oEPA
United States
Environmental Protection
Agency
Great Lakes
National Program Office
77 West Jackson Boulevard
Chicago, Illinois 60604
EPA 905-R94-021
August 1994
Assessment and
Remediation
Of Contaminated Sediments
(ARCS) Program
PILOT-SCALE DEMONSTRATION
OF THERMAL DESORPTION
FOR THE TREATMENT OF
ASHTABULA RIVER SEDIMENTS
United States Areas of Concern
ARCS Priority Areas of Concern
printed on recycled paper
-------
PILOT-SCALE DEMONSTRATION
OF THERMAL DESORPTION
FOR THE TREATMENT OF
ASHTABULA RIVER SEDIMENTS
Final Report
Prepared by
U.S. Army Engineer District, Buffalo
For the
Assessment and Remediation of Contaminated Sediments (ARCS) Program
U.S. Environmental Protection Agency
Great Lakes National Program Office
Chicago, Illinois
U.S. Environmental Protection Agency
Region 5, Library (PL-12J)
77 West Jackson Boulevacd, 12th Floor
Chicago, II 60604-3590
-------
PILOT- SCALE DEMONSTRATION OF THERMAL DESORPTION FOR THE
TREATMENT OF ASHTABULA RIVER SEDIMENTS
ABSTRACT
This report discusses the results of a pilot-scale project which demonstrated the
effectiveness of using low temperature thermal desorption to remediate contaminated
Ashtabula River sediments. The Ashtabula River sediments are contaminated with
polychlorinated biphenyls (PCBs), hexachlorobenzene, hexachlorobutadiene and other
chlorinated compounds, as well as heavy metals. Approximately 10 to 12 cubic yards of
sediment were dredged from the river and treated on-site using a mobile thermal desorption
unit during September 1992.
Sediments with varying contamination levels were processed at different solids content,
thermal desorption unit residence times, and temperatures to determine the effect of these
parameters on removal efficiencies. Additionally, each process stream was individually
weighed and extensive sampling was conducted so that contaminant partitioning in the waste
streams could be determined, along with a comprehensive mass balance. A particular focus
of the project was to determine the extent of mercury, dioxins, and furans that were vented
from the processor through the stack.
The sediment was processed under three different nominal thermal unit residence times: 60,
90 and 120 minutes. This resulted in a minimum average sediment temperature of 179° C
during the 60 minute residence time run and a maximum temperature of 332° C for the 120
minute residence time run.
Removal of chlorinated volatile compounds exceeded 92% under all conditions and, in
general, these compounds were captured by the carbon adsorber. On average, 86 percent of
total PCBs (as Aroclor 1248) were removed from the sediment and subsequently captured
primarily in the condensate produced by the process. Heavy metals, with the exception of
mercury, tended to pass through the system with the sediment without being volatilized.
Thermal desorption removed 73.3 to 96.8 percent of the mercury in the sediment, with this
element being captured primarily by the carbon adsorber.
Trace amounts of some of the constituents of interest were detected in the process off-gas.
This includes mercury at an average of 0.014 nanograms per dry standard cubic meter; total
dioxins ranging from 0.0071 to 0.0825 nanograms per dry standard cubic meter; and total
furans ranging from 0.0029 to 0.2669 nanograms per dry standard cubic meter. These levels
are below generally accepted standards for air emissions from thermal treatment units.
-------
TABLE OF CONTENTS
Paragraph Page
ABSTRACT i
TABLE OF CONTENTS ii
LIST OF TABLES iv
LIST OF FIGURES vi
LIST OF ABBREVIATIONS vii
1.0 INTRODUCTION 1
1.1 Purpose, Authority and Objectives 1
1.1.1 Purpose 1
1.1.2 Authority 1
1.1.3 Objective 3
1.2 Description of Area of Concern 3
1.2.1 Watershed 3
1.2.2 Sediment Quality and Physical Characteristics 5
1.2.3 Status of Remedial Action Plan 9
2. 0 DEMONSTRATION APPROACH 10
2.1 Planning Activities
2.1.1 Technology Selection 10
2.1.2 Planning Report 11
2.1.3 Environmental Coordination 12
2.1.4 Sample Collection and Demonstration Site Selection 14
2.1.5 Contracting 18
2.1.6 Quality Assurance Project Plan 19
2.2 Technology Description 19
2.2.1 Process Theory 19
2.2.2 Pilot Unit 20
2.3 Site Preparation 23
2.4 Sediment Excavation and Preparation 24
2.5 Pretreatment of Sediment 29
2.6 Demonstration Project Execution 30
2.6.1 Sample 1 34
2.6.2 Sample 2 35
2.6.3 Sample 3 36
2.7 Monitoring Program 36
2.7.1 Samples Collected 36
2.7.2 Analytical Methods 41
2.7.3 Air Monitoring 41
2.8 Residuals Management 44
ii
-------
TABLE OF CONTENTS (Continued)
Paragraph Page
3.0 RESULTS AND DISCUSSION 45
3.1 Results 45
3.1.1 Analytical Results 45
3.1.2 Overall Mass Balance 45
3.1.3 Constituent Mass Balance 45
3.1.4 Toxicity Characteristics Leach Procedure (TCLP) 93
3.2 Assessment of Selected Ancillary Process Components 94
3.2.1 Predrying Process Step 94
3.2.2 Carbon Adsorption System 94
3.2.3 Air Emissions 97
3.3 Full Scale Implementation 100
3.3.1 Material Handling 100
3.3.2 Thermal Processor 100
3.3.3 Cost Estimate for 10,000 cy Scenario 101
3.3.4 Cost Estimate for 100,000 cy Scenario 102
3.3.5 Summary of Cost Estimates 103
4.0 CONCLUSIONS AND RECOMMENDATIONS 104
4.1 Conclusions 104
4.1.1 Sediment Composition 104
4.1.2 Material Handling 105
4.1.3 Process Operation 105
4.1.4 Treatment Effectiveness 105
4.1.5 Fate of Removed Contaminants 106
4.2 Recommendations/Lessons Learned 107
References 109
Appendix A - Quality Assurance Project Plan
Appendix B - Battelle Laboratory Analytical Data
Appendix C - Sample Calculations
111
-------
LIST OF TABLES
Number Title Page
1 Ashtabula River Sediment Contaminant Concentration
at Selected Locations 7
2 Results of Sediment Sampling Conducted to Determine
Demonstration Project Dredge Location 15
3 Results of TCLP Analysis Conducted to Determine RCRA
Characteristics of Ashtabula River Sediment 17
4 Required Process Conditions for Remediation 32
5 Process Parameters of Interest 33
6 Averaged Process Data for Sample 1 35
7 Averaged Process Data for Sample 2 37
8 Averaged Process Data for Sample 3 37
9 Sample Collection and Analysis Schedule 38
10 Analytical Methods Used to Test Sediment and
Activated Carbon Samples 42
11 Analytical Methods Used to Test Liquid Samples 43
12 Summary of Air Sampling and Analytical Procedures 44
13 Weight Percent Total Solids in Process Streams 46
14 Distribution of Arsenic in Process Streams 47
15 Distribution of Chromium in Process Streams 48
16 Distribution of Lead in Process Streams 49
17 Distribution of Zinc in Process Streams 50
18 Distribution of Cadmium in Process Streams 51
19 Distribution of Mercury in Process Streams 52
20 Distribution of Vinyl Chloride in Process Streams 53
21 Distribution of Chloroform in Process Streams 54
22 Distribution of Trichloroethene in Process Streams 55
23 Distribution of 1,1,2-Trichloroethane in Process Streams 56
24 Distribution of Tetrachloroethene in Process Streams 57
25 Distribution of 1,1,2,2-Tetrachloroethane in Process Streams 58
26 Distribution of Chlorobenzene in Process Streams 59
27 Distribution of 1,2-Dichlorobenzene in Process Streams 60
28 Distribution of Hexachloroethane in Process Streams 61
IV
-------
LIST OF TABLES (Continued)
Number Title
29 Distribution of Hexachlorobutadiene in Process Streams 62
30 Distribution of Hexachlorobenzene in Process Streams 63
31 Distribution of Benzo(a)Pyrene in Process Streams 64
32 Distribution of Total PCBs in Process Streams 65
33 Distribution of Solvent Extractable Residues in Process Streams 66
34 Distribution of TOC in Process Streams 67
35 Results of TCLP for Metals 68
36 Air Emissions of Total Dioxins 69
37 Air Emissions of Total Furans 69
38 Air Emissions of Mercury 70
39 Air Emissions of PCBs 70
40 Solids/Liquid Mass Balance 71
41 Mass Balance for Arsenic 74
42 Mass Balance for Chromium 74
43 Mass Balance for Lead 75
44 Mass Balance for Zinc 75
45 Mass Balance for Cadmium 79
46 Mass Balance for Mercury 79
47 Mass Balance for Hexachlorobenzene 83
48 Mass Balance for Benzo(a)Pyrene 83
49 Mass Balance for PCBs (as Aroclor 1248) 85
50 Congener Removal From Upper Sediments 86
51 Congener Removal From Lower Sediments 87
52 Congener Removal From Lower Sediments (with Moisture Adjustment) 88
53 Structures of Measured PCB Congeners 90
54 Mass Balance for Solvent Extractable Residues 92
55 Mass Balance for Total Organic Carbon (TOC) 92
56 Results of TCLP for Metals 93
57 Effects of Alternate Drying Protocol 95
58 Performance of Carbon Adsorber System 99
59 Cost Estimate for Service Contract for Remediating
10,000 Cubic Yards of Sediment 102
60 Cost Estimate for Service Contract for Remediating
100,000 Cubic Yards of Sediment 103
-------
LIST OF FIGURES
Number Title Page
1 Five Areas of Concern Designated for On-Site ARCS
Pilot-Scale Demonstration Projects 2
2 Ashtabula River Watershed 4
3 Ashtabula River Area of Concern 6
4 Ashtabula River Sediment Sampling Locations, March 1991 8
5 Core Samples Taken to Determine Demonstration Project Dredge Location 15
6 Sampling Locations to Determine Demonstration Project Dredge Location 16
7 Thermal Desorption Process Flow Diagram 21
8 Demonstration Site Prior to Clearing 23
9 Demonstration Site After Clearing 24
10 Remediation Site Layout 25
11 Sediment Excavation 26
12 Sediment Loading Device 27
13 Sediment Being Loaded into Drums 28
14 Sediment Slurry Being Pumped into the Thermal Desorption Unit 30
15 Thermal Desorption Unit 31
16 Thermal Desorption Unit 31
17 Sediment Slurry Sampling Prior to Pumping into Thermal Desorption Unit 39
18 Sampling of Treated Sediment 39
19 Liquid Samples Taken of Process Condensate 40
20 Sampling of Activated Carbon 40
21 Removal of Arsenic, Chromium, Lead and Zinc 76
22 Particle Size Distribution for Material in First Cyclone, Run 2C 77
23 Particle Size Distribution for Material in Second Cyclone, Run 2C 78
24 Removal of Cadmium and Mercury 80
25 Removal of Semi-Volatile Organic Compounds 84
26 Removal of Other Organic Materials 89
27 Carbon Adsorber 96
VI
-------
LIST OF ABBREVIATIONS, SYMBOLS AND METRIC EQUIVALENTS
Abbreviation
AOC Area of Concern
ARCS Assessment and Remediation of Contaminated Sediments
BHC Benzenehexachloride (hexachloro-cyclohexane)
BTU/hr British Thermal Unit per hour
CB Chlorobenzene
CFM Cubic feet per minute
cm Centimeter
COE Corps of Engineers
CVAA Cold Vapor Atomic Adsorption
DSCM Dry Standard Cubic Meter
EA Environmental Assessment
ETWG Engineering Technology Work Group
FID Flame ionization detector
FLAA Flame atomic absorption
FONSI Finding of No Significant Impact
g Gram
GFAA Graphite furnace atomic absorption
GLNPO Great Lakes National Program Office
gpm Gallons per minute
HCB Hexachlorobenzene
HCBD Hexachlorobutadiene
ICP Inductively Coupled Plasma
ITC International Joint Commission
IUPAC International Union of Pure and Applied Chemists
kg/hr Kilograms per hour
kva Kilovoltamperes
kw Kilowatt
L Liter
Ibs Pounds
Ibs/sq in Pounds per square inch
LWD Low Water Datum
mg Milligram
MS Mass Spectroscopy
NEPA National Environmental Policy Act
ng Nanogram
OEPA Ohio Environmental Protection Agency
PAH Polycyclic aromatic hydrocarbon
PCB Polychlorinated biphenyl
PIC Product of incomplete combustion
vn
-------
LIST OF ABBREVIATIONS, SYMBOLS AND METRIC EQUIVALENTS (Continued)
PID Photoionization detector
ppb Part per billion
ppm Part per million
PQL Practical Quantitation Limit
PVC Polyvinyl chloride
RAP Remedial Action Plan
RCRA Resource Conservation and Recovery Act
RETEC Remediation Technologies, Incorporated
scfm Standard cubic feet per minute
SE Solvent Extractable
TCLP Toxicity Characteristic Leach Procedure
TOC Total Organic Carbon
TSCA Toxic Substances Control Act
TSS Total Suspended Solids
TVS Total Volatile Solids
ug Microgram
USEPA United States Environmental Protection Agency
WES Waterways Experiment Station
Symbols
As Arsenic
Cd Cadmium
Cr Chromium
°C Degrees Celsius
Hg Mercury
Pb Lead
pH -log{H+}
r Correlation coefficient
Zn Zinc
Metric Equivalents
5-gallon bucket = 18.9 liters
55-gallon drum = 208.9 liters
1 acre = 4046.9 meter2
Vlll
-------
DISCLAIMER
The information in this document has been funded wholly or in part by the U.S.
Environmental Protection Agency (EPA) under Interagency Agreements No. DW96934688-0,
DW96947515-0, DW96947555-0, DW96947581-0 and DW96947595-0, with the U.S. Army
Corps of Engineers. It has been approved for publication as an EPA document. Mention of
trade names or commercial products does not constitute endorsement or recommendation for
use.
IX
-------
1.0 INTRODUCTION
1.1 PURPOSE, AUTHORITY AND OBJECTIVES
1.1.1 Purpose
This report discusses the pilot-scale demonstration project conducted at the Ashtabula
River Area of Concern in September 1992. The project was managed by the Corps of
Engineers (COE) Buffalo District as part of the United States Environmental Protection
Agency's (USEPA) Great Lakes National Program Office's (GLNPO) Assessment and
Remediation of Contaminated Sediments (ARCS) Program. Low temperature thermal
desorption was selected as the remediation technology to test this system's effectiveness in
separating the chlorinated organic compounds of concern from Ashtabula River sediment.
This report will detail the conduct of the project from initial planning steps through
interpreting analytical results and determination of contaminant removal efficiencies and
partitioning within the process waste streams.
1.1.2 Authority
The 1987 Amendments to the Clean Water Act, Section 118(c)(3), authorized GLNPO
to conduct a five year study and demonstration project on the control and removal of toxic
pollutants in the Great Lakes, with emphasis on the removal of toxic pollutants from bottom
sediments (USEPA, 1992). The governments of Canada and the United States have
identified 43 Areas of Concern (AOC) in the Great Lakes Basin where one or more of the
objectives of the 1978 Great Lakes Water Quality Agreement and other jurisdictional
standards, criteria, or guidelines are not met. GLNPO initiated the ARCS Program to assess
the nature and extent of bottom sediment contamination at selected AOCs, evaluate and
demonstrate remedial options, and provide guidance on the assessment of contaminated
sediment problems and the selection and implementation of remedial actions in the AOCs and
other locations throughout the Great Lakes.
The legislation that created the ARCS Program specified that five of the Great Lakes AOCs
should receive priority consideration in locating and conducting on-site demonstration
projects. The priority AOCs included the Sheboygan River and Harbor, the Grand Calumet
River and Indiana Harbor Ship Canal, the Saginaw River System and Saginaw Bay, the
Buffalo River and the Ashtabula River. These priority AOCs are shown in Figure 1. The
Ashtabula River was designated as an AOC because past industrial and municipal discharges
have polluted the river and its sediments. As a result, the river exhibits environmental
degradation and impairment of beneficial uses of waters and biota (Ohio Environmental
Protection Agency (OEPA), 1991).
-------
*X '
Sheboygan River
Grand Calumet River
and Indiana Harbor
Ship Canal
Ashtabula River
Saginaw River
J
Figure 1. Five Areas of Concern Designated For On-Site
ARCS Pilot-Scale Demonstration Projects
-------
1.1.3 Objective
The objective of the Ashtabula River pilot-scale demonstration project was to evaluate
thermal desorption as a treatment technology for sediments from the Ashtabula River Area of
Concern. Specific objectives included determining: the effectiveness of thermal desorption
in removing the halogenated organic contaminants of concern from the Ashtabula River
sediments; the effect of varying solids content and residence time on removal efficiencies; the
contaminant partitioning within the various waste streams by performing a complete mass
balance around the process; the air emissions associated with the process including analyzing
for polychlorinated biphenyls (PCBs), and dioxin and furan compounds; and the
pretreatment, material handling, and processing requirements for the sediment. Another
objective of the demonstration was to provide information to be used in the development of
cost estimates for full-scale remediation.
The ARCS Program demonstration at the Ashtabula River AOC was conducted after the
ARCS Program demonstration at the Buffalo River AOC, which also used low temperature
thermal desorption as the primary treatment technology. Consequently, lessons learned
during the Buffalo demonstration could be applied during the Ashtabula demonstration (COE
Buffalo District, 1993). Examples included sampling the activated carbon which the process
air stream passed through prior to venting to the atmosphere for heavy metals and organics,
and sampling the air emissions for heavy metals. In addition, waste streams from the
process were measured individually to ensure that a more accurate mass balance could be
conducted.
1.2 DESCRIPTION OF AREA OF CONCERN
1.2.1 Watershed
The Ashtabula River basin is located in northeastern Ohio (Figure 2). The Ashtabula
River enters Lake Erie at the city of Ashtabula, which is approximately 89 kilometers east of
Cleveland, Ohio and 64 kilometers west of Erie, Pennsylvania. The Ashtabula River extends
about 29 kilometers from the river mouth to the confluence of the East and West Branches,
which are each about 19 kilometers long. The East Branch originates in extreme western
Pennsylvania and flows northwest, and the West Branch begins in Ashtabula County and
flows north. The Ashtabula River has a drainage area of about 352 square kilometers, and
an average flow of 4.3 cubic meters per second in the vicinity of the City of Ashtabula
(OEPA, 1991). Major tributaries to the Ashtabula River include Fields Brook, East Branch,
West Branch, Hubbard Run, Ashtabula Creek, and Strong Brook.
The existing Ashtabula Federal Navigation Project consists of two converging breakwaters
protecting an outer harbor area in Lake Erie of about 0.75 square kilometers. The Federal
channel in the river begins at the mouth and extends 472 meters upstream of the upper
turning basin.
-------
o Jefferson
ASHTABULA
\/ \ ;;
RichmondfcenterKh. f\!> CRAWFORD
.' If I } / I
Leon°\
oLinesville
LEGEND
/"\ WATERSHED
x \BOUNDARY
Andover
Figure 2 Ashtabula River Watershed
4
-------
The Ashtabula drainage basin is located on the glaciated Lake Plain section of the central
lowlands province. The topography of the basin is characterized by rolling hills with deep
and narrow valleys. From an elevation of 315 meters above sea level in Richmond
Township near the headwaters, the stream falls at an average slope of 2.2 meters per
kilometer to an elevation of 174.65 meters above sea level at Lake Erie (COE Buffalo
District, 1983).
Discharges in the river basin have polluted the sediment within the Ashtabula River AOC
(Figure 3). The primary source of these pollutants appears to be past industrial discharges to
Fields Brook, a tributary which joins the Ashtabula River in the vicinity of the upper turning
basin. Dischargers to Fields Brook have significantly improved the quality of their effluents
in recent years, but the sediments have become so contaminated that clean-up of the Brook is
being addressed under the Superfund program. Fish and wildlife habitats in the AOC have
been degraded by alterations to the river, including modification to the shoreline such as
bulkheading.
Other potential sources of pollution to the Ashtabula River include landfills and other point
and non-point sources. Eighteen industries and one municipal wastewater treatment plant
discharge to the Area of Concern (Woodward-Clyde Consultants, 1991).
1.2.2 Sediment Quality and Physical Characteristics
1.2.2.1 Sediment Quality - -
The Ashtabula River Remedial Action Plan (RAP) states that the contaminants of
greatest concern are PCBs, hexachlorobenzene, hexachlorobutadiene, mercury, zinc,
chromium, and volatile organic compounds. Sediment in the vicinity of the upper turning
basin contains PCB concentrations in excess of 50 mg/kg, causing it to be regulated under
the Toxic Substances Control Act (TSCA). A study conducted in 1983 estimated that there
was approximately 191,139 cubic meters of sediment in the Ashtabula River that would be
regulated under TSCA (COE Buffalo District, 1983). Numerous contaminants have been
identified in Ashtabula River sediment. Table 1 presents maximum contaminant
concentrations at 10 selected locations in the Ashtabula River as identified in Figure 4
(Woodward-Clyde, 1992).
1.2.2.2 Physical Characteristics - -
Ashtabula River sediment generally ranges from silty sand and stone fragments at the
upstream end of the navigation channel to a clayey silt near the mouth of the river. The
sediment in the upstream reaches has generally been described as dark grey, coarse to fine
sand with stone fragments. This material has been classified according to the Unified
-------
ASHTABULA
CLEVELAND j
Figure 3 Ashtabula River Area of Concern
-------
Table 1. Ashtabula River Sediment Contaminant Concentrations at Selected Locations (mg/kg dry weight)
Maximum3
Arsenic
Barium
Chromium
Mercury
Nickel
Lead
Zinc
Total Poly-
chlorinated
biphenyls
Hexachloro-
butadiene
Hexachloro-
benzene
Chlorobenzene
31
2152
5470
11.3
142
282
2463
660
560
45
10
196-01
17
179
286
0.26
34
67
175
3.8
0.04
NA
0.01
188-05
17
746
372
1.4
71
282
2463
15
0.04
NA
0.01
188-04
21
1123
1938
0.6
106
107
594
20
NA
NA
0.8
188-03
21
2152
5740
3
142
112
686
120
560
22
3.6
187-01
10
1123
213
1.6
52
66
123
369
34
45
0.1
171-01
22
1036
90
1.3
45
42
173
13
0.15
0.31
1.3
168-01
19
930
885
5.7
51
81
369
29
0.12
1.5
1
159-01
14
1159
241
4.3
49
71
254
17
0.27
0.4
0.1
131-01
12
220
53
0.22
35
67
151
1
0.02
0.4
0.1
126-01
15
248
149
1
39
53
181
2.3
0.07
0.35
NA
1 Sample locations are shown in Figure 4
2 Concentrations shown are the highest values detected in samples taken at two foot intervals from a 10 foot core at each location
3 This value is the maximum contaminant concentration detected during Woodward-Clyde's 1991 sampling
NA - indicates that the constituent was not analyzed for at the specific location
-------
CITY
OF
oo
126-01
ASHTABULA
188-05-
LEGEND:
Federal channel limits
0 - Sampling location
SCALE OF FEET
FIGURE 4. Ashtabula River Sediment Sampling Locations. March 1991
-------
Soils Classification system as GW (well graded gravel) and SM (silty sand). The
downstream end of the river contains sediment that has been generally described as dark
grey, clayey silt. This sediment has been classified according to the Unified Soils
Classification system as ML (inorganic silt) (Buffalo District, 1983).
The Ashtabula River drainage basin is the primary source of sediment deposited in the
Ashtabula Harbor. The major portion of the drainage basin lies within the glaciated
Allegheny Plateau underlain primarily with glacial till. As the river flows northward towards
Lake Erie, it crosses the Portage Escarpment. From here, the river enters the Lake Plain
which is underlain by Lacustrine clay with overlying sandy beach ridges. The lower reach of
the river has been deeply incised into shale bedrock. As the river enters the relatively quiet
waters of the upper navigation channel, the river's bedload consisting of sand and gravel is
deposited rapidly (Buffalo District, 1983).
1.2.3 Status of Remedial Action Plan
The Ashtabula River RAP Advisory Council was established in February 1988 with
approximately thirty volunteer members representing local, state and federal government
agencies, elected officials, industry, business, special interest groups, and non-affiliated
citizens. Promoting action to facilitate the total river clean-up has been the main focus of the
Ashtabula River RAP Advisory Council (OEPA, 1991).
Goals and objectives for the Ashtabula River RAP were developed by the Ashtabula River
RAP Advisory Council. These were determined in accordance with the Great Lakes Water
Quality Agreement, the Ohio Water Quality Standards (Chapter 3745-1 of the Ohio
Administrative Code), and the results of a river users' survey distributed at local fishing and
sport symposiums (OEPA, 1991). The goals included:
- a healthy biological community;
- fully attain designated uses listed in Ohio Water Quality Standards;
- provide safe harbor and navigation;
- eliminate possible human health risk;
- eliminate restrictions on dredging;
- clean-up of Fields Brook and removal of the site from the National Priorities List
(Superfund);
- improve status of local economy;
- identify and control additional sources of pollutants and problems not previously
realized; and
- coordinate implementation of remedial actions recommended in the RAP.
The Ashtabula River Remedial Action Plan Stage 1 Report was published in December of
1991. The Stage 1 Report is submitted when problems at the AOC have been identified,
followed by a Stage 2 Report, when remedial measures have been selected, and a Stage 3
Report when surveillance and monitoring indicate all identified impaired uses have been
-------
restored. The Ashtabula RAP Advisory Council is currently performing work which will
culminate in the Stage 2 Report.
Recent activities that have taken place in the AOC include:
- interim dredging of the Ashtabula River. The project included dredging the river to an
approximate water depth of 2.4 to 2.7 meters from the 5th Street Bridge to the upper limit of
the navigation channel, except in the area of the upper turning basin which was dredged to an
approximate water depth of 1.8 to 2.1 meters. A range is provided because water levels can
fluctuate significantly due to changes in lake levels. The City of Ashtabula has contracted
with Conrail to allow temporary disposal of dredged sediments on Conrail property.
- the Corps of Engineers, in consultation with Federal, State and local officials, has
identified a location for a proposed Confined Disposal Facility. However, requirements and
sources for local cost sharing have not been finalized.
- work at the Fields Brook Superfund Site continues in an attempt to delineate areas of
contamination and develop clean-up plans.
Additionally, the RAP remains active in the community by publishing quarterly newsletters
and participating in and coordinating surveys, and conducting meetings to enhance public
knowledge of the committee's activity and river clean-up progress.
2.0 DEMONSTRATION APPROACH
2.1 PLANNING ACTIVITIES
2.1.1 Technology Selection
A literature review of available treatment technologies was performed for the ARCS
program by the Corps of Engineers Waterways Experiment Station (WES) and was used to
screen process options for biological, chemical, extraction, immobilization, radiant energy,
and thermal technologies (Averett, et. al., 1990). Each process option was assessed on the
basis of effectiveness, implementability and cost. A number of the higher cost thermal
processes were eliminated from further consideration by ARCS because of the lack of
research and development for application to a contaminated sediment matrix. In addition, the
availability of a pilot-scale unit that could be mobilized to the AOC was essential for
conducting an on-site demonstration. Based on these criteria, a list of those processes that
should be retained for demonstration consideration was developed.
A matrix was developed containing the processes recommended for consideration for the
pilot-scale demonstrations. The information included the contaminants treatable by each
process, the principal contaminants at the five priority AOCs, and the AOCs where proposed
10
-------
treatment technologies would be applicable (Averett, 1990). A list of available technologies
applicable for each of the AOCs was then prepared and these alternatives were ranked for
consideration.
All five priority AOCs are contaminated with organic compounds and have areas of elevated
contamination that could be used for a demonstration project. Rather than strictly following
the numeric ranking of the potential technologies, the ARCS Engineering/Technology Work
Group (ETWG), which was responsible for selecting and conducting the pilot-scale
demonstration projects, determined that a representation of the available technological
categories (biological, chemical, extraction, immobilization, and thermal) should be selected
for demonstration.
Although thermal desorption was previously demonstrated with sediment from the Buffalo
River AOC under the ARCS Program, the organic contaminants of concern for the two
AOCs are different. The primary contaminants of concern in Buffalo River sediments are
polycyclic aromatic hydrocarbon (PAHs), while the sediments in Ashtabula contain
chlorinated organic compounds, such as PCBs, hexachlorobenzene and hexachlorobutadiene.
Since these chlorinated compounds have a higher boiling point than the PAHs, they should be
more difficult to separate from the sediment using the thermal desorption process. Because
of this fact, and the relative lack of existing data on thermal desorption's effectiveness in
treating sediments contaminated with chlorinated compounds, thermal desorption was selected
as the technology to be used in Ashtabula.
One benefit of using thermal desorption in Ashtabula was that questions that were raised and
problems that were encountered during the Buffalo demonstration could be addressed by
adjusting the conduct of the demonstration project and the sampling and analysis plan. The
stack gases for the Buffalo demonstration were not sampled for heavy metals, nor was the
activated carbon, which the stack gases passed through prior to venting to the atmosphere,
sampled for heavy metals or organics. With an incomplete mass balance, the fate of the
heavy metals, especially mercury, and some organics was in doubt. Consequently, the
sampling plan for the Ashtabula demonstration included additional sampling of the activated
carbon and air stream for heavy metals and organics. This design ensured more complete
mass balance calculations and allowed for a more accurate definition of contaminant
partitioning within the various waste streams.
2.1.2 Planning Report
Buffalo District, in coordination with the ETWG, initiated planning for the Ashtabula
pilot-scale demonstration in the fall of 1991. The early planning efforts focused on finding a
location to hold the demonstration and identifying the regulatory concerns that would be
associated with the project since dredged sediment and/or process residuals could contain
contaminants at levels that invoke the requirements of TSCA and/or the Resource
Conservation and Recovery Act (RCRA).
11
-------
In November 1991, a map reconnaissance was conducted to determine sites along the
Ashtabula River that would be acceptable for the pilot-scale demonstration. Several potential
sites were identified, with the most attractive location being a strip of land on the west side
of the upper turning basin of the river, owned by Jack's Marine, Inc. In October and again
in December 1991 the Corps of Engineers project officer travelled to Ashtabula and met with
the owners of the marina to discuss the possibility of conducting the demonstration project on
their property. During the meeting, the purpose of the project was explained to the land
owners, along with a description of the thermal desorption technology and a proposed project
schedule. The meeting resulted in an agreement, in principle, that the government would use
the aforementioned site on Jack's Marine property to conduct the pilot-scale demonstration
project.
In December, as a follow-up to several weeks of telephone calls, the Buffalo District project
officer travelled to Twinsburg, Ohio to meet with representatives of the Ohio Environmental
Protection Agency (OEPA) at the Northeast District Office. At this meeting, the OEPA was
presented with an overview of the proposed project and the thermal desorption process. The
OEPA then provided input on the permits and certifications that would be required to
conduct the demonstration project.
In February 1992, a work plan was prepared which detailed the coordination that had taken
place and outlined the activities that had to be completed in order to conduct the pilot-scale
demonstration project in the fall of 1992. This report addressed sediment quality, description
of the Ashtabula River AOC, selection of the treatment technology, description of the
proposed project ranging from sediment removal and transport to residuals management and
an estimate of all costs associated with the project. Also included was a description of other
activities associated with the project including regulatory, real estate and contractual issues,
process monitoring requirements and report preparation. Members of the ETWG, USEPA
Region 5, and state and local representatives were given the opportunity to review and
comment on the work plan. Comments were reflected in the final document which was
approved by the ETWG in March 1992.
2.1.3 Environmental Coordination
As previously mentioned, a coordination meeting was held between the Corps of
Engineers and the OEPA in December, 1991 to discuss the permitting and regulatory
requirements that would be associated with the pilot-scale demonstration project. Attending
the meeting for the OEPA were representatives from the Division of Water Pollution
Control, Division of Hazardous Waste Management, and the Division of Air Pollution
Control. As a result of this meeting, several tasks were identified that had to be completed
prior to conduct of the project.
These tasks included:
- preparing an Environmental Assessment (EA) in accordance with the National
12
-------
Environmental Policy Act (NEPA) to include obtaining a Section 401 Water Quality
Certification from the State of Ohio;
- sampling in the vicinity of the proposed dredging location to determine whether the
sediment to be used in the demonstration would be subject to the requirements of TSCA or
RCRA; and
- applying for an exemption from the requirements to obtain an air permit for operation
of the thermal desorption unit.
Actions and coordination that were taken to complete these above stated tasks are discussed
separately below.
2.1.3.1 NEPA Requirements - -
In early 1992, Buffalo District began to prepare an EA for the demonstration project.
The purpose of the EA was to evaluate the type and significance of potential project impacts
on the environment. It also afforded the public, and state and local agencies, an opportunity
to provide input to the project through public notice and comment procedures. The EA
provided background information and addressed the environmental impacts and statutory
compliance of the project.
In the State of Ohio, the discharge of dredged or fill material into waters of the United
States, including de minimus discharge associated with dredging, are regulated by the Corps
of Engineers under Section 404 of the Clean Water Act. Consequently, as part of the EA, a
section 404 (a) Public Notice and Section 404 b(l) evaluation was prepared. In addition,
Section 401 of the Clean Water Act requires that the state agency having jurisdiction over
water quality (OEPA), certify that the Section 404 discharge will not violate the water use
standards for the waterway.
The draft EA was prepared in May 1992 and circulated for comment to the public and
federal, state and local government agencies. In June 1992, after considering the comments
received and making necessary changes to the document, the final EA was published. The
EA and the associated Finding of No Significant Impact (FONSI) was signed in June 1992.
Upon receiving notice of the FONSI, the OEPA issued the Section 401 state water quality
certification for the project.
The project was also found to be in compliance with the Rivers and Harbors Acts of 1899
and 1970, the Endangered Species Act of 1973, as amended, and numerous other applicable
acts. Completion of these required actions resulted in the project being in compliance with
all NEPA requirements.
2.1.3.2 Air Permitting Requirements - -
In initial meetings, the OEPA expressed concerns about the nature and amount of air
emissions that would result from the thermal desorption process. Initially, they had indicated
13
-------
that extensive information, to include computer modelling, would be required to assess the
air emissions associated with the thermal desorption process. However, after further
explanation of the process and consideration of the relatively small amount of sediment to be
processed, along with calculations showing the extremely low amount of expected emissions,
the OEPA agreed that an exemption from permit requirements would be appropriate for the
project.
The exemption was issued pursuant to Ohio Administrative Code Rule 3745-3 l-03(A)(l)(m),
which states that small-scale sources operating for the purpose of testing air contaminant
pollution emissions so that a suitable control technology can be ascertained can be excepted
from permit requirements.
As part of the exemption from the air permitting requirements, the OEPA placed constraints
on the project concerning operating times, temperature and volatile organic compound
emissions. The final letter, approving the exemption from permit to install requirements,
was received on June 19, 1992.
2.1.4 Sample Collection and Demonstration Site Selection
2.1.4.1 Sample Collection - -
In December 1991, the OEPA requested that samples be taken from the proposed
dredging location to determine if the sediment would be regulated under RCRA or TSCA.
The sediment would be considered regulated under RCRA if it failed the toxicity
characteristic leaching procedure (TCLP) for one of the 40 chemical compounds listed in 40
CFR Part 261.24. The sediment would be regulated under TSCA if the sediment contained
total PCBs at greater than 50 mg/kg (dry weight).
In February, 1992, Buffalo District personnel took samples from 3 locations in the Ashtabula
River. Core samples were taken of the top 1.5 meters of sediment at each of the three
locations. A representative sample was obtained from each by taking sub-samples from the
center of the core and compositing them into one sample (Figure 5).
The sample locations are shown in Figure 6. The results of the bulk chemistry analyses are
shown in Table 2. Results of the TCLP analysis, along with the regulatory threshold limits
are shown in Table 3.
From Table 2 it can be seen that Site 3 contains the highest concentration level for most of
the organic and inorganic constituents of interest. This is as expected because Site 3 is the
closest site to Fields Brook, which is presumed to be the primary source of the contamination
in the Ashtabula River. From Table 2, we can also see that the total PCB contamination at
all the sites was below the level of 50 mg/kg that would invoke the requirements of TSCA.
14
-------
Figure 5. Core Samples Taken to Determine Demonstration Project Dredge Location
Table 2. Results of Sediment Sampling Conducted to Determine Demonstration Project
Dredge Location (mg/kg dry weight)
Parameter
Chlorobenzene
1 ,3 - Dichlorobenzene
1,4 - Dichlorobenzene
Hexachlorobenzene
Hexachlorobutadiene
Total PCBs
Arsenic
Barium
Cadmium
Chromium
Lead
Mercury
Selenium
Silver
Zinc
Site 1
< 0.009
1.5
2.8
< 0.086
<0.59
8.7
26
560
5.2
270
107
1.3
0.61
3.2
880
Site 2
0.1
<2
<2.2
< 0.085
<0.58
5.3
18
270
1.9
160
50
0.35
1.9
<1.2
300
Site 3
0.73
2.9
<2.6
0.19
<0.68
15
26
900
4.2
510
69
6.3
2.6
11
327
15
-------
TURNING
BASIN
LEGEND:
Federal channel limits
- Samp Ii ng Iocat i on
FIGURE 6. Sampling Locations to Determine Demonstration
Project Dredge Location.
16
-------
Table 3 shows the results of the TCLP analysis of the sediment from the same three
locations. None of the sediment sampled contained contaminants that leached at a level that
would invoke the requirements of RCRA. This information was provided to the OEPA and
they concurred that the sediment to be dredged would not be regulated under RCRA or
TSCA. Since the goal of the sampling was to find the most contaminated sediment that was
not regulated by TSCA or RCRA, Site 3 was selected as the most suitable site from which to
dredge sediment for the remediation project.
Table 3. Results of TCLP Analysis Conducted to Determine RCRA Characteristics
of Ashtabula River Sediment (mg/1)
Compound
Chlorobenzene
1,4 - Dichlorobenzene
Hexachlorobenzene
Hexachlorobutadiene
Arsenic
Barium
Chromium
Lead
Mercury
Selenium
Silver
RCRA
Regulatory
Threshold1
100
7.5
0.13
0.5
5
100
5.0
5.0
0.2
1.0
5.0
Sitel
< 0.005
< 0.026
<0.001
< 0.007
< 0.075
3.8
0.033
<0.02
< 0.0002
<0.04
< 0.0077
Site 2
< 0.005
<0.013
< 0.0005
< 0.003
< 0.075
2.1
0.120
<0.02
0.005
<0.04
< 0.007
SiteS
< 0.005
0.02
< 0.0005
< 0.003
< 0.075
5.9
0.031
< 0.020
0.0003
<0.04
< 0.007
1 40 CFR part 261.24
2.1.4.2 Demonstration Site Selection - -
One unique obstacle that the Ashtabula demonstration project had to overcome was the
fact that there was no government property on which the project could be conducted. Initial
coordination with the owner of Jack's Marine, the location that ultimately was selected to
host the demonstration project, began in the fall of 1991. The location that was selected was
a several hectare strip of land on Jack's Marine property bounded by Conrail Railroad tracks
and the upper turning basin of the Ashtabula River. In December, the ETWG approved the
site as suitable for the demonstration project after being briefed on the location and shown a
17
-------
video tape of the property. Having approval from all interested parties, Buffalo District
began preparing the necessary legal documentation including a land lease and rights of entry,
that would be required to conduct the project. The land lease and rights of entry were signed
by the owners of Jack's Marine and the Government in May 1992.
The Jack's Marine Site offered several advantages over other potential sites along the river.
First, it was located directly adjacent to the proposed dredge site. This allowed using land
based equipment to remove the sediment from the river, which was less expensive than barge
mounted equipment. Second, the area was relatively secluded, which would be beneficial for
site security.
2.1.5 Contracting
Contracting for the project was divided into three areas:
- the Demonstration Contract, which included dredging, storing, treating and disposing
of the sediment and associated waste streams;
- the Sample Collection Contract, which included taking the samples required in the
Quality Assurance Project Plan (QAPP), preserving the samples and shipping the samples to
Battelle Laboratories for analysis; and
- the Sample Analysis Contract, which included analyzing the samples and preparing a
data report on sampling analytical results.
2.1.5.1 Demonstration Contract - -
The contracting process for the demonstration project began in March 1992 with the
publishing of an announcement of the project in the Commerce Business Daily. Sixty-two
companies responded to the announcement and were provided with bid packages. The bid
packages included a detailed scope of work which provided background information, stated
the objective of the demonstration, and provided a comprehensive description of the required
services. Four companies submitted proposals, which were then reviewed by the ETWG to
determine the prospective firms' ability to conduct the remediation project. The technical
proposals were evaluated using a rating system based on the evaluation criteria developed by
the ETWG and presented in the Commerce Business Daily announcement.
Contract award was based on a firm's ability to meet the technical requirements of the
project, the uniqueness and innovativeness of the technology in treating Great Lake
sediments, the company's qualifications and experience in conducting similar studies, and
proposed project costs. Upon completion of this review, contract award was made to
Remediation Technologies, Inc. (RETEC) of Concord, Massachusetts.
2.1.5.2 Sample Collection Contract - -
The ETWG made the decision to contract out the sample collection for the project.
18
-------
Buffalo District utilized its indefinite delivery type contract with ARDL, Inc. of Mount
Vernon, Illinois to collect the samples. Two personnel from ARDL were retained for this
task with one person from Buffalo District on-site at all times for project oversite.
2.1.5.3 Sample Analysis Contract--
For consistency between technology evaluations, all sample analysis for the ARCS
program was done through an agreement with the U.S. Department of Energy and a contract
with the Battelle Marine Sciences Laboratory, Sequim, Washington. Detailed quality
assurance and quality control measures were developed to ensure that the data received was
acceptable and defendable.
2.1.6 Quality Assurance Project Plan
In August, 1992 a Quality Assurance Project Plan (QAPP) was finalized by WES to
support the pilot-scale demonstration project. The purpose of the QAPP was to outline
project organization and responsibilities, quality assurance objectives, sampling and custody
procedures, and other tasks related to ensuring that the data gathered during the project was
of required quality. The QAPP also included the sampling and analysis plan which detailed
the sampling schedule and the parameters to be sampled.
The experimental design, as discussed in the QAPP, identified PCBs as the critical
contaminant for evaluation during the project. Other organic contaminants, including
hexachlorobenzene, hexachlorobutadiene, and chlorobenzene, were also to be evaluated, but
were expected to be present at lower concentrations. Heavy metals are important in the
sediment, but with the exception of mercury, were not expected to be significantly affected
by the thermal desorption process (WES, 1992).
The QAPP called for conducting nine different one day tests of the thermal desorption
process with varying sediment solids concentration, residence time in the thermal desorption
unit and contaminant concentration. The details of the different tests conducted and the
sample collection schedule are discussed in sections 2.6 and 2.7. The entire QAPP is
included as Appendix A to this document.
2.2 TECHNOLOGY DESCRIPTION
2.2.1 Process Theory
Thermal desorption involves the separation of contaminants from a solid matrix by
heating the material to volatilize amenable compounds. Generally, this technology is used
for removing organic contaminants since these compounds have a lower boiling point than
inorganic materials. The technology, however, has shown some effectiveness in removing
volatile heavy metals such as mercury.
Since the thermal desorption process is a separation and not a destructive technology,
19
-------
subsequent processes must be involved for ultimate disposal or destruction of the volatilized
material. These processes could involve off-gas incineration or off-gas condensation
followed by incineration, or treatment of the condensed liquid.
The desorption process can be accomplished using various types of direct or indirect fired
equipment. In many cases, indirectly-fired methods are preferred, since they can operate in
an oxygen-free environment and generate a much smaller volume of off-gas than traditional
drying or incineration. Operating thermal systems to remediate chlorinated compounds in an
oxygenated environment is undesirable due to the potential for producing products of
incomplete combustion (PICs) such as dioxins and furans. Also, creating less off-gas is
desirable because capital and operating costs for the system can be significantly reduced.
2.2.2 Pilot Unit
The Remediation Technologies, Inc. (RETEC) pilot-scale thermal desorption unit was
selected for the remediation project. A flow diagram for the process is shown in Figure 7,
along with sampling points used during the demonstration project. For the Ashtabula
demonstration, slurried sediment was pumped into the treatment unit using a peristaltic
pump. The sediment was conveyed through the treatment unit with a Holo-Flite"" screw
processor. The Holo-Flite processor is an indirect heat exchanger commonly used to heat,
cool and dry bulk solids and slurries. It consists of a jacketed trough which houses a double-
screw mechanism. The rotating augers are arranged in the trough so that the flights of the
two screws mesh, facilitating the movement of material and improving the heat transfer.
The speed with which the screw rotates was changed to provide different sediment residence
times (RETEC, 1993).
Heat transfer fluid is continuously circulated through the hollow flights of the screw augers,
travels the full length of the screws, and returns through the center of each shaft to the
heater. The heat transfer fluid is also circulated through the trough jacket to provide
additional heat transfer surfaces. The heat transfer fluid used by RETEC is a molten salt
eutectic consisting of 53% potassium nitrate, 40% sodium nitrite, and 7% sodium nitrate.
The use of this media allows the higher processing temperatures (greater than about 250° C),
which were required to promote volatilization of the chlorinated organic compounds of
interest in Ashtabula River sediment.
The salt eutectic was stored and heated in an enclosed, insulated 600 gallon (2,271 liter)
stainless steel vessel and heated electrically using 27 immersion heaters capable of providing
one million BTU/hour of heating capacity, and salt eutectic temperatures of approximately
540° C (RETEC, 1993).
The pressure inside the thermal processor was maintained at -0.185 to -0.925 millimeters of
mercury to minimize the leakage of ambient air into the processor. The atmosphere in the
treatment chamber was controlled during all treatment activities to prevent oxidation of the
volatilized contaminant. An "inert" atmosphere was maintained in the treatment chamber
20
-------
DOUBLE AIR
LOCK
TO
ATMOSPHERE
CONTINUOUS MONITORING
TOTAL HYDROCARBONS
CONDENSATE
o
GAS SAMPLE LOCATION
SOIL SAMPLE LOCATION
LIQUID SAMPLE LOCATION (T
Figure 7. Thermal Desorption Process Flow Diagram
-------
through the controlled introduction of nitrogen, which was delivered at a flow rate of 0.14 to
0.85 cubic meters per second. The oxygen content of the gas stream was continuously
monitored using a Beckman Model 225 analyzer (RETEC, 1993).
Treated solids were fed by gravity to a second screw device designed to cool the solids prior
to discharge. This "cooling screw" was also of the Holo-Flite design and used a single auger
with chilled water as the cooling media. The treated solids were discharged from the cooler
through a rotary air lock into 55-gallon storage drums.
Volatilized contaminants were drawn from the processor at two locations. These locations
were designed to assist in the separation of the organic oil fraction, containing the
contaminants of concern, and the water. The first location was near the beginning of the
processor, and was designed to remove the water which will volatilize at a much lower
temperature than the chlorinated organic compounds. Accordingly, the second location was
at the end of the processor where the sediment was at the highest temperature and where
primarily the higher boiling point chlorinated organic compounds would volatilize. The
system was designed to accommodate an off-gas flow rate of approximately 4.2 cubic meters
per minute and a worst case moisture and organic loading of 181 kg/hr and 68 kg/hr,
respectively (RETEC, 1993).
After exiting the thermal desorption unit, both gas streams passed through two sets of
paniculate cyclones to remove any fine solid particles (> 10 urn) which may have been
entrained with the off-gases. The solids collected from each of the cyclones were removed
on a daily basis, weighed and sampled prior to being combined with the treated solids for
subsequent disposal. The gas streams were then condensed separately. The first gas stream,
designed to remove the water was condensed to 38° C. The second gas stream, designed to
remove the organics, was condensed to 121° C. This temperature was selected since it is
above the boiling point of water and would provide another means of separating the water
and organic fractions. Ideally, this condenser would capture or condense the organics, but
allow the water to remain in a vapor phase to be condensed further downstream.
Portions of the gas streams that were not condensed in the first condensers were combined
and sent through a third and final condenser which was designed to achieve an exit gas
temperature of 10° C. This condensate was combined with the aqueous condensate for
sampling and disposal since it is designed to contain mostly water. Consequently, two
condensate streams were collected from the system. The first designed to be primarily an
aqueous stream and the second designed to be a concentrated organic fraction. The system
was driven by a variable speed rotary blower capable of developing 0.14 cubic meter per
second of flow at a vacuum of 76.2 mm of mercury (RETEC, 1993).
After the air stream passed through the final condenser, it was routed through a common
downflow activated carbon system to capture non-condensable compounds and particulates
prior to release to the atmosphere. Approximately 680 kilograms of activated carbon (6 x 12
mesh, vapor phase pellets) was charged to the system. Volatile organic emissions from the
22
-------
system were monitored in the stack on a continuous basis using a Beckman Model 400A
Hydrocarbon Analyzer which continuously measured the concentration of hydrocarbons in
the gas stream using a flame ionization detector (FID).
2.3 SITE PREPARATION
The demonstration site area was relatively flat and was covered with grass, shrubs, debris
and small trees prior to the demonstration, as shown in Figure 8.
Figure 8. Demonstration Site Prior to Clearing
As part of the remediation contract, RETEC was required to clear the site to allow staging of
equipment. They were also required to make minor repairs to a small bridge over a culvert,
and regrade an existing unpaved road to allow access to the demonstration area. The site
was cleared and a staging area was constructed by RETEC to provide a firm level surface for
the performance of the demonstration project (Figure 9).
Approximately 1,000 square meters were required to stage the thermal processor and support
equipment which included: drum storage, cooling water chiller, inert nitrogen gas tank,
office trailers for the Corps of Engineers and RETEC personnel, storage trailer and publicity
tent. Approximately 500,000 kilograms of crushed stone was applied to the cleared area and
compacted as required. Additional crushed stone was placed in low areas and along access
23
-------
roads to provide suitable turn around and parking areas. Figure 10 details the layout of the
site (RETEC 1993).
In accordance with the contract requirements, RETEC installed line power to the
demonstration site. Electrical service, 480V, 3 phase (500 KVA), was installed by Cleveland
Electric Illuminating Company. The installation included five poles, wire and transformation
equipment required to power the thermal processor and all other ancillary equipment.
Figure 9. Demonstration Site After Clearing
2.4 SEDIMENT EXCAVATION AND PREPARATION
Sediment for use in the project was collected on September 2 from site 3 as previously
identified in Figure 5. Sediment excavation was conducted from land using a track excavator
with sufficient range to allow all excavation to be done from behind the log retaining wall at
the northeast end of the site (Figure 11).
Four drums of material were required for each of the nine days that sediment was treated.
Consequently, a total of 36 55-gallon drums of sediment, or approximately 8 cubic meters,
were dredged for the demonstration project. Samples 1A, 2A, and 3A were taken from the
top 60 centimeters of sediment, and samples 2A-C, and 3A-C from the 60-120 centimeter
layer of sediment.
24
-------
N3
SCALE IN FEET
0 5 10 20
JACK'S MARINE
SLIP
STORAGE TRAILER
CONTAINMENT AR
EXCAVATION SITE
OFFICE TRAILER
TENT
AREA
OFFICE TRAILER
THERMAL DESORPTION
UNIT
AIR MONITORING
TRUCK
ACCESS ROAD
Figure 10. Remediation Site Layout
-------
Sediments were dredged from distinct layers because a review of existing data indicated that
the concentration of contaminants of concern increased with depth. This is because
dischargers in the watershed have improved the quality of their effluent in recent years and,
consequently, sediment deposited in recent years generally contains lower concentrations of
contaminants. By segregating sediment dredged at different depths, and hopefully different
contamination levels, the effectiveness of the thermal desorption system on varying
contaminant concentration levels could be assessed.
" " i » * *
Figure 11. Sediment Excavation
As the sediment was excavated with the backhoe, it was spread into the storage drums using
a device which provided the capability of simultaneously filling four 55 gallon drums (Figure
12). The sediments were carefully excavated to minimize resuspension of the sediments into
26
-------
69 CM
I Jl
I I I
DRUM
i
n d
1 J|
i
DRUM
h
I I! II I 1 II II II II II II II II II II 1
HANDLES
-PALLET
SIDE VIEW
FIGURE 12. Sediment Loading Device
27
-------
the water column. The majority of free liquid was allowed to drain from the excavated
material by holding the bucket just above the surface of the river.
A bermed and lined area was constructed adjacent to the sediment removal location for
preparation of the excavated material. This area, which covered approximately 25 square
meters, was lined with plastic and equipped with a 30 cm perimeter berm to contain any
spillage. Pallets were placed on top of the liner material to prevent tearing and to provide a
platform for the drums. As can be seen in Figure 13, workers spreading the sediment into
the drums wore level C personal protective equipment (PPE) to protect them from splash
hazards and potential air emissions. For inhalation hazards, the primary concern was
hexachlorobutadiene, which has a very low threshold limit value (TLV).
Figure 13. Sediment Being Loaded into Drums
Although the sediment generally had a slight oily/hydrocarbon odor, 8 hour air samples taken
during excavation and material preparation indicated that there were no detectable ambient
concentrations of the organic constituents of interest in the immediate working vicinity.
Additionally, "real time" measurements collected directly above the surface of the sediment
using an organic vapor analyzer equipped with a photoionization detector (PID) indicated that
only background concentrations of volatile organic compounds were present.
28
-------
2.5 PRETREATMENT OF SEDIMENT
The preparation of the sediment included the removal of large debris which could
potentially jam processing equipment. There was very little oversized material found in the
dredged material. Approximately one 55- gallon drum of oversized material was collected
while dredging the 36 55-gallon drums of sediment required for the project. Oversized
material consisted primarily of tree limbs and rocks.
The excavated sediment had a solids content of approximately 50 percent by weight and
exhibited the cohesive characteristics of fine-grained material. The sediment was stored in
lined, covered 55-gallon drums while the rest of the site preparation was completed. The
four 55-gallon drums of sediment that were to be treated each day were brought from the
dredging site to the demonstration site on a pallet with a forklift. At the demonstration site,
river water was added as necessary to lower the solids content to the level required in the
QAPP. The sediment and water was then mixed with a cement mixer to ensure a
homogeneous feed. A homogeneous mixture was critical so that the samples of the feed
material were representative of all the sediment processed in one day.
A diesel-powered peristaltic pump was the principal equipment used to deliver the material to
the thermal processor. The pump consisted of a 5-hp air cooled diesel engine attached to a
high-capacity peristaltic pump head. The sediments were drawn through the pump at a
reduced capacity to provide an average feed rate of 1.8 to 3.6 liters per minute. A
5.1 centimeter (two-inch) line was used to draw the sediment out of the 55-gallon drums and
deliver them to the processor. The pump discharge line was connected to the system
between the double slide gates. The gates prevent the leakage of ambient air into the
processor which could provide unwanted oxidizing conditions. Figure 14 shows the
sediments slurry being pumped into the thermal desorption unit.
As discussed further in the following section, three of the tests runs included treating
sediment in two stages. For this process, where the sediment was first processed to remove
the water prior to the treatment step, additional material handling was necessary. After
being collected in 55-gallon drums at the exit point of the processor, the dried sediment was
placed in a live bottom feed storage hopper, with the capacity of about 1.2 cubic meters.
The material was then conveyed to a bucket elevator using twin 6-inch (15.24 cm) diameter
screws equipped with ribbon flights. The bucket elevator raised the material to a height of 5
meters to a feed auger which used a single 6-inch ribbon flight screw to convey material to
the processor, through a double slide gate (air lock), which prevented the leakage of ambient
air into the processor (RETEC, 1993).
29
-------
Figure 14. Sediment Slurry Being Pumped into the Thermal Desorption Unit
2.6 DEMONSTRATION PROJECT EXECUTION
On Friday, September 4th, all preliminary site activities were complete and the pilot-scale
thermal desorption unit was set-up. After the set-up of the demonstration site was
completed, RETEC was required to demonstrate to the government that the processor did not
contain residual material from previous remediation activities. Residual material in the
processor would result in problems in the mass balance closures. The processor was
"cleaned" by processing two 55-gallon drums of crushed stone through the processor. As the
stone passed through the processor, it displaced material that was attached to the flights of
the screws or otherwise contained in the system. In addition to the augers in the thermal
processor, the condensers and lines that process gasses pass through were also cleaned-out
during this process. After the stone was passed through without residual soil being
discharged, the system was deemed "clean" and two 55-gallon drums of sediment were
passed through the processor to acclimate the system to the Ashtabula River sediment.
Figures 15 and 16 show the thermal desorption unit.
30
-------
Figure 15. Thermal Desorption Unit
Figure 16. Thermal Desorption Unit
31
-------
Following verification that the thermal desorption unit was "clean" and the repair of a
leaking eutectic salt line valve on Wednesday, September 9th, the system was operational and
ready for the commencement of the sediment remediation. The QAPP called for nine one-
day tests of the sediment with varying process conditions and solids content shown in Table
4. Each day's test involved processing four 55-gallon drums of sediments.
The solids content was adjusted in tests 3A, 3B and 3C to see if the amount of water in the
sediment affected removal efficiencies. Adding water improves pumpability and could
improve removal efficiencies due to a stripping effect, but also adds to the cost of the
process since there is more water to volatilize. The design residence time for the sediment in
the processor was also varied as shown in Table 4. Since previous bench- and pilot-scale
data indicated that minimum residence times of approximately 60 minutes provided for the
effective volatilization of PCBs, field testing was conducted using nominal residence times of
60, 90 and 120 minutes. The 120 minute tests were conducted using a two-phase approach.
In the first phase of treatment, the sediments were subjected to a 30 minute drying step at a
relatively low temperature. The purpose of this step was to remove most or all of the water
and very little of the organic or oil fraction. The dried sediments were collected in drums
and then subjected to an additional 90 minutes of treatment for organic removal.
Table 4. Required Process Conditions for Remediation
Sediment
1A
IB
1C
2A
2B
2C
3A
3B
3C
Design
solids
Content
-50%
-50%
-50%
-50%
-50%
-50%
-40%
-40%
-40%
Drying
Time
(minutes)
0
0
30
0
0
30
0
30
0
Treatment
Time
(minutes)
60
90
90
60
90
90
60
90
90
RETEC monitored various process parameters at routine intervals during the demonstration
project. The parameters monitored are shown in Table 5. These parameters were monitored
to help optimize the removal efficiency of the thermal desorption unit, as well as to develop
data for the design of full-scale equipment (RETEC, 1993).
32
-------
Process temperatures were monitored at 21 locations using thermocouples. Temperature
signals were to a control panel and subsequently recorded on field data sheets. Process
pressures were measured at seven locations using magnahelic gauges and the gas flow rate of
inert gas into the processor and off-gas from the processor was monitored. The flow rate of
inert gas into the processor was monitored by a standard flow meter, while the off-gas flow
rate from the thermal system was monitored in the off-gas stack by measuring the flow with
an in-line hot wire anemometer (RETEC, 1993).
Table 5. Process Parameters of Interest
Process Temperatures
Process Pressures
Waste feed (in)
Treated solids (out)
Transfer media tank
Transfer media
Transfer media
Inert gas (in)
(in)
(out)
Inert gas delivery
Processor headspace
Solids cooler headspace
Exit from paniculate cyclone
Exit from condenser
Inlet to after-cooler
Inlet to carbon bed
Solids Cooler
Treated solids
Transfer media
(out)
(in)
Gas flow rates
Inert gas
Exit from particulate cyclone
Discharge stack
Off-Gas Treatment
Gas from processor
Gas exiting cyclone
Gas exiting condenser
Condenser cooling media (in)
Condenser cooling media (out)
Fin fan cooler setpoint
Gas entering after-cooler
Gas exiting after-cooler
After-cooler media
Chiller setpoint
(in)
Liquid flow rates
Condenser cooling media
After-cooler media
Solids cooler transfer media
Aqueous condensate
Organic condensate
Off-Gas Composition
Oxygen (exit from particulate cyclone)
Total hydrocarbons (stack)
Solids Processing Rate
Waste feed
- Processor RPM
Treated Solids
- Solids cooler RPM
33
-------
The sediment feed rate to the processor was monitored by recording the volumetric
displacement of the feed system per unit time in conjunction with associated measurements of
the density of the feed material. The accuracy of these observations was validated in the
field using notations of the speed and capacities of the processing and cooling augers
(RETEC,1993).
Residence times were estimated using the following equation:
T=-
Where T = Residence Time (hour)
Q = Volumetric Flow Rate (nWhour)
V = Trough Volume (m3) equal to 0.127 m3
Kp = a factor used to correct for internal mixing that is designed to occur inside
the processor to ensure the trough stays relatively full over the entire length of
the unit as liquid is evaporating from the sediment.
The factor Kp, equal to 0.54, was not used in estimating residence times for the treatment
or second pass of the two stage treatment process since this sediment contained very little
water (RETEC, 1993). Due to the variability of flow rates during the processing periods,
estimated residence times are presented as a range, plus or minus 10 minutes, from the
calculated value.
2.6.1 Sample 1
Sample 1 was processed in the thermal desorption unit from September 10 to September
14, 1992. Nominal and estimated residence times for treatment runs 1A, IB and 1C are
shown in Table 6. As can be seen from this data, the drying run for sample 1C resulted in
a longer residence time (44 - 64 minutes) than the nominal residence time of 30 minutes.
This phenomenon occurred on the drying runs of all of the two pass treatments. RETEC
attributed this result to a difficulty coordinating the feed pump and the processor screw under
low pumping rates. Sediment processing rates for the three tests ranged from about 300
kg/hour for Test 1A to 175 kg/hour for the combined treatment test (Test 1C). Exit solids
temperatures for the first two tests were fairly consistent, averaging 185° C. As expected,
the highest solids temperature, 262° C, was associated with the longest residence time. The
process temperatures provided reflect the averaged data from each test run.
The required stack sampling included USEPA methods to characterize inorganic and
particulate (Method 5) and organic (Method 23) emissions. The QAPP called for conducting
the air sampling for organics for four hours and inorganics and particulates for two hours.
However, since the sediment processing time could be less than six hours, it was decided to
modify the QAPP to reduce the sampling time for organics to two hours and for inorganics
34
-------
and particulates to one hour. This allowed the contractor some extra time since setting up
and dismantling the sampling trains was a time consuming process. These modifications
were made after test runs 1A, when only the metals and paniculate samples were collected,
and test run IB when only the sample for organics was collected. Subsequent to initiating
the modified sampling schedule all required samples were collected.
Table 6. Averaged Process Data for Sample 1
Parameters
Nominal Residence Time (min)
Estimated Residence Time (min)
Feed Rate (kg/hr)
Temperatures: (degrees C)
Heat transfer
media in
Heat transfer
media out
Sediment in
Sediment out
Inert off-gas
Heat input (Btu/hr)
1A !
45
56-76
300
498
475
16
190
371
557,890
IB
90
86-106
196
511
496
16
179
510
381,000
1
Drying
30
44-64
349
398
386
17
59
264
444,950
C
Treatment
90
76-96
135
497
488
27
262
451
201,340
2.6.2 Sample 2
Sample 2 was processed in the thermal desorption unit from September 15 to September
17, 1992. Nominal and estimated residence times for test runs 2A, 2B, and 2C are shown
in Table 7, along with other averaged process data.
The material was processed at throughputs ranging from 263 kg/hour for Sediment 2A to 158
kg/hour for the combined treatment test (2C). Exit solids temperatures for the 60 and 90
minute tests were roughly equivalent, averaging around 254 ° C. The highest temperature
achieved was 332 ° C for sample 2C.
35
-------
2.6.3 Sample 3
The third sample was processed during the period of September 18 through September
22. The QAPP called for decreasing the solids content of the sediment to approximately
40% by weight to evaluate the potential effects of additional water on treatment efficiency.
The material was processed at throughputs ranging from 213 kg/hour for Sediment 3A to 166
kg/hour for the combined treatment test (3B for this sample). The exit solids temperature
was essentially the same for tests 3A and 3C at 211-214 ° C, while a high temperature of 439
0 C was achieved for tests 3B. Table 8 represents average process data for samples 3A, 3B,
3C.
2.7 MONITORING PROGRAM
As part of the demonstration project, extensive samples were collected of the sediment
prior to treatment and of the process residuals. The objectives of the monitoring program
included determining the removal efficiency of the process for organic and inorganic
parameters and quantifying contaminant partitioning within the various waste streams.
The QAPP developed by WES contains the details of the sampling and analysis plan, and is
attached as Appendix A to this report. This portion of the report discusses the samples
collected and analytical methods utilized.
2.7.1 Samples Collected
Liquid and solid samples were collected during the demonstration project by ARDL, Inc.
under the direction of the Buffalo District in accordance with the QAPP. Prior to shipment to
Battelle for analysis, the samples were preserved, as required, and cooled. During the
course of the project approximately 2,000 samples were collected and analyzed.
Table 9 shows the sample collection and analysis schedule for the remediation project. The
sampling program began with the sampling of the material as dredged from the river. This
was done to determine if there were any changes in contaminant concentration levels while
the sediment was stored for several days prior to remediation. Any river water that was
added to adjust the solids content of the sediment was also tested.
As the sediment was pumped into the thermal desorption unit, grab samples were taken at
15-30 minute intervals and eventually composited so that an average feed concentration could
be determined for the day's run (Figure 17). Solid waste streams, including the treated
solids and cyclone residues were similarly sampled so that results would be representative of
the day's operation (Figure 18). Liquid samples, including the aqueous and organic
condensate were sampled at the end of the day's run after stirring the contents of the
containers to ensure a homogenous mixture (Figure 19). The weights of the feed sediment
and processes residuals as discussed above were measured so that a mass balance on the
process could be completed.
36
-------
Table 7. Averaged Process Data for Sample 2
Parameters
Nominal Residence Time (min)
Estimated Residence Time (min)
Feed Rate (kg/hour)
Temperatures: (degrees C)
Heat transfer
media in
Heat transfer media out
Sediment in
Sediment out
Inert off-gas
Heat input (Btu/hr)
2A
60
65-85
263
509
487
20
267
878
445,630
2B
90
94-114
184
491
471
19
244
834
359,452
2
Drying
30
60-80
263
423
412
18
82
350
296,630
C
Treatment
90
100-120
116
516
507
29
332
901
234,040
Table 8. Averaged Process Data for Sample 3
Parameters
Nominal Residence Time (min)
Estimated Residence Time (min)
Feed Rate (kg/hour)
Temperatures (degrees C)
Heat transfer
media in
Heat transfer media out
Sediment in
Sediment out
Inert off-gas
Heat input (Btu/hr)
3A
60
72-97
213
504
484
18
211
477
521,829
31
Drying
30
54-74
308
464
444
16
93
221
514,800
3
Treatment
90
76-96
145
511
499
27
303
483
299,350
3C
90
101-121
171
495
478
18
214
437
421,820
37
-------
On two occasions, after half of the test runs had been completed and after the entire project
was completed, the activated carbon column was tested. This was done by opening a port on
the side of the activated carbon column and sampling with a "drum thief." Sampling with
the drum thief allowed collection of samples at different depths in the carbon so it could be
determined where the various constituents of interest were collecting. Figure 20 shows the
carbon being prepared for analyses, with each mixing bowl containing carbon from a
different layer of the adsorber.
Table 9. Sample Collection and Analysis Schedule
As
Dredged
Material
Make-up
Water
Feed
Material
Treated
Solids
Aqueous
Condensate
Organic
Condensate
Cyclone #1
Solids
Cyclone #2
Solids
Carbon
Column
Stack Gas
Tot*!
Solids
X
X
X
X
X
X
X
X
Total
Volatile
Solids
X
X
X
X
X
TOC
X
X
X
X
X
X
X
X
Oil and
Grease
X
X
X
X
X
X
X
X
PCBswwJ
Pesticides
X
X
X
X
X
X
X
X
X
X
Semi-
Volatfles
X
X
X
X
X
X
X
X
X
Metals
X
X
X
X
X
X
X
X
X
X
Dioxins
and
Furans
X
TCLP
Complete
X
X
X
Air samples were collected on a daily basis during the project by Keystone Laboratories, a
subcontractor of RETEC. Paniculate matter and metals were sampled using USEPA Method
5. Organic emissions, including PCBs, dioxins and furans were sampled using USEPA
method 23. All samples were collected from a single sampling point in the systems emission
stack. Samples were collected and prepared in the field by Keystone Laboratory, and then
given to the Corps of Engineers for subsequent shipment to Battelle for analysis.
38
-------
Figure 17. Sediment Slurry Sampling Prior to Pumping into Thermal Desorption Unit
Figure 18. Sampling of Treated Sediment
39
-------
Figure 19. Liquid Samples Taken of Process Condensate
Figure 20. Sampling of Activated Carbon
40
-------
2.7.2 Analytical Methods
The analytical methods, required detection limits, containers and preservatives used, and
volume of sample required are shown in Table 10 for sediment and carbon samples and in
Table 11 for liquid samples.
As shown in Tables 10 and 11, organic compounds in water and sediment are categorized
into four groups. These groups include the following compounds:
Volatiles Semi-volatiles Pesticides
1,1,2,2- Benzo(a)Pyrene Alpha-BHC
Tetrachloroethane Hexachlorobenzene Delta-BHC
Chlorobenzene Hexachlorobutadiene Gamma-BHC (Lindane)
Chloroform Hexachloroethane Heptachlor
Tetrachloroethene
Trichloroethene
1,1,2-Trichloroethane
1,4-Dichlorobenzene
Vinyl Chloride
PCBs
Eighty-four of the possible 209 congeners were reported as 60 individual congeners, 20
as combination (pair) congeners and 4 as combination (triplicate) congeners. PCB congeners
analyzed included the following International Union of Pure and Applied Chemists (IUPAC)
numbers (Congener structures are identified in Table 53):
Congener #1, 3, 4+10, 8+5, 17, 18, 19, 27, 32+16, 29, 26, 25, 31+28, 33, 53, 22, 45,
46, 52, 49, 48+47, 44, 42+37, 64+41+71, 40, 100, 63, 74, 70+76, 95+66, 91, 56+60,
92+84, 101, 99, 119, 83, 97, 67, 85, 136, 110, 82, 151, 135 + 144+14, 147+124+13,
107, 149, 118, 134+114, 131, 146, 153 + 132+10, 141, 136+176, 163 + 138, 158, 178,
175, 187+182, 183, 128, 185, 174, 177, 202 + 171, 173, 157+200, 172+197, 180, 193,
191, 199, 170+190, 198, 201, 203 + 196, 189, 208+195, 207, 205, 194, 206, 209.
2.7.3 Air Monitoring
Stack sampling was conducted using EPA methods to characterize inorganic and
paniculate (Method 5) and organic (Method 23) emissions. Both methods utilize an
isokinetic sampling approach to collect representative samples of the stack gas for subsequent
analysis. EPA Method 5 provides for the collection of paniculate sample through the use of
a heated filter and subsequent solvent washing of parts of the sampling system. The
collected sample was then weighed to quantify paniculate emissions, and subjected to the
appropriate analyses for the inorganic constituents of interest. Table 12 shows a summary of
the air sampling and analytical procedures.
41
-------
Table 10. Analytical Methods Used to Test Sediment and Activated Carbon Samples
Analysis
Volatile Organics
Semi-Volatile
Organics
PCB Aroclors and
Congeners
Pesticides
Oil & Grease
(Total extractable
residue)
Arsenic
Cadmium
Chromium
Mercury
Lead
Zinc
Total Organic Carbon
Total Solids
Total Volatile Solids
Grain Size
ARCS Required
Detection
Limit (mg/kg)
0.2
0.2
0.2
0.02
20
2
0.1
2
0.1
2
2
300
1000
1000
N/A
Method
EPA 8240
EPA 8270
NOAA 1985
NOAA 1985
STANDARD
METHODS
5520 B
7-40-48
MSL-M-33
7-40-48
MSL-M-11
7-40-48
7-40-48
EPA 9060
EPA 160.3
EPA 160.4
PSEP 1986
Battelle Instru-
ment Detection
Limit (mg/kg)
0.2
0.2
0.2
0.02
30
0.5
0.1
33
0.02
7
8
0.10%
0.10%
0.10%
1.00%
Volume Required
(mL)
40
100
100
50
50
50
50
100
Container
4 oz glass
4 oz glass
4 oz glass
4 oz.
Spex Jar
8 oz plastic
All samples were iced 4 ° C.
