United States EPA-600/R-02-007a
Environmental Protection
March 2002
&EPA Research and
Development
CHARACTERISTICS OF MERCURY
EMISSIONS AT A CHLOR-ALKALI
PLANT
VOLUME I. REPORT AND
APPENDICES A-E
Prepared for
EPA Region 5
Prepared by
National Risk Management
Research Laboratory
Research Triangle Park, NC 27711
-------
Foreword
The U.S. Environmental Protection Agency is charged by Congress with
protecting the Nation's land, air, and water resources. Under a mandate of national
environmental laws, the Agency strives to formulate and implement actions leading to a
compatible balance between human activities and the ability of natural systems to
support and nurture life. To meet this mandate, EPA's research program is providing
data and technical support for solving environmental problems today and building a
science knowledge base necessary to manage our ecological resources wisely,
understand how pollutants affect our health, and prevent or reduce environmental risks
in the future.
The National Risk Management Research Laboratory (NRMRL) is the Agency's
center for investigation of technological and management approaches for preventing
and reducing risks from pollution that threaten human health and the environment. The
focus of the Laboratory's research program is on methods and their cost-effectiveness
for prevention and control of pollution to air, land, water, and subsurface resources;
protection of water quality in public water systems; remediation of contaminated sites,
sediments and ground water; prevention and control of indoor air pollution; and
restoration of ecosystems. NRMRL collaborates with both public and private sector
partners to foster technologies that reduce the cost of compliance and to anticipate
emerging problems. NRMRL's research provides solutions to environmental problems
by: developing and promoting technologies that protect and improve the environment;
advancing scientific and engineering information to support regulatory and policy
decisions; and providing the technical support and information transfer to ensure
implementation of environmental regulations and strategies at the national, state, and
community levels.
This publication has been produced as part of the Laboratory's strategic
long-term research plan. It is published and made available by EPA's Office of
Research and Development to assist the user community and to link researchers with
their clients.
E. Timothy Oppelt, Director
National Risk Management Research Laboratory
EPA REVIEW NOTICE
This report has been peer and administratively reviewed by the U.S. Environmental
Protection Agency, and approved for publication. Mention of trade names or
commercial products does not constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Information
Service, Springfield, Virginia 22161.
-------
EPA-600/R-02-007a
March 2002
Characterization of Mercury Emissions
at a Chlor-Alkali Plant
VOLUME I
Report and
Appendices A-E
John S. Kinsey
U.S. Environmental Protection Agency
Office of Research and Development
National Risk Management Research Laboratory
Research Triangle Park, North Carolina 27711
-------
ABSTRACT
Current estimates indicate that up to 160 short tons (146 Mg) of mercury (Hg) is consumed
by the chlor-alkali industry each year. Very little quantitative information is currently available,
however, on the actual Hg losses from these facilities. The Hg cell building roof vent is considered
to be the most significant potential emission point in chlor-alkali plants, especially when the cells are
opened for maintenance. Because of their potential importance, chlor-alkali plants have been
identified as needing more accurate measurements of Hg emissions. To obtain a better
understanding of the fate of Hg within their manufacturing process, the Olin Corporation voluntarily
agreed to cooperate with the U.S. Environmental Protection Agency in a comprehensive study of the
Hg emissions from their Augusta, GA, facility, in collaboration with other members of the Chlorine
Institute representing the active chlor-alkali plants in the United States.
To investigate the Hg releases from the Olin chlor-alkali facility, the EPA's National
Risk Management Research Laboratory, Air Pollution Prevention and Control Division
(EPA-APPCD) in Research Triangle Park, NC, organized a special study involving multiple
organizations and personnel. However, only the research conducted by EPA-APPCD involving roof
vent monitoring and air flow studies conducted in the Olin cell building is discussed in this report.
The overall objective of monitoring the cell building roof vent was to determine the total
elemental mercury (Hgฐ) mass flux from the cell building under a range of typical wintertime
meteorological conditions, including both normal operation of the cell building and routine
maintenance of Hg cells and decomposers. Secondary objectives of the research were to perform an
air flow mass balance for the building and to compare various Hg monitoring methods under a
variety of sampling conditions. Both objectives were met during the February 2000 field sampling
campaign, which showed an average Hgฐ emission rate of 0.36 g/min from the roof ventilator as
determined over the 9-day monitoring period.
-------
TABLE OF CONTENTS
Volume I
ABSTRACT ii
LIST OF FIGURES vi
LIST OF TABLES viii
LIST OF ABBREVIATIONS AND SYMBOLS ix
UNFT CONVERSION TABLE xi
ACKNOWLEDGMENTS xii
SECTION 1 INTRODUCTION 1
1 1 Background 1
1.2 Overall Program Description 2
1.2. ] Preliminary Survey 4
1.2.2 Winter Sampling Campaign 5
1.3 Research Objectives 8
1.4 Organization of Report 8
SECTION 2 CONCLUSIONS AND RECOMMENDATIONS 9
SECTION 3 PROCESS DESCRIPTION AND OPERATION 12
3.1 General Process Description 12
3.2 Plant Operation 12
3.3 Cell Building 15
SECTION 4 EXPERIMENTAL PROCEDURES 24
4.1 Measurement Methods, Setup, and Calibration 24
4.1.1 Roof Vent Monitoring 24
4.1.2 Manual Tracer Gas Analyses 29
4.1.3 Manual Velocity Measurements 31
4.2 Data Reduction and Analysis 32
4.2.1 Roof Vent Monitoring 32
4.2.2 Tracer Gas Analyses 33
4.2.3 Emission Rate Calculations 35
4.2.4 Manual Velocity Measurements and Flow Balance Calculations 40
in
-------
TABLE OF CONTENTS (Continued)
SECTION 5 RESULTS AND DISCUSSION 44
5.1 Mercury Monitoring Results 44
5.1.1 Monitoring Data and Mercury Emission Rates 44
5.1.2 Comparison of Mercury Measurement Methods 55
5.2 Tracer Gas Results 63
5.2.1 Roof Vent Monitoring 63
5.2.2 Tracer Gas Study - Manual Bag Sampling 63
5.3 Air Flow Study Results 66
5.3.1 Roof Vent Monitoring 66
5.3.2 Flow Balance Calculations 68
5.4 Discussion of Results 69
5.4.1 Roof Vent Monitoring 69
5.4.2 Building Air Flow Evaluation 70
5.4.3 Comparison with Historical Information 71
SECTION 6 QUALITY ASSURANCE/QUALITY CONTROL 74
6.1 UV-DOAS Measurements 74
6.2 Optical Anemometry 74
6.3 SF6 Release, Sampling, and Analysis (FTIR) 76
6.4 Long-Path FTIR QA/QC Checks (Roof Vent) 77
6.5 On-Site Audit 79
6.6 Data Quality Indicators 80
SECTION 7 REFERENCES 81
APPENDICES
A Description of Buildings and Processes at the Olin Facility A-i
B FTIR Spectral Analyses Conducted by ManTech, Inc. (Jeff Childers) B-i
C FTIR Spectra] Analyses Conducted by ARCADIS Geraghty & Miller
(David Natschke) C-i
D Roof Vent Manual Velocity Data D-i
E Manual Velocity Data in Cell Building Openings and Associated Air Flow
Balance Calculations E-i
IV
-------
TABLE OF CONTENTS (Continued)
Volume II
F Elemental Mercury Emission Rate Calculations F-i
G Elemental Mercury and Air Velocity Measurements at Entrance to Roof Vent
Made During January 2000 Presurvey G-i
H UV-DOAS Quality Control Data H-i
I Bag Sampling Quality Control Data and Rotameter Calibrations I-i
J Copies of Field Sampling Notebook Pages from Manual Bag Sampling J-i
-------
LIST OF FIGURES
1-1 Project organization chart (includes contractor support from OPSISฎ, Inc., and.
Eastern Research Group, Inc.) 3
1-2 Location of measurement activities 6
3-1 Simplified diagram of the mercury cell process 13
3-2 Process flow diagram for Olin-Augusta 14
3-3a Cell building showing interior of roof ventilator 16
3-3b Cell building showing exterior of roof ventilator (from north) 17
3-4 Electrolyzer used at the Olin-Augusta plant 18
3-5 Mercury cell: horizontal view and outlet end-box view 19
3-6 North line of electrolytic cells in Olin cell building 20
3-7 Decomposer used at the Olin-Augusta plant 21
3-8 General diagram of the cell building showing cell rows, general fan locations, etc 23
4-1 Cross-section of roof ventilator showing internal structure 26
4-2 From left to right, the FTIR retroreflector, UV-DOAS light source, and optical
anemometer receiver unit installed on the east sampling platform 27
4-3 Relative locations of instrument beam paths in roof vent cross section 29
4-4 Cylinder layout along the cell building basement 34
4-5 Soaker tubing layout inside the cell room 34
4-6a Average roof vent temperature differential as determined from 15-min
monitoring data 39
4-6b Calculated temperature differential for roof ventilator as determined from average
monitoring data shown in Figure 4-6a 39
5-1 Time history of roof vent elemental mercury concentration for February 17, 2000 45
5-2 Time history of roof vent elemental mercury concentration for February 18, 2000 45
5-3 Time history of roof vent elemental mercury concentration for February 19, 2000 46
5-4 Time history of roof vent elemental mercury concentration for February 20, 2000 46
5-5 Time history of roof vent elemental mercury concentration for February 21, 2000 47
5-6 Time history of roof vent elemental mercury concentration for February 22, 2000 47
5-7 Time history of roof vent elemental mercury concentration for February 23, 2000 48
5-8 Time history of roof vent elemental mercury concentration for February 24, 2000 48
5-9 Time history of roof vent elemental mercury concentration for February 25, 2000 49
5-10 Time history of roof vent air velocity for February 17, 2000 50
5-11 Time history of roof vent air velocity for February 18, 2000 50
5-12 Time history of roof vent air velocity for February 19, 2000 51
5-13 Time history of roof vent air velocity for February 20, 2000 51
5-14 Time history of roof vent air velocity for February 21, 2000 52
-------
LIST OF FIGURES (Continued)
5-15 Time history of roof vent air velocity for February 22, 2000 52
5-16 Time history of roof vent air velocity for February 23, 2000 53
5-17 Time history of roof vent air velocity for February 24, 2000 53
5-18 Time history of roof vent air velocity for February 25, 2000 54
5-19 Hgฐ emission rates for February 17, 2000 56
5-20 Hg" emission rates for February 18. 2000 56
5-21 Hgฐ emission rates for February 19, 2000 57
5-22 Hgฐ emission rates for February 20, 2000 57
5-23 Hg" emission rates for February 21, 2000 58
5-24 Hg" emission rates for February 22, 2000 58
5-25 Hgฐ emission rates for February 23, 2000 59
5-26 Hg" emission rates for February 24, 2000 59
5-27 Hg" emission rates for February 25, 2000 60
5-28 Lateral profile of Hgฐ concentration as determined by the Jerome 431-X instrument. . . 61
5-29 UV-DOAS/Tekran comparison (February 17-21, 2000) 62
5-30 Chronology of Hg" concentrations measured by OPSIS" Model AR 500 UV-DOAS
and Tekran Model 2537A CVAFS for February 17-21, 2000 62
5-31 Bag sampling locations 64
5-32 Hand-held anemometer readings at the optical anemometer measurement height
on the east sampling platform, looking west 67
5-33 Hand-held anemometer readings at the optical anemometer measurement height
on the west sampling platform, looking west 67
5-34 Profile of Hg() concentration along length of roof vent entrance as obtained during the
January 2000. presurvey 70
Vll
-------
LIST OF TABLES
4-1 Roof Vent Instrumentation 25
4-2 Typical FTIR Operating Parameters 31
4-3 Gas Release Concentrations 36
5-1 Summary of 30-sec Roof Vent DOAS Data 49
5-2 Summary of 1-min Roof Vent Optical Anemometer Data 54
5-3 Summary of Calculated Elemental Mercury Emission Rates 60
5-4 Manual Bag Analysis Results 64
5-5 Comparison of Velocity Measurements in Roof Vent 68
5-6 Results of Air Flow Balance Calculations for the Olin Cell Building 68
5-7 Comparison of Current Study with Prior Research 72
6-1 QC Checks for Experimental Methods Included in QA Plan 75
6-2 Quality Control Checks for UV-DOAS 75
6-3 Results of Daily QC Checks of Model 104a Optical Anemometer 76
6-4 Manual Bag Sampling/Analysis Blank Control Checks 78
6-5 Manual Bag Sampling/Analysis Quality Control Checks 78
6-6 Data Quality Indicator Results 80
Vlll
-------
LIST OF ABBREVIATIONS AND SYMBOLS
APPCD Air Pollution Prevention and Control Division
ATREEs anemometer trees
CAPs Chlor-alkali plants
CH4 methane
C12 chlorine gas
CO carbon monoxide
CVAFS cold-vapor atomic fluorescence spectrometer
DAS data acquisition system
DMB direct mass balance
DOAS differential optical absorption spectrometer
DQI data quality indicator
EPA U.S. Environmental Protection Agency
ERG Eastern Research Group, Inc.
FTIR Fourier transform infrared spectrometer
H2 hydrogen
HC1 hydrogen chloride
Hg mercury
Hgฐ elemental mercury
LIDAR Light Detection and Ranging
LOA Scientific Technology Model LOA-104 optical anemometer
LRPCD Land Remediation and Pollution Control Division
N2O nitrous oxide
NaCl sodium chloride
-------
LIST OF ABBREVIATIONS AND SYMBOLS (Continued)
NaOH sodium hydroxide
NERL National Exposure Research Laboratory
MIST National Institute for Standards and Technology
NWS National Weather Service
OECA Office of Enforcement and Compliance Assurance
ORNL Oak Ridge National Laboratory
OxyChem Occidental Chemical Corporation
PI Principal Investigator
QAPjP Quality Assurance Project Plan
QC quality control
SOP Standard Operating Procedure
SF6 sulfur hexafluoride
UM University of Michigan
UV-DOAS ultraviolet differential optical absorption spectrometer
-------
UNIT CONVERSION TABLE
Multiply
By
To Obtain
atm
atm
ft
km
L/day
mVmin
pounds
short ton
temperature (ฐC + 17.8)
29 92
760
0.3048
0.6214
0.264
35.31
453.6
0.91
1.8
in. Hg
mm Hg
m
mi
gal ./day
ftVmin
a
metric ton
temperature (ฐF)
XI
-------
ACKNOWLEDGMENTS
This report was prepared with the assistance of Julie Swift and Joan Bursey of Eastern
Research Group, Inc., 1600 Perimeter Park Drive, Morrisville, NC 27560, under EPA Contract
68-D7-0001. Julie Swift was responsible for the tracer gas release ancl manual bag sampling
conducted in the field as well as preparing applicable sections of the report. Joan Bursey was
responsible for the QA/QC sections of the report as well as supervising its overall production.
The author acknowledces the excellent contributions of both individuals.
-------
SECTION 1
INTRODUCTION
1.1 Background
Current estimates indicate that up to 160 short tons (146 Mg) of mercury (Hg) is consumed by
the chlor-alkali industry each year (Chlorine Institute, 1999). Very little quantitative information is
currently available, however, on the actual Hg losses from these facilities. The most significant potential
emission point in chlor-alkali plants (CAPs) is thought to be the mercury cell building roof vent,
especially when the cells are opened for maintenance. Because of their potential importance, CAPs have
been identified as needing more accurate measurements of Hg emissions.
In order to better understand the fate of mercury within their manufacturing process, the Olin
Corporation voluntarily agreed to cooperate with the U.S. Environmental Protection Agency (EPA) in a
comprehensive study of the Hg emissions from their Augusta. GA, facility. This effort is in collaboration
with other members of the Chlorine Institute representing the active chlor-alkali plants in the United
States. Chlorine Institute members have committed to reduce overall mercury consumption by 50%
(from 1990-95 levels) by the year 2005.
To investigate the Hg releases from the Olin chlor-alkali facility, the U. S. Environmental
Protection Agency's National Risk Management Research Laboratory, Air Pollution Prevention and
Control Division (EPA-APPCD) in Research Triangle Park, NC, organized a special study involving
multiple organizations and personnel. Each major aspect of the study was addressed by a separate
Principal Investigator (PI) based on the individual area of expertise. It should be noted, however, that
only the research conducted by EPA-APPCD involving roof vent monitoring and air flow studies
conducted in the Olin cell building is discussed in this report. The following sections describe the
-------
overall study conducted at the Augusta plant, the objectives of the specific research described in this
report, and organization of the remainder of the document.
1.2 Overall Program Description
A multidisciplinary research team was assembled for the purpose of the Olin study. This team
was made up of the following organizations and associated principal investigators (Pis):
Olin Corporation, Olin Chemicals, Charleston, TN (W. Rankin) and Chlor-Alkali
Division, Augusta, GA (S. Asbill).
U.S. Department of Energy, Oak Ridge National Laboratory (ORNL), Environmental
Sciences Division, Oak Ridge, TN (S. Lindbcrg).
U.S. Environmental Protection Agency, Office of Enforcement and Compliance
Assurance (EPA-OECA), Office of Regulatory Enforcement, Washington, DC.
(C. Secrest).
U.S. Environmental Protection Agency, Office of Research and Development, National
Exposure Research Laboratory (EPA-NERL), Research Triangle Park, NC (M. Landis).
U.S. Environmental Protection Agency, Office of Research and Development, National
Risk Management Research Laboratory, Air Pollution Prevention and Control Division
(EPA-APPCD). Research Triangle Park, NC (J. Kinsey).
U.S. Environmental Protection Agency, Office of Research and Development, National
Risk Management Research Laboratory, Land Remediation and Pollution Control
Division (EPA-LRPCD), Cincinnati, OH (P. Randall).
U.S. Environmental Protection Agency, Region 4 (EPA-Region 4), Science arid
Ecosystem Support Division, Atlanta, GA (D. France).
U.S. Environmental Protection Agency, Region 5 (EPA-Region 5), Great Lakes Program
Office, Chicago, 1L (F. Anscombe).
University of Michigan (UM). Department of Environmental & Industrial Health, School
of Public Health, Ann Arbor, MI (J. Nriagu).
As shown, the research team represents nine different organizations with up to 28 people
working on-site. Figure I-1 shows the organization of the project, including the various moniloring
activities conducted and Pis responsible for each facet of the program as well as contractor support to
EPA-APPCD from OPSIS"", Inc. and Eastern Research Group (ERG), Inc.
-------
Frank Anscombe
EPA-Region 5
Administrative Lead
W.Rankm
Olm - Charleston
Nancy Adams
EPA-APPCD
Quality Assurance Officer
John Kinsey
EPA-APPCD
Technical Lead
S Asbill
Olin - Augusta
Roof Vent Monitoring
(EPA-APPCO)
PI - John Kinsey (EPA-APPCD)
Long-Path FTIR (EPA-Region 4)
Long-Path UV-DOAS (Opsis)
- Optical Scintillation Anemometer
(EPA-APPCD)
Point Source Measurements (ORNL)
PI - Sieve Lindberg (ORNL)
Tekran Model 2537A Automated Hg
Analyzer
- Jerome Model 431-X electrical
conductivity analyzer and Lumex
Model RA 915 Zeeman Mercury
Spectrometer
Denuder Grab Samples (EPA-NERL)
Cell Building
Air Flow Determination (EPA-APPCD)
PI - John Kinsey (EPA-APPCD)
Long-path Optical Anemometer
(EPA APPCD)
' Tiacer Gas Release and Analysis of
Point SF. (Eastern Research Group)
> Manual Anemometry (EPA-APPCD)
Upwind/Downwind Monitoring
(EPA-NERL, EPA-Region 4,
EPA-OECA, and EPA-APPCD)
PIS - Matt Landis (EPA-NERL),
Danny France (EPA-Region 4), and
Cary Secrest (EPA-OECA)
Tekran Model 2537A with 1130 ana 1135
Speciators (EPA-NERL)
EPA Denuders (EPA-NERL)
Open-Path FTIR Spectrometer
(EPA-APPCD)
UV-DOAS (EPA-Region 4/OECA)
Flux Measurements (ORNL)
PI - Steve Lindberg (ORNL)
Tekran Model 2537A with Flux
Chambers
On-site Quality Control Officers
Geddes Ramsey/Jimmy Pau,
EPA-APPCD
Waste Stream and Product
Evaluation
-------
The program was divided into two phases: a preliminary survey, and a winter sampling campaign
conducted in February 2000. A summer campaign was also planned to evaluate the effects of elevated
ambient temperature but this phase was eliminated and thus is not discussed here. Implementation of the
overall program is briefly outlined below with formal publication of the results by the tespective
Principal Investigator planned for late-2002.
1.2.1 Preliminary Survey
The purpose of the survey was to obtain preliminary information to assist in planning the second,
and more significant, phase of the program. The survey included measurements of the typical range of
elemental mercury (Hgฐ) concentrations in the cell building as well as similar measurements external to
the cell building. In addition, flow visualization experiments were also performed arid meetings held
with Olin operating personnel to plan the logistics of the winter sampling campaign.
The Hg monitoring methods used in the preliminary survey generally involved portable hand-
held instruments, including both the Jerome Model 431-X electrical conductivity analyzer and the Lumex
Model RA-915 Zeeman Mercury Spectrometer. The Model RA-915 is a portable cold-vapor atomic
absorption (CVAA) spectrometer capable of monitoring Hgฐ at nanograms per cubic meter levels. Both
instruments were used to measure and spatially map Hgฐ levels in and around the electrolytic cells as well
as upwind and downwind of the cell building.
In addition to point monitoring, profiles of air velocity and Hgฐ concentration were also obtained
near the entrance to the roof vent. The measurements were conducted by mounting a sampling line and
hot-wire anemometer on a non-conducting mast attached to the upper platform of the movable crane used
for cell maintenance. The sampling line was connected to a Jerome 431-X electrical conductivity
analyzer with the velocity measurements made at selected intervals along the length of the vent.
Finally, since the determination of air flow is critical to study implementation, special flow
visualization equipment was also used as part of the preliminary survey. This equipment included an
infrared camcorder to observe and record thermal plumes from the cell building and a commercial smoke
generator and associated video camcorder for visualizing the overall flow field within the cell room.
Flow visualization answered several important questions regarding the nature of the air flow pattern
inside the building as well as dispersion of the plume after it exits the roof vent.
-------
7.2.2 Winter Sampling Campaign
The overall objective of the winter sampling campaign was to determine the total Hg release
from the plant using parallel sampling approaches under typical wintertime meteorological conditions.
The activities in the winter campaign included, roof vent monitoring, point source measurements, air
flow studies, flux measurements, upwind/downwind monitoring, and waste and product evaluation. The
locations of the various activities at the Olin plant site are shown in Figure 1-2.
As stated above, the research described in this report includes only the roof vent monitoring and
air flow studies conducted by EPA-APPCD with contractor support from OPSISฎ, Inc. and ERG. The
other related activities performed by study collaborators are briefly summarized below.
Point Source Measurements
The objective of the point measurements was to characterize the distribution of airborne Hgฐ in
the cell room (including the floor below the cells) and around the exterior of the cell building. The
primary instrument used for point monitoring was the Tekran Model 2537A automated Hg analyzer. The
Model 2531A is a cold-vapor atomic fluorescence (CVAF) spectrometer which is equipped with dual
gold traps for preconcentration ol the sample prior to analysis. This analyzer was housed in the control
room with samples obtained from a high-flow sampling line which extended to a point near the center of
the roof vent entrance.
In addition to the Tekran monitoring, walking surveys were also conducted using a Jerome
Model 431-X and/or Lumex Model RA-915 instrument. These data were combined with measurements
from a hand-held air anemometer to identify potential hot spots and any ancillary emission points found
in or around the cell building. Manual "denuders" were also employed to determine the concentration of
non-elemental Hg (e.g., divalent Hg compounds) in the cell room. A series of short-duration grab
samples was collected from the crane above the south cell line and analyzed on-site using a Tekran
Model 2537A. Preliminary results of these analyses indicate that non-elemental forms of Hg represent
< - 5% of the total Hg at the time of sample collection (Landis et al., 2000).
-------
-------
Flux Measurements
Mercury fluxes from surfaces in and around the cell building (especially the basement floor of
the building) were also determined to assess the role of these surfaces as sources. Flux chambers of
various designs were used over the cell room and ground (basement) floors to determine their source
strength and Hg" emission characteristics. Chambers were also deployed over old waste deposits within
the plant facility and, since solar radiation can strongly influence soil fluxes, operated throughout the
diurnal cycle.
Upwind/Downwind Monitoring
Upwind/downwind ambient air monitoring was also conducted as part of the overall program.
The purpose of this monitoring was to estimate the total mass flux of Hg compounds from the entire
facility as a check on the source estimates obtained within the plant, for model validation purposes, and
to collect data which can potentially be compared to similar measurements conducted outside other
facilities.
For the upwind/downwind monitoring, instrumentation was deployed at different locations.
Tekran analyzers were used in two mobile monitoring laboratories located a significant distance upwind
and downwind from the process area (Figure 1 -2). (Note that two of the Tekran instruments used in the
mobile laboratories were a Model 1 130 analyzer and the prototype Model 1135 capable of measuring
gas- and particle-phase elemental and non-elemental Hg.) In addition, an open-path Fourier Transform
Infrared (FTIR) spectrometer and ultraviolet differential optical absorption spectrometer (UV-DOAS)
were also installed near the cell building in the prevailing downwind direction (Figure 1-2). Using the
various instruments, the concentration of elemental and non-elemental Hg and SF6 tracer gas could be
determined in near-real-time. (Note that the open-path monitoring was not successful due to atypical
wind conditions occurring during the limited 9-day study period.)
Waste and Product Evaluation
Sampling and analysis of liquid and solid wastes and selected liquid product streams were also
performed. Wipe samples were also collected from various environmental surfaces including building
walls and exterior cell surfaces These samples were subsequently analyzed for total Hg, Hgฐ , and
7
-------
dissolved reactive Hg (also referred to as "easily reduced Hg"), as appropriate, using a Tekran analyzer
as the primary measurement tool.
1.3 Research Objectives
The overall objective of the roof vent monitoring described in this report was to determine the
total Hgฐ mass flux from the cell building under a range of typical wintertime meteorological conditions.
This research was to include both normal operation of the cell building as well as routine maintenance of
Hg cells and decomposers. Secondary objectives of the research were to perform an air flow mass
balance for the building and to compare various Hg monitoring methods under a variety of sampling
conditions. Each of these objectives was met in the study.
1.4 Organization of Fteport
This report is organized into five additional sections plus references and appendices Section 2
provides ihe conclusions and recommendations derived from the study results, and Section 3 describes
the mercury cell process and its operation. Section 4 outlines the experimental procedures used in the
research, and Section 5 presents and discusses the study results. Finally, Section 6 presents the quality
control/quality assurance procedures used in the research to ensure collection of high quality data.
-------
SECTION 2
CONCLUSIONS AND RECOMMENDATIONS
This section provides conclusions drawn from the use of the equipment, methods, and data
analysis procedures described in Section 4 to determine the total Hg release and volumetric air flow from
the Olin chlor-alkali cell building-
Elemental mercury concentrations measured by the UV-DOAS varied over an order of
magnitude from -73 to 7.3 ug/m3. The overall average for the 9-day study period was 24
Mg Hgฐ/m3.
Hgฐ emission rates measured in the roof ventilator varied from 0.08 to 1.2 g/min. An
overall average for the monitoring period of 0.36 g/min (472 g/day) was calculated from
the data. These values appear to represent only a small percentage of the total potential
Hgฐ emissions, however, based on available estimates of the makeup Hgฐ added to the
cells on an annual basis.
A comparison between the concentration of Hgฐ measured by the UV-DOAS and similar
measurements conducted using a hand-held instrument across the width of the roof vent
showed that the Hgฐ concentrations were relatively consistent across the vent and
compare reasonably well to the average concentration obtained with the UV-DOAS.
Comparison of roof vent monitoring data obtained by the UV-DOAS and point
measurements made using a Tekran Model 2537A automated Hg analyzer at the entrance
to the vent exhibited a relatively high degree of scatter with only about 63% of the
variance explained by linear regression. The data do, however, show comparable trends
in Hgฐ concentration with time Scatter in the data is potentially due to a combination of
factors including differences in analysis method, non-representative sampling, and
sampling line losses.
The SF6 tracer gas results obtained using the long-path FTIR in the roof vent were found
to be unusable for the purpose of determining volumetric air flow due to optical
saturation of the detector.
Results of the 24-hour, time-integrated bag sampling showed SF6 tracer gas
concentrations either at or below the instrumental detection limit except for one sampling
period on February 20, 2000.
-------
The average roof vent air velocity measured by a hand-held anemometer as compared to
that obtained by the optical anemometer showed that the two methods agreed within
ฑ10%.
Very good closure (79 to 100%) was obtained for each of the three air flow balance
calculations performed for the cell building. The three methods also correlate well with
each other, and the high degree of closure of these flow balances lends further credibility
to the air velocity measurements made by the optical anemometer in the roof ventilator.
No specific pattern could be discerned from daily plots of Hgฐ emission rates. Various
episodic events were observed during the study where the emission rate rose for a period
of time, then dropped back to some nominal level which could not be correlated to either
process operation or maintenance events using plant records.
Although the concentration of Hgฐ was found to be relatively homogeneous across the
lateral dimension of the roof vent, concentrations of Hgฐ were not consistent along the
length of the ventilator.
On the basis of the results obtained for this study, the following recommendations are applicable:
This study was conducted at one chlor alkali plant, in a time window of approximately 2
weeks. For more thorough characterization of operations in this industry, extended
monitoring at a single location and/or monitoring at more plants is recommended to
better characterize maintenance events and other operational transients. Better
monitoring of these transients is also needed.
Roof vent instrumentation may be a useful tool for process monitoring in some facilities
to identify problems in the operation of the cells that may require corrective action. The
long-term suitability of these instruments must be established, however, by additional
on-site evaluations.
The high electromagnetic field at the facility had an adverse effect upon instrument
operation. For future studies of this type, optical modems and cables should be used to
allow logging of data at a remote location to reduce data loss and make troubleshooting
much easier for the operator.
The variation in Hgฐ concentrations along the length of the ventilator vs. the
homogeneous values observed for Hgฐ across the lateral dimension argue strongly for the
use of spatially integrated measurements rather than point sampling with a manifold
system.
Roof vent tracer gas data in this study were not usable. Since the use of a tracer is well
accepted for determining flow rates, the possibility of tracer gas analyses for future flow
measurement studies should not be abandoned. Greater care is needed, however, to
verify proper instrument setup and operation.
10
-------
The possibility of using different tracer gases has been discussed. Some of these
candidate tracer gases (e.g., carbon tetrafluoride) can be determined using UV-DOAS,
making concurrent sampling and analysis of mercury and tracer gas highly desirable.
Additional research is also recommended to determine the best way to diffuse the tracer
gas into the cell room.
Additional measurements of non-elemental (oxidized) forms of Hg should also be
conducted to determine their overall environmental significance.
11
-------
SECTION 3
PROCESS DESCRIPTION AND OPERATION
3.1 General Process Description
In Hg cell CAPs, Hg" is used as a flowing cathode in electrolytic cells. The Hg electrolytic cell
consists of an electrolyzer and a decomposer. In the electrolyzer section, a sodium chloride (NaCl) brine
solution flows concurrently with the Hgฐ cathode. A high current density is applied between the Hgฐ
calhode and metal anodes. Chlorine gas (C12) forms at the anode and a sodium amalgam forms at the Hgฐ
cathode. The amalgam is separated from the brine in a discharge end-box and then enters the
decomposer section, where deiomzed water is added. In the decomposer, the amalgam becomes the
anode to a short-circuited graphite cathode resulting in formation of hydrogen (H2) gas and sodium
hydroxide (NaOH), and conversion of the amalgam back to Hgฐ. The Hgฐ is then recycled to the inlet
end-box, where it reenters the electrolyzer. Cell surface temperatures of ~ 66 ฐC (150 ฐF) and
decomposer surface temperatures of ~ 116 ฐC (240 ฐF) are typical at the Olin facility.
The chlor-alkali electrolysis process results in the manufacture of C12, H2, and NaOH caustic
solution. Of these three, the primary product is C12. The overall process reaction is:
2NaCl + 2H2O -> C12 + H2 + 2NaOH (3-1)
Figure 3-1 is a general diagram of the mercury cell process.
3.2 Plant Operation
The basic process flow diagram for the Olin Corporation's Augusta, GA, facility is shown in
Figure 3-2. As can be seen, the plant produces NaOH, H2, and C12 as described above plus FIC1 and
12
-------
1
Sodium Chloride
c
Caustic
Solution
Jiluted Brine
Brine Saturation
Raw Br
Precipitation
1
Precipitants
Dechlormation
Filtration
Residue
Hydrochloric
Acid
I
Cooling
Analyte
Hydrochloric Acid
Electrolysis
Amalgam
t t
Mercury
Water
Caustic
Solution .
1
Cooling
Amalgam
Decomposition
1 Hydr
Cooling
Chlorine Gas
Cooling
I
Mercury Removal
I
Mercury Removal
Drying
Storage
1
Compression
J
Sodium Hydroxide
Hydrogen
Chlorine
Figure 3-1. Simplified diagram of the Hg cell process.
-------
OX)
3
o
u
OX)
t/3
t/3
Oi
U
2
r
3
OX)
14
-------
liquid sodium hydrosulfite. A description of the various buildings and processes at the facility as
provided by Olin can be found in Appendix A.
The Ohn facility has a total rated output of 309 Mg/day (340 short tons/day) of CI2, 348 Mg/day
(383 short tons/day) of NaOH, and 8.2 Mg/day (9 short tons/day) of H, produced by the 60 cells in the
building. According to plant records provided to the research team, the process was operated at a
relatively constant production rate except for a few brief periods when cells were taken off line for
maintenance.
3.3 Cell Building
The cell building at the Olin facility is a single fiberglass and steel structure approximately 62 m
(204 ft) long by 34 m (1 12 ft) wide which is generally oriented in a east/west direction. The peak of the
building is located approximately 16 m (51 ft) above grade with a single monovent (Figures 3-3a and
3-3b) running its entire length.
The Hg cell building consists of two floors. The ground floor (basement) is used for storage
tanks and various other process equipment and. except for the Reductoneฎ area, is open to the
atmosphere on three sides. The Hg cells and associated decomposers are mounted on a support structure
on the cell room floor which is open to the basement below except for concrete aisles along the edges and
through the center of the cell array. In this configuration, each cell is exposed to ventilation air used for
cooling or worker protection.
The cell building houses the 60 electrolysis cells (Figures 3-4 and 3-5) containing a total
estimated Hg inventory of- 169,000 kg (372,000 Ib). In 1997, 7,444 kg (16,41 1 Ib) of "virgin" makeup
Hg was supplied to the cells (Rosario. 2001). This amount of makeup Hg represents -5% of the total
quantity used by all plants in the chlor-alkali industry during that year (Rosario, 2001).
The electrolytic cells in the Olin cell building are mounted in two rows of 30 units each which
run east to west (Figure 3-6). The cell rows are separated by a ~ 2.4 m (8 ft) wide aisle running along the
centerline of the building with other, ~ 3.4 m (1 1 ft) wide aisles located along the perimeter of the cell
rows to allow access for equipment maintenance. The decomposers used for Hg recovery (Figure 3-7)
are located on the end of each cell near either the north or south wall.
15
-------
16
-------
SJD
17
-------
c
ts
0ฃ
3
o
o>
a
SJ
at
N
o
18
-------
Horizontal View
Upper Cell Cover
Cell Suports
Flexible Copper Bus
Graphite Anode
Graphite Anode Plates
Floor Level
Outlet End-Box View
Amalgam Return
Line
Depleted Brine
Header 10 in. & 12 in.
T* To Sewer
Figure 3-5. Mercury cell: horizontal view and outlet end-box view.
19
-------
20
-------
Outlet
Caustic Outlet
Hg Distributor Tray
Water Feed
To Decomposer
Baskets
Lump Carbon Packing
Decomposer Seal Pot
Amalgam Return
Figure 3-7. Decomposer used at the Olin Augusta plant.
21
-------
The building is ventilated by natural convection with three sides of the basement and cell room
floor (except for the Reductoneฎ area) open to the atmosphere. During colder weather, two large sliding
doors on the west end of the cell room floor can be closed to reduce ventilation. Also, various l.lm
(3.7 ft) high panels located on the north and south sides of the building can be either removed or replaced
as ambient conditions dictate.
To further assist with ventilation of the cell room, 13 large axial-blade fans located in and along
the walls can also be operated, as needed, depending on ambient temperature. Each of these fans is rated
al 626 actual mVmin (22,100 actual fWmin) and is manually activated/deactivated by operating
personnel. A general diagram of the cell building, showing the cell rows and general fan locations, is
shown in Figure 3-8.
In general, the internal temperature of the cell room varies with the ambient outdoor temperature.
The impact of this variation on ventilation rate is discussed in further detail in Section 4.2.3 below.
In the northwest corner of the cell building is the Reductoneฎ process area. This area contains
reactors used for the production of 303,000 L/day (80,000 gal./day) of liquid sodium hydros ulfite which
is operated from a separate control room in that part of the building. Since sodium amalgam from the
electrolytic cells is used in this process, the Reductoneฎ area is also a source of fugitive Hg emissions.
Finally, based on observations made during the study, the Olin chlor-alkali plant appeared to be a
very well operated and maintained facility. General housekeeping of the cell building and adjacent areas
was excellent and the Olin staff were found to be highly motivated to reduce Hg emissions from the
process. Periodic maintenance was also performed throughout the study period as part of the normal
operation of the cell building. In addition, two specific maintenance events expected to generate elevated
Hg levels were monitored: a cell opening and a decomposer "basket" changeout. To facilitate
maintenance, both operations were conducted after the equipment had been taken off-line and allowed
to cool. (Note that cooling of hot process equipment before opening is not only a good maintenance
practice, but also a good engineering practice to minimize release of Hg emissions.) Neither of these
events resulted in abnormally high Hgฐ concentrations either in the area adjacent to Ihe maintenance
activity or in Ihe roof vent.
22
-------
>
I ,
< " s
X
s.
ป.
CD
i
<
><
Q
73 *
c c
^~ CQ
_2 h-
U CO
CO
CD
c
g
"o
_CD
"o
O
O)
I
tr "55
= ฐ
a> o
O ฃ2.
X
x
CD
c
O
cj
CO
CD
& Q
CD O
O ฃ2,
4ฑ
CO
X
B8JV ||!d
euojonpey
SJOOQ
O
h a
LJ en
3 2
s= o
^ -ป
w w
CD CD
Q X
CD 03
It
E
o
0
a:
"5
Q
0
0 i
T3
c
c/
o O
cu
DJC
O
O)
C
Q
D)
C
"5
O
O
a.
E
C/5
Q.
-
w
g
'o
C
CD
CL
CO
v^y
o
OX)
c
Q. =
u
0)
C
03
OJD
o
"ซ
c
O
oc
3
DJD
-------
SECTION 4
EXPERIMENTAL PROCEDURES
This section provides detailed information on the field measurements conducted during the
period February 17 to 25, 2000. Both the manual and automated techniques are described along with the
procedures used to reduce and analyze the experimental data.
4.1 Measurement Methods, Setup, and Calibration
A combination of measurement methods was used for data collection at the Olin chlor-alkali
facility. Past studies of this type show that parallel approaches reduce the overall uncertainty of the
estimates and provide useful constraints on measurement accuracy. The methods used were: roof vent
monitoring, tracer gas analyses, and manual velocity measurements. Each is described in detail below.
4.1.1 Roof Vent Monitoring
The basic measurement approach used in this portion of the research was the "roof monitor
method" developed in the late 1970s for fugitive emissions (Cowherd and Kinsey, 1986). In this
particular study, however, long-path instruments were used in lieu of extractive sampling using a
manifold system (EPA, 1984). The use of long-path instruments allows measurements to be made on a
spatially integrated basis, thus eliminating problems with representative sampling typical of point
measurements.
The primary instrumentation used in the roof vent consisted of:
UV-DOAS for the measurement of Hgฐ concentration;
Optical scintillometer (anemometer) for the determination of air velocity; and
FTIR spectrometer for the measurement of SF6 tracer gas concentration.
24
-------
This equipment was selected because it has been used successfully for testing of similar
emissions in other industries monitoring roof vents. In fact, the Model LOA-104 optical anemometer has
recently received an EPA Reference Method 14 equivalency designation for the determination of air
velocity in aluminum pot room roof vents (EPA, 1984; Hunt, 1998). The long-path instruments used for
roof vent monitoring are described in Table 4-1.
Table 4-1. Roof Vent Instrumentation
Parameter
Monitored
Gas-phase Hgฐ
Air velocity
SFfl tracer gas
concentration
Type of Instrument
UV-DOAS
Optical scmtiilometer
(anemometer)
FTIR
Manufacturer
OPSIS"", Inc.
Scientific
Technology
Environmental
Technologies
Group
Model No.
Model AR 500
Model LOA-104b
Air Sentry
Optical
Configuration11
Bi-static
Bi-static
Mono-static
'' Bi-static = separate light source and receiver, mono-static = combination light source and receiver in
one unit.
b Modified with a 2-in. aperture m place of the standard 6-in. aperture for path lengths <100 m.
The long-path instruments were mounted on wooden sampling platforms erected at the east and
west ends of the cell building roof vent (Figure 4-1). The UV-DOAS receiver, FTIR, and optical
anemometer transmitter were located on the west platform with the UV-DOAS transmitter (light source),
a retroreflector, and the optical anemometer receiver mounted on the east platform. Except for the
optical anemometer, the signals from all instruments were directed by optical fiber to computerized data
acquisition systems (DASs) located in a trailer parked directly beneath the roof ventilator at the west end
of the cell building. For the optical anemometer, the microprocessor and associated laptop computer
used for data acquisition \vere located on the sampling platform itself. This arrangement was necessary
due to the high electromagnetic field which precluded the use of the low-voltage modems supplied with
the instrument. Due to practical considerations, the optical measurement path of all the instruments was
positioned slightly above the exit plane of the ventilator "throat" as shown in Figure 4-2.
-------
ซ 0 b i ">
7 a i" 9
J/lll 1-0
li
f
5
at
!_
*ซ
[ซ
C
u
cu
4^
_ฃ
OX)
O
O
ซ^
P3
O
O
"o
C
-------
27
-------
Each instrument was set up and calibrated according to the operating manual and/or approved
Quality Assurance Project Plan (QAPjP) for the study (Kinsey et al., 2000). For the UV-DOAS, both the
transmitter and receiver units were bolted to steel plates attached to the internal building structure at the
approximate centerline of the vent cross section. Instrument calibration was performed at the beginning
and end of the study using a sealed Hg gas cell placed in the measurement path. Daily checks of
instrument performance weie made by OPSIS'"' personnel who operated and maintained the UV-DOAS
during the course of the study.
For operation of the optical anemometer, the transmitter and receiver were bolted directly to the
wooden platform on the south side of the roof vent centerline. The instrument was initially compared
against a standard unit evaluated in the National Institute for Standards and Technology (NIST) low-
speed wind tunnel and thus is considered to be NIST-traceable. Since a dynamic calibration could not be
performed on site, daily quality control (QC) checks were made each morning using the electronic
calibrator supplied with the instrument. In addition, two sets of manual velocity measurements were also
made as a comparison with the readings made by the optical anemometer as described below.
The open-path FT1R and associated retroreflector were also bolted to the wooden platforms on
the north side of the roof ventilator centerline. The instrument was calibrated both before and after the
main data collection period using a nitrogen purge followed by 500 ppmv n-butane and 25 pprnv SF6
according to EPA Method TO-16 (EPA, 1999). Daily QC checks were also made by the instrument
operator. A diagram showing the location and beam path of each long-path instrument relative to the
roof vent cross section is shown in Figure 4-3.
Finally, a Met One Model 062 temperature controller and meteorological station and associated
laptop computer were also installed on the west sampling platform to monitor air temperature and
relative humidity. This system provided 15-min average data for these two parameters as logged by the
computer. (Note that the high electromagnetic field precluded the transfer of electronic files from the
meteorological station computer ui-situ and thus the data were provided as hard copy output directly
from the computer.) Note, however, that the meteorological station was not available until about midday
on February 21, and thus temperature and humidity data are not available for the entire study. The
available data were analyzed, however, to estimate the air temperature for periods where aclual
monitoring was not conducted. Ambient data for the study period were also obtained either from
28
-------
4 0 I
3 0
B-
2 0 1
1 0
- A
H
----<>
0 0
0 10 20 30 40 50 60
Distance from West Building Wall, m
- -O - LOA
.DOAS A - FTIR
Figure 4-3. Relative locations of instrument beam path in roof vent cross section.
on-site meteorological monitoring conducted by study collaborators or from National Weather Service
(NWS) archives for Bush Airport located ~ 2.4 km (1.5 mi) north of the facility.
With regard to on-site data processing and storage, the raw data stream from each instrument was
continuously logged and accumulated by the associated DAS. For QC purposes, a copy of each
instrument data file was made by the EPA Work Assignment Manager on a daily basis and stored
separately both in electronic format and as hard copy. The hard copy data were stored in ring binders to
provide a permanent record for the study.
4.1.2 Manual Tracer Gas Analyses
The SF6 tracer gas concentration was measured inside the Hg cell building by ERG's Optical
Measurements Group using manually operated bag samplers and a closed-cell Nicolet Magna 760 FTIR
to analyze the gas samples. The roof vent and upwind/downwind monitoring was conducted using
EPA-operated FTIRs to determine tracer gas concentrations. All analyses and measurements for the
tracer gas were completed following EPA Method TO-16 (EPA, 1999).
-------
Manual sampling was accomplished by drawing sample air into a Tedlarฎ bag over a nominal
24-hour period. Tedlar00 bags were used for air sampling, and were constructed of a material that
minimizes adsorption of many ambient air chemical species. Tedlarฎ bags will be referred to as "bags"
for the remainder of this section A bag sampling location consisted of a rigid container with an enclosed
bag, a sample pump to pull a vacuum on the container, and associated flow measurement and control
devices (rotameters).
Sampling was achieved by placing an evacuated bag inside the container, sealing the container,
and attaching a pump and sampling lines to the container. The sample pump was started and v/ithdrew
air from the container, creating a vacuum within the container which then inflated the bag by drawing in
sample air. Sampling rate was controlled by adjustment of the pump flow rate.
Multiple sampling locations were used to obtain a distribution of tracer concentration at key
locations in and around the cell building. The locations were sampled nearly simultaneously for
approximately 24 hours. Sampling locations were determined based on estimated air flow patterns
and/or wind conditions prior to sampling.
Prior lo sampling, all equipment was inspected for proper operation. Bags were inspected for
integrity, and the sampling containers were inspected and tested for leaks. When all equipment passed
inspection, the equipment was placed in its designated sampling location and assembled. All clocks used
during sampling were synchronized with a master clock set to the atomic clock in Boulder, CO.
Due to the density difference between air and SF6, all flowmeters were calibrated with tracer gas
before sampling using a manual Buck calibrator. After the bag samples were obtained, they were
removed from the rigid container (10-gal. drum), labeled, and transported to the trailer for analysis. All
samples were analyzed at Olin using the ERG Nicolet FTIR.
The bag samples were analyzed by FTIR spectroscopy because of the high sensitivity of FTIR to
SF6 and the ability of FTIR to simultaneously detect many other analytes of interest. The FTIR operating
parameters are given in Table 4-2. These parameters provide acceptable detection limits for the target
analytes anticipated in this study.
30
-------
Table 4-2. Typical FTIR Operating Parameters
Parameter Value
Spectral Range (cm ') 400 - 4000
Spectral Resolution (cm"1) <0.5
Optical Cell Pathlength (m) 10 (approximate)
Optical Cell Temperature (ฐC) Ambient (nominally 25 ฐC)
Sample Volume (L) 3
Integration Time (min) 6 (Average of 256 interferograms)
Prior to each day's analysis, the FTIR instrument was checked for proper operation, and a
background spectrum was collected using ultra-high purity nitrogen. A background spectrum was
considered a zero-response measurement. After the background spectrum was collected, QC
measurements were performed at nominal SF6 concentrations of 0.1 and 0.5 ppm (volume). QC results
are described in detail in Section 6.
4.1.3 Manual Velocity Measurements
Manual anemometer measurements were also performed as part of the study. The objective of
these measurements was to evaluate air velocity in the roof vent as an independent check on the optical
anemometer as well as to determine the air velocity in various building openings for the purpose of
performing an overall flow balance for the cell building.
The original study design proposed the use of three specially designed "anemometer trees"
(ATREEs) for the determination of air velocity and air flow. The ATREEs consisted of multiple thermal
anemometer probes which were mounted on a movable metal mast and connected to a central data logger.
Upon initial deployment, however, it was determined that the thermal anemometers used in the ATREEs
were far too sensitive for these measurements and immediately went off-scale. Therefore, a hand-held,
Davis Instruments TurboMeter"" propeller anemometer was used for the manual velocity measurements.
This instrument is capable of integrated air velocity measurements down to O.I m/s and thus was well
suited to this particular application. The propeller anemometer was also compared with a hand-held
hot-wire instrument during selected measurement periods. Since propeller data were available for all of
the manual measurements, only this information was used in the analyses described below.
31
-------
Propeller anemometer readings were obtained both in the roof ventilator and in cell building
openings. For the vent measurements, readings were made at selected locations across the width of the
ventilator throat both at the same height as the optical anemometer measurement path and also ~ 20 cm
(8 in.) below the throat exit. For the various building openings, anemometer readings were obtained at
the approximate geometric center of each opening. All data collected during the manual velocity
measurements were recorded by hand in a bound field notebook.
4.2 Data Reduction and Analysis
The data reduction and analyses conducted in the study are described below. Copies of the
Excelฎ spreadsheets containing the reduced data are appended, as appropriate.
4.2.1 Roof Vent Monitoring
For the Hgฐ concentration measurements made by the UV-DOAS, the raw 30-sec average values
generated by the spectrometer were downloaded directly from the instrument in the form of an ASCII
text file for each day of the sludy. The individual text files were then imported into separate pages of an
Excelฎ spreadsheet where the data were checked for any obvious errors or anomalies. Any entries in the
spreadsheet which appeared corrupted or questionable were deleted, the remaining information plotted as
a chronology, and summary statistics calculated for each 24-hr period. In addition, a second data set
consisting of l-min averages was downloaded from the DAS for the purpose of the emission rate
calculations. These data were analyzed in a similar fashion except that graphs and summary statistics
were not generated.
A similar procedure was also used for analysis of the optical anemometer results. In this case,
however, raw l-min averages were generated by the instrument and were imported as ASCII text files
into the spreadsheet pages. Due to the high electromagnetic field and subsequent frequency of corrupted
data, special care was taken to check each data line prior to further reduction and analysis. Note,
however, that ihe data generated by the optical anemometer were provided at actual roof vent
temperature and pressure, whereas the DOAS results were reported at a constant temperature of 30 ฐC
(86 ฐF) and pressure of 760.7 mm Hg (29.95 in. Hg). Therefore, an appropriate temperature and pressure
correction was applied to the optical anemometer results prior to the two data sets being used to calculate
Hgฐ emission rates.
32
-------
For the roof vent meteorological station, the temperature and humidity data were entered by hand
into a spreadsheet from the hard copy records. The data entries were then checked by the analyst for
accuracy. These data were later combined with applicable ambient temperature information to make the
necessary corrections for the emission rate calculations described below.
Finally, probably the most complex data set to be analyzed was that obtained from the roof vent
FTIR. This data set consisted of individual infrared (IR) spectra generated by the instrument from 64
separate scans conducted over a time period of approximately 5 mm. The individual spectra were
analyzed by post-processing to determine the concentration of SF6 and other gases of interest.
Data files containing the FTIR spectra were provided to two separate EPA contractors for
post-test data reduction and analysis. An initial set of- 300 spectra collected late in the study was first
provided to Jeff Childers of ManTech, Inc., who developed the basic spectral analysis scheme and
provided a quality control check of the data (Appendix B). A complete set of spectra (including those
provided previously to ManTech) was also furnished to EPA's in-house contractor (ARCADIS Geraghty
& Miller) who conducted a separate analysis (Appendix C) of the information generated in the field
using the methodology developed by Childers.
As stated in Childers' report (Appendix B), the FTIR detector was found to be optically saturated
due to poor instrument setup in the field. Because of detector saturation, the response of the instrument
is highly non-linear, making quantitative interpretation of the spectra impossible. Therefore, the entire
data set was considered to be unuseable for the quantitative determination of air flow rate from the cell
building. The data are of some qualitative interest, however, as discussed in Section 5.
4.2.2 Tracer Gas Analyses
The SF6 tracer gas was released as a diffuse line source along the centerline of the cell room.
The tracer was provided from two separate compressed gas cylinders through a 'soaker hose' running Ihe
length of the building. Figure 4-4 shows the cylinder layout along the cell building basement. Figure 4-5
shows the soaker tubing layout inside the cell room.
Gas was metered from the cylinder using a pressure regulator and precision rotameter which was
calibrated in the field with SF6 using a bubble test meter prior to use. Single-point calibration checks
33
-------
Cell numbers
59 29-*
G1
F1
E1
G11
Rotameters 1 & 2
on cell room floor
Rotameter 4 and soaker tubing
was along basement on 2/23
and 2/24/00
Rotameter 3 on
cell rcom floor,
Rotameter 4 in
basement
D1 D2 D3 D4 D5
C1
B1
A1-
SF6 cylinder
Alt columns continue from 1 lo 11
E'F6 cylinder
A11
Column number along basement
Figure 4-4. Cylinder layout along the cell building basement.
Reductcne1" Area
continue cells 3 to 29
/ Rotameters 1 8.2
Jto SF6 cylinders
in basement
continue cells 31 to 58
Rotameter
to SFe cylinders
in basement
Cells 1-29 & 59 on Northside
Cells 30-58 & 60 on Southside
Figure 4-5. Soaker tubing layout inside the cell room.
34
-------
were made at the beginning, middle, and end of the tests. Calibration checks are presented in Section 6
(Quality Assurance/Quality Control).
The total average gas release for the first 3 days of sampling, February 17 through February 20,
2000, was 137.4 g/mm. Gas concentration was increased on February 21, 2000, because the FTIR
instalment was detecting baseline amounts of SF6. The average release from February 21 to 23, 2000,
was 248.1 g/min. Because there was still a problem with the detection of SF6 from the long-path roof
vent FTIR, the rotameters were exchanged and calibrated, and a higher flow was set to run the last 2 days
of sampling, February 23 and 24. 2000. The average release was 3356.0 g/min. Gas release
concentrations are listed in Table 4-3.
4.2.3 Emission Hate Calculations
Using the data sets described in Section 4.2.1 above, the emission rate for each 1-min averaging
period was calculated according to:
E =60VcAeC(10)~6 (4.i)
Where:
E = Hg" emission rate (g/mm);
Vt = air velocity obtained from optical anemometer corrected for temperature and
pressure (m/s);
Ae = effective flow area of vent (m2); and
C = Hgฐ concentration as measured by the UV-DOAS (ug/m3).
The corrected air velocity was calculated by Equation 4-2 as:
T P
Vc =Vn -J-^- (4-2)
C d rp p
Jarr
Where:
V, = air velocity obtained from optical anemometer at actual conditions (m/s);
T, = reference absolute temperature (303 K);
35
-------
Table 4-3. Gas Release Concentrations
Rotameter Concentration mL/mina
Date Time
2/17 18:30
19-00
2/18 9:00
9:01
1000
11:30
12:10
16:00
17.10
17-11
17-30
17-31
17:45
18:00
2/19 7:40
7:41
9:00
10:15
10:16
10:50
1 1 :45
12:45
12:46
13:39
14:30
14:57
14:58
1 6:40
17:00
17:01
2/20 8:30
8:31
9:30
10:30
10:31
1 1 :00
11:01
2/20 15:00
16:00
Rotameter Site Location0 Total
1234 Flow
8.8
8.8
20.9
8.8
8.8
88
8.8
8.8
8.8
8.8
8.8
8.8
8.8
8.8
7.8
8.8
8.8
8.8
8.8
8.8
8 8
7.8
8.8
88
8.8
8.8
8.8
88
7.1
8.76
8.76
8.76
8.76
7.78
8.76
5.49
8.76
13.7
13.7
74
7-1
3.5
7.4
6.6
74
74
14
6.1
1.4
6 1
14
1.4
1.4
16.8
1.4
1.4
5.6
1.4
1.4
14
6.9
1.4
1.4
14
66
1.4
1.4
6.1
7.44
19.4
744
7.44
744
744
6 11
7.44
11,4
11,4
94
9.4
21.1
9.4
9.4
9.4
9.4
9.4
9.4
9.4
8.4
9.4
9.4
9.4
17.8
9.4
9.4
6.0
9.4
9.4
9.4
94
94
94
9.4
94
94
9.4
94
9.37
24.5
9.37
9.37
9.37
9.37
11.0
9.37
14.4
14.4
25.6
256
45.5
25.6
24.8
25.6
25.6
25.6
24.3
25.6
23.2
25.6
25.6
25.6
42.3
25.6
25.6
20.4
25.6
25.6
25.6
24.1
25.6
25.6
256
24.8
25.6
25.6
22.6
25.6
52.7
25.6
25.6
24.6
25.6
22.6
25.6
39.5
39.5
SFfi Concentration (g/min)b
Rotameter Site Location0 Total
1234 Flow Comments
45.0
450
107.2
45.0
45.0
45.0
45.0
45.0
45.0
45.0
45.0
45.0
45.0
45.0
399
45.0
45.0
45.0
45.0
45.0
45.0
39.9
45.0
450
450
45.0
450
45.0
36.6
45.0
45.0
45.0
45.0
39.9
45.0
28 1
45.0
70.2
70.2
38.2
38.2
17.7
38.2
34.1
38.2
38.2
38.2
31.4
38.2
31.4
38.2
38.2
38.2
86.0
38.2
38.2
28.6
38.2
38.2
38.2
355
38.2
38.2
38.2
34.1
38.2
38.2
31.4
38.2
99.7
38.2
38.2
38.2
38.2
31.4
38.2
58.7
58.7
48.1
48.1
108.3
48.
48.
48.
48.
48.
48.
48.
42.9
48.1
48.1
48.1
91.1
48.1
48.1
30.9
48.1
48.1
48.1
48.1
48.1
48.1
48.1
48.1
48.1
48.1
48.1
48.1
125.5
48.1
48.1
48.1
48.1
56.7
48.1
73.9
73.9
131.2 Density of
SF -
1312 6 ~
l 5.13g/mL
233.2
131.2
127.1
131.2
131.2
131.2
124.4
131.2
119.2
131.2
131.2
131.2
217.0
131.2
131.2
104.5
131.2
131.2
131.2
123.5
131.2
131.2
131.2
127.1
131.2
131.2
116.0
131.2
270.1
131.2
131.2
126.2
131.2
1 16.2 Average in
2/min
131'2 137.4
202.8
202.8
(Continued)
36
-------
Table 4-3. (Continued)
Kotamctcr Concentration mL/mina
Date Time
2/21 8:
8:
9:
9-
10
10
1 1
2/22 1 0
li
11
11
11
12
12
14
15
19
19
30
31
30
31
.35
:36
:4()
15
00
.01
:20
21
.00
:01
00
00
40
:41
2/23 10:00
10
2/23 1 1
01
:30
14-00
16
15
2/24 8:30
1 1
:00
13:00
Rotameter Site Location" Total
1234 Flow
13.7
13.7
13.7
13.7
13.7
13.7
13 7
13.7
13.7
13.7
137
13.7
15.0
13 7
13.7
13 7
13.7
13.7
47.7
47.7
59.4
594
59.4
176.1
1 76. 1
1 76. 1
16.8
1 1.4
10.1
1 1 4
8.78
1 1 4
1 1 4
1 1.4
-------
P, = actual barometric pressure (mm Hg) = 1.006 Pslฃ1;
P,ta = station pressure for Bush field (mm Hg);
1.006 = altitude correction for Bush field;
T, = actual absolute temperature (K) = ฐC + 273; and
P, = reference atmospheric pressure = 760.7 mm Hg.
To obtain the value of T, in Equation 4-2, the temperature data obtained from the roof vent
meteorological station were used, where available. However, for time periods when actual monitoring
was not conducted, the available data were analyzed separately to estimate the vent air temperature.
To estimate roof vent air temperature, the available monitoring data were copied into a separate
spreadsheet and the difference between the vent temperature and the ambient temperature calculated for
each 15-mm averaging period. The temperature differentials (ATs) obtained from these calculations
were then plotted on the same graph as a series of daily time histories. Upon examination of these plots,
a similar daily trend in AT was observed, as would be expected for a naturally ventilated building.
Appropriate averages were then calculated from the 15-min monitoring results which were subsequently
applied to the ambient temperature data for those time periods where actual monitoring was not
conducted The time histories generated from the monitoring results and the average daily AT cycle
calculated from these data are shown in Figures 4-6a and 4-6b, respectively. As shown by Figure 4-6b,
the "artificial" chronology developed from the average data is very similar to the daily trends actually
determined from the monitoring results (Figure 4-6a) and thus should be adequate to estimate vent air
temperature.
Finally, the concentration, velocity, temperature, and pressure data described above were
imported into an Excel* spreadsheet and the Hgฐ emission rate calculated for each 1-min averaging
period using Equations 4-1 and 4-2. Also generated in the spreadsheet were summary statistics and a
time history for each 24-hr period. A copy of this spreadsheet is provided in Appendix F.
38
-------
17 0
015 130 2 45 4 00 515 6 30 745 9 OG 1015 1130 1245 14 00 1515 1630 1745 19 00 20 15 21 30 2245
Time of Day
22-Feb
23-Feb 24-Feb
25-Feb
Figure 4-6a. Average roof vent temperature differential as determined from 15-min monitoring
data.
o
015 130 245 4 'JO 515 630 745 9 UO 1015 1130 1245 MOO 1515 1630 1745 1900 2015 2130 2245
Tim e of Day
Figure 4-6b. Calculated temperature differential for roof ventilator as determined from average
monitoring data shown in Figure 4-6a.
39
-------
4.2.4 Manual Velocity Measurements and Flow Balance Calculations
For the manual velocity measurements in the roof vent, the data from the field notebook were
entered by hand into an Excel1" spreadsheet (Appendix D). These data were then plotted with respect to
the physical boundaries of the ventilator throat and averages calculated for each set of observations. The
averages were then compared to similar values obtained from the optical anemometer for the same time
period. In addition, the data points obtained at both edges of the ventilator were extrapolated by linear
regression to the point of zero velocity. These locations were then used to determine the effective flow
area of the vent (Ac) for the emission rate calculations shown in Equation 4-1 above.
In the case of the building openings, the manual velocity data were also entered by hand into an
Excelฎ spreadsheet (Appendix E). These values were then multiplied by the cross sectional area of each
opening as determined either from building drawings or field notes to determine volumetric flow rate.
The individual flow rates were then combined with the total volumetric flow of the electrically powered
ventilation fans to obtain the total ambient air entering the cell building. Similar calculations were also
performed for the roof vent using the applicable optical anemometer data for the same measurement
period and the effective flow area as described earlier.
To perform the flow balance for the building, three separate techniques were used. The first
technique simply corrected the total flow obtained for the building inlets and roof vent to standard
temperature and pressure and compared the two values on a volumetric basis. In the second method, the
mass of air entering and leaving the building was calculated and a similar comparison made. Finally, a
method developed by the Occidental Chemical Corporation (OxyChem) as part of their direct mass
balance (DMB) modeling effort was also used. For the sake of consistency, all flow balance calculations
were performed in English units as described in the following paragraphs.
In the first approach, the total flow for both the building inlets and the roof vent was corrected to
a standard temperature of 77 ฐF (25 ฐC) and pressure of 29.92 in. Hg (760 mm Hg) according to:
40
-------
Where:
Qs = volumetric flow rate at standard conditions (ffVmin);
Q, = volumetric flow rate at actual conditions (iVVmin);
T\ = standard absolute temperature (537 ฐR),
T, = actual absolute temperature: (ฐR) = ฐF + 460;
P, = actual barometric pressure (in. Hg) = 1.006 P,,.,;
PSM = station pressure for Bush field (in. Hg);
1 .006 = altitude correction for Bush field; and
P^ = standard atmospheric pressure = 29.92 in. Hg.
As shown by Equation 4-3 above, no correction for relative humidity (water vapor) was made in the
calculations.
Percent closure of the volume balance was then calculated as:
',> Balance = 100-
100
(4-4)
Where:
Qm = volumetric air flow entering the cell building (standard ft'Ymin); and
Qmil = volumetric air flow exiting the roof ventilator (standard ft'Vmin).
In the second calculation scheme, a traditional mass balance was performed which compared the
quantity of air entering the building through the various openings to that exiting the roof vent per unit
time. For these calculations, the partial pressure of water vapor in moist air (pw) at the building inlet and
outlet was found by (ASHRAli, 1981):
P = 9 P (4-5)
w s
Where:
partial pressure of water vapor in moist air (in. Hg/in.2);
relative humidity (expressed as a fraction); and
vapor pressure of water in moist air at saturation (in. Hg/in.2).
41
-------
Equation 4-5 assumes that ptt is approximately equal to the vapor pressure of saturated pure water (pws)
which is generally accepted for most calculations (ASHRAE, 1981).
Next, the volume of moist air per unit mass of dry air (v) was found for the air entering and
leaving the building by (ASHRAE, 1981):
V =
RaT
(P-P
(4-6)
w
Where:
v
R,
lb,r
T
P
Pw
volume of moist air per unit mass of dry air (ft-1 of mixture/ lbni dry air);
ideal gas constant for dry air (in. Hg/in.2* lbm"' ฐR"');
pound mass of air (engineering units);
absolute temperature (ฐR);
barometric pressure (in. Hg/in.2); and
partial pressure of water vapor in moist air (in. Hg/in.2) from Equation 4-5.
The mass of air either entering or leaving the building per unit of time was then calculated
according to Equation 4-7:
V
M =
v
(4-7)
Where:
M
V
u
mass of dry air per unit time (lbm/min);
volumetric flow rate (ftYmin); and
volume of moist air per unit mass of dry air (ft3 of mixture/ lbm dry air) from
Equation 4-6.
To assess the percent closure of the mass balance, Equation 4-8 was used:
9f-Balance = 100-
100
(4-8)
42
-------
Where:
M,,, = mass of dry air per unit time entering the building (lbm/min)
M()lll = mass of dry air per unit time exiting the building (lbm/mm)
Finally, the field data were entered into a special Excel* spreadsheet developed by Michael
Shaffer of OxyChem's Delaware City plant. This spreadsheet uses a slightly different approach to
performing the mass balance which was adopted as an independent check on the calculations described
above.
43
-------
SECTION 5
RESULTS AND DISCUSSION
This section provides the results of the Ohn field study as obtained using the equipment,
methods, and data analysis procedures described in Section 4. Also included in this section is a
discussion of key experimental results.
5.1 Mercury Monitoring Results
The outcome of the roof vent monitoring conducted at the Olin cell building is discussed below.
Both the Hgฐ emission rates calculated from the continuous monitoring data as well as comparisons of
the UV-DOAS results to other Hg" measurement techniques are also described.
5.1.1 Monitoring Data and Mercury Emission Rates
As discussed above, continuous monitoring was conducted at the roof vent for Hgฐ concentration
and air velocity from which I-minute average Hgฐ emission rates were calculated. In addition,
continuous monitoring was also attempted for SF6 tracer gas as a separate measure of the air flow rate
from the vent. The results of these measurements are discussed below.
The raw 30-sec averages generated by the UV-DOAS were reduced to produce daily plots of the
Hgฐ monitoring results as well as summary statistics for each day. The daily data plots are shown in
Figures 5-1 to 5-9 with summary statistics calculated from the data provided in Table 5-1. As can be
seen from Table 5-1, the measured Hgฐ concentration varied over an order of magnitude from ~ 73 to
7.3 ug/m\ The overall average for the study period was 24 ug Hgฐ/m\
Similar plots and statistics were also created from analysis of the 1-min optical anemometer data
as discussed in Section 4.1.1. The plots are shown in Figures 5-10 to 5-18 with summary statistics for
each daily data set provided in Table 5-2. As shown in Table 5-2, the air velocities measured by the
44
-------
O 40
To ,
I !
o
c
o
o
o ,]
/4
11 18 11 56 12 36 13 15 '3 5? 14 30 1507 15 45 1622 1659 1737 18 15 1853 19 30 20 08 20 45 21 22 22 01 2239 23 16 2353
Time of Day
Figure 5-1. Time history of roof vent elemental mercury concentration for
February 17,2000.
E 50 I
~O>
c
O 40
"5
c
CD
U 30
O
O
o
en
I 20
0 00 1 07 ? 15 3 22 4 35 541 6 52 8 05 1 o 04 1 1 11 12 20 13 26 14 36 1 5 42 1 6 49 1 B 05 19 1 3 20 1 9 21 27 22 35 23 41
Time of Day
Figure 5-2. Time history of roof vent elemental mercury concentration for
February 18, 2000.
45
-------
c;
cj
U 30
c:
o
O
o
000 106 210 314 419 523 629 733 8401008111412191323143415441655180219122018212422322339
Time of Day
Figure 5-3. Time history of roof vent elemental mercury concentration for
February 19,2000.
O 30
d
0
HV
TIT
A
0 00 1 05 213 3 21 4 27 5 32 6 39 7 45 B 52 10 19 11 23 12 29 13 34 14 41 15 48 16 57 18 03 19 OB 20 14 21 19 22 25 23 36
Time of Day
Figure 5-4. Time history of roof vent elemental mercury concentration for
February 20, 2000.
46
-------
E50
15)
o
O
o
D)
i I 20
tW
000 106 213 317 424 531 634 740 651 101511231234134b14571603171foia291933203G214122482351
Time of Day
Figure 5-5. Time history of roof vent elemental mercury concentration
for February 21,2000.
000 118 229 335 442 551 657 806 944 104811 52 12 56 14 00 15 04 1612171618 24 19 27 20 3121 35 22 38 23 43
Time of Day
Figure 5-6. Time history of roof vent elemental mercury concentration
for February 22, 2000.
47
-------
Cb
X 20
COO 101 206 310 414 517 620 727 834 958 1120 1232 1337 1442 1546 1649 1802 1906 2020 2124 2231 2339
Time of Day
Figure 5-7. Time history of roof vent elemental mercury concentration for
February 23, 2000.
e E0
O)
c
g to
'5
'c
-------
E 50
8
o> i
I 20 (
0 00 0 1 9 0 40 1 00 1 20 1 40 1 59 2 16 2 38 2 58 3 10 3 37 3 56 4 15 4 38 ! 58 5 15 5 36 5 54 6 12 6 32 6 52 7 11 7 30 7 50 8 07 8 26
Time of Day
Figure 5-9. Time history of roof vent elemental mercury concentration
for February 25, 2000.
Table 5-1. Summary of 30-sec Roof Vent DOAS Data3
Hg" Concentration (ug/m3)a
Nn. of
Standard Observations %
Date
2/17/00
2/18/00
2/19/00
2/20/00
2/21/00
2/22/00
2/23/00
2/24/00
2/25/00
Mean
Maximum
56.6
35.5
38 8
73.0
71.3
36.6
40.0
62.7
51.1
51.7
Minimum
15.5
10.2
7 32
8.49
8.43
7 83
10.5
15.3
19.3
11.4
Mean
27.4
22.1
16.8
23.0
19.0
20.0
21.2
30.7
34.7
23.9
Deviation
6.01
4.33
4.83
11 9
9.00
5.97
7.03
8.15
7.13
...
(n)b
1281
2553
2549
2553
2555
2544
2546
2317
922
...
Completeness'1
89
89
89
89
89
88
88
80
89
88
J At 30 ฐC and 29.95 in. Hg. Three significant figures.
b Dimensionless. Target value >75%.
-------
I/)
ฃ
_
o
re
o
"
1045 11 26 12 06 1249 13 31 14 11 1452 1532 16 13 1653 1734 18 15 1856 1936 20 17 2057 21 39 22 19 2300 2340
Time of Day
Figure 5-10. Time history of root' vent air velocity for February 17, 2000.
0 00 0 57 1 54 2 51 3 50 4 50 546 6 46 7 45 8 45 9 41 10 5411 53 12 49 13 4514 4515 41 16 3817 4218 4019 3720 3321 31 22 2823 24
Time of Day
Figure 5-11. Time history of roof vent air velocity for February 18, 2000.
50
-------
000 129 256 124 552 720 848 1040 1209 1338 1514 1649 1823 1955 2123 2254
Time of Day
Figure 5-12. Time history of roof vent air velocity for February 19, 2000.
0 OC 0 59 2 GO 3 02 4 UJ 5 01 6 01 7 02 8 02 9 02 10 21 11 1912 18 13 1714 17 15 1916 21 1 7 21 18 2219 2020 2021 18 22 1823 19
Time of Day
Figure 5-13. Time history of roof vent air velocity for February 20, 2000.
51
-------
CO
E
To
ZI
T5
to
000 1 03 206 307 1 10 5 15 6 16 718 820 9 43 10 4811 53 13 01 14 07 15 0916 12 17 19 18281928202921 31 2/342334
Time of Day
Figure 5-14. Time history of roof vent air velocity for February 21, 2000.
o
_o
CD
000 1 04 2 11 309 408 5 10 609 708 8 10 9 39 10 3511 32 12 2813 2614 2215 2016 2017 1718 16 19 14 20 1021 07220323002357
Time of Day
Figure 5-15. Time history of roof vent air velocity for February 22, 2000.
52
-------
000 056 1-^(1 2 55 3 5 j 4 5C 5 50 6 48 7 49 8 50 10 12 11 22 12 2513 24 14 2315 24 16 21 17 27 18 2G19 2620 3321 31 22 3523 32
Time of Day
Figure 5-16. Time history of roof vent air velocity for February 23, 2000.
0 00 1 01 2 07 3 07 4 09 5 10 6 09 7 13 815 9 30 10 4611 49 12 51 13 52 14 54 16 0517 19 18 28 19 41 20 46 21 48 22 47 23 50
Time of Day
Figure 5-17. Time history of roof vent air velocity for February 24, 2000.
53
-------
0 000 17 0 350 53 1 1 1 291
-------
optical anemometer varied from 0 24 to 1.5 m/s with an overall average for the monitoring period of
0.94 m/s.
The 1-min average Hgฐ emission rates calculated from the monitoring data are plotted in
Figures 5-19 to 5-27 for the 9-day study period Summary statistics calculated from these data are shown
in Table 5-3. As indicated by Table 5-3, the Hgฐ emission rate varied over about 2 orders of magnitude
from 0.08 to 1.2 g/min. An overall average Hg;i emission rate for the monitoring period of 0.36 g/min
was also calculated from the data.
5.1.2 Comparison of Mercury Measurement Methods
In addition to the continuous monitoring described above, the UV-DOAS results were also
compared to other measurement techniques pei formed by collaborators from the Oak Ridge National
Laboratory (ORNL). Each comparison is described below along with the results obtained.
In the first analysis, a comparison was made between the concentration of Hgฐ measured by the
UV-DOAS and similar measurements conducted using a hand-held instrument at various points across
the width of the roof vent (i.e.. from north to south). This comparison was made to determine whether
any stratification in the Hg" concentration was evident across the width of the vent. The hand-held
measurements were made by ORNL using a Jerome Model 431-X survey instrument. (Note that the
Model 431-X uses an electrical icsistance cell to measure Hgฐ. and thus the readings are not directly
comparable to an optical method such as the UV-DOAS. Also, the lower detection limit of the Jerome is
3000 ng/m' as compared to ~ 130 ng/rn1 for the DOAS.) The data obtained from this evaluation are
summarized graphically in Figure 5-28.
As shown by Figure 5-28. the Hgฐ concentrations determined by the Jerome instrument were
relatively consistent across the width of the vent and compare reasonably well to the average
concentration obtained with the UV-DOAS. Based on these results, the measurements made by the UV-
DOAS were considered to be representative of the entire vent cross section and thus useful for the
purpose of the emission rate calculations.
-------
' C
! ฃ
o>
I to
E
LLJ o 40
o
O)
X
11 IB 11 54 1232 1308 1344 1420 14 55 1530 1606 1641 17 17 1753 1828 1904 1939 20 15 2050 21 25 22 02 22 3E 23 13 2348
Time of Day
Figure 5-19. Elemental mercury emission rates for February 17, 2000.
0(,0
'
CD
I
0 00 1 04 2 09 312 421 5 26 6 33 741 8 49 10 43 11 50 12 53 13 56 15 03 16 07 17 12 18 23 19 28 20 31 21 37 22 41 23 A
Time of Day
Figure 5-20. Elemental mercury emission rates for February 18, 2000.
56
-------
c
c
, g
'
E
UJ 040
O
O)
I
ir
nnui
V 'i *
0 00 1 07 212 317 42^ 5 28 6 35 7 41 8 48 10 17 11 24 12 30 13 37 14 49 15 59 17 12 18 21 19 30 20 38 21 47 22 52
Time of Day
Figure 5-21. Elemental mercury emission rates for February 19, 2000.
000 1 06 215 j 24 4 j1 537 646 7 52 900 1028 11 33 1240 1346 1455 1603 17 12 1820 19 25 2032 21 40 2246 2357
Time of Day
Figure 5-22. Elemental mercury emission rates for February 20, 2000.
57
-------
000 1 06 213 317 4 24 531 634 740 851 10 15 11 23 12 34 13 46 14 57 16 03 1 7 16 18 29 19 33 20 36 21 41 22.48 23 E
Time of Day
Figure 5-23. Elemental mercury emission rates for February 21, 2000.
000 115 227 332 438 546 651 759 9 36 10 39 11 42 12 44 13 48 14 50 15 58 17 01 18 04 19 10 20 12 21 '15 22 18 23 22
Time of Day
Figure 5-24. Elemental mercury emission rates for February 22, 2000.
58
-------
o
cc
ง060
UJ
000 1 00 204 3 07 410 5 12 6 14 720 825 9 47 11 04 12 20 13 2314 27 15 32 16 34 17 46 18 4619 5721 0422 0623 15
Time of Day
Figure 5-25. Elemental mercury emission rates for February 23, 2000.
cc
C 0 60 H
O
m
f i '
000 1 00 200 2 58 3 57 453 5 46 647 748 8 58 10 12 11 15 12 14 13 19 14 1815 24 18 38 19 4720 4821 46 22 41 23 41'
Time of Day
Figure 5-26. Elemental mercury emission rates for February 24, 2000.
59
-------
c
|E
"oi 080
03
ice
o 06ฐ
0000200431 04 1 261 462052252463093293504 10431 4545 13535 5 546 136346557 177367568 15
Time of Day
Figure 5-27. Elemental mercury emission rates for February 25, 2000.
Table 5-3. Summary of Calculated Elemental Mercury Emission Rates"
Hg" Emission Rate (g/min)
Date
2/17/00
2/18/00
2/19/00
2/20/00
2/21/00
2/22/00
2/23/00
2/24/00
2/25/00
Mean
Maximum
0.82
0.58
0.64
1.2
0.88
0.69
0.65
0.83
0.87
0.80
Minimum
0.24
0.15
0.10
0.13
0.12
0.12
0.080
0.24
033
0.17
Mean
0.38
0.33
0.26
0.35
0.27
0.31
0.30
0.46
0.58
0.36
Standard
Deviation
0.076
0.075
0.085
0.19
0.11
0.080
0.090
0.12
0.11
...
No. of
Observations1'
747
1339
1364
1368
1311
1340
1300
1130
450
...
Total Daily
Emissions
(g/day)c
N/A
481
370
510
387
453
438
662
N/A
472
J Two significant figures.
b Dimensionless.
L Sum of measured 1-min values adjusted 1o standard day of 1440 min to account for missing data.
Three significant figures.
60
-------
RoofVentLateralHg0 Profile (West Platform)
February 21 , 2000
ฃ
"Si
O
c
O
O
-1 00
0 00 1 .00 2.00 3.00 4 00
Distance from North Side of Vent (m)
5.00
Figure 5-28. Lateral profile of Hg" concentration as determined by the Jerome 431-X instrument.
In the second analysis, monitoring data obtained by the UV-DOAS were compared to point
measurements made using a Tekran Model 2537A automated Hg analyzer operated by ORNL. The
Mode) 2537A is a cold-vapor atomic fluorescence spectrometer (CVAFS) originally designed for
ambient air monitoring which uses gold traps to preconcentrate the sample prior to analysis. The Tekran
analyzer was located in the cell building control room with air samples collected from a high-flow
sampling line which extended to a point in the ceiling of the cell building ~5 m (16 ft) below the
approximate center of the roof vent entrance.
Selected data from both instruments were imported into an Excelฎ spreadsheet. The two data
sets were time-synchronized and plotted against each other, and a simple linear regression calculation
performed on the data. The results of this analysis are shown in Figure 5-29.
As Figure 5-29 shows, the data exhibit a relatively high degree of scatter with only about 63% of
the variance being explained by the linear regression. Possible reasons for these results include
differences in analysis method, non-representative sampling (e.g., sample extraction at a single point vs. a
path-averaged method), and sampling line losses. The data do, however, show comparable trends in Hgฐ
concentration with time (Figure 5-30) which may be useful for identifying process upsets or maintenance
events as discussed below.
61
-------
100
90 '
80 ;
c
o
o
o
U)
I
CO
<
o
Q
20 40 60 80
Tekran Hg c Concentration (pg/m 3)
100
Figure 5-29. UV-DOAS/Tekran comparison (February 17-21, 2000).
12000020 37 305 123014'32 3Q23'50 008 25'00 1815 002.500011 25 OOEO'05 004 40 00
2/17/00 2/17/00 2/18/00 2/18/00 2/18/00 2/19/00 2/19/00 2/20/00 2/20/00 2/20/00 2/21/00
Date/Time
-UV-DOAS
Tekran 2537
Figure 5-30. Chronology of elemental mercury concentration measured
by OPSIS Model AR 500 UV-DOAS and Tekran Model 2537A CVAFS
for February 17-21,2000.
62
-------
5.2 Tracer Gas Results
The results of the tracer gas measurements are provided in the following paragraphs. These
results include both the roof vent monitoring conducted using the open-path FTIR and the manual bag
sampling conducted in various building openings.
5.2.1 Roof Vent Monitoring
As was discussed in Section 4.2.1 above, the FTIR results were found to be unuseable for the
purpose of determining volumetric air flow due to optical saturation of the detector. However, the
qualitative results are of at least some general interest.
In the analysis of the IR spectra, several trace gases other than SF6 were found in measurable
amounts. These gases include carbon monoxide (CO), nitrous oxide (N->O), and methane (CH4), all of
which were estimated to be in concentrations above background. (Note that background readings were
obtained from the ambient FTIR located at the east plant road which was also operated by EPA as part of
the larger study.) Although the emission rate of these compounds could not be quantified, it is interesting
to note that three "greenhouse" gases were found in measurable quantities in the roof vent effluent. The
exact source(s) of these gases could not be determined, however, from the available data.
5.2.2 Tracer Gas Study - Manual Bag Sampling
The bags were sampled manually by drawing sample air into a Tedlarฎ bag over a nominal
24-hour period. Multiple sampling locations were chosen (Figure 5-31) to obtain a distribution of tracer
concentrations at key building openings. This sampling process was conducted to obtain ambient levels
of SF() released along the open areas in the basement and in the cell room. If SF6 were detected, it would
have indicated possible release of Hg along the vents from the cell building.
The sampling results for the manual bag analyses are presented in Table 5-4. The average
concentration of SF6 for the low release days, February 17 through February 20, 2000, was 0.019 ppmv,
which is just over the detection limit of 0.008 ppmv. The average concentration for the high release
63
-------
North
South
59 29-ซ
G1
F1
E1
O
D1 D2 D3 D4 D5
C1
B1
O
0
D11
60 30 31
O-
Bag sampling locations - shown in
basement, although sampling was
performed on both levels
Figure 5-31. Bag sampling locations in cell building.
Table 5-4. Manual Bag Analysis Results
Site Description
Bag ID
E8-22
E13-22
A3 1-22
A53-22
Bl-22
Description
Under Cell 8
Under Cell 13
Under Cell 31
Under Cell 58
Southwest
Wall
Column
Location
G3
G8
A3
A8
Bl
Basement or
Cell Room
Basement
Basement
Basement
Basement
Basement
Date Taken
02/18/00
02/18/00
02/1 8/00
02/18/00
02/18/00
Date (
Analyzed
02/22/00
02/22/00
02/22/00
02/22/00
02/22/00
Reported
Concentrations
(ppmv)
NDa
ND
0.016
0.014
ND
64
-------
Table 5-4. (Continued)
Site Description
Bag ID
DE1-22
UPG3-22
UPG 13-22
UPA31-22
UPA53-22
UAB1-22
UPDE1-22
UPB1-22
NWEND-22
20UG3-22
LOG 1 3-22
LOA31B-22
UA53-22
A3 1-24
A53-24
G 1 3-24
G3-24
UPDEL-25
1 B 1 -25
UPG3-25
LOG 13 -25
UPA31-25
LOA53-25
Description
Between
D1&E1
Cell 3
Cell 13
Cell 31
Cell 53
Southwest
Wall
Between
D1&E1
Southwest
Wall
Northwest
Wall
Cell 20
Under Cell 13
Under Cell 31
Cell 53
Cell 31
Cell 53
Cell 13
Cell 8
Mid Wall
Southwest
Wall
Cell 3
Cell 13
Cell 31
Cell 53
Column
Location
Dl &E1
G3
G8
A3
A8
Opening B 1
Column Dl &
El
Bl
F3
G3
G8
A31
A8
A3
A8
G8
Gil
Column Dl &
El
Opening Bl
G3
G8
A3
A8
Basement or
Cell Room
Basement
Cell Room
Cell Room
Cell Room
Cell Room
Cell Room
Cell Room
Cell Room
Basement
Cell Room
Basement
Basement
Cell Room
Basement
Basement
Basement
Basement
Basement
Cell Room
Basement
Cell Room
Basement
Cell Room
Date Taken
02/18/00
02/19/00
02/19/00
02/19/00
02/19/00
02/19/00
02/19/00
02/20/00
02/20/00
02/20/00
02/20/00
02/20/00
02/20/00
02/23/00
02/23/00
02/23/00
02/23/00
02/24/00
02/24/00
02/24/00
02/24/00
02/24/00
02/24/00
Date
Analyzed
02/22/00
02/22/00
02/22/00
02/22/00
02/22/00
na
02/22/00
02/22/00
02/22/00
02/22/00
02/22/00
02/22/00
02/22/00
02/24/00
02/24/00
02/24/00
02/24/00
02/25/00
02/25/00
02/25/00
02/25/00
02/25/00
02/25/00
Reported
Concentrations
(ppmv)
ND
ND
ND
0.016
0.017
Bag leaked
ND
ND
0.022
0.022
ND
0.024
0.020
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
''Detection limit = 0.013 ppmv
65
-------
days, February 22 through 23, 2000, was below the method detection limit (MDL). Although the
concentrations of SFfi on February 20, 2000, were less than 5 x MDL (MDL = 0.008 ppbV), the
concentrations detected were significantly higher, on average (0.022 ppbV), than any other sampling day,
suggesting very minimal Hg transport during this sampling period. The bags that detected SF6 were
located on the upper and lower northwest and southwest levels of the cell building. Samples were also
taken from the standard check cylinder used to QC the long-path FTIR. The results of these
measurements are presented in the Quality Control/Quality Assurance Section of this report.
5.3 Air Flow Study Results
The results of the manual velocity measurements and the associated air flow balance calculations
performed for the cell building are described below.
5.3.1 Roof Vent Monitoring
The data obtained from the manual velocity measurements are shown in Figures 5-32 and 5-33
for the east and west sampling platforms, respectively. As these graphs show, the velocity profiles
obtained on each platform exhibit a distinct decrease at the approximate center of the vent created by a
structural member running the length of the building. In addition, the air velocity drops off rapidly
outside the physical boundaries of the vent throat as would be expected.
The average air velocity measured manually by the propeller anemometer was also compared to
that obtained by the optical anemometer for the same time period. The results of this comparison are
provided in Table 5-5. As shown, the average air velocities determined by the two methods were within
+ 10% which is quite acceptable considering the differences in measurement technique (i.e., optical vs.
mechanical), the limited amount of manual data collected, etc. Based on these results, the measurement
path of the optical anemometer was considered to be located at a point representative of the average
velocity and thus appropriate for use in the emission rate calculations.
66
-------
o
01
in
o
C)
i South Edge of Vent
-2 A
-1.00
0.00 1.00 2 00 3.00 4.00
Distance Relative to South Edge of Vent (m)
5.00
22-Feb 1 54 ฃ hfs (Prop) - -- -23-F eb - 1 008 hrs (Prop) A 23-F eb - 1 02 1 hrs (Hot Wire)
Figure 5-32. Hand-held anemometer readings at the optical anemometer measurement height on
the east sampling platform, looking west.
2.5
0.0
0.00
1 00 2.00 3 00 4.00
Distance Relative to South Edge of Vent (m
5.00
-22-Feb
23-Feb
Figure 5-33. Hand-held anemometer readings at the optical anemometer measurement height on
the west sampling platform, looking west.
67
-------
Table 5-5. Comparison of Velocity Measurements in Roof Venta
Sampling
Location
East platform
V/est
platform
Average Velocity
(Propeller
Sampling Date Anemometer)
February 22, 2000
February 23, 2000
February 22, 2000
February 23, 2000
0 9 m/s
1 m/s
0.9 m/s
0.9 m/s
Average Velocity
(Optical Anemometer)
0.8 m/s
0.9 m/s
0.9 m/s
0 9 m/s
Percent
Difference
10
4
7
-1
Rounded to one significant figure. Propeller anemometer = Davis Instruments TurboMeterฎ; optical
anemometer = Scientific Technology Model LOA-104A.
5.3.2 Flow Balance Calculations
The results of the cell building flow balance calculations are shown in Table 5-6 for the three
methods described in Section 4.2.4. As Table 5-6 shows, unusually good closure (i.e., 79 to 100%) was
obtained in each of the three flow balance calculations performed. In addition, the three methods also
correlate well with each other, providing additional confidence in the calculations performed. Finally,
the high degree of closure of these flow balances lends further credibility to the air velocity
measurements made by the optical anemometer in the roof ventilator to adequately characterize the air
flow from the cell building.
Table 5-6. Results of Air Flow Balance Calculations for the Olin Cell Building3
Date
February 24, 2000
February 25, 2000
Volume Balance
(% Closure)
82
100
Mass Balance
(% Closure)
82
99
OxyChem DMB
Results"
(% Closure)
79
100
Mass Balance
(% Difference)
2.9
-0.9
:1 Rounded to two significant figures.
'' Occidental Chemical Corporation direct mass balance (DMB) method as provided by
Michael Shaffer.
68
-------
5.4 Discussion of Results
The following sections discuss the results presented above for the roof vent monitoring, cell
building air flow evaluation, and the tracer gas study conducted at the Olin chlor-alkali facility.
5.4.1 Roof Vent Monitoring
No specific pattern could be discerned from the daily plots of Hgฐ emission rate determined from
the roof vent monitoring conducted in this study. Figures 5-19 to 5-27 demonstrate that various episodic
events were observed where the emission rate rises for a period of time then drops back to some nominal
level.
