Section 5.3.
Performing   the described  analyte  spiking procedures  into  a  gas stream
requires a  relatively  large volume  of  well-characterized  gas  standards,
which are available  and  practical  for field use only  in  high pressure gas
cylinders.    Consultations were held with  the  Research Division of Scott
Specialty  Gases,  Inc.  to  determine  the  appropriate  gas  mixtures.   Both
sample  stability  and  spectroscopic   compatibility   were  considered  in
selecting  the  sets  of  compounds  to be included  in  each  cylinder.   The
cylinder gases are  further  described  and listed below  in  Section 4.4.
Adaptations of Method 301  procedures  used  in this  test are  described below
for each sampling technique.

4.2.1  Direct Gas Extraction

     Because only one complete FTIR system was  available  for the test, it
was  not possible to  conduct  simultaneous sampling  using  the  direct gas
extraction   system.    Instead,  the  required  24  samples  (12  spiked  and 12
unspiked) were  collected  sequentially  for each of  the  11  spike  cylinder
mixtures tested.   The derived precision of the measurements  provided by the
technique therefore  differs from  that  intended  by Method  301,  in that it
contains contributions  from  any  variation in  the  source  emission.   The
criteria pollutant  CEM instruments were monitored carefully  during  each set


                                                                         12

-------
of runs,  and  indicated extremely  stable plant  operation  over  the  entire
test period.

     Nearly complete sets of  "hot/wet"  and  condenser  samples were obtained
during the test.   Separate  extractions of flue gas were  introduced  to the
FTIR cell approximately every five minutes.   Data  were  collected in groups
of  four  consecutive  unspiked  spectra  followed  by  four  spiked  samples.
Alternate groups of  four  samples were extracted until  the complete  set of
24 spectra  was  obtained.   Collection  of  these 12 spiked/unspiked  sample
pairs  required  approximately 3? hours.   Samples  that were  compared for
statistical tests were separated in  time by about  £  hour.   Because  of low
delivery pressure  and/or  equipment  problems  encountered during  the  test,
two  cylinders  were  emptied  before   complete  sets of   12  spiked/unspiked
sample pair could  be collected;  incomplete sets of data were obtained for
cylinders #7 (8 pairs) and  #8 (6 pairs) spiked  into  the condenser system.
Because  of  a  procedural  error   which  was  not  discovered  until  after the
testing  was completed,  only  five  pairs of  samples were obtained  for the
hot/wet system spiked with cylinder #4 compounds.

4.2.2  Sample _Concentra_t.ion

     EPA Method 301, without  the adaptation  discussed above  for the direct
gas  extraction  system,  served   as  a basis  in  planning  the  tests  of the
sample concentration technique.   However, because of contamination found in
the  first  sets  of samples  (see  Section 6.4.4), it was necessary to  limit
the  number  of  spiking analytes  and/or sampling runs in  order to complete
the  testing with the available  on-site time.   The number of runs permitted
by  these constraints  was  less  in  all  cases than  specified by  the   test
protocol.  The schedule was adjusted during the test to provide the maximum
possible amount of information on the compounds of  interest,  by trading off
a  lower  number  of sample runs  for  an increase  in  the  number of compounds
included in the test.

     The concentration samples  were  collected  independently  of the direct
gas  extraction  samples.   Single runs  consisted  of sampling  280 liters (10
ft3) of  flue gas simultaneously  through the four Tenax cartridges included
quad-train.   It  was  possible to complete  two and sometimes  three sampling
runs  in  a  single day.  The  charged sample tubes  were  stored on ice  until
the  desorption  step was  completed   the  same  evening.    Desorptions   were
carried  out according to the  procedures  described  in Section 3.2.

4.3  RECORDING OF  INFRARED SPECTRA

     As  specified  in the FTIR  Protocol,  a spectrum of  a  CTS gas (100 ppm
ethylene in nitrogen) was recorded before  and after each testing  session to
check  the  FTIR spectrometer performance.   The  infrared  spectrum  of   a
gaseous  compound consists  of characteristic patterns of lines representing
a  measure  of  fundamental  structural  properties, and provides  a unique
"fingerprint"  of  the absorbing compound.    Band  intensities  vary   with
concentration,  making  it  possible  to  use  reference  spectra,  obtained
earlier  in the laboratory,  to  quantify any  compounds  detected.  However,
line shapes and  intensities are  also  influenced  by  instrumental  factors
such as  gas temperature, absorption  pathlength, detector response, source


                                                                          13

-------
intensity,  interferometer  servo  performance,   and   choices   of  optical
retardation and  apodization  functions.   The  CIS spectra collected  at  the
test  site  were  compared  to   spectra  of  the   same  CIS  gas,  collected
concurrently  with the  quantitative  reference  spectra.   This  comparison
allows  the  operator  to  detect  any  instrument  malfunctions  and,  in  most
instances, quantitatively account for spectral differences which related to
optical retardation, pathlength and temperature variations.

     All  spectra were recorded  at  a  nominal resolution  of  1  cm"1.   The
absorption cell  was  configured  to  allow 40 passes of  the  infrared  beam to
traverse  the  cell   between  the  entrance  and   exit  windows.    This  is
equivalent to  a  path length  of 22  meters as  measured  by  comparing  the CTS
spectra to  some collected earlier in the  laboratory  at  a  known (shorter)
path length.

     Absorbance  spectra  were  each  composed  of two  "single  beam" spectra.
First, a background of the evacuated  cell  was collected and processed.   The
background gave  an  indication  of the infrared transmission characteristics
of the system and the frequency dependent sensitivity of the detector.   The
cell  was  then pressurized and  a sample spectrum collected.    The  "single
beam"  sample  spectrum was divided  point by point  by  the  background of the
evacuated cell  to give a  transmittance  spectrum.   This removed any effects
resulting  from   wavelength  dependent   transmission  losses   through   the
instrumental  system.    The  transmittance   file  was  then  converted  to
absorbance for use in the subsequent  analyses.  To provide adequate signal-
to-noise  (S/N),  50  sample scans  were divided by  a 200 scan  background.   A
sample  absorbance  spectrum  could  be  obtained  in   about  three  minutes.
Repeated   treatment   with  wet  samples   can   degrade   the   transmission
characteristics  of  the   KBr  cell  windows.   This  necessitated  periodic
collection of a  new background  spectrum to ensure a good baseline.

4.4  DYNAMIC SPIKING

     Within the  time  and  resource  constraints of the test program,  Entropy
conducted dynamic analyte  spiking  according  to the procedures  described in
the document "Protocol for FTIR Field Validation."  Prior to performance of
the test, the procedures described in this document were adapted from those
of  Method  301  to accommodate  the  techniques  of  interest,  and depart  from
Method 301 in two basic ways.  First,  the spiking was performed dynamically,
that  is,  the  spike  materials  were  added to  the  gas  stream  as   it  was
collected.   In  contrast,  Method 301 assumes  that a  collection  medium is
available  for  (static)   addition  of  the  spike  compounds  prior  to  the
collection of  samples.  The dynamic  method  employed  in this test meets the
Method 301 requirement that the spike be introduced as close as possible to
the probe tip,  and  is more convincing than the  static method  in that most
elements of the  sampling system apparatus are simultaneously exposed to the
spike  materials  and  stack gas  over  the  same  period of time.   Second, the
direct  gas  extraction  samples  were  obtained  sequentially   (rather  than
simultaneously),  since only one  complete FTIR system (rather than the four
required  for  simultaneous  spiking) was   available  for   the  test.    As
discussed above,  the  derived precision  of  the technique therefore contains
contributions  from any variation in  the  source emission levels which occur
during performance of the spiking procedures.


                                                                         14

-------
     Cylinder  gas   standards,   each   containing  up   to   five  HAP's  at
concentrations of 50  ppm  (in  nitrogen)  were prepared  for  Entropy by Scott
Specialty Gases.   See  Table  4-1 for  a  listing  of  the compounds  in  each
cylinder, which  were grouped according  to  vapor  pressure,  stability,  and
spectroscopic  compatibility.     Note  that  many  HAP  compounds  cannot  be
stabilized  in  cylinders  at  useful   (greater  that  300  psig)  delivery
pressures, and were therefore excluded from this test.  A "tracer" of 1 ppm
sulfur hexafluoride  (SFe) was also included  in  each  cylinder,  and was used
to verify the spike  compound concentrations  in the  direct  gas  extraction
samples  (see Section 4.4.1).

4.4.1  Direct Gas Extraction

     The  components  used  to  deliver  the   spike  gas  to  the  direct  gas
extraction sampling  system were  a mass  flow meter and heated Teflon® line.
The mass  flow meter provided a  measure  of  spike  gas  flow  to  the sampling
system.   The  heated Teflon® line  was  used  to  heat  the cylinder  gas  to
approximately  the  flue gas  sample  temperature  to  avoid  condensing water
vapor  in the  sample gas.   The heated  spike  gas  was introduced  to the
sampling  system at  a "tee" located  between the  sample probe  outlet and
inlet  to the Balston filter  (see  Figure 2  in  Section 3.1.1).   From this
point,  the   spike   and  sample  gas  mixture  were  transported   through the
remaining portions  of  the  sampling  system described  in Section  3.1.   An
orifice  located at  the outlet  of  the secondary  particulate filter within
the  heated  manifold inside the  FTIR  truck  provided  a  known total flow of
the  sample.   A  spike dilution  factor of five  was achieved by  maintaining
the  spike flow at  the mass flow meter at exactly one quarter of  the  total
flow.

     Spike  flow ratios  were  verified  in  two ways.  First, CTS  gas  (100 ppm
ethylene  in  nitrogen) was  introduced  through the mass  flow meter and  spike
line to  the gas sampling system.  This  was  done prior to insertion of the
probe  in the sample port  so that the  CTS spike was mixed with  ambient air.
Standard analysis  programs (similar to  those  described in Section  5) were
used   in  the  field  to  determine  the  concentration  of  ethylene  in the
resulting  sample,  and  in  all  cases  verified  the flow-determined  dilution
ratio  to within  five  percent.   Another method  of  verification was also
employed in  the  field,   in which   spectra  of   the  spiked  samples  were
periodically analyzed for  the  concentration of SF6.   The  diluted SF6 tracer
contained in each  spiked  sample was  shown in every case to  be  the expected
0.200  ±  0.020 ppm.

4.4.2  Concentrated Samples

      Spike  gases were  introduced  to  the  appropriate  sample  concentration
trains  through  mass flow  meters.    The measured  flow of  gas  was  passed
through  a pre-heater coil and  then introduced  to the  sample  system  at the
 inlet  to the  Method 5  particulate  filter.   The  combined  stream travelled
through  the cooled  collection  tube where compounds could be  adsorbed onto
the  Tenax.    The  total  gas flow  was  measured  with  the  dry  gas  meter.
Spiking  rates were  chosen  to  provide gas concentrations  of concentrations
of  approximately  500  ppb  in   the adsorbed,   and yielded  post-desorption
concentrations of  approximately 20  ppm in the  FTIR cell (for compounds with


                                                                          15

-------
high adsorption and  desorption efficiencies).   Highly  volatile pollutants
such as the SF6 tracer  gas  do not adsorb well on  Tenax,  and this compound
was not detected in the  concentrated,  desorbed  samples.   Consequently, the
SF8 tracer could not  be used  to  provide a  check  of the  spiking  rate (as
described above for the  direct gas extraction tests).   The expected  spike
concentrations  for   these   samples   were   derived  from   the  standard
concentrations, flow meter  readings,  spike  gas  flow time,  and total sample
gas volumes (see Section 5.1.2).
                                                                          16

-------
Table 4-1.  Spike Compounds and Cylinder Groupings
Cyl *


*




2



3



-



3



6



7




a




9



11



12

Comoound
Acroiem
Carbonyl Sulfide
Chlorobenzene
1 , 1 .2-Trichlor oethane
Vinyl Chloride
n-Hexane
Methylene Chloride
Propylene Oxide
Vinyl Acetate
p-Xylene
Methyl Chloride
Vinyl Bromide
Acetone
Bromoform
Carbon Tetracnlonae
Carbon Disutfide
2,2.4-Trimethylpentane
m-Xylene
Ethylene Dibromide
Methyl Ethyl Ketone
Toluene
Vinyhdene Chlonae
Ethyl Chloride
Methyl Bromide
Methyl Iodide
Methyl Methacrylate
Acrylonitrile
Allyl Chloride
Ethyl Benzene
o-Xylene
Acetonrtnle
Benzene
Methanol
Methyl Isobutyl Ketone
Tetrachloroethylene
Chloroform
Cumene
Ethylene Oxide
1 ,2-Epoxy Butane
Methyl t-Butyl Ether
1,3-Butadiene
Propylene Oichlonde
Styrene
Trichloroethylene
Ethylene Dibromide
Methyl Chloroform
2-Nitropropane
Comoouna •# I
306
030
037
'59
168
095
117
143 i
166
173
107
167
192
022
:29
328
•65
172
080
'09
153 j
169 i
079
106 i
111 |
114 !
009 '
010 i
077 j
171 i
003
015 !
104 !
112 I
151 I
039
046
084
075 !
115
023 I
142 !
147 i
160
080
108 i
124
                                                             17

-------
                          5.0  ANALYSIS PROCEDURES


   The goals  of the field test described here  are  the characterization of
bias,  precision, and range of the FTIR technique  in conjunction with three
sampling   systems.    EPA  Method 301,  which   allows  the  use  of  spiking  or
comparisons  to  a   validated  test  method,   was  taken  as  the  basis  for
calculation of these quantities; it specifies  the  comparison  of analytical
results for  samples containing  a  known  amount of  spike material  to  the
results for samples  containing  no  spike  material.   The spiking procedures
and associated  statistical  treatment  of  the analytical  results  via Method
301 replace  several of  the  calculational methods  prescribed in  the  FTIR
Protocol.   Some departures from the standard Method 301 testing procedures
were adopted for this test, mainly because the requirement of simultaneous,
quadruplicate  sample  collection   is  impractical  for  the  direct   gas
extraction  method.     A   sequential   testing  procedure,  in  which  source
variations are  subsumed  in the method's  derived precision, was  adopted as
an alternative  for  this  test.   The  procedures  are  described  in a document
entitled    "Protocol  for FTIR  Field  Validation,"  which was  developed by
Entropy and  submitted to  EMB  with  the  site  specific test  plan  for  this
test.

   When Method 301  is  not employed,  recommended alternate methods for FTIR
analysis   of  stack  effluent  are  described in  detail   in  the  "Protocol  for
Applying   FTIR  Spectrometry  in  Emission  Testing"  (hereafter,   the  "FTIR
Protocol"),  which  was  developed  by  Entropy  under  EPA  contract.    The
procedures of  the FTIR Protocol were  employed  to generate and characterize
the  sample  and  reference  spectra   on   which  the quantitative  spectral
analyses   are  based; these characterizations are described  in detail above
and in reports previously  submitted  to  EMB by Entropy.   Most  other data
analysis   procedures  of the FTIR  Protocol  are intended to provide estimates
of  measurement  uncertainties   from   various  instrumental  and  analytical
effects.   An example of  such an quantity  is  the "Fractional Reproducibility
Uncertainty"  (FCU),  which  provides a  measure of the analytical  uncertainty
related  to  the  reproducibility  of  the  spectral  data through  repeated
application  of  a   "calibration  transfer   standard"   gas.    Because  the
calculations   performed   in  this  work   are   based   on   the  final   HAP
concentrations,  this  and  other  errors are  included  in  the   statistically
determined  measurement uncertainties  required  by   Method 301 (see Section
5.3.1), and are not  addressed in this report.


5.1  CALCULATION OF  EXPECTED SPIKE COMPOUND  CONCENTRATIONS

    As  described in  Section  4.0,  cylinders  containing  known  concentrations
(approximately  50  ppm in  all  cases) of HAP  compounds in  nitrogen  were
introduced  into one  half of the samples to be  analyzed.

    It  should  be  noted that  no spectroscopic  evidence of any of the spike
compounds  was  found  in   the  samples   which  were  unspiked.    The expected
concentration  for all  HAP's in  unspiked  samples  was  accordingly taken as
zero for  the  purposes  of the statistical  calculations  prescribed  in Method
301.   Implications  of  this procedure  are  addressed  in  Sections  5.0 and  6.0.


                                                                         18

-------
5.1.1   Expected Concentrations in Spiked Gas Phase Samples

    Expected  concentrations  of HAP  spike materials  in gas  phase  samples
were calculated on the  basis  of  flow rates  measured during the  field  test.
These flow rates  were constantly maintained  during  the performance of  the
field testing for each  HAP  spiking  group, and were verified to  within ±10%
by  spectroscopic  analysis for the  1  ppm SF6 tracer  gas  component  in each
cylinder.

    The  value for  the expected concentration from the gas  phase  sampling  is
given by
                                     total
where:

    Cexp is the expected gas spike concentration.

    ^owsp,k<> ^s the  measured flow rate for the spike gas.

    Flowtotal  is  the measured  flow  rate  for  the  spike gas  plus  the  stack gas.

    Ccyl  is  the  cylinder concentration  of  the  spike compound.


5.1.2   Expected Concentrations  in Spiked, Concentrated Samples

    Expected concentrations of  HAP  spike materials in  concentrated  samples
were  calculated on  the  basis  of spike  flow  rates  and  total  gas  sample
volumes measured during each  run of the field  test.  These  quantities were
not  always the same  for each run involving  a  spiking  compound group,  and
also  varied for the two  spiked  sampling  trains within  each run.  To allow
use of  the  Method 301  statistical tests,  it  was necessary introduce  scaling
factors designed to  yield equal expected concentrations  for all the trains
and  runs.   These  factors  were taken  into  account  in corrections   to  the
observed  spike concentrations (see Section 5.2.3).

    The  expected  concentration  in   the  sample  concentration  system  is
calculated  in  two  steps.   The first  equation determines the  amount of spike
gas that  is placed on  the Tenax.   It  is  given by


                 VolSDike = (TSnike) * (50
                     spike   V  spike/
                                                  1000CC
                                                                          19

-------
where:
        lke  is  the volume  (in  liters) of  the  spike gas  flowed through the
    sampling system.

    TSP.K.  ^ the length of  time  for  sampling.
The  value  of  50  cc/min  was  the  spike  gas  flow  rate  into  the  sample
concentration system.

The expected concentration is then given by
                          exp    \  8.0L  )   <•  cyi;



where:

    Cexp is the  expected  concentration.

    Ccyl  is  the cylinder  concentration of  the spike  gas.

    8.0 liters  is  the  volume of the FTIR cell.


5.2   CALCULATION OF OBSERVED SPIKE COMPOUND CONCENTRATIONS

    The  reported   values  were  calculated  using  the   Multicomp  program
(Version  6), which is part  of  the KVB/Analect FX-70 software package.   This
program  utilizes   a  calibration  matrix created  from  a set  of  reference
spectra.   The  program  was employed  to characterize  the relation  between
known  and calculated  absorbance values  of  the  reference spectra  via  least
squares   methods.    The   resulting  matrix  was   then   used  to  determine
concentrations  in  the unknown  mixtures.

5.2.1 Description  of K-Matrix  Analyses

    K-type  calibration   matrices   were  used   to  relate   absorbance   to
concentration.   Several  descriptions  of this  analytical  technique can  be
found  in  the literature2.   The discussion presented  here   follows  that  of
Haaland,  Easterling, and  Vopicka3.

    For a  set  of  m absorbance reference spectra  of  q  different  compounds
over  n  data  points  (corresponding  to the  discrete   infrared  wavenumber
positions  chosen as the analytical region)  at a fixed  absorption pathlength
b,  Beer's  law can  be written  in matrix  form as


                                  A = KC +E
                                                                          20

-------
where:

    A  is  the  n  x  m  matrix  representing  the  absorbance  values of  the  m
    reference   spectra   over   the   n  wavenumber   positions,   containing
    contributions from all  or  some  of the  q components;

    K  is the  n  by q matrix representing the relationship between absorbance
    and  concentration  for the  compounds  in  the  wavenumber  region(s)  of
    interest,  as  represented  in the  reference spectra.   The matrix element
    K™, = ba^,  where  a^  is the  absorptivity of  the qth  compound at the nth
    wavenumber  position;

    C  is the  q x m matrix  containing the  concentrations of the q compounds
    in the m  reference spectra;

    E  is the n  x m matrix representing  the random  "errors"  in Beer's law
    for  the  analysis;  these  errors  are  not actually due  to  a failure of
    Beer's law, but  actually  arise  from  factors  such  as misrepresentation
    (instrumental  distortion)  of  the absorbance  values  of  the reference
    spectra,  or inaccuracies  in  the reference  spectrum concentrations.

    The  quantity which  is sought  in  the design  of  this   analysis  is the
matrix  K,  since  if an approximation to  this  matrix, denoted  by K,  can be
found,  the  concentrations  in  a   sample  spectrum  can  also  be estimated.
Using the vector  A*  to  represent  the n  measured absorbance  values  of  a
sample  spectrum over  the wavenumber  region(s) of  interest,  and  the vector C
to  represent the j  estimated concentrations of the  compounds comprising the
sample, C  can be calculated from A*  and K from the relation


                            £= [Kfc El^E**" .

Here  the  superscript  t  represents the transpose  of  the indicated matrix,
and the superscript -1 represents  the matrix inverse.

    The  standard method  for  obtaining the best estimate K is to minimize
the square of the  error  terms represented  by the  matrix  E.  The equation


                              K = ACt[CCt ] -1

represents the estimate  K  which minimizes  the analysis  error.

    Reference  spectra for the  K-matrix  concentration  determinations  were
de-resolved  to  1.0  cm"1  resolution  from  existing 0.25  cm"1 resolution
reference  spectra.   This  was accomplished by  truncating   and  re-apodizing
the interferograms of single beam reference  spectra and the  corresponding
background  interferograms.     The   processed  single  beam   spectra   were
recombined and converted to absorbance (see Section 4.3).
                                                                          21

-------
5.2.2  Preparation of Analysis Programs

    To  provide accurate  quantitative  results,  K-matrix  input  must include
absorbance values  from a set  of  reference spectra which,  added together,
qualitatively  resemble the  appearance  of  the  sample  spectra.    For  this
reason, all  of the Multicomp analysis files  included spectra  representing
interferant  species  and  criteria  pollutants present in  the  flue gas  in
addition to de-resolved reference spectra of HAP's used for analyte spiking
experiments.

    A number  of  factors  affect the  detection  and   analysis  of  a  spiked
analyte in  the stack  gas matrix.    One  factor  is  the composition of the
stack  gas.     The  major  spectral  interferants  in  the  coal-fired  boiler
effluent are water and C02.   At  C02 concentrations of about 10 percent and
higher, weak  absorption  bands  that  are   normally  not  visible  begin  to
emerge.  Some  portions of the FTIR spectrum are  not  available  for analysis
because of extreme  absorbance levels of water and  C02,  but most compounds
exhibit at  least  one  absorbance band that is  suitable  for  analysis.   A
second factor  affecting  the  analysis  is  the number of analytes that are to
be detected.   The gas  cylinder spiking mixtures were  prepared with  3  to 5
compounds each  so  that spectrum  would  not  become overly complicated.   Even
so,  this means that  a  spiked sample  contained up to  13 compounds  including
HAP's,  interferant  species,   and criteria  pollutants  that  were  present in
the  flue gas.

    A set  of Multicomp program files  was prepared for each of 11 cylinder
mixtures  with  a  separate file  for  quantifying each compound  (47   files
total).  Four  baseline  subtraction points are specified for each analytical
region, identifying  an upper  and  a  lower  baseline  averaging  range.   The
absorbance  data  in  each  range were  averaged,  a  straight  baseline was
calculated through the range midpoint  using the  average absorbance values,
and  the baseline was subtracted from the data prior to K-matrix  analysis.

    Within  a  cylinder  group,  all of  the  files  contained  the  same  set of
reference spectra, which  represented the compounds listed  under each group.
Program files  within a grouping differed  only by  the analytical  region(s)
and  baseline  subtraction techniques  specified  in   the   file  input.    In
addition,   every  file  used  for  gas  phase  analysis   contained  spectra of
sulfur  dioxide  (S02),  carbon dioxide  (C02,  10  to  15  percent),   water
(approximately 5  percent by volume), and  carbon monoxide (CO).    It was
also necessary to  include nitric oxide  (NO)  and nitrogen dioxide (N02) in
some  of  the  files.    NO   was  not,  in  general,   an  important  spectral
interferant,  but  in  cases where  the  analytical  region included  frequencies
near 2900 cm"1  it  was necessary to account  for N02, especially  in spectra of
condenser  samples.   The  sample  concentration spectra contained water and
small  amounts  of  C02.   In addition to the  interferants mentioned, hydrogen
chloride  (HC1)  was  present  in the  stack matrix.     Concentrations  of
interferant  species  remained  relatively  constant during  the  testing, but
the  concentration  of HC1  varied  by as  much as 70 percent  below  its maximum
concentration.
                                                                          22

-------
   Prior  to  the actual  field  test,  synthetic spectra  were  prepared using
sample spectra  that  had been obtained  during previous testing  at  a coal-
fired  boiler.    K-matrix  programs  were  then  constructed  which  could
adequately analyze  the  synthetic  spectra.    These analysis  programs were
found to  serve as  a useful  starting point;  all  the  finalized Multicomp
routines are based on the programs prepared using the synthetic  spectra.

   Preparation  of  the  synthetic  spectra proceeded in the following  stages.
First,  Entropy obtained a  1  cm"1  reference  spectrum  of   each  cylinder
mixture  to  be  used  in  the  analyte  spiking  experiments.     Second,  the
cylinder spectra were scaled by a factor of 0.2 to simulate the  anticipated
dilution.  Finally,  a computer generated  synthetic spectrum was created by
adding a  scaled cylinder spectrum  to  each  of several  sample spectra from
the  coal-fired  boiler.   This resulted  in  a  set  of  synthetic spectra (for
both "hot/wet" and condenser samples) representing simulated  spiked  samples
in  a  stack  matrix  similar  to   what  would be  encountered   during  the
validation testing.

5.2.3  Concentration Correction Factors

   Calculated  concentrations  in   sample    spectra   were   corrected  for
differences  in  absorption   pathlength  between  the  reference  and   sample
spectra according to the following relation:
where

    Ccorr is the pathlength corrected concentration.

    CCaic  is  tne initial  calculated  concentration  (output  of the  Multicomp
    program designed for the compound)

    Lr  is  the  pathlength  (3m)  associated  with  the  reference spectra.

    L,  is the  pathlength  (22m) associated with the sample spectra.

    T.  is the  absolute temperature of the sample gas (388 K).

    Tr  is  the  absolute gas  temperature at which reference spectra were
            recorded (300 to 373 K).

    In  addition  to the  pathlength  and temperature  corrections,  the sample
 concentration   values  were   corrected   for   the   different   expected
 concentrations.   This adjustment was  due  to  the  different amounts of spike
 gas that  were applied  to the  sample  concentration  system.   All   of  the
 expected values were  normalized to values of 20 ppm;  in  addition,  all  of
 the calculated concentration values were also normalized in the same manner
 as the expected values.   The normalization factor is given by

                                                                          23

-------
where

    Cnorm  is the normalized  calculated  concentration value.

    C8xp  is  the expected  concentration  of  the  spike  compound.

    Ccorr  is  the pathlength adjusted value  that was determined previously.

    Corrections for  variation in sample pressure were considered,  and found
to  affect  the indicated HAP  concentrations by  no  more  that  one  to  two
percent.   Since  this  is a  small  effect  in  comparison  to  other sources of
analytical  error  identified in this  study,  no  sample  pressure  corrections
were made.

    The  term  "observed concentration"  is  used  hereafter to indicate either
the  corrected  concentration  Ccofr  (in the  case of  direct  gas extraction
measurements)  or  the   normalized  concentration  C^^  (in   the  case  of
concentrated sample measurements).


5.3  COMPARISONS OF EXPECTED AND OBSERVED SPIKED COMPOUND  CONCENTRATIONS

    During  collection of both  the  concentrated and direct  gas extraction
samples, the analyte  spiking validation  procedures specified  in EPA Method
301, Section 6.3 were followed  as closely as possible.  According  to Method
301, half of the samples must  be  spiked and  the  other half remain  unspiked.
The  precision  and the  bias of the  measurement system  are  calculated via
statistical comparisons  these  spiked  and  unspiked data.

5.3.1  Precision

    The   precision of  the  measurement system (sampling  and  analytical)  is
measured   as  the   relative   standard  deviation   (RSD)   presented  as   a
percentage.  The RSD determines the "size" of the  sample standard  deviation
relative to  the  sample  mean.   The  RSD was  calculated  for both the spiked
and  unspiked samples using  the  following  procedures:

    a.  The   differences,    d,,   between    the   observed  and   expected
       concentrations  of the  spiked  pairs  ("spiked differences") and the
       unspiked  pairs  ("unspiked  differences")  were calculated  separately.
       Then the  standard deviations  of the  spiked differences  and unspiked
       differences were  formed  using  the  following equations:
                                                                          24

-------
                             SDS =
                                         a.
                                        2n
                                    \
                                        :n
       where:

          SDS  =  standard  deviation  of  the  spiked differences
          SDU  =  standard  deviation  of  the  unspiked  differences
          n = number of paired samples

       The  relative  standard deviation was determined  as  follows:

                                    3D
                            RSD  =
                                        x  100
                                       /
                            RSD  =
                                        x  100
       where:
              = mean of the observed spiked sample concentrations
              = mean of the observed unspiked sample concentrations
If the  RSD <  50  percent  for  both the
precision was considered acceptable.

5.3.2  Bias
                                         spiked and  unspiked samples,  the
   The  bias  is  a  measure  of  the  systematic  error  inherent  in  the
measurement system.   The bias is the difference  between  the observed  spiked
value and the expected spiked value,  including the difference  from zero  as
measured by  the  unspiked value.   Ideally,  this  difference will be  zero.
The bias was calculated as follows:
       B = Sm - Mm - CS
                                                                         25

-------
where:

       B  =   bias at the spike level
       Sm =   mean of the observed spiked sample concentrations
       Mm =   mean of the observed unspiked sample concentrations
       CS =   expected value of the spiked concentration.

    Even  if  the  bias is  not  zero,   it  may  not  be  significantly different
from  zero.    Statistical  significance  of  the  bias  is  determined  by
conducting  a small  sample hypothesis  test  of H0:  the bias  is  zero vs Ha:
the  bias  is not  zero,  where  H0  is  the null  hypothesis  and  Ha  is  the
alternative  hypothesis.   A small sample  test statistic,  t,  is  calculated
from  the  data and compared  to the  tabulated  t  value which  comprises  the
lower limit  of the rejection region for H0 at the 95% confidence level.   If
the calculated t  statistic  falls within the rejection region,  the bias is
statistically significant and  a  correction  factor must  be  used  for future
testing.     The  statistical   significance  of  the  bias  was  determined  as
follows:

    1.  The  standard  deviation  of the mean is  calculated  as  follows:
    2.  The  t-statistic was  determined  by:

                                       I T5 I
                                 t  =
                                      SDm
   The  bias is considered  significant  if the t-statistic  is  greater than
the  critical   value  of  the two-sided  t-distribution  at  the 95  percent
confidence level  and n-1 degrees of freedom.

   If the  bias is  statistically significant,  a correction factor (CF) must
be calculated as follows:

                         CF =  	1	  =    CS
                                    CS
   For the method to be acceptable, CF must be  between 0.70  and  1.30.
                                                                         26

-------
                        6.0  RESULTS AND DISCUSSION


   The  spectral   analysis  programs  (Section  5.2.2)  were  applied  to  all
sample  spectra,   and  the  resulting  concentration values  were  corrected
(Section 5.2.3).   All  spectra were  visually  compared  to  spectra  of  the
spike cylinder  gases  to  ensure  that  the  resulting  concentrations  were
physically reasonable and  that no  obvious  spectral interferants  had  been
omitted  from the  analytical programs.  Statistical analysis of the data was
carried  out (Section 5.3), and  compounds were  classified as "validated" if
they met the following criteria:

   •   The relative  standard  deviations for both the spiked  and unspiked
       series of spectra were less than 50  percent.

   •   The  t-value  determined  for  the  data was  less  than  that  for  the
       appropriate  number  of  degrees  of  freedom   at  the  95  percent
       confidence level.

   •   If  the  bias was  statistically  significant,  then  a multiplicative
       correction  factor was  determined,  and  found   to between  0.70  and
       1.30.

   Spectra and analytical  programs  involving compounds  for which the above
criteria were  not immediately  met  were subject  to further  scrutiny.   In
many  cases,   improvements   in  the   analytical  results  were  achieved  by
adjustment  of  the  spectral  region  and/or  baseline  subtraction  technique
employed  in the  Multicomp  program.    Following  these adjustments,  the
statistical analysis was repeated.   Many compounds which did not initially
pass  the  specified  tests were  re-classified as  "validated" following such
correction of the programs.

    For  clarity,  all tables  associated with  and  described  in this  section
have been placed at the end of  this report  (following Section 8.0).
6.1  COMPOUNDS WHICH MEET VALIDATION CRITERIA

    The   following   sections   present   results   and   analytical  details
concerning those compounds  for which  the statistical data quality criteria
listed above were met, for each of the three sampling systems  investigated.