REFERENCES FOR METHODS
NOAA 1985 National Oceanic and Atmosphere Administration, National Status and Trends Program, Standard Procedures
7-40-48 Energy Dispersive X-Ray Fluorescence Spectrometry MSL-M-11 Cold Vapor Atomic Absorption
EPA 9060 TOC U.S. Environmental Protection Agency (EPA). 1986. Test Methods for Evaluating Solid TOC Waste;
Physical/Chemical Methods. SW-846. U.S. Document No. 955-001-00000, USEPA, Washington, D.C.
EPA 8240/8270 SW-846
EPA 160 U.S. Environmental Protection Agency (EPA). 1983. Methods for Chemical Analysis of Water and Wastes, EPA-
600/4-79-020, March, 1983, Method 413.2.
PSEP 1986 Puget Sound Estuary Protocols.
ASTM-D422 American Society of Testing Materials (ASTM). 1972. Standard Method for Particle-Size Analysis of Soil D-422.
ASTM, Philadelphia, PA.
MSL-M-33 Trace elements in sediment and tissue by stabilized-temperature graphite furnace.
5520 B Standard Methods for the Examination of Water and Wastewater, 1989. Extraction by Methylene Chloride as
described "Total Extractable Hydrocarbons by Infrared Spectrophotometry," Analytical Chemistry, by Simard, et al,
1951, 23-1384.
42
-------
Table 11. Analytical Methods Used to Test Liquid Samples
Analysis
Volatile Organics
Semi-Volatile
Organics
PCB Aroclors and
Congeners
Pesticides
Arsenic
Cadmium
Chromium
Mercury
Lead
Zinc
Oil & Grease
Total Organic
Carbon
Total Solids
PH
ARCS
Requited
Detection
Limit
-------
Table 12. Summary of Air Sampling and Analytical Procedures
Parameter
PCBs1
Dioxins2
Furans3
Mercury
Arsenic
Cadmium, Chromium,
Lead and Zinc
Particulates
Sampling Method
EPA Method 23
EPA Method 23
EPA Method 23
EPA Method 5
EPA Method 5
EPA Method 5
EPA Method 5
Analytical Method
GC/ Electron Capture Detector
High Resolution GC/MS
High Resolution GC/MS
Cold Vapor Atomic
Absorption/Fluorescence
Hydride Generation
Graphite Furnace Atomic
Absorption
Gravimetric
1 PCBs were grouped for analysis by the number of chlorine atoms.
2 Six Dioxin compounds were targeted for analysis.
3 Five furan compounds were targeted for analysis.
2.8 RESIDUALS MANAGEMENT
Residuals, including treated solids, solids from cyclone catches and aqueous and organic
condensates were collected in lined 55-gallon drums and stored in a plastic lined and bermed
area. At the conclusion of the demonstration project, all the residuals were removed from
the site by Clean Harbors, Inc. of Cleveland, a subcontractor of RETEC. All material was
properly containerized, manifested and transported in accordance with U.S. and Ohio
requirements.
Testing conducted prior to shipping showed that none of the residuals, solid or liquid, were
considered hazardous or toxic materials under RCRA or TSCA. Although the possibility
that the organic condensate would be TSCA regulated was planned for, this did not occur
due to the poor separation of the aqueous and organic condensates. Ultimate disposal of
solids was by landfllling, while the liquids were treated in a Clean Harbors, Inc. wastewater
treatment operation.
44
-------
3.0 RESULTS AND DISCUSSION
3.1 RESULTS
3.1.1 Analytical Results
Reduced analytical data for the Ashtabula thermal desorption pilot-scale demonstration are
presented in Tables 13 through 39. Included are solids content and chemical concentrations
for each process stream as defined in Figure 7. These data are provided here without
interpretation, but are used in subsequent sections of this report as the basis for mass
balances and assessment of process efficiencies. Data for Runs 1A and 3C have been
omitted from formal presentation in this section, but appear in Appendix B. They were
omitted because they fell outside project closure constraints as detailed in Section 3.1.2.
3.1.2. Overall Mass Balance
An overall mass balance was performed on solids and liquids for this process. The
purpose of the mass balance was to determine the percent of feed material that could be
accounted for after processing (i.e., percent closure). Results of this mass balance were
reported by RETEC, and are summarized in Table 40. Closures in the 85-115 percent range
are considered optimal. For closures in this range, stream weights can be used with
reasonable confidence to track individual compounds through the system and thus assess
treatment effectiveness.
3.1.3 Constituent Mass Balance
In addition to the overall mass balance, a mass balance was performed for each constituent
of concern. A sample calculation is provided in Appendix C. The constituent mass balance
was performed for two reasons. First, it was necessary to quantify the removal of each
constituent of concern from the sediment by thermal desorption. Second, it was necessary to
determine the fate of each constituent, and to thereby ascertain whether any harmful
substances were being released to the environment.
Mass balance results for each constituent of concern are discussed in subsequent text under
the heading related to that specific material. For the purposes of this study, contaminants of
concern are considered removed from the treated material only if they appear in a stream
other than the treated residue or solids captured by the cyclones. Constituents of concern
associated with cyclone solids are not considered removed because cyclone solids are
normally combined with treated residue for disposal.
45
-------
Table 13
Weight Percent Total Solids in Process Streams
Run
IB
1C-D1
1C-T2
2A
2B
2C-D1
2C-T*
Processing Conditions
Nominal Residence
Time (min)
Feed Rate (kg/hr)
Max. Sediment
Temp (°C)
Sample Points
After Dredging
(IS)3
Before Processing
(3S)3
After Thermal
Processing (4S)3
Solids from 1st
Cyclone (5S)3
Solids from 2nd
Cyclone (6S)3
Condenser 1 (7L)3
Condenser 2 (8L)3
90
196
179
30
349
59
90
135
262
60
263
267
90
184
244
NA
49.4*
97.3"
49.8
86.5
0.17
0.03
NA
51.94
85.9
NA
NA
NA
NA
NA
85.9
96. 8 4
80.4
98.6*
0.03
0.02
NA
52.9*
99. 9 4
56.9*
64.6
0.17
0.10
NA
52.2
100.04
81. 24
97.0
0.39
0.11
30
263
82
NA
42.24
92.4
NA
NA
NA
NA
90
116
332
NA
92.4
100.04
79.0
97.1*
0.68
0.21
3A
60
213
211
NA
42.5 4
94.64
63.1
86. 5 4
0.80
0.06
3B-D*
30
308
93
3B-T2
90
145
303
NA
46.94
85.6
NA
NA
NA
NA
NA
85.6
100.04
81.0
94.1
1.35
0.14
NA = Not Analyzed
1 D = drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification numbers per Figure 6
4 Averages of 3 - 5 measurements
-------
Table 14
Distribution of Arsenic in Process Streams
Dry Weight Basis
Run
IB
1C-D1
IC-T*
2A
2B
2C-D1
2C-T*
3A
3B-D1
3B-T*
Processing Conditions
Nominal Residence
Time (min)
Feed Rate (kg/hr)
Max. Sediment
Temp. (°CJ
90
196
179
30
349
59
90
135
262
60
263
267
90
184
244
30
263
82
90
116
332
60
213
211
30
308
93
90
145
303
Sample Points :
After Dredging (IS)3
mg/kg
Before Processing
(3S)3 mg/kg
After Thermal
Processing (4S)3
mg/kg
Solids from 1st
Cyclone (5S)3 mg/kg
Solids from 2nd
Cyclone (6S)3 mg/kg
Condenser 1 (7L)3
mg/L
Condenser 2 (8L)3
mg/L
19.1
14.6
17.1
21.6
18.4
0.06
0.02
NA
NA
NA
NA
NA
NA
NA
15.2
17.1
15. 7 4
38.1
18.0
0.11
0.10
22.7
16.7
17.8*
21.8
44.9
NA
0.05 4
17.0
20.4
18.0
21 .4
19.7
0.07
0.05 4
NA
NA
NA
NA
NA
NA
NA
20.3
21.5
22.5*
34.7
23.1*
0.05
0.10
19.5
23.3
24.8*
17.3
65.8
0.09*
0.03
NA
NA
NA
NA
NA
NA
NA
16.4*
18.5
17.8*
32.2
20.2
0.13
0.09
NA - Not Analyzed
1 D = drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification per Figure 6
* Averages of 3 - 5 measurements
-------
Table 15
Distribution of Chromium in Process Streams
Dry Weight Basis
Run
IB
1C-D'
1C-T2
2A
2B
2C-D1
2C-T2
3A
3B-D1
3B-T2
Processing Conditions ;
Nominal Residence
Time (min)
Feed Rate (kg/hr)
Max. Sediment
Temp. (°C)
90
196
179
30
349
59
90
135
262
60
263
267
90
184
244
30
263
82
90
116
332
60
213
211
30
308
93
90
145
303
Sample Points
After Dredging (IS)3
mg/kg
Before Processing
(3S)3 mg/kg
After Thermal
Processing (4S)3
mg/kg
Solids from 1st
Cyclone (5S)3 mg/kg
Solids from 2nd
Cyclone (6S)3 mg/kg
Condenser 1 (7L)3
mg/L
Condenser 2 (8L)3
mg/L
126
115
127
167
143
0.12
0.03
NA
NA
NA
NA
NA
NA
NA
155
102
1404
325
143
0.95
0.03
414
157
1344
231
556
NA
0.11*
116
218
179
243
210
0.26
0.194
NA
NA
NA
NA
NA
NA
NA
186
370
3244
598
3624
0.49
0.83
468
357
403
342
1200
1.014
0.29
NA
NA
NA
NA
NA
NA
NA
1564
144
1504
367
197
0.88
0.12
-p-
00
NA = Not analyzed
1 D = drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
4 Averages of 3 - 5 measurements
-------
Table 16
Distribution of Lead in Process Streams
Dry Weight Basis
Run
IB
1C-D1
IC-T*
2A
2B
2C-D1
2C^TZ
3A
3B-D1
3B-T2
Processing Conditions
Nominal Residence
Time (min)
Feed Rate (kg/hr)
Max. Sediment
Temp. (°C)
90
196
179
30
349
59
90
135
262
60
263
267
90
184
244
30
263
82
90
116
332
60
213
211
30
308
93
90
145
303
Sample Points '.
After Dredging (IS)3
mg/kg
Before Processing
(3S)3 mg/kg
After Thermal
Processing (4S)3
mg/kg
Solids from 1st
Cyclone (5S)3 mg/kg
Solids from 2nd
Cyclone (6S)3 mg/kg
Condenser 1 (7L)3
mg/L
Condenser 2 (8L)3
mg/L
50.5
46.4
46.5
60.5
59.7
0.18
0.04
NA
NA
NA
NA
NA
NA
NA
104.0
44.5
67.5 4
125.0
50.4
1.99
0.04
61.8
52.4
50.7 4
70.9
166.0
NA
0.064
46.7
53.8
59.5
54.9
52.4
0.10
0.124
NA
NA
NA
NA
NA
NA
NA
52.0
61.7
59.5 4
100.0
58.7 4
0.25
0.18
60.1
55.4
61.6
74.6
173.0
0.18 4
0.05
NA
NA
NA
NA
NA
NA
NA
42.2 4
47.2
49.7 4
84.1
54.6
0.22
0.04
NA = Not Analyzed
1 D = drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
4 Averages of 3 - 5 measurements
-------
Table 17
Distribution of Zinc in Process Streams
Dry Weight Basis
Run
IB
1C-D1
1C-T2
2A
2B
2C~Dl
2C-T2 !
Processing Conditions :
Nominal Residence
Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp.
CO
90
196
179
30
349
59
Sample Points
After Dredging (IS)3
mg/kg
Before Processing
(3S)3 mg/kg
After Thermal
Processing (4S)3
mg/kg
Solids from 1st
Cyclone (5S)3 mg/kg
Solids from 2nd
Cyclone (6S)3 mg/kg
Condenser 1 (7L)3
mg/L
Condenser 2 (8L)3
mg/L
193
168
169
212
201
0.44
0.07
NA
NA
NA
NA
NA
NA
NA
90
135
262
60
263
267
90
184
244
30
263
82
90
116
332
173
159
1584
391
189
9.56
0.09
180
161
1604
212
434
NA
0.22 4
156
189
185
193
183
0.91
0.37 4
NA
NA
NA
NA
NA
NA
NA
259
242
2344
367
2474
1.21
1.07
3A
3B-D1
3B-T2
60
213
211
229
256
264
221
714
1.714
0.25
30
308
93
NA
NA
NA
NA
NA
NA
NA
90
145
303
155 4
172
167 4
330
211
1.98
0.17
Ln
O
NA Not analyzed
1 D = drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
* Averages of 3 - 5 measurements
-------
Table 18
Distribution of Cadmium in Process Streams
Dry Weight Basis
RUN
IB
1C-D1
1C-T2
2A
26
2C-D1
2C-Ta
' '3A
3B~Dl
PROCESSING CONDITIONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment
Temp. fC)
90
196
179
30
349
59
90
135
262
60
263
267
90
184
244
30
263
82
90
116
332
60
213
211
30
308
93
3B-T*
90
145
303
SAMPLE POINTS
After Dredging (IS)3 mg/kg
Before Processing (3S)3 mg/kg
After Thermal Processing (4S)3
mg/kg
Solids from 1st Cyclone (SSf
mg/kg
Solids from 2nd Cyclone (6Sf
mg/kg
Condenser 1 (7L)3 mg/L
Condenser 2 (8L)3 mg/L
2.42
3.12
1.47
2.10
3.75
0.013
0.001
NA
NA
NA
NA
NA
NA
NA
1.29
1.28
1.034
3.03
1.41
0.049
0.002
2.75
3.00
2.454
3.25
8.79
NA
0.003*
2.04
4.08
3.58
3.50
3.54
0.015
0.0054
NA
NA
NA
NA
NA
NA
NA
3.36
5.12
4.36*
8.04
4.76'
0.018
0.016
3.43
4.01
4.414
6.58
14.80
0.0414
0.004
NA
NA
NA
NA
NA
NA
NA
1.884
2.73
2.654
5.78
3.09
0.037
0.003
Ln
NA = Not analyzed
1 D = drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
4 Averages of 3 - 5 measurements
-------
Table 19
Distribution of Mercury in Process Streams
Dry Weight Basis
RUN
IB
1C-D1
PROCESSING CONDITIONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp. (°C)
90
196
179
30
349
59
1C-T2
2A
90
135
262
SAMPLE POINTS
After Dredging (IS)3 mg/kg
Before Processing (3S)3 mg/kg
After Thermal Processing(4S)3 mg/kg
Solids from 1st Cyclone (5S)3 mg/kg
Solids from 2nd Cyclone (6S)3 mg/kg
Condenser 1 (7L)3 mg/L
Condenser 2 (8L)3 mg/L
0.750
0.368
0.065
2.73
0.181
0.103
0.029
NA
NA
NA
NA
NA
NA
NA
0.303
0.267
0.014 4
0.398
0.048
0.012
0.167
60
263
267
2B
90
184
244
2C-D1
30
263
82
1.15
1.160
0.048 4
2.280
1.990
NA
0.0604
0.306
5.380
0.105
1.450
0.350
0.178
0.0974
NA
NA
NA
NA
NA
NA
NA
2C-T*
90
116
332
3A
60
213
211
0.659
1.760
0.078 4
5.550
0.4744
0.038
0.071
0.520
1.020
0.070
2.630
2.080
0.2184
0.060
3B-D1
30
308
93
3B-T2
90
145
303
NA
NA
NA
NA
NA
NA
NA
0.371 4
0.700
0.039 4
0.828
0.234
0.126
0.327
t_n
to
NA = Not analyzed
1 D = drying portion of a two pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6.
4 Averages of 3 - 5 measurements
-------
Table 20
Distribution of Vinyl Chloride in Process Streams
Dry Weight Basis
RUN
IB
1C-D1
1C-T2
2A
2B
2C-D1
2C-T2
3A
3B-D' [ 3B-T2
PROCESSING CONDITIONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp. (°C)
90
196
179
30
349
59
90
135
262
60
263
267
90
184
244
30
263
82
90
116
332
60
213
211
30
308
93
90
145
303
SAMPLE POINTS
After Dredging (IS)3 ug/kg
Before Processing (3S)3 ug/kg
After Thermal Processing (4S)3 ug/kg
Solids from 1st Cyclone (5S)3 ug/kg
Solids from 2nd Cyclone (6S)3 ug/kg
Condenser 1 (7L)3 ug/L
Condenser 2 (8L)3 ug/L
<0.3
0.6
<0.5
<0.2
<0.44
<0.5
<0.5
<0.3
<0.4
<0.4
NA
NA
NA
NA
C
<0.44
<0.4
<0.4
<0.5
<0.5
<0.5
<0.3
<0.3
<0.5
NA
<0.3
<0.5
<0.5
<0.3
<0.3
<0.5
<0.4
<0.5
<0.5
<0.54
<0.3
<0.2
<0.5
NA
NA
NA
NA
C
<0.5
<0.5
<0.4
<0.54
<0.5
<0.5
1.3
<0.2
<0.5
<0.3
<0.4
<0.5
<0.5
<0.3
<0.4
<0.4
NA
NA
NA
NA
C
<0.4
<0.54
<0.4
<0.54
<0.5
<0.5
01
NA = Not analyzed
C = Continuation of two-pass run
1 D = drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6.
4 Averages of 3 - 5 measurements
-------
Table 21
Distribution of Chloroform in Process Streams
Dry Weight Basis
RUN
IB
1C-D1
1C-T1
2A
2B
2C-D1
2C-T2
PROCESSING CONDITIONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp. (°C)
90
196
179
30
349
59
90
135
262
60
263
267
90
184
244
30
263
82
90
116
332
SAMPLE POINTS
After Dredging (IS)3 ug/kg
Before Processing (3S)3 ug/kg
After Thermal Processing (4S)3 ug/kg
Solids from 1st Cyclone (5S)3 ug/kg
Solids from 2nd Cyclone (6S)3 ug/kg
Condenser 1 (7L)3 ug/L
Condenser 2 (8L)3 ug/L
<0.3
<0.3
<0.5
<0.2
<0.4"
<0.5
2.1
<0.3
<0.3
<0.4
NA
NA
NA
NA
C
<0.44
<0.4
<0.4
<0.5
<0.5
<0.5
<0.3
<0.3
<0.5
NA
<0.2
<0.5
<0.5
<0.3
<0.3
<0.4
<0.4
<0.5
<0.5
<0.54
<0.3
<0.2
<0.5
NA
NA
NA
NA
C
<0.5
<0.6
<0.4
<0.54
<0.5
<0.5
3A
60
213
211
3B-D1
3B-T2
30
308
93
90
145
303
8.0
<0.2
0.8
<0.3
<0.4
<0.5
<0.5
<0.3
0.8
<0.4
NA
NA
NA
NA
C
<0.4
<0.5"
<0.5
<0.54
<0.5
<0.5
Ln
C = Continuation of two-pass run
NA = Not Analyzed
1 D = Drying portion of a two pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
4 Averages of 3 - 5 measurements
-------
Table 22
Distribution of Trichloroethene in Process Streams
Dry Weight Basis
RUN
IB
1-CD1
1C-T2
2A
2B
2C-D1
2C-T*
3A
3B-D1 | 3B-T2
PROCESSING CONDITIONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp. (°C)
90
196
179
30
349
59
90
135
262
60
263
267
90
184
244
30
263
82
90
116
332
60
213
211
30
308
93
90
145
303
SAMPLE POINTS
After Dredging (IS)3 ug/kg
Before Processing (3S)3 ug/kg
After Thermal Processing (4S)3 ug/kg
Solids from 1st Cyclone (5S)3 ug/kg
Solids from 2nd Cyclone (6S)3 ug/kg
Condenser 1 (7L)3 ug/L
Condenser 2 (8L)3 ug/L
<0.3
<0.3
<0.5
6.4
<0.44
<0.5
<0.5
<0.3
<0.3
<0.4
NA
NA
NA
NA
C
<0.44
<0.4
<0.4
<0.5
<0.5
1.8
1.7
<0.3
<0.5
NA
3.0
<0.5
2.1
<0.3
<0.3
<0.5
<0.5
<0.5
<0.5
1.54
<0.3
<0.2
<0.5
NA
NA
NA
NA
C
<0.5
<0.5
<0.9
<0.54
<0.5
<0.5
12.0
<0.2
<0.5
<0.3
1.9
<0.5
2.4
<0.3
<0.2
<0.4
NA
NA
NA
NA
C
<0.4
<0.54
<0.4
<0.54
<0.5
<0.5
t_n
Ui
C = Continuation of two-pass run
NA = Not Analyzed
1 D = drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
4 Averages of 3 - 5 measurements
-------
Table 23
Distribution of 1,1,2 - Trichloroethane in Process Streams
Dry Weight Basis
RUN
IB
1C-D1
1C-T2
2A
2B
2C-D1
2C-T2
3A
PROCESSING CONDITIONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp. (°C)
90
196
179
30
349
59
90
135
262
60
263
267
90
184
244
30
263
82
90
116
332
60
213
211
3B-D1
3B-T2
30
308
93
90
145
303
SAMPLE POINTS
After Dredging (IS)3 ug/kg
Before Processing (3S)3 ug/kg
After Thermal Processing (4S)3 ug/kg
Solids from 1st Cyclone (5S)3 ug/kg
Solids from 2nd Cyclone (6S)3 ug/kg
Condenser 1 (7L)3 ug/L
Condenser 2 (8L)3 ug/L
<0.3
<0.3
<0.5
<0.2
<0.4"
<0.5
<0.5
<0.3
<0.3
<0.4
NA
NA
NA
NA
C
<0.44
<0.4
<0.4
<0.5
<0.5
<0.5
<0.3
<0.3
<0.54
NA
<0.3
<0.5
<0.5
<0.3
<0.3
<0.5
<0.4
<0.5
<0.5
<0.54
<0.3
<0.2
<0.5
NA
NA
NA
NA
C
<0.5
<0.5
<0.4
<0.54
<0.5
<0.5
<0.3
<0.2
<0.5
<0.3
<0.4
<0.5
<0.5
<0.3
<0.2
<0.4
NA
NA
NA
NA
C
<0.4
<0.54
<0.4
<0.54
<0.5
<0.5
C Continuation of two-pass run
NA = Not analyzed
1 D = Drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
4 Averages of 3 - 5 measurements
-------
Table 24
Distribution of Tetrachloroethene in Process Streams
Dry Weight Basis
RUN
IB
1C-D1
1C-T*
2A
2B
2C-D1
2C-T2
3A
3B-D1
3B-T1
PROCESSING CONDITIONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp. (°C)
90
196
179
30
349
59
90
135
262
60
263
267
90
184
244
30
263
82
90
116
332
SAMPLE POINTS
After Dredging (IS)3 ug/kg
Before Processing (3S)3 ug/kg
After Thermal Processing (4S)3 ug/kg
Solids from 1st Cyclone (5S)3 ug/kg
Solids from 2nd Cyclone (6S)3 ug/kg
Condenser 1 (7L)3 ug/L
Condenser 2 (8L)3 ug/L
<0.3
<0.3
<0.5
11.0
<0.34
<0.5
<0.5
1.1
<0.3
<0.4
NA
NA
NA
NA
C
<0.44
<0.4
0.8
<0.5
<0.5
<0.5
2.1
<0.3
<0.54
NA
1300
<0.5
<0.5
<0.3
<0.3
<0.5
2.7
<0.5
<0.5
<0.54
<0.3
<0.2
<0.5
NA
NA
NA
NA
C
<0.5
<0.5
2.4
<0.54
<0.5
<0.5
60
213
211
30
308
93
90
145
303
23.0
<0.2
<0.5
<0.3
<0.4
<0.5
<0.5
<0.3
<0.2
<0.4
NA
NA
NA
NA
C
<0.4
<0.54
<0.4
<0.54
<0.5
<0.5
Ln
C = Continuation of two-pass run
NA = Not analyzed
1 D = Drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
4 Averages of 3 - 5 measurements
-------
Table 25
Distribution of 1,1,2,2, - Tetrachloroethane in Process Streams
Dry Weight Basis
RUN
IB
1C-D1
1C-T2
2A
2B
2C-D1
2C-T*
3A
3B-D1
3B-T*
PROCESSING CONDITIONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp. (°C)
90
196
179
30
349
59
90
135
262
60
263
267
90
184
244
30
263
82
90
116
332
60
213
211
SAMPLE POINTS
After Dredging (IS)3 ug/kg
Before Processing (3S)3 ug/kg
After Thermal Processing (4S)3 ug/kg
Solids from 1st Cyclone (5S)3 ug/kg
Solids from 2nd Cyclone (6S)3 ug/kg
Condenser 1 (7L)3 ug/L
Condenser 2 (8L)3 ug/L
<0.3
<0.3
<0.5
<0.2
<0.34
<0.5
<0.5
<0.3
<0.3
<0.4
NA
NA
NA
NA
C
<0.44
<0.4
<0.4
<0.5
<0.5
<0.5
<0.3
<0.3
<0.5
NA
<0.3
<0.5
<0.54
<0.3
<0.3
<0.5
<0.4
<0.5
>0.5
>0.5
<0.3
<0.2
<0.5
NA
NA
NA
NA
C
<0.5
<0.5
<0.4
<0.54
<0.5
<0.5
47.0
<0.2
<0.5
<0.3
<0.4
<0.5
<0.5
30
308
93
90
145
303
<0.3
<0.2
<0.4
NA
NA
NA
NA
C
<0.4
<0.54
<0.4
<0.54
<0.5
<0.5
00
C = Continuation of two-pass run
NA = Not analyzed
1 D = Drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
' Averages of 3 - 5 measurements
-------
Table 26
Distribution of Chlorobenzene in Process Streams
Dry Weight Basis
RUN
IB
1C-D1
1C-T2
2A
2B
2C-D1
2C-T2
3A
3B-D1
3B-T2
PROCESSING CONDITIONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp. (°C)
90
196
179
30
349
59
90
135
262
60
263
267
90
184
244
30
263
82
90
116
332
60
213
211
30
308
93
90
145
303
SAMPLE POINTS
After Dredging (IS)3 ug/kg
Before Processing (3S)3 ug/kg
After Thermal Processing (4S)3 ug/kg
Solids from 1st Cyclone (5S)3 ug/kg
Solids from 2nd Cyclone (6S)3 ug/kg
Condenser 1 (7L)3 ug/L
Condenser 2 (8L)3 ug/L
15.0
23.0
<0.5
77.0
4. 14
<0.5
37.0
14.0
9.1
0.6
NA
NA
NA
NA
C
0.6
<0.4
12.0
<0.5
<0.5
7.5"
84.0
11.0
<0.54
NA
133.0
<0.5
24.0
39.0
200.0
<0.5
6.2
6.0
<0.5
15.0
11.0
10.0
1.5
NA
NA
NA
NA
C
1.5
<0.5
23.0
1.94
<0.5
44.0
1200
180.0
<0.5
5.7
90.0
<0.5
58.0
20.0
37.0
2.4
NA
NA
NA
NA
C
2.4
l.l4
17.0
3.54
<0.5
30.0
Ln
C = Continuation of two-pass run
NA = Not Analyzed
1 D = drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
4 Averages of 3 - 5 measurements
-------
Table 27
Distribution of 1,2 - Dichlorobenzene in Process Streams
Dry Weight Basis
RUN
IB
1C-D'
1C-T2
2A
2B
2C-D1
2C-T2
3A
3B-D1
3B-T2
PROCESSING CONDITIONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp. (Oc)
90
196
179
30
349
59
90
135
262
60
263
267
90
184
244
SAMPLE POINTS
After Dredging (IS)3 ug/kg
Before Processing (3S)3 ug/kg
After Thermal Processing (4S)3 ug/kg
Solids from 1st Cyclone (5S)3 ug/kg
Solids from 2nd Cyclone (6S)3 ug/kg
Condenser 1 (7L)3 ug/L
Condenser 2 (8L)3 ug/L
1.2
2.1
<0.5
15.0
1.34
<0.5
1.1
1.6
1.5
<0.4
NA
NA
NA
NA
C
<0.4
<0.4
<0.2
<0.4
<0.5
<0.54
6.9
1.6
<0.54
NA
<0.3
<0.5
2.9
<0.3
<0.3
<0.5
<0.4
<0.5
<0.5
1.0
30
263
82
90
116
332
60
213
211
30
308
93
90
145
303
1.5
<0.2
0.8
NA
NA
NA
NA
C
0.8
<0.5
9.2
25.04
<0.5
<0.5
23.0
23.0
<0.5
4.5
25.0
<0.5
6.1
1.7
3.0
1.1
NA
NA
NA
NA
C
1.1
<0.54
4.9
2.24
<0.5
3.0
C = Continuation of two-pass run
NA = Not analyzed
1 D = Drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
4 Averages of 3 - 5 measurements
-------
Table 28
Distribution of Hexachloroethane in Process Streams
Dry Weight Basis
RUN
IB
1C-D*
1C-T*
2A
2B
2C-D1
2C-T*
PROCESSING CONDITIONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp. fC)
SAMPLE POINTS
After Dredging (IS)3 mg/kg
Before Processing (3S)3 mg/kg
After Thermal Processing (4S)3 mg/kg
Solids from 1st Cyclone (5S)3 mg/kg
Solids from 2nd Cyclone (6Sf mg/kg
Condenser 1 (7L)3 mg/L
Condenser 2 (8L)3 mg/L
90
196
179
<0.122
<0.196
<0.128
<0.181
<0.121
< 0.542
< 0.0002
30
349
59
90
135
262
60
263
267
<0.138
<0.154
<0.114
NA
NA
NA
NA
C
<0.114
<0.155
<0.123
<0.122
< 4.370
< 0.0020
< 0.105
<0.1374
-------
Table 29
Distribution of Hexachlorobutadiene in Process Streams
Dry Weight Basis
RUN
IB
1C-D*
PROCESSING CONDmONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp. (°C)
90
196
179
30
349
59
1C-TZ
90
135
262
2A
2B
60
263
267
90
184
244
2C-D1
30
263
82
2C-T* j 3A
90
116
332
60
213
211
3B-D<
3B-T*
30
308
93
SAMPLE POINTS
After Dredging (IS)3 mg/kg
Before Processing (3S)3 mg/kg
After Thermal Processing (4S)3 mg/kg
Solids from 1st Cyclone (5Sf mg/kg
Solids from 2nd Cyclone (6S)3 mg/kg
Condenser 1 (7L)3 mg/L
Condenser 2 (8L)3 mg/L
0.082
< 0.086
< 0.056
<0.114
<0.077
<0.238
< 0.0003
< 0.066
< 0.097
< 0.083
NA
NA
NA
NA
C
<0.083
< 0.072
< 0.078
< 0.054
< 1.920
<0.0020
0.101
0.091 4
<0.0674
<0.109
<0.104
<0.0006
< 0.0027
0.125
0.091
< 0.059
< 0.094
< 0.092
< 0.0007
<0.00164
0.1864
0.3094
<0.079
NA
NA
NA
NA
C
< 0.079
<0.053
<0.100
< 0.075*
<0.0010
<0.00364
0.154
0.153
<0.056
< 0.072
0.091
<0.0010
< 0.0036
0.074
0.086
< 0.059
NA
NA
NA
NA
90
145
303
C
<0.059
< 0.066
< 0.074
<0.063
<0.00944
< 0.0042
K5
C = Continuation of two-pass run
NA - Not Analyzed
1 D = Drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
4 Averages of 3 - 5 measurements
-------
Table 30
Distribution of Hexachlorobenzene in Process Streams
Dry Weight Basis
RUN
IB
1C-D1
1C-T*
2A
2B
2C-D1
2C-T*
3A
3B-D1
3B-T*
PROCESSING CONDITIONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp. (°C)
90
196
179
30
349
59
90
135
262
60
263
267
90
184
244
30
263
82
90
116
332
60
213
211
30
308
93
90
145
303
SAMPLE POINTS
After Dredging (IS)3 mg/kg
Before Processing (3S)3 mg/kg
After Thermal Processing (4S)3 mg/kg
Solids from 1st Cyclone (5Sf mg/kg
Solids from 2nd Cyclone (6Sf mg/kg
Condenser 1 (7L)3 mg/L
Condenser 2 (8L)3 mg/L
0.409
0.507
0.029
0.486
0.047
4.110
0.029
0.306
0.160
0.194
NA
NA
NA
NA
C
0.194
< 0.026
< 0.027
0.087
2.250
0.033
0.365
0.2014
<0.0244
0.171
0.161
0.0041
0.0208
0.384
0.244
< 0.022
0.177
0.096
0.0049
0.11614
0.5494
3.288*
0.701
NA
NA
NA
NA
C
0.701
<0.019
0.951
0.2184
0.0016
0.03674
2.610
1.440
< 0.020
0.359
1.030
0.0228
0.0552
0.209
0.235
0.159
NA
NA
NA
NA
C
0.159
< 0.022
0.081
0.046
0.00774
0.0597
00
C = Continuation of two-pass run
NA = Not analyzed
1 D = Drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
4 Averages of 3 - 5 measurements
-------
Table 31
Distribution of Benzo(a)Pyrene in Process Streams
Dry Weight Basis
RUN
PROCESSING CONDITIONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp (°C)
IB
90
196
179
1C-D1
1C-T2
30
349
59
90
135
262
2A
60
263
267
2B
90
184
244
2C-D1 j 2C~TZ
30
263
82
SAMPLE POINTS
After Dredging (IS)3 mg/kg
Before Processing (3S)3 mg/kg
After Thermal Proc (4S)3 mg/kg
Solids From 1st Cyclone (5S)3 mg/kg
Solids from 2nd Cyclone (6S)3 mg/kg
Condenser 1 (7L)3 mg/L
Condenser 2 (8L)3 mg/L
0.730
0.491
0.122
1.870
0.688
6.530
0.0030
0.744
0.448
0.610
NA
NA
NA
NA
C
0.610
0.014
0.314
0.950
5.760
0.0037
0.531
0.3594
0.0154
1.310
1.450
0.0046
0.0026
0.529
0.365
0.016
0.718
0.357
0.0060
0.0070 4
0.5404
0.4604
0.302
NA
NA
NA
NA
90
116
332
C
0.302
< 0.008
0.930
0.1774
0.0014
0.0034
3A
60
213
211
0.521
0.527
0.019
0.680
1.780
0.0068
0.0008
3B-D*
30
308
93
0.718
0.503
0.614
NA
NA
NA
NA
3B-T*
90
145
303
C
0.614
0.013
0.387
0.312
0.0272
0.0013
C = Continuation of a Two-Pass Run
NA = Not Analyzed
1 D = drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
4 Averages of 3 - 5 measurements
-------
Table 32
Distribution of Total PCBs in Process Streams
Dry Weight Basis
RUN
IB
1C-D1
ic-f*
2A
2B
2C-D>
2C-T*
3A
3B-D1
3B-T2
PROCESSING CONDITIONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp (°C)
90
196
179
30
349
59
90
135
262
60
263
267
90
184
244
30
263
82
90
116
332
60
213
211
30
308
93
90
145
303
SAMPLE POINTS
After Dredging (IS)3 mg/kg
Before Processing (3S)3 mg/kg
After Thermal Processing (4S)3 mg/kg
Solids from 1st Cyclone (5S)3 mg/kg
Solids from 2nd Cyclone (6S)3 mg/kg
Condenser 1 (7L)3 mg/L
Condenser 2 (8L)3 mg/L
3.770
2.5S64
0.4204
6.980
1.310
1.450
0.019
2.560
1.9134
1.500
NA
NA
NA
NA
C
1.500
<0.800
0.298
1.590
11.300
0.030
5.950
5.93S4
<0.8004
6.530
4.880
0.025
0.032
8.800
4.845"
<0.8004
4.1434
1.630
0.038
0.189
6.0134
11.6004
6.620
NA
NA
NA
NA
C
6.620
<0.8004
14.300
2.4704
0.021
0.176
10.100
11.7674
< 0.800
8.770
18.000
< 0.00004
0.348
3.040
3.4144
2.220
NA
NA
NA
NA
C
2.220
<0.8004
1.990
1.540
0.039
0.065*
Ui
C = Continuation of two-pass run
NA = Not analyzed
1 D = drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
4 Averages of 3 - 5 measurements
-------
Table 33
Distribution of Solvent Extractable Residues in Process Streams
RUN
IB
I-CD1
IC-T5
2A
2B
2C-D1
2C-T* j 3 A
SB-D1
3B-T*
PROCESSING CONDITIONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp (°C)
90
196
179
30
349
59
90
135
262
60
263
267
90
184
244
30
263
82
90
116
332
60
213
211
30
308
93
90
145
303
SAMPLE POINTS \ \
After Dredging (IS)3 mg/kg
Before Processing (3S)3 mg/kg
After Thermal Proc (4S)3 mg/kg
Solids From 1st Cyclone (5Sf mg/kg
Solids from 2nd Cyclone (6Sf mg/kg
Condenser 1 (7L)3 mg/L
Condenser 2 (8L)3 mg/L
NA
2080 4
768 4
5320
1920
0.843
0.146
1140
17304
1780*
NA
NA
NA
NA
C
17804
<4624
458
3030
0.441
0.147
1930
2320 4
<4624
3430
4250
0.313
0.294
1810
18684
<4624
22484
855
0.221
0.314
1540
18904
21904
NA
NA
NA
NA
C
21904
<4624
4010
<4624
0.214
0.191
1820
1639 4
<4624
1840
2470
0.095
0.042
1710
18804
18304
NA
NA
NA
NA
C
18304
<4624
1150
805
0.250
0.0444
C = Continuation of a Two-Pass Run
NA = Not Analyzed
1 D = drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
4 Averages of 3 - 5 measurements
-------
Table 34
Distribution of TOC in Process Streams
(%TOC, Dry Weight)
RUN
IB
1C-D1
1C-T2
2A
2B
2C-D1
2C-T2
3A
3B-D1
3B-T2
PROCESSING CONDITIONS
Nominal Residence Time (min)
Feed Rate (kg/hr)
Max. Sediment Temp (°C)
90
196
179
30
349
59
90
135
162
60
263
267
90
184
244
30
>63
82
90
116
332
60
213
211
30
308
93
90
145
303
SAMPLE POINTS
After Dredging (IS)3
Before Processing (3S)3
After Thermal Processing (4S)3
Solids from 1st Cyclone (5S)3
Solids from 2nd Cyclone (6S)3
Condenser 1 (7L)3
Condenser 2 (8L)3
3.15
2.014
1.564
1.81
1.91
0.13
0.03
2.85
1.764
1.974
NA
NA
NA
NA
C
1.974
1.534
1.53
2.664
0.074
NA
3.73
2.224
1.674
2.39
3.74
0.08
0.07
2.72
1.964
1.754
1.874
1.73
0.074
0.06"
2.94
2.604
2.234
NA
NA
NA
NA
C
2.23"
2.34"
3.08
2. 19"
0.11
0.17"
3.46
2.44"
2. 13"
2.72
3.404
0.09
0.09
2.54"
2.274
1.46
NA
NA
NA
NA
C
1.46
1.614
1.66
1.66"
0.26
0.18
CTl
C = Continuation of a Two-Pass Run
NA = Not Analyzed
1 D = drying portion of a two-pass run
2 T = treatment portion of a two-pass run
3 Process stream identification number per Figure 6
4 Averages of 3 - 5 measurements
-------
Table 35. Results of TCLP for Metals
(ug/L)
Sample
1C
1C Feed Sediment
1C
1C
1C Treated
Sediment
1C
2B Feed Sediment
2B Treated
Sediment
3A Feed Sediment
3A
3A Treated
Sediment
3A
Regulatory Level Per
40 CFR Part 26 1.24
Arsenic
5.95
5.96
5.79
7.67
6.74
7.59
6.45
6.59
7.00
18.7
16.4
10.9
5,000
Cadmium
12.0
11.1
11.2
12.1
7.0
9.8
50.4
18.3
31.7
57.7
57.5
57.7
1,000
Chromium
<1.39
<1.39
<1.39
1.59
0.45
2.80
28.3
<1.39
9.74
<1.39
<1.39
<1.39
5,000
Mercury
<0.00017
<0.00017
<0.00017
<0.00011
<0.00011
<0.00011
0.00079
0.00086
<0.00014
<0.00017
<0.00017
<0.00017
200
Lead
9.18
9.07
8.59
4.70
<1.70
2.80
6.60
4.43
0.40
0.31
0.07
0.11
5,000
Zinc
738
749
749
1430
423
806
956
990
2180
2590
2850
2930
Not Regulated
00
-------
Table 36. Air Emissions of Total Dioxins in Nanograms Per Dry Standard Cubic Meter
Run
IB
1C
2A
2B
2C
3A
3B
Blank1
ng/minute
0.02206
0.00950
0.01270
0.04891
0.05340
0.01978
0.01857
< 0.00778
ng/BSCM
0.0133
0.0071
0.0093
0.0318
0.0308
0.0120
0.0825
< 0.0053
Table 37: Air Emissions of Total Furans in Nanograms Per Dry Standard Cubic Meter
Run
IB
1C
2A
2B
2C
3A
3B
Blank1
ng/minute
0.02387
0.00597
0.00400
0.05756
0.08021
0.03170
0.35128
< 0.00346
ng/DSCM
0.0144
0.0044
0.0029
0.0374
0.0462
0.0192
0.2669
< 0.0024
1 Blank was taken under conditions of no flow. The ng/DSCM for the blank was determined by dividing the nanograms of
dioxin captured per minute by the average flow rate for the project (1.47 DSCM/min).
-------
Table 38: Air Emissions of Mercury in Micrograms Per Dry Standard Cubic Meter
Ron
IB
1C
2A
2B
2C
3A
3B
Blank1
ug/minute
Not Analyzed
0.0010
0.0025
0.0094
Not Analyzed
0.0021
0.0012
< 0.0005
ug/DSCM
Not Analyzed
0.0009
0.0022
0.0065
Not Analyzed
0.0012
0.0008
<0.0004
Table 39: Air Emissions of PCBs in Nanograms Per Dry Standard Cubic Meter
Run
IB
1C
2A
2B
2C
3A
3B
Blank1
ng/minute
0.3298
< 0.2933
< 0.2933
1.4517
1.9400
< 0.2933
< 0.2933
< 0.2933
ng/DSCM
0.1996
< 0.1995
< 0.1995
0.9423
1.1175
< 0.1995
< 0.1995
< 0.1995
1 Blank was taken under conditions of no flow. The ng/DSCM for the blank was determined by dividing the nanograms of
dioxin captured per minute by the average rate for the project (1.47 DSCM/min).
-------
TABLE 40: Solids/Liquid Mass Balance
Run
No,
1A
IB
1C
2A
2B
2C
3A
3B
3C
Feed
Material
(kg)
722.8
833.1
698.7
700.5
892.1
790.0
957.5
776.3
925.3
Treated
Material
(kg)
456.3
356.4
270.1
284.2
467.6
233.8
345.0
340.5
291.9
Cyclone No. 1
(kg)
8.85
10.22
15.44
9.08
18.61
19.98
14.53
8.17
22.25
Cyclone No. 2
(kg)
4.77
16.57
39.04
19.98
26.33
44.04
30.42
12.26
20.43
Aqueous
Condensate (kg)
374.1
317.3
163.9
274.7
317.8
309.6
519.8
329.2
421.3
Organic Condensate
(kg) : .
5.2
121.9
122.1
54.5
53.1
110.3
35.9
85.4
18.6
Total
Output
(kg)
849.2
822.4
610.6
642.5
883.4
717.7
945.7
775.5
774.5
Closure
(*)
117.5
98.7
87.4
91.7
99.0
90.9
98.8
99.9
83.7
-------
3.1.3.1 Solids Content--
From data given in Table 13, it is demonstrated that feed material containing 42 to 53
percent solids was successfully pumped and dried to a solids content equal to or greater than
95 percent. Maximum sediment temperatures to obtain these results varied from 180 to 332
degrees C and nominal residence times varied from 60 to 120 minutes.
Because one project goal was to obtain information for design and operation of a full-scale
process, it was desirable to determine the relationship between principal process parameters
and extent of contaminant removal. (The correlation coefficient is mathematically defined in
Appendix C). A correlation coefficient (r) of plus or minus 1.0 means that process
performance can be perfectly predicted if the value of the process variable is known. An r
value of zero means that performance and the process variable are completely unrelated.
(Correlation coefficients ranging from 0 to plus 1.0 apply to variables related by a straight
line with a positive slope and correlation coefficients from 0 to -1.0 apply to variables that
are related by a straight line with a negative slope). Correlation coefficients with an absolute
value of 0.9 are usually considered acceptable for predicting process performance.
Correlation coefficients relating removal of volatile material to process parameter values
were: 0.54 for process temperature, 0.16 for residence time and -0.22 for initial solids
content. Based upon these values, removal of volatile material does not correlate well with
values of principal process parameters. Volatile material was removed to less than detectable
concentrations for three out of seven process runs, but these removals were not
mathematically predictable from the measured process parameter values. Conditions other
than residence time, temperature, and initial solids content must be influencing extent of
volatiles removal.
3.1.3.2 Metals--
Analytical results for metals appeared to be somewhat metal specific. In the following
discussion, metals which appear to behave similarly are discussed together.
Analytical results for arsenic, chromium, lead and zinc appear in Tables 14 to 17.
Summaries of mass balances for these metals are given in Tables 41 to 44 and removal
percentages are calculated for each constituent of concern. Typically, less than 10 percent of
these metals were removed by the treatment process (Shown in Figure 21). It is therefore
concluded that these metals tend to remain with the sediment during thermal desorption.
Removal levels were approximately the same for surficial sediments and sediments taken
from the 61 to 122 centimeter depth. These removals were not a function of residence time
(r = 0.0 to 0.24) or maximum sediment temperatures (r = 0.55 to 0.81), and the predrying
technique employed for Runs 1C, 2C and 3B did not significantly impact extent of removal.
Arsenic, chromium, lead and zinc tended to distribute between the treated material and the
cyclone fines. The fact that the concentration of these metals was significant in the cyclone
fines suggests that they either tend to be associated with sediment particles 0.5 to 30 urn in
size (Figure 22 and 23), or that the metal particles themselves are 0.5 to 30 um.
For all four metals, concentrations change significantly from dredging to time of feed. These
changes appear to be random, with significant numbers of both increases and decreases.
Although not determined experimentally, it is postulated that this phenomenon is due to
heterogeneity of the sediment samples, and likely represents no real concentration change.
72
-------
For these metals results, and for other results throughout the study, mass balance closures
are variable. Sometimes, not all material is accounted for while at other times the output of
key constituents of concern appears to exceed the input. This is primarily because of the
heterogeneous nature of dredged sediment. For example, cadmium composition of the feed
averaged 3.08 mg/kg and ranged from 1.19 to 5.12 mg/kg. If a typical post-treatment
cadmium concentration (e.g. 2.65 mg/kg) is compared to the range of input concentrations,
change in sediment concentration could be calculated at anywhere from -48 percent to +223
percent.
Cadmium
Analytical results for cadmium are given in Table 18 and a summary of the cadmium mass
balance is given in Table 45. Based on these results, removal of cadmium (Figure 24) was
calculated to be 2 to 9 times greater than for the other metals. Given the available data, it is
not possible to determine whether these increased removals are apparent or actual.
Heterogeneous feed, variable mass balance closures and analytical variability all introduce
uncertainty relative to this conclusion. Levels of removal were not related to residence times
or to maximum temperatures reached by the sediment. The pre-drying protocol employed
for Runs 1C, 2C and 3B did not consistently influence removal levels.
Cadmium tended to appear in solids captured by the cyclones, where particle sizes of 0.5 to
30 um predominated (Figures 22 and 23). No cadmium was found in the carbon adsorber.
The concentration of cadmium in the feed varied significantly from that of the dredged
material. This change is likely due to the heterogeneity of the material rather than an actual
concentration range.
Mercury
Analytical results for mercury are summarized in Table 19. A summary of the mass
balance data for mercury is given in Table 46 and percent removals for each run are shown
graphically in Figure 24. Based on these data, an average of 85 percent of the mercury in
the feed was removed from the processed sediment. From these same data, the primary sink
for mercury is the carbon adsorber. It is possible that entrained droplets and/or fine
particulates are physically trapped by the carbon beds. There may also be some tendency for
carbon to have a chemical affinity for mercury. Mechanisms of capture were not explored
for this study.
From the material balance, mercury output appears to exceed mercury input. This is because
(a) there are inaccuracies inherent in tracking this small amount of mercury (< 3 grams/run)
through the process and (b) quantification of mercury in the carbon bed was based on 3
single measurements in the bed (top, middle, and bottom). The concentration was considered
constant across the bed diameter and linearly variable, from top to bottom, between
measurements. These assumptions were used to calculate a mercury distribution over the
entire bed (per Section 3.2.2, Carbon Adsorber). Had the distribution been determined
based on more extensive sampling, material balance closure may have been more complete.
73
-------
Table 41
Mass Balance for Arsenic
-GRAMS OUT-
RUN
IB
1C
2A
2B
2C
3A
3B
GRAMS IN
6.0
5.8
6.2
9.5
7.2
9.5
6.7
RESIDUE
5.9
4.1
5.1
8.4
5.3
8.1
6.1
CYCLONES
0.4
1.2
0.7
0.8
1.5
1.9
0.4
CONDENSATE
0.0044
0.0192
< 0.0027
0.0259
0.0271
0.0478
0.0504
CARBON
0.07
0.09
0.50
0.80
0.11
0.08
0.06
RESIDUE PLUS
CYCLONES
6.3
5.3
5.8
9.2
6.8
10.0
6.5
% REMOVED1
-5.0
8.6
6.5
3.2
5.6
-5.3
3.0
REMOVED = ((Grams In - (Grams Out With Residue + Cyclones))/Grams In) x 100
AVG=2.4%
Table 42
Mass Balance for Chromium
-GRAMS OUT-
RUN
IB
1C
2A
26
2C
3A
3B
GRAMS IN
47.4
37.0
58.2
101.6
123.2
104.6
52.4
RESIDUE
44.1
36.5
38.1
83.8
75.8
131.4
51.2
CYCLONES
5.6
9.5
8.4
9.0
24.9
34.7
4.7
CONDENSATE
0.0417
0.1587
< 0.0059
0.0921
0.2440
0.5371
0.3004
CARBON
0.26
0.32
0.17
0.28
0.41
0.027
0.27
RESIDUE PLUS
CYCLONES
49.7
46.0
46.5
92.8
100.7
166.1
55.9
% REMOVED1
-4.8
-24.3
20.1
8.7
18.3
-58.8
-6.7
% REMOVED = ((Grams In - (Grams Out With Residue -I- Cyclones))/Grams In) x 100
AVG =- 6.8%
-------
Table 43
Mass Balance for Lead
-GRAMS OUT-
RUN
IB
1C
2A
2B
2C
3A
3B
GRAMS IN
19.5
16.2
19.4
25.1
20.6
22.6
17.2
RESIDUE
16.1
17.6
14.1
27.9
13.9
20.1
17.0
CYCLONES
1.2
3.5
2.5
2.2
4.1
5.2
1.2
CONDENSATE
0.0619
0.3308
< 0.0033
0.0373
0.0970
0.0975
0.0743
CARBON
0.29
0.19
0.19
0.33
0.47
0.31
0.31
RESIDUE PLUS
CYCLONES
17.3
21.1
16.6
30.1
18.0
25.3
18.2
% REMOVED1
11.3
-30.2
14.4
-19.9
12.6
-11.9
-5.8
Ul
% REMOVED = ((Grams In - (Grams Out With Residue + Cyclones))/Grams In) x 100
AVG = -4.2%
Table 44
Mass Balance for Zinc
GRAMS OUT-
RUN
IB
1C
2A
2B
2C
3A
3B
GRAMS IN
69.2
57.7
59.7
88.1
80.6
104.2
62.6
RESIDUE
58.6
41.2
45.4
86.6
54.8
86.1
57.0
CYCLONES
2.1
12.1
6.7
7.6
16.4
20.8
4.6
CONDENSATE
0.1485
1.5775
<0.0117
0.3068
0.4928
0.8962
0.6664
CARBON
0.43
0.54
0.28
0.50
0.71
0.47
0.47
RESIDUE PLUS
CYCLONES
60.7
53.3
52.1
94.2
71.2
106.9
61.6
% REMOVED1
12.3
7.6
12.7
-6.9
11.7
-2.6
1.6
1 % REMOVED = ((Grams In - (Grams Out With Residue + Cyclones))/Grams In) x 100
AVG = 5.2%
-------
20 -
10-
0
$ -10-
O
gj -20-I
DC
JR -30-I
-40-
-50-
N
20-
10-
0
-10-
20-
-30-
-40-
-50-
60
RUN 1B 1C 2A 2B 2C 3A 3B
ARSENIC
\
-60 -
RUN 1B 1C 2A 2B 2C 3A 3B
CHROMIUM
O
S
OC
20-
10-
0
10-
-30-
-40-
-50 -
-60-
RUN IB
20-
10-
O
a:
1C 2A 2B 2C 3A 3B
LEAD
30-
-40-
-50-
-60-
RUN 1B 1C 2A 2B 2C 3A 3B
ZINC
Figure 21. Removal of Arsenic, Chromium, Lead and Zinc
76
-------
Figure 22. Particle Size Distribution For Material in First Cyclone, Run 2C
-------
00
V
to
PARTICLE SIZE
8 §
§
ro
ui
^
ro
o
(mm)
ro
tn
ro
tn
o
s
U1
ro
01
CO
ro
o>
ro
ro
CO
(O
ro
en
b>
ro
CO
o
en
b>
CO
to
(O
CO
«o
jo
(O
00
oo
o>
Figure 23. Particle Size Distribution For Material in Second Cyclone, Run 2C
-------
Table 45
Mass Balance for Cadmium
-GRAMS OUT-
RUN
IB
1C
2A
2B
2C
3A
3B
GRAMS IN
1.29
0.46
1.11
1.90
1.71
1.63
0.99
RESIDUE
0.51
0.27
0.70
1.68
1.02
1.44
0.90
CYCLONES
0.06
0.09
0.13
0.14
0.33
0.45
0.07
CONDENSATE
0.0042
0.0083
< 0.0002
0.0073
0.0073
0.0214
0.0123
CARBON
0.01
0.02
0.01
0.01
0.02
0.01
0.01
RESIDUE PLUS
CYCLONES
0.57
0.36
0.83
1.82
1.35
1.89
0.97
* REMOVED1
55.8
21.7
25.2
4.2
21.1
-16.0
2.0
% REMOVED = ((Grams In - (Grams Out With Residue + Cyclones))/Grams In) x 100
AVG = 16.2%
Table 46
Mass Balance for Mercury
-GRAMS OUT-
RUN
IB
1C
2A
2B
2C
3A
3B
CRAMS IN
0.15
0.10
0.43
2.51
0.57
0.42
0.26
RESIDUE
0.023
0.004
0.014
0.049
0.018
0.023
0.013
CYCLONES
0.017
0.006
0.038
0.031
0.108
0.079
0.008
CONDENSATE
0.0362
0.0224
> 0.0033
0.0617
.0195
0.1155
0.0694
CARBON
0.14
0.18
0.09
0.16
0.23
0.15
0.15
RESIDUE PLUS
CYCLONES
0.040
0.010
0.052
0.080
0.126
0.102
0.021
% REMOVED *
73.3
90.0
87.9
96.8
77.9
75.7
91.9
1 % REMOVED = ((Grams In - (Grams Out With Residue + Cyclones))/Grams In) x 100
AVG = 84.8%
-------
60
50
40
30
20
UJ
-10
-20
RUN
1B 1C 2A 2B 2C 3A 3B
CADMIUM
100 |
90 -
80
70
-I 60
§ _
O 50
2
LU
DC 40
30
20
10
0
RUN
r\i
^
^
1B 1C 2A 2B 2C 3A 3B
MERCURY
Figure 24. Removal of Cadmium and Mercury
80
-------
As a check on system performance, process air emissions were monitored for mercury (per
Section 3.2.3, Air Emissions). The air sampling train captured mercury in two basic forms
(a) on a filter, associated with fine solid particulates and (b) in a series of impingers. Air
emissions of mercury were extremely small:
Total Hg emissions: < 0.0004 - 0.0065 ug/m3 (Average: 0.0020 ug/m3)
Hg captured on filter: < 0.0004-0.0065 ug/m3 (Average: 0.0016 ug/m3)
Hg from impingers: < 0.0004 - 0.0010 ug/m3 (Average: 0.0005 ug/m3)
Air emissions represent 0.001 percent of the mercury input. It is therefore concluded that
mercury was contained by the process system, and that essentially none escaped to the
atmosphere.
3.1.3.3 Volatile Organic Analytes (VOAs)-
Dredged sediment was analyzed before and after processing for the following volatile
organic compounds: vinyl chloride; chloroform; chlorobenzene; tetrachloroethene;
trichloroethene; 1,1,2 - trichloroethane; 1,1,2,2 - tetrachloroethane; and 1,2 -
dichlorobenzene. Analytical results for these compounds appear in Table 20 to Table 27.
Based on these data, not all of the targeted analytes were actually present in the untreated
sediments. 1,1,2 - trichloroethane and 1,1,2,2- tetrachloroethane were not found at
detectable levels in the feed material. Trace amounts of vinyl chloride appeared in the upper
sediment but not in the deeper sediment samples. And finally, chloroform, trichloroethene,
and tetrachloroethene appear in limited numbers of feed samples, but do not appear
consistently in the feed materials.
Prevalent contaminants for all untreated sediments were chlorobenzene (5-200 ug/kg dry
weight) and 1,2 - dichlorobenzene (1-23 ug/kg dry weight). Removals of VOAs range from
92 percent to >99.9%, with almost all of the results at the >99.9% level. Removals were
readily accomplished for all process conditions employed for this study. Essentially all of
the VOAs volatilized by the thermal desorption process and bypassing the condensers were
captured by the carbon in the adsorber (per Section 3.2.2, Carbon Adsorber). As the capture
of VOAs bypassing the condensers is the primary purpose of the carbon, the performance of
the adsorber is judged as highly effective.
3.1.3.4 Semi-Volatile Chlorinated Compounds--
Three chlorinated semi-volatile compounds were monitored for this project:
hexachloroethane, hexachlorobutadiene, and hexachlorobenzene. Summaries of analytical
results for these contaminants are given in Tables 28 to 30.
Based upon the developed data, there is no hexachloroethane at or above the limit of
detection in any of the sampled material.
Hexachlorobutadiene (HCBD) appears in most of the feed material at levels of 60-309 ug/kg
of solids, and is slightly more prevalent in the deeper sediments. Essentially all of the
81
-------
HCBD was removed from the processed sediments, and this removal was accomplished for
all of the various process conditions employed for the project. Removed HCBD tends to
concentrate in the second condenser and in the carbon adsorber.
Hexachlorobenzene (HCB) appears at levels of 0.16 to 3.29 ug/kg solids in all of the feed
material used for this project. These concentrations result in a total input range of 0.06 to
1.09 grams per run. Removals ranged from 82 to 99 percent, and were more readily
accomplished for deeper sediments. A summary of mass balance data is given in Table 47
and percent removals are shown in Figure 25.
Normally, 2-18% of the semi-volatiles in the feed could be accounted for in the mass
balance. These "closures" depart significantly from 100 percent due to heterogeneity of the
sediment and because of errors inherent in tracking extremely small analyte quantities
through a multi-step process.
3.1.3.5 Benzo(a)Pyrene
Benzo(a)pyrene (BaP) was measured both before and after processing, and an attempt was
made to assess both removal efficiency and fate of this material. A summary of the
associated analytical results is given in Table 31, and mass balance results are summarized in
Table 48. Percent removals for BaP are shown in Figure 25.
BaP was present in the feed material at 359 to 550 ug/kg solids, and the concentration of this
contaminant is similar in both surficial and deeper sediments. Removals ranged from 7 to 94
percent in treated material with an average removal of 71 percent. BAP removal improved
with increased residence time and final sediment temperature, and was more readily
accomplished for the deeper sediment. Best removals were achieved when the sediment solids
content was adjusted to forty percent and then subjected to the two step treatment process.
BaP appeared in both the cyclone solids and in the condensate, but was absent from the
carbon adsorber. Given the semi-volatile nature of BaP, the condensation of this material
prior to the carbon adsorber is expected. Indeed, the removal of BaP prior to the carbon
system verifies that the condensers help control environmental emissions.
Mass balance closures ranged from 3 percent to greater than 100 percent. These closures
depart significantly from 100 percent because of (a) errors inherent in tracking less than 0.3
grams of BAP per run through a multi-stream process and (b) large variations in BaP
concentrations due to the heterogeneity of the sediments.
3.1.3.6 Polychlorinated Biphenyls (PCBs)-
Based upon site history, polychlorinated biphenyls are a known contaminant for
Ashtabula River sediments. Given the environmental concern with PCBs and the expectation
of their presence, both total PCBs and individual congeners were tracked through the thermal
desorption process.
82
-------
Table 47
Mass Balance for Hexachlorobenzene
GRAMS OUT-
RUN
IB
1C
2A
2B
2C
3A
3B
GRAMS IN
0.2089
0.0581
0.0746
0.1137
1.0949
0.5861
0.0855
RESIDUE
0.0101
< 0.0069
0.0113
<0.0102
<0.0044
< 0.0065
< 0.0073
CYCLONES
0.0032
0.0033
0.0030
0.0051
0.0243
0.0304
0.0011
CONDENSATE
1.3079
0.3728
0.0022
0.0196
0.0075
0.0138
0.0142
CARBON
0.0063
0.0078
0.0041
0.0072
0.0102
0.0068
0.0068
RESIDUE PLUS
CYCLONES
0.0133
<0.0102
0.0143
<0.0153
< 0.0287
< 0.0369
<0.0153
% REMOVED '*
93.6
>82.4
80.8
>86.5
>97.4
>93.7
>82.1
00
CO
REMOVED = ((Grams In - (Grams Out With Residue + Cyclones))/Grams In) x 100
AVG = >88.1
Table 48
Mass Balance for Benzo(a)Pyrene
-GRAMS OUT
RUN
IB
1C
2A
2B
2C
3A
3B
GRAMS IN
0.2023
0.1626
0.1332
0.1701
0.1532
0.2145
0.1831
RESIDUE
0.0423
0.0037
0.0199
0.0075
<0.0019
0.0062
0.0044
CYCLONES
0.0193
0.0405
0.0255
0.0199
0.0223
0.0531
0.0062
CONDENSATE
2.0727
0.9444
0.0014
0.0022
0.0007
0.0035
0.0091
CARBON
< 0.0005
< 0.0007
<0.0004
<0.0006
<0.0009
<0.0006
<0.0006
RESIDUE PLUS
CYCLONES
0.0616
0.0442
0.0454
0.0274
< 0.0242
0.0593
0.0106
% REMOVED '
69.6
72.8
65.9
83.9
>84.2
72.4
94.2
% REMOVED = ((Grams In - (Grams Out With Residue + Cyclones))/Grams In) x 100
AVG = >77.6
-------
100-
80-
> 60
O
5
UJ
40-
20-
\\ \
100-
80-
> 60-
O
UJ
40-
20-
0-
RUN 1B 1C 2A 2B 2C 3A 3B
HEXACHLOROBENZENE
\\ \
0-
RUN 1B 1C 2A 2B 2C 3A 3B
BENZO(A)PYRENE
Figure 25. Removal of Semi-Volatile Organic Compounds
84
-------
Total PCBs
From Table 32, 2.6 to 10.1 mg/kg total PCBs were found in the prescreened sediment and
1.5 to 11.8 mg/kg total PCBs were found in the screened material. Concentrations of
untreated sediment vary between dredging and screening, but these differences appear to be
random in both magnitude and direction. Apparent differences are likely due to the
heterogeneous nature of the bulk material. PCB concentrations were an average of 2.6 times
higher in the deeper sediments than in the surficial sediments. Concentrations are postulated
to be lower in the upper sediments because of a combination of dissolution and
biodegradation of amenable PCB congeners, and because more recently deposited sediments
are less contaminated.
When processed by thermal desorption, PCBs were removed from the deeper sediments more
readily than for the surficial sediments. The primary reason for higher removals in the
deeper sediments is likely the higher initial PCB concentrations in these materials. Average
PCB pretreatment concentration of surficial sediments was 2.2 mg/kg and posttreatment
concentrations ranged from 0.4 to <0.8 mg/kg. Average pretreatment concentration of the
deeper sediments was 7.5 mg/kg and post-treatment concentrations were all <0.8 mg/kg.
Removed PCBs tended to congregate in the condensate, and negligible PCBs appeared in the
carbon adsorber (Table 49). Despite the aim of the RETEC process to concentrate water and
low boiling organic materials in the first condenser, the condensed PCBs tended to partition
between the two condensers. Since total quantities of condensed material are roughly half
the weight of the original feed, the intent of reducing the volume of contaminated material
has been met to some extent.
Table 49
Mass Balance for PCBs (as Aroclor 1248)
GRAMS OUT
RUN
IB
1C
2A
2B
2C
3A
36
GRAMS IN
1.0531
0.6944
2.2030
2.2578
3.8628
4.7904
1.2427
RESIDUE
0.1457
< 0.2088
0.0111
0.0482
0.0241
< 0.2608
< 0.2728
CYCLONES
0.0543
0.0649
0.0970
0.1042
0.3314
0.5541
0.0308
CONDENSATE
0.4625
0.1889
0.0085
0.0223
0.0259
0.0125
0.1323
CARBON
0.0539
0.0667
0.0346
0.0616
0.0872
0.0577
0.0577
RESIDUE
PLUS
CYCLONES
0.2000
< 0.2737
0.1081
0.1524
0.3555
<0.8149
< 0.3036
%
REMOVED'
81.0
>60.6
95.1
93.3
90.8
>83.0
>75.6
% REMOVED = ((Grams In - (Grams Out With Residue + Cyclones))/Grams In) x 100
AVG =82.8%
85
-------
PCS Congeners
Individual PCB congener concentrations were monitored both before and after thermal
desorption. By monitoring individual congeners, it was intended to determine (a) which
congeners are the prevalent contaminants and (b) whether any specific congeners are resistant
to thermal desorption. Not all of the possible 209 congeners were considered. Rather,
analysis was performed for those congeners normally present in Aroclors 1242, 1248, 1254,
and 1260, as listed in section 2.7.2. Removals for individual congeners are given in Tables
50-52. Identities of congeners by IUPAC numbers are given in Table 53. Percent removals
are shown in Figure 26.
Table 50
Congener Removal From Upper Sediments
Congener
IUPAC No.1
1 (chloro)
3 (chloro)
19 (trichloro)
26 (trichloro)
31 + 27
(trichloro)
40 (tetrachloro)
199 (octochloro)
Sample ID
1A
IB
1C
1A
IB
1C
1A
IB
1C
1A
IB
1C
1A
IB
1C
1A
IB
1C
1A
IB
1C
Average Input
Concentration
(mg/kg)
0.238
< 0.200
< 0.200
12.600
8.540
5.183
0.743
0.604
1.195
0.220
0.494
0.233
< 0.200
0.254
< 0.200
< 0.200
1.000
< 0.200
1.040
0.812
1.383
Average Output
Concentration
; Cmg/kg)
< 0.200
< 0.200
< 0.200
< 0.200
6.225
1.218
< 0.200
0.378
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
0.473
0.268
< 0.200
% Removed
>16.0
(A)
(A)
>98.5
27.1
76.5
>73.0
39.4
>83.3
>9.1
>59.5
>14.2
(A)
<21.3
(A)
(A)
>80.0
(A)
54.5
67.0
<85.5
1 Table 53 lists the structural configurations of all measured PCB congeners.
(A) Pre and post treatment values were below the detection limit, therefore a meaningful percent
removal could not be calculated.
86
-------
Table 51
Congener Removal From Lower Sediments
(Without Moisture Adjustment)
Congener IWAC
No. !
3 (chloro)
25 (trichloro)
26 (trichloro)
31+38 (trichloro)
52 (tetrachloro)
44 (tetrachloro)
64 + 41+71
(tetrachloro)
63 (tetrachloro)
70 + 76
(tetrachloro)
95 + 96
(pentachloro)
56 + 60
(tetrachloro)
199
(octachloro)
63
(tetrachloro)
Sample ID
2A
2B
2C
2A
2B
2C
2A
2B
2C
2A
2B
2C
2A
2B
2C
2A
2B
2C
2A
2B
2C
2A
2B
2C
2A
2B
2C
2A
2B
2C
2A
2B
2C
2A
2B
2C
3A
3B
3C
Avg. Input Cone.
mg/kg
0.645
0.265
0.948
< 0.200
< 0.200
0.804
1.003
1.010
< 0.800
0.420
0.425
0.578
< 0.200
< 0.200
0.246
< 0.200
< 0.200
0.280
< 0.200
< 0.200
0.298
< 0.200
0.240
0.680
0.305
0.315
0.444
0.343
0.360
0.510
< 0.200
< 0.200
0.242
0.625
< 0.200
0.814
0.763
< 0.200
0.380
Avg. Output Cone.
rug/kg
1.224
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
<0.200
< 0.200
< 0.200
< 0.200
<0.200
< 0.200
< 0.200
< 0.200
< 0.200
<0.200
< 0.200
< 0.200
% Removal
189.8
>24.5
>78.9
(A)
(A)
>27.4
>75.1
>80.2
(A)
>52.4
>52.9
>65.4
(A)
(A)
>18.7
(A)
(A)
>28.6
(A)
(A)
>32.9
(A)
>16.7
>70.6
>34.4
>36.5
>55.0
>41.7
>44.4
>60.8
(A)
(A)
>17.4
>68.0
(A)
>75.4
73.8
(A)
>47.4
1 Table 53 lists the structural configurations of all measured PCB congeners.
(A) Pre- and post-treatment values were below the detection limit, therefore a meaningfill percent removal could not be calculated
87
-------
Table 52
Congener Removal From Lower Sediments (With Moisture Adjustment)
Congener IUPAC
No1.
1 (chloro)
3 (chloro)
25 (trichloro)
26 (trichloro)
31+38 (trichloro)
33 (trichloro)
22 ( trichloro)
52 (tetrachloro)
49 (tetrachloro)
48 + 47 (tetrachloro)
44 (tetrachloro)
42 + 37 (tetrachloro
and trichloro)
64 + 41 + 71
(tetrachloro)
70 + 76
(tetrachloro)
95 + 66 (pentachloro
and tetrachloro)
56&60
(tetrachloro)
Sample ID
3A
3B
3A
3B
3A
3B
3A
3B
3A
3B
3A
3B
3A
3B
2A
3B
3A
3B
3A
3B
3A
3B
3A
3B
3A
3B
3A
3B
3A
3B
3A
3B
3C
Avg. Input Cone,
ug/kg
0.233
0.480
1.626
0.782
0.703
<0.200
0.667
0.885
1.53
0.423
0.317
< 0.200
0.317
< 0.200
0.270
< 0.200
0.403
< 0.200
0.340
< 0.200
0.463
< 0.200
0.277
< 0.200
0.563
< 0.200
0.640
0.280
0.716
0.315
0.380
< 0.200
< 0.200
Avg. Output
Conc.ug/g
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
<0.200
< 0.200
< 0.200
< 0.200
<0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
< 0.200
% Removal
>14.2
>58.3
>87.7
>74.4
>71.6
(A)
>70.0
>77.4
>82.6
>52.7
>36.9
(A)
>36.9
(A)
>25.9
(A)
>50.4
(A)
>41.1
(A)
>56.8
(A)
>27.8
(A)
>64.5
(A)
>68.8
>28.6
>72.1
>36.5
>47.4
(A)
(A)
1 Table 53 lists the structural configurations of all measured PCB congeners.
(A) Pre- and post-treatment values were below the detection limit, therefore a meaningful percent removal could not be calculated
-------
100-
< 80-
« 60
UJ
40-
20-
0-
V
RUN 1B 1C 2A 2B 2C 3A 3B
PCBs (AS AROCLOR 1248)
100-
80-
W
tr
60-
40-
20-
0-
O
S
UJ
DC
RUN 1B 1C 2A 2B 2C 3A 3B
SOLVENT EXTRACTABLE RESIDUES
100-
80-
60-
40-
20-
0
V
RUN 1B 1C 2A 2B 2C 3A 3B
TOTAL ORGANIC CARBON
Figure 26. Removal of Other Organic Materials
89
-------
Table 53
Structures of Measured PCB Congeners
IDPAC No.