An attempt was made to correlate these episodes to either process operation (Figure 3-3) or
maintenance events using plant records. Except for one specific event on February 20, when a significant
Hg leak occurred in the Reductone11'' area of the building , this analysis failed to find any useful
association. The plant operational logs were simply not adequate to pinpoint when certain maintenance
operations were performed on the cells and thus when high airborne Hg levels might be expected. The
data do suggest, however, that roof vent instrumentation may be a useful tool for long-term process
monitoring to identify when problems occur in the operation of the cells which may require corrective
action.
Another observation made during the study involves the impact of the high electromagnetic field
on instrument operation. If future studies of this type are conducted, optical modems and cables should
be used for the optical anemometer to allow logging of the data at a remote location. This procedure
would substantially reduce the amount of lost data and make troubleshooting much easier for the
operator.
Finally, although the concentration of Hgฐ was found to be relatively homogeneous across the
lateral dimension of the roof vent, such was found not to be the case along the longitudinal dimension.
This observation is illustrated in Figure 5-34 which shows Hgฐ concentration data collected during the
January presurvey (Appendix G). These data were obtained by sampling from the mobile crane over the
south ceil line using a Jerome Model 431-X survey instrument and a long sampling tube attached to a
non-conducting pole which extended to a point near the entrance of the roof ventilator throat.
69
-------
Eilemental Hg Longitudinal Profile in Roof Ventilator
(1/13/00)
0.060
0.050
S 0.040
c
o
c
0)
o
c
o
o
0 030
0.020
0.010
0.000
10
20 30 40
Distance from West Wall (m ;
50
60
Figure 5-34. Profile of Hg" concentration along length of roof vent entrance as obtained during the
January 2000, presurvey.
As shown in Figure 5-34, the Hgฐ concentrations were not consistent along the length of the
ventilator. The lowest concentrations were found on the west end of the building near the two large open
doors. Figure 5-34 also at least partially explains the lack of correlation between the Tekran and DOAS
measurements described earlier. These differences constitute yet another argument supporting spatially
inlegrated readings in lieu of point sampling with a manifold system. However, also note that these
measurements were conducted below the ventilator throat, which can also affect the homogenity of the
Hgฐ levels obtained.
5.4.2 Building A ir Flo w Evalua tion
Unexpectedly good closure was obtained for each of the three air flow balance calculations
performed in the study, especially for February 25 (Table 5-6). One possible reason the balance obtained
for February 25 has the highest degree of closure is that the manual velocity data were collected very
quickly (i.e., v/ithin about 15 min) as compared to the previous day when the measurements required
70
-------
about 1.5 hr to complete. Conditions within the cell building tend to change rapidly; thus, there is a need
to obtain the necessary data over as short a tune period as possible. A much larger data base is required,
however, to verify the results of the current flow study at other naturally ventilated buildings of this type.
As a final note, it was unfortunate that the roof vent tracer gas data were not useable in our
analysis. The use of a tracer is a very well accepted technique for determining flow rates in situations
where other methods prove difficult to implement. Therefore, the possibility of a tracer gas analysis for
future flow measurement studies should not be abandoned. However, greater care is needed to verify
proper instrument setup and operation in the field.
5.4.3 Comparison with Historical Information
Additional analyses can be made of the data obtained in the study which are worthy of note.
First is the comparison of the current results with those of prior emission testing of chlor-alkali plants
For this analysis, only four documents were found in the literature which provide emission data for cell
building roof vents. Two of these documents were EPA reports of contractor testing conducted in the
1970s as part of the original development of the Hg National Emission Standard for Hazardous Air
Pollutants (R. F. Weston, 197 1. Marks and Davidson, 1972). The other two documents were journal
articles of two remote sensing studies conducted in Sweden and Italy (Edner et al., 1989; Ferrara et al.,
1992, respectively). The remote sensing studies were conducted using light detection and ranging
(LIDAR) systems to profile the plume from the cell building and as such were indirect measures of the
Hg" emissions from the building.
Table 5-7 summarizes the data contained in the above documents as compared to current study
results. As shown, the daily emission rate obtained at the Ohn facility is a factor of ~ 2 to 3 lower than
that obtained in prior testing reported in the literature. It should be noted, however, that the literature
values are based on generally outdated information from studies of more limited duration as compared to
the current research.
Another observation that can be made from the historical data is a comparison of the estimated
annual emissions from the cell building roof vent to the amount of makeup Hg added by the plant.
71
-------
Table 5-7. Comparison of Current Study with Prior Research
Daily Hg" Emission Rate
Reference Description of Study (g/day)a
Floy F. Weston, Inc. Monitoring of two roof vents and nine powered 990
1971 ventilators using a Barringer Airborne
Spectrometer and hot-wire anemometer, one test
per location
Marks and Davidson, Monitoring of two roof vents and ten powered 1,500
1972 ventilators using an iodine monochloride
nnpinger train and vane anemometer; two runs
per location
Eidncr el al., 1989 DiHeiential absorption light detection and 720
ranging (DIAL) of a Swedish plant, 1-week study
(number ol tests not specihed)
Fcrrara el al., 1992 DiHeiential absorption light detection and 930"
ranging (DIAL) of an Italian plant; 3-day study
Current study Continuous monitoring with UV-DOAS and 470
optical anemometer in root vent for 9-day study
period
'' Extrapolates short-term values to annual basis assuming 24 hr/day and 365 days/yr operation, Rounded to
two significant figures.
h Average ol all tests conducted. Value could be adjusted upward by at least 20% to account for
interferences in the measurement path plus elimination of minor sources irom the calculated average.
Assuming that the 9-day study period is indicative of the annual operation of the plant, which may or
may not actually be the case, 172 kg/year of Hgฐ would theoretically be released to the atmosphere from
the cell building vent. This value represents 2.3% of the total makeup Hgฐ added by the plant in 1997.
Note, however, that Olin has implemented an aggressive Hg conservation program since 1997, and it is
currently not known how much Hg was actually added during the year in which the study was conducted
(2000). Therefore, the above comparison is probably not valid for the 2000 operating year. However,
taking these factors into consideration, it still appears that a substantial percentage of the potential Hg
emissions were not measured in the roof vent during the current study. Data from other parts of the
measurement program described in Section 1.2 may, however, provide additional information on other
Hg sources within the plant which are not currently available for analysis.
Finally, in the 1997 Mercury Study Report to Congress, 18.8 Mg/yr was estimated for all non-
combustion Hg sources for the period 1994-95 (Keating et al., 1997). Again assuming that the above
72
-------
annual emissions from the current study are valid, the Olm cell building represents less than 1% of the
total non-combustion Hg emissions inventory for 1994-95. Also, assuming a worst case makeup Hg
consumption for the entire industry of 146 Mg as mentioned in Section 1, the Olin cell building annual
emissions would constitute approximately 0.1$ of this value.
Based on the above analyses, there is an apparent discrepancy between the results obtained in the
current study and the potential Hg emissions from this and other CAPs. However, a number of factors
could explain differences in the Hgฐ emission rate, including better process control and increased plant
maintenance. It is recommended, therefore, that extended monitoring at the Olin plant and/or monitoring
at additional plants be performed to address, among other issues, maintenance events and operational
transients which are suspected as being the major cause of Hg release to the atmosphere from the cell
building.
73
-------
SECTION 6
QUALITY ASSURANCE/QUALITY CONTROL
A number of quality control (QC) checks were made for the measurements conducted in the
study. For the automated methods, both long-path and point monitors, checks included calibration using
standards, daily system checks, and calibration of flow meters. For the manual techniques, QC checks
included duplicate samples, field and instrument blanks, QC samples, and spiked samples. Table 6-1
summarizes the QC checks used for the various measurements conducted in the program. More detailed
information on these checks can be found in the following sections. As discussed in Section 1. only the
cell room data are discussed in this report. The other collaborators in this study will provide the quality
assurance from their programs in separate publications.
6.1 UV-DOAS Measurements
The UV-DOAS instrument used in the roof vent was initially calibrated in the laboratory using
an optical bench. In the field, instruments were calibrated using a sealed optical cell with the
concentration determined based on temperature. Temperature was measured by a calibrated, laboratory-
grade electronic thermometer. Calibrations are presented in Appendix H for the Hgฐ response obtained
on February 17, 24, and 25, 2000. QC checks are reported in Table 6-2, and percent completeness was
shown previously in Table 5-1.
6.2 Optical Anemometry
As mentioned in the Quality Assurance Project Plan (Kinsey, et al., 2000), an assessment of
precision and accuracy for the optical anemometer was not possible. However, perceni. completeness
was calculated for each 24-hr monitoring period as shown previously in Table 5-2. In addition, QC
checks were also performed each morning using the electronic calibrator supplied with the instrument.
74
-------
Table 6-1. QC Checks for Experimental Methods Included in QA Plan3
SF6 Bag
QC Check
Calibration procedure
Calibration frequency
Type of calibration
standard used
Standard concentration or
value
Source of standard
Standard traceability
Instrument flow rate
Duplicate samples
Field blanks
Instrument blanks
QC samples or checks
Reagent blanks (if
applicable)
Spiked samples
a SOP = Standard Operating
Long-Path FTIR
SOP in QAPjP
Before and alter testing
Optical cell w/certified gas
standard (vent only)
25 ppm SF6; 500 ppm
n-butanc (vent only)
Scott Specialty Gases
(vent only)
NIST( vent only)
N/A
N/A
N/A
Nitrogen purge
Daily system check per
SOP
N/A
N/A
Procedure; QAPjP = Quality
UV-DOAS
OPS1S'"QA in QAPjP
Before and after testing
Sealed optical cell
Saturated Hg vapor
(function of temp.)
OPSIS'M
N/A
N/A
N/A
N/A
N/A
Daily system check per
QA manual
N/A
N/A
Assurance Project Plan.
Samples
SOP in QAPjP
Before and after testing
Optical cell with gas
standard
0.1 and 0.5 ppm SF6
Spectra Gases
Certified at ฑ10%
N/A
10%
One per bag
Zero gas - one per day
Daily system cheek per
SOP
N/A
N/A
Table 6-2. Quality Control Checks for UV-DOAS
Description
Test
Expected 7.0 pg/m1
Expected 41.7 pg/m1
Expected 83.4 jjg/m1
Zero Test
Expected 5.7 Mg/m1
Expected 37.5|jg/m'
Expected 75pg/m1
Zero Test
Expected 4.3 jjg/m1
Expected 42.5|jg/nT1
Expected 83.3 |jg/m3
Date Taken
2/24/00
2/24/00
2/24/00
2/24/00
2/24/00
2/24/00
2/24/00
2/24/00
2/25/00
2/25/00
2/25/00
2/25/00
Concentration (fig/m3)
-1.2
6.45
34.0
72.55
-0.35
463
40.4
78.2
-0.96
4.75
42.0
83.4
Percent Recovery
(%)
NA
92.1
81.5
87.0
NA
81.2
108
104
NA
110
98.8
100
75
-------
The results of these checks are summarized in Table 6-3 below. All QC checks were within the
acceptable ranges specified by the manufacturer.
Table 6-3. Results of Daily QC Checks of Model 104a Optical Anemometer
Output from Electronic Calibrator by
Measurement RangeJ Breakout Box Voltage
Date
February 17
February 18
February 19
February 20
February 21
February 22
February 23
February 24
February 25
0.1 m/s
0.03
0.03
N/A
0.03
0.03
0.03
0.03
0.03
(b)
5 m/s
1.70
1.71
1.69
1.71
1.71
1.71
1.72
1.70
(b)
10 m/s
3.37
N/A
3.36
N/A
N/A
N/A
N/A
N/A
(b)
Channel A
2.56
2.40
2.37
236
2.38
2.24
2.41
2.45
2.65
Channel B
2.49
2.38
2.37
2.46
2.48
2.40
2.41
2.39
2.32
a Readings obtained from computer DAS in m/s for each calibrator range indicated. Since a 2-in.
aperture was used in place of the standard 6-in. aperture, all values shown must be multiplied by a
factor of 3 to obtain equivalent value. N/A = not available.
b DAS crashed just prior to daily QC check. Instrument operational until QC check attempted per
downloaded data files.
6.3 SF6 Release, Sampling, and Analysis (FTIR)
The SF6 tracer gas was released as a diffuse line source along the centerline of the cell room.
The tracer was provided from compressed gas cylinders through a "soaker hose" running the length of
the building. Gas was metered from the cylinder using a pressure regulator and precision rotarneter
calibrated with SF6 using a bubble test meter prior to deployment. Single-point calibration checks were
made at least every 4 days throughout the program. Calibrations are presented in Appendix 1 for the
rotarneter calibrations obtained on February 16 and 23, 2000.
76
-------
QC procedures for bag sampling and analysis were performed. Sampling QC activities were
conducted separately from analytical QC. Field sampling data were recorded in a laboratory notebook.
Copies of the notebook pages are presented in Appendix J.
Sampling QC included daily inspection of the FTIR spectrometer and a bag container leak check.
Sampling system QC was performed prior to each sample run including blank values for each sample
collection bag. Acceptable blank values were --5\ MDL (MDL for closed cell SF6 = 0.008 ppbV). Blank
and quality control checks are reported in Tables 6-4 and 6-5, respectively.
QC procedures for the FTIR spectrometer included:
Instrument sample cell integrity check;
Collection of diagnostic spectra; and
Gas standard measurements.
These procedures were conducted each test day prior to analysis. Diagnostic spectra were collected for
the SF6 gas standards which included 0.1 and 0.5 ppm SF6. The analytical procedures for both diagnostic
spectra and gas standards were identical. All calibration procedures for bag sample collection and FTIR
analysis were included in the Standard Operating Procedure (SOP) as listed in Table 6-1 above.
6.4 Long-Path FTIR QA/QC Checks (Roof Vent)
Based on the quality review provided by ManTech Environmental, the data from the long-path
roof vent FTIR were not used. Appendix B contains a complete description of problems with data
validation.
For calibration and QA/QC purposes, the roof vent FTIR optical cell was first purged with 99%
purity nitrogen. During this procedure a background spectrum was collected and recorded. After
purging, the instrument's optical cell was challenged with /i-butane certified at 500 ppm. Resulting
spectra were collected and recorded. Then the cell was again purged with 99% purity nitrogen to remove
any residue. The cell was then challenged with SF6 certified at 25 ppm. Resulting spectra were collected
and recorded. Finally, the cell was again purged with 99% purity nitrogen. This procedure was
77
-------
performed before the FTIR began to collect data and when data collection for the study was completed.
For QA/QC purposes, the FTIR was purged with 99% purity nitrogen and challenged with SF6
throughout the sampling period.
Table 6-4. Manual Bag Sampling/Analysis Blank Control Checks"
Bag ID
Description Date Taken Date Analyzed
Average Concentration
(ppmv)
zero 1-17
zero2-17
zero3-17
zerol-18
zero2-18
zero3-18
zero 1-22
zero2-22
zero3-22
ZERO4-22
ZERO 1-23
ZERO2-23
ZERO 1-24
ZERO2-24
ZERO3-24
ZER04-24
ZERO5-24
ZER06-24
ZERO 1-25
ZERO2-25
ZER03-25
Blank
Blank
Blank
Blank
Blank
Blank
Blank
Blank
Blank
Blank
Blank
Blank
Blank
Blank
Blank
Blank
Blank
Blank
Blank
Blank
Blank
02/17/00
02/17/00
02/17/00
02/18/00
02/18/00
02/18/00
02/22/00
02/22/00
02/22/00
02/22/00
02/23/00
02/23/00
02/24/00
02/24/00
02/24/00
02/24/00
02/24/00
02/24/00
02/25/00
02/25/00
02/25/00
02/17/00
02/17/00
02/17/00
02/18/00
02/18/00
02/18/00
02/22/00
02/22/00
02/22/00
02/22/00
02/23/00
02/23/00
02/24/00
02/24/00
02/24/00
02/24/00
02/24/00
02/24/00
02/25/00
02/25/00
02/25/00
0.0000
0.0000
0.1310
0.0000
0.0017
0.0020
0.0000
0.0140
0.0140
0.0135
0.0000
0.1022
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
All high blanks were followed by recalibrations and re-analysis
Table 6-5. Manual Bag Sampling/Analysis Quality Control Checks
Bag ID
std 1-18
std2-18
std2a-18
std 2-22
std 3-22
std 4-22
std 5-22
std 6-22
Description
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Date Taken
2/18/00
2/18/00
2/18/00
2/22/00
2/22/00
2/22/00
2/22/00
2/22/00
Date Concentration
Analyzed (ppmv)
2/18/00
2/18/00
2/18/00
2/22/00
2/22/00
2/22/00
2/22/00
2/22/00
0.104
0.480
0.478
0.510
0.115
0.122
0.499
0.467
True
Value
(ppmv)
0.1
0.5
0.5
0.5
0 1
0.1
0.5
0.5
Percent
Recovery Comments
104.4
96.02
95.62
101.92
115.1
121.6
99.84
93.44
QC check repeated
(std 7-22)
(Continued)
78
-------
Table 6-5 (Continued)
Bag ID
std 7-22
std 1-23
std 2-23
std 3-23
std 4-23
.std 6-23
std 1-24
std 2-24
std 3-24
std 4-24
std 1-25
std 2-25
std 3-25
VanQC-25
std 4-25
std 5-25
std bag 1-25
std bag 2-25
std bag 3-25
std bag 4-25
VanQC-25
Description
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
FTIR Roof
QC
Standard
Standard
Standard in
Bag
Standard in
Bag
Standard in
Bag
Standard in
Bag
FTIR Roof
QC
Date Taken
2/22/00
2/23/00
2/23/00
2/23/00
2/23/00
2/23/00
2/24/00
2/24/00
2/24/00
2/24/00
2/25/00
2/25/00
2/25/00
2/25/00
2/25/00
2/25/00
2/25/00
2/25/00
2/25/00
2/25/00
2/25/00
Date (
Analyzed
2/22/00
2/23/00
2/23/00
2/23/00
2/23/00
2/23/00
2/24/00
2/24/00
2/24/00
2/24/00
2/25/00
2/25/00
2/25/00
2/25/00
2/25/00
2/25/00
2/25/00
2/25/00
2/25/00
2/25/00
2/25/00
Concentration
(ppmv)
0.486
0.482
0. 1 04
0.104
0.095
0.101
0.113
0.508
0.504
1
0.502
0.110
0.488
207
0.490
0.104
0083
0.430
0.087
0439
23 3
True
Value
(ppmv)
0.5
0.5
0.
0.
0
0.
0.
0.5
0.5
05
05
0 1
05
25
0.5
0.1
0.1
0.5
0.1
05
25
Percent
Recovery
97.2
96.42
103.6
103.5
95.3
101.2
113.1
101.62
100.7
103.76
100.36
110.1
97.52
82.7496
98.02
103.8
83.3
86.06
87.2
87 84
93.196
Comments
QC check repeated
(std 2-24)
QC check repeated
(std 3-25)
Check against
Roof FTIR's QC
Check against
Roof FDR's QC
6.5 On-Site Audit
An on-site audit was performed by two members of EPA-APPCD's QA staff. An audit
report was written and submitted to the research team for their response. The written responses
from the research team were accepted as submitted without further clarification.
79
-------
6.15 Data Quality Indicators
Data quality indicators (DQIs) were described in the Quality Assurance Project Plan,
Section 4. The field verification of the DQI results is presented in Table 6-6. With the exception
of the FTIR roof vent monitoring, only one other DQI failed to meet acceptance criteria. Because
of the optical saturation of the FTIR detector used for the Roof Vent monitoring, the DQIs were
not achieved; the FTIR results are discussed in Section 4.2.1.
Table 6-6. Data Quality Indicator Results
Parameter
SF6 Tracer
Concentration
Air Velocity
in Cell
Building
Total Gas-
Phase Hg"
Measurement
Method
Manual bag
sampler
Long-path optical
anemometer
Root' vent
UV-DOAS
Data Quality Indicator
Precision 20%
Accuracy 6%
Detection Limit 6 ppb
Completeness 95%
Detection Limit 0.2 m/s
Completeness 90%
Precision 15%
Accuracy 15%
Detection Limit -130 ng/m3
Completeness at 75%
Value
Obtained Achieved criteria?
12.2- 16.7%
4.4 -4.7%
6- 13 ppb
96.4%
0.2 m/s
93%
h
8- 18.8%'
h
80 - 89%
Yes
Yes
.1
Yes
Yes
Yes
h
Yes
h
Yes
J The detection limits tor the bag sampling determined during each analysis day of the field testing ranged from 6 to 13 ppb. The
highest detection limit value determined was used to facilitate data processing and determine daily analytical values.
'' Information on achievement of Data Quality Indicators is not available from field data. The references in the Data Quality
Indicator table of the Quality Assurance Project Plan were generated in the laboratory for backup of published specifications.
The procedures for establishing these values for non-Criteria Pollutants were never intended to be "field verified." The actual
procedure used to verify the values is wntten for the gaseous Criteria Pollutants (SO2, NO2, O3) which are available in cylinders
or from a generator. The gases are introduced into a cell in the measuiement path to determine precision and accuracy. For
mercury, vapor standards are not used by the testing group (Opsis); the measurement work is performed with closed cells. A
closed cell was not available for the tield test; therefore, field verification of the literature value for measurement of Hg" could
not be performed.
80
-------
SECTION 7
REFERENCES
ASHRAE. 1981. American Society of Heating, Refrigerating and Air-Conditioning Engineers
(1981). ASHRAE Handbook 1981 Fundamentals, Atlanta, GA.
Chlorine Institute. 1999. Second Annual Report of the Chlorine Institute to the United States
Environmental Protection Agency, Chlorine Institute, Washington, DC.
Cowherd, C., Jr., and J. S. Kinsey. 1986. Identification, Assessment, and Control of Fugitive
Paniculate Emissions. U.S. Environmental Protection Agency, Air and Energy Engineering
Research Laboratory, Research Triangle Park, NC, August; EPA-600/8-86-023 (NTIS PB86-
230083).
Edner, H., G. W. Paris, A. Sunesson, and S. Svanberg. 1989. Atmospheric Atomic Mercury
Monitoring Using Differential Lidar Techniques. Applied Optics, 28, 921-930.
EPA. 1984. U.S. Environmental Protection Agency. Method 14'-Determination oj'Fluoride
Emissions from Potroom Roof Monitors for Primary Aluminum Plants, 40 Code of Federal
Regulations, Part 60. Appendix A, February 21, 1984.
EPA. 1999. U.S. Environmental Protection Agency. Compendium Method TO-16, Long-Path
Open-Path Fourier Transform Infrared Monitoring of Atmospheric Gases, in "Compendium
of Methods for the Determination of Toxic Organic Compounds in Ambient Air," Center for
Environmental Research Information, Office of Research and Development, Cincinnati, OH,
January; EPA/625/R-96/01()b (NTIS PB99-172355).
Ferrara, R., B. E. Maseru, H. Edner, P. Ragnarson, S. Svanberg, and E. Wallinder. 1992.
Mercury Emissions into the Atmosphere from a Chlor-Alkali Complex Measured with the
Lidar Technique. Atmospheric Environment, 26A, 1253-1258.
Hunt, W. 1998. Personal communication from William Hunt, Director, Emissions Monitoring
and Analysis Division, Office of Air Quality Planning and Standards, U.S. Environmental
Protection Agency to Michael Palazzolo, ALCOA Corporation, Pittsburgh, PA, July 9, 1998.
Keating, M. H., D. Beauregard, W. G. Benjey, L. Driver, W. H. Maxwell, W. D. Peters, and A.
A. Pope. 1997. Mercury Study Report to Congress, Volume II: An Inventory of
Anthropogenic Mercury Emissions in the United States, U.S. Environmental Protection
-------
Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC,
December; EPA-452/R-96-004 (NTIS PB98-124746).
Kinsey, J. S., M. Landis, D. France, S. Lindberg, J. Nriagu, J. Swift, G. Ramsey, J. Pau, F.
Anscombe, and N. Adams. 2000. Characterization of Mercury Emissions at a Chlor-Alkali
Plant, Quality Assurance Project Plan. U.S. Environmental Protection Agency, National Risk
Management Research Laboratory, Research Triangle Park, NC, February 11, 2000.
Landis, M. S., R. K. Stevens, T. Crawford, D. France, C. Secrest, and S. Lindberg. 2000.
Speciation of Mercury Emissions from a Chlor-Alkali Plant, Presented at the AWMA
International Symposium on the Measurement of Toxic and Related Air Pollutants., Research
Triangle Park, NC, September 12-14, 2000.
Marks, P. J., and J. Davidson. 1972. EPA Test No. 72-PC-04, B. F. Goodrich Chemical
Company Chlor-Alkali Plant Culvert City, Kentucky; EPA Contract No. CPA-70-132, Task
Order No. 3, U. S. Environmental Protection Agency, Office of Air Quality Planning and
Standards, Research Triangle Park, NC, May.
Rosario, I. 2001. Personal communication from Iliam Rosario, Office of Air Quality Planning
and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC. August
15,2001.
Weston, RoyF. 1971. Georgia-Pacific Chlor-Alkali Plant, Bellingham, Washington; EPA
Contract No. CPA-70-132, Task Order No. 2, U. S. Environmental Protection Agency, Office
of Air Quality Planning and Standards, Research Triangle Park, NC.
82
-------
Appendix A
Description of Buildings and Processes
at the Olin Facility
A-i
-------
(Intentionally Blank)
A-ii
-------
Olin CORPORATION
AUGUSTA, GEORGIA
November 4, 1995
30 YEAR CELEBRATION
COMMUNITY OPEN HOUSE
PLANT TOUR
TOUR ROUTE - AT A GLANCE
OCEAN BUILDING
This building contains the equipment we use to respond to product emergencies that occur
outside the plant. The acronym OCEAN stands for Olin Chemical Emergency Action Network.
We have a trained team that will respond to a product emergency 24 hours/day, 7 days/week. If
you desire, as soon as we finish our tour, you will be able to see the OCEAN trailer, which is set
up in front of the plant in the parking lot. You will be able to view our emergency equipment.
ANODE SHOP
This shop contains the equipment used to rebuild worn or damaged anodes that have been
removed from the cells The rebuilt anodes are then placed in stock and are reinstalled in another
cell at a later date.
The anode is constructed of titanium metal that is coated with a thin precious metal coating. The
coating will wear off in time and will eventually have to be replaced.
SODIUM HYDROSULFITE AREA (Reductoneฎ and Hydrolinฎ)
a. Sodium Hydrosulfite loading and storage
Sodium Hydrosulfite is stored in six insulated fiberglass tanks. It must be kept cool
since it will decompose when it gets too warm. It is stored at a slightly stronger
concentration than required by our customers and is diluted to proper specifications as it
is loaded into insulated trailers through the piping on the loading stations. 135,000
gallons of material can be stored in these tanks.
b. Sodium Hydrosulfite Refrigeration
The Sodium Hydrosulfite reaction is exothermic -- it gives off heat. This heat must be
removed from the process. The major portion of the heat removal is accomplished using
the two large Carrier Corporation refrigeration units housed in this building.
A-l
-------
c. Sodium Hydrosuifite Reactors
The Sodium Hydrosuifite reactors are sophisticated mixers. They take in water, sulfur
dioxide, caustic and sodium amalgam to produce a solution of sodium hydrosulfite. The
operating parameters acidity concentrations and mixing rates -- must be carefully
controlled to get the proper product quality. Computers help control this operation using
software designed by Olin Technical Center Engineers.
FIRE HOSE STATION
The small red building located on the side of the roadway contains fire hoses and other fire
fighting equipment. These stations are located throughout the plant.
SAFETY SHOWER
Also, located throughout the plant are many safety showers and eye wash stations. In the event
an employee is exposed to acid, caustic, or other chemicals, a safety shower is always close by so
the employee can quickly turn on the shower and flush away the dangerous material.
MAIN CONTROL ROOM
This control room has equipment used to monitor all major plant processes. The front panel
houses the equipment which measures and controls the amount of DC electrical power applied to
the cells. The back panel contains instrumentation to monitor and control most of the major
processes in the plant, such as tank levels, pH measurements, line pressures, etc.
AUTOMATIC ANODE ADJUSTING SYSTEM
This computer controlled system continuously scans all sixty cells and automalically adjusts the
anodes in each cell to optimize the operation of each. By doing so, the amount of electrical
power needed to produce a given amount of product is greatly reduced and the life of the anodes
is greatly extended since the computer can make this adjustment far more accurately than humans
can.
CELL ROOM
The cell room is the heart of our process. Here up to 160,000 amps of DC electricity pass
through the 60 electiolytic cells. In the cell, brine (salt water) is electrolytically reduced to
sodium and chlorine. The wet chlorine gas from the cells flows through a drying system to
remove all the water from it and then travels on to the compressor building. The sodium
combines with mercury and flows to the decomposer. In the decomposer, the sodium reacts with
water and forms sodium hydroxide (caustic). Caustic is pumped through cooling and filtration
equipment and then is transferred to product storage. A by-producl from the decomposer is
hydrogen gas. It passes through coolers and then on to blowers. It is burned in our boilers for
steam generation. It is also used for production of hydrochloric acid and it is sold to Sunox
Corporation.
A-2
-------
9 BRINE DECHLOR1NATION
In this area, the residual chlorine left in the spent brine leaving the cells is removed. This is
accomplished by passing the brine through two tanks that are kept under a high vacuum. The
vacuum "boils" the chlorine gas out of the brine stream. The chlorine is recovered and the
dechlorinated brine is pumped to the CP Salt Tank where it picks up a renewed supply of salt
prior to beginning its return trip to the cells.
10 HYDROGEN BLOWERS
Hydrogen is taken from the decomposers and passes through coolers that are cooled with chilled
water. The cooling process removed most of the heat and mercury. The mercury is returned to
the process. Hydrogen is then compressed using one or both blowers and sent to the boiler house
where it is used as fuel and is also sent to other users.
11 AC POWER DISTRIBUTION
Georgia Power provides our electrical power. Incoming voltage is 1 15,000 volts. Here we step
it down to 13.800 volts, rectify part of it for the cell room use and distribute the remaining for
usage throughout the plant at various voltages (2400, 480, 120).
12 BRINE FILTERS
This is the first stage of brine purification. Fourteen brine filters are used to filter impurities
from the brine. Each filter is independent of all others and must be removed from service
periodically and backwashed for cleaning. The dirty backwashed brine is then collected in a
tank, cleaned and recycled in the filter backwash system.
13 BRINE SETTLER
The 480,000 gallon brine settler tank is used to settle out insoluble sludge in the brine. The
sludge is flushed out the bottom of the settler.
14 PURASIVฎ UNITS
Hydrogen is a by-product of the chlor/alkah process and it is contaminated with small quantities
of mercury. The mercury concentration must be further reduced before the hydrogen can be
used. This is accomplished by passing the hydrogen through packed carbon beds, which absorb
mercury. Absorbers polish and further remove mercury before the hydrogen is sent to our HC1
plants.
15 BOILER HOUSE
The steam generation plant consists of two separate boilers - each capable of producing 15,000
pounds of steam per hour at 250 pounds per square inch of pressure. They are normally fired
with hydrogen. They can operate on natural gas, if necessary.
The steam is used throughout the plant for various purposes, such as brine dechlorination, brine
heating, steam tracing oi lines and heating certain tanks.
A-3
-------
16 SECONDARY TREATMENT
All liquid waste streams contaminated with mercury must be cleaned before allowing them to
proceed into our waste treatment system. On the average, the concentration of mercury in these
wastes is reduced to less than 50 parts per billion of the discharged solution.
17 DECOMPOSER REPAIR BUILDING
The Decomposer Repair Building holds equipment to rebuild and repack cell room decomposers.
The decomposer is filled with graphite pellets which aid in creating the sodium hydroxide
solution.
18 SUNOX CORPORATION
The Sunox Corporation is one of Olin's customers. They purchase hydrogen gas from Olin. It is
delivered to them through the pipeline along the side of the roadway. They receive and compress
the hydrogen gas and load it into the trailers parked at the loading stations. The hydrogen is then
shipped to customers in Augusta and throughout the Southeast.
19 INSTRUMENT AND ELECTRICAL SHOP
This shop is equipped with test equipment and tools required to repair and troubleshoot the
electrical equipment and the large number of instruments needed to keep the Augusta Plant
operating efficiently.
20 COOLING TOWERS
These large cooling towers are one of the ways Olin reduces water consumption. The plant uses
about 6000 gallons per minute of water to remove heat from the process by pumping the water
through various heat exchangers. The hot water is then recycled back to the cooling towers
where evaporation cools the water so it can be used again.
21 PLANT EFFLUENT SYSTEM
Waste water streams are collected throughout the plant in the process sewer system. This is the
covered concrete ditch running through the center of the plant. Also, all rainwater runoff is
collected. All of this water is monitored for pH, mercury, and chlorine content before it is
released. If the streams are not acceptable, they are treated in the large tanks you see beside the
road before the water is discharged to the Savannah River through a monitored and regulated
national pollutant discharge elimination system.
22 GROUND WATER FILTERS
The square filters beside the roadway are used to treat the groundwater from shallow wells
around the plant. Here rainwater that has collected underground is pumped to the surface,
checked for pH and mercury content, treated if necessary and released.
A-4
-------
23 CP SALT STORAGE TANK
The CP salt is received in 100 ton hopper cars from Olin's diaphragm cell plant in Mclntosh,
Alabama. It is pumped from the hopper cars into the CP sale storage tank, from which is it
pumped to the cell building.
Spent brine returns here from the cell room after it has been stripped of its salt in the cells. The
depleted brine flows into the "diplegs" where it is resaturated before it is sent to the filters on its
way back to the cells.
The Brine Saturation System has been retired for several years but can be reactivated if needed.
It serves the same function as the CP salt tank.
24 RAILROAD YARD
A significant portion of raw materials and finished product is handled by rail. We have six
tracks in the plant designed and laid out so that shuffling of cars is possible. Each track serves its
own purpose with track #3 being the outward product shipment track. Southern Railway makes
one switch daily. We perform other switching using one of our two Trackmobiles.
25 CHLORINE LOADING AND STORAGE
Liquid chlorine may be loaded directly from the process into rail cars at loading stations #1 & #2
or stored in one of four chlorine storage tanks. Stored chlorine will be later loaded into railcars
or shipped to customers through a pipeline.
26 INDUSTRIAL FILTER
The dirty backwash brine from the brine filters is pumped through the industrial filter where it is
cleaned up and recycled. The industrial filter must be cleaned daily after brine filter
backwashing is completed and the sludge has been removed.
27 HYPO TANKS AND BLEACH SYSTEM
In these tanks we create a weak caustic solution. This solution reacts with chlorine to form
sodium hypochlonte (h\po). During process upsets, this system will keep us from emitting
chlorine to the atmosphere. It acts as a "scrubber" to remove chlorine from the process.
Chlorine gas from the process can also be added to the caustic solution to increase the amount of
hypo produced. The hypo is then sold as bleach. The hypo is similar to the material you
purchase at the store under the trade name Cloroxฎ Bleach, but we manufacture a much stronger
solution.
28 HYDROCHLORIC ACID PLANTS
The original hydrochloric acid plant was built in 1982 to supply approximately 3 tons per day of
acid to treat the brine system. Starting in 1983 some of the acid was sold to customers. Various
modifications and additions to the basic equipment have been made over the years so that today
the original burner system produces 30 tons per day of hydrochloric acid. In 1992, a near
duplicate unit was added to the west, giving us an additional 30 tons per day capacity.
A-5
-------
The acid is made by burning hydrogen and chlorine together in a furnace. The resulting HC1
vapors are then absorbed into purified water to form a 37% acid solution. The acid is then piped
to the large white storage tanks, where it is stored until it is shipped to customers in either tank
trucks or railcars.
29 COMPRESSION AND LIQUEFACTION
Chlorine gas is pulled from the cells by two banks of compressors located in this building and
pushed through two liquefiers where the chlorine gas is condensed into a liquid. From there, it
proceeds to the loading and storage area. The liquefiers condense about 99% of all the chlorine
gas entering them. The remaining 1% is either absorbed into the inlet brine stream or sent to the
hypo system.
The compressor building also houses the plant air compressors. They provide dry, compressed
air for various uses in the plant. This system consists of two main plant air compressors, two
high pressure booster compressors, one instrument air compressor and one back-up diesel
powered air compressor.
30 CAUSTIC AREA
There are two main caustic storage tanks -- each capable of holding 250,000 gallons (800 tons) of
caustic soda. The caustic is pumped from here into tank cars or tank trucks for shipment to our
customers.
The two tall, narrow tanks are caustic day tanks and are dedicated to service for Federal Paper
Board. Caustic is pumped to Federal Paper from these tanks through a 7,000 foot long pipeline.
31 MAINTENANCE SHOP AND WAREHOUSE
Most plant equipment repairs are handled in our own shop. It is equipped with tools, lathes and
other machinery that enable us to accomplish this. It is made up of three departments --
mechanical, instrumentation and electrical. Very little maintenance work is done outside of the
plant.
Our warehouse, situated in the center of the building, provides ready access to most materials
and supplies necessary for continuous plant operations.
32 ENGINEERING
The plant has a technical staff which provides project and technical support for the plant. We
have the ability to generate computer drawings (CAD) and manual drawings. Plant drawings are
stored in this area.
33 QUALITY CONTROL LABORATORY
The laboratory responsible for the Quality Assurance of all of our outbound products and
inbound raw materials. The Lab also ensures we are in compliance with the parameters of
various plant effluents. In addition, the Lab furnishes the plant with analyses of various streams
A-6
-------
in the process in order to monitor equipment performance and minimize downtime. The Augusta
Plant is an ISO 9002 registered facility.
34 DATA PROCESSING
The plant has its own computer network (LAN) and can also communicate with other Olin plants
(WAN). The networks are administered from this area.
35 MEDICAL
The plant has a medical department staffed with a Certified Occupational Health Nurse. This
area is equipped to handle on site emergencies as well as routine physicals, exams, etc.
REMARKS
This concludes your tour of the Augusta Plant. Please return your safety gear to the boxes
provided Please return your copy of the tour script if you don't intend to keep it for future
reference. If you are interested in seeing a further demonstration of the types of equipment we
have on hand to respond to an outside emergency, we encourage you to visit the OCEAN trailer
that is set up in the parking lot. If it is not your wish to visit the OCEAN trailer, join the other
visitors in the tent area at this time. Thank you for visiting our plant and participating in our
tour.
A-7
-------
Appendix B
FTIR Spectral Analyses Conducted
by ManTech, Inc. (Jeff Childers)
B-i
-------
(Intentionally Blank)
B-ii
-------
December 26, 2001
To: E. Hunter Daughtrey, Jr., Area Supervisor
From: Jeffrey W. Childers, Principal Scientist
Subject: WA-IV-1 19 FTIR Data Interpretation Support
1.0 Background
The Air Pollution Pre\ention and Control Division (APPCD) participated in a major field
experiment that was conducted in February of this year to characterize the mercury emissions from a
chlor-alkah plant in Augusta, GA. A tracer gas, SF6, was released at a controlled rate on the cell building
floor to determine the total volumetric air flow from the roof vent of the building. One method used to
determine the concentration of SF(l emitted from the roof vent was open-path Fourier transform infrared
(OP/FTIR) spectrometry. Approximately 3000 OP/FTIR spectra were obtained over a 10-day monitoring
period. A subset of these data containing 305 spectra was analyzed under this work assignment.
The primary objective ot this Work Assignment was to provide technical support to the APPCD
for the interpretation, analysis, and quality control (QC) of OP/FTIR spectra data collected during the
field test at the chlor-alkali plant. ManTech staff applied QC procedures developed under previous Work
Assignments to NERL to the spectral data collected during the Augusta field study. These procedures
are described in the FT-IK Open-Path Monitoring Guidance Document1 and Compendium Method
TO-16Long-Path Open-Path Fourier Transform Infrared Monitoring of Atmospheric Cases.2
Additional guidance and operating procedures are given in an ASTM guide3 and standard practice.4 The
QC and data interpretation procedures applied to the OP/FTIR data collected at the chlor-alkali plant
included:
Inspection of the single-beam spectra for evidence of detector saturation or excessive
stray light;
Measurement ol the signal strength over time and the relative signal intensities in
different spectral regions;
B-l
-------
Estimation of the random baseline noise between successive data files over different
spectral regions,
Development of a synthetic background spectrum;
Examination of the range of absorbance values exhibited by the SF6 spectral features;
Identification of any interfering species;
Generation of relevant reference spectra from the HITRAN data base;
Inspection of the absorbance files for wavenumber shifts and changes in resolution;
Development and evaluation of an analysis method;
Comparison of the concentration values generated by the automated multivariate data
analysis method to the manual comparison method or advanced nonlinear algorithms;
and
Development of relevant control charts.
2.0 Results and Discussion
2.1 Inspection of the Single-beam Spectra for Evidence of Detector Saturation or Excessive
Stray Light
Two steps that should be completed during the initial instrument setup before data are collected
include determining the distance at which the detector becomes saturated and measuring the signal due to
internal stray light. Apparently, neither of these two steps was done during this study. The ramifications
of this oversight on the accuracy of the reported concentration data are discussed below.
2.1.1 Determining the Distance to Detector Saturation
The distance at which the detector becomes saturated determines the minimum pathlength over
which quantitative data can be obtained with that particular instrument configuration. A procedure for
determining this distance in given in Section 3.3 of the FT-IR Open-Path Monitoring Guidance
Document. Evidence of detector saturation indicates that the detector is not responding linearly to
changes in the incident light intensity and, therefore, will not respond linearly to changes in
concentration of the gases along the path. Detector saturation causes errors in how the interferogram is
sampled. These errors can result in aliasing or folding of spectral features outside the normal sampling
frequency range into the recorded spectrum.? This effect gives rise to abnormal shapes in the single-
B-2
-------
beam spectrum and the appearance of non-physical energy in spectral regions where there is no real
spectral information. Because this anomalous information becomes part of the recorded interferogram,
there is no way to compensate for the errors in the photometric accuracy due to detector saturation.
Once the OP/FT1R system is set up along the desired monitoring pathlength, a single-beam
spectrum should be obtained. This spectrum should be inspected in the wavenumber region below the
detector cutoff frequency. For most MCT detectors commonly used in OP/FTIR applications, this cutoff
frequency occurs between 650 and 700 cm"1. The instrument response in this wavenumber region should
be flat and at the baseline. An elevated baseline in this region is due to non-physical energy and
indicates that the detector is saturated. If an elevated baseline is observed in this region of the single-
beam spectrum, the operator has three choices:
Increase the monitoring pathlength until the instrument response is flat and at the
baseline in this region;
Place a wire mesh screen in the modulated, collimated 1R beam to attenuate the signal
intensity; or
Rotate the retroreflector to reduce the signal intensity.
A representative single-beam spectrum from the Augusta field study is shown in Figure 1. This
spectrum exhibits evidence of nonphysical energy in spectral regions that should be flat and at the
baseline, including those below the detector cutoff frequency and in the totally opaque spectral regions
between 1400 and 1800 cm"1 and 3600 and 3900 cm"'. This spectrum also exhibits an unusual curvature
in the baseline in the 2550 to 2850-cm~' region. As a comparison, a single-beam spectrum collected in
Research Triangle Park (RTP), NC, with an ETC OP/FTIR system over a 414-m total path is shown in
Figure 2. The spectrum collected in RTP over a longer pathlength exhibits a flat baseline below the
detector cutoff frequency and a steadily decreasing baseline from 2400 to 3250 cm"'.
All of the 305 spectra examined in the subset of data collected during the Augusta study exhibit
evidence of detector saturation Because of this observation, the accuracy of the concentration values
reported from this data set is suspect and there is no way to assess errors in these measurements. In
addition to errors in the absolute concentration measurements, changes in relative concentrations from
one spectrum to another are most likely nonlinear and cannot be quoted with any certainty.
B-3
-------
2.1.2 Measuring the Signal Due to internal Stray Light
Single-beam spectra recorded with an OP/FTIR monitor can exhibit a non-zero response in
wavenumber regions in which the atmosphere is totally opaque. If the detector has been determined to be
responding linearly to changes in the incident IR intensity, this non-zero response can be attributed to
internal stray light in monostatic instruments that use a single telescope to transmit and receive the IR
beam. The presence of internal stray light causes errors in the photometric accuracy, and ultimately,
errors in the reported concentration values. The effects of stray light on photometric accuracy are
illustrated in Section 3.5 of the I-T-IR Open-Path Monitoring Guidance Document. If uncorrected, the
presence of stray light results in errors in the concentration measurements approximately equal to the
percentage that the stray light contributes to the total signal.
Evidence of internal stray light is observed in the single-beam spectrum collected at RTF in the
CO2 absorption region between 2300 and 2380 cm"' (see Figure 2). The strong CO2 absorption bands in
this region should extend completely to the baseline. However, in this case, the presence of internal stray
light causes the apparent baseline to be elevated. In this particular instrument, stray light contributed to
approximately 6% of the total signal. No evidence of stray light can be observed in the single-beam
spectra collected during the Augusta study (see Figure 1). However, the severe nonlinearity exhibited by
these spectra prevents observation of the presence of stray light. A single-beam spectrum of the internal
stray light was not supplied with this data set. Therefore, the effect of stray light on the data collected
during the Augusta study cannot be determined. If stray light does contribute to the total signal in these
spectra, the reported conceniration values would contain errors proportional to the amount of stray light.
2.2 Measurement of the Signal Strength over Time and the Relative Signal Intensities at
Different Spectral Regions
The magnitude of the signal strength is indicative of the performance of the instrument, i.e., the
output of the source or response of the detector, and the alignment of the transmitting/receiving telescope
and the retroreflector. The relative signal strength over different spectral regions is also indicative of the
instalment performance and is influenced, among other factors, by the internal alignment of the
interferometer. For example, if the interferometer is misaligned, the signal strength in the high
wavenumber region will be iclatively low.
B-4
-------
The signal strengths at 985, 2500, and 4400 cm"1 were measured in the subset of 305 single-beam
spectra collected during the Augusta study. The signal strength at 985 cm"1 is reported directly, whereas
the signal strengths at 2500 and 4400 cm"1 are ratioed to that at 985 cm"1 to determine the relative signal
strength in the single-beam spectra. Plots of the signal strength at 985 cm"1 and the relative signal
strengths at 2500 and 4400 cm ' for the single-beam spectra in this subset are given in Figures 3-5.
The signal strength at 985 cm ' over time is shown in Figure 3. This signal strength in arbitrary
units ranged from 67.22 to 69.96 with a mean and standard deviation of 68.41 ฑ 0.59, for a relative
standard deviation of 0.86% The signal strength at 2500 cm"' relative to that at 985 cm"1 ranged from a
ratio of 0.832 to 0 854. with a mean and standard deviation of 0.842 ฑ0.005 and a relative standard
deviation of 0.59% (see Figure 4). The signal strength at 4400 cm"1 relative to that at 985 cm"1 ranged
from a ratio of 0.193 to 0.210, \\ith a mean and standard deviation of 0.201 ฑ0.004 and a relative
standard deviation of 2.0 % (see Figure 5).
The overall signal strength as measured in the single-beam spectra at 985 cm"1 and the relative
signal strengths measured at 2500 and 4400 cm"1 were nearly constant throughout the monitoring period
represented by the 305 spectra analyzed in this subset of spectra from the Augusta study. These results
indicate that no significant changes in the instrument performance or alignment occurred during this time
period.
2,3 Estimation of the Random Baseline Noise Between Successive Data Files over Different
Spectral Regions
Another indicator of instrument performance is the random baseline noise. This noise is
measured as the root-mean-square (RMS) deviation between successive single-beam spectra collected
sequentially during a monitoring period. To make this measurement, a series of absorption spectra was
created from the subset of single-beam spectra by using the preceding single-beam spectrum as the
background spectrum. For example, spectrum #d()224302 was used as the background spectrum for
single-beam spectrum #d02243()3. and so on. The RMS deviation was measured between 958 and 1008
cm"1, 2480 and 2530 cm"', and 4375 and 4425 cm"' and is reported in absorbance units. The random
baseline noise measurements from the subset of single-beam field spectra over time are given in
Figures 6 8.
B-5
-------
The random baseline noise between 958 and 1008 cm"1 ranged from 0.1 1 Ix IO"3 to 0 405xlO"3
absorbance units, with a mean and standard deviation of 0.217x1O"3 ฑ0.053x10^ (see Figure 6). The
random baseline noise between 2480 and 2530 cm"1 ranged from 0.037xlO"3 to 0.073xlO"3 absorbance
units, with a mean and standard deviation of 0.056x10"3 ฑ0.006xlO"3 (see Figure 7). The random
baseline noise between 4375 and 4425 cm"' ranged from 0.179xlO"3 to 0.368xlO'3 absorbance units, with
a mean and standard deviation of 0.255x10"3 ฑ0.029xlO"3 (see Figure 8).
Although there was some variability in the random baseline noise measurements (the relative
standard deviations for these measurements ranged from 1 1 to 24%) there were no obvious outliers in
these data. The RMS noise levels in each spectral region were within the ranges expected for this type of
instrument.
2.4 Development of a Synthetic Background Spectrum
Three methods were used to generate background (/) spectra so that the single-beam field
spectra could be converted to absorbance files. One method used a field spectrum collected at the end of
the monitoring period that did not contain any spectral features due to SF6. This method is similar to
using an upwind background spectrum as described in Section 4.3 of the FT-IR Open-Path Monitoring
Guidance Document. File #d0224306 was used for these purposes. With this method, the spectral
features of the atmospheric gases and the instrument response essentially cancel out, leaving only the
absorption features due to SF(l, When this is the case, quantitative data can only be obtained for the
released tracer gas. The remaining absorption features of the atmospheric gases represent the difference
between the concentrations in the other field spectra relative to those in spectrum #d0224306.
The second method used to generate an / spectrum was to create a synthetic background
spectrum from a representative field spectrum. File #d0224306 was again used for this purpose. A
synthetic background spectrum was created from this file using the method described in Section 4.2 of
the FT-IR Open-Path Monitoring Guidance Document. This synthetic background spectrum was created
from 650 to 4500 cm"1 so that the entire spectrum could be analyzed for the target gas and other
atmospheric gases.
The third method used to generate an / spectrum fitted a series of segmented polynomial curves
to each single-beam spectrum as part of an automated analysis method using an innovative nonlinear
algorithm.6
B-6
-------
No differences were found in the reported concentrations of SF(1 in the absorbance files created
by using either file #d0224306 as the background spectrum or the synthetic background spectrum. The /
spectrum generated by the nonlinear algorithm was used only during the nonlinear analyses and was not
used to generate absorbance files for subsequent analysis by another method. All of the concentration
data reported from the Classical Least Squares (CLS) analyses were computed from absorbance files
created by using a synthetic background spectrum.
2.5 Examination of the Range of Absorbance Values Exhibited by the SF6 Spectral Features
The tracer gas SFf, has a relatively high absorption coefficient at the peak maximum at
approximately 948 cm"'. Because of the inherent nonlinear response of an OP/FTIR system over a wide
range of absorbance values, it is imperative to determine the range of absorbance values exhibited in the
field spectra. The tracer gas was not detected in all of the field spectra in this subset. For those spectra
in which SF6 was not detected, the net absorbance at 948 cm"1 was approximately 0.02 absorbance units.
This positive value was due to a small water vapor absorption band. The minimum net absorbance at
948 cm"1 in those spectra that did exhibit a detectable quantity of SF6 was 0.145 absorbance units. The
maximum net absorbance for SF(, (0.185) was found for file #d0224291. The concentration of SF(, found
in this file exhibited a sharp increase relative to the concentrations in the other files and did not fit the
trend exhibited by the preceding data files. For those spectra that did fit the overall trend, the maximum
net absorbance was 0.164 (file #d0224002). The range of absorbance values (0.145 to 0.185) observed
for this subset of data is relatively small and should not result in a severe nonlinear response in
absorbance with respect to changes in concentration, assuming that the detector was operating in a linear
mode.
2.6 Identification of Any Interfering Species
The absorption spectra that were created using the synthetic background spectrum as / were
visually inspected for interfering or unidentified species. Only the tracer gas SF6 and common
atmospheric gases were identified in the absorption spectra. Water vapor was the only interfering species
that exhibited spectral features in the wavenumber region used to analyze for SF6.
B-7
-------
2.7 Generation of Relevant Reference Spectra from the HITRAN Database
Several reference spectra of selected atmospheric gases, including CH4, N2O, CO, CO2, and H,O,
were generated from the HITRAN database using Etrans (Ontar Corporation, North Andover, MA).
Spectra of the individual target gases were originally generated at a nominal 1-cm"1 resolution with
triangular apodization at a temperature of 295K and atmospheric pressure of 760 Torr. Each spectrum
was generated at a pathlength of 108 m. An absorption file compatible with Grams/32 (Galactic, Salem,
NH) was selected as the output from Etrans. After the original set of reference spectra were generated
and used in the CLS analysis, analyses conducted by SpectraSoft Technology revealed that the true
resolution of the instrument was 1.462 cnrf1. A new set of reference spectra was generated at 1.462-cm"1
resolution and the CLS analyses were repeated.
2.8 Inspection of the Absorbance Files for Wavenumber Shifts and Changes in Resolution
Prior to analyzing the data with the CLS methods, the reference spectra were compared to the
field absorption spectra for evidence of wavenumber shifts. If any wavenumber shifts were found, the
reference spectra were adjusted by using the "peak align" subroutine in Grams/32. The data point
density and spacing of the reference and field spectra were matched by using the "interpolate" routine in
Grams/32.
The innovative nonlinear analysis method automatically determines the wavenumbei shift in the
single-beam field spectra relative to the reference spectra generated from Etrans and calculates, the actual
spectral resolution of the field spectra. The field spectra exhibited a constant 0.5-cm ' shift relative to the
reference spectra generated from Etrans. The actual spectral resolution was relatively constant, but, at a
value of 1.462 ฑ0.011 cm"1, was significantly higher than expected for an instrument operating at a
nominal 1-cm"' resolution. These data are plotted in Figure 9 and imply that, although the instrument was
stable, it might not have been operating properly initially at the beginning of the field study.
2.9 Development and Evaluation of an Analysis Method
The method used to determine the concentrations of target gases from OP/FTIR spectra should
account for the inherent nonlmeanties in the response of the instrument. There are two types of
nonlinearity that can affect the accuracy of the concentration data reported by an OP/FTIR monitor:
detector nonlinearity and nonlinearity in absorbance. Evidence of detector nonlinearitv was discussed in
B-8
-------
Section 2.1.1 of this report and. unfortunately, no analysis method can account for this type of
nonlmearity. The OP/FTIR system can also exhibit a nonlinearity in the change in absorbance with
respect to changes in concentration. This nonlmearity is due to the convolution of the instrument line
shape function, which is influenced by the resolution and apodization used to collect and process the
interferograms, with the spectral data. The nonlmearity with respect to changes in absorbance can be
accounted for by using a multilevel calibration model or some other type of nonlinear analysis algorithm.
A multilevel CLS analysis and an innovative nonlinear algorithm have been previously applied
successfully to APPCD field data collected at a concentrated swine production facility to account for the
nonlmearity in the absorbance over the wide range of concentration-pathlength products of the targets
gases detected at that site.
The spectral data from the Augusta study were analyzed using four different methods. Three
methods were based on a CLS analysis using AutoQuant3 (MlDAC, Irvine, CA), while the fourth used an
innovative nonlinear algorithm developed by Dr. Bill Phillips of SpectraSoft Technology (Tullahoma,
TN).(1 A matrix of the wavenumher ranges, target gases, and interfering species is given in Table 1.
Different sets of reference spectra were used for the three CLS methods. One CLS method used a set of
reference spectra from the Hanst 1.0-cm"1 spectral library (Infrared Analysis, Inc., Anaheim, CA).
Another CLS method used a set of reference spectra of atmospheric gases generated from the HITRAN
database using Etrans and a reference spectrum of SF6 from the NIST Standard Reference Database 79
(Gaithersburg, MD). For this method, the spectra of the atmospheric gases were generated at a
concentration-pathlength product that produced absorbance values of the analytical IR bands near the
median of those found in the field spectra. The third CLS method also used a set of reference spectra of
the atmospheric gases generated from the HITRAN database using Etrans and a reference spectrum of
SF6 from the NIST database. A multilevel calibration was used for this method, with reference spectra of
the atmospheric gases generated at concentration-pathlength products corresponding to 10% lower, 10%
higher, the median, and midpoints between the median and the high and low absorbance values of those
in the field spectra. The concentration-pathlength products used for this multilevel CLS analysis are
given in Table 2.
B-9
-------
Table 1. Analysis Region Matrix for CLS Analyses
Analyte 900.20-980.70 cm ' 2083.9-2223.3 cm ' 2881.9-2929.2 cm
SF6
H20(l)
CO
N,O
H20(2)
CH4 .
H20(3)
Table 2. Concentration Pathlength-Products (ppm-m) for Multilevel CLS> Analysis
Analvte
Low-10% Midpoint 1
Median
Midpoint! High+10%
H,0(l)
CO
N2O
H2O(2)
CH4
H20(3)
1 080000
108
3 1 .32
1 080000
140.4
1 080000
1 350000
135
32.94
1350000
237.6
1350000
1
1 620000
162
34.56
1 620000
334.8
1 620000
1890000
189
36.18
1890000
432
1890000
2160000
216
37.8
2160000
540
2160000
2.10 Comparison of the Concentration Values Generated by the Automated Multivariate Data
Analysis Method to Manual Comparison Method or Advanced Nonlinear Algorithms
Selected absorption files were analyzed by the manual comparison method described in
Section 2.6.5.3.1 of the FT-1.R Open-Path Monitoring Guidance Document to check the output of the
automated CLS method. An example of this procedure is given in Table 3 for SFft for data files that
represent the extremes in the reported concentration values.
B-10
-------
Table 3. Reported Concentration Values of Selected Files Using the Comparison and
Multilevel CLS Methods
File Number
d()224002
(.10224089
(J0224291
d0224305
Comparison
Method (ppm)
0.054
0.036
0.061
0.006
Multilevel
CLS (ppm)
0.047
0.028
0.059
0
As shown in Table 3, the reported values for SF6 from the multilevel CLS analysis are very
similar to those determined by using ihe comparison method for these selected files. There is a slight
positive bias in the concentration values determined by the comparison method because of interference
from a water vapor band. Otherwise, the two methods are comparable for these representative data files.
More extensive comparisons were made between the single-level CLS analyses using reference
spectra from the Hanst spectral library and those generated from Etrans, the multilevel CLS analysis with
reference spectra generated from Etrans, and an analysis using the innovative nonlinear algorithm.
Dr. Phillips of SpectraSoft Technology performed the nonlinear analysis under a subcontractual
agreement with ManTech under WA-IV-1 19. The concentration values of SF6 and selected atmospheric
gases determined by using (he different analysis methods are given m Attachments 1 -4. The mean
concentration values reported from the four different analysis methods are summarized in Table 4. Also
included in Table 4 are the results from the original CLS analyses using reference spectra generated from
Etrans using a nominal 1-cm ' resolution.
The mean concentrations of SFh reported by each of the analysis methods were nearly identical
even though the concentration-pathlength products of the reference spectra for SF6 were significantly
different in the single-level CLS method using the Hanst reference spectrum (66 ppm-m, Absmax
= 1.5578) and the other methods, which used a reference spectrum from the NIST database (1 ppm-m,
AbsITUX = 0.0281 1). The mean concentrations of CH4 during this monitoring period were similar for the
B-ll
-------
Table 4. Mean Concentration Values (ppm) for SF6 and Selected Atmospheric Gases
Method
CH4 CO
()
H20
(2)
H20
(3)
CO,
CLS Hanst, Single Level
CLS Etrans, Single Level
(1 cm'1)
CLS Etrans, Single Level
(1.462cm-1)
CLS Etrans, Multilevel
(1cm-1)
CLS Etrans, Multilevel
(1.462cm-1)
Nonlinear
0.04 3.006 2.348 0.378
0.04 2.256 1.312 0.321
004
1820 12464 11539
0.04 2.68 2.058 0.35 15531 15841 12719
0.04 2.243 1.267 0.321 11519 11317 113^4
2.671 2.161 0.348 15095 16492 12328
004 2.758 2.208 0.382 9496
519.2
two CLS methods using reference spectra generated from Etrans at 1.462-cirT1 resolution, but were
slightly higher for the nonlinear algorithm and the CLS method using the Hanst reference spectra. There
were significant differences between the two CLS methods using Etrans reference spectra generated at
either a nominal 1-cm ' resolution or 1.462-cm ' resolution. In each case, the CLS method using the
nominal l-cnY1 resolution Etrans reference spectra under-reported the mean concentration.
The mean concentrations of CO and N,O reported by the nonlinear algorithm were slightly
higher than those reported by the CLS methods using the 1.462-cnT1 Etrans reference spectra, whereas
the water vapor concentration reported by the nonlinear algorithm was lower than that reported by the
CLS methods. The reasons for these discrepancies are not known, but could include differences in
developing the synthetic background spectrum for the CLS analyses and the fitted polynomial
background for the nonlinear algorithm or the nonlinearity in the data caused by the salurated detector.
The cause of these discrepancies has not been investigated further. The mean concentration for CO2
reported from the nonlinear algorithm was 519.2 ppm, which is slightly higher than normal ambient
levels. The concentration of CO, was not reported for the CLS methods because of the difficulties in
analyzing for this gas in 1-crn"1 resolution spectra due to spectral overlap with CO and water vapor.
B-12
-------
2.11 Development of Relevant Control Charts
As discussed above in Sections 2.2 and 2.3, control charts were developed for the signal strength
and the random baseline noise, respectively. Control charts were also developed for the concentrations
of selected atmospheric gases over time. These charts were developed from the concentration data
reported by the multilevel CLS method and are given in Figures 10- 14.
The reported concentrations of SF6 fluctuated between 28 and 50 ppb throughout most of the
monitoring period and was relatively constant (38 ฑ9 ppb) except for a sharp increase that was observed
in files d0224290 and d0224291 (see Figure 10). The concentration of SF6 decreased rapidly after file
# d0224291 and was not detected in files after d0224300.
The reported concentration of CH4 was more variable, 2.671 ฑ0.729 ppm (see Figure 11). The
path-averaged concentration ranged from near or slightly below ambient background levels to more than
5.5 ppm. Although the concentration of SF6 was relatively constant throughout the monitoring period,
the CH4 concentrations increased rapidly during three separate episodes. No other gases exhibited
increases in concentrations during these time periods.
The path-averaged concentration of carbon monoxide was relatively high (2.161 ฑ0.181) for
ambient measurements. High concentrations of CO were detected inside the spectrometer of the ETG
system evaluated at RTF. NC. The CO concentration in this instrument increased over time. Purging the
spectrometer box with dry N-, removed the CO from the system. This procedure should be done on all
ETG systems in the field. The concentration of CO was relatively constant, but showed a steady increase
near the end of the monitoring period (see Figure 12).
The concentrations of N,O were relatively constant (0.348 ฑ 0.010 ppm) and slightly higher than
expected ambient levels (see Figure 13). Slight increases in the N2O concentrations were observed near
the end of the monitoring period Assuming that the ambient concentrations of N2O were constant, these
results indicate that the instrument was stable throughout this monitoring period.
As a quality control check, the water vapor concentration was measured in three different
regions. Region 1 corresponds to the analysis region used for SF6 between 900.20 and 980.70 cm"1;
region 2 corresponds to the analysis region used for CO and N2O between 2083.90 and 2223.3 cm"1; and
region 3 corresponds to the analysis region used for CH4 between 2881.9 and 2929.2 cm"1. The
B-13
-------
concentrations of water vapor reported for each region were in close agreement and on average were
approximately ]4,500 ppm. This path-averaged concentration is equivalent to approximately 11 Torr. If
the water vapor concentration was measured by some independent means daring the field study, these
data could be used to assess the accuracy of the OP/FTIR data.
3.0 Conclusions and Recommendations
The QC procedures used to assess the instrument operation during the Augusta field study
indicate that the instrument was stable throughout the monitoring period represented by the subset of data
analyzed for this work assignment. However, these procedures revealed significant problems in the
performance of the system and in the initial setup of the instrument. The single-beam field spectra
exhibited a wavenumber shift of 0.5 cm'1 relative to the reference spectra generated from Etrans. Also,
the instrument resolution was calculated to be approximately 1.46 cm"', insiead of the selected value of
1.0 cm"1. In addition to these problems, all of the single-beam spectra from this subset of data exhibit
evidence of detector saturation. As a result, the instrument was most likely operating in a nonlinear
mode during this study, which makes the accuracy of the reported concentration values highly
questionable. Although different analysis methods and algorithms can be used to account for
nonlmearities due to the convolution of the instrument response function on the spectral data, methods to
correct for the nonlinearities due to detector saturation do not exist. The likelihood of detector saturation
can be minimized by examining the single-beam spectra during the initial instrument setup. iProcedures
for the initial instrument setup are given in EPA-sponsored guidance documents''2 and ASTM
standards.3'4 These documents should be reviewed and adhered to during future studies with the
OP/FTIR system. In addition to these documents, an example of a USEPA audit on an OP/FTIR field
study, including an extensive audit questionnaire, has been presented and is very helpful in applying
many of the operating principles and quality control procedures discussed in these documents to
OP/FTIR field data.7
The comparison of the data collected by the roof vent OP/FTIR system to those obtained by
manual bag sampling with subsequent analysis by FTIR spectrometry is of particular interest to the
APPCD. Because of the uncertainties in the OP/FTIR data, conclusions drawn from this comparison
should be made with the caveat that the OP/FTIR instrument was most likely operating in a nonlinear
mode due to detector saturation.
B-14
-------
4.0 Literature Cited
I. Russwurm, G.M. and Clulders, J.W., FT-IR Open-Path Monitoring Guidance Document, 3ld
Edition, TR-4423-99-03, ManTech Environmental Technology, Inc., Research Triangle Park,
NC, June. 1999.
2. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air,
2nd Edition, EPA/625/R-96/010b, Center for Environmental Research Information, Office of
Research & Development. U.S. Environmental Protection Agency, Cincinnati, OH 45268,
January 1997.
3. E 1865 Standard Guide for Open-Path Fourier Transform Infrared (OP/FT-IR) Monitoring of
Gases and Vapors in Air, Annual Book of ASTM Standards, Vol 03.06, American Society for
Testing and Materials. West Conshohocken, PA.
4 E 1982 Standard Practice for Open-Path Fourier Transform Infrared (OP/FT-IR) Monitoring of
Gases and Vapors in Air. Annual Book of ASTM Standards, Vol 03.06, American Society for
Testing and Materials. West Conshohocken, PA.
5. Griffiths, P.R. and deHaseth, J.A., Fourier Transform Infrared Spectrometry, John Wiley &
Sons. Inc.(1986), pp 56-65.
6 Phillips, B., Movers. R . and Lay, L.T . "Improved FTIR Open Path Remote Sensing Data
Reduction Technique." Proceedings of Optical Sensing for Environmental and Process
Monitoring, VIP-37, Air & Waste Management Association, Pittsburgh, PA, 1995, pp. 374-388.
7. Childers, L.O.. "The USEPA QA Auditor is Scheduled for a Visit. What Can I Expect?",
Proceedings of Optical Remote Sensing for Environmental and Process Monitoring, VIP-55, Air
& Waste Management Association, Pittsburgh, PA, 1996, pp. 127-138.
B-15
-------
c:
on
E
TO
0
CD
01
C
55
500 1000 1500 2000 2500 3000 3500 4000 4500
Wavenumber (cm"1)
Figure 1. Single-beam OP/FTIR spectrum collected during the Augusta study with a 108-m pathlength.
ฃ
-------
Signal Strength at 985 cm-1
67.0
ii M ii i ii ii i i i i i ii i i i i i i i M i i i i iii m7 iii iii i ii i i i i M i i i i i i i i
2 22 42 62 82 102 122 142 162 182 202 222 242 262 282 302
File N um ber
Figure 3. Single-beam signal intensity (in arbitrary units) at 985 cm"' .
Relative Signal Strength (2500/985)
0.855
0.830 -L
I I I \ I I I I I I I I I I I I M I I I I I I I I I 1 \ I I I I I I M I I I I I I I ITTT MM \\\ I M I I I
2 22 42 62 82 102 122 142 162 182 202 222 242 262 282 302
File N um ber
Figure 4. Relative single-beam signal intensity at 2500 cm ' ratioed to that at 985 cm"' .
B-17
-------
to
c
o
(0
c
D)
0)
o>
DC
0.215
ฑ 0.210-
0.205 -
0.200
0.195
0.190
Relative Signal Strength (4400/985)
Tl 1 I I I I I I I I I I I I II I I I I I I I I MIT M I I I I I I 1 I I T I 1 I I I I I II I I I I I I I I ITT
2 22 42 62 82 102 122 142 162 182 202 222 242 262 2 82 302
File N um ber
Figure 5. Relative single-beam signal intensity at 4400 cm"' ratioed to that at 985 cm"' .
CO
+^
c
13
CO
13
c
CD
Q
00
Random Baseline Noise
958 - 1 008 cm-1
i n rr i i i i PI n PI i i i i i i t M \
23
43 63 83 103 123 143 163 183 203 223 243 263 283 303
File Number
Figure 6. Random baseline noise measured between 958 and 1008 cm"1.
B-18
-------
Random Baseline Noise
U)
4-rf
E
(A
.Q
C
.2 S
*- w
ns 3
> 2
0) ฃ
Q "~
2480 - 2530 cm-1
0.08
0.07 -
0.06
0.05 -
0.04 -
0.03
I I I I I I I I I TIT1 I I I I I I I M I I I I I I I I I I 1 I I I I M I I I I I I I I I I I I I I I I [ T I I I I
3 23 43 63 83 103 123 143 163 183 203 223 243 263 283 303
File Number
Figure 7. Random baseline noise measured between 2480 and 2530 cm"1.
Random Baseline Noise
4375 - 4425 cm-1
0.15
I I I I I I I II I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I |-
3 23 43 63 83 103 123 143 163 183 203 223 243 263 283 303
File Number
Figure 8. Random baseline noise measured between 4375 and 4425 cm
B-19
-------
f>
3
3
1
1f\
.2
f\ f\
0.8
f\ Jt :
(14
f\ f\
nesdiiicn
sHft
RleNLrrter
Figure 9. Measurement of the resolution and wavenumber shift calculated from the nonlinear algorithm.
SF6
E
Q.
Q.
C.
o
*-*
re
L.
^^
c
0)
o
c
o
O
0.07
0.01
TTTrrrri i 11 iTrrrr MIT rrrn 11 i 111 111 i m rrn MINI
2 22 42 62 82 102 122 142 162 182 202 222 242 262 282 302
File Number
Figure 10. Concentration of SF(, Determined from Multilevel CLS Analysis.
B-20
-------
M ethane
E
a
a
c
o
4-1
CD
>_
4-1
C
0)
o
c
o
o
i i i i ii i i i i i i i i i r 11 i i i i i i ii i i i i i
22 42 62 82 102 122 142 162
I i I I I I II I I II I I I I I I I I I I I I I I
182 202 222 242 262 282 302
File Number
Figure 11. Concentration of CH4 Determined from Multilevel CLS Analysis.
Carbon M onoxide
E
a
a
c
o
*-
TO
i_
*-
C
0)
o
c
o
o
3.2
2.4
2.2
2.0
1.8
"T
22
42
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
62 82 102 122 142 162 182 202 222
I I I I I I I I I M I M
242 262 282 302
File Num ber
Figure 12. Concentration of CO Determined from Multilevel CLS Analysis.
B-21
-------
N itrous Oxide
,-^ 0.38
E
a
a.
c
o
ซ- 0.36-
re
c
o>
o
c
o
o
0.37
0.35
0.34
0.33
lllllMlllllllMIMIIITIIIlllllIlT
2 22 42 62 82 102 122 142 162
1 II I I I I 11 I
182 202 222
I I TI I I I MITTI IT
242 262 282 302
File N um ber
Figure 13. Concentration of N-,0 Determined from Multilevel CLS Analysis.
W ater V apor
E
Q.
O.
C )
O T3
C
TO re
3
O
SI
c
0>
s -
o
O
I I II I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
22 42 62 82 102 122 142 162 182 202 222 242 262 282 302
File Number
Figure 14. Concentration ofH.O Determined from Multilevel CLS Analysis.
B-22
-------
Attachment 1
Concentration Data from CLS Single Level Calibration Using Hanst 1.0 cm"1 Reference Spectra
B-23
-------
CLS Single Level Calibration Using Hanst 1.0 cm"1 Reference Spectra
File
CH4
CO
N,O
SF,
H2O(1) H2O(2)
H20(3)
r1
ฃ.
3
4
5
6
H
i
8
9
10
1!
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
2.645
2.508
2.416
2.398
2 459
2.508
2.595
2.786
2 864
2.946
2849
2.698
2.643
2 628
2.599
2.583
2.584
2.553
2631
2.624
2 503
2 432
2 495
2.459
2.309
2.28
2.269
2.41 1
2.361
2.487
2.433
2.372
2.472
2.403
2.385
2.435
2.367
2.360
2.381
2.388
2.321
2378
2.395
2325
2.327
2.312
2.302
2.293
2.306
2.297
2.276
2.269
2.227
2.200
2.190
2.172
2.181
2. 1 89
0.384
0.383
0.38]
0.383
0.382
0.382
0383
0.382
0.381
0.381
0.380
0.379
0379
0.379
0.377
0.377
0.376
0.375
0.374
0.374
0373
0.372
0.371
0.369
0.369
0.368
0368
0.368
0.368
0.051
0049
0.046
0045
0.043
0.042
0.043
0.047
0043
0.042
0.041
0.045
0.046
0.046
0044
0.048
0.045
0.043
0.045
0048
0.044
0.047
0.046
0.042
0.044
0.043
0.043
0.036
0.045
14540
14707
14629
14828
14650
14743
14693
14852
14891
14824
14592
14880
14983
15038
14941
14953
14962
15002
1 5095
15132
1 5029
15126
15233
15256
1 5244
15036
14996
14836
15106
12S63
12963
13017
13110
13083
13385
13D89
13141
13137
13106
1 3 1 26
13221
13237
13246
13235
13241
13286
13302
13348
13381
13346
13427
13460
13491
1 3463
13398
13385
13391
13393
12074
12233
12352
12424
12442
12402
12383
12437
1 2467
12425
12447
12605
12553
12528
12575
12618
12647
12728
12721
12736
12704
12785
12844
12922
12825
12757
12751
12755
12748
B-24
-------
CLS Single Level Calibration Using Hanst 1.0 cm"1 Reference Spectra (Continued)
File
CH4
CO
N,O
SF,
H2O(1) H2O(2) H2O(3)
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
2.392
2468
2283
2.316
2278
2. 1 36
2.177
2 205
2.168
2219
2077
2 145
2 165
2 363
2.375
2 786
2 685
2.54
2472
2.499
2.489
2.352
2.314
2 236
2.316
2286
2 266
2285
2 349
2 J77
2 165
2.145
2.143
2.149
2.143
2.146
2. 1 54
2 168
2.185
2.140
2.139
2.155
2.143
2.162
2.170
2 165
2.156
2 151
2.152
2.163
2.154
2.165
2.178
2.168
2 153
2.166
2.151
2.177
0 368
0367
0 367
0 367
0.368
0.369
0.367
0.368
0 367
0 368
0 368
0.368
0 367
0.367
0 368
0.366
0 366
0.366
0 367
0.366
0 368
0.367
0.367
0 367
0 367
0.367
0.366
0.366
0.367
0.038
0.041
0041
0 043
0.031
0.033
0.036
0.033
0 036
0 036
0.032
0.035
0.041
0.039
0.035
0 042
0.045
0.042
0.042
0.040
0 032
0.036
0.041
0.04 1
0.041
0.038
0.042
0.037
0.037
14792
14967
14875
14791
14483
14341
14550
14709
14780
14858
14482
14655
14833
14884
14873
15072
14859
14677
14557
14792
14581
14918
14980
14852
14879
14809
14936
14874
14867
13261
13358
13302
1 3 1 99
13197
13114
13208
13304
13333
13323
13154
13216
13253
13340
13375
13414
13301
13220
13110
13210
13251
13418
13391
13300
13311
13308
13330
13317
13329
12541
1 269 1
12599
12448
1 24 1 9
12359
1 2485
12572
1 2606
12638
12401
1 25 1 7
1 2509
12673
1 2706
1 27 1 6
12568
12433
1 2304
1 246 1
1 2495
1 2744
1 2734
1 2590
1 26 1 1
12563
12561
1 25 1 8
12521
B-25
-------
CLS Single Level Calibration Using Hanst 1.0 cm ' Reference Spectra (Continued)
File
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
CH.,
2.579
2.303
2.243
2.539
2 584
2 465
2.612
2.718
2.549
2523
2.54
2.742
2714
2573
2 585
2.671
2.638
273
2.809
2 667
2.592
2.528
2 52ฐ
2 482
2.649
2.688
2431
2.555
2 355
CO
2.171
2.174
2.158
2.166
2.194
2.153
2.159
2.167
2.196
2.169
2.158
2.167
2.170
2.159
2.151
2.156
2.158
2.185
2.155
2.168
2.225
2.171
2.182
2.170
2.163
2.160
2.168
2.163
2.162
N20
0.366
0.366
0.366
0.366
0.366
0.365
0 365
0.365
0 366
0.365
0.366
0.366
0.366
0.366
0.366
0.366
0.366
0.366
0.365
0.366
0367
0.366
0.366
0.366
0366
0.366
0.366
0.366
0.366
SF6
0.040
0.041
0.040
0.033
0.037
0.040
0.042
0.038
0.038
0.042
0.043
0.043
0.037
0.039
0.038
0.041
0.039
0.037
0.038
0.041
0.040
0.041
0041
0.038
0.038
0.038
0.041
0.034
0.032
H20(l)
14884
14899
14999
14834
14907
14802
14778
14575
14423
14547
14473
14604
14621
14524
14702
14663
14757
14885
14680
14522
14678
14489
14474
14587
14828
14752
14583
14509
14540
H20(2)
13332
13400
13435
13384
13366
13288
13281
13211
13109
13108
13119
13177
13156
13140
13251
13152
13272
13405
13306
13165
13248
13137
13101
13143
13338
13269
13173
13180
13214
H20(3)
12493
12547
12685
12649
12625
12506
12460
12382
12197
12248
12224
12335
12335
12273
12489
12323
12494
12654
12549
12304
12432
12261
12242
12265
12580
12470
12255
12293
12319
B-26
-------
CLS Single Level Calibration Using Hanst 1.0 cm ' Reference Spectra (Continued)
File
CH,
CO
SF.
H2O(2)
H20(3)
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
1 16
1 17
2 288
247
2747
2841
2942
3 287
3 509
3.718
3.341
2877
2.975
3 126
3.025
2947
3.014
3 09 1
3219
3 633
446
4815
4 549
4.244
4 139
4 052
4 162
4.182
4.255
4 299
4581
2.163
2.171
2.180
2 1 59
2.166
2.163
2 163
2.163
2.163
2.171
2.169
2.169
2.164
2 164
2.170
2.171
2 172
2.173
2.173
2 174
2.181
2.175
2.172
2.171
2.172
2 176
2.183
2 180
2 184
0.366
0.366
0.366
0 366
0.366
0 366
0.366
0 365
0 365
0.366
0.367
0.367
0.366
0.366
0.366
0.367
0 366
0.367
0.367
0.366
0 367
0.367
0 367
0.366
0.367
0.367
0 367
0.368
0.368
0.031
0.039
0.038
0.040
0.039
0041
0.041
0.041
0.043
0.043
0 040
0.040
0.042
0 042
0.043
0 040
0.041
0.04 1
0.040
0 039
0.039
0.039
0.042
0.043
0041
0038
0.043
0.040
0041
14412
14564
14478
14595
14597
14808
14632
14798
1 4694
14666
14748
14717
14718
14712
14633
14589
14678
14627
14838
14946
14971
14913
14915
14945
14989
15018
15172
1 5044
15187
13248
1 3 1 50
13158
13191
13205
13294
1 3240
13300
13250
13214
13259
13263
13226
13225
1 3 1 90
13208
13207
13265
13360
13438
13409
1 3408
1 3403
13396
1 344 1
1 345 1
13483
13512
13598
12405
12248
12250
12332
12382
12485
12415
12502
12428
1 2376
12432
12456
12392
12431
12352
12394
12394
1 2460
12611
12638
12633
1 2644
12644
1 2649
12701
12725
12741
12787
12829
B-27
-------
CLS Single Level Calibration Using Hanst 1.0 cm"1 Reference Spectra (Continued)
File
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
CH4
4948
545
551
4957
4 567
4.38
4.73
5.264
5 967
6 026
6.001
5.908
5 454
5. 518
5.468
5 173
4.964
5 376
626
4.888
401
3.55
3.089
2.736
2891
2 902
2.857
2.988
3 04
CO
2.183
2.185
2.181
2.186
2.199
2.216
2.225
2.222
2.210
2.213
2213
2.203
2.202
2.215
2.210
2.210
2212
2.203
2.200
2.197
2.210
2.218
2.225
2.238
2.229
2.220
2.218
2.222
2.232
N20
0.368
0.368
0.368
0.368
0.368
0.369
0 369
0.369
0.369
0.370
0.370
0.370
0370
0.370
0.370
0.370
0.370
0 370
0.370
0.370
0.370
0.370
0372
0.373
0.373
0.373
0.373
0.373
0.374
SF6
0.040
0.039
0.040
0.041
0.037
0.038
0.039
0.039
0.039
0039
0.039
0.038
0.038
0.037
0.037
0.038
0.039
0.037
0.038
0.039
0.037
0.040
0.042
0.045
0.043
0.039
0.043
0.046
0 046
H20(l)
15355
15378
15399
15438
15388
15330
15448
15518
15536
15711
15623
15591
15623
1 5664
15570
1 5636
1 5469
1 5494
15467
15112
1 5094
15199
14985
14941
14823
14768
14759
14803
1 4698
H20(2)
1 363 1
13639
13653
1 3627
1 3629
13630
1 3656
13731
13806
13810
13803
13798
13797
13839
13832
13783
1 3756
13728
13735
13548
13491
13505
13373
13341
13288
13220
13209
13164
13100
H20(3)
12850
12891
12933
12898
12871
12864
12815
12876
12978
1 3062
13053
13070
13102
13146
13143
13089
1 3086
13073
13092
12897
12814
12850
12712
12628
12624
12505
12489
1 2405
12347
B-28
-------
CLS Single Level Calibration Using Hanst 1.0 cm"1 Reference Spectra (Continued)
File
CH4
CO
N,O
H20(l)
H,O(2) H2O(3)
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
3.044
2941
2 887
3118
3 131
3 068
293
3.004
3 007
2 989
2761
266
2.556
2.663
2 805
2788
2 809
2 832
2.791
2 745
2724
261
2574
2 459
2316
2.324
2 505
2.538
2.342
2 246
2232
2 234
2.233
2 231
2.227
2.229
2.254
2.241
2.236
2.245
2.247
2.251
2.263
2.280
2.290
2.346
2.383
2298
2.278
2.278
2.261
2.278
2.299
2.357
2.284
2295
2.276
2.277
0.375
0.375
0 375
0.376
0.376
0.377
0.376
0 377
0.377
0 377
0.377
0.376
0 377
0.377
0.378
0378
0.379
0.380
0379
0.379
0.379
0.378
0.378
0 379
0.379
0.379
0.379
0379
0.379
0.046
0.043
0.042
0042
0.043
0 046
0.046
0044
0.044
0 045
0.044
0 043
0042
0.040
0.043
0.045
0.044
0 043
0.043
0 044
0.047
0.047
0 047
0.045
0.044
0.046
0.047
0 044
0.045
14712
14632
14576
14403
14470
14368
14326
14175
14167
14161
14273
14024
13915
13892
13894
14039
13873
13821
13736
1 3607
13924
13932
13874
13806
13893
13811
13674
13558
13693
13080
13093
1 3056
12969
12935
12890
12810
1 2740
12717
12698
12722
12675
12636
12613
12579
1 2604
12490
12491
12527
12532
12552
12532
1 25 1 2
12520
12513
12457
12343
12285
12386
12292
12348
12301
12145
12144
12043
11941
11858
1 1 847
11823
11861
11790
11735
11699
11652
11614
11488
11474
11570
1 1 596
11637
11608
11598
1 1 609
11582
11521
11344
11296
11405
B-29
-------
CLS Single Level Calibration Using Hanst 1.0 cm ' Reference Spectra (Continued)
File
CH4
CO
N,O
SF,
H2O(1) H2O(2) H2O(3)
176
177
178
179
180
181
182
183
184
185
186
187
1S8
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
2.293
2.328
2.41
2.432
2.282
2.187
2.186
2.199
2.305
2.3
2.201
2 175
2.128
2 154
2.209
2.342
2.515
2.582
2.584
2.735
3 327
4.492
4729
4 625
3 832
3.182
3 007
3 279
3.066
2.289
2.297
2.292
2.286
2.373
2.293
2.280
2.279
2.326
2.317
2.290
2.283
2285
2.284
2.285
2.286
2.291
2.298
2.318
2.339
2.330
2.309
2.312
2.324
2.316
2.305
2.299
2297
2.286
0379
0.378
0.378
0.379
0.380
0379
0.379
0.378
0379
0.380
0.379
0.379
0378
0.378
0.377
0.378
0.378
0.377
0.377
0.378
0.377
0 377
0.378
0.379
0.380
0.381
0.381
0382
0.382
0.044
0.047
0.044
0.044
0.044
0.047
0.048
0.044
0.046
0.048
0.047
0.044
0.044
0.041
0.043
0.042
0.046
0 044
0048
0.047
0.046
0.047
0.044
0.043
0.044
0.046
0.045
0043
0.042
13659
13737
13681
13617
13615
13716
13650
1 3626
13490
13458
13560
13490
13749
13658
13812
13895
14011
14020
14084
14051
14018
14138
13895
13667
13472
13257
13133
13194
13202
12390
12376
12354
12322
12278
1 2305
12324
12318
12208
12176
12215
12283
12401
12398
12471
12472
12527
12600
12589
12589
12612
12632
12514
12324
12209
12022
11966
12066
12088
11391
11378
11355
11305
11189
1 1 276
11348
11338
11153
11123
11187
11276
11444
11451
11517
11558
11648
11716
1 1 696
1 1 634
11717
11717
11557
11239
11126
10927
10868
11018
11059
B-30
-------
CLS Single Level Calibration Using Hanst 1.0 cm"1 Reference Spectra (Continued)
File
CH4
CO
N,O
H20(l) H20(2)
H2O(3)
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
2.815
2.685
2.557
2 525
2 559
2.527
2491
2.398
2 387
2.379
2351
2.399
2 43 1
2461
2428
2 384
2471
2.516
2 652
2 899
2 955
3215
3 075
2.827
3 05
2 823
2.844
3.223
3 665
2.293
2.298
2.304
2.307
2 313
2.317
2.322
2.310
2 309
2312
2344
2.319
2.320
2.319
2.320
2.358
2.410
2.372
2371
2.412
2 396
2.431
2427
2.412
2 406
2.389
2.365
2.381
2.386
0.382
0.381
0382
0.382
0383
0 383
0 383
0 383
0383
0.382
0.383
0.383
0383
0.383
0.383
0.384
0.385
0.384
0.384
0 384
0 383
0 384
0 384
0 384
0 384
0.384
0384
0 384
0.384
0 044
0.044
0.047
0.045
0.044
0 044
0.042
0.044
0 045
0.045
0.046
0.044
0 044
0.045
0.046
0.045
0 042
0.045
0 043
0.041
0 044
0.049
0.046
0046
0.047
0.046
0.041
0.043
0.048
13207
13075
13104
12655
12526
12350
12352
12528
12592
1 2564
1 2496
12432
12501
12390
1 2304
12272
11974
12029
11996
12107
1 2475
12380
12190
12325
12515
1 2404 '
12179
12342
12447
11986
11943
11885
11678
11526
1 1424
11439
11490
11518
11514
11444
11418
11467
11378
1 1 293
11247
11144
1 1 1 80
1 1 1 25
11253
11484
11280
1 1 226
11315
11392
11331
11307
11356
11354
10939
10855
10802
10425
10281
1 0086
10153
10223
10255
10259
10134
10133
1 0 1 94
10074
9948
9878
9706
9743
9675
9818
1 0090
9786
9680
9865
9995
9930
997 1
9984
9960
B-31
-------
CLS Single Level Calibration Using Hanst 1.0 cm ' Rei'erence Spectra (Continued)
File
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
CH4
4.641
5 5 1 8
4718
3.958
3 846
3 627
3.536
3 573
3316
3 153
3.121
3 147
3.075
3 104
2.969
2.834
275
2717
2.876
2.979
2.612
2.357
2.434
2482
2.539
2.557
2 598
2.599
2.59
CO
2.401
2.406
2.435
2.440
2.430
2.435
2.406
2.393
2.391
2.397
2.413
2.410
2.389
2.413
2.477
2.420
2.404
2.391
2400
2411
2.404
2.391
2.457
2.483
2.484
2.489
2.462
2.485
2.456
N2O
0.383
0383
0.384
0.384
0384
0.384
0.384
0.384
0.385
0.385
0.386
0.386
0.386
0.386
0.386
0387
0.386
0.386
0386
0 386
0.387
0.387
0 388
0.388
0.389
0.389
0.388
0388
0 387
SF6
0.045
0.045
0.046
0.045
0.046
0.046
0.047
0.047
0.046
0.042
0.044
0.044
0.045
0.046
0.045
0.045
0.046
0 047
0.044
0.044
0.044
0.048
0.046
0046
0.045
0.042
0.045
0.044
0.047
H2O(1)
12732
12850
12375
1 2400
1 24 1 2
12554
1 2425
1 2432
1 2247
11903
11726
1 1 829
11795
1 1 840
11770
11682
1 1 503
11593
11612
1 1 666
1 1 63 1
1 1 806
11671
11484
11448
1 1 269
11205
11 188
11527
H20(2)
11577
1 1 675
11294
11348
11401
11409
11355
11382
11209
1 1 049
10863
10930
10890
10935
10879
10780
10704
10685
10739
10788
10807
10850
10790
10670
10602
10541
10417
10496
10632
H20(3)
10251
10364
9780
9784
9823
9877
9796
9762
9666
9535
9264
9336
9345
9389
9306
9232
9127
9113
9194
9256
9275
9366
9253
9055
8956
8853
8691
8785
9024
B-32
-------
CLS Single Level Calibration Using Hanst 1.0 cm ' Reference Spectra (Continued)
File
CH4
CO
SF.