    Tables  6-1  and  6-2  summarize  the  compound/sampling  pairs  for  which
valid analytical programs could be devised, for the  not/wet, condenser, and
concentrated samples.  The  number  of  samples  is  not always the 24 required
by Method 301, but is sometimes lower because of procedural difficulties or
time  and  material   constraints   (see  Section   6.4.3).     However,  the
statistical  tests  were  carried  out  taking  the  number  of  samples  into
account.   Several  compounds  (notably  numbers 159  and  L&5"in the hot/wet
samples) exhibit mean  unspiked values which  vary  significantly  from zero,
but  still  meet  the  Method  301   criteria  for  analyte   spiking.    This is
because  the  difference  between   the   spiked  and  unspiked concentrations,
rather than  their  absolute  values, are  used  in  all  the statistical  tests.
Analytically, this effect is due slight  errors in the choice of points  used

                                                                         27

-------
for  baseline   subtraction   in  the  Multicomp  programs.     The  statistical
results  indicate   that   the  results  of  the  programs   are  accurate  when
corrected  for  these  offsets,  and  that the  offsets could be  removed  by
adjustment of the baseline  subtraction  routines.   These testing procedures
for these compounds  are  listed as having met  the  Method 301 criteria, but
are not counted as "valid" in the totals presented in Section 7.0

    Tables  6-3  through  6-5  present  detailed  analytical results  for  each
compound  in the   hot/wet   samples,  condenser samples,  and  concentrated
samples, respectively.   Each entry  in  these  Tables  provides  the observed
concentrations  for  the  spiked and  unspiked  samples  and  the  statistical
quantities  defined   in  Section  5.3.   Table  6-6  presents  the  reference
spectral files, associated concentrations,  analytical regions, and baseline
correction details for  the Multicomp programs employed  in  the calculation
of  the  observed  concentration of the   indicated  compound   in each  type  of
sample.  Each page of the  Table  pertains  to  a particular compound/sampling
system  combination,  and appears  in  the same  order  as   the information  of
Tables 6-3 through 6-5.


6.2  COMPOUNDS  WHICH DO NOT MEET VALIDATION CRITERIA

    Tables  6-7  through  6-9  list  the statistical  details   for  those  spike
compounds for which  the  required  data  quality criteria  were not  met.   For
brevity, details  of  the associated Multicomp  analyses  are  not  provided in
this report.


6.3  CEM AND FLOW DATA

    Data from  the  CEM   analyzers  were  compiled   once   per  second  by the
associated  data  acquisition  system,  then combined  to  provide  one-minute
average  values.       Table   6-10  summarizes  the  average  concentration
measurements collected   over  each  sample  run  period.    The  shaded  areas
within  the  Table  represent time  periods  over which  the sample  was spiked
with cylinder gases  containing HAP  compounds;  analyzer   values during  these
spiking  periods  are  biased  by  the presence  of  the cylinder gas,  and are
therefore  not   presented.    The  CO,   C02,   and   02  data   are  dry   basis
measurements because the  sample  provided  to these  analyzers  was  passed
through the condenser system before being introduced to  the  instruments.

    Sample  gas  analyzed  by the THC instrument  bypassed the  condenser;  these
measurements were identically  zero  for  the  entire  test   period,  and are
omitted from Table 6-10.   Table 6-10 also  presents the   flue gas volumetric
flow,  which  was  determined  for  each set of cylinder gas  spike  runs  (see
Section  4.4.1),   The water  content and average  delta   p presented  in the
'able  are  the  results  of  wet-bulb/dry-bulb measurements and  velocity
traverses  conducted  before each  run.   Averaged  02  and C02 concentrations
were coupled with the water  and  delta  p  values  to  calculate  the flue gas
flow rates.
                                                                         28

-------
6.4  DISCUSSION

    Several  generalizations  may be may concerning  the  failure  of the three
sample  types  (hot/wet,  condenser,  and   concentration)  and/or  analytical
techniques  to  meet the  Method 301 validation  criteria.    The discussions
below  identify the  compounds  according  to  their  identification  number,
which is listed with each entry in Tables 6-1 through 6-5,  and in Tables 6-
7 through 6-9.

6.4.1  Spectral Interferences and Large Sampling Losses

    A number of compounds are  simply  not observable in the  spectra of the
direct gas  samples delivered to  the  FTIR instrumentation.   These include
compounds 028,  084, 115, and 143 in the hot/wet samples,  and compounds 084,
115,  and  143  in  the  condenser  samples.   For  these data,  the  calculated
spiked and unspiked concentrations varied greatly from sample to sample, or
differed only  slightly  for  individual  samples.   These  effects are probably
caused by heavy spectral interference, losses  in  the sampling system, or a
combination of both effects.

    The  concentrated  sample  spectra  indicate  that  a  number of  the spike
compounds are not efficiently delivered to the FTIR sample cell.  There are
several   possible   reasons  for  this  effect.    Compounds  with  low boiling
points are probably not efficiently adsorbed by the Tenax trap, or are lost
during the  drying cycle; others  are  highly  water soluble  and  are  likely
dissolved in the  liquid formed  in  the  trap, and  subsequently  lost in the
drying  process,   rather than   being  adsorbed.    Table  6-11  lists  those
compounds  which   were  not  detected  after  thermal  desorption  of   spiked
samples,  along with their boiling  points  and solubilities  in water.  Table
6-12 presents the same  information for those compounds which were detected.
The  trends  noted  above are clear  from  a comparison of these  two  lists of
physical  data.

    Of the compounds  which  were detected in  concentrated  samples,  and for
which  analytical  programs  were devised,  several  (numbers  010,  159,  and
169), failed to meet the Method 301 criteria because of heavy losses  in the
sampling system or because of heavy spectral  interferences.

6.4.2  Systematic Errors

    There  is  statistical  evidence that  some  compounds   are  consistently
delivered by the  sampling  systems  (the  RSD  values  for the  spiked samples
are  low)  and  are  not subject  to  extreme spectral  interferences  (the RSD
values for  the unspiked samples  are  low),  but the  analytical  results are
consistently low  (mean spiked  value  less than the  expected  value)  or too
high  (mean  spiked  value greater than  the expected  value).   In the hot/wet
system, the  spiked results  are  consistently  low for compounds 029 and 108,
and  the spiked results  are  too  high for  compounds 039, 046,  077, 104, 106,
112,  171,   and  172.    In  the  condenser system,  the  spiked  results  are
consistently low  for  compounds 003,  009, 028,  029, 108,   and  115,  and the
spiked results are too  high for compounds 039, 046,  168, 172, and  192.
In  the concentrated  samples,  the  spiked results  are  consistently low for
compounds 009,  029, 108, 112,  and  166,  and  the spiked  results are too high
for  compounds 022 and  159.

                                                                         29

-------
   There  are several  possible systematic  errors which could  lead  to such
results,  including (1) errors in the  reference  spectrum gas concentration,
spike  cylinder  gas concentration,  or  both;  (2)  band  intensity  mismatch
between  reference  spectra   and  sample  spectra,  caused  by  instrumental
distortion  or  gas  temperature   mismatch  between  reference  and  sample
spectra;   and  (3)  a  consistent  loss  of a  certain  fraction  of the  spike
concentration in the  sampling  system  (although  this  impacts only  those
results for  which  the spiked values  are  lower  than expected).   Even when
the  techniques   fail  to meet  the  Method   301  criteria  because  of  these
effects,  they may provide useful  lower concentration limits (in those cases
when   the  observed   concentration   is  lower   than   expected)   or  upper
concentration limits  (in those  cases when  the observed  concentration  is
higher than expected).

6.4.3  Statistical Issues

   A  fundamental  question   is posed   by  the fact that  several  compounds
failed to meet  the  validation  criteria   solely  because  the  mean of  the
observed values  (Smu)  was close  to  zero,  causing the RSD of the measurement
to diverge and  exceed  the  50%  limit.   This  effect   is  due  only to  the
failure of the  statistical  tests when the  observed  unspiked concentration
is nearly  zero.   It  is well illustrated by  the case of acrolein,  compound
number 006,  when spiked into the condenser  samples  (although  the compound
did  meet   the validation  criteria   in  the   hot/wet  samples).    The  average
unspiked   concentration  was  extremely  close  to   zero  for   this  set  of
measurements, with maximum  deviations  from zero  equal  to 0.69  and  -0.30
ppm.    However, the prescribed statistical  analysis leads to an RSD value of
587%  for  this set  of measurements,  which  is well  outside  the validation
criteria.  Note  that  if  the average unspiked mean  had been much greater in
absolute  magnitude than the actual value  of 0.04 ppm,  the analysis  would
have easily passed the RSD  test.

    For each  sampling system, a  number  of compounds  failed  to  meet  the
Method  301 criteria  solely because  of  this  effect.    They  are,  for  the
hot/wet  system,  compounds  075,  lllu  117,  147,  151,  153,  and  192;  for the
condenser  system compounds  006,  022,  030,   104,  111,  166,  and  167;  and for
the  concentrated samples, compounds 114 and  142.    ~      _             ^_

    Several  compounds  exhibited  both  this   statistical  problem   and   a
correction factor  (CF)  outside  the   allowed  range.   The  techniques  may
therefore  also be  suitable  for determination of approximate concentrations
or   concentration  limits   (as discussed   in  Section   6.4.2)   for  several
compounds.   They are, in the condenser system,  numbers 003,  009,  and 039;
in the concentrated samples, numbers  009,  022,  029,  112,  and 159.

    The number  of samples  collected   in  this   test  was lower  than  the 24
specified  by Method 301 for all  the  sample  concentration spike compounds
and  several  of  the   direct gas   spikes.    Portions  of  the Method  301
calculations  provide  for   including   the  number  of  samples  in  the set,
including  both  the calculations  of the standard deviations  SDS and SDU and
the  test  for significance  of the bias, which determines whether or not the
correction factor  need  be applied for  a particular compound.   As the  number
                                                                          30

-------
of samples decreases from the  prescribed  twenty  four,  passing the RSD test
becomes more difficult (requires higher precision of the measurements), but
the bias is less often shown to be significant.

6.4.4  Contaminants

   During  the  validation  testing  of  the   sample  concentration  method,
problems  were  also  encountered  due   to interference   by  a   variety  of
contaminants that were  collected,  in addition to  stack  gas components and
spike gas  species,  on  the Tenax adsorbent.   During  sample analysis, these
contaminants  were  desorbed  along  with  the  desired  species,  and  the
resulting infrared spectra  showed  absorbances  due  to both  the contaminants
and  the expected  species.    The  presence  of these  contaminants  in  the
spectra  proved   to   be  a   significant   impediment   to   determining  the
concentrations of  the  spike gas  species,  as well  as  interfering with the
collection of "clean" unspiked samples.

   Entropy  was  able to  identify  the two  most  significant contaminants
encountered in this  study as  well as  their  source  in  the  sampling system.
Future  studies  or  validation  tests will  be  able  to  avoid  problems with
these  contaminants  using  the  knowledge  gained  from  the  current  work.
Identification of these sources  of contamination  is  also of  importance for
any  workers  using  other  sample  concentration schemes,  such as  VOST and
Semi-VOST,  where   similar   contamination   problems   can  potentially  be
experienced.

   The  first  contaminant  encountered  during the  validation  process was
residual  mill   oil   on   the  stainless  steel  probe.    This  contaminant,
identified as  a  long-chain alkane hydrocarbon (CH3(CH2)nCH3,  n>10)  by its
infrared  spectrum,  was  observed  only  during  the  first  two  days  of
validation testing.  New  probes  had  been  fabricated  for this test, and the
surfaces had been cleaned using solvent.   It appeared this  cleaning was not
sufficient to remove all  residual  oil,  in light  of the high  concentrations
detected during  the  first two days  of testing.   The  amount  of oil  varied
considerably between the  four probes used,  indicating  that all  probes had
not  received  equal  cleaning.    Validation testing utilized heated probes,
and the heating process served  to  drive the  oils  off the hot metal surface
and  onto  the  Tenax absorbent.   The oil  contaminant disappeared after two
days,  apparently  because  this  provided  sufficient  time  to  remove  all
residual oil.   This problem  can be avoided  in  the future by requiring a
more rigorous  cleaning  of new  stainless  steel tubing used for probes and
pre-heating the probes for an extended period  before use.

   The  second contaminant  was also  identified  by  its  infrared  spectrum,
and  was determined  to  result  from a  chemical  reaction4  involving glass
wool, which  was  initially  used  in  place of the  standard  filter  in the
concentration sampling system.  The glass wool (Altech) was silanized, that
is,  treated with  dimethlydichlorosilane (Si(CH3)2(C1 )2),  to  reduce  its
reactivity.   The  reaction  product  (octamethylcyclotetrasiloxane) results
from a  hydrolysis reaction  between the water and dimethlydichlorosilane in
the presence of HC1:
                                                                         31

-------
                                     CH3    0    CH3
                                        \  / \  /
   Cl     CH3                         CH3  -Si    Si-  CH3
     \  /                               /       \
4     Si      +4 H20      	>     0         0         + 8 HC1
     /  \                               \       /
   Cl      CH3                        CH3  -Si    Si-  CH3
                                        /  \ /  \
                                     CH3    0    CH3


While  this  cyclic  siloxane was  definitively  identified  in  the  infrared
spectra, a search of the  chemical  literature was required to determine the
mechanism of its formation.  The appended reference list cites  studies that
describe  the   reaction  shown   above.     Note  that   these   references  are
primarily from foreign (Russian and German)  sources,  but the  abstracts have
been  translated  and  provide  the  necessary information  to  identify  the
reaction.

    This hydrolysis  reaction  is   known  to  proceed  under  the  conditions
encountered in  the  sampling train used  in  the  validation  test.  Here, the
silanized glass  wool was  used  as a  filter material   in  the heated  filter
compartment between  the probe  and  absorbent trap.  Flow of  hot  stack gases
through  the  filter allowed  water  to condense  on the glass  wool,  and,  in
turn, HC1 to dissolve in  this condensed  water.   The references  indicate the
reaction is enhanced by the presence of dissolved HC1 in the water and the
elevated temperatures  at  which the glass wool  was  maintained.    During the
validation test,  it  was  observed  that  the  concentration of HC1  was  rather
variable,   and  this  variability  seems   to   have   also   affected  the
concentration  of the  reaction  product  above.   While  the cyclic  siloxane
shown  above  is the main  product,  the reaction can also form a  variety  of
other  linear and cyclic siloxanes.

    As stated earlier, the  infrared  spectra clearly  showed  the  presence  of
the  above  cyclic siloxane,  which  was  unambiguously  identified  using   a
spectra  search  library  on  the  FTIR  system.    The  remaining  unidentified
contaminants  are  probably  other  products  of  this  reaction  mechanism.
Entropy  was  able to clearly identify  the cyclic siloxane and  the  mill oil
for two  reasons.   First,  these  species  have quite distinct infrared spectra
that  permit identification using spectral  search  software.    Second, the
concentration  of the different contaminants varied considerably during the
testing,  and  some  unspiked spectra were  recorded   that  only   contained  a
 single contaminant.   Indeed, Entropy  was able  to use and manipulate these
 spectra so  they could be used as  "reference"  spectra  in the  mathematical
multicomponent  analysis.

    The  presence  of  the  contaminants hampered the validation process for a
 number of reasons.   Firstly,  the mathematical  analysis used  to determine
 concentrations  from an  infrared  spectrum  (K matrix  method) requires  that
 the  analyst  have reference spectra for  all  species present  in  the analyzed
 spectral  regions.   Since  the absorbances  due  to  the contaminants often


                                                                          32

-------
overlapped those  of the desired  analytes, and  no reference  spectra  were
available for  some  of the contaminants,  the  accuracy of  the  mathematical
analysis  was  impacted.    Secondly,   there  were  a  number  of  different
contaminants  (at  least  four)   which  were  present  simultaneously  and  in
varying   relative   concentrations.      It   should   be  noted   that  these
concentrations varied  even  among the  four trains of the quad-train  in  a
given  sampling  run.   Thirdly,  at  times the  concentration of  one  or  more
contaminants  was  so  high  that  it  absolutely  precluded  analysis  of  the
infrared  spectrum.   In  these cases the  contaminant  absorbance overwhelmed
that of any other species present.

    The problems  with  sampling  system  contaminants experienced  in  the
current study, and especially the identified contaminants and their sources
within  the  sampling  system,  are significant  for  other  emissions  testing
methods besides  the  sample  concentration scheme  utilized in  the  current
study.   Since water  and HC1  are  commonly encountered  in stack gas,  and
glass  wool  is  commonly  utilized in sampling systems,  the  reaction  to form
siloxanes  may  occur  in  a  variety  of  other  test  methods.    Likewise,
contaminants  like  the  residual  mill   oils  on  the  heated  probe  can  be
present.   The fact that these  contaminants  could be  identified  serves to
reinforce some of the strengths of FTIR as a measurement technique.   Future
validation   and   screening   tests   utilizing   this   sample  concentration
technique will avoid  these contamination  problems  by using Teflon or other
inert  materials for filtration.
                                                                          33

-------
                              7.0   CONCLUSIONS
    The  FTIR spectrometric  analytical  procedures  described  in  this report
have been subject to a test for validity according to a revised form of EPA
Method 301, in which  the  option for (dynamic) analyte  spiking  was chosen.
On  the  basis  of  these  tests  and the  prescribed  statistical calculations,
the methodology  is  to be considered "valid"  for  a number  of compounds in
three  different  sampling  systems.     The  number  of  compounds  considered
"valid"   for   each   sampling   system,   and   the   approximate    in-stack
concentration   corresponding   to  the   spike  concentration   level,   are
summarized below.

Compounds Meeting Method 301 Analyte Spiking Criteria::

    •   25 compounds for hot/wet sampling, at 10 ppm.

    •   24 compounds for condenser sampling,  at 10 ppm.

    •   11 compounds for concentrated samples, at 500 ppb.

    With  the exception of m-xylene,  all  compounds  which met the validation
criteria  in concentrated  samples  also  passed  for either   the  hot/wet or
condenser samples.   16  compounds met the criteria  for both  the hot/wet and
condenser sampling  systems.  33 different compounds met the  criteria for at
least  one   sampling  system,  as  well   as  a   total  of 60  compound/sampling
system combinations.

    The  test procedures  differed from  those  prescribed in Method 301 in the
following ways:

    •   Gas  phase   samples  were   collected  sequentially,   rather  than
       simultaneously.

    •   The  required  number of  samples (24) was  not  obtained  for all  gas
       phase  spike compounds,  and   fewer  than  the  required  number  were
       obtained for all  sample concentration spike compounds.

    •   Gas  phase samples  were  spiked dynamically  at  20%  of  the sample
       volume.

    •   The  equivalent  spike levels  (10  ppm for  gas  samples,  500 ppb for
       concentrated samples) did not approximate  the  emission level in the
       effluent.

    Further  testing  may be  warranted  for   extension  of concentration to
high-boilers  (via   addition  of cryo-trapping),   extension   of  gas  phase
sampling to particular  reactive  species  (eg, HC1,  HF), and to compounds for
which cylinder gas  standards cannot  be prepared.
                                                                         34

-------
                              8.0  REFERENCES

'"Method 301  -  Field Validation  of  Pollutant  Measurement  Methods  from
Various  Waste  Media,"  Federal   Register,  57(10),  988-62002,   December  29
1992.

2"Computer-Assisted  Quantitative Infrared Spectroscopy," Gregory L. McClure
 (ed.), ASTM Special Publication 934 (ASTM),  1987.

3"Multivariate  Least-Squares  Methods Applied  to the Quantitative Spectral
Analysis of Multicomponent Mixtures," Applied Spectroscopy, 39(10), 73-84,
1985.

4Cyclic Siloxane  Contaminant  References:

    "Effect  of  hydrochloric acid on  the  hydrolytic polycondensation  of
    bifunctional    organochlorosilanes   with    chlorotrimethylsilane."
    Kopylov,  V. M.,  Agashkov,  S.  P.,  Sunkovich,G.  V.,  and  Prikhod'ko,  P.
    L.,  Zh.  Obshch.  Khim.,  61(6), 1378-83,  (Russ),  1991.

    "Preparation  of  siloxanes."   Lehnert,  R.,  Porzel,  A.,  and  Ruehlmann,
    K.,  Z. Chem.,  28(5),  190-2,  (Ger),  1988.

    "Study of the effect  of synthesis conditions on the  degree  of purity
    of   hydrolytic  hydrochloric  acid-waste  from  the   production   of
    organosilicon products."    Trokhachenkova,  0.  P.,  Zh. Prikl.  Khim.
    (Leningrad),  59(10),  2396-9,  (Russ),  1986.

    "Effect  of  hydrochloric acid on  the hydrolytic copolycondensation  of
    dimethyldichlorosilane  with  trimethylchlorosilane."   Kopylov, V.  M.,
    Agashkov,  S.  P.,   Kireev,   V.V.,  and  Krylova,  M.  Ye.,   Vysokomol.
    Soedin.,  Ser.  A, 28(7), 1465-72,  (Russ),  1986.

    "Low-viscosity,   storable   diorganopolysiloxanes."     Hamann,   H.,
    Kroening,  H., Sliwinski,   S.,  Koehler, B.,  Hoche,  R., Fiedler,  R.,
    and Boehm,  M.,  East German Patent DD 217814  Al  23,  8 pp.,  (Ger),
    Jan 1985.

    "Hydrolysis of chlorosilanes."   Hajjar, A.  L.  (General Electric Co.,
    USA).  German Patent  Ger.  Offen.  DE 3244500 Al 23,  9 pp.,  (Ger),  Jun
    1983.

    "Hydrolytic    polycondensation     of    dimethyldichlorosilane    in
    concentrated  hydrochloric acid."   Panchenko,  B.I.,  Gruber, V.  N.,
    and Klebanskii,  A.  L.,  Vysokomol. Soedin.,  Ser.  A,  11(2),  438-42,
    (Russ),  1969.
                                                                         35

-------
                                  TABLE  6-1.
             Summary of Compounds Meeting Method 301  Criteria
                      in  Hot/Wet  and  Condenser Samples.
* Comoound
Cu*3
006
009
010
010
015
015
022
023
030
C37
037
077
C79
079
080
080
095
095
106
107
107
109
109
112
114
114
117
124
124
142
142
147
151
153
159
159
160
160
165
165
166
167
168
169
169
171
173
173
Acetonnnle
Acroiein
Acrvionrinle
Ally! Chlonae
AIM Chlonde
B«nzen«
Benzene
Bromotorm
1 3-Buladiene
CarOonyi Surfide
ChloroDenzene
Chlorooenzene
Ethvibenzene
Ethvl Chlonae
Ethvl Chlonae
Ethvlene Dibromiae
Ethvlene Dibromiae
n-nexane
n-Hexane
Methyl Bromioe
Methyl Chlonoe
Methyl Chlonde
Methyl Ethyl Ketone
Methyl Ethyl Ketone
Methyl Isobutyl Ketone
Methyl Methacryiate
Methyl Methacryiate
Methylene Chlonae
2-Nrtropropane
2-NitrooroDane
Prooyiene Oichlonae
Prooylene Oichlonae
Styrene
Tetrmcnloroethyleoe
Toluene
1 . 1 .2-Trichloroethane
1 . 1 .2-Trichloroethane
Tncntoroethylene
Trichtoroethyteoe
2.2.4-Trimethylpentane
2.2.4-Trimethylpentane
Vinyl Acetate
Vinyl Bromide
Vinyl Chlonde
Vinylidene Chlonde
Vinylidene Chtoode
o-Xylene
p-Xvlene
D-Xvlene
oamoiing * ot
System Samoles
^ot/wet
Hot/wet
Hot/wet
Hot/wet
Condenser
Hot/wet
Condenser
Hot/wet
Hot/wet
not/wet
-tot; wet
.onaenser
Conaenser
not/ wet
Oonaenser
-oVwet
Conaenser
Mot/wet
Conaenser
Conaenser
Hot/wet
Conaenser
Hot/wet
Condenser
Conaenser
Hot/wet
Conaenser
Condenser
Hot/wet
Condenser
Hot/wet
Conaenser
Conaenser
Condenser
Condenser
Hot/wet
Condenser
Hot/wet
Condenser
Hot/wet
Condenser
Hot/wet
Hot/wet
Hot/wet
Hot/wet
Condenser
Condenser
Hot/wet
Condenser
24
24
24
24
:o
24
•4
:o
24
24
24
2-1
23
_4
24
24
24
24
24
24
24
24
24
24
'4
24
24
24
24
24
24
24
24
14
24
24
24
24
24
20
24
24
24
24
24
24
20
24
24
•-recision
Sotkea Unsoiked
a. 99
0.84
0.97
3.62
0.84
1 38
-13.57
098
• 44
0.41
372
• 27
• 35
~33
3 41
3 75
• 13
• 46
• 61
430
371
5.17
5.52
M 70
5.40
0.99
1.51
3.07
0.56
459
083
2.14
1 11
0.60
2.03
5.26
1.21
0.85
1.07
0.62
0.37
49.09
0.79
0.66
0.37
0.20
1.32
1.31
425
23.10
-1069
382
-6.13
-6.76
-21.20
-1503
-10.91
-9.09
1602
-5461
24 14
-284
-309
-2928
-701
-•4 01
-'094
386
22.03
-679
-41 57
-742
-33.66
13.32
-334
28.69
47.53
33.69
21.96
1490
785
10.31
-12.26
33.60
-466
-6.32
-12.16
36.90
-23.74
16.37
-13.56
15.00
-4.74
12.29
34.04
-23.90
7.60
2536
Bias
„ 91
075
045
• 45
-i 33
' 27
-382
355
-352
O29
269
' 59
297
1 48
• 57
• 03
: 45
' 20
3 36
367
-033
-065
336
2.24
394
0.79
-0.49
-1 34
0.57
0.17
-027
-0.37
3.11
0.32
343
2.19
095
1.03
1.03
0.90
0.23
0.04
-0.38
3.00
-0.07
-0.06
424
3.70
3 15
•-vaJue
3 55
486
328
360
562
772
/ £
500
2.23
596
•5 13
652
•427
2 70
• 50
•057
1 32
7 15
2 09
3 11
• 06
380
599
1 39
426
6.74
2.65
1 94
2.84
0.33
' 48
0.68
18.82
5.13
2.09
4 19
449
10.07
8.71
11.92
4.75
0.03
3.90
26.11
1.21
0.82
1775
15.14
2.22
CF
- 92
0 94
0 96
088
• '5
3 89
1 62
: 35
' 06
' C3
: 79
36
77
38
37
90
35
69
97
73
03
• 07
0 73
0 80
0 72
093
• 05
i 15
094
098
• 33
• 04
0.78
097
0 74
082
0.91
0.90
0.90
0.92
098
1 00
1 04
0.77
' 01
1 01
070
073
376
Mean ,
Soiked Unspifced
' 3.42
11.18
12.19
5.23
5.43
10.96
5.08
9.96
590
•0.54
3.73
•2.36
•3.22
7 14
•o 11
9 16
392
:052
:0.53
1772
761
766
650
709
16.17
3.46
9.98
9.98
10.12
10.08
11 26
15.60
1433
10.26
17.94
1.03
7.96
10.05
10.59
10.73
10.38
2.53
9.99
11.14
1029
10.18
13.58
15.51
17.93
4 UU
-1.15
1.75
-5.42
-3.44 I
•0.30
• 1.11
-0.45
-2.31 I
0.13 I
-296 I
0.77 I
0.25 I
-5.24 I
-2.46 I
-0.99 I
-0.66 I
-0.62 I
0.23 I
408 I
•2.06 I
-1 69 I
-583
-4 11
2.23
-2.43
0.37
1.30
0.57 i
0.93 I
1 05
5.49
0.46
-0.06
4.75
-11.16
-2.99
-0.46
0.09
-0.15
0.18
•7.55
0.36
-1.86
0.36
0.22
-0.66
1.77
4.73
• See Section 6 1. These comoounds meet validation cmena but are not counted as validated comDounas.
                                                                                36

-------
                   TABLE 6-2.
Summary of Compounds Heeting Method 301 Criteria
            in Concentrated Samples.
ID
#
015
037
080
095
109
124
151
153
160
172
173
Compound
Benzene
Chlorobenzene
Ethylene Dibromide
n-Hexane
Methyl Ethyl Ketone
2-Nitropropane
Tetrachloroethylene
Toluene
Trichloroethylene
m-Xylene
p-Xylene
#of
Samples
8
12
8
8
12
8
8
12
8
12
8
Precision
Spiked Unspiked
8.99
6.24
7.76
28.26
17.32
2.42
26.67
10.31
3.26
4.85
14.25
18.86
33.89
32.11
13.92
-31.16
-37.08
44.51
-45.59
37.35
43.31
-36.71
Bias
-1.14
4.95
2.30
-3.59
4.26
3.11
-1.05
4.20
0.37
5.65
-2.72
t-value
0.63
2.33
1.14
0.72
1.09
4.16
0.19
1.71
0.17
4.44
1.12
CF
1.06
0.80
0.90
1.22
0.82
0.87
1.06
0.83
0.98
0.78
1.16
Mean
Spiked Unspiked
19.90
28.39
24.51
17.68
22.27
21.67
20.50
23.71
25.63
26.00
17.01
1.04
3.44
2.20
1.27
-1.98
-1.44
1.55
-0.49
5.27
0.36
-0.28
                                                            37

-------
TABLE 6-3.  Compounds Meeting Method 301 Criteria in Hot/Wet Samples.