1
3
19
22
25
26
27
28
31
33
37
38
40
41
42
44
Structure
2 - monochlorobiphenyl
4 - monochlorobiphenyl
2,2',6 - trichlorobiphenyl
2,3,4" - trichlorobiphenyl
2, 3 ',4 - trichlorobiphenyl
2,3',5 - trichlorobiphenyl
2,3', 6 - trichlorobiphenyl
2,4,4' - trichlorobiphenyl
2,4',5 - trichlorobiphenyl
2',3,4 - trichlorobiphenyl
3,4,4' - trichlorobiphenyl
3,4,5 - trichlorobiphenyl
2,2',3,3' - tetrachlorobiphenyl
2,2', 3, 4 - tetrachlorobiphenyl
2,2',3,4' - tetrachlorobiphenyl
2,2',3,5 - tetrachlorobiphenyl
JUPAC No.
47
48
49
52
56
60
63
64
66
70
71
76
95
96
199
Structure
2,2',4,4' - tetrachlorobiphenyl
2,2', 4,5 - tetrachlorobiphenyl
2,2',4,5' - tetrachlorobiphenyl
2,2', 5,5' - tetrachlorobiphenyl
2,3,3',4' - tetrachlorobiphenyl
2,3,4,4' - tetrachlorobiphenyl
2,3 ,4 ',5 - tetrachlorobiphenyl
2,3,4',6 - tetrachlorobiphenyl
2,3',4,4' - tetrachlorobiphenyl
2,3',4',5 - tetrachlorobiphenyl
2,3',4',6 - tetrachlorobiphenyl
2', 3, 4,5 - tetrachlorobiphenyl
2,2'3,5',6 - tetrachlorobiphenyl
2,2',3,6,6' - pentachlorobiphenyl
2,2',3,3',4,5,6,6' - octachlorobiphenyl
Based on these data, mono and tri-chloro congeners predominate in surficial sediments and
tri and tetra-chloro congeners predominate in deeper sediments. Negligible quantities of
dichlorinated material were found in Ashtabula River sediments, primarily because analytical
protocols excluded all of these materials but 2,3 - dichloro and 2,4' - dichloro PCB
congeners (i.e. IUPAC numbers 8 + 5). This exclusion was a prudent action based on site
history, but caution is advised regarding any conclusions relating absence of dichlorinated
PCBs to biodegradation potential of these congeners. General prevalence of PCB congeners
with chlorines on both rings (i.e. n, n' compounds) is noticed in the feed. This phenomenon
supports current thinking that n, n congeners are more easily biodegraded than the n, n'
compounds, which tend to persist in the environment.
Relative to removals of industrial congeners, IUPAC numbers 3 (4-chloro), 19 (2,2',6-
trichloro) and 199 (octochloro) were incompletely removed from the upper sediments. All
other congeners in this material were removed to below detection limits, as were all
congeners from the deeper sediments. For a limited number of congeners (e.g. 92 + 84,
137 + 176), no material was detected in the feed but small amounts were found in the
cyclone solids. Given the concentrations in the cyclone solids, it is likely that these
congeners were present in the feed below the detection limits and were simply concentrated
90
-------
to the point where they were detectable in the cyclone fines.
3.1.3.7 Pesticides-
Four pesticides were included in the analytical parameters for this project: alpha-BHC,
delta-BHC, gamma-BHC (lindane) and heptachlor. None of these pesticides were detected in
the feed material or in the processed sediments.
3.1.3.8 Solvent Extractables-
Results of solvent extractables (SE) removal are presented in Table 33, and a summary of
mass balance calculations is given in Table 54. Percent removals are shown in Figure 26.
From these data it is determined that >48.9 to 76.3 percent of the solvent extractable
residues were removed from the treated material, with an average removal of 66 percent.
SE removal was more readily accomplished for the deeper sediments.
As for the fate of solvent extractable residues, these materials tend to be captured by both the
cyclones and the condensate. Negligible amounts of SEs appear in the carbon adsorbers,
however, when they do appear they are readily adsorbed by the carbon.
Closures for the SE mass balance range from 15 to 144 percent, with an average of 40.4
percent. Closures depart significantly from 100 percent because of (a) the heterogeneity of
the sediments and (b) errors inherent in tracking small amounts of SE residues through the
process. (While quantities of SEs are significantly larger than some of the other analytes in
this project, they are still only about 0.1 percent of the incoming feed.)
3.1.3.9 Total Organic Carbon (TOC)-
Total organic carbon is a surrogate parameter that includes all organic carbon oxidizable by
persulfate in the presence of UV light. The oxidized carbon is then quantified by measuring
the evolved carbon dioxide. Given this definition, the total organic carbon (TOC) for this
project will include organic carbon contributions from: solvent extractable residues, semi-
volatile organics, volatile organics, PCBs, and naturally occurring organic materials such as
humic and fulvic acids. Therefore, not all of the organic materials included in this category
are hazardous, and not all are considered sediment contaminants.
Effect of thermal desorption on TOC is given in Table 34, and a summary of material
balance calculations is given in Table 55. Percent TOC removal is shown in Figure 26.
Based on these data, TOC removals ranged from 2 percent to 35 percent, indicating that
most of the compounds contributing to TOC were not removed at the process temperatures
employed. Most of the TOC remained with the bulk of the treated sediment, or with the
small amount of solids captured by the cyclones. Condensate TOC content was negligible.
The original intent of TOC measurement was to determine whether TOC removals could be
correlated with major constituents of concern. Successful correlation would enable use of
TOC as a surrogate parameter. Since thermal desorption removed so little of the TOC from
the feed material, however, no attempt was made to correlate TOC removal with removals of
specific organic constituents of. concern. Conclusions for this parameter are simply that it
was possible to account for 79 percent of the initial TOC, and that most of it remained with
the sediment despite process temperatures in excess of 315° C.
91
-------
Table 54
Mass Balance for Solvent Extractable Residues
GRAMS OUT-
RUN
IB
1C
2A
2B
2C
3A
3B
GRAMS IN
857.0
628.0
860.7
870.5
629.4
667.1
684.3
RESIDUE
267
<121
<131
<216
<108
<259
<158
CYCLONES
54.6
122.4
72.6
55.7
63.4
81.9
16.9
CONDENSATE
285.3
90.3
102.0
86.4
87.4
51.5
119.4
CARBON'
151.9
188.1
97.6
173.6
245.9
162.7
162.7
RESIDUE PLUS
CYCLONES
321.6
<243.4
<203.6
<271.7
171.4
<340.9
< 184.9
* REMOVED2
62.5
>61.2
>76.3
>68.8
>72.8
>48.9
>73.0
Accumulation of solvent extractable residues on carbon was measured for only the first five days of operation.
No data was reported for accumulation during the second five days of operation
% REMOVED = ((Grams In - (Grams Out With Residue + Cyclones))/Grams In) x 100
AVG = >66.2«
Table 55
Mass Balance for Total Organic Carbon (TOC)
GRAMS OUT
RUN
IB
1C
2A
2B
2C
3A
3B
GRAMS IN
8281
6389
8236
9134
8658
9931
8263
RESIDUE
5413
3993
4743
8190
5476
6944
5490
CYCLONES
365
1214
606
723
1422
897
301
CONDENSATE
0.44
0.03
0.25
0.27
0.53
0.50
1.01
CARBON
Not Measured
-
"
"
"
"
RESIDUE PLUS
CYCLONES
5778
5207
5349
8913
6898
7841
5791
% REMOVED1
30.23
18.50
35.05
2.42
20.33
21.05
29.92
1 % REMOVED = ((Grams In - (Grams Out With Residue + Cyclones))/Grams In) x 100
AVG= 21.35%
-------
3.1.4 Toxicity Characteristic Leach Procedure (TCLP1
The Toxicity Characteristic Leach Procedure (TCLP) was performed on selected
Ashtabula sediment samples for suspected metal and organic contaminants. TCLP testing is
one procedure by which the EPA classifies a material as hazardous under the Resource
Conservation and Recovery Act (RCRA). If a material is classified as hazardous, then
specific disposal protocols are required.
TCLP results for metals are given in Table 56. Concentrations of all metals samples were
below the regulatory limits for these materials. As for organics, the following constituents
were measured by TCLP: VOAs, PCBs, hexachlorobenzene, hexachlorobutadiene,
hexachloroethane, benzo(a)pyrene, a-BHC, g-BHC, and heptachlor. For all of these
materials, concentrations were from two to six orders of magnitude less than the TCLP
regulatory limits for the measured constituents of concern; none exceeded 1 ug/L. This is
true for both processed and unprocessed sediments, thus Ashtabula sediment is not
considered hazardous under RCRA in either the treated or untreated state.
A second reason for measuring TCLP was to monitor the potential change in leaching
tendencies of the sediment as a result of processing by low temperature thermal desorption.
Although limited numbers of sample pairs were considered, leaching tendency appears to be
inconsistent. Consistent increases or decreases for a given metal before and after processing
were not found.
Table 56: Results of TCLP for Metals
(ug/L)
Sample
1C
Feed Sediment
J. V*-
1C
1C ^
1C Treated
Sediment
2B Feed Sediment
Treated
Sediment
3A Feed Sediment
Treated
Sediment
3A
Regulatory Level Per 40
CFR Part 261. 24
Arsenic
5.95
5.96
5.79
7.67
6.74
7.59
6.45
6.59
7.00
18.7
16.4
10.9
5,000
Cadmium
12.0
11.1
11.2
12.1
7.0
9.8
50.4
18.3
31.7
57.7
57.5
57.7
1,000
Chromium
<1.39
<1.39
<1.39
1.59
0.45
2.80
28.3
<1.39
9.74
<1.39
<1.39
<1.39
5,000
Mercury
<0.00017
<0.00017
<0.00017
<0.00011
<0.00011
<0.00011
0.00079
0.00086
<0.00014
< 0.00017
<0.00017
<0.00017
200
Lead
9.18
9.07
8.59
4.70
<1.70
2.80
6.60
4.43
0.40
0.31
0.07
0.11
5,000
Zinc
738
749
749
1430
423
806
956
990
2180
2590
2850
2930
Not
Regulated
93
-------
3.2 ASSESSMENT OF SELECTED ANCILLARY PROCESS COMPONENTS
To this point, process performance assessments have been directed toward efficient
removal of selected chemical constituents. The following assessments pertain to the use of a
selectively employed predrying process step, and to the impact of the carbon adsorber. Air
emissions are also discussed.
3.2.1 Predrying Process Step
As was detailed in Section 2.6, a predrying process step was employed for runs 1C, 2C,
and 3B. For the predrying step, the feed material was first passed through the desorber in a
30 minute pass before being subjected to a second 90 minute pass. The intent was to remove
water in the first pass and to remove higher boiling organics in the 90 minute pass. It was
also thought that this protocol would result in an overall improvement in desorption of the
least volatile constituents of concern. Results are given in Table 57.
From these results, it is concluded that the first pass removes most of the water, most of the
volatile organic compounds, less than half of the total PCBs, and essentially none of the
benzo(a)pyrene and solvent extractable residue. Results for removal of hexachlorobenzene
and TOC for the first pass are variable.
When removals for the two passes taken together are compared with regular operations, it is
found that removals were consistently improved for surficial sediments when the two pass
system was employed. For example, final concentrations of total PCBs were 400-550
ug/kg for the single pass system, and were below the 200 ug/kg detection limit for the dual
pass system. No advantage was seen for removals from deeper sediments using the two pass
system.
Recommendations for use of the two pass system in practice, likely implemented by two
desorbers in series, would be dependent on conditions of the specific remediation. First, the
sediment would have to behave like the surficial sediment in this demonstration project in
order for this protocol to be effective. Second, the two step protocol would have to achieve
a regulatory compliance unachievable by the single pass protocol.
3.2.2 Carbon Adsorption System
The RETEC pilot-scale thermal desorption system employs an in-line carbon adsorber
following the process cyclones. Carbon employed in this system was 6 x 12 mesh vapor
phase pellets, obtained from Barneby and Sutcliffe Corporation. The purpose of this
adsorber is to capture and sorb amenable compounds that have bypassed previous process
collection points, and to thereby prevent their release to the atmosphere. A schematic
diagram of the carbon adsorber is presented in Figure 27.
Because evaluation of adsorber performance was necessary, the carbon in the adsorber was
sampled before, during and after the demonstration project. Sorbed chemical constituents
were removed from the carbon and analyzed. Sampling was limited to the collection of a
94
-------
Table 57: Effects of Alternate Drying Protocol
Analyte
Solids
Chlorobenzene
1 ,2-Dichlorobenzene
PCBs
Benzo(a)pyrene
Hexachlorobenzene
Solvent Extractables
Total Organic Carbon
Units
Weight %
ug/kg
ug/kg
mg/kg
mg/kg
mg/kg
mg/kg
Weight %
Run
1C
2C
3B
1C
2C
3B
1C
2C
3B
1C
2C
3B
1C
2C
3B
1C
2C
36
1C
2C
3B
1C
2C
36
Input Concentration
52
42
47
9.1
9.8
37.0
1.6
<0.5
1.7
1.9
11.6
3.4
0.5
0.5
0.5
0.16
3.29
0.24
1730
1890
1880
1.76
2.60
2.27
Alternate Protocol
(Runs 1C, 2C, 3B)
1 st Pass Output Final Output
Concentration Concentration
85.9
92.4
85.6
0.6
1.5
2.4
<0.4
0.8
1.1
1.6
6.6
2.2
0.6
0.3
0.6
0.19
0.70
0.16
1780
2190
1830
1.97
2.23
1.46
96.8
99.9
99.9
<0.4
<0.5
1.1
<0.4
<0.5
<0.5
<0.8
<0.8
<0.8
0.014
< 0.008
0.013
< 0.026
<0.019
< 0.022
<462
<462
<462
1.53
2.34
1.61
Normal Protocol
Average Output
Concentration '
97.3
99.9
94.6
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
0.4
<0.8
<0.8
0.122
0.016
0.019
0.029
<0.023
< 0.020
768
<462
<462
1.56
1.71
2.13
vO
Ln
Note: Maximum temperatures for the first pass runs were: 2C = 59°C 2C = 82°C, 3B = 93°C
1 For each cell in this column: First entry is for Run IB, second entry is the average of Runs 2A and 2B, third entry is for Run 3A. This enables comparison of alternate versus normal operating
protocol for Samples 1,2 and 3.
-------
AIR FROM CYCLONES
ACCESS PORT
t
5'
-0'
-5'
- TO STACK
NOT TO SCALE
A, B, C, ARE APPROXIMATE SAMPLING POINTS. SAMPLE COULD
HAVE COME FROM ANYWHERE ALONG THE VERTICAL RANGE
PICTURED ABOVE DUE TO ACCESS DIFFICULTIES.
CARBON QUANTITY = 1400 LBS (635 KG)
Figure 27. Carbon Adsorber
96
-------
single sample at each of 3 sites (Points A, B, and C on Figure 27). Small sample frequency
and the imprecise location of the samples were both due to the extreme difficulties
encountered in accessing the adsorber. Access was possible only by removing a port cover
on the upper side of the adsorber and inserting a core sampler into the adsorber housing and
then down into the carbon bed itself. Results were calculated by considering the
concentration to be constant across the bed and linearly variable, from top to bottom,
between measurements. These assumptions were generally used to calculate distribution of
each analyte over the entire bed. A summary of calculations is provided in Table 58.
From Table 58, it is concluded that carbon tended to trap chlorobenzene, dichlorobenzene,
hexachlorobutadiene, solvent extractable residues and metals. Only small amounts of semi-
volatile compounds were detected in the adsorber. As was expected, the trapped organic
materials were those with enough volatility to remain gaseous in the condensers but with a
high enough octanol-water coefficient to sorb to carbon. Semi-volatiles condensed before
entering the adsorber, so failure to detect these materials on the carbon was also expected.
Entrapment of all the metals but mercury appears to be a physical phenomenon in that (a)
these metals are associated with fine particulates and (b) they appear in both in cyclones and
the adsorber but not in the condensate. This suggests that the metals are associated with
solid particles that have become trapped in their progress through the carbon bed voids.
Mercury, however, was usually more prevalent in the condensate than in the cyclone fines,
suggesting that its presence in the adsorber could be due either to chemical affinity or to
physical entrapment. In summary, the carbon adsorber performed as designed. Air emission
of constituents of concern from the adsorber to the atmosphere was essentially prevented.
Air emissions data to confirm this conclusion are presented in Section 3.2.3.
3.2.3 Air Emissions
Air emissions were monitored for dioxins, furans, PCBs and mercury. This task was
performed for two reasons. First, air emissions were monitored to ensure regulatory
compliance. Second, emissions were quantified as an aid to mass balance closure. Results
of these determinations are given in Table 36-39.
From Table 36, air emissions for dioxins ranged from 0.0071 to 0.0825 nanograms per dry
standard cubic meter (ng/DSCM) and averaged 0.0248 ng/DSCM. The range of emissions
for furans was 0.0029 to 0.2669 ng/DSCM and averaged 0.0494 ng/DSCM. New source
performance standards under the Clean Air Act regulate the emission of dioxins and furans at
30 ng/DSCM.
One question raised is whether the origin of dioxin/furan emissions was the process itself or
the atmosphere. Based on results for this project, the emissions levels are not attributable to
atmospheric contamination. This is because only a trace of dioxins and no furans were
detected in the respective blanks. Measurable amounts of these materials appeared only
when actual sediment was processed. Thus the source of these contaminants is either the
sediment as dredged or the thermal effect of the process on the sediment. Unprocessed
97
-------
sediment was not analyzed for dioxins and furans, so the source of these materials is not
known for certain.
Samples were taken from the Ashtabula River at eight locations and analyzed for dioxins and
furans during the Woodward-Clyde study conducted in 1991. Dioxins were only detected at
one location in the river (sample point 187-03 near the mouth of Fields Brook, as shown in
Figure 4) at a total concentration of 0.45 ug/kg. Total furans were detected at the same
location at 19.84 ug/kg, and at one other location in the river about 100 meters downstream
of sample point 187-03 at 5.5 ug/kg. Overall the average concentration in the river was 0.06
ug/kg for total dioxins and 3.2 ug/kg for total furans.
As a very rough approximation, these average values from the river could be used along with
process data to see if the amount of dioxins and furans found in the air stream could have
come from the sediment, as opposed to being created in the thermal desorption system.
From the demonstration project, about 400 kg of sediment (dry weight) was processed in a
day and the average volume of vented off-gas was about 235 DSCM.
Using the average air emissions presented above, a total of 5.9 ug of total dioxins are
emitted to the air while the total amount of dioxins processed would equal 24 ug. Similarly
for total furans, 11.8 ug are emitted to the air while 1,280 ug would be processed. The
process temperatures used in the demonstration project were likely high enough to promote at
least partial volatilization of any dioxin and furan compounds present.
Consequently, if the average concentration of total dioxins and furans in the sediment
processed were as described above, it is possible that the amount in the air stream could have
come from the sediment and not the process itself. However, without more detailed
sampling information, such as input concentrations and concentrations in the various waste
streams, as well as mass balance data, it is impossible to accurately determine the source of
the dioxin and furan air emissions during the pilot demonstration.
Mercury air emissions ranged from 0.0008 to 0.0065 micrograms per dry standard cubic
meter (ug/DSCM) and averaged 0.0018 ug/DSCM. For municipal incinerators, mercury is
generally regulated at the at the ug/DSCM level . Most of the mercury emissions were
associated with particulate matter caught on the sampling train filter (See calculations in
Appendix C). Removal of the mercury emissions component associated with particulate
material can be eliminated in full-scale application by the use of more efficient cyclones.
PCB air emissions ranged from below detection limit to 1.1175 ng/DSCM. Emissions
involved only congeners with two or three chlorine atoms. All other congeners were
undetected in the air emissions. No pesticides were detected in the air emissions from the
processor.
98
-------
Table 58: Performance of Carbon Adsorber System
ANALYTE
ARSENIC
CADMIUM
CHROMIUM
MERCURY
LEAD
ZINC
PCBs
BENZO(A)PYRENE
HEXACHLORO-
BENZENE
HEXACHLORO-
BUTADIENE
CHLOROBENZENE
1, 2-DICHLORO-
BENZENE
SOLVENT
EXTRACTABLE
RESIDUES
QUANTITY
CAPTURED BY
CARBON
(GRAMS)1
1.71
0.09
3.12
1.10
2.09
3.40
0.42
< 0.0043
0.05
1.01
0.03
0.02
1396 (FOR 5
DAYS)
% OF REMOVED
MATERIAL
CAUGHT BY
CARBON 2
>90.6
59.6
>55.7
62.6
74.8
45.0
33.0
<0.14
2.8
>71.8
>62.3
>90.1
70.0
PREDOMINANT
CAPTURE POINT
CARBON
CARBON
CARBON
CARBON
CARBON
CONDENSER
CONDENSER
CONDENSER
CONDENSER
CARBON
CARBON
CARBON
CARBON
1 Total grams collected on carbon for runs IB, 1C, 2A, 2B, 2C, 3A and 3B.
2 (Material captured by carbon/material captured by carbon and condenser) x 100; this is
not a measure of the adsorption efficiency of carbon.
99
-------
3.3 FULL-SCALE IMPLEMENTATION
The following discussion provides a description and cost estimate for a full-scale
remediation of contaminated sediments using thermal desorption. The estimate uses
information provided by RETEC based on the results of the pilot-scale demonstration. Cost
estimates were made for sediment remediation scenarios involving 10,000 and 100,000 cubic
yards of sediment. These estimates only include the cost of the thermal desorption process
and do not involve the cost of dredging the sediment from the river, or the cost of disposing
of the treated sediment. Items included in the cost estimate are shown in tables 59 and 60.
For the purposes of this estimate, it was assumed that all processing would be conducted on-
site at a centralized facility and that sediments would be treated at an as dredged solids
content of approximately 50%. Water could be added as necessary to improve pumpability if
material handling problems occur.
This estimate also assumes that the volatilized contaminants would be incinerated in an on-
site incinerator coupled to the thermal desorption system. This was recommended by
RETEC as a less expensive option than condensing and off-site disposal of the condensate.
3.3.1 Material Handling
As stated, the sediment would be treated at the dredged solids content of approximately
50%. If necessary to improve material handling, water addition and associated mixing would
be done on a semi-continuous basis in a large tank at the site. Agitation of the material
would be accomplished using propeller agitator mixers. The inlet pumpline would be
screened within the tank to exclude over-sized material or debris, roughly defined as material
> 2 cm. The pump effluent would contain a secondary screen to ensure that oversized
material did not reach the processor. Accumulated, oversized material would be removed
from the bottom of the tank and screened as part of a routine maintenance program. The
system would utilize a positive displacement pump to transfer the sediment to the thermal
desorption unit. A progressive cavity pump could also be used if the screening procedure
was effective enough to ensure that virtually no aggregate remained in the material (RETEC,
1993).
3.3.2 Thermal Processor
The thermal processor is designed to remove the moisture and organics from the waste
material and reduce the volume of material for subsequent disposal. RETEC proposed to use
a Holo-Flite processor similar to, but larger than, the one used for the pilot-scale
demonstration project. The Holo-Flite Processor uses a contained, non-contact circulating
heat transfer fluid to raise the temperature of the solids to be treated. From the results of the
pilot-scale demonstration project, it can be assumed that final solids temperatures of greater
than 250° C would be required to promote >95% removal of the organics. This would
likely require a residence time of at least 120 minutes. From the results of the pilot-scale
100
-------
project, the assumed heat transfer fluid, Coastal HI-TEC salt, which has a maximum
operating temperature of about 600° C, would circulate at about 750 liters per minute. The
oil-fired system would have the capability of providing approximately 30 million BTU/hr to
the system (RETEC, 1993).
Air emissions from the oil burner should be minimal and not pose significant permitting
problems. Emission factors published by the USEPA indicate that emissions of typical
criteria pollutants, such as particulates, SOX NOX> and carbon monoxide would each be less
than regulatory thresholds (USEPA, 1985).
The off-gas handling system would consist of a cyclone for paniculate removal and an
afterburner designed to oxidize the volatilized organics and evaporate the entrained moisture.
The off-gas control system would be designed to accommodate an off-gas flow rate of ~ 35
standard cubic meters per minute, and a moisture and organic loading of 2,000 Ibs/hr and 10
Ibs/hr, respectively. The cyclone would be designed to remove any particles > 10 um which
may be entrained by the off-gases. These solids, which should comprise less than 5% of the
feed material, would be removed and combined with the feed material for reprocessing.
The volatilized organics and moisture would be oxidized in an afterburner designed to
provide a gas residence time of 2 seconds at a temperature of about 1,200° C. Such
conditions are appropriate to provide a destruction and removal efficiency of 99.9999%,
which would likely be required under TSCA. The afterburner would be designed to have a
heat capacity of 1.4 million BTU/hr (RETEC, 1993). Acid gas control should not be
required since the mass rate of chlorine fed to the system should be less than the 4 Ibs/hr
limit set in 40 Code of Federal Regulation (CFR) part 264.343(b).
3.3.3 Cost Estimate for 10.000 cy Scenario
Treatment of 10,000 cy of sediment is assumed to take 12 months. One thermal
desorber, with a rated capacity of two tons per hour, would be required. Using an assumed
density of 1.2 tons/cy, the calculated daily processing rate would be 36 tons or 30 cubic
yards per day. This rate is based on a design sediment residence time of 120 minutes, since
the pilot-scale demonstration project showed that extended residence times are required to
remove the chlorinated organic compounds which are of concern in Ashtabula. Three shift
per day operation would be utilized with an on-line factor of 75 % to allow for routine
maintenance. Routine maintenance would include inspecting the system and passing crushed
rock through the processor to remove any material consolidated in the augers.
Treatment cost for 10,000 cy of sediment is $436 per cubic yard or $4.36 million total cost
for the 12 month project. The costs for the project are detailed in Table 59. Mobilization
and demobilization costs are estimated to total $500,000. Mobilization and demobilization
charges include site preparation, pad installation, utility installation, and
transportation/shakedown of the equipment. The total cost of the thermal desorption unit and
101
-------
ancillary equipment is estimated to be $2.15 million. The equipment charges have been
calculated to provide a 25% return on capital investment over the duration of the project.
Because of the concerns associated with emitting toxic compounds such as mercury, which
would not be destroyed in the after-burning process, it is possible that the air stream would
have to be passed through activated carbon prior to discharge. Activated carbon that has been
treated to convert mercury to the sulfide form has proven effective in removing mercury
from air streams (United States Department of Energy, 1993).
The utility costs are based on fuel requirement to maintain the temperature of the heat
transfer media during treatment, and afterburner temperatures, as well as the electrical
requirements of the system.
Table 59. Cost Estimate for Service Contract for Remediating
10,000 Cubic Yards of Sediment1
Mobilization and Demobilization
Equipment Rental
Fuel
Electricity
Operating Field Labor
Maintenance
Other Operating Costs (Includes project
management, sample analysis,
QA/QC, and site facilities)
Activated Carbon
Total
Estimated Cost
$500,000
$2,150,000
$220,000
$110,000
$1,200,000
$60,000
$110,000
$10,000
$4,360,000
$/Cubic Yard
(as dredged)
$50
$215
$22
$11
$120
$6
$11
$1
$436
1 Costs based on a 12 month contract in March, 1993 dollars
3.3.4 Cost Estimate for 100.000 cy Scenario
Treatment of 100,000 cy of sediment is planned to take approximately two years using
five thermal desorption units, each with a rated capacity of 2 tons per hour. This estimate
is based on using a three shift per day operation along with a 75 % on-line factor. Assuming
a sediment residence time of 120 minutes and a conversion factor of 1.2 tons/cy the design
processing rate would be 150 cy/day.
102
-------
Treatment costs for the 100,000 cy scenario are $273 per cubic yard or $27.3 million for the
2 year project. The costs are broken down in Table 60. As indicated in the table,
mobilization and demobilization costs for the thermal desorption unit total $1,200,000 which
shows that an economy of scale can be achieved over the 10,000 cy project. Similar
economics can be achieved for field labor and operating costs such as project management
and site facilities.
Table 60. Cost Estimate for Service Contract
for Remediating 100,000 Cubic Yards of Sediment1
Mobilization and Demobilization
Equipment Rental
Fuel
Electricity
Operating Field Labor
Maintenance
Other Operating Costs (Includes project
management, sample analysis, QA/QC
and site facilities)
Activated Carbon
Total
Estimated Cost
$1,200,000
$14,900,000
$2,200,000
$1,100,000
$6,500,000
$600,000
$700,000
$100,000
$27,300,000
$/Cubic Yard
(as dredged)
$12
$149
$22
$11
$65
$6
$7
$1
$273
1 Costs based on a 24 month contract in March, 1993 dollars
3.3.5 Summary of Cost Estimates
The estimated costs for both the 10,000 and 100,000 cubic yard scenarios can be
moderately affected by changes in the composition of the feed material. Variations in solids
content can have a significant impact on heating requirements. Consequently, solids content
should be kept as high as possible, consistent with processor and material handling
requirements.
Currently, EPA's definition of thermal desorption includes systems using oxidation as a
means of off-gas control. Therefore, the use of an afterburner to incinerate off-gasses may
not have a significant effect on the permitting process. However, future regulations
governing the treatment of contaminated soils, sediment and debris may clarify the distinction
between desorption and incineration. If thermal desorption systems with off-gas incineration
are classified as incinerators, then preparation for the remediation project would likely
include dispersion modelling and public relation activities that would increase the treatment
cost by $4 to $20 per yard.
103
-------
As stated previously, thermal desorption systems can operate in either an off-gas incineration
mode (as described above), or with off-gas condensation. An estimate was prepared for the
for a thermal desorption process using off-gas condensation for the ARCS Buffalo River
demonstration project. This estimate was also based on information provided by RETEC.
The estimate showed a cost of $535 per cubic yard for treating 10,000 cubic yards of
sediment and $352 per cubic yard for treating 100,000 cubic yards of sediment. The lower
cost associated with the Ashtabula estimate is due primarily to the fact that this sediment
could be pumped and treated at the as-dredged solids content. The Buffalo River estimate
assumed that the sediment had to be diluted to allow pumpability due to the cohesive nature
of the sediment. As stated earlier, the solids content of the sediment should be kept as high
as practical due to the impact on cost.
For similar throughputs, off-gas incineration would result in higher fuel costs associated with
the afterburner, as well as potentially higher permitting costs. Off-gas condensation would
result in higher electrical costs associated with operating the condensing system and disposal
costs for condensate.
4.0 CONCLUSIONS AND RECOMMENDATIONS
4.1 CONCLUSIONS
A review of the results of the pilot-scale demonstration project provide the following
conclusions relative to sediment composition, material handling, process operation and
treatment effectiveness.
4.1.1 Sediment Composition
1. Principal contaminants of the Ashtabula sediments in the area sampled were: arsenic,
chromium, lead, mercury, chlorobenzene, 1,2 - dichlorobenzene, hexachlorobutadiene,
hexachlorobenzene, benzo(a)pyrene, and PCB (Aroclor 1248).
2. Contaminants that were expected but not detected were: 1,1,2 - trichloroethane;
1,1,2,2 - tetrachloroethane; alpha-BHC; delta-BHC; gamma-BHC (lindane); and heptachlor.
3. Surficial sediment and deeper sediment contained essentially the same concentration of
total organic carbon and solvent extractable residue.
4. Deeper sediment contained larger amounts of complex organic materials such as PCBs
and benzo(a)pyrene than did the surficial sediments.
5. Based on results of the toxicity characteristic leach procedure (TCLP), neither the treated
sediment nor the untreated sediment is a hazardous waste under RCRA.
104
-------
4.1.2 Material Handling
1. The sediment as dredged was relatively free of oversized material. During dredging and
filling of the 55-gallon drums any oversized material was removed by hand. The sediment
was then mixed with river water to make a pumpable slurry. The pump that was used, a
diesel powered peristaltic pump, worked well after some initial problems with the pumping
rate which resulted in the sediment passing through the processor quicker than intended.
2. Although adding water to the sediment increased the pumpability of the sediments, it also
raises the project costs because any added water must be volatilized or boiled off in the
thermal processor. Ideally, the sediment would be dewatered after dredging and prior to
remediation, however, the dewatered sediment can cause material handling problems.
3. There was some evidence that dried sediment can collect in the processor over time due
to the cohesive nature of the fine-grained sediment. Although this was a relatively minor
problem that was easily managed through routine maintenance of the system, if not attended
to, it could cause significant problems.
4.1.3 Process Operation
1. After initial optimization of the material handling system, the thermal desorption
equipment operated without significant problems throughout the demonstration
project.
2. In general, the heat transfer characteristics for the sediment are low. Exit solids
temperatures in excess of 315° C were only achieved at extended residence times of 120
minutes.
3. Residence times of 60 minutes were appropriate to achieve moisture removal/mass
reduction in most cases. Consistent organic removal required treatment for periods in excess
of 90 minutes.
4. One of the more significant results of the project was the poor separation of the organic
and aqueous condensates due to the dilute nature of the organic fraction. Efforts employing
controlled separation, physical separation and phased treatment did not prove to be effective
at providing a separate aqueous and concentrated organic stream.
4.1.4 Treatment Effectiveness
1. Feed material containing 42-53% solids by weight was successfully pumped and dried to
a solids content of > 94 percent.
2. Heavy metals other than mercury tended to remain with the sediments during thermal
processing. Removal ranges and averages for these metals are as follows:
105
-------
Arsenic: -5.3 to + 8.6% (Average: 2.4%)
Cadmium: -16.0 to + 55.8% (Average: 16.2%)
Chromium: -58.8 to +20.1% (Average: -6.8%)
Lead: - 30.2 to + 14.4% (Average: - 4.2%)
Zinc: - 6.9 to + 12.7% (Average: 5.2%)
3. Thermal desorption removed 73 to 97 percent of the mercury present in the sediment.
Removal was generally a function of residence time and final sediment temperature.
4. Removal of chlorinated volatile materials (chlorobenzene, dichlorobenzene) exceeded 92
percent in all cases. Essentially all of the removed volatile materials were captured by the
carbon adsorber.
5. Removal of semi-volatile materials was a function of residence time and final
temperature. Specific removal levels were:
Hexachlorobenzene: 81 - 97%
Hexachlorobutadiene: > 99 %
Benzo(a)Pyrene: 66-94% (Average: >78%)
Polychlorinated Biphenyls: > 60 - 95% (Average: >83%)
Solvent Extractable Residues: >49 - >76% (Average: >66%)
Total Organic Carbon: 2-30% (Average: 21%)
6. Removal levels for arsenic, chromium, lead, zinc, mercury, and hexaxchiorobutadiene
were approximately the same for upper and lower sediments.
7. Removal levels for cadmium, hexachlorobenzene, benzo(a)pyrene, solvent extractable
residue, total organic carbon, and polychlorinated biphenyls were greater for deeper
sediments than for the surficial material.
8. Solvent extractable (SE) residue removal is a potential surrogate parameter for predicting
PCB removal. Removal of SE residue correlated well with PCB removal (r=0.956),
although closures for mass balances on these materials were 3-71 percent. Closure can be
improved by use of more contaminated sediments.
4.1.5 Fate of Removed Contaminants
1. Most all of the mercury removed from the sediment was captured by the carbon adsorber.
Trace amounts of mercury were measured in the air emissions but emissions were
significantly less than regulatory limits. Average mercury air emissions were 0.014
nanograms per dry standard cubic meter, i.e., 0.001 percent of the mercury in the feed
material. Most of the mercury trapped by the air analysis train was caught on the paniculate
filter.
106
-------
2. Volatile organic materials were almost entirely captured by the carbon adsorber. Trace
amounts of VOAs were also in the condensate.
3. When removed from the processed sediment, some semi-volatile organic material (e.g.
PCBs, benzo(a)pyrene) concentrated in the condensate. Chlorobenzene, dichlorobenzene and
hexachlorobutadiene, however, concentrated in the carbon adsorber.
4. Mass balance closure was not achieved for many constituents of concern, primarily
because of the heterogeneous nature of the samples.
5. The process goal of generating one relatively contaminated oily condensate and one
relatively clean aqueous condensate was not met. Outputs of both condensers were largely
aqueous in character. For most organic contaminants, the organic material partitioned
between the two condensers such that each condenser received significant amounts of the
condensed organic material.
6. The intent of using thermal desorption to concentrate removed pollutants into a smaller
mass than the original mass of sediment was met, but volume reductions were not as large as
anticipated.
a. Most pollutants were transferred to condensate, resulting in a volume reduction of
approximately 50 percent.
b. Some pollutants (VOAs and mercury) were transferred to carbon. This carbon
would require regeneration or incineration after an extended number of process runs.
Carbon regeneration or replacement frequency was not determined.
7. Air emissions for total dioxins ranged from 0.0071 to 0.0825 nanograms per cubic meter
and air emissions for total furans ranged from 0.0041 to 0.2669 nanograms per cubic meter.
Emissions were significantly less than regulatory limits. These dioxins and furans were
either imported with the sediments or were generated by the process, as readings for ambient
air were 0.0001 nanograms per cubic meter for dioxins and were below detection limits for
furans. Unprocessed sediments were not analyzed for dioxins and furans, so the source of
these contaminants is not known for certain.
4.2 RECOMMENDATIONS/LESSONS LEARNED
The following recommendations are made for further study of thermal desorption as a
remediation technique:
1. A determination of carbon life should be made for each sediment source considered for
thermal desorption remediation. This determination would be used to develop cost
information for determining financial feasibility.
107
-------
2. Since dioxins and furans were found in the air stream of the process, it would be useful
to test the feed sediment to see if these compounds are being created in the processor due to
incomplete oxidation of the chlorinated compounds such as PCBs, or simply the result of the
removal of dioxins and furans from the sediment.
The following recommendations are made for full-scale application of the thermal desorption
process.
1. For full-scale design, it is recommended that efficiency of the cyclone separators be
maximized. Mercury in the air emissions was largely associated with fine paniculate
emissions, thus the reduction in paniculate emissions via efficient gravity-inertial separation
would greatly reduce mercury emissions. Additional air pollution equipment (bag filters,
scrubbers) may be necessary to control paniculate emissions.
2. The operation schedule for the processor should include routine maintenance/cleaning
procedures using limestone or gravel to prevent the build-up of dried solids in the processor.
3. The organic removal data indicates that extended residence time of > 90 minutes
would be required to achieve required contaminant removal efficiencies.
4. To reduce processing costs, sediment dewatering should be investigated as a pre-
treatment step prior to remediation. Although material handling concerns would have to be
addressed, treatment costs and residual treatment/disposal costs would be less because of the
smaller percentage of water in the sediment.
108
-------
REFERENCES
Averett, Daniel E. 1990. Strategy for the Selection of Sites and Technologies for Pilot-
Scale Demonstration Projects. Draft Paper. U.S. Army Engineer Waterways Experiment
Station, Vicksburg, MS.
Averett, Daniel E., Perry, Brett D., Torrey, Elizabeth J., and Miller, Jan A. 1990. Review
of Removal. Containment, and Treatment Technologies for Remediation of Contaminated
Sediment in the Great Lakes. Miscellaneous Paper EL-90-25. U.S. Army Engineer
Waterways Experiment Station, Vicksburg, MS.
Battelle Marine Research Laboratory. 1993. Report of Chemical Analyses. Ashtabula
River Pilot Project. Battelle Marine Sciences Laboratory, Sequim, Washington.
Chemical Waste Management, Inc. 1993. X*TRAXtm Technology Services for
Environmental Management. Chemical Waste Management. Chemical Waste Management,
Inc., Oak Brook, IL.
Great Lakes Water Quality Board. 1987. Report to the International Joint Commission.
1987 Report on Great Lakes Water Quality. Appendix A. International Joint Commission,
Detroit, MI.
Ohio Environmental Protection Agency. 1991. Ashtabula River Remedial Action Plan.
Stage 1 Investigation Report. Ohio Environmental Protection Agency, Northeast District
Office, Twinsburg, OH.
Remediation Technologies, Inc. 1993. Field Demonstration of RETEC Thermal Unit for
Remediation of Ashtabula River Sediments. Ashtabula River Area of Concern. Final
Report. Remediation Technologies, Inc., Concord, MA.
Science Applications International Corporation. 1991. Thermal Desorption Treatment.
U.S. Environmental Protection Agency, Cincinnati, OH.
Shiu, Wan Ying and Mackay, Donald. 1986. A Critical Review of Aqueous Solubilities.
Henry's Law Constants, and Octanol-Water Partition Coefficients of Polychlorinated
Biphenyls. Journal of Physical Chemical Reference Data, Volume 15, Number 2.
Swanstrom, Carl and Palmer, Carl. 1990. XTRAX"". Transportable Thermal Separator
for Organic Contaminated Solids. Second Forum on Innovative Hazardous Waste Treatment
Technologies: Domestic and International. EPA/54Q/2-90/010. U.S. Environmental
Protection Agency, Cincinnati, OH.
109
-------
Tatum, H.E., Brandon, D.L., Lee, C.R., Simmers, J.W., Skogerboe, J.G. 1990.
Information Summary, Area of Concern: Ashtabula River. Ohio. Miscellaneous Paper EL-
90-22. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
U.S. Army Corps of Engineers, Buffalo District. 1982. Letter Report Confined Disposal
Facility. Ashtabula Harbor. Ashtabula. Ohio. U.S. Army Corps of Engineers, Buffalo
District, Buffalo, NY.
U.S. Army Corps of Engineers, Buffalo District. 1983. Letter Report Ashtabula River
Dredging and Confined Disposal. U.S. Army Corps of Engineers, Buffalo District, Buffalo
NY.
U.S. Army Corps of Engineers, Buffalo District. 1993. Environmental Assessment Public
Notice and Section 404(fr)m Evaluation for the Upper Ashtabula River Interim Dredging
Project. Ashtabula. Ohio. U.S. Army Corps of Engineers, Buffalo District, Buffalo, NY.
U.S. Army Corps of Engineers, Buffalo District. 1993. Pilot-Scale Demonstration of
Thermal Desorotion for the Treatment of Buffalo River Sediments. EPA905-R93-005, Great
Lakes National Program Office, Chicago, IL.
U.S. Army Waterways Experiment Station. 1992. Quality Assurance Project Plan.
Ashtabula Demonstration of Thermal Desorption for Treating Contaminated Sediments. U.S.
Army Waterways Experiment Station, Vicksburg, MS.
U.S. Department of Energy. 1993. A Review of Remediation Technologies Applicable to
Mercury Contamination at Natural Gas Industry Sites. Gas Research Institute, U.S.
Department of Energy, Washington D.C.
U.S. Environmental Protection Agency. 1985. Compilation of Air Pollution Emission
Factors. Volume 1: Stationary Point and the Area Sources. Fourth Edition. U.S.
Environmental Protection Agency, Research Triangle Park, NC.
U.S. Environmental Protection Agency. 1986. Draft Guidelines for Permit Applications
and Demonstration Test Plans for Non-Thermal Alternative Methods. U.S. Environmental
Protection Agency Office of Toxic Substances Chemical Regulation Branch, Washington,
D.C.
U.S. Environmental Protection Agency. 1992. Assessment and Remediation of
Contaminated Sediments (ARCS) Workplan. U.S. Environmental Protection Agency, Great
Lakes National Program Office, Chicago, IL.
Woodward-Clyde Consultants. 1992. Ashtabula River Investigation. Ashtabula. Ohio.
Woodward Clyde Consultants, Chicago, IL.
110
-------
APPENDIX A
QUALITY ASSURANCE PROJECT PLAN
-------
QUALITY ASSURANCE PROJECT PLAN
ASHTABULA RIVER PILOT DEMONSTRATION
OF THERMAL DESORPTION
FOR TREATING CONTAMINATED SEDIMENTS
Revision 3.0
21 August 1992
Prepared by:
U.S. Army Corps of Engineers
Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180-6199
Prepared for:
U.S. Army Corps of Engineers
Buffalo District
1776 Niagara St.
Buffalo, NY 14207-3199
Submitted to:
U.S. Environmental Protection Agency
Great Lakes National Program Office
230 South Dearborn
Chicago, IL 60604
In Support of:
Assessment and Remediation of
Contaminated Sediments Program
-------
QUALITY ASSURANCE PROJECT PLAN APPROVALS
Ashtabula River Pilot Demonstration of
Thermal Desorption
for Treating Contaminated Sediments
Prepared by: U.S. Army Corps of Engineers (USACE)
QA Project Category: II Revision No.: 3.0 Date: 21 August 1992
APPROVALS
Daniel E. Averett
USAGE WES
Dave Conbov
USAGE Project Engineer
Todd Gentles
ARDL Project Manager
Judy Leithner
USAGE QA Officer
Linda Bingler
Battelle Project Manager
Steve Yaksich
T.I.NPO ETWG Chair
Brian Schumacher
ARCS QA Officer
D. Gene Easterly
Signature
'J Signature
Signature
Signature
USEPA EMSL-LV NRD QA Officer
Steve Garbaciak
GLNPO Technical Project Manager
Cute
Date
Date
Date
. /ffj
Date
Date
Date
3-19-93
Date
Date
-------
AS. .BULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
Contents
Page
0.0 Introduction 1
1.0 Project Description 2
1.1 Assessment and Remediation of Contaminated
Sediments (ARCS) Program 2
1. 2 Ashtabula River Area of Concern 2
1. 3 Sediment Quality 3
1.4 ARCS Demonstration Program 5
1.5 Ashtabula River Pilot Project Description 6
1. 6 Proj ect Obj ectives 11
1. 7 Experimental Design 11
1. 8 Schedule 13
2.0 Project Organization and Responsibilities 14
3.0 Quality Assurance Objectives 15
3.1 Precision Accuracy Completeness, and Method Detection
Limits (from Battelle QAPjP for ARCS) 15
3.2 Representativeness, Comparability, and Completeness 20
3 . 3 Method Detection Limits 21
4.0 Site Selection and Sampling Procedures 23
4.1 Contaminated Sediment Sample for Testing 23
4.2 Sampling the Transport,
Pretreatment, and Treatment Processes 23
4.3 Sample Containers and Preservation Techniques 23
4.4 Sampling Procedures 24
5 .0 Sample Custody Procedures 33
6.0 Calibration Procedures and Frequency 35
7.0 Analytical Procedures and Calibration 37
8.0 Data Reduction, Validation and Reporting 38
9 .0 Internal Quality Control Checks 39
10.0 Performance and System Audits 40
10 .1 Internal Audits 40
10.2 Systems Audit 40
10 . 3 External Audit 40
11.0 Preventive Maintenance 41
12.0 Calculation of Data Quality Indicators9 42
13.0 Corrective Action 43
14.0 Quality Assurance Reports to Management 44
15 .0 References 45
-------
AS. .BULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
List of Tables
Table 1 Maximum Concentration of Metals and Organics at Ten
Ashtabula River Sediment Sample Sites 4
Table 2 Buffalo District Ashtabula River Sediment Sampling Results... 7
Table 3 Analysis of Ashtabula Sediment Samples 16
Table 4 Analysis of Water Samples 17
Table 5 Ashtabula River Pilot Project - Sampling Plan 25
Table 6 Sample Collection and Analysis Schedule 30
Table 7 Analysis Schedule for TCLP 32
List of Fieures
Figure 1 Ashtabula River Basin 45
Figure 2 Ashtabula River Area of Concern 46
Figure 3 Woodward-Clyde Sediment Sampling Locations 47
Figure 4 Sediment Sampling Locations for Demonstration 48
Figure 5 Proj ect Organizational Structure 49
Figure 6 Points of Contact for Project Organization 50
Figure 7 Process Schematic Diagram Showing Monitoring Points 51
Figure 8 Chain of Custody Form 52
List of Appendices
Appendix A Field Procedures for Filling Sample Containers and for
Filling Sample Containers and for Packing and
Shipping Ice Chests Al
Appendix B Battelle Quality Assurance Plan Bl
Appendix C RETEC Quality Assurance Plan cl
Appendix D Analysis of Air, Sediment and Water Samples for Organics Dl
-------
AS. ABULA DEMONSTRATION
QAPJP - REVISION 3.0
21 AUGUST 1992
0.0
INTRODUCTION
This Quality Assurance Project Plan (QAPjP) supports the pilot-scale
demonstration of low temperature thermal desorption for contaminated sediments
from the Ashtabula River. This demonstration is sponsored by the Assessment
and Remediation of Contaminated Sediments (ARCS) Program administered by the
U.S. Environmental Protection Agency (USEPA) Great Lakes National Program
Office (GLNPO). The pilot demonstration will be conducted by the U.S. Army
Engineer District, Buffalo. Analytical laboratory support will be furnished
by the Battelle Marine Sciences Laboratory. The firm awarded the contract for
the thermal desorption process is Remediation Technologies, Inc. (RETEC).
This QAPjP will be supplemented by QAPjP's prepared by Battelle and
RETEC for the laboratory and process monitoring parts of the work,
respectively. These are provided as Appendices B and C to this QAPjP.
-------
1.0
AS. ABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
PROJECT DESCRIPTION
1.1 Assessment and Remediation of Contaminated
Sediments (ARCS) Program
The 1987 amendments to the Clean Water Act, Section 118 (c) (3),
authorize the U.S. Environmental Protection Agency (USEPA) Great Lakes
National Program Office (GLNPO) to conduct a 5-year study and demonstration
project on the control and removal of toxic pollutants from bottom sediments.
Five areas, including the Ashtabula River Area of Concern (AOC), were
specified in the Clean Water Act as requiring priority consideration in
locating and conducting demonstration projects. GLNPO initiated the
Assessment and Remediation of Contaminated Sediments (ARCS) program to assess
the nature and extent of bottom sediment contamination at selected Great Lakes
AOCs, evaluate and demonstrate remedial options, and provide guidance on the
assessment of contaminated sediment problems and the selection and
implementation of necessary remedial actions in the AOCs and other locations
in the Great Lakes.
1.2
Ashtabula River Area of Concern
The Ashtabula River basin is located in northeast Ohio (Figure 1).
The Ashtabula River enters Lake Erie at the city of Ashtabula, which is
approximately 55 miles east of Cleveland, Ohio and 40 miles west of Erie,
Pennsylvania. The Ashtabula River extends about 18 miles from the river mouth
to the confluence of the East and West Branches, which are each about 12 miles
long. The East Branch originates in extreme western Pennsylvania and flows
northwest, and the West Branch begins in Ashtabula County and flows north. The
Ashtabula River has a drainage area of about 136 square miles, and an average
flow of 151 cfs in the vicinity of the city of Ashtabula (U.S. Department of
the Interior, 1980). Major tributaries to the Ashtabula River include Fields
Brook, East Branch, Hubbard Run, Ashtabula Creek, and Strong Brook.
The existing Ashtabula Federal navigation project consists of two
converging breakwaters protecting an outer harbor area in Lake Erie having an
-------
A5> ABULA DEMONSTRATION
QAPJP - REVISION 3.0
21 AUGUST 1992
area of about 185 acres. The Federal channel in the river begins at the mouth
and extends 1,550 feet upstream of the upper turning basin.
Discharges in the river basin have polluted the sediment within the
Ashtabula River Area of Concern (AOC) (Figure 2). The primary source of these
pollutants appear to be past industrial discharges to Fields Brook, a
tributary which joins the Ashtabula River in the vicinity of the upper turning
basin. Dischargers to Fields Brook have significantly improved the quality of
their effluents, but the sediments have become so contaminated that the brook
is classified as hazardous and its clean-up is being addressed under
Superfund. Fish and wildlife habitat in the AOC have been degraded by
alterations to the river including modification to the shoreline such as
bulkheading. Other potential sources of pollution to the Ashtabula River
include landfills and other point and non-point sources. Eighteen industries
and one municipal wastewater treatment plant discharge to the Area of Concern
(Woodward-Clyde Consultants 1991).
1.3 Sediment Quality
Numerous contaminants have been identified in samples from the
Ashtabula River Area Of Concern. The Ashtabula River Remedial Action Plan
states that the contaminants of particular concern are polychlorinated
biphenyls (PCBs), hexachlorobenzene (HCB), hexachlorobutadiene (HCBD),
mercury, chromium, and zinc (Ohio Environmental Protection Agency 1989). Data
collected by Woodward-Clyde for eight metals, PCBs, hexachlorobutadiene
(HCBD), hexachlorobenzene (HCB), and chlorobenzene (CB) are shown in Table 1.
The highest concentrations shown for these stations were 31 ppm for arsenic,
2,152 ppm for barium, 15 ppm for cadmium, 5,740 ppm for chromium, 5.7 ppm for
mercury, 142 ppm for nickel, 282 ppm for lead, 2,463 ppm for zinc, 369 ppm for
PCBs, 560 ppm for HCBD, 45 ppm for HCB, and 3.6 ppm for CB (Woodward-Clyde
Consultants, 1991). Table 1 presents additional data from Woodward-Clyde's
sampling locations identified in Figure 3.
-------
ASHTABULA DEMONSTRATION
QAPjP-REVISION 2 J
13 JULY 1992
TABLE 1 - MAXIMUM CONCENTRATION OF METALS AND ORGANICS AT TEN ASHTABULA RIVER
SEDIMENT SAMPLE SITES (WOODWARD-CLYDE CONSULTANTS 1991)
PPM dry weight
Station No.
196-01
188-05
188-04
188-03
187-01
171-01
168-01
159-01
131-01
126-01
As
18
(13)**
17
(6)
21
(10)
21
(16)
10
(3)
22
(15)
19
(12)
14
(14)
12
(16)
15
(17)
Ba
179
(12)
746
(8)
1123
(10)
2152
(8)
1123
(3)
1036
(17)
930
(14)
1159
(18)
220
(16)
248
(17)
Cd
1.2
(10)
15
(6)
8
(10)
12
(10)
2
(3)
8
(17)
6
(12)
9
(18)
2.6
(18)
2.7
(17)
Cr
286
(12)
372
(6)
1938
(10)
5740
(10)
213
(3)
90
(15)
885
(14)
241
(14)
53
(18)
149
(17)
Hg
0.26
(10)
1.4
(8)
0.6
(10)
3
(16)
1.6
(3)
1.3
(15)
5.7
(12)
4.3
(14)
0.22
(18)
1
(17)
Ni
34
(12)
71
(6)
106
(10)
142
(8)
52
(3)
45
(17)
51
(12)
49
(14)
35
(18)
39
(17)
Pb
67
(10)
282
(6)
107
(10)
112
(10)
66
(3)
42
(15)
81
(12)
71
(14)
67
(18)
53
(17)
Zn
175
(10)
2463
(6)
594
(10)
686
(10)
123
(6)
173
(17)
369
(12)
254
(14)
151
(18)
181
(17)
PCB
3.8
(10)
15
(6)
20
(10)
120
(8)
369
(3)
13
(13)
29
(14)
17
(14)
1
(18)
2.3
(14)
HCBD
0.04
(10)
0.04
(6)
-
560
(8)
34
(3)
0.15
(13)
0.12
(12)
0.27
(14)
0.02
(18)
0.07
(12)
HCB
-
-
-
22
(8)
45
(3)
0.31
(15)
1.5
(14)
0.4
(18)
0.4
(18)
0.35
(17)
CB
0.01
(10)
0.01
(6)
0.8
(10)
3.6
(10)
0.1
(3)
1.3
(13)
1
(14)
0.1
(14)
0.01
(16)
-
See Figure 3 for station locations.
Number in parentheses is depth of maximum concentration below low water datum (LWD).
-------
1.4
AS. iBULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
ARCS Demonstration Program
1.4.1
ARCS Objectives
As stated previously, one of the objectives of the Assessment and
Remediation of Contaminated Sediments (ARCS) program is to evaluate and
demonstrate remedial options for contaminated sediments in the Great Lakes.
The ARCS Engineering/Technology Work Group (ETWG) is responsible for
recommending and implementing these demonstrations. The program places
priority for conducting demonstration projects on the five AOCs specified in
the Clean Water Act. The purpose of pilot scale demonstrations is to evaluate
the effectiveness and cost of innovative technologies, develop information for
full-scale planning of remediation projects, assess contaminant losses during
remediation, and assess techniques for treatment of residuals.
1.4.2
Selection of Thermal Desorption
A literature review was used to perform a screening-level evaluation
of process options for biological, chemical, extraction, immobilization,
radiant energy, and thermal technologies (Averett, Perry, Torrey, and Miller
1990). Each process option was assessed on the basis of effectiveness,
implementability, and cost, and the most promising technologies for
demonstration under the ARCS program were identified. After the screening
level assessment, the ETWG developed a list of those processes that should be
retained for pilot-scale demonstration. A matrix was developed of the
recommended processes for consideration for pilot demonstrations, the
principal contaminants controlled by each process, and the AOCs where such
contaminants are present and the processes are applicable. The ETWG
prioritized the potential demonstrations based on a number of factors
including pilot equipment availability, the potential to expand the state of
knowledge for treating Great Lakes contaminated sediment, effectiveness for
contaminants of concern, and site availability.
Three of the other sites, Grand Calumet River, Saginaw Bay, and
Sheboygan Harbor, have appreciable levels of PCBs. At these sites solvent
-------
Aiv .iDULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
extraction, particle size separation, and bioremediation will be investigated.
With this in mind, the ETWG decided that thermal desorption was an appropriate
process option for treatment of PCBs and other organics at the Ashtabula River
AOC. Although this process was also demonstrated at the Buffalo AOC, the
contaminants of concern at Buffalo were primarily polynuclear aromatic
hydrocarbons (PAHs). Evaluations using the thermal desorption technology at
Ashtabula will provide necessary data on this system's ability to remediate
sediments contaminated with PCBs and other chlorinated hydrocarbons.
1.5 Ashtabula River Pilot Project Description
1.5.1 Dredging Site
The area of the river that has the highest concentration of
contaminants is where Fields Brook enters the river. Collecting sediment
samples from this general area where higher initial concentrations are likely,
should give a better indication of the effectiveness of the remediation
technology than less contaminated spots. Also, Woodward Clyde's data showed
that the sediment in this area, while heavily polluted, was not classified as
toxic under the Toxic Substances Control Act (TSCA). Additional sampling and
analysis, including TCLP analysis, was performed in this area in February
1992. Results presented in Table 2, demonstrate that the sediment is not
contaminated to the extent that it is a regulated hazardous waste under the
Resource Conservation and Recovery Act (RCRA) or TSCA for contaminants
analyzed. Sediment for the demonstration will be collected from site 3 as
shown on Figure A.
1.5.2 Dredging and Transport
The removal of contaminated sediments from the Ashtabula River will
be accomplished by a land-based backhoe or crane. The sediments, a total of
ip
about 10 cubic yards, will then be placed in approximately forty 55 gallon
drums. The level of contamination is expected to vary with depth, the
concentrations being lower at the surface. Material should be removed in
layers as much as possible with the depth of excavation noted for each barrel.
-------
AJ> .iJBULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
Since the removal and demonstration sites will be co-located, a forklift will
be adequate to transport the barrels from river's edge to the treatment unit.
Table 2 - Buffalo District Ashtabula River Sediment Sampling Results*
(All contaminant concentrations are in ppm)
Compound
(TCLP LIMIT)
PCB (AROCLOR 1242)
CHLOROBENZENE (100)
1, 4 DICHLOROBENZENE
(7.5)
HEXACHLOROBENZENE
(0.13)
HEXACHLOROBUTADI ENE
(0.5)
BARIUM (100)
CADMIUM (1.0)
CHROMIUM (5.0)
MERCURY (0.2)
LEAD
ZINC
X TOTAL SOLIDS
SITE BD1
Bulk
8.7
<0.009
2.8
<0.086
<0.590
560
5.2
270
1.3
107
880
58
TCLP
-
<0.005
<0.026
<0.001
<0.0068
3.8
0.012
0.033
<0.0002
<0.020
6.9
NA
SITE BD2
Bulk
5.3
0.1
<2.2
<0.085
0.580
270
1.9
160
0.35
50
300
59
TCLP
-
<0.005
<0.013
<0.0005
<0.0034
2.1
0.023
0.12
0.00053
<0.020
3.0
NA
SITE BD3
Bulk
15
0.73
<2.6
0.19
<0.68
900
4.2
510
6.3
69
327
50
TCLP
-
<0.005
0.020
<0.0005
<0.0034
5.9
0.008
0.031
0.00029
<0.020
2.1
NA
ARDL Report No. 6024, "Corps of Engineers - Buffalo District Ashtabula
River Sediment Testing Site." Report Date March 19, 1992, U.S. Army Engineer
District, Buffalo, NY.
-------
AS. ABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
1.5.3 Treatment Site
The demonstration will be conducted on Jack's Marine property
adjacent to its westernmost slip in the vicinity of the upper turning basin
(Figure 4). This area offers several advantages over other locations in the
area. First, it is located near the sediment collection site allowing the use
of land-based dredging equipment, which will significantly reduce the cost.
Second, the area is relatively secluded and there is only one access road
which will simplify security measures. Third, the owners of Jack's Marine
have been extremely cooperative in allowing the demonstration project on their
property.
The area where the project will take place is approximately 90 feet
wide by several hundred feet long. Prior to the mobile pilot unit arriving on
site, the demonstration area must be prepared. An area of about 20,000 square
feet must be cleared and prepared for the mobile unit as well as an office and
a storage area for raw materials. It is anticipated that several pieces of
construction equipment will be needed for site preparation work as well as
during the demonstration. This equipment will include a bulldozer or grader
for clearing and grading the site, and a forklift for moving equipment and
supplies. It may also be necessary for several loads of crushed stone to be
brought into the site to provide a better load bearing surface. Additionally,
a 20 foot by 40 foot reinforced concrete pad may be installed as a foundation
for the demonstration equipment.
The demonstration equipment will be brought in from Great Lakes
Avenue and through Jack's Marine to the site adjacent to the westernmost slip.
Electric power will be supplied by a generator capable of providing 440
voltage or from a power hookup with Cleveland Electric and Illuminating. The
owner of Jack's Marine has requested that if generators are used that they
only be run during the day so they don't disturb people who spend the night on
their boats. A relatively small amount of water is required for this pilot
demonstration to start-up the unit, rinse tanks after each run, and clean-up
upon completion of the demonstration. The water will be supplied from a 500
to 1,000 gallon tank provided by ReTeC.
-------
AS...ABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
1.5.4
Pretreatment
The low temperature thermal desorption technology operates over a
range of water contents depending on the type of soil and the type of
processor. Generally, higher water contents increase the cost of thermal
desorption because considerable energy is expended to evaporate the water
before most organic contaminants volatilize. Pretreatment activities may
include the drying of the contaminated sediments or the addition of water, as
was the case in the Buffalo Demonstration to improve material handling. It is
anticipated that the material will be placed directly into the drums from the
backhoe dredging the sediment.
Prior to pilot scale treatment using this technology, it will be
necessary to remove particles and debris greater than 0.75 inch in size from
the feed material. It is anticipated that a portable screening process can be
used to size the feed material as it is placed into the 55 gallon drums. The
solids over 0.75 inch in size will represent a small portion of the dredged
material and will hold a small percentage of the contaminants. Solids 0.75
inch in size and smaller, containing the vast majority of the contaminants,
will be treated using the low temperature thermal desorption process.
Setup time once the demonstration unit arrives on site normally
takes three to four days if the site has been fully prepared ahead of time.
An additional one to two days will be needed for start-up operations of the
unit. It is anticipated that the mobile unit will treat on the order of 650
pounds of contaminated sediments per hour and that the residence time of the
feed material will range from approximately 1 to 2 hours. Twelve cubic yards
of contaminated sediments will be sufficient to conduct the pilot
demonstration testing. This quantity will allow for start-up operations,
testing under varying conditions (i.e., residence time in the treatment unit),
and cleansing between tests.
1.5.5
Thermal Desorotion
Low temperature thermal desorption includes any number of excavation
and treatment alternatives that use either direct or indirect heat exchange to
-------
A5...ABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
vaporize and/or volatize organic contaminants from soils, sludges, and
sediments. Thermal desorption systems are physical separation processes and
are not specifically designed to provide organic decomposition. Thermal
desorption is not incineration, since the decomposition of organic
contaminants is not the desired result, although some decomposition may occur.
Soil/sediment is typically heated to 200-1,000°F based on the thermal
desorption system selected.
During the material handling, dredged material will be screened to
remove large objects and then delivered to the desorber inlet. RETEC's
desorption process consists of a set of internally heated screw auger(s).
Contaminated sediment is intimately contacted with the heated screws driving
off the volatile components. An inert gas, i.e. nitrogen, is injected in a
counter current sweep stream to prevent contaminant combustion.
Off-gas from the desorption step is then processed to remove
particulates and recondense water and organic components. Volatiles which do
not condense are collected on activated carbon prior to release of the off-gas
to the atmosphere. A flow diagram for the remediation of the sediment using
low temperature thermal desorption is at Figure 7. Additional details of the
process operation are provided in RETEC's QAPP, Appendix C.
1.5.6 Residuals Management
Residuals from the pilot scale demonstration will be monitored to
determine the concentration levels of various contaminants. Treated solids
will be tested and evaluated to determine appropriate disposal requirements.
If it is not subject to RCRA or TSCA standards it will be disposed of in an
approved solid waste landfill subject to the approval of the Ohio
Environmental Protection Agency. The oil fraction of the liquid waste will be
tested and either disposed of or destroyed as mandated by TSCA. The aqueous
f
fraction of the liquid waste will be tested and disposed of at the local waste
water treatment facility, if appropriate. If test results will not allow
discharge to the waste water treatment facility, then the aqueous fraction
will be disposed of in another approved manner. Discharged carrier gas will
be treated to remove particulates and organic contaminants prior to being
10
-------
Ai.... ABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
vented to the atmosphere. Additionally, any construction material which has
been contaminated will either be properly cleaned or suitably disposed of in a
solid waste landfill.
1.6 Prolect Objectives
The primary objective of this project is to demonstrate the
effectiveness of low temperature thermal desorption technology for removing
PCBs and other organics from Ashtabula River sediment. Secondary objectives
are to evaluate residuals from the low temperature thermal desorption process
to quantify contaminant partitioning in the side streams, to define optimum
operating conditions for the desorption process for Ashtabula River sediment
at two or more water contents, to determine pre-treatment requirements, and to
assess the feasibility and economics of implementing this process, in
preparation for potential full scale remediation projects.
1.7 Experimental Design
The evaluation of this project will be conducted by performing
detailed characterization of the contaminated sediment for four steps of the
process scheme as shown in Figure 7. Sediment collected from the river will
be sampled as soon as practicable after placement in the barrels to provide an
initial determination of the organics and heavy metals in the sediment.
Material passing the screen will be stored in barrels and will become the feed
to the thermal processor. Treated solids discharged from the processor will
be sampled for comparison to the feed inlet and determination of the
efficiency of the thermal process in removing PCBs. Other process residuals
will also be characterized to evaluate contaminant losses from the overall
process scheme. The critical contaminants for the evaluation are PCBs. Other
organic compounds, including HCBD, HCB, and CB, are expected to be present at
lower concentrations. Heavy metals are important in the sediment, but
concentrations for most metals are not expected to be significantly affected
by the pretreatment and treatment processes; therefore, bulk metal
concentrations are not critical measurements in the sediment. A detailed
listing of the samples to be collected and parameters to be measured are given
in Section 4.0.
11
-------
Ai.-iABULA DEMONSTRATION
QAPJP - REVISION 3.0
21 AUGUST 1992
Certain operating parameters, including temperatures and
mass/volumetric flow rates, for the thermal desorption process are also
critical to evaluating the economics and implementability of the thermal
desorption technology. These parameters are presented and discussed in the
"Quality Assurance Plan--RETEC", Appendix C, and will not be repeated or
discussed further in this document.
Sediment in the 40 barrels will be managed to segregate surficial
sediment from the deeper sediments. The surface sediment will be treated at a
single water content selected by the contractor. The more contaminated
(deeper) sediment will be treated at two water contents with a minimum 20Z
difference in percent moisture. Initial water content for the sediment in the
barrels will be determined prior to dilution. The weight of water added to
the feed sediment will be recorded. Therefore 3 sets of barrels (sediment
types) with different contaminant concentrations and/or water contents will be
treated.
Before processing any material the contractor will conduct a
demonstration to show that his processing equipment is free of residual
material. This decontamination process is described in ReTeC's QAPjP (see
Appendix C).
Three operating conditions will be evaluated for each sediment type,
yielding a total of 9 runs for the pilot project. This plan assumes that each
run can be completed in one operating day or less, and that 3 to 5 barrels of
material are adequate for each run. The contractor will treat all of the
sediment collected, which may require increased volumes for some runs.
The contractor will be allowed to perform one run to check out the
equipment and assess operational parameters for starting conditions. Samples
will not be collected for this run for analysis, but sampling routines and
o
equipment should be tested during this initial run.
12
-------
AS...ABULA DEMONSTRATION
QAPJP - REVISION 3.0
21 AUGUST 1992
1.8 Schedule
The schedule for the project is as follows:
01 September 1992 Contractor arrives on site
02 September 1992 Site preparation begins
04 September 1992 Collect sediment
08 September 1992 Begin thermal processing
18 September 1992 Complete processing
30 September 1992 Complete demobilization
13
-------
AS». lABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
2.0 PROJECT ORGANIZATION AND RESPONSIBILITIES
A chart showing the project organization and its lines of authority
is presented in Figure 5 and a list of points of contact and their addresses
is presented in Figure 6. Six key organizations are involved in this project:
the U.S. Environmental Protection Agency (USEPA) Great Lakes National Program
Office (GLNPO); the U.S. Army Corps of Engineers (USAGE), Buffalo District;
the USEPA Environmental Monitoring Systems Laboratory, Las Vegas (EMSL-LV);
the Battelle Marine Sciences Laboratory; ARDL, Inc., sampling contractor for
the Buffalo District; and the contractor for the thermal desorption process,
RETEC. GLNPO has ultimate responsibility for the completion of the project
and for the quality of the data collected. Mr. Steve Garbaciak, Environmental
Engineer, will serve as the GLNPO Technical Project Manager, will provide
guidance in executing the project, and will coordinate activities of the
Buffalo District, Battelle Marine Sciences Laboratory, and the USEPA Quality
Assurance Manager for the ARCS Program, Dr. Brian Schumacher. The ARCS ETWG
will provide technical review of the project objectives and experimental
design, and will approve conclusions and recommendations developed as a result
of the project.
Project Manager/Engineer for the Buffalo District is CPT Dave
Conboy. CPT Conboy is responsible for supervision of field sampling
activities and coordination with the contractors. Mr. Daniel Averett, USAGE,
Waterways Experiment Station (WES), will provide technical support to the
Buffalo District in field sampling activities and implementation of this
QAPjP. Ms. Judy Leithner will serve as QA Officer for the Buffalo District
and will be responsible for field QA. Project Manager for ARDL, who will
conduct sampling activities under the supervision of the Buffalo District is
Mr. Todd Gentles. RETEC project manager is Mr. Mark McCabe, who is
responsible for collection and recording of all operational data in accordance
with the contractor's "Quality Assurance Plan" for the project. All
*}
laboratory analytical work will be performed by Battelle or through a
subcontract to Battelle under the direction of Ms. Linda Bingler. Battelle QA
officer is Mr. Robert Cuello who will report all laboratory QA activities to
Dr. Schumacher. Air samples will be collected by RETEC and analyzed by
Battelle or its subcontractor.
14
-------
3.0
AS...ABULA DEMONSTRATION
QAPJP - REVISION 3.0
21 AUGUST 1992
QUALITY ASSURANCE OBJECTIVES
3.1 Precision. Accuracy. Completeness, and Method Detection
Limits (from Battelle QAP1P for ARCS)
Internal Quality control and data validation are an integral part of
any laboratory procedural analysis. Programs must establish technically sound
methods for determining method validation, precision, accuracy, completeness,
comparability, and be representative of the data collected. Routine
procedures to be used to measure precision and accuracy include:
Replicate analysis
Certified reference materials
Matrix spikes
Surrogate spikes
Procedural blanks
On-going calibration check standards
Discussion of data quality objectives (DQOs) for the ARCS program
requires consideration of the different types of analyses being performed: 1)
six metals in water and sediment, 2) organic compounds in water and sediment,
3) total organic carbon in sediments and water (TOG), 4) solids concentrations
in water and sediment, 5) oil and grease in water and sediments, 6) grain
size, 7) pH in water, and 8) stack (air) samples. Each will be discussed
separately in terms of precision, accuracy and data acceptability. Method
(instrument) detection limits achievable in the Battelle Laboratory and ARCS
required detection limits are listed in Tables 3 and 4. Actual detection
limits may be somewhat higher in samples where large amounts of interfering
compounds are present. Holding times will be specified in Battelle's QA Plan.