H20(l)
H20(2)
H,O(3)
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
2.71
2.735
2.636
2 699
2 683
2.655
2.617
2.592
2.583
2541
2.729
3351
3.231
3 168
3 114
3 024
2.927
2.85
2 872
2 883
2.857
2 864
2878
2 898
o 90
2.964
3.1 12
3.124
3.16
2.475
2.451
2.438
2.441
2 445
2.531
2.525
2.508
2.545
2588
3 032
2 849
2643
2.582
2.601
2.770
2 833
2837
2.904
2862
2.816
2.774
3.144
3.075
3 164
3.187
3 141
3.118
3.184
0.388
0.387
0.387
0.387
0.389
0.389
0 390
0.389
0 390
0.390
0.396
0.394
0.392
0391
0.391
0.393
0 394
0 394
0 395
0 394
0.393
0 393
0399
0 398
0 399
0 399
0.398
0 398
0.399
0.047
0 045
0 048
0.044
0.044
0 045
0.045
0.045
0.044
0 044
0044
0.045
0.047
0.046
0.044
0 045
0.045
0.043
0.043
0.041
0 040
0.044
0.044
0.041
0.042
0 044
0.045
0.056
0.061
11604
11539
11592
11374
11291
11192
11129
11231
11141
11211
11395
11577
11571
11445
11408
11362
1 1410
11428
1 1409
11367
11106
11144
11090
1 1 077
11019
11310
1 1 373
10979
10781
10709
10720
10661
1 0607
10470
10421
10365
1 0400
10435
1 0494
10653
10765
1 065 1
10630
10614
10599
1 0623
1 0650
10658
1 0623
10517
10433
10435
10486
10436
10587
10613
10673
10558
9084
9095
9060
8992
8786
8680
8607
8680
8705
8773
8830
9037
8969
8979
8901
8839
8877
8932
8908
8876
8738
8652
8519
8528
8376
8588
8591
8700
8383
B-33
-------
CLS Single Level Calibration Using Hanst 1.0 cm"1 Reference Spectra (Continued)
File
CH4
CO
N,O
H2O(1) H20(2) H20(3)
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
Avg
Std
3.237
3.374
3 452
3.219
3.166
3.187
3 152
3 149
3 328
3316
3.224
3.224
3.369
3.469
3 562
3 006
0.835
3.267
3.360
3.217
2.995
3.028
2.944
2.879
2.833
2.957
2.953
2.860
2.808
2.827
2.832
2.848
2.348
0.241
0.400
0.402
0.399
0.396
0.396
0.395
0.394
0.393
0 395
0.395
0.394
0.398
0403
0.404
0.407
0 378
0.010
0.015
0.007
0.005
0.003
0.002
0.002
0.001
0.002
0.001
0.000
0.000
0.001
0.000
0.000
0.000
0.041
0.009
10150
9832
9899
10027
10100
10081
10165
10243
10461
10561
10734
10926
11024
11013
11108
13614
1524
10554
1C569
1C674
1C829
1C906
1C915
1C942
1 1 003
11176
11297
11401
11521
11581
11622
11660
12394
1076
8161
8054
8539
8963
9104
9122
9260
9371
9613
9747
9940
10114
10235
10241
10281
11329
1470
B-34
-------
Attachment 2
Concentration Data from CLS Single Level Calibration Using Etrans Reference Spectra
B-35
-------
CLS Single Level Calibration Using Etrans 1.462 cm ' Reference Spectra
File
2
3
4
5
6
7
8
9
10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
CH4
2.385
2.271
2.196
2.182
2.234
2.275
2.344
2.508
2.571
2.637
2.555
2.43 1
2.388
2.376
2.353
2.340
2.340
2316
2.379
2.374
2 269
2.211
2.267
2.235
2 108
2.080
2072
2.195
2151
CO
2.177
2.134
2086
2.167
2.111
2.097
2.137
2.084
2.079
2.095
2.102
2.049
2.094
2.108
2.051
2.053
2.041
2.034
2.027
2.038
2.031
2.016
2.011
1.978
1 .956
1.948
1.933
1.940
1 .945
N2O
0.356
0.354
0.353
0.354
0.353
0.353
0.353
0 353
0.352
0.352
0.352
0.350
0.350
0349
0.348
0.348
0.347
0.346
0.345
0.345
0.344
0.343
0.342
0.341
0.341
0.339
0.339
0.340
0 339
SF6
0.049
0.048
0.045
0.044
0.042
0.041
0.042
0.046
0.042
0.041
0.040
0.044
0.045
0.044
0 043
0.046
0.044
0042
0.044
0.047
0.043
0.046
0.045
0.04 1
0.043
0.041
0.042
0.035
0.044
H20(l)
16341
16598
16610
1 6944
1 6808
1 6997
16889
16892
17113
1 7063
1 6839
16961
17081
17178
17110
16956
17114
1 7247
1 7224
17172
1 7200
17176
17344
17599
17502
17329
17238
17405
17260
H20(2)
1 6428
1 6565
1 6639
16763
1 6727
1 6729
16740
16801
16781
16748
1 6770
16892
1 69 1 8
16933
16930
1 6940
1 6999
17016
17083
17119
1 7070
17166
17207
17254
17211
17123
17107
17123
17135
H20(3)
13537
13726
13848
13961
13973
1 3954
13917
13992
13971
1 3926
13959
14132
14111
14106
14161
14202
14248
14324
14315
14338
14290
14366
14435
14511
14389
14313
14317
14340
14352
B-36
-------
CLS Single Level Calibration Using Etrans 1.462 cm'1 Reference Spectra (Continued)
File
CH4
CO
SF.
H20(2)
H,0(3)
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
2 177
2.241
2.085
2 113
2080
1 956
1 995
2022
1 992
2 032
1.910
1 .969
1 990
2 157
2 168
2512
2426
2.301
2.242
2 265
2258
2.147
2113
2 046
2 1 16
2 094
2 079
2.097
2.149
1.934
1 .925
1 908
1 905
1.910
1 .905
1 908
1 915
1 928
1.941
1 .902
1 901
1 914
J.906
1 .922
1 .929
1 .923
1 915
1 .909
1911
1.921
1.917
1.925
1 934
1 .925
1911
1 923
1.910
1.931
0340
0.339
0 338
0 338
0 340
0.341
0.339
0.339
0.339
0 339
0.340
0 340
0 338
0 338
0.339
0 337
0.337
0.337
0 339
0.337
0.339
0.338
0.338
0 338
0 338
0.337
0 337
0 337
0.337
0.037
0.040
0 040
0 042
0.030
0 032
0.035
0.033
0.035
0.035
0.031
0.034
0.040
0.038
0.034
0.04 1
0.044
0.041
0041
0.039
0 03 1
0.035
0.039
0.040
0.040
0.037
0.041
0 036
0.036
17210
17259
17164
16933
17159
16881
1 6942
17310
17296
17402
17089
17131
17084
17218
17444
17304
16873
1 6795
16615
17049
17153
17452
17263
1 7073
17092
17150
1 7043
17272
1 7265
1 6964
1 7099
17020
1 6892
16892
16768
1 6890
17021
17055
17044
16832
16921
16982
1 7090
17138
17182
17041
1 6928
16782
1 69 1 2
1 6965
17175
17142
17027
1 7055
1 7070
1 709 1
17081
1 7093
14125
14302
14175
14017
13984
13880
14043
14173
14210
14225
13952
14114
14134
14303
14359
14364
14191
14026
13855
1401')
14088
14375
14370
14J89
14237
14241
14290
14244
14226
B-37
-------
CLS Single Level Calibration Using Etrans 1.462 cm ' Reference Spectra (Continued)
File
CH4
CO
N,O
H2O(1) H2O(2) H2O(3)
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
2 346
2.1 15
2 060
2.304
2.339
2.239
2.362
2.450
2.308
2287
2.302
2471
2.448
2.329
2 339
241 1
2383
2 46?
2.528
2.407
2.346
2287
2.284
2.253
2.396
2428
221(1
2.3 1 7
2 150
1 .926
1.930
1 918
1.925
1.946
1.912
1.918
1 .922
1.944
1.921
1.913
1.921
1 923
1.915
1.910
1.913
1.916
1 941
1.914
1.922
1 .969
1 .925
1 .932
1 923
1.920
1 917
1 921
1.917
1.918
0.337
0.337
0.337
0.337
0.337
0.336
0.336
0.336
0.337
0.336
0.337
0.336
0.337
0.337
0.337
0.337
0.336
0.336
0.336
0.337
0.337
0.337
0.337
0.337
0.336
0.337
0.336
0.336
0.337
0.039
0.040
0.039
0.032
0.036
0.039
0.041
0.037
0.037
0.041
0.042
0.042
0.036
0.038
0.037
0.040
0.038
0.036
0.037
0.040
0.039
0.040
0.040
0.037
0.037
0.037
0 040
0.033
0.031
17094
1 708 1
17298
17430
17320
17013
16886
1 6842
16610
16548
16430
1 6623
16984
16728
1 7036
16793
16982
17273
16933
16521
1 6800
1 6550
16475
16822
17110
17043
16636
1 6934
1 7094
17102
17183
17218
17149
17126
17025
17011
16928
16799
16807
16821
16893
16S65
16344
16981
16354
17005
1 7 1 68
17049
16864
1 6975
16821
16790
16852
17103
17015
1 6899
1 6909
16943
14259
14371
14431
14310
14266
14119
14062
13995
13793
13847
13838
13939
1 3940
13890
14109
13916
14111
14305
14177
1 390 1
14039
13837
13834
13881
14239
14119
13883
13927
13970
B-38
-------
CLS Single Level Calibration Using Etrans 1.462 cm ' Reference Spectra (Continued)
File
CH,
CO
N,O
SF.
H2O(2) H2O(3)
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
1 13
114
1 15
1 16
117
2 092
"> T-l''
2474
2 550
2 635
2 925
3 113
3 286
2972
2 583
2 667
2792
2708
2.640
2 694
2757
2 868
3.214
3.908
4 209
3 987
3 732
3.645
3 569
3 663
3.678
3 737
3.777
4019
1.921
1.925
1.932
1.917
1 923
1 .92 1
1 .920
1.921
1.920
1 926
1.924
1 924
1 .920
1.921
1 .926
1 927
1 .927
1 .929
1 .930
1 .932
1 937
1 .933
1 .930
1.929
1 .930
1 .934
1 .94 1
1 .939
1 .943
0.337
0337
0.337
0337
0.337
0 337
0.337
0.336
0.336
0.336
0.337
0 337
0.337
0.338
0.338
0.338
0.338
0 338
0.337
0.337
0.337
0 338
0.337
0.337
0.337
0.337
0.338
0.338
0.338
0.030
0.038
0.037
0 039
0 038
0 040
0 040
0.040
0.042
0.042
0.039
0.039
0.041
0041
0.042
0.039
0.040
0 040
0.039
0038
0.038
0 038
0.041
0.042
0.040
0.037
0 042
0.039
0.040
16954
16735
1 6695
1 6722
16799
1 6954
16761
1 6960
16703
1 6640
16905
16859
16756
16769
1 6607
1 669 1
16753
1 6666
17039
17197
17273
17200
17044
1 7060
17175
17363
17343
17363
17492
16969
16843
16853
16888
16911
17018
16959
1 7030
! 697 1
16932
1 6994
1 7000
16952
1 6937
16887
1 6907
1 6908
16986
17107
17207
17183
17175
17170
17164
17218
17225
17259
17295
17410
14033
13835
13834
13912
13974
14078
14018
14100
14049
1 3994
14061
14091
14019
14036
13929
1 3968
1 3977
14053
14211
14248
14279
14297
14289
1 429 1
14347
14369
14364
14436
14516
B-39
-------
CLS Single Level Calibration Using Etrans 1.462 cm ' Reference Spectra (Continued)
File
CH,
CO
H2O(1) H2O(2)
H20(3)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
4.330
4.745
4.792
4 332
4010
3.858
4.154
4.603
5.192
5.240
5 214
5 133
4.753
4.806
4 763
4.514
4.340
4 685
5.425
4 275
3 534
3 149
2.763
2468
2.591
2.600
2.563
2.675
2716
1 .943
1 .945
1.942
1 .946
1 .955
1 .969
1.976
1 .976
1 .968
1.970
1.970
1.962
1.961
1.972
1.970
1.968
1 .969
1 961
1 .958
1.953
1.962
1 969
1.972
1.982
1 975
1 .967
1.966
1.968
1.975
0.339
0.339
0.339
0.339
0.339
0.339
0.339
0340
0.339
0.340
0340
0 340
0.340
0.341
0.341
0.341
0.34
0.340
0.340
0.341
0.34
0.341
0.343
0.344
0.344
0 344
0.344
0.345
0.346
0.039
0.038
0.039
0.040
0.036
0.037
0.038
0.038
0.038
0.038
0.038
0.037
0.037
0.036
0.036
0.037
0.038
0 036
0037
0.038
0.036
0039
0.041
0.044
0.042
0.038
0.042
0.045
0.044
17734
17814
17804
17822
17960
17859
17951
1 8002
18089
18251
1 8207
18191
1 8230
1 829 1
18188
18291
1 8035
18171
1 8054
1 748 1
17628
1 7549
17158
16961
16931
17049
16835
16717
1 6643
17453
17456
17472
17442
17461
1 7460
17488
17579
17673
17686
17672
17656
1 7663
17707
17686
17630
17600
17576
17586
17347
17270
17288
17121
17075
16992
1 6907
16892
16836
16752
14541
14566
14598
14577
14582
14606
14584
14654
14762
14816
14792
14798
14829
14868
14849
14794
14786
14783
14788
14568
14463
14516
14377
14288
14224
14097
14079
13991
13913
B-40
-------
CLS Single Level Calibration Using Etrans 1.462 cm ' Reference Spectra (Continued)
File
CH,
CO
N,O
SF,
H20(2) H2O(3)
147
148
149
1 50
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
2 718
2 634
2589
2.785
2.790
2740
2 620
2 683
2 684
2.665
2474
2388
2 30 1
2 392
2.51 1
2 500
2517
2 534
2501
2 461
2445
2 345
2.317
2. 218
2 100
2.104
2 256
2.281
2 122
1.987
1 975
1 976
1 .973
1.972
1 .967
1 967
1 .987
1 .977
1.973
1.981
1 982
1 .985
] .993
2.007
2014
2.056
2.087
2.020
2.004
2 005
1 992
2 004
2022
2.068
2 009
2.015
2 000
2.001
0 347
0 347
0.347
0.348
0.349
0 349
0.349
0 350
0 350
0.350
0.349
0 349
0 349
0 350
0.351
0.351
0 35 1
0 352
0351
0351
0 352
0.352
0.351
0.352
0.352
0 352
0.352
0 353
0.352
0.045
0 042
0.041
0.041
0.042
0.044
0.045
0 042
0.043
0.044
0 043
0.042
0.041
0.039
0042
0.044
0.043
0.042
0042
0.043
0.045
0 046
0 046
0.044
0.043
0 045
0.046
0.043
0.044
16637
1 6643
16610
1 6466
16455
16205
16149
1 6066
16011
16017
1624]
15919
15851
15913
15759
15839
15631
15626
15523
15286
15643
1 56 1 5
15520
15624
15782
1 5577
15336
1 5286
15459
16714
16747
16695
1 6595
16535
16481
16379
16285
16250
16214
16247
16184
16132
16109
1 6063
16107
15965
15958
15995
1 6009
1 6027
15989
1 5974
15972
15968
15896
15754
15668
15820
13851
13929
13868
13718
1 3694
1 3590
1 3445
13372
13328
13274
13316
13233
13178
13140
13075
13083
12922
12889
12999
1 3029
1 3060
13014
1 3009
1 2994
12987
1 29 1 7
12718
12630
12803
B-41
-------
CLS Single Level Calibration Using Etrans 1.462 cm ' Reference Spectra (Continued)
File
CH4
CO
N,O
SF.
H20(l) H20(2) H20(3)
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
2.081
2 109
2.181
2 195
2071
1 990
1 988
1 998
2 084
2 082
1 997
1 .977
1 .939
1 962
2.010
2 121
2 267
2.324
2 326
2.450
2 945
3.918
4 1 14
4 029
3 362
2.819
2671
2.899
2.724
2.010
2.017
2.012
2.007
2.075
2.013
2.003
2.003
2038
2.031
2.010
2.006
2.008
2.007
2.009
2.009
2.014
2.021
2.037
2.056
2.048
2.032
2.032
2.038
2.030
2.018
2.013
2.013
2.004
0.352
0.351
0351
0.352
0.353
0 352
0.352
0.351
0.352
0.353
0.353
0.352
0351
0.351
0.350
035
0.350
0.349
035
0.350
0.350
0.349
0.351
0.352
0.353
0.354
0.355
0.355
0.356
0.043
0.046
0.043
0.043
0.043
0.046
0.047
0043
0.044
0.046
0.046
0.043
0.043
0.040
0042
0.041
0.045
0.043
0.047
0.045
0.045
0.046
0.043
0.042
0.043
0.045
0.043
0.042
0.041
15490
15371
15443
15368
15317
15357
15243
15394
15198
1 5022
15163
15142
15531
15626
15637
15775
15827
15872
15835
15859
15816
1 5927
15755
15490
15191
14801
14707
14863
14966
15823
15806
15787
15739
15681
15705
15728
1 5722
15575
15534
15587
15668
15828
15829
15931
15937
16000
16092
16075
16059
1 6093
16121
15966
15726
15576
15347
15274
15398
15431
12788
12772
12745
12672
12568
12626
12701
12679
12455
12431
12494
12601
1 2809
12810
12903
12952
13041
13122
13104
13008
13089
1 3066
12889
12556
12430
12225
12138
12292
12361
B-42
-------
CLS Single Level Calibration Using Etrans 1.462 cm'1 Reference Spectra (Continued)
File
CH4
CO
N,O
H,O(2) H2O(3l
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
2510
2 399
2 192
2.262
22X8
2261
2228
2 153
2 143
2.140
2 1 15
2 1 56
2.180
2208
2 179
2.142
2210
2 249
2.364
2 574
2622
2.841
2726
2.517
2.704
2.514
2527
2 848
3215
2008
2.013
2015
2016
2.018
2 020
2.025
2016
2015
2016
2041
2.021
2.022
2.020
2019
2.049
2.091
2.060
2 058
2 093
2.085
2.108
2. 1 03
2 094
2.090
2.074
2.055
2.069
2.074
0.356
0.355
0 356
0 357
0 358
0.358
0.358
0 358
0 358
0.357
0 358
0 358
0.358
0.358
0.358
0.359
0 360
0 36
0.359
0 359
0.358
0 359
0.359
0.358
0 358
0358
0.359
0.359
0.359
0.043
0 043
0.046
0.044
0.043
0 043
0.041
0.043
0.044
0.044
0.045
0043
0.043
0.043
0.045
0.044
0.04 1
0.044
0 042
0 040
0.043
0.048
0045
0.045
0.045
0.045
0.040
0.042
0.047
14858
14675
14588
14143
13953
13740
13845
13952
13984
1 3990
13845
13817
1 3944
13799
1 3590
13621
13363
13261
1 3326
13585
1 3935
13573
1 3449
1 3653
13850
13718
13691
1 3807
1 3650
15299
15229
15161
14887
14689
14559
14578
14641
1 4684
14685
14596
14561
14627
14511
14405
14351
14195
14247
14176
14346
14627
14377
14317
14431
14528
14458
14421
14485
14470
12197
12093
12041
11627
11424
11217
1 1 275
1 1 340
11382
11408
11293
11272
11344
11212
11072
10978
10758
10833
10752
1 093 1
1 1 239
1 0908
10814
1 1 002
11155
11076
11078
11127
11058
B-43
-------
CLS Single Level Calibration Using Etrans 1.462 cm"1 Reference Spectra (Continued)
File
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
CH4
4.032
4 765
4 097
3.468
3.374
3.192
3.120
3.152
2.93 1
2.788
2.757
2.782
2.715
2.740
2.626
2.5 1 2
2.438
2 41d
2.544
2.630
2.329
2. 1 1 2
2.178
2.219
2.263
2.280
2311
2.312
2.307
CO
2.089
2.095
2.113
2.116
2.110
2.114
2.089
2.079
2.075
2.077
2.087
2.086
2.069
2.089
2.139
2.092
2.079
2.069
2.076
2.086
2.079
2.070
2.122
2.141
2.140
2.143
2.121
2.140
2.119
N2O
0.357
0.357
0.359
0.359
0.358
0 358
0.359
0.359
0.360
0.360
0.361
0.361
0.361
0.361
0.361
0 362
0.362
0.362
0.362
0.361
0.362
0 363
0 364
0.364
0.364
0.365
0.364
0.364
0.363
SF6
0.043
0.044
0.045
0.044
0.045
0.045
0.046
0.046
0.045
0.041
0.043
0.043
0.044
0.045
0.044
0.044
0.045
0.046
0.043
0.043
0.042
0.046
0.045
0.045
0.044
0.041
0.044
0.043
0.046
H20(l)
14259
14373
13688
13783
13769
13925
1 3720
13728
13552
1 3284
12949
1 3092
12982
12985
12951
12856
12558
1 266 1
1 2790
1 2870
1 2865
12893
1 2794
12569
12557
12498
1 2205
1 2269
12562
H20(2)
14765
14886
14391
14470
14532
14546
14485
14513
14297
14090
13849
13936
13881
13929
13863
13734
13630
13602
13683
13744
13778
13828
13751
13603
13510
13433
13272
13371
13547
H20(3)
11383
11515
10871
10930
10989
11046
10976
10960
10813
10614
10297
10410
10357
10412
10313
10226
10073
1 0059
10149
10231
10275
1 0367
10239
10026
9899
9781
9610
9708
9968
B-44
-------
CLS Single Level Calibration Using Etrans 1.462 cm ' Reference Spectra (Continued)
File
CH4
CO
N,O
SF,
H20(l)
H2O(2)
H,O(3)
263
264
265
266
267
268
269
270
271
272
273
274
275
276
111
278
279
280
281
282
283
284
285
286
287
288
289
290
291
2408
2428
2341
2.397
2.384
2 360
2 329
2.307
2.302
2268
2.429
2 946
2.842
2 790
2745
2 668
2.589
2 530
2 546
2 554
2 531
2 537
2 554
2574
2 592
2 634
2.759
2 769
2 804
2 136
2 117
2 106
2.106
2.107
2.175
2.169
2.157
2.186
2.221
2 577
2434
2.269
2.219
2.234
2.369
2419
2,421
2.475
2440
2.403
2.368
2.662
2610
2.680
2.701
2664
2647
2.698
0.363
0 363
0.363
0.363
0 364
0.365
0.365
0.365
0 365
0.365
0 368
0.367
0.366
0.366
0.366
0 367
0.367
0 367
0 367
0 367
0 367
0 367
0 370
0 370
0371
0.371
0.370
0.370
0.371
0 046
0 044
0 047
0.043
0.043
0 044
0.044
0 044
0.043
0.043
0.042
0.044
0.046
0.045
0.043
0 044
0044
0.042
0.042
0 040
0 039
0.043
0 043
0.040
0 04 1
0.043
0.044
0.055
0 060
1 2634
12641
12588
12487
12391
12243
12164
12283
12212
12323
12594
12772
1 2649
12538
1 2566
1 2464
12529
1 2664
1 2605
1 2676
12417
12220
12159
1 2273
12147
12453
12517
11491
1 1015
13636
13653
13570
13514
13346
13283
13216
1 3254
13306
13385
13592
13717
13568
13541
13528
13507
13544
13586
13598
13561
1 34 1 9
13311
13326
13376
13304
1 3503
13533
13614
13464
10045
10058
9989
9949
9730
9606
9527
9605
9634
9730
9846
10019
9906
9915
9841
9770
9826
9912
9877
9847
9687
9598
9484
9514
9342
9624
9629
9759
9460
B-45
-------
CLS Single Level Calibration Using Etrans 1.462 cm ' Reference Spectra (Continued)
File
CH,
CO
N,O
SF,
H2O(1) H2O(2)
H20(3)
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
avg
std
2.880
3 004
3 054
2.848
2.798
2817
2.784
2.783
2.929
2 920
2.844
2.847
2.968
3 053
3.133
2.680
0 703
2.765
2.837
2.725
2.550
2.578
2.510
2.460
2.424
2.526
2524
2.453
2.413
2.429
2.434
2.446
2.058
0. 1 82
0.372
0.372
0.370
0.368
0.368
0.367
0.367
0.366
0.367
0.366
0.366
0.37
0.375
0.376
0.378
0.35
0.011
0.015
0.007
0.005
0.003
0.002
0.002
0.001
0.002
0.001
0.000
0.000
0.001
0.000
0.000
0.000
0.040
0.009
12459
12428
12651
12902
13053
1 3039
132.11
13280
1 363 1
13783
14028
14195
14398
14394
14543
15531
1859
1 3458
1 3492
13627
113821
13920
13929
13960
14036
14255
1 44 1 4
14542
14697
14770
14323
14379
15841
1402
9305
9270
9653
10017
10146
10169
10279
10406
10651
10804
11020
11237
11343
11347
11412
12719
1727
B-46
-------
Attachment 3
Concentration Data from CLS Multilevel Calibration Using Etrans Reference Spectra
B-47
-------
CLS Multilevel Calibration Using Etrans 1.462 cm-1 Reference Spectra
File
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
CH,
2 364
2.247
2.172
2.158
2 209
2.252
2.321
2.489
2 554
2.62 1
2.537
2.41 I
2 367
2 355
2.332
2.3 1 8
2319
2 294
2 358
2 353
2 246
2 188
2.244
2212
2 085
2.056
2 048
2.171
2 126
CO
2.295
2.25
2.200
2.285
2.226
2.211
2.253
2.198
2.193
2.210
2.216
2.162
2209
2.223
2.163
2.165
2.153
2 145
2.138
2.150
2.142
2.127
2.122
2.103
2.064
2.055
2.040
2047
2.052
N2O
0.355
0.353
0.352
0353
0.352
0.352
0.353
0 352
0.351
0.350
0.349
0.349
0 349
0.349
0.347
0 347
0.346
0.345
0.344
0.344
0.343
0.342
0.341
0.341
0.339
0.338
0.338
0.339
0.337
SF6
0.047
0.046
0.043
0.042
0.040
0.039
0.040
0.044
0.040
0.039
0.038
0.042
0.043
0.042
0.04 1
0.044
0.042
0040
0042
0.044
0.041
0043
0.043
0.039
0.040
0.039
0.039
0.033
0.042
H20(l)
15684
15897
15881
16189
16048
16226
16141
16247
16365
16341
16208
16344
1 6463
16534
1 6505
1 6423
1 6568
1 6659
16714
1 6709
1 6705
1 6792
1 697 1
17142
1 7046
1 6924
16868
16921
1 6964
H20(2)
17435
17636
17743
17925
17873
17876
17892
17982
17953
17905
17936
18116
18155
18177
18173
18188
18275
1 8300
18403
18512
18379
1 8660
18789
18936
18799
18528
18480
18528
18565
H20(3)
13145
13343
13474
13597
13606
13590
13558
13634
13601
13566
13589
13782
13768
13761
13822
13864
13914
13991
13986
14006
1 3960
14041
14110
14190
14062
13982
13987
14013
14025
B-48
-------
CLS Multilevel Calibration Using Etrans 1.462 cni-1 Reference Spectra (Continued)
File
CH4
CO
N,O
SF,,
H2O(2) H2O(3)
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
2,153
2 218
2.061
2 089
2.056
1 93 1
1 .970
1 998
1 967
2.008
1 885
1 944
1 965
2 133
2.145
2494
2 406
2279
2218
o 9jjo
2 235
2.123
2 089
2.022
2 092
2.070
2.054
2 073
2 125
2040
2.031
1 .995
1.991
1 .997
1.991
1 .995
2.021
2 034
2.048
1.987
1 .986
2019
1 .992
2.028
2.036
2.028
2020
1 .996
1 998
2027
2.023
2 03 1
2.040
2 03 1
1.998
2029
1 .997
2.037
0.338
0.337
0.337
0.337
0.338
0.339
0.338
0.338
0 338
0 338
0 338
0.338
0.337
0337
0.337
0.336
0 336
0.336
0.337
0 336
0.337
0 337
0 336
0 337
0.336
0.336
0 335
0 335
0 336
0.035
0 038
0038
0.039
0.028
0.030
0.033
0.030
0.032
0 032
0.029
0.032
0.038
0.036
0 032
0.039
0.042
0.039
0.039
0.037
0.029
0.033
0.037
0.038
0.038
0 035
0.039
0.034
0034
16804
16839
1 6796
1 6654
1 6662
16480
16547
1 6869
1 6848
1 689 1
1 6563
1 6647
1 6746
1 683 1
17001
1 7036
1 6768
1 6605
1 64 1 2
1 6767
1 6720
17052
1 6939
1 6773
1 6825
16856
1 6792
1 6927
16916
18224
18453
1 8306
18118
18118
17936
18114
1 8308
18359
18342
18029
18160
18250
18427
18577
1 87 1 3
18339
18170
17956
18148
18226
1 869 1
18589
1 83 1 8
18360
18383
18433
1 8403
18441
13781
13975
13839
1 3663
1 3629
13516
13694
13838
13881
13896
13596
13775
13801
1 3980
14041
14042
13857
13671
1 3493
1 3666
13748
14056
14053
13861
1 39 1 2
1 3924
13989
13937
13914
B-49
-------
CLS Multilevel Calibration Using Etrans 1.462 cm-1 Reference Spectra (Continued)
File
CO
N2O
SF.
H20(l) H20(2)
H20(3)
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
7*
79
80
81
82
83
84
85
86
87
88
2.323
2.089
2.035
2282
2.317
2.216
2 340
2.43 1
2 285
2 264
2.279
2451
2428
2.306
2317
2.390
2.362
2.444
2.510
2 386
2.324
2.263
2.260
2 229
2.376
2408
2 186
2294
2.126
2.032
2.036
2.041
2.031
2.053
2.000
2.023
2.028
2 050
2.027
2.018
2.027
2.029
2.020
1.997
2.000
2.021
2047
2.020
2.028
2.077
2.031
2.038
2.028
2.026
2.022
2.027
2.023
2.023
0.335
0.335
0.337
0.335
0 335
0334
0.334
0.335
0.335
0.334
0 335
0.335
0.335
0.335
0.335
0.335
0.335
0 .335
0.335
0.335
0.336
0.335
0.335
0.335
0.335
0.335
0.335
0.335
0.335
0.037
0.038
0.037
0.030
0.034
0.037
0.039
0.034
0.035
0.039
0.040
0.040
0.033
0.036
0.035
0.037
0.036
0.033
0.035
0.038
0.037
0.038
0.038
0.035
0.035
0.035
0038
0.031
0.029
16882
1 6820
17012
17079
1 7082
1 6900
16795
1 6680
1 6469
16528
1 6444
1 6634
16710
16555
1 6868
16742
16857
1 7034
i 6820
1 6523
16733
16508
1 6473
16719
16988
16905
1 6654
16801
1 6850
18469
18719
18829
18611
18540
18315
18295
18172
17983
17996
18015
18120
18080
18048
18251
18063
18286
18672
18351
18079
18242
18014
17969
18061
18469
18301
18129
18144
18196
13956
14088
14134
13994
1 3945
13784
13721
13647
13438
13493
1 3483
13585
13590
13538
13773
1 3564
13777
13985
13848
13547
13696
13480
13478
13531
13923
13786
13535
13581
13630
B-50
-------
CLS Multilevel Calibration Using Etrans 1.462 cm-1 Reference Spectra (Continued)
File
CH4
CO
N,O
SF,
H20(l)
H20(2)
H,0(3)
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
1 10
111
112
113
114
115
116
1 17
2 068
2219
2454
2 532
2 620
2 920
3.1 15
3 294
2.968
2 566
2 653
2783
2 696
2624
2 680
2.746
2.861
3.219
3 945
4 260
4028
3 76 1
3 669
3 589
3 689
3.703
3.766
3 808
4 06 1
2.026
2031
2.038
2.022
2.028
2027
2.025
2.027
2.026
2.032
2.030
2030
2.025
2.026
2.032
2.033
2.033
2.035
2.037
2 055
2.043
2039
2.036
2 035
2 053
2.057
2.064
2.062
2.067
0.335
0.335
0336
0.336
0.335
0 335
0.336
0 335
0.335
0 335
0 336
0 336
0.335
0.336
0 336
0 336
0.336
0.336
0336
0 337
0 336
0.336
0 336
0.336
0.337
0.337
0.338
0.338
0.338
0.028
0.036
0.035
0037
0.036
0.038
0.038
0.038
0.040
0.040
0.037
0.037
0.039
0.039
0.040
0.037
0.038
0 038
0037
0.036
0.036
0.036
0038
0.039
0.038
0.035
0.040
0.036
0.038
16754
1 6662
16624
16719
16740
17026
16736
16882
16785
1 6748
16931
1 6830
16774
16813
1 6687
1 6665
16770
1 6679
1 6996
17141
17163
17108
17035
1 7090
17143
1 7243
17338
17245
1 7400
18232
18046
1 8062
18113
18146
18306
18218
18322
18235
18179
18269
18279
18208
1 8 1 86
18111
18141
18142
18258
18482
1 8792
18718
1 8692
1 8677
18658
18826
18848
1 8956
19069
19269
13697
13476
1 3477
13553
13632
1 3745
13683
1 3773
13720
1 3646
13736
13764
13687
13703
13584
1 3629
13635
1 37 1 9
13873
1 39 1 5
1 3949
1 3968
13962
1 3967
14023
14050
14037
14113
14202
B-51
-------
CLS Multilevel Calibration Using Etrans 1.462 cm-1 Reference Spectra (Continued)
File
CH4
CO
N,O
SF,
H2C>(1) H2O(2)
H2O(3)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
4.386
4.824
4.874
4 388
4 052
3.892
4.202
4.674
5.284
5 3^3
5.307
5 225
4 833
4.889
4.842
4 581
4.397
4 761
5 522
4 329
3.552
3 151
2.753
2448
2574
2584
2 546
2.661
2.703
2.067
2.069
2.067
2.070
2.080
2.094
2.102
2 102
2.093
2.096
2.096
2.088
2087
2.098
2.096
2.094
2.094
2086
2.083
2078
2.087
2.094
2.080
2.091
2084
2075
2074
2.076
2.083
0.338
0.338
0.339
0.338
0.339
0.339
0.339
0.339
0.339
0.340
0.340
0 340
0.340
0.340
0.341
0341
0.340
0.340
0 340
0.340
0.340
0341
0.342
0.343
0 343
0.343
0.343
0.344
0.345
0.037
0.035
0.036
0.037
0.034
0.034
0.036
0.036
0.036
0.035
0.035
0.035
0.034
0.034
0.033
0.034
0.036
0.033
0034
0.036
0.034
0.037
0.039
0.041
0.039
0.036
0.040
0.043
0.042
17563
17648
17661
17635
1 7749
1 7627
17658
17758
17772
1 8045
17935
17868
17877
17982
17906
17956
17758
17843
17778
17174
17287
1 7303
16889
16778
1 6676
1 6637
16551
16555
1 6444
19335
19339
19364
19318
19347
19346
19389
19530
19677
1 9696
19675
19650
1 9662
19730
19697
1 9609
19562
19526
19541
19170
18991
1 9048
18525
18390
1 8 267
18141
18118
1 8036
17912
14222
14248
14280
14260
14270
14299
14281
14351
14463
14517
14489
14493
14530
14567
14545
14489
14478
14478
14475
14251
14144
14215
14072
13968
1 3908
13763
13739
13647
13566
B-52
-------
CLS Multilevel Calibration Using Etrans 1.462 cm-1 Reference Spectra (Continued)
File
CH4
CO
SF.
H20(2)
H,O(3)
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
2 705
2.618
2571
2774
2779
2728
2.604
2 66 S
2 670
2.650
2454
2 366
2278
2.371
2492
2.481
2498
2515
2.482
2 441
2424
2.323
2 295
2 194
2 075
2 080
2 232
2258
2 097
2 096
2.083
2.084
2.081
2.080
2 075
2.075
2 096
2.085
2.081
2.089
2 090
2.093
2.101
2.116
2.124
2.168
2.200
2.130
2 113
2.114
2.100
2.113
2.132
2.180
2 118
2.125
2.092
2 110
0 346
0.346
0 346
0.348
0.348
0 348
0 348
0 349
0.349
0349
0.348
0.348
0.349
0.349
0.350
0.349
0 348
0349
0.349
0.349
0 350
0.349
0 349
0 349
0.349
0.349
0.350
0.350
0 350
0 043
0.040
0 039
0039
0.040
0042
0.043
0.040
0.041
0.042
0041
0 040
0 039
0.037
0.040
0 042
0.041
0.040
0.040
0 04 1
0.043
0.044
0.044
0.042
0041
0.043
0.044
0.041
0042
16417
1 6377
16260
16152
16142
1 5929
15819
15755
15694
15678
15857
15583
15484
15480
15360
1 5493
15224
15199
1 5067
14864
15255
15219
1 5076
15211
15348
15169
14929
14820
1 5067
17857
17905
17829
17683
17596
17517
17365
17228
17177
17124
17173
17079
17004
1 6970
1 6903
1 6967
16761
16750
1 6804
1 6825
1 6850
1 6796
16773
16770
1 6765
16661
16315
16072
1 6504
13498
13583
13507
13362
13335
13226
1 3075
1 2995
12950
12895
1 2924
12839
12783
12744
1 2673
1 2684
1 25 1 9
12481
12594
1 2626
12653
1 2607
12605
12587
12581
1 2509
12303
12208
12391
-------
CLS Multilevel Calibration Using Etrans 1.462 cm-1 Reference Spectra (Continued)
File
CH,
CO
N,O
SF,
H20(l)
H2O(2) H2O(3)
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
1 93
194
195
196
197
198
199
200
201
202
203
204
2.056
2 084
2 156
2 1711
2.046
1 .964
1 .962
1 .973
2 059
2.056
1 972
1 95 1
1913
1 .937
1.985
2 097
2.243
2 301
2.303
2.429
2.940
3 955
4.159
4.071
3.372
2.810
2.657
2892
2.711
2.120
2.127
2.121
2.100
2.171
2.106
2.096
2.095
2.133
2.125
2.102
2098
2.117
2.116
2.118
2.118
2.124
2.131
2.148
2.168
2.160
2.143
2.143
2.133
2.124
2.111
2.106
2.106
2.096
0.349
0.349
0.350
0.350
0.350
0.350
0.350
0.349
0.349
0.350
0.349
0.349
0.349
0.349
0.349
0 350
0.349
0.349
0.349
0.349
0.349
0.349
0.348
0.349
0.350
0.352
0.353
0353
0.354
0.041
0.044
0.041
0.041
0.041
0.044
0.045
0.041
0.043
0.044
0.044
0.041
0.041
0.038
0.040
0.039
0.043
0.041
0.045
0.043
0.043
0.044
0.041
0.040
0.041
0.043
0.042
0.041
0.039
15063
14954
14992
14904
14855
14908
14793
14897
14738
14561
14699
14671
1 5052
15075
15188
15212
15322
15391
15368
15336
15308
15450
15236
14940
1 467 1
14306
14182
14210
1 4409
16515
16465
16411
16273
16109
16177
16243
16226
15862
15805
15877
16072
16527
16529
16712
16720
16812
16945
16920
1 6895
16946
16987
16762
16237
15862
15547
1 5446
15617
15662
12377
12358
12332
12255
12150
12210
12280
12262
12031
12000
12066
12179
12396
12393
12494
12541
1 2630
1 27 1 3
12692
12592
12684
12644
12454
12113
12001
11793
11706
11861
11935
B-54
-------
CLS Multilevel Calibration Using Etrans 1.462 cm-1 Reference Spectra (Continued)
File
CH,
CO
SF,
H2O(1) H2O(2)
H20(3)
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
2491
2.377
2.269
2238
2 265
2 237
2204
2 129
2118
2 115
2.090
2.132
2 156
2.183
2 155
2118
2 185
2226
2.342
2 557
2.606
2 832
2713
2498
2.691
2 495
2 508
2 839
3 220
2.101
2.106
2.109
2.109
2 112
2.114
2.118
2 109
2 108
2 109
2.136
2.115
2.116
2.114
2.112
2 143
2.188
2 155
2.154
2.190
2.182
2 206
2.201
2.191
2 187
2.171
2.151
2 165
2 170
0.354
0 353
0.354
0 355
0 356
0.356
0.356
0 356
0.355
0 355
0 356
0 356
0.356
0 356
0 356
0 357
0 358
0 357
0 357
0 357
0.356
0.357
0.357
0.356
0 356
0.356
0.357
0 357
0.356
0.042
0.04 1
0 044
0 042
0.042
0042
0.040
0.042
0 043
0 042
0.043
0.042
0.04 1
0.042
0.044
0.042
0.040
0.042
0.040
0 039
0.042
0.046
0.044
0.043
0.044
0.043
0.038
0.040
0 046
14295
14069
1 4063
13633
13382
13213
13227
13334
13429
1 3404
13330
13253
13367
13215
1 3 1 06
13088
12785
12681
12802
1 2942
13357
1 3095
12971
1 3 1 30
13248
1 3082
13057
13177
12987
15481
15385
15292
14918
1 4643
14465
14491
14577
14637
14638
14516
14468
14558
14398
14254
14181
13845
13986
13797
14173
14558
14215
14134
14289
14421
14326
14275
14363
14342
11752
11648
11590
11158
10949
10739
10798
1 086 1
10906
10934
1 08 1 8
1 0794
1087)
10733
10591
10497
10272
10346
10264
10445
10773
1 0435
1 0344
10521
10687
1 0592
10591
10657
10583
-------
CLS Multilevel Calibration Using Etrans 1.462 cm-1 Reference Spectra (Continued)
File
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
CH,
4.074
4 844
4 142
3 482
3 384
3 196
3.121
3.154
2 924
2778
2.743
2.771
2.703
2.728
2.610
2.493
2.418
2389
2 526
2.615
2.307
2.087
2.154
2 195
2.240
2257
2 289
2.289
2284
CO
2.185
2.192
2.211
2.214
2.208
2212
2.186
2.175
2.171
2 156
2.167
2.165
2.148
2.169
2.221
2.172
2.158
2.148
2.155
2.165
2.158
2.149
2.203
2223
2.223
2.226
2.202
2.222
2.200
N2O
0355
0.355
0.357
0.356
0 356
0.356
0.356
0.357
0.358
0 357
0.358
0.358
0.358
0.358
0.358
0.359
0.359
0.359
0.359
0.358
0 359
0.360
0.361
0.361
0.361
0.361
0361
0.361
0.360
SF6
0.042
0.042
0.043
0.042
0.043
0.043
0.044
0.044
0.043
0040
0.041
0.042
0.043
0.044
0.043
0.042
0.044
0.044
0.042
0.042
0041
0 045
0.043
0.043
0.043
0.039
0043
0.042
0.045
H20(l)
13493
1 3626
13038
13073
13 180
13253
1 3 1 29
13103
12882
12667
12294
12419
12399
1 2342
12387
12162
11968
11912
12021
1 2223
12178
1 2246
12229
11977
11817
11784
11553
11639
11899
H2O(2)
14748
14915
14234
14343
14427
14447
14363
14401
14107
13571
13181
13292
13221
13283
13198
1 3033
12900
12 $65
12968
1 3046
1 3090
i 3 1 54
13055
12866
1 2749
12651
1 2446
1 2.573
12795
H20(3)
10896
11025
10375
10457
10520
10576
10510
1 0497
1 034 1
10138
9827
9936
9878
9930
9839
9742
9593
9580
9664
9754
9789
9876
9755
9551
9429
9316
9154
9246
9495
B-56
-------
CLS Multilevel Calibration Using Etrans 1.462 cm-1 Reference Spectra (Continued)
File
CH,
CO
H20(l)
H2O(2)
H,O(3)
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
2 387
2408
2319
2 376
2.363
2 338
2.307
2284
2.279
2245
2.408
2.941
2.834
2780
2 733
2 654
2 572
2.5 1 1
2.528
2 536
2513
2519
2 535
2.556
2 574
2.617
2746
2.757
2 792
2.218
2 198
2.187
2 187
2.188
2.259
2253
2.240
2270
2.307
2.680
2531
2 357
2.305
2.320
2463
2.514
2.517
2.573
2.537
2498
2.462
2 769
2.715
2.789
2.810
2.772
2.754
2808
0.360
0.360
0 360
0 360
0361
0.362
0.362
0.362
0362
0 362
0 364
0.364
0.363
0.363
0.362
0 363
0 364
0.364
0.364
0.363
0 364
0.364
0 367
0.366
0.367
0 367
0.367
0366
0.367
0.045
0 043
0.046
0.042
0042
0.043
0.042
0 043
0041
0041
0041
0.042
0.044
0.043
0.042
0.043
0.042
0.040
0.041
0 039
0037
0 042
0.042
0 039
0.040
0.042
0.042
0.054
0.059
11959
12038
11871
11809
11673
11586
11563
11592
11629
11632
11889
12113
11887
11873
1 1 846
11713
11838
12011
1 1894
11833
1 1 665
11511
1 1447
11597
11457
1 1 696
11756
11023
10623
12908
12929
12824
12753
1 2540
12460
12374
1 2423
12491
12590
1 2853
13012
12822
12788
12771
12744
1 279 1
12846
1 2860
12814
12633
12497
1 25 1 8
12580
12489
12741
12778
12881
1 2692
9568
9582
9513
9476
9267
9152
9074
9150
9179
9267
9386
9558
9444
9451
9386
93 1 8
9361
9444
9410
9381
9228
9142
9037
9070
8921
9190
9200
9322
9046
B-57
-------
CLS Multilevel Calibration Using Etrans 1.462 cni-1 Reference Spectra (Continued)
File
CH,
CO
N,O
SF,
H2O(1) H2O(2) H2O(3)
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
Avg
Sid
2.870
2.997
3 05 1
2.838
2.788
2 807
2.773
2772
2.923
2914
2 836
2.839
2.963
3.052
3.134
2671
0.729
2.877
2.953
2.835
2.652
2.681
2.610
2.557
2.520
2.626
2.624
2.567
2.526
2.543
2.547
2.561
2.161
0.181
0.368
0 368
0.367
0 365
0 365
0.364
0.363
0.363
0.363
0.363
0.363
0.368
0.372
0.374
0.376
0.348
0010
0.013
0.006
0.003
0.002
0.001
0.000
0.000
0.000
0.000
0000
0.000
0.000
0.000
0.000
0.000
0.038
0.009
1 1605
11629
11797
1 2090
12221
1 2257
12322
1 2475
12707
1 2872
1 3065
13233
13306
13420
1 3500
15095
2035
12684
12727
12898
13146
13272
13284
13324
13430
14006
14265
14439
14653
14754
14827
14904
16492
2270
8907
8881
9226
9564
9685
9709
9808
9926
10171
10323
10543
10766
10874
10877
10943
12328
1784
B-58
-------
Attachment 4
Concentration Data from Innovative Nonlinear Algorithm
B-59
-------
Concentration Values Reported from Innovative Nonlinear Algorithm
File CH4 CO N2O SF6 H2O CO2 shift res
2
o
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
2.527
2.404
2.323
2.306
2348
2.393
2.448
2.612
2 685
2.746
2.661
2.520
2.470
2.451
2.440
2417
2412
2.383
2.444
2.43 1
2 327
2.258
2313
2.276
2.149
2.108
2.103
2.215
2 161
2.401
2.344
2.285
2.399
2 316
2.295
2.339
2.269
2 255
2.268
2.274
2.202
2.261
2.278
2.209
2212
2 193
2 186
2 176
2 188
2 184
2 160
2 158
2.112
2087
2071
2050
2.062
2064
0.397
0.396
0.398
0.399
0.398
0.397
0.393
0.393
0 390
0.388
0.388
0 387
0 387
0.385
0.386
0.384
0.383
0.383
0.382
0.382
0.382
0.381
0.379
0.379
0.380
0.379
0.378
0.378
0378
0051
0050
0.047
0.046
0044
0.043
0.044
0047
0043
0.043
0 042
0 046
0047
0.046
0.045
0 048
0.045
0 044
0 046
0048
0 045
0 047
0 047
0 043
0.044
0 043
0.043
0.036
0 045
10684
10724
10902
10969
10894
10879
10684
10719
1 0546
10467
10464
10566
10552
10534
10527
10516
10525
1 05 1 6
1 0546
10525
10490
10521
10535
10547
10485
10352
10347
10349
10297
520.1
515.3
510.9
510.9
509.1
509.1
509.7
510.5
510.0
509.2
509.5
509.5
509.9
510.1
510.0
5104
5104
510.4
5 1 0.0
510.7
510.0
515.5
529.3
511.4
501.1
500.4
499.0
505.3
498.2
0.52
0.51
0.51
0.51
0.51
0.51
0.51
0.51
0.52
0.52
0.52
0.52
0.52
0.52
0.51
0.5!
0.51
0.51
0.51
0.51
0.51
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.51
1 .486
1.481
1.487
1.485
1.483
1.482
1.475
1.473
1.466
1.463
1.462
1.461
1.460
1.459
1 .459
1 .459
1 .458
1.458
1 .458
1.457
1.457
1 .456
1.455
1 .456
1.455
1.453
1.454
1.455
1.453
B-60
-------
Concentration Values Reported from Innovative Nonlinear Algorithm (Continued)
File CH4 CO N,O SF, H,O CO2 shift res
3!
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
2 199
2.256
2 096
2 1 18
2 097
1 974
2.010
2 036
2 003
2.049
1 923
1 982
1 .996
2 168
2.181
2510
2418
2 ""92
2.233
2.254
2.259
2 152
2 105
2 05 !
2 114
2 086
2.043
2.062
2 121
2 050
2 040
2024
2013
2024
2013
2014
2028
2039
2 056
2012
2010
2027
2027
2046
2 054
2 049
2 031
2 023
2021
2 032
2 033
2 035
2 049
2042
2 026
2041
2 030
2 053
0 378
0.377
0 379
0.377
0.378
0.378
0.377
0.377
0.377
0.377
0 377
0 377
0.376
0.378
0.378
0.377
0.377
0.376
0377
0.376
0.376
0.377
0.376
0.376
0 376
0.376
0 376
0.376
0.376
0.039
0 04 1
0 04 1
0.043
0.03 1
0 033
0.037
0.034
0.036
0 036
0.032
0.035
0.041
0.039
0 035
0 043
0 045
0.042
0.042
0041
0.033
0.036
0.041
0 04 1
0.04 1
0.038
0.043
0.037
0.037
10178
10256
10140
10032
1 0069
9997
1 0087
10191
1 0206
10194
1 0040
10100
10130
10214
1 029 1
10246
1 0076
9955
9851
9958
10073
10263
10226
10107
10127
10103
10114
1 0066
1 007 1
495.2
495.9
494.6
4942
494.1
494. 1
494.5
497.4
495.4
491.1
492.3
490.9
493.3
492.9
494 1
4974
493.6
4932
492.2
4924
491.3
491 2
49 1 .0
4907
490.3
492.7
494 1
495.6
496.1
0.51
051
0.51
0.51
0.51
0.52
052
0.5 1
0.52
0.51
0.51
0.5 1
0.51
0.5 1
0.51
0.51
0.51
0.5 1
0.5 1
051
0.51
0.51
0.51
0.51
0.51
0.5 1
051
051
0.51
1 .455
1 .454
1.453
1 453
1 .454
1.453
1.453
1.453
1.451
1 .45 1
1.453
1 .454
1.455
1 454
1.455
1 .454
1.453
1 453
1.452
1.451
1 .45 1
1 .45 1
1 .45 1
] 450
1 .450
1 .45 1
1 .45 1
1 .449
1.449
B-61
-------
Concentration Values Reported from Innovative Nonlinear Algorithm (Continued)
File
CH4
CO
SFf,
H,O
CO,
shift
res
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
2.289
2051
2.022
2277
2.301
2.207
2.314
2.406
2264
2.240
2.263
2.426
2.400
2283
2 295
2.370
2 345
2.426
2.485
2 368
2.306
2.245
2.243
2.214
2.350
2377
2 158
2.263
2.109
2038
2 054
2038
2.041
2.065
2025
2.022
2035
2.057
2.030
2.020
2.032
2036
2023
2.015
2.021
2026
2061
2020
2029
2089
2 034
2046
2.033
2.033
2.026
2034
2.024
2029
0.375
0.376
0 376
0.376
0.376
0 375
0.374
0375
0.374
0.374
0.374
0.374
0.374
0 375
0.375
0.375
0.374
0.375
0.374
0.373
0.374
0.374
0.374
0.374
0.375
0.374
0.374
0.374
0.374
0.040
0.04 1
0.040
0.034
0.038
0.041
0.043
0.038
0.039
0.043
0.043
0.043
0.037
0.039
0.038
0.041
0.040
0.037
0.038
0 04 1
0041
0.04 1
0.042
0038
0.038
0.039
0 04 1
0.034
0.032
10082
10150
10207
10113
10033
9912
9864
9780
9668
9665
9682
9749
9751
9729
9861
9754
9888
10034
9895
9734
9813
9683
9652
9725
9929
9817
9668
9700
9782
494.7
492.4
491.5
491.2
491.5
491 3
491.8
492.9
494.8
492.5
491.7
492.2
491.8
49 1 .4
491 5
490.8
491.2
491.3
49 1 .4
491.3
491.2
491.7
492.2
491.4
491.7
491.8
492,0
491.7
491 9
0.51
0.51
0.51
0.51
0.51
0.51
0.51
0.51
051
0.51
0.51
0.51
0.51
0.51
051
0.51
0.51
0.51
0.51
0.51
0.51
0.51
0.51
0.51
0.51
0.51
0.51
0.51
0.51
1.449
1.449
1 .450
1.449
1.449
1.448
1.446
1.446
1 .445
1.447
1.447
1.447
1.448
1.449
1.449
1.449
1.448
1.448
1 .446
1.446
1.446
1.447
1.449
1.449
1.448
1.448
1.447
1.447
1.449
B-62
-------
Concentration Values Reported from Innovative Nonlinear Algorithm (Continued)
File CH4 CO N,() SFr, H2O CO, shift res
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
1 17
2.044
2.200
2428
2.500
2 590
2879
3 074
3 243
2924
2.534
2.621
2.75 1
2 656
2.594
2 650
2 705
2 814
3.169
3.879
4 201
3 975
3718
3 624
3.550
3 643
3.660
3731
3 780
4032
2.027
2036
2043
2024
2032
2018
2026
2032
2025
2 034
2.042
2 036
2 03 1
2026
2 029
2030
2 033
2 033
2040
2048
2049
2049
2 046
2.044
2 045
2052
2 060
2058
2 065
0 375
0.374
0.374
0.374
0.374
0.373
0.374
0 374
0 374
0.373
0.376
0.375
0.375
0.375
0 374
0.374
0.374
0.374
0.374
0.375
0.375
0.376
0.375
0.374
0.375
0.376
0.376
0.377
0377
0 03 1
0.039
0.038
0 04 1
0.040
0.042
0.04 1
0 04 1
0.043
0.044
0.041
0041
0 043
0.043
0.044
0.04 1
0.042
0.042
0.040
0 040
0 040
0 040
0 042
0 043
0.04 1
0.039
0.044
0 040
0.042
9808
9683
9698
9749
9768
9874
9834
9890
983 1
9773
9848
9864
9809
9816
9768
9779
9781
9856
9974
10073
10058
1 0066
1 0079
1 008 1
10126
10154
10195
1 0249
10354
491 7
49 1 .9
493.5
493.7
491.9
493.0
4929
493.2
4923
49 1 .5
491 4
49 1 .7
492.2
491.6
491.4
491.5
49 1 .7
4927
495.0
496.4
496. 1
495.5
494.8
494.3
494.8
494.5
495.2
4965
4984
051
0.5 1
0.5 1
0.51
0.51
0.51
051
0.5 1
0.51
0.51
0.51
0.51
0.51
0.51
0.51
0.51
051
0.51
0.5 1
0.5 1
0.51
051
0.5 1
0.5 1
0.51
0.51
0.51
0.52
051
1.448
1 .449
1 449
1.448
1.448
1.447
1 .449
1 .449
1.448
1.448
1 .449
1 .450
1 .449
1 .449
1.448
1 .447
1.447
1 .447
1.448
1 449
1 450
1 .450
1 .450
1 451
1 .450
1.451
1 .45 1
1.452
1 .45 1
B-63
-------
Concentration Values Reported from Innovative Nonlinear Algorithm (Continued)
Kile
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
14(5
CH4
4.357
4.803
4868
4.382
4041
3 875
4.182
4.663
5.318
5 381
5.358
5.273
4871
4937
4.882
4.632
4.437
4813
5 625
4.341
3 573
3.181
2.792
2 503
2631
2 639
2.593
2.726
2.767
CU
2065
2068
2068
2070
2.086
2 104
2.111
2 107
2.105
2 106
2 109
2099
2097
2 107
2.102
2 103
2 104
2 092
2089
2.082
2.089
2.097
2.096
2 114
2098
2091
2.090
2.091
2 101
IN2U
0.377
0.378
0.378
0377
0.377
0.378
0.378
0.377
0.379
0 379
0.380
0.380
0 379
0.380
0.379
0.379
0.379
0.379
0.379
0.378
0.377
0.378
0.377
0.379
0 379
0.379
0378
0.378
0.379
ป*ซ
0.041
0.039
0.040
0.04 1
0.038
0038
0 040
0.040
0.040
0 039
0039
0.039
0 038
0.038
0.037
0.038
0.040
0.037
0 038
0.040
0.037
0.04 1
0.043
0.045
0.043
0.039
0.043
0.047
0.046
H2O
10410
10431
10456
10437
1 0475
10467
10507
10615
10714
10737
10732
10737
10751
10799
10792
10759
10722
10723
10747
10527
1 0420
10452
10381
10377
10315
10227
10217
10204
10150
C02
499.6
500.4
500.7
500.3
501.6
502.5
504.6
504.7
504.7
504.2
504.3
504.5
503.3
503.7
503.8
503.8
503.5
503.9
504.1
499.1
495.6
493.9
497.1
504.2
501.5
500.2
501.6
506.8
513.1
shift
0.51
0.52
0.52
0.52
0.5 1
0.51
0.51
0.51
0.51
0.51
0.51
0.52
0.51
0.52
0.52
0.52
0.52
0.51
0.51
0.51
0.51
0.51
0.51
0.51
0.52
0.52
0.52
0.52
0.5 1
res
1.451
1.452
1.452
1 .452
1.453
1 .453
1.453
1.453
1 .454
1 .454
1 .454
1 .454
1 .454
1 .454
1 .454
1.455
1.455
1 .455
1.456
1 .457
1 .456
1 .456
1 .457
1 .456
1.456
1.457
1.456
1.457
1.457
B-64
-------
Concentration Values Reported from Innovative Nonlinear Algorithm (Continued)
File CH4 CO N2O SF, H,O CO, shift res
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
2770
2 686
2641
2851
2 857
2813
2 680
2.749
2.749
2.738
2547
2 463
2 366
2468
2 579
2577
2 595
2 609
2582
2542
2521
2 425
2 403
2.297
2 168
2.180
2.334
2 360
220!
2111
2 108
2 108
2 097
2091
2 095
2091
2 115
2 102
2093
2 103
2099
2 103
2 114
2 128
2 149
2 198
2 239
2 148
2 132
2 139
2 117
2 134
2.153
2 216
2 129
2 141
2 120
2 123
0 378
0.379
0 379
0.379
0 379
0.379
0 379
0.380
0.380
0 380
0.380
0 380
0.380
0.380
0.379
0.380
0.379
0 380
0.380
0 380
0.382
0.381
0381
0.381
0.381
0.381
0 380
0.380
0.380
0 046
0.044
0 042
0.042
0 043
0.046
0.046
0044
0.045
0.045
0044
0043
0.043
0.04 1
0044
0.045
0.045
0044
0 043
0.045
0.047
0.047
0.047
0.045
0.044
0.046
0.047
0.045
0.046
10140
10181
10160
10102
10075
10022
9923
9860
9846
9836
9872
9817
9773
9762
9736
9748
9648
9654
9706
9738
9767
9738
9727
9728
9718
9662
9559
9490
9599
5 1 6.4
5 1 8.5
5224
535.6
536.3
533.9
525.5
533.2
532.7
530 1
514.4
512.3
5 1 0. 1
520.2
532.1
535.4
538.0
534.9
525 5
534.9
539.0
532.2
529.4
524.3
530 1
528.5
539.1
540.5
527 1
0.52
051
051
0.51
051
0.51
0.51
051
0.52
052
0.52
0.52
0.52
0.52
0.52
051
0.51
0.52
0.52
052
0.52
0.52
052
0.52
0.52
052
0.52
0.52
0.52
1 .458
1 .459
1 .460
1 460
1 .46 1
1 .46 1
1.461
1 .462
1.461
1 .462
1 .463
1 462
1 462
1 .46 1
1.463
1 461
1 .463
1 .462
1 .462
1 463
1 .463
1.463
1 .463
1 .463
1 464
! .462
1 .464
1 .464
1 .465
B-65
-------
Concentration Values Reported from Innovative Nonlinear Algorithm (Continued)
File
CH4
CO
H,O
CO,
shift
res
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
2.160
2.187
2.260
2282
2.150
2 067
2.070
2.078
2.173
2 172
2.086
2.065
2.03 1
2050
2.102
2219
2.366
2.427
2435
2.557
3.073
4.122
4348
4.267
3 534
2.950
2.790
3 046
2.855
2 141
2 143
2.136
2.129
2.220
2.136
2 126
2.125
2 170
2.157
2.132
2 128
2.131
2.132
2.137
2.140
2.136
2 154
2 177
2.192
2 188
2 165
2.168
2.176
2 166
2 144
2 137
2.140
2.124
0.382
0.381
0.381
0381
0.381
0.381
0.382
0.381
0.381
0.381
0.381
0.381
0.381
0.382
0.381
0 382
0.381
0.381
0.381
0.381
0.381
0.382
0382
0.382
0.382
0 380
0.381
0382
0.382
0.045
0.048
0.044
0 045
0.045
0.047
0.049
0.044
0.046
0.048
0.048
0 045
0.044
0.041
0.044
0.043
0.046
0.045
0.048
0.047
0 047
0.047
0.044
0 043
0.045
0047
0.045
0.044
0.043
9594
9573
9563
9543
9498
9531
9560
9552
9421
9404
9458
9526
9639
9648
9709
9735
9798
9859
9847
9827
9859
9890
9808
9602
9478
9298
9243
9375
9414
523.2
521.2
519.6
520.4
520.5
515.4
516.2
516.8
530.4
529.8
520.0
518.4
507.1
509.8
5106
511.5
509.4
506.6
506.4
506.1
506.0
506.4
514.2
526.2
528.7
536.2
540.4
545.5
546.3
0.52
0.52
0.51
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.51
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.52
1 .464
1.464
1.465
1.464
1.466
1 .465
1.465
1.465
1.465
1.466
1 .466
1 .466
1.465
1 .466
1.465
1 .466
1.465
1.467
1.467
1 .466
1 .465
1.467
1 .467
1.467
1.467
1.467
1 .467
1.467
1 .468
B-66
-------
Concentration Values Reported from Innovative Nonlinear Algorithm (Continued)
File CH, CO N:0 SF6 H2O CO, shift res
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
2 638
2517
2 398
2 375
2 393
2.370
2.340
2 265
2 255
2 250
2 230
2267
2.293
2.320
2 297
2 265
2 336
2 373
2492
2.704
2.755
2981
2 871
2 653
2 850
2647
2.670
3 004
3 396
2 133
2 139
2 138
2 139
2.134
2 139
2 142
2 125
2 125
2 133
2 160
2 142
2 137
2 138
2 143
2 177
2 231
2 190
2 188
2 231
2 220
2 253
2251
2235
2226
2206
2 181
2 202
2 208
0.383
0 383
0 383
0382
0.381
0382
0383
0382
0.383
0 383
0.383
0.385
0.384
0.385
0.385
0.386
0.386
0 384
0.384
0 384
0 384
0.385
0.384
0 385
0.385
0 385
0.385
0.386
0.385
0 045
0 045
0.047
0 045
0 045
0 045
0.043
0.045
0 046
0.046
0.046
0.045
0.044
0 045
0.047
0 045
0 043
0.046
0.043
0.042
0.045
0.049
0.047
0.046
0.047
0.047
0.04 1
0.043
0 049
9309
9250
9 1 80
8948
8781
8702
8710
8774
8808
8821
8747
8726
8786
8695
8610
8595
8483
8522
8462
8569
8788
8594
8567
8646
8735
8676
8673
8711
8693
539.0
533.3
531.7
544.0
5476
548.2
543.1
536.3
530.4
526 4
528.6
528.1
524.0
529.3
529.6
525.5
5342
532 3
539.7
537.6
527.7
538.1
537.1
525.2
521.1
524.2
530.5
532.9
536.8
052
0.52
052
0.52
0.52
0.52
0.52
0.52
052
0.52
0.52
0.52
0.52
0.52
051
0.5 1
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.51
0.52
051
0.52
1 468
1 .468
1 468
1 468
1 467
1 469
1 468
1 .468
1 .467
1 .469
1 .469
1 470
1.471
1.470
1 .472
1.472
1.474
1 .472
1.472
1 471
1 .470
1.471
1.473
1.471
1.470
1.470
1.471
1.470
1 471
B-67
-------
Concentration Values Reported from Innovative Nonlinear Algorithm (Continued)
File CH4 CO N20 SF6 H2O CO2 shift res
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
4.291
5 124
4.369
3 664
3.562
3 367
3.291
3.322
3.084
2.947
2914
2.945
2892
2.900
2.778
2.665
2.589
2.557
2.707
2.803
2.485
2.261
2.325
2.371
2413
2.428
2 460
2464
2.470
2234
2.243
2.260
2266
2.253
2260
2.233
2.215
2219
2.218
2232
2.228
2.207
2.225
2291
2.227
2.209
2 197
2208
2.221
2.215
2205
2273
2298
2.300
2.312
2276
2.301
2.264
0.384
0.385
0.384
0.385
0.384
0.385
0.385
0 385
0387
0.385
0.385
0.386
0.386
0 384
0.384
0.385
0.385
0385
0 386
0.385
0.386
0 386
0.386
0 386
0.386
0 386
0.386
0.386
0.387
0.045
0.045
0.047
0 045
0.046
0.047
0.048
0.047
0047
0.043
0.044
0.045
0.046
0.047
0.046
0 045
0.047
0.047
0.045
0.045
0.044
0.048
0.046
0.047
0.046
0.042
0.046
0044
0.047
8915
9043
8649
8697
8754
8771
8735
8760
8589
8452
8238
8322
8295
8323
8264
8183
8100
8076
8142
8199
8237
8288
8217
8088
8021
7953
7825
7918
8060
537.6
535.2
545.8
537.2
532.8
531.6
537.9
536.9
539.0
543.3
556.0
543.6
543.3
54 1 .0
536.8
534.9
538.7
540 7
538.8
536.3
537.9
555.2
557.9
552.0
558.3
572.4
568.9
559.1
540.2
0.52
0.52
0.52
0.52
0.52
0.52
0.51
0.52
0.51
0.51
0.51
0.51
0.51
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.51
0.51
0.51
0.51
0.51
0.51
0.51
0.52
0.51
1.470
1 471
1.472
1.471
1 .470
1.471
1.471
1.471
1.472
1.475
1.475
1.475
1 .476
1.475
1 .475
1.475
1.475
1.476
1.475
1 475
1 .476
1 475
1 475
1.476
1.477
1.477
1.478
1.477
1.476
B-68
-------
Concentration Values Reported from Innovative Nonlinear Algorithm (Continued)
File CH4 CO N2O SF, H2O CO2 shift res
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
2 568
2.587
2 495
2.559
2.548
2.519
2.485
2 463
2458
2423
2.575
3.139
3 036
2 979
2 929
2 844
2761
2.693
2720
2.723
2.703
2702
2719
2 729
2745
2.784
2 904
2 923
2.949
2 285
2 260
2246
2.248
2255
2 343
2 338
2 323
2.361
2409
2917
2704
2 469
2401
2421
2615
2684
2691
2769
2 721
2 668
2619
3 052
2 973
3 077
3 109
3 053
3 027
3 107
0.387
0.387
0.387
0388
0.388
0.388
0 388
0.389
0.388
0388
0.389
0.390
0.389
0.390
0 389
0.389
0.389
0.389
0.388
0388
0.389
0 389
0.390
0.389
0.389
0.389
0.389
0.389
0 389
0.048
0.046
0.049
0.044
0.045
0.046
0 045
0.046
0 044
0 044
0 044
0.045
0 047
0.046
0 045
0.045
0.045
0.043
0 044
0 042
0.040
0 044
0 045
0.042
0.043
0 044
0.045
0057
0 062
8127
8154
8082
8038
7920
7872
7815
7848
7885
7941
8034
8166
8080
8067
8053
8004
8029
8081
8076
8048
7941
7874
7840
7896
7825
7981
7995
8077
7954
533.8
531.9
534.3
5336
538.3
538 0
538.3
537.6
541 8
540.9
541.7
544.4
545.8
540. 1
541.6
556.1
552.7
554.9
560.4
555.5
554.2
553.3
558.0
567.4
574.0
580.4
579.9
578.8
583.2
0.52
0.52
0.52
052
0.51
0.51
0.5 1
0.51
0.51
0.51
0.51
052
052
052
0.52
0.52
052
0.51
0.51
051
051
0.5 1
051
0.51
052
0.52
0.52
052
0.52
1.474
1 476
1.476
1 .476
1.478
1 479
1 .479
1 479
1 479
1.479
1.478
1 .475
1 .476
1 .476
1 .476
1 .476
1.476
1 477
1.476
1.477
1 478
1 .479
1.479
1.478
1.478
1.477
1.476
1.476
1 .476
B-69
-------
Concentration Values Reported from Innovative Nonlinear Algorithm (Continued)
File CH4 CO N2O SF,, H2O CO2 shift res
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
average
std
3014
3 133
3 222
3.011
2 959
2.987
2.959
2.960
3.109
3 109
3.026
3.025
3.156
3.248
3.329
2758
0.726
3.215
3.334
3 155
2.890
2.930
2.831
2.752
2.703
2.848
2.849
2.743
2682
2.708
2715
2735
2208
0.248
0.3S9
0.388
0.389
0.389
0.389
0.389
0 389
0.388
0 389
0.390
0.391
0.396
0 402
0.404
0 404
0.382
0.01
0.015
0.007
0.005
0.004
0.003
0.002
0.002
0.002
0.002
0.001
0.001
0.001
0
0.001
0.001
0.041
0.01
7932
7932
8064
8254
8324
8337
8369
8437
8556
8676
8790
8906
8964
9011
9069
9496
879
588.1
597.7
583.6
568.3
566.9
568.4
569.2
566. 1
562.9
555.2
55 1 .0
549.0
545.4
544.6
545.3
519.2
24.4
0.52
0.51
0.51
0.51
0.51
0.51
0.51
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.52
0.51
0
1.477
1.478
1.477
1.476
1 476
1.476
1 .476
1.476
1.473
1.473
1.473
1.472
1.471
1.470
1.473
1.462
0.011
B-70
-------
Appendix C
FTIR Spectral Analyses Conducted
by ARCADIS Geraghty & Miller (David Natschke)
C-i
-------
(Intentionally Blank)
C-ii
-------
MEMO
To.
John Kmsey
US EPA, APPCD
ARCADIS Geraghty & Miller, Inc
PO Box 13109
Research Triangle Park
North Carolina 27709
Tel 919 544 4535
Fax 919 544 5690
From.
David F. Natschke
Date-
27 September 2000
Subject:
Report on the Analysis of Open Path FTIR Data from the Chlor-Alkali Plant
Introduction
EPA supplied two open path FTIR data sets. The first consisted of ten Iomega* Zip disks that
included .spc files. These files \\ere single beam sample spectra collected by USEPA Region IV
personnel. The second data set consisted of 1 Fujitsu magneto optical (MO) disk that included .spc files.
These files were absorbance spectra "packed" as "multifiles" and consisted of upwind (background)
spectra collected by USEPA/APPCD personnel, which had already been processed from raw
interferograms to absorbance by EPA. The "spc" suffix indicates a data file format used by MIDAC,
Galactic Industries, and others for spectral data.
The processing steps consisted of obtaining the appropriate software, file transfer and
organization, packing the individual files as multifiles, conversion to absorbance, unpacking the
multifiles to individual absorbance files, processing through the AutoQuanf' program, and results
organization. These steps are described in the following sections.
Obtaining the Software
Two software packages \\ere needed to accomplish this task: GRAMS/32ฎ and AutoQuantฎ.
GRAMS/32^ was needed for the processing of the .spc files, while AutoQuantฎ is the quantification
package. GRAMS/32^ is a Galactic Industries product that may also be obtained through MIDAC
Corporation and other instrument manufacturers. AutoQuantฎ is a MIDAC Corporation product. Both
packages were obtained from MIDAC. The "non-collect" version of GRAMS/32ฎ was purchased, as this
was sufficient for the task and slightly less expensive.
C-l
-------
File Transfer and Organization
Sample spectra were obtained as .spc files on 10 Zip disks. Arcadis found that the files were
highly disorganized with many duplicates and files from sequential samples spread across multiple disks
In a few cases, an individual file was completely missing. Many irrelevant files, unknown purpose, w
also included.
The disks were manually cataloged to determine the location of sequential sample files and to
identify missing files. A total of 1.964 unique data files from seven nominal sampling dates were
identified. Unique files were then transferred to hard disk and organized in directories by nominal
sampling date. These files were then archived to a recordable CD before any file manipulation was
performed. The following table describes the number of sample files identified by sampling date.
Table 1. Samples by Date Prefix
Sampling date prefix Number of sample files
D0217 1
D0218 276
D0219 327
D0220 501
D0222 272
D0223 282
D0224 305
Packing Individual Files as Multifiles
The spectra were in single beam format. While not critical, the conversion to multifile format is
a tremendous lime saver prior to calculation of absorbance spectra. The multifile format permits spectral
arithmetic operations to be performed on all members of a multifile with a single command.
The first file manipulation performed was, therefore, packing as multifiles. GRAMS/32ฎ was
used for this conversion. As implemented there is a limit of 60 files that can be packed into a single file.
For convenience, 50 files were placed in the typical multifile. These files were named with the sampling
date prefixes described in Table 1 with the addition of a single letter suffix and then archived to a
separate subdirectory on the hard disk.
C-2
-------
Conversion to Absorbance
Spectra must be convened to absorbance prior to any quantification, based upon the following
equation:
Abs = log
U
In this equation, I refers to the single beam spectrum while I() is a reference spectrum.
In open path FTIR. it is difficult to obtain a true reference spectrum. The full optical path can
rarely be contained and purged of all infrared active compounds. A number of techniques have been
used to generate a useful reference spectrum. It is sometimes possible to obtain a valid upwind spectrum
that is free from the compounds of interest. Another technique calls for the generation of a "synthetic
background" spectrum, usually by taking a spectrum and removing all known spectral features from it.
The synthetic background spectrum is often generated manually, though it may also be generated by
fitting some function, for example a spline function, to the baseline of the single beam reference
spectrum.
EPA supplied a synthetic background spectrum for use with this data set. The generated
multifiles were converted to absorbance using this reference spectrum. The absorbance multifiles were
archived to hard disk in separate subdirectories.
Unpacking the Multifiles to Individual Absorbance Files
Since AutoQuant(" cannot deal with absorbance multifiles GRAMS/32ฎ was used to separate
multifiles into individual files. The individual files were archived to hard disk.
Processing through the AutoQuanf Program
AutoQuant^ requires one or more "method" files, the supporting calibration spectra with
concentration data, and sample absorbance spectra. EPA supplied three method files and all the
associated calibration spectra lor use in the quantification of these data.
C-3
-------
In use, a given method is calibrated with the supplied calibration spectra and then applied to the
selected spectrum or spectra (batch mode). For these calculations, three separate methods were needed.
Each was applied sequentially to the selected set of spectra. Results are in ppm. Results were archived
to hard disk as .txt files.
Organization of Results
The AutoQuantฎ results were imported into Excelฎ spreadsheets, 1 per sampling date, as
multiple .txt files. Since AutoQuantฎ does not maintain the original sample order in its results file,
results were sorted within Excel'" by sample name (number) to restore the original order.
The original sample date and time had been "lost" (not transferred) by either GRAMS/32ฎ during
the conversions to and from multiples or AutoQuantฎ. Examination of individual absorbance files
within GRAMS/32ฎ shows that the sampling date and time are still attached internally after all
manipulations were completed. The original sampling date and time were recovered by using the DOS
command: dir ป dir.txt wiihm each of the single beam subdirectories. This ASCII file was then
imported into the Excelฎ spreadsheets and aligned with the results data. Printouts of these files are
included with this memo.
Upwind Data
Separate from the sampling performed by Region IV personnel, upwind data were independently
collected by APPCD personnel and equipment. These data were provided separately to Arcadis. Arcadis
found that all the preliminary data manipulation had already been performed and that soectra already
existed as individual absorbance files ready for AutoQuantฎ. Because these data were collected on a
different instrument and at a different spectral resolution, the method files and calibration spectra used
for the samples were not appropriate to the upwind spectra. EPA also provided the correct method file
and calibration spectra.
Quantification and results processing were performed as described above for the 60 files
generated on 2/14/00. Examination of the individual results revealed 2 sets of the 60 that had
questionable results for one or more compounds. The errors associated with these concentrations were
much higher than the other 58 for the same compound. USEPA personnel had made the sam?
C-4
-------
observations during calculation of this data set. These two samples were, therefore, eliminated after
examining the original spectra and results from these two samples were not used in the calculation of
average upwind concentrations.
The individual results from the upwind samples were used to calculate average concentrations
and the standard deviation. These values were then used to calculate a detection limit for each compound
ba.sed upon the typical equation.
Detection, limit = mean +3 * <7
where o is the standard deviation.
Arcadis used a slight de\ lation from the above equation in calculating a detection limit for SF(1.
As the Table 2 shows, both the average and the standard deviation for this compound are 0. For this
compound only, Arcadis used the average erroi reported by AutoOuantฎ in place of the standard
deviation.
Table 2. Results for Upwind Data, including Estimated Detection Limits
Results are in ppm
Average
Standard Deviation
Detection Limit
Carbon
Monoxide
0.264
0.155
0.729
Methane
1 .795
0.03 1
1.887
Nitrous
Oxide
0.30!
0.004
0.312
Sulfur
Hexafluoride
0
0
0.000241
Intercomparison
Hardcopies of the results spreadsheets are being delivered with this memo/report. Of these,
spectra from 2/24/2000 were separately analyzed by Mantech; these results were supplied by the WAM.
Arcadis results were compared point by point with the Mantech results. These comparisons are found in
the four attached graphs. It can be stated that differences are minor to none and are within the
AutoQnantฎ reported errors. Trendlines were established for methane, carbon monoxide, nitrous oxide,
and sulfur hexafluonde. These results are reported in Table 3.
C-5
-------
Table 3. Intel-comparison Results
___ Slope _ Intercept
Methane 0.9988 0.0057 1
Carbon monoxide 0.9735 0.0074 0.9986
Nitrous oxide 1.0064 -0.0013 0.9965
Sulfur hexafluoride 1 0 1
These factors refer to Mantech results as the independent variable (x) and Arcadis results as the
dependent variable (y).
The Mantech and Aicadis results may be considered identical for all practical purposes.
C-6
-------
ifluoride
x ^
X 5
!- 3
ซ2 "o
3 CL)
:ENING METHOD +
Alkali Testing Study.
- Instmment @ 0.5 cm
ft o -ง
U S '^
H- , O
TJ ~
z r g
ra J
U T3 "5
C cj
H D Q
' "O
U 3
E
U "O
^3 -^
f O
E
w C
1 3-1
s g|
Ol u
B. _e
u
ซ SS r
a- o-o
rs
ซ
w Q^
"5 c
ซ ft
OJ J3
05 o
E
C "
C ^3
e 'ง
re .ฃ
u -o
C "C
0 X
c
ca
ammonia mor
r^ r~~ ,r- r*~i vO r^j r*~l in OC vD OC rN Tf ON OC O ' vO "^1" rf~i P~~ P^ OC r*-, VD in P^ OO p^- VC ' OO in ^1" VD
^-^ON ^tONO- ^r^-.ocvDol^t^oJr^.oJr^ocp^fNfNfN' 'CNocp^^t-OOOr'", vnp^- ^rn
cNr-)voP"^t"'v"'-~" ' CNP--VOOO miocooONp^inmm, vocNCinTtcNcNcNr^jcN-^-CN
VC vD ND ^o in ^D vD VD VO VD vD vD vD P^ vD vD vD P^ VD vD vD VO vD VD VD VC VD VD VO VD VD VD vO VD VD
~s* oc , . >n in in VD ON ^- C: oc ON O O P^ oo in VD m in *3- ON vo in CN r^ r 'ino^ ONr*~, ovDON^-ooinocp^-Oc-^, Or*-j
^Q vD t/^( 'I' 'n t ^ O O r vc ON oc P^ ON ON P^ p- P^ >n ^T m in ^ r*~> ^t m, ^ ^ rN rN m
vD^ovOtNCOVOVOP^vD^vDvD'vDvc'vDVO'vCVDvCvDVCvDvOvOvCvCVDVOvOvDVOvDVDvO
vy^iny^oj'-tONOiinONOC: ocr^rNr-jvDcO' CCONI inrNOroinrNOOvO^tcNvor^
rr' r<~, ^f OJ O ^t" ' ^p^inO^-OOCr^lp^r^iOr^/ONON' '^tcNONOOin^'^tOONTfOr^, mcxD
d o CN r-i o r^, ON in r^", - CN CN fN m 'co- ONONONONp^ONONoooovDp^^finr ON
OCocP^OOOCOCP-P^OCOCOC^OCOCOCOCOC'OOOCOCOCP^P^I ^P^P^P^P^t P^P-t^P-P^P^t^
co"-cooodoooodc'oodddoodddododdo'ddood
ococ'r~ococococococr-ococococococococococ'ococooocp~ococooooocoor~ocoooo
r~jcNr^,r oiocroinocp-in p^p~oc-^-invD ^vOrNOvo m 'Tj-voocooo '
in in, in m, *- f- in Tf m, in in vo in m, in, m, vD in m, in in in m, in m, in in vn in in ^f in m in m,
r^": r^, m, in ' inocp^. 'fNr-OON' OOt^-^t^fNONOC^t' 'CNON' ^ONP^-CNf 'ONCNvD- CNVD
T^- '-f ON <*D a*- r^j ^ in VD ON in in in vD ON ^- ON oo oc vo p^ P^ vc in vo ON vD in ^j~ m ON vo ~ ON vo
vDvCcNr-j rNin^tP^in^rocrNcN' r^, rN rN -, '< ^CNCNCN- ' cN' ICN
C'CCOOOOOOOCOOOCOOOOOOOCOCOOOCOOOOOO
r^-i r<-, rN rN cN r^-, - r\ CN rN m, ^- r<-, CN rN . CN m rN rsl
GGOC_OOOOOOC:COC_O,_O_O_OOOOOOO ooooo
OOCCCoO'OCOOOOOCCoCSoCo'SOOOC'OOOOoOOOO
oocd cod coo dodo d d d decoded cdocd
C^ - - ' ' - - C^ C^ '^-j (^ v . C_^ C^ c^ i^_^ C^ ^- ^^ ^^ C^ CD C^ C' ^D ^^ ^^ C^ C^ ^} ^^ ^^ ^D (^ v^^ C^ ^^
rNjrNir^oJoirNc^rxlr^rNirJrNirNir^rNirNir^lr^r^
Ut^CJOUOUCJO'JUOUCJCJUUCJOUCJCJOOCJOOUOCJCJOOU
^^^^^^^^^^^^^^a^^^^^^o-a-QHCi,D-a-p-a,ci-c-,o-p-a.
C-r r\lr^, -t ir-, M^r^odo^O CNr*~, Ttir-ir^odo^O - r^irn^'^^r^o6o>O 'r^r^i-^-vo
_c'OOOOOOOOOOOOOOO'OOOOOOOOOOOOOOOOOOO
f^ ' ^ ' ' ' C2 C_j C3^ -. < ^_^ - c_^ C2 v^ ^D CO C^ C^ c^1 ^D CO CO C? CO CO1 CO CO CO CO1 CO CO CO1 CO
C-7
-------
a
u
9
C
o
U
o
9
C
cs
#.
O x
-C O
cai
ammonia mor
"3- in ^t 3C r'-, oO C: rn i/~i i/~j r*"i r-~ i/"> O V";
^f VC 0 '*:^r ^~ O^ ""^ "^" O^ 0s- ("*~i ^^ ^D t^~ O^ O^ r*~i
ซ OJ 0s, CXD r*^ O oc "-O rt \,o r^t i/^; ^C ^O O
ir^~ i*o '~~i "-O r^i ^" *^o ' r^- c^ ^2 oo i/~i o^ oo
r--r~-oor-t^i--r~r^r-oooei--r-r-NO
GOCCGGCGOGCGCCC
O G OOCCCOOCGCCOO
OOOCOGGCGGCCCOO
mงsi.sssงsssgs
GGGGCG^GGGOCCGG
OCCOGCcOCOCpcGo
O G C C CGGO'OOC C
ooooocrooooooooo
oooococoooooooo
(N CN| CM fN CN OJ r-J rN OJ OJ CN r~J rsl OJ CN
UOOOCJLJOCJOOUOUCJU
odc'dooobocoocoo
ooooooooooooooo
cccccccccooccoc
Tf^' ' ^ W^l CN OO CN i
\O \Q O ^O *O ^O 'O ^O ^,D
O'^t'^f1 r^r*~irvJr~-'~
m ' ^r-Jc^t^Or^ir^-'^-
^cvo^ommvo^oiom
32jฃ2ฃง^28
r~-t^i^r~r-r-~i^r-r-
cccccoccc
OOOCOCGOC
cooooocoo
OCOOOOOOOOOOOCOC'CC
Tf- i ' ^^tGONGrnr'"!
. r-J ^- ^~
COCOOOGGG
CCOOOOGGO
CCpppppGO
OC'GOOO'O'OC
GCCOOGCOG
OCOOOOGOO
UUOUOOUOD
GGOGGGGGG
OOOCGOCGG
ococooooc
ON
\D rn
NO ^
04
r-" <^i
o o
m 0
G G
ON rn
r^ G
c
ซN
Tt in
NO U-J
G O
Tt 00
NO NO
C O
0 0
o o
O ,
c3 -^
s^
CN
G r~-
iy-i OO
ro" "-I
NO G
m r~-.
r~~ r4
G ฐฐ
O
m
in o
^- o
ro
3 G
NO
r I ฐฐ
ฐ' 2
m m
o o
G G
CM C4
O O
^ s
NO
0 0
O G
O O
-------
U
03
o
"ซ ฃ ~i
J * e
5 a. .5
| .E O
c e
e c
re re
Ss "c
c a
re c
3 0
0 U
"c
83
^
U
p
U
5
83
re
e
c
_c
_cu
"c
U
u
OJ
>
C
C3
J=
"S
E
ฃ7
-*-
re
B
'x
c
'c
QJ
c "ฐ
-i'g
b c
9|
^
^
>
y
a 'o
7 re
X
a;
.c
aj
_E
L,^
a)
re
OJ
-u
rj
ro
C
ON
in,
ro
ON
ro'
ON
Tt
d
DC
r-
in,
._,_
oc
Tt
rj
s
c
\/~>
1
c
' -
oc
Fs
U
CL,
C/}
r-l
o
oc
fN
Q
,
-rt
O
rN
vC-
^~
^
0
Tf
o
oc
u^,
.->
r*^
o
r*~j
O
Co
r-J
-"
O
GO
r-j
u
Cu
00
ro
O
DC
rl
Q
ON
ro
-t
OC
r-i
r i
rj
1-
~-t
X
-t-
c
E
_
, .
r*~,
r-
r<-,
o
r--
r-j
r-j
-
DC'
rN
rj
C-
C/3
"t
><'
DC
r-j
X
^
c
m,
in,
rl
r 1
r i
r
-
^
r
CD
-
, .
_
rj
r
ro
o
.r-
r J
So
r J
^j
,-
oo
in,
X
oc
rJ
c
^.
^
DC
rj
rj
oc
i
~-f
^
Tt
d
cS
(/--,
Wi
r<-,
,-,
a-
r-J
DC
rj
rj
CM
oo
o
;=,
oo
r-l
ฃN
r~
C
r-i
r-l
r--'
i -
Tt
NO
Tt
CD
00
in,
NO
ON
I
ro
,-.
&.
rj
CD
So
rJ
U
C.
00
r-
X
oc
r-i
o
Q
oo
r-l
ro
r-i
ro
ON
TT
VD
Tt
C
r-J
oc
in
^
T^f
ON
ro
O
O
O
CM
OC
r-i
C
CD
OO
rJ
U
Cu
OO
oo
x
oo
r-j
c
Q
r-
r-l
r-l
ro
r)
in,
ON
Tt
in
Tt
C
00
ปn
o
NO
ON
ro
O
O
CM
in
in,
r-J
O
o
oo
rJ
U
CM
OO
ON
X
OO
(N
Q
DO
OC
ro
rl
oc
ri
in,
rr:
Tt
CD
O-
m,
.
r-
c^
t
CD
C-
r-1
CD
O
oc
?5
O
c_
OO
c
^_
oc
r-J
s
TM-
in,
ro
m,
rj
Q
ro
in,
^
Tt
C
in,
DC
in
_
rJ
r-i
Tt
CD
C
CM
I
O
DC
rJ
U
Cu
oo
^-,
oo
rj
O
Q
^,
NO
(^
DC
ro
rJ
r~
Tt
m,
ro
Tt
CD
ON
m,
^
ON
Tt
O
D.
O
CD
OO
S
U
Cu
00
r-l
Q
oo
r-l
O
Q
K",
oc
oo
r~
ON
rJ
ro
r^
in
in,
Tt
CD
ON
C
r~
Tt
,-,
CM
C
C
00
rj
U
CM
00
ro
oc
r-J
C
a
r-
r-l
ri
oc
^
rJ
oc
NO
^
Tt
C
r-l
NO
in,
NO
O
in,
,_
C
rJ
0
oc
rj
U
CM
00
Tt
Q
OC
rj
C
Q
in
NO
r-l
ON
'
ON
r
NO
ro
Tt
C
ON
,
p^
Tt
in,
C
CL
in
r-i
O
So
rJ
U
CM
00
m
o
oc
r-l
Q
r-i
oc
r-j
ON
ON
ON
NO
in
ON
NO
_
Tt-
c
oo
o
NC
ON
NC
in
0
CM
ON
r-i
O
CD
00
rJ
U
00
NO
,_
oc
rj
O
Q
oc
0
ro
r-l
NO
r-i
r~
r^
i
Tt
C
C
NO
__
OC
r-
m
C
CM
O
CD
So
rj
U
Cu
00
r~
oc
r-l
C
Q
ON
ro
Tt
m,
rj
oc
ro
r-
ON
CD
OC
NO
r-
C
-c
o
C-
oc
O
So
r-l
U
oo
00
j
oo
r-l
nN
[^~
/ -
ro
00
"~"
r-j
\
r-l
r
ON
ro
'ON
ON
'DC
NO
ON
in
o
ง
O
oo
rM
U
Cu
00
ON
,_,
00
r-J
a
NO
J .
r-J
ro
oo
oo
p
rj
ON
Tt
Tt
r~
ON
ro
CD
NC
00
m
-
NO
o
Tt
C
o
OO
r-J
U
Cu
00
o
r-l
00
r-J
0
Q
in
NO
ro
ON
rj
rj
rj
NO
NO
OC
r-
[^
r<~,
c
in,
NC
ON
Tf
in.