-------
Acetonitrile-003
SPIKED
12.59
14.56
16.77
14.86
16.45
16.58
15.00
15.84
14.97
17.76
16.13
13.49
15.42
RSD =
DEV.
1.96
-1.91
0.13
0.85
2.79
-2.65
1.17
8.99
Bias= 0.91
t= 0.55
UNSPIKED
3.35
4.19
3.70
3.12
3.39
5.81
4.55
4.02
3.48
3.31
3.69
5.43
4.00
- RSD =
DEV.
0.85
-0.58
2.42
-0.53
-0.16
1.75
3.74
23.10
Exp Conc= 10.50
CF= 0.92
TABLE 6-3 (continued!
Acrolein-006
SPIKED
11.06
11.04
11.24
11.36
11.08
11.33
11.21
11.26
11.17
11.01
11.23
11.21
11.18
RSD =
DEV.
-0.02
0.12
0.25
0.05
-0.16
-0.02
0.23
0.84
Bias= 0.75
t= 4.86
UNSPIKED
-1.15
-1.35
-1.36
-1.24
-1.24
-1.02
-1.14
-1.11
-1.12
-1.11
-0.86
-1.13
-1.15
RSD =
DEV.
-0.20
0.12
0.23
0.03
0.01
-0.27
•0.09
-10.69
Exp Cone = 11.58
CF= 0.94
                38

-------
Acrylonitrile-009
SPIKED
12.08
12.25
12.15
12.27
11.98
12.10
12.15
12.38
12.04
12.28
12.30
12.36
12.19
RSD =
DEV.
0.17
0.12
0.12
0.23
0.24
0.06
0.93
0.97
Bias= 0.45
t= 3.28
UNSPIKED
1.64
1.71
1.79
1.70
1.79
1.85
1.74
1.88
1.79
1.75
1.60
1.72
1.75
- RSD =
DEV.
0.07
-0.09
0.06
0.14
-0.04
0.12
0.27
3.82
Exp Conc= 10.00
CF= 0.96
TABLE 6-3 (contmuedl
Ally! Chloride-010
SPIKED
6.23
6.36
6.12
6.40
6.00
6.40
6.41
6.26
5.87
6.27
6.01
6.43
6.23
RSD=
DEV.
0.13
0.28
0.40
-0.15
0.40
0.42
1.48
3.62
Bias* 1.45
t= 3.60
UNSPIKED
^.50
-5.52
-5.22
-5.39
-5.18
-5.12
-5.44
-5.33
-5.52
-6.00
-5.95
-5.85
-5.42
RSD =
DEV.
-1.02
-0.17
0.06
0.11
-0.49
0.09
-1.42
-6.13
Exp Cone = 10.20
CF= 0.88
                39

-------
Benzene-015
SPIKED
10.64
10.89
10.93
11.10
10.69
11.02
11.12
11.17
10.84
11.06
11.12
10.98
10.96
RSD =
DEV.
0.25
0.17
0.33
0.05
0.22
-0.14
0.88
1.38
Blas= 1.27
t= 7.72
UNSPIKED
-0.57
-0.45
-0.51
-0.45
•0.16
-0.23
-0.14
-0.28
-0.15
-0.23
-0.21
-0.24
-0.30
- RSD =
DEV.
0.12
0.06
-0.07
-0.14
-0.08
-0.03
-0.14
-21.20
Exp Conc= 10.00
CF= 0.89
TABLE 6-3 (continued)
Bromoform-022
SPIKED
9.69
9.79
9.85
9.91
9.85
10.09
10.08
10.07
10.20
10.04
9.96
RSD =
DEV.
0.09
0.06
0.24
-0.01
•0.16
0.22
0.98
Bias= 0.55
t= 5.00
UNSPIKED
-0.51
-0.48
-0.53
-0.60
-0.42
-0.42
-0.41
-0.39
•0.31
-0.44
-0.45
RSD =
DEV.
0.03
-0.08
0.00
0.02
-0.13
-0.16
-10.91
Exp Conc= 9.86
CF= 0.95
               40

-------
1 ,3-Butadiene-023
SPIKED
7.02
7.12
7.10
6.97
6.93
6.85
6.92
7.03
6.46
6.73
6.80
6.82
6.90
RSD =
DEV.
0.11
-0.13
-0.08
0.11
0.27
0.02
0.30
1.44
Blas= -0.52
t= 2.23
UNSPIKED
-2.25
-2.36
-2.54
-2.39
-2.45
-1.76
-2.03
-2.11
-2.30
-2.36
-2.54
-2.58
-2.31
- RSD =
DEV.
-0.11
0.15
0.69
-0.08
-0.06
-0.04
0.55
-9.09
Exp Conc= 9.72
CF= 1.06
TABLE 6-3 (continued)
Carbonyl Sulfide-030
SPIKED
10.53
10.53
10.58
10.69
10.56
10.65
10.61
10.59
10.43
10.44
10.47
10.43
10.54
RSD =
DEV.
0.01
0.11
0.09
-0.02
0.01
-0.04
0.16
0.41
Blas= -0.29
t= 5.96
UNSPIKED
0.13
0.09
0.08
0.12
0.15
0.15
0.14
0.11
0.21
0.18
0.09
0.09
0.13
RSD =
DEV.
-0.04
0.05
0.00
-0.02
-0.03
0.00
-0.05
16.02
Exp Conc= 10.70
CF= 1.03
                 41

-------
Chlorobenzene-037
SPIKED
9.52
9.41
9.83
10.00
9.58
9.56
9.61
9.55
9.99
9.87
9.92
9.89
9.73
RSD =
DEV.
-0.11
0.16
-0.02
-0.06
-0.13
-0.03
-0.18
0.72
Blas= 2.69
t= 6.13
UNSPIKED
-3.16
-3.23
-3.44
-3.12
-3.00
-2.79
-3.09
-3.03
-3.23
-3.11
-1.44
-2.88
-2.96
- RSD =
DEV.
-0.07
0.32
0.22
0.06
0.12
-1.44
-0.80
-14.61
Exp Conc= 10.00
CF= 0.79
TABLE 6-3 {continued)
Ethyt Chloride-079
SPIKED
7.16
7.68
7.13
7.75
7.40
8.52
7.11
8.13
6.11
6.64
6.12
5.94
7.14
RSD =
DEV.
0.52
0.62
1.12
1.03
0.54
-0.19
3.64
7.33
Bias= 1.48
t= 2.70
UNSPIKED
-4.19
-3.99
^.31
-4.34
-5.41
-5.26
-5.15
-5.42
-6.14
-6.09
-6.07
-6.48
-5.24
RSD =
DEV.
0.20
-0.03
0.15
-0.27
0.06
-0.42
•0.31
-3.09
Exp Cone = 10.90
CF= 0.88
                42

-------
Ethylene Dibromide-080
SPIKED
8.98
9.11
9.14
9.29
9.11
9.09
9.14
9.20
9.17
9.16
9.31
9.21
9.16
RSD =
DEV.
0.13
0.16
-0.02
0.06
-0.01
-0.11
0.20
0.75
Blas= 1.03
t= 10.57
UNSPIKED
-1.07
-0.93
-0.97
-0.96
-0.83
-1.01
-0.98
-0.98
-0.94
-1.02
-1.09
-1.10
-0.99
- RSD =
DEV.
0.14
0.01
-0.18
-0.01
-0.08
-0.01
-0.13
-7.01
Exp Conc= 9.12
CF= 0.90
TABLE 6-3 Icontmuodl
n-Hexane-095
SPIKED
10.08
10.42
10.49
10.54
10.52
10.61
10.55
10.86
10.33
10.48
10.58
10.78
10.52
RSD =
DEV.
0.34
0.05
0.08
0.31
0.16
0.19
1.13
1.46
Bias= 1.20
t= 7.15
UNSPIKED
-0.71
-0.75
-0.81
-0.80
-0.38
-0.57
-0.62
-0.61
•0.42
-0.55
-0.60
-0.64
-0.62
RSD =
DEV.
-0.03
0.01
-0.19
0.01
-0.13
-0.04
-0.37
-10.94
Exp Conc= 9.94
CF= 0.89
               43

-------
Methyl Chlonde-107
SPIKED
7.81
7.55
7.75
7.68
7.30
7.29
7.19
8.12
7.56
7.72
7.65
7.70
7.61
RSD =
DEV.
-0.26
-0.06
-0.01
0.92
0.17
0.05
0.81
3.71
Blas= -0.33
t= 1.06
UNSPIKED
-1.05
-1.10
-2.04
-1.78
-2.50
-2.27
-2.03
-2.32
-2.51
-2.39
-2.40
-2.29
-2.06
- RSD =
DEV.
-0.04
0.26
0.23
-0.29
0.12
0.11
0.38
-6.79
Exp Conc= 10.00
CF= 1.03
TABLE 6-3 (continued)
Methyl Ethyl Ketone-109
SPIKED
6.59
5.83
7.01
6.37
6.26
6.25
6.43
6.34
6.96
6.24
6.75
6.93
6.50
RSD =
DEV.
-0.76
-0.64
-0.02
-0.09
-0.72
0.18
-2.05
5.52
Blas= 3.36
t= 5.99
UNSPIKED
-3.88
-5.26
-5.93
-5.48
-6.67
-6.43
-6.16
-6.42
-6.11
-6.11
-5.75
-5.74
-5.83
RSD=
DEV.
-1.39
0.45
0.24
-0.26
0.00
0.01
-0.95
-7.42
Exp Conc= 8.96
CF= 0.73

-------
Methyl Methacryiate-1 1 4
SPIKED
8.38
8.39
8.61
8.63
8.17
8.32
8.42
8.63
8.48
8.36
8.58
8.53
8.46
RSD =
DEV.
0.01
0.02
0.16
0.21
-0.12
-0.05
0.22
0.99
Bias= 0.79
t= 6.74
UNSPIKED
-2.42
-2.53
-2.62
-2.55
-2.34
-2.48
-2.55
-2.50
-2.15
-2.34
-2.31
-2.38
-2.43
- RSD =
DEV.
-0.11
0.07
-0.14
0.04
-0.19
-0.07
-039
-3.34
ExpConc= 10.10
CF= 0.93
TABLE 6-3 (continued!
2-Nitropropane-124
SPIKED
9.92
10.06
10.19
10.13
10.22
10.27
10.25
10.24
10.08
9.98
10.08
10.04
10.12
RSD =
DEV.
0.14
-0.07
0.05
-0.01
-0.10
-0.04
-0.03
0.56
Bias= 0.57
t= 2.84
UNSPIKED
0.84
0.28
0.30
0.52
0.52
0.69
0.58
0.50
0.83
0.61
0.58
0.60
0.57
RSD =
DEV.
-0.56
0.22
0.17
-0.08
-0.22
0.02
-0.45
33.69
Exp Conc= 8.98
CF= 0.94
               45

-------
Propylene Dichloride-142
SPIKED
11.83
11.90
11.64
11.70
11.10
11.28
11.20
11.06
10.58
10.78
10.99
11.02
11.26
RSD =
DEV.
0.07
0.06
0.18
-0.15
0.20
0.03
0.39
0.83
Blas= -0.27
t= 1.48
UNSPIKED
1.27
1.17
1.12
1.10
1.23
0.82
0.83
0.89
1.10
0.86
1.20
0.98
1.05
. RSD =
DEV.
-0.10
-0.02
-0.41
0.06
-0.24
-0.22
-0.94
14.90
Exp Conc= 10.48
CF= 1.03
TABLE 6-3 (continued!
1 , 1 ,2-Trichloroethane-1 59
SPIKED
0.89
0.89
0.93
1.05
0.78
0.84
0.95
0.93
1.19
1.27
1.28
1.38
1.03
RSD =
DEV.
0.00
0.12
0.06
-0.02
0.08
0.11
0.34
5.26
Blas= 2.19
t= 4.19
UNSPIKED
-11.34
-11.29
-11.87
-11.45
-11.25
-10.87
-11.17
-11.19
-11.32
-11.31
-9.59
-11.30
-11.16
RSD =
DEV.
0.05
0.42
0.38
-0.02
0.01
-1.71
-0.87
-4.66
Exp Conc= 10.00
CF= 0.82
                46

-------
Trichloroethylene-1 60
SPIKED
9.95
10.03
10.02
10.03
10.07
10.22
10.17
10.20
9.74
9.97
10.13
10.07
10.05
RSD =
DEV.
0.08
0.01
0.16
0.03
0.23
-0.05
0.45
0.85
Bias= 1.03
t= 10.07
UNSPIKED
-0.40
-0.42
•0.43
-0.44
-0.40
-0.56
•0.56
-0.53
-0.38
-0.49
-0.47
-0.45
-0.46
- RSD =
DEV.
-0.01
-0.01
-0.16
0.03
-0.10
0.01
-0.24
-12.16
Exp Conc= 9.48
CF= 0.90
TABLE 6-3 (continued)
2,2,4-Trimethylpentane-1 65
SPIKED
10.60
10.68
10.70
10.70
10.65
10.83
10.81
10.78
10.82
10.74
10.73
RSD =
DEV.
0.08
0.00
0.18
•0.04
-0.08
0.15
0.62
Blas= 0.90
t= 11.92
UNSPIKED
-0.16
-0.15
-0.16
-0.17
-0.09
-0.17
-0.16
-0.17
-0.08
-0.16
-0.15
RSD =
DEV.
0.00
-0.01
-0.08
-0.01
-0.07
-0.17
-23.74
Exp Conc= 9.98
CF= 0.92
                47

-------
Vinyl Acetate-166
SPIKED
2.41
2.96
2.85
3.94
3.14
-0.04
4.11
2.45
2.43
1.38
3.26
1.50
2.53
RSD =
DEV.
0.55
1.09
-3.18
-1.66
-1.05
-1.76
-6.02
49.09
Bias= 0.04
t= 0.03
UNSPIKED
-7.63
-8.59
-7.84
-8.02
-8.11
-6.84
-6.93
-8.54
-7.52
-6.18
-6.01
-8.38
-7.55
- RSD =
DEV.
-0.96
-0.18
1.27
-1.61
1.34
-2.37
-2.50
-13.56
Exp Conc= 10.04
CF= 1.00
TABLE 6-3 (continued)
Vinyl Bromide-167
SPIKED
9.93
9.85
9.83
9.87
9.91
10.01
10.06
9.98
10.07
10.09
10.23
10.00
9.99
RSD =
DEV.
-0.07
0.03
0.10
-0.07
0.02
-0.23
•0.22
0.79
Blas = -0.38
t= 3.90
UNSPIKED
0.30
0.34
0.34
0.36
0.40
0.35
0.34
0.38
0.33
0.45
0.32
0.44
0.36
RSD =
DEV.
0.04
0.02
-0.05
0.04
0.12
0.12
0.28
15.00
Exp Conc= 10.00
CF= 1.04
                 48

-------
Vinyl Chloride-168
SPIKED
11.22
11.16
11.34
11.27
11.07
11.17
11.13
11.10
11.21
11.00
11.03
10.99
11.14
RSD=
DEV.
-0.06
•0.08
0.10
-0.03
-0.21
-0.03
-0.32
0.66
Bias= 3.00
t= 26.11
UNSPIKED
-1.89
-1.88
-1.88
-1.96
-1.94
-1.96
-1.86
-1.95
-2.15
-2.06
-1.27
-1.54
-1.86
- RSD =
DEV.
0.02
-0.08
-0.02
-0.10
0.09
-0.27
-0.35
-4.74
Exp Conc= 10.00
CF= 0.77
TABLE 6-3 (continued)
Vinylidene Chloride-169
SPIKED
10.32
10.32
10.30
10.32
10.49
10.43
10.42
10.43
10.18
10.07
10.11
10.10
10.29
RSD=
DEV.
0.00
0.02
-0.06
0.01
-0.11
-0.01
-0.17
0.37
Bias* -0.07
t= 1.21
UNSPIKED
0.33
0.41
0.34
0.33
0.40
0.36
0.46
0.35
0.40
0.35
0.31
0.27
0.36
RSD =
DEV.
0.08
-0.01
-0.04
-0.11
-0.05
-0.04
-0.17
12.29
Exp Conc= 10.00
CF= 1.01
                49

-------
TABLE 6-3 (continued)
p-Xylene-173
SPIKED
15.22
15.48
15.40
15.06
15.61
16.04
15.28
15.57
15.64
15.68
15.45
15.66
15.51
RSD =
DEV.
0.25
-0.34
0.44
0.29
0.04
0.21
0.90
1.31
Bias= 3.70
t= 15.14
UNSPIKED
1.83
2.07
1.81
1.79
1.81
- 1.62
1.69
1.89
1.74
1.63
1.54
1.82
1.77
RSD =
DEV.
0.24
-0.02
-0.19
0.20
-0.10
0.27
0.40
7.60
Exp Conc= 10.04
CF= 0.73
                50

-------
TABLE 6-4.  Compounds Meeting Method 301 Criteria in Condenser Samples.
                                                                       51

-------
AIM Chloride-010
SPIKED
3.79
3.84
3.97
3.85
7.01
6.98
7.01
6.98




5.43
RSD =
DEV.
0.05
-0.11
-0.02
-0.03


•0.12
0.84
Blas= -1.33
t= 5.62
UNSPIKED
-3.87
^.36
-4.29
-3.88
-2.65
-3.03
-2.78
-3.07
-3.23
-3.28
-3.47
-3.38
-3.44
RSD =
DEV.
-0.49
0.41
-0.38
-0.30
-0.05
0.09
-0.71
-6.76
Exp Conc= 10.20
CF= 1.15
fABLE 6-4 (continued)
Benzene-015
SPIKED
9.61
3.43
3.66
2.88
5.73
5.16


5.08
RSD =
DEV.
-6.18
-0.78
-0.57

-7.52
43.57
Blase -3.82
t= 1.72
UNSPIKED
-2.11
-2.30
-1.86
-2.05
-0.56
-0.11
0.20
-0.06
-1.11
RSD =
DEV.
-0.19
-0.19
0.45
-0.26
-0.18
-15.03
Exp Conc= 10.00
CF= 1.62
                  52

-------
Chlorobenzene-037
SPIKED
11.93
12.36
12.38
12.29
12.39
12.31
12.45
12.59
12.50
12.36
12.49
12.25
12.36
RSD=
DEV.
0.43
-0.09
-0.09
0.14
-0.14
-0.24
0.02
1.27
Bias= 1.59
t= 6.52
UNSPIKED
1.04
0.72
0.88
1.43
0.76
0.74
0.59
0.65
0.59
0.58
0.64
0.64
0.77
RSD=
DEV.
-0.33
0.55
-0.02
0.07
-0.01
0.01
0.26
24.14
Exp Conc= 10.00
CF= 0.86
TABLE 6-4 (continued)
Ethyl Benzene-077
SPIKED
11.70
11.40
11.44
11.73
14.70
14.98
14.92
14.87




13.22
RSD =
DEV.
-0.31
0.29
0.27
-0.04


0.21
1.35
Bias- 2.97
t= 14.27
UNSPIKED
0.22
0.38
0.31
0.39
0.19
0.12
0.22
0.14
0.15
0.45
0.20
0.24
0.25
RSD =
DEV.
0.16
0.08
-0.08
-0.09
0.30
0.04
0.41
42.84
Exp Conc= 10.00
CF= 0.77
                53

-------
Ethyl Chloride-079
SPIKED
8.88
10.26
9.95
10.19
11.62
11.12
10.62
10.93
9.43
8.87
8.52
10.98
10.11
RSD =
DEV.
1.37
0.24
-0.49
0.31
-0.57
2.46
3.33
8.41
Bias= 1.67
t= 1.50
UNSPIKED
-1.07
-2.35
-2.22
-2.35
-5.86
-4.87
-2.27
-2.50
-0.86
-2.74
-1.20
-1.17
-2.46
RSD =
DEV.
-1.28
-0.12
0.99
•0.23
-1.88
0.04
-2.48
-29.28
Exp Conc= 10.90
CF= 0.87
TABLE 6-4 (continued)
Ethylene Oibromide-080
SPIKED
8.83
8.97
9.14
9.17
8.54
8.65
8.62
8.86
9.07
9.09
8.94
9.12
8.92
RSD =
DEV.
0.14
0.03
0.12
0.24
0.02
0.18
0.72
1.13
Bias= 0.45
t= 3.32
UNSPIKED
-0.79
-0.75
-0.72
-0.74
-0.59
-0.67
-0.65
-0.75
-0.37
-0.65
-0.56
-0.64
-0.66
RSD =
DEV.
0.05
-0.01
-0.08
-0.11
-0.28
-0.08
-0.51
-14.01
Exp Conc= 9.12
CF= 0.95
                54

-------
n-Hexane-095
SPIKED
10.11
10.12
10.09
10.08
10.76
11.32
10.85
10.73
10.47
10.56
10.62
10.61
10.53
RSD =
DEV.
0.01
-0.01
0.57
•0.12
0.09
-0.01
0.53
1.61
Bias= 0.36
t= 2.09
UNSPIKED
0.25
0.26
0.23
0.21
0.20
0.21
0.20
0.26
0.28
0.24
0.19
0.21
0.23
RSD =
DEV.
0.01
-0.02
0.01
0.06
-0.04
0.03
0.05
9.86
Exp Cone = 9.94
CF= 0.97
TABLE 6-4 (continued)
Methyl Bromide-106
SPIKED
16.83
17.80
17.03
18.65
18.36
17.45
16.51
17.96
18.27
18.19
17.48
18.17
17.72
RSD =
DEV.

0.97
1.62
-0.91

1.45
-0.09
0.69
3.74
4.30
Bias= 3.67
t= 3.11
UNSPIKED
3.06
3.68
4.71
6.61
4.40
5.07
3.24
4.93
3.48
3.18
2.53
4.04
4.08
RSD =
DEV.
0.62
1.90
0.67
1.69
-0.30
1.52
6.10
22.03
Exp Conc= 9.98
CF= 0.73
                  55

-------
Methyl Chloride-107
SPIKED
8.48
9.43
9.87
9.59
7.65
7.08
7.52
8.09
5.72
5.72
6.62
6.13
7.66
RSD =
DEV.
0.95
-0.28
-0.58
0.57
0.00
-0.49
0.18
5.17
Bias= -0.65
t= 0.80
UNSPIKED
-0.50
0.90
•0.82
0.22
-2.78
-1.59
-2.54
-2.29
-2.07
-3.13
-2.59
-3.13
-1.69
RSD =
DEV.
1.40
1.04
1.19
0.25
-1.06
-0.54
2.28
-41.57
Exp Conc= 10.00
CF= 1.07
TABLE 6-4 (continued)
Methyl Ethyl Ketone-109
SPIKED
12.33
13.62
13.76
14.28
3.20
5.17
2.88
3.81
2.48
3.49
5.42
4.67
7.09
RSD =
DEV.
1.29
0.52
1.97
0.93
1.01
-0.75
4.97
11.70
Bias= 2.24
t= 1.39
UNSPIKED
0.28
-0.37
-0.91
3.52
-6.05
-6.11
-6.51
•6.32
-5.62
-6.86
-6.60
-7.76
•4.11
RSD =
DEV.
•0.65
4.42
-0.07
0.19
-1.25
-1.17
1.49
-33.66
Exp Conc= 8.96
CF= 0.80
                56

-------
Methyl Isobutyl Ketone-112
SPIKED
15.91
16.54
16.54
16.98
14.35
16.70


16.17
RSD =
DEV.
0.62
0.44
2.35

3.42
5.40
Bias= 3.94
t= 4.26
UNSPIKED
2.93
2.03
2.38
2.29
2.10
2.36
1.56
2.23
2.23
RSD =
DEV.
-0.90
-0.10
0.26
0.67
•0.07
13.32
Exp Conc= 10.00
CF= 0.72
TABLE 6-4 (continued)
Methyl Methacrylate-114
SPIKED
9.83
10.10
10.24
10.17
9.71
10.04
9.92
10.03
9.80
10.08
9.93
9.97
9.98
RSD=
DEV.
0.27
-0.08
0.33
0.10
0.27
0.04
0.93
1.51
Blas= -0.49
t= 2.65
-UNSPIKED
0.49
0.38
0.38
0.41
0.35
0.17
0.34
0.30
0.65
0.35
0.30
0.36
0.37
RSD =
DEV.
•0.10
0.03
-0.17
-0.04
-0.30
0.06
-0.54
28.69
ExpConc= 10.10
CF= 1.05
                57

-------
MethyteneChloride-117
SPIKED
8.74
8.86
8.81
8.98
10.63
11.20
11.21
10.61
10.49
10.30
10.26
9.67
9.98
RSD =
DEV.
0.12
0.17
0.57
-0.61
-0.19
-0.59
-0.52
3.07
Bias= -1.34
t= 1.94
UNSPIKED
-0.16
-0.08
-0.10
-0.15
2.38
2.36
2.01
4.10
1.68
1.40
1.26
0.90
1.30
RSD =
DEV.
0.08
-0.05
-0.02
2.09
-0.28
-0.36
1.46
47.53
Exp Conc= 10.02
CF= 1.15
TABLE 6-4 {continued)
2-Nitropropane-l 24
SPIKED
9.52
10.37
10.48
10.37
9.20
10.16
10.37
10.28
9.22
10.17
10.34
10.48
10.08
RSD =
DEV.
0.85
-0.11
0.96
-0.09
0.95
0.13
2.68
4.59
Bias** 0.17
t= 0.33
UNSPIKED
0.86
0.67
0.72
0.74
1.09
0.92
0.87
0.91
1.69
1.03
0.88
0.80
0.93
RSD =
DEV.
-0.19
0.02
-0.17
0.04
-0.66
-0.08
-1.04
21.96
Exp Conc= 8.98
CF= 0.98
                  58

-------
Propytene DIchloride-142
SPIKED
14.75
15.61
15.36
15.55
15.88
16.38
15.90
15.68
14.99
15.48
15.74
15.85
15.60
RSD =
DEV.
0.86
0.19
0.50
•0.23
0.49
0.11
1.93
2.14
Blas= -0.37
t= 0.68
UNSPIKED
5.97
5.78
5.63
5.81
6.51
5.12
5.41
5.80
4.89
4.64
5.12
5.19
5.49
RSD =
DEV.
-0.19
0.18
-1.39
0.39
•0.25
0.07
-1.18
7.85
Exp Conc= 10.48
CF= 1.04
TABLE 6-4 (continued)
Styrene-147
SPIKED
13.63
14.04
14.21
14.23
14.30
14.52
14.55
14.41
14.38
14.44
14.49
14.74
14.33
RSD =
DEV.
0.41
0.03
0.22
-0.14
0.06
0.25
0.83
1.11
Blas= 3.11
t= 18.82
UNSPIKED
0.51
0.49
0.67
0.77
0.24
0.30
0.26
0.34
0.48
0.49
0.49
0.41
0.46
RSD =
DEV.
-0.02
0.10
0.07
0.08
0.01
-0.08
0.16
10.31
Exp Conc= 10.76
CF= 0.78
                  59

-------
Tetrachloroethylene-1 51
SPIKED
10.21
10.37
10.42
10.43
10.02
10.10


10.26
RSD =
DEV.
0.15
0.00
0.09

0.24
0.60
Blas= 0.32
t- 5.13
UNSPIKED
-0.04
-0.06
-0.06
-0.05
-0.06
-0.07
-0.07
-0.07
-0.06
RSD=
DEV.
-0.02
0.01
-0.01
0.00
-0.02
-12.26
Exp Conc= 10.00
CF= 0.97
TABLE 6-4 (continued)
Tduene-153
SPIKED
18.59
19.20
19.22
19.62
17.10
17.71
16.86
17.50
17.14
17.44
17.23
17.67
17.94
RSD =
DEV.
0.62
0.40
0.61
0.64
0.30
0.44
3.00
2.03
Blas= 3.43
t= 2.09
-UNSPIKED
4.08
3.92
5.09
10.58
3.78
4.21
4.04
4.08
4.17
4.45
4.53
4.10
4.75
RSD=
DEV.
•0.15
5.49
0.43
0.04
0.27
-0.43
5.65
33.60
Exp Conc= 9.76
CF= 0.74
                60

-------
1 ,1 ,2-Trichloroethane-l59
SPIKED
7.52
7.67
7.51
7.70
8.07
8.24
8.24
8.16
8.16
8.03
8.10
8.11
7.96
RSD=
DEV.
0.15
0.19
0.17
-0.08
-0.13
0.01
0.32
1.21
Bias= 0.95
t= 4.49
UNSPIKED
-3.35
-3.23
-3.40
-3.80
-2.42
-2.82
-2.87
-3.02
-2.60
-2.81
-2.73
-2.88
-2.99
RSD =
DEV.
0.12
-0.40
-0.41
-0.15
-0.22
-0.15
-1.20
-6.32
Exp Conc= 10.00
CF= 0.91
TABLE 6-4 (continued)
Trichloroethyiene-1 60
SPIKED
9.98
10.31
10.33
10.39
10.63
10.78
10.80
10.78
10.67
10.78
10.81
10.85
10.59
RSD=
DEV.
0.33
0.06
0.16
-0.02
0.12
0.04
0.69
1.07
Blas= 1.03
t= 8.71
UNSPIKED
0.14
0.15
0.13
0.13
0.05
0.00
0.04
0.03
0.16
0.07
0.06
0.07
0.09
RSD =
DEV.
0.00
0.00
-0.05
-0.01
-0.10
0.01
-0.14
36.90
Exp Conc= 9.48
CF= 0.90
               61

-------
2,2,4-Trimethylpentane-l 65
SPIKED
10.08
10.17
10.11
10.16
10.44
10.52
10.47
10.46
10.49
10.50
10.63
10.59
10.38
RSD=
DEV.
0.09
0.05
0.08
-0.02
0.01
-0.04
0.16
0.37
Bias= 0.23
t= 4.75
UNSPIKED
0.16
0.16
0.17
0.17
0.18
0.16
0.18
0.18
0.27
0.17
0.18
0.15
0.18
RSD =
DEV.
-0.01
0.01
-0.02
0.00
-0.09
-0.03
-0.14
16.37
Exp Conc= 9.98
CF= 0.98
TABLE 6-4 (continued)
Vinylidene Chloride-169
SPIKED
11.00
10.99
10.92
10.98
9.70
9.73
9.77
9.77
9.65
9.65
9.87
9.86
10.16
RSD =
DEV.
-0.01
0.06
0.03
0.00
-0.01
-0.01
0.07
0.20
Blas= -0.06
t= 0.82
UNSPIKED
0.20
0.20
0.14
0.39
0.21
0.22
0.22
0.18
0.25
0.19
0.20
0.23
0.22
RSD =
DEV.
0.01
0.25
0.01
-0.05
-0.06
0.03
0.18
34.04
Exp Conc= 10.00
CF= 1.01
               62

-------
o-Xylene-171
SPIKED
11.76
11.59
11.94
11.58
15.17
15.47
15.61
15.53




13.58
RSD =
DEV.
-0.17
-0.36
0.30
-0.08


-0.31
1.32
Bias** 4.24
t= 17.75
UNSPIKED
-0.63
-0.85
-0.73
-0.88
-0.62
-0.52
-0.62
-0.78
-0.35
-0.73
-0.51
-0.74
-0.66
RSD =
DEV.
-0.21
-0.15
0.10
-0.16
-0.38
-0.23
-1.03
-23.90
Exp Conc= 10.00
CF= 0.70
TABLE 6-4 (continued!
p-Xylene-173
SPIKED
18.36
18.81
18.33
18.00
17.75
18.11
17.75
15.50
18.49
17.89
17.54
18.58
17.93
RSD =
DEV.
0.45
-0.33
0.37
-2.25
-0.60

1.05
-1.31
4.25
Bias- 3.15
t= 2.22
UNSPIKED
4.39
3.90
5.45
5.03
4.44
5.21
4.78
4.41
5.92
3.82
3.01
6.43
4.73
RSD =
DEV.
-0.50
-0.42
0.77
-0.37
-2.10
3.42
0.81
25.36
Exp Conc= 10.04
CF= 0.76
                 63

-------
TABLE 6-5.  Compounds Meeting Method 301 Criteria in Concentrated Samples.
                                                                         64

-------
Benzene-015
SPIKED
19.95
22.03
16.88
20.74
19.90
RSD =
DEV.
2.08
3.86
5.93
8.99
Blas= -1.14
t= 0.63
UNSPIKED
1.94
1.61
0.13
0.48
1.04
RSD =
DEV.
-0.33
0.35
0.01
18.86
Exp Conc= 20.00
CF= 1.06
TABLE 6-5 (continued!
Chlorobenzene-037
SPIKED
25.84
29.20
25.61
26.40
32.95
30.32
28.39
RSD =
DEV.
3.36
0.78
-2.63
1.51
6.24
Blas= 4.95
t- 2.33
UNSPIKED
4.38
2.75
1.55
" 2.85
3.58
5.54
3.44
RSD =
DEV.
-1.62
1.30
1.96
1.64
33.89
Exp Conc= 20.00
CF= 0.80
EthyJene Dibromide-080
SPIKED
21.25
25.87
25.75
25.17
24.51
RSD =
DEV.
4.62
-0.58
4.04
7.76
Bias= 2.30
t= 1.14
UNSPIKED
1.80
1.67
1.81
3.54
2.20
RSD =
DEV.
-0.13
1.73
1.60
32.11
Exp Conc= 20.00
CF= 0.90
               65

-------
n-Hexane-095
SPIKED
13.88
23.69
17.51
15.64
17.68
RSD =
DEV.
9.81
-1.87
7.95
28.26
Bias= -3.59
t= 0.72
UNSPIKED
2.32
2.42
0.34
0.00
1.27
RSD =
DEV.
0.10
-0.34
•0.24
13.92
Exp Conc = 20.00
CF= 1.22
TABLE 6-5 (continued)
Methyl Ethyl Ketone-109
SPIKED
20.30
11.94
26.15
24.97
27.27
23.02
22.27
RSD =
DEV.
-8.36
-1.18
-4.25
-13.79
17.32
Bias= 4.26
t= 1.09
UNSPIKED
-2.99
-3.39
-0.91
-1.51
-2.22
-0.88
-1.98
RSD =
DEV.
-0.39
-0.60
1.33
0.34
-31.16
Exp Conc= 20.00
CF= 0.82
2-Nitropropane-1 24
SPIKED
21.82
22.86
20.95
21.05
21.67
RSD =
DEV.
1.04
0.10
1.14
2.42
Blas= 3.11
t= 4.16
UNSPIKED
-1.76
-1.86
-1.61
-0.55
-1.44
RSD=
DEV.
-0.10
1.06
0.96
-37.08
Exp Conc= 20.00
CF= 0.87
                66

-------
Tetrachloroethylene-1 51
SPIKED
20.45
25.18
13.25
23.11
20.50
RSD =
DEV.
4.73
9.86
14.59
26.67
Blas= -1.05
t= 0.19
UNSPIKED
1.90
2.16
0.39
1.74
1.55
RSD =
DEV.
0.26
1.35
1.61
44.51
Exp Conc= 20.00
CF= 1.06
TABLE 6-5 (continued)
Toluene-153
SPIKED
28.48
22.61
22.43
22.33
23.78
22.63
23.71
RSD =
DEV.
-5.87
-0.10
-1.15
-7.13
10.31
Bias= 4.20
t- 1.71
UNSPIKED
-1.11
-0.66
-0.33
-0.29
-0.42
-0.12
-0.49
RSD =
DEV.
0.45
0.04
0.30
0.79
-45.59
Exp Conc= 20.00
CF= 0.83
Trichloroethylene-1 60
SPIKED
27.88
27.37
22.65
24.63
25.63
RSD =
DEV.
-0.51
1.98
1.47
3.26
Blas= 0.37
t= 0.17
UNSPIKED
9.10
5.27
1.89
4.81
5.27
RSD=
DEV.
-3.83
2.92
-0.92
37.35
Exp Conc= 20.00
CF= 0.98
                 67

-------
TABLE 6-5 (continued)
m-Xylene-172
SPIKED
25.26
28.15
24.99
24.61
27.02
25.99
26.00
RSD =
DEV.
2.89
-0.38
-1.04
1.47
4.85
Bias= 5.65
t= 4.44
UNSPIKED
0.24
0.39
0.13
0.22
0.42
0.75
0.36
RSD =
DEV.
0.15
0.10
0.34
0.58
43.31
Exp Conc= 20.00
CF= 0.78
p-Xylene-1 73
SPIKED
11.80
16.47
19.23
20.54
17.01
RSD =
DEV.
4.67

1.30
5.97
14.25
Blas= -2.72
t= 1.12
UNSPIKED
-0.44
-0.25
-0.24
-0.16
-0.28
RSD=
DEV.
0.19
0.08
0.27
-36.71
Exp Conc= 20.00
CF= 1.16
                 68