15
-------
A" ' \BULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
Table 3 - Analysis of Soil or Sediment Samples
Analysis
Volatile Organic*
Semi-Volatile Organic!
PCB Aroclon and Congeners
Pesticide*
Oil and Grease
(T. extract. Residue)
As
Cd
Cr
Hg
Pb
Zn
Total Organic
Carbon
Total Solids
Total Volatile
Solids
16 Fractions
Grain Size
ARCS
Required
Detection
Limit
ue/g
0.2
0.2
0.2
0.02
20
2
0.1
2
0.1
2
2
300
1000
1000
N/A
Method
EPA 8240
EPA 8270
NOAA 1985
NOAA 1985
S. METHODS
5520 B
7-40-48
MSL-M-33
7-40-48
MSL-M-11
7-40-48
7-4CW8
EPA 9060
EPA 160.3
EPA 160.4
PSEP 1986
Battelle
Instrument
Detection
Limit
Ug/g
0.2
0.2
0.2
0.02
*"l
30
0.5
0.1
33 '.
0.02
7 ''
8
0.10%
(100 Mg/g)
0.10%
(100 Mg/g)
0.10%
(100 jig/g)
1.00%
Volume
Required
ml
40
100
100
50
50
50
50
100
Container
4 oz glass
4 oz glass
4oz
glass
4oz
Spex Jar
8 oz
plastic
REFERENCES FOR METHODS
NOAA 198S
NOAA 1985, National Oceanic and Atmospheric Administration, National Status and Trends Program,
Standard Analytical Procedures.
7-40-48 Energy Dispersive X-Ray Fluorescence Spectrometry
MSL-M-11 Cold Vapor Atomic Absorption.
EPA 9060, U.S. Environmental Protection Agency (EPA). 1986. Test Methods for Evaluating Solid
TOC Waste: Physical/Chemical Methods. SW-846. U.S. Document No. 955-001-00000,
USEPA. Washington. D.C.
EPA 8240 SW-846
EPA 8270 SW-846
EPA 160 U.S. Environmental Protection Agency (EPA). 1983* Methods for Chemical Analysis of Water
and Wastes, EPA-600/4-79-020, March, 1983, Method 413.2.
PSEP 1986 Puget Sound Estuary Protocols.
ASTM-D422 American Society of Testing Materials (ASTM). 1972. Standard Method for Particle-Size
Analysis of Soil D-422. ASTM, Philadelphia, Pennsylvania.
MSL-M-33 Trace elements in sediment & tissue by stabilized-temperature graphite furnace.
5520 B Standard Methods for the Examination of Water and Wastewater, 1989. Extraction by Methylene
Chloride as described "Total Extractable Hydrocarbons by Infrared Spectrophotometry,"
Analytical by Simard, et al, 1951 Chemistry. 23:1384.
16
-------
Ai>... ABULA DEMONSTRATION
QAPJP - REVISION 3.0
21 AUGUST 1992
Table 4 - Analysis of Water Samples
Analysis
=================:
Volatile Organics
Semi- Volatile Organics
PCB Aroclon and Congeners
Pesticides
As
Cd
Cr
Hg
Pb
Zn
Oil & Grease
Total Organic Carbon
Total Solids
PH
ARCS
Required
Detection
Limit
_
0.1
0.1
0.01
0.01
1
1
1
0.01
1
1
10.000
1000
1000
Full
Range
Method
=====
EPA 8240
EPA 8270
NOAA 1985
NOAA 1985
MSL-M-32
MSL-M-32
MSL-M-32
MSL-M-27
MSL-M-32
MSL-M-32
EPA 413.2
EPA 415.1
EPA 160.3
Bauelle
Instrument
Detection
Limit
=====
0.5 r
0.5 r
0.01
0.01
1
1
1
0.005
1
1
10,000
1000
1000
Volume
Required
========
40
800
500
1,000
60
200
Container
=====
1000m/
glass
500m/
Teflon
1,000m/ glass
60 m/ glass
500 mt poly
200m/
plastic
ADDITIONAL REFERENCES
MSL-M-17 Metals and trace elements in water by flame atomic absorption (FLAA)
MSL-M-32 Metals and trace elements in water by graphite furnace atomic absorption (GFAA) . Note: GFAA
used where FLAA analysis is below FLAA detection limit. FLAA instrument detection limit is 100
j*g/i.
MSL-M-27
EPA 415.1
EPA 160.3
EPA 413.2
Total mercury in water by CVAA
Total Organic Carbon in water. USEPA, 1983
Total solids in water. USEPA. 1983
Oil and grease in water, USEPA, 1983
17
-------
Ai>.. i ABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
3.1.1 Metals in Water and Sediment:
Precision will be determined based on analysis of triplicates
analyzed at the rate of 1 per 20 samples. The acceptable coefficient of
variation is <20Z. Accuracy will be determined by analysis of certified
reference materials at the rate of 1 per 20 samples. Acceptable results must
agree within 20Z of the certified value. Samples for matrix spikes and matrix
spike duplicates will be run at a rate of 1 per 20 samples. Analyses of these
samples should demonstrate spike recovery within +15Z of the known spike
concentration. Relative percent difference for matrix spike duplicates should
be <20X. Method blanks will be prepared at a rate of 1 per 20. These blanks
will be run at beginning, middle, and end of each analytical run for the given
parameter. Blank results should be less than the detection limits shown in
Tables 3 and 4.
3.1.2 Organic Compounds in Water and Sediments:
Organic compounds to be analyzed are included in four groups:
volatiles, semi-volatiles, PCBs, and pesticides.
Volatiles Semivolatiles Pesticides
1,1,2,2-Tetrachloroethane Benzo(a)pyrene Alpha-BHC
Chlorobenzene Hexachlorobenzene Delta-BHC
Chloroform Hexachlorobutadiene Gamma-BHC
Tetrachloroethene Hexachloroethane (lindane)
Trichloroethene Heptachlor
1,1,2-Trichloroethane
1,4-Dichlorobenzene
Vinyl Chloride
PCB Congeners to be analyzed include the following IUPAC numbers:
Congener # 1, 3, 4+10, 8+5, 19, 18, 17, 27, 32+16, 29, 26, 25, 31+28, 33, 53,
22, 45, 46, 52, 49, 48+47, 44, 42+37, 64+41+71, 40, 100, 63, 74, 70+76, 95+66,
91, 56+60, 92+84, 101, 99, 119, 83, 97, 67, 85, 136, 110. 82, 151, 135+144+14,
147+124+13, 107, 149, 118, 134+114, 131, 146, 153+132+10, 141, 136+176,
163+138, 158, 178, 175, 187+182, 183, 128, 185, 174, 177, 202+171, 173,
157+200, 172+197, 180, 193, 191, 199, 170+190, 198, 201, 203+196, 189,
208+195, 207, 205, 194, 206, 209.
18
-------
AJ>.. i ABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
Eighty-four of the possible 209 congeners will be reported as 60
individual congeners, 20 as combination (pair) congeners and 4 as
combination(triplicate) congeners.
Precision will be determined based on analysis of triplicates
determined at the rate of 1 set per 20 samples. The acceptable coefficient of
variation is within 202. CRMs will be run at a rate of 1 per 20 samples and
must be within 302 of the certified value. For analytes that do not have CRMs
available, accuracy will be determined based on surrogate and matrix spike
recoveries. Samples for matrix spikes and matrix spike duplicates will be run
at a rate of 1 set of duplicates per 20 samples. Minimum acceptable matrix
spike recovery is 402 to 1202. Surrogate spike recovery must be within 40 to
1202. (Surrogates used are specified in the SOPs.) Relative percent
difference for matrix spike duplicates should be <302. Method blanks will be
prepared at a rate of 1 per 20 samples. These will be run at beginning,
middle, and end of each analytical run for the given parameter. Method blanks
should be less than detection limits shown in Tables 3 and 4.
3.1.3 Carbon compounds in sediment and water:
Precision for TOG will be determined based on analysis of
triplicates analyzed at the rate of 1 set of triplicates per 20 samples. The
acceptable coefficient of variation is < 202. Accuracy will be determined
based on CRMs (TOC) analyzed at the rate of 1 per 20 samples, except for TOC
in water for which there are no CRMs available. The concentration of TOC in
CRMs must be within ±202 of the known concentration value. Method blanks will
be run at beginning, middle, and end of each analytical run and should be less
than detection limits.
3.1.4 Total Solids. Volatile Solids, and Oil and Grease:
Quality control for solids analyses and oil and grease will be
evaluated on the basis of precision for triplicate analyses. Triplicates will
be analyzed at the rate of 1 per 20 samples. The acceptable coefficient of
variation is less than 202. Blanks will be analyzed at a rate of 1 per 20
19
-------
Abt. I'ABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
samples. Method blanks should be less than detection limits shown in Tables 3
and 4.
3.1.5 Field Triplicates
Field triplicates of sediments, treated soil, water, and oil
residues will be collected and analyzed at a frequency of one set per 20
samples. The goal for precision among these replicates is less than 302
expressed as a percent relative standard deviation (XRSD).
3.1.6 PCBs. dioxins. and Furans in Air Samples
See Appendix D.
3.1.7 Toxicitv Characteristics Leaching Procedure (TCLP)
The TCLP will be performed on three sediment samples as dredged, on
three feed samples for the thermal processor, and on three product samples
exiting the thermal processor. The procedure will follow that prescribed in
the Code of Federal Regulations. One of the TCLP extractions will be
performed in triplicate and two extraction fluid blanks will be carried
through the procedure. TCLP leachates will be analyzed for PCBs,
semivolatiles and pesticides, volatiles, metals, and pH. Quality control and
acceptance criteria for the analyses are the same as described above for these
analyses.
3.2 Representativeness. Comparability, and Completeness
Representativeness and comparability are qualitative criteria and
completeness is a quantitative criterion that must be considered during the
project planning stages and during data assessment. Representativeness is a
key concern during field sampling activities. However, the chemical analysis
s»
plan should also be designed so that the objectives for these criteria will be
accomplished.
20
-------
Ai.. i ABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
Representativeness expresses the degree to which sample data
accurately represent the site, specific matrices or parameter variations at a
sampling point. Representativeness is a qualitative parameter which is
dependent on both the proper design of the sampling program and proper
laboratory methods. The representativeness criterion is best satisfied by
making certain that sampling locations, procedures, and quantities are
selected based on the project objectives, and that proper analytical
procedures are utilized, preservation requirements are met and holding times
are not exceeded in the laboratory. To improve representativeness, samples
will be composited over time or space where possible.
Comparability expresses the confidence with which one data set can
be compared with another. Sample data will be comparable with other
measurement data if consistent documented analytical procedures are used for
similar samples and sampling methods and conditions. Comparability is defined
as similarity of chemical results from different batches of samples or
different days of operation. The analyses of certified reference materials is
used to provide data on comparability. The data obtained in this program will
be comparable because all the methods are taken from proven protocols, and all
the analyses will be conducted at the same laboratory. Reporting units for
each analysis are consistent with standard reporting units for the ARCS
Program.
Completeness is defined as the percentage of measurements or amount
of data required in order to make a decision concerning a site. The
completeness goal is essentially the same for all data uses: that all data
necessary for a valid study be generated. Completeness will be measured for
each set of data received by dividing the number of valid (passing QA/QC
requirements) measurements actually obtained by the number of measurements
made. Completeness has been set at 90%.
3.3 Method Detection Limits
The method detection limits achievable by the Battelle Laboratory
were presented in Tables 3 and 4. Based on the analytical methods appropriate
21
-------
A6...ABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
for the analyses and the amount of samples specified in the methods, the
required detection limits listed in Tables 3 and 4 should be achievable.
Generally practical detection limits are defined as 3 times the standard
deviation of 15 blanks or standards with a concentration within a factor of 10
of the limit of detection. Detection limits should be determined prior to any
routine sample analysis.
22
-------
4.0
Ab.. .ABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
SITE SELECTION AND SAMPLING PROCEDURES
4.1
Contaminated Sediment Sample for Testing
The contaminated sediments for this pilot scale demonstration will
come from the Ashtabula River location shown on Figure 4 (Site BD 3).
Sediment will be collected using a crane and clam bucket or backhoe with a
capacity of approximately 1-cu yd. Depth of cut for the bucket will be
approximately 2 ft. and total sampling depth will be less than 5 ft.
4.2 Sampling the Transport. Pretreatment. and Treatment
Processes
Sample points selected for evaluation of the various steps in the
remediation process are illustrated on Figure 7. Solid, liquid, and gas phase
streams are indicated. Grab samples will be collected for solid and liquid
streams and composited into samples for analysis. Sediment samples from
barrels will be collected using a core sampler, a thief, or a trier. Solid
samples collected for the various process steps will be retrieved using a
scoop or dipper. Liquid samples will be collected from valved drains, dipped
from a well mixed container, or sampled with a drum thief. Where grab samples
are to be composited, grab samples for the composite will be mixed in clean
containers appropriate for the analysis. Monitoring of the gas stream will
require continuous monitoring during 3- to 5-hr periods.
4.3
Sample Containers and Preservation Techniques
All samples for analysis of PCBs and other organics will be
collected in precleaned glass containers. Samples for analysis of metals,
solids, and grain size in sediment or soil samples will be collected in
plastic containers. Liquid samples for metal analyses will be stored in
teflon containers. The separate containers required for each analysis are
indicated in Tables 3 and 4. All samples will be placed on ice immediately
after collection. The only samples requiring a reagent for preservation are
those liquid samples for heavy metals, which will be acidified with ultrapure
23
-------
Ai>... ABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
nitric acid to pH less than 2, and TOC water samples which will be acidified
with phosphoric acid to a pH of <2. Battelle will furnish ampules of acid for
this purpose. Samples will be shipped to Battelle within 24 hours after
collection by overnight air mail.
4.4 Sampling procedures
Sampling procedures and frequency of collection are described in
Table 5. Total number of samples to be collected are shown in Table 6.
Instructions for filling, labeling, handling, packing, and shipping samples
have been provided by Battelle (see Appendix B).
24
-------
ASHTABULA DEMONSTRATION
QAPJP-RE VISION 3.0
21 AUGUST 1992
Table 5 - Ashtabula River Pilot Project - Sampling Plan
Sample
Point
Description
Sampling Strategy
IS
Sediment excavated by
dredge and placed in 40
55-gal barrels.
Number barrels sequentially in the same order as filled.
Collect representative samples (cores) from each barrel as soon as
practical following collection. Composite samples from each set of 4
barrels. This will require additional containers to archive samples from
barrels not used in the treatment evaluation.
Extrude or pour the sediment from each core into a stainless steel
container for mixing each set of four grab samples into one composite.
Collect a small aliquot from the composite and measure pH and temperature
on-site for each composite.
From each composite fill containers for analysis as follows:
1 4-oz (125 mi) glass jar - PCBs, oil & grease, semivolatiles,
pesticides
1 4-oz (125 m£) glass jar - no head space - volatiles
1 4-oz spex plastic jar for bulk metals and TOC
1 8-oz plastic jar for grain size analysis, TS, and TVS.
25
-------
ASHTABULA DEMONSTRATION
QAPjP-REVlSION 3.0
21 AUGUST 1992
Table 5 - Ashtabula River Pilot Project - Sampling Plan
Sample
Point
Description
Sampling Strategy
2S
Sediment sample following
screening or other
processing to remove
over-size material.
Following screening the
material will be stored
in barrels until it is
needed for process feed.
Sediment removed from each bin will be screened and placed into barrels.
Samples of this material will not be collected for analysis.
20
Oversized material
removed by screening
river sediment.
This material will consist of rocks, debris, and miscellaneous material
that will not pass through the screen. Meaningful analytical data for
this material is difficult to collect. This material will be weighed and
characterized by visual observation.
3S
Sediment in barrels
as fed to the thermal
processor.
Weigh material fed to unit.
Collect grab samples at equal time intervals (15 to 60 min.) as the
material is fed to the unit.
Composite every three samples into one sample. Set sampling frequency so
that three composites will be collected for each run.
Analyze temperature and pH for a grab sample during collection of each
composite.
Split each composite into separate containers for the following:
1 4-oz (125 m«) glass jar - PCBs, oil and grease
1 4-oz (125 m«) plastic jar - TOC
1 8-oz (250 m«) plastic jar - TS and TVS
Take equal volumes from each grab sample (9 grabs) to prepare a single
composite for the entire run. Fill the following containers:
1 4-oz (125 m£) plastic spex jar - metals
1 8-oz (250 m£) plastic jar for grain size
1 4-oz (125 m£) glass jar, no head space - volatiles
1 4-oz (125 m£) glass jar - semivolatiles and pesticides
26
-------
ASHTABULA DEMONSTRATION
QAPJP-REV1SION 3.0
21 AUGUST 1992
Table 5 - Ashtabula River Pilot Project - Sampling Plan
Sample
Point
Description
Sampling Strategy
2L
Water drained and/or
decanted from the
sediment stored in
barrels during dewatering
and storage.
This sample point not planned for, but if dewatering does occur, sample as
follows:
Measure volume or weigh liquid removed from each drum;
Collect two H samples for every fourth drum that is decanted and analyze
for PCBs, semivolatiles, and pesticides, one 60 m£ jar for TOCs, and
and three septa vials for volatiles, and one 500 m£ bottle for metals.
4S
Solids discharged from
thermal processor--
treated product from the
pilot unit.
Repeat same procedure and analytical scheme as for sample 3S
3L
Make-up water for
dilution
Sample three times during processing as follows:
3 (40 m£) septa cap glass bottle - volatiles
1 16-oz (500 m«) teflon bottle - metals
2 32-oz (1000 m«) glass bottle - PCBs, semivolatiles, and pesticides
1 32-oz (1000 m«) glass bottle - oil and grease
1 2-oz (60 m4) glass bottle - TOG
1 16-oz (500 m£) plastic bottle - Total solids
Measure pH immediately after collection.
5S
6S
Solids collected by
particulate removal
process (cyclone) on gas
stream from thermal
desorption unit.
Solids collected by
particulate removal
process on gas stream
from thermal desorption
unit.
For each of nine runs collect one composite sample on the conclusion of
each run.
Weigh total particulate material collected.
Split the composite sample into containers for analysis of the following:
1 4-oz glass jar (PCBs, oil and grease, semivolatiles, and
pesticides)
1 4-oz glass jar (no head space for volatiles)
1 8-oz plastic jar (TS, TVS, grain size)
1 4-oz plastic jar (metals, TOG)
27
-------
ASHTABULA DEMONSTRATION
QAPjP-REVISION 3.0
21 AUGUST 1992
Table 5 - Ashtabula River Pilot Project - Sampling Plan
Sample
Point
7L
8L
Description
Oil residue from the
condenser on the gas
stream.
Condensed liquid from
the gas stream.
Sampling Strategy
For each of nine runs collect one composite sample on the conclusion of
each run.
Weigh or measure volume of effluent.
Measure pH and temperature in the field.
Split each composite sample into containers for analysis of the following:
2 32-oz (1000 m£) glass bottle for PCBs , pesticides, and semi-
volatiles , 3 40 mi septa cap bottle for volatiles
1 32-oz (1000 m£) glass bottle for oil and grease
1 500 m£ teflon bottle for metals
1 2-oz (60 m«) glass bottle for TOG
1 16-oz (500 m£) plastic bottle for TS
Repeat same procedure as for 7L.
28
-------
ASHTABULA DEMONSTRATION
QAPjP-REVISION 3.0
21 AUGUST 1992
Table 5 - Ashtabula River Pilot Project - Sampling Plan
Sample
Point
Description
Sampling Strategy
9G
Vent gas or final gas
emission from the overall
process.
Use EPA method 5 sampling train to collect samples for particulates and
moisture.
Measure gas flow rate and temperature.
Use EPA modified method 23 sampling train to collect samples for analysis
of PCBs, furans and dioxins.
Collect samples for mercury analysis using sampling train described in
"Methodology for the Determination of Metals Emissions in Exhaust Gases
from Hazardous Waste Incineration and Similar Combustion Processes,
EPA/530-SW-91-010.
Sample over a period of one operating day for each of 9 runs for a project
total of 9 samples.
Extract equipment, adsorbent/filter materials, and solutions in accordance
with EPA method and SW-846. Send extracts to analytical lab for further
extractions, as necessary. Combine extracts for organic analyses into a
single sample per run.
29
-------
ASHTABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
Table 6 - Sample Collection and Analysis Schedule
Type
Sample
Sediment
Water
Oil
Gu
Analyiia
T. Solidj and V. Solid*
TOC
Oil and Great*
PCB* Aroclon and Coo|eaera
Volatile* (8 compound*)
Semi- Volatile! and Peaticide*
Metab
Grain Size
pH
T. Solidi
TOC
Oil and greate
PCB* Aroclon and Congenera
Volatile* (8 compounda)
Semi- Volatile! and Pcaticidea
Metala
PH
T. Solid*
TOC
Oil and greaie
PCBa Aroclon and Congenen
Volatile* (8)
Semi- Volatile* Pesticide*
Metal*
pH
T. Solidi
PCD* Aroclon and Congenen
Dioxim and ruran*
Mercury
1
Sediment
At Dredge
1 Sample*
9
9
9
9
9
9
9
9
9
2
Make-up
Water
1 Sample*
3
3
3
3
3
3
3
3
3
Dryer
In
1 Sample*
27
27
27
27
9
9
9
9
9
4
Dryer
Out
f Sample*
27
27
27
27
9
9
9
9
9
5
Vapor
Stream
No. 1
f Sample!
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
6
Vapor
Stream
No. 2
f Sample*
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
TOTAL
(leai
QA/QC)
81
81
81
81
45
45
45
45
45
12
12
12
12
12
12
12
12
9
9,
9
9
9
9
9
9
9
9
9
9
30
-------
ASHTABULA DEMONSTRATION
QAPJP - REVISION 3.0
21 AUGUST 1992
Table 6 (Cont) - Sample Collection and Analysis Schedule
Type
Simple
Sediment
Water
Oil
Gas
Analysis
T. Solidi and V. Solids
TOC
Oil and Grease
PCBa Aroclora and Congeners
Volatile, (g compounds)
Semi-Volatile* and Pesticide.
Metals
Grain Size
PH
T. Solid.
TOC
Oil and trease
PCBa Aroclora and Congeners
Volatile, (g compounds)
Semi- Volatile, and Pesticide.
Metal.
pH
T. Solid.
TOC
OUandgraue
PCB. Aroclora and Congeners
Volatile, (g compound.)
Semi- Volatile, and Peaticide*
Metal.
pH
T. Solid.
PCB* Aroclora and Congeners
Dioxinj and furara
Mercury
Total
PTOCCM
Sample*
(w/oQQ
81
81
81
81
45
45
45
45
45
12
12
12
12
12
12
12
12
9
9
9
9
9
9
9
9
9
9
9
9
Field*
Triplicate.
10
10
10
10
g
g
g
g
g
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Lab
Triplicate**
10
10
10
10
6
6
6
6
0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0
0
2
Lab
Blank.
5
5
5
5
3
3
3
0
0
1
1
1
1
1
1
1
0
1
1
1
1
I
1
1
0
1
3
3
3
Cer. Ref
Material.
0
5
0
5
3
3
3
0
0
0
1
0
0
1
0
I
0
0
0
0
0
1
0
1
0
0
0
0
0
Matrixc
Spike +
Duplicate
0
0
10
10
6
6
6
0
0
0
2
2
2
2
2
2
0
0
0
0
2
2
2
2
0
0
2
2
2
Total
Sample.
106
111
116
121
71
71
71
59
53
17
20
19
19
20
19
20
16
14
14
14
16
17
16
17
13
14
16
16
18
OlbS A - Field triplicates will be collected in separate container* at the same sampling point and time period.
B - Laboratory triplicate, will be performed on aliquot, from the same sample container.
C - Matrix spike, and matrix .pike duplicate, will be performed on spiked samples where pouible. If sample volume is insufficient, spikes
will be prepared from laboratory samples.
31
-------
ASHTABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
Table 7 - Analysis Schedule for TCLP
Type
Sample
Leachate
Analyiif
T. Solid.
TOC
Oil and grease
PCBi Aroclora and Congenen
Volatile* (8 compounds)
Semi- Volatile* and Pesticide*
Metals
pH
Total
Procett
Simp let*
(w/oQO
0
0
0
9
9
9
9
18
TCLP
Extraction
Triplicate!*
0
0
0
2
2
2
2
4
TCLP
Extnction
Blank*c
2
2
2
2
4
Lab
Analytical
Triplicate*
0
0
0
2
2
2
2
0
Analytical
Method
Blanks
0
0
0
1
1
1
1
0
Cer. Ref
Material*
0
0
0
0
0
0
0
0
Matrix
Spike +
Duplicate
0
0
0
2
2
2
2
0
Total
Sample*
0
0
0
18
18
18
18
26
NOTES A - Three aeU of samples will be collected from the sediment a> dredged, the feed to the thermal processor, and the product exiting the thermal
processor.
B - One of the TCLP extractions will be performed in triplicate using sample from the same sample container.
C - Two extraction blanks will be performed using the TCLP leaching fluid, which will be carried through the mixing, filtration, and analysis steps.
32
-------
ASHTABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
5.0 SAMPLE CUSTODY PROCEDURES
Samples collected for evaluation of the pilot project will be
maintained under chain of custody to document that the integrity of the
samples was maintained during storage and transport. A Chain of Custody
Record similar to that shown in Figure 8 will be completed for each cooler
shipped to Battelle. The samples collected during the field evaluation will
be labeled documenting the sample I.D., time and date of collection, and the
location from where the sample was taken. The sample ID will be placed on the
label adjacent to the "sponsor no." The sample ID will be written in the
following format:
00 XXX 0000 XX XO X
Day of Month Time Sample Set (A,B, or C) Type
Month (24-hr clock) Point Run (1,2, or 3) Sample
where: Sample point - No. in Figure 7
Type sample - M for metals
0 for organics
G for grain size
S for solids
The amount/type of preservative that was added will also be noted on the
custody form.
Buffalo District personnel will pack and ship the field samples
within 24 hours of collection. Samples will be shipped by overnight delivery
service to the Battelle Laboratory in coolers containing ice. If "blue ice"
is used in the coolers, samples will be initially cooled with regular ice
prior to being packed in coolers with blue ice. Samples should be protected
from freezing prior to arriving at the laboratory. The Chain of Custody
Record will be completed for each cooler shipped to the laboratory. Custody
records will be filled out using permanent water insoluble ink. Sample
descriptions on the custody record will agree exactly with the identifications
on the samples. The original for the custody record will be placed in a
water-tight plastic bag and taped to the inside of the cooler lid. The field
crew will retain a copy of the custody form and receipts for shipping the
samples. Bubble packing material or styrofoam packing material will be used
to carefully wrap and protect all glass containers during shipment.
33
-------
ASHTABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
Sample custodian for the samples collected on site is Mr. Dave
Conboy. Alternate custodian on site is Mr. Todd Gentles or his
representative. Ms. Linda Bingler will act as sample custodian at Battelle
and is authorized to sign for incoming field samples, obtain documents of
shipment (e.g., bill of lading number or mail receipt), and verify the data
onto the sample custody records. Dr. Eric Crecelius will act as the alternate
custodian in the absence of Ms. Bingler. Upon receipt of samples at Battelle,
the samples will be logged in, and immediately placed in a secured, continuous
temperature-monitored walk-in refrigerator maintained at a temperature of 4
degrees C. Inter-laboratory custody procedures are described in Battelle's
QAPjP for the ARCS Program.
34
-------
ASHTABULA DEMONSTRATION
QAPJP - REVISION 3.0
21 AUGUST 1992
6.0
CALIBRATION PROCEDURES AND FREQUENCY
Laboratory instruments used for measurements of chemical parameters
are calibrated and standardized according to SOPs. Instrument calibration
will include a 3-point calibration curve with r2 of > 0.97 for acceptance for
metals. Instruments in the organic lab are calibrated by measuring response
factors at up to four different standard concentrations. An average of all
response factors is calculated. The relative standard deviation (RSD) should
be less than 25Z for all compounds to provide calibration validity. On-going
calibration check standards are to be run at the beginning, middle, and end of
each analytical run with mid-calibration range concentrations and acceptance
criteria of + 10 percent of the known concentration. Calibration data are
recorded in the project files. When obtainable, standard reference materials
such as NIST certified reference materials will be analyzed. When no NIST CRM
is available, other reference materials such as National Canadian Research
Council CRMs will be used.
Records of calibrations, regular performance checks, and service for
each device are maintained in bound log notebooks in such a manner that the
history of performance of the instruments may be easily reviewed. Analytical
reagents are labeled and dated when received, and are protected from
deterioration.
Field calibrations will be necessary for pH meters and temperature
meters or thermometers. The pH meter will be calibrated at a minimum of two
points that bracket the expected pH of the samples and are approximately three
pH units or more apart. Adjustments will be repeated on the two buffer
solutions until readings are within 0.1 pH units of the buffer solution value.
Calibration of the pH meter shall be performed once each day or every ten
samples, whichever is more frequent. Results of the calibration procedure
will be recorded in the field log book.
Thermometers or other thermocouples will be calibrated with a 2-
point calibration at temperatures of 0 and 100 degrees C. The .field device
must agree within 2 degrees C with the two reference points or it will be
35
-------
ASHTABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
replaced or corrected. Results will be recorded and retained in project
files.
RETEC will be responsible for calibrating all equipment for
measuring process rates, temperatures, and performance of the thermal
processing system. Procedures are provided in the RETEC "Quality Assurance
Plan." (Appendix C)
36
-------
ASHTABULA DEMONSTRATION
QAPJP - REVISION 3.0
21 AUGUST 1992
7.0
ANALYTICAL PROCEDURES AND CALIBRATION
Analytical procedures to be used by Battelle are presented in Tables
3 and 4. These methods have been previously accepted for analyses of samples
produced by the ARCS program. The required calibration for all analyses are
specified in the analytical procedures and will be followed. Section 9.0
discusses internal and external quality control checks. QAPPs prepared by
Battelle Marine Sciences Laboratory and RETEC are provided as Appendices B and
C.
37
-------
ASHTABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
8.0 DATA REDUCTION, VALIDATION AND REPORTING
Data will be reduced by the procedures specified in the methods and
reported by the laboratory in the units also specified in the methods. The
USAGE Project Manager or Project Engineer will review the results and compare
the QC results with data quality objectives defined in Section 3.
All data will be reviewed to ensure that the correct codes and units
have been included. All organic and inorganic data for solids or sediments
will be reported as /ig/g on a dry weight basis, except that TOG, total solids,
and total volatile solids will be reported as percent, and pH will be reported
in standard units. All metals and organics in water will be reported as ng/l.
Total solids and suspended solids in water will be reported as mg/8.
All laboratory data generated during the analytical procedures will
be submitted as part of the final data package. Raw data sheets,
chromatograms, QA/QC sample analyses, and similar information will be
included. Laboratory data will be reduced and placed in tables or arrays and
appropriate statistical techniques will be used to evaluate significant
differences between treatment runs, between replicate samples, and between
quality control known values vs. laboratory values. Final data will also be
submitted in computer-readable format on disk as well as hardcopy. At least
two technical reviewers, one from the USEPA and one from the USAGE, will
review the results of the data reduction process and validate its
acceptability.
38
-------
ASHTABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
9.0
INTERNAL QUALITY CONTROL CHECKS
When available, all methods will incorporate analysis of certified
reference materials and include spike additions of known amounts of material
of interest to the samples. These procedures are used to determine the
accuracy of the methods. Blind analytical triplicate analyses will be
conducted at a frequency of 1 per 20 samples analyzed. For procedures
involving chemical determinations, at least one procedural blank will be
analyzed for every 20 samples. Results for metals will be blank corrected and
the blank correction will be reported. Organic chemical results will not be
corrected for any contribution attributed to the procedural blanks or
recoveries. Recoveries of certified materials should be within ±20 percent of
the certified value for metals and within ±30 percent for orzanics
*5 H5 A&
Recoveries of matrix spikes should be within 2-5- to .135" percent for metals and
40 to 120 percent for organics. Recoveries of surrogate spike in organic
samples must be within 40 to 120 percent.
39
-------
ASHTABULA DEMONSTRATION
QAPJP - REVISION 3.0
21 AUGUST 1992
10.0
PERFORMANCE AND SYSTEM AUDITS
10.1
Internal Audits
Internal performance audits for the laboratory work will be
conducted to insure that the analysts have the proper training, that
appropriate work plans and procedures are being followed, and that the study
is on schedule. These audits should be frequent enough to ensure the
integrity and completeness of the work being conducted. At least one internal
audit shall be documented during work on the Ashtabula River project. A copy
of the internal audit will be submitted to the ARCS Program QA officer.
10.2
Systems Audit
Systems audits are conducted to determine an overall evaluation of
the project. At the conclusion of the study, Mr. Rob Cuello, Battelle QA
Officer, will conduct a systems audit to evaluate data produced by Battelle
Laboratory and verify the validity and integrity of the data. This review
will focus on the raw data package to be furnished to the Ashtabula District.
Laboratory analyses and sample custody forms will be reviewed for completeness
and accuracy. Results of the audit will be archived in the project files.
Ms. Judy Leithner will be responsible for audit of the field data and for
insuring the completeness and accuracy of data collected by the USAGE, as well
as that collected by Contractor. Results of the audit will be recorded in
project files.
10.3
External Audit
One external systems audit may be performed by the ARCS Quality
Assurance Officer for GLNPO.
40
-------
ASHTABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
11.0
PREVENTIVE MAINTENANCE
Equipment maintenance records will be kept on file for all
analytical equipment used for laboratory chemical analyses. The maintenance
procedures for all equipment used during the course of the study will be
conducted as recommended in the operations manuals for the equipment.
Instrument performance for equipment used in the field will be checked before
and after taking to the field.
41
-------
ASHTABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
12.0
CALCULATION OF DATA QUALITY INDICATORS
Data quality indicators used for this project are precision,
accuracy, and completeness. Precision for duplicate analyses will be
calculated as a relative percent difference, and for three or more analyses as
a relative standard deviation or coefficient of variation. Accuracy for
measurements where matrix spikes are used or certified reference materials are
analyzed will be calculated as a percent recovery. Completeness is defined as
the total number of valid (passing QA/QC requirements) obtained measurements
divided by the total number of measurements made. Completeness will also be
qualitatively evaluated by computing a mass balance for PCBs and dry solids
around the process system.
42
-------
ASHTABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
13.0
CORRECTIVE ACTION
At the earliest indication that a system in the laboratory or in the
field is not in compliance, the analyst will immediately notify the laboratory
project manager or the field project engineer and take steps to effectively
implement corrective action. Corrective action may also be required as a
result of systems audits described in the previous section. The problem of
noncompliance with the QA plan and corrective action taken will be documented
in the laboratory or field record book. Once corrective action has been
taken, analyses of questionable validity will be re-calculated or re-analyzed
provided that the sample integrity has not been compromised. Where archived
samples are available, they may be used for repeated analyses.
The laboratory QA officer will be notified of any corrective actions
immediately, as well as the project manager or field engineer. Any problems
and subsequent corrective actions will be documented by the laboratory QA
officer and reported to the ARCS QA officer.
43
-------
ASHTABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
14.0
QUALITY ASSURANCE REPORTS TO MANAGEMENT
Quality Assurance (QA) reports will be initiated at the request of
the GLNPO QA Officer or when a situation arises that requires corrective
action. The report will include a description of the variance, discrepancy or
problem, the required corrective action, the criteria for meeting site quality
control goals, and a schedule for completing the corrective action.
Laboratory QA reports will be the responsibility of the Battelle QA
Officer. Field reports will be the responsibility of the USAGE Project
Manager. A laboratory and a field QA report will be written upon completion
of the study. Reports will include copies of chain of custody forms,
analytical data, results of the validation effort, corrective actions taken,
and systems audits.
44
-------
ASHTABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
15.0
REFERENCES
Averett, Daniel E., Perry, Bret D., Torrey, Elizabeth J., and Miller, Jan A.
1990. "Review of Removal, Containment, and Treatment Technologies for
Remediation of Contaminated Sediment in the Great Lakes," Miscellaneous Paper
EL-90-25, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
Battelle Marine Sciences Laboratory, 1990. "Quality Assurance Project Plan
for Assessment and Remediation of Contaminated Sediments (ARCS) Assistance,"
Sequim, WA.
Rawe, James, Science Applications International Corporation and Mark Meckes,
Paul dePercin, and David Smith, United States Environmental Protection Agency,
1991. Guidance for Treatability Testing Under Cercla: Solvent Extraction and
Thermal Desorption," EPA/540/2-91/008, United States EPA, Cincinnati, Ohio.
Remediation Technologies, Inc., 1991. "Quality Assurance Plan, Field
Demonstration of Contractor Thermal Unit for Remediation of Ashtabula River
Sediments, Ashtabula River Area of Concern," Concord, MA.
U.S. Environmental Protection Agency, 1986. "Test Methods for Evaluating
Solid Waste," SW-846, Third Edition, Office of Solid Waste and Emergency
Response, Washington, DC.
U.S. Environmental Protection Agency, 1983. "Methods for Chemical Analysis of
Water and Wastes," EPA 600/4-79/-020, Environmental Monitoring and Support
Laboratory, Cincinnati, OH.
American Public Health Association, 1989. "Standard Methods for the
Examination of Water and Wastewater," 17th Edition, Washington, DC.
National Oceanic and Atmospheric Administration (NOAA), 1985. "National
\f
Status and Trends Program, Standard Analytical Procedures of the NOAA National
Analytical Facility," U.S. Department of Commerce, NOAA National Marine
Fisheries Service, Seattle, WA.
45
-------
ASHTABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
Woodward-Clyde Consultants, 1991. "Ashtabula River Investigation, Draft
Report," Woodward-Clyde Consultants, Chicago, Illinois.
46
-------
Ashlot>ulo6
*-oKellooos'vi
o Jefferson
CR AWFORD
ASHTABULA
LEGEND
Leoo°\
Oi
Andc»ver
WATERSHED
x' X BOUNDARY
SCALE IN MILES
WORK FLAW FOR PllOI SCALE DCMCwS16A!I 0*
FOR REMEDIATION OF CONTAMINATED SEDIMEWIS
AT THE ASHTABULA DIVER AREA Of CONCE5W
ASHTABULA RIVER WATERSHED
U.S. ASKT ENC1MEER DISTRICT, BUfFAlO |
TO ACCOMPAKT REPORT DATED: FEBRUARY 199Z |
I
Figure 1. Ashtabula River Basin.
-------
LAKE ERIE
RM - River Mile
Figure 2. Ashtabula River Area of Concern.
-------
iji!
IIs
m si-
m\ t;t
it 8 IV
I 18
** s s
B«t a 3
851 ' *
aa 6 "
« -<
a>
t*
WORK PLAN fOR PILOT SCALE OEHOKSTRATION
FOR REMEDIATION OF CONTAMINATED SEDIMENTS
AT THE ASHTA8ULA RIVER AREA OF CONCERN
ASHTABDLA RIVER
SEDIMENT SAMPLING LOCATION
- - - MARCH 1991
U.S. ARMT ENCINEEt DISTRICT, BUFFALO
TO ACCOMPANY REPORT DATED: FEBRUARY 199Z
I
-------
A>
A.
N
5.
7
/
"V
SEDIMENT ,
REMEDIATION
LOCATION /J
/ / / / / ^. / s
>
-------
USEPA EMSL-LV
NRD QA OFFICER
D. Gene Easterly
USAGE
QA OFFICER
Judy Leithner
USAGE WES
TECHNICAL ADVISOR
Daniel Averett
USEPA GLNPO
ARCS PROGRAM
MANAGER
Dave Cowgill
USEPA GLNPO
TECHNICAL
PROJECT MANAGER
Steve Garbaciak
USAGE
PROJECT MANAGER
Steve Yaksich
USAGE
PROJECT ENGINEER
Dave Conboy
USEPA EMSL-LV
ARCS QA OFFICER
Brian Schumacher
BATTELLE MARINE
SCIENCES LABORATORY
PROJECT MANAGER
Linda Bingler
ARDL
PROJECT MANAGER
Figure 5. Project Organizational Structure
-------
Name/Title
Dave Cowgill
ARCS
Program Manager
Steve Garbaciak
Technical
Project Manager
Brian Schumacher
ARCS
QA Officer
Steve Yaksich
USACE
Project Manager
Dave Conboy
USACE
Project Engineer
Linda Bingler
Battelle
Project Manager
Judy Leithner
USACE
QA Officer
D. Gene Easterly
USEPA
EMSL-LV NRD
QA Officer
Daniel Averett
USACE WES
Technical
Advisor
Todd Gentles
ARDL
Project Manger
Mark McCabe
ReTec
Project Manager
Address
USEPA Great Lakes
National Program Office (G9J)
77 West Jackson Street
Chicago, IL 60604
USEPA Great Lakes
National Program Office (G9J)
77 West Jackson Street
Chicago, IL 60604
USEPA ORD Environmental Monitoring
Systems Laboratory
944 East Harmon Avenue
Las Vegas, NV 89193-3478
U.S. Army Engineer District
Buffalo District (CENCB-ED-HQ)
1776 Niagara Street
Buffalo, NY 14207-3199
U.S. Army Engineer District
Buffalo District (CENCB-ED-HQ)
1776 Niagara Street
Buffalo, NY 14207-3199
Battelle, Pacific Northwest Division
Marine Sciences Laboratory
439 West Sequim Bay Road
Sequim, WA 98382
U.S. Army Engineer District
Buffalo District (CENCB-ED-HQ)
1776 Niagara Street
Buffalo, NY 14207-3199
USEPA ORD Environmental
Monitoring Systems Laboratory
944 East Harmon Avenue
Las Vegas, NV 89193-3478
USAEWES
ATTN: CEWES-EE-S
3909 Halls Ferry Road
Vicksburg, MS 39180-6199
ARDL, Inc.
P.O. Box 1566, 1801 Forest Street
Mt Vernon, IL 62864
Remediation Technologies, Inc.
Damonmill Square, 9 Pond Lane
Concord, MA 01742
Tel. No.
(312)353-3576
(FTS)353-3576
(312)353-0117
(FTS)353-0117
(702)798-2242
(FTS)545-2242
(716)879-4272
(FTS)292-4272
(716)879-4418
(FTS)292-4418
(206)681-3626
(716)879-4272
(FTS)292-4272
(702)798-
(FTS)545-
(601)634-3959
(FTS)542-3959
(618)244-3236
(508)371-1422
Fax No.
(312)353-2018
(FTS)353-2018
(312)353-2018
(FTS)353-2018
(702)798-2454
(FTS)545-2454
(716)879-4426
(FTS)292-4426
(716)879-4426
(FTS)292-4426
(206)681-3699
(716)879-4426
(FTS)292^426
(702)798-2454
(FTS)545-2454
(601)634-3833
(FTS)542-3833
(618)244-1149
(508)369-9279
Figure 6. Points of Contact for Project Organization
-------
LEGEND
ASHTABULA RIVER PILOT PROJECT
MONITORING SCHEME FOR THERMAL DESORPTION PROCESS
SOLIDS STREAM
LIQUID STREAM
GAS STREAM
SAMPLE POINT
S=SOUD G=GAS
L=UQUID O=OVERSIZED
CONDENSER
NO. 1
CONDENSER
NO. 3
Figure 7. Process Schematic Diagram Showing Monitoring Points.
-------
OBanelle
SAMPLE CUSTODY RECORD Date
Page
, of.
Pacific Northwest Division
Marine Sciences Laboratory
439 West Sequim Bay Road
Sequim. Washington 98382
Project Name
Project Manag
Lab No.
.r Phona
Sample No.
Collection
Data
Relinquished by:
Signature Date Time
Printed Name
Company
Relinquished by:
Signature Date Time
Printed Name
Company
Matrix
Testing Parameters
Received by:
Signature Date Time
Printed Name
«;
Company
Received by:
Signature Date Time
Printed Name
Company
f Containers 1
0
.h
^Hro«t
Observations. Instructions
Total No. of Containers
Shipment Method:
Special Requirements or Comments:
DISTRIBUTION:
1. Provide white and yellow copies to the
Laboratory
2. Return pink copy to Project file or to
project manager.
3. Laboratory to return signed white copy 10
Battelle for project files
BC-1800-192 (02,911
Figure 8. Chain of Custody Form
-------
ASHTABULA DEMONSTRATION
QAPJP - REVISION 3.0
21 AUGUST 1992
Appendix A
Field Procedures for Filling Sample
Containers and for Packing and
Shipping Ice Chests
Al
-------
ASHTABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
1.0 Quantity of Material
Fill each container as specified under that analysis description
(below).
2.0 Labels
Each container has a label specifying the analyses to be done on
that particular sample. The labels are very specific. For example, i f the
label says to collect a sample for PAH, TVS and TS, the sample placed in that
container should be set up for those analyses. Each jar is chosen and
specially prepared for particular types of analyses, i.e., a metals sample
collected in a PAH container will not be a valuable metals sample.
All containers have a piece of protective clear tape over the label,
or have waterproof labels. Permanent marking pen ink will remain on the clear
tape so write your information (sponsor no., date, time, extra notes) on the
label with a permanent marking pen only.
3.0 Sampling Precautions
Sediments
3.1 Metals Containers
The metals containers (spex jars) are acid-cleaned prior to
shipment. Care should be taken to maintain the clean environment within the
jar. When the sample is ready to be put into the jar, remove the lid and hold
it in one hand while placing the sample in the jar with the other hand. A
split for TOG will be taken from the metals container. Carefully replace the
lid, tighten securely and keep cold, but not frozen.
Fill the metals containers (spex jars) 3/4 of the way full.
A2
-------
ASHTABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
3.2
Organics Containers
The organics containers are solvent-rinsed; use the same protocol as
instructed for the metals containers. Keep the samples cold, but not frozen.
The jars will be sent wrapped in bubble-pak. Re-wrap each jar before shipping
to Battelle. Every effort should be made to make Battelle aware of
potentially high (>100 ppm) PCB samples.
Fill the organics containers 3/4 of the way full.
The volatiles (CB, HCB, HCBD and DCB) containers are solvent-rinsed
4 oz glass jars; use the same protocol as described for metals containers,
except fill the jar completely to the top - NO HEAD SPACE. Keep the samples
cold, but not frozen.
3.3
Grain-size. TS and TVS Containers
The grain-size containers are snap-cap. Be sure the lids are
tightly closed before packing to ship. It is a good idea to tape the lids
closed, but do not tape over the labels. We will include a roll of pressure
sensitive tape to seal the containers closed. Keep these samples cold but not
frozen.
Fill the grain-size, TS, and TVS containers completely full
3.4
TVS. TS and TOG Containers
See sections 3.1 and 3.3.
3.5
TS and Containers
The TS and containers are 500 m« Poly bottles. Caps should be
tightly closed prior to shipping. Samples should be kept cold, but not
A3
-------
ASHTABULA DEMONSTRATION
QAPjP REVISION 3.0
21 AUGUST 1992
frozen.
Fill the TS containers completely full, but do not freeze.
3.6 PCB. Pesticides, and Semi-Volatlles Containers
The PCB, semi-volatiles, and pesticide containers are 1 litre
solvent-rinsed glass bottles. Battelle sent a backup for each organics sample
due to the likelihood of breakage during shipping or sampling. Fill each
container 3/4 of the way full and cap tightly. Samples should be kept cold,
but not frozen. Every effort should be made to make Battelle aware of
potentially high (>100ppm) PCB samples.
Fill each organic container 3/4 of the way full.
The volatiles (CB, HCB, HCDB and DCS) containers are 40 m« septa cap
glass bottles which have been solvent-rinsed. Fill the bottles to the top
allowing NO HEAD-SPACE. Keep the samples cold, but not frozen.
Fill each container to the top - NO HEAD SPACE.
3.7 Oil and Grease
The oil and grease containers are 1 liter solvent-rinsed amber
bottles. Follow the same protocol as described for metals containers. Keep
samples cold, but not frozen.
Fill each container 3/4 of the way full.
3.8 TOG Containers
The TOC containers are 60 m£ glass -jars. The jars will be wrapped
in bubble-pak when received and they should be re-wrapped in bubble pak prior
to shipment. Keep the samples cold, but not frozen.
A4
-------
ASIITABULA DEMONSTRATION
QAPJP - REVISION 3.0
21 AUGUST 1992
Fill each container completely full, but do not freeze.
3.9 Metals Containers
The metals containers are Teflon. After sampling and filtering,
acidify the sample in the Teflon bottle by adding one vial of dilute, high-
purity nitric acid (provided by Battelle). Each filtered metals sample must
be acidified and may be shipped at room temperature.
Fill the metals Teflon containers 3/4 of the way full. Return all unused
Teflon bottles and used or unused Teflon vials and unused filtration units.
4.0 Shipping
Keep all refrigerated samples cold, but not frozen.
Pack all samples appropriately for a rough ride. All glass
bottles, jars and jugs should be wrapped in bubble pack and situated
in each cooler for least movement during shipment. Stand all
containers upright.
Poly, Teflon and snap-cap containers do not have to be packed in
bubble pak. Make sure all lids are tightly closed to prevent any
leakage. Snap-cap bottles should be taped closed, but since the
tape is not transparent, do not tape the labels. Stand all bottles
and jars in an upright position. If leakage occurs during shipping,
some samples may be lost due to insufficient volume or cross-
contamination.
All Teflon vials used by Battelle to transport dilute, high-
purity acid for sample preservation by USAGE, should be returned to
Battelle. The acid concentration is dilute to ensure safe
conditions during shipping and to the sampler. Re-wrap the vials
(even if empty) the way you received them for return shipment.
Chain-of-Custody must be maintained for all samples. Fill out
the chain-of-custody forms completely, keep the pink copy and
send Battelle the white and yellow copies. Battelle will fill
out the yellow copy and return it to USAGE.
Do not ship any samples on Friday or before a holiday.
A5
-------
ASHTABULA DEMONSTRATION
QAPjP - REVISION 3.0
21 AUGUST 1992
Organic and metals sediment samples must be kept cold, but not
frozen. TOG, TS, TSS and organic water samples must be kept
cold, but not frozen. Pack each cooler with sufficient blue ice
to maintain approximately 4"C during shipping. NOTE: If you
pack water samples in glass containers right next to the blue ice
packs, they will freeze and break before they reach Battelle. Place
some sort of insulation between the jars or bottles and the blue
ice.
TOC water samples must be acidified with 25X phosphoric acid
between 2 and 24 hours after collection, refrigerated and sent to
Battelle as soon as possible.
A6
-------
APPENDIX B
BATTELLE LABORATORY ANALYTICAL DATA
Note: This is a censored data set, with only raw analyses provided.
Samples and analyses related to quality assurance and quality control
measures are not presented. This, along with the fact that the following
pages are a combination of several individual data reports, the page
numbers are no longer correct and should be ignored.
-------
ASHTABULA PILOT PROJECT (C F #467)
GRAIN SIZE - TOTAL SOLIDS ANALYSIS
9/29/93
MSL Code
467ASH-1
467ASH-2
467ASH-3
467ASH-4
467ASH-5
467ASH-6
467ASH-7
467ASH-8
467ASH-9
467ASH-76
467ASH-77
467ASH-99
467ASH-102
467ASH-119
467ASH-120
467ASH-137
467ASH-140
467ASH-140
467ASH-140
467ASH-165
467ASH-168
467ASH-178
467ASH-182
467ASH-199
467ASH-202
467ASH-215
467ASH-218
467ASH-236
467ASH-238
467ASH-311
467ASH-315
467ASH-317
467ASH-321
467ASH-324
467ASH-332
467ASH-353
467ASH-360
Sponsor ID
02SEP14301S2BG
02SEP13451S1CGS
02SEP14451S2CG
02SEP14001S2AG
02SEP14552S3AGS
02SEP13301S1BGS
02SEP15401S3CGS
02SEP13201S1ASG
02SEP15201S3BG
11SEP08405S1A
11SEP08406S1A
11SEP15503S1B
11SEP16204S1B
14SEP08305S1B
14SEP08306S1B
14SEP17204S1C
Rep1 14SEP12353S1C
Rep 2 14SEP12353S1C
Rep 3 14SEP12353S1C
15SEP08305S1C
15SEP08306S1C
15SEP11434S2A
15SEP11474S2A
15SEP13153S2A
15SEP13454S2A
16SEP08503S2A
16SEP08506S2A
16SEP14154S2B
16SEP13203S2B
18SEP08306S2C
18SEP08316S2C
18SEP08326S2C
18SEP09005S2C
17SEP09005S2B
17SEP09006S2B
17SEP13353S2C
17SEP18054S2C
% Total
Solids
60.62
55.58
51.92
53.95
54.32
55.02
53.26
55.75
57.25
56.66
67.63
49.56
97.32
48.72
88.53
99.91
49.80
50.53
50.94
78.99
98.65
99.61
99.83
54.64
99.61
57.67
64.92
99.10
55.16
96.72
98.40
97.16
73.18
80.85
97.42
47.23
99.94
Predicted
Dry
Mass (g)
7.4260
7.2479
6.2303
6.9381
6.7958
6.8832
5.9009
7.3485
7.0704
6.9866
5.6806
7.1613
5.8390
6.6842
4.6391
6.9138
8.8894
8.2669
6.4545
2.8990
5.9189
5.0802
9.2639
6.9718
10.7375
7.4388
2.8695
5.5892
8.1028
4.3042
4.4871
4.4689
3.3518
3.7112
4.3352
4.0428
4.4775
Actual
Dry
Mass (g)
5.8291
7.4384
6.0241
5.9298
6.6398
6.7234
5.7485
6.2322
6.2253
6.6525
5.4956
6.0697
5.3481
6.6070
4.0835
6.0429
8.4956
7.8342
6.1084
2.8716
6.2860
4.9565
9.0564
6.9072
8.4968
7.2210
2.7336
5.4735
7.7875
4.5665
4.8231
4.8016
3.5355
3.9297
4.4196
3.7367
4.6984
Estimated
% Recovery
78.50
102.63
96.69
85.47
97.70
97.68
97.42
84.81
88.05
95.22
96.74
84.76
91.59
98.85
88.02
87.40
95.57
94.77
94.64
99.05
106.20
97.56
97.76
99.07
79.13
97.07
95.26
97.93
96.11
106.09
107.49
106.97
105.48
105.89
101.95
92.43
104.93
Page 1
-------
ASHTABULA PILOT PROJECT (C F #467)
GRAIN SIZE - TOTAL SOLIDS ANALYSIS
9/29/93
MSLCode
467ASH-369
467ASH-369
467ASH-369
467ASH-372
467ASH-386
467ASH-389
467ASH-405
467ASH-408
467ASH-408
467ASH-408
467ASH-423
467ASH-426
467ASH-429
467ASH-432
467ASH-435
467ASH-437
467ASH-494
467ASH-497
467ASH-497
467ASH-497
Sponsor ID
Rep1 18SEP14004S3A
Rep 2 18SEP14004S3A
Rep 3 18SEP14004S3A
18SEP13353S3A
21SEP13455S3A
21SEP13456S3A
21SEP18314S3B
Rep1 21SEP18324S3B
Rep 2 21SEP18324S3B
Rep 3 21SEP18324S3B
21SEP16253S3B
21SEP19204S3B
22SEP09155S3B
22SEP09306S3B
22SEP13353S3C
22SEP14204S3C
22SEP17105S3C
Rep1 22SEP17156S3C
Rep 2 22SEP17156S3C
Rep 3 22SEP17156S3C
% Total
Solids
99.43
99.41
99.47
46.35
66.83
89.04
99.87
99.81
99.83
99.86
45.90
99.97
76.47
94.68
51.06
99.81
19.36
81.89
81.57
75.96
Predicted
Dry
Mass (g)
4.4643
4.5034
4.5259
6.3453
3.6557
3.8288
4.6542
4.7907
4.8217
4.7731
6.2334
4.5288
3.7930
4.6204
6.7547
4.6912
5.3434
3.8898
3.7197
3.3348
Actual
Dry
Mass (g)
4.8111
4.7782
4.9261
6.8838
3.5167
3.5639
4.5696
4.7774
4.8674
4.7551
6.6894
4.9265
3.6751
4.4462
7.6552
4.7703
5.3801
4.4705
3.8258
3.5585
Estimated
% Recovery
107.77
106.10
108.84
108.49
96.20
93.08
98.18
99.72
100.95
99.62
107.31
108.78
96.89
96.23
113.33
101.69
100.69
114.93
102.85
106.71
REPLICATE ANALYSES
467ASH-140
467ASH-140
467ASH-140
467ASH-369
467ASH-369
467ASH-369
Rep1 14SEP12353S1C
Rep 2 14SEP12353S1C
Rep 3 14SEP12353S1C
RSD%
Rep1 18SEP14004S3A
Rep 2 18SEP14004S3A
Rep 3 18SEP14004S3A
RSD%
49.80
50.53
50.94
1%
99.43
99.41
99.47
0%
8.8894
8.2669
6.4545
16%
4.4643
4.5034
4.5259
1%
8.4956
7.8342
6.1084
16%
4.8111
4.7782
4.9261
2%
95.57
94.77
94.64
1%
107.77
106.10
108.84
1%
Page 2
-------
ASHTABULA PILOT PROJECT (C F #467)
GRAIN SIZE - TOTAL SOLIDS ANALYSIS
9/29/93
MSL Code
Sponsor ID
% Total
Solids
Predicted
Dry
Mass (g)
Actual
Dry Estimated
Mass (g) % Recovery
REPLICATE ANALYSES
467ASH-408
467ASH-408
467ASH-408
467ASH-497
467ASH-497
467ASH-497
Rep1 21SEP18324S3B
Rep 2 21SEP18324S3B
Rep 3 21SEP18324S3B
RSD %
Rep1 22SEP17156S3C
Rep 2 22SEP17156S3C
Rep 3 22SEP17156S3C
RSD%
99.81
99.83
99.86
0%
4.7907
4.8217
4.7731
1%
4.7774
4.8674
4.7551
1%
99.72
100.95
99.62
1%
81.89
81.57
75.96
4%
3.8898
3.7197
3.3348
8%
4.4705
3.8258
3.5585
12%
114.93
102.85
106.71
6%
RSD % = Relative Standard Deviation.
PageS
-------
ASHTABULA RIVER PILOT PROJECT (CF #467)
GRAIN SIZE ANALYSIS
1/29/93
PERCENT OF TOTAL MASS
MSLCode
467ASH-1
467ASH-2
467ASH-3
467ASH-4
467ASH-5
467ASH-6
467ASH-7
467ASH-8
467ASH-9
467ASH-76
467ASH-77
467ASH-99
467AS.H-102
467ASH-119
467ASH-120
467ASH-137
467ASH-140
467ASH-140
467ASH-140
467ASH-165
467ASH-168
467ASH-178
467ASH-182
467ASH-199
467ASH-202
467ASH-215
467ASH-218
467ASH-236
467ASH-238
467ASH-311
467ASH-315
467ASH-317
467ASH-321
467ASH-324
Sponsor ID
02SEP14301S2BG
02SEP13451S1CGS
02SEP14451S2CG
02SEP14001S2AG
02SEP14552S3AGS
02SEP13301S1BGS
02SEP15401S3CGS
02SEP13201S1ASG
02SEP15201S3BG
11SEP08405S1A
11SEP08406S1A
11SEP15503S1B
11SEP16204S1B
14SEP08305S1B
14SEP08306S1B
14SEP17204S1C
Rep 1 14SEP12353S1C
Rep 2 14SEP12353S1C
Rep 3 14SEP12353S1C
15SEP08305S1C
15SEP08306S1C
15SEP11434S2A
15SEP11474S2A
15SEP13153S2A
15SEP13454S2A
16SEP08503S2A
16SEP08506S2A
16SEP14154S2B
16SEP13203S2B
18SEP08306S2C
18SEP08316S2C
18SEP08326S2C
18SEP09005S2C
17SEP09005S2B
>2.00 mm
0.51
0.85
0.40
0.44
0.19
2.85
0.63
4.13
0.13
0.06
0.04
0.71
2.82
0.03
0.00
0.00
1.81
1.16
0.61
0.00
0.00
0.00
0.00
0.36
0.11
0.00
0.12
0.16
0.46
0.00
0.00
0.00
0.00
0.00
1.00-
2.00 mm
0.23
0.43
0.32
0.34
0.30
0.70
0.64
1.42
0.26
0.17
0.01
0.28
0.51
0.19
0.08
0.56
0.50
0.44
0.41
0.08
0.01
0.16
0.15
0.31
1.41
0.05
0.00
0.09
0.17
0.00
0.00
0.00
0.00
0.00
0.500-
7.00 mm
0.29
0.42
0.45
0.30
0.16
0.41
0.65
0.98
0.28
0.59
0.07
0.54
0.55
0.64
0.06
0.78
0.56
0.63
0.60
0.13
0.01
0.80
0.27
0.30
1.66
0.07
0.01
0.43
0.26
0.01
0.05
0.00
0.01
0.03
0.25-
0.500 mm
1.01
2.37
1.62
1.41
0.57
1.99
1.70
3.17
1.13
0.81
0.12
2.51
1.99
0.75
0.00
3.83
3.13
3.66
4.27
0.20
0.05
2.14
1.46
1.30
2.30
0.17
0.01
1.09
1.96
0.09
0.08
0.04
0.02
0.06
0.125-
0.250 mm
4.45
7.86
6.49
5.21
3.39
6.23
5.67
5.90
6.27
1.03
0.18
7.47
6.51
0.01
0.06
12.28
10.63
9.90
8.43
0.45
0.20
4.90
5.27
5.33
6.52
0.40
0.02
4.12
3.80
0.35
0.52
0.30
0.13
0.19
0.0625-
0.125 mm
14.18
13.54
13.30
11.22
10.27
10.65
10.21
11.75
13.29
1.02
0.37
13.83
12.38
0.96
0.86
16.81
13.75
14.46
15.73
0.65
1.35
11.86
11.09
12.02
14.09
1.42
0.05
9.84
9.52
2.14
2.57
1.69
0.61
1.29
48.0-
62.5 urn
16.61
18.12
18.86
0.67
3.01
8.33
3.48
4.49
3.08
2.59
6.99
12.98
0.60
0.48
6.07
3.51
6.31
10.98
8.38
0.14
5.85
9.20
6.93
15.64
11.58
0.28
1.61
11.18
8.22
4.38
3.81
4.75
1.36
3.97
31.2-
48.0 /j.m
21.55
5.97
1 .59
1 1.94
10.96
1 1.54
19.14
8.60
13.81
1 .44
2.55
6.19
1 5.93
4.48
3.04
16.81
9.51
7.45
5.17
1.11
12.98
13.24
17.71
6.14
7.58
7.53
0.88
10.60
11.66
4.38
7.30
4.17
2.49
7.33
Page 1
-------
ASHTABULA RIVER PILOT PROJECT (CF #467)
GRAIN SIZE ANALYSIS
1/29/93
PERCENT OF TOTAL MASS
MSLCode
467ASH-1
467ASH-2
467ASH-3
467ASH-4
467ASH-5
467ASH-6
467ASH-7
467ASH-8
467ASH-9
467ASH-76
467ASH-77
467ASH-99
467ASH-102
467ASH-119
467ASH-120
467ASH-137
467ASH-140
467ASH-140
467ASH-140
467ASH-165
467ASH-168
467ASH-178
467ASH-182
467ASH-199
467ASH-202
467ASH-215
467ASH-218
467ASH-236
467ASH-238
467ASH-311
467ASH-315
467ASH-317
467ASH-321
467ASH-324
Sponsor ID
02SEP14301S2BG
02SEP13451S1CGS
02SEP14451S2CG
02SEP14001S2AG
02SEP14552S3AGS
02SEP13301S1BGS
02SEP15401S3CGS
02SEP13201S1ASG
02SEP15201S3BG
11SEP08405S1A
11SEP08406S1A
11SEP15503S1B
11SEP16204S1B
14SEP08305S1B
14SEP08306S1B
14SEP17204S1C
Rep 1 14SEP12353S1C
Rep 2 14SEP12353S1C
Rep 3 14SEP12353S1C
15SEP08305S1C
15SEP08306S1C
15SEP11434S2A
15SEP11474S2A
15SEP13153S2A
15SEP13454S2A
16SEP08503S2A
16SEP08506S2A
16SEP14154S2B
16SEP13203S2B
18SEP08306S2C
18SEP08316S2C
18SEP08326S2C
18SEP09005S2C
17SEP09005S2B
23.0-
31.2 urn
7.75
6.29
8.23
2.70
13.74
9.70
8.77
6.87
8.80
6.37
6.70
6.19
10.92
13.26
8.33
7.68
11.82
10.82
13.16
1.25
11.33
13.40
13.34
18.42
12.00
13.24
0.15
15.64
12.07
10.95
11.53
13.33
8.15
12.93
15.6-
23.0 ^m
10.98
9.95
9.63
15.11
8.31
22.55
9.81
13.16
12.79
20.08
13.32
5.07
10.55
8.48
9.89
7.88
7.39
10.88
8.58
0.14
14.57
11.38
9.85
0.58
7.53
14.13
0.15
10.45
12.69
17.61
16.50
15.49
14.48
17.41
7.8-
15.6 urn
8.03
15.97
9.10
25.30
18.07
6.96
11.69
14.25
14.78
20.50
24.89
13.77
15.03
32.87
28.80
11.98
12.05
7.45
13.82
0.70
25.20
11.86
13.82
12.62
17.28
25.32
3.07
16.95
13.00
33.11
30.85
31.57
31.00
29.82
3.9-
7.8 urn
3.16
4.36
11.95
7.96
7.05
10.23
10.02
6.68
8.42
22.37
21.04
8.70
6.13
16.77
17.24
5.56
7.53
7.97
5.70
12.95
18.20
7.59
7.73
6.49
7.67
16.51
6.88
8.40
9.40
16.56
16.59
16.99
21.84
14.76
1.9-
3.9 p.m
1.85
3.87
4.25
3.64
7.71
0.71
3.13
5.71
4.37
11.60
12.45
5.14
4.71
10.23
6.76
4.96
2.78
2.35
3.21
18.94
7.64
6.05
5.34
3.53
3.01
10.36
28.09
5.33
2.31
7.88
7.63
8.58
11.54
8.04
0.976-
1.9 /j.m
2.40
3.50
4.65
6.54
2.47
3.39
5.22
4.81
4.82
7.22
5.90
7.45
4.04
4.72
12.83
2.52
4.94
5.26
4.19
50.84
1.08
2.74
2.78
4.57
4.38
5.26
34.39
3.29
6.01
1.40
2.07
2.58
6.90
2.54
0.488-
0.976 \j.m
4.25
1.88
3.32
1.75
4.64
0.59
2.71
3.40
2.38
2.22
3.20
2.31
3.74
1.51
0.29
3.91
1.69
0.97
1.44
8.36
1.21
2.50
2.08
1.91
1.51
2.77
19.46
2.19
3.24
1.05
0.25
0.42
1.02
1.43
<0.488 urn
2.74
4.62
5.84
5.46
9.16
3.15
6.54
4.69
5.40
1.92
2.18
6.85
3.59
4.60
5.68
0.93
5.60
5.62
6.29
4.04
0.32
2.18
2.16
10.48
1.37
2.49
5.12
0.22
5.24
0.09
0.25
0.08
0.45
0.20
Salt Blank
(9)
0.0353
0.0295
0.0298
0.0300
0.0235
0.3000
0.0260
0.0265
0.0305
0.0288
0.0300
0.0270
0.0260
0.0248
0.0310
0.0283
0.0270
0.0270
0.0267
0.0265
0.0314
0.0278
0.0303
0.0215
0.0282
0.0309
0.0308
0.0332
0.0314
0.0010
0.0018
0.0019
0.0021
0.0019
Page 2
-------
ASHTABULA RIVER PILOT PROJECT (CF #467)
GRAIN SIZE ANALYSIS
1/29/93
PERCENT OF TOTAL MASS
MSLCode
467ASH-332
467ASH-353
467ASH-360
467ASH-369
467ASH-369
467ASH-369
467ASH-372
467ASH-386
467ASH-389
467ASH-405
467ASH-408
467ASH-408
467ASH-408
467ASH-423
467ASH-426
467ASH-429
467ASH-432
467ASH-435
467ASH-437
467ASH-494
467ASH-497
467ASH-497
467ASH-497
1.00-
Sponsor ID >2.00 mm 2.00 mm 1
Rep 1
Rep 2
Rep 3
Rep 1
Rep 2
Rep 3
Rep 1
Rep 2
Rep 3
17SEP09006S2B
17SEP13353S2C
17SEP18054S2C
18SEP14004S3A
18SEP14004S3A
18SEP14004S3A
18SEP13353S3A
21SEP13455S3A
21SEP13456S3A
21SEP18314S3B
21SEP18324S3B
21SEP18324S3B
21SEP18324S3B
21SEP16253S3B
21SEP19204S3B
22SEP09155S3B
22SEP09306S3B
22SEP13353S3C
22SEP14204S3C
22SEP17105S3C
22SEP17156S3C
22SEP17156S3C
22SEP17156S3C
0.00
0.47
0.00
0.00
0.00
0.00
0.19
0.00
0.00
11.79
17.97
19.65
25.77
0.31
1.10
0.00
0.00
1.30
0.33
0.00
0.00
0.00
0.00
0.00
0.30
0.22
0.00
0.00
0.00
0.18
0.00
0.00
0.36
0.55
0.12
0.34
0.21
0.12
0.29
0.00
0.32
1.25
0.00
0.00
0.00
0.00
0.500-
'.00 mm 0,
0.01
0.19
0.17
0.43
0.14
0.22
0.14
0.01
0.02
0.39
0.21
0.21
0.22
0.21
0.21
0.04
0.00
0.43
1.67
0.00
0.00
0.00
0.00
0.25-
.500 mm 0.
0.01
0.98
1.72
2.18
1.20
1.02
0.42
0.04
0.00
1.11
0.97
0.84
0.78
0.82
1.33
0.05
0.01
1.40
2.62
0.01
0.00
0.02
0.01
0. 125- 0.0625-
250 mm 0.125 mm
0.08
5.06
7.07
4.40
3.53
3.34
2.20
0.10
0.03
4.41
4.40
4.28
4.00
4.24
5.08
0.07
0.05
4.46
6.21
0.05
0.02
0.04
0.05
0.97
11.00
13.02
9.61
9.24
9.18
7.56
0.32
0.51
10.87
10.35
10.07
9.75
9.85
11.13
0.62
0.80
9.11
11.45
0.38
0.21
0.30
0.23
48.0-
62.5 fim
5.
0.
6.
8.
7.
7.
2.
1.
0.
9.
8.
10.
9.
8.
11.
4,
43
32
64
98
87
80
96
82
79
89
46
19
00
19
,12
.24
4.77
3.81
5.79
2
6
0
2
.01
.98
.63
.14
31.2-
48.0 urn
4.62
12.85
10.47
9.73
9.38
10.96
9.24
2.84
1.35
10.42
7.70
6.90
6.39
12.74
11.69
4.14
4.14
13.64
9.14
2.01
4.38
3.87
4.05
Page 3
-------
ASHTABULA RIVER PILOT PROJECT (CF #467)
GRAIN SIZE ANALYSIS
1/29/93
PERCENT OF TOTAL MASS
MSL Code
467ASH-332
467ASH-353
467ASH-360
467ASH-369
467ASH-369
467ASH-369
467ASH-372
467ASH-386
467ASH-389
467ASH-405
467ASH-408
467ASH-408
467ASH-408
467ASH-423
467ASH-426
467ASH-429
467ASH-432
467ASH-435
467ASH-437
467ASH-494
467ASH-497
467ASH-497
467ASH-497
23.0- 15.6- 7.8-
Sponsor ID 31.2 urn 23.0 pm 15.6 y.m
Rep 1
Rep 2
Rep 3
Rep 1
Rep 2
Rep 3
Rep 1
Rep 2
Rep 3
17SEP09006S2B
17SEP13353S2C
17SEP18054S2C
18SEP14004S3A
18SEP14004S3A
18SEP14004S3A
18SEP13353S3A
21SEP13455S3A
21SEP13456S3A
21SEP18314S3B
21SEP18324S3B
21SEP18324S3B
21SEP18324S3B
21SEP16253S3B
21SEP19204S3B
22SEP09155S3B
22SEP09306S3B
22SEP13353S3C
22SEP14204S3C
22SEP17105S3C
22SEP17156S3C
22SEP17156S3C
22SEP17156S3C
15.30
11.88
12.26
13.72
15.99
14.78
12.61
6.37
7.63
11.64
11.39
9.20
8.41
18.06
13.80
9.03
9.45
22.89
14.09
7.73
7.25
7.01
6.18
17.56
9.63
13.79
13.72
14.82
13.56
15.34
8.53
9.09
11.12
8.79
10.93
7.74
14.59
12.50
13.61
16.01
14.26
12.49
14.42
10.47
11.29
12.25
28.06
13.49
17.28
19.87
20.26
20.79
25.92
22.07
14.03
10.24
10.21
8.71
9.51
13.99
16.64
25.36
30.05
10.35
18.20
27.21
21.47
26.24
23.72
3.9-
7.8 urn
15.75
7.49
7.58
8.23
8.62
8.28
6.86
23.20
12.57
7.79
6.61
6.41
6.48
7.65
6.41
17.74
21.95
6.85
7.55
16.28
14.67
16.31
15.96
1.9-
3.9 ^m
8.33
6.42
5.53
5.49
4.94
5.68
10.58
13.08
13.13
4.11
3.68
3.94
3.70
5.20
4.87
11.32
10.35
5.12
4.70
8.10
12.44
13.28
17.20
0.976-
1.9 urn 0.