-c
c
CM
r-l
in
CD
oo
r-l
U
Cu
00
r-j
oo
ro
C
Q
m
MM
ON
ro
, ,
ON
r-i
r-i
oc
oo
oo
r-
ro
CD
Tf
m
NO
ON
OC
NC
, j
&
O
o
So
r-J
U
Cu
00
r-l
r-l
oc
n
o
Q
in
NO
ON
ro
ro
ON
in
rJ
Tt
ro
oo
f^
ro
CD
Tt
NC
. i
ro
r^
ON
NO
O
CM
5
r-l
O
So
r-l
U
Cu
oo
ro
r-l
oo
r-J
O
Q
in
C
Tf
NO
in
Tt
rJ
, i
ro
oo
oo
ro
C
NC
ON
r-l
ON
NO
o
CM
NC
O
_,
C
CD
So
r-l
U
Cu
00
Tt
ro
oc
r-J
a
ro
ON
ro
OO
Tt
r-i
r
o
oo
oo
ro
d
Tf
C
^
in
r-
NO
0
ฃ
r-J
O
oo
r-l
U
Cu
00
m
ro
oc
r-l
Q
NO
00
ro
ro
CD
ri
Tt
in
c
oo
oo
ro
d
NO
^
Tt
m.
(
NO
C
CM
in
rj
O
o
oo
r-l
U
Cu
00
NO
r-J
oo
ro
O
Q
00
m
O
Tt
VC
Tf
r-i
oc
oo
r-J
00
p^
rO
d
OO
NO
r-l
NC
ON
NO
O
CM
ON
r-l
O
o
oo
r-l
U
Cu
oo
r-
ro
00
r-l
0
Q
r-i
r-J
Tt
in
oo
r-i
in
Tt
00
oo
ro
d
in,
NO
M-
NO
in,
'
r-
o
&,
Tf
r-l
r-J
O
00
r-l
U
Cu
OO
oo
rJ
00
ro
O
C
ON
0
Tf
r-l
NC
C
r-J
Tf
O
oo
r^.
ro
d
rJ
Tt
NC
r-
CD
r-j
r-
c
CM
CO
r-l
r-J
CD
OO
r-l
U
Cu
OO
ON
r-i
00
ro
Q
r-l
ro
ro
Tt
r-J
O
rj
CO
ON
NO
OO
NO
ro
d
ON
NO
Tt
ro
no
r~
0
CM
ro
O
o
So
ro
U
Cu
00
o
o
oo
rj
C
Q
NO
^M
>n
Tt
OC
2
r-j
o
Tt
r-l
ON
Tt
ro
CO
^d-
^c
^^
^
c
NO
r
o
CM
r-l
C
00
ro
U
Cu
00
MM
c
oo
r-i
C
a
00
oo
Tt
Tt
NO
Tt
r-i
r-l
oo
< '
ON
m
ro
d
NO
NO
. 1
^
OC
Tf
r~-
c
(Nl
o
o
00
r-l
U
CM
00
r-i
oc
r-i
Q
C-9
-------
C
o
U
U
42
58
H
-a
Q
ฃ
4)
C
_O
J
St5
C
cd
3
O
5
E ซN
a =
M
.5 0
c
2
U
C
u
C
o
U
*-J
C
ซ
ฃ
>^
U
5
U
o
2
"rt
C
o
u
"o
U
GJ
cs
GJ
C
M
^
GJ
E
W
Cw
r*
QJ
2
C
c/;
ฃ
"c
4>
s -a
c x
42 o
Is c
I
,
OJ
ฃ
V
1 ง
i *a
X
-J
4:
CJ
H
aj
cs
n
i
r^
,_
~-f
o
o
oc
oi
U
CM
OO
[--^.
r*"i
O
OC
01
o
G
NO
0
ON
Tl-
r-
rN
C
rN
oo
in
ON
^
m
^
rN
NO
NO
, i
ON
r~
O
cx
ON
C
c
c
OC
rN
U
CL
00
oc
r*~i
C
oo
rN
C
Q
r-
r*~i
c
m
m
fN
C
oc
1^
ON
i
m
C
NO
, ,
^j-
' '
oo
C
Cx
7-
O
o
oo
rN
U
CL
oo
ON
c/-^
^
oc
fN
O
Q
c
ON
OC
-fl-
oe
o
fN
C
oc
m,
ON
fN.
fl
CD
NO
NO
ON
ON
r^
C
do"
C
c
oc
rxi
U
oo
c
c
oo
rN
C
Q
oc
CD
in
oo
'
fN
OJ
OC
ON
1 1
<^>
ฐ
NO
C
1
OC
CD
r*~i
fN
r-1
O
OC'
fN
U
C-
oo
"N?"
c
oc
fN
o
Q
NO
' '
in,
rN
rN
rN
ON
ON
ON
_
^,
CD
NO
rN
-^}-
OJ
oc
O
r~-~
0)
o
oc
rN
y
oo
rN
T^-
CD
OO
rN
CD
Q
NO
ro
rN
in,
ON
rN
o
fN
^_
O
^
rN
m
'
vD
ON
NO
^j-
in
rN
oo
l: ,
ex
rN
"i
O
oc
rN
U
a.
00
(-*-,
^ซ
CD
oc
rN
G
ON
NO
rN
in
oc
'
CN|
rN
ON
ON
ON
_ I
r^l
O
oo
ON
ON
rN
oc
O
ex
NO
o
oo
rN
U
CL
00
T^-
r^-
O
oo
rN
O
Q
ON
O
m
oc
NO
Oxi
oo
'
o
OJ
ฃ
CD
oo
oc
NO
n-^,
^j-
in
00
C
ex
"fl-
n-,
O
CD
oc
rN
U
00
in
^ซ
CD
oc
rN
C
Q
rO
^f
in,
ON
p
rN
ON
00
~~
c^>
rN
_
m
c '
ON
NO
rN
ON
rt-
oc
O
ex
m,
"*
CD
C
oc
rN
U
00
vC
*^J-
C
oc
rN
O
Q
r-
oc
^d-
m
_.'
< '
rN
rn
f~l
fN
<^
rN
^
^
Q
oo
NO
in,
oo
O
ex
in,
O
c
oc
rN
U
oo
[-*.
^t-
o
oc
CM
O
Q
oc
Tf
in
ON
rN
O
rN
in
fN
^
rN
,
n
NO
r*~,
in,
in,
oo
O
ex
m
c
c
oc
CN
U
CL
00
oo
T^-
c
00
rN
C
Q
l/~l
^O
ซr~,
ฃ
OJ
CN
in
m
O
CN
ON
rN
^^
oc
rN
C-;
rN
rN
r^
oc
^,
ex
ON
o
OO
CN
U
D-
00
ON
CD
00
CN
C
Q
ON
rN
in
in
0
p
rN
r^-j
rN
O
oo
PI
CD
in
NO
m
in
NO
OC'
^
ex
o
0
oo
CN1
U
00
^
m
o
oo
CN
O
Q
o
NO'
in,
s
fN
r-
CN!
c
C-N|
ON
ฃ'
C
OO
s
_,
T^
mj
oc
o
c-
ON
O
cx
ON
O
00
CN
U
CL
00
0
NO
o
OC
OJ
O
Q
o
ON
m
ฃ
OJ
OJ
oo
in
o
OJ
r-
Pl
0
ON
NO
NO
O
in
ON
O
cx
r*~i
m
"3-
o
CD
00
CN
U
oo
, ,
NO
0
00
CN
O
o
' 1
NO
m
(N
NO
(N
t--
0
r-
!^
o
VO
r-
m
ON
o
cx
oc
in
O
'DO
'CN
U
CL
oo
rN
NO
C
OO
OJ
o
Q
ON
OJ
O
NO
5
^f
OJ
ON
f~-
O
OJ
r-~
OJ
O
OO
NO
OO
^_
CO
ON
O
cx
OJ
O
m
CD
OO
CN
U
CL
oo
r*~i
NO
C
OO
rN
O
Q
C-10
-------
3
C
'ฃ!
O
U
U
_u
2
w
a
o
^
i>
e
re
u
"e
re
3
0
c
iWi
_-
c.
c
c
c
"re
u
"E
u
e
^
U
c
0
r*-i
^C
o
"E
re
~
>t
t-
3
u
C
^^
-5
re
C
s
c
u
ai
"o
U
u
a.
>
C
CT
"^
E
< .
a.
^
*
u
X
c
/-,
r~-
^C
NO
(^
I^j
(-^
OJ
Pi
-
r~-
^
CD
.
c^
, 1
in
CD
oo
r-J
U
CM
in
in,
o
oc
rJ
Q
I/"}
O
"O
r<".
, ,
T^-
r~~-
(^_
*-$
O
OJ
OC
r-
O
O
oc
_
^
^c
m
K
OC
^
y
00
\c
oc
r-j
O
w,
IT-,
v~.
-t
r*~.
r^i
r^
r-J
r-J
c
i
r,_
^
0^
DC
_
C^;
r-J
(
DC
rj
y
c/:
r~-
oc
r-j
c
ฃ~;
""I"
^
^
^;
r-J
n
00
oo
mi
*
C
So
r-J
U
CM
in
T^"
O
oo
rJ
s
{f~i
r^i
ir-i
r-J
[^^
CD
ON
r-J
^
OJ
ro
ON
ON
NO
rj
in,
in
oo
CM
C
NO
C
O1
oc
rj
U
CM
OO
in
O
oc
(N
Q
T^-
m
^n
o
p-^
^
(-H-,
^~
o
r-j
^
p2
rN
m
*-o
00
a,
CD
^
O
O
OC
fN
U
c-
oo
NO
CD
OC
r-J
Q
vC
^
in
ON
f~-->
CD
i/~i
'
r-~-,
OJ
ro
in,
CD
LO
oo
r-J
NO
OC
?J
u
CM
OO
f-^
C
OO
rJ
Q
ON
*^-
^t
m
rj
r^
O
ON
. i
r-J
O
r-J
O
oo
rj
ON
00
in
00
CM
NO
NO
C
oc
r-j
u
oo
oc
oc
rN
O
Q
rj
O
in
ro
c '.
r-J
m
r-J
r~^
r-J
CD
NO
r-J
r-
^
CD
p-
OC'
Cu
r-J
NO
0
O
DO
r-J
U
C-
m
ON
56
rJ
Q
ro
ro
m
m
__
[
ON
0
NO
rj
^
r-J
ON
r~
ON
NO
NO
OO
CM
in
rj
NO
CD
OO
r-J
U
CM
oo
o
oo
00
r-J
O
rj
in
m
q-
c~~~.
O
r^
r-J
^
rj
0
r-
^
7
r^
00
^
^"
CD
r^,
o
oo
?N
U
CM
m
, ,
oc
oc
r-j
O
oo
^J-
m
in
ro
mi
ON
ON
rJ
O
rJ
(N
CD
P
^
ON
NO
OC
CM
ro
NO
Q
O
So
rJ
U
a.
in
r-i
oo
O
00
rJ
O
Q
in
ON
in,
ro
mi
ON
O
ro
^
r-J
r-i
ro
CD
?
O
CO
in
oc
,_
CM
ON
NO
^
OO
r-J
U
CM
OO
ro
00
oo
r-J
O
Q
NO
ON
in
,-r
(-T-,
ON
r-J
ro
O
rj
rj
CJ
NO
r-j
ON
NO
OO
CM
^3-
NO
c
00
rj
U
CM
OO
iM.
00
o
oo
r-j
C
Q
r
ON
m
in
, ,
NO
ON
Tj-
ro
O
rJ
S
CD>
r-
c
oo
r~
oc
NO
00
CM
OC
NO
o
So
rJ
U
CM
in
t*O
00
C
OO
r-J
O
Q
NO
_
NO
m,
^
l/~j
ON
O
ro
O
r-J
ro
CD
r
rJ
oo
NO
NO
NO
oc
^
^
rT
m
NO
CD
O
oc
rj
U
CM
in
NO
OO
O
oc
rj
CD
Q
oo
NO
m
r-)
in
ON
in
NO
ro
C
rj
ro
O
in
O
ON
oc
rj
NO
OO
CM
in
NO
s
oo
rj
U
CH
00
r^
00
O
oo
rj
O
Q
m
oc
NO
in
ON
Tf
ON
r-^-
ro
O
r-J
s
CD
ON
_
T^
NC
OC
CM
C
^
0
So
rj
U
CM
OO
00
00
o
oo
r-l
O
Q
r-
O-J
f-
m
ON
ON
ON
ro
^
rJ
ro
ro
CD
ro
r-J
00
^
ON
NO
00
CM
NO
O
r~
0
o
oo
r-J
U
CM
in
ON
oo
oo
r-i
a
in
NC
m
,3.
NO
ON
OO
[-*-
ro
O
rj
ro
ro
ro
C
ro
rj
oc
in
^j-
NC
OC
^
^
CM
O
r-
CD
oo
r-J
L)
in
CD
ON
OO
rN
0
Q
NO
in
in
ON
^_
CD1
. i
*3"
O
ro
ro
CD
rj
m,
oc
ro
^M
r-^
oc
CM
m.
r~'
o
O
oo
OJ
u
OM
in
,
ON
O
oo
rJ
Q
o
ro
^f
in
rJ
r-
C
'
c
n
^f
o
r-J
m
ro
ON
rJ
C
oc
^
"
CM
ON
^
ง
So
rJ
U
C-
m
r-)
ON
oo
r-J
O
r-.
rO
in
, ,
r-
. i
00
ro
O
rj
in
ro
ro
d
ro
in
ON
^
in
in
oc
CH
CN]
"
0
O
oo
r-i
U
CM
OO
ro
ON
O
oo
rj
C
oo
T^
ro
m,
oo
ro
r-j
ro
CD
ro
O
CM
in
ro
ro
CD
oo
in,
ON
NO
Tf
OO
CD
CM
OC
r-J
^
oo
r-i
U
CM
00
^-
ON
oo
rj
CD
C-l
-------
"O
u
9
C
o
U
U
ฃ.
05
H
0
o c __
1 IS
| .E 0
c e
O O
"s "*
;ป -*-
vs e
B u
co e
3 3
a u
c
cs
>>
tn
3
u
i
c
O
2
as
a
c
tj
u
"o
U
aj
CO
!
01
C
CO
*"
u
E
1
if
a>
"2
'x
w
o
s_
'ฃ
CL>
C ~B
0 x
1 ง
s i
^
u
J
a>
3 ฃ
C
S CO
X
OJ
H
0)
co
E
r-'
m
in
NO
.
Ol
S
C
in
m
d
00
ON
in
T^-
in
od
O
r-t-j
m
C
oc
Ol
U
a.
m
ปn
ON
oc
ol
C
Q
01
f~,
i/-i
in
Ol
01
O
in,
rn
ฃ-^'
ON
OC
in
ol
-xt
od
O
f^
r^,
O
OO
01
u
c.
in
\c
ON
oc
01
^
Q
in
01
in,
>n
oi
oc
in
ฃ2
d
OC'
m
NO
oc
~
O
C
rN
^t
C
C
oc
OJ
u
a.
in
r-~
ON
00
01
^
Q
^c
r*",
LTi
c
0s
Ol
01
NC
ฃ
in,
oo
r-
ON
Tt
od
r--
~t
p-ฐ
o
oc
OJ
y
in
oc
ON
oc
OJ
o
c
[-^
01
in
ON
01
-4."
ฃ
m
S
Q
m,
oo
o
f~,
o-
oo
^-*
d
^_>
m,
p-
O
OC'
OJ
U
a.
in
ON
ON
OC'
rN
C
Q
oo
xt
r*1
in
oc
04
m
[-^
NO
CN
C
NO
ฃ>
d
ON
NO
OO
^
OO
00
ON
O
d
NO
c
c
oo
01
U
o_
in
ง
oo
Ol
C
Q
o
ON
NO
m
01
oc
1^
in
rn
d
m
oo
_
m
'
C
O
O.
o
o
oo
0
c
oo
01
U
OH
in
<
oo
ol
^
Q
NO
NO
OC
p~
ON
U")
in,
S
d
p-
NO
OC
m
^
p-
c
o
d.
1/-J
0
oo
C
oc
OJ
U
a.
in
ol
OC'
OJ
o
Q
oo
NO
r-
m
oc
ON
NO
C
NO
S
d
NO
00
00
oc
c
*xf
o
c
d
ON
O
OC
O
oc
01
u
OH
in
d
oc
01
0
Q
NO
NO
m
m,
3
1 -
-^
ON
OC
NO
ฃ
C
in,
ON
_,.
ON
r~
ON
C
d,
T^-
OC'
O
oc
01
u
e.
in
ง
CXD
Ol
o
Q
r-
i
m,
oc
^j-'
00
m
t^
CO
d
r
00
oc
ro
O
o)
ON
C
a,
00
oc
o
c
00
Ol
U
OH
in
m
c
oc
Ol
o
Q
r-
' i
in,
r-
ON
xf
Tt
O
r
ro
d
oc
m
^^
ON
oo
o
a.
ro
01
oc
c
C
oo
ol
U
O.
in
NO
o
OO
01
0
Q
NO
in
Ol
C
NO
o
C^J
t^
rn
,~
r~
m
oc
NO
O
OO
oo
c
c_
Ol
oc
c
c
oc
Ol
u
0-
in
O
oo
Ol
0
D
ON
r-
i
in
Ol
r<1
ON
in
m
C
00
r^l
d
oo
ON
00
oo
Ol
r~-
00
C
C,
Ol
r*~,
OO
O
C
oc
01
u
OH
in
00
o
oc
ol
o
o
r-
^j-
ON
^t
^
ON
**
5
C
oo
m
d
oc
oc
oo
(
^-<
-xt
00
c
c
d
d,
NO
m
oo
O
O
oo
01
U
OH
in
ON
o
oo
01
o
Q
r-
m
r-
^t
r-
oc
r
'a!
OC3
r.
O^
r--
c^i
c
C!
Ci,
Ox
C)
o
oc
01
U
a,
C/)
P--
oo
Ol
C)
Q
ol
o
p-
-*
5
J-~
^
NO
ON
m
O
ON
ON
OO
P~
(""I
d
d
r~
ON
O
o
oc
ol
u
OH
in
oo
oc
OJ
o
O
T^
P"
^l-
?.
OO
f)
o
Ox
<">
c>
Ox
ol
p
OC
P--
r^l
o
C:
d
d.
01
01
Ox
c>
C3
oo
01
u
a.
C/3
ON
0(3
OJ
O
Q
NO
NO
P-
xt
Ol
OO
,.).
NO
P-
ON
m,
d
ON
oo
Ol
ON
r
OJ
O
p
o
d,
NO
01
ON
O
o
oo
01
u
OH
in
o
OJ
oo
OJ
o
Q
ON
P-
-xt
m
OJ
NO
NO
00
ON
H^J-
m
d
NO
ON
OO
ON
O
00
C^J
o
o
d
d
,~^
r*~>
ON
O
O
oo
01
U
OH
in
04
OO
01
C
Q
o
oo
^t
Tt
"^t
p~
ON
ON
"""!
O
oo
oo
xt
xt
00
C^J
o
0
d
a.
mj
r^
ON
C
O
OC
01
u
OH
in
01
01
oo
ol
o
Q
oo
NO
oo
Tt
oo
(N
[_;
NO
in
ON
ON
, ,
xt
d
ON
r-
oc
NO
00
o
oo
o
O
d
o
ON
o
oc
OJ
u
OH
in
ol
00
01
o
Q
xt
00
xt
OO
ON
,
m
d
1
iON
' '
00
Q
o
d
d,
xt
(ON
O
o
oc
rN
U
OH
in
'01
'oo
01
o
Q
ง
ro
ON
xt
m
OJ
in
OJ
ON
ON
ro
d
oo
m
Ol
* >
oo
d
d
ON
xt
ON
O
O
00
Ol
U
OH
in
01
oo
ol
o
Q
C-12
-------
-a
SJ
U
a<
IE
-o
~
"S
CJ
C
c
"s
s
c
J3
3
O
E
o.
CX
c
ITi
C
ts
"c
^J
c
c
U
c
o
r^
c
0
"c
^
!_
5
CJ
QJ
C
0
2
re
a
c
CJ
^
u
>
C
ta
^
in
OJ
s
3j
f
-c
'7,
c
c
L.
'c
1)
C "C
0 'x
ฃ 2
iซ C
SI
t
U
>
o
U u
o
~ e
7 cs
X
.e
V
^E
H
U
s
^H
}~
,-j.
r-J
in
O
^
r-J
CN
CN
ON
C
Tf
OC
OC
[^
^f
oc
o
c
o
CX
in
ON
C
OC
CN
U
00
sO
rj
oc
rJ
Q
OC
in
oc
o^-
0-}
r-J
r--i
r-
c
in,
oc
,
^
__
oc
cc
g
c
c_
in
ON
OC
CN
U
Cx
oo
r
r)
oo
rj
C
oc
m,
CN
r--
CN
CJ
t
r-)
oc
c;
oc
r<~.
oc
oc
oc
g
^~N
c_
rj
C;
c;
o
oc
r)
Cx
oo
oc
CN
OC
01
S
sO
T-f
m
oc
cc
oc
CN
OC
c
oc
in
r^-
0
OC
^
c^
C-
c;
o
oc
CN
U
oo
ON
rj
cc
rj
^
^Q
f
in,
P;
r~
(-r,
00
CN
Q
SO
sD
OC'
m
C
CN
sD
O
ON
O
OC
^
T^-
ON
c
c
CX
c
0
0
oo
CN
y
00
T^
rr;
oc
CN
j^^]
--JS
^
O
0
'5
ON
^c
CN
CD
O
oc
in
oo
ON
C^
o
a.
7""'
o
OC
CN
U
c.
CO
^o
r^i
OC
r-j
Q
in
^C
^c
5
in,
SO
rJ
sC
C
ON
SO
ON
O
ON
g
o
Q.
ON
O
c
oo
CN
CJ
Cx
oo
SO
cr,
OO
CN
O
o
CN
SC
ฃ
oc
sD
so
r-J
r^
c
ON
r-
sC
CN
ON
C
CX
*
0
c
oo
CN
U
CX
oo
f-
r*~)
OC
CN
o
D
, .
sO
OC
rr,
r'
SO
c
CN
r-
C
OC
~~
^.
r*j
o
ON
C
do"
o
oo
r-J
U
Cx
00
oo
rr,
oo
CN
Q
^
sO
sO
CC
CN
CN
sO
CN
r
C
oc
O
00
ON
rt
C
ON
a
CX
rJ
in
O
oc
CN
CJ
Cx
oo
ON
OO
CN
s
oc
so
ON
CN
CN
CN
sO
O
rj
oo
C
oc
oc
00
sO
ON
OC
O
CX
>n
O
o
oo
r-l
CJ
CX
oo
o
"3"
oo
r-J
O
Q
oo
so
oc
CN
CN
ON
SO
0
CN
OO
c
r-j'
00
rr,
ON
C
ON
O
C-
0
g
oc
CN
CJ
Cx
00
,
^t
oo
OJ
o
Q
oc
SO
rj
CN
CN
sC
C
r~
C
CN
OC
O
so
CN
cc
oc
CN
ON
O
ex.
sO
O
g
OC
CN
y
oo
CN
t
OC
CN
O
ON
ON
CN
sC
ON
r-i
rr,
OC
C
CN
OO
o
st
oo
,
ON
in
CT,
ON
c
cT
c
00
(N
CJ
Cx
00
rr,
^*
OC
CN
U-J
^M
in
so
r
o
r-i
ON
CN
O
CN
f-
o
sO
OC
sC
r-J
in
ON
C
CX
in
'
33
OC
CN
CJ
CX
00
t^
^t
oc
CN
o
Q
CTj
so
so
O
r-i
ON
CN
1
CN
OO
o
CN
O
ON
^.
in
in
ON
o
CX
'
oo
rj
CJ
Cx
00
in
^t
oo
CN
C
Q
ON
SO
SO
SO
ON
CN
r-i
m
ON
CN
Pi
0
ON
oc
*
CN
[-^
SO
ON
C
CX
(N
00
r-)
CJ
Cx
00
SO
oc
r-J
O
Q
in
SO
CN
oi
c
rg
CN
r-
c
oo
00
ON
in
r^
ON
O
CX
O\
O
oo
CN
CJ
CX
oo
r--
^t
oc
CN
C
G
rO
SO
SO
CN
CN
,
C
CN
r-
0
ON
oc
-
CN
ON
0
CX
**-,
oc
CN
U
CX
00
oc
^
oc
CN
0
G
ON
r-
in
sO
ON
CN
^
r-
ON
O
CN
Pi
C
SO
oc
CN
O
ON
C
a.
oo
c
o
00
CN
CJ
CX
00
ON
00
(N
Q
CN
sO
SO
SO
OO
CN
^
00
o
CN
r
m
O
oo
cr,
^J-
^T
ON
0
CN"
^f
oo
CN
CJ
cx
00
o
m
00
s
Q
^f
sO
so
ON
r-i
T^-
o
CN
00
m
O
so
00
^
O
ON
O
CX
^f
0
o
oo
CN
y
00
_^
in
oo
CN
o
Q
r~
in
so
r-
r-i
r-i
ON
C
rJ
oo
m
o
r-
oo
, ,
oc
CN
ON
0
CX
m
oc
CN
CJ
Cx
00
CN
m
oo
CN
O
Q
C*1
CN
so
c^
CN
CN
in
SO
O
CN
OC
c
so
00
~-
rr,
OO
ON
OO
C
sC
oc
CN
CJ
Cx
00
r*l
m
oc
r-)
Q
ON
SO
O
SO
ฃ
CN
^
CN
in
O
CN
OC
m
0
oo
oo
cc
o
oc
oc
0
ซ
o
r\i
O
ON
rj
CJ
Cx
00
.,3.
>n
oo
CN
O
Q
ON
CN
ON
1/1
^
rg
00
r-J
^t
O
CN
OO
m
O
oo
so
oc
so
00
0
ฃ
o
CN
O
O
ON
CN
U
Cx
oo
in
in
oo
CN
O
Q
rr.
ON
m
0
CN
r-i
r
^ซ
m
r-J
oo
rr,
o
SO
SO
00
sC
^J-
oo
OO
O
a
&\
CN
0
ON
r-J
CJ
Cx
oo
SO
00
CN
o
Q
C-13
-------
3
C
4^
O
U
U
CJ
o
c
^
s
B
O
u
s
"c
cs
3
a
B
E
B.
a.
E
c/:
B
o
"cs
B
U
B
O
U
C
r^
ซs
0
*c
^,
t"
3
u
E
O
CS
cs
Q
_0
"o
U
u
-2
^
E
CS
ฃ
U
=
-2
^
Cw>
rs
'x
c
0
'E
i)
= 2
1 ?
U g
S ฎ
E
^
+-ป
ฃ
o
=1
"S C
3 |
o
J
u
ซ
**
;""
rN
to
rn
rN
r-i
oc
ON
Tt
C
rj
r~
m
CD
oc
oc
^
NO
OC
O
fN
C
C
ON
fN
U
Cu
00
r^
tO
oo
rN
Q
o
to
rj
rj
0
oc
r-l
C
r-j
oc
m
C
r-
oc
r-J
p^
TJ-
oc
c
oc
ri
C
ON
r-J
U
Cu
CO
oo
to,
oc
r-l
O
r-l Tt
C ON'
IO, Tt
ri
to >o
r-l ri
NC r-
OC 10,
NO 10,
ON ON
ON ON
m rn
CD CD'
to, ^2
ฐc oc
. .
Tt ND
10, m
oc r~
r~ r-
00
ri ri
r-l r-j
C O
ON ON
rj rxi
U U
Cu C-
oo co
ON O
IO NO
oc oc
r-J rj
Q CJ
r-J
r-
t
5
rj
rj
CN
ON
,
^-f-
o
-t
oc
rr-
c^
r
r-
o
r-j
o
o:
rj
U
Cu
00
__
-c
oc
ri
a
ON
un
Tt
O
r-i
^
ON
r^-
0
OO
to
to
m
r~
O
03
m
C
p
ON
r-i
U
Cu
oo
fN
NO
OC
rJ
ง
0
Tf
r-^
o
r-i
ON
rN
ON
ON
m
CD
od
ON
m
r~
o
r-i
O
p
OS
r-j
U
Cu
oo
m
NO
CO
r-l
O
C
oo
m
Tt
r-
oc
Q
CN
CN
r~
oc
ON
m
O
r
'OO
^
'OC
r~
O
T?
O
ON
CN
U
Cu
CO
T^-
NO
oo
rJ
Q
!2
Tt
ฃ
r-i
NO
OC
ON
m
CD
OO
oc
, ,
NO
ON
NO
O
fN
O
o
ON
fN
U
Cu
00
to
NO
OC
r-J
Q
!^
Tt
NO
r-i
oc
oo
oc
ON
m
='
oc
oo
m
^^
o
r~
c
1O
ri
O
ON
r-l
U
CO
NO
NO
OC
r-J
Q
ON
m
_?
r-i
m
00
rn
0
NO
00
"O
ON
NO
NO
o
ON
10,
fN
O
ON
rN
U
Cu
CO
[^
o
oo
rJ
s
oo
r-l
r
m
IO
CN
r-l
rxi
ON
r^
rn
O
OC
m
[-
Tt
NO
O
o
c
o
ON
CN|
U
Cu
CO
oo
NO
OO
r-J
Q
to
o
m
ON
r-i
rj
ON
r~
ON
rn
o'
oc
O
to,
NO
O
OO
O
CD
ON
r-J
U
Cu
00
ON
NO
OC'
r-J
Q
0
r~
NO
m
NO
O
r-i
O
oc
oc
r-
.*-
O
ON
OC
^
rr,
to,
NO
c
2
O
ON
r-J
U
Cu
CO
^
r~~
oo
r-J
B
ON
r-
m
rN
O
r-i
ON
r-
rr
o
00
l^__a
o
^o
O
!^
o
o
ON
r-l
U
Cu
oo
, ,
r-
oo
fN
Q
CO
m
r-J
O
CN
NO
r~-
r*"i
CD
oc
^^
m
rn
NO
O
03
r-J
r-J
O
ON
r-i
U
a,
00
CN
r-
oo
r-J
O
Q
p;
m
OC'
10,
O
r-l
ON
OJ
NO
r~
ON
rn
CD
NO
OO
to
NO
rN
NO
O
CD
NO
r-J
O
ON
r-J
U
Cu
00
m
r~-
oo
r-J
O
o
rn
ON
ON
, ,
NO
O
NO
r-
r^-
CD
tO)
CO
to
NO
rN
NO
c
r^
O
ON
rN
U
Cu
oo
^>
r^
oo
fN
O
Q
rn
rฐ
m
a\
5n
r
C^
m
CD
Tt
0
o
r-J
NฃD
O
03
to
m
O
ON
CM
U
(A
lf->
r
0(3
r-J
O
Q
r~
r-
r-i
m
10,
O
ON
_ซ
CN
10
r^
ON
m
0
IO
oo
*-^.
ON
0
r-J
NO
O
O3
O
0
O
ON
r-l
U
Cu
00
NO
r-
00
r-J
Q
~
rr,
to
ON
^_
s
r-
ON
m
rn
o
NO
CO
ON
oo
rj
NO
O
to
O
p
ON
r-J
U
00
f
r~-
OO
r-J
O
Q
?!
rr,
r-Ji
r-
, i
O-
S
r~
cc
m
m
CD
NO
oc
~-<
^
NO
m
NO
O
ON
o
p
ON
CN
U
Cu
00
oo
r
CO
r-J
o
Q
't r
CNJ t^~
c--i r-i
rn m
cc "^
rr NO
CC. 00
'""' r-.
co m
Tt ON
111 Tt
r^ t
Ch oo
m m
CD CD
Tt tO
1/1 to
oo oo
ND ON
Tt ON
r-j
NO NO
O 0
O O
O CD
Tf OO
IO to
O O
p p
CN ON
rj r-J
U O
0- Cu
VI 00
ON o
r-- oo
oo oo
rJ rN
O O
a a
CN
CN
m
co
._
CO
r-~
CO
rn
rn
CD
NO
CO
- ,
oo
00
CD
NO
c;
c;
cd
CD
r-l
O
p
ON
r-J
U
OH
OO
1 1
CO
CO
rj
O
a
to
ON
m
oo
NO
00
,_i
Tt
10
r-
oo
rn
CD
CN
NO
OO
to
p^
O
NO
O
o
d
!-
O
r-J
O
CT\
CN!
U
Cu
00
CN
OO
oo
r-i
O
Q
oo
m
cc
NO
00
, ',
r-i
Tt
r~-
ON
CD
r-
NO
OO
0
o
NO
r-J
O
o
d
CN
fN
O
p
ON
rN
U
Cu
00
m
oo
oo
CN
O
Q
rN
ON
m
00
00
*~~
ON
Tt
Tt
r^
oo
m
d
NO
oo
J-,
to
~<
NO
0
o
d
03
NO
fN
O
ON
CN
U
Cu
CO
Tt
oo
00
CN
O
Q
Tt
m
oc
IO
00
__<
ON
m
r-
ON
m
m
d
r-
NO
OO
o
O
O
NO
o
o
d
03
r-J
r-J
O
ON
r-J
U
Cu
CO
to
oo
oo
r-J
O
Q
Tt
IO
m
m
NO
oo
^ซ
NO
Tt
r-
ON
m
rn
d
CN
NO
00
CO
oo
o
NO
O
O
d
03
to
CN
CN
O
p
ON
*
U
Cu
00
NO
CO
oo
CN
O
Q
ON
O
to
NO
00
.-J
00
m
r-
oc
m
rn
O
ON
to
00
oc
ON
NO
0
d
03
O
r-J
O
ON
CN
U
Cu
00
p^
00
CO
rN
O
Q
C-14
-------
cj
3
C
o
z
!S
in Method
.s
Quantificฃ
E
D.
a.
G
&
S
Concentra
rn
O
C4]
C
O
c
05
ฃ
U
i_
IS
0
a
^-N
Collection
u
OJ
"3
**-
u
C
re
,c
-ป-
a
u
i)
it
u
!2
'x
L.
OJ
= "2
0 X
"b =
3 2
c
u
u
-a
sl
* z
a
ฃ
_ฃ
H
Cp>
05
r-N
_o
iT
10,
ON
r~
ro
ro
r-
o
ro
ro
NO
OC
3
NO
"d-
ro
ol
o
OJ
U
Cu
CO
oc
oc
oc
OJ
3
LT)
o
(^
o
oc
-r
rt
ro
r~-
ro
ro
IO,
OC
oo
NO
ON
ro
OJ
ON
OJ
U
CM
CO
ON
DC
OC
OJ
s
ro
0
0
ro
ro
ro
r~~~
o^
ro
ro
L/O
oc
OJ
O
^O
r^~j
^r
CN
CT\
r-J
u
a,
CO
ON
DC
01
f^\
01
Jt
oc
T
-d-
r
rf~,
ro
\C
OC
t
NC
OJ
oc
^r
OJ
r?
r J
U
CL
oo
o
oc
r-i
r~s
^
r--
r-
o
r-
ro
l>-
oc
ro
^C
OC
sC
r-J
ro
l/~,
r-j
C^
r-j
y
00'
ON)
o^
oc
r-j
uo
CN!
ro
Tt
a\
r^i
ro
r-
CTN
ro
ro
l/~i
OC
r^l
Tฑ
NC
o
r-~
IO
OJ
o
ON
OJ
U
a.
CO
ro
ON
OC
OJ
c
Q
01
oc
c
vC
ON
o~
NO
ro
r
ON
ro
ro
NO
DO
ON
NO
NO
0
OJ
0
ro
O
ON
OJ
U
a,
CO
^t-
ON
OO
OJ
o
Q
10,
O
jt
OJ
^t
00
ro
r^
ON
ro
ro
NO
00
ON
NC
C
NC
c
c
rt
NC
c
r*",
ON
O4
U
0-
co
10,
ON
DO
OJ
O
Q
s
oc
yr;
r\t
^O
ro
c^<
r-
^r
NC
OC
[
ON
ON
10)
rt
r*"(
X
ON
OJ
u
CL,
CO
NO
ON
00
OJ
o
01
0)
ON
r--
04
-c
-t
r~-
ON
rO
ro
OC
+.
-*
NC
C2^
10,
ro
ON
OJ
u
Cu
CO
r-
ON
oc
0-1
Q
ro
ro
OJ
r
10,
OJ
r
C
IO)
r^
rt
NO
OC
r*",
NC
o
OJ
rr~,
ON
OJ
U
CM
CO
OC
ON
OC
OJ
D
r-
^o
CO
uo
(N
OC
fN
IO
r-
o
fO
ro
NO
OO
ON
NO
O4
P
rt
^t
o-l
rr-,
Q
ON
OJ
U
CM
CO
ON
ON
OO
04
o
Q
-3-
OJ
o-
OJ
ON
NO
1O,
o~
ON
ro
ro
r
oc
10
NO
OJ
NC
OJ
O
ON
OJ
ro
C
ON
OJ
U
C-
co
o
OJ
00
OJ
2
OJ
OJ
NC
^d-
OJ
r^
DC
10,
r^
ON
ro
ro
o~
oc
rl-
O4
'NC
Ol
O
ro
ro
ro
ON
04
U
p
CO
c
O4
OO
OJ
5
ro
^d-
OJ
ON
oi
ON
ON
10)
r~-
ON
ro
ro
r~-
00
OC
OJ
NO
OJ
f~-
cd
oc
ro
rf-,
0
ON
OJ
U
CM
CO
01
O
OJ
oo
OJ
Q
NO
NO
OJ
CO
^f
(N
Ti-
ro
^C
r~-
o
ro
ro
(^
oc
f^
(N
r*~,
\G
o
01
^t
ro
ON
01
u
c-
co
ro
O
04
00
OJ
Q
ro
NC
n~t
^d-
01
oi
10)
OC
NC
O-
ON
rO
r~-
oc
OJ
^d-
NC
01
p
0-
'd-
r<-,
o
ON
OJ
U
CM
CO
'd-
O
(M
00
OJ
c
Q
ON
^d-
ro
OJ
O-l
oj
ro
NC
NO
r~-
oc
r^-i
r^~,
r~-
00
ro
Ol
NO
OJ
p
OJ
UO
ro
ON
01
u
CO
IO)
Ol
00
OJ
Q
ro
oc
ro
ro
O
0s!
r-4
ro
r-
r-
(.>
ro
ro
\O
OC
Q
V/~l
ro
^O
c^
^
rr$
NO
UO
ro
o
ON
OJ
U
CM
CO
NO
O
O4
DO
04
a
NO
TT
ON
00
ro
oi
r-
ro
OC
r-
ON
ro
ro
r-
oo
NO
oc
Tt
NO
OJ
r-;
C
rt
-*
ฃ2
o
ON
OJ
u
CU
CO
r-
o
OJ
oo
04
f 1
Q
OJ
in
r-
oi
O
OJ
oc
r-~
oo
ro
ro
r~
oc
NC
NO
10)
NO
O
10)
c
TT
O
o
ON
OJ
U
CM
CO
OO
0
OJ
00
04
O
Q
oc
oo
10)
OI
oi
NO
*d-
00
r
ON
ro
ro
r~
00
Q^
-*
^d-
NC
O
o
n-
o
o
ON
04
U
CM
CO
ON
0
OJ
oc
oj
Q
OO
r~
r~-
^d-
OJ
NC
IO)
ON
r-
CN
(-^,
r^,
OC
oc
^
r-
IO,
NO
C3
Tt
**
C
ON
OJ
U
c-
co
o
OJ
oc
OJ
c
f~\
MM
oo
NO
ON
10)
(^
oi
NO
ro
ON
t~-
Tt
^
oc
00
'd-
NO
NO
p
ON
rf
ON
OJ
U
a,
CO
OJ
oo
OJ
Q
Tt
r~
ro
oo
(^
04
ON
NO
ON
r-
ON
ro
ro
NO
00
oc
ro
r~
IO)
NO
rt
ro
ol
^d-
O
O
ON
OJ
U
CM
CO
OJ
O4
OO
O4
Q
^d-
TJ-
t~-
ON
OJ
OJ
04
O
00
D-
oo
00
[--^.
r-
^o
^o
o
"~3
DO
O4
rr
R
ON
01
U
CM
CO
ro
OJ
oo
04
O
Q
00
ON
r^
r-~
ro
oi
s
oo
Tt
, ,
oc
00
f-^.
NO
VD
NO
c
04
ro
n-
r^
ON
04
U
C-
10
*
Ol
00
O4
Q
10)
ON
00
rr
^
OJ
ro
01
00
*d-
_:
r^
oc
r
r-
NC
=
r-
r^,
^t
C
C?
OJ
u
CM
CO
IO)
Ol
oo
Ol
s
ON
r-
C
^>
oo
IO,
ON
1O,
10,
ro
oc
ro
c<",
t~~
OO
^
ON
NO
^
rt
^d-
*
ON
04
U
a,
CO
NO
04
OO
OJ
c
r^
01
oo
OJ
i-H-
00
o
(^
oi
oo
s
oo
ON
ro
ro
OC
oo
ro
ro
C
r~
OJ
ro
p
O"
NO
^t
rt-
O
ON
O4
U
CM
CO
r-
01
oo
Ol
ง
O
*
-,-*.
ON
OC
oi
r-~
ON
r^-
00
oc
r^-,
r^-,
oo
00
[ _
NC
r^
r-
i/~j
TJ-
r~^
ON
04
U
CM
CO
oo
O4
oo
04
Q
C-15
-------
C
o
U
U
z
ซ
H
-a
0
,5
5
c
o
'w
ซ
s
B
03
J3
a
o
B fs]
C.
c. .E
.E 0
.^
.2
n
"s
CJ
E
O
U
B
^
U
3
CJ
i
E
O
03
O
B
O
CJ
"o
U
E
O
_c
U
U
1
in
CJ
03
C
03
5
i
CJ
ฃ
rs
'x
o
o
uซ
'E
CJ
a
'x
o
B
i
t_
v
^
a
'u
o
M
.s
2
B
H
Is
C
^jj
L^
^*"
t~-J-
st
t
ro
r-
*~~
CN
rN
OC
O
ON
OC
CO
d
oo
oo
-st
to
r~~
o
o
d
a
in
in
Tf
c
C?
CN
U
DH
00
ON
CN
OC
CN
C
G
o
NO
st
^
CN
CN
OC
Tf
CN
ON
ON
C
OC
ON
ON
Tf
ro
t-
0
C
a
o
in
0
ON
rN
U
0.
oo
^
rN
CM
OC
rN
^
C
c
t^
-*
r^
Tt
C
("""J
*O
l-O
ro
O
0s-
ro
O
~
^C
O
Vj
r--
ฐ
^-
c
c
ON
rN
U
oo
,
O4
CN
OC
04
Q
in
r--
^r
~
04
^
^f
ON
ON
ro
a
ON
CN
OC
ON
Tf
in
o-
,-j
ON
O
C
ON
r-J
U
O-
oo
o-i
04
o-i
OC
rN
C
C
OC
'n
OC
-*
rN
P--
Tf
ON
OC
ro
o
ON
OC
in
NO
sC
r-
ฐ
r*~
,
o
ON
04
CJ
oo
r*-j
rN
rN
OC
rN
^
G
ON
ON
-t
04
CN
q
ON]
ON
NO
ON
00
ro
d
ON
^
in
t
r-
~
d
a
oo
"
O
O
ON
r\l
U
Cu
oo
<^-
rN
rN
OC
rN
O
Q
l/~j
O
V~)
ro
^O
i~~l
fN
OO
OJ
r~~
O
00
ro
d
c
ON
m
(N
oo
r-
rN
O
O
d
rN
rN
"
O
0
ON
CN
U
OH
OO
in
CN
rN
00
rN
C
Q
OC
'
m
ro
rN
^_
oo
ON
00
ro
d
r-
o
ON
c
ON
OC
r-
o
d
a
CO
"
O
O
ON
r^
U
0-
oo
NC
rN
rN
OC
CN
O
Q
m
^t
m
CN
CN
se
^~
'
OO
ro
c
ON
r
NO
. '
OC
0
o
d
, .
r*^,
"
ง
ON
O)
U
0.
oo
[
rN
rN
00
CN
O
rN
ro
in,
,H.
oo
rN
rN
,
C
c
ON
1-0,
d
ON
ON
00
O
OC
,-,
NC
ro,
"
o
ON
O)
U
-O
OC
OJ
04
00
O4
O
G
o
OC
in
^j.
oo
p
04
r
in
OC
ON
ON
ro
d
CN
O
OJ
ON
r-
c
a
0
,n
O
ON
0)
U
Cu
oo
ON
rN
O]
00
rs
O
Q
NO
in
NO
ON
ON
ro
00
ON
ON
rO
d
ON
in
ON
oo
r--
o
d
a
st
10
O
O
ON
?3
U
Q.
00
O
Osl
00
OJ
o
G
f
04
in,
in,
NC
ON
_
ON
ON
ON
ro
d
04
CN
CO,
ro
O
oo
O
ON
"
C
ON
04
U
OH
00
,_
fo,
rN
00
rN
C
Q
ON
r
rO
m
wo
st
ON
, ,
O
c
oo
rO
O
ON
in,
rO
O
oo
o
^J-
l/~i
8
ON
CN
U
00
rN
ro
rN
oo
rN
0
Q
OC
o
*t
m
^
Tt
ON
rN
r
0
o
CN
OC
CO
d
ON
rN
OC
C
OO
O
ON
in,
in
0
ON
04
U
a.
00
ro
rO
fN
oc
OJ
0
G
CN
NO
in
st
O
ON
CN
ON
O
O
00
ro
d
CN
ON
NO
NO
OO
o
ro
O
NO
o
o
ON
CN
U
00
c-}-
ro
rN
00
rN
O
G
00
oo
m
in
m
f
00
04
rN
O
OC
ro
d
0
ON
^.
r^
CN
00
o
C3
OO
O
NO
O
o
ON
O4
U
cu
00
in
CO
CN
00
CN
O
Q
in
NO
m
m
NO
OO
ON
rN
O
OO
rO
O
C
ON
_
NO
CN
OO
O
d
04
'
NO
O
o
ON
OJ
U
Cu
00
NO
ro
rN
00
O4
o
Q
oo
r
m
st
in
oo
CN
OJ
o
00
ro
d
00
o
ON
NC
r-
OC
c
c
d
t
NC
c
ON,
CN
U
0-
00
r-
co
CN
OC:
rN
O
Q
t--
00
[
in
in
in
oo
in
. i
ro
CN
OO
ro
O
ON
O
ON
ON
ro
oo
c
*
CN
NC
o
ON
CN
U
Cu
00
OC
ro
CN
OC
CN
0
Q
o
NO
oo
in
in
TH^
oo
ro
TH^
ro
0
CN
OO
ro
d
oo
o
ON
in
ON
r*~,
OO
0
NO
CN
NO
O
o
ON
?J
U
OH
00
ON
ro
CN
oo
CN
O
Q
NO
O
ON
in
CN
*^-
oo
m
ON
ro
O
00
ro
d
ON
NO
ro
*n
00
O
a
O
NO
o
o
ON
CN
U
0-
00
o
CN
00
CN
o
Q
OC
CN
ON
in
oc
OC
ON
Tt
C
OC
ro
d
5
OC'
(0
in
OC'
0
in
ro
NC'
C'
ON
0,
U
p.,
oo
,_,
r^j-
f>l
00
o)
C:
G
M
O
NO
^J.
T^-
OO
O
^t
o
oo
ro
d
OJ
ON
^
ro
m
oo
O
ON
NO
O
O
ON
rN
U
OH
00
rN
st
04
00
og
O
Q
NO
c
NC
in
T^-
00
ON
O
ON
CO
O
r-
CN
m
V)
oo
C'
T^
s^
NC)
o
o\
01
U
a,
00
CO
st
CN
OO
OJ
o
Q
^J-
'
'0
.^.
fHy-
(X)
1ฐ
o
IX
i-O
d
;^
o
'ON
'DO
O
3O
^t
sO
0
ON
OJ
U
OH
00
^J-
T^-
04
OO
OJ
o
Q
^^
OJ
NO
ON
oo
ON
0
NO
o
t ,
CO
d
ON
ro
OO
NO
oo
O
cs
in
NO
o
ON
CN
U
OH
00
in
st
00
CN
O
Q
ON
O
NO
r
00
NO
NO
O
t .
ro
d
CN
OJ
ON
^
^^
oo
oo
O
d
oo
in
NO
O
o
ON
OJ
U
OH
00
NO
04
00
O4
Q
[-^
ro
NO
CN
rt
00
ro
r
O
r~~
ro
d
m
04
ON
^
ON
OO
OO
o
CS
o
"
O
O
ON
OJ
U
OH
00
r-
OJ
00
OJ
O
Q
O
o
NO
CO
ro
oo
00
in
r-
o
r-
ro
d
in
CN
ON
^
ON
OO
oo
o
C3
[~^-
o
g
ON
CN
O
OH
OO
too
Tt
fN
'oo
CN
O
Q
in
OJ
NO
\D
OO
OJ
0
00
o
r~-
ro
d
NO
CN
ON
_
NO
ON
OO
O
r~~<
T-H
r-
g
ON
CN
U
OH
00
ON
Tt
CN
OO
CN
o
Q
C-16
-------
X c
c S
ซ c
3 O
a u
U
U
a
^-ซ
ret
c
o
W
3
C
o
U
U
QJ
C3
"S
C
U
c
c
U
U
3
u
-*ฃ
l>
C
re
E
U
o
X
U
c
c
o
E
^
o
c
c
ซ
X
.C
ฃ
f-
o>
ฃ
r
'
OC
in
SO
ON
OC
OC
OC'
OJ
r
ON
OJ
ON
st
ON
C
sC
r-
c
ON
OJ
U
CM
oo
^
in,
OJ
OC
OJ
: -
Q
OC
u~,
\c
OO
!
ON
OJ
r-
r*",
C
g
SC
ON
C
OJ
r~-
c
ON
~
U
a_
OO
, '
m,
O4
OC
OJ
; :
G
-
SO
sC
OC
<-f
OJ
^
rr
ฃ-;
-t
NO
ON
<->
O
in,
r
c
O-
OJ
y
i/j
OJ
in,
OJ
OC
OJ
; ;
G
rj
t
so
SO
-t
OC
~t
ON
OJ
^
rr
i
l/~,
c^
'
r--]
c;
o
U
CO
r*",
i/~(
r-J
OC
r-j
;
o
f"l
^c
SC
-r
OC
'-/",-
CN
r-J
^
r"~,
^~
g
ON
1-
r
d;
ON
"
y
oo
-t
in,
rj
oo
OJ
:
C;
, ,
r
^O
CO
rO
c
OJ
^
m
C
ON
SO
ON
N--
OC
rn
c
ON
04
U
CM
00
in
m,
O4
oo
O4
c ;
G
^
i^
^O
OC
^sj"
c
OJ
^
l~r,
(^
%
ON
O
ON
~
U
L/J
vO
IjH
fN
OO
rM
Q
NO
OC
; ;
01
^
rr,
c
ON
^
ON
O
c
ON
04
U
CM
00
{ .
in
04
00
r-4
f i
Q
^i-
oc
so
OC
Tt
OJ
~
I
OC
CN
-^
o
ON
r-J
u
D-
oo
OC
in,
OJ
00
OJ
f -
G
*n
OC'
NO
OO
04
OJ
NO
^~
OJ
ON
in
ON
^
NO
o
ON
04
y
OO
ON
in.
04
OC
04
- -
C
ON
SO
OC
OC
in
04
sO
^
st
ON
^
ON
-~
O
oo
ON
OJ
U
O.
00
i 1
SO
00
OJ
C' j
Q
r^-
ON
sD
OC
OJ
O4
04
SO
O
OO
ON
^
ON
'
SD
C
oo
o
ON
04
CM
00
^^
SO
OJ
00
OJ
f ~-
c
rr,
c
r^
st
NO
oo
f~J
ro,
OJ
NO
rr,
-~
ON
in
ON
*-*
C
OO
O
ON
~
U
C-
00
OJ
so
OJ
00
04
' "
C
NO
ON
NO
NO
OO
or,
OJ
NO
r*~,
~
OC
Q\
o
sO
ON
' '
OC
ON
04
U
C-
00
f-r-i
04
00
01
~-,
Q
ON
O
rs
oo
in
OJ
04
SO
rr,
o
OO
ON
ON
ON
OO
O
ON
OJ
u
a,
00
-st
sn
04
OO
04
f N
Q
or
C
r~
oo
OC
m
O4
rr,
O4
NO
(~r,
o
ON
SO
ON
'
OJ
OO
c
ON
r-i
a.
00
in
SO
OC
OJ
c -
Q
ON
0
r~
ON
00
ON
rr,
OJ
NO
rr,
c
OJ
ON
,-t
CN
00
OJ
oo
o
ON
OJ
U
CM
00
NO
SO
OJ
00'
OJ
Q
01
'
r~
SO'
SO
OO
-,
^
OJ
SC
r*l
c
NO
ON
ON
ON
^~
OC
O
ON
OJ
U
C-
00
r-
SO
OJ
OC
ON]
' '
G
ON
04
r~
OJ
so
00
so
**
OJ
NO
r
-------
CU
IE
a
^
aj
ง
C
o
.1
^
B
05
3
O1
S.
cv
en
C.
O
a
C
JZ
I
O
W
ra
E CN,
D. _,
a. .ฃ
.E 0 -o
ป 'x
1 ฃ
1 ง
c .t:
a_> B
u
E
1J ซ
0 "x
U B
"ฃ
ซ
--
ฃ-1 u
S 4J
c3' "ti
_ ;:
C
? tu
^ -a
S 'ซ
H-^
5 CS
X
-C
1
[
c
_c
^ U
^ /"-^
C U
u
+j
c
U
-L.
C
[-^
oc
OO
,
ON
NO
m
n
CN
ro
ro
o
CN
CN
NO
CN
CN
O
NO
O
^
CD
ON
CN
U
D-
oo
CN
c
CN
C
Tj-
ON
OC
_J
oc
NO
OC
r-J
rj
ro
0
r~
r-i
ON
,
NO
NO
rj
o
ro
o
^
CD
OS
r-)
U
DH
oo
ro
~
ON
r-i
C
Q
i-n
^O
. i
O
i-n
Cj"^
r-
GC
r^J
(N
rn
C"1
r-J
r-J
CrN,
C2
i/",
r-J
C"
cd
i/',
n",
0
O
c?
G^
?4
u
D.
oo
vr
g
ON
rJ
^
G
rj
r j
ON
O^
OC
r-
oc
oc
oc
r-i
r j
rj
CD
rj
r^
NO
1
r-j
C
C
-t
^
CD
ON
CN
U
OO
in
g
CN
rN
CD
G
r-J
ON
rO
_;
CD
OO
r-j
r-J
O
0-J
O
oJ
^C
r4
0
5
0
ON
r-j
U
D-
00
NO
g
ON
r-j
^j
C
in
o
ON
ON
OO
r^
oc
NO
CN
CN
CN
CD
^
P^
in
TJ-
-------
C
c
CJ
U
_w
z
c
5
V
ft.
_c
CM
_U
^
C
ca
3
o*
U
"rt
>
5
cy
C
cs
1
CJ
-4-<
.
I?
E 04
ฃ.s
.E 5 |
1 =
'"ซ 3
2 o
-w t-
c -.
u C
U
C
c
U -Jj
o * 3
ฃ ฃ
85 ฃ
5 c
_ E
C
"*
M 4J
^ ซ
J -
^ "0
>- b
3 O
E? "ซ
X
ฃ
ti u
s: ซ
C C
CJ
as
C
___,
b
OJ
in, ^t~
ON ON
m,
r- ON
oc oc
in
cx; c
O4 rr,
O4 OJ
r r-
Ol OJ
r<~, rr:
r- ON
ON ON
OC C
OJ
Ol O4
CL, C.
NO
C C
ON ON
OJ OJ
U U
CM CM
in in
rr, ^f
tr, rr,
ON ON
OJ 04
G C
ON
,
ON
^
OC
r-
oc
04
OJ
oc
OJ
rr,
in
in
O
in
ON
r-
ol
C-
^
T:
c;
SN
01
y
in
in
rr,
ON
OJ
G
^-^
oc
oc
cx;
r
oc
vC
Ol
oc
01
rr
in
5
rr,
in.
OJ
C-
""'
o
5^
r-j
U
C-
oo
v^;
r*~,
ON
r-j
o
(-r-
,
0
oc
*-
CX;
OJ
ri
01
tr,
, ,
ON'
OC
ON
01
r^
O
o
c>
r J
U
N-/1
r-^.
r-*~,
0
r-j
Q
cc
oc
, ,
GC
r*"j
U",
rN
0)
DO
(N
^
, i
o!
[--,
ro
01
e~
c
c
ON
CN
U
d.
OO
OO
rr,
ON
OJ
Q
oc
oc
J^
oc
r
ff
O4
OJ
OJ
T
ON
in
ON
r-l
c.
ON
C
o
C
ON
rN
CJ
CM
in
ON
<-r>
ON
OJ
G
ON
OJ
OO
J-^
ON
OC
04
f~^
rr,
rN
O4
04
^
O4
c>
^
r^
C
04
rr,
~~
o
C
ON
04
CJ
in
c
^t
ON
OJ
G
iy-j
04
OC
rr,
OC
OO
,
r-r,
rN
OJ
rN
rr,
m.
o
-
t^
OJ
CL,
oc
~~
o
C3^
?5
CJ
C-
in
^_
^t
ON
OJ
C
If-.
O
OC
"t
'O
,
r-J
Xi
r*~i
^
ง
_^
^
OS
04
Cx,
04
04
C;
ON
04
U
CM
in
O-l
^
ON1
04
Q
Ol
ON
r
f
r-
oo
oc
c
Ol
oc
OJ
^
ON
o
ON
OC
NO
OJ
c_
OJ
o
ON
O4
U
a.
in
m
^
ON
rN
Q
r~
oc
r~
rr,
oc
rN
oc
c
04
O4
r--
OJ
rr,
f
ON
ON
m,
o~
C
04
CL,
Ti
o
ON
OJ
CJ
CM
OO
r^f
"*
O
ON
04
O
Q
^+-
00
r~-
^
oc
p .
c
01
OJ
OJ
^
NO
r~
ON
rr,
NO
OO
OJ
NO
T;
o
ON
OJ
CJ
CM
00
in,
"*
ON
01
Q
CJ
r~
Oxl
^1-
oc
rr
NO
,
04
ON
OJ
T
T^-
ON
C
0
O-l
^_^
OJ
^t
O
ON
rN
U
Q.
OO
NO
*
o
ON
ON]
Q
NO
00
r
m,
ON
^J-
O
04
OJ
NO
OJ
rr,
^ -
T^-
ON
OO
r~
OJ
CL
^
O
ON
04
CJ
CM
OO
f-^
^t
O
ON
O4
O
Q
o
oc
r*~,
O\
^^
O4
O4
O4
OJ
^j-
O^
r*~i
O
01
j- )
of
o
ON
O4
CJ
CM
in
oc
*
O
C3N
OJ
C
G
NO
r~
oc
00
01
o
OJ
O4
r
ol
T
NO
ON
rr,
-__
oc
(N
y N
CL,
^
ON
04
U
C-.
in
C3N
Jฑ
C>
O4
C
C
OJ
oc
o~
oc
c
'OC
oc
ซ
OJ
O4
O4
^2
NO
r-
NO
C
ON
OJ
^
c_
oc
T!
c
ON
ol
U
CM
in
c
in,
O
ON
01
G
f-T)
OO
r-~
oc
f
oc
o
O-l
04
NO
T
r-
ON
.n
. i
ON
04
(T]
P
o
ON
04
CJ
CM
in
, ,
m
O
ON
OJ
Q
in.
CXD
NO
r~
ON
ON
OC
ON
_
O4
O4
ON
ON
-
^
in
NO
C
f
CL,
C
CO
ON
OJ
U
Cu,
in
04
m
O
ON
rM
O
Q
rr,
rt
r-
NO
00
r-
rN
co
^^
01
oc
OJ
~^-
oo
ON
O4
O4
O
04
C-
O4
;
O
ON
OJ
U
OM
in
rn
in
O
ON
04
Q
r
ON
m
r-
ON
ON
p-
O4
T^-
ON
__
04
O4
ro
Tt
oc
O-l
in
04
[-
~
O
ON
O4
CJ
Cu
in
TM-
m
O
ON
04
Q
^Q
00
r-
NO1
oc
ml
O4
OJ
OJ
T'
f
ON
ON
C
r
04
._,
-
OJ
c
ON
OJ
(J
CL,
in
in,
m.
ON
O4
C
OO
in.
<
cx;
r
O4
OO
rr
ro
OJ
OJ
oc
o-l
in
C
0s)
ON
NO
ON
C
04
_
CL,
NO
04
C
ON
O4
CJ
CL.
in
NO
in
ON
OJ
G
in,
^t
oc
r~-
ON
OJ
oc
m
O4
OJ
ON
o-l
T
- ,
in
O
04
ON
O
O4
c5"
o
ON
O4
U
CM
in
r
in
O
as
O4
O
Q
OO
rr
m
r-
vc
OO
04
ON
O-l
ON
rN
rr,
NO
S
C~J
in
r^J
m
m
o
ON
o-l
U
a.
in
oc
in
O
ON
04
O
Q
c
m
OS
NO
m
rr,
OC
NO
Tt"
OJ
~
f ^
C
OJ
L^-
r-
ON
CL.
OS
O
ON
OJ
U
a.
m
ON
OS
ON!
o
G
NO
t^j
Os
NO
[^
04
OC
04
Tt-
O-l
T
ON
04
C
O
in
f~-
ON
__
CH
^
C
ON
O4
U
C-
m
o
o
ON
rN
C
Q
oc
c
r-
ON
OJ
OC
o
OS
m
04
rr,
, ;
in,
S
r~j
[^~
ON
ON
__
C_
OC
"*
o
ON
OJ
CJ
CM
C^
, ,
NO
O
CDS
04
Q
NO
as
- '
t-~
LLH
ro,
OC
NO
^J-
NO
OJ
p
,-;
[
g
r^J
o
04
O
OJ
CM
m
m
C
ON
OJ
U
CL.
in
04
NO
O
OS
04
O
Q
04
OC
NO
00
Os
r*"(
CNJ
Tt"
O
rN
OJ
OJ
NO
ON
^
CL,
r
m
o
ON
O4
U
Cu
in
rr,
NO
o
C3s
O4
O
Q
C-19
-------
C
o
U
U
o
z
o
T3 C
1 IS
^!5
c c
.2 .2
"s "2
Js c
c S
cs e
3 0
o u
c
.5
>,
O
c
|
=
o
U
CS
CS
O
u
Q
cs
'$.
tu
s
CS
i
li
C3
f
rs
'x
Q
0
-w
'ฃ
U
O'TJ
x
LH ^
8|
IM
*-j
ฃ
0
tS 3
S ซ
X
a;
H
w
ซ
M
E
NO
CN
vC
r-
oc
O
C
f~ -,
co
ro
d
NO
r--
o
r-i
^
ON
ON
0
C.
CN
q
in
C'
ON
CN
U
CL
CO
^j-
NC
C
CN
rj
^
Q
CN
in
vC
oo
NO
CN
ro
C
in
ro
d
[^.
VC
O1
r-i
^
^f-
ro
OO
0
OH
NO
in
g
ON
CN
U
OH
CO
m
o
CN
C
Q
in,
r-
*
ON
m,
oc
OC'
ON
NO
ro
C
,
r
CM
r-
^
r^
r-
=
a.
in
o
ON
CN
U
C-
co
NO
ON
rj
Q
8
*
ON
NO
OC
ON
^f-
*^f
ON
ON
ro
d
r-
n
r-i
rj
rr.
NO
r--
0
c.
in,
q
ON
ro
y
Vj
[--
g
r-j
-^
Q
ii
-r
00
in,
O
ON
NO
ro
0
NO
in,
o
rj
-f
oc
O
r-
0
^
r-l
m
0
ON
r-l
y
CO
oc
ON
rl
^
a
oo
r-i
^*
in
NO
OO
oo
oo
00
vO
in
ON
q
rj
, ,
'
r--
O
^f-
r-i
in,
O
O
ON
CN
u
OH
CO
ON
0
ON
CN
O
a
oc
oc
ro
OC
r-
oc
ro
oo
vo
oo
NO
O
CN
ON
VO
oc
vc
0
ON
r-l
in,
O
ON
CN
U
0-
co
o
c
ON
CN
O
Q
g
ro
oo
NO
oo
ON
00
in
r^
oo
O
T-)-
m,
O
CN
[-^
O
VO
O
ro
co
in,
C
ON
CN
U
OH
CO
, ,
r
ON
CN
t^
Q
c
NO
CN
00
r-
oc
oc
CO
'
r~
ON
d
in
in
C
CN
ON
O
in
c
c.
oc
r*~.
m
C
ON
CN
U
0.
CO
CN
ON
CN
O
Q
O^
O^i
,
rn
OC
r-j
r^-j
^O
OS
c-
n-l
T^J-
o
OJ
oo
^
'
in
0
PX]
"^1"
m
C
ON
CN
U
c.
co
r*-,
ON
rM
^
C
OC
r-l
oc
oc
T^-
oc
m
^i
C
^O
1 ;
rj
>n
*r
o
c.
^f
m
O
o
ON
CM
U
OH
CO
T^-
c
ON
rM
O
Q
CN
OC
oo
*3-
m
m
_
^*
C
, ,
in
O
CN
OO
CN
*
C
a.
in
m
C
o
ON
CN
U
CO
in
r~-
o
ON
rM
O
Q
NO
ON
O
OC
OC
m
O
O
m
CM
^*
d
NO
in,
O
CN
OO
ON
n~,
0
NO
in,
in
O
O
ON
CN
U
OH
CO
vo
c
ON
CN
O
C
NO
m
vO
O
ON
00
00
O
rt-
r-i
0
rO
NO
O
CN
in
ON
in
f>
O
C.
o
NO
o
ON
CN
U
OH
CO
r-
ON
CN
C
Q
ON
0
ON
oo
r-l
r-
'
*
r-i
d
^
[~^.
0
CM
m
'
ro
C
C.
m
C
NO
8
ON
CN
U
OH
CO
OO
C
ON
CN
O
C
CN
m
m,
ON
ON
OO
ON
oc
< '
m
CN
d
ro
T^J-
q
CN
CO
NO
CN
C
a.
o
'
NO
O
o
ON
CN
U
OH
CO
ON
o
ON
CN
O
Q
g
ON
ON
00
O
ON
r-l
CN
C
, ,
ro
q
CN
r
'
CN
; -
OH
NO
o
ON
rM
U
Cu
CO
0
oc
C
ON
rM
C
Q
NO
OO
ON
ON
00
NO
ON
ON
CN
r-i
'*
d
-j^
;
r-l
^
T^y
r^-i
CN
C
Q.
ON
NO
C
c
ON
CN
U
OH
CO
__
oo
0
ON
CN
^
a
CN
VC
in
ON
VC'
ON.
OC'
OC'
CM
CM
CO
CM
<*
C
in
in
q
CM
r~
^f
CNI
o
C-
C~N|
VC:
O
O
ON
r.1
U
a.
C/l
r-l
oo
O
ON
rM
O
Q
ON
m
ON
ON
oo
vo
C-)
CO
CN
*
O
ON
VO
O
CN
CO
f
^t
CN
O
CH
OO
CN
VC
ง
ON
rM
U
OH
CO
CO
oc
C
ON
CN
O
Q
in
NO
ON
ON
O
ON
CN
CN
CO
CO
**
O
r-
vo
0
r-l
ON
in
CN
0
OH
CO
NO
o
ON
CN
U
OH
CO
T^-
oo
o
ON
CN
O
Q
CN
O
NO
ON
rM
ON
m
CM
ro
CO
CO
O
r-l
vo
O
rJ
m
m
r-l
C
a.
r-
ro
vo
O
O
ON
CN
U
OH
CO
in
oo
0
ON
CN
O
Q
OC'
in
a-.
r-l
ON
in
^'
CO
ro
O
^,
NO
O
CM
ON
I/")
CO
r-l
O
a.
*3-
VO
o
o
ON
r)
U
O.
CO
NC3
0(3
O
ON
r)
C3
a
c
ON
VO
ON
CO
O
ro
^
CO
O
ro
vo
O
CN
m
CO
CN
0
VO
VO
O
o
ON
CN
U
OH
CO
r-
oo
0
ON
CN
O
Q
NO
OO
CN
ON
oo
ON
r-
00
CN
r-
^~
O
in
r-
c
rl
oo
, .
O
CN
o
OH
C)
v-i
VO
S
ON
OJ
U
OH
c/:
oo
oo
o
ON
OJ
O
Q
o
'ON
'ON
'3N
O
CM
r-
rM
r-
CD
, ,
f
0
CN
VO
ON
ON
o
a,
in
in
VO
8
ON
CN
U
OH
CO
ON
OO
O
ON
CN
O
Q
NO
[--
ON
00
CN
ON
OO
>_H
in
r-l
r
o
ON
r-
c
r-l
r-
ON
NO
0
D.
ON
NO
C
O
ON
C-J
U
OH
CO
o
ON
0
ON
CN
O
Q
o
c
ON
00
CN
CN
ON
O
NO
CN
r-
o
[^
f
o
CN
ro
r--
O
a.
o
^
o
o
ON
CN
U
OH
CO
, !
ON
O
ON
CN
O
Q
ON
OO
c
ON
OO
CN
ON
ON
m
CN
oo
O
00
r
O
rM
r
oo
o
Cu
OO
o
r-
O
O
ON
rM
U
OH
CO
CN
ON
0
ON
CN
O
Q
-------
o
U
a
ion Method
Quantifical
E
=x
C.
c
c/:
C
O
Concentrat
c
O
ol
o
"E
ca
C.
u'
u
c
O
c
o
u
JU
U
2
ca
C
a
C
ca
E
ca
a
ฐx
0
u
'ฃ
c ซ
c 'x
^ c
S i
u ฃ
u
ซ-
u
a
r 'C
5 o
"- C
" |
_s
CJ
E
H
CB
^H
04
Ol
NT-
DC
04
O4
Ol
rn
r-
c
OC
04
C
ON
O4
ex
Ol
Cฃ
O4
U
c~
o
r--J
G
NO
NO
ON
OC
04
m
-1-
O4
DO
O4
ex
t
O4
ON
01
U
DH
OO
ON
04
G
ro
DC
r
CO,
r-
-t
r-
- -
ol
m
NO1
04
CX
r-
ON
CN
U
c_
co
r-
ON
O4
G
O4
OC
OC
^
^
CO
OC
-t
DC
^*-
r4
DC
04
^
r
SN
y
OC
ฃ~-
CN
O]
r-4
^
,
i-o,
DC
-t
*
r 4
-t
ON
04
ON
01
G
o
ON
OC
CO,
O
, 1
CN
C
04
04
CX
c
SN
U
0.
0
ON
Ol
Q
ON
ON
ON
OC
en
C.^
O
^_
ON
NO
04
O
ex
c
ON
U
OH
ON
04
Q
ON
CN
NO
in
C>
OC
ON
NO
CO,
ON
04
04
04
C
CX
C
ON
U
OH
ON
04
C
OC
ON
NO
ON
OC
CO,
0
NO
ON
04
C
*
CX
oo
c
ON
OJ
u
OH
-
ON
O4
G
"r'
^
ON
ON
OJ
,
04
NO
04
01
cx
OC
ON
og
U
Q.
-f
'
ON
04
Q
04
O
ON
NO
ON
m
04
C
oi
oo
0
C
Cx
O
OC'
ON
CN
U
ON
04
Q
oo
OC
ON
rf
ON
04
, i
Ol
04
O
CX
04
OC
0
ON
U
DH
00
ON
ol
G
Tt
r~
DC
ON
i
O4
in
in,
04
oi
O4
C
CX
OC
C
ON
U
DH
00
r-~
ON
OJ
G
-
OC
ON
04
C
oo
ON
O4
U
OH
CO
o
ON
Ol
C
NO
O4
OO
t
ON
NO'
C
O4
in,
Co,
oi
OC
ON
C
CO,
O
c_
oc
ON
04
U
DH
ON
O4
C
in,
oc
r-
ON
in,
in
r/~-
04
OC
t
O
ON
OO
C_J
ON
O-l
U
CO
Ol
ON
01
Q
CXD
OO
ON
NO
ON
oo
in,
o
oi
NO
oo
0
o
o
oo
ON
04
OH
00
CO)
ON
CN
Q
in,
04
oo
ON
ON
NO
in,
d>
OC
Ol
04
O
O4
NO
O
ซn
O
o,
oo
oo
O
ON
Ol
U
OH
00
ON
04
Q
DC
OO
OC
NO
ON
oo
NO
o
04
c
p
CX
in
oo
c
ON
04
CJ
OH
00
in
ON
04
G
r~
r
ON
r
ON
r^
NO
O
ON
m
1
oi
oo
ON
ON
p
C
Q,
r-
in
oc
C
ON
04
U
a.
CO
NO
ON
ol
NO
C
OC
r
ON
0~
o
ON
m
c
ON
Ol
0
c
o
c
c
CN"
ON
O4
U
OH
CO
r-
ON
Ol
G
Ol
ON
NO
r~-
NO
ON
C
NO
C
ON
m
oi
04
OC
ON
^
Cx
r
ON
O
ON
04
CJ
DH
CO
oo
ON
O4
G
r
m
ON
04
CO,
0
ON
m
Ol
oi
in
O
c
o
o
a,
ON
CJ
ON
04
U
OH
CO
ON
ON
04
Q
ON
Ol
OC
r
ON
00
r-
o
oo
C
oi
m
O
O
p
o
cx,
vO
ON
C
ON
Ol
CJ
OH
00
O4
ON
Ol
Q
oo
OJ
oo
ON
ON
O
OO
o
r
in
O
I--
oi
01
O
OC
p
Cx
04
ON
O
O
ON
Ol
CJ
OH
CO
ON
Ol
O
OC
in,
o~
ON
in
c
oo
in
ON
oi
oo
oo
ON
OC
S
IT,
04
O
ON
Ol
CJ
OH
CO
01
Ol
ON
01
Q
ol
in
04
Ol
ON
NO
O
ON
in,
Ol
NO
CO
ON"
r--
CH
ON
04
ON
O
ON
04
U
OH
CO
CO
CN
ON
04
Q
04
Ol
OO
ON
ON
O
NO
CO)
0
OO
oi
O
CO)
ON
r-
o
o
CM
rf
ON
O
O
ON
04
CJ
OH
CO
ON
01
G
04
O4
r-
oo
ON
in
O
NO
o
04
- i
04
ON
OO
o
p
O
CH
OO
m
ON
0
O
ON
04
CJ
0-
co
>n
ON
O4
Q
C-21
-------
c
Qj
C
sj
U
_c
n
a
5
"ฐ E ,
J o.^
-5 a. .ฃ
1 -5 O
_ ซ
.0 _g
3 2
^5 "e
"S u
C u
W c
3 O
o* u
"c
i-'
3
u
OJ
.ฃ
O
c
2
U
QJ
o
U
Q
i_
-w
CM
^
c
ฃ
E
u
9^
ffl
ฃ
Q
'x
O
0
.-;
'c
C "O
-i '*
s ง
E
j_
w
OS
CU
"O
= 'i
ฃ
3 ซ
X
.e
E
H
OJ
13
a;
ฃ
SC
OO
sC'
OC'
ON
Os
M
OC
OS
SO
O
rn
rsi
ro
Os
rn
Os
OC
_
CD
d
ex
rn
as
^~
CD
3s
r-i
U
p.
CO
sC
OS
r-J
C
r-J
00
r^
so
r
r-
OS
OC
m
r-
as
SO
O
SC
rj
r-J
rn
OS
OC
oc
as
o
d
ex
6s
c
c?
ro
u
0-
co
r~
r-i
Os
ro
C
SC
SC
sC
OC
r-
sc
sC
sc;
Os
sf;
c
oc.
r i
oc
o-
r-
oc
ON
o
o
rj"
in
ON
rj;
O
as
rj
U
co
oc
rsi
Os
rsi
rs
C
CD
oc
sC
oc
ON
rsi
in
r--
ON
SO
d
^
ro
sC
oc
oc
-
c;
O
r&-
Qs
C
CD
ON
rj
U
co
Os
rj
OS
r-i
C
m
. 1
OC
sO
rn
oc
ON
r-
r~
as
sC
0
^
rsi
Os
Os
OO
OS
o
d
3
CD
j2
^D
=>
rj
y
co
Z2
rn
OS
rsi
a
SO
r^
SO
r~
oc
OS
c^2
t
as
sO
C
P;
rsi
ro
oc
oo
oo
-
c
d
ex
so
CD
o
o
o
ON
ro
U
OH
CO
rn
ON
rsj
Q
oo
r^
SC
as
r-
Os
T^-
r-
OS
SO
d
rn
rsi
rN
rsi
as
oo
c
d
ex
CD
o
^
o
ON
ro
U
CO
rsj
m
ON
ro
C
Q
ON
r~-
SO
00
OS
r-J
r^
ON
SC
d
Os
ro
r-J
as
oo
ON
CD
o
ex
o
c
ias
oj
U
0-
co
m
m
as
ro
Q
as
rn
r~-
sc
oc
as
r '
[
as
sc
m
C
rn
ro
rn
in
oo
oo
-
o
d
ex
Os
C^2
c
CD
Os
r-J
U
P-
co
^J-
rn
Os
ro
O
C
ON
in
sC
oc
as
in
f~^
n
as
j
c
3
rsi
oc
r^
oc
, ,
ฐ.
~
ex
xt
rJ
O
c
CD
Os
ro
U
CO
m
rn
OS
rsi
O
SC
SO
m
SO
SO
OO
Os
T^-
in
OS
SC
d
sc
m
rsi
r
n
oo
ro
c
o
ex
oo
rsi
O
o
c
Os
rJ
U
CL.
CO
SO
m
ON
rj
Q
ON
vf
SO
OS
ON
C
rn
xt
ON
SO
O
ฃ
r-i
as
T}-
OO
ON
o
o
ex
rn
O
O
o
ON
rsi
U
P.
CO
r~
m
as
r-i
O
Q
sc
oc
vl-
SO
ON
OS
rn
sc
Os
xl
SC
rn
O
SO
rn
ro
in
as
oo
o
c
r-
m
O
O
O
ON
r-J
U
OH
CO
00
rn
ON
rsi
O
O
ON
C
rl-
sO
oc
Os
SO
O
ON
so
m
O
oo
rn
r-i
Os
rn
in
oc
, ,
''.
~~
ex
r-i
d
Q
O
ON
r-j
U
OH
CO
as
m
ON
rsi
O
Q
rn
rn
m
so
m
ON
ON
rsi
rn
m
ON
SC
rn
O
2
ro
oc
ro
m
00
m
o
o
ex
o
0
c
ON
ro
U
o-
CO
o
Os
ro
C
Q
CM
rn
SO
as
OS
m
THy-
m
ON
xl
SO
m
O
ON
rn
r-i
00
xf
OO
rt-
o
c
CL.
m
CD
0
O
ON
oj
U
OH
CO
, ,
*
ON
ro
O
Q
00
m
so
OS
00
ON
m
sc
rn
ON
SC
m
O
rn
rj
sc
xt
oo
SO
o
o
ex
so
m
O
o
o
as
ro
U
0-
co
ro
~*
as
ro
O
Q
in
00
m
so
in
oo
as
ON
ON
ON
SO
rn
C
2
ro
SO
00
Tt-
oo
r-
c
0
o
o
o
o
OS
OJ
u
p.
CO
rn
rr
ON
rJ
Q
(N
r-
m
SO
00
a\
00
rn
C3N
SO
rn
O
r-
rM
^
^H
rn
oo
SID
o
CD
CX
O
Q
O
ON
rsj
U
P-
C/O
r)-
f
ON
rsi
O
Q
in
rn
SO
oo
ON
O
r ซ
xf
ON
SO
m
C
m
r-i
oc
O
00
f-
o
0
CL,
Os
O
O
O
OS
rsi
U
OH
CO
in
Tl"
ON
ro
O
Q
ON
oo
m
so
OS
ON
r-
r- H
"xt
o>
xl
SO
m
0
in
rM
oo
r^
xf
OO
r-
o
o
ex
c
CD
ON
ro
U
OH
CO
SO
Tfr
OS
rs)
Q
r--
r-
m
SC3
ON
Os
OC
m
o>
SO
m
O
r-
r-i
o
rn
rf
oo
SC
c
CD
oc"
o
CD
Os
ro
U
OH
CO
r
^
ON
r-i
C
Q
(N
(N
'0
0
en
CTs
c^-l
CJN
SO
cn
CD
-
rsi
,._
rn
CO
0
CD
CD
CL,
rn
CD
CD
CIS
rsi
U
CL,
CO
00
Tf
Ch
rsi
CD
m
(N
SO
SO
as
ON
xt
SO
ro
ON
SO
m
O
sO
r-J
in
oo
O
00
r-
o
O
CL,
r-
(N
O
o
ON
rx|
O
OH
CO
ON
ON
r-J
Q
'/")
>o
1
00
ON
SO
rn
CD
ir-i
in
CM'
ON
CO
r~-
r-
CD
CD
'CX
rn
O
CD
CJs
CM
U
OH
CO
CD
CK
rsi
CD
Q
in
O
SO
ON
ON
C
so
ON
SO
rn
O
so
m
co
as
OS
oo
oo
CD
o
CX
r-
m
O
o
ON
rM
U
OH
CO
, ,
m
ON
rM
O
Q
r-
m
O
SO
ON
ON
ON
ON
o
ON
SO
m
O
in
rJ
00
oo
oo
r-
r-J
CD
O
CX
o
c
OS
r-i
U
OH
CO
ro
in
ON
ro
Q
_
rsj
so
ro
O
rsi
Os
sC
rn
m
m
ro
m
r-i
oo
ON
O
d
ex
SO
o
c
ON
rs
U
OH
CO
m
in
ON
rM
C
Q
oo
o
so
SO
as
ON
SO
i/n
ON
SO
m
O
m
in
rsi
^
m
O
oo
ON
CD
d
ex
o
m
O
O
Os
rM
U
OH
CO
^j-
U-l
ON
rsi
O
O
r-i
so
ON
ON
in
SO
ON
SO
m
m
ro
m
in
o
00
Tf
ro
O
d
ex
in
n
O
53
ON
ro
U
PH
CO
in
m
ON
rs)
O
Q
m
ON
O
so
in
O
q
o
m
ON
^O
SO
m
O
m
in
rxi
r-
0
oo
m
r-J
O
d
ex
ON
in
O
o
ON
ro
U
OH
CO
SO
m
ON
rs
C
Q
C-22
-------
C
o
U
U
ion Method
Quantificat
O
C rvl
ฃ.s
.E 0
S
C
Concentrat
"c
u
-
C
B
C
g
"o
U
a
~a
C
u
&
,**
B
ซ
OJ
E
u
S
'5
c "2
C 'x
s|
u
oj
?
u
, 'u
=2 ง
ฃ w
.B
o
E
H"
c
p
xC
in,
ON
xO
OJ
in,
xC
'-n
Ol
ON
OJ
0
OC
OJ
a
o
"
OJ
OJ
u
CM
CO
ON
01
c
in,
xD
01
r~
oc
ON
xC
in,
in
OJ
01
O
oc
OJ
c
cc
o
<
01
OJ
u
CM
CO
oc
ON
01
Q
c
OJ
in,
ON
ON
xC
in,
OJ
ON
r--
OJ
c:
s
0)
04
y
co
ON
ON
OJ
CM*
1C
>/~l
Oi
r-j
u^,
^C
"vC
r-j
oc
r]
,
^C
O!
r-]
U
CL
C/}
o
r-4
O
ฃ
i/",
r~-
r-j
~t
ex:
oc
r-i
rN
r-j
5
OJ
r J
y
in
ON
OJ
G
xC
m
ON
in,
O
01
OO
0
ON
XO
xO
oi
ON
00
OJ
01
a
01
01
01
u
CL
CO
04
ON
01
C
oc
ON
in
01
01
ON
xC
C
ON
oi
ON
OJ
O
a
<
01
01
U
CM
CO
ON
OJ
C
ON
ON
in
C
OJ
1-
ON
XC
XD
OJ
xD
OC
OC
OJ
o
r-
C
Ol
OJ
U
CL
co
XO
ON
04
Q
in
ON
ON
oi
ON
XO
OJ
ON
ON
OJ
O
c
-*_
<
OJ
OJ
U
a.
co
ON
OJ
Q
2
cc
ON
OJ
xC
xC
ON
ON
04
a
~
OJ
OJ
y
CO
xC
ON
o]
s
OJ
CD
rj-
ON
ON
ON
xC
xC
OJ
xC
oi
OC
OJ
>
a
ON
C
ol
OJ
u
CM
CO
ON
OJ
Q
ง
xC
ON
ON
r-
ON
xD
xD
OJ
OO
oi
xC
ON
r~
01
C
*=
Ol
OJ
U
D-
CO
OC
XC
ON
OJ
Q
oc
r
ON
in,
C
oi
00
ON
xO
xO
in
xC
oi
m
in
ON
r-
OJ
a
oc
in,
*;
OJ
OJ
U
CM
CO
ON
XC
ON
01
s
01
in
ON
OJ
ON
xC
xC
xC
OJ
'OC
ON
OJ
c-.
o
OJ
OJ
U
CM
CO
O
ON
OJ
Q
CO
ON
in
p
oi
O4
O
ON
xC
in
xO
oi
vt
co
in
04
r;
o
OO
o
0
04
OJ
U
0.
CO
r--
ON
01
0
Q
r
XO
ON
in
01
XD
C
ON
XO
XC
xC
oi
oc
OJ
Ol
5
01
OJ
u
CM
CO
OJ
ON
Ol
Q
01
ON
m,
OJ
C
OJ
oc
ON
OC
xC
XC
oi
ON
04
O
C
1
01
OJ
U
CL
CO
ON
0)
V '
Q
in
oc
in,
OC'
01
ON
OC
XC
in,
xC
oi
oc
ON
r-
r-
OJ
01
0
C
OJ
r-
OJ
OJ
U
CM
CO
r-
ON
01
Q
r-
OJ
oc
in
xt
C
oi
00
ON
OC
r-
xD
xO
oi
ON
in
r-
r-
O4
o
o
xC
01
O
ol
OJ
U
CM
CO
r-
ON
04
Q
ON
OC
in,
OO
ON
ON
m
xD
ON
00
f-
VO
C
xd
OJ
ON
ro
ON
OJ
C
0
o
OJ
04
U
CM
CO
XC
ON
Ol
Q
04
OO
OC'
in
C
oi
OC'
ON
CO
r
XC
XO
xO
oi
cc
01
r-
xO
01
0
0
a
O4
01
U
Cu
CO
r-
ON
01
O
Q
m
in
xo
04
OC
ON
CO
oc
r-
xC
d
in
xC
04
04
r-
r-~
O4
a
ON
5
OJ
04
U
CL
CO
oc
r-
ON
04
C
ON
OC
m,
m
ON
ON
in
m
ON
00
t
XD
rf
xo
Ol
OO
xO
OJ
rf
C
Ol
OJ
u
CM
CO
ON
ON
Ol
C
OO
00
ON
8
r-i
ro
xt-
ON
00
r~
co
xD
oi
04
O
a
ON
04
OJ
U
CL
CO
OO
ON
OJ
0
Q
XD
0
00
in
0
o
oi
xO
C
ON
CO
xC
0
m
XO
oi
XC
OJ
r-
in
OJ
o
m
C
ol
OJ
U
Cu
CO
OO
ON
OJ
O
Q
04
OO
in
C
oi
ON
ON
00
xC
xO
OJ
r-
ON
xC
f-
in
OJ
o
c
a
CO
in
O
OJ
04
U
CM
CO
OJ
00
ON
04
Q
OO
m
ON
O
p
oi
in
ON
OO
OO
00
xO
o
ON
oi
in,
in
OJ
0
0
a
OJ
0
ง
01
OJ
u
CL
CO
od
ON
OJ
Q
0
oc
in
CO
O
04
OO
ON
CO
CO
XO
C
oc
oi
01
ON
xO
04
a
c
c
OJ
U
CM
CO
oc
ON
ol
C'
G
OO
xO
in
g
oi
ON
00
00
OO
XD
CD
xo
in.
OJ
xC
xC
OJ
a
CD
OJ
OJ
u
CL
CO
in,
OO
ON
04
Q
rr
rn
00
xO
o
0
oi
xO
o
ON
OO
xO
00
XC
oi
xO
r
CD
O
n)
xC
OJ
5
O4
OJ
U
Cu
CO
xO
CO
ON
OJ
Q
^
m,
XD
ON
ON
ON
OO
OC
xC
CD
OJ
xO
O4
in,
xC
t-
oo
04
a
oi
O
01
OJ
u
CM
CO
OC
ON
04
^
C-23
-------
3
C
^^
O
U
ro
i
U
n
H
o
o
X
u
C
O
"re
_u
5s
^
c
re
3
<->
C
a.
a.
.s
c
O
13
c
u
u
C
O
U
ro
O
^
O
c
re
ฃ
ฃ>
3
1
O
B
O
u
^
o
2
re
Q
u
W
JS
^
c
re
ฃ
01
E
^
re
if
u
."2
'x
o
o
^
e
oป
c "^
o 'x
-O O
M
u
CJ
re
NO
>n
c
c
01
ro
OC
OC
CO
d
~
01
ON
ro
O
^
oo
01
o
5
01
^
CD
^
OJ
oi
y
CO
OJ
ON
ON
oj
^
Q
ON
O
in
q
ol
C
oo
oo
ON
NO
d
P
oi
ON
ro
NO
^
ON
Ol
0
d
oc
O
0
o
04
U
CM
CO
ro
ON
ON
OJ
0
O
r-
m
O
oi
C
oo
00
00
NO
d
s
oi
^.
ol
NO
^
0
d
O]
01
o
0
o
Ol
OJ
u
CM
CO
Tj-
ON
ON
OJ
CD
Q
_ซ
r--
>n
q
r-i
oc
C
OO
oo
ON
O
r-
NO
r-i
in,
r-^
in
r
Ol
ro
O
d
r
r-i
O
01
01"
U
CM
CO
in
ON
ON
01
CD
c
r~
in
OJ
O
oi
oc
ON
oc
ON
NC
d
r-
Ol
oc
c
^
ON
C
ol
0
c
c
OJ
U
CM
CO
NO
ON
ON
Ol
^
O
ON
NO
>n
-
01
oc
r-^
CXD
OC
c
NO
0!
ro
^j-
NC
^
r
ol
d
g
^
0
o
rj
oi
U
CM
CO
r^
ON
ON
r^i
Q
G
T^-
NO
in,
O
q
oi
m
r
oc
oc
NC
O
"
ol
ON
in
^
NO
O
^
CD
C
Ol
ol
U
CL
CO
oo
ON
ON
01
C
a
ON
Tt
in,
S
q
oi
01
m
r
oc
oo
d
r-
oi
ON
NO
m
r--
ND
01
O
m
ro
O
O
O
ol
01
U
CM
CO
ON
ON
ON
01
O
G
in,
NO
m,
ON
q
oi
oo
NO
t~-
oo
ON
NO
2
oo
oj
ON
OJ
in,
^
r^
01
o
d
CD
OJ
C
Ol
Ol
U
CL
CO
C
o
ON
OJ
C
Q
in,
T^ป
NO
in
oo
g
oi
T^*
r~--
oo
ON
ND
d
ON
NC
oi
ON
ON
^
d
d
Ol
ro
O
ol
ol
y
CO
o
ON
ol
C
O
01
T^
NO
in
ro
O
oi
ON
r---
oo
ON
NO
d
r-
oi
ro
OO
m
r-
01
d
ON
Ol
O
O
O
01
01
U
a.