-------
TABLE 6-6.  Analytical Details for Compounds
    Presented in Tables 6-3 through 6-5.
                                                         69

-------
                                              TABLE 6-6 Icon'tl
Hot/Wet Analysis File for
            Acetonrtrile
Compound Name
Water
Sulfur dioxide
Carbon dioxide
cetonitrile
Acetonrtrile
Acetonrtrile
Acetonrtrile
Benzene
Benzene
Benzene
Benzene
Methanol
Methanol
Methanol
Methanol
Methanol
Methanol
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
File Name
1 94C1 ana
1 98c1 asf
CO2a
003a4ara.dsf
003a4arb.dsf
003a4arc.dsf
003a4ard.dsf
01 5a4ara.dsf
01 5a4arb.dsf
01 5a4arc.dsf
01 5a4ard.ds<
1 04a4asa.dsf
1 04a4asb.dsf
1 04a4asc.dsf
1 04a4asd.dsf
1 04a4ase.dsf
1 04a4asf .dsf
1 1 2a4ara.dsf
H2a4arb.dsf
1 1 2a4arc.dsf
1 1 2a4ard.dsf
112a4are.dsf
I12a4arf.dst
1 51 a4asa.dst
1 51 a4asb.dsf
I51a4asd.dsf
1 51 a4ase.dsf
I51a4asf.dsf
ASC
1000
25.791
11
4.97
4.97
1.006
1.015
5.052
5.052
1.036
1.016
5.113
5.113
1.016
1.016
0.203
0.206
5.031
5.031
1.014
1.012
0.202
0.203
4.574
4.574
1.013
0.203
0.203
ISC
1 000.00
25.79
11.00
4.94
4.99
1.05
1.04
5.05
5.07
1.01
0.99
5.10
5.13
1.00
1.00
0.20
0.19
5.13
5.17
0.52
0.61
-0.32
-0.42
4.23
4.28
2.72
3.00
3.23
% Difference
0.00
0.00
0.00
0.59
0.29
4.57
2.54
0.01
0.26
2.86
3.10
0.22
0.37
1.96
1.55
2.43
8.63
1.88
2.67
48.69
40.17
258.25
304.30
7.45
6.45
168.26
1 376.27
1 486.51
Analytical Regions (wavenumbers)
Baseline
882.43 884.5
1252.1 1255.25
Analytical Regions
1039.9 1064
                                                         07/09/93
                                                         70

-------
                                              TABLE 6-6 Icon't)
Hot/Wet Analysis File for
            Acrolein
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acrolein
Acrolein
Acrolein
Acrolein
Acrolein
Carbonyl sulfide
Carbonyl sulfide
Chlorobenzene
Chlorobenzene
Chlorobenzene
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
Vinyl chloride
Vinyl chloride
Vinyl chloride
SF6
Nitric oxide
Hydrogen chloride
File Name
I94ciana
I98clasf
CO2a
006b4ana.dsf
006b4anb.dsf
006b4ane.dsf
006b4anf.dsf
006b4anh.dsf
030a4asc.dsf
030a4ase.dsf
037a4arc.dsf
037a4arh.dsf
037a4arj.dsf
I59b4asa.dsf
1 59b4asc.dsf
1 59b4asf.dsf
1 68a4asa.dsf
1 68a4asd.dsf
1 68a4ase.dsf
SF6_002
NO2zap
HCI 2e
ASC
1000
25.41 3
11
3.011
3.017
0.604
0.603
0.121
1.012
0.203
4.828
1.02
0.203
3.033
0.602
0.121
5.092
1 .023
0.203
0.059
10.1
100
ISC
1 000.00
25.41
11.00
3.07
2.93
0.68
0.67
0.14
0.84
1.05
4.62
2.14
-0.43
3.04
0.57
0.08
5.09
1.04
0.22
0.06
10.10
1 00.00
% Difference
0.00
0.00
0.00
1.77
2.73
12.76
10.62
13.19
16.87
418.26
4.36
109.85
309.38
0.25
4.85
36.47
0.07
1.48
7.88
0.00
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
I nwpr ' '"">«»
2548.76 2549.79
836.84 838.41
3159.74
1 977.81

3161.27
1 978.99
Analytical Regions
2636.11 2875.59
913.7 1000.35
                                                         07/09/93
                                                          71

-------
                                               TABLE 6-6 (con'tl
Hot/Wet Analysis File for
            Acrylonitrile
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Allyl Chloride
Ally! Chloride
Allyl Chloride
Allyl Chloride
Ethyl benzene
Ethyl benzene
Ethyl benzene
Ethyl benzene
Ethyl benzene
o-Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
1 o-Xylenes
o-Xylenes
SF6
File Name
1 94ct ana
1 98C1 asf
C02a
009a4ara.dsf
009a4arb.dsf
009a4arc.dsf
009a4ard.dsf
009a4are.dsf
009a4arf.dsf
01 Ob4asa.dsf
01 Ob4asb.dsf
01 Ob4asc.dsf
01 Ob4asd.dsf
077a4ara.dsf
077a4arb.dsf
077a4arc.dsf
077a4ard.dsf
077a4arf.dsf
1 71 a4asa.dsf
I7la4asb.dsf
I71a4asc.dsf
!7la4asd.dsf
1 71 a4ase.dsf
171a4asf.dsf
SF6 002
ASC
1000
25.791
11
4.991
4.991
1.006
1.014
0.203
0.2
3.093
3.093
0.601
0.602
5.113
5.113
1.014
1.017
0.203
5.072
5.072
1.015
1.016
0.203
0.203
0.057
ISC -
1000.00
25.79
11.00
4.97
5.01
1.02
1.01
0.21
0.20
3.10
3.10
0.58
0.57
4.98
5.27
0.99
0.96
0.06
4.99
5.09
1.03
1.18
0.59
0.60
0.06
% Difference
0.00
0.00
0.00
0.51
0.45
1.28
0.01
2.76
0.74
0.15
0.21
3.92
5.38
2.60
3.05
2.80
5.88
71.05
1.64
0.31
1.60
16.08
188.67
196.32
0.00
Analytical Regions (wavenumbers)
Baseline
872.85 874.63
1 Ini-tfir
21 40.9 21 42.48
Analytical Regions
922.19 997.82
                                                         07/09/93
                                                          72

-------
                                               TABLE 6-6 Icon't)
Hot/Wet Analysis File for
            Allyl Chloride
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Allyl Chloride
Allyl Chloride
Allyl Chloride
Allyl Chloride
Ethyl benzene
Ethyl benzene
Ethyl benzene
Ethyl benzene
Ethyl benzene
o-Xylenes
Xylenes
Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
SF6
File Name
1 94d ana
I98clasf
C02a
009a4ara.dsf
009a4arb.dsf
009a4arc.dsf
009a4ard.dsf
009a4are.dsf
009a4art.dsf
01 Ob4asa.dsf
010b4asb.dsf
01 Ob4asc.dsf
010b4asd.dsf
077a4ara.dsf
077a4arb.dsf
077a4arc.dsf
077a4ard.dsf
077a4arf.dsf
I7la4asa.dsf
I7la4asb.dsf
1 71 a4asc.dsf
171a4asd.dsf
1 71 a4ase.dsf
1 71 a4asf.dsf
SF6 002
ASC
1000
25.791
11
4.991
4.991
1.006
1.014
0.203
0.2
3.093
3.093
0.601
0.602
5.113
5.113
1.014
1.017
0.203
5.072
5.072
1.015
1.016
0.203
0.203
0.057
ISC
1 000.00
25.79
11.00
4.96
5.01
1.03
1.02
0.22
0.21
3.11
3.10
0.56
0.55
5.17
5.24
0.46
0.80
-0.62
5.24
5.27
0.69
0.16
-1.30
-1.36
0.06
% Difference
0.00
0.00
0.00
0.56
0.42
2.44
0.55
8.00
5.34
0.37
0.22
6.47
9.14
1.11
2.50
54.35
21.00
406.61
3.27
3.84
32.27
84.36
739.82
769.59
0.00
Analytical Regions (wavenumbers)
Baseline
873.86 875.12
873.86 875.12
2143.24
2143.24

2143.78
21 43.78
Analytical Regions
893.51 1002.22
1241.86 1301.73
                                                          07/09/93
                                                          73

-------
                                            TABLE 6-6 Icon t)
Hot/Wet Analysis File for
           Benzene
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acetonitrile
Acetonitrile
Acetonitrile
Acetonitrile
Benzene
Benzene
Benzene
Benzene
lethanol
Methanol
Methanol
Methanol
Methanol
Methanol
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Hydrogen chloride
File Name
1 94cl ana
1 98c1 asf
C02a
003a4ara.dsf
003a4arb.dsf
003a4arc.dsf
003a4ard.dsf
01 5a4ara.dsf
01 5a4arb.dsf
01 5a4arc.dsf
01 5a4ard.dsf
1 04a4asa.dsf
1 04a4asb.dsf
1 04a4asc.dsf
1 04a4asd.dsf
1 04a4ase.dsf
1 04a4asf.dst
1 1 2a4ara.dsf
112a4arb.dsf
1 1 2a4arc.dsf
I12a4ard.dsf
1 1 2a4are.dsf
Il2a4arf.dsf
151a4asa.dsf
1 51 a4asb.dsf
1 51 a4asd.dsf
1 51 a4ase.dsf
151a4asf.dsf
HCI 2e
ASC
1000
25.791
11
4.97
4.97
1.006
1.015
5.052
5.052
1.036
1.016
5.113
5.113
1.016
1.016
0.203
0.206
5.031
5.031
1.014
1.012
0.202
0.203
4.574
4.574
1.013
0.203
0.203
100
ISC
1 000.03
25.79
11.00
4.90
4.96
1.25
1.14
5.05
5.07
1.01
0.97
5.10
5.14
0.98
0.98
0.20
0.18
4.95
5.11
1.16
1.02
-0.16
-0.33
4.57
3.97
2.90
2.54
2.12
100.00
% Difference
0.00
0.00
0.00
1.36
0.15
23.99
12.63
0.09
0.39
2.81
4.30
0.20
0.50
3.43
3.40
4.01
12.09
1.54
1.62
14.77
1.08
1 80.05
261.06
0.04
13.23
186.29
1149.65
944.97
0.00
Analytical Regions (wavenumbers)
Baseline
2759 2760.92
873.39 875.8
3156.59
1 978.93

3157.38
1 979.78
Analytical Regions
3020.15 3124.44
1010.22 1063.18
                                                      07/09/93
                                                      74

-------
                                            TABLE 6-6 Icon't)
Hot/Wet Analysis File for
            Bromoform
[Compound Name
Water
"ulfur dioxide
"arbon dioxide
Bromoform
Bromoform
Bromoform
Bromoform
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
" arbon disulfide
irbon disulfide
Carbon disulfide
Carbon disulfide
Carbon disulfide
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2.2.4-Trimethylpentane
2,2,4-Tri-" 'oentane
2,2,4-"r pentane
?" -uiylpentane
jnes
xylenes
n-Xylenes
•n-Xylenes
IJm-Xylenes
File Name
1 94C1 ana
I98dasf
CO2a
022b4asc.dsf
022b4asd.dsf
022b4ase.dsf
022b4asf.dsf
029a4asc.dsf
029a4asd.dsf
029a4ase.dsf
029a4asf.dsf
029a4asg.dsf
029a4ash.dsf
028a4asa.dsf
028a4asb.dsf
028a4asc.dsf
028a4asd.dsf
028a4asg.dsf
1 65a4asa.dsf
I65a4asb.dsf
1 65a4asc.dsf
1 65a4asd.dsf
1 65a4ase.dsf
165a4asf.dsf
1 72a4are.dsf
172a4art.dsf
172a4arg.dsf
172a4arh.dsf
I72a4ari.dsf
ASC
1000
25.791
11
0.605
0.604
0.121
0.121
1.015
1.016
0.203
0.203
0.051
0.052
5.092
5.092
1.018
1.014
0.204
5.102
5.102
1.015
1.015
0.202
0.203
0.203
0.201
4.93
4.93
1.015
ISC
1000.00
25.79
11.00
0.61
0.61
0.10
0.11
0.82
0.91
1.02
0.85
0.21
0.11
5.85
3.66
2.67
2.70
0.58
5.11
5.24
0.75
0.72
-0.17
-0.24
-1.29
0.16
4.25
5.14
3.60
% Difference
0.00
0.00
0.00
0.21
0.83
17.31
8.91
19.71
10.20
401.51
318.59
318.46
1 07.48
14.84
28.19
161.99
1 65.65
1 84.86
0.14
2.68
26.26
28.81
183.28
218.53
734.58
22.49
13.70
4.21
254.17
Analytical Regions (wavenumbers)
Baseline
1 «"»**f*r „ . ,
1003.7 1005.28

1977.61 1979.78
Analytical Regions
1134.18 1159.3$
                                                       07/09/9;
                                                       75

-------
                                                       TABLE 6-6 (con'tl
              Hot/Wet Analysis File for
                         1,3-Butadiene
Compound Name
Water
Sulfur dioxide
Carbon dioxide
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Styrene
Styrene
Styrene
Styrene
Styrene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
SF6
Nitric oxide
Hydrogen chloride
File Name
1 94d ana
1 98cl asf
CO2a
023a4asa.dsf
023a4asb.dsf
023a4asc.dsf
023a4asd.dsf
023a4ase.dsf
023a4asf.dsf
1 42b4asa.dsf
1 42b4asb.dsf
1 42b4asc.dsf
1 42b4asd.dsf
1 42b4ase.dsf
1 42b4asf.dsf
1 47a4asb.dsf
1 47a4asc.dsf
147a4asd.dsf
1 47a4ase.dsf
1 47a4asf.dsf
1 60a4asa.dsf
1 60a4asb.dsf
1 60a4asc.dsf
I60a4asd.dsf
1 60a4ase.dsf
1 60a4asf.dsf
SF6_002
NO2zap
HCI 2e
ASC
1000
25.791
11
5.092
5.092
1.006
1.022
0.205
0.203
3.045
3.045
0.598
0.601
0.121
0.121
5.082
1.015
1.014
0.202
0.203
5.102
5.102
1.014
1.016
0.203
0.203
0.057
10.1
100
ISC
999.97
25.80
11.00
5.08
5.08
1.08
1.08
0.22
0.21
3.04
3.05
0.59
0.60
0.13
0.13
5.08
1.10
0.98
0.17
0.17
5.08
5.16
0.90
0.98
0.20
0.20
0.06
10.10
1 00.00
% Difference
0.00
0.02
0.01
0.19
0.31
7.03
5.21
6.62
5.27
0.11
0.21
2.10
0.80
5.67
4.78
0.13
7.99
3.29
14.98
18.73
0.53
1.12
11.03
3.46
2.67
4.33
0.00
0.00 I
0.00 |
Analytical Regions (wavenumbers)
                      Baseline
         -Lower—
    869.06
869.75
	Upper—
     1234,92
1236
Analytical Regions
 866.72    1052.64
          07/09/93
                                                                76

-------
                                              TABLE 6-6 Icon'tt
Hot/Wet Analysis File for
            Carbonyl sulfide
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acrolein
Acrolein
Acrolein
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Chlorobenzene
Chlorobenzene
Chlorobenzene
1,1,2-Trichloroethane
1,1,2-Trichloroethane
1,1,2-Trichloroethane
Vinyl chloride
Vinyl chloride
Vinyl chloride
Carbon monoxide
Acrolein
Chlorobenzene
1,1,2-Trichloroethane
Nitric oxide
Hydrogen chloride
File Name
1 94d ana
1 98c1 asf
CO2a
006b4ana.dsf
006b4ane.dsf
006b4anh.dsf
030a4asc.dsf
030a4asd.dsf
030a4ase.dsf
030a4asf.dsf
037a4arc.dsf
037a4arf.dsf
037a4arj.dsf
1 59b4asa.dsf
1 59b4asc.dsf
1 59b4ase.dsf
1 68a4asa.dsf
1 68a4asd.dsf
1 68a4ase.dsf
197asm
006b4anb.dsf
037a4ard.dsf
159b4asb.dsf
NO2zap
HCI 2e
ASC
1000
25.791
11
3.011
0.604
0.121
1.012
1.017
0.203
0.203
4.828
1.303
0.203
3.033
0.602
0.12
5.092
. 1 .023
0.203
100
3.017
4.828
3.033
10.1
100
ISC
1000.62
25.79
11.00
2.76
1.48
0.14
1.01
1.01
0.23
0.22
5.23
1.03
0.38
2.97
1.48
0.13
5.10
1.00
0.19
100.01
3.10
4.50
2.92
10.10
1 00.05
% Difference
0.06
0.00
0.00
8.52
1 45.90
17.00
0.12
0.90
11.75
7.67
8.21
21.34
88.61
1.96
1 44.82
11.55
0.11
2.55
4.57
0.01
2.64
6.81
3.74
0.00
0.05
Analytical Regions (wavenumbers)
Baseline
1977.56 1979.68
1977.56 1979.68
1977.56 1979.68
1 977.56 0
1977.56 0
2548.66 2549.6
2132.95
2132.95
2132.95
1979.68
1979.68
3160.09

2133.99
2133.99
2133.99
0
0
3161.12
Analytical Regions
2029.21 2075.69
2078.84 2083.76
2883.97 2939.1 1
826.08 884.38
1023.81 1078.96
2876.97 2940
                                                       07/09/93
                                                        77

-------
                                            TABLE 6-6 Icon'tl
Hot/Wet Analysis File for
           Chlorobenzene
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Carbon monoxide
SF6
Acrolein
Acrolein
Acrolein
Acrolein
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
1,1,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1,1,2-Trichloroethane
1 ,1 ,2-Trichloroethane
Nitric oxide
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Hydrogen chloride
File Name
1 94cl ana
1 98C1 asf
C02a
197asm
SF6_002
006b4anb.dsf
006b4ane.dsf
006b4anf.dsf
006b4anh.dsf
030a4asc.dsf
030a4asd.dsf
030a4ase.dsf
030a4asf.dsf
037a4arc.dsf
037a4ard.dsf
037a4arf.dsf
037a4arh.dsf
037a4arj.dsf
1 59b4asa.dsf
1 59b4asb.dsf
1 59b4asc.dsf
1 59b4asd.dsf
1 59b4ase.dsf
NO2zap
1 68a4asa.dsf
1 68a4asb.dsf
1 68a4asc.dsf
1 68a4asd.dsf
1 68a4ase.dsf
HCI 2e
ASC
1000
25.791
11
376.1
0.059
3.017
0.604
0.603
0.121
1.012
1.017
0.203
0.203
4.828
4.828
1.033
1.02
0.203
3.033
3.033
0.602
0.604
0.12
10.1
5.092
5.092
1.013
1.023
0.203
100
ISC
1000.00
25.79
11.00
376.10
0.06
2.98
0.78
0.55
0.43
0.96
0.95
0.51
0.53
5.10
4.58
1.01
0.94
0.21
2.69
3.06
1.25
1.36
1.00
10.10
7.38
1.44
7.40
1.44
0.29
100.00
% Difference
0.00
0.00
0.00
0.00
0.00
1.26
29.50
8.22
258.31
5.26
7.07
149.17
158.40
5.59
5.12
2.38
8.29
2.17
11.26
0.95
106.87
124.98
733.26
0.00
44.97
71.66
630.64
40.65
41.88
0.00
Analytical Regions (wavenumbers)
Baseline
833.14 833.98
2629.56 2634.09
1977.71
3144.53

1 979.58
31 46.79
Analytical Regions
1012.42 1036.64
3029.76 3113.07
                                                      07/09/93
                                                      78

-------
              Hot/Wet Analysis File for
                          Ethyl chloride
                                                         TABLE 6-6 Icon't)
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Methyl bromide
Methyl bromide
Methyl bromide
Methyl bromide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Nitric oxide
SF6
Hydrogen chloride
File Name
1 94C1 ana
1 98c1 asf
CO2a
079b4asa.dsf
079b4asb.dsf
079b4asc.ds1
079b4asd.dsf
079b4ase.dsf
079b4asf.dsf
106a4asb.dsf
1 06a4asc.dsf
106a4asd.dsf
106a4ase.dsf
1 1 1 a4asa.dsf
I11a4asb.dsf
1 1 1 a4asc.dsf
1 1 1 a4asd.dsf
1 1 4b4asa.dsf
H4b4asb.dsf
114b4asc.dsf
!14b4asd.dsf
1 1 4b4ase.dsf
114b4asf.dsf
NO2zap
SF6_002
HCI 2e
ASC
1000
25.791
11
2.997
2.997
0.604
0.602
0.121
0.121
4.919
4.919
1.017
1.018
4.95
4.95
1.02
1.016
3.051
3.051
0.604
0.603
0.123
0.121
10.1
0.057
100
ISC
1000.00
25.79
11.00
3.09
3.03
0.44
0.18
0.12
0.12
4.94
4.95
0.89
0.90
4.96
4.95
1.00
0.97
3.10
3.06
0.48
0.48
-0.01
0.07
10.10
0.06
100.00
% Difference
0.00
0.00
0.00
2.94
1.01
27.55
70.42
2.98
1.09
0.36
0.68
12.80
11.27
0.26
0.04
2.21
5.04
1.47
0.37
20.03
20.90
110.18
40.47
0.00
0.00
0.00

Analytical Regions (wavenumbers)
                       Baseline
I nwpr
2545.12
1006.16
874.31
2586.87
1 006.66
875.59

4310.76
2159.49
1006.16

431 1 .84
2159.79
1006.66
Analytical Regions
2916.56 3041.03
1263.97 1312.02
943.43 1000.16
                                                                   07/09/93
                                                                   79

-------
                                            TABLE 6-6 (con'tl
Hot/Wet Analysis File for
           Ethylene dibromide
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
File Name
1 94C1 ana
1 98c1 asf
CO2a
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 08a4asa.dsf
108a4asb.dsf
1 08a4asc.dsf
108a4asd.dsf
1 08a4ase.dsf
1 08a4asf .dsf
1 24b4ana.dsf
124b4anb.dsf
1 24b4anc.dsf
124b4and.dsf
124b4ane.dsf
124b4anf.dsf
ASC
1000
25.791
11
5.031
5.031
1.016
1.017
0.203
0.202
5.123
5.123
1.01
1.012
0.203
0.203
3.013
3.016
0.604
0.603
0.121
0.124
ISC
1000.00
25.79
11.00
4.86
5.18
1.14
1.01
0.21
0.20
5.09
5.17
1.08
0.91
0.17
0.16
2.99
2.61
0.99
2.21
0.51
0.44
% Difference
0.00
0.00
0.00
3.38
2.92
12.07
0.75
1.39
2.42
0.65
0.85
6.46
9.96
16.84
22.56
0.65
13.50
63.44
266.54
326.48
255.53
Analytical Regions (wavenumbers)
Baseline
........I n\A/Pf-— ....... - ' lr***r*r
868.55 869.92
868.55 869.92
2536.6
2536.6
2541 .32
2541 .32
Analytical Regions
1178.74 1196.46
1241.71 1266.92
                                                      07/09/93
                                                     80

-------
Hot/Wet Analysis File for
            Hexane
                                            TABLE 6-6 (con'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Nitric oxide
Hexane
Hexane
Hexane
Hexane
Hexane
Hexane
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Propylene oxide
^ropylene oxide
ropylene oxide
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
Hydrogen chloride
File Name
1 94C1 ana
198c1asf
CO2a
NO2zap
095a4asa.dsf
095a4asb.dsf
095a4asc.dsf
095a4asd.dsf
095a4ase.dsf
095a4asf.dsf
1 1 7a4asa.dsf
1 1 7a4asb.dsf
1 1 7a4asc.dsf
I17a4asd.dsf
1 1 7a4ase.dsf
117a4asf.dsf
1 43b4ana.dsf
143b4anb.dsf
1 43b4and.ds1
1 66a4asa.dsf
1 66a4asb.dsf
166a4asc.dsf
I66a4asd.dsf
1 66a4ase.dsf
166a4asf.dsf
1 73a4asa.ds1
1 73a4asb.dsf
1 73a4asc.dsf
173a4asd.dsf
HCi 2e
ASC
1000
25.791
11
100
5.092
5.092
1.021
1.02
0.206
0.203
5.082
5.082
1.015
0.972
0.202
0.201
15.065
15.086
3.018
5.082
5.082
1.013
1.017
0.203
0.203
5.102
5.102
1.007
1.018
100
ISC
1000.00
25.79
11.00
100.00
5.08
5.11
0.96
1.04
0.20
0.20
5.06
5.10
1.07
0.99
0.12
0.24
14.96
15.09
3.55
5.02
5.05
1.24
1.20
0.50
0.46
4.99
5.25
0.90
0.96
100.00
% Difference
0.00
0.00
0.00
0.00
0.18
0.35
6.47
2.37
4.15
1.12
0.51
0.28
5.02
1.52
39.72
20.27
0.70
0.01
17.55
1.30
0.74
21.97
18.27
1 44.50
127.14
2.26
2.91
10.41
6.09
0.00
Analytical Regions
(wavenumbers)
Baseline
1 Jnnfr
2556.39 2557.97
3159.84 3160.97
Analytical Regions
2835.27 3005.4:
                                                       07/09/9:
                                                       81

-------
Hot/Wet Analysis File for
            Methyl chloride
                                             TABLE 6-6 Icon'tl
Compound Name
Water
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Vinyl bromide
yinyl bromide
Vinyl bromide
Vinyl bromide
Vinyl bromide
Vinyl bromide
Acetone
Acetone
Acetone
Acetone
Acetone
Sulfur dioxide
Carbon dioxide
SF6
Nitric oxide
Hydrogen chloride
File Name
1 94C1 ana
1 07a4asa.dsf
1 07a4asb.dsf
1 07a4asc.dsf
1 07a4asd.dsf
1 07a4ase.dsf
1 07a4asf.dsf
1 67a4asa.dsf
1 67a4asb.dsf
1 67a4asc.dsf
1 67a4asd.dsf
1 67a4ase.dsf
1 67a4asf.dsf
1 92a4arb.dsf
1 92a4arc.dsf
1 92a4ard.dsf
1 92a4are.dsf
1 92a4arf.dsf
1 98c1 asf
CO2a
SF6_002
NO2zap
HCI 2e
ASC
1000
5.092
5.092
1.014
1.018
0.204
0.203
5.082
5.082
1.014
1.017
0.203
0.203
5.021
1.014
1.015
0.203
0.203
25.791
11
0.057
100
100
ISC
1 000.00
5.08
5.09
1.06
1.03
0.23
0.23
5.07
5.07
1.09
1.08
0.25
0.22
5.07
0.92
0.93
0.10
0.08
25.79
11.00
0.06
100.00
100.00
% Difference
0.00
0.28
0.04
3.97
1.06
13.16
11.46
0.32
0.26
6.94
6.36
22.56
6.91
0.89
9.19
8.16
49.43
59.44
0.00
0.00
0.00
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
i '•"ft/nr ' ••»»»«*
2835.42 2836.75
846.88 847.77
4233.1 1
1978.64

4238.62
1 979.53
Analytical Regions
2928.38 3099.97
976.37 1081.94
                                                        07/09/93
                                                        82

-------
Hot/Wet Analysis File for
            Methyl ethyl ketone
                                             TABLE 6-6 (con't)
Comoound Name
Water
Sulfur dioxide
Carbon dioxide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Toluene
Toluene
Toluene
Toluene
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Nitric oxide
Hydrogen chloride
File Name
1 94ct ana
1 98C1 asf
CO2a
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 09a4ara.dsf
1 09a4arb.dsf
1 09a4arc.dsf
1 09a4ard.dsf
1 09a4are.dsf
1 09a4arf.dsf
153a4ara.dsf
1 53a4arb.dsf
1 53a4arc.dsf
1 53a4ard.dsf
1 69b4asa.dsf
169b4asb.dsf
1 69b4asc.dsf
169b4ase.dsf
169b4asf.dsf
NO2zap
HCI 2e
ASC
1000
25.791
11
5.031
5.031
1.016
1.017
0.203
0.202
5.062
5.062
1.011
1.017
0.203
0.202
5.072
5.072
1.013
1 .009
3.039
3.039
0.604
0.121
0.121
10.1
100
ISC
1000.00
25.79
11.00
4.86
5.18
1.13
1.00
0.20
0.19
5.03
5.12
0.92
0.99
0.22
0.19
4.97
5.14
1.09
1.09
3.07
3.08
0.24
0.10
0.07
10.10
100.00
% Difference
0.00
0.00
0.00
3.39
2.99
11.37
1.36
0.54
4.90
0.67
1.15
9.28
2.93
8.44
4.58
2.05
1.40
7.93
8.30
1.07
1.40
59.88
20.72
43.92
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
2831 .7 2833.37
983.93 991 .42
4292.56
1277.98

4293.74
1278.57
Analytical Regions
2872.76 3040.0;
1140.7 1222.K
                                                        07/09/9;
                                                        83

-------
Hot/Wet Analysis File for
            Methyl rrethacrylate
                                             TABLE 6-6 leon'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Methyl bromide
Methyl bromide
Methyl bromide
Methyl bromide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Nitric oxide
SF6
Hydrogen chloride
File Name
1 94d ana
198Cl3St
C02a
079b4asa.dsf
079b4asb.dsf
079b4asc.dsf
079b4asd.dsf
079b4ase.dsf
079b4asf.dst
106a4asb.dsf
I06a4asc.dsf
1 06a4asd.dsf
106a4ase.dsf
1 1 1 a4asa.dsf
1 1 1 a4asb.dsf
1 1 1 a4asc.dsf
H1a4asd.dsf
114b4asa.dsf
114b4asb.dsf
I14b4asc.dsf
114b4asd.dsf
114b4ase.dsf
114b4asf.dsf
NO2zap
SF6_002
HCI 2e
ASC
1000
25.791
11
2.997
2.997
0.604
0.602
0.121
0.121
4.919
4.919
1.017
1.018
4.95
4.95
1.02
1.016
3.051
3.051
0.604
0.603
0.123
0.121
10.1
0.057
100
ISC
1000.00
25.79
11.00
3.00
3.01
0.57
0.56
0.10
0.11
4.92
4.94
0.96
0.97
4.96
4.95
0.98
0.99
3.04
3.06
0.61
0.60
0.11
0.11
10.10
0.06
100.00
% Difference
0.00
0.00
0.00
0.04
0.55
5.25
6.34
15.25
8.00
0.06
0.38
5.34
4.93
0.26
0.02
3.51
2.98
0.41
0.42
0.83
0.03
12.05
11.85
0.00
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
879.8 881 .77
2769.12 2770.84
874.18 875.22
1249.71
3156.71
2028.35

1250.35
3158.49
2030.51
Analytical Regions
1137.5 1232.04
2918.95 3019
915.64 962.12
                                                       07/09/93
                                                       84

-------
              Hot/Wet Analysis File for
                         2-Nitropropane
                                                         TABLE 6-6 (con'tl
(Compound Name
(Water
Sulfur dioxide
Carbon dioxide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
:-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
Nitric oxide
vdroaen chloride
File Name
1 94ct ana
1 98c1 asf
CO2a
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 08a4asa.dsf
108a4asb.dsf
1 08a4asc.dsf
I08a4asd.dsf
1 08a4ase.dsf
1 08a4asf.dsf
124b4ana.dsf
!24b4anb.dsf
124b4anc.dsf
124b4and.dsf
124b4ane.dsf
124b4anf.dsf
NO2zap
HCI 2e
ASC
1000
25.791
11
5.031
5.031
1.016
1.017
0.203
0.202
5.123
5.123
1.01
1.012
0.203
0.203
3.013
3.016
0.604
0.603
0.121
0.124
10.1
100
ISC
1000.00
25.79
11.00
4.83
5.18
1.22
1.05
0.25
0.25
5.09
5.18
0.98
0.93
0.23
0.19
2.97
3.05
0.59
0.63
0.14
0.11
10.10
100.00
% Difference
0.00
0.00
0.00
3.93
2.90
19.64
3.51
22.46
25.42
0.63
1.07
3.06
8.62
11.75
5.49
1.34
1.25
1.88
4.06
16.40
10.58
0.00
0.00

Analytical Regions (wavenumbers)
                       Baseline
I nwpr
2816.9 2818.48
879.92 881 .49
	 	 ,. I Innpr
3070.97
0

3071 .95
0
Analytical Regions
2875.79 3039.T
831 .47 868.
                                                                  07/09/9
                                                                  85

