*«
United States
Environmental Protection
Agency
Office of
Water Program Operations,
Washington, DC 20460
EPA/430/9-83-004
June 1983
Water
v>EPA Construction Costs for
Municipal Wastewater
Treatment Plants:
1973-1982
-------
TECHNICAL REPORT
CONSTRUCTION COSTS FOR
WASTEWATER TREATMENT PLANTS: 1973-1982
JUNE 1983
Prepared for
U.S. Environmental Protection Agency
Priority and Needs Assessment Branch
Facility Requirements Division
Washington, D. C. 20460
Project Officer: Dr. Wen H. Huang
Contract No. 68-01-4798
U.S. E'-^r^nrrt-l Promotion Agency
Region V, Library ,
230 South Dearborn Street ^^
Chicago, Illinois 60604. --iT
-------
l!;S. Environmental Protection Agenc^
-------
ACKNOWLEDGEMENTS
This report was prepared by Sage Murphy & Associates, Inc., Denver, Colorado
under the direction of Dr. Wen H. Huang, Project Officer, Facility
Requirements Division, U.S. Environmental Protection Agency.
Sincere appreciation is extended to all Construction Grants Program
personnel in each of the ten EPA Regional offices and the offices of the
delegated States. Without their cooperation and assistance, this study
could not have been conducted.
Inquiries concerning this report should be directed to the following:
Dr. Wen H. Huang
Project Officer
Facility Requirements Division
Priority and Needs Assessment Branch
U.S. Environmental Protection Agency
401 M Street, S.W. (WH-595)
Washington, D.C. 20460
202 382-7288
-------
TABLE OF CONTENTS
Section Page
1.0 INTRODUCTION 1-1
2.0 COST INFORMATION COLLECTION AND ANALYSIS TECHNIQUES 2-1
2.1 DATA COLLECTION 2-1
2.2 PREPROCESSING OF THE DATA 2-2
2.3 DESCRIPTION OF THE DATA BASE 2-3
2.4 DATA ANALYSIS 2-6
2.5 RELIABILITY 2-10
3.0 RESULTS OF THE DATA ANALYSIS 3-1
3.1 NONCONSTRUCTION COSTS 3-2
3.1.1 Introduction 3-2
3.1.2 Definitions of Nonconstruction Costs 3-2
3.1.3 Presentation of Nonconstruction Cost Curves 3-4
3.2 FIRST ORDER COSTS 3-15
3.2.1 Introduction 3-15
3.2.2 Definitions of Terms 3-15
3.2.3 Presentation of First Order Cost Curves 3-18
3.2.3.1 Results - Mechanical Plants by Level of
Treatment 3-19
3.2.3.2 Results - Mechanical Plants by Level of
Treatment and Main Treatment Process .... 3-43
3.2.3.2 Results - Lagoon Plants 3-86
3.3 SECOND ORDER COSTS 3-95
3.3.1 Introduction 3-95
3.3.2 Definition of Terms 3-95
3.3.3 Presentation of Second Order Cost Curves 3-96
3.3.3.1 Results - Unit Processes and Unit
Operations 3-96
3.3.3.2 Results - Mechanical Plant Component
Costs 3-137
3.3.3.3 Results - Lagoon Plant Component Costs .. 3-153
3.4 THIRD ORDER COSTS 3-158
3.4.1 Introduction 3-158
3.4.2 Presentation of Third Order Cost Equations 3-158
-------
TABLE OF CONTENTS (Concluded)
Section Page
3.5 EFFICIENCY CURVES 3-162
3.5.1 Introduction 3-162
3.5.2 Presentation of Efficiency Curves 3-162
4.0 SIMPLIFIED TREATMENT PLANT COST ESTIMATING 4-1
4.1 COST ESTIMATING TECHNIQUES 4-1
4.2 ADJUSTING AND UPDATING COST ESTIMATES 4-2
4.3 COST ESTIMATING EXAMPLES 4-4
4.3.1 Example No. 1 4-4
4.3.2 Example No. 2 4-5
4.3.3 Example No. 3 4-7
4.4 SUMMARY 4-8
APPENDIX A - Cost Updating and Normalization Techniques
APPENDIX B - Description of the Data Base
-------
LIST OF TABLES
Table
2.1
2.2
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
4.1
4.2
4.3
4.4
A.I
A. 2
B.I
Distribution of Wastewater Treatment Plant Projects by
Projected Flow and Level of Treatment
Distribution of Wastewater Treatment Plant Projects by
Treatment Process
Nonconstruction Cost as a Proportion of Construction Cost -
Nonconstruction Cost/Construction Cost Averages for EPA
Regions and the Nation
Summary for Figures 3.1 through 3.7 - Nonconstruction Cost
Curves
Summary for Figures 3.8 through 3.27 - First Order Cost
Curves - Mechanical Plants Classified by Level of Treatment.
Summary for Figures 3.28 through 3.64 - First Order Cost
Curves - Mechanical Plants Classified by Main Treatment
Process
Summary for Figures 3.65 through 3.70 - First Order Costs -
Lagoon PI ants
Summary for Figures 3.71 through 3.106 - Second Order
Costs - Unit Processes and Unit Operations
Summary for Figures 3.107 through 3.120 - Second Order
Costs - Mechanical Plant Component Costs
Summary for Figures 3.121 through 3.123 - Second Order
Costs - Lagoon PI ant Component Costs
Third Order Cost Equations
Summary for Figures 3.124 through 3.130 - Treatment
Efficiency Curves
Area Multipliers - Wastewater Treatment Plant Construction..
10 mgd New Secondary Treatment Plant - Boston, Massachusetts
10 mgd New AST Treatment Plant - Dallas, Texas
10 mgd Primary to Secondary Treatment Plant Upgrade - Los
Angeles, California
EPA Large City Advanced Treatment (LCAT) Indexes
EPA Small City Conventional Treatment (SCCT) Indexes
Wastewater Treatment Plant Projects in Data Base
Page
2-4
2-5
3-5
3-7
3-21
3-46
3-88
3-99
3-138
3-154
3-159
3-165
4-3
4-5
4-6
4-7
A-5
A-6
B-2
Hi
-------
LIST OF FIGURES
Figure
2.1
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
Types of Construction Bid Data
Nonconstruction Costs:
Nonconstruction Cost - Planning
Nonconstruction Cost - Design
Nonconstruction Cost - Administrative/Legal
Nonconstruction Cost - Architectural/Engineering Basic Fees .
Nonconstruction Cost - Other Architectural/Engineering Fees .
Nonconstruction Cost - Project Inspection
Nonconstruction Cost - Contingency
First Order Costs - Mechanical Plants by Level of Treatment:
New Mechanical Plant - Secondary Treatment - All Types of
Sludge Handling
New Mechanical Plant - Secondary Treatment - Simple Sludge
Hand! ing
New Mechanical Plant - Secondary Treatment - Moderate Sludge
Handling
New Mechanical Plant - Secondary Treatment - Complex Sludge
Hand! ing
New Mechanical Plant - Secondary Treatment with Phosphorus
Removal - All Types of Sludge Handling
New Mechanical Plant - Advanced Secondary Treatment - All
Types of Sludge Handling
New Mechanical Plant - Advanced Secondary Treatment - Simple
Sludge Handling
New Mechanical Plant - Advanced Secondary Treatment -
Moderate Sludge Handling
New Mechanical Plant - AST with Ammonia Removal - All Types
of Sludge Hand! ing
New Mechanical Plant - AST with Ammonia Removal - Moderate
Sludge Handling
New Mechanical Plant - AST with Ammonia Removal - Complex
Sludge Handling
New Mechanical Plant - AST with Phosphorus Removal - All
Types of SI udge Handl ing
New Mechanical Plant - AST with Ammonia and Phosphorus
Removal - All Types of Sludge Handling
New Mechanical Plant - Advanced Wastewater Treatment - All
Types of Sludge Handling
New Mechanical Plant - Advanced Wastewater Treatment -
Moderate Sludge Handling
New Mechanical Plant - Advanced Wastewater Treatment -
Complex Sludge Handling
New Mechanical Plant - AWT with Ammonia Removal - All Types
of Sludge Handling
New Mechanical Plant - AWT with Ammonia Removal - Moderate
Sludge Handling
Page
2-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
-------
Figure
LIST OF FIGURES (Continued)
Page
3.26 New Mechanical Plant - AWT with Phosphorus Removal - All
Types of Sludge Handling 3-41
3.27 New Mechanical Plant - AWT with Phosphorus Removal - Moderate
Sludge Handling 3-42
First Order Costs - Mechanical Plants by Main Treatment Process:
3.28 New Activated Sludge Plant (All Types) - Secondary Treatment
All Types of Sludge Handling 3-49
3.29 New Activated Sludge Plant (All Types) - Secondary Treatment
Moderate Sludge Handling 3-50
3.30 New Activated Sludge Plant (All Types) - Secondary Treatment
Complex Sludge Handling 3-51
3.31 New Activated Sludge Plant (All Types) - Secondary Treatment
with Phosphorus Removal - All Types of Sludge Handling 3-52
3.32 New Activated Sludge Plant (All Types) - Advanced Secondary
Treatment - All Types of Sludge Handling 3-53
3.33 New Activated Sludge Plant (All Types) - Advanced Secondary
Treatment - Simple Sludge Handling 3-54
3.34 New Activated Sludge Plant (All Types) - Advanced Secondary
Treatment - Moderate SIudge Handling 3-55
3.35 New Activated Sludge Plant (All Types) - Advanced Wastewater
Treatment - All Types of Sludge Handling 3-56
3.36 New Activated Sludge Plant (All Types) - Advanced Wastewater
Treatment - Moderate Sludge Handling 3-57
3.37 New Activated Sludge Plant (All Types) - AWT with Phosphorus
Removal - All Types of Sludge Handling 3-58
3.38 New Conventional Activated Sludge Plant - Secondary Treatment
Al 1 Types of SI udge Handl i ng 3-59
3.39 New Conventional Activated Sludge Plant - Secondary Treatment
Moderate SIudge Handli ng 3-60
3.40 New Conventional Activated Sludge Plant - Secondary Treatment
Complex Sludge Handling 3-61
3.41 New Conventional Activated Sludge Plant - Advanced Secondary
Treatment - All Types of Sludge Handling 3-62
3.42 New Conventional Activated Sludge Plant - Advanced Secondary
Treatment - Moderate Sludge Handling 3-63
3.43 New Conventional Activated Sludge Plant - Advanced Wastewater
Treatment - All Types of Sludge Handling 3-64
3.44 New Conventional Activated Sludge Plant - Advanced Wastewater
Treatment - Moderate Sludge Handling 3-65
3.45 New Conventional Activated Sludge Plant - Advanced Wastewater
Treatment - Complex SIudge Handling 3-66
3.46 New Contact Stabilization Plant - Advanced Secondary
Treatment - All Types of Sludge Handling 3-67
3.47 New Contact Stabilization Plant - Advanced Secondary
Treatment - Moderate Sludge Handling 3-68
3.48 New Extended Aeration Plant - Secondary Treatment - All Types
of Sludge Handling 3-69
-------
LIST OF FIGURES (Continued)
Figure Page
3.49 New Extended Aeration Plant - Secondary Treatment - Simple
Sludge Handling 3-70
3.50 New Extended Aeration Plant - Secondary Treatment - Moderate
Sludge Handling 3-71
3.51 New Extended Aeration Plant - Advanced Secondary Treatment -
All Types of Sludge Handling 3-72
3.52 New Extended Aeration Plant - Advanced Secondary Treatment -
Simple Sludge Handling 3-73
3.53 New Pure Oxygen Activated Sludge Plant - Secondary Treatment
All Types of Sludge Handling 3-74
3.54 New Pure Oxygen Activated Sludge Plant - Secondary Treatment
Complex Sludge Handling 3-75
3.55 New Oxidation Ditch Plant - Secondary Treatment - All Types
of Sludge Handling 3-76
3.56 New Oxidation Ditch Plant - Secondary Treatment - Simple
Sludge Handling 3-77
3.57 New Oxidation Ditch Plant - Secondary Treatment - Moderate
Sludge Handling 3-78
3.58 New Oxidation Ditch Plant - Advanced Secondary Treatment -
All Types of Sludge Handling 3-79
3.59 New Oxidation Ditch Plant - Advanced Secondary Treatment -
Simple Sludge Handling 3-80
3.60 New Oxidation Ditch Plant - Advanced Secondary Treatment -
Moderate Sludge Handling 3-81
3.61 New Oxidation Ditch Plant - Advanced Wastewater Treatment -
All Types of Sludge Handling 3-82
3.62 New Rotating Biological Contactor Plant - Secondary Treatment
All Types of Sludge Handling 3-83
3.63 New Rotating Biological Contactor Plant - Secondary Treatment
Complex Sludge Handling 3-84
3.64 New Rotating Biological Contactor Plant - Advanced Wastewater
Treatment - All Types of Sludge Handling 3-85
First Order Costs - Lagoon Plants:
3.65 New Stabilization Pond - Secondary Treatment - Discharge to
Surface Water 3-89
3.66 New Stabilization Pond - No Discharge 3-90
3.67 New Stabilization Pond - Discharge to Land Treatment 3-91
3.68 New Aerated Lagoon - Secondary Treatment - Discharge to
Surface Water 3-92
3.69 New Aerated Lagoon - Greater than Secondary Treatment -
Discharge to Surface Water 3-93
3.70 New Aerated Lagoon - Discharge to Land Treatment 3-94
Second Order Costs - Unit Processes and Unit Operation:
3.71 New Unit Operation - Influent Pumping 3-102
3.72 New Unit Operation - Bar Screening 3-103
3.73 New Unit Operation - Grit Removal 3-104
-------
LIST OF FIGURES (Continued)
Figure
74
75
76
3.77
78
79
80
81
82
83
84
,85
,86
,87
,88
,89
.90
.91
.92
.93
.94
.95
.96
.97
.98
.99
.100
.101
.102
.103
.104
3.105
3.106
New Unit Operation
New Unit Operation
New Unit Operation
New Unit Operation
New Unit Process -
New Unit Process -
New Unit Process -
New Unit Process -
New Unit Process -
New Unit Process -
New Unit Process -
New Unit Process -
New Unit Process -
New Unit Process -
New Unit Operation
New Unit Operation
New Unit Operation
New Unit Operation
New Unit Process -
New Unit Process -
New Unit Operation
New Unit Operation
New Unit Operation
New Unit Operation
New Unit Process -
New Unit Process -
New Unit Operation
New Unit Operation
New Unit Operation
New Unit Operation
New Construction -
New Unit Operation
Water
New Unit Operation
3.
3.
3.
3.
107
108
109
110
3.111
3.112
3.113
,114
,115
- Comminution
- Preliminary Treatment
- Flow Equalization
- Primary Sedimentation
Trickling Filter
Conventional Activated Sludge
Contact Stabilization
Extended Aeration
Activated Sludge (All Types)
Separate Stage Biological Nitrification
Oxi dati on Di tch
Rotating Biological Contactor
Stabilization Pond
Aerated Lagoon.
- Secondary Microscreening
- Sand Filtration
- Mixed Media Filtration
- Filtration (All Types)
Chemical Additions
Chlorination for Disinfection
- Land Treatment of Secondary Effluent .
- Post Aeration
- Effluent Outfall Pumping
- Effluent Outfall Diffuser
Aerobic Digestion
Anaerobic Digestion
- Sludge Drying
- Mechanical Sludge Dewatering
- Gravity Thickening
- Land Application of Liquid Sludge
Control/Laboratory/Maintenance Bui 1ding
- Effluent Outfall to Nonocean Surface
- Effluent Outfall to Ocean
Second Order Costs - Mechanical Plant Component Costs:
Mechanical
Mechanical
Excavation
Mechanical
Mechanical
Mechanical
Plant Component Cost
Plant Component Cost
Mobilization
Sitework Including
3.116
Plant Component
Plant Component
Plant Component
Foundations, Dewatering ..
Mechanical Plant Component
Mechanical Plant Component
Instrumentation
Mechanical Plant Component
Mechanical Plant Component
Mechanical Plant Component
Cost - Sitework Without Excavation
Cost - Excavation
Cost - Pilings, Special
Cost - Electrical ..
Cost - Controls and
Cost - All Piping
Cost - Yard Piping ...
Cost - Process Piping
3-104
3-105
3-106
3-107
3-108
3-109
3-110
3-111
3-112
3-113
3-114
3-115
3-116
3-117
3-118
3-119
3-120
3-121
3-122
3-123
3-124
3-125
3-126
3-127
3-128
3-129
3-130
3-131
3-132
3-133
3-134
3-135
3-136
3-139
3-140
3-141
3-142
3-143
3-144
3-145
3-146
3-147
3-148
-------
LIST OF FIGURES (Continued)
Figure Page
3.117 Mechanical Plant Component Cost - Equipment 3-149
3.118 Mechanical Plant Component Cost - Concrete 3-150
3.119 Mechanical Plant Component Cost - Steel 3-151
3.120 Mechanical Plant Component Cost - Heating, Ventilation, and
Air Conditioning 3-152
Second Order Costs - Lagoon Plant Component Costs:
3.121 Lagoon Component Cost - Mobilization 3-155
3.122 Lagoon Component Cost - Sitework Without Excavation 3-156
3.123 Lagoon Component Cost - Excavation 3-157
Treatment Efficiency Curves:
3.124 All Mechanical Plants - All Types of Sludge Handling - By
Eff 1 uent BOD, 3-166
3.125 All ActivateB Sludge Plants - All Types of Sludge Handling -
By Effluent BOD5 3-167
3.126 Conventional Activated Sludge Plants - All Types of Sludge
Handling - By Effluent BOD5 3-168
3.127 Contact Stabilization Plants - All Types of Sludge Handling -
By Ef f 1 uent BOD,- 3-169
3.128 Extended Aeration Plants - All Types of Sludge Handling - By
Ef f 1 uent BOD, 3-170
3.129 Oxidation Ditch Plants - All Types of Sludge Handling - By
Effluent BOD, 3-171
3.130 Rotating Biological Contactor Plants - All Types of Sludge
Handling - By Effluent BOD, 3-172
3.131 Mechanical Treatment Plants - All Types of Sludge Handling -
Effluent BOD, = 30 mg/1 3-173
3.132 Mechanical Treatment Plants - All Types of Sludge Handling -
Effluent BOD, = 15 mg/1 3-174
3.133 Mechanical Treatment Plants - All Types of Sludge Handling -
Effluent BOD5 = 5 mg/1 3-175
A.I EPA Municipal Construction Cost Index Map for Large City
Advanced Treatment (LCAT) Plant Indexes A-2
A.2 EPA Municipal Construction Cost Index Map for Small City
Conventional Treatment (SCCT) Plant Indexes A-3
v~m
-------
1.0 INTRODUCTION
This report presents the results of a study of the costs for construction of
municipally owned wastewater treatment facilities. The cost data utilized
in this study were extracted from winning bid documents of projects built
with funds provided by the Construction Grants Program of the Environmental
Protection Agency (EPA). Only facilities funded under the Federal Water
Pollution Control Act (PL 92-500) and its amended versions are a part of
this study. All data were obtained directly from the Construction Grants
Program files at either EPA Regional offices or the offices of States which
have been delegated grant program responsibilities.
The EPA has previously published two reports which were prepared using the
same types and sources of data and addressed the same subject matter. The
reports were entitled "Construction Costs for Municipal Wastewater Treatment
Plants: 1973-1977," MCD-37 and "Construction Costs for Municipal Wastewater
Treatment Plants: 1973-1978," FRD-11. This report incorporates the
majority of the information used in preparing MCD-37 and FRD-11 plus
information from an additional 848 facilities. It is believed that an
increased accuracy is evident in this report when compared with its
predecessors. Readers are encouraged to replace their copies of MCD-37 and
FRD-11 with this report and use it for reference.
The data base used to prepare this report contains information from 1,585
individual treatment plant construction projects. Included are a wide
variety of treatment schemes from simple lagoon systems to complex
mechanical plants.
Data are included on 822 construction projects for new plants. Also
represented are several types of plant modification projects including 111
enlargements, 107 upgrades, 460 enlarge and upgrades, 73 replacements, and
12 classified as other modifications.
These 1,585 projects represent approximately $11.3 billion of grant eligible
expenditures adjusted to third quarter 1982 dollars. It is estimated this
represents approximately $8.5 billion of Federal grant funds. The projects
1-1
-------
used in this study account for over 30 percent of the treatment projects
which have gone to the construction stage (Step 3) since the inception of
the Construction Grants Program.
This study, therefore, is certainly the most complete empirical analysis of
construction costs developed to date for municipally owned wastewater
treatment plants. It can be used, applying engineering judgment, for
preliminary estimation of construction costs for individual unit processes
or for complete treatment facilities. The reader is cautioned, however,
that this report and the costs shown should not be used as a substitute for
normal engineering estimating procedures.
The results herein represent national averages calculated using normalized
costs. Local conditions must be taken into account because they can
drastically affect the costs of construction.
This report discusses the method used to collect and analyze the data, after
which the results are presented. Descriptions of usage of the cost curves,
along with examples, are part of the main body of the report. Procedures to
estimate costs for future years and to adjust costs to various sections of
the country are also presented. Included as appendices are an explanation
of the cost normalization procedures utilized and a listing of all treatment
plant construction projects contained in the data base.
1-2
-------
2.0 COST INFORMATION COLLECTION AND ANALYSIS TECHNIQUES
2.1 DATA COLLECTION
Project cost and design data were collected from Construction Grants Program
files of active construction projects. The files were reviewed at either
EPA Regional offices or State offices which have been delegated Construction
Grants Program responsibilities. Information was extracted from the files
and recorded on specially designed forms using an alphanumeric coding
system.
Design information including unit process train descriptions, design level
of treatment, and design flow was obtained from the planning and design
files. All construction cost information was extracted from bid documents
submitted by the project contractor who was selected by means of competitive
bidding. All construction costs used in this study represent the as-bid
costs for a facility, which are not necessarily the same as the final
as-built costs. However, the difference between the as-bid and the as-built
cost of a facility is generally negligible except for projects which undergo
a significant change in scope during the construction phase. An effort was
made during data collection to exclude projects which were undergoing
significant design changes at the time the construction contract was being
bid upon.
Only project costs deemed eligible for funding by the Construction Grants
Program were collected for this study. Eligibility was determined by EPA
and State program personnel based on grant program policy in effect at the
time of the grant award. Consequently, some project costs which a
municipality is likely to incur are not reflected in the study results. An
example of a cost which is commonly excluded from funding eligibility is the
cost of land acquisition for the site of a treatment facility.
2-1
-------
2.2 PREPROCESSING OF THE DATA
Prior to actual analysis, the data passed through several steps to assure
quality and consistency. Three manipulations were performed: quality
assurance, cost updating and normalization, and project classification.
Three quality assurance checks were performed on the data. First, each
completed data collection form was reviewed for completeness and technical
content. Then the information from the collection forms was keypunched and
entered into an ADP file. After keypunching, a computer edit check was
performed which screened each record for unacceptable code entries, such as
an alpha character in a numeric field. The computer edit also checked the
correctness of all mathematical calculations which had been performed by
data collectors in the field. After all new data passed the edits, the file
was merged into the master data base which was used for subsequent analysis.
A final quality assurance check occurred as an initial step of the analysis
process and is explained below.
After completion of the master data base, the next step was updating and
normalizing all cost items. The master data base contains several types of
cost items including planning costs (Step 1), design costs (Step 2), and
construction costs (Step 3). These cost items were collected from projects
located in all areas of the country from 1973 to 1982. Before performing
any analysis, all cost items were made comparable to reflect a common time
and place. All cost items in the data base were updated from their original
time frame to the third quarter of 1982. The updating made use of the EPA
Large City Advanced Treatment (LCAT) and Small City Conventional Treatment
(SCCT) wastewater facility construction cost indexes. Also during the
updating process, all costs were normalized (adjusted) to a common
geographical place, the Kansas City/St. Joseph, Missouri area. This area
was chosen because it forms the base for the EPA cost indexes. Therefore,
all dollar values reported in this study represent third quarter 1982,
Kansas City/St. Joseph, Missouri dollars. A more detailed description of
the updating and normalizing procedure is contained in Appendix A of this
report.
2-2
-------
The last step in the data preprocessing was project classification and
validation. All projects in the master data base were classified by type of
treatment scheme, type of modification, design level of treatment, and
design flow. This resulted in identification of 123 separate classes.
Within each class, the data were run in a simple regression mode to identify
outliers. The outliers were then checked for validity of content. In cases
where quality assurance was lacking because of errors in the data collection
form completion or the keypunching steps, the data were eliminated. The
remainder were retained as quality data points.
By performing all three preprocessing steps, it was assured that only
consistent, good quality data were used in the analysis.
2.3 DESCRIPTION OF THE DATA BASE
The data base contains information obtained from 1,585 individual wastewater
treatment facility construction projects from the 48 contiguous States.
These projects represent a variety of treatment schemes, design flows, and
types of modifications. It was noted in Section 1.0 that 822 projects
involved the construction of entirely new plants, 111 projects were
enlargements of existing facilities, 107 projects were upgrades of existing
facilities, 460 were enlargements and upgrades of existing facilities, 73
were facility replacement projects, and 12 were classified as "other."
Enlargement is defined as increasing the design flow of a facility while
retaining the same level of treatment. Upgrade is defined as an increase in
the design treatment efficiency of a facility while retaining the original
flow capacity.
A detailed description of the data base contents is presented in Tables 2.1
and 2.2. In addition, Appendix B of the report lists all projects in the
data base by State, EPA grant number, design flow, treatment level, and type
of modification.
Table 2.1 presents a distribution of the projects used in this report by
projected flow and level of treatment. It can be seen from Table 2.1 that
902 of the projects, or 57 percent of the total, were for plants with design
2-3
-------
TABLE 2.1
DISTRIBUTION OF WASTEWATER TREATMENT PLANT PROJECTS
BY PROJECTED FLOW AND LEVEL OF TREATMENT
<
1.00
MOD
Projected
Level of Treatment*
Alabama
Arizona
Arkansas
Cal ifornia
Colorado
Connecticut
Delaware
Florida
Georgia
Idaho
11 1 inois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada
New Hampshire
Hew Jersey
New Mexico
New York
North Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota
Tennessee
Texas
Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming
A_
0
0
0
4
0
0
0
0
0
2
0
0
1
6
0
1
0
0
0
2
0
0
0
1
8
6
2
0
0
0
0
4
0
16
0
1
0
0
7
0
0
4
1
1
6
0
1
0
B
11
8
6
37
4
1
0
0
4
9
14
11
17
33
4
16
7
9
3
21
15
12
32
10
23
2
6
0
5
16
7
35
11
22
13
15
2
0
6
5
19
3
13
12
19
6
13
4
C
0
3
6
12
0
0
1
1
2
1
2
2
4
2
2
1
0
4
0
0
2
3
2
0
0
0
2
0
1
4
1
0
4
14
7
13
0
1
0
4
22
0
4
3
2
3
14
0
D
0
0
6
2
1
0
1
1
0
0
18
31
2
0
5
1
0
2
0
1
8
1
2
0
0
0
0
1
0
11
1
0
9
0
7
5
0
0
1
4
6
2
0
2
0
3
4
0
Subtotal
11
11
18
55
5
1
2
2
6
12
34
44
24
41
11
19
7
15
3
24
25
16
36
11
31
8
10
1
6
31
9
39
24
52
27
34
2
1
14
13
47
9
18
18
27
12
32
4
TOTALS
74 541 149 138
902
1
.00-5.00 MOD
Projected
Level of Treatment*
A_
0
0
0
3
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
B
2
4
3
28
6
2
0
3
4
4
2
4
6
9
5
5
2
2
2
7
4
0
6
5
9
2
4
4
5
10
7
2
5
4
4
15
1
1
4
3
10
2
1
5
15
4
4
1
C
3
1
4
7
1
0
1
1
5
1
9
1
1
2
11
1
0
2
2
1
2
1
3
0
0
0
0
3
2
2
2
1
2
6
2
8
1
0
0
2
10
0
1
3
1
0
3
2
D_
0
0
2
3
3
0
0
2
4
0
14
12
1
0
3
0
1
2
1
2
4
0
1
0
0
0
0
0
1
4
2
0
7
1
3
5
0
0
1
0
1
2
0
0
0
1
7
0
Subtotal
5
5
9
41
10
2
1
8
13
5
25
17
8
11
19
e
3
6
5
10
10
1
10
5
9
2
4
7
9
16
11
3
14
11
9
28
2
1
5
5
21
5
2
8
16
5
14
3
7 237 111 90
445
5.01-10
A
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
Q
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Level
B
0
0
0
9
1
2
0
0
1
2
0
1
0
1
0
0
1
0
2
1
0
0
2
0
2
0
0
3
2
1
0
1
0
0
1
2
0
0
0
0
2
1
0
3
2
1
0
2
.00
MGD
Projected
of Treatment*
C
0
0
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
1
0
0
0
0
1
2
0
3
0
0
0
1
2
1
0
1
0
0
0
0
0
0
0
1
5
0
0
0
1
1
0
3
0
1
0
0
0
0
0
1
1
1
0
0
0
0
0
0
1
0
0
2
0
3
0
1
4
0
0
0
1
2
0
0
0
0
0
2
0
Subtotal
0
0
2
16
2
2
0
1
2
2
4
1
1
1
0
0
1
0
3
2
2
0
2
0
3
0
0
5
2
1
2
1
4
2
2
9
0
0
0
2
6
2
0
4
2
1
2
2
1 46 18 31
96
>10.
00 MGtl
Projected
Level of Treatment*
R
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
B_
0
2
1
12
2
0
0
1
0
1
3
0
2
0
1
0
0
1
2
1
2
0
3
1
1
0
2
8
0
3
0
0
3
1
1
2
0
1
0
1
0
0
0
3
3
0
6
0
C
0
0
1
1
0
0
0
2
1
0
1
2
0
0
0
0
0
1
0
0
2
1
0
0
0
1
0
0
0
0
1
0
1
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0_
0
0
1
9
0
1
0
4
0
0
8
1
0
0
0
1
0
0
1
2
2
0
0
0
0
0
0
2
0
1
2
0
5
0
1
0
0
0
0
1
6
1
0
4
0
0
1
0
Subtotal
0
2
3
23
2
1
0
7
1
1
12
3
2
0
1
1
0
2
3
3
6
1
3
1
1
1
2
10
0
4
3
0
9
1
4
2
0
1
0
2
6
1
0
7
3
0
7
0
1 70 17 54
142
TOTAL
16
18
32
135
19
6
3
18
22
20
75
65
35
53
31
26
11
23
14
39
43
18
51
17
44
11
16
23
17
52
25
43
51
66
42
73
4
3
19
22
80
17
20
37
48
18
55
9
1,585
*Levels of Treatment: A - No Discharge
B - Secondary Treatment
C - Advanced Secondary Treatment
D - Advanced Wastewater Treatment
2-4
-------
TABLE 2.2
DISTRIBUTION OF WASTEWATER TREATMENT PLANT PROJECTS
BY TREATMENT PROCESS
Alabama
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
Florida
Georgia
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada
New Hampshire
New Jersey
New Mexico
New York
North Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota
Tennessee
Texas
Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming
TOTALS
Activated
Sludge
6
8
12
39
9
2
3
6
8
6
21
35
6
7
8
8
3
15
10
7
13
2
10
1
11
0
9
9
7
30
8
1
24
20
17
39
4
3
2
4
33
1
5
21
10
5
16
2
Rotating
Biological
Contactor
3
0
1
6
1
0
0
1
1
0
1
3
5
0
3
0
1
2
0
5
2
0
0
1
3
0
0
3
0
6
0
0
2
0
2
0
0
0
1
0
0
0
2
2
5
1
6
0
Oxidation
Ditch
0
3
5
8
0
0
0
0
0
1
0
4
0
12
6
7
0
0
0
0
1
0
25
6
5
0
1
0
1
1
2
0
2
5
0
0
0
0
1
5
33
2
1
1
9
7
0
0
Aerated
Lagoon
3
5
5
30
0
0
0
0
2
6
11
4
4
2
3
3
7
1
0
6
2
2
1
5
1
5
5
0
5
4
0
7
1
5
0
3
0
0
2
2
2
2
12
5
7
1
7
3
Stabilization
Pond
3
2
5
10
0
0
0
0
1
4
3
5
10
17
2
5
0
1
0
15
10
10
9
4
10
3
1
0
0
0
2
35
5
28
15
0
0
0
11
0
0
10
0
0
9
1
1
3
4
0
11
10
3
39
14
10
15
9
3
0
4
4
6
15
4
6
0
14
3
0
11
4
11
13
0
17
8
8
31
0
0
2
11
12
2
0
8
8
3
25
1
6
3
18
22
20
75
65
35
53
31
26
11
23
14
39
43
18
51
17
44
11
16
23
17
52
25
43
51
66
42
73
4
3
19
22
80
17
20
37
48
18
55
9
526
69
154
181
250
405
1,585
2-5
-------
flows less than 1.0 million gallons per day (mgd). Additionally, 894
projects, or 56 percent of the total, involved secondary treatment plants.
Table 2.2 summarizes the projects by major treatment process employed. It
can be seen that 526, or 33 percent of the projects, utilized an activated
sludge process as the main treatment process. Also, 405 projects, or 25
percent, involved "other" or undefined types of processes. It should be
noted that "other" includes facilities employing processes not listed on the
table, as well as facilities using more than one of the listed processes.
The most detailed information available for each project was collected. Up
to three levels of detail were available for some projects included in the
data base. The levels are referred to as first order, second order, and
third order costs. First order costs are the most general and the most
available of the three types. They represent the lump sum costs for an
entire treatment facility. Second order costs represent the lump sum costs
for each individual process, such as reactor basins or digesters, found
within a plant. Third order costs represent the lump sum cost for each of
the various components which go into a unit process, such as concrete,
equipment, or excavation. The availability of each level of detailed
information varied considerably by location, size, and type of project.
Figure 2.1 illustrates the relationship between the three levels of detail.
2.4 DATA ANALYSIS
Most data analysis for this study took the familiar form of using one
parameter as the sole predictor of a second parameter. The method employed
was bivariate analysis using linear regression to calculate an estimating
equation. Regression analysis is a well known statistical tool employed to
compute and evaluate an estimate of the proposed mathematical relationship
between or among variables. It entails a minimization procedure (method of
least squares) for estimating parameters. In this analysis, the
construction cost and the design flow were taken as the dependent variable Y
and the independent variable X, respectively. The Statistical Analysis
System (SAS), a statistical package program, was utilized to establish the
2-6
-------
TYPES OF CONSTRUCTION BID DATA
TOTAL PROJECT COST
FIRST
ORDER
DATA
ro
SECOND
ORDER
DATA
THIRD
ORDER
DATA
ONTINGENCY
INSPECTION
CONSTRUCTION
NONCONSTRUCTION ITEMS
UNIT
PROCESS
COST
UNIT
PROCESS
COST
PLANT
OMPONEN
COST
PLANT
OMPONEN
COST
PLANT
OMPONEN
COST
PROCESS
OMPONEN
COST
PROCESS
OMPONEN
COST
PROCESS
OMPONEN
COST
PROCESS
OMPONEN
COST
O
c
3)
m
-------
estimating equation. The Tektronix Graphic Computing System was used to
plot the resulting regression equations.
The data were analyzed for all types of plants, processes, and components at
all levels of detail that were available. However, if the estimating
equations did not possess a certain level of statistical validity, the
resulting curves were not reported herein.
The acceptance or rejection of the estimating equations was based largely on
the goodness of fit or strength of the linear relationship between variables
and on their significance as indicated by the calculated sample correlation
coefficient R and the F-value. The formulas and definitions of associated
terms to compute the statistics R and F are presented below:
V
R _. i SSFE
SSFE + RSS
F-Value = ,SSFE/K
r Vaiue RSS/(N - K - 1)
Where: SSFE = Sum of squares due to fitted equations.
RSS = Residual sum of squares.
N = Total number of points (sample size).
K = Degree of freedom due to regression.
N - K - 1 = Degree of freedom due to deviations.
The numerical value of R varies from zero (no relationship between the
variables) to ± 1 (completely linear relationship). The square of the
2
correlation coefficient, R , which is usually expressed in percent
(multiplied by 100), may be interpreted as the proportion of total
variability in the dependent variable Y that is explained by the independent
2
variable X. Thus, if R = ± 0.70 for a given relationship, it means that
the independent variable X explains 70 percent of variation in the dependent
variable Y. The F-value, on the other hand, represents the ratio of the
explained variance to the unexplained variance adjusted for the degrees of
freedom lost. F statistic tables describe the coefficients (F-values) that
may be expected to occur by chance among samples of uncorrelated data. A
2-8
-------
regression equation may be considered significant at a specified confidence
level if calculated F-values, adjusted to degrees of freedom lost for a
given sample size or data points, exceed the tabulated F coefficients.
The T-values are also used to measure the fit of the regression line by
testing, in turn, the coefficient of each variable to see if, with
statistical significance, each can be assumed to be nonzero. If the
coefficient of a variable is nonzero, then that particular variable should
be a contributing part of the equation. The standard form of the T-test is
used and there is significant evidence that the coefficient is considered
nonzero if the absolute value of the T-value obtained is greater than some
critical T-value.
Bivariate data analyses were conducted for construction and associated costs
of wastewater treatment plants to provide the following levels of cost
information:
1. Nonconstruction Costs* - Total Step 3 nonconstruction costs, as
well as Step 1 and Step 2 planning and engineering costs.
2. First Order - Total plant construction costs.
3. Second Order - Unit process construction costs and total plant
construction component costs.
4. Third Order - Unit process component costs.
*Note: Nonconstruction costs were not included in the first, second,
or third order relationships, but were analyzed separately as
discussed in Section 3.1. These must be added to the other
costs as a separate item to arrive at a total project cost.
As mentioned earlier, an estimating equation had to possess a certain level
of statistical validity to be included in the results of this study. For
this study, an estimating equation was considered statistically valid if it
had an R2 > 0.50 and an F-value that exceeded the critical F-value for the
0.01 level of significance. For equations based on first order costs, the
o
R value in all cases exceeded 0.65.
2-9
-------
After the bivariate analyses were completed, several of the data items were
compared using a multivariate analysis. The multivariate analysis involved
three variables compared in much the same manner as the bivariate linear
regression technique to determine if a statistically significant
relationship existed among the three variables. The multivariate analyses
were conducted with plant design flow, denoted as Q, and projected effluent
BOD5, denoted as E, as the independent variables and, again, construction
cost as the dependent variable. This was done for seven classes, and in all
cases, it showed that plant design flow was a major contributing factor in
the model; in all cases probability of <0.0001 (T-value > absolute value of
T-value obtained).
2.5 RELIABILITY
A sensitivity analysis of the parameters used in preparing these estimating
equations for wastewater facilities construction has not been attempted
because it was outside the scope of this project. However, general comments
on the degree of reliability are in order. The reliability or the accuracy
of cost estimates vary with the intended use. As found in the article,
"Estimating Accuracy of Your Estimated Costs," published by Consulting
Engineer (Vol. 38, No. 2, 1972), five types of estimates are listed with the
following probable accuracies:
1. Order of magnitude ± 40%
2. Study ± 25%
3. Preliminary ± 12%
4. Definitive ± 6%
5. Detailed ± 3%
The degree of accuracy intended in the cost estimates presented herein is of
the study type, i.e., within a probable accuracy of 25 percent. Estimates
using cost curves certainly are far less accurate than definitive or
detailed estimates, but do provide a means for comparing, on a relative
basis, various alternatives without a complete design of each alternative.
An exponential function vjhich plots as a straight line on log-log graph
2-10
-------
paper was assumed for all costs. This is within the accuracy for the
intended use of the cost curves. It is agreed that this assumption
introduces errors, especially at the lower and upper ends of the curves.
The errors arise because the slope of the estimating equation, which is a
constant, is calculated to provide the curve of best fit for the majority of
the data.
Two distinct types of plant cost estimating approaches are recognized. The
first type may be termed the "theoretical" approach. It combines design
quantities and current unit costs, such as the cost of steel or concrete, to
estimate what a plant should cost before construction. The second, or
"empirical" approach, develops cost relationships based on what similar
plants have cost in the past. This study presents costs relationships
developed in an empirical manner.
The theoretical approach has the potential of better defining a specific
treatment facility since detailed design parameters and unit prices are
input. While this explicit, detailed input infers that resultant cost
estimates are correspondingly accurate, it should be realized that several
important variables are sometimes not quantified by theoretical systems. As
presented in "An Analysis of Construction Cost Experience For Wastewater
Treatment Plants," (MCD-22) published by EPA, the following are among those
i terns:
1. Competition in the contractor and supplier marketplaces.
2. Unpredictable variations in local material and labor costs.
3. Timeliness of construction.
4. Variations in conventional engineering, design, and construction
practices.
5. Design requirements imposed by regulatory agencies.
6. Degree to which cost is considered in design and construction
phases.
7. Variations in site conditions.
2-11
-------
The effect of such variables on cost can usually be quantified only after a
construction contract is signed. The empirical system, while not defining
the effects of these subjective factors individually, does testify to their
cumulative effect on final construction costs. Obviously, each project is
unique and the cumulative effects of the above listed factors vary from
facility to facility. Because of this variation, cost analysis must utilize
average conditions for these subjective parameters.
Using past construction cost information to predict future costs by an
empirical approach hinges on the ability to place each sample treatment
plant in a precise category of similar plants. This classification can be
by design flow, unit processes employed, level of treatment, location, or
any combination thereof. There must also be sufficient data to define
average cost relationships for particular classifications.
Therefore, when using the estimating equations from this report, the reader
must be mindful that the equations represent national averages calculated
from information on many projects. There are several important variables,
such as site acquisition or unusual site conditions, which must be
considered that can cause an individual project's cost to differ drastically
from the average value calculated using the estimating equation.
In addition, when using any of the estimating equations, the sample size (N)
used in calculating the equation should be considered. An equation based on
a large sample, N > 30, is more reliable and will provide a better
approximation of the costs than an equation based on a small sample, e.g., N
= 3. This is true even though both equations are statistically valid and
? 2
exhibit the same R . The F-test tests the reliability even if R is the
same for samples of different sizes.
In order to obtain a consistent scale for all data sets, the policy was set
for this report that all curves were to be graphed for a range from 0.01 to
10.0 mgd. Since the actual data points for the regression curves vary from
class to class (in Figure 3.51, the range is 0.05 to 0.40 mgd), the reader
should be warned that interpreting the curve outside the range where the
data points occurred (denoted on the graphs as Data Range) has the potential
2-12
-------
of giving unreliable interpretations. Similarly, for values substantially
outside the data range, considerable judgment must be used in
interpretation. The reader is, in all cases, asked to refer to the data
range. This is where the fit of the equation has been obtained and where
the interpretation is most meaningful. For those graphs where data points
occurred beyond the 10.0 mgd value, the graphs are inadequate for
representing these situations. However, there are few data points involved.
The 0.01 to 10.0 mgd range was chosen as the standard scale because it is
the range which contains most of the plant design flow values for facilities
in the data base. Some facilities are built with mgd values incapable of
being far from this range. Extended aeration facilities, for example, are
not generally built in situations where the average daily flow will exceed
0.50 mgd.
2
In general, large sample sizes and high values of R and F imply
statistically sound correlations. Another indication of the closeness of
fit to the model can be inferred from the scatter in the data points used to
calculate an equation. As the amount of scatter among the actual data
points increases, the accuracy of the estimating equation decreases. To
provide an indication of data scatter, each graph includes a set of dashed
lines which have been referred to in this report as the standard residual
error (SRE).
The standard error of the estimate, or the standard residual error, is
defined as:
Where: RSS = Residual sum of squares.
N = Total number of points (sample size).
SRE squared is an unbiased estimate for 0 squared, the variance of the
residual variables. SRE has a major use in obtaining confidence intervals
for various parameters and variables of the regression equation. Although
2-13
-------
this was not done here, it was desired to give the reader a feel for the
fact that the actual cost values need not lie on the actual regression line
(it represents only the average costs), but would fall in some interval
about that line. The interval cost ± SRE has, therefore, been plotted to
indicate an interval in which the costs have a likelihood of being found.
Again, let it be stressed that this is not a confidence interval, but serves
only as reinforcement for the fact that the costs are within some interval
about the line and not necessarily on the line.
2-14
-------
3.0 RESULTS OF THE DATA ANALYSIS
The results of all statistically valid relationships discernible from the
existing data base are presented in this section. The results are presented
in the following order:
Section 3.1.3
Section 3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
Section 3.3.3
3.3.3.1
3.3.3.2
Section 3.4.2
Section 3.5.2
Presentation of Nonconstruction Cost Curves
Presentation of First Order Cost Curves
Results - Mechanical Plants by Level of Treatment
Results - Mechanical Plants by Level of Treatment
and Main Treatment Process
Results - Lagoon Plants
Presentation of Second Order Cost Curves
Results - Unit Processes and Unit Operations
Results - Mechanical Plant Component Costs
Results - Lagoon Plant Component Costs
Presentation of Third Order Cost Equations
Presentation of Efficiency Cost Curves
Each section contains an introduction, definition of terms, and the results
as a series of cost curves. Noted on the cost curves are the equation of
p
the curve, the sample size, the values of the R and F statistics, the SRE,
and the data range.