CO
01
OJ
ON
Ol
O
Q
CD
^_
NO
in
q
oi
oo
01
r
00
r-
d
r-
01
ro
[-
m
r
Ol
d
rf
ro
O
O
O
Ol
01
U
a.
CO
ro
C
OJ
ON
OJ
o
Q
o
c
NC
in
r-
O
oi
01
r-
oc
ON
NO
d
0-1
oi
in
C
m
r-
ON
01
o
d
ctj
oc
c
O
O
01
OJ
U
CM
CO
ง
C -
ON
Ol
O
Q
m
O
NO
in
O
oi
ON
01
r-
oc
ON
NO
o
ro
oi
, ,
O
in
r-
NC
ro
p
ro
ro
O
Ol
ol
U
CL
CO
in
ON
OJ
O
Q
0
ro
NO
in
O
oo
01
o-
oo
ON
NO
d
m
oi
m
O
NO
p-
ro
ro
O
d
r-
ro
O
0
o
OJ
01
U
CL
CO
NO
S
ON
Ol
C
C
NO
[ .
in
m
r-
5
oi
^^
r-
oo
ON
NO
d
r
oi
oc
00
Tt
r-
ND
01
O
O
ol
in
ro
C
C
0
01
01
U
CM
CO
r-
ON
Ol
O
Q
o
o
NO
in
oi
q
oi
ro
01
r~
oc
ON
NO
d
00
r
oi
^
O
in
^
ro
O
d
NO
in
ro
O
O
0
01
ol
u
CM
CO
00
ON
01
^
o
ro
ON
in
in
00
q
oi
< i
r--
00
OO
NO
ro
d
r-
p-
oo
O
NO
^
r--
ro
O
d
o
CD
o
o
0)
01
u
CO
ON
O
ON
Ol
O
Q
01
01
NO
in,
ON
q
oi
o
01
r-
oo
ON
NO
d
oo
o-l
in,
r_*
in,
^
ro
O
d
cd
NO
c
CD
CD
^
01
o:
D.
V.
C'
o
O-
Ol
c
NC
OO
in
in
in
01
q
oi
oo
oo
NO
OO
ON
NO
d
00
oi
in
OJ
in
r-
ro
ro
O
d
o
o
0
o
ol
01
U
CM
CO
OJ
ON
OJ
O
Q
p^
m
m
Ol
01
q
oi
01
ON
NO
00
r-
ro
d
oc
oi
^.
ON
r-
m
ro
C
d
in
CD
q
0
CM
CO
Oi
ON
Ol
f~"i
c\
ro
10
10
CJN
CD
oi
NO
NO
OO
t~-
fO
CD
oo
IN
m
;j-
-^f
t--
(N
-------
c
*j
c
0
ro
i
U
u
3
a
H
-c
Q
-B
'S
^^
B
.0
_u
HE
c
a
3
O1
ro
C
C
E ~,
-" fN
ฃ.s
.s c
X
B
_c
'B
u
B
OJ
u
B
C
U
B
_B
i.'
u
u
*-*
O
B
C
^
_OJ
Q
U
5
Is
a
~
a
c
B
^
E
C3
S
JT
Q
x
c
*;
B
B
C "x
"i 1
" 1
U
u
i:
."S
tS 2
= c
X
I
H
B
CU
ปi*
r
st
m
r~
o
r-J
VC
OC'
ro
O
ON
r-
rJ
oc
^
^_
ro
^
O
r~
c
rJ
r-J
U
c-
00
ON
^
rj
ON
rJ
C
ON
in,
in
fN
c
rJ
oc
r-J
oc
r
ro
C
NO
r
rJ
r
st
^
< '
, ;
in.
O
o
rN
U
CH
00
f^.
r\]
rxi
o,
r--j
C
^t
o
-t-
o
r-j
1
oc
r-
r*"1)
c
r-
r--
ri
r-i
t
~
, -
NO
f
^
rj
rl
U
CL.
oo
,
r-J
rj
ON
rj
G
c
OC'
>n
st
Q
rj
oc
ro
^
GC
r
rj
st
-t
-T
- '
, ,
O
^
r]
rN
U
C-
oo
rj
rJ
r-j
ON
rJ
C;
-t
rj
^
rj
rj
oc
P.
^~
oc
r-j
-t
r-
rr',
rO
in
^
0
r j
c-
C/j
r'-,
ON)
r~Nj
O-
r-j
C;
CM
o
in,
r~
C
o
oc
ro
O
OC
CN
r~
^
(N
jt
o
c
c
rN
u
OH
00
^t-
CN
rN
ON
rN
C
st
in
in
o
rj
C
oo
ro
C
r~
r-J
oo
(N
,-j.
st
O
C3
C
o
o
rN
rJ
U
00
in
r-i
fN
ON
r-l
Q
^t
in,
TJ-
C
rN
O
oc
oc
, ,
ro
O
OC
rj
^
ro
^
r-J
Jt
O
oc
^
tN
rN
U
Cu
00
NO
fN
r-l
ON
r-l
G
ro'
in
ro
Z^
rN
C
oc
r-J
C
ON
r-i
in
d
^
ON
r-J
rJ
O
c
c
rJ
rJ
U
0.
00
r^
r-J
rJ
ON
r-J
G
-t
(N
O
rj
'X;
i~-
oo
,
ro
~'
ON
rj
ro
^
ON
JN
cc
r-j
g
rN
rj
y
00
00
r-j
rN
ON
rj
G
st
^,
,
rj
in,
oc
^
ro
~ '
oc
rj
ON
OC'
r-J
r
_^
ro
C
rj
rN
U
0-
00
ON
r-l
r-l
ON
r-l
Q
oc
m
r-J
C
rJ
r-J
in
oc
^
P,
C
NO
OO
rj
ON
OO
r-J
,
S
.
o
cj
C
o
c
r-l
r-J
U
CM
00
o
ro
r-J
ON
r-J
f ^
Q
^
in
rj
'.
rJ
In
oo
ro
O
OC
rj
C
00
rN
^
rJ
S
'
C
.5
c
r-l
r-i
U
CM
00
f~rt
rN
ON
r-l
Q
'ON
^
in,
O\
o
r-i
ON
ON
oo
r-i
C
oc
t--
r\i
^
rj
z~~-
^
ง
C
^
r-j
U
OH
00
rj
ro
(N
ON
rj
Q
'
in,
r-l
*
fN
NO
sl-
oe
fN
C
JC1
rJ
oc
^
r-
ro
O
m
O
o
c
rN
rN
U
oo
ro
ro
fN
ON
r-l
Q
rJ
^,
ro
C
r-i
st
oc
r-J
ro
o
oc
r-i
NO
NO
^
CN
S
'.
O
C3
^
o
rN
rN
U
OH
00
St
f-y")
CN!
ON
r^l
Q
o
m.
rN
rj
^
oc
fN
ro
C
r-
rj
r-j
st
r-j
^
st
S
r*
C
c
r-i
rj
U
Cu
oo
in
ro
CN
ON
r-J
Q
'
^-,
rN
rN
r-l
rN
st
oc
r-J
r-
o
oc
r-J
, ,
^
^
NO
g
'
st
O
^
O
rJ
rj
U
Ou
oo
NC
ro
rN
ON
rJ
Q
r--
o
in
rN
o
r-J
in
NO
OO
r-l
0
st
oc
r-j
NO
r-J
NO
S
'.
O
ON
c
NO
(^
o
rN
u
OH
00
r~-.
ro
rN
r-1
Q
oo
00
r-J
in
st
C
r-l
ON
st
OO
ro
Pi
C
CN
r-i
st
^
, ,
S
'.
O
2
c
o
o
rN
r-J
U
Cu
00
oc
ro
r-J
ON
r-J
G
ON
OO
rJ
m,
r-
c
r-i
rN
oc
st
o
rN
oo
rN
O
^
ro
g
'.
O
oo
o
o
r-l
r-i
U
(X
00
ON
ro
(N
ON
r-l
Q
rN
m
r-J
O
rN
ON
ON
OO
ro
r
O
ON
r-
r-J
00
ON
r-
rN
S
'.
r-l
rN
NO
C
o
fN
CN
CJ
Cu
00
o
st
r-J
ON
ro
G
oc
NO
rJ
m
rN|
r-J
C
r-J
NO
C
st
oo
st
o
st
oc
r-i
ON
st
^
r-i
2
r-J
NO
f~^
o
o
r-j
rj
U
OH
00
, ,
st
r-J
ON
rj
G
r-i
in
C
fN
OO
ON
OC
ro
ro
O
NO
OO
rN
r^_
r~
r
st
C2
i
o
CN
NO
(^
0
r-i
rN
U
00
r-J
^-^
r-J
ON
rN
Q
ON
rN
m
rN
O
r-i
ro
r-
oo
st
O
st
00
r-i
m
ro
r~-
ro
JO
^^.
O
^0
NO
O
0
r-l
rJ
U
CL.
00
st
CN
ON
r-i
G
o
ON
m
r-
r-i
C
r-J
ON
^
00
st
r-
ro
O
oc
r-j
in
oo
r~
fN
fjO
1 '.
O
C3
St
NO
Oj>
o
CN
U
CM
OO
st
rN
ON
rN
O
Q
st
O
r-i
m
r-l
O
r-i
ON
OO
st
r~N
oo
rN|
O
in
^
CO
8
.
o
st
NO
0
o
o
rN
r-l
U
OH
00
^j"
CN
ON)
O
Q
ON
r-i
m
r-J
r-J
st
oc
ro
ro
O
oc
r-J
C:
r-J
r
mi
o
in
NO
^
rj
rj
U
00
st
r-l
ON
fN
G
CN
in,
ON
rN
p
r-i
ro
r-i
oo
st
O
oc
rj
r-
"~~
^
st
ro
1 '.
sj-
NO
^
r-l
rJ
U
CH
OO
st
r-J
ON
r-l
O
G
NO
(O
r-J
in
NO
r-i
C
r-j
m
oo
ro
oo
ro
r-
ro
O
st
oo
rj
^
'
r-
rN
fo
^^.
O
ON
NO
o
o
rN
r-J
CJ
0-
00
00
rN
ON
fN
O
Q
ON
CN
in
ro
^
rN
oo
ON
ro
oc
-^J-
r
ro
O
ON
00
r-i
O
CN
^
NO
to
.
o
st
O
o
o
r-l
r-l
U
0-
00
ON
st
r-J
ON
rN
O
Q
C-25
-------
o
0.1
c
o
U
U
z
f,
_c
O
~ฐ E ~,
0 B, ^
S a. .ฃ
| -S 0
c c
_C 0
P3 c,
S ^
C u
C? C
3 0
0 U
1
LH
3
U
4"
O
C
o
u
Or1
"o
U
15
u
...H
es
^
o
C
"
i-C
a
E
u
Op)
n
ii
o
'x
c
0
*;
'c
C "0
0 X
u 5
C
S ฐ
E
._
V
ca
s-
"2
u 'C
C 3
S cs
X
0^
E
H
u
d
o
J
lซ-H
in
[-^
Ol
m
^
ro
O
O4
O4
0
oc
ro
r^
CD
ON
OO
ro
i '
r-'
t-^
s
o
03
OC
C
"""
c~".
00
Ol
u
o.
GO
C
in,
Ol
ON
Ol
s
oc
ro
OJ
in
ro
ro
O
Ol
SO
OC
ro
p--
C
ON
oi
OC
r-'
Ol
03
!
^
g
OJ
04
U
OH
GO
,
m;
04
0
04
C
o
m
0-1
m
SO
Ol
C
Ol
0-
ON
oc
r<-l
o-
C
CD
OJ
OJ
__
'
^
^.
0
03
^
ฃ~
04
ol
U
O.
GO
oo
in,
04
ON
01
5
SO
^~
OJ
in
_
r'",
CD
OO
ON
OC'
^.
r
C
:***,
O4
04
O
c
^
in
p
04
"~~
C
C
OJ
OJ
u
O-
GO
ro
in.
OJ
ON
OJ
CD
G
OC1
OC'
in,
_
r'"',
CD
04
in
oc
^
r--
CD
C
O4
04
^O
CD
r~-
-T
03
SO
"~~
8
ro
00
y
GO
^j.
in
00
ON
ol
CD
C
oc
in
ON
Ol
CD
04
00
oo
00
ro
r^
ro
CD
Q
04
oi
TH-
C
^
ro
p
r^
r
o
o
o
OJ
Ol
U
OH
GO
in
in
OJ
ON
00
0
D
OJ
m
oc
oo
O
ol
O
m
00
ro
r-
CD
_'
OJ
ol
ON
Ol
O
r-
.,*.
0
m
r-
O
o
OJ
OJ
U
GO
SO
in
OJ
ON
OJ
G
CD
Ol
in
m.
ro
CD
01
ON
ro
00
^
r^-
CD
OO
04
oi
sO
CD
^
Ol
O
O
CD
r~'
C
oo
00
U
O>
GO
f^
m,
oo
ON
01
C
Q
oc
m
ON
r*"i
CD
01
Ol
n",
ro,
oo
in,
r
C
ON
04
O4
oi
C
r-
c
r-
in
0
o
^
^
c
c
O4
Ol
U
a.
GO
OC
oi
ON
OO
c
Q
s^
V".
^f
r^-,
O
01
r*~,
r'-,
OC
^
r~--
c
oo
04
OO
ON
ON
O
^~
,3.
CO
o
ON
^
CD
00
Ol
y
GO
ON
04
a\
01
Q
oc
' '
in
T-t-
r*~i
O
(N
**-C
r*~i
oo
rซ"i
r^~-
0
ON
OJ
oi
OO
^^
'
"""
o
03
r~-
CD
O
oo
oo
U
O.
GO
O
SO
04
ON
Ol
C
Q
00
OJ
m
ON
r/-j
o
04
f-r-j
T^-
00
m
t
CD
ON
OJ
OJ
oi
o
ON
(
^j.
S
O
03
OC1
^
O
O
00
oo
U
OH
GO
,__
so
ol
ON
OO
0
Q
ON
00
m
ON
r*"i
c
ol
T^-
T^-
00
m
t
m
CD
Ol
OJ
04
oo
p
'
r~
in.
p
O
CD
oo
C
c
o
04
OJ
u
0.
GO
00
oo
ON
00
o
ON
so
r*1
in,
0-
^j-
o
01
C
in
oc
01
r
O
-f-
04
oi
f^
Ol
^
in
p
O
oo
O
oo
c
O
ol
Ol
U
GO
m
04
ON
04
O
G
* i
^
U^J
CK
T^J-
O
Ol
m
, i
m
oc
_
r-
rn
CD
^
00
oi
^^
r*o
^
,-j.
S
O
oo
oo
o
O
OJ
OJ
U
OH
GO
^j-
SC
01
ON
OJ
O
Q
10
, i
^t*
m
SO
m
C'
OJ
ON
m
00
04
r
CD
m
oo
oi
O
00
^
ON
r<-,
p
O
03
r-
oo
g
O
oo
OJ
U
OH
GO
in
SO
OJ
ON
OJ
O
Q
ON
O
in
m
, ,
oc
C
oi
ON
OJ
SO
00
_
t
0
_f
04
oi
in
p^
ro
r-
04
p
O
03
OJ
OC
C
O
o
oo
oo
U
OH
GO
SO
SO
00
ON
oo
O
Q
oc
0
in
in
oc
f~O
1
oi
r-
in
so
OC
_
r^
0
^f
OJ
oi
ON
r-
in
S
o
03
so
Ol
OC
O
O
C
Ol
O4
u
OH
GO
r-
SO
OJ
ON
OJ
C
Q
ON
SO
m
I/O
r~
oi
SID
r-
00
^^
r
ro
CD
I/I
r*"l
CN!
0\
rt
r-
SO
^t
p
CD
a
CD
00
CD
CD
CD
OJ
ol
U
G*0
CO
SID
OJ
ON
CN|
CD
G
SO
so
in
ro
f^
<-
oi
OO
10
r
oo
[^
CD
in
.
OJ
04
SO
r~"
OJ
ro
p
O
m
oo
O
0
o
oo
oi
U
0.
GO
ON
SO
oj
ON
OJ
o
Q
SO
ON
SO
m
ro
ON
oi
ON
so
p-
00
ro
O
,
oo
oi
m
[
Tt
^
ON
O
p
o
o
oo
o
o
c
OJ
ol
U
OH
GO
O
01
ON
OJ
C
Q
m
ro
SO
in
OJ
OJ
oi
o
OJ
r
00
_
t--
ro
C
,
OJ
oi
SO
^
,3.
O
p
O
03
OO
C
o
C
OJ
ol
U
OH
GO
_
r-
OJ
ON
Ol
C
G
CN|
SO
111
, ,
ro
c-4
CNJ
r-J
r-
oo
__
r-
CD
, ,
OJ
TN|
I/O
00
r-
TN|
CD
CD
03
c^
oo
CD
CD
CD
CN!
r-3
U
OH
GO
TNi
r-J
ON
r\l
CD
Q
r-
sO
in
ON
1 '.
Ol
04
r
OO
_
r-
ro
O
c
oj
oi
oo
O
r
_
O
p
O
03
ro
m
oo
O
O
cง
ol
O
OH
GO
ro
r
01
ON
OJ
O
Q
o
rM
no
OS
f \|
CD
CN!
r~
Tj-
co
liO
r^
CD'
SC
ป-- ,
r-i
os
C^i
CD
r~~
CD
re
vo
ro
ON
CD
CD
CD
rsi
r-o
U
C-
GO
*f
r-
01
crs
r^i
C~!
G
ro
ro
m
m
ro
O
oi
so
SO
m
00
in
r-
CD
r- -
^~
oi
00
r-
o
03
ON
O
0
o
OJ
rs
U
C-
GO
>n
o-
OJ
OS
OJ
o
Q
ON
OJ
m
in
ro
O
oi
SO
00
in
00
^
O-.
ro
CD
r-
1 '
OJ
so
00
r-
o
03
m
ON
O
0
0
OJ
?J
U
OH
GO
SO
OJ
ON
OJ
O
Q
r-
OJ
in
ON
ro
p
oi
ro
oo
oo
^
O--
0
SO
. 1
oi
in
r-
o
03
O
m
ON
O
o
o
OJ
OJ
U
OH
GO
r-
r^
OJ
ON
04
O
Q
in
ON
in
OJ
("*"}
O
oi
OJ
rH^
OO
ol
0-
o
SO
' ',
OJ
in
O
o
p-
o
03
in
ON
O
o
^
oi
U
OH
GO
OO
r-
OJ
ON
OJ
O
Q
o c
ro ro
m in
so r-
ro ro
p p
oi oi
in so
00 C
Tf in
oo oo
t ^
r- r-
ro ro
CD CD
in o
OJ
oi oi
OS OJ
os in
0
r- r-
O CD
03
ot SQ
wo V.
o _
O O
0 O
o o
OJ 01
OJ OJ
U U
0. 0,
GO GO
ON O
r~ oo
00 OJ
Os ON
OO 00
O 0
Q Q
C-26
-------
a
u
3
C
O
U
U
^
a
H
"C
0
^
-
c
.c
re
_u
"E
re
2
o-
c
t^
a.
.e
c
c
53
"E
>
2
u
V
C
O
c
c
OJ
"c
U
53
w
C
u
tV
C
C3
^
E
u
"re
ij
u
Q
3
O
u
'E
a
5 .
x *
~ c
3 5
c
I.
u
?
T1
3 'i
sC. 3
5 ซ
X
jr
E
~^
CC
C
*"
-------
9
C
^^
C
O
U
CJ
n
4>
^H
C
c
"M
w
u
s*ซ
"c
ซ
5
O*
f*"i
o
ฃ N
c X
H W
C
4C
W
u
c
w>
C
O
U
"c
es
pN
ฃ
3
u
ซ
s
_c
O
c
2
u
^
"c
U
C!
Q
^
-ปj
cs
c
CS
ฃ
u
E
u
-2
5
4>
^2
X
ฃ
3
O
.tJ
C
u
C "3
Q *X
ฃ 0
U ฃ
S |
u
W
g
ฃ
^
>- '5
5 i
"5 ^
1/1 x
1
H
w
S
c
-
:"
M"
OC
ON
NO
O
C
04
C
ON
04
OC
^
,_
m
,
04
^
ON
ON
NO
c
c.
c
04
/~
c
o
O4
O4
U
0-
co
OI
ro
ON
O4
Q
O4
[~^
00
NO
p
O4
ON
OC
__
[~^
"^
^
m
<"*"<
oi
r
00
NO
^
C.
04
Q
0
-~-^
O4
ol
U
a.
co
,-y-j
^
fV~,
ON
01
c^
Q
NO
OC
04
S
O4
04
OC
_,
[--^
rn
' '
^t
rr"'
04
r~
00
NO
CI^
f
-^
o
c
O4
oi
U
(X
CO
rH-
~
ro,
ON
04
^
G
OC'
\o
ir-,
04
O4
O
OC
_
t
"^
04
r*".
rs
^
OC
VD
NO
C
p
o
c
ol
U
e_
co
in
-
f"i
ON
OJ
c^
c
in
OC
r
r<-,
P
04
OC
OC
^
^
NC
r '
04
^
r*-,
OC
NO
^
C-
OC
04
o
o
rN
r^
U
'-J^,
'^O
.
r*~i
ON
OI
^
G
oo
OO
r-
04
O
oi
o
O4
OC
00
ฐ":
o
in
;
oi
04
oo
NO
0
04
0
Q
o
c
04
04
U
OH
co
[^
C'"!
ON
O4
0
Q
in
*n
NO
OO
04
0
oi
o
OC
ro
o
r~i
ro
04
OC
oo
in
NO
O
Q.
O
O
c
o
O4
04
U
OH
CO
00
r*~j
ON
O4
O
Q
r
r~-
NO
r-4
C
oj
P-,
oo
OC
^
O
r-4
ro
r-i
ON
r-
NO
O
a.
o
c
o
O4
01
U
a.
CO
ON
f)
ON
O4
O
Q
in
o*-
m
O
O4
O4
'
OC
NO
NO
^
O
ON
O4
oi
04
r-
NO
C
Q.
NO
;
O
o
O4
04
u
Q.
CO
c
O4
r*~~(
ON
01
^
G
ON
ON
O~
-t
OC
c
O4
NO
oo
^
o
H
ฐ
OC
04
0)
^
NO
r^
NO
^
C.
O
04
j^
O
^;
04
O4
U
co
_
O4
r*^
ON
O4
C
G
< i
00
,_
S
O4
m
NO
OO
,_,.
NO
^i
O
'
1
04
^
O
OC
NO
c
C-
04
C
o
c
04
04
U
OH
CO
O4
04
CO
ON
04
O
G
04
CO
OC
CO,
O
O4
OO
oo
NO
NO
^
O
04
NO
oi
^
O
00
NO
o
c,
ON
O4
O
o
o
04
04
U
OH
CO
m
04
("*"}
ON
04
O
Q
__ .
o^
oo
p
oi
ON
OC
ro,
NO
2
' '
ro
oi
.
NO
NC
O
C-
o
o
o
O4
04
U
CH
CO
^-
04
ro
ON
O4
O
Q
ro
f^
NO
ON
04
0
oi
ON
O
OO
fl
NO
^
O
oi
ON
O
NO
NC
^
00
O
04
04
U
a.
CO
in
04
ro
C7N
O4
O
Q
o
o
OC
in
o
04
O4
m
oo
m
NO
CO
O
00
fo)
oi
NO
r-
NC
o
c.
o
o
o
O4
04
U
0-
CO
NO
O4
r*~j
ON
O4
O
Q
m
in
-^-
ON
OC
ON
OO
04
OO
r-
m
^
O
04
"^J
oi
O
r*~i
NO
O
O4
04
O
o
o
04
04
U
0-
co
(
O4
roj
ON
04
Q
NO
OC
oo
c
p
oi
oo
r
,.,.
NO
^
^ *
04
04
ro
T^-
T^
NO
O
a
NO
O4
g
0
04
o5
U
OH
CO
OC
04
f1,
ON
O4
O
C
C-28
-------
ff~i
c
O
gE>
;_
3
si
o>
**
ft,
C
^
w
u
03
C
c
'w
u
~o
U
u
u
ts
^
u
C
rt
X
E
u
0)
CS
?
w
."5
*x
o
(/}
3
c
L>
-#^
'c
OJ
c "2
J'g
t g
s ซ
0 E
u
OJ
C8
ฃ
CJ
"2
i- '^
S c
c: s
(/I 03
X
O)
J=
OJ
E
H
0)
"ca
/^
u
r,-
1 <
O--
[^
**
rN
OC
NO
in,
in
r-
"^T
O
f"1,
^C
O
r\i
^C
^c
o
^ซc
c
c
ET-
ON
in,
oj
O
rM
rM
%
on
rM
g
rN
r-j
O
r>
MM1
OC
r^-
vt-
ON
OC
NO
NO
r-
NO
r<~,
in
OJ
rN
m
i
NO
C
Q
C-
m
r~^
m
C
C
OJ
O)
u
C-
on
m
C
OJ
OJ
c
Q
oc
rf
Tj-
-3-
r-
ON
OJ
^f
-Tt-
r^
NO
^
OJ
01
ON
*-f
CN
m,
C
c_
oc
O
m
d
OJ
OJ
U
CM
on
^t
x
OJ
OJ
C
/->
CJ^
-r
oc
^
r-
-r
r-
-T-I-
r*~,
r*~
oj
O
-.r
o
LT,
X
r^"T
'
r^-,
^
oi
r- 1
U
c_
CA
I/-,
Q
OJ
o-j
, v
r^
^
~^~-
^t
oj
, .
'/"i
r-
C
r*~,
r-
r j
r^-
0
^c
(""4
~
C-
r-
r*".
J;
OJ
OJ
U
CM
on
NO
|
OJ
OJ
r^
r~-.
Tt
r^,
rr
r~-
oc
ON
O
NO
l/~,
r~
OJ
NO
r*~j
ON
OJ
O-l
OJ
NO
O^]
O
C2
c-
OJ
OJ
r*^,
C
^;
OJ
OJ
U
CM
on
r
o
c
^
OJ
OJ
o
Q
NO
n",
^
^J-
NC
ON
ON
oc
NO
*fr
r-
ro
NC
r*^
c
-
OJ
NO
NO
ON
in.
O
(^
d.
c_
NO
OJ
ro
0
c
c
rN
OJ
M^
on
OO
o
o
c
04
OJ
O
O
r*~,
OC
o
Tt
O
^D
(N
VO
r-
f-/-~(
^o
r^;
OJ
r-
OJ
0
NO
C
^
a.
^^
r^-,
r^,
O
O
OJ
rN
U
0.
on
ON
O
C'
c
OJ
rN
O
Q
c
>n,
O
*
r~-
ON
ON
NO
00
Tt-
r~
^>
\c
m
rt
OJ
_
NO
ON
m,
C
X
c_
m,
r*~,
r*",
C
^
OJ
OJ
u
C-
on
c
c
o
OJ
OJ
O
C
'/"i
O
-T
M3
ON
O
^
CN]
^
r--
>c
2
ro
rN
rN
NO
r-
ON
in
rN
(^
c_
0
*
m
Jj
rN
rN
U
CM
on
o
rN
rN
O
r^
OJ
r^,
^-
NO
OC
ON
ON
O
r-
r
OJ
NO
ro
m
O
C'
rN
rM
O
Q
ON
NO
r*~,
-*
,
C
NO
r-
r~
ro
NO
f~,
C
rN
OJ
m
,^
m
NO
C
[^
c
C_
in,
r^-.
Q
OJ
OJ
u
CM
on
^t
0
c
OJ
rN
O
o
NO
ON
r*~,
Tt
r~
ON
ON
r~
in,
r~
r^
p\]
'^C
d
Tf
OJ
OC
NO
m
NO
^
d
CM
CC
in,
m
^^
OJ
OJ
U
CM
on
m
g
OJ
O-J
0
Q
rh
r^,
rt
,
OC
ON
oc
^^
r--
r^
OJ
NO
d
OJ
oi
o
r*~j
NO
C
o
d.
rN
O
-*
^
^
o-l
OJ
u
Cu
on
NO
o
o
OJ
o-l
O
G
oc
r~
rN
*
m
ON
ON
ON
^t
NO
r~
m
NO
r^~i
d
r^
rN
Tฑ
rn
OJ
NO
OJ
o
^
CM
r^
Tj-
C
rN
rN
U
Cu
on
r-
c
OJ
OJ
o
Q
OJ
Tf
r^,
^r
ND
ON
ON
NO
m
r~
r~
r*~i
NO
ro
o-l
in.
rM
in
oo
OJ
NO
O-J
c
CM
4f
o
c
OJ
OJ
U
C-
on
OC
c
c
OJ
o-l
O
G
ON
m
^t
0-
ON
in,
r-
r-
r
o^
NC
d'
OJ
OJ
OJ
O
NO
m
NO
^
(^
c_
NO
'
'*
C
OJ
OJ
u
CM
on
ON
c
OJ
OJ
O
/~^
oo
o
m
rf
r~
ON
ON
OJ
0-1
r^
r^
f*~t
NO
d
ON
m
rN
NO
r
OJ
NO
C'
^
d
c.
01
4f
o
OJ
CN
U
CM
on
o
OJ
OJ
OJ
o
Q
NO
r",
Tฑ
Tฑ
oc
ON
O
OC
r-
r~
r*~i
NO'
c
r~
rN
OJ
_
oc
m
NO
C
o
CM
in
OJ
Tt-
0
c
CN
o-J
u
CM
on
OJ
C
rN
OJ
O
c
m
OJ
m
rf
,
oo
ON
in,
r
r
r*~i
NO
d
M-
oi
^
NO
OJ
NO
^
d
ฃ-
m
*
o
ง
rN
rN
U
CM
on
rN
OJ
C
0
rN
OJ
O
Q
rN
m
m
*ฑ
in
O
ON
OJ
f^
r~-
r*~)
NO
ro
O
OJ
OJ
NO
OC
m
NO
0
o
d
c-
^f
m
3-
5
0
rN
rN
U
CM
on
m
OJ
0
rM
o-l
O
G
r^,
rM
rr-,
-a-
NC
Tt
Tt
r-
r~-
o*t
NC
d
o-
O
OJ
C
r-
r^,
NO
C
d
C-
ON
ro,
rr
~
OJ
o3
U
CM
on
^t-
OJ
O
OJ
01
O
G
^t
c
m
Tt
NO
OO
ON
in
ON
NO
r^
n~,
NO
r*~i
o
04
t
r-~-
OJ
~-D
^^
C
a,
m
-------
C
O
U
o
J"
4:
^
c
c
ft
u
5
-* '
C
03
3
O1
E
c.
ex
c
tf)
c
o
s
u
c
u
c
0
CJ
ro
.ฃ
O
c
O
"s
t,
u
S
u
1
C
O
fS
5
a
O
c
g
"3
O
u
-4-1
ja
^
u
C
*-,
^j
E
w
ซ
ฃ-
-.
"2
'x
i
c
.ซ
c
c "2
OH;
X
pC C
S ง
u ฃ
u
CJ
Cfl
2
l_ *U
- c
*3 ^5
U
CJ
H
CJ
C3
Q
u
^^
__
xt
oo
xt
*
r-
ON
VD
OC
oc
r~
rxl
VO
0
HI
oJ
T^-
xt
VD
g
CD
ft
ON
in
CD
C
rxi
CN
U
00
fi
f~i
C
1
fN
O
a
10,
T^f
xt
"*
P
ON
in,
OJ
oc
p-
fN
VC
r*1
CD
rxj
C
rxi
^
QS,
r*")
O
r ,
ฐ
ex
CN
IO
CD
r-
Di
fx]
rN
U
D_
00
^.
(-rx
o
rN
rxi
O
Q
p-
xt
xt
"XT
r--
~* \
.
vD
OO
p~
OJ
vD
CD
r>-
CN
fN
v~~l
C^;
^
rN
fN
u
OH
C/3
i/~l
(-r^
o
fN
CN
O
l/~l
^
S
QN
OC
. ,
C^
r--
m
^C
r*~i
O
tt
OJ
,
i/~ป
^C
__
0
c-
ro
l/"'
O
C^
^
rN
rN
U
0-
C/}
^C
(-r-(
o
Ox|
rN
o
c
00
*vt
*
p;
ON
xC
oc
r-
rxi
VD
r'l
O
rN
1
OJ
ON
Ox
r<~,
vD
rN
CD
c-
oc
n~,
VO
O
^-j
rN
r-j
U
^
OO
f^
r*"i
X
fN
fxj
o
c
S
^t
"*
rxi
OO
ON
rx)
ON
r-
,
VC
r*1
CD
_
1 '
rxl
VC
ON
r*~j
vO
rN
O
CX
rxi
^t
in
O
o
o
rxi
rxi
U
DH
00
00
CD
rxi
0
P
OO
r^l
Txf
r~
ON
m
vD
r-
r-
fN
VD
ro
CD
fN
C
rxi
oc
rN
VD
rN
0
a.
r-
xt
in
o
o
rxl
rN
U
DH
00
ON
CD
fN
fN
O
Q
O
00
r*1
xt
oc
ON
T-
rN
p^
r^
P~
rN
VD
r*1
CD
rN
ฐ
rxi
rN
i/l
fi
vo
rxl
O
o
c
CX
1/1
in
O
0
o
rN
rxi
U
OO
CD
O
rN
rxi
O
Q
in
r*1
*xt
*
ON
ON
OC
r-j
oo
p~-
rxi
VC
r*"i
C
10
c
rxi
rx)
vo
xt
vO
fN
8
CD
cx
VD
in
in
c
c
^x
rxl
rxi
U
D-
oo
,
T^J-
c
fN
CN
O
D
O
Tt
^
r-,
;
rxi
ON
r^
r-
^
vO
r*-,
CD
oo
~
oj
ON
r*1
vD
rN
g
CX
C3
O
Vw
CD
^
fN
fN
U
D.
00
rxi
THy-
^
fN
rxi
Q
Q
in
p-~
r*1
xt
o
fN
in
xt
r~-
rN
VD
c*1
CD
OC
ฐ
rxl
m
,
r*1
VC
CN
C
O
CD
in
O
VD
C
C
O
CN
fN
U
0.
00
fl
CD
o
rN
fN
o
Q
O
VD
r'l
xt
00
VD
C
IO
p~-
P^
rN
vC
fi
CD
VC
O
rN
ol
04
rxi
VD
rxl
0
o
CD
CX
ON
o
VO
o
c
o
fN
CN
U
DH
OO
^-j-
xt
o
CN
CN
O
D
m
VD
r*i
"xf
VO
CD
fN
rN
IO
p^
r-
rxl
vO
m
CD
j^
C
fN
rN
n
VD
rN
g
d.
,
VO
O
^
rN
CN
U
D-
oo
IO
xt
c
CN
rN
O
Q
rN
00
m
xt
ON
0
.
0
VD
P^
P~
rx)
VC
rn
CD
m
C
fN
C
fl
vD
CN
g
C
CX
oo
xD
O
c
ol
fN
U
DH
00
VD
o
rN
Ol
O
Q
VO
in
r*1
*
ON
ON
ON
P~-
r-
p-
01
VD
r*~i
CD
CN
O
Ol
oo
\n
m
VO
O]
g
CD
d.
o)
VO
O
o
o
CN
CN
U
DH
OO
p-
xt
o
Ol
Ox)
o
Q
oo
xt
^t-
o
O
'
ON
OJ
00
p~-
f-1
vo
CD
_
O
01
xt
ir-j
VO
Ol
0
o
CD
d.
oo
Ol
VD
O
O
O
01
CN
U
0-
00
oo
xt
O
rxi
01
O
Q
m
xt
"*
00
ON
ON
O
oo
r-
Ol
VO
o
ol
O
ol
m
oo
r*1
VC
Ol
0
CD
o)
c*1
VD
O
C
O
Ol
Oxi
U
00
ON
xt
o
01
Ol
O
Q
VD
^t
xt
oo
oo
ON
OO
01
oo
p-
fl
vO
m
CD
in
O
ol
m
r-
xt
VO
ol
CD
f^
r*1
VD
O
0
c
Ol
oi
u
00
o
m
o
o
ol
Ol
O
Q
oo
rl
xt
xt
oo
00
00
p~
n
vo
rl
CD
rxl
CD
rxl
1/1
ON
xt
VD
r-l
CD
ft
H
xt
VD
CD
O
CN
U
OH
IS)
^H
1/1
g
rxi
rxi
O
Q
r*1
in
XT
ON
00
ON
0
ON
p-
f>
VD
r*1
CD
oo
ON
O
Ol
C
IO
vo
Ol
g
O
VD
^t
VD
C
C
O
01
Ol
U
DH
00
Ol
10
o
o
OJ
o
Q
VD
m
m
"t
00
ON
Ol
ON
r-
xt
VD
O
VC
ON
O
oo
o
m
VD
Ol
0
o
o
d.
o
10
VO
o
o
o
OJ
CN
U
D.
00
m
IO
C
CN
01
O
Q
oc)
m
xt
"xt
ON,
C
ON,
OC'
P~
m
VC
CD
r-
ON
C
CN
p-
, i
m
vo
Ol
g
o
D.
IO
10
VO
o
o
o
CN
U
DH
00
xt
IO
o
o
rxi
01
O
Q
VO
IO
"t
r-
c^
rxi
p~-
n
VD
CD
;;
rxi
rxi
0
1/1
VID
rxi
CD
CD
ft
CfN
1/1
xO
CD
CD
CD
rxi
rxi
U
CL,
00
HI
i/l
rxi
rxi
O
Q
oo
CD
P-
xt
OJ
oo
ON
IO
O
oo
m
vo
CD
ol
ON
o
OJ
vo
CO
VO
vD
fO
O
O
O
CX
O
^
o
o
o
OJ
CN
u
D.
00
VO
IO
CD
ol
0
o
oo
r~-
xt
r-
c>
CO
CD
cc
"?
ro
CD
CO
co
CD
fxl
CD
rl
P--
VD
rxi
8
CD
ft
CO
CD
r-
CD
CD
CD
rxi
CN
U
Cu
00
r^.
i/l
8
rxi
Ol
O
Q
xt
p-
xt
IO
p-
ON
oo
vo
O
oo
xt
VO
CD
VD
ON
O
OJ
^
Ol
px-
VO
n
0
O
o
d.
1 1
p-~
o
o
01
?xj
u
D-
00
oo
IO
g
OJ
01
o
Q
n
VD
r-
xt
p-~
ON
ON
r-
o
00
10
VD
m
CD
00
xt
Ol
vo
VD
p-
VD
m
0
o
o
ft
~
^
o
o
o
Ol
ol
U
DH
00
ON
O
o
OJ
O
Q
, ,
00
xt
VD
oo
ON
O
Tt
00
IO
VO
CD
10
CN
f-*1
OO
VD
m
O
O
O
ft
CN
ol
^
O
o
O)
rxi
U
DH
00
O
VO
o
CD
01
Ol
0
Q
OO IO VD
ON Tt OO
r- oo r-
"xt xt "xt
o o
p p rxi
OJ OJ
OJ OJ IO
10 m CN
OO CO OO
IO VO VD
VD VD VO
CD CD CD
ON ^
"- ซ 2
^ oi oi
"xt VO
oJ oo r-
OO P- P
vo vo vo
ro f*1 ro
O O O
o o o
o o o
ft ft ft
VO VD
OJ ro r'l
p~ p- r-
o o o
O O 0
o o o
Ol Ol OI
rxi ol OJ
U U U
CU D. OH
00 00 00
" CN r
-------
-o
CJ
S
=
'4^
c
o
U
V
3
ซ
i
*^3 P rs
2 0. C
5 a. ฃ
MMF C Va*'
ซซS '"
.ฃ .ฃ.
're "re
.M ^""
JS "ฃ
c S
re c
3 O
O* U
"ฃ
^
i-,
3
u
_c
C
re
C*
c
c
u
~c
U
u
w
JS
o
c
re
^
a
E
^
re
OJ
TJ
6
w
c
^
'e
= ."2
ฃ x
ฃ c
M
u
4>
CS
-o
|'|
t/j re
o
CJ
u
Is
u
r^s
U.
m
P^
, ,
ฃ2
CN
Tf
r*"]
OC
r^
rr
xc
rj
in.
C
^
8
^
^~^
*-t-
r-'
C
^
rJ
r-J
U
00
rj-
xO
CD
r-l
rj
O
Q
G^
W,
^
cr
o
r-j
r-J
U
C-
ts^.
r
^;
S
(~N]
r-4
o
c
->
,
rj
r-j
I"1",
-t
oc
r--
r^,
O
~f
r--
rj
C^
rj
f^
g
icT
f-^
o
~
rj
r J
O
00
oc
^^
5
r i
rvi
^
Q
ON
, ,
^
rr
r-J
r
oc
ON
rr
CD
ON
r-4
rJ
^
T^
r-J
r~
S
cx
o
oc
o
0
r-l
rJ
U
D-
00
ON
\c
CD
(~N]
r-J
O
d
[
ON
[^
^
rr
r-i
oc
r^-
CC'
oc
rr
0
00
ON
r-i
rr
^j-
r-j
^
CD
C
CM
O
oc
0
o
o
r-J
?J
U
o.
oo
c
[^--
c
rM
rM
C
Q
in!
^.
^_
cr
ri
rr,
^M-
oc
ฐr-
rr
c
xC
rM
xC
p^
i i
r^
o
cx
r-J
oc'
CD
o
rM
rJ
U
0.
00
^_
t~^
C
r-l
r-J
O
d
OO
in
ON
r-l
rj
r^-,
-r
oc
oc
rr
C
in
ON
rJ
xC
C
r-l
^
g
C_
\ฃ;
,
OO
o
c
r-l
rJ
U
CM
00
r-J
r
S,
rM
r-4
O
Q
-I-
X
l~4
X
r-J
r-4
'n,
-t
X
ON
rr
o'
r<~
rj
rj
rr
r--
g
rj
oc
(-,
O
r^
OJ
U
CX
C/}
r^i
[~-^
o
r4
rj
O
Q
S
rr
in
r-l
rj
oo
oc
rf
OC
ON
rr
CD
rM
rJ
ri
vC
00
^
s
Cx
r-l
oc
o
c
rj
U
Cx,
00
^-
[
c
r-l
r-l
O
Q
in
r-J
r-l
rr,
r-i
r-i
r
00
oc
^
rr
CD
w*>
r-J
rj
oc
rM
^
S
cx
c
do
C
c
r-J
r-l
U
QM
00
m
[^
O
o
r-i
rj
O
Q
r-J
in
ON
r-l
rJ
r-J
in
in
oc
^
rr
C
^
oc
r-l
rM
xg
r-J
^
oc
C
CX
rr,
CO
c
o
rj
rJ
U
Cx
00
\D
r
O
r-4
O
o
rn
m,
r-l
r-J
rr,
r-J
_
xO
oc
rr,
CD
-7-t
r-4
r-l
ri
rr,
in,
in,
^
oc
ON"
oc
o
f^
r-l
r-l
U
Cx
00
r
f
c
rM
r-J
O
Q
rJ
m,
n",
m
m,
oc
^_
rJ
ON
in,
oc
r--
CD
ON
r-J
r-l
r-i
^
in,
TJ-
t"
oo
C
C
cx
^f
co
ง
o
r-4
rM
U
CM
00
oo
t~^
0
o
r-i
rj
O
Q
o
rr,
[-^
O
rM
r^
in
oc
Pi
CD
rM
rJ
r-4
^
m,
rr,
r~
OC
C
C
CX
oc
66
c
c
r-J
r-i
U
C.
00
ON
[^
X
rM
r-4
O
Q
m
m
P^
in.
^_
r-i
oc
r-J
xC
oc
^
rr,
CD
^
ON
r-i
r-i
C
in,
r*",
^
ON
C
CD
CX
in
do
O
CD
rJ
r-i
U
00
C
oo
rM
rJ
O
c
ON
rr
in,
r-J
_
rJ
in,
^r
vO
OC
r-
rr,
O
CO'
04
r-l
r-l
~-
in
"^
ON
-
CX
r
in,
dc
C
(^
r-i
rJ
U
0-
00
, ,
oc
O
r4
rM
O
Q
rr
P;
in
rM
r-J
.
rM
r .
xC
oc
r
CD
^
rM
r-j
in
C
rM
r
CD
CM
rM
o
ON
CD
O
rM
rM
U
Cx
00
rM
oo
O
O
r-4
O
Q
ON
rr.
, 1
-------
15
V
3
C
o
U
CJ
z
en
_C
O
"ง 2 N
.= &.s
*j uซ "
5=0
^ ซ
C C
.2 ฐ
'^ '-C
en ca
u u.
i =
"S u
C u
CS C
3 o
a u
w
c
a
Z
>-)
u
3
u
u
s
_C
O
C5
C8
Q
C
_o
f
U
_U
"o
U
u
w
ซJ
ฃ
a
Sซ
tC 3
"3 C
3 '3
Ifl TO
f.
V
JS.
u
c
H
v
CS
Q
u
j^j
b
p^
oc
r^.
m,
oc
00
en
CN
-3"
Tt
NO
OC
r*~i
p~
n",
O
ON
O
en
CN
^f
m,
p~
CN
C
d
cx
.. ,,_
c
d
o
q
o
CN
CN
U
Cu
CO
m,
ON
(^
O
Ol
Ol
0
O
in
00
en
m,
ON
Ol
rn
01
ON
OO
in
oc
m
p~
en
d
Ol
m
rn
oi
o
in,
m
p-
r^~,
O
d
cx
NO
^
o
c
q
c
CN
01
U
a.
co
o
ON
(~^
CN
01
0
Q
rn
01
^r
in,
, ,
Ol
r<~,
01
*
Ol
NO
oc
't
p-
r^-i
c
p^
xt
en
oi
^^~
~^-
^t
p-
01
O
d
(^
c
o
5^
ฃ~2
ol
Ol
U
C.
CO
p~
^
^ -;
r-J
rN
0
Q
01
C
^f
in
r^-,
01
r^,
ON
in,
oc
-rf
p-
en
o
OC
m
r^-j
r-4
^
^
-?t
r--
r^,
C
d
cx
in,
C
c
^
rj
ol
U
C-
co
oc
^
g
rN
01
O
c
p^
oo
m
m,
-r
oc
r
oi
p-
ON
in
oc
>n
r^
O
01
in,
*-f
oi
in
^
r~
in
^~^
c
cx
ON
O
c;
^
01
01
u
a.
co
c>
ON
^-v
01
Ol
^,
^^
/^
Tt
oo
en
in,
NO
m
CN
^
00
m
oo
*
p~
en
d
vt
oo
m
CN
ON
*
P~
NO
C
d
cx
XT
CN
O
o
q
c
01
CN
U
C-
CO
c
^
o
ol
CN
O
O
m
m,
Tf
in
rN
m
CN
p-
NO
00
*
p-
m
d
en
en
en
oi
ON
P-
Q
m
ON
P-
Tj-
^_
O
in
oi
en
p~
O
oo
m
p~
en
d
en
r-
en
oi
TJ-
NO
P-
NO
OC
o
O
CX
NO
'd-
o
q
o
01
CN
U
CM
CO
00
o
01
Ol
o
Q
NO
ON
O
in
00
en
^t
oi
01
m
oo
"3-
p~
en
d
in
m
en
oi
01
oc
c
p-
CN
C
c
c-
^_
in
C'
o
01
Ol
U
DH
m
a-*
0
01
Ol
o
Q
r--
*<
en
to
CN
"*
-*
CN
NO
OO
-*
oo
-*
p-
rn
CD
oo
*
P~
00
o
d
cd
O
O
CN
O
q
CN
Ol
U
0.
CO
pO
0
01
Ol
0
Q
ON
oo
ol
in
ON
C
in
oi
ol
p-
>*
00
m
p~
en
O
CN
en
01
oo
m
ol
p-
p~
0
d
C3
m
o
ol
O
01
01
u
CM
CO
ol
Ol
0
01
ol
o
Q
O
m
m
in
n-
-*
m
oi
NO
ON
Tf
00
NO
P-
en
d
P-
m
CN
p~
e'.
CN
p~
p-
O
d
ca
ON
o
01
O
ol
CN
U
0-
co
en
eN
O
01
Ol
O
Q
in
V
C*)
in
O4
^t
oi
p-
w->
oo
NO
r-
cn
d
rn
m
oi
^.
CNl
P-
co
o
d
cซ
rr
CN
q
04
CN
U
CM
1/5
n-
I~M
o
IN
01
O
Q
o
NO
01
in
oo
m
CN
CN
CN
Tt
00
in
p~
en
d
en
oi
oo
m
CN
p-
00
0
d
a
oc
'
01
o
q
Ol
CN
U
a,
CO
in
Ol
0
CN
CN
O
Q
C-32
-------
a
c
O
U
U
a
f~
GJ
c
^
J
St:
c
SB
5
E
c.
c.
c
c
^
CS
U
C
u
c
o
U
c
C
ฃ
U
as
U
w
U
cc
ฃ
U
c
SB
.c
E
U
c;
cc
-c
d
u
c
U
"E
O
TJ
'x
O
c
E
U
iJ
S3
>
"5
o
c
cs
X
1
U
C
u
p!
>iซ
OC
c
in
^C
"T"
rr
OJ
__
m
oc
r-
^
o
OJ
ol
NO
r-~
c
c
OJ
OJ
^i
OJ
OJ
U
CU
co
NO
OJ
^^
OJ
0)
o
G
CD
in
I/""
0s'
rr
r-J
r*,
rN
cc
ฃ
rr
OJ
OJ
NO
oo
ON
NO
OJ
C
"
OJ
04
C
OJ
fN
U
Cu
CO
[-^~
OJ
C
OJ
OJ
c
L
oc
^
-T
r J
-t
fN
rj
oc
r?
rr
OJ
m
,
0
r^.
rj
o
p1
o
r^i
rj
U
C.
C/3
oc
r-j
O
rN
rj
C1
c
r-
oc
^
o~--
r~*~.
T-j-
rJ
OC
rj
oc
rฃ
r-
CN
r-
o
r~-
ri
r-i
O
rN
0
rJ
rj
U
C-
oo
o>
rJ
(^
r-J
r j
c
c
NC
OC
NO
'
X
CN
r-,
rN
, i
r-
q
o
c
CN
c
OJ
OJ
U
Cu
CO
ON!
r<",
o
OJ
OJ
0
a
oc
0
in,
r-
rr
OJ
cc
oo
OJ
oc
NC
<*
OJ
^
NO
o
r-
OJ
p
O
in
CN
O
CN
CN
U
C-
co
rn
rr,
c
OJ
OJ
o
Q
c
in,
NO
in
rr
OJ
OJ
OJ
oc
P
__
oc
OJ
ON
C
C
r--
C
c
c
ฃ
OJ
OJ
U
PL,
CO
^f-
rr-,
^
OJ
OJ
o
G
>
T
~t
^
-r
r j
oc
oc
r-
^
OJ
NO
vC
a>
^
^
o
r
c
04
OJ
U
co
n
rr,
c
04
OJ
c
G
c
in
,_J-
c^
Tf
r^
rx]
OJ
oc
F:
OJ
04
m
in
NO
OC
C
o
ON
C
O
c
O4
CN
U
Cu
CO
NO
m
CN
04
O
G
s
^
, ,
c^
T^J-
(N
T^-
OO
fS
cc
OJ
_ซ
ON
NC
OJ
OJ
o
cs
O
c
OJ
OJ
U
CM
CO
P-,
rr,
^
OJ
OJ
c
o
OJ
"*
*S~t
oc
rf
rN
rn
,
oc
p:
-
OJ
O
cc'
NO
OJ
O1
OC
ฃ
OJ
OJ
U
Cu
CO
00
rr,
c^.
OJ
04
O
d
oc
O-,
^
r*~;
f-^.
-t
V/~j
^-1
cc
p:
-
oj
rr'
ON
NO
2
O
r-j
O
r-j
rj
U
a.
CO
ON
r*~)
O
OJ
OJ
o
Q
oc
^
oo
oo
^J-
OJ
NO
o
oc
oo
r-
^,
oj
^
oc
r^
NO
OJ
C
O
nj
OJ
C
OJ
O-l
U
CU
CO
c
c
OJ
ONI
o
c
oc
r
rr
oc
oc
OJ
rr
c
CO
cc
rr
OJ
in
ly-j
r-
^D
OC
o
o
03
r-i
r^i
8
OJ
OJ
U
Cu
CO
^_
rT
c
OJ
OJ
0
G
ON
^
_
in
NC
OJ
fr,
ON
r-
oc
fr,
OJ
^.
OJ
NC
NO
ON
O
O
m
O
OJ
OJ
U
a.
CO
ON)
rr
o
OJ
OJ
O
G
ON
rf
ON
OC
OC'
OJ
oc
OJ
ON
r~
p;
r-J
CN
CN
LO
^O
^o
r-J
rN
O
1
S
OJ
OJ
U
CU
CO
rf~t
rT
c
OJ
OJ
O
Q
s
rr
_
ON
NO
CN
00
oc
r~
oc
CN
CN
OJ
T^-
m
NO
OO
CD
a
o
OJ
OJ
U
Cu
CO
^}-
rT
c
OJ
OJ
0
G
ON
^
{-^
f-^
ND
OJ
00
o
ON
r^
p;
OJ
OJ
CC
in
in
NO
CN
O
c
in
0
OJ
OJ
U
CH
CO
in
rT
c
OJ
0
c
CD
NO
^
^)-
ON
vO
OJ
NO
NO
OC
r~
oo
.
OJ
OJ
NO
oc
in
NO
OJ
OJ
d
a
0
OJ
OJ
U
CU
co
ND
O
04
OJ
O
Q
o
NO
^
OJ
OJ
p^
04
ON
m
oo
r~
oc
f ;
m
c
rN
oc
t^f
in
NO
OJ
p
o
C3
ON
0
OJ
OJ
U
CU
co
[
rT
o
OJ
OJ
0
Q
r~
s
^
oc
oo
NO
OJ
OC
rr,
oc
1^
oc
r^
ON
OJ
NO
ON
rr
NC
rr,
ON)
C
O
C3
C
o
c
OJ
OJ
U
Cu
CO
00
rr
ฃ-,
O-J
OJ
0
Q
ON
ON
NO
rT
NO
rr)
in
OJ
r-r.
ON
r~
oc
r~
^^
CC'
rr,
OJ
OC
ON
NO
NO
OJ
OJ
d
oc
p
o
OJ
OJ
U
Cu
CO
ON
rr
O
OJ
OJ
o
Q
JC?
**
N-
.
OJ
rr
t~--
ON
r^
ON
d
OJ
OJ
^
NO
NO
NO
OJ
p
CD
?2
o
0
OJ
OJ
U
Cu
CO
^
m
o
r-J
OJ
O
Q
NO
OJ
00
rr
rr
OJ
in
04
rT
O
oc
OC'
rr,
m
rN
f
O
oc
NO
r-
OJ
O
d
a
r
OJ
ง
OJ
OJ
U
CM
CO
, ,
in
O
OJ
fN
O
Q
rN
rT
oo
rT
m
ON
rT
OJ
OO
O
cc
oc
d
oc
OJ
rr
oo
NO
OJ
CD
OJ
OJ
o
OJ
OJ
U
CU
CO
fN
c
OJ
OJ
O
Q
in
rr
OJ
t^
rr
OJ
<-T)
ON
'ON
r-
OJ
oo
! :
m
NC
OJ
O-
NO
r~
NO
OC
OJ
O
O
R)
C
c
OJ
OJ
U
Cu
CO
rr,
m
CD
O-J
OJ
o
D
OJ
rr
rr
NO
rr
OJ
0)
f-
ON
r-
30
^
^
OJ
ON
OC
NO
NC
NC
OJ
O
ง
0
OJ
OJ
U
CU
CO
rr
o
OJ
04
o
NO
r-
rr
in
rr
rr
OJ
in
o
oo
oo
^^
OJ
O
rT
04
00
^~
r
NO
NO
OJ
O
a
NO
rr)
o
0
ON)
rN
U
Cu
CO
in
in
O
OJ
04
O
Q
NO
NO
rr
NO
NO
rr
oj
c
rr
ON
r-~
ON
CD
rr
rr
oj
oc
r
NO
NO
rr
OJ
o
a
c
rr
c
o
OJ
OJ
U
Cu
CO
NO
, ;
OJ
OJ
o
Q
C-33
-------
3
C
*^
C
o
U
U
a
c
^J2
~.
fcซ
3
^j
u
s
.ฃ
O
cs
es
C
y
c;
"o
U
1__
.ซ_j
S3
^
C
P3
C
0)
ฃ
U.
w
C3
ฃ
-.
rs
c
S
o
*
"E
U
0*13
X
e c
c
S|
U
jj
ea
^
2
^ 'C
^ o
Js ~
" I
E
H
*ป
CB
o
o
rzz
ta
r-i
in
p^
st
ON
in
T^-
r-i
ri
0
OC
ON
o",
O
ป-,.
st
ri
in,
O
p-
VO
NO
rj
O
d
ฃ
fN
C
n
tN
U
ft.
00
p~
0
r-i
n
O
Q
C^
r~-
^
r)
ON
st
ri
O
ON
OC
ON
f-fj
d
o-,
NO
n
in.
n
oc
VC
NO
n
o
o
rt
ON
r-l
r-l
tN
U
Q_
00
oo
~
rj
fN
O
a
in
p-
oc
^'
O>
IN1
in-
rJ
in,
^fl-
oe
oc
t^-
o",
o
r-
OO
rj
NO
ON
P-
NC
,_).
IN
in,
rj
O
IN
IN
U
ft.
oo
ON
in,
O
tN
r)
O
o
r*,
G^
**
ON
in,
p^
rj
f-~-
oc
oc
r-
01
O
01
Tt
rJ
oc
oc
^ฃ
^f
0
$
t
(N
ON]
U
r*
O1
O
~,
rj
n
Q
C:
n
rl
ON
"*
^
oo
r
oc
oc
[
n
O
r)
oc
r
rJ
oc
NO
OO
NO
in
rj
0
r)
rj
U
ft.
oo
NO
Q
rl
r-j
Q
a
\O
O^
^
,-r
t~~-
- i
01
oc
, ซ
r-i
00
OO
r^
r*"i
d
vo
0
in
rj
m
n
ON
NO
in
IN
o
d
C3
OO
O
IN
n
U
ft.
00
tN
O
n
tN
O
Q
oo
in,
ON
^
01
n
ON
ri
in
w
n
oo
[^
[^
OO
d
^J.
ON
ri
, ,
f
oo
NO
NO
n
d
r-l
01
X
n
n
U
ft.
00
NO
0
IN
IN
O
Q
o
in
O
in
ON
r
t .
ri
oc
r-l
O",
oc
(^
c^
01
o
r)
ON
in,
rj
'n
01
o
r
ON
n
o
d
ฃ:
o
tN
n
U
ft.
00
s
0
IN
IN
O
Q
NC
O",
m,
oc
NO
VO
n
0
oo
vD
p^
n
d
o-,
in,
r-l
n
<
[^
c
0
IN
(N
C
fN
tN
U
Q-
00
NO
o
r-l
r-l
O
c
r^
O1
m
L/";
OO
"^,
rxi
oc
o
r\l
oc
^C
r^-
r*"i
o
'O
o^
r^i
O^
rf~~t
o
p~
,
o
rt
NO
r-J
^
r-l
n
U
ft.
00
NO
NO
0
n
n
O
Q
m
*
ON
^
^.
oc
T^-
r-i
m,
00
oc
[~^
[
p(
d
in
NO
n
c
oo
NO
O
d
o
fN
r-l
U
ft.
00
NO
Q
fN
fN
O
Q
NO
m
oc
st
^_
in
-^f
ri
in
n
' i
oc
r
r-
(**}
d
^
VO
r-i
01
^.^
oo
NO
ON
n
CD
d
in
O
o
n
rl
U
ft.
00
oc
VO
o
IN
n
O
Q
Qs
r^
^
n
OO
Tfl-
ri
CT;
-
00
oo
f^
01
o
^J.
o
m
rj
0
fN
OO
VO
c
ง
O
fN
rJ
U
ft.
00
ON
VO
C
tN
fN
O
a
p^
p-
"*
^
in
^j-
ri
-^f-
o
oo
ON
ro
d
NO
in
in
IN
in
^_
p^
vO
P^
fN
d
C3
O
tN
tN
U
ft.
oo
o
0
r-i
IN
o
Q
p~
t
VD
^
00
o
r-i
O
oo
ON
P-
ON
01
d
oc
in
ri
ON
01
NO
VO
ON
n
o
d
rt
0
rJ
rJ
O
ft.
00
^^
O
r-i
n
0
Q
ro
r
^
00
in
in
r-i
r-i
O
00
oc
t
01
d
IN
00
ri
01
oo
VC
VO
[-^
r-l
p
in
O
o
r-l
fN
U
ft,
oo
fN
O
r-l
rJ
O
Q
o
oo
^
n
.
fN
ON
p-
0
OO
oo
t^
01
d
NO
ON
ri
ON
Tj"
p~
VD
ON
r-l
0
d
rt
OC
in
O
o
fN
n
U
ft.
oo
P
O
fN
fN
O
Q
. i
r^~
^
oo
0
VC
ri
VD
p^
ON
r~-
ON
P-
o-,
d
f-^
VD
st
ri
rj
oo
in
NO
VO
n
0
d
d
o
o
rj
IN
U
ft.
00
r
0
r-i
IN
O
o
ON
NO
"f
r-J
01
i/i
IN
C^
c^
r
00
p^
01
CD
OO
01
r-i
ON
r-l
VCD
VCD
oo
r-l
O
d
o
st
8
r-j
r3
U
O.
00
r--
o
rJ
rJ
O
Q
n
NO
**
in
oo
st
ri
oo
n
ON
P-
00
p-
f~J
d
n
st
ri
01
0
NO
VD
O
d
tN
O
0
tN
n
U
ft.
00
VD
O
r-i
r-i
O
Q
NO
VD
st
ON
r
st
r-i
00
st
ON
r^-
ON
t--
r*~l
d
01
5:
rj
T^-
T^f-
VO
NO
O
d
cd
O
O
tN
fN
U
ft.
oo
r-
o
fN
n
O
O
VO
VD
^
VO
fN
m
ri
VO
f H
O>
r^
r^
r*i
o
oo
oc
01
ri
oc
NO
VO
ON
n
0
d
Pd
fN
st
O
O
fN
fN
U
ft.
00
oo
p-
o
rJ
n
O
Q
r-i
ri
in
^
oo
01
1/1
fN
r-J
r-
oo
p-
, i
00
r*"-)
CD
01
r-i
Tt-
i^^
st
VCD
OO
r-l
CD
CD
rJ
0
rj
rj
U
c-
03
ON
CD
r-l
O
Q
ON
^t
st
in
m
in
r-i
O
O
oc
p~-
01
oo
m
d
01
st
01
ri
01
01
st
\Q
OO
r-l
O
d
c-i
0
m
0
O
fN
fN
U
ft.
00
o
OO
0
n
tN
O
Q
o
^t
*
ON
O1
in
CN
VI "j
p^
p~
m
oc
01
CD
ON
CD
01
r-i
i/i
CD
st
NID
CN
CD
CD
1/1
st
CD
CD
r-l
r^i
U
D.
OD
00
CD
r-i
r-l
O
a
m
C
st
st
P-
O
in
tN
st
p-
p-
oo
00
m
d
_
oo
r-l
r-i
st
01
VO
__,
O
d
ON
st
n
rj
U
ft.
00
r-l
00
O
r-l
tN
O
Q
_^
01
st
p-
st
st
ri
m
vo
p-
ON
oo
01
d
r~-
CM
ri
ON
O
01
VD
0
d
st
st
0
n
tN
U
ft,
00
01
oo
o
n
fN
O
Q
o
n
r-i
st
in
ON
ri
st
in
r^
01
ON
01
d
o-,
st
ri
ON
in
fN
NO
CD
d
cd
ON
st
O
O
tN
rj
U
ft.
oo
st
OO
O
rJ
r-l
O
Q
01 p~- ON
oo m
n oo ON
Tt O1 01
n oo vo
ON P- P-
01 ON ON
ri ~ ~
st OO VO
oo st P^
in r-i n
r- p- r~
01 st st
ON P- P-
01 00 01
odd
VD VO
st NO in
rl p p
tN ri ri
VO -st -st
ON ON OO
-st in
NO in in
ON Tt CO
n o o
0 O O
odd
oo in ON
moo
^t ON ON
n n n
tN n r3
U U U
ft. ft, ft.
OO 00 00
m vo p-
oo oo oo
o o o
rJ n r-i
rJ r-i r-J
O O O
Q Q Q
C-34
-------
"O
u
3
C
O
U
CJ
Z
a
o
.e
"S
E
-S
S
Ss
E
03
5
u
QJ
"S
t
u
E
j=
E
u
&J
rt
E <^
&.= .,
_ /s .
E vw ~
"~ 'x
E 0
2 3
2 -
E 'B
U
E u
c3 g -
IS r-
- u s
"c
it, u
uซ w
3 gg
i- ปt
tt.
E
5 |
_ 'c
3 ฃ
w x
J=
1
H
ซ 5
1 C
C-
B
_C
U
"o
U
QJ
^B
*
rf
r~
r-J
r-
NC
, 1
r-'
r-
o
oc
in
r-J
NO'
rf
in,
rr,
0
c
rr
ON
>=
rM
rM
u
CM
CO
OO'
oo
CD
r-J
rM
O
Q
rM
r~-
in,
r '
c
o
r-'
r
<~r'
r~
r-i
in
i/-
rr
in
rr,
c
CD
oc
ON
X
r-i
rM
U
oo
ON
oo
CD
r-l
r-J
O
c
oc
NO'
i
oc
r-
*~-
.
r '
r--'
rf~>
ON
rT
rj
^^
.
rf
m'
r-i
s
oj
ON
r-J
?M
U
CO
;
~*
CD
rM
r-J
C
1
r-
r-'
, ,
OC
DC
r^
r-'
P
-
NO
rj
NO
~r
in
r-l
CD
r-i
0s
r-J
r^i
U
a-
L/J
1
"^
o
r-J
r-J
o
',
r^
o
r^-
r<-
r-|
r--
r^
<"*~i
CN
r-j
^^
f-*-,
-r
m
r-l
5
r J
JJS
~
r J
rj
y
oo
r-j
~
^^
rj
rj
c^>
>n
oc
ON
OC
r~
r-'
'
r?
rM
z^
in
m
r-J
C
ro
ON
^
rM
rM
U
CM
OO
ON
O
rM
rM
O
D
rM
rf
oc
m,
oo
ON
CD
-
r-
p;
m
CD
r-i
^
r^
m,
rM
O
CD
-
ON
X
r-l
rM
U
CM
OO
ON
rD
rM
(N
O
c
oc
in,
ON
ON
in
r-
r-)
O
ON
'
NC
^r
rT
in,
rM
O
r?
ON
o
rM
rM
U
CM
CO
ON
C
rM
rM
O
a
rM
C
, ,
00
ฐ^
r-J
oc
r^
CD
ON
O
rM
oc
^^
NO
in,
,
CD
O
ON
;X
rM
rM
U
Cu
co
ON
C
rM
r-J
O
Q
I/"1)
o
-f
rn
r-
*-C
(^i
r^
r-j
r^
. ;
OJ
-o
r-j
rt
^O
in
rv.
p
In'
ON
X
rM
rM
U
CM
co
ON
~
r-l
rM
O
oo
c
oc
ON
-^*-
rr,
r~
CD
r-l
m,
5
oc
oc
in
rM
CD
O
O
CD
O
r-l
r-l
U
CM
00
OO
^
O
rM
rM
O
Q
ON
NO
00
r*",
ON
NO
ON
ON
r^
rM
CD
oc
r-l
C
in
in
r-J
O
r-J
CD
X
rM
rM
U
CM
00
ON
u>
c
rM
rM
O
CD
r-
r
r~
NO
ON
T^T
r~
rj
CD
NO
O
rj
rM
rf
in,
rM
p
CD
X
rM
?M
U
C-
CO
o
rvl
r^
rM
rM
O
Q
OC'
r~-
NO
ON
rj
1^
r--
CD
r-j
rj
r^
rT
m,
_
O
r-i
*
O
C
rM
r-j
y
co
r\)
c
rj
r-l
O
Q
T^-
oc
^-J-
ON
in,
oo
r^
"
^
!^
CD
in
NO
rf
m,
O
p
ra
NC
r-j
O
s
rM
CM
u
CM
OO
r-J
rvi
O
rM
O
Q
oc
oc
rM
ON
ON
r-
CD
NO
in,
rM
, ,
m,
r-
in
rj
ง
C3
C
O
rM
rM
U
a.
CO
pq
; '
CD
rM
rM
O
Q
NO
NO'
ON
r^
rr,
r-
~
CD
OO
r-J
,
^r
NO
in,
p
a
in
C
O
rM
rM
U
CM
CO
ง
0
rM
r-l
O
D
rf'
f-^
ON
in,
[-
rf
r~
r-
0
rM
ON
r-i
NO'
ON
NC
rM
CD
rf
CD
O
rj
rj
U
CM
CO
in
r-J
;
(N
r-l
0
D
rM
oo
P^
r-
ON
rr,
m
rM
r^
r^
o
m
m
o
r-i
rT
rr,
r~
m
rM
O
p
rf
rf
o
o
rM
rM
U
D-
co
NO
^o
o
r-l
O
Q
NO
NO
r
r-i
00
ON
OC
'
r-
r-
o
NO
in
O
rM
rf
rM
rf
in
_
p
a
ON
rf
O
O
rM
rM
U
CM
CO
p;
rxt
O
r-J
rM
0
Q
rM
oc
r~
rM
oo
ON
rr
r-~
^
NO
rr
o
rM
rM
[-^
rf
m
0
"
a
in
O
o
rM
rM
U
CM
CO
OO
- '
c
rM
rM
O
Q
rr
00
oo
00
ON
oo
oo
rM
r-
r-
0
NO
O
rM
ON
ON
m
in,
rM
CD
a
oo
in,
C
CD
rM
CM
u
CM
CO
ON
CD
Q
rM
rM
O
Q
ON
O-
rr,
rr
OC
ON
rr
(-/"_
rr
r-
t-
c
rf
O
r-J
C
r-
ON
in,
r-j
O
ra
rr,
C
CD
rM
r-j
CJ
OH
CO
o
c
r-j
rM
O
oc
o
NO
rr,
rr)
g
rM
rr,
rr)
ro
r-
ON
NT
,_;
r-i
rM
rM
in
r-l
NC
in
rM
O
a
o
C
rM
rM
U
CM
OO
CN
o
rM
rM
O
Q
ON
O
oo
rr,
00
rM
CD
I-T)
r-
ON
ND
CD
rri
O
r-i
m
r-
m
rM
O
a
rM
O
o
rM
r-l
U
CM
CO
rM
O
rM
rM
O
Q
m
r-^
oc
00
r-
ON
oo
ON
rM
r^
ON
NO
CD
rr
CD
rM
m
ON
NO
m
rM
o
p
a
NO
o
c
rM
CM
u
CM
CO
m
'
ON
o
rM
rM
0
Q
00
I
oo
rM
r-
ON
rr
ON
rM
t-
rr.
CD
OO
m
O
rM
r-l
in
r-
m
p
a
rM
C
rM
rM
U
CM
CO
rt
ON
o
rM
rM
0
Q
rf
ON
rr,
ON
__
rr,
1^
ON
NC
rr,
r
rM
r-i
NC'
r-l
r^
IT]
r-l
O
^
in
r-J
0
rj
rJ
U
OO
10
'
ON
CD
rM
rM
O
ON
o
rj
rr
, ,
ON
rr,
NO
m
r-
oc
NO
m
CD
^
O
r-l
rf
m
<
NO
rM
O
O
O
o
rM
rM
U
CM-
CO
NO
rM
CD
rM
rM
O
Q
NO
i
ON
m
ON
rM
NO
rM
r-
ON
NO
rr,
CD
5
r-i
^
rr)
oo
in,
r
C
C3
rT
o
rM
rl
U
CM
CO
r--
ON
o
rM
rM
0
Q
m
rr
ON
, ,
r
ON
00
oo
rM
I~~
ON
NO
PT)
f-
o
rM
rn
oo
\G
m
_-
o
p
a
ON
0
rM
rM
U
CM
OO
00
'
ON
0s!
CN
O
Q
-------
Oi
S
C
'ฃ
C
o
U
U
05
"0
_C
*-ป
*5
^
C
o
ซ
gw
-^J
c
re
O
E
Cซ
C.
c
If.
c
_c
re
C
o
O
U
f)
c
O
CN
C
O
c
ฃ
>,
U-
D
aS
**
c
O
re
C
u
"o
U
-w
a
^
o>
c
re
M
E
u
^
re
!ป
..
"2
'x
c
M
o
^2
'ฃ
a
c !H
c x
si
E
u
^j
re
2
1 1
= c
5; ca
X
OJ
f
1
LH
re
c
QJ
^3
iJ-
OO
T^-
ON
CO
OC
NO
ON
ro
m
r
ON
NC
CO
C
rN
O
rN
NO
f^":
r
in
O
0
o
NO
, 1
c
rJ
r-J
U
O.
oo
ON
r-l
^~:
r-l
CN
O
Q
r-J
NO
Tl-
, ,
r-
ON
rJ
in
r-
oo
NO
ro
C
CN
r-J
o-
ro
C
NO
8
o
C3
^-
c
r-l
CN
U
0-
oo
CN
r-l
c;
r-J
r-l
O
Q
ON
ON
C
**
NO
ON
in,
r-j
^f
r-
oc
NO
ro
C
^2
r-J
r-l
f^";
OC
m,
C
c
m
in,
^-.
CN
r-J
U
Q.
oo
r-j
r-J
O
r-j
r-J
Q
Q
r-
-7f
-*
r-
NC
^
OC
^t
r~-
oc
NC
ro
O
r-i
rN
rr
CN
^
NO
o
d;
vn
C
rj
rj
U
O-
OO
rJ
r-o
rj
O
rj
r-j
O
c
ON
ON
Tf
in,
NO
ON
ON
Tf
r-
oc
NO
rr,
O
rj
r^M
ro
NO
-o
g
O
3
r-l
^
r-l
rj
y
oo
ro
rj
ri
o
rM
rM
Q
D
^
o
^
CN
NO
ON
NO
rr.
r-
OC
NO
rr,
O
NO
C
rJ
c^
ฃ^,
00
m
C
C
C
CX
OC
0
rN
C
C
rj
r-i
U
0,
00
r-j
rj
C
rj
rj
O
c
OC
ON
ro
NC
NC
ON
NC
NO
r-
oc
NO
ro
C
NO
0
r-i
r^
NC
OC
m
c
p
o
m
rN
g
r-l
r-J
U
OH
GO
r-J
rN
O
rN
r-J
O
Q
^
Tt
,
f^-
o-
r~
OC
^f
r-
0-
NO
rr,
CD
rJ
rJ
ir-,
ON
ON
!
r-i
O
Q
r
Tt
ON
00
ON
OO
^_
r-
r-
NO
NC
ro
O
in
0
CN
r~-
in
NO
O
ON
O
O
CN
CN
u
0.
00
r-l
^j-
r-i
O
r-l
rJ
O
Q
NO
r-l
*
^
ON
ON
m
THy
NO
r-
r-
NO
CO
o
NO
c
CN
, ,
ro
O
NO
0
ง
c;
(N
r-
U
a.
O'l
ro
T^-
r-i
r-l
r-i
O
Q
r-
rM
TI-
r-
C2
c^
o
r-
NO
ro
CD
CN
LO
O
CN
in
CN
T 1
NO
o
oo
8
I--J
CM
-J
OH
00
Tf
CN
O
CN
CN
0
Q
o
CN
Tt
ON
ON
ON
ON
NO
r-
NO
NO
CO
o
m
NO
0
CN
r-l
NO
NO
O
a,
rM
in
0
r-4
r-l
U
OH
00
in
THy
r-l
O
r-l
CN
O
o
in
ro
*
OC
ON
ON
NO
r-~
NO
NO
0
NO
O
CN
ON
CN
NO
O
CX
r-
m
C
o
r-l
r-i
U
OH
oo
NO
rM
0
rJ
O
Q
oo
ro
Tf
OO
o
oo
r-
r-
NO
NO
O
r-i
O
in
r-l
NO
O
D.
r-J
O
CN
O
C
r-l
r-i
U
CU
oo
r-
CN
C
rM
rM
O
Q
CO
CO
-*
00
p
NO
(-/")
r
r-
NO
NO
CO
O
r
oo
O
rM
ro
t
rN
NO
0
CX
NO
o
CN
O
c
CN
CN
U
OH
00
OO
t^-
IN
O
IN
IN
O
Q
oc
NO
rM
Tt
i^
ON
ON
NO
m
NO
r~
NO
NO
ro
O
in
p
r-i
oo
NO
NO
O
CX
r-J
r-J
?5
U
OH
OO
ON
rM
O
rM
CN
0
Q
C-36
-------
-
s
o
U
U
at
c
O
B E <^
2 B. C
ฃ a, 3
- .ฃ ฐ
"B i
.2 .2
la la
_u u
is "ฃ
C u
M E
3 C
ou
B
J3
J^
J^
H
u
0
W
/*,
Collection F
u
CJ
w
ฃ
c
r
"3
E
u.
0)
~n
is
c
'x
c
3
C
u
'E
CJ
c "2
c x
If
u
OJ
a
'f-
u
, "u
5 o
~ c
S w
X
a;
a
B
H
C
S
*~
OC
r^,
^
fN
rN
rN
P~
oo
NC
ON
rN
r*-,
OC
rN
NC
C
CH
rN
y
oo
to,
fN
O
(N
fN
O
o
10,
to,
"3"
ON
IN
to.
OC
r-
p-
ON
rvi
10
OC
^t
NC
C'
c_
rN
IN
rN
Q
-t
-Tf
"t
<~-J
r~l
f]
;O
ON
P-
-
~
g
rs
rN
p^-
to
NO
O
C.
rN
IN
(N
u
Cu
m
ON
IN
^
r^l
IN
O
Q
OC
"*
NC
ON
_
, i
00
p~
r-'
~~
t~~
c
IN
ON
Tf
NO
O
CH
C
IN
rN
U
a.
00
NO
^
rN
rN
O
Q
ON
^
OC
ON
, |
OC
ON
r-
p~
p~
^
o
IN
^
Tj-
NC
C
c.
c
rN
rN
U
Cu
oo
NO
IN
O
rN
rN
O
Q
OC
^
^
r^j
fN
OC
OC
p~
p-
_:
(N
NO
rN
to,
^j-
r*".
NC
o
c_
fN
U
Cu
00
r-)
IN
0
rN
(N
o
r-.
. 1
r*",
"*
^
Oj
oo
p-
p~
-
ro
c
S
rN
r^
IN
NC
C
Cu
rN
rN
U
Cu
oo
S
IN
^
rN
rN
O
Q
T^-f-
^f
^
^_
rN
r^,
OO
p~
p~
^
oo
2ฃ
rN
^
00
ro
NO
O
a,
rN
rN
U
Cu
00
S
rN
^
rN
rN
O
Q
rN
^
r^
C
rJ
10
oo
p~
^
ro
NO
r-
fN
to
rN
ON
m
rN
NO
o
G,
o
o
fN
fN
U
Cu
00
;*
rN
rN
O
rN
NO
"*
C
rN
rN
oo
r-
p~
^
ฐ
p-
o
IN
OO
fN
to
NO
o
o.
0
0
fN
IN
U
Cu
oo
to
fN
O
fN
rN
o
a
ON
OC
m
^
ON
ON
ON
to
oo
p-
r
ON
O
fN
tN
NO
ro
NO
O
a.
^
IN
rN
U
Cu
oo
NO
p-
tN
rN
rN
0
c
ON
NO
tN
^
xt
ON
ON
O
p^
r-
r-
r*"j
"
OC
IN
NO
00
fN
NO
C
c.
OC
rN
rN
U
O.
oo
p-
p~
r-4
C
IN
rN
O
Q
r-
p-
m
^
^j-
ON
ON
IN
00
p-
p-
ON
NO
^
OO
IN
r<1
p-
ro
NO
O
CU
fN
IN
C
o
rN
fN
U
OH
OO
OC
fN
fN
fN
O
Q
tN
fN
^
,
00
ON
00
r-
NO
P-
P-
d
OC
o
rN
^
oo
fN
NO
O
CU
r
tN
O
O
IN
tN
U
OH
OO
ON
p~
(N
O
fN
fN
O
Q
NO
f**i
' '
^'
fN
oo
ON
NO
NO
to
r-
P:
NO
fN
fN
NO
O
NO
c
CH
m
C
fN
tN
U
OH
00
O
oo
IN
C
tN
fN
O
Q
C-37
-------
at
S
O
U
U
z
ซ
"O
o
^
QJ
s
c
c
cs
u
fa
c
CS
0>
E
a.
a.
.E
c
o
'-2
2
"ฃ
a>
C
U
f>
O
ซ
i
O
c
JS
^
t*
3
^
a>
ง
o
2
'cs
c
.ฃ
u
cu
"o
U
D
(W
^
o
C
cs
-C
o
E
J_
^
cs
;;
'x
0
Cฃl
0
'ฃ
cu
C 'O
II
2 |
^
QJ
03
ซj
2
S ฐ
:= =
X
V
.c
OJ
H
0)
cs
C
u
nrc
fa
in
CN
^
CN
ON
ON
in
SC
o-
OJ
ro
d
p
CN
m
OJ
OJ
NO
O
CX
NO
^
c
OJ
OJ
U
a.
in
,
OC
01
o
OJ
OJ
c
Q
in
"*
NO
r~
ON
OO
NO
r-
ro
ro
0
in
OJ
ON
m
NO
0
,
Tf
"*
C
Ol
Ol
U
O.
in
OJ
OC
01
C
01
OJ
o
Q
co
OJ
^
OJ
NO
OJ
NO
r^
OJ
ro
C^,
i
OJ
^
ON
^O
c
ex
in
^t~
"*
C
OJ
OJ
u
0-
c/}
ro
OC
OJ
f^.
OJ
OJ
o
Q
^
"*
cc
ON
in,
r^
~
ro
o
g
CN!
r-]
\^~~
^c
=
c_
o
l/""(
^
;=;
oj
r-j
y
C/}
^r
oc
O-J
^
rx]
r-J
o
c
OJ
-t
r?
^C
IO
r-
^
rO
c^
O
OJ
OC
("N]
^O
=
c.
5-"
m.
-rt
0
OJ
OJ
y
in
in
OC
OJ
C
OJ
OJ
o
Q
ro
"*
ON
od
m
o-
r-
ro
d
OC
oi
m,
r
o
NO
o
Cx
ON
in
rr
o
OJ
OJ
u
in
NO
00
OJ
^
CN
CM
O
Q
"*
^
ot
CO
in
r^
ON
r*^
O
ON
in
p
OJ
^
ON
- i
NO
C
CX
c
in
O
c
OJ
01
U
0.
in
r-
00
rN
O
ol
01
O
Q
in
ro,
-t
ON
O
in,
in
r-
ON
NO
d
o
oi
in
ON
O
0
o
a.
OC
c
in
c
ol
Ol
U
OH
in
OC
OC
01
C
CN
CN
O
Q
OJ
oi
"*
OC
OC
ON
in;
NO
r^
OC
(-0)
d
in,
C
oi
OC
ON
NO
O
CX
01
in,
0
OJ
ol
U
OH
in
ON
OC
OJ
C
01
01
o
OC
-t
ON
ON
ON
NO
r-
ON
f~,
d
ON
m,
oi
ro,
-^j-
ro
O
O
CX
r^.
'
in
ฃ
OJ
OJ
u
Q.
in
Q
ON
OJ
^^
01
OJ
o
Q
in
OJ
^
ON
ON
in
O
r-
'ON
NO
r*"i
^
Ol
oi
mi
ON
O
NO
C
CX
01
OJ
in
2
CN
CM
U
0,
in
, ,
ON
CM
O
CM
CM
O
Q
NO
^
OO
ON
NO
CC
m
r
ON
NO
m
d
in
C
CN
^
NO
NO
C
CX
NO
OJ
in
O
o
CN
CM
U
OH
in
CM
ON
CN
O
ol
ol
O
Q
NO
Tf
OJ
ON
ON
r
m
r-
oo
ro.
d
p
oi
^
[^
NO
C
CX
r*"i
in,
C
01
ol
U
0.
in
r<">
ON
OJ
C
OJ
Ol
o
Q
OJ
^
ON
O
^c
t^
ง
ro
O
m
p
oi
m
r*~>
^
O
CX
m
r*")
V,
s
01
OJ
U
PH
in
^
a\
CM
O
01
01
0
Q
ON
oi
^
ON
ON
ON
01
NO
r~-
ON
NO
m
O
CN
NO
O
CN
C
ON
CN
NO
O
CX
o
^f
in
O
O
CN
CM
U
OH
in
in
ON
CM
f^N
01
01
o
Q
CM
ro
CM
^
00
ON
NO
CM
NO
r^
ON
NO
CO
o
in
o
CM
^
m
NO
O
CX
T^"
^"
m
g
(N
CN
u
OH
in
NO
ON
CM
O
ol
OJ
O
Q
CO
OJ
"*
ro
ON
m
T^-
NO
r-
oo
NO
O
ON
0
CN
m
o
CN
NO
O
CX
ON
in,
O
CM
CM
U
OH
in
r-
ON
CM
O
CM
OJ
O
OC
' '
"*
OC
VO
ON
ON
OO
SO
r-
oc
NO
O
oo
0
OJ
^.
OJ
ro
NO
C
e.
ro
in
in
O
O
Ol
01
U
a.
in
OC'
ON
CM
O
CM
01
o
Q
NO
Ol
^
r-
ON
^j
VO
r~
oc:
NO!
ro
C
Tf
C
01
^
00
NO:
C
C-
OC
Ifl
w,
o
O
01
01
u
OH
in
ON
ON
01
O
01
01
o
o
ON
ON
^
ON
NO
ON
m
ON
in
r-
oc
NO
CO
c
r~
O
CM
O
CN
NO
O
CX
OJ
o
NO
ง
OJ
01
U
OH
in
ro
O
OJ
OJ
O
Q
OJ
^
ON
NO
CN
r-
NO
r~-
oc
NO
CO
C
m
O
01
ro
OJ
NO
0
Cx
[
o
NO
8
OJ
OJ
u
OH
in
, ;
O
r*~i
0
01
OJ
0
Q
ro
Tf
r-~
ON
OC
r-
r--
ON
NO
o
CN
O
OJ
NO
NO
o
CX
OJ
>
NO
O
o
ol
01
U
PH
in
OJ
O
CD
OJ
O)
o
Q
o.
Ol
^
p-
o.
01
oo
r-
Oi
r*"i
C!
OO
Ol
ol
T^
M
NO
O
CX
NO
NO
o
C)
0)
01
u
o.
C/)
CO
o
o
OJ
OJ
o
o
^
r-
ON
O
OC
r-
oo
NO
ro
O
m
in
O
01
O
r-
NO
o
ex
, 1
Ol
NO
O
0
OJ
01
U
OH
in
^
o
m
O
01
01
o
Q
oo
in
^
r-
VC)
Ov
1^1
Ov
r~-
P--
NO
r-,
C:
O
01
_.
^)
NO
NO
O
CX
in
OJ
NO
8
OJ
OJ
u
C/3
I/")
O
ro
C3
OJ
OJ
o
Q
ON
01
NO
*
NO
ON
NO
OO
ON
r
NO
ro
C
m
O
01
NO
0
m
NO
O
CX
o
ro
NO
g
OJ
oi
U
a,
in
NO
o
rO
o
OJ
Ol
O
Q
in
Ol
NO
NO
ON
00
NO
ON
f-
NO
NO
O
o)
O
01
in
in
NO
NO
O
CX
ro
NO
O
O
0-1
CM
U
O.
in
r-
o
CD
Ol
OJ
o
Q
ro
ON
in
r~
NC
ON
o
ON
r-
NO
NO
O
ON
Ol
O
OJ
in,
ro
m
NO
O
CX
ON
NO
O
0
01
OJ
U
OH
in
oo
o
CO
o
Ol
OJ
o
Q
m
ON
in
ON
m
ON
OJ
m
ON
r-
NO
NO
d
p
o-i
CO
ON
NO
O
CX
xf
NO
o
o
01
Ol
u
OH
in
ON
r*~)
o
OJ
CM
o
Q
m
^
ON
m
ON
in
ON
OO
r-
\D
CO
d
ON
CN
O
CN
_
r
Tf
NO
O
CX
(OO
^f
'NO
8
Ol
OJ
U
OH
in
0
r*~i
o
CN
01
0
Q
00
m
^
NO
ON
in
ON
r-
NC
NO
d
NO
OJ
o
OJ
NO
o
m
NO
O
CX
01
in
\o
o
OJ
ol
U
OH
in
, i
~~
ro
O
OJ
Ol
0
Q
C-38
-------
=
.5
'c
o
U
U
a;
-o
ฃ
0>
C
re
^
ฃ
c
re
5
0
E
CL
Q.
C
1/1
re
u
"c
u
u
c
o
U
f>
5
c4
.ฃ
0
"e
es
-I
^
M,
3
i.
O
cs
C
u
~c
U
U
-w
cc
,*-
c
0)
u
CJ
en
if
2
o
c
+*
'2
ซ
c "x
ฃ ฃ
C
8|
M,
OJ
re
^
, u,
_ c
"5 c
Z re
x
H
(U
C
u
U.
oc
NC
"*
in,
N*-
00
r^
oc
r
NO
d
ฃ
;
"
^
rN
ND
NO'
C*.
r
in
NC
O
rN
r-i
U
CL,
co
r-i
rr-
d
r-1
r-l
O
l/~,
r-
^
r~
^
f
c~~.
oc
ฃ
c
oc
r-l
rj
__
r-
r-
NC
1 '
C-
rJ
O
^
C
r-j
r-i
U
CM
CO
m
rrj
o
r-t
rj
O
AV
r^
^
-r
o^
\f-t
^
oc
0
d
r
rj
r-l
NC
r-l
r
^
CL
NC
o
[
s
rj
r-l
U
Cu
CO
*
m
C
r-i
r-i
O
oc
r--
t-
oc
N
'
. .
, .
oc
oc
c
r-i
^
ON)
^
(*-,
r-
\c
C-
r--
o
fN
rN
C-
cn
*J-,
r*i
O
r~j
r-J
Q
, ,
Q\
-t
CN
-"N
\o
DC
OC
^
rN
O
r-j
,
oc
r
^
CH
r--
S
r-1
rN
y
c/:
^c
<-*-,
o
f~ j
rN
o
r-J
^
^
--T\
'
OO
ON
OO
?!
o
rN
^
r-i
r-l
r-i
oc
NO
rC1
rN
r~
o
CM
CN
U
O-
C/}
r^
rn
o
(N
rN
o
Q
O
in,
ON
rS
'
rN
ro
00
r-
o
ฃ
^
rJ
, ,
oo
ON
NO
CL
rj
r-
O
0
rN
r>l
U
CM
CO
oo
m
C
r-l
r-l
0
Q
j^j
o
LTl
t-
r^s
OC
rj
oc
d
in
(^
r-l
oo
r
NO
Q-,
fN
^
O
rN
rN
u
CL,
co
ON
r^~,
o
r-l
r-l
O
Q
r*^
ON
^
r^,
?~'
r-i
(-*-(
rN
oc
^
c
2
_
r-i
NO'
ON
NO
CL
r*~,
r*~,
^
C
r-l
fN
U
C-
co
c
PI
c
r-i
r-l
O
o
NO
OO
oo
rt
ON
i-M
rj
ON
rj
rj
oc
r-
c
VC
~~
"
f^~,
^1"
^
\c
oc
rr
^^
2
rN
rN
y
CO
rn
o
fN
CM
Q
Q
oc
ON
^
,
ON
rN
ON
r-l
00
P
O
r?