-------
Hot/Wet Analysis File for
            Propylene dichloride
                                             TABLE 6-6 Icon'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Styrene
Styrene
Styrene
Styrene
Styrene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
SF6
Nitric oxide
Hydrogen chloride
File Name
1 94C1 ana
1 98c1 asf
CO2a
023a4asa.dsf
023a4asb.dsf
023a4asc.dsf
023a4asd.dsf
023a4ase.dsf
023a4asf.dsf
1 42b4asa.dsf
1 42b4asb.dsf
1 42b4asc.dsf
1 42b4asd.dsf
1 42b4ase.dsf
1 42b4asf.dsf
1 47a4asb.dsf
1 47a4asc.dsf
1 47a4asd.dsf
1 47a4ase.dsf
147a4asf.dsf
1 60a4asa.dsf
1 60a4asb.dsf
1 60a4asc.dsf
1 60a4asd.dsf
1 60a4ase.dsf
160a4asf.dsf
SF6_002
NO2zap
HCI 2e
ASC
1000
25.791
11
5.092
5.092
1.006
1.023
0.205
0.203
3.045
3.045
0.598
0.601
0.121
0.121
5.082
1.015
1.014
0.202
0.203
5.102
5.102
1.014
1.016
0.203
0.203
0.057
10.1
100
ISC
1000.00
25.79
11.00
5.12
5.07
1.01
1.01
0.20
0.19
3.05
3.06
0.57
0.57
0.09
0.07
5.07
1.11
1.00
0.18
0.18
5.08
5.20
0.68
0.98
0.13
0.25
0.06
10.10
100.00
% Difference
0.00
0.00
0.00
0.50
0.42
0.05
1.45
2.06
6.50
0.16
0.35
5.18
5.43
21.86
39.48
0.25
8.90
1.67
12.65
10.96
0.43
1.90
32.90
4.02
33.94
22.75
0.00
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
I nwf*r..-« _--..... ' !»•**•* «r
867.02 869.51
2836.35 2837.29
1277.56
3159.89

1278.74
3160.92
Analytical Regions
996.86 1038
2927.59 3031.58
                                                       07/09/93
                                                       86

-------
Hot/Wet Analysis File for
            1,1,2-Trichloroethane
                                              TABLE 6-6 (con tl
[Compound Name
Water
Sulfur dioxide
Carbon dioxide
Carbon monoxide
SF6
Acrolein
Acrolein
Acrolein
Acrolein
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Nitric oxide
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
1 ,1 ,2-Trichlcroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
•" ,1 ,2-Trichloroethane
Inyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Hydrogen chio'id?
File Name
1 94C1 ana
1 98C1 asf
CO2a
1 97asm
SF6_002
006b4anb.dsf
006b4ane.dsf
006b4anf.dsf
006b4anh.dsf
030a4asc.dsf
030a4asd.dsf
030a4ase.dsf
030a4as1.dsf
NO2zap
037a4ard.dsf
037a4arf.dsf
037a4arh.dsf
037a4arj.dsf
1 59b4asa.dsf
1 59b4asb.dsf
1 59b4asc.dsf
159b4asd.dsf
I59b4ase.dsf
159b4asf.dsf
1 68a4asa.dsf
168a4asb.dsf
1 68a4asc.dsf
1 68a4asd.dsf
1 68a4ase.dsf
HCI 2e
ASC
1000
25.791
11
376.1
0.059
3.017
0.604
0.603
0.121
1.012
1.017
0.203
0.203
10.1
4.828
1.033
1.02
0.203
3.033
3.033
0.602
0.604
0.12
0.121
5.092
5.092'
1.013
1.023
0.203
20.1
ISC
1000.00
25.79
11.00
376.10
0.06
2.98
0.70
0.70
0.11
0.92
0.96
0.61
0.59
10.10
4.19
2.65
2.16
1.35
3.03
3.04
0.59
0.59
0.11
0.11
7.36
1.47
7.35
1.47
0.28
20.10
% Difference
0.00
0.00
0.00
0.00
0.00
1.22
15.34
15.63
9.09
9.52
6.05
199.31
1 88.27
0.00
13.16
156.51
1 1 1 .99
563.02
0.19
0.34
1.59
1.55
7.28
8.63
44.58
71.16
625.61
43.27
37.59
0.00
Analytical Regions (wavenumbers)
Baseline
1 r\\f./f*r 1 !»»••»«»
832.5 834
832.5 834
1252
1252

1253.4
1253.4
Analytical Regions
909.41 960.62
1181.99 1311.9:
                                                        07/09/9;
                                                         87

-------
Hot/Wet Analysis File for
           Trichloroethylene
                                             TABLE 6-6 Icon'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Styrene
Styrene
Styrene
Styrene
Styrene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
SF6
File Name
1 94cl ana
1 98ct asf
CO2a
023a4asa.dsf
023a4asb.dsf
023a4asc.dsf
023a4asd.dsf
023a4ase.dsf
023a4asf.dsf
1 42b4asa.dsf
1 42b4asb.dsf
1 42b4asc.dsf
1 42b4asd.dsf
1 42b4ase.dsf
I42b4asf.dsf
1 47a4asb.dsf
1 47a4asc.dsf
1 47a4asd.dsf
1 47a4ase.dsf
1 47a4asf.dsf
1 60a4asa.dsf
1 60a4asb.dsf
1 60a4asc.dsf
1 60a4asd.dsf
1 60a4ase.dsf
1 60a4asf.dsf
SF6 002
ASC
1000
25.791
11
5.092
5.092
1.006
1.023
0.205
0.203
3.045
3.045
0.598
0.601
0.121
0.121
5.082
1.015
1.014
0.202
0.203
5.102
5.102
1.014
1.016
0.203
0.203
0.057
ISC
1000.00
25.79
11.00
5.12
5.07
1.01
1.01
0.22
0.22
3.01
3.09
0.61
0.54
0.16
0.06
5.05
1.15
1.06
0.20
0.22
5.08
5.16
0.91
0.99
0.19
0.19
0.06
% Difference
0.00
0.00
0.00
0.49
0.51
0.79
0.82
6.54
8.43
1.17
1.55
1.23
10.12
28.30
49.64
0.69
12.87
4.12
0.55
8.16
0.54
1.09
10.56
2.87
5.81
6.89
0.00
Analytical Regions (wavenumbers)
Baseline
..._..( nwf*r. ....... ' i •"*•"*«»•
821 .43 823.39
867.02 869.51
867.02
1 978.25

869.51
1979.58
Analytical Regions
826.25 860.91
919.7 959.88
                                                       07/09/93
                                                      88

-------
Hot/Wet Analysis File for
           2.2,4-Trimethvlpentane
                                             TABLE 6-6 Icon'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Bromoform
Bromoform
Bromoform
Bromoform
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon disutfide
Carbon disutfide
Carbon disulfide
Carbon disulfide
Carbon disulfide
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
m-Xylenes
m-Xylenes
m-Xylenes
m-Xylenes
m-Xylenes
Nitric oxide
Hydrogen chloride
File Name
I94ciana
1 98C1 asf
C02a
022b4asc.dsf
022b4asd.dsf
022b4ase.dsf
022b4asf.dsf
029a4asc.dsf
029a4asd.dsf
029a4ase.dsf
029a4asf.dsf
029a4asg.dsf
029a4ash.dsf
028a4asa.dsf
028a4asb.dsf
028a4asc.dsf
028a4asd.dsf
028a4asg.dsf
1 65a4asc.dsf
165a4asd.dsf
I65a4ase.dsf
1 65a4as1.dsf
172a4are.dsf
172a4arf.dsf
172a4arg.dsf
I72a4arh.dsf
1 72a4ari.dsf
NO2zap
HCI 2e
ASC
1000
25.791
11
0.605
0.604
0.121
0.121
1.015
1.016
0.203
0.203
0.051
0.052
5.092
5.092
1.018
1.014
0.204
1.015
1.015
0.202
0.203
0.203
0.201
4.93
4.93
1.015
100
100
ISC
1 000.00
25.79
11.00
0.44
0.68
0.30
0.39
0.81
0.94
0.82
0.86
0.21
0.48
4.70
4.18
4.21
3.86
2.74
1.02
1.01
0.20
0.20
0.21
0.18
4.82
5.04
1.02
1 00.00
100.00
% Difference
0.00
0.00
0.00
27.80
12.86
151.65
224.63
20.55
7.40
302.58
322.57
309.22
818.67
7.71
17.95
312.90
280.93
1 243.04
0.41
0.24
1.78
2.43
3.65
12.97
2.19
2.18
0.52
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
Lower
2694.38 2696.18

3160.3 3161.01
Analytical Regions
2861 .57 3009.23
                                                      07/09/93
                                                       89

-------
Hot/Wet Analysis File for
            Vinyl acetate
                                              TABLE 6-6 {con'tl
Comoound Name
Water
Sulfur dioxide
Carbon dioxide
Hexane
Hexane
Hexane
Methylene chloride
Methylene chloride
Methylene chloride
Propylene oxide
Propylene oxide
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
p-Xylenes
p-Xylenes
p-Xylenes
SF6
File Name
1 94d ana
198c1asf
CO2a
095a4asa.dsf
095a4asc.dsf
095a4ase.dsf
1 1 7a4asa.dsf
1 1 7a4asc.dsf
1 1 7a4ase.dsf
1 43b4ana.dsf
143b4anc.dsf
1 66a4asa.dsf
1 66a4asb.dsf
1 66a4asc.dsf
1 66a4asd.dsf
1 66a4ase.dsf
1 66a4asf.dsf
1 73a4asa.dsf
1 73a4asc.dsf
1 73a4ase.dsf
SF6 002
ASC
1000
25.791
11
5.092
1.021
0.206
5.082
1.015
0.202
15.065
3.006
5.082
5.082
1.013
1.017
0.203
0.203
5.102
1.007
0.204
0.057
ISC
999.17
25.76
11.10
5.00
1.42
0.54
4.56
3.38
1.74
14.82
4.22
5.06
5.09
1.04
1.05
0.19
0.23
5.01
1.57
-0.20
0.06
% Difference
0.08
0.14
0.94
1.75
38.82
163.35
10.28
232.55
758.71
1.61
40.37
0.41
0.14
2.86
2.98
7.80
13.08
1.85
56.04
196.25
0.00
Analytical Regions (wavenumbers)
Baseline
1978.68 0
1978.68 0
..,..,_ WJJJJV,!— —
1979.58
1979.58

0
0
Analytical Regions
823.23 906.69
919.53 1046.33
                                                        07/09/93
                                                        90

-------
Hot/Wet Analysis File for
            Vinyl bromide
                                             TABLE 6-6 (can't)
Compound Name
Water
Sulfur dioxide
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Vinyl bromide
Vinyl bromide
Vinyl bromide
Vinyl bromide
x 'inyl bromide
Vinyl bromide
Acetone
Acetone
Acetone
Acetone
Acetone
Carbon dioxide
SF6
File Name
1 94C1 ana
198clasf
1 07a4asa.dsf
1 07a4asb.dsf
1 07a4asc.dsf
1 07a4asd.dsf
1 07a4ase.dsf
1 07a4asf.dsf
I67a4asa.dsf
I67a4asb.dsf
167a4asc.dsf
167a4asd.dsf
1 67a4ase.dsf
1 67a4ast.dsf
1 92a4arb.dsf
1 92a4arc.dsf
192a4ard.dsf
1 92a4are.dsf
1 92a4arf.dsf
CO2a
SF6 002
ASC
1000
25.791
5.092
5.092
1.014
1.018
0.204
0.203
5.082
5.082
1.014
1.017
0.203
0.203
5.021
1.014
1.015
0.203
0.203
11
0.057
ISC
1000.00
25.79
5.08
5.11
0.99
1.00
0.21
0.21
5.07
5.08
1.04
1.04
0.21
0.21
5.07
0.90
0.91
0.22
0.18
11.00
0.06
% Difference
0.00
0.00
0.20
0.34
2.03
1.87
2.18
3.58
0.17
0.01
2.08
1.84
1.51
1.65
0.88
10.92
10.40
6.93
11.56
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
1 r\\*tf*r ... 1 lr\r\ar
836.88 838.23
836.88 838.23
836.88 838.23
1971.76
1971.76
1971.76

1974.16
1974.16
1974.16
Analytical Regions
990.35 1025.26
899.81 904.54
939.59 944.72
                                                       07/09/93
                                                        91

-------
                                              TABLE 6-6 Icon't)
Hot/Wet Analysis
            Vinyl
File for
chloride
Compound Name
Water
Sulfur dioxide
Carbon dioxide
SF6
Nitric oxide
Acrolein
Acrolein
Acrolein
Acrolein
Carbonyl sutfide
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Carbon monoxide
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1,1,2-Trichloroethane
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Hydrogen chloride
File Name
1 94c1 ana
198clasf
CO2a
SF6_002
NO2zap
006b4anb.dsf
006b4ane.dsf
006b4anf.dsf
006b4anh.dsf
030a4asc.dsf
030a4asd.dsf
030a4ase.dsf
030a4asf.dsf
1 97asm
037a4ard.dsf
037a4arf.dsf
037a4arh.dsf
037a4arj.dsf
159b4asa.dsf
I59b4asb.dsf
159b4asc.dsf
159b4asd.dsf
1 59b4ase.dsf
168a4asa.dsf
1 68a4asb.dsf
1 68a4asc.dsf
I68a4asd.dst
1 68a4ase.dsf
I68a4ast.dsf
HC! 2e
ASC
1000
25.791
11
0.059
10.1
3.017
0.604
0.603
0.121
1.012
1.017
0.203
0.203
100
4.828
1.033
1.02
0.203
3.033
3.033
0.602
0.604
0.12
5.092
5.092
1.013
1.023
0.203
0.211
10.1
ISC
1000.00
25.79
11.00
0.06
10.10
2.98
0.70
0.70
0.12
1.00
1.00
0.28
0.28
100.00
4.81
1.10
1.01
0.24
3.03
3.04
0.60
0.60
0.12
7.31
1.52
7.31
1.50
0.31
0.31
10.10
% Difference
0.00
0.00
0.00
0.00
0.00
1.28
16.00
16.02
0.40
1.18
1.74
36.08
36.68
0.00
0.28
6.44
0.96
17.29
0.22
0.32
1.21
0.98
3.73
43.59
70.25
621 .31
46.89
53.10
45.05
0.00
Analytical Regions (wavenumbers)
Baseline
831 833
"HH^i 	 '
2535.83 2538.15
Analytical Regions
852.81 1056.06
                                                        07/09/93
                                                        92

-------
                                                         TABLE 6-6 Icon't)
              Hot/Wet Analysis File for
                         Vinylidene chloride
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Toluene
Toluene
Toluene
Toluene
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
File Name
1 94ci ana
198clasf
CO2a
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 09a4ara.dsf
I09a4arb.dsf
1 09a4arc.dsf
109a4ard.dsf
1 09a4are.ds1
1 09a4arf.dsf
1 53a4ara.dsf
153a4arb.dsf
1 53a4arc.dsf
1 53a4ard.dsf
169b4asa.dsf
169b4asb.dsf
1 69b4asc.dsf
169b4ase.dsf
169b4asf.dsf
ASC
1000
25.791
11
5.031
5.031
1.016
1.017
0.203
0.202
5.062
5.062
1.011
1.017
0.203
0.202
5.072
5.072
1.013
1.009
3.039
3.039
0.604
0.121
0.121
ISC
1000.00
25.79
11.00
4.87
5.16
1.11
1.05
0.28
0.24
5.02
5.13
0.88
1.03
0.21
0.27
4.96
5.18
0.98
1.06
3.02
3.05
0.64
0.13
0.13
% Difference
0.00
0.00
0.00
3.12
2.53
9.52
2.83
37.36
18.57
0.90
1.32
13.03
1.24
2.46
30.94
2.24
2.16
3.30
5.36
0.57
0.34
5.59
3.52
3.52

Analytical Regions (wavenumbers)
                       Baseline

831.81 832.41
1 004.05 1 004.59

1004.05
1251.17

1004.59
1255.11
Analytical Region;
834.13 898.'
1059.44 1113.1
                                                                   07/09/!
                                                                   93

-------
Hot/Wet Analysis File for
            p-Xylenes
                                              TABLE 6-6 Icon'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Hexane
Hexane
Hexane
Methylene chloride
Methylene chloride
Methylene chloride
Propylene oxide
Propylene oxide
Vinyl acetate
Vinyl acetate
Vinyl acetate
p-Xylenes
p-Xylenes
p-Xylenes
>Xylenes
p-Xylenes
Nitric oxide
Hydrogen chloride
File Name
1 94C1 ana
198c1asf
CO2a
095a4asa.dsf
095a4asc.dsf
095a4ase.dsf
1 1 7a4asa.dsf
1 1 7a4asc.dsf
1 1 7a4ase.dsf
143b4ana.ds1
143b4anc.dsf
1 66a4asa.dsf
1 66a4asc.dsf
1 66a4ase.dsf
1 73a4asa.dsf
1 73a4asb.dsf
1 73a4asc.ds1
1 73a4asd.dsf
1 73a4ase.dsf
NO2zap
HCI 2e
ASC
1000
25.791
11
5.092
1.021
0.206
5.082
1.015
0.202
15.065
3.006
5.082
1.013
0.203
5.102
5.102
1.007
1.018
0.204
10.1
100
ISC
1000.04
25.79
11.00
5.11
0.95
0.20
5.08
1.01
0.18
14.94
3.65
5.09
1.00
0.19
4.98
5.25
0.91
0.96
0.19
10.10
100.07
% Difference
0.00
0.00
0.03
0.30
7.30
5.07
0.02
0.20
10.32
0.85
21.42
0.07
1.41
8.15
2.35
2.95
9.43
5.45
6.84
0.00
0.07
Analytical Regions (wavenumbers)
Baseline
2559.43 2560.94
1978.64 0
1978.64 0
3159.88
1979.58
1979.58

3160.98
0
0
Analytical Regions
2854.43 3083.14
770.61 81 9.06
1082.58 1141.27
                                                        07/09/93
                                                        94

-------
                                              TABLE 6-6 (con t)
Condenser Analysis File for
            Allyl Chloride
[Compound Name
(Water
Sulfur dioxide
Carbon dioxide
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Allyl Chloride
Allyl Chloride
Allyl Chloride
Allyl Chloride
Ethyl benzene
Ethyl benzene
Ethyl benzene
Ethyl benzene
Ethyl benzene
o-Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
SF6





File Name
1 94d anb
1 98C1 asf
CO2a
009a4ara.dsf
009a4arb.dsf
009a4arc.dsf
009a4ard.dsf
009a4are.dsf
009a4arf.dsf
01 Ob4asa.dsf
010b4asb.dsf
01 Ob4asc.dsf
01 Ob4asd.dsf
077a4ara.dsf
077a4arb.dsf
077a4arc.dsf
077a4ard.dsf
077a4arf.dsf
1 71 a4asa.dsf
1 71 a4asb.dsf
1 71 a4asc.dsf
171a4asd.dsf
1 71 a4ase.dsf
I71a4asf.dsf
SF6 002

ASC
1000
25.791
11
4.991
4.991
1.006
1.014
0.203
0.2
3.093
3.093
0.601
0.602
5.113
5.113
1.014
1.017
0.203
5.072
5.072
1.015
1.016
0.203
0.203
0.057

ISC % Difference
1 000.00
25.79
11.00
4.96
5.01
1.03
1.02
0.22
0.21
3.11
3.10
0.56
0.55
5.17
5.24
0.46
0.80
-0.63
5.23
5.26
0.70
0.17
-1.28
-1.35
0.06

0.00
0.00
0.00
0.56
0.42
2.43
0.55
7.99
5.33
0.37
0.21
6.43
9.15
1.11
2.56
54.82
21.66
409.99
3.19
3.79
31.20
82.97
731 .50
761.54
0.00



























Analytical Regions (wavenumbers)
Baseline
...... I nwf*r . . .- ••

873.86 875.12
873.86 875.12


21 43.24
2143.24
_
Cl
2143.78
2143.78
Analytical Regions
893.51
1241.86
1002.Z
1 301 .7:
                                                        07/09/9C
                                                         95

-------
                                            TABLE 6-6 Icon'tl
Condenser Analysis File for
           Benzene
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acetonrtrile
Acetonitrile
Acetonitrile
Acetonrtrile
Benzene
Benzene
Benzene
Benzene
Methano!
Methanol
Methanol
Methanol
Methanol
Methanol
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
File Name
1 94d anb
1 98cl asf
CO2a
003a4ara.dsf
003a4arb.dsf
003a4arc.dsf
003a4ard.dsf
01 5a4ara.dsf
01 5a4arb.dsf
01 5a4arc.dsf
015a4ard.dsf
1 04a4asa.dsf
1 04a4asb.dsf
1 04a4asc.dsf
1 04a4asd.dsf
1 04a4ase.dsf
1 04a4asf.dsf
1 1 2a4ara.dsf
112a4arb.dsf
1 1 2a4arc.dsf
1 1 2a4ard.dsf
1 1 2a4are.dsf
112a4arf.dsf
1 51 a4asa.dsf
1 51 a4asb.dsf
151a4asd.dsf
151a4ase.dsf
1 51 a4asf.dsf
ASC
1000
25.791
11
4.97
4.97
1.006
1.015
5.052
5.052
1.036
1.016
5.113
5.113
1.016
1.016
0.203
0.206
5.031
5.031
1.014
1.012
0.202
0.203
4.574
4.574
1.013
0.203
0.203
ISC
1 000.00
25.79
11.00
4.90
4.96
1.25
1.14
5.05
5.07
1.01
0.97
5.10
5.14
0.98
0.98
0.20
0.18
4.95
5.12
1.16
1.02
-0.15
-0.32
4.58
3.96
2.90
2.55
2.12
% Difference
0.00
0.00
0.00
1.36
0.15
24.14
12.58
0.10
0.39
2.80
4.34
0.20
0.50
3.44
3.41
4.06
12.13
1.55
1.68
13.82
0.24
1 74.85
255.35
0.07
13.33
185.66
1154.98
944.92
Analytical Regions (wavenumbers)
Baseline
1 nwpr ' i *»••»*»*
2759 2760.92
873.39 875.8
3156.59
1 978.93

3157.38
1 979.78
Analytical Regions
3020.15 3124.44
1010.22 1063.18
                                                      07/09/93
                                                      96

-------
                                           TABLE 6-6 (con tl
Condenser Analysis File for
           Chlorobenzene
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Carbon monoxide
SF6
Acrolein
Acrolein
Acrolein
Acrolein
Carbonyl sulfide
arbonyl sulfide
Carbonyl sulfide
Carbonyl sulftde
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
1,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,2-Trichloroethane
1,1,2-Trichloroethane
Nitric oxide
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
File Name
1 94c1 anb
1 98cl asf
C02a
1 97asm
SF6_002
006b4anb.dsf
006b4ane.dsf
006b4anf.dsf
006b4anh.dsf
030a4asc.dsf
030a4asd.dsf
030a4ase.dsf
030a4asf.dsf
037a4arc.dst
037a4ard.dsf
037a4art.dsf
037a4arh.dsf
037a4arj.dsf
1 59b4asa.dsf
1 59b4asb.dsf
159b4asc.dsf
1 59b4asd.dsf
159b4ase.dsf
NO2zap
1 68a4asa.dsf
168a4asb.dsf
1 68a4asc.dsf
168a4asd.dsf
1 68a4ase.dsf
ASC
1000
25.791
11
376.1
0.057
3.017
0.604
0.603
0.121
1.012
1.017
0.203
0.203
4.828
4.828
1.033
1.02
0.203
3.033
3.033
0.602
0.604
0.12
10.1
5.092
5.092
1.013
1.023
0.203
ISC
1000.00
25.79
11.00
376.10
0.06
2.98
0.78
0.55
0.43
0.95
0.95
0.51
0.54
5.10
4.58
1.01
0.94
0.21
2.71
3.05
1.24
1.33
0.94
10.10
7.38
1.44
7.41
1.44
0.29
% Difference
0.00
0.00
0.00
0.00
0.00
1.23
29.73
9.25
259.75
6.04
6.51
1 48.35
164.55
5.59
5.11
2.41
8.39
2.58
10.71
0.68
106.13
120.48
681.86
0.00
44.94
71.64
630.73
40.78
43.18
Analytical Regions (wavenumbers)
Baseline
833.14 833.98
2629.56 2634.09
1977.71
3144.53

1979.58
3146.79
Analytical Regions
1012.42 1036.64
3029.76 3113.07
                                                     07/09/93
                                                      97

-------
                                            TABLE 6-6 Icon t)
Condenser Analysis File for
           Ethyl benzene
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Ally! Chloride
Ally) Chloride
Allyl Chloride
Ally! Chloride
Ethyl benzene
Ethyl benzene
Ethyl benzene
.Ethyl benzene
Ethyl benzene
o-Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
Nitric oxide
File Name
1 94ci anb
198c1asf
CO2a
009a4ara.dsf
009a4arb.dsf
009a4arc.dsf
009a4ard.dsf
009a4are.dsf
009a4arf.dsf
010b4asa.dsf
010b4asb.dsf
01 Ob4asc.dsf
010b4asd.ds1
077a4ara.dsf
077a4arb.dsf
077a4arc.dsf
077a4ard.dsf
077a4arf.dsf
1 71 a4asa.dsf
1 71 a4asb.dsf
1 71 a4asc.dsf
1 71 a4asd.dsf
1 71 a4ase.dsf
I7la4asf.dsf
NO2zap
ASC
1000
25.791
11
4.991
4.991
1.006
1.014
0.203
0.2
3.093
3.093
0.601
0.602
5.113
5.113
1.014
1.017
0.203
5.072
5.072
1.015
1.016
0.203
0.203
10.1
ISC
1000.00
25.79
11.00
4.77
4.99
1.66
1.36
0.44
0.52
3.10
3.10
0.58
0.56
4.95
5.25
1.13
1.06
0.24
5.02
5.12
0.99
1.05
0.27
0.28
10.10
% Difference
0.00
0.00
0.00
4.47
0.02
65.21
33.55
118.58
161.63
0.23
0.21
3.96
7.73
3.23
2.60
11.39
3.83
17.65
1.02
0.88
2.29
2.81
33.73
39.03
0.00
Analytical Regions (wavenumbers)
Baseline
1 nwpr ...... ' !•»•»»»•
2760.28 2761.12
•-•wp^ui 	
3160.11 3161.29
Analytical Regions
2854.28 3122.12
                                                     07/09/93
                                                     98

-------
                                              TABLE 6-6 Icon't)
Condenser Analysis File for
            Ethyl chloride
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Methyl bromide
Methyl bromide
Methyl bromide
Methyl bromide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
1 Methyl methacrylate
Nitric oxide
SF6
File Name
1 94c1 anb
198c1asf
CO2a
079b4asa.dsf
079b4asb.dsf
079b4asc.dsf
079b4asd.dsf
079b4ase.dsf
079b4asf.dsf
1 06a4asb.dsf
I06a4asc.dsf
1 06a4asd.dsf
1 06a4ase.dsf
1 1 1 a4asa.dsf
1 1 1 a4asb.dsf
1 1 1 a4asc.dsf
1 1 1 a4asd.dsf
1 1 4b4asa.dsf
1 1 4b4asb.dsf
1 1 4b4asc.dsf
114b4asd.dsf
1 1 4b4ase.dsf
1 1 4b4asf.dsf
NO2zap
SF6 002
ASC
1000
25.791
11
2.997
2.997
0.604
0.602
0.121
0.121
4.919
4.919
1.017
1.018
4.95
4.95
1.02
1.016
3.051
3.051
0.604
0.603
0.123
0.121
10.1
0.057
ISC
1000.00
25.79
11.00
3.09
3.03
0.43
0.15
0.13
0.13
4.94
4.95
0.89
0.91
4.96
4.95
1.00
0.97
3.09
3.06
0.49
0.48
-0.01
0.07
10.10
0.06
% Difference
0.00
0.00
0.00
3.13
1.04
28.66
75.07
8.21
5.65
0.34
0.67
12.57
11.12
0.25
0.06
2.10
5.09
1.38
0.37
18.89
19.84
1 04.80
39.55
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
1 m>>p>r 1 IrM-inr
2545.12 2586.87
1006.16 1006.66
874.31 875.59
431 0.76
21 59.49
1006.16

431 1 .84
2159.79
1 006.66
Analytical Regions
2916.56 3041.03
1263.97 1312.02
943.43 1000.16
                                                        07/09/93
                                                         99

-------
                                            TABLE 6-6 Icon'tl
Condenser Analysis File for
           Etnylene dibromide
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl chlorotorm
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
File Name
1 94C1 anb
1 98c1 asf
CO2a
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 08a4asa.dsf
1 08a4asb.dsf
1 08a4asc.dsf
1 08a4asd.dsf
1 08a4ase.dsf
1 08a4asf.dsf
1 24b4ana.dsf
124b4anb.dsf
1 24b4anc.dsf
1 24b4and.dsf
124b4ane.dsf
124b4anf.dsf
ASC
1000
25.791
11
5.031
5.031
1.016
1.017
0.203
0.202
5.123
5.123
1.01
1.012
0.203
0.203
3.013
3.016
0.604
0.603
0.121
0.124
ISC
1000.00
25.79
11.00
4.86
5.18
1.14
1.01
0.21
0.20
5.09
5.17
1.08
0.91
0.17
0.16
3.00
2.59
1.00
2.28
0.53
0.46
% Difference
0.00
0.00
0.00
3.38
2.92
12.07
0.75
1.37
2.44
0.65
0.84
6.53
9.92
16.07
21.84
0.55
14.19
65.77
277.95
338.22
267.44
Analytical Regions (wavenumbers)
Baseline
... ... . .-1 C\\t\ff*r i i ' lr-*»-**»r
868.55 869.92
868.55 869.92
2536.6
2536.6

2541 .32
2541 .32
Analytical Regions
1178.74 1196.46
1241.71 1266.92
                                                      07/09/93
                                                     100

-------
                                                        TABLE 6-6 Icon't)
              Condenser Analysis File for
                         Hexane
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Nitric oxide
Hexane
Hexane
Hexane
Hexane
Hexane
Hexane
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Propylene oxide
Propylene oxide
Propylene oxide
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
File Name
1 94C1 anb
1 98cl asf
CO2a
NO2zap
095a4asa.dsf
095a4asb.dsf
095a4asc.dsf
095a4asd.dsf
095a4ase.dsf
095a4asf.dsf
1 1 7a4asa.dsf
I17a4asb.dsf
1 1 7a4asc.dsf
117a4asd.dsf
1 1 7a4ase.dsf
1 1 7a4asf .dsf
I43b4ana.dsf
I43b4anb.dsf
143b4and.dsf
1 66a4asa.dsf
166a4asb.dsf
1 66a4asc.dsf
I66a4asd.dsf
1 66a4ase.dsf
1 66a4asf.dsf
1 73a4asa.dsf
173a4asb.dsf
173a4asc.dsf
173a4asd.dsf
ASC
1000
25.791
11
10.1
5.092
5.092
1.021
1.02
0.206
0.203
5.082
5.082
1.015
0.972
0.202
0.201
15.065
- 15.086
3.018
5.082
5.082
1.013
1.017
0.203
0.203
5.102
5.102
1.007
1.018
ISC
1 000.00
25.79
11.00
10.10
5.08
5.11
0.96
1.04
0.20
0.20
5.06
5.09
1.08
1.00
0.10
0.25
14.96
15.09
3.53
5.04
5.06
1.16
1.14
0.42
0.38
4.99
5.25
0.90
0.96
% Difference
0.00
0.00
0.00
0.00
0.17
0.33
6.37
2.42
4.00
0.99
0.44
0.14
6.32
2.53
50.05
21.68
0.71
0.03
16.88
0.92
0.41
14.03
11.60
105.04
86.52
2.28
2.92
10.35
5.90

Analytical Regions (wavenumbers)
                       Baseline

2556.39 2557.97

31 59.84

3160.97
Analytical Regions
2835.27 3005.43
                                                                 07/09/93
                                                                101

-------
                                           TABLE 6-6 Icon'tl
Condenser Analysis File for
           Methyl bromide
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Methyl bromide
Methyl bromide
Methyl bromide
Methyl bromide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Nitric oxide
File Name
1 94C1 anb
1 98d asf
CO2a
079b4asa.dsf
079b4asb.dsf
079b4asc.dsf
079b4asd.dsf
079b4ase.dsf
079b4asf.dsf
1 06a4asb.dsf
1 06a4asc.dsf
1 06a4asd.dsf
106a4ase.dsf
1 1 1 a4asa.dsf
I11a4asb.dsf
1 1 1 a4asc.dsf
1 1 1 a4asd.dsf
1 1 4b4asa.dsf
1 1 4b4asb.dsf
1 1 4b4asc.dsf
1 1 4b4asd.dsf
1 1 4b4ase.dsf
I14b4asf.dsf
NO2zap
ASC
1000
25.791
11
2.997
2.997
0.604
0.602
0.121
0.121
4.919
4.919
1.017
1.018
4.95
4.95
1.02
1.016
3.051
3.051
0.604
0.603
0.123
0.121
10.1
ISC
1000.00
25.79
11.00
3.01
3.00
0.59
0.56
0.12
0.12
4.95
4.91
0.98
0.97
4.98
4.94
0.99
0.98
3.04
3.06
0.61
0.61
0.13
0.12
10.10
% Difference
0.00
0.00
0.00
0.28
0.15
3.09
7.03
2.47
4.84
0.64
0.26
3.78
5.18
0.50
0.19
3.41
3.89
0.50
0.36
1.70
1.75
4.94
3.87
0.00
Analytical Regions (wavenumbers)
Baseline
. . „ . . , | nwpr. 	 	 «... ' '•-*•"**»•'
2805.09 281 1 .39
3155.26 3165.9
Analytical Regions
2938.47 3008.44
                                                     07/09/93
                                                    102