Examples for using these curves are presented in Section 4.0 of this report.
3-1
-------
3.1 NONCONSTRUCTION COSTS
3.1.1 Introduction
Associated with all construction projects are expenditures for items other
than actual construction items. These other cost items are termed
nonconstruction costs. Nonconstruction costs are incurred throughout the
life of a construction project, beginning with the initial planning phase
and continuing until a facility is in operation. A construction project is
usually accomplished in three distinct phases; initial planning, detailed
design, and actual construction. In the terminology of the Construction
Grants Program, these three phases are referred to as Step 1, Step 2, and
Step 3, respectively. There are nonconstruction costs associated with each
step which must be added to the construction cost to arrive at a total
project cost. This section describes the various nonconstruction costs
usually incurred in the course of a project and provides an estimate of
their contribution to the total project cost.
3.1.2 Definitions of Nonconstruction Costs
Nonconstruction costs are defined as those monies spent during the course of
a construction project which are not paid directly to the building
contractor but which must be borne by the owner. They are considered to be
part of the total project cost. The nonconstruction costs can be further
broken down into the following categories:
Planning Costs (Step 1). These are costs incurred during the
preliminary engineering analysis phase. This phase includes problem
identification, alternative selection, cost effective analysis, and
preliminary plant design.
Design Costs (Step 2). These are costs for the preparation of
detailed plans and specifications for the project.
t Administrative/Legal Costs. Included are costs incurred by the owner
in the administration of a construction project. Some examples are
attorney fees for preparing contracts, costs for publishing bid
advertisements and legal notices, and the cost of preparing requests
for proposals.
3-2
-------
t Preliminary Costs. This category includes costs incurred by the
owner prior to any financial award for which he is later reimbursed
by the awarding agency.
Right-Of-Way Costs. This category includes legal and administrative
expenses necessary for securing rights-of-way and sites for a
project.
A/E Basic Fees. This category includes fees paid by the owner to
architectural/engineering (A/E) firms for consultation and assistance
during project construction. Examples are preparation and review of
bid documents and change orders, construction management, and final
inspection of all completed construction.
Other A/E Fees. These include the costs for special services
provided to the owner by an A/E firm during project construction.
Included are soil investigations, preparation of additional documents
such as operation and maintenance manuals, and facility startup
services.
Project Inspection Costs. These costs are paid by the. owner to
provide a full time resident engineer on the construction site to
inspect all work and to keep a project log.
t Land Development Costs. Included are costs for preparing a project
site for a purpose other than the construction of a treatment
facility. An example is the cost for providing public recreational
facilities at the site of a treatment plant.
t Relocation Expense Costs. The administrative and legal expenses an
owner incurs in relocating individuals or businesses affected by a
construction project.
t Relocation Payment Costs. Payments made to individuals or businesses
forced to relocate due to a construction project.
Demolition and Removal Costs. The costs for demolishing and removing
existing structures at a project site.
Bond Interest Costs. This covers the interest charges paid by the
owner on bonds issued to finance payments during construction.
Contingency Costs. This is an amount set aside at the start of a
project to provide for unexpected expenses during construction.
Indirect Costs. These are costs for goods or services provided by
one department of an owner's organization to another department. An
example is a payment made to a city highway department by a city
public works department.
Equipment Costs. These are costs for the purchase or leasing of
equipment or materials necessary for the construction or maintenance
of a facility which are obtained separately from the construction
3-3
-------
phase. An example is the advance purchase of process equipment which
requires a long lead time before delivery.
Miscellaneous Costs. Included are any costs not covered in the other
nonconstruction cost categories. Two examples are special laboratory
equipment purchases and monitoring wells installed at a project site.
Land costs, where land is an integral part of the treatment process,
are included in this category. Other land costs, such as acquisition
of a treatment plant site, are ineligible and are not included in
this or any of the categories above.
3.1.3 Presentation of Nonconstruction Cost Curves
Table 3.1 presents the average ratios of all nonconstruction cost categories
to construction costs for all projects in the data base. Average ratios
were calculated for each EPA Region, as well as for the entire nation.
Individual project ratios were calculated by dividing the nonconstruction
dollar value by the construction dollar value. The Regional and national
average ratios for each category were calculated by dividing the sum of all
individual project ratios by the number of projects.
Seventeen nonconstruction cost categories are identified in Table 3.1. By
checking the sample size for each category, it can be seen that only seven
of these nonconstruction cost categories are common to the majority of
projects: planning, design, administration/legal, A/E basic fees, other A/E
fees, project inspection, and contingencies. These seven categories equal
approximately 32 percent of the construction costs as a national average.
The other ten categories are much less frequent in their occurrence and are
very project-specific. It is suggested that the reader only consider the
seven most common nonconstruction costs when preparing an estimate with the
information in this report. The information on the other ten categories is
presented in order to make the reader aware that site-specific requirements
can greatly affect the cost of a project.
Figures 3.1 through 3.7 present the relationship between construction costs
and each of the seven most common nonconstruction costs previously
mentioned. The independent variable for each curve is the construction cost
in dollars. The dependent variable for each curve is the nonconstruction
cost in dollars. All costs are in third quarter 1982 Kansas City/St.
Joseph, Missouri dollars.
3-4
-------
TABLE 3.1
NONCONSTRUCTION COST AS A PROPORTION OF CONSTRUCTION COST
NONCONSTRUCTION COST/CONSTRUCTION COST
AVERAGES FOR EPA REGIONS AND THE NATION
Nonconstruction
Cost Categories
Planning (Step 1)
Design (Step 2)
Administration/Legal
Prel iminary
Right-of-Way
A/E Basic Fees
Other A/E Fees
Project Inspection
Land Development
CO
i Relocation Expenses
en
Relocation Payments
Demolition & Removal
Bond Interest
Contingencies
Indirect Costs
Equipment
Miscellaneous
TOTAL REGIONAL
NCC AVERAGES
Reg. 01
0.030
0.078
0.012
0.036
0.025
0.073
0.028
0.067
0.016
---
0.022
0.062
---
0.014
0.016
0.479
Reg. 02
0.041
0.098
0.018
0.015
0.042
0.059
0.044
0.063
---
---
0.017
0.070
0.010
0.006
0.027
0.510
Reg. 03
0.028
0.057
0.023
0.004
0.018
0.107
0.037
0.046
0.010
0.003
0.085
0.056
0.055
0.003
0.018
0.033
0.583
Reg. 04
0.052
0.058
0.008
0.012
0.020
0.051
0.020
0.031
0.006
0.020
0.014
0.013
0.073
---
0.032
0.018
0.428
Reg. 05
0.035
0.057
0.007
0.006
0.029
0.065
0.038
0.040
0.008
0.003
0.005
---
---
0.034
0.017
0.011
0.010
0.365
Reg. 06
0.034
0.063
0.006
0.003
0.035
0.030
0.015
0.029
0.108
0.011
0.044
0.050
---
0.008
0.033
0.469
Reg. 07
0.042
0.072
0.009
0.006
0.032
0.040
0.018
0.044
0.046
0.048
---
0.056
---
0.030
0.018
0.461
Reg. 08
0.043
0.141
0.010
0.011
0.035
0.057
0.027
0.062
0.042
0.005
---
0.029
0.056
---
0.017
0.021
0.556
Reg. 09
0.043
0.081
0.010
0.011
0.084
0.084
0.042
0.055
0.003
0.008
-
---
0.069
0.012
0.026
0.011
0.539
Reg. 10
0.056
0.088
0.011
0.024
0.037
0.047
0.025
0.059
0.011
0.046
---
0.038
0.040
0.038
0.520
National
(Sample
0.041
0.076
0.012
0.015
0.032
0.063
0.030
0.046
0.020
0.009
0.027
0.032
0.041
0.054
0.013
0.020
0.023
0.554
Ratios
Size)
( 866)
( 866)
(1,995)
( 145)
( 188)
(2,058)
(1,293)
(1,213)
( 6)
( 17)
( 5)
( 7)
( 36)
(2,283)
( 44)
( 219)
( 439)
-------
Table 3.2 contains a summary of Figures 3.1 through 3.7 with associated
titles and cost equations.
3-6
-------
TABLE 3.2
SUMMARY FOR FIGURES 3.1 THROUGH 3.7
NONCONSTRUCTION COST CURVES
Figure
Number Title Cost Equation*
3.1 Planning NCC = (5.77 x lO'^C0'79
3.2 Design NCC = (3.45 x lO'^C0'88
3.3 Administrative/Legal NCC = (9.62 x 10"2)C°'80
3.4 Architectural/Engineering Basic Fees NCC = (1.26 x lO'^C0'93
3.5 Other Architectural/Engineering Fees NCC = (8.86 x 10"2)C°'89
3.6 Project Inspection NCC = (4.13 x lO'^C0'83
3.7 Contingency NCC = (6.56 x 10~2)C°'98
* NCC = Nonconstruction Cost
C = Construction Cost
3-7
-------
NONCONSTRUCTION COST
PLANNING
10 ^
CO
i
CO
O
c
3)
m
CO
O
O
2 S
t- <
O -i
cr O
i- o
co ^
z
o
o
z
o
10
.
NC
" O
: R2
Co
$;
.."'
^^
^*
*'*
- = (
Samp
- n
nst.
n,oc
^
x
EQ
5.7
STfl
)le
60
Cos
10 -
X
^
^_
^
UA
7
TI
Si
t
9
P
X"
r
TI
X
ST
ze
3a
5,
r'
^
ON
10
1C
F
ta
17
^
^
-1
S
8(
R<
o,(
'
*
^
^
^
^
)C
56
1
jr
)C
*
0 79 -
310 _
yc . -
0
^^
_^
^x""
^^
4
^"'
,*''
r
*,*
jf
^**
+
^^
^
^
X
""
_rf
^
«
«
. _
^
^~
j
^
^S^
>
*''
-1^^
*^
^"
*"*
^
*'
^*'<
-^
*^'
^
^
^
(- ''
,
'
*
105
10° 10'
CONSTRUCTION COST
(DOLLARS)
10
-------
NONCONSTRUCTION COST
DESIGN
oo
to
O
c
33
m
CO
CO
O
o
O -i
i o
t- Q
CO '-'
z
o
o
Z
O
z
1U =
106t
105
inS
3
ID "!
- NCC
= R2 -
K
- Cons
_ $21
^
- (3
\ J
S
Samp
0.8
t. C
,000
^.x
' ^
'''
EQUATIO^
.45 x 1C
TATISTIC
le Size
5 F
DSt Data
- $96,1
^
*S
'*
^
^
r
.'
"^
S
- 8
Ra
70,
^
^
r
cc
66
5,
"9
00
»
.00
494 3
e:
0 ,
,^^
(^"
t*'
_^*
f>
,'4
4
~
>
t
*
u
»
J
^
^'
9*~
S*
^^
^
»
S
^4
T
{.
*
x-
x
r
^
^
»*
^ ;
,
105
iou
CONSTRUCTION COST
(DOLLARS)
10
-------
NONCONSTRUCTION COST
ADMINISTRATIVE/LEGAL
O
c
3
m
CO
CO
CO
O
O
O
z
o
o
z.
o
O
107=l
«
fi
105
io4-
10
NCC
2
R
Pnn
$2
x""
= 0
(
Samp
= 0.
St.
1,00
'--y*
.X
**-
EQl
3.6;
5TA1
le <
38
:osj
D -
X
M^M^
X
JATION
\ ^ IO"2
risiics
size - 1
)
5
c(
9<
F - 1
t Data Ram
$229,584,1
.'
^
p
^
.
*
*
X
»
*
).80
35
,235 =
ge:
300
^
*'
"*
-r*
^'
F5!
^
7s
^
^
.-
X
r
^
*
'"
^
^-
^**
^^~
r-
LJ
-^
e_
X
x'
^*
2
x-
10
CONSTRUCTION COST
(DOLLARS]
ioc
-------
NONCONSTRUCTION COST
ARCHITECTURAL/ENGINEERING BASIC FEES
CO
I
Q
C
J3
m
CO
O
O
~z. f~^
I Z
i- <
O -1
CO
z.
O
O
O
Q
n'a
If) '
i
in5-
4
1U J
M ^^"""
£ E
L NIT '1
Sar
: R
Consl
I $21
^'
r''
f
x"
S
ST
nple
0.62
t. Cc
,000
k x-"
^
rH
QUATION
26 x 10
ATISTIC
Size =
F
st Data
- $229,
-y
^
*
s
^
-
-i
2,
R
58
i
058
3,4
ange
4,00
T
*
*
/
93
35
0
s*
,'"
^
9
*
z:
*
>*
^
+
,--"'
^r
^''
''
ts"
«
s'
^»
'
r^
*
^
r*
**
s
r
4
A
4
105
10° 10'
CONSTRUCTION COST
(DOLLARS)
10
-------
NONCONSTRUCTION COST
OTHER ARCHITECTURAL/ENGINEERING FEES
CO
I
O
C
3D
m
CO
en
CO
O
O
z '~>
1 s
I- <
O -J
C/3
Z
O
o
o
D
10
NCC =
: R2 =
- Const
. $37.
.x-'
^^
^/r
r
.'"
E
- (8.
ST
iple
0.53
:. Co
000
--&*
QUA
86
ATI
Siz
st
^x
fl
X
TION
x 10
STIC
F
Data
ppo '
f
yg
4
.'
X
-2
L,
R
?5
^
^
293
1,4
ange
2,00
^
^
f
89
c; f", ....
n
-^*-
X
^^*
*'~
^
^^
^
*'
*»
^
.
^
«
. .*=;
*P
,
^
f
j
^
^x-1
r-
.X*"
^x*"
^'
x
x^
X
,' ''
^'
f
10
10U 10'
CONSTRUCTION COST
[DOLLARS)
10C
-------
NONCONSTRUCTION COST
PROJECT INSPECTION
CO
I"
CO
O
C
jD
rn
CO
en
10' -
M
106-
CO I
O
O
2 £
i- < 5
0 -i 107
z> '
DC O
1- Q
O
O
z.
0 4
2 10 =
in3
MM
Ml
~~ NCC
2
\ i
. = (
Samp
n
Const.
_ $34,00
,'''
^^~
*'
*
^
_+^
^
EQ
4.1
STA
le
70
Cos
0 -
^f
X*
JAT
3 >
in
Sl2
1 1
$
^
flf
1C
, ]
;T]
:e
Dai
13'
*"
x-
,'
l I
)N
.0
[C
F
ta
1,
^
x
-1)
S
1,
Ra
482
f»
^
i*"
^
/
C
2
2
n
5
*
^
0.83
13 -
804
ae: _
y-
000
jX^
4
s*^
,+**
^^
^
^
''
X
r*"
t
S
'
^
-
^
'
^
p
<
-
^
^x^
r^
.""'
*"'
"T*-
'"
""
p**
jX
,^
^
-3
*
*
*t
'
t *
^
10
10° 10'
CONSTRUCTION COST
(DOLLARS)
10C
-------
NONCONSTRUCTION COST
CONTINGENCY
10'
Tl
O
C
33
m
CO
CO
O
o
H- <
O -I
CO
z.
o
o
2
O
10
" NCC
o
I R2 =
- Cons
_ $21
,-''
^ ff
f*~
.x*'
/ /-
- (t>
s
ampl
0.8
t. C
,000
X
x"
EQU)
.56
TAT
5 S
4
ost
_
>
V
x^1
X
VTI
X
[ST
ize
Da
522
^
jx1
X*
o^
10
1C
F
ta
9,
^
x^
X
"'
S
'
[
5!
f
^
p-
?)C°
^,28
12,
^ang
34,0
^
^
.98
~
313
3 ,
30
./'
^^^"
^
^
_^>
X
x
*
X
i
.x1
^
X
^
X
,*
^
/
x
^
^^r~
~ ^^
f ^~
x^
^
^
^
^*
FX~"
X
X
^
X*
^
"*
>
''
10U
CONSTRUCTION COST
(DOLLARS]
10'
-------
3.2 FIRST ORDER COSTS
3.2.1 Introduction
First order costs are the sum of monies paid by the owner to contractors and
suppliers for all labor and materials necessary to construct the entire
planned treatment facility. As noted in Section 2.0, all construction costs
used to prepare this report were the as-bid costs which were usually very
close to, but not necessarily exactly the same as, the as-built costs.
Also, first order costs only represent construction expenditures and do not
include any allowance for nonconstruction costs.
All first order cost curves presented in this report are for the
construction of entirely new treatment facilities. Also contained in the
data base are many projects involving other types of plant modifications
such as enlargements, upgrades, and replacements. Due to the greater
variations in technical considerations and costs associated with such
projects, no cost curves could be produced at a level of statistical
confidence great enough for inclusion as first order curves.
3.2.2 Definitions of Terms
Construction Cost. The sum of monies paid by the owner to
contractors and suppliers for all labor and materials necessary to
construct the planned facility. The construction cost, expressed in
millions of dollars, is the dependent variable in all cost
relationships presented in this section.
0 Design Flow. The design flow is the hydraulic capacity for which a
treatment plant is designed. It is based on the total daily average
dry weather flow rate expected from domestic, commercial, and
industrial sources. The design flow is the ideal flow at which a
facility will operate. It represents the norm and accounts for
fluctuations such as peak and low flows. The design flow represents
the average daily flow, not monthly or yearly averages which will
vary due to wet weather conditions or intermittent industrial flows.
The design flow, expressed in mgd, is the independent variable in all
cost relationships presented in this section.
Treatment Levels. All facilities are classified in terms of the
treatment level they are designed to achieve. Three basic treatment
levels are identified; secondary, advanced secondary, and advanced
wastewater treatment. The treatment levels are defined in terms of
3-15
-------
the five day biochemical oxygen demand (BOD,,) of the plant effluent
on a monthly average basis. No other parameters, such as effluent
suspended solids, are used in the treatment level classification.
- Secondary Treatment. A plant is considered a secondary treatment
plant if it is designed to produce an effluent with a BOD. no
greater than 30 milligrams per liter (mg/1). However, some States
have a more stringent definition of secondary treatment in which
the effluent may have a BOD5 value as low as 25 mg/1. Therefore,
a plant capable of producing an effluent with a 800. value in the
range of 25 to 30 mg/1 (inclusive) is placed in the secondary
treatment category. Many types of unit process trains are used in
plants which provide secondary treatment. The most common
processes are variations of the activated sludge process and
variations of the lagoon process.
- Advanced Secondary Treatment (AST). A plant is considered an
advanced secondary treatment plant if it is designed to produce an
effluent with a BODg in the range of 24 mg/1 to 11 mg/1. A
variety of unit process trains can be used to achieve advanced
secondary treatment. The most widely used processes are extended
aeration activated sludge, oxidation ditches, and rotating
biological contactors (RBC). To attain very stringent BODr
effluent values, many facilities will include chemical addition of
filtration processes to their treatment trains.
- Advanced Wastewater Treatment (AWT). A plant is considered an
advanced wastewater treatment plant if it is designed to produce
an effluent with a BOD,- less than or equal to 10 mg/1. Plants
designed to achieve an advanced wastewater treatment level utilize
complex unit process trains. Generally AWT plants use a
biological treatment process, such as activated sludge, followed
by chemical/physical processes to produce a high quality effluent.
Nutrient Removal. In addition to meeting BOD5 effluent values, some
plants must control the amount of nutrients in their effluent. This
control is achieved by the use of biological and chemical unit
processes. Nutrient control requirements are usually associated with
plants designed to achieve AST or AWT levels of treatment. However,
plants designed to achieve secondary treatment sometimes need to
control phosphorus, especially if they dispose of their effluent to
nutrient sensitive water bodies such as lakes.
- Ammonia Removal. A plant designed to produce an effluent with 5.0
mg/1 or less of ammonia nitrogen is considered to have ammonia
removal capabilities.
- Phosphorus Removal. A plant designed to produce an effluent with
3.0 mg/1 or less of total phosphorus is considered to have
phosphorus removal capabilities.
Mechanical System. A facility which utilizes energy intensive
treatment processes. Included are plants with activated sludge
processes, rotating biological contactors, trickling filters, and
3-16
-------
oxidation ditches. Excluded are facilities which utilize a lagoon
system, aerated or nonaerated, for their main treatment process.
0 Lagoon System. A facility which utilizes either a stabilization pond
or an aerated lagoon as the primary treatment process.
t Sludge Handling. The amount of sludge generated and the treatment
methods vary considerably from facility to facility. The amount of
sludge produced depends on the characteristics of the influent
wastewater and the unit process train utilized. The treatment
methods used depend on the characteristics of the sludge, the amount
of sludge generated, and the disposal methods available. The sludge
handling methods can vary from facility to facility even though
facilities may have similar design flows and treatment levels.
Expenditures for sludge handling are usually a large percentage of
the overall construction cost for a facility. In order to account
for the variations in sludge handling methods and the resultant
impact on the construction cost, all facilities have been classified
into three categories. The three general categories of sludge
handling are simple, moderate, and complex. These categories are
mutually exclusive. Included in each category are all costs for the
appropriate sludge handling and sludge treatment equipment. Disposal
costs are not included except for sludge disposal equipment which
includes sludge hauling vehicles, sludge pipelines, underground
injection equipment, pumps and equipment for spraying, and similar
i terns.
- Simple Sludge Handling. A facility is placed in this category if
the sludge generated is treated by air drying and disposed in a
landfill. The cost of the landfill is not included.
- Moderate Sludge Handling. A facility is placed in this category
if the sludge generated is treated by digestion, thickening, or
mechanical dewatering, as well as any of the treatments included
in the "simple" category.
- Complex Sludge Handling. A facility is placed in this category if
the sludge generated is treated by chemical stabilization, heat
treatment, or incineration, as well as any of the treatments
included in the "simple" and "moderate" categories.
0 Equation Block. Located on each graph is a block containing the cost
equation and the statistical test results for the relationship
displayed.
- Equation. This is the estimating equation which describes the
curve. The "C" term is the construction cost in million dollars
and the "Q" term is the design flow in mgd.
- Sample Size. This refers to the number of projects from the data
base used in the calculation of the equation.
3-17
-------
2
- R . This is the square of the correlation coefficient of the
equation. The statistical significance of R is explained in
Section 2.5.
- £. This is the F-value of the equation; the statistical
significance of which is explained in Section 2.4.
- T_. This is the T-value of the equation; the statistical
significance of which is explained in Section 2.4.
- Data Range. This is the actual range of basic data used to
calculate the equation.
3.2.3 Presentation of First Order Cost Curves
The results from the first order cost analyses are presented in three
sections as follows:
Section 3.2.3.1 - Results - Mechanical Plants by Level of Treatment
Figures 3.8 through 3.27
Section 3.2.3.2 - Results - Mechanical Plants by Level of Treatment
and Main Treatment Process
Figures 3.28 through 3.64
Section 3.2.3.3 - Results - Lagoon Plants
Figures 3.65 through 3.70
Each section presents the relationship between the design flow of a facility
and the construction cost. This relationship is presented for facilities
which have been classified by type of system, level of treatment, and, in
some cases, degree of sludge handling.
All cost relationships presented in the following sections represent
national averages. Methods for adjusting the national average cost to a
specific area of the country are outlined in Section 4.0. Examples of how
to use these cost curves to develop estimates are also presented. All
national average costs are in third quarter 1982 Kansas City/St. Joseph,
Missouri dollars.
3-18
-------
3.2.3.1 Results - Mechanical Plants by Level of Treatment
This section contains the results from the analyses of the first order cost
relationships between the design flow of a facility and its construction
cost. Prior to analysis, facilities were classified by level of treatment
and, wherever possible, by the type of sludge handling. Further, only
completely new mechanical plants with effluent disposal to nonocean surface
waters were included. No distinction was made with regard to the types of
unit processes utilized in the liquid line treatment train other than the
overall train must be representative of a mechanical plant.
Figures 3.8 through 3.27 contain the results obtained from these analyses.
The figures are ordered so that all results pertaining to a specific level
of treatment are grouped. Results for secondary treatment plants are shown
on Figures 3.8 through 3.12. Results for advanced secondary treatment
plants are shown on Figures 3.13 through 3.20. Results for advanced
wastewater treatment plants are shown on Figures 3.21 through 3.27.
Each figure contains several important items: title, x-axis label
(independent variable), y-axis label (dependent variable), cost equation,
equation statistics, regression line (solid line), and the SRE (dashed
lines). All these items should be taken into account by the reader.
The regression line and the cost equation derived from the line represent
the predicted construction cost for the particular type of facility
identified in the title. The cost derived using the line or equation is an
estimate for the construction of a complete operational wastewater facility.
The cost includes all processes from the headworks to the effluent outfall
line. The only additional costs that need to be considered are the various
nonconstruction costs.
For several types of plants, it was possible to obtain results which
differentiated plants by level of treatment, as well as the type of sludge
handling employed. It should be noted that the curves obtained for simple,
moderate, and complex sludge handling are all subsets of the curve developed
for all types of sludge handling. It is possible to see the effect sludge
3-19
-------
handling has on construction costs by referring to the results obtained for
secondary treatment plants (Figures 3.8, 3.9, 3.10, 3.11). Figure 3.8
contains the results obtained by including all secondary plants without
regard to the type of sludge handling. Figure 3.9 contains the results for
plants having simple sludge handling techniques. Figure 3.10 contains the
results for plants with moderate sludge handling and Figure 3.11 shows the
results for plants with complex sludge handling. The predicted costs for a
1.0 mgd plant for each curve are as follows:
Type of Cost for
Figure Sludge Handling 1.0 mgd Plant
3.8 All Types $2,490,000
3.9 Simple $1,680,000
3.10 Moderate $2,410,000
3.11 Complex $3,000,000
By comparing the results, it can be seen that sludge handling can almost
double the predicted construction cost ($1,680,000 vs. $3,000,000) for
plants with similar levels of treatment and design flows.
The results conform to the general principle that more stringent effluent
requirements, in terms of BODr and nutrient reduction, result in greater
construction costs. Therefore, AST plants cost more than secondary plants,
and AWT plants are the most costly of all.
Table 3.3 contains a summary of Figures 3.8 through 3.27 with associated
titles and cost equations.
3-20
-------
TABLE 3.3
SUMMARY FOR FIGURES 3.8 THROUGH 3.27
FIRST ORDER COST CURVES
MECHANICAL PLANTS CLASSIFIED BY LEVEL OF TREATMENT
Figure
Number _ Title _ _ Cost Equation*
3.8 Secondary Treatment - All Types of
Sludge Handling C - (2.49 x 10D)Qu'/':
3.9 Secondary Treatment - Simple Sludge fi n rr
Handling C = (1.68 x 10D)Qu'o::>
3.10 Secondary Treatment - Moderate Sludge K n KQ
Handling C = (2.41 x 10D)Qu'Dy
3.11 Secondary Treatment - Complex Sludge fi n 7,
Handling C = (3.00 x 10°)QU'/1
3.12 Secondary Treatment with Phosphorus
Removal - All Types of Sludge Handling C = (3.16 x 10D)QU'^
3.13 Advanced Secondary Treatment (AST) -
All Types of Sludge Handling C = (2.90 x 10°)Qu'/£-
3.14 AST - Simple Sludge Handling C = (1.98 x 106)Q°'57
3.15 AST - Moderate Sludge Handling C = (2.57 x 106)Q°'74
3.16 AST with Ammonia Removal - All Types
of Sludge Handling C = (3.44 x 10)Q
3.17 AST with Ammonia Removal - Moderate
Sludge Handling C = (3.01 x 10)Q
n 7Q
u'/y
n 7/1
U'/H
3.18 AST with Ammonia Removal - Complex
Sludge Handling C = (4.39 x 10D)QU'/U
3.19 AST with Phosphorus Removal - All e n 7-3
Types of Sludge Handling C = (3.75 x 10D)QU*/J
3.20 AST with Ammonia and Phosphorus Removal fi n R?
All Types of Sludge Handling C = (4.14 x 10 )Q
3.21 Advanced Wastewater Treatment (AWT) - fi n -,.
All Types of Sludge Handling C = (3.38 x 10 )Q'
* C = Construction Cost (million dollars)
Q = Plant Design Flow (mgd)
3-21
-------
TABLE 3.3 (Concluded)
Figure
Number Title Cost Equation
3.22 AWT - Moderate Sludge Handling C = (3.28 x 106)Q°'74
3.23 AWT - Complex Sludge Handling C = (3.74 x 106)Q°'85
3.24 AWT with Ammonia Removal - All Types of fi n no
Sludge Handling C = (4.59 x 10D)Qu'bJ
3.25 AWT with Ammonia Removal - Moderate fi n R?
Sludge Handling C = (4.74 x 10D)QU'^
3.26 AWT with Phosphorus Removal - All Types fi n RQ
of Sludge Handling C = (3.77 x 10D)Qu'°y
3.27 AWT with Phosphorus Removal - Moderate fi n Rfi
Sludge Handling C = (3.53 x 10D)QU'OD
3-22
-------
8'e aunou
CONSTRUCTION COST
(MILLIONS OF DOLLARS]
c
fc
0
'o
o "
r~
z
H
^ rn
a co
2g _
Tl
O
^
D
D
.1
4
p
«i
i \
& i \
i \ \
\ \
\
\
\
\
\
<
t
<
\
%
\
r
\
j . i
\
> \
i
0
\l \
V \
V-X
\ \
v '
\*
i
111, , 1
o
o
ro a
QJ
i <-+
Qi
CD ?0
. cu
CD 13
oia
n>
Q.
\
t
\
\
\
\
^
\
\
\
ro
ii
0
IO
II
H-
V
-p.
1
co
\
V
\ \
~ ' "
^ \
}
*
o
1 STATISTICS
F Sample Size = 145 =
i
y
V \
F ^
; L t
i \ \
fill \l
o
ii
m
-p> .0
^O d
X 1
1 1
i-1 O
CD "Z.
(Ti
!o
O
^1
I
i
8
>
I
r~
< m m
-8s
CO ^ ^
I S2o
m > :£
C H -
D "D &
O m >
m > '
J- S» (~~
> m >
§55
O
-------
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
b
^ a
S m
O co
a o
k 'v V
\\
N
X
\
>
i
\
\
\
\v
A
\ >
\
\
V
\
\
^
V
\
\
t
^
\
^
"\
\
\
k
<
k
\
V
>
k
N
\
s
s
\
V
\
\
>
s
t
>
Si
>
\
^
\
V
^
^
'
v
V
k
1
1
7
O
no o
a> c
OJ
ro
73
O CU
O 3
3 fD
to ..
Q_
C
c
S
\
^
\ \
\ \
, \ \
\ \ \
v \
v \
\\
\
N
\
J
3
rx>
1 GO
cu
-a
O '
00
_1.
N
n>
ii
i
CO
O
O
^
A
V
V
A
N
V
v^
1
-
3=>
i i
CO
1
O
\
\
\
N
V
Vl
K ^
"vl
V
1
c->
II
en
oo
X
I'
O
JO
c
c.
0
\
N
\
\
\
1
If
JC
3:
>
C
^
J
n
n
\!
\
k
IL
j
1
3
y
\
-t
D
»
\
V
i
i
I
|
m
O
a
O
D
0
n: m >
> > i-
-------
co
ro
tn
o
c
m
co
o
co
CO
oc
o o
ES
w O
§5
o -
1.0'
0.1
NEW MECHANICAL PLANT
SECONDARY TREATMENT
MODERATE SLUDGE HANDLING
[ C =
R2
t
X
= (2.
5
Samp
= 0.
[
0.02
X
X
v
X
t
EQUATIOr
41 * 10f
TAT 1ST I
le Size
88
)ata Ran
> - 7.60
/
X
y
'
,'
x
^
^i
>}
zs
F
ge
IT
,
/
X
Q0.6
76
= 52
igd
>'
f
f
:
'
'
t
3
x1^'
x" X'
^x x>
X
X
*
./^
yX
x'
X
7
'
X
'
,,
/
y
*
r
,/
^'
'
'
-
/
'
,
X
^>
X
X
I/
X
X
X
,,
X
x^
x'
d
X*
/
X
(
^
X
X
p
,^
0.01
0.1
1.0
PLANT DESIGN FLOW
CMGDD
10
-------
ire
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
^ o
g«
O O
^ z:
TI
r~
O
\
\
+fW
o
o
o
I>
f~) r~i
Cu
I t-t-
CU
o po
. Q,
O 3
ota
rt>
3
\
ro
00
S
STA
oo
cu
-a
ro
OO I-H
-j- oo
N I
fD ii
O
II OO
OO
o
;O
c:
>
CTl
»«^
Z5
O
O
r °
m O
m
IS?
o m >
O
-------
aanoid
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
CD
p
CD
"0
d
m
00
o
\ ^
t
\
\
\
\
V
N
\
*
v
\
"
^
^
\
"1
1 '
\ 1
H k .
\ \
<
t
\
j_
4
T "
1 4
*
i
\
* \
\ V
'A
r\\
V
A
<-
o>
o
i
c
fv
=
r
\
\
\
\
\
\
\
\
i
1
i
j
T C
O
«-
o
J
J X1
o
J -
J<£
n
\
\
S
\
?
J
+
)
i
T
)
>
\
\
i\
n
o
oo
o
-n
-p>
00
\
1
V
\
\
i \
*
\
I) 4
3
OO
fa
3
a
rt> I
00 1
_^> I-H
fD 1
i i
II O
OO
I1
y
\
L \
T\ v
T A \
! V1
i \
i i \
'
1
II
i» ^S
00
I1
X
1 >
0
c
^_^
r
i
m
cz
1 H
O
r> s:
3)
-j
i
jl
11
CO
rn
O
O
z.
a
-< m m
CO S ^
^ m m
2 z o
-n _i X
co < >
o i:
O~D **
-r r~
mo13
x co r-
Z I Z
O O H
Z C
O w
DO
m
-------
ere aunou
sz-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
"o
Tl
r~
>
- O
^ m
O co
o
:>
D
_L
i
O
'^
\
\
\
\
4
N
i
\
\
\
\
V
1
\
\
\
1
k^
\_ .
\
C L -
t
\ \
~ ~ \
[
i
T ii i
0
1
'
, X
1 \
r \
K\
\t Y
x \
\
\
»
o
o
00 O
OJ
CU
CT>
CD 0>
O 3
to
3 rt>
Q.
\
\
\
\
, \
1
\
\
\
\
\
1
\
o 8
1 1 1 III 1 ' ' ' " "
73
ro
II OO
o 3
T3 00
00 -H
^O fD J^
1
OO i i
-i. OO
-n o
II OO
u
01
-P> O
to
OO
\
\
\
\
i
L
\ >
\ \
I
i^ .
l_ll . .
,
'
y \^
1 \
\ \
' ^\ "^
\
.,L_\.
0
n
ro
to m
0 JO
cr
X J=
i ^ i i p
0 0
CM Z
o
ro
»
j
, i
i 1U
o
m
o
m
m m <
05 O ^
0 O m
^ z O
^ o x
co > >
m
O
>
CO
-------
6z-e
CONSTRUCTION COST
[MILLIONS OF DOLLARS]
o
O
m
r~
O
A \ \
\
\
\
\
\
V N
\s
'x S
\
\
-,-r\
V
\
X
V
A
\.
>
^
\
V
1 c+
fu
CO
70
O OJ
UD
IQ
\
V\
\ V
\ \ \
\ \ X
x,\ ^
\ \
v \
^ N
\
\
70
ro
II CO
&>
0 3
t3
to .
CO fD
CO
N
fD
-TI
II
II
IN3 CO
ro
vo
*
^
\ "
\
\
M,. 1
CO
1
3>
1
1 1
1
c~>
CO
\
\
\;
\ S
,.\
A
I
r
i
^~
i-
<
i-
r
JC.
\
y
\._
\
\
-4
>
^«
_»
D
J .
_i
1
cn
D
Ol
^J
s.
TI
v
N
m
i i
c:
3=>
i i
r- >
^
T
\
4
y.
u
4.
^
.
uJ
o
co m
05
m
r- z
c o
a >
o DO
m -<
> 33
§5
is
-------
gre aanou
ut-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
O
-D
(
>
o
m
~n
r~
O
\\
\\
N
N
>
\
\
\ ^
, \
S ^
\
~\
k
\
^
»u
\
\
^.
\
t
"^
\
\
N
\
k
*
\
^
_^_
\
\
V
s
^
I
s
t
>
V
s
\
1
0
CD
QJ a
QJ
1 r+
QJ
CTl
O OJ
to
"*" 3 (D
IO . .
a.
L- -
p\ -
\
\
L X.
\\
kv\ V
\ \
\ \
N
70
r-o
CO
II OJ
o -a
«D fD
i1
GO
M
ro
-n M
II CO
u>
CO
CTi
CO
N
x
^V \
\
\
\ S
N
S
\
CO
1
I>
CO
1 1
CO
I
\
'V "
\
S
I
c~
u
*~-
i\
0
1 .
X
t
c
j(2
I\
\
N
\*
\
i
>
^
3
1
1 Ji
1 <
' <
01
3
0
J
-P»
\
N,
N
~-
n
O
u
H
O
N^
\
\
I
^
\
>,
I
>
^
k
k
o
30
I m
m
Q
-------
NEW MECHANICAL PLANT
AST WITH AMMONIA REMOVAL
ALL TYPES OF SLUDGE HANDLING
100: :
00
I
oo
Tl
5
c
ID
m
CO
O)
o
h- u_
O O
03 O
2 j
O _i
O ^
10 r :
1.0'
0.1
0.01-
0.01
«
*
c
! R2
^
'*^r'
EQUATION
= (3.44 x 106)Q°-
STATISTICS
Sample Size = 19
= 0.96 F = 3
Data Range:
0.05 - 20.00 mgd
.< ^
^
<
X*
J^^
,"
-.'
iX
*'
B
*
*
*
*
jf
f«
79
99
^r-^
^jff'^ff
r_-''
^.'
,*
,»
^
x
^
*'
^
'
.
/
^'
.>
»
" " "f
-- ^
-^^-'
^ <*'
* '
-^ m*
_^~
**- -.
' ~S
*-'
^f
^
*
^^
^
[_-
X
X
,/
-
X
X
<
«<
, >
^
- -
0.1
1.0
10
PLANT DESIGN FLOW
CMGD)
-------
zre ganoid
ze-e
CONSTRUCTION COST
CMILLIONS OF DOLLARS)
O
m
o
o
O
:>
p
b
s
x
s:
\
o
CD
fu
OO
70
O fa
CD 3
UD
Q.
ro
II CO
o 3
to i
--J 0>
CO
«j.
N
rt>
II
1X3
OO
5
II
CO
o
00
o
CO
o
o
cr>
XD
O
~J
-P»
XD
cr
3=.
H1
O
5
\
m -^
CD ^
§0
m >
> m
m
-------
ee-e
ere aanou
CONSTRUCTION COST
(MILLIONS OF DOLLARS]
c
O 1
~D «
z
. .
^ m
0 w :" -
ijj _ o -
D D
^ Z
TI
0
D
.i.
V
1
\
j
_l
o
^ \
^ \
\ \
\ \
\ \ \
\ \
\ \ \
\ \
\ \
\ \
.. ,\ i
\
\
\
V
I
.
V
\
-V
\\
A
\ \
\
»
t
\
\
\
\
^
\
\
1
b
\
V
\
\
1
c
\
\
\
\
1
o
LD
o
no
o
o
r H
Q
Q.
\
\
\
\
!
<
O
O>
yo
&>
rs
\
\
\
\
\
\
[
_L
D
72
ro
II CO
o>
0 3
~o
co '
to o>
CO
1,
N
ft)
-n ii
II CO
to
>
\
,\
\\
\ \
\ \
\ \ \
\ \
\\
1
1
1
CO
3s
TISTIC5
\
\
\
^ \
c
X""
4
C
u
>
t-
c
^.
JC
1
->
1
-^
^
o
D
_i
D
-^
O
O
1
1
IT
JC
c
3:
t
C.
^L
1
3
3
^
H
>
9
C
c
D
D
S H m
?ss
m H ^
s*' -r ^*
^ -1- m
/rt ^ o
nil
C^ ~>
Sip
?|i
O i~
-------
ere aanoid
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
o
p
'o
o
O en
°. O
O
8
( !
ra»
\\
\
^
V
\
L\
\
N
\
Y
k
\
y
v
N
V
y
l
\
\
\
\
\
\
*
\ '
\
\
(
L
V
\\
'\N
\\
V
, ^ J
c
ro
cr
oc
c
a
=1
oa
Q
\
s
s >
\
A
1-4
"V1
\
1
c
Oi
O)
Ol
TS
la
(D
r~
\
\
\
\
\
\
j
\
\
..
73
r\.
u
o
to
~n
-P>
oo
N
(
\
\ ',
\
\ s
\
Hi
CO
o>
T3 CO
1
CO l I
N |
fD 11
O
II CO
\
k
^ . Y-
\ *
A\
* \ \
i V
4- \ V
"Y-T
itrrl
(
f
<
">.
j.
v~
T"*
"T
~>
u
s
Jj
-~J
X
i
~>
a
_-^
O
*^,
U
r
<
^
<
> :
j
j
h
-n
>
i
>
z
CO
-0 H ^
m i <
co -o ^
0 i m
?oo
^ co i
O C
m co
a o H
-------
se-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
o
8
o
m
co
0
O
1
\
'"\
\>
\
\
\
\
N
»
\
\
V
»
^
\
\
*\
>
\
\
\
\
i. I
\
f- 5
^
\
>
t
U I
'
\
V
\ V
\ x\
.,\
\\
N
fc
\
\
j i
I
o
00
1
1 '
o
0
3
OLJ
>
\
\
\
>
l[
^
\
I
d
OJ
<-t
CU
X.
QJ
tD
\
\
\
\
V
\
1 ii
70
f\
II
0
!£>
CO
II
CJ1
01
t " '
V
\
\
y
V
\
111 1
3
CO
CU
-o co
1
n> j=
CO i i
-J. CO
N )
o
01
s
i V
^ \
^ N
1 \
> \N
\
\ \
\ ^
A
A
. \.
1
c
^-
-1
h
^
>
V-
c
X
N
\
L
N
>>
_A
1
-)
1
.
£>
_l
p»
<
.^
)
cr
D
oc
rx.
^
k
I 1
m
j^>
cr
5
i
i i
CD
)
)
L-
II
,
.
CO
-< ^ m
SoS
V) ± ^.
n > m
>-' r*>
"^5
co o >
c^^
Q I O
0°>
Scg-
I1?
> o >
Z 3 g
o c 5
n co ^
Z 33
O m
S
O
-------
CONSTRUCTION COST
(MILLIONS OF DOLLARS]
o
o
O
m
O
o
p
o
. -
I
I*
\\
\
\
V
\
>
V
N
\
\
N
\
\
V
~"S
*
\
\
\
>
\
V
1
I
V
\
\
<
\
\
t
1
>
"
1
\
\
V
1
i ,-,1,1
. _r
\
\
» V
v
\\
\N
\
\
. .L,,y
^
O
o
IN:
-pa
c
c
3
U-l
\
\
\
\
v
\
A
i
\
\
\
i
OJ
rl
n
7C
OJ
3
tQ
(T
\
\
y
\
\
i
3
1
1
\
\
v
c
c
c
r
\
1
\
k
\
II
o
rx>
i
3
»
71
T)
1
-4
\
1
S
L
i
1
^
||
00
OJ
3 oo
"O - i
' 5=
ro i
oo oo
- I
N i i
O
CO
II
cn
>
\
\
\N
^ \.^
V A
\ \
\
' \
r y
ia..,\
c
ff
<
<
(
»
<
^
-)
*
jj
jO
30
X
o
u
0
l_
-P
J.
c
h
<
1
1
^
-
-n
2
Ta
i
_J
Z
III
m
H O 2
m
co
O
> a >
pm 2
§^>
O^?
2*1
zsl
OgH
o
I
-------
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
O
D
m
w
o
NX
\ >
N
\
>
h
\
v
V
-A
V
H
1
s
\
V
V
Y
r
|L
V
V
\
V
t
^
%
\
^
i
\
V
\
V
1
S
s
s
h
>
k
^
V,
\
o
o
a
i c-i
ro
, 7.
CTI a
J=> =!
1C
id '
Q.
\
\ 1
\\
\ \ V
\ \
~\
\
A
72
ro
ii
0
oo
h 01
3
-n
II
o
\
N
\
\ \
\
. \
l\ >
\
A
\
>
CO
Cu
ro :
CO ^
- C
N
m ^
C
|| (
ro
k,
\
N
"s.