, ,
fN
C
00
NO
CL
T^-
"~~
O
rN
rN
y
CO
r-l
P-
d
r-l
r-l
O
Q
oo
O
in
NC
r
fN
T^.
r*S
oo
P
d
ON
00
r-i
,_!-
ON
ON
NO
' '
CL
^f
"~"
o
fN
tN
U
CO
m
rn
O
r-l
r-l
O
Q
ON
OO
"*
-^-
j^
r-1
ON
(N
OC
p
d
m
rN
r-i
oc
ON
NO
CL
r-1
in
r~
c
fN
tN
U
r\
in
^r
P~
c
rj
fN
O
Q
OC'
ON
ON
rf
rr,
"
fN
in,
(N
00
rN
C
oc
_-
r-l
^-
NC
ON
NO
C-
NO
ir-,
^
C
r-l
rN
U
CM
CO
in
Pi
c
r4
r-l
O
n
r-i
NO
ON
"*
rj
rN
ri
rn
NO
rj
oc
p
o
ON
, ,
r-i
^^
|y-v
ON
NO
CL
o
oo
o
rj
rj
U
CM
CO
NO
CN
o
r)
rj
O
Q
ON
00
^
r-
ON
r-i
NO
O
rJ
oc
ฃ
d
ฃ
r-l
rj
NO
r-
NO
1 '
CL
O
OC
c
c
fN
fN
U
CM
CO
r-
r-l
d
(N
r-1
0
Q
O
r-l
ON
"*
OC
'
rN
f/-,
rJ
oo
it
O
in,
r-1
r-i
r-
oc
NO
^""^
CL
O
OC
C
c
r-l
r-l
U
CM
CO
oo
PI
O
r-l
r-l
O
r~\
^
ON
^
w-,
^c
r-l
ON
, ,
00
P
d
p;
_L
(N
r-l
oc
r-
NO
' '
T^-
*
OC
s
rN
r-1
U
CM
co
ON
PI
C
r-l
r-l
O
/'"N
ON
OC
"*
^
r-l
ON
NO
ป
OC
r
d
NO
r-i
oo
oo
r-
ND
O_
ON
~
OO
O
O
rN
rN
U
Cu
co
o
rn
o
rN
fN
O
Q
in
oc
^
ON
fN
t--
rn
, '
oc
in
r
O
OC
' ',
r-l
C
oo
NC'
NO
^~^
CL
rO
fN
OO
o
r-l
tN
U
CM
CO
rn
C
r-l
r-l
O
n
NO
in,
00
^
rN
*/~)
-^
ex:
r^
d
oo
NO
r-i
r",
OO
r-
NO
*~^
oc"
fN
OO
O
fN
rN
U
D.
in
r-l
m
0
r-l
fN
0
r
00
"*
m
tN
r-i
r-l
m
r-i
00
r--
d
r
c
r-l
fN
O
oo
ON
NC
CL
m
m
00
o
rN
rN
U
Q.
CO
m
?-
d
rN
fN
0
Q
oc
NO
ON
^
NC
NO
fN
O
r~
rN
oc
r~
d
rn
r-i
tN
m
ON
OC
ND
1 '
c_
t
rn
OC
c
rj
rN
U
QL
in
^t
^
<^
r-l
r-l
0
Q
r-
ON
"*
r-
in
r-i
C
r^",
oo
m
d
in
rN
r-i
m
^
ON
NC
11 '
CL
rJ
T^-
oc
O
c
r-l
r-l
U
CU-
CO
m
PI
d
rN
tN
0
Q
00
m
O
m
Tfr
pS
CN
\C)
ro
oo
?
o
oo
rN
r-i
rn
ON
O
^
CL
NO
^f
OO
O
rN
(N
U
CM
CO
NO
rn
0
fN
tN
0
Q
OO
, ,
o
m
m
ON
tN
0
m
00
<*
d
Tt
m
tN
r-i
^
m
C
r
CL
in
oc
0
O
rN
r-l
U
c-
co
r~
Pi
^
tN
r-l
O
n
m
ON
^
T$
r-i
rN
in
fN
00
in
r-
d
Tf
r-
r-i
r-i
ON
ON
oo
NO
CL
in
m
oo
8
r-l
fN
U
C-
co
00
m
O
fN
O
n
Ol
[
OO
^"
NC
^r
01
ON
C
r)
oo
m
d
r
rJ
rj
rJ
NC
OC
NC
C.
o
o
ON
X
tN
fN
U
CO
ON
p)
c
tN
r-i
o
o
oo
r-l
ON
"*
*
O^
r-i
in
fN
OO
m
r
d
tN
r-l
r-i
m
0
ON
NO
n-
O
ON
X
fN
fN
U
CL,
CO
O
rn
o
tN
r-1
O
n
< i
o
in
NO
(N
r
m
oo
m
r--
d
m
fN
tN
rJ
NC
NO
ON
NO
c_
ON
O
ON
o
0
r-l
r-l
U
CM
CO
rn
^
tN
tN
O
Q
m
o_
in
"*
NO
Tf
OO
in
d
r-
IN
tN
r-i
ON
C
rN
r-
CL
, ,
ON
O
c
r-i
tN
u
CL,
in
fN
rn
d
fN
fN
O
n
C-39
-------
a
ai
3
C
O
U
U
z
03
H
o
c
^
u
ซs
c
o
re
u
is
C
re
3
a
p
El
c.
2
*
c
o
'ซ
-.
c
a>
u
C
C
0
CO
o
CM
c
O
*^
c
re
E
>^
U,
3
L.
C
O
re
c
_o
o
"o
u
c
ฃl
s
u.
a
7
u
*-i
ซ
^
OJ
C
ซ
a>
E
u
-w
re
?
aj
T3
'x
o
ซ
o
%Z
c
2
X
1
u
GJ
re
ฃ
."2
o
3
re
X
at
a>
E
H
u
re
c
ry
^S
u.
NC
01
c
in
ON
f-
en
en
00
en
oc
in
en
C
en
Ol
oi
C
ol
CD
^
O
cx
oc
ON
CD
C
O4
rM
U
C-
00
en
T^f-
en
C
O4
01
O
c
ON
m
CD
mi
en
00'
Oxi
en
00
en
OC
NO
en
0
NO
en
rxi
,.
ON
ON
NO
, ,
en
01
c
C
Ol
04
U
CM
00
_,.
*
c
Oxi
01
c
C
Ol
1
CD
in,
r
en
OJ
ON
OJ
en
oc
NO
en
o
en
OJ
CD
xO
ON
NO
o
Cx
01
ON
f~^
rN
rN
U
00
i/~i
~3"
r'",
^^
r-j
OJ
O
Q
oo
r*~;
O
ป/~;
OC
OJ
r*~i
ro
OC
P-
O
OJ
CN
,
^O
o~-<
NO
,-.,
$
G">
(^
OJ
CN
U
CL
oo
^D
Tj-
(-/-)
^
pv.|
P-J
O
Q
in
ON
-*
rn
r\]
i/-(
CN
oc
ฃ
o
r-j
CN
oi
in
t
00
xC
, J
xง~
ON
CD
01
Ol
u
C-
oo
r^
-^j-
en
^
rM
OJ
O
G
ON
OO
^t
en
O4
en
rN
O4
oo
en
CD
ON
01
oi
in
in
r^
NO
O
cx
ON
C
0
Ol
Ol
u
CM
00
oo
TM-
en
o
ol
ol
O
G
ON
oo
*
2
oi
TM-
O4
OO
e?
CD
NO
en
en
oi
,3.
en
oc
NO
O
cx
ON
c
o
01
Ol
u
00
ON
en
04
Ol
o
Q
~
00
"*
c
oi
0
en
oc
Oxl
oc
en
C
00
en
04
oo
NO
0
CD"
ON
C
c
rM
CM
u
00
0
en
CD
01
O4
O
Q
r-
oc
Tt
00
Ol
Ol
NO
OJ
oc
oo
o
04
in
oi
in
NO
OO
NO
C
cx
ON
O
01
ol
u
CM
00
,
in
rn
o
Ol
ol
O
Q
04
ON
-xt"
en
O4
^j-
01
oc
r-~
CD
Ol
01
oi
Ox
in,
oc
NO
, <
CX
ON
ON
CD
OJ
Ol
y
00
04
in
en
0
04
C
G
oc
NO
r~-
^r
04
oi
rj-
' '
OO
NO
en
c
NO
ol
oi
O
f^
NO
NO
ฃ-.
CX
3;
O
o
o
04
04
U
00
en
in
en
CD
CM
04
O
Q
oo
in
r-
^t-
ON
04
O4
04
O4
~
00
en
O
en
04
Oxi
in
, ,
I
NO
0
cx
oc
o
o
c
c
04
01
U
DM
00
in
en
O
ol
01
0
Q
ON
*
OJ
m
rM
oo
C
OJ
oo
tS
CD
^
ON
OJ
OJ
O4
r^
NO
O
cx
en
CD
O
O
OJ
Ol
U
CM
00
m
in
en
o
Oxl
OJ
O
c
c
oc
^*
OJ
en
ol
oi
m
T^-
~-
oc
rn
CD
00
r-
ol
oi
^_
NO
NO
NO
0
cx
oo
o
CD
O
ol
01
U
DM
00
NO
in
en
c
O4
04
o
Q
NO
01
r
^r
OO
m
01
oi
ol
'
oc
r~
en
CD
en
en
OJ
en
oo
NO
NO
o
cx
CM
04
O
o
o
04
04
U
DM
OO
r
m
en
0
04
O4
O
Q
m
f
i
'xf
O4
OJ
NO
in
oo
en
CD
en
O
en
oi
00
m
NO
NO
O
a.
O4
C
o
o
04
ol
U
CM
00
OC
in
en
O
rM
01
O
Q
Ol
NO
r~-
^r
r-
O4
04
NO
O4
OO
oo
en
O
04
04
en
m
NO
NO
O
cx
en
o
O
O
ol
rM
U
CM
OO
ON
in,
en
c
04
04
O
Q
NO
r^
^t-
oc
in
rM
Oxl
O4
O
oo
oo
m
C
^
CM
OJ
OO
NO
NO
O
VD
rn
o
0
04
04
U
CM
00
NO
m
O
rM
rM
O
G
ON
r
xf
oo
\O
04
04
04
r--
o
oc
oo
r
ro
c>
r~
r-
oi
in
r
m
NO
C
|r
c
c
o
Ol
01
U
a.
OO
^,
NCJ
CO
c
Ol
o
o.
r-
*My
NO
*
ON
NO
01
01
04
01
0
oo
00
en
CD
in
in
CM
oi
NO
NO
in
NO
O
CX
in
o
0
o
Ol
OJ
U
DM
C/3
01
NO
en
o
Oxl
01
O
Q
04
Ox
NO
*xt
oo
O4
O4
ON
m
O
oo
ON
en
CD
CM
O4
(^
in
m.
NO
O
cx
o
m
O
0
o
04
Oxl
U
CM
00
en
NO
m
O
Oxl
CM
O
Q
r-
r--
-------
3
C
*4
c
o
u
U
-o
o
^2
c
"-S
cs
u
is
"c
CB
a
p
E.
a.
.B
x
B
;
CS
u
S
OJ
u
C
c
U
m
C
rsi
E
O
"c
.
^
3
!u
S
C
5
CB
C
u
-ฑ
"o
U
L.
^
SB
ป*>
**
0
c
s
M
"S
E
Cu)
SB
t
-s
*
3
u
'c
e "o
c 'ฃ
"i 1
a ;i
B
u
U
CS
f
1
3 O
15 c
ฃ n
X
u
.C
1
CU
Q
a
~
liซ
rj
rJ
10
cc
oc
ON
OC
oc
rj
ON
ON
ฃ
rJ
^
on
rsi
cc
o
rf
c
rj
rN
CJ
OH
CO
THy
r^
rn
C
rJ
rs]
c
c
r*"(
n*~i
i/~;
K
rj
i
ON
ON
r
rN
rN
ON
OC
OC
^~.
rt
C
rN
rj
U
CH
CO
in
[
^N
rj
rN
O
G
f-*-:
m
r-'
~
rsl
sC
rj
ON
ON
ON
r)
r
rN
cc
C!^
f
o
rN
y
CO
sC
r
^^
n
rN
C
c
ON
OC
^
^
cc
r-
oc
rt
CC
cc
cc
rj
ri
^~>
m
sC
r-
t
^
rJ
n
y
co
r
i
O
r J
rN
C
c
r-
r--
-t
rf'
r-
r--
oc
, ,
oc
r :
x
rN
-t
rr
r-
C^
oc
^
r-j
r-j
U
a-
oo
oc
r^~
O
rN
rN
(^
c
i/"}
t--.
^
ON
r*~,
vc
ON
in
cc
00
O
ON
rN
oo
' I
r~
c
rt
C
O
rN
rN
U
a.
CO
ON
O
rN
rN
O
G
rN
oc
TT
00
^j-
m'
m
C
cc
,
cc
o
oc
r~\
< '
r~
o
q
o
o
rN
rN
U
0-
co
c
oc
m
C
rN
rN
O
c
c
t
"*
^~
in,
oc
in
rt
cc
,
oc
O
OC'
rJ
rs)
C
<-
c
rj
rJ
O
rsi
rN
rN
U
OH
co
_
oc
o
rN
rsl
O
c
c
r-~
"^
T-f
^t
1/-J
n',
OC
_
CO
SC
rsi
ON
vi-
ce
SO
==
rN
c^
rN
rN
rj
U
a.
CO
rN
oo
O1
rN
rN
c
Q
r--
sO
"^
r--
rN
-t
rsi
oo
_
X
OO
rsi
r-,
cc
cc
sC
^^
C3
rj
rN
O
rN
rsi
Cj
O.
CO
f^~t
cc
o
ri
rj
O
G
^st"
^o
"*
rJ
oc
rn
^_
rj
oc
rN
oc
* J
^
rA
rJ
SD
O
rt
sO
rsl
rsi
o
rN
rN
rj
U
co
THy
00
o
rN
rsl
0
Q
ON
in,
^
S^
^c
*^t"
1
oc
, ,
oc
SO
rt
rN
r-,
ro
^D
sO
C
rt
0
O
rN
rN
r-i
U
a.
CO
in
oc
C
rN
rN
O
Q
rN
in
sC
rf
ri
_
m
T^J-
,
OC
oc
"~
rJ
rsl
^
oc
sO
c
rt
rN
O
rN
rN
rJ
U
O.
CO
SO
00
ฃ~;
rN
rN
O
Q
sC
ON
sO
^
ON
OC
rJ
C
cc
rJ
cc
sC
sO
(N
OC
OC
l/~,
sC
ON
rN
^
rN
rj
U
a.
CO
j ,
oo
o
rN
rN
o
G
r-)
r*~i
SO
**
CC
oc
ri
SO
C
oc
oc
O'
oo
CN
O
so
^
rt
O
rN
rN
rN
U
CO
OO
00
o
rN
(N
O
Q
oc
m,
**
in
<~^
rn
sC
00
rN
oo
0
ON
rj
m
c
SO
o
a
OO
rt
CN
o
rN
rN
CN
U
0.
CO
ON
OO
m
rN
rj
O
C
c
so
rt
OC
[^
rN
in,
ON
ON
[^
r)
oc
oc
ri
m
^_
rt
sO
^
rt
in
CN
O
o
CN
r)
CN
U
OH
CO
0
ON
c^
rsi
CN
O
Q
in
sC
"*
^
in,
rsi
SO
ON
r--
rj
cc
ฃ
rN
rN
TTJ-
rr;
^C
^~~.
rt
oc
ri
c^
rN
rN
U
OH
CO
_
ON
c
CN
rj
O
rs
so
so
m
^
00
in
CN
ON
m
OS
r-
rN
oc
ON
rsi
ON
O
SO
o
rt
O
rN
rN
CN
U
CO
rN
ON
m
C
rsi
rN
O
Q
m
in
^
ฃJ
m
CN
ON
0
ON
f~-
CN
OC
ON
ri
r~
CN
sC
^^
0
X
CN
rN
U
CO
m
ON
O
rN
n
o
Q
SO
in,
'*
oo
mi
rsi
sO
Q^
oo
r^
CN
oc
O'
ON
rsi
ra
sC
SO
0
ra
O
rsi
CN
rN
X
CO
^H^-
ON
O
rN
rN
O
Q
oo
, 1
m
"*
^
rt
rN
O
SO
oo
t~~
r-i
oo
sO
rsi
oc
rN
rN
SO
C
ra
SC'
O
CN
CN
U
CO
in
ON
C
CN
CN
O
Q
ON
rt
rt
sO
ON
m
CN
SC
0
oc
r^
rN
oc
c^
CN
.
c~;
CN
SC
f^^
rt
O
CN
O
rN
rN
n
U
0.
co
sC-
ON
0
CN
rsl
O
G
SO
OO
rt
"*
r^
O
rt
rj
oc
t^
r~~
rj
oo
CO
ON
CN
m,
C
CN
SO
o
rt
CN
O
o
CN
CN
CN
y
CO
1 .
ON
O
rN
O
Q
rt
rt
"*
ON
ON
m
ri
i/*^
r-
r-
m
oc
ON
CN
O
m
'
SO
C
rt
rn
O
rN
rN
rN
U
a.
CO
oc
ON
m
O
rN
CN
o
Q
c
Tt
rt
ON
^
CN
r-
rt
t
r~
CN
oc
rN
ON
CN
OO
rN
^
\D
C~",
rt
O
0
rN
rN
rN
U
OH
CO
ON
ON
O
rsl
rN
O
Q
o
rt
Tt
^.
rsi
C
0
r^
r-i
00
CN
04
CC
[^-~
o
sO
O
rt
ON
rn
8
rN
CN
CN
U
OH
CO
o
o
^)
CN
CN
O
Q
SO
rn
**
rsi
rt
rN
00
r*~i
SO
r~-
m
oc
ON
ON
rN
rr
m
O
SO
C
5
^~;
CN
rsl
U
CO
^_
o
o
rN
rJ
O
G
oc
rt
^"
rN
rN
rt
ri
sO
[
1
r-
m
oc
oc
rJ
rN
SO
c
rt
oo
O
rN
CN
CN
U
O-
co
rN
O
O
CN
o
Q
i/i
rn
in
T3"
in
rt
CN
CN
OC
r~-
r)
oo
O
CN
f-
rt
rN
sC
O
rt
in
O
CN
CN
CN
U
OH
CO
cn
O
^
CN
CN
O
Q
V)
in
**
g
in
ri
rt
CO
t~-
CN
oo
CN
ri
SO
r*~,
CN
sO
O
rt
in
O
o
CN
CN
CN
U
OH
CO
^-
o
o
CN
CN
O
C-41
-------
,
VH
7
w
s
o
^_l
cs
c
o
U
"o
U
u
w
,w
U
C
CS
15
S
cs
is
12
'x
3
O
'ฃ
cs
0
1. 'C
3 2
~ c
S ca
X
u
f.
E
H
OJ
cs
4>
-L.
Tf
ro
in
r-i
in
ro
r^
r~
ro
OO
CO
O
CN
ro
CN
r
. .
NO
CN
CN
O
CN
CN
CN
U
OH
in
g
CN
r-J
0
Q
ro
O
ro
|
r-i
r-
in
r
T^-
oc
ro
O1
OC
r
ro
r-i
in
CN
ON
in
NC
0
CN
O
CN
(N
(N
U
c.
co
NO
1
CN
(N
O
a
r-
C
ro
r~
O
-*
rj
-t
oc
in
r~
ro
OC
ro
1 '
in
rN
CN
ro
ON
ON
in
^
CN
O
O
CN
CN
CN
U
0-
co
r~
g
rN
rN
o
Q
Tj-
r*~)
^T;
r-j
r\i
^C
r^
^~
oc
^
" '
ON
(-/^
CN
^
ro
ON
in
'
CN
rj
m
r-
in
oc
ro
O
NO
OO
ro
CN
ro
m
oc
in
ON
ro
C
C
CN
CN
CN
U
OH
in
CN
CN
O
CN
CN
O
o
0
r-
'
ON
ON
CN
CN
OC
^J-
r-
in
oc
ro
^~^
ro
C
r-i
CN
CO
r-
m
Cd
CN
ro
CN
CN
r-J
U
0.
CO
ro
CN
S
CN
r-l
O
Q
in
o
CNI
ON
CNI
O
r-
in
oc:
<^
ฐ
m
xl
r-l
w,
rrj
r-
m
CCJ
rf'*
0
rN
r-J
r-J
O
O.H
in
O
C^-l
0
Q
o
NO
CN
OO
ro
ON
CN
T^-
in
r^
T^J-
00
CO
o
in
NO
T^J-
r-i
ro
ON
OO
in
ro
ro
ro
O
O
CN
CN
CN
U
OH
in
in
C
CN
O
G
00
^J-
r-~
in
ca
m
O
CN
CN
CN
U
OH
in
CN
CO
s
CN
CN
O
Q
ro
<
in
ON
r-i
T^-
Tt
r
NO
00
CO
O
m
ON
T^J-
r-i
_,
ON
NO
in
ca
0
g
r-l
CN
CN
U
OH
in
ro
ro
O
CN
CN
O
Q
NO
CN
ro
ro
ON
CN
ro
CN
in
r~
NO
00
CO
o
rxl
ro
in
CN
oo
CN
00
in
ca
O
o
(N
CN
CN
U
OH
CO
CO
o
CN
CN
O
Q
m
CN
CN
00
CN
ON
CN
r-
m
m
r-
NO
co
ro
O
in
in
CN
rO
O
ON
>n
'
ca
CN
(N
CN
U
OH
CO
m
CO
S
CN
CN
O
Q
NO
in
p
ro
O
ON
r-
NO
OC
ro
O
ro
in
CN
oo
NO
00
in
ca
CN
CN
CN
U
OH
CO
NO
CO
C
CN
CN
O
Q
C-42
-------
"D
o
3
O
U
rr,
O
-a g rN
1 &.s
^ c 0
.,
t-
3
ฃ
c
O
ca
IS
c
_c
u
U
^
zj
a
*ฃ
o
c
C3
"3
ฃ
u
cy
_
I
-B
*
O
i
ฐjjj
c 2
O ^
^ B
2 |
U
O
M
1
3 C
5 ca
X
o
13
Q
_o
"
U.
NO
^
in,
rr
NC
^-
r-
oc
o
r*-.
wi
fN
^
I/",
r-
10
rt
oc
rN
^
o
fN
CN
U
CL
t/j
r-
r*~,
*rt"
!> '
(N
fN
O
C
,
^
in
C
rr,
in,
in,
r-
NC
DC
o
m,
CN
in,
DC
in,
rn
rr,
^
O
C
GO
Tf
r
, ,
rJ
r-J
* '
G
(N
^
ON
Tf
rri
T^-
r^f
r~
00
O
^
r*~i
1/1
oi
Q^
r^f-
["--
u~(
, i
^O
^r
o
o
^
r-i
vO
^j-
r~--
m
o
NC
m.
"*
O
O
fN
fN
U
(X
GO
m
Tj"
^t"
C
CN
OJ
O
c
^Q
, ,
"*
NO
^f
rr
OC'
r-
oc
rn
c
^
ON
in,
r-j
^
ON
r^
m,
O
O
c
in
C
CN
(N
r-J
U
Cu
GO
sf
Tf
^t
O
CN
CN
O
Q
ON
0
^
OC
NO
rri
in,
T^-
r^
r-
00
c
rr
ON
in,
CN
in,
^,
oc
in,
O
ly ,
C
in,
C
c
CN
CN
r-J
U
Cu
GO
in,
Tf
TJ~
r""^
rN
CN
C
o
^
, .
-t
oc
r--
rr'
f
^f-
r-
oc
c
-I- ,
^C
r-j
f-^
^j-
r-~
tO
0
^^
o
in
O
CN
CN
r-j
U
GO
NO
Tj-
-r^-
<~~:
r-j
rN
O
Q
DC
c-.
^
ON
C
CN
rn
O
-t
r-
oc
C
rO
m
fN
, ,
r-
m,
C
^j-
. i
m
C
c
r-J
fN
r-J
U
Cu
GO
(-.
Tf
r^-
r~^
fN
fN
O
c
NC'
0
^
[^
r-J
r-J
C
T^-
r-
oc
00
o
VO
r-J
in,
r-J
rn
in
r
in
ฐ
a
ON
in
C
C
r-J
r-j
CN
U
Cu
GO
OO
T^-
Tt"
O
rN
tN
O
Q
-o
^
r-J
CN
in,
fr,
r-~
oc
C
oc
in
r-j
^
T^-
NO
un
O
r*"~,
(N
W~>
0
CN
rN
r-J
U
C/}
c>
T^-
T^-
f~^
r-J
r-J
O
Q
-t
in,
^
r-J
r*~,
Q\
r*"1,
r-
oc
c
v~
, ,
"V^l
fN
^O
r^
>r~,
=
oc
r-J
in
C
r-J
r-J
U
cu
GO
C
in
^t"
^;
r-J
rN
0
Q
^
^
rn
r-j
r^j
r-j
<3-
r^
oc
OC
o
^
ro
*o
fN
J-^.
^
cc
Vs!
ฐ
nj
r-J
rn
in,
C
r-j
r-J
r-J
U
(X
GO
,
in
T^-
o
r-j
r-j
0
Q
in,
^
^j-
r^
rri
00
*^-
r~
ON
OC
C
rn
NC
m,
r-J
r-J
in,
I--
in,
O
a
r-
in
C
C
CN
tN
fN
U
Cu
GO
CN
in
T^-
C
(N
fN
O
Q
\ฃ;
^
NO
rr,
ON
r^-
oc
OO
c
r^
NC
m.
r-J
00
r^
m,
ฐ
a
r-J
Tt
in.
C
r-J
(N
r-J
U
Cu
GO
m
m
T^-
C
fN
CN
O
Q
oc
ON
Tf
rr,
*
rn
rr,
r^-
r~
ON
OC
C
^
NC
in,
r-i
-r
f~-
in,
O
a
NO
in,
C
OJ
r-j
CN
y
GO
^j-
m,
*tf
C
r-J
r-J
O
Q
oc
in
' '
"*
m
O
rn
C
OO
^j-
r-
OO
00
m
^
ON
m
r-i
rn
r-
r-
m
O
a
m
m
O
O
fN
r-J
r-J
U
Cu
GO
m
m
Tj-
c^
r-i
rN
O
Q
NO
T^-
o
^
NO
^t
rn
in
^-,
T^*
r-
^^
00
m
O
Tt
NO
NO
C-i
^>
T
r
in
in.
m
in
C
CN
r-J
CN
U
Cu
GO
NO
in
T^-
O
tN
CN
O
r~N
OO
T^-
ON
rn
, ,
rn
NO
m
r^
ON
OO
m
c
m
ON
NO
r-J
sf
NO
NO
in
o
a
CO
0
NO
o
0
CN
CN
CN
U
Cu
GO
r~
in
T^-
c
CN
rN
0
Q
o
"*
NO
NO
rn
m
T^
f-
ON
OC
rn
o
m
^
NO
r-i
O
NO
r-
in
o
a
0
NO
0
rN
tN
rN
U
Cu
GO
OC
in
*^-
(^~i
rN
fN
0
Q
fN
-
^
fN
rn
rn
00
Tt
r--
oc
00
CO
1 1
vO
rN
rr,
^~
oc
in,
ฐ
ca
ON
NC
0
CN
CN
CN
U
(X
GO
ON
m
T^-
C
CN
CN
0
Q
DC
r-
o
^
NO
NC
rn
NO
^
r-
ON
DO
rn
O
OO
rr.
NC
r-i
ON
^J-
r-
m
^
a
^~
NO
C
0
CN
rN
CN
U
Cu
GO
o
NO
^f
o
r-J
0
Q
NO
, i
' '
^
CN
'
rn
O
m
r-
ON
rn
o
CN
^^
oc
CN
CN
NO
r-
m
a
OO
ซ
NO
O
CN
CN
CN
U
Cu
GO
,
NO
T^-
O
CN
CN
0
c
ON
NC
O
^
1
r-,
NO
r-
^j-
r~
ON
00
m
O
m
rN
NO
r-i
r-i
in
t
m
o
rn
rN
NO
O
o
rN
CN
CN
u
Cu
GO
CN
NO
O
CN
CN
O
Q
O
o
"*
I
^t
rn
00
OO
m
r^
ON
rr,
d
^.
r~j
NO
CN
O
oc
NO
in,
ฐ
a
r
rN
NO
0
CN
CN
CN
U
Cu
GO
rn
NO
c
CN
CN
O
Q
rr,
CO
^
r-j
rr,
m
i 1
^f
r^-
o
m
d
m
r^~
NO
r-J
T^)-
r*-,
r
m
rt
r-J
m
NO
C
0
rN
r-J
r^
U
Cu
GO
^j-
NO
Tt"
;^
CN
CN
O
Q
NO
m
C
"*
r-
o
o~;
rN
oc
m
r^
CN
ON
C
^
in,
NO
OJ
NO
OC
r~
m,
NO
m
vO
o
r-J
r-J
r-J
U
Cu
GO
m
NO
rt
C
CN
CN
O
Q
ON
CN
C
"*
oo
CN
rn
m
ป
^~
r-
rn
ON
rn
C
_
rN
00
r-i
ON
r-j
NO
m
,
<$
NC
O
0
rN
r-J
r-J
U
Cu
GO
NO
NO
Tf
O
rN
rN
O
Q
rN
t~^
ON
rr,
, ,
rr,
m
in
rr,
r-
ON
rr,
C
^
m
r-i
, ,
oc
in.
in
O
rt
NO
NO
O
CN
CN
CN
U
Cu
GO
NO
^^
CN
fN
O
Q
C-43
-------
a
u
3
o
U
JD
a
a
o
^
<~
^
c
03
_y
Sa
c
03
6
E
a,
a.
c
te
c
c
'3
u
c
u
c
o
u
c
o
r-l
c
o
-*ซ*
^
I-
3
u
.E
O
.fc^
w
e
"o
O
carbon
L.
3
V)
j__
-W
JS
ฃ
0)
C
03
-C
O
E
u
CJ
03
f.
u
"2
'x
]
o
i-
w
'E
monoxide
u
0)
03
OJ
75
'u
Q
3
"ซ
^
c
H
S!
o
GJ
^J
u.
H
O
^
ON
CTN
C
ro
in
[
ro
p-
in
ON
0
OC
r-
rj
ro
IO
SO
IO
03
c
in,
sb
C
CN
CN
CN
u
0-
00
oc
sC
g
r-l
r-l
C
Q
CN
O
sl-
oe
ro
C
CO
Os
r-
m,
0.
c
t
SO
rJ
in,
SO
sC
in,
03
IO
in,
sD
C
CN
CN
CN
U
CL,
00
Os
SO
C
r-l
rJ
O
Q
sO
C
*
in,
C
ro
rj
^t
r-
^.
ON
J2
vO
r-l
SO
ON
SO
in,
ON
SO
C
rj
rJ
rJ
U
CL
00
c
ง
r-l
r-l
O
r-1
p-~
C
**
ro
oc
CT-
rj
C~~:
-t
r
^
ON
^
sC
rJ
0
ly-,
r^
ln
T^-
c
r-
C
r-l
rj
rj
U
C-
oo
_
r
3
r-i
rj
r~^
Q
m,
ON
ro
CTs
o
^
ro
SO
ro
r-
10
CT-
DC
10
in
in,
03
OC
1
~
rj
r-l
rj
y
oo
rj
r
g
rj
r-1
C
G
ซ
ON
ro
SO
p^
C
ro
o
ro
p~
0
ON
o
CN
CO
r*",
m,
in,
03
ro
. i
^
O
O
CN
CN
U
OH
OO
ro
r^
O
rM
O
Q
ro
ON
ro
oo
r-j
o
ro
^j-
r^-,
r~-
10
CTs
C
s
ON
CTs
10
C3
OO
r""
8
r-J
(N
r-l
U
O.
00
sj-
r-~
g
r-l
r-l
O
Q
oo
^^
o
^
'00
ro
o
'O
o
r~
00
So
O
00
rj
^,
oo
SO
10
^
r-1
rJ
r~
C
CN
(N
CN
U
OH
00
r
O
r-i
r-l
O
a
sO
O
"*
r-
*^t-
0
ro
oc
r<~,
Tf
r~
r~
Os
ro
C
SO
OO
r-j
ON
OO
r-
in,
C,
Csj
J-^^
CN
r"
0
r-l
r-i
CN
U
0-
00
SO
r^
o
r-J
CN
O
ฃ,
c
"*
r-l
r^,
o
ro
[ -
T^-
r~
t
ON
0
rj
r
m
^.^
H
ro
r-
o
O4
OJ
r-j
u
00
r^
i
s
CN
r-l
O
Q
_
"*"
in,
sO
CTN
CN
C
IO
r~
, ,
ง
c;
oc
C
ON
CN
_
in
00
m
03
SO
ro
r-
0
CN
CN
CN
U
OH
00
OC
r
O
rsi
r-J
O
Q
r-
in
^
,
SO
CTs
r-i
SO
so
t~-
ON
CTN
O
OC
ON
CN
SO
OC
m,
03
,__
^t
^
O
O
r-l
(N
CN
U
00
CTN
C
CN
CN
O
Q
00
^
[-^
ON
00
CN
SD
C
SO
t-~
00
CTN
^
SD
OC
CN
CTN
ON
m
03
m
^
C
CN
CN
CN
U
o-
00
0
CO
c
CN
CN
O
Q
ON
OC
CN
^
m
r-
oc
CN
o
p-^
sO
r~
00
ON
C
00
IO
oo
CN
O
CTs
IO
03
O
IO
^
O
CN
CN
CN
U
0-
00
, ,
oo
O
rJ
r-l
O
Q
sO
OS
r-i
^
so
SO
oo
r-i
00
ON
SO
r-
r~
ON
0
SO
OO
CN
,
IO
ON
in
03
in
r
o
o
r-l
rj
r-l
U
OH
00
CN
OO
O
r-l
r-J
O
c
r-l
sj-
^
to
r*~,
OO
CN
in,
p^
r~-
r-
oc
ON
O
OC
f-
rj
CN
O
SO
03
ON
in,
r~
0
CN
CN
CN
U
OH
00
ro
00
Tl-
CD
r-i
r-l
O
Q
oo
oo
Tf
n-
ON
OO
r-i
m
^-,
oo
r-
r^
ON
o
oo
r-j
ON
OC
O
sO
03
r*~)
o
00
o
r-l
CN
CN
U
a.
00
CO
Tf
O
CN
CN
O
Q
r~
ON
^"
r-
in,
oc
CN
SD
r-
oo
p~
in
ON
O
CN
00
r-i
ON
' '
sO
a
oc
O
oc
0
r-l
r-l
CN
U
a.
00
in
oc
O
CN
rsi
O
Q
r-l
00
TC
^~
O '
r-i
Si3
1/1
ON
r-
Tl-
ON
ro
O
C5
00
rJ
Tl-
r'-,
sC
oo
O
O
O
es
r^i
' >
cc
0
C"J
C-J
oJ
u
00
sO
00
sf
o
rJ
rJ
O
o
rsi
m
>n
^
r-
r-i
ON
r-i
SO
ON
p-
SO
CTs
0
SO
SO
00
rsi
r-
ON
(N
SD
p^
. '
00
c
r-l
CN
CN
U
OH
00
r-
00
O
r-l
O
Q
t--
10
SO
^
_
^-,
ON
CN
00
IO
o
oc
p-
CTN
o
00
0
CTN
rj
r-
ON
CO
so
03
CN
CN
00
o
o
CN
CN
CN
U
00
oo
CO
O
rsi
O-l
o
Q
CN
P-
^
CN
r-
oo
r-i
oc
O)
'
oo
oo
Os
O
r-
00
r-i
O
IO
SO
03
so
r-i
00
0
CN
rN
CN
u
OH
00
ON
OO
rj-
O
CN
CN
O
Q
r-i
__
00
""
^f
r-
03
r-i
CN
OO
03
CN
C3
rj
CD
r-
SJ2
^_,
ro
G-J
C3
C5
r-J
CN!
C-J
u
OH
VI
O
CN
rf
C2
r-l
r-l
O
Q
o
oo
"*
ON
ON
r-i
Os
CN
oo
SO
ON
O
OO
CN
SO
OO
in
"*C
m
oo
0
o
r-l
r-J
CN
u
00
ON
o
r-i
CN
O
Q
03
\ฃ^
CN
^f
Tt-
r*-j
CN
r-i
so
IO
r1"-,
oc
st
CN
c:
oo
r-i
0=
r5
r--
"ฐ
C5
03
O
O
r-l
r-l
r-J
U
00
CN
O
r-i
r-i
O
Q
so
C
.0
^J-
o
CN
IO
SO
ro
oo
p-
ON
O
r
r-i
^.
p~-
SO
SO
mi
00
0
CN
CN
CN
U
00
ON
o
CN
CN
O
Q
IO
o
10
oo
ro
oc
CN
>n
^^
sl-
oe
r-
ON
o
r~
r-i
oo
ON
r-
SO
Os
OC
O
O
CN
CN
CN
CJ
00
ON
O
CM
r-l
O
Q
O OO CN
co so ^J- ro
O O rJ ro
o ^ m m
CTs >O OO
j. SO ON ON
^ r-i CN rj
r~ ON ON SO
so m O oo
TT n- so so
oo oo oo oo
Tt" ro ro in
ON ON ON ON
O 0 O O
^ p- p- r-
0x1 r-i rJ rsi
so so m ON
CN O CN
Os ON O -H
so so r- r-
Tt- oo ro oo
OO OO ON ON
O O O O
o o o o
CN CN r-4 CN
CN CN CN CN
CN CN CN CN
U U U U
00 00 00 00
10 so r~- oo
ON ON ON ON
O O O O
CN CN CN CN
r-l CN CN CN
O O O O
Q Q Q G
C-44
-------
c
O
"ง
ฃ c O
c c
.2 .ฃ
es cs
.- u
C u
ง C
CX U
CJ
c -o
I!
3 c
c
C
o
CJ
3
C
w
C
C
CJ
CJ
CJ
3
3 O
if
cj
CJ
o
CJ
es *!
^H ^
C s
B
O
DC
C
COO
DC (N l~~ DC DC
DO C
O C O
o c
OJ CN]
fN rxl
U U
CH C,
GO GO
U U
0. ฃX
oo v^
rj r-J r-j r J <^ i
r*l r^l r-j m r-]
O O O C C
Q Q C C a
C-45
-------
u
cs
m
o
T) ฃ n
r-
NO
NO
ง
o
o.
n
OJ
o
01
OJ
oo
u
OH
OO
O
X
00
OJ
O\J
o
G
m,
TJ-
NO
<*
oo
oo
NO
ON
r--
TJ-
ON
NO
NO
O
O
c.
^
OJ
o
00
OJ
OJ
u
OH
00
o
00
OJ
OO
o
Q
^
^f
T
NO
ON
_'
OC
r-~
r-
n-
r-
ON
ON
NO
O
C
e.
oo
^Ti
OJ
C
OJ
00
OJ
u
OH
00
oo
g
OJ
04
04
O
Q
ro,
^t
^
00
ON
_'
?~*_
00
r~
rt
ง
"
00
ON
ON
OC
NO
2
CD
CM
Tt
OJ
^^
00
oo
OJ
U
0-
00
ON
0
OJ
OJ
OJ
o
Q
TH^
r-
*
OJ
g
OJ
OJ
in,
C
oc
m
t ^
oc
oc
ON
in
r
NO
C
CD
C.
0
oo
J-v
OJ
OJ
OJ
u
a.
00
c
o
OJ
OJ
OJ
O
o
[^
o
in,
m
m,
OJ
oc
ro,
OC
I
Z!
ON
ON
oc.
04
r^
c
o
c
c.
ON
o
oo
c
04
OJ
OJ
y
00
Z2
OJ
00
00
o
Q
ON
C
ON
^f
NC
C
oi
r-^
^~-
oo
OJ
f ^
ON
in,
ON
f~-^
C
r-
0
o
C.
' '
oo
O
O-J
OJ
oo
y
00
oo
c
oo
oo
oo
o
Q
^
r-
T*
OJ
m,
C
OJ
oo
^g-
c
oo
ro
ON
OJ
ON
NC
O
CD
C-
oo
OJ
c
OJ
OJ
OJ
u
OH
00
m
c
00
oo
oo
O
Q
ro
NO
^
in
C
oi
C
NO
ON
r-
^
oo
oo
ON
ON
in,
NC
O
CD
OJ
OJ
OJ
C
OJ
OJ
OJ
U
0-
co
TT
C'
OJ
OJ
OJ
O
c
m
in
m
*
ON
m
C
oo
ON
ON
r-
'd-
^
ON
O
oc
NO
NO
CM
C
C
a.
OJ
OJ
O
OJ
oo
04
U
00
in
c
OJ
OJ
OJ
o
Q
[
Tf
't
NC
CD
oi
in,
O^
00
r~-
m
NO
c
OJ
C
T^J-
in
NO
C
c
c
CM
OO
ro
OJ
0
OJ
oo
OJ
U
OH
00
NC
c
OJ
OJ
OJ
O
C
c
c
^t-
oo
S
oo
.
oo
r-
r<~,
NO
"~
m
C
p
NO
r-
Tj-
NO
O
CD
C.
NO
oo
o
o
OJ
OJ
oo
U
0.
00
r~-
o
04
04
OJ
O
Q
oo
in,
in,
*
ON
O
04
in,
-T^-
ON
r
NO
OC
ON
r-
NO
NO
c
CD
CM
^f
O4
c
OJ
OJ
OJ
u
0.
CO
00
0
OJ
04
OJ
O
Q
T^-
o-
^
in
in
c
oi
f^
O
oo
00
NO
""
H
ON
ON
OO
NO
O
O
CD
CM
in.
T^-
OJ
0
00
OJ
OJ
u
OH
00
ON
O
OO
00
00
o
Q
in
NO
tf
o-o
C
rJ
T^J-
o
oo
r-o
01
ON
CfN
- H
00
NO
o
CD
&
CD
m
f-o
CD
CD
00
r-J
U
P!H
CO
o
CD
r-o
OO
O
G
NO
NO
ON
*
r^
CD
00
04
m
oo
^-
NO
^
NO
OO
ON
oo
OJ
' '
r~-
o
o
CD
e.
m
00
g
00
oo
OJ
U
0.
OO
o
oo
00
00
o
G
m
^_
oc
*
O
oo
ON
oo
' '
oo
NO
OJ
NO
ON
m
^>
rn
r^
CD
O
CD
C,
ON
in
oo
g
04
OO
O4
U
OH
00
00
oo
O
oo
04
OJ
O
Q
04
rn
00
*
VO
^ij
O
oj
in,
C
00
oc
ON
in
ro
1-
ON
ON
00
NC
r-
c
CM
O
m
O
0,1
O-l
0.1
u
On
OO
r^i
ol
O
ol
01
01
o
Q
CD
ON
*r
n
l/"1,
n NO
Tt Tt -* *
r^ oo ' t
q p S 5
oi oj oj oj
O Tt "Tf NO
m r m
ON oo ON O
r- r- r- oo
NO r^ ir} NO
0
ON r in ^
in r- NO m
ON ON ON ON
~ O 00 00
NO o rn in
O O OJ
r- r- r- r-
c o o o
o o o o
CD CD CD CD
CM CM CM CM
O in O ^t
m m ^ 'xf
m m m m
O O O O
CD O O O
OJ oJ OJ oo
00 OJ OJ 00
04 r^ OJ OJ
U O U U
OH O- OH OH
CO CO CO CO
ON O -^ 00
o o o o
OJ OJ OJ OJ
04 00 OJ OJ
OO OJ OJ OJ
o o o o
Q D Q Q
C-46
-------
a
u
3
c
o
U
U
"O
jj:
c
re
jง
"c
re
O*
C
C
ฃ ^
ฃ-s
.ฃ O
c
c
cs
c
CJ
c
u
c
CS
Cu
>>
t"
5
u
C
O
ง
u
CJ
"e
U
cs
'cS
C
U
O
cc
ฃ
c
-~
-3
E
u
u
-^
5
2
'x
3
o
'5
c ซ
2 '*
1 =
u E
u.
c^
cs
5*
a
2
u *-
3 2
^ ^
y- CS
X
Si
H
_o
03
Q
a
T- '
MM
ro
in
^'
C
r-J
rJ
oc
ON
r-
NO
CO
r-i
in
NO
-
^
O
o
CL
ON
TT
ro
O
rN
?M
U
Cu
CO
ro
ro
rN
rN
rN
C
D
OC'
^'
^
r-j
rj
ON
r-'
ฃ
S
, ,
ON
o
r-
o
"~
o
c.
ro
in
c
r-j
r-j
U
Cu
CO
T^-
rO
rN
r-4
oj
O
Cj
--,
fc
^
rj
rM
r j
j-
DC
r*~,
O
oc
r^
in
rj
r-
0
' '
"'
c_
oc
wo
J5
r,]
rj
U
Cu
CO
ln
rO
rj
04
r-J
O
c
1
-t
-r
g
^
[
oc
r-
ฃ
ON'
^^
oc
NC
g
'
c
&
rJ
o
-r
o
rM
r)
U
c/:
vC
ro
rj
r i
r]
C
c
^
rO
r'
oc
'.
rJ
oc
r-
ฃ
ฃ
,r
oc
^
O
~
~
^
f--~
O
f-
o
rj
rj
y
V}
r-
f~o
r ]
r ]
rj
,O
r-^
TTJ-
Tt
rN
rj
p^
oc
r^
s
c
ON
ro
f~^
-
r~
O
^
^_
rN
^
U
CO
00
ro
O
rN
r-J
r^i
O
Q
ON
rT)
^
oc
, 1
^
oo
r-
S
s
t^
rN
ON
NO
C
o
a.
NO
, '
O
rN
rN
U
Cu
CO
ON
ro
C
rN
r-i
r-i
C
ff~
r~i
*
rN
r^
p--
r^
rN
C
oo
ON
ro
C
r--
c
"-'
o
CL
^~-
r-J
C
r-J
?J
U
CL
CO
C
C
rJ
rN
O
G
_
NO
*
DC
ro
CM
pr-y
O
00
^
c
m,
,^
rN
r~-
C
C_^
o
r_
in
rN
0
rN
rN
U
Cu
CO
, .
Tf
C
rN
r-J
O
Q
^_
I/O
~t
S
r-4
ON
ON
r^
^
8
DC
DC
O
^
o
~
"^
&
o>
r-j
-t
o
rj
?N
U
Cu
CO
rN
Tf
rN
r-j
rj
O
d
^^
m,
*
8
i
j-^
ON
"^
ro
r-
q
__
rO
,
^
C
(~-
C
CL
T^-
ro
C
rj
r-j
U
CO
ro
Tf
C
rM
rj
r-i
Q
Q
od
^
ON
ซ
ro
ON
r~
r^
ON
OC
,
OC
^
c
c.
oc
r",
O
r-i
r-J
U
Cu
CO
T^-
TJ-
o
OJ
r--i
rj
O
c
rJ
oc
^
r
C
[-^
oo
r-
s
s
1^
mj
ON
NC
C
o
CL
ro
^f
^c
r-J
r-1
U
Cu
CO
in
Tt
C
r-J
r-j
O
c
rj
r-4
Tt
rj
f-r~j
OC
ON
'
ON'
r-J
__
ro
r
C
2
C-
f^
Tf
0
rM
rM
U
Cu
CO
NO
Tt
c
r-J
r-J
r-4
C
C:
T-4-
oc
^
r-J
C
r-j
ro
rN
oc
ON
-
ON
ro
oc
^
C
C-
CL
r-l
>n
o
rN
r-j
U
Cu
CO
r^
Tt
O
r-J
r-J
0
o
^^
t^-
"*
ro
r-J
rj
(N
oo
NO
0
^J
NO
ro
^
O
',
C-
f^
wo
rN
r-4
U
Cu
CO
oc
Tt
r3
rJ
rN
O
Q
rM
^c
^
ฃ
rM
in
C
oc
ON
^
ON
ON
oc
r-j
^
C
C'
CL,
o
o
rN
r-j
U
Cu
CO
ON
rN
rN
rN
O
Q
rN
^
rN
rJ
r-
ON
OO
r^
ro
ON
r^;
^j-
,
f^
C
' '.
r
NO
C
c
r-4
r-4
rN
U
Cu
CO
o
in,
rN
rN
rJ
O
o
ON
ON
NO
*
q
r-J
rJ
in
O
oc
ฃ
ON
ro
^j-
rN
r-
O
CL
O
o
rN
rN
U
Cu
CO
__
wo
O
r-j
r-i
rN
O
Q
o
oc
^
q
rN
C
p^
oc
ON
ro
-^
ON
r^
NO
ro
^
C
'"'
CL
*n
i
in
o
r^
?M
U
Cu
CO
r-J
in.
C
r-J
rN
rN
O
D
ON
Tt
O
r-i
00
ON
o
oo
ON
c
r^
ON
,
ON
(N
r"~
O
'~J-
CL
ON
0
rN
rJ
U
Cu
CO
ro
wo
O
rN
r-i
rN
O
Q
o
NO
Ti-
ro
q
rj
ON
f---.
C
OO
NO
ro
oc
NO
ON
m
rN
r-i
r-
o
CL
Tt
r-J
o
rj
rN
rN
U
Cu
CO
Tt
c
r-J
rM
r-4
O
Q
rj
ON
Ti-
ro
2
rN
r^
oc
O
oc
rr,
ON
VO
Cl_^
ro
^
o
""
o
CL
OC
rN
in
2
rN
rN
U
CL
CO
WO
in,
O
rN
rN
rN
C
C1
wo
NO
Tt
OO
ON
ON
_;
wo
o
C
oo
ro
C
ro
ON
ro
O
^
O
o
&
ro
ro
c
rN
rN
U
CM
CO
vO
in
rN
rN
rM
0
Q
r-
ON
NO
Tf
Tf
8
r-j
rj
j .
c
oc
NO
ro
^
ro
NO
ON
ro
p^
rJ
r~
O
CL
r-
ro
C
rN
rN
rN
U
Cu
CO
r-
WO
o
rN
rN
r-J
O
uu
ro
ON
WO
Tt
00
oo
ON
__;
NO
ON
r~~
NO
ro
C
NO
ON
NO
oo
O1
p~
2
CL
rN
Tt
in
0
CM
r-J
OJ
U
Cu
CO
00
wo
o
rM
(N
rJ
O
Q
ro
O
NO
Tf
NO
OC
ON
^-1
oo
ON
ON
f-
NO
O
NO
ON
C
rN
- '
^
O
;
CL
\Q
Tt
WO
o
rj
r-4
U
Cu
CO
ON
r-j
rM
rN
O
C
o
o
WO
ON
ON
ON
_:
Tf
NO
r*-,
oc
NO
ro
ro
NO
ON
wo
r-
NC
^
C
v~
cซ
wo
s
CM
r-j
U
Cu
CO
ฃ-.
NO
rj
rj
rj
O
Q
oc
o
O
wo
ON
ON
_;
ro
ro
00
NO
rO
wo
NO
ON
OC
ON
WO
^
^
CL
NO
wo
wo
c
rM
r-J
?M
U
Cu
CO
_
NO
rJ
rj
r-J
O
Q
OO
Tt
O
wo
ON
ON
00
ro
00
NO
m
ON
rN
Tt
NC
r~~
o
r ^
CL
O
o
NO
0
rN
rN
rM
U
Cu
CO
rM
NO
C
rM
r-4
rM
O
Q
Tt
ON
WO
NO
ON
ON
_;
ON
^^
Tt
OC
NC
ro
C
NO
ON
r
rN
r^
r~~
o
CL
wo
O
NO
O
o
rN
r-l
rN
U
Cu
CO
ro
rN
rM
rN
O
Q
C-41
-------
3
C
^j
C
o
U
U
C8
H
fi
o
1 E ซ
j~ a c
5 a. -2
5 .E c
<^
1 -i
cs cs
l !
cs =
3 C
a u
"c
_ซ
>-.
Jj
-^
L.
o
c
_o
_a
"o
u
2
cs
c
CJ
CS
^
c
CS
j:
1
u
-S
CS
ฃ
QJ
B
'x
0
3
O
u
'E
a)
2 '*
ฃ g
S|
u
Q-j
en
*
1
3 ฐ
C. 3
w "cs
X
_S
aj
cs
u
7ซ
-U
on
*
in
^
Os
*'
OC
SD
on
d
oo
in
Os
SD
^
C
O
c
CL
Os
SO
c
o)
OJ
U
a.
oo
^3-
SO
C
Ol
Ol
Ol
c
r^
oo
Ol
in
oc
so
as
r~
(n
od
so
on
^_
1
Os
in.
OS
OC
""""
o
1 '
CL
T^-
sb
^~s
Ol
ol
u
a.
00
in,
SO
O
Ol
01
Ol
o
G
r-f~.
H~,
iy~i
^
^C
CM
^
^C
OC
\c
__^
*~
sC
in,
as
Ol
on
Os
^
c
c
C-.
oc
SC
c
Ol
(J
oo
sO
so
r-1
01
01
O
C
sO
?~^
on
m
o-
SC
c
SC
oc
sC
t
OJ
o
oc
^
CD
rr,
Ol
sC
o
rj
ol
u
rs ^
oo
J-^-
SC
rj
OJ
01
o
c
SO
on
in,
SC
SC
Os
^D
OO
01
sD
'.
~
ง
^
~-f-
Cs
^
O
O
C.
r
01
sC
o
rj
rl
y
OO
oc
^f^
^^
rj
rj
rj
O
G
SO
oo
01
m
OS
on
in
oo
Ol
r*)
d
in
r-
Os
Os
00
^
O
O
d
Ol
m
so
0
Ol
01
u
oo
OS
SC
c
01
O
Q
SO
ol
< 1
m
^
m
Os
oo
on
T^-
oo
sO
ฐ
Os
Os
in
SO
r-
o
z~
CL
SO
SD
g
01
01
U
oo
o
o
01
01
O
Q
T^
'
in
on
m
Os
>n
<3-
oo
s
c
oc
so
OS
^
l^-~
SD
r-
c
o
o
CL
^_
-^f
sC
c
Ol
ol
u
OH
OO
_
[^
c
ol
01
ol
o
[~
c
in
,
in,
Os
sO
Os
r*",
OC
01
SD
d
in
SO
Os
^
OS
in,
r-
c
o
0
C-
in,
i^-
sO
C
c
Ol
Ol
Ol
U
OO
01
r
c^
01
Ol
o
Q
sC
OC
rj
in,
in
in
OS
m
m
oc
Ol
ฐ
sC
OS
oc
in,
oc
^
c;
C
o
in,
sC
g
01
01
u
OH
OO
r*"}
[^
^
ol
01
OJ
o
G
in,
*
in
oo
in,
OS
O
r^
oo
sC
d
so
as
^
SD
C
00
c
o
c
CL
in,
m
sO
C
c
01
Ol
Ol
U
a.
oo
T^-
f-
c
01
01
o
Q
C*~i
01
m
in
m
OS
ol
m
oo
SO
d
01
as
ol
O
00
^
O
d
CL
as
m
SD
g
01
Ol
U
OH
OO
in
r-
O
01
01
01
o
Q
oo
' '
in
OS
in,
T]-
^f
oo
SO
d
SD
Os
Ol
ซ
SD
r-
c
0
^f-
o
^
g
Ol
01
U
OH
OO
SO
r-
O
Ol
01
01
O
G
SO
SO
'
in
in
OS
00
m
rj-
00
sD
O
SO
OS
SO
OS
SO
^
O
o
d
CL
oo
O
^
O
Ol
Ol
ol
u
O.
00
r^.
f^
O
Ol
ol
Ol
0
Q
O
SO
in,
in
in,
OS
in
^t~
oo
s
d
oo
SC
Cs
r^
^j-
o-
r""
8
d
a.
f^
- '
^
C
O
Ol
Ol
U
O.
oo
oo
r-
C
01
01
Ol
0
Q
oo
ol
ปn
OS
oo
r
m
oc
so
d
SD
OS
^.
oo
00
p-
g
^
CL
r-
r
0
ol
OJ
CM
u
0.
OO
Os
r-
o
o)
01
ol
o
G
in
O
in,
in
oc
on
OS
(-*-}
r^
oc
so
d
Os
o
OS
OS
^
C~~4
d
CL
Ol
Ol
r~
O
Ol
o)
U
OH
OO
o
00
o
ol
OJ
01
o
Q
m
SC
in
OS
r-
Os
oo
00
SD
d
Os
OS
OC'
f
01
oo
o
o
c
SD
OJ
r~
g
Ol
Ol
U
CL
oo
w
00
o
Ol
OJ
01
o
G
SO
so
1/1
r~
\D
r-l
,_ซ
as
OlD
iri
Sฃ3
r* >
d
as
rJ
^
O
00
O
o
d
CL
m
r-
O
rJ
rJ
U
OH
0*5
r-l
OC
C
r4
rJ
04
0
Q
in
m
m
cc
SO
OS
o
oo
oo
in
SO
("M
d
SO
C
Ol
oo
SD
01
00
CM
c
o
d
CL
m
m
"~~
C
C
01
ol
OJ
U
OH
OO
m
oo
O
Ol
01
Ol
o
Q
ol
r-
in
m
^
in
as
in
*^-
00
oo
m
so
r^
O
oo
O
ol
in
TH^
o
oo
CM
o
o
0
CL
O
^
0
01
Ol
U
O.
oo
H^-
oo
O
01
01
ol
o
Q
Ol
[
00
m
OS
Os
Os
O
OS
m
SO
O"l
d
r-
o
01
xl-
in
oo
d
o
d
CL
m
r-
o
01
ol
U
OH
OO
in
00
o
ol
Ol
OJ
o
Q
r-
i i
SID
r-1
?
OD
r-l
cs
SO
r*~)
C3
r-l
C3
r J
OD
^f-
r-
O3
O
d
Ci.
CS
r-
o
r-i
r-l
U
CH
oo
SID
OD
CD
r-i
r-i
r-i
O
G
^_*
Tt
SO
oo
as
OO
TH/
Os
SO
ro
d
r
r
Os
r
. i
O
OS
S"~
d
O.
m
r-
O
a>
01
OJ
o
OH
OO
t
oo
C
04
Ol
01
O
Q
SO
OO
in
MD
M3
OS
^
SJD
0\
*t
r1 /
d
00
Trf
r-J
OS
o
CD
d
o~
m
r~
CD
r-4
r-i
y
O"
oo
OD
CD
r^i
r\i
C
G
m
OS
SO
_j
OS
SO
Ol
SD
OS
s
r^
d
as
OO
OS
Tfr
r-
01
OS
o
o
d
CL
ro
c
oo
O
O
01
01
CM
u
CL
oo
OS
oo
O
01
01
ol
o
Q
o
m
SO
r
OS
SO
m
OS
m
SD
r*~i
d
os
Os
rn
on
'
as
c
o
d
CL
f .
O
oo
O
O
01
ol
Ol
U
O.
OO
o
as
o
01
01
01
o
Q
SO
Ol
SD
_
m
as
so
T^f-
as
SO
SO
r*"}
d
oo
Ol
01
Ol
[ .
OS
OO
o
2
CL
ol
1
oo
c
01
Ol
u
OH
OO
,__
OS
o
01
01
01
o
Q
on
SD
OS
as
in
01
as
so
so
r*~)
d
on
O
01
_,
OS
oo
O
o
d
CL
SO
oo
O
0
ol
04
CM
u
0-,
OO
0!
as
O
01
ol
ol
O
Q
on
^
SD
01
on
OS
oo
01
as
so
r*i
d
r-
3
01
so
, 1
SO
oo
O
o
d
CL
^
01
oo
O
O
01
04
CM
u
CL
00
m
as
0
Ol
01
01
o
Q
o
sO
Os
in
l
on
os
r-
- i
as
00
so
r*~j
d
oo
o
Ol
on
in
00
d
o
d
CL
in
OJ
oo
O
O
Ol
01
CM
u
OH
00
^j-
OS
O
01
01
04
O
Q
C-48
-------
C
o
U
U
o
o
*
0)
B
O
'"i
U
E
B
C3
3
o*
U
-^
o;
O
B
n
-ฃ
E
u
0;
"0;
S
p ol
ft. B
B, _=
.ฃ ฐ 1
E =
"n c
U I-
** Xฑ
ฃ E
S
E
O -- j-
i ^
y 03
B
5 ฃ
U **
3 ~
^
S "w
X
GJ
E
H
E
C SJ
1 "
"c
U
5
Q
->
ฃ
f
ON
in
rf
C
^~^
ON
OC
NO
cj
: .
.^
q
OJ
m
p-
m
oc
,-j.
^
C
C
rn
oc
OJ
OJ
OJ
U
CM
GO
m
ON
OJ
OJ
01
c
c
in,
NO
OC
in,
ON
m
ON
^X
CD
cr-
oc
NC
t ,
01
oc
ON
^
04
OC
^
^
^
o
c_
m
OC
04
OJ
OJ
CM
GO
NO
ON
O4
OJ
O4
Q
G
OJ
NC
in,
-t
ON
OC
OC
OC
p-
c
^f
ON
'n
NC
'OC
^
^
C
o
c_
oc
O4
OJ
OJ
U
GO
r~
o*-
04
04
OJ
O
1 1
OC
""'
ON
,
ON
OC
oc
o
, .
^^
o
rJ
r-J
oc
,
OC
<-
O
O
Tt
cc
s
OJ
U
Cx
GO
OC
2~,
04
O4
OJ
c
C
-t
>n
"-,
OJ
-r
ON
oc
oc
c
-T
m,
^
oj
o;
^
OJ
oc
-r
o
o
oc"
t
oc
OJ
OJ
OJ
U
GO
ON
ii^
oj
OJ
04
lf~^
G
ON
in,
in,
OJ
ON
T^-
oc
oc
ง
d
04
^_
C
oi
ON
C
oc
,3.
O
c
d
ex
m
oc
C
C
OJ
OJ
OJ
U
CM
GO
C
^
OJ
OJ
01
o
G
m,
in
m
oc
ON
04
r
oc
P,
d
m
ON
ON
OJ
m
o
oc
^.j.
C
C
d
c.
oc'
c
c
OJ
04
OJ
U
CM
GO
^
OJ
OJ
OJ
o
G
ON
OC
in,
p~
ON
in,
p-
oc
oc
NC
m
^_
oc
ON
, ,
^
O
OC
m
O
o
OJ
0
ON
C
Ol
01
OJ
y
GO
OJ
OJ
OJ
OJ
Q
G
OJ
c
in,
ON
'
od
^c
oc
r^,
C
ON
0s
ON
,-j.
oc
OC'
p-
in
C
d
ex
QN
C
OJ
OJ
04
U
CM
GO
m
OJ
OJ
Ol
C
Q
tyo
<"*"",
lฐ
r-
-r-^-
^O
oc
-^
O
rN
i
O
rj
*o
__'
ON
r-
"O
O
d
C-,
ON
ง
r\i
CL
GO
Jt
1
OJ
04
OJ
O
Q
oc
01
m
ON
r .
m
oc
ฃ
o
ol
T^-
m
ON
t"
mi
^
d
CX
ON
?5
Ol
04
U
CM
GO
in
^
OJ
04
O4
O
c
o
m
m
O
q
oi
NO
OO
m
oc
Pi
O
, .
^_
o
O4
OJ
,
oc
^
in
c
o
d
o
OJ
ON
O
0
OJ
Ol
OJ
U
CM
GO
NO
04
O4
ol
O
G
m
CO
in,
r-
ro
C
01
ON
in
oc
P.
C
NO
NC
^
oi
OJ
m,
p-
r-
in
C
q
o
ex
01
ON
o
01
OJ
OJ
U
D-
GO
r;
1 '
O4
OJ
OJ
C
Q
p-
mt
04
m,
-
O4
OJ
r-~
in,
oc
p-
o
Ny
^ ;
OJ
0)
Ol
oc
^
NO
^
C
d
ex
ON
OJ
ON
OJ
04
ON!
U
CM
GO
OC
04
OJ
04
O
G
in,
m
en
m
p^
q
oi
ON
NO
OC
r^
d
OJ
NO
OJ
NO
NO
r-
r-
ND
0
C
d
ex
ON
O
O
OJ
01
04
U
CL,
GO
ON
04
OJ
OJ
o
Q
T^J-
r*~j
v~i
2
oi
oc
^f
NO
OC
P;
~
ON
in
q
oi
oc
m,
oo
p~-
NO
^
C
c
dc"
ON
C
OJ
01
U
CM
GO
O
OJ
04
OJ
O
Q
oc
O4
in,
oi
NO
in
oc
P;
O
^D
f-~.
q
oi
^
c
oc
^
NO
C'
O
d
ex
ON
c
O4
OJ
O4
U
CM
GO
04
OJ
O4
O
G
in,
T^-
O4
m,
NO
oi
ON
*^f
OC
p~-
d
, ,
^-
c
04
ON
r-
p-
NC
C
c
d
r^
ON
04
O4
O4
U
c.
GO
04
OJ
04
O4
O
Q
ON
O4
m
oc
o
oi
1 1
in
oc
m
C
in
m
O
oi
m
ON
NC
P-
NO
o
o
04
ON
O
oi
O4
O4
U
CM
GO
rn
Ol
OJ
04
o
Q
in
NO
in,
q
oi
O
o
in,
oc
p;
d
ON
O
04
NO
NO
NO
^
0-
C
O
c
ex
NO
tn,
ON
C
oi
04
04
U
CM
GO
Tf
Ol
O4
OJ
O
c
OJ
OJ
m
oo
o
OJ
O
NO
in
00
p~
d
04
O
OJ
m
NO
P-
(^
C
d
ex
q
o
t ^
O
OJ
OJ
04
U
CM
GO
in
04
OJ
Ol
O
Q
NO
OJ
m
in,
O
oi
Ol
ซ
NC
00
p~
d
oo
ON
q
O4
m
oc
oc
^
[^
(^
c
d
ex
m
O
d
o
04
04
ol
U
CM
GO
NO
OJ
01
04
O
G
c
oo
Tj-
m
NO
oi
NO
00
NO
OC
ON
NC
d
m
,
O
OJ
oc
m
oc
^
oc
o
o
c-
C:
s
OJ
01
OJ
U
CM
GO
P-
O4
O4
O4
O
oc
ON
NC
in,
ON
oi
NO
OO
OC
ON
^
in,
O1
ON
^j-
NO
OC'
p~
o
q
o
ex
m
^
OJ
OJ
OJ
U
CM
GO
00
Ol
OJ
OJ
o
Q
m
ON
in,
in
oo
O
OJ
oi
rn
OJ
oo
oo
p-
o
P-
04
q
O4
NC
O
oc
p~
o
o
d
ex
ON
d
c
OJ
OJ
OJ
U
CM
GO
ON
OJ
04
OJ
0
Q
NO
m
in,
Ol
m.
oi
OJ
, i
oo
oo
m
d
^
f-~
o
oi
p~
oc
ON
^
(-^
O
O
d
ex
Tt
04
d
o
o
OJ
O4
OJ
U
Cu
00
o
OJ
OJ
OJ
04
o
Q
oo
p^
rf
in
in,
OJ
O
r-
oc
Pi
o
ON
m
O
04
OJ
O
o
00
p~
o
o
d
oo
OJ
d
^
OJ
04
OJ
U
CM
GO
Ol
Ol
OJ
04
o
Q
C
04
m
in
NO
NC
oi
C
NC
OC
P-
d
in
ON
C
Oi
OJ
O
oc,
p-
oc
c
q
o
ex
^
0
OJ
04
O4
U
CM
GO
01
O4
04
OJ
04
O
Q
OJ
O4
m
ON
OJ
ON
^"
00
P,
d
NO
NO
o
oi
rrl
o
r-
^
t-^
o
o
d
ex
d'
0
OJ
04
04
U
CM
GO
m
CNJ
04
OJ
OJ
o
G
p-
* '
in
OJ
oi
NO
m
^j"
oo
m
d
p~
en
q
oi
ON
p^
NO
r~"
OC
c
01
^
c
OJ
OJ
OJ
U
a,
00
rf
OJ
OJ
OJ
OJ
O
Q
DC
en
in
04
Ol
oi
i i
^~
OO
ฃ
C:
,
O4
O
OJ
rn
oc
^3-
p-
ON
C
q
o
ex
ฃ3
c
q
OJ
Osl
OJ
U
0-
00
m
OJ
OJ
ol
OJ
o
Q
C-49
-------
a
Oi
3
C
U
U
f^
"S ฃ ^
j= Q- =
5 a. -S
5=0
IT
0 g
.2 ฎ
1 2
S 'c
t: o>
C u
cs c
3 0
0 U
"e
ฃ1
>->
L.
3
L.
O
c
o
-J
^
~
"o
O
cs
cs
C
-2
."
^
c
cs
t3
E
^
u
cs
-o
'x
o
m
3
O
u
'E
cu
c '3
^ 0
cs g
u i
u
cj
cs
o>
"2
i_ ฐC
3 ฐ
ง cs
1
H
CJ
CS
Q
o
1^3
in
ON
O
in
Ti-
ro
OJ
OJ
ON
m
oc
r-
rn
0
m
O
OJ
01
C
in
^
ON
C
C
ex
in
o
Ol
OJ
OJ
u
in
NO
OJ
OJ
OJ
OJ
c
Q
ON
O
in,
oc
OJ
oj
OJ
m
'OC
^
rn
^
oc
oj
oc
OJ
in
r--
N_
d
ex
NO
in
c
OJ
OJ
04
u
a.
in
[
04
OJ
OJ
OJ
O
G
NO
in,
in,
ON
OJ
OJ
OJ
CO
C
oc
r-
m
C
oo
oi
ON
rn
NO
r
P
C
c
OJ
OJ
OJ
u
P-
in
oc
OJ
OJ
OJ
01
o
Q
o
r^,
l/~,
OC
o-i
OJ
iซO
DC
f-^
rO
cr
O
v^
ฃ2
r-
^
!ฃ
^
oJ
CM
ol
y
oo
cr*
OJ
CM
pvj
O
C
NO
Tt
in
0-1
NO
1
OC
r-^.
rn
;
-t
oc
01
rn
^
oc
"^
o
CX
ON
o
ol
OJ
OJ
y
C/3
O
r*^,
r-J
r-]
OJ
o
, t
r-~
in,
oc
in
o
oj
O
NO
OC
oc
o~
rn
d
r-
s
oi
oo
'
oo
p
CX
o
Ol
fN
OJ
U
ft.
in
, (
m
CN
OJ
OJ
O
Q
m
0)
r
in
d
oi
ON
m
oo
00
r-^
rn
d
NO
ON
ON
*~
^
OC
o
OC
~
ฃ5
c
CX
oo
o
o
Ol
01
OJ
u
ft.
in
ol
m
OJ
01
Ol
O
Q
, i
NO
m
ON
m
C
01
CM
cc
00
f-^
ro
C
TT
C
oi
in,
ro
CC
.
O
d
ex
ro
OJ
C
O
ol
OJ
OJ
U
ft.
in
rn
rn
OJ
Ol
ol
O
Q
p~
*d-
m
NO
01
ON
NO
oc
p_
ro
C
^
C
Ol
Ol
oc
oc
r~"
Q
1 '
CX
OJ
c
c
OJ
OJ
Ol
u
ft.
in
^
rn
ol
OJ
OJ
O
G
NO
Ol
in,
-
oj
r*-,
m,
oc
OJ
(-^
m
"
>n
NO
Ol
ON
ON
NO
^
01
Q
^^
OJ
O'
o-t
O-l
01
u
ft.
in
*n
rn
04
OJ
01
0
G
ON
NO
in
O
01
ON
oc
r
rn
ฐ
r-
p
oj
oc
in
NO
^
m
O
c
ex
r
c
Ol
OJ
ol
y
in
NO
m
01
OJ
OJ
o
NO
m
in
r-
o
oi
oc
ol
Tt
OO
Ol
m
O
oc
ON
ON
~
O!
rj-
in
r-
TT
O
d
ex
o
o
ol
01
04
U
ft.
CO
J .
rn
01
OJ
01
O
Q
m
oc
in
NO
NO
O
OJ
ro,
, i
^t
oc
ol
r^
r^;
ฐ
^
ON
ON
~
, ,
x^f
in
r~
m
C
C
ex
NO
c
OJ
01
OJ
u
ft.
CO
CO
rn
Ol
OJ
OJ
O
Q
o
NO
I/"}
Ol
00
04
oc
Oj
rn
<~>
O
OJ
C
rn
NO
r~
^f
c
d
c..
in
O
Ol
O4
Ol
U
PH
in
ON
m
OJ
OJ
01
0
G
ON
0
in
NO
oi
NO
m
oc
r-'
rn
d
,.,.
p
oi
NO
r~-
TJ-
r--
m
O
d
ex
o
c
OJ
OJ
01
U
ft.
in
0
01
ol
OJ
o
Q
0-
m
O
in
00
oi
r-
rn
oo
]n,
ON
rn
r~"
rn
c
^^
CsJ
cc
o
OJ
o
rn
OJ
Ol
u
ft.
in
m
OJ
Ol
Ol
o
Q
r-
ON
C
in
NO
C
oi
oc
oc
OC'
t-.1
m
0
OC'
OC'
C'
Ol
oo
in
^
Tf
C
O
.'
o
o
m
ol
0)
o
O.
CO
^J-
Tf
OJ
OJ
OJ
o
c
00
ON
0
in
ON
oi
NO
ON
ro
oc
r~
ro
d
^
oo
O
fN
O-l
OO
in
^
NO
C
^^
OC
OJ
C
0
m
fN
Ol
U
ft.
in
mi
Tf
Ol
OJ
Ol
O
G
c
in
m
rn
oi
ON
OO
rn
oo
m
ro
d
oo
r-
o
ol
in
c
r-
ND
O
d
a
Ol
01
OJ
0
O
rn
ol
CN
U
OH
in
NO
OJ
OJ
ol
0
ON
m
m
ol
oi
r-
ro
oo
!<
rn
d
00
O
04
f^
, .
in
r-.
in
O
d
OJ
OJ
O
O
m
04
04
U
ft.
in
p^.
Tf
OJ
O4
04
O
Q
r
C
in
Tt
o
0
OC'
r^~.
OC'
r-
0
^
oc
c>
Ol
oo
ro
r--
ir>
C)
C:
a
m
ol
O
o
rn
OJ
OJ
U
P.
C/5
00
04
O4
04
O
a
ON
O
m
O
OJ
oi
oo
m
00
^ k.
XI
r~-
m
d
NO
NO
o
04
, ,
ON
r-
in
O
d
NO
m
OJ
O
O
m
Ol
01
u
ft.
in
ON
TT
01
01
Ol
O
D
O!
in
*
m
o
o
I
or
OC'
r-
r<-,
C'
oo
r;
Ol
m
r^-
NO
r-
U")
c;
d
cy
0
ol
0
o
rn
OJ
OJ
U
0.
CO
o
OJ
04
04
0
Q
>n
in
(5O
O
oi
1^-
rj-
I3O
i~-i
ro
d
^
o
01
t-~
m
r-
Tf
O
d
cc
in
OJ
O
O
m
rN
OJ
U
OH
in
T,
in
04
Ol
01
O
Q
01
r-
O
in
r-
c
oi
NO
m
m
oo
r~-
ro
d
in
NO
O
04
ON
ON
m
^
in
O
d
ON
OJ
O
O
m
OJ
04
U
OH
in
04
m
ol
Ol
01
O
Q
o
. i
m
m
01
ONI
m
Tf
00
P,
ro
d
NO
NO
o
Ol
OO
Ol
in
0-
m
O
d
OJ
o
0
rn
O-l
O4
u
ft.
in
m
m
04
Ol
04
O
Q
ON
Ol
O
m
m
ON
Ol
oi
Ol
in
m
oo
P,
m
d
m
oo
O
Ol
<*
C
t
in
O
d
ON
in
OJ
O
O
m
ol
01
U
O.
in
^j-
m
Ol
Ol
04
O
Q
ON in
00 O
ON
TT m
N ^
oi oi
in NO
m >n
ol m
oo oo
in Tf
rn m
d d
m r~-
r- r-
o o
OJ Ol
oo m
OO ON
rn TT
r~ r-
in r-
0 0
d d
rn oo
C p
SO
c
'rn m
04 oi
04 01
U U
OH O.
in in
in NO
in in
01 01
01 01
01 01
O O
Q G
C-50
-------
a
U
S
C
fclj
c
o
U
C3
H
D
i
^2
U
O
'ฃ-
S
"c
2
5
u
w
a
!>
6
c
&
.ฃ
^
E
i_
b
o
in,
m
rN
r-i
ro
in,
r'-,
OC
r
od
^
in,
^3-
^
r~
p
O
_-
C
rN
rN
y
in
r
m
rN
rN
rJ
Q
OJ
I/I
OJ
Ox)
'/~,
vO
OC
P
g
NC
DC
rt
^
r-
c
[1
c
rN
rJ
U
CM
in
oc
in
r-l
rN
rN
O
c
rN
r-J
in,
in,
rN
35
--f
DC
Tf
DC
r-J
^
r*-,
NC
r-
r^
C
rj
t
rN
rj
U
c.
in
ON
m,
r\i
r-j
O
^O
O-]
*r,
^C
C--
OJ
DC
*/,-
OC
p
"1
"C
o
^
0
c^
rN
c
rN
rN
y
LT.
C
NO
rN
r-!
r4
C
c
- -
r-J
in
iri
O
>
r-i
O^
--J-
oc
r~-
^
J
^.
t-
NC
r
O
o
,-ซ-,
s
rj
rN
y
Co
. .
NC
rj
r-J
r-J
ON
m,
^
^_
i
r-J
-r
TJ-
oc
p
in,
rN
f-^-i
t^
in
^
r-J
C
O
r^l
0
r-J
rJ
U
in
r-J
NO
(N
r-J
rN
O
f^
O1
m
NO
rr-j
IN
O
OO
m
'OC
00
r-
ON
in
C
in
^
ON
C
O
cti
s
c
c
r-J
rN
U
C-
in
<-*--,
NC
(N
rj
rN
O
G
OC
r^
o
iy~i
OJ
O
r-J
(~f-t
Tfr
00
p
r-J
r-J
ON
00
m
^
(N
C
rt
5
0
o
(N
rN
U
CM
in
^3-
NO
rN
rN
rN
O
c
ON
in,
in.
rN
m.
rN
[-
rj-
OO
OC
VD
'
NO
[^
NO
r~
q
?
c
r-J
rN
y
in
in,
NO
rN
r-J
r-J
O
c
oc
^o
'/ ,
r -,
, ,
^
ri
r^j
'O
DC
r---
. '
C
^
'
<=
oo
O
^
r-
O
mi
O
r-j
rs)
y
in
NC
NO
r^j
r-j
r\i
r-J
r-J
in
^
f^
r*~,
r-j
^j-
in,
oc
ฃ
, ;
2
ON
r-J
l^
^
NC
C
oc
m
c
r-J
rN
U
CM
in
t
NO
rN
rN
r-l
O
o
NC
r-J
r-J
m,
r^
rN
ON
in
oc
ฃ
-_;
0
o^l
OJ
c
r^
^
ON
C
rN
C
O
0
r-J
rN
U
CM
in
oo
NO
rN
rN
rN
O
G
in,
r-j
in,
NC
[^
rN
rj
r*~(
m(
DC
OC
r-
_
r~
^
r^
^~
oc
p
c
g
r-j
rN
U
C,
in
ON
NO
CN
r-i
r-j
O
Q
DC
in,
m,
ON
in,
r-J
rJ
r-l
in,
T^-
oc
DC
r
, :
C
r-j
r-J
NO
'""'
r^
c
r-J
C
rN
r-l
U
CM
in
o
r^
r-l
(N
r-J
O
in,
o
in
^_
00
n",
rj
ON
r*",
OC
ON
^
00
NO
r-J
rN
r-J
NO
m,
*~~
00
p
NC
g
r-l
r-J
U
CM
in
*ซ,
t^
r-J
IN
r~\
G
in
in,
o
in
oo
m
rn
rN
ON
NO
m
oc
ON
. ;
ON
IN
rN
ON
rr-j
m
r~"
ON
p
rt
rN
0
r-J
r-J
U
CM
in
r-i
r~-
r-J
rN
rN
O
G
c^
o
in,
f^.
^f
f-^-,
r-J
ON
rr-(
DC
ON
r-
^^
NO
in,
rN
r-J
ON
OC
Tt
^
rN
O
C
in
r-i
o
rN
rN
U
CM
m
m
f~-
rN
r-l
(N
O
G
p^
o
vri
^.
^f
OJ
^o
r*"(
oc
o^
_,,
o\
W~;
O-]
OJ
__
r*",
in,
"~~
O
S
C
r-1
rN
U
0-
in
^
t~~
r-J
r-J
r-l
O
G
ON
o
in,
^_
.
Tj-
r-J
oo
Tfl-
r*S
OO
oo
c
rN
rN
rN
r-J
Tt
r
ON
O
m
C
rN
rN
U
c-
m
m
r
rN
r-J
r-J
O
G
IN
O
in
ON
ON
Tj-
r-J
in,
m
oo
oo
c
rN
r-J
rN
r*~,
^t
^
r-J
C
0
a
ON
n",
0
r-J
r-J
U
CM
in
NO
r~-
rN
rN
rN
O
c
in,
O
m
r-^
m
r-J
r
NO
m
oc
oo
o
r-
r-l
oo
NO
*fl-
^
rN
O
O
cc
5
0
p
IN
rN
U
CM
in
f .
r~~
rN
rN
rN
O
Q
o
in
m
ON
m
rN
NO
NO
m
oo
oo
m
O
m
r-J
rN
m
ON
rt-
r~"
ON
O
O
00
c
c
rN
rN
U
CM
in
00
r--
rN
(N
O
Q
c
ON
O
in,
(N
o
NO
rN
m
in
r*"i
CO
oo
ro
^
ON
r-J
rN
c
00
rฑ
r-
rN
C
C
a
in
C
r-J
r-J
U
CM
in
ON
r-J
r-J
rN
O
G
I/"",
O
ซ0
CN
"sf
l/~i
ON]
^C
rn
OC
OC
^
a\
o^
OJ
__
Q
in
^
r-i
O
ca
in
0
r\i
rN
^
in
o
00
rN
rN
r%i
0
Q
uo
O
0
ป/")
1
\o
"*$
tN
ปO
ro
CO
oo
^
o
(N
O-l
NO
Tf
r-
^H
p
o
ra
rj
O
g
r-J
r-J
U
CM
in
, ,
00
r-J
r-l
r-l
O
Q
ON
r-J
>
in
NO
^D
Tl"
rN
m
O
Tj"
00
oc
c
in,
r-J
rN
oo
T^f.
m
r-
rN
O
O
NO
p
o
rN
rN
U
CM
in
IN
OO
r-J
rN
rN
O
Q
i -
'
in
r~_
O
in
rN
rj-
C-)
'fl-
00
r-j
oo
^
ON
r-j
rN
in
ป
in
^
ON
O
O
, ,
S
rN
IN
U
G,
in
r*~i
oo
rN
rN
rN
O
Q
r-l
.
'
in
ON
in
-------
a
a>
3
C
O
U
m
i
U
a
o
"O JI *vj
J 5. e
ฃ 0. 3
J. .c O
c e
.0 _C
03 03
%5 ^
C U
03 C
3 O
o u
"e
03
E
>>
H
^
^
V
ง
o
_o
4?
cj
c
U
03
03
C
L.
ja
0)
c
03
V
E
CJ
03
."2
O
O
-'tul
u
c "2
0 X
ฃ 2
M
u
M
R
>
8
u ฃ;
Ss 3
"-" C
S 03
' X
QJ
X
0)
H
u
03
OJ
iZ
h*ซ
in,
NO
1
rM
oo
xf
oo
oc
d
rM
r~
rj
^
oc
in,
^
r-l
C
C
cd
("1
r >
C
f~j
n
n
U
0-
00
oc
oc
rl
rl
rj
O
NO
NO
r~
m,
r-l
in,
m,
^j-
oc
oc
d
NO
ri
rM
r-i
r-
ini
^
O^
c
ca
oc
C
C
r*"i
rM
r-1
U
0-
00
ON
cc
rM
rl
rM
O
Q
c
^n
rM
THj-
*^f
oc
in
oo
o
r-
CN
ri
ON
^
in
^
rl
C
C
03
Tf
CO
rM
ri
U
C-
oo
o
CJN
rN
rN
(-NJ
o
c
2
r-
c
r-l
NO
r^.
oc
CO
d
ON
r-i
t-_
ปH^
Vf-
r-
oc
^
c~ฐ*
[-
^t
C
m
rj
rM
U
c.
oo
l "
rN
r-J
rN
0
Q
oc
-t
ri
>n
r*~,
CO
OC
d
rl
ri
r--
rr
-Tf
r-
.-^
~
c:
rM
in,
S
r~r~r
rj
CN
[^j
C.
00
rl
*JN
rl
rj
rl
O
c
ON
in,
ri
n
r*~,
oo
OC
d
rj
rM
t-^
THy.
r^
[^
rN
rM
O
d
ra
Ti
cf--
rM
rM
U
0.
00
n-i
UN
rN
CN
rM
O
G
3
in
in
O
in
rM
NO
r<~i
OC
ON
O
OO
ON
r-l
rM
rM
NO
in
r~
n
rM
O
d
03
o
o
o
ro
rM
(N
u
OH
00
3-
ON
rM
r-l
rM
O
Q
"*
m
NO
n
rM
n
-^f
OC'
ON
ON
ON
r-l
r-i
,3.
r*"-,
m
^
^r
c
03
C
c
r^t
rM
rl
U
0-
00
in
ON
rN
rM
n
O
Q
~
m,
oc
r-l
NO
rM
oo
r*"i
oc
ON
C
in
rM
r<-
C
(^
rM
C
c
c
c
rM
n
U
0-
00
^o
Q^
fN
ON1
r\i
o
Q
ON
ON
-t
?
rN
rj
l~^-
rN
oc
ON
o
^
rM
t^
T^f-
f^'l
f-^
rl
rl
C3;
in
0
rM
rM
y
00
ON
r-1
rM
rj
O
Q
ON
Tf
NO
m
ri
NO
n
oc
(N
ON
-'
ฃ
rM
oo
rM
^f
^
rM
r-l
r~?
ON
8
rM
rM
U
0-
00
oc
ON
n
rM
rM
O
Q
oo
NO
ON
00
r-i
oo
n
cc
ON
d
ON
n
r-i
m
~~
T^-
f
rM
rM
C
C
^>
rM
O
n
r-i
U
00
ON
ijl
rM
rM
rM
O
Q
rM
NO
ON
OC
in
ri
ON
NO
n
cc
s
d
rM
in,
in
rn
[^
r^i
rM
C
ON
n
rl
U
OH
00
0
^ '
rM
rM
O
Q
m
ON
ON
r
ri
, i
rO
OC
NO
ON
d
m
rM
n
in,
r^-
*^t-
r~
o
rM
O
C
r^i
m
0
r*~-,
rM
rM
U
OH
00
^
~;
rM
rM
r-i
O
Q
in
C
in
00
ri
oc
O
oc
ฃ
d
ON
rM
n
oo
^Hy
^f
[-^
^.
rM
O
d
03
00
m
C
0
ro
rM
r-l
U
OH
00
rM
rM
rM
rM
O
Q
d
ON
ฃ
r-i
n
n
oo
NO
ON
d
n
m
rM
r-
NO
r*"j
[
^.
rM
C
d
03
rM
0
fr-j
rM
(N
U
OH
C/}
m
r-l
r-l
rM
O
Q
NO
NO
ON
NO
NO
ri
in.
rM
oo
m
ON
C
r~
r-l
rM
ON
m
r*~i
[
r^i
rM
d
c^
^
o
0
f*-,
rM
CN
U
a.
oo
g
rM
CN
rM
rM
O
Q
rM
ON
OC
rt
rM
rn
n
oo
in
ON
("*">
O
5
rl
i-^
TH^
r*~,
r~
in
rj
O
^_ ,
m
O
O
r*~)
rM
rl
U
OH
00
m
rM
r-l
rM
O
Q
o
in
a-,
NO
r~
rM
NO
OO
in
Os
O
O;
r-l
^j-
rM
r^i
r
^
r-l
O
d>
a
^O
m
O
O
CO
r-1
r~l
O
oo
vO
r- ^
ri
rl
n
O
o
o
ON
OO
ON
NO
r-i
oo
ro
rM
oo
in
ON
O
ON
rM
rM
-^
T^-
f^-,
[^
ปn
rM
0
d
03
c
o
in
o
m
rM
rM
U
OH
00
ฃ;
r^-i
rM
CN
CN
o
Q
00
NO
CN
OC
oc
ON
0
ON
ON
rM
r-l
in
r<-i
r-
r*"i
rM
O
d
03
in
O
in
r*~i
rM
r-l
U
0.
00
oo
r-i
rM
rM
O
Q
o
ON
00
NO
r-i
r-l
C
rM
oo
NO
ON
0
00
ON
rM
rM
oo
NO
rM
r
rM
rM
O
d
c
m
r*~i
rM
rM
U
OH
00
ON
rM
CN
CN
rM
O
Q
oo
oc
in
rl
NO
rl
00
NO
ON
O
in
ON
rl
rl
T^-
ro
t-~
rปi
rl
O
d
ป^-
C3
r'l
ri
r-l
L)
OH
01
O
^"l
rN
rj
PN]
O
a
NO
in
co
NO
in
r-i
oo
oo
in
ON
O
ON
ri
NO
ON
rN
r-
rr>
rN
O
d
03
ON
m
O
O
(-y-j
rM
rM
O
0-
co
' '
n
rM
rN
O
Q
rl
oc
rn
ri
0(3
m
oc
ON
0
ON
rl
ri
NO
rl
ri
r--
rปi
rl
O
d
03
r*"i
r-l
O
C5
r*~j
r-1
r-l
rj
OH
t/1
CH
r-J
r-l
r-l
O
UJ
r-
00
rM
r-
r-i
NO
r-
oo
m
ON
CO
O
NO
ON
rM
ri
rM
O
rM
r-
,.,.
r-l
O
C
03
OO
rM
in
O
C
m
rM
rN
U
0.
oo
ro
1
rM
rN
rN
O
Q
NO
00
00
r-i
oo
00
oc
NO
ON
CO
0
m
r-i
oc
^j-
rM
^
m
rM
O
03
CN
r^
in
O
0
m
rN
CN
U
OH
CO
*
j
rM
CN
rM
O
Q
ON
in
oc
xf
ON
ri
r
oo
NO
ON
O
rM
r-i
in
oo
rM
^
rn
n
O
d
03
r-
m
in
O
o
rn
r-l
rM
U
OH
00
m
r-i
CN
CN
rM
O
Q
ON
NO
OO
NO
r-i
NO
NO
CO
ON
O
m
C
ri
,-j.