-------
                                             TABLE 6-6 Icon'tl
Condenser Analysis File for
            Methyl chloride
Compound Name
Water
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Methyl chloride
Vinyl bromide
Vinyl bromide
Vinyl bromide
Vinyl bromide
Vinyl bromide
Vinyl bromide
Acetone
Acetone
Acetone
Acetone
Acetone
Sulfur dioxide
Carbon dioxide
SF6
Nitric oxide
File Name
I94danb
1 07a4asa.dsf
1 07a4asb.dsf
1 07a4asc.dsf
1 07a4asd.dsf
1 07a4ase.dsf
1 07a4asf.dsf
1 67a4asa.dsf
1 67a4asb.dsf
167a4asc.dsf
167a4asd.dsf
1 67a4ase.dsf
1 67a4asf .dsf
1 92a4arb.dsf
1 92a4arc.dsf
1 92a4ard.dsf
1 92a4are.dsf
I92a4arf.dsf
198clasf
CO2a
SF6_002
NOZzap
ASC
1CXX)
5.092
5.092
1.014
1.018
0.204
0.203
5.082
5.082
1.014
1.017
0.203
0.203
5.021
1.014
1.015
0.203
0.203
25.791
11
0.057
10.1
ISC
1000.02
5.08
5.09
1.05
1.03
0.23
0.22
5.06
5.07
1.09
1.09
0.25
0.22
5.07
0.91
0.92
0.10
0.08
25.79
11.00
0.06
10.10
% Difference
0.00
0.20
0.01
3.48
0.63
11.79
9.84
0.37
0.28
7.86
7.00
25.01
8.45
0.98
10.27
9.02
52.49
62.28
0.00
0.00
0.00
0.00
Analytical Regions
(wavenumbers)
Baseline
1 Inofir..
2835.42 2r 3.75
846.88 3~,/.77
4233.1 1
1 978.64

4238.62
1 979.53
Analytical Regions
2928.38 3099.91
976.37 1 081 .9'
                                                       07/09/9C
                                                       103

-------
Condenser Analysis File for
            Methyl ethyl ketone
                                             TABLE 6-6 Icon't)
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Toluene
Toluene
Toluene
Toluene
Vinylidene chloride
Vmylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Nitric oxide
File Name
194danb
1 98d asf
CO2a
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 09a4ara.dsf
1 09a4arb.dsf
1 09a4arc.dsf
I09a4ard.ds1
1 09a4are.dsf
109a4arf.dsf
1 53a4ara.dsf
1 53a4arb.dsf
1 53a4arc.dsf
I53a4ard.dsf
1 69b4asa.dsf
169b4asb.dsf
I69b4asc.dsf
169b4ase.dsf
169b4ast.dsf
NO2zap
ASC
1000
25.791
11
5.031
5.031
1.016
1.017
0.203
0.202
5.062
5.062
1.011
1.017
0.203
0.202
5.072
5.072
1.013
1.009
3.039
3.039
0.604
0.121
0.121
10.1
ISC
1000.00
25.79
11.00
4.86
5.18
1.13
1.00
0.20
0.19
5.03
5.12
0.92
0.99
0.22
0.19
4.97
5.14
1.10
1.10
3.07
3.08
0.25
0.10
0.07
10.10
% Difference
0.00
0.00
0.00
3.39
2.99
11.39
1.32
0.42
4.73
0.67
1.14
9.25
2.87
8.43
4.81
2.08
1.41
8.21
8.60
1.05
1.39
59.37
21.42
43.53
0.00
Analytical Regions (wavenumbers)
Baseline
1 nwflr ' !•»•••»•
2831 .7 2833.37
983.93 991 .42
4292.56
1277.98

4293.74
1278.57
Analytical Regions
2872.76 3040.07
1140.7 1222.63
                                                      07/09/93
                                                      104

-------
                                                        TABLE 6-6 (con't)


(Compound Name
[Water
Sulfur dioxide
Carbon dioxide
Acetonitrile
Acetonitrile
Acetonitrile
Acetonitrile
Benzene
Benzene
Benzene
Benzene
Methanol
Methanol
Methanol
Methanoi
Methanol
Methanol
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethytene
Tetrachloroethylene
Tetrachloroethylene
Nitric oxide
Condenser

File Name
1 94c1 anb
1 98c1 asf
CO2a
003a4ara.dsf
003a4arb.ds1
003a4arc.dsf
003a4ard.dsf
01 5a4ara.dsf
01 5a4arb.dsf
015a4arc.dsf
015a4ard.dsf
1 04a4asa.dsf
1 04a4asb.dsf
1 04a4asc.dsf
1 04a4asd.dsf
1 04a4ase.dsf
1 04a4asf.dsf
1 1 2a4ara.dsf
1 1 2a4arb.dsf
112a4arc.dsf
112a4ard.dsf
1 1 2a4are.dsf
112a4arf.dsf
1 51 a4asa.dsf
1 51 a4asb.dsf
151a4asd.dsf
151a4ase.dsf
I51a4asf.dsf
NO2zap
Analysis File tor
Methyl isobutyl
ASC
1000
25.791
11
4.97
4.97
1.006
1.015
5.052
5.052
1.036
1.016
5.113
5.113
1.016
1.016
0.203
0.206
5.031
5.031
1.014
1.012
0.202
0.203
4.574
4.574
1.013
0.203
0.203
10.1

ketone
ISC
1000.00
25.79
11.00
4.77
4.67
2.70
1.78
5.09
5.06
1.02
0.80
5.09
5.16
0.98
0.97
0.19
0.17
4.94
5.13
1.00
1.00
0.20
0.20
4.47
4.56
1.27
1.22
0.52
10.10


% Difference
0.00
0.00
0.00
4.05
5.99
168.30
75.24
0.76
0.17
2.02
20.99
0.54
0.92
4.09
4.57
7.44
16.58
1.78
1.89
1.29
1.40
3.78
0.01
2.31
0.24
25.30
499.75
1 57.93
0.00

Analytical Regions (wavenumbers)
                       Baseline
.1 n\A7f*r.. ...........
868.69 869.58
2783.82 2788.35
» I Jnnpr
1 978.89
3157.82

1 979.78
3161.17
Analytical Regior
1144.42 1207
2872.05 2994
                                                                  07/09
                                                                 105

-------
                                             TABLE 6-6 Icon't)
Condenser Analysis File for
           Methyl metnacrylate
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Ethyl chloride
Methyl bromide
Methyl bromide
Methyl bromide
Methyl bromide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl iodide
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Methyl methacrylate
Nitric oxide
SF6
File Name
1 94C1 anb
1 98c1 asf
C02a
079b4asa.dsf
079b4asb.dsf
079b4asc.dsf
079b4asd.dsf
079b4ase.dsf
079b4asf.ds1
1 06a4asb.dsf
1 06a4asc.dsf
1 06a4asd.dsf
1 06a4ase.dsf
1 1 1 a4asa.dsf
1 1 1 a4asb.dsf
1 1 1 a4asc.dsf
111a4asd.dsf
1 1 4b4asa.dsf
1 1 4b4asb.dsf
114b4asc.dsf
1 1 4b4asd.dsf
1 1 4b4ase.dsf
I14b4asf.dsf
NO2zap
SF6 002
ASC
1000
25.791
11
2.997
2.997
0.604
0.602
0.121
0.121
4.919
4.919
1.017
1.018
4.95
4.95
1.02
1.016
3.051
3.051
0.604
0.603
0.123
0.121
10.1
0.057
ISC
1 000.00
25.79
11.00
2.99
3.01
0.58
0.57
0.11
0.12
4.93
4.94
0.94
0.96
4.96
4.95
1.00
0.99
3.04
3.06
0.61
0.60
0.11
0.11
10.10
0.06
% Difference
0.00
0.00
0.00
0.10
0.51
4.36
5.21
11.38
4.68
0.18
0.42
7.90
6.11
0.18
0.01
2.18
2.23
0.41
0.43
0.63
0.11
11.72
11.71
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
t f\\A/pr.- 	 - j -in ' 1«^""*^*
879.8 881 .77
2769.12 2770.84
874.18 875.22
1249.71
3156.71
2028.35

1 250.35
3158.49
2030.51
Analytical Regions
1137.5 1232.04
2918.95 3019
915.64 962.12
                                                      07/09/93
                                                     106

-------
              Condenser Analysis File for
                         Methylene chloride
                                                        TABLE 6-6 Icon tl
Compound Name
Water
Sutfur dioxide
Carbon dioxide
Hexane
Hexane
Hexane
Hexane
Hexane
Hexane
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Methylene chloride
Propylene oxide
Propylene oxide
Propylene oxide
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
Nitric oxide
File Name
1 94C1 bvb
I98dasf
CO2a
095a4asa.dsf
095a4asb.dsf
095a4asc.dsf
095a4asd.dsf
095a4ase.dsf
095a4asf.dst
1 1 7a4asa.dsf
Il7a4asb.dsf
1 1 7a4asc.dsf
Il?a4asd.dsf
1 1 7a4ase.dsf
Ii7a4asf.dsf
1 43b4ana.dsf
I43b4anb.dsf
1 43b4and.dsf
1 66a4asa.dsf
166a4asb.dst
1 66a4asc.dsf
1 66a4asd.dst
166a4ase.dsf
166a4asf.dsf
173a4asa.ds1
I73a4asb.ds1
173a4asc.dsf
1 73a4asd.dsf
NO2zap
ASC
1000
25.791
11
5.092
5.092
1.021
1.02
0.206
0.203
5.082
5.082
1.015
0.972
0.202
0.201
1 5.065
1 5.086
3.018
5.082
5.082
1.013
1.017
0.203
0.203
5.102
5.102
1.007
1.018
10.1
ISC
1000.00
25.79
11.00
5.09
5.11
0.95
1.03
0.20
0.21
5.05
5.12
1.00
0.95
0.18
0.20
14.93
15.16
3.34
5.08
5.11
0.96
0.97
0.16
0.16
4.96
5.26
0.93
1.03
10.10
% Difference
0.00
0.00
0.00
0.02
0.24
6.83
1.28
1.24
2.10
0.62
0.76
1.13
2.32
8.99
0.60
0.88
0.46
10.60
0.11
0.59
5.17
5.03
21.28
22.86
2.72
2.98
7.50
0.83
0.00

Analytical Regions (wavenumbers)
                       Baseline

837.28 838.41
2559.44 2560.23
... „ _. I Inn^r
1978.69
4178.26

1 979.78
0
Analytical Regior
1241.32 1290
2952.01 3045
                                                                  07/09
                                                                 107

-------
                                             TABLE 6-6 loon'tl
Condenser Analysis File for
           2-Nitropropane
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethyiene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
Nitric oxide
File Name
I94danb
198c1asf
CO2a
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 08a4asa.dsf
1 08a4asb.dsf
1 08a4asc.dsf
I08a4asd.dsf
1 08a4ase.dsf
I08a4asf.dst
I24b4ana.dsf
124b4anb.dsf
124b4anc.dsf
I24b4and.dsf
I24b4ane.dsf
I24b4anf.dsf
NO2zap
ASC
1000
25.791
11
5.031
5.031
1.016
1.017
0.203
0.202
5.123
5.123
1.01
1.012
0.203
0.203
3.013
3.016
0.604
0.603
0.121
0.124
10.1
ISC
1 000.00
25.79
11.00
4.83
5.18
1.21
1.05
0.25
0.25
5.09
5.18
0.98
0.93
0.23
0.19
2.97
3.05
0.59
0.63
0.14
0.11
10.10
% Difference
0.00
0.00
0.00
3.92
2.95
19.03
3.06
20.95
23.37
0.64
1.09
3.05
8.61
12.16
5.22
1.34
1.23
1.81
4.40
16.87
11.06
0.00
Analytical Regions
... , ., 1 nwnr..,,
(wavenumbers)
Baseline
2816.9 2818.48
879.92 881 .49
1 Inr-tAr
3070.97
0

3071 .95
0
Analytical
2875.79
831 .47
Regions
3039.65
868.5
                                                       07/09/93
                                                      108

-------
                                              TABLE 6-6 Icon't)
Condenser Analysis File for
            Propylene dichloride
Compound Name
Water
Suttur dioxide
Carbon dioxide
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Styrene
Styrene
Styrene
Styrene
Styrene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
shloroethvlene
--

File Name
1 94C1 anb
198clas1
CO2a
023a4asa.dsf
023a4asb.dsf
023a4asc.dsf
023a4asd.dsf
023a4ase.dsf
023a4ast.dsf
142b4asa.dsf
I42b4asb.dsf
142b4asc.dst
I42b4asd.dsf
1 42b4ase.dsf
I42b4asf.dsf
147a4asb.dsf
1 47a4asc.dsf
147a4asd.dsf
1 47a4ase.dsf
147a4asf.dsf
1 60a4asa.dsf
I60a4asb.dsf
160a4asc.dsf
160a4asd.dsf
1 60a4ase.dsf
160a4asf.dsf
SF6_002
NO2zap
ASC
1000
25.791
11
5.092
5.092
1.006
1.023
0.205
0.203
3.045
3.045
0.598
0.601
0.121
0.121
5.082
1.015
1.014
0.202
0.203
5.102
5.102
1.014
1.016
0.203
0.203
0.057
10.1
ISC
1000.00
25.79
11.00
5.12
5.07
1.01
1.01
0.20
0.19
3.05
3.06
0.57
0.57
0.09
0.07
5.07
1.10
0.99
0.17
0.18
5.09
5.22
0.59
0.95
0.08
0.20
0.06
10.10
% Difference
0.00
0.00
0.00
0.50
0.42
0.06
1.44
2.12
6.62
0.14
0.37
5.06
5.53
22.42
41.45
0.21
8.49
2.19
14.00
12.99
0.17
2.20
42.07
6.97
60.86
0.21
0.00
0.00
Analytical Regions (wavenumbers)
Baseline
1 nwrtr ' i«»»«»
867.02 869.51
2836.35 2837.29
1277.56
3159.89

1278.74
3160.92
Analytical Regions
996.86 1038
2927.59 3031.58
                                                        07/09/93
                                                        109

-------
Condenser Analysis File for
            Styrene
                                            TABLE 6-6 (con'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Styrene
Styrene
Styrene
Styrene
Styrene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
SF6
File Name
1 94C1 anb
198c1asf
C02a
023a4asa.dsf
023a4asb.dsf
023a4asc.dsf
023a4asd.dsf
023a4ase.dsf
023a4as1.dsf
1 42b4asa.dsf
1 42b4asb.dsf
1 42b4asc.dsf
1 42b4asd.dsf
142b4ase.dsf
1 42b4asf.dsf
I47a4asb.dsf
1 47a4asc.dsf
1 47a4asd.dsf
1 47a4ase.dsf
147a4asf.dsf
1 60a4asa.dsf
1 60a4asb.dsf
1 60a4asc.dsf
160a4asd.dsf
1 60a4ase.dsf
160a4asf.dsf
SF6 002
ASC
1000
25.791
11
5.092
5.092
1.006
1.023
0.205
0.203
3.045
3.045
0.598
0.601
0.121
0.121
5.082
1.015
1.014
0.202
0.203
5.102
5.102
1.014
1.016
0.203
0.203
0.057
ISC
1 000.00
25.79
11.00
5.08
5.08
1.09
1.09
0.22
0.21
3.05
3.04
0.60
0.60
0.11
0.12
5.07
1.10
0.99
0.17
0.17
5.08
5.16
0.91
0.98
0.20
0.20
0.06
% Difference
0.00
0.00
0.00
0.32
0.28
8.21
6.34
7.13
5.43
0.22
0.15
0.41
1.02
9.12
0.47
0.20
8.77
2.43
14.08
16.86
0.50
1.08
10.72
3.72
3.91
4.30
0.00
Analytical Regions (wavenumbers)
Baseline
1 m».nr 1 l«1r-»«»r
867.02 869.51
867.02 869.51
1978.4
1978.4

1 979.78
1 979.78
Analytical Regions
886.32 931.22
966.67 1006.85
                                                       07/09/93
                                                      110

-------
Condenser Analysis File for
           Tetrachloroethylene
                                            TABLE 6-6 Icon t)
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acetonitrile
Acetonitrile
Acetonitrile
Acetonitrile
Benzene
Benzene
Benzene
Benzene
lethanol
Methanol
Methanol
Methanol
Methanol
Methanol
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Tetrachloroethylene
,'etrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
SF6




File Name
I94cianb
I98clasf
CO2a
003a4ara.dsf
003a4arb.dsf
003a4arc.dsf
003a4ard.dsi
015a4ara.dsf
01 5a4arb.dst
01 5a4arc.dsf
01 5a4ard.dsf
1 04a4asa.dsf
1 04a4asb.dsf
1 04a4asc.dsf
1 04a4asd.dsf
1 04a4ase.dsf
1 04a4asf .dsf
1 1 2a4ara.dsf
112a4arb.dsf
1 1 2a4arc.dsf
112a4ard.dsf
1 1 2a4are.dsf
112a4art.dsf
1 51 aAasa.dsf
151a4asb.dsf
151a4asd.dsf
1 51 a4ase.dsf
151a4asf.dsf
SF6 002

ASC
1000
25.791
11
4.97
4.97
1.006
1.015
5.052
5.052
1.036
1.016
5.113
5.113
1.016
1.016
0.203
0.206
5.031
5.031
1.014
1.012
0.202
0.203
4.574
4.574
1.013
0.203
0.203
0.057

ISC
1000.00
25.79
11.00
4.94
5.03
1.01
0.86
4.67
4.26
4.26
3.56
5.04
5.15
1.10
1.22
0.02
0.04
4.78
5.45
0.89
0.43
-0.28
-0.03
4.42
4.70
0.98
0.97
0.20
0.06

% Difference
0.00
0.00
0.00
0.68
1.27
0.49
15.01
7.47
15.75
31 1 .47
250.31
1.49
0.67
7.77
20.28
88.94
82.24
4.92
8.31
12.19
57.78
237.74
1 1 5.70
3.30
2.75
3.70
374.82
3.72
0.00

Analytical Regions (wavenumbers)
Baseline
,..—....! nw^r

867.22 870.27
1 Innpr

1253.68


1254.88
Analytical Regions
899.2 925.2
                                                      07/09/93
                                                      111

-------
Condenser Analysis File for
           Toluene
                                            TABLE 6-6 (con't)
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Nitric oxide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Toluene
Toluene
Toluene
Toluene
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
File Name
I94danb
1 98c1 ast
CO2a
NO2zap
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 09a4ara.dsf
1 09a4arb.dsf
1 09a4arc.dsf
1 09a4ard.dsf
1 09a4are.dsf
1 09a4arf.dsf
1 53a4ara.dst
1 53a4arb.dsf
1 53a4arc.dsf
1 53a4ard.dsf
1 69b4asa.dsf
1 69b4asb.dsf
1 69b4asc.dsf
1 69b4ase.dsf
1 69b4asf.dsf
ASC
1000
25.791
11
10.1
5.031
5.031
1.016
1.017
0.203
0.202
5.062
5.062
1.011
1.017
0.203
0.202
5.072
5.072
1.013
1.009
3.039
3.039
0.604
0.121
0.121
ISC
1 000.00
25.79
11.00
10.10
4.88
5.15
1.13
1.06
0.23
0.16
5.02
5.14
0.90
0.97
0.19
0.18
5.01
5.14
1.00
1.00
1.92
2.21
9.69
2.06
1.80
% Difference
0.00
0.00
0.00
0.00
3.00
2.39
11.18
4.06
14.61
19.53
0.75
1.44
11.42
5.14
5.84
12.32
1.29
1.39
1.08
1.43
36.76
27.34
1504.79
1610.18
1396.07
Analytical Regions (wavenumbers)
Baseline
, , ........ I n\A/or ' lr\r-*«r
2791.18
2791.18
2795.12
2795.12
3155.95
3155.95
3159.08
31 59.08
Analytical
2862
3018.19
Regions
2924
3054.7
                                                      07/09/93
                                                     112

-------
TABLE 6-6 (con'tl
Condenser Analysis File for
1 ,1 ,2-Trichloroethane
I Compound Name
Water
Sulfur dioxide
3arbon dioxide
Carbon monoxide
SF6
Acrolein
Acrolein
Acrolein
Acrolein
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Carbonyl sulfide
Nitric oxide
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1 ,1 ,2-Trichloroethane
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride
Vinyl chloride





File Name
1 94d anb
198clasf
CO2a
1 97asm
SF6_002
006b4anb.dsf
006b4ane.dsf
006b4anf.dsf
006b4anh.dsf
030a4asc.dsf
030a4asd.dsf
030a4ase.dsf
030a4asf.dsf
NO2zap
037a4ard.dsf
037a4arf.dsf
037a4arh.dsf
037a4arj.dsf
1 59b4asa.dsf
1 59b4asb.dsf
1 59b4asc.dsf
1 59b4asd.dsf
1 59b4ase.dsf
1 59b4asf.dst
1 68a4asa.dsf
1 68a4asb.dsf
1 68a4asc.dsf
1 68a4asd.dsf
1 68a4ase.dsf

ASC
1000
25.791
11
376.1
0.057
3.017
0.604
0.603
0.121
1.012
1.017
0.203
0.203
10.1
4.828
1.033
1.02
0.203
3.033
3.033
0.602
0.604
0.12
0.121
5.092
5.092
1.013
1.023
0.203

ISC
1000.00
25.79
11.00
376.10
0.06
2.98
0.70
0.70
0.11
0.91
0.96
0.61
0.59
10.10
4.22
2.59
2.12
1.30
3.03
3.04
0.59
0.59
0.11
0.11
7.36
1.47
7.35
1.47
0.28

% Difference
0.00
0.00
0.00
0.00
0.00
1.22
15.35
15.62
9.08
9.73
5.83
199.13
188.14
0.00
12.67
1 50.73
1 07.86
537.76
0.19
0.34
1.58
1.55
7.30
8.74
44.54
71.12
625.51
43.46
38.60

Analytical Regions (wavenumbers)
Baseline


832.5 834
832.5 834
.. .. .1 Jnnpr. ,

1252
1252


1253.4
1253.4
Analytical Regior
909.41 960
1181.99 1311
            07/09,
           113

-------
Condenser Analysis File for
           Trichloroethylene
                                            TABLE 6-6 Icon'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
1 ,3-Butadiene
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Styrene
Styrene
Styrene
Styrene
Styrene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
SF6
File Name
1 94cl anb
198dasf
C02a
023a4asa.dsf
023a4asb.dsf
023a4asc.dsf
023a4asd.dsf
023a4ase.dsf
023a4asf.dsf
1 42b4asa.dsf
1 42b4asb.dsf
1 42b4asc.dsf
I42b4asd.dsf
1 42b4ase.dsf
1 42b4asf .dsf
1 47a4asb.dsf
1 47a4asc.dsf
1 47a4asd,dsf
1 47a4ase.dsf
1 47a4asf .dsf
1 60a4asa.dsf
1 60a4asb.dsf
1 60a4asc.dsf
I60a4asd.dsf
1 60a4ase.dsf
160a4asf.dsf
SF6 002
ASC
1000
25.791
11
5.092
5.092
1.006
1.023
0.205
0.203
3.045
3.045
0.598
0.601
0.121
0.121
5.082
1.015
1.014
0.202
0.203
5.102
5.102
1.014
1.016
0.203
0.203
0.057
ISC
1000.00
25.79
11.00
5.12
5.07
1.01
1.01
0.22
0.22
3.00
3.10
0.61
0.55
0.17
0.07
5.05
1.15
1.06
0.20
0.22
5.08
5.16
0.91
0.99
0.19
0.19
0.06
% Difference
0.00
0.00
0.00
0.49
0.51
0.75
0.82
6.48
8.68
1.44
1.68
2.61
9.08
41.44
38.56
0.68
12.77
4.00
1.08
7.06
0.54
1.09
10.52
2.82
5.72
6.83
0.00
Analytical Regions (wavenumbers)
Baseline
t owflr ' '••»•»*»
821 .43 823.39
867.02 869.51
wppi/i
867.02
1978.25

869.51
1979.58
Analytical Regions
826.25 860.91
919.7 959.88
                                                      07/09/93
                                                     114

-------
Condenser Analysis File for
           2,2,4-Trimethylpentane
                                            TABLE 6-6 Icon'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Bromoform
Bromoform
Bromoform
Bromoform
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
t
, Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon disur de
Carbon disulfide
Carbon disulfide
Carbon disulfide
Carbon disulfide
^,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
m-Xylenes
m-Xylenes
m-Xylenes
m-Xylenes
m-Xylenes
Nitric oxide
File Name
1 94C1 anb
1 98c1 asf
CO2a
022b4asc.dsf
022t>4asd.dsf
022b4ase.dsf
022b4as1.dsf
029a4asc.dsf
029a4asd.dsf
029a4ase.dsf

029a4asf.dsf
029a4asg.dsf
029a4ash.dsf
028a4asa.dsf
028a4asb.dsf
028a4asc.dsf
028a4asd.dsf
028a4asg.dsf
1 65a4asc.dsf
1 65a4asd.dsf
1 65a4ase.dsf
1 65a4asf.dsf
I72a4are.dsf
172a4art.dsf
I72a4arg.dsf
I72a4arh.dsf
1 72a4ari.dsf
NO2zap
ASC
1000
25.791
11
0.605
0.604
0.121
0.121
1.015
1.016
0.203

0.203
0.051
0.052
5.092
5.092
1.018
1.014
0.204
1.015
1.015
0.202
0.203
0.203
0.201
4.93
4.93
1.015
100
ISC
1 000.00
25.79
11.00
0.44
0.68
0.31
0.39
0.80
0.95
0.83

0.86
0.23
0.48
4.71
4.17
4.20
3.88
2.75
1.02
1.01
0.20
0.20
0.21
0.17
4.82
5.04
1.02
1 00.00
% Difference
0.00
0.00
0.00
27.68
12.46
159.06
224.38
21.49
6.87
309.37

323.13
348.55
826.62
7.54
18.19
312.73
282.56
1247.46
0.41
0.24
1.82
2.46
2.57
13.37
2.19
2.20
0.21
0.00
Analytical Regions (wavenumbers)
Baseline
. I nwftr
2694.38 2696.18
1 lni->*»r
3160.3 3161.01
Analytical Regions
2861 .57 3009.2
                                                      07/09/9
                                                      115

-------
Condenser Analysis File for
           Vinylidene chloride
                                             TABLE 6-6 (con'tl
[Compound Name
Water
Sulfur dioxide
arbon dioxide
-thylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Toluene
Toluene
Toluene
Toluene
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
File Name
194danb
1 98c1 asf
CO2a
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 09a4ara.dsf
1 09a4arb.dsf
1 09a4arc.dsf
1 09a4ard.dsf
I09a4are.dsf
1 09a4arf.dsf
1 53a4ara.dsf
1 53a4arb.dsf
1 53a4arc.dsf
1 53a4ard.dsf
1 69b4asa.dsf
1 69b4asb.dsf
I69b4asc.dsf
1 69b4ase.dsf
1 69b4asf.dsf
ASC
1000
25.791
11
5.031
5.031
1.016
1.017
0.203
0.202
5.062
5.062
1.011
1.017
0.203
0.202
5.072
5.072
1.013
1 .009
3.039
3.039
0.604
0.121
0.121
ISC
1 000.00
25.79
11.00
4.87
5.16
1.11
1.05
0.28
0.24
5.02
5.13
0.88
1.03
0.21
0.26
4.96
5.18
0.98
1.06
3.02
3.05
0.64
0.13
0.13
% Difference
0.00
0.00
0.00
3.12
2.53
9.52
2.81
37.27
18.52
0.90
1.31
12.87
1.22
1.52
30.30
2.27
2.21
3.48
4.98
0.57
0.34
5.65
3.62
3.62
Analytical Regions (wavenumbers)
Baseline
.„_ 	 , ,...! OWPT- — .____. ^—_ I Ir^rtar
831 .81 832.41
1 004.05 1 004.59
1 004.05 1 004.59
1251.17 1255.11
Analytical Regions
834.13 898.73
1 059.44 1 1 1 3.01
                                                       07/09/93
                                                      116

-------
Condenser Analysis File for
            o-Xylenes
                                            TABLE 6-6 (con't)
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Acrylonitrile
Allyl Chloride
Ally! Chloride
Allyl Chloride
Allyl Chloride
Ethyl benzene
Ethyl benzene
Ethyl benzene
Ethyl benzene
Ethyl benzene
o-Xylenes
o-Xylf es
o-Xylenes
o-Xylenes
o-Xylenes
o-Xylenes
Nitric oxide




File Name
1 94C1 anb
1 98d asf
CO2a
009a4ara.dsf
009a4arb.dsf
009a4arc.dsf
009a4ard.dsf
009a4are.dsf
009a4art.dsf
01 Ob4asa.dsf
010b4asb.dsf
01 Ob4asc.dsf
010b4asd.dsf
077a4ara.dsf
077a4arb.dsf
077a4arc.dsf
077a4ard.dsf
077a4arf.dsf
1 71 a4asa.dsf
171a4asb.dsf
1 71 a4asc.dsf
1 71 a4asd.dsf
1 71 aAase.dsf
!71a4asf.dsf
NO2zap

ASC
1000
25.791
11
4.991
4.991
1.006
1.014
0.203
0.2
3.093
3.093
0.601
0.602
5.113
5.113
1.014
1.017
0.203
5.072
5.072
1.015
1.016
0.203
0.203
10.1

ISC
1000.00
25.79
11.00
4.68
4.92
2.09
1.63
0.69
0.74
3.13
3.09
0.54
0.50
4.95
5.25
1.13
1.06
0.24
5.00
5.10
1.06
1.14
0.39
0.40
10.10

% Difference
0.00
0.00
0.00
6.18
1.51
107.56
60.48
237.26
267.06
1.30
0.27
9.90
17.35
3.25
2.63
11.28
3.79
18.46
1.50
0.55
3.96
11.99
93.64
98.74
0.00

Analytical Regions (wavenumbers)
Baseline
I rvA/or .