\
\
\
\
-t
c»
_l
i
/i
H
-H
">
/)
k,
'X
\
\
\
\
n
n
^
CA.
rc
oc
X
i i
c
C.
\
\
\
V
>
s
y\
-j
4^
\
\
\
m
0
f
3=-
i i
O
Z
N
V
\
^
>
s
s
V
,
m
D
§3
m <
jj 5
co
Q m z
O* O
m H >
33 I-
? m _
o
m
O
-------
se-e
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
o
o
o
S m
o S2
o o
o
1
\
\
\
\
1
\
<
H
i
\
\
V
1
k
>
t
\
\
L \
1 \
\\
\\
\ \
V
\
\
\
V
^
\
\
V
\
>
i
\
»
\
V
i
I\
X
V
\
V
\
V
1
1
>
\
1
\
V
\
\
1 1
o
-F»
en c
a
1 e-
a
r-o
-> 3
a
o -z
a
3
us
Q.
.
\
V
\'v
\
\ ^
\
\
It I
73
ro
II C/>
O)
o 3
3 -a
i^J i
t- OO fD
00
3 -i.
Nl
s ro
> -n ii
II 00
00
CTl
t 1
N
S\
» r-A
' N
A\
A^
\\
\ \
A
\
i >
1
\
1
CO
1
3>
h-H
CO
1
1 t
CO
\
N
T
\
\
\
\
|
c-
II
s~~*
CA.
^.
^
X
t
C
* .
JZ.
\
\
\
1
1
,
I
)
)
0
JJ
in
1
m
O
3=
(~ t
o
1
1 1
o
m
co
m
> m
Z >
a H
-------
ee-e
CONSTRUCTION COST
CMILLIONS OF DOLLARS)
o
o
p
b
8
a
m
O
-n
|
O
/
! If
i\\
k \\
s\\
*Y
\ \
\>
\
>
*
^
\\
A
1
V
\
\
k
*
<
\
k
\
*\
^
|
^
\
\
}
\
\
0
L
f
:c,,
^v
\\>
\N
i v
Y
j
c
c
Ji
1
ro
O
(1
>
^^
c
u<
r*
Oi
7C
O'
3
in
fD
\
V
\
L '
*
»
j
;
«
y
\
C
ij
C
li
1J
<_
*
\
\
II
0
ro
i
D
O
O
n
D
o
j
i
\*
\
i
||
GO
OJ
T3 GO
f!> 1=
i. t/>
Nl H
O> i i
o
II GO
K5
ro
^
V
» \
V\
s \ s
w\
\\1
\^
V
1
I
c
S1
c
V
c
V.
1
Y
u
\
1 1
JL.
->
n
^
^
JT
O
_i
Z)
(T
_^
.
cx
u.
1
JL
r
f.
c
C
^ -
>
)
1
n
-I
D
7*
III
1
-< H m
SS*
CO H S
n m
2 > °
^SI
CO S >
0
[I
o
-------
92'e aanou
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
O
o
O "
-z.
o
m
1
-z.
T\
o
<
<
t. «
o <
«
N
V _..,._
y\
\\v
y\
s\
\
-S.
S.
\
5
V
\
V
t
o
1 '
OJ
. _ QJ
01
J OJ
<=> =
IQ
- CL
^ v
^ X
N>\\
V
ro
II OO
OJ
o 3
OO O)
00
05
-n
n
n
i i
ro
OJ
s\
^x^
,-»
t
OO
-H
i i
00
o
OO
i_ ._
s
S:
\.-iv
X
....L
c
f
4:
-».
-F
>
C
*»_
JC.
\ '
\
S
N
)
>,
i
J
la
D
^f
o
00
ro
\
\
|
m
0
cr
I
N
s
\
44-
Mt
\
V
\
^ >
o 1 ^
U -iZ
m H g
m "^ m
0) 5°
^15
a^>
o o z
07 o
~T ^ J
m"t> >
X 33
> m "0
O^
-------
CONSTRUCTION COST
(MILLIONS OF DOLLARS]
o
O
O
O
O CO
2|
O
k
-i
-- Xt
y y
L
' V
'\>
^v
W
v>
^
i
\
&
*>
i
i
1
v
U
I
V
t '
\
\
1,
* ',
»S
\\
v
\
1
)
)
a
ri
n
PC
w
3
to
(D
\
\\
\
f
\
h
3
|
J
|
7
1
C
u
u
-i
i
i
14
nr
a
^
<
^
3
ro
D
3
D
1
j
1
3
»
^
\
\(
T
1
.I
CO
O)
1 1
fD 3=
|
CO i i
-" CO
N -H
ft) i i
O
II CO
1 '
\ V
%
^ V
\\\
\\
, \
' 1
i
i
X
1^
\^
y>
AJ
o
II
t
^o
~g
~~J
X
_)
o
a
=3
H
i
-3
Z
i
i
t i
-< ^ m
2q ^
m i
oo
> m >
o
-------
aanou
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
b
^ D
S m
O £2
O o
\
\\
\^
v
^'
v\
X
V >
V
\
\
^ s
V
^
s
\
%
\
\
\
V
\
\
s
*
i
i
1\
>
S
\
\
V
s
,
\
k
>
^
j
o
O
oo o
EU
&
ro
en cu
tn 3
U3
3 n>
U3 ..
n
k
S
\N\
\\\
N\
N
"*
I
72
ro
II CO
Q>
0 3
T3
UD '
CO
N
n>
~n
n
n
CO 0
en
*
S
\\
sv
^v N,
^
v
j
CO
1
l_H
t
1 H
O
CO
V
IL V
X
\^
1
1
c~
1
^~
Cv
a
X
H-
C
^_
jC.
\
\
s
1
>
^
J
T
J
)
cn
ff
3
I i
oo
V
\
^
j
-n
-
*j
p 1
0
2:
\
V
N
1
s
\
v
1
\
V
Sy
C
V
O
m
CO
O O
m
O >
-------
3.2.3.2 Results - Mechanical Plants by Level of Treatment and Main
Treatment Process
This section contains the results from the analyses of the first order cost
relationships between the design flow of a facility and its construction
cost. Prior to analysis, facilities were classified by level of treatment,
main liquid line treatment process, and, wherever possible, by the type of
sludge handling. Further, only completely new mechanical plants with
effluent disposal to nonocean surface waters were included.
Figures 3.28 through 3.64 contain the results obtained from these analyses.
The figures are ordered so that all results pertaining to a specific
treatment process are grouped. The major groupings are listed below:
Treatment Process Figure Numbers
All Types of Activated Sludge 3.28 through 3.37
Conventional Activated Sludge 3.38 through 3.45
Contact Stabilization 3.46 through 3.47
Extended Aeration 3.48 through 3.52
Pure Oxygen Activated Sludge 3.53 through 3.54
Oxidation Ditch Process 3.55 through 3.61
Rotating Biological Contactor 3.62 through 3.64
Within the major groupings of treatment processes, the figures are ordered
by treatment level.
Each figure contains several important items: title, x-axis label
(independent variable), y-axis (dependent variable), cost equation, equation
statistics, regression line (solid line), and the SRE (dashed lines). All
these items should be taken into account by the reader.
The regression line and the cost equation derived from the line represent
the predicted construction cost for the particular type of facility
identified in the title. The cost derived using the line or equation is an
3-43
-------
estimate for the construction of a complete operational wastewater facility.
The cost includes all processes from the headworks to the effluent outfall
line. The only additional costs that need to be considered are the various
nonconstruction costs.
Facilities were categorized prior to analysis on the basis of their main
biological liquid line treatment process. One of the treatment process
categories, All Types of Activated Sludge, is a summation of most of the
variations of the activated sludge process. Included in this category are
conventional, contact stabilization, and extended aeration activated sludge
facilities. Facilities utilizing the oxidation ditch process or the pure
oxygen activated sludge process are not included.
For some categories of facilities, it was possible to obtain results for
differing levels of sludge handling. Four types of sludge handling are
identified: all, simple, moderate, and complex. The level, All Types of
Sludge Handling, is a summation of the simple, moderate, and complex types.
The reader should note that all facilities represented in this section were
also included in the results shown in Section 3.2.3.1. All results in
Section 3.2.3.2 were produced using subsets of facilities from the more
general categories of facilities from Section 3.2.2.1.
The results show that the construction costs for facilities having similar
treatment levels and design flows can vary considerably depending on the
main treatment process. A comparison of the costs for facilities with a
design flow of 1.0 mgd, secondary treatment level, and all types of sludge
handling is shown on the following page:
3-44
-------
Cost for
Main Treatment Process 1.0 mgd Plant Sample Size
Oxidation Ditch $1,660,000 41
Extended Aeration $2,420,000 35
Conventional Activated Sludge $2,580,000 52
Rotating Biological Contactor $4,500,000 10
Pure Oxygen Activated Sludge $5,420,000 4
Pure oxygen activated sludge facilities are more expensive than conventional
activated sludge facilities. However, the magnitude of the difference may
not be as great as the above comparison indicates. The reader should take
into consideration the relatively small sample available for pure oxygen
facilities. The small sample size might not be truly representative of all
pure oxygen facilities which have been constructed.
Table 3.4 contains a summary of Figures 3.28 through 3.64 with associated
titles and cost equations.
3-45
-------
TABLE 3.4
SUMMARY FOR FIGURES 3.28 THROUGH 3.64
FIRST ORDER COST CURVES
MECHANICAL PLANTS CLASSIFIED BY MAIN TREATMENT PROCESS
Figure
Number Title Cost Equation*
3.28 Activated Sludge (All Types) -
Secondary Treatment - All Types of
Sludge Handling C - (2.72 x 106)Q°-72
3.29 Activated Sludge (All Types) -
Secondary Treatment - Moderate Sludge
Handling C = (2.57 x 106)Q0'72
3.30 Activated Sludge (All Types) -
Secondary Treatment - Complex Sludge
Handling C = (3.60 x 10b)Q0<7°
3.31 Activated Sludge (All Types) -
Secondary Treatment with Phosphorus
Removal - All Types of Sludge Handling C = (3.13 x 10b)Q0>72
3.32 Activated Sludge (All Types) - AST -
All Types of Sludge Handling C = (2.98 x 106)Q°'78
3.33 Activated Sludge (All Types) - AST -
AST/Simple Sludge Handling C = (2.72 x 106)Q°'75
3.34 Activated Sludge (All Types) - AST -
Moderate Sludge Handling C = (2.77 x 10 )Q
3.35 Activated Sludge (All Types) - AWT -
All Types of Sludge Handling C - (3.44 x 10b)Q°'77
3.36 Activated Sludge (All Types) - AWT -
Moderate Sludge Handling C = (4.29 x 10 )Q
3.37 Activated Sludge (All Types) - AWT
with Phosphorus Removal - All Types of
Sludge Handling C = (3.93 x 10°)Q°'92
3.38 Conventional Activated Sludge -
Secondary Treatment - All Types of
Sludge Handling C = (2.58 x 106)Q°'74
* C = Construction Cost (million dollars)
Q = Plant Design Flow (mgd)
3-dfi
-------
TABLE 3.4 (Continued)
Figure
Number
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
Title
Conventional Activated Sludge -
Secondary Treatment - Moderate Sludge
Handling
Conventional Activated Sludge -
Secondary Treatment - Complex Sludge
Handling
Conventional Activated Sludge - AST -
All Types of Sludge Handling
Conventional Activated Sludge - AST -
Moderate Sludge Handling
Conventional Activated Sludge - AWT -
All Types of Sludge Handling
Conventional Activated Sludge - AWT -
Moderate Sludge Handling
Conventional Activated Sludge - AWT -
Complex Sludge Handling
Contact Stabilization - AST - All Types
of Sludge Handling
Contact Stabilization - AST - Moderate
Sludge Handling
Extended Aeration - Secondary Treatment
All Types of Sludge Handling
Extended Aeration - Secondary Treatment
Simple Sludge Handling
Extended Aeration - Secondary Treatment
Moderate Sludge Handling
Extended Aeration - AST - All Types of
Sludge Handling
Extended Aeration - AST - Simple Sludge
Handling
Pure Oxygen Activated Sludge -
C =
C =
C =
C =
C =
C =
C =
C =
Q =
C =
C =
C =
C =
C =
Cost Equation
c n c. o
(2.62 x 10D)QU-DO
fi n 71
(3.08 x 10D)0
fi n 78
(2.62 x 10b)QU'/B
fi> 0 75
(2.65 x 10b)QU>/b
fi, n 78
(3.35 x 10b)QU'/b
fi n 78
(3.12 x 10b)QU-/b
6\ 0 94
(2.63 x 10 )Q '
fi n fiR
(2.02 x 10b)QU'bb
fi n fi8
(2.04 x 10b)QU'bb
6> 0 68
(2.42 x 10b)QU'Da
6x 0 65
(2.11 x 10b)QU'bb
fi n fi8
(2.58 x 10b)QU'bb
fi, n 7n
(2.51 x 10b)QU>/U
c r\ £Q
(2.23 x 10b)QU>bB
Secondary Treatment - All Types of fi n
Sludge Handling C = (5.42 x 10D)QU'
3-47
-------
TABLE 3.4 (Concluded)
Figure
Number Title Cost Equation
3.54 Pure Oxygen Activated Sludge -
Secondary Treatment - Complex Sludge
Handling C = (4.65 x 106)Q°'71
3.55 Oxidation Ditch - Secondary Treatment -
All Types of Sludge Handling C = (1.66 x 106)Q°'61
3.56 Oxidation Ditch - Secondary Treatment -
Simple Sludge Handling C - (1.48 x 106)Q°'57
3.57 Oxidation Ditch - Secondary Treatment -
Moderate Sludge Handling C = (1.70 x 10 )Q'58
3.58 Oxidation Ditch - AST - All Types of
Sludge Handling C = (1.99 x 106)Q°'60
3.59 Oxidation Ditch - AST - Simple Sludge
Handling C = (1.83 x 10b)QU'61
3.60 Oxidation Ditch - AST - Moderate Sludge
Handling C - (2.45 x 106)Q°'65
3.61 Oxidation Ditch - AWT - All Types of
Sludge Handling C = (2.29 x 106)Q°'62
3.62 Rotating Biological Contactor -
Secondary Treatment - All Types of
Sludge Handling C = (4.50 x 10b)Qu>/1
3.63 Rotating Biological Contactor -
Secondary Treatment - Complex Sludge
Handling C = (4.68 x 10b)QU'57
3.64 Rotating Biological Contactor - AWT -
All Types of Sludge Handling C = (5.37 x 10b)QU'yb
3-48
-------
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
b
T)
^ O
S m
O 03
O Q
O
o
x\
\\
\
\
\
\
^ \
\
s
\
\
^
\
\
_
y
V
^
v
\
\
\
V
1
\
*k
'
s
"
s
s
4
s
»
1
V
t
s
i
t
j i i i i i i i
o
ro o
CD
Ol
-p-
CXJ
h Q"
S
s\
\\
\ \
\ \
s ^
\
"y
V
70
ro
II CO
o 3
TD OO
UD 1
1
OO i i
-J. OO
-n IM I
(T> i i
II O
II CO
1 '
>. oo
I-1 0
s
\
L ^
V
V
t \
\
\
L
>
>
"^
\
k
\
s
\
c~>
II
^
ro
~-j m
ro JO
x >
i > i i
o o
CPi Z
. ^
0
ro
<
\
k
^^
\
\
^
\
^
S
^
.
V
\
.
m
O
-n >
D
c -i
0 3
> m
D H
n
Z
O
m
CO
-------
aanou
09-e
CONSTRUCTION COST
CMILLIONS OF DOLLARS)
p
b
O
\\
\\
\
\
V
II 11
h
\
\
\
\
. Si
N
\
N
\
X
\
\
\
'
V
\
»
x
V
N
'v
^
s
\
k
^
s
\
1
I
\
s
\
v
*N
\
>
s
'
0
ro o
1 <-h
QJ
73
O Cu
IQ
3 fD
Q-
\
\
\
S N-,
\ ^
--\- - -\
\ ^
\ \_
\ \
v \
\ T
>
yo
ro
II L
c
0 =
cn n
!>
n
-n
4
ro r
GO
V
X.
s,
V-
r\
\
N
n
LI
3
3 t/
0 3=
j. c/
4
5 t
C~
1 C/
^
O
v~
A
\
^
\
\
>
3
^
i
i
4
i
>
>
\
\
^
S
o
n
ro
~j
i
o
n
~-s*
(~
**
k
S
s
V
1
1
JC
c
1-
c
1 -;
1
1
\
>
^
,
',
1
D
H
D
^
\
S
t
>
«;
*
1
z
m
I 1
D CO §
m rn _j
33 O m
>, O o
m Q
co >
r~ 33
C <
1*
m m
D
D
m
H >
O
m
CO
-------
oe-e aunou
TS-E
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
o
m
O
\\
\
\
x x>
A
^
\
\
\
i
\
^
^
V
\
V
V
x
^
V
V
\
'
\
\
\
^
'
\
*-
V
^
<
s
0
I"
o c
fa
fa
-P>
,. , n ^
fa
O 3
fC
Q.
\
\
\ \
Av'
\ \
\ \
\ ^
\
\
72
ro
n
0
j
vo
i »
3
'II
CO
Q
N,
S/N
\k
S.
\ ,,!
~v-
\
1
in
3 C
rt> 3
co i-
-" C
N
ro i-
II C
CO
!\,.
s
v
s,
\
^
I
r>
^
^
H
-H
n
-\
1
/O
-\
\
\
V
i
n
n
CO
Ol
c:
X
i '
C
«*__-
\
N
\
i
.
0
r^t
Vs
\
\
I
m
0
5
O
V
\
^
|
,
,
,
,
\
\
m
o
O H
5 m ^
,2 O m
£ > c
§5g
O H m
O rn
Q
m
CO
-------
oo
i
en
ro
O
C
33
m
CO
CO
CO
CO
cc
O O
Is
co O
ii
NEW ACTIVATED SLUDGE PLANT (ALL TYPES)
SECONDARY TREATMENT WITH PHOSPHORUS REMOVAL
ALL TYPES OF SLUDGE HANDLING
10
1.0-
o.v
. c =
c
R2^
C
4
x
*- - -
X
EQUATK
(3.13 x 1(
STATIST
Sample Size
- 0.80
Data Rar
).35 - 10. 1
/
x
X
X
f
_£
X
/
DN
)6
[C.
3 :
i
ig<
L2
'
X
,'
)Q
3
m
f
/
0.72
13
= 44
gd
/
f
s
'
f
0
X
X
'"^ _>
s
/
/ '
X
x'
X
X
/
xX
X
x'
X
x'
^
X
(X
f
/
x
X
X
r
/
/ s
X
X
X
f
s
r
>/
X
X
x
X
^
s
p
V
'
0.01
0.1
1.0
10
PLANT DESIGN FLOW
(MGD)
-------
01
CO
O
C
33
m
co
GO
ND
CO
CO
DC
§2
t- UL
o o
N
co O
11
10'
1.0'
0.1'
0.01
NEW ACTIVATED SLUDGE PLANT (ALL TYPES)
ADVANCED SECONDARY TREATMENT (AST)
ALL TYPES OF SLUDGE HANDLING
1
\ c =
R2
/
//t
EQUATION
(2.98 x 106
STATISTIC
Sample Size
= 0.90 F
Data Rang
0.05 - 3.50
,'
s
'/.
s
t
/
/
4
S
,'
/
4
r
s
/
s
X
s
e-
me
f
/
/
,0.7*
32
= 27(
)d
^
P
f
1
^
p
/
>*
j
I
3
s'
r
J *
s /
/ ,
/ /
s
s
f
jf
£
s
9
S
/
J
s
/
/
s
s
/
s
9
p
,/
S
*
s
/
f
t
9
f
^
f
y
/
/ /
//
f
s
r
f
f
^
/
/
^
s
/
/
t
s
J
/
Jf
/
0.1
1.0
10
PLANT DESIGN FLOW
(MOD)
-------
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
'-> O
£ m
O co
O Q
[S\
\\
A
N
V
NN
^\
\
\i
\
V N
\
v ^
\
X
\
^
\
V
L
\
'y
\
s
^
\
s
\
I
V
%
O
0
en o
i <-+
o>
' 70
-P=» oj
0 3
. ^n
3 m
\
V \
\^
V x ^
\\\
\\
\ A
>
^.
i
TO
ro
II CO
Ol
0 3
T3
( (D
_^,
N
CO
~n ii
II OO
CTl
s
V
. V
\ \
N,
V \.
'\ V
s
^
CO
3*
1
CO
1
1 1
O
CO
X
$
\
1
c
II
*~~
r\
r\
t
C
*-_
1^
\
\
^
\
V
5
5
3 J
«
3
rn
^
O
^J
^
\
k
V
2
n 4
O
7="
\
\
k
V
1
k
\
^
1
^
s.
I
\
> m
a> m ^
o
m
m
m
O c/)
c °
a >
QU
m -<
m >
S*
H m
3 co
-------
aanoid
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
O
m
w
o
2
1
\
0\
I, \ *,
\\
\ ^
\
s>
A,
s \
\
^
\ '
V
'..
v
^
T
L
X.
1
^,
\
\
\
s
f
\
s
\
V
I1
o
cu
Cu
ro
ro Q)
1 "3
to
\
Xs
\\\
\\
V >
\
70
ro
(j ^/)
DJ
0 3
T3
to '
OJ CD
00
N
-n
II
ro
ro i '
->
-c»
N
S\ ~
VA
irA
V
s
s
00
>
K 1
oo
1
0
-r
X
r>
(
^
r
N,
>
h
*.
\
s
^
\
^
V
-)
1
-^
0
-j
^i
<
_i
O^
3
(_5
^1
~^l
N
\
^
m
.0
c:
J»
-H
i i
Z
V
>
S
S
N
s
^(
V
^
\
> m
s
§31
5 co -J
33 m m
>j O a
m O co
o
m
3) o
-T-
x m >
> > z
2 H H
Q
CO
H m
v-J CO
-------
gg-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
O
-o
r~
2
H
O
m
5
z
-n
r~
O
o
\
\ N
X \
\v
\x
"\
V
\
\\
s\
\ ^
\
\
V
k
\ '
\
v
fc
\
^
\
\
\
\
V
>
*
>l
'
L
\
\
>
n nl
\
s
>
.
\
^
k
^
S
\
\
\
CD
--J C3
1 <-+
Q)
01 70
Q)
O 3
_ CDUD
rt>
_ "3
o.
\
\
\\
\v
\\
\
^
33
INi
II CO
CU
0 3
-o
Ln fD
CO
N
n>
~n
ll
II
ro
OJ H- >
s.
X
i S
\ N
\
V \
^t "
'^
N
CO
£>
CO
1
)-H
o
CO
\
*,
I V
L H
\.
^
\
I
c~
II
t
Cv.
-F=
X
1
c
«~_
£L
\
V
^
\
\
)
)
> J
*
3
cn
*
i
O
-^J
I\
\
o
f^
1 4
LJ
V
>
s
\
1
\
\
^
4-
\
s
s
V
\[
T
>
Slg
CO CO °
O rn r~
~n < x-~
co >; O
n m °
c 5 m
o _
O d ?
1 > r;
> H H
o Q] >
O
-------
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
o
o
m
O
o
o
\\
V
\
«
\
\
N
\
\
\
\
V
N
\
\
V
V
N
1
\
k
\
fc
»
~,
X
^
^
\
>
V
\
1
>»
>
V
\
V
S
&
s
i
1
..... **^
o
~-J C
OJ
a
o
oo oi
m
Id
^^^^
\
\\
A1
\ ^
V
\
\
70
ro
ii
O
}
01
^
1
CO
ro
\
"\
^ ^
s
\
*^
\
V
>
LT>
Q>
a (
ro
t/5
N
ro
ii
UD
N
V
X
^
\
\
\
yi
j»
H
(
H
O
J~i
^
y
*w
\
V
\
c~
II
**
-F=
IX
u.
X
^
<-
£1
^
""
\
k
\
>
)
>
i
1
tn
s
5
-J
^J
"^
^
\
^
\
1
m
t i
c:
^
K I
( )
z:
\
s
>
V
\
s
\
v
\y
k
o m
D^g
m < 5
33 m
m
m H "o
-r 33 l~
J m >
> > z
r; m >
Z Z n
0H r-
-------
89-e
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
b
T)
O co
o o
\
\
>>
\ \
\
N
X
N
\
\
x
"V
"X,
V
>
S
\
t
^fc
\
y
\
^
L
"^
\
>
'
s
V
^
\
^
x
s
\
^
\
%
N
s
s
1
o
o
Oi
i tt-
4*
., '» ""
. Q)
..... Tl ~5
OlQ
_ =(
U3
0.
^
N
\\
N V
\ N
^x
^v
1
73
ro
II 00
Q)
0 3
'U
IO '
.
t I
CO
-H
o
N
V
X.
X
V
s
1
r
i
*
0
V£
U
X
1-
c
JC.
v
^V
\
\
1
)
s
J
3
J .
Nj
1
CT)
-I
O
»
UJ
K>
%
S
VN
m
o
3=-
i i
i i
z.
\
\
\
V
%
\
V
^
>
\
s
^
k
-z.
m
-I ' <
< ^ >
"° H
S3*S
^^ u
n O C
,« co i=
co >
m H
O
1§-
m
CO
-------
CO
in
to
O
C
33
m
CO
CO
00
co
CO
DC
o o
co O
§i
o -
NEW CONVENTIONAL ACTIVATED SLUDGE PLANT
SECONDARY TREATMENT
ALL TYPES OF SLUDGE HANDLING
10 '
1.0-
o.v
-
\ (
X
X
E
: = (2.5
ST
Sample
R2 = 0.9
Da
0.03
/
/
s
x
x
X
QUj
8
AT
S
1
ta
r
'
X
HT
x
IS
iz
R
40
x
10
10
TI
e
an
.0
,
/
s
N
6
C
F
g
0
^
'
'
)QC
s
52
e:
me
f
'
'
.74 ~
523
3d
X
X
' X
yX 1
X
X
X
r
^x
s
X
/x
x
x"
,
X
/
x'
X*
X
X1
^
»
1" ,^
X
-^ X
x
> X
X
X
-*
s
/
X
X
x'
-------
co
o
o
c
D
m
CO
CO
CD
CO
O
CO
DC
o o
Is
CO O
li
10
1.0-
0.1
NEW CONVENTIONAL ACTIVATED SLUDGE PLANT
SECONDARY TREATMENT
MODERATE SLUDGE HANDLING
c =
R2 =
(
/
X
EQUATION
(2.62 x 106
STATISTIC
Sample Size
= 0.87
Data Rang
D.03 - 2.00
x
x
' /
x
x
X
X
X
X
X
X
^
/
,'
K
s
F
e:
mg
7
/
^
0.6£
17
= 99
d
[»'
S
4
,'
1*
/
>
)
x'
{
S
^ >
/
/
^ x'
x'
/»
X
/
x*^
X
x'
X
t'
^>
X
X
4
>
/
X
^
w
s
X
f
s
-''/>
.' ,<
X
X
X
X
^
/
X
X
X
x'1
X"
X
X
/*
r
X*
^
^
j
I
x
0.01
0.1
1.0
10
PLANT DESIGN FLOW
(MGD)
-------
co
i
O
C
DO
m
co
CO
CO
x >*
f ^r
/ x
>X X
X
- (3
V ^
Sam
- 0
0.1
''/
' ;'
EQUATION
.08 x 106)Q°'
STATISTICS
pie Size = 18
.96 F = 3
Data Range:
0 - 40.00 mgd
X
/
/
X
/
y
r
^
4
4
/
X
>
/
,J
^
/
^
{
J
*
71
88
f
^ /
x y-
" S ,,
/ /
X
X
x"
X
f
r
*
s
/
X
X
X
y
^
^
r
4
X
X
/
X
4
/
J
^
/
f
w
t
s
//
//
X
*
X
' /
/ ,
X
xx
^
/
t
X
>
X^
>
'
-'
/
0.01
0.1
1.0
10
PLANT DESIGN FLOW
(MGD)
-------
we
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
O
T>
r~
2
H
m
5
t
\
\
\\
\v
\ \
\
V
'
\
%^
A
\
, s
s
^
^
\
^
\
V
>w
^\
L
\
V
>
\
^
y
\
\
^
^
\
>
k
s
V
4
\^
>
S
V
S
Ik
s
1
O
1 " l-o LJ
o cu
<-+
. ai
Old
03
Q.
\
V
V-
^ s, N
\x
^ \
V
V
TO
ro
c
II 0
o ~c
bo ri
^i
c
r-
i-
II 4
00
o
V
\
s »,
N
\
\x^
\
l
r>
i)
3
3
-> u-
3
3=
r>
-I (S
1
1 C~
_J
2>
\
S
\
\
\
>
)
1
1
t
1
\
\
V,
S
>.
N
r^t
II
*^,
ro
en
i^
0
o
n
C
^
oc
h
\
N
^
n
*.
c
T-
c
> ^
3
J
3
N
S
1
J
H
3
\
s
.
1
s
1
1
1
>
<5
m
> S
So
I- O <
, m m
<°5
Tl CO
m m O
co o z
O >
° DO ^
IE !> 3
D m c
Z H O
O ^ m
3>
Z
H
-------
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
b
^ O
S m
O 2?
o o
O
^
\\
\\
N
\
^
>
\
N
^.
\ x
\
^ i
\
\
\
N
\
N
i
>
\
N
S
^
^
\
^
N
>
k
*
\
s
fc
s
1
s
\
s
b
^
s
\
\
s
o
ro
o>
\ rt-
CD
1 -72
1... ° 3
Id
3 ft>
(O ..
Q.
t
S
s \
\\
^ \ "
> \
\ \
N
"*k
73
ro
II OO
o>
o 3
oo '
cr> ro
en
N
CD
~~n ii
ii i1
o
\
\
\ i
\
\
^ \
\
\
\
I
i
3*
i i
oo
1
1 1
0
OO
N
\
\
\
V
1
c
*-
r
c
c.
>
1-
c
v^
f.
\
\
\
\
~\
\
|
->
*%
o
Fl
n
<
D
CT>
_**
3
(_>
^j
cn
\
\
"^
\
1
m
£D
i
f>
o
z.
S
\
,
|
\
|
1
^
|
^
^
\
N
4
'
m
O rn m
a O z
m O >
o -<
m H >
C m c
z z o
o H o
-------
aanou
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
O
O
O
^
\\
N
\
V\
,\
\ V
N
's
v s
\
s '
N
^.
\
\
"
^
\
"\
v
\
1
\i
*
s
\
>
\
V
N.
s
k.
I
O
0 0
r+
1 CU
I1 73
on o>
OUD
o n>
3
.... ^J
\
\
\\
\ x ^
^\x
\\
\
^^
72
ro
II O.
o -c
<-O (I
cr>
o
^
Cl
-n i
II H
^j
0
>
*v \
\
c X
>i ^
N
"\
N
> to
1
3>
T 1
Ji r-H
1 OO
K- H
O
cr
_1
^
V
>
V
v>
\
«
,.l
*
\
I\
\
\
J
o
^~~N
OO
OO
un
X
o
u
' ^
C3
^^.
oc
<
\
s
\
\
..I
pr
-C
c
T=
t
^
N
\
\
W
.J,
1
}
»
H
H
\
s
\
s
^
'
k
k
s
*^
V
\
> m
o ^
< o
> 2 O
!=*?
m ^
m > o
co co z
Om>
^ ^ n
E^S
O _. <
o 3 >;
CO
z o
O » rn
-------
aanou
99-e
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
O
O
"D
(
>
o
rn
co
o
o
o
^\
\N
\
^
\
Xj
K\
v\
^
V
\s
% \
\
"V
V
^ ^
*y
^
\
\
\
S
V
\
\
\
\
^
i
^
k
i
>
S
^
1 »
0 0
i c+
CU
o
70
00 Q)
O 3
_ to
3 n>
0.
S>-
N\N'
\v
vs>
\
1
73
ro
II C/)
O)
o 3
TD
CO fD
OO
_j.
N
(T>
~n ii
ii ^-J
O^
y
\
\\
>t X
v V
\
>
1
CO
>
OO
1
h t
n
CO
V
t
X
\
N(
1
<
h-
c
x^.
r
\
X
X-
s
i
->
^
j
0 .
-1
J
CT>
**
1
O
on
IN
>
k_
s
1
0
T-i
i i
CJ>
Z
X.
V
1
\
x
1
^ .
^
^
k
^
^ m
> <
0 ^
5°
Ii
m
m
m ^ H
3J > O
t i Z
m
m
r- > >
c O
m
L m
I?
H >
-------
aanoid
99-£
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
"O
r~
2
H
O
m
O
\
^N
VXN
\X
x "
V
\
V X
>. "
, ^v
"*.. ^
\
>
V
i X
^
IX
>
X
«
IK
\
X
i
^
s
w
s
X
I
^
b
1
O
O
OO O
1 c-t-
QJ
01 73
0 3
a>
\
\\
v\V
N X >
v. X
"\ "1
^
^*
70
ro
it (j
QJ
0 3
T3
VO
«D rtl
I/
_j
ro
-n i
II O
ro
oo
^i
X
V "**t.
'V ^
i X.
X \
\>
)
- 1
>
"> 1 1
OO
.
1
OO
1
>
$
1
It
<
N
^
k
O
II
~N
[N3
CTl
00
X
O
~**
LjJ
^
xC
-p^
s
\
1
rr
*c
c
f
c
4
s
\
1
5
a
^
)
\
^
l
^i
s
t*
m
o
o
m
x
co
> o
co z
m
m _i
3J -5
CO
% -o
> r~
R >
-------
CO
CTi
O
C
JJ
m
CO
CO
CO
oc
o o
Is
> o
li
NEW CONTACT STABILIZATION PLANT
ADVANCED SECONDARY TREATMENT CAST]
ALL TYPES OF SLUDGE HANDLING
0.01
0.1
1.0
PLANT DESIGN FLOW
(MGD)
10~
1 n-
c
R
X
x
- (Z
Samp
- - c
0.1
X
/
X
EQUATION
.02 x 106)Q°-
STATISTICS
le Size = 16
.82 F =
Data Range:
0 - 5.00 mgd
t
/
x'
7*
/
7
y
/
X
^
/
4
t
X
/
X
f
x
/
65
63
. 7
S ;
K /
/ x
X
»*_- - -
x
/
s
,'
t
?
/
7*~
t
/
*r
/
f
*
/
f
s
/
<
X
X
r'x ,.
',/
' S
t
,'
/
/
s
/
t
f
s
/
s'
s
f
''
4
s
f '
1
-
10
-------
en
oo
O
C
D
m
CO
GO
cc
CO
O
O
o o
cc
CO
co O
55
o -
10-
1.01
0.1
NEW CONTACT STABILIZATION PLANT
ADVANCED SECONDARY TREATMENT (AST)
MODERATE SLUDGE HANDLING
^«
V
! c
R2
x'
X
^ ^f
f\ *
EQUATION
= (2.04 x 106)QOJ
STATISTICS
Sample Size = 13
= 0.86 F = /
Data Range:
0.10 - 1.20 mgd
x'
/
x'
/
s
/
r
x'
X
X
px
^
f
/
X
^'
/
>
r
rf
^
X
/
/
/
^
/
58
'0
/
x
s /
/
/ y\
s
f
>
X
s
/
s
sr
J/
/
s*
s'
£
*
s
/
y
/
s
s
s
>
f
f
y
4
S
s s
,' s
^p
./ s
" ^
s
t
s
s
>
/
^
X'
X
X
^
X
X
X
x^
f
f
S*
J^
S
X*
X
/
^
^
0.01
0.1
1.0
10
PLANT DESIGN FLOW
(MGD)
-------
69-£
CONSTRUCTION COST
(MILLIONS OF DOLLARS]
p
b
O
-o
I
2
H
O
m
2
-n
O
\"
\ \
A
X
\
k
N
\
>
s.
\
N
1
\
xx
K
\
N
H
<
\
s,
\
\
\
\(
V
V
A
h
^
V
\
I
\
1
t
V
s
V
>
I
'
s
\
^
V
\
\
s
4
CD
r\3 t
:
!
. . IN3
...
\
'N
A
\
73
IN.
II
^3
U ^J
+ r^
11
33
11
3
2
n -n
n
>~o
en
\
\
>
'v
\
N
\
1
)
oo
fa
CD
00
N
fT3
||
OO
on
V
v
V
\
\
^
^
1
00
1 I
oo
1
1 1
00
k
\
\
k
N
\
K
1
c
S"
-1
>
1-
c
*h.
£.
\
\
I
\
^k
"^
|
->
1
-^
b>
<
_t
D
(-^
_^-
D
OJ
m
ISO
> m z
z z -o
O H n
E >
-------
3dnOld
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
O
o
X ^
^
\\
\
"*
s
\
\
V S
Xs
\s
X
V
1
V,
V
V >
\
\ ^
{
y
^
\
\
V
\
\
\
V
>
s
X
^
q
^
\
N
s
V
o
o
. _ -t=« O
CU
1 r+
. _ Q)
r\3
73
^3
. 3 ft>
ua ..
s
V
. V
\\
\\\
\\v
N\ '
\\
\ \
\
73
ro
II GO
CU
0 3
~o
kO i
00 (K
C/l
_j.
N
CD
n
ii
n
ro
kD
S
"V .
, \
-^
>
CO
<
>
H-l
GO
> l
O
CO
N\
N\
\
\
<-
,^
IN
h-
t-
X
X*.
jC
\
1
^ ^
,N
S
5
s
D
4
*
D
*f
D
fT»
cn
I'V
N
\
^
«l
i
m
o
cz
3»
0
k
\
^
^
y
^
^
V
r
S
i.
z
m
CO
= CO
o
CD
m
oo
> m
33 n
:< °
, >
z m
Mi
I5-
O >
-------
aunou
u-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
-o
r-
z
O w
O 0
^ 2
TJ
i\\
\V
\ >
\
^
<
t
\\
A
>
\
~»
\
\ '
\
k ^
"X
1
^
>
\
1
k
^
^
\
V
\
\
^
S
^
>,
i
S
^
N
S
S
'>
y
V
S
y
O
PO C3
O>
Q>
1"
KS
U3
3 fD
\
\\
\\
\\%
\ \
> >
v^
i V
\
1
73
II C
c
o =
T
oo -
in n
c
h
d
-n
\ ' t.
o
00
IL
N
»
V
V A
X '
\
\\
\
1
n
0
3
3 C/
t-t _-
t> -T3
n t-
«i
D i
C~
1 C/
M-l
n
Wi
>
\
S
">
X
N
)
\
\
4
\
1
)
\
<
\
N
\
, 1
0
II
INI
cn
00
X
i >
O
o
-
f-
o
0
4
\
y
\
\
r
£.
c
3
t-
fl =
1
f>
3
k
\
^
^
,1
3
>
H
U
Z
\
\
L
X
1,
y
^
^
k
o
J3 O H
> O m
m z 2
m O O
co > m
r- DO o
c -< -^
o^m
m ^ =
m
m
-------
i-9'e aunou
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
O
O
m
-n
i
O
\ ^
*NN
\ \ N
\N
%
\
\
N
S. V
\
\N
\
s
\
\
\
t \
^.
\
>
\
V
w
\
i
s,
\
>
v
^
\
V
\
^
V
\
*
^
i
>
S
i
N
V
«
V
t
1
>
s
\
O
0
O
i <-
O
?
o -
- tc
M. ... 3 (T
C/1
G)
-a
fD
c/o
_1.
N
a>
ii
i '
o
h
\
N
T
X
\
>
1 I
00
I
i i
uo
s.
\
\
k
N
r
IN
0
I
X
H-
c
JC
r~
N
^
s
\
5
*.
3
T
J
>
CTi
3
(_)
o
^
^
\
N
m
-o
i
3="
t-H
O
^:
\
s
V
*p
s
i
^
"
-o co x
m m H
co o m
o°i
CO >
m
I > O
> S Z
m -D
-------
29'S 3d HO Id
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
O
O
m
<£
o
k "\
V\\
\\
\
X
\
\
\
v
\\
N
V
V
\
v v
V
i \
\
\
s
\
^
1y
i
L\
\
»
^
N
k
N
V
N
S
\
>
V
^
^
\
V(
s
\
N
^
"
0
CD
Q>
I r+
0
70
-f* Q>
..... e^ 3
1 "3
U3 ..
Q.
>v
N
v
Y\
^\\
\ \ V
\ \
> \
^_ ^
^v
N
70
PO
II (
;
0 =
to .
O f
C
r
f
II C
^i
V
\
>
s. \
1)
_! ..
T> 1
/I i-
-J.
\
\
c~>
n
ro
ro
OJ
X
i"
0
C
JO
C
0
t
\
s
"1
^
r
X.
:
h
f
ri ;
D
o
\
^
N,
1
k
n
D
C*
H
(
~>
Z
V.
^
't
IL
V
V
1
1
v
o 2
co m <
TJ co x
i- m H
mom
coOS
c o
m
o > w
O 3) >
m -< m
i -i D
5 m IJ
z m "o
O z !~
H >
-------
eye aanou
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
o
o
S m
O co
S|
o
^ \ ^
S\N
x\^
N\x
\\\
\\S
*\ ^
\\
* \
V
1
k
Ss
$
\
\
\
Y
\\
^A
X1
\
\
i
\
v\
V
v
i
i
\
\ '
\;
$
\
\
V
N
\
t
1
\
<
\
V
>
>
s
h
h '
~ o
O 0
o>
1 <-*
Cu
ro
Ol
0 3
Old
u ro
id
D-
\
\\
k\\
As
\\\
\\\
w
V
o
1
TO
ro
II O
o
0 x
X
10 -
vo n
0
r-.
n
TI
II
4
ro
OJ
CO
\
y 1
Vi
v \ \
i
o
i
i (y
1
3 3=
n tr-
j
) i
c~
i u-
^
1
1
1
1
)
)
o
II
'-^
en
-P»
ro
X
i «
o
a
« ^
<->
n
a
n
£.
C
5
h-
c
I 2
i
1
>
n
;>
H
D
^
z
m
5
S
O o
-n >
C H
O 33
o m
m >
> m
z z
a H
Q
m
r-j
P
Q
m
>
z
-------
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
r^ D
S m
o 2?
D Q
o
o
z
m
T)
C
m
^ m x
12 O -<
m O O
x z 2
c 5 o
D "* H
O H <
m 3) >
-r m ^1
in > m
> H a
r- z
O
Q
m
-------
CONSTRUCTION COST
CMILLIONS OF DOLLARS)
p
b
-o
I
>
^ O
S m
O en
V A
\ \
\ \
» \ x
\ \ v
S \ N
\s
V
\
^
\
\
V
s\
v\
\ s
\
V
1
\
\
\ '
\
\
^ ^
\
\
^
V
t
\
\
\
^
\
\
\
\
\
V
\
s
1
I
\
\
\
k
s
\
V
1 1 1 1 1 1 1 1
o
o
o> o
QJ
1 <~h
Cu
CO
CO CU
4^ 3
IQ
3 fD
N
v\
\ \
V-\ V-
\ \ A
"X \'"'\
> V "
\\
\
V
70
r\3
II CO
Cu
0 3
-a co
O3 i I
CO Ja
-H
CO 11
-J. CO
N 1
(T) i i
-n c~)
II CO
n
-p»
ro i-
>£)
o
1
N>
\\
- V
^
\
%
N
^ \
s
V '
\,
o
n
i '
o~>
01
X
1 »
0
cr>
XD
C3
CTl
1
^
\
s
A
k
J
k
\
L.
N
i_
EQUATION
r
s
*
>
I
r- Z
o 5 2
O m H
m > o
m
a
i
o
-------
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
b
0
m
O
o
_L
\\\
\\
\
\
1
\
X
\
Vy
\
\ >
\
*
\
\
\
k
s.
\
\
^
\
\
\
1
\
^
\
\
X
%
<
J
11
\
N
X
\
\
\
X
s
L
V
»
^
X
\
^
c
&
s
^
)
1
?
O 1
0 C
CD
1 r+ -
_ CU
V '
73
0 3
_ 3 fD -i
IQ
_ C
^.
i
\
\
\
V \
\ \
\ N
V \ >
\ X >
XN
\
N
I
3
ro
00
CU
3 3
t3
-J '
-J fD
oo
_J.
fD
n ii
n
-j
X
\
\
X
X. N
,v
l\ s
\
X
X
1
oo
:>
i i
oo
1 1
o
oo
V
\
X
v
\
>
\
\
\
1
O
I >
-p.
c»
X
0
JO
<
\
V
\
\
\
1
n
JC
c
3
C
n
-j
k
X.
L.