O
j-^
NO
r-l
O
d
03
CN
m
r*"l
rM
rM
U
OH
00
NO
CN
rM
rM
rM
O
Q
m
oo
I .
ง
r-i
rM
oo
'-D
ON
O
m
rM
in
O
i[
VD
^r-l
O
d
03
*o
^t
o
o
r-1
rM
rM
U
OH
00
r-
-
rM
rM
rM
O
o
in
rM
oo
CN
in
in
rM
in
oo
ON
o
rN
ro
r-i
oo
ON
[
^
rM
O
d
03
ป H
m
m
O
m
rM
rM
U
OH
00
OO
rM
r-l
rM
n
O
Q
C-52
-------
C
M
C
O
O
u
s
^
o
0 ฃ M
.ง 0. C
So.
^ c O
*ฃ '"
C/;
c o
C3 P3
- ฃ
*^ OJ
C u
re c
3 O
O U
"c
_re
ฃ>
5
u
o
3
C
O
c
c
*ซJ
rr
0
U
2
a
u
re
ฃ
c
re
jr.
u
ฃ
L.
ZJ
re
is
"O
'^
^
i/j
3
u
'c
CJ
c 2
2 '55
ฃ g
C3 ?C
u E
u
"1
J
a
s ฃ
^~ ^~
2 ^""
^ Cfl
X
I
H
u
're
0)
rs
ii*
m,
OC'
^
oc
in,
OJ
in
oc
OJ
ON
^
OJ
m
m
O4
Tt
04
r
c
c
in,
in,
C
ro,
04
OJ
U
C-
oo
ON
O4
OJ
OJ
OJ
o
c
OJ
OJ
oc
Tt
(^
oc
in,
OJ
^
oc
, ,
ON
r<-,
NO
in,
rn
OJ
OC'
04
p~^
in,
04
'
O
g
\c
o
(-*-,
O4
OJ
U
CM
OO
^
OJ
04
04
OJ
0)
O
G
Tt
OC
^
04
NO
OJ
in,
oc
ON
OC
r-
OJ
OJ
3
04
^
oj
O
o
3
r*",
oj
oj
U
D-
m
O]
r^xj
oj
oj
oj
o
G
OJ
OC'
oc
Tt
oc
in,
OJ
oc
oc
oc
oc
ro,
l/"(
ro
OJ
S
OJ
r-
04
C
O
s
c
CO
OJ
OJ
cu
OO'
01
OJ
OJ
OJ
OJ
OJ
;~N
G
oc
-1-
^
in
^
01
*-)-
oc
ON
oc
r^'
OC
r^;
0 J
OJ
OJ
^
OJ
^
0
r
rf~,
o.
01
y
00
r<~,
o
O
r
o
r-
0
G
in,
oc
^
_
,
f
04
O4
OC
,_
ON
CO,
00
Tt
OJ
oo
^
04
^
d
oc
ro,
04
04
U
00
r^-
OJ
OJ
OJ
OJ
OJ
0
G
OJ
oc
^
<-<-,
^t
NC
04
ON
OC
__
ON
d
NO
OJ
in
o)
[
O4
O
C
04
NO
c
r*";
OJ
04
U
CM
00
in
04
O4
OJ
04
04
0
G
^
t^-
^
(^
^
NO
OJ
oc
00
__
ON
C
ro,
[^
Tt
04
c
OJ
r-
OJ
C
d
04
C
ro
OJ
OJ
U
C_
oo
NO
OJ
OJ
OJ
OJ
04
o
Q
s
oc
^
m
in,
NO
OJ
^
O4
OC
04
ON
d
^.
p-^
Tt
oj
ON
ro,
(-^
OJ
C
O
OJ
25
ro.
OJ
OJ
U
CM
OO
r-
OJ
OJ
04
OJ
OJ
O
Q
NC
OC
*
r^i
iO
O
r-j
QV,
1 1
3C
_-_
ON
Z;
OO
T^-
Tt
oj
ON
r-
0-4
P^
OJ
O
O
ฃ
i"*")
OJ
r-j
u
a.
00
oc
04
OJ
OJ
OJ
04
O
Q
_
ON
^
in,
, '
NO
04
O4
04
OC
?-,
/^
oo
^_
ro;
04
00
ro,
^
oc
OJ
^
O
1
r*"ฐ.
OJ
OJ
U
Q_
00
ON
OJ
OJ
04
04
04
0
Q
ON
OJ
ON
*
in
ON
m
oj
m
oj
00
r~,
ON
d
,.,.
ON
OJ
oj
in
^
in
OJ
O
d
NO
Tt
0
o
ro,
OJ
OJ
u
oo
^
r*~i
OJ
OJ
OJ
OvJ
o
Q
,- i
r^-
^
^
T^-
in,
04
rt
, i
00
OJ
ON
!^;
r-
Tt
OJ
ON
OJ
r-
in
OJ
C
C
d
m,
NO
m
OJ
OJ
U
c.
OO
^_
r*",
OJ
04
O4
04
O
c
00'
o^
^
[^
OO
l/~.
OJ
<^
lio
oc
I/"}
c>.
f
_^
^o
OJ
^
'
[-^
^n
OJ
o
d
i/~i
(/^
^o
ง
rn
OJ
O4
U
CM
OO
ONl
ro,
04
04
OJ
OJ
o
Q
t^
oc
"*
rf.I
00
in
OJ
OJ
^~
oc
m,
ON
OJ
OJ
NC
04
04
OJ
[-^
OJ
C
d
in
NO
<"0,
OJ
04
U
CM
00
f~i
fO,
04
O4
04
OJ
O
Q
ON
*
OC
^~
NO
04
in
m,
- '
00
NO
ON
NO
NO
04
m
ON
r
in,
O4
C
d
c
0
c
f-f-j
04
04
U
CM
OO
^j-
r^)
OJ
OJ
O4
OJ
o
Q
l/~)
OC
r~^
^
oc
f-
r-
04
in
in,
^~-
oc
j^
ON
\D
C
NO
oj
04
OJ
r-
m
OJ
d
ON
C
r*~,
OJ
OJ
U
CM
OO
*n
rOj
04
04
04
04
O
G
o
oc
^
t-^
ro,
ro,
ro,
^
OJ
oc
T^-
ON
f '
^
T-^-
U^J
OJ
p,
04
[
04
o
d
, ,'
r
c
r>~l
O4
OJ
U
CM
OO
^o
ro,
OJ
OJ
04
04
O
G
NO
ON
^
NO
c^
OJ
roj
m
OJ
m
oc
ปซ
ON
^__^
f^
OC
Tt
oj
NO
O
in
[-^^
oc
04
C
O
oc
r-
0
m
O4
04
U
CM
OO
0-
[-0,
04
04
OJ
OJ
O
Q
oc
OC'
0
in,
Tt
m
r~^
04
ON
Tt
OC
oo
00
d
, ,
r*^,
Tt
oj
NO
m
m
r-
NO
04
O
0
04
04
O
0
r*l
O4
CN
U
CM
OO
00
r*-j
04
04
04
04
O
Q
00
o
in
OJ
in
NO
oj
ON
NO
00
[^
00
^
OJ
ON
oj
ON
O4
Tt
(^
Tt
04
o
04
c
cr-(
OJ
OJ
U
CM
00
o\
04
04
OJ
OJ
o
Q
s
o
m
^.o
Nt_J
04
ON
m
oc
NO
OO
d
NO
o
04
s
m
P^.
oo
04
O
c
ro
r-
C
m.
04
OJ
U
CM
00
O
OJ
04
04
OJ
O
Q
NO
in,
in
O
oc
OJ
O4
Tt
oc
in,
oc
^u
,_
NO
oj
OJ
OJ
in
r-
OJ
C
C
^
o
fo,
04
04
u
0-
00
rt
OJ
04
04
04
O
Q
ON
Tt
in,
^
m
oc
04
vD
OC
[
oo
d
[^
Tf
r^i
OJ
OJ
r
in
r-
m
OJ
o
c
o
r-
0
ro,
OJ
OJ
u
C-
00
04
Tt
OJ
OJ
04
OJ
O
OJ
~
in
^
oo
t~~-
04
O
in
Tt
OO
^J-
oo
o
oc
r-~
ri
oj
04
NO
f~^
OJ
O
O
m
r
g
r*~i
04
OJ
U
CM
OO
m
^t
04
OJ
OJ
OJ
O
Q
OJ
04
in
oo
m
r-;
OJ
C
m
oo
T^f-
oo
2
in
^M
rn
04
O
NO
r-
OJ
o
d
m
0
o
r*~i
04
O4
U
CM
OO
^
^-f-
OJ
OJ
OJ
OJ
o
Q
04
ro.
in
in
NO
r-
O4
m
m
NO
OC
r*-.
oo
d
00
ON
m
04
ON
OC
r-
r-
OJ
0
o
m
0
o
ro,
04
OJ
U
CM
00
in
OJ
OJ
OJ
OJ
O
Q
04
r^j
in,
OJ
r^i
OC
04
0
OC
r*^,
00
d
Tt
^^
NO
OJ
ON
OC
[-^
OJ
O
ON
in,
r-
o
ro,
OJ
0-1
U
CM
00
vC
Tt
04
OJ
O)
O-l
O
Q
04
0
Tt
in
m
OJ
o
p~;
NO
m
r-
00
^t
oo
d
oo
Tt
NO
oj
NO
ON
OC
[
OJ
OJ
O
C
0
oc
o
o
ro,
04
OJ
U
CM
00
r-
04
O4
04
O4
O
Q
Tt
NO
Tf
in
, ,
Tt
O
rn
O
oo
oo
in
oo
d
NO
o
00
04
O
ON
r-
OJ
04
o
o
00
O
00
O
r*~i
OJ
OJ
u
CM
OO
oo
Tt
OJ
OJ
OJ
OJ
O
G
oo
00
CO,
m,
r
NC
ON
oj
OJ
Tt
OO
in
oo
d
, ,
00
NO
OJ
oc
oo
[-
OJ
o
d
_1
oo
o
o
f-0.
OJ
04
u
CM
OO
ON,
Tt
04
04
O4
O4
o
G
C-53
-------
o
ca 03
u u
c
"
U
C
O
CJ
2
C
C
CJ
IT)
i
U
C3
o
U
p.
LJ
U
-
j*;
ET
j_
03
^
C
a
tj
E
u
v
SB
*
O
"2
Q
O
L.
ฐE
."2
X
c
0
V.
n
m,
oi
m
O
oc
04
q
CD
^
OO
Si
rN
rN
U
OH
GO
NO
01
O4
rN
OI
O
c
OJ
in!
in,
oc
O4
10
ON
OC
OC
ON
OO
o'
r^-
m,
ol
OJ
ol
' 1
OC
Ol
o
CD
ON
oo
c
Si
0)
01
u
a.
CO
J
>o
01
04
04
o
Q
Jo
oc
^ .
OJ
NO
oc
oc
oc
oc
c
oc
, 1
m,
oi
ON
C
OC
OJ
CD
m
oc
O
SC
OJ
OJ
U
OH
GO
OC
m
OJ
01
01
OJ
O
Q
Jo
f
OJ
^f
00
oc
oc
oc
0
ON
^3-
Oxl
oc
o
oc
OJ
c
o
a
oo
in,
oo
<
01
OJ
u
OH
GO
ON
in,
OJ
ol
01
01
o
Q
ON
ON
"si"
>n
oi
NO
OO
oo
NO
oo
Q
in
>^-
04
>n
ON
r-
fN
O
CD
O
ON
O
o
ol
01
U
GO
O
NO
ol
01
OJ
OJ
o
Q
04
04
in
in
ol
ON
oi
00
oo
oo
oo
oo
CD
ON
01
"3"
oi
m,
rn
C
oc
ol
o
o
a
r--
o
ON
O
CD
01
fN
U
OH
GO
^^
NO
fN
Ol
01
(N
O
Q
oc
s
in,
oc
NO
oi
ro
ON
OC
r-
oo
c-
O
Ol
in!
oc
o)
04
o
CD
a
Ol
ON
5
01
rN
U
0-
GO
Ol
NO
O4
OJ
OJ
O4
O
Q
ON
m
m,
m
in
in
04
ro
ON
00
in
oc
O
p^-
m
Ol
ON
'
OO
OJ
CD
C
a
NO
ON
C
CD
OJ
OJ
U
0.
GO
m
NO
OJ
rN
rN
ol
O
Q
ON
10
rn
Ol
oi
oo
^^
00
oo
, ,
oc
CD
ON
01
oi
NO
ON
^
pvj
0
CD
a
oi
ON
C
C
Ol
O4
u
OH
OO
T^-
NO
O4
OJ
04
01
0
Q
oo
00
IO
IO
ON
in,
Ol
OJ
NO
oc
oc
OJ
oo
CD
ON
Ol
OJ
T^-
ON
""""
oo
o
o
M
NO
OJ
ON
C
Ol
OJ
u
OH
GO
>o
NO
01
OJ
04
OJ
O
Q
0
in,
2
oi
r-
ON
OO
, ,
OO
O
r-
IO
T
oi
r-
01
oc
NO
o
CD
cd
Q
ON
CD
ol
OJ
U
0-
GO
NO
Ol
OJ
01
ON|
O
Q
r-
oc
IO
r
ON
OJ
ON
O
ON
^,
O-
c
"^"
"~"
01
NO
oo
r-
rD
CD
IO
ON
5
Ol
OJ
U
Q.
GO
^
NO
Oxl
Ol
Ol
01
o
Q
ON
m
,t
oi
r-
c
c^
NJD
1
CD
.-
ป-
oi
ON
ol
oo
VO
o
CD
m
5
r*"i
01
U
0.
G-0
oc
N*D
O-J
C-J
o-J
o-J
o
Q
ON
IO
ON
IO
NO
04
o
04
ON
^
O-
CD
NO
i 1
oi
\Q
m
oc
vn,
O
O
5
ON
o
CD
OJ
OJ
u
OH
GO
ON
fN
rN
OJ
04
o
Q
si
NO
NO
oi
OO
00
Ol
ON
, ,
o-
c
^_
, ,
oi
Ox)
f-~.
NO
OO
Tl-
o
CD
a
oo
TJ-
ON
O
O
01
rN
U
OH
GO
O
r
OJ
OJ
(N
04
o
Q
in
t
o
NO"
00
Ol
<^f
Ol
ON
O-
CD
ON
ON
C
OJ
[
TI-
oc
ro
O
CD
a
ON
O
O
CO
Oxl
04
U
OH
GO
^_
r--
OJ
Ol
01
Oxl
O
Q
CD
CD
N.C
't
CO
CM
CM
CN)
crv
r^
o
o
^o
^^;
r >
U~l
oc
r-,
^^
C3
ca
oo
c^
CD
C2
Cxi
U
e.
oo
C-J
r-
r~-4
r-j
rxi
O
a
o
NO
01
OC
ol
in
ol
ON
NO
CD
ol
O
oi
ol
m
oo
_
0
O
ca
rN
CD
O
0
o
O4
fN
U
OH
GO
r*~i
t
ol
04
OJ
Ol
o
Q
C-54
-------
U
IE
ซ
fi
c
5 E rq
_c a c
3 a. .E
| .E 0
c c
S .ฃ
c* ฃ3
^ "c
C y
2 ฃ
5 u
c
_03
CJ
C
O
c
_c
u
-i
U
u
a
^
ซ
CJ
E
L.
>
O
'x
Q
5
C
U
'E
a
C "2
I'c
** C
S ฎ
c
u
a
\f
a>
"5
g 0
"B c
- s
QJ
ฃ
H
S
c
OJ
r~
^
OC
in,
sC
sC
sC
r
r-
Os
as
m,
CO,
r~
Os
_
OC
OJ
OS
-
p
sC
5
01
OJ
u
CM
co
OJ
C~~:
o
("o,
01
01
C
r-
sC
sc
SC
in,
Os
OC
OS
in,
_J
OJ
in,
Ol
Os'
-
p
OJ
^
01
Ol
y
co
m
c
o
ro,
01
OJ
8
r
"t
o
-t
Os
ฃ
^
ON
>/~l
'
-t
r-
0s'
oc
o
5
OJ
OJ
y
c/3
^f
^3^
^;
r*~,
OJ
oj
o
01
^
ฃ
r^
^
oc
m,
ฃ
OJ
,-,'
r;
-T
ฃ5
01
OJ
U
a.
c/;
'/"i
^^
o
r*~,
Os]
o]
c
oc
NO
S
2
X;
^
in,
ฃ
^.
OS
2
cง
5
OJ
o]
y
co
^
^^
o
ro
OJ
0]
Q
ง
so
Os
, <
sC
OC'
as
as'
sC
,
as
Os
oc
so
Os
as
o
o
C3
O
OJ
OJ
u
CO
r-
c
c
r^"1)
OJ
p\)
c
P
~~
sO
OS
OC
r--
Os
^
m
a-
C
as
,
:
1
C
p
01
OJ
u
o_
C/}
DO
O
H",
CN
(~\)
' i
P
oc
as
r-
sc
r-
Os
OC
OC
as
^
in,
oc
sC
C
OS
OC
-<
O
C-
OJ
c
OJ
u
PL
CO
Os
O
c
r*")
OJ
f~sj
p
n.
*~~
as
^
c
sC
in,
g
Os
OC
^-.
^^
C-
oc
OJ
c
OJ
OJ
u
Pu
CO
C
V
o
r^~.
r~J
f~Nj
C
'O
^
S;
^
o
in,
in,
Os
r*"j
O
^^
-^
2
OJ
5
OJ
OJ
u
LO
I
o
fV^;
r^
psj
^^
01
"^
Os
Q-1
c;
m,
in,
o^
o
c
Os
o
^~"
C-
01
c
OJ
OJ
U
a.
CO
OJ
ปM
C
ro,
OJ
OJ
r\
oc
r-
oo
Os
Os
C
SO
'
OJ
as
ง
o
oc
o
p
o
c_
OJ
C
01
OJ
u
PL.
CO
ro
^_
C
CO,
OJ
OJ
0
p
c
oc
^
r-
Os
as
oc
OS
O
^J.
in,
f ;
a-
OJ
Os
OS
C
OJ
p
' '
S
r-j
^
r-J
OJ
U
CO
T^-
^
c
ro
OJ
OJ
P
rf
C
OO
00
Os
OS
Os
OJ
SC
m
^
SC
Os
SO
as
o
,
o
fr
OJ
C
5
OJ
OJ
u
OO
*/""(
0
r*~i
OJ
O4
Q
1.2
oc
O
OJ
O
*n
*n
/'
Os
os
OJ
C
_
C
SO
OJ
0
OJ
OJ
u
DM
CO
so
r '
O
f*i
OJ
OJ
C
P
2
oc
OJ
OJ
in!
SO
in,
__^
in,
Os
5
OS
C
, ,
o
o
f
OJ
0
o
OJ
OJ
u
PL
CO
f
_M
C
ro,
OJ
OJ
C
P
sC
Os
I
OC'
o
o
OJ
oc
SC
m,
^
oc
as
c
oc
o
C
C-
in,
OJ
C
01
Ol
u
CO
00
_M
c
ro,
OJ
OJ
c
Ol
Ol
OO
oc
c
OJ
SC
01
sc
in,
in,
^
Os
r-
oc
OS
0
oc
c
^^
OS
OJ
p
OJ
OJ
u
PL
CO
as
^
0",
OJ
OJ
f"s
c
01
OO
OC'
as
rn
in,
in
;
SO
as
OJ
SO
Ol
0
o
CL,
m
OJ
c
o
OJ
OJ
U
Cu
CO
^
OJ
c
m
01
OJ
p
00
&
oc
O-
^ 1
oc
oc
^.
in
OO
SO
Os
oc
OS
o
^~^
CM
00
OJ
c
o
OJ
OJ
u
D.
CO
, .
OJ
o
r*~)
OJ
OJ
p
OJ
as
OO
so
OJ
OJ
SO
as
^j.
in
^
as
00
c
o
CM
0
OJ
OJ
u
PL,
CO
OJ
OJ
r*"s
OJ
OJ
p
so
oc
in,
OO
OS
O
OJ
OJ
OO
OJ
ro,
in
SO
OS
0
SO
p
^"'
C-
o
p
OJ
OJ
u
CO
r^i
OJ
0
OJ
OJ
C
P
Os
OO
Os
C
oi
in,
in,
OJ
OJ
in,
,_
OJ
in,
as
OJ
as
c
i~-'
CM
OJ
c
Ol
OJ
u
PL
CO
.^
OJ
f^(
OJ
OJ
Q
OO
OC
OO
SC
o
oi
sC
01
OJ
in
so
Os
in
oc
C
o
SO
p
OJ
01
u
c~
CO
in
OJ
0
OJ
OJ
c
p
OJ
SO
r-
OO
SC
as
OS
^ |
%
OJ
ro,
in,
,_;
in
Os
m
r-
OJ
p
O
OJ
C
01
OJ
U
CO
SO
OJ
C
OJ
Ol
p
m
oc
oc
c
Ol
r-
m
OJ
OJ
in
'
Os
O
OS
C
i~ '
CM
m
OJ
O
0
OJ
OJ
U
C.
CO
[ .
OJ
C
OJ
OJ
p
0
c
as
SO
OJ
p
OJ
so
OJ
^
m
^
m
0
OJ
p
o
CM
C
ro
C
ro,
OJ
01
U
DM
CO
00
OJ
rn
01
OJ
C
P
C
OJ
as
p
OJ
O
OS
OJ
[^
in,
oc
!
c
OJ
Ol
p
* '
CM
C
OJ
OJ
u
DM
CO
Os
OJ
m
0^1
OJ
p
SO
!
Os
OI
C
OJ
00
as
OJ
as
m
f_ \
OJ
ro,
so
OJ
OO
OJ
OJ
Os
o
C
"~"'
G.
Os
C
OJ
OJ
u
PL,
CO
O
C
OJ
OJ
O
P
as
o
as
o
OJ
as
r-
OJ
SO
in
01
r-
OJ
in,
C
OJ
OS
o
c
o
f
o
c
OJ
OJ
U
PL.
CO
__
m
O
ro
OJ
OJ
O
P
OJ
Os
00
OS
OJ
OJ
OJ
ro!
C
OC
as
>n
r-
OJ
as
P
O1
oc
c
c
OJ
OJ
U
PL,
CO
OJ
^
ro,
OJ
OJ
P
C-55
-------
3
C
-^*
O
O
U
_c
C8
H
"O
J
^2
u
W-t
B
_0
05
"B
5
5
B
Q,
Q.
B
^
S
ป
L
P
B
U
ro
B
O
CN<
tg
O
B
05
51
>>
^"
2
u
1
O
_o
"S
0)
"o
U
o
43
05
U
U
B
S
L.
05
c
1j
LZ
^*
NO
in,
CN
ON
ro
r4
NO
ON
OC
CN
ON
Tt
ro
C
!>
' '
, ,
oo
Tt
CN
ON
C
CO
C-
ro
in
C
0
CN
CN
U
OH
CO
CO
ro
C
ro
CN
r-l
Q
ro
CN
CN
ON
CN
r-i
C
OC
ro
r-l
in
ro
O
m
ON
ON
~-~
Tt
ON
ro
CN
OC
C
C
C
c.
in
o
CN
r-4
U
O-
co
Tt
ro
C
ro
CN
CN
Q
NO
ro
r-4
ON
Tt
r-i
NO
OO
OC
r-l
ON
Tt
ro
O
ON
1
in
NO
Tt
CN
[-^
O
r^N
r-i
CN
C
C
CN
CN
U
co
in
ro
C
ro
CN
CN
Q
Tt
ro
in
-t
r-4
NO
ro
ON
'-)-
ro
C
i
01
OC
^c
^o
r--]
3"1
^
^
c.
^c
n
0
rl
ro
U
0.
CO
NO
f^~)
^
r'";
r-J
fN
Q
O
O
S
r-l
OC
~
ro
ON
-t
C
r~-
~~
^
^
in
r-l
t-^
^-
ro
ex
ri
O
CN
rN
u
OH
CO
r-.
ro
^
ro
ro
CN
d
CN
ON
O
CN
r-i
ro
OO
Tt
ro
ฐ'
r-
ON
ro
NO
r-
r-l
o
ex
-
ro
C
c
CN
CN
u
0-
CO
oo
ro
0
CN
CM
a
CN
O
ON
oc
ON
r-4
in
ro
ro
rC-
'.
o
ON
ON
'
O
ON
r-i
t
O
o
o
ex
o
CN
O
o
CN
CN
u
OH
CO
ON
ro
ro
ro
ro
Q
g
ON
OC
p
OC
ro
ON
Tt
ro
C
NO
ON
*~
ro
in
C
ro
m
0
d
ex
CN
ro
0
o
r-1
ro
U
OH
co
O
Tt
0
ro
CN
ro
o
Q
ON
OC
ON
ON
0
r-i
ON
ON
CO
ON
Tt
ro
C
r-4
ro
ro
oc
< i
CO
NO
O
C
c
CX
ON
CN
CN
C
CN!
r4
U
OH
CO
, ,
Tt
0
r-i
r-l
o
Q
ON
OO
ON
ON
r-i
r^
00
ro
ON
^t
ro
ฐ
OO
""
Tf
in
i
CO
t^
ro
co
co
Cx
ro
r-l
C
ro
r4
r-l
U
a.
CO
ro
Tt
co
ro
CN
rN
5
_!
>
rj
ro
_'
Tt
ON
Tt
ro
O
ON
ro
OC
ro
rO
(^
C
c
o
ex
OO
ro
ro
O
H
r-4
U
OH
CO
o
Tt
0
ro
CN
CN
ง
(N
ON
O
r-i
CN
CN
ro
Tt
00
Tt
ro
O
ON
ON
^~"
in
NO
in
ro
,
O
O
CX
r-i
Tt
ro
O
o
CO
CN
CN
U
oo
TH|-
Tt
o
CO
CN
CN
o
Q
Tt
ON
C
OC
00
rl
00
ro
Tt
ON
Tt
ro
0
ON
ON
~~
n
ro
c
c
ro
CN
U
OH
CO
r-
Tt
O
ro
CN
o
Q
ro
O
CO
r-i
m
NO
Tt
ON
Tt
ro
C
in
ON
C
r-i
r
r
NO
ro
oc
0
C
O
CX
o
0
ro
C
O
ro
r-l
ro
U
OH
CO
OC
^J-
C
ro
CN
CN
ง
ON
CO
C
CN
ON
CN
NO
O
NO
Tt
OO
Tt
CO
d
o
r-i
ON
ON
r-
ro
t^
0
o
CX
in
c
"
0
CN
ro
U
OH
OO
ON
^-
O
CO
r-4
ro
a
r-
00
O
ro
m
r-4
m
ro
NO
Tt
OC
Tt
rO
d
ON
r-l
p
r-l
O
ON
r
ro
t-_
r^
C
O
ex
o
ro
C
O
ro
CN
CN
u
a.
CO
o
m
ro
ro
ro
Q
00
r-i
en
O
en
CN
CN
o
in
Tt
r-
Tt
r^i
O
c^.1
O
CN
CN
ON
r-
eo
r-
o
o
0
C-
en
0
r-i
r-l
O
OH
C/)
r~*
m
O
r-l
r-l
ol
Q
Tt
ro
CN
C
CN
in
r-i
oo
r-4
Tt
Tt
ON
Tt
ro
O
Tt
O
CN
m
O
r-
ro
NO
o
o
CX
ON
ro
O
o
ro
CN
ro
U
o-
00
CN
m
o
CO
CN
ro
o
Q
r-l
ro
O
in
r-i
m
oc
Tt
Tt
ON
Tt
CO
O
ON
rO
O
CN
ro
Tt
NO
ro
t^.
C
ex
ro
r4
ro
O
O
ro
CN
ro
U
OH
CO
ro
in
o
ro
CN
CN
o
Q
o
CN
O
CN
ON
O
ro
r
CO
Tt
OO
Tt
ro
O
CN
O
O
r-i
NO
CO
m
ro
r-
c
o
o
CX
oo
CN
CO
0
ro
CN
CN
U
OH
OO
Tt
m
O
ro
r-l
CN
o
Q
NO
NO
o
ro
CO
O
CN
O^
r-i
Tt
CO
Tt
CO
C:
p
01
Tj.
C)
CO
r-
c>
o
0
CX
rl
m
0
o
m
rl
rl
U
O*
OO
in
1/1
O
ro
r4
a
Tt
Tt
Tt
O
, !
r-i
r-4
ON
m
Tt
r-
Tt
ro
O
oo
ON
OO
Tt
ro
r
O
O
0
CX
r-
ro
ro
O
O
ro
CN
ro
O
OH
CO
NO
m
o
ro
CN
CN
O
q
0
o\
CN
Tt
Tl-
oo
Tt
f-^.
Tt
C5
ol
ON
^'
O
'
Tt
iri
E)
)
O
CX
Ti-
ro
C3
O
r4
r4
U
OH
CO
r
1/1
o
en
ro
ro
o
Q
CN
ON
oo
0
NO
r-
O
r-i
in
, !
m
f
Tt
en
O
ON
OO
ON
"^
NO
ON
CN
Tt
r-^
O
CX
NO
Tt
m
O
o
en
CN
CN
U
OH
00
oo
m
O
CO
CN
r-4
O
Q
r--
ON
O
00
in
O
CN
in
ro
in
NO
Tt
ro
O
ro
O
ro
NO
ro
ro
Tt
NO
o
o
CX
o
in
CO
c
C
co
CN
CN
U
OH
OO
ON
in
o
CO
r-l
r-4
o
Q
NO
O
oc
o
m
r
O
r-i
CO
S
I/-)
r--
Tt
ro
0
p
CN
O
ro
CN
Tt
NO
O
o
o
CX
m
m
ro
0
ro
rN
CN
U
OH
OO
O
NO
o
ro
CN
CN
Q
CO
ro
ON
O
r
O
r-i
ON
O
m
NO
Tt
CO
O
CN
O
O
r-i
NO
NO
CN
Tt
_
CN
O
O
Cx
ON
m
CO
0
CO
CN
CN
U
OH
OO
_
NO
O
ro
CN
CM
o
Q
oo
r-
ON
o
ro
ro
r-4
r-0
O
r-4
in
NO
Tt
m
o
<3N
ON
1 '
_,
ON
ro
Tt
ro
.
O
O
CX
Tt
O
Tt
o
o
ro
CN
CN
U
OH
OO
r-4
NO
co
CO
-------
a
0)
3
C
O
U
Quantification Method
Concentrations in ppm
5
c
O
c
0-
U
|
0
Collect
c
c
-Q
u
M^
U
re
C
cs
j
E
u
noxide nitrous oxide u
0
i_
H*
U
3
o
a
X
j=
|
u
4S
OC
OJ
CO,
co
NO
CO
OC
ON
^
*
CNl
O
C-
ro
Tt"
C
ro
CN
OJ
CJ
OH
OO
n
DC' O
O CN
OO
OJ OJ
NC OC
ro CO
o d
CN ^
'-TN ON
^r NO
* ^*
cN oj
a. o_
OJ vC
o o
OJ OJ
OJ OJ
u u
O. 0.
00 00
r~ oo
rr, ro
OJ OJ
OJ OJ
Q O
NO
OJ
OC
OC
ON
OC
O
ON
NO
rf
in
c-
o-l
C
OJ
OJ
u
OH
00
ON
OJ
OJ
n
CN
ON
CO
C
CN
CC
rj-
rf
XT
C~,
C
c_
CN
C
CO
OJ
u
00
OO
ro
OJ
CN
n
r-
oc
CO
rr,
OC
OJ
ON
-1-
r-
M-
c
C-
in,
C
CO
0-1
CN
U
0-
00
OC
CO
CN
OJ
?N
xl"
m
C
CN
CM
NO
CN
r-
co
d
CN
ON
ON
ON
NO
<ฑ
OO
CO
c.
CO
in
C
CO
OJ
OJ
u
OH
00
CN
00
CO
CM
CM
n
CN
O
CO
CN'
OC
CO
d
CO
CO
ON
OJ
CN
m
*
C
c,
ON
CO
m
o
ro
rx)
OJ
U
OH
00
CO
OO
CO
OJ
OJ
f 1
in
m
NC'
ON
OJ
00
CO
CO
ro
CN
ON
ON
00
Tj-
CO
o
O
O
CO
OJ
U
OH
00
00
CO
OJ
OJ
ON
OC
CN
CO
CO
CO
ro
d
CN
CO
ON
CO
m,
xt
CO
O
CN.
OC'
c
CO
CNl
OJ
U
OH
00
n
oo
CO
CO
d
CN
ON
ON
NO
r-
*
c
o
c.
CN
NO
o
ro
OJ
CM
U
O-
00
00
OC
CO
CM
CN
n
c
m
CN
o
NO
OO
CO
CO
d
CO
m
0
in
o
c.
NO
NO
CO
01
CN
U
OH
00
ON
OO
0
CO
OJ
CN
o
NO
NO
CN
CM
ON
oc
in
NO
CO
ON
oo
in
OC
NO
o
ro
OJ
OJ
U
OH
00
ON
CO
CN
CN
n
OC
ON
00
ON
in
ON
CO
rr,
0
ON
m
ON
*
01
d
i/T
NC
c
04
OJ
U
OH
00
ON
CO
OJ
OJ
n
o
ON
ro
ON
CO
ON
ro
ro
O
ON
ON
O
ON
TT
^
O
O
01
NO
o
CO
CN|
OJ
u
OH
00
CN]
ON
CO
CN
OJ
^
NO
ON
CN
NO
ON
O
CO
CO
d
CN
ON
r-
NO
*
r-
c.
OJ
NO
O
CO
CN
CN
U
OH
00
CO
ON
CO
0)
CN
n
OC
OO
CO
ON
1 '
NO
Tf
xt
CO
d
in
CN
ON
*
m
r;
c
ON
OJ
NO
CO
o-l
OJ
u
a,
00
\f
ON
CO
OJ
CN
n
C-57
-------
s
c
*p^
c
o
U
U
a
o
u
IS
c
_0
a
u
s
*ป
C
2
6
u
V
"o
^
ro
.ฃ
ฎ
c
E
U
^
w
g
a, ^
a, .5
_
CJ m
>- i
Ccy
-c
L. 'ฃ-
_ Q
a ง
^M ซ
3 C
[/ W
X
CU
-2 (S
w
"c
O
^_*
ฃ
i
ON
ro
sc
ON
in,
CD
Tt
in
, ,
Tt
CO
CD
SO
CM
ON
m,
ON
in,
Tt
r--
Tt
0
G.
Tt
ro
SO
O
01
OJ
U
(X
CO
in,
ON
O
ro
OJ
0)
CD
in,
0
Tt
in,
ON
in
Tt
Tt
in
,
T^-
ro
CD
O)
Ol
ON
CD
r^-
Tt
Tt
Tt
0
G.
OC
ro
sO
C
OJ
01
U
a,
CO
SO
$^
o
CM
CM
^;
G
m,
CM
Tt
~
in
Ol
Tt
in
Ol
^t
rO
^~~
CO
CN
m
rO
OC
Tt
-t
Tt
C
c
c,
ro
Tt
sC
O
OJ
OJ
u
CO
r-
ON
ro
Ol
Ol
O
D
in,
Tt
r
ON
ro
in,
.
Tt
n~,
CD
CM
CXO
ON
in
-t
oc
3
0
r^
-t
sC
CD
r J
rM
U
Cu
CO
00
ON
ro
CN
rM
CD
C
r-
o
m
g
f
^-f
U~)
__
^1"
r*-,
C^:
-r
Ol
ON
n",
sO
Tt
ON
3
o
G
rM
in
sC
CD
OJ
OJ
y
CO
ON
) ^
rn
rs]
f~Nj
O
G
^~
^
OJ
ON
Tt
ro
in
Ol
Tt
ro
CD
OJ
ON
01
Tj-
in
Tt
^
C
o
D,
SO
SO
O
OJ
OJ
U
(X
CO
o
ro
OJ
OJ
o
Q
ro
ro
CD
ON
00
01
m
OJ
T^-
ro
O
Ol
ON
^.
ro
sO
Tt
m,
ง
c
G,
O
^
'
OJ
U
CU
CO
ro
OJ
OJ
O
Q
oc
SO
ro
oc
ON
OJ
in,
ro
Tt
ro
o
ON
<0
'O
in
Tt
c
CD
G,
O
^
O
CM
OJ
U
(X
CO
OJ
rO
CM
Ol
C
Q
OJ
CO
CO
ON
ON
01
in
in,
Tt
ro
CD
Tt
ON
Ol
in,
Tt
ON
C
O
G,
C
r~
O
OJ
OJ
u
0-
co
rO
^-"
ro
Ol
OJ
c
Q
Ol
in.
P
Tj-
Tt
in
T-J-
Tt
rO
ON
01
OC
^t
sO
t
CD
CZ^
ex
ly^i
"
o
01
OJ
u
CH
CO
^t
^*-
ro
01
OJ
CD
Q
OJ
ro
"*
m
ON
OJ
C
Tt
in
in
Tt
ro
CD
ro
T^-
SO
Tt
CD
c
G,
ON
^~
^
O
Ol
rN
U
Cu
CO
m
^-^
ro
rN
OJ
O
Q
oc
OJ
ON
OJ
ro
Ol
in
in,
Tt
ro
CD
ON
so
in
in
Tt
m
o
c
G,
CM
r
O
CN
CM
U
CM
CO
ro
Ol
01
C
Q
oc
rO
ON
CD
ro
in,
T^-
Tt
ro
C
ON
ON
0
Tt
f^
C
o
G,
OO
rM
^
O
Ol
CM
U
Cu
CO
ro
Ol
OJ
0
Q
SO
'
OJ
ON
ON
Ol
in,
Tt
Tt
r^i
CD
ON
sO
Tt
Tt
SO
3
o
a.
ro
r-
o
ro
01
01
U
G-
CO
oo
ro
OJ
Ol
o
Q
\D
""
Ol
OJ
ON
r-
ro
^^
m
T^-
Tt
ro
CD
ON
^
CD
Tt
Tt
00
Tt
0
0
r
r*"i
^
o
C
rO
CN
U
a.
CO
ON
rO
01
Ol
O
a
SO
ro
in
ON
O
oo
Ol
in,
T^-
Tt
ro
CD
OJ
in
ON
in
00
Tt
Tt
ON
s
O
G,
OJ
Tt
f-
o
o
01
Ol
U
IX
CO
o
ro
rN
rM
O
G
CO
m
in,
ON
in
Tt
in,
T^
Tt
ro
CD
m
ON
01
_
in,
Tt
CD
O
cx
Tt
t~~
o
OJ
CN
U
CO
ro
rM
01
O
Q
OJ
c
sC
ON
00
ON
in.
ro
in.
in
T^f
Tt
ro
CD
in,
ON
OJ
o-
so
Tt
ON
C
G.
in
r-
o
CM
OJ
U
0.
CO
01
ro
Ol
01
0
Q
00
rO
in
cc
cc
CD
rxl
CD
Tt
u-i
I/")
Tt
CO
CD
OS
00
SID
Tt
r~
Tl-
CS
0
a,
lei
iri
r-~
O
O
01
01
O
-.
in
ro
CO
01
Ol
O
Q
p-
ro
so
SO
ON
01
T^-
in
in
T^-
Tt
ro
CD
OO
ON
m
^^
oo
Tt
SO
S
o
ex
0
o
oc
CD
O
Ol
OJ
U
P-
CO
Tt
CO
CM
CM
0
Q
r^
ON
SO
SO
ON
ON
00
in
m
<3-
Tt
rO
o
m
ON
t
ON
tf
SO
Tt
0
0
R,
O
00
o
0
ro
Ol
CN
U
CO
m
rO
Ol
01
O
Q
oc:
sc;
Tt'
I:
r-
O
mi
m,
Tt
ro
C
ro
oc
ON
CO
r-
so
Tt
00
s
CD
G,
O
OO
o
O
ro
CN
CN
U
a.
CO
so
ro
CM
OJ
C
Q
CD
to
sC
CJN
CO
T^-
IjO
uo
ll")
Tj-
ro
CD
CIN
cr\
c^
SID
OO
Tt
r~
3
0
ป^(-
<
OD
O
rN
?3
U
C-3
r--
m
r~l
rj
C;N
Q
so
O
OJ
ฃ
CM
c
SO
^j-
^J-
ro
O
OS
SO
ro
in
in
O
O
oo
oo
O
ro
rN
rM
O
a.
CO
OO
1
ro
CM
01
O
Q
to
.-H
tN
CN
CD
CD
-fr
SO
Tj-
Tj
ro
CD
CO
r
SID
m
d
c;
(*-?
o^
00
CO
CM
?3
U
CO
ON
* '
f>
OJ
rN
O
Q
ON
ro
01
00
ON
Ol
in
ro
so
in
ro
CD
SO
r-
ON
in
so
m
^
O
o
G,
Ol
OO
c
ro
rM
CN
u
CM
CO
O
CN
ro
rN
rN
O
Q
\D
in
Tt
01
ON
00
CM
r
Os
sC
m
Tt
rO
CD
OO
SO
ON
00
r~-
m
so
S
CD
G,
Ol
rO
oo
O
ro
CN
?M
U
a,
CO
^
Ol
ro
CM
CM
O
Q
SO
Tt
Ol
ON
00
r-
so
SO
SO
SO
Tt
CD
ON
SO
so
SO
m
so
CD
CX
SO
to
OO
CD
O
ro
ol
CM
U
a,
CO
Ol
CN
ro
CN
Ol
0
C
OO
SO
OJ
01
Tt
o
ro
CN
t
01
so
SO
SO
Tt
ro
CD
in
r
ON
in,
CM
SO
m
oo
O
o
a.
Tt
OO
CD
O
ro
CN
Ol
U
Cu
CO
ro
CN
ro
01
OJ
Q
CO ON
Tt
CM CM
CM CN
CO OO
r- i
CM
CM C"J
in
r- oo
so in
SO so
m Tt
Tt Tt
CO CO
CD CD
in, Tt
O ON
CM i
00
oo r
m in
>n m
oo t~-
S S
0 CD
n. c.
in o
Tt in
oo oo
O O
0 0
ro ro
CM 01
0) CM
U U
Cu Cu
CO CO
Tt m
OJ OJ
co ro
CN Ol
Ol Ol
o c
Q Q
C-58
-------
S
C
O
U
U
ion Method
rt
Quantii'ic
E
s.
c.
c
c
o
Concentr.
c
O
c
c
CS
ex
u'
s
E
c
r
_o
u
0)
u
iter methane >
o
2
'x
3
L.
'E
c 2
f ฐ
M C
S c
E
fc i
S 03
" X
ct
.ฃ
E
H
a
c
u.
ON
rJ
in,
r-l
oc
NC
sC
st
OC
r-
m,
in,
c_
0
-st
in
oo
C
rsi
U
ex
OO
NO
r-l
rN
5
NC
OC
rN
-t
NC
in,
st
NO
r-
rN
in,
oc
st
^,
ON"
in,
oc
C.
r-1
U
oo
r
rN
C
oc
rsi
Tt
r-
in,
in
-st
OC
ปn
T-f
; .
o
3s
c
c
rj
ri
CJ
ex
oc
rj
<-*",
rN
rl
5
-t
-t
rl
rl
oc
in,
in,
r-~
-f
c
oc
*t
oc
~,
s
rj
U
ex
00
ri
rj
ri
oc
r-
oc
oc
rl
|-~-
in,
r~-
-t
r-
-t
in
-t
-t
' -
rf~ ,
^
>=;'
r**-,
r~]
o)
y
in
r-l
m
cc
ON
OC
m
in,
in
rN
O
in
c
c
c.
ON
C
CO
rN
rN
U
ex
00
rj
rJ
r-i
oc
rsi
m,
rJ
in,
ON
;_,'
C
c-
rsi
rsl
ON
0
rsl
rj
U
rsl
m
C
m,
oc
NO
rsi
r~-
n
in
in,
NC
in
^ ^
, ,
rN
ON
-st
>
c.
rsl
C
rj
rN
U
ex
rN
rsi
Q
S
oc
rJ
NO
in,
ON
in,
rN
ON
ON
st
oc
C
C.
ON
X
r-j
rN
f".
rN
rj
C
oc
in,
in,
oc
rN
r--
in,
^ .
rj
NO
rN
in,
.
G.
ln
~;
O
rsi
rj
U
in
in
rN
in,
r-l
rJ
rl
r^
oc
C
sC
in
st
^
in
sO
c
in,
oc
O
o
c.
C7N
C
rsi
r4
U
ex
00
NO
r-i
rsi
ง
in,
O
rN
oc
O
oo
NO
OC
ON
m
in,
1
c_^
C
B.
ON
0
rN
rN
U
ex
00
rn
rN
rN
Q
QC
NO
rn
rN
in
rsi
r~
NC
OO
^ ^
NO
ON
rl
in,
sC
m
st
>_
O
c.
ON
ON
C
rsi
rJ
U
ex
00
OC'
rsi
rj
C
a
m
rN
rN
r~
oo
NC
sf
ON
NC
NO
OC
___^
rf-.
in,
oc
c
C-
ON
O
rN
rN
U
ex
00
ON
rN
rj
Q
in
ON
oo
rsi
ON
m,
-st
in
ON
OO
in
C
in
NC
l_
G.
oc
in
ON
0
rsi
rsi
U
ex
r-l
O
a
ON
00
NO
NO
sC
O
NC
in,
ON
st
10
OC
oc
-st
ON
st
C
0
c-
rJ
0
o
o
0
rj
U
ex
00
rs]
rsl
n
in
vc
ON
OO
rN
-st
r~
in.
in,
m,
C
r-j
rj
in
m
st
m,
- .
C
0
o
rsl
rsi
U
ex
oo
rsi
rsi
rsi
n
rj
NC
rj
r)
sC
NO
in,
ON
NO
ON
OC
OC
-st
in,
-
a.
r-1
o
c
rJ
rj
U
ex
00
st
rn
rj
CM
n
OO
rj
oo
rsi
-st
st
NO
st
in,
ON
ON
in
-t
t_^
O
o-
NO
0
0
rN
rN
U
ex
oo
-t
st
rN
rsi
C
n
rN
ri
st
rsi
NO
NO
OO
st
ON
ON
O
r-
-st
10
m
c
c
c.
rs|
o
o
rsi
rJ
U
ex
00
in
rsi
rsi
^
r-4
m
rN
m
NO
0
ON
st
oo
oo
ON
ON
st
oo
in
ON
-t
O
C,
m
rN
O
o
o
m
rN
r4
U
ex
00
NO
rsi
=
r-4
rsi
oo
ri
10
ON
NO
OO
rN
oc
ON
NO
in,
ON
-t
O
a.
C
C
o
ri
U
OH
00
r
rsi
rN
n
0<
rN
rsi
ON
ON
NO
ON
st
ON
00
st'
-*
m
mi
^_
st
o
s
rj
U
ex
oo
OC'
st
c
n
rN
ON
O
r4
m
IO
NO
NO
OO
-st
rN
00
ON
^
Ln
ซ/~i
^/
c
a.
ON
0
C
o
rN
rN
U
ex
00
ON
rN
rN
n
st
m,
o
CTx
m
^C
tn,
O
d-
V~i
O
0
u
ex
00
in
r-4
C
n
ON
ON
st
st
rsi
oo
st
IO
ON
st
ON
^^
m
NO
st
IO
i_j
o
ex
rN
0
c
f)
rj
U
ex
00
st
IO
rN
O
n
-st
r~-
NO
OO
IO
rN
st
O
in
m
m
m
O
st
00
ON
ON
vt
in
in
^ -
O
ex
NO
0
c
rn
rN
rN
U
ex
00
IO
in,
rN
rN
O
n
ON
00
-t
m,
m
ri
in
in
;
ON
in
o
ON
st
r-
10
\ .
0
'0
o
m
rN
r-4
U
ex
00
NO
IO
-------
o
OJ
3
C
o
U
U
CB
a
0
ฃ
i
c
_0
CS
s
*J
c
CS
3
O1
c
O
C rซj
c. _
a .ฃ
.E O
c
es
"E
u
u
C
O
U
c
cs
^
^-
g
L.
C
O
-
.2
u
"o
U
u
D
Is
^
u
c
C
u
E
CJ
4-*
J?
."2
o
0
;SJ
c
C "O
C 'ฃ
"ฃ ^
ffl A
S|
4J
*"*
>
2
i- ฃ
ฃ 3
3 m
"" X
1
cy
cs
^~
c
t~~
2;
TH^
OJ
NO
m
in
ฃ
c
r-
ON
NO
NC
rt"
ff.l
in
O
o
CL
0
r^i
04
Ol
U
0-
CO
r~
in,
m
Ol
Ol
o
Q
NO
m,
oo
^-
ol
f^
m
in,
,
in,
C
rt"
NO
ON
^
in
ON
ri-
m
in
o
ol
o
r^"i
oi
OJ
U
OH
CO
OC
in,
m
OJ
OJ
O
O
oc
**
r-,
'^~;
O4
oc
OJ
in,
in,
0
NC
NC
ON
OJ
rj-
rr
^
m,
O
f
o
^
OJ
OJ
U
0-
ON
in,
rri
04
C
C
in
OJ
5
T-f
01
O
O
in
04
m,
0
in,
oc
ON
( .
NC
rt-
,-j.
C
-O
O.
C^
O
^~
r-j
rs
U
CO
-^
^c
m
oj
C~J
^:
a
C^;
ro
DO
OJ
OJ
r*",
in,
-f
in,
o
Pj
o
in.
r^,
-f
m
m
O
0
s
o
o
r^~,
OJ
ol
u
a.
CO
,
NC
r*-,
oi
01
C
r)-
m
ON
ON
oi
m
O
m
m
ml
d
00
ON
ON
O
(*-,
rt-
[^
in
C
o
a.
00
c~;
m
O4
04
U
OH
CO
04
NO
fl
OJ
OJ
0
C
CO
O
-f
ON
04
r*~)
04
04
04
in
fl
in,
O
ON
ON
in
0
rt"
NO
in,
O
O
a.
04
O
0
r*",
JN
O4
U
OH
CO
CO,
NC
CO
04
01
0
Q
o
in
r?
m
oi
m
04
r^i
m,
r ,
in,
0
ฃ2
o
0
in
TJ-
^t
m
in
O
o
g-
C
0
ro
O4
O4
U
OH
CO
Tf
1^1
Ol
OJ
O
C
m
r^
m
NO
r*",
04
ON
'
m
m
m
O
rn
p
O4
-3-
m
rf
NC
in
O
o
O4
in
O
m
O4
OJ
U
a.
co
m
NO
p-j
Ol
O4
Q
ON
'
m,
OJ
oi
Ol
r~*i
'
m
^
m,
O'
NO
o
>n
ON
rn
^t
in
o
o
NC
m
0
r^,
04
04
U
OH
CO
NC
NO
r^i
04
01
G
m
m
oo
r*~i
oi
00
O4
in
CO
in,
0
O
O
py]
m
^~
in,
*
01
in
c
o
0
04
0
^Hy-
04
Ol
U
OH
CO
p-
o
rn
OJ
04
o
Q
OJ
OO
NO
ON
OJ
oi
in
ON
in
m
m
in,
O
ON
O
O4
oo
in
00
*
OJ
m
O
o
m
0
OJ
o
^f
O4
04
U
OH
CO
oo
NC
m
04
OJ
s
NO
NO
ON
2
O4
O-4
NO
r-
o-
in,
f,
in
O
o
o
^
NO
oo
Tt
^
O
c
d
Ol
O
T^-
04
04
U
OH
CO
ON
NC
fl
O4
OJ
0
O
0
oc
r-
01
04
CT;
in
in
m
in
C
OJ
ON
ON
00
04
r~
Tf
, ,
m
O
^
ra
Ol
O
O
^*f
ol
ol
U
0.
CO
^
r~
r-,
04
04
O
ON
in
r-
rn
.
04
OJ
ro,
in,
in
TJj-
in
0
2
o
ON
O
OO
Tf
, ,
in
0
d
ON
OJ
O
O
Tf
O4
04
U
0-
co
, ,
r-~
m
O4
04
o
Q
O
in
ON
.-
04
ro
ro,
m
T^
m
O
ON
ON
r-
ON
^f
*
rn
m
0
o
04
OJ
O
O
^Hy-
ol
OJ
U
OH
CO
04
r^
m
O4
04
C
Q
oc
*
rn
04
ro
04
in
,-j-
m,
O
oo
ON
NO
O
Tt
Tf
m
m
O
d
ra
oc
O4
O4
0
o
^
04
CN
U
0-
co
(-0,
r-
fi
04
Ol
O
D
m
in
rn
ป.
oi
in,
ON
O4
in
^j-
in
O
in
ON
ON
OO
in
m
Tf
in
in
O
d
a
01
O4
0
t-j-
04
OJ
U
OH
CO
Tf
r-
m
04
OJ
0
Q
m
*
r
04
oi
(N
in
^j.
m
m
d
04
ON
ON
NO
O
01
*
NO
m
C
c
p;
c
0
t-f
0-1
0,1
U
0ซ
in
in
r
r^-i
01
01
O
Q
ON
04
ON
OO
O
oj
ro
O
m
m
in
C
ON
ON
oi
NO
04
"*
ro
in
O
d
O4
Ol
O
O
T^-
O4
04
U
o.
CO
NO
f^-
ro
O4
01
O
Q
o
oo
oo
o
ON
o
04
ON
in
-=t
m
in
O
oo
ON
r-
NO
r-
rn
, ,
in
O
d
ca
NO
ol
O
O
^4^-
O4
?5
U
0.
CO
r-
r^
f>
O4
04
O
Q
in
oo
o
oo
00
p
CNJ
NO
^J-
rr,
^j
0.
o
0
O
O
^j-
01
01
U
C/N
, ,
O<3
r*1
O4
04
O
Q
(N H oo NO ON
<3- in r-- 04 r- o
o ON r~ oo r- NO
o o o o o
ON OO ro in NO
in 04 oo m in
^-H oi rn m
I~N! 04 04 04 CN 04
i~- oo rt m oo
^-O rf ^O O ^ rf
r-~ NO m m in ^~
rf Tt Tf Tf TJ- TJ-
'-O r NO NO r~^ oo
>n m m m m in
o d d d d d
rt" ON ON NO OO
O oj m 04
^ o p p p o
oo ON rf r~- 04 rt-
oo 04 in oj oo
o ON oo r- oo r-~
rt" r*~l rซ"} ro f~) rn
,_*. m NO [ 04 ON
^ O O O O O
ฐ d d d d d
c3 cd ca ca ca ca
ON m oo 01 r- 04
O i < 04 04 m
8OOOOO
O O O O O
rj- rt" rt~ rf ri* rt"
04 04 O4 O4 O4 04
04 04 O4 O4
-------
a
u
3
c
o
U
CJ
at
o
o
V
ป
c
c
CC
u
ฃ1
'*-*
c
2
5
u
a;
>
r*
rป~,
C
O
QJ
C
CC
_c
"S
ฃ
^
CJ
ni
E^ป
f^i
S.S
so |
^ X
c c
.E > t.
3 "
fj "tw
L. ฃ
S
C
5 -s
= i
(*-. 3
~ c
S W
X
u
QJ
H
c ~
c s
cj
_sj
"o
U
_a
E
10,
ON
NTJ
o
rJ
Tj-
rJ
f-r,
CO
rr,
rr
OC
10,
rr,
__
rN
O
r-i
,
oc
r-
rr,
r-
f-r,
C
C
NO'
ro
o
rF
rN
rj
U
D_
CO
oc
oc
rr,
rN
r-j
^
ON
rj
oc
o
r--
rj
rJ
u~,
\c
NO
rr
r-
IO
rr,
r~-
rr
ri
rr,
oc
rr,
ON
^t
o
rr
c
rF
rj
rj
U
Cu
C/j
ON
OC
f-r,
r-J
rj
o
rj
rj
-t
-t
r-J
r j
*rr
oc
ON
-t
NC
LT)
rr,
r-j
oc
rj
rr,
IO,
rr,
rr
"t
10
c;
^;
'O
rr
O
rr
rj
rN
u
D-
co
(^
ON
ro
rj
r-]
X
i--
c;
r-J
r-J
r-j
r~~
r-J
DC
-t
i/o
ro
-r
oc
r-J
; ^
^r
CN
ro
UO
" '
1
on
C
^ฑ
r-j
rl
U
C-
ir.
&
ro
r-J
r-!
f~\
cc ro
o oc
o
*~t" ' '
~t ON]
<""J OJ
r- oC'
'O OJ
r-- ir>
-r ^t
NC r--
l/o ion
ro ro
O O
r- ri
'vo ro
O O
r-] OJ
*C f"O
r-- vo
O ^C
^-f r^i
r-J ^C
ซ/", U^J
~ Q
C: O
l~" Cj
-t ON
IO IO)
c o
rr r?
r-i r-J
IN rj
O U
D- a.
LO CO
r | rr,
ON ON
rr, f-T)
rj rj
rN rN
^ Q
r~
r~
NO
c
00
r~
r-l
r-i
oc
NO
rT
rr
oo
1O1
r*",
O
ON
g
r-J
(N
r~
10,
rr)
r~
IO
O
O
rr,
O
tN
^^
rT
tN
tN
u
D.
CO
rr
ON
rr,
r-l
r-J
r-\
NO
NC
C
__
OO
rJ
r-l
rr
r^
rr)
rT
OC
1O,
rr,
,
IO,
rj
r-l
r^
rr,
pr,
rr,
IO,
C:
o
Co
OC
^
fN
C^
C
rT
r-J
fN
U
O.
CO
IO
ON
rr,
rj
r-J
' .
Q
NO
r~
c
ON
OC
r-l
r-J
ON.
r~
rr,
rT
oc
IO,
rr,
rr,
rT
O
rj
t^-
rr,
10)
rr,
r~-
rT
c
^
Co
rr,
r-l
o
rr
rN
rj
U
D.
CO
NC
ON
rr)
r-l
rj
rs
r--
'Oj
10,
o
_
rf~,
rr,
rj
-r
'"T,
-T
OC
1O
rr,
^^
r-
'O,
rxi
rj
r--
NC
r^-,
IO
O
o
r-
rj
S
-t
rN
rj
U
OH
'-Oj
r~
ON
r*~,
r-si
rj
S
^r
ON
rr,
c
rr,
10,
rr,
r-J
rr,
NC
rT
r-
IO,
rr,
o
rJ
rr
ri
rr,
C
rj
cr,
rT
IO,
c
f
fN
r-J
ri
C
rr
rJ
rJ
U
C.
CO
oo
ON
rr)
rj
r\i
S
r~
rJ
rr
c
10)
00'
rr,
r-J
r^
rr
oo
10,
f-r,
O
1^
r-i
NC
OC
rr,
rr,
NO
IO)
c
c
CCJ
NO
rj
rj
C
r?
r-l
fN
U
O.
CO
ON
ON
rr,
rN
rj
5
rr
10,
10,
C
ON
rT
rr,
r-J
__
rr,
rr
ON
1O,
rr,
r-l
oc
rJ
^^
r~
rr
rr,
rr
o
*
00
rN
10)
oc
IO)
ro
10)
10)
c
o
10)
r-J
r-r,
C^J
o
rr
rN
rN
U
D.
CO
0)
n
IT)
r-J
r-J
Q
ON
ON
r~
O
ON
rr
r
rN
rri
^^
10)
rr
NO
rr)
c;
rr
00
r-i
NO
O
NO
m
oc
IO
0
o
c-d
O
m
m
o
rr
r-J
fN
U
DH
CO
rr,
rJ
rn
rN
r-J
O
Q
tN
rT
rr)
C
rr
o
rT
r-i
rT
rT
NO
rr)
^
ON
10)
r-i
oc
ON
r-l
rr,
^_
10)
C
rt
rr
rr,
r^)
f\
C
rr
rj
fN
U
DH
CO
rr
tN
rr,
r-l
rj
O
Q
ON
ON
r-J
:rc
,
r-
r-l
r-i
r~
ON
O
rr
NC
rr,
O
m
10)
ri
NO
NO
rr,
rT
IO
C
O
ON
f-r,
rr,
C
rT
ri
rN
U
D.
CO
10)
r-l
<-r,
rj
r-l
Q
ON
,
rT
o
rr,
rr,
rr,
<-N)
rr
rj
tN
rr
NO
rr,
f~^
T
r-i
rJ
00
r~
rJ
rr,
00
10)
c;
o
Co
rr,
rT
rr-,
^^
rr
r-J
rJ
U
D.
CO
NO
rj
rr)
rN
rN
O
Q
IO)
rr
rr
o
NC
>0)
r-J
r-i
r-l
fT)
tN
rT
ON
10,
rrj
^~
__
r-i
ON
rN
r-l
m
NC
1O
c~~?
o
C3
OC
^r
ro
o
rr
r-J
rJ
U
DH
CO
r--
rM
rr)
r-j
r-j
Q
r~
fT)
rr,
o
ON
r^-
'
rN
r^
IO)
O
rr
NO
rr,
O
10)
10,
r-i
10,
<-Nj
rr,
10)
IO,
^~-
0
C3
rr)
10)
rr,
o
rT
rJ
r-J
U
D-
co
oo
r-J
rr,
rN
r-J
C
/-^
C-61
-------
C
o
U
NC
U
2
R3
H
f)
c
O
o c
J 0. fi
v5 c. .ฃ
S ~ 5
c s
.2 2
S 1
"E 3
C y
2 e
5 cj
"c
^
3
u
O
c
.
u
"o
U
|3
>
o
C
J
u
E
u
^
>
12
0
^
c
"E
0
C T3
0 'x
-r 2
c
9|
u
o
H
."2
I_ 'C
3 ฃ
^3 c
S 03
X
o
*"
H
u
03
c
p 1
?T"
*^
-
o
r^-
s
Ol
ON
NO
ro
NC
CO
C'
Tf
_
Ol
ON
C
ro
o-
o
c
a
r--
in
ro
C
^
ol
ol
U
a.
oo
ON
Ol
ro
Ol
01
C
a
OJ
in
C
,
oc
Ol
oc
o
01
Ti-
NO
i
C
NO
_^
rN
m
r<~,
r*~)
^O
^~".
01
C
Tf
C
o
^J
01
ol
U
a-
00
0
Ol
Ol
ro
ol
01
c
ro
in
C'
in
!^
OJ
NO
01
Tf
NO
;
'
ro
OO
.^
01
ro
ro
ro
>n
rt
NO
"*
o
^J
01
ol
U
CO
, ,
CN
rN
p*~j
rN
pxj
^
Q
C
C
*-t
OO
01
in,
ro
Tf
NO
ro
0
OC
Ol
r-
~~
r'-,
ฃ
~
,
"*
O
^f
ol
oi
u
OH
00
Ol
O-l
OJ
ro
Ol
OJ
Q
ON
CD
-r
OJ
oj
ON
ro
Tf
ro
"'
OC
1
oj
_
in,
ro
r-
0
m,
"*
C
Tf
OJ
U
a.
00
ro
r--I
ol
ro
rN
ol
"
O
r-
o
ol
ol
oi
CD
in
Tf
NO
ro
O
ON
OO
. .
rN
00
O
r'l
ฃ
O
O
0
Tf
o
^J
CN
rN
U
&H
C/3
^j-
CN
rN
ro
01
01
c
Q
01
r-
o
NO
O
oi
rO
in
Tf
01
ro
CD
r-
c
ol
oi
NO
3
r'l
So
o
o
""3"
CN
"*
o
^p
oi
01
u
00
in
Ol
Ol
ro
Ol
Ol
c
Q
NO
r
O
in
5
oi
C
o
Tf
NC
ro
CD
Ol
Ol
Ol
oi
ON
ON
r'l
ฃ
o
0
ON
"*
C
^f
ol
OJ
U
a.
00
NO
Ol
01
ro
rN
CN
c
Q
ON
C
ฃ;
oi
oc
in
Tf
S
ro
C
01
OJ
01
ON
ro
ro
in
;
ra
ro
^
C
C
^
ol
01
U
BH
00
r-
01
Ol
ro
ol
ol
C
Q
5
o
OC'
oi
01
m,
-*
NO
ro
0
OO
OJ
01
oc
p
r-i
ฃ
o
oo
ro
"*
O
^
Ol
OJ
U
a,
oo
oc
Ol
01
ro
Ol
01
;D
O
r-~
NO
ro
C
^t-
p
ro
^f
^
Tt
NO
ro
0
5
Ol
oi
cc
rN
ro
m,
o
ro
Tj-
Tt
C
C
^
01
Ol
U
a.
00
ON
ol
01
ro
01
ol
c
Q
01
01
O
00
01
ON
r-i
ON
00
NO
ro
ro
NO
ro
ฐ
01
Ol
oi
^
01
O
ro
oo
O
[
rj-
**
O
O
^
ol
ol
U
a^
00
o
ro
ol
ro
rN
rN
o
Q
c
o
OJ
NO
01
OC
Tj-
ro
ro
NC
ro
CD
Tf
Ol
oi
^
ro
01
oc
O1
O
a
01
in
^
C'
^=
Ol
01
u
a.
00
, ,
r*-,
Ol
ro
Ol
Ol
O
C
ro
oo
ON
NO
01
NO
oi
NO
[
01
ro
ct
NC
ro
O
et
ro
oi
I
oc
01
m
O
CD
NO
in
'*
O
rj-
Ol
Ol
u
OH
OO
01
rO
Ol
rO
OJ
OJ
C
Q
Ol
oc
ON
ON
^
oi
oo
o
ro
ro
ro
NO
ro
0
ON
NO
Ol
oi
NO
r-
OO
01
?,
o
o
03
o
m,
O
O
Tf
01
U
a.
oo
ro
ro
01
ro
Ol
01
C
Q
S
o"
ON
iTi
oi
00
r-
ro
ro
NO
ro
O
in
Ol
oi
^
ro
r'l
in
C
CD
C3
in
O
m,
O
*^-
01
Ol
U
00
T^-
ro
rN
ro
rN
ol
O
D
ON
NO
c"
ro
NO
oi
C
oc
ro
NO
ro
CD
ON
NO
Ol
oi
^
OC
ro
m
C
CD
ra
C
in
O
^
01
Ol
U
00
vn
ro
01
ro
ol
01
O
Q
oc
C
o
f^
in
ro
Ol
o-
ro
NO
NO
ro
ฐ
NO
ro
oi
ro
m
O
r'l
m
O
G
a
in
'
in
O
^:
01
Ol
U
a.
00
NO
ro
01
ro
01
Ol
o
Q
r'l
00
ON
ON
NO
OJ
OJ
ol
r'l
NO
r'l
O
ON
rN
oi
ro
O
01
01
vn
O
Kl
' -
"
o
^>
01
Ol
u
a-
O/)
J
r*")
01
ro
01
01
C
c\
ro
o"
ro
p
ro
oo
Ti-
ro
ON
NO
ro
c_2
ro
'
01
^
O
oo
01
m
O
o
a
Ol
in
o
o
^j-
ol
Oi
U
c_
00
oo
ro
01
ro
ol
01
o
D
ON
oo
ON
ON
^jj-
NO
C
ro
oo
rN
T}-
ro
ro
r-
ro
O
01
ro
oi
ro
ON
01
OJ
in
O
o
a
00
01
in
o
o
^j-
ol
01
U
OH
OO
ON
ro
01
ro
ol
01
O
D
NO
NO
oo
ON
ro
oi
ro
ON
ON
ro
ro
OJ
r
ro
O
2
T^-
oi
in
oo
01
ol
vn
O
o
a
ro
ro
in
O
o
Tt
01
01
U
00
o
01
ro
ol
ol
O
Q
CN
CN
ON
r'l
rN
r'l
ro
r-
ro
0
oo
ON
r'l
CN
NO
NO
rN
m
C3
r--
ro
in
O
o
^
01
Ol
U
a,
oo
, ,
T^-
0)
r'l
01
ol
o
Q
o
c"
r
in
ro
p~
oo
NO
ro
r~-
ro
O
in
oo
ro
oi
NO
ro
ro
vn
O
CD
a
Ol
Tj"
vn
C
0
Tf
01
Ol
u
a*
OO
01
^
01
ro
Ol
01
o
Q
00
r--
C5
C-1
ro
oo
oo
00
r'l
r-
ro
C3
C5
^h
CN
1/1
E^
r'l
rj
v/1
o
n
NC3
T!"
in
C5
O
^ป
o-l
rN
U
C-
0-3
fl
^>-
OJ
r'l
rj
OJ
O
Q
oo
ro
o"
rN
01
p
ro
04
ON
Tt-
oo
NO
ro
O
;j
r^-
oi
ro
ro
ro
01
vn
O
o
~~
in
in
O
o
^p
01
ol
U
OH
00
i^-
TH|-
01
ro
rN
01
O
Q
ro
in
o"
^
o
ON
oi
ro
O
ro
Tl-
NO
ro
O
in
Nl,
Ol
NO
5
ro
ol
vn
O
o
NO
m
in
O
o
Tt-
01
ol
u
OH
00
in
01
ro
01
01
O
Q
NO
ON
01^
o"
oc
in
ON
oi
ro
Tt
r
NO
ro
CD
oo
Ol
*^j-
oi
oo
r-
01
ro
Ol
vn
O
CD
a
O
O
NO
c
^
01
Ol
u
OH
00
NO
01
ro
01
ol
C
Q
ol
r-
o
o
ON
ro
ON
oi
NO
oo
ro
r
NO
ro
O
Ol
01
T^-
oi
ro
O
ro
01
m
O
o
a
in
o
NO
o
^
01
ol
u
a.
00
[ .
TJ-
01
ro
01
Ol
O
Q
01 in
ro ON
01 1-*
o" o"
ro NO
ON OO
oo r-
rN oi
Tf in
ON ON
ro ro
r r~-
O NO
ro ro
O O
oi vn
01 01
^J- T^
oi oi
r~ oo
Tf ro
O
ro ro
M in
in vn
O O
O O
s3 cd
'ON Tf
0
NO NO
o o
o o
Tf Tf
01 01
01 01
u u
O- &
OO 00
oo ON
Tf Tf
01 01
ro ro
01 01
01 01
0 C
Q Q
C-62
-------
o
a;
S
C
*^
C
c
U
u
ai
a
o
^5
et
E
M
U
E
w
B
a
3
^y
i_
a
C3
E
C
U
E
JS
"S
ฃ
J^
"m
*.
E _.
a^
n. .E
.SO TJ
<ฃ X
c
2 =
E -^
a E
u
E
o ,,
U c -a
tan *r
ซ X
ฃ c
3 ง
E
B
_ซ
^,
- u
cj S
E
^ CJ
2
h t
ฃ 3
"= =
K w
X
B
H
V
.ฃ 5
0
&
;"
^"
NO
c
ON
OJ
OJ
^t
OJ
C
in
r
OJ
r^j
^~
'
NO
m
O
c
oc
C
*
OJ
OJ
u
ft.
GO
C
m.
OJ
f""~)
OJ
OJ
o
Q
O
d
m
NO
OJ
r--
n~,
01
O
OJ
NO
OJ
ro,
^
ON
NO
in
5
OJ
NO
O1
OJ
OJ
U
ft.
GO
,
in,
o-J
rl
OJ
ol
(^
Q
C
ON
d
ir,
NO
O-J
r*~j
oc
f-l
ro
r~-
O
NO
>n
OJ
t
ON
r--
jn
O
OC'
OJ
NO
OJ
O-J
u
ft.
GO
OM
m,
<^i
t*~i
OJ
OJ
O
Cj
o3
d
ฃ
O]
c
ON
CO
r*~
r-~
c
c>
rf~1
O-l
lr
^~
'
^
1C'
5
OJ
co
OJ
OJ
y
GO
CO
in,
Ol
ro
OJ
OJ
o
C
OJ
d
3C
r-
-^
O
^T
r_
r-
r-
01
^
<-*-,
'
_|-
iG
0
ฃ
, >
OJ
u
GO
-r
m,
Oj
r<",
OJ
OJ
o
o
ฃ
c"
r~
m
ro,
OJ
^f
ON
NO
r<-,
^
OJ
O
"t
^j.
m,
d
5
0
o
OJ
OJ
y
OO
lO
LO
OJ
r^y
OJ
OJ
o
Q
oc
OJ
d
OJ
oc
MO
'
^1-
ON
NO
d
OJ
OJ
in
OJ
m
,
m
o
NO
C
c
OJ
OJ
U
OO
^O
l/~j
OJ
r*~)
OJ
OJ
0
c
01
d"
OJ
,
r~
rn
r^
d
^
T^-
OJ
, ,
r*~,
C
C
d
c
o
c
OJ
OJ
U
ft.
oo
r-^
in
OJ
ro
OJ
OJ
O
O
?
rrs'
C
01
NO
^
r--
c
OJ
^0
OJ
in
T^-
C
^-^
in,
d
Co
c
o
OJ
OJ
u
ft.
GO
OC
n
OJ
CO
OJ
OJ
C
O
oc
1-
oc
Ts"
DO
DO
.^
in
^j.
f~-
d
!n
'n
OJ
NO
oc
r^~,
in
0
i?
O
OJ
OJ
y
00
ON
m,
OJ
r^-j
OJ
OJ
o
C
oc
00
T^-
r^l
^j.
r-~
d
ON
in,
OJ
oo
ON
^
m
m
o
S
o
OJ
1
y
00
c
NO
OJ
r*~)
OJ
OJ
o
o
o
ON
ON"
01
OC
ON
,.,_
r~-
d
o
M3
OJ
j^
ro,
oo
^
m
0
cd
O
OJ
OJ
y
oo
, ,
NO
OJ
r*^
OJ
OJ
o
D
OJ
c
OJ
, ,
0~
^
r~
d
oc
m,
OJ
OJ
00
ฐ
r",
in,
o
, !
r-
c
c
OJ
OJ
U
oo
OJ
NO
OJ
r*~,
OJ
OJ
O
C
OJ
C
C
o
rf
^
r-~
O
S
^f-
OJ
OJ
( -
O
l-o,
in,
o
oc
r
0
c
OJ
OJ
U
ft.
oo
r^,
^
OJ
f*-y
OJ
OJ
O
a
oo
OJ
o
ON
C
OJ
[^
^~
^f
m
r
oc
T^J-
OJ
c
OJ
m
OJ
in,
d
cd
OJ
OJ
o
OJ
OJ
u
0_
GO
^j-
NO
OJ
fr~)
OJ
OJ
o
D
oc
o
ฃ
NO
"*
m
r
d
oc
ON
OJ
r
CO,
OC
d
d
OJ
c
c
OJ
OJ
U
ft.
GO
"n
NO
OJ
m
OJ
OJ
C
Q
ON
O
^.
r*~,
ro(
OC'
Tf
^ -
r
vc
OJ
^J.
to
ON
oc
5
rR
O
O
rr
OJ
OJ
U
ft.
GO
^O
NO
ON]
(-y-^
OJ
Oxl
Q
00
OJ
ON
o
ON
-
NO
OO
^t
OJ
0~
d
r-
'N^
o)
^.
N^-
ON
^
^s-
o
^
C^
OJ
OJ
u
ft.
GO
^
NO
OJ
r*~,
OJ
OJ
C
oo
00
00
I/-)
o
in
ro
r~
d
H;
T^j-
OJ
^
C
m
r-_
d
cd
r
O
o
OJ
OJ
U
ft.
GO
OO
NC
OJ
m
OJ
OJ
O
Q
ON
C
OO
oj
in,
r-
"*
,-j.
r-
d
oo
oc
ro,
OJ
oo
NO
ON
OJ
d
Tf
0
O
OJ
OJ
U
ft.
GO
ON
NO
OJ
r*~.
OJ
OJ
O
Q
OJ
oo
0
oo
OJ
OJ
r*~i
NO
Tf
^J.
r~
d
r
r^
OJ
r
ซ
^
oo
^t
d
Co
c
in
o
OJ
OJ
U
ft.
GO
O
OJ
m
OJ
OJ
O
Q
c
c
~
oc
0
m
in
ON
T}-
m
d
NO
"^
OJ
m
ON
ON
, ,
m
d
in
r-
o
o
OJ
OJ
U
ft.
GO
_
^
OJ
(*~l
OJ
OJ
C
O
OJ
ฃ
oc
ON
in
^O
t~~
O
ON
OJ
^
NC
^
j^
d
ON
in
r-
c
o
OJ
OJ
U
ft.
00
OJ
r-
OJ
r*~'
OJ
OJ
c
Q
m
ฃ
ON
in
OJ
C
in
m
m
r-
d
ON
Tf
OJ
^
O
rn
^
m
d
m
oc
O
o
OJ
^^
OJ
U
ft.
GO
m
OJ
m
OJ
OJ
O
Q
in
o
ON
NO
NO
m
ON
^t
^j.
r~-
d
00
m
OJ
ON
O
ON
fO)
p^
in
d
oo
O
00
o
OJ
OJ
u
ft.
GO
^-J.
t
OJ
ro
OJ
OJ
O
O
ON
r-
o
^
CO,
OJ
m
r--
Tf
ND
r-
d
ON
NO
in
OJ
ON
in
r-
_f
m
d
OJ
00
o
*
OJ
OJ
u
ft.
00
in
OJ
r*~i
OJ
OJ
C
Q
r-
r-
o
r-
oc
OJ
OJ
r-~
*
P^
r^
2
NO
NO
OJ
j^
, i
^
<~^
0
t_J
^
oo
O
OJ
OJ
u
ft.
GO
NO
OJ
f-fj
OJ
OJ
O
Q
^
c
in
mi
in,
^T
,-j-
r~
c
ON
0-1
OJ
in
r-
, ,
m
d
Co
01
OJ
oc
O
OJ
01
u
ft.
GO
r~
01
m
01
ol
S
NO
0
ON
ro
^j-
m,
^t
^.
r-
3
r-
ON
OJ
m
.
^
, ,
m
d
OJ
oo
o
O
OJ
OJ
u
ft.
GO
00
r-
OJ
ro
OJ
OJ
Q
NO
O
m
ON
ซM
m
^t
m
r-
d
ON
^
OJ
OJ
Tj-
^
OJ
m
d
oc
o
O
OJ
OJ
u
ft.
GO
ON
OJ
m
OJ
OJ
O
Q
in
OJ
oo
O
oo
ON
ON
NO
NO
"vt
^
r^
O
r>
OJ
oc
r^
r-
OJ
in
5
cd
in
oo
O
O
Tf
OJ
OJ
u
a.
GO
O
00
OJ
OJ
OJ
Q
C-63
-------
is
.ฃ O
U
e
o
u
= 2
o
c
CS
C
O -3
3 2
e
o
U
C
U
U
cu
-
oo cr- o
o c'
ON O
TJ-' in
C C
ON r<-,
m oc
3; -rt- in
rJ c-i fN
oc c
m
00
O ง o
c c
c c
c -
OJ r-i <^
U U U
Cu 0-
OO C/3
- 1 (N|
oc oo oc
r~l CM
C C C
a a a
C-64
-------
c
"2 E fs
ฃ o. c
3 Q. =
~ .E C
c c
_c _o
~03 -03
.' '
~ "c
"^ QJ
C u
03 C
= C
O O
"c
_a
^
^
s
ฃ
c
c
c
o
03
U
(H
C
c
_c
u
"o
U
|
^^
G,
^
C
R
^
E
&
-^
*
c.
o
c
'E
&
C "O
_ฃ '*
3 1
CJ
*-
03
s
"2
i- t
.^ M
c
7 03
X
o
X
E
H
S
03
c
u.
in,
_
rr,
r~-
r-j
T-*-
r-
in
5
rj
OC
in,
P^
Tf
0
0
O~v,
o
--3-
Cj
r-l
y
C/Q
ฃJ
o
-r
r-j
r-J
^
*t
r*~,
r^
ป/~J
r-J
r-J
^j-
^C
r-
3
c
ON
r-J
^
ON
OC
in.
vO
C
ฃ
O"1
c;
^f
r-i
r-i
y
co
C
CD
r-l
rj
X
t
-t
rr\
in
ri
in,
r
r-
n
r--.
;7
rl
rJ
CTN
r~
t
S
rj
,N
DC
'
sC
r J
"-]
O
ฃ
^^
CD
^-f
r J
rj
U
co
S
CD
-t
r l
r l
X
O
C
r<",
'.
ri
oc
r
-t
r?
n
cc
CD
NC
Zi
O
rl
C
-f
rl
r-J
y
co
O
CD
r
r-l
rl
X
ON
r^-,
rj
rj
od
oc
r~
I?,
~
S
r-j
NO
rM
<~N|
VC
ON
O
O
0
o
^3-
r-j
r\j
U
Cu
CO
r-
CD
-t
rj
r-i
O
Q
CO
in,
m
r-l
r-i
O
c
ON
r-
T+
c
c
r-i
T^-
VC
^
CD
O
c
-t^-
CJ
r-J
U
co
oo
f-~*
g
rJ
r-J
C
Q
rn
VC
r<-,
ON
r-i
CD
ON
r-
y,
c
OC'
r-i
^
^j-
rM
VC
^.j-
't
CD
~
'
C
^j-
CJ
r-J
y
tS)
o\
o
r-4
r-J
Q
,
^c
rr,
!n
rJ
vC'
ON
r-
rj
in,
CD
5
rJ
in,
vC
r<~,
vC
^
C
C
(~
o
T^-
C^
OJ
u
Cu
CO
0
CD
rt
rJ
C
o
>n,
m
r-j
r-j
r J
~
ON
r^
y>
CD
vC
rM
_
T^-
r^-,
NO
ON
r*",
O
M
1
O
T^-
CJ
CM
U
Cu
CO
^;
^t
rj
R
ON
OC
in.
rr,
5:
r-l
r^-
ON.
r~
y,
CD
S
oi
OC
CD
rj
vC
OC
r^-,
jD
ON
r\l
~
0
T^f-
rj
r-j
U
Cu
CO
rM
C
rl
rj
O
Q
cc
fi
-
rj
r-J
oo
ON
o
rn
rJ
^
Tf
ro
vc
rJ
T^-
CD
r^!
O
O
-^-)-
C^
r^J
u
Cu
CO
ro
CD
r-J
rj
X,
CO
r-
rr,
r~
r-J
r-l
vC
OC
ON
C
ON
in,
r-J
m
VC
^t
vO
r*~,
"^
O
O
ง
^ '
Jsi
rj-
rj
rJ
U
Cu
CO
^-
Qj
rj
U
Cu
CO
vO
C
r-l
rj
O
VD
OC
<:<-,
rJ
r-l
r-i
m,
ON
OC
CC
CD
S
(N
m
r-J
^f
VO
^j.
^
CD
in
O
c
^J-
rM
r-J
U
Cu
CO
r-
0
r-l
rj
C
Q
^
O
rr,
(^-,
r-i
cc
r-J
cc
!^
CD
rf
C
r-i
oc
vC
in
VC
r-l
^f
C
cc
m,
O
T^-
rM
rJ
U
Cu
CO
00
c
rJ
r-J
G
ON
ON
r*~.
00
ON
ri
r~
c
cc
vC
-t
^^
ON
rJ
ON
vC
vC
o
rl
O
o
~t
r-l
rj
y
CO
ON
CD
Tf
r-J
r-j
S
vC
OO
ON
rr,
r-J
vO
rj
. i
^j-
00'
ฃ
^^,
ON
O
r-j
^.
~
r-
VO
rj
^f-
O
CD
CD
O
TT
r-l
rN
U
oo
c
CD
r-l
CM
C
>1^
C
^*
m
r-J
VO
r-i
m
oo
3
^^
O
rJ
ON
O
r^
vC
^j-
T^"
o
c
^l>
r-l
r-)
U
Cu
00
CD
r-l
r-i
C
C
VO
ON
m
in
rJ
r-i
vO
OO
m
oc
5
CD
ON
rj
m
CD
r-
VO
, ,
Tj-
CD
vb
o
T^-
r-J
r-j
U
Cu
00
r-i
o
r-i
r-l
C
Q
,-f
O
3-
ON
r-i
[-
VO
00
m
CD
ON
r-J
rJ
ON
r
VC
m
^
0
r-J
O
0
*^-
r-i
r-i
U
Cu
CO
m
r-J
C
Tt
r-J
C
Q
, ,
'
*
oc
rJ
rJ
CD
oc
oo
r-J
CD'
g
r-i
_
[^
CTv
\C
n~,
"^f
O
O
ป/"]
OJ
o
X-J-
r-j
r\l
u
Cu
CO
^r
OJ
c
r-J
rl
S
ON
< '
*
vC
r-i
r-i
in,
ON
CO
rr,
CD
ON
rj
r-l
Tj-
' 1
r-
ON
m
o
o
CD
O
T^-
rj
rj
U
00
in
O
r-i
r-l
Q
vC
C
*
r-
00
r-j
^~
oo
oc
?,
CD
OO
r-i
VO
O
r~
ปf-
S
r^
C
r-^-
r-l
r-)
U
Cu
00
VO
CD
rM
r-J
S
r-J
oc
ON
m
cc
O
r-i
r-J
^j-
m
oc
ON
CD
OS
O
r-i
^
r-l
ON
vC
ON
ro
CD
ON
8
T-^-
r-l
r-i
U
Cu
00
r-
0
r-i
rsi
O
oc
ON
rn
in,
rj
ON
00
ON
r*-j
CD
ON
ON
OC
VO
OO
vO
ON
C
CD
5
8
t-f
(-Nl
JN
u
Cu
CO
OC
r-i
O
r-l
r-i
C
n
_J
c
rf
ฃ
r-i
r-i
^f
m,
oc
S
C
rJ
rJ
OS
vD
m
m
2
cc
o
^j-
r-l
rN
U
Cu
00
ON
S
r-l
rM
n
r-l
CD
^t
ON
r-i
(N
ON
t
in,
oo
cc
0
vO
8
r-i
^.
vD
ON,
VC
r-|
^"
CD
r-l
in
c
T^-
r-j
rj
U
Cu
co
o
S
rM
rj
O
n
00
r-
rr,
r-
r-l
O
rM
oc
ON
m
2
ON
ON
^
O
OO
VO
m
r*"-,
O
CD
r-
o
o
^
r-J
r-l
U
Cu
CO
o
r-l
r-l
O
n
i~J
ON
m
r-l
rM
r-l
r-j
VC
Tt
OO
OC
CD
in
oo
-
ON
m
oc
VO
oc
ro
O
C
cx
rs
8
T-j-
(N
CN
u
Cu
CO
rM
O
rNi
rJ
O
n
C-65
-------
3
C
'4^
C
o
U
U
u
z
ซ
H
TJ
i
<
*;
C
^O
'w
_y
!ts
c
si
3
O
c
O
E M
c
c. .-
s. o
C/j
C
O
si
u
ฃ
u
c
o
U
Is
ฐ>>
u
3
u
i
c
O
c
c
S3
E
^
Q ,
c
*
c
o
u
"o
U
cs
si
c
u
si
a;
C
Si
-
u
E
a>
>
a
'x
o
0
i
'E
U
c -a
c 'x
1 ง
S|
rtl
ซ-J
ฃ
a
s- '5
-1
S ซ
X
o
i
OJ
.E
H
w
S3
Q
b
rn
00
m
m
NO
O
O)
rn
, i
m
oo
oo
m
d
00'
NC
ON
NO
ON
NC
OO
m
O
C
d.
NO
C
c
, .
OJ
O4
U
O-
co
m
m
C
rN
rN
^
O
m
NO
NO
rn
,
ON
o
O]
OJ
oo
oc
m
C
NO
^
*-O
NO
NO
ON
m
:_<
C
o
o
^4.
04
04
U
CM
CO
^>
m
-<^-
O4
04
O
C
O4
NO
rn
OC
'n
^
04'
in
04
00
_,.
^
c
ON
NO
04
NC
NO
NO
oc
O4
,*^
in
O
c
^4-
04
O4
u
0-
co
in.
m
C
Tf
rN
O4
C
NO
in
m
04
m
ON
T7f
ON
r-
t
c- '
^r
o
oc
NO
rn
c
ฃ
, -
o
t
rN
y
CO
NO
c
04
OJ
c
O
ON
NO
m
04
[-~-
ON
_:
04
^
oo
ON
rn
O
OC
ON
^
r^J-
in
NO
s
o
c.
04
;
O
TT
04
O4
U
CO
r~-
rn
T^
04
OJ
^'
c
oo
m
oo
m
ON
ON
ON
~M
m
oo
ON
m
O
ON
ON
OO
NO
m
C
C
CM
oc
O
^H-
O4
04
U
CM
CO
OO
m
O
OJ
(N
Q
Q
00
oo
m
00
NO
ON
_;
NO
rn
oo
ON
m
m
C
oc
oo
ON
oo
*^J-
oo
NO
O4
rn
O
o
a.
m
C
c
^
04
O4
U
c.
CO
ON
m
O
04
C
Q
'ON
OC
rn
04
ON
T^-
m
oc
ON
rn
rn
c
c
04
ON
oo
NO
rn
q
rn
O
C
^.
04
O4
U
OH
CO
c
1
04
O4
0
Q
NO
ON
m
rn
in,
oc
oo
_;
m
C
oc
ON
m
m
C
ON
rn
NO
NO
ON
04
C
C
d,
c
c
T^-
O4
O4
U
0-
co
^_
TJ-
O
p\l
r\i
O
Q
r~-
r^-
m
>-o
-f
o
1
^O
oc
r*~,
r^1,
O
C
O^
^
rj-
NO
NO
s
o
c_
o
o
TH^
rN
OJ
U
C-
co
04
0
p\]
CN]
O
Q
o
oc
rn
NC
NO
ON
in,
O4
OC
oc
m
0
rn
ON
NO
rj-
NO
OO
q
c.
j-.
o
^~l-
04
O4
U
CM
CO
m
c
psj
(N
^
Q
o
00
ON
m
NO
rn
.
O4
Tj-
T^-
oo
oc
m
m
O
NO
NO
ON
^^
m
oo
NO
NO
m
q
NO
o
o
^.
04
O4
U
CM
CO
T^-
1
C\j
CN]
O
Q
^j-
c
^t-
oc
T^-
^~
oi
ON
in
oo
oc
m
m
O
oc
ON
_
r~-
c
c
a.
c
, ,
o
^H-
04
04
U
CO
in
g
^~
04
04
O
Q
r^f-
o
*
00
ON
^f
O4
O4
I
OO
t
rn
m
C'
ON
CN
NO
m
c
r-
ON
o
a,
c
c
o
rt
O4
U
OH
CO
NO
g
^j-
O4
V.O
o
in
00
m
ON
O
T^-
OJ
T^-
m
oo
m
m
C
rn
00
ON
OC
NO
NO
OJ
C
C
a.
ON
o
0
o
Tfr
04
oi
U
CM
CO
I-
|
OX)
04
O
Q
r-
NC
m
04
OC
O4
OJ
0-
r^
, '
oc
m
rn
C
in
r-
ON
m
C
NO
NO
ON
m
0
0
^
0
c
^H-
O4
04
U
OH
CO
oo
0
04
O
Q
m
ON
rn
,
O4
O4
04
m
NO
ON
r-
oo
m
m
o
ON
NO
ON
04
r~~
Tt
NC
ON
m
O
C
d.