1.36
4.07
3.15
2.33
2.85
3.33
5.23
13.76
24.36
2.01
2.18
1.15
1.09
3.89
3.09
8.71
1.53
4.28
3.61
14.87
9.84
13.38
12.25
0.488- Salt Blank
976 urn <0.488 \im (g)
2.35
4.07
0.94
1.08
1.00
1.06
0.23
6.03
12.91
0.70
1.00
2.47
0.93
0.06
0.41
4.03
0.45
1.67
0.34
6.02
9.93
3.97
5.51
0.18
11.78
0.17
0.25
0.17
0.00
0.35
1.82
3.59
3.15
5.53
4.93
5.89
0.00
0.49
0.76
0.45
0.10
0.59
0.89
2.33
3.66
0.45
0.0009
0.0274
0.0018
0.0018
0.0016
0.0017
0.0030
0.0377
0.0317
0.0296
0.0273
0.0275
0.0270
0.0036
0.0010
0.0025
0.0328
0.0011
0.0011
0.0341
0.0250
0.0293
0.0331
Page 4
-------
ASHTABULA RIVER PILOT PROJECT (CF #467)
GRAIN SIZE ANALYSIS
1/29/93
PERCENT OF TOTAL MASS
MSL Code
Sponsor ID
>2.00 mm
1.00-
2.00 mm
0.500-
1.00 mm
0.25-
0.500 mm
0.725-
0.250 mm
0.0625-
0. 125 mm
48.0-
62.5 \im
31.2-
48.0 urn
REPLICATE ANALYSES
467ASH-140
467ASH-140
467ASH-140
467ASH-369
467ASH-369
467ASH-369
4 7ASH-408
467ASH-408
467ASH-408
467ASH-497
467ASH-497
467ASH-497
Rep 1 14SEP12353S1C
Rep 2 14SEP12353S1C
Rep 3 14SEP12353S1C
RSD%
Rep 1 18SEP14004S3A
Rep 2 18SEP14004S3A
Rep 3 18SEP14004S3A
RSD %
Rep 1 21SEP18324S3B
Rep 2 21SEP18324S3B
Rep 3 21SEP18324S3B
RSD %
Rep 1 22SEP17156S3C
Rep 2 22SEP17156S3C
Rep 3 22SEP17156S3C
RSD%
1.81
1.16
0.61
50% *
0.00
0.00
0.00
NA
17.97
19.65
25.77
19%
0.00
0.00
0.00
NA
0.50
0.44
0.41
10%
0.00
0.00
0.00
NA
0.55
0.12
0.34
64% *
0.00
0.00
0.00
NA
0.56
0.63
0.60
6%
0.43
0.14
0.22
57% '
0.21
0.21
0.22
3%
0.00
0.00
0.00
NA
3.13
3.66
4.27
15%
2.18
1.20
1.02
43% *
0.97
0.84
0.78
11%
0.00
0.02
0.01
100% *
10.63
9.90
8.43
12%
4.40
3.53
3.34
15%
4.40
4.28
4.00
5%
0.02
0.04
0.05
42% *
13.75
14.46
15.73
7%
9.61
9.24
9.18
2%
10.35
10.07
9.75
3%
0.21
0.30
0.23
19%
6.31
10.98
8.38
27% *
8.98
7.87
7.80
8%
8.46
10.19
9.00
10%
6.98
0.63
2.14
102% *
9.51
7.45
5.17
29% *
9.73
9.38
10.96
8%
7.70
6.90
6.39
9%
4.38
3.87
4.05
6%
NOTE: All results are in percent.
RSD% - Relative Standard Deviation.
* - Outside QC criteria range (±20%).
Page 5
-------
ASHTABULA RIVER PILOT PROJECT (CF #467)
GRAIN SIZE ANALYSIS
1/29/93
PERCENT OF TOTAL MASS
MSLCode
23.0- 15.6- 7.8- 3.9- 1.9-
Soonsor ID 31.2 urn 23.0 \im 15.6 ^m 7.8 urn 3.9 urn
REPLICATE ANALYSES
467ASH-140
467ASH-140
467ASH-140
467ASH-369
467ASH-369
467ASH-369
467ASH-408
467ASH-408
467ASH-408
467ASH-497
467ASH-497
467ASH-497
Rep 1
Rep 2
Rep 3
Rep 1
Rep 2
Rep 3
Rep 1
Rep 2
Rep 3
Rep 1
Rep 2
Rep 3
14SEP12353S1C
14SEP12353S1C
14SEP12353S1C
RSD %
18SEP14004S3A
18SEP14004S3A
18SEP14004S3A
RSD %
21SEP18324S3B
21SEP18324S3B
21SEP18324S3B
RSD%
22SEP17156S3C
22SEP17156S3C
22SEP17156S3C
RSD%
11.82
10.82
13.16
10%
13.72
15.99
14.78
8%
11.39
9.20
8.41
16%
7.25
7.01
6.18
8%
7.39
10.88
8.58
20%
13.72
14.82
13.56
5%
8.79
10.93
7.74
18%
10.47
11.29
12.25
8%
12.05
7.45
13.82
30% *
19.87
20.26
20.79
2%
10.21
8.71
9.51
8%
21.47
26.24
23.72
10%
7.53
7.97
5.70
17%
8.23
8.62
8.28
3%
6.61
6.41
6.48
2%
14.67
16.31
15.96
6%
2.78
2.35
3.21
15%
5.49
4.94
5.68
7%
3.68
3.94
3.70
4%
12.44
13.28
17.20
18%
0.976- 0.488-
1.9 urn 0.976 fj.m <0.
4.94
5.26
4.19
11%
2.33
2.85
3.33
18%
2.18
1.15
1.09
42% *
9.84
13.38
12.25
15%
1.69
0.97
1.44
27% *
1.08
1.00
1.06
4%
1.00
2.47
0.93
59% *
9.93
3.97
5.51
48% *
Salt Blank
488 \im (g)
5.60
5.62
6.29
7%
0.25
0.17
0.00
91% *
5.53
4.93
5.89
9%
2.33
3.66
0.45
75% *
0.0270
0.0270
0.0267
1%
0.0018
0.0016
0.0017
6%
0.0273
0.0275
0.0270
1%
0.0250
0.0293
0.0331
14%
NOTE: All results are in percent.
RSD% = Relative Standard Deviation.
* = Outside QC criteria range (±20%).
Page 6
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
METALS IN SEDIMENT SAMPLES
9/29/93
MSLCode
467ASH-19
467ASH-20
467ASH-21
467ASH-22
467ASH-23
467ASH-24
467ASH-25
467ASH-26
467ASH-27
467 ASH -27
467ASH-27
467ASH-65
467ASH-65
467ASH-65
467 ASH -74
467 ASH -75
467ASH-100
467ASH-103
467ASH-117
467ASH-118
467ASH-136
467ASH-136
467ASH-136
467ASH-139
467ASH-166
467ASH-169
467ASH-179
467ASH-183
467ASH-198
467ASH-201
467ASH-214
467ASH-217
467ASH-237
467ASH-240
467ASH-245
467ASH-246
467ASH-247
467ASH-312
467ASH-314
467ASH-318
467ASH-322
467ASH-325
467ASH-334
Rep
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Sponsor ID
02SEP15401S3CM
02SEP13451S1CM
02SEP13201S1AM
02SEP14451S2CM
02SEP13301S1BM
02SEP14301S2BM
02SEP14001S2AM
02SEP14551S3AM
02SEP15201S3BM
02SEP15201S3BM
02SEP15201S3BM
10SEP1 500351 A
10SEP1 500351 A
10SEP1 500351 A
11SEP08405S1A
11SEP08406S1A
11SEP15503S1B
11SEP16204S1B
14SEP08305S1B
14SEP08306S1B
14SEP17204S1C
14SEP17204S1C
14SEP17204S1C
14SEP12353S1C
15SEP08305S1C
15SEP08306S1C
15SEP11444S2A
15SEP11484S2A
15SEP13153S2A
15SEP13454S2A
16SEP08505S2A
16SEP08506S2A
16SEP13203S2B
16SEP14204S2B
16SEP921600CARBT
16SEP921600CARB'B
16SEP921600CARB'M
18SEP08306S2C
18SEP08316S2C
18SEP08326S2C
18SEP09005S2C
17SEP09005S2B
17SEP09006S2B
As
XRF
17.7
15.2
17.9
20.3
19.1
17.0
22.7
19.5
16.1
17.1
15.9
16.9
16.2
15.2
22.8
24.3
14.6
17.1
21.6
18.4
15.7
15.8
15.5
17.1
38.1
18.0
17.6
17.7
16.7
18.2
21.8
44.9
20.4
18.0
4.68
5.08
3.16
21.1
23.4
24. 8
34.7
21.4
19.7
Cd
GFAA
2.78
1.29
2.31
3.36
2.42
2.04
2.75
3.43
2.00
1.83
1.81
1.14
1.15
1.29
2.99
3.82
3.12
1.47
2.10
3.75
0.95
1.06
1.07
1.28
3.03
1.41
2.55
2.46
3.00
2.34
3.25
8.79
4.08
3.58
0.05
0.03
0.03
4.62
4.75
4.91
8.04
3.50
3.54
Cr
XRF
151
155
234
186
126
116
414
468
162
162
144
109
129
120
271
331
115
127
167
143
137
147
136
102
325
143
135
126
157
142
231
556
218
179
25.1
22.3
16.8
363
337
385
598
243
210
Hg
CVAA
0.735
0.303
0.607
0.659
0.750
0.306
1.15
0.521
0.397
0.345
0.371
0.259
0.284
0.273
0.831
0.967
0.368
0.065
2.73
0.181
0.021
0.010
0.012
0.267
0.398
0.048
0.036
0.047
1.16
0.062
2.28
1.99
5.38
0.105
6.28
1.81
2.47
0.419
0.441
0.563
5.55
1.45
0.350
Pb
XRF
51.4
104
51.1
52.0
50.5
46.7
61.8
60.1
41.8
44.6
40.3
44.7
43.3
43.5
147
234
46.4
46.5
60.5
59.7
116
43.7
42.7
44.5
125
50.4
49.5
52.5
52.4
50.0
70.9
166
53.8
54.5
1.78
2.02
1.50
59.1
57.9
59.3
100
54.9
52.4
Zn
XRF
181
173
205
259
193
156
180
229
158
158
150
151
154
156
293
414
168
169
212
201
159
157
158
159
391
189
162
159
161
160
212
434
189
185
5.75
15.4
3.05
243
248
251
367
193
183
Pagel
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
METALS IN SEDIMENT SAMPLES
9/29/93
MSLCode
467ASH-352
467ASH-361
467ASH-361
467ASH-361
467ASH-371
467AHS-374
467ASH-387
467ASH-390
467ASH-404
467ASH-407
467ASH-422
467AHS-425
467ASH-430
467ASH-433
467ASH-459
467ASH-463
467ASH-492
467ASH-496
467ASH-502
467ASH-503
467ASH-504
467ASH-505
467ASH-505
467ASH-505
467ASH-506
Blank-1
Blank-2
Blank-3
B!ank-4
Blank-5
Rep Sponsor ID
17SEP13353S2C
Rep1 17SEP18054S2C
Rep 2 17SEP18054S2C
Rep 3 17SEP18054S2C
18SEP14004S3A
18SEP13353S3A
21SEP13455S3A
21SEP13456S3A
21SEP18314S3B
21SEP18324S3B
21SEP16253S3B
21SEP19204S3B
22SEP09155S3B
22SEP09306S3B
22SEP13353S3C
22SEP14204S3C
22SEP17105S3C
22SEP17156S3C
23SEP92CARBV
23SEP0800CARBT
23SEP0800CARB'M
Rep 1 23SEP0800CARB'B
Rep 2 23SEP0800CARBB
Rep 3 23SEP0800CARBB
10SEP15004S1A
As
XRF
21.5
22.5
NA
NA
24.8
23.3
17.3
65.8
17.1
18.4
18.5
17.8
32.2
20.2
19.6
20.3
26.2
40.7
2.43
4.54
4.27
5.15
3.95
4.85
16.5
NA
NA
NA
NA
NA
Cd
GFAA
5.12
4.52
4.21
4.36
4.41
4.01
6.58
14.8
2.72
2.47
2.73
2.76
5.78
3.09
3.21
3.37
5.42
8.51
0.02 U
0.31
NA #
0.10
NA
NA
1.4
0.02 U
0.02 U
0.01 U
0.01 U
0.02 U
Cr
XRF
370
324
NA
NA
403
357
342
1200
154
139
144
158
367
197
204
180
349
630
19.4
32.7
25.2
24.0
22.9
22.0
119
NA
NA
NA
NA
NA
Hg
CVAA
1.76
0.070
0.079
0.085
0.071
1.02
2.63
2.08
0.040
0.040
0.700
0.036
0.828
0.234
0.705
0.039
3.68
1.33
0.018
5.60
NA #
2.48
NA
NA
0.086
0.003 U
0.003 U
0.003
0.003
0.001
Pb
XRF
61.7
59.5
NA
NA
61.6
55.4
74.6
173
46.3
50.1
47.2
52.7
84.1
54.6
51.3
57.5
75.6
124
1.40 U
2.51
2.20
5.22
6.12
4.03
46.5
NA
NA
NA
NA
NA
Zn
XFF
242
234
NA
NA
264
256
221
714
164
168
172
168
330
211
204
209
276
454
2.29
12.1
14.0
18.2
18.9
18.3
149
NA
NA
NA
NA
NA
Page 2
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
METALS IN SEDIMENT SAMPLES
9/29/93
MSLCode
Rep
Sponsor ID
As
XRF
Cd
GFAA
Cr
XRF
Hg
CVAA
Pb
XRF
Zn
XRF
REPUCATE ANALYSES
467ASH-27
467 ASH -27
467ASH-27
467ASH-65
467ASH-65
467ASH-65
467ASH-136
467ASH-136
467ASH-136
467ASH-361
467ASH-361
467ASH-361
467ASH-505
467ASH-505
467ASH-505
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
02SEP15201S3BM
02SEP15201S3BM
02SEP15201S3BM
RSD%
10SEP1 500351 A
10SEP1 500351 A
10SEP1 500351 A
RSD %
14SEP17204S1C
14SEP17204S1C
14SEP17204S1C
RSD%
17SEP18054S2C
17SEP18054S2C
17SEP18054S2C
RSD%
23SEP0800CARB'B
23SEP0800CARB'B
23SEP0800CARBB
RSD%
16.1
17.1
15.9
4%
16.9
16.2
15.2
5%
15.7
15.8
15.5
1%
NA
NA
NA
NA
5.15
3.95
4.85
13%
2.00
1.83
1.81
6%
1.14
1.15
1.29
7%
0.95
1.06
1.07
6%
4.52
4.21
4.36
4%
0.10
NA
NA
NA
162
162
144
7%
109
129
120
8%
137
147
136
4%
NA
NA
NA
NA
24.0
22.9
22.0
4%
0.397
0.345
0.371
7%
0.259
0.284
0.273
5%
0.021
0.010
0.012
41% **
0.070
0.079
0.085
10%
2.48
NA
NA
NA
41.8
44.6
40.3
5%
44.7
43.3
43.5
2%
116
43.7
42.7
62% **
NA
NA
NA
NA
5.22
6.12
4.03
20%
158
158
150
3%
151
154
156
2%
159
157
158
1%
NA
NA
NA
NA
18.2
18.9
18.3
2%
U = Below detection limit.
# = Sample 467ASH-504 blew up during digestion.
NA = Not applicable.
NS = Not Spiked.
* = Recovery outside QC criteria range (85-115%).
RPD% = Relative Percent Difference.
@ = RPD % outside QC criteria range (±20%).
RSD% = Relative Standard Deviation.
** = RSD % outside QC criteria range (±20%).
Page 5
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
METALS IN WATER SAMPLES
9/29/93
(concentrations in jj.g/L)
MSLCode
467ASH-34
467ASH-35
467ASH-36
467ASH-68
467ASH-69
467ASH-69
467ASH-69
467ASH-105
467ASH-109
467ASH-141
467ASH-142
467ASH-205
467ASH-206
467ASH-243
467ASH-244
467ASH-265
467ASH-266
467ASH-303
467ASH-308
467ASH-377
467ASH-382
467 ASH -382
467 ASH -382
467ASH-440
467ASH-468
467ASH-471
467ASH-475
467ASH-475
467ASH-475
467ASH-476
467ASH-477
Blank-1
Blank-2
Rep
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Sponsor ID
03SEP12003L3CM
03SEP15453L2BM
03SEP15253L1AM
10SEP16157L1A
10SEP16158L1A
10SEP16158L1A
10SEP16158L1A
11SEP16458L1B
11SEP16507L1B
14SEP19008L1C
14SEP19057L1C
15SEP14458L2A
15SEP14458L2A
16SEP15158L2B
16SEP15157L2B
16SEP15178L2B
16SEP15168L2B
17SEP18458L2C
17SEP18507L2C
18SEP15008L3A
18SEP15007L3A
18SEP15007L3A
18SEP15007L3A
22SEP16008L3C
22SEP08458L3B
22SEP08307L3B
22SEP15327L3C
22SEP15327L3C
22SEP15327L3C
22SEP15317L3C
22SEP15307L3C
As
GFAA
1.70
1.20 U
1.20 U
4.80
8.70
9.10
8.20
20.3
62.2
9.50
110
51.5
49.4
51.7
73.3
51.6
43.0
104
50.3
25.0
91.9
91.5
87.1
16.2
87.3
132
76.4
NA
NA
78.8
73.5
4.80
4.30
Cd
ICP/MS
0.513
0.520
0.395
22.2
1.04
0.945
0.963
1.02
13.0
2.05
49.1
3.96
1.88
5.91
14.5
5.02
4.44
15.8
18.1
4.36
40.6
40.4
41.2
1.41
2.67
36.8
7.66
NA
NA
7.90
434
0.258
0.261
Cr
ICP/MS
9.29
6.36
5.30
65.2
26.8
26.0
26.4
29.4
120
27.2
948
156
62.0
230
258
186
152
825
494
294
998
1010
1030
56.3
115
883
267
NA
NA
281
280
0.677
0.753
Hg
CVAF
0.101 U
0.101 U
0.101 U
13.6
18.1
20.2
19.6
29.1
103
167
12.3
98.4
21.2
108
178
80.4
102
70.9
37.8
60.4
218
NA
NA
63.5
327
126
56.6
53.5
56.1
52.2
56.4
0.196
0.290
Pb
ICP/MS
11.4
10.9
8.71
179
61.0
60.0
59.2
41.6
179
38.1
1990
80.4
41.3
157
97.7
118
81.4
180
249
51.0
185
183
184
19.6
37.7
216
78.7
NA
NA
83.8
85.2
0.33 U
0.33 U
Zn
GFAA
64.1
54.1
55.5
2180
100
100
101
73.4
440
87.3
9560
279
151
485
913
350
280
1071
1210
249
1690
1670
1760
74.8
172
1980
454
NA
NA
478
490
8.30 U
8.30 U
STANDARD REFERENCE MATERIAL
1643c
1643c
certified value
range
78.5
82.6
82.1
±1.2
12.4
12.6
12.2
±1.0
20.5
19.7
19.0
±0.6
NA
NA
NA
NA
33.4
34.5
35.3
±0.9
80.2
79.5
73.9
±0.9
Page 1
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
METALS IN WATER SAMPLES
9/29/93
(concentrations in
MSLCode Rep
Amount Spiked
467ASH-440
467ASH-440 + Spike
Amount Recovered
Percent Recovery
Amount Spiked
467ASH-440
467ASH-440 + Spike
Amount Recovered
Percent Recovery
Sponsor ID
22SEP16008L3C
22SEP16008L3C
DUP
RPD %
As
GFAA
NS
NS
NS
NS
NS
NS
NS
NB
NS
NS
NS
Cd
ICP/MS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
Cr
ICP/MS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
Hg
CVAF
20.0
63.5
82.6
19.1
95%
20.0
63.5
79.1
15.6
78% *
20%
Pb
ICP/MS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
Zn
GFAA
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
REPUCATE ANALYSES
467 ASH -69 Rep 1
467 ASH -69 Rep 2
467ASH-69 Rep 3
467ASH-382 Rep 1
467ASH-382 Rep 2
467 ASH -382 Rep 3
467 ASH -475 Rep 1
467 ASH -475 Rep 2
467ASH-475 Rep 3
10SEP16158L1A
10SEP16158L1A
10SEP16158L1A
RSD%
18SEP15007L3A
18SEP15007L3A
18SEP15007L3A
RSD%
22SEP15327L3C
22SEP15327L3C
22SEP15327L3C
RSD%
8.70
9.10
8.20
5%
91.9
91.5
87.1
3%
NA
NA
NA
NA
1.04
0.945
0.963
5%
40.6
40.4
41.2
1%
NA
NA
NA
NA
26.8
26.0
26.4
1%
998
1010
1030
2%
NA
NA
NA
NA
18.1
20.2
19.6
5%
218
NA
NA
NA
56.6
53.5
56.1
3%
61.0
60.0
59.2
2%
185
183
184
1%
NA
NA
NA
NA
100
100
101
1%
1690
1670
1760
3%
NA
NA
NA
NA
U = Not detected at detection limit.
NA = Not applicable.
NS = Not spiked.
* = Recovery outside QC criteria range (85-115%).
RSD% = Relative Standard Deviation.
PageS
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
TOTAL SOLIDS IN SEDIMENT SAMPLES
9/29/93
MSLCode
467ASH-1
467ASH-2
467ASH-3
467ASH-4
467ASH-5
467ASH-6
467ASH-7
467ASH-8
467ASH-9 Rep 1
467ASH-9 Rep 2
467ASH-9 Rep 3
467ASH-46
467ASH-49
467ASH-52 Rep 1
467ASH-52 Rep 2
467ASH-52 Rep 3
467ASH-55
467ASH-58
467ASH-76
467ASH-77
467ASH-81
467ASH-84
467ASH-87
467ASH-90
467ASH-93
467ASH-96
467ASH-99
467ASH-102 Rep 1
467ASH-102 Rep 2
467ASH-102 Rep 3
467ASH-115
467ASH-119
467ASH-120
467ASH-124
467ASH-127
467ASH-130
467ASH-133
467ASH-155
467ASH-158
Sponsor ID
02SED14301S2BG
02SEP13451S1CGS
02SEP14451S2CG
02SEP14001S2AG
02SEP14551S3AGS
02SEP13301S1BGS
02SEP15402S3CGS
02SEP13201S1AGS
02SEP15201S3BG
02SEP15201S3BG
02SEP15201S3BG
10SEP12303S1A
10SEP13304S1A
10SEP14003S1A
10SEP14003S1A
10SEP14003S1A
10SEP15004S1A
10SEP15003S1A
11SEP08405S1A
11SEP08406S1A
11SEP12453S1B
11SEP13454S1B
11SEP14153S1B
11SEP15154S1B
11SEP15453S1B
11SEP16154S1B
11SEP15503S1B
11SEP16204S1B
11SEP16204S1B
11SEP16204S1B
14SEP11003S1C
14SEP08305S1B
14SEP08306S1B
14SEP11453S1C
14SEP12303S1C
14SEP12303S1C
14SEP12303S1C
14SEP15454S1C
14SEP16304S1C
% Total
Solids
57.8
54.8
52.2
52.7
53.8
54.8
50.5
54.0
55.5
57.1
57.1
54.2
98.6
51.6
51.9
51.8
94.8
50.6
57.2
67.3
50.2
100
50.5
99.9
46.9
93.8
50.1
96.8
96.8
96.7
48.1
49.8
86.5
49.0
55.4
53.9
53.0
90.4
99.9
Page 1
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
TOTAL SOLIDS IN SEDIMENT SAMPLES
9/29/93
MSLCode
467ASH-161
467ASH-165
467ASH-168 Rep 1
467ASH-168 Rep 2
467ASH-168 Rep 3
467ASH-171
467ASH-174 Rep 1
467ASH-174 Rep 2
467ASH-174 Rep 3
467ASH-178
467ASH-182
467ASH-185
467ASH-189
467ASH-192
467ASH-195
467ASH-215 Rep 1
467ASH-215 Rep 2
467ASH-215 Rep 3
467ASH-218
467ASH-221
467ASH-224
467ASH-227
467ASH-230
467ASH-233
467ASH-241
467ASH-282
467ASH-285
467ASH-296
467ASH-299
467ASH-311
467ASH-315
467ASH-317
467ASH-321
467ASH-324
467ASH-327
467ASH-330
467ASH-332
467ASH-337
Sponsor ID
14SEP17154S1C
15SEP08305S1C
15SEP08306S1C
15SEP08306S1C
15SEP08306S1C
15SEP11404S2A
15SEP11103S2A
15SEP11103S2A
15SEP11103S2A
15SEP11434S1A
15SEP11474S2A
15SEP12103S2A
15SEP12404S2A
15SEP13103S2A
15SEP13404S2A
16SEP08505S2A
16SEP08505S2A
16SEP08505S2A
16SEP08506S2A
16SEP10143S2B
16SEP11154S2B
16SEP11453S2B
16SEP12454S2B
16SEP13153S2B
16SEP14204S2B
18SEP10303S3A
18SEP11154S3A
18SEP12003S3A
18SEP12454S3A
18SEP08306S2C
18SEP08316S2C
18SEP08326S2C
18SEP09005S2C
17SEP09005S2B
17SEP09015S2B
17SEP09025S2B
17SEP09006S2B
17SEP12003S2C
% Total
Solids
100
80.4
98.6
98.6
98.6
100
53.3
53.1
53.2
99.6
99.8
49.3
99.9
55.6
100
56.9
56.6
57.1
64.6
53.4
100
51.0
100
52.3
99.9
41.5
100
41.8
100
96.7
98.2
96.4
79.0
80.5
81.7
81.4
97.0
44.9
Page 2
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
TOTAL SOLIDS IN SEDIMENT SAMPLES
9/29/93
MSLCode
467ASH-340 Rep 1
467ASH-340 Rep 2
467ASH-340 Rep 3
467ASH-343
467ASH-347
467ASH-350
467ASH-354
467ASH-357
467ASH-365
467ASH-366
467ASH-386
467ASH-389
467ASH-393
467ASH-396
467ASH-398
467ASH-402
467ASH-405
467ASH-408 Rep 1
467ASH-408 Rep 2
467ASH-408 Rep 3
467ASH-410
467ASH-416
467ASH-418
467ASH-429
467ASH-432
467ASH-444
467ASH-447
467ASH-450
467ASH-453
467ASH-458
467ASH-462
467ASH-494
467ASH-497
Sponsor ID
17SEP12453S2C
17SEP12453S2C
17SEP12453S2C
14SEP13004S1CI
17SEP12304S2CI
17SEP13303S2C
17SEP17154S2C
17SEP18004S2C
18SEP13303S3A
18SEP13554S3A
21SEP13455S3A
21SEP13456S3A
21SEP14303S3B
21SEP15153S3B
21SEP16203S3B
21SEP18304S3B
21SEP18314S3B
21SEP18324S3B
21SEP18324S3B
21SEP18324S3B
21SEP15004S3BI
21SEP19004S3B
21SEP19154S3B
22SEP09155S3B
22SEP09306S3B
22SEP10303S3C
22SEP11304S3C
22SEP12003S3C
22SEP13004S3C
22SEP13303S3C
22SEP14154S3C
22SEP17105S3C
22SEP17156S3C
% Total
Solids
40.2
40.1
40.3
85.9
92.4
45.5
100
99.9
44.1
83.9
63.1
86.5
49.2
43.9
47.6
100
100
100
100
100
85.6
100
100
81.0
94.1
48.6
100
47.8
100
51.6
100
13.4
90.4
Pages
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
TOTAL SOLIDS IN SEDIMENT SAMPLES
9/29/93
MSLCode
Blank-1
Blank-2
Blank-3
Blank-4
Blank-5
Blank-6
Blank-7
Sponsor ID
% Total
Solids
grams
0.0000
0.0003
0.0000
0.0000
0.0000
0.0003
0.0000
REPLICATE ANALYSES
467ASH-9
467ASH-9
467ASH-9
467ASH-52
467ASH-52
467ASH-52
467ASH-102
467ASH-102
467ASH-102
467ASH-168
467ASH-168
467ASH-168
467ASH-174
467ASH-174
467ASH-174
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
02SEP15201S3BG
02SEP15201S3BG
02SEP15201S3BG
10SEP14003S1A
10SEP14003S1A
10SEP14003S1A
11SEP16204S1B
11SEP16204S1B
11SEP16204S1B
15SEP08306S1C
15SEP08306S1C
15SEP08306S1C
15SEP11103S2A
15SEP11103S2A
15SEP11103S2A
55.5
57.1
57.1
%RSD 2%
51.6
51.9
51.8
% RSD 0%
96.8
96.8
96.7
%RSD 0%
98.6
98.6
98.6
%RSD 0%
53.3
53.1
53.2
% RSD 0%
Page 4
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
TOTAL SOLIDS IN SEDIMENT SAMPLES
9/29/93
MSLCode
Sponsor ID
% Total
Solids
REPLICATE ANALYSES
467ASH-215 Rep 1
467ASH-215 Rep 2
467ASH-215 Rep 3
16SEP08505S2A
16SEP08505S2A
16SEP08505S2A
%RSD
56.9
56.6
57.1
0%
467ASH-340 Rep 1
467ASH-340 Rep 2
467ASH-340 Rep 3
17SEP12453S2C
17SEP12453S2C
17SEP12453S2C
% RSD
40.2
40.1
40.3
0%
467ASH-408 Rep 1
467ASH-408 Rep 2
467ASH-408 Rep 3
21SEP18324S3B
21SEP18324S3B
21SEP18324S3B
% RSD
100
100
100
0%
% RSD = Relative Standard Deviation.
Page 5
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
TOTAL VOLATILE SOLIDS
9/29/93
MSLCode
467ASH-1
467ASH-2
467ASH-3
467ASH-4
467ASH-5
467ASH-6
467ASH-7
467ASH-8
467ASH-9 Rep 1
467ASH-9 Rep 2
467ASH-9 Rep 3
467ASH-46
467ASH-49
467ASH-52 Rep 1
467ASH-52 Rep 2
467ASH-52 Rep 3
467ASH-55
467ASH-58
467ASH-76
467ASH-77
467ASH-81
467ASH-84
467ASH-87
467ASH-90
467ASH-93
467ASH-96
467ASH-99
467ASH-102 Rep 1
467ASH-102 Rep 2
467ASH-102 Rep 3
467ASH-115
467ASH-119
467ASH-120
467ASH-124
467ASH-127
467ASH-130
467ASH-133
467ASH-155
467ASH-158
467ASH-161
Sponsor ID
02SEP14301S2BG
02SEP13451S1CGS
02SEP14451S1CGS
02SEP14001S2AG
02SEP14551S3AGS
02SEP13301S1BGS
02SEP15401S3CGS
02SEP13201S1AGS
02SEP15201S3BG
02SEP15201S3BG
02SEP15201S3BG
10SEP12303S1A
10SEP13304S1A
10SEP14003S1A
10SEP14003S1A
10SEP14003S1A
10SEP15004S1A
10SEP15003S1A
11SEP08406S1A
11SEP08406S1A
11SEP12453S1B
11SEP13454S1B
11SEP14153S1B
11SEP15154S1B
11SEP15453S1B
11SEP16154S1B
11SEP15503S1B
11SEP16204S1B
11SEP16204S1B
11SEP16204S1B
14SEP11003S1C
14SEP08305S1B
14SEP08306S1B
14SEP11453S1C
14SEP12303S1C
14SEP12303S1C
14SEP12303S1C
14SEP15454S1C
14SEP16304S1C
14SEP17154S1C
Total Volatile
Solids (%)
3.85
4.32
4.56
4.53
4.68
4.61
4.64
4.97
3.79
3.84
3.93
5.02
3.91
4.81
4.60
5.07
4.15
5.18
7.55
5.42
5.65
2.50
5.40
3.60
5.06
3.47
5.26
2.57
2.53
2.43
4.76
4.94
3.56
4.30
5.04
4.74
5.49
2.29
2.45
2.32
Page 1
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
TOTAL VOLATILE SOLIDS
9/29/93
MSLCode
467ASH-165
467ASH-168
467ASH-168
467ASH-168
467ASH-171
467ASH-174
467ASH-174
467ASH-174
467ASH-178
467ASH-182
467ASH-185
467ASH-189
467ASH-192
467ASH-195
467ASH-215
467ASH-215
467ASH-215
467ASH-218
467ASH-221
467ASH-224
467ASH-227
467ASH-230
467ASH-233
467ASH-241
467ASH-282
467ASH-285
467ASH-296
467ASH-299
467ASH-311
467ASH-315
467ASH-317
467ASH-321
467ASH-324
467ASH-327
467ASH-330
467ASH-332
467ASH-337
467ASH-340
467ASH-340
467ASH-340
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Sponsor ID
15SEP08305S1C
15SEP08306S1C
15SEP08306S1C
15SEP08306S1C
15SEP11404S2A
15SEP11103S2A
15SEP11103S2A
15SEP11103S2A
15SEP11434S2A
15SEP11474S2A
15SEP12103S2A
15SEP12304S2A
15SEP13103S2A
15SEP13404S2A
16SEP08505S2A
16SEP08505S2A
16SEP08505S2A
16SEP08506S2A
16SEP10153S2B
16SEP11154S2B
16SEP11453S2B
16SEP12454S2B
16SEP13153S2B
16SEP14204S2B
18SEP10303S3A
18SEP11154S3A
18SEP12003S3A
18SEP12454S3A
18SEP08306S2C
18SEP08316S2C
18SEP08326S2C
18SEP09005S2C
17SEP09005S2B
17SEP09015S2B
17SEP09025 S2B
17SEP09006S2B
17SEP12003S2C
17SEP12453S2C
17SEP12453S2C
17SEP12453S2C
Total Volatile
Solids (%)
7.10
3.45
3.45
3.24
2.29
5.02
4.86
4.72
1.96
2.00
4.36
2.25
4.04
1.51
5.06
4.79
4.91
7.58
5.64
2.63
4.69
2.52
5.31
2.93
4.99
2.46
5.72
2.67
3.54
3.50
3.34
4.40
3.44
3.38
2.68
2.57
3.87
3.46
3.45
3.36
Page 2
-------
ASHTABULA PILOT PROJECT
TOTAL VOLATILE SOLIDS
(CF #467ASH)
9/29/93
MSLCode
467ASH-343
467ASH-347
467ASH-350
467ASH-354
467ASH-357
467ASH-365
467ASH-366
467ASH-386
467ASH-389
467ASH-393
467ASH-396
467ASH-398
467ASH-402
467ASH-405
467ASH-408 Rep 1
467ASH-408 Rep 2
467ASH-408 Rep 3
467ASH-410
467ASH-416
467ASH-418
467ASH-429
467ASH-432
467ASH-444
467ASH-447
467ASH-450
467ASH-453
467ASH-458
467ASH-462
467ASH-494
467ASH-497
Blank-1
Blank-2
Blank-3
Blank-4
Blank-5
Blank-6
Blank-7
Sponsor ID
14SEP13004S1CI
17SEP12304S2CI
17SEP13303S2C
17SEP17154S2C
17SEP18004S2C
18SEP13303S3A
18SEP13554S3A
21SEP13455S3A
21SEP13456S3A
21SEP14303S3B
21SEP15153S3B
21SEP16203S3B
21SEP18304S3B
21SEP18314S3B
21SEP18324S3B
21SEP18324S3B
21SEP18324S3B
21SEP15004S3BI
21SEP19004S3B
21SEP19154S3B
22SEP09155S3B
22SEP09306S3B
22SEP10303S3C
22SEP11304S3C
22SEP12003S3C
22SEP13004S3C
22SEP13303S3C
22SEP14154S3C
22SEP17105S3C
22SEP17156S3C
Total Volatile
Solids (%)
3.52
2.97
3.49
0.85
0.92
3.26
1.27
2.99
3.22
3.72
2.74
2.88
0.62
1.28
1.25
1.24
1.25
4.05
1.54
1.60
3.12
2.55
4.42
1.74
4.57
2.17
4.80
1.74
4.38
2.70
grams
0.0000
0.0002
0.0000
0.0002
0.0000
0.0003
0.0007
Page 3
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
TOTAL VOLATILE SOLIDS
9/29/93
MSLCode
REPLICATE ANALYSES
467ASH-9
467ASH-9
467ASH-9
467ASH-52
467ASH-52
467ASH-52
467ASH-102
467ASH-102
467ASH-102
467ASH-168
467ASH-168
467ASH-168
467ASH-174
467ASH-174
467ASH-174
467ASH-215
467ASH-215
467ASH-215
Rep 1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep 1
Rep 2
Rep 3
Rep 1
Rep 2
Rep 3
Sponsor ID
02SEP15201S3BG
02SEP15201S3BG
02SEP15201S3BG
10SEP14003S1A
10SEP14003S1A
10SEP14003S1A
11SEP16204S1B
11SEP16204S1B
11SEP16204S1B
15SEP08306S1C
15SEP08306S1C
15SEP08306S1C
15SEP11103S2A
15SEP11103S2A
15SEP11103S2A
16SEP08505S2A
16SEP08505S2A
16SEP08505S2A
Total Volatile
Solids (%)
3.79
3.84
3.93
RSD% 2%
4.81
4.60
5.07
RSD% 5%
2.57
2.53
2.43
RSD% 3%
3.45
3.45
3.24
RSD% 4%
5.02
4.86
4.72
RSD% 3%
5.06
4.79
4.91
RSD% 3%
Page 4
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
TOTAL VOLATILE SOLIDS
9/29/93
MSLCode
Sponsor ID
Total Volatile
Solids (%)
REPLICATE ANALYSES
467ASH-340 Rep 1
467ASH-340 Rep 2
467ASH-340 Rep 3
467ASH-408 Rep 1
467ASH-408 Rep 2
467ASH-408 Rep 3
17SEP12453S2C
17SEP12453S2C
17SEP12453S2C
21SEP18324S3B
21SEP18324S3B
21SEP18324S3B
RSD%
RSD%
3.46
3.45
3.36
2%
1.25
1.24
1.25
0%
RSD% = Relative Standard Deviation.
Page 5
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
TOTAL SOLIDS IN WATER SAMPLES
9/29/93
MSL Code
467ASH-37
467ASH-37
467ASH-37
467ASH-38
467ASH-39
467ASH-66
467ASH-66
467ASH-66
467ASH-67
467ASH-112
467ASH-113
467ASH-149
467ASH-150
467ASH-209
467ASH-210
467ASH-252
467ASH-253
467ASH-253
467ASH-253
467ASH-254
467ASH-255
467ASH-302
467ASH-307
467ASH-379
467ASH-379
467ASH-379
467ASH-384
467ASH-441
467ASH-466
467ASH-472
467ASH-478
467ASH-479
467ASH-480
Blank-1
Blank-2
Blank-3
Blank-4
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Sponsor ID
03SEP12003L3CS
03SEP12003L3CS
03SEP12003L3CS
03SEP15453L2BS
03SEP15253L1AS
10SEP16158L1A
10SEP16158L1A
10SEP16158L1A
10SEP16157L1A
11SEP16458L1B
11SEP16507L1B
14SEP19008L1C
14SEP19057L1C
15SEP14458L1A
15SEP14457L2A
16SEP15168L2B
16SEP15178L2B
16SEP15178L2B
16SEP15178L2B
16SEP15158L2B
16SEP15157L2B
17SEP18458L2C
17SEP18507L2C
18SEP15008L3A
18SEP15008L3A
18SEP15008L3A
18SEP15007L3A
22SEP16008L3C
22SEP08458L3B
22SEP08307L3B
22SEP15307L3C
22SEP15317L3C
22SEP15327L3C
Total
Solids (mg/L)
396
426
412
320
288
263
263
258
1090
335
1680
212
315
1020
1740
1030
1100
1050
1130
1140
3940
2140
6820
608
640
628
7980
286
1430
13500
3010
2280
3060
16.0
8.00
16.0
56.0
27.0
Page 1
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
TOTAL SOLIDS IN WATER SAMPLES
9/29/93
MSLCode
Sponsor ID
Total
Solids (mg/L)
REPLICATE ANALYSES
467ASH-37 Rep 1
467ASH-37 Rep 2
467ASH-37 Rep 3
467ASH-66 Rep 1
467ASH-66 Rep 2
467ASH-66 Rep 3
467ASH-253 Rep 1
467ASH-253 Rep 2
467ASH-253 Rep 3
467ASH-379 Rep 1
467ASH-379 Rep 2
467ASH-379 Rep 3
03SEP12003L3CS
03SEP12003L3CS
03SEP12003L3CS
10SEP16158L1A
10SEP16158L1A
10SEP16158L1A
16SEP15178L2B
16SEP15178L2B
16SEP15178L2B
18SEP15008L3A
18SEP15008L3A
18SEP15008L3A
RSD%
RSD%
RSD%
RSD%
396
426
412
4%
263
263
258
1%
1096
1054
1128
3%
608
640
628
3%
NOTE: Data is blank-corrected.
RSD% = Relative Standard Deviation.
Page 2
-------
ASHTABULA PILOT PROJECT (CF #467ASH
TOTAL ORGANIC CARBON IN SEDIMENT SAMPLES
9/29/93
MSL Code
TOG (%)
467ASH-19
467ASH-20
467ASH-21
467ASH-22
467ASH-23
467ASH-24
467ASH-25
467ASH-26
467ASH-27 Rep 1
467ASH-27 Rep 2
467ASH-27 Rep 3
467ASH-47
467ASH-50
467ASH-53
467ASH-56
467ASH-59
467ASH-74
467ASH-75
467ASH-80
467ASH-83
467ASH-86
467ASH-89
467ASH-92
467ASH-95 Rep 1
467ASH-95 Rep 2
467ASH-95 Rep 3
467ASH-100
467ASH-103
467ASH-114
467ASH-117
467ASH-118
467ASH-123
467ASH-126
467ASH-129
467ASH-132
467ASH-154
467ASH-157
467ASH-160
467ASH-166
467ASH-169
02SEP1540S13CM
02SEP13451S1CM
02SEP13201S1AM
02SEP14451S2CM
02SEP13301S1BM
02SEP14301S2BM
02SEP14001S2AM
02SEP14551S3AM
02SEP15201S3BM
02SEP15201S3BM
02SEP15201S3BM
10SEP12303S1A
10SEP13304S1A
10SEP14003S1A
10SEP15004S1A
10SEP15003S1A
11SEP08405S1A
11SEP08406S1A
11SEP12453S1B
11SEP13454S1B
11SEP14153S1B
11SEP15154S1B
11SEP15453S1B
11SEP16154S1B
11SEP16154S1B
11SEP16154S1B
11SEP15503S1B
11SEP16204S1B
14SEP11003S1C
14SEP08305S1B
14SEP08306S1B
14SEP11453S1C
14SEP12303S1C
14SEP12303S1C
14SEP12303S1C
14SEP15455S1C
14SEP16304S1C
14SEP17154S1C
15SEP08306S1C
15SEP08306S1C
2.61
2.85
2.97
2.94
3.15
2.72
3.73
3.46
2.64
2.48
2.50
2.76
2.44
2.82
1.65
2.01
5.33
3.20
2.19
1.73
2.12
1.15
1.76
1.21
1.79
1.94
1.95
1.70
1.96
1.81
1.91
2.05
1.75
1.30
1.72
1.53
1.24
1.81
3.26
2.05
Page 1
-------
ASHTABULA PILOT PROJECT (CF #467ASH
TOTAL ORGANIC CARBON IN SEDIMENT SAMPLES
9/29/93
MSLCode
Sponsor ID
467ASH-172
467ASH-175
467ASH-179 Rep 1
467ASH-179 Rep 2
467ASH-179 Rep 3
467ASH-183
467ASH-186
467ASH-190
467ASH-193 Rep 1
467ASH-193 Rep 2
467ASH-193 Rep 3
467ASH-196
467ASH-214
467ASH-217
467ASH-220
467ASH-223
467ASH-226
467ASH-229
467ASH-232
467ASH-235
467ASH-281
467ASH-284
467ASH-295
467ASH-298
467ASH-312
467ASH-314
467ASH-318
467ASH-322
467ASH-325
467ASH-326
467ASH-329
467ASH-334
467ASH-336
467ASH-339
467ASH-341
467ASH-346
467ASH-348 Rep 1
467ASH-348 Rep 2
467ASH-348 Rep 3
467ASH-355
15SEP11404S2A
15SEP11103S2A
15SEP11444S2A
15SEP11444S2A
15SEP11444S2A
15SEP11484S2A
15SEP12103S2A
15SEP12404S2A
15SEP13103S2A
15SEP13103S2A
15SEP13103S2A
15SEP13404S2A
16SEP08505S2A
16SEP08506S2A
16SEP10153S2B
16SEP11154S2B
16SEP11453S2B
16SEP12454S2B
16SEP13153S2B
16SEP14154S2B
18SEP10303S3A
18SEP11154S3A
18SEP12003S3A
18SEP12454S3A
18SEP08306S2C
18SEP08316S2C
18SEP08326S2C
18SEP09005S2C
17SEP09005S2B
17SEP09015S2B
17SEP09025S2B
17SEP09006S2B
17SEP1200352C
17SEP12453S2C
14SEP13004S1CI
17SEP13303S2C
17SEP12304S2CI
17SEP12304S2CI
17SEP12304S2CI
17SEP17154S2C
1.45
2.56
1.72
1.67
1.59
1.40
2.33
2.02
2.08
1.96
2.18
1.85
2.39
3.74
2.08
1.73
1.89
1.71
1.91
1.80
2.16
1.98
2.52
2.26
2.28
2.14
2.16
3.08
1.79
1.82
1.99
1.73
2.63
2.73
1.97
2.43
1.86
2.40
2.42
2.16
Page 2
-------
ASHTABULA PILOT PROJECT (CF #467ASH
TOTAL ORGANIC CARBON IN SEDIMENT SAMPLES
9/29/93
MSLCode
TOC
467ASH-358
467ASH-364
467ASH-367
467ASH-387
467ASH-390
467ASH-392
467ASH-395
467ASH-397
467ASH-401
467ASH-404
467ASH-407
467ASH-411
467ASH-417
467ASH-420
467ASH-430
467ASH-433 Rep 1
467ASH-433 Rep 2
467ASH-433 Rep 3
467ASH-443
467ASH-446
467ASH-449
467ASH-452
467ASH-457 Rep 1
467ASH-457 Rep 2
467ASH-457 Rep 3
467ASH-461
467ASH-492
467ASH-496
Blank-1
Blank-2
Blank-3
Blank-4
Blank-5
17SEP18004S2C
18SEP13303S3A
18SEP13554S3A
21SEP13455S3A
21SEP13456S3A
21SEP14303S3B
21SEP15153S3B
21SEP16203S3B
21SEP18304S3B
21SEP18314S3B
21SEP18324S3B
21SEP15004S3BI
21SEP19004S3B
21SEP19154S3B
22SEP09155S3B
22SEP09306S3B
22SEP09306S3B
22SEP09306S3B
22SEP10303S3C
22SEP11304S3C
22SEP12003S3C
22SEP13004S3C
22SEP13303S3C
22SEP13303S3C
22SEP13303S3C
22SEP14154S3C
22SEP17105S3C
22SEP17156S3C
2.52
2.65
2.16
2.72
3.40
2.34
2.25
2.22
1.96
1.46
1.53
1.46
1.62
1.47
1.66
1.81
1.70
1.46
1.72
1.79
1.94
2.06
2.21
2.30
2.42
2.10
2.60
3.02
0.001
0.001
0.003
0.006
0.008
Pages
-------
ASHTABULA PILOT PROJECT (CF #467ASH
TOTAL ORGANIC CARBON IN SEDIMENT SAMPLES
9/29/93
MSLCode
Sponsor ID
TOG (%)
STANDARD REFERENCE MATERIAL
MESS-1
MESS-1
MESS-1
MESS-1
MESS-1
Rep1
Rep 2
Rep 3
Rep 4
Rep 5
REPLICATE ANALYSES
467ASH-27 Rep 1
467ASH-27 Rep 2
467ASH-27 Rep 3
467ASH-95 Rep 1
467ASH-95 Rep 2
467ASH-95 Rep 3
467ASH-179 Rep 1
467ASH-179 Rep 2
467ASH-179 Rep 3
concensus value
range
02SEP15201S3BM
02SEP15201S3BM
02SEP15201S3BM
11SEP16154S1B
11SEP16154S1B
11SEP16154S1B
15SEP11444S2A
15SEP11444S2A
15SEP11444S2A
RSD%
RSD %
RSD %
2.68
2.14
2.59
2.07
2.39
2.25
±0.2
2.64
2.48
2.50
3%
1.21
1.79
1.94
23%
1.72
1.67
1.59
4%
Page 4
-------
ASHTABULA PILOT PROJECT (CF #467ASH
TOTAL ORGANIC CARBON IN SEDIMENT SAMPLES
9/29/93
MSLCode
Sponsor ID
TOG (%)
REPLICATE ANALYSES
467ASH-193 Rep 1
467ASH-193 Rep 2
467ASH-193 Rep 3
15SEP13103S2A
15SEP13103S2A
15SEP13103S2A
RSD%
2.08
1.96
2.18
5%
467ASH-348 Rep 1
467ASH-348 Rep 2
467ASH-348 Rep 3
17SEP12304S2CI
17SEP12304S2CI
17SEP12304S2CI
RSD %
1.86
2.40
2.42
14%
467ASH-457 Rep 1
467ASH-457 Rep 2
467ASH-457 Rep 3
22SEP13303S3C
22SEP13303S3C
22SEP13303S3C
RSD%
2.21
2.30
2.42
5%
RSD % = Relative Standard Deviation.
* = Outside QC criteria range (±20%).
Page 5
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
TOTAL ORGANIC CARBON IN WATER SAMPLES
9/29/93
MSLCode
Sponsor ID
TOG (mg/L)
467ASH-31
467ASH-32
467ASH-33
467ASH-61
467SAH-62
467ASH-107
467ASH-108
467ASH-143
467ASH-144
467ASH-207
467ASH-208
467ASH-261
467ASH-262
467ASH-263
467ASH-264 Rep 1
467ASH-264 Rep 2
467ASH-264 Rep 3
467ASH-304 Rep 1
467ASH-304 Rep 2
467ASH-304 Rep 3
467ASH-309
467ASH-378
467ASH-383
467ASH-467
467ASH-473
467ASH-474
467ASH-484
467ASH-485
467ASH-486
Blank-1
Blank-2
Blank-3
Blank-4
Blank-5
Blank-6
03SEP15253L1AO
03SEP15453L2BO
03SEP12003L3CO
10SEP16157L1A
10SEP16158L1A
11SEP16458L1B
11SEP16507L1B
14SEP19057L1C
14SEP19057L1C
15SEP14458L2A
15SEP14457L2A
16SEP15158L2B
16SEP15168L2B
16SEP15178L2B
16SEP15157L2B
16SEP15157L2B
16SEP15157L2B
17SEP18458L2C
17SEP18458L2C
17SEP18458L2C
17SEP18507L2C
18SEP15008L3A
18SEP15007L3A
22SEP08458L3B
22SEP08307L3B
22SEP16008L3C
22SEP15307L3C
22SEP15317L3C
22SEP15327L3C
10.1
7.92
9.23
467
156
347
1260
183
146
672
773
592
641
702
813
766
654
1690
1680
1670
1100
850
910
1800
2600
340
1100
1100
1100
1.00 U
1.00 U
1.00 U
1.00 U
1.00 U
1.00 U
Page 1
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
TOTAL ORGANIC CARBON IN WATER SAMPLES
9/29/93
MSL Code
Sponsor ID
TOG (mg/L)
MATRIX SPIKE RESULTS
Amount Spiked
467ASH-61
467ASH-61 + Spike
Amount Recovered
Percent Recovery
Amount Spiked
467ASH-61
467ASH-61 + Spike
Amount Recovered
Percent Recovery
Amount Spiked
467ASH-474
467ASH-474 + Spike
Amount Recovered
Percent Recovery
Amount Spiked
467ASH-474
467ASH-474 + Spike
Amount Recovered
Percent Recovery
REPLICATE ANALYSES
467ASH-264 Rep 1
467ASH-264 Rep 2
467ASH-264 Rep 3
10SEP16157L1A
10SEP16157L1A
DUP
22SEP16008L3C
22SEP16008L3C
DUP
16SEP15157L2B
16SEP15157L2B
16SEP15157L2B
BSD %
135
467
612
145
1 07%
135
467
576
109
80%
151
340
470
130
86%
151
340
480
140
93%
813
766
654
11%
467ASH-304 Rep 1
467ASH-304 Rep 2
467ASH-304 Rep 3
17SEP18458L2C
17SEP18458L2C
17SEP18458L2C
RSD%
1690
1680
1670
1%
U = Not detected at detection limit.
RSD % = Relative Standard Deviation.
Page 2
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
OIL AND GREASE IN SEDIMENT SAMPLES
9/29/93
MSLCode
467ASH-10
467ASH-11
467ASH-12
467ASH-13
467ASH-14
467ASH-15
467ASH-16
467ASH-17
467ASH-18
467ASH-48
467ASH-51
467ASH-54
467ASH-57
467ASH-60
467ASH-78
467ASH-79
467ASH-82
467ASH-85
467ASH-88
467ASH-91
467ASH-94
467ASH-97
467ASH-116
467ASH-121
467ASH-122
467ASH-125
467ASH-128 Rep 1
467ASH-128 Rep 2
467ASH-128 Rep 3
467ASH-131
467ASH-134
467ASH-156
467ASH-159
467ASH-162
467ASH-164
467ASH-167
467ASH-173
467ASH-177
467ASH-181
Sponsor ID
02SEP14301S2BO
02SEP14551S3AO
02SEP14001S2AO
02SEP13201S1AO
02SEP13451S1CO
02SEP15201S3BO
02SEP13301S1AO
02SEP15401S3CO
02SEP14451S2CO
10SEP12303S1A
10SEP13304S1A
10SEP14003S1A
10SEP15004S1A
10SEP14003S1A
11SEP08405S1A
11SEP08406S1A
11SEP12453S1B
11SEP13454S1B
11SEP14153S1B
11SEP15154S1B
11SEP15453S1B
11SEP16154S1B
14SEP11003S1C
14SEP08305S1B
14SEP08406S1B
14SEP11453S1C
14SEP12303S1C
14SEP12303S1C
14SEP12303S1C
14SEP12303S1C
14SEP12303S1C
14SEP15454S1C
14SEP16304S1C
14SEP17154S1C
15SEP08305S1C
15SEP08306S1C
15SEP11103S2A
15SEP11424S2A
15SEP11464S2A
Oil & Grease
(M.Q/Q)
1810
1820
1930
1310
1140
1710
2200
1710
1540
1260
1180
1880
2010
1850
14200
3830
1700
462 U
2510
462 U
2030
1380
1580
5320
1920
1840
2140
1640
1610
1680
1620
462 U
462 U
462 U
458
3030
2300
462 U
462 U
Page 1
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
OIL AND GREASE IN SEDIMENT SAMPLES
9/29/93
MSL Code
467ASH-184
467ASH-187
467ASH-188
467ASH-191
467ASH-194
467ASH-213
467ASH-216
467ASH-219
467ASH-222
467ASH-225 Rep 1
467ASH-225 Rep 2
467ASH-225 Rep 3
467ASH-228
467ASH-231
467ASH-234
467ASH-248
467ASH-249
467ASH-250
467ASH-280
467ASH-283
467ASH-294 Rep 1
467ASH-294 Rep 2
467ASH-294 Rep 3
467ASH-297
467ASH-310
467ASH-316
467ASH-319
467ASH-320
467ASH-323
467ASH-328
467ASH-331 Rep 1
467ASH-331 Rep 2
467ASH-331 Rep 3
467ASH-333
467ASH-335
467ASH-338
467ASH-342
467ASH-345
467ASH-349
Sponsor ID
15SEP12103S2A
15SEP11494S2A
15SEP12404S2A
15SEP13103S2A
15SEP13404S2A
16SEP08505S2A
16SEP08506S2A
16SEP10153S2A
16SEP11154S2B
16SEP11453S2B
16SEP11453S2B
16SEP11453S2B
16SEP12454S2B
16SEP13153S2B
16SEP14154S2B
16SEP921600CARB'M
16SEP921600CARBT
16SEP921600CARB'B
18SEP10303S3A
18SEP11154S3A
18SEP12003S3A
18SEP12003S3A
18SEP12003S3A
18SEP12454S3A
18SEP08306S2C
18SEP08316S2C
18SEP08326S2C
18SEP09005S2C
17SEP09005S2B
17SEP09015S2B
17SEP09025S2B
17SEP09025S2B
17SEP09025S2B
17SEP09006S2B
17SEP12003S2C
17SEP1253S2C
14SEP13004S1CI
17SEP13303S2C
17SEP12304S2C!
Oil & Grease
(UQ/Q)
2570
462 U
462 U
1780
462 U
3430
4250
2630
462 U
1700
1800
2180
462 U
1790
462 U
2120
4470
462 U
1720
447
1250
1530
1380
462 U
464
462 U
653
4010
2150
2710
2120
2170
2090
855
1920
1920
1780
1830
2190
Page 2
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
OIL AND GREASE IN SEDIMENT SAMPLES
9/29/93
MSLCode
467ASH-356
467ASH-359
467ASH-363 Rep 1
467ASH-363 Rep 2
467ASH-363 Rep 3
467ASH-368
467ASH-385
467ASH-388
467ASH-391
467ASH-394
467ASH-399
467ASH-400
467ASH-403
467ASH-406
467ASH-409
467ASH-415
467ASH-419
467ASH-428
467ASH-431
467ASH-442
467ASH-445
467ASH-448 Rep 1
467ASH-448 Rep 2
467ASH-448 Rep 3
467ASH-451
467ASH-456
467ASH-460
467ASH-493
467ASH-495
Blank-1
Blank-2
Blank-3
Blank-4
Blank-5
Blank-6
Sponsor ID
17SEP17154S2C
17SEP18004S2C
18SEP1330353A
18SEP1330353A
18SEP1330353A
18SEP13554S3A
21SEP13455S3A
21SEP13456S3A
21SEP14303S3B
21SEP15153S3B
21SEP16203S3B
21SEP18304S3B
21SEP18314S3B
21SEP18324S3B
21SEP15004S3BI
21SEP19004S3B
21SEP19154S3B
22SEP09155S3B
22SEP09306S3B
22SEP10303S3C
22SEP11304S3C
22SEP12003S3C
22SEP12003S3C
22SEP12003S3C
22SEP13004S3C
22SEP13303S3C
22SEP14154S3C
22SEP17105S3C
22SEP17156S3C
Oil & Grease
(ng/g)
462 U
462 U
1790
1870
1930
462 U
1840
2470
1810
2110
1720
462 U
462 U
462 U
1830
462 U
462 U
1150
805
2950
79.9
2710
2430
2070
462 U
2430
59.9
1580
3920
(grams)
0.0000
0.0001
0.0003
0.0003
0.0010
0.0000
Pages
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
OIL AND GREASE IN SEDIMENT SAMPLES
9/29/93
Oil & Grease
MSL Code
Sponsor ID
REPLICATE ANALYSES
467ASH-128
467ASH-128
467ASH-128
467ASH-225
467ASH-225
467ASH-225
467ASH-294
467ASH-294
467ASH-294
467ASH-331
467ASH-331
467ASH-331
467ASH-363
467ASH-363
467ASH-363
467ASH-448
467ASH-448
467ASH-448
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep 1
Rep 2
Rep 3
14SEP12303S1C
14SEP12303S1C
14SEP12303S1C
16SEP11453S2B
16SEP11453S2B
16SEP11453S2B
18SEP12003S3A
18SEP12003S3A
18SEP12003S3A
17SEP09025S2B
17SEP09025S2B
17SEP09025S2B
18SEP1330353A
18SEP1330353A
18SEP1330353A
22SEP12003S3C
22SEP12003S3C
22SEP12003S3C
2140
1640
1610
RSD% 17%
1700
1800
2180
RSD% 13%
1250
1530
1380
RSD % 1 0%
2120
2170
2090
RSD% 2%
1790
1870
1930
RSD% 4%
2710
2430
2070
RSD% 13%
U = Detected below detection limit.
* = Outside QA criteria range (70-130%).
# = Mean of replicate samples.
RSD% = Relative Standard Deviation.
Page 6
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
OIL AND GREASE IN WATER SAMPLES
9/29/93
MSLCode
467ASH-28 Rep 1
467ASH-28 Rep 2
467ASH-28 Rep 3
467ASH-29
467ASH-30
467ASH-72
467ASH-73
467ASH-106
467ASH-110
467ASH-147
467ASH-148
467ASH-211
467ASH-212
467ASH-257
467ASH-267
467ASH-268
467ASH-269
467ASH-301
467ASH-306
467ASH-376
467ASH-381
467ASH-439
467ASH-455
467ASH-465
467ASH-470 Rep 1
467ASH-470 Rep 2
467AHS-470 Rep 3
467ASH-481
467ASH-483
467ASH-488
467ASH-491
Blank-1
Blank-2
Blank-3
Sponsor ID
03SEP15453L2BO
03SEP15453L2BO
03SEP15453L2BO
03SEP12003L3CO
03SEP15253L1AO
10SEP16157L1A
10SEP16158L1A
11SEP16458L1B
11SEP16507L1B
14SEP19008L1C
14SEP19057L1C
15SEP14458L2A
15SEP14457L2A
16SEP15157L2B
16SEP15158L2B
16SEP15168L2B
16SEP15178L2B
17SEP18458L2C
17SEP18507L2C
18SEP15008L3A
18SEP15007L3A
22SEP16008L3C
22SEP08307L3B
22SEP08458L3B
22SEP08508L3B
22SEP08508L3B
22SEP08508L3B
22SEP15307L3C
22SEP15507L3C
22SEP15317L3C
22SEP15327L3C
Oil & Grease
(mg/L)
87.3
11.8 U
11.8 U
11.8 U
11.8 U
303
64.7
146
843
147
441
294
313
221
146
448
321
191
214
42.4
95.4
71.2
250
423
397
417
503
177
195
254
242
(grams)
0.0012
0.0003
0.0000
Page 1
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
OIL AND GREASE IN WATER SAMPLES
9/29/93
MSL Code
Oil & Grease
Sponsor ID
REPLICATE ANALYSES
467ASH-28
467ASH-28
467ASH-28
Rep1
Rep 2
Rep 3
03SEP15453L2BO
03SEP15453L2BO
03SEP15453L2BO
RSD%
87.3
11.8 U
11.8 U
NA
467ASH-470 Rep 1
467ASH-470 Rep 2
467AHS-470 Rep 3
22SEP08508L3B
22SEP08508L3B
22SEP08508L3B
RSD%
397
417
503
13%
U = Not detected at detection limit.
* = Outside QA criteria range (70-130%).
RSD% = Relative Standard Deviation.
PageS
-------
ASHTABULA RIVER PILOT PROJECT
PAH IN WATER SAMPLES
7/1/93
(CF #467ASH)
(concentrations in
MSLCode Rep
467ASH-40
467ASH-41
467ASH-42
467ASH-70
467ASH-71
467ASH-104
467ASH-108
467ASH-145
467ASH-146
467ASH-203
467ASH-204
467 ASH -251
467ASH-256
467ASH-258
467ASH-259
467ASH-300 Rep 1
467ASH-300 Rep 2
467ASH-300 Rep 3
467ASH-305
467ASH-375
467ASH-380
467ASH-438
467ASH-454
467ASH-464
467ASH-469
467ASH-482 Rep 1
467 ASH -482 Rep 2
467ASH-482 Rep 3
467ASH-487
478ASH-489
467ASH-490
Batch
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
Sponsor ID
03SEP12003L3CO
03SEP15253L1AO
03SEP15453L2BO
10SEP16157L1A
10SEP16158L1A
1 1 SEP1 6458L1 B
11SEP16507L1B
14SEP19008L1C
14SEP19057L1C
15SEP14458L2A
15SEP14457L2A
16SEP15178L2B
16SEP15157L2B
16SEP15158L2B
16SEP15168L2B
17SEP18458L2C
17SEP18458L2C
17SEP18458L2C
17SEP18507L2C
18SEP15008L3A
18SEP15007L3A
22SEP16008L3C
22SEP08307L3B
22SEP08458L3B
22SEP08508L3B
22SEP15507L3C
22SEP15507L3C
22SEP15507L3C
22SEP15307L3C
22SEP15317L3C
22SEP15327L3C
Hexachloro-
ethane
452 U
429 U
462 U
283 U
253 U
228 U
542000 U
1950 U
4370000 U
1570 U
1540 U
1530 U
1590 U
2880 U
2720 U
3970 U
7980 U
8630 U
1840 U
2270 U
1990 U
3700 U
18200 U
3740 U
12200 U
1490 U
1630 U
1420 U
1440 U
411 U
1430 U
Hexachloro-
butadiene
198 U
188 U
203 U
124 U
111 U
315
238000 U
2870
1920000 U
2660
677 U
3690
696 U
5890
4550
2070 U
4160 U
4500 U
958 U
3550
1040 U
5320
9410 U
1950 U
6380 U
776 U
852 U
738 U
753 U
215 U
743 U
ng/L)
Hexachloro-
benzene
716 U
679 U
733 U
18600
8700
29600
4110000
33000
2250000 #
20800
4140*
338000
4920
1200 #
417000
17900
45600
46500
1600
55200
22800
59700
40200
11280
11100
80100
11100
8060
7870
6800
7900
Benzo(a)
pyrene
259 U
259 U
330
13400
1700 #
2980
6530000
3670
5760000
2620
4640
5210
6020
9920
5960
1750
4910
2270
1370
834
6760
1230
27200
1280
1280
9050
9880
8230
6600
5490
6700
d10 Pyrene
(SURR)
1 86% *
1 80% *
1 93%
1 68% *
1 94% *
1 53% *
1 58% *
88%
48%
1 9% *
33% *
64%
50%
66%
37% *
1 7% *
50%
72%
9%*
92%
71%
58%
20% *
59%
21% *
23% *
24% *
21% *
29% *
65%
24% *
% Recovery
d12 Chrysene
(IS)
39% *
40%
36% *
25% *
29% *
27% *
33% *
30% *
31 % *
1 0% *
1 0% *
32% *
1 7% *
74%
72%
45%
47%
35% *
63%
31 % *
27% *
31% *
39% *
22% *
36% *
44%
44%
47%
45%
26% *
45%
d12 Perylene
(IS)
27% *
26% *
25% *
22% *
24% *
22% *
28% *
28% *
29% *
1 0% *
9% *
33% *
1 7% *
74%
72%
43%
46%
33% *
63%
29% *
28% *
29% *
38% *
21% *
32% *
39% *
40%
41%
37% *
23% *
39% *
Pagel
-------
ASHTABULA RIVER PILOT PROJECT
PAH IN WATER SAMPLES
7/1/93
(CF #467ASH)
% Recovery
MSLCode
Hexachloro-
Reo Batch Sponsor ID ethane
REPLICATE ANALYSES
467 ASH -300
467 ASH -300
467ASH-300
467ASH-482
467 ASH -482
467ASH-482
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
2
2
2
2
2
2
17SEP18458L2C
17SEP18458L2C
17SEP18458L2C
RSD%
22SEP15507L3C
22SEP15507L3C
22SEP15507L3C
3970
7980
8630
NA
1490
1630
1420
( lslXMt*C7( HI CllfhSi i«7 it ii&r *-/
Hexachloro- Hexachloro-
U
U
U
U
U
U
2070 U
4160 U
4500 U
NA
776 U
852 U
738 U
17900
45600
46500
44% @
8010
11100
8060
Benzo(a) d10 Pyrene d12
pyrene (SURR)
1750
4910
2270
57% @
9050
9880
8230
17% *
50%
72%
NA
23% *
24% *
21% *
Chrysene d12
(IS)
45%
47%
35% *
NA
44%
44%
47%
Perylene
(IS)
43%
46%
33% *
NA
39% *
40%
41%
RSD%
NA
NA
20%
9%
NA
NA
NA
U = Not detected at or above the detection limit.
# = Ion ratio out of limits; estimated value.
* = Outside QC criteria range (40-120%).
@ = Outside QC criteria range (±20%).
RPD% = Relative Percent Differenc.
RSD% = Relative Standard Deviation.
NA = Not applicable
NS = Not spiked.
Page 6
-------
ASHTBULA RIVER PILOT PROJECT
PCB/AROCLORS IN WATER SAMPLES
7/1/93
MSLCode Fteo
467ASH-40
467ASH-41
467ASH-42
467ASH-70
467ASH-71
467ASH-104
467ASH-108
467ASH-145
467ASH-146
467ASH-203
467ASH-204
467ASH-251
467ASH-256
467ASH-258
467ASH-259
467ASH-300 Rep1
467 ASH -300 Rep 2
467ASH-300 Rep 3
467ASH-305
467ASH-375
467ASH-380
467 ASH -438
467ASH-454
467ASH-464
467ASH-469
467ASH-482 Rep1
467ASH-482 Rep 2
467 ASH -482 Rep 3
467ASH-487
478ASH-489
467 ASH -490
Batch Sponsor ID
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
03SEP12003L3CO
03SEP15253L1AO
03SEP15453L2BO
10SEP16157L1A
10SEP16158L1A
11SEP16458L1B
11SEP16507L1B
14SEP19008L1C
14SEP19057L1C
15SEP14458L2A
15SEP14457L2A
16SEP15178L2B
16SEP15157L2B
16SEP15158L2B
16SEP15168L2B
17SEP18458L2C
17SEP18458L2C
17SEP18458L2C
17SEP18507L2C
18SEP15008L3A
18SEP15007L3A
22SEP16008L3C
22SEP08307L3B
22SEP08458L3B
22SEP08508L3B
22SEP15507L3C
22SEP15507L3C
22SEP15507L3C
22SEP15307L3C
22SEP15317L3C
22SEP15327L3C
Extraction
Volume (L)
0.800
0.820
0.780
0.830
0.900
0.900
0.910
0.810
0.810
0.970
0.850
0.880
0.860
0.870
0.810
0.810
0.350
0.480
0.890
0.870
0.870
0.900
0.770
0.840
0.880
0.880
0.770
0.870
0.870
0.900
0.870
Aroclor
1242
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
Aroclor
1248
10.0 U
10.0 U
10.0 U
74900
9550
19200
1450000
30300
1130000
31500
24700
118000
38300
222000
229000
76800
220000
233000
20800
348000
10.0 U
99300
385000
51200
79100
175000
116000
109000
101000
72600
97400
Aroclor
1254
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10. OU
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
Aroclor
1260
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
*w wi i VTVJMI^? i iw/wv^i y
Tetrachloro- Octachloro-
m-Xylene naphthalene
105% 141% *
91%
99%
1 54% *
43%
69%
NA* *
60%
NA* *
0% *
220% *
0% *
1 03%
0% *
0% *
153% *
177% *
294% *
43%
1 21 5% *
NA* *
1 68% *
NA* *
130% *
67%
50%
49%
44%
44%
101%
66%
150% *
1 63% *
92%
34% *
25% *
NA* *
i *f^
33% *
\J\J /O
NA* *
1^1 f^
47%
*t / /o
1 36% *
98%
w v /O
1 1 7%
1 1 / /O
no/ *
\J /o
48%
^o /o
27% *
£ * /O
57%
*J 1 /O
81%
V 1 /O
1 5% *
I 3 /o
1 13%
1 I v /O
NA* *
1 'Ir^
no/ «
w /o
NA* *
1 ^tf^
43%
24% *
fc^ /O
28% *
27% *
23% *
£>w /O
24% *
fm~ /O
71%
53%
Pagel
-------
ASHTBULA RIVER PILOT PROJECT
PCB/AROCLORS IN WATER SAMPLES
(concentrations in ng/L)
MSLCode
Rep
Batch Sponsor ID
Extraction
Volume (L)
Aroclor
1242
Aroclor
1248
Aroclor
1254
Aroclor
1260
REPLICATE ANALYSES
7/1/93
% Surrogate Recovery
Tetrachloro- Octachloro-
m-Xylene naphthalene
467ASH-300
467ASH-300
467ASH-300
467 ASH -482
467ASH-482
467ASH-482
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
2
2
2
2
2
2
17SEP18458L2C
17SEP18458L2C
17SEP1S458L2C
RSD%
22SEP15507L3C
22SEP15507L3C
22SEP15507L3C
0.810
0.350
0.480
10.0 U
10.0 U
10.0 U
76800
220000
233000
10.0 U
10.0 U
10. OU
10.0U
10.0 U
10.0 U
153% *
1 77% *
294% *
27%
57%
81%
RSD%
NA
49% @
NA
NA
0.880
0.770
0.870
10.0 U
10.0 U
10.0 U
175000
116000
109000
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
50%
49%
44%
28%
27%
23%
NA
27% @
NA
NA
U = Not detected at or above the detection limit.