2805.09 2809.42
. ...... . -.. .1 Innpr.-

31 60.09


3161.22
Analytical Regions
2859.84 3095.C
                                                       07/09/S
                                                      117

-------
Condenser Analysis File for
            p-Xylenes
                                             TABLE 6-6 (con'tl
Compound Name
Water
Sulfur dioxide
Carbon dioxide
Hexane
Hexane
Hexane
Methylene chloride
Methylene chloride
Methylene chloride
Propylene oxide
Propylene oxide
Vinyl acetate
Vinyl acetate
Vinyl acetate
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
Nitric oxide
File Name
I94clanb
1 98c1 asf
CO2a
095a4asa.dsf
095a4asc.dsf
095a4ase.dsf
1 1 7a4asa.dsf
1 1 7a4asc.dsf
1 1 7a4ase.dsf
I43b4ana.dsf
1 43b4anc.dsf
1 66a4asa.dsf
1 66a4asc.dsf
1 66a4ase.dsf
1 73a4asa.dsf
1 73a4asb.dsf
1 73a4asc.dsf
1 73a4asd.dsf
1 73a4ase.dsf
N02zap
ASC
1000
25.791
11
5.092
1.021
0.206
5.082
1.015
0.202
15.065
3.006
5.082
1.013
0.203
5.102
5.102
1.007
1.018
0.204
10.1
ISC c
1 000.08
25.79
11.00
5.11
0.94
0.19
5.09
1.01
0.18
14.93
3.69
5.09
0.99
0.18
4.98
5.26
0.93
0.94
0.19
10.10
Yo Difference
0.01
0.00
0.04
0.34
7.99
7.23
0.06
0.40
9.17
0.90
22.70
0.10
2.12
9.50
2.42
3.01
7.30
7.28
7.79
0.00
Analytical Regions (wavenumbers)
Baseline
I nw/Rr ' '"•••"»••
2559.43 2560.94
1 978.64 0
1 978.64 0
3159.88
1979.58
1 979.58

3160.98
0
0
Analytical Regions
2854.43 3083.14
770.61 819.06
1082.58 1141.27
                                                       07/09/9:;
                                                      118

-------
Concentrated Analysis File for
           Benzene
                                             TABLE 6-6 Icon'tl
Compound Name
Water
Water
Water
Contaminant 1
Contaminant 3
Contaminant 6
Benzene
Benzene
Benzene
Benzene
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene




File Name
1 94C1 bvb
1 94c1 ana
1 94C1 anb
contaml
contamS
contame
01 5a4arc.dsf
01 5a4ard.dsf
01 5a4are.dsf
01 5a4arf.dsf
1 1 2a4ara.dsf
H2a4arb.dsf
1 1 2a4arc.dsf
112a4ard.dsf
112a4are.dsf
112a4art.dsf
I51a4asa.dsf
151a4asb.dsf
151a4asd.dsf
I5la4ase.dsf
151a4asf.dsf

ASC
385
1000
220
100
100
100
1.036
1.016
0.205
0.203
5.031
5.031
1.014
1.012
0.202
0.203
4.574
4.574
1.013
1.013
0.203

ISC
485.39
953.17
257.15
100.04
99.94
1 00.00
1.03
1.00
0.26
0.26
4.18
4.25
4.09
3.96
4.54
5.93
5.28
3.59
1.82
1.22
1.61

% Difference
26.07
4.68
16.89
0.04
0.06
0.00
0.49
1.54
25.33
25.75
16.84
15.47
302.66
290.63
21 43.29
2816.99
15.38
21.57
79.62
20.29
691.72

Analytical Regions (wavenumbers)
Baseline
,._..._.! n\A/f>r
UUWOI •-•-—---«•—«-•-•-
495.99 498.46
• i _i • i iillnno
----------- --« • -up^jc
2396.25
r_
• «»«--- * 11--- -
2400.58
Analytical Region:
672.09 700. i
                                                       07/09/!
                                                      119

-------
Concentrated Analysis File for
           Chlorobenzene
                                            TABLE 6-6 (con'tl
Compound Name
Water
Contaminant 1
Contaminant 6
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
1,1,2-Trichloroethane
1 ,1 ,2-Trichloroethane
1,1,2-Trichloroethane
1,1,2-Trichloroethane
1 ,1 ,2-Trichloroethane
File Name
1 94d bvb
contaml
contamS
037a4arc.dsf
037a4ard.dsf
037a4art.dsf
037a4arh.dsf
037a4arj.dsf
159b4asa.dsf
I59b4asb.dsf
1 59b4asc.dsf
159b4asd.dsf
1 59b4asf.dsf
ASC
1000
100
100
4,828
4.828
1.033
1.033
0.203
3.033
3.033
0.602
0.604
0.121
ISC
1 000.00
1 00.00
1 00.00
5.04
4.61
1.09
1.01
0.23
3.03
3.05
0.57
0.57
0.08
% Difference
0.00
0.00
0.00
4.39
4.56
5.64
2.50
13.02
0.01
0.45
4.96
5.26
35.06
Analytical Regions (wavenu
BJ
. , ...... I nwf^r... ... ,.-.u.
495 497
495 497
495 497
mbers)
iseline
	 Upper —
2397
2397
2397
2400
2400
2400
Analytical Regions
684.2 686.57
730.68 751.16
1024.73 1026.5
                                                     07/09/93
                                                    120

-------
Concentrated Analysis File for
            Ethylene dibromide
                                            TABLE 6-6 (con'tl
Compound Name
Water
Contaminant 3
Contaminant 6
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
File Name
194C1ANA
contamS
contame
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 08a4asa.dsf
1 08a4asb.dsf
1 08a4asc.dsf
108a4asd.dsf
1 08a4ase.dsf
1 08a4asf.dsf
1 24b4ana.dsf
124b4anb.dsf
124b4anc.dsf
1 24b4and.dsf
124b4ane.dsf
124b4anf.dsf
ASC
1000
100
100
5.031
5.031
1.016
1.017
0.203
0.202
5.123
5.123
1.01
1.012
0.203
0.203
3.013
3.016
0.604
0.603
0.121
0.124
ISC
1 000.00
1 00.00
100.00
4.86
5.18
1.14
1.01
0.20
0.19
5.21
5.10
1.45
0.46
-0.29
-0.32
3.02
2.70
0.91
1.72
0.46
0.53
% Difference
0.00
0.00
0.00
3.38
2.90
12.33
0.31
0.33
4.71
1.76
0.53
43.45
54.55
244.67
257.15
0.18
10.60
49.92
185.58
280.93
326.58
Analytical Regions (wavenumbers)
Baseline
495.99 498.46
495.99 498.46
2396.25
2396.25

2400.58
2400.58
Analytical Regions
594.25 609.21
1182 1191.1
                                                       07/C9/93
                                                      121

-------
Concentrated Analysis File for
            Hexane
                                             TABLE 6-6 Icon'tl
Compound Name
Water
Water
Hydrogen chloride
Contaminant 1
Contaminant 3
Contaminant 6
Hexane
Hexane
Hexane
Hexane
Hexane
Hexane
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
File Name
1 94c1 anb
1 94c1 ana
hcl_2e
contam!
contam3
contame
095a4asa.dsf
095a4asb.dsf
095a4asc.dsf
095a4asd.dsf
095a4ase.dsf
095a4ast.dsf
1 66a4asa.dsf
1 66a4asb.dsf
1 66a4asc.dsf
1 66a4asd.dsf
1 66a4ase.dsf
I66a4as(.dsf
1 73a4asa.dsf
173a4asb.dsf
1 73a4asc.dsf
1 73a4asd.dsf
1 73a4ase.dsf
ASC
535
1000
166
200
100
100
5.092
5.092
1.021
1.02
0.206
0.203
5.082
5.082
1.013
1.017
0.203
0.203
5.102
5.102
1.007
1.018
0.204
ISC
535.94
999.50
166.00
200.00
100.00
100.01
5.10
5.11
0.92
1.01
0.18
0.19
4.90
4.86
1.80
1.91
0.86
1.18
4.96
5.25
0.93
1.03
0.31
% Difference
0.18
0.05
0.00
0.00
0.00
0.01
0.08
0.42
10.21
1.41
12.14
5.82
3.57
4.29
77.08
87.22
325.01
482.24
2.75
2.93
8.21
1.31
51.17
Analytical Regions (wavenumbers)
Baseline
2498.9 2504.5
3154.77 3161.02
Analytical Regions
2835 2910
                                                       07/09/93
                                                     122

-------
              Concentrated Analysis File for
                         Methyl ethyl ketone
                                                         TABLE 6-6 Icon tl
Compound Name
Water
Water
Water
Contaminant 1
Contaminant 2
Contaminant 3
Contaminant 6
Hydrogen chloride
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl ethyl ketone
viethyi ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Toluene
Toluene
Toluene
Toluene
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
File Name
1 94c1 bvb
1 94cl ana
I94danb
contami
contam2
contam3
contamS
hcl_2e
080a4ara.dsf
080a4arb.dsf
080a4arc.dst
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 09a4ara.dsf
1 09a4arb.dsf
I09a4arc.dsf
109a4ard.dsf
1 09a4are.dsf
109a4arf.dsf
1 53a4ara.dsf
1 53a4arb.dsf
1 53a4arc.dsf
1 53a4ard.dsf
1 69b4asa.dsf
1 69b4asb.dsf
1 69b4asc.dsf
169b4ase.dsf
169b4asf.dsf
ASC
405
1000
235
100
100
100
100
200
5.031
5.031
1.016
1.017
0.203
0.202
5.062
5.062
1.011
1.017
0.203
0.202
5.072
5.072
1.013
1.009
3.039
3.039
0.604
0.604
0.121
ISC
403.84
1000.23
236.03
1 00.00
1 00.00
1 00.00
1 00.00
200.00
4.86
5.18
1.14
1.01
0.20
0.20
5.01
5.12
0.95
1.02
0.25
0.23
5.05
5.17
0.83
0.82
3.24
3.18
-0.37
-0.12
-0.08
% Difference
0.29
0.02
0.44
0.00
0.00
0.00
0.00
0.00
3.39
2.94
12.12
0.82
0.42
3.11
0.97
1.14
5.88
0.32
20.60
12.09
0.50
1.96
18.07
18.76
6.76
4.62
161.39
120.46
1 68.02

Analytical Regions (wavenumbers)
                       Baseline

2575 2601 .79
495 498
j I Innp r
3319.76
2400

3322.13
2404
Analytical Regior
2895.14 3021
1135.36 1215
                                                                  07/09,
                                                                  123

-------
Concentrated
            2-
Analysis File for
Nitropropane
                                             TABLE 6-6 (con'tl
Compound Name
Water
Water
Water
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
Methyl chloroform
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
2-Nitropropane
File Name
1 94c1 anb
1 94d bvb
1 94cl ana
080a4ara.dsf
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dsf
080a4arf.dsf
1 08a4asa.dsf
1 08a4asb.dsf
1 08a4asc.dsf
108a4asd.dsf
1 08a4ase.dsf
1 08a4asf.dsf
1 24b4ana.dsf
1 24b4anb.dsf
124b4anc.dsf
1 24b4and.dsf
1 24b4ane.dsf
124b4anf.dsf
ASC
218
467
1000
5.031
5.031
1.016
1.017
0.203
0.202
5.123
5.123
1.01
1.012
0.203
0.203
3.013
3.016
0.604
0.603
0.121
0.124
ISC
232.45
424.15
1016.86
4.94
4.65
2.23
1.95
0.85
0.64
5.34
4.17
2.81
2.22
2.18
1.90
2.97
3.07
0.57
0.58
0.13
0.11
% Difference
6.63
9.18
1.69
1.79
7.68
118.90
91.64
319.66
217.68
4.14
18.55
178.12
118.81
971 .27
836.49
1.42
1.78
4.93
4.17
8.21
8.20
Analytical Regions (wavenumbers)
Baseline
irr-,_.__.) n\A/f*r. . i. , ,...,. i i »•*••»*"*•'
1300.13 1302.69
2404.03 241 5.06
Analytical Regions
1579.31 1598.02
                                                       07/09/93
                                                      124

-------
Concentrated Analysis File for
            Tetrachloroethylene
                                             TABLE 6-6 (con tl
Compound Name
Water
Water
Contaminant 1
Contaminant 6
Benzene
Benzene
Benzene
Benzene
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Methyl isobutyl ketone
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene
Tetrachloroethylene





File Name
I94c1bvb
1 94c1 ana
contaml
contame
01 5a4ara.dsf
01 5a4arb.dsf
01 5a4arc.dsf
01 5a4ard.ds<
1 1 2a4ara.dsf
112a4arb.dsf
1 1 2a4arc.dsf
112a4ard.dsf
112a4are.dsf
I12a4arf.dsf
1 51 a4asa.dsf
1 51 a4asb.dsf
1 51 a4asd.dsf
1 51 a4ase.dsf
151a4asf.dsf

ASC
475
1000
100
100
5.052
5.052
1.036
1.016
5.031
5.031
1.014
1.012
0.202
0.203
4.574
4.574
1.013
1.013
0.203

ISC
477.09
999.00
100.00
100.00
4.96
4.94
2.02
1.02
4.94
5.10
1.12
1.11
0.05
-0.06
4.44
4.72
0.99
0.98
0.20

% Difference
0.44
0.10
0.00
0.00
1.87
2.14
95.07
0.52
1.83
1.35
10.77
9.15
74.61
1 29.49
2.91
3.21
2.44
3.53
2.98

Analytical Regions (wavenumbers)
Baseline
. . ... 1 nwpr. ....

495.99 498.46
495.99 498.46


2396.25
2396.25
r . .

2400.38
2400.38
Analytical Regions
762.4 8C
885 9^
                                                       07/09/S
                                                      125

-------
Concentrated Analysis File for
           Toluene
                                            TABLE 6-6 Icon'tl
Compound Name
Water
Water
Contaminant 6
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Ethylene dibromide
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Methyl ethyl ketone
Toluene
Toluene
Toluene
Toluene
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
Vinylidene chloride
File Name
1 94cl anb
1 94c1 bvb
contamG
080a4ara.dst
080a4arb.dsf
080a4arc.dsf
080a4ard.dsf
080a4are.dst
080a4arf.dsf
1 09a4ara.dsf
109a4arb.dsf
1 09a4arc.dst
1 09a4ard.dsf
1 09a4are.dsf
109a4art.dsf
1 53a4ara.dsf
153a4arb.dsf
1 53a4arc.dsf
1 53a4ard.dsf
169b4asa.dsf
169b4asb.dsf
169b4asc.dsf
169b4ase.dsf
169b4asf.dsf
ASC
415
1000
100
5.031
5.031
1.016
1.017
0.203
0.202
5.062
5.062
1.011
1.017
0.203
0.202
5.072
5.072
1.013
1 .009
3.039
3.039
0.604
0.604
0.121
ISC
414.09
1000.37
1 00.00
5.46
3.68
3.10
2.72
1.97
2.29
5.47
5.51
-0.81
-0.85
-1.41
-1.12
4.98
5.13
1.12
1.12
1.79
2.45
8.20
1.98
1.72
% Difference
0.22
0.04
0.00
8.50
26.81
205.12
167.36
869.74
1031.95
8.01
8.92
180.09
183.65
792.82
652.04
1.91
1.06
10.72
10.59
41.22
19.55
1259.17
228.67
1329.54
Analytical Regions
496.63
496.63
(wavenumbers)
Baseline
497.67
497.68
f Irtrtar
2410.43
2410.43

2419.09
2419.09
Analytical Regions
692.82 695.58
720 732.21
                                                       07/09/93
                                                     126

-------
Concentrated Analysis File for
            Trichloroethylene
                                              TABLE 6-6 Icon'tl
SCompound Name
later
Contaminant 1
Contaminant 6
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Propylene dichloride
Styrene
Styrene
Styrene
Styrene
Styrene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
Trichloroethylene
File Name
1 94C1 ana
CONTAM1
CONTAM6
1 42b4asa.dsf
142b4asb.dsf
1 42b4asc.dsf
I42b4asd.dsf
142b4ase.dsf
1 42b4asf.dsf
1 47a4asb.dst
1 47a4asc.dsf
1 47a4asd.dsf
147a4ase.dsf
1 47a4asf.dsf
1 60a4asa.dsf
1 60a4asb.dsf
1 60a4asc.dsf
160a4asd.dsf
1 60a4ase.dsf
1 60a4asf.dsf
ASC
1000
100
100
3.045
3.045
0.598
0.601
0.121
0.121
5.082
1.015
1.014
0.202
0.203
5.102
5.102
1.014
1.016
0.203
0.203
ISC
1 000.00
100.00
1 00.00
2.88
3.10
0.77
0.86
0.52
0.49
5.08
1.09
0.98
0.15
0.14
5.07
5.15
0.95
1.02
0.22
0.22
% Difference
0.00
0.00
0.00
5.50
1.75
27.93
42.89
326.71
308.46
0.08
7.71
3.41
23.77
31.83
0.66
0.86
6.45
0.76
9.63
7.07
Analytical Regions (wavenumbers)
Baseline
,.»__„,..! OWPT . * Irvr^&r
495.99 498.46
495.99 498.46
495.99 498.46
2396.25
2396.25
2396.25

2400.58
2400.58
2400.58
Analytical Regions
781 .52 784.3
931 948
837 857
                                                        07/09/93
                                                       127

-------
              Concentrated
                         m
         Analysis File for
         -Xylenes
                                                       TABLE 6-6 (con't)
Compound Name
Water
Water
Contaminant 6
Bromotorm
Bromoform
Bromoform
Bromoform
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
Carbon tetrachloride
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
2,2,4-Trimethylpentane
m-Xylenes
m-Xylenes
m-Xylenes
m-Xylenes
m-Xylenes
File Name
1 94cl ana
1 94c1 anb
contamS
022b4asc.dsf
022b4asd.dsf
022b4ase.ds1
022b4astdsf
029a4asc.dsf
029a4asd.dsf
029a4ase.dsf
029a4asf.dsf
029a4asg.dst
029a4ash.dsf
1 65a4asa.dsf
1 65a4asb.dsf
1 65a4asc.dsf
1 65a4asd.dsf
1 65a4ase.dsf
1 65a4asf.dsf
1 72a4are.dsf
172a4arf.dsf
1 72a4arg.dsf
1 72a4arh.dsf
1 72a4ari.dsf
ASC
1000
170
100
0.605
0.604
0.121
0.121
1.015
1.016
0.203
0.203
0.051
0.052
5.102
5.102
1.015
1.015
0.202
0.203
0.203
0.201
4.93
4.93
1.015
ISC
999.63
172.22
99.98
0.64
0.47
0.24
0.48
1.01
1.03
0.20
0.20
0.04
0.04
4.22
3.87
5.95
4.48
5.48
6.15
0.22
0.19
4.82
5.04
1.04
% Difference
0.04
1.30
0.02
6.43
22.40
101.05
297.96
0.73
0.93
1.24
1.15
24.71
20.61
17.26
24.22
485.74
340.89
2608.79
2922.72
6.71
8.34
2.29
2.21
1.98
Analytical Regions (wavenumbers)
                       Baseline
  	Lower	
    495.99
498.46
                 -Upper-
2396.25
2400.58
Analytical Regions
  765.2       770.7

          07/09/93
                                                                128

-------
Concentrated Analysis File for
p-Xylenes
Compound Name
Water
Water
Water
Contaminant 1
Contaminant 3
Contaminant 6
Hexane
Hexane
Hexane
Hexane
Hexane
Hexane
Vinyl acetate
Vinyl acetate
Vinyl acetate
Vinyl acetate
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
p-Xylenes
File Name
194clbvt>
194clanb
1 94C1 ana
contaml
contamS
contamS
095a4asa.dsf
095a4asb.dsf
095a4asc.dst
095a4asd.dsf
095a4ase.dsf
095a4ast.dst
1 66a4asc.dsf
166a4asd.dsf
1 66a4ase.dsf
166a4asf.dsf
1 73a4asa.dsf
I73a4asb.dsf
1 73a4asc.dsf
173a4asd.dsf
1 73a4ase.dsf
ASC
545
230
1000
200
100
100
5.092
5.092
1.021
1.02
0.206
0.203
1.013
1.017
0.203
0.203
5.102
5.102
- 1 .007
1.018
0.204
ISC
528.33
218.52
1011.73
200.04
99.98
100.00
3.87
5.06
3.90
3.09
3.33
3.74
0.85
0.93
0.82
0.84
4.98
5.25
0.91
0.97
0.19
TABLE M Icon'ti
% Difference
3.06
4.99
1.17
0.02
0.02
0.00
24.05
0.66
282.09
203.24
1511.68
1740.10
16.40
8.32
304.64
31 1 .58
2.34
2.90
9.31
4.50
9.12
Analytical Regions (wavenumbers)
Baseline
.... -...I n\MF*r 	 ,...,. * lr>r>ar
495 498
2400 2403
Analytical Regions
788 809
07/09/93
129

-------
TABLE 6-7.  Compounds Not Meeting Method 301 Criteria in Hot/Wet Samples.
                                                                       130

-------
TABLE 6-7 (continued)
Carbon Disulfide-028
SPIKED
18.39
41.90
58.83
63.23
26.13
17.66
61.36
45.22
19.94
54.74
40.74
RSD =
DEV.
23.52
4.41
-6.47
-16.14
34.81
38.12
35.71
Bias= 2.48
t= 0.10
UNSPIKED
17.95
36.23
16.59
45.58
41.22
31.42
8.14
38.17
47.29
3.20
28.58
RSD=
DEV.
18.28
28.99
-9.80
30.03
-44.09
23.41
70.99
Exp Conc= 9.68
CF= 0.80
Carbon Tetrachloride-029
SPIKED
7.33
7.37
7.42
7.43
7.47
7.52
7.50
7.47
7.59
7.54
7.46
RSD=
DEV.
0.04
0.00
0.05
-0.02
-0.06
0.01
0.37
Blas= -2.72
t= 74.24
UNSPIKED
0.19
0.18
0.19
0.19
0.25
0.21
0.21
0.18
0.26
0.20
0.21
RSD =
DEV.
-0.01
0.00
-0.05
-0.02
-0.06
•0.14
11.87
Exp Conc= 9.98
CF= 1.37
               131

-------
TABLE 6-7 (contmowi)
Chloroform-039
SPIKED
15.35
15.16
15.33
15.14
15.24
15.28
15.22
15,21
15.60
15.51
15.49
15.20
15.31
RSD =
DEV.
-0.19
-0.19
0.05
-0.01
-0.09
-0.29
-0.72
0.76
Bias= 4.90
t= 24.48
UNSPIKED
0.80
0.79
0.69
0.75
0.91
0.63
1.03
0.58
0.64
0.78
0.79
0.63
0.75
- RSD =
DEV.
-0.01
0.06
-0.28
-0.44
0.13
-0.16
-0.70
21.69
Exp Conc= 9.66
CF= 0.66
Cumene-046
SPIKED
14.68
14.80
14.89
15.07
15.12
15.20
15.36
15.58
15.69
15.88
15.81
15.91
15.33
RSD =
DEV.
0.12
0.18
0.09
0.22
0.19
0.10
0.89
0.72
Bias= 5.85
t= 40.11
UNSPIKED
-0.59
-0.61
-0.57
-0.60
-0.59
-0.56
-0.82
-0.54
-0.27
-0.44
-0.45
-0.44
-0.54
RSD =
DEV.
-0.02
-0.03
0.03
0.28
-0.16
0.01
0.11
-17.61
Exp Conc= 10.02
CF= 0.63
              132

-------
TABLE 6-7 (continued)
1 ,2-Eooxy Butane-075
SPIKED
13.17
13.58
14.09
13.81
11.26
11.70
11.72
11.61
9.79
10.76
10.59
10.60
11.89
RSD =
DEV.
0.41
-0.28
0.44
-0.10
0.98
0.01
1.44
2.87
Bias= 1,31
t= 2.35
UNSPIKED
-0.41
-0.01
-0.46
-0.14
1.00
0.26
0.56
-0.55
0.27
-0.19
-0.49
-0.81
-0.08
. RSD =
DEV.
0.40
0.32
-0.74
-1.11
-0.46
-0.32
-1.91
-540.44
Exp Conc= 10.66
CF= 0.89
Ethyl Benzene-077
SPIKED
14.38
14.45
14.45
14.13
14.42
14.50
14.41
14.54
14.38
14.42
14.49
14.80
14.45
RSD=
DEV.
0.06
-0.32
0.08
0.13
0.04
0.31
0.30
0.95
Bias** 5.48
t= 19.02
UNSPIKED
-0.44
-1.02
-1.11
-1.14
-0.68
-1.22
-1.09
-1.18
•0.85
-1.20
-1.27
-1.16
-1.03
RSD=
DEV.
-0.58
-0.03
-0.54
-0.10
-0.35
0.11
-1.48
-24.58
Exp Conc= 10.00
CF= 0.65
              133

-------
TABLE 6-7 (continued)
Ethytene Oxide-084
SPIKED
3.45
2.71
2.13
2.19
3.57
3.35
3.41
3.20
3.52
2.72
3.34
3.07
3.06
RSD =
DEV.
-0.74
0.07
-0.22
-0.22
-0.80
-0.27
-2.17
10.99
Blas= -5.92
t= 10.73
UNSPIKED
-0.44
-1.16
•0.93
-0.52
-1.66
-1.33
-1.90
-0.70
-1.07
-1.22
-0.61
-0.80
-1.03
. RSD =
DEV.
-0.72
0.41
0.33
1.20
-0.14
-0.19
0.88
-42.51
Exp Conc= 10.00
CF= 2.45
Methanoi-104
SPIKED
11.68
12.15
12.13
12.30
11.71
11.92
11.80
12.10
11.44
11.90
11.81
11.75
11.89
RSD =
DEV.
0.47
0.17
0.21
0.30
0.46
-0.07
1.54
1.88
Bias= 4.40
t= 17.47
UNSPIKED
-1.19
-1.01
-1.16
-1.17
-0.92
-1.12
-1.19
-1.21
-1.27
-1.18
-1.06
-1.35
-1.15
RSD=
DEV.
0.19
-0.01
-0.20
-0.02
0.09
-0.29
-0.24
-10.13
Exp Conc= 8.64
CF= 0.66
              134

-------
TABLE 6-7 (continued)
Methyl Bromide-106
SPIKED
12.55
13.28
14.45
13.55
14.50
14.54
14.32
16.27
13.64
12.92
11.76
11.55
13.61
RSD =
DEV.
0.73
-0.89
0.03
1.96
-0.72
-0.21
0.90
5.07
Bias= 6.24
t= 7.72
UNSPIKED
-2.66
-3.48
-3.03
-2.33
-3.07
-2.59
-2.51
-1.68
-1.79
-1.65
-3.18
-3.31
-2.61
- RSD =
DEV.
-0.82
0.70
0.47
0.83
0.14
-0.13
1.20
-16.11
Exp Conc= 9.98
CF= 0.62
Methyl Chloroform-108
SPIKED
10.49
10.55
10.58
10.33
10.41
10.42
10.46
10.40
10.33
10.35
10.22
10.27
10.40
RSD =
DEV.
0.06
-0.26
0.01
-0.06
0.02
0.05
-0.18
0.77
Bias= -2.77
t= 20.10
UNSPIKED
4.78
4.42
4.44
4.54
4.48
4.55
4.54
4.54
4.53
4.52
4.46
4.54
4.53
RSD =
DEV.
-0.36
0.10
0.07
0.01
-0.01
0.09
•0.10
2.47
Exp Conc= 8.64
CF= 1.47
                135

-------
TABLE 6-7 (continued)
Methyl lodide-111
SPIKED
8.02
7.39
6.85
6.62
7.83
7.97
7.88
7.64
7.87
7.28
6.91
6.20
7.37
RSD =
DEV.
-0.63
-0.23
0.14
-0.24
-0.59
-0.72
-2.26
4.60
Blas= -2.32
t= 5.05
UNSPIKED
-1.28
-0.66
-0.63
0.00
-0.57
-0.09
0.10
0.47
-0.50
-0.43
-0.31
-0.27
•0.35
- RSD =
DEV.
0.62
0.63
0.49
0.37
0.07
0.04
2.21
-89.10
Exp Conc= 10.04
CF= 1.30
Methyl tsobutyl Ketone-112
SPIKED
20.98
21.25
21.31
21.05
21.09
21.38
21.21
21.18
20.93
21.22
21.18
21.09
21.16
RSD=
DEV.
0.28
-0.26
0.30
-0.03
0.29
-0.08
0.50
0.77
Bias= 6.71
t= 32.89
UNSPIKED
4.10
4.46
4.50
4.42
4.39
' 4.45
4.52
4.56
4.35
4.48
4.60
4.47
4.44
RSD =
DEV.
0.36
-0.09
0.07
0.04
0.13
-0.14
0.37
2.74
Exp Conc= 10.00
CF= 0.60
               136

-------
TABLE 6-7 (continued!
Methyl t-Butyl Ether-115
SPIKED
-2.85
-2.60
-2.27
-2.08
-1.31
•0.52
0.04
0.71
1.43
2.13
2.44
2.61
-0.19
RSD =
DEV.
0.25
0.19
0.78
0.67
0.70
0.17
2.76
-196.95
Blas= -9.34
t= 23.41
UNSPIKED
-0.68
•0.38
-0.60
•0.39
-0.60
•0.37
-0.49
-0.34
-0.67
•0.50
-0.44
-0.43
-0.49
- RSD =
DEV.
0.30
0.21
0.23
0.15
0.17
0.01
1.07
-28.61
Exp Conc= 9.64
CF= 31.90
Methylene Chloride-117
SPIKED
9.60
10.42
10.81
10.94
10.69
10.85
10.73
11.47
10.37
10.37
10.61
11.02
10.65
RSD =
DEV.
0.82
0.13
0.16
0.74
0.00
0.40
2.26
3.23
Blas= 0.36
t= 0.77
UNSPIKED
0.65
1.03
-0.47
0.41
0.60
0.18
0.08
0.29
0.31
0.16
0.19
-0.19
0.27
RSD =
DEV.
0.38
0.88
-0.42
0.21
•0.15
-0.37
0.52
121.81
Exp Conc= 10.02
CF- 0.96
               137

-------
TABLE 6-7 (continued!
Propylene Oxide-143
SPIKED
-1.11
-2.90
-2.58
-1.91
-1.97
-4.04
-1.86
-3.68
-2.63
-3.13
-1.98
-3.08
-2.57
RSD=
DEV.
-1.80
0.66
-2.06
-1.82
-0.50
-1.10
-6.62
-40.01
Blas= -8.82
t= 7.50
UNSPIKED
^.17
-4.00
-3.46
-3.39
^.29
-3.60
-3.48
-4.17
^.25
-3.29
-3.02
^*.42
-3.79
. RSD =
DEV.
0.17
0.07
0.69
-0.69
0.96
-1.40
-0.20
-14.94
ExpConc= 10.04
CF= 8.21
Styrene-147
SPIKED
14.04
13.80
13.84
13.92
14.10
14.40
14.31
14.18
13.65
13.97
14.23
14.08
14.04
RSD=
DEV.
-0.24
0.09

0.30

-0.13

0.32
-0.15
0.18
1.11
Bias* 2.50
t= 3.35
UNSPIKED
2.87
1.02
1.34
1.05
1.25
-0.43
-0.12
0.00
0.60
0.45
0.67
0.67
0.78
RSD =
DEV.
-1.85
-0.29
-1.69
0.12
-0.15
0.00
-3.86
93.36
Exp Conc= 10.76
CF= 0.81
               138

-------
TABLE 6-7 IcontmtMdl
Tetrachloroethyiene-1 51
SPIKED
10.45
10.65
10.60
10.70
10.53
10.63
10.68
10.60
10.56
10.57
10.62
10.62
10.60
RSD =
DEV.
0.20
0.10
0.10
•0.08
0.01
-0.01
0.32
0.70
Bias= 0.77
t= 2.43
UNSPIKED
-0.09
-0.10
-0.10
-1.17
-0.01
-0.08
-0,10
-0.09
-0.06
-0.06
-0.11
-0.11
-0.17
RSD =
DEV.
•0.01
-1.07
-0.07
0.02
0.00
0.00
-1.14
-179.94
Exp Conc= 10.00
CF= 0.93
Tduene-153
SPIKED
14.13
14.41
14.39
14.31
14.45
14.54
14.59
14.22
13.94
13.73
14.02
13.86
14.22
RSD =
DEV.
0.29
-0.08
0.10
-0.37
-0.21
-0.16
-0.44
1.12
Bias= 4.12
t= 15.42
UNSPIKED
0.94
0.51
0.23
0.31
0.32
0.34
0.69
0.13
0.13
0.35
0.07
0.03
0.34
RSD=
DEV.
-0.43
0.08
0.03
•0.55
0.22
-0.04
-0.70
63.78
Exp Conc= 9.76
CF» 0.70
              139

-------
TABLE 6-7 (continued)
o-Xylene-171
SPIKED
14.17
14.16
14.06
14.31
14.09
14.14
14.22
14.12
14.11
14.43
14.32
14.43
14.21
RSD =
DEV.
-0.01
0.24
0.05
-0.10
0.33
0.11
0.62
0.88
Blas= 7.31
t= 42.66
UNSPIKED
-3.36
-3.11
-3.22
-3.32
-2.93
-3.04
-3.18
-3.02
-2.96
-3.04
-2.90
-3.13
-3.10
RSD =
DEV.
0.25
-0.10
-0.11
0.15
-0.09
-0.23
-0.12
-3.76
Exp Conc= 10.00
CF= 0.58
m-Xylene-172
SPIKED
14.02
14.28
14.34
14.60
14.11
14.63
14.45
14.46
14.42
14.20
14.35
RSD =
DEV.
0.27
0.27
0.53
0.02
-0.21
0.86
1.50
Blas= 6.98
t= 30.29
UNSPIKED
-2.68
-2.49
-2.55
-2.66
-2.69
-2.74
-2.87
-2.75
-2.46
-2.39
-2.63
RSD =
DEV.
0.19
-0.10
-0.05
0.12
0.07
023
-3.17
Exp Conc= 10.00
CF= 0.59
              140

-------
TABLE 0-7 (continued)
Acetone-192
SPIKED
-0.21
0.00
-0.13
0.08
-0.32
-0.10
-0.10
0.01
-0.16
0.16
0.04
0.19
-0.04
RSD =
DEV.
0.21
0.21
0.22
0.11
0.31
0.15
1.22
-344.62
Blas= 2.17
t= 12.98
UNSPIKED
-11.40
-11.59
-11.70
-11.77
-11.94
.-11.89
-11.67
-11.71
-11.67
-11.59
-11.85
-11.74
-11.71
RSD=
DEV.
-0.19
-0.07
0.05
-0.04
0.08
0.11
-0.06
-0.62
Exp Conc= 9.50
CF= 0.81
                141

-------
TABLE 6-8.  Compounds Not Meeting Method 301 Criteria in Condenser Samples.
                                                                        142

-------
TABLE 6-8 (continued)
Acetonrtrile-003
SPIKED
6.51
5.78
7.42
10.09
2.66
9.19


6.94
RSD =
DEV.
-0.73
2.68
6.52

8.47
36.11
Bias= -3.42
t= 1.32
UNSPIKED
-0.60
0.86
-1.10
0.12
-1.38
-0.35
0.19
1.17
-0.14
RSD =
DEV.
1.46
1.21
1.03
0.98
4.68
-497.99
Exp Conc= 10.50
CF= 1.48
Acrolein-006
SPIKED
11.09
11.68
11.82
11.84
11.55
11.81
11.91
12.00
11.83
12.04
12.13
12.04
11.81
RSD =
DEV.
0.59
0.02
0.27
0.09
0.21
-0.09
1.09
1.69
Blas= 0.20
t= 0.66
UNSPIKED
-0.01
0.02
-0.03
-0.08
-0.11
-0.24
-0.01
-0.30
0.69
0.03
0.14
0.34
0.04
RSD =
DEV.
0.03
-0.05
-0.14
-0.29
-0.65
0.19
-0.90
586.98
Exp Cone = 11.58
CF= 0.98
               143

-------
TABLE 6-8 (continued)
Acrylonitrile-009
SPIKED
7.76
7.72
7.74
7.86
8.75
9.94
10.11
10.03