OO
C
C
v^-f
04
O4
U
0-
co
ON
1
04
O4
0
Q
NO
NO
NO
m
NO
04
O4
in
oc
m
m
C
ON
^
NO
NO
r-
d
d
d,
rn
0
O
T4-
04
OJ
U
OH
CO
0
in
c
04
04
C
Q
00
^f
r~~
ro
ON
O4
0-i
r*"/
04
oo
00
m
O
(XI
ON
O
r
Ni3
ON
04
O
d
c.
r-
04
o
O
y^-
O4
04
U
OH
CO
,~M
O
04
04
O
Q
NO
in
o
**
NO
04
^-<
oi
m
c
o~
oo
oc
m
m
0
ON
04
m
0
o~
rn
m
c
d
d.
rN
m
^My
O4
O4
U
OH
CO
04
in
0
04
ON!
o
D
m
in
o
*
, ,
ON
O
rN
m
^
NO
OO
m
m
O
in
oo
ON
ON
m
ON
NO
m
0
d
d,
NO
rn
O
O
^-f
O4
O4
U
CM
CO
m
in
0
Tt
O4
O4
O
Q
NO
oo
m
^.j-
O4
C
O4
in
04
m
00
oo
m
m
O
ON
ON
m
[^^
r
NO
OO
o
d
d,
c
c
Tt-
04
04
U
OH
CO
T^-
in
0
04
04
O
Q
ON]
c*\
m
m
c\
q
VI3
n"i
OD
r-
ni
C3
OO
CN
in
04
oo
NO
o<:
c;
0
i/T
C3
C3
^-f-
O4
O4
U
OH
CO
if}
in
C5
04
04
c:
O4
ON
m
04
r-
q
oi
o
ON
m
oo
m
m
O
ON
NO
m
oo
NO
m
q
d
a.
o
m
0
o
^
rN
04
u
OH
CO
NO
in
O
04
04
O
Q
ON
OO
ON
o-
NO
d
rN
-^j-
^f-
03
NO
m
C2
m
OD
CN
04
ON
NO
ON
C5
d
Ci.
*^-
O4
04
U
0.
CO
r--
0
04
O4
C5
Q
r-
ON
m
in
r
o
04
0-
Tj-
oo
NO
m
m
O
ON
r-
04
ON
NO
m
0
d
d.
ON
Tt
O4
01
U
OH
CO
OO
0
04
O4
O
Q
^M
ON
m
00
04
oi
in
m
oo
m
m
O
ON
ON
NO
ON
NO
m
O
d
CM
m
O
04
O
o
^
04
04
U
OH
CO
ON
O
O4
04
C
Q
NO
m
ON
rn
r-
O4
m
rN
m
oo
^f
oo
NO
m
m
O
NO
OO
ON
O4
OO
oo
NO
r-
o
d
d.
oo
c
04
- ^
O
^My
04
04
U
OH
CO
0
NO
o
04
04
O
Q
OO
oo
O
xt
04
ON
O
oi
m
m
r
oo
NO
m
m
O
ON
ON
O
rN
00
NO
OO
o
d
te-
rn
04
0
o
^Hy
04
0)
u
CM
CO
^_4
NO
o
04
04
O
Q
m
TJ-
r-
m
C
oi
^j-
00
00
NO
m
m
O
oo
ON
04
,1
0
r-
m
O
d
C-
O4
O
o
*H^-
04
04
U
OH
CO
04
NO
O
04
04
O
Q
ON
ON
rn
m
oc
O4
oi
in
O4
NO
OC
NO
m
rn
O
in,
oo
ON
ON
r-
O
r-
m
O
d
d,
rN
01
O4
O
q
yHy
OJ
O4
U
OH
CO
m
0
04
O4
O
Q
C-66
-------
1
c
"c
o
U
2
C3
-a
^
^
U
E
G
0!
S
E
03
a
fr<
E
O
E rs
a =
Q. .S
c C
E
c
ซ
"E
U
E
G
U
B
W
51
^'
3
U
C
~
w
E
03
E
U
c*T.
E
^^
E
C
U
-^
"o
U
'S
C
a
>
*
C
*ป
i
o3
*-<
i
"S
'x
c
0
toJ
'E
a;
B ~O
c 'x
-F c
E
S ฐ
E
OJ
-w
f
V
"C
ll
Z 03
a
-E
u
13
MM
,_J
ON
rr,
rs
rr,
r-i
in,
in,
oc
NO
C
c
r-i
oc
C
r-
Tt
p
C-
rj
C
^f
rs
rs
O
CL
OO
r^-
NC
c
rs
rj
o
Q
oc
rr,
rs
r-J
rs
rj
rj
rr,
OC
in
c
rs
'ON
O
NO
r^
c
c-
rr,
5
^
rs
rj
U
O-
oo
in,
NO
C
rj
rs
C
G
r-J
r-
rr
Tt
Tt
rr.
ri
(^
rr,
DC
m,
c
oc
ON
r-
NC
ON
C
C-
in,
rr,
C
Tt
rj
r-J
U
CL
oo
NO
;ง
-t
rJ
rs
O
G
I DO
~t rr
rr rr
f-r--j Qฃ
r-i r J
r~- oc
ON
oc r-
,C SC
r J f
oc o
r
OC NO
NC T-(-
NC NC
-r in
C 0
C- C,
c -t
Tt -t
r~- ."^~
Tt Tt
rj rj
r-J rj
o y
oo oo
r- oc
ฃ >c
Tt ^t
r-J rj
rj r\l
O O
G G
ON
Tt
rr,
rs
r-j
rJ
O
oc
m
d
oc
rs
in,
NO
ON
C
C.
^
g
^f
rs
rs
U
CM
OO
ON
O
rs
rs
o
Q
OC
rr,
oc
rs
rs
rs
rs
oc
NO
m
d
rs
~*s)~
Tt
NO
^
' -
C-
m
T;
c
Tt
rs
rs
U
CL
oo
O
C
rj
rs
r^
Q
oc
rr,
Tt
rs'
r-J
oc
NC
d
oo
ON
rr
NO
NO
Tt
C-
oc
o
c
T?
rNt
rs
U
CM
oo
, i
C
Tt
rs
rs
0
C
cK
in,
rr,
Tt
rs
oc
C
oc
NC
o
oc
r-
NC
rr,
c
O
C-
rs
c
o
Tt
rs
rs
U
CL
00
rs
&
Tt
r-i
rJ
d;
G
oo
rr,
>n
rr,
rj
r
c
oc
NC
c;
-t
in
ln
NO
sC
0
r
p
O
^f
rs
pxj
U
c.
m
rr
r~-
Tt
rs
rs
^
G
ro
r^
rr
rs
rs
r
in,
rs
oo
NO
d
ON
ON
OC
00
NO
m,
p
CM
-~
O
Tt
OJ
rs
U
O-
oo
Tt
C
Tt
rs
rs
o
Q
Tt
in
rr
ON
rj
C
r^
C
oc
^
d
rs
r~
ON
Tt
NO
r-
p
d
CM
' '
c
Tt
rs
rs
U
CM
OO
in
O
Tt
rs
rs
C
G
[^
r^-
r^
rl
rs
ON
rs
oc
NC
O
ON
m
OC'
MD
NO
c
CM
C
o
Tt
rs
rs
U
CL
oo
NC
g
Tt
rs
O
G
cc
ON
rr,
Tt
Tt
rs
oc
sD
CC
NC
o
rr
c
r-
rr,
o
c.
rs
o
Tt
rs
rs
U
CL
OO
r^-
C
Tt
rJ
O
G
oc
or.
rr,
2
rs
oo
in,
rr,
oc
NO
d
Tt
ON
rs
oo
NO
m,
O
ON
rs
5
^
r--i
rs
U
CL
oo
oo
r~-
rs
OJ
C
Q
Tt
rr,
ON
OO
rs
NO
OO
0
oc
NO
rr,
rs
oo
ON
f")
rs
in
NO
OC
c
CM
Tt
C
Tt
rs
rs
U
CL
OO
ON
g
Tt
rs
rs
^
G
ON
NO
rr,
OC
rs
rs
ON
Tt
rs
oc
r-
d
d
rj
rr
r^
NO
r~
c
c
c.
ON
0
T-T
rs
rs
U
Cu
OO
C
oo
0
Tt
rs
rs
C
oc
Tt
rr,
r-
r-j
r-j
rs
C
oc
NO
d
in,
oo
ON
OC
O
V/"",
^D
DC
O
o
r*~(
**
x
Tt
rs
rs
U
CM
oo
, ,
00
Tt
r-j
rs
^
Q
oo
[~~-
Tt
C1
Tt
rs
r-j
NO
r~-
ON
r-
NC
m
d
rs
ON
ON
l~~:
Tt
NO
00
o
o
CM
oo
Tt
O
Tt
rs
rs
(-M1
OO
rs
00
c
Tt
rs
rs
C
Q
rr.
in,
r",
rr
rs
rs
NC
O
oo
ฃ
d
rs
oc
ON
QS
r^
NC
m,
0
o
CM
rs
in
O
Tt
rs
rs
U
CL
00
rr,
oo
c
Tt
rs
rs
^
Q
rs
ON
rr,
OO
rs
rs
00
Tt
00
NO
d
00
ON
OC
oo
ON
NC
m
0
c
[-^
in,
ง
Tt
rs
rs
U
CM
OO
Tf
oo
Tt
rs
rs
C
G
oo
r-
r--,
rs
Tt
rs
oc
O
r<)
oo
rr
O
NO
r-
ON
O
ON
NO
in,
O
0
C-
p
Tt
CT5
Tt
rS
rs
U
CM
OO
in,
oo
Tt
rs
rs
Q
in
f-r,
in
<-ซ,
ON
rs
NC
rr,
OC
NO
o
OC
ON
in,
NO
NC
OC
c
c
C-
NC
' J
c
Tt
rs
rs
U
CM
OO
NO'
OC
c
Tt
rs
rs
^~^
MM
OO
in.
r>t
00
ON
rs
rs
in
oc
NO
d
r^
ON
O
oo
NC
O
o
CM
' '
B
Tt
rs
rs
y
oo
r-^
oo
o
rs
rs
C
rr
NO
r-,
OC
rs
rs
rs
c
rs
oo
NO
m
d
ON
in
00
NO
ON
p
O
C.
in,
~~
O
^H-
rs
r^J
U
CL
oo
oo
00
O
Tt
rs
rs
O
ON
NO
rปi
p
rs
ON
rr,
rs
00
NO
d
OO
ON
in
r^
NO
OO
r-J
d
CM
ON
Tt
f ;
^
rs
rs
U
CM
OO
ON
OC
o
Tt
rs
rs
O
Q
NO
r^
Tt
rป,
rs
rs
rs
rs
rr,
m
o
oc
NO
rr
rr,
O
m
oo
ON
NO
NO
NO
NO
0
O
CM
Tt
rs
Tt
C
Tt
r\!
rs
U
CM
00
ฃ"2
ON
o
Tt
rs
rs
C
r^
r~
Tt
f,
oo
in,
Tt
01
OC
NC
O
OO
r
d
rJ
O
ON
T-|-
rJ
NO
NC
m,
c
c
CM
OC
rs
Tt
C
o
Tt
rs
rs
U
CL
in
, ,
ON
O
Tt
rs
rs
G
m
m
rr.
in,
rr,
in
rs
ON
,
'
OC
r-
rr,
NO
ON
_^M
r~-
NO
1^
C
0
CM
rr,
^
^-J
ง
Tt
rs
rs
U
CM
00
rs
ON
O
Tt
rs
rs
O
Q
rs
rr.
NO
rr,
rs
rs
rr.
in
oc
NC
rr>
d
OO
ON
Tt
r^
NO
NC
C
ฐ
c-
T1.
M
o
Tt
rs
rs
U
CL
00
rr,
ON
rs
rs
C
Q
in,
Tt
r^
rr,
rs
rs
ON
rs
rs
~-
rr,
oc
NO
d
oo
ON
NO
rs
0
r^
oc
p
d
CM
Tt
B
Tt
rs
rs
U
CL
oo
Tt
ON
Tt
rs
rs
Q
C-67
-------
s
G
t-ri
C
o
U
U
03
-a
c
^
u
C
_o
"S
_u
~
C
03
y
a
c
^
w
E /"-;
r J
1^-
r-j
OC
r~~
o
OC
, ,
pf~,
ON
^0
^
^
o
CM
'O
o
1^
o
"5"
r\l
pvj
u
in
o^
CN
p\l
O
Q
sO
p-
rป-,
OC
p-
01
OC
Ol
00
r"~;
C
oo
Os
o
r*"i
00
SO
r
m
C
O
CX
as
o
in,
O
O
r-J.
Ol
OJ
U
CO
o
*
,-,.
Ol
01
o
Q
OC
sO
m
Os
OJ
, 1
01
00
p-
m
d
oo
,.,.
p-
p~
SO
as
o
d
ex
in
C
^j-
ol
01
U
ft.
CO
,-,.
01
Ol
O
Q
o
P-
Ol
rM
01
as
oo
r-
c
OC
Os
ro
__
OO
SC
Os
O
d
ex
OC
in,
C
C
T-j-
01
Ol
U
PL
co
rM
;;
^-j.
01
Ol
c
D
OC
in
m
OC
SO
Ol
ซ
OC
ro
^
SC
OC
^
oo
SD
SC
1 ;
o
CX
r*",
Ol
in
o
o
^p
Ol
Ol
U
Q.
CO
X
' '
^
OJ
Ol
o
c
Os
01
sC
r^i
Os
CN
OC
rt
OC
ฃ
00
as
in,
sO
sC
sC
p-
O
CD
CX
p-
rM
m,
C
^
01
04
U
PL
CO
rr
^-^
^-J.
Ol
OJ
O
Q
c*~,
sO
rn
SO
OC
oi
as
' '
oo
ฃ
o
p-
oo
OS
c
p-
p~
SO
OC
r*",
O
O
ex
01
rn
m
g
^
Ol
Ol
y
CO
^
OJ
o
Q
Os
P-
rn
Ol
01
r*"";
in
sC
01
oo
p~
o
Os
00
Os
as
ฃ--.
SO
SO
OO
o
o
P~
m
m,
O
O
^:
Ol
01
U
OH
co
SO
^
^.
01
CN
0
Q
p^
OC
r^-,
m
r*".
sc
as
OC
P
c
OS
as
SO
Os
as
SO
f^
m
C
O
CX
T^-
in
c
o
^j.
CN
CN
U
PL
co
P~
"^
^j.
01
01
(^
D
in
. i
Os
m
so
01
rT
sO
o
00
OC
so
rO
C
Ol
Os
Os
, ,
Tt
r-
SO
O
o
ex
sD
Tt
in
C
TH^
01
01
U
a,
co
oo
^1-
01
Ol
^
Q
OS
as
m
oo
Ol
C
rf
01
to
r-
oo
CO
C
p~
OS
OS
CO
sO
p-
sO
O
O
&
o
in
in
O
O
rf
01
01
U
a.
CO
as
^-j-
0
^J-
01
Ol
u
OH
C/)
ro
rf
01
Ol
C
Q
0
m
O
rr
s
r-
(-y-j
Ol
SO
00
00
Pi
o
in
as
as
r<->
^T
CN
r-
in
C
o
ex
m
' >
SC
o
o
^3-
ol
01
U
OH
CO
rt
^
OJ
01
o
Q
r*~i
O
rT
sC
sO
r-
rn
O
as
00
oo
o
O
O
ol
00
r*~i
r*~i
P-
1 ;
o
CX
p-
so
O
C
TH^
01
01
U
OH
CO
m
^)-
OI
OI
o
O
, i
< '
rt
as
o
00
r^i
oo
O
Os
00
O
Os
OS
Os
in
r^
ol
p-
SO
0
d
CX
OJ
Ol
so
g
^
Ol
Ol
U
PL
CO
so
_,-
01
Ol
O
Q
C3
r-l
rr
SO
C3
rr
p-
r^l
c\
00
o
c:
rJ
0
C3
p-
00
c;
o
CX
SD
OJ
SO
p
^,:
OJ
OJ
U
ft.
C/)
p-
'""
T.-
OJ
OJ
0
o
OJ
ol
OJ
rt
SO
oo
fH^
01
ro
as
as
c
OJ
p
c^-i
SO
m
p-
^,
m
O
d
CX
f"!
SO
o
o
^-j-
01
01
U
OH
CO
OO
""" '
^J-
0)
ol
o
c
00
CN
rt
OD
T;f
SO
m
o
g
C5
OJ
OJ
OC
T^f-
SC5
P~
1/1
0
d
CX
SO
C*~l
SO
8
T-,-"
r'j
OJ
u
ft.
C/2
Os
""
^,-
OJ
ol
o
Q
O
00
OJ
rt
OO
^J-
p-
as
c^
d
01
p
t ...t
SO
so
r-
SC
C
d
CX
o
SO
g
^
01
01
U
OH
CO
0
ON
^j.
0~1
CM
O
Q
o
SO
OJ
rt
00
oo
m
THy
in
fN
as
as
d
Ol
O
oi
in
m
so
p~
p-
m
O
d
ex
>n
^r
SO
g
^p
01
OJ
U
PL
CO
~-
tN
-^
01
01
0
Q
o
P-
01
rt
ol
in
o
r-f
m
Os
S
O
ol
p
oi
as
rf
r-
p-
rr
o
d
ex
Os
rt-
SO
g
rr
01
01
u
OH
CO
Ol
OJ
rt
01
01
0
Q
Os
OS
01
rt
01
as
00
r*"l
CO
m
as
as
d
o
oi
p-
OJ
SO
p-
,.,.
m
O
d
CX
in
so
O
o
rf
01
00
U
OH
cn
m
tN
rf
OJ
0-1
O
Q
00
01
rt
Ol
O
01
rt
SO
as
as
rr
m
d
m
0
oi
00
m
sc
p-
sO
0
d
ex
00
m
sD
O
^
01
01
U
OH
CO
rt
OJ
rt
01
01
O
Q
1/1
rt
rr
p-
^1-
p-
1/1
Os
rr
d
rr
0
04
oo
in
p-
p-
SO
o
d
CX
m
O
P-
o
C3
rr
OJ
ol
U
OH
CO
in
OJ
rr
OJ
OJ
O
Q
C-68
-------
c
o
U
-o
c
ฃ
C
c
-*M
C3
U
rs
"e
C8
3
a
E
a.
a.
_c
c
4M1
03
'
'c
a
e
Q
u
c
c
^
c*-
C
^
_0
U
1
M
3
03
fi
C
o
c
?3
f
u
E
CJ
*-
1.
CJI
C
O T;
6
2
ฃ
E
V
ฃ x
- o
T ฃ
S ฃ
c
"c
JS
El
**!
i u
3 -u
u i-
C
5 -s
= c
Jj; 3
X
U
,c
p
,
h-
v
58
^
~
...
rn
NO
Tt
Tt
oo
r-)
mi
Tt
OC
NO'
Tt
rr,
c
NO
Tt
CM
rN
r-
r
NO
S
1
c_
c
^
o
Tt
r-1
r-J
y
CO
^D
rN
rN
r-J
Tf
r^~
r*~
n",
V/S
r^
5
f
*""'
oc
rN
U"~j
r^t
o
CC
^
S
1 '
r\
^
O
^f
rN
r-J
y
00
r-
oj
r-J
OJ
2
oc
-t
r-
c;
m,
oJ
CC'
-t
rn
^-~
ON
Tt
OJ
in
r*~.
ON
r~'
m
c
'
c_
NO
l~^
O
Tt
r-j
r-J
U
CM
OO
cc
r-J
rN
rN
s
(~*~>
$
-t
^
r--i
r-J
<-/"-,
*/"~i
^C
; K
""
_
-t
r-J
cc
NC
OC
r-
m
-~
1
ex
r-J
^
O
T-f
r-l
r-J
U
a.
oo
ON
r-J
-t
rj
r-J
C
In
-t
rf.
fr-
OC
-t
^
NC
ON
-t
'
O
en
rj
P^.
r-
oc
r--
-1-
~
'
ป/~j
r j
r""
O
^f
rN]
r-J
^
C/j
^
r*~J
-t
r-j
rN
UJ
in
Tt
ON
OC
Tt
rn
r~
ON
5
_
m,
rN
r--]
00
ON
r~
Tt
<~
'
ex
c
m
r-~
o
Tt
oj
r^J
U
CM
00
, 1
m
rN
r-J
Q
in
Tt
rN
T^-
oc
Tf
C
ON
r-J
CO
o
OJ
NO
^
ON
r^
rr,
c.
o
C.
in
rn
"^
o
Tt
OJ
OJ
U
CM
OO
OJ
rn
OJ
OJ
s
ON
OC
Tt
OC
T)-'
NC
NO
ON
OJ
NO
Tt
OJ
NO
in
ON
r-
Tt
C
o
ex
ON
^
O
^
OJ
OJ
u
a.
00
rn
rn
rN
r~J
Q
cc
Tt
^
ON
r^,
^f
ON
in,
ON
rn
r-
OJ
cc
r--'
r-
NO
C
' '
ex
T^-
Tt
^
c
c
^f
OJ
OJ
U
CM
00
t
rn
rN
rN
a
cc
-t
_
*o
r
-f
r*"-j
in
ON
-t
-^
rn
rN
rv-)
-f
oc
r--
r-,
^
o
ex
oc
*t
^
o
Tt
r-j
01
U
Cu
oo
n
rn
OJ
OJ
5
jj
Tf
OJ
OJ
in
ON
in,
ON
?
NO
rn
oi
cc
r^
r-
Tt
C'
O
rr,
in
^
o
o
^
OJ
OJ
U
CM
OO
NO
rr,
OJ
OJ
O
oi
Tt
ON
OJ
Tt
r~
f .
'
ON
?,
O
^J.
o
OJ
^
p^
< -
r~
NO
p
O
ex
in
^
c
^
OJ
OJ
u
CM
00
r-
m
rN
OJ
Q
zt
Tt
m
|y-j
l/*-j
r^i
(^
c
ON
2.
^
Tt
OJ
OI
[^
oc
01
0-
Tt
^'
- '
ex
OJ
C'
cc
C
C
Tt
OJ
OJ
y
00
cc
m
01
OJ
G
01
Tt
m
l/->
, 1
r*"ป
(N
^O
O
c^
2
^
m
01
,-*-;
(^
r^i
r~
r-
j~
1 '
ex
NO
o
oc
o
Tt
OJ
OJ
u
CM
OO
ON
m
OJ
OJ
Q
OJ
Tt
m
*-O
r--
r-j
ON
r*^i
in
oc
ง
m
rn
S
ON
OO
NO
ON
ฃ;
' '
ex
* i
oc
o
T^
OJ
OJ
u
oo
^
^
OJ
OJ
Q
oc
NC
ON
m
01
in,
Tt
OJ
00
ON
00
Tt
;
Tt
Tt
O
OJ
00
[
NC
C
o
ex
'
oc
c
Tt
OJ
OJ
u
C-
00
, ,
Tt
Tt
OJ
01
o
00
ON
rr,
00
[^
in,
OJ
Tt
OI
oc
Tt
Tt
m
^
rn
OJ
NO
NC'
NO'
ON
^
'
ex
c
OJ
oc
ฃ
Tt
01
OJ
y
oo
OJ
Tt
Tt
OJ
OJ
G
NC
m
^
00
r-i
Tt
cc
-t
Tt
t
~
oc
OJ
OJ
[^
rn
NO
NO
NO
-~
O
a.
Tt
OJ
oc
r^N
Tt
OJ
01
U
CL
00
rr~l
*
Tt
OJ
01
Q
ON
m
r-
m
ON
Tt
OJ
OI
oo
Tt
m
^
OJ
oi
, ,
m
in
NO
Tt
O
o
ON
OJ
00
o
Tt
OJ
OJ
u
CM
00
iMy
Tt
Tt
OJ
OJ
Q
S
r^,
Tt
NO
NO
oi
Tt
O
oo
2
,
ON
rN
O
OJ
m
in
m
NO
m
^t
p
O
ex
rn
rn
oc
0
Tt
OJ
01
u
CM
OO
in
Tt
Tt
OJ
OJ
Q
NO
VC
m
m
NO
^^
r--
rj
a\
r i
ON
F-
NO
Tt
t ;
~"
NO
m
oi
Tt
Tt
NC
OJ
Tt
^ '
ex
oc
m
oo
0
o
Tt
OJ
01
U
CM
00
NO
Tt
Tt
OJ
OJ
G
OO
ON
Tt
rn
oc
C
r-
oi
Tt
NO
OO
0-
r
Tt
rr,
^_
^
00
Tt
o
OJ
p^
^M
Tt
ND
rr,
2
o
ex
m
Tt
oc
O
o
Tt
OJ
OJ
U
CM
00
f
Tt
Tt
OJ
OJ
o
Q
in
m
,
OJ
^C
rN
,
ON
r~-
Tt
NC
rn
oi
[^
(^
rn
NO
Tt
c
c
ex
Tt
oc
o
Tt
OJ
OJ
U
CM
00
OC
Tt
Tt
OJ
OJ
c
r
c
m
m
m
j^^
in
oi
in
m
oc
r~
r
Tt
m
;
^
^
m
oi
O
NO
OJ
NC
ON
m
O
ex
01
in
oo
o
Tt
OJ
01
u
CM
00
ON
Tt
Tt
01
OJ
O
Q
OI
NO
m
rn
NC
f~-~
r~-
CN
o
ON
NC
r~-
ON
Tt
rn
^
m
oi
OJ
in
'
NO
ON
m
'
ex
NC
in
oo
S
Tt
01
01
u
CM
00
C
in
Tt
OJ
OJ
Q
in,
m
m
rr,
rN
oo
r-
OJ
rn
o
NO
r-
ON
Tt
m
Cp
m
rn
o
oi
OJ
Tt
NO
Tt
O
o
ex
S
ON
o
Tt
OJ
01
u
CM
oo
, t
m
Tt
OI
01
O
Q
NO
OI
OJ
m
.^
m
r^
oi
Tt
OJ
m
r-
ON
Tt
^
OC
OJ
oi
ON
ON
m
OI
Tt
C
o
ex
in,
O
ON
o
c
Tt
OJ
OJ
U
CM
00
OJ
in
Tt
OJ
OJ
O
Q
in
O
m
t^
C:
NO
OJ
OJ
p^
rn
r~
ON
Tt
/ :
^
oo
01
oi
ON
CO
m,
r-,
p
O
ex
O
ON
O
Tt
r-J
OJ
U
CM
00
m
m
Tt
OJ
r J
G
ON
ON
01
__
O-
NO
oi
in
m
rN
r-'
>n
rr,
ฃ2
oc
Tt
p
oi
in
in
r~
in,
Tt
ex
ON
c
Tt
01
OJ
U
CM
to
Tt
OJ
OJ
Q
in
ON
01
m
r-
NO
oi
Tt
OO
^
r-"
m
m
O
oo
m
O
oi
^Hy-
ON
NC
m
Tt
O
ex
ON
ON
c
Tt
rN
01
U
CM
00
m
in
Tt
OJ
O
Q
in
ON
oo
OJ
rn
un
NO
oi
rn
_
r-'
oc
Tt
m
;
Tt
m
O
01
00
NC
m
OJ
Tt
O
o
ex
rn
OJ
ON
O
T?
OI
U
a.
00
NO
>n
Tt
OI
OJ
ง
C-69
-------
3
C
4ปl
C
o
U
t--
i
CJ
a
^j
V
^
c
_0
^H
a
u
iC
%^
C
a
0
ro
_C
O
E ซN
It.s
.= o
V,
C
a
u
c
u
c
o
U
c
w
p.
>>
u
3
u
u
u
S
C
O
c
c
13
E
--
ฃ
c
^
c
_c
o
"o
U
a
w
C
L.
U
W
ฃ
U
C
P3
j:
-^j
QJ
E
L.
QJ
C3
f.
c;
B
'x
C
w
o
L.
'S
a
c -a
r* r^
_e %
ฃ 2
S ง
0 E
U
C
in
CO
C
rj-
ro
r
oi
ON
ON
m
q
d
c.
ฃ2
c
d
c
c
-3-
0)
CN
u
c-
00
Tt
NC
3-
OJ
Ol
o
D
TT
ON
in
OJ
m
oc
rr
oi
<
oc
NC
ON
^J-
cO
d
OJ
oc
c
01
r~
NO
C'
m.
c
d
CL
*CT
O
d
c
0
^ฑ
rJ
OJ
U
Cu
00
m,
NO
^t
OJ
Ol
O
O
NO
Ol
NC
IN
tr
"*
*3-
oj
CN
ro
OC
\c
ON
rr
ro
CD
in,
NC
C
CN
**
NC
OC
Tl-
-t
<"^)
Cu
ON
C
c
c
*?
CN
ol
U
Cu
00
NC
NO
3-
01
OJ
c^
c
CO
in,
NC
CN
r-
OJ
Tt
rJ
r
in
oc
NC
in
CO
d
NC
NC
oi
in
in
Ol
m
ro
Tl-
C
d
CO
O
c
o
?F
CN
CN
U
Cu
00
r-
ND
Tt
01
01
CD
D
r-
c
NC
01
NC
01
CO
oi
CO
(^2
oc
NC
ON
^r
CO
C
CO
m
C
oi
ON
Ol
m
^r
Tf
o
o
Cu
OO
o
O
C
TT
ol
Ol
u
Cu
00
00
NO
"*
Ol
Ol
0
Q
in
CD
NC
Ol
00
ON
CN
Ol
C
oc
r-
NO
ON
^T
CO
C
in
NO
CN
NO
r--
o
m
^f
2;
^
Cu
01
01
c
C
C
rF
CN
oj
U
Cu
00
ON
NC
"*
OI
01
O
Q
r~
CO'
m
Ol
r-
ON
oi
r^
[
r-
NO
ON
Tt
ro
d
*
oc
0
oi
^___.
01
in
OJ
^r
c2^
^p
cu
r~
01
O
5
ol
OJ
O
Cu
00
c
r~
^t-
01
OJ
O
Q
oo
m
01
o-
r^
01
Ol
r-
r~-
NO
in
co
d
-g-
~
oi
oc
*
CO
in
,
2;
O
d
Cu
IN
CO
O
O
CD
C)
o
m
01
OO
Ol
CO
ONI
NO
OJ
m
CO
d
CN
CN
r4
CN
m
m
oo
-3"
, ,
*
O
d
CL
ol
O
O
^
(N
OJ
U
Cu
00
c^
OC
*
Ol
Ol
o
Q
O
Ol
OJ
m
NO
ON
__
0
ON
NO
m
CO
d
ON
in
O
01
oo
0
ON
Tt
-*
cS
d
t-~"
o
c
5
01
Ol
U
a,
00
i
oo
*3-
01
Ol
O
Q
CD
OO
01
01
ro
NO
ON
,__
NO
m
01
o
V~l
ro
d
CO
-*
CD
CN
to
C3N
t~-
-*
in
vf
c
n
ro
rt
00
o
Ol
oc
CO
1
^*
co
^1-
o
d
Cu
CO
o
O
^
Ol
Ol
(J
Cu
oo
rf
00
7)-
Ol
01
o
D
Q
o
01
ON
m
o
01
OJ
oo
m
OJ
m
CO
d
[
r-
O
CN
S
mi
TT
Tf
^r
o
d
Cu
in
CO
O
O
^
01
CN
U
OH
00
m
oo
Tt
ol
01
o
Q
NO ON
NO f-
o
OJ OJ
m ol
r- in
ON ON
__ , ;
TT m
OO CO
00 O
>n NO
in m
CO CO
d d
i/-j
1/1 in
O O
ol ol
ON
ON r-
NO NO
<* rt
"3-
C? C3
d d
CL CL
O TT
^ 'd-
O C
0 0
^ Tt
O) ol
oi ol
U U
0, CL,
1/3 00
NO r~-
oo oc
^r -*
0) 01
01 01
0 0
Q Q
C-70
-------
13
U
3
C
-4W
C
c
U
U
tion Method
Quantifica
0
E ซN
a c
c. =
B
O
Concentra
urv Plant
E
O
c
13
-
c
Data Collection ]
a
C
cs
oj
E
U
a
c
carbon
iter monoxide nitro
>
-o
u 'E
- C
"3 c
7 es
X
u
X
E
^M
o;
ca
E
sC
ON
rj
rr
ON
0
rT
sC
in
rr,
[-r,
rj
ro
in
C
in,
rf
c_
rr
'
~5
rr
r-J
U
e.
in
oc
OC
rr
rj
r-l
G
rr,
rJ
oc
O^
rr
in,
sC
in,
ri
in,
ri
in,
r-
O
in,
OC'
c-
m
in,
~
t
OJ
U
in
or
rr
OJ
OJ
C.
-t
r-l
sC
OC
ON
OC
r-
-O
rr
i-
oc
oc
in,
oc
in.
rr
y
rj
r-l
G
r
r 1
r-
ri
oc
r
r I
in
C
in,
y
in
t-
n
C
o
01
OJ
ri
OC
sC
OC
*t
1
r-l
r|
rj
'n
\
r I
r-J
C_
in
rJ
r
rJ
OJ
G
, '
r)
n
sC
in
oc
rJ
in,
C
r-;
in
rj
U
0.
in
ON
OJ
Q
rJ
OS
OJ
OJ
OJ
Os
SO
m,
r-i
OC'
m,
d
cd
C
r-J
OJ
U
0-
rj
rJ
Q
O4
rJ
rJ
oc
ON
m
?
cd
r-J
O
oj
U
C-
in
ns
OJ
OJ
r~
oc
OJ
O-l
r-i
in,
Os
sC
OC
rr
rJ
oc
in,
m
d
rJ
r-J
rJ
U
0-
TS
OJ
OJ
a
-t
rr
0]
nn,
-t
Os
sO
in
-r
Os
r-J
rr
in
-T
-t
C3
o
oj
r-i
00
r
rr
OJ
OJ
G
ฃ
OJ
sC
r?
r-i
sO
rj
in,
rt
o
OJ
r-l
U
OH
OC
as
rJ
rJ
G
_'
r-l
q
in,
r-l
sC
in
C
oc
OJ
Os
rr
d
rt
OS
OJ
O
m,
o-l
OJ
U
OH
OS
ns
OJ
OJ
r-i
Q
-
OJ
r
rr,
rr,
ON
OC
in,
OJ
in,
sC
r-
rJ
sC1
rT
rr
!^
in,
OJ
r-J
y
O-l
o-l
OJ
c
rr, so
Os C
r~ r-
rr'< sO
OC ^
OJ ^
in m,
in, rr
m, in,
r*~-, rT
in in
rr 00
so m,
O O
OJ OJ
sC OJ
C oo
rr rr
rr, r-J
d d
oc rr,
c o
m, in
r-J oj
OJ OJ
U U
C- C-
in in
rj
r-l oj
r-i rj
rj 04
Q Q
sC
00'
00
rJ
rr,
rJ
SO
in
in,
rr,
Os
in,
q
rj
rJ
rr
O
rt
m
rj
O
in,
rj
rJ
U
in
OJ
OJ
OJ
G
m
rr,
OS
oi
SO
SO
in,
in,
in,
C
Os
OJ
Os
C
rr
ON
rr,
d
rJ
C
5
in,
OJ
OJ
U
C.
in
OJ
OJ
OJ
o
OJ
in,
Os
rJ
r-
oc
in,
in,
in,
rr,
in
rj
in,
r-l
rr
r-i
c
ct;
sg
C
in,
01
OJ
U
c_
in
in,
rJ
OJ
OJ
G
oc
sO
00
OJ
Os
in
in,
oc
in
q
r-i
Os
SO
C
rT
d
o
m
r-i
r-i
U
a,
m
SO
r-l
0)
r~~,
, -
Os
m
r-^
OJ
rj
oc
r-J
m
m
rr,
so
O
r-i
rr,
O
rr
in,
O
m
OJ
OJ
U
C-
in
OJ
rr
OJ
rj
o
Q
oc
in
r-J
r-l
rj
in,
rJ
Os
rT
so
in.
rj
SO
O
rj
SO
rn
rJ
rr
d
rJ
O
m
rJ
U
a.
in
oc
rJ
rr
OJ
OJ
Q
as
rr
as
o
as
so
OJ
rj
ON
3
rT
r-
d
rr
sC
oj
OJ
00
m
OJ
rr
d
in,
OJ
O
m
OJ
OJ
U
CL
in
OS
OJ
rr
OJ
OJ
G
ON
rn
o
OJ
OJ
OJ
rr
rr
m
SO
SO
c
OJ
rr,
OJ
OJ
rr
rt
ON
OJ
C
in
OJ
OJ
U
a.
in
OJ
rr
OJ
G
oo
Os
r-
o
oc
OJ
OJ
00
OS
rT
rr
in,
m
d
r-
q
OJ
r
00
OJ
rn
rr
C
r?
o
in
OJ
OJ
U
OH
in
OJ
rJ
OJ
Q
SO
oo
o
OJ
OJ
rr,
oc
m
rr
r-
in
rr,
SO
OJ
rr
rr,
m
m
OJ
rr
d
oo
m
O
in
rj
OJ
U
a.
in
OJ
rJ
rr
OJ
rj
Q
SO
o
as
o
oi
OJ
m
rT
SO
rT
SO
in
sO
o
rj
Os
rN
rr
m
d
rn
rr
C
in
0-1
OJ
U
OH
in
OJ
rr
OJ
0-1
G
rr
m
ON
O
OO
oi
rr
rr
so
rr
sc
in
OJ
SO
o
OJ
rT
o
rr
m
rJ
rr
rT
o
in
OJ
OJ
U
0.
in
rr
OJ
rr
OJ
OJ
Q
oc
oo
z^
rn
n\
rj
rn
01
m,
rr
r-
C
r-
oc
C
r-J
C
rr
rr.
rr,
rr
ca
n
in,
O
in,
OJ
OJ
U
OH
in
-------
3
C
"H
O
U
O
E
O
1 E N
1 ฃฃ
g .S O
Cfl
C
S 2
sc -s
5 c
C u
ซ B
3 O
O U
"s
_ซ
E
r*~>
uซ
j3
u.
o
E
"re
ฃ
L.
t2
B
*""*
E
_C
"o
U
re
re
u
ฃ
E
re
.ฃ
OJ
E
U
*ป
f
^
'S
Q
H
0
(^
'E
Ol
C "O
.ง'1
S ง
E
,
CJ
M
f
(U
ฃ ง
*3 ^
"" X
04
j=
I
H
u
"?5
a
_
ฃZ
ON
m,
c
oc
oi
c
OJ
rt
r-
m,
rn
0
rt
OJ
NO
O
m
rt
rt
q
'
c
01
c
in,
OJ
01
u
CL,
in
ON
Ol
rt
Ol
OJ
S
r
ON
rt
C
ol
oi
r-
OC'
rt
OC
in.
rn
c
in
ON
oi
oc
oo
c
rn
ol
q
in,
oi
r~.
O
in
Ol
Ol
U
CL,
00
c
Ol
01
rt
Ol
0-1
Q
01
OJ
o
oc
,
OJ
oc
in,
00
m
oc
in,
m
CD
Ol
01
in
oo
r-
01
rt
ON
01
c
CD
in,
OJ
OJ
U
C-.
in
,
O4
rt
04
0-1
D
<"*",
^
O^
OJ
ol
OJ
GC
Q-\
ON
m
3C
ป/"~J
r<~,
0
O
oc
o]
.
oo
\Q
oj
OJ
^r
c
' '
oj
o
o
")
oj
OJ
y
GO
OJ
OJ
o.]
r-f
oi
OJ
O
^f
\c
oj
o
10
f~*~l
r-J
oo
ro
r~-
i/"i
r*~}
00'
OJ
OJ
^^
oo
OJ
s
04
OJ
CD
in
OJ
r-4
y
C/)
r*"~,
OJ
r--]
T^f
oJ
rsi
^^
o
m
0
NO
in
01
o
oo
' '
rt
r^
in
rn
c
OJ
OJ
oi
Ol
T^J-
ON
Ol
C
O
m
ol
O
o
in
O)
oi
U
CL,
in
^t
Ol
OJ
rt
OJ
OJ
O
a
r~
c
ON
C
vq
OJ
m
NO
m
rt
r-
in
m
C5
01
oi
p
in
m
m
ol
S
o
r^
0)
O
in,
Ol
ol
U
a.
00
in
ol
Ol
rt
Ol
o)
ฃ2
Q
in
0
S
oc
oj
04
OJ
01
rt
OC'
in,
m
O
in,
oi
in,
ON
C
m
S
' '
01
Ol
c
O
in
01
Ol
U
CL,
00
VD
04
OJ
Tt
Ol
04
o
5
C
iฃ
p^
CN
T^-
,
^~
r^
to
r*"i
ฐ
S
(N
^-~^
O^
(N
|
C:
OJ
C
c
in
Ol
Ol
U
CL,
00
|
Ol
Ol
rt
OJ
OJ
C
Q
OJ
in,
o
-
in.
OJ
in
ON
Ol
rr
r^
m,
rn
C
5
oi
;^-
rn
m
0
' '
m,
01
j-.
O
in
OJ
OJ
U
Cu
00
oo
OJ
OJ
Tt
01
Ol
ฃ2
d
f-
oc
c
rt
ON
NO
01
oc
ol
rt
rt
r-
in
rn
0
P;
oi
00
T^-
OJ
m
|
O
in,
OJ
o
O
m
ol
OJ
U
Q-i
00
ON
OJ
OJ
Tt
OJ
01
O
Q
OJ
ON
m
O
oc
ON
OJ
m
m
rt
l^.
in
rn
O
Ol
oi
OJ
oc
o
m
C
O
c
o
m
O
c
in
01
Ol
U
oo
c
ol
rt
ol
Ol
c
Q
ON
in
C
OJ
in,
OJ
01
oc
OJ
rt
oc
in,
m
C
OJ
OJ
[-^
m
m
oo
C3
O
re
in,
C
O
in,
04
OJ
U
CL,
00
, ,
rn
OJ
-^t
01
Ol
o
Q
m
VC
C
Ol
00
oi
c
f^
rn
rt
oc
in
m
O
ฃ
(N
r^-
t^~
i
^
S
o
ON
c
c
m
Ol
04
U
CL,
(/)
Ol
r*"1
OJ
*r^-
OJ
Ol
o
a
oo
in
o
Ol
01
01
rn
ON
^t
rn
rt
00
in
m
O
01
oi
r--
OO
ON
01
O
O
2
m
o
c
in
04
04
U
CL,
00
rn
rn
OJ
Tt
Ol
OJ
O
Q
ON
OO
c
ฃ
q
m,
r^
rt
NO
in
m
O
%
oi
rn
ON
m
ol
S
o
re
oo
c
o
in
01
01
U
00
*^-
m
OJ
rt
01
01
O
Q
in
01
C
rt;
oo
^j.'
Ol
01
ON
rt
NC
m
m
C
OJ
rt
OJ
NO
Ol
NO
m
01
rt
O
O
re
Ol
o
o
n
Ol
04
U
CL,
00
in
m
Ol
rt
01
ol
O
Q
m
r-
C
01
rt
rt
rt
OJ
rt
oc
in
rn
o
s
OJ
oo
m
C
rn
m
O
1 J
oc
Ol
o
o
in,
01
Ol
U
CL,
00
NO
m
Ol
rt
OJ
01
O
D
r
o
oo
nr
ON
rt
rjr
00
1/*1
r^l
o
s
OJ
r*"i
r~~
o
m
04
o
o
re
04
rn
m
m
04
04
U
o-
in
r~
m
04
04
04
C5
Q
0
OJ
m
0
NO
OO
m
rn
rn
m
rt
rt
f^
m
m
0
00
m
O-l
o
oo
^-<
m
O
O
rn
O
0
m
OJ
04
U
CL,
in
00
m
OJ
rt
Ol
01
O
D
m
0
ON
rn
rt
m
rt
rt
[^
m
m
C
S
01
m
in
Ol
m
rn
O
O
re
C
0
in
01
01
U
CL,
in
ON
rn
Ol
rt
OJ
OJ
o
Q
O
in
o
OJ
OJ
^^
rn
ON
m
rt
oo
in
m
C
m
OJ
ON
01
1 1
m
rt
rt
O
O
re
NO
rt
O
C
in
01
01
U
CL,
in
O
rj-
Ol
rt
OJ
O4
O
Q
r-
GN
rt
CD
1/1
rn
00
CD
rr
oc
1/1
r*1
c;
OJ
OJ
m
O
r<1
CD
CD
1/1
CD
1/1
OJ
OJ
u
CL,
V)
, ,
rr
OJ
OJ
OJ
CD
a
rt
m
o
r-
OJ
ON
04
m
r_H
' 1
rt
OO
in
m
O
in
O
04
04
00
oc
OJ
m
O
O
re
in
in
m
o
O
m
01
01
U
CL,
m
0-1
rt
OJ
0-1
OJ
O
D
oo
m
CD
00
t~~
OJ
m
oo
1/1
m
00
in
m
0
o
OJ
r-
V*O
^O
C^l
s
cS
CN
l/T
r-1
C3
C5
1/1
O-l
O-4
U
c-
m
r*";
rt
rt
O-l
C-J
^^
a
r-
04
oo
ON
OO
rt
r-
OJ
oc
m
ON
in
m
O
00
O-l
rt
ON
OJ
OJ
rt
O
CD)
re
S
rt
O
O
in
01
01
U
CL,
in
rt
rl-
04
rt
01
04
c
Q
NO
m
ON
ON
rt
r-
r-
oi
00
ON
01
m
ON
m
m
O
S
OJ
ON
^
rt
04
01
rt
O
o
re
ON
O
rt
O
O
m
Ol
01
U
CL,
in
in
rt
ol
rt
Ol
04
C
Q
00
oo
ON
NO
O
r-
oi
r-
OJ
OJ
m
ON
m
m
0
ON
ON
01
ON
ON
m
01
m
rt
o
o
re
rn
rt
0
O
m
Ol
ol
U
CL,
in
NO
rt
ol
rt
Ol
0-1
O
Q
m
ON
ON
m
oi
ON
00
OJ
m
ON
m
m
O
OJ
oi
ol
^3-
m
ol
rt
rt
O
O
re
oc
rt
O
o
in
O-l
04
U
CL,
in
r-
rt
OJ
rt
Ol
Ol
O
Q
ON Ol
m rt
oc o-
ON ON
rt NO
^- ON
NO rt
oi oi
rt ON
O m
ol O
m m
ON ._
^ r^
m .
0 ฐ
r- 01
oi oi
r 01
OO NO
m
01 oi
m ol
rt rt
O O
o o
re re
01 r~-
0) 01
rt rt
งO
O
in in
01 01
Ol OJ
U U
CL, 0.
in in
OO ON
rt rt
01 01
rt rt
OJ OJ
OJ 0-1
C 0
Q Q
C-72
-------
T3
'~i
=
O
U
U
H
o
c
r*
xU
B
,2
re
u
iC
C
83
3
0
fj
B
O
E oi
Q. c
B. -
.5 O
E
_~
*ฃ
U
B
xU
U
5
U
"E
51
^
^
J3
U
u
C
O
c
IS
ฃ
^
E
C
u
"c
U
n
i^
C
u
^
_ซ
ป*
E
re
__
"2
E
>
i>
c
"x
c
W.
5
LM
'E
u
E "C
.ง'1
*~ E
S |
Ll
GJ
^
V
- 'ง
ฃ s
v ^2
^ X
E
u
cs
OJ
tiซ
ON
IO
0
r-J
rJ
^C
rjx
r-4
^C
r*i
c
ON
OC
XC
ON
~~
Tt
Tt
( ^
C
in,
OJ
OJ
U
CL
oo
^
m,
r-J
Tt
OJ
OJ
b
oo
in)
ON
ON
OJ
OC
oj'
xC
^ '
o
ON
1 .
r-J
- <
<3\
'
^
Tt
,
xD
Tt
o
in,
OJ
OJ
U
CL
OO
m,
OJ
Tt
OJ
OJ
c
xC
ON
r*~,
m,
OJ
Tt
ON
OJ
XC
'
x--5
xD
__
r-J
0
(N
r-j
0
o
rt
-yf
0
i/--(
r-j
r-J
U
CL
c-o
r-J
in
r-J
^t
r-J
r-J
O
-T
[--.
:>
OC
r-j
r-j
rป-,
ON
r*~,
o
, .
r*~,
r-J
r-i
r-j
3
o
Tt
o
in
r-j
r-j
^j
CL
C-O
rC
ln
r-J
^~t~
r-j
c_J
oc
CN
-
r i
^~
^
r*-.
^3
r '
2
OC
p-^
.
r J
.
3
.
?,
i-
5
m,
OJ
rl
U
CL.
OO
-t
ly,
r-j
-f
r j
r-J
f~}
P^
CO
ON
ON
q
rJ
r^i
S
{~f-l
o
,
r-J
^C
^-
r-j
r-j
in
q
o
ฃ
Tt
C
in
OJ
OJ
U
CL
00
in
in
OJ
Tt
OJ
OJ
S
in
r--
ON
r~
OJ
C
m
S
pr-,
c
In
ON
OJ
OJ
OJ
f-(
s
o
K
o
in,
OJ
OJ
U
CL
oo
xO
in
OJ
Tt
OJ
OJ
r\
in.
m,
ON
OC
ON
rxi
rn
oo
OJ
3
f-f~,
c
p
r-J
P-,
[~-^
ON
m
O
, ^
0
c
in
OJ
OJ
U
CL
00
1^
in
OJ
Tt
OJ
OJ
o
Q
ON
OJ
ON
Tt
OJ
OJ
OJ
OJ
xC
f~,
^
ฃ
[-^
,
OC
rr,
C
, .
oc
c
in,
r-J
OJ
U
CL
00
oo
n
OJ
Tt
OJ
OJ
Q
, .
r^i
0
rJ
rj
^
^C
r-J
r^",
r*"-,
;
1C'
>^-
oc
ON
!^'
, .
^<
'n
OJ
OJ
y
OO
ON
i/-)
r-j
T.t>
r-j
r-j
S
in
ON
OJ
ON
OJ
oi
OJ
Tt
OJ
xC
pT~j
C
r-J
r-J
r*",
*/"i
i/~i
^
g
, ^
r
0
/"j
r-J
rg
U
CL
c^
^
^D
01
T^xt"
r-J
r-j)
a
xD
OJ
ON
m
ON
OJ
ON
m,
OJ
OJ
ro.
o
r
ON
rr
xO
OJ
O
. ,
cd
r-j
r-J
c
IO
OJ
OJ
U
CL
00
^_,
xO
OJ
Tt
OJ
ง
c^
ON
OC
OC
OJ
OJ
,
oc
OJ
-
r^i
c
^
OJ
ON
ON
00
in,
6
o
OJ
g
in,
OJ
OJ
U
CL
00
OJ
xC
OJ
Tt
OJ
OJ
O
a
oc
xO
m,
ON
ON
OJ
^.
ON
OJ
S
ro,
^;
OC'
ON
l/"l
ON
m
c
^-^
m
o
in,
OJ
OJ
U
CL
00
m
xO
OJ
^t
OJ
OJ
O
O
OJ
00
in
ON
OJ
in
ON
r-j
r*~j
O
oc
CO
r*~i
o
(N
r^
g
^
lS;
in
in
OJ
OJ
U
CL
00
<3-
xO
OJ
Tt
OJ
OJ
Q
^-,
in,
ON
OJ
OJ
,-.
oc
OJ
xD
r*~~,
o
PN
OJ
, ,
r-
oo
xC
Tt
p
o
ง
c
in,
OJ
oi
u
CL
00
in
xO
OJ
T^-
OJ
OJ
o
Q
o^
Tt
ON
ON
oi
ON
r-
OJ
xO
f~i
O
00
ON
O
OC'
OJ
2
o
Tt
c
in,
OJ
OJ
U
CL
00
xD
xC
OJ
Tt
OJ
OJ
Q
xO
OJ
ON
xO
OJ
XC
in,
OJ
OJ
xO
("*""!
^:
OC
r^j
[~
XC
OJ
3
> .
CxJ
ON
o
m,
OJ
OJ
U
CL
00
r-
xC
OJ
r^-
OJ
OJ
2
OJ
in,
i
ON
OJ
oi
xO
OJ
xd
r*~i
c
oo
C
xO
OO
in
ro,
O
o
in
O
in
OJ
OJ
U
CL
00
oo
xC
Tt
OJ
OJ
Q
Tt
O
ON
~
OJ
oc
OJ
xO
("*")
o
OJ
C
rr-(
xO
in.
OJ
ง
. *
OC
o
in,
OJ
OJ
U
CL
00
ON
xO
OJ
Tt
OJ
OJ
* -'
in
'
ON
OC
oo
OJ
oi
ON
OJ
OJ
xd
{"*")
o
ON
oc
OJ
OJ
ON
in
ro
O
C
XO
C
m,
OJ
OJ
CJ
CL
00
O
OJ
Tt
OJ
o-l
D
ON
<
ON
OJ
oo
OJ
oi
ON
OJ
xC
(f~)
C
ON
r-i
o
r-J
\C
^__
S
CJ
il
xC
o
in
OJ
OJ
U
CL
00
, ,
f^
OJ
^t
rxi
OJ
C
xC
OJ
ON
ON
Tt
OJ
oi
xC
ON
in,
ol
xd
C*~i
o"
u^-
l/~-
r-J
r-J
r*"i
VC
, ,
g
, -
CN
^C
J---X
c
in,
OJ
OJ
U
CL
00
OJ
t^
OJ
^t
OJ
OJ
c
c
xO
00
c*^
ON
OJ
oi
XD
oo
OJ
m
xC
f-(
o
ON
r-J
ON
OO
OO
__
o
o
S
xC
o
m
OJ
OJ
u
CL
00
r*-.
r '
OJ
^t
OJ
OJ
Q
oc
in
in
ON
m
ON
oi
ON
C
m
in
XO
ro
O
r-~
Tt
pr-j
^
^
r-J
0
o
r-i
o
in
OJ
OJ
U
CL
00
^
r-
OJ
^t
OJ
OJ
C
Q
T^-
Tt
ON
xO
oo
oi
00
OC
OJ
xC
ro
C5
O
OJ
r-
oo
oc
^
Tt
f ^
C3
xO
OJ
XO
2
in
OJ
OJ
U
CL
00
m
OJ
OJ
OJ
C
Q
in
Tt
ON
oc
OJ
ON
OJ
Tt
xD
r*~j
Q
in
r-l
r-J
n~,
p
OC
m
C'
, "
^
xO
B
in,
OJ
rxi
U
CL
00
xO
OJ
Tt
OJ
OJ
ง
xC
oo
ro,
ON
xO
oi
r
r~-
O-J
xd
r*~i
O
OO
XO
xD
Tt
OC
r-J
S
^-J
in,
XO
c
m
rxi
OJ
U
CL
00
i^
( .
OJ
^T
r-J
OJ
Q
OO
, i
r*^
ON
r-
m
XC
oi
in
OJ
in
xO
rn
O
O
OJ
m
^_
r^
m
o
. ^
ON
XO
g
m
OJ
OJ
U
CL
00
oo
OJ
Tt
OJ
OJ
o
Q
XO
r<~j
ON
m
in
oi
00
ON
OJ
m
xO
r*n
o
r-
m
xj
OJ
oo
r*~i
oc
OJ
S
o
Tt
xO
( .
g
in,
OJ
OJ
U
CL
00
o\
r-
OJ
Tt
OJ
OJ
O
Q
Tt
Tt
ON
in
m
OJ
in
00
OJ
in
xO
r*~)
^
^D
^t
r-i
. ,
i
c
r-J
P
CD
oo
Tt
XO
C
in
OJ
OJ
U
CL
00
^
oo
OJ
Tt
OJ
o
Q
C-73
-------
H
03
U U
B
5 c
3 O
o o
o
cu
3
B
-^
C
O
O
t--
i
U
a>
z
ss
o
c
c
o
U
fi
_c
o
>
3
i_,
*?,
_C
O
1
*
o
.H
i^
cs
"S
E
QJ
*"*
ฃ
o
73.
c
-2
c
'5
01
c
c
c
ฃ
lซ
-*^
.;
Oi
2
3
J2
CJ
H
_OJ
O
u.
c
ON
in
OJ
NC
OC
Ol
m
NO
ro,
d
in
in,
O4
xt
ON
00
|
O
r*~)
i/"i
^O
o
^
<-]
CN
U
p.
00
__
oc
Ol
T^-
01
01
c
D
oo
ON
in
OJ
Ol
oc
04
in,
NC
m
d
ON
oi
r*~j
(-*-j
oc
ON
ft
CD
d
CO
OC
m
NO
C
in,
01
U
0-
oo
Ol
oc
OJ
T^-
OJ
04
' ^
C
OC
OJ
OJ
ON
in
Ol
-3-
NC
01
in
NO
C
3
04
in
xC
NO
r~
d
CO
Ol
0
r-
CD
in
OJ
01
U
Q_
OO
f",
oc
Ol
^j-
ol
01
CD
o
^
o>
r\i
r-j
r\i
o
i/~i
r )
ปo
vC
f~,
<=>
NC
01
^
,
in
3
1 '
(---.
o
r-
O
m
r-4
u
P.
oo
^-
oc
OJ
-^j-
OJ
OJ
c
Q
ฃ
ON
in
01
oi
in
OJ
oc
xC
ft
-'
1
OJ
i-
^j-
*
3
'
CO
r
CD
ol
r i
U
CL.
CO
(/-;
oc
r-j
-7}-
P\I
f-vj
^
Q
O
r~
O
ON
ON
oj
OO
in
O4
oo
NO
fl
d
S
OJ
f-_
ON
ON
O
o
^o
1
o
OJ
u
p-
oo
NO
OC
01
T^-
01
o
O
04
ON
OO
r-
04
ON
xt
OJ
ON
NO
d
NO
O4
r-
"*
xt
c
d
CO
0
c
ol
U
p.
00
^
oo
OJ
T^J-
04
o
Q
o
ON
ON
04
NO
oi
oo
xt
r-
01
oo
NO
r*~i
d
NO
r
r-4
NO
C3N
NO
CM
C
d
ra
OJ
c
OJ
u
OH
00
oo
oo
OJ
Tt
OJ
OJ
o
Q
g
OJ
ON
ON
oi
oc
[--
04
OC
NC
m
C
ON
c
r~
OJ
NO
P-
OJ
d
ON
O4
C
0)
U
&,
oo
ON
oc
04
xt
OJ
04
CD
Q
04
O]
ON
ON
01
ON
00
oo
04
^
NC
f}
O
ON
01
r*-1
OJ
o
-r
'
^3-
f-j
o
OJ
04
U
OH
OO
0
ON
Ol
xt
01
Ol
CD
Q
o
ON
ON
OJ
ON
ON
xO
01
ON
ft
==
J
oi
rt^
Ol
NO
O
ON
O
d
ON
o
!N
U
P-
oo
, ,
ON
T^|-
OJ
OJ
O
Q
o
ON
00
Ol
oc
oi
ON
NO
Ol
ON
NO
d
OJ
00
oi
in
O
NO
o
d
CO
Tt
f~~
C
OJ
Ol
u
Q_
oo
O4
ON
01
*3-
04
OJ
C
a
oo
oo
oo
ON
ON
ON
oi
ft
[^
OJ
f
rn
C
oo
00
04
ON
NO
NO
C
d
CO
oo
Tt
in
Ol
Ol
U
Cu
oo
m
ON
OJ
T^
OJ
04
C
Q
NO
Ol
ol
ON
ง
ft
NO
0
ON
OJ
oo
NO
ft
d
i
oi
[ .
ON
fl
O
CO
04
in
r-
O
01
04
U
p-
00
^.j-
C3N
04
04
OJ
O
Q
NO
m
ON
cc
01
in
ft
NO
NO
r*"i
d
ON
oj
O
ON
o
01
01
C
d
r
in
o
in
OJ
04
U
P-
00
in
ON
01
xt
OJ
01
c
Q
in
oo
NO
ON
ON
oi
c
oc
ol
m
NO
NO
fo,
d
Ol
NO
oi
,__
Ol
ol
OJ
O
d
CO
C
oc
O
m
01
04
U
OH
00
NO
ON
OJ
xt
01
OJ
c
Q
ON
r^
ON
ON
C
oc
oi
ON
OJ
fl
in
NO
fi
C
in
m
04
r-
in
OJ
O4
C
CO
NO
O
oc
O
in
04
Ol
U
OH
00
|^
ON
01
^f
01
ol
CD
Q
oc
00
ON
NO
oi
r*",
m
ft
Tt
NO
d
ON
CN
oi
01
01
fl
ol
^
_
oc
in
Ol
Ol
U
0-
00
OO
ON
01
x^,-
ol
04
O
O
NC;
Ol
ON
m
t~-
r-
oi
m
T^J
^t
fl
,-,
NO;
-
Ol
NC>
oi
in
r-
^f
Ol
O
ca
in
00
in
Ol
01
U
a.
OO
a-^
ON
Ol
xt
ol
Ol
C
a
P
o"
NO
OJ
ON
oi
Ol
o
"xt
in
NO
fl
d
NO
in
oi
^
0
OJ
O
CO
C
04
OO
O
m,
Ol
Ol
U
o-
00
o
o
r^
04
OJ
o
c
Ol
ft
d"
ON
oi
p^
OJ
Tl-
^
NO
d
NO
in
oi
Ol
t
oc
OJ
-^
^J-
04
oo
c
in
O4
OJ
U
O.
00
_
o
"xt
OJ
04
O
O
g
c"
oc
00
04
T^
Tt
rt
ft
NO
o
ON
OJ
m
NO
0
fl
c
CO
ON
OJ
OO
O
m
04
OJ
U
oo
Ox)
O
ft
OJ
0)
o
Q
NO
NO
C:
CO
Ol
NC!
NO
"xt-
o\
NO
d
CO
NC)
xt
oi
fl
oi
ft
C:
CIS
ft
oo
C^
'
in
Ol
ol
U
C.
oo
ft
c>
ft
ซ^-
OJ
OJ
O
Q
xt
p~
oc
c"
NO
ON
oi
OJ
NO
xt
^
r-
m
d
m
oo
oi
NO
O
ft
O
CO
OO
fl
oo
c
in
OJ
Ol
U
00
^-4.
O
^f
04
OJ
O
D
r--
!--
oo
O
VI
C)
fi
fi
OG
xt
U"l
r--
d
ON
OO
01
O
Ol
"xt
fl
o
fl
*3'
oo
o
V,
OJ
OJ
u
p.
OO
in
O
m
^
OJ
OJ
O
Q
xt
2
NO
fl
fl
OJ
^^
ON
xt
^
[
fi
d
OJ
C
m
oi
O
o
m
m
O
CO
r
xt
oo
O
in
OJ
04
U
O.
00
NO
o
fl
xt
OJ
Ol
C
Q
C-74
-------
Appendix D
Roof Vent Manual Velocity Data
D-i
-------
(Intentionally Blank)
D-ii
-------
0)
CU
1_
cu
"S
o
s
Ol
c
<
2
eu
E
C
_
C
-------
Appendix E
Manual Velocity Data for Cell Building Openings and Associated Flow
Balance Calculations
E-i
-------
(Intentionally Blank)
E-ii
-------
M
O
O
^>
M
cS
C
0
oi
.ฃ
c
&
D,
O
C
2
3
~
U
c
-*-ป
c
1
cu
3
03
_.
f^t
>>
J5
2
ffi
6
c
03
EC
^
^^
o>
f~>
H
"2
CA
J
"c
"c
X"
O
r u.
ฃ
r^ u
"n
-ซซ
C/3
_
C-
C "o
u <
^ '^
-
^
-
o.
c
g.
~
;
'o.
i
o>
s
_^
aj
*- D
1 ป
c - c
ฃ > -5
C l t-
i- - o
c- c
D. rj
o
CO *^
EC3
: .E
Jr " o
O- c
< U
-S'
ฐu
_ฃ
JU
**
2 "=
"cs 'E
U C
** ^
^ *"
M ^
fc 1
a;
2 E
^ cj
^o ~
!*
'3 P
-2 cL
ซ -ฃ
m "P
ฃ E
Nj ^
C ^r
E ?'
*M
C3 *^
|_ C
c IB
b
>s
ฃ "g"
-2 Q.
pป ^"
>;
"5 'w
1 ง
>
ฃ-*
e ฃ
& CC
O ฃ
ฃ
J ฃ
M p
C^H
Z *_
E "
1 ง
^ U
W)
.E
"o ^"
5" "c
CO ^^
^ ^ _r ^ ^ ^ ^
CD CD CD CD CD CD CD
UJ UJ PJ PJ U,' PJ UJ
ro, [ C r/~ O NO
NO OC OC NC Tt
en CS -T OJ -t e-; C-;
^ ^ ^ ^ _r ^ ^
[i [i UJ UJ UJ UJ UJ
oc r~~~- r~~- i/~i- ' ^o ^t"
r*~j ^C "^f CT\ r^, ' O
m r-j TI- -f m r-J
r^i CN '-f rn r^, oJ (N
O CD CD CD CD O CD
U-i UJ uJ [' 1 [_LJ [Ti [_T]
O >^ \C \O CD O ^C
OJ ' OJ \~-~ r*-, f ] (N
^. ^J. ^- n-J _f. ^. ^
C 0 C 0 CD O O
Lฃ] W 'J-l LlJ LLJ uJ UJ
rxi oj r- r-j rxi rs
fN r^J r,l fN r^j fs) fS
, , i^- . - CD - - O
l_Lj [T1 LlJ Ll-i L-^ LJ-J |JL]
o-J r*~, PJ ^ ^C C~J (N
CNJ r-l - f~~j r-J c-j
__ LT, __ ^ rf-i _
" CD ~" ฐ : ^
O O O ' CD CD O
Sc cs Sc cs ฃ cs So
ON en ON rn ON en ON
m m, fC x cs cs r^
oc oc ^ g] ฃ
': "
*-"
_c ^ [Z! ~ _c c^
rs en rn ^
^
^i
^
"T
w
o
^f-
en
^
CD
UJ
NO
, ,
e^.
O
CN
_^_
U-
oo
^f.
6
o
cs
rs
O
PJ
oc
, ,
ON
C
O
gj
en
in,
in
^
*t
^
V
W
GO
OJ
^.
o
LU
OJ
NO
oo
OJ
o
UJ
00
^j.
C
UJ
00
oo
C
UJ
^
OJ
"~
0,
r^
ON
s
^i
in
^ ^
"jL ~JL
UJ UJ
^f r~^
CD !X3
en 04
^ *
CD CD
r*~i (^
oo O
r-J rN
IS'
_jj_ ^_
u: uj
_ _
^t ^t
o o
+ +
m in
OJ OJ
o o
UJ U-1
Tj- -^J-
_j ;
r- r^-
CD O
ON ON
rs So
e^, ON
in in
rt ^
f-
i/~j vO
rt ^
V ?
UJ UJ
cs ^
m oc
OJ OJ
-* -t
O O
UJ UJ
Tt- OJ
oo oo
rs rs
_j_ _(_
PJ PJ
Tf OJ
rn '*
C C'
PJ PJ
eo, oJ
Tf OJ
OJ
c o
PJ PJ
ON O
en oi
OJ
c "
c o
OJ OO
en ON
rC! ^
. rs
ON 00
rt
NO r-~
-T -t
^"-f "+
UJ UJ
c\i r^
CN! OC
OJ OJ
s -*
PJ UJ
t - r^
O NO
OJ OO
OJ
*$ "t
o c
UJ UJ
DC OC
^f *
c c
+ +
UJ UJ
OJ 00
C C
UJ UJ
NO NO
,
OC OC
C 0
ON ON
ON r-
OJ OO
rn ON
cs'"
cs
P-- OC
Tt Tt
+ +
UJ UJ
ON OC
oj m,
oJ rs
* -t
O CD
PJ UJ
en O
1 ' "^t
00 OJ
in o
ON OO
i OJ
o o
UJ UJ
ON OO
NO
en rf
O C
+ +
UJ UJ
NO -J
rs
O C
+ +
UJ UJ
ON vo
in ,-J
m oc
O O
ON ON
ON o~
OJ oc
e<~; ON
m, m
r~~ cs
CN rf
O rl
00 ON
rn
^
UJ
oc
mi
r-,
O
UJ
Vl
T^-
U^J
C
iO
_(_
PJ
OJ
en
(^
+
PJ
cs
cs
C
PJ
O
OJ
_
C
ON
C
ON
OJ
en
OJ
~
l_
ON
^
S^
PJ
r~
00
cs
^
o
UJ
r-^
NO
OJ
in
-r
00
+
UJ
oc
^
n^
+
PJ
r
0)
^
PJ
NO
OC
O
ON
O
r
oc
ON
in,
fn
rd
^^
C~N
v - I '
+ +
PJ PJ
, 1 . 1
r*", vo
CNI (N
* TJ-
c c
+ +
UJ UJ
in ^f
' en
oi cs
ON
cs
^
o c
UJ UJ
OO OJ
~-\ TJ-
C C
+ +
PJ PJ
_ _
"+ +
PJ PJ
oc oc
ON ON
in, in
C C
ON ON
ON r-
OJ OO
en ON
in in,
r^ oJ
K |S
-C C3
C ~~
S S
"+ ^f
PJ UJ
CN O>
r^i rn
-
U)
a
^
in
en
S_
PJ
en
00
oo
en
O
PJ
eo,
NO
00
rn
en
_^.
PJ
CO,
m
m
O
PJ
en
cs
C
UJ
oc
T i
O
o
CN
[-
fn
00
ON
r-
00
cd
NC
en eo,
^ . (
V ' ^ '
PJ PJ
cs c
^3" O~
oJ T^(-
en rn
PJ PJ
m r-
oo en
oi -^t
10
ro, rs
CS
r1", m
O C
UJ UJ
en ON
en CS
en en
o c
+ +
UJ UJ
CO, OO
00 oo
O C
UJ UJ
OO Tt
~J -I
ON r-
OJ ^f
r^ ON
OO <3N
ฐ ^
OJ ON
r~ oo
oc r-
ฃj <^S
NO r^
eo, en
+ +
UJ UJ
ON NO
NO Tt
en 0^
en m
O C
PJ PJ
en Tt
^t ON
rn NO
[^ in
r NO
rs
e<-, en
O O
PJ PJ
m in
m eo,
O O
+ +
UJ UJ
rs
eo, in
CN CS
O O
UJ UJ
NO O
_J oo
oo |
O
^ cs
- cs
no ON
00 en
ฐ oi
ON m
p cs
cs ^J
r- Tt
o cd
r- oo
E-l
-------
e
o
w
0
*M
-
"c
S
~
"a.
01
a
_E .
ฃ ^
d.
C.
2
Cป
.1 :
e ^
Lw
O.
a
D C
OJ C
TJ ^" -C
(/!) I ฃJ
^ ]
u- ฃ
f ^
^ * U
u, C cc
> t-
u
'3 E
~4> .0 ฃ,
.i; w to
. 'S 'c
3 ฃ|
^ c $
E ฃ
u
. "5: 'E*
o ฃ ฃ
^ ? u
^ C CO
E ^
"^ 2
>.2 a
ฃ ~ to
- 'u ^
a o >
ฃ ^ -
0. >
jz M~~*
H C to
" CX C3
5 O ฃ
^, ^f.
CJ
"rfl ^
c o ฃ
'"ง a ฃ
C *ป ^J
o **
o ""
q> fjj
** >^ _Q
.ฃ E ฃ
1 ฃ ฃ
C e*. c
O !__' O
o to
CJD
-w c ^_,
'ill
E ฃ
> c^
f-
o
_l_
PJ
C*~;
r*",
CN
r-,
PJ
[^
CN
oc
g
^D
ir-,
PJ
CN
C
PJ
O
CN
rJ
^c
CN
OC
c
CN
^
X
oc
~~
CN
C
_1_
PJ
^D
OC
CN
UJ
r-
o
oc
oc
oc
CN
PJ
oc
in,
PJ
PJ
ON
IT)
r-
~~
ON
in
^
rJ
C
CN
^^^ ^^^r^^r^r^^rr-
c'cd oddcooood
~j~~i~~l~ H~~f~'4~~4~~t~~i~'4~~i~~i~
PJUJPJ PJPJPJUJPJPJpJtUPJ
r^ ro "^t o - \o o f^ป *^~i 10 ^t1 *o
O^ ^C ^sf "^f "^t r^J r~- ^O T:d~ ^ */") r*~i
r^ _ ^(N^a,^^-^-
^ ^ ^ ^ ^ ^ ^ fs ^ ^ ^ ^
UJ UJ UJ UJKUJUJUJUJUJUJUJ
r*"i O tt ^C ^ f^ r^l T^- oo ^ LO \O
OC ' f"i ' ' C^ O CN OJ T^- ' i CN
-r-- m cN-ONin, r^-,^-
C^C -4C00or^00NC
~m' 2 oo!I212S':;'':x-;J.tiri2
IPIIIIIIIH
^urji^, ^C^Cr^-fNOvD^Or^i
- ^OCCC (NCNi/~i^-O ^O^O
r*~i r~J r-t r*~; r<~, o-l rn O r*~t ^ o OJ
oco occoooOoo
+ + + + + + + + + + + +
UJU:LI: u-iajp-iujw^wtaij.)
^O O^ O^ ~^t ~^f n~i O */~J O ^
i i p^ r~ f^i (N *o ' o ' ^ o ^o
ooo 0000005ฐฐ
+ + + + + + + + + + + +
\O O^ O Tt" "^J" O^ CN O ON "-"^ O ^
m m Lri^O^^'OiX
ooo dcddco9cc
r-^--t rM(N(N(N(N(Nr^rOO
~~ r^i r1^, r^- r~^' ^ ^ ^O ^C O O O
ฃj\ T QN <3\ CN CN ' ' '
^~~~ ^ oc ^ oo ^ cx^ ^ oc ^
- r-j : rN ^ : oi ^^ o-l ' '
r~~- fN CN O O r<~i r^") oJ rN TJ- T^ . ^
f"' cs _r^ o3 VQ cc ^~: Ki ^~. c\3 _^ cc
rsicNr-j CNCNCNCNC-JCNCNCNCN
CN ro
0 O
_j_ -|_
UJ PJ
^c ^o
\O CXD
vo m
OJ ro
PJ UJ
o o*\
CN *O
"ฐ m
CN ^
^o ^2
CN rn
r*~i ^C
'-0 -
ss
UJ UJ
c c
4 4
ON ON
10 10
o c
O CN
O NO
CN
T: =*
- ^
g jq
o r5
CN CN
ro rn
C C
~4* *4*
PJ UJ
~^j" */S
^ ^
r^~i r*~i
UJ UJ
O> ^O
C^ r*~i
Tj" rN
"ฐ 0
O"1
m m
oc oc
CN CN
O C
4 4
UJ UJ
CN CN
O C
4 +
oc oo
ON ON
in in
C C
CN CN
\o ^o
CN CN
OC ฐ^
C rl
r5 2
X ซ
CN CN
m CN f
o o o
J_ _i_ _L
UJ UJ p-l
^d" 'O CN!
^ ^ "
m rN c
-------
o
o
ง
o
I/}
OJD
C
'ฃ
2
"3
3r
o
c
a
ffi
.
2
^*
JU
.c
H
s
J2
J;
u
*..ป
1
'x
0
c.
c.
^
1
'><
o
U
Q,
^
^
^
CJ
_o
u
>
o
2
-*
uซ
55
^c
ฃ>
ฃ
>
-
.~
.
r*
C
ฃ
U
^
^
o"
U
C.
CJ
O.
ฐ
a;
_n
5
1-
U
-
>**"
-
U
J
-
X
:
ex
_e
"a.
CA
'e'
ฃ
^
u
-I
ฃ
cs
V
cs
ฃ
c
a.
?t^
_>>
~
_c
*
,,
ง
T,
ฐu
a>
*
T-7
fc
M
U
ฃ
U
J
U
ฃ
a
S*-l
^
U
z
E
L.
*-
' '
^
C
'c
n,
^f m
o o
PL; PJ
- rM
r-i ON
C'
X PJ
C VO
rj oc
rM
C C
PJ PJ
00 ON
r~
ON -*
C -
ON ON
-^ -TN
r^ ON
oc rM
ON ro
in, in
rj rJ
oc oc
C3 X
^1-o-tr^, -r-^-^rm
+ 4- + + + + + +
PJ PJ PJ PJ PJ UJ PJ PJ
oc O rr, rj rr, r-l oc rM
C ri ON ri ON
* O M- rr, -f ^- ^ m
PJ PJ PJ PJ PJ PJ PJ PJ
r-~ O rj o rj r~- vo
c r-i oc ri oo
rM o rj r-l rxl
oococooo
UJ UJ PJ PJ PJ PJ PJ PJ
^C C^ ^^ ^~- ^ '^O ^O O^
O r-i r-~ ri o\ > f^-
cc 0 -r -^ oo TT
- ^^ ^_- ^_
O"1 Sl"~"' 0s O^- ^^ CLT> Cl^ O^
Oo COOCO
r^ o^ r^^ o^ r~~- o^ r~^ CT^
oc1 CN oc r-J cc rxj cc rN
C^ n^j o*-' n", c^1 r^, ON ro
r^-ocrNjr-Jr^r^-r-lrNj
^' g^ - - i^; i^ ^' ^'
^~.
rj
rM r , rr rr, -f rt in, in
^-^
^
rN
rr, o
O O
PJ PJ
oc C'
VC O
'"'^ O
PJ PJ
^r c
~6 c
c
c c
PJ PJ
ON C
m c
^ -
ON ON
C C
r~ ON
oc rxi
ON rr,
in in,
0 C
ON ON
\C
** r^i
-4- -)-
PJ PJ
vC rM
ON
t rr,
PJ PJ
in ^c
oo
r-1 i
0 C
X1 X1
T ON
~ ^
r~: ^
ON ON
_/ c
t~""- ^s
:x: n o
mi O
O O
X X
rM C
in o
(N C
o o
X X
0 O
rJ o
O
rM r^
^^ *~~*
rM ON
00
ฐ
m >n
xf rM
JO C3
oo O
-------
-5s
3
'ฃ
0
u
*~ '
.
'V
w
'
'C
~
*J
C5
H
?
_c
^,
a
55
>
^
"c.
c
~
u
^
.
"a.
c
C.
<
c
i_
O,
c
a,
O
aj
'es
3
o
^o
;
^
u
ts
3
LM
o
^
><
CD
C
"a,
E
C3
' >
'i
C*S
ฃ
^
^
^j
f
IM
_O
1
ฃ
>>
Q
1
'o
_c
Oi
4:1
ซ
<:
2r
3
u
^)
>
ซ
ฃ3
-o_
IT
c:
d
u
U
JZ
p
ซii
g*
^^
-*J
c
'o
O O
??
tu P
o c
o o
0 O
+ +
[Tl pj
O 0
o o
o o
O 0
PJ W
o o
Or-^
iป-
o c
ON
t ON
^O r*~i
LO ON
[; (N
^- r-i
JD _C3
(N CN
C
(N
r^,
O
+
UJ
^f
CN
fN
0
UJ
oo
ง
!2
c
ON
r^
CN
-c
PN|
rn n~i r^4 r*^, O (N ^D O (N r^, r^, ro r^i r^i o (N !C' m
ccccooOccoooccoo^ c
--0^-O^rNidS-Tf^r-i^dS^ ^
(^"; r^, M r^, O (N ฃ3 O (N ro m ro r^~l f^", O (N ^Q >/~i
coccoo5occcooc;oo5o ^
+ + + + + +'4- + + + 4- + + + + r"^ +
UJ L-L! U-! U-^ U UJ ^ UJ [Tl UJ L^J UJ UJ UJ UJ [T1 ti^ f T1
[ t"^ CJC1 ro O CN ' | O ON "*3" CN ^ [ O*J O r^ C^ ปn ^
oc d in f^ 0 in Trrnro-^dON,^ iri "^
'"i
.0
' . rJO CJC1 ^rx|(NCN(NrNO ^
OOOOOOOOOOOOOOOO '
uitiitLiuJiiiojWBjtiiujuJuuJBJtSiS "^
OC OC OC 'vt" f^j f~^ 'O r~N QN ^~ NC 0s! ^J" NO c^ oo ^
II
"c
oooo^d 'ฐdddddccd x
ฃ
'5
'5
E
r-~K'< :NONo'o'dooNo^o'No'NCT;tT:t fj F
^ ON ON (N CN ^^ > ' -~ CN CN CN CN ON ON ^X ^
>
M
1
H
^ C ฃ d ^ 0 ""' ^ ^ f ^ d ฃ 0 ^ ^ ~
^
c
U-,
c
O C; r^, r^, nj CN -^f Tf j-; j-; j^ ^ ^ ;-, ^ ^-; O
ONON-^ Tt-^-OOCNcN^t^l'inioZ
rt _d) ^3 fr~ c\3 o rt r^ ^3 f~, ^3 f^i c3 r~~. ^ f~~i
CNrjcNrjCNcNCJr-JrNlrNCNcNCNcNCNcN
C
E
*
ซ
73
C
U
II
C
p
o
>
J~
s ^
.ฃ J;
E o
r?~ ^
~~ nl O
3 u CN"
o -j r-i
" ^ K
ง e =
0 O '-H
^ I-H C3
^~
C ON C
'g ^ <2
5 CN u
u i2 E
c ~^
E ;; Yr
ฃc2<
E-4
-------
l-s
5 E
o
T?
C
O
3
t/;
o
E
a
u
4^
Q.
O
"c
K^
'o
o i
u
Q
_
ro
Os
r~, r^-, ro r*", m r^i r*~l -rr -^- ^J- ^t ^t ^j-
Os Os Os OS Os OS OS OS OS OS OS OS Os
^f
OS
in in in in in l/~' 'O in in in in in in in *n in 'O in *n '/"I *n in in in in in in in in in in ">n in 'n in *n
+ ^+ + T1 + *+ + T1 "+ + "+ "+ ^f + + + + ^ ^f 4- +"+ + + + 4- + *+"+ + + + + "+ + -f
uj.uJUJuJiJJuJuj:i:uJ!JJiJJuJu:uJuJuauJuouJ.uuu^
ccT^cx:ir^^cOL/-Jo^r^'^^Cc^lcx^GNO i xi" oc * o ^t" "^ *o ^/~*
sO O ^ vo \C iy^, -sC '/", ^O l/~) ^sC l/^i U^, iD i.n LO i/~, ty~i IT, ID l/~i i/^ i^, IO in IO O "O
m r*~> r^~, r^, r^, rO c<", r*~. r^-, rO r^i r*"i n~i r^; i/~i in in *n ปn mj in in
in IT, in m m in in in m( ปn in
'O ^O ^D \C ^C ^C ^O
r^~, r^"i n^, r*^, rr, n~, cr, r*~,
(N r-l r\j r-J Os] r-i r i r-1
m m r<,
oJ CN r-J
r^i r*~, r^i r^, f, m r*l
rN rN o-J roO^ocO^OC^OO^^Oro^Cocrnr^ocvC'noovCOOC^r^-
in cr^ ^ปC ON ^C r^i c^i O^ ^~ f^o ^^ f^~j ^^-O ^O r*~i ^c r*~) in ^O ^" cO r^i r^ C^ O^ r1") r*~j ^j* xt"
>n \o in in in in in in in in in *n m in m m m in m in in in in in TJ* in in in in
c^ ;:>- ^ o
m, i vo o oo ^- ^c
^OONOOCTNChC^
ON in in oc oo
O> oo ON ON ON ON
O O O
o o
o o o o o
C1 r-0
m, in in
O O
J-.' r^
O C O
O V") O
o o o o o
vn o
o o
f-^ oo ON -' (N m
^ xt- Tf in in m
m ^o r- oo ON
in in m vr-^ in
in m in IT, m. m m in in m in m
q o p q
'-C O ^ ^O
in o r-
o o o
^o ^c
-------
."2
I?
'O
c r^i ON r~~ ^1" NO ^ CN ^ ON mi
"ฐ -ฃJ
b
tt ฐ
Q g r^ r. ^ ^ . P. ^ P. ~. ^ ^
H
L.
,2 gj ro r^-, n~, m rr-, r^ rn r<~, r<-, m r<~, ro m m m r^i m o m r^> m m m m m m m m ro m (^-, r<-i m ri
Q E
H
in in m, in, in ln in, >n in in m, in in, in, in, ปn in, in, in in in, in, m, nn in in in in in mi wi in in in in in
ooooooocoooocoooooocoooooooooooooooo
ซ >n in m, in, in, m, in in in ^c NC NO in, in NO NO NC NO in in, in, NC m, in in in in in in in in in in in in in
-L.
CJB
c -
5
_^ "jpj C^1 C^ ^^ ^-' C71 C^ O^ O^ ^^ """ C^ *~^ !^ CD **" "~~ ~~* ^~ ^^ CD ^^ ฐ~~ CD
_ ti
O s
oooccooooooocooooocooocooocooooooooo
O S oc ON o
j C 9 ฐ
~ NO
E-6
-------
o
OJ
C
c
U
w
V
ISK
c
u _
ft
0.1
rs
E""" ___ , __ _ _ ,_____, , _ rrv
,---, _ _ .__._,_____._. . _____ u^
CCCX^OCCCOCGCOCCCOCCOOCOOOCOCOCOCOCCOOOOC OC
~OJ
ฃ" =
W ''n in *n vn >n m, in ro oc ro in ' n^i ^j- < m ^C1 ^ _
r^-^c|noc^ocoN^TOtninปnocin''^NLT-, O"O''oo
T3 '$
ฃ ^
P ^
-C X
^*ซ i r- r~~ r^ t^- r~-- r~- r-~- r- r^ r^ r*~i r^i r^, m m r**i r~( r^~i r^ r*~i ^f o ฃ
gp???^^??????????????? 3 .t
-se 5
c
E
[^ r^^ r~~~ r~^- r^~- r~~- r~~- r^~ r~- *n in *n in ^n *n *-n *n in *n |n
n", n". r^~i r*"( r^~, c-f, r*~, r1", r*"i r**i r*~i r*~, r**i r*", rn r*~, r^j r*~t rO r^i
C E
H
n '/"/ ir, *n v> 10 in *n >n ^n^ >n vr-; ซn in ซn in
o o o o o c^ o o o o o o o o o o o o o o o
UJpJLldU^UJUJU^_J[JJWWUJUJjJUJUJWWUUJ ^
OO(N O O ON C O ^ r^-r^ m, r^oc~ r- (S oc
in n ""sf ^>o GO \o oc r^, c^ ~^f ^ Tf r^ *d" O O ^ c^ TJ~ O ^C
in in mj in in (n (n ^ in in in in in, in ^o ^ m, vn; ^c ^D m^
O ON
O ON
o
f-~\ ^-> --. ,
o o o o
OCOCCCCOCOC'O
C
-------
ซ
ฎ
c
o
in
"3
CU
Pi
B
ju
1
0
i
c
"^
B^
s
"a.
O
*-*
c
9J
**
O
0
05
Tt
UH
,
S
C3
H
is
E ^~
3 ^
K -
B!
ai
11
fc S
2 $-
55
-?
= B
g E
^ U
< ^
ca ^
Q E
,CJ
1- 1
< ฃ
"o %
> _c
6J5
C ""t/^
3 "5
05 C
u _
06 |
O s
_-i qj
0.1
U H
ปO ป/~i v/~) IT: 10 >v~j i/~ iy, \r; 10 10 i/"i to if; r~-
Os o> ON ON 0s- O^ CIN ON ON ON ON ON ON O"1 ON
-t-d-^^-^-^-^t-rf-T^^-Tt^--*^-
in in in in in, in, v,r, in, >n >n >n ป/"i in >n in
ococcoocooccccc
oo^O'nOoc^inONTt-Oror^, ^OCN
in m m ^D m, in, vn, in, in NO NO NO ^O VC in.
OCOCDOOCOCOCtiCOCOCOOOCOCOOOCr^l
oc. ocooococooscccccooocooococ
cxi CNI 01
m w o, 3 Jง
^ f~-- ^C sj ^*
ON oc ฐ^ a g
m' mi II o
^-
c o
i ฎ
ca .2
(N ON CJ ฃ
ฃ ? | -i=
? -w
Q 'S
e? g
o
E
"o
oo
^ s
in in
C) cO
W W
co r^
in m.
0 S
OJ
ฃ
u
o <;
8
ON
C
L
"H
"O
c
^
^^
p
1 1
c
^
CJ
%
_-J
rt
C
E
,^-
^
Cj
3
O
II
u
n
ฃ
II
g
5-
!r
E-8
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-600/R-02-007a
2.
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
Characterization of Mercury Emissions at a Chlor-
alkali Plant, Volume I. Report and Appendices A-E
5. REPORT DATE
March ?009
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
John S. Kinsey
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
10. PROGRAM ELEMENT NO.
See Block 12
11. CONTRACT/GRANT NO.
NA
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Air Pollution Prevention and Control Division
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final; 8/99-9/01
14. SPONSORING AGENCY CODE
EPA/600/13
is. SUPPLEMENTARY NOTES Author Kinsey s Mail Drop is 61; his phone is 919/541-4121.
16. ABSTRACT
report gives results of a characterization of mercury (Hg) emissions at
a chlor-alkali plant. Up to 160 short tons (146 Mg) of Hg is consumed by the chlor-
alkali industry each year. Very little quantitative information is currently available
however, on the actual Hg losses from these facilities. The Hg cell building roof vent
is considered to be the most significant potential emission point in chlor-alkali
plants, especially when the cells are opened for maintenance. Because of their poten-
tial importance, chlor-alkali plants have been identified as needing more accurate
measurements of Hg emissions. To obtain a better understanding of the fate of Hg with-
in their manufacturing process, the Olin Corporation voluntarily agreed to cooperate
with the U.S. EPA in a comprehensive study of the Hg emissions from their Augusta, GA,
facility, in collaboration with other members of the Chlorine Institute, representing
the active chlor-alkali plants in the U.S. To investigate the Hg releases from the
Olin chlor-alkali facility, EPA's National Risk Management Research Laboratory, Air
Pollution Prevention and Control Division (APPCD) in North Carolina organ-
ized a special study involving multiple organizations and personnel. However, only the
research conducted by APPCD, involving roof vent monitoring and air flow studies con-
ducted in the Olin cell building, is discussed in the report. The overall objective of
monitoring the Hg cell building roof vent was to determine the total elemental mercury
mass flux from the cell building under a range of wintertime meteorological conditions
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS'
b.IDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
Pollution
Mercury (Metal)
Emission
Chlorine
Alkalies
Membranes
Electrolysis
Pollution Control
Stationary Sources
Chlor-alkali Plants
Caustic Soda
13B
07B
14G
07D
11G
18. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS (ThisReport)
Unclassified
21. NO. OF PAGES
265
20. SECURITY CLASS (Thispage)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
E-9
U.S. Environmental Protection Agency
Region 5, Library (PL-12J)
/7 West Jackson Boulevard. 12th Fiซป
-------
"0
c
cr
o'
03
(-f
o'
3
o
m
O
O
i 3. :; ซป
rfi 2 3
S - =ป
">! p O O
Do 3 ง
i. in
I
O
,o
> z
7 -n .& rn
* V H & f\ ly ,
SZ1 $$%<
c>
?5s
:FICIAL BUSINESS
FOR PRIVATE USE. S3OO
OPPORTUNITY EMPLOYER
**& =
S ~fi 7}
attt*
MENTAL PROTECTION AGE
Research and Development
Management Research Laborator
\y Transfer and Support Division
incinnati, Ohio 4526Q
o
03
------- |