1
T
2
>
H
3
V
1
1
O
1
C/) m
i£s
00
- o >
§>g
Q , Z
I m i:
IIs
- m -D
O
-------
aanou
ez-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
S m
O eo
O O
%
\\
^
\
\\
NNi
\\
\
\
^ \
\
'x \
^
>
\
k
%
1 ^
v
A
\
\
i
\
\
\
\
'\
v
i
\
s
N
\
N
1
s
i >
0 0
CU
~ 1 <-*
o>
co
- . -ya
CO Q>
tQ
I \X
\\\
\v
\\
>
70
ro
a
o =
"C
ID
PO ft
U
_J
N
-n
n
rv
1
x>,
\\
CO
J 1
>
) 1
CO
1
o
i
\
\
y v
M
\'*
\
^
s
^v
\
V
v
C~)
II
-*^
1 '
1
0
X
I1
0"
o
c
or
\
1
\
n
-C
c
t
H-
2
A
C
1
3
3
H
H
v
fc
*
'
O m
a co <
m m <
Joo
5 O x
m z a
I Tl
c 5 o
o z
o =! n
m 2 -
m _
O
-------
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
o
D
m
«2
o
o
^
\ ^
\
\
^
^
V
N
v
A
\ ^
V
\
\
\
v
\
V
\
>
\
*
V
'
\
\
1
V
\
^
\
\
1
1
s
s
>
\
1
^
V
\
N
b
V
L
\
O
o
en o
OJ
I c-t
Ol
1 >
~ ^o
--J Q)
~ -~1 3
"3
3 fi>
t
V
N
^
\ \
\ \ \
> \
\ \
i X
v \
X
S
\
^
70
II OO
OJ
o 3
T3
CO
00 CD
N
ft)
-n n
CO
~g
ya
i
A^
'
^
\
V
V
, 1
CO
1
3»
1
i i
O
GO
\
\
V
\
\
V
S
c
*
h
(.
V
>
1-
s»
S
\
V
^
y
^
»
\
->
i
-N
«1
0
0
<
_t
O)
-f
o
O
<
\
t
*v
t
^
m
JO
cr
3»
t i
i-j
S
k
^
I
*,
1
k
'
&
D
m m
m m 9
o =! H
m 2 o
m -r
1 >;
> i "0
z S r-
0 zz
O
CO
H
-------
69'e aanou
os-e
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
b
O
O
m
T|
i
O
1
^
\\
\
\
\
"\
v \
\
\ \
\
s
*
^
\
^
N
V
\
A
t
V
\
\
y
V
L
V
V
\
^
\
\
\
\
«
s
i
\
>
\
\
N
s
>
\
s
k
O
O
Q)
1 r*-
1 >
ro o>
_ O 3
\ "3
O.
i
i \
\ v
\ \
\ \
s \ N
\ \
\ \
\ \
\ N
\
\
\
N
Xi
ro
II C
o =
T
00 -
(1
t
h
(]
\\ C
en
t
A
"'T1
X;
\
X
- \
>
/>
u
3
3 C/
i
D 3:
n \r-
J.
\
>
H
~)
H
^
N
\,
\
r~
0
II
1 »
oo
GO
X
tf
I 1
o
I 1
C
1-
\
'
^s
^
t
r
£
3
H
r
^ ;
D
-i
^
V;
n
D
>
-|
-H
-1
^
*;
1
^
co rn m
E°^
"° w o
m o >5
0) O O
r- 2 >
C D IJ
O > O
O 3J Z
o
Q
m >
-------
T8-£
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
b
TJ
^ O
S. m
O co
o o
O
^ \ \
\\\
\\\
\\\
\v
\\
\
*
\
&
\\
N
'\
s>
A
\
\*.
\
\ '
V
\
^
\
0
\
s
I
\
\
»
i
<
y
\
\
s
\
i
0
O
_ oo a
QJ
I c+
OJ
73
~~l 3
, 3 ft)
v\
\\\
NA\
\\%
\\
\
^
I
73
ro
II O
o
o =
T:
^D -
CO (T
ro
ai
t
V
k V
v\
' \^
x^
1
o
J
I
J 3=
O i
i. (/
) 1
c^
i
^
"\ 1
\
1
^
s
'v
\
o
II
^-^
ro
-p>
en
X
o
^-^
CJ
.""
a
cr
i
\
x
\
1
n
-c
c
j
c
^
i
^
\
N
, I
n
2
>
H
3
^
)
\
y
\
,J
\
V J
A '
o
S O 2
O rn m
a o ^
m O
£^ ^ v-/
a 3 z
o o
m^=i
im5
> > x
r; m >
-------
oo
i
00
ro
O
C
33
m
CO
en
CO
cc
<
o o
ES
CO O
o ^
NEW OXIDATION DITCH PLANT
ADVANCED WASTEWATER TREATMENT CAWT)
ALL TYPES OF SLUDGE HANDLING
10
1.0
0.1
C =
EQUATION
(2.29 x 106)Q°
STATISTICS
Sample Size = 8
R2 = 0.89 F =
Data Range:
0.09 - 3.49 mgd
X
/
>/
s
'/
s
'
^
x
^
x'
f
'
'
''
s
f
^
'
t
.62
49
'
'
_x
^ .
P S^
jf
X
xx
X
-^
^
r
-X
x
X
X
^
,x
y1
x"
X
-'
/
X
/
*
^
^
r
s
s' s
.//
»
x*"
X
x*^
x'
x'
^S
S
''
f1
'
s*
^
s
£
/
0.01
0.1
1.0
10
PLANT DESIGN FLOW
(MGD)
-------
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
o
o
~o
r~
>
O «2
a o
o
1
\
\\
\\
1
\
\
V
X
\
%
k
\
\
\
\
\
k \
y
A
\
\
\
\
\
V
\
\
V
X
1
- fc
\
s
\
X
X
\
V
T
>
\
\
\
V
1
\
t
s
^
x
\
^
\
T
V
1 1 1 1 1 1 1 I 1
0
-^ a
a>
1 C+
a>
tn
r co cu
-~J 3
(A
3 a>
a.
^
\
X
\
y \
\\
> \ \
\ \
\ \
\ \
X
\
pa o
ro
CO II
M a>
O T3 -P»
' CO
oo a> i en m
>£> la O O
CO ) <=
- M X 3>
N OO |
CD 1 1 ' i i
H-l O O
HO CT> Z
-n co
I-' XD
HO O
CTl ~J
cn !-
^
N
\
X,
v "*
\
V
s>
> 9
-H O) Z
< m o
o
m ,-s CD
"zo
o o r-
-n > O
r ^ o
C H >
D DO |-
O m
m^O
5 s z
> m H
z z >
OHO
r- -i
z 2
O *
-------
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
O
a
m
w
Q
O
z
m
m
O
m
O
TJ
-~
m '
I > O
> H o
o rn H
O
O
20
-------
S8-e
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
o
o
^ D
^ m
O «
0 O
I
\
\\
\\
>
\
\
1
\
\
V
\N
\\
\
\
k
\
N
\
\
\
\
\
<
i
\
\
\
\
\
\
>
\
\
\
\
\
V
\
^
fc_
»
^
\
\
>
V
>
\
^
\
<
^
N
V
>
s
(
\
\
o
I*
CJ1 O
OJ
1 C+
CU
C>0
73
C7> &>
01 3
U3
3 (V
IQ ..
f>
\
\
V
NN
\v
\^
>
\
..rr,^,
73
ro
II OO
o>
o 3
~o
IO i
O1 fD
OO
N
fT5
-n ii
H in
~-j
ro
^
y
w y
\'
\ \
\ 1
^
v
^S
LO
TAT 1ST
h 1
C~5
CO
1
\
v ^
\
\
1
c
1
*~
a
o
><
i-
c
^_
JC
~\
\
\
->
**,
n
j
4
_i
J
(Tl
^
D
0
00
a>
m
o
S
1 I
<_)
z
m
3)
CO > O
o -3-1 p-
OH
m 33 O
mo
> H" 2
z s i>
D m o
H z H
z -i O
O 33
-------
3.2.3.2 Results - Lagoon Plants
This section contains the results from the analyses of the first order cost
relationships between the design flow of a facility and its construction
cost. Facilities were classified by level of treatment, type of treatment
process, and method of effluent disposal. Further, only completely new
lagoon facilities were included.
Figures 3.65 through 3.70 contain the results obtained from these analyses.
The figures are divided into two general categories; stabilization ponds
(Figures 3.65, 3.66, 3.67) and aerated lagoons (Figures 3.68, 3.69, 3.70).
The cost derived using the regression line or the equation is an estimate
for the construction of a complete operational wastewater facility. The
cost includes all processes from the headworks to the effluent outfall line.
In addition, the costs for land treatment, such as spray irrigation
equipment and land purchase, are included (see Figures 3.67 and 3.70). The
only other costs that need to be considered are the various nonconstruction
costs and land costs for the lagoon sites.
The method of effluent disposal has been used to categorize the lagoon
plants. Three methods of disposal have been identified; discharge to
surface water, no discharge, and discharge to land treatment. The methods
of disposal are differentiated because they have the greatest impact on the
construction cost of a lagoon facility.
The type of sludge handling was not addressed in these analyses because only
lagoon plants without sludge handling are represented. Figure 3.69 presents
the results for aerated lagoons producing an effluent of better than
secondary quality. All the facilities represented in this figure employ
some method of filtration or screening to reliably produce the better
quality effluent.
There are several restrictions which apply to lagoon plants that the reader
should take into consideration. The use of lagoon facilities is generally
restricted to municipalities with small wastewater flows and sufficient
3-86
-------
vacant land to allow for the relatively large site required. The no
discharge option can only be exercised where either the climate allows for
efficient evaporation or the geology allows for percolation into the
groundwater system. The land treatment option can only be exercised where
sufficient land is available and the effluent does not contain any toxic
constituents.
Table 3.5 contains a summary of Figures 3.65 through 3.70 with associated
titles and cost equations.
3-87
-------
TABLE 3.5
SUMMARY FOR FIGURES 3.65 THROUGH 3.70
FIRST ORDER COSTS
LAGOON PLANTS
Figure
Number Title Cost Equation*
3.65 Stabilization Pond -Secondary Treatment fi n fi7
Discharge to Surface Water C = (1.33 x 10D)QU'0/
3.66 Stabilization Pond - No Discharge C = (1.02 x 106)Q0'64
3.67 Stabilization Pond - Discharge to Land z n ZA
Treatment C = (1.53 x 10b)Qu'^
3.68 Aerated Lagoon - Secondary Treatment - f, n fiQ
Discharge to Surface Water C = (2.27 x 100)QU'0*
3.69 Aerated Lagoon - Greater Than
Secondary Treatment - Discharge to /- n fi7
Surface Water C = (2.93 x 10b)Qu'D/
3.70 Aerated Lagoon - Discharge to Land * n KR
Treatment C -(2.57 x 10b)QU'bb
* C = Construction Cost (million dollars)
Q = Plant Design Flow (mgd)
3-88
-------
99'S
68-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS}
o
D O
O
c
c
p J
0
I.
D
3
_i.
-
I
1
\
\
1
\
^
\
\
\
0
i
\
\\
, \
\ \
\ \
\ \
1 \ \
^ \
^ >
»
l
i ^
V
V"
»
Vl
\
\
\ \
\ 1
\
\
1
k
V
\
)
V
y
\
\
i
i
V
V
1
\
\
\
\
\
\
\
\
\
J
c
<-
i
c
4-
U
If
a
\
^
^
\
>
i
a
5
3
I
L
V
,
\
\
,
1
a
CU
c+
o>
70
UJ
3
O
ro
l
1
\|
I
i
_L
3
[ J
ro
II 00
QJ
O 3
-a
CO '
O 05
OO
ro
-n
n
n
en
ro i1
0
\
\\
\ \
\ \
OO
1
1
OO
1
1 1
0
OO
<
X
t
c
c
<
s.
J.
~)
II
-^
1
jO
jO
<
3
CT
.^^
o
c
a
r
x:
c
3
c
i ;
)
i
I
n
D
>
H
^
z
1
C
I I
^i
D
a
0)
> 0 ^
3o co
o ^ _.
m § 5
H > CD
O 3D r-
TI rn Q
m ^ "^
m Q
|H|
~H
m
-------
oe-e
99'e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
p
b
o «2
D O
O
:>
i i i i inti
o
(- O
O)
i"
PO
CX> Q>
t* 3
UD
3 ro
to ..
a.
ro
II
o
CO
Q>
-o
ro
CO
_J.
fM
ro
PO
ro en
CO
J=
o
ro
ii X
CO
<=.
>
o o
cr> -z.
CO
m
g
co
O
o
z
a
-------
NEW STABILIZATION POND
DISCHARGE TO LAND TREATMENT
10-
co
i
vo
O
c
ID
m
CO
CO OC
o <
O Q
I- u.
O O
O
o
1.0-
0.1'
o.or
C = (1.
s
Samp
R2 = 0.
: D
: o.oi
M» **
^ **
^"-'""'
^
EQUATK
53 x 1(
TAT 1ST
le Sizi
81
ata Ra
- 0.4(
^ "*"
^
^"
.^-'
)N
)6)Q°
tcs
- 1
F =
nge:
D mgd
"
~***
."*""
.54
3
46
-*"
**^*
^ .0"
^^*
*.*'
**
*-^
^ **
1* *
,-*
^
^*
^ '
^
^ ^
^"^ ^**
-^**~*~r
**^*~ ^*"
.~~~-
*^*^*
0^
^^ ^
*~ ^ "~
_-^'
-*«*"^"
^^ *
-p|*
***"^
^
-.*
^^ J
^*-
^*
*^«
^ .
*»
,_.
-
0.01
0.1
PLANT DESIGN FLOW
(MGD)
1.0
-------
Z6-e
89's
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
o
m
O
Tl
I~
o
>
\ \ >
\\
V
\
\
\
\
\
V
\
\
k
V
A
^ "^
V
\
\
\
\
v
\
\
j
V
\
N
\
\
L
V
\
\
^
\
\
v
\
.
\
\
\
\
\
\
k
\
s
t
\
\
\
0
0
o>
O)
co
*^J O1
~" 03
3 0>
IQ ..
\
\
\
\
\ \
, \\
v \
\ \
\ \
^ -*
70
PO
II
0
t '
-n
II
ro
CO
y
\
V
» v
\ '
-0
3J
1
D 5
S> -
Sl -
D >-
C
II (J
[NO
CTl
H
>
H
H
T
H
-H
-)
T
II
ro
ro
X
o
c
r
c
<,
r
/.
<
h
C
j-> :
i
ri
o
T]
5
H
-H
'O
z.
H > 20
O 3D >
-< H
co m
c ^ a
3D 3°
m r-
m
m
m
33
-------
ee-e
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
b
D
m
O
O
1 V V
N \ \
\ \ \
^ \ '
V \
N \
\ \
\
N
^
V
\
y\
^
\N
\
\
\
v
\
V
A
s
V
\
\
\
V
\
V
\
>
\
N
\
\
\
N
b
^
\
^
\
\
\
^
\
k
\
\
>
S
V
k
1
s
V
1 I 1 1 1 1 1 I
o
oo c
Cu
1 H
OJ
O
7.
cr> 3
IQ
3 fD
IQ ..
Q.
X
\
\
^
\ \ A
^ \ N
N \ S
\ \ V
\\
\\
1 X
N
_ . »
STATISTICS
Sample Size =7
R2 = 0.91 F = 54
\
\
I \
\\
\ \
\ \
\ \
^
^
\
c~>
II
ro
i£> m
CO JO
X 1
i1 i i
0 O
CT) 'Z
Jd
O
CT>
-~J
D
CO
O
I
33
O
m
O
33
m
5
m
33
m
>
m
33
CO
c
33
Tl
>
o
m
I
m
33
O m
z a
rn
m
-------
176-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
o
^ D
s: m
O £2
o o
^ z
n
r
O
X
\ >
V
\
\
V
\
s
N
^
i
\
\
\
\
\
\
\
\
l_
\
N
\
""\
\
i
\
\
\
|
V
\
i
X""
Y
\
\
\
>
\
y
\
\
\
V
\
i
^
\
st
\
\
'V
^
\
N
\
V
\
\
\
\
r
\
>
\
i
\
S
s
o
o
co a
1 r+
CD
-P>
70
o eu
IQ
3 ft>
IQ ..
Q-
\
\
\
\
V
V N\
\s
V
x< V
N S
\ ]
--- V
A
?3
ro
II C/
OJ
0 3
-a
oo
CTi ft)
c/
N
(15
~n M
ii i-
CT)
CO
V
i,
N
N
V
S
\,
V
\
)
CO
J I
>
) i i
CO
1
o
CO
J
k
\
J
~>
II
^^v
Ni
LIT
~«J
X
1 »
n
cri
» -*
o
a
ai
00
IT
JC.
c.
3=
i
i
2
i
>
a
H
H
1
D
O)
O
o
m >
> m
Z°
d r-
_,>
S|
S
m
-------
3.3 SECOND ORDER COSTS
3.3.1 Introduction
Second order costs are the sum of monies paid by the owner to contractors
and suppliers for all labor and materials necessary to construct discrete
portions of the planned treatment facility. The sum of all second order
costs for a project is equivalent to the first order cost for the project.
Two types of second order costs can be identified for a project; unit
process costs and plant component costs. All unit process costs presented
in this section were derived from data for newly constructed unit processes
even though some of these processes were constructed as a part of a facility
modification rather than the construction of an entirely new plant. All
plant component costs presented were derived only from projects involving
the construction of an entirely new plant.
3.3.2 Definition of Terms
o Unit Process Cost. This is the sum of the costs for all labor and
materials necessary to construct an entire operational unit process.
In order to insure that costs for identical types of unit processes
were comparable, each process cost had to include an allowance for
the following components:
- Concrete
- Equipment
- Process Piping
- Steel
Also, any process which includes clarification as an integral part of
its operation, e.g., activated sludge, would have the cost of the
clarifier included in the unit process cost.
o Plant Component Cost. This is the lump sum cost for all labor and
materials necessary to complete one specialized construction task for
an entire facility. The following types of specialized tasks are
most commonly identified:
- Mobilization
- Site Preparation (sitework)
- Excavation
- Piling, Special Foundations, and Dewatering
- Electrical
3-95
-------
- Controls and Instrumentation
- Yard Piping
- Heating, Ventilation, and Air Conditioning
3.3.3 Presentation of Second Order Cost Curves
The results from the second order cost analyses are presented in three
sections as follows:
Section 3.3.3.1 - Results - Unit Processes and Unit Operations
Figures 3.71 through 3.106
Section 3.3.3.2 - Results - Mechanical Plant Component Costs
Figures 3.107 through 3.120
Section 3.3.3.3 - Results - Lagoon Plant Component Costs
Figures 3.121 through 3.123
Each section presents the relationship between the design flow of a facility
and the construction cost of its various processes and components. Section
3.3.3.1 presents this cost relationship for 36 commonly used unit processes
and unit operations. These costs are for newly constructed, complete unit
processes. Section 3.3.3.2 presents this cost relationship for 14 plant
components which are for mechanical plants only. Section 3.3.3.3 presents
this cost relationship for three plant components which are for lagoon
plants only.
All cost relationships presented in the following sections represent
national averages. Methods for adjusting the national average cost to a
specific area of the country are outlined in Section 4.0. Examples of how
to use these cost curves to develop estimates are also presented. All
national average costs are in third quarter 1982 Kansas City/St. Joseph,
Missouri dollars.
3.3.3.1 Results - Unit Processes
This section contains the results from the analyses of the second order cost
relationships between the design flow of a treatment plant and the
construction cost for the individual unit processes. Both mechanical plants
3-96
-------
and lagoon facilities are represented. The only restriction placed on the
data used in these analyses was that the data were for newly constructed,
complete unit processes.
The regression line and the cost equation derived from the line represent
the predicted construction costs for the unit process or unit operation
identified in the title. The cost derived using the line or equation is an
estimate for the construction of a complete operational process. The cost
includes all necessary equipment, materials, and labor. In addition, if a
process normally includes clarification as an integral part of the process,
the clarifier cost is included. The only additional costs that need to be
considered are the various nonconstruction costs.
Figure 3.75 contains the cost relationship between facility design flow and
the cost for preliminary treatment. Preliminary treatment refers to a
plant's headworks excluding influent pumping. Preliminary treatment usually
includes bar screens, grit removal, and comminution.
Figure 3.82 illustrates the cost relationship for all types of activated
sludge processes. This relationship was developed from the summation of
conventional, contact stabilization, and extended aeration unit processes.
As mentioned previously, the cost for secondary clarification is included in
the unit process cost.
Figure 3.91 illustrates the cost relationship developed for all types of
effluent filtrations. Included are filters using sand, mixed media, and
other unidentified filter media.
Figure 3.92 represents all chemical addition processes used at a facility,
exclusive of chlorine addition. Included are alum, lime, and polymer
additions.
Figure 3.94 represents the summation of all land treatment processes.
Included are rapid infiltration ponds and spray irrigation networks.
3-97
-------
Figure 3.101 represents the summation of all mechanical sludge dewatering
processes including vacuum filters and filter presses.
Figure 3.103, Land Application of Liquid Sludge, includes the cost for
storage facilities, as well as the application vehicle.
Table 3.6 contains a summary of Figures 3.71 through 3.106 with associated
titles and cost equations.
3-98
-------
TABLE 3.6
SUMMARY FOR FIGURES 3.71 THROUGH 3.106
SECOND ORDER COSTS
UNIT PROCESSES AND UNIT OPERATIONS
Figure
Number Title Cost Equation*
3.71 Influent Pumping C = (1.63 x 105)Q0<59
3.72 Bar Screening C = (3.99 x 104)Q°'59
3.73 Grit Removal C = (4.94 x 104)Q°'34
3.74 Comminution C = (2.46 x 104)Q°'38
3.75 Preliminary Treatment C = (7.84 x 104)Q°'77
3.76 Flow Equalization C = (1.17 x 105)Q°'42
3.77 Primary Sedimentation C = (1.60 x 105)Q°'65
3.78 Trickling Filter C = (5.27 x 105)Q°'44
3.79 Conventional Activated Sludge C = (6.54 x 105)Q°*72
3.80 Contact Stabilization C = (5.95 x 105)Q°'66
3.81 Extended Aeration C = (6.12 x 105)Q0>54
3.82 Activated Sludge (All Types) C = (6.49 x 105)Q°'68
3.83 Separate Stage Biological Nitrification C = (3.56 x 105)Q
3.84 Oxidation Ditch C = (5.96 x 105)Q°'52
3.85 Rotating Biological Contactor C = (7.17 x 105)Q°'75
3.86 Stabilization Pond C = (9.12 x 105)Q°'58
3.87 Aerated Lagoon C = (9.31 x 105)Q°'66
3.88 Secondary Microscreening C = (1.55 x 105)Q°'59
3.89 Sand Filtration C = (3.15 x 105)Q0>55
3.90 Mixed Media Filtration C = (2.75 x 105)Q°'63
* C = Process Construction Cost (million dollars)
Q = Plant Design Flow (mgd)
3-99
-------
TABLE 3.6 (Concluded)
Figure
Number Title Cost Equation
3.91 Filtration (All Types) C = (2.97 x 105)Q°'63
3.92 Chemical Additions C = (5.78 x 104)Q°'93
3.93 Chlorination for Disinfection C = (8.30 x 104)Q°'59
3.94 Land Treatment of Secondary Effluent C = (5.67 x 105)Q°'73
3.95 Post Aeration C = (4.15 x 104)Q°'91
3.96 Effluent Outfall Pumping C = (8.48 x 104)Q°'55
3.97 Effluent Outfall Diffuser C = (2.75 x 104)Q°'59
3.98 Aerobic Digestion C = (2.46 x 105)Q°'87
3.99 Anaerobic Digestion C = (3.40 x 105)Q°'76
3.100 Sludge Drying C = (9.62 x 104)Q°'69
3.101 Mechanical Sludge Dewatering C = (1.75 x 105)Q°'58
3.102 Gravity Thickening C = (9.09 x 104)Q°'66
3.103 Land Application of Liquid Sludge C = (5.09 x 104)Q°'48
3.104 Control/Laboratory/Maintenance Building C = (2.01 x 105)Q°'54
3.105 Effluent Outfall to Nonocean Surface 7
Water C = (1.00 x 10b)Qu'/b
3.106 Effluent Outfall to Ocean C = (6.43 x 105)Q°'95
3-100
-------
ire 3Hnoid
loi-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
^ m
O oo
P. O
O
:>
4
\
\\
\
v
>
1
\
\
\
V
\
V
I
1
>
t
-X -
(
\ "
1
k \
\ \
_ ^..
'
Ji
in '
ft \
' | \ \
\ \
-V
v\
i\^
1 V
\
1
j 1
c
c
r\
i
<-
c
Q
i.
\
\
\
\
\
\
3
3
3 O
OJ
CD
^
C"
3 T
3 tQ
m
V
t
V
>
\
?D
r\
M
o
oo
Tl
II
01
en
Oo
\ ~ " "
\
i \
f!
O
3
CO
QJ
3
TD CO
CO 11
N 1
(T) i i
O
II CO
o
0
J
r>
II
-s
1 »
CT>
X
i »
o
0
. "
o
r~
o
m
cr
3>
i i
o
T "Z.
5
T
4.
C
o o
-------
ZOI-E
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
p
b
s. m
s§
Tl
i
O
O
^
1
\
\
X
"T
1
\
X
\
\
1
\
\
A . }
\
1
'
O
i
1
I
\
\
1 i
1 \
L \
A\
l\\
\
t
X
^
\
^
X
X
L
\
V
1
V
\
^
\
i
>
v
)
V
I
V
v
\ \
\
\ \
k
i
i
j
i-4-H
t
I 1
i
t
1 X
\
^ X
> V \
\ ^
\
\
\
i
CD
0
1
CTl
CO
(-)
m
Q.
\
\
CU
rt-
TO
d>
-5
O3
I
c
73
ro
ii
O
---4
CO
II
--J
3
oo
CU
1 1
ro ;>
CO i i
_i. CO
ISI 1
ro > i
o
rv>
h-
r
j:
I
5
~-s
O
D
D
-J
>
*»
-)
O
'
U3
I 1
m
JO
-£>
i i
o
Li.
o
HI
m
O
m
m
m
-------
NEW UNIT OPERATION
GRIT REMOVAL
CO
o
co
O
C
X
m
CO
-x|
CO
co oc
O <
O Q
I- LL
O O
N
co O
2 3
O -i
o ^
1.0:
0.01
0.001
EQUATION
C = (4.94 x 104)Q°-34
STATISTICS
Sample Size = 27
R2 = 0.52 F = 28
Data Range:
0.14 - 15.00 mgd
0.01
PLANT DESIGN FLOW
CMGD:)
-------
aunou
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
s. m
!|
Tl
O
z
m
O
O C
m
i
o
-------
9Z/S 3dDOId
90I-E
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
o
p
b
m
Q GO
p
b
o
1
\
%
\
\
\
1
\
1
\
\
\
\
\
\
\
\
\
L . .
\
^
I
\
\
\
\
\
V
\
\
1
^
\
\
\
i.
\
k
- \
\
\
\
\
1
\
^
\
\
\
i
\
\
\
\
\
^
\
^
,
\
\
i
i
i
i
\
^
V
\-
i
i
\
\
*
^
\
\
V '
M
0
o
I
01
rr
a
a
=3
U3
Q.
*
-v
\
\
\
\
r
L-
DJ
rf
T
EU
-1
to
S
\
V
\
>
i
\
i
n
?.
i
c
a
a
-T
1
h-
t
y
i
TT
3
f\1
3
I
->
1
j
\
«
1
tt '
00
Cu
a oo
-H
fD 3>
oo i i
-" CO
N t
TO i i
O
^J
O
V
\^
(
^
(
»
(
X
-)
II
^
~~l
Xi
F*
X
1
)
-p
o
c
*
**.
M
r
X
»
r
> :
5
J
h*
n
z>
>
H
i
>
z.
1
ttt
'
1
"0
3D
m
m
II
H -0
DO m
m 3J
-------
9oi-e
grs
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
T)
O w
25
O
Tl ^
i- m
O :>
Sc
m z
O H
c _
5^i
25
-------
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
o
p
b
p
b
S rn
O co
25
V
1
1
^ \
, \
\ '
» \
\
>
.rV r
V
S
\
V
i
i
\
\
v
\
\
V
\
\
\
\
_i
1
L- A
~~ c
ft_- 1
1
\
». ^ .
\ ^
^
\
\
\
>
\ ' ' ~"\ ~
\
, : ,,-,-V-
1 \
V
\
A
\
\
\
t
' ' \~"
\
\
i i
o
p '
01
1
01
CTl
O
i )
=}
UD
V
\
\
]
\
\
V
\
o
CU
<-<-
u>
pa
3
n
n>
\
\
L..
\
'
70
rc
n
o
01
on
~n
II
«D
i '
N
i
\
\
\y
^
II
OO
fa
3
73 L/~>
> 1
It) 3=
1
CO i i
-" CO
fD i i
O
II CO
en
11
L
\
1
\, I 1
r
i
^~
H
c
c
><
c
«^_
r
,.1
->
~x
J
r>
D
D
fn
.^*
~i
O
01
01
.1
n
JC.
L.
3
c
4
T
^
H
3
^
441
-o
DO Z
O) H
So
=! O
O z
-------
SOT-e
sre
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
Q GO
P. O
O
-------
NEW UNIT PROCESS
CONVENTIONAL ACTIVATED SLUDGE
CO
o
to
Q
C
DO
m
CO
ki
CO
co o:
O <
t- u.
O O
co O
z H
o _i
o ^
1.0
0.1
0.01
0.001
^x-""
+"''
01
rf"
... ^
^
''
*
*'
*^
~+
^
r
*>
,*
X
*
f
f
J
0.
-^
''~
*
y^Z.
' X"-"--
1
f"
^
-T*-
y
**
,«- *
**
*><
&*
,^
+ '
+ *
f
^
1
--"
^^^
- _^*e-
,
^^-
^ j- __
^
E(
C = (6.5
ST/
Samp'
R n f
r\ U. C
Da
0.02
.0
^
^^
^
^'
*"
RATION
54 x 105
\TISTICS
e Size
9 F
ta Rang
- 56.00
**'
^
**
)Q(
e:
me
r*
X
4
D.72
56
123
Id
^
4 '
1 I i i i 1 1
10
PLANT DESIGN FLOW
CMGD)
-------
NEW UNIT PROCESS
CONTACT STABILIZATION
O
C
30
m
CO
bo
o
h- <»
s ^
Z O
O O
I- u.
o o
co O
z I]
O _i
o ^
1.0
0.1
0.01
0.001
j E
i C = (5.9
ST
Samp]
: R2 " -
; c
^
.»* ~+
^^^ t.
<*'"
-- u./
Da
1.14
T>~?
^^
+ .
-~
QUATION
5 x 105)Q
ATISTICS
e Size =
7 F
ta Range:
- 1.20 mg
**
?*"
>
,s
f
r"1
0
9
d
(<
6
2'
^
\ ,. - . i
^^"'
^.-
'"
^
^~
*J
s-
''
f
^
C"*"
^. "
r^* ^m
* j^**
^ r»lT
--;
^^*
^
-
<-
+
'
*
0.01
0.1
1.0
10
PLANT DESIGN FLOW
CMGD)
-------
iii-e
i.8'e nanou
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
Tl
0
m
o
D
0
m
m
> ~
m 5
ID O
> o
-i m
O ^
^ co
-------
28'e aanou
CONSTRUCTION COST
(MILLIONS OF DOLLARS]
p
b
o
p
b
p
b
m
O co
°. O
-4~-t-
\
\
i
.
\
\
V
Ik
k
1
i
\
V
,y
< \
. y_
\
V-
;A
\
\
. ..^
\
.\,
\
r
t~
-V-
\
v-
0
ro c
Cu
" i ^
O)
01
CTl TC
CD
C3tQ
IQ
. CL
\
\
\
\
>""
\
--^
i
\
\
\
]
73
ro
CW
0 3
} -o
~-J 1
-p> n>
CO
i i.
M
rt>
~n
ii
M
UD
ro i i
.p*
~-j
^
' ' ' (
A
. V
\ \
, \
^ \
\
\
\
^
. .^.
u-
33
i i
O"
i
» i
C~)
CO
\
\
\
n
u
0-)
p^
J2
X
l >
C3
C
XZ3
C
o
-V - -
1
m
O
cr
3>
O
n
3
3
o
H
Iz
m rn
o ^
O TJ
m 3D
^ O
> O
£ m
n 05
H CO
m
co
-------
NEW UNIT PROCESS
SEPARATE STAGE BIOLOGICAL NITRIFICATION
10=*:
O
c
33
m
CO
bo
CO
co oc
O <
0
I- u.
O O
Is
co O
2 3
O -J
o ^
1.0= :
0.1
0.01;
0.001'
- c =
EQUATION
(3.56 x 105)Q°
.95
STATISTICS
L Sample Size - 6 ^\
m
0
X
^s^ ^
*~ ^x
X*"
= 0.96 F -
Data Range:
.38 - 143.000 m
x
x
r
x'
X
X5
^'
X
^
"
4
X"
r
»
97
gd
t
*
w
«
X
r~' *+
.^r
^X" ^X
^
***
-**
_^
^
X
*'
s
j
'
r
X
-'
.
>
-
J
+
^X' ,
^ir
'"
x-'
^
s
'
s
_'
^
'
'
'
*
0.01
0.1
1.0
10
PLANT DESIGN FLOW
(MGD)
-------
atmou
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
m
O (f>
P. o
O
O m
><
0
z "0
DD
g o
-H O
O m
I CO
CO
-------
38'e 3dnoid
gn-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
p
b
T)
£ O
^. m
O GO
O O
T\
O
3
A
O
\
\
N
\
\
\
\
t
\
\
1
\
\
\
^
*
s
L
<
'
'->
\
V
V
Y
\
\
\
\\
\
\
O O
1 1 1 1 1 111 1 1 1 1 1111
i
\
\,
1
\
^
^
O
o
01
o
o
3
id
Q.
N
\
>
*
ro
II OO
o>
O 3 oo
CU 00 ' 3a
<-+ oo ro i
Ql > I
oo oo
CU N i I
3 ro c~5
u3 -n oo
ro n
n
r\3
I1 ~-4
ro
CTl
\
1
\
'ij
1
N
\
\ \
, \
' \
\ '
\\
\ \
\
\
I \
^
\
\
\
\
\
II
-J
X
t >
CD
on
XD
o
tn
\
i
\
^
rn
cr
I
O
|>(]fl(]]1
O
I
o z
5S
si
O H
O T
O co
z co
o
H
O
33
-------
NEW UNIT PROCESS
STABILIZATION POND
O
C
J3
m
bo
CD
03 DC
o <
O Q
f- u-
O O
O
o
Kir
in:
0.1 =
).01 =
0.
«»
r-**^
w**Z
»""
01
.*"'
~£j
*^
ir=
«*
^'
x-
IBMM
,.»
.-
,«
»
»
«'
P
c
- -- ---
'-' ^^
» **^ ^-^
).1
7~^
^~* 1H
«-^*J
*
.-
»*
z
^
^^
" "*" ^ ^
EQ
C - (9 12
STA
Sample
R - 0 78
*^*
7^
5»^
w^^
*»
.**'
UATION
* ioV-
TISTICS
Size -
r -
32
- i
Data Range:
0.01 - 1.84 mgd
1.0
,^
^
^
^
58
07
1 III!
m *
,
10
PLANT DESIGN FLOW
CMGD)
-------
ZII-E
Z8'C 3 UP 01
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
c
c
c
O ~
.
O
TJ
r~
z.
H
S m
2p
z
1 1
r~
0
§
M
3
5
3
^
O
O
00
1
CO
0
UD
O.
0
fli
OJ
70
3
CQ
C
a>
oo
m
n
i
i "
_» ^
o
_i
O
0
c
,-
i.
00
1 C.
> *
t 1 >
00
i i C
o
X
->
1
I*
D
AJ
t
<
D
U1
D
r->
m
CTl
*
V
m
0
I
0
I
t
\ L
^
p
l
k
\
It i
\\
\
\\
-VI
V
\
\
1
t
-V
V
\
t"
\
\
ft
i
>
\
_ J _u
-1
TTT
b
1
I
y \
'\\
*
N
>
^
\
'
V
V
\
J
o
^ -^
^
mg
^o <
m E
O_i
r~ "D
^ ID
O O
0 0
O rn
i
f
-------
sn-e
88'C BdflOIJ
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
o
p
b
p
b
^ m
§|
-n
(
O
\
444444
o
i1
cr> i
IN3
O 3
CDlQ
O)
UD
CL
70
ro
n
o
UD
OJ
a
fD
CO
ISI
a>
CO
CO
o
CO
o
II
ai
en
-o
II
CJ1
o
en
o
en
CO
m
O
8S
O m
CO DO
m
m
-------
6ii-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
- O
^ m
O GO
2 5
o
\
N
\
N
\
\
i
^
\
\
\
y
\
t
\
\
\
v
\
^
\
\
y
V
k
\
1
\
\
I
\
N
k
v
\
<
V
<
k
i
\
k
S
\
i
0
o
CO
ro
CD
i Z
\ °-
}
\N
, \'
\ \
A ^
V
\
\
>
^
1 J
yo
i\
n
0
0
0) OO
r+ -P>
0)
^c
o>
3
U 1 1
n>
n
t>
\
\
\
i
\
\
V
*
\
N
>
GO
3
-a
CD
OO
N
ro
n
OO
00
t
\
\
1
k
\
\
N
OO
ja
t H
CO
-H
i i
O
CO
%
^
^
\
\
k
I
I
c
c
h
c
^
c
X.
Ji.
b
\
\
\
"
k
1
1
~)
II
jj
1
n
<
i
Z)
"
_J
c:
*
r T
\
\
'
\
^
n
r
C
h-
V
\
\
\
T
T
a
H
-i
D
1
\
I
1
1
V
I
z c
a z
T H
-------
NEW UNIT OPERATION
MIXED MEDIA FILTRATION
1.0'
CO
ro
o
O
C
33
m
CO
'<£>
o
O <
0 ll
z o
O Q
o o
z>
cr w
H- ^
co O
§^
o -
0.1
0.01
0.01
p
EQUATION
(2.75 x 105)Q°'
STATISTICS
bJ
Sample Size = 15
R2
X
' .
= 0.82 F -
Data Range:
0.04 - 30.00 mgd
4
s
9
/
s
^
^
tf-
>
x
(
x
f
60
X'
.f
.s
y^
( ^
."
I
f
+
''
/
f
f
w
/
f
?
s
s^
,'
^/^
X
^
jf
/
/
_^
s
s
*
^
*
'
f
^
,
'
0.1
1.0
10
PLANT DESIGN FLOW
[MGD]
-------
IZI-E
CONSTRUCTION COST
[MILLIONS OF DOLLARS]
p
o
o
O
m
0
p
b
\ \
\
\
^
N
\
\
v
\
\
N
\
^
^
\
\
\
<
\
v
V
^
s
\
\
^
VL
1|
I
\
i
k
L
\
^
t
\
\
\
\
I
s
\
1
v
1
o
CD
CO
I
ro
00
«,.XM °-
\
\
\
\
\
^ \
\\
s \
\ \
\
sv
v
\
1
73
rx
M
CD
O
aj <*D
-h 0
a>
70
Hj
3
T>
cn
--J
oo
\
A
1
t
\
X
x
<
N
\
\
^
1
5
00
CD
a
ro
oo
ro
u
CTl
-1^
^
\
^
\
%
OO
1
1=
1 1
oo
-H
o
"^
\
\
V
V
<
N
c
s*
r
t
>
c
^.
x.
S
\
\
^
>
-5
*
o
D
-J
<
15
_^
_>
(1
CTl
OO
s
s
"
n
jC
c
T
I
<
^
1
S
1
Ji
n
3
?
H
H
>
1
V
k
'
1
1
\
\
m
33
-------
zzi-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
o
p
b
o
m
CD CO
O
p
b
\
\
fc
\
\
\
1
\
1
\
1
\
T
>
h
\
i
- . S
i
* . -
i
j
\
^
\
\
\
%
V
4
\
y
\
V
\
j
i
\
\
\
\
k
\
»
V
\
\
-
\
\
\
\
\
y
i
>
\
V
i
1
\
\
1
\
A
\
^
N
l
\
\
^
c
C
B
<~
a
^
J ?
n
5tC
\
>
v
r
n
3
>
(
i
3
)
1
N
^
[j|
rrr
70
t\
O
tn
CD
n
ro
ro
\
i
\
m i
3
CU
TD 00
0> ~f
CO 11
-J. OO
N 1
c~>
ro
-P*
\
\
ITL'A
n
Uu
o
II
^^
en
^j
oo
X
1 »
, )
-I
0
V
C
M
^
o
l
t-H
f->
:z
TT
1
m
o c
> z
15
H O
-------
CG'S 3HDOU
ezi-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
c
c
c
O ~\
T)
r*
z
S m
O co
P 0
^ z
TI
O
<
L "
o ~
c-> -
1
\
1
o
O
\
\\
I 1
A
V \
i V
J 1 J
\
\
\
\
1
\
t
. '
L
\
I
\
I
\
L
I
\
\
i
\
I
I
>
1
L
^ "
\
\
f
1
i
p
t
X
1 \
\
\\
\\
\\
T
\
\
1
i
o
o
1 »
0
o
3
UJ
\
V
\
\
I
^}
11
:u
70
it
3
rr>
i
y
'
U
I
i
L
V
,111
3D
ro
n
DO
II
UD
UD
O
II 1
CO
a>
a co
I
CO il
-> CO
N 1
(0 i i
II CO
1 1
c~
II
,
c*
c
X
t
c
*^_
JC
)
i
)
J
3
*f
3
cn
11
m
c:
i
i i
o
o
(ii
O
I
DO
2^ ^_
> m
=! ^
2
n H
§5
O
HI - rr,
m
ZC/5
m
0
H
O
Z
-------
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
o
p
b
O 00
O
L
\
\
\
X
\
\
\
\
^
1
\
r
\
\
i
*
L
Ju .
1
\
I
1
\
\
\
1
\
,\
>
\
\
\
" r
\
\
1
\
\
Y
T
_>
0
o
1"
1
on
CD
Q
O
1
\
\
y
\
-
V
\
\
LJ
c
U
c~
a
7
a
i
\
^
v
L
c
D .
> ^
t- C
3
-
C
C
V
\
r-
\.,
y
^
i
\
\
III
D
ro
1 CO
cu
D 3
T3
-J i
c ro
co <
1.
a>
n n
o
n
o
S.
rrV-
\
\
1 \
\
\
\
1
' i' '
\\\\ \
s>
H
1=
H
t
jO
H
~)
1
\
>
\
<
^
C
c
c
V.
J.
\
~)
k
Jl
Tl
vj
<
D
_-*
_J
O
T
j
X
(
^
J
J
>
-n
z>
>
-H
i
Z
a
-H
DO
m
m
m
_ £
H c
o ?
m -o
O m
O 3D
O IJ
> O
3) Z
<
m
c
m
-------
SZT-E
96'£
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
o
p
b
m
O 69
0 O
O
p
b
b
\
\
\
v. \
x
\>
\
1
t
N
V
1
k
\
1
\
\
1
\
\
\
\
\
\
\
\
\
1
\
\
\
\
\
i
I
\
\ \
k
,v
A
\x
A
v
^
\
X
1
k
\
>
}
\
\
>
I
\
^
L
\
1
\
\
^
\
\
\
\
\
>
^
y
S
y
- --
i
t
\
» \
k \
Vs
v\
1 "
V
\
^
i .--,----
o
o
(JO
i
en
o
( i
o
=3
IQ
CL
i
A
\
"^
\
\
,\
i
UJ
QJ
C+
~n
CU
-^
tQ
.
"\
'
L
\
II
70
ro
n
0
to
en
~n
il
i '
-P>
U1
111
GO
CU
3
(_> O")
i
(t> 3=
CO i i
' CO
N |
O
IT)
C
*~
-1
H
c
>
l-
r
X
T
1
^
i»
_i
n
<
_1
~i
-P>
D
O
t '
r
x:
3
t-
r
^
I
n
D
^
H
-H
->
^
III
'
m
>
m o
3D -D
> m
-------
96'e
9ZI-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
^ m
CD 00
m
T|
T|
r~ z
c m
H c
H o
r- m
i|
15
o
-------
NEW UNIT OPERATION
EFFLUENT OUTFALL DIFFUSER
CO
I
O
C
0)
m
CO
CO
V) CE
o <
O D
h- u-
O O
O
o
10 =
1
!
I
Oil
0.01:
0.
1
1
C =
_"'
f^ ^-^**
I,***
01
E
(2-
ST
Samp
.
D
0.04
_^'
.^
^^
^^4
QUATION
75 x 104
ATISTIC'
le Size
95
ata Ram
- 9.10
^+
«^
*"'
^
^^*
[}(
F
je
m
^
,0.
5
gc
_
I
f
m
(
5
5
).