7.74
RSD =
DEV.
-0.04
0.12
1.19
-0.08


1.19
5.46
Bias= -2.41
t= 4.97
UNSPIKED
0.14
0.00
0.14
0.26
0.09
0.10
0.01
-0.07
0.89
0.09
0.10
0.10
0.15
. RSD =
DEV.
-0.14
0.13
0.01
-0.08
-0.80
0.00
-0.89
156.33
Exp Conc= 10.00
CF= 1.32
Bromoform-022
SPIKED
8.99
9.10
9.11
9.12
9.43
9.61
9.65
9.63
9.48
9.56
9.69
9.63
9.42
RSD =
DEV.
0.11
0.01
0.18
-0.02
0.08
-0.07
0.29
0.73
Bias= -0.32
t= 3.12
UNSPIKED
-0.34
-0.32
-0.27
-0.13
-0.09
-0.10
-0.15
-0.13
0.19
-0.02
-0.04
-0.07
•0.12
RSD =
DEV.
0.02
0.15
-0.01
0.02
•0.21
-0.03
-0.05
-62.06
Exp Conc= 9.86
CF= 1.03
              144

-------
TABLE 6-8 (continued)
l,3-Butadiene-023
SPIKED
7.42
7.62
7.66
7.69
8.37
8.38
8.45
8.33
8.24
8.23
8.15
8.30
8.07
RSD =
DEV.
0.20
0.03
0.01
-0.12
-0.01
0.15
0.27
0.99
Blas= -1.64
t= 16.42
UNSPIKED
0.02
-0.07
•0.23
-0.30
0.24
0.14
0.13
0.08
0.08
-0.05
-0.07
-0.02
-0.01
RSD =
DEV.
-0.09
-0.07
-0.11
-0.05
•0.13
0.05
-0.39
-1026.51
Exp Conc= 9.72
CF= 1.20
Carbon Disulfide-028
SPIKED
7.56
7.44
7.26
7.50
8.78
8.66
8.76
8.75
8.48
8.55
8.59
8.56
8.24
RSD =
DEV.
-0.12
0.25
-0.11
-0.01
0.07
-0.03
0.04
1.07
Bias= -3.12
t= 28.94
UNSPIKED
1.02
0.97
0.89
0.90
2.19
2.04
1.99
1.96
2.13
2.11
2.06
1.92
1.68
RSD=
DEV.
•0.05
0.01
-0.15
-0.02
-0.02
-0.14
-0.37
3.66
Exp Conc= 9.68
CF= 1.48
              145

-------
TABLE 6-8 (continued)
Carbon Tetrachloride-029
SPIKED
6.52
5.95
5.38
5.94
7.14
7.10
7.09
7.10
7.05
7.02
7.17
7.00
6.71
RSD =
DEV.
-0.57

0.57
-0.04
0.01
-0.03
-0.17
-0.23
3.52
Blas= -3.44
t= 14.49
UNSPIKED
0.11
0.08
0.07
0.09
0.20
0.18
0.23
0.18
0.25
0.20
0.21
0.21
0.17
RSD =
DEV.
-0.02
0.02
-0.02
-0.05
-0.05
0.00
-0.13
14.15
Exp Conc= 9.98
CF= 1.53
Carbonyt Sulfide-030
SPIKED
10.61
10.74
10.63
10.56
10.89
11.03
11.01
11.07
10.94
10.93
10.93
10.55
10.82
RSD =
DEV.
0.13
-0.07
0.14
0.06
-0.01

-0.39
•0.13
1.18
Blas= 0.01
t= 0.10
UNSPIKED
0.03
0.15
0.09
0.28
0.08
0.07
0.09
0.08
0.21
0.10
0.07
0.06
0.11
RSD=
DEV.
0.12
0.19
0.00
-0.01
-0.12
-0.01
0.17
68.39
Exp Conc= 10.70
CF= 1.00
               146

-------
TABLE 6-8 (continued)
Chloroform-039
SPIKED
14.01
14.13
14.02
14.00
14.09
14.33
14.67
14.62
14.65
14.70
14.71
14.86
14.40
RSD =
DEV.
0.12
-0.01
0.24
-0.05
0.05
0.15
0.51
0.64
Bias= 4.74
t= 47.85
UNSPIKED
-0.07
0.05
-0.14
-0.13
-0.04
-0.02
-0.01
0.01
0.16
0.14
0.00
0.00
•0.01
RSD =
DEV.
0.12
0.01
0.02
0.02
-0.02
0.00
0.15
-661.16
Exp Conc= 9.66
CF= 0.67
Cumene-046
SPIKED
14.78
15.05
15.03
15.08
13.88
14.31
14.74
14.84
14.84
15.17
15.15
15.25
14.84
RSD =
DEV.
0.28
0.05
0.44
0.10
0.33
0.10
1.29
1.23
Blas= 4.58
t= 24.72
UNSPIKED
0.20
0.18
0.21
0.13
0.11
0.15
0.13
0.09
0.55
0.51
0.36
0.30
0.24
RSD=
DEV.
-0.01
-0.08
0.04
•0.03
-0.04
-0.06
-0.18
14.30
Exp Conc= 10.02
CF= 0.69
               147

-------
TABLE 6-8 (continued)
1 ,2-Epoxy Butane-075
SPIKED
9.68
9.72
9.45
9.04
4.81
5.38
5.63
6.02
10.53
10.72
10.62
10.38
8.50
RSD =
DEV.
0.04
-0.41
0.57
0.39
0.19
-0.24
0.54
2.92
Bias= -3.51
t= 11.39
UNSPIKED
1.39
1.37
1.30
1.27
0.83
1.24
1.31
1.13
1.57
1.36
1.89
1.49
1.35
. RSD =
DEV.
-0.02
-0.04
0.41
-0.19
-0.20
-0.39
-0.42
13.58
Exp Conc= 10.66
CF= 1.49
Ethyiene Oxide-084
SPIKED
1.35
2.16
2.99
3.13
2.91
2.72
2.13
1.95
0.67
0.99
0.79
0.69
1.87
RSD =
DEV.
0.81
0.14
•0.19
-0.18
0.32
-0.10
0.80
14.24
Bias= -9.85
t= 22.89
UNSPIKED
1.07
1.58
1.80
1.29
1.55
2.17
1.94
1.45
2.04
1.68
2.19
1.87
1.72
RSD =
DEV.
0.50
-0.51
0.62
-0.49
-0.36
-0.32
-0.55
19.63
Exp Conc= 10.00
CF= 66.33
              148

-------
TABLE 6-8 (continuedI
Methand-104
SPIKED
10.62
11.58
12.06
12.99
8.78
10.24


11.04
RSD =
DEV.
0.96
0.93
1.45

3.33
6.31
Bias= 2.30
t= 3.18
UNSPIKED
0.25
0.63
0.12
0.50
-0.38
-0.04
-0.05
-0.21
0.10
RSD=
DEV.
0.38
0.38
0.33
-0.16
0.93
194.23
Exp Conc= 8.64
CF= 0.79
Methyl Chloroform- 108
SPIKED
6.87
6.87
6.88
6.92
6.93
6.93
6.87
6.90
7.04
7.02
6.88
7.13
6.93
RSD =
DEV.
0.00
0.04
0.01
0.03
-0.02
0.25
0.30
1.07
BIas= -2.44
t= 31.31
UNSPIKED
0.61
0.64
0.61
0.58
0.81
0.80
0.82
0.87
0.79
0.74
0.78
0.81
0.74
RSD =
DEV.
0.03
-0.03
-0.01
0.05
-0.04
0.03
0.02
3.25
Exp Conc= 8.64
CF= 1.39
              149

-------
TABLE 6-8 (continued)
Methyl lodide-1 1 1
SPIKED
6.57
7.06
7.02
8.28
9.00
9.14
9.01
8.89
8.83
9.12
8.96
8.91
8.40
RSD =
DEV.
0.49
1.26
0.14
-0.12
0.29
-0.05
2.01
4.79
Bias= -1.45
t= 2.78
UNSPIKED
-3.19
-3.16
-2.36
-1.75
1.66
0.72
0.37
0.35
1.29
1.26
1.33
1.14
-0.20
RSD =
DEV.
0.03
0.60
-0.94
-0.02
-0.03
-0.19
-0.54
-167.99
ExpConc= 10.04
CF= 1.17
Methyl t-Butyl Ether-1 15
SPIKED
3.34
4.18
4.18
4.25
6.86
6.89
6.73
6.22
1.13
1.72
1.92
2.23
4.14
RSD =
DEV.
0.84
0.07
0.03
-0.52
0.59
0.32
1.33
8.32
Blas= -4.78
t= 13.14
UNSPIKED
-0.54
-0.60
-0.50
-0.58
-0.70
-0.95
-0.78
-0.76
•0.69
-0.84
-0.72
-0.99
•0.72
RSD =
DEV.
-0.07
-0.08
-0.26
0.03
-0.15
-0.26
-079
-16.42
Exp Conc= g.64
CF= 1.98
             150

-------
TABLE 6-8 (continued)
Propylene Oxide-143
SPIKED
-1.33
-1.19
-0.81
-0.56
1.32
1.76
1.77
3.65
0.33
1.28
1.89
0.68
0.73
RSD =
DEV.
0.14
0.25
0.44
1.88
0.94
-1.21
2.45
97.92
Bias= -7.61
t= 5.43
UNSPIKED
-1.64
-1.40
-2.72
-2.22
-1.69
-2.09
-1.97
-0.91
-2.58
-0.34
0.21
-3.07
-1.70
RSD =
DEV.
0.25
0.50
-0.40
1.06
2.25
-3.28
0.36
-70.75
Exp Conc= 10.04
CF= 4.13
Vinyl Acetate-166
SPIKED
8.26
8.35
8.35
8.36
8.16
8.73
8.33
8.27
8.01
8.23
8.26
8.25
8.30
RSD=
DEV.
0.08
0.01
0.57
-0.07
0.22
-0.02
0.81
2.17
Bias= -1.68
t= 9.13
UNSPIKED
-0.09
-0.10
-0.08
-0.09
-0.08
-0.08
-0.09
-0.07
0.09
-0.04
-0.08
-0.08
-0.07
RSD =
DEV.
-0.01
-0.01
0.00
0.02
-0.13
0.00
-0.12
-60.14
Exp Conc= 10.04
CF= 1.20
               151

-------
TABLE 6-8 (continued)
Vinyl Bromide-167
SPIKED
8.87
8.87
8.86
8.66
9.31
9.50
9.44
9.33
9.32
9.42
9.44
9.48
9.21
RSD=
DEV.
0.01
-0.20
0.19
-0.10
0.09
0.04
0.02
0.98
Bias= -0.74
t= 7.50
UNSPIKED
-0.19
-0.08
-0.15
-0.12
0.00
-0.05
•0.04
-0.02
0.01
0.05
•0.01
-0.03
•0.05
RSD =
DEV.
0.11
0.03
-0.05
0.02
0.04
-0.03
0.12
-73.91
Exp Conc= 10.00
CF= 1.08
Vinyl Chloride- 168
SPIKED
12.91
13.00
12.93
12.80
13.10
13.33
13.28
13.45
13.19
13.23
13.27
12.93
13.12
RSD-
DEV.
0.09
•0.13
0.23
0.17
0.04
-0.35
0.06
1.05
Blas= 3.26
t= 15.86
UNSPIKED
-0.13
-0.09
0.04
-0.45
-0.10
-0.15
-0.16
-0.17
0.03
-0.16
-0.23
-0.19
-0.15
RSD =
DEV.
0.04
-0.49
-0.05
•0.01
-0.19
0.04
-0.66
-104.29
Exp Conc= 10.00
CF= 0.75
                152

-------
TABLE 6-8 (contmuwi)
m-Xylene-172
SPIKED
16.53
17.41
17.28
17.06
17.89
18.33
18.19
18.54
18.06
18.31
18.09
18.26
17.83
RSD =
DEV.
0.88
-0.22
0.43
0.35
0.25
0.17
1.87
1.79
Bias= 5.82
t= 14.38
UNSPIKED
2.50
1.71
1.38
1.45
2.22
2.06
2.29
2.20
2.17
2.00
2.16
1.93
2.01
RSD =
DEV.
-0.79
0.07
-0.16
-0.08
-0.17
-0.22
-1.36 I
12.39
Exp Conc= 10.00
CF= 0.63
Acetone-192
SPIKED
7.69
9.24
9.32
9.67
6.28
8.54
9.71
9.86
5.23
8.72
9.73
9.96
8.66
RSD =
DEV.
1.55
0.34
2.26
0.15
3.49
0.23
8.02
14.84
Bias= -1.55
t= 1.11
UNSPIKED
0.90
0.79
0.78
0.68
0.29
0.31
0.25
0.29
2.72
0.79
0.43
0.36
0.71
RSD =
DEV.
-0.11
-0.10
0.03
0.04
-1.93
-0.07
-2.14
78.24
Exp Conc= 9.50
CF= 1.20
               153

-------
TABLE 6-9.   Compounds Not Meeting Method 301 Criteria
               in Concentrated Samples.
                                                             154

-------
TABLE 6-9 IcontVHMdl
Acrytonitrile-009
SPIKED
4.11
4.34
2.79
3.69
2.03
1.11
3.01
RSD=
DEV.
0.23
0.90
-0.92
0.22
17.73
Bias= -16.78
t= 28.60
UNSPIKED
-0.57
-0.05
-0.15
•0.42
0.01
-0.07
-0.21
RSD =
DEV.
0.52
-0.28
-0.08
0.16
-117.42
ExpConc= 20.00
CF= 6.22
Ally! Chloride-010
SPIKED
20.60
17.11
14.98
13.18
9.80
10.01
14.28
RSD=
DEV.
-3.49
-1.80
0.22
-5.07
11.23
Bias= -6.66
t= 3.85
UNSPIKED
1.06
0.01
0.56
1.72
1.12
1.19
0.94
RSD =
DEV.
-1.06
1.17
0.07
0.19
68.24
Exp Conc= 20.00
CF= 1.50
Bromoform-022
SPIKED
29.75
26.50
24.15
23.77
26.00
24.54
25.78
RSD =
DEV.
-3.26
-0.38
-1.46
-5.10
5.68
Bias= 5.21
t= 3.28
UNSPIKED
1.19
0.32
0.13
0.41
1.30
0.09
0.57
RSD =
DEV.
-0.87
0.28
-1.21
-1.80
108.33
Exp Conc= 20.00
CF= 0.79
             155

-------
TABLE 6-9 (continued)
Carbon Tetrachlohde-029
SPIKED
11.21
8.85
8.44
7.98
10.46
9.16
9.35
RSD =
DEV.
-2.36
-0.46
-1.30
•4.13
11.95
Bias= -10.68
t= 9.55
UNSPIKED
0.02
0.01
0.02
0.04
0.05
0.01
0.03
RSD =
DEV.
•0.01
0.02
-0.04
-0.03
67.36
Exp Conc= 20.00
CF= 2.15
Methyl Chloroform-108
SPIKED
10.21
8.99
12.62
12.72
11.13
RSD =
DEV.
-1.21
0.10
-1.12
4.47
Blas= -g.80
t= 17.11
UNSPIKED
0.25
0.80
1.56
1.14
0.94
RSD =
DEV.
0.55
-0.43
0.12
30.37
Exp Conc= 20.00
CF= 1.96
Methyl Isobutane Ketone-112
SPIKED
40.00
47.90
39.20
43.11
42.55
RSD-
DEV.
7.90
3.91
11.81
8.46
Bias= 19.13
t= 5.07
UNSPIKED
6.22
3.65
1.37
2.46
3.42
RSD =
DEV.
-2.57
1.09
-1.48
33.28
Exp Conc= 20.00
CF= 0.51
              156

-------
TABLE 6-9 (continued)
Methyt Methacryiate-114
SPIKED
27.80
23.84
22.00
21.87
23.88
23.74
23.85
RSD=
DEV.
-3.96
-0.13
-0.14
-4.23
6.79
Bias= 3.51
t= 2.13
UNSPIKED
0.86
0.20
0.53
0.05
0.29
0.11
0.34
RSD =
DEV.
-0.65
-0.47
-0.18
-1.31
99.58
Exp Conc= 20.00
CF= 0.85
Propylene Dichloride-142
SPIKED
25.81
32.92
24.71
25.46
27.22
RSD =
DEV.
7.11
0.74
7.85
10.72
Bias= 3.72
t= 0.95
UNSPIKED
4.14
0.23
2.28
7.38
3.51
RSD=
DEV.
-3.91
5.10
1.18
74.83
Exp Conc= 20.00
CF= 0.84
Styrene-147
SPIKED
22.48
21.00
18.22
19.01
20.18
RSD=
DEV.
-1.47
0.79
-0.68
3.38
Blas= -3.32
t= 1.38
UNSPIKED
3.29
1.48
1.94
7.28
3.50
RSD=
DEV.
-1.81
5.34
3.53
65.81
Exp Conc= 20.00
CF= 1.20
              157

-------
TABLE 6-9 (continued)
1 , 1 ,2-Trichloroethane-1 59
SPIKED
35.82
33.46
29.01
29.03
30.06
28.07
30.91
RSD =
DEV.
-2.36
0.02
-1.99
^.32
4.07
Bias= 9.79
t= 7.07
UNSPIKED
0.95
0.96
1.42
2.83
0.27
0.28
1.12
RSD =
DEV.
0.01
1.41
0.01
1.43
51.42
Exp Conc= 20.00
CF= 0.67
2,2,4-Trimethylpentane-1 65
SPIKED
45.23
2.79
18.34
' 3.79
7.31
5.30
13.79
RSD =
DEV.
-42.43
-14.55
-2.01
-59.00
132.92
Blas= -11.27
t= 0.60
UNSPIKED
8.29
0.93
2.50
4.21
4.18
10.26
5.06
RSD =
DEV.
-7.36
1.71
6.08
0.42
78.21
Exp Cone = 20.00
CF= 2.29
              158

-------
TABLE 6-9 (contmuadt
Vinyl Acetate-166
SPIKED
4.52
7.44
12.71
7.80
8.12
RSD =
DEV.
2.92
-4.90
-1.98
35.15
Blas= -11.67
t= 4.09
UNSPIKED
-0.25
-0.20
-0.25
•0.16
-0.22
DEV.
0.06
0.08
0.14
RSD= -23.58
Exp Conc= 20.00
CF= 2.40
Vinylidene Chloride-169
SPIKED
3.41
0.70
1.11
1.91
0.67
0.74
1.42
RSD =
DEV.
-2.71
0.80
0.07
-1.84
81.08
Bias= -18.53
t= 16.04
JJNSPIKED
-0.25
-0.11
0.02
0.02
-0.01
0.02
-0.05
RSD =
DEV.
0.15
0.01
0.03
0.18
-116.48
Exp Conc= 20.00
CF= 13.57
             159

-------
                    TABLE 6-10.  CEM  and  Flow Data.
Note:  Effluent flow given in dry standard cubic feet per minute (DSCM).
                                                                       160

-------
Summary of GEM Test Results for Cylinder #1
Date
02/02/93







02/06/93















Spike




v/
v/
\/
v/




v/
v/
v/
V7




v/
v/
v/
v'
Run*
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Sample
Time
1043-1045
1050-1053
1057-1059
1103-1104
1111-1114
1135-1137
1143-1145
1151-1153
1412-1413
1416-1418
1422-1423
1428-1430
1436-1437
1440-1441
1426-1427
1450-1451
1459-1500
1504-1505
1508-1508
1512-1513
1520-1521
1524-1525
1528-1529
1533-1534
Sample
Conditioning
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
CO C
ppmd 7
41.6
1857
873
314.7
t f
\ 1>^H""
'-: -.&r
'• / v
28.5
305
31.9
24.5
'•$*>< ~®$ "•&&&-
^sC^ffffe
!- i ?jw'j '"
' N, 4>i>'$ '
X\A&'-
v "<;>/ ••
,: ' ' t ,'
' "•
)2 CO2
Od %d
8.8 10.5
93 99
80 108
9.3 99
',•• * J, ••
y^^- 5 -
^l:
,'
92 99
94 98
94 97
7.5 7.5
*%*!.?** ^, ' , -

W
'J >'*'
97 94
7.4 76
70 78
73 7.6
'ft s'' ^ s
* ^ :'
v. f :

THC
ppmw

^ ^
^
^
. ,
-
' '' ;, "•' v

i
- """t "? \

:
^ „ -
- '- , ' I
- " ;










Avg. Effluent Vol
%H2O delta P Flow (DSCM)
7 03 34,421























                                                                                         o>
                                                                                         o
                                                                                         1

-------
                                                     Summary of CEM Test Results for Cylinder #2
Date
02/02/93







02/08/93















Spike




N/
\/
v/
v/




V'
v/
\s
v/




v/
v/
v/
v/
Run #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Sample
Time
1245-1249
1252-1254
1258-1300
1303-1305
1322-1324
1329-1333
1338-1341
1348-1350
1426-1428
1433-1435
1444-1446
1450-1452
1459-1501
1506-1508
1513-1515
1519-1521
1529-1531
1536-1538
1543-1545
1550-1552
1559-1601
1606-1608
1614-1616
1621-1623
Sample
Conditioning
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
CO O2 CO2 THC
ppmd %d %d ppmw
24.9 8 7 10.4 I , ,
255 88 105 - -
288 85 107
25.7 8.4 108, ;
if' '*"!,*** " f '
lH^hl^lf^vvv ' '
.. ' *""^ * v^',w5 '* \ ,
*

No CEM Data Available ? % *
' ,
-,&*»& £&^< t >*<>''*
^^ypc^i •' ^ *' ,"i *',-"
^t^l^»>%^^ - %'/'?'< '
% ii\,i i ' ,% " Xi,
51.7 99 94
65 2 97 97
43.3 98 96'
31.5 89 10.5 ,
%,-b&:-M 1 ' "- ' . ' ' -
' "J '/' |;%>" K 1 f<"
^^ - - ^ l>
	 	 	
Avg. Effluent Vol
%H2O delta P Flow (DSCM)
7 03 34,261























ro

-------
                                                      Summary of GEM Test Results for Cylinder #3
Date
02/02/93







02/08/93















Spike




v/
v/
V
V




•y
\/
v
V




v/
V
V
v/
Run #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Sample
Time
1523-1525
1528-1530
1534-1535
1539-1541
1548-1549
1553-1555
1559-1601
1604-1606
0938-0940
0945-0947
0951-0953
0957-0959
1005-1008
1011-1014
1021-1023
1035-1037
1046-1048
1055-1057
1105-1107
1115-1117
1125-1127
1132-1134
1140-1142
1147-1149
Sample
Conditioning
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
CO O
ppmd %
24.4
251
26.5
23.6
;&n*Ji^Jte
^Pllllllllil^vi


59.8
60.2
61.2
63.3
tj| ~,
v|;\  V *
I >
70.0
76.1
65.3
62.0
^*MjJh*;fe«f
1^^^-'^'^
'"T^rf V - '
...:. 	 (?. 	 .' 	
2 CO2
d %d
8.8 104
88 105
90 103
8.8 10.4
i^^'<"'x *

m%f "$$" \
PvM* "*"- ',
/vA sx*« iv X '
8.7 10.7
8.7 106
8.7 10.6
8.5 107
H* ^l»' ,*•*• ,
r^C^ * -
pX-^-v^; , ' ,
I r *1 * -
5 > 'V
•• V *
8.9 105
90 104
8.7 106
91 103
\ f v>.
!'< ^ '
4 *

THC
ppmw
t
I

5
*#' s \ Hs
^ /-<,4
j^ -• : ',£?*•
AV^4"
,^" -^"'
i ' ; ,
ft' ^
: * ""

"• -> j.
>
,









Avg Eftluent Vol
%H2O delta P Flow (DSCM)
7 0.3 34,241























                                                                                                                                               IB
                                                                                                                                               m

                                                                                                                                               o>
a\

-------
Summary of CEM Test Results for Cylinder #4
Date
02/02/93







02/08/93















Spike




v/
N/
V/
V/




v/
y
v/
x/




v/
v/
v/
N/
Run*
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Sample
Time
1639-1641
1646-1648
1652-1653
1657-1659
1707-1709
1714-1717
1722-1724
1729-1730
1637-1639
1644-1646
1651-1654
1658-1700
1707-1710
1715-1717
^1721-1723
1728-1730
1736-1738
1742-1744
1749-1751
1755-1758
1806-1808
1813-1816
1821-1823
1827-1829
Sample
Conditioning
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
CO 0
ppmd %
29.7
293
298
38.7
§&&$>«*&li


ilri &r i!
33.4 1
294
25.5
26.7
^m^y^^^y


'*-&Wv.>
35.3
420
35.2
34.1
§" ' *4 fj
li'-
^ -s
» v, •
2 CO2
d %d
8.8 10.5
88 10.3
82 11.0
8.7 10.5
k^|> f **J<{

B&HolJL
W& f
j™/\s .. '.. %
00 92*
98 9.7
93 9.9
95 99
ffefefe^ Wl
ill KVV
^^-
gaM/. 1, * „ j^
ysT9' -' » x
97 9.7
94 100
94 10.1
9.4 100
M'>, N 0, %
?v x v
H ^
5 <
THC
ppmw
. '&, J \
s ^\ J
•v
_, ^
, \.
\\'%jjf..s<"
££jiij?s\>.
*• ,i,y^ f '
, ;A\ J-K
,%"'•* *'
-*«:*/:
< '^r ^
\f't '• ,
<•• • ^ > » '
^ /" >-. >

^W^',^
, r ^ * *
:%> \-
X '
•. «
^
,
>'
-

S
%

Avg. Effluent Vol.
%H2O delta P Flow (DSCM)
7 0.3 34,266
























-------
                                                    Summary of CEM Test Results for Cylinder #5
Date
02/03/93







02/08/93















Spike




V
\/
V'
•y




^
\/

65.1
69.9
96.1
75.7
^%4filpM^

Vt ^fo^
..." 	 A." 	
2 CO2
,d %d
9.4 96
9.4 96
10.1 90
89 101




9.4 99
94 100
9.5 99
97 96
ybsfr/h^i S*;
t
IPf ' \ ^

94 100
9.3 100
92 10.2
95 98
^'•^ o :
v. \ V
V "*'%
-
THC
ppmw
^ ", y-'-'

' *,-,-,- -^..
- '^l:.--^
) <%-|;J\v
4 1* if ^^
'j^fr^i^
\^-\- '^
* ^.^
:•• , ^ *-,
1. ^ ^ '
f ^ -""*
' ! ^ v""
s . 5: -:
* * K ^
['«
- ^
1 ' i
i
i -\ •
: % ;
N
-
!

Avg. Eftluent Vol.
%H2O delta P Flow (DSCM)
7 03 34,290























en

-------
                                                     Summary of CEM Test Results for Cylinder #6
Date
02/03/93
02/09/93
Spike




V
V
v/
v/




-s
v/
v/
v/




v/
v/
v/
^
Run*
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Sample
Time
1602-1605
1611-1612
1616-1617
1620-1625
1636-1638
1642-1644
1648-1650
1653-1655
1256-1258
1302-1305
1310-1312
1315-1318
1327-1329
1335-1337
1344-1346
1352-1354
1400-1402
1408-1410
1414-1416
1422-1424
1433-1435
1440-1442
1447-1449
1453-1455
Sample
Conditioning
Condenser
Condenser
Condenser
Condense/
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
Condenser
CO
ppmd
294
31.6
296
298
Jfp
3769
327.7
160.0
82.5
43.8
61.6
41.8
43.2
O2
8.7
88
8.7
10.4
11.4
8.7
9.5
Vl
90
9.4
ft

10.3
101
103
10.3
< * ' , X <••> ''

CD

-------
                                                   Summary of GEM Test Results for Cylinder #7
           Date
         02/09/93
Run*
                           1
                           10
                           11
                           12
                           13
                           14
                           15
                           16
                           17
                           18
                           19
                           20
                           21
                           22
                           23
                           24
Sample
 Time
       1200-1201
                                1206-1207
                                1212-1214
                                1219-1220
                                1306-1307
                                1312-1313
                                1317-1318
                                1322-1324
       0951-0953
       1002-1004
       1012-1014
       1022-1024
       1029-1031
       1037-1039
       1045-1047
       1054-1056
       1102-1104
       1110-1112
       1119-1121
       1126-1128
       1135-1137
  Sample
Conditioning
                    Condenser
                    Condenser
                    Condenser
                    Condenser
                    Condenser
                    Condenser
                    Condenser
            Condenser
            Condenser
            Condenser
            Condenser
            Condenser
            Condenser
            Condenser
            Condenser
            Condenser
            Condenser
            Condenser
            Condenser
            Condenser
                    Condenser
                    Condenser
                    Condenser
%H2O
 Avg.
delta P
Effluent vol
Flow (DSCM
                                                                                    34.
                                                                                                                                        P
                                                                                                                                        m
                                                                                                                                        Ol
                                                                                                                                        O
CM
                                                                                                               5
                                                                                                               8.

-------
                                                    Summary of CEM Test Results for Cylinder #8
                                                                                                                  Effluent Vol.
                                                                                                                  Flow (DSCM)
                                                                                                                                          f
                                                                                                                                          m
                                                                                                                                          o>
CO

-------
                                                     Summary of CEM Test Results for Cylinder #9
                                                                                                                   Effluent Vol.

                                                                                                                   Flow (DSCM)
                                                                                                                                           o>

                                                                                                                                           o
ot
VjD

-------
Summary of CEM Test Results for Cylinder # 11
                                                               tniueni voi.
                                                               Flow (DSCM)

-------
Summary of CEM Test Results for Cylinder #12
                                                                                      o>
                                                                                      O

-------
TABLE 6-11.  Compounds Not Detected Using Sample Concentration.
                                                                  172

-------
                          SPECIES NOT DETECTED USING
                         SAMPLE CONCENTRATION ON TENAX
Species:

Acetone*
Acetonitrile*
Acrolein*
Bromomethanet
1,3-Butadienet
1,2-Butylene Oxide*
t-Butyl Methyl Ether*
Carbon Disulfidet
Carbonyl Sulfidet
Chloromethanet
Ethyl Chloridet
Ethylene Oxidet
Methanol*
Methyl Iodide*
Methylene Chloridet
Propylene Oxide*
Vinyl Bromidet
Vinyl Chloridet
Boiling Point:

BP- 56.2°C
BP- 81.6°C
BP- 52.5°C
BP- 3.6°C
BP-4.5°C
BP- 63°C
BP- 53°C
BP- 46
BP-50
BP—24
BP= 12
BP- 10
BP- 64
BP- 42
BP- 39
BP= 34
BP= 15
5°C
2°C
22°C
3°C
7°C
7°C
5°C
8°C
2°C
8°C
BP=-13.9°C
Reason for Non-Detection;

t = low boiling point (<50°C)
# - high water solubility
* = unknown reason
Water Solubility:

miscible
miscible
40:100
0.09:100
insoluble
unknown
slightly soluble
0.22:100
lOOcc:100ml  (gas)
400cc:100ml  (gas)
0.57:100
oo
miscible
1.4:100
2:100
65:100
insoluble
slightly soluble
                                                                           173

-------
TABLE 6-12.  Compounds Detected Using Sample Concentration.
                                                                174

-------
                                SPECIES DETECTED USING
                             SAMPLE CONCENTRATION ON TENAX
Species Detected: <25% of  Spike

Acrylonitrlle
1,2-Dichloroethane

Species Detected; >25X of  Spike

Benzene
Bromoform
Carbon Tetrachloride
Chlorobenzene
Chloroform
3-Chloropropylene
Cumene
1,2-Dibromoethane
1,2-Dlbromomethane
1,2-Dichloropropane
Ethyl Benzene
n-Hexane
Isooctane
Methyl Isobutyl Ketone
Methyl Methacrylate
Methyl Ethyl Ketone
2-Nitropropane
Styrene
Tetrachloroethylene
Toluene
1,1,1-Tri chloroethane*
1,1,2-Trichloroethane
Trichloroethylene
Vinyl Acetate
m-Xylene
o-Xylene
p-Xylene
Boiling Point:

BP- 77.3°C
BP- 83°C
BP-
BP-
BP-
BP=
BP-
BP-
BP-
BP-
BP«
BP-
BP«
BP«
BP-
BP-
BP-
BP«
BP-
BP«
BP-
BP-
BP-
BP=
BP>
BP-
80.1°C
149°C
76.7°C
132°C
62°C
44°C
152°C
131°C
97°C '
95°C
136.3°C
69°C
99.3°C
119°C
100°C
73.4°C
120.3°C
145°C
121°C
110.6°C
74.1°C
113.5°C
86.7°C
72°C
139.3°C
144°C
138.4°C
                    Water  Solubility:

                    7.35:100
                    1:120
1:1430
1:800
1:2000
insoluble
1:200
slightly soluble
insoluble
1:250
1.2:100
slightly soluble
insoluble
insoluble
insoluble
1.9:100
v. slightly sol.
27.5:100
1.7:100
sparingly soluble
1:1000
v. slightly sol.
insoluble
insoluble
insoluble
1:50
insoluble
insoluble
insoluble
                                                                                175

-------