# = Surrogates did not meet the confirmation
criteria; these data are estimates only.
* = Outside QC criteria range (40-120%).
@ = Outside QC criteria range (±20%).
RPD% = Relative Percent Difference.
RSD% = Relative Standard Deviation.
NA = Not applicable
Page 4
-------
ASHTABULA RIVER PILOT PROJECT
PESTICIDES IN WATER SAMPLES
7/1/93
MSLCode Reo
467ASH-40
467ASH-41
467ASH-42
467ASH-70
467ASH-71
467ASH-104
467ASH-108
467ASH-145
467ASH-146
467ASH-203
467 ASH -204
467ASH-251
467ASH-256
467ASH-258
467 ASH -259
467ASH-300 Rep 1
467ASH-300 Rep 2
467ASH-300 Rep 3
467ASH-305
467ASH-375
467ASH-380
467ASH-438
467ASH-454
467ASH-464
467ASH-469
467ASH-482 Rep 1
467 ASH -482 Rep 2
467ASH-482 Rep 3
467ASH-487
478ASH-489
467ASH-490
Batch Sponsor ID
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
03SEP12003L3CO
03SEP15253L1AO
03SEP15453L2BO
10SEP16157L1A
10SEP16158L1A
11SEP16458L1B
11SEP16507L1B
14SEP19008L1C
14SEP19057L1C
15SEP14458L2A
15SEP14457L2A
16SEP15178L2B
16SEP15157L2B
16SEP15158L2B
16SEP15168L2B
17SEP18458L2C
17SEP18458L2C
17SEP18458L2C
17SEP18507L2C
18SEP15008L3A
18SEP15007L3A
22SEP16008L3C
22SEP08307L3B
22SEP08458L3B
22SEP08508L3B
22SEP15507L3C
22SEP15507L3C
22SEP15507L3C
22SEP15307L3C
22SEP15317L3C
22SEP15327L3C
Extraction
Volume (L)
0.800
0.820
0.780
0.830
0.900
0.900
0.910
0.810
0.810
0.970
0.850
0.880
0.860
0.870
0.810
0.810
0.350
0.480
0.890
0.870
0.870
0.900
0.770
0.840
0.880
0.880
0.770
0.870
0.870
0.900
0.870
a-BHC
10.0 U
10.0 U
10.0 U
191 #
10.0 U
101 #
10.0 U
99.2 #
10.0 U
94.4 #
10.0 U
10.0 U
86.7 #
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
592 #
161 #
381 #
10.0 U
10.0 U
10.0 U
10.0 U
193 #
10.0 U
g-BHC
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
d-BHC Heptachlor
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
197 #
348 #
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
183#
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
220 #
411 #
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
/v vui i vsvjmo i loi/WOI y
Tetrachloro- Octachloro-
m-Xylene naphthalene
105% i4i°/_ *
91%
99%
1 54% *
43%
69%
NA* *
60%
NA* *
0% *
220% *
0% *
1 03%
0% *
0% *
1 53% *
1 77% *
294% *
43%
1215% *
NA* *
1 68% *
NA* *
1 30% *
67%
50%
49%
44%
44%
1 01 %
66%
1 50% *
1 63% *
92%
34% *
25% *
NA* *
1 'I**
33% *
NA* *
1 *r\
47%
~ / /O
1 36% *
98%
wO /O
117%
0% *
V /O
48%
~W /O
27% *
£> I /O
57%
w 1 /O
81%
15% *
1 w /O
1 1 3%
NA* *
i 'i n
0% *
\s /O
MA* *
1^1 f\
43%
?4% *
£*^ /O
28% *
^\J /O
97% *
£. / /O
OQO/ *
C.\J /O
24% *
fc~ /O
71 %
53%
Pagel
-------
ASHTABULA RIVER PILOT PROJECT
PESTICIDES IN WATER SAMPLES
MSL Code Rep Batch Sponsor ID
Extraction
Volume (L)
(concentrations in ng/L)
a-BHC
9-BHC
d-BHC Heptachlor
7/1/93
% Surrogate Recovery
Tetrachloro- Octachloro-
m-Xylene naphthalene
REPLICATE ANALYSES
467ASH-300
467ASH-300
467ASH-300
467ASH-482
467ASH-482
467ASH-482
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
2
2
2
2
2
2
17SEP18458L2C
17SEP18458L2C
17SEP18458L2C
Extraction
Volume (L)
0.810
0.350
0.480
a-BHC
10.0
10.0
10.0
U
U
U
g-BHC
10.0
10.0
10.0
U
U
U
d-BHC
10.0
10.0
10.0
U
U
U
Heptachlor
10.0
10.0
10.0
U
U
U
RSO%
22SEP15507L3C
22SEP15507L3C
22SEP15507L3C
0.880
0.770
0.870
RSD%
NA
10.0
10.0
10.0
NA
U
u
u
NA
10.0
10.0
10.0
NA
U
u
u
NA
10.0
10.0
10.0
NA
NA
10.0 U
10.0 U
10.0 U
NA
153%
177%
294%
50%
49%
44%
27%
57%
81%
28% *
27% *
23% *
U = Not detected at or above the detection limit.
# = Surrogates did not meet the confirmation
criteria; these data are estimates only.
** = Severe matrix interference.
* = Outside QC criteria range (40-120%).
@ = Outside QC criteria range (±20%).
RPD% = Relative Percent Differenc.
RSD% = Relative Standard Deviation.
NA = Not applicable
Page 4
-------
ASHTABULA (CF 467ASH)
CONGENERS IN WATER
6/30/93
(concentrations In ng/L)
IUPAC MSLCode 467ASH-40 467ASH-41 467ASH-42 467ASH-70 467ASH-71 467ASH-104
M^BER Sponsor ID 03SEP12003L3CO 03SEP1523L1AO 03SEP15453L2BO 10SEP16157L1A 10SEP16158L1A 11SEP16458L1B
8&5
19
18
17
32+16
29
26
25
31+28
33A53
22
45
46
52
49&43
48+47
44
42 + 37
64+41+71
40
100
63
74
70+76
95+66
91
56+60
92+84
101 & 89
99
83
97
87
85
136
110&77
82
151
135,144,147,124.13
107
149
118
134+114
131
146
10 U
37.8 E
10 U
10 U
10 U
10 U
36.2 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
16.9 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
17.9 E
ll.OE
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
22.3 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
12.6 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
15.5 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
36.1 E
10 U
10 U
10 U
10 U
18.0 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
16.1 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
584 E
10 U
109 E
10 U
10 U
189 E
10 U
10 U
10 U
24.4 E
273E
994E
1450 E
41.8 E
808 E
292 E
50.6 E
305 E
116 E
103 E
236E
143 E
172 E
309 E
238 E
384 E
70.3 E
780 E
6X6 E
61.5 E
145 E
15.4 E
34.5 E
78.4 E
48.5 E
10 U
10 U
17.8 E
12.6 E
40.6 E
14.4 E
10 U
10 U
10 U
10 U
3880 E
14500 E
2310 E
5770 E
2480 E
663 E
10 U
3280 E
1060 E
4870 E
1750 E
692 E
844E
3810 E
10 U
1860 E
867 E
1750 E
1970 E
17200 E
528 E
868 E
10 U
2750 E
500E
401 E
177 E
10 U
345 E
10 U
226E
190 E
10 U
430 E
285 E
152 E
10 U
159 E
103 E
203 E
61.6 E
17.5 E
241 E
10 U
20.7 E
10 U
777 E
205E
10 U
10 U
116 E
38.9 E
12.0 E
36.5 E
10 U
10 U
68.4 E
222 E
30.1 E
42.0 E
52.5 E
26.3 E
43.7 E
35.7 E
10 U
24.1 E
16.3 E
38.9 E
51.7 E
22.2 E
28.6 E
17.5 E
61.6 E
10.2 E
11.4E
13.9 E
10 U
ll.OE
14.7 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
Pagel
-------
ASHTABULA (CF 467ASH) 6/30/93
CONGENERS IN WATER
(
concentrations in ng/L)
IUPAC MSLCode 467ASH-40 467ASH-41 467ASH-42 467ASH-70 467ASH-71 467ASH-104
NUMBER Sponsor ID 03SEP12003L3CO 03SEP1523L1AO 03SEP15453L2BO 10SEP16157L1A 10SEP16158L1A 11SEP16458L1B
153+132+105
141
137+176
163+138
158
178
175
187+182
183
128
185
174
177
202+171
173
157+200
172+197
180
193
191
199
170+190
198
201
203+196
189
208+195
207
194
205
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
16.1 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
34.5 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
44.6 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
13.7 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
19.3 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
115 E
47.1 E
173 E
63.2 E
89.7 E
25.9 E
10 U
95.2 E
31.2 E
18.8 E
13.2 E
21.6 E
10 U
19.3 E
12.0 E
18.3 E
22.4 E
13.6 E
10 U
10 U
10 U
10 U
10 U
10 U
15.3 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
Page 2
-------
ASHTABULA (CF 467/
CONGENERS IN WATER
6/30/93
(concentrations in ng/L)
UPAC MSLCode 467ASH-108 467ASH-145 467ASH-146 467ASH-203 467ASH-204 467ASH-251
NUMBER Sponsor ID 11SEP16507L1B 14SEP19008L1C 14SEP19057L1C 15SEP14458L2A 15SEP14457L2A 16SEP15178L2B
8&5
19
18
17
32+16
29
26
25
31+28
33&S3
22
45
46
52
49&43
48+47
44
42 + 37
64+41+71
40
100
63
74
70+76
95+66
91
56+60
92+84
101 & 89
99
83
97
87
85
136
110&77
82
151
135,144,147,124,13
107
149
118
134+114
131
146
164 E
4660E
124 E
213 E
1590 E
10 U
1460 E
66.5 E
118 E
224 E
175 E
1060 E
45.8 E
907E
305 E
120 E
221 E
242 E
391 E
107 E
94.1 E
235 E
198 E
281 E
240 E
78.2 E
133 E
307 E
61.9 E
34.4 E
23.1 E
44.0 E
54.2 E
51.1 E
10 U
84.8 E
19.4 E
27.4 E
44.5 E
23.0 E
14.8 E
25.8 E
10 U
10 U
13.6 E
10 U
10 U
104 E
10 U
10 U
27.2 E
83.5 E
10 U
10 U
78.5 E
120 E
204 E
249 E
27.8 E
103 E
79.2 E
11.4E
14.0 E
19.5 E
10 U
10 U
23.4 E
73.7 E
65.3 E
45.1 E
74.5 E
29.0 E
111 E
17.5 E
17.9 E
42.9 E
10 U
12.7 E
22.1 E
13.1 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
324 E
6270 E
193 E
382 E
2500 E
42.3 E
1980 E
117 E
173 E
313 E
240 E
1450 E
148 E
1610 E
115 E
162 E
355 E
295 E
603 E
278 E
198 E
362 E
358 E
472 E
365 E
119 E
213 E
767 E
131 E
169 E
57.0 E
124 E
136 E
152 E
10 U
142 E
33.4 E
58.8 E
93.3 E
63.6 E
23.6 E
25.0 E
148 E
21.1 E
46.7 E
803 E
537 E
105 E
255 E
36.1 E
202 E
20.9 E
780 E
10 U
98.6 E
53.5 E
259 E
74.7 E
69.1 E
132 E
102 E
35.3 E
102 E
10 U
963 E
10 U
52.7 E
86.5 E
90.8 E
78.7 E
10 U
17.4 E
17.7 E
20.0 E
27.9 E
26.8 E
10 U
19.9 E
29.7 E
15.5 E
10 U
10 U
11.1 E
10 U
10.5 E
10 U
10 U
14.9 E
10 U
10 U
10 U
4900 E
96.3 E
754 E
211 E
120 E
10 U
567 E
298 E
192 E
180 E
90.6 E
186 E
211 E
103 E
64.2 E
117 E
102 E
127 E
51.6 E
141 E
83.7 E
65.2 E
109 E
80.9 E
23.6 E
39.1 E
80.2 E
30.6 E
39.4 E
35.9 E
15.3 E
18.5 E
10 U
22.5 E
51.6 E
16.9 E
12.6 E
10 U
10 U
10 U
10 U
23.6 E
10 U
12.5 E
10 U
196 E
46.3 E
10 U
13.7 E
10 U
61.7 E
10 U
10 U
31.5 E
79.7 E
64.1 E
25.2 E
13.3 E
58.2 E
44.9 E
12.2 E
48.5 E
10 U
227 E
10 U
15.0 E
40.1 E
30.6 E
31.8 E
10 U
10 U
64.9 E
10 U
11.0 E
10 U
10 U
10 U
12.0 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
Page3
-------
ASHTABULA (CF 467*
CONGENERS IN WATER
6/30/93
IUPAC MSLCode
NUMBER Sponsor ID
1534-132+105
141
137+176
163+138
158
178
175
187+182
183
128
185
174
177
202+171
173
157+200
172+197
180
193
191
199
170+190
198
201
203+196
189
208+195
207
194
205
467ASH-108 467ASH-145 467ASH-146 467ASH-203 467ASH-204 467ASH-251
11SEP16507L1B 14SEP19008L1C 14SEP19057L1C 15SEP14458L2A 15SEP14457L2A 16SEP15178L2B
17.8 E
10 U
66.8 E
14.3 E
10 U
17.4 E
10 U
10 U
10 U
10 U
10 U
10 U
10.8 E
10 U
20.3 E
10.9 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
52.3 E
415 E
195 E
385 E
27.8 E
63.4 E
22.1 E
41.9 E
25.9 E
23.9 E
39.6 E
15.6 E
39.6 E
25.9 E
47.8 E
33 JE
215 E
16.3 E
10 U
10 U
10 U
10 U
11.6E
17.1 E
18.1 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
11.6E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
19.9 E
10 U
10 U
13.6 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
11.0 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
Page 4
-------
ASHTABULA (CF 467/
CONGENERS IN WATER
6/30/93
(concentrations in ng/L)
D
D
D
IUPAC MSLCode 467ASH-256 467ASH-258 467ASH-259 467ASH-300, R1 467ASH-300, R2 467ASH-300, R3
NUMBER Sponsor ID 16SEP15157L2B 16SEP15158L2B 16SEP15168L2B 17SEP18458L2C 17SEP18458L2C 17SEP18458L2C
8&5
19
18
17
32+16
29
26
25
31+28
33&S3
22
45
46
52
49&43
48+47
44
42 + 37
64+41+71
40
100
63
74
70+76
95+66
91
56+60
92+84
101 & 89
99
83
97
87
85
136
110&77
82
151
135,144,147,124,13
107
149
118
134+114
131
146
1200 E
280 E
203 E
10 U
181 E
98.8 E
138 E
1070 E
414 E
314 E
58.0 E
54.4 E
154 E
99.4 E
286 E
175 E
147 E
190 E
73.0 E
482 E
99.7 E
194 E
37.6 E
196 E
234 E
10 U
75.8 E
456 E
71.3 E
62.1 E
64.1 E
24.8 E
20.0 E
59.2 E
51.0 E
10 U
10.7 E
24.8 E
10 U
42.4 E
12.9 E
11.5 E
27.4 E
10 U
14.3 E
10 U
215 E
65.4 E
10 U
14.5 E
10 U
75.1 E
10 U
10 U
39.4 E
92.4 E
79.6 E
104 E
14.6 E
70.9 E
55.5 E
19.8 E
61.0 E
10 U
261 E
10 U
17.6 E
47.6 E
37.3 E
36.5 E
47.3 E
15.1 E
72.9 E
11.7 E
12.6 E
10 U
10 U
10 U
14.2 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
336 E
351 E
81.2 E
10 U
10 U
116 E
10 U
ll.OE
10 U
64.2 E
125 E
155 E
53.1 E
20.4 E
105 E
85.3 E
25.5 E
88.8 E
13.1 E
458 E
13.7 E
29.9 E
71.2 E
64.3 E
57.4 E
10 U
10 U
134 E
12.8 E
19.9 E
14.3 E
10 U
13.5 E
23.1 E
13.8 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
899 E
10 U
68.5 E
325 E
591 E
10 U
13.6 E
10 U
322 E
305 E
303 E
87.0 E
3Z7E
379 E
287E
236E
385 E
194 E
335 E
79.8 E
49.8 E
179 E
98.0 E
387 E
378 E
28.9 E
194 E
94.9 E
66.8 E
42.7 E
132 E
38.2 E
37.4 E
24.6 E
10 U
85.3 E
17.7 E
4560 E
15.9 E
10 U
10 U
40.4 E
10 U
10 U
10 U
2110E
10 U
96.9 E
619 E
1450 E
10 U
35.1 E
10 U
795 E
739 E
734 E
256 E
82.4 E
928 E
702 E
580 E
940 E
476 E
842 E
214 E
17.8 E
465 E
251 E
944 E
930 E
70.3 E
500 E
249 E
171 E
112 E
10 U
104 E
101 E
65.9 E
12.0 E
220 E
44.3 E
10 U
43.9 E
24.6 E
10 U
107 E
12.4 E
10 U
17.6 E
1620 E
10 U
185 E
500 E
1070 E
10 U
34.7 E
10 U
569 E
555 E
480 E
213 E
73.1 E
681 E
505 E
422 E
670 E
351 E
627 E
175 E
17.3 E
355 E
190 E
679 E
673 E
54.4 E
323 E
193 E
130 E
89.4 E
10 U
86.9 E
83.0 E
54.3 E
12.6 E
166 E
33.9 E
10 U
36.4 E
22.5 E
10 U
84.7 E
14.1 E
10 U
19.5 E
PageS
-------
ASHTABULA (CF 467/
CONGENERS IN WATER
6/30/93
HJPAC MSLCode
NUMBER Sponsor ID
153+132+105
141
137+176
163+138
158
178
175
187+182
183
128
185
174
177
202+171
173
157+200
172+197
180
193
191
199
170+190
198
201
203+196
189
208+195
207
194
205
(concentrations in nq/L)
D
D
D
467ASH-256 467ASH-258 467ASH-259 467ASH-300. R1 467ASH-300, R2 467ASH-300. R3
16SEP15157L2B 16SEP15158L2B 16SEP1S168L2B 17SEP18458L2C 17SEP18458L2C 17SEP18458L2C
10.3 E
10 U
27.9 E
10 U
13.2 E
15.1 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
19000 E
10 U
10 U
15.8 E
10 U
10 U
10 U
14200 E
8610 E
1040 E
10 U
10600 E
10 U
10 U
-
10 U
10 U
23400 E
244000 E
10 U
10 U
10 U
10 U
17200 E
20300 E
10 U
10 U
10 U
10 U
10 U
10 U
11.8E
127 E
23 .3 E
10 U
31.2 E
10 U
34000 E
20700 E
10 U
10 U
25500 E
16.5 E
11.8 E
-
45.0 E
10 U
56100 E
585000 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
20.5 E
10 U
10 U
10 U
11.3 E
15.0 E
98.5 E
22.4 E
10 U
44.1 E
10 U
24800 E
10 U
10 U
10 U
18600 E
19.5 E
11.7E
-
40.0 E
10 U
10 U
10 U
10 U
10 U
11.9 E
10 U
10 U
10 U
10 U
20.3 E
10 U
10 U
10 U
Page 6
-------
ASHTABULA (CF 467*
CONGENERS IN WATER
6/30/93
(concentrations in ng/L)
IUPAC MSLCode
NUMBER Sponsor ID
8&5
19
18
17
32+16
29
26
25
31+28
33&S3
22
45
46
52
49A43
48+47
44
42 + 37
64+41+71
40
100
63
74
70+76
95+66
91
56+60
92+84
101 & 89
99
83
97
87
85
136
110&77
82
151
135.144.147,124,13
107
149
118
134+114
131
146
RSD%
39% *
NA
52% *
31% *
42% *
NA
44% *
NA
42% *
41% *
43% *
47% *
42% *
41% *
42% *
42% *
42% *
41% *
42% *
44% *
66% *
43% *
43% *
42% *
42% *
41% *
45% *
44% *
43% *
43% *
NA
45% *
44% *
44% *
NA
43% *
42% *
NA
45% *
NA
NA
44% *
NA
NA
NA
D
467ASH-305
17SEP18507L2C
503 E
10 U
713 E
519 E
1700 E
23.8 E
10 U
11.7E
1260 E
752 E
451 E
131 E
10 U
1650 E
1358 E
991 E
1610 E
602 E
1200 E
186 E
10 U
10 U
353 E
1860 E
1740 E
53.2 E
760 E
10 U
251 E
142 E
80.2 E
78.8 E
2900 E
58.2 E
10.5 E
368 E
ll.OE
10 U
2210 E
14.8 E
307 E
12.5 E
54.0 E
10 U
10 U
D
467ASH-375
18SEP15008L3A
1190 E
10 U
169 E
328 E
471 E
10 U
193 E
10 U
1020 E
352 E
320 E
95.1 E
45.7 E
379 E
319 E
218 E
478 E
256 E
389 E
101 E
41.1 E
10 U
106 E
403 E
421 E
31.0 E
223E
112 E
69.9 E
49.5 E
31.0 E
36.2 E
43.6 E
32.1 E
10 U
101 E
19.5 E
4410 E
2270 E
10 U
10 U
50 JE
10 U
10 U
10 U
D
467ASH-380
18SEP15006L3A
1020 E
10 U
193 E
543 E
1240 E
10 U
58.6 E
10 U
792 E
774 E
626 E
212 E
108 E
966E
848 E
654 E
1150E
707 E
1410 E
361 E
37.2 E
10 U
398 E
1450 E
1450 E
118 E
982 E
452 E
299 E
241 E
10 U
185 E
188 E
158 E
32.6 E
474 E
121 E
42.0 E
32.3 E
72.2 E
10 U
273 E
60.2 E
15.7 E
81.9 E
D
467 ASH -438
22SEP16008L3C
147 E
10 U
144 E
121 E
40.3 E
35.0 E
17.9 E
10 U
144 E
58.2 E
39.9 E
57.9 E
39.0 E
10 U
10 U
149 E
234 E
154 E
10700 E
33.7 E
10.4 E
170 E
62.0 E
254 E
221 E
23.5 E
117 E
64.8 E
44.3 E
28.0 E
43.3 E
24.3 E
27.0 E
21.4 E
10 U
54.1 E
14.0 E
4260 E
10 U
10 U
10 U
29.7 E
10 U
10 U
10 U
D
467ASH-454
22SEP08307L3C
1280 E
10 U
141 E
620 E
1900 E
10 U
35.9 E
10 U
930 E
797 E
578 E
126 E
85.7 E
1060 E
856 E
750 E
1020 E
572 E
929 E
284 E
38.0 E
10 U
351 E
1260 E
1220 E
99.5 E
772 E
402E
238 E
208 E
10 U
179 E
132 E
112 E
27.1 E
381 E
83.8 E
37.8 E
133 E
61.9 E
10 U
183 E
44.5 E
12.9 E
62.4 E
Page?
-------
ASHTABULA (CF 467*
CONGENERS IN WATER
6/30/93
IUPAC MSLCode
NUMBER Sponsor ID
153+132+105
141
1H1
137+176
163+138
1SS
l jo
175
1 /-/
187+182
181
1 O J
185
1O»J
202+171
173
157+200
172+197
180
193
191
104
iyy
170+190
198
201
203+196
189
208+195
207
104
17*T
205
(concentrations
in ng/L)
D
467ASH-305
RSD% 17SEP18507L2C
NA
NA
NA
NA
NA
NA
NA
41% *
NA
NA
NA
41% *
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
15.2 E
117 E
20.5 E
1Z9E
76.2 E
33.1 E
21.3 E
10 U
77.6 E
42.3 E
15.3 E
98.4 E
5330 E
15.2 E
57.1 E
53.7 E
22000 E
617 E
52.4 E
23.8 E
23.7 E
25.3 E
22.2 E
23.9 E
54.7 E
81.5 E
25.0 E
20.6 E
21.1 E
D
467ASH-37S
18SEP15008L3A
10 U
10 U
26.2 E
11.4E
10 U
10 U
10 U
13700 E
10 U
10 U
10 U
10200 E
10 U
10 U
10 U
10 U
22500 E
235000 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
12.9 E
10 U
10 U
10 U
D
467ASH-380
18SEP15006L3A
148 E
47.2 E
223E
103 E
31.7 E
103 E
27.7 E
32.4 E
42.4 E
26.8 E
18.1 E
35.0 E
71.6 E
43.2 E
121 E
19.1 E
61.0 E
10 U
11.7 E
12.9 E
49.0 E
14.6 E
55.7 E
48.9 E
10 U
98.3 E
39.0 E
13.9 E
10 U
D
467ASH-438
22SEP16008L3C
17800 E
10 U
22.5 E
10 U
10 U
10 U
10 U
13200 E
10 U
10 U
10 U
9900 E
10 U
10 U
10 U
10 U
21800 E
228000 E
10 U
10 U
10 U
10 U
16000 E
18900 E
10 U
10 U
10 U
10 U
10 U
D
467ASH-454
22SEP08307L3C
102 E
75 3 E
281 E
80.2 E
23.7 E
116 E
20.7 E
19.0 E
28.8 E
15.6 E
20.3 E
17.6 E
83.6 E
40.5 E
-E
149 E
11.5 E
59.7 E
10 U
10 U
10 U
47.3 E
13.2 E
59.0 E
45.3 E
10 U
70.9 E
25.3 E
14.2 E
10 U
PageS
-------
ASHTABULA (CF 467 J
CONGENERS IN WATER
6/30/93
(concentrations in ng/L)
HJPAC MSLCode
NUMBER Sponsor ID
8&5
19
18
17
32+16
29
26
25
31+28
33&S3
22
45
46
52
49&43
48+47
44
42 + 37
64+41+71
40
100
63
74
70+76
95+66
91
56+60
92+84
101 & 89
99
83
97
87
85
136
110&77
82
151
135.144,147,124.13
107
149
118
134+114
131
146
D
467ASH-464
22SEP08458L3B
369 E
10 U
264E
77.5 E
63.7 E
10 U
151 E
15.8 E
55.1 E
116 E
110 E
30.5 E
53.6 E
61.6 E
66.6 E
43.7 E
50.7 E
58.7 E
85.1 E
87.5 E
20.9 E
42.7 E
34.2 E
42.3 E
93.7 E
26.1 E
43.5 E
29.5 E
31.0 E
14.2 E
77.3 E
18.1 E
15.7 E
28.8 E
10 U
17.2 E
13.9 E
10 U
18.7 E
10 U
10 U
19.6 E
40.9 E
10 U
11.3 E
D
467ASH-469
22SEP08508L3B
244 E
10 U
191 E
58.6 E
15.3 E
10 U
112 E
13.8 E
29.2 E
101 E
31.4 E
23.7 E
36.9 E
42.2 E
47.1 E
31.2 E
36.6 E
42.1 E
58.2 E
40.0 E
163 E
31.7 E
27.2 E
31.9 E
18.4 E
20.7 E
31.0 E
19.6 E
27.8 E
11.4 E
55.9 E
13.3 E
12.4 E
10.9 E
10 U
13.2 E
10.6 E
4360 E
10 U
10 U
10 U
15.2 E
32.0 E
10 U
10 U
D
467ASH-482. R1
22SEP15507L3C
575 E
10 U
843 E
369 E
752 E
10 U
50.7 E
10 U
840 E
659 E
384 E
231 E
55.6 E
59.7 E
10 U
553 E
157 E
592 E
740 E
77.4 E
17.1 E
248 E
219 E
10 U
729 E
26.3 E
103 E
98.7 E
80.7 E
100.0 E
10 U
84.3 E
87.4 E
30.7 E
51.3 E
212 E
1320 E
15.9 E
158 E
10 U
64.8 E
85.8 E
28.4 E
10 U
21.5 E
D
467ASH-482, R2
22SEP15507L3C
550 E
10 U
382 E
383 E
775 E
10 U
58.6 E
10 U
793 E
604 E
412 E
187 E
76.9 E
112 E
10 U
555 E
10 U
954 E
729 E
74.8 E
223 E
269E
210 E
10 U
745 E
26.7 E
96.4 E
116 E
84.1 E
113 E
10 U
92.2 E
97.2 E
27.4 E
58.8 E
225E
10 U
35.0 E
124 E
10 U
66.2 E
99.5 E
34.8 E
10 U
10 U
D
467ASH-482, R3
22SEP15507L3C
558 E
10 U
352 E
353 E
764 E
10 U
58.3 E
10 U
712 E
614 E
363 E
174 E
95.6 E
637 E
539 E
323 E
754 E
565 E
643 E
180 E
20.1 E
217 E
176 E
733 E
682 E
55.9 E
301 E
193 E
147 E
98.8 E
10 U
80.0 E
89.3 E
55.3 E
10 U
190 E
33.3 E
13.5 E
HOE
34.0 E
10 U
85.4 E
21.6 E
10 U
23.8 E
RSD%
2%
NA
60% *
4%
2%
NA
8%
NA
8%
5%
6%
15%
26% *
118% *
NA
28% *
NA
31% *
8%
54% *
13%
11%
11%
NA
5%
47% *
70% *
37% *
3
-------
ASHTABULA (CF 467/1
CONGENERS IN WATER
6/30/93
(concentrations in ng/L)
KJPAC MSL Code
NUMBER Sponsor ID
153+132+105
141
137+176
163+138
158
178
175
187+182
183
128
185
174
177
202+171
173
157+200
172+197
180
193
191
199
170+190
108
170
201
203+196
189
208+195
207
194
17^
205
D
467ASH-464
22SEP08458L3B
19000 E
10 U
22.0 E
10 U
10 U
10 U
10 U
142000 E
10 U
10 U
10 U
10600 E
10 U
10 U
11.7 E
10 U
23400 E
12.2 E
10 U
10 U
10 U
10 U
17200 E
10 U
10 U
10 U
10 U
10 U
10 U
D
467ASH-469
22SEP08508L3B
18200 E
10 U
19.2 E
10 U
10 U
10 U
10 U
13500 E
10 U
10 U
10 U
10100 E
10 U
10 U
10 U
10 U
22300 E
10 U
10 U
10 U
10 U
10 U
16400 E
10 U
10 U
10 U
10 U
10 U
10 U
D
467ASH-482, R1
22SEP15507L3C
21.3 E
14.0 E
178 E
17.1 E
34.6 E
66.3 E
10 U
13500 E
27.0 E
10 U
10 U
10100 E
10 U
30.2 E
10 U
10 U
10 U
925 E
10 U
10 U
22.6 E
31.6 E
16400 E
13.7 E
10 U
18.0 E
10 U
10 U
10 U
D
467ASH-482. R2
22SEP15507L3C
31.1 E
22.3 E
179 E
10 U
42.1 E
83.8 E
10 U
15500 E
26.0 E
10 U
10 U
11600 E
6160 E
34.8 E
91.7 E
10 U
25500 E
184 E
10 U
10 U
10 U
33.6 E
18700 E
10 U
10 U
11.1 E
10 U
10 U
10 U
D
467ASH-482, R3
22SEP15507L3C
28.3 E
20.7 E
160 E
38.2 E
10 U
63.8 E
10 U
13700 E
10 U
10 U
10 U
10200 E
39.7 E
17.9 E
86.7 E
10 U
15.3 E
10 U
10 U
10 U
24.8 E
10 U
19.0 E
11.8 E
10 U
15.7 E
10 U
10 U
10 U
RSO%
19%
23% *
6%
NA
NA
15%
NA
8%
NA
NA
NA
8%
NA
32% *
NA
NA
NA
NA
NA
NA
NA
NA
87% *
NA
NA
24% *
NA
NA
NA
Page 10
-------
ASHTABULA (CF 467/ 6/30/93
CONGENERS IN WATER
(concentrations in ng/L)
RJPAC MSLCode
NUMBER Sponsor ID
8&5
19
18
17
32+16
29
26
25
31+28
33&S3
22
45
46
52
49&4S
48+47
44
42 + 37
64+41+71
40
100
63
74
70+76
95+66
91
56+60
92+84
101 & 89
99
83
97
87
85
136
110&77
82
151
135,144,147,124,13
107
149
118
134+114
131
146
D
467ASH-487
22SEP15307L3C
647 E
10 U
377 E
351 E
777E
10 U
63.1 E
10 U
640E
603 E
363 E
149 E
102 E
566 E
504 E
288 E
877 E
537 E
596 E
159 E
20.2 E
208 E
156 E
672 E
634 E
57.6 E
276 E
177 E
140 E
95.5 E
89.4 E
77.1 E
85.2 E
54.3 E
10.4 E
162 E
31.1 E
1Z2E
100 E
32.6 E
10 U
81.3 E
30.1 E
10 U
24.0 E
D
467ASH-489
22SEP15317L3C
483 E
10 U
257 E
405 E
425 E
10 U
70.6 E
10 U
508 E
545 E
322 E
142 E
100 E
450 E
413 E
251 E
749 E
383 E
531 E
163 E
33.2 E
210 E
147 E
537 E
513 E
55.2 E
252 E
181 E
132 E
100 E
10 U
92.2 E
94.0 E
59.5 E
10 U
174 E
43.9 E
17.8 E
68.8 E
39.7 E
10 U
85.3 E
28.3 E
10 U
39.1 E
D
467ASH-490
22SEP15327L3C
680 E
10 U
379 E
364E
815 E
10 U
68.2 E
10 U
666E
625E
379 E
157 E
109 E
585 E
526 E
298 E
718 E
554 E
619 E
152 E
20.7 E
218 E
161 E
693 E
656 E
59.8 E
285 E
182 E
145 E
99.8 E
10 U
79.8 E
87.4 E
56.8 E
13.2 E
163 E
29.1 E
13.1 E
93.8 E
33.2 E
10 U
84.3 E
31.8 E
10 U
24.4 E
Page 11
-------
ASHTABULA (CF 4674 6/30/93
CONGENERS IN WATER
(concentrations in ng/L)
RJPAC MSLCode
NUMBS* Sponsor ID
153+132+105
141
137+176
163+138
158
178
175
187+182
183
128
185
174
177
202+171
173
157+200
172+197
180
193
191
199
170+190
198
201
203+196
189
208+195
207
194
205
D
467ASH-487
22SEP15307L3C
21.9 E
23.2 E
148 E
39.3 E
10 U
57.6 E
10 U
10 U
10 U
10 U
10 U
10200 E
40.4 E
17.9 E
-
77.9 E
10 U
16.8 E
10 U
10 U
10 U
24.7 E
10 U
20.2 E
13.1 E
10 U
27.7 E
10 U
10 U
11.2 E
D
467ASH-489
22SEP15317L3C
48.4 E
44.5 E
154 E
59.5 E
10 U
75.5 E
10 U
10 U
22.3 E
11.1 E
17.4 E
11.5 E
54.5 E
22.4 E
-
88.5 E
10 U
31.7 E
10 U
10 U
10 U
35.0 E
10 U
28.7 E
21.7 E
10 U
43.7 E
12.3 E
10.8 E
16.5 E
D
467ASH-490
22SEP15327L3C
23.1 E
23.2 E
155 E
40.5 E
10 U
59.6 E
10 U
10 U
10 U
10 U
10 U
10200 E
41.0 E
18.6 E
-
80.2 E
10 U
18.1 E
10 U
10 U
10 U
28.1 E
10 U
21.9 E
13.3 E
10 U
30.4 E
10 U
10.0 U
11.8 E
Page 12
-------
ASHTABULA (CF 467/1
CONGENERS IN WATER
6/30/93
RJPAC MSI Code
NUMBER Sponsor ID
8&5
19
18
17
32+16
29
26
25
31+28
33&53
22
45
46
52
49&4S
48+47
44
42 + 37
64+41+71
40
100
63
74
70+76
95+66
91
56+60
92+84
101 & 89
99
83
97
87
85
136
110&77
82
151
135,144.147,124,13
107
149
118
134+114
131
146
(concentration
s in ng/L)
D
D
D
BLANK-2 BLANK-3 BLANK-4 BLANK-5 BLANK-6 BLANK-7 BLANK-8
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
339 E
10 U
10 U
11.1 E
10 U
14.8 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
14.7 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
20.9 E
162 E
10 U
4040 E
7510 E
10 U
10 U
10 U
23800 E
18.7 E
7660 E
10 U
10 U
6410 E
4900 E
23.6 E
8520 E
5180 E
10100 E
2130 E
10 U
10 U
5140 E
12500 E
16600 E
10 U
10 U
10 U
2860 E
10 U
10 U
1390 E
10 U
10 U
835 E
3930 E
10 U
4000 E
18.3 E
10 U
7000 E
2670 E
10 U
10 U
10 U
35800 E
169 E
7100 E
4170 E
7750 E
10 U
10 U
10 U
24600E
10 U
7900 E
10 U
10 U
6620 E
5060 E
24.2 E
8800 E
5340 E
10400 E
2190 E
10 U
10 U
5310 E
12900 E
17200 E
978 E
10 U
2710 E
2950 E
10 U
10 U
1440 E
2780 E
1970 E
10 U
4060 E
10 U
4130 E
2110 E
10 U
10 U
2750 E
10 U
10 U
10 U
37900 E
165 E
7500 E
4410 E
8190 E
168 E
10.5 E
10 U
26000 E
10 U
8350 E
1690 E
10 U
6980 E
5340 E
27.2 E
9280 E
5640 E
11000 E
14.3 E
10 U
10 U
5610 E
13700 E
18100 E
1030 E
13800 E
2860 E
3120 E
10 U
10 U
10 U
2930 E
10 U
910 E
4290 E
1320 E
4360 E
10 U
10 U
7640 E
2900 E
10 U
10 U
10 U
Page 13
-------
ASHTABULA (CF 467/
CONGENERS IN WATER
6/30/93
HJPAC MSLCode
NUMBS* Sponsor ID
153+132+105
141
137+176
163+138
158
178
175
187+182
183
128
185
174
177
202+171
173
157+200
172+197
180
193
191
199
170+190
198
201
203+196
189
208+195
207
194
205
(concentrations
in ng/L
BLANK-2 BLANK-3
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
.1
BLANK-4
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
BLANK-5
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
D
BLANK-6
16700 E
10 U
18.9 E
7960 E
10 U
3650 E
10 U
12400 E
7540 E
10 U
10 U
10 U
10 U
10 U
-
10 U
10 U
20500 E
213000 E
10 U
10 U
10 U
10 U
15000 E
17700 E
10 U
10 U
10 U
10 U
10 U
D
BLANK-7
10 U
10 U
16.6 E
8200 E
10 U
10 U
10 U
10 U
7780 E
10 U
10 U
10 U
10 U
10 U
-
10 U
10 U
21100 E
220000 E
10 U
10 U
10 U
10 U
10 U
18300 E
10 U
10 U
10 U
10 U
10 U
D
BLANK-8
18200 E
10 U
11.5 E
8680 E
10 U
10 U
10 U
13500 E
8220 E
10 U
10 U
10 U
5390 E
4320 E
-
10 U
10 U
22300E
233000 E
10 U
10 U
10 U
10 U
16400 E
19300 E
10 U
10 U
10 U
10 U
10 U
* = Outside the %RSD criteria of ±20%.
D = Sample diluted 11:1.
U = Below detection limits.
E = Estimate only; due to interference with the confirming ion
Page 14
-------
ASHTABULA RIVER PILOT PROJECT
PAH IN SEDIMENT SAMPLES
(CF #467ASH)
5/6/93
(concentrations in ng/g dry wt.)
% SURROGATE RECOVERY
MSL Code
467ASH-10
467ASH-11
467ASH-12
467ASH-13
467ASH-14
467ASH-15
467ASH-16
467ASH-17
467ASH-18
467ASH-18
467ASH-18
467ASH-51
467ASH-63
467ASH-78
467ASH-79
467ASH-98
467ASH-101
467ASH-121
467ASH-122
467ASH-135
467ASH-138
467ASH-164
467ASH-167
467ASH-177
467ASH-181
467ASH-187
467ASH-187
467ASH-187
467ASH-197
467ASH-200
467ASH-200
467ASH-200
Rep Sponsor ID
02SEP1430IS2BO
02SEP1455IS3AO
02SEP1400IS2AO
02SEP1320IS1AO
02SEP1345IS1CO
02SEP1520IS3BO
02SEP1330IS1AO
02SEP1540IS3CO
Rep1 02SEP1445IS2CO
Rep 2 02SEP1445IS2CO
Rep 3 02SEP1445IS2CO
10SEP13304S1A
10SEP15003S1A
11SEP08405S1A
11SEP08406S1A
11SEP15503S1B
11SEP16204S1B
14SEP08305S1B
14SEP08306S1B
14SEP17204S1C
14SEP12353S1C
15SEP08305S1C
15SEP08306S1C
15SEP11424S2A
15SEP11464S2A
Rep1 15SEP11494S2A
Rep 2 15SEP11494S2A
Rep 3 15SEP11494S2A
15SEP13153S2A
Rep1 15SEP13454S2A
Rep 2 15SEP13454S2A
Rep 3 15SEP13454S2A
Batch Hexachloro- Hexachloro- Hexachloro- Benzo(a) d8
No ethane butadiene benzene pyrene
1
1
1
1
1
1
1
1
1
1
1
S
2
2
2
2
2
3
3
3
3
3
2
3
3
3
3
3
3
4
3
3
151 U
134 U
105 U
190 U
138 U
93.9 U
122 U
186 U
173 U
116 U
198 U
92 U
194 U
203 U
179 U
196 U
128 U
181 U
121 U
114 U
154 U
123 U
122 U
93.2 U
98.2 U
80.1 U
131 U
122 U
167 U
130 U
107 U
102 U
125
154
101
117
66.2 U
74.0
81.5
124
182
209
166
40 U
85.0 U
89.0 U
78.6 U
86.1 U
55.9 U
114 U
76.5 U
71.8 U
97.2 U
77.5 U
53.5 U
58.9 U
62.0 U
50.6 U
82.7 U
76.9 U
106 U
69.9 U
67.7 U
64.5 U
384
2610
365
291
306
209
409
644
550
587
509
27
243
164#
118
507
29.2
486
47.0
26.3 U
160
26.8 U
87.1
21.7 U
20.3 U
17.5 U
27.9 U
27.8 U
167
25.3 U
25.9 U
23.8 U
529
521
531
455
744
718
730
839
481
580
559
262
380
2590
755
491
122
1870
688
14.4
448
314
950
10.1
5.86 U
5.10 U
11.5
12.8 #
322
30.1
25.7
26.8
Acenaph- d12
thalene d10 Pyrene
1 00%
113%
118%
85%
129% *
123% *
95%
1 1 6%
112%
1 1 1 %
115%
98%
78%
95%
74%
93%
82%
95%
75%
69%
78%
88%
74%
72%
30% *
26% *
81%
81%
73%
89%
75%
82%
1 04%
106%
108%
87%
118%
114%
97%
111%
1 07%
111%
114%
104%
80%
113%
75%
89%
81%
104%
84%
91%
92%
1 03%
72%
95%
39% *
32% *
98%
101%
83%
1 06%
91%
97%
Benzo(a)
pyrene
109%
122% *
126% *
92%
139% *
136% *
1 1 5%
135% *
129% *
130% *
133% *
130% *
80%
102%
79%
97%
82%
103%
85%
70%
91%
96%
74%
72%
28% *
24% *
79%
80%
78%
105%
77%
84%
Page 1
-------
ASHTABULA RIVER PILOT PROJECT
PAH IN SEDIMENT SAMPLES
(CF #467ASH)
5/6/93
(concentrations in ng/g dry wt.)
% SURROGATE RECOVERY
MSL Code
467ASH-213
467ASH-216
467ASH-219
467ASH-239
467ASH-242
467ASH-248
467ASH-249
467ASH-250
467ASH-310
467ASH-313
467ASH-319
467ASH-320
467ASH-323
467ASH-333
467ASH-335
467ASH-335
467ASH-335
467ASH-338
467ASH-344
467ASH-349
467ASH-351
467ASH-362
467ASH-370
467ASH-373
467ASH-385
467ASH-388
467ASH-403
467ASH-403
467ASH-403
467ASH-406
467ASH-409
467ASH-413
Batch Hexachloro- Hexachloro- Hexachloro- Benzo(a) d8
Rep Sponsor ID No ethane butadiene benzene ovrene
16SEP08505S2A
16SEP08506S2A
16SEP10153S2A
16SEP13203S2B
16SEP14204S2B
16SEP921600CARB'M
16SEP921600CARBT
16SEP921600CARB'B
18SEP08306S2C
18SEP08316S2C
18SEP08326S2C
18SEP09005S2C
17SEP09005S2B
17SEP09006S2B
Rep1 17SEP12003S2C
Rep 2 17SEP12003S2C
Rep 3 17SEP12003S2C
17SEP12453S2C
14SEP13004S1CI
17SEP12304S2CI
17SEP13353S2C
17SEP18054S2C
18SEP14004S3A
18SEP13353S3A
21SEP13455S3A
21SEP13456S3A
Rep1 21SEP18314S3B
Rep 2 21SEP18314S3B
Rep 3 21SEP18314S3B
21SEP18324S3B
21SEP15004S3BI
21SEP18314S3B
3
3
4
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
6
6
173 U
164 U
176 U
106 U
93.6 U
137 U
104 U
87.3 U
149 U
104 U
167 U
185 U
175 U
171 U
196 U
233 U
182 U
252 U
155 U
102 U
109 U
99.2 U
106 U
141 U
135 U
171 U
118 U
113 U
108 U
117 U
91.6 U
113 U
109 U
104 U
120
90.7
59.2 U
1110
1430
868
80.1 U
56.1 U
89.9 U
99.6 U
93.9 U
91.7 U
231
312
270
480
83.2 U
79.3
254
52.7 U
56.2 U
153
71.9 U
90.7 U
62.7 U
59.8 U
57.1 U
62.4 U
65.9
59.2 U
171
161
235
244
21.9 U
30.4 U
23.7 U
20.5 U
222
129
304
951
177
96.2
3100
3320
2550
5160
194
701
2310
18.9 U
19.8 U
1440
359
1030
22.0 U
21.7 U
20.3 U
22.4 U
159
24.8 U
1310
1450
393
365
16.2
9.16 U
6.98 U
6.26 U
177
164
190
930
718
357
404
468
388
520
610
302
520
8.16 U
19.1 #
527
680
1780
11.9#
10.3#
10.5
10.7#
614
8.45 U
Acenaph- d12
thalene d10 Pvrene
95%
91%
92%
70%
65%
18% *
21% *
17% *
94%
85%
95%
98%
87%
99%
98%
96%
83%
95%
97%
71%
1 05%
88%
88%
100%
1 06%
122%*
94%
100%
93%
90%
87%
67%
103%
96%
1 05%
79%
87%
0% *
0% *
0% *
1 07%
103%
107%
1 1 0%
93%
1 06%
1 04%
101%
96%
1 08%
1 08%
82%
118%
1 04%
1 02%
114%
120%
132% *
1 1 6%
125% *
118%
113%
91%
85%
Benzo(a)
pyrene
99%
93%
108%
76%
54%
0% *
0% *
0% *
114%
106%
114%
115%
104%
118%
109%
1 1 0%
100%
112%
1 1 8%
85%
124% *
79%
103%
120%
124% *
131% *
102%
107%
98%
101%
102%
77%
Page 2
-------
ASHTABULA RIVER PILOT PROJECT (CF #467ASH)
PAH IN SEDIMENT SAMPLES
5/6/93
(concentrations in ng/g dry wt.)
% SURROGATE RECOVERY
MSL Code
467ASH-414
467ASH-424
467ASH-427
467ASH-428
467ASH-431
467ASH-434
467ASH-436
467ASH-460
467ASH-493
467ASH-495
467ASH-498
467ASH-498
467ASH-498
467ASH-499
467ASH-500
467ASH-500
467ASH-500
467ASH-501
467ASH-506
Biank-1
Blank-2
Blank-3
Blank-4
Blank-5
Blank-6
Blank-7
Rep Sponsor ID
21SEP18324S3B
21SEP16253S3B
21SEP19204S3B
22SEP09155S3B
22SEP09306S3B
22SEP13353S3C
22SEP14204S3C
22SEP14154S3C
22SEP17105S3C
22SEP17156S3C
Rep1 23SEP0800CARBT
Rep 2 23SEP0800CARBT
Rep 3 23SEP0800CARBT
23SEP0800CARB'M
Rep 1 23SEP0800CARBB
Rep 2 23SEP0800CARB'B
Rep 3 23SEP0800CARB'B
23SEOCARBV
10SEP15004S1A
Batch Hexachloro- Hexachloro- Hexachloro- Benzo(a) d8 Acenaph- d12
No ethane butadiene benzene pyrene thalene d10 Pyrene
6
6
6
6
6
6
6
5
7
7
7
7
7
7
7
7
7
7
7
1
2
3
4
5
6
7
104 U
89.7 U
108 U
141 U
120 U
56.6 U
108 U
86.7 U
163 U
160 U
116 U
119 U
115 U
121 U
92.4 U
123 U
116 U
133 U
143 U
128 U
111 U
145 U
165 U
154 U
148 U
156 U
54.1 U
85.6
56.4 U
73.8 U
62.9 U
74.8
56.3 U
46.1 U
85.2 U
83.8 U
3260
2930
2940
1400
2000
1560
1810
69.4 U
74.7 U
61.7 U
48.7 U
91.9 U
88.4 U
82.9 U
77.6 U
81.7 U
22.3 U
235
23.8 U
81.2
45.8
503
22.7 U
16.0 U
918
661
150
104
100
28.1 U
40.7
27.8 U
38.6
28.7 U
42.9
28.4 U
23.2 U
35.9 U
31.2 U
29.7 U
33.1 U
34.8 U
9.70
503
38.0
387
312
550
28.9
11.1 #
1510
1280
8.06 U
8.56
8.61 U
8.51 U
8.27
7.98 U
8.53
35.5
269
7.98 U
5.94 U
13. 9 #
13.3 U
12.1 U
59.0#
14.3 U
65%
94%
79%
90%
97%
93%
88%
71%
90%
97%
12% *
25% *
23% *
12% *
17% *
14% *
19% *
1% *
83%
87%
92%
84%
97%
92%
91%
81%
87%
96%
88%
91%
98%
99%
98%
101%
91%
95%
2% *
0% *
1% *
0% *
0% *
0% *
0% *
0% *
89%
90%
94%
94%
112%
103%
96%
96%
Benzo(a)
pyrene
76%
108%
86%
110%
114%
101%
96%
71%
96%
108%
0% *
0% *
0% *
0% *
0% *
0% *
0% *
0% *
109%
66%
83%
87%
117%
1 1 9%
127% *
107%
Page 3
-------
ASHTABULA RIVER PILOT PROJECT
PAH IN SEDIMENT SAMPLES
(CF #467ASH)
5/6/93
(concentrations in ng/g dry wt.)
% SURROGATE RECOVERY
MSLCode Rep Sponsor ID
MATRIX SPIKE RESULTS
Amount Spiked
467ASH-501 23SEOCARBV
467ASH-501 + Spike-1
Amount Recovered
Percent Recovery
Amount Spiked
467ASH-501 23SEOCARBV
467ASH-501 + Spike-1
Amount Recovered
Percent Recovery
REPLICATE ANALYSES
467ASH-18 Rep1 02SEP1445IS2CO
467ASH-18 Rep2 02SEP1445IS2CO
467ASH-18 Rep 3 02SEP1445IS2CO
467ASH-187 Rep 1 15SEP11494S2A
467ASH-187 Rep 2 15SEP11494S2A
467ASH-187 Rep 3 15SEP11494S2A
467ASH-200 Rep 1 15SEP13454S2A
467ASH-200 Rep 2 15SEP13454S2A
467ASH-200 Rep 3 15SEP13454S2A
Batch Hexachloro- Hexachloro- Hexachloro- Benzo(a) d8 Acenaph- d12
No ethane butadiene benzene pyrene thalene d10 Pyrene
7
7
7
7
RPD%
1
1
1
RSD%
3
3
3
RSD%
4
3
3
RSD%
216
133 U
155
155
72%
210
133 U
145
145
69%
4%
173 U
116 U
198 U
NA
80.1 U
131 U
122 U
NA
130 U
107 U
102 U
NA
216
69.4 U
188
188
87%
210
69.4 U
180
180
86%
2%
182
209
166
12%
50.6 U
82.7 U
76.9 U
NA
69.9 U
67.7 U
64.5 U
NA
216
28.7 U
25.8 U
0
0% *
210
28.7 U
29.6 U
0
0% *
0%
550
587
509
7%
17.5 U
27.9 U
27.8 U
NA
25.3 U
25.9 U
23.8 U
NA
216
35.5
9.24 U
0
0% *
210
35.5
15.2 U
0
0% *
0%
481
580
559
10%
5.10 U
11.5
12.8 #
NA
30.1
25.7
26.8
8%
NA
1% *
1% *
NA
NA
NA
1% *
1% *
NA
NA
112%
111%
115%
NA
26% *
81%
81%
NA
92%
75%
82%
NA
NA
0% *
0% *
NA
NA
NA
0% *
0% *
NA
NA
1 07%
1 1 1 %
1 1 4%
NA
32% *
98%
101%
NA
1 02%
91%
97%
NA
Benzo(a)
pyrene
NA
0% *
0%*
NA
NA
NA
0% *
0% *
NA
NA
129% *
130% *
133% *
NA
24% *
79%
80%
NA
120%
77%
84%
NA
Page 11
-------
ASHTABULA RIVER PILOT PROJECT (CF #467ASH)
PAH IN SEDIMENT SAMPLES
5/6/93
(concentrations in ng/g dry wt.)
% SURROGATE RECOVERY
MSL Code
Rep
Sponsor ID
Batch Hexachloro-
No ethane
Hexachloro- Hexachloro- Benzo(a) d8
butadiene benzene pyrene
REPLICATE ANALYSES
467ASH-335
467ASH-335
467ASH-335
467ASH-403
467ASH-403
467ASH-403
467ASH-498
467ASH-498
467ASH-498
467ASH-500
467ASH-500
467ASH-500
Rep1
Rep 2
Rep 3
Rept
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep 1
Rep 2
Rep 3
17SEP12003S2C
17SEP12003S2C
17SEP12003S2C
21SEP18314S3B
21SEP18314S3B
21SEP18314S3B
23SEP0800CARBT
23SEP0800CARBT
23SEP0800CARBT
23SEP0800CARB'B
23SEP0800CARB'B
23SEP0800CARB-B
4
4
4
RSD%
5
5
5
RSD%
7
7
7
RSD%
7
7
7
RSD%
196
233
182
NA
118
113
108
NA
116
119
115
NA
92.4
123
116
NA
U
U
U
U
U
U
U
U
U
U
U
U
231
312
270
15%
62.7 U
59.8 U
57.1 U
NA
3260
2930
2940
6%
2000
1560
1810
12%
3100
3320
2550
13%
22.0 U
21.7 U
20.3 U
NA
150
104
100
24% @
40.7
27.8 U
38.6
NA
404
468
388
10%
11.9#
10.3 #
10.5
8%
8.06 U
8.56
8.61 U
NA
8.27
7.98 U
8.53
NA
Acenaph- d12
thalene d10 Pyrene
98%
96%
83%
NA
94%
1 00%
93%
NA
12% *
25% *
23% *
NA
17% *
14% *
19% *
NA
1 04%
101%
96%
NA
1 1 6%
125% *
118%
NA
2% *
0% *
1% *
NA
0% *
0% *
0% *
NA
Benzo(a)
pyrene
109%
1 1 0%
100%
NA
102%
107%
98%
NA
0% *
0% *
0% *
NA
0% *
0% *
0% *
NA
U = Not detected at or above the dtection limit.
S = Supplemental analysis batch.
NA = Not applicable.
NC = Not certified.
RPD% » Relative Percent Difference.
RSD% = Relative Standard Deviation.
# = Ion ratio out of limits.
* = Outside QC criteria range (40-120%).
@ = Outside QC criteria range (±20%).
Page 12
-------
ASHTABULA RIVER PILOT PROJECT
PCB/AROCLORS IN SEDIMENT SAMPLES
(concentrations in ng/g dry wt.)
5/6/93
% Surrogate Recovery
MSLCode
467ASH-10 D
467ASH-1 1 D
467ASH-12 D
467ASH-13
467ASH-14
467ASH-15 D
467ASH-16
467ASH-17 D
467ASH-18 D
467ASH-18 D
467ASH-18 D
467ASH-48
467ASH-51
467ASH-54
467ASH-57
467ASH-60
467ASH-78
467ASH-79
467ASH-82
467ASH-85
467ASH-88
467ASH-88 R
467ASH-91
467ASH-94
467ASH-97
467ASH-98
467ASH-101
467ASH-116
467ASH-121
467ASH-122
Rep Sponsor ID
02SEP1430IS2BO
02SEP1455IS3AO
02SEP1400IS2AO
02SEP1320IS1AO
02SEP1345IS1CO
02SEP1520IS3BO
02SEP1330IS1AO
02SEP1540IS3CO
Rep1 02SEP1445IS2CO
Rep 2 02SEP1445IS2CO
Rep 3 02SEP1445IS2CO
10SEP12303S1A
10SEP13304S1A
10SEP14003S1A
1-OSEP15004S1A
10SEP15003S1A
11SEP08405S1A
11SEP08406S1A
11SEP12453S1B
11SEP13454S1B
11SEP14153S1B
11SEP14153S1B
11SEP15154S1B
11SEP15453S1B
11SEP16154S1B
11SEP15503S1B
11SEP16204S1B
14SEP11003S1C
14SEP08305S1B
14SEP08306S1B
Dry Wt.
(%)
59.0
58.0
58.0
59.0
59.0
60.0
58.0
56.0
58.0
58.0
58.0
57.0
71.0
59.0
68.0
59.0
59.0
59.0
57.0
72.0
57.0
57.0
99.0
57.0
90.0
58.0
98.0
59.0
55.0
77.0
Aroclor
1242
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
Aroclor
1248
8800
10100
5950
3800
2560
3040
3770
6150
6070
6090
5880
1780
354
1480
841
2000
3700
2150
2660
200 U
2500
3080
399
2460
846
2080
436
2090
6980
1310
Aroclor
1254
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
Aroclor Tetrachloro- Octachloro-
1260 m-Xylene naphthalene
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
191% *
235% *
180% *
131% *
138% *
129% *
120%
159% *
177% *
157% *
154% *
111%
94%
112%
97%
116%
92%
82%
129% *
96%
125% *
97%
121% *
124% *
101%
102%
85%
105%
153% *
95%
157% *
175% *
160% *
120%
150% *
144% *
115%
145% *
137% *
149% *
142% *
132% *
117%
1 1 9%
120%
137% *
85%
100%
145% *
115%
128% *
153% *
135% *
146% *
121% *
111%
88%
105%
133% *
94%
Pagel
-------
ASHTABULA RIVER PILOT PROJECT
PCB/AROCLORS IN SEDIMENT SAMPLES
5/6/93
(concentrations in
MSL Code
467ASH-125
467ASH-128
467ASH-131
467ASH-134
467ASH-135
467ASH-138
467ASH-156
467ASH-159
467ASH-162
467ASH-164
467ASH-167
467ASH-170
467ASH-173
467ASH-176
467ASH-177
467ASH-180
467ASH-181
467ASH-184 D1
467ASH-187
467ASH-187
467ASH-187
467ASH-188
467ASH-191
467ASH-194
467ASH-213 D
467ASH-216 D
467ASH-219 D
467ASH-222
467ASH-225 D1
467ASH-228
Rep Sponsor ID
14SEP11453S1C
14SEP12303S1C
14SEP12303S1C
14SEP12303S1C
14SEP17204S1C
14SEP12353S1C
14SEP15454S1C
14SEP16304S1C
14SEP17154S1C
15SEP08305S1C
15SEP08306S1C
15SEP11404S2A
15SEP11103S2A
15SEP11414S2A
15SEP11424S2A
15SEP11454S2A
15SEP11464S2A
15SEP12103S2A
Rep1 15SEP11494S2A
Rep 2 15SEP11494S2A
Rep 3 15SEP11494S2A
15SEP12404S2A
15SEP13103S2A
15SEP13404S2A
16SEP08505S2A
16SEP08506S2A
16SEP10153S2A
16SEP11154S2B
16SEP11453S2B
16SEP12454S2B
Dry Wt.
(%)
60.0
61.0
60.0
61.0
100
59.0
85.0
64.0
100
NA **
86.0
100.0
61.0
66.0
100
100
100
63.0
NA **
NA "
NA "
100
60.0
100
62.0
68.0
65.0
100
64.0
100
Aroclor
1242
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
Aroclor
1248
1760
1540
1710
2490
200 U
1890
200 U
200 U
200 U
298
1590
200 U
360
200 U
200 U
200 U
200 U
4870
200 U
200 U
200 U
200 U
3340
388
6530
4880
6610
310
5830
200 U
ng/g dry wt.)
Aroclor
1254
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
1880 X
200 U
200 U
200 U
Aroclor
1260
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
% Surrogate Recovery
Tetrachloro-
m-Xylene
100%
108%
113%
139% *
85%
112%
99%
97%
96%
105%
92%
88%
168% *
74%
86%
97%
38% *
115%
38%*
91%
99%
74%
145% *
73%
88%
138% *
166% *
83%
150% *
98%
Octachloro-
naphthalene
108%
90%
109%
134% *
98%
110%
103%
104%
100%
100%
105%
95%
146% *
103%
91%
110%
43%
145% *
35% *
98%
101%
101%
129% *
81%
122% *
69%
195% *
93%
110%
102%
Page 2
-------
ASHTABULA RIVER PILOT PROJECT
PCB/AROCLORS IN SEDIMENT SAMPLES
5/6/93
(concentrations in
MSL Code
467ASH-231 D
467ASH-234
467ASH-248 D
467ASH-249 D
467ASH-250 D
467ASH-280 D
467ASH-283
467ASH-294 D
467ASH-297
467ASH-310
467ASH-316
467ASH-319 D
467ASH-320 D
467ASH-323 D
467ASH-328
467ASH-331 D
467ASH-333
467ASH-335 D
467ASH-335 D
467ASH-335 D
467ASH-338 D
467ASH-342
467ASH-345 D
467ASH-349 D
467ASH-356
467ASH-359
467ASH-363 D
467ASH-368
467ASH-385 D
467ASH-388 D
Rep Sponsor ID
16SEP13153S2B
16SEP14154S2B
16SEP921600CARB'M
16SEP921600CARBT
16SEP921600CARB'B
18SEP10303S3A
18SEP11154S3A
18SEP12003S3A
18SEP12454S3A
18SEP08306S2C
18SEP08316S2C
18SEP08326S2C
18SEP09005S2C
17SEP09005S2B
17SEP09015S2B
17SEP09025S2B
17SEP09006S2B
Rep1 17SEP12003S2C
Rep 2 17SEP12003S2C
Rep 3 17SEP12003S2C
17SEP12453S2C
14SEP13004S1CI
17SEP13303S2C
17SEP12304S2CI
17SEP17154S2C
17SEP18004S2C
18SEP13303S3A
18SEP13554S3A
21SEP13455S3A
21SEP13456S3A
Dry Wt.
64.0
100
88.0
86.0
91.0
57.0
100
57.0
100
95.0
94.0
92.0
65.0
76.0
76.0
64.0
83.0
59.0
59.0
59.0
57.0
86.0
56.0
91.0
100
100
58.0
98.0
66.0
82.0
Aroclor
1242
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
Aroclor
1248
3860
200 U
200 U
200 U
200 U
12400
200 U
13300
200 U
1840
1690
3880
14300
5180
3160
4090
1630
11900
13600
10100
11900
1550
10500
6220
313
200 U
9600
200 U
8770
18000
ng/g dry wt.)
Aroclor
1254
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
2650 X
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
Aroclor
1260
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
% Surrogate Recovery
Tetrachloro-
m-Xylene
122% *
72%
NA***
NA***
NA***
237% *
80%
309% *
80%
111 %
114%
158% *
146% *
109%
130% *
176% *
82%
210% *
262% *
223% *
27% *
112%
265% *
161% *
89%
84%
298% *
91%
148% *
333% *
Octachloro-
naphthalene
99%
95%
NA***
NA***
NA***
130% *
89%
190% *
84%
93%
111%
114%
142% *
100%
114%
118%
118%
176% *
188% *
150% *
118%
125% *
186% *
117%
117%
98%
201% *
127% *
126% *
112%
Page 3
-------
ASHTABULA RIVER PILOT PROJECT
PCB/AROCLORS IN SEDIMENT SAMPLES
5/6/93
(concentrations in ng/g dry wt.
MSL Code
467ASH-391
467ASH-394
467ASH-399
467ASH-400
467ASH-403
467ASH-403
467ASH-403
467ASH-406
467ASH-409
467ASH-415
467ASH-419
467ASH-428
467ASH-431
467ASH-442 D
467ASH-445
467ASH-448 D
467ASH-451
467ASH-456 D
467ASH-460
467ASH-493 D
467ASH-495 D
467ASH-498 D
467ASH-498 D
467ASH-498 D
467ASH-499
467ASH-500
467ASH-500
467ASH-500
467ASH-501
467ASH-506
Rep Sponsor ID
21SEP14303S3B
21SEP15153S3B
21SEP16203S3B
21SEP18304S3B
Rep1 21SEP18314S3B
Rep 2 21SEP18314S3B
Rep 3 21SEP18314S3B
21SEP18324S3B
21SEP15004S3BI
21SEP19004S3B
21SEP19154S3B
22SEP09155S3B
22SEP09306S3B
22SEP10303S3C
22SEP11304S3C
22SEP12003S3C
22SEP13004S3C
22SEP113303S3C
22SEP14154S3C
22SEP17105S3C
22SEP17156S3C
23SEP0800CARBT
23SEP0800CARBT
23SEP0800CARBT
23SEP0800CARB-M
23SEP0800CARBB
23SEP0800CARB'B
23SEP0800CARB'B
23SEPCARBV
10SEP15004S1A
Dry Wt.
(%)
59.0
55.0
55.0
100
100
100
100
100
81.0
100
100
77.0
93.0
50.0
100
57.0
100
58.0
100
54.0
60.0
74.0
74.0
74.0
84.0
81.0
81.0
81.0
89.0
99.0
Aroclor
1242
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
Aroclor
1248
2920
3540
3780
200 U
200 U
200 U
200 U
200 U
2220
200 U
200 U
1990
1540
7730
200 U
7370
200 U
6750
200 U
11900
12700
4640
4180
4980
2380
2480
2340
2010
200 U
470
Aroclor
1254
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
Aroclor Tetrachloro- Octachloro-
1260 m-Xvlene naohthalene
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
200 U
146% *
191% *
158% *
1 1 0%
93%
104%
95%
92%
137% *
97%
84%
93%
103%
185% *
78%
199% *
67%
311% *
91%
21 6% *
205% *
309% *
1 1 2%
288% *
NA***
NA***
NA***
NA***
NA***
78%
134% *
157% *
125% *
148% *
1 1 0%
123% *
1 20%
1 09%
136% *
1 1 7%
95%
1 06%
1 1 4%
199% *
94%
136 *
83%
144% *
1 04%
153% *
98%
NA***
NA***
NA***
NA***
NA***
NA***
NA***
NA***
102%
Page 4
-------
ASHTABULA RIVER PILOT PROJECT
PCB/AROCLORS IN SEDIMENT SAMPLES
5/6/93
(concentrations in ng/g dry wt.)
MSL Code
Rep
Sponsor ID
Dry Wt.
(%)
Aroclor
1242
Aroclor
1248
Aroclor
1254
Aroclor
1260
REPLICATE ANALYSES
467ASH-18 D
467ASH-18 D
467ASH-18 D
467ASH-187
467ASH-187
467ASH-187
467ASH-335
467ASH-335
467ASH-335
467ASH-403
467ASH-403
467ASH-403
Rep
Rep
Rep
Rep
Rep
Rep
Rep
Rep
Rep
Rep
Rep
Rep
1
2
3
1
2
3
1
2
3
1
2
3
02SEP1445IS2CO
02SEP1445IS2CO
02SEP1445IS2CO
RSD%
15SEP11494S2A
15SEP11494S2A
15SEP11494S2A
RSO%
17SEP12003S2C
17SEP12003S2C
17SEP12003S2C
RSD%
21SEP18314S3B
21SEP18314S3B
21SEP18314S3B
58.0
58.0
58.0
NA **
NA **
NA **
59.0
59.0
59.0
100
100
100
200
200
200
NA
200
200
200
NA
200
200
200
NA
200
200
200
U
U
U
U
U
U
U
U
U
U
U
U
6069
6087
5880
2%
200 U
200 U
200 U
NA
11937
13640
10118
15%
200 U
200 U
200 U
200
200
200
NA
200
200
200
NA
200
200
200
NA
200
200
200
U
U
U
U
U
U
U
U
U
U
U
U
200
200
200
NA
200
200
200
NA
200
200
200
NA
200
200
200
U
U
U
U
U
U
U
U
U
U
U
U
% Surrogate Recovery
Tetrachloro- Octachloro-
m-Xylene naphthalene
177% *
157% *
154% *
NA
38%
91%
99%
NA
21 0% *
21 2% *
223% *
NA
93%
1 04%
95%
137% *
149% *
142% *
NA
35%
98%
101%
NA
176% *
188%*
150% *
NA
1 1 0%
123% *
120%
RSD%
NA
NA
NA
NA
NA
NA
Page 12
-------
ASHTABULA RIVER PILOT PROJECT
PCB/AROCLORS IN SEDIMENT SAMPLES
5/6/93
MSLCode
Rep Sponsor ID
Dry Wt.
Aroclor
1242
(concentrations in ng/g dry wt.)
Aroclor
1248
Aroclor
1254
Aroclor
1260
% Surrogate Recovery
Tetrachloro- Octachloro-
m-Xylene naphthalene
REPLICATE ANALYSES
467ASH-500
467ASH-500
467ASH-500
Rep1 21SEP18314S3B
Rep 2 21SEP18314S3B
Rep 3 21SEP18314S3B
81.0
81.0
81.0
RSD%
200 U
200 U
200 U
NA
2479
2344
2005
11%
200 U
200 U
200 U
NA
200 U
200 U
200 U
NA
NA*'*
NA***
NA***
NA
NA***
NA***
NA***
NA
D = Diluted sample 1:10.
D1 = Diluted sample 1:5.
* = Outside QC criteria range (40-120%).
** = No dry weight; too dry to weigh.
= Not quantifiable due to interference and missing peaks; surrogates absorbed by charcoal.
R = Rerun sample.
@ = Outside QC criteria range (±20%).
RPD% = Relative Percent Difference.
RSD% = Relative Standard Deviation.
X = No aroclor pattern found. Quantity estimated.
NA = Not applicable.
NS = Not spiked.
NQ = Matrix spike recoveries not quantified due to high levels of matrix interferences.
U = Not detected at or above the detection limits.