9 "
^~~
^ ""
i
V-*
«
-^
<
**
<~
.+
e
^
_
«
'
^
^
rf*
J
*
1.
^
^*
^^^
0
^^
^^^
^^^
^~~
t
^*
^
jJ
^
^
,-
1C
PLANT DESIGN FLOW
CMGD]
-------
86'S
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
o
p
b
T>
O co
P. O
O
p
b
V
>
\
>
\ k
^
k 1
\
1
V
v\
\v
\\
^ ^
V
\
\
1
\
\
V
\
V
>
y
V
L
\
h
\
\
\
\
i
\
1
S i
\
\ \
\
\
V
I V n
V \
1 \\
A
A
\ *
\ .
v
1
J
o
i >
-F* C
0
I r
-~J
CTl 0
n -
tc
n
Q.
pA
v
A
\
\
J
+
n
D
1
3
>
N
\
\
1
^
i
c
u
IN
n
1
r
c
k
\
>
i
D
rx>
c
Q
D E
3 -
o n
c
r-
n
n
l
p
O -1
n
t
\
' < -
S '<
y
N ^
\
\
r>
)
3
- t
5 3>
O i i
J- 00
J 1
3 i i
C~5
O
1
| --4, .
1 \L
N *
JM 1
III v M
c~>
II
PO
-P>
01
X
) '
0
c
,0
c
^
Tl
D
--J
-n
0
t-
-H
i
~>
z
m m
133 ^
O ^
E c
o ?
g ^
o 3
m o
^o
12 m
O co
z co
-------
66'£
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
b
p
b
m
O en
0 O
O
3
A
1
O
\ 1
\ \
\ \
1 \
\ >
\
V
\
\
\
1
v
\
^
N
I
'
V
>
.
1
1
s
1
V
1
1
X
\
t
L
J
^
\
\
1
i
L
\
\
1 \
V\
i \
k \
\ \
V
\
»
*
c
-->.
r\
i
t*
c
Q
\
>
v
\
\
I
*
\
N
3
J
5 C
a
c
O
J
O
5(T
n
\
V
\
0
)
1-
1
)
1
1
\
\
\
II
<-)
co
o
~n
n
"^
V
1
\
\
\
1
1 "
L
'
O
CO
fu
3
a co
i
CO i i
M 1
O
II CO
1 >
J
1
V
\
\ \
, x
V 1
\
\
, \
V \
'^
\
V
m
m ^
O c
o H
m Q
z! co
O co
z
-------
oore
oei-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS]
0
b
o
p ~j*
o -
T)
r~
2
H
2 m
Of/} ~
2 5
r~
o
^
o -
\
\
\
\ L
k
O
b
\
N
| \
\
L ^
\JL
\
\\
\\
\ \
\
\
\
\
\
\
\
V
V
\
L . .
t
\
u"
p
,
N
Jf
n^~~
\\ \
\ \
\ \
\ \
v ^
b
o
0
&>
1 rh
Cu
1
"73
on OJ
O 13
tQ
3 ro
co n> -H
h-H
CO CO
- 1
N l l
fD 0
Tl CO
II
II
-pi t «
O
T'
c~>
II
CTl
ro
X
1 '
o
/o
en
<£>
F EQUATION
0
m
r~
c c
D-y
0 H
m
33 m
_ ^
O H
i: o
z
-------
let-e
tore
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
o
o
p
o
rn
CO
O
vi
O
O
\
V
W44
o
I
70
3
LQ
CD
3
T3
rsi
(D
co
Co
o
Co
UD
Q.
cn
-P>
ro
O
o
ii
~-j m
cn ,0
cn
cn
00
^
\
\
V
m
O
I
>
m
r- C
w5
r- H
Q
m 3
o >
m ij
^ O
m
z
O
-------
2EI-E
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
TJ
o
m
cr>
O
o z
ID m
> ^
I O
2m
3D
O
-------
core aunou
eei-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
m
O co
0 O
Z
0
>
"U
-o z
i- m
55
c
D
O
m
-------
aanou
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
s. m
O GO
D o
O
O
o
CO
°s
DO 2
S^
o o
33 O
-< Z
£3
> 33
m:
z o
> Z
o
m
03
c
r~
D
Z
0
-------
gore
sei-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
<
<
<
0
o .
T>
r~
>
i
S m
Ocn
2|
Z_
r-
o
^
D
D
_A
\
\
\
\
\
1
\
\
X
V
'
i
*
o
b
\
V
\
N
*
V
\
\
\
V
1
V ,
\
\
'V
*j
>
*
\
^
\
^
[
y
\
\
N
\
- \
\
\
^
i
\
»
p
\
\
\
\
\
1
k
\
k
[\
c
c
t1
s*
CA.
C
3
a
\
\
V
c
CU
rl
"T
>(TJ
lU
t
\
7
T
\
-i
73
r\.
n
CD
cn
cr>
~n
n
i"
CO
CTi
V
«
b
)
CO
-a
' CO
0) -H
CO 1
1. 1 1
N CO
fl> 1
II O
CO
1 k
o
00
y
v
\
\
<
*
,1
->
**»
*
0
o
X
__l
1
u
"-(
o
m
XD
i
i i
T "Z.
3
J
1
0
* m
-n
-n
i
C
m
H
O
C
H
T|
> z
r~ FT?
r^ m
r- ^
II oi
z H
O o
O m
O 3D
m ^
> H
ni z: o
c
33
ffl 5
III m
<
>
H
m
-------
gore ganoid
9Ei-e
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
b
T>
|
>
-z.
-I
^ m
P O
o
:>
o
J
-t.
\
1
\
\
k
1
I
1
^
l_>
1
\
\
k
*
\
\
V
^
<
I
>
»
\
1
\
\
\
^
\
t
^
L
y
t
i
t
i
\
t
\
\
\
i
«^
k
A
\
N
1
\
\
i
\
\
\
*
\
\
\
^
\
\
<
o
o
co
i
o
o
n
3
c
1- C
J
a
i
3
3
)
r
\
i
v
y
i
N
b
0
ro
1 OO
&>
D 3
-a
n '
» ro
_^.
(SI
n>
n n
i i
^
S3
\
i
t
\
>
\
1
\
i
\
\
\
\
T
\
j~i
I
.13
i 1
1
1 1
O
L/>
k
\
\
\
\
(
s>
*+
\
y
\
\
-)
II
1
31
4-»
^0
__1
0
f
*
r
»s
t
\
V
r
X
c
3
t-
r
M
n
i
D
V
V.
o
n
D
>
i
->
S
'
1
m
-n
n
r~
c z
m m
""
3
o
m
-------
3.3.3.2 Results - Mechanical Plant Component Costs
This section contains the results from the analyses of the second order cost
relationships between the design flow of a treatment plant and the
construction cost for its general components. Data for these analyses were
obtained from newly constructed mechanical plants.
The regression line and the cost equation derived from the line represent
the predicted cost for the component identified in the title. The cost
derived using the line or equation is an estimate which contains allowances
for all labor, equipment, and materials necessary to complete all tasks
associated with the component. For example, Figure 3.110 presents the
relationship for excavation. The cost estimated using the curve or equation
will be an estimate for all excavation necessary at the facility site. The
reader should remember to include the additional costs to provide for the
various nonconstruction cost categories.
Table 3.7 contains a summary of Figures 3.107 through 3.120 with associated
titles and cost equations.
3-137
-------
TABLE 3.7
SUMMARY FOR FIGURES 3.107 THROUGH 3.120
SECOND ORDER COSTS
MECHANICAL PLANT COMPONENT COSTS
Figure
Number Title Cost Equation*
3.107 Mobilization C = (7.13 x 104)Q°'74
3.108 Sitework Including Excavation C = (2.32 x 105)Q°'67
3.109 Sitework Without Excavation C = (1.37 x 105)Q°*63
3.110 Excavation C = (1.53 x 105)Q°'69
3.111 Pilings, Special Foundations,
Dewatering C = (8.56 x 104)Q°'78
3.112 Electrical C = (2.09 x 105)Q°'77
3.113 Controls and Instrumentation C = (1.01 x 105)Q°'86
3.114 All Piping C = (3.12 x 105)Q°'86
3.115 Yard Piping C = (1.58 x 105)Q°'73
3.116 Process Piping C = (1.92 x 105)Q°'76
3.117 Equipment C = (7.56 x 105)Q°'75
3.118 Concrete C - (5.86 x 105)Q°'83
3.119 Steel C = (9.18 x 104)Q°'89
3.120 Heating, Ventilation, and Air
Conditioning C = (7.49 x 104)QU'86
* C = Component Construction Cost (million dollars)
Q = Plant Design Flow (mgd)
3-138
-------
eei-e
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
b
o
p
b
p
b
m
O GO
O
"i
\
\
>
\
y
V
\
\
\
\
T
\
\
\
\
\
\
\
\
^
\
\
\
"A
\ \
, \
\
L *
\
\\
"\
\
\
"»
\
i
\
\
\
\
\
V
\
\
\
\
V
\
>
1
\
k
*
.
1
\
\
1
%
\"
\ \
. N
, S
1 \
\ >
1A
\ \
"%
\
A
k
^
, ----- \
I
C3
O
OJ
IV3
n
o
3
a.
\
\
::\
\
\
\
^
^.
I
c
o>
Qi
fa
3
tQ
rr>
\
\
L
1.
Jk
i
S
III
73
ro
1!
C3
00
-n
ii
CO
--j
CJ1
,
k
,
II
CO
Cu
a co
' i
1
CO i i
' CO
M |
ro i i
o
II CO
~J
1
c
X-
h
h
<
k.
*
~>
i
~H
~J
__l
<
__t
13
4-
'
=D
r~
r
t
c
h
C
» .
1
4
n
i
5
-\
i
D
tL
ill
m
O
Z
O
r~
S -o
O i-
ro >
F z
N-
> o
=! o
o s
2 "0
O
z
m
O
a
-------
MECHANICAL PLANT COMPONENT COST
SITEWORK INCLUDING EXCAVATION
-p.
o
O
C
33
m
CO
o
oo
CO <
*.-
--
^}
"
*
"
, *
0.01
0.1
1.0
10
PLANT DESIGN FLOW
(MGD)
-------
eore aanou
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
o
p
b
m
O
D
\t
o
o
b
H
*
\
+-H+
ro
CO
QJ
o
ro a
OJ
i c+
CU
ro 73
01
o 3
Old
ro
O
H
X
o
ij
0
o
o
m
O
CO
-------
ou-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
o
p
b
p
b
m
O co
P 5
>
\
y
N
>
i
T
\
\
I \
\
\ >
A
> \
\
v
^
»
,K
1
\
\
\
'
V
\
>
\
\
)
\
\
\
\
X .
1
I\
i
\ '
\
k
\
I
\
1
c
c
o
'
c
c
1C
_ c
y
\
\
\ 1
, \
\
A
\
\\
\
\
\
\
3
3
j a
(jj
r+
fa
r> ?c
f"
D 3
^>'O
fD
i
3
1.
^
\
\
\
\
\
\
\
I
\
\
\
\
\
1
70
r
ii
0
uu
1 »
-J-]
Ji
-p=
1^.
\
s.
0
V
a>
3
T3
ro
cy
M
fD
||
<-
.
\
i
\
\
\
,
-\
II
' CO
1
J>
) 1
CO
1
1 1
o
CO
)
J
t
L
.. a
O
II
,.^»s
t
CO
I1
0
IT
C
o
x:
c
i
c
1 7
3
1
D
H
H
3
^
HI
m
o
o
m ~D
x r-
0>
oo
m
z
H
O
O
CO
-------
MECHANICAL PLANT COMPONENT COST
PILINGS, SPECIAL FOUNDATIONS, DEWATERING
oo
O
C
3J
m
co
O <
« j
Z O
O Q
I- LL
O O
O
IU =
1 n-
n 1-
101 -
' C =
' P2 -
0
0
^^
^
EQUATION
(8.56 x 104)
STATISTICS
ample Size =
0.50 F
Data Range
.19 - 43.60
"*
^f
^^~
^
^
r*
'
r-
,-
Qo.
21
me
^
*^
)d
f
s
78
19
J
*
*
*
*
^
^>*
^
^'
*"
^
*^
.'-
^*
*^
^r
*.<
ft
,-
s>
j
"'
'
9
s
^
+ "'
^^'
,'"
^
_^
^^
^
^^
4*
j.
**
"
^
.'
*
'
-
^
*
»
,-
0.01
0.1
1.0
10
PLANT DESIGN FLOW
(MOD)
-------
CONSTRUCTION COST
[MILLIONS OF DOLLARS)
p
b
o
p
b
^ m
O oo
2|
p
b
\
>
\
\
\
J
T
\
s
\ \
>
\
\
', \
v
\
\
\^
\
\
\
N
>
V
\
1
m
\
\
\
\
\
\
\
\
\
\
^
^
\
s
\
\
V
\
1
\
b
\
\
\
rriir JLi
1 >
v
\
\
, \
>
\
\
\
\
»
\
1
o
o
ro i.
c
1 r
1
ro ;
c
Q -
Ol£
^ .
J3
Q.
\
v_
\
\
\
\
\
\
1
J
u
-V
c
u
3
3
"
"
\
\
S
\
\
\
73
ro
t
II C
0 T
-J f
ro
t
(
~n
u r
i
i >
00
1
\
\
\
\
\
'
L
1 i
. SL . .
II
n
u
3 CO
-> 1
D 3=
-" C/5
^1 1
D i i
£-)
II CO
\3
£>
t
^
V
A
I \
\
. ^
I V 1 L
V
C~)
II
ro
o
vo
X
i »
r- 1
c
JT->
C
L
\
Aj
J
T(
3
-J
0
cr
£i
i i
o
z
til
m
o
n:
>
O
m TJ
i- r-
m >
O z
O
Z
m
O
O
C/)
-------
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
o
p
b
Tl
I
>
O co
p
b
\
V
\
y
\J
V
\
\
1
1
^
\
i
\
t
^
1
<
k
\
x
X
X
N
v
\
\
\
\
\
y
N
\
t
\
>
1
\
\
\
*i
*
.
^
X
\
^
^
\
X
N,
1
X
\
L
'
\
i
^
'
*" \
\
\
y
X
v
>
^
\
i
\
\
V.
\
\
o
o
co
i <
!
rvj :
(
o :
o<
(
LQ
0.
l
X
1
\
\
m
-+
D
3D
1)
3
1
T>
\
X
\
(
t.
>
S
\
73
PO
II
=>
^
D (
T|
'
O
L
>
J
'v
\
.1 ,.
Ill
s>
D
3
3 CO
T> S>
- 00
^ 1
T) ii
O
II CO
DO
DO
«
k
. ^
»
^
C'
II
.^
1
t
1
c:
^ .
JC
n
0
jj
c
c:
1
c
^
m
O >
CO T>
> c
CO °
H O
C "0
s o
m z
z m
18
^ co
-------
ni/e aunoid
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
o
p
b
p
b
. m
O co
P. O
O
\
\
\
^
T"
k N
^ \
* \
\
, \
\
T ,.,... V.
\_
\
i
\
'
k
\
i
\
\
i
l
V
*
\
V
»
.
1
L
S
\
'
i
i
\
s \
'A
, \
i, \
. \
\
L
V
V
O
o
ro
!
i i
i
ro
o
01
3
p
\
y
^
y
\
\
\
Z3
u
-h
11
XI
3)
3
O
T)
*
\
\
\
\
\
1
f
C
<
t
1
N
33
II
!
23
7
DO
p>
T|
^
««k
f=>
.
t
\
y
^
.
^
s>
ii
3
3 GO
' -H
T> 3="
-O HH
M 1
T) i i
0
II CO
1 »
CJ1
1
^
\
\
\
\
\
u? V
1
- r i
C~
II
f '
o.
1
rs
X
1
(_
^_,
N
\
>
«.
>
i
i
j
J
00
(T)
n-
r-
c
3=
i
c_
Z1
»
1
1
)
m
o
o
>
-I
2 H
^ o
Z. O
o s
m
z
H
O
O
-------
sire
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
o
p
b
p
b
ig
O CO
\
\
1
I
I
\
\
1
I
\
\ \
\ \^
\
\ '
^ \
', \
k \
\
V
\
\
V
V
\
\
v
\
\
\
t
\
\
\
\
\
V
J^
1
1
^
rl
\
1
1
v
.*.*. j.
\
\
\
' \
71" '"V
\
\
\ \
\
V
\
\
\
o
CO
-p=.
CO
CTi
( )(
=i
t
\
\
\
\
\
\
\
'
O
01
[-f-
a>
73
QJ
3
n
n>
\
\
\
\
^
^
\
I
\
a
70
1
II
--J
m
-T]
II
cn
oo
V
>
V
\J
c
c
f
c
r
r
^
\
1
'
,\
/5
11
3
- 1
D 3a
/I i i
- oo
Nl |
D 11
O
II CO
_^
'
^
\
'
^
r
i
*~
u
n
X
H-
C
d^.
X.
)
N.
T
"I
_i
3
fn
^
3
--J
CO
n
<
3:
I
C
2
T
3
3
H
-<
>
^
m
O
X
o
> £
3 ^
°5
So
^ o
z s
O T»
o
Z
m
o
O
CO
-------
MECHANICAL PLANT COMPONENT COST
PROCESS PIPING
103-
CO
-n
O
C
30
m
CO
0 5
o ^
2 O
O C
I- LL
O O
O
o
1.0: :
0.1
0.01
0.001
-
2
: R --
E
(1.9
ST
Samp!
= 0.8
Da
0.08
x-'
^^
^*"
*^
M
.x^
^x^
^
QUATION
2 x 105)Q
ATISTICS
e Size =
3 F
ta Range:
- 43.60 m
X"*
^
_^
x^
ax
x'
^
x"
X
t^
0
4(
g<
^
*
+
.76
)
18
1
+
f
f
0
^
^^
*^ ^
x""
f»'
«
.*"
,x-'
>
^*
rl^
_*
x-
X
X*
-'
^
_x
^x'
^s^
'.,'--'
f
x"^
^,"-
^
^
**
^-p
X4
.
(^
^
X p
f
f
0.01
0.1
1.0
PLANT DESIGN FLOW
CMGD)
10
-------
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
p
b
o
p
b
O
0
m
c/)
5
p
b
-1
1
k
A
\
V
\
\
\
\
\
\
1
\
1
\
I
\
V
k
L
\
\
\
\
i
L
1
k
i
t
\
I \
*
X
V V
\ '
\
\\
\
\
V
L
\
\
\
\
\
1
\
'
CJ
c:
^
^.
no
C
O
3
id
a.
i
i
\
\
I
c
c
C
;
c
:
<£
n
\
y
i
i
i
(
3
+
D
D
U
3
3
5
C
N
<
\
L
k
L
1
O
:o
ro
II CO
fa
=> 3
-a
-J (D
N
ro
n
M
n
00
J1 CO
'
1
I
V
\ \
\ N
\%^
'A
\ ^
t
i \
r \
j
oo
3»
c/>
-H
»-H
( )
CO
\
\
\
\
\
^
\
_L
«.
\
V
L
y
^
o
II
«
~J
CTl
i t
O
c
^-^
^->
c
^
X
c
k
c
n -
D
y
.!
c
H
i
D '
?
'
m
O
O
m
m
o
o
s
o
z
m
O
O
-------
ganoid
osi-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
O
o
b
o
o "^
T>
i
>
2
H
O
m
O
z.
O
§
i
o
b
\\
\
\
1
\
\
\
\
t
\
\
\ >
L. J
* i
V
»- . .
p
I
\
\
\
L N
V
V
X
>
c
c
-p
'
a
c
c
V
\
\
*
\
^
7.
3 1
3 C
^ n
Cu u
c+ C
CU
"^ xO
fl) -1
3 3
DU2 1
ft)
K-
J »
>. C
4
C
V
^
\
.
5
j~ ,
-S j
^
..-I" _
b
III
i
ro
CU
3
3 T3 OO
' 1
3 ft) J=
3 1
C/5 i i
N 1
i n? i <
o
II C/O
i '
D CO
D
^ \
1 \
, \ N
\\
\
V
V
\
L
\
\
JL
4-444
*
en
m
o^ c:
I i
j » O
o ^
en
0
oo
^
^J
»l
C" ^
J - if
o
441
S
rn
rn
o
n:
^>
i
z z
O_i
H O
m s
m
H
o
O
CO
i
-------
aanou
ISI-E
CONSTRUCTION COST
CMILLIONS OF DOLLARS)
p
b
o
p
b
TJ
I
>
±
m
O GO
O
p
b
\
\
>
X
v
\
^
t
V
\
\
t
1
\
^
k
\
^
r
L
V
A
^
L N
\
>, -.1
\
-\
\
\
\
\
^
V
V
>
\
L
\
fc
i
X
\
V
V
<
^
1
\
V
.
jr
Ij
\
\
\
X
"\i
, n\
' \
' \
\
*
\
>
o
I"
o
1
ro
-P>
Q
0
3
pv
\
\
\
\
\
^
I
c
&
<-h
0)
73
a>
(JD
\
>
\
h
>
k
\
72
ro
ii
o
oo
ro
~n
u
ro
ro
CO i i
-". CO
N -H
o
ro
s.
i A_
<
*
V
t-
C
)
^
JC.
~>
II
^
£>
t
»
<
_J
-f=
3
(_
or
tc
r
X
c
h
;
TI
D
5
H
i
-*i
z.
..
.M
m
m
O
I
>
z
o
T)
r~
>
O
m
O
O
CO
-------
ozre aanou
CONSTRUCTION COST
(MILLIONS OF DOLLARS]
p
b
o
p
b
T>
- a
^ m
O cn
\
V
\
\
\
\
\
\
\
*
\
1
\
\
\
1
>
\ . .
i
.
"
)
k
1
[\
\
\
y
, \
\
\
\
\
\
\
\
\
\
\
\
\
1
\
s
^
V '
>
\
L
1 1
V
k
«
^
I
1
c
c
-i
_ c
c
1C
11 ~ c
^
I LvTT.r,
^
\
\
', \
\
' \
^
N
\
^k^
\
D
D
CU
c-t
^
.) T
Ol
Ti -1
Dua
=i
X
\
S
V
\
1
V-
)
I
\
k
^
^
1
73
r
n
o
-J
oo
-n
II
4^
1
N
y
1
III
o
V
Ol
3
a
fD
N
n>
n
t
rs
c
V
1
C>.
I! 1
i
3>
1 H
CO
t
1 I
r^
j
3
)
't
O
II
^ ^
^J
4=.
yD
X
1 >
0
Ji
/3
C
o
1
m
XD
J=
1 1
0
> ^
)
1
Jill
I
m
z
PS
^ m
< o
m -r
>o
H >
a H
> o
3D O
2?S
H Z
6H
z o
^^ ^J
o 55
r»
I
o
-------
3.3.3.3 Results - Lagoon Plant Component Costs
This section contains the results from the analysis of the second order cost
relationships between the design flow of a treatment plant and the
construction cost for its general components. Data for these analyses were
obtained from newly constructed lagoon facilities. Both aerated lagoon and
stabilization pond systems are included.
The regression line and the cost equation derived from the line represent
the predicted cost for the component identified in the title. The cost
derived using the line or equation is an estimate which contains allowances
for all labor, equipment, and materials necessary to complete all tasks
associated with the component. The only additional costs that need to be
considered are the various nonconstruction costs.
Table 3.8 contains a summary of Figures 3.121 through 3.123 with associated
titles and cost equations.
3-153
-------
TABLE 3.8
SUMMARY FOR FIGURES 3.121 THROUGH 3.123
SECOND ORDER COSTS
LAGOON PLANT COMPONENT COSTS
Figure
Number Title Cost Equation*
3.121 Mobilization C = (6.17 x 104)Q°'60
3.122 Sitework Without Excavation C = (1.51 x 105)Q°'56
3.123 Excavation C = (2.83 x 105)Q°'52
* C = Component Construction Cost (million dollars)
Q = Plant Design Flow (mgd)
3-154
-------
ssi-e
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
D O
O
O
O
o
o
d ^
N "V
^i
o 0]
o
o
CO
-------
99T-E
e 3anoid
CONSTRUCTION COST
[MILLIONS OF DOLLARS]
TJ
[
>
^ D
^ m
D ₯
O O
CO
-I
m
O
O
i
O -D
5 o
m m
xs ^y
O H
°
-------
esre
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
o
0
m
^2
o
o
O
O
O
mz
X O
o o
o
o
O)
H
-------
3.4 THIRD ORDER COSTS
3.4.1 Introduction
Third order costs are those necessary to construct one specific component of
a total unit process. The sum of all third order costs for a process equals
the second order cost for a complete unit process.
3.4.2 Presentation of Third Order Cost Equations
All component cost relationships presented in this section were derived from
data for complete new unit processes. The most commonly identifiable third
order, or component costs, were as listed below:
o Excavation
o Concrete
o Steel
o Electrical
o Piping
o Equipment
These component cost relationships were derived from detailed bid
tabulations submitted by the building contractor. The component cost
includes all materials and labor necessary to complete the construction of
each discrete component. The component costs for unit processes which
include a reactor basin followed by a clarifier, such as activated sludge,
include the cost for both structures.
Table 3.9 presents the relationship between the facility design flow and the
component costs for 16 commonly used unit processes. For each process, all
available information on component costs is shown. Only those relationships
which were considered statistically valid are presented.
All cost equations presented in this section represent national averages.
Methods for adjusting the national average cost to a specific area of the
country are outlined in Section 4.0. Examples of how to use these cost
curves to develop estimates are also presented. All national average costs
are in third quarter 1982 Kansas City/St. Joseph, Missouri dollars.
3-158
-------
co
i"
en
Unit Process
TABLE 3.9
THIRD ORDER COST EQUATIONS
Component
Equation'1
Raw Wastewater Pumping:
Preliminary Treatment:
Primary Sedimentation:
Conventional Activated Sludge:
Equipment
Process Piping
Concrete
Electrical
Equipment
Steel
Concrete
Equipment
Excavation
Process Piping
Steel
Concrete
Equipment
Process Piping
Steel
C =
C =
C =
C =
C =
C =
C =
C =
C =
C =
C =
C =
C =
C =
C =
(5.89 x 104)Q°-53
(3.07 x 104)Q0'79
(2.94 x 104)Q°-70
(8.15 x 103)Q°'67
(4.85 x 104)Q°'62
(4.34 x 103)Q°'78
(7.09 x 104)Q°'65
(5.24 x 104)Q°'64
(6.15 x 103)Q°'85
(1.14 x 104)Q°'68
(1.60 x 104)Q°'36
(1.95 x 105)Q°'79
(2.18 x 105)Q°'56
(4.01 x 104)Q°-79
(7.63 x 104)Q°'52
Contact Stabilization:
Equipment
C - (3.21 x 105)Q°'53
Sample
Size
73
6
24
6
108
5
22
56
17
8
5
28
56
9
4
R2
0.65
0.92
0.51
0.95
0.65
0.88
0.69
0.75
0.60
0.64
0.87
0.72
0.58
0.77
0.91
0.54
F-Value
132
47
23
70
199
22
45
165
22
11
19
68
73
23
21
* C = Component Construction Cost (million dollars)
Q = Plant Design Flow (mgd)
-------
TABLE 3.9 (Continued)
CTt
O
Unit Process
Extended Aeration:
All Types of Activated Sludge:
Oxidation Ditch:
Rotating Biological Contactor:
Stabilization Pond:
Aerated Lagoon:
All Types of Filtration:
Component
Concrete
Equipment
Concrete
Equipment
Excavation
Process Piping
Concrete
Equipment
Excavation
Equipment
Excavation
Equipment
Excavation
Concrete
Equipment
Excavation
Process Piping
C =
C =
C =
C =
C =
C =
C =
C -
C =
C =
C =
C =
C =
C =
C =
C -
C =
Equation
(2.38 x 105)Q1>01
(2.29 x 105)Q°'41
(1.92 x 105)Q°'82
(2.29 x 105)Q0>48
(3.43 x 104)Q°-58
(6.17 x 104)Q°'57
(3.39 x 105)Q°'72
(2.00 x 105)Q°'51
(3.11 x 104)Q°'37
(5.05 x 105)Q°-58
(1.78 x 105)Q°-44
(1.09 x 105)Q°'59
(2.47 x 105)Q0'75
(7.55 x 1G4)Q0'62
(1.55 x 105)Q°'56
(2.20 x 104)Q°'62
(4.92 x 104)Q°'55
Sample
Size
5
16
28
77
9
12
14
31
5
18
50
42
9
9
51
7
6
)
^
0.93
0.79
0.86
0.66
0.74
0.69
0.80
0.55
0.88
0.82
0.50
0.61
0.66
0.88
0.78
0.72
0.71
F-Value
39
56
158
151
20
23
48
36
22
72
48
66
14
50
180
13
10
-------
TABLE 3.9 (Concluded)
Unit Process
Chlorination:
Aerobic Digestion:
Sludge Drying Beds:
Control/Lab/Maintenance Bldg:
Component
Concrete
Electrical
Equipment
Excavation
Process Piping
Steel
Concrete
Equipment
Excavation
Process Piping
Concrete
Excavation
Concrete
Electrical
Equipment
Excavation
Process Piping
Equation
C =
C =
C =
C =
C =
C -
C -
C =
C -
C =
C =
C =
C -
C =
C =
C =
C =
(3
(1
(2
(7
(1
(4
(9
(8
(8
(1
(3
(5
(8
(3
(2
(8
(2
.32
.20
.38
.30
.32
.97
.28
.77
.61
.87
.82
.99
.18
.14
.97
.19
.48
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
104)Q°
104)Q°
104)Q°
103)Q°
104)Q°
103)Q°
104)Q°
ioV
103)Q°
104)Q°
104)Q°
103)Q°
104)Q°
104)Q°
104)Q°
103)Q°
104)Q°
.66
.74
.42
.48
.61
.67
.87
.59
.96
.77
.61
.77
.56
.66
.45
.32
.73
Sample
Size
45
7
199
17
16
8
6
26
5
5
10
8
17
10
107
8
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
.62
.85
.54
.60
.64
.60
.88
.63
.88
.94
.61
.85
.78
.71
.57
.67
.93
F-Value
69
28
235
22
25
9
30
44
22
45
13
35
53
20
142
12
86
-------
3.5 EFFICIENCY CURVES
3.5.1 Introduction
In addition to the standard bivariate analyses of construction costs and
plant design flow presented in Sections 3.1 through 3.4, several
multivariate analyses of the data were performed. The multivariate analyses
used three variables which were the projected plant design flow, projected
effluent BOD5, and construction cost. The purpose of the multivariate
analyses was to compare the effect of the projected level of treatment on
construction costs for various types of treatment plants. As explained in
Section 2.4, the effect of the effluent BOD5 does not seem to be significant
overall; the design flow appears to be the contributing variable to the
model.
3.5.2 Presentation of Efficiency Curves
The results of the multivariate analyses that had statistically significant
correlations are presented in Figures 3.124 through 3.130. These curves
show the relative efficiency, or cost effectiveness, of each treatment type
for producing a given level of effluent BODg. Each figure gives the
construction cost versus plant design flow for three effluent BODr values.
These are an effluent BOD5 of 30 mg/1, an effluent BOD5 of 15 mg/1, and an
effluent BOD5 of 5 mg/1. Figures 3.131 through 3.133 illustrate the same
curves grouped by each of the three levels of effluent BODr.
Figure 3.124 shows the construction costs associated with the three effluent
BODg values for all mechanical treatment plants. Three types of activated
sludge plants, oxidation ditch plants, and rotating biological contactor
plants together make up the curves for all mechanical plants in Figure
3.124. The data set includes any mechanical plant without regard to whether
the plant uses a simple, moderate, or complex sludge handling system.
Figure 3.125 presents the same information for all activated sludge
treatment plants, which includes conventional activated sludge plants,
contact stabilization plants, and extended aeration plants. Curves for each
of these three types of activated sludge treatment are presented
3-162
-------
individually on Figures 3.126, 3.127, and 3.128, respectively. Oxidation
ditch plants are presented separately on Figure 3.129 and rotating
biological contactor plants are shown on Figure 3.130. Figure 3.131
illustrates the curves for all mechanical treatment plants together for an
effluent BODg of 30 mg/1. Similarly, Figures 3.132 and 3.133 present all
the curves for an effluent BODg of 15 mg/1 and 5 mg/1, respectively.
The efficiency curves are provided as a means of comparing the effect on the
construction costs of various types of unit processes producing differing
levels of effluent BODr. The multivariate analyses were performed for seven
classes of data. In five of the seven classes, the effluent BOD5 was not
significant; although it was significant at the 0.05 level for the other two
classes (in no case was it significant at the 0.01 level). The two cases
where effluent BOD,- was significant were all types of mechanical plants
combined and oxidation ditch plants.
Figure 3.131 shows that the most inexpensive mechanical plant for producing
an effluent BODr of 30 mg/1 is an oxidation ditch plant. This is most
likely due to the fact that oxidation ditch plants typically do not have
complex mechanical components and the reactor basin is less expensive to
construct compared with other mechanical treatment plant types. An
oxidation ditch producing an effluent BOD,- of 30 mg/1 is less expensive to
construct than an extended aeration plant producing the same type of
effluent, although extended aeration is less expensive than the other types
of mechanical plants. This is due to the fact that extended aeration plants
are usually prefabricated or package type treatment units which, in most
cases, are less expensive than custom-built plants.
Extended aeration plants were the least expensive type of plant producing an
effluent BOD5 of 15 mg/1 and 5 mg/1 as shown on Figures 3.132 and 3.133,
respectively. Rotating biological contactor plants were found to be the
most expensive for any of the treatment levels, followed by conventional
activated sludge plants.
The incremental cost of producing an effluent BODr of 5 mg/1 over an
effluent BODr of 30 mg/1 was found to be lowest for rotating biological
3-163
-------
contactor plants and highest for contact stabilization plants, as shown on
Figures 3.130 and 3.127, respectively. The high incremental cost of
producing an effluent BOD5 of 5 mg/1 for contact stabilization plants is
attributed to the fact that these plants generally produce an effluent BOD,-
\J
of 30 mg/1 and require construction of additional unit processes to produce
an effluent BOD5 of 5 mg/1.
Table 3.10 contains a summary of Figures 3.124 through 3.133 with associated
titles and cost equations. Statistics information for the grouped curves,
Figures 3.131 through 3.133, are not shown since the data are identical to
those for the individual plant curves on Figures 3.124 through 3.130.
3-164
-------
TABLE 3.10
SUMMARY FOR FIGURES 3.124 THROUGH 3.130
TREATMENT EFFICIENCY CURVES
Figure
Number Title Cost Equation*
3.124 All Mechanical Treatment Plants - All
Types of Sludge Handling - By . n _
Effluent BOD5 C = (4.48 x 10b)QU' 'V0'17
3.125 All Activated Sludge Plants - All
Types of Sludge Handling - By
Effluent BOD5 C = (3.24 x iob)Qu-/JE~0'06
3.126 Conventional Activated Sludge Plants
All Types of Sludge Handling - By n 7Q
Effluent BOD5 C = (4.44 x io6)Q°-79E-°-15
3.127 Contact Stabilization Plants - All
Types of Sludge Handling - By
Effluent BOD5 C = (6.48 x 10b)Qu1E~U>db
3.128 Extended Aeration Plants - All Types K n ,1
of Sludge Handling - By Effluent BOD5 C = (3.26 x iob)Qu-biE'u-n
3.129 Oxidation Ditch Plants - All Types of , n ., _ _.
Sludge Handling - By Effluent BOD5 C = (4.16 x iob)QU-b6E-°'23
3.130 Rotating Biological Contactor Plants
All Types of Sludge Handling - By
Effluent BOD5 C = (5.14 x io6)Q0-66E-°-05
3.131 Mechanical Treatment Plants - All
Types of Sludge Handling - Effluent
BOD5 = 30 mg/1
3.132 Mechanical Treatment Plants - All
Types of Sludge Handling - Effluent
BOD5 = 15 mg/1
3.133 Mechanical Treatment Plants - All
Types of Sludge Handling - Effluent
BOD5 = 5 mg/1
* C = Construction Cost (million dollars)
Q = Plant Design Flow (mgd)
E = Effluent BOD5 (mg/1)
3-165
-------
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
CO
01
00
"z
Tl
r-
O
o
c
DO
m
CO
ro
-------
w :
0 5
O iJ
Z O
O o
>- u-
O O
Is
(/> O
16
15-
14-
13-
12-
11-
10-
9-
8-
ALL ACTIVATED SLUDGE PLANTS
ALL TYPES OF SLUDGE HANDLING
BY EFFLUENT BODS
EQUATION
C - (3.24 x 106)Q°-73E-0-06
STATISTICS
Sample Size = 134
IT = 0.82
F = 297
Independent Variables:
Q: T = 24.37 E: T = -0.54
Data Range:
0.04 - 20.00 mgd
4 5 6 7 8 9 10
PLANT DESIGN FLOW
CMGDJ
FIGURE 3.125
3-167
-------
w
0
O O
g»
I- Z
05 O
§5
CONVENTIONAL ACTIVATED SLUDGE PLANTS
ALL TYPES OF SLUDGE HANDLING
BY EFFLUENT BODS
20-
19
18
17-
16-
15H
14-
13-
12-
11-
10
EQUATION
C- (4.44 x 106)Q°-79E-°-15
STATISTICS
Sample Size = 22
R = 0.95
F = 169
Independent Variables:
Q: T = 17.38 E: T = -1.52
Data Range:
0.07 - 20.00 mgd
PLANT DESIGN FLOW
(MGD)
FIGURE 3.126
3-168
-------
to
0 5
o j
z o
o Q
H- U.
O O
°i
16-
15-
14-
CONTACT STABILIZATION PLANTS
ALL TYPES OF SLUDGE HANDLING
BY EFFLUENT BODS
EQUATION
C = (6.48 x 106)Q0'71E"°-36
STATISTICS
Sample Size = 28
IT = 0.82
F = 58
12-
11
10*
Independent Variables:
Q: T = 10.36 E: T = -1.70
Data Range:
0.08 - 5.00 mgd
8 9 10
PLANT DESIGN FLOW
(MGD)
3-169
FIGURE 3.127
-------
z o
o Q
I- u-
o o
CO O
EXTENDED AERATION PLANTS
ALL TYPES OF SLUDGE HANDLING
BY EFFLUENT BODS
10'
8-
EQUATION
C = (3.26 x 106)Q0-61E-°-n
STATISTICS
Sample Size = 67
R2 * 0.69 F = 71
Independent Variables:
Q: T - 11.88 E: T = -0.71
Data Range:
0.02 - 4.30 mgd
5 6 7 8 9 10
PLANT DESIGN FLOW
(MGD)
FIGURE 3.128
3-170
-------
CONSTRUCTION COST
(MILLIONS OF DOLLARS)
ro
OJ
I»
--J
c
X
m
00
ro
CO
-------
co
0
O O
(T w
I- Z
co O
§5
o
ROTATING BIOLOGICAL CONTACTOR PLANTS
ALL TYPES OF SLUDGE HANDLING
BY EFFLUENT BODS
20-
19'
18-
17^
16-
15-
14
13
EQUATION
C = (5.14 x io6)Q°-66E-°-05
STATISTICS
Sample Size = 26
R2 = 0.87 F = 79
Independent Variables:
Q: T = 12.48 E: T = -0.38
Data Range:
0.04 - 12.00 mgd
12-
11-
10
0
PLANT DESIGN FLOW
(MGD)
3-172
FIGURE 3.130
-------
co c
O <
h- U-
O O
QC
CO
CO O
z H
O _)
O ^
MECHANICAL TREATMENT PLANTS
ALL TYPES OF SLUDGE HANDLING
EFFLUENT BODS = 30 mg/l
ROTATING BIOLOGICAL CONTACTOR
CONVENTIONAL ACTIVATED SLUDGE
ALL ACTIVATED SLUDGE
ALL MECHANICAL TREATMENT
CONTACT STABILIZATION
EXTENDED AERATION
OXIDATION DITCH
PLANT DESIGN FLOW
CMGD)
FIGURE 3.131
3-173
-------
CO
0
o Q
I- LL
o o
co O
Z li
O _i
o ^
MECHANICAL TREATMENT PLANTS
ALL TYPES OF SLUDGE HANDLING
EFFLUENT BODS = 15 mg/l
1 ROTATING BIOLOGICAL CONTACTOR
CONVENTIONAL ACTIVATED SLUDGE
3 ALL MECHANICAL TREATMENT
4 ALL ACTIVATED SLUDGE
CONTACT STABILIZATION
OXIDATION DITCH
EXTENDED AERATION
PLANT DESIGN FLOW
(MGD)
FIGURE 3.132
3-I 74
-------
CO DC
O <
I- Li.
O O
cr
CO
z
co O
2 3
O _J
O ^
MECHANICAL TREATMENT PLANTS
ALL TYPES OF SLUDGE HANDLING
EFFLUENT BODS = 5 mg/l
1 ROTATING BIOLOGICAL CONTACTOR
CONVENTIONAL ACTIVATED SLUDGE
CONTACT STABILIZATION
4 ALL MECHANICAL TREATMENT
5 ALL ACTIVATED SLUDGE
6 OXIDATION DITCH
EXTENDED AERATION
PLANT DESIGN FLOW
(MOD)
FIGURE 3.133
3-175
-------
4.0 SIMPLIFIED TREATMENT PLANT COST ESTIMATING
The large amount of actual construction cost data obtained for this project
represents a highly significant and statistically valid data base of
detailed cost information. It is expected that these data may be used in
various ways by government planning officials, equipment manufacturers,
public works contractors, engineers, and others. One of the most obvious
uses of the data is to estimate costs of proposed wastewater treatment
plants or treatment plant modifications. This section describes the use of
the curves presented in Section 3.0 to derive such planning level cost
estimates. The techniques described are intended for the use of State and
municipal officials, concerned laymen, and others who desire to know
approximate capital costs of wastewater treatment facilities.
4.1 COST ESTIMATING TECHNIQUES
As described in Section 3.0, there are three levels of cost information
presented. First order costs are for entirely new, complete treatment
systems. Second order costs provide information on the various unit
processes which comprise a treatment plant. Either of these two cost levels
may be employed to obtain a planning level estimate of treatment plant
construction costs. Third order costs are the unit process component costs
such as concrete and mechanical equipment. These costs are not as conducive
to deriving cost estimates of complete treatment plants, but may prove
useful in estimating partial costs of proposed modifications to existing
unit processes.
Each figure in Section 3.0 represents the best fit logarithmic equation to
the actual data in the general form:
C = aQb
Where: C = Construction cost in dollars.
Q = Design wastewater flow in mgd.
a, b = Constants specific to each data set.
4-1
-------
An equation in the above form is shown on each figure, including the numeric
values for the constants a and b. While the equation is that of a
logarithmic curve, it appears on the plots as a straight line due to the
logarithmic scales of both the horizontal and vertical axes. The exponent b
in the equation is the slope of the line for each plot. A value of b less
than one, which is the typical case, represents an economy of scale as unit
costs, or costs per mgd, decrease with the larger design flows.
To obtain a cost from any of the figures, the equation shown may be used to
compute the construction cost for a given design flow of a proposed
treatment plant or unit process. Alternately, the construction cost can be
read directly from the graph by locating the given design flow on the
horizontal axis. If the design flow is not known, a rule-of-thumb value of
100 gallons per capita per day may be used in preparing preliminary
estimates.
In using first order costs, it is merely necessary to select the figure
corresponding to the type of treatment plant for which a cost estimate is
desired. The cost can be located from the figure as described above. In
using second order costs, it will be necessary to know all unit processes in
the proposed treatment plant process train to obtain a complete cost
estimate, together with the appropriate second order plant component costs.
Costs for individual unit processes and plant components should then be
obtained from each corresponding figure and added together. Third order
costs, if used, should be computed from the appropriate equation. Several
examples are given in this section which help demonstrate these estimating
techniques.
4.2 ADJUSTING AND UPDATING COST ESTIMATES
When the complete estimate has been obtained, it will then be necessary to
adjust for regional and geographic differences in construction costs. As
explained in Appendix A, all data used for the figures in Section 3.0 were
normalized to reflect average costs in the Kansas City/St. Joseph, Missouri
area. Costs may be adjusted to other geographical areas using the area
multipliers given in Table 4.1. To adjust costs to other areas, first
4-2
-------
TABLE 4.1
AREA MULTIPLIERS
WASTEWATER TREATMENT PLANT CONSTRUCTION
Atlanta 0.85
Baltimore 0.99
Birmingham 0.83
Boston 1.14
Charlotte 0.71
Chicago 1.19
Cincinnati 1.04
Cleveland 1.10
Dallas 0.86
Denver 0.93
Detroit 1.11
Houston 0.95
Kansas City 1.00
Los Angeles 1.16
Miami 0.85
Milwaukee 1.03
Minneapolis 0.95
New Orleans 0.99
New York 1.29
Philadelphia 1.13
Pittsburgh 1.07
St. Louis 1.16
San Francisco 1.23
Seattle 1.16
Trenton 1.05
4-3
-------
select the city in Table 4.1 which is nearest the treatment plant location,
or where the area of influence of the city encompasses the treatment plant
location, and multiply the cost estimate by the corresponding area
multiplier for that city.
The resulting geographically adjusted cost estimate will be in third quarter
1982 dollars. To update the cost estimate to current dollars, the EPA Large
City Advanced Treatment (LCAT) Index or the Small City Conventional
Treatment (SCCT) Index can be used as discussed in Appendix A. Costs may be
updated by the following procedure:
Total Latest LCAT or SCCT Index
graphically Y for Desired Area
>ted Project 3rd Quarter 1982 LCAT
Cost or SCCT Index for Desired Area
Geographically Y for Desired Area ,, , . , r .
Adjusted Project A 3rd Quarter 1982 LCAT " uPaatea LOSt
The LCAT and SCCT Indexes are now published semi-annually by EPA. Costs for
plants at or above 15 mgd design flow should be updated using the LCAT
Index, while costs for plants below 15 mgd should be updated using the SCCT
Index.
Several examples using the cost curves of Section 3.0 to obtain planning
level cost estimates are presented below. For each cost item, the
appropriate figure to be used from Section 3.0 is provided for reference.
4.3 COST ESTIMATING EXAMPLES
4.3.1 Example No. 1
Assume it is desired to estimate the cost of a new 10.0 mgd secondary
treatment plant in the Boston, Massachusetts area. For this example, the
total construction cost of the facility is obtained from Figure 3.8. The
appropriate nonconstruction costs from Table 3.1 are then added. For
purposes of these examples, the seven most common nonconstruction costs will
be used (planning, design, administration/legal, A/E basic fees, other A/E
fees, inspection, and contingencies) which together average 32 percent of
the construction cost nationally. The reader should use appropriate
4-4
-------
discretion concerning other categories of nonconstruction costs to be
included. Any other known costs, such as land, would be added to the final
geographically adjusted and updated cost estimate. Although the national
average nonconstruction costs are used in these examples, the individual
nonconstruction cost item percentages from Table 3.1 could be used for the
specific EPA Region in which the project is being built.
The costs for the example given are itemized in Table 4.2.
TABLE 4.2
10 MGD NEW SECONDARY TREATMENT PLANT
BOSTON, MASSACHUSETTS
Total Construction Cost (Figure 3.8) $13,000,000
Common Nonconstruction Costs (32 percent) 4,200.000
TOTAL PROJECT COST $17,200,000
Area Multiplier for Boston, MA x 1.14
TOTAL GEOGRAPHICALLY ADJUSTED PROJECT COST $19,600,000
(3rd Quarter 1982 Dollars)
It should be noted that slight differences in the total adjusted project
cost will be produced if total construction cost is geographically adjusted
prior to multiplying by 32 percent to obtain the nonconstruction costs.
Either technique is valid, however, and each produces a result within the
order of accuracy intended for this cost estimating procedure.
4.3.2 Example No. 2
Using similar procedures as described in Example 1, the second order cost
curves can be used to estimate the construction of a new 10.0 mgd advanced
secondary treatment plant near Dallas, Texas. Assuming an activated sludge
treatment plant with phosphorus removal, the facility could have the unit
processes shown in Table 4.3. For each, the total construction cost should
be obtained from the appropriate figures in Section 3.0, together with the
appropriate plant component costs. Finally, the nonconstruction costs,
4-5
-------
using the factors from Table 3.1, should be added. The costs for this
example are listed in Table 4.3.
TABLE 4.3
10 MGD NEW AST TREATMENT PLANT
DALLAS, TEXAS
Comminutors (Figure 3.74) $ 60,000
Grit Removal (Figure 3.73) 110,000
Primary Sedimentation (Figure 3.77) 770,000
Conventional Activated Sludge (Figure 3.79) 3,400,000
Chemical Additions (Figure 3.92) 490,000
Effluent Chlorination (Figure 3.93) 320,000
Gravity Thickening (Figure 3.102) 420,000
Anaerobic Digestion (Figure 3.99) 1,900,000
Drying Beds (3.100) 470,000
Control/Lab/Maintenance Building (Figure 3.104) 690,000
TOTAL UNIT PROCESS COSTS $ 8,630,000
Mobilization (Figure 3.107) $ 390,000
Sitework (Figure 3.109) 580,000
Excavation (Figure 3.110) 750,000
Electrical (Figure 3.112) 1,200,000
Controls and Instrumentation (Figure 3.113) 730,000
Yard Piping (Figure 3.115) 850,000
Heating, Ventilating, & Air Conditioning
(Figure 3.120) 550,000
TOTAL PLANT COMPONENT COSTS - $ 5,050,000
TOTAL CONSTRUCTION COST $13,680,000
Common Nonconstruction Costs (32 percent) 4,400,000
Land Purchase/Plant Site (assumed for example
purposes) 100.000
TOTAL PROJECT COST $18,180,000
Area Multiplier for Dallas, TX x 0.86
TOTAL GEOGRAPHICALLY ADJUSTED PROJECT COST $15,600,000
(3rd Quarter 1982 Dollars)
4-6
-------
4.3.3 Example No. 3
The third order cost relationships may also prove useful for some cost
estimating applications. Consider for example the upgrading of a 10.0 mgd
primary treatment plant to secondary near Los Angeles, California, where it
is desired to replace the mechanical equipment in existing primary
clarifiers. Using the third order process cost equation for primary
sedimentation equipment, the cost estimate would be derived by solving the
equation for 10.0 mgd to obtain the construction cost for primary
sedimentation equipment. To this amount would be added the costs for the
other unit processes using the second order cost curves in the same manner
as described in the previous example. The resulting cost estimate is shown
on Table 4.4.
TABLE 4.4
10 MGD PRIMARY TO SECONDARY TREATMENT PLANT UPGRADE
LOS ANGELES, CALIFORNIA
Primary Sedimentation Equipment (Table 3.9) $ 240,000
Conventional Activated Sludge (Figure 3.79) $ 3,400,000
Effluent Chlorination (Figure 3.93) 320,000
Ocean Outfall (Figure 3.106) 5,800,000
Gravity Thickening (Figure 3.102) 420,000
Aerobic Digestion (Figure 3.98) 1.800.000
TOTAL UNIT PROCESS COSTS $11,980,000
Mobilization (Figure 3.107) $ 390,000
Sitework (Figure 3.109) 580,000
Excavation (Figure 3.110) 750,000
Electrical (Figure 3.112) 1,200,OQO
Controls and Instrumentation (Figure 3.113) 730,000
Yard Piping (Figure 3.115) 850,000
Heating, Ventilating, & Air Conditioning
(Figure 3.120) 550,000
TOTAL PLANT COMPONENT COSTS $ 5.050.000
TOTAL CONSTRUCTION COST $17,030,000
4-7
-------
Common Nonconstruction Costs (32 percent) 5,450,000
TOTAL PROJECT COST $22,480,000
Area Multiplier for Los Angeles, CA $ x 1.16
TOTAL GEOGRAPHICALLY ADJUSTED PROJECT COST $26,100,000
(3rd Quarter 1982 Dollars)
4.4 SUMMARY
Although the efficiency curves presented as the result of the multivariate
analyses in Section 3.5 are comparable with first order costs, it is
recommended for consistency that the first order cost curves themselves be
used for preliminary cost estimating. The efficiency curves may prove
useful, however, in making generalized comparisons between the construction
cost of various treatment plant types for a given level of treatment.
It should be noted that in addition to the precautions discussed previously
in using these curves, some divergence in costs between the three levels of
estimating will be apparent even for identical applications. However,
tempered with engineering judgment, the data presented in this report should
be useful in planning and comparing various proposed treatment alternatives.
Since the resultant estimates are considered to be of planning level
accuracy only, it should be recognized that actual construction costs of a
specific treatment plant could vary from these estimates, either plus or
minus, by a wide margin.
4-8
-------
APPENDIX A
COST UPDATING AND NORMALIZATION TECHNIQUES
The data base used in this report includes costs from construction projects
within the 48 contiguous States of the U.S. They range in time from 1973
through 1982. In order to achieve a meaningful analysis of the data, it was
necessary to index all dollar values to a specific time and location.
To accomplish this, the EPA Large City Advanced Treatment (LCAT) Index and
Small City Conventional Treatment (SCCT) Index were used. These indexes
have been calculated quarterly by EPA since third quarter 1973 for a total
of 50 U.S. cities. The LCAT Index is based on a hypothetical 50.0 mgd
advanced wastewater treatment facility with a base city of Kansas City,
Missouri. The SCCT Index is based on a hypothetical 5.0 mgd activated
sludge secondary treatment facility with a base city of St. Joseph,
Missouri. The base value for both indexes is 100 for third quarter 1973.
AREAS OF INFLUENCE
EPA publishes the LCAT and SCCT Indexes as indicators of cost trends over
time and for comparative purposes by relating one city to another. The
areas of cost influence for each of the 50 indexed cities are not defined.
Therefore, prior to using the indexes, the area of influence for each index
city was assessed and mapped. Two sources of information were employed in
this effort: Bureau of Labor Statistics (BLS) labor rate history for 102
U.S. cities and the Bureau of Economic Analysis (BEA) map of U.S. economic
areas.
The BLS data consists of union labor rates for various skills, recorded
quarterly for 102 U.S. cities. In order to apply this information, a
weighted average of four construction crafts - carpenter, electrician,
laborer, and plumber - were calculated for 22 calendar quarters from third
quarter 1973 to third quarter 1978. Data from each city were then
statistically correlated with the 101 other BLS cities. Since the EPA SCCT
and LCAT Index cities were included in the list of BLS cities, this process
defined the area of economic influence for each of the EPA Index cities.
The BEA map of economic areas was used to define the boundaries of economic
influence surrounding the EPA Index cities. A BEA economic area is composed
of a central city and the surrounding counties that are economically related
to the central city as determined by BEA. Each of these areas includes both
the place of work and place of residence of the labor force. The resulting
maps for the LCAT and SCCT Index city areas of influence are presented in
Figures A.I and A.2.
LCAT - SCCT CLASSIFICATION
In order to utilize the above mentioned maps, all projects in the data base
were classified as either LCAT or SCCT Index related. The following
criteria were used for that classification:
A-l
-------
f*
I
no
XI
rn
3=>
EPA MUNICIPAL CONSTRUCTION COST INDEX MAP
FOR LARGE CITY ADVANCED TREATMENT (LCAT) PLANT INDEXES
-------
3>
co
EPA MUNICIPAL CONSTRUCTION COST INDEX MAP
FOR SMALL CITY CONVENTIONAL TREATMENT (SCCT) PLANT INDEXES
INi
-------
1. A mechanical treatment plant project with a projected design flow
less than 15.0 mgd was related to the SCCT Index.
2. A treatment plant project with a projected design flow of 15.0 mgd
or greater was related to the LCAT Index.
3. A lagoon project was related to the SCCT Index.
COST UPDATING
After a project was related to either the LCAT or SCCT Index, Figure A.I or
A.2 were utilized to relate the project to a specific LCAT or SCCT Index
city. Using the indexes contained in Tables A.I and A.2, the costs were
then normalized to third quarter 1982 at Kansas City/St. Joseph, Missouri
according to the following procedure:
Kansas City/St. Joseph, MO
Cost of Construction at (Place x)(Time t) X 3rd Quarter 1982 Index =
(Place x, Time t) Index
Cost of Construction at Kansas City/St. Joseph, MO 3rd Quarter 1982
Thus, the data base was normalized to the base cities for the indexes. The
effects on the analyses of a large or small quantity of data from different
areas of the U.S., or from a particular time period, were thus minimized.
Cost relationships resulting from an analysis of the data are, indeed,
national averages in this report.
A-4
-------
TABLE A.I
EPA LARGE CITY ADVANCED TREATMENT (LCAT) INDEXES
1981
1982
1983
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
City
Atlanta, GA
Baltimore, MD
Birmingham, AL
Boston, MA
Charlotte, NC
Chicago, IL
Cincinnati , OH
Cleveland, OH
Dallas, TX
Denver, CO
Detroit, MI
Houston, TX
Kansas City, MO
Los Angeles, CA
Miami , FL
Milwaukee, WI
Minneapolis, MN
New Orleans, LA
New York, NY
Philadelphia, PA
Pittsburgh, PA
St. Louis, MO
San Francisco, CA
Seattle, WA
Trenton, NJ
3rd
Qtr.
162
189
158
214
134
229
199
210
162
177
213
181
190
221
161
198
180
191
245
214
205
222
235
225
201
4th
Qtr.
163
190
158
222
135
230
200
211
163
178
214
183
190
222
162
199
181
192
246
216
206
223
239
225
203
1st
Qtr.
166
192
160
223
138
233
201
214
166
180
216
185
192
227
165
203
185
193
255
221
206
225
242
227
206
2nd
Qtr.
166
193
160
225
138
229
201
214
167
187
215
184
198
228
164
201
185
193
255
224
206
226
242
227
206
3rd
Qtr.
172
198
161
232
138
236
206
221
174
190
218
186
202
236
165
200
190
194
265
231
215
232
243
232
210
4th*
Qtr.
175
201
163
239
138
241
208
224
179
192
219
190
204
239
169
203
196
198
272
233
215
240
248
234
215
1st
Qtr.
178
204
165
247
139
246
209
227
183
193
221
195
204
242
173
207
203
203
279
235
216
248
253
236
221
NATIONAL AVERAGE
197
198
201
201
206
209
213
* 4th Qtr. 1982 indexes were extrapolated because this quarter was never
published.
A-5
-------
TABLE A.2
EPA SMALL CITY CONVENTIONAL TREATMENT (SCCT) INDEXES
1981 1982 1983
3rd 4th 1st 2nd 3rd 4th* 1st
City Qtr. Qtr. Qtr. Qtr. Qtr. Qtr. Qtr.
101 Bakersfield, CA 213 212 220 226 233 237 241
102 Bismarck, ND 169 171 174 175 177 178 178
103 Burlington, VT 167 169 171 171 172 176 183
104 Casper, WY 172 173 180 183 184 185 187
105 Charleston, SC 128 129 132 132 132 132 133
106 Cumberland, MD 204 208 209 209 210 213 217
107 Duluth, MN 173 174 178 178 184 190 197
108 Eugene, OR 204 206 213 220 222 227 233
109 Gainesville, FL 157 156 160 159 160 162 164
110 Green Bay, WI 191 192 197 193 194 200 205
111 Harrisburg, PA 187 188 190 194 194 198 202
112 Las Vegas, NV 212 213 217 216 220 226 232
113 Mobile, AL 179 179 180 181 187 190 193
114 Muncie, IN 182 183 184 184 184 189 194
115 Pocatello, ID 180 181 181 181 185 187 189
116 Pueblo, CO 164 167 171 175 181 184 187
117 Rapid City, SD 155 155 159 164 162 163 163
118 Roanoke, VA 167 169 171 172 169 173 177
119 Saginaw, MI 185 193 196 194 194 195 197
120 St. Joseph, MO 183 183 185 186 191 196 201
121 Sioux City, IA 181 182 185 185 188 190 193
122 Syracuse, NY 208 210 212 212 217 222 226
123 Tulsa, OK 159 157 161 164 168 170 173
124 Waco, TX 151 151 154 153 154 155 157
125 Wheeling, WV 199 198 199 199 199 205 212
NATIONAL AVERAGE 179 180 183 184 186 189 193
* 4th Qtr. 1982 indexes were extrapolated because this quarter was never
published.
A-6
-------
APPENDIX B
DESCRIPTION OF THE DATA BASE
Data included in this study were collected from 1,585 Federally funded
wastewater treatment plant projects in all ten EPA Regions. The 48
contiguous States are represented.
Table B.I lists the grant number, facility name, State, projected design
flow, projected treatment level, and planned change for each of the
facilities included. The treatment levels are defined as follows:
Code Level of Treatment
First Digit 2 Advanced Primary Treatment
3 Secondary Treatment
4 Advanced Secondary Treatment
5 Advanced Wastewater Treatment
Second Digit 0 No Nutrient Removal Processes
1 Ammonia Removal
2 Total Nitrogen Removal
3 Phosphorus Removal
4 Both Ammonia Removal and Phosphorus Removal
5 Both Total Nitrogen and Phosphorus Removal
The change code refers to the type of change specified for the treatment
facility. The codes are defined as follows:
Code Type of Change
1 Enlargement of Treatment Capacity
2 Upgrading Level of Treatment
3 Enlargement and Upgrade
4 New Construction
5 Replacement
8 Other Modifications
B-l
-------
uu
<->
2
ILJ
1
tu ^
) it;
i~n H-
O.
"=1 U
H- *V
*^i $""
^ .*
1 1 O
1
^_
Hi > u,j
> <3t >
O ^o u
r<
'
t
l 'U
" r-.
t «t
3 Z"
74
'J >-
> i
^O t t
--t _J
o
-a
1J-
o
^
z.
oc
' n
U!
O
ro ^* -* ~* J- «> sf- -4- -.r -* -^ rj vt sf 1^1 >j- ;?
>l 1
O O <_> O O O C_> O O O O C-> O f_> 0 0 2!
S"
1
J
1 1 '
a
I
^-
o
1
O O ^' <"i K^ '> «/\ u O \n O ","> C' C* '- -1 n
C' T- T r\j o o o o K> o o ij o T c_> <"» i; iij
r> i
> o
>- < ll ;
1 ~>
^ O
'V
11
Ii. 01
t h-
? r> '/i
>
f-t *- t-
.7 ""'
* r 1 >- ii.
c ^ r-r t > i -
o sr o ""> o. f-
»~ ft- O i .£
t^> h- (.:i n t .s >.) y_
>/^
C _ l '/I --i : u t 'i_ -T I-.
t J -U t JC V u ) (. - rxi H- a. Ji.
r* .J 10 :! v»' .,!./) 'i
c* J. J LX _j <_) . J i- _) v: -^
J- I-' H .' ll ' -1 O Q '!- ( U _J 'J _J (.-> 1 ' t 0 >-< -1 A- II >-
_j -t a. _i (./> . « -* '.i r _j » 'ic H-
7' II _) "i O «-4 t~- *, l ,J <~4 O '» '-' H
O _l n "i JL 3> u =<" "> « -> u a _'
O- 13 OO i/> JC i« ITI o _J ;< t _> CJ i. fjT ^" i.J
«c o D "t 111 :"() o _) --t <) o '.<: .«: isi r~) " < -I
V r. x T: il ^r of '.L ~i >- iu n -1 o >- ^ '-'
0
^O f^T* ' ^" '-'"'* O T~" f\I P1^ i^- «O l'^ T" .O O '-Z3 f*^* ^^
-» in ul .^ .r, o f^ is. .0 > 0 r- r- <- |AJ f\l
O i_) "> 3 O _1 O -~) O O O CJ O O O 'J ^
10
ILI |
i"1 1
-* ^t -4- ->* T- fo * T- *o ^j- fo T -4 T r<~> r-T * T "z. l ^r
<7 l
X I
'_> 1
_) 1
Ui 1
> 1
it t
J 1
1
O <_> C_i CJ1 O O l_> U' '-' 'J> O C> «.-> O " 1 C.I C_i t ' 2L \ O
s* -f r. - f,-i K> f, f. -o K, M I-M -^ ^r fi f.; -t -" u. 1 -^
t i
I. t
0- I
t- »
n l
C) 1
-J i
-o -n (. ... - f^ M T ,.. _. c u l -
O T i_j O (_ r-1 C' >" "J L'-i t_> r '" O C_' i fvj ,.') r, | fvl
rv T *I^ 1 1 ?
0 t.- 1 1
>' I > ' 1
l«- -T 1
O 1
rv 1
Li 1
I
(> -
1^1 .r. | _s
i 1 T
1 ! t 1 ! ' |
-' ' (_,-! | | _)
-t .. _< -r l <-,
! .1 t ~
'-. r. I, t- f\_ _J !
f- t t * ) 1 i l i:l
st < ? 'i ')_ 'r -1 a. t J | )
.' . H f ' } t >- ^- 1 ,'j
n v; : > T. - _i -y> 'L >- i i t-
»- L> I/I 1" t t w T > U T t - - 1
v- si -i TD " -=: n i 5 -v- '.0 H- f- . l .-t ! o
-5 'L ;* .* '"' ^ > "< '-' 1" ' -i 1 /"> .-) l J ,= 1 . 1
H i-< j ; * i < < -T 11 a '
'r T .. Y > - H I-- -J i'T >- i.J 't 7^ > o - j_ | ,. 4
*.} !-l (i M ^1 v' 1 J U t -C V7" ^.^ "^ < J ! '*
t < _J i/o i/> r ''i O O ~1 O >"T ' T _J I <! -< _* n 1 O.
r_' -"; '_> i J v. .j- -> j ri !.. Y i<: ,- i -'-i
fv _r t_j ?> ^ tn .1 "i '.i -t > .-' /> ^: > .1, _j > . > i >-
^> -.-r » c<: --» c- r-< <.> I-H ,-> o t i ,,)
vl >.v. s-4 . _j u > -- "- 1 r:
0 1
HI r x^ o o T- - i f-i .-> T T o *» -> f .^ o r j ,r i i,-,
O 1
CQ
-------
T i L ; 0.1 c c c N r i N L = D >
* a S T ~ 't i T . -1 T <- 5 - T V = :< T - L si N T P - C J E C T S IN Z i T J I A 3 E
i T i T - ; k K t \ i, a S
,X4NT NC FACILITY N - v r ? -> 0 J r C T £ 3 CLOW TPEATMENT LcVEL CHANG-
u J 0 3 3 2
5 u 3 5 i
050346
030-4?
0 5 G 3 4 7
03035 J
u 5 - 3 ~j 4
0 5 u 3 o 7
'- 5 u 3 o V
0 5 u j 7 5
U50379
0 3 u 3 -J 0
u3w»j.-;i
U 3 J 3 C 1
0 5 j 3 :. 3
j5:3;4
U 5 0 3 c y
050390
,,50393
050395
C 5 0 3 ' o
u 503 9 7
u 5 03 9 9
0 3 0 4 U 0
C 5 0 4 0 3
C 5 u 4 0 5
0 5 j 4 C 7
u 5 G 4 C c
o50412
05 J41 3
05041 5
GRANT NO
060669
060696
0 o 0 7 3 1
060763
OOU767
Ooo771
060772
060775
060778
060779
G6u 7 bo
L.ATE->VIi.L5: S T °
S F * I \ j L' ft L E rt i-» T F
D ' ^ ' , ,' I ' I " M MT 3
, , *« * y V \s ' _ rt " (
i 0 I S D * i K C STF
PAT: CREEK S T -'
j£~'£\"'KiES Vs .Y T P
C A M C E N S T ?
WEST si:: -,XT--T ^JTK;
C 0 N1 /» ;* Y S T P
^u^uYCc STP
C A -T^
SUL^-'-JK S^Kl^jS STP
? A K i S STP
ck'YuNT STP
COLL Si'jALS STF
MAGAZINE ST?
rl ^ T F I E '_ j STP
HUNT i:r; TON ST-
CALION STP
TAYLOR S T P
K E 0 STP
PERRY ST?
ULM STP
OA'ZANSLLE STD
STAMPS STF
U 0 N E T 7 E STF
FACILITY N 4 f E
TERMINAL I S L A N 0 STP
CENTRAL CONTSA COSTfi
AVAL ON STP
K E R ,M A !M W w T P
MAIN WwCF
PALM 3 5 S c F T v« ^ P
SCCTTS VALLEY STP
VISALIA wC?
ANGELS CAMP STP
C$A\3E CC. i« X i? P $1
iCLINAS STP
4 . 5 u
1 6 . 0 0
2.20
1.20
0 . 1.0
0.12
3 . » 9
i 3 . C 0
e.OC
1.00
0 . 0 V
0 . 3 0
ST? 12.00
1 .37
6.50
1 . 6 C
: . 1 ?
0.72
1.00
0.57
0.14
0. 07
0.11
C . 1 2
0.12
0.05
0.02
0.04
0.52
0. 30
0.11
STATE CALIFORNIA
PROJECTED FLOW
3C.OO
ST? 30.00
1 .00
0.41
C7.00
2.10
0.40
S.30
0.32
46.00
0.07
40
30
30
4C
40
5C
50
4C
40
50
40
50
*Q
30
53
3C
50
40
<+C
4C
5C
30
30
5C
53
30
3C
40
30
5C
40
TREATMENT LEVEL
30
54
30
30
53
30
30
30
3C
30
30
3
1
1
4
4
4
4
3
4
3
<*
4
4
4
3
4
4
4
5
4
4
4
4
4
4
4
4
4
2
3
5
CHANGE
3
3
4
3
3
1
1
1
3
1
3
B-3
-------
TABLE 3.1 (CONTINUED)
TREATMENT PLANT PROJECTS IN DATA BASE
STATE CALIFORNIA
GRANT NO FACILITY
PROJECTED PLOW TREATMENT LEVEL CHANGE
060737
060790
0 6 u 7 y o
U6G797
060798
0 6 U 8 0 0
060301
06000-
C0031G
Oou313
0 6 C 3 1 6
Ooud 1 8
u 6 LH i 2
0 o u 5 i 3
060534
u 6 j 1 3 5
J o w i o 7
OoU£40
Ot0349
uo Jc 54
J0036S
Oo05?>
OtObcO
0 o u 3 o 2
C 0 J 5 5 4
060 060
0 o 0 s 9 4
CeuiV?
U 6 0 9 u y
0 6 0 fy 1 1
U 0 u r 1 3
06U91 S
G6G925
Oi>L/ 9 i.9
JC0932
Oouy j o
J 6 j y «t 7
0 o u 9 ^ 0
06J956
0 t> G 9 o H
0 6 u ? 6 o
0 £> 0 9 o 7
0&0974
Ocu97c
0 c 0 y 7 9
0 o 0 9 ij C
GSuy<:4
0 c 0 / i -3
0 o 0 y y 0
LIVERM03P
L A G U \ 4 nkTP
RCSiVILLt w 'A F F
SANTA i A R 'I A K A S T ?
ALTURAS STP
3ASS LAKE STP
CALcXICO STP
CENTRAL CONTRA COSTA STP
PAIRFI?LC-SLI SON W*TF
I N Y C C A W W T F
fJC^THWcST CLfAK LiK^. ScG.
LGMf-OC R-&:C\i*L «(XTr
XT. SHASTA 'rt=CF
SOLVANG ST?
SONOMA STP
TULA. PC TR£ATM:NT DLANT
VALLiJO ST?
SCUTn **'TF
5MKt"S = IcLj STP N C . >'
CALPELLA ^TP
ALVARiC'j STF
F C K T b R A ij G STP
HULLIST^ft S T "
I ,v, o = ? i A L STP
1 0 N = S T 3
JULIAN ST°
LIN'ScY STP
T ~ ~i f I N A L I S L A \ C
LCS dA\3S ST?
'. C '- * ? L A N 0 S T ?
-1j:£ST3 ST-
NAPA VALLEY STP
°ACI=ICA W^CF
P L A \ A ? A S T J
K c'. C X a Y 'i T r
S A C K A M = N T C K t S I C N "- L W W T F
SAN JOSl/SAMa C'u3K'i ^PCC
SAN ^ 4 T 'i 0 SUfKZJlCML S T °
3 n A S T a 0 > N* A «; £ i S T c
TRAC'T 'rt^T^
T U C L U *, r, r STP
i 0 N u K A STP
rt'wSCO ST-1
^IVjKSiJ= A /( ». T
rCUNTVKLr JOINT iT =
Y 0 C A i ? A STc
i\T * + l zf STP
fc 2 N I C I « STP
ilJi^AkST?
6 . 0 0
15.00
5.75
11 .00
0.50
C.5C
2.20
33.00
10.35
C.85
2.45
5.00
0.70
0.5<*
^.30
4.50
13.00
7.00
21.50
0.22
19. 7C
1 .00
1.7:
0.70
0.45
o . c :
1.32
30.00
2. 3.
1 .00
:
C . 2 0
1.I*>
143
I I K <-,
\ ^ 9 ^ ^
0 . 5 v
5. 5?
O.ZC
P -S T'
- w 1-1
1 . 2 :j
30.00
3. 55
5.C J
5.0'i
4.00
l.*>*
54
30
40
30
4C
30
30
40
50
3C
3C
40
3C
30
4C
3C
30
30
20
30
30
30
-*0
3C
30
30
20
30
20
3C
20
5C
30
40
30
54
51
50
7C
3C
30
3C
30
53
50
31
30
30
30
3
3
3
3
2
4
1
2
4
4
4
3
4
3
3
1
3
3
2
3
5
2
5
3
5
4
3
3
3
3
2
3
2
3
9
3
2
3
4
2
i
3
3
4
3
4
3
3
4
B-4
-------
o cr o o
o- o o o
rv. rvj rvj rvj
OJ O4 l»i OJ
Oo O or ui
Tl JO Z": t/>
n n O r»
X O JO 2-
rr I
U O X Tl
» O ."O
C~ l/> UJ J>
0 CT * 2.
~x. x. -< o
S C/* n
a: rTi n /
1 Co Ci O
"o rn o
o
O Co t~1
x t .-r
-H TJ -H
TJ r~
o
>-<
7CJ
O
CO
1
en
V
O O OJ ^
v/i ru o oJ
O or O O
04 *- 04 04
o o o o
c* 04 o rvj
O O C; C O C O C1
O- O- O' O- O O O- O-
(SJ -A -^ -i _* G O X;
O ^C OC O- O4 O, O ui
x.ocoo.xrco-Hx)
n x* n *> m cr t t-i
r~ ;* j£ r~ o 1/1 TI G
r~ i-i 1-4 y> (
C "Tl U> 2 CJ
O n <: f < co m
J> Hi *» cr t-i t r~
Z x f~ ji TI r~ or
-< r~ rr> TI r~
O t/> rn ?t TI <,"
'Zl 4 -< (/i (/> 4
T) 1 O T)
1/1 l/> O U O
-H -H O ?J
TJ TJ r" X>
O
z: o
-< 1 11
^
l/l
1 I/I
T3 -H
"°
o oj 43 to * o -» o
O o * O -O 1*1 r\j 04
o o o o o o o <>
or 4^ v/i ^ or 4>- rv.' *
o * o ^- o o o o
r\Jt\jO4(\jrvJO4r\Jrvj
O O O O O O C - O C O C O O O
ooeoo-o-o-o-o-o-o-o-o o
4 u -jf! -vj -j -xi -M -vi u * kA VAI i^. rv
si 0s v/-/ rv> o ' wi *o r^-j C2 v<*i
ir r x -i. in o cr -t x I- 2. s- ii> o
PI o C o r~ » n c J> »-i n1 t-< r- C
5-000 <: c> » -o < 7.1 -z ts> u>
Z ^ C7 O n I l C: f~ TJ n O 1 * r~
s- n r~ r- o i/i i/> o -< IT r. t-*
~^. Tl 1> CO JO <"' O O AJ -< rf:t
'O ^ f-^ t>- t/"l > ?*^ C~l ft- (/> O
>«, oo f 1
tO O "O O i/» jl « (/> O
TJ OO t/> 1 Tl CO TJ 1 4/!
l/> -H -» JL "0 -4 ot-or-
1 T^ TJ K \ r~ TJ 1 1^
or~ t' o
r~ u > AI
C'> jf
s z o
>". (/i ^"
Jd V
111 £
O -4
Tl Tl
O
-A _i
-* O 4^ O O *- O Ul O Q O O *J« i«
' r-j o o -xi -^i i/-i o » ui o <; o o
^- rvj O 'j4 '-« i_n VI C) u> -N! O 'J O O
.F- rvi t^. i,j <^j OJ *- o< 0-4 -r 1*1 i* *- i-n
000 00 000 00 000 rvj
^^CM^-^a.wru^ogrNj^rvjw
c.
o-
r*.
^
in
TP-
t/i
4
n,
-r
f-
-<
<:
j>
o
j>
V
O
04
0
-»
c-- c:> c o c: o c > o o o c- c~ o o c_ c~- r, c c_^ o c, o
O O O O" O C? O- CY C O' O O O~ O (> t>- O1 (,? O (> O O
k k (___; £j tT) L } ^D ^.j (Vj c~i C_» i_ ) ( ) C -> t_ v-JJ C J C ' C. '__ ^^ ^^
^ a- o -*} o o i> ^J a> -» * (.x ^ , -Ni f -go t r -> ..« -*
-H t/i X) i- TJ i: '=. ^: <_ -i 3: a C) TI _c LJ o i. K-i o o ,j-
1 O m c t> o <~% O o x- rr. t> » < » O ni c i n ii r~ .0 r~
n c; c» LV f n *'' o t , i- u 2- i i~ i r~ <: 4 c. o j- -<
O 1 r-' C~ O ( I n> 7 7- nr Ti - r- T r- in T <~ f t
n- i >-i x> x » i/t i rs :* o c"> s r. ;' r~ IK i/ ;i r L
1 ^i 2 t- & i 4 1- .M -< O X O O |- -1 -v) !>' >'<>
-4 (.< c f~ 3: (r O t. : oo t/> r- ?o c i i <
XI i> txi 4 t- '*' TJ 4 3T HI I OO O » i '-> ":^ ('
Cr i *> 4 o ?- - O O X' O" fc. O 4 O 0" ;j 4~ 4
O 'Tl TJ t-i CO -H TJ )> 1 t C/i C_' "O ^ r~ I~ F '. 4 T)
^ r~ c~> i/i P: 4 TJ ^r TJ -p -H n. it* o
mc.ru * TJ ~< Tt r~ y i/> C'i
tn n o r (i o JL r: i.j _r 4
w> *~ ^ r> -1 ' r > u
(/I E» 4 (XI 4 t-, *.>
i o r~ -< t/> 4 -f r* " i
TJ a -i «» -4
»-* *" 5-, T> t/. i , ' ^.r
L/* >' v> > t x- o
t> 4 | r- Xt r-i <~
O X> I'l * ^ Tl
"Tl ( ' '
<^, o c/>
t "~^ ---^
TJ --4 TJ -0
f- r\J Ou O <-D ft) ( J v/i CD O VA! o\ ^ O O-i O O ~O C> r\> '
0(- in co -sj c>- O >v.i O O CJ 1/1 O » c/J O <> k Iv) v/i i.r 4> »/i
(.*» CJ O O O 4^ t^ O v > -^j o O O >-( oc O rv ^c >.J UI t- Ut ^ 04 >/l <->J 04 r-l 04 W, 4> (A! 4>- l-i UJ 04 OJ
(^IOJ *OJ-»OOOOOOOOOOOOOOOOO
*s^^!X>IVJ*.4>rafVJUIW.WWl-»W*.|VJ-**vUtW*-
30
J--'
*
r
T'
t-
f".
»-l
r~
r
- -i
-<
.T
i''
"J7
* {
1
&
-4
Tl
JO
O «1
*- i
O t «
H Tl
rn o
2"
T> n
f cs
o
*"
1
X)
m
T>
-«
I'fl
-4
r-
III
rn
t
o
X
z
m
I"
J.
c.
i
c.
>
J-
-H
f t
J> '
4
,'J
!|!
X-
4
.;
I'l'
^
-*
(T?
c
-4
XI
o
f
1 11
4
t/)
T'
"
n
C"
-1
I>
tu
co
rn
4
l~
,,..
I!'
-1
^
CJ
-1
'»
cr
o
^
-------
TA5LE B.1 (CONTINUED)
WASTbWATfr^ TREATMENT PLANT PROJECTS IN DATA BASE
STATE CALIFORNIA
GRANT NO -AGILITY N^£ PROJECTED FLO^ TREATMENT LEVEL CHANGE
061^43
U61245
061266
061272
06127*
061275
061324
0 6 1 3 L 6
061333
0 6 1 3 3 J *»
080336
060333
050344
0 o J i » o
j c U 3 <» o
o : 0 3 4 y
0 o 0 3 5 2
C S 0354
j c 3 3 5 6
j J u 3 2 7
GRID LEY ST-
F 0 R T U N A S T 3
LAKE E L S I ,N 3 5 ~ STP
M A R i P C S A STP
T R C N A W W T «=
SETTLE MAN CITY STP
ATAjCAjiRO COUNTY SC ST-1
SANTA V A R I A d T P
FALL KlVci-- "ILLS CC« ST?
AC IN STD
LE.RCC FACILITY wTP
TRAN:*IIILITY STP
1 1 - T 0 N C N t r K S T ?
a 1 5 r, C P 3 T r
R I ? L = Y L A G 'J C N S
WhJ SPARING PAINS SAU .'.5 1 S T
jfcYbt?VILLE * T P
FAYtGSiVlLL'1 i,Tf
tj R : N T * 0 0 D S T =
iGLTVILLE STP
A R C * T i w T P
"i A j I S 0 Ni STP
= E H R i S V A L L ; Y ; r G I C N . STP
? I N 0 L ' i T P
f J Y : _ 4 rl J L. C R f i S T °
CENTRAL 1 ^ R I N S- ST°
STiT
FACILITY NJv.
0 P P _ R T 'i 0 '* -* S 0 N »» Vi T r
LiTTL?TCN-:-M-LE».oOC rtA'TP
,v . j c F P '. R S 0 ;\ C C '0 '! T Y s* ' T =>
R t G 1 0 N i L w T /i
FRISCO ST=
jILVf^THCKNr OILL'.'f' ST =
GLEN '.-' 0 0 rj j T :-
LCViLA\C S T -
JSt-c.N STP
G R ^ rrj -, Y STP
7 i T r- S f = . - T w .-,' T o
5 \ C * '- A S S S T =
LONG 'Or. T «,xTP
~ * T " "J ^ T P
u - F A Y r T T r '", i r
L Y G ,\ S »J W T ?
0.64
2.42
G.35
0.02
1.40
7.80
0 . 0 7
0.04
0.25
0.15
0 . C *
1 .60
0.07
0.20
1.10
0 . 0 4
C.6 ?
O.S5
3. 27
0.1 /
1.03
2.00
0 . 2 2
1 C . 0 0
: C G L 0 5 A : C
P^OJfCTBC PLCw
1.50
20.00
1.50
2 . 3 J
C . 5 0
2.00
1.30
7.7?
3.00
0 . i 0
1 3 . o 0
1 . o 0
u . 2 C
0. 5-*
1.50
0 . 2 V
40
30
30
30
30
30
30
30
60
30
30
20
40
50
30
30
30
20
30
30
31
30
30
33
30
30
TREATMENT LEVEL
33
30
30
41
53
53
3C
40
51
30
Z Q
51
31
30
31
30
5
1
1
4
3
4
4
1
4
4
1
2
4
2
4
5
A
4
3
1
1
3
4
2
4
4
CHANGE
4
4
3
4
2
3
3
3
3
4
i.
3
3
1
3
5
B-6
-------
T i r L : ' . 1 < C 3 \ T I N L r 2 >
T - < - T ," r 'J T ~ L i \ T F << Q J ? C T S IN C fl T A -, ^ S E
T ' T -
' ^ ' -
G f, A r, T
N 3 -^ClLlTY N ^ v c
- P 3 J r C T -. : FLO--,' TREATMENT L 5 V c L C H 0 N G 5
u 5 j 3 y 4
0 3 u 3 y 4
u a 0 4 j 1
GRANT NO
u/01 53
0 v u 1 i 5
C y - 1 i 5
u V 0 1 75
u/G1 94
0 y u i u G
GRANT NO
U,'3t1
1 JUQ73
1uu0c8
G K A N T N 0
110034
GRANT NO
12u2c4
1 d U 3 V i
120399
120424
120426
12042S
120435
1 2 J4^7
V i- I L '* A T c P u S j S 5 >\ I T
AVCr, ST =
31 G - K Y C'-iA * * T c
FACILITY -v- y r
KILLiN.LY v^T =
S T G N I N G T C '-< ^ » C c
D A ^ C A T U C ,< w - C F
NSN LOfr:jN A?CF
3 P A f , F C * j « T P
^ i K I L) -4 N S T ?
FACILITY ,\ A v i
OELArtAkE CITY wwT?
S t A r 0 S L, S T P
5. COASTi^ hioICfi-L S
FACILITY NAV-
LO^TON 5T?
FACILITY N*y£
FURT ^/ALTCM SESCK STP
wINTiR G A P C : r4 ST?
IRON J « I D G 2 1 0 .1 C 3 T P
D c L A i\ 0 X v4 T F
NEW SMYRNA -ciCH wT?
PEN3ACOUA WT,^
SOUTH CROSS 3AYOU v^T^1
3AYTONA b c a C H w«TP
: : s T 1 . i .:
3 . i :
1.40
3 T -1 T C C N j i C T I C U T
° o j :- c T = : c L c w
f* , r' 0
C.6-5
1 .31
10.00
4. 5'T
1 1 , c :
PPOJECTEC FLC*
0 . 5 0
0 . '3 2
TP 3. 00
STATE DISTRICT OF C(
PKOJrCTEO F L C W
1 .50
S T a T = FLORIDA
PRCJECT5C CLCW
4.50
2.00
?4.00
4.00
4.00
20.00
P7.00
10.00
3C
31
3C
TREATMENT LEVEL
30
I, C
5C
3C
3C
51
TP?ATM=NT L^VEL
50
40
40
DLUMil A
TPfATMENT LEVEL
54
T3£ATM£NT LEVEL
30
55
55
50
^1
54
30
51
1
s
1
CHAN
^
^
4
3
1
5
CHAN
7
2
4
CHAN
3
CHAN
4
5
4
3
3
3
1
4
Ge
Gi
GE
GE
B-7
-------
TAELE 3.1 (CONTINUED)
'AAST£V»AT:R TREATMENT PLANT PROJECTS IN DATA 3ASE
STATE FLORIDA
GRANT NC FACILITY NAW; PROJECTED PLOW TREATMENT LEVEL CHANGE
1
1
1
1
1
1
1
1
1
1
GR
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
GR
1
1
1
20450
2Q..57
20459
20473
2047*
204yO
20511
20523
235c5
2 J 5 7 4
ANT NO
3U315
3J341
30357
3 0 3 o 3
3 0 3 ? 3
30393
30397
30399
30403
3 J 4 0 H
3 041 a
3 'J «, 2 5
304*5
3 J 4 3 0
304.i 6
3^479
3 J4 ^Q
3 C- 4't r
3 G 4 * 6
3J54U
3J57?
3 J3 c5
ANT N C
0 u 1 4 1
4>U1 44
OJ171
SAY CO. STP
WINTER HAVEN STP
HOCKEYS POINT STP
FORT LAUDE-CiLE STP
SOUTHWEST DISTRICT ST^>
OUNNtLLON v»T°
NO 5 T
iirLL
3 f C w
CACI
RICH
ROCK-
A L ^ A
VIDA
GLM
rt'EST
S .L.
dErtV
c*Yi
AD EL
ST AT
WIT!-,
MUC
SCUT
G L = \
PJJMP
FCRT
cLiiT
SHEL
PER?.
3 EUK
CCPN
-AC I
Ht Y-
i-Afcl
PAY.
H
E
,1
L
A
K
I
wE
iK
'J
TY
:! 0 N J
MA
L
C
s
I
R
RT
T -
A
C C
JAL
E
T
=
L
,-
-1
V
K,
L
Y
G
C
U
U
s
T
J
K
T
w
$
A
R
T
A.
I
V
c
X
I
L
I
K-
T
/"*
K
- v
j T
50
cc
~ ~
CO
LL
NV
AL
K".
Mi'J
CI
A
IA
TY
i\
C '^
^ .
r
ST STP
STP
CCJNTY STP NO. 2
STaT?
NAM; P
HILL S E W r R A G c S Y
STK
NORTH: "ST STP
K « w r -
LAS STP
K. S 0 N '.v P C D
UN sr=
ILLi ST?
0
^0 isPC^
0 C H = E f, .s T 3
<. H 'ft T P
^ S T ?
c CITY CT-
INb C -\ '-'"-IOr^L
L E. Y STP
; K S T D
ST=>
T Y ST3
S T 4 T : ? K I S C .\ STP
STP
S r 4 T r
\ - " L e
ST-
/ c < - j E
i T >
3
3
5
60
22
5
o
16
0
60
GEOSGI
o 0 J E C T E
o
1
0
1
5
0
4
j
1
1
4
4
2
£4
^
s
2
7
0
5
<-^
'
3
::.,«
= 5JHTE
.00
.00
.00
.00
.00
.00
.21
.0
.9
. 0
A
r»
.5
.2
.7
. 9
.0
.2
-^
D
.2
7
. V
~i
. I
* -J
T
.0
. 2
. 3
.1
.0
. ?.
r\
^-
-
D
0
0
FLCW
U
0
5
n
c
c
~
, 1
c;
0
!^
0
0
0
3
C
.*,
n
^
)
5
'.,'
-LC.