Page 13
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode BLANK-1 467ASH-10 467ASH-11 467ASH-12 467ASH-13 467ASH-14
IUPAC Number Sponsor ID 02SEP1430IS2BO 02SEP1455IS3AO 02SEP1400IS2AO 02SEP1320IS1AO 02SEP1345IS1CO
1
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31+28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
3700
270
380
<200
<200
<200
200
<200
1700
<200
840
210
200
<200
<200
360
310
250
430
210
420
<200
<200
440
<200
570
650
<200
330
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
3100
<200
<200
<200
<200
<200
<200
<200
910
<200
450
<200
<200
<200
<200
<200
<200
<200
240
<200
250
<200
<200
520
<200
300
350
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
260
<200
<200
<200
<200
<200
1000
<200
440
<200
<200
<200
<200
200
<200
<200
240
<200
230
<200
<200
220
<200
320
390
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
7100
<200
360
<200
<200
<200
<200
<200
980
<200
510
<200
<200
<200
<200
230
200
<200
280
<200
250
<200
<200
240
<200
360
400
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
12000
<200
530
<200
<200
<200
<200
<200
470
<200
300
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
210
260
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 1
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
BATCH 1 (concentrations in |tg/g)
MSLCode
IUPAC Number Sponsor ID
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR) + 4&10
OCN (SURR)
BLANK-1 467ASH-10 467ASH-11 467ASH-12 467ASH-13 467ASH-14
02SEP1430IS2BO 02SEP14S5IS3AO 02SEP1400IS2AO 02SEP1320IS1AO 02SEP1345IS1CO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
1300
<200
<200
<200
<200
<200
<200
<200
<200
<200
85%
103%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
2400
<200
<200
<200
<200
<200
<200
<200
<200
<200
191% *
157% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
890
<200
<200
<200
<200
<200
<200
<200
<200
<200
235% *
175% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
460
<200
<200
<200
<200
<200
<200
<200
<200
<200
180% '
160% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
1500
<200
<200
<200
<200
<200
<200
<200
<200
<200
131% *
120%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
340
<200
<200
<200
<200
<200
<200
<200
<200
<200
138% *
150% *
Page 2
-------
ASHTABULA
CONGENERS IN SEDIMENT
6/6/93
MSLCode
IUPAC Number Sponsor ID
1
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31+28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
(concentrations in |ig/g)
467ASH-15 467ASH-16 467ASH-17 467ASH-18. R1 467ASH-18. R2 467ASH-18. R3
02SEP1520IS3BO 02SEP1330IS1AO 02SEP1540IS3CO 02SEP1445IS2CO 02SEP1445IS2CO 02SEP1445IS2CO *RSD
200
1800
<200
<200
<200
<200
<200
<200
<200
650
<200
280
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
210
250
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
280
16000
<200
1000
<200
<200
<200
<200
<200
790
<200
490
<200
<200
<200
<200
230
200
<200
270
<200
230
<200
<200
230
<200
340
390
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
690
<200
<200
<200
<200
<200
1200
<200
570
<200
<200
<200
<200
250
220
<200
300
<200
290
<200
<200
410
<200
400
450
<200
230
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
660
<200
<200
<200
<200
<200
1200
<200
620
<200
<200
<200
<200
260
220
<200
310
<200
290
<200
<200
310
<200
390
440
<200
210
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
3700
<200
<200
<200
<200
<200
1800
<200
1200
<200
620
<200
<200
<200
<200
250
220
240
300
<200
300
<200
<200
310
<200
380
450
<200
240
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
300
2300
<200
1200
<200
<200
<200
<200
<200
1100
<200
610
<200
<200
<200
<200
270
230
<200
320
<200
290
<200
<200
300
<200
410
460
<200
210
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
NA
NA
NA
NA
NA
NA
NA
NA
NA
5%
NA
1%
NA
NA
NA
NA
4%
3%
NA
3%
NA
2%
NA
NA
2%
NA
4%
2%
NA
8%
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Page 3
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
(concentrations in
MSLCode
IUPAC Number Sponsor ID
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR) + 4&10
OCN (SURR)
467ASH-15 467ASH-16 467ASH-17 467ASH-18, R1 467ASH-18. R2 467ASH-18. R3
02SEP1520IS3BO 02SEP1330IS1AO 02SEP1540IS3CO 02SEP1445IS2CO 02SEP1445IS2CO 02SEP1445IS2CO %RSD
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
3000
<200
<200
<200
<200
<200
<200
<200
<200
<200
129% *
144% '
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
3800
<200
<200
<200
<200
<200
<200
<200
<200
<200
120%
115%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
4800
<200
<200
<200
<200
<200
<200
<200
<200
<200
159% *
145% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
4400
<200
<200
<200
<200
<200
<200
<200
<200
<200
177% *
137% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
5600
<200
<200
<200
<200
<200
<200
<200
<200
<200
157% '
149% '
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
3500
<200
<200
<200
<200
<200
<200
<200
<200
<200
154% '
142% *
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
23% @
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Page 4
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor ID
1
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31+28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
467ASH-48 467ASH-51 467ASH-54 467ASH-B7 467ASH-60 467ASH-63 467ASH-78
10SPP19303S1A 10SEP13304S1A 10SEP14003S1A 1 -OSEP1 5004S1 A 10SEP15003S1A 10SEP15003S1A 11SEP08405S1A
300
19000
<200
1100
<200
<200
<200
<200
<200
240
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
310
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
220
12000
<200
580
<200
<200
<200
<200
<200
300
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
260
<200
<200
210
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
200
11000
<200
580
<200
<200
<200
<200
<200
340
<200
210
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
210
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
230
8400
<200
710
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<20O
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
^200
<200
<200
<200
<200
2900
<200
3300
<200
<200
<200
660
<200
630
<200
430
<200
<200
<200
<200
300
200
<200
210
230
380
<200
<200
<200
<200
420
450
<200
290
270
<200
<200
<200
<200
<200
<200
<200
300
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
320
<200
<200
230
<200
Page 5
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
(concentrations in (ifl/fl)
MSLCode
IUPAC Number Sponsor ID
467ASH-48 467ASH-51 467ASH-54 467ASH-57 467ASH-60 4S7ASH-63 467ASH-78
10SEP12303S1A 10SEP13304S1A 10SEP14003S1A 1-OSEP15004S1A 10SEP1S003S1A 10SEP15003S1A 11SEP08405S1A
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX (SURR) + 4 & 10
OCN (SURR)
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
960
<200
<200
<200
<200
<200
<200
<200
<200
<200
111%
132% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
510
<200
<200
<200
<200
<200
<200
<200
<200
<200
94%
117%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
1400
<200
<200
<200
<200
<200
<200
<200
<200
<200
112%
119%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
910
<200
<200
<200
<200
<200
<200
<200
<200
<200
97%
120%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
116%
137% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
1800
<200
<200
<200
<200
<200
<200
<200
<200
<200
94%
89%
<200
<200
<200
<200
<200
<200
<200
460
<200
<200
<200
<200
14000
<200
<200
<200
<200
<200
250
<200
<200
<200
91%
224% *
Page 6
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor ID
j
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31+28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
467ASH-79 467ASH-82 467ASH-85 467ASH-88 467ASH-91 467ASH-94 467ASH-97
11SEP08406S1A 11SEP12453S1B 11SEP13454S1B 11SEPH153S1B 11SEP15154S1B 11SEP15453S1B 11SEP16154S1B
280
2100
<200
720
<200
<200
<200
240
<200
290
<200
200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
6500
<200
700
<200
<200
<200
<200
<200
550
<200
270
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
1400
<200
340
<200
220
270
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
2500
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
2200
<200
220
<200
<200
<200
<200
<200
500
<200
270
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
220
<2OO
210
240
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
290
15000
<200
1100
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
210
13000
<200
800
<200
<200
<200
<200
<200
480
<200
270
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
200
<200
210
240
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<2OO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
1800
<200
410
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 7
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor ID
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199*
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR) + 4&10
OCN (SURR)
(concentrations in fig/g)
467ASH-79 467ASH-82 467ASH-85 467ASH-88 467ASH-91 467ASH-94 467ASH-97
11SEP08406S1A 11SEP12453S1B 11SEP13454S1B 11SEP14153S1B 11SEP15154S1B 11SEP15453S1B 11SEP16154S1B
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
1700
<200
<200
<200
<200
<200
<200
<200
<200
<200
67%
115%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
660
<200
<200
<200
<200
<200
<200
<200
<200
<200
129% *
145% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
96%
115%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
2500
<200
<200
<200
<200
<200
<200
<200
<200
<200
125% '
128% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
121% *
135% '
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
2100
<200
<200
<200
<200
<200
<200
<200
<200
<200
124% '
146% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
590
<200
<200
<200
<200
<200
<200
<200
<200
<200
101%
121% *
Page 8
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor ID
1
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31 +28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
BLANK-2 467ASH-98 467ASH-101 467ASH-116 467ASH-125 467ASH-128 467ASH-131 467ASH-134
11SFP1fifi03S1B 11SEP16204S1B 14SEP11003S1C 14SEP11453S1C 14SEP12303S1C 14SEP12303S1C 14SEP12303S1C
210
1600
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
270
21000
<200
1300
<200
<200
<200
<200
<200
380
<200
210
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
220
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<2OO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
5600
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
230
18000
<200
800
<200
<200
<200
<200
<200
290
<200
200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
220
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
200
7900
<200
570
<200
<200
<200
<200
<200
210
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
1300
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
210
2100
<200
2100
<200
<200
<200
<200
<200
240
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
200
1800
<200
3700
<200
<200
<200
<200
<200
400
<200
260
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
220
250
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 9
-------
ASHTABULA
CONGENERS IN SEDIMENT
MSLCode
IUPAC Number Sponsor ID
5/6/93
BATCH 2 (concentrations in ng/g)
BLANK-2 467ASH-88 467ASH-101 467ASH-116 467ASH-125 467ASH-128 467ASH-131 467ASH-134
11SEP1SS03S1B 11SEP16204S1B 14SEP11003S1C 14SEP11453S1C 14SEP12303S1C 14SEP12303S1C 14SEP12303S1C
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR) + 4&10
OCN (SURR)
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
790
<200
<200
<200
<200
<200
<200
<200
<200
<200
86%
104%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
2300
<200
<200
<200
<200
<200
<200
<200
<200
<200
102%
111%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
480
<200
<200
<200
<200
<200
<200
<200
<200
<200
85%
88%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
2300
<200
<200
<200
<200
<200
<200
<200
<200
<200
105%
105%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
2500
<200
<200
<200
<200
<200
<200
<200
<200
<200
100%
108%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
1700
<200
<200
<200
<200
<200
<200
<200
<200
<200
108%
90%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
400
<200
<200
<200
<200
<200
<200
<200
<200
<200
113%
109%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
1400
<200
<200
<200
<200
<200
<200
<200
<200
<200
139% '
134% *
Page 10
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor ID
1
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31+28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
467ASH-156 467ASH-159 467ASH-162 467ASH-164 467ASH-167 467ASH-170 467ASH-173
14SEP15454S1C 14SEP16304S1C 14SEP17154S1C 1SSEP08305S1C 15SEP08306S1C 15SEP11404S2A 15SEP11103S2A
<200
780
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
3400
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
690
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
290
2400
<200
350
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
410
3200
<200
700
<200
<200
<200
310
<200
350
<200
240
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
2100
<200
600
<200
<200
<200
<200
<200
1100
<200
450
<200
<200
<200
<200
200
<200
<200
240
<200
230
<200
<200
220
<200
310
360
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 11
-------
ASHTABULA
CONGENERS IN SEDIMENT
MSLCode
IUPAC Number Sponsor ID
5/6/93
(concentrations in ttg/g)
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR) + 4&10
OCN (SURR)
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
99%
103%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
97%
104%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
96%
100%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
890
<200
<200
<200
<200
<200
<200
<200
<200
<200
105%
100%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
890
<200
<200
<200
<200
<200
<200
<200
<200
<200
92%
105%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
200
<200
<200
<200
<200
<200
<200
<200
<200
<200
88%
95%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
2500
<200
<200
<200
<200
<200
<200
<200
<200
<200
168% *
146% '
Page 12
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
BATCH 3
MSLCode
IUPAC Number Sponsor ID
1
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31+28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41 +71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
467ASH-177 467ASH-181 467ASH-187, R1 467ASH-187, R2 467ASH-187. R3
15SEP11424SZA 15SEP11464S2A 1SSEP11494S2A 15SEP11494S2A 15SEP11494S2A
<200
1500
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<2OO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
500
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
3500
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
200
7000
<200
240
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
BLANK-3 467ASH-88 RERUN
RSD% 11SEP14153S1B
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
<200
470
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
1100
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
860
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
560
<200
250
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
3600
<200
<200
<200
200
230
<200
<200
<200
<200
<200
490
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
3200
<200
Page 13
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
(concentrations in ng/q)
BATCH 3
MSLCode
IUPAC Number Sponsor ID
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR) + 4&10
OCN (SURR)
467ASH-177 467ASH-181 467ASH-187, R1 467ASH-187, R2 467ASH-187. R3
15SEP11424S2A 15SEP11464S2A 15SEP11494S2A 15SEP11494S2A 15SEP11494S2A
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
7400
<200
<200
<200
<200
<200
<200
<200
<200
<200
86%
91%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
410
<200
<200
<200
<200
<200
<200
<200
<200
<200
38% *
43%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
280
<200
<200
<200
<200
<200
<200
<200
<200
<200
38% *
35% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
3100
<200
<200
<200
<200
<200
<200
<200
<200
<200
91%
98%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
99%
101%
BLANK-3 467ASH-88 RERUN
RSD% 11SEP14153S1B
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
90%
98%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
97%
153% *
Page 14
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor ID
1
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31+28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
467-121 467-122 467-135 467-138 467-176 467-180 467ASH-184
14SEP08305S1B 14SEP08306S1B 14SEP17204S1C 14SEP12353S1C 15SEP11414S2A 15SEP11454S2A 15SEP12104S2A
900
<200
<200
680
<200
<200
<200
260
<200
830
<200
260
<200
<200
<200
<200
460
400
<200
480
200
380
1000
<200
310
210
630
790
<200
390
<200
<200
<200
<200
<200
<200
<200
<200
220
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
980
<200
1750
<200
<200
520
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
570
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
260
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
360
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<2OO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
240
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
510
<200
<200
<200
<200
<200
<200
<200
1200
<200
500
<200
<200
<200
<200
230
<200
<200
260
<200
250
<200
<200
220
<200
330
370
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 15
-------
ASHTABULA
CONGENERS IN SEDIMENT
MSLCode
IUPAC Number Sponsor ID
5/6/93
(concentrations in nq/a)
467-121
14SEP08305S1B
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR)+4&10
OCN (SURR)
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
153% *
133% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
95%
94%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
85%
98%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
112%
110%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
74%
103%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
97%
110%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
115%
145% *
Page 16
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor ID
1
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31+28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
467ASH-188 467ASH-181 467ASH-194 467ASH-197 467ASH-213 467ASH-216 467ASH-219
15SEP12404S2A 15EP13103S2A 15SEP13404S2A 15SEP13153S2A 1 6SEP08505S2A 16SEP08506S2A 16SEP10153S2A
<200
210
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<2OO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
270
<200
<200
<200
<200
<200
<200
<200
960
<200
380
<200
<200
<200
<200
<200
<200
<200
220
<200
<200
<200
<200
<200
<200
280
310
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
210
<200
<200
<200
<200
<200
<200
<200
850
<200
350
<200
<200
<200
<200
<200
<200
<200
200
<200
<200
<200
<200
<200
<200
250
280
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
260
<200
<200
670
<200
<200
<200
230
<200
650
<200
210
<200
<200
<200
<200
260
260
<200
340
<200
310
<200
<200
<200
<200
530
600
<200
320
<200
<200
<200
<200
<200
<200
<200
<200
200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
1600
790
<200
1500
<200
<200
<200
430
<200
6/0
<200
<200
<200
<200
<200
<200
240
240
<200
240
<200
290
<200
<200
<200
<200
370
380
<200
210
<200
<200
<200
<200
<200
<200
<200
<200
<200
<2OO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
1100
<200
500
<200
<200
<200
<200
220
<200
<200
270
<200
250
<200
<200
300
<200
380
420
<200
200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 17
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
(concentrations in ng/g)
MSLCode
IUPAC Number Sponsor ID
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR)+4&10
OCN (SURR)
467ASH-188 467ASH-191 467ASH-194 467ASH-197 467ASH-213 467ASH-216 467ASH-219
15SEP12404S2A 15EP13103S2A 15SEP134O4S2A 15SEP13153S2A 16SEP08505S2A 16SEP08506S2A 16SEP10153S2A
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
74%
101%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
145% *
129% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
73%
81%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
126% *
115%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
88%
122% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
138% *
69%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
166% *
195% *
Page 18
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
BATCH 4
MSLCode
IUPAC Number Sponsor ID
)
3
8+5"
19
18"
17**
27
32+16"
29
26
25
31+28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41 +71
40
100
63
74"
70+76"
95+66**
91
56+60
92+84
101**
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
467ASH-222 467ASH425 467ASH-248 467ASH-249 467ASH-250 BLANK-4 467ASH-228
16SEP11154S2B16SEP11453S2B 16SEP921600CARBM 16SEP921600CARBT 16SEP921600CARBB 16SEP12454S2B
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
290
<200
<200
<200
<200
<200
<200
<200
1200
<200
520
<200
<200
<200
<200
250
210
<200
290
<200
270
<200
<200
260
<200
380
430
<200
200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
8500
8300
360
<200
<200
220
<200
<200
<200
<200
<200
<200
<200
250
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
2800
10000
400
<200
360
220
<200
350
<200
200
<200
<200
310
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
11000
7000
360
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
210
440
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 19
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
(concentrations in |ig/g)
MSLCode
IUPAC Number Sponsor ID
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR) + 4&10
OCN (SURR)
BATCH 4
467ASH-222 467ASH-225 467ASH-248 467ASH-249 467ASH-250 BLANK-4 467ASH-228
16SEP11154S2B 16SEP11453S2B 16SEP921600CARB'M 16SEP921600CARBT 16SEP921600CARBB 16SEP12454S2B
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
83%
93%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
150% '
110%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
NA*"
NA"*
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
NA"*
NA"'
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
NA"*
NA*"
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
105%
111%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<2JO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
98%
102%
Page 20
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor ID
]
3
8+5"
19
18**
17"
yr
£.1
32+16**
29
26
25
31 +28"
33
22
45
46
52"
49"
48+47**
44"
42+37"
64+41 +71
40
100
63
74"
70+76**
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
(concentrations in ng/g)
467ASH-231 467ASH-234 467ASH-280 467ASH-283 467ASH-294 467ASH-297 467ASH-310
1Rsl=PiaiiaSPB 1BSFP141S4S2B 1 8SEP1 0303S3A 18SEP11154S3A18SEP12003S3A 18SEP12454S3A 18SEP08306S2C
<200
240
<200
<200
<200
<200
<200
<200
<200
820
<200
330
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
230
<200
250
290
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<2OO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
220
920
270
<200
300
220
<200
310
<200
2000
<200
1100
310
300
<200
<200
430
390
380
540
270
530
<200
<200
820
<200
640
730
<200
380
<200
<200
<200
<200
<200
<200
<200
<200
210
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
220
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
200
3400
540
<200
<200
290
<200
470
<200
<200
1200
1400
380
390
<200
<200
540
480
380
680
330
680
<200
<200
850
<200
750
830
<200
440
200
<200
<200
<200
<200
<200
<200
<200
250
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
330
<200
570
<200
<200
<200
<200
<200
280
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 21
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode 467ASH-231 467ASH-234 467ASH-280 467ASH-283 467ASH-294 467ASH-297 467ASH-310
IUPAC Number Sponsor ID 16SEP13153S2B 16SEP14154S2B 18SEP10303S3A 18SEP11154S3A18SEP12003S3A 18SEP1P4S4S3A 1SSFPOHSnfiS9T.
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199*
170+190
198
201
203+196
189
208+195
207
194
205
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
TCMX(SURR)
OCN (SURR)
4&10
122%
99%
72%
95%
237%
130%
80%
89%
309%
190%
80%
84%
111%
93%
Page 22
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor 10
1
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31+28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
467ASH-316 467ASH-319 467ASH-320 467ASH-323 467ASH-328 467ASH-331 467ASH-333
18SEP08326S2C 18SEP08326S2C 18SEP09005S2C 17SEP09005S2B 1 7SEP0901 5S2B 17SEP09025S2B 17SEP09006S2B
<200
<200
<200
590
<200
<200
<200
<200
<200
260
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
1200
<200
640
<200
<200
<200
<200
<200
340
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
830
1000
560
2000
<200
<200
<200
780
<200
930
<200
420
350
290
<200
<200
370
360
330
460
270
490
<200
<200
<200
<200
590
620
<200
450
<200
<200
<200
<200
<200
<200
<200
<200
210
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
380
440
<200
490
<200
<200
<200
<200
<200
410
<200
<200
<200
<200
<200
<200
<200
<200
<200
240
<200
230
<200
<200
<200
<200
350
400
<200
200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
230
<200
650
<200
<200
<200
<200
<200
410
<200
<200
<200
<200
<200
<200
<200
<200
<200
220
<200
220
<200
<200
<200
<200
340
380
<200
200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
350
460
<200
500
<200
<200
<200
<200
<200
360
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
260
310
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
300
960
<200
440
<200
<200
<200
<200
<200
220
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 23
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
(concentrations in }ig/g)
MSLCode
IUPAC Number Sponsor 10
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR) + 4410
OCN (SURR)
467ASH-316 467ASH-319 467ASH-320 467ASH-323 467ASH-328 467ASH-331 467ASH-333
18SEP08326S2C 18SEP08326S2C 18SEP09005S2C 17SEP09005S2B 17SEP09015S2B 17SEP09025S2B 1 7SEP09006S2B
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
114%
111%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
158% *
114%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
146% '
142% '
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
109%
100%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
130% *
114%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
176% *
118%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
82%
118%
Page 24
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
BATCH 5
MSLCode
IUPAC Number Sponsor ID
1
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31+28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
467ASH-335. R1 467ASH-335. R2 467ASH-335, R3
17SEP12003S2C 17SEP12003S2C 17SEP12003S2C
200
790
<200
<200
<200
<200
<200
<200
<200
<200
860
750
220
210
<200
<200
310
270
240
380
<200
410
<200
<200
740
<200
480
550
<200
300
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
870
<200
<200
<200
<200
<200
<200
<200
<200
1000
880
250
250
<200
<200
370
320
310
460
220
480
<200
<200
860
<200
580
670
<200
350
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
250
900
<200
<200
<200
<200
<200
<200
<200
<200
930
780
230
230
<200
<200
320
280
260
400
<200
430
<200
<200
760
<200
490
570
<200
330
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
467ASH-338 BLANK-5 467ASH-342
RSO% 17SEP12453S2C 14SEP13004S1CI
NA
7%
NA
NA
NA
NA
NA
NA
NA
NA
8%
8%
7%
9%
NA
NA
10%
9%
13%
10%
NA
8%
NA
NA
8%
NA
11%
11%
NA
8%
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
<200
1700
310
<200
<200
<200
<200
<200
<200
<200
560
480
<200
<200
<200
<200
<200
<200
<200
250
<200
280
<200
<200
540
<200
310
350
<200
200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
390
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 25
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
(concentrations in nfl/g)
BATCH 5
MSLCode
IUPAC Number Sponsor ID
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR) + 4&10
OCN (SURR)
467ASH-335, R1 467ASH-335. R2 467ASH-335. R3 467ASH-338 BLANK-5 467ASH-342
17SEP12003S2C 17SEP12003S2C 17SEP12003S2C RSD% 17SEP12453S2C 14SEP13004S1CI
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
210% *
176% '
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
262% *
188% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
223% *
150% '
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
27% '
118%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
98%
113%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
112%
125% '
Page 26
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/33
MSLCode
IUPAC Number Sponsor ID
1
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31+28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
467ASH-345 467ASH-349 467ASH-356 467ASH-359 467ASH-363 467ASH-368 467ASH-385
17SEP13WT- 17SFP12304S2CI 17SEP17154S2C 17SEP18004S2C 18SEP13303S3A 18SEP13554S3A 21SEP13455S3A
<200
480
<200
210
<200
<200
<200
<200
<200
<200
670
560
<200
<200
<200
<200
230
200
<200
290
<200
300
<200
<200
510
<200
360
410
<200
230
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
470
<200
<200
<200
<200
<200
<200
<200
610
<200
350
<200
<200
<200
<200
<200
<200
<200
200
<200
200
<200
<200
210
<200
250
290
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
280
560
340
<200
<200
<200
<200
<200
<200
<200
910
960
260
260
<200
<200
380
340
260
470
230
480
<200
<200
620
<200
530
590
<200
320
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
320
<200
230
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
1100
250
1200
<200
<200
<200
390
<200
650
<200
340
230
220
<200
<200
280
250
200
360
230
390
<200
<200
<200
<200
490
510
<200
290
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 27
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor ID
(concentrations in no/g)
467ASH-345 467ASH-349 467ASH-356 467ASH-359 467ASH-363 467ASH-368 467ASH-385
17SEP13303S2C 17SEP12304S2CI 17SEP17154S2C 17SEP18004S2C 18SEP13303S3A 18SEP13554S3A 21SEP13455S3A
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR)+4&10
OCN (SURR)
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
265% *
186% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
161% *
117%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
89%
117%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
84%
98%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
298% *
201% '
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
91%
127% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
148% *
126% *
Page 28
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor ID
1
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31+28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
467ASH-388 467ASH-391 467ASH-394 467ASH-399 467ASH-400
21SEP13456S3A 21SEP14303S3B 21SEP15153S3B 21SEP16203S3B 21SEP18304S3B
1000
3300
1800
2500
<200
380
<200
1100
<200
<200
900
580
740
660
<200
<200
700
650
490
870
540
960
230
<200
270
240
1100
990
<200
710
320
<200
<200
<200
<200
<200
<200
<200
370
<2OO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
260
<200
<200
<200
<200
210
<200
<200
<200
<200
<200
<200
<200
<200
750
<200
380
<200
<200
<200
<200
<200
<200
<200
200
<200
<200
<200
<200
<200
<200
250
270
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
410
530
<200
<200
<200
<200
<200
<200
<200
1000
<200
420
<200
<200
<200
<200
210
<200
<200
240
<200
230
<200
<200
200
<200
310
340
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
1300
2400
470
200
<200
<200
<200
<200
<200
1000
<200
520
<200
<200
<200
<200
270
290
690
280
<200
270
<200
<200
230
<200
320
380
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
220
240
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 29
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor ID
(concentrations in |ig/g)
467ASH-388
21SEP13456S3A
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
TCMX(SURR)
OCN (SURR)
4&10
333%
112%
146%
134%
191%
157%
158%
125%
110%
148%
Page 30
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor ID
1
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31 +28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
(concortrationg in (ig/g)
BATCH 6
467ASH-403. R1 467ASH-403. R2 467ASH-403. R3 467ASH-406 BLANK-6 467ASH-409 467ASH^15
21SEP18314S3B 21SEP18314S3B 21SEP18314S3B RSD% 21SEP18324S3B 21SEP15004S3BI 21SEP19004S3B
200
260
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
210
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<2OO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
410
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<2OO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
NA
35% @
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
240
280
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<2OO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
230
<200
<200
<200
<200
<200
<200
<200
560
<200
280
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
200
230
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 31
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
BATCH 6
MSLCode
IUPAC Number Sponsor 10
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR) + 4&10
OCN (SURR)
467ASH-403. R1 467ASH-403. R2 467ASH-403, R3 467ASH-406 BLANK-6 467ASH-409 467ASHM15
21SEP18314S3B 21SEP18314S3B 21SEP18314S3B RSO* 21SEP18324S3B 21SEP15004S3BI 21 SEP1 9004S3B
<200
<200
<200
<200
<200
<200
<2OO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
93%
110%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
104%
123% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
95%
120%
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
92%
109%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
91%
99%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
137% *
136% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
97%
117%
Page 32
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor ID
1
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31+28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
467ASH-419 467ASH-424 467ASH-427 467ASH-428 467ASH-431 467ASH-434 467ASH-436
21SEP19154S3B 21SEP16253S3B 21SEP19204S3B 22SEP09155S3B 22SEP09306S3B22SEP13353S3C 22SEP14204S3C
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
200
<200
<200
<200
<200
<200
<200
<200
790
<200
370
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
240
270
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<2OO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<2OO
630
<200
680
<200
<200
<200
<200
<200
240
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
440
<200
580
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
230
<200
<200
<200
<200
<200
<200
<200
930
<200
490
<200
<200
<200
<200
200
<200
<200
240
<200
230
<200
<200
310
<200
290
330
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<2OO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 33
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
(concentrations in no/g)
MSUCode
IUPAC Number Sponsor ID
467ASH-419 467ASH-424
21SEP19154S38 21SEP16253S3B
467ASH-427 467ASH-428 467ASH-431 467ASH-434 467ASH-436
21SEP19204S3B 22SEP09155S3B 22SEP09306S3B22SEP13353S3C 22SEP14204S3C
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR) + 4&10
OCN (SURR)
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
84%
95%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
168% '
180% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
89%
94%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
93%
106%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
103%
114%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
243% '
174% '
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
96%
108%
Page 34
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor ID
1
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31+28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
467ASH-442 467ASH-446 467ASH-448 467-451 467ASH-456 467ASH-460 467ASH-493
22SEP10303S3C 22SEP11304S3C22SEP12004S3C 22SEP13004S3C22SEP13303S3C 22SEP14154S3C22SEP17105S3C
210
490
<200
<200
<200
<200
<200
<200
<200
<200
860
<200
<200
<200
<200
<200
<200
<200
250
<200
300
360
<200
<200
490
<200
430
490
<200
260
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
460
<200
<200
<200
<200
<200
<200
<200
1400
<200
660
<200
<200
<200
<200
290
250
<200
340
<200
330
<200
<200
440
<200
420
480
<200
230
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
410
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
230
<200
<200
<200
<200
<200
<200
<200
810
<200
420
<200
<200
<200
<200
<200
<200
<200
230
<200
210
<200
<200
340
<200
270
310
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
940
1700
650
1000
<200
<200
<200
320
<200
1000
<200
710
240
250
<200
<200
330
290
220
420
240
410
<200
<200
260
<200
500
560
<200
370
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 35
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
(concentrations in |ig/g)
MSLCode
IUPAC Number Sponsor ID
467ASH-442
22SEP10303S3C
467ASH-44S 467ASH-448
22SEP11304S3C22SEP12004S3C
467-451 467ASH-456
22SEP13004S3C 22SEP13303S3C
467ASH-460 467ASH-493
22SEP14154S3C 22SEP17105S3C
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR) + 4&10
OCN (SURR)
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
185% '
199% '
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
78%
94%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
199% *
136% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
67%
83%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
311%
144% *
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
91%
104%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<2TO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
216% *
153% *
Page 36
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
BATCH 7
MSLCode
1UPAC Number Sponsor ID
3
8+5"
19
18**
17"
i /
27
32+16**
29
26
31 +28"
33
22
46
CO"
9£
49"
48+47"
AA"
ft
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
Q7
yi
87
85
136
110
82
151**
135+144"
107
149**
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
467ASH-495 467ASHM98. R1 467ASHM98. R2 467ASH-498, R3 BLANK-7 467ASH-499
22SEP17156S3C 23SEP0800CARBT 23SEP0800CARBT 23SEP0800CARBT RSO% 23SEP0800CARBW
<200
1600
720
1600
210
<200
<200
550
<200
880
<200
820
320
300
<200
<200
330
300
260
410
260
460
<200
<200
<200
<200
520
520
<200
390
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
17000
42000
1300
250
600
470
<200
470
<200
630
250
<200
220
530
300
<200
290
<200
<200
430
<200
240
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
19000
42000
810
680
390
430
220
610
<200
640
<200
310
230
550
270
490
310
210
<200
400
<200
250
<200
<200
<200
<200
<200
300
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
20000
39000
1100
220
540
430
<200
370
<200
610
230
290
210
430
240
<200
270
200
<200
270
<200
230
<200
<200
<200
<200
<200
260
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
8%
4%
23% @
67% @
21% @
5%
NA
25% @
NA
2%
NA
NA
5%
13%
11%
NA
7%
NA
NA
23% @
NA
4%
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
13000
17000
340
220
280
240
<200
300
<200
520
<200
<200
<200
<200
<200
<200
<200
<200
<200
200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 37
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
(concentrations in )ig/g)
MSLCode
IUPAC Number Sponsor ID
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR) + 4&10
OCN (SURR)
467ASH-495 467ASH-498, R1 467ASH-498. R2 467ASH-498. R3
22SEP17156S3C 23SEP0800CARBT 23SEP0800CARBT 23SEP0800CARBT
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
205% '
98%
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
NA"*
NA*'*
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
NA'"
NA"*
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
NA*"
NA"*
RSOS
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
BLANK-7 467ASH-499
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
NA*"
NA"*
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
NA"*
NA*"
Page 38
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor ID
1
3
8+5"
19
18"
17"
27
32+16"
29
26
25
31+28"
33
22
45
46
52"
49"
48+47"
44"
42+37"
64+41+71
40
100
63
74"
70+76"
95+66"
91
56+60
92+84
101"
99
83
97
87
85
136
110
82
151"
135+144"
107
149"
118
134+114
131
146
153+132+105
141
137+176
163+138
158
178
175
467ASH-500. R1 467ASH-SOO, R2 467ASH-500, H3 467ASH-501 467ASH-606
23SEP0800CARBS 23SEP0800CARBS 23SEP0800CARBB RSO% 23SEOCARBV 10SEP15004S1A
16000
16000
640
<200
310
300
<200
370
<200
490
<200
220
<200
210
<200
<200
200
<200
<200
210
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
13000
14000
450
210
250
240
<200
310
<200
430
<200
<200
<200
<200
<200
210
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
16000
16000
530
<200
280
270
<200
350
<200
450
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
12%
8%
18%
NA
11%
11%
NA
9%
NA
7%
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
<200
310
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<2OO
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
Page 39
-------
ASHTABULA
CONGENERS IN SEDIMENT
5/6/93
MSLCode
IUPAC Number Sponsor 10
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193"
191
199#
170+190
198
201
203+196
189
208+195
207
194
205
TCMX(SURR)+4&10
OCN (SURR)
467ASH-500, R1 467ASH-500. R2 467ASH-500. R3 467ASH-501 467ASH-506
23SEP0800CARBS 23SEP0800CARBB 23SEPOBOOCARBB RSD% 23SEOCAHBV 10SEP15004S1A
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
MA*"
NA"*
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
NA"*
NA"*
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
NA*"
NA***
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
NA*"
NA*"
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
<200
78%
102%
* = Outside QC criteria (40-120%).
" = Did not meet the 25% RSD criteria for initial calibration curve.
*** = Surrogates absorbed by sample matrix.
RSD% = Relative standard deviation.
@ = Outside QC criteria range (±20%).
# = Interference present.
NA = Not applicable.
Page 40
-------
ASHTBULA RIVER PILOT PROJECT
PESTICIDES IN SEDIMENT SAMPLES
5/6/93
(concentrations in ng/g dry wt.)
% Surrogate Recovery
MSLCode
467ASH-63
467ASH-78
467ASH-79
467ASH-121
467ASH-122
467ASH-164
467ASH-167
467ASH-177
467ASH-181
467ASH-187
467ASH-187
467ASH-187
467ASH-197
467ASH-200
467ASH-200
467ASH-200
467ASH-213
467ASH-216
467ASH-219
467ASH-239
467ASH-242
467ASH-310
467ASH-313
467ASH-319
467ASH-320
467ASH-323
467ASH-333
467ASH-338
467ASH-344
467ASH-349
Rep Sponsor ID
10SEP15003S1A
11SEP08405S1A
11SEP08406S1A
14SEP08305S1B
14SEP08306S1B
15SEP08305S1C
15SEP08306S1C
15SEP11424S2A
15SEP11464S2A
Rep1 15SEP11494S2A
Rep 2 15SEP11494S2A
Rep 3 15SEP11494S2A
15SEP13153S2A
Rep1 15SEP13454S2A
Rep 2 15SEP13454S2A
Rep 3 15SEP13454S2A
16SEP08505S2A
16SEP08506S2A
16SEP10153S2B
16SEP13203S2B
16SEP14204S2B
18SEP08306S2C
18SEP08316S2C
18SEP08326S2C
18SEP09005S2C
17SEP09005S2B
17SEP09006S2B
17SEP12453S2C
14SEP13004S1CI
17SEP12304S2CI
Dry Wt.
(%)
59.0
59.0
59.0
55.0
77.0
NA "
86.0
100
100
NA "
NA **
NA "
58.0
100
100
100
62.0
68.0
65.0
60.0
100
95.0
98.0
92.0
65.0
76.0
83.0
57.0
84.0
91.0
a-BHC
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
g-BHC
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
d-BHC
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
Tetrachloro- Octachloro-
Heptachlor m-Xylene naphthalene
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
94%
91%
67%
123% *
1 00%
1 05%
92%
89%
39% *
38% *
91%
99%
126% *
81%
62%
78%
88%
138% *
1 62% *
1 92% *
88%
111%
1 06%
158%*
146% *
109%
82%
27% *
119%
161% *
89%
224% *
115%
126% *
1 03%
1 00%
1 05%
90%
46%
35% *
98%
101%
115%
90%
76%
85%
122% *
69%
180% *
146% *
97%
93%
124% *
114%
142% *
100%
118%
118%
133% *
117%
Page 1
-------
ASHTBULA RIVER PILOT PROJECT
PESTICIDES IN SEDIMENT SAMPLES
5/6/93
(concentrations in ng/g dry wt.)
MSL Code
467ASH-351
467ASH-362
467ASH-370
467ASH-373
467ASH-385
467ASH-388
467ASH-409
467ASH-413
467ASH-414
467ASH-424 D
467ASH-427
467ASH-428
467ASH-431
467ASH-434
467ASH-436
467ASH-493 D
467ASH-495 D
467ASH-498
467ASH-498
467ASH-498
467ASH-499
467ASH-500
467ASH-500
467ASH-500
467ASH-501
467ASH-506
Rep Sponsor ID
17SEP13355S2C
17SEP18054S2C
18SEP14004S3A
18SEP13353S3A
21SEP13455S3A
21SEP13456S3A
21SEP15004S3BI
21SEP18314S3B
21SEP18324S3B
21SEP16253S3B
21SEP19204S3B
22SEP09155S3B
22SEP09306S3B
22SEP13353S3C
22SEP14204S3C
22SEP17105S3C
22SEP17156S3C
Rep 1 23SEP0800CARBT
Rep 2 23SEP0800CARBT
Rep 3 23SEP0800CARBT
23SEP0800CARB'M
Rep1 23SEP0800CARB'B
Rep 2 23SEP0800CARB'B
Rep 3 23SEP0800CARB'B
23SEPCARBV
10SEP15004S1A
Dry Wt.
(%)
52.0
100
87.0
52.0
66.0
82.0
81.0
100
100
59.0
100
77.0
93.0
57.0
100
54.0
60.0
74.0
74.0
74.0
84.0
81.0
81.0
81.0
89.0
89.0
a-BHC
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
g-BHC
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
d-BHC
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
u
u
u
u
u
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
Heptachlor
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
u
u
u
u
u
u
u
u
u
u
u
20.0 U
20.0 U
1.83 J
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
% Surrogate Recovery
Tetrachloro- Octachloro-
m-Xylene naphthalene
209% *
93%
83%
274% *
148% *
333% *
137% *
86%
86%
168% *
89%
93%
103%
243% *
96%
220% *
201% *
NA***
NA***
NA***
NA***
NA***
NA***
NA***
NA***
78%
193% *
108%
108%
207% *
126% *
112%
136% *
108%
98%
180% *
94%
106%
114%
174% *
108%
144% *
110% *
NA***
NA***
NA***
NA***
NA***
NA***
NA***
NA***
102%
Page 2
-------
ASHTBULA RIVER PILOT PROJECT
PESTICIDES IN SEDIMENT SAMPLES
5/6/93
(concentrations in ng/g dry wt.)
MSLCode
Rep
BLANK RESULTS
Blank-1
Blank-2
Blank-3
Blank-4
Blank-5
Blank-6
Blank-7
Sponsor ID
Dry Wt.
(%)
NA
NA
NA
NA
NA
NA
NA
a-BHC
20.
20.
20.
20.
20.
20.
20.
0
0
0
0
0
0
0
U
U
U
U
U
U
U
g-BHC
20.0
20.0
20.0
20.0
20.0
20.0
20.0
U
U
U
U
U
U
U
d-BHC
20.0
20.0
20.0
20.0
20.0
20.0
20.0
Heptachlor
U
U
U
U
U
U
U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
20.0 U
REPLICATE ANALYSES
467ASH-187
467ASH-187
467ASH-187
467ASH-200
467ASH-200
467ASH-200
467ASH-498
467ASH-498
467ASH-498
Rep 1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Rep 1
Rep 2
Rep 3
15SEP11494S2A
15SEP11494S2A
15SEP11494S2A
RSD%
15SEP13454S2A
15SEP13454S2A
15SEP13454S2A
RSD%
23SEP080CCARBT
23SEP0800CARBT
23SEP0800CARBT
NA **
NA **
NA **
20.
20.
20.
0
0
0
U
U
U
NA
100
100
100
20.
20.
20.
0
0
0
U
U
U
NA
74.0
74.0
74.0
20.
20.
20.
0
0
0
U
U
U
20.0
20.0
20.0
NA
20.0
20.0
20.0
NA
20.0
20.0
20.0
U
U
U
U
U
U
U
U
U
20.0
20.0
20.0
NA
20.0
20.0
20.0
NA
20.0
20.0
20.0
U
U
U
U
U
U
U
U
U
20.0 U
20.0 U
20.0 U
NA
20.0 U
20.0 U
20.0 U
NA
20.0 U
20.0 U
20.0 U
% Surrogate Recovery
Tetrachloro- Octachloro-
m-Xylene naphthalene
85%
86%
90%
1 05%
97%
91%
88%
38% *
91%
99%
81%
62%
78%
NA**'
NA***
NA***
1 03%
1 04%
98%
111%
125%*
99%
1 00%
35% *
98%
101%
90%
76%
85%
NA***
NA***
NA***
RSD%
NA
NA
NA
NA
Page 3
-------
ASHTBULA RIVER PILOT PROJECT
PESTICIDES IN SEDIMENT SAMPLES
5/6/93
MSL Code
Rep Sponsor ID
REPLICATE ANALYSES
(concentrations in ng/g dry wt.)
Dry Wt.
a-BHC
g-BHC
d-BHC Heptachlor
% Surrogate Recovery
Tetrachloro- Octachloro-
m-Xylene naphthalene
467ASH-500 Rep 1 23SEP0800CARB'B 81.0
467ASH-500 Rep 2 23SEP0800CARB'B 81.0
467ASH-500 Rep 3 23SEP0800CARB'B 81.0
RSD%
20.0 U
20.0 U
20.0 U
NA
20.0
20.0
20.0
NA
20.0
20.0
20.0
NA
20.0 U
20.0 U
20.0 U
NA
NA***
NA***
NA***
NA**1
NA**1
NA**1
Page 4
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN SEDIMENT SAMPLES
(CF 467ASH)
(concentrations in ug/kg dry wt.)
5/7/93
Sponsor ID
02SEP15401S3CO
02SEP14301S2BO
02SEP13201S1AO
02SEP13301S1BO
02SEP15201S3BO
02SEP13451S1CO
02SEP14001S2AO
02SEP14551S3AO
02SEP14451S2CO
10SEP11303S1A
10SEP12303S1A
11SEP08405S1A
11SEP08406S1A
11SEP14303S1B
11SEP14304S1B
14SEP08306S1B Rep 1
14SEP08306S1B Rep 2
14SEP08306S1B Rep 3
14SEP12303S1C
14SEP12303S1C
14SEP12353S1C
14SEP17204S1C
14SEP08305S1B
15SEP11404S2A
15SEP11404S2A
15SEP11404S2A
15SEP08305S1C
15SEP08306S1C
15SEP13153S2A
16SEP08505S2CA
Vinyl
Chloride
0.26
0.31
1.8
0.29
0.30
0.28
0.30
1.3
0.29
1.1
0.5
3.7
0.32
0.57
0.49
0.43
0.29
0.3
0.68
0.33
0.77
0.39
0.24
0.5
0.5
0.5
0.42
0.49
0.26
0.22
Chloroform
U
U
[1]
U
U
U
U
[1]
U
[1]
U
U
11]
U
U
U
U
[1]
U
[1]
U
U
U
U
U
U
U
U
U
0.26
0.31
0.28
0.29
0.30
0.28
0.30
7.7
0.29
0.30
0.5
5.5
0.32
0.26
0.49
0.43
0.29
0.3
0.29
0.33
0.26
0.39
0.24
0.5
0.5
0.5
0.42
0.49
0.26
0.22
Tri-
chloroethene
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
0.26
0.31
6.7
0.29
0.30
2.5
1.7
12
0.29
0.79
0.5
0.23
1.3
0.26
0.49
0.43
0.29
0.3
0.29
0.33
0.26
0.39
6.4
0.5
0.5
0.5
0.42
0.49
0.26
1.6
1,1,2-Tri-
chloroethane
U
U
U
U
[1]
[1]
U
[1]
U
U
[1]
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
[1]
0.26
0.31
0.28
0.29
0.30
0.28
0.30
0.28
0.29
0.30
0.5
0.23
0.32
0.26
0.49
0.43
0.29
0.3
0.29
0.33
0.26
0.39
0.24
0.5
0.5
0.5
0.42
0.49
0.26
0.22
Tetra-
chloroethene
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
0.26
0.31
4.9
0.29
0.30
1.1
2.0
23
0.29
0.30
0.5
0.23
2.6
0.26
0.49
0.43
0.29
0.3
0.29
0.33
0.26
0.39
11
0.5
0.5
0.5
0.79
0.49
0.26
3.1
Chloro-
benzene
U
U
U
U
[1]
[1]
U
U
U
U
[1]
U
U
U
U
U
U
U
U
U
U
U
U
[1]
U
U
[1]
51
39
160
15
20
14
84
1200 [3]
11
4.9
0.5 U
7.1
11
23
0.49 U
6.7
2.7
2.8
11
6.3
10
0.39 U
77
0.5 U
0.5 U
0.5 U
12
0.49 U
11
35
Page 1
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN SEDIMENT SAMPLES
5/7/93
Sponsor ID
02SEP15401S3CO
02SEP14301S2BO
02SEP13201S1AO
02SEP13301S1BO
02SEP15201S3BO
02SEP13451S1CO
02SEP14001S2AO
02SEP14551S3AO
02SEP14451S2CO
10SEP11303S1A
10SEP12303S1A
11SEP08405S1A
11SEP08406S1A
11SEP14303S1B
11SEP14304S1B
14SEP08306S1B Rep 1
14SEP08306S1B Rep 2
14SEP08306S1B Rep 3
14SEP12303S1C
14SEP12303S1C
14SEP12353S1C
14SEP17204S1C
14SEP08305S1B
15SEP11404S2A
15SEP11404S2A
15SEP11404S2A
15SEP08305S1C
15SEP08306S1C
15SEP13153S2A
16SEP08505S2CA
1,1,2,2-Tetra-
chloroethane
0.26 U
0.31 U
11.0
0.29 U
0.30 U
0.28 U
0.30 U
47
0.29 U
0.30 U
0.5 U
0.23 U
39
0.26 U
0.49 U
0.43 U
0.29 U
0.3 U
0.29 U
0.33 U
0.26 U
0.39 U
0.24 U
0.5 U
0.5 U
0.5 U
0.42 U
0.49 U
0.26 U
0.22 U
1,2-Dichloro-
benzene
3.0 [1,2]
0.31 U
12 [2]
1.2 [1,2]
1.7 [1,2]
1.6 [1,2]
6.9 [2]
23 [2]
1.5 [1]
0.97 [1]
0.5 U
5.4
4.6
2.1 [1]
0.49 U
1.7 [1]
0.88 [1]
1.4 [1]
1.7 [1]
0.91 [1]
2 [1]
0.39 U
15
0.5 U
0.5 U
0.5 U
0.42 U
0.49 U
1.6 [1]
19
% Surrogate
1,2-Dichloro-
ethane-d4
123%*
136% *
157%*
119%
134% *
169%*
124%*
103%
148% *
244% *
95%
879% *
117%
104%
163%*
71%
71%
73%
107%
101%
89%
210%*
52%
172%*
198%*
227% *
113%
316%*
250% *
75%
Recoveries
Toluene-d8
108%
96%
88%
86%
85%
76%
83%
128% *
81%
73%
62%
19% *
73%
89%
67%
125% *
123% *
118%
104%
97%
88%
43%
78%
55%
68%
56%
114%
67%
61%
86%
Page 2
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN SEDIMENT SAMPLES
(CF 467ASH)
5/7/93
Sponsor ID
16SEP08506S2A
16SEP13153S2B
16SEP14154S2B
17SEP09005S2B
17SEP09006S2B
14SEP13004S1CI
17SEP12304S2CI
17SEP13353S2C
18SEP08306S2C
18SEP08316S2C
18SEP08326S2C
18SEP09005S2C
18SEP10303S3A
18SEP12154S3A
17SEP17454S2C
21SEP13455S3A
21SEP13456S3A
21SEP14454S3BI
21SEP15453S3B
21SEP18314S3B
21SEP18324S3B
21SEP19204S3B
22SEP09155S3B
22SEP09306S3B Rep 1
22SEP09306S3B Rep 2
22SEP09306S3B Rep 3
22SEP13303S3C
22SEP13304S3C
21SEP17105S3C
Vinyl Tri- 1,1,2-Tri- Tetra- Chloro-
Chloride Chloroform chloroethene chloroethane chloroethene benzene
0.32 U
0.29 U
0.49 U
0.41 U
0.49 U
0.43 U
0.46 U
0.23 U
0.48 U
0.49 U
0.47 U
0.37 U
0.22 U
0.5 U
0.48 U
0.31 U
0.39 U
0.39 U
0.22 U
0.48 U
0.48 U
0.48 U
0.35 U
0.45 U
0.46 U
0.46 U
0.25 U
0.5 U
0.075 U
0.32 U
0.29 U
0.49 U
0.41 U
0.49 U
0.43 U
0.46 U
0.23 U
0.48 U
0.49 U
0.47 U
0.37 U
0.22 U
0.76 [1]
0.59 [1]
0.31 U
0.39 U
0.39 U
0.79
0.48 U
0.48 U
0.48 U
0.5 [1]
0.45 U
0.46 U
0.46 U
0.25 U
0.5 U
2.2 [1]
3 11]
0.29 U
0.49 U
0.51 [1]
0.49 U
0.43 U
0.46 U
0.23 U
0.48 U
0.49 U
0.47 U
0.9 [1]
0.22 U
0.5 U
0.48 U
0.31 U
1.9 [1]
1 HI
0.22 U
0.48 U
0.48 U
0.48 U
0.35 U
0.45 U
0.46 U
0.46 U
0.25 U
0.5 U
6.9 [1]
0.32 U
0.29 U
0.49 U
0.41 U
0.49 U
0.43 U
0.46 U
0.23 U
0.48 U
0.49 U
0.47 U
0.37 U
0.22 U
0.5 U
0.48 U
0.31 U
0.39 U
0.39 U
0.22 U
0.48 U
0.48 U
0.48 U
0.35 U
0.45 U
0.46 U
0.46 U
0.25 U
0.5 U
0.075 U
1.3 [1]
0.29 U
0.49 U
2.7
0.49 U
0.43 U
0.46 U
0.23 U
0.48 U
0.49 U
0.55 [1]
2.4 [1]
0.22 U
0.5 U
0.48 U
3.1
4.7
0.56 [1]
0.22 U
0.48 U
0.48 U
0.48 U
0.35 U
0.45 U
0.46 U
0.46 U
4.5
0.44 [1]
12 [1]
133
200 [3]
0.49 U
6.2
6
0.57 [1]
1.5 [1]
9.8
1.01 [1]
1.9 [1]
2.8
23
180
0.5 U
0.48 U
5.7
90
2.4
37
0.67 [1]
0.48 U
0.48 U
17
4.2
3.3
2.9
7.3
0.59 [1]
330
Page 3
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN SEDIMENT SAMPLES
5/7/93
Sponsor ID
16SEP08506S2A
16SEP13153S2B
16SEP14154S2B
17SEP09005S2B
17SEP09006S2B
14SEP13004S1CI
17SEP12304S2CI
17SEP13353S2C
18SEP08306S2C
18SEP08316S2C
18SEP08326S2C
18SEP09005S2C
18SEP10303S3A
18SEP12154S3A
17SEP17454S2C
21SEP13455S3A
21SEP13456S3A
21SEP14454S3BI
21SEP15453S3B
21SEP18314S3B
21SEP18324S3B
21SEP19204S3B
22SEP09155S3B
22SEP09306S3B Rep 1
22SEP09306S3B Rep 2
22SEP09306S3B Rep 3
22SEP13303S3C
22SEP13304S3C
21SEP17105S3C
1,1,2,2-Tetra- 1,2-Dichloro-
chloroethane benzene
0.32 U
0.29 U
0.49 U
0.41 U
0.49 U
0.43 U
0.46 U
0.23 U
0.48 U
0.49 U
0.47 U
0.37 U
0.22 U
0.5 U
0.48 U
0.31 U
0.39 U
0.39 U
0.22 U
0.48 U
0.48 U
0.48 U
0.35 U
0.45 U
0.46 U
0.46 U
0.25 U
0.5 U
0.075 U
0.32 U
0.29 U
0.49 U
0.41 U
0.49 U
0.43 U
0.81 [1]
6.5
0.48 U
3.1
3.3
9.2
23
0.5 U
0.48 U
4.5
25
1.1 [1]
3 [1]
0.48 U
0.48 U
0.48 U
4.9
2.4
1.8 [1]
2.5
5.9
0.56 [1]
27
1,2-Dichloro-
ethane-d4 Toluene-d8
86%
140%*
188%*
131%*
112%
74%
111%
220% *
156%*
156%*
183% *
109%
122%*
210% *
223% *
98%
46%
68%
102%
130%*
137%*
94%
41%
54%
84%
88%
129%*
60%
52%
141% *
117%
82%
57%
143% *
82%
99%
51%
53%
48%
43%
52%
81%
50%
43%
67%
168%*
95%
87%
80%
86%
61%
119%
107%
96%
82%
44%
138% *
146% *
Page 4
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN SEDIMENT SAMPLES
(CF 467ASH)
5/7/93
Sponsor ID
21SEP17156S3C
21SEP17156S3C
21SEP17156S3C
16SEP1600CARBT
16SEP1600CARBM
16SEP1600CARBB
23SEPCARBV
23SEP0800CARBT
23SEP0800CARBM
23SEP0800CARBB
23SEP0800CARBB
23SEP0800CARBB
Rep1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
Vinyl
Chloride
0.37
0.37
0.37
0.5
0.5
130
0.5
330
690
1700
1800
2700
Chloroform
U
U
U
U
U
U
0.37
0.37
0.37
0.5
0.5
0.5
0.5
110
16
33
49
38
Tri- 1,1,2-Tri-
chloroethene chloroethane
U
U
U
U
U
U
U
0.85 [1]
0.57 [1]
0.8 [1]
18
4.6
4.4
0.5 U
110
44
150
150
180
0.37
0.37
0.37
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
Tetra- Chloro-
chloroethene benzene
U
U
U
U
U
U
U
U
U
U
U
U
2.79
1.7 [1]
2.4 [1]
82
78
24
0.5 U
33
34
24
30
26
44
22
25
550
140
81
0.5 U
170
120
36
44
54
BLANK RESULTS
Method
Method
Method
Method
Method
Method
Method
Method
Method
Blank-1
Blank-2
Blank-3
Blank-4
Blank-5
Blank-6
Blank-7
Blank-8
Blank-9
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
U
U
U
U
U
U
U
U
U
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
U
U
U
U
U
U
U
U
U
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
U
U
U
U
U
U
U
U
U
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
U
U
U
U
U
U
U
U
U
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
U
U
U
U
U
U
U
U
U
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
U
U
U
U
U
U
U
U
U
Page 5
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN SEDIMENT SAMPLES
5/7/93
Sponsor ID
21SEP17156S3C Rep 1
21SEP17156S3C Rep 2
21SEP17156S3C Rep 3
16SEP1600CARBT
16SEP1600CARBM
16SEP1600CARBB
23SEPCARBV
23SEP0800CARBT
23SEP0800CARBM
23SEP0800CARBB Rep 1
23SEP0800CARBB Rep 2
23SEP0800CARBB Rep 3
BLANK RESULTS
Method Blank- 1
Method Blank-2
Method Blank-3
Method Blank-4
Method Blank-5
Method Blank-6
Method Blank-7
Method Blank-8
Method Blank-9
1,1,2,2-Tetra-
chloroethane
0.37 U
0.37 U
0.37 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
1 ,2-Dichloro-
benzene
9.2
3.4
7.5
64
38
30
2.8
4.8
19
49
25
18
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
% Surrogate
1 ,2-Dichloro-
ethane-d4
78%
95%
96%
30% *
28% *
20% *
603% *
1 60% *
110%
85%
84%
85%
112%
109%
127%*
105%
71%
99%
140%*
107%
99%
Recoveries
Toluene-d8
127% *
1 1 9%
99%
792% *
80%
14% *
41%
1 07%
140% *
14% *
20% *
10% *
125% *
105%
1 03%
91%
123% *
115%
65%
127% *
96%
Page 6
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN SEDIMENT SAMPLES
(CF 467ASH)
5/7/93
Sponsor ID
Vinyl Tri- 1,1,2-Tri- Tetra-
Chloride Chloroform chloroethene chloroethane chloroethene
Chloro-
benzene
MATRIX SPIKE RESULTS
Amount Spiked
23SEP0800CARBB
23SEP0800CARBB
Amount Recovered
Percent Recovery
Amount Spiked
23SEP0800CARBB
23SEP0800CARBB
Amount Recovered
Percent Recovery
+ Spike
+ Spike DUP
RPD %
20
1700
873.0
-827.0
-4135% *
20
1700
1433.0
-267.0
-1335% *
-102% "
20
33
685.0
652.0
3260% *
20
33
270.0
237.0
1185% *
93% "
20
150
123.0
-27.0
-135% *
20
150
102.0
-48.0
-240% *
-56% "
20
0.5 U
0.9
0.9
5% *
20
0.5 U
402.0
402.0
2010% *
199% **
20
24
1.1
-22.9
-115% *
20
24
26.0
2.0
10% *
-238% "
20
36.0
2.5
-33.5
-168% *
20
36.0
32.0
-4.0
-20% *
-157% **
REPLICATE ANALYSES
14SEP08306S1B
14SEP08306S1B
14SEP08306S1B
22SEP09306S3B
22SEP09306S3B
22SEP09306S3B
Rep1
Rep 2
Rep 3
RSD%
Rep1
Rep 2
Rep 3
RSD%
0.43 U
0.29 U
0.3 U
NA
0.45 U
0.46 U
0.46 U
NA
0.43 U
0.29 U
0.3 U
NA
0.45 U
0.46 U
0.46 U
NA
0.43 U
0.29 U
0.3 U
NA
0.45 U
0.46 U
0.46 U
NA
0.43 U
0.29 U
0.3 U
NA
0.45 U
0.46 U
0.46 U
NA
0.43 U
0.29 U
0.3 U
NA
0.45 U
0.46 U
0.46 U
NA
6.7
2.7
2.8
56% **
4.2
3.3
2.9
19%
Page 9
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN SEDIMENT SAMPLES
5/7/93
% Surrogate Recoveries
Sponsor ID
1,1,2,2-Tetra- 1,2-Dichloro-
chloroethane benzene
1,2-Dichloro-
ethane-d4 Toluene-d8
MATRIX SPIKE RESULTS
Amount Spiked
23SEP0800CARBB
23SEP0800CARBB
Amount Recovered
Percent Recovery
Amount Spiked
23SEP0800CARBB
23SEP0800CARBB
Amount Recovered
Percent Recovery
+ Spike
+ Spike DUP
RPD %
20
0.5 U
20
20
100%
20
0.5 U
41
41.0
205% *
69% **
20
49
2.7
-46.3
-232%
20
49
12.0
-37.0
-185%
-22% "
NA
85%
115%
NA
NA
NA
85%
40%
NA
NA
NA
14% *
47%
NA
NA
NA
14% *
16% *
NA
NA
REPLICATE ANALYSES
14SEP08306S1B
14SEP08306S1B
14SEP08306S1B
22SEP09306S3B
22SEP09306S3B
22SEP09306S3B
Rep1
Rep 2
Rep 3
RSD%
Rep1
Rep 2
Rep 3
RSD%
0.43 U
0.29 U
0.3 U
NA
0.45 U
0.46 U
0.46 U
NA
1.7 [1]
0.88 [1]
1.4 [1]
NA
2.4
1.8 [1]
2.5
17%
71%
71%
73%
54%
84%
88%
125% *
123% *
118%
107%
96%
82%
Page 10
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN SEDIMENT SAMPLES
(CF 467ASH)
5/7/93
Soonsor ID
Vinyl Tri- 1,1,2-Tri- Tetra- Chloro-
Chloride Chloroform chloroethene chloroethane chloroethene benzene
REPLICATE ANALYSES
21SEP17156S3C
21SEP17156S3C
21SEP17156S3C
23SEP0800CARBB
23SEP0800CARBB
23SEP0800CARBB
Rep1
Rep 2
Rep 3
RSD%
Rep1
Rep 2
Rep 3
0.37 U
0.37 U
0.37 U
NA
1700
1800
2700
0.37 U
0.37 U
0.37 U
NA
33
49
38
0.85 [1]
0.57 [1]
0.8 [1]
20%
150
150
180
0.37 U
0.37 U
0.37 U
NA
0.5 U
0.5 U
0.5 U
2.79
1.7 [1]
2.4 [1]
24% **
24
30
26
44
22
25
39% "
36
44
54
RSD%
27%
20%
11%
NA
11%
20%
Page 11
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN SEDIMENT SAMPLES
5/7/93
Sponsor ID
1,1,2,2-Tetra-
chloroethane
1,2-Dichloro-
benzene
1 ,2-Dichloro-
ethane-d4
Toluene-d8
REPLICATE ANALYSES
21SEP17156S3C Rep 1
21SEP17156S3C Rep 2
21SEP17156S3C Rep 3
23SEP0800CARBB Rep 1
23SEP0800CARBB Rep 2
23SEP0800CARBB Rep 3
RSD%
RSD%
0.37 U
0.37 U
0.37 U
NA
0.5 U
0.5 U
0.5 U
NA
9.2
3.4
7.5
45%
49
25
18
53%
78%
95%
96%
85%
84%
85%
127%
119%
99%
14%
20%
10%
U = Analyte not detected at or above the detection limit.
1 = Estimate, above detection limit but below lower method calibration limit.
2 = Estimate, calculated using estimated response factor of 1.0
3 = Estimate, below lower method calibration limit or above upper method calibration lim
* = Outside QA criteria range (40-120%)
" = Outside QA criteria range (±20%)
# = Mean of replicated samples.
RSD% = Relative Standard Deviation.
RPD% = Relative Percent Difference.
Page 12
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN WATER SAMPLES
(CF 467ASH)
5/7/93
^concentrations in ng/L)
Sponsor ID
03SEP15453L2BO
03SEP12003L3CO
03SEP1 5253L1 AO
10SEP16157L1A
10SEP16158L1A
11SEP16458L1B
10SEP16507L1B
14SEP19057L1C
14SEP19008L1C
15SEP14458L2A
15SEP14457L2A
16SEP15158L2B
16SEP15168L2B
16SEP15178L2B
16SEP15157L2B
17SEP18458L2C
17SEP18507L2C
18SEP15008L3A
18SEP15007L3A
22SEP08458L3B
22SEP08307L3B
22SEP15307L3C
22SEP15317L3C
22SEP15327L3C
22SEP16008L3C Rep 1
22SEP16008L3C Rep 2
22SEP16008L3C Rep 3
Vinyl Tri- 1,1,2-Tri- Tetra-
Chloride Chloroform chloroethene chloroethane chloroethene
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
1 .2 [2]
2.1
0.5 U
0.5 U
0.5 U
0.54 [2]
0.5 U
0.5 U
0.5 U
0.55 [2]
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
1 .4 [2]
0.5 U
0.5 U
0.5 U
1.8 [2]
2.1
0.5 U
1 -3 [2]
1 -7 [2]
1 -5 [2]
0.5 U
0.5 U
0.5 U
2.4
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
4.2
3.9
3.8
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
0.5 U
Page 1
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN WATER SAMPLES
(CF 467ASH)
(concentrations in ng/L)
5/7/93
Surrogate Recoveries
Sponsor ID
03SEP15453L2BO
03SEP12003L3CO
03SEP15253L1AO
10SEP16157L1A
10SEP16158L1A
11SEP16458L1B
10SEP16507L1B
14SEP19057L1C
14SEP19008L1C
15SEP14458L2A
15SEP14457L2A
16SEP15158L2B
16SEP15168L2B
16SEP15178L2B
16SEP15157L2B
17SEP18458L2C
17SEP18507L2C
18SEP15008L3A
18SEP15007L3A
22SEP08458L3B
22SEP08307L3B
22SEP15307L3C
22SEP15317L3C
22SEP15327L3C
22SEP16008L3C Rep 1
22SEP16008L3C Rep 2
22SEP16008L3C Rep 3
Chloro-
benzene
0.5
0.5
0.5
0.5
6.0
37
0.5
0.5
7.5
24
0.5
13
14
16
0.5
44
0.5
58
0.5
30
0.5
0.5
0.5
0.5
90
110
160
1,1,2,2-Tetra- 1 ,2-Dichloro-
chloroethane benzene
U
U
U
U
U
U
U
U
U
U
U
U
U
U
1.1 [2] 0.5 U
1.6(2] 0.5 U
0.96 [2] 0.5 U
0.5 U 0.5 U
0.5 U 1.1 [2]
0.5 U 0.5 U
0.5 U 0.5 U
0.5 U 0.5 U
0.5 U 2.4
0.5 U 2.9
0.5 U 0.5 U
0.5 U 1.3 [2]
0.5 U 1.3 [2]
0.5 U 0.5 U
0.5 U 0.5 U
0.5 U 0.5 U
0.5 U 0.5 U
0.5 U 6.1
0.5 U 0.5 U
0.5 U 3.0
0.5 U 0.5 U
0.5 U 0.5 U
0.5 U 0.5 U
0.5 U 0.5 U
0.5 U 5.1
0.5 U 4.0
0.5 U 7.8
1 ,2-Dichloro- 4-Bromofluoro-
ethane-d4 Toluene-d8 benzene
89% 85%
99% 90%
119% 88%
70% 95%
130%* 71%
422% * 33% *
1 70% * 59%
88% 1 1 8%
119% 95%
173%* 72%
128%* 94%
182% * 77%
125%* 74%
182%* 64%
159%* 79%
120% 73%
93% 88%
1 06% 1 05%
69% 84%
200% * 37% *
1 62% * 72%
152%* 107%
240%* 105%
132%* 129%*
140%* 166%*
1 02% 94%
107% 129%*
1 72%
193%
1 38%
1 70%
1 1 9%
240%
227%
1 32%
1 85%
111%
145%
98%
85%
1 03%
121%
38%
1 04%
1 05%
1 53%
85%
73%
1 08%
70%
92%
286%
1 00%
120%
*
*
*
*
*
*
*
*
*
*
*
*
[3]
*
Page 2
-------
ASHTABULA PILOT PROJECT (CF 467ASH) 5/7/93
VOLATILE ORGANIC COMPOUNDS
IN WATER SAMPLES
Sponsor ID
(concentrations
Vinyl
Chloride
in ug/L)
Chloroform
Tri-
chloroethene
1,1,2-Tri-
chloroethane
Tetra-
chloroethene
REPLICATE ANALYSES
22SEP16008L3C Rep 1 0.5 U 0.5 U 4.2 0.5 U 0.5 U
22SEP16008L3C Rep 2 0.5 U 0.5 U 3.9 0.5 U 0.5 U
22SEP16008L3C Rep 3 0.5 U 0.5 U 3.8 0.5 U 0.5 U
RSD% NA NA 5% NA NA
Page 7
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN WATER SAMPLES
REPLICATE ANALYSES
22SEP16008L3C Rep 1
22SEP16008L3C Rep 2
22SEP16008L3C Rep 3
(CF 467ASH)
(concentrations in ng/L)
5/7/93
% Surrogate Recoveries
Sponsor
ID
Chloro-
benzene
1,1,2,2-Tetra-
chloroethane
1
,2-Dichloro-
benzene
1 ,2-Dichloro-
ethane-d4
Toluene-d8
4-Bromofluoro-
benzene
RSD %
90
110
160
30%
0.5
0.5
0.5
NA
U
U
U
5.1
4.0
7.8
35%
140% *
102%
107%
166%
94%
129%
286%
100%
120%
U = Analyte not detected at or above the detection limit.
NA = Not applicable.
2 = Estimate, calculated using estimated response factor of 1.0.
3 = Used secondary ion.
* = Outside QA criteria range (40-120%).
# = Mean of replicated samples.
RSD% = Relative Standard Deviation.
RPD% = Relative Percent Difference
** = Outside QA criteria range (±20%).
Page 8
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
METALS IN TCLP SAMPLES
5/4/93
(concentrations in
MSLCode Rep
467ASH-152 Rep 1
467ASH-152 Rep 2
467ASH-152 Rep 3
467ASH-156 Rep 1
467ASH-156 Rep 2
467ASH-156 Rep 3
467ASH-225
467ASH-286
467ASH-288
467ASH-290
467ASH-292
467ASH-412
Blank-1
Blank-2
Sponsor ID
14SEP15153S1C
14SEP15153S1C
14SEP15153S1C
14SEP15454S1C
14SEP15454S1C
14SEP15454S1C
16SEP11453S2B
18SEP11154S3A
18SEP11164S3A
18SEP11174S3A
18SEP12003S3A
21SEP16004S2B
As
GFAA
5.95
5.96
5.79
7.67
6.74
7.59
6.45
18.7
16.4
10.9
7.00
6.59
0.28 U
0.28 U
Cd
ICP/MS
12.0
11.1
11.2
12.1 *
7.00 *
9.80 *
50.4 *
57.7
57.5
57.7
31.7
18.3
0.298
1.40 *U
Cr
ICP/MS
1.39 U
1.39 U
1.39 U
1.59 *
0.45 *
2.80 *
28.3 *
1.39 U
1.39 U
1.39 U
9.74
1.39 U
1.39 U
0.28 *
Hg
CVAA
0.00017 U
0.00018 U
0.00017 U
0.00011 U
0.00010 U
0.00011 U
0.00079
0.00017 U
0.00018 U
0.00016 U
0.00014 U
0.00086
0.00088
0.00011 U
Pb
ICP/MS
9.18
9.07
8.59
4.70 *
1.70 *U
2.80 *
6.60 *
0.31
0.07
0.11
0.40
4.43
0.13
1.90 *
Zn
GFAA
738
749
749
1430
423
806
956
2590
2850
2930
2180
990
8.3 U
4.6 U
STANDARD REFERENCE MATERIAL
1643c 1
1643c 2
1641b 1
16416 2
certified value
range
certified value
range
76.1
80.4
82.1
±1.2
NA
NA
NA
NA
12.9
12.8 *
12.2
±1.0
NA
NA
NA
NA
23.4 @
19.1 *
19.0
±0.6
NA
NA
NA
NA
NA
NA
NA
NA
1540
1600
1520
±40
36.5
34.6 *
35.3
±0.9
NA
NA
NA
NA
75.3
72.8
73.9
±0.9
NA
NA
NA
NA
Page 1
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
METALS IN TCLP SAMPLES
5/4/93
(concentrations in
MSLCode
Rep
Sponsor
ID
As
GFAA
Cd
ICP/MS
Cr
ICP/MS
Hg
CVAA
Pb
ICP/MS
Zn
GFAA
REPLICATE ANALYSES
467ASH-152 Rep 1 14SEP15153S1C 5.95
467ASH-152 Rep 2 14SEP15153S1C 5.96
467ASH-152 Rep 3 14SEP15153S1C 5.79
RSD % 2%
467ASH-156 Rep 1 14SEP15454S1C 7.67
467ASH-156 Rep 2 14SEP15454S1C 6.94
467ASH-156 Rep 3 14SEP15454S1C 7.59
RSD % 5%
12.0
11.1
11.2
4%
12.1
7.00
3.80
1.39 U
1.39 U
1.39 U
NA
1.59 *
0.45 *
2.80 *
27% @ 73% @
0.00017 U
0.10008 U
0.00017 U
NA
0.00011 U
0.00011 U
0.00011 U
NA
9.18
9.07
8.59
4%
4.70 *
1.70 *U
2.80 *
NA
738
749
749
1%
1430
423
806
57% @
NOTE: Samples 156 and 225 were run by GFAA for As, Cd, Cr and Pb.