0.46
0
lL
.1
*»
0
Q
1C
60
30
55
40
30
40
50
55
40
TREATMENT LEVEL
30
30
30
51
41
40
3C
54
51
:41
40
41
50
44
40
55
30
7; 7
7C
30
30
40
TiJEATMt'NT LEV^L
30
60
30
4
2
4
3
3
4
2
3
3
1
CHANGE
4
3
it
3
3
4
1
4
4
3
3
4
4
3
3
4
3
2
4
1
3
3
CHANGE
3
4
5
B-8
-------
3 K A N T N C
1 3U1 74
1 611 7y
1 o u 1 '; 3
1 feOloi
1601io
1 6 L 1 t r
160195
1 0 0 1 5 *»
1601 H
1 6 u 1 y S
1 60iOU
1 6 U c U 1
1 o J 2 C 4
1 6 02Cs
1 6 j 2 v. ?
1 61)219
16U319
3 R A N T NO
170397
1 7 j 5 C c
1 705*1
17C5y9
1 70643
170560
1 70660
1 70749
1 70766
170oo2
1 70665
17087o
1 7 u 9 2 4
170930
1 70956
170969
170970
170973
1 7U979
170983
17U992
171U01
1 71001
171000
1710U
>i »i 5 T ; n £ T 5 £ 1 ( 5 -i T '' " 'i
~«,CILITY \4."::
P r i T T L L 4 * £ -'-T3
J c ;-' 0 M : S T f
'' L: K 1 3 I A *i i 1 r
S . ( C < <. C C 1 1 «: C ' - L : .N ~
DOC^.T:. LLO 3T =
j A < F I ~ u j -; .n Y S T °
1As?. ISC^J STP
//£3I ,vl i: iT^
ST. H N T M ^. ,\, y ^ T c
^LOM-lfR STr1
N - v r A S T ?
CALL '« ILL ST?
C U L D f S 4 C 'A '' T J
G C A c N ^ 1 fc L J w '-V T ?
H A 5 £ R ^ A AJ S T F
C H A L L I i ST?
ST CnARL-S S T ^
FACILITY i\ i M £
ILLICPOL1S LAGCCN
u U S H N I L L S T F
RIQGErtAY
rJUKEAO JUNCTION) L^C-COM
iDDIrVILLf ST?
RICH X C N 2
SPARTA
TAYLO^ViLL; SANITARY 3
M T C A ^ M 6 L wrtT3
LINCOLN STP
^ 0 M t N C c
ALjGNiuzi;
SALEM
OLMSTcC
STOCKTON
LbROY ST?
O'FALLCN ST?
JOWNcRS GROVE SANITARY
LiENA
SR55S5 STP
GRAYVILLc
j « L V A
G A L V A
3LOOMING7CN-NORWAL ST*
STERLING STP
T A : L c "; . 1 ( C C N T I N U = i
T P L a N T P K 0 J r C T S I hi
ST;T: ICAHG
PROJ:;C''"C3 ""LOW
2.00
1.^7
2.20
S T r' 0.13
7 . 5 0
O.C^
3.01!
r "» r^
- J -j
C . 5 0
0.25
15.00
7.50
0.05
0.26
0,08
0.20
0.04
STfiTH ILLINOIS
PROJECTED FLCW
0.20
0.70
Q.U
S C.07
0.03
0.3P
0.65
1ST 1,92
2.00
3.35
1.60
1 .25
1 .00
0.07
0.30
0.66
3.00
' J . 9.&0
0.30
C.o3
0.30
0.41
0.42
15.00
3.60
: )
3 A T 4 ;ASe
r^-;iTM5NT LcVEL
3C
30
41
30
30
50
43
30
3C
3C
31
30
30
3C
30
3C
60
TREATMENT LEVEL
50
50
5C
30
30
33
50
5C
40
4C
40
43
40
30
40
50
30
53
30
50
30
4C
50
51
40
CHANGE
3
H
4
4
3
4
4
4
3
3
3
3
4
4
4
4
4
CHANGE
4
3
3
4
4
3
3
3
2
3
3
2
3
3
3
4
3
3
1
4
3
3
3
3
4
B-9
-------
TABLE t.1 (CONTINUED)
TREATMENT PLANT PROJECTS IN DATA 3 A S E
STATE ILLINOIS
NO FACILITY
PROJECTED FLOW TREATMENT LEVEL CHANGE
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
71023
71059
71uo1
71 092
71105
71107
7111b
71156
711 60
71172
711c2
71202
71215
71218
71226
7127y
71294
71 306
7U13
71.s1 1
71332
71 535
713*1
71 3<+i
71 3 c5
71375
71397
71399
71 4 u 7
71410
7141 2
71413
7U15
714^
71435
71462
715.3
71556
71 5^4
7 1 c 5 »
71 ct 6
71fcv<*
' 1 o V 4
71 o 0 7
7 1 t, H j
7 1 > y 7
7 2 0 7 d
72150
f i.d^7
BELL
SFFI
COwG
._ L i U
5APT
R03i
MOLI
X:NC
C AKi
= LGI
<*LTC
XATC
G k A N
3fcKS
STIL
CcMT
wUOu
A KJ N A
M T V
HCCP
EAST
SYC«
r U L T
cast
M K T r.
H 0 Y L
n Pi S
SALT
AlHC
CISS
CA3P
V-
N
t
K
L
N
N
V
'O
N
N
c
5
c
IL
HA
S
TT
OM
L'r STP NO. 2
M ST=>
TP
^ T 5
J *
NK. STO
ON
N
N
n
c
T
E
L
-
k
«
_;
E
v-l
T
N
OA
C
VI
xA;i
£
I
!\
K
S
M
(J
LI
03
N
IV J
TO
CL
.i t
Lt ST?
CITY STP
LLE
V A L L ; Y STT
A
c to wT P
La iO'V'S
N ST?
N S T3
_ N ':
S T°
0 N
Y
u
'-
K
T
'i 0
C i
L.AL j
R
f.
c
c L n. C 0
A C 'J I
i L C C
PCX
VILL
NC5L
2 ON ::
L 1 .i -.
GRAN
W C 0 L
L U y :
JL2N
3 P R I
* h c £
Huy -j
~ pi (^ -v
J W '-J W
U, '-"**
"U C
j
.«
k
«
^
K
j
r^
u
"
H
T
J
F
N
^
C
A
1
iM
1
J
I
j
J
T
vl
i
3
rt
0
5 i
S
'r>
T £
<;
\
TG
V-:
r
ST
i i
YV
, ^
^ -.''
L* _»
-
^ ./
r [
ON
L
j.
~\
j
R
t r
r L
r;
* J
^ T '- .( ' T ^
K t i f- /I 1 r
L*GOC\S
Sj STP
c. 'K SAMTA^Y CtST.
T?
H K N S T P
P- S V I L L c .» ^ T 3
TP
S C b T h S T -
w .M S h i '-> : T P
F <; -1 ; v : STP
Or b « -^ K I f, 3 T 0 .\ STP
P
i T 0
iLLc l,nTP
3 PCSK ST?
T ., ,v T P
",T^
A j V u » L : J ':. T 3
- L L S T ?
i j S T ?
ST?
., STP
STP
L L S T P
0
2
0
1
1
1
5
0
2
17
10
4
23
4
0
3
4
0
3
r
11
^
r\
u
0
P
r
1 2
5
40
o
5
0
^
1 2
1
-
C
o
4
-i
w
+*
5*
1 4
?
-"]
C"
_/
."
*
*
m
.
1
*
45
50
0s,
30
54
50
50
34
64
00
50
50
00
00
~> r-
00
00
1 6
iO
eo
10
30
47
S ":
50
0*
00
00
CO
10
CO
40
20
10
25
6 *
10
0*
00
50
30
GO
^ f
33
On
07
07
7 11
jv
5C
51
30
54
50
51
40
50
4C
53
30
5C
30
40
30
50
50
30
53
53
40
50
30
51
5 3
30
51
51
54
50
53
51
41
51
33
54
30
51
5C
53
51
30
54
1
51
31
30
3C
5C
51
2
3
3
4
5
5
3
2
3
3
3
3
3
3
3
3
3
H
3
3
3
3
3
5
3
3
3
3
3
4
3
4
3
2
3
3
3
4
3
3
7
5
1
3
4
4
3
2
B-10
-------
T 4 - L i: ;, . 1 ( C C N T I N U - 3 )
v. A S T :'« A T i - T ? - A T M 5 - 7 => L £ N T P - 0 J i C T S IN DATA 3 A 5 E
STlTc ILLINOIS
NO FACILITY
:JECT=0 CLC^J TREATMENT LEVcL CHANGE
72.:0 51 4
175111
Pi:NT
S T A T r IN C I i ,\ A
GRANT NC FACILITY
FLOW TREATMENT LEVEL CHANG!
1 3U1 16
1S01 3fc
1 5 w 2 C G
1 o Ji 66
1 50295
1 :0329
1 3 0 i 3 5
1 e J53 9
1 'i 0 J 4 2
1 i, 0 3 <+ o
16J347
1 20.50
1 b0354
18037;
1 30396
160400
1 o u 4 C 1
1 00^03
13CU1G
1 2030509
140515
1&U513
180520
1 80523
1 '305 24
LYNN STP
CARtlSLi STF
NORTH fccrSTc--
«CLLOTT STP
LOGANS^C^T
L I M L1 1 "! *"« T P
E L N C * A S T ?
MICHIGANTCWN S T P
MONTlCifLLO STP
2IKCS:Y= STF
SHIPSriEwCNA STP
HA^IT STP
M I L L I A '' S P 'J =; T STP
ROME CITY LAGOCKb
HUNTING! JN STP
b R C C "- L Y N W U T ?
LYNNVILLf ST?
N C R T M V E K N C K STP
G x = i N S 3 U K G
HAMILTON LA
-------
TABLE 3.1 (CONTINUED)
TREfcT^NT PL a NT PROJECTS IN DATA 8ASE
STATE INDIANA
GRANT NO FACILITY NAM-
PROJECTED FLOW TREATMENT LEVEL CHANGE
1805*6
1 u5o7
1 9 u 5 v 2
19059*
1 9 u 5 ? a
1 9.603
1 90605
19GoJc
1 90615
190e17
1 9061 i
190637
1 y u e * 5
1 90o4t
1 ^0653
19C-662
STAl'NTON STP
MASTlNSVILLc w*iTP
CRAWFORQSVILL5 STP
MUNCIc vvWTP
PRINCETON WXTP
WSSTVILL'r '**TP
PEN.MVILLE ST?
30SWELL
Dc^OTTE
CCNVt?S= WwTo
F R £ M G N T S T ?
GRcENFIcLC 5T?
LEBANON STP
FR4NKFQST ST-
C R 0 w N ? 0 I N T x W T ?
PORTLAND ST?
COLUMdUS
5UMMIT SPPifvGS ST?
G A iv Y STP
M£ N N A R 0 STP
TRAFALGAR STP
wNOcRSCN STC
iRCOK STP
MCMROf CITY STP
FACILITY % A v r
'^£ST Ll3f.^TY STP
'1ASC.N CITY hwT-?
SICUX CITr rt(gTP
JtFFeRSO;^ ST3
M b S C -t T 1 N b * A T o
K F CX IK w A T P
SAC ST?
^:;ST:R STP
H A 3 i_ :» iN 'i w T r
; A G L c: G < 0 V f S T o
ALBURN STP
WV.OLSTOCK LAGOCN
Fc,UlLZ STC
S ? i: N C : R A w T '-
SrlELJ]N STh
^CCK RuPICS STC
HCCKH^AC' hTr
i r' 4 C -» T 1 * T -
0.09
2.20
3.40
24.00
2.00
0.75
0.16
0.13
C.40
0.25
0.30
3.20
2.00
4.6-i
3.60
2.35
12.40
C . 1 2
60.00
C . 0 S
C.11
0.0?
C.1C
0.12
STATE I C W M
PROJECTED PLOW
1 .37
6.53
3C.G;
1 .10
13.00
5.00
0.70
"> . o 1
0.7,.
0 . 1 0
0.04
0.04
0.0C
3.73
0.3?
C . 3 '-
u . v 4
^ t -
. J-+
53
30
50
43
50
50
50
50
50
43
53
53
50
50
53
53
44
53
54
50
50
5C
30
53
TREATMENT LEVEL
30
51
30
30
*0
3C
!1
41
51
31
30
30
?C
51
*1
51
30
30
4
3
3
3
3
3
4
4
4
4
3
3
2
3
3
3
3
4
2
4
4
k
4
2
CHANGE
3
3
3
4
3
2
4
3
4
3
4
4
4
4
3
2
4
4
B-12
i
-------
T '* d
;M\T NO FACILITY N.
T - 5 L = i . 1 ( C C \ T I M U i 3
STATS I 0 w A
PP3JECTEC FLCw TREATMENT LEVEL CHANGE
1 9U614
1 9U672
1 y uc 91
1 9 ; 7 C o
1 yQ7G7
1 9 C 7 G 3
1 von 4
19J7> >1 3 04 T i?CC<, STP
W A 3 H T 1 L A i C 0 J
CASCADE STP
0.3 )
O.C4
0 . 0 ?
0.05
0.45
C.67
1 .1C
0.03
0.05
2.00
0.17
0.02
0.24
1 .24
0.05
0.04
j.25
40
3C
30
3C
^0
30
30
20
3C
30
30
3C
30
3G
40
30
30
4
4
4
5
4
4
3
4
4
4
4
4
3
4
3
3
3
S T i T £ KANSAS
3KANT NO FACILITY
PROJiCT^O CLGW TREATMENT LEVEL CHANGE
20u365
200*22
200429
200432
200*54
200451
200454
200455
200467
200476
2'JO*7S
200505
200510
2U0511
200517
200513
200523
200526
<:QQ527
200^30
200534
<:OG536
200537
200548
2-00550
L c A V 1: N W 0 is T H .^ T P
WELLINGTON STP
ATLANTA LA3CONS
OESoTO ^WTF
CLAY CcN'TcR STP
HALSTfcAD STP
SCHGENCricN STP
MUNJGS LAGOON
LAKIN L.AGOCM
OGjiN LAGCGN
JUNCTION CITY W^TP
BALDWIN STP
TOGLEY CRE5K MQS P1 STP
MUNICIPAL WfcTP N0.14
CHANUTE x W T F
CONCORCIA STP
VALLZY CENTER ST»
KA'NSAS CITY STP HQ.2
MINNEAPOLIS LAGOON
WINFIELO STP
RE EC ON I A STP
HESSTON ST°
AKERICUS ST°
LlccRAL W W T F
ONGANOXIE STP
6.23
1 .14
0.21
0.40
O.S1
0.43
0.01
0.03
0.3C
0.40
3.60
0.43
0.50
0.22
2.13
1.20
0.50
0.30
0.21
2.00
0,75
0.50
0.08
5.00
0.40
30
40
3G
30
50
30
60
60
3C
60
3C
30
30
30
30
30
3C
30
60
30
30
30
30
30
30
3
4
4
3
3
4
4
4
4
4
3
3
3
4
4
3
3
4
4
1
4
4
1
4
3
B-13
-------
(CONTINUED)
TREATMENT PLANT =?OJECTS IN DATA BASE
STATE KANSAS
GRANT NO FACILITY NAMt
PROJECTED FLOW TREATMENT LEVEL CHANGE
200561
200562
20u569
200570
200576
200533
<:005 96
2006GO
200606
-------
T
T e r a T ^! s '
2.1 ( C C N T I N I I j )
T ="CJfCTS IN DAT! 5 A S i
S T
U C X Y
GRANT NO = A C I L IT Y \A y =
EC FLOW TREATMENT LEVEL CHANGE
210351
210353
2 1 C 5 5 4
210357
21 U3c5
2lUi/3
21G374
21 Oj7d
£10^5
^103*1
21040 0
2 1 u 4 u 3
210404
21G<»Gc
21U452
210547
2105*7
3 R A N T NO
2 2u2 c5
220292
c 2 0 2 9 5
^20505
220337
220314
220321
220322
220327
22u344
220347
220347
2^0349
220390
220403
2204I5
22G429
220*30
22C/431
220450
<:2u<*51
220456
220W4
220489
221)544
jc.= F^Ks:"iT"j'
-------
TABLE S.1 (CONTINUED)
T*£ATw,rNT PLANT PROJECTS IN DATA BASE
STATE LOUISIANA
GRANT NO FACILITY NAME
PROJECTED FLOW TREATMENT LEVEL CHANGE
2205fi1
GRANT NO
2 300 9 S
230102
230114
230117
23o1 <:2
230132
230160
2301 7a
230176
23G17c
^30178
GRANT NO
2 4 u 1 5 2
240130
2402*3
240255
24L/294
t4L)2 V5
240311
240315
2 vj 3 i c
c403<»G
2 <*03 53
2 4 0 3 i 0
2403S3
2 4 0 3 i 4
cH03>3
240395
240409
24ut*:2
240*47
240467
240506
2 4 u 1 1 9
MESRYVlLLc STP
FACILITY NAMt
^IGGSr-lcAj 4 w T P
FCRT F AIRFIELD *WTD
OLD ORChARLi 3EACH STP
SOUTH °OKTLAND ST°
PORTLAND WD ^°CC
S A N F 0 c. iJ S .: U * S :: CIST.
iSLctfGnO STP
WILLOW S T R -r fc T ST-
NORT-l MAIN STPSrT ST?
EAST VASSALoORC STP
SCITH MAIN STPEcT ST=
FACILITY N A X ,-
C A L V '£ « T CO S ^ N I T A T Y ?
FNlrNOSVlLLc STP
ACCIDENT TCwN CF
WILLAR2S '* W T -
iALLcNGrR C R : E K W T '/i
SAVAGE STP
FRt£DJM CIST^ICT STP
CLcA"? S P « I N G STT
ST i^IClAELS STP
A c c K. .' c I N STP
NCRTriEaSf PIVEP i W T F
CHESiipE-
C L D T 0 V» !i S T P
TYLcRTC'AN STP
cw^LL -iHCDES °"!I\'T ST
' CCX C^CiK 2T?
Ff--;L' = RICK COUNTY M.-T^
< c N T ' J A R £ C * i STP
CHERxY hlLL
CHUkCH HILL > T ?
« C R C - S T - V COUNTY S - N
0.25
STATS MAINE
PROJECTED CLCW
0.17
0.33
1 .50
5.50
4.54
vJPC" 4.40
0.01
0.01
C.02
0.02
'"i 'i
« . u 2
ST^TE MARYLAND
=ROJ?CTEC 'FLOW
1ST 0.15
0 . 1 0
0.05
0 . 0 3
2.00
5.00
1 . ; C
0.20
0 . :> 1
4.00
2.00
1 . in
0.03
0.40
0 . 0 2
P 0.07
15.00
G ST C.23
C.79
c . : i
'"' . C v
11 ST 1^.00
30
TREATMENT LEVEL
30
3C
30
30
30
53
30
30
30
30
30
TREATMENT LEVEL
30
30
30
3C
30
3C
40
5C
40
45
54
40
40
40
30
3G
30
30
30
5C
30
40
4
CHANGE
4
4
3
4
4
3
2
4
4
4
4
CHANGE
4
4
4
4
4
1
4
4
4
5
4
<*
4
4
4
<*
1
4
4
4
4
3
B-16
-------
rt A S T ' w A T E K T < -% '
Ti»Lr: -.1 (CONTINUED)
'!I<. < S T °
NO ATTLEE-OhCUGh S T °
UXBRIDGi STH
SOUTH HADLcY W>T?
HULL W w T P
dROCKTON ST.-
HA-
-------
TABLE 3.1 (CONTINUED)
WASTED/AT;:* TREATMENT FLAM PROJECTS IN DATA BASE
STATE MICHIGAN
GRANT NO FACILITY NfiX:
PROJECTED FLOW TREATMENT LEVEL CHANGE
262900
2o2922
262946
2o2979
263G01
263002
263015
2
2
63039
63271
HESPERIA WrtTP
SUPERIOR TUP LAGOONS
G ALI'E N W»JTP
TU3COLA COUKTY STP
HERVANSVILLE LAGOON
cLSIc L-iGOON
KINGSLEY * w T P
P £ */ A M C LAGOONS
POTTEP.VILLi STP
INTcRIOR T
JCNESVILLE
2 o 3 2 7 y MAK.*UcTT£
Gk
t.
e.
2
2
2
c.
2
2
ANT NO
7J603
70664
70720
7 u 7 2 5
707*1
70743
7 0 7 H 7
7J743
2 7 0 1 G *+
2
: j S
MCOKEHP1D
r-;PI jaijtT
T
-
T
L
N
3
T
«
'A
f
L
v<
F
S
^
*~
\.j
ST?
SUPERIOR S £ M
'«! . w « T F
T
t
TP
CONS
N ST°
G C G N S
P
C
P
A
N
«
L
T
T
*
p
'/«
1 =
7
. 1
n
. <'
. 3
5
1
->,
7
s:
j
4
7;
P
4
0
c
>
i»
1
5
n
;">
3
5
5
5
4
t
3
3
3
5
5
7
T
3
T
3
(-^
w
C
c
c
c
z
c
3
G
0
3C
4
4
0
c
30
4
4
4
4
4
4
4
4
3
4
2
3
CHANGE
1
1
3
3
4
4
4
4
3
3
3
2
4
4
3
3
4
3
4
4
4
4
1
4
4
1
1
4
4
^
B-18
-------
S T
T £ f_ 4 T
- L "i ~ . 1 ( C 0 NT I \ U J )
FLAM f - 0 J c C T S IN 0 a T
RANT NO F £ C i L I T Y N a * E
CJZCT?: FLOW TREATMENT LEVEL CHANGE
3
23G457
u804ci2
2 oOi ^G
230507
260510
2»j51 5
2SO 5 *: <:
2S0540
£dG539
28ui 78
2SU642
2 6Gc<+7
2d06o<
iRANT NO
2 9 0 4 a 3
2V0524
2V0546
2V056G
^ I L L .'-U « « '.v T F
A L t' c. ft T L :. A w ^ T ?
3UCFALC ST?
MA-^S^iiLL rt A T J
C ^ K A T 0 '« *l T P
ANN Ar, DALE n T -
S I 3 L x K ." S T P-
rC-^'-STC^ STP
1J! ; D I S D N L i i^ E
PIN; SI V '- =? w rt T P
* C C « r 0 ? y w U T P i C D 1 T
£LII>. = i"M L>i30C!,5
£ w, p i K ; A « T P
FACILITY K- A K -.
1 1 R I !. I 6 '«! S T o
STflRKVILLf STP
5 li M N i ^ «TF
?
V^I35N LASOCN
SCHLATc? VvTP
P I C K c N S STP
rklASS POINT STP
CROWuES fiASTr wlTSR
CROSBY STP
.MANTACHI-; ST°
M fi < I : T T A STP
MAYtPSVILLE: LAGCCN
CLEARY ^EIonTS STP
H 0 L C 0 M fa L A G C J N
T T T A i £ N - L A G 0 C N
FACILITY N A y E
ST. JOSEPH '.NWTP
M C N i T T W rt T ?
LICKING W^TF
w£NTZVILL£ STP
4 . 3 U
12,5 '«
0. S?
>.7G
0.3s
n. 2 -
r, ^ 1 i:
"\ ' /
- , J *
p r, j
^ '
C 2 2
I C :< S 0.36
0.03
6.00
STiT'= MISSISSIPPI
POJ-CTED FLOW
13.0 0
5.00
G.3-J
o . o a
n -; A
J . -1
C.U6
0.15
0.07
0 . 1 6
0.20
T P 0.16
0.0^
0.12
0.05
0.05
0.10
0.06
0.49
STAT: MISSOURI
PROJECTED FLOW
32.35
3.07
0.20
1.10
30
51
4C
50
30
50
4C
3C
50
50
3C
30
51
TSEflTMENT LtVSL
42
40
30
30
40
30
30
30
30
?C
3C
30
42
41
30
51
30
30
TREATMENT LEVEL
3C
30
53
40
S
4
4
3
1
3
4
4
4
2
1
4
4
CHANGE
3
4
4
4
3
4
3
4
1
4
4
4
4
4
4
4
4
4
CHANGE
3
8
4
4
B-19
-------
TABLE 8.1 (CONTINUED)
WASTiWATER TREATMENT PLANT PROJECTS IN DATA BASE
STATE MISSOURI
GRANT NO FACILITY NAME
PROJSCTCO FLOW TREATMENT LEVEL CHANGE
290587
290599
290603
290629
29Uo34
<:9064o
290653
290055
290655
2 v 0 o 5 S
290662
290669
290673
290oc3
2 9 j 6 v 5
290691
290701
2 9 u 7 L 3
t90711
290713
290720
290722
290743
2 i u 7 4 4
290747
2 907 SO
i 90 751
290752
2 9 u 7 o 4
29u772
290777
290779
<: 9 u 7 o 1
29u762
c 9 u 7 e o
290794
29079d
29^339
290543
2 903 4 L
<;yGi74
2 9 'j a 9 1
29u91d
29u9oO
2 9 u 9 o 1
290977
291065
WEST SIDE STP
CARROLLTON' STP
NfcVADA WWTP
KOCK CREEK STP
CHARLESTON ST°
WtATT LAGOONS
RICHLAND WWTF
-------
UJ
co
-^f
Tl
ft
f~
<*
<-> o
0
l|! -£
ZJ I 1
^*
t-1 (XI
t- t-
O " ;?
O "~>
o
IV
o
- » f
A
-.--1
s'
>-
t
r <
_J
*- 4
U
rl
"-
O
2"
5
o:
UJ
rvj^fO-J-^^K.^^^-r-^r-.^K!^^ 2
I
_J
UJ
>u
T-<_>OOCJOOOOOOOOOOt_>0 Z
fj> ^O C' i c/i N^ ?*o ^* r/> f> K^ ro fn t/) co f*"' co co *-'J
ST
1-
u.;
ct
»
3
0
i
"D T C1 t> -»> f^- l/^ r. i f-i O u^ o >n * O in T- U-
r- O C O '.7 'y-i T- O O 'A T- O O T- O r- CM O O O T- O O O O O "> UJ
J u:
HI -i
«; o
!JC
tx
(* »
(
.1
H-
t/i O "'
*C H- x> 'O
n rj \~- o rv tx vi ~* £ O
»-- IT ^- (-- t ».T 1/1 O i.'1 'J.;
_s ! 'Xi -4 "sc O I I -£ o_ O ~ '.o _j tj;
_j »_ >. >- ^ 0 _l CJ Q. 1- jt -I 2"
-J u _l £ t- * I" O -a t-t O K- X T .J \f
_!_)! Jt»- _J>-«-rxl~5 >-« >-
; I _l u (_> HI in ix) _J "C <^> -J a. t
(X n (Y r, u. > f. ? ^ 2" » 3 -J >-
.,-> > t o >-« o >- '"> <: i/i _j
H K --< 1 ,11 -J f- r»l J .> O ' 1 1X1 1X1 1 ?> H
-J '~l '1J C1 _J *i> '-4 ^ C<' 'U r< "f -J OC vj Of >- O
't .J ae < M o ii n J i ^ -a o o iv: o o -a
vT tl. . 0 > V O, jE _J 1 > I 10 O T' IX U. ."O "-J it' U_
O
Kl ^* N. V -O -^ O O "O J 3") O r^ O- T "1 >A Z
-O > > O O O O r- »~ '^ :vl 1-1 * -A ^ O 3
-nj, _^ ^j ^ \» '-J (-^J ^ ,, J f \J f ' J f ,» v-yl *^J fj \J f-''^ f/^1, ^_
D ~~) O U O O "D T "3 O 3 D D :i O 3 O ^
rD "? ' ~) ' * i~5 fI3 ^3 '"I C~) <~) i ) i^ c? "J O ' ") fZ> ro K> ^) co ^O fO K> KV K> *O **^ CO co 'O K>
^-- O O OJ o C1- O 'O m T- T O OO C- -* r^
'\ T O rj r\i P>I T- f\( J- o O T-
O O (Ni o a. *
0 * fa. 10 t- 3;
'-"> "< ( 'Jf (X >- tO
<* a. r< r j ttj H- i u. a. aj
-Jt O 3: Z t -X JE «-« I |_h->
:sa._i --£o>-n.^Tio
rj a »- UJ o. z _i 3t "« D i 3 » ,*
-J 3:t-*H-Oixi it <* o co - >
'jj i jt u. TS f_ >-« t-j o vi 5: a: >-^)| Z
U O r£ z z O n O O -at H I'l K- lit - H ^ r-| Z U- CC .'U OC h- _l >. ^i 'j _i x -cr^O-->.o^2:
CO oO r^- v po in CO N» \o r*^ rvj CO O P^ ty> (NJ
<>> O O -.M fO M 'O OO O 1^- r- f>-- rs_ N- <"O
0 000 i J .0 0 O 0 O 0 0 0 o 0 0
0 N, -ONi^v.fO^-l^.oro^^^ ^
^^ l/N ^^ co >^ *^ f^ *n
CJOt-OOOOO
K>ro-^fOfocoK>>O
OJ %*t> O OtJ f^. O- V^ -^
r-fMO^T-ro-oO
OOoOOOOr-0
» *
CSl
1
oa
UL
t
u. 3:
»- fX 0. O,
- |~
tx> t/> >~ o_ 3
o i-< i- a. at UL
Z XI f- 1_> 10 t- t-
LH ;,9 T- co in N- o r-j o
uO^OxCXCXOOO
0 O 0 O 0 3 0 O
*O ^~> f*1) rO f*1 ^O (^ /O
-------
TA4L5 3.1 (CONTINUED)
WASTEWATE.fi TREATMENT PLANT PROJECTS IN DATA BASE
STATE NE3RASKA
GRANT NO FACILITY
PROJECTED FLOW TREATMENT LEVEL CHANGE
S
10513
310514
3
7
3
3
3
3
3
3
3
3
3
2
3
3
3
7
V*
1
i
GR
3
3
3
3
3
T
3
j
7
3
3
JK
i
_,
3
j
10521
1U546
10547
10550
10556
1 j 5 5 8
1 u 5 £ 4
1 0 5 c 7
10574
10573
1G5d2
1 0 3 9 0
1C5V3
10601
1C611
10621
1C631
10656
ANT NO
20076
2 J 0 7 d
200S5
200 06
2 0 0 a 9
2j091
200*7
2J107
2 u 1 0 c
2 *j 1 1 1
201 tC
ANT N 0
3-J093
3 0 1 0 j W
CAL
ITY
3TO
STE
N w
N - G
N vV
Y S
4 IT
3N
HLI
-<(.;
LOCK
L
^
N
j.
£
ITY
c.ST
ST:
N S
3 V
TE
S
c.
AM
PC
HT
LAKES wWTF
P
TF
P
ST?
wTF
N'T,17
KWTP
A ij 0 0 N
$TS
R JJ T F
TP
TF
F
F
H 0 U N W w T F
N
N
A3
f* j
if-
^
T°
T
ST
jn
CO
r
J
\!
.-. ;
W N
TP
;L
STATE
AV£ f
STf
ST?
^:
0 N i 3 V I L L E S T ?
F
ST =
P
T STP
N T s o L PLANT
TP
ST^TE
4 v : £
'* 'I T P
ST -
L '" ~> i STP
0
1
o
1
0
0
5
0
0
2
0
c
0
0
0
0
0
0
2
c\
-------
T R :
T ,u = I £ *.1 ( C 0 N T I N I' f D )
T '' 5 M c L J M T PROJECTS IN OATH BAS
STAT5
NEW
K A N T
FACILITY r, A ,* E
?''CJCCTEC PLOW TREATMENT LEVEL CHANGE
3iU 23
3301 24
j 3 u 1 2 3
330135
330137
33013*
330140
33u1*5
33U1 4S
330137
5 3 u 1 o 1
3 i 0 1 9 1
3 K A N T N G
3fU2 5 1
3 4 U 2 i v
3<»0 333
340333
34u34J
341344
3 4 U 3 5 0
34035 ^
3<+03 56
34035S
340372
340376
34u377
540533
^403b6
54j3s7
340327
340358
340391
3404Gfc
34U527
34G535
3^0550
jRANT NO
G 0 -t r1 - M S T F
P:TTSCI-:LU -*?CF
w/COCSVlLL; FlPr C.ST iT =
C H A * L £ i> T 0 '/, N *' T P
L I S = 0 N L A G 0 G '"; S
HINS34L= STP
A I N C H -. 5 T i P j T ^
N£wfI-LC$ STP
rt'cMRi ST?
HALL ST?:;T ^WTF
J 0 R h A v, STP
5 ^ A N L ~ Y S T ?
STATE
FACILITY NA. vi? P
MOUNT HOLLY SA ST^
LIN^rfx-KOS^LL; ST?
PAR-T-?CY HILLS STP
FARSIsPiMr-T^QY HILL ST?
UNIC-J '* cS5~X JOINT STP
ATLANTIC COUNTY S.A.
LIVINGSTON XTW L,lp3?iDf
LINCOLN PflRK ST?
OCEAN C C , S E 'A . A ,j T i- .
PcMscSTCN M r A
OCcAN COUNTY S.A CcMT^AL
MO^^ISTOWN 3T3
S M U .' J V C U T H S.A.
HAMILTON T 0 w N S r I P
BcRGEN CO Sc^^R AUTHORITY
CAPE MAY CO MUA STP
OCEAN CITY REGIONAL WTP
HANOVcR SEwdR i u T H C S. I T Y
S w I N j LA^REiNiCc WTP
OPPfcP wALLKILL VALLEY ST=
LAMrcPTVILL- STP
REACINGTON-L-I3ANON S4 STP
COHciRLAND CO. SEWERAGE A
STATE
FACILITY NAME P
0.75
0.40
0.2-j
1.12
C.2*
0.2V
0.35
G.12
0.32
1C. 12
2.53
0.1 5
N E * JERSEY
POJECTEO PLO'^
5.00
17.00
16.00
1 6 . C 0
75.00
tC.CO
3.50
7.50
2S.QQ
2.50
24.00
3.45
^.00
16.00
75.00
6. 30
6.30
3.00
24.00
2.50
1 .50
0.80
7.00
NEW MEXICO
ROJECTEO FLOW
30
3C
40
3C
20
30
33
4C
60
33
30
30
TREATMENT LEVEL
41
30
52
30
3Q
30
3C
51
30
33
30
40
30
30
30
40
30
30
50
41
30
51
3C
TREATMENT LEVEL
4
4
4
1
-------
TA8LE B.1 (CONTINUED)
WASTEWATER TREATMENT PLANT PROJECTS IN DATA BASE
STATE NEW MEXICO
GRANT NO FACILITY NAME
PROJECTED FLOW TREATMENT LEVEL CHANGE
350171
3501o5
351003
351004
351005
351010
351015
351017
351018
351025
3510^9
351030
351031
351034
351Q35
351062
351063
GRANT NO
360326
3CU376
300364
300339
360433
360436
3ou446
3oO<+c5
300534
3oO 55 1
3oG5 56
_>o0567
.iOGt 21
360627
.} 0 0 0 4 G
36uot1
36G644
3 odd 46
360c50
3oOt52
3ouC S9
3oGe61
36G6&Q
56G691
360711
LAS CRUCES *WTP
CITY OF LCRDSLURG UKT^
DELING LAGOONS
HC3SS STP
SILVtR CITY STP
FARVINGTON STP
RATON WdTP
RUICOSO REGIONAL ST?
TULAROSA STP
6ERNALILLO ST°
CITY OF PORTALES WhTP
CLCVIS STP
LOVIN3TON STP
LAS VEGAS SS
JAL STP
EAGLE: NfST S T =>
LOS LUNAS $T?
STATE
FACILITY ?MAyE P
NUNC A V I L L A G d STP
GAKFIELCJ rtTP
MARION STP
K:NSS£LA£5 COUNTY S . 0 .
SAG H a R - 0 K S '. '« A G E 5 *i S
H A V Ht Q \i r V I L L ± '3 L S T °
CLAYTON STP
ONTARIO TCrtN ScAtRiof SYS
5ACKETS H ^ R 5 0 - STP
OQCK ST5--.ET « T ?
LLCYi ST?
NEW R 0 C -I r L L i: S . C .
jREENPORT
C C K f- U 'A T ?
WALTON ST?
MONT30I*::KY COJNTY SCI STP
W A T r -' F 0 c J ? i /- ? K ^ G r S Y S T -. «
CCoLTrSKlLL A!^
SRC TON wTW
ADAMS STP
S Y R £ C u S z " c T -^ 0
M A S S £ N A S T P
CrtrtUTAu^'jA L A K. I SD ST°
0 R A N o E CO. S . 0 . * 1 S T o
GRAND I 5 L A N C * * T P
6.00
0.30
1 .50
4.00
2.00
7.30
1 .20
2.64
0.50
0.80
1 .14
4.00
1 .53
2.50
0.40
0.06
0.70
NEW YORK
»?JECTE: FLOW
0.29
0.34
0.1.'
24. OD
? . 1 Q
0 . C 3
G. 30
1 .00
O.oO
1 .'56
1 .25
1 3 . 6 0
G . 5 0
0 .1 4
1.17
1 .00
1 . 5 0
0 . 7 5
0.23
0.45
"=0.0 0
2. 30
4.10
2.00
?. 50
30
30
30
40
30
30
30
50
4C
30
30
2C
30
40
30
30
30
TREATMENT LEVEL
50
5C
51
30
30
30
3C
54
30
3C
30
30
3C
53
40
3C
30
50
1C
41
53
30
3C
51
c ~t
1
4
5
4
4
3
4
4
5
3
4
4
2
4
4
3
4
CHANGE
4
3
4
4
4
4
4
4
H
3
3
2
2
4
4
4
4
5
3
4
3
2
4
4
3
B-24
-------
ft a S T : v.< £ T c^ T P i a T >i ~ N T
< L E 3.1 (CONTINUED)
f L -1 \ T PROJECTS IN D A T ft 2 A S 5
STATE New Y 0 R <
u K ANT NO
36u71 9
3 6 u 7 * ?
3ou73 e.
360742
360747
3 o j 7 5 C
J 0 U 7 6 0
3o0771
^6 j7d3
3 6 u 7 b 6
3 o 0 d C J
jCOou6
30US11
5 6 u 8 1 2
360c1 4
3608*4
3oUC)3 o
3 6 0 c 4 3
3 6 G d 5 4
36Cu3 V
360913
3 o 0 9 1 4
3 00922
360949
36&V73
300961
361000
o R A N T N 0
37U364
37L377
370377
370377
370382
370333
370385
370386
370397
37G4G1
570411
370417
370425
37C433
370435
FACILITY ,NH * '-
PHIL^ONT STP
CAf.AJO-ARId STP
M I N = r T 0 STP
LlShA<,Ii_L CCLOME
N I A G *»?.! FILLS ;*T
C ^ A y p L A L N P K, s . : .
HuCiCN CITY STP
^ i S T F I ± L u S T ?
OCJAN cEAC.-l iTP
* A T K 1 xi S G L r N STP
ti ft E i .\ ? G K T S T ?
SYLVAN i ^ A C h STP
ALTAf'ONT STO
sccos POINT STP
HANCVc? ST=
A L - 1 0 U A * T
HOLLAND S G * 3 o T f
S T C N Y POINT S T ?
DcPtSIT S 5 w T ^ A G f. SYST
M A R i. T H 0 N S : 'ft r- 3 S Y > T r M
NO^TM C-!AUTAuJ»li LAKE
S rl £ P. M A rj STP
SG^^SfT-rA^Er'v STC
CAKVEL ST»
PARISH W P C P
S;N£CA CNTY S3«1 ST^
SKANcATELES ST?
FACILITY N a ,M 5
T A 5 b 0 S 0 w T W
IRWIN CRrtK ST?
MALLARD ST?
MC ALPINE STP
CCNCO^O «TW
FARMVlLLc WTW
EAST BURLINGTON STP
WILSON =AY STP
LOUIS3URG STP
MAGNOLIA STP
PARK TON STP
DUNN STP
CLINTON STP
RED SPRINGS STP
WILLIAMSTOwN WTP
D P ' > i F r T - '" £ i *"* u
W'J^J^W ( '.J I^'JW
C.25
2.35
0,63
- 5.00
^ ? . 0 0
0.1 5
^ . cO
2,60
n L n
u . 5 j
C.70
0.56
1 .72
0.42
0.57
G . 5 0
2.00
C.37
5.03
; M c . 4 o
0.-20
STP 0.50
C.14
C.2S
0.20
C.14
0.71
0.55
STATE NORTH CAROL IN
PROJECTED FLOW
3.00
10.00
3. CO
30.00
2 4 . 0 C
3.50
12.00
4.46
0.80
0.09
0.12
2.28
3.00
1 .5C
1 .06
TREATMENT LEVEL
40
30
30
30
33
40
40
33
32
30
30
33
50
30
30
53
5C
30
3C
30
30
50
30
50
40
50
50
A
TREATMENT LEVEL
30
50
51
51
50
51
40
3C
30
40
30
40
44
32
30
CHANGE
4
3
4
4
5
3
2
4
2
3
3
4
3
4
4
4
4
1
4
4
3
4
4
4
4
4
4
CHANGE
3
2
4
3
4
4
3
3
1
5
3
4
2
3
3
B-25
-------
TABLE B.1 (CONTINUED)
WASTcWATcR TREATMENT PLANT PROJECTS IN DATA BASE
STATS NORTH CAROLINA
GRANT NO FACILITY NAME
PROJECTED FLO* TREATMENT LEVEL CHANGE
37CK36
370437
37U433
370441
370*42
370452
37040 3
37U470
370493
,7G;,d4
GRANT N 0
3 5 U :. 9 4
3 G u i 1 3
3 S u 3 2 1
350324
3 £ o :; 2 5
360325
.5 6 U 3 t y
330332
3 SO j .5 4
3 3 u 3 3 5
3 &G341
3 o 0 3 4 2
3 3 u :> 5 U
330355
3cj,56l
330365
330Js7
3 o 0 .5 o 6
350371
3cuJ75
3 3 0 3 7 o
3 5 j "i 7 7
330.579
3 d 0 .5 3 0
.530.5*7
3 8 J 3 o 9
3 S 0 3 > 0
,5*30394
3 3 0 .5 7 5
3 £ U L 9 ?
CGNOVER CITY STP
MAIDEN TOn'N STP
* C C D L a W N STP
MCCkL COUNTf REG. kTd
TRENTON TOWN S T F
OAK60RO TOwN STP
RUThER^OROTC^ TOWN STP
CHEkRYVILLd CITY STP
tiCONE T 0 * N S T :>
JcNSoN T G w K S T c
STATE
FACILITY Ni,«: f
S N 0 i 3 L 1 N STP
SHELDON L a G C 0 N i- N C r S
JIS^'ARCi^ HWTP
HATVEY LAGCC'Ji
M A N 0 A N STP
N £ lv T 0 /( N L A G 0 0 .N
DICKINSON L A 3 " C \ 3
CRAP, Y H«Tp
MlNNc»JAU h S l- U R G L A 3 0 0 N
SCRAN TON STP
VERONA L k G C C - J
G ^ A \ V I L L E LAG 0 0 N
.MUNICH LA G 0 C N
SOUR IS L^GOCN
i T A R \ w f A T H E - L a j Q u N
N c /» £ NJ 3 L J N .: L ," G 0 G \
3 c Y ?. G L L) 3 LAGOON
RUTLAND L « 'j C 0 N
w C 0 C * 0 R T H L a G C C !-
3 E R T ^ 0 L .: L A G 3 0 N
C£ KR I UGTO.\ ST 3
0.60
1 .00
C.1S
6.70
0.07
0.50
0.64
2.00
5.20
C.33
NORTH DAKOTA
0.25
0.03
5.04
0 . d
2.00
0.20
1 . 4 "5
0.02
O.C6
0.33
0.03
0.01
0.02
1 .74
C . 1 ?
0.11
0 . 0 5
C.1?
P . 0 4
0.05
; . c 2
C.O7
0.04
0.01
0.02
1.1 ?
0.0?
o . : 7
0 . 0 2
0 . 0 2
0 . ! ?
30
30
30
51
30
30
30
30
30
51
TREATMENT LEVEL
30
30
3C
30
30
30
30
30
30
3C
30
30
60
40
30
30
30
30
30
30
30
30
30
30
30
30
30
50
30
30
30
1
4
3
4
4
4
3
4
1
3
CHANGE
1
4
3
4
3
3
3
4
3
3
4
3
4
3
2
4
4
3
3
3
4
3
3
4
3
3
3
3
4
3
3
3 u 3 9
IGNITE L A G C 1N
B-26
-------
C*-i C*l C** C»* CM CX Ix C/J CA* iX< CA' C*-l O* C" CAJ IX CAJ CX tx C*< C'' CM IX C/- CA; UJ C' C/-' C** C'~ C".
>C' V4' *O ""C "-C *G Hj *O ^C *4j vO x_> *C *O sO ^O X* **_ *C ^ NC ^' NO NC. *£ ^C ^C H. **~ **; ^C-
C O O C O O O O O O C C. C C; O O C' O C' C' C- <_i C. O C O C > O C: C O
~^J ^J -si -sj -si -sj -si -^J -vl O> O O> O O O-- O- O l>~ O C> f> O- O' Cf t/' Cf, U' U. Vj> Ul -p-
P- 4^ -P- *- i » O O C- o:. t> cr en 4~ 4^ i.-j (x. rv rvj *< >£ * o o- i..' C'- » o-
OO O * O "SJ * *O CO po O -P- C*i O OJ-sl-p-(X^FvO"sJO IX) *<» C^J k O <* O O 4^ 4^
f n. i/i o -o ;r TJ r~ 3: -n -< -n ;: :i 3. j_ o o ou :s: r~ o c: "s: n xi o ~< <~ .rj «"
J? x: o f~ X) m n in o t-- O 50 l(l £. ni s> x> n CT X- n t= ^> o c: r J> » » 1 j> r>
~n I-H *» O s- -H ni ^- n cr m i. t/> r^ -f in ju xi o-i ;« z <". crom^z t<:z
J> n >i o-, t (yi i x> y if ?^ n n & , <-i ( t/i x-> ( r^ ^ r* r- in I m
< o ;*. xi o n o cr -r o o ;* t-< ** r o r~ o n o z i n > x xi r~ ^r J
tn o r- ro ii 1/1 c. o n i/> a: 2: z i> -t ^ m ,2 r a: 2- s> i^> j, & t- >f Z" n>
i o ir o o jr.- -c ;o .s m -< o t^ CD <; r~ i ^ ? TO i- t ^
i cr «_ o i r~ f-t ci ni r- c.^ r x r> 2: s. i-t s. o i s_ m t u> .< i
n z I1- c. 1-1 r* xi c s. Jo <: a. o s: r~ x 2: T> s. jn c t > i-
-i r- Zi (^ r- -< i; 10 »-. i_ c -H r- -i -H s- :r r, n t>
t/> -< J> ( r~ ni -H n> f~ i 2 "u ni "o -u O »-i -^ «
t Z -< rr, 1J O -<»"«
xi 01 r~ t/i c~> -< ,11 -< r~ i_
I i^T (yl 1 -O C-. 5 _) x.
"n en -H i TJ y i >; r, s o s
( xj -o r" "o 4. IT* t _(
TJ i/i * (,1 -u -rj
-H u n
O
:o z
jit X>
c"~' r
TJ -H
-1 D
00
1
l\3
ix> rx^ -i » i^, ,x) t !
O * IX) O ' O O O l> -C" -si O O (X. -fN fr. (^ o fv) f,, ^g l.j vn (VJ ( ! ,-j (-, ,^ |vj ,,j
-^ r\J O O -^ O -* -» O O O in -» -i o -si O vji ix> O v.i o O <" O ix> -v| -i O .x- -si
o o o o r--> o 1^ a- o o o o ro o o o o j ^i o ID o o o o o 4- o> :_j o 01
4^CAlou4N4>4>Jp~4>4Nt^4>.*-.^s^H(>,_i^,^u1l^lNjlyj(_/j(^, (_Aje»)OJ4^C»iUJl*l
7;. C-- i/> I-- c~ u. c.- i~ CA o^ O1 c>-
t rx i> (» tv ex o o c>. ti iv ix.
~z c, c.) o C-. c c (_ c o c c-
1 * * *- -»- 4> * 4- * 4: * -P-
~g f> c.11 u r » -» k c j c- ci
i3! 4:- V/: Ol -si fX '0 O lAl <, O CM
C5
n rj it- in ;* ^ o t- en i t G.I
t> i^* i r » t"i xi T> C't i i~» ^ ir cj
o "oc:>jC2r. rit/ioar
*- \~~ C ^ ; ^"' x r" TL "^ ?i
1" f~' Ji .' t ! . * t J-- i* 1 "U T>
i-i t _r IT> >» ii r.' T ^: c. >f< **-
> U Z' O CJ X O
-r. r- r- i/i ix- c t. .r ^ r
i t- ( I -< G L . J-
i' CT> i. > T> O -H fi iyi -. i
EJ C) O V m u 1 1 C 5
=t O O < -H 'O T; C-
11 * *.; '- T
i
»-»
~4
t M
'.3
-"U
O 0
<_ I
!' 1 1
O O
t
.u O -" O r ) T> t^1 O O O CJ O
C3 vr1 O O ' ^ O O i^> * O vl
TI >^i < ~< 4-^ » * ' ;>J ' n !.<> '^J
(~
C5
S;
1
1 .^
te.
-t
3c
111 OJ ^ -4 I.X O- '^ ^ v~"J ^A| \ ^ wl '~'J
Z CD O O O O O O O O O O
-t
r
m
(n
r-
o
ac
Z C*LMCX.p-4S4.-OJ.p~|x4S->.
0
III
Jt
f>
i;
I
?:
o
n
j-
<~<
n a.
r i
11 t/'
i t
-< s i
£
«?! T-
J. <
-V 1
> l . '.;
-(
n
i.
i__
(
j-;
M
r*
4 t--
O J--
.11 C~' in
" » "
-^- - -4 " fj
i , : *
<_ O VJ >
i i X> '\^
0 -H CJ ^.
i j: c_ ->
in ii' O
\. "l *- J C~l x"T
n ^ -_/>ii
r~ o i;-
o t > < c~
3. 1.- ^ 111
t 1
1 t-
'f i
t
( C-;
>n u>
i* o l
in
if*
O
I
Z
o
in
-------
S 0"
7 Of
7 3V
£ 0*
7 3£
*. 0*;
7 3 i.
7 09
V Oi
^ f| v
7 OS
S 3^
7 3£
7 77
c 7 $
7 3*
7 0*7
7 37
7 D £
£ 3-7
5 O4?
3 5 N tf M 3 1 ? A 5 1 i N ? !*
7 3£
7 7§
7 77
V 7?
£ £S
? £ b
£ 3£
£ 3s;
£ 0*7
£ £S
7 3£
£ 75
7 OS
7 0£
7 0£
*7 Q£
£ ££
7 LS
7 0£
*; OS
35NVH3 13A31 iN3v
3S,
0 0 ' £
73*0
S i"l * "I
o ? C
*';' 3
C f ' C1
£ i * P!
L 0 * 0
7 ~ * r.
V - ' I
i 3 3
? ? " 3
5 ? * r
0 D ' C I
0 0 ' c
*"'b * 3
ZG'O
be r,
ZO'Q
? z u
o ° r
? u u
j itf 3 d i M o i d o :- i 'j -3 r c * d
,.OH,1«
£L'C
00 V
6r o
: ° o
OC'Ol
L' C " i t
^ 7 1
u d t
c ^ * C
2 £ * 0
c? ?
zr 3
SS'O
o t o
S J " 3
9f3
GS'O
£ 2 " I
era
> ro
'L'O
,1^1 M01= G,135rO,d
01 HO
tfe vivo M SiQ^roi'd IN
(Q3nNIlN03) L " f-
CIS Pl-stNOlHj
S V 0 C r V 1 r " - '% v
d i ^ « - 1 i n -
- i ? : " i c ; "! r 3 ^
J i S S ? r)l -M C "
ciS =ilCCf.?A"
\! 0 r. 5 7 "I !O I i ', ~ ' x - T ' 0 "I i- 7 !>
r ; n -: "i.;vH3s:;-f;0'\ ^c-;^?^
J1S " *- - r- A ? 1
c i S 0 N " i* 1 ~
s^c:-!fi TI H v v N ? i s
cl^ -^^^^-^.l^^i-J
'. c c c ? i M n 1 1 * -: i y, ? i 1 1 y A D
H 1 y. f N T .: ^ 3 'd r " C
N " 1 J S .; i 3 v - L- n *". - A N C' H 1 ~ c
r i S '-If '<'.' G * C r1 'i N ** 'f-
c i S iS?i : * 0 d N ^ ? K
dis =ciSHincs 5niA r. :. CTDM
c i s ? M s oy ? s
c i M M t; v 0 ^. f
oiS N-Ci^NTJJiS
- -v ^J A 1 1 1 1 3 * J
-J i 3 i S
d i :, L: n i A s A a a 3 d
c i c viAWj.rc
A ': 1 H S f
d i K ^ A i N n CO r 1 - ± d C
d 1 " M 1 r 0 d >; 3 A 11
d 1 <: N 0 i N 9 3
d i M K i N I 0 d i- i 0 0 S
diM* NCiNVfS
c'iS rlllAKlIW?
diS LeVllTf*
aiS MVSfcfM
diS N 0 1 1 1 0 !r 3 V 3
diS 3I11V?
c i S N J- ? A 1 f K
d i S ifFNCId
di^'M ''"IITAAPNVS
d i i N M- 0 i S b E W 0 3 V. ? N
a i S 0 0 V M 0 C 1 =
d i r M u 0 C f S S M S
9 >J 0 ? ^ N I n1 C 0 "1 f-
r'A'7N AiIlT3fd
= 1 V 1 S
,no. iN^^r^ ^1-^iSVM
= 1 3 " i
j, r o "' r s
" £ '- ' C! 7
c j c r n *t
C i Q r' 0 **
_/ ? Q " r f,
Q 7 7 0 0 **
c -> <- .-, c« 7
c 7 o p 7 7
-> 7 q ," r, *»
o t Q - r. 7
7 !_ o ' o 7
t L T 0 n 7
o n o ~ {^ *»
^ f c ?0 7
7 " S r: C ^
? Z S D n 7
c i ? DC*?
c; o c ^ n 7
[, c c r r *?
L £ s ? : *
P ? <; r, n *.
C N i M V v 0
6C-t6£
~ l~ I 6£
soot*?
L ? 0 l> ?
# 66C69
o< 606 f
? ? 6 0 6 ?
Z ?6n6£
£ ? 6 0 f T
6 ? 6 0 ^. £
2 o 6 " ^ r
I ZS065"
i. 9 ? n 6 £
77? 36T
C £ ? C1 6 £
t 7 ? 0 6 ^
C1 1 ? 0 6 £
£ ? Z 0 6 £
7^Z^6 £
£ S Z 0 << £
ON iMVilC
-------
,, c i T 5 >j k T -;
r u - L r 3.1 < C 0 N T I N J I; D )
T r : u T y t \' T P ,_ w N T ° -" 0 J c C T S I K: C c T A
d A S fc
S T 'i T - 'j ,< L A H C f -*
3 K A N T N C
C i L I T Y
H U J C 4 4
4Go6-t J
430 t)5 2
+Guo53
4 U U 6 6 o
4 ! J u C 7 G
4 0 J o 7 4
40Cb7c
4 0 L o 7 9
4 G U o o 1
^ JO J>C £.
4 0 0 o d 6
4 0 0 6 c 7
+ G 0 6 d 6
^ 0 0 o y i
-f007U4
4JG7G5
4 3G7C6
4 0 j7u i
*GG71£
40J715
4GJ725
40U7<;7
tG J7 Jo
40G742
40G743
40U7t4
400742
40.J756
4 G u 7 c 9
40G772
400775
4GJ779
40G7d7
nOOcGZ
400^07
-+GU311
4GU.312
^UG£34
4DUd45
4 u G 8 + 7
4GG8o5
40U914
VJG947
^:AN:L = TT sir3
ALTLS w«rp
^ i >, N b : ^ T t
.1 A N K S V I L L ; S T ?
«1LL Ck-.t* Li--CCN
« A 0 .<- G ^ I i i T P
iTILL*ATfP A ^ T P
rt 0 « L S T c1
G A y ; v o r, s T =>
YUKON ST?
P c S K Y >J ^ T P
= G X i T 5
rJOKTrlSiG: ST?
n A * C K T H iTP
S C G T H 5 I : ': S T P
A j A S T '*>
cbF/t'JLA Sf?
:j A R V I N L A G C G >l S
0 K E. M A H S T P
OKAhCrii STP
S P R I N G £ R NOK-DI5CH L ft G 0 0 N
CLINTON i TP
UMV:.%PC-
CHcROKtE STP
CHECOTAH STP
FLETCM6R STP
PRAGUi LAGOON
SOOSEVcLT NCN-CISCH LAG
LIMA STP
TALALA STP
.VAURIKA rASTSICS: ST?
SOUTH PLANT
MANCHESTER L a G C C N
C . 0 5
2.03
G . ? 3
C.O'
0.04
0.15
e.On
J.06
0 . 0 r>
3.00
C . 7 5
0.03
1 . 0 0
o. o;
3.03
4.V3
0 . 3 o
C.C2
C.37
o i
'-.it
0 . 0 4
2 . 2 0
0.11
O.C2
0.04
0 . C 3
0.04
0 . 0 5
0.30
0.13
1 -77
w J ^
0 . C 7
4 C . 0 0
0.20
0.42
0.45
0.0?
0.23
0.05
C.O*
0.03
0.23
1.50
C.H2
6C
33
4C
60
6C
4C
f r\
-* U
40
40
30
40
60
40
30
30
4C
30
60
30
60
6C
40
6C
60
30
60
30
3C
30
60
3C
3C
30
30
30
30
&C
30
60
30
20
30
30
60
4
4
4
4
4
4
3
4
4
4
4
4
4
4
1
1
4
4
H
7
V
4
4
4
4
4
4
4
4
3
2
3
3
4
4
3
5
2
2
4
4
4
1
1
4
B-29
-------
TA3L? d.1 (CONTINUED)
T F = A T M 6 N T PLANT PROJECTS IN DATA BASE
STATE OREGON
GRANT NO FACILITY NAMi
OSQJ£CTEC FLCW TREATMENT LEVEL CHANGE
4
4
4
4
<\
4
4
4
4
4
^
4
4
4
4
^
^
H
^
4
4
H
^
4
^
4
4
^
4
i,
4
,",
(_,
'_
0
u
f,
£
L
U
C
i~
,j
i^
L
u
,j
_,
j
U
2
3
3
3
j>
3
3
4
«+
4
<+
4
4
4
<+
^
4
^
<*
4
^
A
H
4
4
<+
*N
i,
i
^
«;
4
4
3
7
£
y
^
V
^
o
C
*l
w
I
1
2
2
3
t
^
i
4
7
^
0
3
1
5
t.
^
1
^
1
6
7
3
4
7
a
3
U
4
6
^
9
4
0
5
5
5
6
>*
9
5
7
2
5
i_j
7
^
,*
iT
6
y
7
W
ROCKAwAY STP
WILLOW LAKc ST?
NETARTS-OCiA^SICc STP
T R Y 0 N C ,< c c < STP
CCRVALLIS STP
DURHAM ^
V
0
V
0
2
15
0
Q
r
"?
n
r
3
0
^
C
^
7
c
«,
r>
1
. 5
.0
. 2
. 5
.7
.3
n
-j
.1
. b
n
. 'V
.3
.1
. H
.3
^
t_
.1
.2
.2
> 3
.6
.1
. &
.0
.4
.6
.0
r
9 U
,
. 5
. 5
1
!i
.4
**
.
r
m -
0
V
- 2
. 0
,-^
^
. 2
0
0
t
H
0
0
0
n
3
n
V
i
««
'J
s
0
2
I
0
1
'j
n
0
0
o
n
5
0
r>
n
?
j
Q
7
4
o
0
-*
7
D
'^,
L
p
i
V
7
i
51
30
40
4C
51
3C
41
30
3G
40
50
*»0
30
5C
30
30
30
50
50
4C
3C
c n
^ -j
50
40
3C
53
30
50
30
30
+C
30
40
40
40
30
30
51
iC
50
30
3C
3
1
4
3
3
4
4
4
4
4
4
3
4
3
3
3
1
4
4
1
4
4
3
4
3
4
4
3
4
1
1
1
4
3
4
4
4
4
1
j
4
1
B-30
-------
S T f * a T . J
,^ L -: c . 1 (CC\TI\OEO)
PLANT PROJECTS IN DATA
NO
- i. C I L I T
2 R 0 J r C T ? L ' L C
L r V 5 L C H 4 N G c
420572
4 2 0 5 o 5
<+iOivO
4 " 0 T -1 .
L C 0 K ,-l « ; E N 3 T ^
V A L L '. Y r c R 3 L S £ v, f ? > U T ^
P C K T A 3 r J j i N, T S f: "J -. '-" - 0 T -i
ELliAi"THVILL" . 0 ? C
T R I - J 0 $ J iv C N . A o T h . STP
1 C S H - \ \ 0 ;\ V A L L c Y J . S . A .
GALHTZIN ST?
OIL CITY G'J\rPAL ALTH.
'C CA\DL:SS TWP SA^.^OTH
S A V I L T C NJ 5 A N T w = i 0 T H
UL:Y T^H '-'LMCfP-iL ^UTn
M U 3 L I T 0 « N r 0 A C L ' -t i U F H
5 n 0 c M A N ; K S V 1 L L E v> -A, « T *-
O /"> ^* T " "^ ^". t r'
r U ^ I - *. 1 r. r- Vv A ! '"
V! C i'v T G 0 '! '; K Y j T ^
AOAI^S TOwKSHIP
0 P P i R S T : !: Y C ^ E £ .*, J . X . A .
^ILTON ^OMC^iL ALThQRI1"
ThCMf SONTC^r, ^LMOJ-Au 'i .
EAST N C =. k I T C ;M 3 T F
NSW KENSINGTON >' . S . * .
Y 0 S K CITY S""iif, f 0 T H 0 < I T Y
P 0 1 11 T '" « < I 0 -\ v> L f-. I C I '" A L .«; U
TR.j'-'ONT MUNICIPAL ^uTH
COSAOPOLIS ST-
SYKiSyiuLt SFP
CARyiCr'arLo JOINT S T c
S C H 0 Y L K I L L r f~ V E K M 0 N I C . A
3 -. C « N T « P M L, N I C I ° A L A U T n
F R E L C 3 M T«P. STP.
L I T 1 T : j C K C U C- .H STP
P^NN TWNSHP, VCRK CO STP
CANCNSbURG-rOOSTO'* STP
-LIZAaETHTCftN STP
M C 0 N T JOY STP
SHIPPEN3.»U'G STP
MOJNTfllNTOP ARfcA
CASLISLc STP
EAST ON AREA SS£ ST?
GRCVi CiTY STP
MYERSTOWN STP
MT HOLLr SPRINGS STp
PINE GROVE 30POL3H STP
LATROSE STP
LE^ISTCwN STP
MOUNT UNION STP
30YERTOwN STP
~ » -^ J
"i. 75
5 * '
- . -1 J
1 .GC
0 . 2 3
r . 53
1 . :> :
0.40
4.n-;
3 . u 'J
0.03
C. i?
t? *i p
G . 3 5
1.12
0 . 6 n
C . 0 3
C . 2 7
2.cC
n.11
^ . 3 0
7.01
2 *; . 0 0
0.33
0.33
3 . <"> 0
0.20
0 . c j
2.00
0.25
0.23
==.5:1
4.20
5.60
3.00
1 .30
2.75
1.83
7.00
10.0 0
5.00
1.40
0 . ft 0
0.60
5.00
2.40
0.63
C.75
40
iC
3C
3C
3C
30
30
31
30
3C
3C
40
3 3
t 7
30
4C
30
3C
30
T n
40
50
33
30
43
30
30
3C
33
30
40
54
54
54
33
4
-------
TABLE 3.1 (CONTINUED)
WAST'. WATER TREATMENT PLANT PROJECTS IN DATA BASE
STATE =>ENNSYLVftNlA
GRANT NO FACILITY NA«E PP-OJrCTED PLOW TREATMENT LEVEL CHANGE
4
4
H
4
4
4
4
4
4
4
4
4
H
4
4
u
4
4
<,
4
4
4
4
4
4
GR
4
' .- = =
N: AhTt>
L S T ^
c : GI C ',' ; L >. ^. TF
ST^
S T ;, T .r
A f ' ; *
LIC ~ : ? V 1 v c J I S
N T Y S T °
2
0
c
0
0
4
4
o
;0
0
4
1
1
3
u
10
e
0
0
o
r.
n
2
i
r>
^c:-
-JCCTE
r.
1
5
c
S 0 U T n
;;J:CT=
n
j
?''
!>
.0
.4
.1
. <-
>
. L.
.1
.5
w
.9
.5
.5
. 4
c
. ^
.9
.5
. 0
^ >
. -»
.3
. 5
.7
. 5
, e
. 4
.1
IS
2
i^
^
--
'
.7
C ^
-
* ^
. j
.0
"\
i
o
3
4
0
n
>*
'./
j
0
c
0
f\
1
**
k,
0
o
£
5
P
'_'
n
p
J
Q
_>
LAND
-LOW TPEA-
;
i ~i
ri
X
= C L I N -5
= LC, TPi/T
;
0
44
33
40
60
41
40
41
44
33
54
51
34
30
51
41
54
51
41
44
51
41
40
3C
51
50
rvi = NT LEVEL
5 G
33
40
30
r^fNT LEVEL
40
i r,
7 J
3
4
4
4
4
3
3
4
3
4
3
3
1
2
4
3
3
4
4
4
4
1
4
3
4
CHANGE
4
H
4
4
CHANGE
4
4
4
B-32
-------
W A S T ; .< * T :. '
T -> - L 7 - . 1 K!
? I :i<
rLAN
SCOT
LAKE
1 1. 7 f
t *^ \ Ji
3 IMA
C«NT
1 5 o ;
r A N K
3PUC
S r _: A
,-ACi
DYEf-
CAixT
OAK,
wCGC
GATL
f'.CSI".
C 0 V A
CGs.<-
LACA
3 I j i
CLAI
CENT
T-ilk
SMYS
WEST
JECA
FRIt
3£LL
JYr.ft
SP3I
MOUN
JASP
-
n
N
-;
r
V.
f
£
^_
L
,
i
A
J
0
T
-
f
L
^i
r
u
L
^
E
V
A
N'
Vj
M
V
'3
'"
I
S
r
-. A
Lu
,;
_-
w w
1> o
La
i-
i
i t.
N Q
C N
1
sr
i
I S
K'
L A
I i
TY
T-3
1 4 .j t
R
_
I
J
N
I
Y
o
;
k
D
N
T
N
.N
3
E
£
Nj
0
CG
KY
Su
r-
i
TO
r V
TT
c
P M
AL
A
C-?
S
XCR.
TU
N
S
N
T
r
~i
^
3
o
A
R
K
Sh
uc
UR
H
IN
^
. ^ ^
G ,1 0 C 3 S T D
»*Tr
> T c 0 '\ 2 i
-" L ~i G v J \
T P C N I:
i ST'-
'j C 0 N
f r
U ST-
^ « T -
:< i % i T p
- s r- *.
O
T f-
STP
iTP
oCuN
H STP
N A "' t
STf
"" ,'i T -)
STP
^ G * w T P
T-
i\ S T ?
ILLc STP
; j TP
ORGE ST?
E STP
STP
c t K STP
T P NO. 1
LANC STP
ST?
IP ST?
KcL ST?
3 /
-------
TABLE 3.1 (CONTINUED)
TREATMENT PLANT PROJECTS IN DATA BASE
STATE TEXAS
GRANT NO FACILITY
PROJECTED FLOW TREATMENT LEVEL CHANGE
GR
31121
i 1 1 2 :
;11 24
-> 1 1 ; 5
ii1 1 £0
d 1 U <;
311 JO
51 1i4
o 1 1 3 7
s 1 1 5 ;
11157
i> 1 1 6 5
FACI
SAN
3 LOG
CRGC
MERT
LITY
ANGE
SiNG
K'fTT
ION
NORTH WcS
NGRT
SOGT
CQRS
0 0 N N
KERR
SGLF
CtiNT
SAVC
CROS
GGLG
SNOG
A A ?, T
VILL
I n » -
w w A o
"«J *** C -
sAYT
i* b E C
'd G1 J 5.
CLEA
£ i V I
M E 0 I
SiLV
WILL
STEP
HA*L
JLAC
TEXA
DiiLL
-tGLL
-« ALM
,xj i V £
/sh I T
T R ~ t.
?GT T
y ; = T
\| ' V I
S1 G G N
«:AS
H ST
I CAN
A ST
V ILL
UK >
co <;
r% j
Y ST
5 Y 'i
T H 'i S
\ ST
S T°
AGi
VIEW
<: V I L
G W N
ES C
-. U ^ ^J
K L. W
L -)-
NA C
E' L
IS S
HEW
l^'^z
i^H^W
S GI
AS S
i : a Y
*. Gp r
SCTu
N _ Y
TUN
S : 0?
1 ' ' "i
U I T ;
T V..
L
N
0
G
rt
W /f
T
T
P
i
P
?-
P
T
P
^
I
p
C
i
L.
C
L/
i_
,\
\
c .
^/
A
T
I
I
^ t
\
T
0
S
i
r^
j
-
Q
p
T
T
R
rt
E
^.
[J
T
^
S
u
,<
D
i
k.
Y
U
S
s
s
T
T
w
s
!
STiTE
AWE PR
STP
"^ '" t / "" i ) T P
^ U V I W » 1 r
v< T P
TP
JR: A STC
A R c A S T P
ST =
CITY A W T °
INGS A W T P
P
; STP
;: £ K W w T P
*Tr>
s r=>
T t w w T P
U T Y w C I ? -' 5 S T °
T /i w T P
CITY v< w T o
oT?
r< T Y V, C I G ~l STP
E iv /J T P
LI ;TP
S T 3 \ L . i
KL3ICNAL ST-
STF
T - i : : : STP
TP
T?
T 2
-
r
ST?
NSVILL: ST?
T P
G f, STP
TEXAS
OJcCTE
3
0
1
0
1
0
1
3
1
2
2
1
n
0
n
C
0
5C
1 5
5
3
0
2
4
0
0
1
n
1
?
"^
7
30
r
n
P
0
n
n
"
U
r
n
.0
.1
FLOW TREATMENT L5VE
0
o
.00
.0
c
J1
* 0
.b
.5
5
Q
C
0
5
i
.05
. 5
.7
.1
. 2
.2
n
U
j
.G
.6
.2
O
.1
o
7
.5
5
3
H
rr
0
n
?
r;
0
.2C
^
1
£.
.1
. 0
.4
t
c
. ?
. 5
.0
u.
. 3
*
* U
.1
* £.
* ^
^
.4
0
r
4
ij
(",
5
C
5
0
0
n
£
i
r,
i
1
n
0
5
30
40
30
30
40
40
40
30
30
30
40
40
40
40
30
30
30
51
51
43
40
30
30
33
40
30
40
40
30
40
54
53
50
40
40
40
30
40
50
40
53
30
L CHANGE
3
3
5
4
4
4
4
1
5
1
3
4
4
4
5
4
4
3
3
3
1
4
1
3
4
4
3
4
4
3
4
4
1
5
4
4
4
4
<*
4
3
5
B-34
-------
,RANT NO FACILITY NAME
(CONTINUED)
PLANT PROJECTS IN 0 A T a 3 A S E
STATE TEXAS
PROJECTED CLOW TREATMENT LEVEL CHANGE
431169
4611 7*
<* 31 1 bO
431162
4o11o3
4£113fc
4811V1
<»a1192
4811V7
481 2Uu
431216
451219
481223
<*81225
451231
431 235
481236
4S1244
481253
481 257
4o1262
4«Uo3
481266
431270
*»a1271
431273
<*31 274
^31275
431273
4$12c4
431285
43UV1
<«81294
431*96
431306
431303
481314
481596
ALVCP-D STP
PROSPER STP
LAKc JACKSON STP
HICC STP
bRAZORlA STP
PECAN C3 t~\ STP
L U f* 'i E K T 0 M M U 0 S T °
5RCVNNFISLO LAGCCNS
NACCGOOCh=S STP a 2 a
MANOR STP
fi«CAD^AY ST?
LIVIN3STON STP
MERCEDES STP
PECOS LAGOONS
MOOLY ST3
MONTGOMERY CY WCID ^1 STP
HARRIS COUNTY STP
SELL CNTY S T »
WEST CEDAR CREEK STP
KINGSLAND Mtu STP
DEVERS STP
LAZY RIVER IMPROVEMENTS
CEDAR SAYCU STP
HALLSVILLE STP
SOMERSET STP
CITY OF 5ULLARC STP
BROAUOUS STP
COLORADO CNTY kCIj «2 STP
DETROIT STP
PFLUGERVILLE STP
LUFKIN STP
ZAPATA CNTY STP
LIBERTY - OANVILLE STP
AU3REY STP
TOM d£AN STP
MAGNOLIA STP
OYSTER CREcK STP
CLEAR LAKE CITY WA ST°
0.11
0.15
3.30
0.20
0.75
12.00
1.50
1.25
9.07
0.19
10.00
0.73
1 .30
1.60
0.20
0.45
0.20
1 5.00
0.68
0.75
0.08
0.13
0.10
0.32
0.18
0.1'0
0.14
0.10
0.11
0.26
0. 55
0.80
0.03
0.15
0.10
0.18
0.50
6.75
40
40
40
30
40
51
40
30
30
30
40
30
30
30
30
50
50
51
40
53
30
40
40
30
40
40
50
30
30
40
40
40
40
30
30
50
30
54
4
5
3
4
4
3
4
4
1
4
2
5
4
4
5
4
4
3
4
4
4
4
4
4
4
4
4
5
5
4
4
5
4
4
5
4
4
1
STATE UTAH
iRANT NO FACILITY NAME
PROJECTED FLOW TREATMENT LEVEL CHANGE
490142 CEDAR CITY wWTP
490152 HYRUM CITY STP
49U170 GRANGER-HUNTER STP
490171 WELLSVILLE STP
2.26
0.33
7.30
0.20
50
50
40
60
4
4
2
4
B-35
-------
TABLE 3.1 (CONTINUED)
WASTE. WATE3 TREATMENT PLANT PROJECTS IN DATA 8ASE
STATE UTAH
GRANT NO FACILITY
PROJECTED FLOW TREATMENT LEVEL CHANGE
490174
490175
490179
490180
490131
490165
490139
490194
490197
490207
490232
490244
490264
LONG
TROP
TASI
MYTO
EMER
PRIC
ASHL
VALLEY
1C TOWN
ONA STP
N LAGOO
Y TOWN
E RIVFR
EY VALL
PROVO CITY
SNYD
TIMP
MOUN
CAST
HEBE
ERVILLE
ANOGOS
T PLEAS
L£ VALL
* VALLE
REG
N
P
£
ST
P
ONC
ST
Y
WWT
S
tiA
TP
P
S
P
S
ANT
E
Y
Y
S
S
T
I
S
E
I
L
ONAL STP
W WAN STP
N STP
AGCON
T?
P
0
0
0
0
0
1
3
21
2
7
0
0
2
.40
.04
.04
.12
.03
.64
.90
.00
.00
.60
.32
.70
.49
30
30
3C
60
60
60
30
50
50
30
60
50
30
4
4
4
4
4
4
4
3
4
4
4
4
4
STATE VERMONT
GRANT NO FACILITY
PROJECTED FLOW TREATMENT LEVEL CHANGE
D00079
500051
3 OG063
50G039
5001C4
500105
500111
500115
500117
500123
5001 £6
5Q0134
500136
50014G
500146
500151
5001 5?
500162
i001 t4
-~- * A
3 J U 1 0 ^
3RANDON WWTP
HARTFORD WWTP
NORTH SRANCH F.C. STP
. ENOSsORG FALLS
STQWE WWTP
MANCHESTER ST?
HYDt PARK SEPTIC SYS
REAGSSGRQ STP
ROYALTC.M STP
ALBU^G W T F
ORLEANS WPCF
RCCK ISLA.Niu STP
oARTCN STP
MICQLSauRY ST?
VERGEi'JNrS n T -
W A T '- R 3 U ^ Y STP
>!ARSHFI = LC STP
FARFAX STP
1ARCWIC'< WTP
sKiCbEWATcR ST=
0.7U
1 .00
0 . S 2
0.26
0.17
0.60
P i^ *>
L U J
0.10
0.07
0.13
0.19
0.40
0.12
2.20
C.6G
0.51
C.05
0.08
0.40
C't f*\ >
< . 04
30
30
30
30
43
30
10
30
30
40
43
43
33
40
33
30
30
30
3C
y f\
5 U
3-
4
4
4
4
4
4
4
4
4
4
3
4
3
3
5
4
4
4
4
STATE VIRGINIA
NC FACILITY f<
FLOW TREATMENT LEVEL CHANGE
51 jc59
UP PL-
GAL -
X
Sf
TTri
r ?
1 1 V :
P
* A' T P
4
1
.00
.50
30
30
4
3
B-36
-------
U6L5 J.1 (CONTINUED)
wAST£wAT£R TREATMENT PLANT PROJECTS IN DATA 3ASE
STATE VIRGINIA
A N T NO FACILITY N A M c
PROJECTFC FLOW TREATMENT LEVEL CHANGE
510331
510555
510336
510357
510370
510375
510381
510363
510334
510394
510396
510442
51u460
510465
510471
510*75
510434
510485
510406
510488
510490
510497
5104y3
510500
510502
510509
510515
510517
510518
5105*1
510551
510565
510594
510595
510597
UPPfcK 0 C C C"* U 4 N REGIONAL
CLIFTON FCR3E STC
ALtXANjRIft STP
ARLINGTON COUNTY
ROAKOKc STP
STUART STP
FRONT ROYAL ST»
SOUND HILL
'
-------
TABLE 8.1 (CONTINUED)
WAST5W4TER TREATMENT PLANT PROJECTS IN DATA BASE
STATE WASHINGTON
GRANT NO FACILITY NAME
PROJECTED FLOW TREATMENT LEVEL CHANGE
530530
530549
530553
530556
530557
530560
530568
530572
530578
530579
530580
530532
530534
530533
530596
530599
530603
530601
530604
530609
530612
530613
530d6
530619
530652
530700
530709
530720
530721
530724
53073*
530740
530756
5'308u4
530812
530d
-------
'U
UJ
^i ^?r
£
"-i. (i
1 u;
-t i
r-* O
n ;> in
O "> 1
^ '.: t- i_>
1 l 1 ''I - ! j
V- '>. i' "5
3. ')
>"- > . L
^ i\
11 .-|
J - 1 t-
1. O «'3
1 1
*-- t-- ./I
1"
jc
I
;!
( t
' L
>
r,- ( i
i ' >
>-- rj
'' ?'
<
!' >
(~ 1-.
ir> n
'- -l
/: ' *
' >
*-i
it
O
^
t
^
'*
if
< *>
UJ
CD
xj- rvi -f -^ ^f *? -f ^t f\i -± j" ^- -t ~~t --T ^ ^\i z
X
O
1
IJJ
(II
_J
O O C' O O O vt- T O O O T O O O O O Z
ro f* * f^~* u^ ro to ,/"\ -^ *y^ !*"> f1^ i/1 , po vj" ^ i f^\ fv~^ ij t
5
^
Ct
I
-£
o
1
O -1 L i £- r- r_> N. n c «." O O T- O <_> O rM 7 .i'
r- O K-
'-1 'J
IX> 1..
»-) T
-? O
'v;
a
. 1 1
H-
t~
00
O 'X
>- ^-
/> >i m a
O l~ K-
o t .> r. i' . -s '/* a
t~- ' r* .1 1 -v o >~ i.i
a. '," _j Q. to i ^i a i- >xi :_
i a o c") - i > J n. /i t 'y> -J
1 ' * O 5. >O ( "J -J O U ,^ iO ,"^
"> 'i -." i1 n !> i') "- i '.T t j TC ._"
iv. '-^ *-> .j ^ 15 a >-)'> ^ j. v- .-i >-
1 «.">- 1 '"<>- '1 O .T /> O O T. (
»'. "^ - 1 'f- » i: < H- < « 2? "? ^
^ .11 1,1 111 cv. .j. _j -jc r 'j --« vj * _j ! _i H- <
-i 3c .-) ~i .9 o .-T) n ~z *..> x *" f. i ~r MI (-') a.
O
^U <) -^- *> >. J "i « -O iri v'O o i> O r\l i -* ^
f^- > 1 .J D T T n O I-- O "i ''! .O J- 'i'\ ">j
t~* T J "M "\l f^J '^J ' \J p'XI f\l Nj Kl *'"> ("> i^O ""> ^J- h
3 "> 3 O J> O O .") i ) v.1 n in ir> m Qt:
'/>
--* ^o --t 1/1 ^j- vf ^o ^
r^- o in C' cr ."> o o fv o
ni >* i-i o o CM -t5 -r .vj :M
O » o t/ , o 1/1 i~> o o O
fi
i a t- 5
J (\. < 0 t ;^ t 3! ./l
u i nf ric ijA 5 f ~s _j
2- ^> Z) 0 o iY ^ at
O n T) n ui H- o -at ;s ^i -j _i o o )
~>(~_jt/»oci'u_jo5r
r^- nj ro TO . j ,-\i m - >n 'n 'Ji «o n
;n in u^ u~\ n m r» n 'n n
Ki-tcot-^-fOrxirvJT-T-foro^in^-
OOOrorocjoohO(^iKi^roroK>
rn tn N^ fo P'') ^^ -^" ^ K~> fo in >rf* m f i fo
^O fM f\i C-i '-'J" O Ki no t.io 'O O O in <> o«
rvi CZ1 ^xi in in t^ r~ fvi *n i/~\ CJ fvt ^ f~o o~
O -* O in O T- C' O O O O
T T T
CO
1
CQ
a
f- n. o
i/( > |
a 1^1
1 1 ( rv 1 l a_
i.l "5. ( l/> '1 | CX > O h-
rt 5 .< ^2 Q. > .C UJ i/">
~< rx f> .^ t s a. s u
ii.' c ^ ' ^1 ixl O l^ "5 ^ ^1 U *
(X D CJ (71 >e^ Q. Q. CO ^ ^
f'< 4 O. O 1'-- ?T -T t!l (U t T. <* ^!
«t O t ^ H- O 1 O O
_J 5" '/* O '" -J 't ^ 2 Z ~D V- U
'_> o i .u ni j; ^3 3 r- «i o O uJ
^ * 1-4 o 2 iu 'u '* ^v :.> _j s: 11 iz
z> o _i ^: <* *-< <\: ^ rt ~s a. ^j >- »j *z
^H O J X n
JiO*-t5i!OOJH'S!s<:siiorXQ.i/'>jE
-<), -o 'O O 'M m 'n -o o r-- <>v --! -J- ^f O O O -O CO UO vj t>» O O
o o o o o o o-ooo<> oor-r^.
-1OO 1 O O O O '3 O .3 O 'J O '3
in n in in in ^o .n in in -n in in in in m
to 'o in n n 'O in ^0 !-n m in jn n in in
-------
+>
I
£
*7
t?
£
«!
47
30NVH3
^
*7
*?
£
*r
£
<7
£
*>
t;
*?
+r
g
<7
«7
*?
S
s
2
*7
£
*7
*?
2
I
£
£
^
£
£
Ot
0£
O'V
0£
OZ
OJ
Of
O1?
0£
13A51 IKatt 1*2*1
IS
£*?
i*>
VS
0£
Lt>
L ^
0*7
0*7
D£
*?£
0V
0£
01
0£
OS
0£
0£
0£
L;
I?
n?
OS
IS
0£
<7S
7*7
<7S
££
i r :
** ' L
0 S ' L
* c * "'
17 C " C
0 *? ' 5
0 Z " «
CD'S
SO'O
.^ o 1 3 G ; i n ~ r ; ± 3
C N I K 0 A v = i ' J S
o v ;
LZ' J
,~^ * * "
G 3 ' v L
09 'C diS :
7 Z * 0
""* o * r
££'0
u * ' 0
? z c
i ° o
c ? ' 0
Z 0 3
C "t " ^
3 'w C'
3rc
* L * ri
£9- L
E r o
J S * £
C 2 " 2 d i M v
V ? " 0
Z<7 * Z
59 '£
£0'!,
0 £ '1 S
S*? * 9
fr Z " C
00 'L
CO '6
n "! * ^ i.
d i 9 t 0 I '? - ;J "' c ^ i 1 0 S * L I f- <5 s
d i V. * i ? i1 ~ /< r ' ? V c t U" 9 c
oiv iiEATi N T " b D ^IIO0?
di" ^'ATi' XDOa LtLO('S
d i «i i* -''*?-?-) 0 L L '" ° ?
d i i*1 K i : s S ? D 6 ? L 0 c ^
G 1 S S N I 1 w V b 9010°;
d i S S "> M I b d S X T 0 V <: n I 0 9 ?
diS A~1WOD vntncc
?_\?N Aj.!n. I3^d ON iN^^r
dis nbc»-ivp zzros;
dJS N01~lliic ?Zor'c<:
c i s > i! v A' N : r c 9 o o g c
dis tMS^ynvp £ ? ? o s £
) 0 - K I *? .5 C' A Fv, a ? t- i a D N 0 ? " n ^ C
diS b^iS/^N""! 60°0cs
c i C, ^ » C ^ T K) N = d c C 9 0 S ^
di^ visi?ptr z.or-oc?
diS t n fc 0 h I A SQP^SS
di1? X^NOOdc 0P50SC
i ,*i ,-', t- 3 >i v 1 »N 0 3 N * a * 6 Z 0 c ?
dis ?Aoar ^^c:o Z6zn?;
C D 9 7 0 *?6ZnSc;
N00"'?'l GNV"1=PCIH £fZ°c?
r; DO Sri ? s? n «< C ?6Zn(?c:
".OCrt/1 \",9Klw t6Zr?C
G 1 S M 0 i (- 0 n 0 1 S 0 6 Z 0 S S
d J S 0 1 ~ r ? 1 1 N' 0 W 6 P Z 0 S S
j i s ; t ? i a M s a v w z ? z '"i s c
Ci\tnib"H ClnUfl-C t ? Z r S c
di? N 0 I h V W 9 Z Z 0 C S
diS OrIlNf OZZP'CC
cis a ? ir ^i i UP, scenes
d i S HVWD1 <>£Zn<;?
CSto NCSTCVK ^fZ^S^
diS "X?B^:D X3V1P l£ZO??
diS ;AC;i5 SCJfWCH PIZO??
d 1 S ?AOc!e 'JOINn ^IZ^^C
ciS CMTf- 1 S 5 M 1, I Z 0 ^ S
diM" ^3d-c °OZ:!CC
30NVHD 13A31 !N3WiV3di MOIs
ON
MCN03STK EiViS
3SV8
NI SiD?rc>-d INfld
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA/430/9-83-OG4
2.
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
"Construction Costs for Hastewater Treatment Plants:
1973-1982" Technical Report
5. REPORT DATE
June. 1983
6. PERFORMING ORGANIZATION CODE
U.S. EPA/OW/OWPO/FRD/P&NAB
7. AUTHOR(S)
8. PERFORMING ORGANIZATION REPORT NO.
Mr. Michael Cullen, Dr. R. Sage Murphy, Dr. Hen H. Huang
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Sage Murphy & Associates, Inc.
910 16th Street, Suite 420
Denver, CO 80202
10. PROGRAM ELEMENT NO.
B54B2G
11. CONTRACT/GRANT NO.
68-01-4798
12. SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
401 M Street, S.W.
Washington, D.C. 20460
13. TYPE OF REPORT AND PERIOD COVERED
Final Report
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
This report presents the results of the latest and most comprehensive effort to
obtain and analyze construction costs for wastewater treatment works built with
construction grant program funds. It summarizes data from 1,585 individual
treatment plant construction projects including 822 construction projects for new
plants from the 48 contiguous United States in all ten EPA regions. This report
contains information on total plant construction, individual unit process
construction, and plant and process component construction. Further,
non-construction costs, such as planning and design, related to construction of
wastewater treatment plants were included.
The basic information for this report was obtained from visits to selected sites,
and from earlier studies. The information was assembled into a simple data base,
and examined for relationships between construction costs, facility design parameters
and unit process parameters. These relationships were developed for the general
national level. Also included are guidelines for adjusting costs for smaller
geographic units. Where appropriate in analyzing the data, total construction costs
were reduced to their major components.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b. IDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
wastewater treatment plants
wastewater unit processes "
construction costs
construction grants program
8. DISTRIBUTION STATEMENT
No distribution restrictions
19. SECURITY CLASS (ThisReportI
UNCLASSIFIED
21. NO. OF PAGES
', 259
20. SECURITY CLASS (Thispage)
UNCLASSIFIED
22. PRICE
EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION is OBSOLETE
-------
U.S. Environmental Protection Agency.
Region V, Ubrary
230 South Dc.v.,( n Street y
Chicago, Illinois 60604
-------
Postage and Fees Paid
Environmental Protection Agency
EPA-335
Special
Fourth-Class
Rate
Book
United States
Envi.-on'Tienta! Protection
Agency
Washington DC 20460
WH 595
Official Business
Penalty for Private Use $300
------- |