U = Below detection limit.
NA = Not applicable.
NS = Not Spiked.
* = Sample run by GFAA.
* *= Mean of replicated sample.
R3 = Sample 156, Rep 3 spiked only.
# = Recovery outside QC criteria range (85-115%).
@ = Outside QC criteria range (±20%).
RPD% = Relative Percent Difference.
RSD% = Relative Standard Deviation.
Page 4
-------
ASHTABULA RIVER PILOT PROJECT (CF #467ASH)
PAH IN TCLP SAMPLES
5/6/93
(concentrations in ng/g dry wt.)
% Surrogate Recovery
MSL Code Rep
467ASH-152 Rep 1
467ASH-152 Rep 2
467ASH-152 Rep 3
467ASH-156 Rep 1
467ASH-156 Rep 2
467ASH-156 Rep 3
467ASH-225
467ASH-286
467ASH-288
467ASH-290
467ASH-292
467ASH-412
Blank-1
Blank-2
Hexachloro- Hexachloro- Hexachloro- Benzo(a) d8 Acenaph- d12 Benzo(a)
Sponsor ID ethane butadiene benzene pyrene thalene d10 Pyrene pyrene
14SEP15153S1C
14SEP15153S1C
14SEP15153S1C
14SEP15454S1C
14SEP15454S1C
14SEP15454S1C
16SEP11453S2B
18SEP11154S3A
18SEP11164S3A
18SEP11174S3A
18SEP12003S3A
21SEP16004S2B
775 U
772 U
721 U
146 U
129 U
119 U
120 U
867 U
853 U
992 U
838 U
920 U
721 U
124 U
452 U
451 U
421 U
137 U
121 U
112 U
113 U
506 U
498 U
579 U
489 U
537 U
421 U
116 U
259 U
259 U
237 U
54.7 U
48.3 U
44.7 U
44.9 U
285 U
275 U
332 U
279 U
291 U
233 U
46.2 U
73.6 U
69.0
65.0 U
52.7 #
41.5 #
48.3 #
43.5
82.7 U
71.6 U
90.1 U
80.0 U
68.1 U
90. 9 #
42. 2 #
62%
81%
85%
69%
63%
53%
66%
77%
82%
80%
84%
93%
76%
60%
95%
90%
97%
93%
77%
82%
87%
95%
95%
95%
99%
96%
91%
73%
1 1 8%
1 02%
122% *
91%
75%
78%
84%
121% *
117%
113%
122% *
1 1 6%
93%
72%
BLANK SPIKE RESULTS
Amount Spiked
Blank-1
Blank-1 + Spike
Amount Recovered
Percent Recovery
Amount Spiked
Blank-1
Blank-1 + Spike
Amount Recovered
Percent Recovery
Duplicate
2500
721 U
1440
1440
58%
2500
721 U
1640
1640
66%
2500
421 U
1400
1400
56%
2500
421 U
1420
1420
57%
2500
233 U
1950
1950
78%
2500
233 U
1940
1940
78%
2500
90.9 #
2860
2770
111%
2500
90. 9 #
2960
2870
115%
NA
76%
81%
NA
NA
NA
76%
95%
NA
NA
NA
91%
89%
NA
NA
NA
91%
100%
NA
NA
NA
93%
113%
NA
NA
NA
93%
1 32% *
NA
NA
RPD%
13%
1%
1%
4%
NA
NA
NA
Page 1
-------
ASHTABULA RIVER PILOT PROJECT (CF #467ASH)
PAH IN TCLP SAMPLES
5/6/93
(concentrations in ng/g dry wt.)
% Surrogate Recovery
MSL Code
Rep
Hexachloro-
Sponsor ID ethane
Hexachloro- Hexachloro-
butadiene benzene
Benzo(a) d8
pyrene
Acenaph- d12 Benzo(a)
thalene d10 Pyrene pyrene
REPLICATE ANALYSES
467ASH-152
467ASH-152
467ASH-152
467ASH-156
467ASH-156
467ASH-156
Rep 1
Rep 2
Rep 3
Rep1
Rep 2
Rep 3
14SEP15153S1C
14SEP15153S1C
14SEP15153S1C
RSD%
14SEP15454S1C
14SEP15454S1C
14SEP15454S1C
775
772
721
NA
146
129
119
U
U
U
U
U
U
452 U
451 U
421 U
NA
137 U
121 U
112 U
259
259
237
NA
54.7
48.3
44.7
U
U
U
U
U
U
73.6 U
69.0
65.0 U
NA
52. 7 #
41. 5 #
48. 3 #
62%
81%
85%
NA
69%
63%
53%
95%
90%
97%
NA
93%
77%
82%
118%
102%
122% *
NA
91%
75%
78%
RSD%
NA
NA
NA
12%
NA
NA
NA
U = Not detected at or above the detection limit.
# = Ion ratio out of limits; estimated value.
RSD% = Relative Standard Deviation.
* = Outside QC criteria range (40-120%).
@ = Outside criteria range (±20%).
NA = Not applicable
Page 3
-------
ASHTBULA RIVER PILOT PROJECT
PCB/AROCLORS IN TCLP SAMPLES
5/6/93
(concentrations in ng/L)
MSLCode Rep
467ASH-152 1
467ASH-152 2
467ASH-152 3
467ASH-156 1
467ASH-156 2
467ASH-156 3
467ASH-225
467ASH-286
467ASH-288
467ASH-290
467ASH-292
467ASH-412
BLANK RESULTS
Blank-1
Blank-2
Sponsor ID
14SEP15153S1C
14SEP15153S1C
14SEP15153S1C
14SEP15454S1C
14SEP15454S1C
14SEP15454S1C
16SEP11453S2B
18SEP11154S3A
18SEP11164S3A
18SEP11174S3A
18SEP12003S3A
21SEP16004S2B
Extraction
Volume
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.355
.360
.370
.200
.200
.200
.200
.360
.370
.342
.356
.368
.400
.200
Aroclor
1242
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
0
0
0
0
0
0
0
0
0
0
0
0
0
10.0
u
u
u
u
u
u
u
u
u
u
u
u
u
u
Aroclor
1248
10.0
10.0
10.0
10.0
10.0
10.0
999
10.0
10.0
10.0
10.0
10.0
10.0
10.0
Aroclor
1254 [NP]
U
U
U
u
u
u
u
u
u
u
u
u
u
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
u
u
u
u
u
u
u
u
u
u
u
u
u
u
Aroclor
1260
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
% Surrogate Recovery
Tetrachloro- Octachloro-
m-Xylene naphthalene
84%
84%
74%
60%
73%
57%
74%
78%
73%
76%
98%
76%
83%
64%
86%
86%
75%
98%
115%
118%
78%
85%
89%
84%
86%
94%
63%
1 03%
Page 1
-------
ASHTBULA RIVER PILOT PROJECT
PCB/AROCLORS IN TCLP SAMPLES
MSL Code
Rep Sponsor ID
Extraction
Volume
(concentrations in ng/L)
Aroclor
1242
Aroclor
1248
Aroclor
1254 [NP]
Aroclor
1260
5/6/93
% Surrogate Recovery
Tetrachloro-
m-Xylene
Octachloro-
naphthalene
REPLICATE ANALYSES
467ASH-152
467ASH-152
467ASH-152
467ASH-156
467ASH-156
467ASH-156
1
2
3
14SEP15153S1C
14SEP15153S1C
14SEP15153S1C
RSD%
1 14SEP15454S1C
2 14SEP15454S1C
3 14SEP15454S1C
RSD%
0.355
0.360
0.370
10.0
10.0
10.0
U
U
U
10.0
10.0
10.0
U
U
U
10.0
10.0
10.0
U
U
U
10
10
10
.0
.0
.0
U
U
U
84%
84%
74%
86%
86%
75%
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.200
0.200
0.200
10
10
10
.0
.0
.0
U
U
U
10.0
10.0
10.0
U
U
U
10.0
10.0
10.0
U
U
U
10.0
10.0
10.0
U
U
U
60%
73%
57%
98%
115%
118%
NA
NA
U = Not detected at or below detection limit.
NP = Negative peak observed for this analyte.
* = Recovery outside QC criteria range (40-120%).
# = Outside QC criteria range (±20%).
NA = Not applicable.
NS = Not spiked.
RPD % = Relative Percent Difference.
RSD % = Relative Standard Deviation.
Page 4
-------
ASHTABULA RIVER PILOT PROJECT
PESTICIDES IN TCLP SAMPLES
5/6/93
(concentrations in ng/L)
% Surrogate Recovery
MSL Code
467ASH-152
467ASH-152
467ASH-152
467ASH-156
467ASH-156
467ASH-156
467ASH-225
467ASH-286
467ASH-288
467ASH-290
467ASH-292
467ASH-412
Rep
1
2
3
1
2
3
Sponsor ID
14SEP15153S1C
14SEP15153S1C
14SEP15153S1C
14SEP15454S1C
14SEP15454S1C
14SEP15454S1C
16SEP11453S2B
18SEP11154S3A
18SEP11164S3A
18SEP11174S3A
18SEP12003S3A
21SEP16004S2B
Extraction
Volume
0.355
0.360
0.370
0.200
0.200
0.200
0.200
0.360
0.370
0.342
0.356
0.368
a-BHC
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.8
10.0
14.5
U
U
U
U
U
U
U
U
U
U
g-BHC
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
11.5
d-BHC
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
Tetrachloro- Octachloro-
Heptachlor m-Xylene naphthalene
U
U
U
U
U
U
U
U
U
U
U
U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
28.4
10.0 U
10.0 U
35.3
84%
84%
74%
60%
73%
57%
74%
78%
73%
76%
98%
76%
86%
86%
75%
98%
115%
1 1 8%
78%
85%
89%
84%
86%
94%
BLANK RESULTS
Blank-1
Blank-2
REPLICATE ANALYSES
467ASH-152
467ASH-152
467ASH-152
467ASH-156
467ASH-156
467ASH-156
1 14SEP15153S1C
2 14SEP15153S1C
3 14SEP15153S1C
RSD%
1 14SEP15454S1C
2 14SEP15454S1C
3 14SEP15454S1C
RSD%
0.400
0.200
0.355
0.360
0.370
NA
0.200
0.200
0.200
NA
10.0
10.0
U
U
10.0
10.0
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
NA
10,0
10.0
10.0
NA
U
U
U
NA
10.0
10.0
10.0
NA
U
U
U
NA
10.0
10.0
10.0
NA
U
U
U
10.0 U
10.0 U
10.0 U
10.0 U
10.0 U
NA
10.0 U
10.0 U
10.0 U
NA
83%
64%
84%
84%
74%
NA
60%
73%
57%
NA
63%
103%
86%
86%
75%
NA
98%
115%
118%
NA
Page 1
-------
ASHTABULA (CF 467ASH)
CONGENERS IN TCLP
5/6/93
(concentrations in ng/L)
IUPAC MSLCode BLANK-1 467ASH-152, R-1 467ASH-152, R-2 467ASH-152. R-3
NUMBER Sponsor ID 14SEP15153S1C 14SEP15153S1C 14SEP15153S1C
1
3
8+5
19
18
17
27
32+16
29
26
25
31+28
33
22
45
46
52
49
48+47
44
42+37
64+41+71
40
100
63
74
70+76
95+66
91
56+60
92+84
101
99
83
97
87
85
136
110
82
151
135+144
107
149
118
134+114
131
146
10 U
10 U
10 U
10U
10 U
10U
10U
10 U
10 U
10U
10 U
10U
10 U
10U
10U
10U
10 U
10 U
21 .4 E
10.5 E
10 U
10U
10 U
10U
10 U
10 U
10U
10 U
10 U
10 U
1 0 U
10U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10U
10 U
10 U
10 U
10 U
419 E
2530 E
10 U
54.1 E
10 U
10 U
10 U
10 U
12.4 E
10 U
10 U
10 U
14.0 E
10 U
21.7 E
15.3 E
10 U
10 U
262 E
1 0 U
10 U
10 U
31.2 E
10 U
11.3 E
10 U
10 U
10 U
10 U
14.6 E
1 0 U
10 U
10 U
10 U
10 U
1 0 U
1 0 U
11.3 E
10 U
10 U
10 U
10 U
10 U
10 U
1 0 U
1 0 U
10 U
1 0 U
372 E
1670 E
12.9 E
19.3 E
10 U
10 U
10U
10 U
10 U
10U
10 U
10 U
19.5 E
10 U
25.2 E
10 U
10 U
10 U
348 E
10 U
10 U
10 U
18.6 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
193 E
1260 E
124E
15.5 E
10 U
23.8 E
10 U
10 U
17.0 E
99.6 E
10 U
10 U
48.9 E
38.7 E
10 U
13.4 E
10 U
410 E
10 U
49.3 E
10 U
10 U
10 U
41.5 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
14.7 E
48.6 E
10 U
19.8 E
10 U
10 U
33.1 E
10 U
10 U
RSO%
36% *
36% *
NA
72% *
NA
NA
NA
NA
NA
NA
NA
NA
68% *
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Page 1
-------
ASHTABULA (CF 467ASH)
CONGENERS IN TCLP
5/6/93
(concentrations in ug/L)
IUPAC MSLCode BLANK-1 467ASH-152, R-1 467ASH-152. R-2 467ASH-152. R-3
NUMBER Sponsor ID 14SEP15153S1C 14SEP15153S1C 14SEP15153S1C
153+132+105
141
137+176
163+138
158
178
175
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193
191
199
170+190
198
201
203+196
189
208+195
207
194
205
% Surrogate Recoveries
OCN
TCMX
10 U
10 U
20.7 E
10 U
10 U
10 U
10 U
10 U
10 U
1 0 U
10 U
10 U
10U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
63%
83%
10 U
10 U
195E
10U
10U
16.9E
10U
10 U
10 U
10U
10 U
10 U
10 U
10U
10U
10U
10 U
10U
10U
10U
10 U
10 U
10 U
10 U
10 U
10U
10 U
10 U
10 U
86%
84%
10 U
10U
150E
10 U
10U
19.4 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10U
10U
10 U
10 U
10 U
10 U
10U
10 U
10 U
10U
10 U
10 U
10 U
10 U
10 U
86%
84%
10 U
10U
129E
10U
10 U
219 E
10 U
10U
10 U
10 U
10 U
10 U
10U
10 U
284 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
75%
74%
RSD%
NA
NA
21% *
NA
NA
136% *
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Page 2
-------
ASHTABULA (CF 467ASH)
CONGENERS IN TCLP
5/6/93
(concentrations in ug/L)
IUPAC MSLCode BLANK-2 467ASH-156. R-1 467 ASH- 156, R-2 467ASH-156, R-3
NUMBER Sponsor ID 14SEP15454S1C 14SEP15454S1C 14SEP15454S1C
1
3
8+5
19
18
17
27
32+16
29
26
25
31+28
33
22
45
46
52
49
48+47
44
42+37
64+41+71
40
100
63
74
70+76
95+66
91
56+60
92+84
101
99
83
97
87
85
136
110
82
151
135+144
107
149
118
134+114
131
146
10U
10U
10U
10U
10 U
10 U
10 U
10 U
10 U
10U
10U
10U
10U
10 U
10 U
10 U
10 U
10 U
10 U
10U
10U
10U
10U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
0 U
0 U
0 U
0 U
0 U
0 U
0 U
0 U
ou
0 U
ou
ou
ou
10U
10U
10U
10U
10U
10U
10U
10U
10U
10U
10U
10U
10U
10 U
10 U
10U
10U
10U
10U
10U
10U
10U
10 U
10 U
10U
10U
10U
10U
10U
10U
10U
10 U
10 U
10U
10 U
10 U
10U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
0 U
0 U
0 U
0 U
0 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
RSO% 467ASH-225
16SEP11453S2B
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
52.3 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
57.0 E
15.6 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
15.8 E
10 U
10 U
10 U
Page 3
-------
ASHTABULA (CF 467ASH)
CONGENERS IN TCLP
5/6/93
(concentrations in
IUPAC MSLCode BLANK-2 467ASH-156, R-1 467ASH-156, R-2 467ASH-156, R-3
NUMBER Sponsor ID 14SEP15454S1C 14SEP15454S1C 14SEP15454S1C
153+132+105
141
137+176
163+138
158
178
175
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193
191
199
170+190
198
201
203+196
189
208+195
207
194
205
% Surrogate Recoveries
OCN
TCMX
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
64%
1 03%
10 U
10U
10U
10U
10 U
10U
10U
10U
10 U
10U
10U
10U
10 U
10U
10U
10U
10 U
10U
10U
10U
10U
10 U
10 U
10U
10U
10 U
10U
10 U
10 U
60%
98%
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
73%
115%
10 U
10 U
10U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
57%
118%
RSO% 467ASH-225
16SEP11453S2B
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
10 U
10 U
10 U
0 U
0 U
0 U
0 U
0 U
0 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
74%
78%
Page 4
-------
ASHTABULA (CF 467ASH)
CONGENERS IN TCLP
5/6/93
(concentrations in uq/L)
IUPAC MSLCode 467ASH-286 467ASH-288 467ASH-290 467ASH-292 467ASH-412
NUMBER Sponsor ID 18SEP11154S3A 18SEP11164S3A 18SEP11174S3A 18SEP12003S3A 21SEP16004S2B
1
3
8+5
19
18
17
27
32+16
29
26
25
31+28
33
22
45
46
52
49
48+47
44
42+37
64+41+71
40
100
63
74
70+76
95+66
91
56+60
92+84
101
99
83
97
87
85
136
110
82
151
135+144
107
149
118
134+114
131
146
177E
962 E
10U
29.4 E
10 U
10 U
10 U
10 U
10 U
13.9 E
10 U
10 U
36.3 E
23.1 E
19.2 E
10 U
14.1 E
10 U
404 E
10U
10 U
10 U
10 U
10 U
10U
10 U
10 U
10 U
10 U
25.8 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
18.3 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
1020
2960
10U
53.9 E
10U
10U
10 U
10 U
16.6 E
10U
10U
10 U
10 U
10U
13.1 E
10.8 E
10 U
10 U
808 E
10 U
10U
10U
52.6 E
10 U
10U
10U
10U
OU
0 U
0 U
0 U
OU
OU
10U
10U
10 U
10 U
20.4 E
10 U
10U
10 U
10 U
10 U
10 U
10 U
13.4 E
10 U
10 U
348 E
1660 E
19.4E
53.2 E
10U
10 U
10U
10U
18.3 E
10 U
10 U
10 U
17.4 E
10 U
10 U
17.7E
10 U
10U
419 E
10 U
10 U
10 U
126 E
10 U
11.7 E
10 U
10 U
10 U
10 U
20.2 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
14.1 E
10 U
10 U
10 U
10 U
10 U
0 U
0 U
0 U
0 U
0 U
674 E
25100 E
315 E
81.3 E
58.9 E
32.5 E
21.3 E
45.8 E
23.9 E
31. 6 E
13.6 E
10 U
13.7 E
17.7 E
13.2 E
25.0 E
20.2 E
15.7 E
216 E
36.9 E
12.4 E
19.0 E
26.8 E
10 U
10 U
10 U
11.3 E
10 U
10 U
11.1 E
10 U
10 U
10 U
10 U
10 U
15.5 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
561 E
2690 E
26.1 E
278 E
10 U
21.5 E
10 U
22.2 E
22.5 E
24.8 E
10 U
10 U
10 U
10 U
10 U
24.6 E
10 U
10 U
197 E
11.8 E
10 U
10 U
68.9 E
0 U
0 U
0 U
0 U
0 U
10 U
12.8 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
14.4 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
Page 5
-------
ASHTABULA (CF 467ASH)
CONGENERS IN TCLP
5/6/93
(concentrations in
IUPAC MSLCode 467ASH-286 467ASH-288 467ASH-290 467ASH-292 467ASH-412
NUMBER Sponsor ID 18SEP11154S3A 18SEP11164S3A 18SEP11174S3A 18SEP12003S3A 21SEP16004S2B
153+132+105
141
137+176
163+138
158
178
175
187+182
183
128
185
174
177
202+171
157+200
172+197
180
193
191
199
170+190
198
201
203+196
189
208+195
207
194
205
% Surrogate Recoveries
OCN
TCMX
10 U
10 U
174 E
10 U
10 U
10.4 E
10 U
10 U
10U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
85%
78%
10U
10U
10U
10U
10U
26.2 E
10U
13.8E
10U
10 U
10 U
10U
10U
10 U
10 U
10U
10 U
10U
10U
10 U
10 U
10U
10U
10 U
10U
10U
10U
10 U
10U
89%
73%
10U
10 U
120 E
10 U
10 U
10 U
10 U
13.4 E
10 U
10 U
10 U
1 0 U
10 U
1 0 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
84%
76%
10 U
10U
82.0 E
10U
10 U
10 U
10U
13.7 E
10 U
10 U
10 U
10 U
10U
10 U
22.5 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
86%
98%
10 U
10 U
145 E
10 U
10 U
10 U
10 U
28.0 E
10 U
10 U
10 U
10 U
10 U
10 U
14.6 E
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
10 U
94%
76%
U = Below detection limits.
E = Estimate only; due to interference with the confirming ion
* = Outside RSD % criteria range (20%).
NA = Not applicable.
Page 6
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN TCLP SAMPLES
(CF 467ASH)
5/7/93
(concentrations in ng/L)
Sponsor ID
14SEP15153S1C
14SEP15153S1C
14SEP15153S1C
18SEP11303S3A
18SEP11454S3A
18SEP11464S3A
18SEP11474S3A
21SEP16004S2B
21SEP16004S2B
21SEP16004S2B
Method Blank 1
Method Blank 2
TCLP Blank
Vinyl
Labnet ID Chloride
Rep 1
Rep 2
Rep 3
Rep 1
Rep 2
Rep 3
92BM21OC01-03
92BM21OC01-19
92BM21OC01-21
92BM210C01-05
92BM21OC01-07
92BM21OC01-09
92BM21OC01-11
92BM21OC01-13
92BM21OC01-15
92BM210C01-17
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
Chloroform
U
U
U
U
U
U
U
U
U
U
U
U
U
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
Tri-
chloroethene
U
U
U
U
U
U
U
U
U
U
U
U
U
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
1,1,2-Tri-
chloroethane
U
U
U
U
U
U
U
U
U
U
U
U
U
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
Tetra-
chloroethene
U
U
U
U
U
U
U
U
U
U
U
U
U
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
Chloro-
benzene
U
U
U
U
U
U
U
U
U
U
U
U
U
0.62 E
0.56 E
0.50 U
14.0
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
Page 1
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN TCLP SAMPLES
5/7/93
(concentrations in
% Surrogate Recoveries
Sponsor ID
14SEP15153S1C
14SEP15153S1C
14SEP15153S1C
18SEP11303S3A
18SEP11454S3A
18SEP11464S3A
18SEP11474S3A
21SEP16004S2B
21SEP16004S2B
21SEP16004S2B
Method Blank 1
Method Blank 2
TCLP Blank
Rep 1
Rep 2
Rep 3
Rep 1
Rep 2
Rep 3
1
Labnet ID
92BM21OC01-03
92BM21OC01-19
92BM210C01-21
92BM210C01-05
92BM210C01-07
92BM210C01-09
92BM21OC01-11
92BM21OC01-13
92BM210C01-15
92BM21OC01-17
,1,2,2-Tetra- 1 ,2-Dichloro-
chloroethane benzene
0.50 U 0.50 U
0.50 U 0.50 U
0.50 U 0.50 U
0.50 U 0.74 E
0.50 U 0.50 U
0.50 U 0.50 U
0.50 U 0.50 U
0.50 U 0.50 U
0.50 U 0.50 U
0.50 U 0.50 U
0.50 U 0.50 U
0.50 U 0.50 U
0.50 U 0.50 U
1,2-Dichloro-
ethane-d4 Toluene-d8
63% 127%*
59% 124%*
63% 1 09%
67% 87%
75% 85%
70% 94%
46% 149%*
38%* 131%*
43% 114%
56% 92%
85% 136% *
62% 157%*
71% 133% *
Page 2
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN TCLP SAMPLES
Sponsor ID
Labnet ID
(CF 467ASH)
(concentrations in
Vinyl
Chloride
Chloroform
Tri-
chloroethene
1,1,2-Tri-
chloroethane
Tetra-
chloroethene
5/7/93
Chloro-
benzene
REPLICATE ANALYSES
14SEP15153S1C
14SEP15153S1C
14SEP15153S1C
Rep 1 92BM21OC01-03
Rep 2 92BM210C01-19
Rep 3 92BM210C01-21
RSD%
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.62 E
0.56 E
0.50 U
NA
NA
NA
NA
NA
NA
21SEP16004S2B
21SEP16004S2B
21SEP16004S2B
Rep1 92BM21OC01-13
Rep 2 92BM21OC01-15
Rep 3 92BM21OC01-17
RSD%
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
0.50 U
NA
NA
NA
NA
NA
NA
Page 5
-------
ASHTABULA PILOT PROJECT
VOLATILE ORGANIC COMPOUNDS
IN TCLP SAMPLES
(concentrations in ug/L)
5/7/93
% Surrogate Recoveries
Sponsor
ID
Labnet
ID
1
,1,2,2-Tetra-
chloroethane
1
,2-Dichloro-
benzene
1,2
-Dichloro-
ethane-d4
Toluene-d8
REPLICATE ANALYSES
14SEP15153S1C
14SEP15153S1C
14SEP15153S1C
21SEP16004S2B
21SEP16004S2B
21SEP16004S2B
Rep1 92BM21OC01-03
Rep 2 92BM210C01-19
Rep 3 92BM21OC01-21
RSD%
Rep1 92BM210C01-13
Rep 2 92BM21OC01-15
Rep 3 92BM210C01-17
RSD%
0.50 U
0.50 U
0.50 U
NA
0.50 U
0.50 U
0.50 U
NA
0.50 U
0.50 U
0.50 U
NA
0.50 U
0.50 U
0.50 U
NA
63%
59%
63%
NA
38% *
43%
56%
NA
127% *
124% *
109%
NA
131% *
114%
92%
NA
U = Not detected at or above the Detection Limit.
E = Estimated maximum possible concentration.
* = Outside QC criteria range (40-120%).
# = Outside RPD% criteria range (±20%).
NA = Not applicable.
RPD% = Relative percent difference.
RSD% = Relative standard deviation.
Page 6
-------
ASHTABULA RIVER PILOT PROJECT
TOTAL Hg IN AIR SAMPLES
(CF #467ASH)
5/7/93
(concentrations in ng/sample)
MSLCode
467ASH-270
467ASH-270
467ASH-271
467ASH-271
467ASH-272
467ASH-272
467ASH-273
467ASH-273
467ASH-274
467ASH-274
467ASH-275
467ASH-275
467ASH-276
467ASH-276
467ASH-277
467ASH-277
467ASH-278
467ASH-278
467ASH-279
467ASH-279
467ASH-507
467ASH-507
Rep Client ID Fraction 1B
Rep1 10SEP15009G1A
Rep 2 10SEP15009G1A
Rep1 14SEP13009G1C
Rep 2 14SEP13009G1C
Rep1 15SEP13009G2A
Rep 2 15SEP13009G2A
Rep1 15SEP12009G2A
Rep 2 15SEP12009G2A
Rep1 16SEP11309G2B
Rep 2 16SEP11309G2B
Rep1 17SEP11309G2B
Rep 2 17SEP11309G2B
Rep1 18SEP09309G3A
Rep 2 18SEP09309G3A
Rep1 18SEP11009G3A
Rep 2 18SEP11009G3A
Rep1 21SEP16009G3B
Rep 2 21SEP16009G3B
Rep1 21 SEP09309G3B
Rep 2 21SEP09309G3B
Rep1 22SEP11309G3C
Rep 2 22SEP11309G3C
0.00032
0
0.0115
0.0218
0.200
0.206
0.0373
0.0487
0.308
0.294
0.651
0.667
0.0609
0.0439
0.0706
0.0700
0.0103
0.0107
0.00616
0.0221
0.0433
0.0280
Fraction 2B Fraction 3A
0.0723 U*
0.0720 U*
0.0857 U
0.0857 U
0.0858 U
0.0858 U
0.0858 U
0.0858 U
0.0858 U
0.0858 U
0.0858 U
0.0858 U
0.0858 U
0.0858 U
0.0858 U
0.0858 U
0.0858 U
0.0858 U
0.0858 U
0.0858 U
0.0859 U
0.0859 U
0.0469 U*
0.0466 U*
0.0593
0.0593
0.0586
0.0586
0.0608
0.0608
0.0590
0.0590
0.0594
0.0594
0.0583
0.0583
0.0586
0.0586
0.0595
0.0595
0.0605
0.0605
0.0583
0.0583
Fraction 3B
0
NA
0.00371
NA
0.0138
NA
0.000161
NA
0.0147
NA
0.0348
NA
0.000710
NA
0.00735
NA
0.00402
NA
0.00138
NA
0.0148
NA
Blank (concentrations in ng/L)
0.10 U
0.10 U
0.10 U
0.10 U
Page 1
-------
ASHTABULA RIVER PILOT PROJECT
TOTAL METALS IN AIR SAMPLES
(CF #467ASH)
5/7/93
(concentrations in ng/L)
MSLCode Rep
| FRACTION 2A |
467ASH-270
467ASH-274
467ASH-276
467ASH-278
Client ID
10SEP15009G1A
16SEP11309G2B
18SEP09309G3A
21SEP16009G3B
As
0.65 U
0.65 U
0.65 U
0.65 U
Cd
0.474
0.178
0.65 U
0.770
Cr
4.92
2.26
1.69
2.03
Pb
2.55
0.755
0.823
1.00
Zn
11.3
60.9
4.20
9.29
Blank
STANDARD REFERENCE MATERIAL
SLRS-1
certified value
range
0.65
0.236
0.77
±0.09
0.65 U
0.062
0.028
±0.004
0.62
0.413
0.45
±0.07
0.24 U
1.28
0.129
±0.011
1.32
1.94
3.33
±0.15
BLANK SPIKE RESULTS
Amount Spiked
Blank
Blank + Spike Rep 1
Amount Recovered
Percent Recovery
Amount Spiked
Blank
Blank + Spike Rep 2
Amount Recovered
Percent Recovery
Amount Spiked
Blank
Blank + Spike Rep 3
Amount Recovered
Percent Recovery
10.0
0.65
10.7
10.1
101%
10.0
0.65
10.8
10.2
1 02%
10.0
0.65
10.1
9.5
95%
5.00
0.65 U
5.18
5.18
104%
5.00
0.65 U
5.11
5.11
102%
5.00
0.65 U
5.08
5.08
102%
10.0
0.62
10.1
9.5
95%
10.0
0.62
9.74
9.1
91%
10.0
0.62
9.92
9.3
93%
10.0
0.24 U
10.5
10.5
105%
10.0
0.24 U
10.7
10.7
1 07%
10.0
0.24 U
10.6
10.6
106%
50.0
1.32
52.8
51.5
103%
50.0
1.32
53.7
52.4
105%
50.0
1.32
53.7
52.4
105%
# = Used 101x dilution for Zn in Fraction 1A.
* = Outside QC criteria range (85-115%).
NQ = Due to severe matrix interference, spike not quantifiable.
Page 2
-------
ASHTABULA RIVER PILOT PROJECT
TOTAL METALS IN AIR SAMPLES
(CF #467ASH)
5/7/93
(concentrations in ug/L)
MSLCode Rep
| FRACTION 1A |
467ASH-270
467ASH-274
467ASH-276
467ASH-278
Client ID
10SEP15009G1A
16SEP11309G2B
1 8SEP09309G3A
21SEP16009G3B
As
3.25 U
3.25 U
3.25 U
3.25 U
Cd
0.767
1.63
0.127
1.63
Cr
41.3
51.7
37.4
40.6
Pb
11.9
17.6
10.9
12.6
Zn
5350 #
5830 #
6020 #
5930 #
Blank
STANDARD REFERENCE MATERIAL
SLRS-1
8.48
19.7
0.66 U
17.7
certified value
range
BLANK SPIKE RESULTS
Amount Spiked
Blank
Blank + Spike Rep 1
Amount Recovered
Percent Recovery
0.77
±0.09
10.0
8.48
3.25 U
rO
rO
0.028
±0.004
5.00
0.66 U
5.23
5.23
105%
0.25 U
89.2
0.45
±0.07
10.0
0.25 U
9.07
9.07
91%
0.69 U
1760
0.129
±0.011
10.0
0.69 U
12.6
12.6
126% *
0.66 U
3.33
±0.15
50.0
0.66 U
60.1 #
60.1
120% *
Page 1
-------
ASHTABULA RIVER PILOT PROJECT
PCBs IN AIR SAMPLES
5/6/93
(concentrations in ng/sample)
Client ID
11SEP19009G1B
14SEP19309G1C
15SEP16009G2A
16SEP16309G2B
17SEP19309G2C
18SEP14309G3A
21SEP19409G3B
22SEP14159G3C
BLANKS
Field Blank
10SEP17009G1A
17SEP11009G2C
21SEP19409G3B
Storage Blank
Method Blank-1
Method Blank-2
Lab ID
Test #1
Test #2
Test #3
Test #4
Test #5
Test #6
Test #7
Test #8
Blank-1
Blank-2
Blank-3
92BM17SP01-MB
92QC18NV01-MB
92QC19NV01-MB
CM
22 U
22 U
22 U
22 U
22 U
22 U
22 U
22 U
22 U
22 U
22 U
22 U
22 U
22 U
Cl 2
30.2
22 U
22 U
268
22 U
22 U
22 U
22 U
22 U
22 U
22 U
22 U
22 U
22 U
Cl 3
22 U
22 U
22 U
22 U
91.3
22 U
22 U
76.6
22 U
22 U
22 U
22 U
22 U
22 U
Cl 4
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
Cl 5
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
Cl 6
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
44 U
Cl 7
66 U
66 U
66 U
66 U
66 U
66 U
66 U
66 U
66 U
66 U
66 U
66 U
66 U
66 U
Page 1
-------
ASHTABULA RIVER PILOT PROJECT
PCBs IN AIR SAMPLES
5/2/93
(concentrations in ng/sample)
Client ID
11SEP19009G1B
14SEP19309G1C
15SEP16009G2A
16SEP16309G2B
17SEP19309G2C
18SEP14309G3A
21SEP19409G3B
22SEP14159G3C
BLANKS
Field Blank
10SEP17009G1A
17SEP11009G2C
21SEP19409G3B
Storage Blank
Method Blank-1
Method Blank-2
Lab ID
Test #1
Test #2
Test #3
Test #4
Test #5
Test #6
Test #7
Test #8
Blank-1
Blank-2
Blank-3
92BM17SP01-MB
92QC18NV01-MB
92QC19NV01-MB
Cl 8
66
66
66
66
66
66
66
66
66
66
66
66
66
66
U
U
U
U
U
U
U
U
U
U
U
U
U
U
Cl 9
66
66
66
66
66
66
66
66
66
66
66
66
66
66
U
U
U
U
U
U
U
U
U
U
U
U
U
U
Cl
1
1
1
1
1
1
1
1
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
U
U
U
U
U
U
U
U
U
U
U
U
U
U
% Surrogate Standards
BZ 80 (Cl 4)
118
120
118
125 *
110
115
123 *
125 *
125 *
109
118
78.5
NA
NA
BZ126 (CIS)
176 *
159 *
129 *
148 *
151 *
137 *
133 *
147 *
135 *
141 *
138 *
81.1
NA
NA
BZ138 (Cl 6)
169 *
164 *
132 *
138 *
144 *
134*
135 *
138 *
143*
139 *
140 *
88.4
NA
NA
BZ 202 (Cl 8)
80.5
82.7
85.4
74.6
81.2
88.5
97.3
90.8
102
86.6
94.9
67.0
NA
NA
Page 2
-------
ASHTABULA RIVER PILOT PROJECT (CF# 467)
DOXINS/FURANS IN AIR SAMPLES
(Concentrations in ng/sample)
Sponsor ID
XAD Composite
11SEP19009G1B
14SEP19309G1C
15SEP16009G2A
16SEP16309G2B
17SEP19309G2C
18SEP14309G3A
21SEP19409G3B
22SEP14159G3C
BLANKS
Field Blank
10SEP17009G1A
10SEP17009G1A
10SEP17009G1A
Method Blank-1
Method Blank-1
Method Blank-2
Lab ID
Test #1
Test #2
Test #3
Test #4
Test #5
Test #6
Test #7
Test #8
Rep1
Rep 2
Rep 3
Rep1
Rep 2
2378-
TCDD
0.0149
0.00803 E
0.00345 U
0.0191
0.0116
0.0263
0.0290 U
0.0101 U
0.00684 U
0.00289 U
0.0193 U
0.0284 U
0.0432 U
0.00349 U
12378-
PeCDD
0.0520
0.0204
0.00593 E
0.105
0.0292
0.0704
0.118
0.00730 U
0.00556 U
0.00354 U
0.00882 U
0.0171 U
0.0178 U
0.00248 U
123478-
HxCDD
0.0360 E
0.0204
0.0102 E
0.132
0.0335
0.0561
0.135
0.0100 U
0.00876 U
0.00690 U
0.0143 U
0.0201 U
0.0220 U
0.00653 U
123678-
HxCDD
0.0540
0.0256
0.0145
0.174
0.0547
0.0607
0.268
0.0181
0.00575 U
0.00453 U
0.00936 U
0.0138 U
0.0145 U
0.00421 U
123789- 1234678-
HxCDD HpCDD
0.134
0.0571
0.0337
0.392
0.116
0.141
0.424
0.0223
0.00613 U
0.00483 U
0.00998 U
0.0147 U
0.0154 U
0.00471 U
0.366
0.156
0.102
1.08
0.378
0.346
1.47
0.0601
0.0240 E
0.0344
0.0116 U
0.0105 U
0.0259 U
0.0197
2378-
TCDF
0.0266 U
0.0185 U
0.0317 U
0.0165 U
0.0186 U
0.0156 U
0.119
0.0534 U
0.00360 U
0.00407 U
0.00963 U
0.0175 U
0.0255 U
0.00167 U
12378-
PeCDF
0.0697
0.0179
0.00415
0.126
0.0496
0.0927
0.415
0.0160 U
0.00175 U
0.00329 U
0.00885 U
0.0118 U
0.0158 U
0.00262 U
23478-
PBCDF
0.0707
0.0208
0.00555
0.133
0.0598
0.127
1.25
0.0184 E
0.00172 U
0.00343 U
0.00922 U
0.0123 U
0.0165 U
0.00253 U
123478-
HxCDF
0.206
0.0592
0.0220
0.543
0.185
0.285
2.69
0.0429
0.00486 U
0.0132 E
0.0108 U
0.0284 U
0.0269 U
0.00356 U
MATRIX SPIKE RESULTS
Quantity Spiked
Blank Spike-1
Percent Recovery
Quantity Spiked
Blank Spike-1
Percent Recovery
DUPLICATE
0.400
0.725
181%*
0.400
0.643
161% *
2.16
1.44
67%
2.16
1.46
68%
1.81
1.42
79%
1.81
1.40
77%
1.78
1.91
108%
1.78
1.56
88%
1.57
1.47
94%
1.57
1.37
87%
2.02
1.61
80%
2.02
1.67
83%
0.376
0.328
87%
0.376
0.323
86%
1.86
1.88
101%
1.86
1.89
1 02%
1.76
1.95
111%
1.76
2.06
1 1 7%
1.90
1.68
88%
1.90
1.49
78%
RPD%
12%
1%
1%
20%
7%
4%
2%
1%
5%
12%
Pagel
-------
ASHTABULA RIVER PILOT PROJECT (CF# 467)
DOXINS/FURANS IN AIR SAMPLES
(Concentrations in ng/sample)
Sponsor ID
XAD Composite
11SEP19009G1B
14SEP19309G1C
15SEP16009G2A
16SEP16309G2B
17SEP19309G2C
18SEP14309G3A
21SEP19409G3B
22SEP14159G3C
BLANKS
Field Blank
10SEP17009G1A
10SEP17009G1A
10SEP17009G1A
Method Blank-1
Method Blank-1
Method Blank-2
Lab ID
Test #1
Test #2
Test #3
Test #4
Test #5
Test #6
Test #7
Test #8
Rep1
Rep 2
Rep 3
Rep1
Rep 2
123678-
HxCDF
0.0631
0.0218
0.00858
0.234
0.0732
0.140
0.729
0.0175
0.00312 U
0.00375 U
0.00691 U
0.0183 U
0.0173 U
0.00234 U
234678-
HxCDF
0.0551
0.0208
0.00867
0.206
0.0688
0.126
1.48
0.0101 U
0.00402 U
0.00483 U
0.00889 U
0.0235 U
0.0222 U
0.00268 U
123789-
HxCDF
0.00610 U
0.00265 U
0.00405 U
0.0352
0.0166
0.0216
0.0884
0.0139 U
0.00555 U
0.00668 U
0.0123 U
0.0325 U
0.0307 U
0.00367 U
1234678-
HpCDF
0.426
0.101
0.0601
1.32
0.540
0.527
3.48
0.0612
0.00455 U
0.0173 U
0.00915 U
0.0162 U
0.0124 U
0.00268 U
1234789-
HpCDF
0.0717
0.0184
0.0174
0.230
0.0960
0.102
0.453
0.0148
0.00639 U
0.00601 U
0.0129 U
0.0228 U
0.0175 U
0.00364 U
TOTAL
TCDD
0.573
0.115
0.0833
0.396
0.326
0.545
2.01
0.0101 U
0.0283
0.0291
0.0393 U
0.0284 U
0.0432 U
0.0791
TOTAL
PeCDD
0.960
0.320
0.0541
1.61
0.484
0.862
1.93
0.0862
0.00556 U
0.00354 U
0.00882 U
0.0171 U
0.0178 U
0.00248 U
TOTAL
HxCDD
1.22
0.543
0.198
3.33
0.847
1.15
2.89
0.201
0.00575 U
0.00453 U
0.00936 U
0.0138 U
0.0145 U
0.00421 U
TOTAL
HpCDD
0.980
0.403
0.239
2.59
0.891
0.763
2.75
0.130
0.0169
0.0606
0.0116 U
0.0105 U
0.0259 U
0.0440
TOTAL
TCDF
0.855
0.137
0.0220
0.516
0.577
0.701
9.97
0.143
0.00360 U
0.00407 U
0.00963 U
0.0175 U
0.0255 U
0.0167 U
MATRIX SPIKE RESULTS
Quantity Spiked
Blank Spike-1
Percent Recovery
Quantity Spiked
Blank Spike-1
Percent Recovery
DUPLICATE
1.87
1.71
92%
1.87
1.69
90%
1.81
1.63
90%
1.81
1.26
70%
1.92
1.70
89%
1.92
1.51
79%
1.79
1.66
93%
1.79
1.74
97%
1.90
1.75
92%
1.90
1.65
87%
0.400
0.725
181% *
0.400
0.643
161% *
2.16
1.44
67%
2.16
1.46
68%
5.15
4.88
95%
5.15
4.35
84%
2.02
1.61
80%
2.02
1.77
87%
0.376
0.328
87%
0.376
0.323
86%
RPD%
1%
26%
12%
5%
6%
12%
1%
11%
9%
2%
Page 2
-------
ASHTABULA RIVER PILOT PROJECT (CF# 467)
DOXINS/FURANS IN AIR SAMPLES
(Concentrations in ng/sample)
Surrogate % Recoveries
Sponsor ID
XAD Composite
11SEP19009G1B
14SEP19309G1C
15SEP16009G2A
16SEP16309G2B
17SEP19309G2C
18SEP14309G3A
21SEP19409G3B
22SEP14159G3C
Lab ID
Test #1
Test #2
Test #3
Test #4
Test #5
Test #6
Test #7
Test #8
TOTAL
ReCDF
1.32
0.303
0.0321
1.87
0.838
1.58
11.3
0.175
TOTAL
HxCDF
1.13
0.312
0.0893
3.21
1.01
1.65
8.78
0.195
TOTAL
HpCDF
0.886
0.210
0.127
2.81
1.13
1.17
5.41
0.147
OCDD
1.23
0.472
0.823
2.59
1.19
0.537
1.82
0.271
OCOF
1.18
0.203
0.170
3.97
2.06
1.08
1.42
0.141
2378-
TCDD
107%
104%
90%
101%
102%
103%
136% *
50%
23478-
PeCDF
107%
103%
93%
101%
101%
102%
103%
51%
123478-
HxCDF
94%
91%
111%
98%
96%
89%
87%
51%
123478-
HxCDD
107%
99%
121% *
110%
102%
99%
84%
55%
123478S
HpCD
105%
106%
88%
105%
97%
99%
89%
40%
BLANKS
Field Blank
10SEP17009G1A Rep 1
10SEP17009G1A Rep 2
10SEP17009G1A Rep 3
Method Blank-1
Method Blank-1
Method Blank-2
Rep1
Rep 2
0.00175 U
0.00329 U
0.00885 U
0.0118 U
0.0158 U
0.00253 U
0.00312 U
0.00375 U
0.00691 U
0.0183 U
0.0173 U
0.00234 U
0.00113 U 0.151
0.0203 0.115
0.00915 U 0.0232 U
0.0162 U 0.0575 E
0.0124 U 0.0451 E
0.00268 U 0.275
0.0186 U 157% *
0.0133 U 98%
0.0393 U 131% '
0.0369 U NA
0.0248 U NA
0.00533 U NA
150%
95%
105%
NA
NA
NA
1 34%
96%
90%
NA
NA
NA
144%
1 00%
89%
NA
NA
NA
148%
91%
96%
NA
NA
NA
MATRIX SPIKE RESULTS
Quantity Spiked
Blank Spike-1
Percent Recovery
Quantity Spiked
Blank Spike-1
Percent Recovery
DUPLICATE
RPD%
3.62
3.82
105%
3.62
3.94
140% *
7.50
6.72
90%
7.50
6.00
110%
3.69
3.40
92%
3.69
3.53
96%
3.82
3.64
95%
3.82
3.45
90%
3.68
3.36
91%
3.68
3.39
92%
75%
81%
94%
108%
81%
75%
84%
77%
88%
93%
28%
20%
4%
5%
1%
PageS
-------
ASHTABULA RIVER PILOT PROJECT (CF# 467)
DOXINS/FURANS IN AIR SAMPLES
(Concentrations in no/sample)
Sponsor ID
Toluene
11SEP19009G1B
14SEP19309G1C
15SEP16009G2A
16SEP16309G2B
17SEP19309G2C
18SEP14309G3A
21SEP19409G3B
22SEP14159G3C
BLANKS
Field Blank
10SEP17009G1A
10SEP17009G1A
10SEP17009G1A
Method Blank-1
Method Blank-1
Method Blank-2
Lab ID
Test #1
Test #2
Test #3
Test #4
Test #5
Test #6
Test #7
Test #8
Rep1
Rep 2
Rep 3
Rep1
Rep 2
2378-
TCDD
0.00491 U
0.00310 U
0.00284 U
0.00301 U
0.0102 U
0.00858 U
0.00968 U
0.0127 U
0.00433 U
0.00746 U
0.0102 U
0.0284 U
0.0432 U
0.00349 U
12378-
PeCDD
0.00449 U
0.00264 U
0.00364 U
0.00234 U
0.00781 U
0.00536 U
0.00741 U
0.00935 U
0.00396 U
0.00756 U
0.00740 U
0.0171 U
0.0178 U
0.00248 U
123478-
HxCDD
0.0142 U
0.00600 U
0.0106 U
0.00804 U
0.00891 U
0.0118 U
0.00957 U
0.0152 U
0.0125 U
0.0104 U
0.00952 U
0.0201 U
0.0220 U
0.00653 U
123678-
HxCDD
0.00928 U
0.00394 U
0.00697 U
0.00527 U
0.00585 U
0.00773 U
0.00628 U
0.0100
0.00823 U
0.00679 U
0.00625 U
0.0138 U
0.0145 U
0.00421 U
123789- 1234678-
HxCDD HpCDD
0.00990 U
0.00420 U
0.00744 U
0.00562 U
0.00624 U
0.00825 U
0.00670 U
0.0106
0.00878 U
0.00725 U
0.00666 U
0.0147 U
0.0154 U
0.00471 U
0.0227
0.0193
0.0103 U
0.0125
0.0117 U
0.0102 U
0.00967 U
0.0149
0.0165
0.00937 U
0.0128 U
0.0105 U
0.0259 U
0.0197
2378-
TCDF
0.00328 U
0.00195 U
0.00228 U
0.00126 U
0.00838 U
0.00763 U
0.00713 U
0.00937 U
0.00292 U
0.00822 U
0.00709 U
0.0175 U
0.0255 U
0.00167 U
12378-
PeCDF
0.00298 U
0.00242 U
0.00224 U
0.00202 U
0.00451 U
0.00350 U
0.00407 U
0.00617 U
0.00277 U
0.00354 U
0.00358 U
0.0118 U
0.0158 U
0.00262 U
23478-
PeCDF
0.00310 U
0.00252 U
0.00234 U
0.00210 U
0.00470 U
0.00365 U
0.00425 U
0.00643 U
0.00289 U
0.00369 U
0.00373 U
0.0123 U
0.0165 U
0.00253 U
123478-
HxCDF
0.00702 U
0.00347 U
0.00407 U
0.00262 U
0.00873 U
0.00822 U
0.00718 U
0.0112 U
0.00485 U
0.00820 U
0.00873 U
0.0284 U
0.0269 U
0.00356 U
MATRIX SPIKE RESULTS
Quantity Spiked
Blank Spike-1
Percent Recovery
Quantity Spiked
Blank Spike-1
Percent Recovery
DUPLICATE
0.400
0.361
90%
0.400
0.343
86%
2.16
1.70
79%
2.16
1.59
74%
1.81
2.43
134%'
1.81
2.17
120%*
1.78
2.80
1 58% *
1.78
2.77
1 56% *
1.57
2.69
1 72% *
1.57
2.35
1 50% *
2.02
1.93
95%
2.02
1.83
90%
0.376
0.333
89%
0.376
0.314
84%
1.86
2.02
1 08%
1.86
2.09
1 1 2%
1.76
1.99
1 1 3%
1.76
1.96
111%
1.90
2.16
114%
1.90
2.12
112%
RPD%
5%
7%
11%
1%
13%
5%
6%
3%
2%
2%
E = Concentrations are listed at the full estimated concentration.
U = Concentrations are listed at one-half the estimated detection limit.
* = Outside of QC criteria (40-120%).
" = Outside of QC criteria(+/-20%).
Page 4
-------
ASHTABULA RIVER PILOT PROJECT (CF# 467)
DOXINS/FURANS IN AIR SAMPLES
(Concentrations in ng/sample)
Sponsor ID
Toluene
11SEP19009G1B
14SEP19309G1C
15SEP16009G2A
16SEP16309G2B
17SEP19309G2C
18SEP14309G3A
21SEP19409G3B
22SEP14159G3C
BLANKS
Field Blank
10SEP17009G1A
10SEP17009G1A
10SEP17009G1A
Method Blank-1
Method Blank-1
Method Blank-2
Lab ID
Test #1
Test #2
Test #3
Test #4
Test #5
Test #6
Test #7
Test #8
Rep 1
Rep 2
Rep 3
Rep1
Rep 2
123678-
HxCDF
0.00451 U
0.00223 U
0.00262 U
0.00169 U
0.00561 U
0.00528 U
0.00461 U
0.00720 U
0.00312 U
0.00527 U
0.00562 U
0.0183 U
0.0173 U
0.00234 U
234678-
HxCDF
0.00581 U
0.00287 U
0.00337 U
0.00217 U
0.00723 U
0.00680 U
0.00594 U
0.00927 U
0.00402 U
0.00678 U
0.00723 U
0.0235 U
0.0222 U
0.00268 U
123789-
HxCDF
0.00802 U
0.00397 U
0.00466 U
0.00300 U
0.0100 U
0.00939 U
0.00820 U
0.0128 U
0.00555 U
0.00937 U
0.00998 U
0.0325 U
0.0307 U
0.00367 U
1234678-
HpCDF
0.0149 U
0.00489 U
0.00485 U
0.00318 U
0.00623 U
0.00561 U
0.00599
0.00624 U
0.0108
0.00536 U
0.00534 U
0.0162 U
0.0124 U
0.00268 U
1234789-
HpCDF
0.0209 U
0.00687
0.00681 U
0.00447 U
0.00875 U
0.00787 U
0.00674
0.00877
0.0133 U
0.00753 U
0.00750 U
0.0228 U
0.0175 U
0.00364 U
TOTAL
TCDD
0.00491 U
0.00310 U
0.00705
0.00301 U
0.0102 U
0.00858 U
0.0217
0.0127 U
0.00433 U
0.00746 U
0.0102 U
0.0284 U
0.0432 U
0.0791
TOTAL
PeCDD
0.00449 U
0.00264 U
0.00364 U
0.00234 U
0.00781 U
0.00536 U
0.00741 U
0.00935 U
0.00396 U
0.00756 U
0.00740 U
0.0171 U
0.0178 U
0.00248 U
TOTAL
HxCDD
0.00928 U
0.00394 U
0.00697 U
0.00527 U
0.00585 U
0.00773 U
0.00628 U
0.0100 U
0.00823 U
0.00679 U
0.00625 U
0.0138 U
0.0145 U
0.00421 U
TOTAL
HpCDD
0.0573
0.0315
0.0173
0.0125
0.0117 U
0.0102 U
0.00967 U
0.0149 U
0.0259
0.00937 U
0.0128 U
0.0105 U
0.0259 U
0.0440
TOTAL
TCDF
0.00328 U
0.00195 U
0.00228 U
0.00126 U
0.00838 U
0.00763 U
0.00713 U
0.00937 U
0.00292 U
0.00822 U
0.00709 U
0.0175 U
0.0255 U
0.0167 U
MATRIX SPIKE RESULTS
Quantity Spiked
Blank Spike-1
Percent Recovery
Quantity Spiked
Blank Spike-1
Percent Recovery
DUPLICATE
1.87
2.59
1 39% *
1.87
2.37
127%*
1.81
2.07
114%
1.81
1.82
101%
1.92
2.17
113%
1.92
1.94
101%
1.79
1.77
99%
1.79
1.56
87%
1.90
1.78
94%
1.90
1.56
82%
0.400
0.371
93%
0.400
0.354
89%
2.16
1.70
79%
2.16
1.59
74%
5.15
8.00
155%*
5.15
7.41
144% '
2.02
1.93
95%
2.02
1.83
90%
0.376
0.333
89%
0.376
0.314
84%
RPD%
9%
13%
11%
13%
13%
5%
7%
8%
5%
6%
Page 5
-------
ASHTABULA RIVER PILOT PROJECT (CF# 467)
DOXINS/FURANS IN AIR SAMPLES
(Concentrations in ng/sample)
Surrogate % Recoveries
Sponsor ID
Toluene
11SEP19009G1B
14SEP19309G1C
15SEP16009G2A
16SEP16309G2B
17SEP19309G2C
18SEP14309G3A
21SEP19409G3B
22SEP14159G3C
Lab ID
Test #1
Test #2
Test #3
Test #4
Test #5
Test #6
Test #7
Test #8
TOTAL
RsCDF
0.00298 U
0.00242 U
0.00224 U
0.00202 U
0.00451 U
0.00350 U
0.00407 U
0.00617 U
TOTAL
HxCDF
0.00451 U
0.00223 U
0.00262 U
0.00169 U
0.00561 U
0.00528 U
0.00461 U
0.00720 U
TOTAL
HpCDF OCDD
0.0149 U 0.0583
0.00489 U 2.97
0.00485 U 0.170
0.00962 0.166
0.00623 U 49.5
0.00561 U 0.0968
0.00701 0.0691
0.00624 U 0.0886
OCDF
0.00692
0.0150
0.00652
0.0230
0.0294
0.0233
0.0194
0.0299
E
U
U
U
U
U
2378-
TCDD
NA
NA
NA
NA
NA
NA
NA
NA
1 ^ V
23478-
PeCDF
NA
NA
NA
NA
NA
NA
NA
NA
I^V
123478-
HxCDF
NA
NA
NA
NA
NA
NA
NA
NA
iou-
123478-
HxCDD
NA
NA
NA
NA
NA
NA
NA
NA
u
12347(
HpC
NA
NA
NA
NA
NA
NA
NA
NA
BLANKS
Field Blank
10SEP17009G1A Rep 1
10SEP17009G1A Rep 2
10SEP17009G1A Rep 3
Method Blank-1 Rep 1
Method Blank-1 Rep 2
Method Blank-2
0.00277 U 0.00312 U 0.0203 0.254
0.00354 U 0.00527 U 0.00536 U 0.0813
0.00358 U 0.00562 U 0.00534 U 0.0589
0.0118U 0.0183 U 0.0162 U 0.0575
0.0158 U 0.0173 U 0.0124 U 0.0451
0.00253 U 0.00234 U 0.00268 U 0.275
0.0294
0.0208 U
0.0193 U
E 0.0369 U
E 0.0248 U
0.00533 U
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
MATRIX SPIKE RESULTS
Quantity Spiked
Blank Spike-1
Percent Recovery
Quantity Spiked
Blank Spike-1
Percent Recovery
DUPLICATE
RPD%
3.62
4.33
1 20%
3.62
4.38
121% *
7.50
9.10
121% *
7.50
8.32
111%
3.69
3.55
96%
3.69
3.12
85%
3.82
4.58
1 20%
3.82
4.41
1 1 6%
3.68
4.60
1 25%
3.68
4.33
118%
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
1%
9%
13%
4%
6%
Page6
-------
ASHTABULA PILOT PROJECT (C F #467)
GRAIN SIZE - TOTAL SOLIDS ANALYSIS
5/2/93
MSLCode
467ASH-64
467ASH-64
467ASH-64
Rep1
Rep 2
Rep 3
Sponsor ID
02SEP14301S2BG
02SEP14301S2BG
02SEP14301S2BG
% Total
Solids
52.41
52.82
52.73
Predicted
Dry
Mass (g)
6.9389
6.2537
6.9861
Actual
Dry
Mass (g)
6.7498
6.4561
7.0379
Estimated
% Recovery
97.27
103.24
100.74
REPLICATE ANALYSES
467ASH-64 Rep 1 02SEP14301S2BG
467ASH-64 Rep 2 02SEP14301S2BG
467ASH-64 Rep 3 02SEP14301S2BG
RSD%
52.41
52.82
52.73
0%
6.9389
6.2537
6.9861
6%
6.7498
6.4561
7.0379
4%
97.27
103.24
100.74
3%
RSD % = Relative Standard Deviation.
Page 1
-------
ASHTABULA RIVER PILOT PROJECT (CF #467)
GRAIN SIZE ANALYSIS
9/29/93
PERCENT OF TOTAL MASS
MSLCode
467ASH-64
467ASH-64
467ASH-64
1.00-
SponsorlD >2.00 mm 2.00 mm ;
Rep1
Rep 2
Rep 3
10SEP15003S1A
10SEP15003S1A
10SEP15003S1A
0.
0.
1.
,75
.44
,06
0.73
0.62
0.54
0.500- 0.25- 0.125- 0.0625-
1.00 mm 0.500 mm 0.250 mm 0.125 mm
0.46
0.50
0.46
1.71
1.88
1.87
6.39
5.78
5.63
12.63
11.85
11.72
48.0-
62.5 urn
4.92
7.81
7.79
31.2-
48.0 nm
8.83
9.79
10.69
REPLICATE ANALYSES
467ASH-64
467ASH-64
467ASH-64
Rep1
Rep 2
Rep 3
10SEP15003S1A
10SEP15003S1A
10SEP15003S1A
0,
0.
1.
.75
.44
.06
0.73
0.62
0.54
0.46
0.50
0.46
1.71
1.88
1.87
6.39
5.78
5.63
12.63
11.85
11.72
4.92
7.81
7.79
8.83
9.79
10.69
RSD%
41%
15%
5%
5%
7%
4%
24%
10%
Page 1
-------
ASHTABULA RIVER PILOT PROJECT (CF #467)
GRAIN SIZE ANALYSIS
PERCENT OF TOTAL MASS
9/29/93
MSLCode
467ASH-64
467ASH-64
467ASH-64
Rep 1
Rep 2
Rep 3
Sponsor ID
10SEP15003S1A
10SEP15003S1A
10SEP15003S1A
23.0-
31.2 urn
12.09
12.58
12.39
15.6-
23.0 y.m
11.91
10.22
9.83
7.8-
15.6 fim
21.99
19.14
19.61
3.9-
7.8 \i.m
2.84
3.41
3.69
1.9-
3.9 \s.m
2.61
3.97
4.77
0.976-
1.9 tim 0.
6.64
6.63
5.23
0.488-
,976 urn <0.488 urn
3.56
3.72
2.61
1.96
1.67
2.10
Salt Blank
(g)
0.0021
0.0019
0.0020
REPLICATE ANALYSES
467ASH-64
467ASH-64
467ASH-64
Rep1
Rep 2
Rep 3
10SEP15003S1A
10SEP15003S1A
10SEP15003S1A
12.09
12.58
12.39
11.91
10.22
9.83
21.99
19.14
19.61
2.84
3.41
3.69
2.61
3.97
4.77
6.64
6.63
5.23
3.56
3.72
2.61
1.96
1.67
2.10
0.0021
0.0019
0.0020
RSD%
2%
10%
8%
13%
29%
13%
18%
11%
5%
NOTE: All results are in percent.
RSD% = Relative Standard Deviation.
* = Outside QC criteria range (±20%).
Page 2
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
METALS IN SEDIMENT SAMPLES
5/2/93
Blank-5A
(concentrations in
MSLCode
467ASH-504
467ASH-504
467ASH-504
Rep Sponsor ID
23SEP0800CARB'M
23SEP0800CARB'M
23SEP0800CARB'M
As
XRF
4.27
NA
NA
Cd
GFAA
0.15
0.14
0.15
Cr
XRF
25.2
NA
NA
Hg
CVAA
2.405
2.216
2.688
Pb
XRF
2.20
NA
NA
Zn
XRF
14.0
NA
NA
NA
0.02 U
NA
0.003 U
NA
NA
STANDARD REFERENCE MATERIAL
NBS 1646-9 Estuarine Sediment
certified value
range
BEST-1 - 5 Marine Sediment
certified value
range
NA
0.38
NA
0.076
NA
NA
11.6
±1.3
NA
NA
NA
0.36
±0.07
NA
NA
NA
76
±3
NA
NA
NA
0.063
±0.012
0.092
0.092
±0.009
28.2
±1.8
NA
NA
NA
138
±6
NA
NA
NA
REPLICATE ANALYSES
467ASH-504
467ASH-504
467ASH-504
23SEP0800CARB'M
23SEP0800CARB'M
23SEP0800CARB'M
RSD%
4.27
NA
NA
NA
0.15
0.14
0.15
4%
25.2
NA
NA
NA
2.405
2.216
2.688
10%
2.20
NA
NA
NA
14.0
NA
NA
NA
U = Below detection limit.
NA = Not applicable.
RSD% = Relative Standard Deviation.
Page 1
-------
ASHTABULA PILOT PROJECT (CF #467ASH)
OIL AND GREASE IN SEDIMENT SAMPLES
5/4/93
MSLCode
467ASH-498 Rep 1
467ASH-498 Rep 2
467ASH-498 Rep 3
467ASH-499
467ASH-500
467ASH-501
Rlank
Sponsor ID
23SEP0800CARBT
23SEP0800CARBT
23SEP0800CARBT
23SEP0800CARBM
23SEP0800CARBB
23SEPCARBV
Oil & Grease
(u.g/g)
3380
5080
4430
711
1220
409 U
(grams)
0.0008
MATRIX SPIKE RESULTS
Amount Spiked
467ASH-498 #
467ASH-498 + Spike
Amount Recovered
Percent Recovery
Amount Spiked
467ASH-498 #
467ASH-498 + Spike
Amount Recovered
Percent Recovery
23SEP0800CARBT
23SEP0800CARBT
DUPLICATE
2700
4300
7490
3190
118%
2700
4300
4450
150
6%
REPLICATE ANALYSES
467ASH-498 Rep 1
467ASH-498 Rep 2
467ASH-498 Rep 3
23SEP0800CARBT
23SEP0800CARBT
23SEP0800CARBT
RSD%
3383
5076
4434
20%
U = Detected below detection limit.
* = Outside QA criteria range (70-130%).
# = Mean of replicate samples.
RSD% = Relative Standard Deviation.
Page 1
-------
ASHTABULA RIVER PILOT PROJECT
DISSOLVED ANALYTES
9/29/93
MSL Code
573DISS-1
573DISS-1
573DISS-1
Rep
Rep1
Rep 2
Rep 3
Sponsor ID
COMPOSITE *
COMPOSITE *
COMPOSITE *
Dissolved
Organic
Carbon (mq/L)
565
586
588
Total
Dissolved
Solids (mg/L)
3724
3688
3656
Oil and
Grease (mg/L)
12 U
14
12 U
(concentrations in
As
17.4
15.6
16.8
Cd
12.5
12.9
12.9
Cr
12.3
13.2
13.3
Hq
205
189
194
H9/L)
Pb
0.107
0.0507
0.0848
Zn
445
450
457
Blank
0.42
44
12 U
0.630 0.0218 0.252 0.000002 0.0441
0.690
MATRIX SPIKE RESULTS
Amount Spiked
573DISS-1 #
573DISS-1 + Spike
Amount Recovered
Percent Recovery
Amount Spiked
573DISS-1 #
573DISS-1 + Spike
Amount Recovered
Percent Recovery
DUPLICATE
RPD %
500
565
1090
525
1 05%
500
565
1130
565
113%
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS "
NS
NS
NS
NS
NS "
NS
NS
NS
NS
24.6
16.6
38.4
21.8
89%
24.6
16.6
39.6
23.0
93%
24.6
12.8
37.3
24.5
1 00%
24.6
12.8
37.1
24.3
99%
24.6
12.9
36.5
23.6
96%
24.6
12.9
37.5
24.6
1 00%
476 24.6
196 0.0808
740 24.0
544 23.9
114% 97%
476 24.6
196 0.0808
766 24.1
570 24.0
120% 98%
7%
NA
NA
5%
1%
4%
5%
0%
24.6
451
475
24.3
99%
24.6
451
470
19.3
79%
23% @
Page 1
-------
ASHTABULA RIVER PILOT PROJECT
DISSOLVED ANALYTES
9/29/93
MSLCode Rep Sponsor ID
Dissolved Total
Organic Dissolved
Carbon (mg/L) Solids (mg/L)
Oil and
Grease (mg/L)
As
(concentrations in |ig/L)
Cd
Cr
Pb
Zn
REPLICATE ANALYSES
573DISS-1
573DISS-1
573DISS-1
Rep1
Rep 2
Rep 3
COMPOSITE *
COMPOSITE *
COMPOSITE *
565
586
588
3724
3688
3656
12 U
14
12 U
17.4
15.6
16.8
12.5
12.9
12.9
12.3
13.2
13.3
205
189
194
0.107
0.0507
0.0848
445
450
457
RSD%
2%
1%
NA
6%
2%
4%
4% 35% @
1%
* = Sample is a composite of Sponsor ID 18SEP15007L3A and 18SEP15008L3A.
** = Insufficient volume for spike.
# = Mean of replicated sample for metals only.
@= Outside QC criteria range (±20%).
U = Below detection limit.
NS = Not spiked.
NA = Not applicable.
Page 2
-------
APPENDIX C
GENERIC EQUATIONS AND SAMPLE CALCULATIONS
-------
GENERIC EQUATIONS AND SAMPLE CALCULATIONS
1. Generic Equations
a. Adjustment of Measured Stream Weights to Dry Weight Basis
Solid Samples:
Ibs sediment x lbs dryfolids x 0.454 £ - kg dry solids
Ibs sediment ID
Liquid Samples:
lbs liquid x 0^4_fc x mg_spUds xl*±=mg dry solids
lbs L kg
b. Material Balance Calculations: Determination of Chemical Constituent Concentrations
Solid Streams:
, ... 1,000 g g constituent -<*;***
kg solids x x ^ = g constituent
kg g solids
Liquid Streams:
kg liquids x ML x g constituent __ g
kg L
C-l
-------
2. Sample Calculations for Run 2C
a. Adjustment of Measured Stream Weights to Dry Weight Basis
Mass of Input:
1740 B. x (0.422 0.*, Mfcfc) x (a454Jg) . ^
Mass of Output/Treated Sediment:
*n /AC v t^Jbdry solids. ,0.454 to. , . .
515 Ibs x ( - -^ - ) x ( - - £) = 234 kg dry solids
HAJ lfj
Mass of Output/Cyclones la and Ib:
44 Z/xc v ^0.79 Ib dry solids^ ,0.454 kg^ t. Q ,
44 *°s x c 77- - ) x ( ;r~~^) = 15-8
Mass of Output/Cyclones 2a and 2b:
97 fl. x () x ( . 42 ,
/to Ib
Mass of Solids in Liquids:
Condensers 1 and 3 ("Aqueous Condensate"):
682 fl. Uquid x (0.0^8 » M* ^ 0454^ _ 2 ,
/i> fo^wirf /6
Condenser 2 ("Organic Condensate"):
243 0. IK,M x (0.0021 x (a454Jg . ^
C-2
-------
(b) Material Balance on Arsenic
Mass of Arsenic Input:
(333,000 g solids) x (2U x 1Q*gAs) = 7.16 g As
g solids
Mass of Arsenic Output:
Treated Sediment:
'yy s v io~6 o A?
(234,000 g solids) x (M x " * **) = 5.27 g As
g SO/ttfc
Cyclone 1:
(15,800 g roftfe) x (34.7 x 10 g As^ = Q55 g
g solids
Cyclone 2:
(42,700 g solids) x (23.1 x 10"* j? ^ = Q ^ g
g solids
Condensers 1 and 3:
(682 /fa) x (
-------
3. Sample Carbon Adsorption Calculation (PCBs)
a. Basis of Calculations
(1) Samples were taken at the top, middle, and bottom of the carbon bed
(at - 2', 4', and 5' down from the surface of the carbon).
(2) Concentration was considered uniform over the cross section where the
sample was taken, and was normally considered to vary linearly between measurements.
(3) There were 1400 Ibs of carbon in the 5' deep bed.
(4) Total PCBs for 2' sample (after 10 days): 4,660 ug PCB/g carbon
(5) Total PCBs for 4' sample (after 10 days): 2,380 ug PCB/g carbon
(6) Total PCBs for 5' sample (after 10 days): 2,276 ug PCB/g carbon
(7) Virgin carbon (blank) - no PCBs detected
b. Assumptions
(1) The top 2' of the carbon column has a PCB concentration equal to the sample
taken at 2'.
(2) The bottom 3' feet of the carbon column has a PCB concentration equal to
the average of the samples taken at 4' and 5'.
c. Calculations
(4660xlO-» g PCB x ft x 454* x 2 _
g carbon Ib 5
x 454, x 3 .
g carbon Ib 5
TOTAL = 1.1848 + 0.8878 = 2.0726 g PCBs captured by carbon.
From previous calculation, 0.9298 g PCBs were captured by condensers. Therefore,
the percent of removed PCBs that was captured by carbon is:
2'0726 x 100 =69%
(2.0726+0.9298)
C-4
-------
4. Sample Air Emission Calculations for Mercury
a. Sampling Train for Mercury was Set-up as follows:
F i I t e r
Probe (1A'
Fraction
1
Emp
k
mp i n g e r s
1
ty 2
t c ,
*
3
B 2C Emp
^ r i \ * n o mm
4
5
ty 3A 3
J
b. Sampling/Results Were Reported as Follows:
(1) Fraction IB = material collected on the filter (did not analyze probe 1A).
(2) Fraction 2B = material collected in impinger 2 ( 1 is empty, impinger 3 was
not analyzed).
(3) Fraction 3A = material collected in impinger 5 (4 is empty).
(4) Fraction 3B = material collected in impinger 6.
c. Example Calculation for Run 1A
Sample duration: 120 min
Flow rate: 338 dscf/min
Avg ug/sample:
IB = 0.00016
2B=None detected
3A=None detected
3B=None detected
Mercury collected equals:
0.00016 ug sample min
X '' x\
sample 120 minutes 338 dscf 0.028 dscm
C-5
dscm
U.S. GOVERNMENT PRINTING OFFICE: 1994-548-818
------- |